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Abstract. Cold-formed, thin walled beams are popular structural members.
They are made of thin, cold-rolled steel sheets by using cold-rolling or edge
bending machines. The dimensional accuracy of those beams is dependent on
manufacturing machines, which can be manually or numerically controlled, and
the experience of their operators. If the cross-section of beam is complicated, the
actual beams may differ from their idealized counterparts. In this paper the
influence of actual imperfections on the strength of sigma channels with cor-
rugated flanges was evaluated. The actual beam was scanned using a high
resolution camera and then the generated cloud of 3d points was converted into
a surface model using OPTOCAD software. The strength and stability of actual
and ideal beams subjected to pure bending were analysed using Finite Element
Method. The presented numerical model included material and geometrical non-
linearity that is typical for thin-walled structural members. The obtained results,
i.e. critical moment, stresses and deflections, were compared with each other.
The influence of the beam length on the results was also evaluated.
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1 Introduction

Thin-walled, cold-formed structural members, such as beams, are popular construc-
tional elements due to their many advantages. They are made of single steel sheet that
may be protected against corrosion. Cold-forming process does not damage this coating
so final products, i.e. beams/profiles, do not requires galvanization, powder coating or
other anti-corrosion techniques. Cold-formed channels are usually produced on CNC
cold-rolling machines, though short series of custom beams can be easily manufactured
by using edge bending machines. This makes it possible to produce beams having big
cross-sections but small wall-thickness or beams with sophisticated cross-sections.
Unfortunately, their load capacity is usually restricted by different forms of buckling.
Therefore, some stiffeners are introduced in their flanges or webs. However, the more
complicated is the shape of the cross-section, the bigger is the risk of imperfections.
This may result in reduced load capacity of beams.
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The influence of imperfections on the strength and stability of thin-walled struc-
tures is the subject of many scientific works. Ungureanu and Dubina [1], for example,
analysed the influence of imperfections on the behaviour of perforated pallet rack
members in compression using non-linear finite element simulations. The effect of
imperfections, perforations and buckling modes reduced significantly the capacity of
perforated members in compression, especially in the coupling range because of
interactions between different bucking modes. Rasmussen and Hancock [2] proposed
numerical models to generate automatically geometrical imperfection modes into the
non–linear analysis.

Experimental and numerical investigations on thin-walled beams, in which actual
beams were compared with their idealized models, were conducted by some
researchers. Such approach was taken by e.g. Magnucka-Blandzi and Magnucki [3],
who improved their mathematical models of beams by comparing theoretical results
with experimental ones. They also prepared a review of papers on steel cold-formed
structures. Similar problems were analysed by other researches and some results in this
field were presented by Magnucka-Blandzi et al. [4] and Paczos et al. [5–7]. They
showed their own experimental and numerical investigations of thin-walled channel
beams with non-standard cross-sections. Cold formed steel beams with C-, I-, R- and
2R-shaped cross-sections were investigated experimentally (four-point bending test)
and numerically by Laim et al. [8].

The extensive review of recent papers on cold-formed structures that were pub-
lished in leading scientific journals and presented at the main international conferences
in the area was presented by Hancock [9].

In this paper, the influence of actual imperfections on the strength and stability of
sigma channel beams with corrugated flanges was analysed using non-linear finite
element analysis. The numerical model of actual beam was obtained by using 3d
optical, measuring system and OPTOCAD software. The results of numerical simu-
lation of actual, scanned beam and its idealized counterpart subjected to pure bending
were compared with each other.

The use of high resolution optical systems to analyse thin-walled structures has
been growing in recent years including stresses and strain measurements. Such system
was used by Paszkiewicz and Kubiak [10] who considered stability of composite
channel section beams subjected to pure bending and uniform compression. They used
strain gauges, Aramis 3D optical system and a universal testing machine to measure
strains and determine critical loads.

2 Beams

This research was devoted to cold-formed thin-walled sigma channel beams with
corrugated flanges. The cross-section of beams was presented in Fig. 1.
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The dimensions of beams and their-cross sections were following:

– L = 500, 750 & 1000 mm the total length of beam,
– H = 160 mm the height of beam,
– b = 80 mm the depth of beam,
– h = 14 mm the height of flange corrugation,
– d = 15 mm the height of lip,
– t = 1 mm the wall-thickness of beam,
– k = 8 mm the height of web stiffener.

Those beams may be manufactured by using cold-rolling machines or edge bending
machines. The latter are used mainly in the case of short series. Although, they are
popular and well-known manufacturing techniques, they also have some disadvan-
tages. One of them is the accuracy of results, i.e. the actual cross-section of beam may
be different than the ideal one shown in Fig. 1. In order to evaluate their possible
influence on the strength and stability, the actual beam manufactured on an edge
bending machine was scanned using SmartScan-HE R8 system.

The scanning process consisted of three stages. In the first, preliminary stage a
beam was sprayed with matt paint to prevent light reflection. Afterwards, a few ref-
erence points were marked on the scanned beam to compare photos taken from dif-
ferent angles. In the second stage, the beam was scanned using a high-resolution
camera. Patterns of strips were displayed on the surface of beam and then pictures were

Fig. 1. The cross-section of beam.
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taken. In the third stage, obtained data was processed by a computer. At the beginning,
the cloud of X, Y, Z points was generated in OPTOCAD software. Then they were
converted in CATIA v5 to a surface model that could be directly exported to CAD and
FEA software. The scanning was done by external company specialized in such a kind
of optical measurements.

Cross-sections of the scanned beam were presented in Fig. 2. The actual cross-
sections differed from the ideal one. In order to compare the geometrical properties of
actual and ideal cross-sections, the 3d model of scanned, actual beam was cut in eleven
points (spaced evenly along the beam). Then the geometrical properties of each cross-
section were measured using CAD software. The obtained results were compared with

Fig. 2. The actual cross-sections of scanned beam.

The Influence of Imperfections on the Strength and Stability 39



the geometrical properties of ideal cross-section. The relative difference between the
actual and ideal principal moments of inertia along the beam was shown in Fig. 3. The
first, actual, principal moment of inertia was smaller by 1–4.2% than its ideal coun-
terpart. The second, actual, principal moment of inertia at the ends of beam was bigger
than ideal one (max. by 2.3%), but in the centre of beam it might be 1.3% smaller. The
differences between the elastic section moduli was similar. The angle between the
principal and global beam axes varied form 0.36° at one end to 0.98° at another one.

3 Numerical Model

The strength and stability of actual, scanned and ideal beams were evaluated using
SolidWorks Simulation Premium 2012 FEA software integrated with popular Solid-
Works 2012 CAD system. Channel beams are usually subjected to bending loads so in
this case simply supported beams subjected to pure bending were analysed to avoid
their twisting and local effects of point loads. Thin-walled beams were modelled using
the second order triangular elements that consisted of six nodes (3 vertices and 3 mid-
nodes) and three parabolic edges. In this way the curvature of edge radiuses could be
accurately modelled. The finite element mesh of the actual, scanned 1 m beam was

Fig. 3. The difference between the actual and ideal principal moments of inertia along the beam.
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presented in Fig. 4. The maximum size of elements was 10 mm. There were 26 895
nodes and 13 250 elements. In preliminary analyses smaller 5 mm elements were used
as well, but the obtained results differed from the presented ones by less than 1%. The
mesh of ideal 1 m beam consisted of 18 009 nodes and 8 840 elements. Their smaller
number was the result of neglecting edge radiuses in the model.

The cross-section of thin-walled channels may change its shape during bending.
Therefore, numerical model included geometrical and material nonlinearity. In other
words, the stiffness matrix was updated at each iteration step and plastic von Mises
model of material was based on the true stress-strain curve (Fig. 5) determined from
tensile tests of specimens cut from the web of beam. It is noteworthy that strains in the
considered cases were less than 0.2%. Therefore, only the small part of the curve was
used.

Fig. 4. Scanned, actual beam L = 1000 m: finite element mesh (max. size of elements 10 mm).

Fig. 5. True stress-strain curve used in the presented numerical calculations (the limit of
proportionality rp = 115 MPa, the yield strength ra = 328 MPa).
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Bending moments were simulated as pressure applied to the end cross-section of
beams. They acted in the direction parallel to the beam axis. The value of pressure
changed linearly from 0 at the neutral axis of beam to max/min values at the ends of
beam (Fig. 6). The following boundary conditions were applied to numerical models of
beams to avoid local effects at the supports. At both ends of beams, displacements in
plane perpendicular to the beam axis were locked (uy = uz = 0). Moreover, displace-
ments parallel to the beam axis were locked along the centre of the web (Fig. 6).
Critical load and ultimate strength are usually very dependent on assumed boundary
conditions so only beams having exactly the same boundary conditions could be
compared.

4 Results of Numerical Simulations

The actual, scanned and ideal beams were analysed until they collapsed. Three different
lengths of beams were considered: 0.5, 0.75 and 1.0 m. This was done to evaluate if the
length of beam influenced results, i.e. if imperfections had smaller effect in short/long
beams.

The considered ideal channel beams collapsed because of elastic distortional
buckling. In other words, the deflection of the top compressed flange increased much
quicker than the rest of beam and when stresses reached the critical value, beam
collapsed. This could seen in Fig. 7 where deflection in the middle of ideal 1 m beam
versus bending moment in four points was shown. The deflection of each corner was a
bit different even for small values of bending moment. The deflection of the top,
compressed flange (point B) was the biggest one. The vertical displacements in the top
and bottom corners of the web at the beginning were the same, but for M = 0.656 kNm
started to differ. The deflection of the bottom flange increased slowly and for
M = 2.0 kNm started to decrease.

Fig. 6. Load and boundary conditions of beams.
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The buckling (distortional) mode of ideal 1 m beam was shown in Fig. 8. The
deformation of the top compressed flange was also visible in stress plots shown in
Fig. 9. The stresses in the top flange were not uniform, as one may expect using
classical beam theory. Higher stresses were observed at the centre of top, compressed
flange close to the reinforcing lip. The bottom plot in Fig. 9 showed the stresses just
before the collapse of beam. Maximum stresses in this case were equal to 290 MPa and
they were lower than the yield strength of the material, i.e. 328 MPa. It meant that the
observed buckling mode was actually an elastic one. The top plot presented in Fig. 9
showed 1.0 m actual, scanned beam when stresses were equal to the limit of
proportionality.

It is noteworthy that the failure mode was not dependent on the length of beam, i.e.
0.5, 0.75 and 1 m long beam collapsed in the same way – elastic distortional buckling.
Naturally, the value of the maximum, critical moment decreased with the length of beam.

Fig. 7. The relationship between bending moment and deflection of 1 m ideal beam.

Fig. 8. Distortional buckling mode of the ideal 1 m beam (deformation not in scale).
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Fig. 9. Von Mises stresses at the outer surface of ideal 1 m beam: top plot M = 2.13 kNm,
bottom plot M = Mmax = 3.19 kNm (deformation not in scale).

Fig. 10. Distortional buckling mode of the scanned 0.75 m beam (deformation not in scale).
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The failure mechanism of actual, scanned beams was the same as ideal ones, i.e.
elastic distortional buckling (Fig. 10). However, their maximum, critical bending
moment was smaller. The comparison of maximum bending moments of actual,
scanned and ideal beams was shown in Table 1. In the considered case, imperfections
reduced the maximum bending moment by a few percent (3.0–5.4%). Naturally, the
longer was a beam the lower was the maximum bending moment. This was caused by
the fact that for the same bending moment the deflection of actual, scanned beam was
bigger. The relationship between bending moment and deflection of 0.75 m beams was
presented in Fig. 11 – two graphs referring to the top (compressed) and bottom (in

Fig. 11. The relationship between bending moment and deflection of ideal and actual, scanned
0.75 m beams.
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tension) flange respectively. The relationships for ideal and actual scanned beams were
similar with one exception. The maximum deflection of the bottom flange measured in
the middle of actual, scanned 0.75 m beam raised monotonically until collapse. In the
case of ideal beam for bending moment bigger than 2.89 kNm the deflection of the
bottom flange started to decrease.

Not only the relationships between bending moment and deflection of ideal and
actual, scanned beams were similar. The same referred to von Mises stresses. The
relationship between them and bending moment was presented in Fig. 12. The graphs
for ideal and imperfect beams were very similar. Naturally, von Mises stresses in the
actual, scanned 0.75 m beam for the same bending moment were higher than stresses in
ideal beam. In all cases (points) some anomalies were observed, in other words stresses
did not increase monotonically with bending moment, but there were steps in graphs.
The value of stresses at which those anomalies were observed matched the limit of
proportionality, i.e. 115 MPa. There were no such steps in the graphs showing the
relationship between deflection and bending moment. Therefore, their nature was rather
numerical and they had no physical meaning. They could not be treated as local or any
other form of buckling. The maximum stresses in actual, scanned beams exceed the
limit of proportionality for smaller bending moments than stresses in the ideal beams.
Moreover, the longer was a beam the bigger was the difference. The comparison
between “critical bending moments” for which maximum stresses exceed the limit of
proportionality was presented in Table 2. The difference between them varied from
8.3% for short 0.5 m beams to 13.8% for long 1.0 m beams.

Table 2. The comparison of the “critical” Mcr bending moments.

Length Ideal beam Actual beam Rel. difference

0.50 m 2.362 kNm 2.165 kNm 8.34%
0.75 m 2.187 kNm 1.968 kNm 10.01%
1.00 m 2.132 kNm 1.837 kNm 13.84%

Table 1. The comparison of the maximum (limit) Mmax bending moments.

Length Ideal beam Actual beam Rel. difference

0.50 m 4.654 kNm 4.465 kNm 4.06%
0.75 m 3.404 kNm 3.303 kNm 2.97%
1.00 m 3.190 kNm 3.018 kNm 5.39%
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5 Conclusions

In the paper, the influence of imperfections on the strength and stability of sigma
channels with corrugated flanges was analysed. The actual imperfections were con-
sidered. They were implemented into numerical model by 3d scanning of actual beam.
Those imperfections reduced the geometrical properties of cross-section even by 4.2%
(the first principle moment of inertia) and rotated the principle axes by 0.98° in relation
to the global coordinate system, i.e. an actual profile was not perfectly symmetrical.

Fig. 12. The relationship between bending moment and von Mises stresses at the outer surface
of ideal and actual, scanned 0.75 m beams.
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Simply supported beams subjected to pure bending were considered, because
channels usually carry transverse loads. Preliminary investigations confirmed a well-
known fact that such thin-walled, cold-formed channel beams could not be analysed
using static linear analysis based on classical beam theory. The stress distribution in the
plane parallel to the neutral axis, e.g. in the flange, was not uniform and the shape of
cross-section changed as load (bending moment) increased. In order to accurately
simulate the behaviour of beams, geometrical and material nonlinearities were included
in numerical models. The used true stress-strain curve was based on the actual tensile
tests of specimens cut from beams.

The strength and stability of actual, scanned beams were compared with the
strength and stability of their idealized counterparts that did not include edge radiuses.
In all considered cases, beams collapsed because of elastic, distortional buckling that is
typical for short, thin-walled channels with reinforced flanges. Imperfections reduced
the maximum bending moment (limit load) by 3.0–5.4% so a little bit more than the
geometrical properties of cross-sections. The behaviour of actual, scanned and ideal
beams, i.e. relationships between bending moment and deflection or stresses, was very
similar with one exception. In the case of ideal 0.75 m beam the deflection of bottom
(in tension) flange decreased for M > 2.89 kNm, whereas the deflection of the actual
bottom flange increased monotonically till collapse.

The anomalies in the relationships between bending moment and von Mises
stresses (steps visible in stress-moment graphs, Fig. 12) were rather numerical ones.
They were observed for stresses equal to the limit of proportionality, i.e. 115 MPa. The
maximum stresses of actual, scanned beam exceeded this limit for smaller values of
bending moment than in the case of ideal beams. The difference was equal to 8.3–
13.8% and raises for longer beams. It is even three times bigger than the reduction of
geometrical properties of cross-section.

In conclusion, in the considered case imperfections did not change the nature of
failure (the same bucking mode) but naturally reduced the critical and maximum
moments. The relative (percentage) reduction of those loads was much bigger than the
reduction of cross-section properties (up to three times).

Acknowledgments. The research work reported here was made possible by support of the
National Science Centre given on the decision No. DEC-2017/25/B/ST8/00266 of 2017-11-23 –

Contract No. UMO-2017/25/B/ST8/00266.

References

1. Ungureanu, V., Dubina, D.: Sensitivity to imperfections of perforated pallet rack sections.
Mech. Mech. Eng. 17(2), 207–220 (2013)

2. Rasmussen, K.J.R., Hancock, G.J.: Geometric imperfections in plated structures subject to
interaction between buckling modes. Thin-Walled Struct. 6, 433–452 (1988)

3. Magnucka-Blandzi, E., Magnucki, K.: Buckling and optimal design of cold-formed thin-
walled beams: review of selected problems. Thin-Walled Struct. 49, 554–561 (2011)

48 J. Kasprzak and P. Paczos



4. Magnucka-Blandzi, E., Paczos, P., Wasilewicz, P.: Buckling study of thin-walled channel
beams with double-box flanges in pure bending. Strain Int. J. Exp. Mech. 48, 317–325
(2012). Blackwell Publishing Ltd.

5. Magnucki, K., Paczos, P., Kasprzak, J.: Elastic buckling of cold-formed thin-walled channel
beams with drop flanges. J. Struct. Eng.-ASCE 136(7), 886–896 (2010)

6. Paczos, P.: Experimental and numerical (FSM) investigations of thin-walled beams with
double-box flanges. J. Theor. Appl. Mech. 51(2), 497–504 (2013)

7. Paczos, P.: Experimental investigations of thin-walled C-beams with nonstandard flanges.
J. Constr. Steel Res. 93, 77–87 (2014)

8. Laim, L., Rodrigues, J.P.C., da Silva, L.S.: Experimental and numerical analysis on the
structural behaviour of cold-formed steel beams. Thin-Walled Struct. 72, 1–13 (2013)

9. Hancock, G.: Cold-formed steel structures: research review 2013–2014. Adv. Struct. Eng. 19
(3), 393–408 (2016)

10. Paszkiewicz, M., Kubiak, T.: Selected problems concerning determination of the buckling
load of channel section beams and columns. Thin-Walled Struct. 93, 112–121 (2015)

The Influence of Imperfections on the Strength and Stability 49


	The Influence of Imperfections on the Strength and Stability of Cold-Formed Sigma Channels with Corrugated Flanges
	Abstract
	1 Introduction
	2 Beams
	3 Numerical Model
	4 Results of Numerical Simulations
	5 Conclusions
	Acknowledgments
	References




