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Foreword

The Summer School Wisla 18: Nonlinear PDEs, Their Geometry, and Applications
was organized by the Baltic Institute of Mathematics and took place in a beautiful
mountain region of Wisła city in the south of Poland between 20 and 30 of August
2018. The city is located in the Beskid Mountains and is surrounded by mountains
that are covered by wild forest. The name of the city comes from the biggest river in
Poland which has its source near the town. In Poland, it is a well-known good place
for hiking, biking, and skiing and even ski-jumping in winter. Wisła is also a spa.
The city is located near the border with the Czech Republic and a few kilometers
from the border with Slovakia, with the unique triple point where the borders of
Poland, The Czech Republic, and Slovakia meet.

The school was devoted to geometric theory of differential equations and
applications to physics. A special place is occupied by the theory of the Monge–
Ampère equations and their applications in meteorology. There was also a session
for learning how to use the Computer Algebra System Maple® in practical com-
putations. The second part of the school was devoted to participant’s contributions.
This splitting into lectures and contributions of participants is reflected in this book.
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Fig. 1 Sunset over the mountains surrounding Wisła (photography by Eivind Schneider)
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Preface

This book is a summary of The Summer School Wisla 18: Nonlinear PDEs, Their
Geometry, and Applications that took place on 20–30 August 2018 in Wisła,
Poland. It is divided into two complementary parts: The first part the book presents
geometric methods in nonlinear differential equations and their application to
physics (including thermodynamics and meteorology) is presented. They are sorted
in the ascending order from introductory to more advanced. It is required that the
reader has basic knowledge of differential geometry (at the level of standard uni-
versity course of Global Analysis and/or Differential Geometry) and some
knowledge in physics for lectures touching upon this subject. The second part of the
book contains participant’s contributions. They are original research articles that
show how to apply the methods present in the first part. Some of the papers are
complementary to the lectures and present different viewpoints on the same subject.
This part is more advanced and concise, however a motivated reader should not
have big problems with following them after reading the lecture notes from the first
part of the book.

The first part of the book contains lectures given at the School and focuses on
various subjects from the geometric theory of differential equations.

The first lecture set in the book by Valentin V. Lychagin explains interesting
connections between the theory of measurements, contact geometry, and thermo-
dynamics. Its novel approach should be interesting to anyone who wants to
investigate the intriguing connection between probability and differential geometry.

The second set of lectures by Alexei Kushner, Valentin V. Lychagin, and Jan
Slovák contains an introduction to geometric theory of differential equations,
reformulation of the Monge–Ampère equations in this language, and examples of
use of Maple CAS to computations. It should be interesting for anyone new to the
subject.

The following lectures by Volodya Rubtsov take the reader deeper into the
Monge–Ampère equations and related structures including complex, Kähler and
hyperkähler. The last chapter in this series can be treated as an introduction to the
equations used in meteorology.
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The final set of lectures by Sergey N. Tychkov introduces, in the form of a
hands-on approach, symbolic computations in differential geometry using Maple®.

The second part of the book contains research papers by participants of the
school. They are more concise and the reader can treat them as an exercise in
understanding the material from the first part. They describe various subjects and
therefore they give reader a glimpse of current research in these areas.

We hope that the mix of lectures and original research articles will give you, dear
reader, a good starting point in your journey to the world of geometric theory of
differential equations and their applications, and that they will help you improve
your skills in this field.

Brno, Kraków, Oslo, Tromsø, Warszawa Maria Ułan
January 2019 Eivind Schneider

Radosław A. Kycia
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Part I
Lectures

This part presents the lectures on geometric theory of differential equations and its
applications.



Chapter 1
Contact Geometry, Measurement,
and Thermodynamics

Valentin V. Lychagin

1.1 Preface

This paper has a long story and goes back to the middle of 80s but its recent version
is based on the series of lectures I gave during the Summer school Wisla 18.

It is difficult now to say what kind of students and their backgrounds I had in
mind. Possibly, and it reflects my own background, I had in mind students working
in differential geometry, differential equations, and mathematical physics.

My friend, when I asked his opinion about thermodynamics, just said to me: con-
sider physics as a big familywith brothers, sisters, cousins, etc. Then thermodynamics
shall be witch among them.

This is provocative and possibly too strong image, but something like this I feel
every time when I read books on thermodynamics, although nobody will deny that
this is the more important part of physics.

Thus, the idea underlying these lectures was to show, first of all, that some kind of
thermodynamics is presented in practically all acts of measurement and second, that
it is strongly related to splendid mathematics, especially to contact and symplectic
geometry and to the theory of singularities.

The paper is organized in the following way. In the first part, we give a short
exposition of topics from probability theory that will be important for us. All of
this more or less standard with, the exception of discussion on coherence conditions
for dependency, which is heavily dependent on the Mac Lane coherence condition
([18]).

V. V. Lychagin (B)
Department of Mathematics, UiT Norges Arktiske Universitet, Postboks 6050,
Langnes 9037, Tromsø, Norway
e-mail: valentin.lychagin@uit.no; lychagin@math.uit.no

V. A. Trapeznikov Institute of Control Sciences of Russian Academy
of Sciences, 65 Profsoyuznaya street, Moscow 117997, Russia

© Springer Nature Switzerland AG 2019
R. A. Kycia et al. (eds.), Nonlinear PDEs, Their Geometry, and Applications,
Tutorials, Schools, and Workshops in the Mathematical Sciences,
https://doi.org/10.1007/978-3-030-17031-8_1
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4 V. V. Lychagin

The secondpart is central to the paper.Herewediscuss themeasurement procedure
for random vectors based on the principle of minimal information gain. We use this
principle instead of principle of maximum entropy because the notion of entropy is
not appropriate and not well defined in this situation.

The main result of this chapter and main geometrical image that stands behind
any measurement procedure might be formulated as a Legendrian or Lagrangian
manifold in contact or symplectic space equipped with an additional Riemannian
structure.

At the end of this chapter, we apply these results to measurement of velocities in
classical mechanics and more generally to measurement of physical fields. We show
that variationalmethods inmechanics and classical field theory are just a continuation
of the principle of minimal information gain and the functions of information gain
are just Lagrangians in the corresponding variational problems.

In the final chapter, we apply the previous results to classical thermodynamics
and illustrate them for the case of ideal and real gases in order to show how to get
the corresponding Lagrangian and Legendrian manifolds, and then describe phase
transitions and thermodynamical processes in the corresponding gases.

1.2 A Crash Course in Probability Theory

1.2.1 Measure Spaces and Measurable Maps

We begin with a motivation to consider σ -algebras, given by Giuseppe Vitali.
Let’s consider subsets X ⊂ R and let’s try to measure their “size” μ (X) , where

μ is a positive function, μ (X) ∈ [0,∞].
Assume that we, for intervals, have the standard measure μ ([a, b]) = b − a,

μ (∅) = 0, and let us also require that μ (X) ≤ μ (Y ) , if X ⊂ Y.

Moreover, assume that μ (∪i Xi ) = ∑
i μ (Xi ) , for disjoint countable unions:

Xi ∩ X j = ∅, for i �= j, and μ (X + t) = μ (X) , i.e., “size” does not change under
translations of subsets, t ∈ R. These are more or less natural expectations for the
“size-function”.

Wewill now show that such function does not exist. To this end, consider the factor
group R/Q consisting of classes x modQ of real numbers x ∈ R module rationals.

Due to the axiom of choice, it is possible to choose representative x ∈ R for any
class x modQ, and therefore, one gets a map φ : R/Q → R, such that π ◦ φ = id,
for the natural projection π : R → R/Q.

Taking fractional part of φ, we’ll assume, that Z = Im φ ⊂ [0, 1] and therefore,
c = μ (Z) ≤ 1.

On the other hand, R is a disjoint union ∪t∈Q(Z + t), and therefore, c > 0.
Consider now the following disjoint union: Z ′ = ∪t∈Q∩[0,1](Z + t) ⊂ [0, 2].

Then, μ
(
Z ′) ≤ 2 and μ

(
Z ′) = ∑

t∈Q∩[0,1] c.
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This contradiction shows that subset Z is not measurable. However, we still have
enough measurable subsets which we can construct from intervals by taking their
unions, intersections, and complements. This argument leads us to the following
notion.

A measurable space is a pair (�,A) , where � is a set andA is a σ -algebra, i.e.,
a subalgebra of the power algebra P (�)

(= 2�
)
of all subsets of the set � closed

with respect to countable unions and intersections as well as taking complements,
and which satisfies ∅,� ∈ A.

In probability theory, elements of A are usually called events and while points
ω ∈ � are called experiments. Then unions

⋃
Xi , where Xi ∈ A, correspond to the

statement that at least one event Xi holds, and intersections
⋂

Xi correspond to the
statement that all events Xi hold.

Compare the notion of measurable space with the notion of topological spaces,
where one defines a topology τ ⊂ P (�) as a collection of τ of open sets which is
closed with respect all possible unions and finite intersections, and which satisfies
∅,� ∈ τ .

Thus, for a given topological space (�, τ) we’ll consider the measurable space
(�,B) , where B = B (τ ) is a σ -algebra generated by countable unions, intersec-
tions, and complements of open sets in τ. This algebra is called a Borel σ -algebra.

Any mapping φ : �1 → �2 of sets induces a mapping of power algebras

φ−1 : P (�2) → P (�1) ,

by taking preimages, and also

φ−1 (X ∪ Y ) = φ−1 (X) ∪ φ−1 (Y ) ,

φ−1 (X ∩ Y ) = φ−1 (X) ∩ φ−1 (Y ) ,

φ−1
(
Xc
) = (

φ−1(X)
)c

,

for all subsets X, Y of set �2, i.e., φ−1 is a morphism of the algebras.
For the mapping φ of given measurable spaces (�1,A1) and (�2,A2), we say

that φ is measurable (or random point) if

φ−1 (A2) ⊂ A1,

i.e., if φ−1 maps elements of σ -algebraA2 toA1 and preserves intersections, unions,
and complements.

Once more, compare and recall that a mapping φ of topological spaces (�1, τ1)

and (�2, τ2) is continuous if φ−1 (τ2) ⊂ τ1, i.e., if φ−1 maps τ2-open sets to τ1-open
sets. Hence, if we consider topological spaces as measurable with respect to the cor-
responding Borel σ -algebras, then continuous mappings are also Borel measurable.

Let now (�,A) be a measurable space. Then a probability measure p on (�,A)

is a map p : A → [0, 1] such that
• p (∅) = 0, p (�) = 1, and
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• p (∪i Xi ) = ∑
i p (Xi ) , for all disjoint countable unions Xi ∩ X j = ∅, for i �= j,

and measurable sets Xi ∈ A.

The triple (�,A, p) is called a probability space and the value p (X) , where
X ∈ A, is called the probability of the event X.

Remark 1.1 (Important!) In these lectures, we consider only probability measures,
but, for the sake of simplicity, we call them simply measures.

1.2.2 Operations Over Measures, Measure Spaces,
and Measurable Maps

1. Restriction and induction.
Let (�,A) be a measurable space and let �′ ⊂ � a be a subset. Then the σ -
algebraA′ generated by intersections X ∩ �′, for all X ∈ A, defines a structure
of measurable space on �′.
The following is more general construction. Let φ : �′ → � be a map and
φ−1 (A) be the σ -algebra generated by all preimages of measurable subsets
X ⊂ �, X ∈ A. Then

(
�′, φ−1(A)

)
is a measurable space.

2. Tensor product.
Let (�1,A1) and (�2,A2) be measurable spaces. Denote by A1 ⊗ A2 the σ -
algebra of subsets of the product�1 × �2 generated by cylinders X1 × X2,where
X1 ∈ A1 and X2 ∈ A2. This algebra is called tensor product of σ -algebras A1

and A2.

3. Measurable maps.
Let φ1 : (�1,A1) → (�2,A2) and φ2 : (�2,A2) → (�3,A3) be measurable
maps. Then their composition φ2 ◦ φ1 : (�1,A1) → (�3,A3) is measurable too.
The constant maps as well as identity maps are measurable.

4. Image of measure.
Let φ : (�1,A1) → (�2,A2) be a measurable map and let p be a measure on
(�1,A1) , then the formula

φ∗ (p) (X)
def= p

(
φ−1 (X)

)

defines the measure on (�2,A2) . It is easy to check that

(φ2 ◦ φ1)∗ (p) = φ2∗(φ1∗ (p)).

5. Tensor product of measures.
Let pi , i = 1, 2, be measures on measurable spaces (�i ,Ai ) , then the formula

(p1 ⊗ p2) (X1 × X2)
def= p1 (X1) · p2 (X2) ,



1 Contact Geometry, Measurement, and Thermodynamics 7

where X1 ∈ A1 and X2 ∈ A2, defines the measure on (�1 × �2,A1 ⊗ A2) .

This measure is called (tensor) product of the measures p1 and p2.

6. Random vectors and random variables.
Measurable maps φ (�,A, p) → R or more generally ψ : (�,A, p) → E,

where E is a finite-dimensional vector space (over R), and both spaces E, R

are considered as measurable with respect to the Borel σ -algebras, and are called
random variable and random vector, respectively.
From the practical point of view, it means that preimages φ−1 (U ) and ψ−1 (V )

areA -measurable for all open sets U ⊂ R and V ⊂ E .

Remark 1.2 Almost all constructions that we will use in these lectures could be also
applied in the case when E is an infinite-dimensional Banach or Hilbert space.

The set of all random vectors is closed with respect to addition and multiplication
by numbers and therefore forms a vector space itself (often infinite-dimensional).
The set of random variables is also closed with respect to product and therefore forms
an algebra over R.

7. The images φ∗ (p) or ψ∗ (p) are probability measures on R and E , respectively.
They are called probability laws for random variable φ or random vector ψ . We
consider the values φ∗ (p) (U ) or ψ∗ (p) (V ) as probabilities of finding a random
variable φ or random vector ψ in the open set U ⊂ R or V ⊂ E .

1.2.3 The Lebesgue Integral

By step functions on a measurable space (�,A), we mean measurable functions
that take only a finite number of values.

It is easy to see that any such function s could be presented in the form

s =
n∑

i=1

ci · χAi ,

where Ai ∈ A are measurable subsets, and χAi are their indicator functions, i.e.,
χAi (ω) = 1, when ω ∈ Ai , and χAi (ω) = 0 in the opposite case, and ci are the
values of the function s : s|Ai

= ci on Ai .

For a step function s, the definition of the (Lebesgue) integral with respect to the
measure p is very natural:

∫

�

s dp
def=

n∑

i=1

ci p(Ai ).

For a nonnegative measurable function f this integral is defined as a limit of approx-
imations of f by nonnegative step functions, or more precisely as
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∫

�

f dp
def= sup

s

⎛

⎝
∫

�

s dp, for all nonnegative step functions s such that s ≤ f

⎞

⎠ .

(1.1)
It is easy to see that any measurable function f could be presented in the form:
f = f+ − f− for some measurable and nonnegative functions f+, f− and we’ll
define ∫

�

f dp
def=

∫

�

f+ dp −
∫

�

f− dp.

One can easily check (or read in textbooks) that the Lebesgue integral satisfies
the most of familiar properties of integrals. Among them

1. The function f �−→ ∫

�

f dp is R-linear in f.

2. For any nonnegative measurable function λ, such that
∫

�

λ dp = 1, the formula

pλ (A) =
∫

�

χA λ dp,

for A ∈ A, defines a new probability measure on (�,A) , and

∫

�

f dpλ =
∫

�

f λ dp

for any measurable function f.
3. If φ : (�,A) → (

�′,A′) is a measurable map and p′ = φ∗ (p) is the image of
the measure p on �. Then

∫

�′

f ′ dp′ =
∫

�

φ∗ ( f ′) dp,

for any measurable function f ′ on �′.
Here, φ∗ ( f ′) = f ′ ◦ φ.

Remark 1.3 1. The difference between Riemann and Lebesgue integrals one can
see and feel for the case when � = [0, 1] and f = χA is the indicator function
of the set A = [0, 1] ∩ Q. Then the Riemann integral of f obviously does not
exist but the Lebesgue integral equals zero.

2. Let’s consider a measurable function f : (�,A, p) → R as a random variable.
Then the mean value (or average) 〈 f 〉p of f is the integral

〈 f 〉p
def=

∫

�

f dp.
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Let p′ = f∗ (p) be the probability law for f. Then, due to the above property,

〈 f 〉p =
∫

�

f dp =
∫

R

x dp′,

where x is the standard coordinate on R.

1.2.4 The Radon–Nikodym Theorem

Let p and q be twomeasures on ameasurable space (�,A) .We’ll write q << p and
say that measure q is absolutely continuous with respect to measure p, or dominated
by p, if q (A) = 0 whenever p (A) = 0, for A ∈ A.

If q << p and q << p we say that the measures p and q are equivalent.
The Radon–Nikodym theorem (see, for example, [25]) states that if q << p then

there is a nonnegative measurable function ρ such that

q (A) =
∫

�

ρχAdp, (1.2)

for any set A ∈ A.

This function is called density q with respect to p, or Radon–Nikodym derivative
dq
dp .

In this notation, formula (1.2) takes the more transparent form:

q (A) =
∫

�

χA
dq

dp
dp.

1.2.5 The Fubini Theorem

Let (�1,A1, p1) and (�2,A2, p2) be probability spaces. We define their product as
the triple (�1 × �2,A1 ⊗ A2, p1 ⊗ p2) , where A1 ⊗ A2 is the σ -algebra gener-
ated by the products A1 × A2 ⊂ �1 × �2 of measurable sets A1 ∈ A1 and A2 ∈ A2

and the product of the measures p1 ⊗ p2 is a measure on space �1 × �2, such that

(p1 ⊗ p2) (A1 × A2) = p1 (A1) · p2 (A2) .

It is easy to see that the product p = p1 ⊗ p2 is also probability measure:
(p1 ⊗ p2) (�1 × �2) = 1.

We say that a measurable function f on �1 × �2 is integrable if
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∫

�1×�2

| f | dp < ∞.

For integrable functions the Fubini theorem states that

∫

�1×�2

f dp =
∫

�1

⎛

⎝
∫

�2

f dp2

⎞

⎠ dp1 =
∫

�2

⎛

⎝
∫

�1

f dp1

⎞

⎠ dp2. (1.3)

Remark that functions given by the integrals
∫

�1

f dp1 and
∫

�2

f dp2 involved in the

iterated integration is not necessarily defined everywhere, but the sets on which they
are not defined are sets of measure zero.

1.2.6 Random Vectors

Let X : (�,A, p) → V be a random vector, dimR V = n < ∞.
Define a mean or average or expectation of X as a vector E(X) ∈ V such that

α (E(X)) =
∫

�

(α ◦ X) dp, (1.4)

for any covector α ∈ V ∗.
Two remarks on this definition. First of all, if e1, ..., en is a basis in V and

X (ω) = X1 (ω) e1 + · · · + Xn (ω) en

is a decomposition of X in this basis for some measurable functions X1, ..., Xn, then
(1.4) means that

E(X) = 〈X1〉p e1 + · · · + 〈Xn〉p en,

or

E(X) =
∫

�

Xdp,

if in the last formulae we mean coordinate wise integration.
Second, formula (1.4) allows us to define means of random vectors for infinite-

dimensional Banach vector spaces also if we use the Bochner integral (see, for
example, [4]) instead of the Lebesgue integral.
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1.2.7 Conditional Expectation

Let φ : (�1,A1) → (�2,A2) be a random point on �2 and let p be a probability
measure on (�1,A1) . Then the push-forward measure pφ = φ∗ (p) on (�2,A2)

is the probability law, in the sense that φ∗ (p) (B) = p
(
φ−1 (B)

)
is equal to the

probability of finding the random point in set B ∈ A2.

Let now X : (�1,A1) → V be random vector. Then there is a random vector
E ( X | φ) : (�2,A2) → V (defined in the complement of a zero measure set) called
conditional expectation, such that

∫

�1

φ∗ ( f ) Xdp =
∫

�2

f E ( X | φ) dpφ. (1.5)

Taking indicator functions χB, for sets B ∈ A2, we can rewrite the above formula
in equivalent form ∫

φ−1(B)

Xdp =
∫

B

E ( X | φ) dpφ. (1.6)

The last formula allows us to consider conditional expectation as a “density” of local
averages

∫

φ−1(B)

Xdp along preimages φ−1 (B) .

To outline the construction of conditional probability we remark that due to
definition (1.4) it is enough to consider only nonnegative random variables
X : (�1,A1) → R.

For them, the left-hand side of (1.6) defines a measure on (�2,A2) . This measure
is bounded and absolutely continuous with respect to probability law pφ if X ∈
L1 (�1, p) . Therefore, at least in this case, conditional expectation E ( X | φ) exists.
For more details, see [10, 11].

Example

Let φ : �1 × �2 → �2 be the projection φ (ω1, ω2) = ω2 and let p = ρp1 ⊗ p2,

where pi are measures on �i , respectively, and ρ (ω1, ω2) is the density. Then

dpφ =
⎛

⎝
∫

�1

ρ (ω1, ω2) dp1

⎞

⎠ dp2,

and formula (1.5) gives us

E ( X | φ) (ω2) = 1
∫

�1

ρ (ω1, ω2) dp1

∫

�1

X (ω1, ω2) dp1.
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1.2.8 Dependency, Coherence Conditions, and Tensor
Product of Random Vectors

Let X1 : (�1,A1, p1) → V1 and X2 : (�2,A2, p2) → V2 be random vectors,
dimR Vi = ni < ∞, i = 1, 2.

Define their tensor product as a random vector

X1 ⊗ X2 : (�1 × �2,A1 ⊗ A2, p12) → V1 ⊗ V2,

where
(X1 ⊗ X2) (ω1, ω2) = X1 (ω1) ⊗ X2 (ω2) ∈ V1 ⊗ V2,

and p12 is a measure absolutely continuous with respect to product p1 ⊗ p2.

Random vectors X1 and X2 are said to be independent if p12 = p1 ⊗ p2.

Denote by E(X1) and E(X2) averages with respect tomeasures p1 and p2, respec-
tively, and let E (X1 ⊗ X2) be the average with respect to measure p12.

Then, due to the Fubini theorem,

E (X1 ⊗ X2) = E(X1) ⊗ E(X2),

if X1 and X2 are independent.
In general, the tensor

cov (X1, X2) = E (X1 ⊗ X2) − E(X1) ⊗ E(X2) ∈ V1 ⊗ V2.

is called the cross-covariance between random vectors X1 and X2.

In the special case when X = X1 = X2, V = V1 = V2, and p12 = p ⊗ p the
tensor var(X) = cov (X, X)∈ V ⊗ V is a symmetric tensor and is called the variance
of the random vector X.

In order to measure various tensor products, we fix a probability space (�,A, p)

and call “dependency” a sequenceof probabilitymeasures p(k) onproducts
(
�k,Ak

)
,

where �k = � × · · · × �, Ak = A ⊗ · · · ⊗ A are kth Descartes and tensor
degrees, which are absolutely continuous with respect to the tensor product mea-
sure pk = p ⊗ · · · ⊗ p and satisfy

πk,i
(

p(k)
) = p(k−1). (1.7)

Here πk,i : �k → �k−1 are the natural projections,

πk,i (ω1, . . . , ωk) = (ω1, . . . ωi−1, ωi+1, . . . , ωk)

for ωi ∈ �.
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Independence in these terms means that p(k) = pk for all k ≥ 2.
Conditions (1.7), as we’ll see later on, uniquely define measures p(k), for k ≥ 3,

for given measures p(1) = p and p(2).

It is very similar to the Mac Lane coherence conditions for associativity of a
tensor product (see [18]), where associativity of a product of three elements implies
associativity of products of any number of elements.

For these reasons, we also call (1.7) coherence conditions for probability mea-
sures.

Let ρk be densities of measures p(k) with respect to measures pk, then (1.7) means
that ∫

�i

ρk dp = ρk−1, (1.8)

where �i are fibers of the projections πk,i .

In order to show that such dependencies exist, we’ll consider, at first, the case of
finite-dimensional dependencies.

Namely,we’ll assume that there is a finite-dimensional vector spaceW in the space
of A—measurable functions on �, W ⊂ F (�) , such that 1 ∈ W and all densities
ρk, k ≥ 2, belong to the kth tensor products W ⊗k = W ⊗ · · · ⊗ W ⊂ F (

�k
)
.

Here, we’ve identified the product of functions f (ω1) g (ω2) ∈ F (
�2

)
, where

f, g ∈ W, with the tensor product f ⊗ g ∈ W ⊗ W.

Denote by I : W → R the linear functional given by integral, f ∈ W �−→∫
�

f dp, and let e0 = 1, e1, . . . , en be a basis in W, where I (ei ) = 0 if i ≥ 1.
Assuming that ρ2 ∈ W ⊗ W we represent it in the form

ρ2 =
∑

i, j≥0

ci j ei j ,

where ei j = ei ⊗ e j and ci j ∈ R.
Denote by I1 = I ⊗ id and I2 = id⊗I , we rewrite condition (1.8) in the form:

I1 (ρ2) = 1 ∈ W and I2 (ρ2) = 1 ∈ W,

or ∑

j≥0

c0 j e j = 1 ∈ W,
∑

i≥0

ci0ei = 1 ∈ W.

Therefore,
c00 = 1, c0 j = 0, ci0 = 0, if i, j ≥ 1,

and thus we get that
ρ2 = 1 ⊗ 1 +

∑

i, j≥1

ci j ei j .
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The similar calculations show that for the given ρ2 of the above form, we get

ρ3 = 1 ⊗ 1 ⊗ 1 +
∑

i, j≥1

ci j e
(3)
i j , (1.9)

where
e(3)

i j = 1 ⊗ ei ⊗ e j + ei ⊗ 1 ⊗ e j + ei ⊗ e j ⊗ 1,

and for general value of k we get

ρk = 1 ⊗ · · · ⊗ 1 +
∑

i, j≥1

ci j e
(k)
i j , (1.10)

where
e(k)

i j = 1 ⊗ · · · ⊗ 1 ⊗ ei ⊗ e j + · · · + ei ⊗ e j ⊗ 1 ⊗ · · · ⊗ 1.

Going back to the standard functional notations we’ll rewrite these formulae in the
following way.

Theorem 1.1 For a given density function ρ2 (ω1, ω2), the formula

ρk (ω1, . . . , ωk) =
∑

i< j

ρ2
(
ωi , ω j

) − (k + 1) (k − 2)

2
(1.11)

gives the solution of coherence equation (1.8).

Remark 1.4 We saw the uniqueness of solution for densities generated by the finite-
dimensional vector spaces W. It follows from the Stone–Weierstrass theorem that
the uniqueness is also held in the case when � is a compact subspace of R

n ,A is the
Borel algebra and we consider only continuous solutions of (1.8).

1.3 Measurement of Random Vectors

The problemofmeasurement of vectors, namely, themeasurement of velocity vectors
for gas particles, was initially investigated byMaxwell (1860) and later byBoltzmann
(1872). They showed that the density of probability to get velocity vector v ∈ T in
a tangent space T with respect to the Lebesgue measure satisfies the normal law

ρ =
(

m

2πkB T

)3/2

exp

(

−
mv2

2kB T

)

,

where kB is the Boltzmann constant.
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This distribution describes behavior only for ideal noble gases, for real ones the
picture is much more interesting and much more complicated.

1.3.1 Entropy and the Shannon Formula

The notion of entropy as well as the name Entropie appears for the first time, due to
Rudolf Clausius ([3]), in 1865.

In modern terms, it claims that the differential 1-form δQ which measure the
change of heat is proportional to the differential of some function S, called entropy,
i.e., δQ = T d S. The multiplier T is called temperature. Remark that in this setting
the entropy function S is not uniquely defined. The absolute entropy function was
defined later by using statistical approach and the third law of thermodynamics, or
Nernst’s postulate.

In statistical mechanics Boltzmann defined entropy as related to the number W
of microscopic configurations of the system:

S = kB ln W. (1.12)

Entropy in this picture is considered as a measure of uncertainty of our system
after observation of the main macroscopic quantities of the system.

It was noted by Max Plank ([22]) that “The logarithmic connection between
entropy and probability was first stated by L. Boltzmann in his kinetic theory of
gases.”

From a probabilistic point of view the Boltzmann formula could be written in the
form S = −kB ln p, where p is a probability of taking a microscopic configuration,
and in this form, it has very transparent interpretation.

Let (�, p) be a probability space, where p(A) is the probability of an event
A ⊂ �.

We say that a function s : A �→ s(A) ∈ R is a surprise function, if it satisfies the
following properties:

• s(A) ≥ 0, s(�) = 0, s(∅) = ∞.

• s (AB) = s (A) + s (B) , if events A and B are independent.
• s (A) = f (p (A)) , for a continuous function f.

Then, if we assume that the function p �→ s (p) is continuous, we get that

s(A) = − loga p(A),

for some constant a > 1.
The base number a is used to give name for units of the surprise measurement:

nats, for a = e; bits, for a = 2; and hartleys, for a = 10.
In what follows, we’ll use the unit of nats.
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Assume now that we have a finite probability space� = {ω1, . . . , ωn} and let p =
{p1, . . . , pn}, where pi = p(ωi ), is a probability measure. Then, due to Shannon,
the average, or expected value, of the surprise function:

S (p) = −
∑

i

pi ln pi , (1.13)

is called the entropy of probability measure p.

Now let’s try to transfer this notion to the case of infinite probability spaces. Take,
for example, � = R and p = f (x)dx, where f (x) is a probability density.

Then taking discretization R = ∪i [xi , xi+1] and p̃i = f (ξi ), for some intermedi-
ate points ξi ∈ [xi , xi+1], we expect that possible value of S(p) is a limit of integral
sums S ( p̃) = −∑

i p̃i ln p̃i .
We have

S ( p̃) = −
∑

i

f (ξi ) ln f (ξi )�i −
∑

i

f (ξi )�i ln�i ,

where �i = xi+1 − xi .

The first term in this expression tends to
∫∞
−∞ f (x) ln f (x)dx, but the second one

has no limit.
To resolve this problem, let’s reconsider definition (1.13) by taking two probability

distributions on �; say p = {p1, . . . , pn} and q = {q1, . . . , qn}.
Assume that q is our initial distribution, then differences (− ln qi ) − (− ln pi ) tell

us about “the gain of information”, and the average

S(p, q) =
∑

i

pi ln

(
pi

qi

)

is called the gain of information or the Kullback–Leibler divergence between prob-
ability distributions p and q.

Let’s compare this gain of information with the previous notion of entropy. If we
assume that qh = { 1n , . . . , 1

n } is the homogeneous distribution, “noise”, then

S(p, qh) = ln(n) − S(p).

In other words, the gain S(p, qh) is a difference between entropy of “noise”, which
is equal to ln(n) = maxp S(p), and entropy S(p) of the given distribution p.

Going now back to the case, when � = R, and assuming that p = f (x)dx and
q = g(x)dx, we get that

S ( p̃, q̃) = −
∑

i

f (ξi ) ln
f (ξi )

g(ξi )
�i −→

∫ ∞

−∞
f (x) ln

f (x)

g(x)
dx (1.14)

which now has sense.
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1.3.2 Gain of Information

Let us now consider a general probability space (�,A, p) with probability measure
p and let q be another probability measure, which is equivalent to measure p, p ∼ q,

i.e., these measures have the same set of negligible (or measure zero) sets.
Then formula (1.14) leads us to the following notion of information gain or

Kullback–Leibler divergence between probability distributions in the general case:

I (p, q) =
∫

�

ln

(
dp

dq

)

dp. (1.15)

The main property of this function is positivity (Gibbs inequality) :

I (p, q) ≥ 0, and I (p, q) = 0 if and only if p = q almost everywhere.

It follows directly from Jensen’s inequality:

∫

�

ln

(
dp

dq

)

dp = −
∫

�

ln

(
dq

dp

)

dp ≥ − ln

⎛

⎝
∫

�

dq

dp
dp

⎞

⎠ = − ln

⎛

⎝
∫

�

dq

⎞

⎠ = 0.

Moreover, I (p, q) = 0 if dq
dp = 1, or p = q, almost everywhere.

Therefore, this function shows how to measure p diverges from measure q.
Remark that this function is not a distance between two measures because it is not
symmetric: I (p, q) �= I (q, p): Moreover, it does not satisfy the triangle inequality.

Formula (1.15) in terms of density ρ, dp = ρdq, could be rewritten in the form

I (p, q) =
∫

�

ρ ln ρ dq,

which is similar (up to sign) to the entropy expression.
Applying, for example, this function to random points we would now be able

to compare two random points φi : (�,A, p) → (
�′,A′), i = 1, 2, by taking

I (φ2∗ (p) , φ1∗ (p)) , as well as estimate the dependency p12 between two mea-
sures p1, p2 on probability spaces (�i ,Ai , pi ) by taking their mutual information:
I (p12, p1 ⊗ p2) .

1.3.3 Principle of Minimal Information Gain

The principle of maximum entropy was formulated by Edwin Thompson Jaynes in
1957 ([6]). In these papers, he gave a very transparent relation between statistical
mechanics and information theory.
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Later Kullback ([14]) proposed the principle of minimum discrimination infor-
mation (MDI) which we used here under the name principle of minimal information
gain.

Consider a random vector X : (�,A, q) → V on a finite-dimensional vector
space V . Then we consider the average

E (X) =
∫

�

X dq

as a result of the measurement.
Indeed, assume that g is a metric on V and the result of measurement is a vector

c ∈ V , such that expectation of length of vectors X − c, i.e., E (g (X − c, X − c)) ,

is minimal.
Then, due to Jensen’s inequality, we get that

E (g (X − c, X − c)) ≥ g (E (X − c) , E (X − c)) = g (E(X) − c, E(X) − c) ≥ 0,

and it takes zero value if and only if c = E (X) .

Changing random vector X for X − E (X) , we’ll assume that X is a centered
random vector, i.e., E (X) = 0 ∈ V .

Let’s consider the map X : (�,A, q) → V as some device that produces vectors
of vector space V and uses probability measures p ∼ q on � as control parameters.

Namely, we assume that the result of the vector measurement for the given value
of p is

E (X, p) =
∫

�

X dp.

In order to get the vector x ∈ V as a result of our measurement, we should adjust
our device state (�,A, q) to another (�,A, p) , where p ∼ q, in such a way that

E (X, p) = x .

In terms of density functions, dp = ρdq, this means that we are looking for non-
negative and A-measurable functions ρ on space � such that

∫

�

ρ dq = 1,
∫

�

ρX dq = x . (1.16)

Conditions (1.16) are too weak to define function ρ completely. So, and this is the
principle of minimal gain information, we’ll require in addition that the measure p is
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the closest one to the basic measure q in the sense that it minimizes the information
gain:

I (p, q) =
∫

�

ρ ln ρ dq =⇒ min,

under conditions (1.16).
To this end, we consider the functional

L (ρ) =
∫

�

ρ ln ρ dq − λ0

⎛

⎝
∫

�

ρ dq − 1

⎞

⎠ −
〈

λ,

∫

�

ρX dq − x

〉

,

where λ0 ∈ R and covector λ ∈ V ∗ are the Lagrange multipliers.
Then, the condition

δL
δρ

= ln ρ + 1 − λ0 − 〈λ, X〉 = 0,

gives
ρ = exp (λ0 − 1 + 〈λ, X〉) ,

and the first condition of (1.16) gives us

ρ = 1

Z (λ)
e〈λ,X〉, (1.17)

where

Z (λ) =
∫

�

e〈λ,X〉 dq, (1.18)

is the so-called partition function.
Remark that this integral may not exist for all values of λ.

Let’s fix a connected and simply connected domain D ⊂ V ∗ where the function
Z (λ) is defined and smooth, and assume that 0 ∈ D.

Then the differential of this function at a point λ ∈ D is a vector of the cotangent
vector space T ∗ (D) which we, using the affine structure on V ∗, shall identify with
(V ∗)∗ = V . In other words, we’ll assume that dλ Z ∈ V .

Remark 1.5 The hidden probability space � could be eliminated from the formula
for the partition function and the last formula could be written in terms of vector
space V only:

Z (λ) =
∫

V

e〈λ,t〉 dμ (t) , (1.19)

where μ = X∗ (q) is the image of the basic measure q.
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To satisfy the second condition of (1.16), we remark that

dλ Z =
∫

�

e〈λ,X〉 X dq = Z (λ) x .

Therefore, if we introduce another function, which we’ll call the Hamiltonian func-
tion,

H (λ) = − ln Z (λ) , (1.20)

then
x = −dλ H. (1.21)

We also have

I (p, q) = 1

Z (λ)

∫

�

e〈λ,X〉 (H (λ) + 〈λ, X〉) dq (1.22)

= H (λ) + 〈λ, x〉 = H (λ) − 〈λ, dλ H〉 . (1.23)

It is possible to get the vector x as a result of using our device X if and only if
Eq. (1.21) solvable. In other words, if we consider the Legendre map

d H : λ ∈ D �−→ dλ H ∈ V ,

then Eq. (1.21) solvable if and only if the vector x belongs to the image of the map
d H : x ∈ D̂ = Im d H ⊂ V .

Denote by � ⊂ D the set of singular points of the Legendre map d H : D → D̂,

and let �̂ be the image of�.Then D � � aswell as D̂ � �̂ are unions of “phases” Di

and D̂i and the restriction of the Legendre map on them are local diffeomorphisms,
and therefore, Eq. (1.21) has a discrete set of solutions λi, j (x) for x ∈ D̂i .

Let us first consider vectors x ∈ D̂i such that (1.21) has a unique solution λ (x) ∈
Di and write (1.22) as a function in x, I = I (x) = H (λ (x)) + 〈λ (x) , x〉 . Taking
the differential, we get

dx I = λ (x) . (1.24)

In the opposite way, given a function I (x) in a domain Di , then (1.24) and the
relation

H (λ) = I − 〈dx I, x〉

define the Hamiltonian and, as a consequence, the partition function Z .

In other words, the Hamiltonian function H (λ) and the information gain function
I (x) , x ∈ D̂i , are related by the Legendre transformation (1.22) and our device
allows us to measure vectors x ∈ D̂i ,where densities of the corresponding measures
can be found from (1.17).
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Geometrically, Eq. (1.21) defines an n-dimensional (n = dim V ) manifold L H

in the 2n-dimensional space � = V × V ∗:

L H = {x = −dλ H, λ ∈ D} .

The manifold � is symplectic with respect to the structure 2-form

ω =
n∑

i=1

dλi ∧ dxi ,

where λ = ∑
λi e∗

i and x = ∑
xi ei in some basis e1, . . . , en in V, and dual basis

e∗
1, . . . , e∗

n in V ∗.
Moreover, the manifold L H is Lagrangian, i.e., the restriction of ω on L H equals

zero:
ω|L H

= 0.

Remark that the functions (λ1, . . . , λn) are global coordinates on L H ,but (x1, . . . , xn)

are not and the singular set � is exactly the set where these functions could not be
used as local coordinates.

In general, let L ⊂ � be such aLagrangianmanifold that functions (λ1, . . . , λn) ∈
D are global coordinates on it.

Then functions H and I, as functions on L , could be found in the following way:

I (a) =
∫

γ

θ, H (a) =
∫

γ

θ̂ , (1.25)

where γ is a path on L connecting the points o = (0, 0) and a ∈ L , and

θ =
n∑

i=1

λi dxi , θ̂ = −
n∑

i=1

xi dλi . (1.26)

The condition that L is Lagrangian, together with the properties dθ = d θ̂ = ω,
implies that the 1-forms θ and θ̂ are closed on L . Moreover, the manifold L is
diffeomorphic to D and is therefore connected and simply connected.

Therefore, the integrals (1.25) are correctly defined on L and

d I = θ, d H = θ̂ on L , (1.27)

which corresponds to relations (1.21) and (1.24).
Moreover,

d (I − H) = d (〈λ, x〉)

on L , and all three functions I, H, 〈λ, x〉 equal zero at point o.
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Therefore, we have the relation

I = H + 〈λ, x〉 , (1.28)

on L .

We shall extend our geometrical picture by adding the function I to the picture.
Consider the (2n + 1)-dimensional manifold �̃ = R × � and let u be the standard
coordinate on the real line R. Then points on �̃ are triples (u, x, λ) ∈ R × V × V ∗,
or �̃ = R

2n+1, when we choose a basis in the vector space V .

The Lagrangian manifold L extended by function I defines an n-dimensional
manifold L̃ ⊂ �̃ in the following way:

L̃ = {(u = I (a) , x = −da H, λ = da I ) , a ∈ L} .

This is not an arbitrary manifold. Relations (1.27) mean that the differential 1-form

� = du − θ (1.29)

vanishes on L̃.

In other words, all above formulae (1.21), (1.24), (1.22) could geometrically be
reformulated in the following way.

At first, we have the contact manifold �̃ = R×V × V ∗ equipped with structure
form �. Second, the minimal information gain principle leads us to a Legendrian
manifold L̃ ⊂ �̃ with the condition that the projection π : �̃ → V ∗ induces a dif-
feomorphism π : L̃ → D. And finally, the Hamiltonian function H , the information
gain function I, and the partition function Z , as functions on L̃, could be found in
the following way:

I = u|L̃ , H = I − 〈λ, x〉|L̃ , Z = exp (−H) . (1.30)

Therefore, the Legendrian manifold L̃ gives us all necessary information about
the measurement of random vectors.

It is important to add that we require that the projection L̃ on D should be diffeo-
morphism, but the projection L̃ on V is not, and the singularities� of this projection
lead us to a situation where the measurement of some vectors x ∈ V could be done
by different choices of λ’s.

Finally, we could remove the condition that the projection π : L̃ → D is a dif-
feomorphism by removing from consideration set �∗ ⊂ L̃ of singular points of the
projection L̃ → V ∗. Then, with possible additional cutting, we represent L̃ � �∗ as
union of Legendrian manifolds L̃ i , so-called phases, for which the projections shall
be embeddings. Then we’ll assume that formulae (1.30) are still valid for all L̃ i .

The problem is to find conditions such that the corresponding functions Zi are
the partition functions for some random vectors Xi .
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To this end, let’s consider the image X∗ (q) of the basicmeasure q and assume that
this measure on V is absolutely continuous with respect to the Lebesgue’s measure
dx and let f (x) be the density function.

Then integral (1.18) shall take the form

Z (λ) =
∫

V

e〈λ,x〉 f (x) dx, (1.31)

i.e., these functions are related by some kind of Laplace transform.

Thus,we arrived at the following problem: for each piece L̃ i and the corresponding
functions Zi on them, we are looking for probability density functions fi such that
Eq. (1.31) is satisfied.

These are the technical requirements that should be imposed on Legendrian man-
ifold L̃.

In this case, we call L̃ admissible Legendrian manifold. In the next sections, we’ll
find more geometrical conditions for Legendrian manifolds to be admissible.

1.3.4 The Gaussian Distribution

In this section, we consider the case when the measure μ in (1.19) has the normal or
Gaussian law of distribution N (m, A), i.e., dμ = f (t) dt, where dt is a Lebesgue
measure on V , t ∈ V , and the density function f has the form

f (t) =
√

det A

(2π)n exp

(

−1

2
〈A(t − m), t − m〉

)

,

where A : V → V ∗ is a self-adjoint positive operator and m ∈ V is the mean of
N (m, A) . The quadratic form 1

2 〈At, t〉 is known, in statistics, as the Mahalanobis
metric.

As we know, the notion of determinant does not exist for operators of the form
A : V → V ∗. In our case the construction of det A goes in the following way.

At first, we choose an n-form τ ∈ �n (V ∗) which generates by translations the
Lebesgue measure dt, and we let τ ∗ ∈ �n (V ) be the dual form, i.e., 〈τ, τ ∗〉 = 1.
Then thenth exterior degree of operator A, gives us the operator�n (A) : �n (V ) →
�n (V ∗) , and we define det A as follows:

�n (A)
(
τ ∗) = det A · τ.

Said simply, we define det A as det
∥
∥ai j

∥
∥ , for matrix

∥
∥ai j

∥
∥ , where A (ei ) =

∑
j ai j e∗

j in a dual bases {ei } and
{

e∗
j

}
, such that τ (e1, . . . , en) = 1.
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Then direct computations show that the partition Z (λ) function of N (m, A) is
defined for all λ ∈ V ∗ and is equal to

Z (λ) = exp

(
1

2

〈
λ, A−1λ

〉 + 〈λ, m〉
)

.

Therefore, formulae (1.20)–(1.22) will take the form:

H (λ) = −1

2

〈
λ, A−1λ

〉 − 〈λ, m〉 ,

x = A−1λ + m,

I = 1

2
〈A(x − m), (x − m)〉 .

Moreover, formula (1.17) shows, for this case, that the probability distribution cor-
responding to the choice of λ ∈ V ∗ is also the Gaussian distribution N (x, A) .

These formulae show that geometrically the normal laws correspond to (positive)
Lagrangian affine subspaces L ⊂ V × V ∗, where L is the graph λ = A (x − m) . It
is easy to see that self-adjointness of the operator A corresponds to the condition that
the graph L is a Lagrangian manifold.

In the next section, we’ll see the geometrical interpretation of this positivity con-
dition.

It is also worth to note that the information gain I (N (m1, A1) ,N (m0, A0)) is
equal to

1

2

(
tr
(

A−1
1 A0

) + ln det A1 − ln det A0 + 〈A0 (m1 − m0) , m1 − m0〉 − n
)
, (1.32)

and the confidence domain, for the given probability ζ, is the ellipsoid

〈A(x − m), (x − m)〉 ≤ χ2
n (ζ ) ,

where χ2
n is the quantile function of the chi-squared distribution.

1.3.5 Central Moments

The kth moment of a random vector X : (�, p) → V is defined as

μk (X) =
∫

�

X (ω) ⊗ · · · ⊗ X (ω) dp ∈ V⊗k .
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It is the integral of a symmetric tensor, and therefore, it is symmetric itself:

μk (X) ∈ Sk (V ) .

The kth central moment is the kth moment of centered random vector X − μ1 (X) ,

i.e.,
σk (X) = μk (X − μ1 (X)) ∈ Sk (V ) .

The first central moment equals zero, σ1 (X) = 0, the second central moment
σ2 (X) ∈ S2 (V ) is called the variance, the third one, σ3 (X) ∈ S3 (V ) , skewness,
etc.

It is easy to see that

σ2 (X) = μ2 (X) − μ1 (X) ⊗ μ1 (X) ,

and by the construction σ2 (X) is a symmetric positive quadratic form on V ∗.
In order to find variation σ2 (X, λ) of the random vector X with respect to extreme

measure ρ dp (see (1.17)), we remark that using the affine structure on V ∗ we are
able to identify differentials d H with vectors in V , and using this structure we define
the Hessian, Hess H ∈ S2 (V ) , as the covariant differential of differential 1-form
d H with respect to the affine connection ∇:

Hess H
def= d∇ (d H) .

In coordinates (λ1, . . . , λn) on V ∗ given by the dual basis
{

e∗
j

}
, we have

Hess H =
∑

i, j

∂2H

∂λi∂λ j
dλi ⊗ dλ j .

Now we take formula (1.18) in the form

Z =
∫

�

exp

(
∑

i

λi Xi

)

dq,

where X = ∑
i Xi ei and get

d Z =
(∫

�

exp (〈λ, X〉) Xi dq

)

dλi .

Then

Hess Z = Z ·
∑

i, j

(∫

�

exp (〈λ, X〉)
Z

Xi X j dq

)

dλi ⊗ dλ j = Z
∑

i, j

〈
μ2 (X) , e∗

i ⊗ e∗
j

〉
dλi ⊗ dλ j .
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Therefore,
Hess Z = Z μ2 (X, λ) ,

and
d Z = Zμ1 (X, λ) .

Finally, the relation H = − ln Z gives us

Hess H = −Hess Z

Z
+ d Z ⊗ d Z

Z2 = −μ2 (X, λ) + μ1 (X, λ) ⊗ μ1 (X, λ) = −σ2 (X, λ) , (1.33)

and we arrive to the following result.

Theorem 1.2 The variation σ2 (X, λ) of the random vector X with respect to the
extreme measure (1.17) is equal to −Hess H.

Corollary 1.1 In the domain D ⊂ V ∗, where the partition function Z is defined and
smooth, the Hamiltonian function H is strictly concave.

Example

The variation of the Gaussian distributionN (m, A) considered as a quadratic func-
tion on V ∗ is equal to − 〈

λ, A−1λ
〉
.

Consider the Lagrangian manifold L H ⊂ �, then Hessian Hess H defines a neg-
ative quadratic differential form on it.

On the other hand, we define a quadratic differential form κ ∈ �2 (�) on the
entire manifold � as follows:

κ = 1

2

n∑

i=1

(dλi ⊗ dxi + dxi ⊗ dλi ) . (1.34)

Or shortly
κ = dλ · dx,

where · stands for the symmetric product of differential forms.
It is easy to check that expression does not depend on the choice of dual bases

{ei } and
{

e∗
j

}
in V and V ∗ and, respectively, on coordinates {xi } and

{
λ j
}
on �.

Moreover, the restriction of κ on the Lagrangian manifold L H equals

κ|L H
= −1

2

n∑

i=1

(dλi ⊗ d Hi + d Hi ⊗ dλi ) = −Hess H,

where Hi = ∂ H
∂λi

.
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Summarizing the above we get the following result.

Theorem 1.3 The variation σ2 (X, λ) of the random vector X with respect to the
extreme measure is a positive quadratic differential form κ|L H

on the Lagrangian
manifold L H .

Remark 1.6 1. The minimal information gain principle leads us to the following
geometrical structures on the space � = V × V ∗:

• symplectic structure
ω = dλ ∧ dx,

and
• pseudo-Riemannian manifold structure

κ = dλ · dx,

of signature (n, n) .

2. The Lagrangian manifold L H has to be Riemannian with respect to quadratic
differential form κ|L H

.This gives us an extra requirement for selection of phases:
one should take only phases where differential form κ|L H

is positive.
3. Certainly, we could use all invariants of Riemannian manifolds to study

Lagrangian state manifolds L H but we should also remember that all of them are
invariants of the diffeomorphism group and in our case only the group of affine
transformations has a sense. Therefore, the measurement problems have much
more (and very special) invariants. Thus, central moments σk (X, λ) ∈ �k (L H )

are kth degree differential forms on the Lagrangian manifold and they define
invariants which are specific for our case.

1.3.6 Change of Information Gain

In this section, we analyze information gain I (pλ+�λ, pλ) for extreme measures
(1.17):

dpλ = 1

Z (λ)
exp (〈λ, X〉) dq,

for small variation �λ.

First of all, the density measure pλ+�λ with respect to pλ equals

ρ̃ = dpλ+�λ

dpλ

= Z(λ)

Z (λ + �λ)
exp (〈�λ, X〉) .
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Therefore,

I (pλ+�λ, pλ) =
∫

�

ρ̃ ln ρ̃ dpλ

=
∫

�

exp (〈λ + �λ, X〉)
Z (λ + �λ)

(H (λ + �λ) − H (λ) + 〈�λ, X〉) dq

= H (λ + �λ) − H (λ) + 〈�λ, x + �x〉
= H (λ + �λ) − H (λ) − 〈Hλ,�λ〉 − 〈

Hλλ,�λ2
〉 + o

(
�λ2

)

= −1

2

〈
Hλλ,�λ2

〉 + o
(
�λ2

)
.

To summarize, we get the following.

Theorem 1.4 The information gain of extreme measures is equal to

I (pλ+�λ, pλ) = 1

2
σ2 (X, λ) + o

(
�λ2

)
.

Remark 1.7 It is important to note that thefirst order in terms (in�λ) of I (pλ+�λ, pλ)

are trivial.

Example

Aswehave seen, all extreme distributions for theGaussian distributions areGaussian
N (x, A) with the same variation. Due to (1.32) we have

I (N (x + �x, A) ,N (x, A)) = 1

2
〈A (�x) ,�x〉 .

The result of the above theorem could be used in different directions. First, the
positivity of −Hess (H) at a point λ ∈ V ∗ shows that means of vector measurement
are filled a neighborhood of the vector x ∈ V , corresponding to the choice of λ ∈ V ∗.
Second, if the quadratic form −Hess (H) is indefinite then possible directions �λ,

as well as �x, should be such that −Hess (H) is positive. In other words, available
deviations �λ, as well as �x, belong to the positive cone of −Hess (H) .

1.3.7 Constraints and Constitutive Relations

By constraints we mean algebraic relations P (X) = c for random vectors, where
P is a polynomial function on vector space V . To be precise, this relation has two
meanings:
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1. The relation P (X) = c holds for the mean of random vector X, i.e., means x of
X belongs to algebraic manifold P (x) = 0.

2. The relation P (X) = c holds in mean, i.e., E (P(X), λ) = c.

In the first case, the Hamiltonian function H (λ) satisfies the differential equation

P

(

−∂ H

∂λ

)

= c.

The second case we’ll discuss for quadratic constraints:

P =
∑

ai j xi x j +
∑

ai xi .

Then, due to (1.33), we have

E (Xi , λ) = −∂ H

∂λi
, E

(
Xi X j , λ

) = − ∂2H

∂λi∂λ j
+ ∂ H

∂λi

∂ H

∂λ j
,

and therefore relation E (P(X), λ) = c is equivalent to the second-order differential
equation for Hamiltonian function:

∑
ai j

∂2H

∂λi∂λ j
−
∑

ai j
∂ H

∂λi

∂ H

∂λ j
+
∑

ai
∂ H

∂λi
+ c = 0.

In a similar way, we get differential equations of order k if P is a polynomial of
degree k.

For the case when constraints constitute an algebraic manifold M ⊂ V , we get
correspondingly systems of partial differential equations.

Another way to get a state Lagrangian manifold L ⊂ V × V ∗ consists of adding
constitutive relations, or state equations in our picture of measurement.

Namely, the submanifold L could be defined by system equations of the form

L = { f1 (x, λ) = 0, . . . , fn (x, λ) = 0} , (1.35)

with the condition that their Poisson brackets ( fa, fb) vanish on L , for all a, b =
1, . . . , n.

These equations are called state or constitutive equations. As above, they give a
system of partial differential equations for the Hamiltonian function:

f1

(

− ∂ H

∂λ1
, λ

)

= 0, . . . , fN

(

− ∂ H

∂λn
, λ

)

= 0,

and the conditions that Poisson brackets ( fa, fb) vanish on L are the conditions of
solvability of the above system.
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1.3.8 Application to Classical Mechanics and Classical Field
Theory

1.3.8.1 Mechanics

Let M be a smooth manifold (= configuration space of a mechanical system).We are
going to measure velocity vectors v ∈ T a M, for all a ∈ M, following to the minimal
information gain principle.

First of all, we eliminate probability spaces� and use the images of the probability
measures as measures on the vector spaces T a M.

Second, we consider a contact bundle π : R⊕TM ⊕ T ∗M → M which is the
Whitney sum of the trivial, tangent, and cotangent bundles, i.e., fibers �a = π−1(a)

of this bundle are contact spaces R⊕T a M ⊕ T ∗
a M.

The measurement process requires an admissible Legendrian manifold La ⊂ �a

at points a ∈ M. We’ll assume that there is a smooth subbundle π : L →M of the
bundle π, such that all fibers are admissible Legendrian manifolds La ⊂ �a .We call
it an admissible Legendrian bundle.

The structures we discussed above on the spaces R ⊕ V ⊕ V ∗ give us fiberwise
structures on �. Namely, the fiberwise contact form θ = du − λdv, the fiberwise
symplectic form ω = dλ ∧ dv on TM ⊕ T ∗M and fiberwise quadratic form κ =
dλ · dv on TM ⊕ T ∗M.

Let (q1, . . . , qn) be local coordinates on M , (v1, . . . , vn) and (λ1, . . . , λn) induced
fiberwise coordinates on the tangent and, respectively, cotangent bundles, and let u
be the standard coordinate on R.

Then (q1, . . . , qn, u, v1, . . . , vn, λ1, . . . , λn) are local coordinates on � and the
above structures has the following form:

θ = du − λdv − fiberwise contact form,

ω = dλ ∧ dv − fiberwise symplectic form,

κ = dλ · dv − fiberwise quadratic form.

For an admissible Legendrian bundle the restriction of θ equals zero, the restriction
of κ gives a Riemannian structure, the projection L →T ∗M is a diffeomorphism
and the functions H and I are functions on T ∗M and TM , respectively.

Relations (1.22), (1.21), (1.24) shall now take the form

vi = −∂ H

∂λi
, λi = ∂ I

∂vi
, I = H −

∑

i

λi
∂ H

∂λi
,

which in terms of analytical mechanics correspond to the casewhen I is a Lagrangian
and H is a Hamiltonian of a mechanical system, λ corresponds to momentum and v
to velocity.

Moreover, for any trajectory q = q (t) , v = ·
q (t) , the action integral
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∫

L
(

q (t) ,
·
q (t)

)
dt =

∫

I
(

q (t) ,
·
q (t)

)
dt

corresponds the integral information gain and the principle of least action is a con-
tinuation of the principle of minimal information gain.

Example: Maxwell

For the case of Gaussian distribution, we get a Riemannian structure on
manifold M.

1.3.8.2 Field Theory

In classical field theory, fields are understood as sections of smooth bundles π : E →
M.

We’ll expand this notion and, in order to compare the value of sections (i.e.,
fields) in different points of M , we’ll also assume that the bundle π is equipped with
a connection ∇.

Geometrically, this means that at any point s ∈ Fa = π−1 (a) , of the fiber Fa,

we indicate a subspace Cs ⊂ T s (E) , dim Cs = dim M, which is transversal to the
fiber. In other words, the differential π∗,s : T s (E) → T a (M) gives an isomorphism
between Cs and T a (M) .

Let’s denote by πk : J k (π) → M the bundle of kth jets of sections of π, and let
πk,l : J k (π) → J l (π) be projections generated by reductions of k-jets to lth jets
of sections, when k > l.

If we denote by [h]k
a the kth jet of the section h : M → E at the point a ∈ M,

then πk,l
([h]k

a

) = [h]l
a.

Let’s note that J0 (π) = E and the connection C gives us a section C : E →
J1 (π) of the bundle π1,0 : J1 (π) → J0 (π) . Sections h of the bundle π we’ll call
constant at point a ∈ M, if [h]1a = Ch(a).

In other words, the introduction of a connection in the bundle π is equivalent to
understanding of a special class of constant sections.

Example

In classical mechanics on a manifold M , we work with the trivial bundle π : R ×
M → R. Then sections of π are just curves q (t) on M and the constant sections are
constant curves q (t) = a ∈ M, for all values of t.

It is known (see, for example, [12, 13]) that the bundle π1,0 : J1 (π) → J0 (π) is
an affine bundle for any bundle π, i.e., fibers π−1

1,0 (s) , s ∈ E, are affine spaces and
vector spaces, associated with this affine structure, are
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T v
s (E) ⊗ T ∗

a (M) ,

where T v
s (E) = T s (Fa) ⊂ T s (E) is the vertical tangent space.

The given connection C allows us to identify the affine space π−1
1,0 (s) with vector

space V s = T v
s (E) ⊗ T ∗

a (M) , (see [13]) by considering the plane Cs as the origin.
Applying now our measurement machinery to this situation, we arrive at a bundle

� : � → E, where the fibers �−1 (s) are direct sums R⊕V s⊕V ∗
s , where as above

V ∗
s is the dual to V s :

V ∗
s = T v

s (E)∗ ⊗ T a (M) .

As above, � is a contact and metric bundle, where contact and metric structures are
defined as in (1.34) and the measurement procedure in field theory is controlled by
an admissible Legendrian bundle L → E .

Let now
(
q1, . . . , qn, u1, . . . , um

)
be local coordinates in the bundle π, where

(q1, . . . , qn) are local coordinates on M and
(
u1, . . . , um

)
are fiberwise coordi-

nates and let
(

q1, . . . , qn, u1, . . . , um, . . . u j
i . . .

)
be the standard local coordinates

in J1 (π) .

Then the connection C is defined by functions C j
i

(
q1, . . . , qn, u1, . . . , um

)
,

where planes of the distribution C are generated by vectors

∂

∂qi
+
∑

j

C j
i

∂

∂u j
,

and i = 1, . . . , n and j = 1, . . . , m.

Vectors v ∈ V are elements of the form

v =
∑

i, j

x j
i

∂

∂u j
⊗ dqi ,

where
x j

i = u j
i − C j

i (q, u) .

Vectors of the dual vector space λ ∈ V ∗ have the form

λ =
∑

i, j

λ
j
i du j ⊗ ∂

∂qi
.

For a given Hamiltonian H (q, λ), we get
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u j
i = C j

i (q, u) − ∂ H

∂λ
j
i

,

I (q, u, x) =
∑

x j
i λ

j
i − H,

λ
j
i = ∂ I

∂x j
i

, x j
i = u j

i − C j
i (q, u) .

For a given section h (q) = (
h1 (q) , . . . , hm (q)

)
, the function of information gain

is a function of the form

I

(

q, h (q) , . . . ,
∂h j

∂qi
− C j

i (q, h) , . . .

)

and, similarly to the mechanical case, this coincides with the field Lagrangian and
the principle of least action is a continuation of the principle of minimal information
gain.

1.4 Thermodynamics

1.4.1 Laws of Thermodynamics

In the classical interpretation of the thermodynamical laws, they could be presented
as follows ([7, 16, 21, 26]).

Zeroth Law If two systems are in thermodynamical equilibriumwith a third system
then they are in equilibrium with each other. This law allows us to
define the notion of temperature T of a system.

First Law The first law, also known as the law of conservation of energy, states
that energy cannot be created or destroyed in an isolated system:

�E = �Q − �W,

where�E is a change of internal energy, i.e., the energy of the system
excluding kinetic and potential energy of external forces, �Q is the
amount of heat transferred into the system from its surroundings and
�W is the net work done by the system to its surroundings.

Second Law This law states that there is an entropy S, a physical measure of the
lack of information about the microscopic structure of a system, and
that

�Q = T �S,
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where T is the temperature of the system. It also states that the entropy
of any isolated system always increases.

Third Law The third law of thermodynamics states that the entropy of a system
approaches a constant value as the temperature approaches absolute
zero.

Fourth Law Onsager reciprocal relations ([16, 19]).

1.4.2 Thermodynamics and Measurement

More formally, we reformulate the main thermodynamical laws by saying that a
thermodynamical system is characterized by two sets of variables: extensive ones
such as entropy S, internal energy E , volume V , mass m, number of particles N ,

etc., and intensive ones such as temperature T, pressure p, chemical potentials, etc.
Here extensive means that these variables characterize “extent” or “size” of our

system (like volume or mass). The intensive variables do not depend on the “size” of
the system (like temperature or pressure). Moreover, if the number of independent
extensive variables equals n + 1, then the number of independent intensive variables
equals n.

In other words, a thermodynamical system is characterized by a point in R
n+1 ×

R
n. By a thermodynamical state, we’ll mean a submanifold L ⊂ R

n+1 × R
n.

Let’s denote extensive variables by (S, E, x) ,where x ∈ R
n−1 and intensive vari-

ables by (T, y) , where y ∈ R
n−1. Then the second law on the infinitesimal level

requires that δQ = T d S on L and the work �W on the infinitesimal level is pre-
sented by the restriction of differential 1-form

∑
i pi dqi on L .

Therefore, the first law of conservation of energy on the infinitesimal level says
that

d E = T d S −
n−1∑

i=1

pi dqi on L .

In other words, if
θ = d E − T d S +

∑

i

pi dqi

is a differential 1-form on R
n+1 × R

n then the first and second laws mean that θ |L =
0, or that L is an integral manifold of 1-form θ.

If we now remark that differential 1-form θ defines a contact structure on
R

n+1 × R
n and if we require, in addition, that L is a maximal submanifold, where

the law of conservation of energy holds, then we come to the understanding that
a thermodynamical state is a Legendrian submanifold of the contact manifold(
R

n+1 × R
n, θ

)
.

If we observe now the parallels with the above picture of measurement and that
information gain I equals, up to a constant, −S, or d S = −d I, then we’ll write the



1 Contact Geometry, Measurement, and Thermodynamics 35

form θ as proportional to form

θ̃ = −d S + T −1d E +
n−1∑

i=1

T −1 pi dqi ,

which is exactly form of the type (1.29), where

u = −S + const, λ1 = −T −1,

λ2 = −T −1 p1, . . . , λn = −T −1 pn−1,

E = x1, q1 = x2, . . . , qn−1 = xn.

Therefore, any measurement is accompanied by some kind of thermodynamics,
and in addition to the definition of thermodynamical state as a Legendrian subman-
ifold, one should add the admissibility of the manifold. In particular, it should be
required that the quadratic differential form

κ = dλ · dx = −d
(
T −1

) · d E −
n−1∑

i=1

d
(
T −1 pi

) · d (qi ) =

T −2dT ·
(

d E +
n−1∑

i=1

pi dqi

)

− T −1 ·
n−1∑

i=1

dpi · dqi .

is positive on L .

In the case when functions (E, q1, .., qn−1) are coordinates on manifold L , we
have

S = s (E, q) ,

T −1 = sE , p1 = sq1

sE
, . . . , pn−1 = sqn−1

sE
.

To find a thermodynamical state L , we’ll use the constitutive relations (see (1.35))
which, in this case, have the form of physical laws:

fi (T, E, p, q) = 0.

As we have seen, finding Legendrian manifold L , which satisfies these laws, is
equivalent to finding solutions of the system of first-order differential equations

fi

(

s−1
E , E,

sq

sE
, q

)

= 0,
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and the condition that the manifold L is Legendrian is equivalent to the requirement
that the Poisson brackets [ fi , f j ] vanish on zeroes of { fi } and equivalent to the
compatibility of the above system.

1.4.3 Gases

As the first and the simplest example, let’s consider the case of gases. They are
described by

extensive variables:

• E—inner energy, S—entropy, V—volume, and m—mass;

intensive variables:

• T—temperature, p—pressure, and φ—chemical potential.

From the above discussion, we see that the thermodynamic state of a gas is defined
by a Legendrian 3-dimensional manifold L ⊂ R

7, in the 7-dimensional contact man-
ifold R

7 equipped with structure form

θ = d E − T d S + pdV − φ dm.

Extensivity and intensivity properties mean that in the coordinate description of
the system, say

E = E (S, V, m) , T = T (S, V, m) , p = p (S, V, m) , φ = φ (S, V, m)

we have invariance under scaling transformations

(S, E, V, m) �−→ (λS, λE, λV, λm) ,

(T, p, φ) �−→ (T, p, φ) ,

for any positive number λ.

Let’s introduce specific quantities:

σ = S

m
, ε = E

m
, ν = V

m
,

and rewrite differential 1-form θ in new terms. We get

θ = d (mε) − T d (mσ) + pd (mν) + φdm =
(ε − T σ + pν − φ) dm + m (dε − T dσ + pdν) .

Therefore, the condition θ |L = 0, together with scaling invariance of L , is equivalent
to the following relations on L:
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φ − ε + T σ − pν = 0,

dε − T dσ + pdν = 0

For practical reasons, it’s better to use ε, ρ and m as coordinates on L and write
the last differential form as

θ ′ = dσ − T −1dε − pT −1dν.

Thus, the state manifold L is the direct product of Legendrian manifold L ′ ⊂ R
5,

θ ′∣∣
L ′ = 0 and half line R+ with coordinate m.

If ε, ν are coordinates on L ′, then L is given by two functions φ, σ of the variables
ε, ν. The first equation shows that

φ = ε − T σ + pν,

where ε − T σ + pν is the specific Gibbs free energy, and condition θ ′∣∣
L ′ = 0 is

equivalent to the relations
T = σ−1

ε , p = σνσ
−1
ε .

The metric κ ′ on L ′ has the form

κ ′ = Hess σ = d
(
T −1) · dε + d

(
pT −1) · dν

and the condition that κ ′ is negative is an extra condition for the state equations.
The Poisson bracket on the symplectic manifold R

4 equipped with the structure
form

dθ ′ = −T −2dε ∧ dT − pT −2dν ∧ dT − T −1dp ∧ dν

equals

[ f, g] = p

T 2

(
f pgε − fεgp

) + 1

T
( fT gε − gT fε) + 1

T 2

(
fνgp − f pgν

)
.

Remark that the only nontrivial brackets between basic variables (ε, T, ρ, p) are

[T, ε, ] = T −1, [p, ε] = pT −2, [v, p] = T −2.

1.4.3.1 Heat Capacities

The notion of “heat capacities” is a contradictory one in thermodynamics. The stan-
dard definition as the limit of �Q

�T , when �T → 0, is beneath criticism from the
mathematical point of view, but completely clear from the physical side.

To understand this notion we recall that a thermodynamical state is defined by a
Lagrangian manifold or, in the regular case, by the specific entropy σ as a function
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of ν and ε. Moreover, the conditions ν = const or p = const we’ll consider as extra
constraints: dρ = 0 or dp = 0.

Let’s consider heat capacities by turns.

〈dν = 0〉 In this case, we get

dT mod 〈dv〉 = d(
1

σε

)mod 〈dν〉 = −σεε

σ 2
ε

dεmod 〈dν〉 = 1

Tε

dεmod 〈dν〉 ,

and
δQ mod 〈dν〉 = T dσ mod 〈dν〉 = dε mod 〈dν〉 .

Therefore, the heat capacity at constant volume, Cv, which is usually defined as
“
(

∂ Q
∂T

)
v
” equals

Cv
def= δQ mod 〈dν〉

dT mod 〈dν〉 = Tε.(Cv)

〈dp = 0〉 First of all,
dp = pνdν + pεdε.

Therefore,

dε = − pν

pε

dν mod 〈dp〉 ,

and

δQ mod 〈dp〉 = T dσ mod 〈dp〉 = T
(
T −1dε + pνT −1dν

)
mod 〈dp〉 =

(

pν − pν

pε

)

dν mod 〈dp〉 ,

dT mod 〈dp〉 =
(

−Tε

pρ

pε

+ Tν

)

dν mod 〈dp〉 .

Thus, the heat capacity at constant pressure, C p, equals

C p
def= δQ mod 〈dp〉

dT mod 〈dp〉 = pνpε − pν

−Tε pρ + Tν pε

.(Cp)

By the sound speed, Cs, they usually understand “

√(
∂p
∂ρ

)

σ
= ν−1

√

−
(

∂p
∂ν

)

σ
”, or

more correctly

Cs = ν−1

√
−dp mod 〈dσ 〉
dν mod 〈dσ 〉 .

In a similar way as above, we get



1 Contact Geometry, Measurement, and Thermodynamics 39

dε = −pdν mod 〈dσ 〉 ,

and
dp mod 〈dσ 〉 = (pν − ppε) dv mod 〈dσ 〉 .

Therefore,
Cs = ν−1√ppε − pν .(Cs)

1.4.3.2 Ideal Gases

The ideal gas is defined by two state equations:

• the Clapeyron–Mendeleev equation

pν = RT,

where R is the specific gas constant, and
• the equation for internal energy

ε = n

2
RT,

where n is the degree of freedom.

The corresponding differential equations for the entropy function σ (ε, ν) shall
take the form

νσνσ
−1
ε − Rσ−1

ε = 0,
n

2
R (σε)

−1 − ε = 0,

or

νσν = R, εσε = Rn

2
.

Therefore,

σ = R
(n

2
ln ε + ln ν

)
+ const .

and the quadratic form κ ′ takes the form

κ ′ = R
(
−n

2
ε−2dε2 − ν−2dν2

)
,

which is negative.
Taking the Legendre transformation of the function I = −σ, we get the Hamil-

tonian function H (λ1, λ2) in the form
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H (λ1, λ2) = −n

2
ln

(
n

2 (−λ1)

)

+ ln ((−λ2)) + n

2
+ 1.

Therefore, the partition function for measuring the volume and energy of ideal gases
equals

Z (λ1, λ2) =
(n

2

) n
2
exp

(
−n

2
− 1

)
(−λ1)

− n
2 (−λ2)

−1 ,

where λ1 < 0 and λ2 < 0.

1.4.3.3 van der Waals Gases

The van der Waals state equation is a correction of the Clapeyron–Mendeleev law:

(
p + aν−2

)
(ν − b) = RT,

where constantsa, b are positive. The constanta takes into account the intermolecular
forces and the constant b, the molecular volume.

In order to find the second equation of state, we assume that the inner energy is
linear in temperature, i.e.,

ε = A (ν) T + B (ν) .

Then the Poisson bracket between functions f = (
p + aν−2

)
(ν − b) − RT and

g = ε − A (ρ) T − B (ρ), restricted on levels f = g = 0, is equal to

b − v

v2T 2

(
T v A′ + v2B ′ − a

)
.

Therefore,
T v A′ + v2B ′ − a = 0

and we get A = const and B = − a
v + const from this equation.

Remark that the case a = b = 0 corresponds to the real gas state and therefore
A = n R

2 , similar to the ideal gas.
Finally, we have the second state equation for the van derWaals gases in the form:

ε = n R

2
T − a

ν
.

Then the system of differential equations ( f = g = 0) on the entropy function
σ (ε, ν) has the following solution :

σ = R ln

(

(ν − b)
(a

ν
+ ε

)n/2
)

+ σ0,
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where σ0 is a constant. The corresponding quadratic differential form κ ′ equals

κ ′ = − n Rν2

2 (εν + a)2
dε · dε + n Ra

(a + εν)2
dρ · dε +

(

− n Rε2

2 (εν + a)2
+ Rn

2ν2
− R

(ν − b)2

)

dν · dν,

and condition that κ ′ is negative is the positivity of the determinant

D = 2
RT v3 − 2a (v − b)2

n RT 3v3 (v − b)2
.

Therefore, the conditions of applicability of the van der Waals law are the follow-
ing:

T >
2a

R
(v − b)2 v−3.

Taking, as above, the Legendre transformation of the function I = −σ, we get
the Hamiltonian function H (λ1, λ2) for van der Waals gases:

H (λ1, λ2) = −4n

3
ln

(
4n

3 (−λ1)

)

+ 3λ1

α
− 8

3
ln (3α − 1) + 4n

3

The van der Waals partition function is given by

Z (λ1, λ2) = (3α − 1)
8
3

(
4n

3 (−λ1)

) 4n
3

exp

(

αλ2 − 3λ1

α
− 4n

3

)

,

where, similar to the ideal gases case, λ1 < 0 and λ2 < 0.

1.4.3.4 Phase Transition for van der Waals Gases

Here we discuss phase transitions by taking the example of van der Waals gases.
Let L ⊂ R

4 be the Lagrangian manifold defined by the van der Waals state equa-
tions

(
p + aν−2

)
(v − b) − RT = 0,

ε − Rn

2
T + a

v
= 0,

with the restrictions

T >
2a

R
(v − b)2 v−3, ν > b.
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Solving these equations with respect to ε and ν, gives us

ε = Rn

2
T − a

γ
,

ν = γ,

where γ is a root of the polynomial

Q(z) = pz3 − (RT − bp) z2 + az − ab.

Therefore, the projection on the plane (p, T ) of the singular curve � ⊂ L is given
by zeroes of the discriminant of the polynomial Q:

Q1 = −4ab4 p3 − 4ab2 (3bRT + 2a) p2 − 4
(
3b2R2T 2 − 5abRT + a2

)
p − a R2T 2 (4bRT − a) .

This curve also has singularities where the discriminant Q1 has zeroes, i.e., at the
point

pc = a

27b2
, Tc = 8a

27bR
.

The corresponding critical values of ν we get from the state equation:

νc = 3b.

Let’s now change coordinates

p = p′ pc, v′ = vvc, T = T ′Tc, ε = ε′εc, σ = σ ′σc, (1.36)

where constants εc and σc are taken in such a way that (1.36) is a contact transfor-
mation.

Then we get

εc = a

9b
, σc = 3R

8
.

After this contact transformation the state equations take the reduced form:

3pν3 − (p + 8T ) ν2 + 9ν − 3 = 0, (1.37)

ε − 4n

3
T + 3

v
= 0,

σ − 4n

3
ln

(

ε + 3

ν

)

− 8

3
ln (3ν − 1) − σ ′

0 = 0, (1.38)

where we continue to use (ε, ν, p, T ) instead of
(
ε′, ν ′, p′, T ′) .
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Fig. 1.1 van der Waals
(T, v) area

The quadratic differential form κ ′ in these coordinates takes the following form:

κ ′ = − 4nν2

3 (εν + 3)2
dε dε + 8n

(εν + 3)2
dε dν +

(
4n

3ν2
− 4nε2

3 (εν + 3)2
− 24

(3ν − 1)

)

dν dν

with determinant

D = 9
(
4T ν3 − 9ν2 + 6ν − 1

)

2n (3ν − 1)2 T 3v3
.

Therefore, in the reduced coordinates, the border of the applicable area for the
van der Waals gases on the plane (ν, T ) is given by equation

T = (3ν − 1)2

4ν3
, (1.39)

and the applicable area is given by inequalities (see Fig. 1.1):

T >
(3ν − 1)2

4ν3
, ν >

1

3
.

By eliminating ν from the van der Waals state equation and Eq. (1.39), we find
the applicable area in (p, T ) plane:

p3 + 6 (4T + 9) p2 + 3
(
64T 2 − 336T + 243

)
p + 16 (32T − 27) T 2 > 0

Figure 1.2 shows (in white) applicable area for van der Waals gas on the plane
(p, T ), and the last picture gives an image of the Lagrangian manifold (Fig. 1.3),
corresponding to the van der Waals state equations:
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Fig. 1.2 Applicable (p, T )

area

Fig. 1.3 Lagrangian
manifold for van der Waals
gas
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1.4.3.5 Real Gases

A more valuable model for real gases was proposed by Kamerlingh Onnes in 1902.
In this model, the first state equation has the form of the virial equation:

f = p − R T ν−1 Z(ν, T ) = 0,

where the function Z(ν, T ), called the compressibility factor, takes the form

Z (v, T ) = 1 + A1 (T )

ν
+ A2 (T )

ν2
+ · · · .

The functions Ai (T ) are called virial coefficients.
To find the inner energy equation, we’ll assume as above that it has the form

g = ε − B (ν, T )

for some function B (ν, T ) .

Then, computing the bracket, we get

[ f, g] = Rν−1ZT − T −2Bν = 0, (1.40)

or

B (ν, T ) = RT 2
∫

ν−1ZT (ν, T ) dν + B0 (T ) . (1.41)

The quadratic differential form κ ′ equals d
(
T −1

) · dε + d
(
T −1 p

) · dν, or

κ ′ = T −1dp · dν − T −2dT · (dε + pdν) . (1.42)

Computing this form in coordinates ν and T gives

κ ′ = − T −2dT · d B + Rd
(
ν−1Z

)
· dν

= −T −2BT dT · dT +
(
−T −2Bν + Rν−1ZT

)
dT · dv + R

(
−ν−2Z + ν−1Zν

)
dν · dν,

or, due to (1.40),

κ ′ = −T −2BT dT · dT + R
(−ν−2Z + ν−1Zν

)
dν · dν.

Therefore, the domain of applicability of the virial model is given by inequalities

BT > 0,
(
ν−1Z

)
ν

< 0. (1.43)
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Example

For the van der Waals gases, we have

p = RT ν2 − aν + ab

ν2 (ν − b)
,

and

ν−1Z (ν, T ) = RT ν2 − aν + ab

RT ν2 (ν − b)
.

Therefore, the conditions (1.43) in this case take the form

RT ν3 − 2aν2 + 4abν − 2ab2 > 0,

and coincide with the previous estimate.

In terms of virial coefficients, relation (1.41) gives us

B (ν, T ) = B0 (T ) − RT 2

( ∞∑

i=1

A′
i (T )

ivi

)

, (1.44)

and requiring that the state equation coincides with the equation for ideal gases in
the case of trivial virial coefficients gives us

p = RT

(
1

v
+
∑

i=1

Ai (T )

vi+1

)

,

ε = n R

2
T − RT 2

∞∑

i=1

A′
i (T )

ivi
,

as the general state equations.
Then the conditions of applicability shall take the form

1 +
∑

i=1

i + 1

i

Ai (T )

νi
> 0, (1.45)

n

2
−
∑

i=1

T 2 A′′
i + 2T A′

i

iνi
> 0.
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Example

The case closest to the van der Waals equation is the so-called cubic virial equation:

Z (v, T ) = 1 + A1 (T )

ν
+ A2 (T )

ν2
.

For this case, we get

B (ν, T ) = n R

2
T − RT 2

(
A′
1 (T )

v
+ A′

2 (T )

2v2

)

,

and the following domain of applicability:

n

2
− (

T 2 A′
1 (T )

)
T ν−1 − 1

2

(
T 2 A′

2 (T )
)
ν−2 > 0,

1 + 2v−1 A1 (t) + 3v−2 A2 (T ) > 0,

on the plane (ν, T ) .

1.4.4 Thermodynamic Processes and Contact
Transformations

In this last section, we give a very brief exposition of an application of contact
geometry to the description of thermodynamic processes. More details shall come
later.

By a thermodynamic process, we mean a 1−parameter family of transformations
At : R

2n+1 → R
2n+1 of the thermodynamics phase space R

2n+1 which preserves the
law of energy conservation, i.e.,

A∗
t (θ) ∧ θ = 0,

or in other words a 1−parameter family of contact transformations.
From the practical and computational point of view, we’ll restrict ourselves by

infinitesimal version of this notion and assume that the family At is a 1-parameter
group of shifts along a contact vector field X :

L X (θ) ∧ θ = 0.

The contact vector fields (see, for example, [15]) are uniquely defined by generating
functions f, X = X f , where the vector field X f is uniquely defined by the relations

θ
(
X f

) = f,
(
X f �θ + d f

) ∧ θ = 0.
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Example

For the case of gases n = 2,

θ = dσ − T −1dε − pT −1dv,

and for a generating function f = f (σ, ε, T, v, p), we have

X f = ( f + T fT ) ∂σ + T
(

p f p + T fT
)
∂ε − T f p∂v (1.46)

+T ( fv − p fε) ∂p − T ( fσ + T fε) ∂T .

In many cases, we’ll eliminate entropy σ and consider, instead of contact vector
fields X f on the contact manifold

(
R

2n+1, θ
)
, Hamiltonian vector fields X H on the

symplectic manifold
(
R

2n, dθ
)
.

Example

For the case of gases

X H = T
(

pHp + T HT
)
∂ε − T Hp∂v

+T (Hv − pHε) ∂p − T (Hσ + T Hε) ∂T ,

for Hamiltonian H = H (ε, T, v, p) .

Consider a thermodynamical system given by a state Legendrian manifold L ⊂
R

2n+1 then by thermodynamic process for this system we’ll understand a contact
flow At such that

At (L) = L .

Proposition 1.1 Assume that a Legendrian manifold L ⊂ R
2n+1is given by state

equations
L = { f1 = 0, . . . , fn+1 = 0}

and a thermodynamic process for this system is a flow At along contact vector field
X f that preserves L , i.e., At (L) = L .

Then the restriction of this process on the manifold L is given by the vector field

G1X f1 + · · · Gn+1X fn+1

for some functions G1, . . . , Gn on L .
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Proof First of all, let’s remark that the restriction of the generating function f on
L equals zero, f |L = 0, because X f is tangent to L , θ |L = 0 and f = θ

(
X f

)
.

Therefore,
f = λ1 f1 + · · · + λn+1 fn+1

for some functions λ1, . . . , λn+1, and Gi = λi |L . �
Below we’ll consider various thermodynamic processes for ideal and van der

Waals gases.

1.4.4.1 Ideal Gases

As we have seen before, the state Legendrian manifold L ⊂ R
5 for ideal gases is

given by equations

f1 = pv − RT,

f2 = e − n R

2
T,

f3 = σ − R
(n

2
ln ε + ln v

)
.

The corresponding contact vector fields are

X f1 = (pv − 2RT ) ∂σ + T (pv − RT ) ∂ε + T
(

p∂p − v∂v
)
,

X f2 = (ε − n RT ) ∂σ − n

2
T 2∂ε − T

(
p∂p + T ∂T

)
,

X f3 =
(

σ − Rn

2
ln ε − R ln v)

)

∂σ + T

ε

(
n R

2
T − ε

)

∂T + RT

vε

(
ε − n

2
pv
)

∂p.

It is easy to check that the restriction of the vector field X f3 on L equals zero.
Therefore, the thermodynamic processes for ideal gases, due to the above proposition,
are given by vector fields on L:

Y = Av∂v + Bε∂ε,

which correspond to contact vector fields X f with

f = A f1 + B f2,

for some functions A (ε, v) and B (ε, v).
Among these processes, we have

• Adiabatic processes, X f (σ ) = 0 on L , when

2A + nB = 0.
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• Polytropic processes, X f
(

pvk
) = 0 on L , when

(k − 1) A + B = 0.

Here k is the so-called polytropic index.
• Isobaric processes, X f (p) = 0 on L , when

A − B = 0.

• Isothermal processes, X f (T ) = 0 on L , when

B = 0.

1.4.4.2 van der Waals Gases

The state Legendrian manifold for van der Waals gases is given by the reduced
equations

f1 = 3pv3 − (p + 8t) v2 + 9v − 3,

f2 = ε − 4n

3
T + 3

ν
,

f3 = σ − 4n

3
ln

(

ε + 3

v

)

− 8

3
ln (3v − 1) .

The corresponding contact vector fields are

X f1 = (
3pv3 − (p + 16T )v2 + 9v − 3

)
∂σ + (3pT v − T (p + 8T )) v2∂ε −

T v2 (3v − 1) ∂v + T
(
9pv2 − 2 (p + 8T ) v + 9

)
∂p,

X f2 =
(

ε + 3

v
− 8n

3
T

)

∂σ − 4n

3
T 2∂ε − T 2∂T − T

(

p + 3

v2

)

∂p,

X f3 =
(
4n

3
ln

(

ε + 3

v

)

+ 8

3
ln (3v − 1) − σ

)

∂σ − T

(

1 − 4n

3

T v

εv + 3

)

∂T +
4T

(
3npv3 − (np + 6ε) v2 + 9 (n − 2) v − 3v

)

3v (εv + 3) (3v − 1)
∂p.

As above, the restriction of the vector field X f3 on L equals zero and thermody-
namic processes for van der Waals gases, due to the above proposition, are given by
the following vector fields on L:

Y = 3 (εv + 3)
(
9Av2 + Bεv − 3Av + 3B

)

4nv2
∂v + 3v (εv + 3) (3v − 1) A

4n
ε∂ε,

for some functions A (ε, v) and B (ε, v).
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As above, we have the following realizations for thermodynamic processes:

• Adiabatic processes, when X f (σ ) = 0 on L and

6v2 A + nB = 0.

• Polytropic processes, X f
(

pvk
) = 0 on L and

A

(

3 (k − 1) εv3 +
(

9k − kε − 9n

2
(k − 2)

)

− 9)v2 + 3 ((k − 2) n − k) v + n (k − 2)

2

)

+

(εv + 3) B = 0.

• Isobaric processes, X f (p) = 0 on L and

(
3εv3 − 9 (n − 1) v2 + 6nv − n

)
A − (εv + 3) B = 0.

• Isothermal processes, X f (T ) = 0 on L and B = 0.
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Chapter 2
Lectures on Geometry of Monge–Ampère
Equations with Maple

Alexei Kushner, Valentin V. Lychagin and Jan Slovák

2.1 Introduction

Themain goal of these lectures is to give a brief introduction to application of contact
geometry to Monge–Ampère equations. These equations have the form

Avxx + 2Bvxy + Cvyy + D(vxx vyy − v2xy) + E = 0, (2.1)

where A, B, C, D and E are functions on independent variables x, y, unknown
function v = v(x, y) and its first derivatives vx , vy .

Equations of this type arise in various fields. For example, G. Monge considered
such equations in connection with the problem of the optimal transportation of sand
or soil. This problemwas of great importance for the construction of fortifications. A
modernmodification of this problemhas the applications tomathematical economics,
especially in taxations problem (Kantorovich–Monge problem [7]).
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J.G. Darboux studied and applied such equations in his lectures on general theory
of surfaces [3–5]. At that time, geometry was a source of various types of equations.
For example, the problem of reconstructing a surfacewith a givenGaussian curvature
K (x, y) is equivalent to solving the following equation:

vxx vyy − v2xy = K (x, y)
(
1 + v2x + v2y

)2
. (2.2)

Nowadays, the number of sources of Monge–Ampère equations has increased.
Equations arise in physics, aerodynamics, hydrodynamics, filtration theory, inmodels
of the development of oil and gas fields, in meteorology and so on. Some of these
applicationswill be discussed.On the other hand, aswe shall see, theMonge–Ampère
equations themselves generate geometric structures. For instance, some hyperbolic
equations can be considered as almost product structures, and elliptic ones as almost
complex structures.

The class of equations is rather wide and contains all linear and quasi-linear
equations as we can see. On the other hand, it is the minimal class that contains
quasi-linear equations and that is closed with respect to contact transformations.

This fact was known to Sophus Lie, who applied contact geometry methods to
this kind of equations. In this paper, S. Lie posed some classification problems for
equations with respect to contact pseudogroup. In particular, he posed the problem
of equivalence of equations to the quasi-linear and linear forms. This problem was
solved byV.V. Lychagin and V.N. Rubtsov [20] (see also [21]) in symplectic case and
byA.G. Kushner [12] in contact case. Conditions when equations can be transformed
to equationswith constant coefficients by contact transformationswere found byD.V.
Tunitskii [23]. The problem of classification for mixed type equations was solved by
A.G. Kushner [9–11].

In 1978, V.V. Lychagin noted that the classical Monge–Ampère equations and
its multi-dimensional analogues admit effective description in terms of differential
forms on the space of 1-jets of smooth functions [16]. His idea was fruitful, and it
generated a new approach to Monge–Ampère equations.

The lectures has the following structure.
The first lecture is an introduction to geometry of 1-jets space. We define 1-jets

of scalar functions, Cartan distribution, contact transformations and contact vector
fields on the 1-jets space [8, 15].

In the second lecture, we describe V.V. Lychagin approach and an introduction
to geometry of the Monge–Ampère equations. We follow papers [16, 17] and books
[15, 18].

The third lecture is devoted to contact transformations of the Monge–Ampère
equations. We consider examples of such transformations and apply them to con-
struct multivalued solutions. We illustrate this on the example of equation arising
in filtration theory of two immiscible fluids (oil and water, for example) in porous
media [1].

In the fourth lecture, we study geometrical structures associated with non-
degenerated (i.e. hyperbolic and elliptic) equations. We consider also the class of
so-called symplectic equations and give a criterion of their linearization by symplec-
tic transformation [18, 19].
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The last, fifth lecture is devoted to tensor invariants of the Monge–Ampère equa-
tions. We construct here differential 2-forms that generalize the well-known Laplace
invariants. We follow the papers [12, 14].

All calculations in these lectures are illustrated in the programMaple. The Maple
files can be found on the website d-omega.org.

2.2 Lecture 1. Introduction to Contact Geometry

2.2.1 Bundle of 1-Jets

Let M be an n-dimensional smoothmanifold,C∞(M) be the ring of smooth functions
on M and T ∗

a M be the cotangent space at the point a ∈ M .

Definition 2.1 A 1-jet [ f ]1a of a function f ∈ C∞(M) at the point a is a pair

( f (a), d f |a) ∈ R × T ∗M.

The set of 1-jets at the point a ∈ M of all functions

J 1
a M := {[ f ]1a | f ∈ C∞(M)

}

is a vector space with respect to operations of addition and multiplication by real
numbers which are pointwise is defined as

[ f ]1a + [g]1a := [ f + g]1a, k[ f ]1a := [k f ]1a .

Denote by
J 1M := R × T ∗M

the set of 1-jets of all smooth functions f ∈ C∞(M) at all points a ∈ M .
This is a smooth manifold of dimension 2 dim M + 1 with local coordinates

x1, . . . , xn u, p1, . . . , pn , where x1, . . . , xn are local coordinates on M , p1, . . . ,

pn are the induced coordinates on the cotangent bundle and u is the standard coor-
dinate on R. In other words, the values of these functions at point [ f ]1k ∈ J 1M are
the following:

xi ([ f ]1a) = xi (a), u([ f ]1a) = f (a), pi ([ f ]1a) = fxi (a), i = 1, . . . , n. (2.3)

These coordinates are called canonical.
In what follows we’ll call J 1M the manifold of 1-jets, and the projection

π1 : J 1M −→ M, where π1 : [ f ]1a �−→ a
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the 1-jet bundle.
Any function f ∈ C∞(M) defines the following map:

j1( f ) : M −→ J 1M, (2.4)

where
j1( f ) : M � a �−→ [ f ]1a ∈ J 1

a M ⊂ J 1M.

The image
�1

f := j1( f )(M) ⊂ J 1M,

which is a smooth submanifold of J 1M , is called the 1-graph of the function f .
Consider the following differential 1-form

κ := du − p1dx1 − · · · − pndxn

on the 1-jet space J 1M which we’ll call Cartan form.
It is easy to check that this form does not depend on a choice of canonical coor-

dinates in J 1M .
This form allows us to separate submanifolds of the form �1

f ⊂ J 1M from arbi-
trary submanifolds of dimension n by observation that

κ|�1
f
= 0,

for any f ∈ C∞(M). Indeed,

κ|�1
f
= d f − fx1dx1 − · · · − fxi dxi = 0.

On the other hand, if a submanifold N ⊂ J 1M is a graph of section s : M −→
J 1M , i.e. π1 : N −→ M is a diffeomorphism, and

κ|N = 0,

then one can easily check that N = �1
f for some smooth function f ∈ C∞(M).

This observation shows that zeroes of the Cartan form (but not the form itself) is
important to distinguish 1-graphs from arbitrary submanifolds in J 1M .

Denote by C the 2n-dimensional distribution (Cartan distribution) on J 1M given
by zeroes of the Cartan form:

C : J 1M � θ �−→ C(θ) := kerκθ ⊂ Tθ (J 1M).

In the dual way, the Cartan distribution can be defined by vector fields tangent to
this distribution. Namely, vector fields
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∂x1 + p1∂u, . . . , ∂xn + pn∂u, ∂p1 , . . . , ∂pn

give us a local basis in the module of vector fields tangent to C. This module will be
denoted by D(C).

Then a submanifold N ⊂ J 1M is a graph of a smooth function if and only if

1. N is an integral submanifold of the Cartan distribution and
2. π1 : N → M is a diffeomorphism.

Remind that a contact structure on an odd-dimensional manifold K , dim K =
2k + 1, consists of 2k-dimensional distribution P on K such that

λ ∧ (dλ)k 
= 0

for any differential 1-form λ, such that locally P = ker λ.
In our case, we have

κ ∧ (dκ)n 
= 0

and therefore the Cartan distribution defines the contact structure on the manifold of
1-jets J 1M .

2.2.2 Contact Transformations

A transformation � of the space J 1M is called contact, if it preserves the Cartan
distribution, i.e.

�∗(C) = C.

In terms of the Cartan form, a transformation � is contact if

�∗(κ) = h�κ (2.5)

for some function h�, or equivalently

�∗(κ) ∧ κ = 0.

Examples of Contact Transformations
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1. Translations:

(x1, x2, u, p1, p2) �−→ (x1 + α1, x2 + α2, u + β, p1, p2),

where α1, α2 and β are constants.
2. The Legendre transformation:

(x1, x2, u, p1, p2) �−→ (p1, p2, u − x1 p1 − x2 p2,−x1,−x2).

3. Partial Legendre’s transformation:

(x1, x2, u, p1, p2) �−→ (p1, x2, u − p1x1,−x1, p2).

Infinitesimal versions of contact transformations are contact vector fields.
A vector field X on J 1M is called contact if its local translation group consists

of contact transformations.
It means that

�∗
t (κ) = λtκ (2.6)

for some function λt on J 1M . Here, �t are shifts along vector field X .
After differentiating both parts of (2.6) by t at t = 0, we get:

d

dt

∣∣
∣∣
t=0

(
�∗

t (κ)
) =

(
dλ

dt

∣∣
∣∣
t=0

)
κ.

The left-hand side of the equation is the Lie derivative L X (κ) of the Cartan form in
the direction of the vector field X and therefore, we get

L X (κ) = hκ,

where h is a function on J 1M .
Multiplying both parts of the last equation by κ, we get:

L X (κ) ∧ κ = 0. (2.7)

In canonical coordinates, each contact vector field has the form

X f = −
n∑

i=1

∂ f

∂pi

∂

∂xi
+

(

f −
n∑

i=1

pi
∂ f

∂pi

)
∂

∂u
+

n∑

i=1

(
∂ f

∂xi
+ pi

∂ f

∂u

)
∂

∂pi

for some function f which is called generating function of the contact vector field.
Note that
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κ(X f ) = f.

Maple Code: Main Operation on J 1
R

2

1. Load libraries:

with(DifferentialGeometry): with(JetCalculus):

2. Set jet notation, declare coordinates on the manifold M and generate coordinates
on the 1-jet space:

Preferences("JetNotation", "JetNotation2"):

DGsetup( [x1,x2],[u], M, 1, verbose);

3. Generate the Cartan form:

kappa:= convert(Cu[0,0],DGform);

4. Define partial Legendre transformation:

PartLegendre:=Transformation(M,M,[x1=-u[1,0],x2=x2,

u[0,0]=u[0,0]-u[1,0]*x1, u[1,0]=x1, u[0,1]=u[0,1]]);

5. Apply this transformation to the Cartan form:

Pullback(PartLegendre,kappa);

6. Prolongation of transformations from J 0M to J 1M :

Phi:=Transformation(M,M,

[x1=x2,x2=x1+x2,u[0,0]=-u[0,0]]);

Prolong(Phi,1);

7. Define the contact vector field X f with generating function f = p2:

X:=GeneratingFunctionToContactVector(u[0, 1]);

8. Prolongation of vector fields from the plane M = R
2 to J 1M :

Y:=evalDG(-x2*D_x1+x_1*D_x2);

Prolong(Y,1);
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2.3 Lecture 2. Geometrical Approach to Monge–Ampère
Equations

2.3.1 Non-linear Second-Order Differential Operators

Following [16], any differential n-form ω on J 1M is associated with the differential
operator

�ω : C∞(M) −→ �n(M),

which acts in the following way:

�ω(v) := j1(v)
∗(ω), (2.8)

where (see formula (2.4))

j1(v)
∗ : �n(J 1M) −→ �n(M).

This construction does not cover all non-linear second-order differential operators,
but only a certain subclass of them.

Examples

1. The differential 1-form on J 1
R

ω = (1 − x2)dp + (λu − xp) dx,

where

λ = a2

b2
,

generates the Lissajou differential operator

�ω(y) =
(

(1 − x2)y′′ − xy′ + a2

b2
y

)
dx . (2.9)

Indeed,

�ω(v) = (1 − x2)d
(
y′) +

(
−xy′ + a2

b2
y

)
dx

=
(

(1 − x2)y′′ − xy′ + a2

b2
y

)
dx .
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2. The differential 2-form on J 1
R

2

ω = dp1 ∧ dp2

generates the Hesse operator

�ω(v) = (det Hess v) dx1 ∧ dx2. (2.10)

Indeed,

�ω(v) = d
(
vx1

) ∧ d
(
vx2

)

= (
vx1x1dx1 + vx1x2dx2

) ∧ (
vx2x1dx1 + vx2x2dx2

)

= (
vx1x1vx2x2 − v2x1x2

)
dx1 ∧ dx2

= (det Hess v) dx1 ∧ dx2,

where Hess v is the Hessian of the function v.
3. The differential 3-form

ω = p1dp1 ∧ dx2 ∧ dx3 − dx1 ∧ dp2 ∧ dx3 − dx1 ∧ dx2 ∧ dp3 (2.11)

on J 1
R

3 produces the von Karman differential operator

(
vx vxx − vyy − vzz

)
dx ∧ dy ∧ dz,

where x = x1, y = x2, z = x3.
4. The differential 2-form

ω = dp1 ∧ dx2 − dp2 ∧ dx1

on J 1
R

2 represents the two-dimensional Laplace operator

�ω(v) = (
vxx + vyy

)
dx ∧ dy,

where x = x1, y = x2.
5. Two differential 2-forms

ω = dx1 ∧ du and 
 = p2dx1 ∧ dx2 (2.12)

on J 1
R

2 generate the same operator:

�ω(v) = dx1 ∧ (
vx1dx1 + vx2dx2

) = vx2 dx1 ∧ dx2,
�
(v) = vx2 dx1 ∧ dx2.
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6. Any differential n-form
ω = κ ∧ α + dκ ∧ β (2.13)

on J 1M , where α ∈ �n−1
(
J 1M

)
, β ∈ �n−2

(
J 1M

)
and κ is the Cartan form,

gives the zero operator.

All differential operators �ω generate differential equations of second order:

�ω(v) = 0. (2.14)

For example, operator (2.9) generates Lissajou equation

(1 − x2)y′′ − xy′ + a2

b2
y = 0. (2.15)

Note that the differential operators �ω and �hω generate the same equation for
each non-zero function h.

Equation (2.14) are called Monge–Ampère equations [16].
The following observation justifies this definition: beingwritten in local canonical

contact coordinates on J 1M , the operators �ω have the same type of non-linearity
as the Monge–Ampère equations.

Namely, the non-linearity involves the determinant of the Hesse matrix and its
minors. For instance, in the case n = 2, for

ω =Edx1 ∧ dx2 + B (dx1 ∧ dp1 − dx2 ∧ dp2) + (2.16)

Cdx1 ∧ dp2 − Adx2 ∧ dp1 + Ddp1 ∧ dp2.

we get classical Monge–Ampère equations

Avxx + 2Bvxy + Cvyy + D(vxx vyy − v2xy) + E = 0. (2.17)

An advantage of this approach is the reduction of the order of the jet space: we use
the simpler space J 1M instead of the space J 2M where Monge–Ampère equations
should be ad hoc as second-order partial differential equations [8].

The differential equation which is associated with a differential n-form ω will be
denote by Eω:

Eω := {�ω(v) = 0}.

The following Maple code generates the corresponding differential operator �ω

for a differential 2-form ω on J 1
R

2.
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Maple Code: ω �−→ �ω

with(DifferentialGeometry): with(JetCalculus):

Preferences("JetNotation", "JetNotation2"):

DGsetup( [x1,x2],[u], M, 1);

DGsetup( [x,y], N, verbose);

Construct the differential operator �:

Delta := proc(z, h)

Pullback(Prolong(Transformation(N,M,

[x1=x,x2=y,u[0,0]=h]),2),z);

end proc;

Define a differential 2-form:

omega:=evalDG(dx1 &w du[1,0]-dx2 &w du[0,1]);

Apply the differential operator to this differential formω = dx1 ∧ dp1 − dx2 ∧ dp2:

simplify(Delta(omega,v(x,y)),size);

As a result, we get the differential operator

2
∂2

∂y∂x
dx ∧ dy.

2.3.2 Multivalued Solutions of Monge–Ampère Equations

Let v be a classical solution of the Monge–Ampère equation Eω, i.e. �ω(v) = 0.
Then

j1(v)
∗(ω) = 0.

It means that the restriction of the differential form ω to 1-graph of the function v is
zero:

ω |�1
v
= 0.

An n-dimensional submanifold L ⊂ J 1M is called a multivalued solution of
Monge–Ampère equation if
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1. L is an integral manifold of the Cartan distribution, i.e. the restriction of the
Cartan form to L is zero: κ |L= 0;

2. the restriction of the differential n-form ω to L is zero, too: ω |L= 0.

Examples: Multivalued Solutions

1. Parameterized curves

L =
{

x = sin bt, y = cos at, p = − a sin at

b cos bt

}

in the space J 1
R are multivalued solutions of the Lissajou equation

(1 − x2)y′′ − xy′ + a2

b2
y = 0. (2.18)

Indeed, the restriction of the differential 1-form

ω = (1 − x2)dp +
(

a2

b2
y − xp

)
dx

on the curve L is zero. The projections of these curves on the plane (x, y) are
well-known Lissajou curves (see Figs. 2.1, 2.2).

2. Projections of multivalued solutions of the Monge equation

vxx vyy − v2xy = (
1 + v2x + v2y

)2

to the space R
3 with coordinates x, y, v are spheres with radius 1 (see Eq. (2.2).

3. Projections of multivalued solutions of the equation

vxx vyy − v2xy = 0 (2.19)

to the space R
3 with coordinates x, y, v are deployable surfaces.

2.3.3 Effective Forms

Last two examples (2.12) and (2.13) show that the constructed map

“differential n-forms” → “differential operators”

has a huge kernel.
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Fig. 2.1 Multivalued
solutions of the Lissajou
equation for a = 3, b = 2

Fig. 2.2 Multivalued
solutions of the Lissajou
equation for a = 1, b = √

2
is a curve, everywhere dense
in the square (Lissajou’s
Black Square)
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This kernel consists of differential forms that vanish on any integral manifold of
the Cartan distribution. All such forms have form (2.13) (see [15]).

Let’s find a submodule of the module �2(J 1M) of differential 2-forms such that
the map is bijective (dim M = 2).

Differential 2-form ω ∈ �2(J 1M) is called effective if

1. X1
ω = 0;
2. ω ∧ dκ = 0.

Here, X1 is the contact vector field with generating function 1. In canonical co-
ordinates (2.3)

X1 = ∂u .

The first condition means that coordinate representation of ω does not contain
terms du ∧ ∗, and therefore ω 
= κ ∧ α for some differential 1-form α. Second con-
dition means that ω 
= βdκ, for a function β.

The module of effective differential 2-forms will be denoted by �2
ε(J 1M).

There is the projection p which maps module �2(J 1M) to the module �2(C) of
“differential forms” on the Cartan distribution.

Namely, define
p : �2(J 1M) −→ �2(C)

as follows:
p(ω) := ω − κ ∧ (X1
ω).

Here, �2(J 1M) and �2(C) are modules of 2-forms on the 1-jet manifold J 1M and
on the Cartan distribution C respectively. Remark that

X1
p(ω) = 0,

i.e. 2-form p(ω) ∈ �2(C).

Theorem 2.1 Any differential 2-form ω ∈ �2(C) has the unique representation

ω = ωε + βdκ, (2.20)

where ωε ∈ �2
ε(J 1M) is an effective 2-form and β is a function.

Proof In our case, the Cartan distribution C is four-dimensional. The exterior dif-
ferential of the Cartan form is non-degenerated 2-form on each Cartan subspace, i.e.
dκθ is a symplectic structure on C(θ) for any θ ∈ J 1M . Therefore, formula

ω ∧ dκ = βdκ ∧ dκ

uniquely defines a function β. Define now differential form

ωε = ω − βdκ.
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Since ωε ∧ dκ = 0, the form ωε is effective. �

The constructed differential form ωε is called the effective part of the differential
form ω.

Define the operator

Eff : �2(J 1M) −→ �2
ε(J 1M), Eff(ω) := (p(ω))ε,

which for any differential 2-form ω on the space J 1M gives its effective part.
It is obvious that differential 2-forms ω and Eff(ω) generate the same Monge–

Ampère equations.
In canonical coordinates

dκ = dx1 ∧ dp1 + dx2 ∧ dp2

and any effective differential 2-form has the following representation:

ω =Edx1 ∧ dx2 + B (dx1 ∧ dp1 − dx2 ∧ dp2) + (2.21)

Cdx1 ∧ dp2 − Adx2 ∧ dp1 + Ddp1 ∧ dp2,

where A, B, C, D and E are smooth functions on J 1M . This form corresponds to
Eq. (2.17).

The followingMaple code contains two procedures which generate effective parts
of differential 2-forms.

Maple Code: ω �−→ ωε

1. Projection of a 2-form to the Cartan distribution:

ProjC:=proc (omega)

GeneratingFunctionToContactVector(1);

evalDG(omega-kappa &w Hook(evalDG(D_u[0,0]),omega));

end proc:

2. Calculation of effective parts of a differential 2-forms:

Eff:=proc (omega)

evalDG(evalDG(omega-kappa &w Hook(evalDG(D_u[0,0]),

omega))-(solve(op(Tools:-DGinfo(evalDG(g*Omega&w Omega-

(evalDG(omega-kappa &w Hook(evalDG(D_u[0,0]),omega)))

&w Omega),"CoefficientSet")),g))*Omega);

end proc:
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2.4 Lecture 3. Contact Transformations of Monge–Ampère
Equations

By the definition, contact transformations preserve the Cartan distribution and mul-
tiply the Cartan form κ by a function (see formula (2.5)).

Therefore, contact transformations do not preserve the contact vector field X1

in general. Because of this, the image of an effective differential form can be not
effective.

Let � : J 1M → J 1M be a contact transformation and ω be an effective differ-
ential 2-form. Then by the image of differential 2-form ω, we shall understand the
effective differential form Eff(�∗(ω)).

Two Monge–Ampère equations Eω and E
 are contact equivalent if there exist a
contact transformation � such that 
 = hEff(�∗(ω)) for some function h.

Theorem 2.2 If two equations Eω and E
 are contact equivalent, then their contact
transformation maps multivalued solutions of one to multivalued solutions of the
other.

Note that, in general, contact transformations do not preserve the class of classical
solutions: classical solutions can transform to multivalued solutions and vice versa.

Examples of Linearization of Equations by Contact Transformations

1. The von Karman equation
vx1vx1x1 − vx2x2 = 0 (2.22)

becomes the linear equation

x1vx2x2 + vx1x1 = 0 (2.23)

after Legendre transformation (2.24).
The last equation is known as the Triccomi equation.

2. Equation
det Hess v = 1

is generated by the effective differential 2-form

ω = dp1 ∧ dp2 − dx1 ∧ dx2.

After the partial Legendre transformation

� : (x1, x2, u, p1, p2) �→ (p1, x2, u − p1x1, −x1, p2)

this form becomes
ω = dx2 ∧ dp1 − dx1 ∧ dp2,
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and corresponds to the Laplace equation

vx1x1 + vx2x2 = 0.

3. Quasi-linear equation:

A
(
vx , vy

)
vxx + 2B

(
vx , vy

)
vxy + C

(
vx , vy

)
vyy = 0.

This equation is represented by the following effective form:

ω =B (p1, p2) (dx1 ∧ dp1 − dx2 ∧ dp2) + C (p1, p2) dx1 ∧ dp2 − A (p1, p2) dx2 ∧ dp1.

After the Legendre transformation

� : (x1, x2, u, p1, p2) �→ (p1, p2, u − p1x1 − p2x2, −x1, −x2, ) (2.24)

we get the following effective form

ϕ∗(ω) = B (−x1,−x2) (dx1 ∧ dp1 − dx2 ∧ dp2)+
− A (−x1,−x2) dx1 ∧ dp2 + C (−x1,−x2) dx2 ∧ dp1,

which corresponds to the linear equation:

−A (−x1,−x2) vx2x2 + 2B (−x1,−x2) vx1x2 − C (−x1,−x2) vx1x1 = 0.

Example

The following equation arises in filtration theory of two immiscible fluids in porous
media [1]:

uxy − ux uyy = 0. (2.25)

It is used for finding a strategy to control wavefronts in the development of oil
fields.

The corresponding differential 2-form is

ω = 2p1dp2 ∧ dx1 + dx1 ∧ dp1 − dx2 ∧ dp2,

where x1 = x , x2 = y. Applying the Legendre transformation

� : (x1, x2, u, p1, p2) �−→ (p1, p2, u − x1 p1 − x2 p2,−x1,−x2)

we get the following differential 2-form:



70 A. Kushner et al.

�∗(ω) = 2x1dx2 ∧ dp1 + dx1 ∧ dp1 − dx2 ∧ dp2.

This form corresponds to the linear equation

ux1x2 − x1ux1x1 = 0. (2.26)

The general solution of the last equation is

u(x1, x2) = e−x2 F1(x1ex2) + F2(x2), (2.27)

where F1 and F2 are arbitrary functions. Differentiating both sides of (2.27), we get

ux1 = F ′
1(x1ex2),

ux2 = −e−x2 F1(x1ex2) − F ′
1(x1ex2)x1 + F ′

2(x2).

Thus, solution (2.27) generate a surface L ⊂ J 1M :

L :

⎧
⎪⎨

⎪⎩

u − e−x2 F1(x1ex2) + F2(x2) = 0,

p1 − F ′
1(x1ex2) = 0,

p2 + e−x2 F1(x1ex2) + F ′
1(x1ex2)x1 − F ′

2(x2) = 0.

Applying the inverse Legendre transformation

�−1 : (x1, x2, u, p1, p2) �−→ (−p1,−p2, u − x1 p1 − x2 p2, x1, x2)

to L , we get multivalued solutions of equation (2.25) in parametric form (Fig. 2.3):

�−1(L) :

⎧
⎪⎨

⎪⎩

u − x1 p1 − x2 p2 − ep2 F1(−p1e−p2) + F2(−p2) = 0,

x1 − F ′
1(−p1e−p2) = 0,

x2 + ep2 F1(−p1e−p2) + p1F ′
1(−p1e−p2) + F ′

2(−p2) = 0.

(2.28)

In order to simplify the last formula, we introduce new parameters

a = −p1e−p2 , b = −p2,

and new functions
k(a) = F1(a), r(b) = F2(b).

In these notation, multivalued solutions of equation (2.25) takes the form:
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Fig. 2.3 Projection of the
multivalued solution L to the
space x, y, u for
k(a) = a9 − 20a5 and
r(b) = b0.01

L :

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x = k ′(a),

y = e−b(ak ′(a) − k(a)) − r ′(b),

u = (b + 1)e−b(k(a) − ak ′(a)) + br ′(b) − r(b),

p1 = −ae−b,

p2 = −b,

where k(a) and r(b) are arbitrary functions.

Maple Code: Equation uxy − ux uyy = 0

Define coordinates on M :

with(DifferentialGeometry): with(JetCalculus):

Preferences("JetNotation", "JetNotation2"):

DGsetup( [x1,x2],[u], M, 1);

DGsetup( [x,y],N,1);

Construct the differential operator �:

Delta := proc(z, h)

description "M-A operator";

Pullback(Prolong(Transformation
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(N,M,[x1=x,x2=y,u[0,0]=h]),2),z);

end proc;

Define the differential 2-form ω:

omega:=evalDG(2*u[1,0]*du[0,1] &w dx1 +

dx1 &w du[1,0]-dx2 &w du[0,1]);

ω = 2p1dp2 ∧ dx1 + dx1 ∧ dp1 − dx2 ∧ dp2,

The Legendre transformation:

Legendre:=Transformation(M,M,[x1=u[1,0],x2=u[0,1],

u[0,0]=u[0,0]-x1*u[1,0]-u[0,1]*x2, u[1,0]=-x1, u[0,1]=-x2]):

Apply the Legendre transformation to ω:

omega1:=Pullback(Legendre,omega);

Construct the differential operator �ω1 :

Delta(omega1,u(x,y));

(
2

(
∂2

∂y∂x
u(x, y)

)
− 2x

(
∂2

∂x2
u(x, y)

))
dx ∧ dy

Check solution:

sub:={u(x,y)=exp(-y)*F1(x*exp(y))+F2(y)};

eval(diff(u(x, y), x, y)-x*diff(u(x, y), x, x), sub);

0

Inverse Legendre transformation:

InvLegendre:=InverseTransformation(Legendre):

Apply this transformation to the surface L:

z1:=convert(u(x1,x2)-exp(-x2)*F1(x1*exp(x2))+F2(x2),DGjet):

z2:=convert(diff(u(x1,x2)-exp(-x2)*

F1(x1*exp(x2))+F2(x2),x1),DGjet):

z3:=convert(diff(u(x1,x2)-exp(-x2)*
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F1(x1*exp(x2))+F2(x2),x2),DGjet):

u1:=Pullback(InvLegendre,z1):

u2:=Pullback(InvLegendre,z2):

u3:=Pullback(InvLegendre,z3):

As a result, we get formula (2.28).
Check that L is a multivalued solution of equation (2.25), i.e. ω | L = 0:

DGsetup( [x1,x2,u,p1,p2], M);

DGsetup( [a,b], N);

omega:=evalDG(2*p1*dp2 &w dx1 + dx1 &w dp1-dx2 &w dp2):

NtoM:=Transformation(N,M,[x1=diff(k(a),a),

x2=exp(-b)*(a*diff(k(a),a)-k(a))-diff(r(b),b),

u=(b+1)*exp(-b)*(-a*diff(k(a),a)+k(a))+b*diff(r(b),b)-r(b),

p1=-a*exp(-b), p2=-b]):

Pullback(NtoM,omega);

0

Visualization of the multivalued solution L:

plot3d(eval([diff(k(a),a),exp(-b)*(a*diff(k(a),a)-k(a))

-diff(r(b),b), (b+1)*exp(-b)*(-a*diff(k(a),a)+k(a))+

b*diff(r(b),b)-r(b)], {k(a)=aˆ9-20*aˆ5,r(b)=bˆ0.01}),

a = -1 .. 1, b = -6 .. 6);

2.5 Lecture 4. Geometrical Structures

2.5.1 Pfaffians

First of all, we remark that the restriction of the differential 2-form dκ on the Cartan
distribution

� = dκ |C
defines a symplectic structure on Cartan space C(θ) ⊂ Tθ (J 1M).
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Using this structure and an effective 2-form ω ∈ �2
ε(J 1M) we define function

Pf(ω), called Pfaffian, in the following way [20]:

Pf(ω)� ∧ � = ω ∧ ω. (2.29)

This is a correct construction because ω ∧ ω and � ∧ � are 4-forms on the four-
dimensional Cartan distribution.

In the case when

ω =Edx1 ∧ dx2 + B (dx1 ∧ dp1 − dx2 ∧ dp2) + (2.30)

Cdx1 ∧ dp2 − Adx2 ∧ dp1 + Ddp1 ∧ dp2,

we get
Pf(ω) = B2 + DE − AC.

We say that the Monge–Ampère equation Eω is hyperbolic, elliptic or parabolic
at a domainD ⊂ J 1M if the function Pf(ω) is negative, positive or zero at each point
of D, respectively.

If the Pfaffian changes the sign in some points ofD, then the equation Eω is called
a mixed type equation (see [10]).

The hyperbolic and elliptic equations are called non-degenerate.

Maple Code: Pfaffian

kappa:=convert(Cu[0,0],DGform):

Omega:=ExteriorDerivative(kappa):

omega:=evalDG(dq1 &w du[1,0]+ du[0,0] &w du[0,1]):

Pf:=proc (omega)

solve(op(DGinfo(evalDG(z*Omega &w Omega-omega &w omega),

"CoefficientSet")),z)

end proc:

For example, the Pfaffian of the differential 2-form

ω = dx1 ∧ dp1 − dx2 ∧ dp2

which corresponds to wave equation uxy = 0 is equal to −1, and as we know this
equation is hyperbolic.

The Pfaffian of the differential 2-form

ω = dx1 ∧ dp2 − dx2 ∧ dp1
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which corresponds to Laplace equation uxx + uyy = 0 is equal to 1. Indeed,

omega:=evalDG(dx1 &w du[1,0]-dx2 &w du[0,1]):

Pf(omega);

−1

omega:=evalDG(dx1 &w du[0,1]-dx2 &w du[1,0]):

Pf(omega);

1

2.5.2 Fields of Endomorphisms

The standard linear algebra allows us to construct a field of endomorphisms

Aω : D(C) −→ D(C)

which is associated with an effective 2-form ω. Here D(C) is the module of vector
fields tangent to C.

Namely, the 2-form � is non-degenerated on C and the operator Aω is uniquely
determined by the following formula [19]:

Aω X
 � = X 
ω (2.31)

for all vector fields X tangent to C.
Proposition 2.1 Operators Aω satisfy the following properties:

1. �(Aω X, X) = 0.
2. �(Aω X, Y ) = �(X, AωY ).

Proof 1. �(Aω X, X) = ω(X, X) = 0.
2. �(Aω X, Y ) = ω(X, Y ) = −ω(Y, X) = −�(AωY, X) = �(X, AωY ). �

Proposition 2.2 The squares of operators Aω are scalar and

A2
ω + Pf(ω) = 0. (2.32)

Proof First of all

Aω X
(ω ∧ �) = (Aω X
ω) ∧ � + ω ∧ (Aω X
�).
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Using Proposition2.1,

X
(Aω X
(ω ∧ �)) =ω(Aω X, X)� − (Aω X
ω) ∧ (X
�)

+ (X
ω) ∧ (Aω X
�) + �(Aω X, X)ω

= �(A2
ω X, X)� − (A2

ω X
�) ∧ (X
�)

+ (Aω X
�) ∧ (Aω X
�) + �(Aω X, X)ω

= −(A2
ω X
�) ∧ (X
�).

Since ω is effective, ω ∧ � = 0. Then

(A2
ω X
�) ∧ (X
�) = 0,

i.e. differential 1-forms A2
ω X
� and X
� are linearly dependent. Therefore the

square of the operator Aω is a scalar: A2
ω = α.

Let X ∈ D(C) be an arbitrary vector field. Applying the operators Aω X
 and X

to both parts of formula (2.29) we get

Pf(ω)(Aω X
�) ∧ (X
�) = (Aω X
ω) ∧ (X
ω) = (αX
�) ∧ (Aω X
�).

Then
(Pf(ω) + α)(Aω X
�) ∧ (X
�) = 0. (2.33)

Suppose that (Aω X
�) ∧ (X
�) = 0. Then the vector fields X and Aω X are
linearly dependent. Since X is an arbitrary vector field we see that the operator Aω

is scalar, i.e. Aω X = λX for any X . Then

X
ω = Aω X
� = λX
�.

Thereforeω = λ�, which is impossible. So from (2.33), it follows that Pf(ω) + α =
0, i.e. A2

ω + Pf(ω) = 0. �

Let’s find a coordinate representation of the operator Aω. Let

∂

∂x1
+ p1

∂

∂u
,

∂

∂x2
+ p2

∂

∂u
,

∂

∂p1
,

∂

∂p2
(2.34)

be a local basis of the module D(C). Then formula (2.31) gives:

Aω =

∥∥∥∥∥∥
∥∥

B −A 0 −D
C −B D 0
0 E B C

−E 0 −A −B

∥∥∥∥∥∥
∥∥

(2.35)

in this basis.
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Maple Code: Operator Aω

with(DifferentialGeometry): with(LinearAlgebra): with(Tensor):

Coordinates on the 1-jet space:

DGsetup( [x1,x2,u,p1,p2], J):

Cartan’s form and its exterior differential:

kappa:=evalDG(du-p1*dx1-p2*dx2):

Omega:=ExteriorDerivative(kappa):

Define 2-form ω:

omega:=evalDG(2*p1*dp2 &w dx1+ dx1 &w dp1-dx2 &w dp2);

Vector fields and 1-forms on Cartan’s distribution:

VectCartan:=evalDG([D_x1+p1*D_u,D_x2+p2*D_u,D_p1,D_p2]):

CovectCartan:=evalDG([dx1,dx2,dp1,dp2]):

Checking duality:

m := proc (i, j) options operator, arrow;

Hook(VectCartan[i],CovectCartan[j])

end proc:

Matrix(4,m):

Construct an arbitrary vector field on Cartan’s distribution:

V:=DGzip([a, b, c,d], VectCartan, "plus"):

V = a
∂

∂x1
+ b

∂

∂x2
+ (bp2 + ap1)

∂

∂u
+ c

∂

∂p1
+ d

∂

∂p2

General form of A = Aω. Here ai, j are arbitrary functions:

A:=evalDG(sum(sum(a[i,j]*VectCartan[i] &t

CovectCartan[j],i=1..4),j=1..4)):

Action of Aω on vector fields:

Act:=Z->convert(ContractIndices(evalDG(A &tensor Z),

[[2,3]]), DGvector):

Equations with respect to ai, j :

for i from 1 to 4 do

e[i]:=evalDG(Hook(Act(evalDG(VectCartan[i])),Omega)-
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Hook(VectCartan[i], omega));

end do:

AEq:=[]:

for i from 1 by 1 to 4 do

AEq:=[op(AEq),op(GetComponents(e[i],CovectCartan))]

end do:

AEq;

− a3,1, −a4,1, −1 + a1,1, 2p1 + a2,1,

− a3,2, −a4,2, a1,2, 1 + a2,2,

1 − a3,3, −a4,3, a1,3, a2,3,

− 2p1 − a3,4, −1 − a4,4, a1,4, a2,4

sol:=solve(AEq,[a[1,1],a[1,2],a[1,3],a[1,4],

a[2,1],a[2,2],a[2,3],a[2,4],

a[3,1],a[3,2],a[3,3],a[3,4],

a[4,1],a[4,2],a[4,3],a[4,4]]);

assign(sol);

m := proc (i, j) options operator, arrow; a[i,j] end proc;

Am:=Matrix(4,4,m);

Aω =

∥∥∥∥∥
∥∥∥

1 0 0 0
−2p1 −1 0 0
0 0 1 −2p1

0 0 0 −1

∥∥∥∥∥
∥∥∥

(2.36)

Determinant(Am);

1

Am.Am;
∥∥
∥∥∥∥∥
∥

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

∥∥
∥∥∥∥∥
∥
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2.5.3 Characteristic Distributions

Effective forms ω and hω, where h is any non-vanishing function, define the same
Monge–Ampère equation. Therefore, for a non-degenerated equation Eω the form ω

can be normed in such a way that |Pf(ω)| = 1. It is sufficient to replace ω by

ω√|Pf(ω)| . (2.37)

By (2.32), the hyperbolic equations generate a product structure

A2
ω,a = 1

and elliptic equations generate a complex structure

A2
ω,a = −1

on the Cartan space C(a) [18].
Therefore, a non-degenerated Monge–Ampère equation generates two two-

dimensional (complex—for elliptic case) distributions on J 1M , which are
eigenspaces of the operator Aω.

These distributions C+(a) and C−(a) correspond to the eigenvalues 1 and −1
for the hyperbolic equations or to ι and −ι for the elliptic ones, respectively. Here
ι = √−1.

The distributions C+ and C− are called characteristic.
The characteristic distributions are real for the hyperbolic equations and complex

for the elliptic ones. They are complex conjugate for the elliptic equations.

Proposition 2.3 ([18]) 1. The characteristic distributions C+ and C− are skew
orthogonal with respect to the symplectic structure �, i.e. �(X+, X−) = 0 for
X± ∈ D(C±).

2. On each of them, the 2-form � is non-degenerate.

On the other hand, any pair of arbitrary real distributions C1,0 and C0,1 on J 1M
such that

1. dimC1,0 = dimC0,1 = 2;
2. C = C1,0 ⊕ C0,1;
3. C1,0 and C0,1 are skew-orthogonal with respect to the symplectic structure �

determines the operator A. Therefore, a hyperbolic Monge–Ampère equation can be
regarded as such pair

{C1,0,C0,1
}
of distributions.
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Maple Code: Characteristic Distributions

Calculation of eigenvalues and eigenvectors of the operator Aω:

EV,e:=Eigenvectors(Am):

Find the vector fields from the Cartan distribution

Cp:=[]:Cm:=[]:

for i from 1 to 4 do

if EV[i]=EV[1] then Cp:=[op(Cp),

(convert((Transpose(e[1..-1,i])),list))]

else

Cm:=[op(Cm),(convert((Transpose(e[1..-1,i])),list))]

end if

end do:

Vp1:=DGzip(Cp[1], VectCartan, "plus");

Vp2:=DGzip(Cp[2], VectCartan, "plus");

Vm1:=DGzip(Cm[1], VectCartan, "plus");

Vm2:=DGzip(Cm[2], VectCartan, "plus");

For example, the characteristic distribution C+ and C− of operator (2.36) are
generated by the following vector fields:

C+ =
〈

p1
∂

∂p1
+ ∂

∂p2
,

∂

∂x2
+ p2

∂

∂u

〉

and

C− =
〈

∂

∂p1
, p1

∂

∂x2
+ p1(p2 − 1)

∂

∂u
− ∂

∂x1

〉
.

2.5.4 Symplectic Monge–Ampère Equations

Monge–Ampère equation (2.17) is called symplectic if its coefficients A, B, C, D, E
do not depend on v.

In this case, the structures described above (effective differential forms, the dif-
ferential operator �ω, field of endomorphisms Aω) can be considered on the four-
dimensional cotangent bundle T ∗M instead of the five-dimensional jet bundle J 1M .
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Below, we repeat main constructions for the symplectic case.
A smooth function f ∈ C∞(M) defines a section s f : M −→ T ∗M of the cotan-

gent bundle
π : T ∗M −→ M

by the following formula:
s f : a �−→ d fa .

Let ω be a differential 2-form on T ∗M . Define a differential operator

�ω : C∞(M) −→ �2(M), �ω(v) := (sv)
∗(ω).

Then equation �ω(v) = 0 is a symplectic Monge–Ampère equation.
Let� be the symplectic structure on T ∗M . In canonical coordinates x1, x2, p1, p2

on T ∗M
� = dx1 ∧ dp1 + dx2 ∧ dp2.

The differential form ω is said to be effective if

ω ∧ � = 0.

Pfaffian Pf(ω) of the differential 2-form ω is defined by the following equality:

Pf(ω)� ∧ � = ω ∧ ω,

and formula
Aω X
 � = X 
ω

defines the field of endomorphisms Aω on T ∗M .
The square of operator Aω is scalar:

A2
ω + Pf(ω) = 0.

Consider now the casewhen equation is non-degenerated, i.e. Pf(ω) 
= 0 on T ∗M .
Then, the operator Aω can be normed (see formula (2.37).

For hyperbolic equations we get almost product structure: A2
ω = 1, and for elliptic

ones we get almost complex structure: A2
ω = −1.

We say that two symplectic equation Eω and E
 are symplectically equivalent if
there exist a symplectic transformation � such that

�∗(ω) = h


for some function h.
The following theorem gives a criterion of symplectic equivalence of non-

degenerated Monge–Ampère equation to linear equations with constant coefficients.
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Theorem 2.3 ([19]) Non-degenerated symplectic Monge–Ampère equation Eω is
symplectically equivalent to wave equation

vxx − vyy = 0 (2.38)

(in hyperbolic case), or to Laplace equation

vxx + vyy = 0

(in elliptic case) if and only if the Nijenhuis tensor

NAω
= 0, (2.39)

where Aω is the normed operator.

Recall that the Nijenhuis tensor NA of an operator A is a tensor field of rank (1,
2) given by

NA(X, Y ) := −A2[X, Y ] + A[AX, Y ] + A[X, AY ] − [AX, AY ]

for vector fields X and Y .
Condition (2.39) can be written in the following equivalent form [20]:

dω = 1

2
d (ln |Pf(ω)|) ∧ ω.

Maple Code: Symplectic Equation and Nijenhuis Tensor

Below we construct the operator Aω for non-linear wave equation

vxy = f (x, y, vx , vy). (2.40)

Then we calculate the Nijenhuis tensor NAω
and find conditions under which is

this equation symplectically equivalent to the linear wave equation with constant
coefficients.

with(DifferentialGeometry): with(Tools):

with(PDETools): with(Tensor):with(LinearAlgebra):

DGsetup( [x1,x2,p1,p2], M):

Omega:=evalDG(dx1 &w dp1+dx2 &w dp2):

omega:=evalDG(-2*f(x1,x2,p1,p2)*dx1 &w dx2+

dx1 &w dp1-dx2 &w dp2);

Vect:=evalDG([D_x1,D_x2,D_p1,D_p2]):
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Covect:=evalDG([dx1,dx2,dp1,dp2]):

V:=DGzip([a, b, c,d], Vect, "plus"):

A:=evalDG(sum(sum(a[i,j]*(Vect[i] &t

Covect[j]),i=1..4),j=1..4)):

Act:=Z->convert(ContractIndices

(evalDG(A &tensor Z),[[2,3]]),DGvector):

for i from 1 to 4 do

e[i]:=evalDG(Hook(Act(evalDG(Vect[i])),Omega)-

Hook(Vect[i],omega));

end do:

AEq:=[]:

for i from 1 by 1 to 4 do AEq:=

[op(AEq),op(GetComponents(e[i], Covect))] end do:

sol:=solve(AEq,[a[1,1],a[1,2],a[1,3],a[1,4],

a[2,1],a[2,2],a[2,3],a[2,4],

a[3,1],a[3,2],a[3,3],a[3,4],

a[4,1],a[4,2],a[4,3],a[4,4]]);

assign(sol):

A:=DGsimplify(convert(A, DGtensor)):

N := TensorBrackets(A, A, "Frolicher--Nijenhuis"):

eq:=Tools:-DGinfo(N, "CoefficientSet");

pdsolve(eq);

As a result we get
f = F1(x1, x2),

where F is an arbitrary function.
So, Eq. (2.40) is symplectically equivalent to wave equation (2.38) if and only if

f is a function in x1 and x2 only.
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Fig. 2.4 Splitting of the
tangent space Ta(J 1M)

2.5.5 Splitting of Tangent Spaces

Let us return to the space J 1M .
A non-degenerate equation is called regular if the derivatives C(k)

± (k = 1, 2, 3)
of the characteristic distributions are constant rank distributions, too.

Below we consider regular equations only. Then, the first derivatives of the char-
acteristic distributions

C(1)
± := C± + [C±,C±]

are three-dimensional. Their intersection

l := C(1)
+ ∩ C(1)

−

is a one-dimensional distribution, which is transversal to Cartan distribution.
Therefore, for hyperbolic equations, the tangent space Ta(J 1M) splits into the

direct sum (see Fig. 2.4)

Ta(J 1M) = C+(a) ⊕ l(a) ⊕ C−(a) (2.41)

at each point a ∈ J 1M [18].
For elliptic equations, we get a similar decomposition of the complexification of

Ta(J 1M). In this case, the distribution l is real, too.
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2.6 Lecture 5. Tensor Invariants of Monge–Ampère
Equations

2.6.1 Decomposition of de Rham Complex

Let us construct the decomposition of the de Rham complex, which is generated by
the splitting of tangent spaces.

Decomposition (2.41) generates a decomposition of the module of exterior s-
forms (or its complexification for elliptic equations). Denote the distributions C+, l,
and C− by P1, P2, and P3, respectively.

Let D(J 1M) be the module of vector fields on J 1M , and let D j be the module
of vector fields tangent to distribution Pj .

Define the following submodules of modules of differential s-forms �s(J 1M):

�s
i := {α ∈ �s(J 1M)| X
α = 0 ∀ X ∈ D j , j 
= i} (i = 1, 2, 3).

Then we get the following decomposition of the module of differential s-forms
on J 1M :

�s(J 1M) =
⊕

|k|=s

�k, (2.42)

where k =(k1, k2, k3) is a multi-index, ki ∈ {0, 1, . . . , dim Pi },

|k| = k1 + k2 + k3,

and

�k :=
⎧
⎨

⎩

∑

j1+ j2+ j3=|k|
α j1 ∧ α j2 ∧ α j3 , where α ji ∈ �

ki
i

⎫
⎬

⎭
⊂

3⊗

i=1

�
ki
i .

Three first terms of the decomposition are presented in the diagram (see Fig. 2.5).
The exterior differential also splits into the direct sum

d =
⊕

|t|=1

dt,

where
dt : �k → �k+t.

Theorem 2.4 ([12]) If the multi-index t contains one negative component and this
component is −1, then the operator dt is a C∞(J 1M)-homomorphism, i.e.,

dt( f α) = f dtα (2.43)
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Fig. 2.5 Decomposition of de Rham complex

for any function f and any differential form α ∈ �k.

Due to this theorem, we have the seven homomorphisms, and three of them are
zeroes. The non-trivial homomorphisms are the following:

d2,−1,0, d0,−1,2, d−1,1,1 and d1,1,−1.

2.6.2 Tensor Invariants

Consider a case
t = 1 j + 1k − 1s .

Then the differential dt is a C∞(J 1M)-homomorphism. Note that

d1 j +1k−1s : �1q → 0,

if q 
= s. Then, the only non-trivial of d1 j +1k−1s is the restriction to the module �1s :
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d1 j +1k−1s : �1s → �1 j ∧ �1k .

Therefore, the homomorphism d1 j +1k−1s defines a tensor field of the type (2,1).
This tensor field we denote by τ1 j +1k−1s :

τ1 j +1k−1s ∈ �1 j ∧ �1k ⊗ Ds .

A unique non-trivial component of this tensor field is its restriction to �1s . Note
that

τ1 j +1k−1s : �1s → �1 j ∧ �1k

coincides with d1 j +1k−1s .
Tensor fields τ1 j +1k−1s are differential invariants of Monge–Ampère equations.

So, we get four tensors of (2,1)-type [12]:

τ2,−1,0, τ0,−1,2, τ−1,1,1 and τ1,1,−1. (2.44)

Maple Code: Tensor Invariants

Below, we present a program for calculating the tensor τ−1,1,1. The remaining tensors
can be found similarly after a small adjustment of the program. In this program, we
omit the calculation of the characteristic distributions. They must be calculated in
advance (see “Maple Code: Operator Aω” and “Maple Code: Characteristic distri-
butions”).

with(DifferentialGeometry): with(LinearAlgebra):

with(Tensor):with(Tools): with(PDETools):

DGsetup( [x1,x2,u,p1,p2], J):

kappa:=evalDG(du-p1*dx1-p2*dx2):

Omega:=ExteriorDerivative(kappa):

omega:=evalDG(2*u*dx2 &w dp1+ dx1 &w dp1-

dx2 &w dp2-2*k*p1ˆ2*dx1 &w dx2):

Construct the distribution l (transversal to the Cartan distribution).We are looking
for l as an intersection of derivatives of the characteristic distributions C (1)

− and C (1)
+ .

This intersection is one-dimensional and it is generated by the vector field Z which
we are looking for.

S:=evalDG(a1*Vp1+a2*Vp2+a3*LieBracket(Vp1,Vp2)-

(b1*Vm1+b2*Vm2+b3*LieBracket(Vm1,Vm2))):
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sol:=solve(Tools:-DGinfo(S, "CoefficientSet"),

[a1,a2,a3,b1,b2,b3]):

assign(sol):

Z:=evalDG(a1*Vp1+a2*Vp2+a3*LieBracket(Vp1,Vp2)):

Basis of the module of vector fields on J 1M and dual basis:

BV:=[Vm1,Vm2,Vp1,Vp2,Z]:

BC:=evalDG(DualBasis(BV)):

Decomposition of de Rham complex. Bases of �1(J 1M) and �2(J 1M):

Lambda[1,0,0]:=evalDG([BC[1], BC[2]]);

Lambda[0,1,0]:=evalDG([BC[5]]);

Lambda[0,0,1]:=evalDG([BC[3], BC[4]]);

Lambda[2,0,0]:=evalDG([BC[1] &w BC[2]]); #1

Lambda[1,1,0]:=evalDG([BC[1] &w BC[5], BC[2] &w BC[5]]); #2,3

Lambda[1,0,1]:=evalDG([BC[1] &w BC[3], BC[1] &w BC[4],

BC[2] &w BC[3], BC[2] &w BC[4]]); #4,5,6,7

Lambda[0,1,1]:=evalDG([BC[3] &w BC[5], BC[4] &w BC[5]]); #8,9

Lambda[0,0,2]:=evalDG([BC[3] &w BC[4]]); #10

List of elements of the basis of �2:

Lambda2:=[op(Lambda[2,0,0]),op(Lambda[1,1,0]),

op(Lambda[1,0,1]), op(Lambda[0,1,1]),op(Lambda[0,0,2])];

Construct the tensor τ−1,1,1:

unassign(’z1’,’z2’,’z3’,’z4’,’z5’,’z6’,’z7’,’z8’,’z9’,’z10’);

Arbitrary differential 2-form:

V:=evalDG(DGzip([z1,z2,z3,z4,z5,z6,z7,z8,z9,z10],

Lambda2, "plus")):

Arbitrary 2-form from �1,0,0:
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S:=evalDG(ExteriorDerivative(C1*Lambda[1,0,0][1]+

C2*Lambda[1,0,0][2])-V):

S_coeff:=Tools:-DGinfo(S, "CoefficientSet"):

sol:=solve(S_coeff,{z1,z2,z3,z4,z5,z6,z7,z8,z9,z10});

assign(sol);

Projection of a differential 2-form to �0,1,1:

Pr_011:=evalDG(DGzip([z8,z9],

[Lambda2[8],Lambda2[9]],"plus")):

Pr_011:=convert(Pr_011, DGtensor):

unassign(’a’,’b’,’c’,’d’):

Tau:=evalDG(a*Lambda[0,1,1][1] &t BV[1]+

b*Lambda[0,1,1][2] &t BV[1]+

c*Lambda[0,1,1][1] &t BV[2]+

d*Lambda[0,1,1][2] &t BV[2]):

aTau:=ContractIndices(evalDG(Tau &t

(C1*Lambda[1,0,0][1]+C2*Lambda[1,0,0][2])),[[3,4]]):

eq0:=DGsimplify(evalDG(aTau-Pr_011)):

eq:=Tools:-DGinfo(eq0, "CoefficientSet"):

e1:=op(eval(eq,{C1=1,C2=0})):

e2:=op(eval(eq,{C1=0,C2=1})):

sol:=solve([e1,e2],[a,b,c,d]):

assign(sol):

Tau1:=DGsimplify(Tau):

tau[-1, 1, 1]:=DGsimplify(Tau);
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Example: Hunter–Saxton Equation

Consider the Hunter–Saxton equation

vtx = vvxx + κv2x , (2.45)

where κ is a constant. This equation is hyperbolic, and it has applications in the
theory of liquid crystals [6].

The corresponding effective differential 2-form and the operator Aω are the fol-
lowing:

ω = 2udq2 ∧ dp1 + dq1 ∧ dp1 − dq2 ∧ dp2 − 2κp2
1dq1 ∧ dq2

and

Aω =

∥∥∥∥
∥∥∥∥

1 2u 0 0
0 −1 0 0
0 −2κp2

1 1 0
2κp2

1 0 2u −1

∥∥∥∥
∥∥∥∥

.

Let’s take the following base in the module of vector fields on J 1M :

X1 = ∂

∂q1
+ p1

∂

∂u
+ κp2

1
∂

∂p2
,

X2 = ∂

∂p1
+ u

∂

∂p2
,

Z = ∂

∂u
+ (2 κ − 1) p1

∂

∂p2
,

Y1 = ∂

∂q2
+ κp2

1
∂

∂p1
− u

∂

∂q1
+ (p2 − up1)

∂

∂u
,

Y2 = ∂

∂p2
.

The dual basis of the module of differential 1-forms is

α1 = dq1 + udq2,

α2 = dp1 − κp2
1dq2,

θ = du − p1dq1 − p2dq2,

β1 = dq2,

β2 = dp2+ (1 − 2κ) p1du+ (κ−1) p2
1dq1+ (2κ − 1) p1 p2dq2 − udp1.

The vector fields X1, X2 and Y1, Y2 form bases in the modules D(C+) and D(C−)

respectively. Tensor invariants of Eq. (2.45) have the form
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τ−1,1,1 = − (p1dq1 ∧ dq2 + dq2 ∧ du) ⊗
(

∂

∂q1
+ p1

∂

∂u
+ κp21

∂

∂p2

)
,

τ1,1,−1 = 2( κ − 1)
(
κp31dq1 ∧ dq2 + κp21dq2 ∧ du −

dp1 ∧ du − p1dq1 ∧ dp1 − p2dq2 ∧ dp1) ⊗ ∂

∂p2
,

τ2,−1,0 =
(

dq1 ∧ dp1 − κp21dq1 ∧ dq2 + udq2 ∧ dp1
)

⊗
(

∂

∂u
+ (2 κ − 1) p1

∂

∂p2

)
,

τ0,−1,2 =
(

dq2 ∧ dp2 + (1 − 2κ) p1dq2 ∧ du + (1 − κ) p21dq1 ∧ dq2 − udq2 ∧ dp1
)

⊗
(

∂

∂u
+ (2 κ − 1) p1

∂

∂p2

)
.

2.6.3 The Laplace Forms

Define bracket 〈α ⊗ X, β ⊗ Y 〉 for decomposable tensors α ⊗ X and β ⊗ Y of types
(2,1) as follows [12]:

〈α ⊗ X, β ⊗ Y 〉 = (Y 
α) ∧ (X
β) .

For non-decomposable tensors the bracket is defined by linearity.
Define two differential 2-forms λ− and λ+ from the module �1,0,1 as “wedge

contractions” of the tensor fields:

λ+ := 〈
τ0,−1,2, τ1,1,−1

〉
, λ− := 〈

τ2,−1,0, τ−1,1,1
〉
. (2.46)

Then tensors (2.46) are called Laplace forms of Monge–Ampère equations Eω.

Example: Laplace Form for Linear Equations

For linear hyperbolic equation

vxy = a(x, y)vx + b(x, y)vy + c(x, y)v + g(x, y), (2.47)

the Laplace forms are

λ− = kdx ∧ dy and λ+ = −hdx ∧ dy, (2.48)

where
k = ab + c − by h = ab + c − ax (2.49)
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are the classical Laplace invariants. This observation justifies our definition.
For linear elliptic equations

vxx + vyy = a(x, y)vx + b(x, y)vy + c(x, y)v + g(x, y), (2.50)

Laplace forms generalize Cotton invariants [2].

We emphasize that the classical Laplace invariants (2.49) of Eq. (2.50) are not
absolute invariants even with respect to transformations

φ : (x, y, v) �→ (X (x), Y (y), A(x, y)v), A(x, y) 
= 0 (2.51)

in contrast to forms λ±, which are contact invariants.

Example: Laplace Forms for Hunter–Saxton Equation

The Laplace forms for the Hunter–Saxton equation (2.45) are

λ− = −dq2 ∧ dp1, λ+ = 2 (1 − κ) dq2 ∧ dp1.

2.6.4 Contact Linearization of the Monge–Ampère Equations

It is well known that if the classical Lagrange invariants h and k of a linear hyperbolic
equation is zero, then the equation can be reduced to the wave equation (see [22],
for example).

Similar statement is true for the Monge–Ampère equations [14]:

Theorem 2.5 A hyperbolic Monge–Ampère equation is locally contact equivalent
to the wave equation

vxy = 0

if and only if its Laplace invariants are zero: λ+ = λ− = 0.

Corollary 2.1 The equation

vxy = f
(
x, y, v, vx , vy

)

is locally contact equivalent to the wave equation vxy = 0 if and only if the function
f has the following form:

f = ϕyvx + ϕx vy + (ϕv + �v)vx vy + R,
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where the function R = R(x, y, v) satisfies to the following ordinary linear differ-
ential equation:

Rv = (ϕv + �v)R + ϕxy − ϕxϕy .

Solving this equation we get

R = eϕ+�

(∫
(ϕxy − ϕxϕy)e

−ϕ−�dv + g

)
,

where ϕ = ϕ(x, y, v), � = �(v), and g = g(x, y) are arbitrary functions.

The general problem of linearization of non-degenerated Monge–Ampère equa-
tions with respect to the contact transformations was solved in [13].
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Chapter 3
Geometry of Monge–Ampère Structures

Volodya Rubtsov

3.1 About These Lectures

These lectures were designed for the Summer school Wisła -18 ‘Nonlinear PDEs,
their geometry, and applications’ of Bałtycki Instytut Matematyki, inWisła, Poland,
20–30 August 2018.

The intended audience is graduate students with some minimal background in
differential geometry and in geometry of non-linear PDE. I was encouraged to pro-
duce lecture notes by Organisers, since not so much of the literature in the subject
exists on the corresponding level. So that notes could serve some purpose.

There are (almost) no new results in my notes, though some presentation is a new
or a nonstandard. I have used the results obtained during long-term collaboration
with V.V. Lychagin, whose ideas mainly gave the basis and the foundation of all
further approach. The lectures are following the five oral presentations during the
Wisla-2018 School and carry therefore some features of these expositions. Part of
subjects is presented in more details while other has some punctual line presentation.
We assume that the interested reader is able to find the omitted details in the original
source literature in the references.

Some part ofmaterial was taken from our bookwithA.Kushner andV.V. Lychagin
(CUP, 2007) and from Angers PhD Thesis of B. Banos (Angers, 2002). Generalities
about Nijenhuis or recursion operators and their basic properties are taken from
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published papers of G. Bande and D. Kotschick. New presentational part of Chap.4
is based on the joint review in progress with I. Roulstone, M. Wolf and J. McYorist.

I am deeply grateful to all of them for their input and collaboration on various
subjects of these lectures, discussions and improvements. My deep thanks also to Y.
Kosmann-Schwarzbach and to I. Mencattini for collaboration and many useful dis-
cussions of Monge–Ampère operators and higher structures and to Misha Verbitsky
for his various lectures and very inspiring discussions. The last but not the least my
deep thanks to Jerzy Szmit for organising a very stimulating summer school and for
a personal help.

During preparation of the material for this minicourse, I was partly supported
by support of the project IPaDEGAN (H2020-MSCA-RISE-2017), Grant Number
778010 and of the Russian Foundation for Basic Research under the Grants RFBR
18-01-00461 and 19-51-53014GFEN. Part of thisworkwas carried outwithin frame-
work of the State Programme of theMinistry of Education and Science of the Russian
Federation, Project N 1.2873.2018/12.1.

When these lectures were prepared and printed, I have got a sad news that the great
mathematician Sir Michael Atiyah had passed away. His ideas and work had a huge
influence on me and my mathematical exercises since my studentship and up to now.
I have met him the first time in the Newton Institute in Cambridge in the fall of 1996
(it was his last fall of directorship). I cannot forget his sincere and deep satisfaction
and positive emotional reaction when some of participants of two initially different
institute programmes—4-dimensional Geometry and Quantum Field Theory and
Mathematics of Atmosphere and Ocean Dynamics—had successfully interacted and
started to discuss and to cooperate.

I would like with pain and sorrow to dedicate these lectures to his memory…

3.2 Lecture One: What Is It All About?

In this lecture,webeginwith averybrief introduction to thebasic of various geometric
structures used in my course. I remind the basic definitions and (in some cases)
elementary examples. This chapter cannot be used for a detailed study of differential
geometry and basic structures. I have collected here the definitions and terminology
for reader’s convenience.

3.2.1 Basic Geometric Structures

3.2.1.1 (Almost) Complex Structures

Let M be a smooth manifold.

Definition 3.1 An almost-complex structure is an operator I : T M −→ T M
which satisfies I 2 = − IdT M .

http://dx.doi.org/10.1007/978-3-030-17031-8_4
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In other words, this is a smooth section I of the vector bundle T M ⊗ T ∗M −→ M
such that ∀x ∈ M I 2x = Id .

The almost-complex structure permits to enable each tangent space Tx M with a
structure of C-vector space defining i.v = Ix (v) for all tangent vectors v ∈ Tx M.

Example

Let Mn be a holomorphic variety of complex dimension n and let U j
φ j−→ C

n be a
holomorphic atlas {U j , j ∈ J } on this variety. One can enable the real variety M
with an almost-complex structure I defining for x ∈ U j and U ⊂ Tx M :

Ix (U ) = (dxφ j )
−1(i.dxφ j (U ))

(This definition is independent on the choice of j ∈ J because the changing of charts
dφ j (x)φk ◦ φ−1

j is C-linear).

The eigenvalues of the operator I are±√−1 , andwe shall denote the correspond-
ing eigenvalue decomposition iby T M ⊗ C = T 0,1M ⊕ T 1,0(M). Let us describe it
in details.

Let I be an almost-complex structure on a variety M. Denote by D+ and by D−
the distributions on T M ⊗ C defined by the sub-eigenspaces for I :

{
D+(x) := {V ∈ Tx M ⊗ C | I (V ) = i.V },
D−(x) := {V ∈ Tx M ⊗ C | I (V ) = −i.V }.

We shall denote as usual the conjugation on Tx M by V −→ V̄ . It defines a real
isomorphism D+ � D− and the map

Tx M −→ Tx M ⊗ C, V −→ V − i.Ix (V )

induces a complex isomorphism (Tx M, Ix ) � (D+, i).
We denote by D+ (respectively by D−) the set of smooth sections of the fibre

bundle T X ⊗ C −→ X with values in D+ (respectively in D−).

Definition 3.2 Analmost-complex structure is integrable in the sense of Frobenius
ifD+ and D− are Lie subalgebras of the vector field Lie algebra D(M)⊗ C.

One can verify that I is integrable in sense of Frobenius if and only if the Nijenhuis
tensor NI = 0 where

NI (U ; V ) := [U ; V ] − [IU ; I V ] + I ([IU ; V ] + [U ; I V ]).

Definition 3.3 (Integrability-1) An almost-complex structure I on a manifold M
is integrable if there exist a holomorphic atlas on M such that I is the associated
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almost-complex structure. We shall say then that I is a complex structure on M . In
this case, I is called a complex structure operator. A manifold with an integrable
almost complex structure is called a complex manifold.

ThedifficultNewlander–Nirenberg theoremsays that an almost-complex structure
I is integrable if and only if it is integrable in the sense of Frobenius:

Theorem 3.1 (Newlander–Nirenberg-1) An almost-complex structure I is inte-
grable iff NI = 0.

Definition 3.4 (Integrability-2) An almost-complex structure is integrable if
∀X,Y ∈ T 1,0M , one has [X,Y ] ∈ T 1,0M .

Theorem 3.2 (Newlander–Nirenberg-2) The definitions -1 and -2 are equivalent.

3.2.1.2 (Almost) Product and Para-Complex Structures

Let M be a smooth manifold.

Definition 3.5 An almost-product structure is an operator J : T M −→ T M if
J 2 = IdT M .

It is called an almost para-complex structure if it is an almost product and
trJ = 0. In this case, M is called an almost para-complex manifold.

In the almost-product case, we have the (real) decomposition T M ∼= T 1,0M ⊕
T 0,1M , where {

T 1,0M := {X + J X | X ∈ �(T M)} ,
T 0,1M := {X − J X | X ∈ �(T M)} , (3.1)

and which are the ±1 eigenspaces of J .
In the almost para-complex case, the traceless condition yields that rk(T 1,0M) =

rk(T 0,1M). In addition, we have �p(M) ∼= ⊕
r+s=p �

r,s(M). The analogue of the
Nijenhuis tensor is then

NJ (X,Y ) := −[X,Y ] + J [X, JY ] + J [J X,Y ] − [J X, JY ] . (3.2)

I leave to readers proofs of the following two propositions:

Proposition 3.1 The distribution T 1,0M (respectively, T 0,1M) is integrable in the
sense of Frobenius whenever NJ |T 0,1M (respectively, NJ |T 1,0M ) vanishes.

Proposition 3.2 The almost para-complex structure J is integrable if and only if the
Nijenhuis tensor vanishes, that is, whenever both distributions T 1,0M and T 0,1M
are integrable.

Remark 3.1 Note that these are two independent conditions as the integrability of
either of those distributions does not imply the integrability of the other.
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3.2.2 Kähler, Special and Other Related Structures

3.2.2.1 Kähler Manifolds

Definition 3.6 A Riemannian metric g on a complex manifold (M, I ) is called
Hermitian if g(I x, I y) = g(x, y).

In this case, g(x, I y) = g(I x, I 2y) = −g(y, I x); hence, ω(x, y) := g(x, I y) is
skew-symmetric.

Definition 3.7 The differential form ω ∈ �1,1(M) is called the Hermitian form of
(M, I, g).

Definition 3.8 AcomplexHermitianmanifold (M, I, ω) is calledKähler ifdω = 0.
The cohomology class [ω] ∈ H 2(M) of a form ω is called the Kähler class of M ,
and ω the Kähler form.

Remark 3.2 This condition is equivalently read as ∇ω = 0, where ∇ is the Levi-
Civita connection.

3.2.2.2 Special Complex Manifolds

Definition 3.9 A complex manifold (M, I ) is called special complex if there is a
flat, torsion-free (linear) connection ∇ such that

d∇ I = 0 .

Definition 3.10 If there is a covariantly constant symplectic form�on M (i.e.∇� =
0), then the triple (M, I,�) is called special symplectic.

3.2.2.3 Special Kähler Manifolds

Definition 3.11 (Special Kähler-1) A special symplectic manifold (M,�, I ) is a
special Kähler if the symplectic form � is I -invariant:

I ∗�(X,Y ) := �(I X, I Y ) = �(X,Y ), ∀X,Y ∈ �(T M).

Notice that the 2-tensor g(·, ·) = �(·, I ·), while it is always symmetric, in gen-
eral, not positive definite. So, the name of special pseudo-Kähler would be more
appropriate.

The notion of special Kähler structure was refined by D. Freed ([25]).

Definition 3.12 (Special Kähler-2) Special Kähler variety is a Kähler variety
(M, g, I, ω) together with a flat zero torsion connection ∇ such that ∇ω = 0 and
d∇ω = 0.
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One can characterise the special Kähler varieties as bi-Lagrangian subvarieties
of some complex symplectic space. More precisely, let (V 2n,�) be a real symplectic
vector space. Hitchin ([35]) has supplied the space V × V with two symplectic forms
ω1 and ω2 and with a pseudo-metric g which are defined as

⎧⎪⎨
⎪⎩
ω1((X,Y ), (X ′,Y ′)) = �(X, X ′)−�(Y,Y ′),
ω2((X,Y ), (X ′,Y ′)) = �(X,Y ′)+�(Y, X ′),
g((X,Y ), (X ′,Y ′)) = 1

4 [�(X,Y ′)−�(X ′,Y )]

He has proven that if a bi-Lagrangian subvariety M ⊂ (V × V, ω1,2) is transversal
to both projections onto V, the g induces a special (pseudo) Kähler metric on M
and vice versa, and any special Kähler metric on M is induced locally by a such
embedding M ↪→ V × V .

3.2.3 Holomorphic Symplectic Structures

We suppose C to be the base field throughout this section.

3.2.3.1 Holomorphically Symplectic Structures

Definition 3.13 A holomorphically symplectic manifold is a complex manifold
equipped with non-degenerate, holomorphic (2, 0)-form.

Remark 3.3 In these lectures, all holomorphically symplecticmanifolds are assumed
to be Kähler but not always compact.

Remark 3.4 A hyperkähler manifold has three symplectic forms:

ωI := g(I ·, ·), ωJ := g(J ·, ·), ωK := g(K ·, ·).

Claim In these assumptions, ωJ + √−1 ωK is holomorphic symplectic on (M, I ).

Theorem 3.3 (Calabi–Yau) A compact, Kähler, holomorphically symplectic mani-
fold admits a unique hyperkähler metric in any Kähler class.

3.2.3.2 Calabi–Yau Manifolds

Definition 3.14 A Kähler manifold M of complex dimension n enabled with a
covariantly constant holomorphic n− form � ∈ �n,0(M) is called a Calabi–Yau
manifold.
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The corresponding geometry is completely described by a set of few closed real
forms: by theKähler formω and by two n−formsω1 := Re� andω2 := Im�which
are defined up to a non-zero constant.

Proposition 3.3 Let M be a Calabi–Yau manifold. Then, the tripleω,ω1, ω2 satisfies
the following properties:

1. ω is a symplectic form on M;
2. ω1 and ω2 are primitive (effective) with respect to ω : ω ∧ ω1 = ω ∧ ω2 = 0;
3. dω1 = dω2 = 0;
4. � ∧ �̄ = cωn, c ∈ C.

3.2.4 Lagrangian, Special Lagrangian and Complex
Lagrangian Submanifolds

3.2.4.1 Lagrangian Subvarieties

Let (X;�) be a symplectic variety, as it is well known. X should be an even dimen-
sional, say, dim X = 2n.

Definition 3.15 Any n−dimensional subvariety L ⊂ X such that �|L = 0 is a
Lagrangian submanifold in X.

In our main examples, let X be often the cotangent bundle X = T ∗M to a variety
X and � = dρ be the canonical structure with the Liouville 1-form ρ. If (q̄, p̄) the
local canonical coordinates on T ∗M , then ρ = p̄dq̄.

3.2.4.2 Complex Lagrangian Subvarieties

In fact we are more interested in the bi-Lagrangian property than the complex struc-
ture but these two notions are equivalent like it was proved by Hitchin [35].

Proposition 3.4 (Hitchin) Let (N ;� = ω1 + iω2) be a complex symplectic variety
of complex dimension 2n and L ↪→ M be a real subvariety or real dimension 2n.
The subvariety L is a complex Lagrangian (i.e.ω|L = 0 et L is a complex subvariety)
iff L is a real bi-Lagrangian, i.e.

ω1|L = ω2|L = 0.

The complex symplectic structure we are interested in is the following which
one can define on the real cotangent bundle T ∗M of a complex variety M : let
z = (z1, . . . zn) be a system of complex coordinates on M. The coordinate system
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(x; y) = (x1, . . . , xn; y1, . . . , yn) is the associated real coordinates. The real cotan-
gent bundle T ∗M naturally identifies with the holomorphic cotangent bundle T ∗MC

by the isomorphism
θ(x; y; p; q) = (x + iy; p − iq).

The isomorphism θ permits to assign to T ∗M :

1. a complex structure I : {
I ( ∂
∂x j
) = ∂

∂y j
,

I ( ∂
∂p j
) = − ∂

∂q j
.

2. two real symplectic forms ω1 and ω2 = −ω1(I.; .) :{
ω1 = ∑n

j=1 dx j ∧ dp j + dy j ∧ dq j ,

ω2 = ∑n
j=1 dy j ∧ dp j − dx j ∧ dq j .

3. a holomorphic symplectic form � = ω1 + iω2 :

� =
n∑

j=1

dz j ∧ dw j ,

where dz j = dx j + idy j and dw j = dp j − idq j .

Definition 3.16 A smooth function f : M → R is called a pluriharmonic if
(d f )∗(�) = 0 where d f : M → T ∗M is the section of the cotangent bundle associ-
ated with f.

Denote by H(M) the set of pluriharmonic functions on M. 2-formω1 is the natural
symplectic on T ∗M; therefore, (d f )∗ω1 = 0 for all smooth f. Hence, a function f
is pluriharmonic iff (d f )∗ω2 = 0, i.e.

⎧⎨
⎩

∂2 f
∂x j ∂yk

= ∂2 f
∂xk∂y j

,

∂2 f
∂x j ∂xk

= − ∂2 f
∂yk∂y j

for j; k = 1, . . . , n. Any pluriharmonic function is the real part of a holomorphic
function on M.

The natural objects associated with pluriharmonic operators are the complex
Lagrangian subvarieties.

If f : M → R is a pluriharmonic then the image of the graph Graph(d f ) in
T ∗MC under θ is the graph de graph(d F) of a holomorphic function F : M → C

such that f = 2Re(F). The graph of d F is a complex Lagrangian subvariety in
(T ∗MC;ωC), and hence the graph of d f is a complex Lagrangian subvariety in
(T ∗M;�). Reciprocally, any complex Lagrangian subvariety of (T ∗M;�) whose
projection is non-singular locally is the graph of d f for a certain function f .
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3.2.4.3 Special Lagrangian Subvarieties

Let (X;ω,ω1, ω2) be a Calabi–Yau variety.

Definition 3.17 Any n-dimensional subvariety L ⊂ X such that ω|L = ω2|L = 0 is
a special Lagrangian submanifold in X.

Remark 3.5 The real part Re� = ω1 is (after the restriction and under appropriate
choice of c) the volume form on L with respect to the induced metric.

To find an explicite example of special Lagrangian manifolds is a difficult task.
The most popular are complex Lagrangian submanifolds in hyperkähler manifolds
and special Lagrangian subvarieties in noncompact Calabi–Yau.

One of the most famous examples comes from solutions of differential equa-
tions (Special Lagrangian Differential equation) related to examples of Calabi–Yau
metrics.

Example

There are very few explicit examples of Calabi–Yau metrics. One of these is the
Stenzel metric on T ∗Sn (see for instance [3, 52]). This metric is not flat; therefore,
the special Lagrangian equation associated with is not the classical one.

T ∗Sn =
{
(u, v) ∈ R

n+1 × R
n+1 : ‖u‖ = 1,< u, v >= 0

}
can be seen as the

complex manifold Qn =
{

z ∈ Cn+1 : z21 + . . .+ z2n+1 = 1
}
using the isomorphism

ξ(x + iy) = (
x√

1 + ‖y‖2 , y).

The holomorphic form is then

αz(Z1, . . . , Zn) = detC(z, Z1, . . . , Zn).

and the Kähler form is � = i∂∂̄φ with φ = f (τ ) where τ is the restriction to Qn of
|z1|2 + . . .+ |zn|2 and f is a solution of the ordinary differential equation

x( f ′)n + f ′′( f ′)n−1(x2 − 1) = c > 0.

Towrite the special Lagrangian equation, we have to find someDarboux coordinates.
Consider the case when n = 3. Using the relations

⎧⎪⎪⎨
⎪⎪⎩

4∑
k=1

ukduk + vkdvk = 0

4∑
k=1

ukdvk + vkduk = 0
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on T ∗S3, we see that on the chart u4 �= 0,

� =
3∑

k=1

dwk ∧ duk

with

wk = 4
f ′(1 + ‖v‖2)√1 + ‖v‖2

u4
(ukv4 − vku4).

Denote by ψ the map (u,w) �→ (x + iy). The special Lagrangian equation on T ∗S3

is then
(ψ ◦ d f )∗(I m(α)) = 0.

Note that it is difficult to explicit this equation and it does not seem possible to write
it in a simple way.

3.2.5 Hyperkähler Manifolds

Definition 3.18 A hyperkähler structure on a manifold M is a Riemannian struc-
ture g and a triple of complex structures I, J, K , satisfying quaternionic relations
I ◦ J = −J ◦ I = K , such that g is Kähler for I, J, K .

Remark 3.6 This is equivalent to ∇ I = ∇ J = ∇K = 0: the parallel translation
along the connection preserves I, J, K .

Definition 3.19 Let M be a Riemannian manifold, x ∈ M a point. The subgroup of
GL(Tx M) generated by parallel translations (along all paths) is called the holonomy
group of M .

Remark 3.7 A hyperkähler manifold can be defined as a manifold which has holon-
omy in Sp(n) (the group of all endomorphisms preserving I, J, K ).

Claim A compact hyperkähler manifold M has maximal holonomy of Levi-Civita
connection Sp(n) if and only if π1(M) = 0, h2,0(M) = 1.

3.2.5.1 Almost Hyper-complex and Hyper-para-complex Structures

Next, let us recall the definition of almost hyper-complex and hyper-para-complex
structures.

Definition 3.20 Let M be a manifold equipped with three endomorphisms J1, J2,
J3 : T M → T M . Then, the triple (J1, J2, J3) is called an
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• almost hyper-complex structure if and only if the Ji s are almost-complex struc-
tures and J1 J2 J3 = − Id. In this case, M is called an almost hyper-complex
manifold.

• almost hyper-para-complex structure if and only if (up to permutation) the J1
is an almost-complex structure, J2 and J3 are almost para-complex structures and
J1 J2 J3 = Id. In this case, M is called an almost hyper-para-complex manifold.

Note that such manifolds must be 4m-dimensional.

Remark 3.8 In this case, we may define

J := a J1 + bJ2 + cJ3, for a, b, c ∈ R . (3.3)

Using the fact that J 2
1 = − Id and J 2

2 = −ε Id = J 2
3 and J1 J2 J3 = −ε Id with ε = 1

in the hyper-complex case and ε = −1 in the almost hyper-para-complex case, we
obtain

J 2 = −(a2 + εb2 + εc2) Id (3.4)

implying that, in fact, we have a two-sphere worth of such structures for ε = 1 while
a hyperboloid worth of such structures for ε = −1, respectively.

Furthermore, we shall need metrics that are compatible with almost hyper-
complex and hyper-para-complex structures in the following sense.

Definition 3.21 Let M be a manifold with an almost-complex (respectively, para-
complex) structure J and let g be a non-degenerate metric on M . The triple (M, g, J )
is called an almost Hermitian (respectively, para-Hermitian) manifold if and only
if g(J X,Y ) = −g(X, JY ) for all X,Y ∈ �(T M). In this case, g is called an almost
Hermitian (respectively, para-Hermitian) metric.

Note that any almost-complex (respectively, para-complex) manifold admits such a
metric. Indeed, if h is any non-degenerate metric, then with J 2 = −ε Id, the metric

g(X,Y ) := h(X,Y )+ εh(J X, JY ), ∀X,Y ∈ �(T M) (3.5)

has the desired properties. Next, we introduce a non-degenerate differential two-form
ω, called the almost Kähler form, by means of

ω(X,Y ) := g(J X,Y ), ∀X,Y ∈ �(T M) . (3.6)

Likewise, any almost hyper-complex (respectively, hyper-para-complex) mani-
fold admits ametric that almostHermitian (respectively, para-Hermitian)with respect
to each of the Ji . Indeed, as before, let h be any non-degenerate metric, then with
J 2

i = −εi Id, εi = ±1, the metric

g(X,Y ) := h(X,Y )+
3∑

i=1

εi h(Ji X, Ji Y ), ∀X,Y ∈ �(T M) (3.7)
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has the desired properties. Consequently, we may introduce three almost Kähler
forms by

ωi (X,Y ) := g(Ji X,Y ), ∀X,Y ∈ �(T M) . (3.8)

Since J1 J2 J3 = −ε Id we have that (Ji , ω j ) are compatible for i �= j in the sense of
Definition 3.21. Furthermore,

ı Ji ω j (., .) := ω j (Ji ., .) = ci j
kωk , (3.9)

where the ci j
ks are the structure constants of su(2) (respectively, sl(2,R)).

Definition 3.22 Let (M, g, ωi , Ji ) be an almost hyper-complex (respectively, hyper-
para-complex) manifold. Then, (M, g, ωi , Ji ) is called

1. hyper-complex (respectively, hyper-para-complex) if and only if the Ji s are
integrable;

2. hyper-Kähler (respectively,hyper-para-Kähler) if andonly if theωi s are closed.

Remark 3.9 As shown in [33], any hyper-Kähler (respectively, hyper-para-Kähler)
manifold is hyper-complex (respectively, hyper-para-complex). Indeed, using (3.9)
and the closedness of the ωi s, we can use Proposition 3.7 (the so-called ‘Hitchin
lemma’) to conclude immediately that the Ji s are integrable. Note, however, the
converse is not necessarily true, i.e. not every hyper-complex (respectively, hyper-
para-complex) manifold is hyper-Kähler (respectively, hyper-para-Kähler).

In four dimensions, we may define a hyper-complex (respectively, hyper-para-
complex) structure differently. Indeed, suppose we are given three non-degenerate
differential two-forms ωi ∈ �2(M) for i, j, . . . = 1, 2, 3 with ωi ∧ ω j = 0 for i �=
j and ωi ∧ ωi �= 0 such that (up to permutation) ω2 ∧ ω2 = εω1 ∧ ω1 = ω3 ∧ ω3,
where ε = 1 (respectively, ε = −1). Then, these forms determine a non-degenerate
metric

g(X,Y ) = ı�
1
3!�

i jk(ı X ωi ) ∧ (ıY ω j ) ∧ ωk, ∀X,Y ∈ �(T M) , (3.10)

where � ∈ �(∧4 T M) is a volume form with the normalisation 1
2! ı�(ω1 ∧ ω1) =

−ε. This metric is Riemannian in the hyper-complex case and Kleinian (means
pseudo-Riemannian of neutral signature, (2, 2)) in the hyper-para-complex case,
respectively. Using this metric, we can define endomorphisms Ji : T M → T M by
means ofωi (X,Y ) = g(Ji X,Y ), and it is easy to check that they obey the conditions
listed in Definition 3.20. We summarise as follows.

Proposition 3.5 An almost hyper-complex structure (respectively, almost hyper-
para- complex structure) on a 4-dimensional manifold M is a set of three differential
two-forms ωi ∈ �2(M) for i, j, . . . = 1, 2, 3 with ωi ∧ ω j = 0 for i �= j and ωi ∧
ωi �= 0 such that (up to permutation) ω2 ∧ ω2 = εω1 ∧ ω1 = ω3 ∧ ω3 where ε = 1
(respectively, ε = −1).
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If the almost-complex structures are instead not assumed to be integrable, the mani-
fold M is called quaternionic, or almost hyper-complex. Every hyperkähler man-
ifold is also hyper-complex but not vice versa. A typical counterexample is given by
the Hopf surface:

Example

The surface {H\0}/Z (withZ−actionbyaquaternionq, |q| > 1) is hyper-complex,
but not Kähler, hence not hyperkähler either.

3.2.6 Generalised Complex Structure

3.2.6.1 General Complex Structure on a Vector Space

Let V be a finite dimensional vector space over R.
Recall that a complex structure on V is a linear map I : V −→ V such that

I 2 = −IdV .

A symplectic structure on V is equivalently a linear isomorphism ω : V −→ V ∗
such that ω∗ = −ω, where V ∗ denotes the dual vector space and ω∗ the dual linear
map.

The following definition may be thought of as combining these two concepts.

Definition 3.23 A generalised complex structure on V is a linear map

J : V ⊕ V ∗ −→ V ⊕ V ∗

(an endomorphism of the direct sum of V with its dual vector space) such that it
is both a complex structure on V ⊕ V ∗ in that J2 = −IdV ⊕V ∗ ; and a symplectic
structure on V ⊕ V ∗ in that J∗ = −J.

The following shows that this is indeed a joint generalisation of complex and
symplectic structures.

Example

Let I : V −→ V be an ordinary complex structure on V . Then the linear endomor-
phism of V ⊕ V ∗ defined by the matrix as

JI =
(

I 0
0 −I ∗

)
(3.11)

is a generalised complex structure on V .
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Example

Similarly, let ω : V −→ V ∗ be an ordinary symplectic structure on V . Then the
endomorphism

Jω =
(
0 −ω−1

ω 0

)
(3.12)

is a generalised complex structure on V .

3.2.6.2 Hitchin Pairs

Let us denote by T the tangent bundle of M and by T ∗ its cotangent bundle. The
natural indefinite interior product on T ⊕ T ∗ is

(X + ξ,Y + η) = 1

2
(ξ(Y )+ η(X)),

and the Courant bracket on sections of T ⊕ T ∗ is defined by

[X + ξ,Y + η] = [X,Y ] + L Xη − LY ξ − 1

2
d(ιXη − ιY ξ).

Definition 3.24 (Gualtieri [29]) An almost generalised complex structure is a
bundle map J : T ⊕ T ∗ → T ⊕ T ∗ satisfying

J
2 = −1,

and
(J·, ·) = −(·, J·).

We can consider an integrability condition for an almost generalised complex
structure in the same line like we have introduced the similar notion for integrability
of a usual almost-complex structure (see Definitions 3.2 and 3.4).

Such an almost generalised complex structure is said to be integrable if the spaces
of sections of its two eigenspaces are closed under the Courant bracket.

The standard examples above are reads now as

J1 =
(

J 0
0 −J ∗

)

and

J2 =
(

0 �−1

−� 0

)
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with J a complex structure and � a symplectic form.

Lemma 3.1 (Crainic [17]) Let � be a symplectic form and ω any 2-form. Define
the tensor R by ω = �(R·, ·) and the form ω̃ by ω̃ = −�(1 + R2·, ·).

The almost generalised complex structure

J =
(

R �−1

ω̃ −R∗

)
(3.13)

is integrable if and only if ω is closed.

Such a pair (ω,�) with dω = 0 is called a Hitchin pair of 2-forms.

Definition 3.25 A Hitchin pair of bivectors is a pair consisting of two bivectors π
and �, � being non-degenerate, and satisfying

{ [�,�] = [π, π ]
[�,π ] = 0.

(3.14)

Proposition 3.6 There is a 1–1 correspondence between generalised complex struc-
ture

J =
(

R πR

ω̃ −R∗

)

with ω̃ non-degenerate and Hitchin pairs of bivector (π,�). In this correspondence,
we have ⎧⎪⎨

⎪⎩
ω̃ = �−1

R = π ◦�−1

πR = −(1 + R2)�.

Example

If π + i� is non-degenerate, it defines a 2-form ω + i� which is necessarily closed
(this is the complex version of the classical result which says that a non-degenerate
Poisson bivector is actually symplectic). We find again a Hitchin pair. So new
examples occur only in the degenerate case. Note that π + i� = (R + i)�, so
det(π + i�) = 0 if and only if −i is an eigenvalue for R. In dimension 4, this
implies that R2 = −1 but this is no more true in higher (n ≥ 3) dimensions (see for
example the classification of pair of 3-forms on 6-dimensional manifolds in [43]).
Nevertheless, the case R2 = −1 is interesting by itself. It corresponds to generalised
complex structure of the form

J =
(

J 0
ω̃ −J ∗

)
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with J an integrable complex structure and ω̃ a 2-form satisfying J ∗ω̃ = −ω̃ and

dω̃J = dω̃(J ·, ·, ·)+ dω̃(·, J ·, ·)+ dω̃(·, ·, J ·).

where ω̃J = ω̃(J ·, ·) (see [17]). Or equivalently ω̃ + iω̃J is a (2, 0)-form satisfying

∂(ω̃ + iω̃J ) = 0.

One typical example of such geometry is the hyperkähler geometry with torsion
which is an elegant generalisation of hyperKähler geometry [27]. Unlike the hyper-
käler case, such geometry is always generated by potentials [10].

3.2.7 Notes and Further Reading

The original paper byGualtieri in which he defines the notion of generalised complex
structure and establishes the basic properties is [29]. Various ‘para’-generalisations
of (almost) complex structure were defined in so many papers [42, 51, 53] that I am
unable to list all of them. We will say more about their combinations and origins
in small dimensions in the next chapter. Lecture notes and expositions of Misha
Verbitsky [54] and S. Salamon [50] are extremely readable and have also been very
influential.

3.3 Lecture Two: Recursion (Nijenuijs) Operators
and Some Related Algebraic Constructions

The second chapter is basedmainly on thematerial of twopapers [4, 5]which (in spite
of its elementary nature) gives rise to some unexpected and non-trivial geometric and
topological examples which are resulted from a fact on existence of few recursion
or Nijenhuis operators and some compatibility conditions.

3.3.1 Recursion Operators and Its Properties

3.3.1.1 Recursion (Nijenuijs) Operators

Let M be a manifold enabled with given two non-degenerate 2-forms ω and η in
�2(M).

Then there exists (a unique!) field of non-degenerated endomorphisms R ∈
End(TM) of the tangent bundle to M which is defined by the equation
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ı X ω = ı R X η , (3.15)

where X ∈ �(T M)—a vector field on M.
The case when the two 2-forms ω and η are closed (dω = dη = 0), and therefore

symplectic is very important in the perspectives of integrable systems, where it arises
in the context of bi-Hamiltonian systems, but it is important also from a geometric
point of view.

Definition 3.26 The field of endomorphisms R is called a field of recursion or
Nijenuijs operator.

We shall study the relation of geometry and topology of the manifold M endowed
with two (or more) symplectic (or even more general ) forms with the associated
Nijenhuis operators R.

3.3.1.2 Symplectic Pairs-1 R2 = Id

Let M be a manifold with two symplectic forms ω, η and their recursion operator R.
Consider first the case R2 = Id, but R �= ±I d. Then the eigenvalues of R are±1,

and ∀X ∈ �(T M) admits the following decomposition:

X = 1

2
(X + R X) + 1

2
(X − R X).

This is the unique splitting of a tangent vector X into a sumof eigenvectors of R. Thus
the eigenspaces D± of R give a decomposition of tangent bundle T M = D+ ⊕ D−.

Lemma 3.2 The kernels of 2-forms�∓ := ω ∓ η are precisely the eigenspaces D±
for the eigenvalues ±1 .

Proof We shall use the arguments given in the paper [5].
Let X be an arbitrary tangent vector. Then taking the substitution or the inner

product of X and both two-forms �± one have

ı X �
∓ = ı X ω ∓ ı X η

and we obtain
ı X �

∓ = ı R X η ∓ ı X η = ı R X∓X η .

The form η is non-degenerate; hence, the condition ı X �
∓ = 0 implies R X = ∓X

and vice versa, if R X = ±X then X ∈ Ker�∓. �

Lemma 3.3 The forms �∓ have constant ranks.

Proof We use the observation made in [5] that the dimensions of kernels of �∓ are
semi-continuous functions on a closed submanifold and that such function can only
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be increased. The previous lemma (3.2) shows that if the dimension of the kernel of
one of the two-forms�∓ jumps up, then the dimension of the kernel of the other one
has to decrease. Therefore, the dimensions of the kernels are actually constant on a
connected manifold M , hence the result. �

•? Exercises

Check that the closedeness of �∓ implies the Frobenius integrability of their kernel
distributions.

Definition 3.27 (see [5]) A symplectic pair on a smooth manifold M is a pair of
non-trivial closed two-formsω1, ω2 of constant and complementary ranks, for which
ω1 restricts as a symplectic form to the leaves of the kernel foliation of ω2, and vice
versa.

Thus, the forms �∓ in 3.2 form a symplectic pair in the sense of this definition.
Conversely, suppose that we have a symplectic pair �± on M , that is, a pair of

closed 2-forms of constant ranks, whose kernel foliations F∓ are complementary
and integrable.

•? Exercises

Check that the forms ω = 1
2 (�

+ +�−) and η = 1
2 (�

+ −�−) are symplectic.

Now the corresponding recursion operator is R = IdTF+ − IdTF− . Thus R2 =
IdT M .

Summing up we have the following.

Theorem 3.4 ([5])Two symplectic formsω and η on a connected manifold M whose
recursion operator R satisfies R2 = I d and R �= ±I d give rise to a symplectic pair
�±, and every symplectic pair �± arises in this way.

Remark 3.10 The condition R2 = I d implies that theNijenhuis tensor of R vanishes
identically. Therefore, in this case, ω and η are compatible in the sense of Poisson
geometry.

The lattermeans that the Poisson structures defined byω−1, η−1 ∈ �(�2(T M)) form
a Poisson pencil of antisymmetric bivector fields πλ ∈ �(�2(T M) such that

πλ = ω−1 + λη−1
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and the following operation (Poisson brackets)

{ f, g} := 〈πλ, d f ∧ dg〉

defines a Lie algebra structure on C∞(M) and X f := ı d f πλ is a vector field on M
(a Hamiltonian vector field) or in other terms, the derivation X f := { f,−} of the
algebra C∞(M).

3.3.1.3 Symplectic Pairs-2 R2 = − Id

Throughout this subsection, we assume that we have two symplectic forms ω and
η on a manifold M of dimension 2n, such that the recursion operator defined by
ı X ω = ı R X η satisfies R2 = − IdT M . This implies ı R X ω = − ı X η.

We shall prove the following.

Theorem 3.5 If the recursion operator R satisfies R2 = − IdT M , then it defines an
integrable complex structure with a holomorphic symplectic form (i.e. closed non-
degenerate, holomorphic (2, 0)-form) whose real and imaginary parts are ω and η.
Every holomorphic symplectic form arises in this way.

Proof In this case, R defines an almost-complex structure on M . We extend R com-
plex linearly to the complexified tangent bundle TCM = T M ⊗R C. The eigenvalues
of R are ±i , and

X = 1

2
(X − i R X) + 1

2
(X + i R X)

is the unique decomposition of a complex tangent vector X into a sum of eigenvectors
of R. As usual, the eigenspaces of R give a splitting TCM = T 1,0 ⊕ T 0,1, where T 1,0

is the+i eigenspace, and T 0,1 is the−i eigenspace. The two are complex conjugates
of each other. �

Lemma 3.4 The eigenspaces T 0,1 and T 1,0 are precisely the kernels of� = ω + iη
and of its complex conjugate �̄ = ω − iη.

Proof It suffices to prove the statement for the −i eigenspace T 0,1. The other case
then follows by complex conjugation.

Let X = Y + i Z be a complex tangent vector. Then

ı X � = ıY ω − ı Z η + i(ıY η + ı Z ω) .

The real part of the equation ı X � = 0 is equivalent to its imaginary part, and each
is equivalent to RY = Z , which is obviously equivalent to X ∈ T 0,1. �

Proposition 3.7 The almost-complex structure R is in fact integrable.
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Proof By the Newlander–Nirenberg theorem, it suffices to check that one, and hence
both eigendistributions of R are closed under commutation. To do this, suppose X
andY are complex vector fields in T 1,0, so that R X = i X , RY = iY . Then, extending
the Lie derivative L X = ı X ◦d + d ◦ ı X complex linearly to complex tangent vectors,
and using that ω and η are closed, we find

ı R[X,Y ] η = ı [X,Y ] ω = L X ıY ω − ıY L Xω = L X ı RY η − ıY L R Xη = i(L X ıY η − ıY L Xη) = ı i[X,Y ] η .

The non-degeneracy of η now implies that R[X,Y ] = i[X,Y ], so that in T 1,0 is
closed under commutation.

Thus, we have seen that two symplectic forms ω and η whose recursion operator
satisfies R2 = −I d give rise to an integrable complex structure, for which T 0,1 is
precisely the kernel of � = ω + iη. Thus � is a closed form of type (2, 0) and rank
n, where n is the complex dimension of M .

Conversely, if a manifold is complex and carries a holomorphic symplectic form,
then the real and imaginary parts of this form are real symplectic forms whose
recursion operator is just the complex structure.

This completes the proof of Theorem 3.5. �

Remark 3.11 The above proof of the integrability of the almost-complex structure
defined by the recursion operator is the same as that in Lemma (6.8) of Hitchin’s
paper [31] (the ‘Hitchin lemma’). However, unlike this reference, we do not assume
the symplectic forms to be compatible with any metric and our proof mimics the
classification result in Theorem 1.5 of [43].

3.3.2 Triples of Symplectic Forms

We now want to discuss the geometries defined by a triple of symplectic forms ω1,
ω2, ω3 whose recursion operators Ri defined by

ı X ωi = ı Ri+2 X ωi+1 (3.16)

satisfy R2
i = ±I d and Ri �= ±I d. Here and in the sequel all indices are takenmodulo

3. Note that by the definition all cyclic compositions Ri+2 ◦ Ri+1 ◦ Ri = I d.
There are four different cases depending on a sign in front of the squares of the Ri .

In the two cases when there is an odd number of Ri with square−I d, there are natural
pseudo-Riemannian metrics defined by the triple of two-forms. If there is exactly
one Ri with the square −I d, one can get a notion of a hypersymplectic structure
considered in Chap.1. When all three Ri have square −I d, we find a hyper-complex
structure for which all complex structures admit holomorphic symplectic forms.
Examples for this geometric structure, which one can naturally call a hyper-complex
symplectic structure, are provided by hyper-Kähler structures.

http://dx.doi.org/10.1007/978-3-030-17031-8_1
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3.3.2.1 Hypercomplex Symplectic Structures

Remind from the previous chapter (Sects. 5 and 5.1) that a hyper-complex structure
on a manifold is a triple of integrable complex structures satisfying the quaternion
relations; see for example [37, 51] for more details.

The first example of a structure given by a triple of symplectic forms is as follows.

Definition 3.28 A triple of symplectic forms ωi whose pairwise recursion operators
satisfy R2

i = −I d for all i = 1, 2, 3 is called a hyper-complex symplectic structure.

In this case Ri+2 ◦ Ri+1 ◦ Ri = I d implies that the Ri anti-commute and satisfy the
quaternion relations. By Theorem 3.5 each Ri is an integrable complex structure, and
so the Ri together form a hyper-complex structure. Furthermore, each Ri admits a
holomorphic symplectic form, justifying the name hyper-complex symplectic struc-
ture for such a triple.1

Hypercomplex symplectic structures are much more restrictive than hyper-
complex ones, but every hyper-complex structure on M does give rise to a natural
hyper-complex symplectic structure on T ∗M .

Example

(see [5]) Let M be a manifold with an integrable complex structure J . Then lifting
J to T ∗M , the total space of the cotangent bundle is also a complex manifold. It is
also holomorphic symplectic, because if ω is the exact symplectic form given by the
exterior derivative of the Liouville 1-form, then �(X,Y ) = ω(X,Y )+ iω(J X,Y )
is holomorphic symplectic for the lifted J . If M has a hyper-complex structure,
then the lifts of the three complex structures to T ∗M still satisfy the quaternion
relations, and are the recursion operators for the triple of symplectic forms given by
the imaginary parts of the three holomorphic symplectic forms.

Now we show that hyper-complex symplectic structures have natural metrics
associated with them.

Proposition 3.8 Let M be a manifold with a hyper-complex symplectic structure.
Then the bilinear form on T M defined by

g(X,Y ) = ωi (X, Ri Y )

is independent of i = 1, 2, 3. It is non-degenerate and symmetric, and invariant under
all Ri .

1This is different from the hypersymplectic structures discussed in Sect. 3.3.2.2 below.



116 V. Rubtsov

Proof We first prove independence of i as follows:

ωi (X, Ri Y ) = ωi (X, Ri+1Ri+2Y ) = ωi+2(X, Ri+2Y ) = . . . = ωi+1(X, Ri+1Y ) .

Note that g is non-degenerate because Ri is invertible and ωi is non-degenerate.
We prove invariance under the Ri using independence of i :

g(Ri X, Ri Y ) = ωi+1(Ri X, Ri+1Ri Y ) = −ωi+1(Ri X, Ri+2Y ) = ωi+2(X, Ri+2Y ) = g(X, Y ) .

Finally, we prove symmetry using the invariance under Ri :

g(Y, X) = ωi (Y, Ri X) = −ωi (Ri X, Y ) = ωi (Ri X, R2
i Y ) = g(Ri X, Ri Y ) = g(X, Y ).

�

The proposition shows that g is a pseudo-Riemannian metric compatible with the
symplectic forms ωi . As it is symmetric and non-degenerate, there must be tangent
vectors X with g(X, X) �= 0. Take such a vector X and consider also R1X , R2X and
R3X . By invariance of g we have g(Ri X, Ri X) = g(X, X), and by the definition of
g and the skew-symmetry of ωi , the Ri X are g-orthogonal to each other and to X .
Replacing g by its negative if necessary, we find the following.

Corollary 3.1 Every hyper-complex symplectic structure in complex dimension two
is hyper-Kähler.

Proof Indeed, the pseudo-Riemannianmetric g is a definiteKählermetric compatible
with the underlying hyper-complex structure, whose Kähler forms with respect to
Ri are the ωi (up to sign). �

In higher dimensions, hyper-Kähler structures provide examples of hyper-complex
symplectic structures for which the natural pseudo-Riemannian metric g is definite.
However, there are many other examples, even on manifolds that do not support any
Kähler structure, so that Corollary 3.1 does not generalise to higher dimensions.

3.3.2.2 Hypersymplectic Structures

Next we consider a triple of symplectic forms such that two recursion operators have
square the identity, and one has square minus the identity. After renumbering wemay
assume R2

1 = −I d and R2
2 = R2

3 = I d. Then the cyclic relations Ri+2 ◦ Ri+1 ◦ Ri =
I d show that the Ri anti-commute and R2R1 = R3. It follows that Ri �= ±I d, so the
trivial cases are excluded automatically.

We have the following result analogous to Proposition 3.8.
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Proposition 3.9 Let M be a manifold with three symplectic forms whose recursion
operators satisfy R2

1 = −I d and R2
2 = R2

3 = I d. Then

ω1(X, R1Y ) = −ω2(X, R2Y ) = −ω3(X, R3Y ) ,

and these expressions define a bilinear form g(X,Y ) on T M. It is non-degenerate and
symmetric, invariant under R1, and satisfies g(Ri X, Ri Y ) = −g(X,Y ) for i = 2, 3.

We omit the proof as it is literally the same as for Proposition 3.8.
Now in this case if we take a vector X with g(X, X) �= 0, then g(R1X, R1X) =

g(X, X), and g(R2X, R2X) = g(R3X, R3X) = −g(X, X), and the Ri X are g-
orthogonal to each other and to X . Thus, we have a 4-dimensional subspace on
which g is non-degenerate and has signature (2, 2). Looking at the orthogonal com-
plement of this subspace and proceeding inductively, we see that the metric g has
neutral signature.

We can compare this data with the following definition due to Hitchin [32]; see
also [18, 24].

Definition 3.29 A hypersymplectic structure on amanifold is a pseudo-Riemannian
metric g of neutral signature, together with three endomorphisms I , S and T of the
tangent bundle satisfying

I 2 = − Id , S2 = T 2 = I d , I S = −SI = T ,

g(I X, I Y ) = g(X,Y ) , g(SX, SY ) = −g(X,Y ) , g(T X, T Y ) = −g(X,Y ) ,

and such that the following three two-forms are closed:

ωI (X,Y ) = g(I X,Y ) , ωS(X,Y ) = g(SX,Y ) , ωT (X,Y ) = g(T X,Y ) .

Given a hypersymplectic structure in this sense, the recursion operators intertwining
the three symplectic forms are, up to sign, precisely the endomorphisms I , S and T .
Conversely, given three symplectic forms for which one of the pairwise recursion
operators has square −I d and the other two have square the identity, Proposition 3.9
shows that we can recover a uniquely defined hypersymplectic structure. Thus, we
have proved the following corollary.

Corollary 3.2 A hypersymplectic structure is equivalent to a unique triple of sym-
plectic forms for which two of the recursion operators have square the identity, and
one has square minus the identity.

A hypersymplectic structure also defines a symplectic pair, and therefore a
four-manifold with such a structure is symplectic for both choices of orientation.
High-dimensional examples of hypersymplectic structures on closed manifolds have
recently appeared in [1, 24].
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3.3.3 Notes and Further Reading

We will see in Chap. 5 that the appearance of hypersymplectic structures plays an
important role in applications toMonge–Ampère equations, operators and structures.
Another interesting application of such a triple of endomorphisms was discussed in
the framework of superstrings [13] where the authors provide a study of self-dual 4D
space-time with (2,2) neutral metric and propose a real version of twistors relevant
to this geometry. It would be interesting to compare this geometry within the general
approach of Monge–Ampère structures.

3.4 Lecture Three: Symplectic Monge–Ampère Operators
and Equations

This chapter contains a (hopefully) friendly introduction in the geometry of Monge–
Ampère equations and operators. This geometric approach (in a wide contact geo-
metric context) was originally proposed by V.V. Lychagin but philosophically and
ideologically it has the origins in works of E. Cartan and his school.

Motivating by applications, we shall restrict our attention to a symplectic Monge–
Ampère equations and operators (this notion and restrictionwill be explained below).

3.4.1 Monge–Ampère Equations

Loosely speaking, a Monge–Ampère equation is a second-order partial differ-
ential equation with determinant-like non-linearities. In particular, let M be an
m-dimensional smooth manifold M with local coordinates (q1, . . . , qm). For φ ∈
C∞(M), we let

hessφ :=
⎛
⎜⎝
φq1q1 · · · φq1qm

...
. . .

...

φqm q1 · · · φqm qm

⎞
⎟⎠ (3.17)

be the Hessianmatrix. The subscripts indicate partial derivatives, for instance, φq1 :=
∂φ

∂q1 , etc. A symplectic Monge–Ampère equation is a linear combination of all the
minors of the Hessian matrix with the coefficients being elements of C∞(T ∗M). In
two dimensions, the general form thus is

Aφq1q1 + 2Bφq1q2 + Cφq2q2 + D(φq1q1φq2q2 − φq1q2φq2q1)+ E = 0 , (3.18)

where A, B, C , D, and E are smooth functions of (q1, q2, φq1 , φq2) ∈ T ∗M .

http://dx.doi.org/10.1007/978-3-030-17031-8_5
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3.4.1.1 Monge–Ampère Operators

Lychagin [14] proposed a geometric approach to study these equations by making
use of certain differential forms on the cotangent space (i.e. the phase space).

Suppose α ∈ �m(T ∗M), and for a smooth function φ ∈ C∞(M) consider its
differential dφ ∈ �(T ∗M) given by (q1, . . . , qm) �→ (q1, . . . , qm, φq1 , . . . , φqm ).

Definition 3.30 (Lychagin [14]) Let M be an m-dimensional manifold, α ∈ �m

(T ∗M), and� ∈ �(det(T M)). Thedifferential operator�α,� : C∞(M) → C∞(M)
defined by the pull-back

�α,�φ := ı� [(dφ)∗α] (3.19)

is called the Monge–Ampère operator associated with (α,�).

Consequently, we may always associate with a Monge–Ampère operator the
Monge–Ampère equation

�α,�φ = 0 . (3.20)

This equation does not depend on the choice of volume form� ∈ �(det(T M)), and,
since we shall solely be dealing with this equation, we shall follow the literature and
suppress the explicit appearance of� and simply write �α in the following.

To study this correspondence between differential forms and Monge–Ampère
equations, we shall need the following definition.

Definition 3.31 (Lychagin [14]) Let (M, ω) be a symplecticmanifold. A differential
p-form α is said to be ω-effective if and only if ıω−1 α = 0.

We shall use also a terminology ω-primitive or simply primitive form, to stress
the parallels with Hodge theory on kähler varieties.

It is easy to see that for a differential m-form α on a 2m-dimensional symplectic
manifold (M, ω), the notionofω-effectiveness is equivalent to saying thatα ∧ ω = 0.
Then, we have the following theorem (see also the text book [44] for a comprehensive
treatment).

Theorem 3.6 (Hodge–Lepage–Lychagin [14])Let (M, ω)be a symplectic manifold.
Then, any differential p-form α ∈ �p(M) has a unique decomposition

α = α0 + α1 ∧ ω + α2 ∧ ω ∧ ω + · · · (3.21)

into ω-effective differential (p − 2k)-forms αk ∈ �p−2k(M). Furthermore, if two ω-
effective p-forms vanish on the same p-dimensional Lagrangian submanifold, they
must be proportional.

For any φ ∈ C∞(M), its graph

Lφ := {(q1, . . . , qn, φq1 , . . . , φqn )} ⊆ T ∗M (3.22)
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is Lagrangian with respect to the standard symplectic form ω on T ∗M , that is, we
have ω|Lφ = 0. Consequently, we have the following corollary of the above theorem.

Corollary 3.3 Let M be a manifold. For the standard symplectic structure ω on
T ∗M, the correspondence between Monge–Ampère equations on M and conformal
classes of ω-effective forms on T ∗M is one-to-one.

Let us pause for a moment and discuss two examples.

Example

Let M be 2-dimensional with local coordinates (q1, q2). Furthermore, let (q1, q2,

p1, p2) be local coordinates on T ∗M and consider the standard symplectic formω =
dq1 ∧ dp1 + dq2 ∧ dp2 on T ∗M . TheMonge–Ampère equation (3.18) is associated
with the ω-effective form

Adp1 ∧ dq2 + B(dq1 ∧ dp1 − dq2 ∧ dp2)+ Cdq1 ∧ dp2 + Ddp1 ∧ dp2 + Edq1 ∧ dq2 .
(3.23)

Example

Let M = R
3 with coordinates (q1, q2, q3) and let (q1, q2, q3, p1, p2, p3) be coordi-

nates on T ∗
R

3 ∼= R
6 and consider the standard symplectic form ω = dq1 ∧ dp1 +

dq2 ∧ dp2 + dq3 ∧ dp3 on T ∗
R

3. The Monge–Ampère equation

det(Hess(φ)) = 1 (3.24a)

is associated with the ω-effective form

dp1 ∧ dp2 ∧ dp3 − dq1 ∧ dq2 ∧ dq3 , (3.24b)

while the Monge–Ampère equation

�φ − det(Hess(φ)) = 0 , (3.25a)

where � is the Laplacian, is associated with the ω-effective form

dp1 ∧ dq2 ∧ dq3 + dq1 ∧ dp2 ∧ dq3 + dq1 ∧ dq2 ∧ dp3 − dp1 ∧ dp2 ∧ dp3 .

(3.25b)
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3.4.1.2 Generalised Solutions

Recall that for any function φ on M , its graph Lφ = {(q1, . . . , qm, φq1 , . . . , φqm )} is
Lagrangian with respect to the standard symplectic form ω on T ∗M . Conversely, for
any Lagrangian submanifold L ⊆ T ∗M there exists a function φ on M such that L =
Lφ . Moreover, it is clear that φ is a regular solution to the Monge–Ampère equation
(3.20) if and only if also α|Lφ = 0. We thus give the following definition.

Definition 3.32 (Lychagin [14]) Let ω be a symplectic structure on T ∗M . A gener-
alised solution to the Monge–Ampère equation (3.20) is a Lagrangian submanifold
L ⊆ T ∗M with respect to ω (i.e. ω|L = 0) such that also α|L = 0.

3.4.1.3 Local Equivalence

A classical problem in the geometric study of differential equations is the problem
of local equivalence up to a local change of dependent and independent coordinates.
Put differently, when are two given differential equations equivalent up to the action
of a local diffeomorphism on the phase space?

Let M be a manifold and � a diffeomorphism on T ∗M . The natural action � of
� on a Monge–Ampère operator �α is given by

� � �α := ��∗α . (3.26)

Definition 3.33 (Lychagin [14]) Let M be an m-dimensional manifold and ω a
symplectic form on T ∗M . Furthermore, let α1 and α2 be two differential m-forms
on T ∗M . The two Monge–Ampère equations given by the operators �α1 and �α2
are called symplectically equivalent if and only if there is a local diffeomorphism
� ∈ C∞(T ∗M) such that �∗ω = ω and �∗α2 = α1.

Note that diffeomorphisms� : (M, ω) → (M, ω) on a symplectic manifold (M, ω)
with �∗ω = ω are called symplectomorphisms.

Example

Consider M = R
2 with coordinates (q1, q2). The Monge–Ampère equations

det(Hess(ψ)) = 1 and �φ = 0 (3.27a)

correspond to the ω-effective forms

dp1 ∧ dp2 − dq1 ∧ dq2 and dp1 ∧ dq2 + dq1 ∧ dp2 , (3.27b)

respectively,withω = dq1 ∧ dp1 + dq2 ∧ dp2. The partial Legendre transformation

�(q1, q2, p1, p2) := (q1, p2, p1,−q2) , (3.28)
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which leaves ω invariant, yields

�∗(dp1 ∧ dp2 − dq1 ∧ dq2) = dp1 ∧ dq2 + dq1 ∧ dp2 . (3.29)

Consequently, the two Monge–Ampère equations (3.27a) are symplectically equiv-
alent. Note that this ceases to be true in higher dimensions.

Importantly, symplectic equivalence can be used to construct explicit solutions.
The key observation is that symplectomorphisms preserve generalised solutions (see
Definition 3.32) but not regular solutions: if � is a symplectomorphism and L a
generalised solution to the Monge–Ampère equation given by ��∗α , then �(L) is
a generalised solution to the Monge–Ampère equation given by �α . To make this
more transparent, it is instructive to discuss an explicit example.

Example

Consider the Laplace equation�φ = 0 onR2. Its generalised solutions are the com-
plex curves of T ∗

R
2 ∼= C

2. Upon applying (3.28) to the harmonic function

φ(q1, q2) = eq1
cos(q2) , (3.30)

we obtain the generalised solution�(Lφ). The identification of�(Lφ)with the graph
Lψ of a function ψ on R

2 then yields the regular solution

ψ(q1, q2) = q2 arcsin
( q2

eq1

)
+

√
e2q1 − (q2)2 (3.31)

to the Monge–Ampère equation det(Hess(ψ)) = 1.

3.4.2 Geometry of Differential Forms

Hence, as we have seen, the classical problem of local equivalence for Monge–
Ampère equations can be understood as a problemof theGeometric Invariant Theory:
the idea is to construct invariant structures which will characterise each equivalent
class.

The first step of this approach is pointwise: we study the action of the symplectic
group Sp(n,R) on the space of primitive forms �n

0(R
n). We will see next how one

can ‘integrate’ such study.
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3.4.2.1 The Bracket Structure

Let V 2n be a 2n-dimensional real vector space. We fix a symplectic form � on V
and the volume form

vol = �n

n! .

We denote by �n(V ∗) the space of n-forms on V and by �n
0(V

∗) the space of
primitive n-forms, that is

�n
0(V

∗) = {ω ∈ �n(V ∗), � ∧ ω = 0}.

We denote by SL(2n) the group of automorphisms preserving the volume form
vol and by Sp(n,R) the group of automorphisms preserving the symplectic form�.
Their Lie algebras are denoted by sl(2n) and sp(n,R).

Using the exterior product, we define an isomorphismA : �2n−1(V ∗) → V by

< α,A(θ) >= α ∧ θ
vol

, for α ∈ �1(V ∗) and θ ∈ �2n−1(V ∗).

Definition 3.34 The bracket � : �n(V ∗)×�n(V ∗) → sl(V ) is defined by

�(ω1, ω2)(X) = A
(
(ιXω1) ∧ ω2 − (−1)nω1 ∧ (ιXω2)

)
.

It is straightforward to check the two following lemmas.

Lemma 3.5 This bracket is invariant under the action of SL(2n), that is

�(F∗ω1, F∗ω2) = F−1 ◦�(ω1, ω2) ◦ F

for any F ∈ SL(2n).

Lemma 3.6 Let �̃ be the bracket defined for the (2n + 2)-dimensional vector space
Ṽ = V × Rt1 × Rt2 endowed with the volume form

˜vol = vol∧dt1 ∧ dt2.

Then the following relations hold:

1. �̃(ω1 ∧ dt1, ω2 ∧ dt2)(∂t1) = −�̃(ω1 ∧ dt1, ω2 ∧ dt2)(∂t2)

2. �̃(ω1 ∧ dt1, ω2 ∧ dt2)(X) = �(ω1, ω2)(X), ∀X ∈ V .

Note that this second lemma shows that � takes its values in sl(2n).
In the case n = 3, the tensor Kω = 1

2�(ω,ω) is the invariant constructed by
Hitchin in [34], which can be easily extended to any odd n.
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Proposition 3.10 (Hitchin) When n is odd, the map K : �n(V ∗) → sl(2n), ω �→
1
2�(ω,ω) is a moment map for the Hamiltonian action of SL(2n) on �n(V ∗)
endowed with the symplectic form

�(ω1, ω2) = ω1 ∧ ω2

vol
.

When n is even, the bracket � is antisymmetric and the situation is completely
different. The analogue of Proposition 3.10 is the following, which is proved in [9]
(unpublished).

Proposition 3.11 We define on �n(V ∗)× sl(2n) the following bracket:

1. [A1, A2] = A1A2 − A2 A1,
2. [A, ω] = L A(ω) and
3. [ω1, ω2] = �(ω1, ω2),

for A, A1 and A2 in sl(2n) and ω, ω1 and ω2 in �n(V ∗).
Then [ , ] is a Lie bracket.

The Sp(n,R)-version of these results is summed up in the following.

Proposition 3.12 1. If ω1 and ω2 are primitive then �(ω1, ω2) ∈ sp(n,R).
2. If n is odd, then K : �n

0(V
∗) → sp(n,R), ω �→ 1

2�(ω,ω) is a moment map
for the Hamiltonian action of S P(n,R) on the symplectic subspace �n

0(V
∗) of

�n(V ∗).
3. If n is even, the space �n

0(V
∗)⊕ sp(n,R) is a Lie subalgebra of �n(V ∗)⊕

sl(2n).

Remark 3.12 When n is odd, the tensor Kω defines a family of scalar invariants

ak = Tr(K 2k
ω ), k ∈ N

and a quadratic form (which was called for n = 3 the Lychagin–Roubtsov quadratic
form in [6]):

qω(X) = �(KωX, X).

When n is even, the adjoint operator adω = [ω, ·] defines an endomorphism

ad2
ω : sp(n,R) → sp(n,R),

which gives also a family of scalar invariants

ak = Tr(ad2k
ω ), k ∈ N

and a symmetric polynomial of degree 4 defined by

qω(X) = Tr([ad2
ω(X ⊗ ιX (�))]2).



3 Geometry of Monge–Ampère Structures 125

3.4.2.2 Low-Dimensional Examples

The case n = 2.

The identity ω = �(Aω·, ·) gives an isomorphism between the space of 2-forms
�2(R4) and the Jordan algebra Jor(�) defined by

Jor(�) = {A ∈ gl(4), �(A·, ·) = �(·, A·)}.

Our bracket � becomes then the usual bracket:

�(ω1, ω2) = Aω1 Aω2 − Aω2 Aω1 .

We easily see then the isomorphism of Lie algebras

�2
0(R

4)⊕ sp(2,R) = sl(4,R).

Moreover, for ω ∈ �2
0(R

4), the endomorphism ad2
ω = ad2

Aω
: sp(2,R) → sp

(2,R) satisfies
Tr(ad2

ω) = 16 pf ω,

where the pfaffian of ω is the classical invariant

pf ω = ω ∧ ω
� ∧�.

The polynomial qω is the null polynomial.

The case n = 3.

It is proved in [34] that the action of GL(6,R) on �3(R3) has two opened orbits
separated by the hypersurface HPf(·) = 0 where

HPf(ω) = 1

6
Tr(K 2

ω).

Note that, for any 3-form the following holds:

K 2
ω = HPf(ω) · Id .

By analogywith the 2-dimensional case, we call this invariant theHitchin pfaffian.
A 3-form with a non-vanishing Hitchin pfaffian is said to be non-degenerate.

For a primitive form ω , we get a triple (gω, Kω,�) with gω = �(Kω·, ·) the
Monge–Ampère metric (see [12, 43]). This triple defines a ε-Kähler structure in the
sense of [51], that is, the tensor Kω satisfies, up a renormalization,

K 2
ω = ε Id, with ε = 0, 1,−1.
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Note that the Monge–Ampère metric has signature.
Moreover, in the non-degenerate case the form ω admits an unique dual form ω̂,

such that ω + √
εω̂ and ω − √

εω̂ are the volume forms of the two eigenspaces of
the Hitchin tensor Kω. Saying differently, to each non-degenerate primitive forms
corresponds a ‘ε-Calabi–Yau’ structure.

The case n = 4.

The Lie algebras �4(R8)⊕ sl(8,R) and �4
0(R

8)⊕ sp(4,R) are known to be iso-
morphic to the exceptional Lie algebras E7 and E6 (see [55]). Moreover, it is proved
in [38] that the family {ak = Tr(ad2k

ω )}k∈N forms a complete family of invariants.
Nevertheless, computations in these dimensions are extremely complicated. The

author planes to implement an algorithm which could give in a reasonable time these
invariants ak .

It is worth mentioning that, on many examples, the symmetric polynomial qω of
degree 4 is the square of a quadratic form. Is it always true ? A positive answer would
be extremely useful to understand the geometry of PDE’s of Monge–Ampère type
in 4 variables.

3.4.2.3 Classifications Results

Monge–Ampère equations in two and three variables.
The action of the symplectic linear group on 2D and 3D symplectic Monge–

Ampère equations with constant coefficients has a finite numbers of orbits and we
know all of them as it is shown in Tables 3.1 and 3.2 (see [6, 43]).

Remark 3.13 1. In two variables, any SMAE with constant coefficients is linearis-
able, which is equivalent to a linear PDE. Moreover, the pfaffian distinguishes
the different orbits.

2. In three variables, there exist non-linearisable SMAE with constant coefficients
and they correspond to non-degenerate primitive 3-forms. Moreover, the Hitchin
pfaffian does not distinguish the different orbits but so does the signature of the
Monge–Ampère metric.

In D = 4 , the action of the symplectic group is no more discrete and there is no
hope to obtain an exhaustive classification list as in two or three variables. Instead of
that, there are functional moduli in the classification problem. There are some partial
results in [44] and in the PhD thesis of B.Banos. He has discovered that on many
interesting examples, the associated geometry is completely degenerated. In other
words, in the case of D = 4, it appears to be that there exist the notion of non-linear

Table 3.1 Classification of
SMAE in two variables.

�ω = 0 ω p f ω

� f = 0 dq1 ∧ dp2 − dq2 ∧ dp1 1

� f = 0 dq1 ∧ dp2 + dq2 ∧ dp1 −1

∂2 f
∂q2

1
= 0 dq1 ∧ dp2 0
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Table 3.2 Classification of SMAE in three variables

�ω = 0 signature (qω) λ(ω)

1 hess f = 1 (3, 3) 1

2 � f − hess f = 0 (0, 6) −1

3 � f + hess f = 0 (4, 2) −1

4 � f = 0 (0, 3) 0

5 � f = 0 (2, 1) 0

6 �q2,q3 f = 0 (0, 1) 0

7 �q2,q3 f = 0 (1, 0) 0

8 ∂2 f
∂q2

1
= 0 (0, 0) 0

Table 3.3 Examples of
SMAE in four variables.

�ω = 0 qω

Usual Monge–Ampère (dq1dp1 + dq2dp2 + dq3dp3 +
dq4dp4)2

SLAG (dq2
1 + dq2

2 + dq2
3 + dq2

4 +
dp21 + dp22 + dp23 + dp24)

2

Plebanski I 0

Plebanski II dq4
1

Grant 0

but degenerated Monge–Ampère equation. In Table 3.3, we have the polynomial
invariant qω computed by B.Banos for the following examples:

hess u = 1 (Usual Monge–Ampère equation)

hess u − (
∑
i< j

uqi qi uq j q j − u2
qi q j
)+ 1 = 0 (4D Special Lagrangian equation)

uq1q2uq3q4 − uq1q4uq2q3 = 1 (Plebanski I equation)

uq1q1uq3q3 − u2
q1q3 + uq1q2 − uq3q4 = 0 (Plebanski II equation)

uq1q1 + uq1q4uq2q3 − uq1q3uq2q4 = 0 (Grant equation)

3.4.3 Notes and Further Reading

One can find some interesting partial classification results for D = 4 in [44].We have
remarked that for n ≥ 4 the stabilisers of generic S P(n,R)−actions on �0(V ∗) are
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trivial and we obtained a versal families of forms ωμ = ω0 + ∑
k μkωk with ω0 as a

representative of the generic orbit and the forms ωk are base in the CokerB0 with the
operator B0 : S2(V ∗) → �0(V ∗) given by ω0 and the Spenser δ−differential (see
[44] for details).

Another classification results in the dimension 4 we get (for primitive forms from
�4

0(V
∗) admitting so-called symplectic transvections) the list of normal forms which

is a reduction of 3D−classification [44].
We will see in Chap. 5 that the appearance of Plebansky ‘heavenly’ equations

sometimes relates to a Monge–Ampère coupled structures. These equations play
an important role in applications of Monge–Ampère equations in a construction of
Hyper-Kähler metrics on holomorphic symplectic surfaces of K3 type (see [19, 26]).

3.5 Lecture Four: Monge–Ampère Structures

In this lecture, we begin by looking at a notion of Monge–Ampère structure. This
notion quite naturally appears in the general framework of the classification problems
which we have discussed in previous lectures. The first formal definition probably
appeared in one of author’s conference and colloquium talks, then in papers of his
former PhD student B. Banos but ideologically it can be deduced from following
[44]. The presentation in this chapter is based mainly on the review in progress [45].

3.5.1 General Properties

We shall introduce the notion of aMonge–Ampère structure in its maximally general
form. Then we shall precise the specific properties in low dimensions repeating some
definitions giving in the previous lectures.

Definition 3.35 Let M be a 2m-dimensional manifold. A Monge–Ampère struc-
ture on M is a pair of differential forms (ω, α) ∈ �2(M)⊕�m(M) such that ω is
symplectic and α is ω-effective.

3.5.1.1 4-Dimensional Monge–Ampère Geometry

In case of a 4-dimensional phase space, in the non-degenerate case, the geome-
try induced by a Monge–Ampère structure can be either complex or real and this
distinction coincides with the usual distinction between elliptic and hyperbolic for
differential equations in two variables.

To see this, let M be a 4-dimensional manifold. We define the Pfaffian pf α ∈
C

∞(M) and the endomorphism Rα : T M → T M for a Monge–Ampère structure
(ω, α) ∈ �2(M)⊕�2(M) by means of the equations [44]

α ∧ α = pf α ω ∧ ω and α(X,Y) = ω(RαX,Y) (3.32)

http://dx.doi.org/10.1007/978-3-030-17031-8_5
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for all X,Y ∈ �(T M). See also Chap.3, Sect. 12.2.

Lemma 3.7 (Lychagin–Roubtsov–Chekalov [44]) Let (ω, α) be a Monge–Ampère
structure on a 4-dimensional manifold M. Then,

tr(Rα) = 0 and R2
α = − pf α Id . (3.33)

Proof 2 First, note that
tr(Rα) = ıω−1 α . (3.34)

Since α is ω-effective, this must vanish.
Next, let χα(t) := pf α − tω for t ∈ R be the Pfaffian characteristic polynomial

of α. Then, since α is ω-effective, we find

pf α − tωω ∧ ω= (α − tω) ∧ (α − tω)

=α ∧ α + t2ω ∧ ω = (pf α + t2) ω ∧ ω , (3.35)

and from the non-degeneracy of ω, we conclude that

χα(t) = t2 + pf α . (3.36)

Furthermore, there is Pfaffian version of the Cayley–Hamilton theorem (see e.g. [39,
Chap. 3.9]) so that χα(Rα) = 0. This, in turn, implies (3.33). �
This lemma allows us to define the endomorphism Jα : T M → T M by

1√| pf α|α(X,Y ) = ω(JαX,Y ), ∀X,Y ∈ �(T M) (3.37)

whenever pf α �= 0. This is an almost-complex structure for pf α > 0 since then
J 2
α = − Id and it is an almost product structure for pf α < 0 since then J 2

α = Id,
respectively. Since tr(Jα) = 0, the ±1 eigenspaces of Jα are of the same dimen-
sion, and, consequently, the endomorphism Jα is, in fact, a para-complex structure.
Furthermore, the above makes (Jα, ω) compatible in the sense of Definition 3.21.
Consequently, we shall make use of Proposition 3.7 and write

α√| pf α| = ı Jα ω . (3.38)

Notice that by virtue of Proposition 3.7, if the differential two-form α/
√| pf α| is

closed then Jα is integrable.
Returning to our discussion about Monge–Ampère structures on the cotan-

gent bundle T ∗M for a 2-dimensional manifold M , it is easy to see that the
Monge–Ampère equation associated with Monge–Ampère operator �α is elliptic

2I am grateful to M. Wolf for discussions which had improved this demonstration.

http://dx.doi.org/10.1007/978-3-030-17031-8_3


130 V. Rubtsov

when pf α > 0 and hyperbolic when pf α < 0, respectively. When pf α = 0 (i.e. in
the degenerate case with α ∧ α = 0), we cannot define Jα , and in this situation, the
Monge–Ampère equation associated with �α is parabolic. Since in two dimensions
(see Example 3.4.1.1) any elliptic (respectively, hyperbolic) Monge–Ampère equa-
tion with constant coefficients is symplectically equivalent (see Definition 3.33) to
the Laplace (respectively, Klein–Gordon) equation, we have the following theorem.

Theorem 3.7 (Lychagin–Roubtsov–Chekalov [44]) Let (ω, α) be a non-degenerate
Monge–Ampère structure on T ∗M for a 2-dimensional manifold M and let Jα be the
almost-complex (respectively, para-complex) structure defined by

α√± pf α
= ı Jα ω with α ∧ α = pf α ω ∧ ω . (3.39)

Then,

1. in the elliptic case when pf α > 0, the Monge–Ampère equation associated with
the Monge–Ampère operator �α is symplectically equivalent to

�φ = 0 (3.40a)

if and only if
d� = 0 with � = ω − i ı Jα ω ; (3.40b)

2. in the hyperbolic case when pf α < 0, the Monge–Ampère equation associated
with the Monge–Ampère operator �α is symplectically equivalent to

�φ = 0 (3.41a)

if and only if

d� = 0 = d�̂ with � = ω + ı Jα ω and �̂ = ω − ı Jα ω . (3.41b)

Proof (⇒) First, let ω be the standard symplectic structure on T ∗M . If the
Monge–Ampère equation associated with the Monge–Ampère operator �α is sym-
plectically equivalent to�φ = 0 (respectively, �φ = 0), then the differential forms
� and �̂ are closed.
(⇐) To verify the converse, if� (and also �̂ when pf α < 0) is closed then Jα is

integrable by virtue of the corollary from Proposition 3.7.
Consequently, when pf α > 0 there exists local coordinates z1 := q1 − ip2 and

z2 := p1 − iq2 such that � = dz1 ∧ dz2 locally and so

ω = Re� = dq1 ∧ dp1 + dq2 ∧ dp2 ,

α√
pf α

= −Im� = dp1 ∧ dp2 − dq1 ∧ dq2 .
(3.42)

This yields the Laplace equation (see Example 3.4.1.3).
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When pf α < 0, there are local coordinates (q1, q2, p1, p2) such that� = 2dq1 ∧
dp1 and �̂ = 2dq2 ∧ dp2 locally and so

ω = 1
2 (�+ �̂) = dq1 ∧ dp1 + dq2 ∧ dp2 ,

α√− pf α
= 1

2 (�− �̂) = dq1 ∧ dp1 − dq2 ∧ dp2 .
(3.43)

This yields the Klein–Gordon equation in light-cone coordinates. �

Let us now show that a non-degenerate Monge–Ampère structure (α, ω) in four
dimensions not just comes with one almost complex (respectively, para-complex)
structure but, in fact, a whole two-sphere (respectively, hyperboloid) worth of such
structures.

Lemma 3.8 Let M be a 4-dimensional manifold equipped with a non-degenerate
Monge–Ampère structure (ω, α). Furthermore, let Jα be the almost-complex (respec-
tively, para-complex) structure (3.38). Then, there is a differential (1, 1)-form � on
M with respect to Jα such that � ∧� �= 0, � ∧ ω = 0, and � ∧ ı Jα ω = 0.

Proof The exterior product yields a non-degeneratemetric g on
∧2 T M , sowe know

that there must be a differential two-form � such that � ∧� �= 0, � ∧ ω = 0, and
� ∧ (ı Jα ω) = 0. To be more explicit, note that ω and ı Jα ω are linearly indepen-
dent. Next, let ρ ∈ �2(M) such that {ω, ı Jα ω, ρ} is linearly independent. By the
Hodge–Lepage–Lychagin theorem (see Theorem 3.6), we have a unique decomposi-
tion ρ = ρ0 + λ0ω with ρ0 ∧ ω = 0 and λ0 ∈ C∞(M). Since (ı Jα ω) ∧ ı Jα ω) �= 0,
we may again apply the Hodge–Lepage–Lychagin theorem to obtain the unique
decomposition ρ0 = ρ1 + λ1(ı Jα ω) with λ1 ∈ C∞(M) such that ρ1 ∧ (ı Jα ω) = 0.
Since (ı Jα ω) ∧ ω = 0, we also have ρ1 ∧ ω = 0. Hence, {ω, ı Jα ω, ρ1} is linearly
independent, and we must also have that ρ1 ∧ ρ1 �= 0 because of the non-degeneracy
of g. In summary,we have thus obtained a� := ρ1 such that� ∧� �= 0,� ∧ ω = 0,
and � ∧ ı Jα ω) = 0.

Finally, since ω and ı Jα � combine to give the differential (2, 0)-forms � and
differential (0, 2)-forms �̂ defined by

� = ω + ı Jα �; �̂ = ω − ı Jα �, (3.44)

and since � ∧ ω = 0 and � ∧ (ı Jα ω) = 0, we conclude that � ∧� = 0 and � ∧
�̄ = 0 (respectively, � ∧ �̂ = 0). Since � ∧ �̄ �= 0 (respectively, � ∧ �̂ �= 0), the
differential two-form�must be of type (1, 1)with respect to Jα . This concludes the
proof. �

Let V be a real vector space of dimension 2n, with (almost) complex structure I
(which defines a natural orientation on V ) and compatible scalar product g. Remind
then that the Hodge star operator

� : �k(V ∗) → �2n−k(V ∗)
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has the following properties:

(a) If e1, . . . , e2n denotes an oriented g−orthonormal basis of V , then

�(ei1 ∧ . . . ∧ eik ) = εe j1 ∧ . . . ∧ e j2n−k ,

where

{i1 . . . , ik, j1 . . . , j2n−k} = {1, . . . , 2n}, ε = sgn(i1, . . . , ik, j1, . . . , j2n−k).

(b)
� ◦ � = (−1)k;

(c)
g(�α, �β) = g(α;β);

(d)
g(�α, β) = (−1)degαg(α, �β).

This operation easily redefines in the exterior differential form algebra on an
oriented (pseudo-)Riemannian manifold.

On a 4-dimensional manifold with a Riemannian (respectively, Kleinian) metric,
the Hodge operator �4 on differential two-forms has the property �24 = 1. Therefore,
the module of differential two-forms decomposes into a direct sum of the rank-3
module of self-dual differential two-forms (+ eigenspace with respect to �4) and the
rank-3 module of anti-self-dual differential two-forms (− eigenspace with respect to
�4). Furthermore, the eigenvalue equation �4ρ = ±ρ depends only on the conformal
class of the metric. Making use of this, we arrive at the following result.

Proposition 3.13 Let M be a 4-dimensional manifold equipped with a non-
degenerate Monge–Ampère structure (ω, α). Furthermore, let Jα be the almost-
complex (respectively, para-complex) structure (3.38). Then, there is a differential
(1, 1)-form� on M with respect to Jα and a metric hα on M both unique for pf α > 0
and both unique up to a sign for pf α < 0 such that

1. pf � = sgn(pf α), � ∧ ω = 0, and � ∧ (ı Jα ω) = 0,
2. � is the almost Kähler form for (hα, Jα), that is, �(X,Y ) = hα(JαX,Y ) for all

X,Y ∈ �(T M) and
3. (ω, ı Jα ω,�) are anti-self-dual with respect to hα .

Proof By virtue of Lemma 3.8, we already know that there is a differential (1, 1)-
form K that satisfies the conditions � ∧� �= 0, � ∧ ω = 0, and � ∧ ı Jα ω) = 0.
Furthermore, on a 4-dimensional almost-complex (respectively, para-complex) man-
ifold, it is always possible to pick a Riemannian (respectively, Kleinian) metric such
that the differential (2, 0)-form, the differential (0, 2)-form, and one of the differ-
ential (1, 1)-forms are anti-self-dual, and since the differential (1, 1)-form is then
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proportional to the almost Kähler form for that metric, the scale of the metric is fixed
by declaring the differential (1, 1)-form to be almost Kähler form. �

In particular, for (ω, ı Jα ω,�) on M , we may always pick a co-frame {ei }i=1,...,4

such that the differential (2, 0)-form and differential (0, 2)-form (3.44) are given by
ω = e1 ∧ e3 + e2 ∧ e4 and Jα ı ω = e3 ∧ e4 − εe1 ∧ e2 with ε := sgn(pf α). Note
that an overall scale can always be absorbed in the definition of the basis {ei }i=1,...,4.
Hence,

Jα =

⎛
⎜⎜⎝

0 0 0 ε

0 0 −ε 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠ (3.45)

in this basis. Furthermore, it is clear thatω and Jα ı ω are anti-self-dual for anymetric
in the conformal class of εe1 ⊗ e1 + e2 ⊗ e2 + εe3 ⊗ e3 + e4 ⊗ e4. The third anti-
self-dual differential two-form is proportional to εe1 ∧ e4 − e2 ∧ e3 which, in turn, is
proportional to the almostKähler form.Hence, upon setting� = εe1 ∧ e4 − e2 ∧ e3,
we have fixed the scale of � to be pf � = ε = sgn(pf α), and, by declaring � to be
the almost Kähler form,we have�(X,Y ) = hα(JαX,Y ) for all X,Y ∈ �(T M)with
hα = εe1 ⊗ e1 + e2 ⊗ e2 + εe3 ⊗ e3 + e4 ⊗ e4. Then, {ei }i=1,...,4 is an orthonormal
co-frame. When ε = −1, the above is unique only up to a sign since in this case
� �→ −� and hα �→ −hα can also be used.

Remark 3.14 Notice that since α and Jα ı ω are proportional, also α is anti-self-dual
with respect to the metric hα .

Remark 3.15 Let � ∈ �(∧4 T M) be a volume form normalised as

1
2! ı�(ω ∧ ω) = −sgn(pf α).

Then, in a coordinate-free notation, the metric hα reads as

hα(X,Y ) = 1
2 ı� [(ı X ω) ∧ (ıY (ı Jα ω)) ∧�+ (ıY ω) ∧ (ı X (ı Jα ω)) ∧�] (3.46)

for all X,Y ∈ �(T M). Furthermore, it is then easy to see that indeed hα(JαX,Y ) =
�(X,Y ) and hα(JαX, JαY ) = εhα(X,Y ). Hence, hα coincides with the metric
(3.10).

Remark 3.16 Recall the definition of a generalised solution as given in Definition
3.32. Let L be a generalised solution for a non-degenerate Monge–Ampère structure
(ω, α) on the cotangent bundle T ∗M of a 2-dimensional manifold M . Since ω and
ı Jα ω vanish on L , we have T L = 〈X, JαX〉 for any X ∈ �(T L). If we let i : L ↪→
T ∗M be the embedding of L into T ∗M , by virtue of Remark 3.15, it then immediately
follows that

i∗hα = hα(i∗ X, i∗ X)

(
1 0
0 sgn(pf α)

)
(3.47)
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in the basis {X, JαX}. Hence, for pf α > 0 the i∗hα is Riemannian while for pf α < 0
Kleinian.

Since hα plays a special role the geometry of Monge–Ampère equations, we shall
give it a name.

Definition 3.36 Let M be a 4-dimensionalmanifold equippedwith a non-degenerate
Monge–Ampère structure (ω, α). The metric hα associated with (ω, α) by means of
Proposition 3.13 is called the Monge–Ampère metric.

Upon recalling Propositions 3.5, 3.13 has the following immediate consequence.

Corollary 3.4 Let M be a 4-dimensional manifold equipped with a non-degenerate
Monge–Ampère structure (ω, α). Furthermore, let (ω, ı Jα ω),�, hα) be as in Propo-
sition 3.13. Then, M is almost hyper-complex for pf α > 0 while almost hyper-para-
complex for pf α < 0, respectively.

Remark 3.17 Recalling the proof of Proposition 3.13, we let {ei }i=1,...,4 be an
orthonormal co-frame such that

hα = εe1 ⊗ e1 + e2 ⊗ e2 + εe3 ⊗ e3 + e4 ⊗ e4 (3.48)

and
ω := ω1 = e1 ∧ e3 + e2 ∧ e4 ,

ı Jα ω := ω2 = e3 ∧ e4 − εe1 ∧ e2 ,

� := ω3 = εe1 ∧ e4 − e2 ∧ e3 .

(3.49)

Next, we define the endomorphisms ωi (X,Y ) = hα(Ji X,Y ) for X,Y ∈ �(T M) as
in (3.8). It is then a straightforward exercise to show that in this basis we have

J1 =

⎛
⎜⎜⎝

0 0 ε 0
0 0 0 1

−ε 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ , J2 =

⎛
⎜⎜⎝
0 −ε 0 0
1 0 0 0
0 0 0 1
0 0 −ε 0

⎞
⎟⎟⎠ ,

J3 =

⎛
⎜⎜⎝

0 0 0 ε

0 0 −ε 0
0 1 0 0

−1 0 0 0

⎞
⎟⎟⎠

(3.50)

so that J 2
1 = − Id4, J 2

2 = −ε Id4 = J 2
3 , and J1 J2 J3 = −ε Id4.

Remark 3.18 Note that, in fact, any 4-dimensional almost-complex (respectively,
para-complex) symplectic manifold admits an almost hyper-complex (respectively,
hyper-para-complex) structure. Indeed, let (M, J, ω) be such a manifold. Then,
we may set ω1 := ω and ω2 := ı J ω. Since J is traceless, ω1 ∧ ω2 = 0 and since
J 2 = −ε Id with ε = ±1 and ω non-degenerate, we also have ω2 ∧ ω2 = εω1 ∧
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ω1 �= 0. Hence, (ω1, ω2) constitutes a non-degenerate Monge–Ampère structure
on M . Furthermore, by virtue of Proposition 3.13, there is a unique Hermitian
(respectively, para-Hermitian) metric g and a (1, 1)-form ω3 with respect to J such
that g(J X,Y ) = ω3(X,Y ) for X,Y ∈ �(T M), the differential forms (ω1, ω2, ω3)

are anti-self-dual with respect to g, and ω3 ∧ ω1 = 0 = ω3 ∧ ω2 and ω3 ∧ ω3 =
εω1 ∧ ω1. Explicitly, g is given by (3.10). Consequently, the tuple (ω1, ω2, ω3) con-
stitutes an almost hyper-complex (respectively, hyper-para-complex) structure on M .

3.5.2 (4m + 2)-Dimensional MA Geometry

Let us now generalise the results of the previous section to higher dimensional
Monge–Ampère geometry. To begin with, let M be a (4m + 2)-dimensional mani-
fold. Motivated by Hitchin’s discussion [6, 34] when M is 6-dimensional, we give
the following two definitions for all m ≥ 1.

Definition 3.37 Let M be a (4m + 2)-dimensional manifold and fix a volume form
� ∈ �(det(T M)). For every α ∈ �2m+1(M), we define the endomorphism

Aα,� : T M → T M ,

X �→ ı� [(ı X α) ∧ α)] . (3.51)

The quantity

HPf(α,�) := − 1

4m + 2
Tr(A2

α,� ) ∈ C∞(M) (3.52)

is called the Hitchin Pfaffian of α.

Definition 3.38 Let M be a (4m + 2)-dimensional manifold. A differential (2m +
1)-form is said to be Hitchin degenerate if and only if its Hitchin Pfaffian vanishes.
It is said to be Hitchin non-degenerate if and only if its Hitchin Pfaffian is non-zero.

Obviously, Tr(Aα,� ) = 0 and also HPf(α, f�) = f 2HPf(α,�) for all non-
vanishing f ∈ C∞(M). Hence, both the signs of the Hitchin Pfaffian and Hitchin
(non-)degeneracy do not depend on the choice of volume form.

We should compare this notion with another one which we shall call a weak
degeneracy.

Definition 3.39 Adifferential k− formα ∈ �k(M) is called aweak non-degenerate
if and only if the map �(T M) �→ �k−1(M) given by X → ı X ω is injective.

We observe that Hitchin non-degeneracy is a stronger condition than the one given
in Definition 3.39. For instance, when m = 1, Banos [12] and Bryant [15] proved
that for any differential three-form on a 6-dimensional manifold M which is non-
degenerate in the sense of Definition 3.39 there exist a basis {ei }i=1,...,6 of T ∗M such
that it is equal to either
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e123 + e456 , e156 ± e264 ± e345 , or e123 − e156 ± e246 ∓ e345 , (3.53)

where e123 := e1 ∧ e2 ∧ e3, etc. It is then rather straightforward to see that theHitchin
Pfaffian is zero for the second differential form in (3.53) while non-zero for the other
two.

Definition 3.40 A Monge–Ampère structure (ω, α) on a (4m + 2)-dimensional
manifold M is said to be

1. Hitchin non-degenerate if and only if α is Hitchin non-degenerate.
2. Hitchin decomposable if and only if α is of either form:

a. α = 1
2 (�− �̂) for some �, �̂ ∈ �2m+1(M) decomposable over R such that

� ∧ �̂ �= 0;
b. α = Im� for some � ∈ �2m+1(M)⊗ C decomposable over C such that

Re� ∧ Im� �= 0.

Proposition 3.14 Every Hitchin decomposable Monge–Ampère structure (ω, α)
on a (4m + 2)-dimensional manifold M is Hitchin non-degenerate.

Proof Let us first work in a complexified setting. In particular, let {Ei }i=1,...,4m+2 be
a basis of TCM := T M ⊗ C and {ei }i=1,...,4m+2 a basis of T ∗

C M := T ∗M ⊗ C with
Ei ı e j = δi

j . Furthermore, let �0 ı(e1 ∧ . . . ∧ e4m+2) = 1 and define

α0 := e1 ∧ . . . ∧ e2m+1 + e2m+2 ∧ . . . ∧ e4m+2 . (3.54)

Then,

Aα0, f�0 Ei =
{

f Ei for i = 1, . . . , 2m + 1

− f Ei for i = 2m + 1, . . . , 4m + 2
(3.55)

for all non-vanishing f ∈ C∞(M)⊗ C. Consequently,

A∗
α0, f�0

α0 = f 2m+1(e1 ∧ . . . ∧ e2m+1 − e2m+2 ∧ . . . ∧ e4m+2) (3.56)

and
1
2 (α0 + f −2m−1 A∗

α0, f�0
α0) = e1 ∧ . . . ∧ e2m+1 ,

1
2 (α0 − f −2m−1 A∗

α0, f�0
α0) = e2m+2 ∧ . . . ∧ e4m+2 ,

1
2 f −2m−1 A∗

α0, f�0
α0 ∧ α0 = e1 ∧ . . . ∧ e4m+2 .

(3.57)

Note also that α0 is Hitchin non-degenerate with HPf(α0, f�0) = − f 2.
Now, if α = α+ − α− with α± ∈ �2m+1

C (M) so that α± are decomposable over
C, then there exist {ξ i ∈ �1

C(M)}i=1,...,4m+2 such that α+ = ξ 1 ∧ . . . ∧ ξ 2m+1 and
α− = ξ 2m+2 ∧ . . . ∧ ξ 4m+2, respectively. Moreover, the condition α+ ∧ α− �= 0
implies that {ξ i }i=1,...,4m+2 forms a basis of T ∗

C M .Hence, there is aGL-transformation
g such that g � (α,�) = (α0, f�0), where � := g−1 � f�0. Thus, α must be
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Hitchin non-degenerate with Hitchin Pfaffian HPf(α,�). Furthermore, the alge-
braic conditions (3.57) hold on the GL-orbit so that

α± = 1
2

{
α ± [−HPf(α,�)]−m− 1

2 A∗
α,�α

}
∈ �2m+1

C (M) . (3.58)

The above shows that for a Hitchin decomposable Monge–Ampère structure
(ω, α), we must have either HPf(α,�) < 0 or HPf(α,�) > 0. This proves the
assertion. �

Remark 3.19 Note that when HPf(α,�) < 0, we may set

� := α + |HPf(α,�)|−m− 1
2 A∗

α,�α and �̂ := −α + |HPf(α,�)|−m− 1
2 A∗

α,�α

(3.59a)
so that α = 1

2 (�− �̂) and � ∧ �̂ �= 0 while for HPf(α,�) > 0,

� := |HPf(α,�)|−m− 1
2 A∗

α,�α + iα (3.59b)

so that α = Im� and Re� ∧ Im� �= 0.

Remark 3.20 As proved by Hitchin and Banos [6, 34], for m = 1 the converse also
holds, that is, any Hitchin non-degenerate Monge–Ampère structure is also Hitchin
decomposable. The reason for that is that both theGL-orbit of (3.54) and the space of
differential three-forms are 20-dimensional. In higher dimensions, this is no longer
true as the dimension of GL-orbit is smaller than the dimension of the space of
differential (2m + 1)-forms.

Corollary 3.5 Let (ω, α) be a Hitchin decomposable Monge–Ampère structure on a
(4m + 2)-dimensional manifold M. Then,

A2
α,� = −HPf(α,�) Id . (3.60)

Proof Since any Hitchin decomposable Monge–Ampère structure lies in the GL-
orbit of (3.54), we can deduce the general properties from (3.54) and so, the corollary
then follows directly from (3.55). �

Next, fix the volume form � ∈ �(det(T M)) such that ı�
1

(2m+1)!ω
∧(2m+1) = 1,

where 1
(2m+1)!ω

∧(2m+1) is the Liouville volume form for a Hitchin decomposable
Monge–Ampère structure (ω, α). We also introduce the symmetric bilinear form

gα,� (X,Y ) := ı� [(ı X α) ∧ (ıY α) ∧ ω] for all X,Y ∈ �(T M) (3.61)

which first appeared in [44] for m = 1. Since α is ω-effective, we may rewrite this as

gα,� (X,Y ) = ı� [(ı X α) ∧ α ∧ (ıY ω)] (3.62)
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so that
gα,� (X,Y ) = Aα,� ı X ıY ω ≡ −ω(Aα,� X,Y ) (3.63)

by virtue of (3.51). Thus, this bilinear form is non-degenerate due to Proposition 3.14
and Corollary 3.5. Generalising Definition 3.36, we give the following definition.

Definition 3.41 Let (ω, α) be a Hitchin decomposable Monge–Ampère structure
on a (4m + 2)-dimensional manifold M and fix a volume form � ∈ �(det(T M)).
The metric

hα,� (X,Y ) := ı� [(ı X α) ∧ (ıY α) ∧ ω]√|HPf(α,�)| for all X,Y ∈ �(T M) (3.64)

is called the Monge–Ampère metric.

Hence, we may set

Jα,� := sgn(HPf(α,�))√|HPf(α,�)| Aα,� (3.65)

so that J 2
α,� = −sgn(HPf(α,�)) Id and tr(Jα,� ) = 0. Thus, Jα,� is an almost-

complex structure for HPf(α,�) > 0 and an almost para-complex structure for
HPf(α,�) < 0, respectively.

Corollary 3.6 Let (ω, α) be a Hitchin decomposable Monge–Ampère structure on a
(4m + 2)-dimensional manifold M and let Jα,� be as in (3.65). The pair (Jα,� , α)
is compatible in the sense of Definition 3.21.

Proof Similarly to Corollary 3.5, this can be easily deduced from (3.54) and (3.55),
respectively. �
By virtue of (3.65),

hα,� (X, Y ) = −sgn(HPf(α,�)) ω(Jα,� X, Y ) ⇐⇒ ω(X, Y ) = hα,� (Jα,� X, Y )
(3.66)

so that ω is the almost Kähler form for (hα,� , Jα,� ). As it is closed by assumption,
we have the following result.

Proposition 3.15 Let (ω, α) be a Hitchin decomposable Monge–Ampère structure
on a (4m + 2)-dimensional manifold M. Moreover, let hα,� and Jα,� be defined as
in (3.64) and (3.65). For HPf(α,�) > 0 (respectively, HPf(α,�) < 0), the tuple
(M, hα,� , Jα,� , ω) is an almost Kähler (respectively, para-Kähler) manifold.

Note that since ω is a differential (1, 1)-form with respect to Jα,� and since α is
ω-effective, the differential forms� and �̂ appearing in3 Definition 3.40 are, in fact,
differential (2m + 1, 0)- and (0, 2m + 1)-forms with respect to Jα,� , respectively.
Since (Jα,� , α) is compatible in the sense of Definition 3.21 by virtue of Corollary

3See also (3.59).
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3.6, � and �̂ are given in terms of α and Jα,� ı α as in (3.44). This is completely
analogous to the 4-dimensional case as discussed in Sect. 3.5.1.1.

Example

Consider T ∗
R

3 with coordinates (q1, q2, q3, p1, p2, p3) and the standard symplectic
structure ω = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3.

The Monge–Ampère equation

ε1φq1q1 + ε2φq2q2 + ε3φq3q3 − ε1ε2ε3 det(Hess(φ)) = 0 (3.67a)

with εi = ±1 is associated with α = Im�, where

� := (dq1 + iε1dp1) ∧ (dq2 + iε2dp2) ∧ (dq3 + iε3dp3) . (3.67b)

Clearly,Re� ∧ Im� �= 0. Hence, Jα,� is an almost-complex structure. Since � is
a closed differential (3, 0)-form with respect to Jα,� , Jα,� is integrable by virtue of
Theorem 3.7.

The Monge–Ampère equation

det(Hess(φ)) = 1 (3.68a)

is associated with α = 1
2 (�− �̂), where

� := 2dp1 ∧ dp2 ∧ dp3 and �̂ := 2dq1 ∧ dq2 ∧ dq3 . (3.68b)

Note that� ∧ �̂ �= 0. Consequently, Jα,� is an almost para-complex structure. Since
� and �̂ are closed differential (3, 0)- and (0, 3)-forms with respect to Jα,� , Jα,�
is integrable by virtue of Theorem 3.7.

Example

Consider the Chynoweth–Sewell equation [16] on R
3

φq1q1φq2q2 − φ2q1q2 + φq3q3 = γ with γ ∈ R . (3.69)

The associated Monge–Ampère structure is

ω = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3 ,

α = dp1 ∧ dp2 ∧ dq3 + dq1 ∧ dq2 ∧ (dp3 − γ dq3) .
(3.70)

and since α is the sum of two real decomposable differential three-forms whose
exterior product is non-vanishing, Jα,� is an almost para-complex structure.
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Furthermore, there is a symplectomorphism � : T ∗
R

3 → T ∗
R

3 defined by

�∗(q1, q2, q3, p1, p2, p3) := (q1, q2, p3, p1, p2, γ p3 − q3) (3.71)

which has the property

�∗α = dp1 ∧ dp2 ∧ dp3 − dq1 ∧ dq2 ∧ dq3 . (3.72)

Consequently, theChynoweth–Sewell equation is symplectially equivalent to (3.68a).

We then have the following classification generalising results of [44] and Banos’
work [12].

Theorem 3.8 Let M be a (2m + 1)-dimensional manifold and let (ω, α) be a
Hitchin decomposable Monge–Ampère structure on T ∗M. Fix a volume form � ∈
�(det(T (T ∗M))) and consider the almost-complex (respectively, para-complex)
structure

Jα,� X = ± ı� [(ı X α) ∧ α]√±HPf(α,�)
(3.73a)

on T ∗M, where

HPf(α,�) = − 1
4m+2Tr

{(
X �→ ı� [(ı X α) ∧ α])2} , (3.73b)

together with the almost Kähler metric

hα,� (Jα,� X,Y ) = ω(X,Y ) (3.74)

for all X,Y ∈ �(T (T ∗M)). Then,

1. for HPf(α,�) > 0, the Monge–Ampère equation associated with the
Monge–Ampère operator �α is symplectically equivalent to

2m+1∑
i=1

εiPM[m]\{i}(hessφ)+
m∑

i=1

(−1)i
∑
σ∈S2i+1

εσPM[m]\σ (hessφ) = 0 , (3.75a)

where εi = ±1, S2i+1 is the set of order-(2i + 1) subsets of [m] := {1, . . . ,
2m + 1}, εσ := εσ1 · · · εσ2i+1 forσ = {σ1, . . . , σ2i+1} ∈ S2i+1, andPM[m]\σ stands
for the corresponding principal minor, if and only if

d� = 0 with � = ı Jα,� α + iα (3.75b)

and the metric hα,� is flat;
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2. for HPf(α,�) < 0, the Monge–Ampère equation associated with the
Monge–Ampère operator �α is symplectically equivalent to

det(Hess(φ)) = 1 (3.76a)

if and only if

d� = 0 = d�̂ with � = ı Jα,� α + α and �̂ = ı Jα,� α − α (3.76b)

and the metric hα,� is flat.

Proof (⇒) First, let ω be the standard symplectic structure on T ∗M . Then, it is clear
that if the Monge–Ampère equation associated with the Monge–Ampère operator
�α is symplectically equivalent to one of the above equations, then � and �̂ are
closed and hα,� is flat.
(⇐) To prove the converse, consider first the case when HPf(α,�) > 0. The

closure of � implies that α is closed thus making α into a (2m + 1)-plectic struc-
ture. In addition, it also makes Jα,� ı α into a (2m + 1)-plectic structure and hence,
by Proposition 3.7 implies the integrability of Jα,� . Hence, there are local com-
plex coordinates zi = qi + iεi pi for i = {1, . . . , 2m + 1} with εi = ±1 such � =
dz1 ∧ . . . ∧ dz2m+1 locally and so,

α = Im�

= [ε1dp1 ∧ dq2 ∧ . . . ∧ dq2m+1 + · · · + ε2m+1dq1 ∧ . . . ∧ dq2m ∧ dp2m+1]−
− [ε1ε2ε3dp1 ∧ dp1 ∧ dp3 ∧ dq4 ∧ . . . ∧ dq2m+1 + · · · +

+ ε2m−1ε2mε2m+1dq1 ∧ . . . ∧ dq2m−2 ∧ dp2m−1 ∧ dp2m ∧ dp2m+1]+
+ · · · + (−1)mdp1 ∧ . . . ∧ dp2m+1 .

(3.77)
Since hα,� is flat, we also have

ω = i
2

(
ε1dz1 ∧ dz̄1̄ + · · · + ε2m+1dz2m+1 ∧ dz̄2m+1

)
= dq1 ∧ dp1 + · · · + dq2m+1 ∧ dp2m+1 .

(3.78)

It is a straightforward exercise to check that the Monge–Ampère structure (ω, α)
then yields (3.75a); see also Example 3.5.2 for m = 1.

For HPf(α,�) < 0, since both � and �̂ are closed, Jα,� is integrable. Hence,
there exist local coordinates (q1, . . . , q2m+1, p1, . . . , p2m+1) such that � = 2dp1 ∧
. . . ∧ dp2m+1 and �̂ = 2dq1 ∧ . . . ∧ dq2m+1 locally and so,

α = 1
2 (�− �̂) = dp1 ∧ . . . ∧ dp2m+1 − dq1 ∧ . . . ∧ dq2m+1 . (3.79)
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Again, since hα,� is flat we also have

ω = dq1 ∧ dp1 + · · · + dq2m+1 ∧ dp2m+1 . (3.80)

Again, it is easy to see that the Monge–Ampère structure (ω, α) then yields (3.76a);
see also Example 3.5.2 for m = 1. �

In analogy with the 4-dimensional case and for later convenience, we would like
to give the following definition.

Definition 3.42 A Hitchin non-degenerate Monge–Ampère structure (ω, α) on a
(4m + 2)-dimensional manifold M with Hitchin Pfaffian HPf(α,�) is called

1. elliptic if and only if HPf(α,�) > 0;
2. hyperbolic if and only if HPf(α,�) < 0;
3. parabolic if and only if HPf(α,�) = 0.

Next, we recall the following definition.

Definition 3.43 (Xu [56, 57]) Let (M, g) be a 2m-dimensional almost Hermitian
(respectively, para-Hermitian) manifold with almost complex (respectively, para-
complex) structure J and almost Kähler form ω. For J

1. an almost-complex structure, M is said to be a nearly Calabi–Yau manifold if
and only if there is a differential (m, 0)-form � such that

dω = 0 and d Im� = 0 ; (3.81)

2. an almost para-complex structure, M is said to be a nearly para Calabi–Yau
manifold if and only if there are a differential (m, 0)-form � and a differential
(0,m)-form �̂ such that

dω = 0 and d(�− �̂) = 0 . (3.82)

Hence, we have the immediate result.

Proposition 3.16 Let (ω, α) be a Hitchin decomposable Monge–Ampère structure
on a (4m + 2)-dimensional manifold M. Moreover, let hα,� and Jα,� be defined as in
(3.64) and (3.65). Suppose that α is closed. Then, for HPf(α,�) > 0 (respectively,
HPf(α,�) < 0) the tuple (M, hα,� , Jα,� , ω) is a nearly Calabi–Yau (respectively,
nearly para Calabi–Yau) manifold.

Example

Consider T ∗
R

3 with coordinates (q1, q2, q3, p1, p2, p3) and the standard symplectic
structure ω = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3 and standard volume form� ∈
�(det(T (T ∗M))). Furthermore, let f = f (q1, q2, q3) be a non-vanishing function
on R3 and define
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α := 1
2 f dq1 ∧ dq2 ∧ dq3 − dp1 ∧ dq2 ∧ dq3 − dq1 ∧ dp2 ∧ dq3 − dq1 ∧ dq2 ∧ dp3

(3.83)

It is easy to check that α is Hitchin decomposable and that Jα,� and hα,� defined in
(3.65) and (3.64) are given by

Jα,� =
⎛
⎝ 0

√ | f |
2 Id3

−sgn( f )
√

2
| f | Id3 0

⎞
⎠ and hα,� =

⎛
⎝sgn( f )

√ | f |
2 Id3 0

0
√

2
| f | Id3

⎞
⎠ .

(3.84)
In addition, for f > 0 we have

Re� =
√

2
f dp1 ∧ dp2 ∧ dp3 −

−
√

f
2 (dq1 ∧ dp2 ∧ dp3 + dp1 ∧ dq2 ∧ dp3 + dp1 ∧ dp2 ∧ dq3) ,

Im� = α ,

(3.85a)
while for f < 0

1
2 (�+ �̂) =

√
− 2

f dp1 ∧ dp2 ∧ dp3 −

−
√

− f
2 (dq1 ∧ dp2 ∧ dp3 + dp1 ∧ dq2 ∧ dp3 + dp1 ∧ dp2 ∧ dq3) ,

1
2 (�− �̂) = α .

(3.85b)
Since α is closed, (T ∗

R
3, hα,� , Jα,� , ω, α) is nearly Calabi–Yau. Finally, note that

Jα,� is integrable if and only if the function f is locally constant.

3.5.3 Explicite Examples of Generalised Almost Calabi–Yau
on T∗

R
3 (After B.Banos)

3.5.3.1 Generalised Calabi–Yau Structures

Definition 3.44 A generalised almost Calabi–Yau structure on a 6-dimensional
manifold X is a 5-uple (g,�, K , α, β) where

1. g is a (pseudo) metric on X ,
2. � is a symplectic on X ,
3. K is a smooth section X → T X ⊗ T ∗ X such that K 2 = ±I d and such that

g(U, V ) = �(KU, V )
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for all tangent vectors U, V ,
4. α and β are (eventually complex) decomposable 3-forms whose associated dis-

tributions are the distributions of K eigenvectors and such that

α ∧ β
�3

is constant.

Definition 3.45 A generalised Calabi–Yau structure (g,�, K , α, β) is said to be
integrable if α and β are closed.

Note that a generalised Calabi–Yau structure is a Calabi–Yau structure if and only
if the metric is definite positive and K is a complex structure.

Remark 3.21 The condition dα = dβ = 0 implies the integrability (in the Frobenius
sense) of the distributions defined by the almost-complex structure or almost-product
structure K . Therefore, according to theNewlander–Nirenberg theorem, it implies its
integrability. For instance, when K is an almost-complex structure and g is definite
positive , the almost Calabi–Yau structure (g,�, K , α, α) is integrable if and only
if K is a complex structure and α is holomorphic.

Example

Each non-degenerate Monge–Ampère structure (�,ω0) defines the generalised
almost Calabi–Yau structure (qω,�, Kω, α, β) with

ω = ω0
4
√|HPf(ω0)|) .

For instance, on R
6, the generalised Calabi–Yau structure associated with the

equation
�( f )− hess f = 0

is the canonical Calabi–Yau structure of C3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g = −
3∑

j=1
dq j .dq j + dp j .dp j

K =
3∑

j=1

∂
∂p j

⊗ dq j − ∂
∂q j ⊗ dp j

� =
3∑

j=1
dq j ∧ dp j

α = dz1 ∧ dz2 ∧ dz3
β = α
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The generalised Calabi–Yau associated with the equation

�( f )+ hess f = 0

is the pseudo Calabi–Yau structure

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q = dq1.dq1 − dq2.dq2 + dq3.dq3 + dp1.dp1 − dp2.dp2 + dp3.dp3
K = ∂

∂q1 ⊗ dp1 − ∂
∂p1

⊗ dq1 + ∂
∂p2

⊗ dq2 − ∂
∂q2 ⊗ dp2 − ∂

∂p3
⊗ dq3 + ∂

∂q3 ⊗ dp3

� =
3∑

j=1
dq j ∧ dp j

α = dz1 ∧ dz2 ∧ dz3
β = α

The generalised Calabi–Yau structure associated with the equation

hess f = 1

is the ‘real’ Calabi–Yau structure⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g =
3∑

j=1
dq j .dp j

K =
3∑

j=1

∂
∂q j ⊗ dq j − ∂

∂p j
⊗ dp j

� =
3∑

j=1
dq j ∧ dp j

α = dq1 ∧ dq2 ∧ dq3

β = dp1 ∧ dp2 ∧ dp3

Amanifold endowedwith a ‘real’ Calabi–Yau structure is the analogue of a ‘Monge–
Ampère manifold’ in the Kontsevich and Soibelman sense [40]. A Monge–Ampere
manifold is an affine Riemannian manifold (M, g) such that locally

g =
∑
i, j

∂2F

∂qi∂q j
dqi .dq j ,

F being a smooth function satisfying

det
( ∂2F

∂qi∂q j

)
= constant.

In the ‘real’ Calabi–Yau case we have such a potential F :
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g =
∑
i, j

∂2F

∂qi∂p j
dqi .dp j ,

and det
(

∂2F
∂qi ∂p j

)
= f (q)g(p) (see [12] for more details).

Let (�,ω) be a Monge–Ampère structure with HPf(ω) = ±1. Since dω = dω̂
= 0 if and only if dα = dβ = 0, we have the obvious proposition.

Proposition 3.17 A generalised almost Calabi–Yau structure associated with a non-
degenerate Monge–Ampere structure is integrable if and only this Monge–Ampère
structure is closed.

3.5.3.2 Nondegenerate Monge–Ampère Equations

Let us come back now to the differential equation associated with a non-degenerate
Monge–Ampère structure (�,ω) on a 6-dimensional manifold X . It is natural to ask
if this equation is locally symplectically equivalent to one of these:

⎧⎪⎨
⎪⎩
hess f = 1

�( f )− hess f = 0

�( f )+ hess f = 0

According to Table 3.2, it will be the case if and only if (�,ω) is locally constant.
The following theorem gives a criterion using the generalised Calabi–Yau structure
associated.

Theorem 3.9 A Monge–Ampère equation associated with a non-degenerate Monge–
Ampère structure can be reduced by a symplectic change of coordinates to one of
the following equations: ⎧⎪⎨

⎪⎩
hess f = 1

�( f )− hess f = 0

�( f )+ hess f = 0

if and only if the generalised Calabi–Yau structure associated is integrable and flat.

We refer to [12] for the proof. The idea is that the integrability condition implies
the existence of a ‘generalised’ Kähler potential and the flat condition allows us to
choose a Darboux coordinates system in which this potential has a nice expression.

Lychagin and Roubtsov have proved an equivalent theorem in [44] using technics
of formal integrability. Theorem 3.9 is more restrictive since it only concerns non-
degenerate Monge–Ampère equations but it is worth mentioning that its statement
and its proof are much more simple and that it has a nice geometric meaning. We
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Table 3.4 (pseudo)
Calabi–Yau and elliptic
Monge–Ampère structures

Almost (pseudo) CY Elliptic MA

(pseudo) CY Closed elliptic MA

Flat (pseudo) CY Locally constant elliptic MA

sum up in Table3.4 the correspondence between (pseudo) Calabi–Yau structures and
elliptic Monge–Ampère structures.

3.5.4 Notes and Further Reading

The additional information about classification results for symplectic Monge–
Ampère structures, operators and equations (as it was mentioned in the text of the
lecture) one can find in our book [22], in the papers of B. Banos [6, 12] andR. Bryant-
Bryant. Another approach to integrability of symplectic Monge–Ampère operators
was proposed by E. Ferapontov and his collaborators [20, 21]. Their concept of
integrability is based on the integrability of systems so-called hydrodynamical type.
We should stress that the Monge–Ampère equations and operators integrable in the
hydrodynamical systems sense of Ferapontov correspond to degenerate (‘linear’)
orbits in Banos–Lychagin–Roubtsov classification table. In its turn, the Monge–
Ampère operators which correspond to Calabi–Yau-like structures (from our Table
3.4) are not integrable in hydrodynamical systems sense. These two different inte-
grability phenomena for Monge–Ampère operators and their relations should be a
subject of further studies.

3.6 Lecture Five

In this lecture, we shall discuss few recently discovered examples of various
geometric approaches to interesting and important applied model Monge–Ampère
equation appeared in geophysical dynamics—Dritschel–Viudez Monge–Ampère
equation. This equation appears to be an example of illustration of power and richness
of geometric methods described in previous chapters.We follow here are papers with
B. Banos and I. Roulstone [7, 8], and use our results of [47]. The end of the lecture
is devoted to some examples of Special Kähler and Special Lagrangian Monge–
Ampère structures and to B.Banos [11] of examples generalise complex geometry
applications to Jacobi first-order systemswhich are reduced in some cases toMonge–
Ampère equations.

In contrary to our notation principle, we do not use the standard ‘phase space
notations’ (q, p) for T ∗M local coordinates in this chapter and keeps the notations
which was originally used in the initial sources of examples.
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3.6.1 Bi-Lagrangian, Special Lagrangian, Special Kähler
and Monge–Ampère Equations

In [36], Theorem 2.4, Hitchin characterises special (pseudo) Kähler manifolds as
manifolds that can be (locally) identified as bi-Lagrangian submanifolds of V × V ,
where V is a symplectic vector space.

This is motivated by the example of special Kähler subvarieties—an analogue of
special Lagrangian subvarieties in string theory.

We want to develop here an approach to splitting structures using a notion of
bi-symplectic structure on cotangent bundle T ∗M which is also can be enabled with
an almost-complex structure.

Proposition 3.18 Consider a pair of real MAO�ωi , i = 1, 2. They are equivalent
(3.33) if they have the same bi-Lagrangian generalised solutions.

We remind that theHitchin’s result (3.2.2.3) can be reinterpreted in terms ofMAO.
We shall identify (V ;�) with (Cn,�) with � is the canonical Kähler form and the
real cotangent bundle T ∗

C
n with C

n ⊕ C
n correspondingly by the isomorphism

(x; y; p; q) → (x + iy; p − iq).

3.6.1.1 Special Lagrangian Manifolds and Symplectic MAO

n = 2. Hyperkähler case

Let S be a K3 surface with a fixed complex structure I and Kähler metric g. Then it
is a hyperkähler manifold with possible choice of two other complex structures J and
K for which g is again a Kähler metric among the S1-family J cos θ + K sin θ . The
periodformofS isaholomorphic(inI)2-form� = ω2 + iω3,whereω2(., .) = g(J., .)
and ω3(., .) = g(K., .). Recall that an oriented 2-dimensional submanifold� ⊂ S is
special Lagrangian with respect to the fixed symplectic two-formω1(., .) = g(I., .) if
it isω1-Lagrangian (ω1|� = 0) andω3|� = 0.

It follows from the seminal paper [30] that this property of � is equivalent to be
a holomorphic curve with respect to the complex structure K.

As an example will consider a ‘toy model’ for the surface S its ‘noncompact’
analogue T ∗M .

Example

Let � be the U (1)-invariant special Lagrangian manifold of C2 (see [30]) given by
the common level of

zz̄ − ww̄ = C1;Re(zw) = C2.

Then in the real coordinates we have

� = {
x2 + p2 − (y2 + q2) = C1, xy − pq = C2

}
, z = x + i p,w = y + iq.
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We will parametrize � like a 2-dimensional surface

x = u, p = v, y2 + q2 = C1 − (u2 + v2), uy − vq = C2

such that the differentials are

dx = du, dp = dv, dy = − uv + qy

vy + qy
du + q2 − v2

yv + qu
dv, dq = − u2 − y2

uv + qu
du − vu + yq

uv + qu
dv.

Now we can easily check that

ωK|� = ωI|� = 0,

i.e. the surface � is a special Lagrangian submanifold for � and K. Performing a
partial Legendre transformation in the plane x, p obtain a dual surface �∗ such that

�∗ = {
zz̄ − ww̄ = C1; Im(zw) = C2

}
and which is also � = ωI-Lagrangian and gives a solution to MA operator given
by ωJ:

ωJ|�∗ = ωI|�∗ = 0.

Remark that both surfaces � and �∗ are invariant with respect to full Legendre
transformations.

The other interesting feature of this solution surfaces is that they are served as
momentum-level surfaces for hyperkähler momentum map. Namely, the group of
unit quaternions (which we are thinking of as SU (2)) acts by right and by left
multiplications. The first action commutes with I, J,K and the second rotates the
basic forms. Then, it is easy towrite the hyperkählermomentmap for the quaternionic
action in our coordinates:

μH = 1/2li l̄ = iμ1 + jμ2 + kμ3 = i
{
zz̄ − ww̄

} + j Im(zw)− k Re(zw).

We can recognise easily in the common momentum-level surfaces (μ1 = C1) ∩
(μ3 = C3) and (μ1 = C1) ∩ (μ2 = C3) our MA generalised solutions � and �∗.

We should stress that there are also generalised solutions which are not special
Lagrangian with respect to�. The interesting example of this sort is provided by the
following Seiberg–Witten curve  ⊂ C

2 such that  = {
w2 − ch(z)+ ζ = 0

}
.

It is a straightforward to check thatωK| = 0 (it is aminimal surface) but�| �= 0.

n = 3. Special Lagrangian flat case

Let

g =
n∑

i=1

dzi ◦ dz̄i , � =
√−1

2

n∑
i=1

dzi ∧ dz̄i , Υ = dz1 ∧ . . . ∧ dzn
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be the standard Kähler metric, the Kähler 2-form and the holomorphic volume form
on C

n . The special unitary group SU (n) action leaves all three forms invariant. We
shall consider the identification C

n = R
2n via zk = xk + √−1yk; k = 1, . . . n.

The forms ω1 = ReΥ and ω2 = ImΥ are real n−forms on R
2n .

Let n = 3. The form� transforms in the natural real symplectic form on T ∗
R

3 =
R

3 ⊕ R
3 and Υ = ω1 + iω2 is the holomorphic 3-form on C

3. Let f : R3 → R be
a smooth function and d f : R3 → T ∗

R
3 be the corresponding section. The graph

of d f is special Lagrangian if and only if f is a solution of the following pair of
Sp(3)−equivalent equations with Monge–Ampère equations with operators�ω1,2 :

�ω1( f ) = (1 − Hessyz( f )− Hessxz( f )− Hessxy( f )) = 0

and
�ω2( f ) = �( f )− Hess(f) = 0.

The Sp(3)-equivalence of the equations �ω1,2( f ) = 0 is given by the Fourier-
Legendre transformation (x, y, z, p, q, r) → (p, q, r,−x,−y,−z) of the corre-
sponding 3-forms ω1,2 :

ω1 = dx ∧ dy ∧ dz − dx ∧ dq ∧ dr + dy ∧ dp ∧ dr − dp ∧ dq ∧ dz

and

ω2 = dp ∧ dq ∧ dr − dp ∧ dy ∧ dz + dx ∧ dq ∧ dz − dx ∧ dy ∧ dr.

3.6.2 2d and 3d Rotating Stratified Flows—Dritschel–Viudez
Diagnostic MAEs

Recently, a new approach to modelling stably stratified geophysical flows was pro-
posed in [22, 23]. This approach is based on the explicit conservation of potential
vorticity and uses a change of variables from the usual primitive variables of veloc-
ity and density to the components of ageostrophic horizontal vorticity. This change
results in a Monge–Ampère-like non-linear equation with non-constant coefficients.
The equation gives the conditions for static and inertial stability and changes the type
from elliptic to hyperbolic.

3.6.2.1 2d Diagnostic Dritchel–Viduez MAE

It is written as

E
(
φxxφzz − φ2xz

) + Aφxx + 2Bφxz + Cφzz + D = 0, (3.86)
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with

E = 1 , A = 1 + θxz , B = 1

2
(θzz − θxx )

C = 1 − θxz , D = θxxθzz − θ2xz −�,

where θ is a given potential and the dimensionless PV anomaly � may be also
considered as a given quantity (see the details in [22]).

The corresponding Monge–Ampère structure is

{
� = dx ∧ dp + dz ∧ dr

ω = Edp ∧ dr + Adp ∧ dz + B(dx ∧ dp − dz ∧ dr)+ Cdx ∧ dr + Ddx ∧ dz.

The pfaffian is pf ω = R with R the Rellich’s parameter:

R = AC − E D − B2 = 1 +� −
(
�θ

2

)2

.

Moreover, a direct computation gives

dω = d

(
�θ

2

)
∧�. (3.87)

3.6.2.2 3d Rotating Stratified Flows—Dritschel–Viudez MAE

Let us consider the 3d- Dritschel–Viudez equation [22]

E
(
�zz

(
�xx +�yy

) −�2
xz −�2

yz

)
+ A

(
�xx +�yy

)
+ 2B1�xz + 2B2�yz + C�zz + D = 0

with

A = 1 +�z B1 = 1
2�ϕ −�x B2 = 1

2�ψ −�y

C = 1 −�z D = �x�ϕ +�y�ψ − |∇�|2 −� E = 1

where ϕ andψ are potentials,� = ϕx + ψy and� is the dimensionless PV anomaly
(see details in [22]).

The associated primitive form is
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ω = E(dx ∧ dq ∧ dr − dy ∧ dp ∧ dr)+ A(dy ∧ dz ∧ dp − dx ∧ dz ∧ dq)

+ B1(dx ∧ dy ∧ dp + dy ∧ dz ∧ dr)+ B2(dx ∧ dy ∧ dq − dx ∧ dz ∧ dr)

+ Cdx ∧ dy ∧ dr + Ddx ∧ dy ∧ dz

We can check directly that, independently of the coefficients,

λ(ω) = 0.

In other words, the Dritschel–Viudez equation is ‘degenerate’ (the underlying
Monge–Ampère geometry is degenerated) and it is, at each point, equivalent to a
linear equation.

Consider the generalising Rellich’s invariant R = AC − E D − B2
1 − B2

2 . As in
the 2d case, this parameter separates elliptic and hyperbolic cases.

Indeed, the non-zero eigenvalues of gω are

λ1 = 2R

λ2 = S +
√

S2 − 4(1 + A2)R

λ3 = S −
√

S2 − 4(1 + A2)R

with S = R + 1 + A2 + B2
1 + B2

2 . Therefore,

• if R > 0, then gω has signature (3, 0) and 3d-Dritschel–Viudez equation is elliptic
equivalent in each point to �u = 0;

• if R < 0, then gω has signature (1, 2) and 3d-Dritschel–Viudez equation is hyper-
bolic, equivalent in each point to �u = 0.

There is an interesting and open question: what is an invariant meaning of
the 3d generalising Rellich’s invariant R = AC − E D − B2

1 − B2
2 . Remind that

2d-Rellich’s invariant R = AC − E D − B2 of the Monge–Ampère equation
�omega = 0 coincides with P f (ω).

Those readers who are interested in additional geometric investigation of 2d and
3d diagnostic Dritchel–Viduez MAEs to address our paper [8] in this volume.

3.6.3 Generalised Complex Geometry and Monge–Ampère
Structures

Proposition 3.19 To any 2-dimensional symplectic Monge–Ampère equation of
divergent type �ω = 0 corresponds a Hitchin pair (ω,�) and therefore a
4-dimensional generalised complex structure.

Remark 3.22 Let L2 ⊂ M4 be a 2-dimensional submanifold. Let TL ⊂ T be its tan-
gent bundle and T 0

L ⊂ T ∗ its annihilator. L is a generalised complex submanifold
(according to the terminology of [28]) or a generalised Lagrangian submanifold
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(according to the terminology of [14]) if TL ⊕ T 0
L is closed under J. When J is

defined by (3.13), this is equivalent to saying that L is a Lagrangian with respect to
� and closed under R, that is, L is a generalised solution of �ω = 0.

3.6.3.1 2d—Dritschel–Viudez Equation and Underlying Generalised
Complex Geometry

Relation (3.87) implies that 2d- Dritschel–Viudez equation is of divergent type since

d(ω + λ�) = 0 with λ = −��
2

and to any 2d Monge–Ampère equation �ω = 0 of divergent type corresponds an
integrable generalised complex structure Jω : M4 → End(T M ⊕ T ∗M) (see [12]).

It is defined by

Jω =

⎛
⎜⎜⎝

Aω − λ �−1

2λω − (1 − R + λ2)� λ− A∗
ω

⎞
⎟⎟⎠

This geometry, introduced by N. Hitchin and M. Gualtieri, generalises both com-
plex and symplectic geometries. It does not provide particular coordinates systembut,
int the context of Monge–Ampère equations, it gives informations on conservation
law, which are a natural generalisation of first integral for differential equations.

A conservation law of �ω = 0 is a 1-form α ∈ �1(M4) such that dα|L = 0 on
any generalised solution L .

The Hodge-Lepage-Lychagin theorem implies that α is a conservation law if and
only if dα = f ω + g�. The function f is called a generating functionwith conjugate
g and

L = ( f + ig)−1(c) is a generalised solution of �ω = 0

It is proved in [12] that a function f is a generating function if and only it is
pluriharmonic on (M, Jω), that is

∂ω∂ω f = 0

Example

f (x, z, p, r) = x is a generating function for 2d-Dritschel–Viudez equation with
conjugate function

g(x, z, p, r) = �x + z + r.
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3.6.3.2 Generalised Complex Geometry and Jacobi Systems

Let us consider now an Hitchin pair of bivectors (π,�) in dimension 4. Since � is
non-degenerate, it defines two 2-forms ω and �, which are not necessarily closed,
and related by the tensor A. A generalised Lagrangian surface is a surface closed
under A, or equivalently, bi-Lagrangian: ω|L = �|L = 0. Locally, L is defined by
two functions u and v satisfying a first-order system

{
a + b ∂u

∂x + c ∂u
∂y + d ∂v

∂x + e ∂v
∂y + f det Ju,v = 0

A + B ∂u
∂x + C ∂u

∂y + D ∂v
∂x + E ∂v

∂y + E det Ju,v=0

with

Ju,v =
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)

Such a system generalises both Monge–Ampère equations and Cauchy–Riemann
systems and is called Jacobi system (see [22]).

With the help of Hitchin’s formalism, we understand now the integrability condi-
tion (3.14) as a ‘divergent type’ condition for Jacobi equations.

3.6.4 Notes and Further Reading

The reference for 2d and 3d Dritchel–Viduez equation and the geophysical origins
of the diagnostic problems I refer [22, 23]. The details of Generalised Complex
geometry applications investigated and studied by B. Banos in [11].

Some other geometric methods in incompressible fluid dynamics can be found in
[7, 46, 48, 49].
One of the most interesting questions surrounding the subject is to uncover the
‘Higher’ geometry that lies behind the Monge–Ampère structures. A proposal for a
framework unifying the symplectic, multisymplectic and deformational methods in
the Monge–Ampère structures as well as a huge variety of geophysical applications
of these methods will be put forward in [45].

In a different direction, the relation between Lie and Courant algebroid structures
arising within the Monge–Ampère was constructed in [41] and in the PhD thesis of
P. Antunes (Ecole Polytechnique, 2010) [2].
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Chapter 4
Introduction to Symbolic Computations
in Differential Geometry with Maple

Sergey N. Tychkov

4.1 Introduction

We discuss here computations in differential geometry withMaple. Our primary tool
for that will be the package Differential Geometry (DG for short), which contains a
lot of facilities to perform computationswith vector fields, differential forms, tensors,
Lie algebras etc.

We use a built-in version of the package, which is a bit out of date, though its
more optimized and faster than the latest version. The latter can be found on the web
page [1].

All Maple codes presented in these lectures is typed in the classic worksheet
mode.

A comprehensive introduction to programming inMaple will not be given in these
lectures. We discuss only the necessary functions briefly when needed.

However, at the end of each section, there are few exercises, which require knowl-
edge of the Maple programming language. Nevertheless, we recommend to do them.

All commands begin after the standard Maple prompt >.

4.2 Basic Setup

The first command in all our programs will be the following:
> restart;
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Generally, it is a good idea to put command restart in the beginning of a
worksheet, because it guarantees to achieve reproducible results on each rerun of
a worksheet.

> with(DifferentialGeometry);

The command with imports functions and submodules from a given package
(DifferentialGeometry in our case). After execution of this command, Maple shows
the list of all imported objects. These objects are now accessible for immediate usage.
Ifwedonotwant to import objects into the scope of our program,weuse the following
syntax package[object] or package:-object to access object.

Sometimes, it is convenient to hide the output of a command, i.e., the list of
imported functions and modules, which can be rather long. In such case, we put the
colon instead of the semicolon at the end of line.

In order to start computations with the Differential Geometry package, we should
initialize DG by calling function DGsetup. It has many forms, but now we need
only the simplest one.

The following command defines a manifold M with local coordinates x and y.

> DGsetup([x, y], M, verbose); With the given parameters, it gen-
erates the output:

The f ollowing coordinates have been protected :
[x, y]

The f ollowing vector f ields have been de f ined and protected :
[D_x, D_y]

The f ollowing di f f erential 1 − f orms have been de f ined and protected :
[dx, dy]

f rame name : M

The first argument is the list of local coordinates. The second argument is a
name of the manifold M (actually it is a name of a frame). The optional verbose
argument asks DG to show additional info. The quiet option is also possible (it is
set by default). The names x, y are now protected and cannot be assigned. After this
command, the prompt changes to > M, where M indicates the current frame.

Since DGsetup protects names for coordinates, the following command fails.

M > x := 1;

Error, attempting to assign to ‘x‘ which is protected. Try declaring ‘local x‘.

Unfortunately, the following commands do not raise an error. So, we should be
careful and not to make such assignments.

M > dx := 0;
M > D_x := 0;
M > M := 0;
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The symbols D_x , D_y denote the basis vectors ∂x and ∂y , respectively. And the
symbols dx , dy denote the basis of the cotangent space T ∗M . Please note that, we
must use the function evalDG() to create a Differential Geometry object.

For example,

M > X := evalDG(D_x - D_y);
R := evalDG(-y * D_x + x * D_y);
S := evalDG(x * D_x + y * D_y);

X := D_x − D_y
R := −yD_x + xD_y
S := xD_x + yD_y

Wecan look into the internal representation of objectswith the procedurelprint
(linear print).

M > lprint(X);

_DG([["vector", M, []], [[[1], 1], [[2],−1]]])

As we see, DG objects are implemented as nested lists with the prefix _DG.
Let us try to subtract ∂x from the vector X .
M > Z0 := X - D_x;

Z0 := D_x − D_y − D_x

The result is not simplified and moreover, it is not calculated correctly.
M > lprint(Z0);

_DG([["vector", M, []], [[[1], 1], [[2],−1]]]) − _DG([["vector", M, []], [[[1], 1]]])

As lprint shows us that we did not get a proper DG object. To make DG
perform operations correctly, the command evalDG() must be used.

M > Z1 := evalDG(X - D_x);

Z1 := −D_y

On the other hand, the command

M > Y0 := X - X;
Y0 := 0

evaluates correctly (even without evalDG). But the rule of thumb is to use
evalDG always.

Now, we define a covector field
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M > omega1 := dx;
ω1 := dx

lprint shows that we created an object with type form.
M > lprint(omega1);

_DG([[" f orm", M, 1], [[[1], 1]]])

Of course, we can reuse names x and y for coordinates in the other frame.
M > DGsetup([x, y, z], E, quiet);

f rame name :E

Suppose we try to use an assigned name as coordinate in DGsetup.
E > w := 1;
E > DGsetup([x, y, w], C, quiet);

Error, (in Di f f erentialGeometry : −DGsetup) invalid arguments

Error, because we have assigned a value to the variable w.

4.2.1 Subpackage Tools

Here, we discuss the subpackage Tools, which contains commands useful for the
development our own functions or packages on top of the DG package.

The first command we discuss is DGinfo, which gives information about all
kinds of DG objects. The functions have two parameters. The first one is a DG object
and the second is a keyword string.

First, let us look at the ways of obtaining information about frames. Consider the
following command.

E > frames := Tools:-DGinfo("FrameNames");

f rames := [E, M]

This returns a list of frame names we have defined before. Note that in this case,
only one parameter for the keyword is passed.

Get the current frame we work with.

E > currframe := DGinfo("CurrentFrame");

curr f rame := E
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Get dimension of the base

E > DGinfo(M, "FrameBaseDimension");

2

Of course, commands may be combined

E > DGinfo(DGinfo("CurrentFrame"), "FrameBaseDimension");

3

Switching between frames is possible with the command ChangeFrame. It
returns the name of the previous frame.

E > ChangeFrame(M);
E

We can remove the frame with the command RemoveFrame, which returns as
a result in the number of frames left after removal.

M > RemoveFrame(M);

1

Many forms ofDGinfoworkwithout providing the frame. In this case, it retrieves
information about the current frame. For example, keyword FrameBaseVectors
obtains the list of basis vectors.

E > DGinfo("FrameBaseVectors");

[D_x, D_y, D_z]

Command evalDG is not the only way to define a DG object. The command
DGzip() is a convenient tool to create DG objects, especially, large ones. The first
argument is a list of coefficients, the second one is a list of DGobjects such as vectors,
and the third is a name of the operation. The possible operation names are "plus",
"wedge", and "tensor".

E > DGzip( [1, 2, 3], [dx, dy, dz], "plus");
Omega := DGzip([dz, dy, dx], "wedge");
T := DGzip([dx + dy, dz], "tensor");

dx + 2dy + 3dz
� := −dx ∧ dy ∧ dz
T := dxdz + dydz

If we omit the last parameter DGzip will use "plus" by default.
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Instead of enumerating a covector basis, we can use a command such as
DGinfo("FrameBaseForms").

E > alpha := DGzip( [f, g, h], DGinfo("FrameBaseForms"));

α := f dx + gdy + hdz

There is also a function for creating DG objects with zero coordinates. To create
a zero vector use DGzero("vector"), the keywords "form" and "tensor"
are possible too.

DGinfo can obtain data from a particular DG object. We can get the list of
coefficients of a given form, vector, or tensor using the keyword Coefficient-
List.

For example, the command

E > DGinfo(alpha, "CoefficientList", [dx, dz]);

[ f, h]

returns the list containing coefficients of the form α at the basis forms dx and dz.
If we need all coefficients we use the keyword "all" instead of a list.

E > DGinfo(V, "CoefficientList", "all");

[ f, g, h]

In the conclusion of this section, we consider the function GetComponents,
which calculates the coefficients of a DG object with respect to a list of DG objects
of the same type.

Let X be a list of vector fields defined as follows.

E > X := evalDG([D_x+D_z, D_x-x**2*D_y, y**2*D_y]);

X := [D_x + D_z, D_x − x2D_y, y2D_y]

Then, the components of a vector Y with respect to the vectors X[i] can be
calculated with the command GetComponents(Y, X).

For example,

E > GetComponents(evalDG((x**2-y)*D_x + y*D_z), X);

[
y, x2 − 2y,

(x2 − 2y)x2

y2

]

Also, we can decompose a list of DG objects at once.
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Consider a list of differential 2-forms f.

E > f := evalDG([ z * dx &w dy + x * dz &w dx,
x * dy &w dz - y * z * dx &w dz,
x * y * dz &w dx + z * dx &w dy ]);

f := [
dx ∧ dy, −y2dx ∧ dz + xdy ∧ dz, 7dx ∧ dy − z3dx ∧ dz

]

The command

E > GetComponents(evalDG([dz &w dx, dx &w dy, dy &w dz]), f);

computes coordinates in the given basis of a 2-forms list

[[ y

z (y − 1)
, 0,− 1

z (y − 1)
],

[ yz

x2 (y − 1)
, x−1,− yz

x2 (y − 1)
],

[− 1

x (y − 1)
, 0,

1

x (y − 1)
]].

•? Exercises

1. Implement a function Sum, which calculates the sum of two DG objects. (Hint:
use DGinfo with the keyword CoefficientList.)

2. Write a function, which for a list of vectors X and a symbol a generates the
vector a1*X[1]+...+an*X[n]. (Hint: the commands seq and addmay be
useful.)

3. UsingcommandsDGzip,DGinfo implementafunctionhook(vec,covec),
which applies a differential form covec to a vector vec.

4. Implement a function extDiff, which calculates the differential of a given
function.

5. Extend the function extDiff from the previous exercise so it can calculate the
exterior differential of a differential 1-form.

6. Write a function commut, which calculates the commutator of two given vector
fields.

7. Using results of the previous and third exercise implement calculations of the
Lie derivative of functions and 1-forms.

8. There is a function DGvolume, which generates a volume form, i.e., a form
of maximal degree with a given expression as a coefficient. Using functions
evalDG and DGinfo implement such function by yourself.
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9. Write your version of the function GetComponents, (Hint: the built-in com-
mand solve can be useful.)

4.3 Calculations with Vectors and Forms

In this section, we discuss tools for computations with vector fields and differential
1-forms.

Let us define a three-dimensional manifold M ,

DGsetup([x, y, z], M):

f rame name : M

two lists of vector fields:

M > X := evalDG([ D_x, D_y, D_z,
x * D_y - y * D_x,
y * D_z - z * D_y,
z * D_x - x * D_z,
x * D_x + y * D_y + z * D_z ]);

Y := evalDG([ (y + z)**2 * D_x,
(x + y)**2 * D_z,
(z + x)**2 * D_y ]);

X := [ D_x, D_y, D_z, xD_y − yD_x,
yD_z − zD_y, zD_x − xD_z, xD_x + yD_y + zD_z ]
Y := [

(y + z)2D_x, (x + y)2D_z, (z + x)2D_y
]
,

and a list of differential 1-forms:

M > w := evalDG([ dz - y * dx, dy + u(x, y) * dz,
DGzip([a,b,c](x,y,z), [dx, dy, dz]) ]):

w := [−ydx + dz, dy + u(x, y)dz, a(x, y, z)dx + b(x, y, z)dy + c(x, y, z)dz ]

It is worth to note the syntax we used to define a list of arbitrary functions. Namely,
[a,b,c](x,y,z) is equivalent to [a(x,y,z), b(x,y,z), c(x,y,z)].

The Lie bracket of two vector fields can be computed with the command
LieBracket.

M > LieBracket(X[1], X[3]);
M > LieBracket(Y[1], Y[2]);
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0 D_x
−2(x + y)2(y + z)D_x + 2(y + z)2(x + y)D_z

Note that, a null vector is denoted by 0 D_x , not by 0.
The function ExteriorDerivative which calculates the exterior derivative

of a differential form and a function.
For example,

M > df := ExteriorDerivative(f(x,y,z,p));

d f :=
(

∂

∂x
f (x, y, z, p)

)
dx +

(
∂

∂y
f (x, y, z, p)

)
dy +

(
∂

∂z
f (x, y, z, p)

)
dz

Recall that a built-in function map transforms a list [a1,...,an]with a given
function f into the list [f(a1),...,f(an)].

The following command calculates the exterior derivative of a list of forms w.

M > h := map(ExteriorDerivative, w);

h :=
[
dx ∧ dy,

(
∂

∂x
u(x, y)

)
dx ∧ dz +

(
∂

∂y
u(x, y)

)
dy ∧ dz,

(
∂

∂x
b(x, y, z) − ∂

∂y
a(x, y, z)

)
dx ∧ dy+

(
∂

∂x
c(x, y, z) − ∂

∂z
a(x, y, z)

)
dx ∧ dz+

(
∂

∂y
c(x, y, z) − ∂

∂z
b(x, y, z)

)
dy ∧ dz

]

We obtained a list of 2-forms, which we can differentiate in the same way as we
did before and get zeroes.

M > h2 := map(ExteriorDerivative, h);

h2 := [0 dx ∧ dy ∧ dz, 0 dx ∧ dy ∧ dz, 0 dx ∧ dy ∧ dz]

Now, we are going to study how to define our own functions on the top of the
DG package. Let us define our own function, which maps a vector field X to the
commutator [X, a(x)∂x + b(y)∂y + c(z)∂z], wherea,b, and c are arbitrary functions.

M > customLieBracket :=
X -> LieBracket(X, a * D_x + b * D_y + c * D_z):

We called our function customLieBracket. Let us check how it works.
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M > customLieBracket(X[1]);
M > customLieBracket(X[2]);
M > customLieBracket(X[7]);

0 D_x
0 D_x

−aD_x − bD_y − cD_z

Now instead of calling our function with each element of X, we can find all
commutators with the list X at once using the command map.

M > X0 := map(customLieBracket, X);

X0 := [0D_x, 0D_x, 0D_x, bD_x − aD_y,

cD_y − bD_z, −cD_x + aD_z, −aD_x − bD_y − cD_z]

There are many null vectors in the list Y. So let us make a function that filters
out zeroes from a list of vectors. We call this function allButZero and here is the
definition.

M > allButZero := T -> remove(X ->
Tools:-DGequal( [Tools:-DGzero("vector")], [X] ), T):

Applying function allButZero to the list X0, we should obtain a list with null
vectors.

M > allButZero(X0);

[bD_x − aD_y, cD_y − bD_z, −cD_x + aD_z, −aD_x − bD_y − cD_z]

Now, let us develop a function that computes all pairwise Lie brackets of a given
list of vector fields. For the obvious reasons, it is called derive0.

M > derive0 := V -> ([ seq(seq(LieBracket(V[k], V[j]),

j = 1..k-1), k = 1..nops(V)) ]):

Test it on different input data.

M > derive0([]);
M > derive0([D_x]);
M > derive0([D_x, D_y]);
M > derive0(X);
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[]
[]

[0D_x]
[0D_x, 0D_x, 0D_x, −D_y, D_x, 0D_x, 0D_x, −D_z, D_y, zD_x−

xD_z, D_z, 0D_x, −D_x, zD_y − yD_z, −yD_x+
xD_y, −D_x, −D_y, −D_z, 0D_x, 0D_x, 0D_x]

•? Exercises

Explain, why the second call gets an empty list and not a one element list with zero
in it.

Now using allButZero, we can implement a slightly better version of the
function derive. The new version is called derive1.

M > derive1 := A -> allButZero(derive0(A)):

Let us see how it works.

M > derive1(evalDG([D_x, D_y, x * D_x + y * D_y]));
M > derive1(X);

[−D_x,−D_y]

[−D_y, D_x, −D_z, D_y, zD_x − xD_z,

D_z, −D_x, zD_y − yD_z, −yD_x + xD_y, −D_x, −D_y, −D_z]

Clearly, the function derive1 works better than derive0, but it has an obvi-
ous shortcoming. Its result is not necessarily a list of linearly independent vec-
tors. To overcome this difficulty, we are going to use the function DGbasis,
which for a list of vectors L calculates a sublist S such that span(S) = span(L)

and vectors S[1],...,S[n] are linearly independent. Also we add the option
method="real", which asks DGbasis to consider vectors over real numbers.

M > DGbasis(derive1(X), method = "real");

[−D_y, D_x, −D_z, zD_x − xD_z, zD_y − yD_z, −yD_x + xD_y]

Please note that, DGbasiswill produce a drastically different result without this
option provided.

M > DGbasis(derive1(X));

[−D_y, D_x, −D_z]



168 S. N. Tychkov

Now, we are ready to write the final version of the derive function.

M > derive := A -> DGbasis(derive1(A), method = "real"):

Once again test it.

M > derive(X);

[−D_y, D_x, −D_z, zD_x − xD_z, zD_y − yD_z, −yD_x + xD_y]

Now, we can apply it twice to the list X to get the second derivative of the Lie
algebra generated by the vector fields X.

M > derive(derive(X));

[D_z, D_x, D_y, −yD_x + xD_y, −zD_y + yD_z, zD_x − xD_z]

Now,we shouldmake the next step and implement a function that appliesderive
on a list T of vectors n times (n > 0).

The idea is to use the obvious definition:

deriveN(T, n) = derive(T), if n = 1
deriveN(T, n) = deriveN(derive(T), n - 1), otherwise.

Hence, implementation is straightforward

M > deriveN := (T, n) ->
‘if‘(n = 1, derive(T), deriveN(derive(T), n - 1));

Let us see how it works

M > deriveN(evalDG([D_x, D_y]), 1);
M > deriveN(X, 2);
M > deriveN(X, 20);

[]

[ D_z, D_x, D_y,−y D_x + x D_y,−z D_y + y D_z, z D_x − x D_z]

[ D_z, D_x, D_y,−y D_x + x D_y,−z D_y + y D_z, z D_x − x D_z]

Note that, the third and second outputs are identical.
Now, recall that the Lie derivative of a function f along the vector field X can be

calculated as follows X ( f ) = ∑n
i=1 X

i fxi . At first, we consider a naive implemen-
tation called LieDer.

Also, we import the package Tools for convenience.

M > with(Tools):
M > LieDer:= (X, f) -> foldl(‘+‘, 0, op( zip(‘*‘,
DGinfo(X, "CoefficientList", DGinfo("FrameBaseVectors")),
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map(v -> diff(f, v),DGinfo("FrameIndependentVariables")))));

To make this implementation more clear, we should recall how the functions
foldl,op andzipwork.foldl has an arbitrary number of arguments, but not less
then three.Given argumentsf,x0,...,xn, it evaluatesf(f...(f(x0, x1)...),
xn). The command op transforms any list, set, or expression into the sequence. For
example, op([a,b,c])will give a,b,c. zip does “gluing” of two lists into one
using a given binary function. For example,zip(f, [a,b,c], [x,y,z])will
produce [f(a,x), f(b,y), f(c,z)].

Note that, LieDer is written in a quite universal way. It uses the command
DGinfo to obtain all the needed data, so it does not depend on an actual frame.

Let us test how it works.

M > LieDer(evalDG(D_x+D_y+D_z), z*y*x);

yz + zx + zy

The commandHook calculates the interior product of a vector (or a list of vectors)
and a differential form.

For example, calculate dx(∂x ) and dx(∂y)
M > Hook( D_x, dx );
M > Hook( D_y, dx );

1

0

Let us look at a more general example. Calculate the value of a form f1dx +
f2dy + f3dz on a vector a1∂x + a2∂y + a3∂z

Hook( DGzip([a1, a2, a3], [D_x, D_y, D_z]),
DGzip([f1, f2, f3], [dx, dy, dz]) );

a1 f 1 + a2 f 2 + a3 f 3

The command Hook can calculate the internal product of a vector with a 2-form
and a 3-form.

Hook(evalDG(a*D_x + b*D_y), evalDG(dx &w dy));
Hook(evalDG(a*D_x + b*D_y + c*D_z), evalDG(dx &w dy &w dz));

−b dx + a dy
c dx ∧ dy − b dx ∧ dz + a dy ∧ dz

It also possible to insert a list of vectors into a differential form.
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Hook(evalDG([a*D_x, b*D_y, c*D_z]), DGvolume("form", 1, M));

The latter command is equivalent to the following:

Hook(evalDG(c*D_z), Hook(evalDG(b*D_y),
Hook(evalDG(a*D_x), DGvolume("form", 1, M))));

The result is the same abc in both cases, of course.
After acquainting with the command Hook, we are able to write a function for

computing of the Lie derivative of a 1-form. We will use Cartan’s formula LX (ω) =
ιX (dω) + d(ιX f ). We implement this formula as function LieDerForm.

LieDerForm := (X, f) ->
evalDG(Hook(X, ExteriorDerivative(f)) +
ExteriorDerivative(Hook(X, f)));
Note that, we have to use evalDG because of the addition.
A simple test:

LieDerForm(evalDG(x*D_x+y*D_y),evalDG(f(x,y)*dy+g(y,z)*dz));

(
∂

∂y
f (x, y)

)
y + f (x, y) +

(
∂

∂x
f (x, y)

)
x dy +

(
∂

∂y
g (y, z)

)
y dz

The DG package has its own function LieDerivative for calculating Lie
derivatives of all kinds of tensors.

LieDerivative(x * D_x + y * D_y, f(x,y) * dy + g(y,z) * dz);

This instruction produces the same result as our function LieDerForm.
As an example, let us apply all vectors from the list X to an arbitrary n-form

(n = 3 in our case).

map(T->LieDerivative(T, DGvolume("form", f(x,y,z), M)), X);

[ ∂

∂x
f dx ∧ dy ∧ dz,

∂

∂y
f dx ∧ dy ∧ dz,

∂

∂z
f dx ∧ dy ∧ dz, (−y

∂

∂x
f + x

∂

∂y
f ) dx ∧ dy ∧ dz,

(−z
∂

∂y
f + y

∂

∂z
f ) dx ∧ dy ∧ dz,

(z
∂

∂x
f − x

∂

∂z
f ) dx ∧ dy ∧ dz,

(3 f + x
∂

∂x
f + y

∂

∂y
f + z

∂

∂z
f ) dx ∧ dy ∧ dz]
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Define the metric tensor

g0 := evalDG(dx &s dx + dy &s dy + dz &s dz):
Note that to define symmetric product, we use symbol &s.
Hook can be used to calculate the scalar product of two vectors.
Hook(evalDG([a*D_x+b*D_z, c*D_y + d*D_z]), g0);

d b

4.3.1 Computing Symmetries

Consider the following problem. Let M be a spherical layer M = S2 × R with the
metric g = dx2 + sin2x dy2 + dz2. We want to find conformal symmetries of this
metric, i.e., such vector fields T that LT g = λ g for some function λ.

The first thing we should do is to define the metric.

M > gs := evalDG(dx &s dx + sin(x)**2 * dy &s dy + dz &s dz):

And an unknown vector field and the Lie derivative of the metric along with it.

M > T := DGzip([a, b, c](x,y,z), [D_x, D_y, D_z]):
M > LD := LieDerivative(T, gs):

Then, the condition we want to be satisfied is of the form

M > cond := evalDG(LD - lambda(x,y,z) * gs);

Now, we must extract coefficients from the expression cond. We should use the
command DGinfo with the keyword "CoefficientSet" because we do not
want identical coefficients.

M > condsys := DGinfo(cond, "CoefficientSet", "all");

Thus, we obtained the system of six equations

condsys :=
{
sin (x)

(
2

∂b

∂y
sin x − λ sin x + 2 a cos x

)
,

∂

∂x
c + ∂

∂z
a,−λ + 2

∂

∂x
a,−λ + 2

∂

∂z
c,− ∂b

∂x
cos2 x + ∂

∂y
a + ∂

∂x
b ,

−∂b

∂z
cos2 x + ∂

∂y
c + ∂

∂z
b

}
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This is an overdetermined PDE system, and if we try to solve it with the command
pdsolve:

M > pdsolve(condsys, [a,b,c](x,y,z));

we get the message that this system is inconsistent. Unfortunately, pdsolve is
wrong, because in many cases, it cannot solve systems with a functional parameter.
To avoid this obstacle, we have to directly eliminate λ from the system.

M > lambdarestr := solve(condsys[1],lambda(x,y,z));
condsys2 := eval(condsys, lambdarestr);

condsys2 :=
⎧⎨
⎩0,

(
∂
∂y b (x, y, z)

)
sin (x) + a (x, y, z) cos (x)

sin (x)
− ∂

∂x
a (x, y, z) ,

−2

(
∂
∂y b (x, y, z)

)
sin (x) + a (x, y, z) cos (x)

sin (x)
+ 2

∂

∂z
c (x, y, z) ,

∂

∂x
c (x, y, z) + ∂

∂z
a (x, y, z) ,−

(
∂

∂x
b (x, y, z)

)
(cos (x))2 +

∂

∂y
a (x, y, z) + ∂

∂x
b (x, y, z) ,−

(
∂

∂z
b (x, y, z)

)
(cos (x))2 +

∂

∂y
c (x, y, z) + ∂

∂z
b (x, y, z)

}

Now, the solution is easy to obtain.

M > solution := pdsolve(op(2..6, condsys2));

solution := {
a (x, y, z) = (_C6 sin x + (_C7 sin y + _C8 cos y) cos x) e−z+

ez (_C4 sin y + _C5 cos y) cos x + ez sin x_C3 + _C2 cos y + _C1 sin y,

b (x, y, z) = _C4 ez cos y − e−z sin y_C8 + e−z cos y_C7 − ez sin y_C5

sin x
+

_C1 cos y − _C2 sin y

tan x
+ _C9, c (x, y, z) = ((_C7 sin y + _C8 cos y) sin x

−_C6 cos x) e−z − ez (_C4 sin y + _C5 cos y) sin x + ez cos x_C3 + _C10
}
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Here, _C1, . . . , _C10 are arbitrary constants. Note that ,pdsolve uses prefix ‘_’
to distinguish them from user-defined names. Thus, we obtained a ten-dimensional
Lie algebra of symmetries.

Now, we can compute the infinitesimal symmetry.

Tsol := simplify(eval(T, solution));

Let us check if we got the conformal symmetry we looked for.

M > test := evalDG(LieDerivative(Tsol, gs)-lambda(x,y,z)*gs);

M > testCoeffs := DGinfo(test, "CoefficientList", "all");

M > simplify(eval(testCoeffs, eval(lambdarestr, solution)));

[0, 0, 0]

We omitted the output of all but the last command. The obtained list of zeroes
means that we have solved the PDE system correctly.

•? Exercises

1. One can note that our implementation of deriveNwill not work correctly if we
pass 0 as the second argument. Fix the implementation of the function so it can
process 0 correctly. Then, rewrite this function so it can deal with any possible
expressions as parameters. (Hint: use the built-in commands error and type.

2. If we try to run the command deriveN(T, 200), it will take a considerable
amount of time to finish calculations. Propose methods to improve the perfor-
mance of deriveN.

3. Given a list of vectors T = [T1,...,Tn], which form a Lie algebra, write
a function that tests if the Lie algebra is nilpotent. (Hint: the Lie algebra is not
solvable if nops(deriveN(T, k)) = nops(deriveN(T, k + 1))
for some k > 0.

4. Write your own implementation (based on LieDer) of ExteriorDeriva-
tive, which works only with functions. Try to make it as short as possible.

5. Implement the function LieDer in a more natural way. (Hint: use Hook.)
6. Try to write a function, which can determine if a given list of vector fields forms

a Lie algebra.

4.4 Transformations

In this section, we discuss such DG objects as transformations. We begin with a
simple example of transformations defined by the vector fields.
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Define a coordinate frame E2 on a two-dimensional plane.

> with(DifferentialGeometry):
> DGsetup([x, y], E2);

f rame name : E2

Consider the following vector fields on the 2D plane.

E2 > S := evalDG( x * D_x + y * D_y );
R := evalDG( x * D_y - y * D_x );

S := xD_x + yD_y
R := −yD_x + xD_y

With the command Flow, we can calculate the one-parameter group of diffeo-
morphisms of a vector field. The first argument of Flow is a vector field, the second
is a symbol denoting parameter of the transformation.

E2 > Sc := Flow(S, t);
Rt := Flow(R, t);

Sc := [
x = x et , y = y et

]
R := [x = −y sin (t) + x cos (t) , y = y cos (t) + x sin (t)]

The command Flow creates a DG object of the transformation type. Though the
result can look like a list of equalities, it has a complex internal structure. Let us look
into this object with lprint.

E2 > lprint(Sc);

_DG([["transformation", [[E2,0], [E2,0]], [], [Matrix(2,2,

(1,1) = exp(t), (2,2) = exp(t),datatype = anything,storage

= rectangular,order = Fortran_order,shape = [])]],
[[x ∗ exp(t),x], [y ∗ exp(t),y]]])

We see that Sc is a DG object of the type "transformation", which present
a mapping from the manifold E2 into itself (Fig. 4.1).

We can calculate the image of a point under the action of the transformation. with
the command ApplyTransformation (Fig. 4.2).

Consider examples:

1. rotate the point (1, 1) on the angle π
4 ,

E2 > eval(ApplyTransformation(Rt, [1, 1]), t=Pi/4);
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Fig. 4.1 Trajectories of the
vector field Sc

Fig. 4.2 Trajectories of the
vector field Rt
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[
0,

√
2
]

2. scale the point (0, 0)

E2 > ApplyTransformation(Sc, [0, 0]);

[0, 0]

3. scale the point (1, 1)

E2 > ApplyTransformation(Sc, [1, 1]);

[
et , et

]

With ApplyTransformation, we are able to plot trajectories of vector
fields. Recall that a call map2(f, a, [a1,..., an]) evaluates to the list
[f(a,a1),..., f(a,an)]

E2 > trajSc := map2(ApplyTransformation, Sc,
[seq([cos(p*2*Pi/24), sin(p*2*Pi/24)], p=0..23)]):

E2 > plot( map( tr->[op(tr),t=-infinity..1], trajSc) );

E2 > trajRt := map2(ApplyTransformation, Rt,
[seq([p, 0], p=0..10)]):

E2 > plot(map(tr->[op(tr), t=0..2*Pi], trajRt));

Define a vector field X as a linear combination of the vector fields S and R.

E2 > X := evalDG(S/3 + R);

X :=
( x
3

− y
)
D_x +

(
x + y

3

)
D_y

Calculate a flow of X.

E2 > Xt := Flow(X, t);

Xt := [
x = et/3 (−y sin (t) + x cos (t)) , y = −et/3 (−y cos (t) − x sin (t))

]

E2 > trajXt := map2(ApplyTransformation, Xt,
[seq([0, p], p=0..10)]):

E2 > plot(map(tr->[op(tr), t=0..7], trajXt));

There is a command InfinitesimalTransformation, which is inverse
to the function Flow. With it is possible to compute the Lie algebra of infinitesimal
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Fig. 4.3 Trajectories of the
linear combination of Rt and
Sc

generators for an action of a Lie group on a manifold. The first argument is a trans-
formation object, the second one is a list of symbols representing parameters of the
transformation (Fig. 4.3).

E2 > InfinitesimalTransformation(Xt, [t]);

X :=
( x
3

− y
)
D_x +

(
x + y

3

)
D_y

E2 > Phi := Transformation(E2, E2, [ x=exp(t)*
(cos(theta)*x - sin(theta)*y) + a, y=exp(s)*(sin(theta)
*x + cos(theta)*y) + b ]);

	 = [
x = et (cos (θ) x − sin (θ) y) + a, y = es (sin (θ) x + cos (θ) y) + b

]

4.4.1 Operations on Transformations

The same result can be achieved with the function ComposeTransformations.
This command creates the composition of an arbitrary number of transformations
given as arguments. Suppose that A : M1 → M2, B : M2 → M3, then Compose
Transformations(B, A) creates a DG object representing the transformation
B ◦ A : M1 → M3.

Let us define five transformations Phi1,...,Phi5.

E2 > Phi1 := Transformation(E2, E2, [x = x + a, y = y]):

E2 > Phi2 := Transformation(E2, E2, [x = x, y = y + b]):

E2 > Phi3 := Transformation(E2, E2, [x = x * exp(t), y = y]):

E2 > Phi4 := Transformation(E2, E2, [x = x, y = y * exp(s)]):

E2 > Phi5 := Transformation(E2, E2, [x = cos(theta)

* x - sin(theta) * y, y = sin(theta) * x + cos(theta) * y]):
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With the following instructions, we create the transformation Phi0 : Phi1 ◦
Phi2 ◦ Phi3 ◦ Phi4 ◦ Phi5

E2 > Phi0 := ComposeTransformations(Phi1, Phi2, Phi3,
Phi4, Phi5);

	0 = [
x = et (cos(θ)x − sin(θ)y) + a, y = es (sin (θ) x + cos (θ) y) + b

]

The equivalence of transformations can be verified with the command DGequal.

E2 > Tools:-DGequal(Phi, Phi0);

true

Again with InfinitesimalTransformation, we obtain the infinitesimal
generators of the corresponding Lie algebra. But this time, we have to pass a list of
all five parameters.

E2 > InfinitesimalTransformation( Phi, [a, b, t, s,
theta] );

[ D_x, D_y, xD_x, yD_y,−yD_x + xD_y ]

Now to explore other capabilities of DG regarding pushing and pulling all kinds
of tensors, we need to define another 2D manifold S2 with coordinates u and v.

E2 > DGsetup([u, v], S2);

Also, we define the following transformation E2 → S2, which is called stereo-
graphic projection.

S2 > Sp := Transformation(E2, S2, [
u = 2 * x / (1 + x**2 + y**2),
v = 2 * y / (1 + x**2 + y**2) ]);

Sp :=
[
u = 2x

x2 + y2 + 1
, v = 2y

x2 + y2 + 1

]

For the further discussion, we need to compute the inverse transformation of Sp,
which can be done with the command InverseTransformation.

S2 > Ps := convert(InverseTransformation(Sp), radical);

Ps :=
⎡
⎣x =

u
(
1 + √−u2 − v2 + 1

)
u2 + v2

, y =
(
1 + √−u2 − v2 + 1

)
v

u2 + v2

⎤
⎦
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Note that, we use the command convertwith the option radical to suppress
appearance of RootOf expressions.

Now check if the inverse transformation was computed correctly by composing
it with the original transformation.

S2 > simplify( ComposeTransformations(Ps, Sp), symbolic );

[x = x, y = y]

S2 > simplify(ComposeTransformations(Sp, Ps));

[u = u, v = v]

Instead of using the commands lprint or op, the properties of transformations
can be obtained with the command DGinfo.

For example, DGinfo with the keyword "JacobianMatrix" returns th

S2 > with(Tools):
S2 > SpJcbn := simplify(DGinfo(Sp, "JacobianMatrix"));

SpJcbn :=
⎡
⎢⎣

−2 x2+2 y2+2

(x2+y2+1)
2 − 4xy

(x2+y2+1)
2

− 4xy

(x2+y2+1)
2

2 x2−2 y2+2

(x2+y2+1)
2

⎤
⎥⎦

S2 > PsJcbn := simplify(DGinfo(Ps, "JacobianMatrix"));

Ps Jcbn :=

⎡
⎢⎢⎢⎣

−
(
1+√−u2−v2+1

)(
−√−u2−v2+1v2+u2

)

(u2+v2)
2√−u2−v2+1

− uv
(
1+√−u2−v2+1

)2

(u2+v2)
2√−u2−v2+1

− uv
(
1+√−u2−v2+1

)2

(u2+v2)
2√−u2−v2+1

(
1+√−u2−v2+1

)(√−u2−v2+1u2−v2
)

(u2+v2)
2√−u2−v2+1

⎤
⎥⎥⎥⎦

Now, let us verify that the matrices PsJbcn and SpJcbn are mutually inverse.
But at first, we must write both matrices using the same coordinates. This can be
achievedwith the commandPullback, which is used to pullback differential forms.
Recall that matrix multiplication in Maple is denoted by “.”.

S2 > simplify(Pullback(Sp, PsJcbn).SpJcbn, symbolic);

[
1 0

0 1

]
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Here, we used the Pullback command, which is used to pullback differential
forms (including functions). Let f0, f1,and f2 be the following forms on E2.

S2 > f0 := evalDG( x**2 * dx + y * dy );
S2 > f1 := evalDG( dx &w dy );
S2 > f2 := evalDG( dx &s dx + dy &s dy );

f 0 := x2dx + ydy

f 1 := dx ∧ dy

f 2 := dxdx + dydy

Now with Pullback, we find the image of f0, f1, and f2 on the manifold S2.

S2 > simplify( Pullback(Ps, [f0, f1, f2]), symbolic );

[This output is long so it was omitted.]

Consider the example of computation the area bounded by a curve. By virtue of
Green’s theorem, this problem is equivalent to computation of a integral of a 1-form.

S2 > DGsetup([t], R1);

f rame name : R1

Define a 1-form, whose exterior differential equals to the volume form on the
plain.

R1 > omega1 := evalDG( 1/2 * (x*dy-y*dx) );

ω1 := − ydx

2
+ xdy

2

The curve is defined as a transformation.

R1 > C := Transformation(R1, E2, [x = cos(t)
* (5 - sin(20*t) / 10), y = sin(t) * (5 - sin(20*t)
/ 10)]);

C := [x = cos (t) (5 − 1/10 sin (20 t)) , y = sin (t) (5 − 1/10 sin (20 t))]

R1 > plot([op(ApplyTransformation(C, [tau])), tau=0..2*Pi]);

Then, we pull back the form omega1 (Fig. 4.4).
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Fig. 4.4 Graph of the
curve C

R1 > alpha1 := Pullback(C, omega1):

The expression for alpha1 is rather long so it is omitted.
The DG package has the built-in command IntegrateForm for evaluating an

integral of an n-form on a n-dimensional manifold.

R1 > IntegrateForm(alpha1, t=0..2*Pi):

5001π

200

•? Exercises

1. With the command Pushforward find the image of the infinitesimal generators

[ D_x, D_y, xD_x, yD_y,−yD_x + xD_y ]

on the manifold S2.
2. Write a function, which draws trajectories of a given vector field passing through

a given list of points.
3. Try to implement your own versions ofPullback andPushforwardworking

only with vector fields and 1-forms. (Hint: use DGinfo to obtain all necessary
data from DG objects.)

4. Write your implementation of the functions Flow and Infinitesimal
Transformation, which canworkwith a 1-parametric transformations. (Hint:
use the functions dsolve, DGinfo and DGzip.)
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Chapter 5
On the Geometry Arising in Some
Meteorological Models in Two and Three
Dimensions

Bertrand Banos, Volodya Roubtsov and Ian Roulstone

5.1 Introduction

This paper can be considered as an additional note to lectures delivered by two
of us (I.R. and V.R.) during the Summer school Wisła -18 “Nonlinear PDEs, their
geometry, and applications” of Bałtycki Instytut Matematyki , in Wisła , Poland,
20–30 August 2018.

We start with two introductive sections. First, we briefly describe balanced mete-
orological models and their place in the problems of atmospheric dynamics. This
section aims to explain to mathematicians the basic terminology and can be consid-
ered as a basic guide in the literature on this subject.

Then we describe (in down-to-the-earth form) the geometric approach to the
Monge–Ampère equations (MAE) a non-linear second-order partial differential
equations naturally appeared in mathematical studies of the balanced meteorologi-
cal models. This approach was developed by V.V. Lychagin and his school and can
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serve a clear and transparent example of rich and fruitful interaction of geometry and
theoretical meteorology designed in the papers of British geophysicists B. Hoskins,
M. McIntyre et al.

The material of these sections is not new at all but we decided to add it to make
easy the further reading both for terminological and from technical reasons. The
next section is devoted to MA geometric description of a non-balanced geophysical
model—Dritschel–Viudez 2d rotating stratified flows. This is the main novel result
which is based on a wonderful appearance of the Hitchin hypersymplectic stucture
which gives (under some additional assumptions) a reduction of the diagnostic MAE
of Dritschel–Viudez to linear Laplace or Tricomi type equations.

The last sections are written in a form of illustrative examples (which are anyway
new up to our best knowledge) and we recommend to potential readers to use these
examples as illustrative part of V.R. lectures published in this volume.

5.2 A Brief Guide in Balanced Meteorological Models

The topic of meteorology may appear, in the first instance, as a rather arcane choice
of application for the subject of Monge–Ampère equations and their associated geo-
metric properties. For that reason, we shall be begin by explaining why the study of
the fluid dynamics of the atmosphere provides a rich arena for displaying the theory
and applications of Monge–Ampère geometry.

Considering the dynamics of the atmosphere as a problem in fluid mechanics,
in which weather systems are governed by the Navier–Stokes equations coupled to
moist thermodynamics, we learn from the classic textbooks of meteorology that a
number of important physical constraints facilitate the introduction of systems of
partial differential equations that are, in many ways, simpler and more tractable than
Navier–Stokes-based models. The first such constraint relates to stratification in the
atmosphere: the troposphere—the bottom layer of the atmosphere in which most
weather occurs—is about 10km deep, and this should be contrasted with the radius
of the Earth, which is of the order of 6 × 103 km. Therefore, the troposphere can
be considered as a very thin shell of fluid surrounding a body that rotates about a
central axis. The rotation and stratification of the atmosphere lead to the notions of
geostrophic and hydrostatic balance, respectively.

Geostrophic balance is the approximate equality between the horizontal pressure
gradient force and the Coriolis acceleration. It is well known that on large scales
(of the order of 102–103 km), air flows more-or-less parallel to isobars of constant
pressure, and this is the geostrophic effect. In the vertical, the pressure gradient is
balanced to a very good approximation by gravity, and this means the acceleration
of air in the vertical is usually (especially on large scales) very much smaller than
the acceleration due to gravity. This is hydrostatic balance.

The notions of geostrophic and hydrostatic balance can be incorporated, via rig-
orous asymptotic analysis, into the governing equations, and leading order terms are
deemed to capture the salient dynamics of the atmosphere on sufficiently large scales.
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The resultingmodels,which can be used to study phenomena such as jet streammean-
der, and the formation of weather fronts, bear the names quasi-geostrophic theory
and semi-geostrophic theory. For a detailed introduction to this subject matter see
for example, the article by A.A. White in [13].

When atmospheric flows are considered to be close to geostrophic, it is possible
to show that the coupling between the momentum and temperature distributions, and
conserved quantities such as potential vorticity (see A.A. White op. cit.), is gov-
erned by a non-linear partial differential equation of Monge–Ampère type. Imposing
hydrostatic balance leads to models in either two or three spatial dimensions, and in
turn, this leads to the study of Monge–Ampère equations in two or three independent
variables. The effect of the Earth’s rotation invariably manifests itself as a constraint
that keeps such equations elliptic (in the 2d case) or keeps the pressure distribution
convex (in the 3d case). The breakdown of convexity can be interpreted, for example
as the formation of a weather front.

There is another interesting type of geophysical dynamical models—so-called
rotating stratified flows.

This model is characterized by an explicit conservation of potential vorticity and
one can use a change of variables from the usual primitive variables of velocity and
density to the components of ageostrophic horizontal vorticity. It is quite amazing,
that being quite different by geophysical properties from balanced models both 2d-
and 3d-rotating stratified flow models are governed by a similar geometry which
permits to apply the Monge–Ampère structure approach to their studies and to get
some new special exact solutions using the Hitchin hypersymplectic structure which
naturally appears in the framework of the MAE geometry.

5.3 Monge–Ampère Geometry

A (symplectic) Monge–Ampère equation (MAE) is a second-order PDE with a
determinant-like non-linearity. For instance, a MAE in two variables can be writ-
ten as follows:

Aφxx + 2Bφxy + Cφyy + D(φxxφyy − φ2
xy) + E = 0, (5.1)

where A, B, C , and D are smooth functions of (x, y, φx , φy) ∈ T ∗
R

2.
In dimension n, a Monge–Ampère equation is a linear combination of the minors

of the hessian matrix
(
φxi x j

)
i, j=1...n .

•! Comment

We will denote by hess(φ) the determinant of the hessian matrix of φ. For example,
in two variables, hess(φ) = φxxφyy − φ2

xy .
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5.3.1 Monge–Ampère Operators

Lychagin has proposed a geometric approach of these equations, using differential
forms on the cotangent space (i.e., the phase space). The idea is to associate with a
formω ∈ �n(T ∗

R
n) theMAE equation�ω = 0 where�ω : C∞(Rn) → �n(Rn) ∼=

C∞(Rn) is the differential operator defined by

�ω(φ) = (dφ)∗ω

with dφ : Rn → T ∗
R

n, q �→ (q, φq).
A form ω ∈ �n(T ∗

R
n) is said to be primitive if ω ∧ � = 0 with � the canonical

symplectic form on T ∗
R

n)

The so-called Hodge–Lepage–Lychagin theorem asserts that this correspondence
is a one-to-one correspondence between MAE and conformal classes of primitive
forms

For instance, MAE (5.1) is associated with the primitive form

Adp ∧ dy + B(dx ∧ dp − dy ∧ dq) + Cdx ∧ dq + Ddp ∧ dq + Edx ∧ dy,

where (x, y, p, q) is the symplectic system of coordinates of T ∗
R

2. In three dimen-
sions, the “real MAE”

hess(φ) = 1

is associated with the effective form

dp ∧ dq ∧ dr − dx ∧ dy ∧ dz

and the “special lagrangian equation”

�φ − hess(φ) = 0

is associated with the form

dp ∧ dy ∧ dz + dx ∧ dq ∧ dz + dx ∧ dy ∧ dr − dp ∧ dq ∧ dr.

5.3.2 Generalized Solutions

For any function φ on R
n , its graph

Lφ = {(q, φq), q ∈ R
n} ⊂ T ∗

R
n
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is lagrangian (�|L = 0) and conversely for any lagrangian graph Ln ⊂ T ∗
R

�, it
exists φ such that L = Lφ . Moreover φ is a (regular) solution of �ω = 0 if and only
if ω|Lφ

= 0.
We define then a generalized solution of the MAE δω = 0 as a Lagrangian sub-

manifold Ln ⊂ (M2n,�) on which vanishes ω:

�|L = 0 and ω|L = 0.

5.3.3 The Problem of Local Equivalence

A classical problem in the geometric study of differential equations is the problem
of local equivalence: two given differential equations are they equivalent up to a
local change of dependent and independent coordinates (that is, up to the action of
a local diffemorphism of the phase space)? The diffeomorphisms which preserve
the MAE family are the diffeomorphisms, which preserve the symplectic form (the
symplectomorphisms) and their action, is in theLychagin correspondence, the natural
action on the differential forms

F · �ω = �F∗ω.

Wewill say then that twoMonge–Ampère equations�ω1 = 0 and�ω2 = 0 are sym-
plectically equivalent if there exists a (local) symplectomorphism F : (T ∗

R
n,�) →

(T ∗
R

n,�) such that
F∗ω2 = ω1.

For instance, the partial Legendre transformed F : T ∗
R

2 → T ∗
R

2 defined by

F(x, y, p, q) = (x, q, p,−y) (5.2)

exchanges the forms dp ∧ dq − dx ∧ dy and dp ∧ dy + dx ∧ dq. Therefore, the
MAE hess(φ) = 1 and the Laplace equation �φ = 0 are symplectically equivalent
in dimension 2. (This is not true in higher dimensions).

How can we use this symplectic equivalence to construct explicit solutions? The
point is that a symplectomorphismwill not preserve regular solutions but generalized
solutions:

If L is a generalized solution of �F∗ω then F(L) is a generalized solution of
�ω = 0.

Example

The generalized solution of theLaplace equationφxx + φyy = are the complex curves
of T ∗

R
2 = C

2. Applying (5.2) to the harmonic function
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φ(x + iy) = ex cos(y)

we obtain then a generalized solution L = F(Lφ) and identifying it as a graph L =
Lψ , a regular solution

ψ(x, y) = y arcsin(
y

ex
) +

√
e2x − y2

of the MAE hess(ψ) = 1.

5.3.4 Monge–Ampère Structures

Wedefine then aMonge–Ampère structure on a 2n-manifold M (locally M = T ∗
R

n)
as a pair of differential forms

(�,ω) ∈ �2(M) × �n(M)

such that

1. � is symplectic that is nondegenerate and closed (�2 
= 0 and d� = 0),
2. ω is effective that is ω ∧ � = 0.

5.3.4.1 2d MAE and 4d Monge–Ampère Geometry

In four dimensions (n = 2), in the nondegenerate case, this geometry can be either
complex or real and this distinction coincides actually with the usual distinction
elliptic/hyperbolic for differential equations in two variables.

We define the pfaffian pf(ω) ∈ C∞(M) and the tensor Aω : M → T M ⊗ T ∗M
by

ω ∧ ω = pf(ω)� ∧ � ω(·, ·) = �(Aω·, ·)

and they satisfy
A2

ω = − pf(ω)Id

Hence, the tensor Iω = Aω√| pf(ω)| is an almost complex structure if �ω = 0 is

elliptic (pf(ω) > 0) and an almost product structure if�ω = 0 is hyperbolic (pf(ω) <

0).
Lychagin and Roubtsov have explained in [9, 10] the link there is between the

problem of local equivalence of MAE in two variables and the integrability problem
of this tensor Iω. They have actually proved the following:
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Proposition 5.1 The three following assertions are equivalent:

1. �ω = 0 is locally equivalent to one of the two equations

1. �φ = 0

2. �φ = 0

2. the almost complex or almost product structure Iω is integrable

3. the form
ω

√| pf(ω)| is closed.

5.3.4.2 3d MAE and 6d Monge–Ampère Geometry

In six dimensions (n = 3), there is again a correspondence between real/complex
geometry and “nondegenerate” Monge–Ampère structures.

N. Hitchin ([7]) has associated with each 3form on M6 a pfaffian λ(ω) ∈ C∞(M)

and a tensor Aω : M → T M ⊗ T ∗M satisfying

A2
ω = λ(ω)Id

Moreover he proved that any nondegenerate 3-form (that is λ(ω) 
= 0) writes as the
sum of two decomposable forms:

1. λ(ω) > 0 if and only if

ω = α1 ∧ α2 ∧ α3 + β1 ∧ β2 ∧ β3

2. λ(ω) < 0 if and only if

ω = (α1 + iβ1) ∧ (α2 + iβ2) ∧ (α3 + iβ3) + (α1 − iβ1) ∧ (α2 − iβ2) ∧ (α3 − iβ3)

In the nondegenerate case, it exists then a dual form ω̂ such that ω + ω̂ and ω − ω̂

or ω + iω̂ and ω − iω̂ are decomposable.
Moreover, Lychagin and Roubtsov ([10]) have defined a symmetric tensor gω on

M satisfying the following:

1. gω is non degenerate if and only λ(ω) 
= 0
2. it has signature (3, 3) if λ(ω) > 0 and signature (6, 0) or (4, 2) if λ(ω) < 0.

3. the triple

(
gω,�, Iω = Aω√|λ(ω)|

)
is compatible that is

gω(·, ·) = �(Jω·, ·)
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So, one can associate with a nondegenerate Monge–Ampère structure (�,ω) on
a si x-dimensional manifold an almost (pseudo para) Kähler structure with Kähler
form�.Moreover this almost Kähler structure is “normalized” by two decomposable
3-forms: we use then the terminology of “generalizedCalabi-Yau structure” (see [1]).

For example, the Monge–Ampère structure associated with the “real” MAE in
three variables (x, y, z)

hess(φ) = 1

is the real Calabi–Yau structure on T ∗
R

3

gω =
(
0 I d
I d 0

)
Kω =

(
I d 0
0 −I d

)

α = dx ∧ dy ∧ dz β = dp ∧ dq ∧ dr

The Monge–Ampère structure associated with the special lagrangian equation

�φ − hess(φ) = 0

is the canonical Calabi–Yau structure on T ∗
R

3 = C
3

gω =
(

I d 0
0 I d

)
Kω =

(
0 I d
I d 0

)

α = dz1 ∧ dz2 ∧ dz3 β = dz1 ∧ dz2 ∧ dz3

As in the f our -dimensional case, there is a strong link between the problem
of local equivalence of MAE in three variables and the integrability problem of
generalized Calabi–Yau structures on R

6 (see [1]):

Proposition 5.2 The two following assertions are equivalent:

1. the MAE �ω = 0 is locally equivalent to one of the three equations

1. hess(φ) = 1

2. �φ − hess(φ) = 0

3. �φ + hess(φ) = 0

2. the forms
ω

4
√|λ(ω)| and

ω̂
4
√|λ(ω)| are closed and gω is flat.
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•! Comment

It is important to note that the geometry associated with a MAE �ω = 0 of real type
(λ(ω) > 0) is essentially real but it is very similar to the classic Kähler geometry.
In particular, when this geometry is integrable, there exists a potential � and a
coordinate systems (xi , pi )i=1,2,3 on T ∗

R
6 such that

gω =
∑

i, j

∂2�

∂xi∂p j
dxi · dp j

and

det
( ∂2�

∂x j∂p j

) = f (x)g(p).

5.4 2d Rotating Stratified Flows—Dritschel–Viudez MAE

Recently, a new approach to modelling stably stratified geophysical flows was pro-
posed in [5, 6]. This approach is based on the explicit conservation of potential
vorticity and uses a change of variables from the usual primitive variables of veloc-
ity and density to the components of ageostrophic horizontal vorticity. This change
results in a Monge–Ampère-like non-linear equation with non-constant coefficients.
The equation gives the conditions for static and inertial stability and changes the type
from elliptic to hyperbolic.

It is written as

E
(
φxxφzz − φ2

xz

) + Aφxx + 2Bφxz + Cφzz + D = 0 (5.3)

with

E = 1 , A = 1 + θxz , B = 1

2
(θzz − θxx )

C = 1 − θxz , D = θxxθzz − θ2
xz − �

where θ is a given potential and the dimensionless PV anomaly � may be also
considered as a given quantity (see the details in [6]).

The corresponding Monge–Ampère structure is

{
� = dx ∧ dp + dz ∧ dr

ω = Edp ∧ dr + Adp ∧ dz + B(dx ∧ dp − dz ∧ dr) + Cdx ∧ dr + Ddx ∧ dz
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The pfaffian is pf(ω) = R with R the Rellich’s parameter:

R = AC − E D − B2 = 1 + � −
(

�θ

2

)2

.

Moreover, a direct computation gives

dω = d

(
�θ

2

)
∧ �. (5.4)

5.4.1 Integrability of the Complex/Product Structure

Lychagin–Roubtsov criteria says that 2d Dritschel–Viudez equation is locally equiv-
alent to a Monge–Ampére equation with constant coefficients if and only if

{
�θ = 2c1
R = c2

In that case, for example for R > 0, we see that

ω + i
√

R � = du ∧ dv

with {
u = x − (c1 − ic2)z − θz + p

v = −(c1 + ic2)x + θx + r.

In other words, if θ = 2c1 and R = c2 > 0 then 2d Dritschel–Viudez equation is
equivalent to Laplace equation

θxx + θzz = 0

modulo the Legendre transform

F(x, z, p, r) = 1√
R

(x − c1z − θz, c2z,−c2x,−c1x + θx + r).

5.4.2 Underlying Hypersymplectic Geometry

Wewill apply to this equation a recent observation: if our f our -dimensionalmanifold
M , endowedwith theMonge–Ampère structure (�,ω) admits a Lagrangian fibration
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(main example: M is the cotangent bundle of a smooth 2d-manifold), then it exists
as a conformal split metric on M4.

When the corresponding Monge–Ampère equation is given by (5.3), this metric
is written as

g = C(dx)2 − 2Bdxdz + A(dz)2 + E/2(dpdx + drdz), (5.5)

Using this metric, we get an additional 2-form ω̂ defined by

ω̂(· , ·) = g(Aω· , ·) with ω(· , ·) = �(Aω· , ·)

In coordinates,

ω̂ = (−2AC + 2B2 + D
)

dx ∧ dz − Bdx ∧ dp − Cdx ∧ dr + Adz ∧ dp

+ Bdz ∧ dr − dp ∧ dr.

Introducing � = �√|R| , we get an hypersymplectic triple (�,ω, ω̂) satisfying

ω2 = −ω̂2 = ±�2,

ω ∧ ω̂ = ω ∧ � = ω̂ ∧ � = 0.

Equivalently, we obtain three tensors I , S, and T satisfying

I 2 = −1, S2 = 1, T 2 = 1

ST = −T S = −I,

T I = −I T = S,

I S = −SI = T .

Moreover, we have

dω̂ = −d

(
�θ

2

)
∧ �.

Hence, when�θ = 0, then ω and ω̂ are closed and satisfy ω2 = −ω̂2: they define
then an integrable product structure. Indeed, in the new coordinates:

X = ∫
R(x, z)dx, U = x − θz + p,

Z = z, V = z + θx + r.

we see that
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ω = dU ∧ dV − d X ∧ d Z

ω̂ = −(dU ∧ dV + d X ∧ d Z)

� = 1

R
(d X ∧ dU − Sd Z ∧ dU + Rd Z ∧ dV ) with S =

∫
Rzdx .

In other words, when θ is harmonic, a submanifold

L = {
(ψZ , Z , U, ψU ), (Z , U ) ∈ R

2
}

is a generalized solution of 2d-Dritschel Viudez equation if and only if

ψZ Z + RψUU = S.

5.4.3 2d-Diagnostic Equation of Dritschel–Viudez: Special
Choice of Constant Coefficients

In the following partial case, this diagnostic equationwhich corresponds to the choice

A = 1, B1 = B2 = 0, C = E = ε2, D = −�, (5.6)

becomes two-dimensional:

φxx + φzz + φxxφzz − φ2
xz = �. (5.7)

It describes a geostrophically balanced steady 2d flow which is closed to the QG
models described above.

It is interesting to observe that the corresponding effective form

ω = dp ∧ dx + dr ∧ dz + dp ∧ dr − �dx ∧ dz

has the Pfaffian P f (ω) = 1 + � . In the classical notations, the Pfaffian is nothing
but the Rellich’s parameter R = AC − DE − B2.

We denote as usually by � the dimensionless potential vorticity which relates to
the PV anomaly � as

� ≡ � − 1,

hence we had obtained the following meaning of the Pfaffian for 2d flow MAE

P f (ω) = �,
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or, in the case of the 2d diagnostic equation this metric depends on the potential θ

and on the PV anomaly � :

g = (1 − θxz)(dx)2 − (θzz − θxx )dxdz + (1 + θxz)(dz)2 + 1/2(dpdx + drdz).

5.4.4 Reduction to Constant Coefficients

Now, we will discuss a reducibility of this equation to a normal form with constant
coefficients.

Let us calculate the symplectic invariant of the (3.32) for the given θ and � and
check the criteria of ([9]). The direct computation gives that

dw = 1/2d(�θ) ∧ �.

The criteria ([9]) shows that if the given potential function θ is a harmonic (�θ =
0), then the 2d diagnostic equation of Dritschel and Viudez is reducible by a local
symplectomorphism to an MA equation with constant coefficients.

We can see that the Pfaffian (which is also is the Rellich invariant of the diagnostic
equation) in the case of harmonic potential θ is equal to 1 + � = �. This is exactly
the same value as it was in the above-mentioned 2d model with constant coefficients.

Example

It is interesting to study a “Legendre-dual” condition on the potential : hess(θ) = 1
provides us alsowith an exampleof reducible to constant coefficientsMAEdiagnostic
equation. The coefficient D in this case simplifies: D = 1 − � and the Pfaffian in
this case (like in the general 2d diagnostic equation) is equal to

P f (ω) = 1 + � − (�θ)2

4
= � − (�θ)2

4

If we suppose that the potential function θ(x, z) satisfies to conditions of the
famous Jorgens theorem ([4]), then we can assume that

θ(x, z) = αx2 + 2βxz + γ z2 + l,

where l = l(x, z) denotes linear and constant terms with constant

α, β, γ, αβ − γ 2 = 1/4.

The Laplacian value in this case is 2(α + γ ) and the Pfaffian is equal to � − (α +
γ )2 = �.

http://dx.doi.org/10.1007/978-3-030-17031-8_3
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5.4.5 Variation of the Potential and Hyper-Kähler Metrics in
4d

Another interesting class of exact solutions is given by variations of different partial
choices of the potential θ(x, z) which correspond to some different “geometries” in
4d.

We will start with some general facts.
Let us consider a 4d metric (5.5) and compare it with the following:

g = −2�qq(dx)2 + 4�pqdxdz − 2�pp(dz)2 + 4�pq(dpdx + dqdz), (5.8)

where � = �(x, z, p, q) is a (complex valued) function on the phase space T ∗M of
the initial 2d configuration base. We suppose in addition that � is a solution of the
following 4d MAE (so-called Plebanski second “Heavenly equation”.)

Hesspq� + �xp + �qz = �pp�qq − �2
pq + �xp + �qz = 0. (5.9)

The interest of this special choice of the metric is based on the fact that it is an
example of Hyper-Kähler metric in 4d.

There are many examples of such metrics and our idea is, starting from one of
it, to find a solution for the diagnostic MAE. We consider the most simple example
which can be reduced to a constant coefficient case (if the potential vorticity � is
constant). Then the corresponding MAE 2d diagnostic type equation reads as

(
φzzφxx − φ2

xz

) − 2�ppφxx − 2�pqφxz − 2�qqφzz + D = 0, (5.10)

where D denotes the “low-order” part which has no influence on the 4d (pseudo)-
metric. Its Pfaffian equals to

P f (ω) = Hesspq� − D = −(�xp + �zq) − D.

Now, starting with any given solution of 4d MAE (Plebansky Second Heavenly)
we can construct a 2d PDE with non-constant coefficients and sometimes we are
able to solve it or to say something about its solutions.

It follows that for the diagnostic 2d MAE, we should have

�pp = −1

2
(1 − θxz),

�qq = −1

2
(1 + θxz),

�pq = −1

4
(θzz − θxx ).
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First one can remark that in the case of 2d diagnostic MAE choice of the coeffi-
cients immediately means that �pq = 1

8 which implies in its own turn that

θxx − θzz = −1

2
.

The Eq. (5.9) has, in this case, the following form:

Hesspq� + �xp + �qz = 1

4
(1 − θ2

xz) − 1

64
+ �xp + �qz = 0. (5.11)

We have also the following compatibility conditions on the function � :

�xpp + �pqz = 0, �pqx + �qqz = 0. (5.12)

But �xpp = �pqz = �pqx = �qqz = 0 because of �pq = 1
8 .

Then, the Heavenly equation for the diagnostic metric (5.5) reads

(1 − θ2
xz) − 1

16
= 0 (5.13)

and θxz = ±
√
15
4 .

It immediately follows from the relations between the derivatives of � and θ that
θxxz = �ppx = 0 and θxzz = �qqz = 0.

The solution �(p, q, x, z) of the Eq. (5.13) is a quadratic in p and q :

� = αp2 + 2βpq + γ q2 + δ(x, z),

where

2α = �pp = −1

2
(1 − θxz) = 1

2
(1 ±

√
15

4
),

2γ = �qq = −1

2
(1 + θxz) = 1

2
(1 ∓

√
15

4
).

Hence

�(x, z, p, q) = 1

2
(1 ±

√
15

4
)p2 + �pq = 1

4
pq + 1

2
(1 ∓

√
15

4
)q2 + δ(x, z).

It immediately follows that the potential θ(x, z) is quadratic linear

θ(x, z) = Ax2 ±
√
15

4
xz + (A + 1

2
)z2 + l1x + l2z + l3
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and its Hessian can be easily expressed as

hessxz θ = A(A + 1

2
) − 15

16
.

The Eq. (5.10) becomes

(
φzzφxx − φ2

xz
) + (1 ±

√
15

4
)φxx − 1

4
φxz + (1 ∓

√
15

4
)φzz + A(A + 1

2
) − 15

16
− � = 0.

(5.14)

Pfaffian of the corresponding effective form is

P f (ω) = hesspq � − D = −(�xp + �zq) − D = −D = � − A(A + 1

2
) − 15

16
.

The Eq. (5.14) is equivalent to a linear and is reduced to elliptic or hyperbolic depend-
ing on the sign of � − A(A + 1

2 ) − 15
16 .

5.5 Some Examples of 3d-Geostrophic Models

We study in this section some examples of Monge–Ampère equations in three vari-
ables which come from some geostrophic models.

5.5.1 The Birkett and Thorpe Equation ([3])

This equation can be written as

1

f 3N 2
hess(u) + 1

f
(uxx + uyy + f 2

N 2
uzz) + 1

f N 2

{
(uxx + uyy)uzz − u2

xz − u2
yz

}

+ 1

f 3
(uxx uyy − u2

xy) = s

(5.15)
We assume that f and N are constant.
The effective form associated with is

ω = 1

f 3N2 dp ∧ dq ∧ dr + 1

f
(dp ∧ dy ∧ dz + dx ∧ dq ∧ dz + f 2

N2 dx ∧ dy ∧ dr)

+ 1

f N2 dp ∧ dy ∧ dr + 1

f N2 dx ∧ dq ∧ dr + 1

f 3
dp ∧ dq ∧ dz − sdx ∧ dy ∧ dz.
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One can check that the Hitchin pfaffian is positive:

λ(ω) = ( f + s)2

f 6N 4
.

So ω is the sum of two decomposable three forms when s + f 
= 0:

ω = 1

N F
( f dx + 1

f
dp) ∧ ( f dy + 1

f
dq) ∧ (Ndz + 1

N
dr) − ( f + s)dx ∧ dy ∧ dz.

and therefore (5.15) is equivalent to

hess(u) = N 2 f 3( f + s)

modulo the action of the Legendre transformed

F(x, y, z, p, q, r) = (x, y, z, p − f 2x, q − f 2y, r − N 2z).

It is worth mentioning that this equivalence is independent from s but the under-
lying real Calabi–Yau is integrable if and only if s is constant.

5.5.2 The Hoskins Equation ([8])

This equation originates in the study of potential vorticity in semi-geostrophic theory
and takes the form

1

f 2
(uxx + uyy) + 1

N 2
uzz − 1

f 4
(uxx − u2

xy) = 1. (5.16)

The associated effective form is

ω = 1

f 2
(dp ∧ dy ∧ dz + dx ∧ dq ∧ dz) + 1

N 2
dx ∧ dy ∧ dr − 1

f 4
dp ∧ dq ∧ dz

− dx ∧ dy ∧ dz.

One again, this form is the sum of two decomposable real forms:

ω = 1

N 2
dx ∧ dy ∧ dr − (dx − 1

f 2
dp) ∧ (dy − 1

f 2
dq) ∧ dz.

and (5.16) is then equivalent to

hess(u) = f 4N 2
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up the symplectomorphism

F(x, y, z, p, q, r) = (p, q, z,−x + f 2 p,−y + f 2q, r).

5.5.3 The McIntyre-Roulstone Equation ([12])

This equation originates from a study which seeks to derive more accurate approxi-
mations to the semi-geostrophic equations (i.e., models that resemble more closely
the underlying Navier–Stokes-based model) that share some of the elegant math-
ematical properties of semi-geostrophic theory. The equation for the vorticity of a
one-parameter family of models takes the form

1 + �u + (1 − c2) hessx,y(u) = ζ C

f
, (5.17)

where assume that c and f are constant, and c is the parameter that distinguishes
various asymptotic flow regimes. The corresponding effective form is

ω = dp ∧ dy ∧ dz + dx ∧ dq ∧ dz + dx ∧ dy ∧ dr

+ (1 − c2)dp ∧ dq ∧ dz + (1 − ζ C

f
)dx ∧ dy ∧ dz

and is still of real type:
λ(ω) = (1 − c2)2

Actually,

ω = dx ∧ dy ∧ (
dr + (β − 1

α
)dz

) + 1

α
(dx + αdp) ∧ (dy + αdq) ∧ dz

with {
α = 1 − c2

β = 1 − ζC

f

Note that the form dr + (β − 1
α
)dz is closed if and only if β = β(z). Under this

assumption, (5.17) is equivalent to

hess(u) = − 1

(1 − c2)3

up the symplectomorphism
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F(x, y, z, p, q, r) = (−αp,−αq, z, p + 1

α
q, q + 1

α
y, r −

∫ z

z0

(β(t) − 1

α
)dt).

5.5.4 The Snyder–Skamarock–Rotunno Equation ([16])

This equation is

1

qH G
φzz + φxx + φyy − 4R0 hessx,y φ − 3R2

0

qH G
hess(φ) = 0. (5.18)

The associated effective form is

ω = 1

qH G
dx ∧ dy ∧ dr + dp ∧ dy ∧ dz + dx ∧ dq ∧ dz − 4R0dp ∧ dq ∧ dz − 3R2

0
Q

dp ∧ dq ∧ dr.

Once again, the underlying geometry is real since the Hitchin paffian is positive:

λ(ω) = 4
R2
0

q2
H G

.

Therefore, ω is the sum of two decomposable 3-forms

ω = R2
0

2qH G
(
1

R0
dx − dp) ∧ (

1

R0
dy − dq) ∧ (

qH G

R0
dz + 3dr)

+ 16

R0
(
3

4
R0dp − 1

4
dx) ∧ (

3

4
R0dq − 1

4
dy) ∧ (−1

2
dz − R0

2qH G
dr).

Hence, (5.18) is equivalent to

hess(φ) = − R3
0

32qH G

modulo the symplectomorphism

F(x, y, z,p, q, r)

= (3R0x + p, 3R0y + q,− R0

qH G
z + r,

1

2
x + 1

2R0
p,

1

2
y + 1

2R0
q,−3

2
z + qH G

2R0
r).
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5.6 3d Rotating Stratified Flows—Dritschel–Viudez MAE

Let us consider the 3d- Dritschel–Viudez equation ([6])

E
(
�zz

(
�xx + �yy

) − �2
xz − �2

yz

)
+ A

(
�xx + �yy

)

+ 2B1�xz + 2B2�yz + C�zz + D = 0

with

A = 1 + �z B1 = 1
2�ϕ − �x B2 = 1

2�ψ − �y

C = 1 − �z D = �x�ϕ + �y�ψ − |∇�|2 − � E = 1

where ϕ andψ are potentials,� = ϕx + ψy and� is the dimensionless PV anomaly
(see details in [6]).

The associated primitive form is

ω = E(dx ∧ dq ∧ dr − dy ∧ dp ∧ dr) + A(dy ∧ dz ∧ dp − dx ∧ dz ∧ dq)

+ B1(dx ∧ dy ∧ dp + dy ∧ dz ∧ dr) + B2(dx ∧ dy ∧ dq − dx ∧ dz ∧ dr)

+ Cdx ∧ dy ∧ dr + Ddx ∧ dy ∧ dz

We can check directly that, independently of the coefficients,

λ(ω) = 0.

In other words, the Dritschel–Viudez equation is “degenerate” (the underlying
Monge–Ampère geometry is degenerated) and it is, at each point, equivalent to a
linear equation.

Consider the Rellich’s invariant R = AC − E D − B2
1 − B2

2 . As in the 2d case,
this parameter separates elliptic and hyperbolic cases.

Indeed, the non-zero eigenvalues of gω are:

λ1 = 2R

λ2 = S +
√

S2 − 4(1 + A2)R

λ3 = S −
√

S2 − 4(1 + A2)R

with S = R + 1 + A2 + B2
1 + B2

2 . Therefore,

1. if R > 0, then gω has signature (3, 0) and 3d-Dritsche–Viudez equation is elliptic,
equivalent in each point to �u = 0.
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2. if R < 0, then gω has signature (1, 2) and 3d-Dritsche–Viudez equation is hyper-
bolic, equivalent in each point to �u = 0.

This equivalence is actually explicit: consider the following isomorphism Pa of
Ta M in each point a:

Pa =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

A 0 0 0 0 0
0 A 0 0 0 0
B1 B2 −T 0 0 0
0 0 0 1 0 B1/T
0 0 0 0 1 B2/T
0 0 0 0 0 −A/T

⎞

⎟⎟⎟
⎟⎟⎟
⎠

with T = √|R|.
We can state from one hand side that P is a conformal symplectomorphism:

P∗� = α�.

Moreover, if R > 0 then

P∗ω = −A2T
(
dy ∧ dz ∧ dp − dx ∧ dz ∧ dq + dx ∧ dy ∧ dr + Ddx ∧ dy ∧ dz

)

and if R < 0 then

P∗ω = −A2T
(
dy ∧ dz ∧ dp − dx ∧ dz ∧ dq − dx ∧ dy ∧ dr + Ddx ∧ dy ∧ dz

)
.

Conclusion

If A et R are non zero and if there exists a local diffeomorphism F of M such
that P = Tm F (the condition which is automatically satisfies when the coefficients
appeared in P are constants), then our equation is

{
uxx + uyy + uzz + D = 0, if R > 0

uxx − uyy − uzz + D = 0, if R < 0

•! Comment

All these geostrophic models in three dimensions have a real underlying geometry
and are equivalent to the model

hess(φ) = cst.
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An explanation could be that these models are constructed from two- dimensional
models. It is possible that a more covariant approach would lead to a complex geom-
etry. But we have to note that two- dimensional models correspond to the the Laplace
equation which is also equivalent to the MAE hess(φ) = 1. It is then possible that
complex geometry only arises in even dimensions. It would be then necessary to
better understand this real Kähler structure and the corresponding real potential on
4n + 2-dimensional manifolds.
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Chapter 6
Gas Flow with Phase Transitions:
Thermodynamics and the Navier–Stokes
Equations

Anton A. Gorinov, Valentin V. Lychagin, Mikhail D. Roop
and Sergey N. Tychkov

6.1 Introduction

One-dimensional flows of gas or liquid are described by the following system of
Navier–Stokes equations (see for example, [1]):

⎧
⎨

⎩

ρ(ut + uux ) = −px + ηuxx ,

ρt + (ρu)x = 0,
Tρ(st + usx ) − kTxx − η(ux )

2 = 0.
(6.1)

Here ρ(t, x) is the density of the gas, u(t, x) is the velocity, p(t, x) is the pressure,
s(t, x) is the specific entropy, T (t, x) is the temperature, k and η are coefficients
of thermal conductivity and viscosity correspondingly, which are assumed to be
constants.

The first equation of system (6.1) corresponds to the momentum conservation
law of the medium, the second one is the continuity equation and the third one
is the equation of heat conduction, which represents the energy conservation law.
System (6.1) is incomplete. It consists of three equations for five unknown functions
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ρ(t, x), u(t, x), p(t, x), s(t, x), T (t, x). To make it complete we need two additional
equations describing thermodynamic properties of the gas—the equations of state.

The paper has the following structure. In Sect. 6.2, we give a geometrical descrip-
tion of the thermodynamic state. We consider the thermodynamic state as two-
dimensional Lagrangian manifold, which can be defined by two equations with
compatibility condition.

In Sect. 6.3, we study state equations and corresponding Lagrangian manifolds
for van der Waals gases and get its applicable domains with a description of phase
transitions.

In Sect. 6.4, we look for solutions as asymptotic expansions and analyse the zeroth
and the first-order approximations.

In Sect. 6.5, we show space-time domains corresponding to different phases of
the medium.

Essential computations in this paper were done in Maple with the Differential
Geometry package created by I. Anderson, the corresponding files could be found
in http://d-omega.org/appendices/.

6.2 Geometric Representation of Thermodynamic States

LetR5 be a5-dimensional contact space equippedwith the coordinates (p, ρ, e, T, s),
where e represents the specific energy and the other coordinates represent thermo-
dynamic quantities mentioned above, and the contact 1-form [2, 3]:

θ = 1

T
de − ds − p

Tρ2
dρ.

In our consideration, the thermodynamic state is a 2-dimensional Legendrian
manifold L ⊂ R

5(p, ρ, e, T, s), such that

θ |L = 0.

The last condition means that the first law of thermodynamics holds on the manifold
L .

If the specific entropy is a given function s = s(e, ρ), the condition θ |L = 0
leads to the following relations, that define 2-dimensional Legendrian manifold L ⊂
R

5(p, ρ, e, T, s):

s = s(e, ρ), p = −ρ2 sρ
se

, T = 1

se
. (6.2)

Since the equations of state usually include the specific energy and do not include
the specific entropy, we shall eliminate the specific entropy s from our considera-
tion. To this end, we consider the projection φ : R5 → R

4, φ : (ρ, p, e, T, s) �→
(ρ, p, e, T ) and symplectic space R4 equipped with structure 2-form

http://d-omega.org/appendices/
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� = dθ = 1

T 2
de ∧ dT − 1

Tρ2
dp ∧ dρ + p

T 2ρ2
dT ∧ dρ.

The restriction of the map φ on the Legendrian surface L is a diffeomorphism on
the image L = φ(L). The surface L ⊂ R

4 is a Lagrangian manifold. Equally, the
thermodynamic state can be considered as a 2-dimensional Lagrangian manifold
L ⊂ R

4(ρ, p, e, T ), i.e. �|L = 0.
Any 2-dimensional Lagrangian manifold L ⊂ R

4(ρ, p, e, T ) is defined by the
two equations {

f (ρ, p, e, T ) = 0,
g(ρ, p, e, T ) = 0,

(6.3)

and the condition that the surface L is Lagrangian can be written as:

[ f, g] = 0 on L, (6.4)

where [ f, g] is the Poisson bracket with respect to the symplectic form �, i.e.

[ f, g] � ∧ � = d f ∧ dg ∧ �.

In coordinates (ρ, p, e, T ) this bracket has the following form:

[ f, g] = Tρ2
(

∂ f

∂p

∂g

∂ρ
− ∂ f

∂ρ

∂g

∂p

)

+ T 2
(

∂ f

∂T

∂g

∂e
− ∂ f

∂e

∂g

∂T

)

+ T p

(
∂ f

∂p

∂g

∂e
− ∂ f

∂e

∂g

∂p

)

.

Condition (6.4) means the integrability of the following system of PDEs:

⎧
⎨

⎩

f
(
ρ,−ρ2 sρ

se
, e, 1

se

)
= 0,

g
(
ρ,−ρ2 sρ

se
, e, 1

se

)
= 0.

Thus, in what follows, by the system of Navier–Stokes equations we shall under-
stand system (6.1) together with two additional equations of state (6.3) satisfying
relation (6.4).

6.3 Van der Waals Gases

6.3.1 The Equations of State

The most important class of real gases is described by the van der Waals equation:

f (ρ, p, e, T ) = (p + aρ2)

(
1

ρ
− b

)

− RT, (6.5)
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herea is a characteristic of the gas responsible for the interaction between the particles
and b is particles’ volume, R is the universal gas constant. To find the second equation
we use the condition of compatibility, which is expressed in (6.4) and gives the
following result:

Proposition 6.1 Assuming that the specific energy is a function of density ρ and
temperature T

g(ρ, p, e, T ) = e − β(ρ, T ),

the second state equation for the van der Waals gas has to be in the form

β(ρ, T ) = −aρ + E(T ),

where E(T ) is a smooth function.

Proposition 6.2 Since the specific energy is the sum of the energy of the particles’
motion and the energy of their interaction, the function E(T ) has to be as follows

E(T ) = f R

2
T,

here f is a degree of freedom.

Thus, the equations of state for the van der Waals gas are

{
(p + aρ2)

(
1
ρ

− b
)

− RT = 0,

e − f RT
2 + aρ = 0.

(6.6)

To get the specific entropy s as function of the specific energy e and density ρ,
we integrate system (6.6) using (6.2). We have

s(e, ρ) = f R

2
ln(e + aρ) + R ln

(
1

ρ
− b

)

+ s0. (6.7)

Thus, formulae (6.6) and (6.7) define the thermodynamic state of van derWaals gases
or Legendrian manifold L .

6.3.2 Applicable Domains for the Van der Waals Gas

In this section we discuss domains where the van der Waals model is valid. We call
them applicable.

Let V = 1/ρ be a specific volume. First of all, we note that due to (6.5) we have
restriction for volumes to consider:
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V > b.

This condition is absolutely clear from the physical point of view: the volume occu-
pied by the gas cannot be less than the particles’ volume.

There is another condition for thermodynamic quantities to be applicable. The
Lagrangian manifold L is equipped with quadratic differential form κ|L , which has
to be negative [6]:

κ|L = d(T−1) · de + d(pT−1) · dV .

This allows to select domains on L where themodel of vanderWaals gas is applicable.
In case of van der Waals gases the form κ|L is following:

κ|L = − f R

2(e + a/V )2
de · de + f Ra

(e + a/V )2V 2 de · dV

+
(

f Ra

V 3(e + a/V )
− f Ra2

2V 4(e + a/V )2
− R

(V − b)2

)

dV · dV .

The form κ|L is negative if and only if its determinant is positive, which leads to the
following inequality:

eV 3 − a( f − 1)V 2 + 2ab f V − ab2 f > 0.

Using e = f RT/2 − a/V we get:

1

2
RT V 3 − aV 2 + 2abV − ab2 > 0. (6.8)

Let us introduce contact transformation

T̃ = T

Tcrit
, Ṽ = V

Vcrit
, p̃ = p

pcrit
, ẽ = e

ecrit
, s̃ = s

scrit
,

where Tcrit , Vcrit , pcrit , ecrit , scrit are critical parameters for van der Waals gases:

Tcrit = 8a

27Rb
, Vcrit = 3b, pcrit = a

27b2
, ecrit = a

9b
, scrit = 3R

8
.

Then inequality (6.8) can be written in dimensionless variables T̃ and Ṽ :

4Ṽ 3T̃ − 9Ṽ 2 + 6Ṽ − 1 > 0,

which defines the applicable domains of specific volume and temperature for the
van der Waals gas. They are shown in Fig. 6.1. The picture shows that the van der
Waals model is correct at any point (V, T ) over the critical one. The forbidden area
corresponds to phase transitions.
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Fig. 6.1 Applicable
domains for the van der
Waals gas. White area
corresponds to forbidden
volumes and temperatures

Fig. 6.2 Isotherm for the
van der Waals gas
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6.3.3 Phase Transitions

Phase transitions for the van der Waals gas can be described by means of Fig. 6.2.
Grey domains in this picture correspond to intermediate state. At points 1/ρ2 and
1/ρ1, phase transition starts and finishes correspondingly. To find these points, we
use the following condition of thermodynamic equilibrium, which claims that the
chemical potential of different phases of our system is the same:

μ(T0, p0, ρ1) = μ(T0, p0, ρ2) = μ0,

where T0 and p0 are the temperature and the pressure of phase transition. The expres-
sion for the chemical potential of gases is

μ = e − T s + p

ρ
,

and for van der Waals gases it can be expressed in terms of pressure p, temperature
T and density ρ:

μ = f RT

2
− ρa − T

(
f R

2
ln

(
f R

2
T

)

+ R ln

(
1

ρ
− b

))

+ p

ρ
.

Moreover, the equation of state of the gasmust be satisfied at the points (T0, p0, ρ1)

and (T0, p0, ρ2). As a result we obtain the following system of equations for ρ1 and
ρ2:

μ0 = f RT0
2

− ρ1a − T0

(
f R

2
ln

(
f R

2
T0

)

+ R ln

(
1

ρ1
− b

))

+ p0
ρ1

, (6.9)

μ0 = f RT0
2

− ρ2a − T0

(
f R

2
ln

(
f R

2
T0

)

+ R ln

(
1

ρ2
− b

))

+ p0
ρ2

, (6.10)

p0 − p0ρ1b + aρ2
1 − abρ3

1 − ρ1RT0 = 0, (6.11)

p0 − p0ρ2b + aρ2
2 − abρ3

2 − ρ2RT0 = 0. (6.12)

Eliminating μ0 and p0 from (6.9)–(6.12) we get the following equations:

(ρ1 − ρ2)(RT0 − a(ρ1 + ρ2)(bρ1 − 1)(bρ2 − 1)) = 0,

ρ1RT0(bρ2 − 1) ln

(
ρ1(1 − bρ2)

ρ2(1 − bρ1)

)

+ (ρ1 − ρ2)(aρ1(1 − bρ2) + abρ22 + RT0 − aρ2) = 0.

There is the trivial solution ρ1 = ρ2, which is out of interest, because the temperature
is assumed to be under the critical value. In general case the solution is given by
Fig. 6.3. We can see that the straight line and the points C and D correspond to
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Fig. 6.3 Solution

Fig. 6.4 Dynamics of the solution

trivial solution ρ1 = ρ2. The two other points A and B of intersection of the curves
correspond to solution for ρ1 and ρ2. Since we have not specified which density is
greater, the points A and B define the same solution. If we change the temperature
of phase transition T0, we can see that values ρ1 and ρ2 become closer and there is
only one solution ρ1 = ρ2 when T0 = Tcrit (Fig. 6.4).
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6.4 Asymptotic Expansions for Solution

6.4.1 Zeroth-Order Approximation

Recall that we consider the system of equations:

⎧
⎨

⎩

ρ(ut + uux ) = −px + ηuxx ,

ρt + (ρu)x = 0,
Tρ(st + usx ) − kTxx − η(ux )

2 = 0,
(6.13)

extended by the equations of state (Legendrian manifold L):

⎧
⎪⎪⎨

⎪⎪⎩

s(e, ρ) = f R
2 ln(e + aρ) + R ln

(
1
ρ

− b
)

+ s0,

(p + aρ2)
(

1
ρ

− b
)

− RT = 0,

e − f RT
2 + aρ = 0.

(6.14)

We are looking for asymptotical solution of system (6.13)-(6.14) with respect to van
der Waals parameters a and b:

u(t, x) = u0(t, x) + au1(t, x) + bu2(t, x) + · · · ,

ρ(t, x) = ρ0(t, x) + aρ1(t, x) + bρ2(t, x) + · · · ,

e(t, x) = e0(t, x) + ae1(t, x) + be2(t, x) + · · · .

For simplicity, we shall continue to use u(t, x), ρ(t, x), e(t, x) instead of u0(t, x),
ρ0(t, x), e0(t, x) and get the following equations which describe the zeroth-order
approximation:

ρ(ut + uux ) + 2

f
(ρe)x − ηuxx = 0, (6.15)

ρt + ρxu + ρux = 0, (6.16)

ρ(et + uex ) − 2

f
e(ρt + uρx ) − η(ux )

2 − 2k

R f
exx = 0. (6.17)

This system corresponds to equations (6.1) for the ideal gas. It defines a smooth
submanifold E ⊂ J 2(π), here π is a 3-dimensional bundle [4, 5]:

π : R5 → R
2, π : (t, x, u, ρ, e) �→ (t, x).

Proposition 6.3 The symmetry algebra g of the system E is solvable and generated
by the following vector fields on the space J 0(π):
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Table 6.1 The Lie algebra structure

Field X1 X2 X3 X4 X5

X1 0 0 X2 X1 0

X2 0 0 0 0 X2

X3 −X2 0 0 −X3 X3

X4 −X1 0 X3 0 0

X5 0 −X2 −X3 0 0

X1 = ∂t , X2 = ∂x , X3 = t∂x + ∂u,

X4 = t∂t + ρ∂ρ − u∂u − 2e∂e,

X5 = x∂x − 2ρ∂ρ + u∂u + 2e∂e,

The Lie algebra structure is represented in Table6.1. The table shows that the Lie
algebra g is solvable:

g(1) = [g, g] = 〈X1, X2, X3〉

g(2) = [g(1), g(1)] = 〈X2〉, g(3) = [g(2), g(2)] = 0.

We are going to find solutions of system (6.15)–(6.17) invariant with respect to a
one-dimensional subalgebra of g and alsowewant to get the reduced ordinary system
having as many symmetries as possible. Since the symmetries in the normalizer
of one-dimensional subalgebra h of the Lie algebra g are the symmetries of the
reduced equations, we compute the normalizers of all admissible one-dimensional
subalgebras in g:

NX = { Y ∈ g | [X,Y ] = λX }, where λ is a parameter.

One may show that in our case one-dimensional subalgebra

h = 〈α2X2 + α3X3 + α5X5〉,

where α j are constants, has the biggest normalizer

Nh =
〈
α2

α3
X1 + α3

α5
X3 + X5,−α3

α5
X3 + X4, X1 − α3

α5
X2

〉

.

The h-invariant solution of system (6.15)–(6.17) has the following form:



6 Gas Flow with Phase Transitions: Thermodynamics and the Navier–Stokes … 219

e(t, x) = (α3t + α5x + α2)
2F1(t), ρ(t, x) = F2(t)

(α3t + α5x + α2)2
,

u(t, x) = (α3t + α5x + α2)F3(t) − α3

α5
,

and the reduced ordinary equations are

F ′
3 + α5F

2
3 = 0, −F ′

2 + α5F2F3 = 0, (6.18)

F ′
1F2R f − 2RF1F

′
2 − α5

(
F1(4kα5 − 2R( f + 2)F2F3) + R f ηα5F

2
3

) = 0.
(6.19)

After the integration of these equations we get the following:

ρ(t, x) = C2(α5t + C1)

(α3t + α5x + α2)2
, u(t, x) = α3t + α5x + α2

α5t + C1
− α3

α5
, (6.20)

e(t, x) = (α3t + α5x + α2)
2
(

α5R f η

2(RC2 − 2kα5)(α5t + C1)2
+ C3(α5t + C1)

−2− 2
f + 4kα5

C2R f

)

,

(6.21)
where C1, C2 and C3 are constants.

This solution represents the zeroth-order approximation of the solution for the van
der Waals gas. Since the flows of vector fields X2 and X3 are the shift and Galilean
transformation correspondingly, their influence on the solution is not crucial:Galilean
transformation makes the frame of reference move with constant velocity and the
shift along the x-axis just changes the location of the origin. Assuming that our frame
of reference does not move and the point x = 0 corresponds to the origin we shall
take α3 = α2 = 0, α5 = 1 in (6.20)–(6.21).

6.4.2 First-Order Approximation

The equations for the first-order corrections u1(t, x), ρ1(t, x) and e1(t, x) can be
written in the following form:

⎛

⎝
u1
ρ1

e1

⎞

⎠

t

= A(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

xx

+ B(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

x

+ C(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠ + D(t, x), (6.22)

here matrixes A, B, C and D depend on the functions u(t, x), ρ(t, x) and e(t, x) of
the zeroth-order approximation found in Sect. 6.4.1:
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A(t, x) = 1

ρ

⎛

⎝
η 0 0
0 0 0
0 0 2k

f R

⎞

⎠ , B(t, x) = −
⎛

⎝

u 2e
fρ

2
f

ρ u 0
2e
f − 2ηux

ρ
0 u

⎞

⎠

C(t, x) = −
⎛

⎜
⎝

ux
2Rex+ f R(ut (t,x)+uux )

ρ f R
ρx
ρ f

ρx ux 0
ex

2Reux+ f R(et+uex )
ρ f R − 2(ρt+uρx )

ρ f

⎞

⎟
⎠ , D(t, x) =

⎛

⎜
⎝

2ρx

(
1 − 2

f

)

0
2kρxx+ρR(ρt+uρx )(2− f )

ρ f R

⎞

⎟
⎠

System (6.22) is linear non-homogeneous system of partial differential equations and
its general solution can be represented as the sum of general solution of the corre-
sponding homogeneous system (D = 0) and particular solution of non-homogeneous
system.

Let us consider homogeneous system:

⎛

⎝
u1
ρ1

e1

⎞

⎠

t

= A(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

xx

+ B(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠

x

+ C(t, x)

⎛

⎝
u1
ρ1

e1

⎞

⎠ ,

Since its coefficients depend on the zeroth-order solution, which are invariant with
respect to X5, we are looking for the solution in the form representing the eigenfunc-
tions of differential operator x∂x = π∗(X5):

ρ1(t, x) = R(t)xl , e1(t, x) = E(t)xm, u1(t, x) = U (t)xn.

The numbers l, m and n satisfy the linear non-homogeneous system:

⎧
⎨

⎩

m − l = 4,
n − l = 3,
m − n = 1.

Its general solution is

⎛

⎝
l
m
n

⎞

⎠ =
⎛

⎝
l

4 + l
3 + l

⎞

⎠ =
⎛

⎝
0
4
3

⎞

⎠ + l

⎛

⎝
1
1
1

⎞

⎠ .

Time-dependent part of the first-order corrections U (t), R(t) and E(t) satisfies the
following ODE system: ⎛

⎝
U̇
Ṙ
Ė

⎞

⎠ = 
(t)

⎛

⎝
U
R
E

⎞

⎠ .

Matrix 
(t) has the following form:
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Fig. 6.5 Phase picture. The
thick curve at the plane (t, x)
separates domains with
different phases. This allows
to define which phase
corresponds to the medium
at given point x and at given
time moment t


(t) =
⎛

⎜
⎝

η(3+l)(2+l)−Ḟ2(4+l)
F2

−2(2+l)F1
f F2

− 2(2+l)
f

−(l + 1)F2 −(l + 1)F3 0
2(F3η(3+l) f −F1F2(l+3+ f ))

f F2
− f Ḟ1+2F1F3( f +1)

f F2
2k(4+l)(3+l)−RḞ2(2+ f (4+l))

f RF2

⎞

⎟
⎠ ,

where functions F1(t), F2(t) and F3(t) are the solutions of reduced system (6.18)–
(6.19).

If either C3 = 0 or we consider gases with zero viscosity η = 0, this system can
be integrated in the same way as it was done for the spatial part, because in this case
components of the matrix 
(t) are the homogeneous functions in t .

6.5 Phase Transitions Along the Gas Flow

In this section, we describe space-time domains corresponding to different phases
of the medium. Since we have a solution of system (6.13)–(6.14), we can compute
the corresponding set of points (t, x) of the same temperature T0. In Sect. 6.3 we
have developed a method that allows (for a given value of temperature T0) to define
the densities ρ

(0)
1 and ρ

(0)
2 of liquid and gas phases respectively, between which the

phase transition occurs. The corresponding points can be found on the plane (t, x)
as well. Changing the temperature, we get a set of points (ρ

(i)
1 , ρ

(i)
2 ), which form a

curve on the plane (t, x). This curve separates different phases of the medium. The
result of this procedure for the solution obtained in Sect. 6.4 is shown in Fig. 6.5.
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The curves labelled by T1 and T2 are the isotherms. The red curve corresponds to
the critical isotherm, under which we have no phase transitions. For a given spatial
coordinate x , our medium passes through three states while the time is running: gas,
intermediate state and liquid.

This picture is an approximation for the real one. It can be refined by computation
of further series of asymptotics.
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Chapter 7
Differential Invariants in
Thermodynamics

Eivind Schneider

7.1 Introduction

The fundamental thermodynamic relation can be formulated as dE − (TdS −∑n
i=2 pidq

i ) = 0, where E is the internal energy, S the entropy, and T the tem-
perature while qiand pi are additional extensive and intensive variables, respec-
tively. In terms of information gain I which is up to an additive constant equal to
−S, it can be written as dE + Td I + ∑

pidqi = 0. Geometrically, we should in-
terpret this to mean that a thermodynamic state is a Legendrian manifold, integral
to a contact distribution. Let V be a vector space. We consider the contact 1-form
given by du − ∑n

i=1 λi dxi on V × R × V ∗ (with coordinates xi , u, λi ). By taking
λ1 = −T−1, x1 = E, λi = −T−1 pi , xi = qi , we can relate this to the 1-form above,
which means that the Legendrian manifold is given locally over a neighborhood
D ⊂ V by

{u = I (x), λi = ∂xi I (x) | x ∈ D} ⊂ V × R × V ∗.

In Sect. 7.3, we describe two Lie group actions that appear naturally on the space
V × R × V ∗. They arise from the fact that we may change the basis in V and change
units of information. After that, in Sect. 7.4, we approach the equivalence problem
of thermodynamic states under these Lie group actions by computing differential
invariants of the information gain function. In Sect. 7.5, we discuss our results in
the context of gases. But first, we outline how these Legendrian manifolds naturally
appear in the context of measuring random vectors (following [5]), as this will help
us find the natural Lie group actions acting on them.
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7.2 Geometry of Thermodynamics

The process of measuring random vectors in a vector space V can be thought about
as a map X : (�,A, q) → V from a probability space to V . This will depend on the
probability measure q, which we will change in order to measure different vectors.
Assume that the expected value in V is 0, i.e., E(X) = ∫

�
Xdq = 0. We restrict to

finite-dimensional vector spaces here, even though the Bochner integral lets us treat
more general Banach spaces (see [5]). Note however that the linear structure on V is
important, and this will play a role later when we consider Lie group actions on V .

If we want to measure a vector x ∈ V , we choose a measure p different from q,
but equivalent to it. Applying the Radon–Nikodym theorem tells us that there is a
function ρ such that dp = ρdq and

∫

�

ρdq = 1,
∫

�

ρXdq = x .

These conditions do not determine ρ uniquely. We define the information gain
I (p, q) = ∫

�
ρ ln ρdq, and add the requirement that ρ minimizes I (p, q). This is

the principle of minimal information gain.
As a result (see [5]),we getρ = 1

Z(λ)
e〈λ,X〉 withλ ∈ V ∗ where Z(λ) = ∫

�
e〈λ,X〉dq

is called the partition function. Due to
∫
�

ρXdq = x , we get dλZ = Z(λ)x . Thus, if
wedefine H(λ) = − ln Z(λ), we endupwith x = −dλH . And,we also get I (p, q) =
H(λ) − 〈λ, dλH〉 = H(λ) + 〈λ, x〉. Assuming that x = −dλH has a unique solution
λ(x), we may write I = I (x) = H(λ(x)) + 〈λ(x), x〉. Then, we get dx I = λ, where
the functions H and I are related by H = I + 〈λ, x〉.

Now, let xi be coordinates on the vector space V and λi be the dual coordinates on
V ∗. On the spaceV × V ∗, we have the natural symplectic formω = ∑n

i=1 dλi ∧ dxi .
The function H(λ) determines a submanifold LH = {xi = − ∂H

∂λi
} ⊂ V × V ∗ which

is Lagrangian with respect to ω, meaning that ω|LH = 0.
The Lagrangian manifold LH ⊂ V × V ∗ can be extended to a manifold L̃ H ⊂

V × R × V ∗. Let u be the coordinate on R. Then, we get a submanifold in V × R ×
V ∗ which is locally described by the function I over a neighborhood D ⊂ V :

L̃ H = {u = I (x), λi = ∂xi I (x) | x ∈ D} ∈ V × R × V ∗.

Thus, the principle of minimal information gain leads to a submanifold in V × R ×
V ∗ which is Legendrian with respect to the 1-form θ = du − ∑

λi dxi .
Conversely, one can ask whether it is possible to reconstruct I , H , and Z from

any Legendrian manifold L̃ ⊂ V × R × V ∗. This is the case if the symmetric 2-
form (

∑
dλi dxi )|L̃ is positive definite, where the product is the symmetric one. By

starting with such a Legendrian manifold L̃ , one can recover the functions

I = u|L̃ , H = I − 〈λ, x〉|L̃ , Z = e−H .
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If L̃ is givenby I as above, the symmetric formcanbewritten as
∑

i, j
∂2 I

∂xi ∂x j dxi ⊗ dx j .

7.3 Equivalence of Thermodynamical Systems

We start by describing two different Lie group actions arising naturally from the set
up above, and thereby defining what it could mean for two thermodynamic states to
be equivalent.

Affine Action

Since the choice of basis on V is arbitrary, we consider the Legendrian manifold
L̃ up to linear transformations on V × V ∗. In addition, since the point x = 0 have
no special significance, we add n translations to GL(V ) and obtain the affine group
Aff(V ) = V � GL(V ) on V . After choosing a basis, the affine action on V × R ×
V ∗ is given by (xi , u, λk) 
→ (

∑
aij x

j + ci , u,
∑

blkλl) where the matrix (bij ) is the
transpose of (aij )

−1. The corresponding Lie algebra of vector fields is spanned by
xi∂x j − λ j∂λi and ∂xi . Notice that this action does not alter the value of I (or H ) at
a point.

Scaling

In addition to changing basis, we may change the unit of information. The unit
of information appears as the base of the logarithm we use, which in Sect. 7.2
was chosen to be e. Let Za(λa), Ha(λa), and Ia(xa) be defined in a way similar
to Z(λ), H(λ), I (x) above but with a as the base of the logarithm instead of e, and
let a = eb. The functions in the new units are related to the old ones in the following
way.

Za(λa) = ∫
�
a〈λa ,v〉dq = ∫

�
e〈bλa ,v〉dq = Z(bλa)

Ha(λa) = − loga Za(λa) = − loga Z(bλa) = − ln Z(bλa)/b = H(bλa)

b

Ia(xa) = Ha(λa) + 〈λa, xa〉 = H(bλa)+〈bλa ,xa〉
b = I (xa)

b

In other words, we have the scaling transformation (x, u, λ) 
→ (x, bu, bλ) on V ×
R × V ∗. Denote by G0 the Lie group of such transformations. The corresponding
infinitesimal action is given by

∑
λi∂λi + u∂u .

Remark 7.1 A natural question is where we allow b to take its values. We could
restrict to b > 0, or to b �= 0. We will discuss this in more detail when we compute
the differential invariants of these Lie group actions.
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7.4 Differential Invariants

The Legendrian manifold L̃ (the thermodynamic state) is locally determined by the
information gain function I on V . Wewill compute differential invariants for I under
the two Lie group actions Aff(V ) and G0 × Aff(V ). We consider I as local a section
of the trivial bundle V × R on which we continue to use coordinates x1, . . . , xn, u.
In order to study the orbit space of such sections under the action of these Lie groups,
we look at their prolonged action on the jet bundles J k(V ) → V × R = J 0(V ) (we
will use the simplified notation J k).

Let xi , uσ be canonical coordinates on J k where 0 ≤ |σ | ≤ k for the multi-index
σ = (i1, ..., in), i j ≥ 0. For example, when n = 2 we have coordinates xi , ui j on J 2,
with 0 ≤ i + j ≤ 2 and i, j ≥ 0. For |σ | = 0, we will also use the notation uσ = u.
The section u = I (x) on V × R prolongs to a section on J k given by u = I (x), uσ =
∂ |σ |
∂xσ I (x). We denote this prolongation by j k(I ). Since diffeomorphisms on V × R

transform sections of V × R, they lift naturally to J k . Thus, we can consider the
action of the aforementioned Lie groups on J k . In fact we already described their
action on J 1 since J 1 can be naturally identified with V × R × V ∗.

Differential invariants are functions on J k that are constant on the orbits of the Lie
group actions. For transitive and algebraic Lie group actions, the global Lie–Tresse
theorem [4] guarantees that the algebra of rational differential invariants separates
orbits in general position in J∞, and that it is finitely generated. Since Aff(V ) acts
transitively on the base V , and not at all along the fiber, it is clear that we also
in this intransitive case can separate orbits by rational invariants (the algebra of
differential invariants for the Aff(V )-action can be gotten from that of G0 × Aff(V )

by adding theG0 × Aff(V )-invariant u). Formore thorough treatments of jet bundles
and differential invariants, we refer to [2, 3, 6].

For the Lie groups Aff(V ) and G0 × Aff(V ), we give a complete description of
their algebras of rational differential invariants.

7.4.1 Differential Invariants Under Aff(V )

In order to describe thefieldof differential invariants,we follow [1],where differential
invariants under the GL(V )-action are found.

Theorem 7.1 The horizontal symmetric forms αk = k!∑|σ |=k
uσ

σ ! dx
σ are Aff(V )-

invariant, for k ≥ 0.

From these symmetric forms, we may construct (rational) scalar differential in-
variants in the following way. First, α0 = u is a scalar differential invariant. The sym-
metric 2-form α2 is nondegenerate for points in general position in J 2, so we may
use it to construct the vector v1 = α−1

2 (α1). By using this vector, we may construct
a new symmetric 2-form α1,3 = iv1α3. We can use α2 to turn α1,3 into an operator
A : T → T . For a point in J 3 in general position, the vectors vk = Ak−1(v1) for
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k = 1, . . . , n are independent and thus define a frame. Expressing αk in terms of
vk gives us scalar differential invariants from their coefficients. In other words, the
functions αk(vi1 , . . . , vik ) are differential invariants. Remark that all these differen-
tial invariants will be rational functions on J k , and affine on the fibers of J k → J 3.
In particular, we get only two independent differential invariants on J 2, given by α0

and α1(v1).
This way of generating differential invariants may not be themost convenient one.

Another way to generate the field is to use invariant derivations and a finite number
of differential invariants, in accordance with the Lie–Tresse theorem. As invariant
derivations, we can take v1, . . . , vn . They are of the form

∑
αi Dxi , where Dxi are

total derivatives and αi are functions on J 3 (and on J 2 for v1).

Theorem 7.2 The field of differential invariants are generated by the invariant
derivations v1, . . . , vn together with the first-order invariant α0 = u, the second-
order invariant α1(v1), the third-order invariants α3(vi1 , vi2 , vi3), and the fourth-
order invariants α4(vi1 , vi2 , vi3 , vi4).

It is not difficult to see that this set of invariants is sufficient for generating all
differential invariants of the higher order. However, we do not necessarily need all
of them.

The two-dimensional case

We take a closer look at the case when V is two-dimensional, as they are particular
important when we will consider gases. We have the first-order invariant α0 = u and
the second-order invariant

α1(v1) = u210u02 − 2u10u01u11 + u201u20
(u20u02 − u211)

.

The invariant derivations are given by

v1 = 1
u20u02−u211

((u10u02 − u01u11)Dx1 + (u01u20 − u10u11)Dx2) ,

v2 = 1
(u20u02−u211)

3

(
(

−(u10u02 − u01u11)(3u10u11u02 − 2u01u20u02 − u01u211)u21+(u10u11 − u01u20)(3u10u11u02 − u01u20u02 − 2u01u211)u12+u02(u10u02 − u01u11)2u30 − u11(u10u11 − u01u20)2u03)Dx1

+((u10u02 − u01u11)(u10u20u02 + 2u10u211 − 3u01u20u11)u21
−(u10u11 − u01u20)(2u10u20u02 + u10u211 − 3u01u20u11)u12
−u11(u10u02 − u01u11)2u30 + u20(u10u11 − u01u20)2u03)Dx2

)
.

In this case, the four third-order differential invariants α3(vi1 , vi2 , vi3) are indepen-
dent, and together with v1, v2, and α1(v1), they generate the algebra of differential
invariants.
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Note that when L̃ is the Legendrian manifold corresponding to the information
gain function I we have, in coordinates, (

∑
dλi dxi )|L̃ = ∑

Ixi x j dxi ⊗ dx j = α2|I .
In particular, since we require α2 to be a definite symmetric 2-form, we may find dif-
ferential invariants from the curvature tensor of this 2-form. For example, the Ricci
scalar is a third-order differential invariant. Such invariants are, however, invariant un-
der muchmore general transformations, so they don’t generate all Aff(V )-invariants.
What’s more, they will not be invariant under G0 × Aff(V ).

7.4.2 Differential Invariants Under G0 × Aff(V )

Now, we consider the action by the Lie group G0 × Aff(V ). It acts on V × R by
(b, A) · (x, u) 
→ (Ax, bu). We mentioned previously that we have a choice for the
G0-parameter b, sincewemay take it from eitherR \ {0} or (0,∞). This corresponds
to a = eb in (0,∞) \ {1} or (1,∞), respectively. Here, wewill stick to the first choice
R \ {0}, with the main reason that this gives the Zariski closure of the other option.
The theorems we have for the existence of rational invariants separating orbits hold
for algebraic (Zariski-closed) groups. However, the structure of both orbit spaces on
J k should be clear as soon as we understand one of them. Also, the obtained orbit
space will be the same as that of positive I ’s under the action of the topologically
connected component of the Lie group (not containing u 
→ −u.

In order to describe the field of differential invariants we reuse ideas from the
previous section. The symmetric forms αk are scaled by the R

∗-action. If we modify
them to βk = αk/α0, for k ≥ 1, we obtain G0 × Aff(V )-invariant symmetric forms.
By using these instead of αk , we can generate the algebra of differential invariants
in exactly the same way as we did in the previous section. Invariant vectors can be
constructed from βk in exactly the same way as above (from αk), and they will in
fact be the exact same vectors vi as before.

Theorem 7.3 The field of differential invariants are generated by the invariant
derivations v1, . . . , vn together with the second-order invariant β1(v1), the third-
order invariants β3(vi1 , vi2 , vi3), and the fourth-order invariants β4(vi1 , vi2 , vi3 , vi4).

The two-dimensional case

When V is two-dimensional, we have the second-order invariant

β1(v1) = u210u02 − 2u10u01u11 + u201u20
(u20u02 − u211)u

.

The invariant derivations from the previous section are still invariant under the current
Lie group action. We have the relations β3(vi1 , vi2 , vi3) = α3(vi1 , vi2 , vi3)/α0. These
four invariants are thus also independent, and together with v1, v2, and β1(v1), they
generate the algebra of differential invariants.
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7.5 Application to Gases

We explain how we can use differential invariants in order to distinguish gases under
the Lie group actions considered above. We use the ideal gas, and the van der Waals
gases as examples. In order to keep this chapter concise, we do not go into the detailed
physics but instead refer to [5] for more details about gases.

The simplest gases can be described as Legendrian manifolds of the contact form
θ = du − (−T−1)dε − (−pT−1)dv where T is temperature, p is pressure, v is
specific volume, and ε is specific energy. We consider this as a contact form on
V × R × V ∗ where V is a two-dimensional vector space. In order to relate it to our
formulas above, we let x1 = ε, x2 = v (and λ1 = −T−1, λ2 = −pT−1).

7.5.1 Distinguishing Gases

Integral manifolds of θ are locally determined by the information gain function I .
We can use the differential invariants from above to determine when two different
Legendrian manifolds of this type are equivalent under the groups Aff(V ) and G0 ×
Aff(V ), respectively.

We outline first how to do it for the Aff(V )-action. For a function f on J k , we
denote by f |I the restriction of f to the section u = I (x), i.e., f |I = f ◦ j k(I ).
For a point in general position in J 3, the differential invariants ξ = α1(v1) and
η = α3(v1, v1, v1) will be horizontally independent, meaning that d̂ξ ∧ d̂η �= 0.
Here, d̂ denotes the horizontal differential, which can be defined in coordinates
by d̂ f = Dx1( f )dx1 + Dx2( f )dx2, so that (d̂ f )|I = d( f |I ). Thus for generic I ,
we have d(ξ |I ) ∧ d(η|I ) �= 0, so ξ |I and η|I can be taken as local coordinates on
V . The four invariants hi j = α3(vi , v j , v2) and h0 = α0 may also be restricted to
I , and the functions h0|I , hi j |I on V may be written in terms of ξ |I and η|I . The
four functions h0|I (ξ |I , η|I ), hi j |I (ξ |I , η|I ) determine the equivalence class of the
Legendrian manifold given by I .

To check equivalence under the G0 × Aff(V )-action, we use the invariants ξ̃ =
ξ/h0, η̃ = η/h0, h̃i j = hi j/h0 instead, and the equivalence class of I is determined
by the three functions h̃i j |I (ξ̃ |I , η̃|I ).
Remark 7.2 The functions h̃i j |I (ξ̃ |I , η̃|I ) are not arbitrary functions. They must
satisfy a system of differential equations defined by the differential syzygies in the
algebra of differential invariants.

7.5.2 Ideal Gas

As our first example we take the ideal gas, which is defined by the state equations
pv = RT and ε = n

2 RT where n counts the degrees of freedom. As shown in [5],
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they give the following information gain function:

I = −R ln
(
ln(v) + n

2
ln(ε)

)
+ C = −R ln

(
ln(x2) + n

2
ln(x1)

)
+ C

We look at the differential invariants found above restricted to the section u = I .
Wefirst consider theAff(V )-invariants.Wehave ξ |I = R(n + 2)/2, η|I = R(n +

2). These are constant, so the ideal gas lies in fibers over the singular set in J 3 deter-
mined by the equation d̂ξ ∧ d̂η = 0. The functions hi j |I are also constant multiples
of R(n + 2). The derivations v1 and v2 are both constant multiples of x1∂x1 + x2∂x2
on the ideal gas. The only nonconstant function we get from the invariants is h0|I .

If we consider G0 × Aff(V )-invariants instead, we still have (d̂ ξ̃ ∧ d̂η̃)|I = 0,
even though ξ̃ |I , η̃|I are not constant. Thus the ideal gas is a singular Legendrian
manifold, also with respect to this Lie group action.

7.5.3 Van der Waals Gas

The state equations for van der Waals gases are
(
p + a

v2

)
(v − b) = RT and ε =

n
2 RT − a

v
, and their information gain function is given by

I = −R

(

(v − b)
(a

v
+ ε

)n/2
)

+ C = −R

(

(x2 − b)
( a

x2
+ x1

)n/2
)

+ C.

For van der Waals gases, we have (d̂ξ ∧ d̂η)|I �= 0, so we can use the differential
invariants above to distinguish them, and it is not difficult to find the functions
hi j |I (ξ |I , η|I ) and h0|I (ξ |I , η|I ):

h11 = 1
4R3n(Rn−2 ξ)

(
n2 (2 − n) (nξ − 2 ξ + 4 η) R4

+8 n
(((

n2 − n − 1
)
ξ + 2 nη

)
ξ − (ξ − η)2

)
R3

−8
((
3 n2 + 2 n + 2

)
ξ + 2 nη

)
ξ 2R2 + 32 ξ 4 (n + 1) R − 16 ξ 5

)

h12 = 1
4nR4(Rn−2 ξ)2

((
30 n3ξ 3 − 20 n2 (2 ξ − η) ξ 2

−8 n
(
4 ξ 2 − ξη + 4 η2

)
ξ − 16 ξ 3 + 24 ξ 2η − 32 ξη2 + 8 η3

)
R4

+ (−160 n3ξ 4 + 32 n
(
2 ξ 2 + ξη + 2 η2

)
ξ 2 + 64 ξ 3η

)
R3

+16
(
15 ξn2 + 5 (2 ξ − η) n + 4 ξ − 8 η

)
ξ 4R2

−64
(
3 nξ 6 + 2 ξ 6 − ξ 5η

)
R + 64 ξ 7

)
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h22 = 1
16n2R5(Rn−2 ξ)3

(
(2 − n)3 n5 (3 nξ − 6 ξ + 8 η) R8

+24 (n − 2) n4
(
2 n3ξ2 − n2 (7 ξ − 3 η) ξ + n (2 ξ + η) (2 ξ − 3 η)

+4 ξ2 − 4 ξη + 2 η2
)
R7 − 16 n3

(
21 n4ξ3 − n3 (73 ξ − 12 η) ξ2

+n2
(
42 ξ3 − 18 ξ2η − 33 ξη2

)
+

(
36 ξ3 + 12 ξη2 + 12 η3

)
n

+8 ξ3 − 24 ξ2η + 36 ξη2 − 8 η3
)
R6

+32 n2
(
42 n4ξ4 − n3 (81 ξ + 5 η) ξ3 + n2

(
−18 ξ4 − 12 ξ3η − 42 ξ2η2

)

+12 n (2 η + ξ) ξ
(
2 ξ2 − 2 ξη + η2

)
+ 40 ξ3η − 36 ξ2η2 + 24 ξη3 − 4 η4

)
R5

−96 n
(
35 n4ξ3 − 10 n3 (3 ξ + 2 η) ξ2 − 4 n2

(
7 ξ2 + 8 ξη + 3 η2

)
ξ

−8 (ξ + η) (2 ξ − η) ηn + 8 ξ (ξ − η)2
)
ξ2R4

+128 ξ4
(
42 n4ξ2 − 11 ξ (ξ + 3 η) n3 − 3 n2

(
10 ξ2 + 18 ξη − η2

)

−12 n
(
ξ2 + 3 ξη − η2

)
− 8 ξ2

)
R3

−256 ξ5
(
21 n3ξ2 − n2 (3 ξ + 16 η) ξ − 3 n

(
6 ξ2 + 6 ξη − η2

)
− 12 ξ2

)
R2

+1536
(
2 ξn2 − n (ξ + η) − 2 ξ

)
ξ7R − 256 (−4 + 3 n) ξ9

)

h0 = −R
(
n
2 ln

(
nF2G

(Rn−2ξ)5((n+2)R−2ξ)4

)
+ ln

(
F
G

)
+ ln

(
an/2

bn/2−1

)
+ (n + 1) ln(2) − 3 ln(3)

2 n
)

+ C

where

F = n (n + 3 n + 2) R3 −
(
6 ξn2 + 12 nξ + 12 ξ − 4 η

)
R2 + 12 (n + 1) ξ2R − 8 ξ3,

G = n
(
n2 − 4

)
R3 −

(
6 n2ξ − 24 ξ + 8 η

)
R2 + 12 nξ2R − 8 ξ3.

We suppressed the notation signifying restriction to I in order to simplify the equa-
tions. The functions hi j |I (ξ |I , η|I ) are rational functions, and we notice that they
do not depend on the constants a, b,C . The expression for h0|I (ξ |I , η|I ) shows that
changing a and b will only affect the constant C under the Aff(V )-action.

The G0 × Aff(V )-invariants are more difficult to handle. In order to find the
functions h̃i j |I (ξ̃ |I , η̃|I ), we can in theory make the substitutions

ξ |I = ξ̃ |I · h0|I , η|I = η̃|I · h0|I , hi j |I = h̃i j |I · h0|I

and eliminate h0|I in order to get three equations determining h̃i j |I (ξ |I , η|I ). How-
ever, this seems unmanageable in practice. The first three equations are polynomial
in h0|I , but with degrees up to 18, while the fourth equation is not even algebraic.

It is well known that we can use G0 × Aff(V ) to normalize the constants a, b, R.
In the “critical variables”, in which the critical point is given by (p, v, T ) = (1, 1, 1),
the constants are normalized to a = 3, b = 1/3, R = 8/3. Thus, every van derWaals
gas is, under the G0 × Aff(V )-action, equivalent to the one given by the equations

(

p + 3

v2

)(

v − 1

3

)

= 8

3
T, ε = 4n

3
T − 3

v

and the information gain function
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I = −8

3
ln

((

v − 1

3

) (
3

v
+ ε

)n/2
)

+ C.

Notice that normalizing a, b, R in this way will affect the value of C .
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Chapter 8
Monge–Ampère Grassmannians,
Characteristic Classes and All That

Valentin V. Lychagin and Volodya Roubtsov

Introduction

1.1. It is known (sinceMaslov observations) that the analogues of Bohr–Sommerfeld
conditions in the asymptotic quantisation (know also as theMaslov’s canonical oper-
ator method) have a topological nature.

This condition has a form of annihilation of some cohomology classes (the
Maslov–Arnold classes). The Maslov–Arnold classes are, in fact, the examples of
characteristic classes, which are completely defined by a universal construction of
a ‘classifying map’ into a ‘classifying space’ phase space T ∗M . The topology of
this Lagrangian Grassmannian and its Z2−cohomology ring H ∗(LG, Z2) are well
known (A. Borel, D. Fuchs).

The classes of Maslov–Arnold contain an important information about singular-
ities for the Lagrangian projections.

In this paper, we review and describe one of the generalisations ofMaslov–Arnold
classes associated with a topological study of Monge–Ampère equations and their
solutions. This important tool for studies of Monge–Ampère solution singularities,
topological properties of discontinuous solutions were almost out of the scope of the
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lectures during the Summer School ‘Wisla-2018’ and we hope that this note will fill
this gap.

The main object of our interest is theMonge–Ampère Grassmannian, constructed
by the tangent hyperplanes to generalised solutions. We will study their topological
and geometric properties with the aim of (via the analogue of the ‘universal construc-
tion’) to define some cohomology characteristic classes. One-cohomology classes
enter in the construction of the discontinuous solutions for the given ‘multi-valued’
generalised solutions. The co-dimension one-cohomology classes are obstructed to
a solvability of the boundary value problem. The higher order co-dimension classes
are responsible for the solvability of more complicated boundary problems (when
the boundary may have the components of different co-dimensions).
1.2. A Grassman variety Grk(n) of k-dimensional subspaces in n-dimensional vector
space V has long history and is used in different branches of mathematics. Among
them are the universal G-bundle construction and characteristic classes in algebraic
topology, Schubert and Plücker calculus in algebraic geometry, Gauss tangential
mappings in differential geometry, Maslov index and its generalisation in symplectic
geometry, etc.

We will use all this incarnation of the Grassmannian to apply them to our study of
theMonge–Ampère equations and their solutions. Roughly speaking, the Grassman-
nian associated to a Monge–Ampère equation Eω ⊂ J 2(1) at a point x ∈ J 1(1) is an
approximation of the order 1 (a ‘linearization’) to a generalized solution L passing
through the point x. In other words, it is a set of the tangent spaces at x of solutions
passing through this point.

We will denote, following the tradition, this Grassmannian by IEω(x) there, as
above ω ∈ �n

ε(J
1(1)) is an effective n-form defining the Monge–Ampère operator

�ω : Eω = {�ω = 0}

and the generalized solution L satisfies the ‘integrability’ conditions

ω |L= U1 |L= 0.

We will restrict in this paper our attention to the class of symplectic Monge–
Ampère operators and equations such that for any x ∈ T ∗

R
n

IEω(x) = {
L ⊂ Tx(T

∗
R

n) | ωx |L= �x |L= 0
}

is a subvariety in the Lagrangian Grassmannian

LG(x) = {
L ⊂ Tx(T

∗
R

n) | �x |L= 0
}
,

where L denotes an oriented Lagrangian subspace.
The well-known result [1] is that the space LG(x) is a homogeneous space of the

group U (n)

LG(x) = U (n)/SO(n), ∀x ∈ T ∗
R

n.
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We will give in this paper a description of the integral Monge–Ampère Grass-
mannians IEω(x) for n = 2, 3 for ω being a non-degenerate effective form. We refer
to [2] for an algebro-geometric description of this grassmannian for n = 4 if �ω is
a Monge–Ampère pluriharmonic operator and where it had been proven that this
Grassmannian is a real algebraic submanifold in CP

4.
Finally, we will give an account to the theory of the characteristic classes based

on the integral Grassmannians IEω(x). We show that even for n = 3 the topological
structure of such Grassmannians is interesting and complicated. Their topological
structure (decomposition to various ‘regularity’ strata) is different for even (easy
case) and for odd (highly non-trivial) values of n. We have corrected some results of
[2] and find a relation with some exciting object (Cayley affine cubic surface) which
deserves future explorations.

The main sources of bibliographic references for this chapter are [2–4].

8.1 Grassmannians, Associated with the Lagrangian
and Legendrian Planes

2.1. Let f ∈ C∞(M ) be a smooth function on a smooth n− dimensional variety M .

Then the section
σf : M −→ J 1M

is given by
σf (a) = [

f
]1

a
= j1(f )(a).

We will consider the image σf (M ) as a submanifold in J 1M :

σf (M ) ⊂ J 1M

and consider the tangent plane Ta1(σf (M )) at the point a1 ∈ J 1M such that

a1 = j1(f )(a) = [f ]1a.

This plane is

(a) n - dimensional;
(b) ‘Legendrian’, i.e. the restriction of the Cartan universal 1-form on this tangent

plane is zero: U1,a1 | Ta1(σf (M )) ≡ 0,
(c) ‘Lagrangian’(i.e. the natural 2-form dU1,a1 annihilates on Ta1(σf (M ))).

The set of all such planes

{L ⊂ Ta1(J
1(M )), U1 |L= dU1 | L = 0}
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at the point a1 ∈ σ 1M is isomorphic to the Lagrangian grassmannian LG(x1),where
x1 = π(a1) under the natural projection

π : J 1M −→ T ∗M .

To describe a topological structure of this grassmannian, we should remark that
being considered as a complex manifold the Lagrangian grassmannian may be rep-
resented as a homogeneous space in two different ways:

(a) LGC(x1) = Sp(n, C)/G, where the stabilizer subgroup G consist of the triangu-
lar block-matrices:

G =
(

A B
0 (At)−1

)

with the matrix entries A ∈ GL(n, C) and B ∈ Mat(n, C) such that

ABt = BAt;

(b) LGC(x) = Sp(n)/U (n), where we denote by Sp(n) the intersection of Sp(n, C)

with the unitary 2n × 2n matrices:

Sp(n) = Sp(n, C) ∩ U (2n).

In the real case, the Lagrangian grassmannian LGR(x1) is isomorphic to the quo-
tient

LGR(x1) 
 U (n)/O(n),

or (when we consider the oriented planes), we have

LGR
+(x1) 
 U (n)/SO(n).

The topology of such homogeneous spaces was studied in the papers of A. Borel
and D. Fuchs [5, 6] from which we get the following

Theorem 8.1 Z2-cohomology ring of the Lagrangian grassmannian LGR+(x1) is
isomorphic (as a graded ring up to degree n) to the quotient

Z2[w1, . . . , wn]/(w2
1, ..., w2

n),

where w1, . . . , wn are the Stiefel–Whitney classes of the tautological bundle over the
grassmannian LGR+(x1): the fibre of this bundle in the point L ∈ LGR+(x1) is the same
vector space L.
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8.2 Integral or Monge–Ampère Grassmannians

Now,we remind the notion of integral Grassmannianwhich assigns to the symplectic
Monge–Ampère operators on a smooth n−dimensional manifolds M .

Our considerations are (basically) local so far we shall write regularly R
n instead

of M and R
2n = T ∗(Rn) instead of T ∗M .

Define for an effective n−form ω ∈ �ε(T ∗
R

n) and any x ∈ T ∗
R

n the set

IEω(x) := {
L ⊂ Tx(T

∗
R

n) | ωx |L= �x |L= 0
}

as a subset in the Lagrangian Grassmannian

LGR
+(x) = {

L ⊂ Tx(T
∗
R

n) | �x |L= 0
}
,

where L denotes a Lagrangian subspace with a fixed orientation.
We will suppose that the natural projection of

IEω
def= U

x1∈T ∗M
IEω(x1)

on the cotangent space T ∗M is a smooth bundle:

α : IEω → T ∗M .

8.3 Grassmannians for 2− and 3− Effective Forms

Now, we specify grassmannians IEω(x1) ⊂ LG+(x1) associated with the effective 2-
and 3-forms.

8.3.1 Integral Grassmannians for Monge–Ampère Equations
in Dimension 2

Grassmannians of a Monge–Ampère equation in dimension 2 could be characterised
by the pfaffian Pf (ωx1) ([7, 8]). We will restrict ourselves to the case of general
position, or to the non-degenerated Monge–Ampère operators with Pf (ωx1) �= 0.

Theorem 8.2 If the form ωx1 defines an elliptic Monge–Ampère operator such that
(Pf (ωx1) > 0), then the grassmannian IEω(x1) is homeomorphic to the projective
line CP

1. If the Monge–Ampère operator is hyperbolic at x1, i.e. (Pf (ωx1) < 0) then
the integral grassmannian IEω(x1) is homeomorphic to a torus T

2.
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Proof ([8])

1. If the form ω ∈ �2(T ∗M ) belongs to the ‘elliptic orbit’ at the point x1 ∈ T ∗M ,
then we can introduce the field of endomorphisms {Ax1} ∈ End(Tx1(T

∗M )) such
that −Pf (ωx1) = A2

x , or, after a proper normalisation

ωx1 → ωx1√|Pf (ωx1)|
,

we obtain the field {Ax1}x1 ∈ T ∗M such that A2
x1 = −1 and as it was mentioned in

the cited classification theorem, the operator Ax1 gives an almost-complex struc-
ture on T ∗M . So we have that there is a one-to-one correspondence between
the choice of the complex line and the choice of a point in the integral grass-
mannian (a choice of Lagrangian plane L with the condition ωx1 |L= 0). Given
almost-complex structure Ax2 defines an isomorphism

Tx1(T
∗
R

2) 
 C
2,

and therefore IEω(x1) = CP1

2. In the case of the hyperbolic Monge–Ampère integral grassmannian instead of
almost-complex structures,wehave thefield of almost-product structures givenby
the operators A with the eigenvalue±1, i.e. A2 = 1. The almost-product structure
dictates the choice of coordinates on Tx1(T

1
C

2) such that the equations ωx1 |L=
�x1 |L= 0 at point x1 are read as

dp1 ∧ dq1 |L= dp2 ∧ dq2 |L= 0.

This equation shows that such Lagrangian planes are direct sums of two 1−
dimensional subspaces obtained from the eigenspaces of A, i.e. IEω(x1) is iso-
morphic to the product S1 × S1 = T

2. �

8.3.1.1 Digression: Plücker Embedding and Homotopy Type of Generic
2d−MA Grassmannians

Here, we propose a pure algebraic derivation of the previously proved results. This
approach is very much in the spirit of F. Klein.

Denote by V a tangent space to T ∗M at some point. Then fixing the Liouville
volume form V ol on V , we obtain a symmetric bilinear pairing as above:

g : 
2(V ) ⊗ 
2(V ) �→ R, g(α, β) = (α ∧ β)

V ol
, α, β ∈ 
2(V ).

The form g is non-degenerate and (as it is easy to check) has signature (3,3). A
bivector α is g-isotropic iff α is a decomposable: α ∧ α = 0.
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There is a bijective correspondence between the points of the grassmannian
Gr2(4, V ) and the points of the projective quadric in RP5 given by the image of
Plücker embedding

Gr2(4, V ) → P(
2(V )) = RP5

which is in coordinates is written as

p12p34 − p13p24 + p14p23 = 0,

where α ∈ 
2(V ) is represented as α = 1/2
∑

i,j pijei ∧ ej for some base ei of V and
pij + pji = 0.

To describe in the Plücker terms the Lagrangian grassmannians and the Monge–
Ampère grassmannians, we need to choose the volume form V ol = � ∧ � and to
suppose that the symplectic bivector α� = e1 ∧ e3 + e2 ∧ e4. The effectivity condi-
tion gives the relation p13 + p24 = 0 and the relations, which are singled out. The
planes tangent to the elliptic MA and to the hyperbolic MA are correspondingly read
as p14 + p23 = 0 and as p14 − p23 = 0 . Then the Plücker embedding is restricted to
the embeddings of special Lagrangian grassmannian

SLG2(4, V )+ = SU (2)/SO(2) = S2(= IEω+)

in RP3(which is exactly the elliptic 2d−MA grassmannian) such that the images
of it are projective quadrics, which are in appropriate homogeneous coordinates
(x1 : x2 : x3 : x4) ∈ RP3 given by the equations

q+ : x21 − x22 − x23 − x24 = 0

and in the case SLG2(4, V )−(= IEω−)

q− : x21 − x22 − x23 + x24 = 0.

Now to precise the topological type of the quadrics q +
− , let us identify RP3 as the

three-sphere x21 + x22 + x23 + x24 = 2 with identified poles : RP3 = S3/Z2.
Then, the q+ quadric reduces to the relations x1 = 1, x22 + x23 + x24 = 1, which

are singled out to a two-sphere S2. The q− quadric reduces to the two-dimensional
torus T

2 = S1 × S1, which is given by the relations x21 + x24 = 1, x2 = x3 = 0 and
x22 + x23 = 1, x1 = x4 = 0.

Corollary 8.1 π1(IEω+) = 0, π1(IEω−) = Z ⊕ Z.
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8.3.2 Geometric Structure Associated with 3d− MA
Equations

Let us consider the case when dim M = 3. Now, we describe the grassmannians
associated with the non-degenerate Monge–Ampère operators in dimension 3. The
adequate language to do it was proposed in the Ph.D. thesis of B. Banos [2, 9], who
had generalised and extended the correspondence between theMonge–Ampère oper-
ators with constant coefficients and flat integrable geometric structure on dimension
3. We will give a review to remind his approach.

We are interested here in a local description of MA structures, so we can assume
in the subsection T ∗M = R

6.

Let ω be an effective 3-form on R
6, ω ∈ �3

ε(R
6), and qω ∈ S2(R6) is the cor-

responding quadratic form. We will suppose that the form ω is non-degenerate in
Hitchin sense ([]Hit) (remind that, in this case, the signature of qω may be equal to
(3, 3), or to (0, 6), or to (4, 2)). If � denotes the standard canonical 2-form on R

6

we will call a generalised Calabi–Yau structure on R
6 the quintuple (g,�, K, α, β)

where g is a (pseudo) metric onR
6 (a non-degenerate quadratic form, possibly indef-

inite), K ∈ EndR
6 such that K2 = ±1 and

g(x, y) = �(Kx, y)

for any vector x, y ∈ R
6, and the α, β are 3-forms on R

6 which are decomposable,
i.e.

α = λ1 ∧ λ2 ∧ λ3, β = μ1 ∧ μ2 ∧ μ3

for λi, μi ∈ �1(R6), 1 � i � 3 and such that

α ∧ � = β ∧ � = 0

and
α ∧ β = const · �3.

The subspaces associated to α and β are the eigenspaces of the endomorphism K :

Cα
def= {x ∈ R

6 | Kx = −x} ⇐⇒ {ıxα = 0}

Cβ
def= {x ∈ R

6 | Kx = x} ⇐⇒ {ıxβ = 0}

or
Cα

def= {x ∈ R
6 | Kx = −ix} ⇐⇒ {ıxα = 0}

Cβ
def= {x ∈ R

6 | Kx = ix} ⇐⇒ {ıxβ = 0}
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We remark that for the ‘usual’ Calabi–Yau structure on R
6, we should take

K = I , I2 = −1, g = �(I ·, ·) and by (α, β) = (α, α), i.e. whenα is a (3, 0)- form for
this complex structure. Usually, the standard Calabi–Yau structure imposes the pos-
itivity condition on g. These (generalized) Calabi–Yau structures are in one-to-one
correspondence with the Monge–Ampère constant coefficient operators.

Example 3 The standard Calabi–Yau structure on R
6 is equivalent to Special

Kähler structure on C
3 (for details see in the lectures of one of the authors in the

same volume [10]), is given by the quadruple (g, I ,�, α) (in this case β = α), and
defines the special Lagrangian Monge–Ampère operator

�u − Hess(u) = 0

with coordinates q1, q2, q3, p1, p2, p3 on TR
3 as

g = −(dq1)
2 − (dq2)

2 − (dq3)
2 + (dp1)

2 + (dp2)
2 + (dp3)

2,

I = ∂

∂p1
⊗ dq1 + ∂

∂p2
⊗ dq2+

∂

∂p3
⊗ dq3 − ∂

∂q1
⊗ dp1 − ∂

∂q2
⊗ dp2 − ∂

∂q3
⊗ dp3 ⊗ dp3,

� = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3

and
α = dz1 ∧ dz2 ∧ dz3 = d(q1 + ip1) ∧ d(q2 + ip2) ∧ d(q3 + ip3).

Example 4 The following (pseudo)-special Lagrangian operator

�u + Hess(u) = 0

(where �u = ∂2u

∂q1
− �q2,q3v is the 3d -wave operator) is associated with the gener-

alised (pseudo) Calabi–Yau structure (g, I ,�, α), where

g = (dq1)
2 − (dq2)

2 + (dq3)
2 + (dp1)

2 − (dp2)
2 + (dp3)

2,

I = ∂

∂q1
⊗ dp1 − ∂

∂p1
⊗ dq1 − ∂

∂q2
⊗ dp2 + ∂

∂p2
⊗ dq2 + + ∂

∂q3
⊗ dp3 − ∂

∂p3
⊗ dq3,

� = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3,

α = (dq1 + idp1) ∧ (dq2 + idp2) ∧ (dq3 + idp3)

Example 5 The ‘real’ Calabi–Yau structure (g, S,�, α, β) is associated with the
Hessian constant coefficient equation Hess(u) = 1, such that

g = dq1 ⊗ dp1 + dq2 ⊗ dp2 + dq3 ⊗ dp3,

S = ∂

∂q1
⊗ dq1 − ∂

∂p1
⊗ dp1 + ∂

∂q2
⊗ dq2 − ∂

∂p2
⊗ dp2 + + ∂

∂q3
⊗ dq3 − ∂

∂p3
⊗ dp3,
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and S2 = Id ;

� = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3,

α = dq1 ∧ dq2 ∧ dq3,

β = dp1 ∧ dp2 ∧ dp3.

8.3.3 Integrability and MA Grassmannians in 3d

Now, we remind the 3d−analogue of the classification theorem in geometric form.
More exactly, we will show that these are similar integrability conditions for the
non-degenerated Monge–Ampère operators, which are nothing but the integrability
conditions of the corresponding Calabi–Yau generalized structures.

Recall that in 2d -case, the constant coefficient reducibility condition of a non-
degenerate (in the given open neighbourhood) effective 2-form ω is written as the
closeness of the normalised form

d

(
ω

√|Pf (ω)|

)

= 0,

where Pf (ω) �= 0. Its geometric counterpart could be written in the form Nijenhuis
tensor torsion-free condition NA = 0 for the endomorphism A.

Let ω0 ∈ �3
ε(T

∗M ), for 3d−dimensional M be an effective non-degenerate dif-
ferential form and we will denote by qω the quadratic form, associated with the form
ω by the following formula for the corresponding bilinear symmetric form (see the
details in [8]):

qω(X , Y ) = ıX (ω) ∧ ıY (ω)

� ∧ � ∧ �
.

The Hitchin linear operator at any x ∈ T ∗M acts as

Kω : Tx(T
∗M ) → Tx(T

∗M )

Kω(X )
def= A(ιX ω ∧ ω)

� ∧ � ∧ �
,

where
A : �5(T ∗M ) → T (T ∗M ) ⊗ �6(T ∗M ).

is the isomorphism which is induced by an exterior product.
Then the following proposition is valid:

Proposition 8.1 (3d− ‘splitting construction’) The MA effective form can be split
in the sum of two 3−forms: ω = α + β for
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α = 1

2

(
ω +

∣∣∣
1

6
TrK2

ω

∣∣∣
− 3

2
K∗

ω(ω)
)
, β = 1

2

(
ω −

∣∣∣
1

6
TrK2

ω

∣∣∣
− 3

2
K∗

ω(ω)
)

(8.1)

and the quintuple (�, qω, Kω, α, β) is a generalised almost-Calabi–Yau structure on
T ∗M in the sense of previous section.

Proof It was observed by Banos [2] that qω = �(Kω·, ·). Then we should only check
that α and β are effective and the ratio α∧β

�3 is a constant. But it is clear from

K∗(� ∧ ω) = K∗(�) ∧ K∗(ω) = ±� ∧ K∗(ω) = 0

that the form K∗(ω) is effective if ω is. The effectiveness of α and β is evident from
8.1. From the normalisation condition, we obtain

1

6
TrK2

ω = ±1

and hence,
α ∧ β

�3

is a constant. �

Theorem 8.3 There are three different models of the integral grassmannian in the
dimension 3, corresponding to the three different non-degenerated Monge–Ampère
operators with constant coefficients:

1. If ω ∈ �3
E(R

6) is such that 1
6TrK2

ω = 1, then

IEω = SL(3)/SO(3)
∐

SL(3)/SO(1, 2),

where
∐

means the disjoint sum.
2. If ω ∈ �3

E(R
6) is such that 1

6TrK2
ω = −1, and the signature of qω is (0, 6), then

IEω = SU (3)/SO(3);

3. If ω ∈ �3
E(R

6) is such that 1
6TrK2

ω = −1, then and the signature of qω is (4, 2),
then

IEω = SU (2, 1)/SO(2, 1).

To prove this Theorem, we need some technical results about the grassmannians
of integral planes.

Lemma 8.1 The set IE∗
ω ⊂ IEω of the integral grassmannians having the non-

degenerated quadratic form qω is an open subset in all integral grassmannians.
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Proof Easy.

�
We denote the signature of qϕ by (p, q) and by IE(p,q)

ω . We denote the subset in
IEω with qϕ of signature (p, q). Then, taking the unifications

IEk
ω =

∐

p+q�k

IE(p,q)
ω

for p + q ≤ 3 we obtain

IE−1
ω = ∅ ⊂ IE0

ω ⊂ IE1
ω ⊂ IE2

ω ⊂ IE3
ω = IEω

a filtration of the topological space IEω.

Proof (Proof of the Theorem) Let V ∈ IE∗
ω be an integral plane of the non-degenerate

Monge–Ampère operator �ω. The Hitchin operator Kω transforms V to the orthog-
onal space V0 = Kω(V ) : we have qω(V, V0) ≡ 0, because

qω(V, V0) = qω(V, KωV ) = �(KV, K2
ωV ) = ± c �(KV, V ) = 0

(V is a Lagrangian!). So Kω(V ) ⊆ V 0, but qω|V is non-degenerate hence the exact
coincidence (dimV0 = 3),

Kω(V ) ⊕ V = Tx(T
∗M ) 
 T ∗(R3) = R

6.

1. Consider the case when the signature ε(qω) = (3, 3). Let 1
6TrK2

ω = 1. Taking the
base of R

6(e1, e2, e3, f1, f2, f3) as a canonical one with

� = e∗
1 ∧ f ∗

1 + e∗
2 ∧ f ∗

2 + e∗
3 ∧ f ∗

3 ,

q = e∗
1f ∗

1 + e∗
2f ∗

2 + e∗
3f ∗

3 ;
Kω = e1 ⊗ e∗

1 + e2 ⊗ e∗
2 + e3 ⊗ e∗

3 − f1 ⊗ f ∗
1 − f2 ⊗ f ∗

2 − f3 ⊗ f ∗
3 ,

ω = e∗
1 ∧ e∗

2 ∧ e∗
3 − f ∗

1 ∧ f ∗
2 ∧ f ∗

3 ,

ω̄ = e∗
1 ∧ e∗

2 ∧ e∗
3 + f ∗

1 ∧ f ∗
2 ∧ f ∗

3 .

We introduce the sets

V(3,0)
def= {(v, v)|v ∈ R

3} ∈ IE(3,0)
ω

and
V(1,2)

def= {(x1, x2, x3,−x1,−x2,−x3)} ∈ IE(1,2)
ω .

Choose an orthonormal base a1, a2, a3 of qω on V :



8 Monge–Ampère Grassmannians, Characteristic Classes and All That 245

qω(ai, aj) = εi δij, εi = ±1

〈e∗
1 ∧ e∗

2 ∧ e∗
3a1 ∧ a2 ∧ a3〉 � 0

an let

ui
def= ai + Kω(ai)√

2
, wi

def= ai − Kω(ai)√
2

for i = 1, 2, 3. Let A be the matrix of ui in the base {e1, e2, e3} and B be the matrix
of vi in the base {f1, f2, f3}. Then taking the matrix

C =
(

A 0
0 B

)

we obtain V = CV0. Moreover, we have

(
At 0
0 Bt

)(
0 I
I 0

)(
A 0
0 B

)
=

(
0 I(p,q)

I(p,q) 0

)
,

with

I(p,q)
def=

⎛

⎝
ε1 0 0
0 ε2 0
0 0 ε3

⎞

⎠

and AtB = I(p,q). det B = 1
det A , if ε(qω) = (3, 0) or (1, 2)

det B = − 1
det A , if ε(qω) = (0, 3) or (1, 2)

Now, using that
〈ω, a1 ∧ a2 ∧ a3〉 = 0,

we obtain
det A = det B.

Thus, we have

IE(3,0)
ω =

{(
A 0
0 (At)−1

)
V(3,0)

∣∣∣A ∈ SL3

}
;

IE(0,3)
ω =

{(
A 0
0 (At)−1

)
V(1,2)

∣∣∣A ∈ SL3

}
;

IE(0,3)
ω = IE(2,1)

ω = ∅.

But (
A 0
0 (At)−1

)
V(p,q) = V(p,q)

(
A 0
0 (At)−1

)

if and only if
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(At)−1I(p,q)X = I(p,q)AX

for any X ∈ R
3. It means that we have to choose the matrix A from SO(p, q):

IE(3,0)
ω = SL(3)/SO(3), IE(1,2)

ω = SL(3)/SO(1, 2).

2. Similarly, in the case TrK2 = −6 and ε(qω) = (4, 2), we can take canonical
base e1, e2, e3, f1, f2, f3 in R

6 in a such way that

� = e∗
1 ∧ f ∗

1 + e∗
2 ∧ f ∗

2 + e∗
3 ∧ f ∗

3 ,

qω = e∗
1e∗

1 − e∗
2e∗

2 + e∗
3e∗

3 + f ∗
1 f ∗

1 − f ∗
2 f ∗

2 + f ∗
3 f ∗

3 ,

Kω = e1 ⊗ f ∗
1 − e2 ⊗ f ∗

2 + e3 ⊗ f ∗
3 − f1 ⊗ e∗

1 + f2 ⊗ e∗
2 − f3 ⊗ e∗

3,

ω = Re((e∗
1 + if ∗

1 ) ∧ (e∗
2 − if ∗

2 ) ∧ (e∗
3 + if ∗

3 )).

Denote byV0 ∈ IE(2,1)
ω the subspace generated by f1, f2, f3. LetV ∈ IEω anda1, a2, a3

is an orthonormal base of V :

qω(ai, aj) = εi δij, εi = ±1

We introduce the C-linear endomorphism by

Afi = ai, i = 1, 2, 3.

Then

A
t
I(2,1)A =

⎛

⎝
ε1 0 0
0 ε2 0
0 0 ε3

⎞

⎠

and we can similarly deduce that

I(2,1) =
⎛

⎝
ε1 0 0
0 ε2 0
0 0 ε3

⎞

⎠ ,

which implies thatA ∈ SU (2, 1) (because of the condition thatω/V = 0 and det A ∈
C). So we obtain

IE∗
ω = {AV0|A ∈ SU (2, 1)},

But AV0 = V0 if and only if A is real; hence the result:

IE∗
ω = SU (1, 2)/SO(2, 1).

3. The case TrK2 = −6 and ε(qω) = (0, 6) corresponds to the standard
Calabi–Yau structure on the space C

3 = R
6 known also as special Lagrangian.
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It is well known after Harvey and Lawson pioneering paper [11] that the special
Lagrangian grassmannian

IEω(x) := {
L ⊂ Tx(T

∗
R

3) | ωx |L= �x |L= 0
} = SU (3)/SO(3).

8.4 Multidimensional Generalisation of Splitting
Construction

8.4.1 Non-degenerate 2k + 1− Forms in Sense of Hitchin

Let V be a real vector space of dimension 4k + 2 and 
p(V ∗) the space of exterior
p−forms on V . Let us fix a volume form � ∈ 
4k+2(V ∗) on V . Denote by A :

4k+1(V ∗) → V ⊗ 
4k+2(V ∗), the isomorphism which is induced by the exterior
product: A = Ã ⊗ �, where

〈Ã(θ), α〉 = θ ∧ α

�
, α ∈ V ∗.

Now and in what follows in this section V = Tx(T ∗M ) at some point x ∈ T ∗M and
the volume form �, we shall identify with the Liouville symplectic volume form
�∧k .

We shall use an invariant operator K�
ω : V → V defined by

K�
ω (X ) = A(ıX ω ∧ ω)

�
, X ∈ V .

Definition 8.1 The Hitchin Pfaffian of a 2k + 1−form ω ∈ 
2k+1(V ∗) is

λ�(ω) := 1

4k + 2
Tr(K�

ω

2
).

A2k + 1− formω is called non-degenerate inHitchin sense if and only ifλ�(ω) �= 0.

Lemma 8.2 Let ω ∈ 
2k+1(V ∗) be a 2k + 1−form which is non-degenerate in
Hitchin sense. Then

K�
ω

2 = λ�(ω)Id.

Proposition 8.2 Let ω ∈ 
2k+1(V ∗) be a 2k + 1−form, which is non-degenerate in
Hitchin sense.

1. λ�(ω) > 0 iff ω = α + β where α, β are decomposable 2k + 1−forms on V .
Moreover, if α∧β

�
> 0 then α and β are uniquely defined:
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{
2α = ω + |λ�(ω)|−k− 1

2 (K�
ω )∗ω,

2β = ω − |λ�(ω)|−k− 1
2 (K�

ω )∗ω.

2. λ�(ω) < 0 iff ω = α + ᾱ, where α ∈ 
2k+1(V ∗ ⊗ C) is a decomposable over
C 2k + 1−form on V . Moreover, if α∧ᾱ

i� > 0 then then α is uniquely defined:

α = ω + i|λ�(ω)|−k− 1
2 (K�

ω )∗ω.

Remark 8.1 Let us fix a basis (e1, . . . , e4k+2) in V and the dual one (e∗
1, . . . , e∗

4k+2)

in V ∗. We pose � = e∗
1∧, . . . ,∧e∗

4k+2.

1. λ�(ω) > 0 iff ω is in the GL(V )−orbit of

e∗
1∧, . . . ,∧e∗

2k+1 + e∗
2k+2∧, . . . ,∧e∗

4k+2

2. λ�(ω) < 0 iff ω is in the GL(V )−orbit of

(e∗
1 + ie∗

2k+2) ∧ (e∗
2 + ie∗

2k+3) ∧ . . . ∧ (e∗
2k+1 + ie∗

4k+2)

+ (e∗
1 − ie∗

2k+2) ∧ (e∗
2 − ie∗

2k+3) ∧ . . . ∧ (e∗
2k+1 − ie∗

4k+2).

The action of GL(V ) on 
2k+1(V ∗) has two open orbits splited by the hypersurface

{λ� = 0}.

The unicity of this decomposition of a non-degenerate exterior form ω in a sum
of two decomposable forms (up to a choice of orientation) provides a construction
of a dual form ω̌:

Definition 8.2 (Hitchin)

1. If λ�(ω) > 0 and ω = α + β, then ω̌ = α − β.

2. If λ�(ω) < 0 and ω = α + ᾱ, then ω̌ = i(ᾱ − α).

8.4.1.1 Hamiltonian Approach

One can define a non-degenerate exterior two-form (a symplectic structure) on

2k+1(V ∗). More precisely,

O�(ω, ω′) = ω ∧ ω′

�

is a symplectic form on 
2k+1(V ∗). Hitchin has proven the following

Proposition 8.3 The action of SL(4k + 2)on the symplectic space (
2k+1(V ∗),O�)

is a hamiltonian with the moment map
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K� : 
2k+1(V ∗) → sl(4k + 2, R).

We have identified here the Lie algebra sl(4k + 2, R) with its dual sl(4k + 2, R)∗
with a help of the Killing form (X , Y ) → 1

4k+2Tr(XY).

Let suppose now that in our 4k + 2−dimensional vector space, V is a symplectic
with a symplectic form�. The Liouville volume form� := −�∧,2k+1 is fixed and it
is denoted λ := λ�, K := K�,O := O�. The subspace of effective 2k + 1−forms

2k+1

ε (V ∗) is a symplectic subspace in (
2k+1(V ∗),O). In fact, due to Hodge–
Lepage–Lychagin theorem, each form ω ∈ 
2k+1(V ∗) can be written as

ω = ω0 + ω1 ∧ O

with effective ω0. The exterior product is non-degenerate on 
2k+1
ε (V ∗). Moreover

the action of Sp(2k + 1) preserve O. So it is natural to ask this action to be hamil-
tonian.

Lemma 8.3 A 2k + 1− form on V is effective iff Kω ∈ sp(2k + 1)

Proof Take a symplectic base (e1, e2, . . . , e2k+1, f1, f2, . . . , f2k+1), thenKω is written

Kω(X )� =
2k+1∑

j=1

(ıX ω ∧ ωe∗
j ) ⊗ ej +

2k+1∑

j=1

(ıX ω ∧ ωf ∗
j ) ⊗ fj.

Let

Kω =
(

A B
C D

)

then ⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ajl� = ıej ω ∧ ω ∧ e∗
l

Bjl� = ıfj ω ∧ ω ∧ e∗
l

Cjl� = ıej ω ∧ ω ∧ f ∗
l

Djl� = ıfj ω ∧ ω ∧ f ∗
l .

So ω is effective iff the following relations are satisfied for l = 1, . . . , 2k + 1:

{
ıel ω ∧ O = O ∧ ıel ω = ω ∧ f ∗

l

ıfl ω ∧ O = O ∧ ıfl ω = −ω ∧ e∗
l .

and in the matrix form D = −At, Bt = B and C = Ct , in other words, iff Kω ∈
sp(2k + 1).

Corollary 8.2 The action Sp(2k + 1) on the symplectic space (
2k+1
ε (V ∗),O) is

hamiltonian with the moment map K : 
2k+1
ε (V ∗) → sp(2k + 1).
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8.5 Characteristic Classes of Monge–Ampère Equations on
a 3-Dimensional Manifolds

Here, we discuss the most interesting application of the theory of integral
Grassmannians—the theory of the characteristic classes for solutions of the Monge–
Ampère equations.

The Grassmannians, which we had studied before, play the role of the universal
bundles and their cohomology are defined some characteristic classes via the Gauss
tangential mappings. To be more precise, we consider the cotangent bundle π :
T ∗M → M and a solutions Zω of a Monge–Ampère symplectic equation �ω = 0
given by an effective n-form ω ∈ �n(T ∗M ) .

We consider the bundle of the integral Grassmannians IEω → T ∗M . The fibre of
this bundle at the point x ∈ T ∗M is theGrassmannian IEω,x of all Lagrangiann-planes
such that they are integral to ω(ω|V = 0 for any V ∈ IEω,x). If we consider now
the cohomology space H ∗(IEω, Z2) and any cohomology class Cω ∈ H ∗(IEω, Z2)

then the natural analogue of the Gauss map associated with a multivalued solution
Zω ⊂ T ∗M

JZω
: Zω → IEω, JZω

(x) = Tx(Z),

induced the map of the cohomology

J ∗
Zω

: H ∗(IEω, Z2) → H ∗(Zω, Z2).

and a cohomology class J ∗
Zω

(Cω) ∈ H ∗(Zω, Z2).
Taking Cω from the set of generators in H ∗(H ∗(IEω, Z2), we obtain some coho-

mology characteristic invariants of the multivalued solution Zω.

8.5.1 Special Lagrangian Monge–Ampère Characteristic
Classes

We shall realise the program outlined above for the case of the most interesting
low-dimensional Monge–Ampère operator

�ω = � − Hess.

Here M = R
3, T ∗M = R

6,

� = dq1 ∧ dp1 + dq2 ∧ dp2 + dq3 ∧ dp3

and π : T ∗
R

3 → R
3 is given by π(q, p) = q. We denote( for a chosen subspace

V ⊂ T ∗
R

6) by V |p := V ∩ ker(π) which is parameterised by (p, 0).
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Let LG+(R6) = U (3)/SO(3) be the Grassmannian of oriented Lagrangian sub-
spaces in T ∗

R
3, and the filtration of it is defined by Vp:

Fn = {V ∈ LG+(R6)| dim Vp � 3 − n},

∅ = F−1 ⊂ F0 ⊂ F1 ⊂ F2 ⊂ F3 = LG+(R6), 0 � n � 3. (8.2)

The cohomology of this Grassmannian are well known and its calculation is an
application of the following classical A. Borel’s theorem:

Theorem 8.4 There is a convergent spectral sequence {E(p,q)
r , d (p,q)

r }, r � 0, con-
structed by the filtration 8.2 such that E(p,q)

1 = H (p+q)(Fp/Fp−1, Z2) is given by the
following picture.

0 0 0 0

0 Z2 Z2 0

0 Z2 Z2 0

Z2 Z2 0 0

The sequence is stabilized on the first step (E(p,q)

2 = ... = (E(p,q)
∞ ) and converge to

the cohomology H ∗(LG+(R6), Z2), which are isomorphic, (as graded algebras),
up to the order 3 to the graded ring Z2[w1, w2, w3]/(w2

1,1, w2
1,2, w2

1,3) generated
by the Stiefel–Whitney’s classes of the tautological bundle over the Grassmannian
LG+(R6).

Now,wewill consider the integral sub-Grassmannian IEω, associatedwith the spe-
cial Lagrangian Monge–Ampère operator �ω = � − Hess and the effective form
ω is

dp1 ∧ dp2 ∧ dq3 − dp1 ∧ dp3 ∧ dq2 + dp2 ∧ dp3 ∧ dp1 − dq1 ∧ dq2 ∧ dq3.

The subspaces V ∈ LG+(R6) such that ω|V = 0 are formed the sub-Grassmannian
IEε ⊂ LG+(R6)

Taking the filtration as above, one can define

∅ = F−1
ω ⊂ F0

ω ⊂ F1
ω ⊂ F2

ω ⊂ F3
ω = IEω, (8.3)

where F1
ω = Fi ∩ IEω, and, then, will compute the spectral sequence corresponding

to the filtration (8.3). Take the decomposition R
6 = TR

3 = Lp ⊕ Lq, where
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Lp =
〈 ∂

∂p1
,

∂

∂p2
,

∂

∂p3

〉
, (8.4)

Lq =
〈 ∂

∂q1
,

∂

∂q2
,

∂

∂q3

〉
. (8.5)

and identify the tangent T (T ∗M ) with the direct sum TM ⊕ T ∗M .

The following theorem based on some unpublished computations of B. Banos [2]:

Theorem 8.5 1. The quotient F0
ω/F−1

ω 
 ∅;
2. The quotient F1

ω/F0
ω 
 τ1,, where τ1 is the tautological 1d−dimensional bundle

over P(T ) understanding as Gr1(3);
3. The quotient F2

ω/F1
ω 
 τ2 , where τ2 is the tautological 2d−dimensional bundle

over P(T ∗) understanding as Gr2(3);
4. The quotient F3

ω/F2
ω 
 S ⊂ R

6, where the set S is the 5d−dimensional singular
cubic hypersurface with two connected components, whose regular part is a
covering (with discrete fibres Z

3
2) over

x1x2x3 − x1 − x2 − x3 = 0

modulo symmetric group S3.

Proof 1. Lp is the only Lagrangian space, which are belonged to ker π . From the
condition 〈

ω,
∂

∂p1
∧ ∂

∂p2
∧ ∂

∂p3

〉
�= 0 (8.6)

it follows that
F0

ω/F−1
ω 
 ∅; (8.7)

2. Let L ∈ IEω be such a space that L ∈ F1
ω. Then one can represent L as the direct

sum
L = Vp ⊕ 〈ξ1 + ξ v

1 , ξ2 + ξ v
2 〉, (8.8)

where Vp is generated by a vector ξ̂ ∈ T∗ , say,

ξ̂ = α∂p1 + β∂p2 + γ ∂p3 .

Vectors ξ1, ξ2 ∈ T are a basis in the ker ξ̂ ⊂ T , i.e.

ξ1 = β∂q1 − α∂q2 , ξ2 = γ ∂q2 − β∂q3 .

In its turn, ξ v
1 , ξ

v
2 ∈ T ∗, can be written as
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ξ v
1 = a1∂p1 + b1∂p2 + c1∂p3 ,

ξ v
2 = a2∂p1 + b2∂p2 + c2∂p3

and

ıξ̂ ω = αdp2 ∧ dp3 − βdp1 ∧ dp3 + γ dp1 ∧ dp2−
− αdq2 ∧ dq3 + βdq1 ∧ dq3 − γ d1 ∧ dq2.

Making the contraction with ξ1 + ξ v
1 , obtain

ıξ1+ξ v
1
(ıξ̂ ω) = −(αγ dq1 + βγ dq2 + (α2 − β2)dq3+

+(−γ b1 + βc1)dp1 + (γ a1 − αc1)dp2 + (αb1 − βa1)dp3.

and further, contracting with ξ2 + ξ v
2 , obtain

ıξ2+ξ v
2
ıξ1+ξ v

1
(ıξ̂ ω) = −β(α2 + γ 2 + β2)+

+γ (a1b2 − a2b1) + α(b1c2 − b2c1) + β(a2c1−a1c2).

We observe that β �= 0 (this is a consequence of the linear independence ξ1, ξ2)
and hence we get a linear equation on ξ v

1 ∧ ξ v
2 and conclude that the associate

graded F1
ω/F0

ω is isomorphic to the tautological 1d−dimensional bundle over
Grassmannian Gr3(1) = P(T ).

3. Let us describe the associate graded quotient F2
ω/F1

ω. Similarly to previous
description (8.8), L ∈ F2

ω implies

L = Vp ⊕ 〈ξ + ξ v〉, (8.9)

where Vp ⊂ T ∗ is the kernel ker ξ of ξ ∈ T , and ξ v ∈ T ∗. We remind that this a
description of a Lagrangian space with 2d−dimensional kernel of the projection,
when we identifies the tangent space T (T ∗M ) with the direct sum T ⊕ T ∗. If

ξ = α∂p1 + β∂p2 + γ ∂p3 ,

then Vp is generated by vectors ξ1 = α∂p2 − β∂p1 and ξ2 = β∂p3 − γ ∂p2 and if

ξ v = a∂p1 + b∂p2 + c∂p3 ,

then
ξ1 ∧ ξ2 = βγ ∂p1 ∧ ∂p2 + βα∂p3 ∧ ∂p2 − β2∂p1 ∧ ∂p3 ,

and
θ = ıξ1∧ξ2ω = βγ dp3 − βαdp1 − β2dp2.
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Therefore ω|L = 0 if and only if θ(ξ v) = 0. This condition implies the relation
(here again, β �= 0)

αa + βb + γ c = 0,

which gives an isomorphism of F2
ω/F1

ω with the total space of the tautological
2d−dimensional bundle over the Grassmannian Gr3(3) = P(T ∗).

4. The most interesting and difficult topologically case of F3
ω/F2

ω admits a nice and
straightforward algebraic description.

In this case Vp = 0 and

L = 〈∂qi +
3∑

j=1

aij∂pj 〉, i = 1, 2, 3.

One can conclude that aij = aji (because L is a Lagrangian) and the condition
ω|L = 0 is reduced to the algebraic equation

det(‖aij‖) = tr(‖aij‖).

The associated graded F3
ω/F2

ω is identified with

{A = ‖aij‖, A = A∗ | det(A) = tr(A), 1 ≤ i, j ≤ 3.}

This is a 5d− dimensional singular cubic hypersurface S in R
6 with highly

non-trivial topology. The regular part (which one can obtain by removing multi-
plicities) can be identified with a covering with discrete fibres Z

3
2 over the cubic

orbifold
{x1x2x3 − x1 − x2 − x3 = 0}/S3

under the automorphism actions of the symmetric group S3. �

8.5.2 Remarks and Speculations About S

The ‘regular’ part of S can be interpreted in the following way:
Complexifying the tangent space V (going to V ⊗ C), we identify T ∗ with C

3

and the cubic S can be considered like a singular affine complex 2d− surface in C
3 :

x1x2x3 − x1 − x2 − x3 = 0. (8.10)

This is the so-called Cayley surface. The ‘infinite part’ of the cubic consists of three
lines. The three pair-wise intersection points of this lines are singularities in infinity.
There is one extra ‘finite’ singular point x1 = x2 = x3 = 1. Singularities has A1-type
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singularities (verified by direct change of variables, see, i.e. the AppendixB in [12]).
The homotopy type of this variety is the bouquet of two-dimensional spheres (‘Milnor
spheres’) [13]. The Poincaré–Hilbert polynomial of S overC isPS(t) = 1 + 2t2. [14]

The ‘regular’ part of S can be interpreted in following way: we consider the
interpretation of the effective form ω entering in the definition of special Lagrangian
MA operator

�ω = � − Hess,

as an imaginary part �(α) of the holomorphic (3, 0)−form α = dz1 ∧ dz2 ∧ dz3
where dzi = dqi + √−1dpi, i = 1, 2, 3.

We shall identify T ∗
R

3 withR
3 × R

3 and denote by π1,2 the projections T ∗
R

3 →
R

3 such that π1(q, p) = q and π2(q, p) = p.

Let V ⊂ T ∗
R

3 be a Lagrangian linear subspace (�|V = 0) such that ω|V =
�(α)|V = 0..

There are two different possibilities:

1. V is transversal to both projections π1 and π2 simultaneously.
2. V is neither transversal to π1 nor to π2 and codimπ1(V ) = codimπ2(V )

Let A : R
3 → R

3 be a linear map and the graph(A) ⊂ T ∗
R

3 is a linear Lagrangian
subspace.

Then, the first type of the special Lagrangian hyperplanes belongs to the regular
part of the Grassmannian IEω (be represented by graphs of some self-adjoint linear
map A and expressed in terms on non-multiple eigenvalues x1, x2, x3 as above.)

The second type forms the singular part of the special Lagrangian Grassmannian
and only simple (conic type) singularity in C3 is relatively studied (see [15]).

We postpone the study of full special Lagrangian Grassmannian and hope to
come back to it in our future work. The interest in this study is not restricted to the
geometry of non-linear PDEs, but there are many other avatars of this cubic and the
links between them are still unclear. Among them the following:

Moduli space or isomorphism classes of Sklyanin algebras with 4 generators
which are in one-to-one correspondence with the orbifold S/S3 [16]. Here, S is
given a cubic relation

F(x, y, z) = xyz + x + y + z = 0 (8.11)

which geometrically describes a 2-dimensional affine variety in S ⊂ C
3. We suppose

that (x, y, z) is a ‘generic’ point in S. The symmetric groupS3 of order 3 isomorphi-
cally acts by cyclic permutations of (x, y, z). The coordinates has explicit expression
via four Jacobi theta functions θij and the equation can be interpreted like a classical
‘quartic identity’ for them [17].

Another reincarnation of (8.10) is the variety ofmonodromydate for the first-order
linear system of complex ODEs associated with Painlevé II equation [12].

Recently [18], the same cubic had appeared in a description of cyclically ordered
6−tuples of Lagrangian subspaces (L1, L2, . . . L6) in C

4 such that every two con-
secutive subspaces Li and L′

i are ‘maximally non-transversal’. These configurations
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are in some sense dual to Lagrangian configurations, and the Maslov index may be
applied to study them.

The moduli space L(2, 6) (under Sp(4, C) of generic (2, 6)-Lagrangian configu-
rations, i.e. Legendrian hexagons in CP3 can be described in terms of the so-called
‘symplectic cross-ratio’ and each hexagon defines a diametric symplectic cross-ratio.
There are three non-independent diametric cross-ratio in L(2, 6). They satisfy the
cubic relation (8.10).

We address to the study and to a clarification of all this intriguing coincidences
in future publications.
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Chapter 9
Weak Inverse Problem of Calculus
of Variations for Geodesic Mappings
and Relation to Harmonic Maps

Stanislav Hronek

9.1 Geodesic Mappings and Basic Setting

Let us start with geodesic mappings of manifolds with affine connections. For the
theory of geodesic mappings, we refer to [1]. Because geodesics on manifolds are
characterized by the symmetric part of the connection only, we can restrict ourselves
to torsion-freemanifoldswith affine connections, i.e. fromnowon,we assume that all
connections under consideration are symmetric. We will also only consider naturally
parametrized geodesics. Consider manifolds with affine connections (M, M∇) and
(N , N∇) and a map between them φ : (M, M∇) −→ (N , N∇). This map is said to
be a geodesic map if

1. φ is a diffeomorphism of M onto N ; and
2. the image under φ of any geodesic arc in M is a geodesic arc in N ; and
3. the image under the inverse function φ−1 of any geodesic arc in N is a geodesic

arc in M .

The usual example of a geodesic mapping would be an isometry of Euclidean sur-
faces. In our paper, we will generalize this definition a little, we will give up the
assumptions 1. and 3. meaning instead of diffeomorphisms we will be working
with immersion. Mathematically speaking, a mapping φ : (M, M∇) −→ (N , N∇),
(dim(M) ≤ dim(N )) is geodesic if for every geodesic curve x(t) on (M, M∇),
φ ◦ x(t) is a geodesic curve on (N , N∇). For solving the inverse problem of cal-
culus of variation, we would like to use the formalism of calculus of variations on
fibred manifolds. The fibred space for the problem will be (M × N , π, M), which
has dimension m + n and the mapping φ now serves as a fibre coordinate. We also
suppose geodesics on M and N are parametrized by the same parameter t . From
the simple definition of geodesic mappings, one can derive a set of geodesic equa-
tions which will serve as conditions for the mapping φ to be a geodesic mapping.
Let us write out the equations in coordinate systems (xi , φσ ) on the total space and
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adapted system on the basis (xi ). In these coordinate systems, the affine connections
M∇, respectively, N∇ have components denoted by M�h

i j , respectively,
N�

μ
νλ. The

geodesic equations for a curve x(t) in M and a curve y(t) in N are

ẍ h + M�h
i j ẋ

i ẋ j = 0,

ÿσ + N�σ
μν ẏ

μ ẏν = 0,

i, j, l = 1, . . . ,m = dim(M) μ, ν, λ = 1, . . . , n = dim(N ),

For a geodesic mapping φ, the geodesic curve y(t) is the image of x(t) by φ, substi-
tuting y(t) = φ(x(t)) in the second equation we get

d

dt

(
φ

μ

l ẋ
l
) +N �

μ
νλφ

ν
i ẋ

iφλ
j ẋ

j = 0,

where we used the chain rule in the second equation d
dt (φ

μ(xl(t))) = φ
μ

l ẋ
l . Com-

puting the derivative in the second equation and then substituting for the second
derivative from the first we get

d

dt

(
φ

μ

l ẋ
l
) +N �

μ
νλφ

ν
i ẋ

iφλ
j ẋ

j = φ
μ

kl ẋ
k ẋ l + φ

μ

l ẍ
l +N �

μ
νλφ

ν
i ẋ

iφλ
j ẋ

j = 0,

φ
μ

kl ẋ
k ẋ l −M �h

i j ẋ
i ẋ jφ

μ

h +N �
μ
νλφ

ν
i ẋ

iφλ
j ẋ

j = ẋ i ẋ j
(
φ

μ

i j −M �h
i jφ

μ

h +N �
μ
νλφ

ν
i φ

λ
j

)
,

φσ
i j −M �k

i jφ
σ
k +N �σ

αλφ
α
i φλ

j = 0. (9.1)

What we get is a sufficient condition for φ to be a geodesic mapping. The second
part of interest is harmonic mappings.

9.2 Harmonic Mappings

Thebasics of harmonicmappings can be found in [2, 3]. Their applications to physics,
which include string theory, sigma models, and general relativity, are presented in
papers [4, 5]. The main change from geodesic mappings is in the setting. Harmonic
mappings are definedonRiemannianmanifolds, i.e.manifolds endowedwith ametric
tensor. We say that a mapping φ between two Riemannian manifolds (M, g) and
(N , h) is harmonic if it is a stationary (extremal) point of the energy functional.

E(φ) =
∫

M

1

2
Trg(φ

∗h)ω0,
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where ω0 is the volume element on M corresponding to the metric tensor g. Euler–
Lagrange equations of this functional yield similar equations as for geodesic map-
pings (9.1),with the difference that for harmonicmappings the connections aremetric
connections. The Lagrange function in the chosen coordinate system (xi , φσ ) has
the following form:

L = 1

2
gi j hαλφ

α
i φλ

j

Its Euler–Lagrange equations are as follows:

dk
∂L

∂φσ
k

= ∂L

∂φσ

After computing the derivatives and arranging the terms, we get

gi j hσνφ
σ
i j + gi jφα

i φλ
j

(
1

2
hσλ,α + 1

2
hσα,λ − 1

2
hαλ,σ

)
+ gkj,khσνφ

σ
j = 0

gi j hσν

(
φσ
i j −M �k

i jφ
σ
k +N �σ

αλφ
α
i φλ

j

) = 0, (9.2)

where in the last stepweused an expression for themetric trace ofChristoffel symbols
gi j�k

i j = −gkl,l . These equations seem rather complicated, let us give some examples
of harmonic mappings. Constant maps are harmonic. If the source manifold (M, g)
was R with the natural metric, the mapping φ would be harmonic if and only if
it was a geodesic. On the other hand, if R with the natural metric was the target
space, Eq. (9.2) would be the Laplace equation and its solutions, called harmonic
functions, are a special case of harmonic mappings. As mentioned above we get
similar equations, more concretely we get a trace of the geodesic equations (9.1).
There is also an additional difference being affine connections on one hand andmetric
on the other. The similarities suggest the following question: what is the connection
between variationality of Eq. (9.1) and the corresponding connections being metric?

9.3 Weak Inverse Problem of Calculus of Variations

To answer this question, wewill start with Eq. (9.1) assuming that the connections are
affine andnot necessarymetric and solve the inverse problemof calculus of variations.
From the equations, it is obvious that they are not variational by themselves, meaning
we need to impose and solve the weak inverse problem. To do that we multiply the
equation by amultiplier Bi j

σν(xk, φμ) and assume it does not depend on the derivatives
of the basis and fibre coordinates, which is usually the case, but this also means
our conclusions will be only sufficient and possibly not necessary. By multiplying
Eq. (9.1)with amultiplier B, we get new equationswhich do not need to be equivalent
to (9.1) but are a differential consequence of (9.1).
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We associate a dynamical (m + 1)-formwith the equation, this form is the follow-
ing E = Eνω

ν ∧ ω0, where ω0 is the volume element on M and ων = dφν − φν
i dx

i

is the contact 1-form on M × N .

Eν = Bi j
σν

(
φσ
i j −M �k

i jφ
σ
k +N �σ

αλφ
α
i φλ

j

)
. (9.3)

Again using the logic that we are studying geodesic equations and the connections
and their components are supposed to be symmetric we can assume the multiplier is
also symmetric in the upper indices i, j .

Instead of solving variationality Eq. (9.1), we study the variationality of the asso-
ciated form E using the tools of calculus of variations on fibredmanifolds, which can
be found in [6, 7]. The conditions for this form to be variational are called Helmholtz
conditions of variationality, which are of the following form (derivation can be found
in [7]):

∂Eν

∂φ
μ

lp

− ∂Eμ

∂φν
lp

= 0, (9.4)

∂Eν

∂φ
μ

l

+ ∂Eμ

∂φν
l

− 2dp
∂Eμ

∂φν
lp

= 0, (9.5)

∂Eν

∂φμ
− ∂Eμ

∂φν
+ dl

∂Eμ

∂φν
l

− dldp
∂Eμ

∂φν
lp

= 0. (9.6)

From the first condition, we get symmetry of the multiplier B in the lower indices

Bi j
σν = Bi j

νσ .

Because in the beginning,we assumedBdoes not depend on derivatives the equations
for the second condition split into a polynomial form in the derivatives of φ. Setting
each coefficient to zero results in two conditions.

−Bi j
μν

M�l
i j = ∂Blp

μν

∂x p
. (9.7)

N�σ
μλB

i j
σν + N�σ

νλB
i j
σμ = ∂Bi j

μν

∂φλ
, (9.8)

These conditions already tell us something about the form of the multiplier B. The
second equation is the condition for a connection N�σ

μλ to be compatible with metric

tensors Bi j , with components Bi j
σν for any choice of indices i, j . Noticing that the

equations separate, in the sense that in the Eq. (9.7) there is a derivative with respect
to x p and in the Eq. (9.8) with respect to φλ, we can guess that the multiplier B
separates also into the following form

Bi j
σν = gi j (xk)hσν(φ

μ),
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This would be the simplest choice, in particular, we know this choice is correct (is
a solution to the inverse problem) because it gives the harmonic mappings Eq. (9.2).
We can be more general and allow the functions hσν(φ

μ) to also depend on xk . The
reasoning is the following. The second equation tells us that hσν are components of
a metric tensor of the connection N�σ

μλ at one particular fibre π−1(xk). If we move
to another fibre the connection N�σ

μλ is also metric but the metric can be different.
We can have a different metric tensor h in each fibre and we allow the functions hσν

to also depend on xk for this very reason. Therefore, we choose the multiplier in the
following form:

Bi j
σν = gi j (xk)hσν(x

k, φμ). (9.9)

To justify calling the functions gi j and hσν components of metric tensors, we need to
check if they are symmetric and regular. Their symmetry follows from symmetry of
the multiplier B, symmetry of B in upper indices we assumed and in lower indices
we got from Helmholtz conditions, the regularity also follows from the regularity of
the multiplier B. In coordinate-free form, we have B = g ⊗ h.

We know that Eq. (9.8) assures that the connection N�σ
μλ comes from a metric h,

which can be different in each fibre (for different x). We can calculate how it changes
between fibres from Eq. (9.7). We substitute for B into Eq. (9.7) and simplify

− Bi j
μν

M�l
i j = ∂Blp

μν

∂x p

− gi j hμν
M�l

i j = glp,phμν + hμν,pg
lp

hμν

(
gi j M�l

i j + glp,p
) = −hμν,pg

lp

where glp,p is actually a trace of a connection induced by themetric tensor g and let us
denote it by M ∇̄, meaning the equation is a difference of traces of two connections.
Originally, we assumed the space M is only endowed with an affine connection,
however we see there also supposedly exists a metric g, but that is no surprise
becausewe knowevery smoothmanifold admits ametric.We see that the dependency
of metric tensor h on the basis coordinate x is given by the difference of traces of
connections on the spaceM .We can then express the relation between the connection
components

M�l
i j = M �̄l

i j + Sli j ,

where Sli j is a tensor which satisfies

gi j Sli j = −1

n
hμνhμν,pg

lp.

The last remaining Helmholtz condition unfortunately brings no new information
after rearranging it into a polynomial form and from requiring that all the polynomial
coefficients vanish we get four conditions
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∂νB
i j
σμ − ∂μB

i j
σν − ∂σ B

i j
μν + Bi j

αν
N�α

μσ + Bi j
αν

N�α
σμ = 0 (9.10)

∂ν(B
i j
σμ)N�σ

αλ + Bi j
σμ∂N

ν �σ
αλ − ∂μ(Bi j

σν)
N�σ

αλ − Bi j
σν∂

N
μ �σ

αλ + ∂α(Bi j
σν)

N�σ
μλ + Bi j

σν∂
N
α �σ

μλ

+ ∂λ(B
i j
σν)

N�σ
αμ + Bi j

σν∂λ
N�σ

αμ − ∂λ∂αB
i j
μν = 0 (9.11)

M�k
i j

(
∂μB

i j
σν − ∂νB

i j
σμ − ∂σ B

i j
μν

)
+ 2∂l

(
Blk

λν

)
N�λ

μσ − 2∂p∂σ B
kp
μν = 0 (9.12)

− ∂l (B
i j
μν)

M�l
i j − Bi j

μν∂
M
l �l

i j − ∂l∂p B
lp
μν = 0. (9.13)

Equation (9.10) provides us with the same information as (9.8) that being, the con-
nections N∇ is metric with the metric tensor h.

We can also see that the remaining equations are dependent. Equation (9.13) is
just a derivative of (9.7) with respect to xl and Eq. (9.12) is a multiple of Eq. (9.10) by
M�k

i j . The only equation that does not depend on the previous ones is Eq. (9.11) but
after some calculations it results in an identity for the Riemann curvature tensor R.

hβμ Rβ

λνα = hσν R
σ
αμλ −→ Rμλνα = Rναμλ.

9.4 Summary and Conclusions

We now summarize everything we discovered from the Helmholtz conditions. We
have Eq. (9.1) for a geodesic mapping φ. We ask the following question: what is the
connection between variationality of this equation and the corresponding connec-
tions being metric? Therefore, we are solving an inverse problem for the associated
dynamical form E = Eν ων ∧ ω0.

Eν = Bi j
σν

(
φσ
i j −M �k

i jφ
σ
k +N �σ

αλφ
α
i φλ

j

)

We choose a specific form (9.9) of the variational multiplier B. The conditions for
variationality are

1. Connection N∇ is metric and is fibre-wise induced by the metric h. (Metric h is
generally different in each fibre hσν = hσν(xk, φμ). The way in which this metric
changes in xk is given by the connection M∇ and metric g)

2. Connection M∇ does not need to be metric but is related to a metric connection
by

�k
i j = �̄k

i j + Ski j ,

where Ski j is a tensor whose metric trace by the tensor g relates to the changes in
the metric h

gi j Sli j = −hμνhμν,pg
lp.

The form (9.9) of the variational multiplier B is a solution to the inverse problem
if the corresponding metrics satisfy the above conditions. The results suggest that
both spaces are Riemannian, where h is compatible with the connection N∇ on N
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but g is not necessarily compatible with M∇ on M . The interesting result is that the
metric h can be different in different fibres and the changes are related to structures
on the base manifold M . This conclusion mostly results from using the formalism
of fibred manifolds and finding a non-trivial solution to the weak inverse problem,
but it suggests more complicated fibred structure for the problem of geodesic and
harmonic mappings. There remains the question of finding more general forms of
the multiplier B, which could be a part of further research.

Acknowledgements I would like to thank Olga Rossi for the help and guidance.
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Chapter 10
Integrability of Geodesics of Totally
Geodesic Metrics

Radosław A. Kycia and Maria Ułan

10.1 Introduction

In [11], a class of totally geodesic metrics were given. For convenience, we outline
here the main steps referring interested reader to the paper for details.

The startingpoint is to decompose theWeyl tensor in thebaseof 2-forms,which are
eigenvectors of the corresponding Weyl operator. Then it results that the space-time
contains totally geodesic distributions [11] of hyperbolic (H ) and elliptic (E) tangent
planes. This induces the solutions of the Einstein’s equations with the cosmological
constant � in the form

g = gH ⊕ gE ,

gH = eα(x0,x1)(dx20 − dx21 ), gE = −eβ(x2,x3)(dx22 + dx23 ).
(10.1)

The functions α and β are the solutions of the hyperbolic and elliptic Liouville
equations, correspondingly, [4]

{
∂2α(x0,x1)

∂2x0
− ∂2α(x0,x1)

∂2x1
+ 2�eα(x0,x1) = 0,

∂2β(x2,x3)
∂2x2

+ ∂2β(x2,x3)
∂2x3

− 2�eβ(x2,x3) = 0.
(10.2)

The solutions are as follows:

R. A. Kycia (B)
The Faculty of Science, Masaryk University, Kotlářská 2, 602 00 Brno, Czech Republic
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α(x0, x1) = ln(h1(v)(v2x0 − v2x1)),
β(x2, x3) = ln(h2(u)(u2x2 + u2x3)),

(10.3)

where u and v are the solutions of the two-dimensional hyperbolic and elliptic equa-
tions:

vx0x0 − vx1x1 = 0,
ux2x2 + ux3x3 = 0,

(10.4)

and where h1 and h2 are the solutions of a second-order ODEs. Full list of the
solutions is presented [11].

In this paper, we analyse the geodesic governed by (10.1). Computations of the
geodesic equations were performed using the Mathematica package CCGRG, see
[14, 18, 19], and symmetries were computed using theDifferential GeometryMaple
package.

This paper is organized as follows: In the next section, it is shown that there is
no true singularities of geodesics in the model of [11], i.e. the space-time is totally
geodesic. Then the analysis of Liouville integrability [1] of the geodesics equations
is provided. Finally, the analogous model with additional coupling to the electromag-
netic field described in [12] is considered in the terms of integrability of geodesics.

The presentation starts with the analysis of the singularities of geodesics.

10.2 Singularities

The metric tensors described in [11] have obvious singularities. Generally, the sin-
gularities in the General Relativity have two origins [17]:

• singularities of the coordinates which results from the fact that in the coordinate
patch ill-defined coordinate functions are used over regular points of manifold;

• true singularities which indicate geodesic incompleteness of the manifold;

True singularities are usually visible as the singularities of some invariants of
curvature. The simplest second-order one is the square of the Riemann curvature
(called Kretschmann scalar [3])

K = Rabcd R
abcd . (10.5)

For (10.1) that are solutions of (10.2), this invariant is constant

K = 8�2, (10.6)

which suggests no singularities, i.e. completeness of the pseudo-Riemannian mani-
fold. The answer is affirmative as it is provided by the following Lemma1

1RKwould like to thank Igor Khavkine for discussion on this subject and suggestions of the outline
of the proof.
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Lemma 10.1 The pseudoriemannian manifold (10.1) with (10.2) is complete.

Proof From the metric decomposition (10.1) and the fact that

RH =
1∑

i, j=0

Ri j
..i j = 2�, RE =

3∑
i, j=2

Ri j
..i j = 2�, (10.7)

it results that the space factorizes into two-dimensional subspaces of constant curva-
ture. These subspaces are isometric to spaces with no singularities according to the
well-known Killing–Hopf theorem (see, e.g. Theorem 6.3 in [2]). �

The lemma states that any singularity of (10.1), (10.2) is an artificial singularity only
and can be removed by a suitable change of coordinates.

10.3 Geodesics

In this section, the analysis of the geodesic equationswill be provided. In the first part,
the canonical form of the geodesic equations and their symmetries will be presented.
Then the (Liouville) integrable cases will be singled out.

10.3.1 Geodesic Equations

Since the tangent space decomposes into two-dimensional subspaces, therefore,
the geodesic equations consist of two pairs of two coupled ODEs for γ (s) =
(x0(s), x1(s), x2(s), x3(s)), namely,

{
x ′′
0 + x ′

0x
′
1αx1 + 1

2

(
x ′
0

)2
αx0 + 1

2

(
x ′
1

)2
αx0 = 0

x ′′
1 + 1

2

(
x ′
0

)2
αx1 + 1

2

(
x ′
1

)2
αx1 + x ′

0x
′
1αx0 = 0,

(10.8)

{
x ′′
2 + x ′

2x
′
3βx3 + 1

2

(
x ′
2

)2
βx2 − 1

2

(
x ′
3

)2
βx2 = 0

x ′′
3 − 1

2

(
x ′
2

)2
βx3 + 1

2

(
x ′
3

)2
βx3 + x ′

2x
′
3βx2 = 0,

(10.9)

where ′ = d
ds , αxi = ∂α

∂xi
and βxi = ∂β

∂xi
.

These equations can be significantly simplified. Adding and subtracting Eq. (10.8)
and then introducing the light-cone variables (characteristics of the wave equation):
x0 = z0+z1

2 and x1 = z0−z1
2 one gets

�1(z0, z1) :
{
z′′
0 + ∂α(z0,z1)

∂z0

(
z′
0

)2 = 0

z′′
1 + ∂α(z0,z1)

∂z1

(
z′
1

)2 = 0.
(10.10)
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Symmetries of (10.10) can be found by assuming that the generator of a symmetry
is of the form: X = f (s, z0, z1)∂s + g(s, z0, z1)∂z0 + h(s, z0, z1)∂z1 , and solving the
following system of PDEs:

£X (2)�1(z0, z1)|�1(z0,z1) = 0, (10.11)

where £ is the Lie derivative along X (2)—the second prolongation of X to the jet
space [5, 10, 15, 16]. The result is

X1 = (As + B)∂s, (10.12)

where A and B are constants. This gives a scaling and a translation symmetry of s
variable, and it results from the fact that (10.8) does not depends explicitly on s. The
symmetry reflects the fact that the geodesics should not depend on re-parametrization
in s and is also connected with the fact that the geodesic equations are variational
and should posses such symmetries.

The same procedure can be applied to the second system of (10.9). In this case we
have positively defined (‘elliptic’) metric, which suggests complex characteristics.
It is, therefore, more appropriate to use complex-valued characteristics of an ellip-
tic equation, i.e. the substitution x2 = z2+z3

2i and x3 = z2−z3
2 , where i = √−1. Then

adding and subtracting from the first equation of (10.9) multiplied by the imaginary
unity the second one one gets the system which resembles (10.10), namely,

�1(z2, z3) :
{
z′′
2 + ∂β(z2,z3)

∂z2

(
z′
2

)2 = 0

z′′
3 + ∂β(z2,z3)

∂z3

(
z′
3

)2 = 0.
(10.13)

Since the equations are the same as in the previous case, symmetry analysis
indicates, as above, the following generator:

X2 = (Cs + D)∂s, (10.14)

where C and D are some constants.
In the next section, integrability of geodesics equations will be investigated.

10.3.2 Integrability of Geodesic Equations

First, let us consider the hyperbolic part of the metric, namely define the Hamiltonian

H0,α = eα(x0,x1)(p20 − p21), (10.15)

which surfaces of constant value determine the movement of the particles (positive-
massive particles, zero-massless particles). Since the submanifold dimension is 2,
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therefore in order to find its foliation, according the the Liouville theorem [1], one
additional function that the Poisson brackets with H0,α vanishes, is needed. It is
assumed in the polynomial form in p0 and p1, namely,

H1,α =
n∑

k=0

fi (x0, x1)p
k
0 p

n−k
1 , (10.16)

where n is natural number that is fixed degree. Complete integrability is equivalent
to the existence of a solution of

{H0,α, H1,α}PB = 0, (10.17)

where {., .}PB is the standard Poisson bracket. Equation (10.17) gives the set of
PDEs.2 In order to check closeness of this system the Kruglikov–Lychagin multi-
bracket [6–9, 13] is used. When applied on the system (10.17), it gives compatibility
condition in terms of PDEs for α(x, y), which solutions up to n = 5 are

1. n = 1, 2:

α(x0, x1) = F tanh(B(y − x) + A)3 + E tanh(B(y − x) + A)2

+ D tanh(B(y − x) + A) + C; (10.18)

where A, B,C, D, E, F are the constants of integration and parametrize α.
2. n = 3, 4:

α(x0, x1) = Ax + By + C; (10.19)

where A, B,C are the constants of integration and parametrize α.

Surprisingly, these solutions fulfil the first equation of (10.2) only when the cos-
mological constant � = 0. This is a very prominent example of the role of the
cosmological constant in integrability of geodesic equations.

For the case (10.18), integration can be easily performed using (10.10) and gives

{
z0(s) = As + J,∫ z1(s)

0 exp(F tanh(Ba + A)3 + E tanh(Ba + A)2 + D tanh(Ba + A) + C)da + Gs + H = 0,
(10.20)

where the second solution is expressed in the implicit form, A, B, . . . , F are as in
(10.18) and G, H, J are the constants dependent on initial data.

The second case (10.19) can be explicitly expressed in terms of elementary func-
tions, namely,

z0(s) = −2
ln

(
2

(Ds+E)(A+B)

)
A+B ,

z1(s) = −2
ln

(
2

(Fs+G)(A+B)

)
A+B ,

(10.21)

2All calculations for this section are available as Maple files on: https://github.com/rkycia/
GeodesicsIntegrability.

https://github.com/rkycia/GeodesicsIntegrability
https://github.com/rkycia/GeodesicsIntegrability
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where D, E, F,G are the constants depending on initial data.
Similar analysis performed for the elliptic part of the metric by taking

H0,β = eβ(x2,x3)(p22 + p23), (10.22)

and

H1,β =
n∑

k=0

fi (x2, x3)p
k
2 p

n−k
3 , (10.23)

and checking when
{H0,β , H1,β}PB = 0. (10.24)

The two solutions for β are obtained up to the degree n = 5, namely:

1. n = 1, 2:

β(x0, x1) = F tanh(B(y − xi) + A)3 + E tanh(B(y − xi) + A)2

+ D tanh(B(y − xi) + A) + C; (10.25)

where A, B,C, D, E, F are the constants of integration and parametrize β, and
i is the imaginary unit.

2. n = 3, 4:
β(x0, x1) = Ax + By + C; (10.26)

where A, B,C are the constants of integration and parametrize β.

As in the previous case, these βs solve (10.2) only when the cosmological constant
� = 0.

For (10.25) the solution of (10.13) is

{
z2(s) = As + J,∫ z3(s)

0 exp(F tanh(Ba + A)3 + E tanh(Ba + A)2 + D tanh(Ba + A) + C)da + Gs + H = 0,
(10.27)

where, as before, G, H, J are the integration constants depending on initial data.
For (10.26), the solution of (10.13) is

z2(s) = −2
ln

(
2

(A−i B)(Ds+E)

)
A−i B ,

z3(s) = −2
ln

(
2

(A+i B)(Fs+G)

)
A+i B ,

(10.28)

where D, E, F,G are again the constants depending on initial data. These solutions
are complex-valued, however, since x2 and x3 fulfil real equations for geodesic,
therefore, transforming to the original variables one gets real solutions.

In general, the geodesic solutions can be constructed by selecting the solution
(10.20) or (10.21) for the hyperbolic part of the subspace, and (10.27) or (10.28)
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for the elliptic subspace. Therefore, in total 4 = 2 × 2 integrable solutions were
obtained.

10.4 Einstein–Maxwell Solutions

The results from the previous section can be used for analysis of the geodesics of
the solutions for coupled the Einstein and Maxwell equations described in [12]. In
this model the totally geodesic solutions, the same as the solution of (10.1) for the
metric, were obtained. However, now α and β are solutions of{

∂2α(x0,x1)
∂2x0

− ∂2α(x0,x1)
∂2x1

+ k1eα(x0,x1) = 0,
∂2β(x2,x3)

∂2x2
+ ∂2β(x2,x3)

∂2x3
+ k2eβ(x2,x3) = 0,

(10.29)

where

k1 = 2

(
k J

c4
+ �

)
, k2 =

(
k J

c4
− �

)
, (10.30)

where � is the cosmological constant, k is the gravitational constant, and the new
parameter J is connected with the solution for the Faraday tensor of electromagnetic
field

F = −2leα(x0,x1)dx0 ∧ dx1 + 2meβ(x2,x3)dx2 ∧ dx3, (10.31)

where

l2 = J − I1
2

, m2 = J + I1
2

, (10.32)

and where I1 is the invariant of the characteristic polynomial of the skew symmetric
operator F̂ (associated to F by g(F̂ X,Y ) = F(X,Y )), namely, its determinant. The
parameters ±l and ±im, where l,m ∈ R, are the eigenvalues of the hyperbolic and
the elliptic parts of the operator F̂ .

The straightforward result from (10.32) is that

J = l2 + m2, I1 = m2 − l2. (10.33)

From our previous considerations, the geodesic equations are (Liouville) inte-
grablewhen k1 = 0 = k2, i.e.,when J = 0 and� = 0.And therefore, since l,m ∈ R,
from the first equation of (10.33) it results that l = 0 and m = 0, and therefore, the
Faraday tensor vanishes. This shows that the integrable solutions for geodesics exist
when no electromagnetic field and no cosmological constant is present in this model.
The solutions for geodesics are exactly the same as in the previous section for the
Einstein equations only, since the electromagnetic field vanishes.
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10.5 Discussion

The semi-Riemmanianmetric of [11] describes anisotropic space-time, which distin-
guished the space direction x1, and therefore cannot describe the observed space-time
where assumption on spherical symmetry is imposed. The presence of this distin-
guished space direction resembles the phenomena from the phase transitions in solid
state physics, and therefore it suggests that the model can be applied in some phe-
nomena that occur when the universe undertake some kind of phase transition, e.g.,
in the early state of the universe. A similar description applies also to the coupled
Einstein–Maxwell system.

Intriguing correspondence between vanishing of the cosmological constant and
integrability of the geodesic equations was noted. In the case of electromagnetism
for integrability also electromagnetic field must vanish.

10.6 Conclusions

In this paper, analysis of the geodesic of the solution of the Einstein vacuum equa-
tions resulting from the Weyl tensor bivector structure was provided. In particular,
integrable geodesic equations of special solutions of the Einstein vacuum equation
were found and described. A similar analysis was also performed for the Einstein–
Maxwell system.

Acknowledgements We would like to thank Prof. Valentin V. Lychagin and Igor Khavkine for
enlightening discussions.We would also like thank Sergey N. Tychkov for helping to master Maple.
RK participation was supported by the GACR Grant 17-19437S, and MUNI/A/1138/2017 Grant of
Masaryk University.

References

1. V.I. Arnold, Mathematical Methods of Classical Mechanics, Springer; 2nd edition (1997)
2. W.M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Geometry, Aca-

demic Press; 2nd edition 2002
3. Ch. Cherubini, D. Bini, S. Capozziello, R. Ruffini, Second Order Scalar Invariants of the

Riemann Tensor: Applications to Black Hole Spacetimes. International Journal of Mod-
ern Physics D. 11 (06): 827–841 (2002); arXiv:gr-qc/0302095v1; https://doi.org/10.1142/
S0218271802002037

4. D.G. Crowdy, General Solutions to the 2D Liouville equations, International Journal of Engi-
neering Science, 35 2 141–149 (1997)

5. I.S. Krasilshchik, A.M. Vinogradov, Symmetries and Conservation Laws for Differential
Equations of Mathematical Physics, American Mathematical Society 1999

6. B. Kruglikov, Note on two compatibility criteria: Jacobi-Mayer bracket vs. differential Groöb-
ner basis, Lobachevskii J. Math., 23, 2006, 57–70

7. B. Kruglikov, V. Lychagin, Mayer brackets and solvability of PDEs–I, Differential Geometry
and its Applications, Elsevier BV, 17, 251–272 (2002)

http://arxiv.org/abs/gr-qc/0302095v1
https://doi.org/10.1142/S0218271802002037
https://doi.org/10.1142/S0218271802002037


10 Integrability of Geodesics of Totally Geodesic Metrics 275

8. B. Kruglikov, V. Lychagin, Mayer brackets and solvability of PDEs–II, Transactions of the
American Mathematical Society, 358, 3, 1077–1103 (2006)

9. B. Kruglikov, V. Lychagin,Compatibility, Multi-brackets and Integrability of Systems of PDEs,
Acta Applicandae Mathematicae, Springer, 109, 151 (2010)

10. A. Kushner, V. Lychagin, V. Rubtsov,Contact Geometry and Nonlinear Differential Equations,
Cambridge University Press; 1 edition 2007

11. V. Lychagin, V. Yumaguzhin, Differential invariants and exact solutions of the Einstein equa-
tions, Anal.Math.Phys. 1664-235X 1–9 (2016); https://doi.org/10.1007/s13324-016-0130-z

12. V. Lychagin, V.Yumaguzhi,Differential invariants and exact solutions of the Einstein–Maxwell
equation, Anal.Math.Phys. 1, 19–29, (2017); https://doi.org/10.1007/s13324-016-0127-7

13. Maple package for the Mayer and the Kruglikov-Lychagin brackets calculations can be down-
loaded from http://d-omega.org/brackets/

14. Mathematica package CCGRG for tensor computations can be downloaded from http://library.
wolfram.com/infocenter/MathSource/8848/

15. P.J. Olver, Applications of Lie Groups to Differential Equations, Springer; 2nd edition 2000
16. P.J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press; 1 edition 2009
17. R.M. Wald, General Relativity, Chicago University Press 1984
18. A.Woszczyna, R.A.Kycia, Z.A. Golda,Functional Programming in Symbolic Tensor Analysis,

Computer Algebra Systems in Teaching and Research, IV 1 100–106 (2013)
19. A. Woszczyna, P. Plaszczyk, W. Czaja, Z.A. Golda, Symbolic tensor calculus - functional

and dynamic approach, Technical Transactions, Y. 112 61–70 (2015); https://doi.org/10.4467/
2353737XCT.15.110.4147

https://doi.org/10.1007/s13324-016-0130-z
https://doi.org/10.1007/s13324-016-0127-7
http://d-omega.org/brackets/
http://library.wolfram.com/infocenter/MathSource/8848/
http://library.wolfram.com/infocenter/MathSource/8848/
https://doi.org/10.4467/2353737XCT.15.110.4147
https://doi.org/10.4467/2353737XCT.15.110.4147


Index

A
Almost-complex structure, 96
Almost generalised complex structure, 108
Almost Hermitian manifold, 105
Almost hyper-complex manifold, 105
Almost hyper-complex structure, 105
Almost hyper-para-complex manifold, 105
Almost para-complex manifold, 98
Almost para-complex structure, 98
Almost-product structure, 98

B
Balance

geostrophic, 186
hydrostatic, 186

Bi-Lagrangian subvariety, 100
Birkett–Thorpe equation, 200
Bochner integral, 10
Borel measurable, 5
Borel σ -algebra, 5
Borel’s theorem, 251

C
Calabi–Yau manifold, 100
Calabi–Yau structure, 241
Calculus of variations, 261

inverse problem, 261
Cartan distribution, 56
Cartan form, 56
Cayley surface, 254
Central moment, 25

Clapeyron–Mendeleev equation, 39
Clapeyron–Mendeleev law, 40
Complex manifold, 98
Conditional expectation, 11
Configuration space, 30
Contact transformation, 57, 68
Contact vector field, 58

generating function, 58
Cosmological constant, 267
Courant bracket, 108

D
Differential operator, 60
Dritschel–Viudez equation, 194

E
Effective form, 64
Einstein–Maxwell solutions, 273
Entropy, 15

Boltzmann, 15
Shannon, 16

Extensivity, 36

F
Field theory, 31
Fubini theorem, 10

G
Gain of information, 16

© Springer Nature Switzerland AG 2019
R. A. Kycia et al. (eds.), Nonlinear PDEs, Their Geometry, and Applications,
Tutorials, Schools, and Workshops in the Mathematical Sciences,
https://doi.org/10.1007/978-3-030-17031-8

277

https://doi.org/10.1007/978-3-030-17031-8


278 Index

Gas, 36
ideal, 229
van der Waals, 40, 211, 229, 230

Gaussian distribution, 23
Generalised almost Calabi–Yau structure,

143
Generalised Calabi–Yau structure, 192

integrable, 144
Generalised complex structure, 107
Geodesic mapping, 259
Geodesics, 269
Gibbs free energy, 37
Gibbs inequality, 17
Grassmanian, 235

H
Hamiltonian function, 20
Hamiltonian vector field, 113
Harmonic mapping, 260
Heat capacity, 37
Heavenly equation, 198
Helmholtz conditions, 262
Hermitian form, 99
Hermitian metric, 99
Hesse operator, 61
Hessian, 25
Hessian matrix, 187
Hitchin pair

bivectors, 109
2-form, 109

Hitchin pfaffian, 125
Hodge–Lepage–Lychagin theorem, 188,

249
Hodge operator, 132
Holomorphically symplectic manifold, 100
Hoskins equation, 201
Hunter–Saxton equation, 90
Hypercomplex symplectic structure, 115
Hyperkähler structure, 104

I
Ideal gas, 39
Information gain, 224
Intensivity, 36

J
Jensen’s inequality, 17

K
Kähler class, 99

Kähler manifold, 99
Killing–Hopf theorem, 269
Kretschmann scalar, 268
Kruglikov–Lychagin multibracket, 271
Kullback–Leibler divergence, 16, 17

L
Lagrangian, 148
Lagrangian submanifold, 101
Laplace forms, 91
Laplace operator, 61
Lebesgue integral, 7
Legendre transformation, 59
Legendrian manifold, 210, 223
Linearization, 93
Liouville equations, 267
Liouville integrability, 271
Liquid crystals, 90
Lissajou differential operator, 60
Lissajou equation, 62, 64, 65
Lychagin–Roubtsov criteria, 194

M
Mahalanobis metric, 23
Maple, 157
Maslov–Arnold classes, 233
McIntyre-Roulstone equation, 202
Measurable map, 6
Measurable space, 5
Measure, 4
Mechanics, 30
Moment map, 248
Monge–Ampère

grassmannians, 233
Monge–Ampère equations, 53, 62, 63, 118,

186
de Rham complex, 85
Dritschel–Viudez, 150, 151
hyperbolic, 74, 79
parabolic, 74
symplectic, 80, 118, 126

Monge–Ampère metric, 125
Monge–Ampère structure, 128, 190

elliptic, 142
Hitchin decomposable, 136
Hitchin non-degenerate, 136
hyperbolic, 142
parabolic, 142

Monge equation, 64
Multivalued solutions, 63



Index 279

N
Navier–Stokes equations, 209
Nearly Calabi–Yau manifold, 142
Nernst’s postulate, 15
Newlander–Nirenberg theorem, 98
Nijenhuis tensor, 82, 97, 98
Nijenuijs operator, 111

O
1-jet bundle, 56
1-jet of a function, 55

P
Para-Hermitian manifold, 105
Pfaffian, 73
Phase transition, 41

van der Waals, 215
Plücker embedding, 239
Poisson brackets, 29, 113, 271
Poisson pencil, 112
Polytropic index, 50
Principle of minimal information gain, 18
Principle of minimum discrimination infor-

mation, 18
Probability measure, 5
Probability space, 6
Probability theory, 5

R
Radon–Nikodym Theorem, 9
Rellich’s parameter, 196

S
Seiberg–Witten curve, 149
σ -algebra, 4
Singularity, 268
Sklyanin algebras, 255
Snyder–Skamarock–Rotunno, 203
Sound speed, 38
Special complex manifold, 99
Special Kähler manifold, 99
Special Lagrangian submanifold, 103
State equation

van der Waals, 40
Symplectically equivalent, 81
Symplectic form, 21
Symplectic pair, 112
Symplectic structure, 73, 248

T
Thermodynamical state, 35
Thermodynamic laws, 33
Thermodynamic process, 47
Thermodynamics, 15, 33, 223
Topological space, 5
Triccomi equation, 68

V
Van der Waals

gas, 40, 211, 229, 230
phase transition, 215
state equation, 40

Virial equation, 45
Von Karman differential operator, 61
Von Karman equation, 68


	Foreword
	Preface
	Acknowledgements
	Contents
	Contributors
	Acronyms
	Part I Lectures
	1 Contact Geometry, Measurement,  and Thermodynamics
	1.1 Preface
	1.2 A Crash Course in Probability Theory
	1.2.1 Measure Spaces and Measurable Maps
	1.2.2 Operations Over Measures, Measure Spaces,  and Measurable Maps
	1.2.3 The Lebesgue Integral
	1.2.4 The Radon–Nikodym Theorem
	1.2.5 The Fubini Theorem
	1.2.6 Random Vectors
	1.2.7 Conditional Expectation
	1.2.8 Dependency, Coherence Conditions, and Tensor Product of Random Vectors

	1.3 Measurement of Random Vectors
	1.3.1 Entropy and the Shannon Formula
	1.3.2 Gain of Information
	1.3.3 Principle of Minimal Information Gain
	1.3.4 The Gaussian Distribution
	1.3.5 Central Moments
	1.3.6 Change of Information Gain
	1.3.7 Constraints and Constitutive Relations
	1.3.8 Application to Classical Mechanics and Classical Field Theory

	1.4 Thermodynamics
	1.4.1 Laws of Thermodynamics
	1.4.2 Thermodynamics and Measurement
	1.4.3 Gases
	1.4.4 Thermodynamic Processes and Contact Transformations

	References

	2 Lectures on Geometry of Monge–Ampère Equations with Maple
	2.1 Introduction
	2.2 Lecture 1. Introduction to Contact Geometry
	2.2.1 Bundle of 1-Jets
	2.2.2 Contact Transformations

	2.3 Lecture 2. Geometrical Approach to Monge–Ampère Equations
	2.3.1 Non-linear Second-Order Differential Operators
	2.3.2 Multivalued Solutions of Monge–Ampère Equations
	2.3.3 Effective Forms

	2.4 Lecture 3. Contact Transformations of Monge–Ampère Equations
	2.5 Lecture 4. Geometrical Structures
	2.5.1 Pfaffians
	2.5.2 Fields of Endomorphisms
	2.5.3 Characteristic Distributions
	2.5.4 Symplectic Monge–Ampère Equations
	2.5.5 Splitting of Tangent Spaces

	2.6 Lecture 5. Tensor Invariants of Monge–Ampère Equations
	2.6.1 Decomposition of de Rham Complex
	2.6.2 Tensor Invariants
	2.6.3 The Laplace Forms
	2.6.4 Contact Linearization of the Monge–Ampère Equations

	References

	3 Geometry of Monge–Ampère Structures
	3.1 About These Lectures
	3.2 Lecture One: What Is It All About?
	3.2.1 Basic Geometric Structures
	3.2.2 Kähler, Special and Other Related Structures
	3.2.3 Holomorphic Symplectic Structures
	3.2.4 Lagrangian, Special Lagrangian and Complex Lagrangian Submanifolds
	3.2.5 Hyperkähler Manifolds
	3.2.6 Generalised Complex Structure
	3.2.7 Notes and Further Reading

	3.3 Lecture Two: Recursion (Nijenuijs) Operators  and Some Related Algebraic Constructions
	3.3.1 Recursion Operators and Its Properties
	3.3.2 Triples of Symplectic Forms
	3.3.3 Notes and Further Reading

	3.4 Lecture Three: Symplectic Monge–Ampère Operators and Equations
	3.4.1 Monge–Ampère Equations
	3.4.2 Geometry of Differential Forms
	3.4.3 Notes and Further Reading

	3.5 Lecture Four: Monge–Ampère Structures
	3.5.1 General Properties
	3.5.2 (4m+2)-Dimensional MA Geometry
	3.5.3 Explicite Examples of Generalised Almost Calabi–Yau on T*mathbbR3 (After B.Banos)
	3.5.4 Notes and Further Reading

	3.6 Lecture Five
	3.6.1 Bi-Lagrangian, Special Lagrangian, Special Kähler and Monge–Ampère Equations
	3.6.2 2d and 3d Rotating Stratified Flows—Dritschel–Viudez Diagnostic MAEs
	3.6.3 Generalised Complex Geometry and Monge–Ampère Structures
	3.6.4 Notes and Further Reading

	References

	4 Introduction to Symbolic Computations in Differential Geometry with Maple
	4.1 Introduction
	4.2 Basic Setup
	4.2.1 Subpackage Tools

	4.3 Calculations with Vectors and Forms
	4.3.1 Computing Symmetries

	4.4 Transformations
	4.4.1 Operations on Transformations

	Reference

	Part II Participants Contributions
	5 On the Geometry Arising in Some Meteorological Models in Two and Three Dimensions
	5.1 Introduction
	5.2 A Brief Guide in Balanced Meteorological Models
	5.3 Monge–Ampère Geometry
	5.3.1 Monge–Ampère Operators
	5.3.2 Generalized Solutions
	5.3.3 The Problem of Local Equivalence
	5.3.4 Monge–Ampère Structures

	5.4 2d Rotating Stratified Flows—Dritschel–Viudez MAE
	5.4.1 Integrability of the Complex/Product Structure
	5.4.2 Underlying Hypersymplectic Geometry
	5.4.3 2d-Diagnostic Equation of Dritschel–Viudez: Special Choice of Constant Coefficients
	5.4.4 Reduction to Constant Coefficients
	5.4.5 Variation of the Potential and Hyper-Kähler Metrics in 4d

	5.5 Some Examples of 3d-Geostrophic Models
	5.5.1 The Birkett and Thorpe Equation (BT)
	5.5.2 The Hoskins Equation (H)
	5.5.3 The McIntyre-Roulstone Equation (McI)
	5.5.4 The Snyder–Skamarock–Rotunno Equation (SSR)

	5.6 3d Rotating Stratified Flows—Dritschel–Viudez MAE
	References

	6 Gas Flow with Phase Transitions: Thermodynamics and the Navier–Stokes Equations
	6.1 Introduction
	6.2 Geometric Representation of Thermodynamic States
	6.3 Van der Waals Gases
	6.3.1 The Equations of State
	6.3.2 Applicable Domains for the Van der Waals Gas
	6.3.3 Phase Transitions

	6.4 Asymptotic Expansions for Solution
	6.4.1 Zeroth-Order Approximation
	6.4.2 First-Order Approximation

	6.5 Phase Transitions Along the Gas Flow
	References

	7 Differential Invariants in Thermodynamics
	7.1 Introduction
	7.2 Geometry of Thermodynamics
	7.3 Equivalence of Thermodynamical Systems
	7.4 Differential Invariants
	7.4.1 Differential Invariants Under Aff(V)
	7.4.2 Differential Invariants Under G0 timesAff(V)

	7.5 Application to Gases
	7.5.1 Distinguishing Gases
	7.5.2 Ideal Gas
	7.5.3 Van der Waals Gas

	References

	8 Monge–Ampère Grassmannians, Characteristic Classes and All That
	8.1 Grassmannians, Associated with the Lagrangian  and Legendrian Planes
	8.2 Integral or Monge–Ampère Grassmannians
	8.3 Grassmannians for 2- and 3- Effective Forms
	8.3.1 Integral Grassmannians for Monge–Ampère Equations in Dimension 2
	8.3.2 Geometric Structure Associated with 3d- MA Equations
	8.3.3 Integrability and MA Grassmannians in 3d

	8.4 Multidimensional Generalisation of Splitting Construction
	8.4.1 Non-degenerate 2k+1- Forms in Sense of Hitchin

	8.5 Characteristic Classes of Monge–Ampère Equations on a 3-Dimensional Manifolds
	8.5.1 Special Lagrangian Monge–Ampère Characteristic Classes
	8.5.2 Remarks and Speculations About mathbbS

	References

	9 Weak Inverse Problem of Calculus  of Variations for Geodesic Mappings  and Relation to Harmonic Maps
	9.1 Geodesic Mappings and Basic Setting
	9.2 Harmonic Mappings
	9.3 Weak Inverse Problem of Calculus of Variations
	9.4 Summary and Conclusions
	References

	10 Integrability of Geodesics of Totally Geodesic Metrics
	10.1 Introduction
	10.2 Singularities
	10.3 Geodesics
	10.3.1 Geodesic Equations
	10.3.2 Integrability of Geodesic Equations

	10.4 Einstein–Maxwell Solutions
	10.5 Discussion
	10.6 Conclusions
	References

	Index



