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Abstract. The Flowdrill technology is quite new one. Is very promising
technology, which could be applied in many industrial branches. This tech-
nology can be still developed. Moreover, to do modern research the numerical
simulations are implemented for predicting the process duration, parameters of
the process to obtain the product with demanded characteristics. The proposal of
this paper is to implement one of so-called meshfree methods, i.e. Method of
Fundamental Solutions, for computer simulation of temperature distribution in
workpiece during Flowdrill process. In the basic approach The Method of
Fundamental Solution is used for solving homogeneous boundary value prob-
lems. Due to the complexity of Flowdrill process proposed numerical algorithm
for solving this problem is based on MFS supported by the Method Finite
Differences and Picard Iterations. The paper consists of proposal of numerical
algorithm based on MFS and results of numerical experiment. The main con-
clusion is that the MFS is sufficient method for simulations of processes of
plastic deformations.
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1 Introduction

The Flowdrill technology is quite new one. The idea of thermal drilling was proposed
by Jean Cloude de Valiere in 1923. But the useful tool started to be produced since
1980s. It’s very promising technology, which could be applied in many industrial
branches. The applications already made show many advantages of this technique and
products obtained in this process. For example, Flowdrill technology is involved the
automotive development process. The most important advantages of applying thermal
drilling technology are cost reductions by using thinner material and shorter cycle time.
The application in furniture industry is mostly based on low costs of connection of
technical properties of joints obtained by Flowdrill and beautiful design of them. The
other industry branches, which apply the Flowdrill technology are: loading equipment,
railing construction, hospital equipment (for example wheel chairs), shopping charts,
energy and sanitary systems (solar systems), cleaning systems, lighting, agriculture
(plant and mast constructions), steel furniture, seatbelt construction and much more.
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Generally saying, Flowdrill technology is a drilling method (making holes) which
is capable of locally displacing material in order to form increased material thickness.
The material is pushed out of the way with the aid of heat from friction. The tem-
perature distribution is the crucial quantity of the process, because it influences on the
properties of the material. The local heat production and heat flow makes material
plastic. Thanks this fact the running of Flowdrill is possible. The process is also called
friction drilling, thermal drilling, etc. The machine for thermal drilling is shown in
Fig. 1 and tools for thermal drilling are presented in Fig. 2.

From technological point of view, the Flowdrill technology is used for making
holes. The proposal of efficient use of boreholes by Flowdrill is presented in [1].
Authors of [1] checked the changing the properties of the material around the hole after
application of the technology. The other purpose of using Flowdrill technology is
thread connections (for example riveting, screw connection). The parameters of
Flowdrill process of screwdriving were investigated by Authors of [2]. They proposed
the quality design space as represented by resultant joint geometry as a function of the
critical process parameters of fastener force and drilling speed. Identification of drilling
parameters was the subject of the paper [3]. The experimental study has been per-
formed to check influence of process parameters (rotational speed, drilling force,
geometry of screw) on drilling time and torque. Very important aspect of screwdriving
by Flowdrill is thermal effect. One of the papers related to this subject is [4]. Authors of
this paper studied influence of different preprocess material temperatures on the

Fig. 2. Thermoforming drill tool.Fig. 1. Flowdrill machine.
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duration of the process. The preheating of material yields the shorter time of the
process. The Flowdrill technology is used for sealing surface, as well. Is has appli-
cations for brazing and welding joints. It may be used as an alternative method for hole
edge flanging. Authors of [5] considered characteristics of tools material dedicated for
Flowdrill process. Their research includes study of microstructure and chemical
composition (carbides phases), content of porosity in material of tool before and after
drilling process.

Mostly, in literature it is stated that the Flowdrill is used for metal materials. But
there are already some developments that point use of Flowdrill technology for other
material than metals as well. For example, in [6] test for mechanical joints between
fibre-reinforced plastics and metals was proposed. Both carbon-fibre-reinforced plastic
and aluminium via a flow drill screw were connected. Moreover, in older literature,
Flowdrill was indicated as a technology unusable for materials that have been painted,
plastic coated, galvanized or heat treated. But, already one can find papers, as for
example [7, 8] about materials with coating and galvanized, which were subjected to
Flowdrill process. Authors investigated the influence of chemical structure of coating
on the properties of the surface of drilled hole.

Moreover, to do modern research (save material - for workpiece and tools, energy,
time) the numerical simulations are implemented for predicting the process duration,
parameters of the process to obtain the product with demanded characteristics. Such
calculations may be done by one of many numerical methods, which are known in
literature. Most known and mostly applied is the Finite Element Method. For example,
in papers [9–12] the computer simulations were presented for different types of joints.
But this method has one disadvantage, which is very significant from plastic defor-
mation point of view. The deformations are quite large, so the remeshing of FEM is
strongly required. And it has to be done several times during process calculations. It
makes the calculations very high time-consuming. The alternative methods are so-
called meshfree methods. The implementation of one of such methods, i.e. Method of
fundamental Solutions is proposed for temperature distribution simulation in Flowdrill
process. The local heat production softenes the material and makes it plastic. So, it is
important to know the temperature distribution, heat flow to estimate the heat affected
zone, to predict plastic flow of the material.

Numerical simulations of temperature distribution during engineering processes is
widely discussed in literature. Most interesting of the subject of the present paper are
papers related to numerical simulations of technological processes made by meshless
methods.

Authors of [13] have prepared the model of heat transfer during friction stir
welding. In the paper, the thermal conductivity for work-piece and tool is taken to be
constant. The problem is solved using meshless particle method. The obtained
numerical results are in good agreement with those obtained from experiments.
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The other work related to modeling of heat distribution during seam welding
problems in [14]. Authors described the problem of heat transfer during the welding
process by initial-boundary value problem. The computer simulation were done by
Finite Difference Method (FDM). The numerical results were compared to results of
the experiment. But Authors did not try to use meshless method instead of FDM, which
does not require discretisation of a whole considered region.

The other technological processes were considered including heat transfer and
solved by meshless methods in the literature, as well.

For example, the modelling and simulation of viscoplastic flow during an
axisymmetric hot compression test of steel-like material were presented in [15]. The
element-free Galerkin Method was implemented to perform numerical simulations of
compression test. The results of calculations were used in an analysis of stress, strain
state of the deformed probe.

One of the meshless methods was used by Authors of [16]. The subject of the paper
is a determination of optimum cooling conditions for continuous casting. The con-
sidered problem has been solved by Improved Radial Point Interpolation Method. And
Authors showed that this method is very suitable for solving non-linear transient
problems.

The analytical and numerical solving the heat transfer problem is very widely
discussed in the literature. One of the works related to meshless methods and solving
heat transfer is [17]. In this work, Authors have used Direct Meshless Local Petrov-
Galerkin method.

Authors of [18] presented the Trefftz Method applied for solving the inverse
problem of heat transfer. The aim of their work was to calculate thermal conductivity
coefficient of investigated materials. Meshless methods are very good tools to solve
problems of an irregular domain (see [19]) and non-linear boundary conditions [20].
Authors of [21] presented solution of 1D and 2D transient problems of heat conduction.
They proposed solving algorithm based on Trefftz Method using exponential basis
functions. Also, composites as domains may be considered and issues with such
domains are solved by meshless methods (see [22]).

A very large literature overview related to meshless methods applied for heat
transfer and fluid flow problems is presented in [23].

2 Problem Description

The temperature distribution problem in workpiece during Flowdrill process may be
modeled as an axisymmetric initial-boundary problem. The governing partially dif-
ferential equation is of second order one with variable coefficients. The initial condition
describes temperature of the whole workpiece at the beginning of Flowdrill process.
The boundary condition describes temperature on the boundary of the workpiece at all
time of process duration.
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2.1 Mathematical Model

The geometry of the work piece is presented in Fig. 3.

Using the axisymmetry of the considered object the region of temperature distri-
bution at initial time is presented in Fig. 4. and can be described as X ¼
x; yð Þjxmin \ x\ xmax; ymin \ y\ ymaxf g with boundary C ¼ C1 [C2 [C3 [C4,

where

C1 ¼ x; yð Þjxmin \ x\ xmax; y ¼ yminf g;
C2 ¼ x; yð Þjx ¼ xmax; ymin \ y\ ymaxf g;
C3 ¼ x; yð Þjxmin \ x\ xmax; y ¼ ymaxf g;
C4 ¼ x; yð Þjx ¼ xmin; ymin \ y\ ymaxf g:

The thickness of sheet is h = ymax − ymin.
The heat transfer equation is in the following form:

qcp Tð Þ @T
@t

¼ r � k T x; yð Þð ÞrT x; yð Þð Þ for x; yð Þ 2 X ð1Þ

where t denotes time, T - temperature, x, y are geometrical coordinates, q is the density
of the material, cp Tð Þ - heat capacity of the material, k Tð Þ - thermal conductivity
coefficient.

The associated initial condition:

T x; y; t0ð Þ ¼ T0 x; yð Þ for x; yð Þ 2 X; ð2Þ

describes temperature in whole region X at initial time t0 = 0.

Fig. 3. Geometry of piecework.
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It is assumed that on the boundary condition is described by function g(x, y, t), so

BT x; y; tð Þ ¼ g x; y; tð Þ for x; yð Þ 2 C ð3Þ

where operator B describes type of boundary condition. For boundary with defined
temperature B = 1, for boundary with convection B is normal derivative of tempera-
ture. On the boundary, which has contact with the tool temperature is related to friction
between the workpiece and the tool.

It is not so easy to set a particular value for material characteristics related to heat
transfer. Therefore, the thermal conductivity coefficient k Tð Þ and the heat capacity
cp Tð Þ will be treated as linear functions of temperature as follows:

k Tð Þ ¼ k1T þ k0 ð4Þ

cp Tð Þ ¼ cp1T þ cp0 ð5Þ

where k1; k0; cp1; cp0 are real numbers coefficients dependent on the material used for
workpiece.

2.2 Numerical Algorithm

In case of Inhomogeneous Initial-Boundary Value Problem the Method of Fundamental
Solutions cannot be introduced in pure form. It has to be supported by other methods.

The considered Eq. (1) consists of derivative of temperature concerning the time
variable.

So, the problem will be solved in a certain interval of time. Let’s notice that
t 2 0; tmaxð Þ, where t denotes time variable, tmax is maximum value of the time variable.

Fig. 4. Geometry of region X with boundary C at initial time.
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First of all, to approximate time derivative, the method of finite differences is used.
Time interval is divided into nt subintervals. So, the solution will be calculated in
certain time, i.e.

ti ¼ i � dt; where dt ¼ tmax

nt
:

So, the partial derivative at time equal to ti is approximated by backward finite dif-
ference as follows

@T x; y; tð Þ
@t

����
t¼ti

� Ti x; yð Þ � Ti�1 x; yð Þ
dt

for i ¼ 1; 2; . . .; nt ð6Þ

where Ti x; yð Þ ¼ T x; y; tið Þ denotes temperature at time ti, i.e.
After using an approximation of partial derivative of temperature concerning the

time, the initial-boundary value is changed into series of boundary value problems. For
each time step the BVP is defined by equation

qcp Ti x; yð Þð Þ
dt

Ti x; yð Þ � r � k Ti x; yð Þð ÞrT x; yð Þjt¼ti

� �
¼ qcp Ti�1 x; yð Þð Þ

dt
Ti�1 x; yð Þ

ð7Þ

for x; yð Þ 2 X and i ¼ 1; 2; . . .; nt
and boundary conditions

Ti x; yð Þ ¼ g x; y; tið Þ for x; yð Þ 2 C3 and i ¼ 1; 2; . . .; nt; ð8Þ

@Ti x; yð Þ
@n

¼ 0 for x; yð Þ 2 C1 [C2 [C4 and i ¼ 1; 2; . . .; nt: ð9Þ

In Eq. (7) written for i = 1 the initial condition (2) is applied as T x; y; t0ð Þ ¼ T0.
The proposal of this paper is to implement the Method of Fundamental Solutions

(MFS) to solve BVP given by Eqs. (7–9). MFS is a so-called analytical-numerical
method. It is necessary to know analytical form of special function called “fundamental
solution”, which is determined for differential operator, which appears in the governing
equation.

The Eq. (7) may be rewritten in the form

qcp Ti x; yð Þð Þ
dt

Ti x; yð Þ � @k Ti x; yð Þð Þ
@Ti

@Ti x; yð Þ
@x

� �2

þ @Ti x; yð Þ
@y

� �2
 !

� k Ti x; yð Þð Þ @2Ti x; yð Þ
@x2

þ @2Ti x; yð Þ
@y2

� �
¼ qcp Ti�1 x; yð Þð Þ

dt
Ti�1 x; yð Þ

ð10Þ

for x; yð Þ 2 X and i ¼ 1; 2; . . .; nt
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and we can notice that the differential operator consists of Laplace operator and square
of first partial derivatives of temperature with respect to both geometrical variables. We
will use the function “fundamental solution” for Laplace equation, therefore the
Eq. (10) is rewritten in iterative mode (Picard iterations):

@2T jð Þ
i x; yð Þ
@x2

þ @2T jð Þ
i x; yð Þ
@y2

¼
q
dt

cp T j�1ð Þ
i x; yð Þ

� �
T j�1ð Þ
i x; yð Þ � cp Ti�1 x; yð Þð ÞTi�1 x; yð Þ

� ��

�
@k T j�1ð Þ

i x; yð Þ
� �
@T j�1ð Þ

i

@T j�1ð Þ
i x; yð Þ
@x

 !2

þ @T j�1ð Þ
i x; yð Þ
@y

 !2
0
@

1
A
1
A,k T j�1ð Þ

i x; yð Þ
� �

ð11Þ

for x; yð Þ 2 X and j ¼ 1; 2; . . .nj; i ¼ 1; 2; . . .; nt
and the boundary conditions are

T jð Þ
i x; yð Þ ¼ g x; y; tið Þ for x; yð Þ 2 C3 and i ¼ 1; 2; . . .; nt; j ¼ 1; 2; . . .nj ð12Þ

@T jð Þ
i x; yð Þ
@n

¼ 0 for x; yð Þ 2 C1 [C2 [C4 and i ¼ 1; 2; . . .; nt; j ¼ 1; 2; . . .nj ð13Þ

where nj is the number of iteration made at each time step and T jð Þ
i x; yð Þ denotes

temperature at j-th iteration of i-th time step.
So, at each iteration at every time step there is BVP to be solved. To simplify

notation for describing the next step of iterations, the BVP (11–13) is written in form:

– equation

@2T jð Þ
i x; yð Þ
@x2

þ @2T jð Þ
i x; yð Þ
@y2

¼ f x; y; T j�1ð Þ
i x; yð Þ; Ti�1 x; yð Þ

� �
ð14Þ

for x; yð Þ 2 X and j ¼ 1; 2; . . .nj; i ¼ 1; 2; . . .; nt
where

f x; y; T j�1ð Þ
i x; yð Þ; Ti�1 x; yð Þ

� �
¼

qcp T j�1ð Þ
i x;yð Þð Þ
dt T j�1ð Þ

i x; yð Þ � Ti�1 x; yð Þ
� ��

� @k T j�1ð Þ
i x;yð Þð Þ
@T j�1ð Þ

i

@T j�1ð Þ
i x;yð Þ
@x

� �2

þ @T j�1ð Þ
i x;yð Þ
@y

� �2
 !!,

k T j�1ð Þ
i x; yð Þ

� �

ð15Þ
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– boundary conditions

BT jð Þ
i x; yð Þ ¼ g x; y; tið Þ for x; yð Þ 2 C and for j ¼ 1; 2; . . .nj and i ¼ 1; 2; . . .; nt; ð16Þ

where B = 1.
The MFS is the numerical method for solving BVP described by homogeneous

partially differential equation. The Eq. (14) is inhomogeneous one, therefore the MFS
is supported by approximation by Radial Basis Functions (RBFs) and monomials. Such
approach of solving is known in literature as Dual Reciprocity Method. The solution of
inhomogeneous BVP is assumed to be sum of particular and homogeneous solution:

T jð Þ
i x; yð Þ ¼ T jð Þ

p;i þ T jð Þ
h;i ð17Þ

where T jð Þ
p;i , T

jð Þ
h;i are, respectively, particular and homogeneous solution of Eq. (14).

The particular solution is found by approximation of right-hand side function

f x; y; T j�1ð Þ
i x; yð Þ; Ti�1 x; yð Þ

� �
by RBFs and monomials as:

f x; y; T j�1ð Þ
i x; yð Þ; Ti�1 x; yð Þ

� �
¼
Xna
k¼1

aku r að Þ
k x; yð Þ

� �
þ
Xnm
k¼1

anaþ k pk x; yð Þ ð18Þ

where u r að Þ
k x; yð Þ

� �
(for k ¼ 1; . . .; na) are RBFs, pk x; yð Þ (for k ¼ 1; . . .; nm) are

monomials, ak (for k ¼ 1; . . .; na þ nm) are real numbers, na – number of approximation

points, nm – number of monomials. The set of approximation points x að Þ
k ; y að Þ

k

n o
(for

k ¼ 1; . . .; na) is defined and quantity r að Þ
k x; yð Þ is defined as: r að Þ

k x; yð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x að Þ

k

� �2
þ y� y að Þ

k

� �2r
. The approximation is done for every approximation

point, which gives the system of linear algebraic equations

Xna
k¼1

aku r að Þ
k x að Þ

l ; y að Þ
l

� �� �
þ
Xnm
k¼1

anaþ kpk x að Þ
l ; y að Þ

l

� �

¼ f x að Þ
l ; y að Þ

l ; T j�1ð Þ
i x að Þ

l ; y að Þ
l

� �
; Ti�1 x að Þ

l ; y að Þ
l

� �� � ð19Þ

for l ¼ 1; . . .; na.
Once, the parameters ak (for k ¼ 1; . . .; na þ nm) are calculated, the particular solution
is:

T jð Þ
p;i x; yð Þ ¼

Xna
k¼1

akw r að Þ
k x; yð Þ

� �
þ
Xnm
k¼1

anaþ kPk x; yð Þ ð20Þ

where w rð Þ and Pk x; yð Þ for k ¼ 1; . . .; nm are particular solutions of Poisson equation
with inhomogeneous part of u rð Þ and pk x; yð Þ for k ¼ 1; . . .; nm, respectively.
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In this paper the Radial Basis Functions u rð Þ ¼ r2 ln r and monomials p1 x; yð Þ ¼ 1,
p2 x; yð Þ ¼ x, p3 x; yð Þ ¼ x2, p4 x; yð Þ ¼ y, p5 x; yð Þ ¼ y2, p6 x; yð Þ ¼ xy are used. The par-
ticular solutions for these functions are w rð Þ ¼ 0:25r4 ln r � 0:5ð Þ, P1 x; yð Þ ¼
x2 þ y2ð Þ=4, P2 x; yð Þ ¼ x2 þ y2ð Þx=6, P3 x; yð Þ ¼ x4 þ x2y2 � y4=6ð Þ=14, P4 x; yð Þ ¼
x2 þ y2ð Þ y=6, P5 x; yð Þ ¼ �x4=6þ x2y2 þ y4ð Þ=14, P6 x; yð Þ ¼ xy x2 þ y2ð Þ=12.

Next step of numerical procedure is to calculate homogeneous solution. It is done
by using the boundary conditions as

BT jð Þ
h;i x; yð Þ ¼ g x; y; tið Þ � BT jð Þ

p;i x; yð Þ ð21Þ

In MFS it is assumed that the homogeneous solution is a linear combination of func-
tions “fundamental solution”:

T jð Þ
h;i x; yð Þ ¼

Xns
k¼1

ck fs r sð Þ
k x; yð Þ

� �
ð22Þ

where fs(r) is the fundamental solution function, r sð Þ
k x; yð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� x sð Þ

k

� �2
þ y� y sð Þ

k

� �2r
,

x sð Þ
k ; y sð Þ

k

n o
for k ¼ 1; . . .; ns, is a set of source points, which are placed outside the region

X, ns is a number of source points, s is a distance between boundary C and fictitious
boundary with source points, ck ðk ¼ 1; . . .; nsÞ – real number coefficients.

To obtain the numbers ck ðk ¼ 1; . . .; nsÞ the boundary C is discretised, i.e. the set

x bð Þ
k ; y bð Þ

k

n o
for k ¼ 1; . . .; nb, of boundary points x bð Þ

k ; y bð Þ
k

� �
2 C is chosen. Number nb

is a number of boundary points. Then, the boundary condition (22) is written for each
boundary point, so

Xns
k¼1

ckBfs r sð Þ
k x; yð Þ

� ����
x ¼ x bð Þ

l

y ¼ y bð Þ
l

¼ g x bð Þ
l ; y bð Þ

l ; ti
� �

� BT jð Þ
p;i x bð Þ

l ; y bð Þ
l

� �
ð23Þ

for l ¼ 1; . . .; ns.
The fundamental solution for Laplace equation is fs rð Þ ¼ ln r. The solutions of

given above system of linear algebraic Eq. (23) are numbers ck ðk ¼ 1; . . .; nsÞ. So, the
final solution for j-th iteration at i-th time step is obtained.

The procedure of calculation of j-th iterations at i-th time step is stopped when the
following condition

1
nt

Xnt
k¼1

T jð Þ
i x tð Þ

k ; y tð Þ
k

� �
� T j�1ð Þ

i x tð Þ
k ; y tð Þ

k

� ���� ���\e ð24Þ

where x tð Þ
k ; y tð Þ

k

n o
is a set of trial points placed in region X, nt is a number of trial points,

e - small number, is fulfilled.
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3 Numerical Results

The numerical experiment has been preformed to validate the proposed algorithm.
The parameters of the MFS were chosen by checking some conditions, which are

described below.
The parameters s, nb, ns are chosen by checking the fulfilling of boundary condi-

tions. If the inequality

1
ntb

Xntb
k¼1

g x tbð Þ
k ; y tbð Þ

k ; ti
� �

� T jð Þ
i x tbð Þ

k ; y tbð Þ
k

� ���� ���\e ð25Þ

is the truth the values of s, nb, ns are treated as an optimal choice. In formula (25)

x tbð Þ
k ; y tbð Þ

k

n o
for k ¼ 1; . . .; ntb, is a set of trial points placed on boundary C and ntb is a

number of chosen boundary trial points.
The number of boundary points is chosen as 40. The boundary points are uniformly

distributed on boundary (10 points for each edge of rectangular domain). Number of
source points is 40, distance s = 0.2. Source points were placed on the boundary of
rectangular similar to the domain X with length of edges xmax � xmin þ 2sð Þ and
ymax � ymin þ 2sð Þ.

Number of approximation points na is chosen for each time step by checking the
following condition:

1
nt

Xnt
k¼1

f x tð Þ
k ; y tð Þ

k ; T j�1ð Þ
i ; Ti�1

� ����
�
Xna
k¼1

aku r að Þ
k x tð Þ

k ; y tð Þ
k

� �� �
�
Xnm
k¼1

anaþ kpk x tð Þ
k ; y tð Þ

k

� ������\e

ð26Þ

The number of approximation points was calculated as 121 and they are placed in
the domain X.

So, the calculations were made using the iteration stop condition (26) with the value
of accuracy parameter e equal to 10−5. Number of iterations steps required at each time
step to obtain the solution with demanded accuracy is given in Table 1.

We can observe that the proposed procedure is rather low time and work con-
suming. Just 4–6 iterations at each time steps are done to obtain results with demanded
accuracy.

Table 1. Number of iterations steps.

Time step 1 2 3 4 5 6 7 8

Number of iterations 4 5 5 5 6 5 5 5
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To estimate the fulfilling of the boundary conditions and correctness of done
approximation of non-homogeneous part of the differential equation the values of
following quantities

eb ¼ 1
ntb

Xntb
k¼1

g x tbð Þ
k ; y tbð Þ

k ; ti
� �

� BT jð Þ
i x tbð Þ

k ; y tbð Þ
k

� ���� ��� ð27Þ

ea ¼ 1
nt

Xnt
k¼1

f x tð Þ
k ; y tð Þ

k ; T j�1ð Þ
i ; Ti�1

� ����
�
Xna
k¼1

aku r að Þ
k x tð Þ

k ; y tð Þ
k

� �� �
�
Xnm
k¼1

anaþ kpk x tð Þ
k ; y tð Þ

k

� ������
ð28Þ

has been calculated and presented in Table 2. We can notice that ea and eb are rather
small numbers and confirm the good choice of values of parameters s, nb, ns.

The distribution of temperature is plotted in graphs presented in Fig. 5. One can
observe the change of the region shape at the following time steps. It is due to
movement of the tool. The region of the heat affected zone is can be noticed. The
maximum temperature is at the boundary which is in contact with the tool. And it is
easy to observe the convection condition of the upper surface of the workpiece. The
vertical surface of the workpiece has temperature equal to ambient temperature. It
means that the heat affect zone does not occupy the whole region.

We can conclude that in that region of increased temperature the material becomes
more soft and plastic, and material will perform plastic flow in this region.

Table 2. Values of eb, ea.

i-th time step j-th iteration ea eb
1 1 2 · 10e−6 1 · 10e−6

2 2 · 10e−6 3 · 10e−6
3 3 · 10e−6 4 · 10e−6
4 3 · 10e−6 6 · 10e−6

2 1 8 · 10e−6 3 · 10e−6
2 7 · 10e−6 3 · 10e−6
3 4 · 10e−6 4 · 10e−6
4 4 · 10e−6 4 · 10e−6
5 5 · 10e−6 5 · 10e−6
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4 Conclusions

The technology of Flowdrill, as a quite new one, requires still wild research. One of
branches of investigation may be numerical experiment. In this paper the innovative
proposal and implementation of one of meshless method was presented. The Method of
Fundamental Solution was a base of proposed numerical algorithm, supported by
Method of Finite Differences, approximation by Radial Basis Functions and Picard
Iterations.

Presented complex method was tested, with validation of the method parameters.
When the accuracy of the method was checked the problem of temperature distribution
in the workpiece under Flowdrill process was simulated. The results of this numerical
experiment are consistent with expectations. So, we may conclude that the proposed
combination of some chosen numerical methods, based on MFS is a good tool to
simulate phenomenum of temperature distribution during Flowdrill process.

Fig. 5. Temperature distribution in region in following time step: a. 0.2 s, b. 0.4 s, c. 0.5 s, d.
0.6 s.
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