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Chapter 2
Cognitive Behavior and Clinical Workflows

Jan Horsky

2.1  �Cognitive Work in a Complex Domain

The intrinsic complexity of evidence-based, technologically advanced modern 
healthcare defines processes and affects work environments in ways that make them 
difficult to describe with consistency and create models with highly predictable 
outcomes. The healthcare industry comprises a wide array of organizational entities 
that range in scale from small private practices and independent clinics to hospitals 
and large healthcare delivery networks. They interact with a multitude of ancillary 
and support service businesses, insurance and payer companies, public administra-
tive and regulatory bodies, private and public research centers and academic institu-
tions that together form one of the most complex organizational structures in society 
(Begun et al. 2003; McDaniel et al. 2013). Individuals engaged directly or indirectly 
in patient care, its management and administration routinely collaborate across pro-
fessional and institutional boundaries. The efficacy of their work and the safety of 
patients are vitally dependent on technology support that allows collection, storage, 
analysis and sharing of information and communication. Decision making and rea-
soning of clinicians in this highly interconnected environment is as often autono-
mous as it is interdependent and contingent on the expertise and decisions made in 
parallel by others. This intricate combination of individual and collective responsi-
bilities, actions and decisions tends to generate many non-linear work processes that 
account for much of the dynamism and elasticity of both personal and collaborative 
workflows (Fig. 2.1).

Work characteristics that are specific and often unique to healthcare make pre-
dictive analyses of workflows in this domain problematic. The primary responsi-
bility of clinicians is to ensure that patients receive timely, appropriate and 
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effective care whenever and wherever needed. Goals and their sequence—the con-
stituent parts of workflows—are in practice quickly reorganized and modified to 
accommodate new developments and may require interventions that conflict with 
prior or existing objectives or with normative pathways. Decisions and actions in 
many lines of clinical and ambulatory care are often deferred, substituted, traded 
off or finalized only to a sufficient degree so that tasks with higher priority may get 
fully completed when time or resources are limited. For example, planned proce-
dures, evaluations or medication therapy may be changed when new laboratory 
test results become available or when newly discovered findings require immedi-
ate attention. Trauma patients are treated for injuries that are life-threatening while 
the care for other illnesses and conditions may be limited to stabilization or post-
poned until more favorable circumstances allow. Planned behavior and goal com-
pletion are routinely interrupted through personal contact, telephone conversations, 
pagers or computer-generated alerts. This dynamic is inherent to clinical work and 
generally considered to be necessary and often adaptive so that interventions can 
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Fig. 2.1  Major organizational components of integrated healthcare industry. Reprinted from 
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be directed toward the greatest need when situations evolve and change. Team 
members often provide help to one another when needed without waiting for 
explicit requests (Rivera-Rodriguez and Karsh 2010). Cognitive psychology 
research provides ample evidence about the disruptive effects of interruption on 
human cognition (Altmann and Trafton 2007) and reports from healthcare studies 
show that interruptions and distractions contribute to medical error (Ashcroft et al. 
2005) and may increase the risk to patient safety during certain types of clinical 
tasks (Li et al. 2011). The fragmentation of work is many times unavoidable and 
clinicians incur extraneous cognitive burden and mental fatigue that often con-
flicts with their reasoning.

There are many public and private organizations with complicated internal 
structures that manage large workforce in which scientists, researchers, lawyers, 
professionals and administrative and support personnel with vastly different 
expertise and duties routinely collaborate. The National Aeronautics and Space 
Agency (NASA), for example, or many national airlines, technology corporations 
and power-generating companies conduct work and research projects in an envi-
ronment that is science-based, safety-critical and contains considerable risks that 
need to be well understood and controlled. Healthcare shares many of these attri-
butes and efforts to increase the safety, quality and effectiveness of care are often 
informed by initiatives successfully implemented in such industries—the long-
term investment in information technology being a prime example. There are also 
considerable differences emanating from the inherent properties of an engineered 
system (the aircraft, engineering) and a biological, natural system (the patient, 
medical science). Healthcare has many characteristics that are not typically found 
in engineered systems (Durso and Drews 2010). Better insight into the specifics 
and idiosyncrasies of this information-intensive domain may accelerate the 
uneven pace of progress towards greater effectiveness and increased safety that is 
intended to be advanced by health information technology (HIT) and work 
organization.

Biomedicine is a scientific discipline that is in many respects quite unlike other 
applied and natural sciences. A defining but elusive feature of physiologic systems 
is their daunting complexity arising from the interaction of a myriad of structural 
units and regulatory feedback loops that operate over a wide range of temporal and 
spatial scales, enabling an organism to adapt to environmental stresses (Glass 2001). 
Medical care and research encompass the properties and behavior of human 
beings—organisms whose complexity have no counterpart in other scientific disci-
plines. Many aspects of these natural systems are opaque because interactions have 
to be deduced and may not be fully understood: individual elements of biological 
systems occurred without intentional design and are the result of reorganization and 
evolution in order to adapt to changing environment (Durso and Drews 2010). 
Medical investigations and discourse therefore includes the aspect of uncertainty 
that inevitably creates variability among individuals and makes clinical information 
systematically different from the information used in physics, engineering, or even 
clinical chemistry (Shortliffe and Barnett 2014).

2  Cognitive Behavior and Clinical Workflows
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Decision making involves reasoning with inherently probabilistic information. 
However, the level of uncertainty in diagnostic hypotheses or treatment options that 
clinicians seek to reduce by testing and by gathering data is further affected by the 
availability of information that is often incomplete or unreliable. Observations, 
laboratory results and narrative reports may not have been completed or cannot be 
immediately obtained; they may also be in apparent conflict or ambiguous, and 
their interpretation could be erroneous (Weber et  al. 2017; Smithson 1999). For 
example, when the history of respiratory problems is not found in the patient record, 
its lack could be interpreted as an indication of the absence of prior problems by a 
clinician hypothesizing about the possibility of acute lung disease even if such 
assessment was simply not documented. The value of any patient information rises 
dramatically when the level of record completeness and comprehensiveness is high 
and typically needs to reach 85% or above to be truly useful to clinicians (Yasnoff 
2014).

Somewhat ironically, paucity and excess of information may coincide even in the 
record of a single patient. Clinicians need to collect relevant assessments, case sum-
maries, radiology reports laboratory values and other data and review them in con-
text. The information may be stored in a single or in multiple electronic health 
record systems (EHR) or distributed over ancillary systems that may or may not be 
functionally interoperable. A patient treated by several hospitals and specialty ser-
vices will have only a fraction of all recorded historical data in one system and a 
reviewing clinician may not be aware of critical events stored in remote, uncon-
nected systems (Weber et al. 2017). Those that are gathered within a single EHR 
may be presented on screens in separate modules and sections that de facto silo 
them, further complicating their meaningful aggregation for a specific clinical pur-
pose. Clinicians may need to repeatedly search and navigate through the record in 
order to retrieve relevant information (Stoller 2013). Narrative visit and progress 
notes may also contain repetitive, dated or inaccurate content that is created as the 
unintended consequence of too-facile recycling of old data through cut-and-paste 
behavior. This so-called “note bloat” inhibits the ongoing questioning and ascertain-
ment process that helps monitor diagnostic accuracy as illnesses evolve over time 
(Graber et al. 2017).

The complex science, the pragmatics of making decisions with uncertain infor-
mation, the intricacies of mixed collaborative and individual responsibilities and the 
dynamics of established and ill-defined goals are all characteristic of a field in which 
work demands can exceed the bounds of unaided human cognition (Masys 2002). 
The extent of knowledge that needs to be mastered also rapidly expands, often 
changing the understanding of existing medical concepts with new insights. It is 
estimated that while it took 50 years to double the volume of medical research pub-
lications in 1950, in 1980 it was merely 7 years, 3.5 years in 2010 and it is projected 
to be just 73 days in 2020 (Densen 2011). Health information technology that is 
unobtrusively embedded into workflows and effectively supports clinicians in their 
decision making, manages access to contextual knowledge and helps with data anal-
ysis and interpretation is as difficult to design and implement as it is necessary for 
safe and high-quality care.
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2.2  �Complexity of Medical Care Reflected in Workflows

Large healthcare institutions are paradigmatic examples of complex organizations 
where clinicians routinely engage in non-linear interactions with others and with 
information technology and where their work plans include many emergent goals 
(Martínez-García and Hernández-Lemus 2013). Complex work environments are 
distinctly different from those that are merely complicated: they are more difficult 
to analyze and future system states are not always predictable. Complicated prob-
lems and processes originate from singular causes or from the actions of identifiable 
agents and when they combine to create a problem state, the sources can be distin-
guished and addressed individually. Complex problems, on the other hand, evolve 
from networks of multiple interacting causes that may not be possible to differenti-
ate and interventions to address them need to consider systems in their entirety. 
Feedback and circular processes in such systems also modify and intensify the 
causes so that effects are often disproportional to their origins (Poli 2013).

Health care can be characterized as a socio-natural system with many non-linear 
and non-additive functions that may be opaque and more difficult to understand and 
predict than engineered systems (e.g., aviation, manufacturing) where nonlinearity 
is often a sign of malfunction (Durso and Drews 2010). Standard, reusable pro-
cesses that often engender safe practices and allow monitoring for anomalies that 
may eventually become problems have therefore more limited use in healthcare 
than in other safety-critical work environments. Clinicians may prioritize or trade 
off multiple immediate and longer-term goals to restore a patient to health or to 
reduce their discomfort. Objectives and goals that are initially vague and only grad-
ually become more focused and defined as more insight is gained may be called 
emergent (Klein 2009). Emergent properties of systems and processes are difficult 
to model and predict because complex systems are non-reducible to their constitu-
ent parts. In the hypothetico-deductive approach to diagnostic reasoning, data and 
observations are added to the growing database of findings and are used to reformu-
late or refine the active hypotheses until one reaches a certain threshold of certainty 
and a management, disposition or therapeutic decisions can be made (Shortliffe and 
Blois 2014). Parts of a therapeutic plan that define a patient trajectory and work-
flows for multiple clinicians providing services and care may therefore be only ten-
tative, even in situations when goals are clearly defined.

2.3  �Workflow Modeling

Beginning in the late nineteen eighties, large American companies saw the benefit 
of studying cross-functional business processes rather than concentrating separately 
on functional and transactional operations such as procurement, manufacturing and 
sales. They defined the concept of a business process as a set of logically related 
tasks performed to achieve a specific business outcome—primarily, better service to 
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clients (Davenport and Short 1990). Decisions that affect multiple processes are in 
this paradigm given more weight than ad-hoc, local decision making.

A somewhat parallel development in the healthcare industry in the nineteen nine-
ties, spearheaded by academic institutions, professional societies and regulatory 
bodies, strived to improve the continuity of care across disciplines and to decrease 
unwarranted practice variation (Wennberg 1999). These entities started creating and 
disseminating collections of evidence-based recommendations for best practices, 
called clinical guidelines, that addressed specific clinical goals or conditions. They 
provide the basis for higher-level decision making and are often complemented by 
locally-developed clinical protocols to monitor compliance but usually do not define 
individual steps in a process. There are also clinical pathways, structured multidis-
ciplinary plans of care, designed to support the implementations of clinical guide-
lines and protocols. However, there are today no formal industry standards for 
completing care processes and clinicians have largely their own ways of interacting 
with patients and executing tasks (Karsh 2009).

Workflow generally refers to the control dimension of a business process, that is 
the dependencies among tasks that must be respected during its execution (Delacoras 
and Klein 2000). The term is used more broadly in healthcare and its meaning can 
vary. It can describe goals and processes for an individual as well as for groups, the 
navigation paths through EHR screens, abstract representation of tasks, information 
needs, error conditions and alternate paths, or the steps that a clinician performs 
when delivering care according best practice suggestions and clinical guidelines.

Work environment analyses have historically investigated the business processes 
associated with care or the flow of patients and staff through large hospital build-
ings. The interest in analyzing clinical work processes and collaboration developed 
later, but rather than a planned strategy to improve the effectiveness and safety of 
care, the impetus was often a need to address inefficiencies and disruptions reac-
tively when identified or introduced by new technology implementation. For exam-
ple, there are no standard descriptions of workflow for care processes that would 
guide decisions about where and how to integrate computer-based decision-support 
interventions (Shiffman et al. 2004). Workflow studies, once scarce, are now being 
done more frequently although their findings are often inconclusive or conflicting 
(Zheng et  al. 2015). Many lack scientific rigor because they describe workflows 
only indirectly or do not explain conflating or mediating factors such as training and 
organizational culture within the socio-technical context of HIT implementation 
and use (Carayon and Karsh 2010).

A theoretical perspective of work in healthcare organizations holds that complex 
social interactions, conflicting objectives, preferences and work demands determine 
the use and effect of information technology (Anderson and Aydin 2005). Predictive 
analyses require a robust understanding of organizational dynamics, characteristics 
of individuals, information systems and the knowledge of processes that occur dur-
ing system planning, implementation and use; simply modeling the levels of inde-
pendent variables hypothesized to predict change cannot be productive (Mohr 1982; 
Markus and Robey 1988). A useful paradigm for situating the description of work 
processes, pathways and interactions that healthcare workflow studies refer to may 
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be found in the work of Holden and Karsh (Holden and Karsh 2009) who have for-
mulated a theoretical model of multilevel work system to understand the behavior 
of clinicians working with the support of information technology. Derived in part 
empirically from HIT evaluation studies and implementation literature and also 
from theories used in communications sciences, psychology, sociology, manage-
ment, organizational behavior and human factors research, it was applied to help 
explain the determinants of technology use behavior (Smith and Sainfort 1989; 
Carayon et  al. 2003; Klein et  al. 1994; House et  al. 1995; Klein and Kozlowski 
2000). The central proposition of this model is that the physical, cognitive and 
social-behavioral performance of a clinician is affected and constrained by nested 
structural elements of healthcare organization (Karsh 2009).

The four-level model describes the integration, or fit, of the clinician-HIT inter-
action, collaboration and workflow patterns on the base level within the constraints 
and workflow patterns active in the levels above. At the top of this hierarchy is the 
entire healthcare industry where standards, regulations, legislative oversight, 
social influence and labor force characteristics guide the work of organizations. 
Below are healthcare institutions of different size, from care delivery networks to 
private practices, that create administrative structures of their own, formulate poli-
cies, norms and best practices, set priorities and provide training, financial 
resources and expertise appropriate to its constituent work groups and units that 
are on the next level down. Each organizational setting has its own constraints 
determined by technological and administrative factors, by its core mission that 
affects the professional and specialization makeup of the workforce and by the 
characteristics of the target patient population that collectively contribute to the 
complexity of workflows and task structure. The work of individuals, at the base 
level, is therefore done in an environment that is responsive to the disruptive and 
conducive effects of elements and activities from each level on attention, decision 
making, problem solving and cognitive labor. Interfaces and conduits between and 
within levels create a rich and information-intensive work context for workflows at 
the clinic level, patient care workflows and clinician mental workflows (Holden 
and Karsh 2009).

A workflow model is a simplified representation of past, actual or future process 
that can be described by routing, allocation and execution components. It may have 
a narrow focus such as the support for decision making but usually there is a broader 
purpose (Reijers 2003). There are several frameworks and models that have been 
applied to the study of healthcare processes, from specific environments to more 
general settings. Bricon-Souf and colleagues describe a proprietary modeling 
approach for medical intensive care units that explicitly distinguishes urgency in 
determining the authorization of a resource to perform a task (Bricon-Souf et al. 
1999). The Systems Engineering Initiative for Patient Safety (SEIPS) (Carayon 
et al. 2006) model is more broadly applicable and defines the work system as an 
interactive environment that structures workflows, affects the performance of clini-
cians and therefore, indirectly, patient outcomes. The authors also proposed the 
Workflow Elements Model (WEM) (Carayon et al. 2012), a related framework that 
conceptualizes the activity of individuals and groups working asynchronously as 
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dynamic and temporal characteristics of workflows. System elements, in this view, 
create a context that constrains or enables workflows that encompass converging 
and diverging goals. The dynamism of these processes is considered the emergent 
property of work.

A compelling viewpoint on the analysis of healthcare work and complemen-
tary to the structural dynamism found in other models is the conceptual lens of 
the patient trajectory: the pathway of an individual patient through the process of 
care becomes the anchor point of analysis. The patient-oriented workflow model 
(Ozkaynak et  al. 2013) references the cognitive, social and work behavior of 
agents in a complex sociotechnical system (Berg 1999a; Sittig and Singh 2010) 
where actions are not centered around individuals or groups but rather distrib-
uted among roles in the work setting that converge around the care of a specific 
patient. The process that partially determines the basic directions and outlines of 
the care process is a structured sequence of activities, events, and occurrences 
related to a patient’s particular illness trajectory. The term concerns the way in 
which an illness typically unfolds in both sequential and temporal order and how 
management and treatment actions are planned (Reddy et al. 2006). Workflow 
analyses in this paradigm therefore focus on the embedding of illness trajectory 
within the care process. Clinicians planning care interventions and tests often 
need to understand where on the trajectory a patient currently is and where they 
should be relative to the characteristic unfolding of a disease progression. Their 
reasoning needs to concern not only individual data points at the time of deci-
sions but also patterns and trends over time and their interpretation in the larger 
context of known outcomes over many patients (Hilligoss and Zheng 2013). 
Developing these models is methodologically and practically challenging, how-
ever, because of the large variability of data types that are meaningful and rele-
vant in each setting and also due to the lack of a comprehensive and robust 
conceptual framework that limits their interpretation with consistency (Ozkaynak 
et al. 2013).

More recently, a multidimensional Triangle Evaluation Model (Ancker et  al. 
2012) was proposed to identify elements of healthcare structure and processes that 
should be assessed concurrently with quality and safety outcome variables. The 
structure-level predictors include HIT characteristics and how clinicians interact 
with it, organizational setting and patient population. These foci align well with the 
multi-level and dynamic perspective of healthcare work.

Dynamic workflows self-adapt to the present situation and evolve at execution 
time as a function of personal insight. Clinicians often encounter ill-defined and 
under-specified problems they need to solve and their cognitive task is to determine 
the form of the solution. Such systems are called “loosely coupled” and it is useful 
to see dynamic workflows as situated historical records where tightly-coupled ele-
ments provide a bound to loosely-coupled relationships and event sequences that 
are largely non-deterministic (Covvey et al. 2011). An example of work environ-
ment that can be characterized in such terms is emergency and critical care (Horsky 
et al. 2015).
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2.4  �Cognitive Behavior and Workflow Effects

A prominent attribute of clinical work is the concurrent presence of both tightly and 
loosely coupled organizational and work relationships. It is essential that smaller 
units organize their work autonomously from central control and that individuals 
have appropriate level of discretion to make independent decisions in order to man-
age the evolving needs of patient care. Typically, clinicians have loosely-coupled 
interactions with policy-setting authorities in administrative and medical oversight 
roles who monitor institutional guidelines and strategies and regulatory mandates 
from local and national bodies (the higher tiers in the multi-level model). They are 
highly trained professionals who collaborate with other experts but retain individual 
responsibility for decisions (Pinelle and Gutwin 2006). However, multi-disciplinary 
and specialized (e.g., surgical) teams often have an ordered structure with tightly-
coupled and clearly defined roles and relationships. For example, attending physi-
cians, residents, interns, medical students, nurses and support staff in hospitals have 
roles delineated in an explicit hierarchy and patient care and indirect services are 
directed and communicated through verbal and written orders.

A theoretical framework that is increasingly more used to study problem solving 
and collaborative work in healthcare is Distributed Cognition (DCog) that concep-
tualizes human cognition as extended beyond the boundaries of an individual and is 
manifest in artefacts (physical and electronic), social and work relationships (Hollan 
et al. 2000; Hutchins 1991, 1995, 2000). Its focus is on representational transforma-
tion of information that occurs in external media and are coordinated by human and 
technological actors (Wright et al. 2000; Furniss and Blandford 2006; Cowley and 
Vallée-Tourangeau 2017; Horsky et al. 2003). It is perhaps the most clearly articu-
lated, critiqued, commonly used and well known form of exploring how distributed 
action can be examined as a cognitive process (Perry 2017). The problem structure 
that DCog can analyze with relatively little difficulty is often defined a-priori: goals 
are known and defined, changes follow pre-determined processes and many tasks 
are repetitive and could be trained. Studies that typically produce clearly identifi-
able examples of problem solving and cognition distributed over artefacts and col-
laborators usually involve well-defined activities, explicit boundaries of control and 
influence and an environment where work roles and protocols are pre-set and gener-
ally static and constrained, such as ship navigation or the work of aircraft pilots.

The tightly-coupled components of healthcare workflows are appropriate objects 
of such analyses. For example, the patient trajectory workflow model is closely 
related to that patient’s illness trajectory as clinicians make decisions that follow a 
specific reasoning process, or an “illness script.” It is conceptualized as an internal 
representation of the pathophysiology, epidemiology, time course, signs and symp-
toms of a particular illness or a disease and organized as a summary—or a mental  
and treatment (Custers 2015). Such models are initially acquired through medical 
training and further developed and internalized by professional experience. They 
represent knowledge in three broad categories: predisposing conditions (context), 
pathophysiological insult (causal chain) and clinical consequences (signs and symp-
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toms) (Schmidt and Rikers 2007). Expert clinicians have over time expanded, 
refined and contextualized this knowledge to form durable mental models in which 
the presence or absence of significant script characteristics carry certain predictive 
value for a diagnosis. Their ability to differentiate between illnesses with similar 
presentations allows them to make more accurate diagnostic and care decisions 
more quickly.

Clinicians are less likely to associate illnesses with a particular script when they 
have atypical presentation or when they encounter them infrequently. Their diag-
nostic reasoning then becomes more laborious and vulnerable to errors, biases and 
misconceptions (Jones et al. 2014). Uncertainty is inherent in clinical work and its 
level is associated with diseases that vary greatly in the degree of symptom ambigu-
ity (Leykum et al. 2014). For example, patients who have a more typical progression 
of an illness can be more reliably and predictably treated according to existing stan-
dards of care than others for whom population-derived guidelines are a poor fit and 
who require more personalized care. The downside is that outcomes dependent on 
individual characteristics or manifestations that may be unknowable are far less 
certain.

DCog analyses are less effective for the analysis of loosely-coupled structures 
that have dynamic workflows and emergent goals. Uncertainty takes many forms in 
healthcare (Plsek and Greenhalgh 2001) and can be attributed to three main sources: 
the complexity of the system itself, the poorly predictable trajectories of illnesses, 
and the limits of scientific knowledge (Han et al. 2011). It has been conceptualized 
as a multidimensional phenomenon with theoretically distinct domains and con-
structs that are potentially measurable and related to different outcomes, mecha-
nisms of action and management strategies (Gerrity et al. 1990). For example, a 
measure developed to study clinical reasoning strategies during patient visits 
includes an assessment of uncertainty that refers to how well the limitations of 
available information are recognized and explained and how solutions are planned 
to adjust to the current situation (Weir et al. 2012). A study of clinical reasoning and 
communication in an emergency department examined the amount of detail con-
veyed in narrative accounts of care during handoffs as an approximation of the 
uncertainty level (Horsky et al. 2015). However, uncertainty of diagnostic and treat-
ment decisions within complex systems is often irreducible and its measurement 
and management challenging. It is the product of non-linear dynamics and the infor-
mation needed to reduce this type of uncertainty may not exist (Lanham et al. 2014). 
Application of the DCog approach in settings where shifting problem space and 
where specific, local solutions are central to the performance of both individual 
actors and the entire system therefore remains problematic.

There are several published reports on DCog analyses that have come close in 
their application to highly dynamic and loosely structured settings (Hazlehurst et al. 
2007, 2008; Holder 1999) although the problems described have been carefully 
“bounded” to create a simplified problem space that does not account for the layers 
of setting context (Cowley and Vallée-Tourangeau 2017). Many other studies, how-
ever, have used DCog as a methodological and explanatory framework or were 
designed to extend its methodology (Horsky et al. 2003; Kaufman et al. 2003, 2009; 
Furniss et al. 2016a; Sedig et al. 2015; Grundgeiger et al. 2010; Cohen et al. 2006; 
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Xiao 2005; Nemeth et al. 2004; Berg 1999b; Zhang 2002; Zhang and Norman 1994; 
Horsky 2008). Importantly, the DCog framework allows researchers to identify and 
discuss the difference between tightly and loosely coupled activity systems in terms 
of their informational content and problem solving activities (Cowley and Vallée-
Tourangeau 2017).

The distributed and highly specialized healthcare model, characteristic for 
advanced medicine, requires a high level of effective coordination among clinicians 
and experts. It means that all parties need to understand the position of their collabo-
rators in the shared problem space and how their mental models and work progress 
align in order to reduce diagnostic or therapeutic uncertainty and resolve ill-
structured problems. Situation Awareness (SA) and decision-making also becomes 
distributed and an emergent property of a collaborative system: it represents some-
thing that resides in the interaction between agents of the system rather than sepa-
rately in the minds of individuals (Salmon 2009). Analyses then need to pay attention 
to how agents are made aware of ongoing but problem-unrelated situation monitor-
ing in order to self-organize (Perry 2017).

There are natural limits to the span and effectiveness of attention, perception and 
recognition memory, learning, problem solving, reasoning and decision making that 
bound their application primarily to the core purpose of clinical work—pursuing 
medical goals. These resources are simultaneously needed for interaction with tech-
nology, organization and work coordination (Karsh 2009). Situation Awareness 
relates to the dynamic and transient state of a mental model which is produced by 
an ongoing process of information gathering and interpretation (Hendy 1995). It is 
a construct that can be thought of as an internal mental model of the current state of 
an individual’s environment, or the perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning and the 
projection of their status in the near future (Mica 1988). SA is one component of 
dynamic, distributed decision making, along with task, system and individual fac-
tors. It changes as the environment changes in response to decisions and actions of 
individuals or due to automated technology interventions (Wright et  al. 2004). 
Dynamic systems are therefore extremely demanding on human cognitive resources. 
Mental workload increases along with system complexity while situation awareness 
is more difficult to maintain.

Even in routine medical practice, cognitive workload is immense. Family phy-
sicians, for example, have to perceive, process, integrate and make decision on 
four to five problems in one visit (Beasley et al. 2004). They need to identify and 
diagnose each problem and plan testing and treatment. The complexity of deci-
sions further rises with the number of comorbidities and concurrent problems that 
may interact or have causal relationships and when indicated treatment options 
may be in conflict. The burden on primary care clinicians in terms of coordination, 
information gathering, cognitive workload and decision-making is also com-
pounded by often incomplete information; it is estimated that physicians have 
about eight unanswered questions for every ten ambulatory visits (Bates et  al. 
2003). Sophisticated and robust information technology and evidence-based deci-
sion support are essential tools and are indispensable for safe, high-performing and 
high quality care.
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2.5  �Effects of Technology

Implementation of new technology invariably changes the way clinical work is 
done, from documentation to decision making and care coordination. Personal and 
group workflows are always affected, often to a significant degree, and those who 
need to adapt ubiquitous routines and long-standing practice to a new model and to 
internalize unfamiliar procedures have a range of viewpoints on the beneficial and 
detrimental effects of a new approach on their own work and on the quality of care 
in general. The utility and safety of new systems and the effectiveness of reorga-
nized work may be perceived differently by individuals but evidence from pub-
lished research studies shows a net increase in patient safety that can be attributed 
to the use of advanced information technology, despite the still large number of 
preventable patient injuries that occur every year. Harm likely comes from rela-
tively few initial causes, including hospital-acquired infections, adverse drug 
events, surgical injuries, deep venous thromboses and pulmonary emboli, falls and 
pressure ulcers that account for most of the adverse events in hospitals (Bates and 
Sheikh 2015). However, it is the quality of HIT design, advanced functions and 
rigorous implementation that seems to lead to gains in safety and efficiency—EHRs 
with only basic functions are less likely to have a significant positive effect. For 
example, a review of randomized clinical trials evaluating order entry and decision 
support interventions reported that only three out of ten studies showed measurable 
decrease of unsafe prescribing and only a half reduced medication errors (Lainer 
et al. 2013). At the same time, only about a half of US hospitals use EHRs with 
integrated advanced decision support and other functions known to reduce error, in 
what appears to be an emerging digital divide (Adler-Milstein et al. 2017).

Vendors and, to a lesser extent, academic and healthcare institutions, create prod-
ucts for the HIT market that is vast and diverse. The systems need to have many 
components that retain largely immutable design structures in order to keep the 
software reliable and to have the ability to maintain and develop it even as individ-
ual implementations are adapted to function according to local requirements. 
Dynamic work systems, however, produce unique work environments where single 
technology may have distinctly different effects (Zheng et  al. 2015). The shared 
responsibility of all key stakeholders in the multilevel work system described ear-
lier, (Holden and Karsh 2009) such as vendors, care providers, healthcare organiza-
tions, information technology departments and public and private agencies, is to 
monitor and manage the safety of HIT and to guide their efforts towards resolving 
their often conflicting priorities and requirements (Singh and Sittig 2016). For 
example, vendors and developers should provide health systems with guidance on 
decisions regarding configuration (e.g., changing default settings of medication 
administration times to better match local workflows), customization and optimizing 
usability while clinician must be responsible for learning how to use the EHR safely 
(Sittig et al. 2018). Technology that can effectively meet the work demands of com-
plex socio-technical systems requires the active participation and expertise of all 
involved parties from inception to implementation.

What clinicians say they want in HIT may be limited by their own understanding 
of the complexity of their work or by their design vocabulary and the ability to con-
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vey to non-medical professionals their reasoning about care decisions. Understanding 
what would help people in their complex work is not as simple as asking them what 
they want, an all too common approach (Andre and Wickens 1995). Highly skilled 
professionals have often very limited insight into their own performance, and even 
more limited ability to articulate what might improve it. Substantial research on 
how clinical work is done, rooted in theories of cognition and collaborative work, is 
required to gain understanding of cognitive behavior of clinicians in the context of 
multi-layered and dynamically changing workflows.

Clinician-oriented approaches can capture the effect of technology on specific 
and diverse individual roles and their work. However, designers, implementers and 
workflow engineers should not fall into the “one size fits all” fallacy as validation of 
a design in practice requires thorough experimental testing based on well-defined 
performance criteria and rich, nuanced understanding of healthcare work (Karsh 
et  al. 2010). Established methods such cognitive analysis (Bisantz et  al. 2015; 
Hettinger et al. 2017; Roth and Bisantz 2013; Vicente 1999; Schraagen et al. 2000), 
workflow and task analysis and human-centered design evaluations have consis-
tently generated useful guidance to HIT designers (Roth et al. 2002; Zhang 2014; 
Lowry 2014; Schumacher and Lowry 2010). The medical field is uniquely complex 
but not impenetrable to researchers from outside of the domain, even as it is a highly 
intricate and structured process of problem discovery and clarification in the context 
of unbounded complexity (Carroll 1997).

Researchers in the informatics, usability and workflow engineering fields in col-
laboration with clinical experts and biomedical scientists need to convey their find-
ings to designers and developers in forms that best inform their work. A recent 
workshop about the usability of medication-alerting CDS and its evaluation out-
lined how this transfer of knowledge into practical design guidance may take place 
(Marcilly et al. 2016). Participants preferred design principles to be formulated as 
checklists and guidelines for design and procurement of software and hardware 
technology, and to help them interpret and understand critiques of prototypes that 
clinicians provided as a part of user-centered cyclical evaluation. An important 
component of specific advisories was their justification in terms of potential harm if 
they were to be ignored, evidence from prior studies and visual examples (e.g., pro-
totypes, wireframes and screenshots) illustrating optimal and poor alternatives of 
design and function. Maintaining the research-to-practice continuum of discovery 
transfer effectively ensures that evidence-based design can make HIT better cogni-
tive and interactive tools in clinical work.

2.6  �Current and Emerging Trends

Precision medicine is gaining momentum as the care model most likely to benefit 
from the confluence of expansive new knowledge, especially in genetics, and 
advanced information technology. The term refers to the increasing specificity of 
patient characterization that is possible through genomic and phenomic analytic 
methodologies. Patients admitted to large medical centers are in the near future 

2  Cognitive Behavior and Clinical Workflows



22

likely to receive genotyping analyses in addition to the usual data obtained by 
recording the many tests and procedures routinely performed along with the history 
taking and physical examination (Collen and Greenes 2015). The process will cre-
ate vast arrays of newly organized data that will benefit decision support for com-
plex medical diagnosis and treatment problems that will be more directly related to 
specific individuals. For example, known genetic variations would suggest with 
high levels of certainty the optimally safe and effective medication therapy.

Design initiative that is central to the goals of precision medicine is providing 
clinical decision support (CDS) interventions in forms that are appropriate to 
intended cognitive tasks and contextualized into workflows. A recent study that 
closely analyzed decision making during medication ordering and the effect of CDS 
alerts on the reasoning of clinicians showed that they conceptualized patient risk as 
a complex set of interdependent tradeoffs specific to individual patients and had a 
tendency not to follow automated advice they considered of low or dubious clinical 
value (Horsky et al. 2017). In the words of the participants, the value of an interven-
tion (e.g., medication interaction and allergy alerts, in this study) was largely in its 
relevance to the patient they were treating. The specific clinical context in which 
they evaluated the specificity and appropriateness of given advice included comor-
bidities, prior drug tolerance and other illness-related factors, and, importantly, the 
proportion and significance of known, uncertain and absent information. The alert 
content and the logic of its triggering algorithm would have to meet a high threshold 
in its inclusiveness of patient-specific and knowledge-based information in order to 
be considered a reliable tool by many clinicians. In turn, high reliability cultivates 
over time higher confidence in CDS accuracy and the frequency of its use increases.

The convergence of two fast-developing areas of informatics may provide the 
necessary data sources that precision medicine requires for advanced, comprehen-
sive interventions. Current, curated and evidence-based knowledge derived from 
analytical and machine-learning discovery processes on large repositories of clini-
cal and research data (big data analytics) ensures that optimal care recommenda-
tions can be formulated on the basis of data from millions of patient lives and 
decades of clinical history. Knowledge learned from the aggregated data of large 
patient groups then can be applied with better precision to individuals as the expand-
ing collection of laboratory, test and genetic information allows more accurate 
determination of what recommendations are most directly relevant. Clinicians 
would then be assisted in making informed decisions by the best available evidence 
specific to their patients. Observations and findings captured in patient records that 
can be correlated instantaneously with latest biomedical research are the objectives 
of many current investigation initiatives.

Delivering this complex set of information and insights effectively into care 
workflows is an ongoing challenge for HIT designers. Complex genomic profiling 
data that need to be stored and processed in conjunction with existing clinical data 
will increase exponentially demands on IT infrastructure and computing power 
(West et al. 2006). Escalating demands on cognitive and coordinated activities such 
as demands for knowledge, monitoring, attentional control, information, and com-
munication among team members (including human machine communication) will 
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also need to be supported by systems with excellent human-computer interaction 
characteristics and usability. Workload associated with using a computer interface 
or interacting with an autonomous or intelligent machine agent will need to be mini-
mized as clinicians cannot divert attention to new tasks, new memory demands and 
distractions from their primary medical work (Woods and Patterson 2001). Cognitive 
engineering analyses, for example, can yield sets of crucial cognitive support 
requirements to guide design and to provide explicit links between identified needs 
and specific design features and concepts (Hettinger et al. 2017). Healthcare institu-
tions may choose to redesign their work system, including workflows, at opportune 
moments such as when updates to a current EHR are made or when transitioning to 
a new system and work towards a more efficient model described and modelled by 
cognitive engineering analyses (Beuscart-Zéphir et al. 2010).

An important goal of cognitive engineering is to make socio-technical systems 
more reliable with the use of cognitive modeling. Interventions and designs that do 
not consider complex systems as a single unit of analysis are unlikely to have a 
systematic and lasting effect on safety and quality. Cognitive support will have only 
limited effect without the consideration of use context and organizational con-
straints and poor workflow fit will force potentially unsafe workarounds to circum-
vent limitations (Carayon et al. 2014). There is currently no clear way to distinguish 
theoretically between workarounds that have the potential for negative conse-
quences and should be actively discouraged or eliminated, workarounds that would 
benefit from transitioning into formal documentation in policies and procedures and 
HIT, and workarounds that are necessary to allow only for exceptional circum-
stances as goals are traded off but should be discouraged during routine situations 
(Patterson 2018).

Processes and factors that affect latent safety problems in complex, dynamic 
socio-technical systems such as cognitive workload, situation awareness, coordina-
tion and other measured constructs often require labor-intensive assessment studies 
that institutions may not be able to carry out to a sufficient degree or repeat after 
reorganizations and new technology additions. Recently, several unobtrusive meth-
ods of data collection using sensor-based technology (SBT) allowed cost and time 
effective measurement of physical, physiological, cognitive, and behavioral pro-
cesses at the individual (e.g., mental workload, stress), team (e.g., cohesion, com-
munication, team composition) and system level (e.g., workflow) (Hughes et  al. 
2018). The methods often combine technology such as Radio Frequency 
Identification (RFID) tags and physiological monitoring systems into a 
complementary approach that can identify or infer workflows and high-level events. 
For example, a group of researchers combined RFID tag workflow monitoring with 
ethnographic observations, augmenting data collection with multidimensional 
activity information that allowed observers to focus on cognitive details rather than 
simply annotating movement activities (Vankipuram et al. 2011).

Objective assessment of technical and teamwork skills or tracking and monitor-
ing of clinicians and patient engagement could be conducted and interpreted with 
relatively few resources. Real-time data from several sensors and other sources can 
also be triangulated and correlated to provide contextual information that could not 
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have been obtained with other techniques (Alemdar and Ersoy 2010). In one study, 
researchers characterized the interactions of clinicians gathering information for 
rounds discussions and patient-case presentations in the EHR by applying process-
mining methods to EHR-generated event log files. They triangulated quantitative 
findings with patient chart review and qualitative data to find that interactive behav-
ior was associated with workflow routines, patient case complexity and variant 
screen sequence patterns (Furniss et al. 2016b).

Cognitive engineers and others whose work supports complex collaborative pro-
cesses need to address the challenge of gathering empirical evidence and integrating 
the contributions of emergent constructs, mental models and distributed knowledge 
into analyses. Coordination is at the core of team cognition, and human-centered 
technologies should keep this in the forefront of design concepts and frameworks 
(Morrow and Fiore 2013).
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