
Rotators in Fast Fourier Transforms

Fahad Qureshi, Jarmo Takala, and Shuvra Bhattacharyya

Abstract This chapter discusses architectures for computing the rotations in fast
Fourier transforms. There are two principal methods, which can be exploited:
general complex multipliers or multiplier-less techniques. We describe different
architectures, each with different advantages, indicating that the final selection
depends on the requirements of the application at hand.

1 Introduction

A rotation is a multiplication by a complex number whose magnitude is one, i.e., a
transformation that describes a circular movement with respect to a point [7, 11, 30,
32]. The rotation of a complex number (x + iy) by an angle α can be defined as:

[
X

Y

]
=

[
cos α − sin α

sin α cos α

] [
x

y

]
, (1)

where X and Y are the real and imaginary parts of the result, respectively. Thus, the
rotation can be written as:

X + iY = (x cos α − y sin α) + i(y cos α + x sin α). (2)

F. Qureshi (�) · J. Takala
Tampere University, Tampere, Finland
e-mail: fahad@tuni.fi; jarmo.takala@tuni.fi

S. Bhattacharyya (�)
University of Maryland, College Park, MD, USA

Tampere University, Tampere, Finland
e-mail: ssb@umd.edu

© Springer Nature Switzerland AG 2020
S. S. Bhattacharyya et al. (eds.), Embedded, Cyber-Physical, and IoT Systems,
https://doi.org/10.1007/978-3-030-16949-7_11

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16949-7_11&domain=pdf
mailto:fahad@tuni.fi
mailto:jarmo.takala@tuni.fi
mailto:ssb@umd.edu
https://doi.org/10.1007/978-3-030-16949-7_11

246 F. Qureshi et al.

Let C and S be representations of cos α and sin α with a finite number of bits. A
rotation of complex number, i.e., a rotation in complex plane, can be presented as

[
XQ

YQ

]
=

[
C −S

S C

] [
x

y

]
, (3)

where XQ and YQ are the result of the rotation, which includes the error resulting
from quantization of the coefficients. Many digital signal processing algorithms
require to carry out rotations of complex numbers by the given angles with respect to
the origin. This is the case with fast Fourier transforms (FFT) [26], discrete cosine
transforms, and lattice filters [23].

2 Rotations in FFT

The fast Fourier transform is one of the most important tools in digital signal
processing. It is based on discrete Fourier transform and used to convert time
domain signals to frequency domain [3, 26, 28]. The Fourier transform is defined
for continuous signals, while the modern signal processing mainly considers digital
systems, and the discrete Fourier transform (DFT) is used instead. The DFT
transforms a finite sequence of equally spaced samples to a corresponding frequency
domain representation as follows:

X[k] =
N−1∑
n=0

x[n]Wkn
N , k = 0, 1 . . . , N − 1, (4)

where N denotes the length of DFT, i.e., the number of points of the DFT, x[n] and
X[k] are the input and output samples, respectively. Note that both the signals are
discrete in nature. The complex-valued coefficients WN are called as twiddle factors
and are defined as

WN = e−j2π/N = cos (2π/N) − j sin (2π/N) , (5)

where j denotes the imaginary unit.
The original signal x[n] can be recovered from X[k] with the aid of an inverse

discrete Fourier transform (IDFT):

x[n] = 1

N

N−1∑
k=0

X[k]Wkn
N , k = 0, 1, . . . , N − 1. (6)

The arithmetic complexity of the DFT in (4) is O(N2). However, DFT contains
redundant computations and several methods have been introduced for avoiding

Rotators in Fast Fourier Transforms 247

such a redundancy, thus reducing the complexity. Any algorithm computing DFT
with less than O(N2) complexity is called as a fast Fourier transform. The most
popular FFT is the Cooley–Tukey algorithm [3], which uses divide-and-conquer
paradigm to decompose DFT into a set of smaller DFTs. Especially, the Cooley–
Tukey principle says that an N -point DFT (N = PQ) can be computed with the aid
of a P -point DFT and a Q-point DFT. By exploiting the periodicity of the twiddle
factors:

W
kQ
N = Wk

P ; WkP
N = Wk

Q; W
kPQ
N = 1,

the radix-Q FFT can be expressed as:

X(Qk1 + k2) =
P−1∑
n1=0

Q−1∑
n2=0

x (n1 + Pn2)W
n1k1
P W

n1k2
N W

n2k2
Q

=
P−1∑
n1=0

⎡
⎢⎢⎢⎢⎢⎣

⎛
⎝Q−1∑

n2=0

x(n1 + Pn2)W
n2k2
Q

⎞
⎠

︸ ︷︷ ︸
Q−point DFT

W
n1k2
N︸ ︷︷ ︸

twiddlef actor

⎤
⎥⎥⎥⎥⎥⎦

W
n1k1
P

︸ ︷︷ ︸
P−point DFT

. (7)

The two summations indexed by n1 and n2 are referred to as inner and outer DFTs.
As a result, an N -point DFT is broken down into P -point and Q-point DFTs. The
output of the inner DFT is multiplied by W

n1k2
N , which is called as a twiddle factor

multiplication. The scheme of decomposition is shown in Fig. 1, where the left and
right sides represent the P -point inner DFT and Q-point outer DFT, respectively.
Between those DFTs, a twiddle factor multiplication indicates a rotation by W

φ
N =

e−j 2π
N

φ . The arithmetic complexity is reduced from O(N2) of the DFT in (4) to
O(N log N).

P-Point
DFT

Q-Point
DFT

x(n) X(k)

WN

Fig. 1 Decomposition scheme of Cooley–Tukey FFT algorithm

248 F. Qureshi et al.

If the length N is not a prime, the Cooley–Tukey principle can be applied
iteratively and then the DFT is computed with the aid of several smaller DFTs. In
particular, if the DFT length is a power of a prime, i.e., N = P q , then the N -point
DFT can be computed with the aid of P -point DFTs constructed in q computing
stages. As the resulting fast algorithm contains only P -point DFTs, it is called as a
radix-P FFT.

The most popular approach is radix-2 FFT algorithm, where the DFT is
decomposed recursively until the entire algorithm is computed with the aid of
two-point DFTs. The advantage is that that the two-point DFT can be computed
with trivial twiddle factors, thus multiplications can be avoided. Another popular
algorithm is radix-4 FFT as twiddle factors contain only 1, −1, j , and −j , thus
again no multiplications are needed.

The recursive application of Cooley–Tukey principle can be done by starting
from the time domain sequence, which results in a decimation-in-time (DIT)
algorithm as shown in Fig. 2. In a similar fashion, the decomposition process can be
started from the frequency domain sequence resulting in a decimation-in-frequency
(DIF) algorithm as shown in Fig. 3. The numbers between each stage represent the
rotations. Each of these values (φ) corresponds to a rotation by the twiddle factor [6].
It should be noted that W 2

16 = W 1
8 ;W 4

16 = W 1
4 .

X[
k]

x[
n]

0
0
0
4
0
0
0
4
0
0
0
4
0
0
0
4

0
0
0
0
0
2
4
6
0
0
0
0
0
2
4
6

0
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
8
4
12
2
10
6
14
1
9
5
13
3
11
7
15

Fig. 2 16-point radix-2 DIT FFT flow graph. The number between the stages indicates rotation,
i.e., value φ in twiddle factor multiplication W

φ
16

Rotators in Fast Fourier Transforms 249

00
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7

0
0
0
0
2
4
6
0
0
0
0
0
2
4
6

0
0
0
4
0
0
0
4
0
0
0
4
0
0
0
4

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

0
8
4
12
2
10
6
14
1
9
5
13
3
11
7
15

x[
n]

X[
k]

Fig. 3 16-point radix-2 DIF FFT flow graph. The number between the stages indicates rotation,
i.e., value φ in twiddle factor multiplication W

φ
16

1

3

2 0

(a)

1

0

2
3

4

5
6

7

(b)

2

0

4
6

8

10
12

14

(c)

Fig. 4 Twiddle factors: (a) W4(W
0
4 ,W 1

4 ,W 2
4 ,W 3

4), (b) W8(W
0
8 ,W 1

8 , . . . , W 7
8), and

(c) W16(W
0
16,W

1
16, . . . , W

15
16)

2.1 Twiddle Factors

Each input of an FFT stage is rotated by a different angle, which is determined by
the twiddle factor W

φ
L = e−j2πφ/L. The parameter L is a constant for each stage and

determines the number of possible rotations in that stage. These angles are based on
the division of the circumference into L equal parts. The exact angle is determined
by the parameter φ, which is a natural number {0, . . . , L − 1} [7, 11, 30, 32].

The complexity of the rotator is determined by the value of L. A small value is
desirable, because it results in a simple twiddle factor architecture. An example of
twiddle factors W4, W8, and W16 is shown in Fig. 4.

The simplest rotator is WL = W4, which includes only trivial rotations (0, π
4 , π ,

and 3π
4). Trivial rotations are characterized by the fact that they can be calculated by

simply exchanging the real and imaginary parts of the input and/or changing their
sign [11]. Thus, the criterion used to select the algorithm is to minimize the number

250 F. Qureshi et al.

of large twiddle factors and maximize the number of trivial rotators (W4), which are
the cheapest ones. There are also trade-offs between the number of large (W64 and
larger) and small (W8, W16, and W32) twiddle factors.

3 Rotation in Fixed-Point Arithmetic

Ideally the arithmetic operations in the FFT algorithm should be represented with
infinite precision. However, in practice, temporary values are stored in registers with
a finite capacity. There exist different ways to approximate real numbers using a
finite number of digits. One of the most common ways for embedded systems is
two’s complement fixed-point (FxP) arithmetic [5, 27].

For angle α, it is always true that: cos α ∈ [−1, 1] and sin α ∈ [−1, 1]. Therefore,
it is assumed that C and S are also numbers in the range [−1, 1] with rounding to
a certain number of fractional bits, b. According to the general interpretation of
the coefficients, the magnitude of the rotation is always one, independently on the
number of bits, b, as it happens in the definition of the rotation.

As C and S contain b bits, they can also be considered integers in two’s
complement representation in the range of [−2b−1, 2b−1]. Accordingly, the values
of the cosine and sine components of the angle α will be

C = R(cos α + εc);
S = R(sin α + εs),

(8)

where εc and εs are the relative quantization errors of the cosine and sine
components, respectively, and R is the scaling factor of the coefficients being the
error rotation [9].

4 Rotations in FFT Architectures

Closer investigation of signal flow graphs of FFT algorithms indicates that the
rotations in the signal flow graph have some systematic properties, which can
be exploited in implementations. The way how these properties can be exploited
depends on the mapping from the signal flow graph onto the processing units. The
main differences are that how many samples are processed in parallel and how many
different twiddle factors each rotator must support. We can identify three principal
types:

1. Single Branch with Multiple Rotations. A general scenario is to compute
rotations on the data that flow through a single branch, where different pieces of
data rotated by different coefficients are shown in Fig. 5a. This scenario is mostly
used in single/multiple feedback pipelined and iterative FFT architectures [11].

Rotators in Fast Fourier Transforms 251

(a) (b) (c)

Fig. 5 Rotator scenarios: (a) Type 1, (b) Type 2, and (c) Type 3

2. Multiple Branches, Multiple Rotations for Each Branch. The most typical case
consists of several branches with several rotations for each of them, as shown in
Fig. 5b. This scenario is part of feed forward pipelined FFT architectures [11].

3. Multiple Branches, Single Rotation for Each Branch. This scenario is applied on
fully parallel FFT architecture, where data flow is parallel and each branch may
carry out a rotation by a different coefficient [11] as shown in Fig. 5c.

The Type 1 and Type 2 are also referred to as multiple constant rotations (MCR)
and Type 3 is called as a single constant rotation (SCR) [11].

5 Rotator Units

As discussed earlier, the FFT signal flow graphs can be mapped on processing
elements with different methods indicating different properties for the units. In
this section, we discuss the implications to the rotators due to these mappings
and identify three different classes: rotators based on general complex multipliers,
constant rotators, and CORDIC rotators.

252 F. Qureshi et al.

x+iy

MEM

X+iY

Fig. 6 Rotation architecture based on complex multiplier

x X

Yy

C

C

S

(a)

C+S

C-S

S
x

y

X

Y

(b)

x

y

X

Y

Stan α/2 tan α/2

(c)

Fig. 7 Rotation based on complex multipliers: (a) standard, (b) modified I, and (c) lifting-based

5.1 Rotators Based on General Complex Multiplier

The most popular approach to implement the rotation is to use complex multiplier
and lookup table for storing the sine and cosine components of the rotation angle
as shown in Fig. 6 [30]. A straightforward method is to implement the complex
multiplication with four real multipliers and two adders as depicted in Fig. 7a. The
complex multiplication can be realized more efficiently by exploiting the fact that
this is a rotation. Such methods reduce the number of real multipliers from four to
three [30]. Among them, the most alluring ones are the following:

X = x(cos α + sin α) − (x + y) · sin α;
Y = x(cos α + sin α) + (y + x) · sin α

(9)

and

X = (x + y) cos α − y · (cos α + sin α);
Y = (x + y) cos α − x · (cos α − sin α).

(10)

Both these cases consist of a common term in the equations for X and Y that only
need to be computed once. Thus, when (C +S) and (C −S) are precomputed, these
cases require three real-valued multiplications and five real-valued additions. The
architecture for (9) is shown in Fig. 7b.

Rotators in Fast Fourier Transforms 253

Another approach can be applied only in the case of rotation, which is called
lifting-based rotators [2]. The rotation in (1) can be written in matrix form as
follows:

[
X

Y

]
=

[
cos α sin α

− sin α cos α

]
×

[
x

y

]
. (11)

We can apply the lifting approach to the previous equation and the following form
is obtained:

[
X

Y

]
=

[
1 0
0 −1

]
·
[

1 − tan α
2

0 1

]
·
[

1 0
sin α 1

]
·
[

1 tan α
2

0 −1

]
×

[
x

y

]
. (12)

By further computing the matrices, the following equations are obtained:

X = x − x sin α tan
α

2
+ 2y tan

α

2
− y tan2 α

2
sin α;

Y = y − x sin α − y sin α tan
α

2
.

(13)

These equations can be realized with the structure depicted in Fig. 7c. This approach
requires also three real-valued multiplications and three real-valued additions.
However, there is no need for an additional coefficient as it simply replaces the
cos α with tan α

2 in memory.
This type of rotator can be applied in all types of FFT architecture scenarios

mentioned earlier. Figure 5b and c requires more than one rotation, which are
used in signal flow graphs and parallel pipelined FFT architectures, respectively.
In those scenarios, the complexity of rotation memory can be reduced by applying
appropriate techniques. Rotation memory is used to store the coefficients C and S of
rotation. There are a number of techniques to store the coefficients in the memory
according to the requirement of FFT architectures [31]. The simplest approach is
to store all the coefficients of rotations in the memory without considering any
optimization technique as shown in Fig. 8. This results in a large rotations memory
especially for large FFTs. It should be noted that this scheme possibly stores the
same rotations in several locations as the mapping is from the computing stages of
FFT algorithms.

A possible simplification is to use an address generator that generates the
row address for the corresponding angle. As a result, we only need to store the
coefficients once in the memory as shown in Fig. 9. For the case L = N , we will
need to store many but not all values, still using N possible words even though many

Fig. 8 Coefficient memory
for storing all rotations of
twiddle factor

Coefficient Memory
N words

C

S
IN

254 F. Qureshi et al.

Fig. 9 Coefficient memory
with address generation Coefficient Memory

L words
C

S
IN Address

generator

Fig. 10 Coefficient memory
with address generation and
octave symmetry circuit

C

S
IN Address

generator
Coefficient Memory

(L/8+1)

Fig. 11 Single constant
rotation by cos(π

4)
x

y

X

Y

Cos(π/4)

Fig. 12 Simplified constant
multiplication

<< 3 << 4x 145x

can be set as “don’t cares.” Due to this fact, one can expect the resources used to
the lookup table to be reduced compared to the previous approach, given that the
synthesis tool can benefit from it.

Another modification, proposed in [16], is to use the well-known octave sym-
metry to only store twiddle factors for 0 ≤ φ ≤ π

4 . The additional cost is an
address mapping circuit as discussed in the previous section as well as multiplexers
to interchange the real and imaginary parts and possible negations. The main benefit
is that only L

8 + 1 words are required to be stored. The resulting architecture is
illustrated in Fig. 10.

5.2 Constant Rotators

Typically the real-valued multipliers discussed in the previous section can be
replaced by shift-and-add multiplication as shown in [15, 22, 39]. This is especially
useful when the rotator needs to support only a single rotation angle.

Let us consider a rotation by π
4 , which requires only one coefficient as cos π

4 =
sin π

4 . Hence, each real, x, and imaginary, y, parts of the operand are multiplied
separately by cos π

4 and the multiplier outputs are added and subtracted as depicted
in Fig. 11. When an input signal is multiplied by one constant, an optimal single
constant multiplier from [13] can be used for the implementation. The internal
architecture of a constant multiplier is shown in Fig. 12, where the input operand
x is multiplied with a coefficient 145, the result being 145x.

Rotators in Fast Fourier Transforms 255

Fig. 13 Rotation based on
constant multiplication C

S

S

C

x

y

X

Y

In terms of complexity, the shift operations are free as they only reduce
the number of adders in the implementation of the constant multiplications. A
general block diagram of the rotator is shown in Fig. 13. This consists of two
constant multiplication blocks by dashed blocks. Each dashed block consists of
two constants, C and S, which are implemented by shift-and-add. Hence, both the
multipliers sharing the same input can be simultaneously realized using a multiple
constant multiplication (MCM) technique [4].

The constant rotators can be applied for all the FFT rotation scenarios. However,
this architecture is no more efficient for large values of L; the higher the value of L,
the greater number of constant coefficients are needed implying more complex shift-
and-add circuits. As a result, this architecture can be used efficiently for twiddle
factors W8, W16, and W32 [11, 25, 32]. The maximum number of rotations in the
twiddle factor set is 0, . . . , L − 1. As discussed earlier, thanks to the symmetries of
the angles on the complex plane, for L-point twiddle factor only the L/8 + 1 angles
in the range [0, π/4] need to be considered. This is due to the fact that the rest of
rotations of twiddle factor can be formed from these angles by interchanging the
real and imaginary parts of the input and output data and/or the signs of the outputs.
The design of constant rotators can be divided into two main parts: the generation
of the rotation coefficients and the implementation of shift-and-add circuit.

5.2.1 Rotation Coefficients

In hardware implementations, it is not only desirable to reduce the computation
error but also the area on the circuit. As mentioned earlier: cos α ∈ [−1, 1] and
sin α ∈ [−1, 1]. Therefore, in general it is assumed that C and S are also numbers
in the range of [−1, 1] with rounding a certain number of fractional bits, b. There is
a number of methods to reduce the coefficient error without increasing the addition
cost.

A method based on searching the coefficients by allowing word length increase
by E fractional bits is introduced in [14]. The approximation error can be guaranteed
to meet ε ≤ 2−(N+E+1) with a brute force method by searching coefficients, which
fulfill this condition such that the word length increase is at most E fractional
bits. Another way of using the additional fractional bits is to realize that there are
exactly 2E different representable coefficients for which ε ≤ 2−(N+1), including

256 F. Qureshi et al.

the one obtained by rounding to b bits. The basic idea is to search these 2E and
select the coefficient value that has the smallest approximation error for allowed
complexity called as the addition aware quantization [14]. The allowed complexity
is typically assumed to be the same number of additions as required by the
coefficient rounded to a coefficient with b fractional bits. This is a generic method
and it can be applied on rotation coefficients. Another method, which is well suited
especially to rotations, is the so-called combined coefficient selection and shift-
and-add implementation (CCSSI) [11]. This method refers to a set of rotations
that must be optimized together. This joint optimization happens when there is a
dependency on the scaling of the rotations. Different optimization problems can be
defined for SCR and MCR depending on the scaling that is required and on the
hardware layout. Thus, the scaling can be fixed, unity, or arbitrary depending on
the freedom to choose the scaling factor. Unity scaling is a particular case of fixed
scaling, where the rotation has magnitude of one or, in more general terms, R = 2b.
This is equivalent to considering that the binary point is in a different position in
the binary representation. Conversely, arbitrary scaling means that R can take any
value, i.e., no restriction is set to R. For arbitrary scaling the approximation error is
equal to the angular error only, since R will always take the optimal value. However,
the scaling for multiple angles is classified based on the relation among the scaling
factors of the rotations. More details of the design process can be found from [11].

In pipelined FFT architectures, uniform scaling can be applied on sets of
rotations, which means that R is the same for all the rotations of each FFT stage. The
purpose is to select the best coefficients of rotations. Thus, when fixed or arbitrary
scaling factor is applied, the output of FFT is shifted by a certain factor.

5.2.2 Shift-and-Add Circuit Implementation

This section describes the methods to design the constant rotators circuit for FFT,
especially for MCR. There are two main methods to design rotation circuits for FFT.
One is based on using combinations of rotation coefficients for other rotation with
the aid of additional multiplexers. Thus, it is reducing the coefficients of rotations.
Other is merging the rotation and sharing the adders among them by using additional
multiplexers.

Regarding the first technique, trigonometric identities are used to reduce the
number of required coefficients. This techniques is applied on twiddle factors of
W16 and W32 to reduce the required coefficients from three to two and seven to
three, respectively [32]. Thus, the equivalent expression for all the coefficients in
twiddle factors of W16 and W32 is tabulated in Tables 1 and 2, respectively [25, 32].

The architecture for W16 twiddle factor is shown in Fig. 14, where a single input
is multiplied with any of the coefficient pairs {(1, 0), (cos π

8 , sin π
8), (cos π

4 , sin π
4)}.

Another implementation technique is based on CCSSI. The coefficient selection
has been explained in Sect. 5.2.1. The implementation consists of two steps: first,

Rotators in Fast Fourier Transforms 257

Table 1 Trigonometric
identities used for W16
twiddle factors

Coefficient Used expression

sin π
4 2 sin π

8 cos π
8

sin π
8 sin π

8

cos π
8 cos π

8

Table 2 Trigonometric
identities used for W32
twiddle factor

Coefficient Used expression

sin π
4 4 cos π

8 cos π
16 sin π

16

sin π
8 2 cos π

16 sin π
16

cos π
8 cos π

8

sin 3π
16 sin π

16

(
2 cos π

8 + 1
)

cos 3π
16 cos π

16

(
2 cos π

8 − 1
)

sin π
16 sin π

16

cos π
16 cos π

16

Fig. 14 Architecture for W16
twiddle factors [25]

x O1

sin(π/8)

<< 1

cos(π/8)

0 O2

obtain the implementation of a rotation by each SCR and then merge together all
the rotations that are carried out by the MCR.

The rotation by an SCR includes the multiplication of the input by C and S, and
addition of the products. This corresponds to Eq. (1). The multiplication by C and S

is carried out by means of shifts and additions according to the MCM representation
of the numbers. Similarly, layout the architecture of all the rotations that are carried
by the MCR. Finally, the rotations carried out by the same rotator must be merged
together. This is done by adding multiplexers to the inputs of the adders. Figure 15
illustrates an architecture for the computing W8 twiddle factor and Fig. 15a and b
shows the multiplication by 1 and π

4 rotation, respectively.
The architecture in Fig. 15c is a result of merging together the architectures in

Fig. 15a and b. The control signal of the multiplexer controls the multiplication of
{(1, 0), (cos π

4 , sin π
4) [11]. In order to obtain an efficient realization of the rotator,

reconfigurable single [13, 35] and multiple constant multiplication [4, 12] tech-
niques can be used. Alternatively, when the number of coefficients is small, which
is true in most of the practical cases, the selection of an efficient implementation can
be found manually.

258 F. Qureshi et al.

x <<4 <<5

y
<<4 <<5

X=543x

Y=543y

(a)

x <<1 <<7

y
<<1 <<7

Y=384x+384y

X=384x-384y

(b)

x

<<1

<<4

<<7

<<5

y
<<1

<<4

<<7

<<5

X=543x
X=384x-384y

Y=543y
Y=384y+384x

(c)

Fig. 15 W8 twiddle factor: (a) multiplication by 1, (b) rotation by π
4 , and (c) {(1), (cos π

4 , sin π
4)}

5.3 CORDIC Rotator

COordinate Rotation DIgital Computer (CORDIC) is one of the most popular
algorithms for implementing multiplier-less rotations [1, 7, 8, 36]. It realizes rotation
by means of a series of shifts and additions, which reduces the amount of hardware.
It is also suitable for cases, where multipliers are not available. However, it may
affect the accuracy since it is based on an approximation. The CORDIC algorithm
decomposes the angle that has to be rotated, θ , into a sum of M predefined angles,
αi , according to:

θ =
M−1∑
i=0

δiαi + ε, (14)

where ε is the error of the approximation, δi indicates the direction of the so-called
micro-rotation and

αi = tan−1(2−i). (15)

Rotators in Fast Fourier Transforms 259

Fig. 16 CORDIC
micro-rotation >>

>>

xi

yi

xi+1

yi+1

These angles that define the micro-rotations have the property that they can be
rotated by shifts and additions, which reduces significantly the hardware resources.
These micro-rotations are carried out as follows:

xi+1 = xi − yi δi 2−i;
yi+1 = yi + xi δi 2−i .

(16)

The hardware circuit for calculating the case of δi = 1 is depicted in Fig. 16;
input samples are rotated with an angle αi , which is chosen by setting the number
of bits that are shifted before the additions and subtractions are carried out.

Usually δ ∈ {−1, 1}. This forces all the micro-rotations to be computed
either clockwise or counterclockwise and assures a constant gain for the CORDIC
computations, which can be compensated by multiplying the outputs by:

K =
M∏
i=0

cos(αi) =
M∏
i=0

cos(tan−1(2−i)) = 0.6073. (17)

This option is preferable when the circuit is used for rotating several different angles
and a constant gain for all of them is required, as happens in the rotators for the FFT.
However, in a constant rotator, only a single angle θ can be rotated. In this case, it
is better to consider δi ∈ {−1, 0, 1}. This approach is called as redundant CORDIC
[19], which allows certain micro-rotations to be removed, reducing the number of
adders.

There are multiple variations of the CORDIC algorithm. Some of the main
modifications are introduced in the following. Surveys on CORDIC techniques can
be found, e.g., in [1, 24]. For some of the approaches, it is not straightforward to
determine the rotation parameters at run time. Hence, for these methods the design
is carried out offline and the control signals are stored in memory rather than the
angles. This approach is naturally possible for all techniques and, as the sequence
of angles is often known beforehand, most likely advantageous compared to storing
the angle values.

The redundant CORDIC considers that δi ∈ {−1, 0, 1} [34] or even δi ∈
{−2,−1, 0, 1, 2} [20]. This allows several rotation angles at each CORDIC stage.
However, the scaling for different angles is different, which implies a need for
a specific circuit for scaling compensation. The extended elementary angle set
(EEAS) CORDIC [38] and mixed-scaling-rotation (MSR) CORDIC [21, 29] also
follow the idea of increasing the number of rotation angles per rotation stage.

260 F. Qureshi et al.

The memoryless CORDIC [10] removes the need for rotation memory to store
the FFT rotation angles. Instead, the control signals δi are generated from a counter.
This is advantageous for large FFTs, where the butterfly stages have a large number
of rotations. The modified vector rotational (MRV) RORDIC [37] allows skipping
and repeating CORDIC stages, whereas the hybrid CORDIC [17, 33] divides the
rotations into a coarse and a fine rotations. These techniques reduce the number of
stages and, therefore, the latency of the CORDIC. The CORDIC II [10] proposes
new types of rotation stages: friend angles, uniformly scaled redundant (USR)
CORDIC, and nano-rotations. These result in both a low latency and a small number
of adders. Finally, the base-3 rotators [18] consider an elementary angle set that is
different to that of the CORDIC. All the rotations are generated by combining a
small set of FFT angles. This set fits better the rotation angles of the FFT than that
of the CORDIC, which results in a reduction in the rotation error, the number of
adders, and latency of the circuit.

6 Conclusions

Rotation architecture has an important role in the design of an FFT architecture and
has a large effect on the cost of the architecture. This chapter provided an overview
over different existing architectures of the rotations especially for FFT. These can
be implemented using complex-valued multipliers, constant multipliers, and the
CORDIC. Architecture based on the CORDIC and constant multiplication uses
shift-and-add circuit, whereas the complex multiplication generally uses complex
multiplier and memory to store the coefficients of rotation.

References

1. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc.
ACM/SIGDA Int. Symp. FPGAs, pp. 191–200 (1998)

2. Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform
using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325
(2002)

3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series.
Math. Comput. 19, 297–301 (1965)

4. Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number
of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005). https://doi.
org/10.1109/ISCAS.2005.1464962

5. Finley, T.: Two’s complement. Cornell University lecture notes (2000)
6. Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans.

Circuits Syst. I 63(10), 1737–1745 (2016)
7. Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs.

IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)
8. Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE

Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007)

https://doi.org/10.1109/ISCAS.2005.1464962
https://doi.org/10.1109/ISCAS.2005.1464962

Rotators in Fast Fourier Transforms 261

9. Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE
Trans. Circuits Syst. II 58(10), 662–666 (2011)

10. Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved CORDIC
algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016). https://doi.org/10.1109/TCSII.
2015.2483422

11. Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators
based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE
Trans. Circuits Syst. I 61(7), 2002–2012 (2014)

12. Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication
problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100 (2007). https://doi.org/10.
1109/ISCAS.2007.378201

13. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified
design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(4), 225–251 (2006)

14. Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high precision
constant multiplication. IEEE Signal Process. Lett. 17(2), 173–176 (2010)

15. Han, W., Erdogan, A.T., Arslan, T., Hasan, M.: High-performance low-power FFT cores. ETRI
J. 30(3), 451–460 (2008). https://doi.org/10.4218/etrij.08.0107.0189

16. Hasan, M., Arslan, T.: Scheme for reducing size of coefficient memory in FFT processor. Elect.
Letters 38(4), 163–164 (2002)

17. Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency
synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst.
Comput., pp. 2181–2185 (2011). https://doi.org/10.1109/ACSSC.2011.6190418

18. Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3
signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012)

19. Lee, J.A., Lang, T.: Constant-factor redundant CORDIC for angle calculation and rotation.
IEEE Trans. Comput. 41(8), 1016–1025 (1992). https://doi.org/10.1109/12.156544

20. Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale
factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp. 639–
642, vol. 1 (1997). https://doi.org/10.1109/ICASSP.1997.599849

21. Lin, Z.X., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSr-CORDIC) algorithm and architec-
ture for scaling-free high-performance rotational operations. In: Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., vol. 2 (2003). https://doi.org/10.1109/ICASSP.2003.1202451

22. Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor
for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837
(2008)

23. Loeffler, C., Ligtenberg, A., Moschytz, G.: Practical fast 1-D DCT algorithms with 11 multipli-
cations. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 988–991 (1989).
https://doi.org/10.1109/ICASSP.1989.266596

24. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC:
Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907
(2009). https://doi.org/10.1109/TCSI.2009.2025803

25. Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans.
Electron. E88-C(8), 1740–1746 (2005)

26. Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing. Prentice Hall (1989)
27. Padgett, W.T., Anderson, D.V.: Fixed-point signal processing. Synthesis Lectures on Signal

Processing 4(1), 1–133 (2009)
28. Parhi, K.K.: VLSI Digital Signal Processing Systems, Design and Implementation. Wiley-

Interscience (1999)
29. Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with

applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012). https://
doi.org/10.1109/TSP.2012.2214218

30. Qureshi, F.: Optimization of rotations in FFTs. Ph.D. thesis, Linköping University (2012)
31. Qureshi, F., Gustafsson, O.: Analysis of twiddle factor memory complexity of radix-2i

pipelined FFTs. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 217–220 (2009). https://
doi.org/10.1109/ACSSC.2009.5470121

https://doi.org/10.1109/TCSII.2015.2483422
https://doi.org/10.1109/TCSII.2015.2483422
https://doi.org/10.1109/ISCAS.2007.378201
https://doi.org/10.1109/ISCAS.2007.378201
https://doi.org/10.4218/etrij.08.0107.0189
https://doi.org/10.1109/ACSSC.2011.6190418
https://doi.org/10.1109/12.156544
https://doi.org/10.1109/ICASSP.1997.599849
https://doi.org/10.1109/ICASSP.2003.1202451
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1109/TCSI.2009.2025803
https://doi.org/10.1109/TSP.2012.2214218
https://doi.org/10.1109/TSP.2012.2214218
https://doi.org/10.1109/ACSSC.2009.5470121
https://doi.org/10.1109/ACSSC.2009.5470121

262 F. Qureshi et al.

32. Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric
identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)

33. Shukla, R., Ray, K.: Low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63(12),
3066–3078 (2014). https://doi.org/10.1109/TC.2013.173

34. Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor
for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991). https://doi.org/
10.1109/12.83660

35. Thong, J., Nicolici, N.: An optimal and practical approach to single constant multiplication.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 30(9), 1373–1386 (2011). https://
doi.org/10.1109/TCAD.2011.2153853

36. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic
Computing EC-8, 330–334 (1959)

37. Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and
architecture. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
on 48(6), 548–561 (2001). https://doi.org/10.1109/82.943326

38. Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC
architecture based on extended elementary angle set and trellis-based searching schemes. IEEE
Trans. Circuits Syst. II 50(9), 589–601 (2003). https://doi.org/10.1109/TCSII.2003.816923

39. Yang, C.H., Yu, T.H., Markovic, D.: Power and area minimization of reconfigurable FFT
processors: A 3GPP-LTE example. IEEE J. Solid-State Circuits 47(3), 757–768 (2012). https://
doi.org/10.1109/JSSC.2011.2176163

https://doi.org/10.1109/TC.2013.173
https://doi.org/10.1109/12.83660
https://doi.org/10.1109/12.83660
https://doi.org/10.1109/TCAD.2011.2153853
https://doi.org/10.1109/TCAD.2011.2153853
https://doi.org/10.1109/82.943326
https://doi.org/10.1109/TCSII.2003.816923
https://doi.org/10.1109/JSSC.2011.2176163
https://doi.org/10.1109/JSSC.2011.2176163

	Rotators in Fast Fourier Transforms
	1 Introduction
	2 Rotations in FFT
	2.1 Twiddle Factors

	3 Rotation in Fixed-Point Arithmetic
	4 Rotations in FFT Architectures
	5 Rotator Units
	5.1 Rotators Based on General Complex Multiplier
	5.2 Constant Rotators
	5.2.1 Rotation Coefficients
	5.2.2 Shift-and-Add Circuit Implementation

	5.3 CORDIC Rotator

	6 Conclusions
	References

