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Clinical Studies of a Purely 3D
Navigation in Interventional
Managements of Tachyarrhythmia

Ahmed AlTurki and Riccardo Proietti

Introduction

Catheter ablation has become the cornerstone
treatment for tachyarrhythmias over the last
20 years [1]. Firmly established as first-line
therapy for the treatment of right-sided arrhyth-
mias (atrial flutter, atrial reentrant tachycardia,
and atrioventricular nodal reentrant tachycardia),
catheter ablation is moving toward becoming
first-line therapy for complex arrhythmias such as
atrial fibrillation and ventricular tachycardia [1,
2]. These complex ablations are often prolonged
and require trans-septal puncture as well as use
of several catheters from multiple access sites. A
major downside to such complex procedures using
conventional fluoroscopy is high exposure to radi-
ation for both the patient and the electrophysiolo-
gist [3]. Radiation exposure poses significant risks
to all those exposed in the electrophysiology lab.
A typical procedure results in an estimated mean
total radiation dose of 16.6 mSv (ranging from 6.6
to 59.2 mSv), equivalent to 830 chest X-rays, and
is associated with a lifetime risk for a fatal malig-
nancy estimated at 0.15% for female patients and
0.21% for male patients [3, 4].
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To counter these risks, there has been a move-
ment toward non-fluoroscopic techniques allow-
ing a zero or near-zero exposure [5]. These
techniques have revolutionized our current prac-
tice of catheter ablation in the management of
tachyarrhythmias [6]. These techniques include
3D mapping systems, remote magnetic naviga-
tion (RMN), contact force (CF) technology, and
intracardiac echo (ICE). In addition to reducing
radiation exposure, these techniques are thought
to improve the accuracy of catheter ablation and
allow the creation of an improved ablation lesion.
Furthermore, these techniques reduce operator
and staff fatigue due to the use of heavy-lead
aprons when using fluoroscopy [7].

In this chapter, we review current technologies
used for 3D navigation and their implementation
and results in clinical practice as well as the state
of utilization of these technologies in the target-
ing of different tachyarrhythmias.

Advanced 3D Electroanatomic
Mapping Systems

There are variations in individual cardiac anatomy
which warrant the use of a 3D electroanatomic
mapping (EAM). Three-dimensional EAM sys-
tems, which were first introduced in 1997, have
improved the understanding of cardiac chamber
anatomy allowing precise catheter localization.
EAM facilitates catheter ablation by keeping a
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catalog of activation time, voltage, and anatomic
location at multiple points simultaneously and
displaying them as readily understandable color-
coded maps superimposed on the cardiac cham-
ber geometry [8, 9]. Electroanatomic mapping
systems can also display cardiac anatomy and
sites of RF energy application with much more
precision than fluoroscopic localization [9, 10].
Many arrhythmias have specific anatomic targets;
electroanatomic mapping can greatly facilitate
anatomic and scar-based ablation procedures [2,
11, 12]. Finally, by reducing the operator’s need
to use fluoroscopy to localize the mapping cath-
eter, these systems have greatly reduced exposure
to ionizing radiation [7].

Current 3D mapping systems used for elec-
trophysiology catheter visualization include
the following: CARTO (Biosense Webster Inc.,
Diamond Bar, CA), EnSite NavX and Mediguide
technologies (Abbott, Abbott Park, IL), and
Rhythmia (Boston Scientific, San Jose, CA) [9].
These EAM systems are able to integrate cardiac
chamber anatomy acquired with the mapping
catheter with an anatomical image that has been
previously acquired with an imaging modality
including fluoroscopy, MRI, or CT [13, 14]. This
integrated imaging provides the electrophysiolo-
gist with an accurate rendering of cardiac anat-
omy to navigate catheters and perform ablation
procedures [14].

One of the earliest studies using a mapping
was performed by Gepstein and colleagues [15].
They used a non-fluoroscopic, catheter-based,
endocardial mapping system and demonstrated
highly reproducible and accurate results, both
in vitro and in vivo. Gornick et al. also demon-
strated the ability to place separate catheters at
any site within the mapping chamber [16]. They
also reported that the resolution of the 3D map-
ping system could be millimetric in size. The
EAM systems facilitate the difficult interven-
tional ablation procedure and can accurately
navigate to a predefined site. It also shortens
the fluoroscopic time and has a favorable spatial
resolution [17]. In addition, after calculating and
displaying the electrical activation sequence, the
operator can visualize the activation sequence
known as activation mapping and easily obtain

the voltage information known as voltage map-
ping [9, 18]. Limitations of these systems include
the need for patient immobility, accurate registra-
tion, and reference stability [18, 19].

Remote Magnetic Navigation

Remote magnetic navigation has been available
as a tool for mapping and ablation since 2007.
In that period of time, it has shown to be use-
ful in most ablation procedures ranging from
atrial flutter to ventricular tachycardia [20, 21].
Remote magnetic navigation was developed to
facilitate the positioning of catheters within
the heart. The system uses two computer-con-
trolled external magnets to create and adjust an
external magnetic field to guide the magnetic
tip of the catheter [21]. A remote workstation,
using a computer console that controls both the
magnets and a motor-driven catheter, allows
advancement or retraction of the catheter [20].
With a more flexible catheter tip, the catheter
moves parallel to the lines of the magnetic field
which are determined by the external magnet
[21]. The operator can direct the catheter to
the desired location within the cardiac cham-
bers by adjusting the external magnetic field.
RMN requires an electrophysiology labora-
tory with equipment designed specifically for
magnetic guidance [22]. Potential benefits of
remote magnetic navigation include more pre-
cise control of the catheter, facilitating more
rapid and accurate guidance of the catheter, and
significantly reduced radiation exposure [20,
22]. The softer and more flexible catheter tip
theoretically reduces the risks of cardiac punc-
ture and tamponade [21]. This lower risk comes
with the possible disadvantage of smaller lesion
volumes [12].

The efficacy and safety of RMN have been
assessed in multiple studies especially in abla-
tion of atrial fibrillation. In a cohort study of 356
patients, RMN did not decrease AF recurrence
compared to manual navigation [23]. In addition,
RMN was associated with a lower success rate
of pulmonary vein isolation. However, the study
showed lower procedural and fluoroscopic times
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as well as a trend toward a reduction in major
complications [23]. In a systematic review and
meta-analysis of seven studies, Proietti et al. did
not demonstrate a reduction in AF recurrence or
improved success of pulmonary vein isolation
with RMN [24]. However, RMN was associated
with a reduction in complications, procedural
times, and fluoroscopic times [24]. Table 1.1
summarizes studies assessing the use of RMN in
catheter ablation of AF.

More recently, RMN has been increasingly uti-
lized for VT ablation. In a multicenter prospective
observational study of 218 patients with structural
heart disease, Di Biase et al. assessed the use
of RMN compared to manual navigation in VT
ablation in patients with ischemic cardiomyopa-
thy [30]. In this study, RMN use was associated
with a significant reduction in VT recurrence. In
addition, another study showed a reduction in VT
recurrence in patients with nonischemic cardio-

Table 1.1 Characteristics and results of studies assessing remote magnetic navigation in atrial fibrillation

Study first Population Follow-up
author (year) | Type of study | (number) Results (months)
Arya (2011) | Retrospective | 70% Similar freedom from AF at 6 months: 57.8% 6
[23] (single center) | Paroxysmal/30% and 66.4% (P = 0.196). Longer procedure and
persistent (356) ablation time with magnetic navigation
223 =44 min vs. 166 + 52 min (P < 0.0001), and
75.4 £20.9 min vs. 53.2 + 21.4 min
(P <0.0001).
Choi (2011) | Retrospective | 60% Total procedure time was significantly longer 3
[25] (single center) | Persistent/40% (352 £ 50 min vs. 283 = 75 min, P < 0.0001) and
paroxysmal (111) | total fluoroscopy time was significantly shorter
(99 + 28 min vs. 238 = 45 min, P < 0.0001) in
the magnetic navigation group. Procedural
success was similar in both groups (85% vs.
90%, P =0.08).
Luthje Retrospective | 67% Procedural success and freedom from atrial 12
(2011) [26] | (single center) | Persistent/33% fibrillation were similar in both groups (90% vs.
paroxysmal (161) | 87%, P = 0.6, and 66% vs. 62%, P = 0.8).
Magnetic navigation was associated with longer
procedure duration (225.5 + 54.6 min vs.
165.6 £ 52.4 min, P < 0.0001), longer ablation
times (125.3 £ 46.5 min vs. 79.6 + 28.5 min,
P <0.0001), and longer RF current application
duration (50.4 = 17.7 min vs. 43.9 = 11.0 min,
P < 0.05). However, fluoroscopy time was
shorter (12, IQR = 9—17 min vs. 37,
IQR =29-44; P < 0.0001).
Miyazaki Retrospective 100% Paroxysmal | Radiofrequency and procedure duration were 12
(2010) [27] | (single center) | (74) higher in the magnetic navigation group
(60 = 27 min vs. 43 + 16 min; P = 0.0019) and
(246 = 50 min vs. 153 =51 min; P < 0.0001).
Freedom from atrial fibrillation was similar in
both groups (69% vs. 62%, P = 0.96).
Solheim Retrospective | 40% Radiofrequency and procedure duration were 4
(2011) [28] | (single center) | Persistent/60% higher in the magnetic navigation group
paroxysmal (87) (79 £ 19 min vs. 51 + 25 min; P <0.001) and
(324 = 74 min vs. 215 = 61 min; P < 0.001).
Sorgente Retrospective | 20% Radiofrequency and procedure duration were 12
(2010) [29] | (single center) | Persistent/80% higher in the magnetic navigation group
paroxysmal (94) (60 =27 min vs. 43 + 16 min; P = 0.0019) and
(246 = 50 min vs. 153 =51 min; P < 0.0001).
Freedom from atrial fibrillation was similar in
both groups (66% vs. 67%, P = 0.63).
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myopathy and scar-related VT [31]. Hendricks
et al. also showed a significant reduction in VT
recurrence with RMN in patients with idiopathic
VT [32]. Turagem et al. performed a systematic
review and meta-analysis of RMN versus man-
ual navigation in VT ablation [30]. Compared to
MAN, the use of RMN was associated with a 39%
lower risk of VT recurrence (OR 0.61, 95% CI
0.44-0.85, P = 0.003). In patients with structural
heart disease, there was a trend favoring lower
VT recurrence with RMN versus MAN (OR

0.69, 95% CI 0.45-1.04, P = 0.07). In idiopathic
VT, there was no significant difference between
RMN and MAN (OR 0.58, 95% CI 0.31-1.1,
P =0.1) [30]. Studies assessing the use of RMN
in VT ablation are summarized in Table 1.2. The
ongoing MAGNETIC VT trial will assess if VT
ablation using RMN results in superior outcomes
compared to a manual approach in subjects with
ischemic scar VT and low ejection fraction [37].
Ablation in patients with congenital heart dis-
ease is another avenue where RMN is important.

Table 1.2 Characteristics and results of studies assessing remote magnetic navigation in ventricular tachycardia

Study first Population Follow-up
author (year) | Type of study | (number) Results (months)
Bauemfeind | Prospective Structural Magnetic navigation system was more successful 15
(2011) [33] (single center) | heart disease | for VTs (93% vs. 72%, P < 0.05). Less fluoroscopy
and idiopathic | was used in group MNS (30 + 20 min vs.
(83) 35 25 min, P <0.01). There were no differences
in procedure times and recurrence rates for the
overall groups (168 + 67 min vs. 159 + 75 min,
P =ns; 14% vs. 11%, P = ns; respectively).
Dinov (2012) | Retrospective | Structural Acute success rate was similar in both groups (82% | 14
[34] (single center) | heart disease | vs. 71%, P = 0.246). Remote magnetic navigation
(102) was associated with significantly shorter
fluoroscopy time (13 + 12 min vs. 32 + 17 min,
P =0.0001) and ablation time (2337.59 + 1248.22 s
vs. 1589.95 + 1047.42 s, P = 0.049), with similar
total procedure time (157 + 40 min vs.
148 + 50 min, P = 0.42).
Akca (2012) | Prospective Not available | Overall recurrence rate and fluoroscopy time were 19
(single center) | (28) significantly lower (25.0% vs. 41.4%, P = 0.045,
and 22.8 + 14.7 vs. 41.2 £ 10.9, P = 0.011) with
magnetic navigation.
Szili-Torok Retrospective | Structural Higher acute success 82% vs. 66% (P =0.046) and | 20
(2012) [35] (single center) | heart disease | lower recurrence 24% vs. 44% (P = 0.047) with
and idiopathic | magnetic navigation. Overall procedural time
(113) (177 £ 79 min vs. 232 + 99 min, P < 0.01) and
mean patient fluoroscopy time (27 £+ 19 min vs.
56 + 32 min, P < 0.001) were all significantly lower
using magnetic navigation.
Zhang Randomized Idiopathic Procedural times were similar in both groups 22
(2013) [36] (single center) | (30) (131.8 £ 19.4 min and 115.1 £ 27.4; P =0.13).
Remote magnetic navigation was associated with
50.9% and 50.5% reduction in patients’ fluoroscopic
exposure and times, respectively, as well as 64%
and 69% reductions in physician fluoroscopic
exposure and times.
Hendricks Retrospective | Structural Procedural and ablation times were lower with 25
(2015) [32] (single center) | heart disease | magnetic navigation 150 (120-220) s vs. 190
and idiopathic | (135-220) s and 400 (190-1065) s vs. 700
(198) (300-1920) s. Higher acute success 88% vs. 71%
(P =0.03) and lower recurrence 42% vs. 57%
(P = 0.07) with magnetic navigation.
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Structural challenges such as the presence of
baffles, conduits, patches, and shunts are better
approached with RMN [38]. RMN provides sev-
eral advantages in these complex congenital cases
that may present with limited vascular access or
difficult access to the target cardiac chambers due
to previous surgical interventions [39].

Contact Force Technology

Tissue contact is critical to achieving lesion trans-
murality and success of radiofrequency ablation
procedures. However, a delicate balance must be
achieved. In power control ablation, the size and
depth of ablation are directly related to the contact
between the tip of the catheter and the myocardium
[12]. The effectiveness of ablation may decrease if
waste of resistive heating in the bloodstream occurs
due to nonoptimal contact. Conversely, higher con-
tact and excessive temperature rise may precipitate
thrombus formation, steam pops, and myocardial
perforation [40]. To overcome these issues, contact
force-sensing catheters have been developed with
the capability of monitoring in real time the degree
of contact through a precision spring positioned on
the tip and a sensor coil positioned on the shaft of
the catheter [40].

Improving electrode-tissue contact maximizes
the transfer of thermal energy to target tissue
[41]. Increasing CF increases the proportion of
the electrode surface in contact with the tissue.
This reduces the electrode surface area that is
exposed to the circulating blood pool, thus favor-
ing greater current delivery to target tissue [40,
41]. Avitall et al. showed that increasing CF from
1 to 10 g led to greater deformation of the endo-
cardium below the plane of the endocardial sur-
face, which resulted in significantly greater lesion
width and depth [42]. In a model, CF was dem-
onstrated to wield as much influence on lesion
size as RF power. When RF duration and power
were kept constant, lesion depth, diameter, and
volume increased proportionately with increas-
ing CFE. Importantly, lesion depth was greater
with lower power (30 W) and moderate contact
(40 g) than with higher powers (50 W) and lower
contact (10 g) [42].

Contact quality is also critical. Spatiotemporal
contact stability is predictive of lesion size [12].
Shah et al. showed that lesion volume was high-
est in constant contact, intermediate in variable
contact, and lowest in intermittent contact [43].
Many factors affect spatiotemporal stability of
contact: mean contact CF, cardiac and respira-
tory motion, catheter drift, and atrial arrhythmias
[44]. The smaller lesion size that results from
intermittent contact can be compensated for by
increasing the duration of ablation.

Several studies have assessed the impact of
contact force on procedural and clinical outcomes,
mostly in catheter ablation of atrial fibrillation.
Kerst et al. showed that contact force-guided
and electroanatomic guided ablation is a feasible
approach to achieve zero fluoroscopy. In a large
retrospective study of 600 patients, contact force
catheter ablation was associated with a decrease
in atrial fibrillation recurrence and a decrease in
total procedural time and ablation time as well
as a significant reduction in fluoroscopic expo-
sure. While there was a trend toward a lower
complication rate including cardiac tamponade,
this did not reach statistical significance [45].
In a meta-analysis of 11 studies including two
randomized trials, Shurrab et al. showed similar
findings [46]. The recurrence rate was lower with
contact force (35.1% vs. 45.5%; OR 0.62, 95% CI
0.45-0.86, P = 0.004) as were procedural times
(156 min vs. 173 min; standardized mean differ-
ence —0.85, 95% CI —1.48 to —0.21, P = 0.009)
and fluoroscopic times (28 min vs. 36 min; stan-
dardized mean difference —0.94, 95% CI —1.66;
—0.21, P = 0.01). There was a trend toward a
decrease in major complications, but this did not
reach statistical significance (1.3% vs. 1.9%; OR
0.71,95% CI1 0.29-1.73, P = 0.45) [46].

Intracardiac Echo

Intracardiac echocardiography (ICE) repre-
sents a major advancement in cardiac imaging
and has become as indispensable part of elec-
trophysiologic procedures [47]. ICE allows a
real-time assessment of cardiac anatomy during
interventional procedures and guides catheter
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manipulation in relation to the different ana-
tomic structures [48]. A major advantage over
transesophageal echocardiography is the ability
to perform ICE by the primary operator [47].

Trans-septal puncture likely gives physicians
the most pause when they consider a near-zero flu-
oroscopy approach. Many operators were trained
using fluoroscopy to complete the critical steps of
trans-septal puncture, which include placing the
sheath and needle in the SVC, withdrawing the
trans-septal apparatus into the level of the fossa
ovalis, advancing and confirming the needle entry
into the left atrium, and manipulating the dila-
tor and sheath into the left atrium. For eliminat-
ing the need for fluoroscopy, ICE has become an
indispensable tool for allowing safe trans-septal
puncture. To place the guidewire and trans-sep-
tal sheath into the SVC, full visualization of the
SVC right atrial junction is required. This view is
obtained by positioning the ICE catheter in a neu-
tral position in the mid-right atrium with appro-
priate clockwise or counterclockwise rotation to
visualize the fossa ovalis and left atrium. From
this position, posterior and rightward deflections
are applied to fully view the SVC. Using this
view, the guidewire, sheath, and trans-septal nee-
dle can be advanced into the SVC safely [49, 50].

With ICE, accurate 2D real-time and/or 3D
imaging of the complex anatomy of LA and PVs
is feasible [47]. Intracardiac ultrasound improves
the efficacy of electrophysiological interventional
procedures by exactly identifying anatomical
structures and integrating this information with
electrophysiological parameters and/or 3D recon-
structions of CT/MRI data [51]. Early detection of
periprocedural complications optimizes emergency
management. Implementation of ICE in ablation
procedures of AF results in reduction of fluoros-
copy/procedure time, and potentially reduces com-
plications and improves outcome [48].

Clinical Studies of Purely 3D
Navigation

The abovementioned technologies have been uti-
lized across the spectrum of ablation procedures
performed in the electrophysiology lab. In a meta-

analysis of ten studies in various cardiac arrhyth-
mias that assessed the efficacy and safety of zero
or near-zero fluoroscopic ablation, Yang et al. [52]
found that zero or near-zero fluoroscopy ablation
significantly showed reduced fluoroscopic time
(standard mean difference [SMD] —1.62, 95%
CI —2.20 to —1.05; P < 0.00001), ablation time
(SMD —-0.16, 95% CI —0.29 to —0.04; P =0.01),
and radiation dose (SMD —1.94, 95% CI —3.37
to —0.51; P = 0.008). This was done without any
significant differences in acute or long-term suc-
cess rates, complication rates, or recurrence rates
[52]. Wannagat et al. showed that significant
reductions in radiation exposures can be achieved
in operators with varying degrees of experience
(beginner, first-year fellow, second-year fellow,
expert) without an increase in complications or
procedure time [5]. Sadek and colleagues found
that even complex ablations can be performed
with zero fluoroscopy with a modest learning
curve and no increase in procedural times [53].
Here, we review some of these studies in the con-
text of the various arrhythmias. These studies are
summarized in Table 1.3.

Atrial Flutter

Typical atrial flutter is an atrial arrhythmia in
which catheter ablation is first-line therapy.
The arrhythmia is maintained by a reentry
mechanism in which the area between the tri-
cuspid valve annulus and inferior vena cava
forms a critical isthmus, known as the cavo-
tricuspid isthmus, that is targeted for ablation
[74]. Deutsch et al. demonstrated that complete
elimination of fluoroscopy is feasible, safe, and
effective during radiofrequency catheter ablation
of atrial flutter [54]. The authors, in a study of
460 patients, compared techniques involving as
low as reasonably achievable (ALARA) fluoros-
copy and non-fluoroscopic techniques includ-
ing electroanatomic mapping [54]. In another
study, Schoene et al. used 3D mapping in 20
patients undergoing catheter ablation of the cavo-
tricuspid isthmus and found no difference in
freedom from recurrences, safety, and procedure
duration while achieving a significant reduction
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1 Clinical Studies of a Purely 3D Navigation in Interventional Managements of Tachyarrhythmia 1

in radiation exposure [55]. Alvarez and col-
leagues reported the results of an observational
study patients referred for atrial flutter ablation
that utilized EnSite-NavX™ gystem to provide
an almost zero fluoroscopy approach [56]. One
or two diagnostic catheters and a cooled-tip abla-
tion catheter were used in each procedure with
the endpoint for success being bidirectional
cavo-tricuspid isthmus block. Eighty-three abla-
tion procedures were performed in 80 patients
(82.5% men, 61 + 10 years of age). Success was
obtained in 98.8% of the procedures with the
only major complication being the requirement
of a pacemaker in one patient for sinus node
dysfunction. In 90.4% of cases, fluoroscopy was
not required, with visualization of the diagnos-
tic catheters being the commonest reason for
fluoroscopy use. Procedural time was similar to
that seen using a conventional approach [56].
Macias et al. [75] showed that a zero fluoroscopy
approach using the CARTO system yielded simi-
lar results to when using the EnSite-NavX with
both systems leading to a high rate of procedural
success and low rates of complications and recur-
rences. Both mapping systems allowed operators
to avoid fluoroscopy in a very high percentage of
cases, 90% [75].

AVNRT/AVRT

Atrioventricular-nodal  reentry  tachycardia
(AVNRT) is a common supraventricular tachy-
cardia and is also treated with catheter ablation
as first-line therapy. Kopelman et al. were able to
achieve a fourfold decrease in fluoroscopy dura-
tion using electroanatomic mapping and other
non-fluoroscopic techniques [57]. Importantly,
this did not compromise procedural efficacy
and safety. Luani et al. demonstrated the safety
and feasibility of using a zero fluoroscopy,
ICE-guided approach to AVNRT ablation in 25
patients [58]. Similarly, Alvarez et al. [76] pro-
spectively enrolled 100 patients with AVNRT
who underwent catheter ablation by fluoro-
scopic versus non-fluoroscopic approaches.
Procedural success was similar using the non-
fluoroscopic approach (100%) and the fluoro-

scopic approach (96%) with no difference in
complications, procedure, and ablation duration
[76]. After an initial learning curve, catheter
ablation of AVNRT can be performed in a simi-
lar timeframe using non-fluoroscopic technique
[77]. Casella et al. [59] reported a case series of
50 patients who underwent electrophysiologi-
cal testing and ablation for AVNRT and AVRT
guided by electroanatomic mapping. In 78% of
cases, acute procedural success was achieved
with zero fluoroscopy while the remainder
required only minimal fluoroscopy. In addition,
there were no major complications and, over a
12-month period, only two cases of recurrence
[59]. Clark et al. [60] reported a case series of
ten patients with AVRT and accessory pathways
mapped to the left side using the NavX system.
All ten patients underwent successful ablation,
and none required the use of fluoroscopy. Only
one patient had a recurrence and there were
no complications [60]. Scaglione et al. [61]
also reported the results of a case series with
44 patients with accessory pathways, of which
almost half were left sided and AVRT. In this
case series, electroanatomic mapping was pro-
vided using the CARTO system, and ablation
without the use of fluoroscopy was successfully
performed in every patient without any compli-
cation [61]. Similar to the traditional approach
with radiofrequency, Balli et al. [78] showed that
AVRT can be successfully ablated using cryo-
ablation and electroanatomic mapping without
recurrence or complications. Bigelow et al. [62]
reported their extensive 8-year experience, with
524 consecutive patients, in performing abla-
tion of right-sided and left-sided supraventricu-
lar arrhythmias using a near-zero fluoroscopy
approach with the EnSite system. There were no
complications with procedure times as expected
and no unanticipated use of fluoroscopy (except
in one case) [62].

In a prospective, multicenter, randomized
controlled trial that enrolled 262 patients with
supraventricular arrhythmias who were random-
ized to a minimal fluoroscopy approach utilizing
electroanatomic mapping compared to a conven-
tional fluoroscopic approach, Casella and col-
leagues [63] found that a minimal fluoroscopy



12

A. AlTurki and R. Proietti

approach was associated with a significant reduc-
tion in patients’ radiation dose (0 mSyv, interquar-
tile range 0—0.08 mSv vs. 8.87 mSyv, interquartile
range 3.67-22.01; P <0.00001), total fluoroscopy
time (O s, interquartile range 0-12 s vs. 859 s,
interquartile range 545-1346; P < 0.00001), and
operator radiation dose (1.55 pS vs. 25.33 pS per
procedure; P < 0.001). Stec et al. went one step
further in implementing a zero-X-ray approach
in which staff no longer used lead aprons. There
were 188 patients (mean age, 45 + 21 years; 55%
women) included in the zero-X-ray approach who
were then compared to 714 consecutive patients
referred for a simplified approach using X-rays
(age, 52 + 18 years; 55% women). The procedure
times (63 = 26 min vs. 63 = 29 min, P > 0.05),
major complications (0% vs. 0%, P > 0.05), and
acute (98% vs. 98%, P > 0.05) and long-term
(93% vs. 94%, P > 0.05) success rates were simi-
lar between the two groups [63].

Atrial Fibrillation

Atrial fibrillation is the most common arrhythmia
in older adults. Catheter ablation of atrial fibril-
lation is a relatively complex procedure. The full
range of techniques are required to shift this pro-
cedure to a zero fluoroscopy approach. Reddy
et al. [64] evaluated the feasibility and safety of
pulmonary vein isolation with zero fluoroscopy
use, using a combination of three-dimensional
EAM and ICE. In this case series of 20 consecu-
tive patients with paroxysmal atrial fibrillation,
right-sided mapping required 5.5 = 2.6 min.
Trans-septal access was successfully achieved in
all patients. Left-sided anatomy was visualized
using either a circular (14 patients) or a penta-
array (6 patients) catheter in 22 + 10 min; CT
image integration was used in 11 patients. Using
49 + 18 ablation lesions, electrical isolation was
achieved in 38 out of 39 ipsilateral PV-isolating
lesion sets (97%). The procedure time was
244 + 75 min. There were no complications [64].
Non-fluoroscopic atrial fibrillation ablation is
also feasible using cryoballoon ablation [65].
Bulava and colleagues [66] performed a ran-
domized trial of eight patients who randomized to
fluoroscopic or non-fluoroscopic (using CARTO

mapping and ICE) pulmonary vein isolation.
The total procedure duration and radiofrequency
application time in both groups were comparable
(92.5 £ 22.9 min vs. 99.9 + 15.9 min, P = 0.11,
and 1785 + 548 s vs. 1755 + 450 s, P = 0.79,
respectively). Zero fluoroscopic time was
achieved in all patients in the non-fluoroscopic
group apart from one patient, where 8 s of fluo-
roscopy was needed to assess proper position of
the guidewire in the femoral vein. No serious
procedure-related complications were recorded
and no differences in arrhythmia-free survival at
12 months were found between the groups [66].
In a randomized trial of 80 patients, the use of 3D
mapping in AF catheter ablation led to a signifi-
cant reduction in fluoroscopy duration [67]. The
use of CF catheters improves the quality of the
ablation lesion [12] and imaging performed prior
to the imaging such as magnetic resonance imag-
ing may significantly improve ablation accuracy
[79]. The main step limiting a zero fluoroscopy
approach in AF ablation is the trans-septal punc-
ture [51]. As mentioned, the mastering of ICE is
essential for performing this step with little to no
fluoroscopy. McCauley et al. showed that a zero
fluoroscopy approach using EAM and ICE is safe
and effective [68].

Zhang and colleagues [69] assessed the fea-
sibility of zero fluoroscopy during reconstruc-
tion left atrium and atrial fibrillation ablation in
342 consecutive patients with paroxysmal atrial
fibrillation. Patients were randomly divided into
two groups after LA angiography: in the first
group, reconstruction of the left atrium and iso-
lation of the pulmonary veins were performed
using EAM while the second group used both
fluoroscopy and EAM. Total X-ray exposure
dose of the procedure in first was significantly
lower than that in latter group (19.6 + 9.4 mGy
vs. 128.7 + 62.5 mGy, respectively, P < 0.001).
There were no statistical differences in proce-
dural success, the probability of freedom from
atrial arrhythmia recurrence at 12 months, or
complications between the two groups [69]. One
of the largest experiences of zero-fluoroscopy
atrial fibrillation ablation reported was performed
by Sommer and colleagues [70]. In this prospec-
tive 1000 patient registry, the authors assessed the
feasibility of zero-fluoroscopy ablation in terms
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of reduction in procedural and radiation time as
well as safety aspects. The study showed that, in
a cohort of 1000 patients (62.9 + 11 years; 72%
men; left ventricular ejection fraction 57%; and
left atrial diameter 43.2 mm), the median proce-
dure time was 120 min, median fluoroscopy time
was 0.90 min, the median fluoroscopy dose was
345.1 ¢cGy cm?, and the overall complication rate
was 2.0%. Stratification by operator experience
(initial 75% of patients compared to last 25%)
showed significant improvement in the median
procedure time (from 140 to 110 min) and reduc-
tion in the median fluoroscopy time (from 6 to
0.5 min) and the median dose (from 2263 to
151.9 ¢cGy cm?) [70].

Ventricular Tachycardia

Catheter ablation of ventricular tachycardia is
increasingly utilized. The VANISH trial has
demonstrated the superiority of catheter ablation
compared to escalation of anti-arrhythmic drug
therapy in patients already receiving therapy [80].
In a subsequent trial, catheter ablation is currently
being tested as first-line therapy for ventricular
tachycardia (NCT02830360). Electroanatomic
mapping has become a critical component of ven-
tricular tachycardia ablation [51]. Cano et al. [71]
compared radiation exposure in a case series of 41
patients with ventricular tachycardia (22 ischemic
and 19 nonischemic) who underwent a catheter
ablation using a minimal fluoroscopy approach;
the authors compared the type of cardiomyopa-
thy and the use of epicardial access. The use of
the electroanatomical mapping system (CARTO)
resulted in low levels of radiation exposure:
median total fluoroscopy time and effective dose
of 6.08 (1.51-12.36) min and 2.15 (0.58-8.22)
mSyv, respectively. Patients with ischemic car-
diomyopathy had lower radiation exposure than
patients with nonischemic ventricular tachycardia
(total fluoroscopy time, 2.53 [1.22-11.22] min
vs. 8.51 [5.55-17.34] min; P = 0.016). Epicardial
access was associated with significantly higher
levels of radiation exposure. A near-zero fluo-
roscopy ablation could be performed in 32% of
cases [71]. Wang and colleagues [72] aimed to
assess the safety and efficacy of a zero fluoros-

copy approach, without the use of lead aprons,
compared to a conventional approach for catheter
ablation of idiopathic ventricular tachycardia in
a prospective cohort study of seven centers. The
zero fluoroscopy approach was successful in
163 (100%) patients for the electrophysiological
study, and in 151 patients (94.4%) for ventricu-
lar tachycardia ablation with 9 patients having to
switch to the conventional approach due to the
need for coronary angiography. There was no sig-
nificant difference between the two approaches
in procedural success rate (84.1% vs. 85.4%),
arrhythmia recurrence (1.9% vs. 2.2%), or major
complications (0.6% vs. 0.9%) [72]. Several small
studies have shown the feasibility and safety of a
near-zero fluoroscopy approach to catheter abla-
tion of ventricular tachycardia, including a study
in complex congenital patients [73].

Conclusion

There has been considerable development and
improvement in non-fluoroscopic techniques. 3D
mapping, RMN, CF sensing, and ICE have all
contributed to the safety and efficacy of purely
3D navigational procedures with zero or near-
zero fluoroscopic exposure. Further studies are
needed to assess the long-term outcomes of cath-
eter ablation with purely 3D navigation.
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