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Foreword

Clinical care problems today include inefficiency, errors, and applying best 
evidence.

There is universal recognition that healthcare today is expensive and inefficient 
and is plagued by failure to deliver high quality. Nowhere is this truer than the 
United States, with its fragmented system of providers and payers and its singularly 
huge health expenditures per capita as a proportion of gross domestic product. It is 
hardly controversial to propose that part of the solution is to improve efficiency 
through communication and coordination among all the stakeholders.

Current communication and coordination are largely related to financial matters, 
especially payment to healthcare providers. Where “workflow” is addressed, it is 
largely administrative in nature (admission, discharge, transfer, referral for clinical 
procedures, and documentation for billing purposes). Yet the real workflow—mov-
ing the patient through the healthcare system to transform the sick patients to 
healthy ones and keep them that way, what the administrative processes were cre-
ated for in the first place—often garners less study for process improvement. As a 
result, clinical workflows take a back seat to administrative ones. By way of illustra-
tion, I once worked at a hospital where transfer of a patient from a medical or surgi-
cal service to the rehabilitation service required formally discharging the patient, 
with attendant discharge summary and orders, and then readmitting them, with 
attendant intake and admission orders—even though the patient might not physi-
cally move from one bed to another. The opportunity for degraded continuity of 
care, such as order transcription errors, was only one of the problems that this pro-
cess imposed.

In the United States, the Affordable Care Act has led to rapid adoption of elec-
tronic health record (EHR) systems, largely commercial products, many of which 
with serious flaws that had previously impeded their adoption. The unintended con-
sequences of this experience can inform similar efforts in other countries. 
Nevertheless, EHR adoption has been held out as a way to improve healthcare effec-
tiveness and efficiency through automation of, in part, the communication and coor-
dination related to workflow processes.



vi

It is fair to say that the clinical (previously “medical”) informatics research com-
munity has been poised to help with information technology-based workflow for 
decades, at least since the inception of the Symposium on Computer Applications in 
Medical Care in 1977 (now renamed as the Annual Symposium of the American 
Medical Informatics Association). The work presented at that conference alone, 
over its 40-plus years, comprises many thousands of informatics projects, the major-
ity of which failed to find long-term adoption.

While early evaluation of informatics solutions consisted of demonstrating that 
programs could run to completion without errors and could do so faster and more 
accurately than previous attempts, current evaluations examine issues such as 
usability and usefulness. Yet even systems that fair well in such assessments find 
that enthusiasm for their use is underwhelming.

To a large extent, the lack of success of most of these projects has been related to 
failure to integrate them into healthcare systems and, even where integrated, failure 
to support workflow processes in natural, intuitive ways. For example, nurses and 
physicians find work-arounds in using electronic clinician order entry systems to 
the detriment of patients, while alerts and reminders are overridden more often than 
not as being inappropriate and bothersome. In my own experience, I developed a 
tool called the Medline Button, the first version of a class of applications called 
infobuttons that attempt to anticipate and assist with clinician information needs, 
which executed medical literature searches based on a patient’s ICD9 codes in the 
pre-PubMed era. It was a technical success, making the retrieval of relevant infor-
mation possible with the touch of a button. However, it was a practical failure 
because it used data generated at the time of hospital discharge that were no longer 
relevant during a subsequent hospital admission.

What has largely been missing from efforts to health information technology- 
based efforts to improve clinical workflow, as evidenced by the Medline Button 
experience, are studies of cognitive processes of patient care providers and their 
impact on healthcare team communication and coordination. In subsequent infobut-
ton research, for example, successful adoption did not occur until I partnered with 
Vimla Patel, one of this book’s editors, and her team of cognitive scientists at McGill 
University to study clinicians’ information needs through formal observational 
think-aloud studies in actual clinical settings.

This brings me to the purpose and place of this book. Its reviews, essays, and case 
studies will, collectively, raise the reader’s awareness of the myriad issues that relate 
health information technology to clinical workflow, not from the perspective of admin-
istrative processes but based on cognitive processes that such systems are intended to 
support. Once enlightened with that perspective, the reader should consider the sys-
tems present (or needed) in his or her own institution and how they should be studied. 
Hopefully, some of these readers will be decision-makers at their institutions, who will 
be able to include cognitive researchers in the task of putting the findings of their 
research into practice. This book will then be at the right place at the right time to 
provide insight into the types of tools and evaluation expertise that will be needed to 
better match workflow systems to intended, rather than unintended, consequences.

Birmingham, AL, USA  James J. Cimino

Foreword
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Chapter 1
Clinical Workflow in the Health IT Era

Kai Zheng, Johanna Westbrook, Thomas G. Kannampallil, 
and Vimla L. Patel

Health information technology (IT) in general, and electronic health records (EHR) 
in particular, hold great promise to cross the quality chasm of the healthcare system 
and to bend the curve of ever-rising costs (Institute of Medicine (U.S.) 2001; Girosi 
et al. 2005). However, health IT implementation projects globally have experienced 
a wide range of issues, from rollout delays to budget overruns (Kaplan and Harris- 
Salamone 2009). Successfully deployed systems often fail to generate anticipated 
results (Black et al. 2011; Kellermann and Jones 2013); some are even associated 
with unintended adverse consequences (Ash et  al. 2007; Campbell et  al. 2006; 
Koppel et al. 2005; Zheng et al. 2016).

In the U.S., for example, over $30 billion has been invested in accelerating EHR 
adoption and promoting its “meaningful use” through the appropriation from the 
Health Information Technology for Economic and Clinical Health (HITECH) Act 
2009 (Blumenthal 2010; Blumenthal and Tavenner 2010). While the program has 
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been largely successful in boosting EHR penetration rates across U.S. hospitals and 
clinics (The Office of the National Coordinator for Health Information Technology 
(ONC); Office of the Secretary, United States Department of Health and Human 
Services (HHS) 2018), research on the effectiveness of the systems implemented 
has showed mixed results (Jones et al. 2010; Romano and Stafford 2011). In their 
Health Affair article entitled “What it will take to achieve the as-yet-unfulfilled 
promises of health information technology,” Kellermann and Jones concluded that 
despite the widespread adoption of health IT, the quality and efficiency of patient 
care in the U.S. were only marginally better; and the annual aggregate expenditures 
on healthcare continue to soar (Kellermann and Jones 2013).

Disruption to clinical workflow as a result of health IT implementation has been 
repeatedly shown as a major cause for the under-realized value of health IT. A key 
issue is that today’s health IT systems are often designed to simply mimic existing 
paper-based forms, and thus provide little support for the cognitive tasks of clini-
cians or the workflow of the people who must actually use the system (National 
Research Council 2009). Similarly, in a systematic review of the health IT evalua-
tion literature, Buntin and colleagues found that a considerable number of studies 
reported negative or mixed findings, and that “most negative findings within these 
articles relate to the work-flow implications of implementing health IT, such as 
order entry, staff interaction, and provider-to-patient communication” (Buntin et al. 
2011: 467).

“More/New Work” and “Unfavorable Workflow Change” are two workflow dis-
ruptions that have been most often discussed in the literature; both are directly 
attributable to the radical changes to established clinical workflow associated with 
introduction of health IT (Ash et al. 2007; Campbell et al. 2006; National Research 
Council 2009; Niazkhani et  al. 2009). While some changes are purposefully 
planned—to reengineer existing processes to take full advantage of new capabilities 
offered by health IT—some are manifestations of a wide range of problems such as 
poor software usability, misaligned end-user incentives, rushed implementation 
processes, and the lack of sociotechnical considerations to effectively integrate soft-
ware systems into their complex behavioral, organizational, and societal contexts 
(Ash et al. 2007; Campbell et al. 2006; National Research Council 2009; Niazkhani 
et al. 2009).

It is therefore critical to develop a comprehensive understanding of the impact of 
health IT on clinical workflow, in addition to their root causes, mechanisms, and 
consequences. Unfortunately, studies of these phenomena are still relatively scarce, 
and available findings are often inconclusive or conflicting (Unertl et  al. 2010; 
Zheng et al. 2010; Carayon and Karsh 2010). Further, a consensus on the research 
definition of “clinical workflow” remains elusive, especially in the context of assess-
ing workflow changes introduced by health IT (Unertl et al. 2010).

While conceptual models are available, e.g., (Unertl et al. 2010) many challenges 
remain in the development and application of robust measures of changes to clinical 
workflow (Zheng et al. 2010). Methods used in existing workflow studies vary to a 
great extent (Unertl et al. 2010; Zheng et al. 2010; Carayon and Karsh 2010; Zheng 
et al. 2011; Lopetegui et al. 2014). Even among studies using the same method, a 

K. Zheng et al.
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considerable degree of discrepancies exists in application of the method and 
 interpretation of study results (Zheng et al. 2011; Lopetegui et al. 2014). For exam-
ple, time and motion is considered to be the “gold standard” approach for obtaining 
quantitative assessments of clinical workflow; yet among the time and motion stud-
ies published to date, there has been a large degree of methodological inconsisten-
cies in the design, execution, and results reporting of those studies, such as how 
inter-observer reliability is assessed and how multitasking is handled (Zheng et al. 
2011; Lopetegui et al. 2014). This issue has significant implications for the rigor 
and generalizability of time and motion studies, diminishing our ability to accumu-
late knowledge as a field. As commented by Carayon and Karsh in a comprehensive 
literature survey report commissioned by the U.S. Agency for Healthcare Research 
and Quality (AHRQ), the empirical evidence of health IT’s impact on clinical work-
flow has been “anecdotal, insufficiently supported, or otherwise deficient in terms 
of scientific rigor” (Carayon and Karsh 2010: 7).

This book intends to address several of these knowledge gaps by bringing 
together a team of experienced researchers and practitioners who have dedicated 
their career to studying and improving clinical workflow. Several chapters included 
in this book are results of a series of research or quality improvement efforts span-
ning multiple decades; some are syntheses of the research literature since early 
1900s, bringing together what we know about clinical workflow, where gaps remain, 
and how these gaps can be addressed in future research.

This book is organized into four Parts and 19 Chapters. Part I, Clinical Workflow 
and Health Information Technologies, orientates readers to the problem domain, 
basic concepts (e.g., cognitive behavior and workflow modeling), and consequences 
of disrupted workflow due to health IT implementation.

Part II, the State of the Art of Workflow Research, summarizes workflow studies 
conducted in healthcare in the past few decades. We purposefully include in this 
section workflow research from a non-healthcare domain, aviation, to draw a com-
parison between how clinical workflow differs from workflows in other industries 
and how they are conceptualized and studied differently. Part II also includes a 
chapter specifically on multitasking and interruptions, which are two defining char-
acteristics of clinical workflow that have significant efficiency, care quality, and 
patient safety implications; in addition to chapters that address nursing and patient 
perspectives, and workflow-related issues during patient handoff and when patients 
transition from one healthcare setting to another, i.e., workflow at the edges.

Part III, Research Methods for Studying Clinical Workflow, introduces research 
methodologies that have been commonly used in clinical workflow studies, includ-
ing work sampling, time and motion, human factors engineering, and emerging 
methods that leverage sensor technology for automated data collection and real- 
time workflow assessment. Part III also includes a chapter that discusses the unique 
characteristics of quantitative workflow data and consequently unique challenges to 
statistically analyzing such data.

Part IV, Applications and Case Studies, first presents one large clinical workflow 
study supported by the U.S. Agency for Healthcare Research and Quality (AHRQ) 
that looked into how health IT systems, introduced as part of ambulatory care prac-

1 Clinical Workflow in the Health IT Era
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tice redesign, impact clinical workflow. Part IV then presents three case studies each 
focusing on a distinct perspective. These include effort in reengineering clinical 
workflow to enable a cross-continental collaboration on creating continuously mon-
itored intensive care units, and efforts in enhancing clinical pathways, clinical 
rounding, and patient handoff communications.

By compiling a collection of high-quality scholarly works that seeks to provide 
clarity, consistency, and reproducibility in workflow research, we hope to create a 
repository of knowledge to inform future studies on health IT design, implementa-
tion, and evaluation. In addition to a research reader, this book offers pragmatic 
insights for practitioners in assessing workflow changes in the context of health IT 
adoption, and in implementing remedial interventions when such strategies are war-
ranted. The book is also designed to present the state of the art on clinical workflow 
research, providing an excellent reader for graduate students in all clinical disci-
plines as well as in biomedical and health informatics.
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Chapter 2
Cognitive Behavior and Clinical Workflows

Jan Horsky

2.1  Cognitive Work in a Complex Domain

The intrinsic complexity of evidence-based, technologically advanced modern 
healthcare defines processes and affects work environments in ways that make them 
difficult to describe with consistency and create models with highly predictable 
outcomes. The healthcare industry comprises a wide array of organizational entities 
that range in scale from small private practices and independent clinics to hospitals 
and large healthcare delivery networks. They interact with a multitude of ancillary 
and support service businesses, insurance and payer companies, public administra-
tive and regulatory bodies, private and public research centers and academic institu-
tions that together form one of the most complex organizational structures in society 
(Begun et al. 2003; McDaniel et al. 2013). Individuals engaged directly or indirectly 
in patient care, its management and administration routinely collaborate across pro-
fessional and institutional boundaries. The efficacy of their work and the safety of 
patients are vitally dependent on technology support that allows collection, storage, 
analysis and sharing of information and communication. Decision making and rea-
soning of clinicians in this highly interconnected environment is as often autono-
mous as it is interdependent and contingent on the expertise and decisions made in 
parallel by others. This intricate combination of individual and collective responsi-
bilities, actions and decisions tends to generate many non-linear work processes that 
account for much of the dynamism and elasticity of both personal and collaborative 
workflows (Fig. 2.1).

Work characteristics that are specific and often unique to healthcare make pre-
dictive analyses of workflows in this domain problematic. The primary responsi-
bility of clinicians is to ensure that patients receive timely, appropriate and 
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effective care whenever and wherever needed. Goals and their sequence—the con-
stituent parts of workflows—are in practice quickly reorganized and modified to 
accommodate new developments and may require interventions that conflict with 
prior or existing objectives or with normative pathways. Decisions and actions in 
many lines of clinical and ambulatory care are often deferred, substituted, traded 
off or finalized only to a sufficient degree so that tasks with higher priority may get 
fully completed when time or resources are limited. For example, planned proce-
dures, evaluations or medication therapy may be changed when new laboratory 
test results become available or when newly discovered findings require immedi-
ate attention. Trauma patients are treated for injuries that are life-threatening while 
the care for other illnesses and conditions may be limited to stabilization or post-
poned until more favorable circumstances allow. Planned behavior and goal com-
pletion are routinely interrupted through personal contact, telephone conversations, 
pagers or computer-generated alerts. This dynamic is inherent to clinical work and 
generally considered to be necessary and often adaptive so that interventions can 
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Fig. 2.1 Major organizational components of integrated healthcare industry. Reprinted from 
Vogel LH. Management of information in healthcare organizations. In: Shortliffe EH, Cimino JJ, 
editors. Biomedical informatics: computer applications in healthcare and biomedicine. London, 
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be directed toward the greatest need when situations evolve and change. Team 
members often provide help to one another when needed without waiting for 
explicit requests (Rivera-Rodriguez and Karsh 2010). Cognitive psychology 
research provides ample evidence about the disruptive effects of interruption on 
human cognition (Altmann and Trafton 2007) and reports from healthcare studies 
show that interruptions and distractions contribute to medical error (Ashcroft et al. 
2005) and may increase the risk to patient safety during certain types of clinical 
tasks (Li et al. 2011). The fragmentation of work is many times unavoidable and 
clinicians incur extraneous cognitive burden and mental fatigue that often con-
flicts with their reasoning.

There are many public and private organizations with complicated internal 
structures that manage large workforce in which scientists, researchers, lawyers, 
professionals and administrative and support personnel with vastly different 
expertise and duties routinely collaborate. The National Aeronautics and Space 
Agency (NASA), for example, or many national airlines, technology corporations 
and power- generating companies conduct work and research projects in an envi-
ronment that is science-based, safety-critical and contains considerable risks that 
need to be well understood and controlled. Healthcare shares many of these attri-
butes and efforts to increase the safety, quality and effectiveness of care are often 
informed by initiatives successfully implemented in such industries—the long-
term investment in information technology being a prime example. There are also 
considerable differences emanating from the inherent properties of an engineered 
system (the aircraft, engineering) and a biological, natural system (the patient, 
medical science). Healthcare has many characteristics that are not typically found 
in engineered systems (Durso and Drews 2010). Better insight into the specifics 
and idiosyncrasies of this information-intensive domain may accelerate the 
uneven pace of progress towards greater effectiveness and increased safety that is 
intended to be advanced by health information technology (HIT) and work 
organization.

Biomedicine is a scientific discipline that is in many respects quite unlike other 
applied and natural sciences. A defining but elusive feature of physiologic systems 
is their daunting complexity arising from the interaction of a myriad of structural 
units and regulatory feedback loops that operate over a wide range of temporal and 
spatial scales, enabling an organism to adapt to environmental stresses (Glass 2001). 
Medical care and research encompass the properties and behavior of human 
beings—organisms whose complexity have no counterpart in other scientific disci-
plines. Many aspects of these natural systems are opaque because interactions have 
to be deduced and may not be fully understood: individual elements of biological 
systems occurred without intentional design and are the result of reorganization and 
evolution in order to adapt to changing environment (Durso and Drews 2010). 
Medical investigations and discourse therefore includes the aspect of uncertainty 
that inevitably creates variability among individuals and makes clinical information 
systematically different from the information used in physics, engineering, or even 
clinical chemistry (Shortliffe and Barnett 2014).

2 Cognitive Behavior and Clinical Workflows



12

Decision making involves reasoning with inherently probabilistic information. 
However, the level of uncertainty in diagnostic hypotheses or treatment options that 
clinicians seek to reduce by testing and by gathering data is further affected by the 
availability of information that is often incomplete or unreliable. Observations, 
laboratory results and narrative reports may not have been completed or cannot be 
immediately obtained; they may also be in apparent conflict or ambiguous, and 
their interpretation could be erroneous (Weber et  al. 2017; Smithson 1999). For 
example, when the history of respiratory problems is not found in the patient record, 
its lack could be interpreted as an indication of the absence of prior problems by a 
clinician hypothesizing about the possibility of acute lung disease even if such 
assessment was simply not documented. The value of any patient information rises 
dramatically when the level of record completeness and comprehensiveness is high 
and typically needs to reach 85% or above to be truly useful to clinicians (Yasnoff 
2014).

Somewhat ironically, paucity and excess of information may coincide even in the 
record of a single patient. Clinicians need to collect relevant assessments, case sum-
maries, radiology reports laboratory values and other data and review them in con-
text. The information may be stored in a single or in multiple electronic health 
record systems (EHR) or distributed over ancillary systems that may or may not be 
functionally interoperable. A patient treated by several hospitals and specialty ser-
vices will have only a fraction of all recorded historical data in one system and a 
reviewing clinician may not be aware of critical events stored in remote, uncon-
nected systems (Weber et al. 2017). Those that are gathered within a single EHR 
may be presented on screens in separate modules and sections that de facto silo 
them, further complicating their meaningful aggregation for a specific clinical pur-
pose. Clinicians may need to repeatedly search and navigate through the record in 
order to retrieve relevant information (Stoller 2013). Narrative visit and progress 
notes may also contain repetitive, dated or inaccurate content that is created as the 
unintended consequence of too-facile recycling of old data through cut-and-paste 
behavior. This so-called “note bloat” inhibits the ongoing questioning and ascertain-
ment process that helps monitor diagnostic accuracy as illnesses evolve over time 
(Graber et al. 2017).

The complex science, the pragmatics of making decisions with uncertain infor-
mation, the intricacies of mixed collaborative and individual responsibilities and the 
dynamics of established and ill-defined goals are all characteristic of a field in which 
work demands can exceed the bounds of unaided human cognition (Masys 2002). 
The extent of knowledge that needs to be mastered also rapidly expands, often 
changing the understanding of existing medical concepts with new insights. It is 
estimated that while it took 50 years to double the volume of medical research pub-
lications in 1950, in 1980 it was merely 7 years, 3.5 years in 2010 and it is projected 
to be just 73 days in 2020 (Densen 2011). Health information technology that is 
unobtrusively embedded into workflows and effectively supports clinicians in their 
decision making, manages access to contextual knowledge and helps with data anal-
ysis and interpretation is as difficult to design and implement as it is necessary for 
safe and high-quality care.
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2.2  Complexity of Medical Care Reflected in Workflows

Large healthcare institutions are paradigmatic examples of complex organizations 
where clinicians routinely engage in non-linear interactions with others and with 
information technology and where their work plans include many emergent goals 
(Martínez-García and Hernández-Lemus 2013). Complex work environments are 
distinctly different from those that are merely complicated: they are more difficult 
to analyze and future system states are not always predictable. Complicated prob-
lems and processes originate from singular causes or from the actions of identifiable 
agents and when they combine to create a problem state, the sources can be distin-
guished and addressed individually. Complex problems, on the other hand, evolve 
from networks of multiple interacting causes that may not be possible to differenti-
ate and interventions to address them need to consider systems in their entirety. 
Feedback and circular processes in such systems also modify and intensify the 
causes so that effects are often disproportional to their origins (Poli 2013).

Health care can be characterized as a socio-natural system with many non-linear 
and non-additive functions that may be opaque and more difficult to understand and 
predict than engineered systems (e.g., aviation, manufacturing) where nonlinearity 
is often a sign of malfunction (Durso and Drews 2010). Standard, reusable pro-
cesses that often engender safe practices and allow monitoring for anomalies that 
may eventually become problems have therefore more limited use in healthcare 
than in other safety-critical work environments. Clinicians may prioritize or trade 
off multiple immediate and longer-term goals to restore a patient to health or to 
reduce their discomfort. Objectives and goals that are initially vague and only grad-
ually become more focused and defined as more insight is gained may be called 
emergent (Klein 2009). Emergent properties of systems and processes are difficult 
to model and predict because complex systems are non-reducible to their constitu-
ent parts. In the hypothetico-deductive approach to diagnostic reasoning, data and 
observations are added to the growing database of findings and are used to reformu-
late or refine the active hypotheses until one reaches a certain threshold of certainty 
and a management, disposition or therapeutic decisions can be made (Shortliffe and 
Blois 2014). Parts of a therapeutic plan that define a patient trajectory and work-
flows for multiple clinicians providing services and care may therefore be only ten-
tative, even in situations when goals are clearly defined.

2.3  Workflow Modeling

Beginning in the late nineteen eighties, large American companies saw the benefit 
of studying cross-functional business processes rather than concentrating separately 
on functional and transactional operations such as procurement, manufacturing and 
sales. They defined the concept of a business process as a set of logically related 
tasks performed to achieve a specific business outcome—primarily, better service to 
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clients (Davenport and Short 1990). Decisions that affect multiple processes are in 
this paradigm given more weight than ad-hoc, local decision making.

A somewhat parallel development in the healthcare industry in the nineteen nine-
ties, spearheaded by academic institutions, professional societies and regulatory 
bodies, strived to improve the continuity of care across disciplines and to decrease 
unwarranted practice variation (Wennberg 1999). These entities started creating and 
disseminating collections of evidence-based recommendations for best practices, 
called clinical guidelines, that addressed specific clinical goals or conditions. They 
provide the basis for higher-level decision making and are often complemented by 
locally-developed clinical protocols to monitor compliance but usually do not define 
individual steps in a process. There are also clinical pathways, structured multidis-
ciplinary plans of care, designed to support the implementations of clinical guide-
lines and protocols. However, there are today no formal industry standards for 
completing care processes and clinicians have largely their own ways of interacting 
with patients and executing tasks (Karsh 2009).

Workflow generally refers to the control dimension of a business process, that is 
the dependencies among tasks that must be respected during its execution (Delacoras 
and Klein 2000). The term is used more broadly in healthcare and its meaning can 
vary. It can describe goals and processes for an individual as well as for groups, the 
navigation paths through EHR screens, abstract representation of tasks, information 
needs, error conditions and alternate paths, or the steps that a clinician performs 
when delivering care according best practice suggestions and clinical guidelines.

Work environment analyses have historically investigated the business processes 
associated with care or the flow of patients and staff through large hospital build-
ings. The interest in analyzing clinical work processes and collaboration developed 
later, but rather than a planned strategy to improve the effectiveness and safety of 
care, the impetus was often a need to address inefficiencies and disruptions reac-
tively when identified or introduced by new technology implementation. For exam-
ple, there are no standard descriptions of workflow for care processes that would 
guide decisions about where and how to integrate computer-based decision-support 
interventions (Shiffman et al. 2004). Workflow studies, once scarce, are now being 
done more frequently although their findings are often inconclusive or conflicting 
(Zheng et  al. 2015). Many lack scientific rigor because they describe workflows 
only indirectly or do not explain conflating or mediating factors such as training and 
organizational culture within the socio-technical context of HIT implementation 
and use (Carayon and Karsh 2010).

A theoretical perspective of work in healthcare organizations holds that complex 
social interactions, conflicting objectives, preferences and work demands determine 
the use and effect of information technology (Anderson and Aydin 2005). Predictive 
analyses require a robust understanding of organizational dynamics, characteristics 
of individuals, information systems and the knowledge of processes that occur dur-
ing system planning, implementation and use; simply modeling the levels of inde-
pendent variables hypothesized to predict change cannot be productive (Mohr 1982; 
Markus and Robey 1988). A useful paradigm for situating the description of work 
processes, pathways and interactions that healthcare workflow studies refer to may 
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be found in the work of Holden and Karsh (Holden and Karsh 2009) who have for-
mulated a theoretical model of multilevel work system to understand the behavior 
of clinicians working with the support of information technology. Derived in part 
empirically from HIT evaluation studies and implementation literature and also 
from theories used in communications sciences, psychology, sociology, manage-
ment, organizational behavior and human factors research, it was applied to help 
explain the determinants of technology use behavior (Smith and Sainfort 1989; 
Carayon et  al. 2003; Klein et  al. 1994; House et  al. 1995; Klein and Kozlowski 
2000). The central proposition of this model is that the physical, cognitive and 
social-behavioral performance of a clinician is affected and constrained by nested 
structural elements of healthcare organization (Karsh 2009).

The four-level model describes the integration, or fit, of the clinician-HIT inter-
action, collaboration and workflow patterns on the base level within the constraints 
and workflow patterns active in the levels above. At the top of this hierarchy is the 
entire healthcare industry where standards, regulations, legislative oversight, 
social influence and labor force characteristics guide the work of organizations. 
Below are healthcare institutions of different size, from care delivery networks to 
private practices, that create administrative structures of their own, formulate poli-
cies, norms and best practices, set priorities and provide training, financial 
resources and expertise appropriate to its constituent work groups and units that 
are on the next level down. Each organizational setting has its own constraints 
determined by technological and administrative factors, by its core mission that 
affects the professional and specialization makeup of the workforce and by the 
characteristics of the target patient population that collectively contribute to the 
complexity of workflows and task structure. The work of individuals, at the base 
level, is therefore done in an environment that is responsive to the disruptive and 
conducive effects of elements and activities from each level on attention, decision 
making, problem solving and cognitive labor. Interfaces and conduits between and 
within levels create a rich and information-intensive work context for workflows at 
the clinic level, patient care workflows and clinician mental workflows (Holden 
and Karsh 2009).

A workflow model is a simplified representation of past, actual or future process 
that can be described by routing, allocation and execution components. It may have 
a narrow focus such as the support for decision making but usually there is a broader 
purpose (Reijers 2003). There are several frameworks and models that have been 
applied to the study of healthcare processes, from specific environments to more 
general settings. Bricon-Souf and colleagues describe a proprietary modeling 
approach for medical intensive care units that explicitly distinguishes urgency in 
determining the authorization of a resource to perform a task (Bricon-Souf et al. 
1999). The Systems Engineering Initiative for Patient Safety (SEIPS) (Carayon 
et al. 2006) model is more broadly applicable and defines the work system as an 
interactive environment that structures workflows, affects the performance of clini-
cians and therefore, indirectly, patient outcomes. The authors also proposed the 
Workflow Elements Model (WEM) (Carayon et al. 2012), a related framework that 
conceptualizes the activity of individuals and groups working asynchronously as 
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dynamic and temporal characteristics of workflows. System elements, in this view, 
create a context that constrains or enables workflows that encompass converging 
and diverging goals. The dynamism of these processes is considered the emergent 
property of work.

A compelling viewpoint on the analysis of healthcare work and complemen-
tary to the structural dynamism found in other models is the conceptual lens of 
the patient trajectory: the pathway of an individual patient through the process of 
care becomes the anchor point of analysis. The patient-oriented workflow model 
(Ozkaynak et  al. 2013) references the cognitive, social and work behavior of 
agents in a complex sociotechnical system (Berg 1999a; Sittig and Singh 2010) 
where actions are not centered around individuals or groups but rather distrib-
uted among roles in the work setting that converge around the care of a specific 
patient. The process that partially determines the basic directions and outlines of 
the care process is a structured sequence of activities, events, and occurrences 
related to a patient’s particular illness trajectory. The term concerns the way in 
which an illness typically unfolds in both sequential and temporal order and how 
management and treatment actions are planned (Reddy et al. 2006). Workflow 
analyses in this paradigm therefore focus on the embedding of illness trajectory 
within the care process. Clinicians planning care interventions and tests often 
need to understand where on the trajectory a patient currently is and where they 
should be relative to the characteristic unfolding of a disease progression. Their 
reasoning needs to concern not only individual data points at the time of deci-
sions but also patterns and trends over time and their interpretation in the larger 
context of known outcomes over many patients (Hilligoss and Zheng 2013). 
Developing these models is methodologically and practically challenging, how-
ever, because of the large variability of data types that are meaningful and rele-
vant in each setting and also due to the lack of a comprehensive and robust 
conceptual framework that limits their interpretation with consistency (Ozkaynak 
et al. 2013).

More recently, a multidimensional Triangle Evaluation Model (Ancker et  al. 
2012) was proposed to identify elements of healthcare structure and processes that 
should be assessed concurrently with quality and safety outcome variables. The 
structure-level predictors include HIT characteristics and how clinicians interact 
with it, organizational setting and patient population. These foci align well with the 
multi-level and dynamic perspective of healthcare work.

Dynamic workflows self-adapt to the present situation and evolve at execution 
time as a function of personal insight. Clinicians often encounter ill-defined and 
under-specified problems they need to solve and their cognitive task is to determine 
the form of the solution. Such systems are called “loosely coupled” and it is useful 
to see dynamic workflows as situated historical records where tightly-coupled ele-
ments provide a bound to loosely-coupled relationships and event sequences that 
are largely non-deterministic (Covvey et al. 2011). An example of work environ-
ment that can be characterized in such terms is emergency and critical care (Horsky 
et al. 2015).
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2.4  Cognitive Behavior and Workflow Effects

A prominent attribute of clinical work is the concurrent presence of both tightly and 
loosely coupled organizational and work relationships. It is essential that smaller 
units organize their work autonomously from central control and that individuals 
have appropriate level of discretion to make independent decisions in order to man-
age the evolving needs of patient care. Typically, clinicians have loosely-coupled 
interactions with policy-setting authorities in administrative and medical oversight 
roles who monitor institutional guidelines and strategies and regulatory mandates 
from local and national bodies (the higher tiers in the multi-level model). They are 
highly trained professionals who collaborate with other experts but retain individual 
responsibility for decisions (Pinelle and Gutwin 2006). However, multi-disciplinary 
and specialized (e.g., surgical) teams often have an ordered structure with tightly- 
coupled and clearly defined roles and relationships. For example, attending physi-
cians, residents, interns, medical students, nurses and support staff in hospitals have 
roles delineated in an explicit hierarchy and patient care and indirect services are 
directed and communicated through verbal and written orders.

A theoretical framework that is increasingly more used to study problem solving 
and collaborative work in healthcare is Distributed Cognition (DCog) that concep-
tualizes human cognition as extended beyond the boundaries of an individual and is 
manifest in artefacts (physical and electronic), social and work relationships (Hollan 
et al. 2000; Hutchins 1991, 1995, 2000). Its focus is on representational transforma-
tion of information that occurs in external media and are coordinated by human and 
technological actors (Wright et al. 2000; Furniss and Blandford 2006; Cowley and 
Vallée-Tourangeau 2017; Horsky et al. 2003). It is perhaps the most clearly articu-
lated, critiqued, commonly used and well known form of exploring how distributed 
action can be examined as a cognitive process (Perry 2017). The problem structure 
that DCog can analyze with relatively little difficulty is often defined a-priori: goals 
are known and defined, changes follow pre-determined processes and many tasks 
are repetitive and could be trained. Studies that typically produce clearly identifi-
able examples of problem solving and cognition distributed over artefacts and col-
laborators usually involve well-defined activities, explicit boundaries of control and 
influence and an environment where work roles and protocols are pre-set and gener-
ally static and constrained, such as ship navigation or the work of aircraft pilots.

The tightly-coupled components of healthcare workflows are appropriate objects 
of such analyses. For example, the patient trajectory workflow model is closely 
related to that patient’s illness trajectory as clinicians make decisions that follow a 
specific reasoning process, or an “illness script.” It is conceptualized as an internal 
representation of the pathophysiology, epidemiology, time course, signs and symp-
toms of a particular illness or a disease and organized as a summary—or a mental  
and treatment (Custers 2015). Such models are initially acquired through medical 
training and further developed and internalized by professional experience. They 
represent knowledge in three broad categories: predisposing conditions (context), 
pathophysiological insult (causal chain) and  clinical consequences (signs and symp-

2 Cognitive Behavior and Clinical Workflows



18

toms) (Schmidt and Rikers 2007). Expert clinicians have over time expanded, 
refined and contextualized this knowledge to form durable mental models in which 
the presence or absence of significant script characteristics carry certain predictive 
value for a diagnosis. Their ability to differentiate between illnesses with similar 
presentations allows them to make more accurate diagnostic and care decisions 
more quickly.

Clinicians are less likely to associate illnesses with a particular script when they 
have atypical presentation or when they encounter them infrequently. Their diag-
nostic reasoning then becomes more laborious and vulnerable to errors, biases and 
misconceptions (Jones et al. 2014). Uncertainty is inherent in clinical work and its 
level is associated with diseases that vary greatly in the degree of symptom ambigu-
ity (Leykum et al. 2014). For example, patients who have a more typical progression 
of an illness can be more reliably and predictably treated according to existing stan-
dards of care than others for whom population-derived guidelines are a poor fit and 
who require more personalized care. The downside is that outcomes dependent on 
individual characteristics or manifestations that may be unknowable are far less 
certain.

DCog analyses are less effective for the analysis of loosely-coupled structures 
that have dynamic workflows and emergent goals. Uncertainty takes many forms in 
healthcare (Plsek and Greenhalgh 2001) and can be attributed to three main sources: 
the complexity of the system itself, the poorly predictable trajectories of illnesses, 
and the limits of scientific knowledge (Han et al. 2011). It has been conceptualized 
as a multidimensional phenomenon with theoretically distinct domains and con-
structs that are potentially measurable and related to different outcomes, mecha-
nisms of action and management strategies (Gerrity et al. 1990). For example, a 
measure developed to study clinical reasoning strategies during patient visits 
includes an assessment of uncertainty that refers to how well the limitations of 
available information are recognized and explained and how solutions are planned 
to adjust to the current situation (Weir et al. 2012). A study of clinical reasoning and 
communication in an emergency department examined the amount of detail con-
veyed in narrative accounts of care during handoffs as an approximation of the 
uncertainty level (Horsky et al. 2015). However, uncertainty of diagnostic and treat-
ment decisions within complex systems is often irreducible and its measurement 
and management challenging. It is the product of non-linear dynamics and the infor-
mation needed to reduce this type of uncertainty may not exist (Lanham et al. 2014). 
Application of the DCog approach in settings where shifting problem space and 
where specific, local solutions are central to the performance of both individual 
actors and the entire system therefore remains problematic.

There are several published reports on DCog analyses that have come close in 
their application to highly dynamic and loosely structured settings (Hazlehurst et al. 
2007, 2008; Holder 1999) although the problems described have been carefully 
“bounded” to create a simplified problem space that does not account for the layers 
of setting context (Cowley and Vallée-Tourangeau 2017). Many other studies, how-
ever, have used DCog as a methodological and explanatory framework or were 
designed to extend its methodology (Horsky et al. 2003; Kaufman et al. 2003, 2009; 
Furniss et al. 2016a; Sedig et al. 2015; Grundgeiger et al. 2010; Cohen et al. 2006; 
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Xiao 2005; Nemeth et al. 2004; Berg 1999b; Zhang 2002; Zhang and Norman 1994; 
Horsky 2008). Importantly, the DCog framework allows researchers to identify and 
discuss the difference between tightly and loosely coupled activity systems in terms 
of their informational content and problem solving activities (Cowley and Vallée-
Tourangeau 2017).

The distributed and highly specialized healthcare model, characteristic for 
advanced medicine, requires a high level of effective coordination among clinicians 
and experts. It means that all parties need to understand the position of their collabo-
rators in the shared problem space and how their mental models and work progress 
align in order to reduce diagnostic or therapeutic uncertainty and resolve ill- 
structured problems. Situation Awareness (SA) and decision-making also becomes 
distributed and an emergent property of a collaborative system: it represents some-
thing that resides in the interaction between agents of the system rather than sepa-
rately in the minds of individuals (Salmon 2009). Analyses then need to pay attention 
to how agents are made aware of ongoing but problem-unrelated situation monitor-
ing in order to self-organize (Perry 2017).

There are natural limits to the span and effectiveness of attention, perception and 
recognition memory, learning, problem solving, reasoning and decision making that 
bound their application primarily to the core purpose of clinical work—pursuing 
medical goals. These resources are simultaneously needed for interaction with tech-
nology, organization and work coordination (Karsh 2009). Situation Awareness 
relates to the dynamic and transient state of a mental model which is produced by 
an ongoing process of information gathering and interpretation (Hendy 1995). It is 
a construct that can be thought of as an internal mental model of the current state of 
an individual’s environment, or the perception of the elements in the environment 
within a volume of time and space, the comprehension of their meaning and the 
projection of their status in the near future (Mica 1988). SA is one component of 
dynamic, distributed decision making, along with task, system and individual fac-
tors. It changes as the environment changes in response to decisions and actions of 
individuals or due to automated technology interventions (Wright et  al. 2004). 
Dynamic systems are therefore extremely demanding on human cognitive resources. 
Mental workload increases along with system complexity while situation awareness 
is more difficult to maintain.

Even in routine medical practice, cognitive workload is immense. Family phy-
sicians, for example, have to perceive, process, integrate and make decision on 
four to five problems in one visit (Beasley et al. 2004). They need to identify and 
diagnose each problem and plan testing and treatment. The complexity of deci-
sions further rises with the number of comorbidities and concurrent problems that 
may interact or have causal relationships and when indicated treatment options 
may be in conflict. The burden on primary care clinicians in terms of coordination, 
information gathering, cognitive workload and decision-making is also com-
pounded by often incomplete information; it is estimated that physicians have 
about eight unanswered questions for every ten ambulatory visits (Bates et  al. 
2003). Sophisticated and robust information technology and evidence-based deci-
sion support are essential tools and are indispensable for safe, high-performing and 
high quality care.
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2.5  Effects of Technology

Implementation of new technology invariably changes the way clinical work is 
done, from documentation to decision making and care coordination. Personal and 
group workflows are always affected, often to a significant degree, and those who 
need to adapt ubiquitous routines and long-standing practice to a new model and to 
internalize unfamiliar procedures have a range of viewpoints on the beneficial and 
detrimental effects of a new approach on their own work and on the quality of care 
in general. The utility and safety of new systems and the effectiveness of reorga-
nized work may be perceived differently by individuals but evidence from pub-
lished research studies shows a net increase in patient safety that can be attributed 
to the use of advanced information technology, despite the still large number of 
preventable patient injuries that occur every year. Harm likely comes from rela-
tively few initial causes, including hospital-acquired infections, adverse drug 
events, surgical injuries, deep venous thromboses and pulmonary emboli, falls and 
pressure ulcers that account for most of the adverse events in hospitals (Bates and 
Sheikh 2015). However, it is the quality of HIT design, advanced functions and 
rigorous implementation that seems to lead to gains in safety and efficiency—EHRs 
with only basic functions are less likely to have a significant positive effect. For 
example, a review of randomized clinical trials evaluating order entry and decision 
support interventions reported that only three out of ten studies showed measurable 
decrease of unsafe prescribing and only a half reduced medication errors (Lainer 
et al. 2013). At the same time, only about a half of US hospitals use EHRs with 
integrated advanced decision support and other functions known to reduce error, in 
what appears to be an emerging digital divide (Adler-Milstein et al. 2017).

Vendors and, to a lesser extent, academic and healthcare institutions, create prod-
ucts for the HIT market that is vast and diverse. The systems need to have many 
components that retain largely immutable design structures in order to keep the 
software reliable and to have the ability to maintain and develop it even as individ-
ual implementations are adapted to function according to local requirements. 
Dynamic work systems, however, produce unique work environments where single 
technology may have distinctly different effects (Zheng et  al. 2015). The shared 
responsibility of all key stakeholders in the multilevel work system described ear-
lier, (Holden and Karsh 2009) such as vendors, care providers, healthcare organiza-
tions, information technology departments and public and private agencies, is to 
monitor and manage the safety of HIT and to guide their efforts towards resolving 
their often conflicting priorities and requirements (Singh and Sittig 2016). For 
example, vendors and developers should provide health systems with guidance on 
decisions regarding configuration (e.g., changing default settings of medication 
administration times to better match local workflows), customization and  optimizing 
usability while clinician must be responsible for learning how to use the EHR safely 
(Sittig et al. 2018). Technology that can effectively meet the work demands of com-
plex socio-technical systems requires the active participation and expertise of all 
involved parties from inception to implementation.

What clinicians say they want in HIT may be limited by their own understanding 
of the complexity of their work or by their design vocabulary and the ability to con-
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vey to non-medical professionals their reasoning about care decisions. Understanding 
what would help people in their complex work is not as simple as asking them what 
they want, an all too common approach (Andre and Wickens 1995). Highly skilled 
professionals have often very limited insight into their own performance, and even 
more limited ability to articulate what might improve it. Substantial research on 
how clinical work is done, rooted in theories of cognition and collaborative work, is 
required to gain understanding of cognitive behavior of clinicians in the context of 
multi-layered and dynamically changing workflows.

Clinician-oriented approaches can capture the effect of technology on specific 
and diverse individual roles and their work. However, designers, implementers and 
workflow engineers should not fall into the “one size fits all” fallacy as validation of 
a design in practice requires thorough experimental testing based on well-defined 
performance criteria and rich, nuanced understanding of healthcare work (Karsh 
et  al. 2010). Established methods such cognitive analysis (Bisantz et  al. 2015; 
Hettinger et al. 2017; Roth and Bisantz 2013; Vicente 1999; Schraagen et al. 2000), 
workflow and task analysis and human-centered design evaluations have consis-
tently generated useful guidance to HIT designers (Roth et al. 2002; Zhang 2014; 
Lowry 2014; Schumacher and Lowry 2010). The medical field is uniquely complex 
but not impenetrable to researchers from outside of the domain, even as it is a highly 
intricate and structured process of problem discovery and clarification in the context 
of unbounded complexity (Carroll 1997).

Researchers in the informatics, usability and workflow engineering fields in col-
laboration with clinical experts and biomedical scientists need to convey their find-
ings to designers and developers in forms that best inform their work. A recent 
workshop about the usability of medication-alerting CDS and its evaluation out-
lined how this transfer of knowledge into practical design guidance may take place 
(Marcilly et al. 2016). Participants preferred design principles to be formulated as 
checklists and guidelines for design and procurement of software and hardware 
technology, and to help them interpret and understand critiques of prototypes that 
clinicians provided as a part of user-centered cyclical evaluation. An important 
component of specific advisories was their justification in terms of potential harm if 
they were to be ignored, evidence from prior studies and visual examples (e.g., pro-
totypes, wireframes and screenshots) illustrating optimal and poor alternatives of 
design and function. Maintaining the research-to-practice continuum of discovery 
transfer effectively ensures that evidence-based design can make HIT better cogni-
tive and interactive tools in clinical work.

2.6  Current and Emerging Trends

Precision medicine is gaining momentum as the care model most likely to benefit 
from the confluence of expansive new knowledge, especially in genetics, and 
advanced information technology. The term refers to the increasing specificity of 
patient characterization that is possible through genomic and phenomic analytic 
methodologies. Patients admitted to large medical centers are in the near future 
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likely to receive genotyping analyses in addition to the usual data obtained by 
recording the many tests and procedures routinely performed along with the history 
taking and physical examination (Collen and Greenes 2015). The process will cre-
ate vast arrays of newly organized data that will benefit decision support for com-
plex medical diagnosis and treatment problems that will be more directly related to 
specific individuals. For example, known genetic variations would suggest with 
high levels of certainty the optimally safe and effective medication therapy.

Design initiative that is central to the goals of precision medicine is providing 
clinical decision support (CDS) interventions in forms that are appropriate to 
intended cognitive tasks and contextualized into workflows. A recent study that 
closely analyzed decision making during medication ordering and the effect of CDS 
alerts on the reasoning of clinicians showed that they conceptualized patient risk as 
a complex set of interdependent tradeoffs specific to individual patients and had a 
tendency not to follow automated advice they considered of low or dubious clinical 
value (Horsky et al. 2017). In the words of the participants, the value of an interven-
tion (e.g., medication interaction and allergy alerts, in this study) was largely in its 
relevance to the patient they were treating. The specific clinical context in which 
they evaluated the specificity and appropriateness of given advice included comor-
bidities, prior drug tolerance and other illness-related factors, and, importantly, the 
proportion and significance of known, uncertain and absent information. The alert 
content and the logic of its triggering algorithm would have to meet a high threshold 
in its inclusiveness of patient-specific and knowledge-based information in order to 
be considered a reliable tool by many clinicians. In turn, high reliability cultivates 
over time higher confidence in CDS accuracy and the frequency of its use increases.

The convergence of two fast-developing areas of informatics may provide the 
necessary data sources that precision medicine requires for advanced, comprehen-
sive interventions. Current, curated and evidence-based knowledge derived from 
analytical and machine-learning discovery processes on large repositories of clini-
cal and research data (big data analytics) ensures that optimal care recommenda-
tions can be formulated on the basis of data from millions of patient lives and 
decades of clinical history. Knowledge learned from the aggregated data of large 
patient groups then can be applied with better precision to individuals as the expand-
ing collection of laboratory, test and genetic information allows more accurate 
determination of what recommendations are most directly relevant. Clinicians 
would then be assisted in making informed decisions by the best available evidence 
specific to their patients. Observations and findings captured in patient records that 
can be correlated instantaneously with latest biomedical research are the objectives 
of many current investigation initiatives.

Delivering this complex set of information and insights effectively into care 
workflows is an ongoing challenge for HIT designers. Complex genomic profiling 
data that need to be stored and processed in conjunction with existing clinical data 
will increase exponentially demands on IT infrastructure and computing power 
(West et al. 2006). Escalating demands on cognitive and coordinated activities such 
as demands for knowledge, monitoring, attentional control, information, and com-
munication among team members (including human machine communication) will 
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also need to be supported by systems with excellent human-computer interaction 
characteristics and usability. Workload associated with using a computer interface 
or interacting with an autonomous or intelligent machine agent will need to be mini-
mized as clinicians cannot divert attention to new tasks, new memory demands and 
distractions from their primary medical work (Woods and Patterson 2001). Cognitive 
engineering analyses, for example, can yield sets of crucial cognitive support 
requirements to guide design and to provide explicit links between identified needs 
and specific design features and concepts (Hettinger et al. 2017). Healthcare institu-
tions may choose to redesign their work system, including workflows, at opportune 
moments such as when updates to a current EHR are made or when transitioning to 
a new system and work towards a more efficient model described and modelled by 
cognitive engineering analyses (Beuscart-Zéphir et al. 2010).

An important goal of cognitive engineering is to make socio-technical systems 
more reliable with the use of cognitive modeling. Interventions and designs that do 
not consider complex systems as a single unit of analysis are unlikely to have a 
systematic and lasting effect on safety and quality. Cognitive support will have only 
limited effect without the consideration of use context and organizational con-
straints and poor workflow fit will force potentially unsafe workarounds to circum-
vent limitations (Carayon et al. 2014). There is currently no clear way to distinguish 
theoretically between workarounds that have the potential for negative conse-
quences and should be actively discouraged or eliminated, workarounds that would 
benefit from transitioning into formal documentation in policies and procedures and 
HIT, and workarounds that are necessary to allow only for exceptional circum-
stances as goals are traded off but should be discouraged during routine situations 
(Patterson 2018).

Processes and factors that affect latent safety problems in complex, dynamic 
socio-technical systems such as cognitive workload, situation awareness, coordina-
tion and other measured constructs often require labor-intensive assessment studies 
that institutions may not be able to carry out to a sufficient degree or repeat after 
reorganizations and new technology additions. Recently, several unobtrusive meth-
ods of data collection using sensor-based technology (SBT) allowed cost and time 
effective measurement of physical, physiological, cognitive, and behavioral pro-
cesses at the individual (e.g., mental workload, stress), team (e.g., cohesion, com-
munication, team composition) and system level (e.g., workflow) (Hughes et  al. 
2018). The methods often combine technology such as Radio Frequency 
Identification (RFID) tags and physiological monitoring systems into a 
 complementary approach that can identify or infer workflows and high-level events. 
For example, a group of researchers combined RFID tag workflow monitoring with 
ethnographic observations, augmenting data collection with multidimensional 
activity information that allowed observers to focus on cognitive details rather than 
simply annotating movement activities (Vankipuram et al. 2011).

Objective assessment of technical and teamwork skills or tracking and monitor-
ing of clinicians and patient engagement could be conducted and interpreted with 
relatively few resources. Real-time data from several sensors and other sources can 
also be triangulated and correlated to provide contextual information that could not 
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have been obtained with other techniques (Alemdar and Ersoy 2010). In one study, 
researchers characterized the interactions of clinicians gathering information for 
rounds discussions and patient-case presentations in the EHR by applying process- 
mining methods to EHR-generated event log files. They triangulated quantitative 
findings with patient chart review and qualitative data to find that interactive behav-
ior was associated with workflow routines, patient case complexity and variant 
screen sequence patterns (Furniss et al. 2016b).

Cognitive engineers and others whose work supports complex collaborative pro-
cesses need to address the challenge of gathering empirical evidence and integrating 
the contributions of emergent constructs, mental models and distributed knowledge 
into analyses. Coordination is at the core of team cognition, and human- centered 
technologies should keep this in the forefront of design concepts and frameworks 
(Morrow and Fiore 2013).
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Chapter 3
Unintended Adverse Consequences 
of Health IT Implementation: Workflow 
Issues and Their Cascading Effects

Elizabeth V. Eikey, Yunan Chen, and Kai Zheng

3.1  Introduction

Health information technology (known as health IT or HIT) has great promise as a 
means to improve quality of care and patient safety. However, the introduction of 
health IT can impact healthcare practices in ways that are not planned, leading to 
unintended consequences. The term “unintended consequences” refers to unfore-
seen or unpredicted results to a specific action (Campbell et al. 2006). These conse-
quences can be positive, negative, or neutral. In this chapter, we focus on unintended 
consequences that are found to have a detrimental effect. This is not to say that there 
are no unanticipated positive effects associated with health IT implementation; 
within this chapter we simply choose to focus on one aspect that has been more 
commonly studied.

To date, a considerable body of health IT evaluation research has been 
devoted to understanding the unintended consequences of health IT. While many 
papers have reviewed relevant literature in this space (Zadeh and Tremblay 
2016; Harrington et  al. 2011; Marcilly et  al. 2015; Kim et  al. 2017; Maslove 
et  al. 2011; Menachemi and Collum 2011; Salahuddin et  al. 2016; Niazkhani 
et al. 2009; Gephart et al. 2015; Bloomrosen et al. 2011; Pirnejad et al. 2010; 
Voshall et al. 2013; Vanderhook and Abraham 2017; Kuziemsky et al. 2016), the 
purpose of this chapter is to discuss the unintended consequences in the context 
of clinical workflow. Workflow is a core component of clinical practice because 
it encompasses all of the activities and processes through which patient care is 
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delivered. According to the US Department of Health and Human Services 
(2017), workflow can broadly be defined as “the sequence of physical and men-
tal tasks performed by various people within and between work environments. It 
can occur at several levels (one person, between people, across organizations) 
and can occur sequentially or simultaneously.”

Understanding workflow in clinical settings is essential to designing and deploy-
ing usable health IT. “A critically important component of an organization’s prepa-
ration for an HIT implementation is a thorough review of its workflow processes, 
procedures, and role assignments; yet the complexity of the healthcare workflow 
makes it resistant to many conventional workflow modeling and automation 
approaches” p. 88 (Bloomrosen et al. 2011). Without carefully engineered integra-
tion with clinical workflow, health IT systems will not be embraced by end users 
and they may cause unintended negative consequences that adversely impact qual-
ity and safety of patient care (Sheehan and Bakken 2012).

The term unintended consequences in the context of health IT became popular-
ized in the early to mid 2000s by researchers studying the effects of patient care 
information systems (Paper et al. 2004) and computerized provider/prescriber order 
entry (CPOE) (Ash et al. 2006). However, the recognition that health IT implemen-
tation could bring with it unintended effects was not new, which had been reported 
in the literature even earlier (e.g., Goldstein et al. 2002). In recent years, unintended 
adverse consequences (UACs) has become one of the most commonly used terms in 
the literature to emphasize the detrimental impact of unintended consequences such 
as more/new work for clinicians and disrupted/altered communication patterns 
(Campbell et al. 2006; Zheng et al. 2010a; Cresswell et al. 2017).

While many researchers use the term unintended consequences to refer broadly 
to unanticipated effects related to workflow as a result of health IT implementation 
(Nanji et al. 2014; Horsky et al. 2006; Harrison et al. 2007; Gephart et al. 2016; 
Wu et al. 2013; Sergeeva et al. 2016), some researchers call these impacts (Zheng 
et al. 2010a; Wu et al. 2013; Vishwanath et al. 2010), effects (Vishwanath et al. 
2010), residual consequences (Nanji et  al. 2014), or simply problems (Horsky 
et al. 2006). For example, Vishwanath et al. (2010) did not explicitly discuss unin-
tended consequences but talked in depth about the impact of electronic health 
record (EHR) use on outpatient workflows. Wu et al. (2013), on the other hand, 
used the term unintended consequences, but they also repeatedly referred to these 
issues simply as impacts. The varied terminology use suggests a broad interest 
among the health IT research community in studying unintended consequences. 
However, it also means that it is difficult to synthesize this body of research 
because of the lack of consensus on how such issues should be defined and 
described.

This chapter briefly summarizes the extant literature on how health IT imple-
mentation may unintentionally introduce adverse consequences to clinical work-
flow, with the following two goals. First, we attempt to characterize the chain of 
impact by distinguishing primary unintended consequences that lead to changes in 
workflow from secondary unintended consequences that originate from the work-
flow alterations. Second, we attempt to provide a discussion on the causes of and 
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some proposed solutions for these workflow-related unintended adverse 
consequences.

3.2  Characterizing Unintended Consequences

Understanding health IT’s impact on workflow can be challenging due in part to the 
fact that workflow encompasses all activities around clinical care. The introduction 
of health IT is often associated with direct changes in established workflow, such as 
new types of work and new task interdependencies, which has been widely noted in 
the literature (Campbell et al. 2006; Gephart et al. 2015; Kuziemsky et al. 2016). We 
refer to these as primary unintended consequences. In addition, there are other indi-
rect impacts that occur as a result of these primary consequences. For example, 
some studies (although varying in their methodological approaches) have found that 
clinicians may adopt unsafe workarounds in response to disrupted and fragmented 
workflow, which can lead to an increase in errors resulting in patient safety threats 
(Ash et al. 2004; Yen et al. 2017; Coiera 2015). This cascading effect, from work-
flow consequences to other secondary impacts, is illustrated in Fig. 3.1.

3.2.1  Workflow Issues as Primary Unintended Consequences

In many cases, unintended consequences of health IT implementation directly affect 
the work practices of both clinicians (e.g., physicians, nurses, pharmacists) and non- 
clinical staff (e.g., medical billing and coders, receptionists, and IT staff), even 
though the former is far more frequently studied. Unintended consequences to clini-
cians’ workflow, as documented in the literature to date, include new or increased 
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workload (Campbell et al. 2006; Gephart et al. 2016; Van den and Hafkamp 2017); 
delayed work or time inefficiencies (Zadeh and Tremblay 2016; Zheng et al. 2010a; 
Horsky et al. 2006; Ramaiah et al. 2012); interruptions or distractions (Zheng et al. 
2010a; Nanji et al. 2014; Wu et al. 2013; Sergeeva et al. 2016); duplicated work 
practices (Campbell et al. 2006; Nanji et al. 2014; Horsky et al. 2006; Gephart et al. 
2016; Cifuentes et al. 2015); and changed or disrupted communication (Campbell 
et al. 2006; Wu et al. 2013).

New or increased work: Health IT can create new types of work or alter the 
nature of existing work that may lead to increased workload. For instance, one study 
found that the use of a CPOE system required added steps in order to get to the 
“patient overview” as compared to the work practices before the CPOE implemen-
tation (Campbell et al. 2006). Further, healthcare providers’ workload may increase 
when they are forced to enter new types of information into computerized systems 
that were not previously required (Campbell et al. 2006; Gephart et al. 2016) and 
respond to computer-generated alerts that may not contain relevant or helpful infor-
mation (Campbell et al. 2006). The issue of workload increase appears to dispropor-
tionally affect nurses (Gephart et al. 2016; Van den and Hafkamp 2017), even though 
studies have also found that physicians’ administrative workload may also increase 
due to health IT use (Van den and Hafkamp 2017).

Interruptions and distractions: As a result of added or more fragmented work, 
health IT may interrupt clinicians’ work processes or distract them from perform-
ing their clinical tasks. These disruptions may originate from computerized clinical 
systems (e.g., EHR and CPOE) due to poorly designed alerts and more rigid struc-
tured data entry requirements. With the introduction of health IT, clinicians must 
use a computer to complete certain tasks, which may inherently disrupt their usual 
workflow. For instance, clinicians may need to spend more time and exert more 
energy to find a nearby computer workstation to enter patient information (Zheng 
et  al. 2010a), which is an added step not part of the paper-based workflows. 
Sometimes, computer-based automation may also result in distractions. For exam-
ple, in the case of pharmacy workflow, a study found that pharmacy staff were 
disrupted by the need to restock prescriptions that patients never picked up because 
of an auto-filling feature added to their health IT system (Nanji et al. 2014). More 
recently, interruptions are also found due to the rapid increase of use of mobile 
devices in clinical settings. While mobile devices improve access to information 
and response time (Wu et al. 2013; Sergeeva et al. 2016), they can also become a 
salient source of disruptions. For instance, the “in the moment” communication 
afforded by mobile platforms causes frequent interruptions (e.g., imagine a clini-
cian’s phone going off every few minutes) (Wu et al. 2013) and disrupts collabora-
tive work practices (Sergeeva et al. 2016). Chapter 7 of this book, Interruptions 
and Multitasking in Clinical Work: A Summary of the Evidence, offers a more in-
depth discussion on interruptions and distractions that may be directly related to 
the adoption of health IT.

Work delays or inefficiencies: Along these same lines, sometimes the introduc-
tion of new health IT creates delays in work and decreases time efficiency. For 
instance, Campbell et al. (2006) reported that CPOE systems could slow the pro-

E. V. Eikey et al.



35

cess of clinical documentation and ordering. Similarly, in the context of pharmacy 
workflow, Zadeh and Tremblay (2016) conducted a literature review on studies of 
e- prescribing systems from 2008 to 2014 and found that 38% of the studies reported 
reduced pharmacy workflow efficiency as a result of unintended consequences. 
Further, inefficiencies are not only found internally within a clinical space, but also 
from breakdowns of IT-based external interactions with insurance companies, 
 laboratories, pharmacies, etc., which may also cause work delays (Ramaiah et al. 
2012). While there are discrepancies between some qualitative and quantitative 
studies with respect to how health IT impacts workflow efficiency, these may be 
due to how workflow is defined and measured. For example, Zheng et al. (2010a) 
reported that many time and motion studies had found the impact on workflow 
efficiency to be negligible; whereas qualitative studies had found consistent per-
ceptions of decreased efficiency. They explained that this discrepancy may be due 
to the “design of the time and motion studies, which is focused on measuring clini-
cians’ ‘time expenditures’ among different clinical activities rather than inspecting 
clinical ‘workflow’ from the true ‘flow of the work’ perspective”. Therefore, they 
developed a set of new methods (e.g., workflow fragmentation assessments, pattern 
recognition, and data visualization) to assess workflow efficiency and found that 
the implementation of a CPOE system caused a higher frequency of task switching 
and more fragmented workflow. This work suggests that analyses merely focusing 
on time utilization may not be adequate to capture workflow inefficiencies.

Duplicated work practices: Another major unintended consequence related to 
clinical workflow is duplicated work practices. Sometimes health IT requires clini-
cians to enter redundant information (Gephart et al. 2016; Cifuentes et al. 2015) or 
copy data from paper forms into the system (Horsky et  al. 2006). For instance, 
Cifuentes et al. (2015) reported that clinicians often needed to double-enter their 
work into multiple computerized systems that were not interconnected. In other 
cases, health IT causes duplicated results, such as with the case of medications. For 
example, in Campbell et al.’s (2006) early work, they found that emergency orders 
were often duplicated because they were entered into the CPOE system and then 
phoned in to ensure efficiency. Similarly, in more recent studies, Nanji et al. (2014) 
found that medication prescriptions were being dually transmitted—once through 
fax and once through the e-prescribing system—which often resulted in the same 
medications being filled more than once for each patient.

Changed or disrupted communication: Communication is critical to clinical 
work and workflow, which may be altered or disrupted as the result of health IT use. 
CPOE systems, for example, may inhibit interpersonal communication because 
ordering information is now conveyed through electronic means that eliminate 
face-to-face interactions, during which important miscommunication and omis-
sions may be discovered (Campbell et al. 2006). Similarly, Wu et al. (2013) con-
ducted a study on the use of electronic communication tools, particularly 
smartphones, in clinical settings, and found that they could cause a decrease in 
verbal communication and negatively impact the relationships among clinicians. 
Thus, instead of promoting effective communication among healthcare providers 
and staff, health IT systems often provide only an illusion of communication 
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whereby it is assumed the intended recipient will view and act upon the information 
entered into the system. However, this may not always be the case in reality 
(Campbell et al. 2006).

3.2.2  Secondary Unintended Consequences Resulting 
from Workflow Issues

As a result of the workflow issues, clinicians often face secondary consequences, 
such as negative emotions, higher cognitive load, shifts in institutional and power 
structure, and overreliance on technology. When clinicians are overburdened or 
upset, they may resort to workarounds in an attempt to ease these secondary conse-
quences. These workarounds, and the workarounds that directly result from the 
workflow issues, can negatively impact patient safety and privacy.

3.2.2.1  Adverse Effects on Clinicians

Workflow issues that result from health IT adoption can impact clinicians in many 
unintended and negative ways, including provoking negative emotions (Campbell 
et al. 2006; Sittig and Kaalaas-Sittg 2005), increasing task fragmentation (Zheng 
et al. 2010a; Yen et al. 2017), changing institutional and power structure (Campbell 
et al. 2006), and creating an overreliance on technology (Campbell et al. 2006). As 
healthcare providers try to learn an new computerized system and contest with 
changes to their work processes, they may experience guilt, annoyance, sadness, 
hostility, and disgust (Sittig and Kaalaas-Sittg 2005). These unexpected and nega-
tive emotions often occur due to disruptions to clinical workflow and negative 
feedback from the system (Sittig and Kaalaas-Sittg 2005). Not only are these nega-
tive feelings unpleasant for clinicians, but they may also make it difficult for clini-
cians to attend to complex clinical tasks (Campbell et  al. 2006; Sittig and 
Kaalaas-Sittg 2005).

Changes and disruptions to established workflow can also result in task fragmen-
tation reflected as higher frequencies of task switching and multitasking (Zheng 
et al. 2010a; Yen et al. 2017). This can be disruptive to clinicians’ work and are often 
associated with increased cognitive load and unnecessary physical activities (Yen 
et al. 2017; Laxmisan et al. 2007; Zheng et al. 2010b). For example, frequent login 
and logout actions, interruptive alerts, irrelevant reminders, and abrupt phone calls 
can all lead to more fragmented workflows and higher chance for errors (Yen et al. 
2017; Coiera 2015).

By requiring added work and altering the ownership of certain clinical activities 
and tasks, health IT can impact individuals’ roles and responsibilities in an organi-
zation (Van den and Hafkamp 2017), leading to changes in institutional and power 
structure (Campbell et  al. 2006). For instance, CPOE systems redistribute work 
through role-based authorization, which rigidly controls who can do what (Campbell 
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et al. 2006). Further, role misfits could occur where individuals experience reduced 
autonomy (Van den and Hafkamp 2017). An example is that after the implementa-
tion of a new EHR system, nurses must wait for an official order from a physician 
placed through the system in order to remove a patient’s IV, which could be inde-
pendently performed by nurses in the past (Van den and Hafkamp 2017). This 
change shifts the power structure and could create resentment between different 
types of medical professionals (Campbell et al. 2006).

As clinicians become accustomed to health IT, they may also develop an over-
reliance on technology (Campbell et al. 2006; Shepard 2017), where certain clinical 
tasks simply can no longer be accomplished without technology. This can be prob-
lematic when technology fails. It is inevitable that health IT will experience down-
times, both planned and unplanned (Shepard 2017; Kashiwagi et al. 2017). In the 
event of a system failure, clinicians may no longer have the relevant information or 
knowledge (e.g., standard dosages and medication contradictions) to perform a task, 
which they relied on health IT to provide (Campbell et al. 2006). This can result in 
delayed care and/or increased patient safety risks (Campbell et al. 2006; Kashiwagi 
et al. 2017; Larsen et al. 2018).

3.2.2.2  Workarounds

Workarounds are mitigating strategies commonly employed by clinicians to over-
come barriers to their work introduced by a variety of factors, including primary 
unintended consequences and their secondary effects. Workarounds can be indi-
vidual, managerial, or artifact-based, depending on who initiates the workaround 
and how it is enacted. Common examples of workarounds include using paper and 
other software systems as intermediaries (Cresswell et al. 2017; Menon et al. 2016) 
and staying logged into the system under a coworker’s credential to save time (Ser 
et al. 2014). In the context of test result management, Menon et al. (2016) found that 
among the primary care clinicians studied who used workarounds, 70% reported 
using paper-based methods and 22% reported using a combination of paper and 
computer-based approaches.

Sometimes workarounds can become a routine practice to address workflow 
issues (Salahuddin et al. 2016). For instance, to combat inefficiencies and to facili-
tate care coordination, clinicians may write down patient information on a piece of 
paper (Menon et al. 2016) or take photos of the screen of a computer workstation 
(Eikey et al. 2015). Generally, workarounds are aimed at alleviating secondary con-
sequences that emerge as a result of workflow issues, rather than addressing the 
underlying workflow issues directly. For example, changes to work processes due to 
IT use may increase the cognitive load of clinicians, requiring them to use paper- 
based methods as a memory aid (Menon et al. 2016).

Many researchers have studied workarounds as part of the attempt to better 
understand disruptions to clinical workflow (Voshall et al. 2013; Cresswell et al. 
2017; Ramaiah et al. 2012; Menon et al. 2016). Workarounds are an important phe-
nomenon in this context, as they often signal unaddressed workflow issues. Some 
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workarounds, e.g., those circumventing IT-enforced documentation requirements or 
patient safety protocols, may also lead to additional adverse consequences 
(Cresswell et al. 2017; Menon et al. 2016). While workarounds are often informal 
practices to mitigate workflow issues, they can also become formal organizational 
mandates when a direct solution is not readily available (Cresswell et al. 2017).

3.2.2.3  Risks to Patient Safety

The most concerning adverse impact as a result of workflow issues and/or unsafe 
workarounds is added risks to patient safety (Cresswell et al. 2017; Gephart et al. 
2016; Menon et al. 2016). Disruptions to workflow can increase the likelihood of 
errors, leading to serious adverse events (Campbell et al. 2006; Pirnejad et al. 2010; 
Voshall et al. 2013; Cresswell et al. 2017; Nanji et al. 2014; Horsky et al. 2006; Ash 
et al. 2004; Menon et al. 2016). Poor usability of health IT also contributes to the 
problem. For example, poorly designed software user interfaces may make it much 
easier for clinicians to select the wrong option or input an order for the wrong 
patient (Ash et al. 2004; Schiff et al. 2016). Schiff et al. (2016) provided an over-
view of common design problems of CPOE, including an illustration of how the 
overwhelming number of acetaminophen choices displayed on a computer screen 
could facilitate new types of errors. In addition, health IT requires complete and 
structured data, which can also cause cognitive overload that makes clinicians more 
susceptible to making mistakes (Ash et al. 2004; Yen et al. 2017; Coiera 2015; Chao 
2016).

3.2.2.4  Threats to Patient Privacy and Confidentiality

Lastly, workflow issues and unsafe workarounds can adversely affect patient pri-
vacy and confidentiality. Particularly, the use of workarounds such as paper notes, 
screenshots, and photos to improve memory and efficiency can threaten patient pri-
vacy and confidentiality by recording and transferring sensitive patient information 
in an unsecure manner. Although there are often privacy policies and security mea-
sures in place in clinical environments, clinicians may work around them when they 
deem these policies and measures as inhibitors to their work practices (Eikey et al. 
2015; Murphy and Reddy 2014; Chen and Xu 2013).

3.3  Causes and Solutions of Workflow Issues

We now shift the focus to the causes of workflow issues and briefly discuss some 
solutions that have been proposed in the literature. Most commonly, workflow 
issues occur when there is poor alignment between work practices and health IT 
design (Campbell et al. 2006; Horsky et al. 2006; Gephart et al. 2016). Health IT 
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tends to rigidly model workflow according to organizational policies and regulatory 
requirements, which may not necessarily reflect the reality of day-to-day clinical 
practice (Campbell et  al. 2006). Nuanced, non-linear, complex, and sometimes 
invisible processes are not easily incorporated in IT design. Health IT also tends to 
neglect the varied nature of workflow needs; that is, the work practices around the 
same task may be very different depending on an individual’s role, the patient’s 
conditions, etc. (Campbell et al. 2006). Health IT changes work practices, and work 
practices and social systems around health IT impact how they are used (Harrison 
et al. 2007).

Affordances of newly introduced technologies may also result in workflow 
issues. In some cases, barriers to workflow are introduced intentionally for valid 
reasons; for example, authentication requirements and automatic system timeouts 
(Eikey et al. 2015; Murphy and Reddy 2014; Chen and Xu 2013) are “limitations” 
designed purposefully to protect data security and patient privacy, even though they 
may cause undesirable delays and workflow disruptions. In addition, sometimes the 
affordances of technology adapted for clinical settings make them prone to disrupt 
workflow. For instance, smartphones could easily become a source of workflow 
interruption because of their ability to allow healthcare professionals to contact 
each other “in the moment” (Wu et al. 2013). Similarly, despite benefits, a study 
showed that use of iPods in the operating room can be distracting because they are 
by design fun and entertaining; they allow healthcare providers to do personal activ-
ities that may divert their attention from clinical work (Sergeeva et al. 2016).

Additionally, workflow issues may stem from a lack of standardization across 
different healthcare organizations, such as hospitals, specialty clinics, laboratories, 
pharmacies, and insurance companies (Ramaiah et al. 2012). While health IT at one 
site may be well-integrated with the local work practices, clinicians’ and staff’s 
work may be negatively impacted when there are barriers to effectively communi-
cating with other entities through health IT.  Unfortunately, while significant 
advancements of health information exchange have been made in recent years, the 
interoperability between different health IT systems remains poor, which could 
cause delays and disruptions (Ramaiah et al. 2012).

Throughout the literature, there are numerous proposed solutions to preventing 
and improving workflow issues and mitigating their unintended adverse effects. 
First, it has been repeatedly shown that developing a thorough understanding of 
workflow in clinical settings, both before and after health IT implementation, is 
critical (Campbell et al. 2006; Gephart et al. 2016). This requires health IT design-
ers and implementers shift their focus from “anticipated” use to actual use (Harrison 
et al. 2007) and consider multiple perspectives when designing and evaluating sys-
tems (Wu et al. 2013). Some researchers have also argued for the importance of 
considering the sociotechnical integration of health IT with its use context. For 
instance, Harrison et al. (2007) developed the Interactive Sociotechnical Analysis 
(ISTA) framework as a means to better understand healthcare organizations as a 
sociotechnical system and “stop viewing HIT innovations as things, but instead 
treat them as elements within unfolding processes of sociotechnical interaction” 
p. 543.
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Constantly gathering feedback from frontline clinicians and staff is also crucial 
to identify unintended workflow issues and making necessary health IT or organiza-
tional changes (Campbell et al. 2006). Such feedback should be taken seriously and 
incorporated in a timely manner into a redesign to customize health IT to better fit 
end users’ workflow (Gephart et al. 2016). As part of this feedback, workarounds 
also need to be transparent. By tracking workarounds and making them more visi-
ble, we can determine if there is solid rationale justifying their use and if actions 
should be taken to formalize them as part of organizational processes (Cresswell 
et al. 2017) or to mitigate their risks (Cresswell et al. 2017). The design of IT sys-
tems is not stagnant and thus, we must iteratively make design revisions as we dis-
cover more about clinical workflow and how it is affected by the use of health IT 
(Campbell et al. 2006).

3.4  Future Work

Designing a health IT system that is perfectly aligned with clinical workflow is very 
challenging. This is particularly true for unintended workflow disruptions which, by 
definition, cannot be easily anticipated by software designers and implementers. 
That said, developing a thorough understanding of the clinical work and clinical 
workflow in the setting where the system will be deployed is possible and can help 
to mitigate undesirable effects (Harrison et al. 2007). Then, post-implementation, we 
need close collaboration between system designers, developers, implementers, clini-
cian champions, and all other end users to monitor adoption and appropriation and 
make necessary changes to the system or use additional training to improve work-
flow and ease secondary consequences. Systems must also be flexible enough to be 
quickly adapted, capable of incorporating feedback and suggestions. That is, all 
health IT systems must be treated as a constant “work in progress” in order to maxi-
mize their benefits while minimizing potential harm to clinicians, staff, and patients.

Further, it should be acknowledged that radical workflow change as a result of 
health IT adoption is inevitable. New, IT-enabled processes necessitate new care 
models and new workflow patterns. However, as demonstrated in the literature, 
many workflow disruptions associated with health IT implementation could have 
been avoided, and some of the adverse effects are due to the lack of communication 
with clinicians and staff on change management and setting up the right expecta-
tions. Thus, we need to develop ways to ease end users’ negative emotions, reduce 
their cognitive load, alleviate concerns about power and role changes, and ensure 
they do not become over-reliant on technology. Additionally, we need to pay par-
ticular attention to unsafe workarounds and their potential detrimental effects on 
patient safety, privacy, and confidentiality.

This chapter represents a first step toward understanding and unpacking the rela-
tionship between what we have termed as primary and secondary unintended con-
sequences. However, in studying unintended consequences of health IT related to 
workflow, we have to take a holistic approach that addresses systems, users, mana-

E. V. Eikey et al.



41

gerial issues, and the context and considers the secondary or indirect effects result-
ing from primary workflow changes. We hope this chapter sparks more research on 
the different categories of unintended consequences, as well as the causal and per-
haps even cyclical connections between them.
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Chapter 4
A Review of Clinical Workflow Studies 
and Methods

Philip Payne, Marcelo Lopetegui, and Sean Yu

4.1  Introduction

Workflow is an integral part of healthcare delivery. In this context, workflow can 
be formally defined as: “the sequence of steps involved in moving from the begin-
ning to the end of a working process1.” Building upon this definition, we can also 
define a working process as: “a series of actions or operations conducing to an 
end.1”.

The ability to observe, instrument, and understand workflow provides critical 
information for a variety of applications, including but not limited to:

• Enhancing the quality, safety, and outcomes of care delivery
• Identifying opportunities to overcome barriers to technology adoption and adap-

tation in complex healthcare settings
• Improving the efficiency and timeliness of clinical and translational research

The process of modelling and analyzing workflow is often executed through 
Time Motion Studies (TMS). TMS, alternatively referred to as “time-motion stud-
ies” or “time and motion studies”, are defined in the National Library of Medicine 
Medical Subject Heading system (MeSH) as “the observation and analysis of 
movements in a task with emphasis on the amount of time required to perform the 
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task.” TMS methodologies originated as a business efficiency technique through the 
collective contributions of Frederick Taylor (Time Studies) (Taylor 1914) and Frank 
and Lillian Gilbreth (Motion Studies) (Baumgart and Neuhauser 2009).

The widespread use of TMS in the healthcare setting is a relatively recent devel-
opment, and has proven to provide a valuable means for collecting quantitative 
workflow data in a broad spectrum of settings, ranging from evaluating the effec-
tiveness of system implementations (Amusan et al. 2008) and assessment of costs 
(Schiller et al. 2008), to describing general workflow (Kloss et al. 2010) and utiliza-
tion of time by clinicians (Kim et  al. 2011). In clinical workflow studies, TMS 
gather quantitative workflow assessments specifically through continuous direct 
observation, which has been shown to be more accurate than work-sampling (Wirth 
et al. 1977) and self-reporting (Gordon et al. 2008; Ampt et al. 2007), and is increas-
ingly being accepted as the “gold standard” for measuring and quantifying clinical 
workflow (Burke et al. 2000; Bratt et al. 1999). The general “design pattern” for the 
conduct of TMS is illustrated in Fig. 4.1 below:

Identification of Workflow
Characteristics

- Start/End Points
- Actors
- Activities
- Artifacts
- Environment

Creation of
Workflow

Annotation
Standards

Workflow
Observation

Analysis and
Reporting

Feedback-Cycle

Optional

Optional

Iterations or
Observers

Assessment of
Agreement

Fig. 4.1 Overview of prototypical workflow study design pattern. In this pattern, the process 
begins with the identification of key characteristics that serve to define a workflow of interest. Such 
characteristics are then used to create workflow annotation (or codification) standards that enable 
the collection of constituent data during various observation types. Subsequently, workflow obser-
vations are conducted, and the data generated therein are codified per the preceding annotation 
standards. Such observations usually include temporal data concerning instances and durations of 
workflow related activities. In some studies, observations are iterative, or involve multiple observ-
ers, necessitating the assessment of inter-observer or inter-observation agreement. Finally, the 
results of the preceding steps are analyzed and reported on, often employing descriptive statistics, 
and key findings are “fed back” to inform future workflow studies or optimization efforts
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4.2  Key Concepts and Definitions Surrounding Time Motion 
Study Methodologies

As a tool for obtaining quantitative assessments of clinical workflow, TMS have 
been adapted and used in the healthcare setting since the early twentieth century. 
Without a unifying standard, however, the definition and scope of TMS have shifted 
significantly. Although we agree with the definition provided by the Agency for 
Healthcare Research and Quality, “an observation method used to determine the 
timing and duration of tasks or procedures”, a recent review concluded that the term 
“TMS” had been used to describe “a broad spectrum of dissimilar methods whose 
only common factor is the capture and/or analysis of the duration of one or more 
events” (Lopetegui et al. 2014). In the literature, there are many studies reported as 
TMS but they instead used methods such as self-reports and analysis of automati-
cally generated timestamps. Moreover, among the studies that would be considered 
TMS, there is significant variability in the implementation and reporting of their 
findings, making aggregation of results difficult. Therefore, there is a need for 
researchers to properly categorize and rigorously define their methodologies. In a 
recent review (Lopetegui et al. 2014), we depicted four major classes of methods 
used in the literature currently classified as TMS, namely:

 1. Methods that produce time-motion data by external observers (external 
observation)

 2. Methods that produce time-motion data by the participants being studied 
(self-observation)

 3. Methods that produce time-motion data automatically by computerized systems 
(automated observation)

 4. Methods that lead to the creation of models and frameworks that can be used to 
support and/or enable the interpretation of data and findings generated during the 
course of TMS (model formulation)

Below, we provide a description of each of these methods and exemplary studies 
that have utilize them:

4.2.1  External Observation

In this type of studies, dedicated external observers perform the task of collecting 
time-motion data. Data collection can be done asynchronously by having the 
observer analyze video recordings of the study participant’s behavior in the work 
environment, also called “time-action analysis” (Minekus et al. 2013; van Oldenrijk 
et al. 2008). More often, it is conducted by having the observer directly shadow and 
observe the participant in real time.

Studies involving external observers use mainly two data collection methods: 
continuous observation and work sampling. In continuous observation, the external 
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observer maintains the attention on the study participant and continuously records 
the time taken to perform one or multiple tasks, implying that the action of record-
ing is triggered by an action performed by the participant. It is a useful approach to 
collect data for non-centralized tasks, sensible for short tasks, and provides granular 
and detailed field data. However, this method is resource consuming, and there is 
opportunity for biases as participants may feel disturbed. Sometimes, participants 
may also demonstrate improved performance when being observed: a phenomenon 
known as the Hawthorne effect.1

Unlike continuous observation, which measures the elapsed time for a task, work 
sampling identifies the task being performed at a given instant (Hakes and Whittington 
2011), repeating the measure at predefined fixed or random intervals during the 
observation. It is premised on the repetitive nature of work, and assumes the proba-
bilistic generalization of the sampling findings to describe how workers spend their 
time overall. Compared to continuous observation, a major benefit of work sampling 
is that the observer can work with multiple study participants during a single obser-
vation period. Further, work sampling has been reported as an efficient approach for 
studies designed to classify work activities into fewer categories. With more catego-
ries describing less frequent tasks, the required number of observations may increase 
substantially (Burke et al. 2000), thus losing the advantage afforded by this method. 
Strictly speaking, work sampling estimates the proportion of time spent on an activ-
ity based on observations conducted at random time points (Barnett 2008).

The temporality of the sampling methodology has been debated in the literature, 
concluding that systematic work sampling often results in flawed and biased esti-
mates; and random work sampling is a better approach (Oddone and Simel 1994) 
especially when assessing tasks that are performed periodically. However, one of 
the pioneering researchers of TMS argues that the reduction in biases provided by 
randomization is overweighed by the complexities in scheduling the observations, 
advocating in favor of fixed periodic intervals (Finkler et al. 1993). We observed this 
issue in our recent review: all work sampling studies involving external observers 
used a systematic fixed time interval: e.g.,. 1 min (Murden and Pintz 2003), 5 min 
(Deshpande et al. 2012), and so forth. A study used a much higher frequency of 
sampling at every 15 s, which the authors referred to as “Davis observation code” 
(Yawn et al. 2003). Under optimal circumstances, work sampling has been proposed 
as a useful and efficient methodology for analyzing the distribution of work activi-
ties in relation to the types of activities they perform (Pelletier and Duffield 2003). 
This method, however, falls short for questions related to task durations, occur-
rences, or workflow studies. A highly cited paper concludes that work sampling 
may not provide an acceptably precise approximation of the results that could be 
obtained by continuous observation time motion studies (Burke et al. 2000).

1 This was first reported in Chicago during the 1920s, when after studying methods for increasing 
productivity it was found that regardless of the change introduced in the working environment, the 
result was always an increase in productivity. It is now explained as “an increase in worker produc-
tivity produced by the psychological stimulus of being singled out and made to feel important” 
(Franke and Kaul 1978).
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4.2.2  Self-Report

In this group of studies, time-related data are generated by study participants them-
selves. Although self-report can be a low-cost means for measuring work activities, 
perceptual differences among the participants who self-report their data can lead to 
discrepancies in how activities are categorized (Keohane et al. 2008). Also, partici-
pants may either lie about what they are doing, or change normal routine in order 
to generate data that they believe to be more favorable (Burke et al. 2000). This 
shortcoming has been demonstrated outside TMS when comparing self-reported 
data and observational data in studies of dentists providing preventive services: 
self- reported frequencies consistently exceeded observed frequencies (Demko 
et al. 2008).

Self-reports are also considered unreliable because they tend to over-estimate 
clinicians’ contact time with patients and under-estimate their non-productive time, 
compared to work sampling using an external observer (Bratt et  al. 1999). 
Anecdotally, one study comparing the number of duty-hour violations among resi-
dents found no difference between self-reports and computer-recorded timestamps 
(Todd et  al. 2011); however instead of reporting the agreement between the two 
sources of data, they compared if a threshold of work hours was exceeded, but not 
the specific durations. This reinforces the need to be aware of the inherent human 
biases in terms of the design and selection of outcomes when using self-reports as 
the main source of research data.

Data collection methods used by studies in this group can be first classified as 
synchronous or asynchronous. Commonly used approaches on the asynchronous 
side of the spectrum include interviews, focus groups, and surveys. These methods 
directly solicit information from study participants regarding the time it takes them 
to perform different tasks and/or different steps of a process. Asynchronous self- 
report methods are considered limited due to their reliance on participants’ subjec-
tive account of their workflow and working conditions (Hauschild et al. 2011). It 
has been widely acknowledged that clinicians are poor estimators of measures com-
monly found in TMS, such as task durations. For example, when comparing physi-
cian recall of event durations in the operating room, self-reported survey responses 
over-estimated the durations by 30 min on average, from a few minutes up to 2 h, 
when compared to durations extracted from the surgery log (McCall et al. 2006).

Commonly used approaches on the synchronous side of the spectrum are active 
tracking and self-reported work sampling. In active tracking, study participants are 
asked to log time motion data based on their work activities, either immediately after 
completing a task, or at a later time (e.g., by the end of the work day). On the other 
hand, self-reported work sampling involves repeated recording of work activities at 
pre-determined or random time points by study participants. As previously dis-
cussed, random work sampling is more commonly used (Yee et al. 2012), which is 
often facilitated by some types of electronic devices that remind participants at 
random intervals to record data. In a study that compared self-reported work sam-
pling and traditional/external work sampling for measuring nursing tasks (Ampt 
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et al. 2007), the self-reported method was found to be an unreliable means for obtain-
ing an accurate reflection of the work tasks conducted by ward-based nurses. Also, 
nurses preferred the presence of an external observer, as recording activities while 
conducting clinical duties can be burdensome (Keohane et  al. 2008). Despite the 
limitation, self-reported work sampling is easier to conduct and is more scalable with 
relatively low cost. Indeed, one of the largest TMS to date used the self-report work 
sampling method to study nursing work across 36 hospitals (Hendrich et al. 2008).

4.2.3  Automated-Observation

In this group of studies, timestamps and durations of tasks are captured automati-
cally by sensors or computerized systems. Usually the physical movement of study 
participants, or their interaction with clinical IT systems, trigger the recording of 
time-motion data, providing a rich “motion” dimension and precise “time” mea-
surements. It is important to note that studies of this category do not refer to those 
that use computerized tools for external observers (e.g., a tablet PC with TMS 
research data collection software). Instead, in these studies, time-motion data are 
being recorded automatically without the presence of an external observer, and 
without any active involvement of study participants.

Automated time-motion data streams may come from a broad range of sources, 
including indoor or global positioning systems, accelerometers, electrodes, radio 
frequency identification (RFID), and clinical IT systems. From study participants’ 
perspective, this method provides a passive and non-intrusive means for capturing 
time-motion data while they perform their usual clinical tasks. Examples include 
location-tracking devices (e.g., RFID tags) that record events when the participant 
approaches sensors, time-stamped logs of interaction events within an electronic 
health record (EHR) system, and sensor movements on a laparoscopic surgery train-
ing module.

With the availability of such continuous event logs, researchers have better tools 
to determine the structure underlying the sequence of events, or a flowchart-like 
process model. Markov Models or Hidden Markov Models have been commonly 
used to model workflows in the healthcare setting including trauma resuscitations 
(Mache et al. 2008) or patient trajectories (Mache et al. 2010a); and process mining 
techniques have also been employed to discover process models from event logs, 
check conformance/deviation of particular event logs, and suggest changes to the 
process to enhance workflow (Mache et al. 2009).

Although timestamps recorded by motion sensors have been demonstrated as a 
reliable source of data (Marjamaa et al. 2006), time-stamped logs from software 
usage need to be interpreted carefully. If the variable of interest is the duration of 
interactions with the software system (e.g., charting time), it may be constitutes an 
accurate measure. However, if the variable of interest would need to be deduced 
from the computer-recorded timestamp as a proxy (e.g., how long it takes for a 
patient to transfer to another unit), it might become problematic. For example, a 
TMS conducted in an emergency department compared continuous observation 
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results to timestamps extracted from the EHR, concluding that on average the EHR- 
based events were recorded 2 min before they actually took place (median, inter-
quartile range 31 min before to 3 min) (Gordon et al. 2008).

4.2.4  Model Formulation

In this final class of studies, the primary emphasis is not on conducting empirical 
investigation using TMS, but rather the creation of conceptual frameworks or equiv-
alent constructs that can support and enable the interpretation of the results of 
TMS. These include efforts to create models that define the major characteristics that 
can be measured or understood through TMS, such as actors, activities, and environ-
mental features pertinent to a given workflow (Sittig and Singh 2010). Such efforts 
can also include studies that focus on the creation of taxonomies and nomenclatures, 
as well as quantitative metrics, that serve to assist in the aggregation and interpreta-
tion of multiple, complimentary TMS (Yen et al. 2016; Lopetegui et al. 2013).

4.3  TMS Data Capture Tools

Since the early 2000s, several research teams have worked on building electronic 
data capture tools to facilitate the conduct of TMS. Among them, the most relevant 
contributions include:

• Marc Overhage, Lisa Pizziferri, and Yi Zhang. Considered the pioneer of 
TMS in studying clinical workflow, Overhage and his colleagues introduced the 
Palm Pocket Digital Assistant program in 2001 (Overhage et al. 2001). This tool 
incorporates multi-level classification of clinical activities with which observers 
could label visible physical activities (e.g., talking on phone) and then group 
them into conceptual categories (e.g., direct patient care). Pizziferri et al. further 
adapted Overhage et al.’s categorization schema by adding new tasks and catego-
ries, and created a Microsoft Access-based application that could be deployed on 
touchscreen tablet computers (Pizziferri et al. 2005). They also introduced the 
concept of “primary task” to accommodate multitasking. Later, Zhang et  al. 
adapted Pizziferri et al.’s tool by including a nursing activities taxonomy, and 
requiring certain additional attributes to be captured such as location, whom the 
activity served, position while performing the task (standing/sitting/walking), 
admission or discharge, and the clinical purpose of the activity (Zhang et  al. 
2011). They also extended the tool by adding the capability for recording com-
munication multitasking (when a clinician is performing a clinical task while 
simultaneously communicating with others). Finally, they manually mapped the 
task list to the Omaha System which is a comprehensive practice and documen-
tation standardized taxonomy designed to describe client care in combined terms 
[problem + category + target + care description].
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• Philip Asaro. Asaro developed a Palm-based application for conducting TMS 
in an emergency department in 2003. His tool also included a categorization 
schema for tasks, and allowed simultaneous recording of two activities with 
independent timing. He also published a novel synchronized data capture 
method in 2004 to study patient flow (Asaro 2004), wherein multiple data col-
lectors observed different providers using a synchronized timestamp allowing 
reconstruction of tasks/events of ED care for individual patients. Then, in 
2008, he used the tool to evaluate the impact of a computerized prescriber 
order entry (CPOE) system on nursing documentation workflow (Asaro and 
Boxerman 2008).

• Johanna Westbrook. In 2007, Westbrook and her colleagues developed a Pocket 
PC application which included ten broad work task categories, additional partici-
pants involved in the task, and tools/equipment used to perform the task. It also 
allows external observers to record concurrent tasks independently, and incorpo-
rates a novel interruption module to record broken/resumed tasks and the ability 
to fix input errors. Westbrook et al. also pioneered on assessing inter-observer 
reliability using the agreement of overall percentage time in tasks. Their method 
was named WOMBAT (Work observation Method by Activity Timing), and has 
since been used in several studies (Ballermann et al. 2011; Westbrook et al. 2007, 
2008, 2010; Westbrook and Woods 2009).

• Stephanie Mache. In 2008, Mache et al. developed and evaluated a Pocket PC- 
based “computer-based medical work assessment program” (Mache et al. 2008). 
They generated a list of tasks that physicians commonly perform across different 
settings, and their application allows for the recording of primary and secondary 
tasks for multitasking events, as well as interruptions. In addition, they devel-
oped a new inter-observer reliability assessment method based on time and nam-
ing of the tasks. By creating and piloting new taxonomies for specific scenarios, 
this tool has been used repeatedly in German workflow studies regarding sur-
geons (Mache et al. 2010a), junior OB/GYN’s (Kloss et al. 2010), junior gastro-
enterology physicians (Mache et al. 2009), pediatricians (Mache et al. 2010b), 
oncology residents (Mache et al. 2011), anesthesiologists (Hauschild et al. 2011), 
and emergency physicians (Mache et al. 2012).

• Philip Payne. In 2012, Payne et al. introduced the Time Capture Tool (TimeCaT) 
(Lopetegui et al. 2012): a comprehensive, flexible, and user-centered web appli-
cation designed to support data capture for TMS. This tool aimed for widespread 
adoption by a collaborative network of TMS researchers who would be willing 
to contribute to further development and standardization of formulations regard-
ing multitasking, inter-observer reliability assessment, and taxonomy selection. 
The end goal of the project was to create standardized TMS methods and thus the 
ability to produce comparable results that can be readily aggregated to facilitate 
knowledge discovery. Continued ongoing efforts of this project include the 
development and validation of an inter-observer reliability scoring algorithm, the 
creation of an online clinical task ontology, and a quantitative workflow com-
parison method.

Some of these tools are described in more depth in Chap. 12: Computer Tools for 
Recording Clinical Workflow Data.
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4.4  Seminal Time Motion Studies in Healthcare

Building upon the concepts and definitions presented earlier in this chapter, in the 
following section, we summarize a set of seminal papers reporting significant TMS- 
based studies conducted in healthcare. As shown in Table 4.1, each of these papers 
is described in terms of the driving problem being investigated, the methods used, 
as well as intended outcomes or optimization objectives.

Table 4.1 Summary of seminal papers describing the use of time-motion studies in the health and 
life science domains, indicating the driving problem being investigated, the methods used, as well 
as intended outcomes or optimization objectives of those studies

Title Driving problem Methods used

Intended outcomes 
or optimization 
objectives

A new sociotechnical model 
for studying health 
information technology in 
complex adaptive 
healthcare systems

To identify the factors the 
influence or otherwise 
impact the design and 
deployment of healthcare 
information technology 
platforms in the clinical 
environment

Model 
formulation

Improving quality 
and safety of 
patient care 
activities

Reference: Sittig DF, Singh H. A new sociotechnical model for studying health information 
technology in complex adaptive healthcare systems. Qual Saf Health Care. 2010;19(Suppl 
3):i68–74
Workarounds to barcode 
medication administration 
systems: their occurrences, 
causes, and threats to 
patient safety

Understanding how 
physical work-arounds 
impact patient safety in the 
context of medication 
reconciliation

External 
observation

Improving quality 
and safety of 
patient care 
activities

Reference: Koppel R, Wetterneck T, Telles JL, Karsh BT. Workarounds to barcode medication 
administration systems: their occurrences, causes, and threats to patient safety. J Am Med 
Inform Assoc. 2008;15(4):408–23
A 36-hospital time and 
motion study: how do 
medical-surgical nurses 
spend their time?

Identifying the common 
tasks and activities that 
surgical nurses engage in 
during the course of normal 
workflow, and any 
impediments to their 
effective/efficient execution

Self- 
observation

Managing patient 
throughput and 
resource utilization 
in healthcare 
delivery 
environments

Reference: Hendrich A, Chow MP, Skierczynski BA, Lu Z. A 36-hospital time and motion 
study: how do medical-surgical nurses spend their time? Permanente J. 2008;12(3):25
How hospitalists spend 
their time: insights on 
efficiency and safety

Identifying the common 
tasks and activities that 
hospitalists engage in 
during the course of normal 
workflow, and any 
impediments to their 
effective/efficient execution

External 
observation, 
Automated- 
observation

Managing patient 
throughput and 
resource utilization 
in healthcare 
delivery 
environments

Reference: O’leary KJ, Liebovitz DM, Baker DW. How hospitalists spend their time: insights 
on efficiency and safety. J Hosp Med. 2006;1(2):88–93

(continued)
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Table 4.1 (continued)

Title Driving problem Methods used

Intended outcomes 
or optimization 
objectives

Electronic health records in 
specialty care: a time-
motion study

Understanding how 
clinicians interact with 
EHRs in specialty care 
settings and the impact of 
human-factors associated 
with said workflow on 
clinical decision making

External 
observation

Understanding and 
optimizing clinical 
decision making

Reference: Lo HG, Newmark LP, Yoon C, Volk LA, Carlson VL, Kittler AF, Lippincott M, 
Wang T, Bates DW. Electronic health records in specialty care: a time-motion study. J Am Med 
Inform Assoc. 2007;14(5):609–15
Primary care physician 
time utilization before and 
after implementation of an 
electronic health record: a 
time-motion study

Identifying barriers to EHR 
adoption in primary care 
setting, using paper-based 
records as a comparator

External 
observation

Understanding and 
optimizing clinical 
decision making

Reference: Pizziferri L, Kittler AF, Volk LA, Honour MM, Gupta S, Wang S, Wang T, 
Lippincott M, Li Q, Bates DW. Primary care physician time utilization before and after 
implementation of an electronic health record: a time-motion study. J Biomed Inform. 
2005;38(3):176–88

4.5  Limitations and Future Directions

Nearly a century after the introduction of TMS to the healthcare arena, there is a 
genuine interest in aggregating results from TMS studies to generate knowledge 
regarding healthcare workflow, efficiency, patient safety, and quality. There is also a 
growing interest in using aggregated TMS results to support decision making on the 
acquisition and implementation of health information technologies (IT). Regrettably, 
existing attempts to aggregate results conclude that study comparison is very diffi-
cult due to the considerable variation in design, conduct, and reporting of such stud-
ies (Zheng et  al. 2011). Efforts to summarize findings across TMS are further 
challenged due to the heterogeneity in activity categorizations and a lack of meth-
odological standardization (Tipping et al. 2011).

First steps towards standardizing TMS include the work of Zheng et al. who, 
after analyzing a subset of 24 “time and motion studies” specifically assessing 
health IT implementations, proposed a checklist aiming at standardizing the report-
ing of such studies’ methods and results (Zheng et al. 2011). Also, methodological 
standardization has been proposed by Patel et al., by introducing a methodological 
framework for evaluating clinical cognitive activities in complex real-world envi-
ronments that provides a guiding framework for characterizing the patterns of activ-
ities (Kannampallil et al. 2016). Although these efforts are important initial steps 
toward standardizing TMS, they do not address the persistent lack of common 
understanding concerning the definition of what is or is not a “time motion study”. 
Ultimately, a crucial step toward standardization and validation of time motion 
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 studies in the healthcare domain involves establishing a common understanding of 
TMS, accompanied by a proper identification of the distinct techniques it encom-
passes and aspects of the field that remain open and active areas of investigation. 
This chapter represents an initial attempt.

Based on the current state-of-the-art practice of the design and execution of 
TMS, we believe that there are a number of future directions for the field that will 
serve to enhance or extend the scope and impact of the TMS methodologies. These 
directions include but are not limited to:

• Leveraging sensor data to expand the scope/nature of TMS, so that automated 
observation methods can incorporate higher volumes of “streaming” data col-
lected from a variety of instrumented artifacts in a given environment. Such use 
of sensor data could include the tracking of activities performed by individual 
clinicians, utilization of technology-based tools, and the manipulation of physi-
cal environments. Leveraging such data will require the development of new 
TMS methodologies capable of dealing with data sources that exhibit variable 
volumes, velocities, and variability (i.e., “big data.”)

• Creating continuous learning environments based on feedback from workflow 
studies, wherein we need to shorten the timeframe via which findings from TMS 
are provided back to the individuals being observed in order to support real-time 
or near-real-time decision making and workflow redesign. This could be made 
possible through using sensors to enable automated data collection, as well as 
improving the computational and data analytics capabilities that support/enable 
automated interpretation, summarization, and visualization of such TMS data 
(e.g., disintermediating analysis and reporting stage of TMS adhering to the pro-
totypical design pattern shown in Fig. 4.1).

• Finally, if we are successful in leveraging sensor technologies and creating con-
tinuous learning environments, we will be able to deliver workflow-aware infor-
mation at the point of care (e.g., contextual, just-in-time information). Such a 
paradigm shift would fulfill the primary promise of clinical informatics, which is 
to deliver right information to the right person in the right format. Given the 
importance of clinical workflow on human cognition and decision making, 
increasingly fine-grained understanding of such factors, afforded by TMS and 
novel data and analytics techniques, provides a basis for achieving this goal.

4.6  Conclusions

The original use of the term Time Motion Studies, which combines the work by 
Taylor’s focusing on “time”, and Gilbreths’ on “motion” (Gilbreth 1914), refers to 
a method for improving efficiency and establishing employee productivity stan-
dards. In TMS, a task is broken into steps, and the sequence of movements or actions 
performed by study participants to accomplish those steps is observed to detect 
motion and to measure precise time taken for each movement or action. The extant 
literature of TMS includes a broad spectrum of distinct methodologies, including 
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surveys, patient chart reviews, work sampling, and continuous observation. A com-
monality across these studies is the use of data generated via TMS to improve clini-
cal workflow, with the ultimate objective of improving outcomes such as resource 
utilization, efficiency, safety, and patient health. As we look forward and envision 
the future of this stream of TMS-based research, our assessment of the current state 
of practice suggests the following improvement opportunities:

• Enhancing and extending the methods for evaluating processes and outcomes 
associated with workflow studies;

• Translating the results of workflow studies into data-driven interventions that 
could be delivered at the point of care and beyond; and

• Improving the adoption and optimal use of technology in complex healthcare 
environments based on a better understanding of workflow-related inhibiting or 
enabling factors;

However, to achieve these goals, it requires us to address several important gaps 
in knowledge and practice, such as:

• Ensuring the adoption and use of TMS methods become more widespread, and 
demonstrate the benefits in a variety of empirical settings and practitioner 
communities;

• Creating a sustainable body of scholarly and applied work surrounding both 
methodological innovations and applied science relevant to TMS; and

• Perhaps most importantly, ensuring that we use consistent language and nomen-
clature to describe all of these endeavors, such that a robust, applicable body of 
knowledge and best practices is being created and maintained.
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Chapter 5
A Workflow Perspective in Aviation

Guy André Boy

5.1  Introduction

Aviation is changing from air traffic control (ATC) to air traffic management (ATM), 
where both systems and people are immersed into massive amount of software. 
Workflow is changing because people and systems now interact in a different manner, 
using different cognitive and socio-cognitive processes and functions. Digitalization 
of the airspace logically leads to different kinds of function allocation.

Since the 1980s, we never stopped automating aviation systems. Consequently, 
flying has become more cognitive, moving pilots’ cognitive functions from doing to 
thinking. Today, automation in aviation should be better called digitalization of air- 
ground socio-technical systems. Digitalization of the airspace is a matter of looking 
for the right mix of technology, organization and people’s activities that should be 
concurrently designed and tested to discover emergent patterns, which themselves 
should be incrementally considered.

The massive use of information technology in aviation led to drastic innovations. 
Main reasons why automation and innovation have been and still are drivers of avia-
tion evolution are: exponential increase of the number of aircraft that causes con-
gested network; higher air traffic complexity; unpredictable delays; and other things 
that result in severe congestions at key airports, rising fuel costs and pollution.

Aircraft cockpits were greatly transformed during the 1980s involving the devel-
opment of a large number of embedded systems. Digitalization of aircraft systems 
increased the need for cognitive engineering developments, especially in the digita-
lization of commercial aircraft cockpits. More specifically, flying tasks evolved 
from manual mechanical control to management of embedded systems.
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In the same way, air traffic recently started to evolve from control to manage-
ment. Two major programs are considering this shift, SESAR in Europe (Single 
European Sky ATM Research) and NextGen (Next Generation Air Transportation 
System) in the USA. The main goal is for us to better understand new airspace man-
agement models that take into account traffic growth, safety constraints and capac-
ity management. Such efforts should result in appropriate human-systems integration 
of new multi-agent systems of systems, and teams of teams.

Automation in aviation is not new. Autopilots were introduced in commercial 
aviation in the 1930s (e.g., the Boeing 247 commercial aircraft flew with an autopi-
lot in 1933). However, we learned a lot from aircraft automation during the last 
three decades of the twentieth century, especially shifting from analog to digital 
automation. Anytime we automate, we rigidify tasks and therefore activities. 
Automated systems are very context-dependent (i.e., they work fine when they are 
operated in very well-known contexts, but may dysfunction outside of these 
contexts).

Digitalization of embedded systems made us evolve toward cyber-physical sys-
tems (CPSs) and the Internet-of-things (IoT). We then deal with much larger sys-
tems of systems that require new types of investigation. More specifically, such new 
systems, which include both people and machines, become more autonomous in 
broader contexts, which also need to be further understood and subsequently 
defined. This evolution from automation to autonomy requires that we emphasize 
flexibility issues. More specifically, if automation is associated with rigidity (i.e., 
procedure based), autonomy should be associated with flexibility (i.e., problem- 
solving based) where people should be considered at the center.

In this chapter, following up our human-centered design (HCD) approach, we 
will provide human-systems integration (HSI) solutions more than human factors 
problems. This will enable us to have a basis for comparing evolutions in aviation 
and health care. A discussion will be started. We will conclude and provide 
perspectives.

5.2  Using the AUTOS Pyramid to Support Workflow 
Analysis

Workflow evolved with respect to technology (more specifically, automation), orga-
nization (in commercial aircraft, we moved from 5 technical crewmembers during 
the fifties to 4, then 3, and 2 in the beginning of the 1980s), and jobs (different kinds 
of functions changed drastically because systems were able to execute tasks that 
were performed by people before).

A typical flight is divided into phases, sub-phases, and so on. For example, after 
passenger boarding, there is the taxi phase, then the runway rolling phase (before 
takeoff), takeoff, after takeoff, initial climb, climb, cruise, and so on. These phases 
are contextual pattern that determine appropriate set of tasks. In order to define 
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workflow patterns, we use the AUTOS pyramid for each of these contextual pat-
terns, which can be normal, abnormal or emergency.

The AUTOS pyramid was first introduced in HCD as the AUTO tetrahedron 
(Boy 1998) to help relate four entities: Artifact (i.e. system), User, Task and 
Organizational environment. We subsequently added contextual patterns, which we 
called “Situations” that represent the various possible events where the artifact 
could be used (Boy 2011). The AUTOS pyramid supports HSI making sure that all 
important entities (i.e., Artifacts, Users, Tasks, Organizations and Situations) are 
taken into account, as well as their properties and interconnections (provided on the 
edges of the pyramid).

5.2.1  Artifacts, Users and Tasks

An artifact is anything that is built by people. In this chapter, artifacts will denote 
systems. A system is a set of interconnected components (i.e., physical parts) and 
procedures (i.e., software parts) forming a complex whole that is intended to be use-
ful for doing something. Artifacts may be aircraft, avionics systems, devices and 
components of these systems for example. Artifacts are often integrated sets of 
existing technology. Sometime, they are made of brand new technology. Here is a 
short list of interactive artifacts: force feedback, loudspeakers, screens, signals, but-
tons, keyboard, joystick, mouse, trackball, microphone, 3D mouse, data suit (or 
interactive seat), metaphor for interaction, visual rendering, 3D sound rendering, 
3D geometrical model and so on. These artifacts are usually integrated with mechan-
ical artifacts such as pipes, containers, engines, pressurizers, turbines, flaps, slats, 
wheels, brakes and so on.

Users may be novices, experienced personnel or experts, coming from and evolv-
ing in various cultures (e.g., pilots, air traffic controllers, dispatchers). They may be 
tired, stressed, making errors, old or young, as well as in very good shape and mood. 
Users have been taken into account by human factors and ergonomics (HFE) during 
the last five decades in the context of engineering-centered engineering, generating 
the concepts of user interfaces and operational procedures.

Tasks vary from handling quality control, flight management, managing a pas-
senger cabin, repairing, designing, supplying or managing a team or an organiza-
tion. Each task involves one or several cognitive functions that related users must 
learn and use. The AUT triangle (Fig. 5.1) enables the explanation of three edges: 
task and activity analysis (U-T); information requirements and technological limita-
tions (T-A); ergonomics and training (procedures) (A-U).

Today, almost any system includes software, which mediates user intentions and 
provides appropriate feedback. Automation introduces constraints and, as already 
said, more rigidity. End-users do not have the final action (automation does), they 
need to plan more than in the past. Work becomes more cognitive and (artificially) 
social, i.e., there are new social activities that need to be performed in order for the 
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other relevant actors to do their jobs appropriately. This even becomes more obvious 
when cognition is distributed among many human and machine agents.

Cockpits were incrementally shaped to human anthropometrical requirements in 
order to ease manipulation of the various instruments. This of course is always 
strongly related to technology limitations also. Anthropometry developed its own 
language and methods. It is now actively used in design to define workspaces 
according to human factors such as accommodation, compatibility, operability, and 
maintainability by the user population. Workspaces are generally designed for 
90–95% coverage of the user population. Anthropometric databases are constantly 
maintained to provide appropriate information to designers and engineers. 
Nevertheless, designers and engineers need to be guided to use these databases in 
order to make appropriate choices.

Fatigue is a major concern in aviation, and strongly depends on work organiza-
tion. Therefore, it is important to know about circadian rhythms and the way people 
adapt to shift work and long work hours for example. Consequences are intimately 
associated with health and safety risks. Fatigue studies provide more knowledge 
and knowhow on how to proceed with work time schedules, appropriate training, 
systematic checks, and health indicators following. Of course, this needs to be inte-
grated in regulatory procedures. Useful information can be found in the Handbook 
of Human-Machine Interaction (Gander et al. 2011).

In aviation, cognitive factors start with workload assessment. This statement may 
seem to be restrictive and old fashion, but the reader should think twice about work-
load before starting any work in human factors. On one side, workload is a concept 
that is very difficult to define. It is both an output of human performance and a 
necessary input to optimize performance, i.e., we produce workload to perform bet-
ter, up to a point where we need to change our work strategy. But on the other side, 
we need to figure out a model that would quantify a degree of load produced by a 
human being while working. Of course, this model should be based on real mea-
surements performed on the human being. Many models of workload have been 
proposed and used in aviation (Bainbridge 1978; Hart 1982; Boy and Tessier 1985). 
Workload also deals with the complexity of the task being performed. In particular, 
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people can do several things at the same time, in parallel; this involves the use of 
several different peripheral resources simultaneously (Wickens 1992). Sperandio 
(1980) studied the way air traffic controllers handle several aircraft at the same time, 
and showed that the time spent on radio increased with the number of aircraft being 
controlled: 18% of their time spent in radio communication for one controlled air-
craft whereas 87% for nine aircraft controlled in parallel. In other words, task com-
plexity tends to increase human operator efficiency.

Human-systems interaction moves into human-systems cooperation when sys-
tems become more autonomous. In this case, it is more appropriate to talk about 
agent-agent cooperation. Hoc and Lemoine studied dynamic task allocation (DTA) 
of conflict resolution between aircraft in air-traffic control on a large-scale simula-
tor. The more the assistance, the more anticipative the mode of operation in control-
lers and the easier the human-human cooperation (HHC). These positive effects of 
the computer support are interpreted in terms of decreased workload and increased 
shared information space (Hoc and Lemoine 1998).

Situation awareness (SA) is another concept that is useful to introduce here, 
especially as a potential indicator for safety in highly automated human-machine 
systems. During the last decades, lots of efforts have been carried out to assess SA 
such as the Situation Awareness Global Assessment Technique (SAGAT) (Endsley 
1988, 1996). Several efforts have been developed to assess SA in the aeronautics 
domain (Mogford 1997); the main problem is the characterization of the influence 
of action on situation awareness. Indeed, human operator’s actions are always situ-
ated, especially in life-critical environments, and SA does not mean the same when 
actions are intentional as when they are reactive. In human-machine interaction, this 
is a very important issue since actions are always both intentional (deliberative) and 
reactive because they are mainly performed in a close loop (Boy 2015).

5.2.2  Considering Organizations in Design

The Orchestra model was proposed in aviation to better understand authority shar-
ing (Boy and Grote 2009; Boy 2013). Technological design requires multidisci-
plinary design teams (i.e., a design team must include people who have related 
background, competence and experience on each of these relevant artifacts incre-
mentally integrated). In addition, design team members need to understand each 
other (i.e., they need to be able to read the same music theory, even if they do have 
the same scores). They need to be appropriately coordinated both at the task level 
(i.e., scores need to be harmonized by a composer) and the activity level (i.e., 
design team members, as musicians, need to be coordinated by a conductor at per-
formance time).

An organizational environment for design does not only include all design team 
players (i.e., human agents), but also technological means (i.e., system agents). At 
this point, human-systems integration is not only for the sake of the product, but 
also for the sake of the design team itself. For this reason, design cards constitute 
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useful support (Boy 2013). Considering organizations in design introduces three 
additional edges (Fig. 5.2): social issues (U-O); role and job analyses (T-O); emer-
gence and evolution (A-O).

There are two fields of research that grew independently for the last three 
decades: crew resource management (CRM) in aviation, and computer-supported 
cooperative (CSCW) work in HCI. The former was motivated by social micro-world 
of aircraft cockpits where pilots need to cooperate and coordinate to fly safely and 
efficiently. CRM started during a workshop on resource management on the flight 
deck sponsored by NASA in 1979 (Cooper et al. 1980). At that time, the motivation 
was the correlation between air crashes and human errors as failures of interper-
sonal communications, decision-making, and leadership (Helmreich et  al. 1999). 
CRM training developed within airlines in order to change attitudes and behavior of 
flight crews. CRM deals with personalities of the various human agents involved in 
work situations, and is mainly focused on teaching, i.e., each agent learns to better 
understand his or her personality in order to improve the overall cooperation and 
coordination of the working group. The same kind of issues should be taken into 
account in design teams and solutions incrementally implemented and evaluated.

Interaction is also influenced by the organizational environment that is itself 
organized around human(s) and system(s). More explicitly, HSI could focus on 
someone facing his/her laptop writing a paper; it could also be someone driving a 
car with passengers; it could be focused on an air traffic management system that 
includes pilots, controllers and various kinds of aviation systems. People are now 
able to interact with computerized systems or with other people via computerized 
systems. We recently put to the front authority as a major HCD concept. When a 
system or other parties do the job, or part of the job, for someone, there is delega-
tion. What is delegated? Is it the task? Is it the authority in the execution of this task? 
By authority, we mean accountability (responsibility) and control. Such questions 
should find answers within the design team both analytically and experimentally 
through human-in-the-loop simulations (HITLS).

Organization complexity is linked to social cognition, agent-network complex-
ity, and more generally multi-agent management issues. There are four principles 
for multi-agent management: agent activity (i.e., what the other agent is doing now 
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and for how long); agent activity history (i.e., what the other agent has done); agent 
activity rationale (i.e., why the other agent is doing what it does); and agent activity 
intention (i.e., what the other agent is going to do next and when). Multi-agent man-
agement needs to be understood through a role (and job) analysis. To summarize, 
O-factors mainly deal with the required level of coupling between the various pur-
poseful agents to handle the new artifact.

5.2.3  Testing in a Large Variety of Situations

The AUTOS framework (Fig. 5.3) is an extension of the AUTO tetrahedron that 
introduces a new dimension, the “Situation”, which was implicitly included in the 
“Organizational environment”. The three new edges are: usability/usefulness (A-S); 
situation awareness (U-S); situated actions (T-S); cooperation/coordination (O-S).

Interaction depends on the situation where it takes place. Situations could be 
normal or abnormal. They could even be emergencies. This is why we will empha-
size the scenario-based approach to design and engineering. Resulting methods are 
based on descriptions of people using technology in order to better understand how 
this technology is, or could be, used to redefine their activities. Scenarios can be 
created very early during the design process and incrementally modified to support 
product construction and refinement.

Scenarios are good to identify functions at design time and operations time. They 
tend to rationalize the way the various agents interact among each other. They 
enable the definition of organizational configurations and time-wise chronologies.

Situation complexity is often caused by interruptions and more generally distur-
bances. It involves safety and high workload situations. It is commonly analyzed by 
decomposing contexts into sub-contexts. Within each sub-context, the situation is 
characterized by uncertainty, unpredictability and various kinds of abnormalities. 
To summarize, situational factors deal with the predictability and appropriate 
 completeness (scenario representativeness) of the various situations in which the 
new artifact will be used.
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5.2.4  Using the AUTOS Pyramid in Practice

Software is very easy to modify. Consequently, design teams develop prototypes 
that they modify all the time! Interaction is not only a matter of end product; it is 
also a matter of agile development process. End-users are not the only ones to inter-
act with a delivered product; designers and engineers also interact with the product 
in order to fix it up toward maturity… even after its delivery. This is why agile 
approaches based on design cards (Boy 2016) are extremely useful and effective 
(Schwaber 1997; Sutherland 2014). In addition, scenario-based design is an HCD 
approach that fosters understandability (situation awareness), complexity, reliabil-
ity, maturity and induced organizational constraints (rigidity versus flexibility).

Software complexity can be split into internal complexity (or system complex-
ity) and interface complexity. Internal complexity is related to the degree of expla-
nation required to the user to understand what is going on when necessary. Concepts 
related to system complexity are: flexibility (both system flexibility and flexibility 
of use); system maturity (before getting mature, a system is an accumulation of 
functions—the “another function syndrome”—and it becomes mature through a 
series of articulations and integrations); automation (linked to the level of opera-
tional assistance, authority delegation and automation culture); and operational 
documentation. Technical documentation complexity is very interesting to be 
tested because it is directly linked to the explanation of artifact complexity. The 
harder a system is to use; the more related technical documentation or performance 
support are required in order to provide appropriate assistance at the right time in 
the right format.

What should we understand when we use a product? How does it work? How 
should it be used? At what level of depth should we go inside the product to use it 
appropriately? In the early ages of the car industry, most car drivers were also 
mechanics because when they had a problem they needed to fix it by themselves; the 
technology was too new to have specialized people. These drivers were highly 
skilled engineers both generalists and specialists on cars. Today, things have drasti-
cally changed; drivers are no longer knowledgeable and skilled to fix cars; there are 
specialists that do this job because software is far too complex to understand with-
out appropriate help. Recent evolution transformed the job of mechanics into sys-
tem engineers who know how to use specialized software that enables to diagnose 
failures and fix them. They do not have to fully understand what is going on inside 
the engine, a software program does it for them and explain problems to them; when 
the overall system is well-designed of course. This would be the ideal case; in prac-
tice, most problems come from organizational and situational factors induced by the 
use of such technology (e.g., appropriate people may not be available at the right 
time to fix problems when they arise).

Interface complexity is characterized by content management, information den-
sity and ergonomics rules. Content management is, in particular, linked to informa-
tion relevance, alarm management, and display content management. Information 
density is linked to decluttering (Doyon-Poulin et al. 2014), information modality, 
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diversity, and information-limited attractors, i.e., objects on the instrument or dis-
play that are poorly informative for the execution of the task but nevertheless attract 
user’s attention. The “PC screen do-it all syndrome” is a good indicator of informa-
tion density (elicited improvement-factors were screen size and zooming). 
Redundancy is always a good rule whether it repeats information for crosschecking, 
confirmation or comfort, or by explaining the “how”, “where”, and “when” an 
action can be performed. Ergonomics rules formalize user friendliness, i.e., consis-
tency, customization, human reliability, affordances, feedback, visibility and appro-
priateness of involved cognitive functions.

Task complexity involves procedure adequacy, appropriate multi-agent coopera-
tion (e.g., air-ground coupling in the aerospace domain) and rapid prototyping (i.e., 
task complexity cannot be properly understood if the resulting activity of agents 
involved in it is not observable). Task complexity is linked to the number of sub- 
tasks, task difficulty, induced risk, consistency (lexical, syntactic, semantic and 
pragmatic) and the temporal dimension (perception-action frequency and time pres-
sure in particular). Task complexity is due to operations maturity, delegation and 
mode management. Mode management is related to role analysis. To summarize, 
T-factors mainly deal with task difficulty according to a spectrum from best practice 
to well-identified categories of tasks.

Do not forget that CFA requires HITLS to observe activity. Activity analysis 
could be defined as the identification and description of activities in an organization, 
and evaluation of their impact on its operations. Activity analysis determines: (1) 
what activities are executed; (2) how many people perform the activities; (3) how 
much time they spend on them; (4) how much and which resources are consumed; 
(5) what operational data best reflects the performance of activities; and (6) how 
much value these activities provide to the organization. This analysis is accom-
plished through direct observation, interviews, questionnaires, and review of the 
work records addressed to users of prototypes at different stages of design and 
development.

5.3  Cockpit Evolution: From Control to Management

Twentieth century engineering was dominated by mechanical engineering. 
Engineers built trains, cars, airplanes and power plants by assembling mechanical 
things. During the last decades, computer science and information technology mas-
sively penetrated mechanical machines to incrementally create systems, which 
included physical hardware and cognitive software. Everything started with the 
automation around the center of gravity using yoke or side stick and thrust levers 
(Fig.  5.4). The first embedded system was a single agent regulating parameters, 
such as speed and heading, one parameter at a time. Time constant of the feedback 
was around 500 ms. Pilots had to adapt to this embedded system by changing from 
control of flight parameters to supervision of embedded system behavior with 
respect to a set point.
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The guidance system was developed circa the early eighties (Fig. 5.5). This sec-
ond feedback loop took into account several parameters. Its time constant was 
around 15 s. Note that this feedback loop was implemented on top of the trajectory 
control system. High-level modes of automation appeared and were managed on the 
flight control unit panel. At the same time, integrated and digital autopilot and auto- 
throttle were installed.

The third embedded system concerned navigation automation with a time con-
stant of about one minute (Fig. 5.6). Guidance and flight management became inte-
grated. This was the first real revolution in the evolution of aeronautical embedded 
systems. We were shifting from control of flight parameters to management of 
embedded systems. Software became dominant and the number of artificial agents 
on aircraft grew exponentially. For that matter, pilots have now to deal with a variety 
of embedded systems that are not only humans but also software-based agents. 
Problems may emerge when these software-based agents communicate among each 
other. This issue will be analyzed later in the chapter.
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Whenever people extend their capabilities with appropriate embedded systems 
that can be called “cognitive prostheses” (Hamilton 2001), they increase their per-
formance. However, if these cognitive prostheses use automation to a point that is 
not clearly understood from an operational standpoint, performance may decrease 
and, in some cases, cause serious problems. This is what Earl Wiener called “clumsy 
automation” (Wiener 1989). When I was working on the Orbital Refueling System 
of the Space Shuttle in the mid-eighties (Boy 1987), I found out that there is an 
optimum P0 in terms of autonomy level and performance of the overall human- 
machine system (Fig. 5.7).

Technology-centered engineering typically automates at the point PTL (i.e., on 
the technological limitations limit). It takes experimental tests and efforts to go 
back to P0. HCD takes into account the existence of P0, and incrementally tries to 
find out this optimum through creative design and formative evaluation using 
HITLS.  Interestingly, the more we know about autonomy of the various human 
and machine agents, the more the optimum P0 move to the right and goes up on 
Fig. 5.7. Of course, if we knew everything about the environment and the various 
agents involved in the various interactions, the optimum PFA would be on the full 
autonomy of the machine (e.g., in the case of an aircraft, PFA would correspond to 
a drone).

This shift of optimum P0 to the right is strongly related to maturity. In HCD, we 
distinguish between technology maturity and maturity of practice. The former deals 
with reliability, availability and robustness of the technology being designed and 
developed. The latter deals with people’s adaptation to and resilience of the technol-
ogy; often new practices emerge from technology use. We then need to observe 
usages as early as possible to anticipate surprises before it is too late. HCD proposes 
methods and tools that enable HCD teams to detect these emergent properties at 
design time (e.g., using HITLS). In any case, there is a maturity period required to 
assess if a product can be delivered or not.
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Fig. 5.7 Human-machine system performance versus levels of autonomy (adaptation of Boy’s 
NASA technical document 1988)
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5.4  Organizational Automation and Management

We have seen that pilot’s job moved from control of flight parameters to manage-
ment of embedded systems during the 1980s. This job revolution in the cockpit is 
now shifting to air traffic (i.e., air traffic control is moving toward air-traffic man-
agement). In other words, single agent’s shift from control to management is cur-
rently evolving to a multi-agent shift. Why? What are underlying organizational 
issues?

The main cause is the number increase effect. According to Boeing’s Current 
Market Outlook 2014–2033, average airline traffic yearly growth is estimated at a 
rate of 5%. Knowing that most big airports, such as Hartsfield–Jackson Atlanta 
International Airport, are already over-saturated, the air traffic capacity issue 
requires complexity science approaches, and more specifically a multi-agent 
approach, where agents are aircraft. Connectivity among these agents has to become 
explicit. If aircraft separation has to be reduced during approach and landing for 
example, current human-centered air traffic control techniques need to be re-visited 
and in many cases drastically changed. This is a matter of technology, organizations 
and people. On the technology side of the problem to be solved, each aircraft should 
know about the location and identity of the other aircraft around it. Aircraft should 
then be equipped with appropriate sensors and receptors, such as Automatic 
Dependence Surveillance—Broadcast (ADS-B) system. Satellite data have to be 
used to identify a clear dynamic model of the sky, in terms of both traffic and 
weather. We can also use weather radar data from all aircraft and fuse them with 
satellite data to increase 3D validity of weather models. Same kind of fusion can be 
done for air traffic using more conventional radar system data. Resulting data can be 
used to develop an embedded system providing each aircraft with a protection 
safety net (i.e., each aircraft knows the traffic around it and is able to decide tactical 
maneuvers to increase global safety). The protection safety net of each aircraft is an 
embedded system related to other aircraft equivalent and a coordination ground 
system that orchestrates the overall traffic.

This approach definitely defines a new kind of organizational automation, 
which is multi-agent. This multi-agent approach involves interaction among peo-
ple and systems, among systems, and among people (often through information 
technology). Since there will be a layer of information technology gluing the vari-
ous air and ground systems, new factors are emerging such as cyber-security. Air 
traffic management of the future will be almost entirely based on highly intercon-
nected cyber-physical systems (CPSs). New kinds of risks will emerge from the 
activity of this giant airspace CPS-based infrastructure. In particular, malicious 
actors will be able to attack these systems from anywhere in the world. 
Consequently, we need to further develop methods and tools that enable studying 
security and resilience of such CPS-based infrastructure, and find appropriate 
solutions. Protection will have to be found from technology (safety and security 
nets), organizations (collaboration among agents), and people (increasing training 
and expertise).
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Air-ground integration is an example of human-systems integration point of view 
that involves function allocation. Since Fitt’s law that provided the HABA-MABA1 
recommendations for single-agent function allocation, very little has been done on 
multi-agent function allocation. Function allocation rationale is to determine which 
functions should be carried out by humans and which by machines (Fitts 1951). 
Cognitive function analysis (CFA) is an effective approach to this kind of problem 
in a multi-agent environment (Boy 1998, 2011). CFA includes physical functions 
also (remember that a cognitive function is defined by a set of resources that may be 
cognitive functions and/or physical functions). In addition, the Orchestra model 
(Boy 2013) provides a very useful framework to model and simulate resulting cog-
nitive functions of the human-systems system being developed. Consequently, 
agent needs to be further modeled in terms of cognitive and physical functions, as 
well as the way they are inter-connected—this is typically doing a CFA. CFA results 
can be presented as a cognitive/physical function network (or interactive map), 
which is a good support for studying interaction complexity, distributed situation 
awareness and multi-agent decision-making.

5.5  Starting a Discussion

5.5.1  Tangibility

In the beginning of the twenty-first century, embedded systems are reframing the 
structure-function duality. Instead of functionalizing structure to create automated 
machines (the twentieth century approach), we are now structuralizing software func-
tions. Therefore, automation problems, which were created during the last decades of 
the twentieth century, are no longer the main issue because software can be tested 
from the early days of the design process using advanced virtual engineering, making 
HCD possible (i.e., taking into account human factors at design time). Cognitive func-
tion analysis can be validated because, in addition to task analysis, activity can be 
observed in HITLS using virtual prototypes and real users. Consequently, technologi-
cal and organizational requirements can be nurtured by early solid function analyses.

The main issue has then become structure, and therefore tangibility. Since almost 
everything can be modeled and simulated on computers, and we now have 3D print-
ing, structure can be very easily obtained. Traditionally in aeronautics, this was 
taken into account by flight tests. This is needed for the validation of any life-critical 
system. The right balance between cognitive and physical functions should be 
tested, as well as between abstractions and physical structures. Tangibility needs to 
be tested in terms of physical tangibility and figurative tangibility. The former is 
based on criteria such as simple reachability, complex accessibility, fatigue, noise 
management, resource availability and so on. The latter is based criteria such as 

1 Fitt’s HABA-MABA (humans-are-better-at/machines-are-better-at) approach provided generic 
strengths and weaknesses of humans and machines.
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monitoring, situation awareness, decision-making, risk taking and so on. Of course, 
these criteria can be detailed with respect to the level of granularity required at the 
current stage of the design process. Digital HITLS at design time contributes to the 
development of more appropriate HSI requirements. It does not remove the need for 
actual flight tests once the real system is developed, but contributes to improve their 
effectivity and cost.

5.5.2  Maturity

Lots of efforts and money have been spent to increase system reliability that con-
tributed to aviation safety. As already said, safety of the future ATM involves 
increased attention on interactions among its various agents. The qualification of 
these “new” agents is an issue that concerns this investigation on authority sharing. 
We would like to go beyond the safety-reliability discussion, and propose to focus 
on maturity.

Since the general trend is to manage short-term benefits instead of long-term 
sustainability, it is not surprising that we currently observe a discrepancy in provi-
sion and qualification of human operators. Since human reliability remains very 
critical, if human operators are even less available and qualified, the situation will 
become worse. We are beginning to understand that human factors issues are no 
longer so much the result of engineering decisions but of economically-induced 
decisions.

Therefore, if we want to keep or improve the current level of safety, with an 
increase of airspace capacity, some drastic changes will need to be made in the way 
we understand and manage technology and organizations. In particular, safety- 
critical systems should be mature for safe use when they are delivered. The concept 
of maturity could be misleading because we already have in industry the quality- 
based Capacity Maturity Model (Paulk et al. 1993) that supports maturity of manu-
facturing processes. We are interested in product and practice maturity. Product 
maturity requires a strong focus on human-centered high-level requirements, as 
well as participatory design and development all along the life cycle of the product 
(Boy 2005). Product maturity engineering involves a careful elicitation of the attri-
butes that shape the related maturity of practice. We typically say that maturity of 
practice is reached when a reasonable number of surprises or emerging factors have 
been identified and related causes fixed. Obviously, product maturity engineering 
addresses the long term and is not appropriate for short-term goals and practice of 
current economy-driven organizations. It should be!

During the early stages of a development process such as the ATM of the future, 
the participation of the various representative actors is mandatory. This participa-
tory approach requires that not only pilots and controllers, i.e., end-users and musi-
cians, but also designers and regulators, i.e., the music instrument makers and 
composers, share a common frame of reference. In addition, the job definitions 
process cannot be improvised and must be planned since we know that initial defini-
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tions will have to be revised all along the life cycle of the overall ATM development 
process. Consequently, authority distribution for the design of the various instru-
ments (this is where HCI specialists enter into play) is a matter of incremental 
development and testing. In PAUSA, we took a scenario-based approach (Carroll 
1995) to carry out such an authority distribution supported by the development of 
human factors principles and criteria, socio-technical models and HITLS.

The growing number of interdependencies among ATM agents led us to propose 
a measure of socio-cognitive stability (SCS) derived from various contributions, 
including Latour’s account on socio-technical stability (Callon 1991; Latour 1987), 
emerging cognitive functions (Boy 1998), distributed cognition (Hutchins 1995), 
and socio-cognitive research and engineering (Hemingway 1999; Sharples et  al. 
2002). We make a distinction between local and global SCS. Local SCS is related to 
agent’s workload, situation awareness, ability to make appropriate decisions and, 
finally, correct action execution. It can be supported by appropriate redundancies 
and various kinds of cognitive support such as trends, relevant situational informa-
tion and possible actions. Global SCS is concerned with the appropriateness of 
functions allocated to agents, pace of information flows and related coordination. It 
is very similar to the level of synchronization of rhythms in a symphony. Globally, 
socio-cognitive support could be found in a safety net that would take into account 
the evolution of interacting agents and propose a constraining safety envelope in 
real time.

Three kinds of metrics have been deduced during the PAUSA project:

• Complexity is expressed as the number of relevant aircraft to be managed per 
appropriate volumetric zone (AVZ) at each time. An AVZ is calculated with 
respect to the type of flow pattern, e.g., aircraft crossing, spacing and merging. 
The definition of such an appropriate volumetric zone requires the assistance of 
operational ATC controllers. From a socio-cognitive perspective in ATM, com-
plexity should be considered together with capacity. This is what the COCA 
(COmplexity & CApacity) project investigated (Athènes et al. 2002; Cummings 
and Tsonis 2006; Hilburn 2004; Laudeman et al. 1998; Leveson et al. 2009).

• Time pressure criticality is the amount of workload that an agent (or a group of 
agents) requires to stabilize an ATM system after a disturbance. Such workload 
measure could be assessed as the ratio between the sum of required times for 
each action on the total available time (Boy 1983).

• Flexibility is defined as the ease of modification of an air-ground contract in 
real-time. Flexibility assessments should guide ATM human-centered automa-
tion and organizational setting. Overall, increasing capacity also increases com-
plexity and uncertainty, which need to be managed by finding the right balance 
between reducing uncertainties through centralized planning and coping with 
uncertainties through decentralized action. Loose coupling is required for actors 
to use their autonomy in accordance with system goals (Grote 2004).

This chapter was written to provide salient workflow aspects, as well as evolu-
tions of human-systems integration in aviation. How can we compare these aspects 
and evolutions with those in healthcare? Can increase of the number of aircraft be 
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compared to increase of the number of patients? For sure, complexity analysis is 
required in both domains. Of course, we cannot substitute aircraft by patients! 
However, the need for dispatch is similar. In aviation, interconnectivity among vari-
ous kinds of aircraft have to be always considered along with attributes such as 
long-haul flights, failures, aircraft size and performance. Same could said in health-
care, interconnectivity among various kinds of patients have to be always consid-
ered along with attributes such as seriousness of their health.

Time pressure criticality is also a factor shared by aviation and healthcare, as all 
in life-critical systems. We tend to plan trajectories in advance (i.e., 4D trajectories), 
and this led to trajectory-based operations (TBO). However, this works fine in normal 
situations, but may fail in abnormal and emergency situations where procedure- based 
planning rigidity becomes an obstacle to problem-solving flexibility requirements. 
This involves human skills and knowledge not only on basic flying capabilities but 
also on embedded systems and their capabilities. This is the reason why organiza-
tional automation, especially workflow automation, should be developed considering 
appropriate function allocation. Cognitive function analysis is strongly advised.

5.6  Conclusion and Perspectives

Workflow design and management is a matter of functions and structures that need 
to be articulated correctly. The first difficulty comes from system complexity (i.e., 
systems of systems, teams of teams, several critical attributes to be considered, 
emergent phenomena and properties to be incrementally elicited and re-injected 
into the overall system). It is then important to identify non-linear processes and 
bottlenecks (bifurcations in the complexity science sense). For that matter, the 
AUTOS pyramid and cognitive function analysis greatly supported analysis, design 
and evaluation of highly automated systems in aviation. We started to automate 
aircraft and we are now automating air traffic. The actual shift is from rigid (low- 
level) automation to flexible (high-level) autonomy, where authority sharing has to 
be considered seriously (i.e., who is in charge and accountable to whom).

The socio-technical evolution of aviation systems led to very successful results 
in terms of accident deaths, decreasing exponentially since the 1980s toward zero.2 
This evolution includes automation (now digitalization), regulations and a unique 
safety culture. However, digitalization has become the most important issue in avia-
tion human-systems integration. Software is very easy to modify, but involves us 
into a virtual world where new phenomena emerge such as cybersecurity. If we can 
carry out HCD development very early during the life cycle of a system (i.e., activ-

2 “Airlines recorded zero accident deaths in commercial passenger jets last year, according 
to a Dutch consulting firm and an aviation safety group that tracks crashes, making 2017 
the safest year on record for commercial air travel” (https://www.reuters.com/article/
us-aviation-safety/2017-safest-year-on-record-for-commercial-passenger-air-travel-groups-
idUSKBN1EQ17L).
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ity and function analyses can be performed very early using human-in-the-loop 
simulations), tangibility testing remains a highest priority (i.e., physical tangibility 
regarding structures and figurative tangibility regarding functions).
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Chapter 6
Characterizing Collaborative Workflow 
and Health Information Technology

Craig E. Kuziemsky, Joanna Abraham, and Madhu C. Reddy

6.1  Introduction to Healthcare Teamwork

Healthcare system factors such as an increased prevalence of chronic illness, an 
aging population, increased patient complexity and a strong desire for quality, 
safety, and coordination of care have highlighted the need for team-based care 
delivery (Committee on Patient Safety and Health Information Technology; Institute 
of Medicine 2011; Mitchell et al. 2012; Roett and Coleman 2013). However, while 
this need has been well described, it remains a challenge to implement team-based 
care delivery in today’s healthcare practice (Bates 2015).

Teams can be broadly defined “a distinguishable set of two or more people who 
interact dynamically, interdependently, and adaptively toward a common and val-
ued goal/object/mission, who have each been assigned specific roles or functions to 
perform, and who have a limited life span of membership” (Salas et  al. 1992). 
However, there are in fact many different ways by which teams can be characterized 
Some ways that teams have been classified are by their information behavior, orga-
nizational configuration, duration (e.g., long- versus short-term teams), and manner 
of interaction (e.g., synchronous and asynchronous) (Nancarrow et  al. 2013; 
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Xyrichis and Ream 2008). Despite these differences, a commonality is the need for 
different degrees of connectivity that varies according to the type of team and the 
context in which communication and coordination between team members occur. 
Given the distributed manner in which teams often work, health information tech-
nology (IT) can play a significant role in supporting communication and coopera-
tion between members of a care team. Hence, understanding the nature of team 
connectivity is essential for the design and evaluation of health IT to support team- 
based care delivery (Kuziemsky et al. 2016a). However, existing research has shown 
that there is often a gap between the collaborative work practices of teams and the 
health IT that we design to support them (Leslie et al. 2017; Rudin et al. 2016).

6.2  Characterizing Healthcare Teams

Closing this gap requires us to first understand how teams work in order to derive 
system requirements for health IT to support teamwork. A common way to charac-
terize healthcare teams is by the structure of the team. The basic form of structural 
classification is whether a team is composed of one type of providers (unidisci-
plinary team) or multiple provider types (multidisciplinary, interdisciplinary or 
transdisciplinary team). Teams consisting of multiple provider types can be further 
classified according to the manner in which team members interact when delivering 
care. In a multidisciplinary team, team members from different disciplines work on 
a common goal and share information accordingly, but each member stays within 
the boundaries of their own discipline as they work towards the shared goal (Choi 
and Pak 2006). Multidisciplinary teams are analogous to swim lanes in that each 
provider only engages in his/her own care delivery processes with little or no inter-
action across the lanes (Choi and Pak 2006). Surgical teams are a common example 
of multidisciplinary teams in which providers of each type are responsible for per-
forming distinct and highly specialized tasks (Casimiro et al. 2015). In contrast, in 
an interdisciplinary team, team members work across disciplines (i.e., across the 
swim lanes) as interaction and communication between team members are neces-
sary to accomplishing the team’s shared goals. Interdisciplinary teams are common 
in complex care scenarios such as palliative care (Casimiro et al. 2015). Lastly, in a 
transdisciplinary team, team members are not bound to their disciplines, and may 
work across roles through shared goals and skillsets (Galvin et al. 2014; Hall et al. 
2012). Transdisciplinary teams are common in remote areas where all provider 
types may not be available and thus a provider, such as a nurse practitioner, may 
need to play multiple roles (e.g., dietician, therapist, etc.) when caring for patients.

Teams can also be characterized according to their life cycles and longevity of 
workflow. Some teams interact only for short durations (e.g., certain teams in the 
emergency room [ED]) where team is disbanded once the task at hand completes; 
while other teams (e.g. cancer care or chronic disease management teams) engage 
in workflows that may extend over months even years (Andreatta 2010; Tang et al. 
2015). Teams may be assembled with specific needs or ad-hoc workflows; and team 
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personnel can also be characterized as being stable, or dynamic, and may work 
synchronously or asynchronously (Hollenbeck et al. 2012).

Teams can be also characterized by the degree of collaboration that their mem-
bers engage in. While it is common to refer to healthcare teams as being ‘collabora-
tive,’ collaboration is in fact a specific process that carries with it the implications 
for how a team should operate (Eikey et al. 2015). Although collaboration is often 
used interchangeably with other terms such as communication, coordination and 
cooperation, collaboration is a distinctive process (Abraham and Reddy 2013) 
which refers to “planned or spontaneous engagements that take place between indi-
viduals or teams of individuals, whether in-person or mediated by technology, 
where information is exchanged in some way (either explicitly, i.e. verbally or writ-
ten, or implicitly, i.e. through shared understanding of gestures, emotions, etc.), and 
often occur across different roles (i.e. physician and nurse) to deliver patient care” 
(Eikey et al. 2015: 263). True collaboration involves multiple processes. The popu-
lar 3C Collaboration Model (i.e., Communication–Coordination–Cooperation) 
describes how collaboration involves processes such as communication to exchange 
information to generate tasks that are then organized via coordination to ensure the 
successful completion of the overall care task (Hugo et al. 2008; Paul and Reddy 
2010; Reddy and Spence 2008).

Finally, the social or behavioral aspects of healthcare teams can also be significant. 
This is because teams often involve professionals from multiple disciplines and/or 
medical specialties who contribute with varying roles and responsibilities. For exam-
ple, physicians are in charge of developing clinical diagnosis and treatment plan; 
nurses for carrying out the treatment plan; phlebotomists for drawing blood; lab tech-
nicians for analyzing patient samples; dieticians for making nutrition recommenda-
tions, etc. (Ellingson 2002) Hence, in order to achieve effective teamwork both within 
and across these various disciplines, all members of the team must demonstrate cer-
tain teamwork competencies (e.g. team knowledge, team skill and team attitude) 
(Baker et al. 2006; Nancarrow et al. 2013). Table 6.1 shows some of the key behav-
ioral characteristics of a team for ensuring effective teamwork (Baker et al. 2006).

6.3  Formalizing Team-Based Workflows

Workflow has been described as the number one pain point between health IT and 
users (Singh et al. 2013), with the formation and functioning of healthcare teams 
being a particular challenge (Payne et al. 2016). Thus, a first step toward mindful 
health IT design is to formalize team-based workflows so that computerized sys-
tems can better support the characteristics of the underlying teamwork. While the 
above section describes numerous characteristics of healthcare teams, to date, there 
has been limited formalization of team-based workflows in clinical settings. 
Drawing upon our prior work, we formalize the above characteristics of team-based 
workflows according to their structural and behavioral aspects (Press et al. 2012). 
This formalization is shown in Fig. 6.1.

6 Characterizing Collaborative Workflow and Health Information Technology
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In Fig. 6.1, we characterize the structure of a team by its degree of interaction 
and the temporal characteristics of tasks and personnel. The behavioral aspects 
define factors such as leadership, trust and collaborative competencies, as well as 
behaviors that influence how collaborative workflows are actually carried out (Xiao 
et al. 2013). Characterizing team workflows by structures and behaviors helps us 
better understand how to link team characteristics to outcomes, and the impact of 
health IT on team-based workflows. While all structural and behavioral aspects 
included in Fig. 6.1 are important, this chapter particularly focuses on collaborative 
team workflows, which are an integral part of team-based care delivery yet there is 

Table 6.1 Behavioral characteristics of effective teams (adapted from Baker et al. 2006)

Features of effective teams Supporting function Potential strategy

Team leadership (Baker 
et al. 2006; Nancarrow 
et al. 2013)

Offers clear direction and management 
with the ability to coordinate the 
activities of other team members

Seeking and evaluating 
information for task 
coordination among team 
members

Mutual performance 
monitoring (Baker et al. 
2006; McIntyre and Salas 
1995; Salas et al. 1994)

Ability to develop shared 
understanding of the team 
environment and apply appropriate 
task strategies to accurately monitor 
members’ performance

•  Identifying mistakes and 
lapses in other team 
members’ actions

•  Providing feedback 
regarding other team 
members’ actions to aid 
correction

Mutual support (McIntyre 
and Salas 1995; Porter 
et al. 2003; Salas et al. 
1994)

Ability to support team member needs 
based on accurate knowledge of their 
responsibilities.

Shifting of tasks to 
underutilized team 
members

Adaptability (Cannon- 
Bowers and Salas 1997; 
Kozlowski et al. 1999)

Ability to adjust strategies based on 
information gained from work 
environment using compensatory 
behavior and reallocation of shared 
team resources

Identifying opportunities 
for growth and innovation 
for routine practices

Shared mental model 
(Klimoski and Mohammed 
1994; Mathieu et al. 2000; 
Stout et al. 1996)

Organizes knowledge structure of the 
relationships between the task and 
team member interactions

Anticipating and 
predicting team members’ 
needs

Awareness (Dourish and 
Bellotti 1992)

Provision of requisite knowledge to 
integrate individual and team tasks 
necessary to achieve a shared goal

Creating awareness of 
other team members’ tasks

Common ground (Clark 
and Brennan 1991)

Shared knowledge, language and 
beliefs necessary for team 
communication and exchange to occur

Team training and use of 
common terminologies

Collective orientation 
(Driskell and Salas 1992; 
Shamir 1990; Wagner 
1995)

Being accountable for one another 
during team interactions

Appraising teammates’ 
input

Mutual trust (Bandow 
2001; Weber et al. 2004)

Trusting the ability of the team 
members to perform their roles and 
protect the teams’ mutual interests

Willingness to admit 
mistakes and accept 
feedback
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still much needed to learn about their complexity (Kuziemsky 2016). Further, how 
health IT should be designed to support collaborative team workflows remains an 
area that has been understudied (Eikey et al. 2015).

6.4  Collaborative Workflows

As described in the previous section, collaboration is challenging for team-based 
workflows. Clinical processes are often collaborative in nature, and activities and 
tasks depend on effective management of team-based workflows (Kannampallil 
et al. 2011; Niazkhani et al. 2009). While individual workflows involve the interac-
tion between an individual care provider and his/her work environment (Malhotra 
et al. 2007), team-based workflows involve multiple interactions within the health-
care setting including collaboration between multiple providers of a care team. 
Understanding the movement across the ‘individual-collaborative’ interchange, and 
how individual and team needs are reconciled, is a key part of understanding col-
laborative workflows (Kuziemsky et al. 2016b).

In the following subsections, we illustrate how team characteristics are mani-
fested in collaborative team-based workflows. In particular, we highlight key 
research studies that have been conducted to examine collaborative behaviors 
related to information seeking, interactions, communication and decision making.

6.4.1  Collaborative Information Seeking (CIS) Behaviors

Collaborative information seeking (CIS), in simple terms, refers to the interactive 
and often mutually beneficial process of seeking information as defined explicitly 
by and among collaborative team members (Shah 2012). An example of CIS noted 

Team Workflow Characterization

Structure Behavior

• Team Composition
  - Multidisciplinary
  - Interdisciplinary
  - Transdisciplinary
• Task and Personnel
  - Temporality
  - Workflow and personnel
   stability
  - Synchronous or
   asynchronous

• Leadership
• Trust
• Shared mental models
• Accountability
• Collaborative Competencies
  - Common ground
  - Awareness
• Collaborative Behaviors
  - Information seeking
  - Communication
  - Decision making
  - Interactional behaviors

Fig. 6.1 Team-based workflow characterization based on structures and behaviors
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in the literature is to communicate evidence with regard to clinical practice using 
information sought through expert support provided by educators, librarians and 
other specialists (Hansen et al. 2015).

To understand the context of collaborative information activities of healthcare 
teams, several researchers have conducted field studies to observe and examine the 
underlying CIS-related features of team-based workflows. For example, Reddy and 
Jansen (2008) compared ethnographic field studies of patient care teams at a surgi-
cal intensive care unit (ICU) of an urban hospital and the ED of a rural hospital. 
They found three major characteristics of CIS behaviors: communication, complex-
ity of information needs and information retrieval technologies. The authors also 
compared CIS behaviors to individual information behaviors at different levels (i.e., 
information behavior, information seeking, information searching), and found that 
CIS behaviors have more complex characteristics. These complex characteristics 
encompasses interaction between collaborative team members from different spe-
cialties and systems, as well as the need to communicate vital information within 
these interactions. Based on the conceptual understanding of CIS behaviors, the 
authors designed and developed a porotype collaborative information retrieval sys-
tem called MUSE (Multi-User Search Engine) to aid communication between team 
members for more effective information seeking and retrieval.

In another study, Reddy and Spence (2008) conducted ethnographic observations 
to further understand collaborative information-seeking activities of multidisci-
plinary patient care teams in the ED. Findings from their investigation illustrate that 
ED team members have both organizational and clinical information needs, which 
are magnified during information flow breakdowns. They also identified seven cat-
egories of information needs as expressed by questions asked by ED care teams. 
These included patient specific, organizational, plan of care, miscellaneous, clarifi-
cation (more details), teaching and medication related questions. They also identi-
fied three triggers for CIS activities including lack of expertise, lack of immediate 
accessible information, and complex information needs.

In a follow-up study, Paul and Reddy (2010) evaluated CIS and sense-making 
behaviors of healthcare providers, again in an ED setting. This study shows that 
“sensemaking” of information took place during three main occasions: when there 
was information ambiguity (requiring clarification from different team members); 
when there was role-based information distribution (unequal distribution of infor-
mation shared among team members due to their different care roles); and when 
there was lack of expertise (health professionals lacking expertise on a particular 
situation, and needing collaborative sense making with other members in a multi-
disciplinary team). Based on their findings on the sense-making trajectories within 
CIS, the authors proposed two design principles for creating software systems to 
facilitate CIS: (1) implementing CIS tools that support the continuity of the process 
and products of sense making via visualizing the trajectories, using methods such as 
timelines that show chronological information by the various group members and 
sense made of the highlighted information; and (2) implementing CIS tools that 
provide action awareness via notifications, and activity awareness via visualizing 
timelines of the actions, related to a highlighted activity.
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In another study of CIS, Shah and Gonazalez (2010) adapted Kuhlthau’s informa-
tion search processes (ISP) model and mapped collaborative information- seeking pro-
cesses to the different stages of the ISP model. The ISP model incorporates a cognitive 
(thought) and affective (feeling) dimension that reflects user’s perspectives on the flow 
of activities that they engage in when performing an information- seeking task. Based 
on the six stages of the ISP model (i.e., initiation, selection, exploration, formulation, 
collection and presentation), the authors analyzed affective feelings (positive or nega-
tive) as a result of actions and messages exchanged between team members during 
CIS. The authors found that positive messages were associated with pleasant feelings 
(e.g., clarity, satisfaction); and negative messages were associated with unpleasant 
feelings (e.g., confusions). Their analysis provided more insights into individual and 
group dynamics during CIS activities, and also showed a high correlation between 
initiation (related to uncertainty) and selection (related to optimism); and between 
exploration (related to confusion/frustration/doubt), formulation (related to clarity) 
and collection (related to sense of direction/confidence) of information, with partici-
pants often switching between these stages while interacting with collaborators. The 
authors also found a negative correlation between presentation (related to relief/satis-
faction/or disappointment) and exploration, formulation and collection.

Drawing upon the core findings from prior information studies, Karunakaran 
et  al. (2013) developed a conceptual collaborative information behavior (CIB) 
model to highlight three distinct phases of CIB in healthcare organizations. Phase 1 
involves problem identification based on shared understanding; Phase 2 involves 
purposely seeking information by two or more individuals in a team in order to 
satisfy a shared goal; and Phase 3 involves incorporating information gathered into 
the team’s existing knowledge base to achieve a common understanding between 
individuals in the team. Central activities in these three phases include information 
sharing and evaluation; collaborative grounding (shared understanding that assimi-
lates and reflects upon available information); and collaborative sense making (indi-
viduals with different perspectives making sense of messy information).

6.4.2  Collaborative Interactional Behaviors

Defining collaborative interaction is a rather complicated endeavor. To do that, Lewis 
(2006) used five points of convergence and three points of divergence based on the 
definitions from the collaboration literature. The five points of convergence focused 
on collaboration being:

• More of an activity rather than an state/object (for example learning 
collaboratively);

• Team members regard for one another (collaborative interaction only exists 
when relationships between participants are formed);

• Equalization of team members irrespective of participants’ high or low status;
• Process of collaborative interaction with a start, middle and end of the activity 

which changes at different point in time; and
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• Participants are often willing to get involved in the collaborative process and are 
never coerced.

The three points of divergence were:

• Collaborative activities often occur at different time dimensions such as short or 
long-time spans with different goals;

• Collaborative interaction serves as a platform to highlight and acknowledge dif-
ferences in a productive way while taking advantage of similarities among team 
members.

• Have a shared goal with or without considering individual payoffs.

Examples of collaborative interaction illustrated in the literature include:

• A physician collaborates with her patient to decide on the best treatment for the 
patient’s condition; the physician provides her medical expertise and the patient 
offers knowledge about her body, history and goals (Lewis 2006).

• Healthcare team members encouraging situations that promote collaborative 
interactions such as: open dialogue, collaborative rounds, implementing pre- and 
post-operation team briefing, and creating interdisciplinary committees or task 
forces that discuss challenges (O’Daniel and Rosenstein 2008).

Numerous studies have been conducted to evaluate the importance of collabora-
tive interactional behavior in team-based workflows, which includes collaborative 
interactions among members of a healthcare team, with patients, and with health 
IT. Apker et al. (2006) did an exploratory study to investigate nurses’ communica-
tion of professionalism during interactions with other members of the care team. 
Findings from their study showed that the participating nurses used four communi-
cation skillsets, including collaboration, credibility, compassion and coordination 
(4Cs). The authors also identified specific communicative behaviors associated with 
each of the four skillsets: collaboration is associated with organizing, filtering and 
providing pertinent information to team members; credibility is associated with 
clear communication about the information shared; compassion is associated with 
display of consideration and caring for team member concerns; and coordination 
involves tasks delegation to other team members while encouraging participants 
input (Apker et al. 2006). Implications from their study highlighted the pros and 
cons of varied communication expectations of nursing staff. These varied expecta-
tions could serve as a catalyst to embolden nurses on developing new skills to 
increase their overall productivity. However, varied communication expectations 
could also lead to tension in the workplace between different clinical roles, which 
could precipitate stressors that cause nurses burnout, leaving their current positions 
or completely quitting their nursing profession. Therefore, implementing the 4Cs in 
nursing education and nursing practice provides an important strategy for improv-
ing nurses’ communication skills.

In another exploratory study, Hau et al. (2017) investigated the effects of various 
interaction behaviors of service front liners (i.e., healthcare providers) and custom-
ers (i.e., patients), and how they can work together to co-create value. Their investi-
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gation depicted a research model with four components of front liner interactions: 
individuated, relational, ethical and empowered; and customers’ interactions with 
front liners have three components: information seeking, information sharing and 
responsible behavior. The cumulative effects of these interactions enable value co- 
creation by both front liners and customers, which has an indirect influence on cos-
tumers’ perceived value through the ‘participation–activating’ interaction behavior. 
Findings from their analyses also identified a significant positive effect of interac-
tion behaviors on patient participation, through which more patient resources are 
contributed to creating healthcare service. They concluded that the interactions 
between front liners and customers can be broken down into participation-activating 
interactions versus value-enhancing interactions, both of which enhance perceived 
value by customers.

To investigate nurse-physician collaborative interaction behaviors, Lindeke and 
Sieckert (2005) analyzed workspace collaboration between nurses and physicians, 
and suggested different collaborative strategies, including self-development, team- 
development and communication-development, that can be used to improve nurse- 
physician communication. Self-development strategies are defined as various 
individual characteristics that influence the level of collaboration between profes-
sionals in healthcare settings. These include developing emotional maturity, under-
standing the perspective of others, and avoiding compassion fatigue/burnout. Team 
development strategies involve team building, respectful negotiation, conflict man-
agement, containment of negative behaviors and workplace design to facilitate col-
laboration. Finally, communication-development strategies include implementing 
effective communication tactics (e.g., prioritizing the context with current informa-
tion and disregarding peripheral data) that are often vital in emergency situations; 
and using electronic communication means mindfully (e.g., to be courteous and 
friendly while evaluating and clarifying the messages received).

In a related study on collaborative interaction behaviors, Schadewaldt et  al. 
(2016) examined the experiences and perceptions of nurse practitioners (NPs) and 
medical practitioners (MPs) working collaboratively in a primary care setting. The 
authors used mixed research methods such as thematic analyses of qualitative data 
obtained from observations, work documents describing collaborative practices, 
and interviews of NPs and MPs; as well as descriptive analyses of quantitative data 
obtained from questionnaires completed by MPs and NPs. Findings from their 
study demonstrated intensive collaboration activities between NPs and MPs, which 
were deemed by the study participants as being beneficial to patients. In addition, 
their qualitative analysis results highlighted three themes regarding the collabora-
tive experience of NPs and MPs. These themes include: (1) the influence of system 
structures (i.e. policies and regulations, local infrastructure); for example, the study 
participants criticized that the current NP reimbursement rates and the available 
Medicare benefit schedule were inadequate and unfair; (2) influence and conse-
quences of individual role enactment through the coexistence of overlapping, com-
plementary, traditional roles and emerging roles; and (3) participants making 
adjustments to new routines, and individuals’ willingness and personal commit-
ment being crucial to collaborative work. Based on these findings, the authors sug-
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gested decision makers of healthcare reform implement strategic support for 
collaborative clinical work, such as enhancing nurses’ sense of autonomy in the 
workplace to strengthen their positions, and ensuring continuous practice of 
collaboration.

Besides interpersonal collaborative interactions among members of healthcare 
teams, researchers have also investigated how collaboration is mediated using health 
IT systems. Examples include the use of mobile devices during patient rounding 
and handoff, which has been shown to improve team workflows (Motulsky et al. 
2017; Srinivas et al. 2015); and the use of computerized clinical decision-support 
systems designed to facilitate the interaction between physicians and other health-
care professionals (El-Sappagh and El-Masri 2014).

Additionally, interactions mediated by health IT are necessary when team- 
oriented clinical processes do not afford team members the convenience of face-to- 
face interactions. These can be attributed to barriers such as physical distance in a 
distributed work environment, or team members working at different points in time 
(e.g., across different shifts) (Garingo et al. 2016; Marini et al. 2015; Rincon et al. 
2012). For example, Marini et  al. (2015) illustrated how robotic tele-rounding 
impacted multidisciplinary team members (e.g., surgical residents, nurses, surgical/
medical intensivists) in a surgical ICU and their collaborative workflows. In this 
study, the authors found that patients and their families interacted with the intensiv-
ists through flat-screen monitors on the robots. Their evaluation results showed that 
use of tele-rounding had no negative effect on patient outcomes, intensivist satisfac-
tion with patient care and residents’ educational experience. However, the technol-
ogy did not meet the nurses’ expectations as they deemed that physical presence of 
an intensivist was an essential part of surgical ICU care.

6.4.3  Collaborative Communication Behaviors

Collaborative communication is a concept that embodies a combination of specific 
relationship-building communication qualities among team members working 
towards a common goal (Farrelly et  al. 2003). This concept is often associated 
with favorable outcomes such as lower risk-adjusted patient mortality, increased 
nurse satisfaction with improved professional relationships, and enhanced physi-
cian learning, professional relationships and research utilization (Boyle and 
Kochinda 2004).

For example, one study illustrated the importance of collaborative communica-
tion during patient rounds using a Patient’s Insight and Views of Teamwork (PIVOT) 
survey that solicits patient perception of teamwork (Beaird et al. 2017). This study 
was conducted in an inpatient acute care cardiology ward, and involved implement-
ing an intervention—a structured interdisciplinary bedside rounding initiative called 
Rounding with Heart (RWH). Based on their observation of specific behaviors rec-
ognized in the RWH process, the authors reported multiple benefits associated with 
the intervention, namely: openness/inclusivity, patient centeredness, attending role/
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shared leadership, non-confrontational learning, efficacy and team at bedside. The 
findings of the study also showed that patients had favorable perceptions of the 
RWH-based teamwork rounding process. The researchers also noted that RWH 
gave team members an opportunity to build mutual respect and collegiality through 
daily interactions, and could therefore be used as a means to address negative team-
work behaviors.

Although collaborative communication is an integral part of inpatient rounding, 
its effectiveness could be diminished due to a number of challenges. Hendricks 
et al. (2017) conducted a qualitative study to understand such barriers across four 
acute care units at a large urban hospital. They found that major factors affecting 
collaborative communication behaviors during interprofessional patient rounds are 
related to either team members or the healthcare environment, and are best described 
as opposite manifestations and highlighted in pairs (barriers versus facilitators). For 
team members, these facilitator–barrier pairs include high versus low turnover of 
team membership, structured versus unstructured rounding, valuing versus skepti-
cism about interprofessional practice, and confidence versus hesitancy about skills. 
For the healthcare environment, the facilitator–barrier pairs are: rounding aligned 
versus mismatched with hospital’s mission, time for rounding versus competing 
demands, geographically cohorted versus distributed teams, and readiness for 
change and innovation versus saturation.

Similar to collaborative communication during inpatient rounds, the effective-
ness of patient handoffs also critically depends on seamless team communication to 
facilitate team-based workflows. To achieve a safe handing-off process of vulnera-
ble patients such as neonates, Vanderbilt et  al. (2017) suggested use of handoff 
training and communication practices among neonatal interprofessional teams 
including members specializing in obstetrics, gynecology and neonatology. They 
also recommended that the training should involve comprehensive, systematic, and 
standardized processes within handoff communication and through graduate and 
continuing medical education.

Another study investigating collaboration during patient handoffs led to the 
development of a continuity of care model that assesses clinicians’ workflow before, 
during and after handoff in the critical care unit (Abraham et al. 2012). This model 
highlights important contextual factors that influence continuity of care provided by 
interdisciplinary teams. In the study, the authors used clinician-centered data and 
mixed inductive–deductive approaches to demonstrate the complex and interactive 
nature of patient handoffs as well as to capture and highlight sources of communica-
tion breakdowns. The descriptive framework developed through the study encom-
passes key features within the handoff communication process such as (1) multiple 
information flow paths and decision points, (2) non-linear and recursive nature of 
decision making and collaborative problem-solving activities, and (3) interactive 
nature of handoffs in a pragmatic critical care environment.

Additionally, it is important to ensure the consistency of the same patient infor-
mation gathered by different members of the care team. Mamykina et al. (2016) 
evaluated handoff communication and coordination of patient care teams in a car-
diothoracic ICU. Using categorical cluster analysis and a modified pyramid method, 
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the authors assessed the degree of shared mental models between team members. 
The results revealed emerging patterns in the content and structure of interdisciplin-
ary handoff communication, as well as content overlapping (e.g., patient name and 
an introductory history of the patient’s presenting problem). With regard to the 
structure of interdisciplinary teams, the authors identified that different provider 
roles focused on different categories of content during their handoff communica-
tion. Based on these findings, they suggested the design of future handoff tools need 
to be conscious of the differences in clinician roles in order to properly coordinate 
these roles with existing practice.

In a related handoff study also conducted in the cardiothoracic ICU setting, 
Collins et al. (2012) analyzed handoff artifacts using sematic coding based on the 
interdisciplinary handoff information coding (IHIC) framework. The IHIC frame-
work provides lists of handoff content specific to different disciplines and is a par-
ticularly useful tool to assist researchers in identifying handoff content important to 
nurses and physicians within certain clinical environments such as the ICU. Findings 
from their analysis showed a high degree of overlap in the content of nurses’ and 
physicians’ handoff artifacts. There was also a high degree of structure used for 
organizing and communicating handoff data when coordinating care across multi-
ple disciplines within the critical care unit.

Similarly, Abraham et al. (2017) used mixed methods to develop and evaluate the 
degree of overlap in handoff communication across multiple care providers. 
Semantic similarity was used as the measure to estimate content overlap between 
nurse–nurse and resident–resident handoff communication for the same patients. 
Findings from their analysis showed a substantial amount of overlap for clinical 
content including active problems, assessments of active problems, patient identify-
ing information, past medical history and medication/treatments; and less overlap 
for other content categories such as allergies, family-related information, code sta-
tus and anticipatory guidance.

6.4.4  Collaborative Decision-Making Behaviors

Collaborative decision-making behaviors in healthcare can be defined as the process 
of engagement that seeks to devise an optimal plan of actions with a main focus on 
the highest-priority health-related problems that emerge from the confluence of 
medical and non-medical issues (O’Grady and Jadad 2010).

An example that depicts the collaborative decision-making process is involving 
patients in making decisions for cancer treatments after having them review treat-
ment options along with their physicians, which has been shown to improve treat-
ment effectiveness and patient satisfaction (Levit et al. 2013). Another study cited 
the benefits of collaborative decision making is the implementation of an integrated 
knowledge translation program involving researchers, managers, policy makers and 
clinicians in cancer screen and diagnosis (Gagliardi et al. 2014). The study reported 
an increased level of participation in cancer screening associated with the introduc-
tion of the program.
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In a more recent study, Bomba (2017) highlighted the value of implementing a 
shared decision-making model during the course of patient care. They suggested 
that a shared decision-making process should be patient-centered, and made as a 
routine practice because of its potential to improve clinicians’ ability for managing 
patients with complex chronic conditions. This shared decision-making process 
encourages clinicians offer their viewpoint that is aligned with the patient’s goals 
for care. Essentially, all parties involved in the decision-making process, including 
patients, physicians and other decision makers (e.g. power of attorneys), should 
actively collaborate in making joint decisions related to care. This activity is par-
ticularly vital when a patient lacks the capacity and can no longer make decisions 
for themselves; or for care planning in advance when the patient would need to 
make decisions in preparation for an unforeseeable illness or injury.

To make shared decision-making processes less complex and easier to operation-
alize, Elwyn et al. (2012) introduced a three-step model based on existing concep-
tual description of collaborative decision making. The three steps are: choice talk, 
option talk and decision talk. Choice talk is a step to make sure patients understand 
available options of care; option talk provides detailed information related to the 
available options; and decision talk helps patients decide what is best for them based 
on their preferences. Notably, shared decision making requires building good rela-
tionships between patients and medical professionals during clinical encounters to 
encourage information sharing; as well as supporting patients in deliberating and 
expressing their preferences and views. This shared decision making will eventually 
help patients make informed decisions in their care process.

Similarly, Holmes-Rovner et al. used qualitative methods to evaluate a shared 
decision-making (SDP) program to determine its feasibility in fee-for-service 
healthcare organizations including physician offices and inpatient facilities 
(Holmes-Rovner et al. 2000). The program implemented in the study contained a set 
of interactive videodisks developed by the Foundation for Informed Medical 
Making (FIMDM), which were designed to improve efficiency in physician and 
patient treatment selection based on patient preferences. Their investigation showed 
that the shared decision- making program was perceived favorably by patients, with 
a right amount of information for patients to review before making an informed 
decision. Based on the findings from their study, the authors suggested that shared 
decision making should be incorporated into the informed consent process; and can 
be used as a quality indicator for provider- or payer-negotiated requirements during 
routine care procedures; (Holmes-Rovner et al. 2000).

6.5  Theoretical and Methodological Approaches for Studying 
Collaborative Workflows

Several theoretical and methodological frameworks have been proposed in the lit-
erature for studying collaborative workflows at both micro- and macro-levels. There 
are also frameworks specifically developed for studying collaboration in the context 
of health IT.
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6.5.1  Micro-Level Approaches

There have been several micro-level frameworks available for studying the empiri-
cal aspects of collaboration, including patterns in which team members specify 
responsibilities and accountabilities for task completion (Grando et  al. 2011; 
Papapanagiotou and Fleuriot 2014); different collaborative processes performed by 
teams including communication and decision making (Eikey et al. 2015; Kuziemsky 
et al. 2011; Nancarrow et al. 2013; Xyrichis and Ream 2008); and the means by 
which team leadership is established and tasks are assigned according to competen-
cies and capabilities of team members (Wilk et al. 2016).

Micro-level conceptual models also exist, which can be used to guide studies on 
competencies needed in forming and maintaining collaboration, including common 
ground; shared knowledge and beliefs that enable collaboration to occur (Collins 
et al. 2012; Kuziemsky and Varpio 2010); and awareness—defined by Dourish and 
Bellotti as “the understanding of the activities of others which provides a context for 
your own activity (Dourish and Bellotti 1992).” These conceptual models are not 
directly relevant to team-based workflows; instead, they look at common knowl-
edge and protocols that need to be developed, and shared among team members, as 
facilitators of a collaborative workflow. Finally, theoretical approaches for studying 
collaboration include the Actor Network Theory (McDougall et al. 2016) and the 
Activity Theory (Sadeghi et al. 2014).

6.5.2  Macro-Level Approaches

Macro-level frameworks are useful to develop a better understanding of collabora-
tive workflows at the broader team-level by looking at the manner in which team 
members interact over time while completing their designated tasks. One such 
approach is social network analysis, which has been used to study the degree to 
which provider connectivity is associated with medication errors (Creswick and 
Westbrook 2015); and also to understand medication information exchange amongst 
team members (Chan et al. 2017). Other macro-level approaches for studying col-
laborative workflows include simulation, agent-based modeling and system dynamic 
modeling (Isern and Moreno 2015; Rosenman et al. 2018; Truijens et al. 2015).

6.5.3  Moving from Individual to Collaborative Workflow

Central to both micro- and macro-level approaches is the movement from individual 
to collaborative workflow. This movement can be challenging as it often requires 
changing the way in which individuals conduct their workflows (Kuziemsky 2015; 
Reddy and Spence 2008). Thus, an essential part of studies of collaborative 
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workflows is understanding the relationship between individuals and teams (Lingard 
et al. 2017). Trade-offs often have to be made in moving between individual and 
collaborative workflows (Kuziemsky 2015), which emphasizes the need for devel-
oping common ground and shared mental models as a precursor to developing col-
laborative workflows. It is also worth noting that collaborative concepts and the 
rules that govern collaboration are dynamic and constantly evolving, and therefore 
collaborative workflows will need to be revised over time (Kuziemsky 2016).

6.6  Health Information Technology and Teams

Many health IT systems are developed with a focus on individual users, despite the 
fact that they are used equally often, or even more often, to support healthcare teams 
(Berg 1999; Berg et al. 1998). For instance, the core function of electronic health 
records (EHR) is generally viewed as a repository of patient information used by 
individual healthcare providers. While EHRs do serve as a patient information 
repository, they also help to support the collaboration between members of a care 
team by allowing them to be aware of what has been done for the patient by other 
team members (Reddy et  al. 2003). Clearly, health IT systems such as EHRs or 
computerized physician order entry (CPOE) are used to support teamwork far more 
than what has been originally envisioned by their designers.

Although health IT-facilitated teamwork plays a crucial role in modern care pro-
cesses, most health IT evaluation studies have focused on how well these systems 
support individual users; for instance, the suitability and effectiveness of their user 
interface for single-user interaction (Nelson et  al. 1992). With a few exceptions 
(Berg 1999; Gorman et al. 2000; Reddy et al. 2001), evaluating the capability of 
health IT systems in supporting team collaboration is often neglected. This neglec-
tion could have severe consequences. For example, Han et al. demonstrated in their 
study the danger of implementing a CPOE system without paying adequate atten-
tion to collaborative workflows (Han et  al. 2005). In their study conducted in a 
pediatric hospital, the authors found an increased mortality rate that was attributable 
in part to the implementation of the CPOE system. As they and others (Sittig et al. 
2006) pointed out, a key reason for the adverse effect observed was that the system 
failed to support collaborative work activities, and in some cases prevented collabo-
ration that would normally had taken place at the bedside and elsewhere in the 
hospital. The consequences of the “misfit” between health IT design and collabora-
tive teamwork can thus be catastrophic.

One important way in which health IT systems support healthcare teams is by 
raising the awareness of patient conditions amongst team members. Individuals can 
coordinate their work more efficiently if they know about each another’s activities. 
For example, Bricon-Souf et al. (1999) argued that successful collaboration could 
not happen without effective information sharing among members of healthcare 
teams about their respective patient care activities. Obtaining shared awareness is 
therefore vital, and patients may suffer when such awareness breaks down (Reddy 
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and Spence 2008). For instance, in a study conducted in a surgical ICU, Reddy et al. 
(2001) described a critical incident of patient requiring intubation due to the lack of 
nurse–physician communication regarding the patient’s rising sodium levels. If the 
physician had been alerted quickly—i.e., if there were shared awareness between 
the nurse and the physician about this condition—the physician could have taken 
less drastic measures.

Teamwork activities are detailed, demanding, time-critical, and collaborative. 
At the center of this work is the patient whose health is dependent on the effective 
coordination between physicians, nurses, pharmacists, and a large number of 
other healthcare roles. In the highly collaborative and information-intensive clini-
cal environments, health IT systems play a crucial role in supporting teamwork 
activities. They have become an indispensable tool for maintaining communica-
tion necessary for the effective and efficient functioning of collaborative health-
care teams.

6.7  Moving Forward for Health IT Design to Support 
Collaboration

Designing health IT to support collaboration is challenging due to the complexity of 
collaborative patient care delivery. To arrive at an effective design, we must first 
develop a thorough understanding of collaborative workflows of healthcare teams. 
This chapter addresses some of this quest, by describing collaborative workflows and 
related health IT design considerations. This chapter also contributes by presenting a 
synthesis of how to study collaborative healthcare processes. Collaborative work-
flows in hospitals and clinics are a social construction between patient data, health-
care providers and clinical processes, and we need to understand how these connections 
form prior to introducing technologies to automate them. Health IT design for col-
laborative workflows also goes beyond simply automating clinical tasks. There are a 
variety of technologies each playing a different role in supporting collaborative care 
delivery; for example, social media tools can be used to improve the connectivity for 
collaborating providers across disparate locations over the care continuum. However, 
establishing connectivity is not the same as supporting collaboration. Rather, collabo-
ration requires the establishment of collaborative competencies such as common 
ground and shared awareness that may be specific for the task at hand.

While team training is a commonly used approach for supporting team- based 
care delivery, recent work has suggested that focusing on how to organize teamwork 
structures is equally important (Christofer et al. 2017). This chapter contributes to 
this line of thinking, in that we characterize team workflows according to their 
structures and associated behaviors. Structures represent different aspects of team 
configurations such as team composition or the degree of collaboration in a team. 
Behavioral aspects include the tacit or social workings of a team, and include trust, 
shared mental models, and collaborative competencies such as awareness and com-
mon ground.
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A main takeaway from this chapter is that there is no one-size-fits-all strategy for 
designing health IT that effectively supports collaboration. Instead, the design must 
be customized to specific team structures and behaviors. Further, this chapter focuses 
on collaborative workflows, particularly collaborative information-seeking, commu-
nication, decision-making and interactional behaviors. All of these behaviors 
emphasize the need to nurture relationships between team members to develop rules 
of engagement to achieve and sustain effective team workflows. Rules of engage-
ment are necessary to equalize team members and to reconcile differences in termi-
nology or workflow that may impair collaboration. Drawing upon existing research 
on common ground and shared awareness can help us develop formalization of rules 
of engagement to ensure effective and efficient collaborative workflows.

Lastly, this chapter also contributes to the knowledge on how to evaluate collab-
orative workflows over time. In designing for collaboration, it is important to recog-
nize that collaborative processes such as information-seeking or communicative 
behaviors are not static, but are dynamic and constantly evolving. To that end, health 
IT systems that we design to support collaborative workflows will need to be flexi-
ble so that they can adapt to accommodate changes in the collaborative processes.

References

Abraham J, Reddy MC.  Re-coordinating activities: an investigation of articulation work in 
patient transfers. In: Paper presented at the Proceedings of the 2013 Conference on Computer 
Supported Cooperative Work; 2013.

Abraham J, Kannampallil TG, Patel VL. Bridging gaps in handoffs: a continuity of care based 
approach. J Biomed Inform. 2012;45(2):240–54.

Abraham J, Kannampallil TG, Srinivasan V, Galanter WL, Tagney G, Cohen T. Measuring content 
overlap during handoff communication using distributional semantics: an exploratory study. J 
Biomed Inform. 2017;65:132–44.

Andreatta PB. A typology for health care teams. Health Care Manag Rev. 2010;35(4):345–54. 
https://doi.org/10.1097/HMR.0b013e3181e9fceb.

Apker J, Propp KM, Ford WSZ, Hofmeister N. Collaboration, credibility, compassion, and coor-
dination: professional nurse communication skill sets in health care team interactions. J Prof 
Nurs. 2006;22(3):180–9.

Baker DP, Day R, Salas E. Teamwork as an essential component of high-reliability organizations. 
Health Serv Res. 2006;41(4p2):1576–98.

Bandow D. Time to create sound teamwork. J Qual Participat. 2001;24(2):41.
Bates D. Health information technology and care coordination:the next big opportunity for infor-

matics? Yearb Med Inform. 2015;10(1):11–4. https://doi.org/10.15265/IY-2015-020.
Beaird G, Dent JM, Keim-Malpass J, Muller AGJ, Nelson N, Brashers V. Perceptions of teamwork 

in the interprofessional bedside rounding process. J Healthc Qual. 2017;39(2):95–106.
Berg M. Patient care information systems and health care work: a sociotechnical approach. Int J 

Med Inform. 1999;55(2):87–101.
Berg M, Langenberg C, vd Berg I, Kwakkernaat J.  Considerations for sociotechnical design: 

experiences with an electronic patient record in a clinical context. Int J Med Inform. 
1998;52(1–3):243–51.

Bomba P.  Supporting the patient voice: building the foundation of shared decision-making. 
Generations. 2017;41(1):21–30.

6 Characterizing Collaborative Workflow and Health Information Technology

https://doi.org/10.1097/HMR.0b013e3181e9fceb
https://doi.org/10.15265/IY-2015-020


98

Boyle DK, Kochinda C. Enhancing collaborative communication of nurse and physician leader-
ship in two intensive care units. J Nurs Adm. 2004;34(2):60–70.

Bricon-Souf N, Renard JM, Beuscart R. Dynamic workflow model for complex activity in inten-
sive care unit. Int J Med Inform. 1999;53(2–3):143–50.

Cannon-Bowers JA, Salas E. Teamwork competencies: the interaction of team member knowledge, 
skills, and attitudes. In:  Workforce readiness: competencies and assessment; 1997. p. 151–74.

Casimiro LM, Hall P, Kuziemsky C, O'Connor M, Varpio L. Enhancing patient-engaged teamwork 
in healthcare: an observational case study. J Interprof Care. 2015;29(1):55–61. https://doi.org/
10.3109/13561820.2014.940038.

Chan B, Reeve E, Matthews S, Carroll PR, Long JC, Held F, Latt M, Naganathan V, Caplan GA, 
Hilmer SN. Medicine information exchange networks among healthcare professionals and pre-
scribing in geriatric medicine wards. Br J Clin Pharmacol. 2017;83(6):1185–96. https://doi.
org/10.1111/bcp.13222.

Choi BC, Pak AW. Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, 
services, education and policy: 1. Definitions, objectives, and evidence of effectiveness. Clin 
Invest Med. 2006;29(6):351–64.

Christofer R, Per O, Anders LP.  Organizing for teamwork in healthcare: an alternative to 
team training? J Health Organ Manage. 2017;31(3):347–62. https://doi.org/10.1108/
JHOM-12-2016-0233.

Clark HH, Brennan SE.  Grounding in communication. In: Resnick LB, John JM, Teasley SD, 
editors. Perspectives on socially shared cognition. Washington, DC: American Psychological 
Association; 1991. p. 13.

Collins SA, Mamykina L, Jordan D, Stein DM, Shine A, Reyfman P, Kaufman D.  In search 
of common ground in handoff documentation in an intensive care unit. J Biomed Inform. 
2012;45(2):307–15. https://doi.org/10.1016/j.jbi.2011.11.007.

Committee on Patient Safety and Health Information Technology; Institute of Medicine. Health IT 
and patient safety: building safer systems for better care. Washington, DC: National Academies 
Press (US); 2011. Copyright 2012 by the National Academy of Sciences. All rights reserved.

Creswick N, Westbrook JI. Who do hospital physicians and nurses go to for advice about medi-
cations? A social network analysis and examination of prescribing error rates. J Patient Saf. 
2015;11(3):152–9. https://doi.org/10.1097/pts.0000000000000061.

Dourish P, Bellotti V. Awareness and coordination in shared workspaces. In: Paper presented at the 
Proceedings of the 1992 ACM Conference on Computer-Supported Cooperative Work; 1992.

Driskell JE, Salas E. Collective behavior and team performance. Hum Factors. 1992;34(3):277–88.
Eikey EV, Reddy MC, Kuziemsky CE. Examining the role of collaboration in studies of health 

information technologies in biomedical informatics: a systematic review of 25 years of 
research. J Biomed Inform. 2015;57:263–77. https://doi.org/10.1016/j.jbi.2015.08.006.

Ellingson LL.  Communication, collaboration, and teamwork among health care professionals. 
Commun Res Trends. 2002;21(3).

El-Sappagh SH, El-Masri S. A distributed clinical decision support system architecture. J King 
Saud Univ Comput Inform Sci. 2014;26(1):69–78.

Elwyn G, Frosch D, Thomson R, Joseph-Williams N, Lloyd A, Kinnersley P, Cording E, Tomson 
D, Dodd C, Edwards A, Barry M, Rollnick S. Shared decision making: a model for clinical 
practice. J Gen Intern Med. 2012;27(10):1361–7.

Farrelly F, Quester P, Mavondo F.  Collaborative communication in sponsor relations. Corp 
Commun Int J. 2003;8(2):128–38.

Gagliardi AR, Webster F, Brouwers MC, Baxter NN, Finelli A, Gallinger S. How does context 
influence collaborative decision-making for health services planning, delivery and evaluation? 
BMC Health Serv Res. 2014;14(1):545.

Galvin JE, Valois L, Zweig Y. Collaborative transdisciplinary team approach for dementia care. 
Neurodegener Dis Manage. 2014;4(6):455–69. https://doi.org/10.2217/nmt.14.47.

Garingo A, Friedlich P, Chavez T, Tesoriero L, Patil S, Jackson P, Seri I. “Tele-rounding” with 
a remotely controlled mobile robot in the neonatal intensive care unit. J Telemed Telecare. 
2016;22(2):132–8.

C. E. Kuziemsky et al.

https://doi.org/10.3109/13561820.2014.940038
https://doi.org/10.3109/13561820.2014.940038
https://doi.org/10.1111/bcp.13222
https://doi.org/10.1111/bcp.13222
https://doi.org/10.1108/JHOM-12-2016-0233
https://doi.org/10.1108/JHOM-12-2016-0233
https://doi.org/10.1016/j.jbi.2011.11.007
https://doi.org/10.1097/pts.0000000000000061
https://doi.org/10.1016/j.jbi.2015.08.006
https://doi.org/10.2217/nmt.14.47


99

Gorman PN, Ash J, Lavelle M, Lyman J, Delcambre L, Maier D. Bundles in the wild: managing infor-
mation to solve problems and maintain situation awareness. Libr Trends. 2000;49(2):266–89.

Grando MA, Peleg M, Cuggia M, Glasspool D.  Patterns for collaborative work in health care 
teams. Artif Intell Med. 2011;53(3):139–60. https://doi.org/10.1016/j.artmed.2011.08.005.

Hall KL, Vogel AL, Stipelman B, Stokols D, Morgan G, Gehlert S. A four-phase model of trans-
disciplinary team-based research: goals, team processes, and strategies. Transl Behav Med. 
2012;2(4):415–30. https://doi.org/10.1007/s13142-012-0167-y.

Han YY, Carcillo JA, Venkataraman ST, Clark RS, Watson RS, Nguyen TC, Bayir H, Orr 
RA. Unexpected increased mortality after implementation of a commercially sold computer-
ized physician order entry system. Pediatrics. 2005;116(6):1506–12. https://doi.org/10.1542/
peds.2005-1287.

Hansen P, Shah C, Klas C-P. Collaborative information seeking: best practices, new domains and 
new thoughts. Berlin: Springer; 2015.

Hau LN, Anh PNT, Thuy PN.  The effects of interaction behaviors of service frontliners on 
customer participation in the value co-creation: a study of health care service. Serv Bus. 
2017;11(2):253–77.

Hendricks S, LaMothe VJ, Kara A, Miller J. Facilitators and barriers for interprofessional round-
ing: a qualitative study. Clin Nurse Spec. 2017;31(4):219–28.

Hollenbeck JR, Beersma B, Schouten ME. Beyond team types and taxonomies: a dimensional 
scaling conceptualization for team description. Acad Manag Rev. 2012;37(1):82–106.

Holmes-Rovner M, Valade D, Orlowski C, Draus C, Nabozny-Valerio B, Keiser S. Implementing 
shared decision-making in routine practice: barriers and opportunities. Health Expect. 
2000;3(3):182–91.

Hugo F, Alberto R, Marco AG, Mariano P.  The 3C collaboration model. In: Ned K, editor. 
Encyclopedia of E-collaboration. Hershey, PA: IGI Global; 2008. p. 637–44.

Isern D, Moreno A. A systematic literature review of agents applied in healthcare. J Med Syst. 
2015;40(2):43. https://doi.org/10.1007/s10916-015-0376-2.

Kannampallil TG, Schauer GF, Cohen T, Patel VL. Considering complexity in healthcare systems. 
J Biomed Inform. 2011;44(6):943–7.

Karunakaran A, Reddy MC, Spence PR. Toward a model of collaborative information behavior in 
organizations. J Am Soc Inf Sci Tec. 2013;64:2437–51.

Klimoski R, Mohammed S.  Team mental model: construct or metaphor? J Manag. 
1994;20(2):403–37.

Kozlowski SW, Gully SM, Nason ER, Smith EM. Developing adaptive teams: a theory of com-
pilation and performance across levels and time. In: Pulakos ED, editor. The changing nature 
of work performance: implications for staffing, personnel actions, and development; 1999. 
p. 240, 292.

Kuziemsky CE.  Review of social and organizational issues in health information technology. 
Healthc Inform Res. 2015;21(3):152–60. https://doi.org/10.4258/hir.2015.21.3.152.

Kuziemsky C.  Decision-making in healthcare as a complex adaptive system. Healthc Manage 
Forum. 2016;29(1):4–7. https://doi.org/10.1177/0840470415614842.

Kuziemsky CE, Varpio L. Describing the clinical communication space through a model of common 
ground: ‘you don’t know what you don’t know’. AMIA Annu Symp Proc. 2010;2010:407–11.

Kuziemsky CE, Williams JB, Weber-Jahnke JH. Towards electronic health record support for col-
laborative processes. In:  Paper presented at the Proceedings—International Conference on 
Software Engineering; 2011.

Kuziemsky CE, Andreev P, Benyoucef M, O'Sullivan T, Jamaly S. A connectivity framework for 
social information systems design in healthcare. AMIA Annu Symp Proc. 2016a;2016:734–42.

Kuziemsky CE, Randell R, Borycki EM.  Understanding unintended consequences and health 
information technology: contribution from the IMIA Organizational and Social Issues Working 
Group. Yearb Med Inform. 2016b;(1):53–60. https://doi.org/10.15265/iy-2016-027.

Leslie M, Paradis E, Gropper MA, Kitto S, Reeves S, Pronovost P. An ethnographic study of health 
information technology use in three intensive care units. Health Serv Res. 2017;52(4):1330–
48. https://doi.org/10.1111/1475-6773.12466.

6 Characterizing Collaborative Workflow and Health Information Technology

https://doi.org/10.1016/j.artmed.2011.08.005
https://doi.org/10.1007/s13142-012-0167-y
https://doi.org/10.1542/peds.2005-1287
https://doi.org/10.1542/peds.2005-1287
https://doi.org/10.1007/s10916-015-0376-2
https://doi.org/10.4258/hir.2015.21.3.152
https://doi.org/10.1177/0840470415614842
https://doi.org/10.15265/iy-2016-027
https://doi.org/10.1111/1475-6773.12466


100

Committee on Improving the Quality of Cancer Care: Addressing the Challenges of an Aging 
Population; Board on Health Care Services; Institute of Medicine; Levit L, Balogh E, Nass 
S, et  al., editors. Chapter 3: patient-centered communication and shared decision making. 
Delivering high-quality cancer care: charting a new course for a system in crisis. Washington, 
DC: National Academies Press (US); 2013. https://www.ncbi.nlm.nih.gov/books/NBK202146/.

Lewis LK. Collaborative interaction: review of communication scholarship and a research agenda. 
Ann Int Commun Assoc. 2006;30(1):197–247.

Lindeke L, Sieckert A.  Nurse-physician workplace collaboration. Online J Issues Nurs. 
2005;10(1):5.

Lingard L, Sue-Chue-Lam C, Tait GR, Bates J, Shadd J, Schulz V. Pulling together and pulling 
apart: influences of convergence and divergence on distributed healthcare teams. Adv Health 
Sci Educ. 2017;22(5):1085–99. https://doi.org/10.1007/s10459-016-9741-2.

Malhotra S, Jordan D, Shortliffe E, Patel VL. Workflow modeling in critical care: piecing together 
your own puzzle. J Biomed Inform. 2007;40(2):81–92.

Mamykina L, Jiang S, Collins SA, Twohig B, Hirsh J, Hripcsak G, Stanley Hum R, Kaufman 
DR. Revealing structures in narratives: a mixed-methods approach to studying interdisciplinary 
handoff in critical care. J Biomed Inform. 2016;62:117–24.

Marini CP, Ritter G, Sharma C, McNelis J, Goldberg M, Barrera R. The effect of robotic teler-
ounding in the surgical intensive care units impact on medical education. J Robot Surg. 
2015;9(1):51–6.

Mathieu JE, Heffner TS, Goodwin GF, Salas E, Cannon-Bowers JA. The influence of shared men-
tal models on team process and performance. J Appl Psychol. 2000;85(2):273.

McDougall A, Goldszmidt M, Kinsella EA, Smith S, Lingard L.  Collaboration and entangle-
ment: an actor-network theory analysis of team-based intraprofessional care for patients 
with advanced heart failure. Soc Sci Med. 2016;164:108–17. https://doi.org/10.1016/j.
socscimed.2016.07.010.

McIntyre RM, Salas E. Measuring and managing for team performance: Emerging principles from 
complex environments. In:  Team effectiveness and decision making in organizations; 1995. 
p. 9–45.

Mitchell P, Wynia M, Golden R, McNellis B, Okun S, Webb CE. Core principles & values of effec-
tive team-based health care. Washington, DC: Institute of Medicine; 2012.

Motulsky A, Wong J, Cordeau J-P, Pomalaza J, Barkun J, Tamblyn R. Using mobile devices for 
inpatient rounding and handoffs: an innovative application developed and rapidly adopted by 
clinicians in a pediatric hospital. J Am Med Inform Assoc. 2017;24(e1):e69–78.

Nancarrow SA, Booth A, Ariss S, Smith T, Enderby P, Roots A. Ten principles of good interdisci-
plinary team work. Hum Resour Health. 2013;11(1):19.

Nelson SJ, Sherertz DD, Tuttle MS. Issues in the development of an information retrieval system: 
the Physician’s Information Assistant. In: Paper presented at the Proceedings of the Seventh 
World Congress on Medical Informatics (Medinfo’92); 1992.

Niazkhani Z, Pirnejad H, Berg M, Aarts J.  The impact of computerized provider order entry 
systems on inpatient clinical workflow: a literature review. J Am Med Inform Assoc. 
2009;16(4):539–49.

O’Daniel M, Rosenstein AH. Professional communication and team collaboration. Bethesda MD: 
National Center for Biotechnology Information, U.S. National Library of Medicine; 2008.

O’Grady L, Jadad A. Shifting from shared to collaborative decision making: a change in thinking 
and doing. J Participat Med. 2010;2(13):1–6.

Papapanagiotou P, Fleuriot JD. Formal verification of collaboration patterns in healthcare. Behav 
Inform Technol. 2014;33(12):1278–93. https://doi.org/10.1080/0144929X.2013.824506.

Paul SA, Reddy MC. Understanding together: sensemaking in collaborative information seeking. 
In: Paper presented at the Proceedings of the 2010 ACM conference on Computer supported 
cooperative work; 2010.

Payne PR, Lussier Y, Foraker RE, Embi PJ. Rethinking the role and impact of health informa-
tion technology: informatics as an interventional discipline. BMC Med Inform Decis Mak. 
2016;16:40. https://doi.org/10.1186/s12911-016-0278-3.

C. E. Kuziemsky et al.

https://www.ncbi.nlm.nih.gov/books/NBK202146/
https://doi.org/10.1007/s10459-016-9741-2
https://doi.org/10.1016/j.socscimed.2016.07.010
https://doi.org/10.1016/j.socscimed.2016.07.010
https://doi.org/10.1080/0144929X.2013.824506
https://doi.org/10.1186/s12911-016-0278-3


101

Porter CO, Hollenbeck JR, Ilgen DR, Ellis AP, West BJ, Moon H. Backing up behaviors in teams: 
the role of personality and legitimacy of need. J Appl Psychol. 2003;88(3):391.

Press MJ, Michelow MD, MacPhail LH.  Care coordination in accountable care organizations: 
moving beyond structure and incentives. Am J Manag Care. 2012;18(12):778–80.

Reddy MC, Jansen BJ. A model for understanding collaborative information behavior in context: 
a study of two healthcare teams. Inf Process Manag. 2008;44(1):256–73.

Reddy MC, Spence PR. Collaborative information seeking: a field study of a multidisciplinary 
patient care team. Inf Process Manag. 2008;44(1):242–55.

Reddy MC, Dourish P, Pratt W. Coordinating heterogeneous work: information and representation 
in medical care. In: Prinz W, Jarke M, Rogers Y, Schmidt K, Wulf V, editors. ECSCW 2001: 
Proceedings of the Seventh European Conference on Computer Supported Cooperative Work 
16–20 September 2001, Bonn, Germany. Dordrecht: Springer; 2001. p. 239–58.

Reddy M, Pratt W, Dourish P, Shabot MM. Sociotechnical requirements analysis for clinical sys-
tems. Methods Inf Med. 2003;42(4):437–44.

Rincon F, Vibbert M, Childs V, Fry R, Caliguri D, Urtecho J, Rosenwasser R, Jallo J. Implementation 
of a model of robotic tele-presence (RTP) in the neuro-ICU: effect on critical care nursing team 
satisfaction. Neurocrit Care. 2012;17(1):97–101.

Roett MA, Coleman MT. Practice improvement, part II: collaborative practice and team-based 
care. FP Essent. 2013;414:11–8.

Rosenman ED, Dixon AJ, Webb JM, Brolliar S, Golden SJ, Jones KA, Shah S, Grand JA, 
Kozlowski SWJ, Chao GT, Fernandez R.  A simulation-based approach to measuring team 
situational awareness in emergency medicine: a multicenter observational study. Acad Emerg 
Med. 2018;25(2):196–204.

Rudin RS, Schneider EC, Predmore Z, Gidengil CA. Knowledge gaps inhibit health IT develop-
ment for coordinating complex patients’ care. Am J Manag Care. 2016;22(9):e317–22.

Sadeghi P, Andreev P, Benyoucef M, Momtahan K, Kuziemsky C.  Activity theory driven sys-
tem analysis of complex healthcare processes. In: ECIS 2014 Proceedings—22nd European 
Conference on Information Systems; 2014. ISBN 978-0-9915567-0-0.

Salas E, Dickinson TL, Converse SA, Tannenbaum SI. Toward an understanding of team perfor-
mance and training. In:  Teams: their training and performance. Westport, CT: Ablex; 1992. 
p. 3–29.

Salas E, Stout R, Cannon-Bowers J. The role of shared mental models in developing shared situ-
ational awareness. In:  Situational awareness in complex systems; 1994. p. 297–304.

Schadewaldt V, McInnes E, Hiller JE, Gardner A. Experiences of nurse practitioners and medical 
practitioners working in collaborative practice models in primary healthcare in Australia—a 
multiple case study using mixed methods. BMC Fam Pract. 2016;17(1):99.

Shah C. Collaborative information seeking (CIS) in context. In:  Collaborative information seek-
ing. Berlin: Springer; 2012. p. 25–38.

Shah C, González-Ibáñez R.  Exploring information seeking processes in collaborative search 
tasks. Proc Assoc Inf Sci Technol. 2010;47(1):1–7.

Shamir B. Calculations, values, and identities: the sources of collectivistic work motivation. Hum 
Relat. 1990;43(4):313–32.

Singh R, Singh A, Singh DR, Singh G. Improvement of workflow and processes to ease and enrich 
meaningful use of health information technology. Adv Med Educ Pract. 2013;4:231–6. https://
doi.org/10.2147/AMEP.S53307.

Sittig DF, Ash JS, Zhang J, Osheroff JA, Shabot MM. Lessons from “Unexpected increased mor-
tality after implementation of a commercially sold computerized physician order entry sys-
tem”. Pediatrics. 2006;118(2):797–801. https://doi.org/10.1542/peds.2005-3132.

Srinivas P, Faiola AJ, Khan B.  Supporting information management in ICU rounding a novel 
mobile system for managing patient-centered notes and action-items. In: Paper presented 
at the E-health Networking, Application & Services (HealthCom), 2015 17th International 
Conference on; 2015.

Stout RJ, Cannon-Bowers JA, Salas E. The role of shared mental models in developing team situ-
ational awareness: implications for training. Training Res J. 1996;2(85–116):1997.

6 Characterizing Collaborative Workflow and Health Information Technology

https://doi.org/10.2147/AMEP.S53307
https://doi.org/10.2147/AMEP.S53307
https://doi.org/10.1542/peds.2005-3132


102

Tang C, Xiao Y, Chen Y, Gorman PN.  Design for supporting healthcare teams. In: Patel VL, 
Kannampallil TG, Kaufman DR, editors. Cognitive informatics for biomedicine: human com-
puter interaction in healthcare. Cham: Springer International; 2015. p. 215–39.

Truijens SEM, Banga FR, Fransen AF, Pop VJM, Van Runnard Heimel PJ, Oei SG. The effect of 
multiprofessional simulation-based obstetric team training on patient-reported quality of care: 
a pilot study. Simul Healthc. 2015;10(4):210–6.

Vanderbilt AA, Pappada SM, Stein H, Harper D, Papadimos TJ.  Increasing patient safety with 
neonates via handoff communication during delivery: a call for interprofessional health care 
team training across GME and CME. Adv Med Educ Pract. 2017;8:365.

Wagner JA. Studies of individualism-collectivism: effects on cooperation in groups. Acad Manag 
J. 1995;38(1):152–73.

Weber JM, Malhotra D, Murnighan JK. Normal acts of irrational trust: motivated attributions and 
the trust development process. Res Organ Behav. 2004;26:75–101.

Wilk S, Kezadri-Hamiaz M, Rosu D, Kuziemsky C, Michalowski W, Amyot D, Carrier M. Using 
semantic components to represent dynamics of an interdisciplinary healthcare team in a 
multi-agent decision support system. J Med Syst. 2016;40(2):42. https://doi.org/10.1007/
s10916-015-0375-3.

Xiao Y, Parker SH, Manser T.  Teamwork and collaboration. Rev Hum Factors Ergon. 
2013;8(1):55–102. https://doi.org/10.1177/1557234x13495181.

Xyrichis A, Ream E. Teamwork: a concept analysis. J Adv Nurs. 2008;61(2):232–41. https://doi.
org/10.1111/j.1365-2648.2007.04496.x.

C. E. Kuziemsky et al.

https://doi.org/10.1007/s10916-015-0375-3
https://doi.org/10.1007/s10916-015-0375-3
https://doi.org/10.1177/1557234x13495181
https://doi.org/10.1111/j.1365-2648.2007.04496.x
https://doi.org/10.1111/j.1365-2648.2007.04496.x


103© Springer Nature Switzerland AG 2019 
K. Zheng et al. (eds.), Cognitive Informatics, Health Informatics, 
https://doi.org/10.1007/978-3-030-16916-9_7

Chapter 7
Interruptions and Multitasking in Clinical 
Work: A Summary of the Evidence

Johanna I. Westbrook, Magdalena Z. Raban, and Scott R. Walter

7.1  Studying Interruptions and Multitasking

Any discussion of interruptions and multitasking needs to consider what is meant by 
these terms in relation to how they can be defined and measured. Many researchers 
(Walter et al. 2015; Grundgeiger et al. 2016; Rivera-Rodriguez and Karsch 2010) 
have noted the considerable heterogeneity and ambiguity of definitions used in the 
investigation of these phenomena, despite their common focus on the disruptive 
aspects of clinical work. Definitions of interruptions in healthcare have largely 
drawn from those applied to the study of interruptions in controlled experimental 
psychology (Trafton et al. 2003) settings. Much of this psychological experimenta-
tion has focused on investigating the cognitive costs to an individual when required 
to switch between tasks, either as a consequence of multitasking or being inter-
rupted (Douglas et al. 2017). These ideas have been interpreted in a range of ways 
when introduced into the uncontrolled and more complex healthcare context. 
Several attempts have been made to review definitions and terms used in the health-
care domain and to either distil them into a universal definition (McFarlane 1997) or 
to define a set of common attributes (Brixey et al. 2007; Sasangohar et al. 2012). 
However, attempts to synthesise several definitions have often resulted in somewhat 
vague conceptualisations that have not moved this area of study towards definitional 
consensus. Walter et al. (2018) have instead argued for the need to move away from 
traditional interruption concepts towards the development of a more context- 
appropriate conceptualisation centred around the disruptive aspects of clinical work.

Compared to interruptions, multitasking in clinical work has been less well stud-
ied, yet it has been identified as another aspect of clinical work that may have work-
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flow and patient safety implications. Two distinct forms of multitasking have been 
characterised in the literature. Concurrent multitasking (or dual task performance) 
comprises two or more tasks being simultaneously conducted. This definition of 
multitasking is the most commonly applied in observational studies of clinical work 
(Douglas et  al. 2017). In contrast, interleaved multitasking involves switching 
between several tasks that are progressing in parallel. For example, an emergency 
physician managing two patients at the same time and switching between tasks for 
these patients. Douglas et al. (2017) discuss both the concepts and definitions asso-
ciated with the study of multitasking in healthcare, including the crossover between 
some multitasking and interruption definitions.

Despite the heterogeneity in definitions, there has been an underlying focus in 
observational studies of interruption and multitasking on aspects of clinical work 
that can contribute to individuals’ cognitive load. When designing a new study, the 
central considerations in relation to the definitions to be applied are as follows. 
First, definitions should address the aims of the investigation and be able to be 
operationalised; second, both the definitions and the details of how they are opera-
tionalised need to be reported clearly. This is rarely done well in studies to date, but 
is essential to allow accurate interpretation of findings and comparison between 
studies.

7.2  Assessing the Frequency and Characteristics 
of Interruptions and Multitasking

Direct observational studies have been the main method by which interruptions and 
multitasking are studied in healthcare. Walter et al. (2015) provide a comprehensive 
discussion of some of the core challenges to performing quantitative observational 
studies of clinical work ‘in the wild’. To determine the frequency and the relative 
burden of interruptions and multitasking in clinical work, there is a necessity to 
identify a denominator. Most commonly interruptions have been reported as a rate 
using time as the denominator, for example, the number of interruptions per hour. 
However, when interruptions are examined during specific clinical tasks, studies 
often report the proportion of these tasks that were interrupted. Studies examining 
concurrent multitasking have also used time as the denominator, but instead of 
counting the number of multitasking instances, they often measure the time spent in 
multitasking and report it as a proportion of the total time.

Table 7.1 provides a summary of the interruption rates and multitasking propor-
tions reported across a range of studies using direct observation of clinical work in 
different countries. Comparisons of interruption rates across studies can be difficult 
due to the differences in definitions and observational methodology. The studies 
summarised in Table 7.1 use broadly similar definitions of interruption, analogous 
to the first definition presented in Table 7.2, and the same observational technique 
and data collection tool (Westbrook and Ampt 2009).
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Table 7.1 Reported interruption rates per hour in studies that used similar interruption definitions 
and the Work Observation Method By Activity Timing (WOMBAT) technique and software for 
data collection

Population 
studied Setting

Interruption rate 
(number of 
interruptions per 
hour)

Percentage of 
time spent in 
concurrent 
multitasking Country Reference

Physicians General wards 2.9 20% Australia Westbrook et al. 
(2008)

Physicians Surgical wards 13.1 33.5% Italy Bellandi et al. 
(2018)

Junior 
medical 
officers

General wards 
on weekends

6.6 20.9% Australia Richardson et al. 
(2016)

Resident 
physicians

General wards 
at night (10 pm 
to 8 am)

1.3 6.4% Australia Arabadzhiyska 
et al. (2013)

Nurses General wards 2.0 5.8% Australia Westbrook et al. 
(2011b)

Nurses Surgical wards 13.6 27.2% Italy Bellandi et al. 
(2018)

Nurses Intensive care 
unit

3.3 – Canada Ballerman et al. 
(2011)

Pharmacists General 
hospital wardsa

3.1 2.4% Australia Lo et al. (2010)

Pharmacists General 
hospital wardsb

4.4 8.7% Australia Lo et al. (2010)

Pharmacists Paediatric 
hospital

3.5 4.4% Australia Lehnbom et al. 
(2016)

Physicians Emergency 
department

6.6 12.8% Australia Westbrook et al. 
(2010a)

Physicians Emergency 
department

7.9 4.6% Australia Westbrook et al. 
(2018)

Attending 
and resident 
physicians

Intensive care 
unit

2.5 67% USA Hefter et al. 
(2016)

Registrars 
(Fellows)

Intensive care 
unit

4.2 24.4% Australia Li et al. (2015)

Physicians Intensive care 
unit

3.8 – Canada Ballerman et al. 
(2011)

Respiratory 
therapists

Intensive care 
unit

3.5 – Canada Ballerman et al. 
(2011)

Unit/ward 
clerks

Intensive care 
unit

4.4 – Canada Ballerman et al. 
(2011)

Nuclear 
medicine 
technologists

General 
hospital

4.5 16.6% Australia Larcos et al. 
(2017)

aPharmacists on wards without electronic medication system
bPharmacists on wards with electronic medication system
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Observational studies of clinicians have shown that interruption rates tend to be 
higher in critical care settings (Westbrook et al. 2010a, 2018), among specialist con-
sultants (specialists), and for particular types of clinical tasks (Westbrook et  al. 
2010a, b, 2011a; Walter et al. 2017). Most interruptions are generated by other co-
workers, rather than patients, and are related to the provision of patient care (Walter 
et al. 2017; Weigl et al. 2012; Bellandi et al. 2018; Ratwani et al. 2017). Interruption 
rates also appear to vary between night and day shifts, (Arabadzhiyska et al. 2013) 
and between weekdays and weekends (Richardson et al. 2016). As may be expected, 
interruption rates appear to vary by country, with one study from Italy reporting 
rates two times higher for physicians and six times higher for nurses on surgical 
wards, than those reported in studies conducted in other countries (Bellandi et al. 
2018).

Similar to interruption rates, the proportions of time spent multitasking vary 
between healthcare settings, health professionals, and countries (Walter et al. 2014). 
However, in contrast to interruption rates for the emergency department (ED), 
which are higher than on wards, ED physicians spend a lower proportion of their 
time multitasking. This may be indicative of the fact that individuals have greater 
autonomy over decisions to multitask than over interruptions, the latter of which are 
almost always in response to an external stimulus. In an environment in which 
external stimuli are frequent, such as the ED, physicians may choose to multitask to 
a lesser degree in order to reduce their cognitive load.

Some studies have focused on the frequency of interruptions and multitasking 
during particular clinical processes. These are often safety critical activities with 
direct implications for patient care, such as medication administration by nurses. 
Since interruption rates can vary between the types of clinical activities, under-
standing the frequency with which they occur during safety critical tasks has been 
regarded as important under the assumption that high rates are associated with 
increased safety risk.

Table 7.2 Examples of definitions of interruptions and multitasking applied in healthcare studies

Term Definition Reference

Interruption External stimuli which results in an individual ceasing 
a task to attend to a new task. For example, ceasing a 
task to answer a question

Westbrook et al. 
(2008, 2011a)

Interruption Process of coordinating abrupt change in people’s 
activities

McFarlane (1997)

Interruption A break in performance of a human activity initiated 
by a source internal or external to the recipients, with 
the occurrence situated within the context

Brixey et al. 
(2010)

Concurrent (or dual 
task) multitasking

The performance of two or more tasks conducting 
simultaneously. For example writing notes while also 
talking

Douglas et al. 
(2017)

Interleaved 
multitasking

The management of multiple tasks in which there is 
switching between tasks that are progressing in parallel

Douglas et al. 
(2017)

IT Interruptions Perceived, IT-based external events with a range of 
content that captures cognitive attention and breaks the 
continuity of an individual’s primary task activities

Addas and 
Pinsonneault 
(2015)
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Studies that have looked at interruptions during medication administration have 
used varying measures of interruption rates, making comparisons between studies 
fraught. Two studies in Australia estimated that between 35% and 53% of medica-
tion administrations are interrupted (Westbrook et  al. 2010b, 2017). In the UK, 
nurses were interrupted an average of 2.6 times per medication round (i.e., during 
the administration of all medications for all the patients under a nurse’s care) and in 
the US, 63% of medication passes (i.e., the administration of all medications to one 
patient) involved an interruption not relevant to the task at hand.

The reporting of multitasking during medication tasks has also used a variety of 
measures. One Australian study reported that multitasking occurred during 25% of 
medication tasks (Westbrook et al. 2011a), with concurrent professional communi-
cation occurring in 10.7% of medication tasks. Another Australian study estimated 
that nurses engaged in an average of 4.6 multitasks per 100 administrations 
(Westbrook et al. 2017). Other studies have compared multitasking rates in medica-
tion tasks to overall multitasking rates. In the ED, physicians were observed to 
multitask 4.6% of their overall time, but 20.1% of the time they spent prescribing 
(Westbrook et al. 2018).

7.3  The Role and Effects of Interruptions in Clinical Work

A considerable body of research on interruptions in healthcare has focussed on their 
potentially negative role in placing tasks at risk of error, incompletion or in reducing 
task efficiency. As the previous section illustrates, many descriptive studies have 
sought to capture the nature, source and occurrence of interruptions, largely in order 
to inform the design of effective interventions that are able to prevent or ameliorate 
their potentially negative effects. However, research evidence which directly links 
the occurrence of interruptions to negative task outcomes in clinical contexts 
remains relatively scant. An observational study in operating rooms showed that 
anaesthetists who immediately engaged with interruptions failed to check blood 
product details prior to transfusion (Liu et al. 2009). While a more recent study of 
caesarean section surgeries showed an association between procedure length and 
interruptions, but not with procedural complications (Willett et  al. 2018). In an 
experimental study with radiologists who were interrupted while reviewing and dic-
tating diagnostic reports, there was no significant impact of interruptions on diag-
nostic quality. A simulation study of physicians conducting central venous catheter 
insertion found that interruptions increased the time taken for the task as well as the 
number of attempts required (Jones et al. 2017). A few studies in the ED have iden-
tified a failure of physicians to return to interrupted tasks following interruption, but 
no specific consequences for care (Fong and Ratwani 2018; Westbrook et al. 2010a).

A direct observational study in two teaching hospitals, which examined the rela-
tionship between medication administration error and interruptions to nurses, found 
a significant positive relationship, whereby interruptions were associated with more 
errors and greater severity of errors (Westbrook et al. 2010b). Further, a study of 
emergency physicians demonstrated a significant positive relationship between 
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interruptions and prescribing errors (Westbrook et al. 2018). That said, such studies 
reporting direct associations between interruptions and errors in clinical settings are 
still relatively rare. The methodological difficulties in identifying and reliably mea-
suring task errors against which to assess the impact of interruptions are a signifi-
cant and ongoing challenge (Lo et al. 2010). Unlike experimental studies, which 
focus on the association between a stimulus and individual response, studies of 
interruptions in the wild are very different. Clinical work is highly team-based, and 
the effects of disruptions on such collaborative work practices are not easily mea-
surable (Kannampallil et al. 2016).

In concert with studies attempting to examine the negative effects of interrup-
tions and multitasking on clinical work, there has been increased attention on under-
standing how in fact both activities may be important to clinical workflow. This 
work has focused more on understanding how interruptions and multitasking can be 
used effectively in managing the dynamic nature of clinical work. For example, 
studies by Walter et al. (2017) in the ED demonstrated the ways in which senior 
clinicians make themselves available to interruption as an integral element in super-
vising the work of more junior clinicians. Thus, in this context interruptions could 
be viewed as a key technique to achieve both efficient and effective workflows, 
which contribute to increased patient safety. Research in other fields on high reli-
ability organisations may be of value in understanding how these work strategies 
may be beneficial.

One of the ways in which high reliability organisations are able to operate suc-
cessfully in complex environments is to organise for collective mindfulness. 
Collective mindfulness has been described as “a quality of organisational attention 
that increases the likelihood that people will notice unique details or situations and 
act upon them” (p.  410) (Sutcliffe and Vogus 2014). Thus, some of the newer 
research findings illustrating the ways in which interruptions are used in healthcare 
point to their potential role in collective mindfulness, particularly in settings such as 
emergency departments. Further studies are required to explore the more nuanced 
ways in which interruptions may play an enabling role in safe and efficient care, 
besides being a potentially negative contributor to cognitive load and task errors.

Excessive rates of interruptions are assumed to negatively impact on clinicians’ 
cognitive loads. Thus, distinguishing between necessary and unnecessary interrup-
tions has been considered in some studies as a way to target interventions more 
effectively. For example, in a study of interruptions during medication administra-
tion, Westbrook et  al. (2017) categorised whether observed interruptions were 
directly related to the medication administration tasks underway. They also excluded 
any emergency interruptions (e.g., a patient requiring resuscitation, or a patient who 
fell). Overall, they found that only a small proportion of interruptions were related 
to the medication tasks in progress. Other studies have asked clinicians the extent to 
which interruptions were of value (Weigl et al. 2017; McGillis Hall et al. 2010).

In contrast to the negative connotations directed at interruptions, multitasking is 
often viewed as a prized skill, even to the extent that the ability to multitask has been 
listed as a necessary skill for US emergency physicians (Perina et  al. 2012). 
Considerably less research has been conducted towards measuring the likely effec-
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tiveness of multitasking in clinical settings (Werner et al. 2015). Existing evidence 
seems to suggest that multitasking may be associated with no improvement in task 
efficiency during handover (van Rensen et al. 2012) and multitasking among emer-
gency physicians was shown to be associated with tasks failures during medication 
prescribing (Westbrook et al. 2018). Further, Weigl and colleagues (2017) found 
that ED physicians who received interruptions about patients that they were manag-
ing in parallel reported increased stress levels.

7.4  Interventions to Reduce Interruptions to Clinical Work

Drawing upon concepts used in aviation, such as the sterile cockpit, the most com-
mon approach to reducing unnecessary interruptions has been the use of barrier or 
isolation techniques. These have most frequently been trialled in studies designed to 
reduce interruption rates for nurses, especially during the medication administration 
process. These interventions have included the use of ‘do not interrupt’ tabards, 
sashes or flags, which signal that nurses are involved in a medication task and should 
not be interrupted; and locating specific medication administration processes in 
areas demarcated as ‘interruption-free’ zones. There is some evidence suggesting 
that such interventions can be effective (Raban and Westbrook 2014; Huckels- 
Baumgart et al. 2017; Dall’Oglio et al. 2017). A systematic review in 2014 (Raban 
and Westbrook 2014) reported 10 studies of interventions which had undertaken a 
quantitative assessment of their effectiveness on reducing interruptions and/or med-
ication administration errors. Four reported a decrease in interruptions and one an 
increase. Three studies had multi-component interventions which incorporated a 
‘do not interrupt’ element, and all reported a reduction in error rate. However, none 
of these studies used a controlled design so that attribution of the change in interrup-
tion rate to the respective intervention was not possible (Raban and Westbrook 
2014). A subsequent randomised controlled trial (Westbrook et al. 2017) showed a 
significant decrease in interruption rate following the introduction of a ‘do not inter-
rupt’ bundled intervention, but the authors of this study raised questions about the 
clinical significance of the magnitude of the reduction in interruptions on error rates 
(from 50 interruptions per 100 administrations to 34/100). Further issues have been 
raised about the acceptability and sustainability of this form of intervention in busy 
clinical environments (Westbrook et al. 2017). Thus, despite many studies seeking 
to demonstrate the value of barrier interventions to reduce interruptions there has 
been limited progress in establishing their effectiveness or long-term 
sustainability.

Improved understanding of interruptive behaviours in healthcare has prompted 
the reconceptualisation of potential interventions, in terms of a focus on how they 
can be used most effectively to support resilient work practices. Gao et al. (2017) 
suggest alternative approaches. First, the use of resilient engineering, which takes 
the view that if interruptions are a potential source of negative disruption to work 
then interventions should be targeted towards assisting clinicians to continue or 
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quickly resume their primary task in the event of disruption. Such interventions 
might include the provision of cues which allow clinicians to easily resume tasks 
when interrupted. For example, Prakash et al. (2014) used visual timers to support 
nurses administering IV medications. Clinical information systems which identify 
fields remaining unfilled may be another type of cue to alert clinicians to incomplete 
steps in an interrupted procedure.

Identifying the cause of unnecessary interruptions and specifically addressing 
them through changes in resources or practices is another approach. For example, 
several studies of medication administration processes noted interruptions due to a 
nurse seeking access to the restricted drug keys. The cost to the nurse who is inter-
rupting is low, but for the nurse being interrupted there is no clinical value and the 
cost may be high in terms of distraction from his/her primary task. Thus, identifying 
strategies such as considering the way in which drug rounds are organised and the 
likely demands placed on scarce resources (in this instance the drug keys) provides 
opportunities for reducing unnecessary interruptions of benefit to all staff.

Consideration of interruptions as an element of behaviours displayed in high reli-
ability organisations is also likely to be a valuable approach. This does not suggest 
an unfettered use of interruptions, but an examination of the ways in which interrup-
tions contribute to enacting collective mindfulness, and then identifying ways to 
optimise their use. Further, drawing attention to the role of interruptive behaviours 
through appropriate training should not be underestimated. In addition, specific 
training in handling interruptions in different clinical settings is also likely to be 
beneficial (Hayes et al. 2017; Cades et al. 2011).

7.5  Impact of Information Technology on Interruptions

Information technologies both create a source of new interruptions (e.g., in the form 
of electronic alerts (Baysari et al. 2011) and mobile devices allowing constant com-
munication (Vaisman and Wu 2017)) as well as potentially reducing the need for 
some interruptions by providing greater concurrent access to information. Alert 
fatigue due to the excessive use of computerised alerts, which leads to a large pro-
portion of alerts being ignored, continues to be a significant problem. However, 
once again the context in which these disruptions to clinical work occur has been 
shown to be important. For example, an Australian study (Baysari et  al. 2011) 
showed that less than 20% of interruptive medication alerts generated by a comput-
erised system were read by physicians on ward rounds, yet in the same hospital 
junior physicians at night considered over 80% of these alerts when prescribing 
medications (Jaensch et  al. 2013). Thus, these interruptions to clinical workflow 
were deemed to provide variable clinical benefit.

Collins et al. (2006, 2007) investigated the impact of distractions and interrup-
tions during clinicians’ use of clinical information systems, and suggested that they 
may introduce new opportunities for errors related to data entry and data retrieval. 
However, there has been limited research specifically focusing on how interruptions 
impact clinicians use of clinical information systems. For example, the extent to 
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which interruptions may be a contributor to new IT-related errors (Magrabi et al. 
2012; Westbrook et al. 2013), which include incidents such as the incorrect selec-
tion of items from drop-down menus, or the opening of the incorrect patient record, 
is unknown.

7.6  Conclusions

The direction and sophistication of interruption and multitasking research in health-
care has started to change course. There is a continued need to move beyond descrip-
tive studies to those that attempt to account for the complexity of these phenomena 
and the importance of the contexts in which they occur. Some observational studies 
have found associations between disruptive aspects of clinical work and errors in 
care delivery. However, there is some evidence of null effects, along with an emerg-
ing body of evidence demonstrating that interruptions, and to a lesser extent multi-
tasking, may be effective strategies for dealing with a dynamic clinical environment 
and may contribute to greater organisational resilience. The mixed results partly 
reflect the diversity of healthcare, in that interruptions and multitasking may have 
different effects depending on the context, the specific scenario, and so on. The 
varied results may also represent the diversity in how interruptions and multitasking 
have been defined and conceptualised. By defining a broad range of interactions and 
behaviours under these terms, we then naturally observe a broad range of effects. 
Furthermore, evidence to date of the effects of interruptions and multitasking is 
based on studying the clinical work of individual clinicians. As yet, we have no 
clear evidence as to how these phenomena affect clinical work at the team or system 
level, which is an important topic for future research.

The literature suggests that efforts to support clinicians in managing the cogni-
tive load of disruptive environments may be more valuable than blanket interven-
tions to reduce interruptions (Westbrook et al. 2018). Identifying work practice and 
resource issues to avoid unnecessary interruptions should be considered, along with 
strategies which support recovery from interruptions such as the use of cues, and 
increased awareness of, and training about, how to effectively use these strategies to 
support safe and efficient delivery of care.
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Chapter 8
Reengineering Approaches for Learning 
Health Systems: Applications in Nursing 
Research to Learn from Safety 
Information Gaps and Workarounds 
to Overcome Electronic Health  
Record Silos

Sarah Collins Rossetti, Po-Yin Yen, Patricia C. Dykes, Kumiko Schnock, 
and Kenrick Cato

8.1  Introduction

An effective learning health system can drive more efficient and safer care by adapt-
ing and aligning individual structures (e.g., applications) and processes (e.g., work-
flows) to optimize outcomes within a system of systems. Health systems engineering 
is an approach to effectively implement a learning health system. A learning health 
system is defined as a system in which “science, informatics, incentives, and culture 
are aligned for continuous improvement and innovation, with best practices seam-
lessly embedded in the delivery process and new knowledge captured as an integral 
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by-product of the delivery experience.” (The Roundtable 2012) Electronic clinical 
systems that are used to capture patient care data, for outcomes reporting, and to 
support safer care decisions, particularly in the hospital setting, are heavily reliant 
on nursing data capture and workflows. This chapter will outline 3 broad approaches 
that can be triangulated within a systems engineering framework to reengineer 
patient care workflows and overcome information silos by actively learning from 
safety information gaps and workarounds within a health system: (1) “In the lab” 
participatory design and usability evaluation, (2) “In the wild” observations, and (3) 
“In the metadata” models of health care processes.

Participatory design is a method for designing systems with end users, such as 
nurses, and is particularly important for designing clinical systems that are aligned 
with and embedded in clinical workflows. Within the clinical domain, efficient nurs-
ing workflows are essential processes that enable effective nursing practice and 
patient care. Consequences of poorly designed clinical systems for nurses are well- 
cited (Koppel et al. 2008) and are a barrier to achieving a learning healthcare sys-
tem. Nurses have been described as particularly adept at identifying and utilizing 
workarounds to overcome poor system design, including information systems as 
well as hospital processes overall (Koppel et al. 2008). These workarounds can be 
observed “in the wild” by conducting observations of clinicians in the clinical set-
ting, including time motion studies.

Workflows and workarounds are not limited to directly observable patient care 
activities; they also occur within documentation activities and can be modeled using 
metadata (data about data) from clinical information systems (Institute of Medicine 
(US) Committee on the Work Environment for Nurses and Patient Safety 2004; 
Collins et al. 2012). Documentation workarounds, as will be described in this chap-
ter, can have unintended negative consequences, such as information loss. When 
analyzed quantitatively within a health systems engineering framework, work-
arounds can be leveraged as a source of information that signals expert patterns of 
care and knowledge to inform a Learning Health System. Evaluation of work-
arounds as an indicator of nurses’ information needs and key data sources and 
expertise can also inform how to best balance structured data capture to maximize 
value and minimize documentation burden for each data point recorded.

Usability evaluation and observational studies of nurses using systems “in the 
wild” are important methodologies that complement participatory design to under-
stand system and workflow dependencies and how to better align systems with nurs-
ing workflow. Further, analysis of documentation patterns can elucidate workarounds 
and corresponding practice patterns. The health systems engineering techniques 
that will be described in this chapter including participatory design, observational 
evaluations, and EHR (electronic health record) usage pattern analytics, can lead to 
key insights to inform system redesign. This type of approach may, for example, 
identify visualizations that bring together isolated data from the EHR into useful 
and patient-centered tools at the point of care to minimize information loss and sup-
port safe care, decision-making, and continuous learning. These techniques may 
also identify opportunities for optimizing patient-centered systems to decrease 
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information and communication silos among care team members and patients. A 
health systems engineering approach promotes the use of these complementary 
methodologies for development and redesign of applications and their integration 
within a “system of systems”. This chapter will provide an overview of participa-
tory design and usability evaluation, workflow observations, and EHR documenta-
tion analytics to model health care processes within a health systems engineering 
framework and highlight how each method has been applied in nursing to promote 
learning, reengineering, and safer care to support a Learning Health System.

8.2  Background

The Institute of Medicine (IOM) Report “To Err is Human” called for a nationwide 
effort to stop preventable medical errors (Institute of Medicine (IOM) 1999). Among 
errors reported, it has been noted that 25% of medication-related injuries could have 
been prevented (Institute of Medicine 2007). Healthcare organizations have been 
tasked with addressing ongoing patient safety challenges and improving the quality 
of care. A variety of health information technology (IT) systems are increasingly 
being deployed within healthcare organizations to improve the safety and quality of 
care and support clinicians’ workflows (Institute of Medicine 2003). Healthcare IT 
such as EHRs with clinical decision support (CDS), computerized provider order 
entry (CPOE) (Bates et  al. 1998), electronic medication administration records 
(eMAR), and barcode medication administration (BCMA) have been touted as 
promising strategies for preventing medication errors (Bates 2000; CPOE 2003; 
Bates and Gawande 2003), and are particularly relevant to nursing care and work-
flows. For example, CPOE has been shown to reduce the incidence of serious medi-
cation errors by 55% (Bates et al. 1998). A systematic review conducted by Baysari 
et  al. identified effectiveness of IT interventions (e.g., CDS, CDS with EHR or 
CPOE) to improve the appropriateness of antimicrobial prescribing in hospitals 
(Baysari et  al. 2016). Barcode eMARs have been proven to support medication 
administration at the bedside for preventing medication errors (Scott-Cawiezell 
et al. 2009). One study performed by Paoletti et al. (2007) showed a 54% reduction 
of medication administration errors with BCMA and eMAR.

Although there is evidence for the improvement of medication safety with health 
IT systems, the IOM noted that health IT products are expected to improve patient 
safety only if the products are well-designed and strategically implemented 
(Committee on Patient Safety and Health Information Technology; Institute of 
Medicine 2011). Additionally, health IT systems could negatively impact organiza-
tional culture, workflow processes, siloed communication, and medical errors due 
to poor design and lack of integration with the clinical workflow (Campbell et al. 
2006; Househ et al. 2013; Leslie et al. 2017). The integration of the health IT sys-
tems into nursing workflows is needed to optimize patient care delivery and to sup-
port safe care, decision-making, and continuous learning.
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The need for a good fit between the health IT systems and routine clinical 
practice is recognized as essential (Bates et al. 2003; Ammenwerth et al. 2003; 
Beuscart- Zephir et al. 2001; Kuhn and Giuse 2001; LaDuke 2001; Staccini et al. 
2001), and clinician time efficiency is one of the factors that is used to measure 
the successful implementation of the clinical system. Clinical data capture and 
documentation should be of high quality, efficient, usable, and clinically pertinent 
while supporting multiple downstream uses as a byproduct of recording care 
delivery (Cusack et al. 2013). Further clinical documentation should bridge infor-
mation silos to enable shared decision-making and collaboration, enable collec-
tion and interpretation of information from multiple sources, and be automated 
whenever appropriate (Cusack et al. 2013). Clinicians spend a significant amount 
of time documenting, increasing the opportunity costs of using time for data entry 
versus knowledge generating activities and direct patient care (Poissant et  al. 
2005; Keenan et al. 2008; Mamykina et al. 2016; Hripcsak et al. 2011). When 
clinicians engage in task-switching and multi-tasking to manage their workload 
demand, documentation is deprioritized to enable a higher priority focus on direct 
care tasks (Walter et  al. 2014). Decreasing clinician documentation burden—
including nursing—is a priority of several professional organizations and govern-
ment agencies, and a focus of the Quadruple Aim (Cusack et al. 2013; Agency for 
Healthcare Research and Quality (AHRQ) 2018; O’Brien et al. 2015; Payne et al. 
2015). The first recommendation from AMIA’s EHR 2020 Task Force Report was 
to decrease documentation burden (Payne et al. 2015). Our team found that on 
average, nurses perform 631–662 manual flowsheet data entries per 12  h shift 
(excluding device integrated data), averaging to 1 data point every 0.82–1.14 min 
in acute care (Collins et al. 2018). Other EHR log file analyses indicated nurses 
spend 21.4–38.2 min per day authoring notes, on average (Hripcsak et al. 2011); 
yet fewer than 20% of these nursing notes were read by physicians, and only 38% 
were read by other nurses (Hripcsak et al. 2011). In addition to the time quantified 
above for writing notes and documenting flowsheet data, nurses perform addi-
tional documentation including recording medication administration, documenta-
tion of patient education and plan of care, reviewing historical and current data, 
reading team notes, reading and sending electronic communications, and prepar-
ing the patient’s discharge (Hripcsak et al. 2011). These activities are in addition 
to delivering direct patient care (Hripcsak et al. 2011).

In evaluating the impact of health IT systems on nurses’ activities, some studies 
use documentation time as a primary outcome measure. A systematic review con-
ducted by Poissant et al. revealed that the weighted average of the relative nursing 
documentation time with bedside terminals showed a 25% reduction in overall time 
spent documenting during a shift, and documentation time with a central-station 
desktop showed a 24% reduction (Poissant et al. 2005). Despite similarly weighted 
averages between bedside terminals and central-station desktops, the five studies 
that assessed bedside terminals were consistent and showed a time reduction while 
the two studies looking at central-station desktops had an increase (Poissant et al. 
2005). Other studies conducted in critical care settings did not verify the reduction 
in documentation time after using EHR. (Marasovic et al. 1997; Menke et al. 2001)
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Observational studies conducted by Westbrook et al. using the Work Observation 
Method By Activity Timing (WOMBAT) method also identified a distribution of 
the time spent on different nursing tasks and clinician’s patterns of professional 
communication and documentation after introducing health IT systems (Ballermann 
et al. 2011; Westbrook and Ampt 2009; Westbrook et al. 2013). While qualitative 
data supported some improvement of time efficiency on nursing documentation, 
other studies pointed out a lack of user acceptance, and staff attitudes have been 
cited as a factor that hinders the implementation of health IT systems (Ash and 
Bates 2005; Ball and Lillis 2000; Robles and Karnas 2007; Clemmer 2004). For 
example, one study investigated nurses’ perceptions of EHR and found that 64% 
of nurses perceived the EHR system did not decrease nursing workload. 
Additionally, only 44% of nurses thought the current system was optimally func-
tional, and 61% indicated frustration with multiple EHR documentation workflows 
(Moody et al. 2004). When a misfit between the new IT system implementation 
and existing work processes occurs, it creates a frustration for healthcare providers 
and could result in workarounds while using the systems (Ignatiadis and 
Nandhakumar 2009).

Workarounds have been defined as alternative procedures employed by users to 
accomplish a task in response to a misfit between computer-based and existing 
clinical processes (Koopman and Hoffman 2003). Workarounds have been identi-
fied as creating negative consequences for the system implementation (Orlikowski 
and Yates 2006; Ash et al. 2007; Lapointe and Rivard 2005) and may lead to viola-
tions or deviations from safe operating procedures and standards, which can com-
promise a key objective of implementing these healthcare IT systems (Runciman 
and Walton 2007). Workarounds are caused by various reasons, such as inefficient 
process design, poor system usability, inadequate user training, and inflexible clin-
ical guidelines (Edwards et al. 2008; Halbesleben et al. 2008; Vogelsmeier et al. 
2008), and the efforts to eliminate workarounds are recognized difficult tasks 
(Hayes 2000). Various types of workarounds in various health IT systems have 
been identified in previous studies. For example, one study conducted by Koppel 
et al. identified causes and possible consequences of workarounds with an eMAR 
in a hospital (Koppel et al. 2005). In this study identifying the role of CPOE in 
facilitating prescription error risk, the study investigators found that workarounds 
such as post hoc documentation and the use of parallel paper systems for docu-
menting medication administration caused confusion and the risk of information 
loss within the electronic system (Koppel et al. 2005). Another study conducted by 
Andersen et al. found a different type of workarounds such as transcribing medica-
tion orders from the computer to paper, while clinicians are using a range of com-
puting devices to access a computerized provider order entry system (Andersen 
et al. 2009).

A study conducted by Poon et al. (2010) identified the noncompliance rate of 
scanning barcodes in BCMA and eMAR. Even though the study showed a 41% 
reduction in non-timing administration errors and a 51% reduction in potential 
adverse drug events from these errors, 20% of the drug administrations were 
given without the barcode scanning. Reasons for this noncompliance were the 
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learning curve in the early stages of implementation and an early version of the 
software that required several improvements after the system implementation. 
That study concluded that the deployment of health IT should be thought of not 
as a single event in time but rather as an iterative process that requires modifica-
tions and improvements (Poon et  al. 2010). When workarounds have been 
observed after implementing health IT systems, healthcare organizations need to 
re-evaluate the implementation and how the system fits in the current clinical 
practice in terms of improving patient safety, workflow efficiency, and percep-
tions of the clinical staff.

Workarounds that occur when related processes are not effectively reengineered 
also pose a risk to medication safety (Vogelsmeier et al. 2008). The effectiveness of 
these systems may be reduced when workarounds performed by users in response 
to the issues negate the system’s benefits (FitzHenry et al. 2007). Therefore, we 
should assume new health IT systems will change the current workflows, pro-
cesses, procedures, and policies. The re-design of workflows to preclude modified 
workflows of negative workarounds is required as preparation of the system imple-
mentation, as well as assessment of successful implementation after the 
implementation.

8.2.1  Health System Engineering: Participatory and User- 
Centered Design for Continuous Learning

The pace of adoption of IT in healthcare is rapidly increasing and the types of IT 
solutions vary widely. Nurses are a key clinician group who are facing challenges 
adapting to the use of clinical IT systems. A focus on the interrelationship between 
nurses, IT and the healthcare environment are fundamental to achieving a learning 
healthcare system. The need to investigate the impact of health IT from the socio- 
technical perspective has been broadly recognized (Sittig and Singh 2010; Westbrook 
et al. 2004, 2009), which advises that people-focused (socio) elements, organiza-
tional and human, and information technology elements (technical) are interdepen-
dent and must be evaluated together (Robertson et al. 2010). Several researchers 
have adopted socio-technical evaluation frameworks (Westbrook et al. 2004; Sittig 
and Singh 2010) using a range of methods (e.g. surveys, interviews, focus groups, 
task analysis, work sampling, results mapping, and outcome indicator data analysis) 
to understand the inter-dependency of these elements. Sittig and Singh (2010) out-
lined eight dimensions of assessment: (1) hardware and software computing infra-
structure, (2) clinical content, (3) human-computer interface, (4) people, (5) 
workflow and communication, (6) internal organizational policies, procedures and 
culture, (7) external rules, regulations and pressures, and (8) system measurement 
and monitoring (Sittig and Singh 2010).

These frameworks illustrate the importance of addressing the interdependent 
relationship between the health IT and its social context where the health IT is 
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implemented. Nevertheless, health IT usability and nursing workflow assessment 
are needed to ensure that health IT is compatible in existing nursing workflow, and 
any workflow changes do not result in unintended consequences from health IT 
implementation. A systems engineering framework includes the participatory 
design approaches commonly used to develop health IT applications and incorpo-
rated into the socio-technical models described above.

Reliable and computable data capture (i.e., data collected consistently and 
using standard formats) within commercially available EHRs is critical to build-
ing a Learning Health System (Collins et al. 2016) and achieving the Healthcare 
Quadruple Aim of improving patient experience, health of populations, reducing 
healthcare costs, and improving the work life of health care providers 
(Bodenheimer and Sinsky 2014). Reliable and computable data do not naturally 
emerge, even within the same clinical information system, without proper clini-
cal governance and technical oversight that maximizes the value of data points 
captured by nurses while minimizing unnecessary burden (Collins et al. 2013a, 
2016). Analytics of EHR metadata for usage patterns within a health systems 
engineering framework can identify nursing practice domains where EHRs 
impose a high documentation burden and domains where the data captured by 
nurses is: (1) siloed from other clinical data and (2) characterized by low reli-
ability and computability for reuse.

A central goal of the Learning Health System is to generate knowledge rapidly 
and inform decisions to improve health (Friedman et al. 2014). To achieve these 
aims, nursing researchers are utilizing data science approaches to analyze large 
complex data sets to support nursing practice. Westra and colleagues in a recent 
review of the state of the science of nursing big data analytics, categorizes the cur-
rent three main approaches of data science analysis—knowledge discovery, predic-
tion, and evaluation (Westra et  al. 2017), with most utilizing nursing-sensitive 
indicators (Montalvo 2007). The knowledge discovery studies attempted to find 
new meaning in patient specific factors (Lee et al. 2011, 2012; Merrill et al. 2015; 
Monsen et al. 2011; Topaz et al. 2016; Collins et al. 2013b), and identify associa-
tions or patterns of patient outcomes by utilizing data mining of electronic patient 
records and natural language processing (Topaz et  al. 2016; Hyun et  al. 2009). 
Prediction approaches sought to improve on existing algorithms or develop tools to 
predict risk factors or patient outcomes (Monsen et al. 2012; Cho et al. 2015; Kontio 
et al. 2014; Raju et al. 2015; Olson et al. 2014). Large data sets and big data analyses 
were utilized in evaluation studies to assess and evaluate new tools (Cho et al. 2013) 
or frameworks for patient outcomes, such as decision support systems (Bowles et al. 
2015), care coordination (Topaz et al. 2017; Buis et al. 2013; Popejoy et al. 2015), 
or internet based portals (Shaw and Ferranti 2011). Within a systems engineering 
framework, data science approaches applied to EHR evaluation, particularly with an 
emphasis on knowledge discovery of novel documentation patterns and nursing 
sensitive indicators, can complement usability evaluation and observational studies 
to identify opportunities for reengineering nursing workflows, information silos, 
documentation burden, and safer patient care.

8 Reengineering Approaches for Learning Health Systems: Applications in Nursing…



122

8.2.2  Fundamentals of Systems Engineering

The interdisciplinary field of systems engineering focuses on the design and man-
agement of complex systems over the system development life cycle: problem 
analysis, design, development, implementation, and evaluation. Systems 
engineering consists of a broad set of process analysis, design, and modeling 
methods that identify and prioritize potential high-impact problems, and imple-
ment system optimization solutions (Fanjiang et  al. 2005; Mabry et  al. 2010; 
Watts et al. 2013). Systems engineering methods can be applied to a broad range 
of healthcare processes to model workflow, data and information flow (Foster 
et al. 2010; Benneyan and Bond 2013; Peck et al. 2013; Benneyan et al. 2012). 
These activities optimize system design, prevent development of information 
silos, and ensure overall integration of health information technology (IT) com-
ponents into a well-integrated “system-of-systems” (Mathews and Pronovost 
2011; Pronovost and Bo-Linn 2012).

8.3  Systems Engineering Approaches for Health IT 
Applications

Health systems engineering approaches can be applied to support the development 
of health IT applications as well as their integration into a larger system of systems. 
Usability evaluation methods within a sociotechnical framework, such as workflow 
observations, task analysis, participatory design and usability testing are important 
systems engineering tools.

Usability evaluation methods are conducted where appropriate during each phase 
of the information technology (IT) development lifecycle, from conception through 
design and evaluation (Johnson et al. 2011; Schumacher and Lowry 2010; Saleem 
et  al. 2009; Landman et  al. 2014; Goodman et  al. 2012; Johnson et  al. 2005; 
Association UEP 2018; Kushniruk and Patel 2004). Integration of health systems 
engineering activities ensures that the role of the user (i.e., patients, family, health-
care providers) in system design is considered, specifically the user’s relationship 
and interface with the environment, the technology, and the system as a whole. The 
goal is to understand the user’s role and behaviors in identifying and mitigating 
risks in relationship to the system and the environment, so that workflow and IT 
system usability constraints can be addressed proactively. Specific theoretical and 
methodological usability evaluation frameworks will be discussed in detail later in 
this chapter. The following section provides an overview of systems engineering 
approaches and tools applied across all phases of the IT system development life-
cycle, followed by case examples. Examples of systems engineering and human 
factor approaches that are useful across the system development lifecycle are 
included in Table 8.1.
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8.3.1  Problem Analysis

8.3.1.1  Using Levels of Health IT Evaluation for Problem Analysis

Several models and frameworks have been proposed to identify factors influenc-
ing health IT usability (Yen and Bakken 2012). A stratified view of health IT 
usability evaluation (Fig. 8.1) (Yen and Bakken 2012) presents levels of health 
IT evaluation which incorporate both the system development life cycle (Stead 
et  al. 1994) and socio-technical considerations. Level 1 of this model targets 
health IT specifications to understand user-task interaction to inform heath IT 
development. Level 2 examines the task performance to assess health IT valida-
tion and human-computer interaction. Level 3 addresses environmental factors to 
identify work processes and system impact in real-world settings. Task/expecta-
tion complexity, user variances, and organizational support are factors discov-
ered during problem analyses and are factors that can influence the use of the 
health IT. Computer supported cooperative work (CSCW) (Pratt et al. 2004) and 
contextual design (Holtzblatt and Beyer 1997) involving structured observations 
and interviews of individuals and groups are used in the problem analysis phase 
to inform the design of health IT. Workflow assessment aims at detecting changes 
on the constructs of nursing practice.

To assess the impact of health IT on nursing practice, workflow assessment can 
be conceptualized from two perspectives: (1) workflow within the scope of human- 
computer interaction, and (2) workflow in the social context (environment). They 
can be represented by the Level 2 and Level 3 evaluation respectively in the strati-
fied view of health IT usability evaluation model. Investigation with a clearer expli-
cation of interactions at the Level 2 and Level 3 evaluation help develop suitable 
solutions for issues discovered.

Table 8.1 Systems engineering and usability tools by project phase

Problem analysis Design Development Implementation Evaluation

Systems engineering approaches

  •  Process mapping 
and observation

  •  Workflow 
analysis

  • Work sampling
  • Data analysis
  •  Workflow 

observation
  •  Critical incident 

Interviewing
  • Task analysis

•  Engineering design 
methods/lifecycle

•  Reliability science 
design methods

• Measurement alignment
•  Simulation and queuing 

models
•  Work, space, and flow 

design
• Storyboards
• Participatory design
• Usability testing
• Usability roundtables

•  Learning and tests of 
change cycles

•  Compliance control 
charts and analysis

•  Lean and process 
simplification tools

• Focus groups
•  Workflow 

observations

•  Analytics of 
outcomes and usage 
data

• Root cause analysis
•  Redesign ‘what if’ 

modeling
•  Control charts for 

local improvements
•  Critical incident 

interviewing
• Surveys
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Assessing Nursing Workflow Within the Scope of Human-Computer Interaction

Human-computer interaction studies focus on the relationship between human and 
computers (or health IT). Cognitive walkthrough (Wharton et al. 1994) and Think 
Aloud Protocol (Jaspers et  al. 2004) are two common usability methods, com-
monly referred to as human-factors approaches, to assess health IT (Jaspers 2009), 
and to discover the interactive workflow. Cognitive walkthrough identifies actions 
and goals needed to accomplish tasks, and is often conducted by HCI experts; 
Think aloud protocol, conducted by end-users, encourages end-users to express out 
loud what they are looking at, thinking, doing, and feeling, as they perform a task 
(Lewis 1982).

For example, one study evaluated an electronic perioperative nursing documen-
tation system using cognitive walkthrough, and identified usability problems in the 
interactive process (Usselman et al. 2015). Another study extended the traditional 
cognitive walkthrough approach to groupwise walkthrough, and described the col-
laborative workflow between nurses and case managers in home care (Pinelle and 
Gutwin 2002). A systematic review of usability evaluation studies reported that cog-
nitive walkthrough and think aloud protocol were used in 49 (26%) studies 
(Ellsworth et al. 2017). A think aloud protocol study evaluated a nursing informa-
tion system (Rogers et al. 2013). In that study, participating nurses expressed their 
thoughts about the interactive process as well as how the system might impact their 
workflow, such as team communication, and the efficiency or effectiveness of their 
work. The study identified usability issues in the interface design as well as nurses’ 
concerns about work processes (Rogers et al. 2013).

Assessing the human computer interaction process has become a standard pro-
cess to identify interactive issues in health IT. Unified Modeling Language (UML) 
(Booch et al. 1998), a graphical representation approach, can be used to illustrate 

Level 2:

Level 1:

User Task

System

Environment
Level 3:

User
variance

Organizational
support

Task/Expectation
complexity

Fig. 8.1 Stratified view of health IT usability evaluation (Yen and Bakken 2012)
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the interactive workflow between health IT and end-users and inform prototype 
design (Machno et al. 2015). As usability evaluation is an iterative process, prob-
lems identified at Level 2 should be addressed before moving on to the Level 3 
evaluation. Once a health IT has been demonstrated to be usable at the human com-
puter interaction stage, the Level 3 evaluation would further incorporate environ-
mental factors to satisfy the socio-technical model where technology should be 
investigated within the social context.

Assessing Nursing Workflow in the Social Context and Clinical Environment

Interviews are used to elicit user’s needs and preferences to provide a deeper under-
standing of their experience and identify additional social-technical factors. 
Workflow analyses can be used to validate interview findings and to explore oppor-
tunities for use of health IT applications in the current practice of care on patient 
care units.

Observational studies, such as time motion studies, inform how health IT is 
being used in practice as well as among other competing tasks. Time motion studies 
have been used to examine nurse’ work pattern, workload, and time allocation of 
nursing activities (Westbrook et al. 2011, 2013). Through understanding the time 
allocation of nursing activities, new strategies could be developed to improve qual-
ity care (Mallidou et al. 2013). However, most time motion studies have not speci-
fied the time period of the observation (Westbrook et al. 2007, 2011; Abbey et al. 
2012; Sakai et al. 2016; Wright et al. 2015). When the time period is underspecified, 
it is unclear if the data might be skewed due to observers’ time availability, or if the 
observer’s fatigue was taken into account for quality control if a long-hour observa-
tion (8–12 h) was required. In addition, although task definitions were provided, the 
start and the end time point of each activity are often not reported, thus limiting the 
replication of the study. Other methodological limitations also include randomly 
selected observation time (Westbrook et al. 2007; Tuinman et al. 2016; Gartemann 
et al. 2012), self-report approach (Hendrich et al. 2008), manual paper-based & stop 
watch data collection (Abbey et al. 2012), and focusing on a single nursing activity 
(e.g. documentation (Wong et al. 2017; Read-Brown et al. 2013), medication admin-
istration (Elganzouri et al. 2009; Qian et al. 2015, 2016), communication (Popovici 
et al. 2015), glycemic control (Gartemann et al. 2012)).

8.3.2  Design

Design is informed by findings from the problem analysis phase and may include 
definition of the content, display, and workflow integration strategies most likely to 
address requirements and overcome barriers identified in Phase 1. Participatory 
design should ensure that requirements for health IT applications address differing 
stakeholder (e.g., patients, family, nurse, physicians) goals and the tasks necessary 
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to achieve those goals. Common themes for requirements specification are priori-
tized, mapped to new processes and tools, and used to inform the development of 
prototypes. Low fidelity prototypes of processes and tools are developed and itera-
tively refined in collaboration with stakeholders using develop-test-revise iterations 
to identify components to be included in the detailed design for high fidelity 
prototypes.

8.3.3  Development

Once the design of a tool is finalized, iterative testing and evaluation is conducted 
with stakeholders, including nurses. In this phase, initial testing may be conducted 
using focus groups and interviews iteratively refining the prototypes until a working 
prototype is accepted by the stakeholders. Testing and further development with 
stakeholders continues until the final product is developed. An iterative process of 
prototype refinement and usability testing whereby the prototypes are tested by rep-
resentative users (Usability.gov 2018) continues until sufficiently mature and 
implementation- ready versions of processes and tools are developed and validated 
by stakeholders.

8.3.4  Implementation

Implementation may begin with a series of pilot implementations to continue learn-
ing and refinement within a Learning Health System. For example, health systems 
engineering methods and tools used as part of the piloting and implementation 
phase include process-flow mapping and analysis, work design and simplification, 
root cause analysis, workload estimation, and general principles from lean and six 
sigma to evaluate the impact and to refinement of the intervention on workflow and 
patient care. During this phase, the identification and understanding of the emer-
gence of new tasks, procedures and workflow patterns provide an opportunity to 
enhance workflow processes to facilitate system use and to correct any “bugs” or 
unintended consequences of health IT that could lead to “workarounds” and impede 
adoption.

8.3.5  Evaluation

In the phases above we describe specific usability evaluation methods for workflow 
reengineering, which should be iteratively applied so that problems identified at 
Level 2 should be addressed before moving on to the Level 3 evaluation. Once a 
health IT tool is demonstrated to be usable at the human computer interaction stage, 
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the Level 3 evaluation would further incorporate environment factors to satisfy the 
socio-technical model where technology should be investigated within the social 
context. In addition, interviews using methods described in the problem analysis 
phase can be applied to identify user perceptions and experience after reengineered 
workflows and tools have been implemented, informing a continuous learning cycle 
for optimization.

Within a broad health systems engineering framework, evaluation also includes 
a range of process and outcome measures. Such measures may include clinical 
 outcomes, such as adverse event rates, or usage analytics to evaluate end-user 
engagement with the system being evaluated. A continuous learning cycle for itera-
tive evaluation to comprehensively identify system weaknesses and inform optimi-
zation can be complemented with data science methodologies to understand the 
amount, quality, and metadata patterns of system usage and data captured within 
clinical systems. In studying nursing documentation workflows, data science meth-
odologies evaluating usage data and documentation patterns provide valuable tools 
for the analysis of EHR interactions. Critical to this data science process is the 
contribution of nursing domain knowledge to provide context to these data (Westra 
and Peterson 2016).

As the title of Bakken and Brennan’s work “Nursing Needs Big Data and Big 
Data Needs Nursing” (Brennan and Bakken 2015) asserts, while data science is use-
ful for processing big data, nursing science and practice encapsulates expertise in 
diagnosis and treatment of human responses. Therefore, clinical nursing domain 
experts that understand nursing practice and workflows are essential when deter-
mining what data are appropriate and particularly helpful for clinical analytics.

Data science methods are essential to track patient states across settings, health 
professionals, and research databases, however these methods require common data 
definitions to group similar patients across sites and providers, enabling the identi-
fication and tracking of patient need and outcome patterns. Nurse-sensitive patient 
indicators are defined as “those outcomes that are relevant, based on nurses’ scope 
and domain of practice, and for which there is empirical evidence linking nursing 
inputs and interventions to the outcome for patients” (Doran and Almost 2003). 
Nursing-sensitive quality indicators reflect the structure (e.g., nursing education or 
certification at an institution), process (e.g., nursing assessments, nurse job satisfac-
tion), and outcomes (e.g., patient falls, pressure ulcers) of nursing care (Montalvo 
2007). There are a number of nationally recognized quality indicators (Owens and 
Koch 2015), however the National Database of Nursing Quality Indicators 
(NDNQI®) (Montalvo 2007) is the most widely used and influential set of nursing 
outcomes. Capturing data on care and/or outcomes most impacted by nursing pro-
vides essential outcomes measurement to support Learning Health System analytics 
which should be a driving focus to standardize nursing data sets for capture in 
EHRs. Standardized (or minimum) data sets, can be used to represent EHR data, 
such as non-standard flowsheet data, and can be enhanced for capturing relevant 
documentation workflows that impact and enable effective data analytics (Ahn et al. 
2015; Delaney and Westra 1991; Delaney et al. 2015; Ranegger et al. 2015; Williams 
1991; Werley et al. 1991). Standardized data sets that identify a specific collection 
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of data elements necessary to represent a given clinical domain or topic are referred 
to as a “detailed clinical model” or more simply a “reference model” (Moreno- 
Conde et al. 2015; Kim and Park 2011; Park et al. 2011). Openly available resources 
of existing reference models are available for use to guide iterative optimization of 
system design and analytics of clinical data (openEHR Foundation 2016; 
Intermountain Healthcare 2015; Health Level 7 International 2017; Hoy et al. 2009; 
Oniki et al. 2016; Pedersen et al. 2015).

8.3.6  Use Cases of Pragmatic Applications Grounded 
in Theoretical and Methodological Approaches Within 
Systems Engineering Framework

In the following sections we present use cases of pragmatic applications grounded 
in theoretical and methodological approaches within a systems engineering frame-
work. Use cases will be presented from four studies:

 1. The Brigham and Women’s Hospital (BWH)/Northeastern University 
Systems Engineering (NUSyE) Patient Safety Learning Lab
The BWH/NUSyE Patient Safety Learning Lab was established in order to apply 
a systems engineering approach to design safer and more reliable healthcare 
processes and to improve patient and family engagement in their safety plan dur-
ing an acute hospitalization. Key stakeholders, in addition to patients and family 
members, were the care team members on the acute care clinical units targeted 
in this lab, including nurses and physicians. Using health systems engineering 
approaches, an electronic Patient-Centered Safety Plan (PCSP) IT infrastructure 
was developed to address patient safety threats in real-time and to support con-
tinuous learning. The PCSP IT infrastructure included the following: (1) A 
Patient-Centered Safety Plan Portal to provide patients and family with the core 
set of information needed to participate in their personal safety plan during a 
hospitalization, (2) A Patient-Centered Fall Prevention to engage patients, fam-
ily, and care team members in the fall prevention process, and (3) MySafeCare, 
an application to facilitate patient reporting real-time safety concerns.

 2. Exploration of Nurses’ Time Allocation and Multitasking: A Time Motion 
Study
To address the methodological limitations of time motion studies described pre-
viously, an example of a time motion study will be presented (Yen et al. 2016). 
The time motion study (Yen et al. 2016) shadowed registered nurses (RNs) dur-
ing the regular working shift and used the TimeCaT tool which is an open-source 
comprehensive electronic time capture tool that was developed to support time-
motion studies (Lopetegui et al. 2012; TimeCaT 2015).

 3. Analytics of Nursing Data to Identify Healthcare Process Models
We will describe work by Collins and colleagues (Collins et al. 2012, 2013b; 
Collins and Vawdrey 2012) that uses analytics of nursing data to identify health 
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care process models (HPMs) as an example of how data science methods can be 
used to evaluate health systems, including nursing documentation workflows, 
workarounds, and information silos. These HPMs are generated by EHR utiliza-
tion data and embedded with information about clinical practice, can be applied 
to evaluation studies, and also used for predictive modeling that leverage HPMs 
as proxies of clinician concerns and decisions.

 4. Standardized Clinical Data Element Reference Models
Collaborative projects focused on defining standardized clinical data element 
reference models will be described to illustrate how they can both inform itera-
tive optimization of system design and analytics of clinical data. These models 
define system implementation workflows and functionality that drive documen-
tation practices, and ultimately data used for secondary analyses. We will 
describe case studies that highlight the use of these models for the evaluation and 
optimization of nursing documentation within EHR systems.

8.3.6.1  Problem Analysis: Use Case Examples

Interviews and Workflow Observations to Assess Nursing Workflow 
in the Social Context and Environment

In the BWH/NUSyE Patient Safety Learning Lab individual Interviews and Focus 
Group Sessions using semi-structured interview guides were used to learn about the 
needs and preferences of patients and healthcare providers and other social- technical 
factors related to patient engagement in developing their safety plan. The goals of 
the interviews and observations were twofold: (1) to inform investigators’ under-
standing of the current state of patient engagement in developing their safety plan 
(e.g., formal plan to keep them safe during an acute hospitalization) and, (2) to 
identify core requirements for developing a set of tools and processes to facilitate 
routine engagement of patients in identifying areas of safety risk and a plan to miti-
gate risk (Fig. 8.2). The interviews informed the current state of existing processes 
of care from the perspectives of stakeholders. After conducting these sessions, proj-
ect investigators followed basic content analysis methods (Krippendorff 2012) to 
interpret descriptive data obtained from the interviews. The focus group sessions 
were recorded, transcribed, and evaluated to identify perspectives about the degree 
to which patients are engaged in developing a safety plan in the current state, per-
ceived barriers and facilitators to patient engagement, and core system requirements 
for tools to facilitate engagement.

A workflow analysis was completed to: (1) identify and document current work-
flow patterns, (2) consider how they might be impacted by technology, and (3) iden-
tify the types of tools and or processes needed to ensure end-user buy-in and 
workflow integration (see Fig. 8.3). This information was then used to inform the 
configuration of the intervention and to anticipate needs for training.

Within the BWH/NUSyE Patient Safety Learning Lab interviews and workflow 
analyses revealed that patients and family were not routinely engaged in their safety 
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plan during an acute hospitalization. We learned that workforce training related to 
the value of patient engagement was needed. In addition, we learned that the Patient- 
Centered Safety Plan tools needed to be integrated with the electronic health record 
and patient safety event reporting systems to facilitate workflow. We also learned 

Topic 1

To begin, we would like to learn some background information related to
your knowledge about falls.

Pt./Family Study ID#:——— Unit#:—— Interview Date:——— Interviewer:———

Now, we would like to ask you about risks for falling.

-    Could you tell me how often and what time of the day your family
     usually visits you in the hospital?

-    Have you fallen before and in what setting?

-    Are you afraid of falling at home or at the hospital?

-    Did your nurse communicate with you about your risks for falling?

-    Would you be willing to complete a fall risk assessment form with your
     nurse that would identify why you’re at risk for falling and subsequently
     develop a fall prevention plan?

-    Tell us what your family knows about your fall risks.

-    Tell us your risks for falling as suggested by your nurse

-    How many people do you think fall during a hospital stay each year?
(Comment #1: Researcher states that “1/3 of people above age 65 fall,
and regardless of age being hospitalized increases risks for falling and
fall injuries.”)

(Comment #2: Researcher states “nurses fill out a fall risk assessment
form upon your admission based on an established fall scale”)

(Comment #3: If patient isn’t willing to, then researcher explains “evidence
from research shows filling out a risk assessment form with your nurse
can reduce risks for falling at hospital” and asks “tell me your concerns
about participating in the fall risk assessment”)

a. PROBE: How engaged or involved are they with your care?

a. PROBE: Did you suffer any injuries?
b. PROBE: Has anyone close to you fallen before?

a. PROBE: Tell me what you do to actively prevent falls?

a. PROBE: When was this communicated and how often?
b. PROBE: To what extent were you involved and in what way?
c. PROBE: Was your family involved in any way?

a. PROBE: Would you be willing to do this every day?
b. PROBE: To what extent would you want to be involved and in what
    way?
c. PROBE: Would you want to involve your family in this process?

a.
b. PROBE: Would you want the nurse to communicate the risks to
your family?

Background
Information

Topic 2

Fall Risks

Fig. 8.2 Sample interview guide

S. Collins Rossetti et al.



131

that a range of low (e.g., paper) to high technology (e.g., mobile apps, patient portal, 
electronic whiteboard) tools were needed to ensure that all patients, even those who 
were not willing to use technology, were able to engage in their safety plan.

TimeCaT Time Motion Studies to Assess Nursing Workflow in the Social 
Context and Environment

The example time motion study was (Yen et al. 2016) intended to address common 
methodological limitations of time motion studies described previously, such as 
data sampling issues. The study shadowed registered nurses (RNs) during the regu-
lar working shift. The observations occurred in the general patient care areas includ-
ing the nursing station, hallway, medication room, patient room, and supply areas. 
The typical 12-h nursing working shift was split into three time blocks: 7 a.m.–
10:59 a.m., 11 a.m.–2:59 p.m., and 3 p.m.–7 p.m. The 4-h observation time block 
minimized the chance of un-balance data if a 12-hour working shift has an unusual 
heavy or light workload. In addition, to ensure the data quality the study imple-
mented a three-phase data collection process, including (1) trial phase—generate 
and confirm observable nursing activities, (2) training phase—establish 

RN workflow
(Day)

4:00 4:30
5:02

5:51 5:26

5:25

5:11 5:15

Preliminary tasks
on computer 

RN talks to team
of doctors

Xray team 
arrives 

Fall risks were not 
communicated to 

any other staff

CT team arrives 
and takes pt

away

Patient returns
-in flow sheet 
-in admission 
assessment form
-in PROSPECT plan
of care electronically

Documentation of
fall score 

1) Fallen during any hospital stay? 
2) Blood pressure is low, so need to be 
careful 
3) In rehab, anyone helped you w/ 
walker or lift? 
4) If have had a fall, more likely to fall 
5) If necessary, would put on bed 
alarm 
6) If attached to IV pole, need to call 
for help 
7) If go to toilet, call for help 
8) May use walker or lift depending on 
your stay here 
9) Do you feel in pain? 
10) Anything you need that’s out of 
reach in room? 
11) Need to do CT scan soon, so no 
eating or drinking for now

Check off 
interventions on

FALL TIPS sheet 

Pt really 
sick 

First collect
labs

Did fall risk 
assessment?

Assess based 
on common 

sense 

PT just
acknowledges

Use yellow 
FALL TIPS?

Is Pt very 
sick?

RN said to pt:

OBS. STARTS
New admit

arrives

NO

YES

YES

NO

Fig. 8.3 Sample workflow observation related to patient engagement in 3-step fall prevention 
process
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inter- observer reliability, and (3) observation phase—data collection with confi-
dence. The trial and training phases help introduce the study and study personnel to 
nurse participants as well as other unit personnel. The prolonged engagement could 
also minimize the Hawthorn effect.

TimeCaT (Lopetegui et  al. 2012; TimeCaT 2015) a comprehensive electronic 
time capture tool was developed to support time-motion studies. TimeCaT records 
data in three activity dimensions: communication, hands-on task, and location. The 
communication dimension captures with whom nurses are interacting; hands-on 
task allows for recording of tasks that require nurses to physically touch the patient 
or care equipment required to perform a task (i.e. patient assessment); and the loca-
tion variable allows capture of where nursing activities take place. This approach 
allows capture of information about the time spent on nursing activities as well as 
the phenomenon of multitasking in nursing practice. Figure 8.4 shows the sequence 
of nursing activities (nursing workflow) during a 4-hour observation. The data col-
lected provide opportunities to analyze nursing activities quantitatively, as well as 
qualitatively by visualizing nursing workflows that reveal the context of nursing 
activities (hands-on tasks with information of communication and location) 
(see Fig. 8.5). With similar approaches, future studies investigating nursing workflow 
change before and after the implementation of a new health IT could discover the impact 
of health IT on workflow as well as identify environmental support needed for nurses.

Fig. 8.4 Nursing workflow visualization
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8.3.6.2  Design: Use Case Example

In the BWH/NUSyE Patient Safety Learning Lab, an interdisciplinary project team 
ensured that differing perspectives were captured in the design phase. Findings from 
Phase 1 were used to identify requirements for health IT applications that address 
stakeholder goals and the tasks necessary to promote patient engagement in their safety 
plan. As a part of the design process, team members defined the content, display, and 
workflow integration strategies most likely to address requirements and overcome bar-
riers identified in Phase 1. Common themes were prioritized, mapped to the new pro-
cesses associated with the planned intervention and then used to inform the development 
of the tool prototypes. An initial mockup of each tool was developed and refined by the 
project team. Prototypes were then further refined though focus group interviews with 
stakeholders (patients, family, and care team members) using develop-test-revise itera-
tions to identify components to be included in the detailed design.

After this process, a detailed design was developed by mapping out the core and 
interdependent functions of the Patient-Centered Safety Plan tools along with the 
specific patient requirements. Prototype graphical user interfaces were used to 
engage with stakeholders and to get direct feedback from the users.

8.3.6.3  Development: Use Case Example

Once the design of the tools from the In the BWH/NUSyE Patient Safety Learning 
Lab were finalized, iterative testing and evaluation of the Patient-Centered Safety 
Plan tools were conducted with patients, family, and other stakeholders, including 
nurses. In this phase, a project team did initial testing using focus groups and inter-
views until a working prototype was accepted by the stakeholders. Testing and fur-
ther developing with hospitalized patients continued until the final product was 
developed. An iterative process of prototype refinement and usability testing contin-
ued until sufficiently mature versions of the Patient-Centered Safety Plan tools were 
developed and validated by stakeholders. To perform usability testing, we developed 

Fig. 8.5 A series of paper and electronic prototypes were developed to engage stakeholders in a 
discussion of the content, display and workflow requirements for engaging patients and family in 
their safety plan during an acute hospitalization
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case scenarios that included a set of tasks associated with engaging patients in iden-
tifying safety risk factors and identifying an evidence-based prevention plan. We 
asked end users (nurses and patients) to use the tools to complete the tasks. The 
usability sessions were monitored by a research team member who observed the 
participants to see whether they could complete the tasks without instruction. The 
observer recorded areas of difficulty and asked questions about the process and use 
of the tools at the end of the session. Data from these sessions were used to refine the 
Patient-Centered Safety Plan tools. The final version of the Patient-Centered Safety 
Plan tools, which included both “low-tech” and “high-tech” tools was then formally 
implemented in Phase 4 (Fig. 8.6).

8.3.6.4  Implementation: Use Case Examples

Implementation of the Patient-Centered Safety Plan tools in the BWH/NUSyE 
Patient Safety Learning Lab started with a series of pilot implementations. The proj-
ect team used systems engineering methods and tools including process-flow map-
ping and analysis, work design and simplification, root cause analysis, workload 
estimation, and general principles from lean and six sigma to evaluate the impact 
and to refine the Patient-Centered Safety Plan tools. For example, the project team 
looked for the emergence of new tasks, procedures and workflow patterns. The pilot 
implementation provided an opportunity to enhance the software and to correct any 
“bugs” that could lead to “workarounds” and impede adoption. The project team 
conducted a human factors evaluation regarding use of the Patient-Centered Safety 
Plan tools by patients, nurses, and physicians. The goals of these observations was 
to determine: (1) the facilitators of and barriers to effective use; and (2) how com-
munication and collaboration process changed from the pre-intervention to inter-
vention period. This information was used to refine the tools and educate patients 
and care team members about the tools over the course of implementation process. 
Failure Modes and Effects Analysis (FMEA) was used to analyze the potential fail-
ure modes, the effects of failure, and causes with evaluating their severity, 

“Low-Tech” Laminated Paper
Fall Prevention Plan

“High-Tech” Bedside Display
(Screensaver) Patient

Safety Plan

“High-Tech” Mobile
Portal Patient Safety Plan

Fig. 8.6 The Patient-centered Safety Plan Sample “low -tech” and “high-tech” tools for engaging 
patients in their safety plan during and acute hospitalization
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probability and detectability of the failures (Table 8.2). The pilot implementation 
also provided an opportunity to test the integrated system in the wild and identify 
both socio-technical factors to inform system versioning or unintended workflow 
consequences that may have been unrecognized that could limit effectiveness or 
create excessive work burden on care team members.

8.3.6.5  Evaluation: Use Case Examples

Evaluation of Heath IT systems can leverage analytics of usage data informed by 
clinical domain experts to identify and define Healthcare Process Models (HPM). 
Collins et  al., have developed Healthcare Process Models of Clinical Concern 
(HPM-CC) which are generated from perceptions, interpretations, and recordings 
entered by clinicians (e.g., nurses, physicians), and are based on clinician decisions 
to observe and enter data in the EHR (Collins et  al. 2012, 2013b; Collins and 
Vawdrey 2012). These HPM-CCs are used to identify nursing documentation work-
flows that are associated with a nurses concern about risk for patient deterioration. 
These types of models demonstrate that EHR utilization patterns are rich in infor-
mation that can be used to understand and evaluate system design to support clinical 
care processes such as nursing surveillance activities and decrease information and 
communication silos (Hripcsak and Albers 2013). Collins and colleagues’ data min-
ing of nursing documentation workflows identified signals from annotations or 
comments placed in flowsheets that were associated with nursing surveillance pat-
terns and patient outcomes (Collins et al. 2012). Triangulating those data with quali-
tative findings elucidated that nurses were utilizing free text comment fields as a 
documentation workaround to convey concern for a clinical change in patient state, 
and that these important data may be missed by other care team members (Collins 
et al. 2012).

Standardized Clinical Data Element Reference Models

Efficient documentation workflows often leverage EHR functionality that anticipate 
and facilitate clinicians in navigating to relevant modules within the EHR based on 
prior or current actions and selections, such as showing or hiding fields depending on 
prior data entered. When an EHR is well-designed, these documentation workflows 
can be effective in increasing the efficiency and completeness of documentation. As 
discussed previously in this chapter, improvements in time efficiency is a primary 
outcome used to measure the successful implementation of a clinical system. Usage 
analytics from clinical systems can be used to quantify documentation burden by 
calculating data points recorded by nurses as a complementary method to observa-
tional studies to understand nurses’ documentation burden (Collins et al. 2018). EHR 
facilitated documentation workflows are particularly prevalent for nurses in the inpa-
tient setting given the significant amount of patient assessment and intervention data 
documented in flowsheets by nurses (Penoyer et al. 2014). Secondary analysis of 
these data requires sufficient metadata to differentiate missing data from not 
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applicable data. For example, information is needed to determine which fields: (1) 
were available in the nursing workflow and were completed (i.e., captured data), (2) 
were available in the nursing workflow but not completed (i.e., missing data), or (3) 
were not available in the nursing workflow and therefore were not completed (i.e., 
not applicable for a given patient) (Westra et  al. 2015). Westra and colleagues 
described these challenges in a study modeling flowsheet data for quality improve-
ment and research, and presented lessons learned including an overall need for stan-
dards to represent flowsheet data (Westra et al. 2015). When nursing documentation 
reference models are data-driven, informed by best practices, validated by domain 
experts, and openly shared, they can serve to standardize nursing workflows, decrease 
nursing documentation burden, and further enable data science in nursing. For exam-
ple, a validated Pain Reference Model implemented in a vendor EHR specified the 
data elements used to capture which pain scale was selected and used by a nurse, 
and was designed to explicitly captured pain score data in one field for all scores 
that used a scale of 0–10 to support reporting of pain scores across patients, settings, 
and time (Collins et al. 2017). A reference model that captures relevant EHR imple-
mentation specifications, such as cascading logic and documentation workflows, 
informs consistent design and reliable and accurate interpretation of data for sec-
ondary analysis while supporting efficient EHR navigation.

8.4  Discussion

Implementing new health IT is often disruptive. Studies to promote health IT imple-
mentation have primarily focused on behavioral theories (Kukafka et al. 2003), such 
as technology acceptance model (Davis 1989), task-technology fit model (Goodhue 
and Thompson 1995), and diffusion of innovations (Rogers 1995). The measures of 
health IT implementation success primarily have relied on technology acceptance 
rate, usage, and clinical quality measures (Phichitchaisopa Naenna 2013; Venkatesh 
et al. 2011; Patel et al. 2013; Steininger et al. 2014). In addition, health IT imple-
mentation is a process and it requires active participation of individuals and the 
organization. Understanding factors that address cultural differences and communi-
cation within and between clinical professions or departments are essential, and 
should be understood in early phases of the system development lifecycle. It has 
been reported that most health IT evaluation studies have been conducted in the 
implementation or post-implementation stage (Yen and Bakken 2012; Ellsworth 
et al. 2017). Rather evaluation at all stages are useful and health IT vendors should 
conduct usability evaluation throughout the system development lifecycle, includ-
ing the laboratory setting as well as larger scale process evaluations in live clinical 
settings. Failure to address multi-level perspectives (individual, departmental or 
unit, organization) iteratively may cause the misalignment of expectations and 
goals, and result in workarounds and disruption in nursing practice.

Nevertheless, conducting socio-technical evaluations iteratively or longitudi-
nally is a challenge, due to a lack of agreement of socio-technical research on defini-
tions and guidance, causing both practical and conceptual interpretation problems 
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(Cresswell and Sheikh 2014). Mixed-methods research with both qualitative and 
quantitative methods provides valuable multi-dimensional justification and data 
validation for reengineering changes in nursing workflow studies. Organizational 
culture and support, and how they affect nursing practice, are significant factors for 
health IT implementation success.

Overall patient outcomes are dependent on the complex relationship between the 
work activities and the systems used by the entire care team. To form a more rele-
vant relationship between nursing activities, systems and processes, and patient out-
comes, “nursing-sensitive” indicators were developed for both the inpatient and 
outpatient settings (Gallagher and Rowell 2003). These nursing sensitive indicators 
can be used to inform nursing documentation reference models that maximize the 
value of data points captured by nurses while minimizing unnecessary documenta-
tion burden, and can be used to incorporate nursing domain expertise into data sci-
ence methods for evaluation of systems, as well as patient outcomes.

Despite activities described earlier in this chapter of nurse driven knowledge 
discovery using EHR data, there is still a lot to be discovered. From a nursing per-
spective, there still exist considerable knowledge gaps in Learning Health System 
analytics. To borrow a metaphor from Albers and colleagues (Albers et al. 2014), 
nursing practice and patient characteristics, including clinical outcomes, are not 
unified in the same way that engineers and physics are, even though nursing activi-
ties are integral to patient outcomes the same way that physics is crucial to building 
a bridge. The set of approaches needed to create this level of integration are both 
known and not known. Known approaches already in the literature, from other clini-
cal contexts include more advanced natural language processing (Zhou et al. 2010), 
time series analysis (Albers et al. 2014; Hripcsak et al. 2015; Pivovarov et al. 2014a), 
automatic methods of analysis (Albers et al. 2014) and mitigating bias (Pivovarov 
et al. 2014b) in EHR related data. For example, Hripcsak et al. have developed deep 
models for understanding and characterizing the relationship between prescribers 
(i.e. physicians, nurse practitioners and physician’s assistants), and associated 
patient outcomes (Hripcsak et al. 2016). Deep understanding of these types of rela-
tionships can inform innovative system design. Some of the still unknown methods 
includes ways of dynamically characterizing or phenotyping (Albers et al. 2014) 
nurses by their workflow and their patients’ nurse-sensitive indicators to aid in 
knowledge discovery, prediction and evaluation. Health systems engineering pro-
vides a flexible, yet targeted, framework to understand the impact of new systems 
on nursing and patient care throughout the system development lifecycle, and can 
be used to incorporate novel data-driven models that evaluate user profiles, docu-
mentation workflows, data capture, and associated outcomes to inform optimization 
and reengineering of clinical systems for continuous learning.
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8.5  Conclusion

Health IT evaluation is complex and requires empirical studies to explore barriers 
and facilitators. It is critical to address the interdependent relationship between 
health IT and its social context where the health IT is implemented. Inattention to 
workflow assessment results in low health IT acceptance and workarounds (Sheehan 
and Bakken 2012). Usability evaluation guided by a framework (e.g., socio- technical 
theory, stratified view of health IT evaluation model, or other framework) and obser-
vation approaches can assist in identifying problems in the interactive process and 
nursing workflow. Moreover, the use of a health systems engineering approach that 
leverages a range of methodologies (e.g., participatory design, usability evaluation, 
workflow observations, and documentation analytics methodologies) for develop-
ment and redesign of applications promotes integration of health IT innovations 
within a system of systems.

In this chapter, we provide a series of examples that demonstrate the iterative 
nature of health IT evaluation. These examples highlight the complexity of nursing 
and patient care workflows and the significance of an iterative and multi-level approach 
to usability evaluation. This approach first identifies and resolves basic human-com-
puter interaction issues before testing health IT systems in the context of clinical 
workflows, and then learning from EHR usage analytics. Evaluation of overall system 
effectiveness is conducted after usability and workflow issues are addressed.

Nevertheless, this chapter highlights the fact that even well-designed systems 
that adequately address socio-technical dimensions as part of the development pro-
cess, require continued attention to workflow during and after implementation. 
Post-implementation attention to end-users’ concerns and feedback provides an 
opportunity for system enhancement and refinement, prevents workarounds, and 
maximizes the likelihood that the intended system benefits will be realized. 
Secondary analysis of EHR data after system implementation can provide important 
clues about the degree to which the system is built to capture data in the context of 
nursing documentation workflows and minimize silos, and the degree to which the 
reference model differentiates missing data from data that is not applicable for a 
given patient. This context is needed to achieve a learning health care system and 
can be achieved if nursing domain experts work closely with data science experts 
throughout the system lifecycle to contextualize clinical analyses and help to suc-
cessfully convert data into knowledge. Nationally recognized safety and quality 
indicators can be used to provide useful and relevant clinical and process outcomes 
for continuous measurement and to support Learning Health System analytics to 
promote learning, reengineering, and safer care.
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Chapter 9
Patient-Oriented Workflow Approach

Mustafa Ozkaynak, Siddarth Ponnala, and Nicole E. Werner

9.1  Introduction to the Patient-Oriented Workflow Approach

Existing research that focuses on designing, implementing, and assessing organiza-
tional interventions (such as information technology) in health care and improving 
care delivery have two important limitations: (1) care delivery is seen as a series of 
unrelated or independent (discrete) episodes (Elhauge 2010), and (2) the research 
focuses on individual care settings, predominantly formal health settings or daily- 
living environments, instead of the connections between settings. As a result, health-
care delivery (particularly chronic disease management) is often not examined in an 
integrated, holistic way, and organizational interventions to improve healthcare 
delivery across settings can create challenges impeding optimal design and 
implementation.

An integrated understanding of workflow across settings is important to inform 
the design of health information technology (HIT) to support improved health out-
comes (Ozkaynak et al. 2016a; Werner et al. 2017a). In general, workflow can be 
defined as “the flow of work through space and time” (Karsh 2009)—i.e. temporally 
organized activities that occur across settings. However, most workflow studies 
focus on limited boundaries, typically single settings such as emergency depart-
ments (EDs) (Fairbanks et  al. 2007; Yen and Gorelick 2007), operating rooms 
(Kobayashi et al. 2005; Marjamaa et al. 2008), intensive care units (Malhotra et al. 
2007), primary care settings (Unertl et  al. 2009) or the workflows of individual 
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clinician groups (physician’s workflow, nurse’s workflow) or individual care 
 processes, such as barcode medication administration (Carayon et al. 2007a), that 
take place in a single organizational context. Capturing workflow within a defined 
boundary or a single setting or role is less challenging methodologically. However, 
health care occurs beyond a single setting (Walker and Carayon 2009; Werner et al. 
2016, 2019). Incomplete understanding of workflow across diverse settings may 
result in failure to adopt new technology, localization (lack of context awareness), 
and operational ineffectiveness (Walker and Carayon 2009). For example, lack of 
adoption of personal health records by both clinicians and patients is likely if there 
is a gap between clinical workflow and patient’s workflow at home (Tang et  al. 
2006). Extreme localization due to lack of understanding of workflow across diverse 
settings has been reported to be a barrier for health information exchange (Unertl 
et al. 2013; Ozkaynak and Brennan 2013a). Suboptimal operational effectiveness 
related to coordination challenges can occur when the interaction of activities that 
take place across diverse settings is ignored, and when activities are studied in each 
setting separately rather than holistically (Abraham and Reddy 2010).

Although workflow is a useful concept, identifying appropriate system boundar-
ies is needed for its full utilization (Xie et al. 2016). We argue that patient-oriented 
workflow is an appropriate approach to study workflow holistically (i.e. capturing 
all essential activities and other elements in the health care of the patient). This 
approach re-conceptualises workflow so that it focusses on patients. In a healthcare 
context, this means decoupling workflow from the personnel who work in formal 
settings and coupling it, instead, to the patient (Ozkaynak et al. 2013), who is at the 
center of all work and who spans all settings, formal and informal.

The patient-oriented workflow approach allows us to re-define the system bound-
aries of healthcare activities (i.e., incorporating both clinical and daily-living envi-
ronments). Identifying system boundaries precisely is critical to examining how 
health care delivery systems function in their entirety (i.e., with all essential ele-
ments) (Xie et  al. 2016; Karsh and Alper 2005). Studying workflow enables an 
understanding of how work elements (including information, resources, and influ-
ence) are organized. Workflow models can help explain patient interactions (Unertl 
et al. 2009) and reveal design directions for HIT that supports user performance 
(Yen and Bakken 2012).

A patient-oriented workflow approach focuses on the three essential elements of 
workflow: activities, roles, and sequence (Ozkaynak et  al. 2013; Ozkaynak and 
Brennan 2013b). We believe that a patient-oriented workflow model provides the 
“true flow of the work” perspective (Zheng et al. 2010) by including activities per-
formed by the key players—patients, informal caregivers, “care partners” (Sarkar 
and Bates 2014), and clinicians—in the “coproduction of healthcare delivery” 
(Batalden et  al. 2016). Patient-oriented workflow also captures the cooperative 
work that typically occurs across traditional organizational boundaries. In other 
words, the patient, rather than the clinician, drives the flow of work (Ozkaynak and 
Brennan 2013b). This approach to workflow follows the patient “out the door” of 
the formal healthcare setting rather than stopping “at the door”. It allows us to study 
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workflow across healthcare environments by including all relevant activities in all 
settings.

Patient-oriented workflow focuses on actual episodes or instances, rather than 
“typical” cases. By examining many individual episodes, patterns and variations 
can be analyzed (Ozkaynak et al. 2015). For example, in a study of five ED sites, the 
pattern of unique interactions among disciplines in the ED, could be graphically 
mapped (Ozkaynak et al. 2015). Variations (in terms of how various activities are 
conducted in a sequence) in care received, as well as those providing the care, could 
be identified. These patterns and variations can then potentially be related to their 
affect on health outcomes.

The holistic perspective that patient-oriented workflow provides, (Ozkaynak 
et al. 2013, 2016a) can inform the design and implementation of various interven-
tions by: (1) accounting for multiple roles and their interrelated activities; (2) con-
noting continuity over time and between visits; (3) helping tailor care to patients’ 
needs and preferences; and (4) capturing the relationships between patients and 
caregivers (Werner et al. 2019).

9.1.1  Patient-Oriented Workflow Informs the Design of Health 
Information Technology (HIT)

HIT literature indicates that explicating workflow across settings is essential to 
obtaining desired results (Moen and Brennan 2005; Brennan and Casper 2015; 
Kaufman et  al. 2009; Valdez et  al. 2015a; Ozkaynak et  al. 2018a). Un-nuanced 
workflow models may lead to reduced adoption of new technology (Tang et  al. 
2006), lack of awareness of external health information (Unertl et al. 2013), mistrust 
(Ozkaynak and Brennan 2013a; Ross et  al. 2010) and unintended consequences, 
such as medical error (Koppel et  al. 2005) or coordination issues (Abraham and 
Reddy 2010).

Development of HIT has traditionally focused either on clinical settings (e.g., 
electronic health records [EHR]) or on consumer use (e.g., home glucose devices). 
The design of most clinical information systems aims to effectively use clinical 
information such as laboratory results and/or radiological/other tests to formulate a 
diagnosis or guide treatment. Consumer HIT systems, on the other hand, are gener-
ally designed to provide information to patients for self-management at home. 
Therefore, existing HIT generally fits exclusively into a clinical-solution bucket or 
a consumer-solution bucket. Patient-oriented workflow can be an effective approach 
to bridge clinical and consumer HIT (Ozkaynak et al. 2018a) and inform a collab-
orative HIT design, which jointly optimizes clinical and consumer informatics tech-
nologies (Valdez et al. 2015b).

As patient-oriented workflow eponymously focuses on the patient, it engenders 
a significant but undervalued healthcare-related work unit patient work (Werner 
et al. 2017a; Valdez et al. 2015a; Holden et al. 2015a). Examination of patient work 
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can help identify information/data needs across diverse settings (Coleman et  al. 
2004), and identify the gaps between activities in diverse settings (Ozkaynak et al. 
2018a). Patient-oriented workflow can make technology more user-centered by get-
ting the right information to the right people at the right time. These “right’s” are 
essential for effective use of HIT (Werner et al. 2017b; Campbell 2013). For exam-
ple, clinical decision support systems (CDSS) can support antimicrobial steward-
ship efforts in EDs effectively only if they can support decisions at multiple points 
of care (within overall care delivery) and at multiple physical locations (Ozkaynak 
et al. 2018a). Patient-oriented workflow can inform the development of CDSS by 
identifying these points and physical locations.

9.1.2  Patient-Oriented Workflow Informs Organizational 
Design

Workflow studies are common at various stages of organizational (re)design of 
healthcare institutions. An important objective of these workflow studies is to ensure 
that technical and social components (or subsystems) are congruent with each other 
and that together, they are congruent with the environment. Patient-oriented work-
flow or patient-focused workflow (compared to traditional workflow methods), can 
potentially better inform organizational design by; (1) showing variability in how 
work is accomplished, (2) showing cooperation between involved parties, (3) iden-
tifying sources of problems, (4) facilitating communication and coordination, and 
(5) facilitating patient-centeredness.

Although some variability in healthcare work is inevitable lack of awareness of 
these variabilities in care can lead to poor outcomes. For example, treating patients 
with acute asthma with systemic corticosteroids within an hour of presenting to the 
ED significantly reduced admission rates, while administration of steroids later than 
1  h after presenting to the ED may lead to poor outcomes (Rowe et  al. 2001). 
Patient-oriented workflow can highlight the existence of inconsistencies during the 
delivery of care in health care settings. Likewise, in the setting of everyday living, a 
workflow pattern can capture inconsistencies in self-management. The patient- 
oriented workflow includes time-stamped information, enabling all relevant care- 
related activities to be closely examined. For example, Ozkaynak et al. (Ozkaynak 
et al. 2015) studied patient-oriented workflow in 6077 asthma-related patient care 
episodes in five EDs. They demonstrated how variability in events and timing 
occurred for patients presenting to EDs with a similar diagnosis. The work also 
quantitated the workflow in various sites showing differences based on ED, patient 
acuity, and arrival mode (ambulance vs. walk-in). Electronic health records (EHR), 
barcoding technologies, and Radio Frequency Identification (RFID) technologies 
can allow researchers to make connections between the number and types of indi-
viduals who performed activities based on their background (education, experience 
etc.) to patient outcomes. Patient-oriented workflow can also show how various 
individuals perform various roles at different times throughout a patient episode.
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Ability to identify problems at their source is an important organizational design 
objective (Clegg 2000). Effective organizations can capture and mitigate the prob-
lem as soon as they occur before it propagates over time across the entire organiza-
tion. In the context of healthcare, these problems can be in the form of inefficiencies, 
safety concerns, quality of care issues, reduced access to care, low patient satisfac-
tion, and high cost of care. Current EHRs and other technologies (e.g. barcoding, 
RFID) can successfully track and record workflow steps and patient outcomes at 
multiple points. By capturing patient episodes across diverse settings and associated 
activities, roles and temporal relationships to patient outcomes can allow for prob-
lem identification at their source. For example, if nursing assessment prolongs 
assessment of the patient by physician, a workflow targeting nursing activities alone 
would not reveal this barrier and the actual source of the problem. Patient-oriented 
workflow will both reflect the variety of challenges experienced by patients and 
providers and capture deviations from optimal care management.

Self-management is an increasingly important aspect of both chronic disease 
management and post-acute care (Wagner et  al. 2001). Although the term “self- 
management” refers to health activities in daily-living environments, these activities 
are not generally created in the home. Self-management protocols are often created 
in formal, clinical healthcare settings. An important barrier to effective self- 
management is the disconnect with events in clinical settings (Nagelkerk et  al. 
2006; Rogers et al. 2005). Thus, workflow study can reveal inconsistencies between 
clinical and daily-living settings, and the way these inconsistencies lead to chal-
lenges and deviations optimal care delivery and health management.

In short, because the communication and coordination needs of contemporary 
healthcare delivery go beyond the boundaries of single settings (Coleman et  al. 
2004), understanding these needs will reveal problems and provide the basis from 
which to improve communication and coordination. Patient-oriented workflow 
helps identify these needs by focusing on the patient, operationalizing her or his 
needs, and identifying reasons for unmet needs.

9.1.3  Patient-Oriented Workflow Informs Implementation 
and Evaluation

To successfully implement HIT, it is essential to understand the workflow in which 
implementation is to be integrated. Without an accurate understanding of current 
roles and activities, the implementation of HIT in healthcare delivery may alter the 
workflow in an adverse way, resulting in unintended consequences (Carayon 2012; 
Carayon et al. 2007b; Karsh et al. 2010). Because the focus of patient-oriented work-
flow is on the patient instead of the clinician, it can inform implementation practices 
across boundaries, personnel, and time (Werner et al. 2016). Implementation across 
boundaries is inevitable in some circumstances such as personal health records (Tang 
et al. 2006) and health information exchange initiatives (Unertl et al. 2013). Analysis 
of this type of workflow can highlight variations in practice and allow us to isolate 
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an efficient or preferred workflow. For example, in the hospital, medication is typi-
cally administered by nurses, but when the patient leaves the hospital, the same task 
is performed by the patient or an informal caregiver. Clinician- centered workflow 
permits awareness of only hospital-based workflow, leaving out critical implementa-
tion barriers that may be relevant in the home. The patient- oriented workflow allows 
us to take a holistic view of workflow as it occurs across work systems and informs 
whether or not the implementation of an organizational intervention (such as HIT) is 
suitable for a longitudinal process rather than discrete episode of care.

Patient-oriented workflow can also inform evaluation research. An important 
reason for unintended consequences of interventions in healthcare, is the complex-
ity of healthcare systems (Sittig and Singh 2010). Interdependence between various 
settings (e.g., hospital, primary care clinic, home, workplace) requires inclusion of 
relevant settings and cross-setting connections for a comprehensive evaluation. 
Patient-oriented workflow takes the interdependence between settings into account 
and highlights the connections and/or problems with these connections.

9.1.4  Limitations of Patient-Oriented Workflow Approach

Despite the benefits of gaining an increased understanding of patient-oriented work-
flow, such models are challenging to develop. There are difficulties in conducting 
workflow studies in both formal (e.g. clinical) and informal (e.g. home) health set-
tings (Holden et al. 2015b). Methodological challenges include ensuring the reli-
ability and validity of the collected data due to a high level of variability and 
complexity in health settings (Ozkaynak et al. 2018a; Chung et al. 2017). Theoretical 
challenges include the lack of comprehensive, robust conceptual frameworks that 
can be used to guide patient-oriented workflow studies (Ozkaynak et al. 2016b). 
Additionally, patient-oriented workflows involve a larger scope and more complex 
work phenomena. These workflows often rely on patient entry of data which may 
require technical literacy or written data input which often results in missing data. 
The home environment also will vary among individuals based on cultural, ethnic, 
and social factors etc. The inconsistencies across reported workflow studies have 
been attributed to the combination of these high levels of complexity as well as 
simplified modeling techniques (Zheng et al. 2011). More sophisticated modeling 
techniques are needed to address this escalated level of complexity.

9.2  Approaches to Study Patient-Oriented Workflows

9.2.1  Qualitative Methods

Both qualitative and quantitative methods have been used to model and evaluate 
patient-oriented workflows (Ozkaynak et al. 2016a). Traditionally, workflow evalu-
ation has consisted of in-depth (ethnographic like) observations, interviews, and 
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contextual inquiry that are leveraged to explicate individual workflows. These meth-
ods yield rich qualitative data that provides a depth of understanding to the multiple 
components of patient-oriented workflow (Ozkaynak et al. 2018a). However, sev-
eral limitations are associated with this method. First, ethnographic work of this 
kind is resource intensive, often requiring time-consuming and costly data collec-
tion. Second, in-depth ethnography to explain workflows can be invasive and bur-
densome for study participants, requiring numerous prolonged interactions between 
study participants (clinicians and patients) and researchers. Third, as a result of the 
former limitations, sample sizes tend to be small and may lack representation of a 
broader context. Finally, qualitative methods yield descriptive findings that limit the 
ability to statistically associate workflow findings with outcomes.

Recent methods have been developed to quantify qualitative findings. For exam-
ple, Epistemic Network Analysis (ENA) (Shaffer et al. 2009, 2016), a novel method 
of mixing qualitative and quantitative data, creates quantitative models of the quali-
tative data. ENA is a new analytical approach that combines principles from social 
network and discourse analysis, to identify and quantify connections among ele-
ments in coded data and represent them in dynamic network models (Shaffer et al. 
2009, 2016; Gee 2014). A key feature of ENA is that it enables comparison of dif-
ferent networks, both visually and through summary statistics that reflect the 
weighted structure of connections. As such, ENA also provides a potential mecha-
nism for quantifying workflow comparison.

ENA is based on an epistemic frame, which is a pattern of associations across 
knowledge, skills, and habits of mind along with other cognitive elements that char-
acterize communities of practice. This data analysis method can be utilized to model 
interactions across work systems in healthcare delivery, and to better understand 
which cognitive patterns propagate through the patient journey. Wooldridge et al., 
have used ENA to study task allocation communication in primary care teams 
(Wooldridge et al. 2018). Qualitative data were collected through 15 h of observa-
tions of a high performing primary care team that included a physician, nurse, medi-
cal assistant, and unit clerk in task allocation communication. ENA was employed 
to build a quantitate model of the observation data specifically to evaluate sender, 
receiver, and synchronicity impact of task acceptance. From this analysis, the 
researchers learned that physician and unit clerks were most efficient in allocating 
tasks. ENA can be employed in other applications across work systems to identify 
patterns of barriers and facilitators for desired work system outcomes.

9.2.2  Quantitative Methods

Recently, quantitative methods have been applied to study patient-oriented work-
flows (Ozkaynak and Brennan 2012, 2013b; Ozkaynak et  al. 2015; Chung et  al. 
2017). The quantitative data for patient-oriented workflow research includes struc-
tured observations and EHR data. Data typically includes time stamped activities 
and roles of individuals who conduct these activities. Quantitative methods, in par-
ticular temporal sequence analyses such as Markov modeling, provide a method of 
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characterizing patient-oriented workflow in a way that allows for statistical com-
parisons (Ozkaynak et al. 2015). However, quantitative methods also have limita-
tions; data from EHR needs to be validated in terms of completeness both within 
and across organizations (Dziadkowiec et  al. 2016) and collecting the necessary 
quantitative data through field studies is resource-intensive.

The patient-oriented workflow approach in particular results in some unique 
challenges for data collection and analysis. Studying workflows as they occur across 
healthcare settings often requires data collection in a patient’s home. In-home 
research typically limits researchers in the time they can spend in a house, the num-
ber of visits to a home, and may be restricted to a certain number of homes due to 
travel or cost limitations (Holden et al. 2015b). Novel methodologies that engage 
patients in collecting data such as journaling (Ozkaynak et al. 2016b) and photo-
voice (Wang 1999; Woda et al. 2015) can help overcome this challenge. Additionally, 
crossing organizational boundaries pose challenges associated with getting buy-in 
from multiple organizations, clinicians, and patients, as well as accounting for pro-
cedural and environmental changes.

Taking a patient-oriented approach inherently broadens the scope of the analysis, 
increasing the complexity of the workflow. Variability due to this increased com-
plexity can lend itself to challenges in ensuring the reliability and validity of the 
data (Ozkaynak et al. 2018a). Patient-oriented workflow is more likely to involve 
incompatible data sources and challenges in aggregating data, due to the study 
across diverse settings using actual individual episodes. Quantitative methods facili-
tate statistical analyses of workflows that allow for associations. However the esca-
lated level of complexity (e.g. involvement of multiple individuals (or entities) with 
activities at different levels of details, concurrency of activities and high level of 
variability across patient care episodes) can be problematic without thoughtful plan-
ning and resources such as statistics experts and other support personnel.

9.3  Case Studies

As mentioned above, the patient-oriented workflow approach has several applica-
tions in healthcare. To follow is a description of the application of the patient- 
oriented workflow, in four different care environments: EDs, daily-living 
environments, nursing homes, and skilled home health care.

9.3.1  Emergency Departments

The first author developed a preliminary version of a patient-oriented workflow in 
the context of EDs (Ozkaynak 2011). Although EDs represent a single setting, dif-
ferent roles are assumed in various subsettings of EDs. Patient-oriented workflow 
can be used to identify cooperative work in EDs (Ozkaynak and Brennan 2012, 

M. Ozkaynak et al.



157

2013b). Early stages of 108 patient care episodes were identified using structured 
observations in three EDs (Ozkaynak and Brennan 2012). Data were collected on 
time-stamped activities and roles of individuals who conduct these activities. Each 
episode was modeled as a workflow and included a sequence of activity-role pair. 
Data analysis yielded 96 different sequence patterns. Using data reduction tech-
niques, such as multidimensional scaling and hierarchical cluster analysis, six pat-
terns of care delivery were identified, differentiated primarily by whether the 
prescriber was a physician or midlevel clinician. Secondary differentiators included 
whether the patient arrived in the ED as walk-in or via ambulance, and in which ED 
patient care occurred. The high level of workflow variability reported in this study 
can inform the design of ED work systems. The variability in workflow could not 
have been captured using a strictly clinician-oriented approach (e.g. studying single 
type of clinician’s workflow). The study concluded that work interventions should 
not limit EDs’ flexibility to handle sequential variability in patient care.

In another study, patient-oriented workflow using EHR extracted data demon-
strated factors that shape the workflow patterns and the relationship between work-
flow and patient outcomes (i.e. length of stay) (Ozkaynak et al. 2015). In this study, 
6077 episodes for asthma patients were identified in five EDs in one calendar year. 
The data included time-stamped activity data. EHRs could track logs for many 
activities, the following activities were followed and used in the analysis; patient 
arrival, triage started, pain assessed, patient roomed, nurse/tech assigned, attending 
assigned, resident/fellow assigned and patient departed from ED.  Using Markov 
models and visual analytic techniques, patient-oriented workflow yielded workflow 
patterns for each of the five EDs by aggregating the sequence of activities for each 
episode. These patterns were correlated with length of stay. Moreover, the workflow 
displayed variations for different arrival modes, settings, and acuity levels. Clinician- 
oriented approaches on the other hand, would not have been linked to patient out-
comes such as length of stay, as they are generally linked to clinician outcomes (e.g. 
spent time on various activities, clinician activity patterns) (Ozkaynak et al. 2018b).

Both of these ED studies identified workflow patterns and factors that resulted in 
these patterns. Identifying the factors and linking patterns to patient outcomes, 
allows the redesign of ED systems that lead to better outcomes and discourage pat-
terns that lead to worse outcomes.

As discussed previously, the patient-oriented workflow approach has been 
applied to study longitudinal processes of healthcare. Doutcheva et al. applied this 
method to study the workflow associated with older adults transitioning to the ED 
and then returning to their homes following hospital discharge (Doutcheva et al. 
2017). Qualitative methods were used to identify: (1) the organizational boundaries 
crossed, (2) barrier/facilitator interactions across organizational boundaries, and (3) 
the patient work consequences that occur when patient work occurs across boundar-
ies. Thirty-six semi-structured interviews were conducted with older adult patients 
who were discharged from a level 1 trauma center ED to their home. The goal of the 
interviews was to have patients describe their “patient journey” from their initial 
decision to go to the ED to their current state of care after being discharged home 
from the ED. Specifically, the SEIPS (Systems Engineering Initiative for Patient 
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Safety) framework was used to guide the directed content analysis of the interview 
data to answer the research question described above (Carayon et al. 2006; Hsieh 
and Shannon 2005). Results revealed that patient work crossed several organiza-
tional boundaries including the home, hospital, primary care facility, pharmacy, and 
community organizations. Further, barrier/facilitator interactions across boundaries 
were connected to either positive or negative consequence for the patients from their 
perspective. In this study, the use of a patient-oriented workflow enabled the 
researchers to trace cross-boundary barriers, facilitators, and post-ED discharge 
patient consequences related to those barriers that would otherwise not have been 
identified had the focus only been on the clinical setting. The results highlight that 
ED transitions happen longitudinally, that is, beyond the care that occurs within the 
ED, and extend into the community. As a result, the process is vulnerable to vari-
ances in the different work systems. Currently, interventions to improve ED dis-
charge and transitions from acute care settings to the home have focused on the 
discharge process that occurs in the clinical setting, leaving out the potential to 
identify and subsequently address downstream effects. Use of the patient-oriented 
workflow approach in this case allowed for the ability to identify many of the issues 
associated with transitions in healthcare that happen after the patient leaves the 
clinical setting. As a result, subsequent system redesign can focus on supporting 
patient work across system boundaries to ensure successful care transitions.

9.3.2  Daily-Living Environments

The patient-oriented workflow approach has been applied to understand perfor-
mance barriers related self-management in the home environment. Holden and 
Mickelson examined patient work among elderly chronic heart failure (CHF) 
patients in their homes (Holden and Mickelson 2013). A sociotechnical system 
approach was used to understand patient work associated with self-care for patients 
with CHF and their caregivers including: therapy related knowledge, motivation, 
tools/technologies, barriers/difficulties, strategies/resources, and social/physical 
environment. Thematic analysis of interviews with patients and their caregivers 
revealed several patient-reported barriers in the patient work system. These barriers 
included physical limitations, knowledge gaps, medication complexity, side-effects, 
lack of or overdependence on aids, lack of indoor gyms, sodium-rich food culture 
and, stairs. Patient-oriented workflow allowed the researchers to expand the patient’s 
work system beyond the clinical environment and identify challenges that may 
inhibit the delivery of quality care at home.

Management of anticoagulation treatment in daily-living settings has been stud-
ied using patient-oriented workflow (Ozkaynak et al. 2016b, 2018a). This approach 
allowed for identifying gaps between the clinical workflow and healthcare activities 
the setting of daily-living. The term “gap” refers to a “break in continuity” between 
health-related activities across diverse settings. Gaps can disturb care delivery and 
lead to poor patient outcomes (Booth et al. 2013). These gaps can inform the design 
and implementation of gap-filling, collaborative health information technologies 
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(HIT) (Valdez et al. 2015a). Collaborative HITs can potentially allow patients to 
capture patient work (self-management practices, daily living routines and context) 
(Ozkaynak et al. 2018a) and to share with their provider. Clinicians can then have a 
better understanding of patients’ barriers and obstacles for self-management at 
home and community settings for patient-centered care to address management 
issues.

9.3.3  Nursing Homes

Nursing homes entail distinct workflows (Morrill et  al. 2016) that comprise the 
numerous daily-living activities of residents and asynchronous communication 
between team members. This asynchrony often occurs because, unlike hospital set-
tings, some providers, such as medical staff, are often external to the facilities and 
thus not constantly available. This situation results in enhanced roles for nurses and 
other caregivers in clinical decision-making (Lim et al. 2014). Nursing homes com-
prise differing levels of clinical or residential support for clients. Residents with 
high level clinical needs depend on staff and resources for care and assistance in 
activities of daily living. Staff work within their scopes of practice, guided by regu-
lations i.e., formal rules and licensure responsibilities. In low-care hostel or nursing 
home settings, residents are relatively independent and require limited clinical ser-
vices but have the support of services such as housekeeping and social engagement 
activities, and have access to staff nearby if required. Although clinical and residen-
tial support activities have different dynamics, they need to coexist together and 
both residents’ and clinicians’ preferences should be factored in (Ozkaynak et al. 
2018c). Patient-oriented workflow can be an ideal approach for studying the tempo-
ral organization of healthcare workflow, which lasts all day and interacts with the 
daily routines of residents. Workflow in nursing homes often crosses temporal 
(between shifts), organizational (e.g., hospital, lab, primary care, pharmacy) and 
institutional (clinical and daily-living) boundaries. Ignoring cross-boundary work-
flows in nursing homes can lead to safety and quality problems (Stokoe et al. 2016). 
Acknowledging cross-boundary workflows can lead to health IT and other interven-
tions that ensure pertinent information (e.g. resident preferences, daily routines or 
medication list) is transferred across boundaries and is made available to the right 
people at right time.

9.3.4  Skilled Home Health Care

Another area where patient-oriented workflow has been applied is Skilled Home 
Health Care (SHHC), also known as community care services. SHHC is a formal, 
regulated program of care that provides a variety of skilled services such as nursing, 
physical therapy, speech therapy to patients in their home. Typical tasks involved in 
SHHC include wound care, physical therapy, and medication management, along 
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with some house keeping and social support activities. Werner and colleagues 
applied the patient-oriented workflow to understand medication management (MM) 
during transitions from hospitals to SHHC (Werner et  al. 2017a). Transitions in 
healthcare require the execution of several tasks distributed across multiple people, 
organizations, and time. Patient-oriented workflow allows researchers to study how 
processes are distributed across healthcare delivery settings through an analysis of 
interactions and emergent properties that would not have been possible at the task 
level. Werner and colleagues used interviews and observations with older adults, 
caregivers, and SHHC providers involved in care transitions from the hospital to 
SHHC (Werner et al. 2017a). The study identified: (1) key attributes of the MM 
process through the transition from the hospital to SHCC, (2) emergent properties 
of MM across system boundaries and related barriers, and (3) patterns of barrier 
propagation through the transition processes. The patient-oriented workflow 
approach facilitated identification of barriers to the process specific to crossing 
organizational boundaries. Additionally, barriers identified in one system of care 
were traced throughout the hospital to SHCC care transition. Barrier propagation 
across organizational boundaries was associated with negative work system out-
comes such as process delays like missed medication, as well as frustration and 
increased workload for the SHHC provider. The use of patient-oriented workflow 
allowed researchers to conceptualize care as a continuous process across systems 
rather than a discrete care episode. The results suggested that work systems need to 
be aligned to support critical care processes across transitions to reduce the poten-
tial for process breakdowns.

9.4  Conclusion

Although workflow analysis in general, and patient-oriented workflow analysis in 
particular, has inherent challenges and limitations, the potential benefits for both 
care delivery processes and HIT design/implementation far outweigh the potential 
disadvantages. To successfully redesign healthcare delivery, as well as design and 
implement HIT that can account for care across the entire patient journey, health-
care delivery must be examined as an integrated system of a longitudinal process 
rather than a cluster of discrete tasks/processes in isolated environments. Patient- 
oriented workflow can provide the needed integrated perspective.
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Chapter 10
Workflow at the Edges of Care

Bradley N. Doebbeling and Pooja Paode

10.1  Introduction

In order to understand specific tension points related to workflow capture and mea-
surement, one might revisit the turn of the last century. Here, two landmark reports 
highlighted gaps related to care quality and safety in the United States’ healthcare 
system. First was the Institute of Medicine (IOM) report To Err Is Human: Building 
a Safer Health System. Written by the IOM Committee on Quality Health Care in 
America, this report emphasized that errors resulting in patient harm are properties 
of healthcare systems, not just the health professionals in the systems. It follows that 
patient safety is also a property of systems of care. Errors refer to “the failure of a 
planned action to be completed as intended or the use of a wrong plan to achieve an 
aim” (Donaldson et al. 2000). Errors that cause injury or harm lead to preventable 
adverse events.

Shortly afterwards, the National Academies of Medicine released their landmark 
report, Crossing the Quality Chasm: A New Health System for the 21st Century 
(Baker 2001). This report attributes rapid technological development, the growing 
complexity of healthcare, and fragmentation of care delivery as factors contributing 
to a healthcare system unable provide safe and high-quality care to all individuals in 
the system.

The care fragmentation described in the report disproportionately impacts high- 
need populations, including those with multiple or complex chronic health issues 
who experience frequent changes in health status and multiple transitions between 
care settings and providers, as well as patients at risk for multiple social and behav-
ioral determinants of health. Workflow modeling can improve the integrity of the 
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healthcare safety net, which currently exists as a loosely connected patchwork of 
safety net services, meant to support these individuals. Understanding workflow at 
the edges of care can prevent patients “falling through the gaps,” lead to improve-
ments in the overall quality of care and even suggest novel technological develop-
ment in line with healthcare system and patient work.

The IOM committee provided ten general principles to inform care redesign 
efforts and mitigate errors. One of these principles emphasized improved collabora-
tion and cooperation between clinicians and care institutions to promote informa-
tion exchange and care coordination. Information exchange and care coordination 
between care systems, providers, and patients and their families are critical targets 
for workflow study at the edges of care.

Workflow measurement is largely linked to general quality improvement 
efforts in electronic health record (EHR) usage. In 2009, the Medicaid and 
Medicare EHR Incentive Program was established under the Health Information 
Technology for Economic and Clinical Health (HITECH) Act. This program 
helps support patient engagement with their personal health records. This has 
increasingly directed attention towards consumer health informatics (CHI) such 
as mHealth and easily accessible tools (such as blood pressure cuffs or pedom-
eters) (Blumenthal and Tavenner 2010). During this time, Affordable Care Act 
(ACA) also incentivized the creation of accountable care organizations (ACOs) 
and formalized partnerships between social services and community-based orga-
nizations to improve the quality of transitions and post-hospital care (Nasarwanji 
et al. 2015).

10.2  Current State of Workflow Mapping at the Edges 
of Care

10.2.1  Transitional Care

According to the Centers for Medicare and Medicaid Services, a transition of care 
occurs any time a patient is transferred from one care setting to another (Mansukhani 
et  al. 2015). These settings include primary care offices, specialists, pharmacies, 
home care agencies, acute care hospitals, emergency departments, in addition to 
social service institutions and the patients’ own homes. Care transitions, sometimes 
called “handoffs,” are vulnerable points in the care process. They possess a few types 
of inherent error vulnerability (complexity, communication breakdowns, and 
shifting responsibilities of care) which operate synergistically to contribute to errors 
(Cortelyou-Ward et al. 2012). In an example where a patient transitions out of a hos-
pital to home care, those error vulnerabilities may manifest in the following ways:

 – Complexity: Even with rapid consolidation of smaller practices and care systems, 
transitions often happen between high numbers of small, independent providers. 
They may include several members of a care team and involve the exchange of a 
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large amount of information. A patient may interact with multiple providers and 
staff and be given significant, complex instructions and education for their post-
discharge care. Changes to medication regimens also contribute to complexity 
during care transitions.

 – Communication breakdowns: The transfer of patient information (i.e., charts, 
images, test results) between levels and locations of care helps to ensure care con-
tinuity. However, breakdowns of these processes and discontinuous information 
transfer between care teams and care settings lead to poor care transitions. Common 
issues include: information not sent from the primary care setting to the specialist 
(and vice versa), key information missing from EHRs, information included in 
EHRs but still insufficient for providers, unavailability of test results, a lack of 
follow-up arrangements made, and poor communication of discharge summaries 
between patients and providers. Most of these issues occur between different types 
of providers, patients and their families, hospitals, and other care settings.

 – Shifting responsibilities of care: A patient’s self-care responsibilities may mark-
edly increase when transitioning from complete care by a hospital team to indi-
vidual or assisted care at home or at a transitional care facility.

Together, these factors make care transitions vulnerable exchange points that 
contribute to high rates of health services use and spending (Kripalani et al. 2007). 
Error vulnerability leads to a higher relative incidence of systemic errors, adverse 
clinical events, healthcare waste, and prevents patients’ care needs from being suf-
ficiently met (Naylor et al. 2011; Coleman et al. 2005). Barriers to addressing these 
issues include overstressed primary care systems with large and diverse patient pan-
els and tasks as well as an overall lack of integrated care systems (Bodenheimer 
2008). Studying workflow across transitions in care, care teams, and care settings 
should be a high priority if we are to improve care quality and patient safety.

10.2.2  Care Coordination in Transitional Care

Workflows associated with care coordination across the healthcare continuum are 
high-yield opportunities to improve patient care. Care coordination can be broadly 
defined as the “deliberate organization of patient care activities between two or 
more participants (including the patient) involved in a patient’s care to facilitate the 
appropriate delivery of healthcare services” (McDonald et al. 2007). Care coordina-
tion considers all resources, including personnel and information, required to carry 
out all required patient care activities. Improving care transitions and collaborative 
care of patients across settings requires the integration of care delivery processes 
across settings (Mansukhani et al. 2015). Meaningful metrics of care coordination 
that can be targets of workflow optimization include:

 – provider, interorganizational, and interagency collaboration and communication
 – meaningful use of health information technology (HIT)
 – medication reconciliation
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 – discharge processes (ensuring access to care after discharge, communication of 
healthcare information during discharge)

 – post-discharge follow-up (follow-up phone calls, post-discharge home visits)

At the edges of care, healthcare personnel must consider not only organization- 
wide, but also system-wide workflow. There is an increasing push to capture and 
crystallize processes occurring at these “edges” and map the workflow between 
these edges when possible. One result of these efforts to decrease fragmentation in 
transitional care focuses on reducing hospital readmission rates, a key metric tied to 
insurance reimbursement (Naylor et al. 2011). Common methods to study workflow 
in transitional care include multi-site ethnographic observation, semi-structured 
interviews, and the development of process maps, flowcharts, and activity diagrams. 
Currently, most workflow mapping in transitional care occurs in and around acute 
care settings and specific programs focused on costly and complex care, such as 
behavioral and medical health integration.

10.2.3  Types of Workflow Study in Transitional Care Settings

Qualitative analysis in behavioral health settings: Kaiser and Karuntzos previ-
ously reported a qualitative workflow study conducted with practitioners involved 
in SBIRT (Screening, Brief Intervention, and Referral to Treatment), an evidence- 
based practice focused on alleviating substance use disorders, focused on charac-
terizing and better integrate workflow. The study team conducted direct 
observations (focused on workflow processes related to care delivery, documenta-
tion, information storage and sharing, and patient engagement), semi-structured 
stakeholder interviews to identify workflow variation, and document reviews. The 
interviews resulted in the development of observation-informed standard work-
flows to visualize patient and information improvement across care systems 
(Kaiser and Karuntzos 2016).

Lean methodology to standardize transitions from intensive to ambulatory care 
units: A tertiary care center identified variation and unpredictability in patient tran-
sitions between intensive care units (ICUs) and ambulatory care units (ACUs) as a 
contributing factor to patient harm and systemic inefficiency. In order to develop 
standardized processes to transfer patients between ACUs and ICUs, leadership 
engaged key stakeholders, used lean methodology including process mapping 
(swim lane flowchart), analyzed waste and opportunities to standardize processes. 
Stakeholders together selected an “ideal state” solution using of checklists as a tool 
to guide workflow adherence. While this workflow study resulting in improvements 
in perception of communication clarity and adequacy and duration of transition, it 
was an intensive effort, requiring extensive time dedicated to process development 
and evaluation. Keeping in mind this significant resource cost, this study may be a 
useful guide to institutions involved in patient care transfers (Halvorson et al. 2016).
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Clinician-centered continuity of care approach: Abraham and colleagues utilized 
observations, shadowing, audio recording, semi-structured interviews, and artifact 
identification and collection to explore clinician workflow before, during, and after a 
patient handoff. Evaluating workflow through the lens of clinician work activities 
allowed the identification of interdependencies between different parts of a patient 
handoff. Because workflow was analyzed across a full continuum of care, they also 
developed a non-linear descriptive framework of handoff communication (handoff as 
a discrete communication activity) that accounted for emergent collaboration and 
interactions between individuals on the care team. In mapping these workflows, the 
team was also able to identify specific points of information breakdown at a high 
level of granularity (Abraham et al. 2012).

Activity log modeling for care coordination: Another approach used internation-
ally to study care coordination utilizes workflow activity logs, a granular (specific 
and detailed) data collection method. Describing and collating a large number of 
workflow functions across a care coordination workforce working at a specific orga-
nization dedicated to care coordination across settings can help identify gaps in local 
capacity for care coordination and also stimulate intentional practice redesign 
(Heslop et al. 2014).

10.2.4  Small and Resource-Limited Care Settings

Small or rural primary care practices, community health centers, and community- 
based health organizations are all examples of resource-limited care settings or care 
settings experiencing significant barriers to engaging in quality improvement efforts 
related to workflow improvement. These practices, sometimes termed “priority pri-
mary care practices,” are high-priority areas for workflow and information technol-
ogy optimization. Resource limitation in these settings is characterized by a lack of 
infrastructure, limited internal management or information technology expertise 
and little or no access to external expertise in these areas due to financial or geo-
graphical reasons. These smaller primary care practices, found often in densely 
populated urban areas with high need and rural areas, make up half of all primary 
care practices (Liaw et al. 2016; Wolfson et al. 2009; Ryan et al. 2013).

Workflow in small practices A report on the adoption gap of EHRs indicates that 
only a fraction of small physician offices has fully implemented EHR systems. Ramaiah 
and colleagues utilized an interpretive case study approach to evaluate factors influenc-
ing workflow automation in small primary care practices. This approach triangulated 
questionnaires, in situ work observations, and interviews to study tasks conducted from 
the beginning to the end of a patient’s visit. Workflow was mapped using Unified 
Modeling Language activity diagrams. Notably, most primary care settings had unique 
workflows, with distinct workflows used to achieve similar goals.

In general, workflows in low-resource primary care settings can be complex and 
highly variable. In a study of primary care workflow, Holman and colleagues calcu-

10 Workflow at the Edges of Care



170

lated an average of 37 tasks performed per visit, in no predictable order (Holman 
et al. 2015). Evidence suggests that starting small, seeking help from local resources 
focused on HIT, such as Regional Extension Centers (funded through the HITECH 
Act to assist with EHR implementation), and participation in other government- 
funded programs that provide incentives to implement HIT and consider workflow 
can all provide external resources to assist smaller practices with information inte-
gration and workflow standardization (Ramaiah et al. 2012).

In an international review of quality improvement studies conducted in low- 
resource settings, most studies were case reports with a focus on adoption and 
implementation, observational inquiries (qualitative inquiry of user and patient per-
ceptions), and secondary literature reviews. Workflow assessments made up only a 
small fraction of these studies, indicating that there is a real gap in use of workflow 
to improve care processes, despite its demonstrated benefit (Jawhari et al. 2016).

Although there is still much to learn about specific factors that facilitate work-
flow measurement in small practices, studies evaluating facilitators of overall qual-
ity improvement have noted that general quality improvement activities are 
successful when the following factors are present: a dedicated “practice champion,” 
involved practice leaders, clear team goals, collaboration between providers and 
staff, a sense of shared responsibility, and access to external resources such as learn-
ing collaboratives. Time constraints, costs, issues with HIT, a lack of staff motiva-
tion, and a lack of financial incentives are common barriers to quality improvement 
work, including workflow mapping (Wolfson et al. 2009).

Workflow in community health centers: Green and colleagues used cognitive task 
analysis interviews combined with observations of HIT implementation and semi- 
structured interviews to detect emergent themes to better understand challenges and 
facilitators related to IT workflow and maintenance (Green et al. 2015). Updates to 
HIT inevitably disrupt workflow and practices should prepared to manage these 
disruptions and adapt to HIT transitions.

Barriers to implementation of quality improvement strategies (including work-
flow assessment) can be categorized into situational (time, adverse effects on effi-
ciency, culture, incentives), cognitive (fear of change, low perceived value), liability 
(privacy, security), knowledge (lack of training or knowledge on prioritizing systems 
to target), financial (high costs and low actual or perceive return on investment), 
technological (technical support, a lack of interoperability, limited reliability), and 
workforce (skillsets, leadership, organizational support). While cost of resources and 
expertise are prohibitive factors for urban and rural community health centers, rural 
community health centers also experience issues related to geography, wherein criti-
cal resources are not only unaffordable, but may be simply absent (Green et al. 2015).

10.2.5  Consumer Health Settings

Consumer health settings include “locations of daily living (LDL) such as work-
places, parks, exercise facilities, grocery stores,” and even drug stores. Consumer 
health informatics (CHI) applications are powerful tools in consumer health 
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settings. They include mHealth apps, remote monitoring systems, personal health 
records, in-home monitoring devices, decision support systems, and online health 
resources. They provide individuals with easy access to personal health informa-
tion, are a means of actively storing and monitoring patient health information and 
are an opportunity to engage patients beyond traditional healthcare settings 
(Cortelyou-Ward et al. 2012; Patrick et al. 2008; Radley et al. 1994). Widespread 
adoption of CHI is limited due to device inefficiency and their lack of patient-cen-
teredness. Jimison and colleagues suggest adoption could be accelerated through 
improvements in usability, adherence to patients’ mental models, and “better inte-
gration of CHI into patients’ and families’ daily routines,” or workflows (Jimison 
et al. 2008). Historically, consumer health technology developers and researchers 
have considered the design and usability of these technologies through a highly 
medicalized lens that eventually accounts for personal behavior.

In order to leverage CHI and accelerate adoption, workflows in the consumer 
health setting must consider the more specific local contexts of information 
exchange. Zayas-Caban, Valdez, and their colleagues have explored a patient work 
framework, using human factors ergonomics (HFE) methods to build on existing 
medical-behavioral approaches and increase meaningful usage of CHI in the con-
text of daily living (Valdez et al. 2015; Zayas-Cabán and Dixon 2010; Marquard and 
Zayas-Cabán 2012). At a minimum, a patient work framework should consider 
physical, cognitive, and social-behavioral activities in addition to macroergo-
nomic (organizational) needs and constraints in consumer health settings (Marquard 
and Zayas-Cabán 2012). Consumer health workflows include:

 – Patient work activity: These include family work and factors related to individual 
operation of and interaction with CHI. There are a few underlying assumptions 
behind patient work. First, both patient (and family) work and health profes-
sional work involve agency (implied opportunity to actively have a role in the 
performance of work), context, and activity. Next, patient work activity can be 
decomposed into illness work, everyday life work, and biographical work which 
are supported by coordination work. Activities can be visible (recognized and 
valued) or invisible (taken for granted and perceived by outsiders as less 
valuable).

 – Workflows: These comprise the flow of health information across space and time 
and interactions with caregivers across space and time.

 – Patient work systems (context): The social and organization conditions and con-
texts in which health work is performed, including the structural components of 
task, technology, environment, and community. They can either constrain or 
facility work activity.

Take the example of using a pedometer application on a mobile phone. Physical 
ergonomics would include turning on a mobile phone’s GPS or turning on the appli-
cation within the context of a physical environment, such as a home or running 
track. Cognitive ergonomics considers factors related to processing information 
from the device’s user interface (interpreting speed, calories burned, and distance 
walked or run). Macroergonomics considers the context within which the device is 
used. Design can affect one or more of the aforementioned human factors domains. 
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Viewing consumer health work through these categories can facilitate the design of 
better health technologies that support individual cognition. Case-based human 
factors evaluation, where patients or patient proxies record the nature and severity 
of challenges experienced while completing user tasks on a particular device, can 
assess the fit of a technology in a context of a patient’s work and help to preempt 
important challenges in the usability of CHI.

10.3  Emerging Approaches to Workflow at the Edges of Care

Qualitative field-based methods such as interviews, observations, and activity log 
analyses, while rich in data, are time-consuming, labor intensive, and largely 
clinician- oriented. They also may not sufficiently capture information about patient 
experience and workflows across multiple care settings, particularly in consumer 
health settings. Still, these methods are widely used, particularly in transitional care 
environments. Moving forward, methods such as human factors engineering, social 
network analysis, patient-generated data, and use case-based human factors evalua-
tion can augment current methods and make workflow assessment more efficient 
and high-yield for all individuals involved. We can also learn from complexity sci-
ence and predictive modeling to better assess complex and variable workflows at the 
edges of care (Abraham et al. 2012; Goldberg et al. 2011).

10.3.1  Complex Adaptive Systems Approaches at the Edges 
of Care

Complex adaptive systems consist of individual entities, or “agents,” which engage 
in dynamic, nonlinear interactions. The behavior of agents involved in a complex 
system cannot be predicted by the behavior of individual components. Furthermore, 
the self-organization and collective organizing behavior of components of a com-
plex system contributes to our understanding of these systems as complex adaptive 
systems. Understanding the complexity of healthcare systems—where care is pro-
vided across multiple providers, multiple care settings, with significant variations 
across settings—is critical to our understanding of how we can improve care quality 
and patient safety in these settings, especially when considering workflow across 
institutions and care teams.

The nature of collaborative care delivery across multiple sites of services makes 
healthcare a complex adaptive system. As healthcare is a complex domain, com-
plex adaptive systems (CAS) principles can and should be used to support health-
care management and improvement, specifically concerning workflow. A CAS 
approach encourages us to study issues and problems in terms not as isolated enti-
ties, but in terms of concepts (care providers, locations, information flows) and the 
rules of engagement for how the concepts interact within and across settings 
(Kuziemsky 2015; Kannampallil et  al. 2011). Primary care is conceptualized 

B. N. Doebbeling and P. Paode



173

particularly well as a complex adaptive system due to its inherent variability and 
unpredictability.

Malhotra and colleagues have previously utilized a complex systems approach 
using functional decomposition on a series of complex workflows in an 
ICU. Activities were decomposed into the individual and collaborative or cross- 
organizational level. Cognitive requirements associated with those activities were 
considered. Once activities are decomposed, temporal sequencing of critical zones 
was used to determine relationships between the work activities. This additional 
variable (temporal sequencing and designated “critical” zones in the ICU) added an 
important layer of meaning that accounted for the complexity of workflow activities 
that may be ordinarily be considered in a discrete and linear matter. The identified 
relationships were then used to identify sources of errors or breakdowns and improve 
care processes (Kannampallil et al. 2011; Malhotra et al. 2007).

10.3.2  Patient-Centered Approaches

Overall, the needs and work activities of patients and their families are not suffi-
ciently integrated into or measured in workflow assessment and associated system 
redesign (Levine et  al. 2010). Ozkaynak and colleagues highlight how patient- 
centered or patient-oriented workflow studies may provide a more integrated under-
standing of healthcare work in formal and informal health settings (Ozkaynak et al. 
2013). Clinician-oriented workflows focus on the specific activities of a single indi-
vidual (the clinician) and are limited in their ability to capture all of the collabora-
tive work, including a patient’s work, involved in a care system. Conversely, 
patient-oriented workflow “define care delivery from the patient’s perspective” 
(Ozkaynak et al. 2013). Benefits of patient-oriented workflow, especially at bound-
aries between care systems, include the following:

 – Patient experiences represent a more accurate common “field of work” for the 
cooperative work of multiple providers and care teams.

 – Patient-oriented workflow models cross, but can also more meaningfully define, 
system boundaries. Meaningful boundaries can help capture emergent features 
of care delivery such as cooperation and articulation, thus reducing variability 
that must normally be accounted for in clinician-oriented workflows.

 – Patient-oriented workflow models can characterize the spaces between the 
“edges of care” and can also improve our understanding of less-studied settings 
such as locations of daily living.

Valdez and colleagues synthesize how patient work frameworks used to assess 
work activities (integral to patient workflow) in consumer health settings can be 
integrated into user-centered design processes. This approach can improve capacity 
for problem analysis, conceptual design, development and formative evaluation, 
and summative evaluation and monitoring. Workflow analysis can then be used as a 
tool to integrate information sourced from CHI and better understand associated 
patient and family work (Valdez et al. 2015).
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 – Problem analysis: Field research in a patient’s home and other community set-
tings can help integrate patient and family perspectives and priorities into health 
technology design, especially since CHI technologies are used primarily outside 
traditional clinical settings.

 – Conceptual design: Community-based or community-informed informatics 
interventions can provide more accurate information related to the contexts in 
which health technologies are used by patients and families

 – Development, evaluation, and monitoring: Participatory design sessions with 
patients and families, especially high-need or vulnerable populations, can inte-
grate multiple “interconnected participants” such as patients, their families, and 
providers, into the design process.

The health system Kaiser Permanente has utilized case study video ethnogra-
phies to study workflow in a novel way and improve care transitions (Neuwirth 
et al. 2012). Rapid video ethnography was used to study transitions between set-
tings and complement workflow mapping. Their four-step process effectively tri-
angulated qualitative and quantitative measurement strategies. It included planning 
and design based on a clearly defined project, fieldwork (interviewing, observing, 
and video recording), data analysis (paired with identification of improvement 
opportunities), and video editing based on key themes and selected improvement 
opportunities.

10.3.3  Human Factors and Ergonomics

Human factors and ergonomics (HFE) methods help us consider patient, family, and 
provider strengths and limitations in the design of healthcare systems and technolo-
gies. This approach has been used for decades to improve care quality and safety in 
healthcare. The Systems Engineering Initiative for Patient Safety (SEIPS) model is 
an HFE systems approach that incorporates Donabedian’s Structure-Process- 
Outcome model of care quality (Donabedian 1988). It includes an individual’s 
external environment (structure/work system), care and other processes (process), 
and patient, employee, and organizational outcomes (outcomes). The SEIPS con-
ception of external environment includes persons, tasks, organizations, the physical 
environment, technology and tools. It is an adaptable model that accounts for mul-
tiple healthcare domains, emphasizes systemic impacts, is flexible across various 
work systems, and provides a broad view of processes incorporating multiple work 
system elements (Carayon et al. 2014).

10.3.4  Social Network Mapping to Prioritize Target Areas

Small network mapping is a method that used analyze and interpret small networks 
of providers and practices. Recent efforts have evaluated case studies relevant to the 
edges of care: one of networks of patient handoff communication and the other of 
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networks of interorganizational ties in primary care. Simple validation techniques 
can address the variability inherent in small networks and compare across networks. 
Network mapping conducted between organizations, focused on transition points 
with particularly high vulnerability (as evidenced by patient outcomes such as 
adverse events), can be used to determine the presence of a central coordinator of 
specific activities. This approach could in turn provide a basis to more specifically 
study workflows, reengineer workflows and drive policy changes within networks 
(Dunn and Westbrook 2011). Other approaches have used social network analysis 
more specifically to characterize the frequency and type of communication patterns 
between providers and patients, as well as the network of communication patterns 
between providers and patients during transition processes (Pinelli et al. 2015).

10.3.5  Cross-Organizational Workflow

Promoting local health information exchange (HIE): HIE provides the promise of 
readily available relevant medical and social information that bridges care settings. 
It may eventually help patients and providers with adherence to treatment recom-
mendations, reduce waste, errors, and previously discussed issues of missing infor-
mation. Currently, data exchanged between HIE, hospitals, and other healthcare 
settings is minimal and still mostly inaccessible to patients and their families. 
Clinical information is still largely heterogenic and data sharing is not sufficiently 
collaborative. Understanding factors that promote or prevent HIE implementation at 
the edges of care could accelerate our transition to a system where HIE is easily 
available, accessible by patients, families, and their care teams, and accurate (Jensen 
2013). Workflow implementation challenges have hindered HIE participation, 
although implementing HIE may provide the opportunity to add new or improve 
existing workflows. Accountable care organizations, which include multiple sites of 
service, are driven by federal policy goals to recognize the importance of health 
technology implementation and coordination across care settings. Workflow assess-
ment of care management processes could improve care quality and safety for their 
patient populations (Rundall et al. 2016).

Process-oriented coordination of care across organizations: Tello-Leal and col-
leagues recently developed a methodology to integrate cross-organizational health-
care services between generalist and specialist care. The methodology utilized 
Model-Driven Architecture, Petri Net specification and definitions of clinical docu-
ments using HL7 Clinical Document Architecture, housed on a coordinated soft-
ware platform. The methodology included three phases: first, healthcare 
organizations involved defined an “integration agreement,” which identified require-
ments and goals, processes, and clinical documents required across organizations. 
An integrated technological solution was then used to design the identified pro-
cesses, define clinical documents, and design integration processes. The methodol-
ogy can guide organizations to more specifically define care integration, define 
artifacts required in care integration, and automate patient referrals across settings 
(Tello-Leal et al. 2012). Though complex and resource-intensive, this approach has 
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the potential to directly integrate processes across boundaries of care. Further devel-
opment of similar approaches using scalable technologies could be one day repli-
cated in other care settings.

10.3.6  Leveraging Local Resources and Funding

The resource limitations currently faced by smaller primary practices and commu-
nity health centers limit workflow assessment and implementation of HITs which 
can promote improvements to care quality and safety (Young et al. 2017). In addi-
tion to leveraging local and federal funding dedicated to EHR implementation and 
adherence to Meaningful Use guidelines (Regional Extension Centers), external 
partnerships with universities and large health systems may better distribute 
resources and expertise related to HIT and workflows. There is also a potential to 
train and engage non-clinical staff such as patient advocates and navigators in these 
efforts.

10.4  Conclusion

There is significant discontinuity and fragmentation between different sites of ser-
vice within healthcare, but limited documentation of workflow (1) in low-resource 
care settings, (2) between care settings, and (3) outside of care settings. Workflow 
analysis, especially patient-oriented workflow, can be used as a tool to better char-
acterize and address these gaps. To equitably improve quality and safety of patient 
care across different care settings, there is a need for automated and mixed-methods 
approaches that continuously leverage existing data, account for the nuances and 
resource limitations at the edges of care, and ultimately reach across the continuum 
of the healthcare systems. Health information exchange, interorganizational col-
laboration and cross-sectoral collaboration will all be required in order to map 
workflow across settings. At the end of the day, clinicians and researchers should 
and must leverage the fact that the patient is central to all care delivery.
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11.1  Introduction

This chapter focuses on computer-based tools designed to facilitate field data col-
lection for time and motion studies (TMS) conducted in healthcare settings. As a 
commonly used research method, TMS originated from industrial engineering with 
a goal to assess workers’ time expenditure and physical movements when complet-
ing a task, a series of tasks, or distinct steps that constitute a task. In recent years, 
TMS have been widely adopted and frequently used to study clinical workflow, 
especially in the context of introduction of health information technology (IT) sys-
tems (Lopetegui et al. 2014). As of April 2018, a cursory search in PubMed1 with 
the keywords (“time and motion study” OR “time motion study”) yielded a total of 
337 papers. More than 75% of them were published after year 2000. For more 
details of TMS, please see Chap. 4 in this book, “A Review of Clinical Workflow 
Studies and Methods.”

TMS usually require a person (i.e., “external observer”) to shadow clinicians’ 
work in order to continuously record when, where, and what clinical tasks are per-
formed. Since early 2000s, Several computer-based tools have been developed to 
facilitate time and motion data collection with features specifically designed to 
accommodate capture of complex workflow behaviors, such as multi-tier clinical 
task classifications and the ability to record multitasking and interruptions. In this 
chapter, we describe three such tools that have been used in multiple TMS-based 
research studies with established validity and generalizability. Our choice of these 
three tools, however, does not suggest they perform better than other competing 
tools available, or are more generalizable.

1 https://www.ncbi.nlm.nih.gov/pubmed
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11.2  Time Capture Tool (TimeCat)

The Time Capture Tool, or TimeCaT, was developed in 2012 with a focus on stan-
dardization, scalability, and dissemination. Its development began with a systematic 
review of the features and limitations of existing TMS tools at the time. Then, a pilot 
version of TimeCaT was created and tested through an empirical study conducted in 
an emergency medicine setting. User feedback was collected to inform refinement 
of the tool, leading toward a significantly modified version with improved usability 
and functionality. Lopetegui et  al. (2012) provides more details on the history, 
design, and development process of TimeCaT (Lopetegui et al. 2012).

TimeCaT has a user-facing website available at http://www.timecat.org/. Its current 
version (v3.9) is capable of capturing multitasking and interruption events; and allows 
observers to correct data during the observation (Fig. 11.1). TimeCat uses UNIX-based 
timestamps to calculate task duration to avoid discrepancies due to time zone differ-
ence. It also provides several dashboards for administrative and real-time data reporting 
purposes (Fig. 11.2). It is worth noting that TimeCaT uses visualization techniques to 
compare between observations to help researchers assess inter-rater reliability and dis-
cover patterns of differences (Fig. 11.3). One exemplar study that used TimeCaT to 
quantify and visualize nursing clinical workflow was conducted by Yen et al. (2016).

Fig. 11.1 TimeCat: Data capture and correction
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Fig. 11.2 TimeCat: Real-time data reporting dashboards
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11.3  Work Observation Method by Activity Timing 
(WOMBAT)

WOMBAT was developed in 2008 by Johanna Westbrook and her colleagues at the 
Macquarie University, Sydney, Australia. Its design objective is to create a digital 
tool for efficient, accurate, reliable, and detailed TMS data collection to effectively 
capture health professionals’ work and communication patterns. WOMBAT is capa-
ble of recording clinical work activities in four dimensions, namely What, Who, 
How, and Where; in addition to When which is automatically captured as computer- 
recorded timestamps.

WOMBAT was initially developed on the Personal Digital Assistant (PDA) plat-
form and was later migrated to Android. Tablets with larger screen sizes (7″ or 8″ at 
the minimum) are recommended for optimal experience when using WOMBAT as 
a field data collection tool. In addition to the Tablet-based app, WOMBAT provides 
a web front to manage the app as well as to analyze time and motion data collected. 
Figure  11.4 shows a screenshot of the app (left) and the web front (right), 
respectively.

Fig. 11.3 TimeCat: Visual comparison to assist in evaluating inter-rater reliability
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The initial version of WOMBAT was designed and evaluated through a nursing 
workflow study conducted by Westbrook and Ampt (2009) that involved four wards, 
52 nurses, and 250 observation hours. The results of the study demonstrated that the 
nursing workflow data collected by WOMBAT accurately reflected known differ-
ences in clinical roles and tasks. WOMBAT was further validated in a study con-
ducted in Canada in 2011 by Ballermann et  al. (2011). This study observed 
clinicians’ work in two intensive care units where a computerized clinical system 
was introduced. The study again demonstrated WOMBAT’s utility in collecting 
high-quality workflow data to compare clinicians’ time allocation before and after 
the system implementation. Since then, WOMBAT has been used in multiple TMS 
globally conducted by different research groups. A list of use cases of this tool can 
be found at http://aihi.mq.edu.au/content/wombat-case-studies.

The current version of WOMBAT can be accessed through its official website at 
https://aihi.mq.edu.au/project/wombat-work-observation-method-activity-timing. 
Of note, WOMBAT requires a license agreement for individual users. Once the 
license is obtained, WOMBAT can be used in any number of projects.

11.4  Time and Motion Data Collector

The Time and Motion Data Collector (the “TM Collector” hereafter) was developed 
in 2015 as part of a research project funded by the U.S.  Agency of Healthcare 
Research and Quality (see Chap. 17, Examining the Relationship Between Health 
IT and Ambulatory Care Workflow Redesign) (Zheng et  al. 2015). The tool was 
designed to capture both discrete clinical activities based on customizable task tax-
onomies, as well as multitasking and interruptions.

Fig. 11.4 Screenshots of WOMBAT Tablet (left) and web-based application (right) for data cap-
ture and tool administration, respectively
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The TM Collector incorporates carefully designed features to accommodate 
recording of multitasking and interruption events (Fig. 11.5). Tasks being performed 
simultaneously by the observee can be handled with two approaches depending on 
the use scenario. In the first approach, overlapped task durations as a result of 
 multitasking are grouped into new “composite” activities. In the second approach, 
overlapped durations are split and attributed proportionally to each of the tasks 
being performed at the same time. Take two tasks, A and B, as an example. Assume 
task A lasted 10 s, task B lasted 15 s, and there was a 5-s overlap between them. 
Using the first approach, a new composite task A/B would be created so that it pro-
duces a new event sequence of A (5 s) to A/B (5 s) to B (10 s). When the second 
approach is applied, the overlapped portion would be split and attributed equally to 
activity A and B, resulting in a new event sequence of A (7.5 s) to B (12.5 s). This 
distinguishing is important when certain measures, such as how clinicians distribute 
their time across different clinical tasks, are computed.

In addition to specifically developed features for accommodating the com-
plex nature of clinical workflow, the TM Collector also has a web-based analyt-
ics platform for analyzing workflow data in real time using data mining and 
visualization techniques. Figure 11.6 shows the landing page of the analytics 
platform, which displays key descriptive statistics related to the duration of per-
formance for each of the tasks or task groups. Users can then choose to conduct 
drill-down analyses at different levels. The platform also supports data analyses 

Fig. 11.5 Main data capture page of the T&M data collector
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for before-and-after studies. Pre- and post-data can be separately uploaded, 
which will be automatically compared using common statistical procedures 
such as paired or unpaired t-test and chi-square test. The analytics platform also 
provides a variety of visualization options to help researchers discern patterns 
of potential interest from the visual representations of their data. Figures 11.7 
and 11.8 exhibit two examples.

Fig. 11.6 Statistical summary of task allocation and continuous time on the analytics platform

Fig. 11.7 Time-belt visualization on task sequences
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The TM Collector has been recently adopted by two researcher teams to conduct 
TMS outside its original development context, demonstrating its generalizability. In 
the first study, it was used to record workflow data in an emergency medicine setting 
at an academic medical center in the U.S. to inform the design of a computerized 
clinical decision-support system (Ozkaynak et al. 2018). In the second study, the 
tool was used to collect behavioral data on how bedside nurses used a mobile app in 
Geneva, Switzerland (Ehrler et al. 2018).

11.5  Methodological Challenges and Potential Solutions

While TMS have been considered the “gold standard” approach for quantifying 
clinical workflow, it has its own limitations. First, collecting time and motion data 
requires a significant amount of resources, from hiring and training external observ-
ers to coordinating observation sessions with busy clinicians. Second, the quality of 
TMS data collected by human observers can be variable depending each individu-
al’s capabilities and biases. For example, an observer might deem an activity unim-
portant, or not clinically related, and therefore did not record it; yet the activity 
might turn out to provide crucial information for answering some research ques-
tions down the road. Moreover, the granularity of TM data and proper classification 
of activities require a thorough understanding of the clinical work being observed. 
This can be difficult for external observers who do not have relevant background. 
Further, TMS involving external observers is inherently intrusive. Study partici-
pants’ behavior while being observed may deviate considerably from how they usu-
ally conduct their work.

Fig. 11.8 Location-task analysis using a sunburst graph
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Another critical limitation of TMS is that it is very difficult to compare results 
across different TMS studies due to the inconsistent methodologies they apply (e.g., 
how external observers are trained, how inter-observer reliability is assessed and 
calibrated, and whether the same observer is assigned to observe the same study 
participant across different study stages such as before and after an intervention is 
introduced). To address this issue, Zheng et  al. developed a checklist called 
Suggested Time And Motion Procedures, or STAMP, based on a review of relevant 
TMS studies (Zheng et al. 2011). The STAMP list outlines 29 essential elements 
that need to be carefully considered in designing TMS and in reporting TMS- 
produced study results and research findings. These 29 elements are organized in 
eight key areas, including (1) intervention, (2) empirically setting, (3) research 
design, (4) task category, (5) observer, (6) subject, (7) data recording, and (8) data 
analysis.

Zheng et al. also provided a new perspective on how to analyze time and motion 
data. Specifically, they argued that the prevalent method that focuses on the “time 
expenditures” measure (e.g., how clinicians allocate their time across different 
tasks) is limited, and can generate conflicting or misleading results. Alternatively, 
they argued workflow studies should focus on investigating the “flow of work” 
instead. Through an empirical study, they demonstrated that this could be achieved 
by introducing using new workflow measures and new analytical approaches, such 
as workflow fragmentation assessments, pattern recognition, and visualization. 
These new measures and new analytical methods could collectively contribute to 
uncovering the “hidden regularities” embedded in clinicians’ work and workflow 
(Zheng et al. 2010).
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Chapter 12
Understanding Clinical Workflow  
Through Direct Continuous Observation: 
Addressing the Unique Statistical 
Challenges

Scott R. Walter, William T. M. Dunsmuir, Magdalena Z. Raban, 
and Johanna I. Westbrook

12.1  Background

12.1.1  General Introduction

The nature of healthcare as a dynamic human process occurring within complex 
socio-technical systems means that there is no unique or standard way to examine 
its inner workings. Rather, a range of observational methods drawn from multiple 
disciplines have been used to study workflow in situ (McCurdie et al. 2017). Areview 
of methods used to study and model workflow across different industries, including 
healthcare, identified qualitative approaches such as ethnographic observation and 
interviews, along with quantitative methods including structured or timed observa-
tions, and surveys (Unertl et al. 2010).

Analogous to timed observations, the term time and motion is applied in many 
studies of workflow in healthcare. This umbrella term encompasses a range of 
methods and designs with the common feature of directly observing an individu-
al’s activities and recording aspects of that action, usually in a quantitative way. 
Zheng et al. (2011) reviewed time and motion studies used to assess the effect of 
interventions, especially technology-related interventions, on workflow in health-
care settings. From their synthesis, they developed the STAMP checklist (Suggested 
Time and Motion Procedures) to promote consistency in design, conduct and 
reporting of time and motion studies. Lopetegui et  al. (2014) took this theme 
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further by  reviewing the distinct methods used in healthcare under the banner of 
‘time and motion studies’. The many variations they identified were categorized 
into three groups: those involving external observers shadowing participants, those 
using information self-reported by participants, and those that employed auto-
mated data recording such as GPS devices or accelerometers. Of the first type, they 
identified a method employing continuous observation and coined the term work-
flow time study to describe it as a distinct but increasingly common approach. This 
method constituted 26% of all time and motion studies reviewed, and over 60% of 
all studies that involved continuous observation by an external observer. Also, the 
proportion of studies employing continuous observation was noted to have 
increased over the review period.

Although the workflow time study approach is one among many observational 
approaches, it offers many advantages over other quantitative methods, and its 
growing use in healthcare is a testament to this. This method itself involves 
observers shadowing individual clinicians and continuously recording time-
stamped data about an individual’s tasks and interactions (see Sect. 12.1.2 for 
more detail). Workflow time studies capture more of the fine-grained complexity 
of clinical work than methods such as work sampling, and the temporal continu-
ity of the data forms the most complete record of an individual’s workflow of any 
observational technique, barring audio-visual recording which is often not 
acceptable in a clinical environment. Workflow time studies have great potential 
to help us understand clinical work and workflow and can be applied to a diverse 
range of research questions and professional groups (Walter et al. 2015). This 
includes descriptive analyses that examine the way clinicians distribute their 
time between different tasks, between patients, between locations, and so on 
(Westbrook et al. 2008; Li et al. 2015; Richardson et al. 2016). It also supports 
assessment of the impact of interventions on workflow, such as the introduction 
of new technological systems, policies or practices (e.g. Georgiou et al. 2017). 
Furthermore, workflow time studies enable interrogation of more complex ques-
tions such as the way clinicians sequence, prioritize and interleave tasks. They 
can also examine associations between clinicians’ work and safety-related out-
comes, such as factors that contribute to errors of task omission and commission 
(e.g. Westbrook et al. (2018).

Capturing a more complete record of the complexity of workflow in healthcare 
settings is necessary to generate valid and relevant insights about everyday clinical 
work within a quantitative paradigm. However, this also introduces some unique 
methodological challenges in all aspects of the study process including design, data 
collection, analysis and interpretation of findings. Despite the importance of apply-
ing appropriate quantitative methods, methodology in the area is still evolving, and 
there is a tendency to apply conventional statistical methods to data that are inher-
ently non-standard. This chapter examines the critical quantitative and statistical 
challenges with which workflow time studies are confronted, including reviewing 
methods applied in studies to date and suggestions for methodological improve-
ments. Many of the aspects discussed in this chapter may also be relevant to the 
quantitative study of workflow more generally.
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12.1.2  Defining Workflow Time Studies

The original definition of workflow time studies referred to those studies involving 
periods of continuous observation of a participant where “the observer records the 
occurrence and duration of unpredicted instances of tasks, producing a data schema of 
time-stamped tasks, which accounts for task fragmentation, interruptions and work 
variability” (Lopetegui et al. 2014). There are several features that distinguish this 
technique from other observational methods. First, the fact that observers continu-
ously shadow participants sets it apart from approaches such as self-reporting of work 
activities (Ampt et  al. 2007), work sampling or multimedia recording. Second, 
although carrying out detailed observations over extensive periods of time has paral-
lels with ethnography, observers in workflow time studies apply predefined categories 
of task attributes at the time of observation, as distinct from ethnography where group-
ing of types of observed action into categories or themes occurs during the analysis 
phase (e.g. Malhotra et al. 2007). Third, the recording of time stamped intervals for 
each task generates data that represents a temporally complete record of the observed 
activity. In other words, at every time point during observation, action is assigned to 
one category or another, or, equivalently, no time in the workflow is unaccounted for. 
This contrasts with other methods where the observer may continuously shadow the 
participant but may only record data at certain times or on particular activities.

The data generated by workflow time studies is essentially a set of time intervals, 
each defined by a start and end time, and having any number of categorical attri-
butes such as task type, location where the task was performed, with whom it was 
performed, and so on. Figure 12.1 provides a simple illustration of tasks plotted 
over time, in addition to one possible way to represent the raw data. The intervals 
can be contiguous where one task ends and another begins, as between tasks 1 and 
2 in the figure; or they can overlap where two types of action occur in parallel (com-
monly called multitasking) as with tasks 2 and 3. When intervals represent fragmen-
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Fig. 12.1 Example of four 
tasks observed in a 
workflow time study, 
represented as intervals on 
a time line and as records 
in a dataset

12 Understanding Clinical Workflow Through Direct Continuous Observation…



194

tation of tasks that are suspended due to interruptions and later resumed, this can be 
indicated with categorical labels, as shown by the ‘interrupted by’ column in the 
figure. Some studies also augment with data from other sources such as patient load, 
self-reported measures or participant characteristics, in an effort to include factors 
at multiple system levels (see for example Westbrook et al. (2018).

The task attributes mentioned above are termed dimensions, each of which may 
have several categories (Westbrook and Ampt 2009). In workflow time studies, a 
dimension is an aspect of clinical work that is relevant to the research questions of 
a study. In the example in Fig. 12.1, ‘type’ is the main dimension which has catego-
ries ‘A’ and ‘B’. In clinical settings, dimensions may be the type of task performed 
by the participant (usually the main dimension), the location where the task is per-
formed, or with whom the participant interacts with while performing the task. In 
the language of quantitative analysis, dimensions can equivalently be thought of 
categorical variables, and the categories represent all the potential values that a vari-
able can take on. Table 12.1 illustrates two dimensions and their categories from a 
study of emergency doctors in Australia (Walter et al. 2017).

12.2  Sampling Strategies

The first major methodological challenge in conducting a workflow time study is 
how to approach data sampling. The sampling strategy naturally depends on the 
study design. As it is impractical to cover the sampling strategies for all possible 
workflow time study designs within this chapter, we limit our discussion to the fol-
lowing three major study types: (1) descriptive studies that provide a snapshot of the 

Table 12.1 Examples of dimensions and categories used in workflow time studies

Dimension Category

Task type Direct care
Indirect care
Documentation
Clinical communication
Management communication
Social communication
Prescribing
Other

With whom Specialist (consultant)
Fellow (registrar)
Resident/intern
Nurse
Relative
Patient
Paramedic
Other
No one

S. R. Walter et al.



195

clinical work process, (2) intervention studies that assess change in workflow over 
time as a result of an intervention, and (3) association studies that aim to link aspects 
of clinical work to patient safety or quality of care outcomes.

One aspect of the sampling strategy that impacts all three study types is that there 
is a limit as to how much one observer can continuously observe without a break. 
However, much of health care, particularly critical care, occurs around the clock. 
Although in an ideal situation we may wish to observe all clinicians at all times 
throughout the study period, this is simply not practical. Thus, the data in workflow 
time studies are often collected across many separate observation sessions, wherein 
each session typically consists of a few hours of shadowing with a single partici-
pant. The data from these sessions are then combined together to form a collection 
of workflow samples on multiple participants.

The nature of clinical work varies with time-related factors: time of day, day of 
the week, time of year, etc. (Walter et al. 2014). It also differs between clinician 
roles or seniority (Westbrook et al. 2010), and between the idiosyncrasies of indi-
viduals (Walter et al. 2014). Oversampling at certain times or among certain roles 
can therefore influence the study results, underscoring the need for an appropriate 
sampling strategy to avoid biases. Descriptive studies generally aim to generate a set 
of samples that, when combined, are representative of clinical work in a certain set-
ting, among a particular professional group, or during a given period of the working 
day. For example, Arabadzhiyska et al. (2013) studied the work of resident physi-
cians on night shifts (10 pm to 8 am) on general hospital wards.

Generating a representative sample is usually accomplished by applying a time- 
based sampling scheme to collect approximately equal amounts of observation time 
balanced across known factors that may influence summary measures such as pro-
portions and rates. To illustrate, the rate at which clinicians’ work is interrupted is 
known to be higher for those who are more senior (Walter et al. 2017), during week-
ends (Richardson et al. 2016) and is related to workload (Weigl et al. 2012) which 
varies throughout the course of the day. If there is unintentional oversampling of 
senior clinicians, Saturdays and Sundays or busy periods, it could then inflate the 
interruption rate to be observed. In contrast, balancing observation time across such 
factors provides an interruption rate estimate that is more representative of the 
‘average’ workflow within the study population.

Such a sampling scheme was used by Richardson et al. (2016) who conducted a 
descriptive study of junior physicians working on day shifts during the weekend. 
The study population was from a single professional group of the same seniority; 
and a sampling scheme was developed to ensure balance in observation hours over 
time of day (between 8 am and 5 pm), day of the week (Saturday and Sunday) and 
also over the 13-week observation period (Table 12.2).

Another major source of variation in workflow is between individuals. A study of 
how clinicians in three hospital settings respond to interruptions found that signifi-
cant variation between individuals persisted after adjusting for many task-level and 
temporal factors (Walter et al. 2014). Attempting to average individual differences 
by balancing (as shown in Table 12.2) would mean an unrealistically large increase 
in required sample size and hence observation time. For example, the Richardson 
et al. study had 16 participants, so to observe each of them, during every time of the 
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day, day of the weekend and week of the study period, it would require an increase 
of the total observation time from 132  h to more than two thousand hours. 
Randomisation offers a way to average out the effects of temporal factors and indi-
vidual differences with a more realistic sample size. For each observation session 
the participant is randomly selected, as is the time of day, day of the week, and so 
on. Sessions can be assigned in this way until a sufficiently large sample is attained.

In practice, it is not always possible to implement either a balanced or ran-
domised sampling scheme exactly as planned. Finding a certain participant at a 
particular time can be difficult, especially in a hospital setting where staff rosters 
change and clinicians swap shifts at the last minute. While it is important to have a 
sampling plan, it may be necessary to modify it over the course of the study period 
to compensate for imbalances introduced by unanticipated deviations from the 
schedule. If logistical constraints cause the final sample to be unbalanced, it is pos-
sible to adjust for this in the analysis phase using multivariate regression. For exam-
ple, to calculate the interruption rate across task type categories (as in Table 12.1) 
when there has been oversampling of senior clinicians, Poisson regression could be 
applied with the main covariate as task type, but also including, say, time of day and 
participant seniority as additional variables. This does not preclude the need for a 
sampling plan, but rather provides a way to mitigate the effects of compromised 
implementation of the plan.

For studies assessing the impact of an intervention using a pre-post design, an 
additional consideration is to use a consistent sampling strategy for each time 
period. While studies of this type should ideally use a control group to capture any 
pre-post changes not attributable to the intervention, the controls may not necessar-
ily capture pre-post differences due to sampling. For example, if senior clinicians 
are oversampled post-intervention for the intervention group, but not for the control 
group, then the intervention effect will be muddied with sampling effects, with no 
completely satisfactory way to separate them during the analysis.

For association studies, the sampling priority is somewhat different as the aim is 
not to generate representative summary measures of workflow, but to assess statisti-
cal associations between aspects of clinical work. Where descriptive studies use a 
sampling strategy based on observation time, association studies build sampling 
around the units of analysis (tasks, events, etc.). To examine associations in an 

Table 12.2 Sampling schedule used by Richardson et  al. (2016) to study junior physicians 
working on day shifts over the weekend

Observation 
time

Saturday A Sunday A Saturday B Sunday B
Week 1, 3, 5, 7, 9, 
11, 13

Week 1, 3, 5, 7, 9, 
11, 13

Week 2,4, 6, 8, 
10, 12

Week 2,4, 6, 8, 
10, 12

0800–0950 Observing Observing
0950–1140 Resting Observing Observing Resting
1140–1330 Observing Resting Resting Observing
1330–1520 Resting Observing Observing Resting
1520–1710 Observing Resting Resting Observing
1710–1900 Observing Observing
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observational study it is necessary to adjust for confounding factors (in the epide-
miological parlance) to derive the least biased estimate of the association of interest, 
usually done through multivariate modelling. The variables generated by workflow 
time studies are typically categorical, so an important consideration is whether there 
will be sufficient outcome data in each category. Small numbers in certain catego-
ries may cause issues with model fitting, so it may be desirable to oversample cer-
tain times of day, certain professional groups, and so on, to avoid this issue. In a 
study by the authors (Walter et al. 2017) on physicians’ response strategies for deal-
ing with external prompts (i.e. interruptions), the original analysis plan involving 
both categorical outcome and covariates was not possible due to some outcome 
categories never occurring at the same time as certain covariate categories. This 
caused implausible or nonsensical model outputs for some variables even after col-
lapsing of some categories, and an alternative analysis approach was necessary. 
Therefore, for association studies, the sampling strategy must necessarily be devel-
oped in parallel with dimensions and categories.

12.3  Inter-observer Reliability

A fundamental aspect of generating high quality data from observations of clini-
cal work is to ensure consistent application of dimensions and their categories 
between different observers. This is often called inter-rater reliability, a term 
taken from psychology, although in this context we use the term inter-observer 
reliability (IOR) since we are interested in observations as a more varied set of 
judgements, as opposed to ratings which tend to involve assigning a single value 
or category at a time. The fact that workflow data recorded at task-level have time 
stamps, involve temporal order and feature multiple categorical attributes makes 
it rather complex to compare between two or more observers who are following 
the same participant. To date, there has been persistent use of simple methods bor-
rowed from other contexts that are not well suited for their purpose, and this is 
somewhat of an ‘elephant in the room’ in quantitative observational studies of 
clinical workflow.

A range of methods have been applied in workflow time studies to assess IOR 
and a review of these identified seven different approaches among the 27% of stud-
ies that provided some details of their IOR assessment (Lopetegui et al. 2013). The 
most common was Cohen’s kappa, a well-known method used in psychology to 
quantify the level of agreement between two or more raters assigning units to a set 
of categories, such as assigning exam papers to either pass or fail (Cohen 1960). In 
workflow time studies this approach seems to be treated as somewhat of a gold 
standard, while at the same time most studies gloss over the details of its application 
to IOR assessment (Lopetegui et al. 2013). There are several issues with kappa, and 
other similar measures, that mean assessments of IOR are limited at best, and may 
even be misleading in that high kappa scores can be achieved even though signifi-
cant observer differences are present.

12 Understanding Clinical Workflow Through Direct Continuous Observation…



198

The first main limitation is that for time-stamped and time-ordered tasks with 
multivariate attributes, identifying pairs of tasks from two observers that refer to 
the same observed action cannot be done with any certainty. Table 12.3 shows 
some example data from two observers shadowing the same physician. Task 2 
recorded by the first observer lasted two and a half minutes, was of task type B, 
was performed with a nurse, and overlapped with the next task for 30 s. In con-
trast, task 2 recorded by observer 2 lasted almost 4 min, was of type A, was per-
formed with a nurse and overlapped with the next task for 2  min. Given the 
disagreement on several attributes, it is not possible to conclusively decide if task 
2 for each observer refers to the same observed action, and to decide they do agree 
based on only some agreeing attributes introduces unreasonable assumptions, or 
even outright guessing.

The second main limitation is that most methods used for assessing IOR only 
apply to one variable at a time. This may be acceptable for descriptive studies 
reporting summary measures of individual variables but is likely inadequate for 
association studies involving multivariate analyses. In one of our prior studies 
(Walter et al. 2014), a reanalysis of the data collected from three hospital settings 
found significant observer effects in multivariate models despite high univariate 
IOR scores.

12.3.1  Nonparametric Hypothesis Testing for IOR Assessment

In this chapter we look at two broad approaches to addressing these limitations. The 
first approach compares summary measures at an aggregated level using hypothesis 
tests. For example, the proportion of time spent performing tasks direct care tasks 
could be compared between observers shadowing the same participant. This method 
ignores temporal order and thus does not require matching at either task or time 

Table 12.3 Example data from two hypothetical observers shadowing the same participant

Observer Task ID Start time End time Task type Performed with nurse

1 1 0:00:00 0:04:30 A 0
1 2 0:04:30 0:07:00 B 1
1 3 0:06:30 0:10:25 B 0
1 4 0:10:25 0:12:05 A 1
1 5 0:12:05 0:15:00 B 0
1 6 0:15:00 0:20:00 A 1
2 1 0:00:00 0:04:40 A 1
2 2 0:04:40 0:08:30 A 1
2 3 0:06:30 0:10:25 B 1
2 4 0:10:25 0:12:05 A 0
2 3 0:12:05 0:15:00 B 0
2 5 0:15:00 0:20:00 A 0
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window level, making it applicable only for descriptive studies where reliability at 
such an aggregate level is sufficient. This approach assumes that the data from dif-
ferent observers should be the same and that any observed difference in summary 
measures is due to observer effects. Rather than generating an IOR score, this 
method provides a p-value where we hope to find a non-significant (large) value 
indicating no evidence of a difference in time proportions for data collected by dif-
ferent observers (as in Westbrook et al. (2018).

Proportions of time are the most common measure in descriptive workflow time 
studies, however, since these are proportions of a continuous variable they require 
unique methods (see Sect. 12.4.2.1 for more details). For this purpose, nonparamet-
ric resampling tests, specifically permutation tests, offer several advantages over 
conventional parametric options. Of the parametric tests, it is possible to aggregate 
the data into subgroups or clusters (e.g. by observation sessions) and to use a logis-
tic transformation on the proportion for each group. This is appropriate where the 
subgroups or clusters are fixed (Warton and Hui 2011), however, in workflow time 
studies the choice of subgroups, such as observation sessions or individual partici-
pants, is not necessarily clear.

Permutation tests avoid the issues with distributional assumptions and sampling 
units. This approach involves reordering observer labels in the task-level data, 
cycling through all possible combinations and calculating the statistic of interest 
each time (such as the difference between proportions for two observers). These 
resampled values form the null distribution against which the actual difference can 
be compared. The proportion of null values more extreme than the ‘true’ difference 
provides the p-value. For large samples, the Monte Carlo permutation test uses 
many random shuffles of the labels to generate a p-value without having to calculate 
every possible label combination, thus reducing computation time. Good (2010) 
provides a comprehensive discussion of these methods. Applying a permutation test 
to the data in Table 12.3 to compare proportions of time spent on task types A and 
B and time spent working with a nurse yielded p-values of 0.61, 0.73 and 0.45, 
respectively. In other words, there was no evidence of a difference between observ-
ers in terms of time proportions.

12.3.2  Conventional IOR Measures Applied to Time Windows

The second approach addresses the time alignment issue by reformatting the task- 
level data into small time windows. This idea originated with Bakeman et al. (2009) 
who discussed applying Cohen’s kappa in this way for timed-event sequential data, 
which is similar to workflow time study data. When comparing data from two 
observers shadowing the same participant, we can assume that during a given small 
time window they were observing the same activity, and this circumvents the issue 
with temporal alignment at the level of tasks described earlier in this section. 
Existing IOR methods, such as Cohen’s kappa, can then be applied to the aligned 
time windows.
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The time window approach then allows us to encompass the multivariate nature 
of data from workflow time studies. Janson and Olsson (2001) developed an IOR 
assessment method analogous to Cohen’s kappa that is applicable to multivariate 
categorical data (pp. 282–283). When applied to two observers and one variable it 
is equivalent to Cohen’s kappa, but can be generalised to any number of observers 
and variables. When applied to time windows, this is the best currently available 
approach for IOR assessment in workflow time studies. It is represented by the 
Greek letter iota, ι, (the letter before kappa).

Applying univariate kappa to the example data shown in Table 12.3 with time 
windows of 1  s (i.e. 1200 windows) we get scores of 0.57 for ‘task type’ and 
−0.45 for ‘performed with nurse’, indicating ‘good’ agreement for the former and 
moderate disagreement for the latter. If we apply Janson and Olsson’s method to 
both variables we get a score of ι = 0.04. This can easily be extended to include a 
third binary variable that represents multitasking (yes or no) in each time window. 
This has a univariate kappa score of 0.38, while the iota score for all three vari-
ables is 0.08.

The results for the ‘task type’ variable were consistent between the two methods, 
but were contradictory for the ‘performed with nurse’ variable. Also, the low agree-
ment shown by the multivariate iota score did not concur with the high univariate 
kappa score for ‘task type’ alone. These results from the two general approaches 
highlight some key points about IOR assessment. First, the utility of any IOR mea-
sure must be considered relative to the analysis. The motivation behind assessing 
IOR is to identify and minimise observer biases in the data, however, IOR measures 
do not necessarily quantify the extent to which results are biased due to observer 
differences. For example, if there is good agreement on the overall proportions of 
individual categories between observers, but poor agreement at task level when 
multiple task attributes are considered together, then an analysis that aims to simply 
summarise proportions would not be biased, while a multivariate regression model 
would be. A corollary of this issue is that IOR measures have limited comparability 
between studies, such that it only makes sense to compare IOR results when the 
IOR method and the analysis are the same.

Second, a high univariate IOR score, as is typically reported in workflow time 
studies, does not tell us much about agreement levels in the whole dataset. Unless 
the analysis only uses one variable, it is imperative to take a multivariate approach 
to IOR assessment and to pursue development of customised methods for workflow 
time studies. More generally, it is therefore important to move away from the idea 
that any existing approach is the gold standard for IOR assessment, to have more 
transparent reporting of IOR in workflow time studies, and to have more open dis-
cussions of the limitations of existing methods and how they can be improved.

A final consideration is that IOR is not the same as accuracy, as a high IOR score 
could simply mean two observers are both wrong in the same way. The lack of a true 
record of the observed activity necessitates assessment of IOR, but also makes it 
impossible to assess accuracy. While we would expect some correlation between 
IOR and accuracy, there will always be uncertainty about data accuracy that cannot 
be overcome by any IOR method.
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12.4  Analysis

12.4.1  Summary Statistics

The descriptive studies discussed in this chapter use a range of measures to charac-
terise observed workflow. Of these, we focus on the most commonly used measures: 
proportions of time, and rates of events per unit time.

12.4.1.1  Proportions of Time

Proportions of time are a key metric in workflow time studies, providing an indica-
tion of how participants distribute their time across various activities, locations, or 
between the different people with whom they interact. They are a mainstay of 
descriptive studies but are also useful in intervention studies as an indicator of 
changes in work patterns. The summation of time intervals tends to be non-trivial, 
due to the presence of multitasking which creates overlap and hence multiple count-
ing of time. While sums of time are not usually reported directly, they are part of the 
calculation of other frequently used measures such as proportions and rates.

Quantifying the uncertainty around estimated proportions in the form of confi-
dence intervals (CIs) is important for interpreting results. For proportions of count-
able units, such as people or events, constructing a CI is a well-trodden path 
described in most statistics textbooks: the CI for a binomial proportion. However, 
for proportions of time—a continuous measure—the binomial methods do not 
apply. Surprisingly, there is little methodology for calculating CIs for proportions of 
continuous variables. In the early 1980s Gilchrist (1982) noted the lack of discus-
sion in the literature despite such proportions occurring frequently, and this is still 
the case more than 30 years later. Only a few papers to date have discussed analysis 
of continuous proportions using parametric assumptions (Warton and Hui 2011; 
Stephens 1982), but they do not directly tackle CIs. A simple modification of the CI 
for the mean of a normally distributed variable has often been used (Li et al. 2015; 
Arabadzhiyska et al. 2013), which is expressed in the following form:
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where Tc is the time spent doing tasks from category c, T is the total observation 
time, sc is the sample standard deviation of task times for category c, and nc is the 
number of tasks in that category. In addition, z1−α/2 is the standard score from a nor-
mal distribution, for example for a 95% CI, this would have the value z0.975 ≈ 1.96.

A drawback of this method is that what constitutes a task depends on the defini-
tions of dimensions and categories and to some extent on interpretation of those 
definitions during observation. For example, if a task is completed in two fragments 
due to an interruption, should this be counted as one task or two? That is, choices 
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regarding task definition affect the term nc, and hence the CI width is at the whim of 
these choices. Also, the normal assumption is only likely to be satisfied when sam-
ples of tasks (Tc) are at least 30, and in some cases it may generate values for the CI 
that are outside the plausible range, e.g. below zero or above one.

A natural alternative is to take a nonparametric approach, namely to use boot-
strap CIs (as in Bellandi et al. 2018). This does not require parametric assumptions, 
which addresses the limitations just mentioned, making it an optimal choice for 
continuous proportions. DiCiccio and Efron (1996) offered a thorough discussion of 
the various approaches that can be used to construct bootstrap CIs. Below, we pro-
vide a brief description of the basic method.

For a dataset with n tasks, a random selection of n of these is drawn with replace-
ment. Even though the new sample has the same number of tasks as the original 
data, it will not necessarily be the same dataset since the random selection with 
replacement means that in the new sample some tasks will appear multiple times 
while others may not appear at all. The proportion of interest for the resampled data 
is then calculated. This procedure is repeated many times to generate a large number 
of resampled proportions. The simplest way to generate an interval is to then take 
the 2.5th and 97.5th percentile of the resampled proportions (for a 95% CI) as the 
lower and upper limits of the confidence interval.

We use a simulation study to illustrate the utility of the bootstrap approach by 
comparing the normal approximation method to the simple bootstrap. We also apply 
the bias-corrected and accelerated (BCa) bootstrap which accounts for asymmetry in 
the CI. A sample of tasks was drawn with time durations from either an exponential, 
gamma or normal distribution. A random subset of 5, 10 or 20% of tasks was 
selected to represent some category of interest. For that ‘category’ the proportion of 
time was calculated along with its CI according to the three methods. This was 
repeated 1000 times and the proportion of CIs containing the true value, the cover-
age probabilities, are shown in Table 12.4. By definition, a 95% CI should cover the 
true proportion 95% of the time for a large number of repeated studies (or simula-
tions in this case), so the expected coverage probability is then 0.95.

Table 12.4 Coverage probabilities for confidence intervals of proportions of time generated via 
three methods

Total 
tasks

‘True’ 
proportion

Normal approximation Simple bootstrap BCa bootstrap
Exp Gamma Normal Exp Gamma Normal Exp Gamma Normal

10 0.05 0.070 0.049 0.013 0.384 0.398 0.406 0.391 0.404 0.404
10 0.5 0.786 0.782 0.501 0.892 0.905 0.925 0.938 0.931 0.946
10 0.95 0.987 0.982 0.946 0.375 0.394 0.396 0.386 0.398 0.394
100 0.05 0.671 0.654 0.381 0.830 0.881 0.905 0.851 0.895 0.925
100 0.5 0.934 0.882 0.587 0.940 0.951 0.950 0.948 0.952 0.954
100 0.95 0.999 1.000 0.980 0.831 0.867 0.903 0.853 0.882 0.924
1000 0.05 0.830 0.732 0.452 0.933 0.947 0.942 0.946 0.950 0.945
1000 0.5 0.946 0.877 0.584 0.948 0.941 0.952 0.951 0.942 0.956
1000 0.95 1.000 1.000 0.993 0.926 0.927 0.948 0.931 0.939 0.949
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Both bootstrap approaches appear to perform better than the normal approx-
imation method when the true proportion is near the lower boundary of the 
possible range of values (true proportion π = 0.05) or in the middle of the range 
(π = 0.5), especially for small and medium samples. The normal approximation 
performs particularly poorly for small proportions and small samples, with 
coverage probabilities less than 0.1. Towards the upper end of the range 
(π  =  0.95), however, the normal approximation seems to perform better for 
small to medium samples, although proportions of this magnitude are rarely 
reported in the literature. Study samples are typically in the several thousands, 
and the results generated by the bootstrap method are consistently closer to the 
expected coverage probability of 0.95 for samples of that size. This suggests 
that the bootstrap CI is generally preferable to the normal approximation, 
which can be quite inaccurate. Further, the BCa method consistently has slightly 
better coverage for all scenarios compared to the simple bootstrap and hence 
represents a better choice for calculating CIs of time proportions among the 
methods considered here.

12.4.1.2  Rates of Events Per Unit Time

Discrete events occurring at different points in time are common in clinical work 
and can be easily captured in workflow time studies. The most common example is 
interruptions. Since the number of such events is proportional to the length of time 
observed, they are generally analysed as rates per unit time, such as interruptions 
per hour. This quantifies the intensity of events while being independent of the 
amount of observation time. Descriptive studies tend to report rates in this form 
along with their CIs (Li et al. 2015; Walter et al. 2014; Westbrook et al. 2010). A 
common and simple approach for generating CIs is to assume that event counts, λ, 
are drawn from a Poisson distribution and to then generate a normal approximation 
CI in the form of:

 
l la±( )-z T1 2/ /

 

where T is the observation time. However, the Poisson assumption that the mean 
and variance are equal is not always met in workflow time study data and once again 
bootstrap CIs provide a more robust alternative.

We illustrate this through another set of simulations comparing the normal 
approximation method to both simple and BCa bootstrap. This was done for task 
lengths drawn from two different distributions (exponential and normal), for small 
and large samples (n = 10 and n = 1000), for two different rates representing low and 
high rates relative to the typical range that appears in the literature on interruptions. 
We also simulated events to arrive according to either a Poisson or negative bino-
mial distribution, where the former assumes that mean and variance are equal while 
the latter does not.
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In the first part of Table 12.5, the simulated data satisfy the assumptions of all 
three methods and thus there is minimal difference between the three methods. 
The coverage probabilities are markedly lower for the small sample size scenar-
ios, particularly when the underlying rate is also low. In the lower section of the 
table, the simulated events follow a negative binomial distribution. The differ-
ences in coverage between the three methods due to sample size and rate are simi-
lar, but a key difference can be seen for the scenario with large sample and high 
rate, in which the coverage for the normal approximation is lower than 0.95 while 
for the bootstrap method it is very close to the expected value of 0.95. This differ-
ence is amplified with increasing rate, such that for a rate of 300 events per hour 
the coverage for the normal approximation drops to 0.63 at best, compared to 0.96 
for both bootstrap methods (data not shown in table). While the performance is 
comparable across most of the scenarios considered, the fact that the bootstrap 
approach is at least as good as, and in some cases clearly better than, the normal 
approximation method suggests that it may be considered a better choice to calcu-
late CIs of rates.

12.4.2  Assessing Associations

12.4.2.1  Two Group Comparisons

Comparing outcomes between two groups is another common research goal in 
workflow time studies. For example, Richardson et al. (2016) (Table 3) compared 
both proportions of time and interruption rates between three studies of physicians, 
where each study used similar observational methodology and task definitions. 
Such comparisons in workflow time studies come with some important caveats, and 
some unique considerations are required for calculating significance.

Table 12.5 Coverage probabilities for confidence intervals of rates per unit time generated via 
three methods

Total 
tasks

‘True’ 
ratea

‘True’ event 
distribution

Normal 
approximation

Simple 
bootstrap BCa bootstrap

Exp Normal Exp Normal Exp Normal

10 3 Poisson 0.546 0.550 0.541 0.538 0.535 0.529
10 30 Poisson 0.919 0.921 0.868 0.904 0.865 0.903

1000 3 Poisson 0.939 0.960 0.940 0.961 0.938 0.961
1000 30 Poisson 0.932 0.948 0.930 0.944 0.933 0.944

10 3 NBb 0.533 0.567 0.529 0.561 0.521 0.553
10 30 NB 0.818 0.865 0.841 0.874 0.843 0.876

1000 3 NB 0.935 0.931 0.943 0.938 0.944 0.939
1000 30 NB 0.862 0.920 0.944 0.959 0.945 0.959

aEvents per hour
bNB negative binomial
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Hypothesis testing was developed within the experimental paradigm in which 
factors extraneous to the effect of interest are controlled, such as randomly assign-
ing subjects to one group or another. Any remaining difference in the outcome mea-
sure can then be attributed to the main effect. In other words, confounding is 
controlled through design. In observational studies of clinical work, this level of 
control is not possible, which means that the data represent a mixture of effects from 
many different factors, both known and unknown. When applying two group com-
parison tests to such data, it becomes difficult to definitively attribute the effect to 
any one factor. A study of physicians and nurses in surgical units (Bellandi et al. 
2018) made such comparisons (adjusted for multiple testing), however, the authors 
appropriately refrained from attributing apparently significant differences to par-
ticular factors. Two-group comparisons in workflow time studies thus must be 
applied with caution.

As seen with calculating CIs, there is little methodology for analysing propor-
tions of continuous measures. The calculations for parametric hypothesis tests 
involve the sample size, which, as seen several times in this chapter, can be open 
to interpretation. In the case of hypothesis testing, choices about what constitutes 
a task can then influence the sample size in the calculations and consequently the 
level of significance, which could result in incorrect conclusions, whether uncon-
sciously or not.

Following on from the hypothesis testing approach used to assess IOR in Sect. 
12.3.1, a way around these issues is, once again, through nonparametric methods. 
Permutation tests, or their Monte Carlo variation (Good 2010), can not only be 
applied to comparisons of typical measures in workflow time studies such as pro-
portions of time and rates per unit time, but also to comparing means and counts. 
Rather than resampling the data as in the bootstrap method, the permutation tests 
randomly shuffle the group labels and calculate the difference between groups for 
each shuffle, e.g. the difference between proportions. This generates a null distribu-
tion for the observed difference and a p-value can then be determined as the propor-
tion of permuted differences larger than the observed difference.

Again, we use a simulation to illustrate the efficacy of this approach. Tasks with 
durations following an exponential distribution were generated for two separate 
groups. For each group, a certain proportion of tasks (the ‘true’ proportion) were 
assigned to the category of interest and the difference between the group-level pro-
portions of time for that category was calculated. The Monte Carlo permutation test 
was then applied to derive a p-value for the observed difference. This process was 
repeated 1000 times, from which the proportion of significant results was obtained 
using α = 0.05. When there is a true difference, this proportion represents the power 
of the test. For a fixed proportion (p1) in the first group, the proportion in the second 
group (p2) was varied through a range of values and the power calculated each time 
as described above. This was done for p1 = 0.05 and p1 = 0.2, and also for sample 
sizes of 100 tasks (50 per group) and 1000 tasks (500 per group).

Figure 12.2 shows the estimated power for these four scenarios. Both plots show 
that power increases with greater true difference between groups and that this 
increase is more rapid for higher proportions (dotted lines for p1 = 0.2 versus solid 
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lines for p1 = 0.05), and for larger samples (plot b versus plot a). The two groups 
were simulated to have equal sample size. In additional simulations, it was found 
that keeping the same total sample size but allowing imbalance in group size reduced 
the power. The grey lines indicate power curves for the difference between two 
independent binomial proportions generated using the G∗Power program (Faul 
et al. 2007). While there is clear similarity, the power for the simulated permutation 
tests (black lines) are systematically lower. Nevertheless, the fact that they are in the 
same region and that the permutation test is applicable to proportions of continuous 
variables while binomial proportion methods are not, supports the permutation test 
as a reasonable choice for comparing proportions of time in workflow time 
studies.

An alternative testing approach, as outlined in Sect. 12.3, is to aggregate the data 
into subgroups. A proportion can be calculated for each subgroup, then the set of 
subgroup-level proportions can be analysed as continuous data, using methods such 
as t-tests or linear regression. We assessed this approach through simulation and 
compared it to permutation testing. To replicate a two-group comparison, we simu-
lated 500 tasks per group (with exponentially distributed task duration) and divided 
the task in each group into either 10 subgroups of 50 tasks each, 50 subgroups of 10 
tasks each, or six subgroups of eight or nine tasks each. In one group the underlying 
proportion of interest was set at 20% and for the other group this varied between 20 
and 40%, that is, the difference between groups ranged from 0 to 20%. A t-test was 
applied to the subgroup-level proportions and the whole process was repeated 1000 
times to obtain power estimates for the range of group differences.

The results of these simulations are shown in Fig. 12.3 where the power curves 
for t-tests applied at different levels of subgroup aggregation are relatively similar 
(all black lines). Although having fewer subgroups reduces the effective sample size 
of the tests, this seems to be counteracted by a proportional decrease in variance. 
The somewhat surprising result of which is that the power is not greatly affected by 
the level of aggregation. The grey line in the plot shows the power for the permuta-
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Fig. 12.2 Simulated power of the Monte Carlo permutation test to detect difference between two 
proportions of a continuous variable, for (a) a total sample of 100 tasks and (b) a total sample of 
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computed power for equivalent differences in binomial proportions is shown as grey lines for 
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tion testing approach. This is consistently as good or better than t-tests applied to 
aggregated data. The choice of units over which to aggregate data (e.g. observation 
sessions, clinicians, etc.) is not necessarily obvious in workflow time studies. 
Combined with the fact that permutation tests are at least as powerful, then once 
again a nonparametric approach is the better option.

12.4.2.2  Multivariate Analyses

There are many ways to apply multivariate methods in workflow time studies. 
Indeed, there is a strong case to make that most association studies should take a 
multivariate approach to better understand the factors operating at multiple system 
levels and minimise the bias in particular effects by adjusting for other influential 
factors. We have discussed general considerations of multivariate analysis in work-
flow time studies in our previous work (Walter et al. 2015). In this section we extend 
the theme of nonparametric analysis into the multivariate arena.

There are several ways to apply nonparametric methods to multivariate analyses. 
First, when fitting garden variety parametric models, such as linear regression, it is 
possible to use bootstrapping to determine the significance of the model estimates 
or to generate CIs for the estimates. This is essentially an extension of what we have 
discussed earlier regarding CIs and hypothesis tests, and similarly this may be an 
appropriate alternative when the data do not satisfy parametric model assumptions, 
as is often the case.

Second, there is a wide range of nonparametric multivariate modelling techniques 
that do not rely on assumptions about the distributional form (normal, Poisson, etc.) 
of the data. Some can be used as explanatory models, such as generalised additive 
models or spline regression, that can describe non-linear associations. In the study of 
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Fig. 12.3 Simulated power for t-tests applied to subgroups-level proportions for 50 subgroups of 
10 tasks each (solid black line), 10 subgroups of 50 tasks each (dashed black line), and 6 subgroups 
of 8 or 9 tasks (dotted black line). The total sample of tasks was 1000 (500 per group), the underly-
ing proportion of the group 1 was p1 = 0.2 and proportions for group 2 ranged from 0.2 to 0.4. The 
power for a permutation test is shown for comparison (solid grey line)
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prescribing errors among ED physicians, Westbrook et al. (2018) found no evidence 
of an effect of time of day (categorised into 2-h blocks) on error rates using a Poisson 
regression model. However, Fig.  12.4 shows that fitting a nonparametric model 
(LOESS smoother) reveals a significant and distinctly non-linear relationship. 
Another explanatory approach is the classification tree, a version of which was used 
by Walter et al. (2017). In that study, discussed at the end of Sect. 12.2, the lack of 
data in certain categories necessitated a change from the original analysis plan. The 
alternative analysis used was a nonparametric model called a conditional inference 
tree, which iteratively splits the data into groups such that each group has a distinct 
outcome profile. Finally, in the area of predictive nonparametric models there is now 
a vast and growing collection of methods, such as Bayesian networks and random 
forests, that would be applicable to answering appropriately framed research ques-
tions in workflow time studies.

12.5  Discussion

Workflow time studies are an important type of research for generating knowledge 
about both the functioning of clinical work and workflow at a fine-grained level, and 
about the workflow-related factors that influence patient safety and quality of care. 
The data generated by such studies, and likely other types of time and motion stud-
ies, are not always amenable to conventional statistical methods. In this chapter we 
have highlighted some of the non-standard aspects of the data and offered alterna-
tive approaches that draw heavily from the family of nonparametric analysis 
techniques.
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This chapter is somewhat technical, and it may be tempting for readers to form 
the impression that workflow time studies are overly complicated. The basic con-
cept of these studies is, in fact, straightforward, but the complexity largely comes 
from the contexts in which they are applied. Clinical work is undeniably complex, 
and to understand its inner workings and interrelationships we must embrace that 
complexity into study design and data analyses, challenging as it may be. To design 
studies and analyses that fit within conventional approaches is to essentially shy 
away from or ignore those challenges. The methodological discourse in this chapter 
takes some steps towards tackling the intricacies of conducting quantitative studies 
of clinical work but is intended as a starting point for ongoing discussions rather 
than a definitive account of best practices.

Some recent studies have begun to employ more sophisticated methods such as 
multilevel models (Walter et  al. 2014; Grundgeiger et  al. 2010), transition state 
models (Carayon et al. 2015; Myers and Parikh 2019), and nonparametric models 
(Walter et  al. 2017). However, explicit discussion of quantitative methodology 
appropriate for workflow time studies remains relatively rare. As we have high-
lighted in this chapter, there is an imperative to develop innovative approaches 
even for fundamental analyses such as IOR assessment, confidence intervals and 
hypothesis tests. Improving both our understanding of clinical workflow and the 
integrity of the workflow time study literature will require ongoing methodological 
innovation.

References

Ampt A, Westbrook JI, Creswick N, Mallock N.  A comparison of self-reported and observa-
tional work sampling techniques for measuring time in nursing tasks. J Health Serv Res Pol. 
2007;12(1):18–24.

Arabadzhiyska PN, Baysari MT, Walter SR, Day RO, Westbrook JI. Shedding light on junior doc-
tors’ work practices after hours. Internal Med J. 2013;43(12):1321–6.

Bakeman R, Quera V, Gnisci A. Observer agreement for timed-event sequential data: a comparison 
of time-based and event-based algorithms. Behav Res Methods. 2009;41(1):137–47.

Bellandi T, Cerri A, Carreras G, Walter SR, Mengozzi C, Albolino S, et al. Interruptions and mul-
titasking in surgery: a multicentre observational study of the daily work patterns of doctors and 
nurses. Ergonomics. 2018;61:40–7.

Carayon P, Wetterneck TB, Alyousefa B.  Impact of electronic health record technology on the 
work and workflow of physicians in the intensive care unit. Int J Med Inform. 2015;84:578–94.

Cohen J. A coefficient of agreement for nominal scales. Educ Psychol Meas. 1960;20(1):37–46.
DiCiccio TJ, Efron B. Bootstrap confidence intervals. Stat Sci. 1996;11(3):189–228.
Faul F, Erdfelder E, Lang AG, Buchner A. G∗Power 3: a flexible statistical power analysis program 

for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91.
Georgiou A, McCaughey EJ, Tariq A, Walter SR, Li J, Callen J, et al. What is the impact of an 

electronic test result acknowledgement system on Emergency Department physicians’ work 
processes? A mixed-method pre-post observational study. Int J Med Inform. 2017;99:29–36.

Gilchrist R. An analysis of continuous proportions. In: Caussinus H, Ettinger P, Tomassone R, edi-
tors. COMPSTAT 1982 5th Symposium held at Toulouse. Heidelberg: Physica; 1982.

Good PI. Permutation, parametric and bootstrap tests of hypotheses. 3rd ed. New York: Springer; 
2010.

12 Understanding Clinical Workflow Through Direct Continuous Observation…



210

Grundgeiger T, Sanderson P, Venkatesh B, MacDougall HG. Interruption management in the inten-
sive care unit: predicting resumption times and assessing distributed support. J Exp Psychol 
Appl. 2010;16(4):317–34.

Janson H, Olsson U. A measure of agreement for interval or nominal multivariate observations. 
Educ Psychol Meas. 2001;61(2):277–89.

Li L, Hains I, Hordern T, Milliss D, Raper R, Westbrook JI. What do ICU doctors do? A mul-
tisite time and motion study of the clinical work patterns of registrars. Crit Care Resusc. 
2015;17:159–66.

Lopetegui MA, Bai S, Yen P-Y, Lai A, Embi P, Payne PRO. Inter-observer reliability assessments 
in time motion studies: the foundation for meaningful clinical workflow analysis. AMIA Annu 
Symp Proc. 2013;2013:889–96.

Lopetegui M, Yen PY, Lai A, Jeffries J, Embi P, Payne P. Time and motion studies in healthcare: 
what are we talking about? J Biomed Inform. 2014;49:292–9.

Malhotra S, Jordan D, Shortliffe E, Patel VL. Workflow modeling in critical care: piecing together 
your own puzzle. J Biomed Inform. 2007;40(2):81–92.

McCurdie T, Sanderson P, Aitken LM. Traditions of research into interruptions in healthcare: a 
conceptual review. Int J Nurs Stud. 2017;66:23–36.

Myers RA, Parikh PJ. Nurses’ work with interruptions: an objective model for testing interven-
tions. Health Care Manag Sci. 2019;22(1):1–15. https://doi.org/10.1007/s10729-017-9417-3.

Richardson LC, Lehnbom EC, Baysari MT, Walter SR, Day RO, Westbrook JI. A time and motion 
study of junior doctor work patterns on the weekend: a potential contributor to the weekend 
effect? Int Med J. 2016;46(7):819–25.

Stephens MA. Use of the von Mises distribution to analyse continuous proportions. Biometrika. 
1982;69(1):197–203.

Unertl KM, Novak LM, Johnson KB, Lorenzi NM.  Traversing the many paths of workflow 
research: developing a conceptual framework of workflow terminology through a systematic 
literature review. J Am Med Inform Assoc. 2010;17:265–73.

Walter SR, Li L, Dunsmuir WTM, Westbrook JI. Managing competing demands through task- 
switching and multitasking: a multi-setting observational study of 200 clinicians over 1000 
hours. BMJ Qual Saf. 2014;23:231–41.

Walter SR, Dunsmuir WTM, Westbrook JI.  Studying interruptions and multitasking in situ: 
the untapped potential of quantitative observational studies. Int J Hum Comput Stud. 
2015;79:118–25.

Walter SR, Raban MZ, Dunsmuir WTM, Douglas HE, Westbrook JI. Emergency doctors’ strate-
gies to manage competing workload demands in an interruptive environment: an observational 
workflow time study. Appl Ergon. 2017;58:454–60.

Warton DI, Hui FKC.  The arcsine is asinine: the analysis of proportions in ecology. Ecology. 
2011;92(1):3–10.

Weigl M, Muller A, Vincent C, Angerer P, Sevdalis N.  The association of workflow interrup-
tions and hospital doctors’ workload: a prospective observational study. BMJ Qual Saf. 
2012;21:399–407.

Westbrook JI, Ampt A.  Design, application and testing of the Work Observation Method by 
Activity Timing (WOMBAT) to measure clinicians’ patterns of work and communication. Int 
J Med Inform. 2009;78S:S25–33.

Westbrook JI, Ampt A, Kearney L, Rob MI. All in a day’s work: an observational study to quantify 
how and with whom doctors on hospital wards spend their time. Med J Aust. 2008;188:506–9.

Westbrook JI, Coiera E, Dunsmuir WTM, Brown BM, Kelk N, Paoloni R, Tran C. The impact of 
interruptions on clinical task completion. Qual Saf Health Care. 2010;19:284–9.

Westbrook JI, Raban MZ, Walter SR, Douglas HE. Task errors by emergency physicians are asso-
ciated with interruptions, multitasking, fatigue and working memory capacity: a prospective, 
direct observation study. BMJ Qual Saf. 2018;27:655–63.

Zheng K, Guo MH, Hanauer DA. Using the time and motion method to study clinical work pro-
cesses and workflow: methodological inconsistencies and a call for standardized research. J 
Am Med Inform Assoc. 2011;18:704–10.

S. R. Walter et al.

https://doi.org/10.1007/s10729-017-9417-3


211© Springer Nature Switzerland AG 2019 
K. Zheng et al. (eds.), Cognitive Informatics, Health Informatics, 
https://doi.org/10.1007/978-3-030-16916-9_13

Chapter 13
Clinical Workflow and Human Factors

Aaron Zachary Hettinger, Emilie M. Roth, Rollin J. Fairbanks, 
and Ann Bisantz

13.1  Introduction to Human Factors Engineering

Human factors engineering is a well-established scientific discipline that studies the 
functional capabilities and limitations of humans in order to design and optimize 
systems, processes and technology to reliably obtain a desired outcome (Lee et al. 
2017). It incorporates principles and methods from disciplines such as industrial 
systems engineering, cognitive psychology, and computer science to analyze and 
model human-system interactions and to support system designs which meet quan-
tifiable needs of the users and which support work in ways that are effective, 
 efficient, and safe.

Human factors engineering has had a major influence on the design of systems 
and workflows in a wide range of safety critical industries including nuclear power, 
military and defense, and aviation. By understanding human capabilities, limita-
tions, and common pathways for error, systems can be designed to prevent errors 
and—importantly—mitigate their effects, thus reducing harm to users and others 
who may be affected. In health care, the benefits of human factors engineering 
design approach extend to keeping patients free from error-based harm, to improv-
ing care through more efficient and effective workflows, to protecting staff mem-
bers from fatigue and injury. Human factors engineering is particularly important in 
the successful integration of new technology into an existing work system. Recent 
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examples include the use of drones in military and civilian applications and the 
emergence of self-driving cars that may share the road with human-driven cars. In 
each case human factors methods and principles are being applied to analyze the 
implications for the humans in the system, and to design effective user interfaces 
and work flows to enhance overall safety of operations (Casner et al. 2016; Roth 
and Pritchett 2018).

An important strength of human factors engineering is the focus on a broader 
context within which a system workflow or device operates (Carayon 2006). This 
includes describing specific physical, cognitive, and perceptual capabilities and 
limitations of the populations of system users involved; understanding and formally 
modeling the purposes and tasks being performed; mapping task requirements to 
human-system capabilities; and considering relevant aspects of the physical envi-
ronment and work situations in which the system will be deployed. For example, a 
portable intravenous pump undergoing testing may work flawlessly in a simulated 
environment with experienced intensive care unit nurses, however that same pump 
may present significant hazard when an alarm goes off at home with a patient that 
misplaced their reading glasses.

This chapter introduces core concepts and methods from the discipline of human 
factors and describes how they can be applied to the study and improvement of 
clinical workflow. We begin by presenting a set of core human factors concepts (or 
human factors ‘lenses’) that are important to adopt when trying to identify sources 
of problems and opportunities for improvement to healthcare-related workflows. 
This is followed by description of specific human factors methods that can be used 
to analyze and improve workflow.

13.2  Applying Human Factors Lenses to Workflow  
Analysis and Design

When considering the application of human factors to the healthcare environment 
including health IT systems it is important to have a context within which to work. 
The following core Human Factors concepts and theoretical perspectives will aid 
the reader in applying a human factors lens when analyzing or trying to identify 
improvements to specific workflows and situations. These include situations 
where healthcare organizations may be trying to understand the factors that are 
contributing to performance problems or errors and how they can be mitigated; as 
well as situations where organizations are trying to develop and/or introduce new 
health IT and monitor and manage its impact on performance and satisfaction. 
There can be many points where there is value in adopting a ‘human factors 
lens’—early in the process when requirements for a health IT system are being 
defined, during design in determining whether the system being developed will 
work as imagined, and after implementation, to understand and address human 
performance problems that emerge (e.g., near misses, adverse events, productivity 
bottlenecks).
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13.2.1  Supporting ‘Work as Done’ Versus ‘Work as Imagined’

A core precept of human factors is that it is important to begin any analysis or 
design project by studying how work is actually done, in all its messiness. Too often 
there is a significant gap between the way in which leaders believe the work is per-
formed at the front line, and the way in which it actually occurs. Some authors refer 
to this as the different between ‘work as imagined’ and ‘work as done’ (Hollnagel 
et al. 2013; Braithwaite et al. 2017). Clinical work is fundamentally collaborative, 
involving multitasking, frequent interruptions, time-pressure, and incomplete, 
ambiguous, time-lagged information. Problems arise when there is a disconnect 
between the realities of the work ‘as done’ and the assumptions underlying the 
Health IT system (i.e., work as imagined). A case in point is decision-support tools 
where the implicit assumption is often that of a single decision-maker deciding at a 
particular point in time, with the all the information in hand. This contrasts with the 
demands of actual work practice, with the result that such tools are less likely to be 
adopted in real clinical settings (Wears and Berg 2005).

The rapid adoption of electronic health records in the United States since the Health 
Information Technology for Economic and Clinical Health Act (HITECH) in 2009 has 
introduced technology with variable degrees of success and unintended consequences 
(Bernstam et  al. 2010). Often problems arise because of a mismatch between the 
implicit model of the work inherent in the HIT and the actual complexities of the clini-
cal work environment. As Wears and Berg (2005) put it, the problem is not one of ‘not 
developing the systems right’ but rather of ‘not developing the right systems’.

Good design and implementation needs to go beyond a narrow focus on the tech-
nology to be implemented. A sociotechnical lens is required that includes examin-
ing the characteristics of the organization to be supported (the people, values, 
norms, and culture), the technical environment in which the new system is to be 
inserted (the equipment, processes, procedures, and physical facilities), and the 
work demands and complexities that healthcare practitioners face. Only through 
this type of broad perspective will the gap between work as imagined and work as 
done be narrowed.

13.2.2  Addressing Context Independent vs. Context Dependent 
Design Elements

One of the significant challenges when introducing technology into any complex 
environment is addressing both its usability and usefulness. Usability is defined as 
how intuitive a tool is, how easy it is to learn and to use by the intended user. In 
contrast, usefulness refers to the extent to which the device, technology or workflow 
provides meaningful improvement in performance by the intended user under antic-
ipated working conditions. To highlight the differences between usability and use-
fulness, one can imagine a new application within the electronic health record 
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(EHR) is tested in a lab and found to be intuitive to use with few errors by the user 
(usability). But when used by nurses in the emergency department who are fre-
quently interrupted and multi-tasking across many patients the application becomes 
burdensome to enter data and found to have limited usefulness in the clinical envi-
ronment due to missing critical information from other parts of the EHR.

Usability is generally affected by context independent features of a design often 
framed as design “heuristics” including making system status visible, providing 
meaningful and rapid feedback, maintaining consistency in indications and actions, 
using language and labels, and supporting error recovery (Nielsen 1995). These 
design principles are largely independent of the content and context of the interface 
or device being investigated. A recent human factors review of electronic medical 
record and electronic health record systems found that there were extensive usabil-
ity issues (Zahabi et al. 2015). These authors noted that these often resulted from a 
lack of application of standard human factors usability guidelines including: using 
simple natural dialogue, speaking the user’s language, minimizing memory load; 
providing feedback and good error messages; maintaining consistency in design 
and error prevention (Molich and Nielsen 1990).

Human factors engineering provides extensive guidelines for identifying and 
correcting these ‘context-independent’ aspects of design. There are well established 
rules and guidelines that have been agreed upon for decades in the human factors 
and associated literature regardless of the application, from medical device to elec-
tronic airplane dashboard. For example, yellow text on a white background provides 
less contrast than black text and will be more difficult for the user to interpret. In 
addition, providing a list of choices on a display that are only separated by one pixel 
is more likely to lead a user to make an accidental selection if they are distracted or 
slip. While the rush to implement health IT systems may not followed many of these 
guidelines, the incorporation of User-Centered Design principles and human factors 
engineers in the design and certification of EHRs in the United States has begun to 
standardize the approach and remove these basic design errors that can lead to 
patient harm (Tolley et al. 2018).

In contrast to usability, usefulness of a health IT system is based on context 
-dependent design considerations that rely on an understanding of the purposes of 
system implementation, user goals, and context of use (Hettinger et al. 2015). For 
example, when placing an electronic order for a patient, providers frequently need 
to refer to previous laboratory values to make the most appropriate choice. A well 
designed computerized provider order entry (CPOE) system would not only allow 
the user to view previous orders while placing a new order, but may make specific 
values more salient based on the current order selections. For example, a radiology 
test with intravenous contrast requires normal kidney function to prevent serious 
adverse events. Relying on the provider to remember the results of prior tests of 
kidney function or requiring them to navigate away from the ordering screen and 
potentially get distracted on another task will lead to the predictable error of order-
ing the wrong test or a delay in care. It would be preferable to display prior kidney 
function values on the screen used to order radiology tests.

Context dependent design is much more challenging and requires in-depth study 
of the users and their workflow in the environment where the work will be per-
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formed. This entails anticipating the needs of the users based on the context of use 
and making it easier for users to make the correct decision or action. Effective 
design requires consideration of both context independent and context-dependent 
aspects, and an interactive process that allows both usability and usefulness in con-
text to be assessed.

13.2.3  Engineering for Resilience

Resilience Engineering offers a complementary human factors lens through which 
to examine clinical workflow (Fairbanks et al. 2014). Instead of focusing on the 
rare errors and failure modes, it encourages examining the adaptive behavior of 
individuals in the everyday context that keep things from going wrong, and how 
these behaviors can be better supported and more widely adopted (Braithwaite 
et al. 2015).

The basic premise of Resilience Engineering is that healthcare is a very complex 
process that presents multiple challenges. The different policies, procedures, 
patients, staff members and other various components interact in such a manner that 
there are often unanticipated outcomes when trying to change clinical workflow and 
that no one individual in the system has a clear understanding of all the components 
and how they interact with each other. However, humans are incredibly adaptable 
and often serve to hold the system together. For example, if a particular component 
in the system is not working correctly, e.g. the CT scanner stops working, then it is 
the humans that will develop the work arounds to get other testing, transfer patients 
to a facility that has the necessary equipment or delay the testing in those patients 
that have less time sensitive conditions until the equipment is working again. 
Without humans, the brittle interconnected system of electronic orders and medical 
equipment would grind to a halt until the equipment could be repaired, causing 
potential serious delays in acutely ill patients.

Resilience Engineering seeks to learn from the positive everyday behaviors of 
the humans in the system that keep the system going and prevent harm. In effect, 
instead of focusing only on the rare cases of errors and system breakdowns, it asks 
why more errors aren’t happening and what can be done through better designs and 
workflows to enhance positive behaviors across users and not just the individuals 
that are anticipating the hazards through previous experience and institutional 
knowledge (Braithwaite et al. 2015).

13.2.4  Guiding the Co-evolution of Technology  
and Work Practice

A core Human Factors precept with extensive empirical support is that when new 
technology is introduced it inevitably changes work practice, sometimes in unan-
ticipated ways. People adapt to the new health IT and learn to use it in ways that 
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were not necessarily envisioned by the system developers. These new and unantici-
pated uses can in turn trigger a need for new technology development. This dynamic 
cycle of technology development and user adaptation has been referred to as the 
task-artifact cycle, to emphasize that how tasks are performed and the artifacts that 
support them co-evolve over time (Carroll and Rosson 1992; Carroll and Campbell 
1998). This implies a need to continue to track the impact of a new health IT system 
after it is introduced to identify emerging practices and changing needs.

New technology cannot simply be ‘dropped’ into a work context. Rather, its 
impacts on the larger work context and organization needs to be tracked and unan-
ticipated reverberations need to be recognized and addressed (Woods 2002). As 
Wears and Berg (2005) noted, the introduction of new health IT cannot be thought 
of in isolation, but rather as part of the larger context of organizational change. 
This includes recognizing that there will be a period of exploration and mutual 
learning involving users and system developers (Wears and Berg 2005). New 
workflows will emerge and additional support needs will be identified. This in turn 
will trigger new design cycles—be it through changes in training, workflow or 
design changes to the IT system. For example, the patient tracking boards (i.e., dry 
erase white boards) in emergency departments (EDs) originally were developed 
independently across organizations by the front line users. For example research 
by Bisantz et  al. (2010) noted that with the transition to electronic information 
systems (EDIS) that attending physician workflow with resident physicians and 
students was no longer supported. Specifically, the method by which case presenta-
tion, attending exam and final note had been tracked on the dry-erase board with a 
series of colors and symbols was no longer supported (Bisantz et  al. 2010). 
Attending physicians adapted by using paper notes kept in the pocket to track this 
information (new ‘home grown’ artifact). Because the information was no longer 
publicly displayed, residents and nurses were not able to maintain awareness of 
where the attending physician was in their workflow. An unintended consequence 
was that patients were sometimes discharged before the attending physician evalu-
ation and plan was complete. This task- artifact loop spurred EHR design changes. 
More recent EHRs used in clinical practice have been observed using these find-
ings to incorporate the tracking of resident/attending workflow and note status in a 
more comprehensive manner.

13.2.5  Adopting a Patient Safety Transformational (PST) 
Prevention Model

Human factors approaches are intended to anticipate and prevent or mitigate the use 
errors before they can occur and cause potential harm. This is analogous to the 
patient safety transformational (PSF) model that has been used in cardiovascular 
care. The PST model distinguishes primary prevention—prevention before the haz-
ard occurs; secondary prevention—prevention after the hazard occurs but before the 
patient is harmed; and tertiary prevention—prevention after the harm event has 
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occurred but during the critical time that an intervention could improve a patient’s 
outcome. The aim is to design for primary prevention whenever possible, followed 
by secondary, and then tertiary prevention.

Cardiovascular care for patients has undergone major changes since the 1950s 
when researchers were just starting to understand the link between heart disease and 
risk factors that we now take for granted like diabetes, hypertension and hypercholes-
terolemia (Dawber et al. 1951). As a result of this improved depth of understanding 
and new methods for diagnostic testing, medicine went from a model of waiting for 
patients to have heart attacks to actively trying to prevent cardiovascular disease 
through life style modification (primary prevention) and aggressive management of 
chronic disease (secondary prevention). While there is still significant effort in tertiary 
prevention, reducing the long term impact of the heart attack once it occurs through 
rapid cardiac angioplasty and bypass surgery, there is considerable effort to prevent 
the patient from ever needing those dramatic efforts.

In stark contrast to changes made in cardiovascular disease, healthcare safety and 
operations often focus on the critical events that demonstrate breakdowns and try to 
improve their systems from one adverse event to the next. Using processes like Root 
Cause Analysis (RCA) often lead to brief analysis of adverse events that culminate 
in short term fixes such as disciplining those involved and training the other team 
members to vigilant instead of implementing sustainable and effective changes to 
the clinical workflow of the front-line staff (Hettinger et al. 2013). By taking a simi-
lar primary/secondary/tertiary prevention approach as that taken in cardiovascular 
care, the hazard under investigation may be designed out of the system. For exam-
ple, a surgical department investigates a retained piece of medical equipment despite 
performing a surgical count of equipment and a post-operative x-ray at the comple-
tion of the case. In an effort to prevent future cases the organization decides to apply 
the PST prevention concept instead of a traditional model of referring the involved 
staff to their respective peer review committees and sending a memo to staff to be 
more vigilant. They find multiple pieces of equipment and disposables that are not 
visible on x-ray and develop a plan to replace them, removing them from circulation 
in the operating rooms (primary prevention). Furthermore, they investigate technol-
ogy that will allow wireless scanning and counting of surgical equipment to remove 
a foreign body before the end of surgery (secondary prevention). Finally, after 
reviewing clinical data they determine that most retained foreign body cases are in 
surgical cases that are either long duration or complex with many pieces of 
 equipment. They develop a clinical workflow so that these cases are pre-operatively 
identified as high risk and streamline a process for getting post-operative x-rays 
looking for foreign bodies before the patient leaves the operating room (tertiary 
prevention).

The PST prevention model can be embraced in the health IT system development 
process, before any adverse event has occurred. For example, the use of robust user 
centered design processes during the formative development period is likely to pre-
vent many hazards from making it into the system (primary prevention) or catch the 
hazards during usability testing with representative end-users (secondary preven-
tion). The use of EHR safety surveillance during the post implementation period for 
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health IT system can then catch hazard and harm events where the contribution of 
the health IT system may be unrecognized (tertiary prevention). One of the benefits 
of human factors approaches is that it provides methods to catch and correct prob-
lems during different phases of design and implementation—before there is oppor-
tunity for harm. Without designing for primary, secondary and tertiary prevention in 
clinical workflow, individual healthcare providers are destined to make the same 
errors over and over again.

13.3  Human Factors Methods for Analyzing  
and Improving Workflow

Evaluating, designing andoptimizing clinical workflow is a critical part of providing 
safe and effective care to patients. The section above presented some core human 
factors concepts that are intended to provide guiding perspectives when trying to 
identify sources of problems and opportunities for improvement to healthcare- 
related workflow. A common thread across the multiple lenses presented is the need 
to understand the broader context of work, the complexities that can arise, and the 
cognitive and collaborative demands they impose, when trying to understand or 
improve workflow. This includes cases where an organization is trying to under-
stand why problems or errors are occurring and develop mitigations. As well as 
cases where an organization is trying to design new health IT or insert new systems 
developed by vendors so as to improve performance.

In this section we provide brief descriptions of some core human factors methods 
that can be used to analyze the context of work and the impact of new technologies 
on work. These include methods that can be used early in the analysis process when 
one is trying to understand sources of performance problems and define require-
ments for more effective support, methods that can be used during design when a 
team is trying to determine whether the health IT system being developed will work 
as imagined, and methods that can be used after a system is implemented to under-
stand and address human performance problems that are identified (e.g., near 
misses, adverse events, productivity bottlenecks). As we introduce each method we 
will highlight the types of analyses and stages of technology design and  introduction 
for which they are best suited. We will also briefly describe their strength and 
limitations.

The review of human factors methods provided below is necessarily selective. 
We focus on methods for uncovering information about workflow and the context of 
work, particularly the cognitive and collaborative demands of work that can lead to 
performance problems, as well methods for evaluating and guiding the design new 
HIT systems as part of the development cycle. Broader surveys of human factors 
methods and more in-depth descriptions of the methods described below can be 
found in the literature (Bisantz et al. 2015; Bisantz and Roth 2008; Hettinger et al. 
2017; Lee et al. 2013; Lowry et al. 2014; Stanton et al. 2017).
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It is important to note for the reader that while each of the methods are covered 
individually below, in practice researchers will use a combination of methods to 
obtain a richer picture of the workflow of interest and the broader context in which 
it is imbedded than would be possible with any single method. For example research-
ers will often combine interviews and focus groups with observational studies 
(Militello et al. 2014) as well as with artifact analysis (Xiao et al. 2010).

These methods can be effectively used by multiple types of organizations and 
stake-holders and tailored to the scope, size, and budget of the project. This includes 
technology vendors who may be trying to develop and upgrade health IT systems for 
applications across multiple hospitals, clinical organizations (e.g. ambulatory clinics, 
hospitals, larger healthcare systems) that might be trying to roll-out and manage new 
health IT systems to minimize error, and improve performance, satisfaction and 
safety, as well as individual healthcare researchers or leaders who may be trying to 
examine sources of problems or errors and identify appropriate solutions.

13.3.1  Interviews and Focus Groups

Interviews and focus groups are among the most common methods for learning 
about workflow and obstacles to effective performance (Bisantz et al. 2015). They 
are particularly useful during the early stage of information gathering to get an 
overview of the ideal workflow and obtain multiple perspectives on challenges and 
barriers to effective performance that may result in a disconnect between work as 
imagined and work as practiced. Interviews and focus groups can also assist in ter-
tiary prevention when analyzing an adverse event that has occurred and safety 
experts are attempting to assess the severity of hazard for future patients and the 
potential frequency with which they may occur.

Interviews using human factors methodologies frequently employ a semi- 
structured format to ensure that key topics (e.g., previously identified key pieces of 
a workflow or known work-arounds) are discussed, while remaining flexible enough 
for the interviewer to discover new information and allow the participant to guide 
the discussion based on their experience with the process, system and culture. This 
facilitates learning the true work as performed versus work as imagined discussed 
previously. As one example, McDonald et  al. used a semi-structured interview 
approach to map the clinical workflow for high-risk patient monitoring at five spe-
cialty clinics (pulmonary medicine, breast cancer, gastroenterology, urology and 
otolaryngology). Based on the interviews they were able to identify (1) the steps 
that were most critical, time-intensive, and risky from a patient-safety perspective; 
(2) critical data elements needed for effective monitoring of high-risk patients; and 
(3) candidate technical and organizational interventions to address the identified 
workflow vulnerabilities (McDonald et al. 2017).

Focus groups also employ semi-structured interview questions but allow the par-
ticipants to clarify and build upon each other’s comments, enabling a richer, more 
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nuanced, construction of the workflow. A critical decision is whether to mix indi-
viduals from different backgrounds (e.g., different job positions; experience levels; 
status in the organization) in one focus group. An important consideration is to 
ensure that everyone feels free to express themselves openly. One example where 
this concern came up is in a focus group conducted seeking to understand commu-
nication patterns between nurses and physicians (Benda et al. 2017). In this study, 
separate focus groups with nurses, residents and attending physicians were chosen 
because of anticipation of different perspectives based on both roles and experience 
level between and among nurses and physicians. Indeed during focus group inter-
views residents and attending physicians expressed very different views. Attending 
physicians were more likely to discuss the importance of two-way communication 
and listening to nurses as their eyes and ears within the ED. In turn nurses talked 
about strategies for guiding less experienced residents, given the formal hierarchy 
relationship.

Interviews and focus groups, in general, require less expertise and time to con-
duct than some of the following methods. However, lack of appropriate preparation 
for both techniques are likely to result in less helpful data collected. Further, focus 
groups often require two moderators—one to conduct the focus group and one to 
record the discussions. The use of audio and/or video recording devices can help 
reduce the number of personnel used but require a significant amount of resources 
to turn the recordings into usable data. Audio/video recordings can also negatively 
impact the participant’s willingness to share more controversial views and 
observations.

13.3.2  Critical Decision Method

One of the most powerful methods for learning about the demands in the environ-
ment and the strategies that people have developed for coping with them is to ask 
them to describe a specific past challenging situation they personally experienced 
and how they handled it (Flanagan 1954). The critical decision method (CDM) is a 
widely used structured interview technique that builds on this approach (Klein et al. 
1989). It was initially developed to understand the decision making process of fire-
fighters when making rapid decisions with limited access to information that could 
have life-threatening consequences. It consists of a trained individual in the method 
conducting a structured interview with a single participant, typically an expert in the 
workflow under consideration. The method involves having the individual go 
through the incident in progressively deeper passes to understand the decisions that 
were made, the information that was used and alternative events that could have 
occurred and how they were avoided (Crandall et al. 2006).

CDM has been used in multiple high-risk settings, including urban and wild 
land firefighting, military command and control, and software engineering. It has 
been extensively used in health care, including to study the perceptual cues used by 
experienced neonatal intensive care unit nurses; (Crandall and Getchell-Reiter 
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1993) and to compare the strategies employed by physicians of different levels of 
expertise for early recognition of sepsis (Patterson et al. 2016). The results have 
been used to propose improvements to workflow, new forms of decision-support, 
and new training.

More recently a variant of CDM has been developed as a means to identify resil-
ient behavior and workflows by healthcare providers. For example, Hegde and col-
leagues are developing a lesson-sharing tool called Resilience Engineering Tool to 
Improve Patient Safety (RETIPS) based on CDM interviews of nurses and physi-
cians that focus on examples of resilient behavior (Hegde et al. 2014, 2015). The 
intent was to collect a corpus of cases that demonstrate how people adapt in everyday 
clinical work to perform effectively and avoid harm to patients under challenging 
conditions as a means of generating safety lessons.

While CDM is powerful method for collecting information on workflow chal-
lenges and the adaptive strategies that individuals develop in response, it has some 
limitations. In particular it requires significant training and expertise to conduct 
CDM interviews. Often CDM interviews are conducted by trained human factors 
consultants and there are short-courses offered in the methodology. In addition there 
have been efforts to adapt the methodology to on-line questionnaires (Hegde and 
Jackson 2017).

13.3.3  Observations

One of the most useful human factors techniques for studying workflow is to conduct 
observations in the actual work context or in a close analogue such as a high fidelity 
simulator (Roth and Patterson 2000). Observing individuals and teams working in 
their work environment allows the analyst to document the range of complexities that 
arise that challenge work flow and the various adaptations and work arounds that 
individuals have developed to cope with demands, overcome obstacles, fill in gaps 
and otherwise contribute to the overall safety of the system (or not).

Observational studies involve having one or more observers unobtrusively 
shadow individuals as they go about their work. The goal is to observe the activities 
and communications that occur without getting in the way, serving as a source of 
distraction, or otherwise influencing the behavior of the individuals being observed. 
The observer typically records their observations in real time either in free form or 
using a predefined set of coding categories (Bisantz et  al. 2015). These are then 
analyzed after the fact using qualitative grounded theory methods and/or quantita-
tive methods (e.g., recording and analyzing the frequency of different types of 
occurrences).

Often the observational team will include a behavioral scientist (e.g., a human 
factors specialist) with knowledge and skill in observational methods, and a second 
individual with knowledge and expertise in the domain of practice being observed 
(e.g., a physician or a nurse in studies of health care environments). For example, a 
study examining workflow challenges in complex surgeries had a two-person obser-
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vation team in the operating room that included a practicing surgeon and a human 
factors specialist (Christian et al. 2006). The surgeon could draw on their surgical 
knowledge to interpret what was observed while the human factors specialist could 
draw on their cross-domain knowledge of human performance drivers and systems 
challenges to point to patterns of behavior and systems problems whose signifi-
cance might not be recognized by the surgeon. Both took notes in real-time during 
the surgery being observed which were then combined to obtain a more complete 
and accurate description of what took place.

Whenever feasible, observations are coupled with opportunistic interviews that 
occur during periods of low workload or at the end of a shift. This allows for the 
subject to answer clarifying questions or provide elaborations or confirmations of 
what was observed without interfering with the work. In some cases, if the environ-
ment allows, the sessions are audio or video recorded for later review and analysis. 
For example, a study examining inter-operative deviations in care had video- 
recordings made of ten high acuity operations. These were then transcribed and 
analyzed by a multidisciplinary team consisting of surgeons and human factors spe-
cialists (Hu et al. 2012). This resulted in more complete data capture than would be 
possible when relying solely on real-time observations. In another study, Tiferes 
et  al. used video- and audio-recordings of robotic assisted surgeries to code and 
characterize verbal and non-verbal communication among members of the surgical 
team (Tiferes et al. 2018).

Observational studies are useful early in an investigation when trying to under-
stand the work as actually done (as opposed to the work as imagined). This includes 
situations where human performance problems have been identified and there is a 
need to understand why they are occurring and what can be done to reduce the prob-
lem. One good example was an observational study that was conducted to under-
stand the ‘counting protocol’ used by nurses to keep track of surgical objects 
(needles, sponges, instruments) during operations in order to reduce the risk of leav-
ing a foreign object in the patient (Dierks et al. 2004). Hospital leadership wanted 
to understand why surgical objects were sometimes left in patients in spite of having 
the counting protocol. The observational study showed that the counting protocol 
was difficult to perform and documented multiple factors that contributed to chal-
lenges in maintaining an accurate count (e.g., incomplete surgical kits; shift changes 
in the middle of surgery; differences in counting conventions across nurses). Further 
it showed that the counting protocol itself had unanticipated negative consequences 
that in some cases compromised patient safety. Complications in the count, which 
occurred in six of the nine observed surgeries, triggered activities to reconcile the 
source of the inconsistency. This drew attention away from the ongoing surgery, 
resulting in delays and additional risk to the patient. The study led to numerous 
recommendations for improving performance ranging from increasing standardiza-
tion to eliminating the count through use of new technologies for keeping track of 
surgical objects.

Observational studies are also useful after a new system is put in place to 
understand the impact of the new system on practitioner workflow. This includes 
tracking whether the system is being used in the manner envisioned by the devel-
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opers, whether it is having the positive effects anticipated, and whether any new 
issues are emerging. For example, an observational study was conducted to under-
stand use of Electronic Health Record (EHR) systems in primary care outpatient 
clinics (Flanagan et al. 2013). The study identified mismatches between the EHR 
system designs and the demands of outpatient settings that led to a variety of work 
arounds (some paper-based and some computer-based) intended to improve effi-
ciency and support memory and awareness of the healthcare practitioners. These 
pointed to limitations of the EHRs that contributed to their lack of use and oppor-
tunities for improvement. Another study examined the impact of the introduction 
of EHRs on nurse physician verbal communication in emergency departments 
(Benda et al. 2017). The goal was to understand the content and pattern of physi-
cian-nurse communication given the availability of EHRs. Among other things the 
study identified the situations where verbal communication continued to be 
needed in spite of the availability of the information in the EHR. For example, 
verbal communication was used to draw the attention of the provider to important 
patient status information that might otherwise not be salient, as well as to con-
firm that the provider was aware of the information. The results pointed to oppor-
tunities to improve EHR systems.

Observational studies have also been used to examine the impact of new technol-
ogy such as surgical robots, on operating room workflow, teamwork and patient 
safety. For example, observational studies have been used to document workflow 
disruptions in robotic surgeries, the factors contributing to them and the impact on 
safety (Catchpole et al. 2018). Catchpole and colleagues observed 89 robotic sur-
geries and documented 4229 flow disruptions, defined as deviations from the natu-
ral progression of the operation. The researchers found that flow disruptions rates 
due to problems in communication and coordination were comparable to those for 
other types of surgeries. In contrast flow disruption rates due to equipment problems 
(e.g. improper insertion of the camera; fogging of the endoscope) were much higher 
pointing to opportunities to improve performance through changes in training, 
equipment or workflow.

Observational methods have also been used to explore verbal and non-verbal 
aspects of team communication in robotic surgery where the surgeon sits at a robot 
console away from direct view of the patient on the operating table (Tiferes et al. 
2016). The authors documented numerous types of verbal and non-verbal interac-
tion between the surgeon and the physician assistants located by the patient. This 
included use of the robotic tool itself as a means of non-verbal communication (e.g., 
positioning and zooming the camera to draw the attention of the physician assistant 
to a particular location). This last example illustrates how new technology results in 
new adaptations and uses unanticipated by the system developers. The authors 
pointed to how the results could be leveraged to design more effective team training 
for robotic surgeries.

While observational studies are a powerful tool for understanding the actual 
demands of work, they have some limitations. First they are time and labor inten-
sive, both in terms of the time required to conduct the study and the time required to 
analyze the results. Second, they require expertise in performing observational stud-
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ies. Their success depends on the skills of the observers and the representativeness 
of the sample of observations (Roth and Patterson 2000). Third, there is a potential 
that the presence of the observer to impact the workflow or get biased results, for 
example if the individuals being observed are concerned that they are being evalu-
ated or that they may be reported if they deviate from prescribed policies and proce-
dures. Finally, while the approach is useful for studying every day work, it is not 
suitable for studying rare events that by definition would be unlikely to be observed 
during any particular observation period.

13.3.4  Artifact Analysis

One of the best ways to gain insights into how work is actually performed and the 
requirements for more effective support is to examine the tools (‘artifacts’) cur-
rently in use (Xiao 2005). Artifacts include formal aids provided and sanctioned by 
the institution such as procedures and checklists (e.g., formal OR checklists) as well 
as ‘home grown’ artifacts that practitioners have developed on their own initiative 
to support their own work (Xiao et al. 2009).

‘Home-grown’ artifacts developed by practitioners can highlight mismatches 
between the formal systems in place and the requirements of the work (Bisantz 
et al. 2010; Xiao 2005). They provide a window on the cognitive and collaborative 
aspects of work that need to be supported and the information needed to effec-
tively support work. Artifacts can be simple, low tech, items such as ‘sticky-notes’ 
and paper-based ‘cheat sheets’ (also sometimes called ‘brain sheets’) that practi-
tioners routinely use to support memory and situation awareness. Increasingly 
one also finds highly sophisticated computer-based visualizations and decision 
aids developed by computer-savvy practitioners to facilitate their own work (Xiao 
et al. 2009). For example, Roth and colleagues examined work practice in a mili-
tary airlift organization (Roth et  al. 2006). They documented a variety of new 
computer-based visualizations; local databases; and decision-aids that were 
developed as ‘home-grown’ artifacts to compensate for limitations of the formal 
computer-systems in place.

Analysis of participant-developed artifacts can provide a rich source of informa-
tion to guide design of new HIT. For example, Bauer, Guerlain and Brown studied 
the use of paper-based patient flow sheets in pediatric intensive care (Bauer et al. 
2006). Positive features identified included that it was portable, that it supported 
easy comparison of information and that it allowed for free-form annotation. Based 
on these observations the researchers were able to specify important functions that 
electronic system s should continue to support including the need to allow for flex-
ible rather than sequential data entry; the need to allow users to optionally leave data 
fields unfilled; and the need to support unstructured annotations. At the same time 
the researchers were able to identify ways that an electronic system could improve 
on the paper flow sheets, including automatic calculations that were done manually 
with the paper form.
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Similarly, Gurses, Xiao and Hu studied the paper-based clipboard created by 
nurse coordinators to compensate for inadequate support of the formal hospital 
information system (Gurses et al. 2009). Nurse coordinators painstakingly created 
clipboards that synthesized and reorganized information obtained from multiple 
disparate sources to better support their fast-paced work demands. The authors rec-
ommended modifications to the hospital information system to allow users to create 
and print tailored single page views that could provide ‘at a glance’ summaries of 
key information.

One of the most studied home-grown artifacts in healthcare is the dry erase 
white board (Wears et al. 2007a; Bisantz et al. 2010; Pennathur et al. 2011; Patterson 
et  al. 2010; Xiao et  al. 2007). Dry-erase status boards arose spontaneously and 
became ubiquitous in the ED in the mid 1980s as a means to track patients (Wears 
et al. 2007a). Dry erase status boards have largely been replaced by electronic sys-
tems, however, as mentioned above, not all of the functions supported by the dry- 
erase status board were successfully transferred to the electronic versions. While the 
electronic versions support basic information exchange functions (e.g., patient 
demographics; location; caregiver assignments), they are less effective at directing 
attention, maintaining awareness of provider work flow status, and coordinating 
work across providers (Bisantz et al. 2010; Pennathur et al. 2007). For example, as 
mentioned earlier, attending and resident physicians used hand drawn symbols to 
track (and allow others to see) their patient specific workflow status with the dry 
erase status board but this was not supported with the electronic version. Similarly, 
with the dry-erase status board it was possible to provide information about the over-
all ED (e.g., whether an ED pharmacist) and to annotate and track aspects of medical 
care by making annotations outside the matrix structure (e.g., notes at the top, lines 
along the side). This flexibility was no longer supported by the electronic versions.

Comparison of dry-erase status boards and electronic versions led Bisantz et al. 
to draw several conclusions and recommendations (Bisantz et  al. 2010). Most 
importantly, it is not sufficient to reproduce the literal format of an existing technol-
ogy. Mimicking the matrix format and basic information of the dry-erase status 
boards failed to support the variety of cognitive and collaborative functions that the 
dry-erase status boards supported. System developers need to gain a deeper under-
standing of the demands of the work, how existing artifacts support work and where 
they fall short in order to develop a firm foundation for new health IT design. In 
particular, the fact that dry-erase boards are highly flexible, easy to tailor, and easy 
to simply walk up to and input information of any kind without having to first log 
in, and without being limited with respect to what can be entered and where it can 
go, turned out to be critical elements contributing to their success (Wears et  al. 
2007b). The results of the analyses provided the foundation for a more extensive 
project to design and evaluate improved display concepts for ED status displays 
(Guarrera et al. 2015).

Artifact analysis provides an important window on the multiple, often subtle, 
demands of work. As such it is a valuable tool for health IT developers trying to 
gather user support requirements. Its primary limitation is the risk of adapting too 
literally superficial aspects of the artifact (e.g., the particular format used; the spe-
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cific bits of information included) without fully appreciating all of its functionality 
and the full range of cognitive and collaborative support it provides. This risk can be 
mitigated by coupling artifact analysis with other human factors techniques such as 
work practice observations and practitioner interviews to obtain a richer under-
standing of the demands of the work environment, how the artifact supports work, 
and limitations of the artifact that can be overcome through effective use of new 
technology (e.g., automating computations, synthesizing information).

13.3.5  Work Oriented Evaluations

Health IT systems are often plagued with usability problems that make them diffi-
cult to use adding to inefficiency and potential for error (Zahabi et al. 2015). Of even 
greater concern, they may not provide effective support for the cognitive and col-
laborative work of the healthcare providers. One way to overcome this problem is to 
encourage multiple work-oriented evaluation cycles as part of the system design 
process.

Traditionally a distinction has been made between two types of user evaluations: 
formative evaluation and summative evaluation (Neilsen 1994). Formative evalua-
tions are designed to provide feedback with respect to what aspects of the system 
design work well and which can be improved—that is they are intended to be learn-
ing opportunities. There are a variety of approaches to formative evaluation ranging 
from fast and relatively low-cost heuristic evaluations that consist of structured 
reviews by usability experts, to more formal usability tests that bring in representa-
tive users to exercise the system. Usability tests typically collect both performance 
data (e.g., number of key strokes, time to complete a task, errors) and user feedback 
data (e.g., via structured questionnaires). Summative evaluations are designed to 
provide an overall assessment of the system. They are typically conducted at the 
completion of a system development process to establish that the system meets pre- 
defined evaluation criteria.

A work-centered evaluation is an example of a usability test approach that is 
work-oriented (Truxler et  al. 2012; Roth and Eggleston 2010). The focus is on 
insuring that the health IT supports the cognitive and collaborative work of the 
healthcare practitioners. Work-centered evaluations are designed to be diagnostic. 
They are intended to not only provide an overall assessment of the usability and 
usefulness the health IT system, but to also provide detailed a detailed assessment 
of: (1) which cognitive and collaborative activities the health IT supports well and 
which less so; (2) which features of the health IT system are useful to the health 
practitioners and which less so; and (3) which features of the health IT are easy to 
use (usable) and which less so. These provide important information to guide health 
IT design course correction.

Work-centered evaluations couple elements of both formative and summative 
evaluations (Roth and Eggleston 2010). From a summative perspective the aim is to 
evaluate the design against a predefined set of cognitive performance support objec-
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tives that the system is designed to meet (Clark et al. 2017). For example a cognitive 
performance support objective might be ‘identify hold-ups in the care of an individ-
ual patient’. Work-centered evaluations include explicit metrics to establish whether 
these cognitive performance support objectives have been met. These metrics include 
performance on test cases that are representative of the cognitive and collaborative 
challenges that arise in that work context that the HIT is intended to support. For 
example, if an HIT system is to support ‘identifying hold-ups in the care of an indi-
vidual patient’ then one or more of the test cases would involve recognizing that 
there is a ‘hold up’ preventing progress in the flow of care of a particular patient and 
being able to identify what that hold up was (e.g., the attending is waiting to hear 
back from a consulting physician). Work-centered evaluations also collect direct user 
feedback on whether that cognitive performance support objective has been met. 
This feedback is typically obtained via rating questions on a final questionnaire that 
is administered after all test cases have been completed. For example, the test partici-
pant might be asked to rate on a nine-point scale whether they feel that the health IT 
effectively supports ‘Identify hold-ups in the care of an individual patient’.

Work-centered evaluations also include a formative evaluation aspect—an 
opportunity to discover need for additional improvement. The evaluations are 
designed to catch any usability problems that need to be addressed prior to final 
implementation. This is accomplished by identifying any confusions, difficulties or 
usability errors that test participants make during the test cases portion of the evalu-
ation, as well as via usability rating questions included on the final questionnaire. 
Work-centered evaluations are also designed to probe for additional work demands 
not previously identified that may signal new cognitive performance support 
requirements and propel further design innovation. Previously unrecognized work 
demands and additional cognitive performance support requirements are typically 
elicited via open-ended questions on the final questionnaire as well as via end of 
session verbal debriefs. This includes explicitly asking participants to consider situ-
ations beyond the ones sampled in test cases, and indicate any ones they feel the 
health IT might not handle well, as well as any situations where the health IT would 
be particularly helpful.

A work-centered approach was used to evaluate an Emergency Department 
information System (EDIS) prototype designed to support awareness of the overall 
ED state and flow of patients through the ED, patient care, staff workload, and 
 available resources (Clark et al. 2017). Participants performed patient planning and 
orientation tasks using the EDIS displays. They then rated the ability of the EDIS to 
support the work-oriented cognitive needs of emergency clinical staff that were 
identified as part of the cognitive analysis that drove the system design (i.e., the 
cognitive performance support requirements). The questionnaire employed a nine- 
point rating scale with ‘9’ indicating ‘extremely effective’. Example cognitive per-
formance support questions include ability to ‘Identify bottlenecks or holdups 
preventing overall patient flow through ED’; ‘Maintain awareness of overall acuity 
of patients waiting and currently being treated’; and ‘Provide support for prioritiz-
ing your tasks’. The participants also rated the usability, usefulness, and predicted 
frequency of use of specific system components.
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Overall mean ratings were positive (i.e., mean above 5) for cognitive perfor-
mance support objectives, usability, usefulness, and frequency of use, indicating 
that the EDIS prototype would provide effective cognitive support for emergency 
medicine staff. At the same time, the evaluation generated diagnostic information 
regarding which aspects of the EDIS displays were most useful, where there were 
issues in usability, and the extent to which the displays supported the cognitive 
work of different types of providers. For example, in some cases mean usefulness 
scores were significantly higher than mean usability scores (e.g., for the waiting 
room and patient progress displays) suggesting that while waiting room and patient 
progress information is useful to ED staff members, the information could be dis-
played better.

The study also illustrated the diagnostic power of cognitive performance support 
oriented questions. For example, the question ‘provide support for prioritizing your 
tasks’ received significantly lower mean ratings (5.9 on a nine-point scale) than 
many other of the questions (all with mean ratings above 7). This result made sense 
because while the researchers identified the need to support individual task prioriti-
zation as an important requirement for the ultimate full system, this particular cog-
nitive task was beyond the design goals of the prototype being tested. The evaluation 
also revealed that Nurse and Physician provider roles had significantly different 
perceptions of the usability and usefulness of certain EDIS components, suggesting 
that they have different information needs while working.

In summary key elements of work-centered evaluations include: (1) An explicit 
articulation and test of the cognitive performance support requirements underlying 
the aiding system that are used to guide the selection of test cases and test measures; 
(2) test participants that are representative of the target user population; (3) test 
cases that reflect the range of cognitive and collaborative complexity that arises in 
the work context; and (4) multi-faceted assessment measures, including objective 
measures of performance as well as a final user-feedback questionnaire that 
addresses usability and usefulness of the aiding system. A main strength of the 
approach is its work-oriented focus. A primary limitation is that it can be resource 
intensive to design, implement, and analyze.

13.3.6  Task Analysis

There are a variety of human factors task analysis methods used to formally 
describe work activities. These methods decompose work in terms of goals, tasks, 
and sub- tasks. Requirements for successful task completion are identified, includ-
ing knowledge or skills, equipment, or information needs, and opportunities for 
error or other performance limiting factors are made explicit. The granularity of 
decomposition depends on the needs of analysis, and can range from high-level 
activities (e.g., “order medication”) to keystroke or mouse-click level actions. In 
some cases, time estimates are associated with activities in order to predict task 
completion times.
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Hierarchical Task Analysis (HTA) is a common task analysis method that begins 
by decomposing task goals, hierarchically, into subtasks and actions (Kirwan and 
Ainsworth 1992; Stanton 2001). A distinguishing feature of HTA is the articulation 
of plans, which describe the manner in which subtasks and activities are executed. 
For instances, activities can be performed sequentially, subject to if-then or branch-
ing conditions, or performed iteratively until some stopping condition is met. Each 
node that has been decomposed into lower level actions is provided with a plan. The 
HTA method therefore supports a description of activity in a way that is reflective 
of predictable situational conditions or more flexible choice of strategy.

The family of GOMS task analytic methods (task Goals, Operators or actions, 
Methods or sequences of actions, and Selection rules to choose the appropriate 
Method) includes operators that describe cognitive, perceptual, and motor actions at 
the keystroke level of detail along with the times associated with the operators. 
GOMS models can be used to model predictable sequences of actions, including 
interactions with health IT systems such as electronic health records (John and 
Kieras 1996). Models can be used to compare task times across different systems 
(during procurement) or to understand impacts of operational change. A number of 
architectures influenced by GOMS have been implemented which support compu-
tational modeling of human activities (Byrne 2009).

Data necessary to complete task analyses (regardless of form) comes primarily 
from observation or interviews to allow the work tasks, performance indicators, 
and support requirements to be identified. Task times can be obtained through 
measurement, and in some cases (e.g., perceptual, cognitive, or keystroke level 
GOMS operators) from the published literature. Results for task analyses can be 
used in design (i.e., to insure critical information is present, to identify and miti-
gate likely sources of error, to understand when activities exceed perceptual capa-
bilities), in system procurement (i.e., to compare times or skill requirements for 
critical activities), and in training (i.e., to document required knowledge and 
skills). For example, hierarchical task analysis was used to compare interactions 
with across two different drug infusion pumps in order to predict potential user 
errors (Chung et al. 2003). Importantly, however, task analyses are limited by the 
degree to which tasks are predictable a priori, and therefore are best applied to 
well-defined, repeated tasks (e.g., entering a medication order) rather than com-
plex higher level tasks (e.g., diagnostic decision-making). Such complex work 
activities should be analyzed using other methods, such as the critical decision 
methods (described above) and related cognitive task analysis techniques (Bisantz 
and Roth 2008).

13.3.7  Cognitive Informatics Techniques

The development of cognitive informatics presents new opportunities to interface 
with human factors engineering principles. Whereas many of the previously men-
tioned methods and techniques can be challenging to gather data on more than 
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10–20 participants, the use of cognitive informatics can allow for observations 
across thousands of users and millions of interactions. Cognitive informatics goes 
beyond just measuring clicks and mouse movements, but seeks to both identify 
and understand the circumstances of a particular action or outcome across large 
numbers of users. Adelman et al. were able to identify instances of where medical 
providers ordered a test on a wrong patient by creating algorithms based on pro-
vider workflow (Adelman et  al. 2013). The authors were able to significantly 
reduce the incidence of these errors by having ordering providers re-identify their 
patients with each order. Follow up work by Green et al. was able to replicate the 
work, but noted that the change in workflow increased workflow by 4.1–4.9 s per 
order. A reduction in wrong patient orders of almost 25% was sustained at 2 years 
after the implementation (Green et al. 2015). Yet further analysis of their imple-
mentation, extrapolated across the national healthcare system would require 400 
additional full time emergency physicians and 900,000 extra hours of checking to 
make sure that the order is placed on the correct patient (Wears 2015). While the 
intervention is effective, future research is needed to better understand the human 
factors engineering principles behind why users order on the wrong patient. It 
could due to patient names on the screens being next to each other, interruptions, 
or errors in the health IT systems that route users to the wrong patient despite 
making the correct selection or some combination of other causes. Each of these 
require different interventions and improvements to the EHR workflow to design 
the errors out of the system. For this problem and many others, the use of cogni-
tive informatics with human factors engineering is critical to identifying the 
underlying reasons for the errors and inefficiencies, and to help prioritize the most 
frequent and potentially catastrophic events from impacting our patients and 
clinicians.

13.4  Conclusion

This chapter provided an introduction to human factors perspectives and methods. 
Key methods include semi-structured interviews and focus groups, critical incident 
analyses, observational methods, artifact analyses and cognitive informatics 
approaches. Multiple health care examples of applications of these methods were 
provided to illustrate the power of studying work as practiced to identify sources of 
complexity that create risk as well as adaptive behavior of healthcare providers that 
contribute to system resilience and enhance safety. The examples also illustrated 
how human factors methods can be leveraged to identify opportunities for improve-
ment whether through training to disseminate and reinforce effective strategies or 
through technology enhancements. A key point is the need to include multiple 
opportunities to collect information on the usability and usefulness of new tech-
nologies throughout the development process, up to and including fielding of sys-
tems in the actual work environment.
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An important point to stress is that the human factors methods are appropriate for 
use by multiple types of organizations and stake-holders, and can be and tailored to 
the scope, size, and budget of the project. This includes technology vendors who 
may be trying to develop and upgrade health IT systems for applications across 
multiple hospitals, clinical organizations (e.g. ambulatory clinics, hospitals, larger 
healthcare systems) that might be trying to roll-out and manage new health IT sys-
tems to minimize error, and improve performance, satisfaction and safety, as well as 
individual healthcare researchers or leaders who may be trying to examine sources 
of problems or errors and identify appropriate solutions.
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Chapter 14
Automated Location Tracking in Clinical 
Environments: A Review of Systems 
and Impact on Workflow Analysis

Akshay Vankipuram and Vimla L. Patel

14.1  Background and Motivation

The impact of workflow on clinical error and consequently on patient safety has 
been widely known for some time (Frisby et al. 2017). While it may be convenient 
to blame human error for the findings presented in the report “To Err is Human,” this 
is not a view shared by a majority of patient safety researchers (Henriksen et al. 
2008). A more accepted view is to consider the complexity of a medical environ-
ment, where errors are typically caused by failure of one or more aspects of the 
system, leading to a sequence of further failures, which ultimately impact patient 
safety. Errors more often result from our lack of understanding of the environment 
and its bottlenecks than from a specific individual within the environment. To that 
end, thorough analysis of health care professionals’ clinical workflow is essential to 
build a knowledge base of the areas of potential bottlenecks that may compromise 
patient safety.

Since the publication of the above report, research in clinical workflow has 
increased significantly. An important approach to studying complex environments is 
ethnography (Malhotra et  al. 2007; Patel et  al. 2008; Vankipuram et  al. 2011). 
Ethnography pertains to the study of the individuals that make up the environments 
and how their biases and interactions affect the outcome of that setting. Ethnographic 
observations combined with surveys, interviews, and questionnaires are all tech-
niques that help piece the puzzle of an environment together. However, each data 
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collection method has its own limitations. Specifically, these methods rely heavily 
on single or multiple human observers processing multiple, and at times parallel, 
streams of information (Vankipuram et al. 2009). Increasing the number of observ-
ers can help in such a situation, but this can also quickly lead to logistical issues as 
accounts are combined.

Our goal in writing this chapter is to summarize an important modern techno-
logical advancement that can potentially help enhance our understanding of the 
intricacies within clinical environments and processes. We will present an overview 
of automated location tracking technologies followed by related research on the 
efficacy of the technologies. We then look at case-studies from our own work to 
elucidate the potential impact of location tracking in the medical domain. We break 
down the case-studies into analytics derived from location tracking data and data 
visualization techniques that can help present this information to relevant target 
users (i.e., clinicians and researchers).

14.2  Automated Location Tracking Technologies

Automated tracking of entities in a clinical environment has gained popularity over 
the past decade, with uses ranging from equipment tracking in clinical environ-
ments to research. Automated tracking refers to the use of technological advance-
ments to continuously track clinical personnel, patients, and equipment with 
minimal human supervision. The methods associated with automated tracking were 
inspired by those in the field of aviation. Specifically, by considering tracking of 
processes in a complex medical environment to be comparable to a black box in 
aircrafts (Vankipuram et al. 2011). In this analogy, the black box continuously mon-
itors various aspects of flight, such as pilot communication, altitude, cabin pressure, 
and relays this information to the ground or recorded for post-flight analysis and in 
case of emergencies. Clinical environments can be similarly monitored to reveal 
underlying process bottlenecks or sources of error.

One of the most popular techniques to achieve automated tracking is the use of 
sensors. Several examples of such technologies exist, including Radio Frequency 
Identification (RFID), Bluetooth, ZigBee, and Wi-Fi (Vankipuram et al. 2018). The 
efficacy of these various methods depends greatly on the nature of the environment 
itself and the constraints (safety protocols, lead-lined walls, inference from other 
medical devices) placed on signal transmission in medical environments. As a result 
of these constraints, RFID and Bluetooth have become the most popular technolo-
gies for automated tracking (Vankipuram et al. 2018). Lee and colleagues (Lee et al. 
2007) compared the various safety protocols discussed above, and while they deter-
mined that the suitability of a protocol was most dependent on its use-case, Bluetooth 
and ZigBee were the most suited protocols for low data, low battery use applica-
tions. Near-Field communication was effective for much shorter distances than 
would be convenient for tracking. Wi-Fi, while a popular method, was found to 
interfere with existing hospital networks.

A. Vankipuram and V. L. Patel
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14.2.1  Radio-Frequency Identification (RFID)

RFID tags are typically carried by the subjects being monitored and they relay their 
information at regular intervals to a central receiver. Typically, multiple receivers 
are needed in larger areas. Information, such as proximity of tags to the receiver, is 
used to determine interactions between subjects. This helps build a model of inter-
action that can be used to analyze the impact of interventions or general workflow. 
Figure 14.1 shows an early version of RFID tags provided for clinical tracking pur-
poses. These earlier technologies suffered from a significant amount of interference 
leading to a loss of data quality. Data collection over wireless networks also posed 
a challenge and often the data collected was stored at a central location by the ven-
dor and had to be specifically requested as a data file when needed. Obviously, this 
was a significant barrier to adoption due to the circuitous and time-consuming col-
lection process, but, more importantly, resulting from an inability to restrict owner-
ship of potentially sensitive data, especially when dealing with patient tracking. 
Therefore, these technologies were rarely, if ever, used on patients. Additionally, the 
receiver stations shown in the figure were meant to be placed, manually, at the most 
appropriate locations and since they were ground stations it meant that they had a 
higher probability of interfering with the normal clinical workflow and could be 
distracting or concerning for patients and physicians.

Fig. 14.1 SNiF® RFID tag (Vankipuram et al. 2011)
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A modern version of an RFID system is shown in Fig. 14.2 (Versus Technology, 
RTLS Technology | Accurate, Reliable IR-RFID RTLS | Versus RTLS n.d.). The 
technologies have been updated to conform with the standards required of medical 
data including security. In the case of the Versus system, a reduction in the size of 
the receivers along with an improved tag detection mechanism has allowed the sys-
tem to improve the efficacy of collected data. While the Versus system is used as an 
example here, there are several vendors who use variations of similar techniques 
and achieve similar effectiveness. Additionally, medical organizations have also 
begun to implement their own solutions because RFID tags and receivers tend to 
cheap and easily available.

There are two broad classes of RFID technologies that are available:

 1. Passive RFID: The tags have no power source and only transmit a signal when 
they are within range of a receiver. This typically leads to a longer lifespan and 
passive tags can last up to 10 years. However, due to a lack of onboard power 
their detection range is within 40 ft. The receivers are often more expensive than 
active RFID owing to a need to transmit radio frequency energy.

 2. Active RFID: These tags are battery powered and continuously transmit a signal. 
They have a detection range of over 300 ft but have reduced battery lives (3–8 
years depending on the range). Receivers are cheaper than their passive 
counterparts.

Choosing between these technologies is largely based on the characteristics of 
the medical environment in which they are implemented as well as organizational 
concerns, such as safety and cost.

14.2.2  Bluetooth

Bluetooth based tracking solutions are a more modern approach to clinical track-
ing. The technique was originally introduced, and is most often used, in non-med-
ical settings (e.g., keyless entry for houses) (Andersson 2014). Bluetooth offers 
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Fig. 14.2 Versus RFID-RTLS system
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certain advantages over RFID, especially in terms of cost and battery life (Frisby 
et al. 2017).

The Bluetooth tracking setup is similar to RFID and relies on receivers and tags 
on tracked entities/personnel. An additional advantage of this technology is its 
increased compatibility (compared to RFID) with mobile devices and PCs (i.e., 
most devices can receive and process Bluetooth signals without purchase of a spe-
cialized receiver). Bluetooth tracking setups can therefore be more cost effective 
than the equivalent RFID systems. However, to maximize the efficiency of data 
collection and minimize the cost, a higher level of technical knowledge is required 
for setup and maintenance of ad-hoc solutions. Bluetooth technologies are classified 
by their versions. The latest version of Bluetooth, released in 2016, was Bluetooth 
5.0. Each subsequent revision of the Bluetooth standard has led to an increase in 
communication range and a reduction of power/cost. In version 4.0, an associated 
technology called Bluetooth Low Energy (BLE) was released. This version greatly 
reduced power consumption of Bluetooth devices while having a comparable com-
munication range. Figure 14.3 shows an example of the Bluetooth tag (beacon) by 
Estimote (n.d.), which is an example of a BLE device. The Estimote tags and similar 
BLE sensors were estimated to have an increased battery life, making them more 
efficacious for automated tracking solutions.

As mentioned earlier, Bluetooth signals can be received by a range of commonly 
found devices, such as mobile phones and laptops. Raspberry Pi (low cost proces-
sors used in mobile devices and computers) have also been used as receivers (Frisby 
et al. 2017).

14.3  Efficacy of RFID: A Research Perspective

Clinical workflow analyses are especially important when attempting to assess the 
impact of an intervention or other modifications to everyday processes. An example 
of such an intervention, and potentially the most relevant to modern medicine, is the 
introduction of technology into typical clinical workflows. Zheng and colleagues 
(Zheng et al. 2010) assessed the impact of health information technology imple-
mentations (specifically for Computerized Physician Entry (CPOE) forms) on clini-
cal workflows. They introduced a set of new analytics for assessment of impact and 
demonstrated a means to use data visualization to make complex data more deci-
pherable and useful for quicker assessments. Drawing from this work, Vankipuram 
and colleagues (Vankipuram et al. 2009) introduced a Hidden Markov Model based 
approach to capture and analyze interactions using RFID tag based data.

Fry and Lenert (2005) implemented a system called MASCAL that used RFID 
technology to track personnel, patients, and equipment in mass casualty events such 
as natural disasters and other catastrophes. MASCAL involved the use of RFID tags 
in combination with receivers set around the hospital to track the various resources 
in real-time at times of emergency. There are two different kinds of RFID tags, 
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active and passive. Active tags constantly broadcast a signal and passive tags wait 
until they are near a receiver. Ohashi et al. (2008) compared different RFID systems 
typically employed by hospitals and found that in general both passive and active 
were affected by the environment. Active tags are battery powered and therefore 
have a set lifespan whereas passive tags need to have a local receiver to be used.

A study by Elnahrawy and colleagues (Elnahrawy and Martin 2004) compared 
localization algorithms for tracking precision and found that the uncertainty associ-
ated with tracking was likely fundamental and any approach (i.e., Wi-Fi, RFID, 
Bluetooth, etc.) would suffer from the same issues. Frisby and colleagues (Frisby 
et al. 2017) implemented a similar system using a beacon to track physicians in the 
emergency room at the Mayo Clinic hospital, using Raspberry Pi as a receiver. In 
this study, six receivers and fourteen beacons were used in the hospital.

14.3.1  Case Studies: Emergency Room (ER)

In this section we present our work using location tracking data, specifically, RFID 
data, in deriving workflow-related analytics in an ER.

14.3.1.1  Automated Location Tracking for Clinical  
Performance Analysis

Positional tracking can be used to derive additional metrics that may function to 
benchmark emergency room performance. The Center for Medicaid and Medicare 
Services (CMS) enacted several performance measures that needed to be enacted 
beginning in 2012 (Blumenthal and Tavenner 2010).

The measures that can be analyzed using location tracking data include:

• Door to Diagnostic Evaluation by a Qualified Medical Professional
• Median Time from ED Arrival to ED Departure for Discharged ED Patients
• Median Time from ED Arrival to ED Departure for Admitted ED Patients
• Admit Decision Time to ED Departure Time for Admitted Patients

Fig. 14.3 Estimote® 
Bluetooth Beacons
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Welch and colleagues (Welch et al. 2011) elucidated, in detail, the performance 
measures for emergency rooms and the salient timestamp or time-interval measures 
were as follows:

• Treatment space time: Time taken to acquire a bed or room
• Provider contact time
• Arrival to provider time (door-to-doc)
• Arrival to treatment space time
• Length of stay: Arrival to departure

Continuous tracking of these attributes can provide emergency rooms with the 
ability to continuously monitor and improve their processes.

14.3.1.2  Location Tracking Data Collection

To understand the implementation of techniques to analyze clinical workflow and 
processes using location tracking, we need to understand the structure of tracking 
data. Most commonly, tracking data is stored in a tabular format. When tracking 
tags are within the range of a receiver, a single data point is written into the table 
which may be a locally stored or network relational database. An additional concept 
to understand is that most effective tracking systems require a high level of coverage 
(i.e., receivers placed in the environment to achieve a reasonable level of granularity 
of location data). The data table, therefore, typically has low dimensionality (i.e., 
few columns, but is usually large since data is recorded per instance of tag detection 
and this can happen several times a minute per tag that is within the receiver range). 
It is not uncommon to collect several gigabytes worth of data in a year for a suffi-
ciently large system, such as the one we are describing in this case study. It is there-
fore incumbent on organizations attempting to implement similar systems to 
understand their baseline technical requirements and to plan for the growing needs 
with each year of the system’s operation.

Table 14.1 shows two rows of the RFID data collection for a single tracked clini-
cian in the ED. The columns of the recorded data are as follows:

• Location: The location of the ceiling mounted receiver.
• Start: First instant of time when the tag is within range of the receiver
• End: Instant of time when the tag moves outside the range of the receiver
• Duration: Time spent within range of the receiver

Additionally, each RFID tag was associated with a unique ID which was stored 
by the receiver, once per row (Table  14.1). The ID could be, therefore, used to 

Table 14.1 Structure of location tracking data from the ED (Vankipuram et al. 2018)

Location Start End Duration

Office 11/20/2016 12:04:09 AM 11/20/2016 12:06:44 AM 0:02:35
Physician Workspace 11/20/2016 12:06:47 AM 11/20/2016 12:12:11 AM 0:05:24
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 identify each tracked clinician. It is worth noting that while this case study deals 
with RFID data, Bluetooth data will likely need to be similarly structured.

14.4  Data Analytics

Having understood the type of data being collected we can now consider the types 
of analytics that can be performed on the data. The value of automated techniques 
over manual observations can best be described by considering methods that require 
large and higher fidelity datasets, such as the ones we can create using an automated 
system with good coverage.

14.4.1  Entropy (Degree of Randomness)

A valuable goal of tracking tasks and movement in a fast-paced, concurrent environ-
ment like the ED is to be able to map the inherent structure or lack thereof of the 
various processes that make up clinical workflow. To that end, we can use the loca-
tion data to compute the entropy or degree of predictability of processes. Structured 
processes should have a lower level of entropy or unpredictability since they are, by 
nature, a series of repeating patterns of movement or behavior. Computing entropy 
can allow researchers and clinicians a birds-eye view of workflow in an environ-
ment like the ED. The entropy of a sequence of movements that underlie a process 
can be compared to a baseline of truly random movement to get a relative degree of 
predictability. The associated methods are described in detail in our previous work 
in the Mayo clinic ED (Vankipuram et al. 2018).

14.4.2  Discrete Event Simulations (DES)

Demonstrating clinical utility of location tracking data is incumbent on deriving 
meaningful metrics and relevant ways to present those metrics to the relevant target 
clinical users. Location tracking data has been used in the creation of new workflow 
metrics for the ED from RFID data (Vankipuram et al. 2018). As part of this, the 
clinical environment was modeled using movement transition probabilities to cap-
ture its underlying uncertainty. This type of probabilistic model may be visualized 
to derive specific workflow-related insight, but it can also be used to simulate 
parameters of interest in the system (Rutberg et  al. 2013; Asamoah et  al. 2018). 
These system simulations can be used to assess impact of specific processes or as a 
predictive model to assess trends.
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DES is a technique used to model complex systems by simulating it in action to 
estimate or predict parameters and outcomes of interest (Rutberg et  al. 2013). 
Systems are typically represented as a series of states, events, and transitions, each 
of which have a cost associated with them. The net cost of moving through the sys-
tem in various scenarios is typically then used to estimate the value of the resource 
that one is looking to optimize. In the medical domain, examples of this could be 
queue length or wait times for patients (Vankipuram et al. 2018). Traditionally, the 
costs associated within the system are set based on clinical expertise. Additionally, 
the movement through the system in the case of branching (concurrent) processes is 
determined randomly. While this is reasonable approximation of uncertainty, vari-
ous medical environments may demonstrate varying levels of uncertainty. It is also 
possible that uncertainty levels may vary during a shift due to cognitive and physical 
stress (Patel et al. 2008). Using probabilistic models generated from RFID data, we 
can represent the uncertainty of the system in a way that better represents the actual 
workflow. One way to progress through a probabilistic system is to use the Monte- 
Carlo method which has been shown to work in DES (Rutberg et al. 2013).

The task of estimating the underlying distributions associated with parameters of 
interest in a medical environment has been researched (Asamoah et al. 2018). With 
automated tracking, we can enhance our understanding of the underlying structure 
of the uncertainty.

Figure 14.4 represents a simplified view of a clinical movement probability 
model. Such a model can be utilized to simulate outcomes of interest. Figure 14.5 
shows the results of DES for three behaviors in ED (providers tracking). The 
time computed represents predicted time to exam for a physician over 1000 sim-
ulated runs. The transition probabilities were used to pick the next location to 
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Fig. 14.4 Simplified 
probability model of the 
ED (actual model contains 
all 59 locations)
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move in the simulation. To pick the duration at each location, we compute the 
skew for each duration and generate a random number from a distribution with 
the same mean, std, and skew. Figure 14.6 shows the time distributions generated 
using tracking data that form the underlying models used in this sample 
simulation.

14.5  Data Visualization

Utility of analytic techniques are the greatest when derived information can be pre-
sented to target users in meaningful ways. In the medical domain, users may include 
clinicians, administrators, or clinical researchers. The theoretical foundations for 
this space are provided by the science of visual analytics. Visual analytics is the 
“science of analytical reasoning facilitated by interactive visual interfaces” (Thomas 
and Cook 2006). Visual analytics can aid in the deeper exploration and insights 
derived from data and the presentation of this information to specific types of end- 
users. In this section, we present some example of visualizations created using the 
ED location tracking data to illustrate the value further. At the end of the section, we 
provide a sample workflow dashboard which is used as an example of an idealized 
outcome of an integrated location tracking analytics system in an ED or similar 
clinical environment.
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14.5.1  Chord Diagram

Figure 14.7 is a representation of the net duration of interactions between clinicians. 
Interactions are defined as an event where the clinicians were co-located for a length 
of time. The practical value of this is its use in process management to provide 

Fig. 14.6 Time distributions for four sample locations in two EDs
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circumstances that maximize interactions and to find pairs of clinicians who are 
more likely to interact and study them further.

The chord diagram (Fig. 14.7) shows duration of interactions between clinicians. 
Each colored segment on the boundary represents a different clinician (C1–C5, 
respectfully). The chords connecting the segments represent a pairwise link and the 
width of the chord represents the net duration of interaction (the axis of the bound-
ary can be used to estimate the duration).
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14.5.2  Longest Common Subsequence

The longest common subsequence (LCS) is a computational problem that deals 
with finding the longest common set of sub patterns within two series. An example 
of this is to find the longest common sequence of nucleotides in two gene sequences. 
By treating movement data as a series of location sequences, we can compare two 
sequences of movement, either by time or by tracking personnel, to derive addi-
tional insight into behavior.

LCS can be computed for each tracked clinician and visualized as seen for one 
clinician in Fig. 14.8. This can also be used for process management, but addition-
ally may be used to compare clinicians with varying expertise. The figure shows a 
movement graph of the most common movements a single tracked clinician makes 
during a shift. This can be potentially used to compare novices and experts and see 
if the experts’ movement allows them to manage time better or mitigate certain 
types of error.

The blocks on each axis represent a move within the location (e.g., ‘Workspace’ 
to ‘Workspace,’ with the arrows representing direction of movement). This chart 
can be compared over lengths of time or between a specific pair of clinicians (e.g., 
novice vs. expert). It is also possible to use the chart in Fig. 14.8 to view arbitrary 
length sequences for any clinician, but in this case, we use it to view the LCS of 
movement across all shifts of a clinician.

Physician
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Nurse
Station East

Registration 
Hall Rear

Grn Zone
Nurse Station

Exam 22 Exam 5 Exam 25Hall by 1-771 Hall By 1-718 Hall by 1-774

Fig. 14.8 Longest common subsequence for a single clinician over 7 months at Mayo Clinic
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14.5.3  Network Graph-Based Visualization

Relationships and probabilities can be represented as a network graph, as seen in 
Fig. 14.9, which gives the probability of a clinician’s next location. The radius of 
each colored circle represents the time spent in that location. The strength of the 
relationship is represented by the number of the links between locations (i.e., 
more links indicate stronger relationships). These links also show the probability 
of the physician’s next locations from any origin point. This type of graph elimi-
nates any overlapping edges to provide a clearer interpretation of the relationships 
between locations. Network graphs work well in a dynamic setting, such as an 
interactive dashboard.
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14.5.4  Radar Chart

A radar plot/chart is a form of visualization that is a good way to represent a single 
discrete axis. It is a popularly used plot in gamification research, which is the intro-
duction of video-game elements into visualization dashboards to enhance clarity 
and intuitiveness. Below (Fig. 14.10) we look at an example of a radar plot gener-
ated to display the probability of the physician’s next location from any origin point.

The radar chart is a useful representation of clinical movement as a Markov pro-
cess (i.e., when we model the system as a Markov chain where the probability of the 
clinician being in the current location is only dependent on the immediate previous 
location). Markov process are usually a good approximation of complex processes 
and can be further used in methods like the discrete event and Monte Carlo simula-
tions described earlier. Radar charts are an effective way to convey Markov 
systems.
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14.5.5  Clinical Workflow Dashboard

As mentioned previously, an ideal goal of visual analytics work is to provide a 
 platform for clinicians and researchers to receive feedback on the results of data 
analysis. Below we present a proof-of-concept dashboard developed using ED loca-
tion tracking data. Figure 14.11 shows a sample dashboard for a single physician 
based on measures derided from location tracking. The top row shows instances of 
direct patient care (movement from workspace to exam room), multiple patient 
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exam room visits, and knowledge transfer (movement from workspace to nurse sta-
tions). The plot of the left shows the net count of each of the above metrics per day. 
The plot on the right shows a single day as selected on the stacked plot (left). This 
plot is shown per hour of the shift.

The second row shows a set of pie charts representing time spent in various loca-
tions within the ED. EHRs have been a disruptive influence on clinical workflow 
and clinicians are often concerned with time spent with patients compared to other 
areas and activities. These plots can convey the proportion of time spent in exam 
rooms compared to other areas in the ED.

Finally, the transition probabilities described in the radar chart section is rep-
resented in the final row. Transition probabilities for a single physician repre-
sented as a heatmap (left). The darker squares represent a higher likelihood of 
movement from location on the column to the location on the row. Useful for 
presenting net behavior. The radar plot on the right is populated by selecting one 
of the location in the heatmap and presents probability values for movement from 
that location.
Figure 14.11 is an example of an interactive dashboard and can be updated to dis-
play measures for any arbitrary length of time. A possible use for such a dashboard 
could be to observe trends in these measures across time to assess the impact of 
technological or process interventions.

14.6  Conclusion

In this chapter, we described automated location tracking technologies and asso-
ciated analytical methods in medical environments. Clinical workflow is inher-
ently complex, and the techniques described above were developed to complement 
other quantitative methods typically used in the analysis of clinical workflow. 
Derived measures can assist researchers and clinical stakeholders as they iden-
tify bottlenecks which can be further investigated in greater detail using ethno-
graphic techniques. We believe that the most effective way to study workflow is 
to use a combination of available methods. Our goal in this chapter is to present 
the utility of, what we believe is, an efficacious modern method to supplement 
workflow study.

There are also additional sources of data that can be leveraged to create a more 
holistic picture of clinical processes which we have not included here, but are 
equally important. Location tracking provides just one dimension of qualitative 
data. Another example of a valuable data source is EHR trace/usage log files. EHR 
logs are collected by most mainstream vendors, which includes the use of the sys-
tem by various authorized personnel. Including this data in clinical workflow analy-
sis can increase the granularity of our view into the medical environment to provide 
more context to movements and related activities, and thus improve the depth of our 
automated monitoring capabilities.
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Chapter 15
Health IT-Enabled Care Coordination 
and Redesign in Ambulatory Care

Jonathan S. Wald and Laurie Novak

15.1  Introduction

Studying workflow and health information technology (IT) adoption is complex 
because there are many contributing factors and confounders. Research attention to 
the study of workflow has intensified in the U.S. since the rollout of the meaningful 
use (MU) program by the Office of the National Coordinator for Health IT (ONC) 
in 2009. The mounting interest in better understanding clinical workflow in the 
context of health IT implementation reflects a realization from early pioneer health 
IT studies, which is that factors such as site leadership, workflow optimization prior 
to automation, team communication, and attention to many details of practice and 
health IT design and use, can lead to successful adoption of new technology when 
aligned, or can limit the adoption if gaps are present and remain unaddressed.

The misalignment between workflow and health IT may arise from many con-
tributing factors. These include mismatch between health IT design and the work-
flow that predated the implementation, insufficient training of users, and 
inexperienced technical staff responsible for configuring health IT.  In addition, 
health IT often brings together changes in clinical and administrative activities, such 
as how clinical activities are documented and how billing processes are managed. 
These, and other sociotechnical challenges, add to the complexity of health IT adop-
tion and implementation research.

Subtle configuration and implementation-related decisions can hurt or help with 
user experience, such as how users are assigned to system-defined user roles with 
different levels of access privileges. For example, a mid-level role such as a  physician 
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assistant or nurse who functions as a population health manager may perform both 
clinical and administrative tasks, which doesn’t always “fit” the roles pre- defined in 
health IT systems. Flexible health IT design is therefore needed to accommodate 
unanticipated task sequences, workflows, and roles. Decisions on how to configure 
systems for the local context may also introduce usability or workflow challenges, 
and also may limit the flexibility of the software as clinical redesign takes place.

Many decisions related to user training may also impact health IT adoption. For 
example, training that uses simulated test environments may not correspond closely 
to the live environment, although differences may not be apparent until after go-live. 
Also, many of the more technical users, especially clinicians, may be paired with 
trainers who lack specific skillsets needed to train certain users. Finally, the generic, 
one-size-fits-all design, which is popularly found in today’s health IT systems, may 
be insufficient for supporting complex tasks when there is a significant amount of 
variation in how they are performed in day-to-day clinical practice.

15.2  Background

15.2.1  Gaps in Prior Research on Workflow

The widespread adoption of health IT to manage electronic patient data and support 
care delivery has expanded the role that technology plays during work systems rede-
sign in healthcare. However, the anticipated benefits of health IT are difficult to 
achieve unless implementation and workflow challenges are identified and addressed 
(Ash et al. 2009; Blumenthal 2011; Dorr et al. 2007; Novak et al. 2012; Holden 
et al. 2013). Health IT–workflow interactions are best understood through a human 
factors and sociotechnical framework (Novak 2010), but large gaps in systematic 
research of ambulatory care workflow still exist (Carayon et al. 2010).

In 2010, the U.S. Agency for Healthcare Research and Quality (AHRQ) pub-
lished a comprehensive literature review study that looked into existing research 
and evidence about the impact of health IT on workflow, its linkage to clinician 
adoption, and its linkage to the safety, quality, efficiency, and effectiveness of patient 
care delivery. The study showed evidence of variable quality, little generalizability 
to non-academic and ambulatory settings, and limited focus on the sociotechnical 
context of health IT implementation including potentially conflating or mediating 
factors such as training, technical support, and organizational culture (Carayon 
et al. 2010). Existing research reviewed in the AHRQ study also did not address 
redesign of ambulatory care settings, though this is an important aspect of health 
systems change.

In addition, the AHRQ study identified significant gaps in understanding the 
interactions between health IT and workflow, and advised that more systematic 
research was needed, both to establish causal relationships and to produce highly 
generalizable knowledge in the study of health IT and workflow interactions 
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(Carayon et al. 2010). Accordingly, the study that we describe in this chapter was 
designed to address two major gaps in the literature:

• Rigorous research focused on workflow. This study used a combination of 
methods (Carayon et al. 2012) specifically designed to understand workflow in 
the context of a work system implementing new health IT. These adapted meth-
ods were implemented by experts in sociotechnical systems research in partner-
ship with clinical subject matter experts in order to provide an understanding of 
workflow phenomena that are typically ignored or underspecified in prior stud-
ies, including: adaptation of health IT, the role of health IT in team-based work, 
and the coevolution of health IT and workflow.

• Attention to sociotechnical context. This study approached workflow as an 
interactive sociotechnical work system of: (1) people; (2) tools, technologies, 
and other artifacts; (3) tasks and task characteristics; (4) organizational structures 
and characteristics; and (5) the surrounding physical, social, and political envi-
ronment. Data collection and analysis focused on these five factors, alone and in 
interaction, and how they relate to (for example, constrain or enable) the studied 
work processes. Attention to the sociotechnical aspects permitted this study to 
both describe this context and allow comparisons to other contexts. It also per-
mitted the research team to understand what specific contextual factors influ-
enced workflow-related phenomena—for example, the circumstances in which 
implementing the same health IT system in two or more settings might lead to 
divergent workflow changes, and why.

15.2.2  Theoretical Framework

The study’s theoretical framework was informed by two compatible models that 
have been applied to workflow research: the adapted SEIPS (Systems Engineering 
Initiative for Patient Safety) model (Carayon et al. 2006; Karsh et al. 2006; Carayon 
2009) and the Workflow Elements Model (WEM) (Carayon et al. 2012; Unertl et al. 
2010), depicted in Figs. 15.1 and 15.2. The SEIPS model defines the work system 
as the interaction of people, tools/technology, tasks, organization, and environment. 
This work system (structure) shapes workflow (process) that in turn shapes patient 
and clinician outcomes. The structure-process relationship requires that workflow 
be studied in the context of the interacting work system. In addition to understand-
ing workflow as process steps or patterns, it must be specified who is involved or not 
involved (people), what artifacts are used or not used (tools/technologies), what 
characteristics such as goals or task demands constrain work (tasks), what struc-
tures or policies are in place that govern people and processes (organization), and 
where the work takes places (environment). This adapted model shown in Fig. 15.1 
builds on the SEIPS and related systems models to illustrate workflow as the prod-
uct of a sociotechnical work system that is transformed by new health IT as well as 
adaptations over time.
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changes in patient,
employee, and
organizational
outcomes.

The new
technology
produces
transformations
in the work
system.

The transformed work system
produces changes in the care
delivery process (i.e., it
changes the nature of
cognitive, physical, and social
performance).

Fig. 15.1 The Adapted SEIPS Model. Source: Holden et al. (2011). Note: This graphic is reprinted 
under a Creative Commons license

Scheduling and
Coordination

Temporality

Combinations of Actors
and Actions

Aggregation

Characteristics

describe

perform

enable

Artifacts

Actors Actions Outcomes

Context

Constrains and
Enables

produce

Fig. 15.2 Workflow Elements Model. Source: Unertl et al. (2010) with permission from Oxford 
University Press
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WEM is a broad synthesis of prior workflow research and adds to and refines 
how one might apply SEIPS generally to the study of workflow (Carayon et al. 
2012). WEM specifies three pervasive properties of workflow that shape outcomes 
or the end products of workflow. First, workflow is dynamic (temporality): it 
occurs across time, changes from moment to moment, depends on a context that 
may change over time, and often emerges from the activity of individuals and 
groups working asynchronously in different locations. Second, workflow is collec-
tive (aggregation): work is carried out by multiple individuals as well as collec-
tives working separately or in concert, synchronously or asynchronously, and 
toward goals that may converge or diverge. Processes, too, are subject to aggrega-
tion and can be delineated into tasks or patterns or seen in combination or as emer-
gent properties of work. Third, workflow occurs in context, including work system 
elements—such as people and technologies—and any other factors that constrain 
or enable workflow. Examples of contextual factors not explicit in SEIPS include 
extra-organizational culture, standards, legislation, pressures, and workforce char-
acteristics (Karsh et al. 2006).

The two models in combination guided the data collection of this study in the 
following ways:

 1. Both models promote capturing and analyzing data on sociotechnical system 
factors (such as people, technologies, and task characteristics) that are relevant 
to studied processes and steps or patterns.

 2. SEIPS specifically promotes capturing and analyzing data on people, tools/tech-
nology, task, organization, and environment factors—as well as interactions 
between the factors—related to parts of or whole processes.

 3. WEM specifically promotes capturing and analyzing data on temporality, aggre-
gation, and contextual properties of parts of or whole processes.

 4. Both models promote a focus on processes and related work system factors and 
pervasive properties that shape key outcomes such as successful, coordinated 
health and disease management.

15.3  Our Study

15.3.1  Health IT Studied and Empirical Setting

The My Health Team at Vanderbilt (MHTAV) program was initially developed in 2010 
by the Vanderbilt Medical Group to be an innovative, ambulatory health care delivery 
model for a small group of patients with three chronic conditions, diabetes, hyperten-
sion, and congestive heart failure, among pilot physicians in one clinic. Vanderbilt 
received external funding through a U.S. Centers for Medicare & Medicaid Services 
(CMS) innovations contract in 2012 to greatly expand the  program with revised goals: 
to improve chronic disease management, care coordination, and transition manage-
ment for all Vanderbilt patients with the three chronic medical conditions.

15 Health IT-Enabled Care Coordination and Redesign in Ambulatory Care



262

The expanded MHTAV program was centrally administered and implemented, 
although the implementation of the program varied somewhat across clinics based 
on the experience of the care coordinators and the composition of the clinical teams. 
The MHTAV program included intensified patient engagement and dedicated care 
coordinators (CCs). CCs were registered nurses who helped coordinate care for 
patients.

Major IT system components were developed or used in support of care coordi-
nation activities, including: (1) the Vanderbilt electronic health record (EHR) sys-
tem (StarPanel), (2) cross-patient dashboards for diabetes, hypertension, and 
congestive heart failure, (3) worklists for use by CCs, (4) a shared view of the 
patient’s plan of care (POC) among clinical staff, (5) alerts and reminders related to 
care coordination activities, (6) the disease control form, (7) patient portal secure 
messaging, (8) an interactive voice response (IVR) system, (9) the clinic scheduling 
system, and (10) online patient education and materials.

A number of health IT components were created or used primarily for MHTAV, 
including the dashboards, worklists, the POC, and the IVR system, collectively 
referred to as My Health Team (MHT) tools or the MHT system. A key goal of the 
MHT system was to support structured, bidirectional, and closed-loop communica-
tion among members of the care team, including the patient and caregivers. In the 
context of MHTAV, the providers and clinic nurses provided direct care to patients. 
CCs managed the MHTAV panel of patients and were supported by MHTAV medical 
assistants who assisted the CCs with patient education, collection and summaries of 
patient home monitoring data (blood pressures and blood sugars), and administrative 
tasks. MHT tools included a range of information that could be viewed for an indi-
vidual patient or at the population level. At the patient level, this included demo-
graphic information, the patient’s condition or disease, and a POC. At the population 
level, a dashboard showed aggregated statistics for selected indicators. Care coordi-
nator activities were driven by a worklist which showed patients with alerts that were 
either clinically driven (such as an elevated home blood pressure reading) or process 
driven (such as a patient who was due for an annual foot exam).

The empirical study involved six study site teams in five office locations (see 
Table 15.1). These included a single on-campus medical office (medium-sized; 35 
part-time clinicians) and four off-campus primary care offices (small; 2–11 clini-
cians). All of them are located in Tennessee and staffed with providers (physicians, 
nurse practitioners), clinic nurses, clinic secretaries, and clinic medical assistants.

15.3.2  Methods

15.3.2.1  Study Design

A formal mixed-methods approach was designed, employing direct observation, 
patient and staff interviews, surveys of staff and patients, artifact and spatial data 
collection, software use monitoring, and impact on process outcomes for the six site 
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teams at primary care clinics in different phases of adopting MHTAV. Data collec-
tion occurred over a 12-month period to capture health IT–workflow interactions 
over time, and across clinics in various implementation phases.

Care coordinators in this study were licensed as RNs who functioned in the CC 
role rather than the clinic nurse role, and worked with a care team composed of a 
provider (i.e., a physician or nurse practitioner), a clinic nurse (i.e., a registered 
nurse [RN] or licensed practical nurse [LPN]), a medical assistant (MA), and some-
times a scheduler.

Three site teams were already “live” with MHTAV and a CC at the start of the 
study, and three site teams were introduced to the CC and MHTAV program after 
the 12-month observation period had begun. Observations and data collection 
occurred at time zero, after 6 months, and after 12 months for each site team.

CCs in the study were primarily focused on identifying and managing 
hypertension- associated risks in their panel of patients, and worked to mitigate 
those risks and help their patients reach blood pressure goals, enabled by health 
IT. In the last few months of data collection, use of the MHT tools for diabetes- 
associated risk was added.

Recruitment of the six site teams occurred following approval of the study by 
both RTI’s and Vanderbilt’s Institutional Review Boards (IRB).

15.3.2.2  Data Collection and Analysis

Data collection activities included: (1) project orientation meeting with staff from 
each clinic site, (2) direct observation of staff work, (3) individual staff interviews, 
(4) individual patient interviews, (5) staff surveys, and (6) patient surveys. In 

Table 15.1 Study sites

Site 
team

Attending 
MDs

Resident 
MDs NPs Setting

MHTAV 
adoptiona CC proximity

1 35 93 0 Urban April 2010 In separate office, 5 days/
week

2 2 0 0 Rural March 2014 On-site, 2 days/week
3b 4 0 3 Urban November 

2013
On-site, 5 days/week

4 10 0 1 Suburban October 2012 In office on different 
floor, 5 days/week

5 11 13 0 Suburban May 2013 In separate office, 5 days/
week

6b 4 0 3 Urban November 
2013

On-site, 5 days/week

MD physician, NP nurse practitioner, MHTAV My Health Team at Vanderbilt, CC care coordinator
aAt initial observation, MHTAV site teams were already Live at sites 1, 4, 5; MHTAV-adopting site 
teams 2, 3, and 6 began use of MHTAV after initial study observation
bTwo different teams were observed at the same clinic
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addition, the Vanderbilt University Medical Center IT department provided utiliza-
tion data for the MHT system, and diabetes process outcome data were obtained for 
the providers participating in the study. These data collection methods are summa-
rized in Table 15.2.

Table 15.2 Data collection activities

Data collection 
activity Source of data Data description

1.  Staff 
orientation 
meeting

Practice staff Notes of practice staff discussion of 
practice operations, including health IT 
support of care coordination issues and 
challenges

2.  Direct 
observations 
of care 
coordination

Care coordinator (if identified); 
patients; other individuals in the 
practice responsible for care 
coordination key workflows 
including: (a) registering patients, (b) 
sharing care plan, (c) handling alerts 
and reminders, (d) compiling and 
interpreting data from at-home 
monitoring, and (e) communicating 
with patients between visits.

Field notes of workflow steps, 
information flow steps, and other 
information required to create 
workflow and information flow 
models; description of health IT 
components and capabilities relating to 
care coordination

3.  Staff 
semi- 
structured 
interviews

Practice staff participating in direct 
observations

Responses to interview guide questions 
gathered from practice staff

4.  Patient 
semi- 
structured 
interviews

Patients with diabetes contacted 
through direct observation or 
introduced by their physician

Responses to interview questions from 
patients

5. Staff surveys Practice staff Responses to modified Technology 
Acceptance Model (TAM) survey 
(Davis 1989); modification includes 
responses to additional survey 
questions focusing specifically on care 
coordination

6.  Patient 
surveys

Patients Responses to Patient Activation 
Measure (PAM) 13-item instrument 
(Hibbard et al. 2004); and Summary of 
Diabetes Self-Care Activities (SDSCA) 
10-item instrument

7.  Artifact and 
spatial data 
collection

Researcher or study participant Items identified as relevant by 
researchers during direct observations; 
examples include: a template of a 
shared care plan; an appointment 
reminder postcard, or printed lists used 
by care coordinators to monitor their 
work each day

8.  Software use 
monitoring

Data extracts developed for My 
Health Team (MHT) reporting

Audit logs
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Meeting notes and narrative data were entered and analyzed using DedooseTM 
through a process of (1) open coding, (2) axial coding, and (3) workflow modeling. 
Dedoose is a web-based qualitative and mixed-methods data analysis cross- platform 
application designed to support collaborative data analysis activities. To further sup-
port the analysis, we scored staff and patient survey responses and tracked software 
module use. Quantitative and qualitative data, together, supplemented one another 
to help us identify complementary themes, resolve conflicting findings, and provide 
rich detail to support conclusions about health IT–workflow interactions—in gen-
eral and across implementation phases.

15.3.2.3  Coding

During Open coding, data captured after each observation period were reviewed 
to identify coding elements for “chunks” of textual data, and the coding structure 
was refined over time as observations were added and higher-level themes were 
identified.

Next, axial coding was performed to add depth and structure to the constructs 
(codes) from the open coding phase, synthesizing lower-level constructs into a more 
integrative theory (Saldaña 2009). During axial coding, all qualitative data were 
reviewed again and categorized according to the SEIPS model combined with the 
WEM. The combination of SEIPS and WEM provided the structure for assigning 
data and codes to the elements shown in Table 15.3.

Applying this framework to hypertension care, primary care providers (actors) 
perform preventive care and screening procedures (actions) during routine patient 
care visits, leading to a patient being current on all recommended preventive health 
care services (outcomes). Health care providers use artifacts in accomplishing their 
work, including EHRs, paper forms, and paper education materials. Characteristics 
describing the actions include descriptors such as “routine,” “screening,” “preven-
tive,” and “recurrent.” The work of routine preventive care takes place in a specific 
sequence on a schedule defined by evidence-based guidelines. Routine preventive 
care work also occurs during days the clinic is open (temporality) and relies on 
administrative staff and nurses for assistance and information contributions from 
other health care providers to develop thorough understanding of patient status 
(aggregation). Permeating all of the workflow processes is the context of the work—
the health care organization, the physical space available, the family and support 
structure for the patient, and the organization’s policies and requirements.

15.3.2.4  Stage 3: Workflow Modeling

The final element of qualitative data analysis involved development of graphical 
representations of workflow processes, called workflow models. The workflow 
models were similar to flow charts but contained more detailed documentation of 
work practices and capture actual work processes as opposed to idealized ones. 

15 Health IT-Enabled Care Coordination and Redesign in Ambulatory Care



266

The modeling process is based on concepts from soft systems methodology 
(Checkland and Scholes 1999) and hierarchical task analysis (Shepherd 2001). 
Similar to hierarchical task analysis, during model generation, each larger task is 
divided into subtasks and each subtask is further divided until a detailed diagram 
of workflow is generated. For example, the overall work process this project stud-
ied is care coordination. Subtasks involved in this overall task may include physi-
cians taking notes in the EHR system, nurses measuring a patient’s vital signs, CCs 
contacting patients directly via phone or e-mail, or many other subtasks. The sub-
task of CCs contacting patients directly may be further broken down into steps 
taken to identify patients requiring contact, obtaining contact information, contact-
ing the patient, discussing relevant information with the patient, and documenting 
the outcomes of the discussion with the patient. All subtasks are captured in the 
graphical workflow models.

Using the output of earlier data analysis stages, researchers identified the overall 
flow of CC work and each sub-process involved in it and manually developed work-
flow models. Workflow models represent physical space, artifact use, roles, decision 
points, process variation, organizational policy, and other aspects of workflow 
related to CC work as necessary. For example, the support activity of “Search for 
Information” was depicted using a diagram that highlighted information flow and 

Table 15.3 Workflow elements model Categories guiding axial coding

Element Definition Examples from data

People (actors) Individuals engaged in work Care coordinator, medical assistant, 
physician, clinic nurse, patients

Process (actions) Steps that actors take to 
accomplish work

Care coordinator work, medical assistant 
work, patient work

Outcomes End results of work Diabetes adherence, patient education
Tools and 
technologies 
(artifacts)

Tools used in work Message Basket, the EHR, MHT system, 
Plan of Care Support tab

Tasks (action 
characteristics)

Descriptions of the work Patient education, response to alerts/
reminders, personal interactions with 
patients

Temporality Time-based factors, including 
scheduling and coordination

Alerts/reminders, patient appointment 
times, meeting patients in clinic

Aggregation Collective work across actors 
and actions, including 
collaboration

Coordination with multiple providers 
(including external), coordination with 
call center, coordination with clinic 
nurses

Context Setting for the work, which 
constrains and enables work 
activities

Spatial proximity to clinic/providers, 
technology constraints

Interactions among 
elements

Phenomena that are the result 
of interactions among the 
elements described above

Creation/modification of Plans of Care
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artifacts, rather than focusing on physical space, given that most of the activity took 
place at the CC desk using the computer, notepad, and phone. The modeling process 
highlights the specific role that health IT plays in CC work and the impact of new 
health IT functionality on workflow.

15.3.2.5  Staff Survey Data

Survey data collected from each individual who was interviewed was used to con-
sistently capture additional user information beyond qualitative data such as those 
obtained through observations and interviews. Responses to the adapted Technology 
Acceptance Model (TAM) survey were used to evaluate user perceptions and accep-
tance of technology (Davis 1989). Specifically, the TAM measure includes ease of 
use and usefulness. Descriptive statistics (for example, mean, standard deviation, 
and median) were calculated using Microsoft Excel, adding context in interpreting 
staff perceptions related to health IT.

15.3.2.6  Patient Survey Data

The patient survey data consistently captured additional information about patient 
characteristics, such as diabetes self-monitoring measures and levels of patient acti-
vation. These measures were analyzed in SPSS to produce descriptive data about 
the patients surveyed at each site (for example, mean, standard deviation, and 
median) in order to understand participant differences across the various clinic sites. 
Quantitative analysis beyond simple descriptive statistics was not performed 
because of the small number of patients surveyed and the primary qualitative 
approach.

15.3.2.7  Data Synthesis

Data synthesis compared and contrasted all health IT and workflow-related data 
gathered across six sites during two or three (depending on the site) observation 
periods over 12 months. As detailed earlier, data collection spanned clinic groups in 
different phases of MHTAV program implementation (already using MHTAV or in 
the process of adopting MHTAV). Findings gathered from multiple sources with 
qualitative and quantitative methods were therefore used to examine the strength of 
support for the identified themes, conflicts in the findings, and the development of 
final conclusions. Table  15.4 describes the research products that address the 
research question. Three categories of research products were identified and 
described: (1) workflows, (2) health IT design elements, and (3) interactions 
between the workflows and health IT elements.
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15.3.2.8  Interactions Between Health IT and Workflow

The data analyses described above would help us derive a “technology matrix” to 
capture clinical workflows that comprise care coordination; and the health IT fea-
tures or components that either support, create barriers for, or have a neutral impact 
on the workflows. “Good alignment” describes a positive interaction between health 
IT and workflow. “Neutral alignment” is neither positive nor negative. “Poor align-
ment” describes a negative interaction. The overall “fit” of a health IT feature in 
supporting or impeding workflow can be then assessed by looking at the alignment 
of the feature with individual workflows of a work activity.

15.3.3  Findings

15.3.3.1  Health IT Impact on Workflow in Key Work Domains

Our study identified seven domains of activity central to the work of care coordina-
tion, and around which the study results are organized. Five of these activity areas 
addressed the primary work of the CCs:

 1. Establishing and maintaining relationships with patients
 2. Establishing and maintaining a POC
 3. Collecting and analyzing home monitoring data
 4. Educating and coaching patients
 5. Coordinating with other clinicians and patients

Table 15.4 Description of research product(s) for each analysis activity

Analysis activity Source of data Product

A.  Workflow diagramming to 
identify and describe 
workflows

Semi-structured staff 
discussion
Direct observations
Staff interviews
Patient interviews

Set of workflows and 
workflow elements

B.  Identification of health IT 
design elements used in 
support of care coordination 
activities

Semi-structured staff 
discussion
Direct observations
Staff interviews
Patient interviews
Staff surveys
Usage data
Diabetes outcome data

Set of health IT design 
elements

C.  Identification of interactions 
between workflow and health 
IT design elements

Analysis activities A and B
Underlying source data

Set of interactions, health IT 
barriers and facilitators to 
care coordination workflows

D.  Analysis of interactions 
across implementation stage 
(MHTAV, MHTAV-adopting) 
and time

Analysis activities A, B, and C
Underlying data

Interaction results by 
implementation stage
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The remaining two supported the primary work of CCs:

 6. Searching for information to support decision making and action
 7. Prioritizing tasks and planning work

In this section, we present the findings from two of these seven work domains, 
namely “establishing and maintaining relationships with patients” and “coordinating 
with other clinicians and patients.” For each of them, we include a description, a 
workflow diagram of activities observed and/or discussed in interviews, a technology 
matrix that depicts the level of alignment of health IT features with the workflow, and 
a summary of findings. We chose to provide a detailed report on only two domains in 
order to fully explain the methodology we used to analyze and depict the data. We 
direct readers interested in the additional findings to the final report of the study 
published by the AHRQ, accessible at https://healthit.ahrq.gov/sites/default/files/
docs/citation/hit-enabled-care-coordination-and-redesign-in-tn-final-report.pdf.

15.3.3.2  Establishing and Maintaining Relationships with Patients

Initial engagement of the patient in the care coordination program. As the 
MHTAV program was initiated in each clinic, potential patients were displayed on 
the MHT system worklist, based on dynamic registries using existing EHR data, 
behind the scenes. The registries used a risk stratification schema that represented 
two dimensions: (a) disease control and stability (for diabetes patients, “level 1” 
criteria were: documented HbA1c less than 8, fewer than 3 medications for diabetes, 
no complications OR mild stable complications AND followed by a subspecialist, 
without severe or frequent hypoglycemia or hypoglycemic unawareness); and (b) 
complexity of primary disease and related comorbid conditions. Initially, the regis-
tries were used to populate a worklist of patients that CCs needed to enroll manually 
into the program, with a face-to-face meeting in the next provider visit. Later, to 
accelerate enrollment, the decision was made to move to an auto-enrollment model, 
whereby patients whose records were identified by the registry were automatically 
enrolled into the MHTAV program and placed on the CC worklist. With this change, 
face-to-face meetings in the clinic became uncommon, as CCs moved to telephone-
based outreach to meet and set up the POC for each patient.

In the early phases of the program, a clinician initiated the patient enrollment 
meeting with the CC, which typically took place face-to-face in the clinic during a 
scheduled clinic visit. One CC noted that 10–11 patients per day were enrolled at 
first; then after the first few months the number dropped substantially to approxi-
mately 7 per week since the majority of eligible patients were already enrolled. At a 
later point in the MHTAV program, an auto-enrollment process was implemented 
through which patients who met certain clinical thresholds (for example, HbA1c > 8) 
automatically became part of the MHTAV program population. CCs were then 
expected to create a POC for each patient who was auto-enrolled, even without a 
face-to-face meeting. A CC who described this process pointed out the impact on 
establishing and maintaining the relationship with the patient: “I can see that it’s 
made a difference. I feel like they, you know… you build that rapport so they trust 
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you and they, they try to… do what you’re asking them to do and you know I have a 
lot of them, [who] take their readings and do, and keep, record that stuff regularly.”

Ongoing engagement. The CCs reported that engaging the patients in an ongoing 
way over time was an important aspect of their work. Developing and maintaining 
strong relationships with patients helped with obtaining home readings (blood pres-
sure and blood glucose), following up on medication effects, identifying hospital 
admissions, and monitoring other clinical events. Fostering a friendly and collegial 
relationship was especially important because CCs could learn about patients’ jobs 
and families, explore with patients what made adherence to clinical recommenda-
tions difficult, and share experiences with patients (such as a shared joke), all of 
which helped establish rapport and trust. For example, one CC could not reach one 
of her patients for approximately 1 year, but once the patient met with the CC face- 
to- face during a clinic visit, she began communicating with the CC regularly about 
her medical care. Another CC described how the care team was able to keep a patient 
out of the hospital through education, medication, and diet management. She men-
tioned the face-to-face communication as key during this process, as both the CC and 
the patient were able to see and discuss the positive changes as they occurred.

Care coordinators maintained contact with patients through calling on the tele-
phone, messaging through the patient portal, and meeting face-to-face in the clinic. 
CCs used the clinic schedule to determine if one of the patients they were following 
would be visiting that day.

However, advances in technology did not always support maintaining patient rela-
tionships. For example, when auto-enrollment replaced the need for a face-to- face enroll-
ment meeting with the patient, the CCs felt that their ability to initially engage the patient, 
and maintain strong engagement, suffered. They stated that the ability to see patients face 
to face on a regular basis is helpful for maintaining  engagement. One CC suggested that 
Skype or FaceTime may be an alternative strategy for communicating with patients. CCs 
also noted variation in communication preferences based on a patient’s age. They com-
mented there appears to be a cohort of patients (aged approximately 40–50) who prefer 
to use the messaging function through My Health at Vanderbilt rather than the telephone. 
The CCs speculated that these patients are employed full time and have more constraints 
on their time, making online communications easier to accomplish.

Relationship-building activities. The CCs used several strategies to build rela-
tionships with patients. These strategies included setting reminders to see patients 
while they were in the clinic; making notes in the POC Support tab for future refer-
ence (memory cues); and providing educational materials to patients. CCs mentioned 
that having patients visit with them in-person in the clinic helped to create and main-
tain rapport. For patients who were difficult to engage, CCs described introducing 
themselves again when the patient came in for an appointment, offering them infor-
mation and log sheets, and any other assistance to try to reconnect with them.

During our observations, CCs mentioned that reduced in-person contact with 
patients, either because CCs visited multiple clinics or because their office was 
outside the clinic building, changed the nature and strength of their relationships 
with patients. As mentioned previously, CCs also felt that auto-enrollment may be a 
barrier to establishing strong relationships with each patient.

Figure 15.3 and Table 15.5 present the workflow diagram and technology matrix 
for establishing and maintaining relationships with patients. Figure 15.3 illustrates 
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Table 15.5 Technology matrix: establishing and maintaining relationships with patients

Relevant IT 
resources or 
attributes

Workflow: establishing and maintaining relationships with patients

Activity: enrollment/auto-enrollment
Activity: building rapport with 
patients

Alerts and 
reminders populate 
the CC worklist

Reminders are used to connect with 
patients during clinic appointments. 
This can assist in educational goals, as 
well as supporting the patient by 
providing monitoring equipment, 
validation of monitoring equipment.
Good alignment

Reminders to call/message 
patients or connect with them in 
clinic. Opportunity for CC to 
build rapport via face-to-face 
communication.
Good alignment

Disease Control 
Form (DCF)

Displays information about patient, 
including the next appointment.
Good alignment

DCF shows status of patient 
and allows CC to update status 
based on information received 
from communications with 
patient.
Good alignment

POC Support tab Records activities involving initial 
patient contact, and assists in 
establishing the POC for the patient.
Good alignment

Enables ongoing 
communication with patient, as 
well as input of possible 
pertinent information about the 
patient home environment 
(“Red Flags”: Activity, Diet, 
Foot care, Emotion coping 
skills, Disease monitoring, 
Unable to reach patient, 
Physical activity, Medication 
adherence, Medication 
reconciliation, Tobacco 
cessation, and Other 
categories).
Good alignment

POC Support tab 
(continued)

“CC Actions” are entered here, 
and a history is maintained in 
the “POC Support Hx.” CC 
Actions contain information 
about education/coaching given 
to patient, and also monitoring 
equipment status (that is, 
validation of existing equipment 
or providing one to patient). 
These serve as memory cues to 
establish and build rapport with 
patients.
Good alignment

Auto-enrollment 
process was 
implemented in 
later stages of 
MHTAV

Patients enrolled without meeting the 
CC in the clinic, minimizing CC work.
Good alignment

CCs reported face-to-face 
meetings with patients were 
important to rapport-building.
Poor alignment

CC care coordinator, DCF disease control form, POC plan of care, Hx history, MHTAV My Health 
Team at Vanderbilt
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the change over time that occurred before, during MHTAV, and later in data collec-
tion. As technology was introduced to identify, enroll, and later, contact the patients, 
direct CC initial contact with many of the patients decreased.

The middle section of the diagram in Fig. 15.3 illustrates the two ways in which 
relationships are established and maintained within the MHTAV program. 
Technology-driven refers to the MHT system itself, including algorithms used to 
trigger alerts and set the status of patients in the MHTAV program. Role-driven 
refers to ways in which CCs engage patients and establish relationships on a more 
personal level. Before MHT tools were introduced, CCs were introduced to patients 
by a provider or clinical team member. This continued, though reduced, after the 
MHT tools were introduced.

15.3.3.3  Coordinating with Other Clinicians and Patients

As the MHTAV program was implemented, it took time for the clinic teams to 
embrace the CCs as key members. Initially, a team member sometimes inadver-
tently duplicated the effort of another team member (for example, LPNs sent mes-
sages to the provider and/or patient not realizing the CC also called and/or sent 
messages about the same topic). Over time, other team members (providers and 
clinic nurses) learned about the CCs’ capabilities and role and learned how the CCs 
could significantly contribute and efficiently function on the team. However, CCs 
who were off-site or part-time with the clinical team lacked daily contact with pro-
viders, who were in turn less aware of the various tasks and activities that CCs 
performed. Some CCs reported having to actively promote their abilities, such as 
assisting with patient education, reviewing home measurement techniques, and 
spending time responding to patient questions, especially those who relied on elec-
tronic communications and telephones to reach physicians/NPs and clinic nurses 
they did not interact with face-to-face.

The care team often wanted the CC to meet with patients immediately before or 
after a patient saw his/her provider at a visit, requiring communication. This was 
challenging when a patient was newly identified for inclusion in MHT, for example 
in the cases of new patients whose diabetes was not known by the clinic until the 
initial visit, new laboratory results that indicate diabetic status shortly before or dur-
ing the visit, a patient who shows low adherence and the need for further education, 
or cases in which a patient requests more information or education regarding the 
 self- management of their chronic illness. However, it was not easy for the CC to 
figure out which patient needed to be seen, to know when a patient was actually 
done seeing a provider, or to receive a provider message that they should see the 
patient, despite multiple communication technologies. The EHR message basket (or 
email) could be helpful if the CC was at her computer; the online schedule helped 
the CC prepare for the patients visiting each day; and the online whiteboard assisted 
the CC in knowing when a patient arrived and checked in. However, messages were 
not always used to notify the CC, up-to-date information was often missing from the 
schedule, and the whiteboard often lacked accurate information about when the 
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patient was actually being seen by a provider, making it difficult for CCs and pro-
viders to coordinate a face-to-face meeting for the patient with the CC. As a result, 
CCs often learned later that they needed to schedule a separate appointment to meet 
with the patient.

MHT worklist alerts, whether system triggered or created by the CC, provided 
valuable information to the CC in monitoring and acting on “to do’s” for each 
patient. There were a lot of activities to manage, such as requesting and following 
up on laboratory tests, checking on the patient experience using a new or changed 
medication, and following up on teaching. CCs reported good alignment between 
these tools and their work coordinating future activities for patients.

Coordination activities were also observed to vary among teams from urban, 
suburban, and rural areas. The rural clinic CC interacted with a variety of non- 
Vanderbilt affiliated hospitals and clinicians, frequently exchanging information via 
fax. In contrast, CCs in the suburban and urban clinics more often only interacted 
with Vanderbilt-affiliated hospitals and providers, reflecting real variation in the 
information ecologies within which the teams worked.22

Figure 15.4 and Table 15.6 present the workflow diagram and technology matrix 
for coordinating with other clinicians and patients.

15.4  Discussion

15.4.1  Lessons and Insights

The rigorous, mixed methods study of six site teams at various stages of adoption of 
health IT to support new care coordination team-based care generated a large 
amount of data and was itself a complex undertaking. To assess the interaction 
between technology and the work system for care coordination, with its multiple 
workflows, actors, tasks, and multidirectional influences between technology and 
workflow, we identified and examined seven broad areas of work. Those seven areas 
included the routine use of technologies by the care coordinator, clinical teams, and 
patients. Many more use cases were partially addressed or not addressed in this 
research study, in part due to time and budget limitations. The research team 
observed that many other factors such as cultural, physical, policy, and social envi-
ronments played an important role in the health IT–workflow interactions we 
observed, making it important to situate our specific questions about health IT and 
workflow within a broader context.

15.4.2  Health IT Design

Our main finding, that the overall impact of health IT on workflow was mixed, 
was not surprising. It made sense that multiple work activities, roles, and tech-
nologies interacting in the real-world environment of primary care practices 
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Table 15.6 Technology matrix: coordinating with other clinicians and patients

Relevant IT resources 
or attributes

Workflow: coordinating with other clinicians (nurses & PCPs)

Activity: messaging

Activity: 
medication 
changes and refills

Activity: prompts to CCs 
and patients

MHT worklist alerts 
and reminders

Notify CCs (or 
IVR system) to 
follow-up with 
patients about 
new or changed 
medications on a 
certain date.
Good alignment

Reminders are used to 
notify patients to come in 
for a lab/test a few days 
before their doctor’s 
appointment
Good alignment
Alerts and reminders 
notify CCs when a 
patient’s status 
(readmitted to hospital) 
has changed, a medical 
appointment has or will 
soon occur, and/or CCs 
need to follow up with the 
patient to see how they are 
doing and/or how an 
appointment went.
Good alignment

Electronic 
communications:
In-basket/MHTAV 
messages

Convenient method for 
CCs to notify 
clinicians when they 
need to act (such as to 
review a patient’s BP 
or blood glucose data, 
or that a patient needs 
training or a 
monitoring device 
validated).
Good alignment
Clinicians having a 
large number of 
messages sent by the 
CCs can feel 
overwhelmed and wish 
the technology helped 
to alleviate this.
Poor alignment

Prescription 
requests and/or 
information and 
questions about 
medications can 
be e-mailed 
among CCs and 
the clinicians.
Good alignment

Electronic messaging 
(MHAV and/or e-mail) 
has helped CCs when 
scheduling appointments 
with patients.
Good alignment

Messages sent/received 
to coordinate the best 
time for the CC to see 
the patient are often 
not received in time.
Poor alignment

J. S. Wald and L. Novak



277

would surface many examples in which workflow was supported by, as well as at 
odds with, health IT.

The observed differences in alignment of health IT and workflow at different 
practice sites, and over time, were a strong reminder that technology redesign and 
practice redesign are both ongoing. Whether technology changes are secondary, 
made in response to other changes such as new staffing roles, new workflows, or 
patient direct use of technology, or primary, such as a new dashboard for monitoring 
population health, our findings suggest that plan-do-study-act (PDSA) steps to 
observe the actual effects of changes in health IT on workflow are important. 
Redesign work is best performed by a team of individuals combining their expertise 
in health IT, workflow, and clinical care. It is not unusual for redesign work to prog-
ress through a series of iterations to introduce new features and test their impact. 
This is especially useful when adapting complex systems where changes in multiple 
areas are common.

Table 15.6 (continued)

Relevant IT resources 
or attributes

Workflow: coordinating with other clinicians (nurses & PCPs)

Activity: messaging

Activity: 
medication 
changes and refills

Activity: prompts to CCs 
and patients

Clinic schedule for 
viewing by CCs

The online schedule is 
unreliable due to delays, 
early arrivals, cancella- 
tions, and/or no-shows. 
CCs often must schedule 
another appointment to 
see the Pt at a different 
time.
Poor alignment

Interactive voice 
response (IVR) 
system asks patients, 
about new or changed 
medications (if patient 
has consented)

IVR system only 
asks generic and 
broad questions 
that often lack 
specific and 
contextual 
information.
Poor alignment

Since the IVR system is 
not always reliable, the 
CC doesn’t get sufficient 
or reliable information 
and must call the Pt to ask 
about their new/changed 
med.
Poor alignment

CCs schedule or 
availability status is 
not accessible 
remotely/
electronically

Clinic staff are unable to 
easily and quickly 
coordinate a face-to-face 
encounter between a 
patient and the 
CC. Instead, staff go to 
the CC’s office or call her, 
if they have time.
Poor alignment

BP blood pressure; CC care coordinator, HR heart rate, IVR interactive voice response, MHTAV 
MyHealthTeamAtVanderbilt, MHT My Health Team, Pt patient
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15.5  Conclusion

In this mixed methods study assessing the workflow impact of implementing health 
IT-enabled care coordination in six ambulatory primary care clinics over a 12-month 
period, we used a human factors and sociotechnical framework that identified five 
areas of primary work and two areas of supporting work. This approach revealed a 
complex picture with multiple workflows and varied IT systems used alone and in 
combination to support those workflows.

Our findings support the WEM assertion that context, aggregation, and temporal-
ity can impact the alignment of health IT and workflow. Stronger satisfaction with 
care coordination tools and processes was noted when there were well-defined 
workflows, tools designed to fit the workflow, adequate training, good team com-
munication, physical co-location of CCs with other care team members, stronger 
team relationships, and time to allow the new work system to stabilize and for learn-
ing to take place. This study shows that the work of care coordination is broad, 
complex, and varied. It also demonstrates that even when a specific health IT-enabled 
program is implemented in a consistent IT environment, its impact varies substan-
tially depending on the physical, social, and policy environment. Alignment between 
health IT and workflow is dynamic rather than fixed because the implementation of 
care coordination is changing over time from a narrow scope (a primary focus on 
the introduction of the new CC role and a few conditions) to a much broader one (a 
greater focus on team-level communication, multiple contributing roles, and more 
conditions).

Through the study, we also explored the use of the health IT alignment matrix as 
a tool to communicate to what extent system components aligned with functional 
and workflow requirements, and “scoring” of the overall alignment for a work sys-
tem. Future work is needed to improve the way multiple contributors are identified 
and tracked during health IT adoption and its redesign over time.
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Chapter 16
Turning “Night into Day”: Challenges, 
Strategies, and Effectiveness 
of Re-engineering the Workflow to Enable 
Continuous Electronic Intensive Care Unit 
Collaboration Between Australia and U.S.

Cheryl Hiddleson, Timothy Buchman, and Enrico Coiera

Safe and effective care of critically ill patients requires a team of professionals 
including intensivists and critical care nurses experienced in providing care for 
patients in the intensive care unit (ICU). While critical illness can strike at any time 
and demands continuous attention, allocation of scarce staff follows a predictable 
pattern. The night shift is more likely to have disproportionately newer and thus less 
experienced nurses, and the experienced nurses on that shift are engaged in provid-
ing care to their own set of patients (Claffey 2006; Floyd 2003). At times this leaves 
them unable to sufficiently supervise the newer staff. There is also evidence of 
increased risks at night time with higher in-hospital mortality for admissions at 
night (Coiera et al. 2014).

There is also a maldistribution of intensivists in the United States with the south-
eastern region experiencing a greater need, and there are no intensivists present at 
many hospitals during the overnight hours. This combination leaves most ICUs in our 
region struggling with less experienced and diminishing numbers of staff at night with 
less physician support. There are fewer resources in many departments of the hospital 
during nighttime hours, requiring these staff to be more independent and resourceful 
in providing vital care. These novice nurses are not yet prepared for autonomy and are 
less sure of themselves and of where they might turn for advice or counsel.

To mitigate that nighttime challenge, Emory Healthcare (EHC) supports bedside 
caregivers with remote guidance from senior intensivists and critical care nurses 
using an efficient telehealth system, “eICUTM” (Lilly et  al. 2014). This platform 
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allows the remote caregivers to observe, collaborate and prescribe at 10 ICUs in 5 
hospitals from a single clinical operations room (COR) located in Dunwoody, 
Georgia. The Emory eICU program has data flowing from the electronic medical 
records and bedside monitors allowing the remote staff to have continuous access to 
all patients. The novel displays of data and the corresponding alerts driven by 
Boolean and trending algorithms in the eICUTM system, augments situation aware-
ness and allows early detection when a patient veers off of the expected trajectory.

Every eICU nurse (eRN) has a minimum of 5 years hands on experience at the 
bedside and each is certified as a critical care nurse (CCRN) by the American Academy 
of Critical Care Nurses (AACN). They provide the novice night nurses in the ICUs 
with “just in time” education and support during hours when onsite resources are not 
readily available. The bedside nurse pushes a button on the wall in a patient’s room to 
access the eRN who comes on camera in about 15 seconds. The eRNs provide the 
newer nurses with insight and support that comes from the in-depth knowledge they 
acquire after years of providing bedside care to critically ill patients.

The physicians in the eICU are Emory faculty, all board-certified intensivists, 
have acquired additional training in critical care after completing specialty training 
in their field of choice. The intensivists in the eICU also provide many forms of sup-
port to bedside staff that might otherwise be delayed or not occur at all. That support 
ranges from just in time education about a drug the staff has never previously had 
prescribed or administered, to providing support to patients and families approach-
ing the end of a prolonged course of illness.

The caregivers in the eICU are challenged to provide outstanding care through-
out the night despite the obvious disruption in their normal wake-sleep cycles. 
Working through the night time hours exposes clinicians to adverse alterations in 
their physical, emotional and cognitive abilities. Night shift workers have been 
shown to exhibit detrimental changes in their health and wellbeing, with the WHO 
even classifying night work as a “probable carcinogen” in 2007 (Gu et al. 2015). 
Though these detriments to health have been widely acknowledged, solutions for 
mitigating the effect on caregivers have not been sufficiently explored. In an attempt 
to further innovate and mitigate these deleterious effects on our staff, Emory pro-
posed, piloted, and established a solution: “Turning Night into Day” (https://clini-
caltrials.gov/ct2/show/NCT02895997).

Thus, Emory clinicians that provide remote eICU coverage on the night shift 
were relocated to the opposite side of the world. From the Antipodes, they would 
deliver their nighttime care to the patients served at the Emory eICU site, but they 
would do so from daylight in Australia. (The remote monitoring platform used 
allows for distance communication and connection with ICUs as far away as 250 
miles, so repurposing that platform for ultra-remote coverage 12,000 miles away 
was technically possible.) A 6-month pilot research study was proposed to explore 
the effects on clinicians providing the eICU services when they are moved to a dif-
ferent time zone. Could a geographically dispersed clinical team create quality out-
comes for patients as well as increase quality of life for those clinicians? The 
decision was made to focus on an English-speaking country, with a specific initial 
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focus on a destination familiar to Americans. We were able to leverage a personal 
connection to establish a relationship with Macquarie University (MU) in Sydney 
Australia. That university is also home to the Australian Institute of Health 
Innovation, so it was an ideal location to form a partnership for this forward-looking 
study. Meetings were scheduled with administrative leadership there to assess the 
feasibility of this project. There was mutual interest in exploring the project, so the 
planning phase began.

There were three primary areas of focus for developing this new clinical work-
flow; how to manage the people, how to manage the legal aspects and how to choose 
the technical solutions to be used.

16.1  Managing the People

Study development and design was a cooperative effort between EHC and 
MU. The Emory eICU clinicians would be the study subjects and an application 
for an IRB was completed that focused on studying how the change in location 
and night/day hours would affect them physically, emotionally and cognitively. 
Study subjects were chosen on a volunteer basis and would travel to MU for a 
time of 6–9 weeks while performing specific physiologic tests and wearing a heart 
rate and activity monitoring device. The subject travelers also completed surveys 
on quality of life and mood status in addition to performing validated tasks to 
measure efficiency.

Once the study design was complete the focus turned to providing what the clini-
cians would need to perform effectively in the new environment. The decision was 
made to send two clinicians. Sending two Emory clinicians would lend to assuring 
a shared sense of purpose and understanding of the primary objective for the study 
and the Emory eICU Center. This laid a foundation for the primary component of 
building the dispersed teams. Relocating our own clinicians instead of employing 
services of local Australian clinicians ensured that the possible obstacles of compet-
ing goals and objectives by clinicians from different backgrounds and countries 
would be avoided (Crowley 2005).

The site in Australia was built to echo the site in Atlanta to help increase clini-
cians’ level of comfort working there. Tools to communicate with the team at home 
in Atlanta in a seamless and timely manner were needed so there would be no 
delays in patient care. A video conferencing tool was installed in parallel with the 
patient- centered eICU tool so clinicians could launch a sidebar video call. This 
sidebar video conferencing system allowed all clinicians to maintain the perception 
of being physically collocated, yet they were still thousands of miles apart. To fur-
ther the sense of teamness, a large screen television/monitor was placed in the MU 
monitoring room that had a live feed of the Australian COR running for the duration 
of the shift. A reciprocal monitor was also placed in the COR in Atlanta. In all, there 
were three video channels used by staff: the video channel embedded in the eICU 
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application facilitating communication between eICU staff and the bedside; the 
sidebar video link so eICU staff could speak with each other; and the full-room 
continuous video link providing a sense of “looking into the other room” on the 
other side of the globe.

16.2  Legal Aspects

There were many questions related to liability, insurance, professional credential-
ing, indemnity and more that had to be answered to arrive at a mutually acceptable 
contract. Agreements would be governed by Australian law so a contract dispute 
among the parties would be litigated in Australia. For this reason, EHC chose to hire 
outside legal counsel in Australia to assist with navigating these questions. Making 
decisions about how operations function in another country involves being as 
informed as possible to protect traveling clinicians, Emory Healthcare and the 
patients treated.

The Australian legal team consulted with the NSW medical and nursing boards 
to determine what the requirement would be for the clinicians while they worked 
there. We were informed that Emory’s physicians and nurses were not required to 
apply for registration as health practitioners, apply for licensure or fulfill creden-
tialing requirements in Australia during the six (6) month Project. Even if the 
Emory employees did not have to register, they were required to comply with 
relevant codes of conduct for Australian practitioners. They could not provide 
any type of medical services including consultations to Australian patients at all. 
All clinicians had to adhere to their scope of practice guidelines and codes of 
conduct for their place of practice, Atlanta Georgia. Emory clinicians had to com-
ply with EHC employment and HR policies and US laws and regulations. As the 
Emory employees would not have an Australian employer the Australian mini-
mum conditions, such as pay rates, would not apply during their Australian 
assignments. However, as they are performing duties in Australia relevant U.S. 
employment laws would apply, including anti-discrimination, harassment and 
work health and safety (which in turn covers workplace bullying). Emory had to 
take reasonable steps to ensure that the Australia workplace is safe for the Emory 
employees.

They determined that Emory employees could apply for standard visitor’s visas 
electronically online instead of any type of work visa. MU sponsorship was not 
required because Emory individuals would not be employees or contractors of 
MU. This was determined because the clinicians would remain Emory employees 
for the length of their work assignment there and not employed by an Australian 
entity. They also found that EHC would not need to register with the Australian 
Securities and Investment Commission as a company doing business in Australia 
because of the temporary nature of the trial and the fact that it would not be hiring 
Australian employees. General sales tax would also not be paid because the Emory 
team would not be generating revenue while there.
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To ensure uninterrupted insurance for the clinicians, Emory verified their plan 
for medical, dental and life insurance had global coverage. There are very different 
limits and restrictions related to malpractice between the U.S. and Australia, so 
indemnity had to be granted to the Australian parties involved. The malpractice 
insurance for all participating clinicians from EHC had to be verified and outlined 
in the legal contract.

Emory privacy guidelines had to be reviewed with each participating employee 
before deployment to the Australian site. Any visitors to the Australian site had to 
complete forms for compliance with HIPPA guidelines around patient confidential-
ity and privacy. After some preliminary investigation the determination was made 
that an end to end connection from Emory to the distant site in Australia would be 
the best solution for ensuring adherence to HIPPA guidelines and ensure security 
for protected health information (PHI).

16.3  Technical Aspects

Emory needed to have a connection back home that was private, secure and reliable. 
The IT team made the determination that an end to end circuit was the best option 
to achieve all three. A multiprotocol label switching (MPLS) network was chosen 
for the circuit type. This type of circuit could be configured to originate in Atlanta 
at EHC and terminate at MU in Sydney. This circuit is private and does not involve 
any transfer of information from one site to another. All the patient data remained 
on the Emory network, eliminating concerns about adherence to HIPPA guidelines 
or violation of security of patient information. All patient information remained the 
property of EHC. The telephones placed in the MU site were also internet based on 
the EHC network. This offered our clinicians in Atlanta and Australia the ability to 
make the same local calls with the same numbers and dialing protocols thus avoid-
ing confusion.

The circuit is composed of a fiber connection extending from the U.S. to the 
street outside the MU building the operations room was located in. Once the fiber 
was installed, the line then had to be connected to the building and up to the COR 
where it would terminate. There were three vendors that had to be employed for the 
completion of the build of the fiber line. The line was then connected to a router 
which was connected to a switch. The switch had network jacks that allowed the 
computers in the room to connect to the Emory network. All phases of this process 
had to be managed by the specific vendor and checks had to be made to ensure the 
access was complete and live. It is essential when developing this type of connec-
tion that all vendors are engaged early on, so they can partner and make the process 
as seamless as possible.

The decision was made that the Emory IT team would purchase and configure 
the CPUs to be used in Australia. Then the units were shipped to the site at MU. This 
was another step to ensure patient confidentiality and protection of patient informa-
tion. Once the computers arrived in Australia, the IT team used remote desktop 
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access to log into the computers and ensure functionality. This remote access also 
allowed the Emory IT team to apply updates and needed changes to the computers 
in Australia. There was no need to train or depend on staff at MU to perform those 
functions thus adding to the reliability of the systems’ performance. The computers 
were also configured using local Atlanta time in order to avoid any confusion or 
error in documentation by the Australia based clinicians. Upon arrival, the comput-
ers were set up by an outside party with Emory IT checking functionality remotely.

The MU site was a locked room with access granted only to Emory staff and 
essential IT and emergency MU staff. Once again reinforcing protection of PHI and 
the clinicians themselves that worked weekends when other employees were not 
present. The computers remained powered on but clinicians logged off after each 
shift. This action not only added a layer of PHI protection but leaving them on and 
accessible allowed changes or trouble shooting by Emory IT to be performed 
remotely.

The “sidebar” video sessions were performed via a standard commercial video 
conferencing tool. This tool was loaded on the secondary computer the clinicians 
use and also had separate speakers to allow the verbal communication needed. 
When a nurse in Atlanta called the nurse or physician in Australia they had an open 
instance of the video tool and made a call. This resulted in an indicator popping up 
on the receiving clinician’s monitor and they could then answer the call. Network 
phones were installed and active, and this was the primary means for our staff to 
communicate back and forth with the staff in Australia.

A 42-in. monitor was installed on the wall in the COR in Atlanta and in Sydney. 
This monitor had a mini CPU connected to it, and a live video feed from one side of 
the earth to the other was established. This feed was the best option for allowing the 
staff at both sites to have the feel of being collocated. When a nurse in Atlanta had 
a question or task for the physician to follow up on this live feed allowed them to see 
what the physician was doing. If the physician was involved in a conversation with 
another clinician, the nurse in Atlanta could communicate with the nurse in Australia 
to ensure the question would be answered in a timely manner.

As patient populations change there is a need for healthcare to adapt to provide 
the care needed to those patients. The Emory eICU represents another option for 
managing the demands of care delivery for this critically ill population. The exper-
tise and knowledge that might not be available locally to some hospitals can be 
leveraged through this medium, thus providing patients access to the care they need. 
The Australia approach affords the clinicians delivering that essential care another 
option for preserving a quality of life that isn’t available while working during night 
time hours. The audio-visual base of the program affords the ability to put novel 
workflows in place regardless of the distance between the clinicians and patients. As 
tele medicine models grow in use, these types of options will increase for 
clinicians.

We also analyzed qualitative data collected from the clinicians that were study 
subjects. The model allowed clinicians at the remote site to forge friendships and a 
level of closeness neither of them expected, and they reported that made the work 
even more rewarding for them. The clinicians felt more awake and alert while being 
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in Australia because they were able to maintain regular sleep/wake cycles instead of 
trying to rest ahead or make up for sleep missed working at night. One of our clini-
cians wrote “The communication from Australia to stateside seemed to be a 
 non- issue when it came to the workflow of the eICU. Personally, it was a chance of 
a lifetime. I was able to complete my shifts on the weekends and during the week, 
my time was mine to do as I wanted. The most significant aspect for me, was the 
change from working nights to working days. I felt like I had more time. When 
working nights, you can either sleep when your get home, or stay up all day and 
change to a day routine. Either way, your feel tired, and exhausted, especially work-
ing 3 or 4 12-h shifts in a row. In Australia, I completed my assigned shifts, went 
home and slept. The next morning, I was able to accomplish whatever I had planned. 
I was not exhausted and did not lose a day just to make the transition from nights to 
days”. Emory Healthcare leadership fully supports their staff and makes efforts to 
ensure the clinicians are cared for as well as the patients. This program allowed 
those clinicians a once in a lifetime experience in another country while having the 
security of continuous employment and financial stability.

As the next phase of the project, we are launching an Emory eICU installation in 
Perth, Western Australia. Perth is the largest city antipodal to Atlanta and offers the 
advantage of being either 12 or 13  h out of phase with Atlanta (depending on 
whether Atlanta is on daylight or standard time.) Our initial experience in Perth will 
be reported in 2019.
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Chapter 17
Encoding Clinical Pathways: The Impact 
Beyond the Target

Edward H. Suh and Gina T. Waight

17.1  Introduction

The past several years have seen the long-predicted convergence of two trends in 
modern medicine: the standardization of care and the computerization of the clini-
cal environment. Now, in many care settings, practice improvement has become 
virtually synonymous with efforts to encode clinical behavior into the electronic 
health record (EHR) and computerized prescriber order entry (CPOE) systems.

The Emergency Department presents a particular challenge for the implementa-
tion of health IT systems with computerized decision support. There is tremendous 
clinical heterogeneity and diagnostic uncertainty in the patients and their presenta-
tions; yet care must be delivered with constrained resources and compressed time- 
scales. In the field of emergency medicine, there has been a particular push to 
incorporate clinical pathways into the workup and treatment of certain “high acu-
ity” diagnoses such as stroke, acute coronary syndromes (ACS), and sepsis. Because 
of the acuity of these diagnoses, the pathways developed to date tend to be both 
labor-intensive and perceived as critical. Due to the great effort devoted to comple-
tion of the pathway, at any cost, this perversely can lead to negative ramifications of 
implementing a pathway at all.
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17.2  Narrative

A 79-year old man is brought to the ED by his family. Family members tell the 
nurse in triage that he has had a few hours of vomiting, abdominal pain, as well as 
some weakness on the left side. The triage nurse requests an immediate evaluation 
by a physician as she recognizes that unilateral weakness is a possible sign of a 
cerebrovascular accident (CVA). The hospital is an academic institution with a 
stroke program that is known for aggressive intervention. Criteria for “stroke proto-
col” activation are intentionally set as broadly as possible, in order to capture all 
possible cases of acute stroke. The nursing staff have received extensive training 
focusing on the importance of early identification of these cases in order to meet the 
standards for stroke care that are both subject to regulatory scrutiny and are part of 
the neurology department’s preferred approach to CVA management.

On the initial evaluation by a resident physician, a history of waxing and waning 
mental status along with left sided weakness is rapidly obtained from the patient’s 
family members. The resident’s cursory first examination reveals a patient with 
unwell appearance, difficulty following commands, and possibly some limb 
 weakness. She requests the patient elevate both arms symmetrically to check for 
“pronator drift”, a sign of unilateral weakness, but the patient is unable to comply 
with her instructions. It is not clear whether the difficulty was due to global weak-
ness, an alteration of mental status, inattention, or other factors. When the resident 
asks the family how long these symptoms have been present, they report that they 
found the patient in this state approximately an hour and a half ago. They also note 
that the patient had been recently suffering from some sort of arrhythmia, and that 
the cardiologist subsequently placed a pacemaker.

While the resident physician is conducting her exam, the nurse checks the 
patient’s vital signs and obtains a fingerstick blood glucose. None of those values 
are found to be abnormal. The patient has been in the ED for 4 or 5 minutes at this 
point. The resident identifies that the patient meets the entry criteria for the hospi-
tal acute stroke protocol. The resident verbally orders the clerk to call the hospital 
page operator, who sends simultaneous pages activating all members of the stroke 
team. Another ED resident assists by entering the “stroke protocol” order set in the 
CPOE.  Orders for blood work, monitoring, and neuroimaging are automatically 
generated.

A multidisciplinary team assembles at the patient’s bedside. The team includes a 
neurology fellow, resident, research coordinator, and pharmacist. The laboratory 
supervisor calls in by telephone to announce that the laboratory is standing by to 
process the bloodwork. The CT technician removes the patient who was on the table 
in preparation for the possible stroke patient. Labs are drawn and an ECG is 
obtained. The patient is attached to the cardiac monitor and transported by the team 
to the CT scan, which is located in the ED.

The neurology resident performs a focused history and examination while the 
patient is being wheeled on the gurney to the scanner. He obtains a similar history 
of waxing and waning mental status, with possible increased weakness on the left 
side, over the past hour and half. A past medical history of congestive heart failure, 
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chronic obstructive pulmonary disease, hypertension, and hyperlipidemia is also 
noted. A stat non-contrast CT scan of the head is performed and appears negative for 
an acute bleed. The team decides to administer the “clot-busting” stroke medication, 
tPA. The pharmacist opens the sealed medications and begins to mix them in prepa-
ration for administration.

Twenty minutes have passed since the patient first arrived at the ED. Four patients 
were in the process of being triaged when the stroke activation was triggered. An 
additional six patients had been triaged and were waiting to be seen in different 
districts of the ED; overall the ED held approximately 150 patients in various stages 
of evaluation when the stroke patient arrived. Since that time, three more patients 
have walked into the ED, in addition to the arrival of two more ambulances. One of 
the patients who had been waiting for triage, a well-appearing 50-year old woman, 
is now getting vital signs performed by the nursing assistant. The vitals are notable 
for fever to 38.2 °C orally, as well as tachycardia to 120 beats per minute. The oxy-
gen saturation is 95% on room air and the blood pressure is normal. These measure-
ments are automatically fed from the machine into the EHR.

On the status board display of the EHR, which gives an overview of all the 
patients currently in the ED, the patient’s name begins to flash in purple and yellow. 
The vital signs have triggered a medical logic module designed to identify patients 
at risk for sepsis by notifying clinicians when a patient meets the systemic inflam-
matory response in sepsis (SIRS) criteria. This was put into place after a review of 
patients admitted for severe sepsis and septic shock revealed a substantial number 
of cases, in which the treatment and evaluation did not meet state-mandated guide-
lines. As the state sepsis guidelines were developed in a relatively algorithmic fash-
ion, the hospital quality committee decided to encode the algorithm into the EHR in 
the form of automated alerts and order sets in addition to focused education. While 
initially physicians were concerned that the care pathway left little room for auton-
omy, measurements of compliance with the state guidelines have improved dramati-
cally in the year since the initiative was rolled out.

The patient name, flashing in purple and yellow on the computer tracking board, 
alerts a nurse monitoring patient flow through triage to send out an electronic mes-
sage through the EHR to the senior resident physician who is assigned the respon-
sibility for managing acute cases. The resident receives the notification of a potential 
“code sepsis” on her mobile device. She finishes entering the tPA orders on the 
stroke patient, which only requires one click and entry of her password. She switches 
over to the potentially septic patient’s electronic medical chart. She notes the vital 
signs and the history obtained in triage of a cough and fever, and furthermore sees 
that the past medical history field contains the diagnoses of hypertension, diabetes, 
chronic obstructive pulmonary disease, and chronic renal insufficiency. The track-
ing board indicates that the patient had been in the ED for 40  minutes already. 
Sensing the need to expedite things, she opened the sepsis order set and signs off on 
the routine panel of tests, interventions, and nursing orders.

The patient’s status board entry now indicates the patient is a “code sepsis”. The 
orders entered on her automatically rise to the top of the work list for the nurse 
assigned to the patient. These include drawing blood in cultures, blood gas, venous 
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lactate, as well as a general electrolyte and cell count panel. There are also orders 
automatically included to obtain urine for analysis and urine culture, a chest X-Ray, 
as well as treatment with both antipyretic medications and intravenous fluids. Before 
the CPOE system will process the orders, it produces a series of prompts and hard 
stops that the resident must clear one by one, checking for proper patient identifica-
tion, asking that the results of a pregnancy test be entered before the radiology 
examination, and asking for entry of a patient weight to calculate the intravenous 
fluid volume.

Meanwhile, the stroke patient’s first bolus of intravenous tPA finishes. As the 
second dose is starting to infuse, he appears acutely uncomfortable. He is retching 
and attempting to sit up, and appears confused. The nurse attending the patient 
shouts for help and both the emergency medicine and stroke teams arrive at the 
bedside. One provider notes that the cardiac monitor is demonstrating what appears 
to be ventricular tachycardia, but it resolves before intervention and the patient’s 
mental status improves. There is discussion between the neurology and emergency 
medicine teams on the question of whether to suspend or continue the tPA infusion. 
After a few minutes, the neurology stroke fellow elects to terminate it.

The patient remains stable in the ED, but the disposition of the patient is now 
unclear. The neurology team requests a cardiology consultation and is advocat-
ing for admission to the cardiac care unit. When the cardiology fellow arrives, 
he disagrees with this assessment. The dispute is escalated to the attending 
physicians of the two consultative services, and the patient is ultimately admit-
ted to the neurological intensive care unit for monitoring. Interrogation of the 
patient’s pacemaker would eventually reveal that he had been suffering from 
intermittent episodes of rapid atrial fibrillation, as well as occasional episodes 
of ventricular tachycardia throughout the day. His pacemaker precludes an 
MRI, but after stabilization of his dysrhythmia no further focal neurological 
symptoms are noted.

During this time, the code sepsis patient finishes a liter of normal saline infusion 
and is starting on a second liter. She has not had her chest X-ray taken; but her blood 
work is undergoing analysis in the laboratory. The resident physician finds time 
obtains a more in-depth history, which includes fever, cough and wheeze for the 
past several days. Her examination is notable for diffuse expiratory wheezing, so the 
resident orders nebulized albuterol and oral prednisone to treat a potential COPD 
exacerbation. The chest X-ray and the majority of the bloodwork eventually return 
unremarkable, with the exception of a moderately elevated venous lactate. The 
attending physician is able to evaluate the patient a few hours after arrival. The 
elevated lactate is noted, and as this is flagged as a critical result, the team makes a 
plan to repeat the test. The patient, however, has symptomatically improved and is 
concerned about several pet animals that she has left alone at home. She refuses the 
repeat blood draw for the second lactate and instead asks for discharge papers. The 
emergency medicine team, faced with the elevated lactate in a high-risk patient, 
discharges the patient with significant consternation. They provide prescriptions for 
oral antibiotics that could cover community acquired pneumonia, as well as oral 
steroids for COPD.
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It is now 5 hours after the stroke alert has been activated and five and a half hours 
since the potentially septic patient has arrived. The ED has received over 60 more 
patients during that time, which is average considering the time of day and day of 
week. Triage processes had returned to normal as soon as documentation on the 
stroke patient is completed, but the few minutes of delay has led to a queue forming 
outside of triage. This in turn has led to some unrest among patients waiting to be 
evaluated, further increasing pressure on the nurses in triage as people begin 
approaching them to ask when they will be seen. By prioritizing the stroke patient 
for his CT scan, normal ED flow is further disrupted. The radiology staff have to 
bump a patient who is about to have a scan because of the stroke alert. In addition, 
there have already been some delays in the normal turn-around time for CT orders 
because of difficulty coordinating transportation between the clinical areas and radi-
ology for several moderately sick patients. This leads to median times between CT 
order and test performance to stretch to more than 90 minutes, well above the aver-
age for the department. The nursing staff working in the ED also have trouble keep-
ing up with the orders being entered on other patients. Although there is some 
re- distribution of patients to other districts because of the burden of these two acute 
cases, there is not enough excess capacity in the nursing group to fully ‘catch up’ 
with the patients being evaluated by the medical staff. As a result, average time 
between first evaluation and disposition decision increases significantly on several 
patients. This has led, in turn, to significantly increased crowding in the clinical 
areas. The conditions continue to negatively affect the care until past midnight, 
when arrivals to the ED finally taper to the point where the queue of pending work 
could be completed.

Two days later, the potentially septic patient’s blood cultures grow gram positive 
cocci in one of the two bottles. The patient is asked to return for re-evaluation and 
she reluctantly complies. On her second visit, she is clinically much improved, and 
it is felt that the positive culture is likely due to contaminant rather than true infec-
tion. The patient is discharged again with strict return instructions.

17.3  Analysis

In a system with an aggressive stroke program, the push to adhere to the timed steps 
in the pathway can overshadow the clinician’s primary responsibility to perform a 
thorough evaluation of the patient. When a complex patient presents with multiple 
complaints or with an unclear clinical picture, focusing on the one sign or symptom 
that can justify the stroke activation and place the patient on a predetermined path-
way may induce the clinician to simplify the case. As illustrated in this case, focus-
ing on the patient’s unilateral weakness leads the clinician to standardize her 
evaluation and treatment plan at the expense of a fuller understanding of her com-
plaint. The system, designed to optimize care for stroke patients, lures the clinician 
to make a premature diagnosis and thereby limits the likelihood that the patient 
would receive the appropriate evaluation and treatment for her true ailment. Though 
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the outcome is favorable, the patient’s evaluation in the ED is prolonged while her 
disposition is debated between several services and leadership, resulting in admis-
sion to an intensive care unit not specialized in the care of cardiac patients. Thus, the 
patient is exposed to increased risks (misdiagnosis, administration of tPA), while 
the ED is exposed to the risks of increased crowding and management of critically 
ill patients.

Similarly, a patient with sepsis may indeed derive benefit from a standardized 
approach, when it enforces compliance with established “best practices”. Yet at the 
same time, many tests or interventions that show some evidence of benefit when 
studied in a population may be less advantageous for a particular individual. In this 
case, while strictly speaking the patient may have met recognized criteria for severe 
sepsis, both the likely physiological processes as well as the patient’s own prefer-
ences make the algorithmic approach far less efficacious. The patient is unlikely 
suffering from the distributive vascular dysfunction and poor tissue perfusion that 
the sepsis protocol is designed in part to address. In addition, a conversation with 
the patient reveals strong preference on her part to return home as quickly as pos-
sible. Without the flashing patient name, to pressure the clinician to abide by the 
standardized treatment plan, she may have otherwise obtained a more detailed his-
tory and physical that could have led to a more focused care plan, relieving the 
patient and the system from the burden of unnecessary testing.

These types of encoded, computerized clinical pathways not only place boundar-
ies on the clinician’s approach to the individual patient, but also add new burdens 
and limitations on the local system as well. Every emergency department has some 
areas of constraint, and most have reached a sort of resource equilibrium that forces 
them to operate at or near maximum capacity. In this setting, even seemingly minor 
perturbations can cause significant downstream effects on workflow which may 
emanate far beyond the initial event. The delay in CT scan turnaround time caused 
by one stroke patient, or the backing up of orders to be carried out on other patients 
while a nurse is called to first attend to a possible sepsis emergency, can result in a 
significant slowdown in the care of other patients, compromising their outcomes. 
On a broader level, it can lead to increased ED crowding, which has its own deleteri-
ous effects on clinical outcomes.

17.4  Conclusions

Our experience as practicing physicians in the ED leads us to believe that for infor-
matics innovations to be truly successful, we must disseminate the understanding 
that technology- based interventions must align with the patient-centered perspec-
tives and the context within which they are operating. To date, much of the literature 
on computerized decision support tools has focused largely on the performance of 
these systems with respect to the diagnosis or process that they are designed to 
address, rather than clinical outcomes or local real time impacts. We strongly believe 
this “diagnosis-centered” or “process- centered” approach is woefully inadequate in 
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assessing the true impact of the intervention. Rather, these tools need to be also 
evaluated from both the perspective of their overall impact on the care environment 
into which they are being inserted, as well as their customizability to best fit the 
individual patient’s experience of care.

As new technologies continue to take even more of decision making out of the 
hands of clinicians, it is of critical importance that developers are aware of the 
potential negative implications of each tool. It is difficult to imagine near-term 
products that are truly fully “optimized” to achieve every healthcare system and 
individual patient care goal at once. It is therefore necessary to design them with an 
approach that supports the clinician’s ability to balance factors and needs that may 
not be well anticipated. Software designers will need a little humility, understand-
ing that a particular approach, while possibly very well constructed and capable of 
achieving its internal goals, may not be right at any given time.

Furthermore, hospitals, healthcare systems, regulators, and providers also need 
to develop an awareness of this issue. Implementing a technological “solution” has 
an obvious appeal, as these lend themselves well to standardization and efficiency. 
However, such solutions can only succeed when the problem that they are designed 
to address is well defined, and the scope of the impact is well understood. Further, 
evaluation of such solutions should not simply focus on the rate of compliance, but 
also on the overall impact to the care system.

We are confident that the current phenomenon of encoding clinical care into 
health IT systems will continue. The advantages and utilities may seem abundant. 
However, unless those responsible for developing and implementing these path-
ways fully grasp the limitations of the current process-centered approach, we have 
far less confidence in the overall benefit of this advancement.

17 Encoding Clinical Pathways: The Impact Beyond the Target



297© Springer Nature Switzerland AG 2019 
K. Zheng et al. (eds.), Cognitive Informatics, Health Informatics, 
https://doi.org/10.1007/978-3-030-16916-9_18

Chapter 18
Cognitive Disconnect and Information 
Overload: Electronic Health Record  
Use for Rounding and Handover 
Communications in a Pediatric Intensive 
Care Unit

R. Stanley Hum

18.1  Introduction

Bedside working rounds can be one of the most cognitively complex situations in 
clinical medicine. Team members develop a mental model of the patient synthesiz-
ing electronic health record (EHR) information and information that is verbally 
transmitted during shift-to-shift communication. Each provider must synthesize and 
filter a large amount of information, which can be error prone. Rounds are also 
prone to interruptions. Despite interruptions, because the EHR allows for each indi-
vidual provider to interact with the patient chart and there is an expectation that each 
team member fulfills a different role for the same patient, the team should develop 
a shared mental model to enable optimal workflow and provide optimal care. In this 
case study describing the bedside working rounds in a pediatric intensive care unit 
(PICU), we will explore each of these issues in depth.

18.2  Case Background

When you think about critical care medicine, you think about a team of healthcare 
providers frantically performing cardiopulmonary resuscitation on a patient whose 
heart has stopped. While these situations happen, the more common situation is a 
critical care team participating in a discussion about a complex patient. In medicine, 
these discussions are called “rounds”. What a description of patient cases during 
rounds may fail to convey is the time pressure imposed on providers. In a typical 
unit with 14 patients, completing rounds within a 3-h period is not uncommon. 
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Hence, a patient presentation from start to finish needs to be in the order of 
10–15 min. During this time, the team discusses a single patient, but interruptions 
are inevitable. Other patients may be deteriorating, new patients may be coming in, 
and stable patients may need to be discharged to maintain patient flow. This time 
constraint leaves little time for reflection and contemplation even in the absence of 
interruptions.

18.3  Case Presentation

Fourteen patients ranging from 2 months through 18 years of age are admitted in a 
16-bed PICU. Around 9 AM, the healthcare team is starting to see patients. Standing 
and gathered in front of the patient’s room is the PICU attending physician (“the 
attending”); the PICU fellow physician (“the fellow”); four resident physicians 
(“residents”); and the bedside PICU nurse. The patient can easily be seen from the 
outside and the patient’s parents have come out of the room to listen and participate 
in the discussion.

The attending, working on a workstation on wheels (WOW), is logged into the 
patient’s electronic health record (EHR). The others are waiting for the attending to 
finish opening a new physician note for this patient. Using a combination of copying 
and pasting from yesterday’s attending note, acronym expansion and direct data 
substitution, the attending is finally ready to hear the presentation.

There are three residents on the team today. Each of them is carrying a stack of 
stapled paper printouts and each is standing in front of a WOW. These printouts 
were created just before the shift-to-shift communication (“handover”) at 7 AM and 
are summaries of their respective assigned patients including the medication orders, 
last 24-h of laboratory results and fluid status summaries. They received handover 
from the overnight resident at 7 AM who has left the unit. Each printout also 
included handwritten notes including “To Do” reminders, corrections and events 
which the overnight resident did not enter in the handover document. Each resident 
also carries a mobile internal phone so that they can be contacted individually.

The resident assigned to this patient (“the presenting resident”) starts to report 
the patient’s summary and major events of the last 24 h. Simultaneously, the attend-
ing is typing the pertinent information into the interval history section of the patient’s 
EHR note. The attending interrupts the resident as some of presented patient events 
were reported on the previous day. The resident realizes that some of the handover 
document events had not been updated. Upon completion of the 24-h events, the 
attending adds an additional event, which the resident was unaware. After the inter-
val events are described, the bedside nurse (“the nurse”) starts their report.

The nurse is standing next to the bedside computer with the patient flowsheet. 
The nurse has a paper-based written handover aid sheet. The sheet has been updated 
by the overnight nurse. To ensure consistency, the nurse follows the protocol of 
reading through the handover sheet in the following order: major 24-h events, neu-
rologic status including sedation, analgesic and muscle relaxant infusions and 
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boluses; cardiovascular status including vasoactive infusions; respiratory status 
including respiratory rate ranges, ventilator settings and the most recent arterial 
blood gas as it is written on a sheet by the bedside; fluid balance status; and other 
systems including skin. Some of the information on the sheet is incorrect, and the 
nurse reports the correct information. There is also some missing data that has not 
been updated. Some of the information reported contradicts the resident presenta-
tion of the events. The attending asks the team to try to clarify the events. There is 
no one present with firsthand knowledge of the event in question. Using the bedside 
computer, the nurse checks the flowsheet data or a nursing note in the EHR but there 
is no further explanation. The resident checks the handover document interface on 
the patient’s record, but no further information is available.

Simultaneously, while the resident and nurse are presenting, several events hap-
pen. First, a nurse pulls the fellow aside because of a deteriorating patient. The fel-
low returns after the completion of the nurse report, and continues to listen. The 
fellow has their own sheets on all the patients in the unit. The fellow also received 
handover at 7 am from the overnight fellow.

Second, one of the other residents’ internal phone rings. It is another patient’s 
nurse. That patient’s medication is due to be given and the nurse would like clarifi-
cation about the order. The resident steps aside and looks up information on their 
handover sheets. The nurse asks the resident to update the order. The resident 
changes to the appropriate patient, enters the order and returns to the discussion.

Once the nurse report is completed, the presenting resident continues by describ-
ing their findings on physical examination, followed by the laboratory results. The 
presenting resident’s phone rings. The presenting resident passes the phone to a third 
resident who answers the phone and steps away. It is one of the consulting services 
regarding another patient. The third resident takes a message and returns to rounds.

Meanwhile, to save time, another resident has pulled up the patient’s chest X-ray 
(CXR) of this morning along with yesterday’s CXR while the presenting resident 
continues. The attending asks about the CXR and all eyes move to the display which 
has been turned so the entire team can see the CXR. The endotracheal tube (ETT) is 
in a little high. The resident measures the exact distance that the ETT needs to be 
pushed inwards. The attending confirms that the ETT should be advanced inwards 
by that distance. Both the presenting resident and the nurse take note as this proce-
dure will need to be performed after the rounds.

The presenting resident the discusses their impression and plan of care. 
Intermittently, as the resident is corrected by the attending, the presenting resident 
writes down “To Do” reminders on their handover printout. Since there is minimal 
time, the handover screen will need to be updated later in the day. One of the other 
residents starts to enter orders on the patient. As part of the order entry system, there 
is an alert to notify if the resident is accessing the correct patient’s chart which 
forces a brief period of waiting. Fortunately, the resident notices that the wrong 
patient’s chart has been accessed. In fact, it was the patient that the resident was 
asked for a medication clarification. The order is cancelled, and the resident switches 
to the patient being discussed, and the order is re-entered. After waiting, the system 
allows the order to be finalized.
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The other resident continues to enter orders as they are being presented. Another 
resident is modifying a portion of the handover screen in the EHR. This portion of 
the handover screen is reserved for the daily checklist. The checklist for the previous 
day’s goals are removed and current goals are entered. The parents are asked if they 
have any questions. They do not, and the team moves to the next patient of the day.

18.4  Analysis of the Case and Discussion

This case illustrates a typical process preparing for and participating in patient 
rounds. Upon examination of the case, we will discuss a couple of themes: first, the 
development of a shared mental model including the effect of technology and use of 
artefacts to overcome constraints imposed by time and the nature of EHRs, and 
second, the occurrence of interruptions.

18.4.1  Shared Mental Models

In a recent systematic review, there is a significant body of evidence supporting 
teamwork in the intensive care unit to provide high-quality care (Donovan et  al. 
2018). In this example, the work during rounds is distributed across multiple pro-
viders with each provider having a different role. Lane et al. (2013) concluded that 
a successful communication strategy during patient care rounds included standard-
ized rounding structures and processes with explicit roles for healthcare providers. 
Ideally, each of the providers should maintain a shared mental model of the patient 
and the goals of care (Page et al. 2016; Weller et al. 2014; Westli et al. 2010; Reader 
et al. 2009; Haig et al. 2006; Mathieu et al. 2000). In our example, each of the pro-
viders receive their initial patient mental model individually from their overnight 
counterparts who are not present during rounds. The process of rounding serves to 
synchronize and reconcile conflicting understanding about the patient amongst the 
providers as well as to make explicit the goals for the day (Lane et al. 2013). Ideally, 
the entire team, overnight and daytime, would gather on rounds to handover but 
these have become increasingly difficult because of duty hour restrictions (Philibert 
and Amis 2011; ACGME 2017).

With the implementation of reduced duty hours and the increased importance of 
the healthcare team, handovers to provide continuity of care has become essential 
(Arora et al. 2014). Handovers have become an increasing important topic of study 
and handover tools have become more common (Hoskote et  al. 2017; Cochran 
2018; Mardis et al. 2016, 2017; Keebler et al. 2016; Davis et al. 2015; Abraham 
et al. 2014). During these handovers, the goal is not only to communicate  information 
but a mental model of the patient in question (Reader et al. 2009; Jiang et al. 2017). 
Discrepancies between a provider’s firsthand knowledge and that which is docu-
mented in EHR should be reconciled (Davis et al. 2015).
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Sources of error in the EHR can lead to discrepancies in the provider’s mental 
models (Collins et al. 2011; Embi et al. 2004). These sources include incorrect orig-
inal documentation, incorrect interpretation of an event, copy and pasted informa-
tion which no longer is accurate and missing information. Based on a provider’s 
expertise and familiarity with the patient, these errors can be accommodated. 
Unfortunately, in the case of electronic handover tools, which can be a combination 
of summarized prose by providers and automated summaries extracted from obser-
vations documented in the EHR, these errors can lead to incorrect summaries, and 
can create serious misunderstandings in the mental model developed by inexperi-
enced providers or providers that have never cared for the patient (Davis et al. 2015).

Beyond errors, the amount of information stored in the EHR is immense and can 
lead to information overload (Farri et  al. 2012). Inexperienced providers do not 
necessarily understand which information is significant and which can safely be 
ignored and as a result they tend to convey all the information which can impede a 
succinct description of the patient. Rarely are EHR summaries context-aware as to 
filter out unneeded information. While advances in EHR summarization is being 
investigated (Pivovarov and Elhadad 2015), mostly, the summaries are aggregators 
and it is up to the provider to interpret the summary (National Academy of Sciences 
2009). In fact, Varpio et al. (Varpio et al. 2015) found showed differences between 
paper and EHR data summarizations and cognitive loads with EHR data summari-
zation being detrimental to clinical reasoning.

Despite the promise of EHRs, many providers still use personal (usually paper) 
artefacts, such as handover sheets to make up for the deficiencies in the electronic 
reporting (Kelley et al. 2013; Blaz et al. 2016; Collins et al. 2012; Rosenbluth et al. 
2015). In the dynamic environment of the intensive care unit, information about a 
single patient varies from provider to provider leading to diverging mental models 
throughout the workday (Mamykina et al. 2014). Some of the unintended conse-
quences of healthcare technology include workarounds such as deferred data entry 
by first documenting on personal artefacts and then subsequently transcribed into 
the EHR if time permits which can negatively impact documentation quality (Kelley 
et al. 2013; Blaz et al. 2016; Zheng et al. 2016).

In the previous section, we discussed the discrepancies of information content 
that needs to be effectively reconciled to develop a shared mental model and how 
these discrepancies can cause incomplete shared mental models which may lead to 
suboptimal care. In our case, each of the healthcare providers is situated behind a 
computer so there is potential for a physical divide between team members. The 
lack of face-to-face communication and physical barriers is thought to negatively 
impact rounding effectiveness (Lane et al. 2013; Gharaveis et al. 2018; Morrison 
et al. 2008). Additionally, each provider is interacting with the computer and thus, 
their attention is divided between the EHR interface and the group discussion.

While each provider has the overarching goal to provide the best care for the 
patient, each provider has their own set of priorities (Donovan et  al. 2018). 
Effectively, each handover (nursing, resident, fellow, attending) concentrates on 
specific sets of information and not all are overlapping (Jiang et al. 2017; Collins 
et al. 2011; Mamykina et al. 2014). There is a distributive nature of the division of 
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work in rounds. Each provider must have a similar understanding about the patient 
to be able to most effectively perform interrelated tasks (Page et al. 2016; Weller 
et al. 2014; Westli et al. 2010; Mathieu et al. 2000). Information from each of the 
providers must be taken into context, information must be evaluated in terms of 
being most representative of what occurred. Discrepancies must be reconciled so 
that a shared mental model can be established. Despite this shared mental model, 
each provider must augment that mental model to suit the needs and requirements 
of their own priorities.

18.4.2  Interruptions

Smartphones or rather instant access communications (voice or text) are increas-
ingly common in the clinical workplace (Tran et al. 2014; Wu et al. 2010) and have 
been shown to improve communication efficiency (Ighani et al. 2010). The ability 
to immediately contact a remote provider is clearly important and helpful but it can 
also be a source of increased interruptions and potential interprofessional conflicts 
(Aungst and Belliveau 2015; Wu et al. 2013a, b; Vaisman and Wu 2017; Quan et al. 
2013). If there are differing interpretations of the significance of a clinical event, 
then the provider who is being interrupted can become frustrated or experience 
increased stress (Weigl et al. 2014). With a paging system, it is the provider being 
interrupted who controls the timing of the communication, whereas, with personal 
mobile communications, a phone call or text message is generally returned immedi-
ately (Lo et al. 2012). In addition to increased interruptions, text paging and smart-
phones can have negative effects on decreased communication quality compared to 
face-to-face interactions and potentially leading to weakened interprofessional rela-
tionships (Wu et al. 2011, 2012, 2014).

These interruptions can be a source of increased cognitive load due to task 
switching (Li et al. 2012; Skaugset et al. 2016). Interruptions can lead to gaps infor-
mation flow (Laxmisan et al. 2007). In our case, the face-to-face interruption and 
the phone call interruptions require task switching. Providers involved in the inter-
ruption must change their focus to another patient and they may miss important 
information that contribute to shared understanding. These external interruptions 
are a potential source of rounding efficiency (Anderson et al. 2015) and detrimental 
to team understanding (Laxmisan et al. 2007). However, Rivera-Rodriguez et al. 
(Rivera-Rodriguez and Karsh 2010) suggests that not all interruptions are should be 
considered detrimental. For example, when a presenting member is interrupted by 
others to clarify information then the mental model remains focused on the same 
patient and discrepancies can be reconciled and contributing to better shared mental 
models.

In addition to the effect on information flow, interruptions can be a cause of 
medical errors (Skaugset et al. 2016). In our case, an interruption was the potential 
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cause of a near-miss with ordering. Several authors have suggested the importance 
of interruption management such as using physical cues or conscious times to delay 
or reject interruptions to mitigate errors (Ratwani et al. 2017; Coiera 2015) as well 
as the importance of error recovery (Patel et al. 2015). Unfortunately, a systematic 
review of interventions to reduce interruptions showed that the evidence that these 
interventions reduced errors was equivocal and that further study was needed 
(Raban and Westbrook 2014).

18.5  Conclusions

The time of the individual provider delivering care is past and teamwork is essen-
tial to delivering optimal healthcare. Effectively developing a shared mental model 
is important in teamwork. Rounding in the intensive care unit is a cognitively 
complex task involving multiple members of the healthcare team. Participation in 
rounding serves to distribute work and cognitive load as well as to help solidify 
shared mental models. The development of shared mental models is affected by 
the handover process, by handover tools including those that involve EHR sys-
tems, by discrepancies in the experiences of individual team members, and by 
errors in the EHR systems. In addition, the demands of using EHR systems at the 
point of rounding can change the physical environment so that team dynamics are 
sub-optimal for shared mental model creation. Rounding is also affected by inter-
ruptions. Technology can also mediate provider-to-provider communication and 
be a source of interruptions. Personal communication devices have been shown to 
make care more efficient but the technology can also lead to increased interrup-
tions and potentially interprofessional conflicts. These interruptions can be a 
source of medical error. Recovery from these errors and interruptions is an impor-
tant process.

18.6  Recommendations

Current processes and workflows, particularly involving handover and rounding, 
need to be re-evaluated in the light of the distributive nature of work and cognition 
in the intensive care unit. Processes need to optimize development of shared mental 
models and support effective teamwork. Implementation of technology needs to be 
reviewed in this context as it can both be a benefit and a hinderance (for example, 
smartphones can improve unit efficiency but can also contribute to increased exter-
nal interruptions or EHR use on rounds can be a cause of distraction and worsening 
shared mental model development).
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Chapter 19
Clinical Workflow: The Past, Present, 
and Future

Kai Zheng, Johanna Westbrook, Thomas G. Kannampallil, 
and Vimla L. Patel

As evident from the discussions throughout this book, workflow plays a central role 
in ensuring smooth functioning of all clinical activities—from patient encounter to 
medication administration to population health management. Any disruption to 
workflow can result in severe, adverse consequences such as decreased time 
 efficiency and greater patient safety risks. In the recent two decades, the most sys-
temic disruption to clinical workflow across the globe is associated with the 
 widespread implementation of health IT systems, electronic health records (EHR) 
in particular.

In the EHR era, coordination of clinical workflow increasingly relies on the use 
computerized systems. However, it has been well recognized that current generation 
EHR systems “appear designed largely to automate tasks or business processes,” 
providing limited support for clinical workflow and the cognitive tasks of clinicians 
(National Research Council 2009). Disruption to workflow as a result of EHR 
implementation is thus common, which is a manifestation of a wide range of design 
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and implementation problems including poor software usability, complex intersys-
tem dependencies, and the lack of sociotechnical integration of software systems 
into their complex use environments.

Understanding the impact of health IT on clinical workflow has been a key focus 
of the research on health IT-related unintended consequences (Bloomrosen et al. 
2011; Zheng et al. 2016). In this body of the literature, there has been a general 
consensus that the top-down approach in the prevalent EHR design, which predomi-
nantly emphasizes administrative efficiency, is responsible for many of the adverse 
effects observed (National Research Council 2009). Because newly introduced 
health IT systems often fail to adequately support clinical workflow, clinicians are 
forced to develop or maintain their own workflow processes deviating from the 
‘recommended’ practice, which as a result could increase workload and introduce 
new threats to patient safety.

There have been some efforts to address this issue. For example, the U.S. Agency 
for Healthcare Research and Quality (AHRQ) funded a project to develop a toolkit 
to help small and medium-sized outpatient practices more effectively manage their 
workflow (Carayon and Karsh 2010); and subsequently launched a funding pro-
gram, “Using Health IT in Practice Redesign: Impact of Health IT on Workflow,” 
to specifically support research that studies the causal relationship between health 
IT and workflow processes (Zheng et al. 2015a; Wald et al. 2015; Carayon et al. 
2015). Further, the U.S. National Institute of Standards and Technology (NIST) 
issued a guideline in 2014 recommending the use of human factors modeling meth-
ods to better align EHR design with ambulatory care clinical workflow; and to 
move away from a billing-centered design to a patient-centered design in order to 
support better workload management and more flexible flow of patients and tasks 
(Lowry et al. 2014).

However, as several chapters in this book point out, there remain significant 
knowledge and methodological gaps in clinical workflow research. Even though 
disruption to workflow is a topic frequently discussed in the literature, very few 
studies actually measure workflow changes directly. Instead, most studies specu-
lated that workflow might have been modified because of differences observed in 
outcomes-oriented measures (e.g., improved guideline adherence and reduced 
patient safety events) (Carayon and Karsh 2010). Even among studies that have 
attempted to directly quantify health IT’s impact on workflow, many focused on 
changes in time utilization (e.g., average total time spent in direct patient care activ-
ities vs. using the computer), rather than ‘flow’ of the work (Zheng et al. 2010). This 
distinction is important because the spirit of workflow lies in the chronological 
organization of clinical tasks and the temporal (inter)dependencies among them.

In the literature that directly measures workflow, the most commonly used 
approaches are qualitative methods, such as ethnographic observations, interviews, 
and focus groups, and quantitative analysis of data collected from self-reported 
questionnaire surveys. While such approaches provide an important means for 
studying workflow and understanding the disruptive effects of health IT, they often 
fall short of measuring the magnitude of the impact; and their results are susceptible 
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to prejudices (e.g., clinicians’ negative emotions due to reluctance to change rather 
than shortcomings of health IT) and biases (e.g., cognitive heuristics, recall errors).

Quantitative studies on workflow that do not rely on self-reported data usually 
employ a pre-post observational design to assess changes in workflow. Time and 
motion is the most commonly used approach, which collects workflow data by hav-
ing human observers observe clinicians for a continuous period of time to record 
how they perform their clinical tasks (what, when, for how long) (Zheng et  al. 
2011). Compared to alternative methods (e.g., work sampling and self-reported 
questionnaires), the time and motion method is considered the most accurate way to 
quantify workflow. However, conducting time and motion studies is resource 
demanding, and their results are subject to many limitations, such as small sample 
size, observer bias, and the Hawthorne effect (when being observed, clinicians may 
demonstrate different behavior from their usual practice) (Zheng et al. 2011).

In recent years, several new methods have emerged for studying workflow using 
data automatically collected through software tools (e.g., screen capture software) or 
sensor technology such as eye tracking devices, 3D infrared laser projectors (e.g., 
Microsoft Kinect), and radio-frequency identification (RFID) (Calvitti et al. 2017; 
Kannampallil et al. 2011). These methods, collectively referred to as “computational 
ethnography,” present an automated and less obtrusive means for collecting in situ 
data reflecting real end users’ actual, unaltered behaviors in real-world settings 
(Zheng et al. 2015b). These methods have the potential to substantially reduce the 
resource requirement for conducting workflow studies while producing more granu-
lar data than what could not be captured by human observers.

Log analysis of security audits, in particular, can be a valuable solution to 
enabling large-scale workflow studies at a very low cost. In the U.S., mandated by 
Health Insurance Portability and Accountability Act (HIPAA) and the Meaningful 
Use criteria, all computerized systems in healthcare must implement security audit-
ing mechanisms for detecting malicious access to, or alteration of, protected health 
information. These security logs record each and every clinical activity and the 
associated metadata (when, by whom, the nature of the action, and the IP address or 
geocode of the device used), providing very rich information on how medical work 
is conducted. Such data are also highly structured, and can be readily analyzed to 
reveal insights into workflow through reconstruction of the spatiotemporal distribu-
tion of clinical activities. While still limited, workflow researchers have started to 
tap into this rich data resource. For example, Zheng et al. studied clinicians’ work-
flow in an EHR system using automatically recorded access logs (Zheng et  al. 
2009); and Tai-Seale et al. and Hirsch et al. used EHR audit trail logs to examine 
physician workflow and time utilization in primary care practices (Tai-Seale et al. 
2017; Hirsch et al. 2017).

In conclusion, understanding and reducing disruption to clinical workflow as a 
result of health IT implementation is of vital importance, because of its critical 
patient safety consequences and the broader concerns about inefficiency and clini-
cian burnout that may result from suboptimal workflow. To develop a systematic 
solution, it requires a collective effort from multiple stakeholders and an 

19 Clinical Workflow: The Past, Present, and Future



310

 evidence- based approach. This includes regulatory oversight, continued effort by 
the industry to improve the design of their products, and development of new, 
patient- and clinician- centered implementation models to better incorporate soft-
ware systems into clinical workflow. It should also be recognized that there does not 
exist a one- size- fits-all solution, especially considering the complexity of medical 
work and the variability across specialties and settings. More adaptable software 
designs are therefore desired, to better respond to the dynamic nature of clinical 
workflow to allow changes and deviations both during and after system adoption. In 
addition, clinicians’ knowledge of and expectation for health IT also need to be 
updated to accommodate technological interventions. Clinicians need to develop a 
more informed understanding of the new methods of medical work enabled by com-
puterized systems, and the limitations thereof, to better leverage technology in their 
clinical practice. Through this book, we hope to establish a solid foundation toward 
these goals by compiling a collection of high-quality scholarly works that seek to 
provide clarity, consistency, and reproducibility, with a shared view of clinical 
workflow and its relevance to health IT design, implementation, and evaluation. We 
also hope that the discussions presented in this book will lead to actionable, prag-
matic insights for informatics practitioners in designing, implementing, and evalu-
ating workflow changes to better accommodate the adoption and use of health IT.
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