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Foreword

The search for efficient means of computing and automation has permeated modern
society starting from the time of the industrial revolution. Progress has been driven
by visionaries who could quickly grasp the entire flow of the computing chain, from
data acquisition to information elaboration, to visualization, and to actuation. Such
visionaries also provided solutions matching the technology at hand. In this way,
computing morphed through the years, from large mainframes to portable devices.
Automation became ubiquitous through the use of embedded computing nodes.

Within computing systems, the balance of hardware and software and their
concurrent design—dubbed hw/sw co-design—has been an important enabling
methodology. Marilyn Wolf has been a pioneer in analyzing co-design tools and
methods as well as in creating procedures for optimal co-design in various metrics.
As a founding parent of co-design in electronic design automation, her seminal
work brought consciousness to the research community of the multitude of issues
in co-design and of the synergy of circuit, architecture, and algorithm techniques in
addressing the problem.

Later on, as the field of embedded systems emerged as the fastest growing
segment of the computing industry, Marilyn Wolf’s leadership in research and edu-
cation became prominent. Her books allowed many of us to understand the various
abstractions of distributed computing and control and leverage them in designing
tools for embedded systems analysis and synthesis. Her textbook, Computers as
Components, was seminal as it allowed engineers to put computing elements in the
perspective of large systems.

Next, as distributed systems became elaborate means of processing the informa-
tion and as such information became semantically richer, Marilyn Wolf contributed
to the field by proposing and perfecting visual acquisition capturing and processing
systems. Distributed image processing is a key constituent of security and defense,
and it is used also to monitor industrial production and the environment. Her
contribution is present in many tangible aspects of modern society.

v



vi Foreword

Overall, Marilyn contributed to the advancement of electrical engineering and
computer science, both in academia and in industry. Her contribution to education
and dissemination of technology are well known throughout the world. This book
serves as a reference point for scientists and engineers to understand the complex
field of computing and its evolution through her outstanding contributions.

EPFL, Lausanne, Switzerland Giovanni De Micheli
2019



Preface

This Festschrift volume is published in honor of Marilyn Wolf, on the occasion of
her 60th birthday. The book covers various topics in Embedded, Cyber-Physical, and
Internet of Things (IoT) Systems, with emphasis on topics related to Smart Cameras,
Hardware/Software Co-Design, and Multimedia Applications. Marilyn has made
pioneering contributions of great impact in all of these areas. Embedded systems
are everywhere; cyber-physical systems enable monitoring and control of complex
physical processes with computers; and IoT technology is of increasing relevance
in major application areas, including factory automation, and smart cities. Smart
cameras and multimedia technologies introduce novel opportunities and challenges
in embedded, cyber-physical, and IoT applications. Advanced hardware/software
co-design methodologies provide valuable concepts and tools for addressing these
challenges. The purpose of the book is to provide a collection of timely articles that
cover important topics in the aforementioned areas, which represent major themes
in Marilyn’s career.

Marilyn Wolf
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viii Preface

Attendees at the Workshop on Embedded Computing, which was held in honor of Professor Wolf
on September 21, 2018: Jacques Florence, Graham Hellestrand, Chia-Han Lee, Weichen Liu,
Burak Ozer, Nikshep Patil, Dimitrios Serpanos, Umer Tariq, Marilyn Wolf, Yuan Xie, Jiang Xu,
Jishen Zhao



Preface ix

Marilyn Wolf is the Georgia Research Alliance Eminent Scholar and Rhesa “Ray” S.
Farmer, Jr., Distinguished Chair in Embedded Computing Systems in the School of
Electrical and Computer Engineering at Georgia Institute of Technology. Her major
distinctions and awards include the ASEE Frederick E. Terman Award (2003), IEEE
Circuits and Systems Society Education Award (2006), IEEE Computer Society
Golden Core Award, and Fellow of both the ACM and IEEE. She has helped to
found major international conferences, including CODES (now CODES-ISSS as
part of Embedded Systems Week) and MPSoC. She has written several books that
are used widely throughout the world. These include Embedded System Interfacing;
Computers as Components; High-Performance Embedded Computing; The Physics
of Computing; Smart Camera Design: Algorithms, Architectures, and Art; and
Internet-of-Things (IoT) Systems.

The diverse topics of the chapters in this Festschrift help to reflect the great
breadth and depth of Marilyn’s contributions in research and education. The chap-
ters have been written by some of Marilyn’s closest collaborators and colleagues.

The completion of this Festschrift follows a Workshop on Embedded Computing,
which was held in honor of Marilyn on September 21, 2018, at the Georgia Tech
campus in Atlanta, Georgia. The workshop featured technical presentations, as well
as personal stories of the tremendous positive influence that Marilyn has had on the
careers and lives of people who have worked with her, including those who had the
fortune to study under her mentorship. The workshop also included several video
greetings from scholars around the world who were unable to attend the event in
person.

We would like to thank all of the authors who contributed to this Festschrift and
the reviewers who provided constructive feedback during the development of the
chapters. We would also like to thank Paul Drougas, Jennifer Evans, and Rachel
Toy at Springer for their support.

To Marilyn, we would like to extend our heartiest congratulations on her truly
outstanding contributions in research and education. We look forward to many more
years of friendship and collaboration with her.

College Park, MD, USA Shuvra S. Bhattacharyya
Los Angeles, CA, USA Miodrag Potkonjak
Syracuse, NY, USA Senem Velipasalar
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i-Core: A Runtime-Reconfigurable
Processor Platform for Cyber-Physical
Systems

Marvin Damschen, Martin Rapp, Lars Bauer, and Jörg Henkel

Abstract We provide an overview of i-Core (invasive Core), a processor platform
with a runtime-reconfigurable instruction set. i-Core couples a general-purpose
processor core with a reconfigurable fabric that enables the configuration of
application-specific hardware accelerators at runtime. This way, i-Core can adapt
its instruction set to choose a runtime trade-off between the resources allocated and
the performance achieved for application-specific acceleration. The adaptivity of i-
Core is leveraged to advance several research areas that are addressed in this chapter.
First, we provide an overview of the i-Core architecture. Then, we summarize our
research findings in the areas of task scheduling, reliability, and hard real-time as
well as multi-core systems. The focus of this summary is on our recent findings in
the context of worst-case execution time guarantees.

1 Introduction

Reconfigurable computing, i.e., performing computations using a reconfigurable
fabric such as field-programmable gate arrays (FPGAs), was introduced in the
early 1990s [40]. Today it is an established computing paradigm in a growing
number of application domains in research and industry, not only in embedded
computing (e.g., signal processing [39], computer vision [30], or encryption [29]),
but also in high-performance and scientific computing (e.g., financial pricing [19]
or DNA-sequencing [12]), data centers (e.g., searching [35] or database queries
[20]), networks (routing [33], intrusion detection [18]), and others. In these domains,
applications generally comprise several compute-intensive loops, so-called compu-
tational kernels, that benefit greatly from implementation as application-specific
hardware accelerators in terms of performance and energy efficiency. FPGAs enable
the utilization of application-specific hardware accelerators without fabricating

M. Damschen (�) · M. Rapp · L. Bauer · J. Henkel (�)
Karlsruhe Institute of Technology, Karlsruhe, Germany
e-mail: damschen@kit.edu; martin.rapp@kit.edu; lars.bauer@kit.edu; henkel@kit.edu
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2 M. Damschen et al.

custom chips and they provide flexibility as well as the ability for upgrades like
software.

Several alternatives exist when designing reconfigurable cyber-physical systems
that combine a general-purpose CPU with a reconfigurable fabric. Generally, a
tighter integration reduces communication latency between CPU and reconfigurable
fabric, but requires more effort in the architectural design of the system. Numerous
products are available that add an FPGA as a separate chip to an existing system
by attaching it to the system’s peripheral bus. However, it is crucial for cyber-
physical applications to minimize (1) the communication latency between CPU
and reconfigurable fabric to enable acceleration of short-running kernels (e.g.,
in control loops) and (2) the system’s power consumption as well as (3) area
footprint. Therefore, the advancing trend of processor integration has resulted in
reconfigurable SoCs that combine FPGAs and CPUs on a single chip (e.g., Xilinx
Zynq or Intel (formerly Altera) SoC FPGA), which have led to the wide adoption
of reconfigurable systems in cyber-physical systems, e.g., in implementations of
advanced driver assistance systems in the automotive domain. In reconfigurable
SoCs, CPU and FPGA are still separate processing devices that communicate over
the (internal) system bus.

In this chapter, we demonstrate that an even tighter integration of CPU and
FPGA than in current reconfigurable SoCs is beneficial to target non-functional
properties of cyber-physical systems based on i-Core. i-Core (invasive Core [28])
is a reconfigurable processor that attaches an FPGA-based reconfigurable fabric
directly to the CPU pipeline. In the remainder of this chapter, we first introduce the
i-Core architecture. Then, an overview of our recent research is given, starting with
task scheduling (Sect. 2) for reconfigurable processors. We then focus on two non-
functional properties that are commonly found in cyber-physical systems: reliability
constraints (Sect. 3) and worst-case execution time guarantees (Sect. 4). Finally, we
summarize our work on reconfigurable multi-core architectures (Sect. 5).

1.1 The i-Core Architecture

This section introduces key concepts of the i-Core architecture as a basis for the
following sections. Details, including comparisons to other reconfigurable system
designs that couple a reconfigurable area with a processor core, can be found in [8].
An overview of the i-Core architecture is shown in Fig. 1. i-Core is a reconfigurable
processor, i.e., it is based on a general-purpose processor (GPP) pipeline and
enables the execution of runtime-reconfigurable custom instructions (CIs). CIs
extend the processor’s core instruction set architecture (cISA) by application-
specific instructions that are realized using (1) microcode and (2) reconfigurable
accelerators that are detailed in the following.
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Fig. 1 The main components that the i-Core processor platform comprises

1.1.1 Microcoded Custom Instructions

When the processor pipeline encounters a CI in its execute (EX) stage, the pipeline
stalls and initiates execution of the respective microprogram (i.e., a program written
in microcode) that implements the functionality of the encountered CI on the CI
execution controller. The microprogram controls all resources of the reconfigurable
fabric:

• Load/store units (LSUs) enable access to the main memory (through the proces-
sor’s L1 data cache (D$)) and high-bandwidth scratchpad memory (SPM) for
CIs

• Reconfigurable containers (RCs), (embedded) FPGAs that provide the recon-
figurable area for runtime-reconfiguration of accelerators (one accelerator per
container, each of similar complexity as, e.g., floating-point multiply-accumulate
or a dozen integer operations)

• Interconnects connect LSUs, RCs, and the processor’s register file to a common
(four word-wide segmented) bus.

Note that a single microprogram can utilize one or more accelerators. In other
words, the functionality defined by a CI is realized using one or more accelerators.
Application-specific hardware accelerators provide an important trade-off: the more
area is utilized, the higher the resulting performance. At the same time, multiple
accelerators compete for the constrained reconfigurable area. This trade-off is the
result of instruction-level parallelism that can be exploited when more hardware
resources are added to an application-specific accelerator. The main benefit of
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Fig. 2 CIs define computations as DFGs that can be scheduled with different amounts of
accelerators, resulting in different latencies. (a) Two “transform” accelerators configured. (b) One
“transform” accelerator configured

allowing CIs to utilize more than one accelerator is that this trade-off can be chosen
at runtime by providing several microprograms that implement the same CI, but
utilize different amounts of accelerators that each implement a part of the CIs
functionality. Consequently, CIs define computations as data-flow graphs (DFG)
where nodes are accelerators and load/stores. Figure 2 shows a simplified example
of a CI that loads input data, performs transformations on the data, aggregates
results, and finally stores them. Depending on how many “transform” accelerators
are configured in the RCs at runtime, the DFG can be scheduled in four steps
(see Fig. 2a) or five steps (see Fig. 2b). Each of these schedules corresponds to a
microprogram for the CI execution controller, which implements the CI.1

The CI model employed by i-Core provides additional opportunities for perfor-
mance increases over a model where a CI corresponds to a single accelerator:

• Sharing. Because the functionality of a CI is “split” in several accelerators, the
computations of a single accelerator become more general. Thus, once configured
accelerators create opportunities to be utilized by multiple CIs (implementing
different functionality).

• Upgrading. Reconfiguration takes time. The reconfiguration delay on modern
architectures is still in the range of milliseconds, depending on the configuration
size. In the i-Core CI model, a CI can already be executed in hardware as soon as
each required accelerator type is configured at least once on the reconfigurable
fabric (like in Fig. 2b). The more accelerators finish reconfiguration during
runtime, the more parallelism can be exploited and the lower the CI latency gets
(e.g., runtime reconfiguration of an additional “transform” accelerator leads to
schedule Fig. 2a instead of Fig. 2b).

1In the remainder of this chapter we will refer to CI implementation and CI microprogram
interchangeably, depending on the focus of the respective section.
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More details about such modular CIs, the load/store unit (see Fig. 1), and the address
generation can be found in [8, 11].

1.1.2 Software Emulation

So far, we discussed how CIs are executed, assuming all accelerators required
by a certain implementation are currently configured on the reconfigurable fabric.
However, CIs can be unavailable, i.e., there exists no schedule of the CI’s DFG for
the accelerators that are currently configured. Two alternatives exist to handle the
case that the i-Core attempts to execute an unavailable CI at runtime: stalling and
software emulation. Figure 3 visualizes the different execution models. Software
only (top) corresponds to execution of iterations of a kernel that does not utilize any
CIs. Stalling (middle) executes CIs on the reconfigurable fabric and trying to execute
an unavailable CI is an error. Therefore, CIs need to be configured before the kernel
is entered and the execution is stalled until the required CIs are available. Finally,
software emulation (bottom) triggers functionally equivalent software execution
of an unavailable CI on the i-Core’s pipeline using the base processor’s cISA. It
enables execution of the kernel while required CIs are still being reconfigured. Thus,
progress can already be made without any CIs and as soon as reconfiguration of a
CI finishes, the CI is utilized to speed up the following iteration of the kernel. While
software emulation is always beneficial at runtime, it is more complex to analyze for
execution time guarantees than stalling, which will be detailed in Sect. 4. Software
emulation is realized using two alternative approaches in i-Core: an “unimplemented
instruction trap” with a corresponding trap handler or CI Invocations that branch to
either the CI or software emulation before trying to execute the CI. CI Invocations
are beneficial for execution time guarantees and are detailed in Sect. 4.2.

1 2 3 4 5 . . . n

Execution Time

CPU (SW only)

1 2 . . . n

Reconfiguration
Reconf. Fabric
CPU (Stalling)

Execution Time

(a)

1 . . . i1−1 i1 . . . i2−1 i2 . . . n

Reconfiguration
Reconf. Fabric
CPU (SW Emul.)

Execution Time

(b) (c) (c)

i Iteration i / Reconfiguration Delay of CI1 / CI2 / Execution of CI1 / CI2

Fig. 3 Timelines of executing a kernel using software only, stalling and software emulation
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This section provided an overview of the i-Core architecture as a background for
the following sections. i-Core exists as a constantly evolving hardware prototype,
currently it is based on the Gaisler LEON3 processor2 and synthesizes to Xilinx
Virtex-7 FPGAs. A more detailed explanation of how the architecture is realized
can be found in [8, 9, 11]. Additionally, a SystemC-based cycle-accurate simulator
is available [10] for early evaluation of runtime system algorithms. In the following,
task scheduling on runtime-reconfigurable processors like i-Core is discussed.

2 Task Scheduling for Runtime-Reconfigurable Processors

While application-specific accelerators can provide significant speedup in domains
such as mobile computing (e.g., 5G, cryptography) and robotics (e.g., image/audio
processing, feature matching), applications in these domains are typically composed
of multiple tasks. Systems for these applications are often dynamic multi-tasking
systems, i.e., task arrival is not known at design time and task duration is dependent
on input data (e.g., the recognized objects in a camera-based mobile robot). As long
as such dynamically changing multi-tasking scenarios are not efficiently supported
on reconfigurable processors, their inherent efficiency advantages are inaccessible
for these demanding domains. In the following, we present how efficient multi-
tasking support is enabled for reconfigurable processors by presenting two task
schedulers for scenarios where it is unknown at compile time which tasks will
execute at the same time (and which CIs will be required). First, we present a
task scheduler that is optimized for reducing the tardiness (i.e., the total time by
which deadlines were missed over all tasks), then a task scheduler for improving the
makespan (i.e., the completion time of the tasks).

2.1 Task Scheduler for Optimizing Tardiness

Tardiness reduction is important for application scenarios where at least some of
the tasks have soft deadlines, e.g., reducing the tardiness for a video recording and
encoding task leads to a reduced number of dropped frames. In [7] we present the
performance aware task scheduling (PATS) strategy that aims to reduce tardiness
of all running tasks. We introduce the notion of task efficiency in reconfigurable
processors and observe that it changes over time for a single task: A task that has
just started executing a kernel (i.e., its required accelerators are not yet configured)
will need to execute CIs using software emulation and thus, have a low efficiency.
In contrast, a task that has finished reconfiguring its accelerators will perform more
computations in the same amount of time and thus, have high efficiency. Therefore,

2https://www.gaisler.com/.

https://www.gaisler.com/
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our scheduler favors executing tasks with high efficiency (unless it would lead
to a deadline miss for a task with low efficiency). Tasks with low efficiency can
perform their reconfigurations in parallel to execution of tasks with high efficiency
and achieve a high efficiency until they are executed at a later time. PATS was
compared with standard scheduling approaches like earliest deadline first (EDF),
rate-monotonic scheduling (RMS), and the scheduler used in the Molen processor
[37] on reconfigurable processors with different fabric sizes and tasksets with
different deadlines. PATS achieves a 1.45× better tardiness on average (maximum
1.92×, minimum 1.14× better) compared to the other schedulers.

2.2 Task Scheduler for Optimizing Makespan

For systems without deadlines, such as in high-performance computing, an impor-
tant performance metric is the makespan (i.e., the completion time) of a taskset.
To improve the makespan on a reconfigurable processor, we introduced a combined
task scheduling and reconfigurable area allocation approach: makespan optimization
for reconfigurable processors (MORP) [24]. Using the notion of task efficiency
introduced in PATS, MORP is based on the observation that task efficiency is
low after an application switches from one kernel to another (as it requires
reconfiguration of accelerators for the new kernel), an effect we call reconfiguration-
induced cycle loss (RiCL). By reducing the RiCL of a taskset, we improve its
makespan. The largest potential for RiCL reduction is in complex tasks that switch
between different kernels during their execution time (e.g., video encoders). Such
tasks are scheduled by our approach as primary tasks, which are initially assigned
the full reconfigurable fabric. Using combination of offline profiling and lightweight
online monitoring, the approach predicts when the primary task will switch from one
kernel to another. A short time before leaving a kernel (at high efficiency), a small
share of the reconfigurable area is already reallocated to a secondary task. While
accelerators of the secondary task are reconfigured, the primary task completes its
current kernel. Upon switching to its next kernel, the task efficiency of the primary
task drops (as its required accelerators are not yet configured). Therefore, the
system temporarily schedules the secondary task, which by this point has a higher
efficiency than the primary task. The primary task reconfigures its accelerators while
the secondary task is running. During its final reconfigurations (for the upcoming
kernel), the primary task reacquires the reconfigurable area that was allocated to
the secondary task. At this point, the MORP switches to the primary task at high
efficiency. Figure 4 shows results of MORP in comparison to other schedulers
for different tasksets (each containing a subset of: H.264, SUSAN, AdPCM, AES,
SHA). Our approach achieves an average makespan reduction by 6.5% and 20.3%,
compared to the SPT scheduler (shortest processing time, optimal for makespan
minimization on a non-reconfigurable processor) and RR (round robin) scheduling,
respectively. Compared to the theoretical lower bound of makespan (where RiCL
is assumed to be zero for any taskset), our approach produces results that are on
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Fig. 4 Comparison of MORP to state-of-the-art scheduling approaches

average only 2.8% worse than this theoretical optimal result. The other evaluated
schedulers produce schedules with makespans that are 14–20% worse than optimal.

In summary, our runtime-reconfiguration aware task schedulers can achieve
1.45× better tardiness (PATS) than comparable state-of-the-art schedulers and a
makespan reduction that on average is only 2.8% worse than the theoretical lower
bound. This section presented how efficient multi-tasking support is enabled on
runtime-reconfigurable processors. When processors are embedded into a big-
ger system, like a cyber-physical system, generally non-functional requirements
(e.g., real-time or reliability constraints) need to be met. Deploying runtime-
reconfigurable processors in such systems provides opportunities and challenges
as the following sections detail. The next section focuses on the non-functional
property of reliable execution.

3 Reliable Reconfigurable Processors

Reliability concerns due to technology scaling have been a major focus of
researchers and designers for several technology nodes. The reliability of
reconfigurable processors is threatened not only by soft errors, but also by aging
effects and latent defects. Latent defects are present in the material (unobserved) and
may manifest as permanent fault during normal operation. Aging effects degrade
the properties of transistors and may lead to a reduced performance (via increased
transistor threshold voltage and correspondingly reduced maximal frequency) or
even permanent faults (e.g., time-dependent dielectric breakdown) [27]. Soft errors
instead are transient and may lead to bit flips in memory cell or logic latches [26].

In a reconfigurable processor, the non-reconfigurable components (e.g., CPU
pipeline; see Fig. 1) may potentially be fabricated in an older technology node, as
the system performance does not stem from high pipeline frequency, but from high
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parallelism of the reconfigurable accelerators. But the reconfigurable containers
(RCs) should always be implemented in cutting-edge technology, to close the
area/frequency gap compared to non-reconfigurable accelerators. 2.5D stacking
with a silicon interposer and stacked chiplets can be used to integrate the non-
reconfigurable components with the cutting-edge reconfigurable fabric. Xilinx is
using 2.5D stacking since its Virtex-7 series and also Achronix promotes it as an
alternative to their commercial embedded FPGAs [3]. As the RCs are manufactured
in the latest technology nodes, reliability concerns are even more serious for them.
However, the inherent flexibility and adaptivity due to the reconfigurability of the
RCs also provides opportunities for fault mitigation. In this section, we present
an overview of our comprehensive efforts in the OTERA project (online test
strategies for reliable reconfigurable architectures; based on the i-Core) that allow to
ensure functional RCs, correct reconfiguration, tolerate faults, mitigate aging, and
guarantee a target reliability for observed soft-error rates.

3.1 Testing for Structural Defects and Correct Reconfiguration

In order to test the reconfigurable containers (RCs) and their accelerators for correct
functionality, we added a “test manager” in a similar way as the RCs (see Fig. 1). It
supports a pre-configuration test (PRET) and a post-configuration test (PORT) [6].
PRET tests the RC-internal resources for permanent faults and PORT tests whether
the accelerator was configured correctly and whether it meets the target frequency.
In order to test the RC-internal resources, there needs to be a way to apply test
input data to RCs and to analyze their result. Therefore, PRET cannot be performed
using the application-specific accelerators, but special test configurations (TCs, i.e.,
accelerators with the purpose to test RCs) need to be used.

To test the CLB array of a RC for permanent stuck-at faults, we developed
nine TCs that test all CLB features, i.e., LUTs as logic, LUTs as shift registers,
LUTs as distributed RAMs, multiplexers, registers, and carry-chain logic [1]. To
perform a test with PRET, at first, one of the TCs needs to be configured into a
RC. Afterwards, a special CI is executed that instructs the “test manager” to create
and send test patterns to the RC-under-test, let it compute, and receive and analyze
its computation result. The TCs use between 6 and 320 test patterns to perform
their specific test. Their lowest frequency is 154 MHz, i.e., faster than the lowest
frequency of the application-specific accelerators.

To evaluate the testing overhead, we use an H.264 video encoder with 9 CIs that
permanently reconfigures the RCs to adapt them to the current processing kernel
(i.e., motion estimation, encoding, or in-loop deblocking filter). The application
requests application-specific reconfigurations and after every nth request, PRET
inserts a small test. The RC that the application wanted to reconfigure anyway is
reconfigured to contain one of the TCs and then its test patterns are applied. After
the test, the actually requested application-specific accelerator is reconfigured into
this RC. Note that the application continues executing during reconfiguring the TC
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Fig. 5 Delay until all RCs are exhaustively tested by PRET vs. application performance loss due
to testing

and note that many TCs are required until the entire reconfigurable fabric is tested
(9 TCs per RC).

For the results shown in Fig. 5 we performed one TC after every four application-
specific reconfigurations [1]. The figure analyzes the average test period and the
application performance loss for reconfigurable processors with varying number
of RCs. The average test period denotes the time in seconds until all RCs in the
system are tested by all nine TCs each. The application performance loss denotes the
additionally needed time compared to a system without any testing. Despite the very
low overhead (on average 0.22%), the structural test completes very fast (on average
7.15 s). It is notable that the test period increases significantly for more than 11 RCs
(while at the same time the overhead reduces). The reason is that for reconfigurable
processors with so many RCs, some of the RCs are less often reconfigured by the
application and thus they are tested less often and thus dominate the test period. To
reduce the test period for these cases, we can use periodic testing of RCs that were
not reconfigured for a longer time. For brevity, details on this extension and details
on PORT (similar to PRET but without demanding extra TCs) and test scheduling
are omitted and can be found in [6].

3.2 Fault Tolerance and Aging Mitigation

The pre-configuration test (PRET) described in Sect. 3.1 allows to detect permanent
faults, but it provides no means to deal with them. In this section we present the
idea of diversified configurations that (1) allows to tolerate permanent faults in RCs
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and that (2) can also be used to mitigate aging, i.e., their root cause. Whenever
a permanent fault manifests in a CLB of a RC (detected by PRET), accelerators
that use this CLB as part of their operation will no longer function correctly in
all cases. However, accelerators that do not use that CLB will not be affected
by the fault. The main idea of diversified configurations is to provide different
implementations (i.e., place and route results) of the same accelerator that differ
in their resource usage. In [47] we present the algorithm that generates a minimal
set of diversified configurations for an accelerator such that for any single CLB
that is found to be faulty, a diversified configuration exists that does not use that
CLB. Additionally, the algorithm can generate even more diversified configuration,
such that also multi-CLB-errors can be tolerated. We use the PROHIBIT constraint
from Xilinx to ensure that the specified CLBs are not used and then let the Xilinx
P&R tools freely determine the implementation of the accelerator on the remaining
CLBs. In our evaluation for several applications (H.264, ADPCM, AES, JPEG), two
to seven diversified configurations are sufficient to provide fault tolerance for any
single-CLB fault at a minimal frequency loss of 5.6% compared to the accelerator
implementations without diversification [47].

As diversified configurations differ in their usage of CLBs—and thus also in
how much stress they induce to individual CLBs—they can also be used to mitigate
aging. For instance, the degree of hot-carrier injection (HCI) aging depends (among
others) on the average toggle rate of transistors. Higher toggle rate (at otherwise
identical conditions) leads to faster HCI aging, which eventually increases the tran-
sistor threshold voltage. By continuously switching between different diversified
configurations, the stress can be balanced over all transistors, instead of being
accumulated into few transistors that would otherwise age fastest and thus affect
the performance or reliability goals of the system first. Figure 6a shows the stress
that an accelerator (alu4 from the MCNC benchmark suite) induces into its RC,
when it remains configured in the same RC for the entire application execution
time [46]. Each square in Fig. 6a corresponds to one CLB of the RC and the color
shows the average toggle rate of the transistors in this CLB. Figure 6b shows the
stress when using a maximally diversified configuration of the same accelerator
and Fig. 6c shows the stress when periodically reconfiguring between these two
configurations. Even though the stress is more balanced, the peak stress in Fig. 6c is
not reduced significantly. Figure 6d achieves a significantly reduced peak stress by
switching between four diversified configurations (the minimal number to tolerate
all single-CLB faults for this accelerator). The maximum HCI stress reduction when
using the minimum number of configurations for single-CLB fault tolerance ranges
up to 68.9%, which increases the time to failure by 222% [46].

In addition to balancing the stress within a RC by switching between diversi-
fied configurations (intra-RC stress balancing), we also developed a stress-aware
placement algorithm (STRAP) that decides for all accelerators that shall be recon-
figured, which diversified configuration shall be used and into which RC it shall
be reconfigured (inter-RC stress balancing) [47, 49]. This is important as some
accelerators may be used significantly more often than others, which could lead
to some RCs being significantly more stressed than others (even though being
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(a) (c)(b) (d)

Fig. 6 The average toggle rate (stress) of the CLBs of a reconfigurable container after several
executions of (a) an accelerator, (b) a maximally diversified implementation of the same
accelerator, (c) an alternating schedule (reconfiguration) of the first two implementations, (d) a
balanced schedule of four implementations

reasonable balanced within the RC). As the placement decision has to be made
at runtime and depends on the accumulated stress due to the CI executions so far,
we developed an efficient search space pruning technique to reduce the runtime
overhead by calculating guaranteed lower and upper bounds of the achievable stress
distribution. Details on the algorithms can be found in [47, 49]. Altogether, using our
diversified configurations with our fault-tolerant and stress-balancing accelerator
placement, an H.264 video encoder delivers from 1.9× up to 3.7× the performance
of a baseline system in the presence of 4 to 40 faulty CLBs, while at the same time
achieving up to 6.8× higher mean-time to failure (MTTF) than a baseline system
for a set of benchmarks [47].

3.3 Guaranteed Reliability for Reconfigurable Processors

Besides permanent faults and aging effects, single-event upsets (SEUs) are the
most-demanding challenge for reliable reconfigurable processors. SEUs manifest
themselves as a temporary bit flip in the logic that may be captured by state-
holding elements. As reconfigurable processors use SRAM-based reconfigurable
fabrics to implement their RCs, they contain rather large amounts of state-holding
elements and are thus especially susceptible to SEUs. Additionally, if an SEU flips
a configuration bit, then this may actually alter the function of the accelerator



i-Core: A Runtime-Reconfigurable Processor Platform for Cyber-Physical Systems 13

(defined by the configuration bits) and this fault is only corrected when the RC
is reconfigured again. Instead, the pipeline of reconfigurable processors (see Fig. 1)
is less susceptible to SEUs, as it is not implemented using a reconfigurable fabric.
It is also not critical for the overall performance (most performance-relevant parts
are implemented as CIs), so it can be implemented using an older technology
node, which is inherently less susceptible for SEUs. Therefore, the software
implementation of a CI has the highest reliability and can be used when the
reliability of a CI implementation on the reconfigurable fabric is too low.

Complex accelerators that use more resources have more critical configuration
bits (i.e., those bits that define the functionality of the accelerators) and therefore
have a higher probability that one of their critical bits is flipped due to an SEU.
Based on the number of critical bits and the SEU rate,3 we can determine the
reliability of an accelerator, i.e., the probability that it produces a correct result at
a certain time. The reliability starts at 100% right after the accelerator was recon-
figured and it reduces exponentially over time until it is scrubbed4 or reconfigured
(see Fig. 7a). To increase reliability, modular redundancy can be applied to these
accelerators (see Fig. 7b). This reduce the rate at which the reliability decreases,
since even in case of an SEU, the system is able to correct it. Alternatively, the
scrubbing frequency can be increased (see Fig. 7c), but the bandwidth to access
the configuration data is limited and a higher scrubbing frequency also affects the
accelerator reconfiguration time, as scrubbing and reconfiguring both need to access
the same configuration port.

Only slight changes in the hardware architecture are needed to implement
modular redundancy, such that any two (three) neighboring containers can be
combined to a DWC (TMR) pair. In case of TMR (triple modular redundancy), the
CI may complete, but the faulty RC needs to be scrubbed soon to avoid aggregating
multiple faults in the TMR pair. In case of DWC, the CI has to be aborted and
has to execute in software emulation instead. Future executions of the same CI are
directly sent to software and both RCs need to be scrubbed, as it is not known
which of them caused the fault. However, applying modular redundancy means
that less accelerators are available for parallel execution, which means that the
overall application execution time increases. At the same time, also the resident
time of accelerators increases, i.e., it takes longer until they are reconfigured by
the application. The longer the resident time, the higher the probability that one
of the critical configuration bits gets corrupted and the lower the reliability of the
accelerator. Therefore we also have to increase the scrubbing frequency with the
corresponding drawbacks.

Instead of statically choosing the degree of redundancy, reconfigurable pro-
cessors can change between performance (no redundancy), DWC, and TMR at
runtime and that can be decided for each accelerator independently [48]. The

3Determined by a soft-error monitor, e.g., using the number of ECC errors in memory, caches, etc.
4The configuration bits of a RC are read back and their ECC values are checked for errors with
subsequent correction, if needed.
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Fig. 7 The reliability of a reconfigurable container over time: (a) after reconfiguration or
scrubbing, the reliability is known to be “1” and then decreases exponentially, potentially violating
a given reliability constraint. (b) In order to avoid the violation, modular redundancy can be used
to reduce the reliability decrease. (c) Alternatively (or in combination), more frequent scrubbing
can be used

main challenge is to select the accelerators and their redundancy modes to satisfy
application-determined reliability constraint, while at the same time maximizing
the performance. We developed an algorithm that conducts the decision in multiple
steps [45, 48]. The main idea is to combine all reliability impacting factors for an
accelerator execution in one metric, the effective critical bits (ECBs), and then to
distribute the ECBs among kernels and CIs. The metric is inspired by the critical
bits, i.e., the configuration bits of an accelerator that define its functionality. These
bits need to have the correct value in order to execute the accelerator correctly.
Applying modular redundancy to an accelerator increases its reliability. That is
basically the same effect as if the accelerator would have less critical bits, and that
is exactly what we express as a reduction in ECBs of that accelerator. Similarly,
increasing the scrubbing rate reduces the ECBs for all accelerators. For a CI that
executes in software emulation, its ECBs basically correspond to zero, i.e., it is very
reliable.

For a given target reliability and SEU rate, we calculate the number of ECBs
that we can maximally tolerate [45]. Then, we partition these ECBs among the
different kernels of the application, based on their resource requirements and
expected execution time. In the next step, the ECBs of a kernel are partitioned
among its CIs. Those CIs that have long execution time and require a large number
of accelerators obtain the most budget, i.e., we assign more ECBs to complex and/or
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slow CIs in order to realize them in faster hardware implementations [45]. This ECB
budgeting only needs to be recomputed if the target reliability or the monitored
SEU rate change. Finally, we select the minimally needed scrubbing frequency
and the redundancy modes for accelerators to implement the CIs such that they
do not violate the given ECB budget and maximize the application performance
[48]. Thereby the approach guarantees an application-specific minimum level of
reliability for the CIs and the application. Since the accelerators are not over-
protected, the performance of the application is maximized for the given target
reliability. We evaluated the approach using an H.264 video encoder and varying
SEU rates and we compared it against threshold-based methods that reconfigure all
accelerators to DWC (or TMR) when exceeding a threshold (or implement the CIs in
software if too few RCs are available). Compared to these threshold-based methods,
out approach guarantees the same target reliability while providing 20.0% (DWC)
or 42.6% (TMR) higher application performance on average. In the best case, up to
34.8% (DWC) and 68.3% (TMR) faster execution is obtained without violating the
given reliability constraint.

This concludes our discussion of reliability concerns in runtime-reconfigurable
processors. Orthogonal to reliability concerns, designers of cyber-physical systems
need to deal with timing worst-case execution time concerns that are discussed in
the following section.

4 Worst-Case Execution Time Guarantees

In contrast to general-purpose computing systems, cyber-physical systems need
to meet non-functional requirements like timing constraints. Failing to meet a
given deadline can lead to severe malfunctions, therefore a timing validation is
performed to guarantee the timing constraints [44]. As part of the timing validation,
a schedulability analysis is performed to guarantee that the set of tasks that should
be executed on a system can be scheduled at runtime under any circumstances. The
input to the schedulability analysis is the worst-case execution time (WCET), which
needs to be known for every task from the taskset [44].

Statically determining the WCET of a task is a complex problem. Due to
the undecidability halting problem, it is in general impossible to determine the
precise WCET of a task or its worst-case input [34]. WCET analysis is further
complicated by the fact that modern processor design focuses on reducing the
average execution time: Features like pipelining, caches, and branch prediction
introduce a microarchitectural state, i.e., the latency of an instruction is dependent
on the execution history. Even with recent advances in research, WCET analysis
lags years behind current microarchitectures with out-of-order scheduling pipelines,
several hardware threads, and multiple (shared) cache layers [38]. The real challenge
for a successful timing validation is to obtain tight bounds of the execution time, i.e.,
the overestimation should be as low as possible. Therefore, performance features
amenable for timing analysis are requested [4, 21, 41] to face the increasing
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performance demands of real-time systems. Improving the WCET of a task is highly
desirable as it may enable a cyber-physical system to meet previously infeasible
timing constraints or make room for power optimizations.

This section introduces WCET analyses and optimization of tasks on runtime-
reconfigurable processor designs like i-Core as one way to escape the scarcity of
timing-analyzable performance features. First, this section introduces a reconfigu-
ration controller that provides guaranteed reconfiguration delays to enable runtime
reconfiguration in hard real-time systems. Afterwards, it is shown how WCET
bounds can be obtained for processors with a runtime-reconfigurable instruction
set. Finally, this section presents how WCET bounds can be optimized by selecting
WCET-optimizing CIs.

4.1 Guaranteed Reconfiguration Delays

The most straight-forward approach of improving WCET guarantees a task using
runtime reconfiguration with the constraints of timing-analyzability and reasonable
implementation effort is to apply the stalling model [17] as shown in Fig. 3 (middle).
Using the stalling model, a task that requests reconfigurations of accelerators can
be analyzed for WCET guarantees with established timing analysis techniques by
adding the reconfiguration delay (see Fig. 3(a)) to the WCET of the basic block
that requests the reconfiguration. The assumption is that the reconfiguration delay
can be determined statically, which is reasonable for the stalling approach when
the CPU is stalled and its memory accesses cannot interfere with reconfiguration
on main memory or a shared system bus. However, stalling is not state of the
art in reconfigurable systems, because the CPU is forced to remain idle during
reconfiguration and cannot, e.g., execute computations that do not depend on the
accelerators being reconfigured.

An approach that enables the CPU to perform useful operations in parallel to
reconfiguration is software emulation as explained in Sect. 1.1.2 and shown in
Fig. 3 (bottom). Software emulation is an established technique in average-case
optimizing reconfigurable systems, because it provides considerable performance
improvements. For real-time systems, however, it poses new challenges:

• Figure 3(b): Static timing analysis needs to capture potential conflicts on main
memory or a shared system bus when the reconfiguration process and the CPU
act on memory in parallel.

• Figure 3(c): When reconfiguration and execution on CPU execute in parallel, they
need to be synchronized at some point. The main question for WCET estimates
is: how far did the task proceed (in the worst case) during the reconfiguration
delay? In other words, from what point is it safe to assume during static timing
analysis that, e.g., accelerator A is readily configured on the reconfigurable fabric
and execution sped up? This question is addressed in Sect. 4.2.
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On this path, the reconfigura�on of CI1 is obsolete. 
Can it delay the following reconfigura�on of CI2?

Reconfigure CI1 Reconfigure CI2
Invoke CI1

… …

Fig. 8 Control-flow graph that shows how one reconfiguration request can delay another recon-
figuration request, thus impairing timing analysis

• Figure 8: At runtime, execution could follow a faster path than the worst-case
path. A new reconfiguration request could be reached, while a reconfiguration
for a previous kernel is still in progress. The possibility of an already occupied
reconfiguration port can lead to delays that are hard to analyze and therefore
introduce pessimism in the resulting WCET bound. To be able to guarantee that
the reconfiguration port is unoccupied for each reconfiguration request, it needs
to be possible to abort reconfigurations.

Limiting tasks to the stalling model might seem as the favorable way to enable
reconfiguration in real-time systems due to the potentially complex analysis of
software emulation. When scheduling multiple real-time tasks, however, the stalling
model poses similar challenges even on a uniprocessor system: when a task that
requests a reconfiguration is stalled, another task can execute in parallel to the
reconfiguration delay (see Fig. 3(a) and, e.g., [13]). In Sect. 4.2 it will be shown that
software emulation always provides a considerable speedup at runtime, but there are
cases where additional WCET overestimation compared to stalling diminishes the
speedup on the WCET guarantee.

4.1.1 Enabling Runtime Reconfiguration in Real-Time Systems
with CoRQ

To address the challenges of runtime reconfiguration in real-time systems, we
designed a reconfiguration controller command-based reconfiguration queue
(CoRQ5 [16]) that enables the CPU (any CPU, not necessarily the i-Core) to
issue sequences of reconfiguration requests, provides guaranteed reconfiguration
delays, and relieves the CPU from managing accelerator availability. CoRQ informs
the CPU of finished reconfigurations in a predictable way; the CPU never has to
poll or be interrupted to obtain the information that an accelerator has become
available (following a reconfiguration). CoRQ processes 32-bit commands and can
be instantiated with an internal memory to store bitstreams (configuration data for
the reconfigurable fabric). Commands are issued by the CPU using load/stores over
the system bus (see Fig. 1). They are either executed immediately or enqueued in an
internal FIFO queue (denoted as immediate or queueable commands, respectively,

5Open-source project available at: https://git.scc.kit.edu/CES/corq.

https://git.scc.kit.edu/CES/corq
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Table 1 CoRQ commands with cycles spent in EXE state

Command Immediate/Queueable LatencyEXE (cycles)a

clearQ Im, Qu 5

abortReconf Im 5

configBitsIntb Qu 6 + �B/4�
sendGPIO Qu 1

B—size of bitstream (byte)
aDiscussed in Sect. 4.1.2
bDetailed in Sect. 4.1.3

1 clearQ (Im: Ensure command queue is empty)
2 abortReconf (Im: Ensure free reconfiguration port)
3 configBitsInt (Qu: Configure bitstream B1 from internal memory)
4 sendGPIO (Qu: Store info ‘CI1 available’)
5 configBitsInt (Qu: Configure bitstream B2 from internal memory)
6 sendGPIO (Qu: Store info ‘CI2 available’)

Listing 1 CoRQ commands for implementing software emulation

in the following). The immediate commands are used to control CoRQ itself
(stop/resume processing enqueued commands, clear queue, reset) and abort a
running reconfiguration. Queueable commands relieve the CPU from managing
reconfigurations, i.e., they configure bitstreams (from internal or external memory),
provide information about available CIs through a general-purpose interface (or
send an interrupt to the CPU), and can even stall/unstall the CPU to implement the
stalling model. CoRQ currently supports 11 commands, the subset of 4 commands
that realize software emulation is shown in Table 1. In the following we illustrate
how software emulation can be realized with CoRQ, realization of the stalling
model is detailed in [16].

A reconfiguration of two accelerators using software emulation (executing soft-
ware in parallel, see bottom timeline of Fig. 3) is realized using commands as shown
in Listing 1. The CPU proceeds executing software after issuing the commands to
CoRQ, thus reconfiguration is performed in parallel to execution on the CPU. To
be able to guarantee the reconfiguration delay, it needs to be ensured that no earlier
reconfiguration requests are still pending and occupy the reconfiguration port (see
Fig. 8). Therefore, first all remaining commands are cleared and reconfiguration (if
any) is aborted (Lines 1 and 2). Afterwards, a bitstream from internal memory is
configured. This way, loading the bitstream does not conflict with memory accesses
from the CPU to main memory. Once reconfiguration completes, sendGPIO is
executed (Line 4) to notify the CPU that the first CI has become available (each CI
only uses one accelerator in this simplified example). Then, the CI can immediately
be used once it is configured (see Fig. 3 (bottom)), without waiting for the whole set
of commands to have finished processing by CoRQ or executing a software handler
to manage CI availability. A second CI is configured in Lines 5 and 6 of the example.
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Fig. 9 High-level view of how CoRQ processes commands

The example illustrates how software emulation can be realized using CoRQ with
simple sequences of commands issued by the CPU. In the following, the command
execution and timing behavior of commands are detailed.

4.1.2 Command Execution

Commands are processed by CoRQ using a finite state machine (FSM) consisting of
three states: fetch from queue (FE), decode (DEC), and execute (EXE) (see Fig. 9).
Fetching a command takes a single cycle, the DEC state takes two cycles, and the
latency of EXE depends on the command (see Table 1). Immediate commands
control CoRQ itself, and thus have priority over commands from the queue.
Executing either an immediate or a queueable command takes 3+latencyEXE cycles.
Enqueueing a command takes 2 cycles for identifying it as queueable and writing
it to the queue. Commands can simultaneously be enqueued to and fetched from
the queue. The realization of this simultaneous access (with a double-ported FIFO)
incurs an additional delay of 2 cycles for commands to become visible to the FSM
if the FIFO was empty.

4.1.3 Guaranteed Reconfiguration Delay

CoRQ can load bitstreams from arbitrary addresses; however, accessing the system
bus and a shared main memory (especially DDR) can incur memory access delays
that are hard to bound for WCET guarantees. Reconfiguration delays are guaranteed
when the CoRQ-internal memory is used (configBitsInt). The CoRQ-internal
memory is implemented using SRAM (so-called block RAMs on Xilinx FPGAs)
such that one word of configuration data can be fed to the reconfiguration port
in each cycle. Thus, CoRQ utilizes the configuration port’s full bandwidth (see
Sect. 4.1.4). Additionally, the configBitsInt command requires five setup
cycles and a single cycle at completion. Let B denote the size of the bitstream
in bytes (see Table 1), then latencyEXE = 6 + �B/4� cycles. Including the
latency of FE and DEC, configuring a single bitstream from CoRQ-internal memory
(configBitsInt) is guaranteed to take exactly 9 + �B/4� cycles.
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Table 2 Resource utilization

LUTs Flip-flops BRAM

LEON3 CPU (standard config.) 8144 3450 14

CoRQ 398 546 1

Internal Mem. of CoRQ (384 KB) 233 6 96

Available on VC707 303,600 607,200 1030

In the example of Sect. 4.1.1, the latency of the command sequence is simply
the sum of the latencies of the queueable commands: Configuring two bitstreams
using software emulation (see Listing 1 and Fig. 3 (bottom)) results in a latency
of tclearQ + tabortReconf + tconfigBitsInt + tsendGPIO + tconfigBitsInt +
tsendGPIO = 8+8+(9+�B1/4�)+4+(9+�B2/4�)+4 = 42+�B1/4�+�B2/4�. This
latency starts once the immediate command clearQ reaches CoRQ and is running
in parallel to the CPU that sends the commands to CoRQ. Executing previous
commands always takes at least as long as the delay for enqueueing the current
command, therefore enqueueing the commands does not add to the delay.

4.1.4 Results

The resource utilization of CoRQ, when added to the default Gaisler LEON3 design
(GRLIB GPL 1.4.1) targeting the Xilinx VC707 board, is shown in Table 2. The
design instantiates a single LEON3, uses the DDR3 on the VC707 as main memory,
and runs at 100 MHz.

The reconfiguration port (ICAP in Xilinx devices) can process 4 byte each
cycle at maximum 100 MHz on the VC707. Therefore, the theoretical maximum
reconfiguration bandwidth is 381.47 MiB/s.6 In the following, we reconfigure 25
partial bitstreams of B = 57,248 bytes each, which together takes a minimum of
357,800 cycles when assuming the theoretical maximum reconfiguration bandwidth
without overheads. Using CoRQ, these reconfigurations take 358,036 cycles7 which
corresponds to a reconfiguration bandwidth of 381.22 MiB/s. Thus, CoRQ is only
0.066% (or 236 cycles) slower than the theoretical maximum.

Figure 10 shows the reconfiguration bandwidth results as measured by the CPU.
The results were obtained for reconfigurations using the CoRQ-internal memory
(Int. Mem.), as well as main memory over the shared AHB system bus (Main.
Mem.). “Stalling” leaves the CPU idle during reconfiguration, whereas “polling”
means that the CPU repeatedly reads CoRQ’s status register to check whether
reconfiguration has completed (producing traffic on the AHB). “Bus conflicts”
uses a simple DMA unit that repeatedly initiates maximum length (256 words)
AHB burst transactions to provoke system bus and main memory conflicts during

6More precisely: (4 · 1024−2)/10−8 = 381.4697265625 MiB/s.
7Sum of latencies of the individual commands: 4 + 25 · (9 + �57,248/4�) + 4 + 3 cycles.



i-Core: A Runtime-Reconfigurable Processor Platform for Cyber-Physical Systems 21

0 100 200 300 400
M
ain

M
em
.

In
t. M

em
.

> 21× slower
than Stalling

3.47

376.18

71.96

379.96

74.02

379.51

Bandwidth [MB/s]

Stalling
Polling

Bus Conflicts

Fig. 10 A high variance in reconfiguration bandwidth is revealed when using main memory
(measured by CPU, average of 50 measures, maximum error <1%)

reconfiguration. The small variance in measurements when using CoRQ-internal
memory (<1%) stems from the overhead of measuring. CoRQ’s commands itself
always have exactly the same latency when using internal memory.

When using main memory for reconfiguration, accesses from the CPU, the
DMA, and CoRQ are in conflict. This results in a strong variance in reconfiguration
bandwidth between the measurements: The measurement under DMA bus conflicts
reports only 4.69% of the stalling bandwidth. This shows that reconfiguration
controller design is crucial in runtime-reconfigurable real-time systems. Simply
utilizing a shared memory for reconfiguration can lead to a slowdown of more than
21× in reconfiguration bandwidth.

This section demonstrated how reconfiguration delay guarantees can be achieved
to enable runtime reconfiguration in real-time systems using CoRQ. In another
work, CoRQ formed the basis to design a reconfiguration controller that enables
preemptable runtime reconfiguration in Xilinx Zynq-based multi-priority real-time
systems [36]. Once reconfiguration delay guarantees are established, the following
section shows how WCET estimates are obtained for tasks that leverage runtime-
reconfigurable accelerators for predictable performance.

4.2 Worst-Case Execution Time Analysis

To obtain a safe worst-case execution time (WCET) estimate, timing analysis needs
to be performed on the reconstructed control-flow graph (CFG) of the application
binary [43]. The analysis of WCET estimates in the presence of CIs that are
reconfigured using software emulation (as explained in Sect. 1.1.2, see Fig. 3) is
achieved as follows. Reconfiguration of accelerators that speed up an upcoming
kernel is initiated using CoRQ’s reconfiguration commands (see Sect. 4.1) in a basic
block immediately before entering the respective kernel. Analysis of this basic
block yields the guaranteed reconfiguration delay per CI. Stalling the execution
for the whole reconfiguration delay of all CIs and only then entering the kernel
was mentioned in the previous section as a simple technique to perform analyzable
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Fig. 11 i-Core kernel model for static timing analysis in the presence of runtime reconfiguration
of custom instructions

reconfiguration. In this case, however, the reconfiguration delay (of several mil-
liseconds) is often not amortized, especially in applications that switch between
multiple kernels. Instead of stalling, this section presents a worst-case analysis
that enables the RISC pipeline of the i-Core to be used to execute a software
emulation of the CIs during the reconfiguration delay in hard real-time systems.
This is achieved by (1) the reconfiguration controller presented in Sect. 4.1 and
(2) by worst-case analysis of the CI Invocation construct shown in Fig. 11. The CI
Invocation construct introduces a conditional branch that executes either the CI on
the fabric or functionally equivalent cISA code on the processor pipeline.

CI Invocations realize software emulation in an analyzable way: First, execution
of a kernel starts in software only (without accelerators) and at some point in
time (during some iteration) accelerators finish their configuration and succeeding
kernel iterations are sped up. An example of this process is shown in the timeline
on Fig. 3 (bottom) for a kernel with n iterations utilizing two CIs. When entering
the kernel, all CI Invocations of the first iterations are executed using cISA code.
Reconfiguring the accelerators required by CI1 finishes during iteration i1 − 1.
Beginning with iteration i1, CI Invocations of CI1 use accelerators on the fabric
and benefit from a much lower runtime per iteration. In parallel, reconfiguration
proceeds. During iteration i2 − 1 all accelerators for CI2 become available.
Beginning with iteration i2, the remaining iterations of the kernel are sped up even
more as additionally to CI1, all CI Invocations of CI2 are now executed in hardware.

4.2.1 Timing Anomaly of Runtime-Reconfigurable Systems

The challenge in obtaining a precise WCET estimate is to statically determine the
worst-case iteration i at which a CI can be guaranteed to be readily configured in
hardware. A safe, but imprecise execution time bound can be obtained by assuming
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that no CI ever finishes configuration and all CI Invocations always branch to the
unaccelerated cISA code. While this would result in speedups at runtime, the WCET
bound would be as high as not using accelerators at all. To obtain a safe and precise
bound yielding speedups, the worst-case iteration ik , in which reconfiguration
finishes and the CI Invocation utilizes the i-Core fabric to execute the CI, needs
to be determined statically for each CIk . We do so by determining execution time
bounds for all basic blocks in a kernel with existing timing analysis tools extended
by analysis for CI latencies (we use the commercial AbsInt aiT [2] and the open-
source OTAWA [5] timing analyzers in our evaluations). Once the time bounds for
all basic blocks are known, the time bounds for one iteration of the whole kernel
can be determined. These time bounds depend on whether specific CI Invocations
branch to the CI or equivalent software. Starting with a time bound of WCET1
for an iteration with cISA code only and a reconfiguration delay of r1 for CI1,
Fig. 3 (bottom) seems to suggest that i1 can be determined as: �r1/WCET1� + 1,
i.e., CI1 is unavailable for �r1/WCET1� iterations and in the following iteration we
can assume it to be available. It turns out, however, that executing every iteration of
the kernel in worst-case time during reconfiguration does not necessarily result in
the worst-case value for i1 as the following example demonstrates.

The timeline in Fig. 12 shows an example for a kernel executing 6 iterations
and configuring a single CI. Figure 12a shows a possible runtime behavior of the

Reconfiguration Finish

2 31 4 ( ) 5 6 Exe. Time

(a)

Reconfiguration Finish

1 3 4 5 62

Actual worst-case !
Exe. Time

(b)

Reconfiguration Finish

2 31 4 ( ) 5 6 Exe. Time

(c)

Exe. Time

Reconfiguration Finish

1 4 ( ) 5 62 3

(d)

Fig. 12 Different cases for execution times of kernel iterations before the CI becomes available.
(a) Faster than worst case, assuming no iterations overlap reconfiguration finish. (b) Worst case,
assuming no iterations overlap reconfiguration finish. (c) Faster than WCET before reconfiguration
finish. Iteration overlapping reconfiguration finish leads to extended execution time (timing
anomaly). (d) Applied case for safe WCET bounds
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kernel, where iterations 1–3 are each executed faster than worst-case time (CI not
yet available) and iterations 4–6 execute in worst-case time (CI available, because
reconfiguration finished). To obtain the worst-case execution for the whole kernel,
it seems intuitive to assume all iterations before the reconfiguration finishes to
execute in WCET1 (software emulation of CI1) and in WCET2 (CI1 available in
hardware) after the reconfiguration finishes (Fig. 12b). However, when executing
slightly faster iterations than WCET1 before the reconfiguration finishes, we end
up with the execution sequence of Fig. 12c: Iteration 3 cannot benefit from CI1 and
delays following iterations, because it “overlaps” the reconfiguration finish. This
timing anomaly of runtime reconfiguration was first discovered and safely bounded
in [17], it was shown that i1 (the worst-case iteration in which CI1 is guaranteed to
be available) is determined as:

i1 = �r1/WCET1� + 2

That is, one additional iteration needs to be accounted for in which the reconfigu-
ration might not yet have finished (Fig. 12d). Once ik is determined for each CIk ,
constraints are generated for the worst-case path analysis approach implicit path
enumeration technique (IPET) [32]. [17] provides a detailed explanation of how
constraints are generated for the IPET for multiple CIs with support for nested loops,
conditional execution, and multi-context analysis (supporting, e.g., caches).

4.2.2 Results

We evaluated the timing analysis approach on i-Core by generating constraints for
AbsInt aiT. aiT is closed-source software, thus, CI support could not be directly
integrated. Instead, every CI opcode in the binary is substituted by an ADD opcode
and a constraint in aiT’s AIS2 constraint language to set the delay for the new ADD
instruction to the delay of the specific CI. aiT outputs an XML report, which is
parsed to determine every ik for every kernel and generate the constraints described
in the previous section. Our generated constraints are then used to calculate the final
WCET bound using aiT.

We evaluated our analysis with an H.264 encoder application which uses 9 CIs
covering the most compute-intensive kernels. In the following, we show results for
the loop filter kernel for the stalling model and software emulation. Observed worst-
case execution time results are obtained using our SystemC-based cycle-accurate
simulator of i-Core.

For the analysis we use results obtained from performing timing analysis on
a binary that executes the loop filter kernel of H.264 on 99 macroblocks (QCIF
resolution). The loop filter is the kernel of lowest complexity in the H.264 encoder,
it contains a single CI (in-loop deblocking edge filter on 4 pixels) and allows detailed
analysis of worst-case CI availability. The guaranteed time bounds are compared to
results obtained by executing the same binary in our simulator. ffabric stays constant
at 100 MHz and we choose multiples of it for fCPU which resemble realistic setups



i-Core: A Runtime-Reconfigurable Processor Platform for Cyber-Physical Systems 25

SW Emula�on Observed SW Emula�on Overes�ma�on Stalling Observed Stalling Overes�ma�on

1 2 4 8 16
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

Th
ou

sa
nd

 C
yc

le
s

0
200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600

Th
ou

sa
nd

 C
yc

le
s

fCPU
ffabric

1 2 4 8 16fCPU
ffabric

Reconfigura�on Bandwidth 200 MB/s Reconfigura�on Bandwidth 100 MB/s

Fig. 13 Observed runtimes and guaranteed WCET bounds (in cycles) for loop filter. Fabric
frequency ffabric = 100MHz. Red circle marks the point from which software emulation is
beneficial over stalling. Software only WCET bound is >4.5 million cycles

(rounded to the next power of two). For example, the LEON3 processor, which
the i-Core implementation is based on, is advertised as running at 400 MHz when
implemented as an ASIC, its successor the LEON4 is advertised running at 1500
MHz. The commercially available Xilinx Zynq-7000 SoC couples an ARM Cortex
A9 at 866 MHz with a Xilinx 7-Series reconfigurable fabric.

All results shown in Fig. 13 are measured in cycles of the CPU pipeline. The
left and right graph show the results for a reconfiguration bandwidth of 200MB/s
and 100MB/s, respectively. When increasing the minimum evaluated CPU pipeline
frequency of 100 MHz by a factor of c for a fixed ffabric (x-axis), the runtime benefit
of hardware CIs compared to software emulation decreases. Thus, the execution
time in CPU cycles increases. In the observed runtime, software emulation is
always beneficial over stalling. However, the WCET overestimation (execution
time difference of WCET over observed runtime) is higher for software emulation
than for stalling. As a result, stalling is beneficial over software emulation for
fCPU/ffabric ∈ {1, 2} at a reconfiguration bandwidth of 200MB/s, as well as
fCPU/ffabric = 1 at a reconfiguration bandwidth of 100MB/s for obtaining a low
WCET bound. In our experiments we observed that software emulation benefits
from slow reconfiguration bandwidths or high CPU frequencies.

This section detailed how WCET estimates are obtained for tasks utilizing
runtime-reconfigurable processors like i-Core for a given selection of CIs. In
the following section we present how WCET-optimizing CIs are selected for a
constrained reconfigurable area.

4.3 Worst-Case Execution Time Optimization

This section presents an approach of selecting WCET-optimizing sets of CIs
for computational kernels that seamlessly integrates into state-of-the-art timing
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analysis. The approach does not target the reduction of overestimation of a task’s
WCET bound or resolving the problem of timing anomalies, but to statically
select subsets from a bigger set of possible CI implementations for a constrained
reconfigurable area, with the aim of optimizing the task’s WCET bound. The
main problem in selecting WCET-optimizing CIs is the instability of the worst-
case path, i.e., when reducing the latency of the worst-case path by inserting a
CI, a completely different path can become the new worst-case path. Therefore,
WCET bound estimation is an integral part of WCET-optimizing CI selection. The
problem bears resemblance to other static optimizations targeting the worst-case
path like instruction cache locking or scratchpad memory allocation of program
code, but requires new models [15]. CI selection, also referred to as instruction
set selection, is the second of the two main steps in the so-called instruction
set extension problem [22]. The first step is the CI generation that is performed
when compiling the application source code. In this step, kernels are identified in
the application and partitioned into segments of code to execute in software and
segments to execute using hardware accelerators. For the segments to execute in
hardware, several alternatives that differ in resource demands as well as latencies
are generated and then synthesized into configurations for the reconfigurable fabric
(see Fig. 2). Which CIs are implemented in hardware instead of the original software
code and how many reconfigurable containers to allocate for accelerators of a
respective CI are determined by the CI selection according to an optimization goal,
e.g., average-case performance. Several approaches to CI generation exist that can
provide CIs and implementation alternatives as input to CI selection [22]. Different
from existing CI selection approaches targeting average-case performance, WCET-
optimizing selection requires the application binary, as it is the only way to be able
to obtain precise WCET bound estimates (see Sect. 4.2). To obtain a finished binary
with generated CIs while keeping the flexibility to execute the original software,
we introduced the CI Invocation construct in Sect. 4.2 (see Fig. 11). CI Invocations
are further extended to CI super blocks that allow multiple choices of hardware
implementations for a CI (instead of just the binary choice between hardware and
software).

4.3.1 CI Super Blocks and Optimization Goal

CI super blocks are a concept used to enable static WCET optimization. As shown
in Fig. 14, CI super blocks begin with a conditional before every CI which jumps
to the functionally equivalent software code when the CI is not implemented in
hardware. This way, their implementation in an application behaves just like the
CI Invocation construct (see Sect. 4.2). During WCET optimization, however, CI
super blocks capture all the information about implementation alternatives for the
respective CI that should be invoked. For each implementation j of CI k that is
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Fig. 14 CI super block as part of a CFG

invoked by a CI super block i, the following information are stored:

• reconfiguration delay rk,j

• worst-case execution time ei,j

• reconfigurable container demands ak,j (area).

By convention, j = 0 denotes the software implementation of a CI k, thus rk,0 = 0
and ak,0 = 0. Effectively, we obtain a CFG that is parameterized by the chosen
implementation for each CI using CI super blocks. Thus, the result of the selection
is a matrix y ∈ {0, 1}|CI|×M that maps each CI k ∈ |CI| to an implementation
j ∈ M , where |CI| is the total number of CIs and M the maximum number
of implementations per CI, respectively. The worst-case path analysis IPET [32]
formulates an ILP objective function over basic blocks i with constant execution
times ci that finds the execution counts xi of the respective basic block that lead to
the maximum execution time (maxx

∑
i cixi). On top of that, the WCET-optimizing

selection needs to find the selection y that minimizes the maximum execution time:
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where ci(i) maps a CI super block i to the CI it invokes. Similar to flow networks,
IPET formulates ILP constraints on the variables (xi) that model the control flow and
capture relative execution counts of basic blocks. One of the additional constraints
for WCET-optimizing CI selection is that the total number of reconfigurable
containers A must not be exceeded by the selection y (

∑
k

∑
j ak,j yk,j ≤ A). Even

if the reconfigurable area was infinitely large, it is not necessarily beneficial to select
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the highest-performance implementation for each CI: it might also incur the most
reconfiguration delay.

The objective function (Eq. (1)) and its constraints formulate an NP-hard com-
binatorial optimization problem (already IPET is NP-hard). In the following, we
discuss approaches that solve this problem optimally and heuristically.

4.3.2 Solving WCET-Optimizing CI Selection

An optimal solution to the WCET-optimizing CI selection can be obtained using a
branch and bound algorithm that generates all possible selections of CI implemen-
tations and prunes branches that do not fit onto the reconfigurable area [15]. The
problem with this approach is that the WCET of each possible selection needs to be
evaluated. The number of possible selections grows exponentially in the number of
reconfigurable containers A of the reconfigurable fabric and the number of CIs used
in the task under optimization. Thus, we designed a greedy algorithm that proceeds
as follows:

1. Start with an empty reconfigurable area (choose the software implementation
j = 0 for all CIs)

2. Obtain a WCET estimate for the current selection y

3. For each CI k, calculate the profit on current worst-case path of “upgrading” from
selected implementation j to the next implementation j+1 in the ascending order
of reconfigurable container demand ak,j as:

profit(k, j + 1, x) :=
∑

i∈SB
ci(i)=k

(ei,j − ei,j+1)xi

︸ ︷︷ ︸
latency reduction on current worst − case path x

− (rk,j+1 − rk,j )

︸ ︷︷ ︸
additional reconfiguration cost

(2)

4. If exists, select upgrade j + 1 (instead of j ) for CI k with highest positive profit
(increasing allocated reconfigurable containers by at least one, possibly changing
the worst-case path) and go to 2, terminate otherwise

Instead of requiring a number of WCET estimates that grows exponentially in the
number of accelerators that fit onto the reconfigurable fabric A and the number of
CIs used in the task under optimization, this greedy algorithm performs at most A

WCET estimates: After each estimate (2) at least one accelerator is added to the
selection (4) until all reconfigurable containers are occupied or no further candidate
for upgrading exists. In the following we will show how this greedy algorithm
compares to the optimal solution.
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4.3.3 Results

While our timing analysis of tasks on reconfigurable processors as detailed in
Sect. 4.2 could be evaluated using the commercial timing analyzer AbsInt aiT [2],
we extended WCET analysis as an integral part of WCET optimization in this
section. Therefore, the optimal branch and bound as well as heuristic selection
algorithms were implemented “processors” within the open-source WCET esti-
mation framework OTAWA [5]. We extended the existing analysis support for the
LEON3 CPU in OTAWA to support CI opcodes, CI super blocks with configuration-
dependent latency, and reconfiguration delay. In the following, results are shown
for a reconfiguration bandwidth of 400 MB/s (maximum bandwidth, see Sect. 4.1),
running the CPU at 400 MHz (which the LEON3 processor is advertised as running
at when implemented as an ASIC) and the reconfigurable fabric at 100 MHz (which
corresponds to the current i-Core design on Xilinx Virtex-7).

Figure 15 shows the runtime of our optimization approaches when optimizing
the most complex kernel of the H.264 encoder “encode macroblock.” The kernel
uses six different CIs for which the algorithms need to select WCET-optimizing
implementations that fit onto the reconfigurable area. Results are shown for different
area sizes (number of accelerators that fit onto the reconfigurable fabric). As can be
seen in the graph, even when no area is available for selecting CI implementations
(and no candidates but a complete software evaluation are evaluated), the runtime is
almost 5 s for both approaches. The reason is that reconstructing the CFG from the
binary and analyzing all basic blocks already takes around 4.6 s. The runtime of the
optimal algorithm first increases exponentially when the amount of area is increased,
but then flattens out because branch and bound finds more opportunities to prune the
search space. The runtime of the greedy algorithm seems to stay constant. It rises
slightly, however, until an area of 10 accelerators. The amount of WCET estimates
that need to be performed to find the final result grows linearly in the available area.
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optimal. The worst-case path changes during optimization

On average, an additional estimate adds only 40ms to the algorithm’s runtime. Once
the area reaches 10, there are still CIs that could be upgraded but the profit (Eq. (2))
becomes negative, because the additional reconfiguration delay increase is bigger
than the latency reduction of the current worst-case path. Therefore, the runtime
does not increase any further.

Figure 16 shows that the speedup results of the CI selections obtained by the
greedy algorithm compared to execution without any accelerators are on par with
the optimal solution for most cases. However, for an area of 5 and 6 accelerators
the speedup obtained by greedy is up to 2.5% worse than the speedup of the optimal
solution. Figure 17 shows a simplified example of the case in which greedy performs
suboptimal. In this example, the current worst-case path (left path through the CFG)
contains two CI super blocks that could be upgraded. CI2 provides a bigger profit
(see Eq. (2)) than CI1, therefore, greedy will select CI2. However, no matter how
big the profit of CI2 actually is on the current worst-case path the WCET will
only be reduced by a single cycle, because the right path through the CFG will
immediately become the new worst-case path and reduce the WCET from 1001
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cycles to 1000 cycles. The optimal solution would have been to select CI1. Even
though it provides less profit for the current worst-case path, it would also reduce
the competing worst-case path and thus provide a bigger benefit for the total WCET.
The greedy algorithm cannot make this choice, because it is impossible to foresee
the next worst-case path after optimizing the execution time of the current worst-
case path.

This section presented WCET optimization approaches that selected CI imple-
mentations to optimize worst-case paths and it concludes our descriptions of
execution on i-Core under real-time guarantees. So far, we described i-Core as a
single core of a system on chip. In the following section, we present how the runtime
reconfigurability of i-Core can be leveraged in a multi-core system.

5 Runtime-Reconfiguration in Multi-Core Systems

The resulting speedup from executing a CI using hardware accelerators, instead of
executing the equivalent cISA implementation, depends on the inherent parallelism
of the accelerated computations and the amount of reconfigurable accelerators used
for their implementation. For achieving its highest performance and exploiting
its full inherent parallelism, e.g., JPEG encoding requires approximately 5× as
much reconfigurable area as SHA cryptographic hashing [31]. When designing a
reconfigurable system such that the JPEG and SHA CIs require 100% and 20%
of the fabric area, respectively, and either one or the other CI is used for the
same amount of time, the system will only utilize 60% of its fabric area on
average. In other words, 40% of the reconfigurable area could be utilized for other
computations, e.g., executing multiple CIs concurrently. In the previous sections,
the presented SoC contained i-Core as the only processor. To create opportunities
to execute multiple CIs in parallel, general-purpose processors (GPPs) are added
to the SoC. The non-reconfigurable GPPs are allowed to offload compute-intensive
calculations onto the reconfigurable area. In the following, an overview is provided
on how this can be achieved.

5.1 COREFAB: Concurrent Reconfigurable Fabric Utilization

To exploit the opportunity of increased accelerator utilization and enable acceler-
ation for GPPs that reside in the same SoC as i-Core, we introduced COREFAB
in [23]. COREFAB describes hardware components and a protocol that enable
the GPPs in the SoC to utilize the reconfigurable fabric of the i-Core via the
fabric access manager (FAM) as shown in Fig. 18. Most remarkably, COREFAB
enables the concurrent execution of two (different) CIs issued by (1) the i-Core
and (2) any of the GPPs in the SoC. In the following, CIs issued by the i-Core are
named “primary CIs” and those from the GPPs are named “remote CIs.” From the
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processors to execute CIs on the i-Core’s reconfigurable fabric

application developer’s view, primary CIs and remote CIs appear identical, but the
latency to issue a remote CI is higher and primary CIs are preferred over remote CIs
during concurrent execution. Remote CIs use a dedicated “remote-CI microprogram
memory” (to store microprograms used by GPPs) that can be accessed in parallel
to the “CI microprogram memory” that stores the primary CIs (see Fig. 18). If a
primary CI and a remote CI execute in parallel, then the “CI merger” analyzes
whether or not the microoperations of the two CIs conflict in their resource usage
(e.g., accelerators and communication lines between accelerators) in every control
step. In case of no conflict, the control steps of both CIs are merged on-the-fly to
allow parallel execution. Otherwise, the remote CI is stalled until the next control
step, while the primary CI proceeds without delay.

To reduce the likelihood that primary and remote CI conflict, we developed
an online binding that generates the microprograms of the primary/remote CIs
in such a way that they use distinct computation and communication resources
if possible [25]. In our evaluation, we compared COREFAB with the state-of-
the-art reconfigurable multi-core systems. They only allow for exclusive access
to the reconfigurable fabric, either by time multiplexing (CIs cannot execute in
parallel) [14] or by spatially partitioning the fabric area into private regions (CIs
are inflexible in that they can never use the entire reconfigurable fabric) [42].
COREFAB combines the flexibility of a CI being able to use the entire fabric and
the parallel execution of primary and remote CIs. As shown in Fig. 19, COREFAB
improves the performance of a SoC consisting of three GPPs and an i-Core by 1.3×
on average compared to time multiplexing (like [14]). This improvement is achieved
without reducing the performance of the i-Core itself. Spatial partitioning (like [42])
leads to a 2% better performance of the GPPs compared to COREFAB; however,
this comes at the cost of more than 3× lower performance of the i-Core itself. In
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Fig. 19 Runtime results comparing state-of-the-art approaches to COREFAB. Baseline: a recon-
figurable processor and three GPPs that cannot execute CIs

summary, COREFAB utilizes the reconfigurable resources more effectively than
state-of-the-art approaches to optimize the performance of reconfigurable multi-core
SoCs.

6 Conclusion

This chapter presented an overview of how non-functional requirements of cyber-
physical systems are addressed by the runtime-reconfigurable processor platform
i-Core. The benefits of a very tight integration of reconfigurable fabric and CPU
(i-Core attaches an FPGA-based reconfigurable fabric directly to the CPU pipeline,
see Sect. 1) were shown for several non-functional requirements. Not only were
increases in performance shown by reconfiguration-aware task scheduling (Sect. 2)
and providing access to i-Core’s accelerators to general-purpose processors in the
same SoC (Sect. 5), but also improvements in reliability (Sect. 3) and worst-case
execution time guarantees (Sect. 4). In summary, our research in the context of i-
Core leverages a processor with a runtime-reconfigurable instruction set to provide a
holistic approach that targets the requirements of cyber-physical systems. Our future
work focuses on security aspects of cyber-physical systems, where early results have
shown that runtime reconfiguration is an effective countermeasure to side-channel
attacks.
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Color Primary Correction of Image
and Video Between Different Source
and Destination Color Spaces

Santanu Dutta

Abstract This article presents an introductory review of color correction—a color
remapping of image and video between different source and destination color
spaces. The review specifically focuses on two main aspects of color remapping—
primary color space conversion and gamut mapping—and outlines the requirements,
algorithms, methods, and possible implementation options.

1 Introduction

Trichromatic color vision [1] is the ability of humans to see different colors based
on the interaction between three types of color-sensing cone cells in the human eye.
At a basic level, the trichromatic theory states that the cone cells are sensitive to red,
green, and blue light, and our brain mixes the colors together.1 This observation has
led to the RGB color model, where R (Red), G (Green), and B (Blue) light are added
together in different amounts to reproduce different colors. The RGB color model
is very useful for the electronic representation and display of images in both input
devices (e.g., color TV, video cameras, and image scanners) and output devices
(e.g., TV sets of various technologies, computer and mobile phone displays, and
video projectors). There are a number of variants of the basic RGB color model as
well, e.g., the well-known sRGB [3] color model that HP and Microsoft created for
monitors, printers, and the Internet.

1Color perception is three-dimensional. In an RGB camera, or on a computer monitor, those
attributes are the intensity of Red (R), Green (G), and Blue (B); in the Munsell color system,
the attributes are Lightness, Saturation, and Hue; in the CIELAB system, the three coordinates are
L*, a*, and b*. Thus, in any color space, there are three [2]. It is important to note, however, that
cones actually do not detect any specific color, but respond to Long (L), Medium (M), and Short
(S) wavelengths; LMS can be thought of as RGB.
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Fig. 1 Discoloration of food image on an uncorrected display. (a) Appetizing look. (b) Non-
appetizing look

Primary color correction arises out of the need to convert pixels in the source
RGB color space to the destination RGB color space, when the source video or image
and the destination display have different color primaries. To understand why this is
important, let us consider the traditional cathode ray tube (CRT) monitors first and
look at the situation where both the source and destination conform to the sRGB
color space. Even though sRGB is an output-referred2 standard, geared towards
CRTs, it is a common experience that when the same RGB data is displayed on
two different monitors side by side, it is possible to get a noticeably different color
balance on each. Each monitor produces a slightly different shade and intensity
of red, green, and blue light. Not only do the two monitors look different, they
often do not represent the source content accurately. It is, therefore, not much
of a surprise that for flat panel displays (FPDs), which have very different color
characteristics, the problem is more acute. Now throw in different types of FPDs
(e.g., LCD—liquid crystal display, PDP—plasma display panel, DLP—digital light
processing, OLED—organic light-emitting diode, etc.) and projectors, and different
manufacturers3 for each, and the situation quickly gets out of hand. The result can
be quite disturbing: non-appetizing color of food on LCD screens at drive-through
lanes of fast-food restaurants (an extreme example of which is shown in Fig. 1
to illustrate the point), lost differentiation of tissue type(s) on diagnostic medical
displays, and miscolored movies on the standard monitor(s) in a typical household!

At the heart of the previously mentioned problem is the fact that RGB is a device-
dependent color model, i.e., different devices detect or reproduce a given RGB value
differently, since the color elements (such as phosphors) and their response to the
individual R, G, and B levels vary not only from one manufacturer to another, but
even in the same device over time [4]. When the source and the display (or, different
displays) have different RGB color ranges that they span or can faithfully reproduce,

2sRGB is a normalized reference standard designed to match the color performance of an output
device, e.g., a CRT monitor under typical viewing conditions.
3Note that some manufacturers achieve cost downs and/or a higher light output for mobile displays
by producing non-standard displays (i.e., displays with non-standard specifications).
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we say that the devices have different color gamuts; an RGB value that looks correct
on the source may not look correct as is on the display; in fact, even if the same RGB
values are sent to different displays with different color gamuts, the resulting colors
will be different, unless the devices are identical and process the values identically.
Before we can talk about solutions, however, it is important to understand what
color gamut of a device means; since it has its roots in the CIE [5] chromaticity
diagram that is where we start from.

2 Chromaticity Diagram

The CIE XYZ color space [6] encompasses all colors that are visible to a person
with average eyesight. In the XYZ color space, the tristimulus4 values are called X,
Y, and Z, and these are roughly equivalent to the red, green, and blue, respectively,
of an RGB model. The CIE XYZ color space was deliberately designed so that the
Y parameter is a measure of the luminance of a color. Since the human eye has
three types of cones that respond to different ranges of wavelengths, a full plot of all
visible colors calls for a three-dimensional graph. This is inconvenient to represent
in two dimensions. So, for convenience, the CIE transformed the three-dimensional
XYZ color space into two artificial dimensions (x, y) of color (collectively called
chromaticity) and one of intensity (Y), and then took a two-dimensional slice
through this space at an arbitrary level of intensity. The resultant horseshoe curve,
like the one shown in Fig. 2, is called the chromaticity diagram; it is essentially a

Fig. 2 Chromaticity diagram

4The term tristimulus comes from the fact that color perception results from the retina of the eye
responding to three types of stimuli.
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two-dimensional (2D) projection of the three-dimensional (3D) XYZ color space
onto the x–y chromaticity plane. In this diagram, the chromaticity of a color is
specified by the two derived parameters x and y, which are functions of all three
tristimulus values X, Y, and Z. All physical colors reside inside the horseshoe, i.e.,
the horseshoe is the range of all visible colors on the CIE plot. As Poynton [7] points
out, the sensation of purple cannot be produced by a single wavelength—to produce
purple requires a mixture of shortwave and longwave light; the line of purples or
the violet line on a chromaticity diagram joins extreme blue to extreme red. All
physical colors are thus contained in the area in (x, y) bounded by the violet line and
the spectral locus (meaning that the horseshoe separates spectral colors5 that lie on
the horseshoe from non-spectral colors that lie inside the horseshoe and non-existent
or hyper-saturated colors that reside outside). Note in particular the irregular shape
drawn inside horseshoe—it is called the “pointer set” of surface colors, the largest
set of surface colors that has been found in nature and art.

XYZ is a device-independent color model developed by the CIE for categorizing
the world of colors. Theoretically, based on this system, every color we see can be
described in terms of the (x, y) coordinates. The XYZ model (space) also offers the
following interesting properties [8]:

• Two colors with the same XYZ values look the same,
• Two colors with different XYZ values look different,
• Y value represents the luminance information, and
• XYZ color of any object can be objectively measured by a colorimeter [9].

The CIE XYZ is the fundamental basis of all color management such as cali-
bration, color space conversions, and color matching. Figure 3 shows the location
of the X, Y, and Z primaries on the CIE chromaticity diagram. These X, Y, and Z
primaries can be thought of as “special RGB” values that extend much beyond the
visible range, and any real color can be defined by a linear combination of X, Y, and
Z values.

3 Gamut of a Device

The gamut of a device is the subset (or, range) of visible colors that the device can
display. Different devices have different gamuts. It is very possible that one device
is able to display certain highly saturated colors that another device cannot. Since
an additive RGB system can be specified by the chromaticities of its primaries and

5A spectral color is the color sensation created by a monochromatic (single wavelength) light in
the visible spectrum.
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Fig. 3 XYZ and visible color spaces on a CIE diagram

its white point,6 the gamut of a particular RGB device can be determined from its
R, G, and B chromaticities and the white point. Gamuts are commonly represented
as areas in the (x, y) chromaticity diagram. These areas typically have triangular
shapes because most color reproduction is done with three primaries. The gamut
of the colors that can be mixed from a given set of RGB primaries is shown in
the chromaticity diagram by a triangle whose vertices are the chromaticities of the
primaries, e.g., the white triangle inside the horseshoe in Fig. 3.

It is to be noted that the accessible color gamut also depends on the brightness
(because all three display primaries must be turned on in order to achieve higher
luminance); hence, a full and true-color gamut must be represented in a 3D space,
with luminance or brightness on the third (vertical) axis, as illustrated in Fig. 4. This
cone shape of the 3D gamut indicates that bright reflecting surfaces are necessarily
not very colorful because they must reflect a large part of the spectrum!

6White point [10] is the tristimulus values or chromaticity coordinates that define a chosen color
of “white,” often D65 [11].
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Fig. 4 3D color gamut [12]

3.1 Color Gamut Examples

Two common color gamuts for representative image sources—standard TV and
digital cinema—are shown in Fig. 5. As discussed before, the horseshoe shape
represents every color that the human eye can possibly see, i.e., it is the complete
color gamut of the human eye reduced to the two dimensions of saturation and
hue. The smaller triangle inside the horseshoe is the device color gamut of today’s
standard ITU-Rec.709 television; it does not give full coverage of the pointer set,
but most TVs can reproduce this color gamut easily enough because that is how
the gamut was originally defined (from a first European color CRT display). The
Digital Cinema P3 standard has a color gamut represented by the bigger triangle; it
is considerably larger than that of the standard television but still does not cover the
entire pointer set.

Figure 6 shows four example color gamuts for common displays. The ITU-
Rec.709 gamut was once the standard for every color TV in the world; originally
defined by the prevalent phosphors in CRT displays, it is also the standard for
computer monitors under the name of sRGB. Digital cinema has a wider color gamut
than Rec.709, and it is interesting to note that this standard is based on the DLP
projector engine from Texas Instruments illuminated with a Xenon arc lamp through
dichroic filters.7 As can be seen, a certain example LED-backlit LCD panel exhibits
an even wider gamut—an even larger triangle—with very good coverage of red,
green, and cyan. However, the hypothetical three-primary laser display represents
the largest triangle and thus does even better—it is quite extreme in terms of how
large a color gamut it spans.

7These filters selectively pass light of a narrow range of colors and reflect all other colors.
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Fig. 5 Example color
gamuts of image sources

Fig. 6 Example color gamut
of displays

Given that different RGB source images and RGB destination displays have
different color gamuts, different values must be sent to the different display devices
to faithfully reproduce the source image on the display device. What is needed
is a way to take the values that represent the desired color on the source, and
from them produce the corresponding values that reproduce the “same” color on



44 S. Dutta

the destination. This correction calls for a color transformation that is commonly
referred to as primary color space conversion.

4 Device Independence and Color Space Conversion

The most straightforward way to go from a source color space to a different display
color space is to directly employ a dedicated color transformation. However, due to
the large number of potential sources and destinations, this method does not scale
well. For example, if there are n source and m destination devices, we need mxn
possible color transformation methods; but if we were to add a new destination
device to the list, we would have to add n new transforms, one for each source.
Conversely, a new source would dictate that we make m new transforms, one for
each destination [13]. A common way to simplify the situation, as shown in Fig. 7, is
to introduce an intermediate color space such that you have one transform per source
to convert the source to an intermediate standard, and one transform per destination
to convert the intermediate standard to each destination. Thus, it now becomes an
additive problem, and the introduction of a new device only requires the introduction
of one new transform either to or from the standard. When both the source video and

Fig. 7 Color transformation between source and destination [13]
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the destination display constitute RGB spaces,8 as is the case for standard video
sources and displays, the aim is to find a fixed, standard, intermediate, device-
independent space through which the source and the destination RGB values can
be related. The CIE 1931 XYZ color space discussed earlier offers this desired
independence; since its proposal in 1931, the primaries of color spaces are usually
specified in (x, y) coordinates.

4.1 Color Transformation

Given the device independence of CIE XYZ, the current color transformation
method used widely is to have an RGBsource ➔ XYZ ➔ RGBdestination transform
mechanism that is customized according to the color space definitions as shown
in Fig. 8. The International Color Consortium (ICC) [14] has standardized the
color space definitions and called them profiles. The transforms are implemented
in what is commonly called a color matching module or color matching method
(CMM). In an ICC-based color management system, the standard reference space,
into or out of which the color data is transformed, is called a profile connec-
tion space (PCS). CIE XYZ is one of the most widely used PCSs in the ICC
system.

5 CIE XYZ Chromaticity Coordinates

The CIE XYZ is a 3D linear color space,9 where one of the channels, Y, equals
luminance, and the X and the Z values add chromaticity information. Chromaticity
coordinates (denoted usually with a lowercase letter) are tristimulus values (denoted
usually with an uppercase letter) that are normalized by the total energy [15]:

x = X
X+Y+Z

y = Y
X+Y+Z

z = Z
X+Y+Z

= 1 − x − y

⎫
⎪⎪⎬

⎪⎪⎭

(1)

8Note that RGB is a color model and the range of colors that can be represented by the color model
is its corresponding color space. Slightly different primaries (i.e., primaries with slightly different
chromaticities) within the same RGB color model can give rise to different RGB color spaces. In
this article, however, the terms model and space are used somewhat interchangeably.
9Linearity allows saturation to be defined in terms of additive color mixing in (X,Y,Z) or any
(R,G,B). Note that both the photopic luminance sensitivity (i.e., how light gray is) and the luminous
sensitivity of the human eye (i.e., how light a color is) are linear.
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Fig. 8 Color matching flow [13]

The previous representation of the CIE XYZ color space is called xyY. Due to
the normalization, we get x + y + z = 1. Since z = 1 − x − y, only two values are
needed to describe the chromaticity. The tristimulus values can, however, be easily
recovered from the chromaticity values when the absolute luminance Y is known:

X =
(
Y
/

y

)
x

Z =
(
Y
/

y

)
z =

(
Y
/

y

)
(1 − x − y)

⎫
⎪⎬

⎪⎭
(2)

Any real color, hence any of the primaries, can be described by the XYZ
tristimulus coordinates (XR, YR, ZR) for R, (XG, YG, ZG) for G, and (XB, YB, ZB) for
B; so the tristimulus coordinates XYZ of any combination color of RGB can be
calculated using the linear transformation shown next [15]:

⎡

⎣
X

Y

Z

⎤

⎦ =
⎡

⎣
XR XG XB

YR YG YB

ZR ZG ZB

⎤

⎦ ×
⎡

⎣
R

G

B

⎤

⎦ (3)

The “white point” of a display is the chromaticity (x, y) of the display’s nominal
white, i.e., the color produced when R = G = B = Y. It is customary to specify
the display colors by specifying the (x, y) chromaticities of the individual color
components R, G, and B, plus the (x, y) of the white point of the display. The
white point allows one to infer the relative brightness of the three color components;
the brightness cannot be determined from the chromaticities alone. It is simple to
compute the XYZ coordinates for the display’s white, red, green, and blue points
from their chromaticity values (as explained next). An intuition, articulated here but
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used later, that would help is that 4 × (x, y) = 8 values, but the matrix needs 9, so
we set Y = 1 for white!

6 XYZ to RGB Color Conversion

The conversion between any two trichromatic color spaces is the same as solving
a set of linear matrix equations. Note that for this conversion, the source data
must be linear—i.e., inverse-gamma compensated if necessary—in order to obtain
a natural and a linear intensity representation. For a fully described color space,
the chromaticity coordinates (of the three primary colors R, G, and B) and the
white point coordinates are used for the conversion. From Eq. (1), the chromaticity
coordinates of R, G, and B can be written as

(4)

where AR = XR + YR + ZR, AG = XG + YG + ZG, and AB = XB + YB + ZB.
Combining Eqs. (3) and (4), we get
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⎡

⎣
X

Y

Z

⎤

⎦ =
⎡

⎣
xrAR xgAG xbAB

yrAR ygAG ybAB

zrAR zgAG zbAB

⎤

⎦ ×
⎡

⎣
R

G

B

⎤

⎦

or,

⎡

⎣
X

Y

Z

⎤

⎦ =
⎡

⎣
xr xg xb

yr yg yb

zr zg zb

⎤

⎦ ×
⎡

⎣
AR 0 0
0 AG 0
0 0 AB

⎤

⎦ ×
⎡

⎣
R

G

B

⎤

⎦

or,

⎡

⎣
X

Y

Z

⎤

⎦ [K] × [A] ×
⎡

⎣
R

G

B

⎤

⎦

(5)

This is the desired conversion equation from RGB to XYZ, where K is the
chromaticity matrix obtained from the chromaticity coordinates of the source or
the destination. But, how do we find the unknown diagonal matrix A?

Since Eq. (5) holds for any color value, A can be found by solving Eq. (5) for
the white point, say of the source, for which three of the four matrices in Eq. (5)
are known. Note that the white point is a neutral hue (also referred to as gray or
achromatic). Since the white point is defined to be the hue that is shown when all
three of the channels or electron guns of the monitor are set to be equal, we can set
them to their maximum values without any loss of generality, i.e., R = G = B = 1.10

This implies that the luminance of the source white point (Ysw)11 may be arbitrarily
set to 1 (because R = G = B = Y defines the white point as mentioned earlier). As
with the color primaries, the source white point chromaticity coordinates (xsw, ysw)
are also given as the normalized (x, y) values. For conversion purposes, the absolute
tristimulus values are needed. Since Ysw has to be 1 for the source white point, we
get from Eq. (2):

Xsw =
(
Ysw

/

ysw

)
xsw = xsw

/

ysw

Ysw = 1

Zsw =
(
Ysw

/

ysw

)
zsw = zsw

/

ysw
= (1−xsw−ysw)

ysw

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(6)

Because RGB and XYZ are both physical descriptions of color, a color conversion
only requires linear scaling of the chromaticities around the white point, and then
solving the 3 × 3 linear equations in order to convert the axis system.

The chromaticity matrix K for the source is written as12

10The RGB values here are assumed to be in the range from 0 to 1, which is merely a convenience,
and typical of a 100% filled gamut, but not essential.
11The subscripts s and w refer to source and white, respectively.
12xsr , in the matrix, denotes the x chromaticity (coordinate) of the red (r) primary and corresponds
to the source (s) color space.
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[K] =
⎡

⎣
xsr xsg xsb

ysr ysg ysb

zsr zsg zsb

⎤

⎦ (7)

and the white point matrix W, by virtue of Eq. (6), is written as

[W] =
⎡

⎣
Xsw

Ysw

Zsw

⎤

⎦ =

⎡

⎢
⎢
⎣

xsw
/

ysw
1

zsw
/

ysw

⎤

⎥
⎥
⎦ (8)

If we define the chromaticities in the RGB axis system (under a given color
temperature) such that R = G = B = 1 yields the white point, A must satisfy Eq.
(5), i.e.,

⎡

⎣
X

Y

Z

⎤

⎦= [K] × [A] ×
⎡

⎣
R

G

B

⎤

⎦

or,

⎡

⎣
Xsw

Ysw

Zsw

⎤

⎦=
⎡

⎣
xsr xsg xsb

ysr ysg ysb

zsr zsg zsb

⎤

⎦×
⎡

⎣
AsR 0 0

0 AsG 0
0 0 AsB

⎤

⎦×
⎡

⎣
1
1
1

⎤

⎦ (using Eqs.(7) and (8))

or,

⎡

⎣
Xsw

Ysw

Zsw

⎤

⎦=
⎡

⎣
xsr xsg xsb

ysr ysg ysb

zsr zsg zsb

⎤

⎦×
⎡

⎣
AsR

AsG

AsB

⎤

⎦

or, W=KA,

or, A = K−1 W
(9)

Equation (9) can be solved easily and robustly for A on knowing the chromaticity
coordinates of the three RGB primaries (that yield K) and the white point (W) of
the source. The solution for A is thus a 3 × 1 column matrix:

[A] =
⎡

⎣
AsR

AsG

AsB

⎤

⎦ (10)

With A known, the chromaticity matrix K, scaled by A (often called the
achromatic correction), now provides the conversion matrix M, under the desired
white point. We thus have M = K × A, and using Eqs. (7) and (9) to yield K and
A, we can express M as
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[M] =
⎡

⎣
xsrAsR xsgAsG xsbAsB

ysrAsR ysgAsG ysbAsB

zsrAsR zsgAsG zsbAsB

⎤

⎦ (11)

The RGB to XYZ conversion for the source can therefore be written as

⎡

⎣
X

Y

Z

⎤

⎦ = [M] ×
⎡

⎣
R

G

B

⎤

⎦ (12)

7 Conversion from RGB Source to RGB Destination

Once the color profiles (i.e., the chromaticity of the primaries) are known for the
RGB source video and the RGB destination display, a conversion from the source
to the destination color spaces can be performed via an intermediate XYZ color
space. To see this, let M be the matrix that converts the source RGB pixels to the
intermediate XYZ space, and let N be the matrix that converts the destination RGB
pixels to the intermediate XYZ space. We can then write

⎡

⎣
X

Y

Z

⎤

⎦ = [N] ×
⎡

⎣
Rdestination

Gdestination

Bdestination

⎤

⎦

or, [N]−1 ×
⎡

⎣
X

Y

Z

⎤

⎦

⎡

⎣
Rdestination

Gdestination

Bdestination

⎤

⎦

(13)

But since we already have from Eq. (12)

⎡

⎣
X

Y

Z

⎤

⎦ = [M] ×
⎡

⎣
Rsource

Gsource

Bsource

⎤

⎦

we can substitute in Eq. (13) to obtain

[N]−1 × [M] ×
⎡

⎣
Rsource

Gsource

Bsource

⎤

⎦ =
⎡

⎣
Rdestination

Gdestination

Bdestination

⎤

⎦

or,

⎡

⎣
Rdestination

Gdestination

Bdestination

⎤

⎦ = [C] ×
⎡

⎣
Rsource

Gsource

Bsource

⎤

⎦

(14)
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where [C] = [N]−1 × [M] is the primary color space conversion matrix from a
source RGB color space to a destination RGB color space. Multiplication by this
matrix allows a linear transformation of the color primary coordinates (between
source and destination) so that a source color can be represented perfectly in the
destination space.13

7.1 Rationale for R = G = B = Y = 1

In the previous derivations of how we calculated the matrices M, N, and C, we
made use of the fact that “white point” of a display is the chromaticity (x, y) of the
display’s nominal white, i.e., the color produced when R = G = B = Y = 1. The
rationale is that we had a matrix with nine coefficients, but only eight equations for
its calibration:

• Three for each of the x and y locations of the R, G, B primaries
• One for each of the x and y locations of white or the relative luminance of the R,

G, B primaries (white balance)

The idea is that there is no ninth input for the absolute luminance, so we make
one up, and we are happy if input and output luminances are equal. As the matrix
is linear, one needs to use only one value; it does not matter whether Y is chosen
to be 1 or not. And if it is chosen wrongly for M and N, it still cancels out in the
calculation of C. So, to have the ninth degree of freedom, we just state/define that
R = G = B = 1 ⇒ Y = 1. It is the best choice because it gives a more neutral C.
We could have chosen a different value R = G = B = Y < 1, but then it is gray and
not (peak) white.

In reality, the ninth degree of freedom is the display’s brightness knob. Hence,
one may choose to also use only six coefficients of a 3 × 3 matrix for the R, G, B
color space conversion, and leave the white point adjustment (if any) to the existing
three contrast gains on the R, G, and B signals14 that any monitor or TV already
has (and uses for the adjustment of the white point or the color temperature of the
display as well). However, adjusting the three white point gains is not a perceptually
correct method for simulating a different color of the illumination for the scene
because chromatic adaptation [16] is ignored; so, ideally, one should modify all
nine coefficients of the entire 3 × 3 matrix after all.

13In this sense, the matrix C functions as a primary color-space conversion matrix.
14The gain is actually applied to R′, G′, and B′—the non-linear gamma-corrected (following color
space conversion and gamut mapping) R, G, and B signals that are sent to the display.
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7.2 A Numerical Example of Color Conversion

Let us consider an example RGB conversion from the Rec.709 (standard) source to
the NTSC TV (standard) destination. For the Rec.709 source, we consider the CIE
standard D65 daylight illuminant as the white point (corresponding to the average
mid-day light in Europe in the way it was defined). For the destination, we consider
the CIE standard illuminant C as the white point.

Table 1 shows the (x, y) chromaticity coordinates of the Rec.709 RGB primaries
and the (x, y) coordinate of the D65 white point (W) for the Rec.709 source. Based
on the values provided and the equations shown earlier, one can calculate source-
side value of A and derive the RGBsource ➔ XYZ conversion matrix M to be

[A] =
⎡

⎣
0.6444
1.1919
1.2032

⎤

⎦ [M] =
⎡

⎣
0.4124 0.3576 0.1805
0.2126 0.7152 0.0722
0.0193 0.1192 0.9505

⎤

⎦

Table 2 shows the (x, y) chromaticity coordinates of the NTSC RGB primaries
and the (x, y) coordinate of the illuminant C white point (W).

Based on the values provided and the equations shown earlier, one can calculate
destination-side value of A and derive the RGBdestination ➔ XYZ conversion matrix
N to be

[A] =
⎡

⎣
0.9060
0.8259
1.4327

⎤

⎦ [N] =
⎡

⎣
0.6070 0.1734 0.2006
0.2990 0.5864 0.1146
0.0000 0.0661 1.1175

⎤

⎦

Using M and N, we can now do the composition and calculate the RGB-source-
to-RGB-destination color space conversion matrix C as

Table 1 R709 and D65
white point chromaticities of
source

x y

R 0.6400 0.3300
G 0.3000 0.6000
B 0.1500 0.0600
W 0.3127 0.3290

Table 2 NTSC primaries
and white point for an RGB
display

x y

R 0.6700 0.3300
G 0.2100 0.7100
B 0.1400 0.0800
W 0.3100 0.3160
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[C] = [N]−1 × [M] =
⎡

⎣
0.6688 0.2678 0.0323
0.0185 1.0746 −0.0603
0.0162 0.0431 0.8542

⎤

⎦

8 Implementation of Color Space Conversion

The primary color space conversion of a source image targeted to a destination
display (implemented on any computation or processing device according to the
scheme outlined in the previous section) is depicted in Fig. 9. It has the following
characteristics:

• It is a color space conversion from one RGB space to another, essentially a 3D
coordinate transformation.

• It comprises a linear 3 × 3 matrix operation on linear-light R, G, and B signals,
and needs inverse-gamma and back-to-gamma conversion steps based on the
opto-electrical transfer function (OETF) of the source and the electro-optical
transfer function (EOTF) of the display.

• The matrix is calculated from the two sets (source and destination) of color
primaries and is a concatenation of RGB ➔ XYZ and XYZ ➔ RGB conversions.

• The matrix coefficients are related to the white point coordinates of the source
and the destination color spaces; hence, if the color temperature (or the white
balance) of an image (or, video) is altered by changing one of the reference
white points, the matrix coefficients should be recomputed using the new white
point(s). This changes the color temperature back to the reference white; if one
wants to deliberately change the colors of a scene, then using a different desired
white point (x, y) is the way to go.

• The resultant display colors are mathematically correct, as long as linearity holds,
i.e., the matrix operation is done in linear-light domain, and none of the (R, G, B)
signals need to be clipped (more on this later).

8.1 A Pictorial Example of Color Conversion

Figure 10 tries to provide an intuitive insight into color space conversion from one
gamut to another. The arrows in Fig. 10a show the problem that would be incurred
if color correction is not applied when a source with a larger gamut, e.g., digital
cinema (reference), is to be displayed on a destination with a smaller color gamut,
e.g., a standard TV. If we do not do anything, we will get (and see) the wrong
color gamut of the standard TV display, where red and green tints will be shifted to
yellow-white. Figure 10b shows that by applying color space correction, we shift all
colors back to where they came from, and they are now displayed correctly.
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Fig. 9 Color conversion in linear light

Fig. 10 Color correction via color space conversion [12]. (a) Without correction. (b) With
correction

8.2 Out-of-Range Colors

As we have discussed earlier, color space conversion is calculated in two steps: from
RGB input space to an intermediate CIE XYZ space, and then from XYZ to an RGB
output space. In this process, the derived color conversion matrix C can end up with
both negative and positive coefficients. In this context, two situations need special
attention when converting from a larger to a smaller gamut, i.e., the display has a
smaller color gamut than the source:
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Fig. 11 Color conversion
matrix for digital cinema to
standard TV [12]

1. There are off-diagonal negative coefficients in C: this has the potential to convert
legal input RGB values (RGB > 0) into illegal output RGB values (RGB15 < 0).
These negative coefficients can thus cause negative output values, which is an
out-of-gamut condition that needs to be handled.

2. There are coefficient values greater than 1 along the diagonal of C: this can cause
overflow (RGB > 1) that needs to be handled.

Conversely, when a display has a wider color gamut than a source, meaning that
we are converting from a smaller to a wider gamut, we will have positive coefficients
(between 0 and 1) in C that can convert illegal RGB values (RGB < 0) into legal
values (RGB > 0). All row sums in C in this situation add up to 1, so unless we
change the white point or boost the contrast, underflow and overflow are not too
likely.

Figure 11 shows the color conversion matrix for the example in Fig. 10. This
matrix corresponds to a conversion from a wider Digital Cinema P3 gamut to a
narrower Rec.709 standard TV gamut, and can produce both illegal RGB signals
(underflow: RGB < 0) and problematic RGB signals (overflow: RGB > 1). For
example, the conversion matrix wants to create a −23% red light output on a
standard display for a 100% green source, e.g., Rout = −0.225 × Gin = −0.225
(when Rin = 0, Gin = 1, and Bin = 0).16 After the destination RGB values are
calculated, we must get rid of any negative output values, because displaying
negative light is physically impossible, and no display can handle it. One solution
is clipping the final negative values to zero, and accepting the color error and some
loss of information too. The general solution is gamut mapping described in the next
section.

Note that with the above conversion matrix, we can also get output values higher
than 100% for some input colors, which means that the display will be overdriven.
For example, the matrix wants to produce 123% red light output on a standard
display for a 100% red source, e.g., Rout = 1.225 × Rin = 1.225 (when Rin = 1,
and Gin = Bin = 0).17 This is not a physical problem (since a brighter display can
accommodate higher signal values); hence, it can be solved by a simple attenuation

15Implies a calculated output RGB value where R < 0 or G < 0 or B < 0.
16Given the matrix coefficients, Bin can be any value. So, the observation holds for green (Bin = 0)
and cyan (Bin �= 0) inputs.
17Once again, Bin can be any value. So, the observation holds for red (Bin = 0) and magenta
(Bin �= 0) inputs.
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of the signal when converted back to the gamma domain, and preferably feeding a
brighter display.

Based on the previous discussions, it is important to understand, distinguish
between, and handle the two special cases that may occur after color space
conversion depending on the color conversion matrix coefficients:

1. MIN (R, G, B) < 0: one or more of the calculated R, G, and B values is negative; it
is a physical problem and requires gamut mapping, i.e., a reduction of saturation
to make MIN (R, G, B) ≥ 0.

2. MAX (R, G, B) > 1: one or more of the calculated R, G, and B values is greater
than 1; this is a scale problem and requires tone mapping, i.e., a reduction of
contrast and/or saturation to make MAX (R, G, B) ≤ 1.

9 Gamut Mapping

Color space conversion converts one color gamut to another and reproduces the
correct colors. But, how do we make sure that the colors of an input image when
transformed to the colors of a target device exploit the full potential of the rendering
device in terms of color rendition? That is the problem that gamut mapping wants
to solve. To understand how it works, let us take the same example as before of a
wider digital cinema source gamut to be shown on a standard TV display with its
smaller color gamut, as illustrated in Fig. 12.

The corresponding color conversion matrix, shown earlier in Fig. 11, already
hints at the problem we are about to encounter in color space conversion—negative
coefficients in all of the three rows of the matrix! Consequently, for each side of the

Fig. 12 Gamut mapping
example
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Fig. 13 Colors that need
gamut mapping [12]

triangle of the display gamut, one of the three RGB values will go negative (two for
each corner)! Since the display cannot suck in light, these negative values cannot
be sent to the display but need to be substituted. The concept is illustrated next
with pictures. After we apply the color space correction, for going from a wider
to a smaller gamut, we get into a situation as shown in Fig. 13. All colors in the
green area are perfectly shown, but the colors in the red part (where the RGB values
become negative) can never be shown by the display; hence, we must substitute
some other colors from the display gamut for these unreachable source colors. This
substitution is “gamut mapping.”

In the current example, gamut mapping can be implemented by shifting the red
region colors towards the display gamut, and substituting in-gamut colors that are
perceptually similar. This is illustrated in Fig. 14. Gamut mapping is thus more of an
art than science because the choice of the substitute colors is subjective. So, whereas
color space conversion is objective math, gamut mapping is largely a subjective
choice! There is no single perfect solution. Generally we are happy when the output
color gamut stays closely inside the display’s color space/gamut, which for a 3-
primary display is a simple RGB cube. Other devices, like multi-primary displays,
have different gamut shapes (not cubes), and then the gamut mapping is much more
challenging.

9.1 A Second Example of Gamut Mapping

Let us consider the illustration in Fig. 15 where the source gamut (digital cinema
reference) is the same as before, but the display—a rare LCD with RGB LED
backlight—now has a wider gamut than the standard TV display of the last example.
The color-space-correction matrix in this case takes the form shown in Fig. 16.
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Fig. 14 Shifting unreachable
source colors towards display
gamut [12]

Fig. 15 A second example of
gamut mapping

An immediate problem is obvious from the matrix—the negative coefficients in the
third row of the matrix can cause a negative blue output value for certain inputs, i.e.,
for the top side of the triangle of the display gamut, the output B signal could go
negative, which is an out-of-gamut condition and needs to be handled; the problem is
more manageable though than with the narrow-gamut display of the earlier example
where we had coefficients negative for all three colors.
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Fig. 16 Color conversion
matrix for digital cinema to
LED LCD [12]

Once we apply the color space correction, we get a situation as shown in
Fig. 17:18

1. All colors in the green overlap area are perfectly guided by the mathematics of
color space conversion. This covers almost all used surface colors, except for
some yellow and orange.

2. The colors in the red part on the edges of the source gamut (where the negative
coefficients make Bout go negative for some of the input values) cannot be showed
with this display, and if the source actually transmits such colors then there is
a problem; we must perform gamut mapping19 and substitute some other colors
from the display gamut. Fortunately, for the current example of the digital cinema
source gamut shown in Fig. 15, we only need to approximate the more extreme
yellow and orange colors—which rarely occur—from the source.

3. The colors in the yellow part on the edges of the display gamut are reachable,
but they do not exist in the source gamut and are therefore never transmitted.
These colors may have been gamut-mapped away at the transmitter side but it still
seems like a waste to not be able to use them. It is a great temptation to try and
reach these displayable colors anyway, by means of gamut extension because that
would make the image look extra colorful. Gamut extension is also a subjective
process—it is like trying to invert the gamut mapping that may have been applied
to the input image when it was limited to the source gamut!

9.2 Gamut Reduction

Gamut reduction of out-of-gamut colors when going from a wide-gamut source
to a display with a narrower gamut—where source will transmit colors that the
display cannot show—can be implemented in multiple ways. Clipping of out-of-
gamut values to the in-gamut border, for example, is one of the simplest ideas that
we discussed before. Shifting towards in-gamut colors is another technique we also
touched upon briefly. The literature abounds with different methods to go about it.

In one paper, Bronner et al. [17] have proposed two common projection
techniques for gamut reduction: towards white point (TWP) and closest. The TWP

18Recall that the RGB values are positive inside the destination gamut triangle, and negative
outside.
19Gamut mapping also goes by the name of gamut compression or gamut reduction.



60 S. Dutta

Fig. 17 Three color-mapping
cases [12]

Old position

Old position

Old position

Old position

C1

C1

C2

C2

New position

New position

D65

D65

New position

New position

a b

Fig. 18 Gamut mapping via projections [17]. (a) Towards white point. (b) Closest

projection technique, as illustrated in Fig. 18a, aims at keeping the theoretical hue
(not necessarily the perceived hue) unchanged while altering only the saturation
value. To do so, it maps chroma values (in coordinate space C1, C2) lying outside
of the gamut (green triangle) to the intersection (new position) between the gamut’s
boundary and the line segment joining the white point (D65) and the original source
color value (old position). This is a hard clipping, so many colors along the mapping
vector end up on the same point on the edge of the target gamut.20 The closest
projection technique, on the other hand, tries to minimize, as illustrated in Fig.
18b, the Euclidean distance between the original color and the mapped color by
mapping chroma values (in coordinate space C1, C2) lying outside of the gamut
(green triangle) to the coordinates that correspond to the smallest Euclidean distance
on the chromaticity plane. This gives a concentration of colors mapped to the R, G,
B corners of the target gamut.

20Also, this 2D illustration gives no hint on what to do with the third dimension—lightness—of
colors.
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In another paper, Zamir et al. [18] have provided a detailed categorization of
different gamut mapping and gamut extension algorithms and frameworks; the paper
also provides an overview of the main concepts of retinex [19], which has received
considerable attention in the context of gamut mapping. Some other recent examples
of published gamut mapping algorithms are SGDA [20] and CARISMA [21], where
lightness and chroma conversions are performed simultaneously by mapping colors
towards a single point. Interestingly, as described in Addari’s thesis [22], there are
also examples [23, 24] where the source gamut is divided into multiple regions that
are handled differently: the core where colors are kept the same, the area around
the cusp where each color is mapped towards the point in the middle, the region
with lowest lightness where the points are mapped towards the point with maximum
lightness of the destination gamut, and the brightest area where each color is
compressed towards the darkest point in the destination gamut. If one now throws
high dynamic range (HDR) imaging in the mix, the obvious problem that comes up
is for tone reproduction and mapping to explicitly consider the target display gamut;
Sikudova et al. [25] have addressed this in their paper where they discuss a gamut
mapping framework for accurate color reproduction of HDR images.21

9.3 Gamut Extension

Gamut extension has received less attention in the past compared to gamut
reduction, but is catching up fast with respect to research work and publications
owing to the recent introduction of various types of wide-gamut display standards
and displays, e.g., ITU has released Rec.2087 that defines the standard to convert
Rec.709 content to the Rec.2020 gamut [26]. There are five common gamut
extension algorithms mentioned in the literature [27, 28]:

1. True-color: This algorithm maps the color information of the input image into
the destination gamut without applying any sort of extension, meaning that the
output of true-color is basically color space conversion applied without any
gamut processing after that. It is nothing other than the application of the color
conversion formula we derived before, i.e., it is just a representation of the input
image in a wide-gamut color space.

⎡

⎣
R

G

B

⎤

⎦

true−color

= [N ]−1 × [M] ×
⎡

⎣
R

G

B

⎤

⎦

source

= [C] ×
⎡

⎣
R

G

B

⎤

⎦

source

21Tone mapping from HDR to SDR, and gamut mapping for MAX (R, G, B) > 1 are essentially the
same problem.
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Fig. 19 Mixing function for HCM

2. Same Drive Signal (SDS): The RGB primaries of the input are linearly mapped to
the RGB primaries of the display device, enabling the algorithm to make full use
of the wide-gamut of the display without regard to correct values of lightness,
saturation, or hue.

3. Hybrid Color Mapping (HCM): This algorithm linearly combines the output of
the true-color and SDS algorithms based on the saturation of the input image as
illustrated by the next equation, where “k” is a mixing factor and a function of
saturation as shown in Fig. 19.

⎡

⎣
R

G

B

⎤

⎦

true−color

= (1 − k) ·
⎡

⎣
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B
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⎦

true−color

+ k·
⎡

⎣
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B

⎤

⎦

SDS

4. Chroma Extension (CE): The algorithm maps colors of the source gamut to the
reproduction gamut along lines of the chroma axis in the CIE LCh color space
[29] while keeping lightness and hue constant, thereby trying to avoid potential
hue shifts produced by the SDS algorithm. However, because of the lightness
and hue restrictions, the target color gamut will not be used entirely. [Note: Any
affordable formula to calculate a hue value does not necessarily represent the
perceived hue exactly, so it will be a mistake to assume that extending chroma,
while keeping some hue value constant, will not alter the perceived hue.]

5. Lightness Chroma Adaptive (LCA): The algorithm alters both lightness and
chroma while keeping the hue constant; both CE and LCA algorithms make
use of a high chroma boost (HCB) function which smoothly maps colors of
an input image in a manner that the high-chroma objects get more boost in
saturation than the low chroma ones. The target gamut will be filled more, but
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still not entirely. Also, it is hard to achieve a constant perceived hue (as opposed
to some mathematical hue metric), and non-linear processing may introduce
amplification of noise and/or false contours (from quantization errors).

One of the major drawbacks of typical gamut extension algorithms is that
they tend to overdo their task and produce images that are highly saturated and
artificial in appearance. To this end, Gang et al. [30] have produced an algorithm
that first transforms the standard RGB value to the device RGB value, and then
extends the gamut with the saturation ratio of gamut boundaries and a non-linear
function that reduces the oversaturation problem. In his thesis [28], Zamir also cites
some of the usual problems with common gamut extension algorithms, and then
proposes special extension methods that comply with the global and local perceptual
properties of human vision. Note that some of the gamut reduction algorithms can
also be applied to gamut expansion via an inverse transformation, e.g., Hirokawa
[31] has suggested an extension algorithm where colors are mapped along the lines
of constant lightness with a non-linear function.

10 An Age-Old Art

We talked about gamut reduction (aka gamut mapping) and gamut extension. Both
are subjective art in the sense that there are subjective options and opinions in what
to do when it comes to generating the “new” colors. However, it is possibly obvious
from our discussions so far that gamut mapping is a necessity (mapping out-of-
range colors present in and transmitted by the wide-gamut source to the colors of the
narrow-gamut display), whereas gamut extension is a luxury (utilizing colors in the
wide-gamut display that are not present in or not sent by the narrow-gamut source
or gamut-mapped away22 at the transmitter). Further, it may be intuitively obvious
that gamut mapping is an ill-defined problem and is subject to artistic interpretation.
The usage of the word “artistic” is a conscious choice. Gamut mapping is an age-
old art—artists and painters have been doing gamut mapping for thousands of
years! Recall that gamut mapping essentially deals with different color ranges being
available to different instances of an image. We have practiced this art for long; as
soon as humans created the first images, gamut mapping took place! This is well
articulated in Morovic’s book [32] on color gamut mapping. As Morovic points
out, the Paleolithic cave paintings (e.g., Altamira in Spain), that recorded various
hunting experiences, made use of only three ochres—charcoal, red, and yellow—
and tried their best to represent the colorful hunting experience(s) with a limited
range of colors. From these Paleolithic beginnings, there has been a gradual but

22Trying to invert a previous gamut mapping operation, without having metadata available that
characterizes the operation, is guesswork. Luckily, there is now a trend towards invertible tone
mapping and gamut mapping, both described by metadata that is transmitted with the down-
mapped images.
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continuous expansion of the color palette, thereby enabling the creation of images
with greater color gamut. For example, earlier cave paintings with three to five color
palettes gave way to more extensive color palettes for the Greek frescoes in fifteenth
century BC and dry-wall paintings in the tombs of the Egyptian rulers in twenty-
third century BC. The frescoes and the tomb paintings, the painted and enameled
tiles in Babylon in sixth century BC, and the painted pottery of ancient Greece, all
made use of gamut mapping in reproducing different real-world color imagery with
a limited palette of colors. In his posts [33–35], James Gurney has provided a great
guide to mapping out the variety of colors that is to be used for a painting task, and
how the used colors can ultimately be made to appear warm or cool.

11 Rendering Intent and ICC Profiles

As we have discussed before, colors that are available in the source color space but
cannot be converted into the display color space are called out-of-gamut colors and
somehow need to be remapped to other colors that are reproducible on the display.
To aid the process, the ICC has defined rendering intents in its profiles to make
it easier for various software (that uses ICC profiles) to use the correct mapping
algorithm. An ICC profile is a set of data that describes the properties of a color
space, i.e., the range of colors that a monitor can display or a printer can output.
There are four rendering intents specified by ICC for mapping out-of-gamut colors
from the source color space into the gamut of the destination color space. The intent
and the mapping depend on the source, the destination, the out-of-gamut colors, and
the nature of the imagery [36–38]:

1. Match or Absolute Colorimetric Intent: Absolute colorimetric intent preserves
the white point of the original color space; any color that falls outside the range
that the output device can render is adjusted to the closest color that can be
rendered (i.e., out-of-gamut colors are clipped), while all other colors are left
unchanged (which is perfect if those colors do not occur anyway, or we do not
care about rare colors).

2. Proof or Relative Colorimetric Intent: Relative colorimetric intent does not
preserve the white point of the original color space (often the Photoshop
“working space”) but matches it to that of the output (typically a printer profile);
other colors are scaled accordingly. Any color that falls outside the range that
the output device can render is adjusted to the closest color that can be rendered,
while all other colors are left unchanged. Although not as accurate as absolute
rendering, relative rendering can be used in hard-proofing workflows [39].

3. Picture or Perceptual Intent: Picture intent comes into play when the destination
gamut is smaller; it causes the full gamut of the image to be compressed or
expanded to fill the gamut of the destination device, so that gray balance is
preserved but colorimetric accuracy may not be preserved. The idea here is to
try to render colors in a way that is natural to the human vision. The gamut of
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the source image color space (typically a “working space” or camera profile) is
scaled to the output color space (usually a printer profile) in a way that pulls out-
of-gamut colors into the gamut. Colors at or near the edge of the gamut are also
pulled in. In other words, if certain colors in an image fall outside of the range of
colors that the output device can render, the picture intent will cause all the colors
in the image to be adjusted so that every color in the image falls within the range
that can be rendered so that the relationship between colors is preserved as much
as possible. This intent is not recommended for hard proofing but is most suitable
for display of photographs and images, and is generally the default intent.

4. Graphic or Saturation Intent: Saturation intent pulls saturated colors out to the
edge of the gamut, thereby increasing saturation, or color strength. It is intended
to be used for vector graphics, i.e., logos, line-art, etc., to preserve the chroma
of colors in the image at the possible expense of hue and lightness. This intent
is most suitable for business graphics such as charts, where it is more important
that the colors be vivid and contrast well with each other.

The effects and differences of various rendering intents are colorfully illustrated
on the Cambridge in Color website [40].

12 Final Word on Color Spaces

A color space is defined as perceptually uniform if a difference in value anywhere
in the color space corresponds to the same difference in perception. This property
is illustrated by the MacAdams ellipses [17] which predict when two different
color values will be differentiable by a human observer. Figure 20 represents these
ellipses in the CIE chromaticity diagram. Dots in the center of ellipses represent
the reference color, while the outlines of the ellipses mark the boundaries of the
smallest difference of values in every direction before a human observer would rate
those two colors as different. The MacAdams ellipses indicate the eye’s sensitivity
to color—smaller means more sensitive, e.g., small variations near green are less
distinguishable than small variations near blue. In an ideal perceptually uniform
color space, all ellipses are circles and have the same radius as shown in Fig. 21.

Recall that the XYZ color space is formed via the use of a set of XYZ non-real23

primaries that can be combined to produce any color, including spectrum colors
that are not possible with any real set of RGB primaries. As is clear from Fig. 20,
equal distances in this space do not represent equally perceptible differences, i.e., the
relative distribution of colors is not perceptually uniform for the eye. In particular,
this color space actually stretches and overemphasizes the eye’s resolution of
greens and compresses the reds and blues. It is for this reason that uniform color
spaces (UCS)—defined by the well-known L*a*b* and L*u*v* coordinates—were

23Non-realizable in reality, but mathematically very real, e.g., (x, y) = (1, 0), (0, 1), and (0, 0)
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developed to provide perceptually more-uniform color spaces and allow the basis for
a color difference metric calculated as the Euclidean distance between coordinates
within the space.24 Though these color spaces do not offer directly displayable
formats, their gamuts encompass the entire visible spectrum and can accurately
represent colors of any display, print, or input device.

The selection of the mapping color space is a crucial aspect of both the
conversion and the gamut mapping process. Some of the color spaces commonly
used are [42]:

• CIE xyY
• CIE u’v’Y
• CIE L*a*b*
• Simplified Lab
• Uniform color space based on CIECAM02

In the CIE xyY and u’v’Y color spaces, linear color mixing allows the implemen-
tation of simpler gamut mapping algorithms that utilize linear transforms; however,
perceived lightness, chroma, and hue of colors may change during the mapping
process. The CIE L*a*b* color space was, therefore, designed and utilized to have
a better visual uniformity than the xyY or u’v’Y color spaces.25 The Simplified
Lab color space is a simplification of the CIE L*a*b* color space in which color
gamuts have simpler shapes with approximately planar surfaces. One advantage
of this L*a*b* color space is its perceptual uniformity that takes lightness into
account; Euclidean distances in the three-dimensional color space are nominally
proportional to the perceived color differences, and linear mapping paths, when
possible, preserve lightness, chroma, and hue.

13 Color Lookup Tables

An alternative to real-time color-mapping calculations is to devise a 3D lookup
table (3D LUT) which can implement the pre-computed mapping functions (for
any mapping algorithm) for the red, green, and blue input and output. In fact, a
lookup table also allows combining multiple color space conversion rules and gamut
mapping rules into one mapping rule. According to this scheme, the desired gamut-
transformation function is loaded into a three-dimensional lookup table in the setup
mode. Thereafter, in the normal operation mode, the table generates transformed
Rout, Gout, and Bout data for each Rin, Gin, and Bin pixel input. A lookup table
allows the gamut-transformation rules to be loaded into the table and updated as

24One step further than perceptually uniform color spaces is to introduce (near-)straight lines of
constant perceived hue, leading to color appearance models [41].
25Note that these color spaces are good for quantitative analysis and color difference metrics, but
not for image processing.
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and when needed. B&H has an interesting article [43] describing three main types
of LUTs:

• Calibration LUT: Calibration LUTs are used to correct inaccuracies in displays,
and ensure that a reference monitor or projector adheres to a standard color space,
e.g., Rec.709; by creating an appropriate Calibration LUT for each monitor, it is
ensured that images are displayed in a consistent and accurate way.

• Display LUT: Display LUTs are used to convert from one color space to another,
e.g., for on-set monitoring of log footage; instead of flat, desaturated log images,
mapping of the log footage to the color space of the monitor enables viewing
images with contrast and saturation resembling that of the final product.

• Creative LUT: Creative LUTs are used to normalize a footage to a specific
color space by also making creative adjustments, e.g., mimicking the look of
a particular film stock, popular effect, or other stylized look. A lot more details
can be found in Jonny Elwyn’s article [44] on matching film look using LUTs.

While LUTs offer great control and variation in mapping input color values to
output color values, a general disadvantage of using LUTs, however, is the high
memory requirements for implementing the complete gamut mapping function
in the lookup table. For example, just for 12-bit data (even though a common
number in the movie world is 17), the size of the required table for full mapping
is 4096 × 4096 × 4096 × 12 × 3 bits = 309,237,645,312 Bytes! Such a large
memory is often not conducive to implementation. Therefore, it is important to look
for ways to speed up the computation or reduce the size of the lookup tables by
storing fewer points and resorting to some form of interpolation [45, 46]. In one
of the SMPTE papers, Frohlich et al. [47] have evaluated various gamut mapping
algorithms for digital cinema, and also analyzed the losses introduced by using 3D
lookup tables for gamut mapping.

Even though 3D LUTs have received a lot of attention in the literature, it is the
author’s opinion that they offer flexibility in mapping effects but do not provide a
good or practical solution for gamut mapping, especially if the mapping needs to be
changed frequently. A quality 3D LUT is expensive in terms of size, and not much
smaller than the image itself. 3D LUTs happen to shift the load (of filling the LUT)
to the CPU, problem to the applicant, and decision to the future! A well designed
gamut mapping algorithm, based on a few simple rules, and running on dedicated
hardware or a fast GPU could be superior and sufficient.

14 Conclusion

In this article, we have presented an introductory review of color correction and
gamut mapping. Given the physical limitations of the ranges of color that can
be represented by the source image and the destination display, a linear-light
transformation is called for to correctly reproduce the source on the display. The



Color Primary Correction of Image and Video Between Different Source. . . 69

transformation has two26 steps: (1) Color space conversion—an objective process
where the source colors that can be shown on the display are correctly represented
based on the white point and RGB chromaticities of the source and the display, and
(2) Gamut mapping—a subjective process where out-of-range colors are clipped or
substituted by other in-range colors when the source and the display have different
color gamuts. Gamut compression happens when the display has a smaller gamut,
and gamut extension happens when the display has a wider gamut. The color gamut
of a scene is limited by the source,27 and due to the variety of displays available
today, it is inevitable that some gamut mapping will occur on the display side. With
the advent of LED LCD TVs and digital cinema, it is expected that the application of
gamut compression will diminish as the color gamuts of consumer displays continue
to grow larger; the new tendency here will be to expand the color gamut by the
receiver to make use of the wider range of the display.
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Hardware/Software Interface Codesign
for Cyber Physical Systems

Ahmed Amine Jerraya

Abstract Cyber physical systems (CPS) are a new generation of systems combin-
ing intensive connectivity and embedded computing. CPS allow to link physical and
digital worlds. Despite all the previous research in the area of HW/SW interfaces
design this is still a bottleneck in the design process. The key issue is that, in
addition to the classical HW/SW interfaces brought by embedded systems, CPS
bring another HW/SW interfaces to link the application SW and the environment.
This paper explores HW/WS interfaces for cyber physical systems.

1 The Paradigm Shift

Up to 1990, system design used to be based on separate HW and SW design
approaches where HW–SW interfaces are defined twice using 2 different models
one representing the HW view and one representing the SW view. This double
definition of HW/SW interfaces has created a great separation between HW and
SW communities and left HW/SW interfaces as an unexplored no man’s land. As
soon as semiconductor advances allowed to integrate instruction set processor on
chip to build SoC, in the 1990s, lots of research have been made and pioneers [1]
advocated the importance of what was called HW–SW. Codesign and even several
synthesis tools were created [2] based on logic view of the interfaces. Starting
from 2000s a new generation of work started taking into account architecture and
operating system in holistic approaches of HW–SW interfaces. These gave birth to
all the developments on HW/SW co-simulation [3]. This research community is now
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20 years old [4] and is dealing with multicore and multiprocessor SoCs (MPSoCs).
More recently the advance of technology is allowing to integrate sensors and
actuators in addition to wireless communication to build what is commonly called
cyber physical systems [5]. Cyber physical systems (CPS) combine embedded
computing and environment sensing, to create a link between physical and digital
worlds and enable cooperation among systems. The design of CPS is creating a
paradigm shift by introducing a new discontinuity between computing (HW and
SW) and the environment. The focus becomes the overall function including both
computing and communication.

Traditional approaches are based on serial methodologies. First the computing
platform is designed including hardware and software, and then this is combined
with additional HW to interface with the physical world and finally an application
software is ported to the overall operating system and/or middleware. This means
that the interface with the physical world can be finished only after finishing
the computing platform. This often leads to poor global performances, since
problems caught during application software development cannot be fixed in the
HW platform. It also means that the design process takes too much time and cannot
ensure the real time behavior required by CPS.

Efficient CPS design will need abstract models of the computing platform and
the interaction with the physical world (sensing and wireless communication).
Ideally one would like to have a set of SW tasks communicating with a set of HW
subsystems interacting with the environment. This design process introduces a kind
of hierarchical hardware software interface:

– Traditional HW/SW interfaces addressed in embedded computing. This interface
hides the computing platform including HW and software.

– HW/SW interfaces specific to the communication between the application SW
and the environment, this interface hides the complexity of the sensors/actuators
architecture and also includes HW and software.

2 Traditional HW/SW Interfaces

The traditional HW/SW interfaces addressed in embedded computing are still a
nonsolved problem even if it is quite old [6]. Because software components run
on processors, the abstraction needed to describe the interconnection between
software and hardware components is totally different from the existing abstraction
of wires between hardware components as well as the function call abstraction
used to describe software. The HW/SW interface is generally decomposed into two
different layers: one on the software side using APIs and one on the hardware side
using wires. This heterogeneity makes HW/SW interface design very difficult and
time-consuming because the design requires the knowledge of both software and
hardware and their interaction.
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This HW/SW interface abstraction complexity is resulted from the fact that
the ultimate hardware/software interface is the CPU and thus any abstraction of
HW/SW interfaces requires the hiding of the CPU. A CPU is a hardware module
that executes a software program. From a software side, the abstraction hides the
CPU under a low level software layer; examples range from basic drivers and I/O
functions to sophisticated operating systems and middleware. From the hardware
point of view, HW/SW interface abstraction hides the details of the CPU bus
through a hardware adaptation layer generally called the CPU interface. This may
range from simple registers to sophisticated I/O peripherals including DMA queues
and sophisticated data conversion and buffering systems. This double definition of
HW/SW interfaces is still creating a separation between HW and SW communities.

The most massive recent work to solve this problem is done around the
AUTOSAR standard [7]. A layered software architecture is defined as an integration
platform for hardware independent software applications. Here again hardware and
software development are still separated.

3 HW/SW Interfaces in Cyber Physical Systems

A similar discontinuity exists in CPS design where designers must also consider
the interaction between application software and the environment. This is generally
more coupled than the one in embedded computing because of the real time aspects
of the environment. Here again traditional approaches suggest to model HW/SW
interfaces twice. Embedded computing designers will use a functional model of the
environment to test the performances of their platform. The application software
designers use a HW/SW interface model (generally a protocol stack) to validate the
functionality of their software. Using two separate models induces a discontinuity
between the application software and the environment. The result is not only a waste
of design time but also less efficient lower-quality design. This overhead in cost and
loss in efficiency are not acceptable for CPS design [8].

4 The Limits of Modular Design

All the above-mentioned approaches are based on the concept of modular design
that have been pushed in some safety based applications like automotive or
aerospace. For example, today’s cars and airplanes contain dozens or hundreds of
computers [9]. Most of these have been designed for a specific function such as a
radar. Figure 1 shows a typical automotive function. It is made of an MCU (micro
controller unit) and a sensor with the associated HW interfaces and then several
software layers. A specific automotive standardization layer (Autosar [7]) is used to
abstract the environment in addition the SW layers used to abstract the MCU.
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Fig. 1 Typical automotive
function

Up to now the low complexity of the basic functions allowed to build safe
and secure functions. But the clean separation between all these HW and SW
components has led to an unprecedented complexity of SW in modern cars to
reach 100 million lines of code [10]. It is obvious that this model does not scale
for the design and optimization of complex functions such an ADAS (advanced
driver assistance systems) that would require the integration of dozens of these
functions [11].

It is clear that a global optimization of the whole system, including both kind
of HW–SW interfaces, is required to ensure real time interaction with the physical
world [12].

The solution is to abstract both embedded computing and the interface with
the environment in a unified model. Such a model will be made of heterogeneous
components interacting through abstract hardware/software interfaces. This concept
opens new vistas that will bring fundamental improvements to the design process
[3, 6, 12]:

• Codesign of both embedded computing and physical interfaces,
• Design of heterogeneous distributed systems including synchronous and asyn-

chronous (analog) components,
• Easier global validation of embedded systems including embedded computing,

interfaces with environment, and application software.

In summary, a single HW/SW reference model needs to be used to design
embedded computing, interfaces with the environment, and application software in
order to create the cyber and physical continuum required for efficient CPS design.
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Run-Time Security Assurance of Cyber
Physical System Applications

Muhammad Taimoor Khan, Dimitrios Serpanos, and Howard Shrobe

Abstract We introduce a design methodology to assure run-time security of cyber
physical system (CPS) applications. The methodology has two independent, but
complementary, components that employ novel approaches to design run-time
monitors that detect both computational and false data cyber-attacks to assure
security of CPS at run-time. Based on the executable specification of a CPS
application, the first component protects CPS computations through comparison
of the application execution and the application-specification execution in real-
time. The second component assures safety and integrity of CPS data through
vulnerability analysis of the application specification for false data injection attacks
based on non-linear verification techniques. We demonstrate our approach through
its application to a typical CPS example application; we demonstrate that run-
time monitors employing verification techniques are effective, efficient, and readily
applicable to demanding real-time critical systems.

1 Introduction

A fundamental unit in the emerging industrial automation, Industry 4.0, is cyber
physical systems (CPS), which are “engineered systems that are built from, and
depend upon, the seamless integration of computational algorithms and physical
components” [1]. These systems aim at improving quality of life by automating
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critical infrastructure-based industries, e.g., manufacturing, energy, health care,
water management, and financial sectors [2]. Successful integration of CPS in these
critical environments is bound by the control automation processes—the embedded
software applications—that meet robust functional and real-time non-functional
requirements of operations in these domains. Specifically, these applications have
to assure (1) secure, reliable, and efficient execution of the operations, despite their
uncertain physical components, and (2) fail-safe execution defending against cyber-
attacks.

The security and reliability of CPS are critically important, considering the
effects of CPS compromise or failure. A failed CPS can cause serious damage
beyond the system itself, because it can violate safety requirements, e.g., releasing
destructive chemicals or tampering with economic parameters that lead to a financial
loss. An attack on the power-grid may disable transportation and medical systems.
Such an effect was first demonstrated in the Aurora experiment where a pure cyber-
attack destroyed a diesel generator [3]. Later, Stuxnet [4], the Ukrainian smart-grid
attack [5] and other several less known incidents have demonstrated the potential of
cyber-attacks to cause serious societal and economic damage. Recently, the Mirai
attack compromised CPS converting them to a botnet [6].

Building defense systems to protect CPS against cyber-attacks is challenging
because of different and uncertain behavioral characteristics of its computational
and physical components; these components support discrete and continuous oper-
ations with linear and non-linear constraints respecting strict time bounds. There
are two dimensions of CPS security: design-time security and run-time security. To
assure design-time security of CPS applications, various attempts have been made,
for instance, recently, a Coq library VeriDrone targets to ensure security of CPS
models at different design levels, i.e., from high-level models to C implementations.
In VeriDrone, the proof of security makes the assumption that the operating system
and the run-time environment where the CPS application executes are secure and
reliable, which does not hold typically. For instance, the run-time libraries support-
ing C may contain vulnerabilities that can be exploited to modify the code executing
in a CPS controller. Furthermore, false data injection (FDI) attacks, corrupting the
sensor output-data, can cause the control algorithm to issue commands that will
have devastating effects, without modifying the controller application-code. Thus,
while it is important to develop secure and reliable CPS controller application
design, one must also monitor the run-time behavior of the CPS to ensure that
the controller continues to behave correctly. Existing approaches to assure run-time
security of CPS applications can be classified in four major classes as shown in
Fig. 1. Class 1 monitoring systems detect attacks by matching system behavior with
known bad behaviors, typically employing statistical techniques and supervised
machine learning. For instance, such monitors build profile(s) of known bad system
behavior/attacks [7] and then detect attacks by matching run-time system behavior
with the build profiles. Since supervised machine learning techniques tend to
generalize from the data presented, such monitors are more robust and informative.
While Class 3 monitors detect deviation from expected behavior by building a
statistical profile of normal (good) behavior [8] by employing unsupervised machine
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Fig. 1 Classification of run-time security monitors [12]

learning techniques. Such monitors are typically more stable because they are not
retrospective and thus do not require knowledge of known attacks. Independent
of the underlying machine learning technique, profile-based monitors suffer from
high rate of false alarms mainly because whenever such monitors alarm an attack,
it is only known that something unusual has happened and provide inadequate
information to identify whether this is an error, actual malicious behavior, or just
a variation of the normal behavior. The run-time monitors of the class 2 and 4
are widely used in highly secure environments, where successful attacks cause
significantly high costs. Class 2 monitors (e.g., [9]) are more interpretative than
class 3 monitors because whenever an attack is detected, these monitors provide
adequate information to “understand” what was the failure but are retrospective
being unable to detect unseen attacks. Class 4 security monitors (e.g., [10]) are
even more interpretative (i.e., higher diagnostic resolution) because whenever such
monitors detect deviates of system execution from the modeled good behavior,
there is adequate information to infer the exact problem that caused the deviation
(e.g., the affronted instruction or routine). However, building behavioral model of
the legacy system is challenging and also observing irrelevant system behavior (to
detect deviation) causes overhead that hinders run-time system performance, with
high impact on real-time systems. Independent of the approaches, aforementioned
monitors attempt to detect attacks with no information about physical components
of CPS. Thus, these methods either produce false alarms or do not provide adequate
information for diagnosis and recovery, when CPS fail or are attacked. Since
these methods are typically retrospective expecting that something similar to a
past incident will recur, attackers vary their attacks to avoid detection. A recent
method [11] detects attacks in CPS by deriving process invariant for each CPS
design stage from its initial design, and then monitoring them at run-time. Such
approaches fail to detect advanced threats, e.g., computational and FDI.



82 M. T. Khan et al.

We present a design methodology to assure CPS security at run-time based
on CPS process behavior, where we characterize behavior in terms of software
engineering, i.e., as the set of functional and non-functional (e.g., security, perfor-
mance) characteristics of both the computational/cyber and physical components
of the process. The cyber and physical components exhibit discrete and con-
tinuous behavior that operate at different granularity levels making behavioral
description complex. To handle the complexity, we describe the behavior of
a CPS process with an abstract executable specification. Importantly, we treat
computational and data behaviors of CPS separately, since they are susceptible
to attacks with different characteristics and thus require different defenses. From
the specified behavior, we generate a monitor that assures the run-time security of
CPS applications by checking consistency between the specification-execution and
the implementation-execution of the applications. Our threat model includes both
computational attacks—attacks that change code or data of the CPS application-
execution and false data injection (FDI) attacks—attacks that fake sensor input
values in a way that the control system (and monitor) fail that the input is wrong
and sends in appropriate signals/commands as a result. The run-time monitor
guarantees detection of any functional deviation (computational attack) but may not
detect data-integrity attacks. Therefore, for data-integrity, we perform vulnerability
analysis on the specification to identify potential FDI vulnerabilities. As a result, we
obtain the values of the identified FDI attacks. Considering these values as attack-
vectors, we either monitor input-data to detect the attacks or improve the design,
adding constraints, to eliminate such attacks. Protection against computational and
FDI attacks ensures highly secure CPS operations. For instance, our monitoring
of computational attacks ensures that CPS operations are reliable and are secure
against accidental or intentional insider threats. While our defense for handling
of FDI attacks ensures that CPS operations have approximately exact estimate of
the current state of the physical components and thus such operations are secure
against intentional (e.g., man in the middle attacks) or system malfunctioning (e.g.,
interference and signal deterioration of the sensor).

We illustrate our approach [13] to handle computational and FDI attacks in the
following sections, respectively.

2 Computational Attacks

Our run-time security monitor (RSM) takes as input both the specification (App-
Spec) and implementation (AppImpl) of a CPS application and checks the consis-
tency between the run-time behavior (“Wrapper” generated observations) and the
expected behavior (“AppSpec” generated predictions) of the application [12], as
Fig. 2a depicts. When an inconsistency is detected, the RSM raises an alarm. Since
the specification and the implementation operate at different abstraction levels, we
wrap the implementation such that the RSM gets run-time data that is directly
comparable with the specification one.
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Fig. 2 Run-time security monitor

The “AppSpec” is an active model that specifies behavior of cyber and physical
resources of CPS as first class models through description of

• the normal behavior of the (cyber and physical) resources by decomposing their
behavior into sub-modules, by encoding pre- and post-conditions and invariant
for each sub-module,

• the flow and control of values, as data-flow and control-flow links connecting the
sub-modules, and

• the exceptional behavior of the resources, known attacks, and suspected attack-
plans to rigorously characterize the misbehavior of a module. The attack-plans
are hypothetical attacks that describe ways of compromising a component.
For robust defense, the monitor exploits them to detect any such run-time
misbehavior.

The novelty of the RSM arises from the executable specification language (its
elements, e.g., attack-plans, formalism, behavioral description of cyber and physical
resources as first class models and discrete and continuous constraints) of the
application it monitors. Monadic second order logic and event-calculus based rich
formalism of the language enable us to describe system behavior at various levels
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of modular-abstraction. Semantically, such formalism-based specification language
directly compiles into machine code, ensuring efficient behavioral comparison.
Specifically, the formalism translates into a finite-automaton that recognizes only
the words that satisfy the specification [14].

The RSM has been proven to be sound (i.e., no false alarms) and complete (i.e.,
no undetected computational attacks) [12] provided that the AppSpec runs securely.

2.1 Example

We have implemented an RSM prototype in Allegro Common Lisp on a MacBook-
Pro with a 2.8 Ghz Intel Core-7 processor and have applied it to detect computa-
tional attacks to a PID controller that controls the water-level of a gravity-draining
water-tank and a pump with an actuator. Our AppSpec includes a model of the
controller’s computations and a model of the sub-system (pump, tank, and actuator).
A typical PID controller algorithm has four parameters: the setpoint, and three
weighting factors Kp, Ki , and Kd ; based on the integration and derivation of these
factors, the algorithm computes the correct term. Listing 1 sketches a model of the
algorithm’s controller step, computation of an error-term, and an attack-plan for the
controller-code.

(define-component-type controller-step
:entry-events (controller-step)
:exit-events (controller-step)
:allowable-events (update-state accumulate-error)
:inputs (controller observation dt)
:outputs (command error)
:behavior-modes (normal)
:components (

(estimate-error
:type estimate-error
:models (normal))

(compute-derivative
:type compute-derivative
:models (normal))

(compute-integral
:type compute-integral
:models (normal)))

:dataflows (
(observation

controller-step observation estimate-error)
(the-error

estimate-error the-error compute-derivative)
(derivative

compute-derivative derivative
compute-derivative-term)

(weighted-proportional
compute-proportional-term

proportional compute-correction)
(the-error

estimate-error error controller-step) ) )
...

Listing 1 Example specification
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Developing the model (AppSpec) and the application-implementation (AppImpl)
in the same language enables immediate detection of any modification of the PID
algorithm. For example, if parameter Ki is modified, then AppImpl computes an
incorrect Ki-integral that is immediately detected as being different from the value
predicted by the AppSpec. Such fine-grained modeling helps to characterize the
attack immediately; in this case, we can deduce either that Ki or the code of Ki-
integral computation was modified.

The RSM prototype is evaluated assuming that the PLC runs a control cycle on
the water tank sub-system every 0.1 s. The application and the RSM were simulated
for 100 s. When running fine-grained monitoring, the RSM consumes 8.93 × 10−4 s
of CPU time and 9.07 × 10−4 s of real time for each cycle of the PID algorithm
which is smaller than 0.1 s/cycle. Figure 2b shows the execution overhead of the
RSM in four monitoring scenarios when: (1) the RSM monitors the full algorithm,
(2) it disables dataflow integrity checks, (3) checking only pre- and post-conditions,
and (4) disabling dataflow integrity and internal-conditions checks.

The RSM detects computational attacks. Recently, it has been shown that stealthy
attacks (FDI-attacks) with tampered sensor readings may evade detection by the
monitor. So, we present a method to analyze the monitor design to identify FDI
vulnerabilities.

3 False Data Injection Attacks

FDI attacks are a special class of attacks where the adversary compromises external-
input values to CPS control-systems without attacking the system itself. In such an
attack, CPS systems operate correctly but on wrong input-data, leading the control-
systems to take wrong decisions.

Current approaches to handle FDI attacks are mainly focused on power sys-
tems [15], where attacks are detected exploiting network-topology characteristics
and statistical analysis of data.

We have developed an alternative method that identifies FDI vulnerabilities in
a system-design (i.e., specification). Based on the identified vulnerabilities, we
refine the design, introducing constraints that eliminate the identified attacks. The
refinement is repeated until either all FDI vulnerabilities are eliminated or the
vulnerabilities have been recorded for run-time detection.

We specify the system as a state function, which is amenable for verification to
detect combinations of inputs that constitute FDI attacks. A CPS system implements
a control-loop for a process P . The function P(xt ) specifies the system-state at
time t as input variables x. In the implementation, these variables are measured (as
zt ) with sensors to estimate the system-state. A CPS monitor mon(x, z) inputs the
measurements zt at every time instant t and evaluates them for acceptance.

Typically, the monitor accepts all measurements z and estimates the state P(x, z).
However, in a successful FDI attack with measurements z′, the monitor accepts z′,
which are compromised values of z different from z. To detect such attacks, we
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specify system-state as a real function f () and using a non-linear SMT solver, i.e.,
dReal [16], we ask whether there exist z′ s.t. for the system P(x, z), mon(x, z′)
accepts z′. If the question is satisfiable, then z′ constitutes an FDI attack. To defend
against such an attack, we can consider the vulnerabilities as attack-vectors of values
to be monitored for detection at run-time or can add constraints to the design, which
reduces and eventually eliminates such attack.

3.1 Example

To demonstrate our approach, we consider a water-tank with two pumps, one for
pumping-in and the other for pumping-out the water. Each pump has a sensor
measuring the flow-rate (rin and rout as real numbers in range {0, 1}) and an actuator,
for opening it to a specified rate. Another sensor measures the water-level in the
tank, whose cross-sectional area is one. With these values, in the tank, the volume
and the height of the water have the same absolute value.

Considering a discrete time operation of the tank, the state of the pumps may
change at every time unit. The height H of the water at time t + 1 determines the
system-state by

H(t + 1) = H(t) + rin(t + 1) − rout (t + 1) (1)

Assuming that H(t) = 7, the flow rin(t + 1) = 0.5 and rout (t + 1) = 0, gives
H(t + 1) = 7.5. If these values are measured correctly by sensors, the monitor
will accept them. However, an attacker could compromise these measurements with
fake values and if they are consistent with H(t + 1), the monitor will accept them
otherwise will reject them identifying an FDI attack. For example, the tampered
values rin(t + 1) = 1, rout (t + 1) = 0, and H(t + 1) = 4 will be rejected
being inconsistent with Eq. (1). However, the compromised values rin(t + 1) = 1,
rout (t + 1) = 0, and H(t + 1) = 8 will be accepted as they satisfy Eq. (1),
indicating an FDI vulnerability in the system. To detect such an attack, we provide
Eq. (1) to the solver and ask if there are values (rin, rout , and H in defined-range),
which are different from the real action. Listing 2 shows the input to dReal for our

(set-logic QF_NRA)
(declare-fun ht () Int)
(declare-fun ht1 () Int)
(declare-fun a () Int)
(declare-fun rin () Real)
(declare-fun rout () Real)
(assert (and (and (= ht 5) (= ht1 6)) (= a 1)))
(assert (and (<= 0 rin) (<= rin 1)))
(assert (and (<= 0 rout) (<= rout 1)))
(assert (= ht1 (+ ht (- (/ rin (^ a 2)) (/ rout (^ a 2)))))
(check-sat)
(exit)

Listing 2 Example specification and verification
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described scenario and demonstrates the successful detection of FDI vulnerability.
To eliminate such attacks, we may add constraints for parameters, e.g., considering
rin and rout to be integers.

4 Conclusion

We have introduced a methodology to develop CPS application software that is
secure against computational and false data injection attacks. For computational
attacks, we have developed run-time security monitor that detects attacks by
identifying the deviation of application execution from the specification of the
application, and by avoiding false alarms. For false data injection attacks, we
have used vulnerability analysis technique that identifies false (data injection
attack) values in the given specification, which can later be monitored. We have
demonstrated the effectiveness of our methodology by developing a simple CPS
example. As a next step, our goal is to unify the two approaches in a tool that allows
to (1) synthesize the security monitor from a given specification automatically and
(2) detect and eliminate FDI vulnerabilities in the specification interactively.
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Moving Camera Analytics: Computer
Vision Applications

Chung-Ching Lin, Karthikeyan Natesan Ramamurthy,
and Sharathchandra U. Pankanti

Abstract To date, billions of cameras have been actively used on moving platform.
Video analytics applications for camera are emerging in diverse areas. Among
various video analytics applications for moving cameras, we will discuss the
application of unmanned aerial vehicles (UAVs). First, we present a system for
summarizing videos by automatically creating a panorama for videos, detecting and
tracking moving objects in the videos. Our video summarization experiments on the
UAV dataset demonstrate that we can achieve efficient data reduction without losing
significant activities of interest. Second, a distributed 3D reconstruction algorithm
will be presented. Most methods for 3D reconstruction methods are either central-
ized or operate incrementally. The poor scalability affects the quality of solution for
large-scale structure from motion (SfM). Our algorithm uses alternating direction
method of multipliers (ADMM) to formulate a distributed bundle adjustment (BA)
algorithm. The results are comparable to an alternate state-of-the-art centralized
bundle adjustment algorithm on synthetic and real 3D reconstruction problems. The
runtime of our implementation scales linearly with the number of observed points.

1 Introduction

In the instrumented, integrated internet of things, moving cameras are playing
an increasingly major role as versatile sensors. Currently, billions of cameras are
actively used on moving platforms such as cell phones, unmanned aerial vehicles
(UAVs), cars, and people (e.g., wearable cameras), and the number is rapidly
increasing. Various video analytics applications for moving cameras are emerging
in many areas. Just a few of these include: retail, store-shelf monitoring and
management with body cams, map and road updates with instrumented cars, car
cameras that sense road conditions, event reconstruction with unstructured cell

C.-C. Lin (�) · K. N. Ramamurthy · S. U. Pankanti
IBM Research AI, Yorktown Heights, NY, USA

© Springer Nature Switzerland AG 2020
S. S. Bhattacharyya et al. (eds.), Embedded, Cyber-Physical, and IoT Systems,
https://doi.org/10.1007/978-3-030-16949-7_5

89

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16949-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-16949-7_5


90 C.-C. Lin et al.

phone cameras for public safety, and UAV video summarization. Each of these
applications generates a huge dataset to be analyzed.

A powerful mobile video analytics system can be applied to various types of
unmanned vehicles, including those that operate on the ground, in the air, and
under water. For homeland security tasks such as border protection and control
and coastline monitoring, UAVs that can monitor a very large area during an
extended period of time are required. The UAVs can be equipped with optical and
infrared cameras, lowlight cameras, radar, and biochemical sensors. Law enforce-
ment departments in some countries plan to replace helicopters with medium-size
UAVs with automatic video trackers. For post-disaster assessments such as those
performed after hurricanes, earthquakes, floods, and forest fires, the UAVs need to
be equipped with high-resolution cameras, telescopic lenses, and infrared sensors
for accessing areas that are difficult or dangerous for humans to reach.

Each application of this nature collects large amounts of diverse types of data.
In cases such as homeland security, large amounts of videos are generated daily.
Because the human resources needed to screen and compare the videos are limited,
a method to reduce video data effectively without losing important information
is vital. A system that can summarize videos and reconstruct 3D scenes can help
operators make decisions promptly and accurately.

There are two primary challenges to building this type of system. Providing
useful operational 2D views and 3D views from unstructured, uncalibrated videos
or images taken or streamed from mobile vantage points of view is difficult because
of low spatial and temporal resolution, jitter, frequent undefined motion, non-ideal
vantage points of view, frequently moving or changing background scenery, and the
potential inclusion of misleading or tampered with sources of information.

Our approach addresses both of these challenges. Our system provides analytics
for summarizing videos. In this chapter, we describe the system and its use with
mobile videos acquired by UAVs.

Typically, most of the content of a particular UAV video does not contain any
event of interest, such as a moving pedestrian or vehicle. Our solution’s analytics
can detect and track moving objects, and generate panoramas. At the end of analysis,
the graphical user interface (GUI) presents a list of tracks from the videos, ranked
based on their saliency [20]. Also, the panorama is shown in another window with
every track registered. The panorama provides a global view of the area covered
by videos from moving cameras, while the list of tracks can allow the operators to
understand what events occurred in the videos.

For 3D reconstruction, we proposed a distributed bundle adjust algorithm.
Most methods for 3D reconstruction methods are either centralized or operate
incrementally. The poor scalability affects the quality of solution for large-scale
structure from motion (SfM). Our algorithm uses alternating direction method of
multipliers (ADMM) to formulate a distributed bundle adjustment (BA) algorithm
[31]. Our approach is ideally suited for applications where image acquisition and
processing must be distributed, such as in a network of unmanned aerial vehicles
(UAVs). We assume that each UAV in the network has a camera and a processor;
each camera acquires an image of the 3D scene, and the processors in the different
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UAVs cooperatively estimate the 3D point cloud from the images. Therefore, we
use the terms camera, processor, and UAV in an equivalent sense throughout the
chapter. We also assume that corresponding points from the images are available
(possibly estimated using a different distributed algorithm), and are only concerned
about estimating the 3D scene points given the correspondences.

The system can enable new important applications (e.g., post-disaster assess-
ments) and can also help existing applications, such as ones for homeland security,
perform more effectively, efficiently, and cost-effectively. Every mobile platform is
a resource-limited system and has a limited bandwidth available to communicate
with other systems. We forecast that these types of applications will soon function
primarily on server or cloud processors. This trend will be driven by the availability
of more powerful processors and partly by the refinement of algorithms to make
them less processor-intensive.

2 Related Work

As a result of the recent dramatic increase in the prevalence of mobile cameras
and sensors, the amount of generated video data is growing rapidly. Accordingly,
developing efficient and effective algorithms for video summarization has become
increasingly beneficial. Currently, two main approaches exist for video summa-
rization: keyframe-based summarization and object-based summarization. In the
keyframe-based approach (e.g., [12]), the video is analyzed using relatively low-
level visual properties, and a series of still images is generated as a summary of
the entire video. In contrast, object-based summarization techniques (e.g., [9, 29])
typically first perform object segmentation and tracking and then compress the
extracted trajectories (or tubes) to reduce spatio-temporal redundancy.

When a video sequence is captured from a moving camera, an important
component in almost any analysis system is the video stabilizer. The stabilizer
compensates for the motion of pixels on the image plane due to the motion of the
camera (i.e., register the video frames). This process usually involves the selection
of a motion model, followed by an estimation of the model parameters. Techniques
for estimating the model parameters can be broadly divided into two classes: direct
methods [16] and feature-based methods. In direct methods, the camera motion and
other useful analytics are directly estimated from image pixel properties. In contrast,
feature-based methods generally use a pipeline of keypoint (corner) detection,
feature matching, and geometric registration. With the advances of the last decade
in keypoint detection and matching (e.g., [24, 37]), feature-based methods are now
remarkably robust, typically outperforming direct schemes. In our system, video
data is registered using our robust feature-based algorithm, which automatically
creates a mosaic [17] by stitching image frames together; this virtually increases
the field of view of the camera.

For effective video summarization, reliably tracking moving objects is crucial.
While object tracking [42] is a well-studied computer vision problem, and works
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very effectively for videos captured by a static camera (e.g., [43]), it is still difficult
to effectively track objects in videos captured by a moving platform. To obtain
reliable tracking results, we employ several efficient trackers [7, 34] and use a
combination of their results.

For vision application to perform well in our three-dimensional world, it is
usually essential to understand the 3D structure of a scene [14]. Estimating accurate
poses of cameras and locations of 3D scene points from a collection of images
obtained by the cameras is a classic problem in computer vision, referred to as
structure from motion (SfM). Optimizing for the camera parameters and scene
points using the corresponding points in images, known as bundle adjustment (BA),
is an important component of SfM [13, 14, 35].

Many recent approaches for BA can be divided into three categories: (a) those
that pose BA as non-linear least squares [18, 22, 35], (b) those that decouple the
problem in each camera using a triangulation-resection procedure for estimation
[25, 30], and (c) those that pose and solve BA in a linear algebraic formulation [11].
Some important considerations of these methods are reducing the computational
complexity by exploiting the structure of the problem [1, 6, 22], incorporating
robustness to outlier observations or correspondence mismatches [2, 44], distribut-
ing the computations or making the algorithm incremental [8, 15, 19, 39, 40],
and making the algorithm insensitive to initial conditions [11]. In this chapter, we
develop robust distributed BA over camera and scene points.

Robust approaches, such as [2, 44], are typically used to protect world point and
camera parameter estimates from effects of outliers, which for BA are incorrect
point correspondences that have gone undetected. In contrast, we use robust
formulations to accelerate consensus in the distributed formulation. Depending
on how distribution is achieved, every processor performing computation may see
only a small portion of the total data, and attempt to use it to infer its local
parameters. Small sample means can be extreme, even when the original sample
is well-behaved (i.e., even when re-projection errors are truly Gaussian). In the
limiting case, each processor may only base its computation on one data point,
and therefore outliers are guaranteed to occur (from the point of view of individual
processors) as an artifact of distributing the computation. Hence we hypothesize
that using robust losses for penalizing re-projection errors and quadratic losses for
enforcing consensus improves performance.

Our proposed robust BA approach supports a natural distributed parallel imple-
mentation. We distribute the world points and camera parameters as illustrated for
a simple case of 2 cameras and 5 scene points in Fig. 1. The algorithm is developed
using distributed alternating direction method of multipliers (D-ADMM) [5]. Each
processor updates its copy of a set of parameters, while the updated estimates and
dual variables ensure consensus. Distributing both the world points and the camera
parameters yields iterations with O(l) required operations in a serial setting, where
l is the total number of 2D observations. In a fully parallel setting, it is possible
to bring the time complexities down to O(1) per iteration, a vast improvement
compared to traditional and sparse versions of BA, whose complexities are O((m+
n)3) and O(m3 + mn), respectively [22] (with m and n the number of cameras and
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Fig. 1 (a) Original configuration of cameras A, B and scene points 1, 2, 3, 4, 5, (b) distributing
both the camera parameter and scene point estimation with the constraints A1 = A2 = A3, B1 = B2
= B3, and 3A = 3B

3D scene points). We also exploit the sparsity of the camera network, since not all
cameras observe all scene points.

Another optimization-based distributed approach for BA was recently proposed
[8]. The authors of [8] distributed camera parameters, and performed synthetic
experiments using an existing 3D point cloud reconstruction, perturbing it using
moderate noise, and generating image points using known camera models. We go
further, distributing both world points and camera parameters in a flexible manner,
and we implement the entire BA pipeline for 3D reconstruction: performing feature
detection, matching corresponding points, and applying the robust distributed D-
ADMM BA technique in real data settings.

3 Video Summarization

In this section, we describe our method of video summarization for moving cameras.
We implemented a robust approach for detecting and tracking moving objects. Our
approach tackles challenges introduced by videos from moving cameras, such as
rapidly moving and shaking platforms, irregular rotations, small object resolution,
and low contrast of images. Our system also generates a panorama upon which the
registered tracks are superimposed.

3.1 Object Detection and Tracking

Our approach first compensates for the camera motion by estimating the homogra-
phy transformation using the detected and matched feature points between adjacent
frames. After motion compensation, a foreground mask is obtained by comparing
the aligned frames, and is used to identify potential moving objects. Due to low
image quality, camera noise, intensity change, or parallax, this identification of
potential moving objects may have false positive detections. We use the feature
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motion vectors of the potential moving objects to verify and reduce false detections.
Potential moving objects with small feature motion vectors are considered to be
steady objects and discarded. Detected objects are tracked by analyzing the variation
of Bhattacharyya coefficient [3] within the mean shift framework [7]. Under a
challenging dataset, this tracking method may not be robust enough. Therefore, we
use the foreground mask and feature motion vectors to aid the tracking algorithm.
Foreground masks provide possible locations of moving objects and the feature
motion vectors are used to verify the movement of the objects, resulting in more
accurate tracking results.

3.2 Panorama

To obtain a global view of the area covered by videos of moving cameras, our
method generates panoramas for the videos. Due to the nature of the moving
cameras, each video can contain several segments with dissimilar viewing angles
and settings. Each segment is presented by a sub-panorama.

For more precise frame alignment, we compute the homography transformation
between two consecutive frames using RANSAC (random sample consensus) [10].
We utilize SIFT (scale-invariant feature transform) [23] to obtain more precise
feature point detection and matching. However, not every pair of adjacent frames
has enough corresponding points to estimate homography transformations. In this
case, we estimate an affine transformation. The estimated transformation is then
further verified. If it is abnormal or cannot be found, the transformation between
two consecutive frames is set to empty. After estimating all the transformation
parameters, we then determine the first and the last frames of each segment by
checking the consecutive normal transformations. To create sub-panoramas for each
segment, we align every frame to the first frame within the segment. Next, we
transform the frames to have the same coordinate system as the first frame. This
can be done using the homographies H between each pair of frames, which have
already been computed.

Using the transformation between adjacent frames, a frame can be aligned with
the previous one using the inverse transformation

It → It−1 : xt−1,i = Ht−1→t xt,i = H−1
t→t−1xt,i , (1)

where It is the frame at time t , Ht−1−→t is the transformation from frame It−1 to
frame It , and xt,i is the position of i-th pixel in frame It . The transformation from
the k-th frame to the first frame of the segment is the cascade of the inverse adjacent
transformations between the first and k-th frames

It −→ I0 : x0,i = H−1
1→0H

−1
2→1 . . . H−1

t−2→t−1H
−1
t→t−1xt,i . (2)



Moving Camera Analytics: Computer Vision Applications 95

To avoid a blurred panorama caused by parallax, when each frame is transformed to
the panorama coordinate system, we only update the uncovered area. We also devel-
oped a method to register each image to a single panorama. Every sub-panorama is
generated from the frames with different viewing angles of video. When registering
the sub-panoramas with large differences in viewing angle, 3D distortion causes
dissimilarity in the extracted affine invariant descriptors of corresponding points
in different views. Here, existing methods fail to find corresponding points. To
overcome this, we developed a method to normalize 3D distortion with hypothesis
transformation and find the accurate corresponding points. From our experience,
affine transformation is sufficient to normalize 3D distortion.

3.3 Visualization

After detecting and tracking moving objects, we compute the saliency score of every
track by evaluating the roughness of the object’s trajectory [36]. To summarize the
videos more efficiently, we generate keyframes that represent the video segments,
along with their associated activities. Tracks that are overlapping in time are grouped
together, and then registered and superimposed on a keyframe, as shown in Fig. 2
(left). In this way, the entire video is summarized by several keyframes. We also
register and superimpose all tracks on the panorama to summarize the video in a
single image [4].

3.4 Results

To demonstrate our video summarization, we used a challenging dataset, the aerial
videos in version 2.0 of VIRAT (video and image retrieval and analysis tool) dataset
[28], which captures real natural scenes.

Figure 2 shows an experimental video summarization. For each video, our system
extracted a list of summarizing video segments, shown in Fig. 2 (left), and provided
a video panorama, also shown in Fig. 2 (right). Each video segment has a starting
and ending time and is also represented by one keyframe. Each keyframe summa-
rizes a video segment, and the list of selected video segments is ranked by saliency
scores. All the tracks in the video segment are superimposed on the keyframe of
the video segment. These results show a full VIRAT aerial video of 18,575 frames
summarized by 5 keyframes. All the tracks in the video are superimposed on the
panorama of the whole video. This is equivalent to summarizing the entire video of
18,575 frames using only one image, demonstrating that our summarization method
can achieve 10,000-fold data reduction. Our approach reaches an overall precision
of 0.8 and recall of 0.92 in our test set of 8 VIRAT videos. The image quality of the
VIRAT dataset is low, thus presenting difficulties in detecting and tracking moving
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Fig. 2 Main application windows: (a) a keyframe summarizing a video segment and the list of
selected video segments ranked by saliency scores, showing that a full VIRAT aerial video of
18,575 frames was summarized by only 5 keyframes; (b) a panorama of the video

objects. If we can improve the image quality using super resolution, the detection
and tracking performance will be significantly improved.

4 Distributed Bundle Adjustment

In this section, we introduce our proposed distributed bundle adjustment, that is, a
robust and flexible approach to reconstruct 3D scene from 2D observations. We will
discuss background, notations, and the proposed approach. Then, experiments and
comparisons on synthetic and real data will be demonstrated.

4.1 Background

4.1.1 The Camera Imaging Process

We denote the m camera parameter vectors by {yj }mj=1, the n 3D scene points as

{xi}ni=1, and the 2D image points as {zij }. Each 2D image point zij ∈ R
2 is obtained

by the transformation and projection of a 3D scene point xi ∈ R
q by the camera

yj ∈ R
p. BA is an inverse problem, where camera parameters and 3D world points

are estimated from the observations {zij }. The forward model is a non-linear camera
transformation function f (xi, yj ).

The number of image points is typically much smaller than mn, since not all
cameras image all scene points. The camera parameter vector (yj ) usually includes
position, Euler angles, and focal length. In this discussion, we assume focal length
is known for simplicity, and yj ∈ R

6 comprises Euler angles α, β, γ and the
translation vector t ∈ R

3.
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Denote the diagonal focal length matrix as K ∈ R
3×3, with the first two diagonal

elements set to the focal length and the last element set to 1. The rotation matrix
is represented as R = R3(γ )R2(β)R1(α), where R1, R2, R3 are rotations along the
three axes of R3. The camera transformation is now given as z̃ = Rx + t . The final
2D image point z is obtained by a perspective projection, with coordinates given by

z1 = z̃1

z̃3
, z2 = z̃2

z̃3
. (3)

4.1.2 Bundle Adjustment

Given the 2D points in multiple images that represent the same scene point, BA is
typically formulated as a non-linear least squares problem:

min{xi },{yj }

m∑

j=1

∑

i∈S(j)

‖zi,j − f (xi, yj )‖2
2. (4)

The set S(j) contains i if the scene point i is imaged by the camera j . The number
of unknowns in this objective is 3n + 6m, and hence it is necessary to have at
least this many observations to obtain a good solution; in practice, the number of
observations is much larger. Problem (4) is solved iteratively, with descent direction
(δx, δy) found by replacing f in (4) by its linearization

f (x + δx, y + δy) ≈ f (x, y) + J (x)δx + J (y)δy,

where J (x) = ∂xf, J (y) = ∂yf . The Levenberg–Marquardt (LM) algorithm [26]
is often used for BA.

The naive LM algorithm requires O((m + n)3) operations for each iteration,
and memory on the order of O(mn(m + n)), since we must invert of an O(m +
n) × O(m + n) matrix at each iteration. However, exploiting matrix structure and
using the Schur complement approach proposed in [22], the number of arithmetic
operations can be reduced to O(m3 + mn) and memory use to O(mn). Further
reduction can be achieved by exploiting secondary sparse structure [18]. The
conjugate gradient approaches in [1, 6] can reduce the time complexity to O(m)

per iteration, making it essentially linear in the number of cameras.
Another popular approach to reduce the computational complexity involves

decoupling of the optimization by explicitly estimating the scene point using back-
projection in the intersection step and estimating the camera parameters in the
resection step [30]. The resection step decouples into m independent problems, and
hence the overall procedure has a cost of O(m) per iteration. A similar approach, but
with the minimization of �∞ norm of the re-projection error was proposed in [25].
It was shown to be more reliable and degraded gracefully with noise compared to
�2 based BA algorithms. Recently Wu proposed an incremental approach for bundle
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adjustment [39], where a partial BA or a full BA is performed after adding each
camera and associated scene points to the set of unknown parameters, again with a
complexity of O(m). We use the ADMM framework to develop our approach.

4.1.3 Alternating Direction Method of Multipliers

ADMM is a simple and powerful procedure well-suited for distributed optimiza-
tion [21], see also [5]. In order to understand D-ADMM, consider the objective
h(x) := ∑n

i=1 hi(x). We introduce local variables with a consensus equality
constraint:

min{xi },u

n∑

i=1

hi(xi)

subject to xi − u = 0, i ∈ {1, . . . , n}.
(5)

To solve this problem, we first write down an augmented Lagrangian [32]:

lφ(x, u, r, ρ) :=
n∑

i=1

hi(xi) + rT
i (xi − u) + ρ

2
φ(xi, u), (6)

where ρ > 0 is the penalty parameter, ri is the Lagrangian multiplier for the
constraint, and φ(xi, u) is the augmentation term that measures the distance indi-
vidual variables xi and the consensus variable u. We then find a saddle point using
three steps to update {xi}, u, and {ri}. Typically φ(xi, u) is chosen to the squared
Euclidean distance in which case (6) becomes the proximal Lagrangian [32], but
other distance or divergence measures can also be used.

4.2 Algorithmic Formulation

4.2.1 Distributed Estimation of Scene Points and Camera Parameters

We distribute the estimation among both the scene points and the camera parameters
as illustrated in Fig. 1. We estimate the camera parameter and the scene point
corresponding to each image point independently, and then impose appropriate
equality constraints. Equation (4) can be written as

min
{xj

i },{yi
j },{xi },{yj }

m∑

j=1

∑

i∈S(j)

φm(zi,j − f (x
j
i , yi

j )), (7)

such that x
j
i = xi,∀i, and {j : i ∈ S(j)}, (8)
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yi
j = yj ,∀j, and {i ∈ S(j)}. (9)

The augmented Lagrangian, with dual variables r
j
i and si

j , is given by

m∑

j=1

∑

i∈S(j)

φm(zi,j − f (x
j
i , yi

j )) + r
jT
i (x

j
i − xi) + siT

j (yi
j − yj )

+ (ρx/2)φa(x
j
i − xi) + (ρy/2)φa(y

i
j − yj ). (10)

Here φa measures the distance between the distributed world points and their con-
sensus estimates, and distributed camera parameters and their consensus estimates.
For φm we compare squared Euclidean and Huber losses, and φa is always the
squared Euclidean loss.

The ADMM iteration is given by

(x
j (k+1)
i , y

i(k+1)
j ) := argmin

{xj
i },{yi

j }
φm(zi,j − f (x

j
i , yi

j ))

+ r
j(k)T
i (x

j
i − x

(k)
i ) + s

i(k)T
j (yi

j − y
(k)
j )

+ (ρx/2)φa(x
j
i − x

(k)
i ) + (ρy/2)φa(y

i
j − y

(k)
j ), (11)

x
(k+1)
i := 1

|j : i ∈ S(j)|
∑

j :i∈S(j)

(
x

j (k+1)
i + (1/ρx)r

j (k)
i

)
, (12)

y
(k+1)
j := 1

|i ∈ S(j)|
∑

i∈S(j)

(
y

i(k+1)
j + (1/ρy)s

i(k)
j

)
, (13)

r
j (k+1)
i := r

j (k)
i + ρx

(
x

j (k+1)
i − x

(k+1)
i

)
, (14)

s
i(k+1)
j := s

i(k)
j + ρy

(
y

i(k+1)
j − y

(k+1)
j

)
. (15)

Equation (11) has to be solved for all j ∈ S(i), i ∈ {1, . . . , m}, and it can be
trivially distributed across multiple processes. When φm is squared �2 distance, (11)
can be solved using the Gauss–Newton method [27], where we repeatedly linearize
f around the current solution and update (x, y). When φm is the Huber loss, we use
limited memory BFGS (L-BFGS) [27] to update the distributed scene points. Upon
convergence, we will obtain the consensus estimates xi and yj for all scene points
and cameras.
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4.2.2 Convergence Analysis

We show that under certain assumptions the proposed D-ADMM algorithm in
Sect. 4.2.1 converges, using the non-convex and non-smooth framework developed
by Wang et al. [38].

Theorem 1 The D-ADMM algorithm proposed in Sect. 4.2.1 to the stationary point
of the augmented Lagrangian in (10) when:

1. f (., .) is the perspective camera projection model,
2. φm is any convex, smooth loss function, and φa is the squared Euclidean loss.
3. ρx and ρy are sufficiently large.

Proof Let dij be the stack of {xj
i , yi

j }, and d̂ = [d̂ij ]∀i,∀j . Similarly each pair of

consensus variables are stacked as the vector ĉij = [xT
i yT

j ]T and ĉ = [ĉij ]∀i,∀j .

d̂ and ĉ are, respectively, equivalent to x and y in [38]. We show that the five
assumptions (A1–A5) of [38, Thm. 1] are satisfied.

1. Given our assumptions, the objective function in (8) is coercive, i.e., it tends to
∞ as d̂ → ∞ (A1).

2. The feasibility and sub-minimization path conditions are also satisfied since the
constraint matrices are easily seen to be full rank (A2–A3).

3. Each additive part of the objective φm(zi,j −f (x
j
i , yi

j )) is restricted prox-regular
if φm is a smooth convex function and f is the perspective camera model. The
gradient will be steep when z̃3 in (3) is less than some ε > 0 and φm(zi,j −
f (x

j
i , yi

j )) is prox-regular for ε > 0; hence A4 in [38, Thm. 1] holds.
4. Our objective with respect to the consensus variable is identically 0, which is

trivially regular (A5).

Since all the assumptions hold, the iterative algorithm in Eqs. (11)–(15) con-
verges to a stationary point of the augmented Lagrangian for sufficiently large ρx

and ρy .

4.2.3 Time Complexity

Optimizing (11) takes O(l) time for each round of updates, since (11) must be
solved l times, with each solve requiring constant time. The time complexity of the
consensus steps for camera parameters and world points given by (12) and (13) are
O(m) and O(n), respectively. For the Lagrangian parameter updates given by (14)
and (15), the time complexity is O(l). Hence the dominant time complexity of the
proposed algorithm is O(l) for each round. Since the algorithm can be trivially
parallelized, the complexity can be brought down to O(1) for each round, if we
distribute all the observations to individual processors.
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4.2.4 Communication Overhead

Considering a sparse UAV network, assume that each world point is imaged by d

cameras. Each camera needs to maintain a copy of the consensus world points xi .
Therefore to update xi using (12), each camera needs to obtain d − 1 individual
estimates of x

j
i and send its version of x

j
i to d − 1 other cameras. Values r

j
i can be

updated locally in each camera, given x
j
i , xi and previous versions of r

j
i using (14).

Hence, for each world point we have a communication overhead of 3(d − 1)d

floating points per iteration (each world point is a 3D vector). Hence for n world
points, the communication overhead is 3(d − 1)dn floating points per iteration,
where d depends on the distance of the camera from the scene.

4.2.5 Generalized Distributed Estimation

The problem (11) requires each processor to estimate p + q > 2 parameters from
a single 2D observation. To control the variability of individual estimates as the
algorithm proceeds, we generalize the approach to use more than one observation
and hence more than one scene point and camera vector during each update step.
This generalized step provides flexibility to adjust the number of 3D scene points
and cameras based on computational capability of each thread in a CPU or a GPU.
We solve

(X
j(k+1)
i , Y

i(k+1)
j ) := argmin

{Xj
i },{Y i

j }
φm(Zi,j − f (X

j
i , Y i

j ))

+ r
j(k)T
i (X

j
i − X

(k)
i ) + s

i(k)T
j (Y i

j − Y
(k)
j )

+ (ρx/2)φa(X
j
i − X

(k)
i ) + (ρy/2)φa(Y

i
j − Y

(k)
j ), (16)

where

X
j(k+1)
i :=

[
x

j (k)
i1

x
j (k)
i2

. . . x
j (k)
iπ

]T

,

Y
i(k+1)
j :=

[
y

i(k)
j1

y
i(k)
j2

. . . y
i(k)
jκ

]T

. (17)

4.3 Experiments

We perform several experiments with synthetic data and real data to show the
convergence of the re-projection error and the parameter estimates. We also compare
the performance of the proposed approach to the centralized BA algorithm that
we implemented using LM. The LM stops when the re-projection error drops
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Fig. 3 Camera flight path
(blue) and 3D scene points
(red) for an example synthetic
dataset

below 10−14, or when the regularization parameter becomes greater than 1016.
We implement our distributed approach in a single multi-core computer and not
in a sparse UAV network, but our architecture is well-suited for a networked UAV
application.

4.3.1 Synthetic Data

We simulate a realistic scenario, with smooth camera pose transition, and noise
parameters consistent with real-world sensor errors. Using the simulation, we
evaluate the error in the estimated 3D scene point cloud and the camera parameters,
and investigate how estimation error of camera pose affects the final tie points
triangulation.

The camera positions are sampled around an orbit, with an average radius 1000 m
and altitude 1500 m, with the camera directed towards a specific area. To each
camera pose, a random translation and rotation is added as any real observer cannot
move in a perfect circle while steadily aiming always in the same exact direction.
The camera path and the 3D scene points for an example scenario are shown in
Fig. 3. In practice, tie points are usually visible only within a small subset of the
available views, and it is generally not practical to try to match all keypoints within
each possible pair of frames. Instead, points are matched within adjacent frames. In
our synthetic data, we create artificial occlusions or mis-detection so that each point
is only visible on a few consecutive frames.

4.3.2 Convergence and Runtime

We investigate convergence of the re-projection error and parameters for D-ADMM
BA, comparing the convergence when φm is squared �2 vs. Huber in (7), and φa

always the squared �2. The number of cameras is 5, the number of scene points is
10, and the number of 2D image points (observations) is 50. We fix the standard
deviation for the additive Gaussian noise during the initialization of the camera
angles and positions to be 0.1. We vary the standard deviation of noise for the
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Fig. 4 Choosing φm loss to be Huber penalty leads to better performance in distributed BA, even
when there are no outliers in the original data. Panels (a) and (c) compare re-projection errors,
while (b) and (d) compare MSE of scene points. In all figures, curves correspond to values σ of
scene variance, as shown in the legend. Consensus penalty φa is always �2. (a) Rep. errors: φm

in (7) is �2. (b) MSE: φm in (7) is �2. (c) Rep. errors: φm in (7) is Huber. (d) MSE: φm in (7) is
Huber

scene points from 0.2 to 1.7. Introducing robust losses for misfit penalty helps the
convergence of the re-projection error significantly, see Fig. 4a vs. c. This behavior
is observed with the convergence of the scene points, see Fig. 4b vs. d, and camera
parameters. The Huber penalty is used to guard against outliers; here, outliers
come from processors working with limited information. The performance degrades
gracefully with noise, see Fig. 4c, d.

We also compare D-ADMM BA with the centralized LM BA and present
the results in Fig. 5a, b. The number of camera parameters and 3D scene points
are (10, 40), (15, 100), (25, 100), (30, 200), (100, 200), and (100, 250), with the
number of observations increasing as shown in the x-axis of Fig. 5. In most settings,
D-ADMM BA has a better parameter MSE than centralized LM BA. The runtime
of the proposed approach with respect to the number of observations and parallel
workers is shown in Fig. 5c. The parallel workers are configured in MATLAB, and
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Fig. 5 (a) MSE between the actual and estimated camera parameters, (b) MSE between the actual
and estimated scene points, (c) runtime of the proposed D-ADMM algorithm with increasing
number of processor cores

the runtime is linear with respect to the observations and reduces with increasing
workers. Our implementation is a simple demonstration of the capability of the
algorithm—a fully parallel implementation in a fast language such as C can realize
its full potential.

4.3.3 Real Data

To demonstrate the performance of D-ADMM BA, we conducted experiments on
real datasets with different settings. All experiments are done with MATLAB on a
PC with a 2.7 GHz CPU and 16 GB RAM.

In our SFM pipeline, SIFT feature points [23] are used for detection and
matching. The relative fundamental matrices are estimated for each pair of images
with sufficient corresponding points, which are used to estimate relative camera pose
and 3D structure. Next, the relative parameters are used to generate the global initial
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Fig. 6 (a) Original 2D image, (b) re-projection error for D-ADMM BA, (c) dense 3D point cloud
estimated with LM BA (mean re-projection error = 0.93), (d) dense 3D point cloud estimated using
D-ADMM BA (mean re-projection error = 0.67)

values for BA. The datasets were downloaded from the Princeton Vision Group and
the EPFL Computer Vision Lab [33].

Since there are no ground truth 3D structures available for the real datasets, we
compare the dense reconstruction results obtained using the method of [41]. The
first dataset has five images and a sample image is shown in Fig. 6a. After keypoint
detection and matching, centralized LM BA and D-ADMM BA are given the same
input. There are a total of 104 world points and 252 observations. The final re-
projection errors of LM and D-ADMM are 0.93 and 0.67, respectively. Figure 6c,
d shows that the dense reconstruction quality of LM and the D-ADMM is similar.
Figure 6b shows the convergence of re-projection error for the D-ADMM algorithm.
Figure 7a shows the convergence of re-projection error for different values of ρ =
ρx = ρy . Setting ρ to a high value accelerates convergence.

We also estimate camera parameters and scene points, applying the approach of
Sect. 4.2.5 to the same dataset. Figure 7b shows that as the number of scene points
per iteration increases, the runtime decreases, with 32 scene points per iteration
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Fig. 7 (a) The re-projection error for different values of ρ, using generalized distribution
approach, (b) runtime of D-ADMM BA, (c) re-projection errors with increasing number of scene
points, (d) re-projection errors for multiple cameras per estimation vector

Fig. 8 (a) Original 2D image, (b) dense 3D point cloud estimated with D-ADMM BA (mean
re-projection error = 0.76)
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Fig. 9 Three reconstructed
fountain-P11 views (11
images, 1346 world points,
3859 observations, mean
re-projection error = 0.5)

giving the fastest convergence, see Fig. 7c. Figure 7d compares re-projection errors
with different number of cameras in each iteration. Initial values are the same as in
the castle-P30 experiment (Fig. 12), and the number of scene points in each iteration
is 64. Re-projection errors decrease faster as the number of cameras in each iteration
increases.

We perform distributed BA on the Herz-Jesu dataset provided in [33] using the
approach in Sect. 4.2.5. This dataset has seven images, 1140 world points, and 2993
observations. In this experiment, the LM BA algorithm using the same setting as in
previous experiments does not converge and has the final re-projection error about
2500. Therefore, the dense reconstruction result is not presented. D-ADMM BA
with eight scene points in each update step has a final re-projection error of 0.76.
Figure 8b shows the dense 3D point cloud estimated with D-ADMM BA.

Additional results on other datasets (fountain-P11, entry-P10, Herz-Jesu-P25,
and castle-P30) are presented in Table 1, Figs. 9, 10, 11, and 12. σ is mean re-
projection error. Figures 9, 10, 11, and 12 present different perspectives of the dense
reconstruction results to show the robustness of 3D parameter estimations.
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Fig. 10 Three reconstructed
entry-P10 views (10 images,
1382 world points, 3687
observations, re-projection
error = 0.7)

Table 1 The dataset
information and experiment
results

Dataset Images Scene pts Obs σ

Fountain-P11 11 1346 3859 0.5

Entry-P10 10 1382 3687 0.7

Herz-Jesu-P25 25 2161 5571 0.87

Castle-P30 30 2383 6453 0.84

Settings are fixed across experiments, and the maximum iteration counter is set to
1600. The experiments on fountain-P11 and Herz-Jesu-P25 dataset (Figs. 9 and 11)
have better dense reconstruction results since there are more images covering the
same regions. The real data experiments show D-ADMM BA achieves similar
objective values (mean re-projection error < 1) as the number of observations
increases; it is not necessary to increase the number of iterations as the size of the
data increases. D-ADMM BA scales linearly with the number of observations and
can be parallelized on GPU clusters.
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Fig. 11 Three reconstructed
Herz-Jesu-P25 views (25
images, 2161 world points,
5571 observations, mean
re-projection error = 0.87)

5 Conclusions

Although video analytics has been available for many years, the use of moving
cameras has experienced a tremendous growth in recent years due to advances
in mobile hardware and software. This phenomenon opens up new possibilities
for mobile camera analytics and allows video analytics to expand into areas that
were previously reserved for static cameras. That said, it also introduces technical
challenges due to the vast amounts of data and metadata being generated.

We first presented a novel approach to summarize and visualize long videos from
mobile cameras. Our method generates efficient representations of videos based
on moving object detection and tracking while remaining robust in the face of
abrupt camera motion. Experimental results on the challenging VIRAT aerial dataset
demonstrated that our method can summarize the entire video by registering all the
tracks in the 18,575 frames on a single panorama. This demonstrates that our system
can accomplish a 10,000-fold data reduction without significant loss of events of
interest.
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Fig. 12 Three reconstructed
castle-P30 views (30 images,
2383 world points, 6453
observations, mean
re-projection error = 0.84)

We then presented a new distribution algorithm for bundle adjustment, D-
ADMM BA, which compares well to centralized approaches in terms of perfor-
mance and scales well for SfM. Experimental results demonstrated the importance
of robust formulations for improved convergence in the distributed setting. Even
when there are no outliers in the initial data, robust losses are helpful because
estimates of processors working with limited information can stray far from the
aggregate estimates, see Fig. 4. Formulation design for distributed optimization may
yield further improvements; this is an interesting direction for future work.

The results obtained with D-ADMM BA are comparable to those obtained with
state-of-the-art centralized LM BA, and D-ADMM BA scales linearly in runtime
with respect to the number of observations. Our approach is well-suited for use in a
networked UAV system, where distributed computation is an essential requirement.

With more mobile video analytics capabilities, we can enhance applications in
both individual and enterprise domains to save costs and labor by providing holistic
situational awareness summaries. The implementation of our system proved that
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mobile devices are definitely suitable even for complex analytics applications such
as the ones we described. Other domains that could benefit from this type of ana-
lytics include: shelf-monitoring, map and road update, parking spot management,
inventory accuracy, large warehouse management, cart localization or supply, and
spill and fall detection.
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Code Compression for Embedded
Systems

Chang Hong Lin, Wei-Jhih Wang, Jui-Chun Chen, and Che-Wei Lin

Abstract Embedded systems are constrained by the available memory, and code
compression techniques address this issue by reducing the code size of appli-
cation programs. The main challenge for the development of an effective code
compression technique is to reduce the code size without affecting the overall
system performance. Code compression traditionally works on fixed-sized blocks
with its efficiency limited by their small size. A new methodology, branch block,
which is a series of instructions between two consecutive possible branch targets,
provides larger blocks for code compression. Moreover, dictionary-based code
compression schemes are the most commonly used ones, because they can provide
both good compression ratio and fast decompression. In this chapter, several branch-
block based methods, as well as new dictionary-based code compression methods
are presented. These methods can achieve a good compression ratio (CR) (the
compressed code size divided by original code size), with little or no hardware
overheads.
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1 Introduction

Embedded systems have become an essential part of everyday life in the past
decade as almost all electronic devices contain them. The complexity and perfor-
mance requirements for embedded systems grow rapidly as system-on-chip (SoC)
architecture becomes the trend. Embedded systems are cost and power sensitive,
and their memory systems often occupy a substantial portion of chip area and
system cost. Program size tends to grow as applications become more and more
complex, and even for the same application, program size grows as RISC (reduced
instruction set computer), superscalar, or VLIW (very long instruction word)
architectures are used. Pure software techniques, such as constant propagation,
procedural abstraction, or cross jumping, may help us in reducing the program size;
however, powerful compilers are needed and these techniques may have negative
effect on performance. Code compression is proposed as another solution to reduce
program size and in turn to reduce the memory usage in embedded systems. It refers
to compressing program codes offline and decompressing them on-the-fly during
execution. This idea was first proposed by Wolfe and Chanin in the early 1990s
[8], and much research has been done to reduce the code size for RISC machines
[9–14]. As instruction level parallelism (ILP) becomes common in modern SoC
architectures, a high-bandwidth instruction-fetch mechanism is required to supply
multiple instructions per cycle. Under these circumstances, reducing code size and
providing fast decompression speed are both critical challenges when applying code
compression to modern embedded machines.

Furthermore, code compression methods have to be lossless; otherwise, the
decompressed instructions will not be the same as the original program. Since a
decompression engine is needed to decompress code during runtime, the decom-
pression overhead has to be tolerable. Unlike text compression, compressed pro-
grams have to ensure random accesses, since execution flow may be altered
by branch, jump, or call instructions. The compressed blocks may not be byte
aligned, so additional padding bits are needed after compressed blocks when bit
addressable memory is not available. Existing code compression methods use small,
equally sized blocks as basic compression units; each block can be decompressed
independently with or without small amounts of information from others. When
the execution flow changes, decompression can restart at the new position with or
without little penalty.

Dictionary-based code compressions (DCC) [10] are commonly used in embed-
ded systems, because they are quite effective and pose a relatively simple decoding
hardware, and provide a higher decompression bandwidth than the code com-
pression by applying lossless data compression methods. Thus, it is suitable for
architectures with high-bandwidth instruction-fetch requirements, such as VLIW
processors. Although several existing code compression algorithms have exhibited
favorable compression performance, no single compression algorithm has effi-
ciently worked for all kinds of benchmarks.
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In the following sections, branch blocks are defined as the instructions between
two consecutive possible branch targets and use them as the basic compression
units. Moreover, a branch block may contain several basic blocks in the control flow
graph representation. Since the size of branch blocks is much larger than blocks
previously used, there would be more freedom in choosing compression algorithms.
After that, various steps in the code compression process were combined into
new algorithms to improve the compression performance with a smaller hardware
overhead. Based on the BitMask code compression (BCC) algorithm [15, 16], an
exclusive-or (XOR) operator unit is used to improve the variety of bit-masked
code; a small separated dictionary is proposed to restrict the codeword length of
high-frequency instructions; a dictionary selection algorithm is proposed to achieve
more satisfactory instruction selection, which in turn may reduce the average CR.
Furthermore, the fully separated dictionary architecture is proposed to improve the
performance of the dictionary-based decompression engine.

2 Previous Work

Wolfe and Chanin were the first to apply code compression to embedded systems
[8]. Their compressed code RISC processor (CCRP) uses Huffman coding to
compress MIPS programs. A line access table (LAT) is used to map compressed
block addresses, and is inherited by most of the later studies. Based on the same
concept, IBM built a decompression core, called CodePack, for the PowerPC 400
series [11]. Compressed code is stored in the external memory, and CodePack is
placed between the memory and cache. Liao et al. [9] replaced frequently used
instruction groups as dictionary entries, which make compressed code easy to be
decoded. Lekatsas and Wolf proposed SAMC [12], a statistical scheme based on
arithmetic coding in combination with a pre-calculated Markov model. Netto et al.
proposed a DCC using variable length indices [13]. Instructions in the decoding
table are selected based on both static and dynamic profiling to decrease code size
and increase performance. Benini et al. used a DCC method formed by using both
static and dynamic entropy [14]. Their schemes are competitive with CodePack for
footprint compression, and achieve superior bus traffic and energy reduction. All of
these methods focused on RISC and CISC architecture code.

Another approach to decrease code size for RISC processors is to define a
dense instruction set using a limited number of short instructions, and has been
implemented in several commercial core processors, such as Thumb [17], MIPS16
[18], Tensilica Xtensa [19], and ARCompact [20]. The dense instruction sets often
cause performance penalties due to lack of instructions, and require modifications
to the processor core and software development tools. This approach is not suitable
for embedded systems with hard intellectual-property (IP) processors.
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Other than using hardware components to decompress code on-the-fly, several
groups proposed pure software techniques to reduce program size and decompress
instructions during execution. Cooper and McIntosh developed compiler techniques
for code compression on RISC architectures [21]. They map isomorphic instruction
sequences into abstract routine calls or cross jumping. Debray and Evans proposed a
profile-guided code compression to apply Huffman coding to infrequently executed
functions [22, 23]. Ozturk et al. proposed a control flow graph centric software
approach to reduce memory space consumption [24]. Application binaries are on-
the-fly compressed/decompressed using separated thread in their approach. Shogan
and Childers implemented IBM’s CodePack algorithms within the fetch step of
software dynamic translator (SDT) in pure software infrastructure [25]. Such
approach provides a flexible decompressor and can be applied to multiple platforms.

Lefurgy et al. [10] proposed the first DCC algorithm, which replaced frequently
executed instructions as dictionary indices. Gorjiara et al. [26] used DCC with a
multi-dictionary for a no instruction set computer (NISC) architecture. Ros and
Sutton [27] proposed improved DCC methods by considering Hamming distances
and mismatches. Based on the DCC, Thuresson and Stenstrom [28] combined
dynamic instruction stream editing and BitMask methods to compress instruction
sequences. Seong and Mishra [15, 16] used several bits as a mask for increasing the
instruction coverage rate, and they proposed a novel dictionary selection method to
improve the CR. Qin et al. [29] combined the BCC and run-length coding with an
improved dictionary selection method for field-programmable gate array bitstreams.
Murthy and Mishra [30] used a skip map with a multi-dictionary for the NISC
architecture. Bonny and Henkel [31] used dictionary-based and canonical Huffman
coding to re-encode the codewords compressed by Huffman coding in embedded
processors. Both instructions and lookup tables (LUTs) are compressed to achieve
an optimal CR. Based on the same method, Ranjith et al. [32] applied the code
compression in a delta-sigma control-system processor to reduce the memory cost
and optimize power consumption in the processor. Based on the BCC, Chen et al.
[33] used dictionary-entry replacement algorithm to reduce the power consumption
of the systems. Azevedo Dias et al. [34] used Huffman coding to compress two
adjacent instruction sequences and then used the same method to compress single
instructions, which is called compressed code using Huffman-based multilevel
dictionary. They also design a one instruction per cycle decompression engine.

Recent research in code compression has focused on two directions: (1) applying
existing compression methods to various architectures for optimization and (2)
combining several approaches to improve the performance, including CR. Seong
and Mishra [15, 16] and Wang and Lin [7] observed that no single compression
algorithm operated efficiently for all the benchmarks. Thus, the following sections
integrate several approaches to form a new algorithm with smaller hardware
overhead. New dictionary architecture is used to improve the decompression engine
performance.
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3 Code Compression with a Self-Generating Dictionary

Even though control flow can change due to the existence of branch instructions
or function calls, and the destination addresses may be calculated during execution
time, not all instructions will be the destinations of these flow changes. The possible
branch targets (or function calls and returns) are determined once the program
is compiled. A program can be broken into procedure calls, and the compiler
expresses each procedure as a control flow graph (CFG), as illustrated in Fig. 1a.
Each node in the CFG represents a basic block, which is a straight-line piece of
code without any branch instructions or branch targets. Each basic block starts at
a branch-target instruction, and ends at a branch or jump instruction. A CFG is a
static representation of the program, and represents all the alternatives of possible
execution paths.

Branch blocks, constructed from basic blocks in CFGs, are used as the basic
components in code compression to ensure random accesses to all branch blocks. A
basic block is considered as a branch target if there is at least one entry with address
change; on the other hand, a basic block is not a branch target if it can only be visited
through sequential execution. A branch block is defined as a series of basic blocks
in a CFG with the only branch target located at its first basic block. The construction
of branch blocks depends not only on the CFG, but also on the memory allocation
of each basic block. As shown in Fig. 1b, only basic blocks B7 and B8 can be
combined into a larger branch block, while other branch blocks contain only one
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Fig. 1 (a) An example control flow graph (CFG) fragment; (b) simple and (c) optimized memory
allocation for basic blocks. Adjacent basic blocks that can be combined together as a single branch
block are marked with the same color
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basic block in this simple memory allocation, and it results in eight total branch
blocks. An optimized memory allocation is shown in Fig. 1c, and the basic blocks
can be combined into five larger branch blocks. Various compiler techniques can be
applied to optimize different control flow criteria, such as number or size of branch
blocks, based on global data flow analysis.

Compressed blocks will not have the same address as their original ones. When
execution flow changes, the target block address will be the uncompressed one,
which does not correspond to the same location in the compressed code. Wolfe and
Chanin’s idea is borrowed to use a line address table (LAT) to map original program
addresses into compressed program addresses [8]. Instead of storing the addresses
of all cache lines as in most previous work, only addresses of branch targets are
needed for the proposed approach, which can produce a much smaller LAT.

Source programs are compressed offline and stored in memory systems, either
ROM or hard drives, for embedded systems using code compression. The codes
are then decompressed on-the-fly when the branch blocks are needed. The dic-
tionary used for the proposed approaches is self-generated during runtime, either
compression or decompression, and is stored in memory systems. The dictionaries
are reset when branch targets are met during execution. As illustrated in Fig. 2,
the decompression engine can be placed in two possible configurations, pre-cache
or post-cache. For pre-cache structure, the timing overhead for decompression can
be hidden behind cache miss penalty, while post-cache has more area and power
savings. When more than one level of caches is used, the closer the decompression
unit to the processor, the larger the power and area saving for the memory
systems; however, it also means the more critical impact to the system performance
the decompression core has. The proposed methods can work on both pre- and

Memory
(compressed code)

Decompression 
engine

I-Cache
(original code)

Processor
(original code)

Decoding Table

Memory
(compressed code)

I-Cache
(compressed code)

Decompression 
engine

Processor
(original code)

Decoding Table

(a) pre-cache structure

(b) post-cache structure

Fig. 2 (a) Pre-cache and (b) post-cache decompression architectures
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Fig. 3 Flow chart of the
proposed approach: (a)
compression and (b)
decompression

post-cache structures: post-cache structure would get more benefit when parallel
decompression is used due to larger decompression bandwidth, while pre-cache
architecture fits better for sequential decompression.

The proposed code compression schemes use self and runtime generated dictio-
naries that can be used for both compression and decompression, so there would be
no additional space needed to store dictionaries along with the compressed code.
Figure 3 illustrates the flowchart of the proposed approaches. In both compression
and decompression phases, the coding dictionary is reset if the incoming instruction
or codeword represents a branch target; otherwise, the compression and decom-
pression engines keep on using the existing dictionary to generate codeword or
instruction outputs and update the dictionary when necessary.

Compression ratio (CR) is often used as a merit to measure the efficiency of code
compression schemes, and is defined as

CR = Compressed Code Size + Stored Dictionary Size

Original Code Size
.

The stored dictionary size includes both coding dictionaries and LATs. For the
proposed approaches, the dictionaries are not included in the compression ratio
because they are self-generated during runtime and not stored in the memory
systems. Moreover, the size of LATs is inversely proportional to the average size
of basic blocks, so the use of branch blocks would reduce the size of LATs as well.

When programs are running, there will be no problem to identify branch targets if
execution flow changes. However, a way to distinguish branch targets from regular
instructions is needed when incrementing the program counter (PC) causes the
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execution to cross a branch block boundary. A small list of all the branch targets
may be maintained, but the entries have to be compared every time an instruction
is executed. The other way is to use a codeword as a branch-target indicator.
An indicator would be generated before branch targets during compression phase.
When the decompression engine sees a branch-target indicator, it will know that the
following instruction is a branch target.

The first example that takes advantages of branch blocks is the DCC with a self-
generating dictionary, which maintains a dictionary of previously seen instructions
in the same branch block to indicate the upcoming instructions. If a new instruction
is not inside the table, it is simply added to the dictionary, and the instruction is left
uncompressed. On the other hand, if the new instruction is already in the dictionary,
an escape tag plus the table index is used to indicate the instruction. For example,
there is a 6-bit unused prefix (1100sp, where the s-bit determines the destination
register file and p-bit serves as the parallel execution indicator) in the 32-bit wide
TMS320C6x instruction set [35], which can be used to identify the compressed
dictionary indices. This simple scheme can be used on all the processor architectures
with unused instruction prefixes.

The compression process starts from the beginning of a source program file,
and deals with the instructions sequentially with an empty initial dictionary. After
the compression engine fetches a new instruction from the source file, the engine
first compares it with all the entries in the dictionary. If the instruction is already
in the dictionary, the engine generates the escape tag along with the dictionary
index that contains the instruction as the output. Otherwise, the instruction is left
uncompressed and is added as a new dictionary entry. Once the coding table is full,
there will be two possible actions: (1) the dictionary can be simply left unchanged
once it is full, or (2) the entries are replaced using round-robin, least recently used,
or other complicated replacement algorithms. According to the experiments, the
difference in the compression ratio is <1% for different replacement methods when
a 1024-entry dictionary is used for TMS320C6x benchmarks.

During the decompression phase, the decompression engine reads in an instruc-
tion width from the main memory, and checks if there is a match with the escape tag.
If it does not match, the instruction is bypassed to the decompression core output and
added to the next available dictionary entry, and then the next instruction is fetched
from the memory. On the other hand, if the escape tag exists, the decompressor
would first check if the index matches the exception code for branch targets. If it
matches, the decompression core will clear the dictionary, shift out the buffer along
with the padded bits, and read the next instruction from the memory. Otherwise, the
decompression engine will output the instruction stored in the dictionary indicated
by the index, shift out the escape tag and index, and read the next instruction. During
runtime, there are two ways to encounter branch targets. When branch targets are
met sequentially, the decompression core will fetch the exception index and shift out
the padding bits, while an execution flow change implies the existence of a branch
target. In both cases, the decompression engine can clear the decoding dictionary
and restart decompression at the byte-aligned location without error.
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Instruction A Instruction B Instruction A Instruction C

Instruction D Instruction B Instruction C Instruction E

Instruction F Instruction A Instruction C Instruction B

Instruction G Instruction B Instruction B Instruction A

Source Program:

Instruction A Instruction B Tag + 0 Instruction C

Instruction D Instruction E

Instruction F Instruction A Instruction C Instruction B

Instruction G

Compressed Code:

Tag + 1 Tag + 2 Tag+ Br

Tag + 3 Tag + 3 Tag + 1

Branch TargetRegular Instruction Compressed
Codeword

Fig. 4 Example of dictionary-based code compression

Figure 4 shows an example of DCC. The dictionary is initially empty, and is
updated when a new instruction is encountered. Instructions A and B are put in
entries 0 and 1, respectively, and when instruction A is met again, the compression
engine sends out the escape tag with index 0. After eight instructions, the dictionary
contains instructions A, B, C, D, and E. Since the next instruction input is a branch
target, the engine generates the exception code (tag + branch indicator) along with
the padding bits. After that, the engine restarts the compression procedure with an
empty dictionary.

Figure 5 illustrates the impacts on compression ratio for different codeword
lengths, replacement policies, and branch-target identification approaches using an
ADPCM (adaptive differential pulse code modulation) decoder as the code com-
pression example. Replacing the entries using the round-robin policy outperforms
fixed dictionaries until saturation; however, the difference is <2% for codewords
longer than 14-bit (dictionaries with more than 256 entries). The compression ratio
using branch-target indicators is around 1% worse than using branch list (including
the list) with better decompression performance. Codeword length determines the
size of the dictionary exponentially. When the dictionary is too small, there is little
or no benefit using code compression. When the number of entries is more than
the number of identical instructions, increasing codeword length will increase the
compressed code size. DCC achieves a better compression ratio for dictionaries with
size around the number of identical instructions (codeword 14–16 bits wide). Since
a byte-aligned codeword simplifies the decompression core implementation, 16-bit
codeword is the best choice for DCC.
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Fig. 5 Dictionary-based compression for ADPCM decoder

Ziv–Lempel method is a well-known adaptive text compression technique which
uses previously seen data to compress the upcoming one [36]. The dictionary need
not to be stored along with the compressed file, and can be regenerated on-the-fly
during decompression. The LZ family is used to be considered as a method without
random accessibility and with poor performance when dealing with small blocks
of data. The use of larger branch blocks makes it possible to take advantage of the
well-compressed and fast-decompressing LZW method [37], and apply it to code
compression. Lempel–Ziv–Welch (LZW) compression was modified from Ziv–
Lempel 78 [36] by Welch in 1984 [37], which replaces a series of basic elements
with a single codeword. The LZW dictionary reserves all the possible elements as
its initial codewords, and generates a new codeword to represent phrases (series of
elements) during runtime. During the compression phase, the compression engine
will search for the longest phrase already in the dictionary that matches the input
stream, output the codeword that represents the phrase, and add the phrase along
with the next element in the input stream as a new dictionary entry.

To apply LZW to code compression, byte can be used as the basic element. Since
the compressed output of the LZW method only contains compressed codeword,
and all the possible elements have to be included in the entire initial dictionary, the
codeword length has to be long enough to contain the initial dictionary. In short,
the chosen codeword length should be at least 9-bit wide, and the initial dictionary
should contain 256 entries. A new entry will be generated per iteration till the
dictionary becomes full. During the compression phase, the compressor will find the
longest phrase in the dictionary that matches the code stream, send the codeword
to the output, and add the phrase with the next byte in the code stream as a new
entry. Once the dictionary is full, the compressor will keep on using the existing
table to compress the upcoming program stream. When a codeword is read from
the memory, the decompression core first checks if it is a branch target. If yes, the
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Fig. 6 LZW-based compression for ADPCM decoder and MPEG2 encoder

engine will shift out the padding bits from the buffer, reset the dictionary, and restart
decompression at a byte-aligned position. Otherwise, the decompression core will
get a codeword, look it up, output the content, and add the previous phrase with the
first element of the current phrase as a new entry.

Codeword length and decoding bandwidth are two important parameters in our
methods. LZW-based compression is a variable-to-fixed method. A fixed length
codeword is used to represent variable length phrases. The codeword has to be at
least 9-bit long, and determines the dictionary size exponentially. The larger the
dictionary, the more phrases can be represented as codewords, which yields better
compression result. However, a longer codeword is used to represent 8-bit basic
elements. In the worst case, if none or only a few repeated phrases occur within a
branch block, one-element codewords may be used most of the time. This often
happens when the source file is not big enough. The other adjustable feature is
the decompression bandwidth. From the simulation results, the compression ratio
differs within 1% for widths from 8 to 20 bytes. Since the size of the dictionary
is linearly dependent on the decoding bandwidth, 8-byte wide decoding table will
be the desired choice. Figure 6 shows the compression ratio of LZW-based code
compression by using different codeword length on two example benchmarks. For
smaller benchmarks such as an ADPCM decoder, the longer the codeword, the
worse the compression ratio. The benefit for a larger coding cable can be seen on
larger benchmarks such as an MPEG2 encoder.
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4 Selective Code Compression

Selective compression, a modified algorithm based on LZW-based code com-
pression, is presented in this section, which may have a better CR and even
higher decompression bandwidth. The dictionaries generated by different codeword
lengths for the same branch block share exactly the same entries in the front parts of
the dictionaries. If the branch block is too small to fill the smallest 9-bit dictionary,
there will be no benefit in using more bits to encode this block. The more bits
used only increase the extra padding in front of each codeword without additional
information. On the other hand, a longer codeword compresses better for the larger
blocks, as more byte-sequences can be compressed into codewords. According to
the benchmarks for TMS320C6x, only 12.8% of the branch blocks can use up all the
entries in the 9-bit dictionary, while only 1% of them can fill up the 12-bit dictionary.
Statistically, more than 84% of the branch blocks in the benchmarks are <256 bytes;
and more than 60% of the blocks are <100 bytes. This gives the inspiration to apply
different compression methods to different branch blocks.

Two selective code compression schemes based on the LZW-based code com-
pression are proposed. The basic idea of selective compression is to apply different
compression methods to different branch blocks according to the block profile.
As shown in Fig. 7, block sizes, instruction and execution frequency, and other
information of each branch block are collected during profiling phase. Then the
compression method for each branch block is determined based on the profile. Each
branch block may choose a different code compression method.

The first selective compression method proposed is minimum table-usage selec-
tive compression (MTUSC), whose basic concept is to minimize the size of
dictionary used for each branch block. Since no single codeword length can provide
good compression results in all the branch blocks, the number of generated phrases
is calculated for each branch block in the profiling phase. The shortest codeword
length for a certain branch block is selected such that all the phrases generated by
it can fit into its dictionary. For example, when the branch block generates <256
phrases, only 9-bit LZW compression is needed; 10-bit codeword is used for more
than 256 but not exceeding 767 phrases; and so on. As a longer codeword is used, the
size of the dictionary grows exponentially. Experiments show that only a few branch
blocks really need larger dictionary and the number of branch blocks decreases as
larger dictionary is used. So 12-bit is chosen as the maximum codeword length for
selective code compression schemes.

Source
Program

Branch
Block

Profiling

Compressed
Code

Compression
Method

Selection

Fig. 7 Block diagram of selective code compression
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One major drawback for Lempel–Ziv compression family is its poor performance
on small blocks where only a few repeated phrases exist. Sometimes, the size of
the compressed block is even larger than the original code when MTUSC is used.
Minimum code-size selective compression (MCSSC) is proposed to alleviate this
problem. Each branch block is first compressed using LZW-based code compression
in different codeword lengths in the profiling phase, and the smallest compressed
code (including the uncompressed original code) is then chosen for the block. By
doing so, it is ensured that each branch block has the minimum code size when the
LZW-based code compression is applied.

When the block is left uncompressed, there is no codeword to indicate the
existence of branch targets. Experimental results show that only blocks with size
32, 64, or 96 bytes may be left uncompressed in MCSSC. These three situations are
encoded along with the compression methods into a 3-bit header in front of each
branch block. The average compression ratio for MCSSC is 76.8%, which is about
6.3% better than the 9-bit LZW-based code compression.

Although four different codeword lengths may be used in selective compression,
only a single 12-bit LZW decompression core with dispatching logic is enough
for all the codeword lengths. And the unused memory banks can be turned off
when a shorter codeword is used. When a branch indicator is met, the coding table
will be reinitialized, and the dispatching logic will reconfigure to the upcoming
method based on the selection header. Otherwise, the decompression engine just
performs its normal operations. For a codeword <12 bits, zeros would be padded
in the front of the codewords. The decompression core will use those padded
codewords to address the coding table. It also works the same way when dynamic
LZW is applied. The only difference is the dispatching logic that has to count
the number of incoming codewords, and change the padding when necessary for
dynamic LZW compression. On the other hand, the dispatching logic will bypass the
instructions directly when the branch block contains only uncompressed instructions
for MCSSC.

In the following paragraphs, several experimental results on benchmarks for
Texas Instruments’ TMS320C6x VLIW processors are presented. The benchmarks
are collected from Texas Instruments and MediaBench, which are general embedded
system applications with strong digital signal processing components. The bench-
marks are compiled using Code Composer Studio IDE from Texas Instruments.

Figure 8 shows the CR for all the benchmarks using 14–18-bit DCC, with round-
robin as the replacement policy. For smaller benchmarks with limited instruction
reoccurrence, the longer the codeword length, the worse the CR. For larger
benchmarks, using medium length codeword (15 or 16 bits) results in better CR.
Even though a longer codeword means more instructions can be represented as
compressed codewords, not all branch blocks can take advantage of the larger
dictionary. For small benchmarks and small branch blocks in large benchmarks,
longer codewords only represent extra bits to represent the same instructions. Only
larger branch blocks in large benchmarks have more repeated instructions and take
advantage of the larger dictionary. These two effects compensate each other and
result in poor performance for a longer codeword in small benchmarks, and larger
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Fig. 8 CR for 14–18-bit DCC

benchmarks have better performance when a medium length codeword is used. A
16-bit codeword not only has the best average CR at 74.2%, but also has the simplest
decompression engine due to byte-aligned codewords.

Figure 9 illustrates the CR for all benchmarks using 9–12-bit LZW-based code
compression. A longer codeword performs worse in most of the benchmarks.
However, for the huge files such as MPEG2 encoder, 12-bit LZW has better
CR. Unlike DCC that guarantees smaller compressed programs, LZW-based com-
pression may result in compressed code larger than the original program. Since
LZW-based code compression generates only one new codeword per iteration, the
front part of dictionaries contains the same phrases for different codeword length.
For benchmarks that cannot fill up a small dictionary, longer codeword won’t
benefit. The effect of a large dictionary can only be seen on huge benchmarks. On
average, the CRs for 9–12-bit LZW-based code compression are 83.4, 83.3, 84.8,
and 87.9%, respectively.

Figure 10 summarizes the CR using selective code compression (MTUSC
and MCSSC), both with and without dynamic LZW. Since MCSSC chooses the
compression method with the smallest code size for each branch block, while
MTUSC uses the smallest dictionary for each block, it is clear that MCSSC can
achieve a better CR than MTUSC. Dynamic LZW can reduce the compressed
code size for both selective methods. Among all four selective schemes, MTUSC
is always the worst, and dynamic MCSSC is always the best in terms of CR. On
average, dynamic MCSSC can achieve compression ratio at 75.6%.
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Fig. 9 CR for 9–12-bit LZW-based compression
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5 XOR-Referenced Code Compression

Lefurgy et al. [2] proposed the first dictionary-based method in 1999. Although the
dictionary-based methods result in simpler decompression engines, their CRs are
usually less efficient than those of other entropy-based compression algorithms.
Thus, there have been many modified versions of DCC methods proposed to
improve the CR. The XOR-referenced code compression is one of these methods,
which is a modified version of the so-called BitMask methods.

Even though certain instructions are not available in the dictionary, they differ
from some of the entries in the dictionary by only a few bits. Ros and Sutton
[27] proposed the concept of using the hamming distance to record the mismatch
positions. Based on the DCC method, Seong and Mishra proposed BCC [15, 16],
which used a multibit mask to record the mismatch portions. This method is able
to match more instructions, and also reduce the encoding overhead, thus, improving
the CR. An example of BCC is shown in Fig. 11. An additional tag bit is used for
identifying whether an instruction has been compressed using only the dictionary,
or using the BitMask compression approach. When an instruction is compressed by
the BCC, the encoding codeword must contain the mask value and its position. The
position of the mask starts from the left and move to the right. According to the
mask value and its position, the original instruction is decompressed by performing
an XOR operation on the dictionary entry. In the decompression engine design, these
methods can be implemented into a similar architecture. First is the codeword fetch
and identify codeword type stage. Second is the codeword decoding stage where the
dictionary is accessed without or with the BitMask unit operation. The BitMask unit
contains the program and shift buffer unit. Then, the final stage is the instruction(s)
output stage.

The XOR-referenced approach tries to change the symbol distribution in order
to further enhance the CR of the DCC algorithms. It is worth mentioning that using
the reference XOR itself to change the symbol distribution cannot improve the CR.

Fig. 11 An example of
Seong and Mishra’s [16]
BitMask-based method

01011101
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0
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Index

0    0    0
0    0    0
0    0    0
1    01010101
0    0    1
0    0    1
0    0    1
1    01010111
1    11000011
1    00001100
1    00001100
0    1    00  11    0
0    1    00  11    0

BitMask based Compression

0 – Compressed 
1 - Uncompressed

1 – Use BitMask
0 – Direct Access Dictionary

mask position mask value 

Vector A 00000000
Vector A 00000000
Vector A 00000000
Vector B 01010101
Vector C 01011101
Vector C 01011101
Vector C 01011101
Vector D 01010111
Vector E 11000011
Vector F 00001100
Vector F 00001100
Vector G 11000000
Vector G 11000000
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Fig. 12 An example coding format for modified BCC

It has to cooperate with other compression schemes in order to improve the CR, and
the compressed code must indicate whether or not the instructions have to perform
XOR operations with reference data. Therefore, the original encoding format has to
be modified. Either an extra bit can be added to indicate whether the instructions
need to perform XOR operations with reference data or a new encoding format can
be used. A modified encoding format based on the BCC is shown in Fig. 12. An
extra bit is used to indicate whether an instruction has been compressed or not,
and another extra bit is used to mark the instructions to indicate whether an XOR
operation with reference data is needed. Because DCC methods choose the most
frequently used instructions as the dictionary entries, the size of compressed code
dominates the size of the ones left uncompressed. The proposed modified format
has to leave the frequent case unchanged, and use an extra bit to represent the
uncompressed instructions and the ones using XOR references.

For traditional DCC, the dictionary is built based on the code compression
method to encode the program. For the XOR references, the modified flowchart
is shown in Fig. 13 that the reference data is sought out after the dictionary has been
built and is used to change the bits for non-dictionary entries. Finally, the modified
program (with some instructions XORed with the reference data) is encoded using
the dictionary.

Different DCC schemes have different criterions in dictionary selection. In order
to achieve the minimum CR, different situations have to be considered in XOR
reference selection to maximize the matching rate for different algorithms. Two
example algorithms are provided here to generate the reference data used for the
reference XOR operation. The frequency-based reference data selection algorithm
can find the optimal reference data for the standard DCC, while the XOR-referenced
selection algorithm performs better when BCC is used.

For the standard DCC, the optimal algorithm to choose the reference is shown
in Fig. 14. The standard dictionary is first generated based on the instruction
frequency. Then XOR operations are performed on the non-entry instructions with
every dictionary entry. The results of the XOR operations are stored as a histogram.
The peak in the histogram represents the optimal reference data that can match
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Fig. 13 Flowchart of
XOR-referenced code
compression

Start

Build the dictionary
based on the

compression scheme

Use the reference
data on non-

dictionary-entries

Use the dictionary to
encode the program

End

Find the reference
data with the

reference selection
algorithm

the most non-dictionary-entry instructions. Figure 15 shows an example histogram
using the frequency-based reference data selection algorithm with more than ten
matches for the hello benchmark. From the figure, it is clear that using the reference
value 0x00000001 can reduce the most CR for the standard DCC.

To find the XOR reference data with the minimized CR, the basic idea is to
increase the number of bit-changes in the reference data by one per iteration. The
reference data are initially set to all-zero, and the number of ones in the reference
data is gradually increased. For each iteration, the code compression with XOR
reference is performed at most 32 times for the 32-bit instructions. If there are
reference data with better CR compared with the previous iteration, another round of
reference selection is needed. The XOR reference is used to generate more matches
to the dictionary entries. When a match occurs, it has to conform to the following
equation:

I D R = 0 

The XOR of I (instruction), D (dictionary entry), and R (reference data) equals
to a zero vector (indictor to 0) for a match. For BCC, an additional term, mask
(M), has to be included. If more 1 s in the reference cannot generate a smaller
CR, it indicates that more 1 s will reduce the number of zero vectors. So the more
1 s in reference will generate more non-zero vectors to reduce the matching rate.
Therefore, the algorithm can be terminated immediately after a smaller CR is not
obtained. The experimental results show that the frequency-based reference data
selection algorithm can find the optimal reference data for the standard DCC, while
the heuristic can only find a suboptimal estimation for the BCC. However, the XOR
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Fig. 14 Optimal reference selection for standard DCC

Fig. 15 An example histogram of the frequency-based reference data selection
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Fig. 16 CR for different
benchmarks with standard
DCC

Fig. 17 CR for different
benchmarks with BCC

reference can improve more for the BCC algorithms, since they can provide more
matching instructions.

Figures 16 and 17 show the experimental results when the XOR-referenced
method is applied to the standard DCC and BCC, respectively. The average
improvement in CR is about 1–2%. Even though both methods have around the
same improvement percentages in match rates, BCC has better CR improvement
due to the higher match rate before XOR reference. The results suggest that if the
code compression scheme itself can match more instructions, the proposed method
can get a larger CR improvement.

6 Code Compression Using Separated Dictionaries

In this section, a separate dictionary was used to reduce the codeword length of high-
frequency instructions. Variable mask numbers are used to eliminate the encoding
redundancy. The combination of these methods is referred to as the codeword-length
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constrained BitMask code compression (CLCBCC). Moreover, a mixed-bit saving
dictionary selection algorithm is used to select an improved instruction combination
for the dictionary, and a fully separated dictionary architecture is proposed to reduce
the access latency of the dictionary.

In certain cases, such as in low code-density architecture [26], which contains
a high number of unique instructions, or because of algorithmic characteristics, a
large LUT may be required to compress the programs. A large LUT has several
disadvantages: it requires a large chip area, additional power consumption, a long
LUT latency, and a long codeword length. Thus, it is desirable to minimize the
dictionary size.

The static frequency distribution of the instructions was analyzed from the set of
benchmarks [7] on TI C62xx processors; the results demonstrated that only a small
set of instructions consistently exhibited extremely high frequencies. Figures 18
and 19 show the frequency distribution of dictionary entries from two benchmarks:
fft, a smaller benchmark with 512 entries, and susan, a larger benchmark with
1024 entries. Both distributions were generated by using the frequency-based
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Fig. 18 fft: Frequency distribution of 512 dictionary entries
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Fig. 20 Specific architecture for CLCBCC

dictionary selection algorithm. The frequency distributions were similar for all
the benchmarks. Compressing these high-frequency instructions with the same
codeword length as other low-frequency instructions would result in inefficient
compression. In order to overcome this problem, these high-frequency instructions
are separated into another small dictionary to obtain shorter codeword lengths. Two
LUTs are used for the BitMask approach. A large LUT is used to compress single
instructions, and a small LUT is used to compress the extremely high-frequency
instructions. The small LUT was modifiable for storing either single instructions or
instruction sequences [7]. The specific dictionary architecture for the CLCBCC is
shown in Fig. 20.

Following suggestions from some prior arts [7, 16], using a 4-bit fixed and a 2-
bit fixed masks in addition to a single 4-bit fixed mask achieves better compression
results for the benchmarks. Although the maximum mask overhead was 13 bits
(4 bits for 4-bit mask, 3 bits to record the position of the 4-bit fixed mask, 2 bits
for 2-bit mask, and 4 bits to record the position of the 2-bit fixed mask), it was
determined that approximately 50% of the instructions were compressed by using
only the 4-bit fixed mask in the benchmarks. Thus, in this study, the 4f mask and
the 4f–2f masks are combined, and 1-bit is used to identify whether the codeword
uses one or two masks. The encoding format is shown in Fig. 21, which contains
four situations, such as uncompressed, matched with small dictionary, matched with
large dictionary, and matched using a variable number of masks.

Frequency-based dictionary selection cannot achieve an optimal CR in BCC,
because it cannot guarantee that the matched rate of high-frequency instructions
is maximized. The proposed dictionary selection algorithm is based on the graph
representation, where instructions are transformed into nodes, and an edge between
two nodes indicates that these two instructions have been matched to each other
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Fig. 21 Encoding format for
the proposed approach
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using the BCC approach. Generally, the nodes can be classified into five cases
according to the frequency and connection pattern.

Case 1: a high-frequency node mostly connects to high-frequency nodes.
Case 2: a high-frequency node mostly connects to low-frequency nodes.
Case 3: a low-frequency node mostly connects to high-frequency nodes.
Case 4: a low-frequency node mostly connects to low-frequency nodes.
Case 5: a low-frequency node with a few connections.

Cases 1, 2, and 4 are better choices for the CR improvement, and Case 2 nodes
can achieve the most savings. Because the high-frequency nodes are usually selected
into the dictionary, the benefits for nodes in Case 3 are limited. Thus, they are
unsuitable for the dictionary. The nodes in Case 5 would never be selected in the
algorithm because their low frequency and few connections result in low savings.

Algorithm 1: Mixed-Bit Saving Dictionary Selection
Inputs:

1. 32-bit unique instruction vectors
2. Dictionary size
3. Mask types

Output: Optimized dictionary
Begin
Step 1: Transform every unique instruction to a graph, G = (V, E).

If two nodes can be matched by using BitMask, use directional edges to
connect them.

Step 2: Allocate bit savings to the nodes and edges.
∀ node i,
Node saving (Ni) = (original instruction size − compressed
codeword size) × frequency of the instruction–32 bits overhead.
∀ edge between nodes i and k,
Edge saving (Wik) = (original instruction size − compressed
codeword size) × frequency of the matched instruction.

Total bit saving (Si) = Ni +
n∑

k=1
Wik

Step 3: Calculate the total bit saving distribution of all nodes.
Step 4: Select the most profitable node i∗ = arg max f (Si).
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Step 5: Remove the most profitable node i from G and insert it into the dictionary.
Step 6: ∀ nodes connect to i, construct the neighboring node set Nb(i).
Step 7: Delete all edges with at least one end in Nb(i).
Step 8: Update node savings of all the nodes in Nb(i), Si = Nk − Wik.
Step 9: Repeat Steps 3–8 until the dictionary is full.
Step 10: Return dictionary.
End

A mixed-bit saving dictionary selection (MBSDS) algorithm is proposed in
Algorithm 1, which first transforms every unique instruction into a single node,
and two-directional edges between two nodes indicate that these two instructions
were matched to each other using the BCC. The proposed algorithm then calculates
the bit savings of all nodes, and inserts the most profitable node into the dictionary.
The most profitable node is then removed from the graph. Since all the neighboring
nodes of the most profitable node can be covered by the most profitable node, the
node saving of each neighboring node should subtract the edge saving from the edge
with the most profitable node. Furthermore, all the edges of the neighboring nodes
are removed. These steps are repeated until the dictionary is full.

The most profitable node achieves the savings from the combination of its own
node saving and the edge savings of other nodes. However, connected instructions
cannot be easily inserted into the dictionary. Whether these connected instructions
should be selected into the dictionary in the following rounds is solely determined
by their frequency values. Figure 22 shows an example of selection using MBSDS.
All symbols in this example are 32-bit wide, the dictionary contained 1024 entries,
only one 2-bit mask was used, and the overhead of the identification tag is 2-
bit. After each symbol was transferred into the nodes, every node contained its
frequency value. When two nodes were matched to each other using BCC, the
algorithm will create two-directional edges to connect them: the direction pointed
to the instruction, and the weight corresponding to the actual edge saving when the
connected node was compressed by the matched node.

The node saving for every node equaled to 32 − 12 (codeword length 10 + tag
width 2), which was multiplied by its frequency. The edge saving equaled to 32
minus 18 (codeword length 10 + tag width 2 + bitmask 6), which was multiplied by
the frequency of the matched node. Node A was clearly the most profitable node; the
bit saving value of SA was better than that of other nodes. In MBSDS, after the Node
A was selected and inserted into the dictionary, all edges of Nodes B, C, and E were
deleted. For Nodes B, C, and E which could be compressed by Node A using BCC,
the edge saving from the edge of Node A was subtracted from their node saving. In
other words, the node saving of Node B originally equaled 200. After Node A was
selected and inserted into the dictionary, the node saving of Node B was updated
into 60 (200 − 140). After all node savings were updated, the most profitable nodes
were, in order, G, B, E, C, D, and F. For the bit-saving dictionary selection algorithm
[16], a threshold value was used to determine whether the nodes were selected and
inserted into the dictionary. Suppose a threshold value of 10 is used, Nodes A and B
were selected and inserted into the dictionary, and Nodes C and E were deleted from
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Fig. 22 An example of MBSDS

the graph. The rest of candidate nodes D and F were then selected in the following
round. Nodes C and E (if G was not selected) were more efficient than B, D, or F.
As this result demonstrated, an unsatisfactory threshold value reduced the efficiency
of the bit-saving dictionary selection algorithm compared with the frequency-based
dictionary selection algorithm. The CLCBCC with MBSDS is shown in Algorithm
2 and an example of CLCBCC with MBSDS is shown in Fig. 23.

Algorithm 2: CLCBCC with MBSDS
Inputs:

1. 32-bit instruction symbols
2. Small dictionary size
3. Big dictionary size
4. Mask types

Output: CR and Compressed codewords.
Begin
Step 1: Calculate the frequency distribution of all instruction symbols.
Step 2: Select the highest unique frequency symbols into the small dictionary

based on the step 1.
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Fig. 23 An example of
CLCBCC with MBSDS
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Vector H 11000100 11 10 01 1
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mask position mask value

00 – Uncompressed
01 – Compressed with Small LUT
10– Compressed with Big LUT
11 – Use BitMask

Step 3: For every unique instruction symbols which are not selected into the
small dictionary, use the MBSDS to construct the big dictionary.

Step 4: Use the BitMask based method to compress all instructions based on the
current dictionaries and masks setting.

Step 5: Calculate the CR.
Step 6: Return the compressed codewords and CR.
End

The proposed decompression engine was implemented by using the Verilog
Hardware Description Language (Verilog HDL), and synthesized using Synopsys’
Design Compiler and a TSMC 0.13 µm cell library. The decompression engine,
the logic diagram of which is shown in Fig. 24, consisted of a control unit, a
demultiplexer, shift buffers, LUTs, and the BitMask unit. The control unit controls
other units and assigns tasks to other units according to the control signals. The input
queue initializes itself, collects compressed instructions from the storage space, and
shifts the contents of the buffer after the decoding process is completed. The output
queue stores the decompressed instructions and delivered them to the processor
or cache. The large LUT and small LUT store the original binary instructions
and synthesized by using flip-flop logic. The small LUT stores high-frequency
instructions, enabling them to be quickly decoded with a shorter codeword length.
The BitMask unit executes the shifting of masks and exclusive-or operations
based on instructions from the large LUT to obtain the original instructions. The
BitMask unit also accesses the dictionary and executes shift operations in parallel
during decompression. The proposed decompression engine has a decompression
bandwidth of 32 bits/cycle.

Figures 25, 26, and 27 show the probability distribution of all five possible
codeword types when using the proposed approach with frequency-based dictionary
selection (FDS) on the ARM and TI C6x architectures. Beginning with the longest,
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Fig. 24 Logic diagram of decompression engine
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Fig. 25 Probability distribution of codeword types on ARM benchmarks

the sequence of the lengths of codewords was uncompressed, decompressed using
two masks (4f, 2f), one mask (4f), the large LUT, and the small LUT. LUT with a
size of 2048, and a small LUT with a size of 16, and codeword lengths of 34, 27, 21,
13, and 6, the introduction of a separated LUT clearly reduces the codeword sizes
with 20–30% of the instructions in nearly all the benchmarks.

In Figs. 28, 29, and 30, the CRs of three different code compression algorithms
were compared: DCC, BCC with fixed mask numbers (4f, 1 s), and CLCBCC by
using a 2f and 4f masks, respectively. Furthermore, the saving rates of Thumb-2 [38]
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Fig. 26 Probability distribution of codeword types on TI C62xx benchmarks
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Fig. 27 Probability distribution of codeword types on TI C64xx benchmarks

for benchmarks on the ARM Cortex-A9 processor are included in Fig. 28 as well.
A frequency-based dictionary selection algorithm was used to select LUT entries
in all these approaches. For CLCBCC, a small LUT was first constructed, and
then the remaining instructions were used to construct the large LUT. The results
demonstrate that using a small LUT for storing high-frequency instructions can
result in a CR improvement of 6% for the CLCBCC compared with BCC. Although
using the debug configuration for the C6x series on the Code Composer Studio
achieved a lower CR and greater improvements, the release configuration was used
to simulate the experiment in this article.

In Figs. 31, 32, and 33, the CRs of four different dictionary selection algorithms
are compared: frequency-based dictionary selection (FDS), bit-saving dictionary
selection (BSDS) [16], decoding-aware dictionary selection (DADS) [29], and
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Fig. 28 Comparison of CR for benchmarks on ARM Cortex-A9 processors
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Fig. 29 Comparison of CR for benchmarks on C62xx processors

the proposed MBSDS. Compared with other selection algorithms, the proposed
MBSDS outperforms the FDS and DADS for all the benchmarks. It is because FDS
only took frequencies rather than BitMask matches into consideration. While DADS
ensures higher instruction coverage, it also selects numerous unnecessary Case 3
instructions and several incorrect instructions, which results in a much larger LUT.

Seong and Mishra claimed that a threshold value between 5 and 15 is good for
BSDS [16]; thus, 10 was set as the threshold value for BSDS in the simulations.
The results showed that using the same threshold value can be unstable in different
benchmarks, which is a disadvantage of BSDS. If there are n unique instructions,
the time complexity for both BSDS (with a given threshold value) and MBSDS
is O(n2). No studies have yet proposed an optimal method to obtain a superior
threshold value. Thus, the threshold value can only be obtained by trial-and-error.
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Fig. 31 Comparison of dictionary selection algorithms on ARM processors

The BSDS must be performed several times to determine the superior threshold
value. Discovering the threshold value is time-consuming when the number of
unique instructions is large. The proposed MBSDS algorithm thus offers another
advantage: it does not require a threshold to decide whether a node can be selected,
and can avoid the special case described previously. In other words, MBSDS not
only improves the compression efficiency or CR, but also improves the performance
of the algorithm.
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Fig. 32 Comparison of dictionary selection algorithms on C62xx processors
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Fig. 33 Comparison of dictionary selection algorithms on C64xx processors

7 Conclusions

As mentioned in the preface, code compression was the first project I participated
when I first joined Marilyn’s group, and this chapter summarized the works we did
in this field for the last decade. Several approaches have been proposed to reduce
the memory usage in embedded systems, and may in turn reduce the cost and power
consumption of embedded systems.

Multicore architecture has been a trend in modern embedded products, with
requirements in higher communication bandwidths either between processors and
the cache, or between cache and memory, than single-core systems. In future studies,
the design and implementation of a general multilevel separated dictionary decom-
pression engine with fully separated LUTs method and a parallel decompression
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engine will be investigated, for applying code compression to architectures with
high-bandwidth requirements, such as multicore architectures.
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Wearable Sensor Applications:
Processing of Egocentric Videos
and Inertial Measurement Unit Data

Yantao Lu and Senem Velipasalar

Abstract There has been a proliferation of smartphones, smart watches, and
wearable sensors, making them ubiquitous in our daily lives. Mobile sensors have
found widespread use due to their ever-decreasing cost, ease of deployment, and
ability to provide continuous monitoring as opposed to sensors installed at fixed
locations. Various techniques have been proposed for fall detection, gait analysis,
activity monitoring, and heart rate and sleep sensing by wearable sensors and
mobile phones. Compared to works that use inertial measurement unit (IMU) data
or static cameras installed in the environment, there has been relatively less work
using egocentric videos, meaning providing the first-person view from wearable
cameras. Moreover, most of the existing studies on egocentric videos are based
on only one sensor modality, namely the camera. There have been even fewer
approaches that combine egocentric video data with IMU data. In this chapter, we
will describe three different applications using wearable cameras together with IMU
data. First, we will present an overview of a fall detection system using wearable
devices, e.g., smartphones and tablets, equipped with cameras and accelerometers.
Since the portable device is worn by the subject, monitoring is not limited to
confined areas, and extends to wherever the subject may travel, as opposed to
static sensors installed in certain rooms. Second, we will present an autonomous
and robust method for counting footsteps, and tracking and calculating stride length
by using both accelerometer and camera data from smartphones or Google™ glass.
To provide higher precision, instead of using a preset stride length, the proposed
method calculates the distance traveled with each step by using the camera data.
This method is compared with the commercially available accelerometer-based step
counter apps. The results show that the proposed method provides a significant
increase in accuracy, and has the lowest average error rate both in number of steps
taken and the distance traveled. Finally, we will provide an overview of a robust
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and autonomous method to detect activities with more details and context by using
accelerometer and egocentric video data obtained from a smartphone.

1 Autonomous Fall Detection with Wearable Cameras
and IMU Data

1.1 Introduction

Activity monitoring systems have been introduced as part of elderly care in recent
years, especially for elderly people living independently. Fall detection is a crucial
part of elderly activity monitoring systems, since falls are considered to be the
eighth leading cause of death in the USA [1], and fall injuries can result in serious
complications [2, 3]. Almost 20% of all falls require immediate medical attention
and about 10% of the falls result in fractures [4]. It has been well established that
timely response to a fall has a significant influence on lowering the morbidity–
mortality rate [5, 6].

Even though several user-activated commercial devices are available, they have
limited benefits, especially in situations where the user loses consciousness. In
response to growing needs, researchers have been working on autonomous fall
detection via dedicated signal processing devices. Noury et al. [7] and Mubashir
et al. [8] have provided well-organized surveys on the principles and approaches
involved in fall detection. According to Noury et al. [7], although there are some
common characteristics among falls, different scenarios must be considered for
different kinds of falls. For example, falls from a standing position are much easier
to detect as compared to falls from sitting or lying down positions. An autonomous
system should provide real-time detection of falls with tolerable number of, ideally
zero, false positives.

The fall detection and activity monitoring systems can be broadly categorized
into two main classes: (a) systems using non-vision sensors and (b) systems
using vision-based sensors. Acoustic, vibrational, and other ambience sensor-based
methods use characteristic vibration patterns to detect different events. However,
with these systems, the monitoring is limited to only those areas, where the
sensors are installed. Moreover, it is usually assumed that there is only one subject
performing the activities. Accelerometer-based fall detection systems [9–12] are
simple and cost effective. Yet, even with multiple sensors, these systems are prone
to creating false positives, especially when people are exposed to acceleration,
e.g., due to being in an elevator. The limitations of using just the accelerometer
are also discussed by Wu et al. [13]. Thus, due to shortcomings of systems that
rely only on acceleration and gyroscope data, more robust methods are needed
to differentiate between falls and other regular daily activities. A comprehensive
survey on activity detection and classification using wearable sensors can be found
in [14].
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Vision-based systems have been introduced as an alternative to employing
non-vision sensors. Compared to non-vision sensors, cameras provide a much
richer set of data including contextual information about surroundings, which
allows the analysis of a wider variety of activities. Vision-based methods involve
processing images from one or more cameras monitoring a subject [15]. Most
approaches use raw video data, while others address privacy concerns [16] by
using infrared or contrast-detection cameras [17, 18]. Stereoscopic vision and 3D
scene reconstruction are other variations that aim to increase system accuracy
[19, 20]. There have also been implementations of static camera-based algorithms
on embedded platforms. Belbachir et al. [21] presented a dynamic visual sensor
(DVS)-based system consisting of two optical sensors with 304×240 event-driven
pixels and an FPGA for the processing. Fleck et al. [22] presented a distributed
camera network for assisted living using FPGA and PowerPC-based smart cam-
eras.

In most of the existing vision-based systems, cameras are static, and installed at
fixed locations. Similar to the approaches using acoustic and vibrational sensors,
using cameras installed at static locations confines the monitoring environment
only to those regions. Furthermore, in many existing systems, videos captured by
the cameras are transferred to a central location for processing, which requires
extensive communication. In addition, subjects, continuously being monitored by
these cameras, often raise privacy concerns [16].

In this section, we present an overview of our work on fall detection by using
wearable camera and IMU data. In our work [23–27], we proposed a completely
different approach compared to existing vision-based activity monitoring systems.
In our system, the camera is worn by the subject providing an egocentric view, in
contrast to static sensors installed only at certain locations. Therefore, monitoring
extends to wherever the subject may travel including indoors and outdoors. More-
over, compared to the static cameras watching the subject, the privacy concerns
are alleviated, if not eliminated, since the captured images are not of the subject.
Instead, the captured images are egocentric images showing what the subject sees.
Furthermore, the images are not saved or transmitted to a central processor, but are
processed onboard locally. Based on the current trends, it is expected that wearable
cameras will be increasingly employed to understand lifestyle behaviors for health
purposes [28].

1.2 Proposed Approach

In our earlier work [25], we presented a fall detection algorithm that employed
histograms of edge orientations and strengths, and proposed an optical flow-
based method for activity classification. Similar to histograms of oriented gradients
(HOG) [29], an image is divided into blocks and then each block is divided
into n cells. Different from the original HOG algorithm, for every cell, two
separate histograms are built for the edge orientation (EO) and edge strength
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(ES). During a fall, edge orientations change significantly, which is reflected in
the gradient orientation histograms. Also, since falls are relatively fast events, the
edges in images get blurred as seen in Fig. 4. This is captured by the change in
the gradient strength histograms, and the edge strength values decrease during a
fall.

Only one block is used to lighten the processing load. In addition, the number
of cells in the block is changed adaptively so that the cells that do not contribute
to overall edge information are autonomously removed according to their content.
The details of the fall detection algorithm can be found in [25]. For the falls starting
from a standing up position, an average detection rate of 87.84% was achieved with
pre-recorded videos from eight subjects.

In a following work [26], we implemented this algorithm, which uses edge
orientation and edge strength histograms, on a Samsung Galaxy S®4 phone
with Android™ OS. We also implemented an algorithm to detect falls from the
accelerometer data. The fusion method is inspired by the sum rule of two normalized
classifiers, since it gives the least detection error rate [30]. When a fall is detected,
the result is displayed on the screen of the phone. The algorithm runs at 15 fps on
the smartphone. We performed experiments with 10 people carrying this phone. The
experimental setup and example images captured from the phone camera, during a
fall from standing up position, can be seen in Fig. 1. We compared sensitivity values
and the number of false positives for each modality alone and also for when they
are fused. The average detection rates obtained when using only the accelerometer,
only the camera, and when fusing accelerometer and camera modalities were
65.66%, 74.33%, and 91%, respectively. As shown in [26], fusing accelerometer
and camera data provides much higher sensitivity, and helps to eliminate false
positives caused by using only camera or only accelerometer as the fall detection
sensor.

More recently, we presented an improved algorithm [27] to autonomously
compute an optimal threshold for fall detection from training data, by employing
the relative entropy approach from the class of Ali-Silvey distance measures.
In our previous work mentioned above [25, 26], we had used an empirically
determined threshold. In this work, we used edge orientation histograms together

Fig. 1 (a) An Android™ smartphone attached to the waist; (b–d) Example images captured during
a fall from standing up position [26]
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with the gradient local binary patterns (GLBP), which are more descriptive and
discriminative than histograms of oriented gradients (HOG) [31].

In order to evaluate the performances and perform comparison, we obtained the
receiver operating characteristic (ROC) curves for indoor and outdoor experiments
for varying threshold values [27]. Experiments were performed with ten different
people and a total of around 300 associated fall events indoors and outdoors. We
compared the proposed method with original HOG [29], our earlier work [25]
(referred to as modified HOG in figures), and using only the GLBP features. For
the indoor dataset, as can be seen in Fig. 2, the proposed method operates closest
to the upper left-hand corner, and provides a better performance compared to other
approaches. The operating threshold point, which was obtained by the autonomous
threshold computation described in detail in [27], is marked on the ROC curve.
The operating point corresponds to the location (0.0755, 0.9378) in Fig. 2. We
also obtained the sensitivity/specificity curves, for the indoor dataset and varying
threshold values, which are shown in Fig. 3. As can be seen, the proposed method
outperforms the others, and operates closest to the upper right-hand corner. The
proposed method, with the autonomously computed threshold value, operates at the
point of (0.938, 0.876).

As mentioned above, wearable sensors allow the monitoring of people wherever
they may travel including indoors and outdoors. We also tested the proposed
method on outdoor scenarios. Example frames captured by the body-worn camera
during the course of a fall event can be seen in Fig. 4, which also shows the
significant change in the scene, going from building and trees to wide open

Fig. 2 Receiver operating characteristic (ROC) curves, for varying threshold values, obtained
from the indoor dataset containing falls and non-fall activities [27]
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Fig. 3 Sensitivity–specificity curves, for varying threshold values, obtained from the indoor
experiment dataset containing falls and non-fall activities [27]

Fig. 4 Example images captured from the body-worn camera during a fall from standing up
position in an outdoor environment [27]

skies. The threshold calculated from the training set is τc = 0.4602. For outdoor
scenarios, the change in scenery is usually much more significant compared to
indoor scenarios resulting in higher dissimilarity distances between frames. The
proposed approach for autonomous threshold computation is able to capture this
resulting in a higher threshold value of 0.4602. Similar to indoor experiments, we
obtained the ROC curves and the sensitivity–specificity graph for the proposed
method as well as three other approaches as seen in Figs. 5 and 6, respectively.
The operating point corresponding to the autonomously computed threshold value
is (0.0755, 0.898).

In summary, with this approach, since the sensors or the smartphone are worn by
the subject, the monitoring can continue wherever the subject may travel including
indoors and outdoors. Moreover, wearable cameras alleviate, if not eliminate,
privacy concerns of users, since the captured images are not of the subjects but
the surroundings. Also, with smartphone implementation, images are processed
locally on the device, and they are not saved or transmitted anywhere. Moreover,
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Fig. 5 Receiver operating characteristic (ROC) curve, for varying threshold values, obtained from
the outdoor dataset [27]
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Fig. 6 Sensitivity–specificity curves, for varying threshold values, obtained from the outdoor
dataset [27]

experimental results have shown that combining two different sensor modalities
provides much higher sensitivity and a significant decrease in the number of false
positives during daily activities, compared to accelerometer-only and camera-only
methods.
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2 Robust and Reliable Step Counting by Mobile Phone
Cameras

2.1 Introduction

Step counting is being increasingly used as an activity-level measure, which is
evidenced by different types of commercially available wristbands, pedometers,
and apps developed for smartphones and smart watches. In addition to measuring
daily activity levels and keeping logs for health monitoring, an accurate and reliable
count of footsteps can be used for motion estimation, calculating traveled distance
and indoor navigation. Yet, most of the available devices and approaches for step
counting rely only on accelerometer data, and thus are prone to over-counting.
Moreover, most existing devices calculate the traveled distance based on the counted
number of steps and a preset stride length, or rely on GPS data, which might not be
suitable for GPS-denied areas and indoor environments.

There has been significant amount of research on algorithms using the accelerom-
eter data from smartphones. Park et al. [32] presented an accelerometer-based
activity tracker on smartphones to provide high accuracy in location estimation
for indoor environments. Pan and Lin [33] proposed an accelerometer-based step
counting algorithm for smartphone users, which does not require the user to
have the smartphone attached to the body while walking. Another smartphone
application uses accelerometer data to analyze walking patterns and compute
distance traveled for clinical purposes when the phone is attached on top of a
belt around the waist [34]. Brajdic and Harle [35] tested accelerometer-based step
counter algorithms while trying different locations for the smartphone. They have
found that certain locations such as back pocket of trousers degrade the performance
of the algorithms significantly.

In general, accelerometer-based applications on smart watches or smartphones
are prone to over-counting, since they are sensitive to even small motions, and can
count other routine movements as steps. Moreover, when people are exposed to
acceleration, e.g., inside a vehicle or an elevator, accelerometer-based step counters
usually keep counting. When we tested an accelerometer-based step counter appli-
cation running on Apple™ iPhone 6, it was observed that the application increments
the number of steps when the user is traveling in a car or taking the elevator. Also,
it has been observed that when users walk really slowly, or when they stop and start
walking again, the accelerometer-based counting becomes unreliable. Marschollek
et al. [36] compared several accelerometer-based step counting algorithms on
both healthy subjects and geriatric patients with mobility impairments. It is stated
that [36] none of the algorithms worked very well, and that more research is
needed to prove the validity of these algorithms for the elderly. Since accurate step
detection is very important for indoor positioning systems, reliable and more precise
alternatives are needed for step detection and counting.

Different from the aforementioned work, Aubeck et al. [37] use data from a
camera sensor to detect steps. They use template matching based on the appearance
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Fig. 7 Subjects (a) using the 3D-printed phone holder, (b) holding the phone, and example images
obtained while walking from the camera of a (c) smartphone and (d) Google™ glass [41]

and disappearance of the forward section of the feet. It is stated that the method does
not perform well for fast movements.

In addition to relying on only one sensor modality, most of the aforementioned
works only focus on step counting and do not address the issue of calculating the
total traveled distance. Most existing approaches and commercial devices calculate
the traveled distance based on the number of counted steps and a preset stride length.
This stride length is usually asked from the user, or is calculated based on the user’s
height. On the other hand, there is a body of work that relies on GPS data, and thus
might not be suitable for GPS-denied areas and complex indoor environments [38–
40], for which the GPS data is either unavailable or highly unreliable.

In this section, we present an overview of our work [41–43] on autonomous and
robust footstep counting and tracking, and calculating stride length by using both
accelerometer and camera data from smartphones or a Google™ glass. To provide
higher precision, instead of using a preset stride length, the proposed method
calculates the distance traveled with each step by incorporating data from different
sensor modalities. In addition, if camera is tilted significantly, the angle data from
the gravity sensor is used to account for camera geometry and increase the precision
of the calculated step length. If a smartphone is being used, the subjects can hold the
phone as they normally would when they read e-mails or browse pages on the web.
As a proof of concept, we also designed and printed a holder, by using a 3D printer,
for hands-free usage and longer walking experiments. The images captured by the
rear-facing camera of the smartphone are used for the proposed method. Moreover,
we used a Google™ glass as a different use scenario. Different usage styles and
example images from a smartphone and Google™ glass can be seen in Fig. 7.

2.2 Proposed Method

The proposed method incorporates data from camera, accelerometer, and gravity
sensors to accurately determine the start and end of a frame, and track and measure
the length of each step. Data from the gravity sensor is used to detect if camera has
been tilted significantly, and account for camera geometry. A flow diagram is shown
in Fig. 8.
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Only for the first frame, Haar-based detection is used to detect the feet and obtain
bounding boxes around them. The sizes and locations of these bounding boxes are
used to initialize the matching template size, search region size, and the Kalman
filter tracker. For subsequent images, edges are detected first by using the Canny
edge detection algorithm. Several example images obtained after edge detection
can be seen in Figs. 9b and 10b for a smartphone and Google glass. The blue
boxes in these images indicate the search region. Then, the binary template shown
in Fig. 11 is used to perform template matching only in these determined search
regions. Since much smaller search regions are used instead of the entire image, the
computational efficiency of the proposed method is increased. Figures 9c and 10c
show the normalized value of correlation coefficient at each pixel location in the
search regions, wherein brighter pixels correspond to higher values, and the two
brightest spots are the locations of two detected feet. The detected locations are
marked in green in Figs. 9b and 10b.

Fig. 9 (a) Gray scale image from input of a smartphone camera, (b) detected edges and search
regions (blue boxes), (c) correlation coefficient values, (d) feet subimages and shape context
analysis, (e) detected tip locations of feet [41]

Fig. 10 (a) Gray scale image from input of a Google™ glass camera, (b) detected edges and
search regions (blue boxes), (c) correlation coefficient values, (d) feet subimages and shape context
analysis, (e) detected tip locations of feet [41]

Fig. 11 The template used for matching [41]
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A Kalman filter-based tracker is created in the first frame by using the bounding
boxes around the feet detected by the Haar-based detector. The feet locations are
then tracked in the subsequent frames. If feet locations cannot be detected by using
template matching, then the locations are updated by using the predictions from
the tracker. The detected and tracked locations for the feet are shown in green and
red, respectively, in Figs. 9b and 10b. Then, the y-coordinates of the feet locations
are saved. As seen in the flow diagram in Fig. 8, we then find the valleys in the y-
coordinate values by using a peak detection algorithm by Yoder [44]. The number
of steps taken is set to be the total number of detected valley points.

As mentioned above, instead of using preset stride lengths and assuming equal-
length steps, we calculate the length of each step by incorporating data from the
camera, accelerometer, and the gravity sensor. For better accuracy in calculating step
length, it is very important to precisely determine the start/end frames of a step. The
valley locations, detected as described above, may not exactly correspond to actual
start/end of a step. In order to address this challenge, we incorporate accelerometer
data. First, the peaks of the magnitude of accelerometer data are found. This, by
itself, does not solve the problem either, since accelerometer data can be noisy at
times, and not all the peaks in the magnitude of accelerometer data correspond to
actual steps. Thus, we combine the valley information obtained from the camera
data with the information from the accelerometer data. For a valley in y-coordinates
of feet locations, the closest peak, in time, of the accelerometer data is found, and
the corresponding frame number is used as the start/end frame of a step. This is
illustrated in Fig. 12. This approach prevents the proposed method being affected
by the noisy peaks in the accelerometer data.

250
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Fig. 12 Finding correspondences between the valleys of camera data, and the peaks of accelerom-
eter data [41]
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After the start/end frame of a step is determined, the next stage is to find the tips
of each foot on those frames so that the step length can be calculated. For this, shape
context [45] is applied to the output of the edge detection. The detected tip locations
can be seen in Figs. 9d, e and 10d, e.

Before computing the step length, camera rotation angle obtained from the
gravity sensor is checked. This angle is used to determine if a significant change
happened in the camera orientation. More specifically, if the rotation angle is greater
than 15◦, which is an empirically determined threshold, then the camera geometry
model is used to incorporate this change, and the image locations of extracted tip
points are transformed to the world coordinate system as described below. This step
is especially important when the camera is hold by hand.

If the angles obtained from the gravity sensor are θ ′ and φ′, we use θ = θ ′ − π
2 ,

φ = φ′ − π
2 for the rotation of the camera along the x-axis and y-axis, respectively.

Then, the image coordinates can be transformed to world coordinates by using the
rotation matrix. Since the captured image is assumed to be of a ground plane, a 2D
planar transformation is used. The details of how the step length is calculated can
be found in [41].

2.3 Experimental Results

We have performed various experiments with a smartphone as well as a Google™

glass. We compared the proposed method with the accelerometer-based step counter
apps in terms of both the counted steps and traveled distance. In different sets
of experiments, subjects walked continuously, they stopped and started walking
again, and also followed a zig-zag-like pattern. For comparison purposes, the
subjects carried three mobile devices simultaneously at different body locations.
More specifically, two smartphones were carried in a front pant pocket and in a
backpack, and these phones ran readily available, accelerometer-based apps for step
counting and distance calculation. The third mobile device is either a smartphone
or a Google™ glass used to capture data for the proposed method. The captured
image size is 1920×1080 pixels. The image size used for template matching is
240×160. Full-sized images are used for shape context calculation, and to improve
the precision of the calculated traveled distance.

With smartphone experiments, 15–20 different subjects either carried the phone
by hand or used the holder around the waist, and walked for various distances on
a path involving several corridors. When 15 subjects held the phone by hand, the
average error rates for the number of steps are 4.77%, 24.96%, and 24% for the
proposed method, and the accelerometer-based apps running on the phone carried
in the front pocket and in a backpack, respectively. The average error rates for the
traveled distance are 3.95%, 53.31%, and 48.75% for the proposed method, and the
accelerometer-based apps running on the phone carried in the front pocket and in
a backpack, respectively. Thus, the proposed method provides the lowest average



162 Y. Lu and S. Velipasalar

error rate for both the number of steps and the traveled distance compared to the
accelerometer-based apps.

In addition, we performed smartphone experiments with 20 subjects by using
the 3D-printed holder as a proof of concept. In these experiments, subjects walked
a longer distance (2000 ft). Tables 1 and 2 summarize the results for the counted
number of steps and the reported traveled distance, respectively, obtained by the
proposed method and the accelerometer-based apps. The proposed method increases
the accuracy significantly, and provides the lowest average error rate for both
the number of steps and the traveled distance across 20 different subjects. The
average error rates for the number of steps are 3.86%, 31.76%, and 30.98% for the
proposed method, and the accelerometer-based apps running on the phone carried
in the front pocket and in a backpack, respectively. The average error rates for
the traveled distance are 3.92%, 67.65%, and 62.47% for the proposed method,
and the accelerometer-based apps running on the phone carried in the front pocket
and in a backpack, respectively. Table 2 also shows the improvement in accuracy
obtained by incorporating the camera geometry. More specifically, by incorporating
the camera geometry to the proposed method, the average error in the traveled
distance decreases from 4.98% to 3.92%.

We also performed experiments with 10 subjects wearing a Google™ glass, and
walking a distance of 2000 ft. The average error rates for the number of steps
are 7.62%, 23.47%, and 25.17% for the proposed method, and the accelerometer-
based apps running on the phone carried in the front pocket and in a backpack,
respectively. The average error rates for the traveled distance are 7.78%, 77.44%,
and 74.63% for the proposed method, and the accelerometer-based apps running on
the phone carried in the front pocket and in a backpack, respectively. Experimental
results show that the proposed method provides a significant increase in accuracy,
and has the lowest average error rate both in number of steps taken and the distance
traveled compared to commercially available, accelerometer-based step counters
and apps.

For the experiments above, subjects were walking in a continuous manner, and
only turning around the corners. Additionally, we performed experiments, with 10
subjects using the smartphone, during which subjects stopped and started walking
again several times, and sometimes followed a zig-zag-like pattern while walking.
For this experiment, the average error rates for the number of steps are 4.09%,
24.17%, and 25.1% for the proposed method, and the accelerometer-based apps
running on the phone carried in the front pocket and in a backpack, respectively.
The average error rates for the traveled distance are 5.56%, 48.1%, and 59.25%
for the proposed method, and the accelerometer-based apps running on the phone
carried in the front pocket and in a backpack, respectively.

In addition, we performed experiments with two subjects walking in low
illumination conditions by using the built-in flashlight of the smartphone. If the
highest brightness value in the image is smaller than 128, the flashlight is turned on.
The proposed method still increases the accuracy significantly. More specifically,
the accuracy rates for the number of steps are 96.3%, 77.23%, and 53.36% for the
proposed method, and the accelerometer-based apps running on the phone carried
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in the front pocket and in a backpack, respectively. The accuracy rates for the
traveled distance are 95.28%, 64.34%, and 13.53% for the proposed method, and
the accelerometer-based apps running on the phone carried in the front pocket and
in a backpack, respectively.

In conclusion, we have proposed an autonomous and robust method for counting
footsteps, and tracking and calculating stride length by using both accelerometer
and camera data from smartphones or a Google™ glass. To provide higher precision,
instead of using a preset step and/or stride length, the proposed method calculates
the distance traveled with each step. The proposed method has been compared
with the commonly used accelerometer-based step counter applications (apps). The
results show that the proposed method provides a significant increase in accuracy,
and has the lowest average error rate both in number of steps taken and the
distance traveled compared to commercially available, accelerometer-based step
counters and apps. The experimental results also show that the performance of
the accelerometer-based methods varies significantly across different subjects with
higher standard deviation values, depends on the walking pace of the subjects, and
is sensitive to the location of the device.

3 Human Activity Classification from Egocentric Images
and IMU Data

3.1 Introduction

Many methods have been proposed for human activity classification, which rely
either on inertial measurement unit (IMU) data [46] or data from static cameras
watching subjects (third-person video data) [47–51]. Systems relying only on IMU
data are limited in the complexity of the activities that they can detect. For instance,
we can detect a sitting event by using accelerometer data, but cannot determine
whether the user has sat on a chair or sofa, or what type of environment the user is
in.

There have been relatively less work using egocentric videos and even fewer
approaches combining egocentric video and IMU data. Existing work using egocen-
tric videos has focused on classifying the activities “seen” by the camera [52, 53] or
the activity of the person wearing the camera [54–56, 58–60, 63]. Zhan et al. [61] use
both IMU and camera sensors, in the form of reading glasses, to classify activities
of elderly and disabled patients, such as walking, standing, lying down, drinking,
writing, and sitting down. Windau and Itti [62] also use both IMU sensor and
camera data and report 81.5% accuracy for 20 activities. Both of these methods
still focus on activities that can be classified by accelerometer data. They do not
perform object detection in the scene, and do not focus on activity types that cannot
be classified by only accelerometer data. Spriggs et al. [57] explore first-person
sensing through a wearable camera and IMUs for temporally segmenting human
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motion into actions and performing activity classification in the context of cooking
and recipe preparation. They extract GIST features from camera data. A review
of the egocentric vision systems, for the recognition of activities of daily living,
is presented in the survey by Nguyen et al. [64], and it was concluded that the
performance of current systems is far from satisfactory.

In this section, we present an overview of our work on activity classification using
accelerometer and camera data from a smartphone [65]. In this work, we focus on
the type of activities, which cannot be classified by just accelerometer data, and
require detection of objects in the environment from camera data. Without loss of
generality, we have performed experiments on differentiating between sitting on a
sofa, sitting on a chair, and walking through doorways. Only accelerometer data
can be enough to detect walking, but it is not enough to detect that the person
is walking through a doorway, and thus changing rooms. Similarly, camera data
becomes necessary to detect whether the person sat on a sofa or a chair.

3.2 Proposed Method

In our proposed approach, both camera and accelerometer data, obtained from a
smartphone, are employed. Camera data is used to compute optical flow vectors,
and perform object detection via an aggregate channel features (ACF)-based
detector [66]. Different features are extracted from the accelerometer data to obtain
a 14D vector. Then, a 3D vector is obtained based on the y component of the optical
flow vectors, and concatenated to the 14D vector to obtain a 17D feature vector. A
multi-class SVM is trained and employed to differentiate between motion-related
activities of walking, sitting from standing position, standing from sitting position,
and being immobile.

The ACF-based detector is trained to detect chairs, sofas, and doors/doorways.
It provides bounding boxes around the detected objects. The features obtained from
these bounding boxes together with the label describing the detected object type are
saved as a vector. These vectors are used to train another multi-class SVM to detect
approaching a sofa, chair, or door. Then, a hidden Markov model (HMM) is built
to be used in the final stage to detect whether the person carrying the smartphone is
sitting on a chair, sitting on a sofa, or walking through a door. More details about
these steps are described in [65].

3.3 Experimental Results

For training the two multi-class SVMs and the HMM, a 30-min video is captured
from a subject wearing the smartphone as seen in Fig. 13. The subject performs a
total of 193 activities consisting of sitting on a chair, sitting on a sofa, and walking
through doors.
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Fig. 13 Experimental setup [65]

98.0%

96.0%

94.0%

92.0%

90.0%

88.0%

86.0%

84.0%
chair sofa door total

precision

sensitivity(recall)

Fig. 14 The overall precision and recall values across all subjects [65]

Experiments have been performed with seven different subjects in an indoor
environment. During a period of about 10 min, each subject sits on a chair, sits on a
sofa, and walks through doors several times. More specifically, there are 100, 90, 80,
101, 88, 89, and 120 activities performed by the subjects 1 through 7, respectively.
The smartphone is carried on a belt around the waist, and the camera faces forward
as seen in Fig. 13. The captured image size is 640 × 480 pixels.

The overall precision and recall values, across all seven subjects, for all three
activity types are plotted in Fig. 14. Example images from different test videos
showing the detection of chairs, sofas, and doorways by the ACF-based detector
are shown in Fig. 15.
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Fig. 15 Example images from a test video showing the detection of chairs (a–c), sofas (d–f), and
doorways (g–i) [65]

As mentioned above, without loss of generality, we have presented results on
differentiating between sitting on a sofa, sitting on a chair, and walking through
a door. The proposed method achieved overall precision and recall rates of 95%
and 89%, respectively. The number of activity types can be increased by detecting
different types of objects in the scene, and modifying the HMM.

4 Conclusion

Wearable sensors, including cameras, provide wide-ranging and beneficial appli-
cations for the society. Thanks to the advances in wearable and mobile device
technology, it has become feasible to employ them as stand-alone platforms
and perform various tasks. Mobile devices now include various sensors, such as
camera, accelerometer, gyroscope, and magnetometer, and provide high processing
capability. Moreover, wearable sensors provide continuous monitoring as opposed
to sensors installed at fixed locations.

In this chapter, we have presented our work on three different applications using
egocentric videos from a wearable camera and also IMU data. First, we have
provided an overview of our fall detection system. Second, we have presented an
autonomous and robust method for counting footsteps, and tracking and calculating



Wearable Sensor Applications: Processing of Egocentric Videos and Inertial. . . 169

stride length. Third, we have provided an overview of our work on detecting
activities with more details and context by using accelerometer and egocentric video
data obtained from a smartphone. The proposed algorithms and solutions presented
in this chapter can be utilized in activity monitoring for different applications
including healthcare, monitoring elderly people leaving by themselves, and for
indoor navigation.

Promising results have been obtained when wearable camera and IMU data is
used together. Experimental results have shown that the proposed fall detection
method, combining two different sensor modalities, not only increases the detection
rate, but also decreases the number of false alarms during daily activities, compared
to only accelerometer-only or camera-only methods.

For the footstep counting and traveled distance calculation, the proposed method
has been compared with the commonly used accelerometer-based step counter
applications (apps). It has been observed that the proposed method provides a
significant increase in accuracy, and has the lowest average error rate both in number
of steps taken and the distance traveled compared to commercially available,
accelerometer-based step counters and apps. Also, experimental results have shown
that the performance of the accelerometer-based methods varies significantly across
different subjects with higher standard deviation values, depends on the walking
pace of the subjects, and is sensitive to the location of the device.

As the third application, we focused on types of activities that cannot be
differentiated by just accelerometer data, since they are more complex, and require
context and detection of objects in the environment from camera data. Without
loss of generality, we have presented results on differentiating between sitting on
a sofa, sitting on a chair, and walking through a door. The activity types can be
increased by detecting different types of objects in the scene, and modifying the
HMM. The proposed method achieves overall precision and recall rates of 95% and
89%, respectively.
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Nonvolatile Processor Architecture
Exploration for Energy-Harvesting
Application Scenarios

Kaisheng Ma, Shuangchen Li, Vijaykrishnan Narayanan, and Yuan Xie

Abstract Every shift in the way our devices are connected or powered brings with
it a potential for revolution in the usage and capabilities of the systems built around
them. Just as the transition from wired to wireless telephones led to unprecedented
changes in our communications and the shift from wall-power to battery-power
transformed our expectations for computational systems, the shift from battery-
powered systems to self-powered systems promises to fuel the next revolution
in the Internet of Things (IoT). The ability to utilize ambient, scavenged energy,
such as solar energy, radio-frequency (RF) radiation, piezoelectric effect, thermal
gradients, etc., can liberate IoT devices from the lifetime, deployment, and service
limitations of a fixed battery. However, the power supplied by energy-harvesting
sources is highly unreliable and dependent upon ambient environment factors.
Hence, it is necessary to develop specialized IoT architectures and systems that
are tolerant to this power variation, and also capable of making forward progress
on the computation tasks. In this chapter, one of the potential solutions called
nonvolatile processor is introduced, in which nonvolatility feature is designed within
a processor to overcome the unstable power supply through distributed energy,
time efficient backup, and recovery operations. The chapter provides insights on
the design space of different architectures, different input power sources, and

K. Ma (�)
Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
e-mail: Kaisheng@mail.tsinghua.edu.cn

S. Li
Department of Electrical and Computer Engineering, University of California at Santa Barbara,
Santa Barbara, CA, USA
e-mail: yuanxie@ece.ucsb.edu

V. Narayanan
Pennsylvania State University, State College, PA, USA

Y. Xie (�)
Department of Electrical and Computer Engineering, University of California at Santa Barbara,
Santa Barbara, CA, USA

© Springer Nature Switzerland AG 2020
S. S. Bhattacharyya et al. (eds.), Embedded, Cyber-Physical, and IoT Systems,
https://doi.org/10.1007/978-3-030-16949-7_8

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16949-7_8&domain=pdf
mailto:Kaisheng@mail.tsinghua.edu.cn
mailto:yuanxie@ece.ucsb.edu
https://doi.org/10.1007/978-3-030-16949-7_8


176 K. Ma et al.

policies for maximizing forward progress. Through exploration of the various
factors involved in designing a battery-less energy-harvesting system, this chapter
brings opportunities and accelerates the innovations of self-powered IoTs.

1 A Short Introduction

Improvements in electronics integration, miniaturization, and power efficiency con-
tinue to stretch the boundaries of what constitutes a sufficient power envelope within
which to operate a computational platform. This trend is now fueling the emergence
of self-powered systems that harness ambient energy sources without reliance on
batteries. Such battery-less systems are attractive for ubiquitous deployment in the
emerging Internet of Things paradigm by eliminating reliance on the presence
of, and constant connection to, underlying power infrastructure and easing the
restrictions imposed when provisioning batteries and enabling their recharge and/or
replacement [1–5].

Some of such systems have already been successfully deployed, and some are
very reachable in the near future. The applications that make use of this paradigm
are diverse, including (1) area monitoring, e.g., the position of the enemy; (2)
environmental monitoring; (3) industrial monitoring; (4) medical and healthcare
monitoring; (5) traffic control systems; (6) underwater acoustic sensor networks;
and (7) near-body wearable device networks.

There are, however, several drawbacks in relying on ambient sources of energy
for such computing purposes. Most of these energy sources operate at relatively low
conversion efficiencies since only a small fraction of the total transmitted power can
be tapped. In addition, they are not reliable energy sources, since external factors
could cause a disruption in supply.

The rest of the chapter proceeds as follows: Section 2 provides basic back-
ground on energy-harvesting platforms, including features of energy sources and
comparison of various potential energy-harvesting solutions. Section 3 introduces
a model from the system level. Section 4 explores the architectures from three
different complexity: non-pipelined, N-stage pipelined, and out-of-order nonvolatile
processors. Section 5 validates our proposed architectures with fabricated NVPs.
Section 6 discusses the design guidelines for self-powered system designers.
Section 7 concludes the chapter and discusses the future works.

2 Background of Energy Harvesting

2.1 Ambient Energy Sources: Weak and Unstable

Typical ambient energy sources that could be harvested to power an embedded
system include solar energy, radio-frequency (RF) radiation, piezoelectric effect,
and thermal gradients[6], as shown in Fig. 1. These sources can be classified
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according to three characteristics: signal magnitude, variability in signal strength,
and granularity of variation/intermittency frequency. Research also indicates that
implantable biofuel cells (BFCs) are able to generate electric power from sugars
found in the body fluid of an insect [7]. A comprehensive comparison among these
power sources can be found in references [8] and [9].

Figure 2a shows the power traces for four typical ambient energy sources. The
RF energy is obtained by measuring the power of the frequency spectrum from
a TV station, the piezo energy is measured through devices fixed on a bike, the
thermal energy is generated from characterizations described in references [10–12],
and the solar trace is obtained using data from MIDC [13]. It is observed that there
is substantial variation in power, even over a few milliseconds for RF in Fig. 2a
with the ratio between the maximum and minimum power over this period around
250× [6, 14, 15]. The piezo power is more stable than RF with just some short
power loss in Fig. 2b. The thermal power, shown in Fig. 2c, is even more stable,
due to the gradual nature of temperature variation. Variation in solar power seen in
Fig. 2d is contingent on the weather conditions and orientation of the solar cell.

Another feature is the intermittency frequency that influences how soon the
power drops below a given threshold as shown in Fig. 2a. The intermittency
frequency decides the backup and recovery overheads. Sources with periodic
behavior, like Fig. 2b, facilitate prediction of power loss and enable efficient
scheduling of tasks.

2.1.1 Typical Energy-Harvesting System Structures

With the development of the Internet of Things (IoT), smart cities, and implantable
and wearable applications, extremely low-power systems powered by ambient
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energy sources are gaining popularity. Figure 3a shows an archetypical system
structure consisting of (a) an energy harvesting and power management block, (b) a
digital signal processor which is usually implemented using a microcontroller unit
(MCU), and (c) the wired or wireless I/O interface. The capacity and implemen-
tation of the energy storage medium is also critical to the system design because it
directly affects the trade-off between leakage and other overheads and the maximum
stored power. In later sections, this trade-off will be discussed in more detail.

It is also noted that different energy sources require different energy harvesters
for power conversion. For example, the output of a solar cell is a DC signal, while
the RF signal and the output of piezoelectric-based systems are AC signals which
require an extra AC–DC rectifier. When the input power is weak, the output voltage
may also be low and potentially require an extra DC–DC voltage booster [6].

The baseline energy-harvesting block is illustrated in Fig. 3. Subsequent to the
AC–DC or DC–DC conversion, an MPP tracking (MPPT) interface is employed
to control the charging power for the highest power-conversion efficiency from the
energy harvester.
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2.2 Why Not Do Wait-Compute on A Volatile Processor with A
Large Capacitor?

On account of these limitations, most current energy-harvesting platforms tend to
restrict themselves to applications that require relatively simple signal capturing
mechanisms involving minimal computation and processing with a large capacitor
for energy storage and start only when there are ample energy stored. Such
traditional strategy in energy-harvesting systems is to employ a volatile low-power
MCU or an MCU with checkpointing capability (e.g., FeRAM MSP430 is used
in [16]) that waits before starting to execute while charging an energy storage
device which must be large enough to store sufficient energy to complete an entire
logical work unit, such as an image frame [16]. Systems operating on this paradigm
will alternate between periods where they accumulate energy in the energy storage



180 K. Ma et al.

devices (ESD), and ones where powering the system drains the energy. While such
a system is able to offer strong guarantees for execution once execution begins, this
conventional solution has several limitations, including energy conversion efficiency
overheads brought by frequently charging and discharging the capacitor, capacitor
leakage [16, 17], minimum charging current (e.g., 20 µA for the GZ115 [17]), and
slow charging curve [17]. Moreover, if the incoming unit of work is too large, the
incoming power may not be sufficient compared to leakage in the ESD [16], or there
may be long periods of complete power outage that drain the accumulated charge,
and it may take arbitrarily long to reach the threshold for beginning execution.

An alternative execution paradigm is to utilize only a small on-chip capacitor, i.e.,
one sufficient for backup operations, and employ an NVP. This can reduce capacitor
leakage and improve front-end conversion efficiencies. Its approach is to mitigate
the overheads of moving charge into and out of a large energy storage device at
the cost of additional system complexity for the NVP. More complicated guarantees
on the granularity of work are accomplished once an execution period begins and
the overheads imposed during more frequent backup and restore events during the
execution of each logical unit of work. The two approaches can be seen as similar if
the logical unit of work is at instruction or similar granularity, thereby minimizing
both charging time and charge lost if a shortfall occurs during a charging period
between backup and recovery. Hybrid approaches have also been proposed. For
example, Sheng et al. propose a dual channel front-end solution to overcome low
charging efficiency [18] in which they design another power channel to bypass the
energy storage device and connect directly to the load, and Ma et al. extend prior
NVP models to maintain the capacitor energy level [19] within a bounded range for
charging efficiency during execution rather than greedily consuming energy. Thus,
the key energy trade-off between the two approaches is between the energy wasted
on charging and discharging a capacitor with leakage and the backup and recovery
overheads of NVP.

It is observed through simulation and validation that the NVP-based execution
approach can outperform the wait-compute scheme by 2.2X-5X.

2.3 Volatile with Checkpointing or Nonvolatile?

The wait-compute scheme suffers from low efficiency brought by the front-end
circuits. One possible solution is that to build a direct path from source to the load.
While this brings another challenge: unstable power supply. Figure 4 illustrates the
difference in the behavior of a volatile processor with periodic checkpointing to an
external nonvolatile memory and a completely nonvolatile processor when working
under variable power source conditions. While both processors can only run when
the input power exceeds a certain threshold, the volatile processor does not retain
the instantaneous state of the system when the power drops below the threshold,
resulting in a forced rollback from previously checkpointed state. This could limit
the amount of forwarding progress from being made.
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3 An Energy Model for Energy-Harvesting System

A key challenge in designing battery-less electronics with energy scavenged power
sources is the erratic and unreliable power supply derived from ambient sources.
One solution is to add an energy storage capacitor, such as a super-capacitor to
smooth the power. Figure 6 shows an abstracted charging metaphor that highlights
the key components of the systems considered in this paper and Fig. 5 illustrates an
energy trace harnessed from an RF power source stored in a capacitor accounting for
its leakage. Since the capacitor leaks, periods during which the power harnessed is
less than the leakage power cause the overall stored energy to decrease. Conversely,
leakage rates and size/weight restrictions bound the practical scale of capacitor
volume, so the capacitor may saturate and be unable to store additional energy
during periods of high input power.

Three key insights into the dynamics of energy storage in energy-harvesting
systems are that, firstly, over the highly varying input power ranges that these
systems must operate, they will frequently encounter both periods where the energy
lost from capacitive storage is greater than that replaced by energy harvesting
and periods where short term increases in input power provide more energy
than a practical capacitor can store. Second, the effects of capacitive leakage,
finite capacitor storage, charging losses, and other front-end power components
are large enough to require co-optimization when considering processor or other
compute-engine optimizations for these platforms. Third, as Fig. 5 depicts, policy
management of the power demand at the processor, the load for this front end
provides substantial leverage in mitigating both capacitive underflow and overflow
by changing the slope of energy consumed. Changes in processor policies such as
DVFS can also affect front-end efficiency: For example, since DC–DC conversion
losses depend on the difference in voltage, actively depleting or restoring the energy
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storage capacitor to a particular voltage range will impact the efficiency of the
system in harvesting future power (Fig. 6).

4 Architectural Exploration

This section focuses on determining which architectural configurations are best
suited to optimally utilize the available power and energy by maximizing the
processor performance under different energy constraints. Hence, depending on the
energy that is harvested, various parameters are analyzed, such as the number of
pipeline stages, the data to be backed up, and the frequency of backups.
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Some common configuration assumptions for these structures include:

1. ISA MIPS
2. Clock frequency is 8 kHz for all configurations. The selection of clock frequency

is driven by the limited strength of the WiFi signal used, rather than the limits of
the microarchitectures.

3. Instruction Memory and ICache: The instruction memory is assumed to be ROM.
The ICache can be SRAM, hybrid [20], or NVM [20, 21]. In this paper, ICache
is designed using NVMs.

4. Data Memory and DCache: Data memory is assumed to be nonvolatile. An
SRAM-based DCache employing a write-through strategy does not require any
backing up policy. On the other hand, a write-back strategy necessitates writing
the dirty data back to memory. Our system assumes a nonvolatile write-back
DCache which preserves the dirty data even during periods of power down.

4.1 Non-pipelined Configuration (NP)

In the absence of any pipeline stages, the entire state of the processor can be
characterized by a single instruction state. Hence it is sufficient to focus on the
following structures for retrieving architectural state.

1. Program Counter (PC): The PC address relates to the instruction being executed
and surely needs to be stored.

2. Register File (RegFile): Due to its frequent usage, the RegFile undergoes a large
number of writes and hence volatile RegFile is more energy efficient than an
NVM based RegFile.

However, all the volatile RegFiles need to be moved to a nonvolatile memory
on power failures to save state.

In addition to the architecture, there are also trade-offs between the energy
consumed in backing up and recovering the data and the overall performance. These
trade-offs are explored, by choosing which data to save, and when to save it, as
demonstrated by the following policies:

Backup Every Cycle (BEC)
In spite of the significant energy penalty, this solution employs an NVM register
file, or else both the contents of a volatile RegFile and its counterpart nonvolatile
location need to update every cycle. As shown in Fig. 11, only the PC and a few
registers are written into the RegFile every cycle. Some instructions such as Store
Word and Jump do not require any further RegFile write. Consequently, the power
increase due to the use of a power-hungry nonvolatile memory is moderate.

On Demand All Backup (ODAB)
This differs from the previous solution in that all RegFile entries need to be backed
up only in the event of a reduced power state. We develop a control structure shown
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in Fig. 7, in which there is an individual NVM backup block to back up the PC and
RegFiles. If the input power drops below a preset threshold, a power warning signal
is activated. At that instant, the control unit starts to back up the PC and resets the
atomic flag for PC to indicate that the PC has been successfully backed up. A similar
procedure is carried out for the RegFile. When the power is available again, I first
need to accumulate energy in the capacitor to ensure that there is enough energy for
the next backup and recovery operation before continuing execution (Fig. 8).

On Demand Selective Backup (ODSB)
In order to reduce the backup time and energy penalty, I develop an on demand
selective backup solution, as described below. A synchronous power warning signal
is used, which may delay the power warning signal a little bit, but can guarantee
that the current PC finishes executing and writing back (if necessary). To avoid re-
executing the instruction corresponding to the current PC, PC + 4 is stored except
in case of jump or branch instructions. This solution can save one clock cycle. Since
the frequency of this system is very low, even a single clock cycle may be very
significant if the power down happens frequently. In the volatile RegFile, I add a
change flag to each register to identify if a register has been written into between
two backup operations. If the register has not been changed during the interval,
the control unit will know it from the change flag and would not need to generate
addresses for the unchanged data, as shown in Fig. 9.

Simulation Results and Comparison
Figure 8 shows the area of each of the components for the schemes described
above. It is observed that the total area is similar since the NVM cache and backup
blocks are much larger than the logic components. The critical path delay shown in
Fig. 10 indicates that the BEC has the lowest peak frequency due to the frequent
backups. However, there are overheads in the other schemes which also prevent
them from running at peak performance. These overheads are illustrated in Fig. 11.
It shows the details of computing, backup, recovery, and off times for each scheme
described above. BEC distributes the backup energy penalty to every cycle. Thus
these penalties are the smallest for this case, as shown in Figs. 12 and 13. The
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Fig. 10 Non-pipelined
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recovery time is defined as the time from the activation of the Energy OK signal to
the time all backup operations are completed. The recovery times are similar across
all schemes, but BEC does not need to accumulate energy for backup. Consequently,
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this scheme can restore the system the fastest. The ODAB scheme needs to back up
the PC and the entire RegFile; thus, the time and energy penalty is the largest.

ODSB reduces the number of RegFile entries to be copied, by detecting if the
RegFile has changed during two backup intervals, thus requiring less backup time
and energy than ODAB.

In order to determine the best NP scheme, optimizing power and energy is more
important than timing, on account of the low clock frequency. In BEC, if the interval
time (the time of power on during two power loss) is very short, the energy per
instruction is low because at most only one RegFile entry is backed up, while ODAB
needs to back up all RegFile entries. ODSB backs up only one entry at a time, but
it is more complex in design. As the backup interval time is increased, ODAB and
ODSB are more energy efficient, as observed in Fig. 13, on account of backing up
only in the event of a power warning.

In order to avoid a large peak power which can result in system instability, I
choose to back up and recover data serially. Although a parallel approach can reduce
the backup and recovery time, it increases the peak power requirement. From this
point of view, the ODSB is better than ODAB.
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• ODSB is a most energy-efficient strategy when the source is relatively stable like
solar energy. Compared to ODAB, ODSB can reduce the backup energy penalty
by 69% with only 0.002% area overhead.

• While BEC is not the most energy efficient with very weak sources like WiFi,
it does not require the time to accumulate energy in the capacitor to ensure
sufficient backup energy is available, as shown in Fig. 11. Hence it is viable
when the power failures are extremely frequent (less than 1 in 10 cycles), which
rarely happens even in WiFi sources.

4.2 N-Stage-Pipeline

In contrast to the MIPS non-pipelined case, a MIPS N-stage pipeline is traditionally
used to improve the clock frequency. Due to the increase in circuit complexity and
the activity factor of the processor, the power threshold of this design in energy-
harvesting systems is higher than that of the non-pipelined case. In this subsection,
we assume a five-stage-pipeline structure (5SP) and propose two backup schemes.

Shifted PC and Volatile Flip-Flops (SPC/VFF)
The main differences between NP and 5SP configurations are the pipelined data flow
with bypass and forward and the complex control flows to handle hazards (Fig. 14).
In the SPC/VFF scheme, a shifter buffer is designed to remember the PC value in
each pipeline stage, as shown in Fig. 15. This means the PC no longer needs to
pass through all pipeline stages to be stored. When the power is down, the clocked
power warning signal can guarantee that the PC in the write-back stage will be



188 K. Ma et al.

Time

Input 
power

ComputeNVFF Off

Filling up the cap Recovery pipeline FF 

Reco
-very 
RF 

Compute

ComputeSPC/
VFF

Shifted PC

Atomic flag PC write

Atomic flag RegFile write

Off

Filling up the cap

Read Atomic flag PC 

Recovery PC 

Clear Atomic flag PC 
Read Atomic flag RegFile 

Reco
-very 
RF 

Clear Atomic flag RegFile 

Read Change Flag in each Reg

...

Backup or skip the Reg

on off on

...

Selective RegFile

Compute

Re-exe the last 4 insts

Finish the inst in WB

IF/
ID

ID/
EX

EX/
MEM

MEM
/WB

Pipeline FF in each stage
Flag

Fig. 14 Five-stage-pipeline NVM flip-flops backup

Fig. 15 Comparison of
individual runtime
components for SPC/VFF
and NVFF

LW ADD SUB SW ADD

LW J SUB SW ADD

PC2 PC1 PC1-4 PC1-8

PC PC-4 PC-8 PC-12

Pipeline IF RF EX MEM WB

InstQue1

Shifter

InstQue2

Shifter

finished. The unfinished PC to be backed up would then be in the data memory
stage. The reason that we use a shifter instead of simply rolling back the PC is that
if some of the instructions in the pipeline are jump or branch instructions as shown
in InstQue2 in Fig. 15, a different PC would need to be backed up. If the instruction
in MEM stage is SW as shown in InstQue1&2 in Fig. 15, this SW instruction will
be guaranteed finished by the clocked power warning signal. We can try to identify
if the backed up instruction is SW, if yes, back up the PC in EX stage in the shifter
instead of PC in MEM. Instead of dealing with the increased design complexity, we
can just back up PC in MEM stage. Once the power is on again, the first instruction
will be SW. In this case, we run SW actually twice: the first time is during the backup
operation, another one is the first instruction after recovery in case the former one is
not properly finished.

Nonvolatile Flip-Flops Solution (NVFF)
This solution involves the use of NVM flip-flops (Fig. 16). Here, the PC and the
RegFile are automatically backed up through NVM flip-flops in the IF/ID pipeline
stages.

Simulation Results and Comparison
SPC/VFF requires 11% less time and 57% less energy than NVFF in Fig. 17.

However, an extra 4 clock cycles are needed to re-execute the last 4 instructions
that are lost from the latter pipeline stages after recovery, which we regard this as
part of the recovery time penalty..

Counter to intuition, we show that SPC/VFF is more energy efficient than NVFF.
Instead of backing up all the data in the pipeline latches, SPC/VFF only backs up
one PC with a small shifter. Hence, a smaller backup capacitor with lower leakage
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is sufficient for SPC/VFF, which will in turn affect the power threshold. In this case,
SPC/VFF will also be able to outperform NVFF after several repeated instructions.

4.3 Out-of-Order Processor (OoO)

Compared to the MIPS 5SP configuration, our MIPS out-of-order (OoO) processor
configuration, described in Table 1, is much more complex. Figure 18 indicates the
key blocks we consider in our OoO processor model derived from FabScalar [22].
Conceptually, system state, unlike in the previous two examples is broadly dis-
tributed across several structures such as the PC, ROB, RegFile, Map Table, Issue
Queue, Load Store Queue as well as the Branch History Table and Branch Target
Buffer. Some of these structures are essential to maintain the integrity of the state
of the system, while others contribute toward optimizing the performance and/or
energy of execution in the presence of frequent backups and recoveries.
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Table 1 Parameters for OoO
processor

Parameter OoO Parameter OoO

Fetch width 4 Map Table 32

Issue width 4 PRegFile 128

ROB size 32 Ready Table 128

IQ size 32 BHT/BTB 128

LSQ size 32/32 ARegFile 32

ICache/DCache 32 kB/32 kB Free List 128
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Due to the relatively larger power requirements of an OoO processor, there
are both fewer periods where the input power exceeds the minimum threshold, as
compared to the previous cases, and more state to consider saving during power
emergencies. Hence it is imperative to judiciously select the structures to be backed
up, in order to ensure a comparable performance to the no-pipeline and n-stage
pipeline designs.

We propose several resource selection strategies for this purpose, as illustrated in
Fig. 19.
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Minimum State Resource Backup Solution (MinR)
MinR backs up the minimal number of bits required to preserve functionality across
power interruptions, as shown in Figs. 19 and 21. Fundamentally, this approach
piggybacks on the branch misprediction mechanism to minimize the number of
valid/relevant state bits prior to initiating backup, at the cost of some time and effort
being required to enact the misprediction logic prior to checkpointing.

1. ROB and PC: to minimize state storage, we only back up the first uncommitted
PC at the head of ROB. This means all the other instructions in the ROB will be
abandoned regardless of status.

2. IQ: IQ does not need to be backed up because all the instructions in IQ are
uncommitted.

3. ARegFile: We can either choose to backup ARegFile or PRegFile. The ARegFile
is preferred since it is designed to be smaller.

4. Map Table:
It is possible that uncommitted instructions that follow the head of the ROB

could have modified the Map Table. However, since we need to restore the
state to the instruction at the head of the ROB, the Map Table should also be
correspondingly restored. In order to achieve this, we trigger an instruction flush
identical to that following a branch misprediction on the ROB head. Since no
actual branch prediction occurs, we term this operation pseudo-misprediction.

5. PRegFile, Ready Table, Free List, BHT, and BTB can be recovered.

Low-Latency Backup Solution (LLB)
While the MinR policy minimizes bits pushed to nonvolatile storage, it does so at
the expense of requiring additional work before backup can begin. We next consider
a backup solution that aims to minimize the number of bits to store if backup begins
immediately. Rather than backing up only the first uncommitted PC, this solution
backs up the entire ROB, IQ, ARegFile, Map Table, and PRegFile. Compared to
the MinR policy, structures such as the Ready Table and Free List (Figs. 23 and
24) can be more easily reconstructed, resulting in a penalty of only a few recovery
cycles. While LLB stores more state than MinR, it can sometimes nonetheless be
more energy efficient, due to the extra work required of MinR on both backup and
recovery.

Middle-Level Backup Solution (MLB)
Instead of using extra recovery time and energy to restore the Ready Table and Free
List in the low-level backup solution, MLB backs up Ready Table and Free List as
well (Fig. 19).

Min-State-Lost Backup Solution (MPL)
In this solution, all the structures are backed up including the BHT and BTB as
shown in Fig. 19.

Integrated Flexible Atomic Backup Solution (IFA)
All of the previous solutions save and restore a fixed amount of state determined by
the structures in question. However, one key feature of the backup process is that it
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Fig. 20 OoO integrated flexible atomic backup solution
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Fig. 21 Out-of-order structure backup design trade-off

must necessarily be triggered conservatively: The backup signal must be issued at
a point where the processor can guarantee sufficient energy to complete the backup
even assuming zero additional input power during backup. However, in practice,
when a power emergency occurs in an energy-harvesting system, it is not usually
because input power has dropped to zero, but because it has fallen below some
threshold for some period of time. Thus, there may frequently be additional energy
available during the backup period that, while insufficient to continue operation,
would allow for the optional state, such as the BHT, to be subject to optimistic
attempts at backup (Figs. 20 and 21).

We propose a flexible backup mechanism that integrates aspects of the four
previous solutions together to exploit the conservative nature of the backup trigger.
The key idea of the solution is to regard each backup operation as an atomic
operation. A backup operation has only two states: success or failure. Figure 20
shows the systematic structure of this solution. Figure 22 shows how the power may
be dropping at a different pace to zero and can execute more or less backup.

Simulation Results and Comparison For MinR, the pseudo-misprediction opera-
tion for the Map Table requires extra backup clock cycles as shown in Fig. 21. When
recovering, we also need to pay extra clock cycles to restore the PRegFile, Ready
Table, and Free List. Further, since we discard all instructions in the ROB following
the head, we need to re-execute these instruction, resulting in the timing penalty in
Fig. 23 as well as energy overheads, shown in Fig. 24.



Nonvolatile Processor Architecture Exploration for Energy-Harvesting. . . 193

Fig. 22 Scenarios in which
IFA can be applied
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In the case of LLB, the ROB and PRegFile are relatively large and significantly
increase the backup time and energy in Figs. 23 and 24. On the other hand, the
recovery energy penalty is smaller than MinR, because all the instructions and their
information in the ROB are backed up, eliminating the need to re-execute these
instructions.

The backup time and energy penalty of MLB are larger than those of LLB, as
shown in Figs. 23 and 24, but the recovery energy is lower.

The designer should use this MLB strategy when the system is optimizing the
time to resume execution after a power failure.

In MPL, the backup and recovery time penalty and energy penalty are the largest
in among all the solutions, but backing up all the additional structures incurs the
minimum latency to return to peak performance after a power failure.

The results show the gain of 29 cycles for MinR, but not backing up the BHT
and BTB negatively affects IPC.

On account of OoO being thought to be too complex for energy harvesting
systems, prior work has not considered OoO platforms. Since OoO needs a much
higher threshold than NP and NSP, the percentage of time OoO can run is much
smaller than NP and NSP. However, OoO remains a favored option in several of
the test scenarios in subsequent sections because the periods of sufficient power are
common enough to sometimes allow superior performance to pay for lost cycles.
In summary, storing the minimum number of bits, MinR, does not always provide
the least energy backup solution, and MLB has the shortest time to execution after
the power failure. We also demonstrate that, due to the conservative nature of
backup initiation, there is a sizeable potential for opportunistic backup of optional,
performance-enhancing bits with a flexible backup policy.

5 Validation

While the primary focus of this paper has been on a simulation-based exploration,
we have explored the non-pipelined on-demand-backup strategy using an actual
fabricated processor. In addition to demonstrating the execution of real workloads
on the processor, this effort enabled us to gain insights to approximations in initial
simulation models and helped to refine the simulation model used in this work.

5.1 System Overview

The nonvolatile processor is based on an Intel 8051 processor and the ISA choice
for fabrication was driven by availability of a pre-existing design. This processor
supports multi-cycle instructions as compared to the MIPS ISA used in the rest
of the paper. Consequently, in this implementation, the saved state includes the
state machine that captures the exact cycle in which the instruction was carried out
currently. This is the most relevant difference from the perspective of the nonvolatile
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Fig. 25 System prototype

Fig. 26 Block diagram

Table 2 Measured parameters

Parameter Result Parameter Result

Max. clock 25 MHz Total power 160 µW@1 MHz

Process technology 0.13 µm Backup energy 23.1 nJ

VDD for core 0.9–1.5 V Recovery energy 8.1 nJ

Total area 1.015 mm2 Backup time 7 µs

Energy/Inst 347 pJ Recovery time 3 µs

design space explored as compared to the MIPS pipeline in our simulation studies.
However, our simulation effort encompassed the 8051 processor as well to gain
insight to potential sources of differences between the simulation and real system.

The nonvolatile processor based system is interfaced to a solar power panel
and a UV sensor as shown in Fig. 25 and 26. The processor is based on a
0.13 µm ROHM CMOS-ferroelectric hybrid process. The PC and all RegFiles
are FeRAM-based flip-flops. The flip-flops are realized using an additional backup
ferroelectric capacitor (FeCap) for each D flip-flop (DFF) used in the design. When
a power failure is detected, the NV control logic backs up the DFFs to the FeCaps.
When power is resumed, data is restored from FeCaps to DFFs. All FeCaps are
distributed and connected close to their own DFFs; thus, the data backup and
recovery can proceed in parallel to reduce the operation time. Table 2 shows the chip
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specifications. The total power decides the power threshold, and the backup energy
decides the energy storage capacitor volume. The capacitor used in the system is
470 nF.

The design process revealed insight to modeling to key aspects in the simulation
environment. The clocking network is switched to a lower frequency to transition
clock generation from an external oscillator to an internal RC circuit. The external
oscillator could become unstable or may not have sufficient power to operate.
Further, a lower clock frequency increases the reliability of the FeRAM writes and
also reduces peak power consumption. The slower clock impacts the overall backup
time as compared to using estimates based on faster operational clock. Similarly,
the recovery time should include not only the time required to restore architectural
state but the time for the clock generators and power supply grid to be stable.

5.2 Simulator Calibration

Once these insights are incorporated in the simulator, a few kernels were executed on
both the platform and the simulator (see Table 3). To model an intermittent power
supply, a 1 KHz square waveform power input was fed to the processor and the
processor frequency was limited to 3 MHz (the maximum frequency at which it
could operate based on power supply when connected to the solar panel). Each
kernel was executed 1000 times to obtain overall completion time shown in Table 3.
For the stable power case, the simulator and platform mismatch is negligible.
For unstable power, the simulator and the platform measurements differ less than
5%. The differences accrue since the simulator averages energy consumed by an
instruction to estimate remaining energy for triggers. However, the actual instruction
execution exhibits non-uniform activity. Further, the energy storage capacitance
models used in the simulation add and decrease in discrete portions unlike the actual
design. This validation process for the simulator based on a real design indicates that
simulation-based models are fair representation of actual systems.

Table 3 Execution time on
simulator and actual platform
when using an interrupted
power supply generated as a
square waveform

Stable/ms Interrupted/ms

Testbench Measured Measured Model Error

FIR-11 0.626 1.260 1.209 −1.59%

Sqrt 2.620 5.280 5.190 0.81%

KMP 3.573 7.184 7.059 0.77%

FFT-8 4.207 8.460 8.238 −0.13%

Matrix 5.826 11.740 12.021 2.39%

Bubble sort 27.23 54.705 57.236 4.63%
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6 Design Guidelines

The complexity of the nonvolatile architecture chosen for a particular application
scenario depends on a variety of factors. The input power and the stability of
the power supply are two key factors that impact the choice. In addition, the
computational complexity of the application and its performance requirements is
also important.

6.1 Dependence on Input Power Characteristics

The input signal characteristics play a major role in determining the optimal
design, as is evident from our experiments with WiFi power trails under different
environment conditions. Figures 27 and 28 demonstrate the performance of the
various backup schemes when home and office WiFi sources are used for harvesting
energy. For the home environment, a non-pipelined ODSB architecture is the best
performing. On the other hand, in the office environment, the more complex OoO
processor with the minimum performance loss scheme is desirable. The reason for
this behavior is that, the home WiFi signal comprises of a single router, while
the office environment consists of several routers of similar signal strengths. A
disturbance in the signal would result in input power going to almost zero in the
home environment, hence the simplest design with the lowest power threshold is
preferred. In contrast, in the office environment, the additional routers continue to
supply input power at a relatively similar strength in an uninterrupted fashion, thus
allowing for more complex architectures.

BEC ODAB ODSB SPC/VFF NVFF MinR LLB MLB MPL
0

100

200

300

400

500

600

700
 Office string search

        stringsearch 
        Inst No.=159K 

 Image recognition 
        susan.corners
        Inst No.=1.1M

 Image recognition  
        susan.edges  
        Inst No.=1.8M

 Image decoder
        jpeg.decode
        Inst No.=6.7M

 Exchange of crypto-
        graphic keys  sha 
        Inst No.=13.5M

 Voice Decoding   
        gsm.decode 
        Inst No.=23.9M

Ti
m

e 
(s

)

Backup methods

Fig. 27 Execution time with energy scavenged from WiFi home environment



198 K. Ma et al.

BEC ODAB ODSB SPC/VFF NVFF MinR LLB MLB MPL
0

20

40

60

80

100

120

560
580
600

 Office string search
        stringsearch 
        Inst No.=159K 

 Image recognition 
        susan.corners
        Inst No.=1.1M

 Image recognition  
        susan.edges  
        Inst No.=1.8M

 Image decoder
        jpeg.decode
        Inst No.=6.7M

 Exchange of crypto-
        graphic keys  sha 
        Inst No.=13.5M

 Voice Decoding   
        gsm.decode 
        Inst No.=23.9M

Ti
m

e 
(s

)

Backup methods

168

341

Fig. 28 Executing time with energy scavenged from WiFi office environment

6.2 Quality-of-Service

Most of the applications that are expected to run on an energy harvesting platform
require an output to within a fixed time period. Quality-of-service (QoS) can be
standard to qualify the possibility to achieve that goal. When these systems run on
harvesting ambient energy, the unreliable nature of the input source may prevent the
QoS demands in some instances.

Figure 29 shows the percentage of instances that meet the QoS demands
specified, for two different applications, measurement of ECG and an edge detection
algorithm used in vision sensors.

Figure 29 provides an indication of meeting the QoS. For example, in Fig. 29a,
the possibility to achieve real-time ECG processing with NP and RF power is 0.92%.
Consequently for RF and thermal sources, real-time processing is not possible. For
ECG, most of the solar and piezo sources can support 100% QoS.

The baseline configurations for Fig. 29 are listed in Table 4. Table 4 also indicates
several methods to optimize the QoS with efficiency:

• From power input view, there are lots of features that can improve the input
power. The baseline in the QoS simulations for RF is 10 km from TV stations,
but in some places like New York, the average TV station distance is around 3 km
[23]. And the RF power strength is in negative square relationship with distance,
so we can 11.1 times larger average power, thus improve the QoS to 100%.

• We can try to improve the efficiency of AC–DC, DC–DC, LDO, reduce the
capacitor leakage, etc. to improve QoS.

• From output view, try to shrink the technology [24] (baseline is 130 nm CMOS)
to get lower power consumption, for example, applying 22 nm FinFET [25] will
achieve 100% QoS for real-time ECG in Manhattan. In addition, various methods
could be applied to reduce the power: new devices like Tunnel-FET [6], low-
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Fig. 29 QoS for ECG/AR, and QoS optimization. (a) QoS for different architectures/energy
sources/acquisition and processing strategies in ECG. (b) QoS for different architectures/energy
sources/acquisition and processing strategies in augmented reality. (c) QoS improvement
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Table 4 Baseline and relationship with QoS improvement

Aspect Solution QoS baseline Efficiency

RF Antenna gain 6 dBi α

Bandwidth 539 M α

Distance 10 km 1/α2

Therm Area 1 cm2 α

�T 20 ◦C α2

Piezo Volume 1 cm3 α

Solar Area 4 cm2 α

Efficiency 28% α

Circuit IP matching, AC–DC, DC–DC, LDO, Cap

Tech. Shrink Tech. 130 nm α2

FinFET, IG-FinFET, TFET, NC-FET CMOS

DVFS, DATS Fixed frequency

Voltage 0.95 V 1/α2

power circuits like sub-threshold circuits, dark silicon [24], gated clock, dynamic
voltage-frequency scaling (DVFS), dynamic-adjusting threshold-voltage scheme
(DATS) [26], etc. are some examples.

7 Summary and Future Works

Nonvolatile-processor-based platforms can be an ideal enabler for the IoT and wear-
able devices. This chapter discusses architectural level designs and optimizations
for ambient energy-harvesting NVP and provides design guidelines mapping from
power sources to architecture level selection. Various architecture level solutions
for non-pipeline, five-stage-pipeline, and out-of-order processor architectures are
discussed. The simulation model is calibrated against a fabricated nonvolatile
processor.

There are still many potential approaches that can be utilized to optimize the
NVP solution, for example, how traditional techniques such as dynamic voltage
and frequency scaling can be applied to NVP and how should it be adjusted.
A hybrid architecture with dynamic resources could also be useful to adapt to
variable power profiles. Rather than traditional architecture methods, a machine-
learning-based controller may be able to predict in high quality in control path
design. Accelerators for machine learning application level algorithms based on
software or hardware implementation can even be merged for both the application
and controller. New devices like the tunnel-FET can also be applied to further
reduce the power consumption for NVPs. Novel distributed circuits merging both
the computation and backup operations can further reduce the backup time and
energy.
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A Fast Joint Application-Architecture
Exploration Platform for Heterogeneous
Systems

Rafael K. Vivas Maeda, Peng Yang, Haoran Li, Zhongyuan Tian,
Zhehui Wang, Zhifei Wang, Xuanqi Chen, Jun Feng, and Jiang Xu

Abstract Computing systems become increasingly heterogeneous by adopting
domain-specific accelerators. While heterogeneity provides better trade-offs among
performance, energy efficiency, and cost, it adds new dimensions to the already
huge design space. Existing design exploration tools rely on time-based analysis.
Simulating a heterogeneous computing system using detailed cycle-accurate simu-
lations could last for months, if not years. In this work, we introduce JADE, a joint
application-architecture exploration platform for heterogeneous computing systems.
JADE targets design space explorations with overall system characteristics such
as average performance and energy efficiency instead of detailed cycle-by-cycle
behaviors. It uses statistical application models and cycle-accurate architecture
models. JADE can speed up design explorations by several orders of magnitude.
The statistical application behaviors make it easy to explore heterogeneous systems.
JADE can simulate complete systems including processing units, memory hierarchy,
interconnect, and peripherals.

1 Introduction

Heterogeneous systems are becoming increasingly popular. They are already per-
vasive in embedded systems, and are becoming more present in the cloud and
high-performance computing with the rise in adoption of GPUs, FPGAs, and other
accelerators [5, 13, 33]. Heterogeneity offers better trade-offs for performance,
energy efficiency, and cost. However, it adds new dimensions of complexity to
the already huge design space. Therefore, we need better methodologies, tools, and
models to assist in the design exploration.

The typical evaluation methods rely on time-based techniques such as cycle-
accurate simulation [9, 25, 27]. These methods simulate events in a cycle-by-cycle
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approach. They can represent with high fidelity the real hardware and are use-
ful when accuracy and precision are required. Some examples include testing,
debugging, and accurate benchmarking. However, they do not scale well. These
techniques can take months, if not years, to simulate a large-scale system. This is
unsuitable for early design explorations when we need to investigate many design
points.

In this work, we introduce JADE, a joint application-architecture design
environment for exploration of heterogeneous systems. JADE targets design
exploration considering overall system characteristics such as average performance
and energy efficiency instead of detailed cycle-by-cycle behaviors. JADE is
composed of two parts, the statistical application models and a cycle-accurate
architecture model. The statistical models are obtained from the analysis of the
internal structure of the application. We use the statistical models to reproduce
the average behavior of the application. This behavior is then used as stimulus to
the architecture model instead of the detailed application. The statistical model
allows JADE to speed up the simulation by orders of magnitude due to the faster
convergence.

Another benefit of the statistical application model is its abstract representation.
It allows us to represent the application behavior in an architecture independent
way. This abstraction is helpful for heterogeneous systems, in which might co-exist
processing units with different instruction sets, and even units with no instructions,
such as FPGA. This is especially important in early design stages when compilers
and OS might not be available.

JADE can model complete systems including processing units, interconnects,
memory hierarchy, and peripherals. It can simulate systems in the scale of tens
of thousands of cores. In the current version of JADE, we provide three types of
CPU architectures x86_64, ARM-v8, and RISC-V. JADE includes two types of
networks, electrical and optical. They can be used to simulate on-chip as well as
off-chip networks. We provide several examples of cache-coherence protocols and
are relatively easy to add new ones. JADE has built-in power models allowing us
to estimate energy consumption. It also includes power management policies such
as DVFS. We built the architecture using cycle-accurate models to represent with
precision the system performance. Therefore, JADE provides detailed metrics such
as application execution time, core utilization, network latency, cache miss, power,
energy consumption, and many others.

JADE has been used in several research projects. For instance, Wang et al.
studied a novel processor-memory interconnect scheme that combines on-chip
and off-chip optical networks [31]. Yang et al. implemented an inter/intra-chip
rack-scale network to interconnect processor cores, caches, and memories using
silicon photonic network [38]. Li et al. introduced a run-time power delivery
management policy for multi-core processors that takes into consideration the
workload behavior [18]. Tian et al. studied a collaborative technique for power
management using the knowledge gathered in distributed devices [29]. With the
kind help of the authors, many of these ideas are also available in JADE. We release
JADE for the public use and it is available online at [3].
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This chapter is organized into four main sections. We start with an overview
of JADE in Sect. 2. Then we detail the two major parts of JADE, the COSMIC1

heterogeneous benchmarks in Sect. 3 and the architecture simulator in Sect. 4. Then,
in Sect. 5 we present two case studies in which JADE has been used.

2 JADE Overview

JADE was initially introduced in [22]. Figure 1 shows an overview of JADE.
JADE has two main parts covering application and architecture. The first part is
the COSMIC benchmarks, which contains the statistical application models. The
second is the cycle-accurate architecture model, implemented as an event-driven
simulator. Majority of the simulator is implemented in C++. JADE also comes with
a set of tools and configuration templates that allows quick use of the framework. In
this section, we describe the major components of JADE, and in later sections, we
detail each part.

COSMIC, shown on the left-hand side of Fig. 1, is a heterogeneous multiproces-
sor benchmark suite [21, 30]. It stands for communication-observant schedulable
memory-inclusive computation. COSMIC currently includes three types of appli-
cation models. The main type is the statistical application model (SAM). SAM is a
statistical representation of the application behavior. In this model, the application
is partitioned into several tasks. For each task, we extract its essential characteristics
using a mix of static and dynamic profiling. Some of the characteristics we extract
are the task dependency, the amount of data shared between tasks, memory locality,
and other micro-architecture independent metrics. During simulation, we reproduce
the average behavior of the task using a synthesis technique. A key benefit of
statistical models is that they converge faster to the average behavior allowing us
to reduce the simulation length.

COSMIC also includes a sample of memory traces collected for one run of
the application. We refer to the traces as recorded application model. The traces
replicate with fidelity the detailed behavior of the application. They are useful for
testing and for debugging components of the system. Another model available in the
COSMIC is the synthetic (artificial) benchmark. These models are not based on a
realistic application. Instead, their behavior is artificially generated. One example of
the use of the artificial benchmarks is for sensitivity analysis. For example, to check
the system performance when the application characteristics (e.g., computation,
memory locality) change.

The architecture model in JADE, shown on top of Fig. 1, includes all necessary
components to simulate a complete modern system. It includes processing units,
interconnects, memory hierarchy, and peripherals. JADE has two types of network
models, electrical and optical. It can simulate on-chip networks (NoC) as well as

1COSMIC means communication-observant schedulable memory-inclusive computation.
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off-chip networks. JADE can simulate, for example, NoC for multi-core processors
as well as network schemes for computer racks. We provide three types of CPU
architectures x86_64, ARM-v8, and the open RISC-V instruction set.

The memory hierarchy of JADE is built on top of the Ruby simulator [23]. It
has a detailed memory hierarchy including caches, main memories, and coherence
protocols. The coherence protocols are specified using a domain-specific language
for coherence protocols, SLICC (specification language for implementing cache
coherence). In JADE, we provide new coherence protocols in addition to those
released in Ruby. One example of protocol provided is a three-level cache using
hierarchical coherence protocol. This protocol uses MSI (modified-shared-invalid)
for the private caches and MOSI (modified-owned-shared-invalid) for the shared
last-level cache. Additionally, it is relatively easy to include new protocols due to
the convenient interface provided by SLICC.

JADE has built-in power models with parameters obtained from predictive
process design kits. Currently, JADE includes technology models ranging from
7-nm to 90-nm. The power models allow us to obtain power consumption of
the system during run-time. JADE uses this information to implement a power
management unit (PMU). The PMU includes dynamic voltage and frequency
scaling (DVFS) policies, among other features.
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Most of the inputs for JADE are simple descriptive text files. We provide
several templates that allow users to evaluate a wide range of architectures. Many
of the system parameters are configurable through these files and command line
options. JADE also includes several tools to assist in the evaluation of the system.
For instance, we provide tools to generate network architectures using a simple
command line interface, mapping and scheduling tools, and a tool to visualize the
coherence protocols in the form of finite state machine (FSM).

JADE reports many system performance metrics. Some examples are the total
execution time of the application, per core busy/idle time, cache statistics such as
miss rate, power, energy consumption, and network statistics such as throughput and
latency. Extra performance metrics can be easily added to the source code.

3 COSMIC Benchmark Suite

COSMIC (communication-observant schedulable memory-inclusive computation)
is a benchmark suite for heterogeneous multiprocessors. The three main goals of
the COSMIC benchmarks are to: first, provide a convenient model for applications
targeting heterogeneous applications, second, increase the speed of the simulation
by using statistical simulation, and third, maintain statistical average-level accuracy.
In this section, we discuss how the COSMIC benchmarks are obtained.

3.1 Overview

The COSMIC benchmark suite is part of the JADE but we also release them as
stand-alone software. It is available online at [2]. Figure 2 shows an overview of
COSMIC. The current release of COSMIC includes the application models, some
tools commonly used together with the benchmarks, and a C++ API library to allow
integration with other software.

The current release of COSMIC has about 20 applications including realistic and
artificial applications. Table 1 shows the list of applications provided in COSMIC.
Among the realistic applications, we have three classes of benchmarks. The first
class we refer as kernels, it includes some common scientific applications and
kernel algorithms. The second class is the machine learning applications, including
training and testing of fully connected neural networks and deep convolutional
neural networks. The third class is the high-performance applications, the APEX
benchmarks [1]. For each application, we release the high-level C/C++ implemen-
tation, the statistical application models, the recorded traces, and a sample input
dataset.
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3.2 Statistical Simulation

Statistical simulation can be decomposed into two parts: profiling and synthesis. In
this subsection, we introduce the general idea of statistical simulation. In Sect. 3.4,
we give details about the profiling methodology, and in Sect. 3.5, we explain the
synthesis procedure.

Figure 3 shows a simplified flow of statistical simulations. The first step is the
profiling, where we analyze the algorithm and important application characteristics.
The output of the profiling is what we refer to as statistical application model or
statistical model. Then the statistical models are used to reproduce the average
behavior of the original application. The process of reproducing the behavior is
named as synthesis. Finally, the synthesized behavior is used as stimulus for the
architecture simulator. Here it could be a trace-simulator, a detailed cycle-accurate
simulator (as in JADE), or even others. In the case of a timing simulator, it needs
a feedback from the simulator to the synthesis algorithm. This feedback allows the
simulator to control the execution speed of the application behavior. In the figure,
we also show a logical separation between the synthesis and the simulator. However,
they could be implemented as a single monolithic software.

In statistical simulation it is not our intent to clone the original application. In
other words, we do not want to obtain an exact copy of the original application after
synthesis. Instead, we focus on average behavior. By average behavior, we mean any
observable metric of interest. Some examples are average execution time, average
memory locality, average task dependencies, and others.
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Table 1 List of applications provided in COSMIC

Class Benchmark Description

K
er

ne
ls

FFT Fast Fourier transform with 1024 complex number inputs

MD Computer simulation of physical movements of atoms

LDPC Low-density parity-check code encoder with 270 input words

TURBO Turbo code decoder with 40-bit data block and 1/3 coding rate

RSe Reed–Solomon code encoder

RSd Reed–Solomon code decoder

US Ultrasound, medical diagnostic algorithm using 2D/3D ultrasound
imaging

RT Ray-tracing, 3D scene rendering algorithm

M
ac

hi
ne

le
ar

ni
ng

ML-FMP Machine learning for financial market prediction (ML-FMP) using
fully connected neural networks

ML-ALIP Machine learning for automatic linguistic indexing of pictures
(ML-ALIP) using fully connected neural networks

Cifar-train Training phase of a deep convolutional neural network for the
Cifar-10 dataset

Facerec-train Training phase of a deep convolutional neural network for face
recognition

AlexNet-inf Inference phase of the DCNN with five convolutional layers

A
pe

x

HPCG Conjugate gradient algorithm Generates a linear system of a
three-dimensional heat diffusion problem

HPCG-prec HPCG including computation of the preconditioned conjugate
gradient

Pennant Pennant mini-app. Lagrangian staggered-grid hydrodynamics
algorithm on 2-D unstructured finite-volume mesh

Snap Performance modelling of a modern discrete ordinates neutral
particle transport application

Stream Synthetic benchmark measuring the memory bandwidth and a
corresponding computation rate for four simple vector kernels

The choice of the metric to observe is important and it depends on the context. In
the context of design exploration, we want to evaluate several different architectures.
Therefore, it is desirable metrics that are independent of the architecture. For
instance, the cache miss rate is one example of metric that depends on the
architecture. On the other hand, reuse distance, a metric of memory locality, is
architecture independent. It is not always possible to obtain architecture independent
metrics. When this happens it is desirable that they are at least weakly dependent.

There are several benefits of using statistical simulation. One of the benefits is
about confidentiality. Statistical simulation allows developers to deliver a perfor-
mance signature of their application while hiding its implementation. This is useful
when developers do not want to disclose the source code but they need to know how
well the application performs in a specific system.
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Fig. 3 Statistical simulation
flow overview. We can divide
statistical simulation into
three layers: front-end,
middle, and back-end

Another benefit of using statistical is that it is more compact regarding size.
This is especially important for large-scale applications and systems. The alternative
approach, recording the memory traces, requires a tremendous volume of storage.
Therefore, statistical application models can be regarded as a trace compression
technique. In fact, many trace compression techniques use some of the ideas used
in statistical simulation [16, 20].

Another important benefit is that statistical models converge quickly to the
average behavior. Therefore, we can shorten the trace length which reduces the time
spent in one simulation run. Later we show that properly choosing the statistical
technique allows us to speed up the simulation by three orders of magnitude.

Building statistical simulation comes with a cost. The most obvious cost is
the profiling stage. Profiling requires time and storage. Fortunately, it has to be
realized only once for each application and can be reused for many simulation runs.
Thus, the overhead caused by profiling is small if considered the overall design
exploration. Another challenge in statistical simulation is deciding the best model
for your purposes. There is no universal model that will be suitable for all cases. For
instance, if you want to study memories, you will likely need a locality model. And
if you cannot afford to use locality, the model might not accurately represent the real
application behavior. In addition, sometimes obtaining a metric that is completely
architecture independent is difficult. This might require you to profile a few times,
each of them for a particular class of architectures.
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3.3 Task Partitioning

The first step of profiling in COSMIC is the task partitioning. In this stage, we
want to identify the basic tasks the application has to perform and the dependencies
among them. This step is essential as it puts in evidence the parallelism in the
application. In the current version of COSMIC, we realize these two steps manually.
However, there exist tools that can help identify dependencies automatically. During
task partitioning, we take into consideration the algorithm present in the application
and one sample implementation in a high-level language (e.g., C/C++). Understand-
ing the algorithm allows us to make better decisions for task partitioning, while
the high-level implementation helps us identify the dependencies. There are some
general rules to decide the granularity or size of a task. Using a coarse granularity,
i.e., large tasks, it might be difficult to depict parallelism in the application.

There are two types of dependencies we are interested in. One is the data
dependency, which happens when one task produces data used by others. We capture
this dependency by analyzing tasks that have common data in the source code.
Some of the dependencies are obvious, for example, when two tasks access the
same variable. Others are more difficult to depict such as in pointers. We use static
and dynamic profiling to capture the amount of data exchanged between tasks. We
use average data-sharing since the sharing between tasks might vary. Data-sharing
between tasks is a form of communication between them. Therefore, we use the
terms data-sharing and communication interchangeably.

The second type of dependency we are interested in is the control flow depen-
dency. Control flow refers to the sequence in which each of the tasks should be
executed. The dependency between them dictates which task precedes another one.
For some applications, the control flow might depend on the input dataset. This
happens because some tasks might not need to execute depending on the input. We
profile the application for several input datasets to ensure that all tasks are visited at
least once.

We represent the tasks and their dependencies using a task communication graph
(TCG). The TCG is a directed acyclic graph (DAG) where nodes represent tasks and
edges represent the dependency between them. For each task in a TCG, we record
all the information obtained during profiling. And for each data dependency, we also
record the amount of data shared. Figure 4 shows an example of TCG with six tasks.
The data dependency is shown in arrows (→). And the numbers close to the arrows
are examples of amount of data-sharing. As can be noted, each dependency dictates
which task precedes which task and the amount of communication.
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Fig. 4 Example of a TCG
with six tasks mapped to
three processing units. Each
node represents a task and the
edges represent the
dependencies between them.
The numbers close to the
edges are examples of amount
of data shared between tasks
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3.4 Locality Profiling

Memory locality is an abstract concept to refer to the pattern of accessing the
memory. There are two types of localities, spatial and temporal locality. Application
with high temporal locality accesses recently visited memory blocks with higher
frequency. On the other hand, spatial locality refers to the accesses to close memory
locations previously visited. There are many metrics to measure locality. Some
examples are the footprint (FP), reuse distance (RD), reuse time (RT), miss rate
(MR), and others. In fact, these metrics have some higher-order relationship [36].
To completely represent the locality of an application it might need a combination
of several of these metrics.

Not all locality metrics are architecture independent. Reuse distance (RD) is
one of the metrics that is architecture independent. By construction, it is directly
related to the miss rate for least recently used (LRU) caches. RD is one of the
dominant metrics in locality analysis. It has many applications such as program
characterization, compiler optimization, and analytical cache miss estimation [7, 8,
10, 39, 40]. Another application of the RD is to use it for memory trace synthesis.
This technique is used to implement statistical simulation, overcome proprietary
code benchmarking, and allow the creation of synthetic benchmarks [4, 6].

Reuse distance has to be computed for a given block size. The common choice
of the block size is the cache-line size (i.e., 32B or 64B). In that case, we say that
RD is computing the cache-line locality. One of the limitations of the RD is that it
can capture only a single locality, such as line locality. For instance, when RD is
computed for a 64B-block granularity, it will lose the information of the reuse of
pages, typically 4 KB [21]. This is an important drawback since multi-core systems
depend on multiple localities. In addition, many modern cache architectures also
depend on multiple localities. Some examples are sectored caches [11, 28], footprint
caches [15], and unison caches [14]. They are becoming increasingly popular as an
effective way to implement large caches. Furthermore, RD is accurate to evaluate
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Fig. 5 Locality analysis for two layers: cache lines (64B) and pages (4 KB)

single-level caches, but it performs poorly for multi-level caches due to the week
locality representation.

Realistic applications have a considerable difference between the cache-line
locality (64B blocks) and page locality (4 KB blocks). Figure 5 shows this behavior
for the SPEC CPU2006 benchmarks [12]. We show the RD histogram computed for
64B and 4 KB. As we can note, the page RD differs from the cache line by one order
of magnitude. Therefore, due to its limitation, the flat RD is not suitable to model
functional units that depend on locality at various granularities. For instance, an RD
profiled at 64B will lead to accurate L1 cache miss rate estimations. However, it will
not be inaccurate for units that depend on a locality seen at 4 KB, such as translation
lookaside buffers (TLB).

To overcome this issue, in COSMIC we use the hierarchical reuse distance
(HRD). HRD is a generalization of the RD. It captures locality at multiple
granularities using single-profiling single-simulation run. The flat RD model is one
particular case of the HRD with a single layer. HRD has higher miss rate accuracy
on caches with hybrid line size as well as on conventional designs compared to
the flat RD. In addition, HRD has faster statistical convergence and can reduce the
simulation length by three orders of magnitude.

Algorithm 1 shows how we can obtain the HRD profile of a task. It receives as
input the memory traces T and returns the HRD distribution. The HRD distribution
is composed of several histograms, one for each locality captured. In the algorithm,
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Algorithm 1 Hierarchical reuse distance profiling. It receives as input the memory
traces T , the number of localities to be captured Nl , and the block size for each of
the localities W . The output is the HRD distribution which is represented in the
histogram hist

1: function PROFILE_HRD(T , Nl , W )
2: t ime ← 0
3: hist ← 0
4: for each t in T do
5: dist ← ∞
6: l ← 0
7: while dist == ∞ and l < Nl do
8: block ← �t /W [l]�
9: dist ← REUSEDISTANCE(Inf o[l], block, t ime)

10: hist[l][dist] ← hist[l][dist] + 1
11: l ← l + 1
12: end while
13: for j from 0 to Nl do
14: block ← �t /W [j ]�
15: UPDATE(Inf o[j ], block, t ime)
16: end for
17: t ime ← t ime + 1
18: end for
19: return hist

20: end function

we represent the histograms in the vector hist . The algorithm also receives the
number of localities (Nl) to capture and their block size (W ). In COSMIC, we
capture cache-line locality and page locality. In this case, Nl = 2 and W =
{64,4096}. The profiler starts the analysis at the layer with smaller blocks of
granularity, recording the block-RD for each memory reference. Whenever an
infinity RD is found, we record this infinity in the distribution of that layer and also
compute the RD for the next one. We stop computing the RD for a memory reference
in two cases: when the RD in a layer is not an infinity, or when an infinity is in the
last layer. This procedure repeats for all references. Note that only references that
cause an infinity RD in one layer can affect the counters in the next. On every infinity
RD obtained in one layer, the next layer will capture extra information. This extra
information in subsequent layers is lost in the traditional flat RD.

3.5 Synthesis

Synthesis is the process of reproducing the behavior of the application. We can break
down the synthesis of the application in two parts. We will start the discussion about
the first part: how to generate the behavior of individual tasks. Later we explain the
second part which is how to generate the interaction between tasks.
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The behavior for each task in COSMIC is linked to the memory locality. In other
words, to reproduce the task behavior we need to reproduce its memory locality.
All the system performance metrics (miss rate, execution time, network traffic, etc.)
are consequences of how the application accesses the memory and the architecture
details. We refer to the process of reproducing locality as trace synthesis since we
are generating accesses to the memory.

In the previous section, we discussed how to capture the HRD profile of each
task. In this section, we discuss the reverse process, the generation. The trace
synthesis using the HRD follows a similar procedure as profiling. The high-level
algorithm is shown in Algorithm 2. The goal of the algorithm is to generate memory
accesses to be issued by the CPU. In the algorithm, the generated addresses are
stored in the vector variable addr . The algorithm receives the HRD distribution
which is composed of several histograms. We represent the histograms with the
variable hist . The algorithm also needs the number of layers Nl , the block size of
each layer W , and the total trace length N .

The general idea is explained as follows. The synthesis starts looking at the layers
with finer granularities. First, we generate a random sequence of RD for the first
layer following the profile obtained from the original trace. For non-infinity RD

Algorithm 2 Address trace synthesis using HRD. It returns the memory traces
to be issued by the CPU, represented by addr . The algorithm receives the HRD
distribution which is composed of several histograms. The histograms are noted
with the variable hist . The algorithm also needs the number of layers Nl , the block
size of each layer W , and the total trace length N

1: function SYNTHESIS_HRD(Nl , W , hist , L)
2: for each t in L do
3: dist ← ∞
4: l ← 0
5: RND ← U(0, 1GB)

6: while dist == ∞ and l < Nl do
7: dist ← RANDOMREUSE(hist[l])
8: l ← l + 1
9: end while

10: if dist == ∞ then
11: addr[t] ← RND

12: else
13: addr[t] ← READHISTORY(Inf o[l − 1], dist)
14: addr[t] ← addr[t] + RND mod W [l − 1]
15: end if
16: for j from 0 to Nl do
17: block ← �addr[t]/W [j ]�
18: UPDATEHISTORY(Inf o[j ], block)
19: end for
20: end for
21: return addr

22: end function
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value, the generation is identical to the flat RD. In that case, we reuse the Rth last
distinct block address previously used. For an infinite RD, we visit deeper layers
until we find a definite RD or there are no more layers. For instance, a common case
is when there is a cache-line miss but there is a page hit. In that case, the line RD
will be infinity while the page RD will be definite. As soon as we find a definite RD
in a layer, we reuse the Rth recently used block and generate a new smaller block
within it. In the previous cache-line and page example, we would reuse a page, and
generate a random cache-line inside this page. As soon as we encounter a definite
RD, we terminate the current generation, and we can start generating a new address.
If no definite RD is found, means that we have to generate a completely new random
address.

Once the behavior of the tasks has been generated, we need to reproduce the
interaction between them. This is accomplished by looking at the task dependencies
and the amount of data they share. In COSMIC, the task dependency represents
both data and control flow dependency. That means that one task cannot start until
all tasks that it depends on finish its execution. Once the task begins running, it will
access private data as well as data that are shared with other tasks. We determine the
total data-sharing using the respective amount obtained during profiling.

3.6 Convergence Speed

An essential characteristic of statistical simulation is that it quickly converges to the
average performance behavior of the original application. This allows reduction of
the simulation length, enabling quick design space exploration. In this section, we
demonstrate the convergence speed of a single task benchmark. The experiments
were performed with the SPEC CPU2006 benchmarks. We evaluate the convergence
of the models with respect to the miss rate in a multi-level cache system. We
simulate the memory hierarchy using a fraction of the synthesized trace and compare
the final cache miss rate with the original full trace length.

We compare three techniques such as the traditional reuse distance (referred to
as FLAT), the hierarchical reuse distance (HRD), and the bit Markov chain (BMC).
BMC is another type of locality synthesis method similar to reuse distance. The
only difference being that in BMC random addresses are generated with the help of
a Markov chain model that captures the address distribution [21].

Figure 6 shows the correlation factor and average error for each level cache.
The results demonstrate that, for any of the models, the L1 miss rate achieves
strong correlation even with a tiny fraction of the synthetic trace length, such as
103 memory references. With this simulation length, the average miss rate error
is already low, about 7% for FLAT implementations and 5% for hierarchical. As
the simulation length increases, the average absolute error can be reduced to less
than 2%. For L1 cache, all of the models behave similarly. However, FLAT requires
simulation lengths of more than 106 and 107 to reach strong correlation for L2 and
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L3, respectively. Furthermore, FLAT does not reach error below 10% for higher
level caches.

To compare each of the models, we define the convergence score as the sum∑
correlation/error for all caches. This is justified by the fact that while high

correlation desired, a low average error is also important during design exploration.
The higher the score, the better is the combination of correlation and accuracy. We
plot the score for various simulation lengths in Fig. 7.
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The traditional reuse distance is labeled as FLAT, because it has a single layer
of locality. The method used in the COSMIC is the HRD. As we can note, FLAT
obtains the worst convergence score among all models, due to its high error in L2
and L3. The peak convergence score for FLAT is about 54 for simulation length of
107. HRD outperforms this value with much a shorter simulation, 104, indicating
more than three orders of magnitude faster convergence.

The L1 cache filters out many of the requests issued by the core. This removes
some locality from the requests reaching the L2 and L3 caches. Since FLAT has
only one layer of locality information it leads to less accurate results in higher
level caches. HRD includes extra locality information which minimizes the filtering
impact and becomes more accurate to explore multi-level caches.

3.7 Other Profiling Statistics

There are other statistics we collect during profiling. For instance, we also record
the request type of the traces, i.e., whether the memory access is a read or write
(RW) type. We model the request type with a micro-architecture independent model
that leads to better accuracy for the eviction traffic in the last-level cache (LLC). The
RW is based on a Markov chain (MC) combined with the HRD computation and has
traffic error by around 100 times smaller than other naive approaches. Collecting the
MC model for the RW comes virtually for free, introducing little overhead during
profiling and trace generation [21].

The method is inspired by the way programs access data. We assume that a
memory location can be in three different states: new when it has never been
touched; clean when it has been read but never written; and dirty when the memory
location has been modified. In the beginning, all states are set to new. When a read
(or write) operation is performed in a new memory location, its state is set to clean
(or dirty). Writing to a clean block causes a state transition to dirty. Once the state
reaches dirty, it will never come back to clean again. Thus, writing or reading to a
dirty block will remain dirty.

During profiling, we count the number of reads (or write), according to the
current state of the memory location, and normalize it with respect to the total
trace length. This record gives the respective conditional probability P(RW |s),
where s is the state, s ∈ {new, clean, dirty} and RW is the type of operation,
RW ∈ {read,write}. During synthesis, we select the request type according to the
state of the generated location, s. We choose read with probability P(read|s), or
write otherwise. Including the proposed RW model is virtually free for both profiling
and generation. The only modifications required in Algorithms 1 and 2 are (1) to
include a state variable along with the variable holding the unique address, and (2)
to update the counters and state as explained. Since the cost of computing the RD
is dominated by hashing and searching [26], applying these changes will only have
minimal performance degradation.
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4 Architecture Simulator

JADE has a timing architecture simulator. The architecture simulator can model
complete modern systems including processing units, interconnects, memory hier-
archy, and peripherals. It can simulate systems with the scale of tens of thousands
of cores. In this section, we describe the main components currently implemented
in JADE.

4.1 Processor Models

The current CPU models in JADE have a simplified micro-architecture. Users can
change a few parameters such as the number of pipeline stages and instruction issue
width. We assume that the number of available functional units is such that it allows
all issued instructions to execute in parallel. Also, except for instructions accessing
memory, all the other instructions take a constant number of cycles. This simplified
CPU is named constant-IPC CPU.

There are a few reasons we only release such a simplified micro-architecture
model. One reason is that implementing a detailed CPU model incurs in significant
overhead for the simulation. This would limit the speed and also the scalability of
the simulator. A second reason is that in practice it is difficult to obtain the details
of realistic modern CPUs. Therefore, even if we provided detailed models, users
would still need to adjust the source code to model the specific architecture. The
third reason is that the CPU micro-architecture is already mature. JADE targets the
study of the whole system rather than focused on the CPU alone. Having said that,
nothing prevents users from adding new CPU models to the JADE source code.

The processors in JADE contain a few other features. For instance, it includes a
memory management unit (MMU), a network interface for off-chip networks, per-
core dynamic voltage and frequency scaling (DVFS) support, and others. In JADE,
the CPU models itself are ISA free. However, the current benchmarks in JADE have
been profiled for ARM-v8, RISC-V, and x86_64. All of which are 64-bit ISAs.

4.2 Memory Hierarchy

JADE models a detailed memory hierarchy including caches, main memories, and
coherence protocols. The memory hierarchy models of JADE are built on top of the
Ruby simulator [23].

The coherence protocols are specified using a domain-specific language for
coherence protocols, the SLICC. In SLICC, the transitions of the coherence
protocols are easily expressed based on the current state, incoming event, and the
output state. The language has a C-like syntax with a convenient interface to create
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Fig. 8 Example of an MSI
cache-coherence protocol for
L1 cache. In this diagram, we
omit intermediate states and
some transitions for the sake
of clarity
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input and output ports. It is relatively easy to read or develop other coherence
protocols.

In JADE, we release new coherence protocols apart from those initially published
in the Ruby simulator. One example of protocol included in JADE is a three-
level cache hierarchy using the hierarchical coherence protocol. In this protocol,
MSI (modified-shared-invalid) is used for the private caches and MOSI (modified-
owned-shared-invalid) for the shared last-level cache. This particular protocol has
a private L1, private L2, and shared L3 cache. Figure 8 shows a simplified state
transition for the MSI protocol. In this figure, the intermediate states as well as some
transitions are omitted for the sake of readability. The CPU requests are labeled with
capital letters (LD, ST), and the coherence messages are marked with lower case,
e.g., downgrade and invalidate messages.

Another example of a possible configuration of the JADE memory hierarchy was
initially presented in [31]. It uses a clustered architecture in which a few cores, e.g.,
four cores, share one L2 cache. Additionally, each core has its own private separate
I/D L1 cache, and all cores share the last-level cache. This configuration is currently
being integrated into the trunk development of JADE and will soon be available
publicly.

4.3 Interconnect

JADE has a comprehensive interconnect model. It can simulate on-chip networks
(NoC) as well as off-chip networks. As an example, JADE has been used to study
NoC for multi-core processors [37] and network schemes for computer racks [38].
JADE models two types of networks, optical and electrical. On one hand, the
electrical network technology is more mature and widely adopted. On the other
hand, optical interconnect has been demonstrated to be a promising alternative to
achieve high energy efficiency and high bandwidth [17, 24, 32, 34, 35]. In this
section, we briefly discuss some of the constructs of the JADE interconnect models.
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Figure 9 shows an example of an electrical network-on-chip with a 4 × 4 mesh
topology. The NoC has three elementary components: links, routers, and network
interfaces. Each of these components is detailed at the micro-architecture level. In
the models, we account for the precise latency as well as energy consumption. The
network topology can be easily configured through intuitive readable text files. The
configuration files permit users to set the number as well as the exact position of each
component. In JADE, we also include a tool to automatically generate configuration
files with a simple command line interface.

Figure 10 shows the NoC router micro-architecture in JADE. It has three pipeline
stages: routing computation (RC), virtual channel (VC) allocation, and switch
allocation (SA). The router uses a control-flow policy based on credits. In brief
words, each output port contains a certain number of credits. Every packet sent
through an output port consumes one credit from that port. When the number of
credits is zero, the output port is blocked until new credits are received. The output
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port receives credits from the immediately connected input port, i.e., the respective
receiver side. Credits are sent through specialized links, the credit links. For each
physical data-link in the NoC, there is a corresponding credit link. Most of the
micro-architecture parameters are configurable including the input buffer depth, the
number of virtual channels, flit size, and others.

Recent works have demonstrated that multiprocessor systems can benefit con-
siderably from silicon photonics. They have been used, for instance, to implement
optical on-chip interconnects [35], off-chip networks [34, 38], and even in a
processor-memory communication scheme [31]. Among the benefits of optical
interconnects is the high bandwidth combined with low power consumption.
However, using this new technology is challenging. To maximize the benefits from
optical interconnect, we need to redesign the processor architecture, memories, and
peripherals. JADE includes optical network models that permit the study of on-
chip and off-chip optical interconnects. Among the optical components we model,
we can list the microresonators, conversion from optical-to-electrical (OE) and
electrical-to-optical (EO), links, and others. In addition, JADE also accounts for the
detailed power losses for each component, allowing accurate estimation of power
consumption.

One instance of an on-chip optical network that can be implemented in JADE
is the SUOR (sectioned unidirectional optical ring) network [35]. This network is
composed of two parts: an optical network playing the role of a global interconnect
and an electrical network for localized communication. The electrical network
is used to interconnect a cluster of a small count of cores (e.g., four cores),
while the optical network connects clusters in a ring-like topology. SUOR tries
to take advantage of both sides, maximizing the usage of the optical network
for long-distance communication and the electrical network for short-distance
communication. In this scheme, near-range communications do not need to pay the
price of conversion from electrical-to-optical which consumes power and also adds
to the latency. The optical network in SUOR is divided into sections, hence the
name, to maximize the total utilization of the waveguide.

JADE can also simulate advanced interconnect schemes such as the I2CON [34].
I2CON is a network architecture targeting multi-chip many-core processors. It is
composed of two parts: (1) the network connecting multiple chips, referred as inter-
chip network, and (2) the network inside each chip, referred as intra-chip network
(or on-chip network). Both the inter and the intra-chip networks use some form of
optical interconnect. The intra-chip network is a clustered optical network such as
the SUOR. On the other hand, the inter-chip network uses an optical interconnect
scheme that connects clusters of different chips and is floorplanned in a way that
avoids waveguide crossings. In the inter-chip network, there are N data channels
coordinated by one centralized arbiter.
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4.4 Support

JADE makes use of the built-in power models to implement a power management
unit (PMU). The PMU includes three subsystems, dynamic voltage and frequency
scaling (DVFS), energy consumption measurement, and power delivery system
(PDS) models.

Currently, JADE can apply DVFS to processor cores, network-on-chip routers,
and network interfaces. However, by default, only DVFS of processor cores is
enabled. The DVFS uses a run-time policy that takes into consideration the load
of the system. It adjusts the voltage along with the frequency to reduce power
consumption. The voltage and frequency pairs are obtained from realistic voltage
regulators and device parameters. In addition, the operating frequency for each
component can be easily modified. In the default configuration, all components have
the same frequency of 2 GHz.

4.5 Power Models and Device-Level Models

JADE integrates power model libraries to provide holistic power analysis for various
configurations of architecture, and technology nodes. We use McPAT [19] for power
estimations for some of the components such as cache and the CPU. The power
library includes technology nodes initially released by McPAT and others extracted
from device models of advanced predictive process design kits. Currently, JADE
supports 7, 22, 32, 45, 65, and 90-nm technology nodes. JADE reports both the
static and dynamic energy for all components including processor cores, on-chip
and off-chip routers, caches, and others.

JADE also simulates process variations by emulating variations on the conditions
for the cores. Some examples of conditions we vary from core to core are the
operating frequency, dynamic power, and static power. We obtain the variations
based on two device-level parameters: the effective gate-length (Leff ) and the
threshold voltage (Vth). They are varied as a normal distribution spatially correlated,
and we use a spherical function to generate covariance between cores.

4.6 Implementation

JADE is implemented as an event-driven simulator written in C++. The code is
highly configurable. Most of the parameters can be configured either by setting the
configuration files or by command line. JADE is in constant development, and we
release new features and fixes quite regularly. We also welcome and appreciate the
help of other users in reporting bugs and implementing features.
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Adding new components or replacing the existing parts is relatively simple. All
active objects derive from a consumer class and need to implement a wake-up
function. There are two different types of events that trigger the wake-up function
of objects. The first one is the explicit object scheduling. In this case, either the
component itself or other components schedule the wake-up function for the future.
This approach is commonly used to model state transitions inside the component.
The second type of event is more convenient to model communication between
components. This is only applicable when the component has input ports. In such
case, when one component sends data to another, the input port will automatically
schedule the wake-up function of the receiver.

5 Case Studies

In this section, we show a few examples of research that has been carried using
JADE. Each subsection discusses a different project. It starts with the title, author-
ship, and publication details. We summarize the main topics and achievements of
each research.

5.1 MOCA: An Inter/Intra-Hip Optical Network for Memory

For the complete details of this study, please refer to Wang et al. “MOCA: an
inter/intra-hip optical network for memory,” DAC 2017 [31].

As mentioned earlier, optical interconnects are a promising alternative to obtain
high bandwidth and low power. In this work, the authors propose a new optical net-
work to interconnect processors and memories. There are three major contributions.
First, they introduce a new memory organization optimized for optical interconnect.
Second, they integrate multiple processor cores and the memories with a unified
on-chip/off-chip optical network. Third, they use wavelength division multiplexing
and time division multiplexing (WDM/TDM) to increase utilization of the link and
reduce the power.

In MOCA, the interconnect between processors chips and memory chips is
implemented with optical links. To extract the maximum benefit of this optical
interconnect we need to redesign the whole system architecture. More especially,
it is required to co-design the processor architecture and the memory architecture.
On the processor side, the authors tailor the on-chip network as well as the memory
controllers. On the memory side, the authors customize the memory organization to
extract the maximum benefit from the optical interconnects.

Typical memory controllers consist of two parts the front-end engine (FE) and
transaction engine (TE). The front-end engine performs rescheduling while the
transaction engine translates commands to memory signals, in other words, the
transaction engine is responsible for generating the control signals, address signals,
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and data signals with the proper timing. In traditional systems, the front-end engine
and the transaction engine are combined into a single unit, and it is located inside
the processor chip. In MOCA, the FE and TE are physically separated. FE is located
in the processor chip while the TE is located in the memory chip.

The processor in MOCA is organized with multiple clusters of a small count
of processing units, e.g., four. Each processing unit has a private L1 I/D cache,
and the L2 cache is shared among the cores in the cluster. MOCA has the best
performance when the optical off-chip interconnect is used in combination with the
optical on-chip network (NoC). The organization of the optical NoC is similar to
SUOR. Requests issued by the destination outside a cluster are routed through the
optical NoC in a ring-like topology. In the case of memory requests, the message
is sent to the front-end engine also using the optical NoC. The front-end engine
redirects the request to the proper memory chip using the optical off-chip links.

Figure 11 shows the logical representation of the processor chip in MOCA. The
way the components are laid physically will depend on the technology used, for
instance, 2.5D integration or 3D integration. The differences and trade-offs between
the two are discussed in their work [31]. This figure shows an example of four
clusters of processing units, and four front-end engines (equivalent to the memory
controllers). In the figure, we only show one link for each front-end engine, but
in fact, there will be multiple links. The same happens for the optical on-chip
network, in which there will be several links to complete the network. For the sake
of simplicity, we also omit EO and OE converters and serializers/deserializers.

Figure 12 shows an overview of the memory chip organization in MOCA. It
has an optical interface composed of several optical links. The optical transceiver
performs conversions between the optical and electrical domains and uses WDM
and TDM to reduce power and increase the utilization of each link. The requests
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Fig. 11 Example of a processor chip in MOCA. Front-end engine (FE) is responsible for
forwarding requests to and from the memory chips. The processor is organized in clusters of a
small count of cores. The clusters are connected through a sectioned optical ring-like network
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Fig. 13 Typical processor-memory interconnect using (a) HMC and (b) MOCA

from the processor are received through the optical transceivers and arrive at
the corresponding transaction engine passing the electrical switch. Then the TE
performs the traditional DRAM signaling to access the memory and issue the
response if necessary. In the figure, we show the typical hierarchical memory
organization with ranks and banks.

Optical links have higher bandwidth-density than the electrical counterparts.
Therefore, to achieve the same total bandwidth, the optical interconnect requires
fewer pins and consequently less area. This allows MOCA to use more memory
channels per processor chip, each of them connected to multiple memory chips.
This has a twofold benefit. First, it will enable accessing more memory chips in
parallel achieving higher bandwidth. Second, it reduces the latency because of the
smaller number of hops to reach the memory. Figure 13 shows how (a) the typical
memory interconnect using hybrid memory cube (HMC) compares to (b) the one
with optical interconnects in MOCA.

The authors used JADE to evaluate their proposed architecture. They compared
MOCA with the equivalent HMC implementation. For a 256-core processor, MOCA
achieves more than 160% higher memory bandwidth than HMC due to the ability to
access more memory chips in parallel. The authors also evaluate the total latency
to access the memory. In their evaluation, they account for the latency in the
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network-on-chip, the off-chip communication, and the memory access latency. The
experiment showed that MOCA not only reduces the average latency by 75% but
also reduces the variation. The combined effect of higher bandwidth and lower
latency reduces the application execution time by 2.6 times on average.

Another important aspect is the energy efficiency. The optical interconnect
requires less energy per bit transmitted. Figure 14 compares the energy efficiency
of HMC and MOCA. It shows the total energy spent per bit on systems with
32, 64, 128, and 256 cores. In this figure, we show two implementations of the
MOCA, one using optical network-on-chip (MOCA-ONoC) for the processor, and
another using electrical network-on-chip (MOCA-ENoC). The use of optical off-
chip interconnects in MOCA makes it more energy efficient than HMC. This
happens for either optical or electrical NoC. The difference between MOCA-
ENoC and MOCA-ONoC is more evident for an increased number of cores. In the
experiment realized, MOCA-ENoC is 1.6× more energy efficient than HMC. The
best choice of architecture is when the off-chip optical network is combined with
optical network-on-chip (MOCA-ONoC). In that situation, it is possible to achieve
3.6× more energy efficiency.

5.2 RSON: An Inter/Intra-Chip Silicon Photonic Network
for Rack-Scale Computing Systems

For the complete details of this study, please refer to Yang et al. “RSON: an
inter/intra-chip silicon photonic network for rack-scale computing systems,” DATE
2018 [38].

RSON is a network architecture for rack servers composed of tens of server
nodes, where each server node is assumed to have a processor chip, local memories,
and other peripherals like storage units. RSON uses optical interconnect to imple-
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ment both the inter-node network and the on-chip network inside each processor. In
the literature, they refer to the inter-node network as inter-chip network while the
processor on-chip network is referred as intra-chip network. RSON takes advantage
of silicon photonics to provide an efficient communication scheme among processor
cores, caches, local memories, and remote memories.

Figure 15 shows the logical overview of the RSON architecture. In this figure,
we show two nodes interconnected through a multi-port optical switch. In RSON,
each processor chip has an inter-node interface that allows a direct connection
between the processor chip and the optical switch. This was specially designed to
allow an efficient integration between the inter-node network and the processor on-
chip network. One of the operations that benefit from this scheme is the transfer
between memories located in different nodes, usually performed by the remote
direct memory access (RDMA) unit.

RSON uses circuit-switching because it is more convenient for optical inter-
connects. Therefore, to perform remote memory transfers, the first step needed
is to set up a path connecting the local memory and the remote memory. This
path reservation will involve the local processor chip, the inter-node network, and
the remote processor chip. The processors will need to reserve the on-chip path
connecting the memory controller to the respective inter-node interface, which
might include the electrical NoC and the optical NoC. On the other hand, the
optical switch will be responsible for reserving a path in the inter-node network.
In their work, the authors present a novel algorithm to hide the latency due to
path reservation for RDMA operations. Once the circuit is set, the transfers can
be performed making use of the high bandwidth offered by the optical interconnect.

The authors of RSON also used JADE to evaluate their proposed architecture.
They discuss the energy efficiency, total bandwidth, latency, and total execution
time. One of the findings is that RSON has about seven times higher performance-
per-energy (PPE) score than traditional network architectures using InfiniBand.



A Fast Joint Application-Architecture Exploration Platform for Heterogeneous Systems 229

Fig. 16 Performance-
per-energy comparison
between InfiniBand, RSON,
and the traditional network
using optical switch (SW)
only

InfiniBand
Optical SW
RSON

Pe
rf

or
m

an
ce

-p
er

-e
ne

rg
y

0

2.5

5

7.5

10

12.5

15

Interconnect bandwidth (Gbps)
100 200 400 800

Also, the authors discovered that RSON has about 85% lower energy per bit. This
shows that RSON is a promising solution to obtain high energy efficiency in rack-
scale computing. The PPE score is summarized in Fig. 16, where it shows how
the PPE varies by increasing the total bandwidth in the interconnect. The figure
compares three network technologies (1) InfiniBand, (2) conventional network using
optical switch only, and (3) the RSON.

6 Conclusion

In this work, we introduced JADE a joint architecture/application design environ-
ment. JADE targets design explorations considering overall system characteristics
such as average performance and energy efficiency instead of detailed cycle-by-
cycle behaviors. JADE distinguishes from other simulators due to the statistical
application models and the comprehensive architecture models. Among the benefits
of statistical simulation are confidentiality, compact representation, and simulation
speed. JADE is composed of two parts, the COSMIC benchmarks and the archi-
tecture simulator enabling a holistic study of application and architecture. In this
chapter, we presented two examples of studies carried out in the JADE simulator.
The first is a novel processor-memory interconnect architecture, and the second is
a rack-scale network. These studies combine electrical and optical interconnects to
maximize system performance and efficiency.
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The Journey of a Project Through
the Eyes of a Smart Camera

Burak Ozer

I met Marilyn Wolf in 1998 when I was a Ph.D. student in the New Jersey Center
for Multimedia Research. I worked with her first as a student for my Ph.D. thesis
and then as a researcher in her group at Princeton University. Since then, we have
been business partners on several projects and most importantly friends throughout
all these years. Her guidance at each step of my early research, her visionary and
innovative ideas, and her ability to foresee next technological breakthroughs led
us to develop the first “smart camera” system with extended features that can be
applied to different applications. In this essay, I will focus on the critical stages
of our project journey from research and development at Princeton University
to commercialization for train stations and other application areas. Marilyn has
been working on many different topics related to computers with other festschrift
participants. I would like to tell you the story about how we converted “dummy
cameras” to “smart cameras,” what we achieved and learned, and what can still
be done in this area. The article will discuss different platforms and algorithms
that we developed throughout the years for different application areas, real-world
problems that we faced during commercialization, and current developments that
cite our work.

1 Smart Cameras

In “smart cameras” [1], it is stated that “smart cameras perform signal and image
processing where the signal is captured and where signal quality is best,” which is
basically the most important advantage of the smart cameras. A stand-alone smart
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camera that processes, extracts, and sends only the necessary information to the end
user will remove the need for manual work and greatly reduce bandwidth and data
amount that needs to be processed by the end user. This advantage also reduces data
loss in case of emergencies, e.g., network interruption during a storm. In the same
book, smart cameras are classified as single-chip, embedded (e.g., phone camera),
stand-alone, compact system, and distributed smart cameras. Our first smart camera
testbed that I will discuss here is a compact system smart camera.

Our journey started in January 2001 at Princeton University. Marilyn’s idea on
how to embed smart cameras was a breakthrough in computer vision that combines
vision algorithms, real-time video processing, and embedded systems. While
dummy cameras capture images, smart cameras capture high-level descriptions of
the scene and analyze what they see. Although there were a wide variety of appli-
cations including human and animal detection, surveillance, motion analysis, facial
identification, etc., we decided to use gesture recognition as our first application.
Smart cameras leverage very large-scale integration to meet real-time performance
conditions in a low-cost, low-power system with substantial memory. Moving well
beyond pixel processing and compression, smart camera systems can run a wide
range of algorithms to extract meaning from streaming video.

As the first step towards smart cameras, we decided to use fast and reliable
video capture boards for video processing. As our testbed, we used a PC as host,
two TriMedia video capture boards with 100-MHz Philips TriMedia TM-1300
processors, TriMedia SDK, and analog camcorders. First application we developed
was to detect skin areas in real-time. Modeling human body, finding body parts,
and as our ultimate goal, recognizing human gesture in real-time by the camera
without any human interaction were the major cornerstones of our smart camera
project. The initial gesture recognition algorithm was able to find body parts of a
person, model each body part with ellipses, and identify his/her simple gestures
in real-time. Our paper published in computer magazine [2] summarizes the basic
algorithmic steps and our optimization techniques to increase frame rate, reduce
latency, and use efficient memory. This board-level system was a critical first step in
the design of a highly integrated smart camera. We published many architecture and
algorithm related papers by using this initial testbed. We looked into parallelism,
pipelining, different optimization techniques, as well as 3D modeling of the human
body parts [3–6].

2 Start-up and Commercialization

After 9/11 events, the security and surveillance markets were flooded with compa-
nies introducing new ideas. Several companies started working on gesture recog-
nition related applications by using cameras. Especially, crowded area monitoring
became one of the hottest topics. We were several steps ahead of these recently
formed companies due to our expertise in smart camera algorithms and embedded
system knowledge. After discussing the IP issues with the university, we decided
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to commercialize our technology as a start-up company from Princeton University.
The second part of our journey started after we formed Verificon Corporation. We
started working with Yokogawa Electric, a Japanese company, to install the gesture
recognition system at train stations around Tokyo metro area.

During commercialization of the software, we designed the algorithms for RISC
processors for Windows and Linux environments as well as for FPGA acceleration.
The latest system was running on DaVinci evaluation boards. One of the major
problems was efficient system design for real-time processing. Processing enormous
amount of data obtained from a very crowded scene in real-time is a hardware
challenge. Some other challenges we faced during deployment are changing camera
characteristics that vary from unit to unit, changing lighting (low/high light levels,
high contrast, flicker effect due to fluorescent light, shadow, automatic exposure
correction), changing color balance, camera motion (due to pan-tilt zoom, wind,
shaking due to another object, e.g., train), perspective change, camera calibration,
reflection, abrupt lighting changes, and occlusion.

Train station lighting creates unique lighting challenges. One of the basic
problems is the flickering effect due to fluorescent lighting. The flicker effect
causes a constant lighting change especially in the train stations on the reflective
surfaces. Another challenge is the shadow elimination. Shadows, especially on
low saturated areas, are very hard to eliminate. The lighting as well as camera
parameter changes affects the gesture detection rate directly, e.g., when a train
arrives at a platform the platform camera parameters are changing rapidly which
causes poor detection rates. Mixed indoor–outdoor lighting creates many detection
challenges. The background extraction may change for several reasons depending
on the objectives. For example, in one application, the objective may be to classify
standing passengers as foreground objects to gather information such as how long a
passenger spends at a certain location while in other application passengers standing
at another location may be considered as background objects. Calibration of each
camera is another challenge in a crowded train station. There are several calibration
algorithms in the literature; however, a detailed calibration algorithm that takes all
the camera parameters into account is hard to accomplish. The camera position and
the topology of the train station: escalators, stairs, and ramps make the calibration
a more challenging problem. Tracking is affected by occlusion. Especially in a
crowded train station, tracking multiple persons for a period of time is a very
difficult task. The algorithm should be able to find the gesture of the person(s)
during this tracking period and identify different gestures of the same person. Our
solutions to the above-mentioned problems can be found in our paper [7]. In addition
to algorithm design challenges, implementation issues such as converting floating
point calculations to fixed point calculations were another major challenge at this
stage. Second generation software was running on Linux platforms in real-time. The
third generation software was adapted to run on DaVinci video processing boards
with TMS320C64 fixed point DSP. The fourth generation software was planned to
run on custom-designed hardware designed by the railway company itself. We also
carried parts of the algorithm on FPGA platform and the reader can find details of
this effort in our paper [8]. The output (e.g., ID of the individual, his/her gesture,
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position in 3D, speed of movement (in meters/frames), unattended object, person’s
height and width (in meters), number of people, flow direction of people, etc.) can
be sent to a remote location with an IP address. The system is used for indoor and
outdoor train platforms as well as inside the stations. A platform, e.g., an area of the
size 200 m by 50 m is usually covered by one camera. Each camera is connected to a
video processing board. Oblique views allow a single camera to cover a larger area,
reducing the number of cameras required. The deployed system passed 9 phases
of evaluation. Each phase has been evaluated by Yokogawa and railway company,
and Verificon adjusted its algorithm and developed new algorithms to achieve the
pre-set specifications by Yokogawa. Parallel to the development and research phases
of the commercialization of the smart camera system, we published several papers
and filed patents related to our research. Marilyn’s leadership and her academic
background enabled us to publish many conference papers, journals, and patents
and in the meantime helped us to protect the company IP.

Recently, tracking algorithms and object detection algorithms are getting more
and more complex due to surveillance requirements. There are many tracking,
surveillance, self-driving car applications based on NNs and other algorithms with
heavy processing loads. Gesture recognition needs more detailed analysis than
tracking and will increase the processing load further. Even today, it is still hard
for embedded systems to process real-time data for gesture related applications.
On the other hand, recent developments in cheap and affordable general-purpose
hardware like Raspberry Pi enable the user to use same hardware for different
applications in a cost-effective way. Instead of a single task designated smart camera
system, the general-purpose hardware can be used for different tasks. Especially
government institutions require the use of existing “dummy” cameras for non-
critical applications. The fastest, most reliable, and cheapest way to convert these
cameras into smart cameras can be achieved by using general-purpose hardware
with the existing camera for non-critical applications.

3 Next Step, Retail Stores

Our Verificon journey has ended after Marilyn accepted a position at GATech. I
started using my expertise about video processing at different application areas
as a consultant and as a partner of several start-up companies. I looked into
different markets outside of the USA, and designed algorithms/systems for counting
people inside retail stores by using cameras connected to very cheap multi-purpose
hardware like Raspberry Pi. Due to customer request, we were able to use several
programs on the same hardware without changing the camera setup for different
applications. For example, same camera setup can be used for tracking customers
inside the store, generating heatmaps, and counting. PI’s camera is connected to the
GPU directly, which enabled us almost real-time video processing for 320 × 240
frame sizes. There were several bumps during deployment, one of them was
covering a wide area with a single camera. Although off-the-shelf fish-eye lenses are
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Fig. 1 Left: Heatmap shows store location where the customers spent the most time for a five hour
period. Red areas represent the busiest locations. Right: Same camera tracks and displays a single
customer trajectory

available, we had to find solution for camera distortion caused by the lens. Heating
was another design issue, spotlights inside the retail stores generate excessive heat
around ceiling area. We had to design the casing accordingly to allow the hardware
to work within operating temperature range. There were several issues on the
application side as well, for example, inside a shoe store, mirrors on the walls,
and under the seats cause problems for detection/tracking. Number of doors, door
width, and door type are also factors that affect algorithms, and finding a general
solution that can work for all store types was a challenge. Store setup and display
change within the store was another problem that was affecting system performance.
Figure 1 (left) shows the heatmap in a shoe store after a five hour detection period.
Figure 1 (right) is the tracking result of a single customer from entrance to the
back of the store. Figure 2 is the hourly counter result (number of people entering
to the store) for two consecutive days. Some stores required to use same cameras
for analyzing different customer data, e.g., number of people checking the store
display outside of the store versus number of customers entering the store. Another
advantage of using a raspberry board is the storage capability of the board. We stored
processed frames and output data for several days. In case of network interruption
and power loss the data is also stored on the camera side before it is transferred to
the central processing unit and database.

4 Water Management

More recently, I started using multi-purpose processing boards with cameras for
water level and water velocity measurement in Asia. The need for water monitoring
is becoming more and more important around the world which requires cost
effective and robust water control systems to limit the loss of human lives, crops,
property, and livestock. Depending on NOAA, extreme weather and climate events
have increased in recent decades. Although there are multiple techniques for water
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Fig. 2 Hourly customer number for two consecutive days

management, the prior art depends on traditional measuring tools and methods.
Most of these are manual sensors and needed to be setup for each measurement.
They require extensive maintenance and are only focused on a specific location and
on a specific task.

I developed a water level (WL) and surface water velocity (WV) measurement
system based on smart cameras for use around rivers, lakes, canals, harbors, dams,
and all other water related areas as well as flood risk regions. The principle of this
system is to monitor water and water movement by smart video cameras and alert
the first responder team by calling attention to the risky areas. Our objective is to
have a solution that is modular and adaptable, easy to use, stable, real-time, and with
multi-region detection capability. The current software of our proposed platform is
being used in Taiwan and Japan to find WL and WV in several flood prone areas.
Our approach is to use both water level data and water velocity data to analyze and
derive water related characteristics and make predictions. Video based system will
trigger alarm(s) based on the user benchmarks and thresholds as well as enable the
user to see the actual water body which can’t be done by other traditional water
sensor systems. Unlike some video surveillance systems, the proposed system does
not need any expensive and maintenance dependent gauges and boards. As the end-
product, I built a “smart” camera system based on our previous expertise with:

• Camera module in a hardened enclosure.
• Communication/networking between smart camera output and the central pro-

cessing unit/database.
• Solar panels and battery for the camera module and IR light if the system needs

to work as a stand-alone system depending on the application.
• Database for storing frames/date/time/water level/water velocity, etc.
• Software for connecting low level data to high-level semantics and data interpre-

tation.

Selecting the right camera type, camera filter, and processing module are major
factors which can affect the output of the system. Cost-effective and multi-purpose
video processing boards are used depending on the location with the appropriate
lens. It is also crucial to choose the right filters, e.g., IR filters, wide or directional
lens, etc. for the application.
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The water gauge area is usually not well defined in the real-world environment.
The traditional striped water gauges are hard to see by the camera since the
camera is located far from the gauge or the paint on the gauge may get worn
off due to weather conditions. Some gauges are corroded. Some spots even don’t
have gauges. In some cases, a close-up detection of the region of interest (ROI)
area is preferred. Cropping the ROI area and zooming in to the cropped area is
desirable under these circumstances. Another important aspect is removing the
noise due to different weather conditions. The system is equipped to check possible
camera blockage/heavy fog/heavy smoke to minimize false alarms in a pre-defined
interval. Automatic camera calibration is a crucial step in the process. To find water
and non-water areas, different algorithms are implemented. Especially man-made
canals and water ways have uniform color which is very similar to water color
even under different weather conditions. Pre-processing methods such as histogram
equalization, color sharpening, and other image enhancement algorithms are used
to eliminate several factors, e.g., rain drops, snow, etc. The overall smart camera
system can be seen in Fig. 3. There are different systems deployed at different
locations, for example, in Taiwan, although we deployed Raspberry boards with
Raspberry cameras, the government requires us to use existing CCTV cameras with
PC or Raspberry board at several locations. We had to work around this problem in
several cases. There is no single solution for this type of deployment. Even at the
same location the requirements may change dramatically.

Some challenges we faced during this type of smart camera deployment are:

• Removing the noise due to different weather conditions, e.g., fog/smoke, heavy
rain/snow.

• Calibration. Conversion of the camera coordinates into world coordinates without
any markers during setup is a challenge.

Fig. 3 Overall system: Input video frames are processed in real-time on the processing board or
on a PC based on the user needs. Water level and/or water velocity results are sent from the field
to a central processing center via network. Data is stored and interpreted at the center to give
warning/alarm levels based on the thresholds
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Fig. 4 Natural factors can
affect the detection
performance in different
ways. Spider webs, heavy
snow, and fallen branches are
some of these factors

• Color. Especially man-made canals and water ways have uniform color which
is very similar to water color even under different weather conditions. A
combination of algorithms, e.g., line detection, flow vectors, and a combination
of these algorithms should be used. Some basic challenges are shown in Fig. 4.
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Fig. 5 Japan site—canal area around Tokyo. Night view by using IR light. There is no reflection
board on the canal wall. The virtual gauge (GUI) is for visual purposes only. Time stamps are in
the upper left corner. The system runs on solar panels/battery as a stand-alone system and shows
results every 10 min when it rains. Otherwise, the system is idle

• Sudden changes due to foam, waves, etc. and gaps due to wiper, branches in the
water, tree leaves before the camera, etc. need to be considered by the system.

• Power management.
• Network security and video transfer.

Some results from the deployed systems are shown in Figs. 5, 6, and 7.
Figure 8 shows our stand-alone smart camera system.
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Fig. 6 Japan—River in Niigata: Left: Benchmarks are installed on the wall before testing the
system. Middle and right: Water level at different times and the visual imaginary gauge displayed
by GUI

Fig. 7 Taiwan deployment around Taipei. Top: Water level. Bottom: Velocity
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Fig. 8 Stand-alone smart
camera for water level and
water velocity measurement

5 Epilogue

Marilyn Wolf’s vision and her innovative thinking light our way as researchers
in many aspects. I can’t thank her enough suggesting me to work on smart
cameras. After almost 20 years, I still feel the excitement as a researcher and as
an entrepreneur when I look back. There is still much to do in smart camera area.
Especially using cheap and affordable smart cameras for everyday applications
should be our goal as researchers. There is an anecdote with which I would like to
conclude this schrift. When I was a post-doc, I went to Marilyn’s office at Princeton,
we were discussing about a smart gun project (a gun connected to a smart camera)
that some researchers were proposing to develop. Marilyn’s response was to let
the researcher run in front of the smart gun and test the system by him/herself! The
debate goes on today, should we rely on smart cameras, smart cars, smart machines?
There are no easy answers for these questions, but researchers like Marilyn will
always push the innovation limits. Thank you, Marilyn!
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Rotators in Fast Fourier Transforms

Fahad Qureshi, Jarmo Takala, and Shuvra Bhattacharyya

Abstract This chapter discusses architectures for computing the rotations in fast
Fourier transforms. There are two principal methods, which can be exploited:
general complex multipliers or multiplier-less techniques. We describe different
architectures, each with different advantages, indicating that the final selection
depends on the requirements of the application at hand.

1 Introduction

A rotation is a multiplication by a complex number whose magnitude is one, i.e., a
transformation that describes a circular movement with respect to a point [7, 11, 30,
32]. The rotation of a complex number (x + iy) by an angle α can be defined as:

[
X

Y

]

=
[

cos α − sin α

sin α cos α

] [
x

y

]

, (1)

where X and Y are the real and imaginary parts of the result, respectively. Thus, the
rotation can be written as:

X + iY = (x cos α − y sin α) + i(y cos α + x sin α). (2)
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Let C and S be representations of cos α and sin α with a finite number of bits. A
rotation of complex number, i.e., a rotation in complex plane, can be presented as

[
XQ

YQ

]

=
[
C −S

S C

] [
x

y

]

, (3)

where XQ and YQ are the result of the rotation, which includes the error resulting
from quantization of the coefficients. Many digital signal processing algorithms
require to carry out rotations of complex numbers by the given angles with respect to
the origin. This is the case with fast Fourier transforms (FFT) [26], discrete cosine
transforms, and lattice filters [23].

2 Rotations in FFT

The fast Fourier transform is one of the most important tools in digital signal
processing. It is based on discrete Fourier transform and used to convert time
domain signals to frequency domain [3, 26, 28]. The Fourier transform is defined
for continuous signals, while the modern signal processing mainly considers digital
systems, and the discrete Fourier transform (DFT) is used instead. The DFT
transforms a finite sequence of equally spaced samples to a corresponding frequency
domain representation as follows:

X[k] =
N−1∑

n=0

x[n]Wkn
N , k = 0, 1 . . . , N − 1, (4)

where N denotes the length of DFT, i.e., the number of points of the DFT, x[n] and
X[k] are the input and output samples, respectively. Note that both the signals are
discrete in nature. The complex-valued coefficients WN are called as twiddle factors
and are defined as

WN = e−j2π/N = cos (2π/N) − j sin (2π/N) , (5)

where j denotes the imaginary unit.
The original signal x[n] can be recovered from X[k] with the aid of an inverse

discrete Fourier transform (IDFT):

x[n] = 1

N

N−1∑

k=0

X[k]Wkn
N , k = 0, 1, . . . , N − 1. (6)

The arithmetic complexity of the DFT in (4) is O(N2). However, DFT contains
redundant computations and several methods have been introduced for avoiding
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such a redundancy, thus reducing the complexity. Any algorithm computing DFT
with less than O(N2) complexity is called as a fast Fourier transform. The most
popular FFT is the Cooley–Tukey algorithm [3], which uses divide-and-conquer
paradigm to decompose DFT into a set of smaller DFTs. Especially, the Cooley–
Tukey principle says that an N -point DFT (N = PQ) can be computed with the aid
of a P -point DFT and a Q-point DFT. By exploiting the periodicity of the twiddle
factors:

W
kQ
N = Wk

P ; WkP
N = Wk

Q; W
kPQ
N = 1,

the radix-Q FFT can be expressed as:

X(Qk1 + k2) =
P−1∑

n1=0

Q−1∑

n2=0

x (n1 + Pn2)W
n1k1
P W

n1k2
N W

n2k2
Q

=
P−1∑

n1=0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
Q−1∑

n2=0

x(n1 + Pn2)W
n2k2
Q

⎞

⎠

︸ ︷︷ ︸
Q−point DFT

W
n1k2
N︸ ︷︷ ︸

twiddlef actor

⎤

⎥
⎥
⎥
⎥
⎥
⎦

W
n1k1
P

︸ ︷︷ ︸
P−point DFT

. (7)

The two summations indexed by n1 and n2 are referred to as inner and outer DFTs.
As a result, an N -point DFT is broken down into P -point and Q-point DFTs. The
output of the inner DFT is multiplied by W

n1k2
N , which is called as a twiddle factor

multiplication. The scheme of decomposition is shown in Fig. 1, where the left and
right sides represent the P -point inner DFT and Q-point outer DFT, respectively.
Between those DFTs, a twiddle factor multiplication indicates a rotation by W

φ
N =

e−j 2π
N

φ . The arithmetic complexity is reduced from O(N2) of the DFT in (4) to
O(N log N).

P-Point
DFT

Q-Point
DFT

x(n) X(k)

WN

Fig. 1 Decomposition scheme of Cooley–Tukey FFT algorithm
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If the length N is not a prime, the Cooley–Tukey principle can be applied
iteratively and then the DFT is computed with the aid of several smaller DFTs. In
particular, if the DFT length is a power of a prime, i.e., N = P q , then the N -point
DFT can be computed with the aid of P -point DFTs constructed in q computing
stages. As the resulting fast algorithm contains only P -point DFTs, it is called as a
radix-P FFT.

The most popular approach is radix-2 FFT algorithm, where the DFT is
decomposed recursively until the entire algorithm is computed with the aid of
two-point DFTs. The advantage is that that the two-point DFT can be computed
with trivial twiddle factors, thus multiplications can be avoided. Another popular
algorithm is radix-4 FFT as twiddle factors contain only 1, −1, j , and −j , thus
again no multiplications are needed.

The recursive application of Cooley–Tukey principle can be done by starting
from the time domain sequence, which results in a decimation-in-time (DIT)
algorithm as shown in Fig. 2. In a similar fashion, the decomposition process can be
started from the frequency domain sequence resulting in a decimation-in-frequency
(DIF) algorithm as shown in Fig. 3. The numbers between each stage represent the
rotations. Each of these values (φ) corresponds to a rotation by the twiddle factor [6].
It should be noted that W 2

16 = W 1
8 ;W 4

16 = W 1
4 .
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Fig. 2 16-point radix-2 DIT FFT flow graph. The number between the stages indicates rotation,
i.e., value φ in twiddle factor multiplication W
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Fig. 3 16-point radix-2 DIF FFT flow graph. The number between the stages indicates rotation,
i.e., value φ in twiddle factor multiplication W
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2.1 Twiddle Factors

Each input of an FFT stage is rotated by a different angle, which is determined by
the twiddle factor W

φ
L = e−j2πφ/L. The parameter L is a constant for each stage and

determines the number of possible rotations in that stage. These angles are based on
the division of the circumference into L equal parts. The exact angle is determined
by the parameter φ, which is a natural number {0, . . . , L − 1} [7, 11, 30, 32].

The complexity of the rotator is determined by the value of L. A small value is
desirable, because it results in a simple twiddle factor architecture. An example of
twiddle factors W4, W8, and W16 is shown in Fig. 4.

The simplest rotator is WL = W4, which includes only trivial rotations (0, π
4 , π ,

and 3π
4 ). Trivial rotations are characterized by the fact that they can be calculated by

simply exchanging the real and imaginary parts of the input and/or changing their
sign [11]. Thus, the criterion used to select the algorithm is to minimize the number
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of large twiddle factors and maximize the number of trivial rotators (W4), which are
the cheapest ones. There are also trade-offs between the number of large (W64 and
larger) and small (W8, W16, and W32) twiddle factors.

3 Rotation in Fixed-Point Arithmetic

Ideally the arithmetic operations in the FFT algorithm should be represented with
infinite precision. However, in practice, temporary values are stored in registers with
a finite capacity. There exist different ways to approximate real numbers using a
finite number of digits. One of the most common ways for embedded systems is
two’s complement fixed-point (FxP) arithmetic [5, 27].

For angle α, it is always true that: cos α ∈ [−1, 1] and sin α ∈ [−1, 1]. Therefore,
it is assumed that C and S are also numbers in the range [−1, 1] with rounding to
a certain number of fractional bits, b. According to the general interpretation of
the coefficients, the magnitude of the rotation is always one, independently on the
number of bits, b, as it happens in the definition of the rotation.

As C and S contain b bits, they can also be considered integers in two’s
complement representation in the range of [−2b−1, 2b−1]. Accordingly, the values
of the cosine and sine components of the angle α will be

C = R(cos α + εc);
S = R(sin α + εs),

(8)

where εc and εs are the relative quantization errors of the cosine and sine
components, respectively, and R is the scaling factor of the coefficients being the
error rotation [9].

4 Rotations in FFT Architectures

Closer investigation of signal flow graphs of FFT algorithms indicates that the
rotations in the signal flow graph have some systematic properties, which can
be exploited in implementations. The way how these properties can be exploited
depends on the mapping from the signal flow graph onto the processing units. The
main differences are that how many samples are processed in parallel and how many
different twiddle factors each rotator must support. We can identify three principal
types:

1. Single Branch with Multiple Rotations. A general scenario is to compute
rotations on the data that flow through a single branch, where different pieces of
data rotated by different coefficients are shown in Fig. 5a. This scenario is mostly
used in single/multiple feedback pipelined and iterative FFT architectures [11].
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(a) (b) (c)

Fig. 5 Rotator scenarios: (a) Type 1, (b) Type 2, and (c) Type 3

2. Multiple Branches, Multiple Rotations for Each Branch. The most typical case
consists of several branches with several rotations for each of them, as shown in
Fig. 5b. This scenario is part of feed forward pipelined FFT architectures [11].

3. Multiple Branches, Single Rotation for Each Branch. This scenario is applied on
fully parallel FFT architecture, where data flow is parallel and each branch may
carry out a rotation by a different coefficient [11] as shown in Fig. 5c.

The Type 1 and Type 2 are also referred to as multiple constant rotations (MCR)
and Type 3 is called as a single constant rotation (SCR) [11].

5 Rotator Units

As discussed earlier, the FFT signal flow graphs can be mapped on processing
elements with different methods indicating different properties for the units. In
this section, we discuss the implications to the rotators due to these mappings
and identify three different classes: rotators based on general complex multipliers,
constant rotators, and CORDIC rotators.
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Fig. 7 Rotation based on complex multipliers: (a) standard, (b) modified I, and (c) lifting-based

5.1 Rotators Based on General Complex Multiplier

The most popular approach to implement the rotation is to use complex multiplier
and lookup table for storing the sine and cosine components of the rotation angle
as shown in Fig. 6 [30]. A straightforward method is to implement the complex
multiplication with four real multipliers and two adders as depicted in Fig. 7a. The
complex multiplication can be realized more efficiently by exploiting the fact that
this is a rotation. Such methods reduce the number of real multipliers from four to
three [30]. Among them, the most alluring ones are the following:

X = x(cos α + sin α) − (x + y) · sin α;
Y = x(cos α + sin α) + (y + x) · sin α

(9)

and

X = (x + y) cos α − y · (cos α + sin α);
Y = (x + y) cos α − x · (cos α − sin α).

(10)

Both these cases consist of a common term in the equations for X and Y that only
need to be computed once. Thus, when (C +S) and (C −S) are precomputed, these
cases require three real-valued multiplications and five real-valued additions. The
architecture for (9) is shown in Fig. 7b.
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Another approach can be applied only in the case of rotation, which is called
lifting-based rotators [2]. The rotation in (1) can be written in matrix form as
follows:

[
X

Y

]

=
[

cos α sin α

− sin α cos α

]

×
[

x

y

]

. (11)

We can apply the lifting approach to the previous equation and the following form
is obtained:

[
X

Y

]

=
[

1 0
0 −1

]

·
[

1 − tan α
2

0 1

]

·
[

1 0
sin α 1

]

·
[

1 tan α
2

0 −1

]

×
[

x

y

]

. (12)

By further computing the matrices, the following equations are obtained:

X = x − x sin α tan
α

2
+ 2y tan

α

2
− y tan2 α

2
sin α;

Y = y − x sin α − y sin α tan
α

2
.

(13)

These equations can be realized with the structure depicted in Fig. 7c. This approach
requires also three real-valued multiplications and three real-valued additions.
However, there is no need for an additional coefficient as it simply replaces the
cos α with tan α

2 in memory.
This type of rotator can be applied in all types of FFT architecture scenarios

mentioned earlier. Figure 5b and c requires more than one rotation, which are
used in signal flow graphs and parallel pipelined FFT architectures, respectively.
In those scenarios, the complexity of rotation memory can be reduced by applying
appropriate techniques. Rotation memory is used to store the coefficients C and S of
rotation. There are a number of techniques to store the coefficients in the memory
according to the requirement of FFT architectures [31]. The simplest approach is
to store all the coefficients of rotations in the memory without considering any
optimization technique as shown in Fig. 8. This results in a large rotations memory
especially for large FFTs. It should be noted that this scheme possibly stores the
same rotations in several locations as the mapping is from the computing stages of
FFT algorithms.

A possible simplification is to use an address generator that generates the
row address for the corresponding angle. As a result, we only need to store the
coefficients once in the memory as shown in Fig. 9. For the case L = N , we will
need to store many but not all values, still using N possible words even though many

Fig. 8 Coefficient memory
for storing all rotations of
twiddle factor

Coefficient Memory
N words

C

S
IN
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Fig. 9 Coefficient memory
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L words
C

S
IN Address

generator
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can be set as “don’t cares.” Due to this fact, one can expect the resources used to
the lookup table to be reduced compared to the previous approach, given that the
synthesis tool can benefit from it.

Another modification, proposed in [16], is to use the well-known octave sym-
metry to only store twiddle factors for 0 ≤ φ ≤ π

4 . The additional cost is an
address mapping circuit as discussed in the previous section as well as multiplexers
to interchange the real and imaginary parts and possible negations. The main benefit
is that only L

8 + 1 words are required to be stored. The resulting architecture is
illustrated in Fig. 10.

5.2 Constant Rotators

Typically the real-valued multipliers discussed in the previous section can be
replaced by shift-and-add multiplication as shown in [15, 22, 39]. This is especially
useful when the rotator needs to support only a single rotation angle.

Let us consider a rotation by π
4 , which requires only one coefficient as cos π

4 =
sin π

4 . Hence, each real, x, and imaginary, y, parts of the operand are multiplied
separately by cos π

4 and the multiplier outputs are added and subtracted as depicted
in Fig. 11. When an input signal is multiplied by one constant, an optimal single
constant multiplier from [13] can be used for the implementation. The internal
architecture of a constant multiplier is shown in Fig. 12, where the input operand
x is multiplied with a coefficient 145, the result being 145x.
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Fig. 13 Rotation based on
constant multiplication C
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In terms of complexity, the shift operations are free as they only reduce
the number of adders in the implementation of the constant multiplications. A
general block diagram of the rotator is shown in Fig. 13. This consists of two
constant multiplication blocks by dashed blocks. Each dashed block consists of
two constants, C and S, which are implemented by shift-and-add. Hence, both the
multipliers sharing the same input can be simultaneously realized using a multiple
constant multiplication (MCM) technique [4].

The constant rotators can be applied for all the FFT rotation scenarios. However,
this architecture is no more efficient for large values of L; the higher the value of L,
the greater number of constant coefficients are needed implying more complex shift-
and-add circuits. As a result, this architecture can be used efficiently for twiddle
factors W8, W16, and W32 [11, 25, 32]. The maximum number of rotations in the
twiddle factor set is 0, . . . , L − 1. As discussed earlier, thanks to the symmetries of
the angles on the complex plane, for L-point twiddle factor only the L/8 + 1 angles
in the range [0, π/4] need to be considered. This is due to the fact that the rest of
rotations of twiddle factor can be formed from these angles by interchanging the
real and imaginary parts of the input and output data and/or the signs of the outputs.
The design of constant rotators can be divided into two main parts: the generation
of the rotation coefficients and the implementation of shift-and-add circuit.

5.2.1 Rotation Coefficients

In hardware implementations, it is not only desirable to reduce the computation
error but also the area on the circuit. As mentioned earlier: cos α ∈ [−1, 1] and
sin α ∈ [−1, 1]. Therefore, in general it is assumed that C and S are also numbers
in the range of [−1, 1] with rounding a certain number of fractional bits, b. There is
a number of methods to reduce the coefficient error without increasing the addition
cost.

A method based on searching the coefficients by allowing word length increase
by E fractional bits is introduced in [14]. The approximation error can be guaranteed
to meet ε ≤ 2−(N+E+1) with a brute force method by searching coefficients, which
fulfill this condition such that the word length increase is at most E fractional
bits. Another way of using the additional fractional bits is to realize that there are
exactly 2E different representable coefficients for which ε ≤ 2−(N+1), including



256 F. Qureshi et al.

the one obtained by rounding to b bits. The basic idea is to search these 2E and
select the coefficient value that has the smallest approximation error for allowed
complexity called as the addition aware quantization [14]. The allowed complexity
is typically assumed to be the same number of additions as required by the
coefficient rounded to a coefficient with b fractional bits. This is a generic method
and it can be applied on rotation coefficients. Another method, which is well suited
especially to rotations, is the so-called combined coefficient selection and shift-
and-add implementation (CCSSI) [11]. This method refers to a set of rotations
that must be optimized together. This joint optimization happens when there is a
dependency on the scaling of the rotations. Different optimization problems can be
defined for SCR and MCR depending on the scaling that is required and on the
hardware layout. Thus, the scaling can be fixed, unity, or arbitrary depending on
the freedom to choose the scaling factor. Unity scaling is a particular case of fixed
scaling, where the rotation has magnitude of one or, in more general terms, R = 2b.
This is equivalent to considering that the binary point is in a different position in
the binary representation. Conversely, arbitrary scaling means that R can take any
value, i.e., no restriction is set to R. For arbitrary scaling the approximation error is
equal to the angular error only, since R will always take the optimal value. However,
the scaling for multiple angles is classified based on the relation among the scaling
factors of the rotations. More details of the design process can be found from [11].

In pipelined FFT architectures, uniform scaling can be applied on sets of
rotations, which means that R is the same for all the rotations of each FFT stage. The
purpose is to select the best coefficients of rotations. Thus, when fixed or arbitrary
scaling factor is applied, the output of FFT is shifted by a certain factor.

5.2.2 Shift-and-Add Circuit Implementation

This section describes the methods to design the constant rotators circuit for FFT,
especially for MCR. There are two main methods to design rotation circuits for FFT.
One is based on using combinations of rotation coefficients for other rotation with
the aid of additional multiplexers. Thus, it is reducing the coefficients of rotations.
Other is merging the rotation and sharing the adders among them by using additional
multiplexers.

Regarding the first technique, trigonometric identities are used to reduce the
number of required coefficients. This techniques is applied on twiddle factors of
W16 and W32 to reduce the required coefficients from three to two and seven to
three, respectively [32]. Thus, the equivalent expression for all the coefficients in
twiddle factors of W16 and W32 is tabulated in Tables 1 and 2, respectively [25, 32].

The architecture for W16 twiddle factor is shown in Fig. 14, where a single input
is multiplied with any of the coefficient pairs {(1, 0), (cos π

8 , sin π
8 ), (cos π

4 , sin π
4 )}.

Another implementation technique is based on CCSSI. The coefficient selection
has been explained in Sect. 5.2.1. The implementation consists of two steps: first,
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Table 1 Trigonometric
identities used for W16
twiddle factors

Coefficient Used expression

sin π
4 2 sin π

8 cos π
8

sin π
8 sin π

8

cos π
8 cos π

8

Table 2 Trigonometric
identities used for W32
twiddle factor

Coefficient Used expression

sin π
4 4 cos π

8 cos π
16 sin π

16

sin π
8 2 cos π

16 sin π
16

cos π
8 cos π

8

sin 3π
16 sin π

16

(
2 cos π

8 + 1
)

cos 3π
16 cos π

16

(
2 cos π

8 − 1
)

sin π
16 sin π

16

cos π
16 cos π

16

Fig. 14 Architecture for W16
twiddle factors [25]

x O1

sin(π/8)

<< 1

cos(π/8)

0 O2

obtain the implementation of a rotation by each SCR and then merge together all
the rotations that are carried out by the MCR.

The rotation by an SCR includes the multiplication of the input by C and S, and
addition of the products. This corresponds to Eq. (1). The multiplication by C and S

is carried out by means of shifts and additions according to the MCM representation
of the numbers. Similarly, layout the architecture of all the rotations that are carried
by the MCR. Finally, the rotations carried out by the same rotator must be merged
together. This is done by adding multiplexers to the inputs of the adders. Figure 15
illustrates an architecture for the computing W8 twiddle factor and Fig. 15a and b
shows the multiplication by 1 and π

4 rotation, respectively.
The architecture in Fig. 15c is a result of merging together the architectures in

Fig. 15a and b. The control signal of the multiplexer controls the multiplication of
{(1, 0), (cos π

4 , sin π
4 ) [11]. In order to obtain an efficient realization of the rotator,

reconfigurable single [13, 35] and multiple constant multiplication [4, 12] tech-
niques can be used. Alternatively, when the number of coefficients is small, which
is true in most of the practical cases, the selection of an efficient implementation can
be found manually.
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Fig. 15 W8 twiddle factor: (a) multiplication by 1, (b) rotation by π
4 , and (c) {(1), (cos π

4 , sin π
4 )}

5.3 CORDIC Rotator

COordinate Rotation DIgital Computer (CORDIC) is one of the most popular
algorithms for implementing multiplier-less rotations [1, 7, 8, 36]. It realizes rotation
by means of a series of shifts and additions, which reduces the amount of hardware.
It is also suitable for cases, where multipliers are not available. However, it may
affect the accuracy since it is based on an approximation. The CORDIC algorithm
decomposes the angle that has to be rotated, θ , into a sum of M predefined angles,
αi , according to:

θ =
M−1∑

i=0

δiαi + ε, (14)

where ε is the error of the approximation, δi indicates the direction of the so-called
micro-rotation and

αi = tan−1(2−i ). (15)
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Fig. 16 CORDIC
micro-rotation >>
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These angles that define the micro-rotations have the property that they can be
rotated by shifts and additions, which reduces significantly the hardware resources.
These micro-rotations are carried out as follows:

xi+1 = xi − yi δi 2−i;
yi+1 = yi + xi δi 2−i .

(16)

The hardware circuit for calculating the case of δi = 1 is depicted in Fig. 16;
input samples are rotated with an angle αi , which is chosen by setting the number
of bits that are shifted before the additions and subtractions are carried out.

Usually δ ∈ {−1, 1}. This forces all the micro-rotations to be computed
either clockwise or counterclockwise and assures a constant gain for the CORDIC
computations, which can be compensated by multiplying the outputs by:

K =
M∏

i=0

cos(αi) =
M∏

i=0

cos(tan−1(2−i )) = 0.6073. (17)

This option is preferable when the circuit is used for rotating several different angles
and a constant gain for all of them is required, as happens in the rotators for the FFT.
However, in a constant rotator, only a single angle θ can be rotated. In this case, it
is better to consider δi ∈ {−1, 0, 1}. This approach is called as redundant CORDIC
[19], which allows certain micro-rotations to be removed, reducing the number of
adders.

There are multiple variations of the CORDIC algorithm. Some of the main
modifications are introduced in the following. Surveys on CORDIC techniques can
be found, e.g., in [1, 24]. For some of the approaches, it is not straightforward to
determine the rotation parameters at run time. Hence, for these methods the design
is carried out offline and the control signals are stored in memory rather than the
angles. This approach is naturally possible for all techniques and, as the sequence
of angles is often known beforehand, most likely advantageous compared to storing
the angle values.

The redundant CORDIC considers that δi ∈ {−1, 0, 1} [34] or even δi ∈
{−2,−1, 0, 1, 2} [20]. This allows several rotation angles at each CORDIC stage.
However, the scaling for different angles is different, which implies a need for
a specific circuit for scaling compensation. The extended elementary angle set
(EEAS) CORDIC [38] and mixed-scaling-rotation (MSR) CORDIC [21, 29] also
follow the idea of increasing the number of rotation angles per rotation stage.
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The memoryless CORDIC [10] removes the need for rotation memory to store
the FFT rotation angles. Instead, the control signals δi are generated from a counter.
This is advantageous for large FFTs, where the butterfly stages have a large number
of rotations. The modified vector rotational (MRV) RORDIC [37] allows skipping
and repeating CORDIC stages, whereas the hybrid CORDIC [17, 33] divides the
rotations into a coarse and a fine rotations. These techniques reduce the number of
stages and, therefore, the latency of the CORDIC. The CORDIC II [10] proposes
new types of rotation stages: friend angles, uniformly scaled redundant (USR)
CORDIC, and nano-rotations. These result in both a low latency and a small number
of adders. Finally, the base-3 rotators [18] consider an elementary angle set that is
different to that of the CORDIC. All the rotations are generated by combining a
small set of FFT angles. This set fits better the rotation angles of the FFT than that
of the CORDIC, which results in a reduction in the rotation error, the number of
adders, and latency of the circuit.

6 Conclusions

Rotation architecture has an important role in the design of an FFT architecture and
has a large effect on the cost of the architecture. This chapter provided an overview
over different existing architectures of the rotations especially for FFT. These can
be implemented using complex-valued multipliers, constant multipliers, and the
CORDIC. Architecture based on the CORDIC and constant multiplication uses
shift-and-add circuit, whereas the complex multiplication generally uses complex
multiplier and memory to store the coefficients of rotation.

References

1. Andraka, R.: A survey of CORDIC algorithms for FPGA based computers. In: Proc.
ACM/SIGDA Int. Symp. FPGAs, pp. 191–200 (1998)

2. Chan, S.C., Yiu, P.M.: An efficient multiplierless approximation of the fast Fourier transform
using sum-of-powers-of-two (SOPOT) coefficients. IEEE Signal Process. Lett. 9(10), 322–325
(2002)

3. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex Fourier series.
Math. Comput. 19, 297–301 (1965)

4. Dempster, A.G., Macleod, M.D.: Multiplication by two integers using the minimum number
of adders. In: Proc. IEEE Int. Symp. Circuits Syst., vol. 2, pp. 1814–1817 (2005). https://doi.
org/10.1109/ISCAS.2005.1464962

5. Finley, T.: Two’s complement. Cornell University lecture notes (2000)
6. Garrido, M.: A new representation of FFT algorithms using triangular matrices. IEEE Trans.

Circuits Syst. I 63(10), 1737–1745 (2016)
7. Garrido, M., Andersson, R., Qureshi, F., Gustafsson, O.: Multiplierless unity-gain SDF FFTs.

IEEE Trans. VLSI Syst. 24(9), 3003–3007 (2016)
8. Garrido, M., Grajal, J.: Efficient memoryless CORDIC for FFT computation. In: Proc. IEEE

Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 113–116 (2007)

https://doi.org/10.1109/ISCAS.2005.1464962
https://doi.org/10.1109/ISCAS.2005.1464962


Rotators in Fast Fourier Transforms 261

9. Garrido, M., Gustafsson, O., Grajal, J.: Accurate rotations based on coefficient scaling. IEEE
Trans. Circuits Syst. II 58(10), 662–666 (2011)

10. Garrido, M., Källström, P., Kumm, M., Gustafsson, O.: CORDIC II: A new improved CORDIC
algorithm. IEEE Trans. Circuits Syst. II 63(2), 186–190 (2016). https://doi.org/10.1109/TCSII.
2015.2483422

11. Garrido, M., Qureshi, F., Gustafsson, O.: Low-complexity multiplierless constant rotators
based on combined coefficient selection and shift-and-add implementation (CCSSI). IEEE
Trans. Circuits Syst. I 61(7), 2002–2012 (2014)

12. Gustafsson, O.: A difference based adder graph heuristic for multiple constant multiplication
problems. In: Proc. IEEE Int. Symp. Circuits Syst., pp. 1097–1100 (2007). https://doi.org/10.
1109/ISCAS.2007.378201

13. Gustafsson, O., Dempster, A.G., Johansson, K., Macleod, M.D., Wanhammar, L.: Simplified
design of constant coefficient multipliers. Circuits Syst. Signal Process. 25(4), 225–251 (2006)

14. Gustafsson, O., Qureshi, F.: Addition aware quantization for low complexity and high precision
constant multiplication. IEEE Signal Process. Lett. 17(2), 173–176 (2010)

15. Han, W., Erdogan, A.T., Arslan, T., Hasan, M.: High-performance low-power FFT cores. ETRI
J. 30(3), 451–460 (2008). https://doi.org/10.4218/etrij.08.0107.0189

16. Hasan, M., Arslan, T.: Scheme for reducing size of coefficient memory in FFT processor. Elect.
Letters 38(4), 163–164 (2002)

17. Hsiao, S.F., Lee, C.H., Cheng, Y.C., Lee, A.: Designs of angle-rotation in digital frequency
synthesizer/mixer using multi-stage architectures. In: Proc. Asilomar Conf. Signals Syst.
Comput., pp. 2181–2185 (2011). https://doi.org/10.1109/ACSSC.2011.6190418

18. Källström, P., Garrido, M., Gustafsson, O.: Low-complexity rotators for the FFT using base-3
signed stages. In: Proc. IEEE Asia-Pacific Conf. Circuits Syst., pp. 519–522 (2012)

19. Lee, J.A., Lang, T.: Constant-factor redundant CORDIC for angle calculation and rotation.
IEEE Trans. Comput. 41(8), 1016–1025 (1992). https://doi.org/10.1109/12.156544

20. Li, C.C., Chen, S.G.: A radix-4 redundant CORDIC algorithm with fast on-line variable scale
factor compensation. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 1, pp. 639–
642, vol. 1 (1997). https://doi.org/10.1109/ICASSP.1997.599849

21. Lin, Z.X., Wu, A.Y.: Mixed-scaling-rotation CORDIC (MSr-CORDIC) algorithm and architec-
ture for scaling-free high-performance rotational operations. In: Proc. IEEE Int. Conf. Acoust.
Speech Signal Process., vol. 2 (2003). https://doi.org/10.1109/ICASSP.2003.1202451

22. Liu, H., Lee, H.: A high performance four-parallel 128/64-point radix-24 FFT/IFFT processor
for MIMO-OFDM systems. In: Proc. IEEE Asia Pacific Conf. Circuits Syst., pp. 834–837
(2008)

23. Loeffler, C., Ligtenberg, A., Moschytz, G.: Practical fast 1-D DCT algorithms with 11 multipli-
cations. In: Proc. IEEE Int. Conf. Acoust. Speech Signal Process., vol. 2, pp. 988–991 (1989).
https://doi.org/10.1109/ICASSP.1989.266596

24. Meher, P.K., Valls, J., Juang, T.B., Sridharan, K., Maharatna, K.: 50 years of CORDIC:
Algorithms, architectures, and applications. IEEE Trans. Circuits Syst. I 56(9), 1893–1907
(2009). https://doi.org/10.1109/TCSI.2009.2025803

25. Oh, J.Y., Lim, M.S.: New radix-2 to the 4th power pipeline FFT processor. IEICE Trans.
Electron. E88-C(8), 1740–1746 (2005)

26. Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing. Prentice Hall (1989)
27. Padgett, W.T., Anderson, D.V.: Fixed-point signal processing. Synthesis Lectures on Signal

Processing 4(1), 1–133 (2009)
28. Parhi, K.K.: VLSI Digital Signal Processing Systems, Design and Implementation. Wiley-

Interscience (1999)
29. Park, S.Y., Yu, Y.J.: Fixed-point analysis and parameter selections of MSR-CORDIC with

applications to FFT designs. IEEE Trans. Signal Process. 60(12), 6245–6256 (2012). https://
doi.org/10.1109/TSP.2012.2214218

30. Qureshi, F.: Optimization of rotations in FFTs. Ph.D. thesis, Linköping University (2012)
31. Qureshi, F., Gustafsson, O.: Analysis of twiddle factor memory complexity of radix-2i

pipelined FFTs. In: Proc. Asilomar Conf. Signals Syst. Comput., pp. 217–220 (2009). https://
doi.org/10.1109/ACSSC.2009.5470121

https://doi.org/10.1109/TCSII.2015.2483422
https://doi.org/10.1109/TCSII.2015.2483422
https://doi.org/10.1109/ISCAS.2007.378201
https://doi.org/10.1109/ISCAS.2007.378201
https://doi.org/10.4218/etrij.08.0107.0189
https://doi.org/10.1109/ACSSC.2011.6190418
https://doi.org/10.1109/12.156544
https://doi.org/10.1109/ICASSP.1997.599849
https://doi.org/10.1109/ICASSP.2003.1202451
https://doi.org/10.1109/ICASSP.1989.266596
https://doi.org/10.1109/TCSI.2009.2025803
https://doi.org/10.1109/TSP.2012.2214218
https://doi.org/10.1109/TSP.2012.2214218
https://doi.org/10.1109/ACSSC.2009.5470121
https://doi.org/10.1109/ACSSC.2009.5470121


262 F. Qureshi et al.

32. Qureshi, F., Gustafsson, O.: Low-complexity constant multiplication based on trigonometric
identities with applications to FFTs. IEICE Trans. Fundamentals E94-A(11), 324–326 (2011)

33. Shukla, R., Ray, K.: Low latency hybrid CORDIC algorithm. IEEE Trans. Comput. 63(12),
3066–3078 (2014). https://doi.org/10.1109/TC.2013.173

34. Takagi, N., Asada, T., Yajima, S.: Redundant CORDIC methods with a constant scale factor
for sine and cosine computation. IEEE Trans. Comput. 40(9), 989–995 (1991). https://doi.org/
10.1109/12.83660

35. Thong, J., Nicolici, N.: An optimal and practical approach to single constant multiplication.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 30(9), 1373–1386 (2011). https://
doi.org/10.1109/TCAD.2011.2153853

36. Volder, J.E.: The CORDIC trigonometric computing technique. IRE Trans. Electronic
Computing EC-8, 330–334 (1959)

37. Wu, C.S., Wu, A.Y.: Modified vector rotational CORDIC (MVR-CORDIC) algorithm and
architecture. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions
on 48(6), 548–561 (2001). https://doi.org/10.1109/82.943326

38. Wu, C.S., Wu, A.Y., Lin, C.H.: A high-performance/low-latency vector rotational CORDIC
architecture based on extended elementary angle set and trellis-based searching schemes. IEEE
Trans. Circuits Syst. II 50(9), 589–601 (2003). https://doi.org/10.1109/TCSII.2003.816923

39. Yang, C.H., Yu, T.H., Markovic, D.: Power and area minimization of reconfigurable FFT
processors: A 3GPP-LTE example. IEEE J. Solid-State Circuits 47(3), 757–768 (2012). https://
doi.org/10.1109/JSSC.2011.2176163

https://doi.org/10.1109/TC.2013.173
https://doi.org/10.1109/12.83660
https://doi.org/10.1109/12.83660
https://doi.org/10.1109/TCAD.2011.2153853
https://doi.org/10.1109/TCAD.2011.2153853
https://doi.org/10.1109/82.943326
https://doi.org/10.1109/TCSII.2003.816923
https://doi.org/10.1109/JSSC.2011.2176163
https://doi.org/10.1109/JSSC.2011.2176163


Biolabs as Computing Components

Georgi Tanev, Winnie Svendsen, and Jan Madsen

Abstract As a result of biological sciences becoming more quantitative together
with the growing economical and societal challenges of improving our health care
system, we have witnessed an increasing interest in developing new technologies
for the biomedical field. Cyber-medical systems are the fusion of computational
and medical technologies aimed to support health management for diagnosis,
monitoring, and prevention of diseases. With the advent of miniaturized biochemical
laboratories, the classical bench-sized lab robots have transformed into chip-sized
complex biochemical laboratories. This development has allowed integration of
classical computation with biochemical processes to a degree where computations
are moving small amounts of liquids. In this chapter, we survey state-of-the-art
microfluidic technologies and argue that even though their applications are still
limited to simple passive and fixed structures, they hold the promises of solving
many challenging and complex problems related to healthcare. We argue that liquid
handling technologies have the potential to scale, but this will require utilization of
active components and the ability to abstract their basic operations to a level similar
to that of classical computation, i.e., we need to build the equivalent of a general
purpose processor—a lab-on-chip (or a biochip) which can be programmed and
re-programmed.
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1 Introduction

Lab-on-chip (LoC) technology combines efficient and precise liquid handling
techniques together with highly sensitive biosensors in order to miniaturize the
traditional wet lab processes and to enable chemical or biological analysis, syn-
thesis, separation, sorting, etc. to be performed on a chip-scale device. Often
these devices are called biochips due to their form factor and application mainly
positioned in the biomedical field. Carefully engineered biochips, designed to
implement biological or medical protocols, are showing advantages over the
traditional benchtop laboratory robots by reducing sample and reagent volumes,
lowering the reaction time, optimizing materials and operation cost, and maximizing
the amount and quality of the acquired data. The substantial contribution of biochips
to numerous biological and medical applications is a result of an interdisciplinary
endeavor carried out over several decades. This process employed knowledge and
expertise from a number of disciplines among which are physics, material science,
medical technology, biotechnology, and micro-fabrication processes developed for
the electronics industry. Notably, the computer-aided tools developed to design,
simulate, and operate these portable miniaturized labs have a central role in the
process of LoC miniaturization and automation.

Even though a number of biochips have long passed the proof-of-concept devel-
opment stage and have already been used to successfully implement commercial
protocols addressing real-life problems, biochip utilization still remains somewhat
limited. The path to realizing the full potential of these portable labs is a subject
to challenges such as efficient design and standardization, lowering the fabrication
cost while keeping the yield high, ensuring reliable and fault-tolerant operation, and
integration with the already existing lab infrastructure and processes. However, one
of the biggest challenges is that biochips are inherently application specific since
their design usually closely resembles the structure of the implemented protocol.
This has naturally led to a variety of unique biochip designs, most of which have
been developed in a process of achieving short-term research goals, without a
clear perspective for standardization and reusability on the device or component
level. Limited or absent design methodologies and standardized biochip building
blocks are considered to be the major roadblocks in the process of realizing the full
potential of the LoC technology.

An example of a technological evolution supported by heavy standardization
and design automation is the field of electronics and computer architectures.
The first computers were designed and built solely as mechanical systems which
naturally evolved into being electromechanical systems using components such
as electrical switches and relays to program and operate. Later, the slow and
unreliable electromechanical components were replaced by the much faster and
more reliable vacuum tubes and transistors. These first generations of computers
were programmed in a cumbersome way by using mechanical switches, patch
cables, and paper cards. High-level programming abstractions were virtually non-
existent. Further down the evolution path, supported by the fast development of
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Fig. 1 Design of biochips as compared to modern computers. (a) General purpose computer,
where the architecture is designed bottom-up to provide a hardware independent programming
interface, the ISA, which can be compiled from a high-level programming language in a top-down
manner; (b) State of the art for biochip design is a bottom-up process providing an application
specific architecture; (c) The structure of a general purpose biochip structure combining (a) and (b)

digital electronics, memory became available and computer programs and data
started being an essential part of the computer building blocks. This high level
of integration between hardware and software naturally increased the level of
computational complexity but significantly simplified and enabled a more efficient
and abstract programming process as shown in Fig. 1. The full potential of the
computer was only realized with the invention of the integrated circuit (IC), which
allowed for computers to be built from already well-defined and characterized
building blocks and thus next generation of computers required significantly less
time to develop due to the high degree of design reusability.

The need for abstracting the programming model from the hardware architecture
and implementation-specific details was also identified and addressed in parallel
with the hardware development. The model of an instruction set architecture
(ISA) has been introduced to abstract from the specifics of the instruction set
implementation (ISI). Programming a computer in assembly provides a low level
and granular control over computation resources, but certainly, it is a complex,
time consuming, and a tedious process. With the standardization of the ISA, a
number of high-level programming languages and compilers were introduced with
the aim to handle complexity and ensure a consistent computer programming
model. As a result, the ISA abstraction allowed for creating reusable and machine
independent software libraries to serve as a main component in new designs.
Figure 1a illustrates how the ISA works as a platform abstracting the underlying
hardware architecture from the application software. The architecture can be built
bottom-up from transistors and gates, while the application software is compiled
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top-down from a high-level computer language to the assembly code initiating the
instructions of the platform.

The personal computer as we know it today is an impressive technological
accomplishment where a number of subsystems are interconnected through well-
defined interfaces to assemble a general-purpose computation machine. Modern
computers can simultaneously run a number of tasks and programs such as text
editor, internet browser, and design tools. The personal computer has evolved to
a stage where it is an affordable ubiquitous general-purpose machine even though
in its early development a computer used to be an expensive application-specific
machine.

In contrast to modern computer systems, the biochip technology still lacks layers
of abstraction that would allow for lab protocols to be captured easily and imple-
mented on a biochip. A modern computer can be programmed and used from a user
perspective, whereas state-of-the-art biochips lack the level of abstraction needed
to bridge the gap between a protocol and low-level implementation details, as
illustrated in Fig. 1b. Besides a few widely used manufacturing processes, the search
for new materials and operation schemes is still an ongoing process. However, the
biochip technology might be in general ready to adapt design methodologies and
standardization from well-established and proven fields such as the field of digital
electronics and computer science. Just like the early adoption of modular hardware
design and a common ISA supported the fast development of new computer systems,
biochip scientists and engineers need to focus on developing tools for automated
biochip design, formalization, and integration. This will accelerate the development
process and it will provide a common standardized architecture as illustrated in
Fig. 1c. A few research groups have been developing design automation tools for
biochips, e.g., [4, 7, 16]; however, these are still mostly research projects and the
results have not yet been widely adopted as compared to design automation tools
for microelectronics.

Flexibility and reconfigurability are two very important aspects that need to
be considered in the quest of realizing the full potential of the biochip. Just like
a field-programmable gate array (FPGA) can be configured to serve a particular
application, we envision biochips to allow for a certain degree of reconfiguration
and flexibility in the future [15]. Biochips serving the purpose of a general-
purpose biochemical computer may appear to be a futuristic vision. Nevertheless,
we can argue that the level of miniaturization in the field of digital electronics
and computing that we have achieved so far looked as distinct and futuristic to
the engineers who developed the first generation of computers in the beginning of
twentieth century.

In this chapter, we will focus on outlining the basic characteristics of the biochips
and we will discuss their functionality by drawing parallels with concepts borrowed
mainly from the fields of digital electronics and computer science. In the following
section, we will continue with a review of the two dominant biochip technologies,
namely continuous flow microfluidics and digital microfluidics.
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2 Digital and Continuous Flow Microfluidics

Microfluidics is about efficient and precise handling of small volumes of liquids
in the scale of pico- to microliters. Microfluidics plays a fundamental role in
the operation of biochips since it provides the means for liquid manipulations.
There are two main classes of active fluid handling technologies—continuous flow
microfluidics and digital microfluidics (DMF). Figure 2 shows the main differences
between the two classes of biochip technologies. Even though both technologies
have advantages and disadvantages, we focus our work mainly on the DMF due to
the following three main reasons:

1. DMF are easily programmable and reconfigurable;
2. DMF appear to match the level of abstraction where basic digital electronics can

be applied to the DMF operational model; and
3. DMF provide an effective “first order digital” liquid control.

Although we will focus on DMF in the rest of this chapter, for the sake of com-
pleteness, we will first briefly discuss the operational principles and instrumentation
needs of continuous flow microfluidic chips. This discussion serves the purpose of
introducing the reader to the continuous flow microfluidics, as well as it is used as
a starting point to compare the two fluid handling technologies and to argue the
advantages of DMF in the context of programmable biochips.

2.1 Continuous Flow Microfluidics

A traditional class of microfluidic devices is based on continuous flow, where liquid
transport is carried out in micrometer-sized channels utilizing air pressure as a
driving force. Active control and routing of the liquid streams is achieved by using
either mechanical valves or electrokinetic mechanisms. Alternatively, channel sizing
and interconnection patterns can be specifically designed to passively navigate and
manipulate fluids. Usually, continuous flow devices have fixed functionality and
are adequate for simple and well-structured protocols. This is partially dictated

Fig. 2 Microfluidic chip examples. (a) Flow-based microfluidic chip (FMF), blue channels are for
liquid flow, red are control channels using air pressure. (b) Digital microfluidic chip (DMF)
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by an on-chip network of channels and control components being fixed once a
device is fabricated and partially due to the fact that individually controlling routing
components on the chip usually require off-chip equipment, such as pressure pumps.
Figure 2a shows a simple example of a mixer component. The blue channels are
flow channels carrying the liquids to be handled and the red channels are control
channels, controlling air pressure to close or open valves (red boxes). In this case,
two different liquid volumes can be placed into the top and bottom parts of the
mixing circle through the inlet by setting the valves correctly. Mixing is obtained by
fast iterative turning on/off the top three valves of the mixing circle, by which the
liquids in the mixing circle will rotate and hence, mix over time.

Continuous flow microfluidics often requires external bulky devices such as
pumps and valves to control on-chip processes as shown in Fig. 3. Moreover, these
actuators use electric power to operate which means that control signals need to
cross a few energy domains before they actually reach the chip. The energy domain
crossing is illustrated in Fig. 4 where an automated system is used to control on-chip

Fig. 3 Microfluidic chip examples with external control functions. (a) Continuous flow-based
microfluidic chip, on-chip valves are controlled through off-chip pressure valves feed from pumps.
Pumps and off-chip valves are controlled by a computer. (b) Digital microfluidic chip

Fig. 4 Continuous flow microfluidics energy domain crossing. Top: Control signal chain. Bottom:
energy domain crossing
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valves. To actuate a single vale on the chip, first, an electric control signal needs to be
applied to an external electromagnetic valve, which converts electrical current into a
magnetic field in order to attract a valve piston, and as a result, a pressure is applied
to pneumatically actuate the on-chip valve. From this example, it is evident that the
electric control signal needs to cross a few energy domains and the control process
involves a number of mechanical moving parts. Continuous flow microfluidics often
requires a costly and bulky external instrumentation which combined with the need
of precision fabrication tools and a rather fixed operation model makes them a less
attractive choice for further exploration in the context of programmable biolabs.

2.2 Digital Microfluidics

Digital microfluidics is a technology that allows discrete droplets to be actuated on
the top of an insulated array of electrodes. There are two main types of DMF chip
constructions—open and closed. The construction of the two types of chips is shown
in Fig. 5. An open DMF system is a two-dimensional (2D) array of individually
addressable conductive electrodes fabricated on a carrier substrate. Actuation of a
droplet on the surface of the chip is achieved by applying a control voltage on a
pair of electrodes beneath the droplet as shown in the left side of Fig. 5. Utilizing
this control technique, droplet transport, merging and mixing can be achieved. Even
though splitting has been reported on an open system [8], it lacks precise control
and is unreliable. In a closed DMF system the sample is sandwiched between two
parallel plates—an electrode patterned substrate and a top plate. The top plate is
usually made of a conductive indium tin oxide coated glass, which is connected
to ground potential and thus serving the purpose of a common grounded control
electrode. A droplet in a closed chip is controlled in the same way as in the open
chip—a control voltage is applied between the top plate and an electrode adjacent
to the actuated droplet. The possible fluidic operations on a closed chip overlap with
those available on the open chip but with the important addition of a controlled and
precise drop splitting [12].

Both the open and the closed DMF chip configurations operate based on a
phenomenon known as electrowetting on dielectric (EWOD) which is used to

Fig. 5 Digital microfluidics chip construction. Left: an open DMF chip. Center: chip structure.
Right: a closed DMF chip
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control the solid-to-liquid contact angle as a function of an applied voltage potential
[5, 11]. The surface of the electrodes is covered with an isolation hydrophobic layer
which does not allow ohmic current to flow through the liquid. Another function of
the hydrophobic layer is to provide a low friction interface between the actuated
droplets and the chip. Aqueous, chemical, or biological droplets placed on the
hydrophobic surface of the biochip take a close to spherical or hemispherical shape
to minimize its contact angle with the surface. The qualities of the hydrophobic
isolation layer define operation parameters such as control voltage, contact angle,
and reliability. For instance, based on the materials and the thickness of the coating,
the control voltage varies in the range of a few [9, 10] to hundreds of volts [1].
Applying a control voltage under the hydrophobic layer changes the layer surface
properties from hydrophobic to hydrophilic, thus the liquid-to-solid contact angle
decreases. This decrease of contact angle causes the droplet to flatten its shape
which creates a surface tension gradient that allows a controlled displacement of the
droplet along an actuation direction. Pattering a surface with a 2D array of electrodes
enables droplets to be transported in arbitrary paths on the surface of the chip.

The EWOD provides a direct mechanism to convert an electrical signal into
a physical displacement of a droplet with a crossing of a single energy domain.
Furthermore, this elegant operation principle allows for space and instrumentation
equipment optimization since it eliminates the need for bulky components with
moving mechanical parts. This makes digital microfluidics an attractive choice for
further research in the context of programmable biolabs.

3 The Biolab as a Computer

The basic building block of a DMF chip is an electrode which can be connected
to either a high potential or to ground. Setting a pair of adjacent electrodes in
opposite states allows a droplet to be moved. Hence, the main function of a DMF
electrode is to act as a droplet router to one of its adjacent electrodes thus allowing
for droplets to be transported, merged, mixed, and split by actuating them over
predefined paths as illustrated in Fig. 6. While droplet transport and merging can
be considered a discrete operation since they are performed in a single step, droplet
mixing and splitting require more than one actuation step. When two droplets are
merged together, they do not immediately become a homogeneously mixed fluid due
to the predominant effect of the laminar flow in microliter volumes. At this small
scale, mixing by diffusion is an inefficient, slow, and temperature dependent process.
Therefore, for efficient mixing, a merged droplet needs to be moved on the surface
of the chip in order to accelerate and ensure proper liquid mixing [14]. Different
actuation paths have a different effect on how fast and how well the merged drops
mix and a traditional circular mixing pattern is used in the example shown in Fig. 6.

Controlled splitting of droplets is required for precisely dispensing analytes
from on-chip reservoirs, when a single droplet needs to be part of more than
one reaction, or in order to provide a required analyte concentration. Splitting is
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Fig. 6 Electrode operations
patterns on a 2D array. (a)
Transport. (b) Splitting. (c)
Merging. (d) Mixing

achieved by simultaneously activating at least three electrodes beneath the droplet,
thus stretching it over the surface area of the activated electrodes. Then the middle
electrode is deactivated, which recovers the hydrophobicity of the surface and allows
the created surface tension gradient to split the droplet in two smaller ones as shown
in Fig. 6b.

Besides the plain digital behavior of moving droplets in steps on the chip,
droplets can have a unique composition of chemical or biological materials,
resembling the information contents of a droplet. Hence, a single droplet can
serve the function of a fluid vehicle, a reaction chamber, or both. The fact that
such a potentially complex fluid composition is naturally encapsulated and appears
as a unit makes evident the similarities between a droplet and a traditional data
packet used in the computer science field. Comparing a droplet to a digital data
packet together with the routing function of the DMF electrodes resembles the
network-on-chip (NoC) communication model used in the field of very-large-scale
integration (VLSI) design. The composition of a traditional NoC can be described
as a graph where each node is composed of a data router and a computational unit
(CU) as shown in Fig. 7a. Links between routers establish communication channels
that allow data to be transported in both directions and be passed to the CU for
processing. A DMF chip maps well to this abstraction where the equivalent of a
NoC router is served by a DMF digital electrode, and the NoC CU is compared
to a functional element (FE) associated with each electrode. The base case of
FE is a digitally controlled switch, which allows an electrode to be connected or
disconnected to a control signal. Moreover, a FE can be associated with sensing or
control functionalities such as temperature monitoring, biosensing, or heating.
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Fig. 7 NoC architecture. Green lines represent datapath. Blue lines show fluidic path. (a)
Traditional NoC. (b) DMF as a NoC

Similar to the traditional NoC where electrical wires are used to carry data
between routers, DMF uses electrodes and the EWOD principle to pass droplets
between neighboring electrodes. Another parallel between the NoC and DMF is
the special functionality associated with each node of the network—a NoC can
be composed of homogeneous or heterogeneous nodes. A homogeneous NoC
is a network where all CU are identical, e.g., a CU is a single processor in a
multiprocessor NoC architecture. A heterogeneous NoC is composed of CU with
different functions such as a general purpose processor, a memory, or an accelerator.
Likewise, a DMF chip that only consists of digital electrodes is considered to
be a homogeneous design and although droplet actuation has a major role in
implementing the biochip functionality, often heating and sensing are also required
in order to implement a complete protocol. To accommodate for that, DMF can be
heterogeneous systems where FEs implement control or sensing functions.

A NoC router can implement a data packet buffering. Likewise, a DMF electrode
can also mimic storage of a single droplet by keeping it on its surface. Fluidic
operations such as transport, merging, mixing, and splitting are performed based
on this pass-and-store mechanism. To control the array of routing electrodes and
functional elements, an external biochip controller is needed. In order to abstract
the biochip programming from the implementation details of the DMF chip, this
controller needs to implement a biochip independent instruction set. To address this,
in the next section we will borrow a well-established control abstraction from the
field of digital electronics and apply it to model a biochip controller architecture.
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3.1 A Finite State Machine with a Microfluidic Path

A finite state machine (FSM) is an abstract computational model, which can only be
in one of its designed states. The traditional FSM is a regular sequential circuit and
it consists of a state register, next state logic, and output logic as shown in Fig. 8.
However, in contrast to the traditional sequential circuits, the FSM might not exhibit
a repetitive state pattern, but rather the next state can be a function of the current state
and an external input signal. This allows a FSM to be used to decode an external
input signal, match it to one of its defined states and, as a result, generate the next
state of the FSM and output control signals. However, the FSM does not perform
any data operations but rather serves as a control unit and is thus often referred as
a control path. To allow for data manipulation, a regular sequential digital circuit
consisting of data routing and functional components is needed and is often called a
datapath. Complex logical operations can be performed by using the control signals
of a FSM to control the dataflow in a datapath. This computational model is known
as a finite state machine with datapath (FSMD).

The FSMD model can be used to model one of the fundamental components
of any computer architecture, namely the central processing unit (CPU). An ISA
defines how the decoded instructions will control the functional units and data
operations of the datapath. A traditional CPU is composed of a number of functional
units such as registers, buses, multiplexers, adders, and multipliers, which are
designed to manipulate data. The computational flexibility of the traditional CPU
comes mainly from the fact that simple atomic operations can be translated into

Fig. 8 Traditional FSMD
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instructions, logically grouped in a complex program, and then executed on an
instance of an ISI.

Similar to the datapath of a CPU, which is designed to operate with digital
signals, a DMF chip operates with liquid droplets. Hence, if we substitute the
traditional datapath in the FSMD shown in Fig. 8 with a DMF chip and use the
FSM control signals to drive the electrodes, the resulted architecture inherits all of
the characteristics of a FSMD and in addition, is able to operate with fluids instead
of digital data. This digital-to-liquid interface allows commands to be passed to the
FSM and executed on the biochip as shown in Fig. 9.

Keeping the biochip control in the digital domain enables for a hardware
abstracted programmatic control of electrodes and FEs on a DMF-based biochip.
Concepts for programming, standardizing, and automation of biological protocols
have previously been studied [2, 3, 13]. Designing a formal vocabulary and a set
of grammatical rules for a functional, expressive, and easy to use microfluidics
programming language is not in the scope of this chapter. However, in order to
demonstrate the concept of a biochip as a computer, we will use a minimalistic set
of high-level fluidic commands which are shown in Table 1. These commands can
be used to capture the behavior of a simple lab protocol.

A FSM is a computer science model connected to the idea of grammar and
language that allows for structure and rules. This allows for a compiler that can
process a high-level protocol description and compile it into a sequence of biochip
commands. These commands can be further decomposed into low-level instructions
supported by the target fluidic ISA. Specifying a fluidic ISA allows protocols to be
expressed as a computer program and their execution to be automated and monitored

Fig. 9 FSM with a fluidic path
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Table 1 A subset of biochip commands

Biochip commands Description

dispense(r, p) Dispense from reservoir d with parameters p

move(d, l1, l2, p) Move droplet d from location l1 to l2 with process parameters specified
by p

join(d1, d2, l) Join droplet d1 with d2 at location l

mix(d, p) Mix droplet d with mixing parameters p

split(d, p) Split a droplet with splinting parameters p

incubate(d, p) Incubate droplet d with incubation profile p

sense(d, s, p) Sense the content of droplet d with sensor s and sensing parameters p

dispose(d) Send droplet d to waste

in real time. For instance, a move operation on the biochip will be compiled to
an electrode activation sequence, or an incubation operation will generate all the
required commands for operating the heating functional element and the required
timing to be used in the incubation process. We can also draw parallels between the
types of instructions such as a dispense from a reservoir or dispose to waste, being
equivalent to input/output (IO) operations, or incubation being similar to storing
data into a register.

To demonstrate the concept of mapping biochip commands into a microfluidics
chip-specific language we will use the fluidic operation transport which was shown
earlier in Fig. 6. Droplet transport is achieved by sequentially turning on and off
electrodes on the chip. Turning an electrode on means connecting the electrode
to a high-voltage potential and turning an electrode off means connecting it to a
low potential. This is equivalent to the traditional data handling memory operations
where a single bit, register, or a memory location can be set or cleared. Two
low-level instructions can be used to change the state on an electrode: set an
electrode which connects the addressed electrode to a high potential, and clear
an electrode which sets the addressed electrode to a low potential. For clarity we
will call these instructions correspondingly setel and clrel. The instructions are
limited to a single operand which is the manipulated electrode number. Figure 10a
shows an example of a droplet transport operation which can be captured by the
command move(droplet<d>, electrode<10>, electrode<15>, 0) and compiled to
the instruction sequence shown in Fig. 10b.

Control flow instructions can be implemented as well by using qualitative or
quantitative feedback data extracted from FEs. An example of such a control flow
command would be to use a FE with heating and temperature sensing capabilities in
order to ensure a certain temperature profile applied to a droplet before the protocol
continues.

Text-based programming is a straightforward process for experienced users,
nevertheless it has a steep learning curve. An alternative way to map a lab protocol
to a structured executable code is to provide a graphical programming environment.
A lab protocol can be drawn as a flow diagram with a unique start and end state,
and any sequence of states in between these two states, to encapsulate the steps (or
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Fig. 10 Transport of a droplet from chip electrode 10 to electrode 15 and electrode actuation
sequence. Droplet actuation path is shown with the blue arrow. (a) Chip example. (b) Transport
commands sequence

possible steps) of the protocol. Each node of the flow diagram defines an operation
and its associated parameters. The connection branches define the sequence of the
operations.

4 Proof of Concept Through Implementation

In this section, we will identify and discuss some of the challenges of instrumenting
biochips and interfacing to them as if they were computing components. The aim
is to develop a flexible and reconfigurable control and instrumentation platform that
can provide a standardized interface to a biochip viewed as an independent fluidic
path. Based on platform-based design [17] and design for changeability principles
[6], we can design a microfluidics instrumentation platform that can accommodate
for simultaneous evolution of both biochip and instrumentation [19].

Modularity is a proven design technique that allows the functionality of a system
to be partitioned into smaller self-contained and decoupled subsystems. Subsys-
tems communicate with each other over well-defined interfaces which inevitably
increases the implementation complexity, but allows for different modules to be
added, removed, or upgraded without modifying the whole system. An example of
such a modular platform is the PC where different input/output cards, peripheral
devices, memories, etc. can be attached to a motherboard. The architecture is not
strictly defined but rather relies on a set of design guidelines, rules, and constraints
in order to ensure interoperability between the attached components.

A block diagram of a modular microfluidics platform is shown in Fig. 11. It
consists of a user interface, a control path, and a fluidic path. The user interface
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Fig. 11 Implementation of the FSM with a fluidic path, including control and feedback modules,
and a wirelessly connected user interface

is a program or a collection of software tools that run on an external device such as
a PC or a smartphone. The user interface is an easy to use front-end with the main
purpose to capture lab protocols, serve as a compiler, communicate and manage the
control path, and provide general control and monitoring functionality. The second
part of the system is the actual FSM, which controls the fluidic path. The fluidic
path itself consists of a biochip and a set of interface modules required to make the
link between the digital electronics and the fluidic FEs. Keeping the instrumentation
modules as a part of the fluidic path allows the control path to remain independent
from the biochip instrumentation needs.

The user interface of the platform is implemented on a smartphone or a PC
due to their ubiquity, great computational power, and familiarity to a broad range
of users. Translating a lab protocol into a sequential program can borrow design
and implementation elements from the modern text- and graphical-based program-
ming languages. Compiling a protocol into the ISA a given biochip can utilize
conventional compilation processes and techniques, making it virtually identical to
traditional computer programming. Programming and compilation are well studied
and understood and they can be as simple as directly mapped scripting or as complex
as multistage and parametric compilation and optimization process. Nevertheless,
in a prototyping phase of a hardware/software platform, the first goal is to specify,
implement, and verify the main functionality and leave the optimization for later
stages in the development process. Therefore, a simple smartphone application and
a PC-based tool were developed and their interfaces are shown in Figs. 12 and 13.
Both tools support a scripting language used to describe a control sequence, which
is then parsed by the application and sent to the controller over a wireless link.
Additionally, the smart phone application implements a touch screen interface for
manual control of the digital electrodes by simply clicking on them.

The controller is implemented as a hierarchical software state machine running
on a stand-alone embedded system. We call this module the main board as shown
in Fig. 14. The main board can receive commands from the user interface, decode
them, and control the fluidic path attached to the bus interface. The bus interface
consists of two communication buses, namely the control and the feedback bus,
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Fig. 12 User interface. Left: automated script controller interface. Right: manual controller
interface

Fig. 13 User interface of the PC-based tool
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Fig. 14 DMF prototype. Left: main board, including battery power and a display. Center:
instrumentation subsystem. High-voltage power converter and electrodes drivers interface. Right:
biochip including electrode driver modules

which connect to the instrumentation modules needed by the specific instance of
the biochip. The bus interface consists of both data and power lines and supports
detection and identification of the connected instrumentation modules. This allows
the external controller to read the configuration of the fluidic path and verify if the
resources for a particular experiment are available.

A digital biochip is usually composed of a number of FEs as discussed in Sect. 3
(see Fig. 7b), which are the main building blocks of the fluidic path of the biochip.
They not only determine the processing capabilities of a particular biochip but also
specify what type of interface circuitry is needed in order to link them with the
controller. Therefore, it is essential for an instrumentation platform to support a
unified interface model to connect any FE configuration to the controller. The basic
form of a FE is a digital electrode which is controlled by an electronic switch.
Depending on the thickness and the qualities of the isolation layer covering the
digital electrodes, the associated electronics switch needs to be able to operate with
a potential of a few tens of volts to a few hundreds volts. The switch also acts
as a voltage level shifter from a standard digital voltage level to the chip-specific
electrode activation level. A FE can also implement functions such as heaters
or biosensors and they naturally require instrumentation that is more advanced.
Moreover, to facilitate the needs of different lab protocols, biochips are often
constructed as a heterogeneous network of FEs.
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To accommodate for the basic droplet routing functionality of the DMF biochips,
a step-up voltage converter and an array of digitally controlled switches is needed.
To provide a sufficient voltage level to control the digital electrodes, an isolated
high-voltage step-up flyback converter has been designed and implemented (see
Fig. 14. The converter is designed to be powered by 5 V as an input and to provide
a programmable regulated output in the range of 10–300 V. The high-voltage output
is then connected to an electrode driver module, which has a digital level input that
controls an array of high-voltage switches. An electrode driver module can control
up to 64 digital electrodes and the modules are designed to be daisy chained in
order to allow an arbitrary number of electrodes to be controlled. Two electrode
driver modules together with a high-voltage power supply can be seen in Fig. 14.

Feedback and control modules are designed as self-contained embedded systems
which allow for plug-and-play operation and easy system reconfiguration. These
modules are based on a common microcontroller design which provides a standard
interface to the control path and thus modules only differ in their instrumentation
subsystem implementation. The standardization of the controller and bus interface
modules provide a solid foundation for design reusability. The whole platform itself
is a hierarchical multiprocessor distributed system, which introduces complexity on
the implementation level, but allows for simplicity and flexibility on the application
level.

5 Biochip Perspectives

Microfluidic biochips integrate different biochemical preparation and analysis
functions on a single miniaturized chip, effectively handling biological processes
at the submillimeter scale. Besides the small scale which makes these biolabs
portable or handheld, the miniaturization has several advantages as compared to
conventional biochemical analyzers at the macro-scale. They consume reduced
sample and reagent volumes, provide faster biochemical reactions, ultra-sensitive
detection, higher system throughput, and have the capability to integrate and process
several assays on the same biochip.

Furthermore, biochip solutions avoid the use of pipetting every time liquids have
to be moved. In classical biolabs, whether operated by humans or lab robots, each
pipetting creates a waste of a pipetting plastic tip. Although such a plastic tip is no
more than 30–70 mm in size, the fact that a new tip is needed for every operation
results in a huge amount of plastic waste. In contrast, for the operation of biochips,
pipetting may only be needed for loading the sample liquids onto the chip, which
results in highly sustainable lab solutions.

In this chapter, we have focused on the liquid handling, i.e., moving, mixing, and
splitting droplets, which is an essential part of sample preparation. Our aim is to
show that it is possible to develop fully programmable and reconfigurable general
purpose biochips, which can provide new possibilities for miniaturized systems
for chemistry and life sciences. As our DMF platform supports instrumentation
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through the control and feedback modules, we are able to interfere with a large
range of sensors, such as colorimetric and electrochemical biosensors, as well as
actuators, such as heaters. Sensing and actuation components can be integrated into
the electrodes or added as add-on modules.

The presented platform allows for the development of a wide range of applica-
tions, such as in vitro diagnostics (point-of-care or self-testing for disease diagnostic
and monitoring), drug discovery (high throughput screening), biotech (process
monitoring, cell cloning for cell fabrics, including PCR for DNA amplification
[18]), and ecology (agriculture and environmental monitoring). The platform is
currently being tested and further developed in projects on diagnostics (metabolic
disorders, mastitis, and multi-bacterial screening) and biotech (replacing lab robots
for cell fabric cloning and validation).
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Teaching Embedded System Design
Among K-12 Students Based
on Trees-Forest-View Methodology

Shengqi Yang, Kainian Xie, and Mansun Chan

Abstract Embedded system design is a complex engineering process and embed-
ded system and product is becoming a common and critical part in industry and
everyday life. Learning embedded computing is recognized as an essential skill for
all students at an early age to develop in order to be competitive in an increasing
digital world. Teaching embedded system design among students at an early age is
getting more and more important. However, because of the complexity of embedded
system, teaching how to design it is a challenging topic for undergraduate and
graduate students in college. Apparently it is even more challenging and interesting
how to introduce this topic with hands-on projects among K-12 students. In this
research, a trees-forest-view methodology is introduced and embedded into two
newly developed courses as a step-by-step way to get K-12 students to enter
embedded system design world. Research and experiment results show that this
methodology inspires big interest and achieves great feedback among a group of
K-12 students.

1 Introduction

In China, there is a story almost knew to everybody: the blind men and the elephant.
A group of blind men touch the elephant and try to figure out the elephant shape.
One man who touched the elephant tooth said that the elephant is like a big carrot;
the other one who touched the elephant ear said that the elephant is like a big
fan. This story tells that people cannot make an overall judgment of something
on the basis of one-sided viewpoint or draw a conclusion on the basis of partial
understanding. There is another story to describe people who can see, however,
only the trees but not the forest. It has one’s view of the important overshadowed
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Fig. 1 (a) The blind men and the elephant (b) only see the trees but not the forest

by the trivia. Figure 1 shows these two stories. Embedded education is facing the
similar situation for students at different levels.

Due to the common availability and popularity of embedded system and product,
more and more parents, students, and teachers realize that learning embedded
computing is an essential skill for students at different ages to stay competitive in
an increasing digital world. At college level, a lot of instructors use ARM based
boards plus C/C++ type of programming, or FPGA boards with some soft core
to implement lab projects. For both ARM and FPGA platforms and other kinds
of platforms, the design process is quite complex and involves a lot of knowledge
from different domains, such as programming languages (C/C++, VHDL/Verilog),
computer architecture and instruction set, board input/output/peripherals, Linux
driver/OS, compiling/synthesis/optimization, interface/function/module, etc. If each
piece/component of the whole system is treated as a tree, the whole system looks like
a forest. Quite often with just a few projects in one class, student may get chance to
know how the tree looks like while lost in the forest or how the forest looks like but
miss the details of each tree. This problem can happen similarly during introducing
embedded system design among K-12 students. How to solve this problem is the
topic of this research.

In this study, two different levels of course are designed for the purpose of
introducing embedded system design among K-12 students. Level 1 introduces
electronics and circuit design to the student. With the basic understanding of
electronic world, level 2 builds the knowledge of a mini tiny embedded system
design (a self-driving smart car) for student. On one side, we expose all the
individual units or trees view to students. On the other side, students have the chance
to use these individual units to build their forest view of the system step by step.
Research results show that our two level courses achieved the desired experience
among K-12 students and build their confidence to learn more complex embedded
system design.
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2 Level 1 Course: Build Electronic Circuits

2.1 Motivation

Electronic circuit is the basic building block of the embedded system. Advance-
ments of electron devices have revolutionized our modern world [1], both in terms of
our lifestyle and industrial manufacturing activities. While electronic technologies
are indispensable in our everyday life, students and youngsters do not have many
chances to acquire the skill of circuit construction until a very late stage of their
education. With the belief that interesting electronic projects can be introduced at a
much earlier stage in our education system, we initiated a number of workshops and
exploration camps to let students at the age of around 10 years start to explore the
fascination of electronic circuits by constructing some interesting electronic gadgets
[2] such as a running light indicator, an electronic piano, an infrared detector, etc.

Delivering such electronic circuit exploration workshops can achieve multiple
goals. The hands-on reverse engineering approach is expected to arouse students’
interest in electronics without in-depth understanding that usually takes much longer
time to acquire. Once the students develop their interest, they will pursue the
required knowledge without much guidance in this information-rich generation [3].
Secondly, this level 1 course is designed to help students to bridge the gap between
understanding of abstract concept (circuit diagram) and implementing the abstract
idea in a real environment with constrained rules.

2.1.1 Building in Mind

It is obviously true to us that building something, which seems very simple, in mind
is very different from building it in reality, especially in constrained reality. The
following figure shows a simple circuit (Fig. 2). It has four components: electrical
wire, battery, resistor, and an LED light. Each component has two ends. By doing the
cascading connection of each component’s end, student can build this simple circuit.
However this circuit building process is done in student’s mind. As an experiment,
we as instructor ask one student who is a third grade student that if we give him the
components and explain how they are connected, can he get the connection done?
His answer is very quick and straightforward: of course YES.

Fig. 2 A simple LED light
circuit
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Fig. 3 Circuit building
breadboard

2.1.2 Building in Reality

Then we showed the building block to this student: a breadboard as shown below.
We told him the connection rules: all the holes in one row are electrically connected,
while different rows are not connected. As an example, all holes in row 1 (a b c d
e) are connected, all holes in row 2 (a b c d e) are connected, but row 1 and row 1
are isolated. The student told us that he can get the circuit diagram in mind quickly
mapped to the board. However, he spent at least 30 min and still could not light
up the LED light. He felt frustrated. This is what we expected because the circuit
diagram is one dimensional in his mind, while it is two dimensional once being
mapped to board. The transition is not easy (Fig. 3).

As the third goal for this level 1 course, it illustrates the trees-forest-view idea to
the students. This course uses six individual projects to expose some tiny systems
(such as digital piano, digital display) to students with forest view and work with
them on the details of each component with tree view. Students have the full
opportunity to build the small forest piece by piece and gain the depth knowledge
of each piece while enjoying the final working system.

2.2 Delivery of the Level 1 Course

2.2.1 Build Fundamental

In the actual delivery of the introductory session, the workshop can start with the
demonstration of how to use a wire stripper (Fig. 4 middle) as the basic tool.Since
the hands-on approach is the essence of the workshop, participants should be given
the first task of cutting and stripping wires in plastic coatings (Fig. 5 bottom-left). It
is then natural to explain about electrical wires. A daily life analogy of water pipes
can be used. When explaining about electrical wires, the two important quantities
in electronic engineering, namely current and voltage, should be introduced. The
corresponding units of current and voltage need to be included as well. With the
concept of voltage introduced, a battery (Fig. 5 bottom-middle) can be depicted as
a voltage source or generator. Based on the concepts of voltage and current, the
concept of resistance can then be explained. The daily life example of water flow
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Fig. 4 Very basic tools required for electronic circuit construction: (left) a breadboard, (middle) a
wire stripper, and (right) a digital multimeter

Fig. 5 Very inexpensive components readily available for electronic circuit construction: (top-left)
resistors, (top-middle-left) capacitors, (top-middle-right) LEDs, (top-right) chipsets, (bottom-left)
wires, (bottom-middle) batteries inside a battery box, and (bottom-right) variable resistors

can be used to illustrate the idea of resistance. After explaining about resistance, it
is natural to proceed to the introduction of resistors together with the color code of
discrete component resistors (Fig. 5 top-left). The second hands-on task would be
reading the color code of a few resistors to figure out the resistance. Afterwards,
the use of a multimeter (Fig. 4 right) for measurements of current, voltage, and
resistance can be taught. With basic demonstrations, students should be able to learn
easily how to use the multimeter (Fig. 4 right). The third hands-on task would be
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the measurements of the resistors and checking the resistance against the values read
from the color code.

The next key apparatus to introduce is the breadboard (Fig. 4 left) as a handy
circuit board for quick prototyping of electronic circuits. The properties of the
breadboard should be carefully explained, especially the electrical connections of
the pin holes along different rows and columns. As the fourth hands-on task, a
multimeter (Fig. 4 right) can be used to verify the electrical connections along
a row and a column and the electrical isolation between different rows. Without
explaining the theory behind, the light-emitting diode (LED) (Fig. 5 top-middle-
right) can be introduced as a light indicator which works only when current flows
in one direction but not the other. Students should be taught how to identify the
two different electrodes of an LED (Fig. 5 top-middle-right). With the positive and
negative electrodes of the LED explained, the use of a battery box (Fig. 5 top-right),
which has a positive and negative terminals as well as a switch to turn on the voltage,
can then be described. This leads to the fifth hands-on task in using a battery box,
an LED, and a resistor to construct a simple circuit of an LED light indicator (Fig. 6
left). The last component to be introduced in the first session of the workshop is the
variable resistor (Fig. 5 bottom-right) which allows the adjustment of the resistance.
Quick demonstration about the variable resistance measured by a digital multimeter
(Fig. 4 right) can be given. The sixth and final hands-on task is simply modifying
the circuit in the fifth task by including a variable resistor (Fig. 6 right). By adjusting
the variable resistor, the brightness of the LED can be varied. The visual effect is
easily noticeable to tell whether the circuit works or not. A minor reminder here is
that some variable resistors have three pins. Wrong connections of the pins would
give no change of the resistance and thus having no brightness change of the LED.
Table 1 gives a summary of the components, electronic engineering concepts, tools,
and the hands-on tasks taught in the first session of the electronic circuit exploration
workshop. It can be seen that the delivery of such electronic circuit exploration
workshop is both highly educational and of much fun. With this preparation, we can
move onto the first project involving an integrated circuit to generate the running
light.

Fig. 6 Simple basic LED indicator circuit for hands-on circuit construction tasks with noticeable
visual effects when working (left) with fixed brightness; (right) with a variable resistor for adjusting
the resistance and hence the brightness
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Table 1 List of components, electronic engineering concepts, tools, and hands-on tasks for an
introductory session on electronic circuit exploration

Component Engineering concept Tool Hands-on task

Electrical
wires

Current and voltage and
the corresponding units
(ampere and volt)

Wire stripper Cutting and stripping
wires

Resistors Resistance n/a Reading the resistance
values from the color
codes of resistors

Multimeter DC measurement Multimeter Measurements of the
resistance of resistors

Breadboard Circuit building
platform, connection

Multimeter Verification of the
electrical connections of
a breadboard

Light-emitting
diode (LED)

Unidirectional current
flow

n/a Light up an LED

Battery box DC power source;
distinguishing positive
and negative terminals

Screw driver to put
batteries inside

Circuit construction of a
simple light indicator

Variable
resistor

Variable resistance Multimeter Circuit construction of a
simple light indicator
with adjustable
brightness

Fig. 7 Hands-on circuit building projects

2.2.2 Start the Trees-Forest-View Process

In this level 1 course, we designed six individual projects as illustrated below
(Fig. 7). Here we use one project to illustrate the trees-forest-view process, a running
light LED indicator circuit.

Showing the Full Forest View to the Students

A running light indicator circuit is a good choice for this purpose because it uses
essentially one IC, several LEDs and resistors as well as a switch. The students by
now should be familiar with LEDs and their use with a resistor connected in series
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Fig. 8 LED running light indicator circuit using a CMOS 4017 decade counter IC: (left) schematic
diagram; (right) circuit constructed on a breadboard

to control the electric current and hence the brightness. The IC is the only new
component in this circuit.

In the actual delivery of the circuit construction session, the circuit schematic
diagram (Fig. 8 left) can be first shown to tell the students what circuit is to be
built. The students may not even understand what the circuit is by looking at the
circuit diagram. To ease their possible confusion, a photo of the neatly assembled
circuit (Fig. 8 right) can then be shown to tell them what the circuit is like. With
the photo shown or the actual circuit for demonstration, the instructor can briefly
tell what the circuit can do by saying that each LED will be turned on sequentially
by pressing the pushbutton switch once and then so on and so forth. Such a brief
explanation or demonstration should give the kids encouragement in attempting the
circuit construction with the forest view in mind. Having visual effects controlled
by a switch is part of the reason for choosing such a circuit for the workshop. It
is possible that the students may not be impressed by the demonstration of the
circuit and they have little idea of what the circuit is for. To arouse their interest,
the instructor can tell examples of application of such LED display circuits. One
common example for students living in large cities is the route map panel with LED
indicators showing the metro stations (Fig. 9). The circuit (Fig. 8 left) can also be
adapted to make traffic lights. If the workshop time allows, it can also bring up the
engineering advantages of using LEDs for displaying information related to fixed
positions and information that remains unchanged for months or even a few years.
By showing this full system or the forest view, students get a high level picture of
what it looks like and how it works and are prepared to dive into details of each
piece of this whole system.
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Fig. 9 Example of application of LED display circuits: the route map panel with LED indicators
showing the metro stations

Building Forest with All the Trees

Reading Circuit Schematic Diagrams

After giving the students an overall idea about the LED light indicator circuit and its
extended applications in daily life, the instructor can move onto explain a general
idea of a circuit schematic diagram or simply schematic for short. A few key points
can be covered quickly in a concise way. Firstly, the circuit schematic is the language
of representing the actual electronic circuits in written form showing the connections
of various devices and components. Secondly, it is common that the schematics
may not show the devices and components as they are in the actual circuits. Since
the students are not expected to learn the theory or complicated concepts, in-depth
details should be avoided in teaching the ideas above. This also helps students to
prevent losing forest view of the mini system.

IC Chip: Mounting onto Breadboard

On reading the circuit schematic, students should notice a rectangular box with 16
connections that represents the IC chip of the CMOS 4017 decade counter [4] to be
used. Although it can be explained that a decade counter is a digital circuit which
counts from zero to nine, there is no need to explain the operation principles. As the
first hands-on task, the student is asked to mount the IC chip onto the breadboard,
with the two columns of pins straddling the middle channel/track of the breadboard.

Circuit Construction Divided into Three Parts

A typical engineering technique, namely “divide and conquer,” can be shared with
the students. The construction of the apparently difficult circuit would be much
easier by dividing the circuit connections into simpler parts then building one by
one (Fig. 10). All electronic circuits need electrical power to function. It is sensible
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Fig. 10 Construction of the LED running light indicator circuit divided into three parts: (left)
power supply part, (middle) pin connections directly to ground, and (right) decade counter output
pins connected to ten LEDs in sequence

Table 2 Key steps in the construction of LED running light indicator circuit with the underlying
engineering concepts and the components or tools used

Step or task Component Engineering concept Tool

Reading circuit
schematic diagram

Positive power
supply and ground

Mounting and
dismounting IC chip

4017 decade counter
IC chip

Standards of IC pin
spacing and position

A pair of forceps and
a breadboard

Pin identification of
packaged ICs

16-pin decade
counter IC

Index marks (notch
and dimple) and pin
numbering

Circuit construction
part 1

IC, pushbutton
switch, resistor,
hook-up wires

Divide and conquer;
pin connections one
by one

A wire stripper

Circuit construction
part 2

Hook-up wires Neat wiring for easy
troubleshooting later

Circuit construction
part 3

Ten LEDs, resistor Common rail tied
together

to build the circuit starting from the power supply connections (Fig. 10 left) and the
ground counterpart too (Fig. 10 middle).

Table 2 lists the key steps during the construction process and all the underlying
engineering concepts student will learn by composing each of the units or trees into
the working running light LED indictor as the final forest.



Teaching Embedded System Design Among K-12 Students Based on Trees-. . . 293

Fig. 11 Working but not well built circuits (wiring is messy, not neat)

Fig. 12 Working and well laid out circuits

Build Circuit with Better Layout

At the beginning of the class, the easy mistake that students make is bad (messy, not
neat) layout of the wires during the connection process as shown in Fig. 11. This
messy layout will increase the debugging effort if the finished project does not work.
In many cases, a lot of wire sections need to be removed in order to check if one
piece of particular wire is connected well or not. The rule is that all wires need to be
flatted down on the board without crossing each other and they cannot jump or dance
around the breadboard. Should we teach students to avoid this kind of bad layout
or not at the beginning of the class? The answer is NO. Within all the six projects
in this level class, the first one or two projects are used to teach student lessons on
how important it is to build the circuit with good layout in order to avoid expensive
debugging time. This making mistake and improving working habit process is also
a great way to teach students engineering process. After this building skill ramping
period, students gradually build the circuit more and more neatly. Figure 12 shows
some finished projects neatly built by students.

2.3 Summary of the Level 1 Course

In this level 1 course, we first show the students how the whole mini system or the
mini forest looks like and how it works. Using this forest view, students’ interest is
inspired and their desire to know the inside details or how each tree is composing
the forest is becoming strong. Moving forward we explain each piece of the system
without too much details to students and avoid losing forest view in students’ mind.
By constructing all the pieces together, students get knowledge of each individual
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Fig. 13 Trees-forest based teaching methodology

electronic component and how it works and how to integrate them together into the
mini whole system. With this process as shown in Fig. 13, students not only learn
in depth of the component but also always keep the whole mini system in mind and
never lose the view of the forest. This trees-forest-view process helps the students
to learn with interest and a full picture.

3 Level 2 Course: Build a Mini Embedded System

3.1 Motivation

Electronic circuit is the important part of a typical embedded system. Level 1
course is designed to help students understand basic concepts and master hands-on
experience on how to build electronic circuits. After electronic circuit is introduced
to students, a mini embedded system, a smart self-driving car, is developed as the
level 2 course.

It is well known that most electronic systems are embedded system. Due
to the popularity and common availability, learning embedded system design is
an important and critical skill set in digital world. However, due to the design
complexity of an embedded system, introducing this topic among K-12 students
is very challenging. A suitable, simple enough mini system is desired to deliver this
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topic among young students. Further embedded system design is a hardware and
software co-design process. Although it is very difficult to introduce this concept
in depth to students, the course has to touch some of the basics of hardware
and software. For software, choosing a simple programming language is required
because for most of the students, it is the first time they do programming.

For designing the hardware platform, there are three rules to follow. First, it needs
to be simple enough; second, the mini system must be interesting to students; third,
the system can be partitioned and assembled piece by piece by a K-12 student (age
8 above). If the mini system is highly integrated, it only gives the forest view to
students and hides the details or blocks the tree view of it. Based on the above
analysis and rules, we have designed a self-driving smart car which meets the above
requirements. This system is very simple and the list of components is shown in
Table 3. Figure 14 shows the pictures of the components. As this level 2 course was
taught in several technology camps along with other level courses, it was shown
to be the most attractive project for students. This confirmed that this mini system
meets the above three design rules. Further, this mini system supports our trees-
forest-view teaching methodology which allows students to have a full forest view
while getting the details of each of the components or trees view.

For choosing the software programming, most K-12 students do not have
programming experience and this course may be the first time they touch program-
ming. As a result, the programming language must be simple enough for them to
understand condition, control, loop concepts. In this project, we chose Arduino
based C-type programming language which meets our requirements. There are some
literatures which discussed and compared the advantages and disadvantages for
block-based and text-based programming. Arduino does support both text-based and
block-based programming. Traditional computer science programming environment
is normally text-based programming. Quite a few IDE environments have adopted

Table 3 List of the components inside the mini embedded system (a self-driving smart car)

Components Number of pieces Functions

Wheel servo 4 Driving the wheels
Wheels 4 Car wheels
Car body 1 Car assembly platform
Arduino UNO 2 Control signal
Mini board (custom designed) 1 Voltage output to drive the wheel

servo
Ultrasonic sensor 1 Sensing the distance between car and

obstacles
Mini servo 1 Rotate the sensor
Mini breadboard 1 Connector/bridge
Bluetooth transceiver 1 Sending/receiving Bluetooth signals
Bluetooth control board 1 Handle control
Battery 1 One set with 9 V
Screws n Support, stabilization, etc.
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Fig. 14 Components of the mini embedded system, a self-driving smart car; top-left (the IDE
programming environment), top-middle (mini board and Arduino UNO), top-right (ultrasonic
sensor, mini servo, Bluetooth handle); bottom-left (wheels with servo), bottom-middle (car body
and wheel servo), bottom-right (the mini board for voltage supply to the servo)

the block-based programming approach to lower the programming barrier across a
variety of different domains. The representative block-based approaches of visual
programming include Scratch [5], Snap! [6], and Blockly [7]. Arduino provided a
block-based IDE programming environment as shown in Fig. 13 (top-left). Weintrop
[8] concluded that students in both conditions improved their scores between pre-
and post-assessments; however, students in the blocks condition showed greater
learning gains and a higher level of interest in future computing courses. Students
in the text condition viewed their programming experience as more similar to what
professional programmers do and as more effective at improving their programming
ability.

Our experiments during a few camps did not agree with the finding result in [8].
Here two camps’ data is used. There were totally 22 students in the NO 1 camp and
25 students in the NO 2 camp with different age profile as shown in Table 4. For the
NO 1 camp during most of the time, students used block-based programming and
only one project with text-based programming was introduced in the middle as a
comparative study. In contrary, for the NO 2 camp during most of the time, students
used text-based programming and only one project with block-based programming
was adopted in the middle. The results are shown in Table 4.

As seen from the table, for both camps, block-based programming seems more
interesting to most of the students and this is especially true for younger group
of students (age 7–10). For this special age group, almost all of them (except one
10 year old student) think block-based programing is more of interest. For camp NO
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Table 4 Comparative study of block-based programming and text-based programming

Camp NO Age Number of students Block based is more interesting (Y)

1 7–10 5 5/5
11–14 10 10/10
15–16 7 7/7

New project to use block based (PR)
7–10 5 2/5

11–14 10 8/10
15–16 7 6/7

2 Text based is more interesting (Y)
7–10 8 1/7

11–14 12 2/12
15–16 5 3/5

New project to use text based (PR)
7–10 8 4/8

11–14 12 12/12
15–16 5 5/51

1, at the end of the class, we tested students on a problem solving using block-based
programming. The test results revealed that although block-based programming
is more interesting to young students, they seem not fully understand the block
relation and sequence order and only two out of five students can pass the test.
For camp NO 2, by forcing the students to do project more frequently using text-
based programming, young students with age 7–10 has improved performance for
the programming test and four out of eight can pass. This improvement suggests
that text-based programming is more efficient and direct to deliver the programming
concepts such as condition, loop, etc. Further for old student age 11–14 and age 15–
16, their test passing ratio (PR) is also improved.

As a result of the above observation, in our camp, for most of the time, we used
text-based programming and we adopted block-based programming for some simple
projects. The goal of this level 2 course is to build students’ knowledge on embedded
system design based on the trees-forest-view methodology as shown in Fig. 15.

3.2 Delivery of the Level 2 Course

3.2.1 Build Fundamental

For K-12 students, the fundamental concepts of a mini embedded system include
two parts: hardware and software. When delivering these concepts, instructors
should not dive into a lot of details which can cause students’ confidence loss and
forest view loss of the whole system. For the hardware part, the instructor focuses on
showing the important components on the board and explaining a little bit of their
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Fig. 15 Trees-forest-view to teach mini embedded system design

Fig. 16 Introducing the components of an Arduino UNO board; (left) the Arduino board, (middle)
the digital pins, (right) the analog pins

functionalities, pointing to the digital and analog voltage input and output pins, and
showing the customized board which can output the right voltage level and drive
the wheel’s servo. The important point for this hardware view is to try to keep them
interested while not trying to let them understand all the details about how these
components work and this is outside the scope of this level 2 course (Fig. 16).

For the software part, simple Arduino programming guide is reviewed with
students within the Arduino IDE environment. For the IDE environment as shown in
Fig. 17 (left), students learn how to compile and verify their code and how to identify
the possible bug and compiling issues. For the programming language, students are
illustrated how to use Arduino C type of language to code the two bodies, void
setup() and void loop(). Particularly, students need to understand that loop() body
will be executed forever after the board is powered on.
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Fig. 17 Simple and intuitive introduction of software program

3.2.2 Start the Trees-Forest-View Process

In this level 2 course, we designed seven individual projects as shown in the
following list. Through all these projects, students go through the trees-forest-view
learning process to learn how to build a mini embedded system step by step, easy to
difficult and trees focus with forest view in mind.

• Step-by-step programming environment setup
• Code and test the Arduino board with running lights
• Code to drive the servo motors
• Hands-on assembling the racing car with motors, sensors, etc.
• Coding sensor for object detection
• Integrate the car with a Bluetooth handle control
• Self-driving design and test of the smart car

Showing the Forest View to the Students

This self-driving smart car shown in Fig. 18 constitutes of three major hardware
parts: car body (servo, wheels, and body), programming boards, and ultrasonic
sensor. Here divide and conquer method is reinforced and used again to build this
mini system from scratch step by step.

Test the Board

In the level 1 course, students already get familiar with LED light and running LED
indicator. Here the circuit is used again, but built on Arduino board. To light up
one LED light as shown in Fig. 19 (left), the PIN 13 on the Arduino board is used
as voltage source and PIN GND is used as voltage sink to close the circuit loop.
Figure 20 shows the programming code. Here DELAY concept is introduced to
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Fig. 18 The finished self-driving smart car: (left) top view, (right) bottom view

Fig. 19 Lighting up one LED and running LED light

Fig. 20 Coding the LED light and running LED light
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Fig. 21 Use Arduino board to drive a single wheel. (left): wheel with servo; (middle): custom
board MOTOR shield; (right): how to drive the servo with Arduino pins

students for how long it is desired to keep the LED ON or OFF. As horizon extension
projects, students are asked to program the LED light with running speed faster and
faster. In this project, language LOOP is introduced.

Driving One Wheel with Servo

In this step, students learn how to drive one wheel forward and backward with the
servo and Arduino board. Figure 21 illustrates the setup. In the previous section,
students learn how to use the pins on the Arduino board to output voltage as driving
source. The same design approach is applied here as well. The custom designed
board, MOTOR SHIELD, is used to drive the wheel servo. Here the instructor
does not need to go through details on why the motor shield board connected with
Arduino board works. However students need to know that the pin 4, 5, 6, and 7
from Arduino board is connected to motor shield board pin A+/A−/B+/B− which
can be used to connect to the servo two input ports and drive the servo. In this
section, students will not be given the sample code. They need to program Arduino
board based on the illustration or pseudo code as shown in Fig. 20 (right).

Driving the Car

In this step, students learn how to drive the car with hands-on assembly. Figure 22
(left) shows the top view of the car bottom side which has four servo motors. It is
not an easy task for young students to assemble the servo motors onto the car body.
The assembly process contains a lot of screws which need to be carefully faced to
one side and the servos also need to position themselves with one particular side
internally or externally based on the screw siding. Normally this process need to be
repeated for a few times and students try out and then understand the correct way
to assemble all the servo motors correctly. The average assembly time for a 10-year
old student is around 45 min with help from instructor. Figure 22 (right) shows the
finished assembly. There is another trick during the assembly and testing: how to
make sure that the two wheels on one side of the car are synchronized. For the two
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Fig. 22 (Left): top view of the car bottom side; (right) top view of the car top side

Fig. 23 (Top-left): drive the car forward; (top-right): drive the car backward; (bottom-left): turn
the car right; (bottom-right): should the left side wheels drive backward or forward?

wheels on one side, they are controlled by one pair of output ports from the motor
shield board, either pair of A+/A− or pair of B+/B−. Because they share the same
control, if not connected correctly, there are chances that one wheel drives forward
and the other wheel drives backward after power on. Students need to figure out the
reason and fix the issue. As shown by all our camps, this process makes students to
feel that they are very hands-on and know how to find, try out, and fix the problems.
This is a very important component of this course: giving the chance to students to
create problem, try out solution, and fix the problem.

After the car assembly is done, it comes to the programming part. Here it is
assumed that Arduino board pin 6/7 is used to control the right side wheels, while
pin 4/5 is used to control the left side of the wheels. Figure 23 shows the logic to
set the pins and drive the car forward, backward, turning right, and turning left.
In this section some open questions can be given to students as well to test their
understanding, such as the open question shown in Fig. 22 (bottom-right).
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Fig. 24 (Left): all the components to mount the ultrasonic sensor on board; (middle) the assembled
sensor and the micro servo to rotate the sensor board; (right): mounting the sensor to the car body
and connecting the pins to the Arduino board

Again, in this section, student will not get the sample code. Instead, they need to
figure out the programming based on the logic shown in Fig. 23.

Ultrasonic Sensor

For this mini embedded system, ultrasonic sensor is used to detect object/obstacle
around the car and how far the distance is between the sensor/car body and the
object/obstacle. Figure 24 (left) shows all the components to mount the sensor and
the micro servo to the car body. The micro servo is used to rotate the sensor to
0◦, 90◦, and 180◦. When the ultrasonic sensor is positioned at 90◦, the detection is
for the distance between the sensor and the object in front of the car. When it is
positioned at 0◦, the detection is between the sensor and the object on the left side
of the car. For 180◦, the sensor measures the distance between itself and the object
on the right side. With this detection, the program will make decision whether the
car should continue driving forward, or stop, or turn left or turn right. Here again, a
lot of screws are needed for the installation. Students achieve great experience for
hands-on system assembly.

After the assembly, students are asked to program the board implementing the
task functions as listed in Table 5. The purpose of these tasks is to help student
understand how a simple self-driving is implemented. The basic idea is to use
ultrasonic sensor detecting objects around the car and to find a direction where the
car should drive toward. Also this section prepares students with all the needed
details before final integration of the self-driving car.

Final Implementation

The simple algorithm to implement the self-driving is shown in Fig. 25. Students
are required to refer to this algorithm technology camp pictures and implement the
self-driving car. For this project, normally a 10-year old student takes 60 min to
finish (with reference to some existing code in the previous sections), 20–30 min to
fix all the compiling issues, and 30 min to test drive the self-driving feature.
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Table 5 List of tasks to test sensor and distance measurement

Project Tasks Purpose

1 Turn the sensor to 0◦ Test sensor position
Hold the position for 1 s
Turn the sensor to 90◦
Hold the position for 1 s
Turn the sensor to 180◦
Hold the position for 1 s
Stop

2 Measure the distance between sensor and
objects

Test the distance measurement

Use Arduino IDE serial monitor to print the
distance
Stop

3 Measure the distance between sensor and
objects

Combine the sensor rotation and
distance measurement

If distance is <20 cm
Rotate the sensor to 0◦ and measure the

distance
Rotate the sensor to 180◦ and measure the

distance
Rotate the senor to 90◦ facing to the front

End If and Stop

Fig. 25 Simple self-driving algorithm
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3.3 Summary of the Level 2 Course

While keeping the full forest view of the whole mini embedded system in students’
mind, this level 2 course goes through each component with the tree view without
too many details. Further this project involves a lot of hands-on assembly. Young
students, as demonstrated in all our technology camps, have the most sense of
achievements after they finish the car assembly step by step.

4 Experiments

In this section, we describe how to measure the success of this trees-forest-view
based K-12 teaching methodology. There are two traditional ways to do this kind
of measurements: score based and questionnaire based. For this level 1 and level
2 program, it is not appropriate to test the students whether they can memorize
some basic knowledge with the score based exams. Their learning experience is very
hard to be quantized by score. Instead of exam, here questionnaire based approach
is used. Table 6 lists all the past technology camps. Column 1 gives the camp
time; column 2 and 3 mean the number of students attending each camp; column
4 indicates how many students were invitation based; column 5 gives the number of
students who were recommended to this program. At the beginning of the program,
because the program was not known to the public, we have to do some invitation
and advertisement. Gradually more and more parents and students got to know the
program and were recommended to these camps. This is a good indicator that these
two programs achieved recognition among students and parents.

Table 7 shows the result on whether these programs are interesting to the students
and whether they are willing to attend the next level course. As results demonstrated,
our program is different from the traditional classroom courses and it is very
interesting to the students. This confirmed that one of our initiatives, enhancing
students with hands-on technology projects through interest driven approach, is
successful.

Table 8 lists the critical questions in the questionnaire and answers from all the
students who attended the past technology camps. From the results we can see that

Table 6 List of the camps and statistics data

Camp time Student @ level 1 Student @ level 2 Invitation based Recommendation based

12-2015 3 0 2/2 0/2
08-2016 12 12 5/12 7/12
12-2016 22 22 10/22 12/22
08-2017 25 25 3/25 22/25
12-2017 25 25 4/25 21/25
06-2018 50 50 7/50 43/50
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Table 7 Interesting indicator of all the past camps

Camp time Student @ level 1/2
This course is
interesting (%)

Willing to attend
the next level (%)

12-2015 3 100 100
08-2016 12 100 100
12-2016 22 100 100
08-2017 25 100 100
12-2017 25 100 100
06-2018 50 100 100

Table 8 Questionnaire and answers

Questionnaire summary

Q: Which part of the program is the most interesting one to you?
A: >90% of students choose hands-on assembly
Q: Do you have the full picture of each of the mini systems in mind?
A: >83% of students choose YES
Q: Do you know enough details of each component to finish the mini systems?
A: >79% of students choose YES
Q: After the course, do you feel confident to finish a different mini system by yourself?
A: >68% of students choose YES
Q: Are you willing to work in engineering field in the future?
A: >87% of students choose YES
Q: Do you want to recommend the course to your friends?
A: 100% of students are willing to recommend this.

more than 90% of the students enjoy the hands-on assembly process which gives
them the most sense of achievement and the feeling of how the whole system works
with each component. Through this trees-forest-view teaching methodology, more
than 79% of students can get enough knowledge of each of the components while
keeping the full picture of the whole system in mind. Some of the young students
(8–10 year old), due to the level of understanding capability of a complex system,
still have some gap on the trees-forest teaching process. This is expected because the
mini system is complex enough and its level of difficulty is above some 8–10 year
old students. This is further reflected in the next question about the confidence to
finish another mini system by themselves. The level of confidence is around 68%
and most young students (<11 year old) still feel they are not fully ready yet.
However these two programs gave them enough encouragement to continue the
purse of engineering activities in the future. Importantly they strongly recommend
this program to their friends.
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5 Conclusions

Teaching embedded system design among students at different levels and ages is
getting more and more important. However, because of the complexity of embedded
system, teaching how to design it is a challenging topic for undergraduate and
graduate students in college. Apparently it is even more challenging and interesting
how to introduce this topic with hands-on projects among K-12 students. The design
process is quite complex and involves a lot of knowledge from different domains.
If each piece/component of the whole system is treated as a tree, the whole system
looks like a forest. Quite often with just a few projects in one class, student may
get chance to know how the tree looks like while lost in the forest or how the forest
looks like but losing the detail of each of the trees. In this study, two different levels
of courses are designed. Level 1 introduces electronics and circuit to the student.
With the basic understanding of electronic world, level 2 builds the knowledge of a
mini tiny embedded system (a self-driving smart car) for student. On one side, we
exposed all the individual units or trees to students. On the other side, students have
the chance to use these individual units or trees to build/grow their forest system or a
tiny whole system step by step. At the end we evaluated the success of this program.
The results show that most of the students have the most sense of achievements by
hands-on finishing a mini system assemble and make it work through programming
or connection. This program attracted a lot of both girls and boys to attend. Most of
them think this class is quite different from their classroom, but interesting to help
them understanding engineering process (Figs. 26 and 27).

Fig. 26 Technology camp pictures

Fig. 27 If you have the
elephant in mind, even if you
are blind, you can draw the
full picture of an elephant
(right) the same applies to the
trees-forest view (detail view
and full view)
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