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Chapter 12
Understanding Clinical Workflow  
Through Direct Continuous Observation: 
Addressing the Unique Statistical 
Challenges

Scott R. Walter, William T. M. Dunsmuir, Magdalena Z. Raban, 
and Johanna I. Westbrook

12.1  �Background

12.1.1  �General Introduction

The nature of healthcare as a dynamic human process occurring within complex 
socio-technical systems means that there is no unique or standard way to examine 
its inner workings. Rather, a range of observational methods drawn from multiple 
disciplines have been used to study workflow in situ (McCurdie et al. 2017). Areview 
of methods used to study and model workflow across different industries, including 
healthcare, identified qualitative approaches such as ethnographic observation and 
interviews, along with quantitative methods including structured or timed observa-
tions, and surveys (Unertl et al. 2010).

Analogous to timed observations, the term time and motion is applied in many 
studies of workflow in healthcare. This umbrella term encompasses a range of 
methods and designs with the common feature of directly observing an individu-
al’s activities and recording aspects of that action, usually in a quantitative way. 
Zheng et al. (2011) reviewed time and motion studies used to assess the effect of 
interventions, especially technology-related interventions, on workflow in health-
care settings. From their synthesis, they developed the STAMP checklist (Suggested 
Time and Motion Procedures) to promote consistency in design, conduct and 
reporting of time and motion studies. Lopetegui et  al. (2014) took this theme 
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further by reviewing the distinct methods used in healthcare under the banner of 
‘time and motion studies’. The many variations they identified were categorized 
into three groups: those involving external observers shadowing participants, those 
using information self-reported by participants, and those that employed auto-
mated data recording such as GPS devices or accelerometers. Of the first type, they 
identified a method employing continuous observation and coined the term work-
flow time study to describe it as a distinct but increasingly common approach. This 
method constituted 26% of all time and motion studies reviewed, and over 60% of 
all studies that involved continuous observation by an external observer. Also, the 
proportion of studies employing continuous observation was noted to have 
increased over the review period.

Although the workflow time study approach is one among many observational 
approaches, it offers many advantages over other quantitative methods, and its 
growing use in healthcare is a testament to this. This method itself involves 
observers shadowing individual clinicians and continuously recording time-
stamped data about an individual’s tasks and interactions (see Sect. 12.1.2 for 
more detail). Workflow time studies capture more of the fine-grained complexity 
of clinical work than methods such as work sampling, and the temporal continu-
ity of the data forms the most complete record of an individual’s workflow of any 
observational technique, barring audio-visual recording which is often not 
acceptable in a clinical environment. Workflow time studies have great potential 
to help us understand clinical work and workflow and can be applied to a diverse 
range of research questions and professional groups (Walter et al. 2015). This 
includes descriptive analyses that examine the way clinicians distribute their 
time between different tasks, between patients, between locations, and so on 
(Westbrook et al. 2008; Li et al. 2015; Richardson et al. 2016). It also supports 
assessment of the impact of interventions on workflow, such as the introduction 
of new technological systems, policies or practices (e.g. Georgiou et al. 2017). 
Furthermore, workflow time studies enable interrogation of more complex ques-
tions such as the way clinicians sequence, prioritize and interleave tasks. They 
can also examine associations between clinicians’ work and safety-related out-
comes, such as factors that contribute to errors of task omission and commission 
(e.g. Westbrook et al. (2018).

Capturing a more complete record of the complexity of workflow in healthcare 
settings is necessary to generate valid and relevant insights about everyday clinical 
work within a quantitative paradigm. However, this also introduces some unique 
methodological challenges in all aspects of the study process including design, data 
collection, analysis and interpretation of findings. Despite the importance of apply-
ing appropriate quantitative methods, methodology in the area is still evolving, and 
there is a tendency to apply conventional statistical methods to data that are inher-
ently non-standard. This chapter examines the critical quantitative and statistical 
challenges with which workflow time studies are confronted, including reviewing 
methods applied in studies to date and suggestions for methodological improve-
ments. Many of the aspects discussed in this chapter may also be relevant to the 
quantitative study of workflow more generally.
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12.1.2  �Defining Workflow Time Studies

The original definition of workflow time studies referred to those studies involving 
periods of continuous observation of a participant where “the observer records the 
occurrence and duration of unpredicted instances of tasks, producing a data schema of 
time-stamped tasks, which accounts for task fragmentation, interruptions and work 
variability” (Lopetegui et al. 2014). There are several features that distinguish this 
technique from other observational methods. First, the fact that observers continu-
ously shadow participants sets it apart from approaches such as self-reporting of work 
activities (Ampt et  al. 2007), work sampling or multimedia recording. Second, 
although carrying out detailed observations over extensive periods of time has paral-
lels with ethnography, observers in workflow time studies apply predefined categories 
of task attributes at the time of observation, as distinct from ethnography where group-
ing of types of observed action into categories or themes occurs during the analysis 
phase (e.g. Malhotra et al. 2007). Third, the recording of time stamped intervals for 
each task generates data that represents a temporally complete record of the observed 
activity. In other words, at every time point during observation, action is assigned to 
one category or another, or, equivalently, no time in the workflow is unaccounted for. 
This contrasts with other methods where the observer may continuously shadow the 
participant but may only record data at certain times or on particular activities.

The data generated by workflow time studies is essentially a set of time intervals, 
each defined by a start and end time, and having any number of categorical attri-
butes such as task type, location where the task was performed, with whom it was 
performed, and so on. Figure 12.1 provides a simple illustration of tasks plotted 
over time, in addition to one possible way to represent the raw data. The intervals 
can be contiguous where one task ends and another begins, as between tasks 1 and 
2 in the figure; or they can overlap where two types of action occur in parallel (com-
monly called multitasking) as with tasks 2 and 3. When intervals represent fragmen-

Interruption5

4

3

2

T
as

k 
n

u
m

b
er

1

0
0:00:00 0:05:00 0:10:00 0:15:00

Time

Task ID Start time End time Type Interrupted by
1 0:00:00

0:04:40
0:06:30
0:10:25
0:12:05

0:04:40
0:08:10
0:10:25
0:12:05
0:15:00

A
A
B 4
A
B

2
3
4
3
... ... ... ...
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workflow time study, 
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a time line and as records 
in a dataset
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tation of tasks that are suspended due to interruptions and later resumed, this can be 
indicated with categorical labels, as shown by the ‘interrupted by’ column in the 
figure. Some studies also augment with data from other sources such as patient load, 
self-reported measures or participant characteristics, in an effort to include factors 
at multiple system levels (see for example Westbrook et al. (2018).

The task attributes mentioned above are termed dimensions, each of which may 
have several categories (Westbrook and Ampt 2009). In workflow time studies, a 
dimension is an aspect of clinical work that is relevant to the research questions of 
a study. In the example in Fig. 12.1, ‘type’ is the main dimension which has catego-
ries ‘A’ and ‘B’. In clinical settings, dimensions may be the type of task performed 
by the participant (usually the main dimension), the location where the task is per-
formed, or with whom the participant interacts with while performing the task. In 
the language of quantitative analysis, dimensions can equivalently be thought of 
categorical variables, and the categories represent all the potential values that a vari-
able can take on. Table 12.1 illustrates two dimensions and their categories from a 
study of emergency doctors in Australia (Walter et al. 2017).

12.2  �Sampling Strategies

The first major methodological challenge in conducting a workflow time study is 
how to approach data sampling. The sampling strategy naturally depends on the 
study design. As it is impractical to cover the sampling strategies for all possible 
workflow time study designs within this chapter, we limit our discussion to the fol-
lowing three major study types: (1) descriptive studies that provide a snapshot of the 

Table 12.1  Examples of dimensions and categories used in workflow time studies

Dimension Category

Task type Direct care
Indirect care
Documentation
Clinical communication
Management communication
Social communication
Prescribing
Other

With whom Specialist (consultant)
Fellow (registrar)
Resident/intern
Nurse
Relative
Patient
Paramedic
Other
No one
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clinical work process, (2) intervention studies that assess change in workflow over 
time as a result of an intervention, and (3) association studies that aim to link aspects 
of clinical work to patient safety or quality of care outcomes.

One aspect of the sampling strategy that impacts all three study types is that there 
is a limit as to how much one observer can continuously observe without a break. 
However, much of health care, particularly critical care, occurs around the clock. 
Although in an ideal situation we may wish to observe all clinicians at all times 
throughout the study period, this is simply not practical. Thus, the data in workflow 
time studies are often collected across many separate observation sessions, wherein 
each session typically consists of a few hours of shadowing with a single partici-
pant. The data from these sessions are then combined together to form a collection 
of workflow samples on multiple participants.

The nature of clinical work varies with time-related factors: time of day, day of 
the week, time of year, etc. (Walter et al. 2014). It also differs between clinician 
roles or seniority (Westbrook et al. 2010), and between the idiosyncrasies of indi-
viduals (Walter et al. 2014). Oversampling at certain times or among certain roles 
can therefore influence the study results, underscoring the need for an appropriate 
sampling strategy to avoid biases. Descriptive studies generally aim to generate a set 
of samples that, when combined, are representative of clinical work in a certain set-
ting, among a particular professional group, or during a given period of the working 
day. For example, Arabadzhiyska et al. (2013) studied the work of resident physi-
cians on night shifts (10 pm to 8 am) on general hospital wards.

Generating a representative sample is usually accomplished by applying a time-
based sampling scheme to collect approximately equal amounts of observation time 
balanced across known factors that may influence summary measures such as pro-
portions and rates. To illustrate, the rate at which clinicians’ work is interrupted is 
known to be higher for those who are more senior (Walter et al. 2017), during week-
ends (Richardson et al. 2016) and is related to workload (Weigl et al. 2012) which 
varies throughout the course of the day. If there is unintentional oversampling of 
senior clinicians, Saturdays and Sundays or busy periods, it could then inflate the 
interruption rate to be observed. In contrast, balancing observation time across such 
factors provides an interruption rate estimate that is more representative of the 
‘average’ workflow within the study population.

Such a sampling scheme was used by Richardson et al. (2016) who conducted a 
descriptive study of junior physicians working on day shifts during the weekend. 
The study population was from a single professional group of the same seniority; 
and a sampling scheme was developed to ensure balance in observation hours over 
time of day (between 8 am and 5 pm), day of the week (Saturday and Sunday) and 
also over the 13-week observation period (Table 12.2).

Another major source of variation in workflow is between individuals. A study of 
how clinicians in three hospital settings respond to interruptions found that signifi-
cant variation between individuals persisted after adjusting for many task-level and 
temporal factors (Walter et al. 2014). Attempting to average individual differences 
by balancing (as shown in Table 12.2) would mean an unrealistically large increase 
in required sample size and hence observation time. For example, the Richardson 
et al. study had 16 participants, so to observe each of them, during every time of the 
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day, day of the weekend and week of the study period, it would require an increase 
of the total observation time from 132  h to more than two thousand hours. 
Randomisation offers a way to average out the effects of temporal factors and indi-
vidual differences with a more realistic sample size. For each observation session 
the participant is randomly selected, as is the time of day, day of the week, and so 
on. Sessions can be assigned in this way until a sufficiently large sample is attained.

In practice, it is not always possible to implement either a balanced or ran-
domised sampling scheme exactly as planned. Finding a certain participant at a 
particular time can be difficult, especially in a hospital setting where staff rosters 
change and clinicians swap shifts at the last minute. While it is important to have a 
sampling plan, it may be necessary to modify it over the course of the study period 
to compensate for imbalances introduced by unanticipated deviations from the 
schedule. If logistical constraints cause the final sample to be unbalanced, it is pos-
sible to adjust for this in the analysis phase using multivariate regression. For exam-
ple, to calculate the interruption rate across task type categories (as in Table 12.1) 
when there has been oversampling of senior clinicians, Poisson regression could be 
applied with the main covariate as task type, but also including, say, time of day and 
participant seniority as additional variables. This does not preclude the need for a 
sampling plan, but rather provides a way to mitigate the effects of compromised 
implementation of the plan.

For studies assessing the impact of an intervention using a pre-post design, an 
additional consideration is to use a consistent sampling strategy for each time 
period. While studies of this type should ideally use a control group to capture any 
pre-post changes not attributable to the intervention, the controls may not necessar-
ily capture pre-post differences due to sampling. For example, if senior clinicians 
are oversampled post-intervention for the intervention group, but not for the control 
group, then the intervention effect will be muddied with sampling effects, with no 
completely satisfactory way to separate them during the analysis.

For association studies, the sampling priority is somewhat different as the aim is 
not to generate representative summary measures of workflow, but to assess statisti-
cal associations between aspects of clinical work. Where descriptive studies use a 
sampling strategy based on observation time, association studies build sampling 
around the units of analysis (tasks, events, etc.). To examine associations in an 

Table 12.2  Sampling schedule used by Richardson et  al. (2016) to study junior physicians 
working on day shifts over the weekend

Observation 
time

Saturday A Sunday A Saturday B Sunday B
Week 1, 3, 5, 7, 9, 
11, 13

Week 1, 3, 5, 7, 9, 
11, 13

Week 2,4, 6, 8, 
10, 12

Week 2,4, 6, 8, 
10, 12

0800–0950 Observing Observing
0950–1140 Resting Observing Observing Resting
1140–1330 Observing Resting Resting Observing
1330–1520 Resting Observing Observing Resting
1520–1710 Observing Resting Resting Observing
1710–1900 Observing Observing
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observational study it is necessary to adjust for confounding factors (in the epide-
miological parlance) to derive the least biased estimate of the association of interest, 
usually done through multivariate modelling. The variables generated by workflow 
time studies are typically categorical, so an important consideration is whether there 
will be sufficient outcome data in each category. Small numbers in certain catego-
ries may cause issues with model fitting, so it may be desirable to oversample cer-
tain times of day, certain professional groups, and so on, to avoid this issue. In a 
study by the authors (Walter et al. 2017) on physicians’ response strategies for deal-
ing with external prompts (i.e. interruptions), the original analysis plan involving 
both categorical outcome and covariates was not possible due to some outcome 
categories never occurring at the same time as certain covariate categories. This 
caused implausible or nonsensical model outputs for some variables even after col-
lapsing of some categories, and an alternative analysis approach was necessary. 
Therefore, for association studies, the sampling strategy must necessarily be devel-
oped in parallel with dimensions and categories.

12.3  �Inter-observer Reliability

A fundamental aspect of generating high quality data from observations of clini-
cal work is to ensure consistent application of dimensions and their categories 
between different observers. This is often called inter-rater reliability, a term 
taken from psychology, although in this context we use the term inter-observer 
reliability (IOR) since we are interested in observations as a more varied set of 
judgements, as opposed to ratings which tend to involve assigning a single value 
or category at a time. The fact that workflow data recorded at task-level have time 
stamps, involve temporal order and feature multiple categorical attributes makes 
it rather complex to compare between two or more observers who are following 
the same participant. To date, there has been persistent use of simple methods bor-
rowed from other contexts that are not well suited for their purpose, and this is 
somewhat of an ‘elephant in the room’ in quantitative observational studies of 
clinical workflow.

A range of methods have been applied in workflow time studies to assess IOR 
and a review of these identified seven different approaches among the 27% of stud-
ies that provided some details of their IOR assessment (Lopetegui et al. 2013). The 
most common was Cohen’s kappa, a well-known method used in psychology to 
quantify the level of agreement between two or more raters assigning units to a set 
of categories, such as assigning exam papers to either pass or fail (Cohen 1960). In 
workflow time studies this approach seems to be treated as somewhat of a gold 
standard, while at the same time most studies gloss over the details of its application 
to IOR assessment (Lopetegui et al. 2013). There are several issues with kappa, and 
other similar measures, that mean assessments of IOR are limited at best, and may 
even be misleading in that high kappa scores can be achieved even though signifi-
cant observer differences are present.

12  Understanding Clinical Workflow Through Direct Continuous Observation…
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The first main limitation is that for time-stamped and time-ordered tasks with 
multivariate attributes, identifying pairs of tasks from two observers that refer to 
the same observed action cannot be done with any certainty. Table 12.3 shows 
some example data from two observers shadowing the same physician. Task 2 
recorded by the first observer lasted two and a half minutes, was of task type B, 
was performed with a nurse, and overlapped with the next task for 30 s. In con-
trast, task 2 recorded by observer 2 lasted almost 4 min, was of type A, was per-
formed with a nurse and overlapped with the next task for 2  min. Given the 
disagreement on several attributes, it is not possible to conclusively decide if task 
2 for each observer refers to the same observed action, and to decide they do agree 
based on only some agreeing attributes introduces unreasonable assumptions, or 
even outright guessing.

The second main limitation is that most methods used for assessing IOR only 
apply to one variable at a time. This may be acceptable for descriptive studies 
reporting summary measures of individual variables but is likely inadequate for 
association studies involving multivariate analyses. In one of our prior studies 
(Walter et al. 2014), a reanalysis of the data collected from three hospital settings 
found significant observer effects in multivariate models despite high univariate 
IOR scores.

12.3.1  �Nonparametric Hypothesis Testing for IOR Assessment

In this chapter we look at two broad approaches to addressing these limitations. The 
first approach compares summary measures at an aggregated level using hypothesis 
tests. For example, the proportion of time spent performing tasks direct care tasks 
could be compared between observers shadowing the same participant. This method 
ignores temporal order and thus does not require matching at either task or time 

Table 12.3  Example data from two hypothetical observers shadowing the same participant

Observer Task ID Start time End time Task type Performed with nurse

1 1 0:00:00 0:04:30 A 0
1 2 0:04:30 0:07:00 B 1
1 3 0:06:30 0:10:25 B 0
1 4 0:10:25 0:12:05 A 1
1 5 0:12:05 0:15:00 B 0
1 6 0:15:00 0:20:00 A 1
2 1 0:00:00 0:04:40 A 1
2 2 0:04:40 0:08:30 A 1
2 3 0:06:30 0:10:25 B 1
2 4 0:10:25 0:12:05 A 0
2 3 0:12:05 0:15:00 B 0
2 5 0:15:00 0:20:00 A 0

S. R. Walter et al.
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window level, making it applicable only for descriptive studies where reliability at 
such an aggregate level is sufficient. This approach assumes that the data from dif-
ferent observers should be the same and that any observed difference in summary 
measures is due to observer effects. Rather than generating an IOR score, this 
method provides a p-value where we hope to find a non-significant (large) value 
indicating no evidence of a difference in time proportions for data collected by dif-
ferent observers (as in Westbrook et al. (2018).

Proportions of time are the most common measure in descriptive workflow time 
studies, however, since these are proportions of a continuous variable they require 
unique methods (see Sect. 12.4.2.1 for more details). For this purpose, nonparamet-
ric resampling tests, specifically permutation tests, offer several advantages over 
conventional parametric options. Of the parametric tests, it is possible to aggregate 
the data into subgroups or clusters (e.g. by observation sessions) and to use a logis-
tic transformation on the proportion for each group. This is appropriate where the 
subgroups or clusters are fixed (Warton and Hui 2011), however, in workflow time 
studies the choice of subgroups, such as observation sessions or individual partici-
pants, is not necessarily clear.

Permutation tests avoid the issues with distributional assumptions and sampling 
units. This approach involves reordering observer labels in the task-level data, 
cycling through all possible combinations and calculating the statistic of interest 
each time (such as the difference between proportions for two observers). These 
resampled values form the null distribution against which the actual difference can 
be compared. The proportion of null values more extreme than the ‘true’ difference 
provides the p-value. For large samples, the Monte Carlo permutation test uses 
many random shuffles of the labels to generate a p-value without having to calculate 
every possible label combination, thus reducing computation time. Good (2010) 
provides a comprehensive discussion of these methods. Applying a permutation test 
to the data in Table 12.3 to compare proportions of time spent on task types A and 
B and time spent working with a nurse yielded p-values of 0.61, 0.73 and 0.45, 
respectively. In other words, there was no evidence of a difference between observ-
ers in terms of time proportions.

12.3.2  �Conventional IOR Measures Applied to Time Windows

The second approach addresses the time alignment issue by reformatting the task-
level data into small time windows. This idea originated with Bakeman et al. (2009) 
who discussed applying Cohen’s kappa in this way for timed-event sequential data, 
which is similar to workflow time study data. When comparing data from two 
observers shadowing the same participant, we can assume that during a given small 
time window they were observing the same activity, and this circumvents the issue 
with temporal alignment at the level of tasks described earlier in this section. 
Existing IOR methods, such as Cohen’s kappa, can then be applied to the aligned 
time windows.
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The time window approach then allows us to encompass the multivariate nature 
of data from workflow time studies. Janson and Olsson (2001) developed an IOR 
assessment method analogous to Cohen’s kappa that is applicable to multivariate 
categorical data (pp. 282–283). When applied to two observers and one variable it 
is equivalent to Cohen’s kappa, but can be generalised to any number of observers 
and variables. When applied to time windows, this is the best currently available 
approach for IOR assessment in workflow time studies. It is represented by the 
Greek letter iota, ι, (the letter before kappa).

Applying univariate kappa to the example data shown in Table 12.3 with time 
windows of 1  s (i.e. 1200 windows) we get scores of 0.57 for ‘task type’ and 
−0.45 for ‘performed with nurse’, indicating ‘good’ agreement for the former and 
moderate disagreement for the latter. If we apply Janson and Olsson’s method to 
both variables we get a score of ι = 0.04. This can easily be extended to include a 
third binary variable that represents multitasking (yes or no) in each time window. 
This has a univariate kappa score of 0.38, while the iota score for all three vari-
ables is 0.08.

The results for the ‘task type’ variable were consistent between the two methods, 
but were contradictory for the ‘performed with nurse’ variable. Also, the low agree-
ment shown by the multivariate iota score did not concur with the high univariate 
kappa score for ‘task type’ alone. These results from the two general approaches 
highlight some key points about IOR assessment. First, the utility of any IOR mea-
sure must be considered relative to the analysis. The motivation behind assessing 
IOR is to identify and minimise observer biases in the data, however, IOR measures 
do not necessarily quantify the extent to which results are biased due to observer 
differences. For example, if there is good agreement on the overall proportions of 
individual categories between observers, but poor agreement at task level when 
multiple task attributes are considered together, then an analysis that aims to simply 
summarise proportions would not be biased, while a multivariate regression model 
would be. A corollary of this issue is that IOR measures have limited comparability 
between studies, such that it only makes sense to compare IOR results when the 
IOR method and the analysis are the same.

Second, a high univariate IOR score, as is typically reported in workflow time 
studies, does not tell us much about agreement levels in the whole dataset. Unless 
the analysis only uses one variable, it is imperative to take a multivariate approach 
to IOR assessment and to pursue development of customised methods for workflow 
time studies. More generally, it is therefore important to move away from the idea 
that any existing approach is the gold standard for IOR assessment, to have more 
transparent reporting of IOR in workflow time studies, and to have more open dis-
cussions of the limitations of existing methods and how they can be improved.

A final consideration is that IOR is not the same as accuracy, as a high IOR score 
could simply mean two observers are both wrong in the same way. The lack of a true 
record of the observed activity necessitates assessment of IOR, but also makes it 
impossible to assess accuracy. While we would expect some correlation between 
IOR and accuracy, there will always be uncertainty about data accuracy that cannot 
be overcome by any IOR method.

S. R. Walter et al.
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12.4  �Analysis

12.4.1  �Summary Statistics

The descriptive studies discussed in this chapter use a range of measures to charac-
terise observed workflow. Of these, we focus on the most commonly used measures: 
proportions of time, and rates of events per unit time.

12.4.1.1  �Proportions of Time

Proportions of time are a key metric in workflow time studies, providing an indica-
tion of how participants distribute their time across various activities, locations, or 
between the different people with whom they interact. They are a mainstay of 
descriptive studies but are also useful in intervention studies as an indicator of 
changes in work patterns. The summation of time intervals tends to be non-trivial, 
due to the presence of multitasking which creates overlap and hence multiple count-
ing of time. While sums of time are not usually reported directly, they are part of the 
calculation of other frequently used measures such as proportions and rates.

Quantifying the uncertainty around estimated proportions in the form of confi-
dence intervals (CIs) is important for interpreting results. For proportions of count-
able units, such as people or events, constructing a CI is a well-trodden path 
described in most statistics textbooks: the CI for a binomial proportion. However, 
for proportions of time—a continuous measure—the binomial methods do not 
apply. Surprisingly, there is little methodology for calculating CIs for proportions of 
continuous variables. In the early 1980s Gilchrist (1982) noted the lack of discus-
sion in the literature despite such proportions occurring frequently, and this is still 
the case more than 30 years later. Only a few papers to date have discussed analysis 
of continuous proportions using parametric assumptions (Warton and Hui 2011; 
Stephens 1982), but they do not directly tackle CIs. A simple modification of the CI 
for the mean of a normally distributed variable has often been used (Li et al. 2015; 
Arabadzhiyska et al. 2013), which is expressed in the following form:

	

T

T
z

s n

T
c c c± -1 2a /

	

where Tc is the time spent doing tasks from category c, T is the total observation 
time, sc is the sample standard deviation of task times for category c, and nc is the 
number of tasks in that category. In addition, z1−α/2 is the standard score from a nor-
mal distribution, for example for a 95% CI, this would have the value z0.975 ≈ 1.96.

A drawback of this method is that what constitutes a task depends on the defini-
tions of dimensions and categories and to some extent on interpretation of those 
definitions during observation. For example, if a task is completed in two fragments 
due to an interruption, should this be counted as one task or two? That is, choices 
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regarding task definition affect the term nc, and hence the CI width is at the whim of 
these choices. Also, the normal assumption is only likely to be satisfied when sam-
ples of tasks (Tc) are at least 30, and in some cases it may generate values for the CI 
that are outside the plausible range, e.g. below zero or above one.

A natural alternative is to take a nonparametric approach, namely to use boot-
strap CIs (as in Bellandi et al. 2018). This does not require parametric assumptions, 
which addresses the limitations just mentioned, making it an optimal choice for 
continuous proportions. DiCiccio and Efron (1996) offered a thorough discussion of 
the various approaches that can be used to construct bootstrap CIs. Below, we pro-
vide a brief description of the basic method.

For a dataset with n tasks, a random selection of n of these is drawn with replace-
ment. Even though the new sample has the same number of tasks as the original 
data, it will not necessarily be the same dataset since the random selection with 
replacement means that in the new sample some tasks will appear multiple times 
while others may not appear at all. The proportion of interest for the resampled data 
is then calculated. This procedure is repeated many times to generate a large number 
of resampled proportions. The simplest way to generate an interval is to then take 
the 2.5th and 97.5th percentile of the resampled proportions (for a 95% CI) as the 
lower and upper limits of the confidence interval.

We use a simulation study to illustrate the utility of the bootstrap approach by 
comparing the normal approximation method to the simple bootstrap. We also apply 
the bias-corrected and accelerated (BCa) bootstrap which accounts for asymmetry in 
the CI. A sample of tasks was drawn with time durations from either an exponential, 
gamma or normal distribution. A random subset of 5, 10 or 20% of tasks was 
selected to represent some category of interest. For that ‘category’ the proportion of 
time was calculated along with its CI according to the three methods. This was 
repeated 1000 times and the proportion of CIs containing the true value, the cover-
age probabilities, are shown in Table 12.4. By definition, a 95% CI should cover the 
true proportion 95% of the time for a large number of repeated studies (or simula-
tions in this case), so the expected coverage probability is then 0.95.

Table 12.4  Coverage probabilities for confidence intervals of proportions of time generated via 
three methods

Total 
tasks

‘True’ 
proportion

Normal approximation Simple bootstrap BCa bootstrap
Exp Gamma Normal Exp Gamma Normal Exp Gamma Normal

10 0.05 0.070 0.049 0.013 0.384 0.398 0.406 0.391 0.404 0.404
10 0.5 0.786 0.782 0.501 0.892 0.905 0.925 0.938 0.931 0.946
10 0.95 0.987 0.982 0.946 0.375 0.394 0.396 0.386 0.398 0.394
100 0.05 0.671 0.654 0.381 0.830 0.881 0.905 0.851 0.895 0.925
100 0.5 0.934 0.882 0.587 0.940 0.951 0.950 0.948 0.952 0.954
100 0.95 0.999 1.000 0.980 0.831 0.867 0.903 0.853 0.882 0.924
1000 0.05 0.830 0.732 0.452 0.933 0.947 0.942 0.946 0.950 0.945
1000 0.5 0.946 0.877 0.584 0.948 0.941 0.952 0.951 0.942 0.956
1000 0.95 1.000 1.000 0.993 0.926 0.927 0.948 0.931 0.939 0.949
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Both bootstrap approaches appear to perform better than the normal approx-
imation method when the true proportion is near the lower boundary of the 
possible range of values (true proportion π = 0.05) or in the middle of the range 
(π = 0.5), especially for small and medium samples. The normal approximation 
performs particularly poorly for small proportions and small samples, with 
coverage probabilities less than 0.1. Towards the upper end of the range 
(π  =  0.95), however, the normal approximation seems to perform better for 
small to medium samples, although proportions of this magnitude are rarely 
reported in the literature. Study samples are typically in the several thousands, 
and the results generated by the bootstrap method are consistently closer to the 
expected coverage probability of 0.95 for samples of that size. This suggests 
that the bootstrap CI is generally preferable to the normal approximation, 
which can be quite inaccurate. Further, the BCa method consistently has slightly 
better coverage for all scenarios compared to the simple bootstrap and hence 
represents a better choice for calculating CIs of time proportions among the 
methods considered here.

12.4.1.2  �Rates of Events Per Unit Time

Discrete events occurring at different points in time are common in clinical work 
and can be easily captured in workflow time studies. The most common example is 
interruptions. Since the number of such events is proportional to the length of time 
observed, they are generally analysed as rates per unit time, such as interruptions 
per hour. This quantifies the intensity of events while being independent of the 
amount of observation time. Descriptive studies tend to report rates in this form 
along with their CIs (Li et al. 2015; Walter et al. 2014; Westbrook et al. 2010). A 
common and simple approach for generating CIs is to assume that event counts, λ, 
are drawn from a Poisson distribution and to then generate a normal approximation 
CI in the form of:

	
l la±( )-z T1 2/ /

	

where T is the observation time. However, the Poisson assumption that the mean 
and variance are equal is not always met in workflow time study data and once again 
bootstrap CIs provide a more robust alternative.

We illustrate this through another set of simulations comparing the normal 
approximation method to both simple and BCa bootstrap. This was done for task 
lengths drawn from two different distributions (exponential and normal), for small 
and large samples (n = 10 and n = 1000), for two different rates representing low and 
high rates relative to the typical range that appears in the literature on interruptions. 
We also simulated events to arrive according to either a Poisson or negative bino-
mial distribution, where the former assumes that mean and variance are equal while 
the latter does not.
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In the first part of Table 12.5, the simulated data satisfy the assumptions of all 
three methods and thus there is minimal difference between the three methods. 
The coverage probabilities are markedly lower for the small sample size scenar-
ios, particularly when the underlying rate is also low. In the lower section of the 
table, the simulated events follow a negative binomial distribution. The differ-
ences in coverage between the three methods due to sample size and rate are simi-
lar, but a key difference can be seen for the scenario with large sample and high 
rate, in which the coverage for the normal approximation is lower than 0.95 while 
for the bootstrap method it is very close to the expected value of 0.95. This differ-
ence is amplified with increasing rate, such that for a rate of 300 events per hour 
the coverage for the normal approximation drops to 0.63 at best, compared to 0.96 
for both bootstrap methods (data not shown in table). While the performance is 
comparable across most of the scenarios considered, the fact that the bootstrap 
approach is at least as good as, and in some cases clearly better than, the normal 
approximation method suggests that it may be considered a better choice to calcu-
late CIs of rates.

12.4.2  �Assessing Associations

12.4.2.1  �Two Group Comparisons

Comparing outcomes between two groups is another common research goal in 
workflow time studies. For example, Richardson et al. (2016) (Table 3) compared 
both proportions of time and interruption rates between three studies of physicians, 
where each study used similar observational methodology and task definitions. 
Such comparisons in workflow time studies come with some important caveats, and 
some unique considerations are required for calculating significance.

Table 12.5  Coverage probabilities for confidence intervals of rates per unit time generated via 
three methods

Total 
tasks

‘True’ 
ratea

‘True’ event 
distribution

Normal 
approximation

Simple 
bootstrap BCa bootstrap

Exp Normal Exp Normal Exp Normal

10 3 Poisson 0.546 0.550 0.541 0.538 0.535 0.529
10 30 Poisson 0.919 0.921 0.868 0.904 0.865 0.903

1000 3 Poisson 0.939 0.960 0.940 0.961 0.938 0.961
1000 30 Poisson 0.932 0.948 0.930 0.944 0.933 0.944

10 3 NBb 0.533 0.567 0.529 0.561 0.521 0.553
10 30 NB 0.818 0.865 0.841 0.874 0.843 0.876

1000 3 NB 0.935 0.931 0.943 0.938 0.944 0.939
1000 30 NB 0.862 0.920 0.944 0.959 0.945 0.959

aEvents per hour
bNB negative binomial
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Hypothesis testing was developed within the experimental paradigm in which 
factors extraneous to the effect of interest are controlled, such as randomly assign-
ing subjects to one group or another. Any remaining difference in the outcome mea-
sure can then be attributed to the main effect. In other words, confounding is 
controlled through design. In observational studies of clinical work, this level of 
control is not possible, which means that the data represent a mixture of effects from 
many different factors, both known and unknown. When applying two group com-
parison tests to such data, it becomes difficult to definitively attribute the effect to 
any one factor. A study of physicians and nurses in surgical units (Bellandi et al. 
2018) made such comparisons (adjusted for multiple testing), however, the authors 
appropriately refrained from attributing apparently significant differences to par-
ticular factors. Two-group comparisons in workflow time studies thus must be 
applied with caution.

As seen with calculating CIs, there is little methodology for analysing propor-
tions of continuous measures. The calculations for parametric hypothesis tests 
involve the sample size, which, as seen several times in this chapter, can be open 
to interpretation. In the case of hypothesis testing, choices about what constitutes 
a task can then influence the sample size in the calculations and consequently the 
level of significance, which could result in incorrect conclusions, whether uncon-
sciously or not.

Following on from the hypothesis testing approach used to assess IOR in Sect. 
12.3.1, a way around these issues is, once again, through nonparametric methods. 
Permutation tests, or their Monte Carlo variation (Good 2010), can not only be 
applied to comparisons of typical measures in workflow time studies such as pro-
portions of time and rates per unit time, but also to comparing means and counts. 
Rather than resampling the data as in the bootstrap method, the permutation tests 
randomly shuffle the group labels and calculate the difference between groups for 
each shuffle, e.g. the difference between proportions. This generates a null distribu-
tion for the observed difference and a p-value can then be determined as the propor-
tion of permuted differences larger than the observed difference.

Again, we use a simulation to illustrate the efficacy of this approach. Tasks with 
durations following an exponential distribution were generated for two separate 
groups. For each group, a certain proportion of tasks (the ‘true’ proportion) were 
assigned to the category of interest and the difference between the group-level pro-
portions of time for that category was calculated. The Monte Carlo permutation test 
was then applied to derive a p-value for the observed difference. This process was 
repeated 1000 times, from which the proportion of significant results was obtained 
using α = 0.05. When there is a true difference, this proportion represents the power 
of the test. For a fixed proportion (p1) in the first group, the proportion in the second 
group (p2) was varied through a range of values and the power calculated each time 
as described above. This was done for p1 = 0.05 and p1 = 0.2, and also for sample 
sizes of 100 tasks (50 per group) and 1000 tasks (500 per group).

Figure 12.2 shows the estimated power for these four scenarios. Both plots show 
that power increases with greater true difference between groups and that this 
increase is more rapid for higher proportions (dotted lines for p1 = 0.2 versus solid 
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lines for p1 = 0.05), and for larger samples (plot b versus plot a). The two groups 
were simulated to have equal sample size. In additional simulations, it was found 
that keeping the same total sample size but allowing imbalance in group size reduced 
the power. The grey lines indicate power curves for the difference between two 
independent binomial proportions generated using the G∗Power program (Faul 
et al. 2007). While there is clear similarity, the power for the simulated permutation 
tests (black lines) are systematically lower. Nevertheless, the fact that they are in the 
same region and that the permutation test is applicable to proportions of continuous 
variables while binomial proportion methods are not, supports the permutation test 
as a reasonable choice for comparing proportions of time in workflow time 
studies.

An alternative testing approach, as outlined in Sect. 12.3, is to aggregate the data 
into subgroups. A proportion can be calculated for each subgroup, then the set of 
subgroup-level proportions can be analysed as continuous data, using methods such 
as t-tests or linear regression. We assessed this approach through simulation and 
compared it to permutation testing. To replicate a two-group comparison, we simu-
lated 500 tasks per group (with exponentially distributed task duration) and divided 
the task in each group into either 10 subgroups of 50 tasks each, 50 subgroups of 10 
tasks each, or six subgroups of eight or nine tasks each. In one group the underlying 
proportion of interest was set at 20% and for the other group this varied between 20 
and 40%, that is, the difference between groups ranged from 0 to 20%. A t-test was 
applied to the subgroup-level proportions and the whole process was repeated 1000 
times to obtain power estimates for the range of group differences.

The results of these simulations are shown in Fig. 12.3 where the power curves 
for t-tests applied at different levels of subgroup aggregation are relatively similar 
(all black lines). Although having fewer subgroups reduces the effective sample size 
of the tests, this seems to be counteracted by a proportional decrease in variance. 
The somewhat surprising result of which is that the power is not greatly affected by 
the level of aggregation. The grey line in the plot shows the power for the permuta-
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Fig. 12.2  Simulated power of the Monte Carlo permutation test to detect difference between two 
proportions of a continuous variable, for (a) a total sample of 100 tasks and (b) a total sample of 
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computed power for equivalent differences in binomial proportions is shown as grey lines for 
reference
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tion testing approach. This is consistently as good or better than t-tests applied to 
aggregated data. The choice of units over which to aggregate data (e.g. observation 
sessions, clinicians, etc.) is not necessarily obvious in workflow time studies. 
Combined with the fact that permutation tests are at least as powerful, then once 
again a nonparametric approach is the better option.

12.4.2.2  �Multivariate Analyses

There are many ways to apply multivariate methods in workflow time studies. 
Indeed, there is a strong case to make that most association studies should take a 
multivariate approach to better understand the factors operating at multiple system 
levels and minimise the bias in particular effects by adjusting for other influential 
factors. We have discussed general considerations of multivariate analysis in work-
flow time studies in our previous work (Walter et al. 2015). In this section we extend 
the theme of nonparametric analysis into the multivariate arena.

There are several ways to apply nonparametric methods to multivariate analyses. 
First, when fitting garden variety parametric models, such as linear regression, it is 
possible to use bootstrapping to determine the significance of the model estimates 
or to generate CIs for the estimates. This is essentially an extension of what we have 
discussed earlier regarding CIs and hypothesis tests, and similarly this may be an 
appropriate alternative when the data do not satisfy parametric model assumptions, 
as is often the case.

Second, there is a wide range of nonparametric multivariate modelling techniques 
that do not rely on assumptions about the distributional form (normal, Poisson, etc.) 
of the data. Some can be used as explanatory models, such as generalised additive 
models or spline regression, that can describe non-linear associations. In the study of 
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Fig. 12.3  Simulated power for t-tests applied to subgroups-level proportions for 50 subgroups of 
10 tasks each (solid black line), 10 subgroups of 50 tasks each (dashed black line), and 6 subgroups 
of 8 or 9 tasks (dotted black line). The total sample of tasks was 1000 (500 per group), the underly-
ing proportion of the group 1 was p1 = 0.2 and proportions for group 2 ranged from 0.2 to 0.4. The 
power for a permutation test is shown for comparison (solid grey line)

12  Understanding Clinical Workflow Through Direct Continuous Observation…



208

prescribing errors among ED physicians, Westbrook et al. (2018) found no evidence 
of an effect of time of day (categorised into 2-h blocks) on error rates using a Poisson 
regression model. However, Fig.  12.4 shows that fitting a nonparametric model 
(LOESS smoother) reveals a significant and distinctly non-linear relationship. 
Another explanatory approach is the classification tree, a version of which was used 
by Walter et al. (2017). In that study, discussed at the end of Sect. 12.2, the lack of 
data in certain categories necessitated a change from the original analysis plan. The 
alternative analysis used was a nonparametric model called a conditional inference 
tree, which iteratively splits the data into groups such that each group has a distinct 
outcome profile. Finally, in the area of predictive nonparametric models there is now 
a vast and growing collection of methods, such as Bayesian networks and random 
forests, that would be applicable to answering appropriately framed research ques-
tions in workflow time studies.

12.5  �Discussion

Workflow time studies are an important type of research for generating knowledge 
about both the functioning of clinical work and workflow at a fine-grained level, and 
about the workflow-related factors that influence patient safety and quality of care. 
The data generated by such studies, and likely other types of time and motion stud-
ies, are not always amenable to conventional statistical methods. In this chapter we 
have highlighted some of the non-standard aspects of the data and offered alterna-
tive approaches that draw heavily from the family of nonparametric analysis 
techniques.
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This chapter is somewhat technical, and it may be tempting for readers to form 
the impression that workflow time studies are overly complicated. The basic con-
cept of these studies is, in fact, straightforward, but the complexity largely comes 
from the contexts in which they are applied. Clinical work is undeniably complex, 
and to understand its inner workings and interrelationships we must embrace that 
complexity into study design and data analyses, challenging as it may be. To design 
studies and analyses that fit within conventional approaches is to essentially shy 
away from or ignore those challenges. The methodological discourse in this chapter 
takes some steps towards tackling the intricacies of conducting quantitative studies 
of clinical work but is intended as a starting point for ongoing discussions rather 
than a definitive account of best practices.

Some recent studies have begun to employ more sophisticated methods such as 
multilevel models (Walter et  al. 2014; Grundgeiger et  al. 2010), transition state 
models (Carayon et al. 2015; Myers and Parikh 2019), and nonparametric models 
(Walter et  al. 2017). However, explicit discussion of quantitative methodology 
appropriate for workflow time studies remains relatively rare. As we have high-
lighted in this chapter, there is an imperative to develop innovative approaches 
even for fundamental analyses such as IOR assessment, confidence intervals and 
hypothesis tests. Improving both our understanding of clinical workflow and the 
integrity of the workflow time study literature will require ongoing methodological 
innovation.
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