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Preface

This book’s initial title was “Pericyte Biology: Development, Homeostasis and 
Disease.” However, due to the current great interest in this topic, we were able to 
assemble more chapters than would fit in one book, covering pericyte biology under 
distinct circumstances. Therefore, the book was subdivided into three volumes enti-
tled: Pericyte Biology-Novel Concepts; Pericyte Biology in Different Organs; and 
Pericyte Biology in Disease.

This book Pericyte Biology in Disease presents contributions by expert researchers 
and clinicians in the multidisciplinary areas of medical and biological research. The 
chapters provide timely detailed overviews of recent advances in the field. This book 
describes the major contributions of pericytes to the biology of different organs in 
physiological and pathological conditions. Further insights into the biology of peri-
cytes will have important implications for our understanding of organ development, 
homeostasis, and disease. The authors focus on the modern methodologies and the 
leading-edge concepts in the field of cell biology. In recent years, remarkable progress 
has been made in the identification and characterization of pericytes in several tissues 
using state-of-the-art techniques. These advantages facilitated the identification of 
pericyte subpopulations and definition of the molecular basis of pericytes role within 
different organs. Thus, the present book is an attempt to describe the most recent 
developments in the area of pericyte behavior, which is one of the emergent hot topics 
in the field of molecular and cellular biology today. Here, we present a selected collec-
tion of detailed chapters on what we know so far about the pericytes in various tissues 
and under distinct pathophysiological conditions. Fifteen chapters written by experts 
in the field summarize the present knowledge about the roles of pericytes in disease.

Ander Izeta and colleagues from Tecnun-University of Navarra discuss the role 
of pericytes in cutaneous wound healing. Anirudh Sattiraju and Akiva Mintz from 
Columbia University Irving Medical Center describe the multifaceted role of peri-
cytes in glioblastoma and their potential use for therapeutic interventions. Jiha Kim 
from North Dakota State University compiles our understanding of pericytes in 
breast cancer. Aaron W.  James and colleagues from Johns Hopkins University 
update us on pericytes in sarcomas and other mesenchymal tumors. Pritinder Kaur 
and colleagues from Curtin University summarize current knowledge on pericytes 
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in metastasis. Mayana Zatz and colleagues from the University of São Paulo address 
the importance of pericytes in amyotrophic lateral sclerosis. Alla B. Salmina and 
colleagues from Krasnoyarsk State Medical University focus on pericytes in 
Alzheimer’s disease. Francisco J. Rivera and colleagues from Universidad Austral 
de Chile introduce our current knowledge about pericytes in multiple sclerosis. 
Turgay Dalkara and colleagues from Hacettepe University describe pericytes role in 
ischemic stroke. Franck P.G. Lebrin and colleagues from Leiden University Medical 
Center discuss pericytes in hereditary hemorrhagic telangiectasia. Annika Keller 
and colleagues from Zurich University Hospital update us on pericytes in primary 
familial brain calcification. Katherine L. Hayes from the University of Massachusetts 
Medical School summarizes our current understanding on pericytes in type 2 diabe-
tes. Volha Summerhill and Alexander Orekhov from Skolkovo Innovative Center 
compile our knowledge on pericytes in atherosclerosis. Bushra Shammout and Jill 
R. Johnson from Aston University address the role of pericytes in chronic lung dis-
ease. Finally, Sara Benedetti and colleagues from University College London give 
an overview of pericytes in muscular dystrophies.

It is hoped that the articles published in this book will become a source of refer-
ence and inspiration for future research ideas. I would like to express my deep grati-
tude to my wife Veranika Ushakova and Mr. Murugesan Tamilsevan from Springer, 
who helped at every step of the execution of this project.

This book is dedicated to the memory of my grandfather Pavel Sobolevsky, PhD, 
a renowned mathematician, who passed away during the creation of this piece.

My grandfather Pavel Sobolevsky z”l, PhD (March 26, 1930–August 16, 2018)

New York, NY, USA Alexander Birbrair 
Belo Horizonte, MG, Brazil

Preface
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Chapter 1
Pericytes in Cutaneous Wound Healing

Shunichi Morikawa, Haizea Iribar, Araika Gutiérrez-Rivera,  
Taichi Ezaki, and Ander Izeta

Abstract Most of the studies on cutaneous wound healing are focused on epider-
mal closure. This is obviously important, as the epidermis constitutes the main bar-
rier that separates the inner organism from the environment. However, dermal 
remodeling is key to achieve long-lasting healing of the area that was originally 
wounded. In this chapter, we summarize what is known on the stromal components 
that strongly influence the outcome of healing and postulate that dedifferentiation of 
stably differentiated cells plays a major role in the initial response to wounding, as 
well as in long-term wound remodeling. Specifically, we explore the available evi-
dence implicating skin pericytes, endothelial cells, Schwann cells, and macrophages 
as major players in a complex symphony of cellular plasticity and signaling events 
whose balance will promote healing (by tissue regeneration or repair) or fibrosis.

Keywords Pericytes · Schwann cell precursors · Dermis · Dedifferentiation 
Remodeling · Regeneration · Scar · Revascularization · Reinnervation 
Macrophages · Wound healing · Injury response · Reprogramming · Neural crest 
Boundary cap
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Shunichi Morikawa and Haizea Iribar contributed equally to 
this work.

 Introduction

Pericytes constitute a heterogeneous group of cells, somewhat loosely defined by 
their perivascular location, as the mural cells of blood microvessels (Armulik et al. 
2011). For this reason, the literature has to be carefully revised and different terms 
of search must be used to grasp the vast knowledge accumulated on their putative 
roles in tissue repair and fibrosis. To increase the confounding factors, adult cells 
may dedifferentiate and transdifferentiate in response to wounding as well as in 
response to tissue disaggregation and cell isolation, and the boundaries between so- 
called terminally differentiated cell populations blur. The consensus in the field is 
that pericytes are highly plastic cells (Birbrair et al. 2017). As a result, if we could 
sample a wound and look at the continuum of cells active at the wound bed, virtu-
ally at any time we would encounter a number of cells that may represent intermedi-
ate states among cell type A and cell type B, apart from myriad cell types that 
infiltrate the wound, replicate, or die. This complex picture must be carefully delin-
eated. In this chapter, we aim to dissect the role of pericyte fate and plasticity in 
wound closure and remodeling. To this end, we discuss the different aspects of 
vascular formation, peripheral innervation, and role of macrophages in cutaneous 
wound healing and thus we explore the available evidence implicating pericytes, 
endothelial cells, Schwann cells, and macrophages as the major players in promot-
ing wound healing or fibrosis.

 Vascular Formation in Wound Healing

 The Circulatory System in the Skin

The blood supply to the skin stems from arteries in the subcutis layer. Branches 
from these arteries run upwards to form two plexuses of anastomosing vessels, one 
sitting deep in the dermis (the cutaneous plexus) and the other more superficial (the 
subpapillary plexus) (Braverman 2000; Young et al. 2014). The venous and lym-
phatic drainages run parallel to the arterial supply (Fig. 1.1).

The deep cutaneous plexus or rete cutaneous (Sorrell and Caplan 2004) sits at 
the junction between the dermis and hypodermis. It supplies blood to the dermal fat 
layer as well as the reticular dermis and epidermal appendages (hair follicles, seba-
ceous and sweat glands). The superficial subpapillary plexus or rete subpapillare 
lies just beneath the dermal papillae, and supplies the capillaries in the dermal 
papillae.

S. Morikawa et al.
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Fig. 1.1 The skin circulation system. The arteries supplying the skin are located deep in the sub-
cutis, from which they give rise to branches passing upwards to form two plexuses of anastomos-
ing vessels. The deeper plexus lies at the junction of the subcutis and dermis and is known as the 
cutaneous plexus; the more superficial plexus lies at the junction between papillary and reticular 
dermis and is known as the subpapillary or superficial plexus. The venous drainage of the skin is 
arranged into plexuses broadly corresponding to the arterial supply. The skin has a rich lymphatic 
drainage which forms plexuses corresponding to those of the blood vascular system. Reprinted 
from Young et al. (2014) with permission

Fig. 1.2 Vascularization of hair follicles. Parallel, longitudinally oriented vessels extend from the 
base of the bulb to the pilary canal. (a) Numerous capillary networks around eyebrow hair follicles 
demonstrated with alkaline phosphatase. (b) A tuft of blood vessels inside the dermal papilla of an 
eyebrow follicle demonstrated with the alkaline phosphatase technique. Reprinted from Montagna 
and Parakkal (1974) with permission

1 Pericytes in Cutaneous Wound Healing
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The hair follicle is a deeply vascularized organ (Montagna and Parakkal 1974), 
most abundantly so in the lower portion of the follicle (Fig. 1.2). Of special interest 
for this chapter, the dermal stem cells of the hair follicle dermal papilla are also in 
intimate connection with capillaries (Fig. 1.2b), a fact that has been grossly over-
looked by the literature on the subject, with some notable exceptions (Hordinsky 
et al. 1999).

Moreover, the hair follicle stem cells sitting in and around the bulge also associ-
ate with a venule that circumvents the follicle, and upper bulge stem cells express 
the proangiogenic factor Egfl6 (Xiao et al. 2013).

 Significance of Vascular Formation in Wound Healing

Formation of new blood vessels is of fundamental importance throughout human 
life. In the embryonic period, it occurs from very early stage because the circulatory 
system is the first organ system to develop in vertebrates, and after birth it is nor-
mally seen in physiological processes such as ovarian or uterine cycles. On the other 
side, it is well known that pathological vascular formation is closely related to tumor 
progression and metastasis, or at the onset of diabetic retinopathy.

In wound healing, the newly formed blood vessels efficiently and rapidly supply 
all over the wounded site various factors needed for repair, such as oxygen, nutri-
ents, cytokines, inflammatory cells, and matrix molecules (Eming et  al. 2007a; 
Johnson and Wilgus 2014; Polverini 2011). Elucidating the detailed mechanism of 
vascular formation during wound healing is meaningful not only for vascular biol-
ogy, but also for the therapeutic perspective in developing strategies to cope with 
impaired wound healing caused by poor vascular formation seen in diabetes or 
peripheral vascular diseases (Eming et  al. 2007a; Johnson and Wilgus 2014; 
Polverini 2011; King et al. 2014).

In this section we review general mechanisms of vascular morphogenesis, dis-
cuss the relationship of the different vessel formation modes to wound healing, and 
finally re-evaluate the functional roles of pericytes during vascular formation in 
wound healing that has been once energetically investigated but is almost disre-
garded at present time.

 Vasculogenesis and Angiogenesis

Blood vessel formation usually occurs through two different processes, namely, 
vasculogenesis and angiogenesis. Vasculogenesis, a term coined by Risau and col-
leagues in 1988, refers to the primal, de novo formation of blood vessels (Drake 
2003; Risau et al. 1988), whereas angiogenesis (a name first proposed by Hertig in 
1935) means the growth of secondary blood vessels from preexisting vasculature 
(Fig. 1.3; Conway et al. 2001).

S. Morikawa et al.
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During embryonic development, endothelial progenitor cells (EPCs) differenti-
ate to endothelial cells (ECs) and assemble to form a primitive blood vessel net-
work. This process is called vasculogenesis. Then, angiogenesis occurs and ECs of 
the primary vessel network proliferate and remodel to produce secondary blood 
vessels growing from the primary network. Through these serial events, the vessel 
network becomes denser and expanded. Thus, in development, vasculogenesis and 
angiogenesis work together in a coordinated manner.

On the other hand, because the basic body vasculature is already completed in 
adulthood, it was once considered that EPCs are absent from adult individuals. 
Upon injury, blood vessels were thought to remodel by using preexisting ECs of the 
vasculature (Drake 2003; Balaji et al. 2013). Thus, vasculogenesis by EPCs was 
thought to be confined to developmental stages and angiogenesis by ECs to be 
occurring after birth. However, we now know that EPCs are preserved after birth, 
and that they retain the potential to generate new blood vessels (Asahara et al. 1997; 
Shi et al. 1994). We now define the neovascularization performed by EPCs in the 
adulthood as postnatal vasculogenesis (PV: Drake 2003; Ribatti et al. 2001).

PV is involved in various scenarios of vascular formation, such as in female 
reproductive organs, ischemic tissues, tumors, and wound healing situations 
(Asahara et al. 1999; Bauer et al. 2005; Velazquez 2007).

 Types of Postnatal Vascular Formation and Their Implication 
in Wound Healing

Angiogenesis is classified into two major subtypes according to the mechanism of 
producing new blood vessels, namely, sprouting angiogenesis (SA) and intussus-
ceptive angiogenesis (IA). In this section, we review the two types of angiogenesis 
as well as postnatal vasculogenesis, and discuss their relevance to wound healing.

Fig. 1.3 Vasculogenesis and angiogenesis. In embryonic period, blood vessels are formed de novo 
by vasculogenesis. In the process of vasculogenesis, endothelial precursor cells (EPCs) of angio-
blasts and hemangioblasts that emerge from mesenchyme differentiate into endothelial cells (ECs) 
to create primary blood vessels with luminal surface. Then, angiogenesis occurs in primary vessels 
and ECs further start to grow to expand the vessel network

1 Pericytes in Cutaneous Wound Healing



6

In addition, two other mechanisms of vascular formation have been reported. 
They are called “vessel co-option” and “vascular mimicry.” However, they are 
observed almost exclusively in tumor angiogenesis, and we do not dig deeper into 
their detailed mechanism here. Briefly, in vessel co-option, tumor cells gain blood 
supply by hijacking the normal blood vessels in the close vicinity, and the co-opted 
vessels are gradually modified to become abnormally impaired vessels, characteris-
tic to tumor vasculature (Ziyad and Iruela-Arispe 2011). Meanwhile, vascular mim-
icry literally refers the lining of tumor cells on vessel luminal surface. Tumor cells 
“mimic” ECs and create their own channels for blood supply (Dunleavey and 
Dudley 2012).

 Sprouting Angiogenesis

Sprouting angiogenesis (SA) was identified fairly long time ago and has been 
eagerly studied by many researchers, for some time being regarded as almost the 
only mechanism to produce new blood vessels (De Spiegelaere et al. 2012).

Mechanistically, the process of SA is usually explained by enzymatic degrada-
tion of the vascular basement membrane (BM) followed by detachment of perivas-
cular cells from the blood vessel wall and, finally, “sprouting” of activated ECs 
(Ausprunk and Folkman 1977; Herbert and Stainier 2011; Ribatti and Crivellato 
2012; Rundhaug 2005).

More recently, a novel model of vascular EC sprout conformation has been intro-
duced and is accumulating increasing attention (Fig. 1.4). The model illustrates that 
vascular EC sprouts are composed of specialized ECs called “tip cell” and “stalk 
cell” (Blancas et al. 2013; De Smet et al. 2009; Gerhardt et al. 2003): Tip cells are 
located at the forefront of endothelial sprouting and characterized by numerous fine 
threadlike cytoplasmic processes (filopodia), while stalk cells are located behind tip 
cells. Tip cells can perceive the gradient of various angiogenic factors including 
vascular endothelial growth factor (VEGF) by using filopodia, and are considered to 
guide the vessel growth. In contrast to tip cells that hardly proliferate, stalk cells are 
identified as frequently dividing cells and are considered to extend the length of 
growing EC sprouts. Molecular mechanisms of the tip and stalk cell model are well 
studied and the various signaling pathways that regulate it have gradually become 
clear. For example, the differentiation of ECs into tip or stalk cells is firmly con-
trolled via local Notch/Dll4 signaling (De Smet et al. 2009).

 Relevance of Sprouting Angiogenesis to Skin Wound Healing

SA has been found in various scenarios of tissue repair, including cutaneous wound 
healing (Amselgruber et al. 1999; Cliff 1963; Morikawa and Ezaki 2011). Especially 
in skin wound healing, SA is reported to work as the main mechanism of vascular 
formation surpassing other types (Cliff 1963; Morikawa and Ezaki 2011; Kilicaslan 
et al. 2013; Paku et al. 2011). More recently, Chong et al. identified what they called 
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“tortuous microvessels” at the wound bed, with aberrant cell shapes, increased per-
meability, and altered flow dynamics (Chong et al. 2017). This novel type of tran-
sient wound vessel was reported to sprout more often than standard capillaries.

Importantly, we propose that the mechanism underlying the SA that occurs in 
skin wound healing diverges from the current tip-stalk cell model. This possibility 
is further elaborated below.

 Intussusceptive Angiogenesis

Intussusceptive angiogenesis (IA) is another type of angiogenesis that has been rec-
ognized much more recently than SA (Djonov et al. 2003). Similar to SA, and under 
the basic control of the VEGF signal, IA occurs in a wide variety of normal and 
pathological vascular formation scenarios, including prenatal development, ovarian 
cycle, tumors, etc. Some studies suggest that IA predominantly works during devel-
opment (Djonov et al. 2003; Kurz et al. 2003).

Mechanistically, IA occurs by longitudinal splitting of the vascular lumen, result-
ing in the increase of blood vessel number (Fig. 1.5). The process of IA starts from 
the insertion of the connective tissue column, the so-called transluminal connective 

Fig. 1.4 Sprouting angiogenesis: Tip-stalk cell model. Sprouting angiogenesis (SA) is a manner 
of angiogenesis in which ECs are literally “sprout up” or “bud” from preexisting vessel wall. EC 
located at the forefront of vascular sprout is called “tip cell” that can sense the angiogenic signals 
by their numerous long filopodia similar to those seen in axonal growth cones, and navigate vessel 
growth. Located just behind the tip cell is “stalk cell”, another important EC population that con-
stitutes vascular sprouts. Different from tip cells that hardly proliferate, stalk cells show highly 
proliferative potential and thus have a function to physically extend the growing sprouts. Tip and 
stalk cells are devoid of vascular basement membrane (BM), and pericyte (PC) covering

1 Pericytes in Cutaneous Wound Healing
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tissue pillar, into a vessel, which then completely splits the vessel into two, to form 
two daughter vessels (“pillar first IA”: Fig. 1.5a, Djonov et al. 2003). However, a 
variant process of IA has been found in which intraluminal protrusion of EC occurs 
in the first place, then, once the “bridging” of intraluminal EC protrusion is formed, 
connective tissue pillar actually divides the vessel (Fig. 1.5b; “bridging first IA,” 
Paku et al. 2011; Egginton et al. 2001).

In contrast to SA that usually involves EC proliferation, IA does not necessarily 
need EC proliferation but rather increased EC size and flattened shape (Egginton 
et al. 2001; Styp-Rekowska et al. 2011), and consequently it enables a lower meta-
bolic cost than SA (Djonov et al. 2003) and a prompt increase in blood supply.

 Relevance of Intussusceptive Angiogenesis to Skin Wound Healing

Although IA has been identified in various scenarios of tissue repair (Kilicaslan 
et al. 2013; Frontczak-Baniewicz and Walski 2002; Patan et al. 2001), in skin wound 
healing new blood vessels are likely formed by SA. In contrast, IA is rarely found 
during skin wound healing, although its relative abundance may increase at the later 
stages of healing (Kilicaslan et  al. 2013; S.M., personal observation). Kilicaslan 
et al. (2013) reported that in day-5 skin wounds, SA was observed five times as 
abundantly as IA, while in day 7 SA was observed only threefold increased as 

Fig. 1.5 Intussusceptive angiogenesis. Intussusceptive angiogenesis (IA) is another manner of 
angiogenesis in which a vessel is longitudinally split into two vessels. IA is further classified into 
two types, namely, “pillar first IA” (a) and “bridging first IA” (b). In pillar first type, connective 
tissue pillar is formed at first, and then the pillar is inserted to vessels to split them (arrows). On the 
other hand, in bridging first type, ECs first extend cytoplasmic processes intraluminally to split the 
lumen first (EC bridging; arrows), and then connective tissue pillar is formed to finally separate the 
vessels
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compared to IA. Further, between the two types of IA, bridging first IA is liable to 
occur in skin wound healing (Kilicaslan et al. 2013; S.M., personal observation).

SA is invasive, and from the earlier stages of tissue repair ECs can break into 
immature avascular area where fibrin is still rich and collagen is poor. In contrast, 
IA, particularly pillar first type IA, needs extensive connective tissue synthesis to 
form tissue pillar before vascular formation (Paku et al. 2011). Although in several 
aspects it may be considered advantageous to using SA, IA might not be suitable for 
initial vascular formation at the earlier stages of wound healing, where migration 
and accumulation of collagen-producing fibroblasts have just started.

Intriguingly, Kilicaslan and colleagues reported that IA could be induced in skin 
wound healing by EGF treatment. Occurrence of IA increased from about 20% to 
50% on day 5 after treatment, and on day 7 the percentage even slightly exceeded 
the occurrence of SA. Although the detailed mechanism of how EGF enhances the 
occurrence of IA should be further clarified, the information provided by the work 
may be of great importance from a therapeutic point of view (Kilicaslan et al. 2013).

 Postnatal Vasculogenesis

EPCs are generally classified into two populations, namely, bone marrow-derived 
EPCs and tissue-resident EPCs.

A population of bone marrow-derived circulating mononuclear cells serve as 
EPCs in adulthood, and work in PV (Nishimura and Asahara 2005). Currently, 
EPCs isolated from blood are classified into two groups according to the time 
needed for culturing them. So-called early EPCs make colonies within several days 
of culture and “late EPCs” take several weeks to make colonies. Early EPCs have a 
limited capacity of proliferation, whereas late EPCs show vigorous proliferative 
nature and have an alternate name as “outgrowth cell” (Marcola and Rodrigues 
2015; Tagawa et al. 2015). Bone marrow-derived EPCs have been defined by posi-
tivity for CD34, CD133, and VEGFR2 membrane markers, as well as Ulex euro-
paeus lectin binding and LDL uptake. However it is also suggested that outgrowth 
cells are not derived from CD133+ cells (Timmermans 2007), opening up the pos-
sibility of these being two independent cell subpopulations.

Between the two EPC subpopulations, outgrowth cells are thought to actually 
become ECs (Marcola and Rodrigues 2015; Adams and Alitalo 2007; Rehman et al. 
2003) (Fig.  1.6). Outgrowth cells incorporate into EC lining of blood vessels to 
circumferentially enlarge vessels (Fig. 1.6a), or may alternatively be recruited at the 
forefront of the vascular sprouting to carry on further vessel growth (Fig. 1.6b).

In contrast, it is suggested that early EPCs, the other EPC subpopulation, do not 
differentiate into ECs and are retained in the perivascular space, where they are 
thought to produce angiogenic factors and support vessel growth and thus they are 
called by the alternative name “angiogenic cells” (Fig. 1.6c). These perivascular 
angiogenic cells are reported to have monocytic phenotype. Roles of macrophages 
in vascular formation are discussed in detail in other sections of the chapter.

1 Pericytes in Cutaneous Wound Healing
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Apart from the aforementioned bone marrow-derived circulating EPCs, several 
studies suggest the existence of EPCs that reside in local tissues. For example, peri-
cytes (PCs) qualify among the candidates for tissue-resident EPCs. Some PC popu-
lations isolated from vasa vasorum of murine femoral artery may have a potential to 
differentiate into ECs (Kabara et al. 2014). The authors observed that the isolated 
PCs (multipotent PCs; mPCs) formed tubular structures in culture in response to 
VEGF, and after the subsequent incubation with VEGF followed by TGF beta the 
cellular structures differentiated into blood vessel-like tubular structures lined of 
CD31+ ECs in the luminal surface and covered by αSMA+ PCs.

Finally, other authors have suggested that in PV during skin wound healing, 
newly formed ECs arise from Nestin-expressing dermal stem cells of the hair folli-
cle bulge area (Aki et al. 2010; Amoh et al. 2005). Of note, many details are still 
open to question regarding these candidates for tissue-resident EPCs, and therefore 
we encourage careful verification of the literature on this subject.

Fig. 1.6 Postnatal vasculogenesis. Endothelial progenitor cells (EPCs) are involved in vascular 
formation even after birth. They are thought to exist in bone marrow-forming niches. They are also 
considered to reside in local tissues. Among EPCs that come from bone marrow to the site of vas-
cular formation via blood stream, so-called outgrowth cells can be incorporated into EC lining to 
increase the surface area of vessels (a), or move to the forefront of vascular sprouts to further 
extend the vessels (b). EPCs located at the forefront of the sprouts are supposedly devoid of vas-
cular BM. Meanwhile, another population of EPCs called “angiogenic cells” come out from the 
vessel wall and stay at perivascular space (c), and produce angiogenic factors to support vessel 
growth
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 Relevance of Postnatal Vasculogenesis to Skin Wound Healing

It has been well documented that PV plays an important role during skin wound 
healing (Asahara et al. 1999). In our opinion, SA is likely the main mechanism of 
vascular formation in skin wound healing, and it is very possible that a substantial 
part of ECs located at the forefront of vascular sprouts in the process of SA is 
derived not from preexisting ECs but from EPCs.

In wound healing, local hypoxia after the trauma is thought to start the PV pro-
cess, and after that various factors such as VEGF and basic FGF are suggested to be 
involved in mobilizing EPCs from the bone marrow to the wound sites via circula-
tion (King et al. 2014). Among the known signals to stimulate migration of EPCs 
from their niches into blood circulation, upregulation of NO levels mediated by 
endothelial nitric oxide synthase (eNOS) of marrow vessels is critical (Gallagher 
et al. 2007; Lee et al. 1999). Of note, eNOS function is impaired in diabetic condi-
tions such as hyperglycemia or insulin resistance. Focusing on eNOS function is 
thus critical to fully elucidate the mechanism of poor PV in diabetes, which results 
in delayed wound healing.

 Is the Tip-Stalk Cell Model Applicable to All Vascular 
Formation?

The studies on the tip-stalk cell model represent high-quality data and the model is 
widely accepted. For these reasons, we see an increasing momentum to apply this 
basic concept to clinically related studies such as tumor angiogenesis (Dufraine 
et al. 2008).

However, there is a significant fact that we must not overlook: the observation of 
tip cells that locate at the leading front of EC sprouting and guide the vascular 
growth by using filopodia is confined to a few situations, namely, (i) to prenatal 
developmental processes, (ii) when focusing on adult mammal neovascularization 
to developing central nervous system (CNS; including developing retinas), and (iii) 
to some in vitro studies (Hetheridge et al. 2012). To our knowledge, filopodial tip 
cell was only observed after birth in studies on vascular formation during experi-
mental tumor progression, in which CNS tumor cells (C6 glioma) were implanted.

These facts led us to come up with the following questions: Is the current tip- 
stalk cell model applicable to all types of neovascularization? Alternatively, is the 
model unique to prenatal development?

1 Pericytes in Cutaneous Wound Healing
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 Vascular Formation in Prenatal Development

In development, the location and timing of vascular formation are tightly controlled. 
Blood vessels are formed de novo together with surrounding tissue in a settled man-
ner that is spatially and temporally reproducible. In contrast, neovascularization in 
postnatal life (i.e., in wound healing or tumor growth) is promoted by unpredictable, 
nongenetically programmed local factors (such as hypoxia, proinflammatory sub-
stances) and occurs within fully differentiated tissues (Kilarski and Gerwins 2009).

Further, it is known that nerves and blood vessels grow in a coordinated manner 
during development (Carmeliet and Tessier-Lavigne 2005). Vessels can attract 
axons to track alongside by specific signaling molecules such as artemin and neuro-
trophin 3 (Gerhardt et al. 2003). On the other direction, nerves (and Schwann cells) 
can affect vessel growth by producing VEGF (Mukouyama et al. 2002). Interestingly, 
the endothelial tip cell that presents numerous filopodia closely resembles the axo-
nal growth cone that also has numerous filopodia. They are similar not only in their 
morphology but also functionally, and common signaling molecules are expressed 
on their filopodia. Thus in development, blood vessels and nerves grow in keeping 
a special relationship with each other, but after birth, especially in regeneration, they 
might not necessarily behave in the same manner.

Coincidentally, when vascular sprouts in postnatal vascularization accompanied 
by retinopathy induced by experimental hypoxia were closely observed, typical filo-
podia were hardly detectable on the tip cells of the sprouts (Chan-Ling et al. 2004).

In summary, we should acknowledge the possibility that vascular formation is 
regulated by different mechanisms between development and postnatal life.

 Peculiarity of the CNS Vasculature

In addition, we should also note that the vascular system of CNS is quite unique in 
comparison to the majority of the other tissues in the body. In CNS, neurons and glia 
are packed together and form a very compact structure containing fewer connective 
tissues than other organs. Especially, at the capillary level, ECs lose connective tis-
sue with the sole exception of basement membrane, and form the blood–brain bar-
rier (BBB) to strictly control the passage of substances from the bloodstream to 
neurons, together with astrocytes and pericytes (Abbott et al. 2010). In the retina, 
ECs also form a similar structure as the BBB, called (inner) blood–retinal barrier 
(BRB), together with Muller cells and pericytes (Campbell and Humphries 2011).

Outside the CNS, and specifically in the skin, capillaries do not form a structure 
like BBB or BRB, and run within much wider connective tissue space, which con-
tains a variety of cells (i.e., fibroblasts, macrophages, Schwann cells) that are 
 different from those that constitute the BBB/BRB. As reviewed in other sections, 
these cells take part in significant molecular pathways for tissue repair and 
regeneration.

In CNS development, it is suggested that a network made by astrocytes functions 
as a template for blood vessel network formation. Blood vessels grow and develop 
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into networks along with the astrocyte template, while astrocytes produce mole-
cules such as VEGF and ECM, and support vessel growth (Gerhardt et al. 2003; 
Watanabe and Raff 1988; West et al. 2005).

In the tissue outside CNS where astrocytes are lacking, we need to determine 
which cell populations serve a similar role as astrocytes undertake in the CNS 
vasculature.

 Characteristics of the Vascular EC Sprouts in Postnatal Vascular 
Formation

Through the re-examination of past studies in the last 50 years, we eventually con-
cluded that the vascular formation by tip-stalk cell mechanism is hardly seen in 
postnatal vascular formation. Meanwhile, we analyzed the differential features of 
vascular EC sprouts in postnatal vascular formation.

In the following sections, we compare the differences between the tip-stalk cell 
model and postnatal vascular sprouts. We then propose a re-evaluation of the current 
ideas about how postnatal vascular formation occurs.

 Absence of Filopodia on the Leading EC

In comparison to tip cells that are characterized by numerous and long filopodia, 
ECs at the forefront of the sprouts in postnatal vessel formation usually lack them. 
In some cases, tiny cytoplasmic protrusions are detected in forefront ECs at the 
ultrastructural level (Haas et al. 2000; Rhodin and Fujita 1989), but typical filopodia 
of tip cells that are clearly identifiable even at the light microscopic level cannot be 
seen at the forefront ECs of sprouts in postnatal vascular formation. For tip cells that 
are specialized to guide the sprout growth, numerous long filopodia might be impor-
tant to receive angiogenic signals effectively. Meanwhile, in postnatal EC sprouts, 
pericytes are usually found attaching to leading ECs. These PC-like cells are con-
sidered to guide the sprout growth instead of leading ECs here, suggesting that 
leading ECs do not have to develop specialized filopodial structure.

 Morphology of Vascular EC Sprouts Found in Postnatal Vascular 
Formation

In addition to lacking filopodia on the leading EC, postnatal vascular sprouts have 
other unique morphological features (Fig.  1.7). In addition to the differences in 
length that reflect the consecutive growing stages, EC sprouts are morphologically 
classified into two groups according to the shape of leading ECs, as “pointed end” 
(Fig. 1.7a1, b1) and “blunt” type (Fig. 1.7a2, a3, b2–b4). These two types can be 
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found both in the short sprouts at the initial phase (Fig. 1.7a1–a3) and in longer 
sprouts of further growing-phase stage (Fig. 1.7b1–b4). The different morphology 
of leading ECs is thought to reflect the transitional physiological states of EC move-
ment, namely, pointed-end sprouts are in relation to rapid migration of leading EC, 
whereas blunt sprouts are seen in slow migration (Rhodin and Fujita 1989).

In both pointed-end and blunt types, short sprouts as those illustrated in 
Fig. 1.7a1–a3 are often found as a cytoplasmic projection of a cell (Amselgruber 
et al. 1999; Morikawa and Ezaki 2011; Rhodin and Fujita 1989) or a protrusion of 
a whole-cell body (Morikawa and Ezaki 2011). Some short sprouts are composed of 
two ECs that make inter-endothelial junctions between each other, but a vascular 
lumen is not formed (Fig. 1.7a3; Cavallo et al. 1973), or show only slit-like imma-
ture lumen (Spanel-Borowski et  al. 1987). Meanwhile, long sprouts of both the 
pointed-end (Fig. 1.7b1) and blunt types (Fig. 1.7b2–b4) are usually composed of 
multiple ECs and have a fully formed lumen behind the leading ECs (Cliff 1963; 
Morikawa and Ezaki 2011; Rhodin and Fujita 1989; Schoefl 1963). Among blunt 
sprouts, the ones in which the leading EC is very flattened are sometimes referred to 
as “saccular sprout” (Fig. 1.7b4) (Cliff 1963; Rhodin and Fujita 1989; Baluk et al. 
2003). The significance of this morphology is uncertain but it may indicate a differ-
ent physiological state of ECs.

Notably, in skin wound healing, sprouts made by a single EC in which the EC 
cell body becomes large and unusually elongated are found approaching another 

Fig. 1.7 Morphology of vascular EC sprouts found in postnatal vascular formation. Vascular 
sprouts of various lengths are found in postnatal vascular formation. Short sprouts (a) are thought 
to reflect the initial phase of sprouting, whereas long sprouts (b) reflect the further growing phase. 
Both short and long sprouts are basically classified into two types according to the shape of leading 
ECs, as “pointed end” (a1, b1) and “blunt” type (a2, a3, b2–b4). Different morphology of leading 
ECs is suggested to reflect the transitional physiological states of EC. In both types, short sprouts 
are composed of either the cytoplasmic projection of a cell (a1, a3) or a protrusion of a whole-cell 
body (a2). Some short sprouts are composed of two ECs making inter-endothelial junctions each 
other but have no lumen yet (a3). Both pointed-end and blunt long sprouts are basically composed 
of multiple ECs and have a lumen behind the leading ECs (b1, b3, b4), though some long blunt 
sprouts especially found in skin wound healing are composed of unusually elongated single ECs 
that bridge one vessel with another (b2). Considering their composition such as singular EC and 
lacking lumen, the types of long sprouts should be still in the initial phase of sprouting. Some long 
blunt sprouts in which leading EC is very flattened are alternatively referred to as “saccular sprout,” 
which may also reflect the different physiological states of ECs
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vessel, presumably for bridging (Fig. 1.7b2) (Morikawa and Ezaki 2011). This type 
of long sprouts are possibly in an initial phase of growth as they are composed of a 
single EC and have no luminal surface. In tumor angiogenesis, vascular sprouts may 
progress without EC proliferation at the initial stage (Ausprunk and Folkman 1977). 
Omitting EC proliferation is desirable because it enables prompt sprout progression 
at a lower metabolic cost. In wound healing, elongation of the leading EC might 
also be employed for that purpose.

 Proliferation Potential of Leading ECs

In the tip-stalk cell model, filopodial tip cells sense the angiogenic stimuli and guide 
sprout growth, whereas stalk cells located just behind the tip cell have another sig-
nificant function to proliferate and increase the number of EC to physically extend 
the sprouts (Gerhardt et al. 2003). Tip cells are specialized for vessel guidance and 
not involved in sprout extension, and are known to hardly proliferate. However, in 
postnatal vascular sprouts, the proliferation potential of leading ECs has been 
observed in studies by using electron microscopy (Rhodin and Fujita 1989), autora-
diography combined with electron microscopy (Cavallo et  al. 1973), and BrdU 
incorporation (Morikawa and Ezaki 2011). Moreover, mitotic figures of the leading 
EC have been directly captured at the ultrastructural level (Morikawa and Ezaki 
2011; Cavallo et al. 1973). Therefore, the functional role assigned to leading ECs 
might be different between developmental and postnatal vascular sprouts, or 
between sprouts found in CNS and other peripheral tissues.

 Association of Pericytes with Leading ECs

The most striking difference between postnatal vascular sprouts and the tip-stalk 
cell model is the guiding structure. As aforementioned in previous sections, in the 
tip-stalk cell model, tip cells themselves guide the sprouts by sensing the angiogenic 
stimuli by using filopodia. On the other hand, in postnatal vascular sprouts, pericytic 
non-EC stromal cells are almost always found in association with leading ECs. Here 
they might have significant roles to promote sprout growth by providing guidance 
of sprouts and inducting EC proliferation. One of the key factors in promoting this 
seems to be MFG-E8 (Motegi and Ishikawa 2017; Uchiyama et al. 2014).

In the next section, we review and re-evaluate the concept of PC-driven vascular 
formation by quickly looking back at the history of studies dedicated to this 
subject.

1 Pericytes in Cutaneous Wound Healing
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 Re-evaluation of Pericyte-Driven Postnatal Vascular Formation

The concept of PC-driven vascular formation has been proposed many times in the 
past in different settings (Amselgruber et  al. 1999; Morikawa and Ezaki 2011; 
Rhodin and Fujita 1989; Baluk et al. 2003; Morikawa et al. 2002; Nehls et al. 1992; 
Nehls and Drenckhahn 1993; Virgintino et al. 2007). Because it was originally pos-
tulated in the process of SA and it is more likely that SA is the main mechanism of 
vascular formation in skin wound healing, here we first review the possible func-
tional roles of PCs in SA (see also the summary in Fig. 1.8).

 Pericyte-Driven Sprouting Angiogenesis

Rhodin and Fujita (1989) carefully analyzed the process of postnatal SA in the rat 
mesentery, by combining the intravital and transmission microscopy techniques. In 
their study, they observed that stromal fibroblasts were associated with the leading 
ECs of vascular sprouts, and guided the growth of vessels. They also observed that 

Fig. 1.8 Pericyte-driven angiogenesis. A number of studies suggest that PCs guide SA during 
vascular formation of postnatal life. PC precursors without vascular BM coating are found closely 
associating with ECs located at the forefront of vascular sprouts (a). The leading ECs are often 
proliferating. Because these PC precursors produce VEGF, they can induce EC proliferation and 
promote their migration (black arrow). Some PC precursors were found to be associating with the 
cytoplasmic process of ECs projected toward stromal space, suggesting the scene of initial phase 
of vascular sprouting (b). Note that the leading EC in (a) and the cytoplasmic projection of EC (b) 
are devoid of vascular BM. Sometimes PCs partially covered by vascular BM are seen. They are 
thought to be in the later stage of angiogenesis and are in the middle of differentiating from precur-
sors to actual “pericytes”
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the fibroblasts (that usually lack vascular BM) were gradually covered by the vascu-
lar BM of newly formed vessels and eventually became PCs.

Successively, Nehls et al. (1992) found in the rat mesentery that the fibroblasts 
that guided the EC sprouting were positive for the PC marker desmin. Because 
microvascular PCs usually integrate within the vascular BM of the blood vessels in 
the resting state (intramural position; Ashton and de Oliveira 1966), stromal fibro-
blasts positive for desmin are thus considered “extramural PCs” differentiated from 
stromal PC precursors. PC precursors associated with ECs located at the forefront 
of vascular sprouts have later been detected with other PC markers, such as 
PDGFRβ, NG2 proteoglycan, endosialin, and αSMA (Morikawa and Ezaki 2011; 
Virgintino et al. 2007; Ozerdem and Stallcup 2003).

 Pericyte-Driven Sprouting Angiogenesis in Skin Wound Healing

In the context of skin wound healing, PC precursors expressing VEGF associate 
with the dividing ECs located at the forefront of vascular sprouts (Morikawa and 
Ezaki 2011). These PC precursors thus induce EC proliferation and guide sprout 
growth during vascularization. It has been well documented that VEGF can induce 
EC proliferation and migration. Intriguingly, in skin wounds, unusually elongated 
ECs are seen proceeding from a vessel toward another vessel, presumably for vas-
cular bridging (illustrated in Fig. 1.7b2), and they are surrounded by PCs at their 
leading tips (Morikawa and Ezaki 2011). VEGF expressing PCs might therefore 
facilitate EC elongation. VEGF production by PCs has also been observed in other 
vascular formation settings (Darland et al. 2003; Redmer et al. 2001; Reynolds and 
Redmer 1998). At the later stages of SA, PCs are thought to deactivate and function 
as stabilizers of the newly formed vessel wall, by stopping EC proliferation and 
migration and by vascular BM production as well. It is suggested that VEGF expres-
sion is lost in PCs that are shifted to this “static state” (Morikawa and Ezaki 2011) 
and, in turn, the potential of producing vascular BM components such as laminin or 
type IV collagen by PCs is turned on (Jeon et al. 1996).

In the currently accepted theoretical model of SA, PCs first disappear from the 
vessel wall and EC sprouting then starts. Later, the PCs return to the newly formed 
vessel wall to stabilize it. Therefore, the only functional role attributed to PCs is that 
of vessel maturation at the later stages of vessel formation. However, as it is well 
reflected in their transitional marker expression, their functional roles could be dif-
ferent according to the stages of vessel formation. During the process of differentia-
tion from precursors to actual PCs, they may shift their functional roles in accordance 
with the stages of vascular formation. Our proposal is that pericytes promote EC 
proliferation and migration at the early stage of vascular formation, but in turn they 
promote the stabilization of newly formed vessel wall at the later stage. Therefore 
we advocate for a re-evaluation of the PC-driven sprouting angiogenesis, especially 
in the skin wound healing context. The basic concepts of PC-driven SA hypothesis 
that we here propose are summarized in Fig. 1.8.
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The idea that apart from dividing from preexisting PC populations (Diaz-Flores 
et al. 2009), a fraction of PCs arising from stem cells during vessel formation is not 
original. This has been suggested by a number of past studies (Rhodin and Fujita 
1989; Nehls et al. 1992; Nehls and Drenckhahn 1993; Crocker et al. 1970; Nakayasu 
1988; Sims 1986), including one in the context of new vessel formation in skin 
wound healing (Sasaki et al. 2008). Some authors suggested that they are originated 
from circulating fibrocytes (Xueyong et al. 2008). The possible origins of PC pre-
cursors are discussed in detail in other sections of this chapter.

 Pericyte-Driven Vascular Formation Other than Sprouting Angiogenesis

PCs may also play significant roles in the promotion of other types of vascular for-
mation than SA. In IA (both of pillar first and bridging first types), PCs and/or their 
precursors are supposed to play a role in connective tissue pillar synthesis by ECM 
production (Egginton et al. 2001; Burri and Djonov 2002; Makanya et al. 2009). 
Bagley and colleagues found that PCs are closely associated with EPCs or capillary 
networks derived from EPCs, and suggested the possibility that guidance of vascu-
lar growth in postnatal vascularization is mediated by PCs (Bagley et  al. 2005). 
Further, in various types (lung, breast, prostate) of tumor angiogenesis, the PCs 
form tubes without EC lining at first, and thereafter ECs form tubes running along 
with the PCs (Ozerdem and Stallcup 2003).

Putting together all available data, we suggest that PCs likely promote vascular 
formation in postnatal life in various scenarios. It has been postulated that the PCs 
may stabilize and induce blood vessel maturation through TGFβ signaling at the 
later stages of vascular formation (Crocker et al. 1970; Darland and D'Amore 2001; 
Hirschi and D'Amore 1996; Hirsh and Weitz 1999; Sato and Rifkin 1989). We pos-
tulate that PC function in vascular formation also includes a shift in their functional 
roles according to physiological conditions.

 Pericyte to Macrophage Transition

Since the role of macrophages in wound healing will be discussed later in this chap-
ter, we think it is worthwhile to remind readers that, at least in the CNS, perivascular 
cells have been known for a long time to be able to generate resident macrophages 
under certain conditions (Baron and Gallego 1972; Rezaie and Male 2002). A more 
recent study found Sox2+ PDGFRβ+ pericytes giving rise to Iba1+ microglia in 
response to ischemic stroke (Sakuma et al. 2016). Importantly, these were activated 
cells that could not be isolated from nonischemic areas, indicative of 
dedifferentiation.
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 Peripheral Innervation in Wound Healing

 Cutaneous Innervation

The skin is highly innervated by a complex network of nerve fibers, composed by 
both sensory and autonomic (mostly sympathetic) neurons (Laverdet et al. 2015).

Autonomic nerve fibers are unmyelinated and constitute the minority of skin 
nerves. They are only found in the dermal layer, where they regulate blood and 
lymphatic vessel circulation and associate to skin appendages such as the arrector 
pili muscle (APM) and the sweat glands (Wang and Gibbons 2013).

Sensory nerves are more abundant and present in both the epidermis and dermis 
(Arthur and Shelley 1959). They form a heterogeneous plexus together with blood 
and lymphatic vessels in the deep and superficial compartments of the skin. 
Specifically, larger nerve trunks >25 μm below the dermoepidermal junction inter-

Fig. 1.9 Peripheral innervation of the skin. Cutaneous innervation follows a complex pattern. (a) 
Human forearm skin epidermis seen from above. The scheme depicts larger nerve trunks in the 
lower dermis that form smaller trunks in the upper dermis. One of the latter (enclosed in a square 
whose sides measure 100 μm in length) shows the typical penicillate nerve endings, both at the 
subepidermal (blue) and epidermal (red) levels. Adapted with permission from Arthur and Shelley 
(1959). However, the actual nerve density is much higher than depicted here. (b) Superficial der-
mal nerve plexus on a dermal sheet of 38 mm2 stained with anti-PGP9.5, which labels all types of 
nerve fibers, showing the dense innervation pattern. Three touch domes (arrowheads) are located 
close to hair follicle openings (asterisks). Adapted with permission from Reinisch and Tschachler 
(2005). (c–e) Distribution of myelinated fibers (anti-MBP staining) in glabrous (c) and hairy (d, e) 
skin. In glabrous skin papillary dermis, myelinated fibers were homogeneously abundant and left 
dermal bundles to reach their targets. In hairy skin, myelinated fibers were irregularly distributed 
with higher density in the proximity of hair follicles: compare panel E versus panel D. Adapted 
with permission from Provitera et al. (2007). (f) Innervation of a hair follicle is shown (dotted 
arrows), with an attached sebaceous gland (solid arrow). A network of sensory nerve fibers sur-
rounds the base of the hair follicle and extends parallel to the hair shaft up to the epidermal surface. 
A densely innervated sweat gland may be seen in the deeper dermal tissue (dashed arrow). Adapted 
with permission from Wang and Gibbons (2013)
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twine with the superficial capillary plexus. In contrast, no obvious topographic rela-
tion can be seen between the terminal nerve endings and blood vessels at the 
uppermost 25 μm below the junction (Tschachler et al. 2004; Fig. 1.9).

The sensory fibers can be classified by their signal transduction velocity into C 
(unmyelinated, slow), Aδ? (lightly myelinated, intermediate velocity), and Aβ 
(highly myelinated, fast) type fibers (Djouhri 2016). Usually these nerve fibers par-
ticipate in the formation of cutaneous sensitive/sensorial receptors responsible for 
detecting mechanical, thermal, and chemical stimuli. Some are naked nerve endings 
and others are composed of nerve fibers integrated within a connective capsule con-
forming a sensitive corpuscle (Laverdet et al. 2015).

Importantly, cutaneous nerves and receptors present qualitative and quantitative 
differences between glabrous and hairy skin (Zimmerman et al. 2014). In the gla-
brous skin four low-threshold mechanoreceptors with specific function and mor-
phology are associated to Aδ fibers: Merkel complexes and Ruffini, Meissner, and 
Pacini corpuscles. Intra-epidermal free nerve endings (type C and Aδ) are also pres-
ent in non-hairy skin, losing their myelin sheath when they enter the basement 
membrane.

Hairy skin is devoid of sensitive corpuscles but instead is characterized by the 
presence of densely innervated hair follicles, where each type of follicle is com-
plexly innervated by a specific combination of nerves (Montagna and Parakkal 
1974). Actually, hair follicles are considered highly specialized mechanosensitive 
organs.

The nerves around hair follicles in the mouse are composed of (i) circumferential 
endings of Aβ-field low-threshold mechanoreceptors (LTMRs), which are sensitive 
to gentle stroking (Bai et al. 2015), and (ii) lanceolate endings of Aδ-LTMRs which 
are sensitive to hair deflection (Rutlin et al. 2014; Fig. 1.10). Of note, similar to 
blood vessels, nerves also surround the bulge and dermal papilla stem cell niches.

 Neuromodulators Affected by Denervation

The communication between peripheral nerves (and associated neural cells) and 
skin cell populations involves a variety of molecules (neuropeptides, neurohor-
mones, and neurotrophins) that act as neurotransmitters, hormones, or paracrine 
factors. Those neuromodulators bind to their specific receptors, expressed in both 
neural and nonneural cells, and take part in a multitude of skin functions, with 
important implications in wound repair (Roosterman et al. 2006).

Evidences supporting the implication of neuromodulators in wound healing arise 
from observations made on diabetes. Numerous studies noticed that, in diabetic 
animals, reduced innervation correlated with lower expression of substance P (SP), 
calcitonin gene-related peptide (CGRP), neuropeptide-Y (NPY), vasoactive intesti-
nal peptide (VIP), and nerve growth factor (NGF) (Anand 1996; Gibran et al. 2002; 
Kuncova et al. 2005; Pradhan et al. 2011).
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SP is a neuropeptide involved in the immunomodulatory responses in early 
wound healing stages; it induces neutrophil activation and infiltration (Richards 
et al. 1999) and leukocyte chemotaxis; and modulates the secretion of proinflamma-
tory cytokines in distinct dermal cell populations, such as interleukin-1 (IL-1), IL-2, 
IL-6, TNF-α, and TGF-α (Delgado et al. 2005; Wei et al. 2012). Denervation via 
laser-induced neuropathy, capsaicin treatment, or nerve resection decreased the SP 
levels detected in the skin (Chiang et al. 2005; Gamse et al. 1986; Senapati et al. 
1986). Rook et al. have shown that the delay in wound closure induced by morphine 
was due to the inhibition of SP secretion associated with a decreased expression of 
its specific receptor NK-1R (Rook et  al. 2009). Indeed, it has been described in 
several wound models that exogenous SP administration or the induction of its pro-
duction at the injured site improves healing (Delgado et al. 2005; Ishikawa et al. 
2014; Spenny et al. 2002).

Fig. 1.10 Peripheral innervation of the hair follicle. (a and b) At the level of the bulge of large 
follicles a collar of “follicle end organs” surrounds the hair follicle (a). Thick frozen section pre-
pared with Winkelmann’s techniques. In small follicles, the lanceolate nerve endings surround the 
bulb (b). Reproduced with permission from Montagna and Parakkal (1974). (c–c′) A similar 
arrangement is found in laboratory mice. On this image of back skin from ThCreER;Rosa26tdTomato;T
rkBtauEGFP mice, C-LTMRs were labeled with tdTomato fluorescence (red), Aδ-LTMRs were 
labeled with anti-GFP (green), and terminal Schwann cells were stained with anti-S100 (cyan). (c′) 
shows higher magnification of the terminal Schwann cell in the middle of the lanceolate complex 
shown in (c). Scale bars, 10 μm in (c), 5 μm in (c′). Reproduced with permission from Li and Ginty 
(2014). (d) Substance P+ nerves can be seen in the dermal papilla as well as in the perifollicular 
vasculature and nerve plexi (open arrows). Section of human scalp from a healthy adult male 
stained with Ulex europaeus agglutinin (for blood vessels) and substance P (for nerves). 
Reproduced with permission from Hordinsky et al. (1999)
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CGRP is ubiquitously expressed by unmyelinated subepidermal and epidermal 
sensory fibers and also by inflammatory and other dermal cells (Caviedes-Bucheli 
et al. 2008; Hagner et al. 2002). This neuropeptide has numerous biological activi-
ties that include a role in immune response, dermal cell proliferation, and angiogen-
esis induction (Brain and Grant 2004; Dallos et al. 2006; Hosoi et al. 1993; Mapp 
et al. 2012). The absence of CGRP or the administration of antagonists resulted in 
delayed wound closure with a reduced angiogenesis rate, whereas the exogenous 
administration of CGRP resulted in an acceleration of wound healing (Rook et al. 
2009; Engin 1998; Toda et al. 2008).

An important growth factor with a crucial role in skin physiology is the nerve 
growth factor (NGF). NGF is immediately released in response to injury and pres-
ents important functions in tissue repair (Kawamoto and Matsuda 2004). In wound 
healing, NGF induces the differentiation of fibroblasts into contractile myofibro-
blasts and regulates their migration and activity (Micera et al. 2001; Palazzo et al. 
2012). In wound models, the topical application of NGF improves healing; increases 
the survival and migration of irradiated skin fibroblasts and blood cells (Shi et al. 
2003); and accelerates healing by inducing collagen production on fibroblasts 
(Nithya et al. 2003). NGF is also implicated in the control of innervation density, 
stimulating neuronal regeneration and secretion of neuropeptides (Lewin and 
Mendell 1993; Park et al. 2010). Thus, NGF is a neurotrophic factor that promotes 
cell survival, stimulates neurite outgrowth, and modulates cell differentiation, all of 
which are important for optimal wound healing.

 Experimental Denervation a nd Impaired Wound Healing

Experimentally induced denervation assays support the role of peripheral innerva-
tion in wound healing. Capsaicin is an agonist of vanilloid receptor-1, expressed 
specifically in Aδ and C fibers and which causes denervation. In rats, chemical 
denervation by capsaicin treatment generated 43% loss of CGRP+ nerves and a 
consequent increase in wound areas, prolonged scab retention, and delayed reepi-
thelialization. Hence the partial withdrawal of sensory innervation impairs cutane-
ous wound healing (Smith and Liu 2002). Previous work indicated that sensory 
nerves are involved in the neurogenic inflammatory reactions, and that capsaicin- 
mediated denervation may thus prevent the initial inflammatory response after 
wounding (Jancso et al. 1967).

Chemical denervation of rats with 6-hydroxydopamine (6-OHDA) produces an 
impaired wound response after full-thickness lesions. By day 14, only 48% of 
denervated rats were able to repair the wound as compared to 84% of controls (Kim 
et al. 1998). By using the same approach, Souza and colleagues described that ani-
mals denervated with 6-OHDA presented an accelerated wound contraction, with 
an increased number of αSMA+ myofibroblasts, reduction in mast cell migration, 
and delayed reepithelialization (Souza et al. 2005). When 6-OHDA was adminis-
trated after the acute inflammatory phase, animals displayed delayed contraction 
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indicating that the denervation-induced absence of catecholamines also had a role at 
the final phase of healing.

When denervation is generated by spinal cord hemidissection, non-innervated 
skin areas present an impaired wound healing response. In this model, a delay in 
wound contraction and reepithelialization is evident mostly in the last stages, 
14 days post-wounding (Fukai et al. 2005). In similar previous studies it was sug-
gested that absence of neuropeptide secretion by nerve endings may be responsible 
for the retarded wound contraction in denervated areas (Engin et al. 1996). In accor-
dance, local application of substance P improves healing in denervated rat skin 
areas (Ishikawa et al. 2014). Likewise, capsaicin induced the depletion of substance 
P and was also responsible for axonal NGF retrograde transport inhibition (Miller 
et al. 1982). Thus, the exogenous administration of NGF accelerates wound con-
traction and epithelialization (Li et al. 1980; Muangman et al. 2004).

 Nerve-Associated Schwann Cells as Pro-regenerative Actors

Although most researchers attribute the main role of innervation in wound repair to 
the secretion of neuromediators (Ashrafi et al. 2016), in this chapter we propose the 
hypothesis that nerve-associated cells, specifically the terminal Schwann cells that 
ensheath the nerve endings, may have a prominent role as pro-regenerative actors.

This concept originates in metazoan phylogeny. Mammalian regeneration capac-
ity is limited, as we have lost multitissue regenerative potential except for the distal 
digit tip (Han et al. 2008) and punched ear lobes in certain genetic backgrounds 
(Cheverud et  al. 2012; Seifert et  al. 2012a). However, some vertebrates (such as 
axolotl, salamander, and zebrafish) and invertebrates (hydra) possess an extraordi-
nary regeneration capacity. In all cases the nerves seem to be required for a success-
ful regeneration to occur (Brockes and Kumar 2008; Carlson and Conboy 2007; 
Kumar and Brockes 2012; Simoes et al. 2014; Stocum 2011).

During the well-studied limb regeneration in urodele amphibians, epithelial cells 
are organized and migrate toward the amputated region in order to close the wound 
and form the wound epidermis (WE). The maturation, by cell migration, of this 
specialized WE leads to apical epithelial cap formation (AEC). Under the AEC, 
cells within the skin mesenchyme are liberated from the compact ECM, which is 
degraded by proteases, and undergo dedifferentiation, followed by migration and 
reentering the cell cycle to generate an undifferentiated cell mass known as  blastema. 
The blastema gives rise to a new extremity. The interactions between the AEC and 
blastema ensure the correct growth and patterning of the novel structure (Kumar and 
Brockes 2012; Simoes et al. 2014; Stocum 2011). When limbs are denervated appar-
ently neither WE formation nor initial blastema morphogenesis is inhibited, but 
instead blastemal progenitor cell proliferation is notably affected (Brockes and 
Kumar 2008; Kumar and Brockes 2012; Stocum 2011).

Nerve requirement seems to be dose and time dependent, since the number of 
nerves positively correlates with regeneration rate and the moment in which dener-
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vation occurs exerts distinct phenotypes (Simoes et al. 2014; Seifert et al. 2012b; 
Singer 1952). Thus, the resection of brachial nerves in zebrafish fins avoided blas-
tema formation, while a reduced amount of nerves was enough to generate a resid-
ual blastema that gave rise to a smaller but morphologically defined fin (Simoes 
et al. 2014).

Derived from observations made during denervation assays, it was proposed that 
nerves produce neurotrophic factors that control the regenerative process, the so- 
called neurotrophic hypothesis (Singer 1951, 1952, 1964). The fact that neural tis-
sue promotes proliferation of blastema cells was demonstrated by the application of 
neural extracts to cultured blastemas and the observation of an increased mitotic 
rate and the restoration of protein synthesis. Later the identity of the active molecule 
was associated to a protein (Choo et  al. 1978), possibly transferrin (Albert and 
Boilly 1988).

Supporting the idea of a nerve-derived pro-regenerative molecule, Kumar and 
Brockes described the existence of a diffusible signal, nAG protein, which acts as 
intermediary between regenerating axons and WE to induce blastema proliferation. 
The nAG is first secreted by axon ensheathing Schwann cells (SCs) followed by 
expression in both SCs and gland cells of the WE. This shift in nAG protein expres-
sion explains the influence of nerves in the proliferation of the early blastema and 
not in the later phases of the regeneration, in which WE effect is predominant 
(Brockes and Kumar 2008; Kumar et al. 2010). Thus, it was proposed that besides 
the mitogens produced by axons, such as transferrin, NGF, FGF2, or SP, that could 
be affecting blastema development (Anand et al. 1987; Mescher et al. 1997; Mescher 
and Kiffmeyer 1992), SCs associated to nerves were responsible for secreting fac-
tors that supported blastemal cell proliferation and accumulation. For instance, 
GGF-2 and other growth factors (FGF, IL-1, IL-2, and IL-6) secreted by axons and 
inflammatory cells are mitogenic for SCs in transfected mammalian peripheral 
nerves (Davies 2000), so that they could partly explain the nerve dependence of the 
SCs and the loss of their activity in denervated limb regeneration.

These phylogenetic studies have thus enlightened our knowledge of the tissue 
regeneration process, with potential applications not only in the case of amputations 
but also in tissue repair in general. As for other evidence implicating nerves and the 
associated Schwann cells in tissue regeneration, the recent work by Freda Miller 
and co-workers has described the role of Schwan cell precursors (SCPs) in digit tip 
regeneration, again underlining the parallels shared with the urodele limb regenera-
tion (Johnston et al. 2016). In physiological conditions, Sox2+/S100β+ SCP cells 
are associated with the innervating axons along the digit tip mesenchyme. When 
digit tip is amputated, a PDGFRβ+ blastema-like structure is formed adjacent to the 
K14+ wound epithelium (WE). SCPs dissociate from the innervating axons and 
migrate into the wounded area where they secrete paracrine factors. SCPs remain in 
a dedifferentiated state within the regenerating blastema until axons reinnervate the 
regenerated digit tip, the moment in which they reassociate with axons. Denervation 
by sciatic nerve resection (that inhibited the axonal regrowth) prevented migration 
of SCP to the repairing tissue, probably due to the lack of mitogenic factors from 
axons that are required for SC functionality. Moreover, the specific ablation of 
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Sox2+ SCPs and the induction of genetic SOX2 ablation also impaired digit tip 
regeneration, demonstrating that SCPs are directly implicated in blastema-like mes-
enchymal cell dedifferentiation and highlighting the role of SOX2 in the process 
(Johnston et al. 2016).

Actually, the same research group previously described the implication of Sox2+ 
SCs in skin wound healing. They showed that Sox2+/S100β+ nerve terminal (NT) 
cells located around HFs in mouse dorsal skin contributed to the wound healing 
(Johnston et al. 2013). Interestingly, the major contribution to the healing wound 
was carried out by tissue-resident SCs that acquired SOX2 expression after injury, 
as described in peripheral nerve injury SC. In addition, when SOX2 was ablated a 
delay in wound closure was observed (Johnston et al. 2013). Both articles supported 
the role of peripheral SCs as promoters of mammalian skin repair and implicated 
SOX2 as a modulator of the SC dedifferentiation.

Based on those results and the observations made on amphibian limb regenera-
tion, it makes sense that nerve-derived Sox2+ SCPs may proliferate and migrate to 
the damaged region induced by injury signals, where they secrete growth factors 
that regulate mesenchymal (blastema-like structure) cell proliferation. This idea is 
supported by the evidence obtained from peripheral nerve injury regeneration, in 
which also similar dedifferentiation and mitogenic mechanism have been described 
for SCs (Cattin et al. 2015; Jessen and Mirsky 2008; Napoli et al. 2012; Parrinello 
et al. 2010).

More recently the group of Lukas Sommer very neatly demonstrated that, upon 
wounding, dedifferentiated SCs reentered into cell cycle and populated the wound 
bed, where they secreted factors previously associated with wound healing and pro-
moted myofibroblast differentiation by paracrine modulation of TGFβ signaling 
(Parfejevs et al. 2018a). Parfejevs et al. further proposed that postnatal multipotent 
neural crest stem cells (NCSCs) may be induced by injury or stress in several organs, 
by reprogramming differentiated cells such as SCs. These noxa would additionally 
activate a repair program in these adult NC-derived cells, which would then pro-
mote tissue repair or regeneration by paracrine signaling (Parfejevs et al. 2018b; 
Silva et al. 2018a).

Another interesting observation of mammalian tissue regeneration was made on 
Murphy Roths Large (MRL) mice, which have the capacity to heal the injured ear 
without scar formation and are characterized for developing a blastema-like struc-
ture that restores completely the cartilage, skin, hair follicles, and adipose tissue of 
the ear tip (Clark et  al. 1998). MRL mice also show an enhanced capacity for 
peripheral nerve regeneration (Buckley et  al. 2011). Additional studies demon-
strated that after denervation, blastema formation, and chondrogenesis are pre-
vented, wound areas increase, wound distal margins become necrotic, and as a 
result the ear holes lose the ability to re-epithelialize (Buckley et  al. 2012). 
Denervation also had a notable negative effect on the ear wound healing mecha-
nisms of the C57BL/6 strain, suggesting that innervation may be important for 
regeneration and also for normal wound repair (Buckley et al. 2011, 2012).
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 Schwann to Pericyte Transition

We have recently shown that Schwann cells and pericytes of human skin present 
strikingly similar gene expression profiles (Etxaniz et al. 2014). Some of the lineage- 
tracing lines that have been used in the mouse to follow up dermal precursor fate 
may also trace SCs and pericytes (Iribar et al. 2017). These data suggested a previ-
ously unrecognized relationship between these two cell types. Alternatively, the two 
cell subtypes might be considered as a single, highly dynamic cell precursor with 
environmental differences playing a role in distinctive cellular states (Etxaniz et al. 
2014).

Of interest, SCs in the skin derive in development from a subpopulation of neural 
crest cells known as boundary cap (BC) cells (Gresset et al. 2015). BC cell subpopu-
lations in development can be traced by the expression of Prss56 and Krox20 as 
lineage tracers. Although both Prss56-traced and Krox20-traced BC cell progenies 
migrated along nerves to the skin, only the first population remained as SCs, in 
contact with nerves. Strikingly, the Krox20-traced BC cell subpopulation delami-
nated from nerves in between E12.5 and E.13.5 and integrated into the forming 
vascular plexus as mural cells (Radomska and Topilko 2017). Thus, the Schwann to 
pericyte transition that we propose as a firm possibility upon skin injury is already 
demonstrated in development by Topilko et al., who named it as “glial to vascular 
switch” (Radomska and Topilko 2017). In fact, cephalic neural crest has long been 
known to give rise to pericytes (Etchevers et al. 2001; Trost et al. 2016), but this was 
certainly unexpected in the trunk.

Additionally, in the mouse incisor tooth organogenesis, Schwann cells give rise 
to MSCs that will in turn generate pulpar cells and odontoblasts (Kaukua et  al. 
2014). Whether this particular subset of MSCs sits in a perivascular location is cur-
rently unknown, but this seems highly likely given the fact that MSCs seem to cor-
respond with pericytes and adventitial cells in most tissues (Corselli et al. 2010; 
Crisan et al. 2012).

In glioblastoma, CD133+ tumor stem cells of glial origin are able to generate 
pericytes. Stem cells migrate toward endothelial cells induced by SDF-1α/CXCR4 
signaling cues and transdifferentiation into pericytes is enforced by TGFβ expres-
sion (Cheng et al. 2013). Notch1 signaling activation similarly reduced expression 
of Sox2 in glioblastoma stem cells and induced the expression of pericyte markers 
and angiogenesis-promoting factors (Guichet et al. 2015), indicating that different 
signaling may induce similar end results. The picture of the pathways involved is 
surely much more complex (Brooks et al. 2013). Importantly, this cancer stem cell 
to pericyte transition has not been observed in any other tumor type (Krishna Priya 
et al. 2016), indicating that it may be specific for the glial stem cells.
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 Macrophages in Wound Healing

 Macrophages in Tissue Repair

Macrophages are needed for competent healing of several tissues (Lucas et al. 2010; 
Mirza et al. 2009; Summan et al. 2006; van Amerongen et al. 2007). Depending on 
the healing phase, they promote debridement of the injury area, cell proliferation, 
angiogenesis, ECM deposition, and remodeling, because they are able to acquire 
diverse functional phenotypes which are mainly determined by the microenviron-
ment (Mahdavian Delavary et al. 2011; Novak and Koh 2013a).

Macrophages are critical for the regulation of all stages of tissue regeneration 
(van Amerongen et al. 2007; Arnold et al. 2007; Bergmann et al. 2006; Godwin 
et al. 2013; Li et al. 2012; Schlundt et al. 2018; Shi and Pamer 2011), and when their 
function is deregulated they contribute to impaired healing and fibrosis (Eming 
et al. 2007b; Loots et al. 1998; Mirza and Koh 2011; Mirza et al. 2013; Sindrilaru 
et al. 2011; Villalta et al. 2011; Wynn et al. 2011).

In the murine blood, two functional subsets of monocytes have been described: 
(i) an inflammatory subset, defined as CCR2+ CXC3CR1low Ly6C+ (also known as 
GR1), and (ii) a noninflammatory subset or resident monocytes, defined as CCR2− 
CXC3CR1high Ly6C− (Geissmann et al. 2003; Willenborg et al. 2012). In humans, 
most monocytes are CD14hiCD16− and are referred to as “classical” monocytes or 
are CD14+CD16+ and are referred to as “nonclassical” monocytes (Passlick et al. 
1989; Strauss-Ayali et al. 2007). Approximately 90% of human monocytes express 
the classical markers, whereas in mice the two populations of monocytes are 
approximately equally represented in the blood (Passlick et al. 1989; Mosser and 
Edwards 2008). Importantly, a recent study suggested that circulating nonclassical 
monocytes are recruited to cutaneous injuries, where they colonize perivascular 
niches and generate alternatively activated wound-healing macrophages (Olingy 
et al. 2017).

Neutrophils and macrophages are the major fraction of inflammatory cells 
recruited to the wound area. Neutrophils are the first inflammatory cells to be 
recruited (few hours postinjury), but their presence is timely restricted to the early 
stage of the wound healing. Pericytes seem to have a role in neutrophil extravasa-
tion, by modulating the secreted ECM in response to pro-fibrotic stimuli (Sava et al. 
2015). In fact, a circulating proangiogenic subset of neutrophils (characterized by 
the expression of these markers: CD49d+ VEGFR1high CXCR4high) is recruited to 
injured tissue both in mice and humans, in response to VEGF-A signaling, by 
 parallel activation of VEGFR1 on neutrophils and VEGFR2 on endothelial cells 
(Massena et  al. 2015). Macrophages instead persist through all wound-healing 
response. Their overall number increases during the inflammation phase, peaks at 
tissue repair stage, and gradually decreases through the tissue-remodeling stage 
(Martin and Leibovich 2005; Fig. 1.11).
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Lineage-tracing studies have showed that most tissue-resident macrophage pop-
ulations are derived from early embryonic hematopoietic progenitors that emerge in 
the yolk sac prior to hematopoietic stem cells (Gomez Perdiguero et al. 2015; Schulz 
et al. 2012) and persist into adulthood independently of blood monocyte input in the 
steady state (Schulz et al. 2012; Ginhoux et al. 2010; Yona et al. 2013). Although all 
tissues are populated at birth with fetal macrophages, replacement of these cells by 
hematopoietic stem cell (HSC)-derived progenitors gradually occurs with time. 
Adult tissue macrophages that are maintained by circulating precursors include the 
intestine (Bain et  al. 2014), dermis (McGovern et  al. 2014; Tamoutounour et  al. 
2013), heart (Epelman et al. 2014; Molawi et al. 2014), and pancreas macrophages 
(Calderon et al. 2015). In contraposition, other tissue-resident macrophage popula-
tions such as microglia, epidermal (Langerhans), liver (Kupffer), and alveolar mac-
rophages exhibit negligible need for replacement in adulthood.

Fig. 1.11 Phases of tissue repair: inflammation, proliferation, and remodeling. Macrophage num-
ber increases in number early in the inflammatory phase, peaks in the granulation phase, and 
decreases during the remodeling. Macrophages in the inflammatory phase exhibit a proinflamma-
tory phenotype and express VEGF that promotes angiogenesis. During the granulation phase, mac-
rophages express VEGF and TGFβ, among others, promoting angiogenesis and extracellular 
matrix deposition. In this phase proinflammatory and anti-inflammatory signals coexist. Finally, in 
the remodeling phase tissue remodeling is mediated by expression of TGFβ, MMPs, and collagen 
VIII. Macrophages participate in angiogenesis, extracellular remodeling, and nerve regeneration 
indirectly, via cytokine secretion, and directly in the nerve regeneration bridge region. Adapted 
from Dunleavey and Dudley (2012), Cattin et al. (2015), and Koh et al. (2013)
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Independently of their developmental origin, it has been reported that the tissue 
itself plays a key role in controlling the persistence, recruitment, and differentiation 
of the monocytes (Scott et  al. 2016). Moreover, macrophage populations exhibit 
distinct transcriptional signatures (Gautier et al. 2012; Lavine et al. 2014) and epi-
genetic marks that are specific to the tissue of residence. Other studies have remarked 
the key role of tissue-specific factors in the imprinting of the macrophage transcrip-
tional program (Scott et al. 2016; Gibbings et al. 2015), but very little is known 
about the precise mechanisms governing these processes.

 Macrophage Polarization

Macrophages undergo activation to fulfill specific functional roles during inflamma-
tion and its resolution. A complex mixture of cytokines, metabolites, plasma pro-
teins, growth factors, and microbial ligands present in the inflammatory milieu and 
in the injured tissue microenvironment confers the phenotype to macrophages 
(Mosser and Edwards 2008; Gordon 2003; Jenkins et al. 2011; Jenkins et al. 2013; 
Mantovani et al. 2004).

The development into mature and fully activated macrophages is artificially clas-
sified into stages, but most likely will represent a continuum of cellular states. In the 
first phase (differentiation), recruited monocytes mature into macrophages, stimu-
lated by growth factors such as GM-CSF or M-CSF. During recruitment, monocytes 
are exposed to varying concentrations of mediators, inducing a second phase of 
priming by cytokines: IFN-γ (M1 macrophages, see below) or IL-4 and IL-13 (M2 
macrophages, see below). During the third phase of activation, macrophages reach 
a mature functional phenotype in response to microbial and opsonic stimuli such as 
antibody complexes. If the macrophage survives inflammation, it undergoes the 
final phase commonly referred to as deactivation or resolution (Gordon and Martinez 
2010; Stout et al. 2005). In this last phase, the macrophage proinflammatory poten-
tial is deactivated, and goes through functional changes that permits it to clear debris 
and express general repair functions by expression of IL-10, TGF-β, and a multitude 
of anti-inflammatory mediators such as nucleotides, lipoxins, and glucocorticoids 
(Gordon and Martinez 2010).

M1 and M2 have been used to refer to the two extremes of a spectrum of possible 
phenotypes of macrophage activation (Mosser and Edwards 2008; Gordon and 
Martinez 2010; Mantovani et al. 2002, 2004). M1 macrophages correspond to the 
classically activated macrophages (inflammatory macrophages), emulating the Th1 
nomenclature. M2 (alternatively activated; type II; Mø2; M2) has been proposed as 
a generic name for the various forms of macrophage activation other than the classic 
M1, based on the sharing of selected functional properties (e.g., low IL-12) and 
their general involvement in type II responses, immunoregulation, and tissue remod-
eling. However, in vivo, this is much more complex and macrophages display fea-
tures of both phenotypes (Mantovani et al. 2002; Duffield 2003; Raes et al. 2002) 
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and because of that polarization should be understood as a continuum of diverse 
functional states (Martinez and Gordon 2014; Martinez et al. 2008; Stout 2010).

Interferon-γ (IFN-γ), alone or in combination with microbial products [e.g., lipo-
polysaccharide (LPS)] or cytokines [e.g., tumor necrosis factor (TNF)], activates 
macrophages (Hamilton 2002; O’Shea and Murray 2008). Classical macrophage 
activation (M1) is characterized by high capacity to present antigen; high interleu-
kin- 12 (IL-12) and IL-23 production (Verreck et al. 2004) and consequent activation 
of a polarized type I response; and high production of toxic intermediates [nitric 
oxide (NO), reactive oxygen intermediates (ROI)].

IL-4 and IL-13 induce a distinct activation program, referred to as “alternative 
activation” (M2) (Gordon 2003; Stein et al. 1992). The term “alternatively activated 
macrophage” has also been applied to mononuclear phagocytes exposed to IL-10, 
glucocorticoid, or secosteroid (vitamin D3) hormones (Goerdt et  al. 1999). 
Macrophages exposed to immune complexes (IC) and LPS are characterized by an 
IL-10high and IL-12low phenotype and promote type II responses; they have been 
called type II activated macrophages (Mosser 2003). Finally, human monocytes dif-

Fig. 1.12 Inducers, markers, and functional features of polarized macrophage populations. 
Macrophages exposed to IFN-γ in concert with microbial stimuli (e.g., LPS) or cytokines (e.g., 
TNF or GM-CSF) differentiate into M1 inflammatory macrophages that express high levels of 
IL-12 and modest levels of IL-10 and are efficient producers of effector molecules (reactive oxy-
gen and nitrogen intermediates) and inflammatory cytokines (IL-1β, TNF, IL-6). M2 macrophages 
tend to immunoregulatory and tissue remodeling functions. M2a (induced by exposure to IL-4 and 
IL-13) expresses both IL12 and IL-10 and M2b (induced by combined exposure to immune com-
plexes and TLR or IL-1R ligands) expresses high levels of IL-10 and low levels of IL-12. Finally, 
M2c, induced by IL-10, expresses IL-10 but not IL-12 (IFN-γ interferon-γ, LPS lipopolysaccha-
ride, MR mannose receptor, TNF tumor necrosis factor, TLR Toll-like receptor, RNI reactive nitro-
gen intermediates, ROI reactive oxygen intermediates). Adapted from Mosser and Edwards (2008), 
Mantovani et al. (2004), and Gordon and Martinez (2010)
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ferentiated with GM-CSF or M-CSF have M1 and M2 properties, respectively, and 
have been referred to as Mø1 and Mø2 (Mantovani et al. 2004; Verreck et al. 2006).

Although alternatively activated macrophages share some phenotypic and func-
tional properties, three well-defined forms of M2 have been described (Mantovani 
et al. 2002, 2004; Verreck et al. 2006): M2a, induced by IL-4 or IL-13 and also 
referred as wound-healing macrophages (Mosser and Edwards 2008); M2b, induced 
by exposure to IgG-containing immune complexes (IC) and agonists of Toll-like 
receptors (TLRs) or IL-1R and also referred to as regulatory macrophages (Mosser 
and Edwards 2008); and M2c, induced by IL-10 and glucocorticoid hormones 
(Fig. 1.12, Mosser and Edwards 2008; Mantovani et al. 2004; Gordon and Martinez 
2010). In fact, Mosser and Edwards suggested a classification based on the funda-
mental macrophage functions that are involved in maintaining homeostasis: host 
defense (M1), wound healing (M2a), and immune regulation (M2b) (Mosser and 
Edwards 2008).

Differential cytokine production is a key feature of polarized macrophages (Jung 
et al. 2004; Lang et al. 2002; Locati et al. 2002; Perrier et al. 2004; Scotton et al. 
2005). M1 phenotype is typically IL-10low and IL-12high, whereas M2 macrophages 
are typically IL-10high and IL-12low. Human M1 macrophages also produce high lev-
els of IL-23 (Verreck et al. 2004). Components of the IL-1 system are differentially 
regulated in polarized macrophage populations and it is coordinately regulated by 
signals that polarize macrophages in an M1 or M2 direction. M2 cells are generally 
characterized by low production of proinflammatory cytokines (IL-1, TNF, and 
IL-6). However, macrophages exposed to IC and LPS (M2b) are an exception, in 
that they retain high levels of inflammatory cytokine production with concomitant 
high IL-10 and low IL-12 (Mosser 2003), protecting mice against LPS toxicity and 
promoting Th2 differentiation and antibody production (Mosser 2003; Mosser and 
Karp 1999).

Functionally, activated M1 macrophages are potent effector cells integrated in 
Th1 responses, which kill microorganisms and tumor cells and produce copious 
amounts of proinflammatory cytokines. By contrast, M2 macrophages tune inflam-
matory responses and adaptive type I immunity, scavenge debris, and promote 
angiogenesis, tissue remodeling, and repair. More specifically, integration with and 
promotion of type II responses prevail for IL-4- or IL-13-stimulated M2a macro-
phages, whereas suppression and regulation of inflammation and immunity are pre-
dominant in IL-10-stimulated M2b cells.

IL-4 stimulates arginase activity in macrophages, allowing them to convert argi-
nine to ornithine, a precursor of polyamines and collagen, thereby contributing to 
the production of the extracellular matrix (Kreider et al. 2007). Adaptive immune 
responses can also lead to the production of IL-4, and it is thought that this is the 
primary pathway for the development and maintenance of wound-healing macro-
phages. TH2-type immune responses are primarily induced in response to 
 disturbances at mucosal surfaces (Reese et  al. 2007), and they are particularly 
important in the lung and intestines.

M2b or regulatory macrophages can arise following innate or adaptive immune 
responses. They need two stimuli to induce their anti-inflammatory activity. The 
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first signal (for example, immune complexes, prostaglandins, adenosine, or apop-
totic cells) generally has little or no stimulatory function on its own. However, when 
combined with a second stimulus, such as a TLR ligand, the two signals reprogram 
macrophages to produce IL-10 (Edwards et al. 2006), the production of which is the 
most important and reliable characteristic of regulatory macrophages. These regula-
tory M2b macrophages also downregulate IL-12 production (Gerber and Mosser 
2001) and therefore the ratio of IL-10 to IL-12 could be used to define regulatory 
macrophages (Mantovani et al. 2004). Because IL-10 can inhibit the production and 
activity of various proinflammatory cytokines, these regulatory macrophages are 
potent inhibitors of inflammation, despite the fact that they retain the ability to pro-
duce many proinflammatory cytokines. Unlike wound-healing macrophages, these 
regulatory macrophages do not contribute to the production of the extracellular 
matrix, and many of these regulatory cells express high levels of co-stimulatory 
molecules (CD80 and CD86) and therefore can present antigens to T cells (Mosser 
and Edwards 2008; Edwards et al. 2006).

Both innate and adaptive signals can influence macrophage physiology, and 
these alterations allow macrophages to participate in homeostatic processes, such as 
tissue remodeling and wound healing, as well as in host defense. However, each of 
these alterations can have potentially dangerous consequences if not appropriately 
regulated. For example, classically activated macrophages can cause damage to host 
tissues, predispose surrounding tissue to neoplastic transformation, and influence 
glucose metabolism by promoting insulin resistance. Macrophages that are nor-
mally involved in wound healing can promote fibrosis, exacerbate allergic responses, 
and be exploited by pathogens for intracellular survival. Regulatory macrophages 
can contribute to the progression of neoplasia and the high levels of IL-10 that these 
cells produce can predispose the host to infection (Mosser and Edwards 2008).

Finally, it is important to understand that discrete clustering of M2 macrophages 
into two or three categories does not fulfill the phenotypes observed in vivo and it is 
vital that polarization is understood as a continuum that changes depending on 
many factors as the type of wound (infectious, trauma/hemorrhage, severe burn), 
involvement or not of adaptive immune responses, etc. In this sense, Daley et al. in 
a murine model of sterile dermal incision examined the role of IL-4 and IL-13, the 
prototypic type 2 cytokines defining “alternative macrophage phenotype” in the 
process of dermal wound healing, and concluded that macrophages participating in 
sterile dermal wound repair exhibit a complex progression of phenotypes that did 
not fit the signature of alternative, classical, M1 or M2 categories (Daley et  al. 
2010).

 The Role of Macrophages in Wound Healing

The outcome of the tissue repair response changes dramatically during lifetime 
ranging from prenatal regeneration toward the formation of function-impairing scar 
tissue and pathological healing.
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Early fetal wounds heal with minimal scarring and this fact has been related to 
little inflammation and reduced levels of TGF-β1 (Bullard et al. 2003; Ferguson and 
O'Kane 2004; Katsuyama and Paro 2013; Stramer and Martin 2005). Wounds in 
newborn PU.1 null mice, which lack macrophages, also heal without scar, although 
it is worth noting that this model lacks also B cells, mast cells, and eosinophils 
(Martin et al. 2003). However, physiological repair in adults requires macrophages 
and in fact macrophages play a key role in tissue regeneration and repair, driving 
diverse and specific functions during the different and consecutive phases of wound 
healing. Several mouse models have revealed that macrophages are indispensable 
for the healing response (Lucas et  al. 2010; Mirza et  al. 2009; Willenborg et  al. 
2012; Duffield et al. 2005; Goren et al. 2009) and salamander limb regeneration is 
also dependent on macrophages (Godwin et al. 2013; Willenborg and Eming 2014).

Functional distinct subpopulations of macrophages exist in the same tissue and 
they play specific roles during different stages of wound healing, highlighting that 
macrophages may be both pathogenic and beneficial. In a well-characterized liver 
fibrosis model induced by carbon tetrachloride (CCl4) and using a transgenic model 
(CD11b-DTR), where macrophages could be selectively depleted, depletion of 
macrophages when liver fibrosis was advanced resulted in reduced scarring and 
fewer myofibroblasts. However, depletion during recovery phase led to a failure of 
matrix degradation (Duffield et al. 2005).

Using the same transgenic model, Mirza et al. studied the effects of macrophage 
depletion in excisional skin wounds (Mirza et al. 2009). They depleted macrophages 
immediately before and 48 h after injury and observed a delayed reepithelialization, 
reduced collagen deposition, and impaired angiogenesis. These effects were related 
to an increased production of TNF-α and reduced production of VEGF and 
TGF-β1.

Goren et al. reported another model of macrophage depletion, using transgenic 
mice that expressed the DT receptor under the myeloid cell-specific lysozyme M 
promoter (LysM-DTR) and administrating DT before and through all the phases of 
the wound-healing process (Goren et al. 2009). Macrophage depletion resulted in 
delayed closure and impaired angiogenesis, increased expression of proinflamma-
tory cytokines such as IL-1β and a decrease of TGFβ1, as well as deregulated pat-
tern of VEGF, consistent with the results reported by Mirza et al. (2009).

Using the same model, Lucas et al. depleted macrophages at different phases of 
the healing process and reported that when macrophages were depleted during the 
inflammatory phase (0–5 days, early stage), a significant delay of the early repair 
response was observed, compared to control mice. At later time points, although 
wounds presented a similar closure rate, the overall amount of granulation tissue, as 
well as vascularization, cellularity, contractile force, and scar tissue, remained 
reduced when compared with controls. Ablation of macrophages in the mid-stage 
(5–9 days, tissue formation stage) of repair response showed that the role of macro-
phages through that phase consists of stabilizing the vascular structures and transi-
tion of granulation tissue into scar tissue, while macrophages at the late stage 
(9–14 days, tissue-remodeling stage) do not affect tissue maturation and scar devel-
opment (Lucas et al. 2010).
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In conclusion, macrophages are a necessary requisite for wound healing in the 
adult. However, macrophages present different phenotypes and exert different func-
tions in different stages of the wound healing. For instance, it has been shown 
recently that delivery of CXCL12 accelerates wound closure through induction of 
TGFβ-producing macrophages, which further instruct other cells involved in the 
wound-healing process (Vagesjo et al. 2018). Similarly, Barreiro et al. have sug-
gested that a novel subset of murine dermal perivascular macrophages, that they 
called STREAM, extend protrusions across the endothelial junctions and possess a 
distinctive anti-inflammatory transcriptional profile (Barreiro et al. 2016).

 Macrophage Polarization/Function Through Different Healing 
Stages

The wound-healing process can be divided into three functional stages: inflamma-
tory, proliferative, and tissue-remodeling/maturation phases. The kinetics of each 
phase depends on the severity of injury, presence of infection, age, or pathological 
situations (Mirza and Koh 2011; Mirza et al. 2013; Brubaker et al. 2011).

M1 polarized macrophages mediate tissue damage and initiate inflammatory 
responses (Gordon and Martinez 2010; Biswas and Mantovani 2010). They clear 
cellular debris and necrotic tissue and combat invading pathogens, expressing 
highly active proteases and proinflammatory mediators to accomplish these func-
tions. During the early stages of the repair response after skin wounding, infiltrating 
macrophages express an M2 phenotype and present a trophic function (VEGF, 
PDGF). Their depletion inhibited the formation of a highly vascularized, cellular 
granulation tissue, and of scar tissues (Lucas et al. 2010). In later stages, macro-
phages exert an anti-inflammatory function (IL-1Rα, IL-10, TGFβ1) (Willenborg 
and Eming 2014; Mantovani et al. 2013).

These dynamic changes in macrophage polarization have been studied in models 
of acute ischemic heart and kidney pathology. Monocytes are recruited into the tis-
sue and their activation state undergoes dynamic changes from a predominantly M1 
to a predominantly M2 phenotype (Lambert et  al. 2008; Ricardo et  al. 2008; 
Swaminathan and Griffin 2008; Troidl et al. 2009).

Regulation of macrophage polarization plays a vital role in wound healing. In 
humans, chronic venous leg ulcers represent a failure to switch from an M1 to an 
M2 phenotype, and this fact inhibits resolution of the inflammatory condition 
(Sindrilaru et al. 2011).
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 Inflammatory Phase

During the inflammatory phase of the wound-healing process, that lasts a few days 
after injury, one of the major functions of monocytes/macrophages is the removal of 
damaged tissue (Leibovich and Ross 1975) and, in case of pathogen spreading in the 
wound bed, macrophages phagocytose these pathogens and present antigens to T 
cells. Moreover, macrophages induce apoptosis and phagocyte neutrophils 
(Meszaros et al. 1999, 2000), contributing to the transition from the inflammatory 
phase to the proliferative phase of the healing process. In skin wounds, the effect of 
macrophage depletion on neutrophil accumulation is dependent on the experimental 
protocol used (Mirza et al. 2009; Goren et al. 2009; Leibovich and Ross 1975).

In addition to debridement, macrophages of the inflammatory phase display an 
M1 phenotype (Daley et  al. 2010) and consequently secrete inflammatory cyto-
kines, such as IL-1, TNFα, and IL-6. IL-6 and TNFα are essential for the efficient 
healing in the early days after injury to rodent skin (Gallucci et al. 2000; Lee et al. 
2000) and regulate proliferation of keratinocytes and fibroblasts (Hernandez- 
Quintero et  al. 2006; Mateo et  al. 1994). IL-1 however reduces fibrosis without 
affecting the tensile strength of the repaired skin (Thomay et al. 2009). Early skin 
wound monocytes/macrophages also produce vascular endothelial growth factor 
(VEGF) and thereby promote granulation tissue formation and angiogenesis 
(Willenborg et al. 2012; Baum and Arpey 2005). Depletion of monocytes/macro-
phages during the inflammatory phase reduces granulation tissue formation and cell 
proliferation in mouse skin wounds (Lucas et al. 2010; Mirza et al. 2009).

 Proliferative/Granulation Phase

Cell proliferation begins in the early days after injury to mouse skin and skeletal 
muscle, peaks around day 5, and persists at low levels until at least days 10–12 (Jun 
and Lau 2010), a similar time course to that of macrophages. The proliferative phase 
of cutaneous wound healing, also called granulation phase, is characterized by 
active fibroplasia, epidermal regeneration, wound contraction, and angiogenic 
sprouting.

Keratinocyte proliferation and migration allow reepithelialization of the wound 
and restoration of the barrier function of the skin (Werner and Grose 2003). 
Proliferation of fibroblasts and endothelial cells allows matrix deposition and angio-
genesis, respectively (Werner and Grose 2003; DiPietro 2013), and Schwann cells 
participate in the regeneration of peripheral nerves as well as contribute to granula-
tion tissue formation (Parfejevs et al. 2018a).

It has been reported that M1 macrophages shift to M2 macrophages (Gordon 
2003; Duffield 2003) that contribute to the resolution of inflammation and the 
wound-healing process (Goerdt et al. 1999; Porcheray et al. 2005). In fact, depletion 
of macrophages during the proliferative phase significantly disturbed the transition 
of the mid-stage to the late stage of repair response (Lucas et al. 2010).
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As the inflammatory phase declines and the proliferative or granulation phase 
progresses, macrophages decrease proinflammatory cytokine expression and 
increase expression of anti-inflammatory cytokines and growth factors, such as 
IL-10, TGFβ, and IGF-1, supporting the growth of new tissue and promoting col-
lagen deposition and tissue maturation (Novak and Koh 2013a; Mirza and Koh 
2011; Willenborg et al. 2012; Daley et al. 2010; Perdiguero et al. 2011). This phe-
notypic shift may be controlled, in part, by phagocytosis of tissue and cell debris 
(Stout 2010; Fadok et al. 1998), release of soluble factors from other immune cells 
(Daley et al. 2005), autocrine anti-inflammatory feedback mechanisms (Perdiguero 
et  al. 2011), and/or composition of the granulation tissue (Blakney et  al. 2012; 
Wehner et al. 2010).

 Reepithelialization and Contraction

Macrophage-derived TGFβ plays a crucial role in reepithelialization (Abbott et al. 
2010; Mirza et al. 2009). This reepithelialization process is made easier by contrac-
tion of the underlying connective tissue, which brings the wound margins toward 
each other. This contraction process is performed by myofibroblasts, activated by 
TGFβ and PDGF (Frank et al. 1995). Once the wound surface is covered by a mono-
layer of keratinocytes, epidermal migration ceases and a new stratified epidermis 
with underlying basal lamina is re-established from the margins of the wound 
inwards. At this moment, the defect is filled with granulation tissue and covered by 
a newly formed epidermal layer. Nevertheless, the wound-healing process, particu-
larly the remodeling phase, can still go on for months.

 ECM Deposition

In this phase, macrophage-derived TGFβ stimulates collagen production and also 
reduces degradation of the wound matrix by collagenase and through increased 
inhibition of MMPs. TGFβ has three isotypes (TGF-β1, -β2, and -β3), which all 
stimulate infiltration of inflammatory cells and fibroblasts. However, at gestational 
ages associated with scarless repair, low levels of TGF-β1 and high levels of TGF- 
β3 are expressed (Bullard et  al. 2003), suggesting that the relative proportion of 
each subtype may be crucial for scarring.

TGFβ, in combination with other factors as PDGF, FGF2, and IGF-1 which are 
mainly produced by macrophages, can mediate differentiation of mesenchymal 
stem cells into myofibroblasts and induce collagen and other ECM component pro-
duction (Werner and Grose 2003; Ishida et al. 2008; Vogler et al. 2003).
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 Angiogenesis

Macrophages contribute to angiogenesis during wound healing, by induction of 
angiogenic sprouting in the wound bed (Greenburg and Hunt 1978; Thakral et al. 
1979). When macrophages are depleted during the wound-healing process, VEGF 
is reduced, resulting in a decreased vascularization (Lucas et al. 2010; Mirza et al. 
2009; Goren et al. 2009). Vascularization is crucial for most physiological and path-
ological processes of tissue growth and several studies have underlined the role of 
macrophages in angiogenesis (Lucas et al. 2010; Mirza et al. 2009; Murdoch et al. 
2008; Okuno et al. 2011).

In order to facilitate migration of endothelial cells, the ECM and basement mem-
brane are degraded by mediation of the MMPs, produced by several cells including 
macrophages and endothelial cells. Then, endothelial cells migrate into the wound 
by adherence to integrin cell surface receptors on the ECM. This is predominantly 
exerted by TNFα and VEGF release by macrophages, and TNFα may in turn induce 
VEGF expression in keratinocytes and fibroblasts (Frank et al. 1995).

Blood vessel growth and organization depend on macrophage and pericyte inter-
play (Armulik et al. 2011; Fantin et al. 2010; Rymo et al. 2011; Stefater et al. 2011). 
The role of macrophages in the vasculature has been studied extensively in the con-
text of tumorigenesis (Schmid and Varner 2012; Wynn et al. 2013), but they have 
also been implicated in physiological angiogenesis, directly, through physical 
involvement in the process and indirectly by the secretion of angiogenic factors 
(Fantin et al. 2010; Rymo et al. 2011).

It has been reported that these macrophages participate in vessel sprouting driven 
by specialized endothelial tip cells. The formation of tip cells is predominantly 
stimulated by M2 macrophages, especially through the secretion of VEGF (Tammela 
et al. 2008), and the macrophages seem to serve as guidance and bridge cells in this 
fusion process of the tip cells, as well (Fantin et al. 2010). Macrophages can also 
increase vascular permeability by releasing vasoactive substances such as vascular 
permeability factor (Berse et  al. 1992), substance P (Pascual and Bost 1990), 
platelet- activating factor, and prostaglandins (Middleton and Thatcher 1998).

There is controversy about what macrophage profile, proinflammatory (M1) ver-
sus alternatively activated (M2) macrophages, contributes to angiogenesis. In a 
recent in vitro study, macrophages with a proinflammatory profile enhanced angio-
genesis, increasing the number and length of endothelial sprouts, in a Notch 
signaling- dependent manner (Tattersall et  al. 2016). In contrast, treatment with 
alternative activator IL-4 did not enhance macrophage angiotropism (Tattersall 
et al. 2016). In vivo studies, however, have suggested that inflammatory polarized 
macrophages do not contribute to angiogenesis (Jetten et al. 2014) or that alterna-
tively activated macrophages show additional angiotrophic character due to 
increased metalloproteinase activity, while inflammatory macrophages provided 
less proangiogenic stimulus (Zajac et al. 2013). Probably, the role of macrophages 
in angiogenesis varies with injury site and phase and it is more likely to secrete 
proangiogenic and anti-angiogenic signals depending on the context (Brancato and 
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Albina 2011). Perivascular M2 macrophages also seem to regulate vascular perme-
ability (He et al. 2016).

Notch signaling functions in several angiogenic mechanisms, most notably con-
trolling the differentiation between endothelial tip- and stalk-cell identities (Tung 
et al. 2012). More recently, Notch has been implicated in the interaction between 
endothelial cells and both macrophages and perivascular cells. In macrophages, 
Notch signaling has been found to be important for recruitment to sites of active 
angiogenesis in both developmental and pathological settings, and Notch signaling 
has been detected in macrophages at the sites of imminent or recent vessel anasto-
mosis, suggesting a role in this process (Outtz et al. 2010, 2011). In fact, inhibition 
of macrophage Notch signaling was sufficient to abrogate the angiotrophic advan-
tage of inflammatory polarization. This is consistent with the role of Notch as a 
mediator of macrophage inflammatory polarization (Wang et al. 2010).

 Peripheral Nerve Regeneration

The subepidermal nerve plexus is the most peripheral part of the nervous system. 
Following injury, Schwann cells are responsible for the regenerative capacity of the 
peripheral nervous system (PNS) and act directly to aid axonal outgrowth and remy-
elinate the regenerating axon (Gaudet et al. 2011; Zochodne 2012). Schwann cells 
also participate in regulating the immune response (Stratton and Shah 2016; Stratton 
et al. 2016) and express several ligands that are known to interact with receptors 
expressed by macrophages, yet the effects of Schwann cells in regulating macro-
phage phenotype are not fully understood.

In response to peripheral nerve injury, macrophages are recruited to the injured 
nerve, and play a vital function in clearing debris, including inhibitory myelin debris 
(Kang and Lichtman 2013), a process that is necessary for a competent axonal 
regeneration (Gaudet et al. 2011; Barrette et al. 2008). In addition, macrophages 
regulate neurotrophin production and angiogenesis (Cattin et al. 2015; Gaudet et al. 
2011; Barrette et al. 2008; Bastien and Lacroix 2014).

The interaction between macrophages and Schwann cells has been demonstrated 
in an inducible in vivo model, where activation of tamoxifen-inducible Raf-kinase 
transgene causes Schwann cell dedifferentiation in the absence of axonal injury. 
Consequently, CCL2 is upregulated by Schwann cells, attracting and activating 
macrophages, that participate in demyelination (Napoli et  al. 2012; Klein and 
Martini 2016).

Schwann cells in the distal stump upregulate the expression of cytokines involved 
in the activation of an innate immune response, such as TNFα, IL-1α, IL-1β, LIF, 
and MCP-1 (Gaudet et al. 2011; Martini et al. 2008; Rotshenker 2011). This allows 
repair Schwann cells to interact with immune cells and to recruit macrophages to 
the nerve. Cytokines such as IL-6 and LIF not only attract macrophages to the 
injured nerve but can also act on neurons to promote axonal regeneration (Bauer 
et al. 2007; Cafferty et al. 2001; Hirota et al. 1996). In addition, macrophages pro-
mote vascularization of the distal nerve, via VEGF secretion (Cattin et al. 2015; 
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Barrette et al. 2008; Niemi et al. 2013). In peripheral nerve injury, macrophages 
respond selectively to the hypoxia within the Schwann cell regeneration bridge, and 
via VEGF-A secretion they trigger the polarized vascularization of the bridge 
region. These newly formed blood vessels are used as a guiding path by Schwann 
cells to cross the bridge, guiding the regrowing axons with them.

Macrophages also cooperate with Schwann cells to degrade myelin debris that 
potentially inhibits axon growth during the second phase of myelin clearance 
(Rotshenker 2011; Hirata and Kawabuchi 2002). Schwann cells themselves take a 
major part in breaking down their own redundant myelin sheaths during the first 
5–7 days after injury (Niemi et al. 2013; Jessen and Mirsky 2016; Perry et al. 1995). 
Then, the second phase of myelin clearance is dominated by macrophages (Hirata 
and Kawabuchi 2002; Dubovy et al. 2013; Ramaglia et al. 2008; Vargas et al. 2010).

In peripheral nerve injury, monocytes infiltrated within 6–12  h present an 
increased expression of proinflammatory-associated factors, including TNFα, 
IL-1β, IL-6, PPBP, CXCL2, CCL8, SAA3, SLPI, and CD300 at 1 day postinjury 
(Jha et al. 2015; Nadeau et al. 2011; Painter et al. 2014; Ydens et al. 2012), similar 
to other tissues under acute injury (Arnold et  al. 2007; Aurora and Olson 2014; 
Gensel and Zhang 2015; Kroner et  al. 2014). Interestingly, characteristic 
proinflammatory- associated genes such as interferon-γ receptor (Ifngr), and in some 
cases inducible nitric oxide synthase/iNOS (Nos2), are not usually detected at early 
or late stages following peripheral nerve injury (Painter et al. 2014; Ydens et al. 
2012; Peluffo et al. 2015).

There is controversy on whether these proinflammatory factors are detrimental 
or not (Arnold et al. 2007; Aurora and Olson 2014; Gensel and Zhang 2015; Kroner 
et  al. 2014). In vitro, the exposure of Schwann cells and neurons to M1-primed 
macrophage-conditioned media enhances Schwann cell proliferation, reduces axo-
nal outgrowth, and compromises neuronal survival (Kigerl et al. 2009; Mokarram 
et al. 2012). In vivo, however, when proinflammatory macrophage function is inter-
fered, nerve healing is compromised and a reduction in axonal regrowth is observed 
(Peluffo et al. 2015).

It is worth noting that although the M1-associated macrophage is the predomi-
nant macrophage phenotype present at 1 day postinjury (Bastien and Lacroix 2014), 
the most highly upregulated genes are those that encode for enzymes, such as Arg1 
and Chil3, associated with an anti-inflammatory response (Novak and Koh 2013a; 
Painter et al. 2014; Gensel and Zhang 2015; Novak and Koh 2013b). Then, between 
7 and 14 days postinjury, a different anti-inflammatory macrophage subtype wave 
dominates the nerve, characterized by the expression of interleukin-10 (IL-10) and 
receptors such as interleukin-10 receptor (IL-10r), interleukin-4 receptor (IL-4r), 
interleukin-13 receptor alpha 1 (IL-13ra1), and triggering receptor expressed on 
myeloid cells 2 (Trem2) (Bastien and Lacroix 2014; Ydens et al. 2012; Be'eri et al. 
1998). The kinetics of macrophage polarization at later stages of nerve injury is 
similar to what is observed at sites of injury in tissues such as skin and skeletal 
muscle (Novak and Koh 2013a; Arnold et al. 2007; Daley et al. 2010), but different 
from what occurs in spinal cord injury where the expression of M2-associated genes 
and proteins is only transient.
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 Remodeling or Maturation

The last phase of wound healing, remodeling, is characterized by maturation of the 
repaired tissue that includes reorganization of the vasculature, as capillary density 
declines toward the level of normal tissue (DiPietro 2013), extracellular matrix 
remodeling from granulation to scar tissue, and senescence of myofibroblasts (Jun 
and Lau 2010; Desmouliere 1995). Most endothelial cells, macrophages, and myo-
fibroblasts undergo apoptosis, or exit the wound (Gurtner et al. 2008). In the mouse 
skin, wound healing is completed within 1–2 weeks, depending on the experimental 
model (Lucas et al. 2010; Mirza et al. 2009; Mirza and Koh 2011). However, scar 
maturation may take 6 months or more (Robins et al. 2003).

During this phase, macrophages sustain expression of TGFβ; decrease expres-
sion of VEGF, arginase-1, and insulin-like growth factor-1 (Mirza and Koh 2011; 
Willenborg et al. 2012); and downregulate expression of both proinflammatory and 
anti-inflammatory cytokines (Perdiguero et al. 2011).

Macrophages play an important role in ECM breakdown, which is fundamental 
for wound healing and tissue remodeling. They secrete MMPs and serine proteases. 
MMP-12, for example, is a macrophage-specific metallo-elastase (Shapiro et  al. 
1993), which has been suggested to play a role in capillary regression in skin 
wounds, resulting in a decrease of erythema (Madlener et al. 1998). Macrophages 
also promote tissue integrity by producing type VIII collagen (Weitkamp et  al. 
1999) and some matrix proteins (Gratchev et al. 2001).

However, relevance of macrophages during the remodeling phase of tissue repair 
remains unclear. In mouse models of chronic liver fibrosis, macrophages of an anti- 
inflammatory phenotype are required for resolution of established fibrosis (Duffield 
et  al. 2005) but there is no evidence that remodeling-phase macrophages have a 
similar fibrinolytic role after acute skin injury. In fact, depletion of macrophages 
from mouse skin wounds during the remodeling phase has no effect on the amount 
or organization of scar tissue at 14 days after injury (Lucas et al. 2010). Interestingly, 
macrophage depletion studies suggest that collagen production and scar maturation 
in skin wounds are regulated by monocytes/macrophages of the inflammatory and 
proliferative phases, respectively, rather than by macrophages of the remodeling 
phase (Lucas et al. 2010; Rodero et al. 2013).

 Macrophages and Impaired Wound Healing

Activity of macrophages is regulated by cytokines acting in both autocrine and 
paracrine manners. Proinflammatory cytokines of the inflammatory or early stage 
include IL-1β, TNF-α, and IL-6. At the proliferative phase, macrophages secrete the 
anti-inflammatory cytokine IL-10, as well as pro-healing factors IGF-1 and TGFβ1. 
VEGF is released mainly by macrophages in the early phase of the healing process, 
while at later stages keratinocyte/fibroblasts/endothelial cells are the main releasers 
(Mirza and Koh 2015).
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Many pathological situations associated with impaired healing are characterized 
by persistent inflammation, reduced vascularization and granulation tissue, and 
incomplete wound closure. This impairment is associated with persistent proinflam-
matory cytokine production and decrease of proangiogenic and pro-healing factors 
(Loots et al. 1998; Mirza and Koh 2011; Blakytny and Jude 2006; Jeffcoate and 
Harding 2003; Mirza et al. 2014).

Long-term macrophage accumulation and/or deregulation of macrophage phe-
notype and function can lead to tissue damage, failure to heal, and/or fibrosis. Skin 
wounds in diabetic mice and humans present impaired healing and a prolonged 
proinflammatory macrophage phenotype supported by IL-1β and TNFα (Mirza and 
Koh 2011; Mirza et al. 2013; Goren et al. 2007). However, impaired healing is not 
always associated with proinflammatory macrophage activation.

Each tissue injury has a unique set of damage, recruitment, and molecular signals 
coordinating the repair response. For example, unique microenvironmental signals 
are created by sterile inflammation versus pathogen-mediated inflammation due to 
the damage-associated molecular patterns recognized by inflammatory cells rather 
than pathogen-associated molecular patterns. When wound healing is complicated 
by infection or other activity that activates the adaptive leukocyte system, macro-
phages and T cells cross-talk via cytokines and co-stimulators (Doherty 1995; 
Tredget et al. 2006) and macrophages stimulate T-cell expansion and differentiation 
to Th1 and Th2 cells. In this case, T cells make wound healing more complex, and 
can lead to necrosis, fibrosis, ulcer formation, or granuloma formation. Th2 response 
results in the production of ECM, while Th1 cells mainly produce IFN-γ which 
results in the differentiation of macrophages into M1 macrophages. In another situ-
ation, ischemic injury can activate signaling divergent from traumatic injury based 
on induction of hypoxia signaling and reactive oxygen species. Physiology/biology 
of the particular tissue also significantly impacts the way the injury niche orches-
trates repair. The local stromal cell and tissue-resident macrophage populations, 
mechanical properties and organization of the tissue, and extent of vascularization 
and oxygenation could all contribute to differential engagement of immune cell 
populations in situ. These factors contribute to the diversity of macrophage pheno-
types and repair programs produced by the innate immune system.

 Macrophage to Pericyte Transition

An elegant in vivo fate-mapping work by Yamazaki et al. has recently shown that, 
in the embryonic skin vasculature, tissue-localized F4/80+ myeloid progenitors dif-
ferentiate into pericytes in a process mediated by TGFβ signaling (Yamazaki et al. 
2017). Type 2 TGF-β receptor (Tgfbr2) mutant mice exhibited deficient pericyte 
development in skin vasculature. The myeloid-derived pericytes constituted a sub-
stantial proportion (about 20–30%) of all skin pericytes at E15.5 (Dias Moura 
Prazeres et  al. 2017). Unfortunately, the authors did not test whether such 
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transitions are also happening in adult skin upon wounding, but this certainly 
remains an enticing possibility.

Another interesting possibility is that macrophages act as signaling hubs to 
attract pericyte-like cells to the wounds. One of the important macrophage-derived 
signals seems to be glycoprotein nonmetastatic melanoma protein B (GPNMB) (Yu 
et  al. 2018). Macrophage-derived GPNMB promotes mobilization of CD11b- 
CD45- CD31-Sca-1+CD29+CD146+ cells to the wound bed (Silva et al. 2018b).

 Pericyte Relationship with Other Stromal Cell Types

As introduced earlier, careful reading of the literature is important to extract all 
available information about these enigmatic cells. First of all, perivascular-localized 
cells residing both in human scalp (Yamanishi et al. 2012) and glabrous skin (Ruetze 
et al. 2013) have been classified as putative dermal stem cells (Vapniarsky et al. 
2015). However, we and others have reported that dermal stemness can be safely 
attributed to dermal Schwann cells (Etxaniz et al. 2014; Iribar et al. 2017; Gresset 
et al. 2015) that become dedifferentiated upon wounding, and that these are closely 
related to pericytes. This is at least true if we define dermal stem cells as those 
capable of differentiating to several lineages, including the neural progeny (Toma 
et al. 2001). Therefore, it seems likely that, upon wounding, we might witness in the 
skin a similar situation to what was reported in the mouse incisor tooth (Kaukua 
et al. 2014), which is a permanently regenerating organ: Schwann cells may give 
rise to pericytes that may give rise to the terminally differentiated cells that repair 
the tissue. This hypothesis remains to be experimentally proven in the skin, although 
the fact that a subset of Schwann cells and pericytes derive from the boundary cap, 
and the fact that both derivatives seem to be interconvertible (at least in develop-
ment), adds support to this idea. Alternatively or as an addition to this enticing pos-
sibility, it has already been demonstrated that paracrine signaling from 
dedifferentiated Schwann cells may be key in inducing a blastema-like state in stro-
mal cells that are present within the wound (Johnston et al. 2013, 2016; Parfejevs 
et al. 2018b). Whether the cells responding to the signals are pericytes remains to be 
determined. For instance, pericytes proliferate upon wounding in the axolotl digit 
tip regeneration setting and migrate into the blastema but give rise solely to peri-
cytes (Currie et al. 2016).

Some research groups use extensively the “fibroblast subpopulation” terminol-
ogy, their original studies indicating that at least two distinct such subpopulations 
populate the dermis (Driskell et al. 2013; Driskell and Watt 2015). We believe that 
this terminology is confusing since there is no definition for fibroblast other than a 
dermal cell growing in attachment culture. This is obviously a highly heterogenous 
culture (Hu et al. 2018), and it includes plenty of different cell types such as peri-
cytes, at least in the lower passages (Paquet-Fifield et al. 2009). Upon wounding, 
Watt et  al. defined two waves of cells populating the wound bed: the first wave 
derives from cells of the reticular dermis and hypodermis (traced by Dlk1 
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 expression), and which elaborate the collagenous ECM characteristic of fibrosis. In 
the second wave, the upper dermal lineage (papillary dermal cells defined as CD26+ 
Sca1−) contributed exclusively to the papillary dermis upon reepithelialization. 
Interestingly, Rinkevich et al. identified CD26/DPP4 as a surface marker that allows 
isolation of a pro-fibrotic fibroblast lineage (Rinkevich et al. 2015).

More recent studies, including some where single-cell RNA-sequencing permit-
ted the discrimination of cell subsets in a more defined way (Philippeos et al. 2018; 
Tabib et al. 2018), have shown a much more complex picture, as it was entirely 
predictable. Tabib et al. defined 19 distinct clusters of cells in human dermis, of 
which 3 were defined as “fibroblasts,” 2 as “pericytes,” 1 as “macrophage/DC,” and 
1 as “smooth muscle” (Tabib et al. 2018). In a reanalysis of the “fibroblast” clusters 
(2742 cells), they found two major and five minor subpopulations, defined as fol-
lows: (i) SFRP2/DPP4 (1671 cells) that could be pro-fibrotic fibroblasts, and 
included a WIF1/COMP/NKD2 subset that expressed highest levels of collagen 
type I; (ii) FMO1/LSP1 (536 cells) that had a perivascular location and expressed 
CXCL12; (iii) CRABP1/TNN/ASPN, possibly dermal papilla cells; (iv) COL11A1/
DPEP1 cells; (v) SFRP4 cells; (vi) PRG4 (59 cells); and (vii) ANGPTL7/C2orf40 
(33 cells). In an analysis of 184 cells, Philippeos et al. identified five fibroblast sub-
populations, but it is unclear if these groups included perivascular cells and macro-
phages as well (Philippeos et al. 2018). To add to the complexity, Korosec et al. have 
separated human papillary and reticular fibroblasts through cell sorting as 
FAP+CD90− (papillary) and FAP−CD90+ (reticular) fibroblasts, but they have 
shown that these subsets are not spatially restricted, and that they respond dynami-
cally to the microenvironment (Korosec et al. 2018).

Obviously, careful analysis of these novel single-cell data and comparison with 
the available literature are needed to obtain some more relevant information out of 
these experiments. For instance, one key point is which “fibroblast” will give rise to 
the granulation tissue upon wounding. In mice transiently overexpressing TGF-β1 
and PDGF-B growth factors in the skin, a marked macrophage influx and an expan-
sion of the connective tissue cell population were detected, originating from micro-
vascular pericytes (Rodriguez et al. 2013). Of interest, TGF-β1 produced a more 
stiff, tense ECM consistent with a pro-fibrotic role, while PDGF-B produced imma-
ture granulation tissue. Interestingly, a pericyte subpopulation characterized as 
PECAM1+Sca1+CD38+ cells enters the cell cycle upon wounding and gives rise to 
myofibroblast-like cells in granulation tissue (Etich et al. 2013). In fact, debrided 
wound material in burn wounds has been suggested as a source of autologous 
PDGFRβ+ stem cells for wound repair (Natesan et al. 2011). Thus, it seems likely 
that some pericyte subset is responsible for this transformation. While hair follicle 
dermal stem cells (Rahmani et al. 2014) also may seem to contribute to this phe-
nomenon, the relationship of these cells to the cells in other compartments of the 
dermis is still unclear and needs further clarification. The striking similarities 
between myofibroblasts, pericytes, and perifollicular dermal sheath cells have pre-
viously been noted (Juniantito et al. 2012).

The putative relationship between pericytes (PC) and Schwann cells (SCs) was 
demonstrated in cultured spheres generated from dermal tissue, which contained 
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SCs identified as p75+/CD56+ cells, which in vivo are associated to nerve terminal 
axons innervating the skin, and p75+/CD56− PCs which are found in perivascular 
location of dermal vascular plexus (Etxaniz et al. 2014). We proposed that the neural 
potential observed in skin-derived precursor cell cultures is produced as a result of 
p75+/CD56+ cell differentiation. The transcriptomic analysis performed on those 
populations corroborated the identity of both populations; thus, p75+/cd56+ frac-
tion expressed Schwann cell precursor genes (according to their immature state), 
and p75+/CD56− population expressed pericytic markers. The comparison between 
both populations revealed an extraordinary similarity that suggests a developmental 
relation between them. Additionally, the correlation between Sox2 levels that was 
mostly expressed in SCs but also in a high level in PCs, and the in vitro-measured 
potential on these populations, indicated that Sox2 could be acting as a regulator of 
the differentiation stage, and these human data have later been confirmed in differ-
ent mouse models (Iribar et al. 2017; Gresset et al. 2015). Hence we proposed that 
a switch between SCs and PCs is possible, in which both populations are mutually 
convertible in base of their Sox2 expression levels (Etxaniz et  al. 2014). During 
pericyte activation in angiogenesis, in normal or damaged conditions also a detach 
from the vessel wall is implicated with a phenotype change and the acquisition of 
new functional capacities (Morikawa and Ezaki 2011; Cheng et al. 2011).

 Conclusions

In this chapter, we have discussed the different aspects of vascular formation, 
peripheral innervation, and role of macrophages in cutaneous wound healing and 
we have hypothesized how these cells may often convert into each other, or influ-
ence the conversion of their neighbors. We proposed that vascular formation is regu-
lated by different mechanisms between development and postnatal life, and that 
sprouting angiogenesis in skin wound healing is driven by pericytes. We have also 
suggested that nerve-associated cells, specifically the terminal Schwann cells that 
ensheath the nerve endings and derive from the boundary cap, may have a promi-
nent role as pro-regenerative actors and may do so by transitioning themselves into 
pericytes, among other things. We have also proposed that macrophages and peri-
cytes might interconvert, and that EPCs may give rise to perivascular cells under 
certain circumstances. Thus, it may seem that upon wounding, lineage boundaries 
become frail and virtually any cell can be transitioned into the next relevant cell 
lineage for repair to occur efficiently. Obviously, we now believe that the cell sub-
sets that we scientists like so much, because they adapt to our classifying mission, 
may be considered as mere reference points in the continuum of cell states that will 
be available in a cutaneous wound at any given time. This would apply not only to 
macrophages, but also to pericytes and Schwann cells. We hope that our vision on 
the complexity of the role of pericytes in wound healing is now clearer, and that the 
different aspects that we touched upon will be of use for interested readers. Finally, 
we would like to mention that the putative role of resident pericyte subtypes in 
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developing cutaneous scarring is gaining momentum (Bodnar et  al. 2016; 
Greenhalgh et al. 2015; Leavitt et al. 2016; Prazeres et al. 2018), but covering this 
issue at any depth would be outside of the already too wide scope of this chapter.
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Chapter 2
Pericytes in Glioblastomas: Multifaceted 
Role Within Tumor Microenvironments 
and Potential for Therapeutic 
Interventions

Anirudh Sattiraju and Akiva Mintz

Abstract Glioblastoma (GBM) is an aggressive and lethal disease that often results 
in a poor prognosis. Unlike most solid tumors, GBM is characterized by diffuse 
infiltrating margins, extensive angiogenesis, hypoxia, necrosis, and clonal heteroge-
neity. Recurrent disease is an unavoidable consequence for many patients as stan-
dard treatment options such as surgery, radiotherapy, and chemotherapy have proven 
to be insufficient in causing long-term survival benefits. Systemic delivery of prom-
ising drugs is hindered due to the blood–brain barrier and non-uniform perfusion 
within GBM tissue. In recent years, many investigations have highlighted the role 
of GBM stem cells (GSCs) and their microenvironment in the initiation and main-
tenance of tumor tissue. Preclinical and early clinical studies to target GSCs and 
microenvironmental components are currently underway. Of these strategies, 
immunotherapy using checkpoint inhibitors and redirected cytotoxic T cells have 
shown promising results in early investigations. But, GBM microenvironment is 
heterogenous and recent investigations have shown cell populations within this 
microenvironment to be plastic. These studies underline the importance of identify-
ing the role of and targeting multiple cell populations within the GBM microenvi-
ronment which could have a synergistic effect when combined with novel therapies. 
Pericytes are multipotent perivascular cells that play a vital role within the GBM 
microenvironment by assisting in tumor initiation, survival, and progression. Due to 
their role in regulating the blood–brain barrier permeability, promoting angiogene-
sis, tumor growth, clearing extracellular matrix for infiltrating GBM cells and in 
helping GBM cells evade immune surveillance, pericytes could be ideal therapeutic 
targets for stymieing or exploiting their role within the GBM microenvironment. 
This chapter will introduce hallmarks of GBM and elaborate on the contributions of 

A. Sattiraju, PhD · A. Mintz (*) 
Department of Radiology, Columbia University Irving Medical Center, New York, NY, USA
e-mail: anirudh.sattiraju@mssm.edu; am4754@cumc.columbia.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16908-4_2&domain=pdf
mailto:anirudh.sattiraju@mssm.edu
mailto:am4754@cumc.columbia.edu


66

pericytes to these hallmarks by examining recent findings. In addition, the chapter 
also highlights the therapeutic value of targeting pericytes, while discussing con-
ventional and novel GBM therapies and obstacles to their efficacy.

Keywords Glioblastoma · GBM · Pericytes · Microenvironment

 Introduction

 Glioblastoma: Incidence and Histological Characteristics

GBM is the most common and aggressive primary malignant brain cancer with a 
dismal prognosis (Sattiraju et al. 2017a; Van Meir et al. 2010). The median overall 
survival rate is currently 20.8 months for patients undergoing treatment with adju-
vant chemotherapy (temozolomide) following maximum safe resection (Roh et al. 
2017). It is estimated that about 13,000 patients are newly diagnosed with GBM 
annually with an estimated 5-year survival rate of about 10% for adults and about 
40% for children (Rostomily et al. 2005; Song et al. 2010; Stupp et al. 2009).

Histopathological characteristics of GBM include anaplasia, macrophage and 
microglial infiltration, extensive angiogenesis and regions of severe hypoxia, result-
ing in pseudopalisading structures around necrosing neural tissue (Bissell and 
Radisky 2001; Van Meir et al. 2010). At a cellular level, GBM is characterized by the 
rapid proliferation of malignant cells  which invade diffusely into the surrounding 
normal brain parenchyma accompanied by extensive proliferation of endothelial cells 
which assemble into highly torturous, disorganized and leaky blood vessels which 
often result in hypoxic microenvironments within tumor tissues (Van Meir et  al. 
2010; Zong et al. 2012). Invading GBM cells tend to displace preexisting astrocytes 
and pericytes that are otherwise tightly wrapped around endothelial cells, thereby 
disrupting the blood–brain barrier (BBB), resulting in leaky blood vessels (Dubois 
et al. 2014; Watkins et al. 2014). The cell of origin (COI) which is hypothesized to be 
the first malignant cell that sets the eventual formation of aberrant tissue into motion 
is thought to exist within the tumor mass in areas of severe hypoxia. GBM is a highly 
heterogenous disease indicated by the high degree of genetic variations and existence 
of multiple subclones within tumor tissues. This high degree of heterogeneity has 
also prompted some researchers to believe that there may be multiple cells of origin, 
giving rise to a mosaic of aberrant cells which we consider as the tumor tissue 
(Bradshaw et al. 2016; Cabrera et al. 2015; Dalerba et al. 2007; Fidoamore et al. 
2016; Friedmann-Morvinski and Verma 2014; Heddleston et al. 2011).

 Hypoxic Microenvironment Within GBM

GBM is an aggressive disease which requires abundant supply of oxygen and nutri-
ents for the survival of highly proliferating cells. The high rate of cellular prolifera-
tion within the tumor tissue causes severe hypoxia (0.1–0.5%) within the tumor core 
and mild hypoxia (0.5–2.5%) in peripheral regions of the tumor (Evans et al. 2004). 
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Within these hypoxic regions, cells residing far away from preexisting blood vessels 
that cannot adapt to their hypoxic microenvironment undergo apoptosis or coagula-
tive necrosis (Brat and Van Meir 2004; Martínez-González et al. 2012). This results 
in the outward movement of cells in the surrounding areas towards the periphery of 
the hypoxic region. These outward moving cells form palisading structures called 
“Pseudopalisades” and these events are thought to enhance the invasiveness of 
GBM cells, which in turn stimulate endothelial proliferation and angiogenesis 
through secretion of VEGF and other factors. Pseudopalisades are a distinct feature 
of GBMs and a marker of aggressive disease, often distinguishing them from low- 
grade astrocytomas (Brat et  al. 2004; Heddleston et  al. 2009; Rong et  al. 2006; 
Sattiraju et al. 2017a).

 Hallmarks of GBM

 Glioblastoma Initiation and Maintenance

Recent investigations have pointed towards progenitor cells present within the sub- 
ventricular zone (SVZ) and in peripheral white matter of the cortex as potential 
COIs for GBM (Alcantara Llaguno et al. 2015). These investigations had employed 
cell population-specific knockdown of proto-oncogenes and in vivo transduction of 
progenitor cells expressing fluorescent labels in the cortex of the brain of transgenic 
mice to show that primitive progenitor cells give rise to aberrant populations of 
rapidly proliferating cells in a hierarchical fashion. Llaguno et al. pointed to the 
mutation of proto-oncogenes as a prerequisite for the transformation of otherwise 
normal progenitor cells and subsequent altered migration and production of aber-
rant glial cells. Assanah et al., on the other hand, showed that the overexpression of 
growth factors receptors without mutations to proto-oncogenes was sufficient to 
alter the function of progenitor cells and cause the growth of tumors within brains 
of mice (Assanah et al. 2006).

Even though the question of which cell population(s) initiate GBM is still being 
hotly debated (Safa et al. 2015; Soda et al. 2011), studies examining the effect of 
therapeutics on established GBM models have reported the existence of stem-like, 
plastic cells present within GBM tissue that tend to survive therapeutic exposure 
and later cause disease relapse (Bao et al. 2006; Baskar et al. 2012; Chen et al. 2012; 
Jackson et al. 2015; Mannino and Chalmers 2011; Murat et al. 2008; Weller et al. 
2012). These tumor cells which show the genetic expression and functional charac-
teristics of stem cells have been termed as glioblastoma stem cells (GSCs) (Bradshaw 
et al. 2016; Cabrera et al. 2015; Calabrese et al. 2007; Dalerba et al. 2007; Gilbertson 
and Rich 2007; Hanahan and Weinberg 2011; Heddleston et al. 2009; Lathia et al. 
2015; Liebelt et al. 2016; Singh et al. 2004a, b). In recent years, further studies into 
the role of GSCs have indicated their importance in the maintenance of GBMs and 
reconstitution of tumors post therapy (Chou et al. 2012; Dewhirst et al. 2008; El 
Hallani et al. 2010; Heddleston et al. 2009; Jhaveri et al. 2016; Lathia et al. 2010; 
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Nakada et al. 2013; Ogden et al. 2008; Ricci-Vitiani et al. 2010). Although several 
investigations have elucidated the role of GSCs and explored potential ways to tar-
get them to enhance the efficacy of current and future therapies, questions regarding 
the ontology of GSCs have not been conclusively answered (Brooks et al. 2013; 
Chen et al. 2014; Fan et al. 2010; Huang et al. 2012; Mendez et al. 2010; Persano 
et al. 2012; Sattiraju et al. 2017a). In addition, Segerman et al. Chaffer et al. and 
others showed that cancer cells are highly plastic and that terminally differentiated 
cancer cells dedifferentiate into cancer stem cells (CSCs) in response to stressors 
and therapy (Chaffer et al. 2013; Niklasson et al. 2017; Segerman et al. 2016). These 
studies highlighted the importance of tissue microenvironment in the regulation of 
cancer cell state, but further investigations are necessary to understand the impor-
tance of cellular plasticity in tumor maintenance and therapeutic resistance.

 Angiogenesis and Perfusion with GBM

GBM is characterized by extensive angiogenesis to allow the growth and survival of 
rapidly proliferating cells (Das and Marsden 2013; Jain et al. 2007). Hypoxic micro-
environments cause GBM cell invasion and stimulate vascular and perivascular 
cells to produce pro-angiogenic factors (Brat et al. 2004; McCord et al. 2009; Rong 
et al. 2006). Vascular endothelial growth factor (VEGF) and its receptors, platelet- 
derived growth factor (PDGF), PDGF receptor-beta (PDGFRβ), angiopoietins 
(Ang1 and Ang2), Tie2, matrix metalloproteinases (MMP-2 and MMP-9), bone 
morphogenic proteins (BMPs), etc. have been shown to be involved in this process 
(Jackson et  al. 2017; Ribeiro and Okamoto 2015). The central nervous system 
(CNS) vasculature consists of tightly packed endothelial cells that are wrapped 
around by pericytes which provide structural support. Additionally, these vessels 
are further wrapped around by astrocytes that extend across endothelial cell tight 
junctions and by interneurons which together form the BBB. BBB is a protective 
vascular barrier that only allows the passive diffusion of water, oxygen, carbon 
dioxide, and highly lipophilic molecules. Glucose, amino acids, hormones, and 
larger molecules are actively transported across the BBB (Abbott 2002; Abbott 
et al. 2010). Co-opted vasculature and the newly formed angiogenic blood vessels 
within the GBM tissue show greater vascular permeability than normal CNS vascu-
lature due to their disorganized architecture. This altered, often leaky vascular bar-
rier within the tumor tissue is termed as the blood–tumor barrier (BTB) and results 
in regions of edema which hinder effective drug delivery (Agarwal et  al. 2013; 
Dubois et  al. 2014; Sattiraju et  al. 2017b). The presence of BBB in peritumoral 
regions and a leaky BTB within the tumor results in ineffective perfusion of GBM 
tissue which further contributes to necrosis and hypoxia while certain parts of a 
tumor might escape exposure to systemic therapies, thereby resulting in recurrent 
disease (Pardridge 2005, 2012).
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 Immune Microenvironment with GBM

A bulk of GBM tissue consists of infiltrated microglia and macrophages, but their 
response to tumor cells is often suppressed. Immune suppressive factors such as 
interleukin-10 (IL-10), IL6, transforming growth factor-beta (TGF-β), prostaglan-
din E2 (PGE2) suppress immune response against GBM cells, promote transforma-
tion of dendritic cells (DCs) into a regulatory phenotype and promote the activation 
of FOXP3+ regulatory T cells (Tregs). Hypoxia and subsequent expression of 
HIF-1α and VEGF production have also been reported to cause Treg activation and 
immune suppression. Macrophages isolated from GBMs tend to polarize towards 
M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes. Tumor-activated 
macrophages (TAMs) which are similar to M2 macrophages in function and cell 
surface marker presentation have been shown to play a vital role within the GBM 
microenvironment by promoting invasion and growth of tumor cells. TAMs have 
been reported to cause matrix degradation and enhance survival of GBM cells and 
GSCs. Hypoxic microenvironments within GBM have been reported to stimulate 
activation of microglia into TAMs (Jackson et al. 2017; Nduom et al. 2015; Razavi 
et al. 2016).

Activation of naïve T cells within the GBM microenvironment not only requires 
contact with major histocompatibility complexes (MHCs) on antigen-presenting 
cells (APCs) but also activation of co-stimulatory receptors (Driessens et al. 2009; 
Sharpe and Abbas 2006). Based on significant findings in the past decade that shined 
the spotlight on the role of immune cells and immune-related mechanisms within 
tumor microenvironment that effect tumor evasion and clearance, a lot of efforts are 
currently being made to exploit these mechanisms to deliver therapeutics which 
could suppress inhibitory signals and allow immune cells to identify and clear tumor 
cells (Rosenberg and Restifo 2015; Wang et  al. 2014; Yang 2015). Inhibiting 
immune checkpoints is currently the most commonly exploited mechanism for ther-
apeutic purposes. Immune checkpoints prevent naïve T cells from causing autoim-
mune responses during infections by producing inhibitory signals. Programmed 
death-1 (PD-1) is an immune checkpoint co-stimulatory receptor expressed on the 
cell surface of T cells. Normal cells of the body express ligands for PD-1, namely 
PDL-L1 and PDL-L2, to prevent activation of naïve T cells and subsequent cytotox-
icity. GBM cells exploit this mechanism and overexpress PDL-L1 on their cell sur-
face to evade immune recognition and attack. Monoclonal antibodies that inhibit 
PD-1- PDL-L1 binding have shown to boost immune response against tumor cells 
and enhance survival in pre-clinical studies (Iwai et al. 2017). Promising results in 
clinical trials resulted in the approval of immune checkpoint inhibitors (ICIs) such 
as Nivolumab (approved for NSCLC, melanoma and renal cell carcinoma), 
Pembrolizumab (approved for melanoma, lung cancer and head and neck cancer), 
and Azetolizumab (approved for Urothelial and lung cancers) for the treatment of 
cancer patients (Alsaab et al. 2017; Hamanishi et al. 2016; Kang et al. 2016).

Cytotoxic T cell antigen-4 (CTLA4) is a co-stimulatory receptor, similar to 
PD-1, which negatively regulates T-cell activation. Inhibiting the binding of CTLA4 
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to its ligand had been shown to cause increased immune response against tumors. 
Monoclonal antibodies that inhibit CTLA4 binding such as Ipilimumab were 
approved for use in the clinic for melanoma patients after they showed promising 
results in preclinical and clinical trials (Alsaab et al. 2017; Hamanishi et al. 2016; 
Kang et al. 2016). The delivery of ICIs to GBMs is hindered, however, by the pres-
ence of BBB and the ineffective perfusion within tumor tissue due to angiogenic 
blood vessels (Hodges et al. 2016; Lyon et al. 2017; Rolle et al. 2010).

A recent phase-I study showed the potential for using interleukin-13 receptor 
alpha 2 (IL13RA2) directed chimeric antigen receptor (CAR) T cells against recur-
rent GBM. The IL13RA2 redirected CAR T cells in this study were delivered into 
the resection cavity of a 50-year-old patient using a neurosurgical technique called 
convection-enhanced delivery (CED) (Brown et al. 2016). CED provides the oppor-
tunity to bypass the BBB and enhance the efficacy of drugs by delivering them 
directly into the bed of the tumor (Bobo et al. 1994; Pardridge 2005; Lidar et al. 
2004). Even though results from the study were promising, more efforts are needed 
to enhance the efficacy of this strategy.

 Failure of Conventional Therapies Against GBM and Trends 
for the Future

Recurrent disease is a major contributor to GBM patient mortality and is almost 
an eventual outcome for newly diagnosed patients whose tumors regress follow-
ing adjuvant chemotherapy using temozolomide. Invasive GBM cells residing 
outside the area of resection that escape surgical debulking, therapy-resistant 
GBM cells that either attain stem cell-like characteristics through de-differentia-
tion or retain their stem cell state after tumor initiation (COIs), insufficient diffu-
sion due to the BBB, and resulting accumulation of ineffective concentrations of 
systemic therapies within GBM tissue are thought to be major reasons for thera-
peutic failure and disease relapse (Chaichana 2014; Eyupoglu et al. 2013; Lathia 
et al. 2015; Pardridge 2005; Persidsky et al. 2006; Wolburg and Lippoldt 2002; 
Wolburg et al. 2012).

In recent years, a lot of attention has been placed on stymieing angiogenic pro-
cesses using anti-angiogenic therapies such as Bevacizumab (which binds to and 
inhibits VEGF function) and to target GBM-specific cell surface receptors, often 
overexpressed by tumors such as the mutated EGFRvIII (Gilbert et al. 2014). These 
therapies have proven to be ineffective in causing a long-term effect on the progres-
sion of tumors and have not dramatically increased the median survival rate. Tumor 
heterogeneity, barriers to effective drug delivery, and additional factors involved in 
the promotion and maintenance of angiogenic vessels are thought to have caused 
the failure of these therapies in the clinic. Latest strategies to modulate the immune 
activity within GBM microenvironment, redirecting T cells using chimeric antigen 
receptors (CARs) towards GBM cells and oncolytic viruses have shown promise in 
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preclinical investigations and phase-I clinical trials, but further research is needed 
to increase their effectiveness in the future. Additionally, preclinical investigations 
evaluating the efficacy of targeting GSCs, strategies to transiently enhance BBB 
permeability, therapeutic stem cells-based drug delivery and targeted molecular 
irradiation are currently underway to deliver systemic therapies more effectively to 
GBM tissue (Sattiraju et al. 2017b, c) (Fig. 2.1).

 Multifaceted Role of Pericytes Within GBM

 Stemness and Tumor Initiation

Pericytes were previously thought to mainly play a role in supporting vascular 
architectures within the brain as part of the neurovascular unit (NVU) and to regu-
late blood flow within capillaries, but recent investigations have shed light on their 
role in tissue homeostasis and disease pathologies (Jackson et al. 2017; Sweeney 
et al. 2016). Using transgenic mouse models and cell surface receptor expression 

Fig. 2.1 Diagram showing the multifaceted role of pericytes in various critical events of GBM 
initiation, establishment, maintenance, and progression. GSC glioblastoma stem cells, BBB blood–
brain barrier
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analysis, pericytes have been shown to be plastic multipotent perivascular cells 
which have the capability to differentiate into vascular smooth muscle cells, adi-
pocytes, primary osteocytes, chondrocytes, fibroblasts, myofibroblasts, and neural 
cell lineages (Birbrair et  al. 2014a, 2017a; Ribeiro and Okamoto 2015). Even 
though studies have shown pericytes to be stem cell-like, not all pericytes are 
plastic. Birbrair et al. had previously discovered two distinct subpopulations of 
pericytes in Nestin-GFP/NG2-DsRed double-transgenic mice, of which only 
Nestin+/NG2+ “Type-2” pericytes were observed to be involved in tumor angio-
genesis while Nestin−/NG2+ “Type-1” pericytes were not, indicating that peri-
cytes are heterogenous in their function (Birbrair et al. 2011, 2013a, b, 2014b). 
Birbrair et al. and others had discovered that pericytes (Type-2) can also be dif-
ferentiated into neural and myeloid lineages to give rise to neural-like stem cells 
(NLSCs) and macrophages (Armulik et  al. 2011; Birbrair and Frenette 2016; 
Birbrair et al. 2015).

In later studies, Birbrair et al. also observed that NLSCs derived from type-2 
pericytes tend to migrate to the subventricular zone (SVZ) of healthy mice when 
implanted intracranially (Birbrair et al. 2013a). Importantly, Birbrair et al. also 
observed that in mice bearing orthotopic GBMs, NLSCs migrate to regions of 
orthotropic tumors and invade along infiltrating margins when intracranially 
implanted in the ipsilateral hemisphere. These results indicate NLSCs to behave 
similarly to mesenchymal stem cells (MSCs) with regard to their migration to 
GBM sites when implanted intracranially but unlike MSCs which are co-opted 
by the tumor cells and transform into tumor-associated fibroblasts (TAFs), which 
assist in tumor growth and expansion, NLSCs did not differentiate into a TAF-
like phenotype when co-cultured with GBM cells. In addition, unlike MSCs, 
NLSCs did not promote angiogenesis when in contact with GBM cells (Birbrair 
et  al. 2017b). These results further contribute to the hypothesis that pericytes 
could be closely related to MSCs either as their precursors or as a specialized 
subpopulation of MSCs within the brain. Further adding fuel to this line of 
thought are reports showing that pericytes and MSCs share cell surface marker 
expression such as NG2, CD44, αSMA, PDGFRβ, CD90, CD73, CD105, and 
Sca-1 (Crisan et al. 2008; Ribeiro and Okamoto 2015). The ability of pericytes to 
differentiate into neural and myeloid lineages could point to their role of peri-
cytes in responding to injury and neurological diseases (Dore-Duffy et al. 2000; 
ElAli et al. 2014).

In GBM, GSCs have been reported to transdifferentiate into tumor pericytes, 
which form the majority of pericytes found within tumor tissue and assist in GBM 
cell proliferation and GSC self-renewal (Caspani et al. 2014; Cheng et al. 2013; 
Jackson et al. 2017). Neural stem cells (NSCs) have previously been shown to har-
bor the capacity to transdifferentiate into pericytes in normal brain tissue, indicating 
that GSCs could exploit such mechanisms to give rise to perivascular niche compo-
nents (Cheng et al. 2013; Goldberg and Hirschi 2009). Due to the tendency of GSCs 
to localize near vasculature and due to their ability to give rise to malignant multi-
potent pericytes, researchers have suggested the possibility for such GSC-derived 
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CD133+ “malignant pericytes” to drive tumor progression. Appaix et al. suggested 
an alternative “Cancer Pericytes” model for GBM initiation and progression where 
they hypothesized malignant CD133+ pericytes to act as COIs (Appaix et al. 2014). 
According to this hypothesis, existing pericytes behaving as MSCs could attain a 
neural stem cell-like phenotype by detaching from basement membrane, thereby 
forming a cancer stem-cell pool. These malignant pericyte-derived CSCs could then 
proliferate extensively, giving rise to a tumor mass which results in a hypoxic micro-
environment. Subsequently, endothelial cells recruited through the CXCR4/
CXCL12 pathway could initiate angiogenesis. Malignant pericyte-derived CSCs 
could then differentiate into an aggressive mesenchymal phenotype, transdifferenti-
ate into other cell types and drive tumor heterogeneity within the tumor mass or 
migrate to co-opted blood vessels to initiate another cycle of tumor formation. The 
authors speculated that such malignant pericytes could gain and lose CD133 expres-
sion during different stages of tumor formation and could thus explain the existence 
of CD133− stem cells within GBMs.

Additionally, Zhang et  al. have reported that overexpression of cytoplasmic 
GT198 (a DNA repair gene that activates VEGF) within pericytes gives rise to 
tumors. The authors suggested that malignant pericytes could be derived from 
GT198 expressing GSCs or from normal pericytes that undergo somatic mutations 
upon microenvironmental stimuli. GT198+ malignant pericytes could also be resis-
tant to radiotherapy and cause the failure of anti-VEGF therapies (Zhang et  al. 
2017).

Endothelial cells on co-opted blood vessels within the brain are thought to 
stimulate the migration of GSCs towards them through SDF-1/CXCR4 pathway 
and later induce their transdifferentiation into tumor pericytes by secreting 
TGF-β (Cheng et al. 2013). This has been suggested as a mechanism to allow 
for the proliferation of endothelial cells, as tumor pericytes present within the 
perivascular niche secrete VEGF and other paracrine factors. In addition, 
enhanced pericyte coverage of co- opted and angiogenic blood vessels is thought 
to render resistance to anti- angiogenic therapies (Gabriele Bergers and Hanahan 
2008; Ribeiro and Okamoto 2015). The ability of GSCs to give rise to tumor 
pericytes would also indicate their independence from relying on perivascular 
cells and their progenitors within the peri- tumoral region for engineering a suit-
able microenvironment.

Caspani et al. have suggested a “Dual Cell of Origin” hypothesis where peri-
cytes drive tumor diversification upon direct contact with GSCs. In their study, the 
authors reported that pericytes attain a stem cell-like state upon transfer of cyto-
plasm from GSCs giving rise to GSC–pericyte cell fusions. The authors reported the 
existence of GBM cells that expressed labels for both pericytes and GBM cells 
within orthotopically implanted xenografts, suggesting that aneuploid cells derived 
from multipolar division of these GSC–pericyte cell fusions could drive GBM 
diversification (Caspani et al. 2014). The findings mentioned in the above section 
indicate that pericytes within NVU are plastic and play a critical role in GBM initia-
tion and progression.
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 Pericytes Are Involved in GBM Invasion

Pericytes are thought to play a protective role against tumor invasion by acting as 
physical barriers but poor and disorganized pericyte coverage is often observed 
within the tumor microenvironments which allows tumor to spread (Xian et  al. 
2006). Invading GBM cells tend to incorporate existing blood vessels into tumor 
tissue by a process termed “Vascular Co-option.” These co-opted blood vessels 
undergo necrosis upon angiopoietin-2 secretion by GBM cells, repeating events of 
hypoxia and subsequent invasion into surrounding areas of normal brain paren-
chyma (Liebelt et al. 2016; Reiss et al. 2005). Alternatively, edema caused due to 
incomplete coverage of angiogenic blood vessels by pericytes within tumor tissue 
has also been hypothesized to enhance tumor invasion by increasing intratumoral 
fluid pressure. This increased intratumoral fluid pressure is further thought to sup-
press surrounding blood circulation, resulting in hypoxic microenvironments, 
thereby stimulating the invasion of GBM cells into surrounding normal brain paren-
chyma (Cooke et al. 2012).

Cytoplasmic extensions of invading GBM cells around pericytes that they 
encounter, termed “Flectopodia,” have been suggested to facilitate the co-option 
of existing blood vessels by trafficking GBM cell cytoplasm into the cellular 
cortex of pericytes. GTPase Cdc42 was shown to play a critical role in the for-
mation of such cytoplasmic extensions and pericyte activation (Caspani et al. 
2014).

Poor pericyte coverage allows spreading of GBM, as incomplete coverage of 
angiogenic vessels allows vascular invasion by GBM cells. In addition, poor 
pericyte coverage also enhances the metastatic potential of other solid tumors 
that tend to migrate to the brain. Brain metastatic lung and melanoma cells that 
extravasate through capillaries were shown to survive and proliferate for long 
periods of time only when in contact with the abluminal endothelial cells of cap-
illaries in a pericyte- like position. This mechanism where tumor cells position 
themselves similar to pericytes when in contact with the abluminal endothelial 
cells has been extensively studied in melanomas and is termed as pericyte mim-
icry or angiotropism (Bentolila et al. 2016; Lugassy et al. 2014; Scott et al. 2015). 
Pericyte mimicry not only allows for the survival and proliferation of tumor cells 
but has also been reported to be exploited by tumor cells for extravascular migra-
tory metastasis. This mechanism allows tumor cells to spread to local and distant 
sites by avoiding vascular invasion. GBM cells have been well documented in in 
vivo and in vitro studies to invade surrounding normal brain parenchyma along 
abluminal side of capillaries through the mechanism of pericyte mimicry (Scott 
et al. 2015).

As mentioned in the previous section, the ability of GSCs to attain a pericyte-like 
phenotype and their similarities to pericytes within the GBM microenvironment, 
with regard to cell surface marker expression, could be a result of pericyte mimicry 
of tumor cells and could support the hypothesis that pericyte-like cells within the 
GBM microenvironment could also act as initiating cells.
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 Pericytes and the BBB

Pericytes have been shown to play a vital role in regulating BBB permeability by 
controlling the expression and alignment of tight and adherens junction proteins 
along with the transcytosis of molecules across the BBB (Sweeney et al. 2016). 
The importance of pericytes for the structural stability of CNS vessels and for 
maintaining the BBB was observed in PDGFβ knockout mice where pericyte 
depletion resulted in enhanced CNS vascular permeability due to BBB disruption 
(Armulik et al. 2011; Bell et al. 2010; Daneman et al. 2010; Sweeney et al. 2016). 
PDGF- BB(ligand)-PDGFRβ signalling pathway is critical for pericyte–endothe-
lial cell interactions to maintain BBB stability and to regulate extravasation across 
the barrier into brain parenchyma. Transgenic mice with both PDGF and PDGFRβ 
null mutations have shown embryonic lethality due to the development of micro-
vascular instability and hyperplasia, aneurysms, and microhemorrhages (Sweeney 
et al. 2016). In studies where PDGF–BB–PDGFRβ signalling pathway was par-
tially disrupted, age-dependent BBB disruption was observed (Armulik et  al. 
2011; Bell et  al. 2010; Daneman et  al. 2010; Sweeney et  al. 2016). Similarly, 
Abramsson et  al. showed that the lack of PDGFRβ expression on pericytes 
resulted in their poor vascular coverage and enlargement of blood vessel diame-
ter, resulting in increased leakiness (Abramsson et al. 2002). In addition, TGFβ, 
Ang1, and Notch signaling have been reported to play an important role in main-
taining the integrity of the BBB (Bruna et al. 2007; Cheng et al. 2013; Liebner 
and Plate 2010; Reis and Liebner 2013; Sweeney et  al. 2016). TGFβ-TGFβR2 
signaling promotes pericyte maturation, proliferation, and attachment to endothe-
lial cells. Aberrant signaling of downstream effectors of TGFβ-TGFβR2 pathway 
such as Smad1, Smad2, and Smad4 results in vascular destabilization and brain 
hemorrhages (Goumans and Mummery 2000; Li et  al. 2011; Maddaluno et  al. 
2013; Sweeney et al. 2016). Additionally, forkhead transcription factor (Foxf2) 
which affects TGFβ signaling also plays a role in maintaining BBB integrity as 
Foxf2 knockout transgenic mice show BBB disruption, hemorrhages, perivascu-
lar edema, increase in luminal endothelial caveolae, and thinning of basal lamina 
of capillaries (Reyahi et al. 2015).

Pericytes have been observed to attach loosely and improperly cover angiogenic 
vessels within GBMs, yet proper pericyte coverage has been shown to result in sta-
bilization of tumor blood vessels, thereby accelerating GBM cell proliferation and 
invasion. High TGFβ-Smad activity was shown to result in highly aggressive and 
proliferative GBMs in patients which conferred a poor prognosis. TGFβ-Smad 
pathway has also been shown to activate PDGFB gene expression in primary GBM 
cells in vitro (Bruna et al. 2007). Majority of pericytes found in GBMs are thought 
to arise from GSCs that transdifferentiate upon migration to endothelial cells 
through SDF-1-CXCR4 signaling pathway. TGFβ has been shown to play a vital 
role in inducing this transdifferentiation of GSCs into pericyte-like cells which help 
promote angiogenesis, stabilize tumor vessels, and contribute to GBM growth 
(Cheng et al. 2013).
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Notch3, expressed by brain pericytes, has been shown to play an important role 
in interactions with endothelial cells and in maintaining the integrity of 
BBB. Abnormal TGFβ-Notch signaling has been reported to cause cerebral cavern-
ous malformation. Transgenic mice with dysfunctional Notch signaling caused by 
knockout of RBP-Jκ transcriptional factor, showed brain hemorrhages (Li et  al. 
2011; Maddaluno et al. 2013; Sweeney et al. 2016). Like TGFβ, Notch1 signaling 
has also been shown to induce transdifferentiation of GSCs into pericyte-like cells 
in vitro which promote angiogenesis (Guichet et al. 2015). Angiopoietin-1 (Ang1) 
expressed by pericytes, which binds to Tie2 receptor tyrosine kinase on endothelial 
cells, maintains BBB integrity. Like TGFβ and Notch1, knockout of Ang1 in trans-
genic mice resulted in BBB disruption and promotion of angiogenesis (Suri et al. 
1996). The major facilitator superfamily domain-containing 2a (MFSD2A), a BBB 
transporter whose expression is thought to depend on presence of pericytes, has also 
been reported to play a role in the formation and maintenance of BBB integrity 
(Ben-Zvi et al. 2014).

Pericytes interact with astrocytes through apolipoprotein E (APOE4)–LRP1 
interaction, resulting in the activation of MMP-9 activity by signaling through 
cyclophilin A (CypA)-NFκB pathway, which promotes inflammation. Increased 
APOE4-LRP1 signaling and resulting increase in the activity of MMP-9 causes 
BBB disruption due to degradation of endothelial tight junctions and basement 
membrane (Bell et al. 2012; Sweeney et al. 2016). Pericytes also regulate perfusion 
through brain capillaries and regulate BBB permeability through their contractile 
nature which is facilitated by synthesis of vimentin, actin and myosin microfila-
ments, tropomyosin and desmin. As part of the NVU, pericytes are also in contact 
with interneurons and receive communications from the nervous system as the aver-
age distance between a neuron and a brain capillary is 8–23 μm. Conditioned media 
from cultured human brain pericytes has shown the presence of neurotrophic factors 
and pericytes have been shown to regulate capillary diameter and cerebral blood 
flow upon signaling from neurons (Hawkes et al. 2011; Lovick et al. 1999). Studies 
have shown that norepinephrine leads to pericyte contraction (reduction of capillary 
diameter) while GABA, dopamine, glutamate, and adenosine cause pericyte relax-
ation (increase in capillary diameter) (Sweeney et al. 2016).

The BBB provides a formidable challenge for delivering drugs into the CNS, 
especially to brain tumors. In addition to intact BBB in areas around brain tumors, 
leaky angiogenic vessels which cause edema in certain areas of tumors result in the 
ineffective and non-uniform delivery of systemically delivered therapies (Sattiraju 
et al. 2017a, b). Ineffective drug delivery is thought to be one of the major reasons 
for GBM relapse, as cells that are not exposed to effective concentrations of sys-
temic therapies reduce therapeutic efficacy. Therefore, efforts are being made to 
either transiently disrupt the BBB or to target cells involved in regulating BBB 
permeability, in order to enhance the extravasation of systemic therapies into 
GBM. As pericyte recruitment and stabilization of blood vessels within brain tumors 
have been shown to regulate vascular permeability, strategies to disrupt pericyte 
recruitment by angiogenic endothelial cells are currently being investigated.
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In a recent study by Behling et al. by targeting monomeric vascular endothelial 
cadherin, which is expressed on angiogenic vessels and endothelial progenitor cells 
(EPCs), using a monoclonal antibody E4G10 that was labeled to α particles, the 
authors reported enhanced survival in Ntva transgenic mice bearing GBMs. As 
extensive proliferation of pericytes is usually observed in this GBM model, their 
higher density was suspected to protect endothelial cells from radiotherapy. In addi-
tion to mitigating tumor growth, the authors also observed normalization of the 
morphology of angiogenic vessels, reduction of edema, and a decrease in pericyte 
coverage of these vessels. In addition, depletion of regulatory T cells (Tregs) and 
EPCs was also observed (Behling et al. 2016). In another recent study, Sattiraju 
et al. showed enhancement in BBB permeability in brains of mice bearing ortho-
topic GBMs by targeting integrin alpha-V beta-3 (αvβ3) using an αvβ3 targeted 
antagonist conjugated to partially polymerized liposomes that was labeled to α par-
ticles. Apart from observing enhanced BBB permeability, the authors also reported 
tumor cytotoxicity evidenced by nuclear accumulations of γH2Ax double-strand 
DNA break repair protein within tumor mass. Overexpression of αvβ3 by GBM 
cells, especially at invasive ends and the presence of proliferating malignant cells in 
perivascular regions could explain this effect. The authors in this study also observed 
enhanced BBB permeability in peritumoral and normal regions of the brain sur-
rounding tumors, indicating that enhanced vascular permeability in these distal 
regions might not have been caused due to direct α particle-induced cellular effects 
(Sattiraju et al. 2017c).

Studies by both Behling et al. and Sattiraju et al. show the feasibility of targeting 
vascular and perivascular components within the NVU using short-ranged, targeted 
molecular irradiation to either enhance vascular perfusion or BBB permeability, to 
better deliver systemic drugs to GBMs and to reduce radio-resistance conferred by 
perivascular cells within GBM microenvironment. But, as evidenced in previous 
studies where pericyte ablation caused enhanced invasion and metastasis, further 
long-term evaluations to assess tumor resistance and remission in abovementioned 
strategies are necessary (Bentolila et  al. 2016; Lugassy et  al. 2014; Scott et  al. 
2015). Xiong et al. reported an alternative strategy of enhancing BBB permeability 
by remotely activating intracranially implanted genetically engineered MSCs using 
high-frequency focused ultrasound (HIFU) to secrete TNF-α. This study highlights 
the ability to locally deliver factors which can transiently influence vascular and 
perivascular cells that regulate BBB integrity and perfusion within normal brain 
parenchyma and GBMs, thus enhancing the delivery of systemic drugs to GBMs 
and CNS (Sattiraju et al. 2017b; Xiong et al. 2015).

 Pericytes Drive Angiogenesis

Angiogenesis is a crucial multi-stage process resulting in the transformation of 
GBM into an aggressive disease (Jain et al. 2007). Highly proliferating cells within 
GBM tissue drive up nutrient and oxygen demand and the resulting hypoxic 
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microenvironment stimulates the production of new and often-disorganized angio-
genic blood vessels. Pericytes play a major role in this process by forming a scaffold 
for newly proliferating endothelial cells to form blood vessels and secrete factors 
that stabilize these newly formed angiogenic vessels (Mancuso et al. 2006; Ribeiro 
and Okamoto 2015). The process of angiogenesis is tightly regulated and requires 
direct contact and crosstalk between endothelial cells and pericytes. Pericytes are 
involved in secreting factors that stimulate endothelial tip sprouting from existing 
blood vessels in their vicinity, recruit endothelial cells, and aid in their proliferation. 
Upon endothelial recruitment and formation of a vessel structure, pericytes within 
GBM microenvironment wrap endothelial cells which results in vessel stabilization 
and maturation (Caspani et al. 2014).

Endothelial cells are thought to produce PDGFβ which recruits PDGFRβ 
expressing pericytes, which in turn secrete VEGF and Ang-1 to stabilize angiogenic 
blood vessels (Hellstrom et al. 1999). Studies examining the effect of a pan tyrosine 
kinase inhibitor (SU6668), which preferentially targets PDGFRβ in RIP1-Tag2 
transgenic mice that generate pancreatic islet carcinomas showed that ablating peri-
cytes from tumor blood vessels caused vascular regression (Bergers et al. 2003). 
GSC-derived pericyte-like cells within the GBM microenvironment have also been 
reported to express PDGFRβ and aid in vessel stabilization and maturation (Cheng 
et  al. 2013). Inhibiting PDGF–BB–PDGFRβ signaling resulted in regression of 
tumor vessels, indicating that it affects the survival of endothelial cells, GSC- 
derived pericyte-like cells and co-opted pericytes (Hellstrom et  al. 2001). 
Overexpression of PDGFβ by endothelial cells has been reported to increase peri-
cyte coverage and accelerate tumor growth (Furuhashi et al. 2004).

TGF-β, expressed by pericytes in a latent form, also plays a critical role in angio-
genesis and GBM progression. TGF-β-TGFβR2 signaling has been reported to 
result in the stabilization of angiogenic vessels, and high expression of TGF-β- 
Smad has been reported to result in a poor prognosis for GBM patients. TGF-β- 
Smad pathway has been shown to induce expression of PDGF-B in GBM cells and 
the transdifferentiation of GSCs into pericyte-like cells, which aid in angiogenic 
vessels stabilization and maturation (Goumans and Mummery 2000; Maddaluno 
et al. 2013). TGF-β signaling alone has been reported to be able to induce genetic 
and phenotypic changes, often seen in altered vasculature within GBMs.

Notch1-DII4 signaling has been reported to be critical in regulating sprouting 
angiogenesis. Inactivation of Notch1 or DII4 genes have shown to cause increased 
endothelial tip sprouting and tip-cell numbers, indicating that Notch1-DII4 signal-
ing at endothelial sprout restricts tip sprouting towards VEGF-A gradients, thereby 
ensuring proper sprouting and branching patterns (Gerhardt et al. 2003). Pericytes 
have been reported to enhance the survival of endothelial cells and promote angio-
genesis by secreting VEGF-A, which binds to VEGFR2 expressed on endothelial 
cells. VEGFR2 stimulates the upregulation of survival genes such as Bcl-2, survivin 
and X-linked inhibitor of apoptosis protein (XIAP) in endothelial cells (Franco 
et al. 2011). VEFG-A–VEGFR2 autocrine signaling within endothelial cells also 
promotes their survival. Vitronectin secreted by pericytes also causes an increase of 
VEGF-A expression in endothelial cells through integrin αv-NFκB signaling, which 
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in turn causes intracellular stimulation of VEGFR2 to promote endothelial cell sur-
vival (Franco et al. 2011; Sweeney et al. 2016). Inhibiting angiogenesis by interfer-
ing with VEGF-A–VEGFR2 signaling was thought to provide significant benefit to 
GBM patients as it would result in the collapse of existing angiogenic vessels and 
prevent further tumor vascularization and growth. Bevacizumab (Avastin), a mono-
clonal antibody against VEGF-A showed very promising results in preclinical stud-
ies and was tested in two phase-III clinical trials (RTOG and AVAGlio) as a 
stand-alone and combinational therapeutic for patients with recurrent GBM 
(Friedman et  al. 2009; Gilbert et  al. 2014). Although patients initially showed 
decreased tumor growth, their tumors eventually grew resistant to the drug, result-
ing in a progression-free survival of about 10.6 months in Phase-III clinical trials 
with no added benefit to overall survival when compared to placebo arm (Friedman 
et al. 2009; Hamza et al. 2014).

Ephrin receptor EphB4, which controls vascular morphogenesis within the NVU 
during developmental angiogenesis, and its ligand ephrin-B2, which is expressed on 
brain pericytes and endothelial cells, play a vital role in pericyte–endothelial cell 
interactions. Ephrin-B2-EphB4 signaling has been reported to regulate pericyte 
migration and interaction with maturing blood vessels and could be involved in the 
vascular remodeling within the GBM microenvironment (Augustin and Reiss 2003). 
Vascular cell adhesion molecule-1 (VCAM-1), N-cadherin and integrin α4β1 play 
critical roles in regulating pericyte migration, vessel maturation, and survival of 
endothelial and mural cells during angiogenesis (Gerhardt et al. 2000).

Overexpression of endosialin (CD248) has also been linked to pro-angiogenic 
role of pericytes within the GBM microenvironment (Brady et al. 2004). Angiogenic 
vessels within GBMs were reported to be composed of two layers of pericytes, an 
abluminal layer of proliferating cells and an adluminal layer of cells surrounded by 
basal lamina. By restricting the recruitment of pericytes and their signaling with 
endothelial cells during angiogenesis, newly formed GBM blood vessels could be 
disrupted causing reduced GBM invasion and growth.

In a study by Svensson et al. using a RGS5-GFP transgenic mouse model, the 
authors showed that PDGFRβ and neuroregulin-2 (NG2)-expressing pericytes were 
activated and recruited to blood vessels within orthotopically implanted GBMs 
from peritumoral and distal regions within ipsilateral and contralateral hemi-
spheres, including from the rostral SVZ. Activation and recruitment of pericytes 
from distant regions of the brain towards tumor tissue has been attributed to paren-
chymal diffusion of paracrine factors such as hypoxia inducible factor-1α (HIF-1α) 
through cerebrospinal fluid or cerebral edema. These tumor trophic pericytes 
showed CD13 MSC cell surface marker expression in areas surrounding tumor tis-
sue, but did not show CD13 expression within tumor tissues, indicating a pheno-
typic shift as pericytes enter paracrine signaling networks within the GBM 
microenvironment. The results from this study indicate that pericytes migrate and 
integrate into the vasculature within GBMs, stabilize angiogenic blood vessels, and 
promote further angiogenesis (Svensson et al. 2015). In another study by Huang 
et al., NG2 was identified to be critical in integrin β1-dependent pericyte–endothe-
lial cell interactions and ablation of NG2 resulted in two-fold reduction in vessel 
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ensheathment by pericytes. NG2 ablation was also reported to cause reduced col-
lagen IV deposition due to loss of collagen VI anchorage. Impaired vessel matura-
tion and stabilization within GBM tissues of mice lacking NG2 expression resulted 
in decreased tumor progression, highlighting the importance of NG2 for successful 
angiogenesis (Huang et al. 2010).

 Pericytes Contribute to Immune Microenvironment

GBM cell survival, proliferation, and invasion into peritumoral regions are thought 
to be facilitated by their evasion of immune surveillance by using multiple immuno-
suppressive mechanisms. Pericytes have been shown to regulate immune cell activ-
ity by secreting chemokines and other factors in addition to differentiating into 
macrophages, thus playing a critical role in immune surveillance and tumor clear-
ance within the GBM microenvironment (Valdor et al. 2017). Brain pericytes have 
been reported to exhibit phagocytic properties and express macrophages cell surface 
markers such as CD11b, CD68, and MHC class II. Stimulation by IL-1β has been 
reported to result in the upregulation of iNOS and COX-2 within porcine brain peri-
cytes (Balabanov et al. 1996). In addition, Pieper et al. reported that stimulation by 
IFN-γ or TNF-α resulted in an antigen-presenting activity within brain pericytes 
(Pieper et al. 2014). Pieper et al. also showed that stimulation by LPS, TNF-α, and 
IL-1β resulted in chemotactic recruitment and transmigration of neutrophils into the 
brain parenchyma (Pieper et al. 2013).

During GBM establishment and expansion, pericytes have also been reported to 
be co-opted by tumor cells through direct cell–cell contact to facilitate immunosup-
pression and eventual immune evasion of GBM cells (Caspani et  al. 2014). 
Upregulation of PD-L1, CD90, PDGFRβ, CD248, and Rgs5 which inhibit CD4+ 
and CD8+ cytotoxic T cell activity was reported in pericytes derived from within- 
tumor microenvironments (Bose et al. 2013; Ochs et al. 2013; Ribeiro and Okamoto 
2015). Valdor et al. recently reported that pericytes conditioned in vitro by GBM 
cells are characterized by high levels of anti-inflammatory cytokines, suppress the 
function of cytotoxic T cells and reduce antigen presentation within perivascular 
regions of orthotopically implanted GBMs. GBM conditioned pericytes (GBM-
PCs) showed high levels of IL-10 and TGFβ anti-inflammatory cytokine expression 
(100–400 pg/mL) and low levels of TNFα expression (45 pg/mL) in vitro when 
compared to control native pericytes, indicating an immunosuppressive phenotype. 
GBM-PCs also showed upregulation of Il4ra (encoding interleukin- 4 receptor 
alpha), Il1rn (encoding interleukin-1 receptor inhibitor), and increased expression 
of angiogenic cytokine IL-6. However, expression of CD80 and CD86 co-stimula-
tory molecules was reported to be reduced (Valdor et al. 2017).

The exact mechanisms through which pericytes influence immune activity within 
the tumor microenvironment are not yet clearly understood and further research is 
required to gain a pristine understanding of the multifaceted role that pericytes play 

A. Sattiraju and A. Mintz



81

within tumor microenvironments and the way in which their role changes during 
tumor progression and in response to therapy (Fig. 2.2).

 Conclusions: Opportunities for Therapeutic Intervention

The median overall survival of GBM patients has been improved to ~16 months 
using surgical resection followed by adjuvant temozolomide, but recurrent disease 
remains a major contributor to patient mortality (Roh et al. 2017). Novel therapeutic 
strategies such as immune checkpoint inhibitors, alternating electric fields, CAR T 
cells, stem cell-based drug and oncolytic viral delivery and strategies to enhance 
delivery of systemic therapies show the potential to increase patient survival and to 
reduce GBM recurrence in the future. As highlighted in this chapter, microenviron-
mental components play a vital role in the survival and proliferation of GBM cells. 
It is therefore critical to appreciate the complex relationship between GBM and 
their microenvironment and to design therapeutic strategies that would not just tar-
get one component of their microenvironment, as it would only serve to partially 
impede GBM survival and progression. The studies and their finding mentioned in 

Fig. 2.2 Diagram showing potential therapeutic interventions which could limit the contribution 
of pericytes to GBM overall survival and progression. OS overall survival, GSC glioblastoma stem 
cells, GBM glioblastoma, BBB blood–brain barrier
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this chapter highlight the critical role that pericytes play at various stages of GBM 
development.

The failure of multiple anti-GBM therapeutics in phase-III clinical trials has 
been attributed to tumor heterogeneity, ineffective drug delivery, invasive GBM 
cells, and therapy-resistant GSCs. As this chapter details, pericytes have been 
reported to significantly contribute to stemness, angiogenesis and altered perfusion, 
altered BBB permeability, GBM cell invasion and suppression of immune activity 
within the GBM microenvironment. It is therefore important to further elucidate the 
role of GSC-derived pericytes and native brain pericytes that are either present 
within or recruited into the tumor microenvironment. As previous studies have 
shown, targeting and ablating pericytes might not always stymie the growth and 
survival of GBM cells. This could be due to the multifaceted role of pericytes within 
the tumor microenvironments, their cellular plasticity and the existence of different 
subtypes of pericytes that contribute to various events at various stages of GBM 
establishment and expansion.

Knowledge of the role that pericytes play within the GBM microenvironment 
would therefore allow us to design therapies in the future such that they can circum-
vent cellular events which could otherwise compromise their efficacy and to also 
possibly design strategies to mitigate the role played by pericytes and other perivas-
cular components co-opted by GBMs in treatment resistance.
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Chapter 3
Pericytes in Breast Cancer

Jiha Kim

Abstract Breast cancer is a heterogeneous disease driven not only by evolutionally 
diverse cancer cell themselves but also by highly dynamic microenvironment. At the 
center of the tumor microenvironment, tumor vasculature plays multiple roles from 
supporting tumor growth to providing a route for metastasis to the distant organ 
sites. Blood vessels in breast cancer present with perfusion defects associated with 
vessel dilation, tortuosity, and poor perivascular coverage (Li et al., Ultrasound Med 
32:1145–1155, 2013; Eberhard et  al., Cancer Res 60:1388–1393, 2000; Cooke 
et al., Cancer Cell 21:66–81, 2012). Such abnormal vascular system is partly due to 
the morphological and molecular alteration of pericytes that is accompanied by a 
significant heterogeneity within the populations (Kim et al., JCI Insight 1:e90733, 
2016). While pericytes are implicated for their controversial roles in breast cancer 
metastasis (Cooke et al., Cancer Cell 21:66–81, 2012; Gerhardt and Semb, J Mol 
Med (Berl) 86:135–144, 2008; Keskin et al., Cell Rep 10:1066–1081, 2015; Meng 
et  al., Future Oncol 11:169–179, 2015; Xian et  al., J Clin Invest 116:642–651, 
2006), the impact of their heterogeneity on breast cancer progression, metastasis, 
intratumoral immunity, and response to chemotherapy are largely unknown. Due to 
the complexity of angiogenic programs of breast cancer, the anti-angiogenic or anti- 
vascular treatment has been mostly unsuccessful (Tolaney et al., Proc Natl Acad Sci 
U S A 112:14325–14330, 2015; Mackey et al., Cancer Treat Rev 38:673–688, 2012; 
Sledge, J Clin Oncol 33:133–135, 2015) and requires much in-depth knowledge on 
different components of tumor microenvironment and how these stromal cells are 
interacting and communicating to each other. Therefore, understanding pericyte 
heterogeneity and their differential functional contribution will shed light on new 
potential approaches to treat breast cancer.

Keywords Pericyte · Breast cancer · Heterogeneity · Tumor microenvironment 
Blood vessels · Angiogenesis · Metastasis · Tumor immunity · Perivascular 
phenotypes · PDGFRβ · Vascular normalization

J. Kim (*) 
Department of Biological Sciences, North Dakota State University, Fargo, ND, USA
e-mail: jiha.kim.1@ndsu.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16908-4_3&domain=pdf
mailto:jiha.kim.1@ndsu.edu


94

 Pericytes

Endothelial cells and pericytes are the fundamental units of blood vessels. While endo-
thelial cells make up the inner lining of the vessel wall, pericytes are responsible for 
enveloping the surface of the vessels and providing structural support. Recently, peri-
cytes have gained much attention due to their diverse roles during vessels formation, 
vessels maturation, and endothelial support. Pericytes can be identified not only by 
their distinct morphological features but also by the sets of molecular markers, namely 
αSMA, desmin, PDGFRβ, NG2, and RGS-5 (Bergers and Song 2005). The expression 
pattern of these markers can be varying in different tissues or be dynamic during vari-
ous developmental stages. RGS-5, desmin, and αSMA are intracellular proteins, of 
which desmin and αSMA are contractile filaments, and RGS-5 is a GTPases-activating 
protein. Neuron-glial 2 (NG2) and platelet- derived growth factor receptor beta 
(PDGFRβ) are cell-surface proteins. PDGFRβ is one of the most studied molecules 
expressed in pericyte due to its paracrine signaling through ligand PDGF-BB to control 
pericyte recruitment to the growing vessels (Hellstrom et al. 1999; Enge et al. 2002). 
The composition of these markers is various in different tissues, potentially linked to 
their diverse functions in the different microenvironment. Also, two distinct types of 
pericytes based on their marker expression (Type 1, Nestin-/NG2+ and Type 2, Nestin+/
NG2+) were shown to exert different angiogenic capacity in vitro and in vivo (Birbrair 
et al. 2014a). Another in vitro study using tumor-derived PDGFR-β+ perivascular pro-
genitors showed that these progenitors could differentiate into more mature phenotype 
(NG2+ or αSMA+) upon culture, whereas desmin expression was only induced when 
they were cultured with endothelial cells together (Song et al. 2005). Such phenotypic 
conversion indicates that specific pericyte phenotypes are largely influenced by their 
local environment and different cell states. Pericyte density also varies in different parts 
of the body based on the unique needs and pressure the blood vessels need to withstand 
(Sims 2000). In particular, the highest pericyte density is observed in the central ner-
vous system, brain, and retina, to create blood–brain barrier (Ballabh et  al. 2004). 
Pericytes have complex ontogeny including neuro crest, bone-marrow-derived mesen-
chymal stem cells (BM-MSCs), or onsite proliferation based on the tissues where they 
are residing in and their specific functions (Armulik et al. 2011; Hall 2006). However, 
recent studies have suggested an alternate source of pericytes in tumor microenviron-
ment including epithelial-to-pericytes transition (EPT) in breast cancer adding another 
layer of complexity (Shenoy et al. 2016).

Just as normal pericytes perform a diverse function and express differential 
markers in different tissues, pericytes in tumor microenvironment exhibit great 
diversity in marker expression as well as functional contribution.

 Pericyte Landscape (Investment) in Pathological Environment

Poorly invested angiogenesis in tumors results in the chaotic and disorganized vas-
culature that presents with tortuous, leaky, and permeable vessels often with func-
tionally incompetent (Li et  al. 2013; Eberhard et  al. 2000). Under the constant 
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influence of cancer cells and tumor microenvironment, both endothelial cells and 
pericytes appear morphologically and molecularly differ from normal counterparts 
which, in part, leads defective vasculature (Bergers and Song 2005). Different 
types of tumors present strikingly different vascular architecture, including vessels 
size, dilation, and pericyte coverage (Morikawa et al. 2002). Notably, tumor-asso-
ciated pericytes are loosely associated with the endothelial cells, with cytoplasmic 
processes that penetrate deep in the tumor parenchyma. Although the exact mecha-
nism for such aberrant phenotype is still not clear, it has been proposed that abnor-
mal expression of growth factors or signaling molecules such as VEGF, TGF-β, 
PDGF-BB, and Ang-2 has a significant impact on pericyte morphology, quality, 
and investment (Kim et al. 2016; Keskin et al. 2015; Song et al. 2005; Raza et al. 
2010). In particular, PDGF-BB/PDGFRβ is one of the most well studied and prom-
inent signaling pathways that is involved in pericyte recruitment and survivor. 
These signaling molecules also have been implicated in other pathological condi-
tion related to vascular abnormalities, such as diabetic retinopathy (Enge et  al. 
2002; Benjamin 2001; Rangasamy et al. 2011), wound healing (Lin et al. 2008), or 
stroke, a cerebrovascular disorder associated with blood–brain barrier (BBB) dis-
ruption (Suzuki et al. 2016).

 Perivascular Signature in Breast Cancer at a Glance

In breast cancer, despite enormously enlarged and thickened vessels appearance, 
relatively large percentage of vessels are covered by pericytes (Eberhard et al. 2000; 
Bergers and Song 2005). While a great deal of heterogeneity present on pericytes in 
breast cancer, all these markers have been detected in human cancer tissues while it 
is still not clear what such heterogeneity means. Several studies have reported the 
mean microvascular pericyte coverage index (MPI) in breast cancer to be from 32% 
up to 80% by quantifying αSMA expressing pericytes (Eberhard et  al. 2000; 
Shrivastav et al. 2016). No pan-pericyte marker can identify all pericyte populations 
(Armulik et al. 2011; Hall 2006) and infect, and a recent study has shown the vari-
ous flavors of pericytes existing within human breast tumor tissues (Kim et  al. 
2016). Several studies have attempted to measure MPI using immunohistochemis-
try for αSMA (Eberhard et  al. 2000; Shrivastav et  al. 2016), NG2 (Cooke et  al. 
2012), PDGFRβ (Shrivastav et al. 2016; Paulsson et al. 2009), desmin (Kim et al. 
2016), and CD 248 (Viski et al. 2016) using breast cancer patient’s tissue samples. 
It is worth noting that some of these analyses include both fibroblast and pericyte as 
both cell types tend to express these markers. αSMA is the marker mostly explored 
by many investigators due to its abundance. However, it is noteworthy that αSMA 
expression is lacking in quiescent pericytes in normal tissues (Gerhardt and 
Betsholtz 2003) and hence contributes to the pathological phenotype. TGFβ, 
involved in smooth muscle cell maturation, is known to be responsible for ectopic 
expression of αSMA in tumor pericytes (Song et al. 2005). Often pericyte composi-
tion/phenotype is used to indicate the functional status of the tumor vasculature, and 
thus many attempts have been made to correlate it with patient outcome. However, 
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the results have not been consistent between analyses primarily due to different 
markers and methods used to quantify pericyte phenotypes. Other studies have indi-
cated that pericyte phenotypes are differentially regulated between the primary 
tumor and metastases, suggesting the influence of tumor microenvironment (TME) 
in perivascular investment (Lyle et al. 2016). Such discordance between primary 
and secondary cancers also implies that perivascular phenotype in primary tumor 
site might be a prognostic factor for the metastasis (Jubb et al. 2011).

 Pericytes Phenotype Conversion

PDGF-BB/PDGFRβ signaling is one of the most studied pathways known to be 
crucial for pericyte recruitment, survivor, and clinical implication (Ostman and 
Heldin 2007). PDGFRβ gene expression levels (high vs. low) in 3455 patients with 
breast cancer show a correlation between high PDGFRβ expression and the 
recurrence- free survival probability of patients (Keskin et al. 2015). Another study 
has used the immunohistological analysis of PDGFRβ expression in 512 breast can-
cer samples. Although in this particular study PDGFRβ expression was scored in 
entire stroma including fibroblast and pericytes, it has shown that high PDGFRβ 
expression in stroma was correlated with high pathological grade, estrogen receptor 
negativity, and high HER2 expression, as well as shorter recurrence-free and breast 
cancer-specific survival (Paulsson et al. 2009). In a separate study, 75 breast cancer 
samples were also analyzed for PDGFRβ expression using immunohistological 
assay to evaluate the pericytes as a prognostic factor for lymph node metastasis and 
molecular subtypes. However, this study failed to show any correlation between 
MPI and the known prognostic and predictive factors (Shrivastav et al. 2016). To 
establish the significance of PDGFRβ expressing pericytes, PDGFRβ-TK (thymi-
dine kinase) mice in which PDGFRβ+ pericytes are specifically eliminated were 
explored in the context of murine mammary tumor model using 4T1 cells. While 
primary tumor progression was repressed upon PDGFRβ+ pericytes depletion due 
to anti-angiogenic effects, metastatic incidences were significantly increased via 
increased hypoxia, vascular leakiness, and epithelial–mesenchymal transition 
(EMT) (Keskin et al. 2015). It is noteworthy that TK system physically eliminates 
all pericytes expressing PDGFRβ; therefore, instead of changing pericyte pheno-
type, it exerts an anti-angiogenic effect at least on the primary tumor sites.

A study mentioned above using 75 breast cancer tissues samples revealed no 
correlation between αSMA expression and the known prognostic and predictive 
factors. NG2 chondroitin sulfate proteoglycan is expressed on the surface of peri-
cytes during vasculogenic and angiogenic processes. NG2 is often considered to be 
a maker for mature pericytes, and its expression is observed in the large percentage 
of tumor pericytes despite the abnormal phenotype and function (Armulik et al. 
2011). In breast cancer, low NG2+ pericyte coverage was significantly associated 
with the presence of metastasis, and low NG2+/high c-Met expression was corre-
lated with poor survival of breast cancer patients (Cooke et al. 2012). Endosialin 
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(CD248) is a transmembrane glycoprotein, and its expression is known to be 
upregulated in tumor-associated pericytes and myofibroblasts in breast cancer 
(Viski et al. 2016). CD248 expression in microdissected breast tumor stroma was 
associated with decreased recurrence-free survival, and high CD248 expression 
was correlated with low distant metastasis-free survival. Such observation was 
confirmed by a 4T1 orthotopic mammary tumor in CD248 knockout mice back-
ground. Interestingly, CD248 knockout had a significant effect on decreasing 
metastasis but had no effect on primary tumor growth, revealing a specific function 
of CD248 on intravasation process.

Another example of abnormal/pathological pericyte phenotype was described in 
a mouse model for melanoma, breast cancer, and rhabdomyosarcoma (detail 
reviewed by others (Paiva et al. 2018)). In this study, increased expression of the 
pluripotency gene Klf4  in pericytes induced the phenotypic switch from mature/
quiescent pericytes (NG2+) to a less differentiated state with increased prolifera-
tion, migration, and extracellular matrix (ECM) (e.g., fibronectin) production, 
which contributes to a prometastatic fibronectin-rich environment. Pericyte-specific 
knockout of Klf4 decreased premetastatic niche formation and metastasis (Murgai 
et al. 2017). In the lung, pericytes also exhibit heterogeneity, and two different sub-
types of pericyte as previously mentioned (Type 1, Nestin−/NG2+ and Type 2, 
Nestin+/NG2+) were shown to be present on pulmonary blood vessels. Whether or 
not different subtypes contribute to the formation of premetastatic niche differently 
is not known (Paiva et al. 2018). However, only type-1 pericytes, but not type 2, 
were accumulated and producing collagen at the injury site of lung contributing to 
pulmonary fibrosis (Birbrair et al. 2014b). On the other hand, type-2 pericytes were 
shown to be actively engaged in the angiogenic process during orthotopic glioblas-
toma progression (Birbrair et al. 2014a). Thus, it would be attractive to explorer if 
type-1 pericytes are mainly contributing to the formation of the premetastatic niche 
by converting to Klf4+ phenotype (e.g., depositing ECM) at the beginning, and 
type-2 pericytes will be recruited to support secondary tumor formation once tumor 
started to grow at the niche.

In both cases for CD248 and Klf4, their expression was abnormally upregulated 
in response to the tumor microenvironment and had a significant influence on met-
astatic behavior rather than primary tumor growth. Suggesting genes that are dif-
ferentially regulated compared to normal pericyte are of great interest to understand 
the fundamental impact of pericyte on distant metastasis and perhaps organ-spe-
cific tropism.

More pieces of evidence are emerging to indicate a large percentage of pericytes 
express multiple markers rather than a single marker. Therefore, it makes more 
sense to define pericyte phenotype using a combination of different markers. A 
recent study using multispectral images of multiplex stained tissue microarray of 
breast cancer provides a more comprehensive understanding of perivascular hetero-
geneity and phenotyping. In this study, tissue microarray (TMA) was co-stained for 
PDGFRβ, desmin, and CD31, and imaging analysis was performed to find a signifi-
cance of ratio between PDGFRβ and desmin (Kim et al. 2016). Based on two sepa-
rate cohort of breast cancer samples, this study has shown that the ratio of PDGFRβ 
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and desmin is significantly different between subtypes of breast cancer, TNBC, and 
luminal, and that the high desmin to PDGFRβ ratio was considered to be a predic-
tive factor for higher relapse-free survivor and higher breast cancer-specific survivor 
of patient who was treated with epirubicin but not with paclitaxel. Although the 
underlying mechanism remains to be determined, it provides new ways to under-
stand the perivascular landscape and explains, in part, the discrepancy of previous 
different studies where a single marker was analyzed.

 Origin of Pericyte in Breast Cancer

The origin of tumor pericytes has been investigated in different types of tumors, 
including fibrosarcoma, melanoma, and colorectal cancer. It has been shown that 
tumor pericytes can be recruited from local immature mesenchymal cells, bone 
marrow-derived cells, and onsite proliferation (Abramsson et  al. 2002; Du et  al. 
2008; Rajantie et al. 2004). A recent study in breast cancer has proposed an alterna-
tive source of pericyte in TME through epithelial-to pericytes transition (EPT) add-
ing another layer of complexity (Shenoy et al. 2016). In this study, MCF10DCIS 
cells were forced to undergo EMT, and its fate was followed in vivo and in vitro. 
EMT cells acquired mesenchymal phenotype (expressing PDGFR-β and N-cadherin) 
and physical contact with endothelium contributing tumor vasculature. Although in 
normal tumor context, cells undergo EMT is a small population and therefore attri-
bute to a fraction of tumor-associated pericyte pool, it is an interesting observation 
to identify an alternative source of pericyte in breast cancer. A similar result was 
also shown in the case of glioblastoma (GBM) in which glioma stem cells (GSCs) 
give rise to pericytes to support vessel function and tumor growth (Cheng et  al. 
2013). In this case, human GBM specimens showed phenotypically switched peri-
cyte populations containing the same mutational status with cancer cells. These 
studies suggest the alternative source of pericyte in the context of TME and thus 
new therapeutic targets. Considering what we have observed regarding pericyte het-
erogeneity and their functional contribution, it will be a great interest to investigate 
the phenotype of such converted pericytes and its correlation with the mutational 
status of cancer cells.

On the other hand, pericytes have been speculated for its stem cell capacities to 
differentiate into adipocytes and fibroblasts in different organs (Crisan et al. 2008). 
Cancer stem cells are often observed in perivascular niches (Calabrese et al. 2007; 
Pietras et  al. 2008), and thus it is tempting to speculate that tumor vasculature- 
associated pericytes might hold mesenchymal stem cell properties although direct 
evidence for this proposition is still unclear. In case of renal cell carcinoma, 
PDGFR-β expressing pericytes were shown to transit its fate to fibroblasts 
(Pericyte- fibroblast transition) in response to tumor-derived PDGF-BB and con-
tributed to tumor growth and metastasis (Hosaka et al. 2016), demonstrating phe-
notypic switching of pericytes in response to TME or malignancy. An interesting 
phenomenon has been observed in the study of breast cancer that stromal cells 
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(adipocytes, fibroblasts, and myoepithelial cells) gained somatic mutation on 
GT198, a steroid hormone receptor coactivator, independent with mutational status 
of cancer cells. It was suggested that the progenitor cells with GT198 mutation 
(GT198+) is mostly capillary pericytes and differentiated into GT198+ stroma 
cells collectively contributing to malignant tumor microenvironment (Yang et al. 
2016). Mutant GT198 expressing cells are shown to induce VEGF expression, 
which in turn influence cancer cells attributing reciprocal communication between 
cancer cells and TME.

 Anti-Angiogenic (Anti-Vascular) Treatment

Angiogenesis and co-optive vascular remodeling are prerequisites of solid tumor 
growth. Breast cancer is one of the highly vascularized tumors with fairly high peri-
cyte coverage (Eberhard et al. 2000) and largely dependent on vascular support for 
the survivor and growth. The level of neovascularization in aggressive breast cancer 
correlated with metastatic disease and may serve as an independent predictor for 
metastasis (Weidner et al. 1991). Therefore, it is a quite attractive approach to target 
tumor vasculature. However, anti-angiogenic treatment has been largely unsuccess-
ful with marginal benefit (Sledge 2015; Aalders et al. 2017). Many of anti- angiogenic 
treatment involves targeting endothelial cells or pro-angiogenic factors, aiming to 
eliminate vessels and thus starving tumors. Tumor angiogenesis is accompanied by 
an increased level of pro-angiogenic factors such as HIf1α and VEGF (Aalders et al. 
2017; Bos et al. 2001); thus, blocking VEGF pathway has been most extensively 
studied and considered as anti-angiogenic treatment including a monoclonal anti-
body against VEGF, bevacizumab  (Sledge 2015). Other types of anti-angiogenic 
approaches include tyrosine kinase inhibitors such as sunitinib, sorafenib, imatinib, 
and axitinib. Anti-VEGF treatment in tumors led to a partial elimination of tumor 
blood vessels that are not covered by pericytes (Tolaney et al. 2015; Benjamin et al. 
1999). To overcome such limitation, dual targeting of endothelial cells and pericytes 
has been proposed (Bergers et al. 2003). However, pericyte depletion did not pro-
vide an additive effect in some models (Nisancioglu et al. 2010; Sennino et al. 2007) 
or has proven to increase metastasis in breast cancer models (Meng et  al. 2015; 
Cooke et al. 2012; Keskin et al. 2015).

In fact, low NG2+ pericyte coverage of tumor vasculature was significantly 
correlated with increased metastasis in clinical samples of breast cancer (Cooke 
et  al. 2012). A separate study analyzing TNBC vs. luminal breast cancer has 
shown that TNBC tumor vasculature exhibits poor pericyte coverage compared to 
luminal tumor vasculature, suggesting lower pericyte coverage might be an indi-
cation of aggressive nature of tumor types (Kim et al. 2016). Such notion, per-
haps, indicates that nonselective elimination of pericyte may not yield benefit but 
rather promote tumor aggressiveness and metastasis. Thus, a better understanding 
of pericyte heterogeneity in response to TME changes may provide insight to 
pericyte targeting strategy.
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 Vascular Normalization Using Pericyte Landscape

Despite the aberrant morphology, marker expression, and function, eliminating 
pericytes as a whole did not result in any beneficial effect and, in fact, did more 
harm by increasing metastasis. Instead, vascular normalization concept takes 
advantage of pericytes by only eliminating vessels that are not covered by peri-
cytes (immature), leaving healthy pericyte covered functional vasculature (Goel 
et al. 2012). Several clinical trials of anti-angiogenic therapy (anti-VEGF) sug-
gest vascular normalization phenomenon in many solid tumors. However, no sig-
nificant survival benefit has been warranted so far (Mackey et al. 2012). A recent 
clinical trial of neoadjuvant bevacizumab and chemotherapy in breast cancer 
patients has shown limited efficacy despite the clear vascular normalization 
effect. Analysis of αSMA+ pericyte coverage in pretreatment vs. posttreatment 
showed significantly increased αSMA+ pericyte-associated vessels although not 
a clinically significant contribution to overall outcome (Tolaney et  al. 2015). 
However, this study suggests that patient might benefit from bevacizumab treat-
ment if sufficient numbers of vessels are initially present. Collectively, it is a 
plausible explanation that vascular normalization approach using bevacizumab 
might only benefit patients with specific vascular phenotype defined by pericyte 
investment.

Interesting results from anti-angiogenic treatment have been observed in 
melanoma case. Subpopulations of pericytes that were characterized by distinct 
marker expression (high αSMA and PDGFRβ) and loose attachment to endothe-
lial cells showed a more significant effect on combinatorial treatment using the 
VEGFR inhibitor PTK787 and the PDGFR inhibitor STI571 in PDGF-BB over-
expressing tumor (Hasumi et al. 2007). However, desmin + pericytes that are 
usually more mature and tightly bound to endothelium remained intact. This 
study indicates that different subpopulations of pericyte responded differently 
not only to anti- angiogenic drug treatment but also to the intrinsic nature of 
cancer cell themselves, in this case, the expression level of PDGF-BB. Therefore, 
pericyte landscape might be a predictable marker for patients who are more 
likely respond to anti-angiogenic treatment. However, pericytes are well recog-
nized for its controversial function on metastasis, and further analysis of meta-
static behavior upon treatment should be followed. Such finding is in accordance 
with the study mentioned above in breast cancer, where the ratio between 
PDGFRβ+ and desmin  +  pericyte on treatment naïve biopsy has predictive 
power for patient outcome upon treatment with the specific drug (Kim et  al. 
2016). Despite the promising preclinical results and rational to justify anti-
angiogenic therapy, the overall benefit is marginal, and the toxicity and cost are 
not outweighed. As pointed out by others, anti-angiogenic therapy such as beva-
cizumab should only be considered when we have a better idea on the predictive 
biomarker for sufficient benefit. Considering the emerging data on perivascular 
phenotype can have a profound effect on vascular functionality, perhaps peri-
cyte landscape should be explored as a valid predictive marker for the success 
of anti- angiogenesis or other drugs.

J. Kim
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 Their Contribution to Breast Cancer: Friend or Foe?

Originally pericytes were proposed to be a gatekeeper (friend) of metastasis based 
on several studies where low pericyte coverage or depletion of pericyte leads to 
increased hypoxia, pro-metastatic factors, vascular leakiness, and metasta-
sis (Gerhardt & Semb 2008; Xian et al. 2006). Therefore, simply targeting tumor 
pericytes will not produce many beneficial outcomes. However, increasing pieces of 
evidence indicate that subpopulations of tumor pericytes undergo phenotype switch-
ing by altered gene expression, leading to a pathological characteristic (foe) as we 
have discussed previously and summarized in Table 3.1. Thus, a better understand-
ing of pathological phenotypes of pericyte will open up the opportunity for us to 
target these abnormal pericytes, which potentially leads to more efficient vascular 
normalization and anti-angiogenic approaches. Also, pericyte contribution to the 
vascular function might be context dependent. For instance, brain vasculature holds 
a unique structure called blood–brain barrier (BBB) of which pericyte is one of the 
major components. Truth hold in part in brain metastasis or brain tumor and it acts 
as an obstacle of drug delivery efficacy. Therefore, a specific function of the differ-
ent subset of pericytes should be considered in a context-dependent manner.

We have already discussed the potential contribution of pericytes in metastasis in 
breast cancer. However, the newly emerging role of pericytes in the pathological/
inflammatory environment gained much attention recently in the field of breast can-
cer. Several recent studies have shown reciprocal communication between tumor 
pericytes and immune components of the stroma. Regulator of G-protein signaling 
5 (Rgs5) is one of the pericyte markers that are known to be expressed in PDGFRβ+ 
progenitor perivascular cells and overexpressed in the aberrant tumor vasculature. 
In RIP1-Tag5 mouse model, a large population of tumor pericytes expresses Rgs5 
and PDGFRβ, representing immature progenitor status and small populations that 
express αSMA/NG2/desmin representing mature pericytes. In genetic deletion of 
Rgs-5 tumor context, pericytes phenotype was shifted toward the more mature state, 
αSMA/NG2/desmin leading to vascular normalization. Such phenotypic switching 
resulted in increased tumor infiltration by CD4+ and CD8+ T cells and immune 
control (Hamzah et al. 2008). This finding proposes the connection between sub-
population of pericytes (mature pericytes) and immune cells infiltration in a mouse 
model for pancreatic cancer, and it should be explored in breast cancer. One of the 
critical mechanisms by which tumors can escape from immune surveillance is the 
recruitment of myeloid-derived suppressor cells (MDSCs) (Gabrilovich and Nagaraj 
2009). In mice defective for PDGFB retention (PDGFβret/ret), the loss of PDGFRβ+ 
pericytes hence decreased pericyte recruitment and enhanced intratumoral traffick-
ing of MDSCs in IL-6-dependent manner (Hong et al. 2015). Gene expression anal-
ysis from patients with breast cancer showed that increased expression of human 
MDSC markers such as CD33 and S100A9 was correlated with decreased expres-
sion of pericyte marker genes. Moreover, the group of patients with low pericyte 
poor/MDSC rich was associated with poor long-term breast cancer-specific sur-
vival. Most recent finding in breast cancer emphasizes the importance of mutual 
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regulation of tumor vascular normalization and tumor immunity. In this study, bio-
informatic analysis data indicated that gene expression related to vascular normal-
ization correlate with immune-stimulatory pathways and such hypothesis was 
further validated in a various model system. Loss of mature pericyte (NG2+ peri-
cyte) leads to reduced T lymphocytes infiltration into orthotopic breast tumor, 
E0771. In reverse, T lymphocytes deficiency in genetically engineered mice 
(CD4KO, CD8KO, TCRKO) resulted in decreased pericyte coverage, increased 
vessels permeability, and increased circulating tumor cells, suggesting reciprocal 
regulatory loop between perivascular phenotype and tumor immunity (Tian et al. 
2017). A different functional contribution of pericyte in tumor immunity reiterates 
that we should pay more attention to the type of pericytes we are looking after.

 What Do We Do Now? Future Direction

It is clear now that we know more than ever how pathological pericytes are different 
from normal counterpart and their potential function in the context of the 
TME.  However, the future depends on how we use such knowledge to benefit 
patients with cancers.

It is not a matter of presence or absence of these cells. It, perhaps, depends on 
their phenotype or landscape on a larger scale. Considering the marginal benefit of 
anti-angiogenic approaches, it is probably not a good idea to eliminate pericytes or 
vasculature as a whole. To this end, vascular normalization concept is closer to what 
we want to accomplish in which immature, leaky, and nonfunctional vessels without 
appropriate pericyte coverage will be eliminated. However, we cannot assume that 
all the left pericytes will contribute to normal vascular structure/function as some of 
these pericytes are abnormal or malignant themselves. It has been shown that ecto-
pic expression of Klf4, Rgs-5, αSMA, CD248, and mutant GT198  in tumor- 
associated pericytes can spread malignancy to the primary tumor site as well as 
metastatic organs. We cannot afford to keep these pericytes around. Therefore, it 
will be a safer approach to specifically target these genes or gene products rather 
than target pericytes as a whole. Increasing pieces of evidence show a particular 
type of pericytes is differentially contributing or affecting tumor immunity. By 
understanding what flavor of pericytes are responsible for the good vascular struc-
ture and immune-stimulatory effect, we might be able to kill two birds with one 
stone by improving vascular perfusion and intratumoral immunity.

Perivascular heterogeneity is largely recognized and appreciated in breast cancer 
filed. A recent study using TMA from the different patient cohort with breast cancer 
has shown promising results in which pericyte phenotype can be a potential predic-
tor for successful response to the specific type of drug. Although the underlying 
mechanism remains elusive, such results add a promising approach to map out per-
sonalized treatment. An additional approach might include reverting malignant 
pericyte phenotype to beneficial phenotype by molecular conversion. In this case, 
we do not have to kill anything. We just need to correct the problem.

J. Kim
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The fact that different subtypes of breast cancer, namely TNBC and luminal, 
displayed significantly different perivascular phenotype might implicate that such 
perivascular landscape is either an intrinsic property of the particular type of cancer 
or heavily influenced by the distinct tumor microenvironment. Either way, we 
should consider identifying a connection between the properties of cancer cells and 
pericyte phenotypes.

We have accumulated enough pieces of evidence to be finally convinced that 
tumor-associated pericytes are heterogeneous and should not be considered as a 
single-cell population, as it can be a Jekyll or a Hyde at any moment depends on 
their phenotype, environment, and perhaps influence by cancer cells.
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Abstract Tumors of mesenchymal origin are a diverse group, with >130 distinct 
entities currently recognized by the World Health Organization. A subset of mesen-
chymal tumors grow or invade in a perivascular fashion, and their potential relation-
ship to pericytes is a matter of ongoing interest. In fact, multiple intersections exist 
between pericytes and tumors of mesenchymal origin. First, pericytes are the likely 
cell of origin for a group of mesenchymal tumors with a common perivascular 
growth pattern. These primarily benign tumors grow in a perivascular fashion and 
diffusely express canonical pericyte markers such as CD146, smooth muscle actin 
(SMA), platelet-derived growth factor receptor beta (PDGFR-β), and RGS5. These 
benign tumors include glomus tumor, myopericytoma, angioleiomyoma, and myo-
fibroma. Second and as suggested by animal models, pericytes may give rise to 
malignant sarcomas. This is not a suggestion that all sarcomas within a certain sub-
type arise from pericytes, but that genetic modifications within a pericyte cell type 
may give rise to sarcomas. Third, mesenchymal tumors that are likely not a pericyte 
derivative co-opt pericyte markers in certain contexts. These include the PEComa 
family of tumors and liposarcoma. Fourth and finally, as “guardians” that enwrap 
the microvasculature, nonneoplastic pericytes may be important in sarcoma disease 
progression.
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 Introduction

Tumors of mesenchymal origin are a diverse group, with >130 recognized by the 
World Health Organization (Fletcher et al. 2013). Broadly, they can be divided into 
those tumors that arise from the skeleton (tumors of bone) and those that do not 
(tumors of soft tissue). Malignant tumors of mesenchymal origin are termed sarco-
mas and are further classified based on distinguishing cytomorphology, production 
of matrix, immunohistochemical profile, or characteristic genetic changes. Although 
immunohistochemistry and molecular pathology allow for distinguishing the many 
sarcoma subtypes, little is known regarding the cell type of origin for most 
sarcomas.

Pericytes are mural cells within the microvasculature that interact with endothe-
lium, with important physiologic and pathologic roles in vascular growth and 
homeostasis. Multiple intersections exist between pericytes and tumors of mesen-
chymal origin. Each of these intersections will be described in more detail in the 
present chapter. First, pericytes are the likely cell of origin for a group of mesenchy-
mal tumors with a common perivascular growth pattern. These primarily benign 
tumors grow in a perivascular fashion and diffusely express canonical pericyte 
markers such as CD146, smooth muscle actin (SMA), and platelet-derived growth 
factor receptor beta (PDGFR-β) (Corselli et al. 2012). Second, pericytes may give 
rise to malignant sarcomas. This is not a suggestion that all sarcomas within a cer-
tain subtype arise from pericytes, but that genetic modifications within a pericyte 
cell type may give rise to sarcomas. Third, mesenchymal tumors that are likely not 
a pericyte derivative co-opt pericyte markers in certain contexts. Here, the PEComa 
family of tumors and liposarcoma will be discussed, with analogies drawn to other 
nonmesenchymal tumors. Fourth and finally, nonneoplastic pericytes may be impor-
tant in sarcoma disease progression.

 Pericytes as the Likely Cell of Origin for Mesenchymal 
Neoplasms/Tumorigenesis

First, pericytes are the likely cell of origin for a group of mesenchymal tumors with 
a common perivascular growth pattern. These primarily benign tumors diffusely 
express canonical pericyte markers. These features strongly suggest a pericyte or 
modified pericyte cell of origin.

The pericytic/perivascular family of soft-tissue tumors are generally composed 
of modified vascular smooth muscle cells. These consist of glomus tumor and its 
variants, myopericytoma, angioleiomyoma, and sinonasal hemangiopericytoma. 
Myofibroma also has overlapping histologic and immunohistochemical features, 
but will not be discussed further. We will describe the clinical and histologic appear-
ance of these tumors as well as their potential perivascular origin. Later discussed is 
the PEComa (perivascular epithelioid cell tumor) family of tumors. Perivascular 
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markers are more focal in the PEComa family tumors, and their pericyte antigen 
expression is more likely a manifestation of pericyte mimicry, a co-option of peri-
cyte markers by a neoplastic cell of different origin.

 Classic (Sporadic) Glomus Tumor

Classic glomus tumor (GT) are benign, less than 1 cm, red-blue nodules that are 
typically located on the distal upper and lower extremities (Weiss and Goldblum 
2008). They are most often found in a subcutaneous, subungual location and clini-
cally present with pain and temperature sensitivity (Nuovo et  al. 1990; Van 
Geertruyden et al. 1996). Histologically, GTs resemble the thermoregulatory glo-
mus body and demonstrate small uniform glomus cells in a variably prominent peri-
vascular growth pattern (Fig.  4.1). This architectural feature, combined with 
ultrastructural and immunohistochemical demonstration of smooth muscle differen-
tiation, shows some overlap with microvascular pericytes. For example, glomus 
cells demonstrate immunoreactivity for α-smooth muscle actin, vimentin, and up to 
20% have focal CD34 expression (Folpe et al. 2001). Electron microscopy is also 
suggestive of modified pericytic or smooth muscle differentiation and reveals abun-
dant cytoplasmic actin filaments and numerous micropinocytotic vesicles (Ghadially 
1980; Erlandson 1994a). Like other perivascular tumor members, GTs demonstrate 
diffuse immunoreactivity for pericyte markers, including SMA, CD146, PDGFR-β 
(Shen et al. 2015a), and the more novel pericyte marker RGS5 (Shen et al. 2016) 
(Table 4.1). These findings support the notion of a pericyte cell of origin for GTs as 
well as GT variants, discussed below. Recently, NOTCH1, NOTCH2, and NOTCH3 
gene rearrangements were described in glomus tumors (Mosquera et  al. 2013). 
Although speculative, it is possible that these characteristic gene rearrangements in 
a pericyte cell type give rise to classic GT.

Fig. 4.1 Representative histologic appearance of classic glomus tumor (GT). Representative 
images of classic glomus tumor, demonstrating a solid growth pattern, monomorphic rounded 
tumor cells, and a myxoid background. (a) 4×. (b) 20×
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 Glomus Tumor Variants

Although a number of GT variants diverge from the typical appearance and present-
ing features of GT, they still express similar perivascular tumor growth patterns and 
a pericytic/myoid immunophenotype. One such variant, glomangiomyoma, dis-
plays focal smooth muscle differentiation and lies on a spectrum with similarity to 
angiomyoma. Another variant, known as glomuvenous malformation or glomangi-
oma, is made up of typical glomus cells, but has architecture resembling a cavern-
ous hemangioma (Fig. 4.2). Lesions generally arise during childhood and are less 
painful than classic GT (Weiss and Goldblum 2008). Glomangiomatosis is a rare 
type of invasive and diffuse lesions that are typically located in adipose tissue (Weiss 
and Goldblum 2008). Also exceedingly rare, atypical, and malignant glomus tumors 
are deep-seated, proliferative, larger tumors and have a combination of infiltrative 
growth, atypia, and increased mitotic activity. Folpe et al. suggested the following 
scheme to classify glomus tumor malignancy: deep-seated location >2 cm in size, 
or atypical mitotic figures, or moderate to high nuclear grade and ≥5 mitotic fig-
ures/50 hpf (Folpe et  al. 2001). Malignant GT demonstrates a similar pattern of 
immunoreactivity for pericyte antigens, with at least some staining for SMA, 
CD146, PDGFR-β, and RGS5 in most tumors (Shen et al. 2015a, 2016). Interestingly, 
malignant GT shows a marked reduction in the intensity and distribution of pericyte 
markers in comparison to classic GTs (including SMA, CD146, PDGFR-β) (Shen 
et al. 2015a) (Table 4.1). These findings may reflect de-differentiation in malignant 
GT.  Like classic GT, malignant GT has been observed to harbor characteristic 
NOTCH gene rearrangements (Mosquera et al. 2013).

Fig. 4.2 Representative images of glomuvenous malformation, which demonstrate the same 
rounded tumor cells as glomus tumor. A cuff of round, monomorphic tumor cells is seen bordering 
the dilated vascular spaces. (a) 10×. (b) 40×

L. Chang et al.



113

 Myopericytoma

Myopericytomas are dermal or subcutaneous tumors that are benign, painless, and 
well circumscribed. They are typically found on the lower extremities and are 
known to have pericytic/smooth muscle differentiation (Weiss and Goldblum 2008). 
Similar to the glomus tumor, histological analysis of myopericytoma shows myoid 
cell proliferation around the vasculature (Fig. 4.3). However, myopericytoma has a 
characteristic whorled pattern of perivascular, ovoid to spindled cell with eosino-
philic cytoplasm. Immunohistochemical analysis of myopericytoma includes 
αSMA and h-caldesmon positivity in a diffuse or perivascular pattern (Mentzel 
et al. 2006; Granter et al. 1998). Similar to the classic GT, focal CD34 expression 
has been found (Granter et al. 1998). Cytologic analysis illustrates smaller nuclei 
and more eosinophilic cytoplasm in myopericytoma cells as compared to glomus 
cells. Evidence of pericytic/myoid differentiation can be observed via electron 
microscopy, which reveals thin filaments, subplasmalemmal densities, and pinocy-
totic vessels (Erlandson 1994a). Like glomus tumor, myopericytoma demonstrates 
diffuse expression of pericyte antigens, including SMA, CD146, PDGFR-β, and 
RGS5 in most tumors (Shen et al. 2015a, 2016) (Table 4.1).

Table 4.1 Summary of immunohistochemical staining results for perivascular markers in 
perivascular tumors

SMA CD146 PDGFRB h-Caldesmon RGS5

Classic GT 100% (9/9)a 88% (8/9) 67% (6/9) 44% (4/9) 67% (4/6)
Malignant GT 75% (3/4) 100% (4/4) 25% (1/4) 25% (1/4) 50% (2/4)
Myopericytoma 100% (3/3) 100% (3/3) 67% (2/3) 100% (3/3) 100% (3/3)
Angioleiomyoma 100% (9/9) 78% (7/9) 11% (1/9) 78% (7/9) 67% (6/9)
SFT 0% (0/10) 0% (0/10) 0% (0/10) 10% (1/10) 10% (1/10)
PEComa family 58% (11/19) 58% (11/19) 37% (7/19) NR 0% (0/19)

GT glomus tumor, NR not recorded, PDGFRB platelet-derived growth factor receptor beta, SFT 
solitary fibrous tumor, SMA smooth muscle actin. Data derived from Shen et al. (2015a, b, 2016)
aPositive staining defined as 50% distribution or greater of intermediate (2+) staining intensity or 
greater

Fig. 4.3 Representative histologic appearance of myopericytoma, which demonstrate the mono-
morphic round to ovoid tumor cells with eosinophilic cytoplasm and indistinct borders. As in 
glomus tumors, vascular spaces are numerous. Perivascular cell growth outside the main tumor 
mass is not uncommon. (a) 4×. (b) 40×
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 Angioleiomyoma

Angioleiomyoma generally presents as a painful subcutaneous nodule, with a histo-
logical appearance of more differentiated smooth muscle cells in comparison to 
either myopericytoma or glomus tumor. The tumor cells of angioleiomyoma can be 
arranged in perivascular, fascicular, or cavernous growth patterns. Tumors are found 
in the dermis and superficial soft tissues, most commonly of the distal extremities. 
Tumors typically show characteristics of both solid and venous growth patterns, and 
they are composed of eosinophilic tumor cells with indistinct cell borders, consis-
tent with smooth muscle differentiation (Fig. 4.4). Clinical immunohistochemical 
stains generally are diffusely positive for markers of smooth muscle differentiation, 
including MSA and desmin. All angioleiomyoma specimens demonstrated at least 
some focal immunoreactivity for each pericyte marker examined, including αSMA, 
CD146, and PDGFRβ (Shen et al. 2015a, 2016). In comparison to other perivascu-
lar tumors, angioleiomyoma showed more weak and focal immunoreactivity for 
PDGFRβ (Shen et  al. 2015a). Interestingly, pericyte markers were more consis-
tently expressed in the prominent perivascular/venous areas, rather than in areas of 
fascicular tumor growth (Shen et al. 2015a).

 Solitary Fibrous Tumor (SFT)/Hemangiopericytoma (HPC)

Solitary fibrous tumor (SFT), previously termed hemangiopericytoma, is a translo-
cation sarcoma resulting in STAT6 overexpression (Robinson et al. 2013; Chmielecki 
et al. 2013). Several features of SFT led investigators to previously hypothesize a 
pericyte cell of origin for SFT, including the prominent vasculature of SFT with 
branching (or staghorn-shaped) blood vessels, as well as previously described ultra-
structural features of SFT suggesting a pericyte-like cell type (Ghadially 1980; 
Erlandson 1994b). In general, SFT is currently categorized as a fibrous rather than 

Fig. 4.4 Representative histologic appearance of angioleiomyoma, which demonstrates a smooth 
muscle neoplasm with fascicular (leiomyoma-like) and venous growth patterns. Dilated venous 
spaces show concentric layers of smooth muscle, and it is in these areas that pericyte markers are 
most expressed. (a) 4×. (b) 10×. (c) 40×
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pericytic tumor, characterized by CD34 expression. The exception to this is poten-
tially in the sinonasal region (see below).

 Sinonasal Hemangiopericytoma

Sinonasal hemangiopericytoma, also termed hemangiopericytoma-like tumor of 
nasal passages (HTNPs), is a distinct entity which arises in the nasal passages, often 
in female patients (Weiss and Goldblum 2008). Histologically, sinonasal hemangio-
pericytoma is similar in appearance to typical SFT/HPC; however, most HTNPs 
lack CD34 immunoreactivity (Yasui et al. 2001). Nuclear beta-catenin expression is 
a common feature in sinonasal hemangiopericytoma, although this is a nonspecific 
feature (Jo and Fletcher 2017). These tumors are similar to glomangiopericytoma of 
soft tissue in both morphology and expression of αSMA and vimentin, leading to 
the adoption of the term glomangiopericytoma for a potentially more accurate clas-
sification (Thompson 2004). Although HTNP has been hypothesized to display true 
pericytic/myoid differentiation (Kuo et  al. 2005), this idea remains largely 
uninvestigated.

 Pericytes as a Potential Cell of Origin for Sarcomas

Although the cell of origin for mesenchymal tumors is unclear, we and others have 
postulated that pericytes may give rise to malignant mesenchymal tumors (sarco-
mas). This is not a suggestion that all sarcomas within a certain subtype arise from 
pericytes, but that genetic modifications within a pericyte cell type may give rise to 
sarcomas. To examine the hypothesis experimentally, Sato et  al. used a tracing 
approach using the pericyte marker Ng2 to examine potential pericyte contribution 
to sarcoma (Sato et  al. 2016). Pericyte reporter expression was observed among 
Trp53 deficiency-induced osteosarcoma and Trp53 deficiency-induced undifferenti-
ated pleomorphic sarcoma (Sato et al. 2016). In this study, stabilization of β-catenin 
resulted in tumors with phenotypic similarity to fibromatosis (desmoid tumor), 
which were also diffusely labeled with the pericyte marker Ng2 (Sato et al. 2016). 
Microarray analysis demonstrated that these spontaneous tumors also demonstrated 
similar gene expression to human sarcomas (Sato et al. 2016). This direct evidence 
of pericyte contribution Trp53-driven sarcomas has parallels in observations among 
human sarcoma. For example, NG2 expression is observed in soft-tissue sarcomas 
(Benassi et al. 2009), while the canonical pericyte marker CD146 is expressed in 
human osteosarcoma and osteosarcoma cell lines (Schiano et al. 2012). Importantly, 
no known pericyte marker in either mouse or human is entirely specific for a peri-
cyte cell. For example, NG2 expression is found in neural progenitor cells, chondro-
cytes, chondroblasts, and cardiomyocytes (Levine and Nishiyama 1996). Thus, the 
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direct contribution of pericytes to sarcomas, while an intriguing hypothesis sup-
ported by some indirect evidence, is as yet unproven in either mouse or man.

 Aberrant Adoption of Pericyte Markers

In addition, mesenchymal tumors that are likely not a pericyte derivative co-opt 
pericyte markers in certain contexts. Here, the PEComa family of tumors and lipo-
sarcoma will be discussed, with analogies drawn to other nonmesenchymal tumors.

 PEComa Family of Tumors

The PEComa family tumors are a unique and diverse group of tumors with dual 
smooth muscle and melanocytic differentiation and unknown histogenesis (Weiss 
and Goldblum 2008; Armah and Parwani 2009). The most common tumors in the 
PEComa family are renal and extrarenal angiomyolipomas. Angiomyolipomas have 
a characteristic triphasic appearance including thick-walled blood vessels, myoid- 
appearing perivascular cells, and lipid-distended cells resembling adipocytes 

Fig. 4.5 Representative histologic appearance of angiomyolipoma (AML). Among the PEComa 
family tumors, AML is the most common. AML has a triphasic appearance, with prominent vascu-
lature, perivascular epithelioid cell proliferation, and adipose-like tissue. (a) 4×. (b). 10×. (c) 40×. 
(d) MART1 immunohistochemical staining, 4×
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(Fig. 4.5) (Weiss and Goldblum 2008). Examples of other variants include lymph-
angiomyomatosis and clear cell sugar tumor of the lung (Frack et al. 1968; Liebow 
and Castleman 1971). PEComa tumor cells are all characterized by their perivascu-
lar growth pattern and dual myomelanocytic differentiation and can be either spin-
dled or epithelioid in cytomorphology. Immunohistochemical features of PEComa 
tumors are distinct and demonstrate co-expression of pericyte markers including 
CD146, αSMA, and PDGFR-β (Shen et al. 2015b) and melanocytic markers includ-
ing HMB-45, Melan-A, MiTF, and S100 (Pea et al. 1991; Folpe et al. 2005). Studies 
examining pericyte antigens on the PEComa family of tumors suggest that differen-
tial expression of markers may reflect changes in pericyte differentiation and tumor 
behavior (Shen et al. 2015b). Interesting similarities exist between angiotropic mel-
anoma, discussed below, and PEComa. However, while angiotropism in melanoma 
is associated with a poor prognosis (Barnhill et al. 2002), PEComa family tumors 
are defined by their vasculocentric growth, and a similar prognostic significance has 
not been established.

 Pericyte Mimicry/Extravascular Migratory Metastasis

In the past 15 years, a novel metastatic paradigm has been described in extravascu-
lar tumors. In contrast to the classical mechanism of lymphovascular invasion, 
extravascular migratory metastasis (EVMM) involves metastasis outside of the 
bloodstream. Also known as “angiotropism” or “pericytic mimicry,” tumor cells 
adopt characteristic pericyte cell surface markers and perivascular migration pat-
terns along the external or abluminal surfaces of vascular channels, without intrava-
sation (Lugassy and Barnhill 2007; Lugassy et  al. 2013a). By this mechanism, 
tumor cells may spread to nearby or more distant sites. Perivascular invasion through 
extravascular migratory metastasis is an underrecognized route of tumor spread.

Pericyte mimicry has been identified in common malignancies of the skin, brain, 
pancreas, and prostate and most thoroughly studied in melanoma (Lugassy and 
Barnhill 2007; Lugassy et al. 2002, 2005, 2013a, b; Bald et al. 2014). Lugassy et al. 
first described melanoma cells invading the blood vessel basal lamina (Lugassy 
et al. 1998, 1999, 2000). Pericyte mimicry in melanoma has since been confirmed 
at the immunophenotypic level by the expression of pericyte antigens: PDGFR-β, 
NG2, and CD146 (Lugassy et al. 2013b). Microarray analysis of migrating of mela-
noma cells along the abluminal endothelial tubules found upregulated expression of 
malignancy-associated genes linked to metastasis (including CCL2, ICAM1, and 
IL6) and disease progression (including CCL2, ICAM1, SELE, TRAF1, IL6, 
SERPINB2, and CXCL6) (Lugassy et  al. 2013b). Additionally, angiotropism is 
clinically significant and a predictor of metastasis in malignant melanoma (Barnhill 
and Lugassy 2004).

Parallels may be drawn between angiotropism of melanoma cells and that of 
other tumors with perivascular invasion. For example, malignant glial cells in glio-
blastoma multiforme (GBM) adopt an angiotropic distribution without entering the 
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luminal space (Lugassy et al. 2002; Giese and Westphal 1996). Using in vivo cell 
tracking, Cheng et al. showed that glioblastoma stem cells (GSC) can differentiate 
into an immunophenotype similar to pericytes (Cheng et al. 2013). Recent studies 
have found that GBM cell angiotropism is associated with dramatic changes in the 
structure of preexisting blood vessels, termed “vessel co-option” (Caspani et  al. 
2014). Additionally, pancreatic and prostate adenocarcinomas have also displayed 
pericyte mimicry with regional invasion and EVVM (Lugassy et  al. 2005; Levy 
et al. 2009). Well-differentiated liposarcoma often shows evidence of perivascular 
condensation/myoid proliferation, and we observed that a similar phenotype of 
pericytic mimicry is also seen here (Shen et  al. 2016). Like melanoma, well- 
differentiated liposarcoma tumor cells adjacent to blood vessels result in aberrant 
adoption of pericyte markers, including αSMA, CD146, and RGS5 (Shen et  al. 
2016). In sum, these studies suggest that common malignancies of the skin, brain, 
pancreas, prostate, and fat tissue all show evidence of pericyte mimicry/EVMM. 
Other tumor types, although not yet described, likely have a similar ability to invade 
in a similar perivascular fashion.

 Pericytes and Disease Progression

Lastly, tumor-associated pericytes may play an important role in sarcoma formation 
and metastasis. Below is a discussion of the role of nonneoplastic pericytes in both 
mesenchymal malignancies (sarcomas) and epithelial malignancies (carcinomas).

Multiple lines of evidence suggest that pericytes play a naturally protective role 
against vascular invasion by tumor cells. This “barrier” function is relatively intui-
tive, given intimate association of the pericytes with the endothelium. First, estab-
lished evidence has shown that pericytes around tumor vessels demonstrate 
abnormalities including disordered arrangement, cell shape, and loosened attach-
ment (Lugassy et al. 2005; Abramsson et al. 2002; Allt and Lawrenson 2001). By 
electron and confocal microscopy, tumor-associated pericytes have been observed 
to have increased distance from associating blood vessels as well as extended cyto-
plasmic processes and altered endothelial interactions (Morikawa et  al. 2002; 
Barlow et al. 2013). Morphological and phenotypic changes of pericytes in tumors 
are thought to result in increased vascular permeability and reduced barrier to vas-
cular invasion. In fact, reduced pericyte coverage along tumor-associated vessels 
has been associated with poor prognosis in breast adenocarcinoma (Cooke et  al. 
2012). Conversely, higher levels of markers of pericyte stability including CD34+ 
and PDGF-β, a cell-surface tyrosine kinase receptor critical to pericyte formation 
and migration, have been found as a favorable prognostic factor (Wang et al. 2015). 
Tumors may also recruit perivascular precursors from the bone marrow for vascular 
remodeling (Song et al. 2005). These structural changes are associated with abnor-
mal protein expression in tumor-associated pericytes. For example, aberrant desmin 
immunoreactivity was observed in pericytes in pancreatic adenocarcinoma, whereas 
normal pancreatic pericytes are not immunoreactive (Morikawa et al. 2002).
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Multiple independent investigators have studied the role of pericytes or the peri-
cyte–endothelial cell complex in tumors and found increased vascular permeability, 
tumor cell vascular invasion, and tumor metastasis. Xian et al. examined the role of 
pericytes in limiting vascular invasion in two murine pancreatic β-cell tumor models 
(Xian et al. 2006). First, NCAM (neural cell adhesion molecule)-deficient mice dis-
played perturbed pericyte–endothelial cell interaction, resulting in increased vascu-
lar permeability and tumor metastasis (Xian et al. 2006). Similarly, pericyte-deficient 
Pdgfbret/ret mouse resulted in widespread metastasis of pancreatic β cell in lymph 
nodes and distant sites (Xian et al. 2006). Conversely, NCAM gain of function lim-
its tumor metastasis and vascular invasion through pericyte–endothelial interaction 
(Xian et al. 2006). Cooke et al. examined the effects of pericyte deficiency in breast 
adenocarcinoma metastasis, using a genetically engineered mouse model with abla-
tion of NG2+ PDGFR-β+ pericytes using ganciclovir as well as Imatinib and 
Sunitinib (Cooke et  al. 2012). Similar to Xian et  al. reduced pericyte coverage 
resulted in decreased tumor volumes; however, it also increased the rate of vascular 
invasion and metastatic burden.

Disruption or dissociation of pericytes from their endothelial cells also results in 
a hypoxic tumor microenvironment, which may induce tumor cell epithelial-to- 
mesenchymal transition (EMT) and promotion of metastasis (Harris 2002). Hypoxic 
conditions inhibit degradation of hypoxia-inducible factor-1alpha (HIF-1α), which 
then binds to the proximal promoter of TWIST, an EMT master regulator (Yang 
et al. 2008). HIF-1α also binds to the Met promoter and amplifies signaling of hepa-
tocyte growth factor (HGF) receptor protein, promoting tumor invasion (Fujiuchi 
et al. 2003; Ren et al. 2005) and EMT (Ren et al. 2005) in multiple cancer cell lines 
in vitro. One of the mechanisms leading to tumor hypoxia is reduced pericyte cover-
age. Cooke et al. found that pericyte depletion through ganciclovir treatment led to 
an EMT shift with increased expression mesenchymal transcription factors, such as 
HIF-1α and Met, rather than an epithelial phenotype (Cooke et  al. 2012). Thus, 
pericyte loss likely has multiple effects enhancing tumor metastasis, including 
hypoxia-induced EMT cascade leading to tumor invasiveness as well as increased 
vascular permeability and concomitant vascular invasion. Collectively, these carci-
noma models illustrate that the disruption of pericyte–endothelial cell interaction 
leads to hyperpermeable vessels, increased vascular invasion, and tumor 
metastasis.

Pathways important in pericyte biology have been studied in the setting of sarco-
magenesis, and the Notch signaling pathway plays a vital role in angiogenesis and 
vasculogenesis of neoplasms. Notch signaling is crucial for pericyte recruitment, 
and pericytes express Notch1-3. Ewing’s sarcoma upregulates Notch signaling 
through RE1-silencing transcription factor (REST) and activation of ligand Delta- 
like4 (DLL4). Investigators that have targeted inhibition of REST and DLL4 dis-
covered altered vascular morphology and increased hypoxia (Zhou et  al. 2014; 
Stewart et al. 2011; Schadler et al. 2010). Notch signaling is also a known oncogene 
for osteosarcoma and plays a role in tumor invasion and metastasis (Engin et al. 
2009; Zhang et al. 2010; Hughes 2009). The study by Tanaka et al. found that upreg-
ulation of Notch1 and Notch2 in vitro has been correlated with increase in  metastasis 
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(Tanaka et  al. 2009). Conversely, inhibition of Notch through gamma secretase 
inhibitor reduced osteosarcoma invasion and migration (Tanaka et al. 2009). Specific 
targeting of pericyte signaling cascades demonstrates the complex role pericytes 
play in cancer progression and metastasis.

Additionally, it has been shown that pericytes play a role in the resistance of 
antiangiogenic therapy. Overall, it appears that immature blood vessels without 
pericyte coverage are more susceptible to VEGF-targeted agents (Benjamin et al. 
1999). Conversely, anti-VEGF agents tend to be ineffective in mature vessels with 
pericyte coverage (Inai et al. 2004; Bergers et al. 2003; Erber et al. 2004). Therefore, 
the concept of a combination therapy has been developed, using both VEGF and 
PDGFR inhibitors (Bergers et al. 2003; Erber et al. 2004). It appears that in many 
clinical scenarios approaches using both types of inhibitors are more effective 
against tumor vessels than either approach alone (Bergers et al. 2003; Erber et al. 
2004). However, this synergistic effect has not been observed by all investigators 
(Hainsworth et al. 2007; Kuhnert et al. 2008).

Recently, investigators have attempted to subcategorize pericytes by cell surface 
marker expression. For example, Birbair et al. have described type 1 and 2 pericytes 
based on differential expression of Nestin and NG2 (Birbrair et  al. 2014). 
Interestingly, only type-2 pericytes (Nestin+/NG2+) seem to participate in tumoral 
angiogenesis in this model, although selective targeting of type-2 pericytes has not 
yet been employed (Birbrair et al. 2014). Given that pericytes are multipotent, they 
may be a heterogeneous population and may vary in function and require more 
specific cellular targeting during tumor angiogenesis.

 Summary

Far from being inert bystanders in tumorigenesis and tumor spread, pericytes and 
other perivascular stem cells have significant function in tumor biology. As their 
biologic relevance continues to expand, more and more investigators have turned to 
pericytes as potential regulators of local and distant tumor spread. Pericytic regula-
tion of tumor spread has been studied across diverse malignancies, including mela-
noma, liposarcoma, various adenocarcinomas, and glioblastoma, to name a few. In 
particular to regulation of tumor spread, it seems that pericytes play at least a dual 
role: including (1) prevention/regulation of vascular invasion, but also (2) probable 
regulation of angiotropism/pericyte mimicry. From these standpoints, methods to 
reinforce the pericyte–endothelial cell interaction may be an important future 
adjunct to traditional chemotherapeutic agents. As investigators have already shown, 
pericytes may be subcategorized based on cell surface marker expression. Selected 
targeting of pericyte subpopulations may be a future promising avenue for tumor- 
specific effects. Finally, in terms of tumorigenesis, several lines of evidence suggest 
pericytic differentiation in a number of soft-tissue tumors. While interesting to posit 
that the pericyte is the cell of origin for select perivascular/mesenchymal tumors, 
further investigation in this area is required.
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Chapter 5
Pericytes in Metastasis

Zalitha Pieterse, Devbarna Sinha, and Pritinder Kaur

Abstract Pericytes have long been known to contribute indirectly to tumour growth 
by regulating angiogenesis. Thus, remodelling tumour blood vessels to maintain 
blood supply is critical for continued tumour growth. A role for pericytes in restrict-
ing leakage of tumour cells through blood vessels has also become evident given 
that adequate pericyte coverage of these blood vessels is critical for maintaining 
vascular permeability. Interestingly, the relocation of pericytes from blood vessels 
to the tumour microenvironment results in the emergence of different properties in 
these cells that actively promote tumour growth and metastasis—functions not asso-
ciated with their well-studied role in vascular stability and permeability. These form 
the focus of this review.

Keywords Cancer · Cancer cell invasion · Cancer stem cells · Epithelial- 
mesenchymal interactions · Mesenchymal stem cells · Metastasis · Ovarian cancer 
Pericytes · Tumour microenvironment · Vascular permeability · Tumour 
vasculature

 Introduction

The role of the tumour microenvironment (TME) in promoting tumour growth and 
metastasis is widely recognised and consists of a variety of cells including cancer- 
associated fibroblasts (CAFs), bone marrow-derived mesenchymal stem cells 
(BM-MSC), endothelial cells, pericytes and immune cells and the growth factors 
and proteins they produce. Studies of various types of cancer including ovarian, 
colorectal, pancreatic and breast demonstrate that stromal signatures predict relapse 
and recurrence in patients lending strong support to the notion that the TME is a 
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strong contributor to malignant progression (Tothill et al. 2008; Finak et al. 2008; 
Tsujino et al. 2007; Fujita et al. 2010; Calon et al. 2015). It is possible that not all 
elements of the TME are pro-tumourigenic—indeed, many tumours are encapsu-
lated by fibroblasts perhaps limiting metastatic spread. It has been suggested that 
the TME has a role in contributing to resistance against anti-cancer therapeutics 
(Frame and Serrels 2015). It is therefore important that we gain a better understand-
ing of the contributions of specific subsets of cells found in the TME to cancer 
progression. This discussion focuses on the role of pericytes given the relatively 
recent discovery that they have angiogenesis-independent roles in promoting malig-
nant cancer.

 Difficulties in Distinguishing Pericytes from CAFs in the TME

CAFs are defined as fibroblasts that universally promote tumour growth, invasive-
ness and metastasis compared to normal “fibroblasts” (Olumi et al. 1999; Cunha 
et al. 2003; Kalluri and Zeisberg 2006; Pietras and Ostman 2010). CAFs can origi-
nate from diverse sources including tissue-resident myofibroblasts, activated adipo-
cytes and distal bone marrow-derived MSCs/BM-MSCs (Kalluri and Zeisberg 
2006; Cirri and Chiarugi 2011), and are mostly identified retrospectively using 
equivocal “CAF markers”, such as α-SMA (smooth muscle actin) which is activated 
in all mesenchymal cell types in conditions of stress. Thus, α-SMA is expressed in 
cultured or activated fibroblasts, myofibroblasts, pericytes and most BM-MSCs 
(Kalluri and Zeisberg 2006; Cirri and Chiarugi 2011). Lineage-marking studies in 
animals show that GFP-tagged BM-MSCs home to developing tumours inducing 
increased metastases (Karnoub et al. 2007; Hung et al. 2005; Mishra et al. 2008; 
Studeny et al. 2002; Quante et al. 2011), making up about ~20–50% of CAFs. Thus, 
50–80% of CAFs are not BM derived and may originate from local fibroblasts or 
other MSC-like populations such as pericytes. Indeed, our lab has shown that peri-
cytes accelerate tumour growth rates and promote metastatic spread in a xenograft 
model of ovarian cancer (Sinha et al. 2016). Moreover, we showed that pericytes 
recruited BM-MSCs to developing tumours, suggesting that they may act upstream 
of BM-MSCs.

 Classic Functions of Pericytes in Cancer: Stabilising Tumour 
Blood Supply and Limiting Hypoxia

In cancer, pericytes have been widely studied in the context of their well-known 
capacity to stabilise blood vessel structure and permeability. Dual targeting of vas-
cular endothelial cells and pericytes using kinase inhibitors or anti-VEGF and anti- 
PDGFβ antibodies, has a synergistic anti-angiogenic/anti-tumour effect, resulting in 
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increased tumour cell killing in animal models attributed to destabilisation of the 
tumour microvasculature (Bergers et  al. 2003; Druker 2002; Erber et  al. 2004; 
Kuhnert et al. 2008; Maciag et al. 2008). Other studies claiming that tumour growth 
was unaffected after pericyte removal are equivocal given that a maximal 50% peri-
cyte knockdown (KD) was achieved using AX102, an inhibitor of PDGFB signal-
ling (Sennino et  al. 2007), or in PDGFret/ret mice that harbour a mutation in the 
PDGFB retention motif (Nisancioglu et  al. 2010; Lindblom et  al. 2003). On the 
other hand, complete KD of pericytes with NG2 promoter driven thymidine kinase, 
caused tumour hypoxia which led to epithelial-mesenchymal transition and metas-
tases to the lungs in mouse models of breast/renal cell carcinoma and melanoma 
(Cooke et  al. 2012). These data support the idea that pericytes limit metastatic 
spread through otherwise leaky tumour blood vessels (Xian et al. 2006).

 Tumour Blood Vessel Remodelling Leads to Displacement 
of Pericytes from Their Vascular Niche

Blood vessel remodelling during tissue repair is a dynamic process requiring the 
initial detachment of pericytes from endothelial cells from pre-existing vessels 
resulting in the removal of paracrine signalling between the two cell types that keep 
vessels in a homeostatic state. Pericyte detachment permits endothelial cell sprout-
ing and proliferation, and subsequent re-association of the two cell types in the 
newly extended blood vessels  – processes driven by angiopoietin-1/2 and Tie2 
(Ang/Tie2), transforming growth factor-β (TGF-β), and platelet-derived growth 
factor-B (PDGFB) and its receptor PDGFR-β (Lindblom et al. 2003; Stapor et al. 
2014). Similar mechanisms underlie tumour vessel remodelling although tumour 
vasculature is typically disorganised with torturous vessels, excessive branching 
and altered gene expression resulting in impaired vascular structure and increased 
vessel leakiness (Ruoslahti 2002). Notably, pericytes are more loosely attached to 
endothelial cells with cytoplasmic projections invading the tumour stroma 
(Morikawa et al. 2002). It has been shown that detachment of perivascular cells (and 
subsequent endothelial cell sprouting) is mediated by angiopoietin-2 secreted by 
activated endothelial cells (Scharpfenecker et al. 2005). Similarly, it has been shown 
that tumour cells overexpressing PDGFBB xenografted onto mice, induced disso-
ciation of pericytes from tumour blood vessels in a dose-dependent manner increas-
ing vascular permeability leading to vascular impairment (Hosaka et  al. 2013). 
Notably, continued exposure of pericytes to PDGFBB led to down-regulation of 
PDGFβR that in turn decreased the expression of the α1β1 integrin receptor from 
the cell surface of pericytes, abrogating their adhesion to extracellular matrix pro-
teins in the blood vessel walls resulting in  their detachment from them (Hosaka 
et al. 2013). Thus, paracrine signalling between pericytes and cancer cells provides 
an important mechanism by which pericytes can be persuaded to leave their normal 
microenvironment within microvessels and associate more closely with tumour 
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cells. Given the reports that the precise location of pericytes can alter their function-
ality, it is clear that pericytes may be able to act directly on tumour cells as part of 
their mesenchymal microenvironment.

 Mesenchymal Stem Cell Properties of Pericytes: Similarities 
and Distinctions

Given that many tissues are well vascularised, it has been speculated that perivascu-
lar cells throughout the body serve as a reservoir of multipotent mesenchymal stem 
cells that can be recruited upon tissue injury. Certainly, the phenotypic and func-
tional similarities between pericytes and mesenchymal stem cells have been widely 
reported, serving to underpin the idea that the two cell types are in fact one and the 
same. Thus, both pericytes and BM-MSCs are CD45−CD31−αSMA+CD146+NG2+P
DGFRB+CD73+CD90+, located in a perivascular niche and can differentiate into fat, 
bone, cartilage, muscle, and neuronal cells (Crisan et al. 2008; Caplan 2008; Paquet- 
Fifield et  al. 2009). However, important distinctions exist between pericytes and 
MSCs in that an immunosuppressive role has been described for MSCs (Shi et al. 
2018) whereas the indications are that in animal studies pericytes or perivascular 
cells are pro-inflammatory (Mills et al. 2015; Dulauroy et al. 2012) and likely to 
contribute to delayed healing and fibrosis.

 Pericytes and Fibrosis

Pericytes are involved in various fibrosis-related pathologies in the kidneys, liver, 
and skin, acting as progenitors to myofibroblasts, which are the main mediators for 
extracellular matrix deposition, leading to fibrogenesis and ultimately fibrosis dur-
ing the healing process (Greenhalgh et al. 2015; Kramann and Humphreys 2014). In 
a transgenic reporter mouse model, coll1α1-GFP-expressing pericytes were shown 
to be the main source of myofibroblasts leading to kidney fibrosis (Lin et al. 2008). 
Similar studies in the liver, where pericytes are known as hepatic stellate cells, also 
showed that they were the main source of myofibroblasts, and a major player in liver 
fibrosis (Greenhalgh et al. 2015). Consistent with this, studies with a Cre-transgenic 
mouse model which labelled hepatic stellate cells in various models of liver injury, 
demonstrated that they accounted for 82–96% of the myofibroblast pool, which 
contributes to liver fibrosis (Mederacke et al. 2013). Pericytes have a similar role in 
skin fibrosis and scar formation as illustrated by genetic fate mapping, revealing that 
the majority of collagen producing myofibroblasts originate from ADAM12 
expressing cells, derived from PDGFRB+ NG2+ perivascular cells or pericytes 
(Dulauroy et al. 2012). Notably, ablation or knockdown of ADAM12+ cells, was 
sufficient to limit collagen production in the healing site of injury and reduce 
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fibrosis. These studies demonstrate the ability for pericytes to differentiate into 
myofibroblasts thereby contributing to fibrosis. They also  illustrate the ability of 
pericytes to contribute to the remodelling of tissue stroma to achieve wound repair 
thus pointing to ways in which these cells can affect biological processes in an 
angiogenesis-independent manner.

 Pericytes in Cancer and Metastasis

It has been variously postulated that pericytes affect tumour growth and metastasis 
both positively and negatively. Many of the tumour growth promoting effects are 
related to establishing a stable vascular network thus ensuring delivery of nutrients 
to rapidly growing tumour cells and preventing tumour cell dissemination through 
blood vessels by maintaining vascularity permeability. Both these aspects require 
adequate pericyte investment on the abluminal surface of tumour blood vessels—
experimental depletion of pericytes does indeed result in tumour regression (Bergers 
et  al. 2003)  but also leads to hypoxia-induced epithelial-mesenchymal transition 
increasing metastasis (Cooke et al. 2012). Consistent with this, normalising tumour 
vasculature by abrogating RGS5 expression (a cell surface protein that is abnor-
mally expressed in tumour vessels), makes tumours more susceptible to chemo-
therapeutic agents (Hamzah et al. 2008). Moreover, the context in which pericyte 
dissociation from tumour vessels occurs also affects the response to chemothera-
peutic agents as shown for variable levels of PDGFBB expression by various 
tumours (Hosaka et al. 2013).

 Angiogenesis-Independent Mechanisms by Which Pericytes 
Promote Metastasis

A more direct role for pericytes in promoting cancer growth and metastasis without 
impact on angiogenesis has recently emerged from several laboratories including 
our own. It has become increasingly evident that pericytes are potent mesenchymal 
stem cell-like cells with an ability to promote organ repair and regeneration and 
multiple mesenchymal lineage differentiation capacity (Crisan et al. 2008; Sa da 
Bandeira et al. 2017). In the haemopoietic system, pericytes are an integral part of 
the haemopoietic stem cell niche regulating their maintenance and quiescence 
through paracrine effects (Sacchetti et  al. 2007) supporting haemopoiesis both 
in  vitro and in  vivo (Birbrair and Frenette 2016; Morrison and Scadden 2014), 
as reviewed in Sa da Bandeira et al. (2017). In the process of studying the cellular 
microenvironment of epithelial renewal in human skin, we discovered a novel, para-
crine role for pericytes in influencing skin tissue regeneration in 3D organotypic 
cultures completely lacking any blood vessels (Paquet-Fifield et al. 2009).
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In view of the fact that pericytes are MSC-like and that MSCs had been reported 
to promote breast cancer metastasis (Karnoub et al. 2007) and ovarian cancer growth 
(McLean et al. 2011), we sought to establish whether pericytes may be a critical 
element of the TME with a more direct role in cancer progression. Recognising that 
the stromal signature of serous ovarian cancer patients reported by the Australian 
Ovarian Cancer Study Group (AOCS) (Tothill et  al. 2008) had markers of both 
fibroblasts and pericytes, we used the molecular signature previously generated by 
us for both individual cell types (Paquet-Fifield et al. 2009) to interrogate the AOCS 
patient dataset annotated for patient outcomes (Sinha et al. 2016). Remarkably, the 
pericyte signature outperformed the ovarian cancer stromal signature at predicting 
early relapse revealing that those serous ovarian cancer patients carrying a high 
pericyte score (evidenced by a set of 146 genes co-expressed by both pericytes and 
ovarian cancer stromal cells), relapsed significantly earlier with a mean progression- 
free survival/PFS time of 9 months (vs. 29 months in those with a low pericyte 
score; n = 215), despite similar treatment (p = 0.00067 vs. p = 0.0011 from Tothill 
et  al. 2008). Notably, the fibroblast signature was relatively poorer at predicting 
relapse (p = 0.01). Subsequently, we used a xenograft model to demonstrate that 
pericytes could act as CAFs when co-injected with ovarian cancer cell lines and that 
critically the tumour vasculature derived entirely from host murine cells remained 
unaffected with respect to the number of blood vessels or pericyte investment. Thus, 
co-injection of human pericytes with OVCAR-5 or OVCAR-8 cells, accelerated 
tumour growth rates and caused rapid dissemination to local tissues increasing 
metastases in a dose-dependent manner, typical of ovarian cancer spread clinically 
(Sinha et al. 2016). Notably, the human pericytes remained in the tumour stroma not 
associating with the tumour vasculature presumably due to species-specific incom-
patibility of signals that might otherwise result in their incorporation into tumour 
microvessels. This study provided the  first clear evidence uncoupling the pro- 
angiogenic versus pro-metastatic function of pericytes in cancer. This suggests to us 
that when pericytes are dissociated from blood vessels they promote metastasis—a 
novel site of pericyte action, whereas their normal location in blood vessels restricts 
metastasis (Fig. 5.1). Consistent with a paracrine role for pericytes in promoting 
tumour cell metastasis, transwell co-culture experiments showed that pericytes 
increased ovarian cancer cell migration and invasion through matrigel; in other 
experiments we were able to demonstrate increased ovarian cancer cell proliferation 
with pericyte co-culture (Sinha et al. 2016). Interestingly, recent work with a variety 
of epithelial cancers has shown that pericytes contribute to cancer progression by 
giving rise to CAFs when dissociated from tumour blood vessels (Hosaka et  al. 
2013).

It is also likely that pericytes promote aggressive tumour growth by affecting the 
cancer stem cell compartment within tumours preferentially by secreting paracrine 
regulators. In support of this, it has been reported that human cancer-associated 
MSCs found in the TME of ovarian cancer increased the incidence of ALDH+CD133+ 
cancer stem cells via BMP-2 (McLean et al. 2011). In recent work from our labora-
tory, we have shown that pericytes can dictate the orientation of cell divisions within 
the skin’s proliferative compartment, i.e. the basal layer, increasing planar presumed 
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symmetric cell divisions delaying differentiation thereby maintaining epidermal 
cells in a more primitive state via BMP-2 (Zhuang et al. 2018). These data and work 
from lower organisms such as Drosophila demonstrating a role for BMP signalling 
in maintaining “stem-ness” of neighbouring cells (Kawase et al. 2004; Song et al. 
2004) points to a conserved mechanism for the stem cell niche in regulating the fate 
of adjacent cells.

Fig. 5.1 Schematic model of the role of pericytes in promoting malignant cancer progression. 
Localisation of pericytes in intimate association with blood vessels results in a tightly encapsulated 
ovarian cancer tumour (left) whilst placing pericytes directly within the tumour microenvironment 
leads to increased tumour cell proliferation, increased recruitment of αSMA+ stromal cells includ-
ing cells expressing markers of BM-MSCs, induction of EMT and invasion, and metastatic spread 
to distant organs. Based on Sinha et al. (2016)
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 Future Trends and Directions

The full spectrum of functional capabilities of pericytes are only just starting to 
emerge and the closer investigators look beyond their classic role in vascular stabil-
ity and permeability, the more seems to be uncovered (Ribeiro and Okamoto 2015). 
For instance, their ability to influence the inflammatory response by acting as a 
physical barrier to extravasation of immune cells and secreting a vast array of cyto-
kines and extracellular matrix molecules are only recently being appreciated 
(reviewed in Navarro et al. 2016). Pericytes have been implicated in metastasis by 
increasing tumour cell intravasation at distal sites through endosialin (Viski et al. 
2016), by regulating the metastatic niche via KLF4 (Paiva et al. 2018) and suppress-
ing the immune response to brain tumours (Sena et al. 2018). The exact nature of 
molecular crosstalk between pericytes and cancer cells needs to be studied—one 
possibility is that they may contribute to tumour growth by differentiating into fat 
cells, which act as a source of energy driving cancer cell growth and metastasis 
(Huang et al. 2018). Another an exciting prospect is that exosomes secreted by can-
cer cells signal pericytes to become CAFs (Ning et al. 2018). Thus, a clear driver of 
future work has to be the identification of specific subsets of pericytes with cutting- 
edge technologies such as single cell RNA seq as reported recently for murine brain 
vascular cells including pericytes (Vanlandewijck et al. 2018). Moreover, the com-
monalities and distinctions in functional gene expression related to specific ana-
tomical sites and organs needs to be addressed urgently to broaden our understanding 
of how these cells contribute to tissue renewal, wound repair, cancer, and ageing. A 
thorough understanding of pericyte cellular and molecular biology and their 
immense impact on neighbouring cells is essential to devise improved stem cell and 
regenerative medicine and interventions in cancer progression. An underlying con-
cept is that just as we acknowledge that there are cancer stem cells within tumours 
that can drive cancer progression, a similar recognition of subsets of “cancer stro-
mal stem cells” is much overdue.
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Chapter 6
The Role of Pericytes in Amyotrophic 
Lateral Sclerosis

Giuliana Castello Coatti, Natale Cavaçana, and Mayana Zatz

Abstract In amyotrophic lateral sclerosis (ALS), motor neurons die selectively. 
Therefore, initial symptoms that include fasciculation, spasticity, muscle atrophy, and 
weakness emerge following axons retraction and consequent muscles’ denervation. 
Patients lose the ability to talk and swallow and rely on parenteral nutrition and assisted 
ventilation to survive. The degeneration caused by ALS is progressive and irreversible. 
In addition to the autonomous mechanism of neuronal cell death, non- autonomous 
mechanisms have been proved to be toxic for motor neurons, such as the activation of 
astrocytes and microglia. Among the cells being studied to unveil these toxic  mechanisms 
are pericytes, cells that help keep the integrity of the blood–brain barrier and blood–spi-
nal cord barrier. In this chapter, we aim to discuss the role of pericytes in ALS.

Keywords Amyotrophic lateral sclerosis · Lou Gehrig’s disease · Motor neuron · 
Pericyte · Perivascular cells · Blood–brain barrier · Blood–spinal barrier · 
Microhemorrhage · SOD1 mice · Pericyte loss

 What is Amyotrophic Lateral Sclerosis (ALS)?

Fundamentally, motor neurons are cells responsible for sending signals from the 
brain to muscles to initiate movement. In amyotrophic lateral sclerosis (ALS), also 
known as Lou Gehrig’s disease, these cells die selectively. Therefore, initial 
 symptoms that include fasciculation, spasticity, muscle atrophy, and weakness 
emerge following axons retraction and consequent muscles’ denervation. This 
retraction is initially compensated by the sprouting of more resistant neurons. 
However, this mechanism eventually fails, and the neuronal cell bodies become 
abnormal and die (Robberecht and Philips 2013). ALS is usually a late-onset  disease 
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in which both upper and lower motor neurons are affected (Goodall and Morrison 
2006). Despite many years of investigation around the world, relatively little is 
known about the cause of this progressively degenerative neurological disease.

Annually, the incidence of ALS is 1–2.6 cases per 100,000 persons, with death 
occurring within 3–4 years after the onset of symptoms (Talbott et  al. 2016). 
Sporadic cases of ALS (SALS) comprise about 90% of all cases. Regarding the 
familial cases (FALS), mutations in C9ORF chromosomal region, causing a 
 hexanucleotide repeat, comprise the most common cause of FALS discovered to 
date (DeJesus-Hernandez et al. 2011). Described more than 20 years ago, SOD1 
gene was the first to be linked to the disease (Rosen et al. 1993). SOD1 gene encodes 
the superoxide dismutase-1, a major cytoplasmic antioxidant enzyme that, when 
mutated, forms intracellular aggregates in a trimeric form that interfere in motor 
neuron survival (Proctor et  al. 2016). An important ALS animal model is SOD1 
mice, which has overexpression of the human transgene carrying G93A mutation, 
an alteration already observed in familial cases (Doble and Kennel 2000). In  addition 
to progressive muscular symptoms, these mice exhibit selective death of motor 
 neurons and their astrocytes and microglia become reactive (Kassa et al. 2009).

In the great majority of sporadic cases (SALS), it is not possible to identify a 
single causative agent. Recent studies using high-throughput technologies such as 
exome and genome sequencing have identified not only novel mutations in these 
known ALS-causing genes, but also additional genetic causes of ALS. The Project 
MinE is a new large-scale effort to better understand the genetic basis of ALS, aim-
ing to analyze the DNA of at least 15,000 ALS patients and 7500 control subjects 
(https://www.projectmine.com).

Including SOD1, about 30 genes have been linked to ALS, providing important 
clues on the pathophysiological mechanisms of the disease (ALSoD—http://alsod.
iop.kcl.ac.uk). In recent studies, the combination of exome sequencing and 
 bioinformatic filtering is being used to investigate new genes linked to ALS, such as 
the newly discovered NEK1 variants (Kenna et al. 2016). NEK1 encodes the serine/
threonine kinase, NIMA (never in mitosis gene-A)-related kinase that acts in several 
cellular functions, including cilia formation, DNA-damage response, microtubule 
stability, neuronal morphology, and axonal polarity. The loss of function of the 
NEK1 gene can lead to ALS (Kenna et al. 2016).

Recently, the ALS ice bucket challenge, aiming to raise funding for ALS research, 
received great attention in the media (https://www.als.net/icebucketchallenge/, 
https://www.mndassociation.org/). This illustrates the current need in uncovering 
many aspects of the disease pathophysiology in order to discover an effective cure, 
since the available drugs are only effective for slowing slightly the disease 
progression.

Riluzole is the main FDA-approved drug used for ALS treatment. This  compound 
acts in the reuptake of glutamate in the synaptic cleft reducing thus the excitotoxic 
effect on motor neurons (Miller et al. 2012). However, the overall effect of riluzole 
is limited, resulting in a survival increase of only 2–4 months (Bensimon et al. 1994; 
Miller et al. 2012). Recently, FDA approved Radicava (edaravone), an antioxidant 
compound, to treat ALS patients. This approval is based on data obtained from a 
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Phase 3 clinical trial (NCT01492686), which demonstrated Radicava’s ability to 
slow the decline in the daily functions of ALS patients.

In addition to the autonomous mechanism of neuronal cell death, non- autonomous 
mechanisms have been proved to be toxic for motor neurons. Reactive astrocytes 
and microglia can trigger neuroinflammation, a key contributor to motor neuron 
damage in ALS (Henkel et al. 2004; Sargsyan et al. 2005; Wang et al. 2003). In 
addition, these cells can secrete inflammatory cytokines that ultimately may 
 facilitate glutamate excitotoxicity (Pickering et  al. 2005; Tilleux and Hermans 
2007). Among the cells being studied to unveil these toxic mechanisms are  pericytes, 
cells that help keep the integrity of the blood–brain barrier and blood–spinal cord 
barrier. In this chapter, we aim to discuss the role of pericytes in ALS.

 What are Pericytes?

Pericytes are cells found within the perivascular region throughout the body. These 
cells participate in diverse biological functions such as vascular stability and 
 angioarchitecture (Winkler et  al. 2011). Pericytes can be characterized by the 
 presence of molecular markers such as CD146, alkaline phosphatase (ALP) and 
NG2 proteoglycan, with absence of endothelial markers like CD45, CD31, and 
CD34 (Corselli et al. 2011; Dellavalle et al. 2007). Given this profile, pericytes can 
be obtained from a mixed population of cells by cell sorting.

The exact origin of pericytes differs between tissues (Asahina et  al. 2011; 
Bergwerff et  al. 1998; Simon et  al. 2012) and also among tissues (Dias Moura 
Prazeres et al. 2017). Evidences indicate that pericytes can originate mesenchymal 
stem cells (MSCs), after being liberated from their basement membrane  surrounding 
blood vessels upon injury or inflammation (Caplan and Hariri 2015). Functional 
heterogeneity was also observed among different subpopulation of pericytes: type 1 
pericytes can originate fat and fibrous cells while type 2 pericytes can differentiate 
into skeletal muscle, endothelial, and neural cells (Birbrair et al. 2015).

 The Blood–Brain Barrier (BBB) and the Blood–Spinal Cord 
Barrier (BSCB)

Differently from the systemic capillaries, capillaries within the brain and spinal 
cord are not leaky (Mann 1985). Instead, central nervous system (CNS) endothelial 
cells are connected by different types of tight and adherens junctions (Zlokovic 
2008), forming a semipermeable monolayer barrier, the blood–brain barrier (BBB) 
and the blood–spinal cord barrier (BSCB), that allows the passage of water, gases, 
and small lipid-soluble molecules, which can cross via lipid-mediated diffusion, 
and limits the entry of plasma components, red blood cells, and leukocytes into the 
brain and the spinal cord (Zlokovic 2008). This barrier also blocks the entrance of 
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toxic molecules into the CNS, but this limits the entry of small molecules drugs and 
all large molecule that could be used for therapy, e.g., recombinant peptides, pro-
teins, antisense agents, and genetic vectors (Zlokovic 2011).

In addition to the endothelial cells, BBB is composed of the extracellular matrix, 
astrocytes, neurons, microglia, and pericytes. The interaction between these cells is 
known as neurovascular unity. The endothelial cells are surrounded by basal lamina 
and astrocytic perivascular endfeet. Astrocytes provide the cellular link to neurons. 
(Abbott et al. 2006; Armulik et al. 2010). Pericytes extend long cytoplasmic pro-
cesses on the surface of endothelial cells, making interdigitating contacts. 
Endothelial cells and pericytes are separated by the basement membrane, and at 
points of contact, the pericyte communicate directly with endothelial cells through 
‘peg and socket’ contacts (Allt and Lawrenson 2001).

Pericytes act in the physical stabilization of vessels, regulation of microcircula-
tion, and capillary blood flow. They affect blood clotting and immune function, and 
may regulate the activation of lymphocytes, participate in angiogenesis and vascu-
logenesis (Birbrair et al. 2015). The pericytes interact with astrocytes by regulating 
proliferation, migration and differentiation of endothelial cells (Armulik et  al. 
2010). Pericytes regulate endothelial cell tight junction formation and permeability 
through tight junction and transendothelial cell transport (Kamouchi et al. 2011).

BSCB represent functional and morphological extension of the BBB in the spi-
nal cord, but with some differences. For example, the BSCB has glycogen deposits 
not seen in the BBB, and they seem to differ in their permeability with BSCB being 
more permeable than the BBB (Bartanusz et al. 2011).

 Pericytes and ALS

In some neurodegenerative diseases, the BBB/BSCB breakdown allows blood com-
ponents to infiltrate the neuronal environment, aggravating the existing inflamma-
tion and accelerating the progression of symptoms (Bell et al. 2010; Winkler et al. 
2011) (Fig. 6.1).

Analysis of the cerebrospinal fluid (CSF) of ALS patients revealed the presence 
of albumin and serum-derived proteins (Annunziata and Volpi 1985; Apostolski 
et al. 1991; Brettschneider et al. 2006). Evidences of the BBB/BSCB breakdown 
can also be found in postmortem tissue of spinal cord or motor cortex of these 
patients (Donnenfeld et  al. 1984; Engelhardt and Appel 1990; Engelhardt et  al. 
1993; Sasaki 2015).

In addition to the well-known degeneration, the analysis of postmortem spinal 
cord of SALS patients also revealed edematous changes in the cytoplasm of endo-
thelial cells and pericytes and also diminished areas of capillary lumens. Higher 
accumulation of collagen fibers in SALS patients may indicate a compensatory 
mechanism for maintaining vascular integrity (Sasaki 2015). Yamaneda and cowork-
ers have also shown that microvascular density was increased, pericyte coverage 
was decreased and that there was abnormal angiogenesis in postmortem spinal cord 
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tissue of SALS patients. Pericyte loss may have influenced these abnormalities 
(Yamadera et al. 2015).

Henkel and coworkers demonstrated decreased expression of tight junction pro-
teins in lumbar spinal cords of ALS patients, including zonula occludens-1 (ZO-1) 
and occludin (Henkel et al. 2009) Another alteration observed in ALS patients serum 
(Beuche et al. 2000; Demestre et al. 2005; Niebroj-Dobosz et al. 2010) and in post-
mortem tissue (Lim et al. 1996) is a higher amount of matrix metalloproteinase- 9 
(MMP-9), an enzyme responsible for degrading tight junctions of endothelial cells 
(Bell et al. 2012). It has been demonstrated that pericytes under stress conditions can 
secrete MMP-9, leading to vascular fragility (Bell et al. 2012). Importantly, analysis 
of postmortem spinal cord tissue from ALS patients indicated a 54% reduction in 
pericyte number when compared to healthy subjects. The level of the pericyte reduc-
tion correlates with the magnitude of BSCB damage (Winkler et al. 2013).

Regarding the animal model, SOD1 mice present a spontaneous infiltration of 
erythrocytes due to a spontaneous breakdown of the BBB (Garbuzova-Davis et al. 
2007a, b, 2011; Miyazaki et al. 2011) that anticipates motor symptoms and neuronal 
loss (Miyazaki et  al. 2011; Zhong et  al. 2008, 2009) Another study showed that 
BSCB breakdown plays an important role in the early-stage disease pathogenesis in 
SOD1 mice (Winkler et al. 2014). Microvascular lesions contain hemoglobin that 
releases free iron, which can catalyze the formation of free radical species, molecules 
toxic for motor neurons (Regan and Guo 1998; Winkler et al. 2014; Zhong et al. 
2009) (Fig.  6.2). Based on these results, two main therapeutical strategies were 

Fig. 6.1 How pericytes may be involved in ALS pathology. The loss of pericytes leads to BBB/
BSCB disruption resulting in micro hemorrhages with the release of neurotoxic hemoglobin- 
derived products. Figure created in the Mind the Graph platform (www.mindthegraph.com)
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proven to be efficient to alleviate the motor symptoms of SOD1 mice: (1) early treat-
ment with an activated protein C analog, aiming to restore the BSCB integrity and (2) 
early chelation of blood-derived iron and antioxidant treatment (Winkler et al. 2014).

 Concluding Remarks

Recently, a growing number of studies have shown structural and functional changes in 
BBB and BSCB in ALS patients. In SOD1 mice, this endothelial damage is observed 
before motor neuron degeneration, indicating that this event is a central contributor to 
disease initiation (Miyazaki et al. 2011; Zhong et al. 2008). Even though it is not what 
actually causes ALS, it represents an important mechanism related to its pathogenesis.

Following the endothelial damage, higher accumulation of collagen fibers in 
ALS patients may indicate a compensatory mechanism for maintaining vascular 
integrity (Sasaki 2015). This feature can hinder the design of new drugs for ALS 
since the accumulation of collagen, especially type IV, occurring over a long period 
of time may represent an obstacle to the diffusion of various substances into the 
CNS (Garbuzova-Davis et al. 2016).

The etiology of ALS is complex, and the development of therapeutic strategies is 
even more complicated. Ideally, an effective therapeutic protocol for ALS should 

Fig. 6.2 Molecular mechanism of neuronal toxicity after BBB/BSCB disruption. Following peri-
cyte loss and BBB/BSCB breakdown, red blood cells leak into the neuronal microenvironment and 
lyse, liberating hemoglobin. Hemoglobin releases free iron, which can catalyze the formation of 
free-radical species, molecules toxic for motor neurons. Figure created in the Mind the Graph 
platform (www.mindthegraph.com)
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provide a cocktail of drugs, targeting not only the intrinsic mechanism of neuronal 
death but also these other non-autonomous changes. Preclinical experiments aiming 
to recover the disrupted BBB/BSCB are ongoing with exciting results. Winkler and 
coworkers observed that restoration of BSCB integrity or the chelation of blood- 
derived iron and antioxidant treatment reduced early injury on motor neurons 
(Winkler et al. 2014).

Cell therapy has also been evaluated to treat SOD1 mice. We observed that males 
that received weekly injections of adipose-derived pericytes lived longer than 
untreated males. Interestingly, treated animals presented increased expression of 
antioxidant enzymes in their brains. A similar effect was observed in ALS-derived 
motor neurons after co-culture with pericytes (Coatti et al. 2017). This study shows 
that, besides their important function on BBB/BSCB integrity, pericytes may secrete 
soluble factors of importance for maintaining a healthy neuronal environment. More 
studies are needed to understand why pericytes are lost in ALS.

In this same line of thought, other strategies may be used to avoid pericyte loss 
in ALS patients. Prostacyclin for example, may be efficient for ALS since it has 
been shown to prevent pericyte loss and demyelination (Muramatsu et al. 2015). 
Even Riluzole, the conventional drug used to treat ALS, has been found to diminish 
pericytes loss in the retina of diabetic mice (Choi et al. 2017). It would be important 
to investigate whether this effect also occurs in ALS patients’ CNS.

One important issue that may hinder the progress of drug discovery for ALS is 
the fact that the diagnosis for this disease may take up to 14 months (Brooks 2000). 
As mentioned before, endothelial damage, a mechanism that accelerates motor neu-
ron death, occurs before the onset of the symptoms. Because of that, strategies to 
find an effective molecular marker for ALS are highly relevant. Early diagnosis 
would increase the chances of more successful clinical trials, since neuronal degen-
eration may be advanced when symptoms start.
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Abstract Pericytes in the central nervous system attract growing attention of neu-
robiologists because of obvious opportunities to use them as target cells in numer-
ous brain diseases. Functional activity of pericytes includes control of integrity of 
the endothelial cell layer, regeneration of vascular cells, and regulation of microcir-
culation. Pericytes are well integrated in the so-called neurovascular unit (NVU) 
serving as a platform for effective communications of neurons, astrocytes, endothe-
lial cells, and pericytes. Contribution of pericytes to the establishment and maintain-
ing the structural and functional integrity of blood–brain barrier is confirmed in 
numerous experimental and clinical studies. The review covers current understand-
ings on the role of pericytes in molecular pathogenesis of NVU/BBB dysfunction in 
Alzheimer’s disease with the special focus on the development of cerebral amyloid 
angiopathy, deregulation of cerebral angiogenesis, and progression of BBB break-
down seen in Alzheimer’s type neurodegeneration.
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 Introduction

Pericytes represent one of the vascular cell populations located next to endothelial 
cells at their abluminal part. Their functioning covers a wide spectrum of activities, 
i.e., control of integrity of the endothelial cell layer, regeneration of vascular cells, 
and regulation of microcirculation (Trost et al. 2016). There is a growing evidence 
that intrinsic plasticity of pericytes is very important for their role on vascular 
remodeling since they are able to control endothelial cells proliferation, apoptosis, 
vascular sprouting, and corresponding regression (Simonavicius et al. 2012; Stapor 
et al. 2014). Pericytes express many surface antigens that are used for phenotyping 
of cells, i.e., nestin, angiopoietin, chondroitin sulfate proteoglycan 4 NG2, CD146, 
CD31 (PECAM-1), platelet-derived growth factor receptor-beta PDGFRβ, and des-
min (Armulik et al. 2011). However, the majority of markers can also be detected 
on other cell types, i.e., CD31 on endothelial cells, NG2 on oligodendrocytes, 
PDGFRβ on fibroblasts. In the context of expression pattern, pericytes seem to be 
very close to mesenchymal stromal cells, and it was suggested that CD146(+)
CD34(−) cells isolated from some (i.e., bone marrow, placenta) but not all the tis-
sues may represent the population of pericytes (Blocki et al. 2013). Generation of 
pericytes occurs in embryonic and postnatal period throughout the life, but the ori-
gin of pericytes remains to be unresolved question in vascular biology, and current 
data suggest that even within one tissue pericytes seem to be heterogenous in their 
developmental story (Dias Moura Prazeres et al. 2017). Application of immunos-
taining for detection of surface antigens, using of transgenic markers (i.e., XlacZ4 
and NG2 dsRED) and numerous functional assays allowed identifying several sub-
types of pericytes, particularly, type-1 pericytes contribute to fibrogenesis and pro-
duction of collagen (Birbrair et al. 2013, 2014a, b, c) whereas type-2 pericytes take 
part in angiogenesis (Birbrair et al. 2014a, b, c).

Pericytes in the central nervous system (CNS) attract the growing attention of 
neurobiologists because of obvious opportunities to use them as target cells in 
numerous brain diseases. Cerebral microvessels have higher pericytes/endothelial 
cells ratio (10–30-fold) than other tissues (Winkler et al. 2014), thereby the role of 
pericytes in controlling brain microvessel endothelial cell (BMECs) functional 
activity is rather significant. Brain pericytes are sparsely distributed and occupied 
the middle of the capillary bed, keep relative stability of their somata but demon-
strate dynamic changes in their processes in the adult brain, and may effectively 
recover after damage (Berthiaume et al. 2018). Being in a close contact with endo-
thelial cells, pericytes are surrounded by basement membrane and extend processes 
both along and around capillaries (Attwell et  al. 2016), therefore, there are no 
doubts on the key role of pericytes in the control of endothelial cells. Thus, in the 
brain tissue, they are well integrated in the concept of neurovascular unit (NVU) as 
a platform for effective communications of neurons, astrocytes, endothelial cells, 
and pericytes which is required for the maintenance of metabolic coupling, gliovas-
cular control as well as the integrity of the blood–brain barrier (BBB) in (patho)
physiological conditions (Salmina et al. 2014). In addition, the activity of pericytes 
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attributes to the regulation of cerebral angiogenesis (experience-induced and repar-
ative), acquisition of specific phenotype of BMECs, establishment of neurovascular 
coupling providing adequate blood supply in active brain regions, promotion of 
neurogenesis within neurogenic niches or oligodendrogenesis within oligovascular 
niches (Hall et al. 2014; Trost et al. 2016). Moreover, pericytes are recognized as a 
key cellular component of BBB models in  vitro suggested for BBB-on-chip or 
brain-on-chip microphysiological systems as well as a promising tool for nervous 
system regeneration (Yamamizu et al. 2017; Greenwood-Goodwin et al. 2016; Tian 
et al. 2017). Thus, pericyte dysfunction in neurodevelopmental and neurodegenera-
tive diseases is gradually becoming a “hot topic” in neurosciences.

 Pericyte Dysfunction in Cerebral Amyloid Angiopathy

Dysfunction of NVU is a well-recognized feature of Alzheimer’s disease (AD) 
(Salmina et al. 2010, 2015a, b). In addition to other hypothesis of AD development 
(amyloid, calcium, or gliocentric), for more than two recent decades, pathogenesis 
of AD has been discussed in the context of prominent vascular alterations culminat-
ing in the establishment of the so-called cerebral amyloid angiopathy (CAA) caused 
by the accumulation of beta-amyloid (Aβ) in small-sized and medium-sized vessels, 
mostly arterial (Biffi and Greenberg 2011) predominantly in leptomeningeal and 
cortical vessels of cerebral lobes and cerebellum (Yamada 2015). In severe angiopa-
thy, amyloid deposits replace degenerating vessel smooth muscle cells leading to 
microaneurysms formation and hemorrhages (Yamada 2000; Jellinger 2002). In 
general, vascular nature of AD has been confirmed in numerous epidemiological, 
neuroimaging, pathological, experimental, and clinical studies (de la Torre 2004) 
(Fig. 7.1). The vascular hypothesis of AD underlies the initial role of chronic cere-
bral hypoperfusion, abnormal microvascular remodeling, BBB breakdown, devel-
opment of ischemic lesions and microhemorrhages associated with Aβ deposition, 
neuroinflammation, NVU disorganization, loss of neuroplasticity, and synaptic 
plasticity, thereby resulting in progressive cognitive and behavioral deficits (Salmina 
et al. 2015a, b) (Fig. 7.2).

It is clear that all types of cells within the NVU could be affected in CAA; there-
fore, it is easy to observe endothelial alterations and smooth muscle cells degenera-
tion in medium-sized cerebral vessels, as well as endothelial dysfunction, pathology 
of perivascular astroglia and prominent pericytes loss in cerebral microvessels along 
the time-course of AD progression. These changes affect the viability of neuronal 
cells (Grammas et al. 1999), alter microcirculation (Pluta et al. 2013), and lead to 
chronic ischemia and neurodegeneration. In a contrast to other NVU cells, pericytes 
have not been recognized as dramatically affected cells in the pathogenesis of AD, 
but recent findings suggest their significant role in the progression of AD-associated 
microvascular alterations and impairment of plasticity in AD brain.

At this point, it should be clarified that morphology and physiology of pericytes 
might be greatly compromised in aged brain, therefore, one should take care while 
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talking about pericytes dysfunction in a time-course of Alzheimer’s type of demen-
tia. As an example, aging is always associated with pericytes loss in various tissues 
and dramatic changes in their myogenic or angiogenic capacity, and decreased num-
ber of effective endothelial–pericyte interactions (Hughes et al. 2006; Birbrair et al. 
2014a, b, c; Stefanska et al. 2015). Pericytes aging is also important in the brain 
tissue where reduction of pericytes number might be partially compensated by 
extension of their processes, presumably, due to the activity of PDGF/PDGFR sig-
naling. Particularly, Berthiaume and colleagues demonstrated that pericytes can 
participate in vascular remodeling in the adult brain. The authors revealed pericytes’ 
plasticity in the adult brain by using elegant state-of-the-art techniques, including 
two-photon microscopy in combination with sophisticated Cre/loxP in vivo tracing 
technologies. They imaged at high resolution over several weeks cerebral pericytes 
in NG2-CreER/TdTomato, Myh11-CreER/TdTomato, and PDGFRβ-Cre/YFP 
mice. These experiments unveiled that pericytes compose a quasi-continuous, not 
overlapping, network along the entire length of blood vessels. Interestingly, the 
pericytes’ prolongations were not stable in length, extending or retracting during the 
period of analysis. Then, the authors explored the effect of pericyte’s death on its 
neighbor pericytes. After pericyte’ ablation, using targeted two-photon irradiation, 
Berthiaume and colleagues showed that adjacent pericytes extend their processes 
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Fig. 7.1 Mechanisms of neurovascular unit dysfunction in Alzheimer’s disease. NVU dysfunction 
is an obligatory component of Alzheimer’s disease pathogenesis. Compared with the normal brain, 
Alzheimer’s diseases brain is characterized by prominent neuronal loss, reactive gliosis, dysfunc-
tion and death of brain microvessel endothelial cells and pericytes caused by excessive accumula-
tion of Aβ in brain parenchyma and perivascular region. As a result, structural and functional 
integrity of BBB is compromised, thereby supporting the establishment of circulus vitiosus
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into the uncovered area, covering the exposed blood vessel. Strikingly, neighboring 
pericytes are able to inhibit vascular dilatation that happens after pericyte depletion 
(Berthiaume et  al. 2018). Thus, one may assume that aging- or Alzheimer’s- 
associated loss of pericytes in cerebral microvessels could lead to compensatory 
extension of processes from neighboring pericytes in order to cover the most achiev-
able area at the abluminal side of BMECs. However, since both aging and 
Alzheimer’s type of neurodegeneration are often accompanied by elevation in 
PDGF levels or dysfunction in PDGF/PDGFR signaling (Vazquez-Padron et  al. 
2004; Liu et al. 2018), remodeling of remaining pericytes might be inefficient to 
compensate for pericytes loss, thereby leading to incomplete coverage of BMECs 
and aberrant BBB structural and functional integrity.

Indeed, Alzheimer’s type of neurodegeneration is marked with significant and 
progressive pericytes loss (Giannoni et  al. 2016). Several recent reviews were 
focused on the role of pericytes in the pathogenesis of AD (Winkler et al. 2014; 
Kisler et al. 2017a, b). Aβ is toxic for cerebral pericytes, thereby, pericyte loss fur-
ther contributes to amyloid neurotoxicity as it was confirmed in mice overexpress-
ing the Swedish mutation of human Aβ-precursor protein (APPsw/0) and crossed 
with pericyte-deficient platelet-derived growth factor receptor-β (PDGFRβ+/−) 
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Fig. 7.2 Molecular pathogenesis of cerebral amyloid angiopathy (CAA) development in 
Alzheimer’s disease. Various mechanisms contribute to initiation and progression of CAA in 
Alzheimer’s disease, including excessive Aβ production, inadequate Aβ clearance, insufficient 
blood supply in affected brain regions, and neuroinflammation
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mice (Sagare et al. 2013). Moreover, when C3H/10T1/2 mouse mesenchymal stem 
cells were differentiated into pericytes and stereotaxically injected into the brains of 
amyloid AD model APP/PS1 mice, local microcirculation was improved, whereas 
the levels of Aβ in the brain tissue were reduced 3 weeks later. Thus, it was found 
that functionally competent pericytes may contribute a lot to maintaining the ade-
quate blood supply to the brain tissue and provide clearance of Aβ (Tachibana et al. 
2018). Unfortunately, in a time-course of AD progression, pericytes are gradually 
losing their ability to control local blood flow and AD transport, therefore, clinical 
stages of AD are already associated with dramatic changes in pericytes quantity 
(due to apoptosis) and quality (due to intensification of pericyte dysfunction). The 
same effect might be achieved by high-fat diet provoking progressive pericytes loss 
and aberrant neurovascular coupling, Aβ accumulation and BBB breakdown 
(Thériault et al. 2016). Analogous changes in pericytes number could result from 
the accumulation of advanced glycation end products (AGEs) formed under the 
conditions of chronic hyperglycemia and non-enzymatic protein glycation (Lange 
et al. 2013) that are able to interact with their own receptors (RAGEs) expressed on 
endothelial cells and pericytes, thereby leading to apoptosis (Yamagishi et al. 2005). 
Even these data were obtained in diabetic pericytes, one may assume that the same 
mechanisms might be essential in Alzheimer’s disease characterized by local insulin 
resistance and alterations in glucose utilization in brain cells.

Thus, the main causes of pericytes loss in Alzheimer’s disease might be sum-
marized as follows: (1) toxic action of supraphysiological concentrations of Aβ 
leading to pericytes injury and cell death; (2) toxic action of reactive oxygen spe-
cies produced in the conditions of oxidative stress and excitotoxicity within the 
NVU; (3) pro-apoptotic action of AGEs; (4) aberrant signaling pathways that con-
tribute to the control of pericytes’ functional activity and viability (i.e., PDGF-, 
TGFβ1-, or angiopoietin/Tie2-mediated); (5) metabolic alterations in pericytes; 
(6) excessive pericytes remodeling due to stimulation of angiogenesis leading to 
hypervascularity.

Pericytes take an active part in the translocation of Aβ through the BBB. In nor-
mal conditions, low-density lipoprotein receptor-related protein-1 (LRP1) acting as 
Aβ translocator is abundantly expressed in BMECs and pericytes being involved in 
the transfer of Aβ which is constantly produced in the brain tissue to the peripheral 
blood (Winkler et al. 2014). AD-associated loss of pericytes results in impaired 
clearance of Aβ in the brain, thereby leading to amyloid deposition and develop-
ment of CAA. Moreover, incubation of cerebrovascular cells in vitro with toxic con-
centrations of Aβ results in the increase of LRP1 expression, probably, for better 
internalization of amyloid by pericytes, but excess of Aβ leads to loss of pericytes 
(Wilhelmus et al. 2007).

In general, pericytes appear as a nice model to study Alzheimer’s type of neuro-
degeneration in vitro. In very early studies, pericytes have been shown to produce 
and metabolize amyloid precursor protein (APP) as well as some other APP- 
associated molecules (ApoE, complement factor C1q (Verbeek et al. 1999)). At the 
same time, pericytes serve as a target for the cytotoxic action of Aβ but seem to be 
more resistant to its action comparing to other brain cells, i.e., in terms of Ca2+ sig-
naling: basal levels of intracellular Ca2+ are greatly affected by the exposure of 
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pericytes to Aβ in  vitro, however, calcium machinery controlled by G-protein- 
coupled receptors remains unaffected (Piegsa et al. 2017).

In APPsw/0; Pdgfrβ+/−, pericyte deficiency leads to progression of signs of tau 
pathology and an early neuronal loss further resulting in accelerated cognitive 
decline due to complimentary harmful effects of Aβ accumulation and pericytes loss 
(Sagare et al. 2013).

Interesting properties of pericytes have been described in hypothalamus where 
these cells can specifically increase insulin sensitivity of hypothalamic neurons 
(Takahashi et al. 2015). Taking into consideration the current view on the pathogen-
esis of AD as a local insulin resistance and impairment of glucose metabolism in the 
brain tissue (An et al. 2018), one can suggest that pericytes loss in the defined brain 
regions could be responsible for reduced susceptibility of neurons to insulin action 
and glucose utilization. Pericytes serve as important regulators of insulin transport 
through the BBB (Banks et al. 2012), and, vice versa, insulin stabilizes BMECs- 
pericytes interactions and integrity of tight junctions within the BBB in a phos-
phoinositide- 3 kinase/protein kinase B/glycogen synthase kinase-3β-dependent 
manner (Ito et al. 2017). Thus, dysfunction of pericytes in AD might lead to poor 
entry of peripherally produced insulin into the brain tissue and aggravation of local 
insulin resistance state. It is interesting that insulin may protect cerebral pericytes 
from Aβ cytotoxicity (Rensink et al. 2004a), whereas the treatment of pericytes with 
toxic concentrations of Aβ results in decreased expression of insulin-like growth 
factor-binding protein-2 mRNA (Rensink et al. 2004b).

Since functional insulin receptors are expressed in pericytes (Escudero et al. 
2017), local insulin resistance in AD would have more pronounced effects on peri-
cytes viability and functioning by limiting their glycolytic activity. It was shown 
that the inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 
(PFKFB3) activity (regulatory glycolytic enzyme) in pericytes resulted in dramatic 
changes such as suppression of motility and increasing adhesion to endothelial 
cells, thereby resulting in better coverage of endothelial layer with pericytes and, 
obviously, in the establishment of anti-angiogenic microenvironment (Cantelmo 
et al. 2016). However, no GluT4 expression has been detected in brain pericytes; 
therefore, insulin action on pericyte glycolytic metabolism needs in further careful 
evaluation.

Pericytes contribute a lot to the local control of cerebral blood flow, particularly, 
they are able to dilate in response to neuronal stimulation to provide adequate blood 
supply in active brain regions (Winkler et  al. 2014). When functional activity of 
pericytes is compromised, i.e., in PDGFRβ+/− mice, such responses to neuronal 
stimulation is abolished within the NVU without obvious changes in the activity of 
other cells regulating functional hyperemia (BMEC, perivascular astroglia). As a 
result of hemodynamic alterations, NVU dysfunction develops and leads to neuro-
degeneration. PDGFRβ−/− also demonstrate delayed capillary but not arteriolar 
dilation to various stimuli corresponding to lack of pericyte coverage of BMECs 
(Kisler et  al. 2017a, b). However, very recent data obtained with an optogenetic 
approach to pericytes stimulation suggest that pericyte-controlled diameter of small 
vessels in the brain tissue might not predominate over smooth-muscle actin (SMA)-
regulated constriction of arterioles (Sweeney et al. 2018).
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Other factors contributing to pericyte dysfunction and promotion of CAA are as 
follows: (1) oxidative stress due to Aβ-mediated cytotoxicity, overproduction of 
reactive oxygen species (ROS) and CAA-associated cerebrovascular deficits (Han 
et al. 2015), microglia-induced activation of pericytes leading to ROS production 
(Ding et al. 2017); (2) aberrant PDGFRβ expression and signaling induced by Aβ in 
neuronal cells (Liu et al. 2018) and in pericytes (Miners et al. 2018); (3) mitochon-
drial dysfunction caused by the deposition of Aβ and progression of CAA culminat-
ing in pericytes degeneration (Szpak et  al. 2007); (4) hypoxia-induced 
HIF-1-mediated changes in pericytes motility and adhesion (Mayo and Bearden 
2015) leading to excessive angiogenesis and hypervascularity of brain tissue.

Figure 7.3 summarizes current understandings of alterations of pericytes biology 
in CAA.
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Fig. 7.3 Molecular mechanisms leading to pericytes loss in cerebral amyloid angiopathy (CAA). 
Neurotoxic action of accumulated Aβ in Alzheimer’s disease leads to local insulin resistance which 
further promotes Aβ production and deposition. Chronic high levels of extracellular glucose result 
in non-enzymatic protein glycation, accumulation of advanced glycation end products (AGEs) and 
persistent activation of their receptors (RAGE) in pericytes. Then, pericytes respond to these 
changes by activation transcription of oxidative stress- and hypoxia-controlled transcription fac-
tors, thereby switching on the programmed cell death. Aberrant neoangiogenesis and neuroinflam-
mation serve as mechanisms supporting non-reversible pericytes dysfunction
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 Pericyte Dysfunction in Cerebral Hypervascularity and BBB 
Breakdown Associated with Alzheimer’s Disease

Role of pericytes in controlling angiogenesis is well established. Particularly, they 
may participate in different stages of angiogenic process: (1) establishment of local 
pro-angiogenic microenvironment stimulating endothelial cells to proliferate and to 
migrate along the newly forming vascular tube; (2) detachment from the abluminal 
part of endothelial cells to ensure effective contribution of tip-cells to the vessel 
elongation; (3) regulation of final stages of angiogenesis when maturation of newly 
established vessels is of key importance for the integration of vessel in the pre- 
existing vascular network and acquisition of selective permeability; (4) controlling 
processes of microvascular rarefaction that are essential for adequate remodeling of 
vessels; (5) support of endothelial cells survival and functional competence 
(Benjamin et al. 1998; Franco et al. 2011; Ribatti et al. 2011; Simonavicius et al. 
2012; Eilken et al. 2017). To do this, pericytes utilize many signaling pathways, 
including PDGF, VEGF, Angiopoietin/Tie, MMP9, Notch, Endosialin/CD248, puri-
nergic signaling, and gap junction machinery.

Recently, it became clear that AD is characterized by paradoxical hypervascular-
ity occurring due to excessive neoangiogenesis and establishment of newly formed 
small vessels with leaky BBB (Biron et al. 2011). Cessation of neoangiogenesis by 
Aβ immunotherapy may prevent further brain tissue degeneration (Biron et  al. 
2013). Disruption of PDGFRβ-mediated signaling in brain pericytes results in early 
and progressive loss of pericytes, microvascular rarefaction and alterations in BB 
structural and functional integrity predominantly in the cortex, hippocampus and 
striatum (Nikolakopoulou et al. 2017), thus providing new insights in the patho-
genic role of pericyte-controlled vascular factor in AD.

Unstimulated pericytes support vessel wall integrity, however, they convert into 
cells with evident pro-angiogenic potential being stimulated by various regulatory 
and damaging factors. Recent data suggest that pericytes may contribute to exces-
sive angiogenesis in AD via several mechanisms. First of all, as it was mentioned 
above, detachment of pericytes from the endothelial cell layer associated with 
CypA-MMP9-mediated basal membrane destruction is required for tip-cell move-
ment and vascular tube formation. Secondly, stimulated pericytes are able to pro-
duce numerous pro-angiogenic factors, i.e., ligands of chemokine receptor CXCR3 
(probably, CXCL4/platelet factor 4, CXCL9/MIG, CXCL10/IP-10, or CXCL11/
IP-9) expressed on endothelial cells (Bodnar et al. 2013), or angiopoietin involved 
in angiopoietin/Tie signaling between endothelial cells and pericytes (Teichert et al. 
2017), thereby affecting cerebral angiogenesis being damaged by accumulating Aβ. 
Thirdly, pericytes may contribute to cerebral microvascular rarefaction seen in nor-
mal aging and AD and correlating with dementia progression and BBB impairment 
(Tucsek et al. 2014). The same phenomenon—microvascular rarefaction and peri-
cytes deficiency—is also well recognized in hypertensive individuals with AD (Toth 
et al. 2013), thereby leading to microthrombosis, inadequate blood supply in active 
brain regions. Fourthly, metabolic disturbances caused by the impairment of  glucose 
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metabolism in AD brain could lead to suppressed glycolytic flux in BMECs and 
pericytes, thereby resulting in abnormal vessel sprouting and disorganization, 
reduced pericyte coverage, and breakdown of BBB (Cruys et  al. 2016). Finally, 
insulin signaling which is absolutely required for developmental angiogenesis and 
is rather specific for pericytes (Warmke et al. 2017).

Basal and stimulated production of lactate in glycolysis and its transport between 
the NVU cells is an important mechanism of angiogenesis and barriergenesis regu-
lation in the brain tissue (Salmina et al. 2015a, b). Astrocytes serve a major source 
of lactate which is utilized by neurons (for energy production) and by endothelial 
cells (for brain-to-blood transfer). Within the NVU, lactate acts at target cells via 
specific lactate receptor (HCAR1/GPR81) which is known as metabolic sensor reg-
ulating several processes in carbohydrate and lipid metabolism, partially in the 
insulin-dependent manner in some peripheral tissues and in the NVU as well 
(Ahmed et al. 2010; Lauritzen et al. 2014). In this context, lactate acts as autocrine 
or paracrine regulator. Recently, we have shown that long-lasting stimulation of 
GPR81 receptors in BMECs in vitro could activates mitochondrial biogenesis but 
suppresses expression of monocarboxylate transporter-1 (MCT-1) and CD147 
(Khilazheva et  al. 2017). Taking into consideration that cerebral pericytes are 
equipped with GPR81 whose stimulation results in the elevation of local VEGFA 
levels and promotion of angiogenesis associated with the activation of extracellular 
signal-regulated kinase (ERK1/2)- and Akt (Morland et al. 2017), one may suggest 
that local production of lactate in active brain regions (due to neuron-astroglia meta-
bolic coupling) could activate both pericytes and BMEC to provide microenviron-
ment favoring angiogenesis. Moreover, it may also have some additional meaning 
in the context of vascular tone regulation as it was shown in retinal pericytes sub-
jected to extracellular lactate (Yamanishi et al. 2006). High concentrations of lactate 
is a hallmark of aging and AD progression (Kapogiannis and Reiter 2014; Liguori 
et al. 2015); therefore, it is tempting to speculate that permanent elevated levels of 
lactate could degenerating brain to excessive angiogenesis (presumably, via mecha-
nism involving BMECs and pericytes activation via GPR81 receptors) resulting in 
the establishment of disorganized and defective microvessels with impaired barrier 
function.

The unresolved question remains whether such changes could have any relation 
to the mechanism of pro-angiogenic activity of hormones and growth factors (i.e., 
insulin or VEGF) which implies detachment of pericytes from endothelial cells as a 
prerequisite for effective tip-cell proliferation and migration along the growing vas-
cular tube (Escudero et al. 2017). If so, Aβ-induced pericytes loss from the affected 
brain microvessels could serve as a mechanism of angiogenesis support. However, 
in a case of CAA, loss of pericytes would result in unbalanced pro- and anti-angio-
genic activities in the perivascular space further leading to abnormal 
hypervascularity.

As expected, location of pericytes just next to the endothelial cell layer makes 
them ideal contributors to the control of BBB permeability. As an example, expres-
sion of CD146 which acts as a co-receptor for PDGFRβ is required for efficient 
pericyte–endothelial interactions and maturation of the BBB (Chen et  al. 2017). 
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Cerebrovascular pericytes produce lipidated  forms of ApoE acting together with 
perivascular astroglial cells, and ApoE suppresses motility of pericytes and their 
adhesion in LRP1- and RhoA-dependent manner (Casey et al. 2015). Experimental 
data obtained in mice with targeted replacement of murine ApoE with each human 
ApoE isoform or in ApoE−/− mice demonstrate that ApoE is required for the cere-
brovascular integrity by regulating cyclophilin A (CypA)–NF-κB–matrix metallo-
proteinase (MMP9) pathway in pericytes, whereas insufficiency of ApoE expression 
leads to elevated production of CypA in pericytes and disruption of tight junctions 
in BMECs (Bell et al. 2012). Individuals with ApoE4 gene (genetic risk factor for 
AD) display severe alterations of BBB structural and functional integrity that are 
related to the degree of pericytes loss in brain microvessels due to ApoE4 leads to 
excessive activation of LRP1-dependent cyclophilin A (CypA)– matrix metallopro-
teinase 9 (MMP-9) signaling in pericytes (Halliday et al. 2016).

Degree of pericytes loss correlates with the impairment of BBB permeability in 
individuals with Alzheimer’s type of neurodegeneration: high levels of sPDGFRβ 
originated from dysfunctional or destroyed pericytes have been detected in the cere-
brovascular fluid of persons with mild cognitive impairment (MCI) compared to 
age-matched cognitively normal subjects, sPDGFRβ concentrations positively cor-
related with increased BBB permeability in the hippocampus of MCI patients 
(Montagne et al. 2015).

Elevated permeability of BBB caused (at least, partially) by functionally incom-
petent or damaged pericytes, and provides conditions for progression of neuroin-
flammation which is a key mechanism of AD pathogenesis. Contribution of glial 
cells and pericytes to the pathogenesis of neuroinflammation can be distinguished, 
i.e., in the 3D BBB-on-chip model in vitro (Herland et al. 2016). It should be noted 
that pericytes may act as macrophage-like cells to clean extracellular perivascular 
fluid in the brain tissue by means of phagocytosis and pinocytosis (Bergers and 
Song 2005). Besides, they have rather impressive secretome consisting of chemo-
kines, interleukins (IL-9, -10, -12, -13), granulocyte-colony stimulating factor, 
granulocyte macrophage-colony stimulating factor, etc., particularly, being acti-
vated with pro-inflammatory stimuli (Kovac et al. 2011). On the other hand, neuro-
inflammation affects pericytes viability and functional activity, i.e., TGFβ1 whose 
dyscoordinated signaling has been detected in AD (von Bernhardi et al. 2015) may 
stimulate pericytes to release pro-inflammatory cytokines and extracellular matrix 
degrading enzymes. As a result, BBB integrity is compromised and microglia is 
attracted to the site of neuroinflammation (Rustenhoven et al. 2016). Some data sug-
gest that due to multipotent stem cell activity of pericytes, they may serve as a 
source of microglial cells in brain ischemia (Sakuma et al. 2016), but whether this 
mechanism is active in chronic neurodegeneration is not clear yet.

In some clonogenic niches (i.e., in the bone marrow), CD146+ pericytes exist as 
multipotent cells (Mangialardi et al. 2016). In the brain, pericytes may differentiate 
to microglia in conditions with the demand for more immune cells, whereas neuro-
nal cells could be also achieved from pericytes by means of genetic reprogramming 
procedure in  vitro (Karow et  al. 2012). Thus, the plasticity of pericytes allows 
achieving a phenotype which is mainly anticipated in the context of current 
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 conditions in the brain tissue. At the same time, pericyte-regulated BBB permeabil-
ity may affect neuroplasticity as well. It is known that BBB serve as a platform for 
neurogenic and oligovascular niches providing optimal microenvironment for neu-
rogenesis and oligodendrogenesis in (patho)physiological conditions. Partially 
compromised BBB may be rather important for the effective adjustment of niche 
microenvironment to the metabolic needs of neural stem cells and progenitors: 
leaky BBB could be an advantage for the population of actively proliferating cells 
with high intensity of metabolism. In a contrast to the structure of BBB in other 
brain regions or BBB in microvessels of hippocampal subgranular zone (SGZ), vas-
cular scaffold in the subventricular zone (SVZ) is characterized by less expression 
of tight junction proteins and aquaporin-4 (AQP4), probably, for the direct contact 
of endothelium with stem or progenitors cells. Hence, BBB in this neurogenic niche 
might be functionally defective (Pozhilenkova et al. 2017), presumably, for main-
taining the number of quiescent stem cells and preventing depletion of their pool 
(Ottone et  al. 2014). Recent data reveal that pericytes play an important role in 
controlling stem cells proliferation within SVZ (Crouch et al. 2015). In SGZ, peri-
cytes act in a coordination with astrocytes and endothelial cells being, probably, 
mainly involved in the regulation of stem cells adhesion (Ehret et al. 2015). However, 
how pericytes dysfunction may affect adult neurogenesis in Alzheimer’s disease is 
not clear yet and requires scrupulous investigation.

In oligovascular niches, pericytes contact to oligodendrocyte progenitor cells 
(OPCs) and these two cell populations mutually regulate proliferation and support 
survival of each other in the perivascular region (Maki et al. 2015). Thus, pericytes 
may control the process of oligodendrogenesis and myelinization of axons in newly 
formed neurons. Since oligodendrocyte pathology is a very early sign of AD (Desai 
et al. 2010), one may assume that oligovascular niches might be compromised due 
to insufficient pericyte support of OPCs development.

In sum, pericyte dysfunction in AD results in the induction of aberrant angiogen-
esis, pathological hypervascularity, disorganized microvasculature, and leaky 
BBB. AD-affected pericytes that should control neurogenesis and oligodendrogen-
esis lose their ability to support stem cells population dynamics, thereby contribut-
ing to progressive cognitive deficits. Figure  7.4 shows mechanisms of 
pericyte-mediated control of BBB integrity, angiogenesis and neurogenesis in 
Alzheimer’s disease.

 Summary and Future Prospects

Deciphering a role of pericytes in the regulation of key mechanisms within the 
NVU, incl. gliovascular control, BBB integrity, immune defense etc., suggests 
novel approaches to the treatment of CNS disorders associated with NVU dysfunc-
tion (neurodegeneration, stroke, trauma, neuroinfection). As an example, contractile 
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pericytes in the brain vessels serve as cellular mediators of no-reflow phenomenon 
seen in ischemic brain tissue (O’Farrell et al. 2017); therefore, targeting pericytes in 
brain microvasculature could be helpful in restoring adequate blood supply in the 
ischemic regions. Such effects could be achieved by modulating pericytes response 
to neurotransmitters and gliotransmitters (serotonin, adenosine) (Li et  al. 2017). 
Another intriguing possibility is to control PDGF/PDGFR2 and Angiopoietin-1/
Tie2 signaling cascades in cerebral pericytes in a similar manner as was shown in 
retina (Arboleda-Velasquez et al. 2015) or in tumor tissue (Kang and Shin 2016) to 
stimulate or to reduce angiogenesis. This approach has not been tested in neurode-
generation, however, high degree of pericytes plasticity makes them very attractive 
tool for the promotion of CNS repair in neurodegenerative diseases (Lange et al. 
2013). Finally, pericytes serve as a functional part of NVU/BBB models in vitro 
utilized for studying pharmacokinetics of novel drug candidates (Wang et al. 2016) 
or as a cell component for bioengineered constructs with a great potential in the 
regenerative medicine (Avolio et al. 2017).
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Fig. 7.4 Pericyte-mediated control of BBB integrity, angiogenesis and neurogenesis in Alzheimer’s 
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dysfunction result in the impairment of neurogenic and oligovascular niches activity. In sum, aber-
rant neurogenesis, oligodendrogenesis and angiogenesis underlie neuroplasticity alterations and 
progressive cognitive decline seen in chronic neurodegeneration
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Chapter 8
Pericytes in Multiple Sclerosis

Francisco J. Rivera, Bryan Hinrichsen, and Maria Elena Silva

Abstract Multiple sclerosis (MS) is an autoimmune inflammatory demyelinating 
disease that affects the central nervous system (CNS), particularly, in young adults. 
Current MS treatments aim to reduce demyelination; however, these have limited 
efficacy, display side effects and lack of regenerative activities. Oligodendrocyte 
progenitor cells (OPCs) represents the major source for new myelin. Upon 
demyelination, OPCs get activated, proliferate, migrate towards the lesion, and 
differentiate into remyelinating oligodendrocytes. Although myelin repair 
(remyelination) represents a robust response to myelin damage, during MS, this 
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regenerative phenomenon decays in efficiency or even fails. CNS-resident pericytes 
(CNS-PCs) are essential for vascular homeostasis regulating blood-brain barrier 
(BBB) permeability and stability as well as endothelial cells (ECs) function during 
angiogenesis and neovascularization. Recent studies indicate that CNS-PCs also 
play a crucial role regulating OPC function during remyelination, and very 
importantly, these cells are substantially affected in MS. This chapter summarizes 
important aspects of MS and CNS remyelination as well as it provides new insights 
supporting the contribution of CNS-PCs to myelin regeneration and to MS 
pathology. Currently, there is evidence arguing in favor of CNS-PCs as novel 
therapeutic targets for the development of future treatments for MS.

Keywords Multiple sclerosis · Remyelination · Oligodendrocyte progenitor cells · 
CNS-resident pericytes · Blood-brain barrier · Neurovascular unit · Extracellular 
matrix · Therapy

Abbreviation

BBB Blood-brain barrier
CC Corpus callosum
CNS Central nervous system
CNS-PCs Central nervous system-resident pericytes
EAE Experimental autoimmune encephalomyelitis
ECM Extracellular matrix
ECs Endothelial cells
FGF Fibroblast growth factor
LPC Lysophosphatidylcholine
MS Multiple sclerosis
MSCs Mesenchymal stem cells
MS-PP Multiple sclerosis primary progressive
MS-RR Multiple sclerosis relapsing-remitting
MS-SP Multiple sclerosis secondary progressive
NSCs Neural stem cells
NVU Neurovascular unit
OB Olfactory bulb
OPCs Oligodendroglial precursor/progenitor cells
PDGFRalpha Platelet-derived growth factor receptor alpha
PDGFRbeta Platelet-derived growth factor receptor beta
PLCs  Pericyte like cells
RMS Rostral migratory stream
SVZ Subventricular zone
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 Multiple Sclerosis

Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central 
nervous system (CNS) (Hoftberger and Lassmann 2017). This disease is classified 
as an autoimmune disease affecting around 2.5 million people worldwide and 
being the most common cause of acquired neurological disability in young adults. 
As other diseases, MS prevalence differs among races, geographical locations, 
and gender. The Caucasian population from the northern part of the boreal hemi-
sphere are the most affected (Ebers and Sadovnick 1993; Noseworthy et al. 2000). 
Within this population, this disease is predominant in women (Alonso and Hernan 
2008; Orton et al. 2006; Ramagopalan et al. 2010). Since there are no evidences 
for the existence of MS-associated genes in the X chromosome, the higher MS 
incidence in females might be related to their specific physiology (i.e., hormones) 
(Whitacre 2001).

In 1996 the US national MS society classified the disease in three major clinical 
forms depending on its progression: Primary Progressive (PP), Secondary 
Progressive (SP) and Relapsing-Remitting (RR). RR-MS is the most frequent type 
and it is characterized by relapses (acute episodes of neurological dysfunctions) 
followed by remission (periods of variable recovery and clinical stability) 
(Compston and Coles 2008). More than half of the RR-MS patients develop pro-
gressive neurological symptoms, called SP variety of MS, and show sustained dete-
rioration without an evident remission period. The PP clinical type, which is 
characterized by the absence of remission periods, affects the 10–15% of MS 
patients (Lublin and Reingold 1996). The clinical progression of MS patients is 
very different between the three clinical forms: patients with PP-MS worsen at 
similar speeds, while those with the RR-MS and SP-MS may have very different 
clinical courses. This clinical progression suggests that, while RR-MS and SP-MS 
are most likely distinct phases of the same disease, PP-MS may imply completely 
different processes. Up to now, the etiology of this immune mediated disease 
remains still unclear. The current discussion contemplates: (1) environmental and 
genetic risk factors, (2) dysregulation of the immune system leading to an induction 
of an autoimmune response, and (3) viral infections as the initial trigger (Compston 
and Coles 2008). However, an autoimmune response in which T and B cells react 
against myelin certainly involves MS pathology. In particular, in MS, an altered 
immune system produces lymphocytes that infiltrate into the CNS and recognize 
myelin proteins, targeting oligodendrocytes and causing myelin destruction. 
Demyelination leads to axonal injury, conduction block and progressive neuronal 
loss (Ferguson et al. 2004; Kornek and Lassmann 2003).

Current available treatments for MS are disease-modifying drugs, which have 
limited efficacy in RR phase of MS with considerable side effects. Among these 
medicines, we find immunosuppressive cytokines interferon β-1a and interferon 
β-1b, the immune-modulating drug glatiramer acetate and the immunosuppressant 
mitoxantrone. Besides these, monoclonal antibodies able to control immune cells 
function also represent an attractive alternative for the treatment of MS. For instance, 
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natalizumab (a monoclonal anti α4 integrin antibody) reduces the ability of immune 
cells to cross the blood-brain barrier (BBB) or alemtuzumab (a monoclonal anti 
CD52 antibody) causes a pan-lymphocyte depletion (Compston and Coles 2008). 
Recently, clinical trials using ocrelizumab (a monoclonal anti-CD20 antibody), 
which causes mature B cells depletion, have shown efficacy even for the PP form of 
MS (Tintore et al. 2019). Overall, these treatments focus mainly in the inflammatory 
response having limited efficacy and displaying side effects with detrimental 
consequences, such as progressive multifocal leukoencephalopathy (PML) 
(Lassmann 2007b; Lassmann et al. 2012; Tintore et al. 2019). Moreover, current MS 
treatments have no repair-promoting activity. To increase the efficacy of a MS 
therapy and to avoid severe side effects new alternative therapeutic strategies that 
involve immunomodulation, neuroprotection, and promotion of structural and 
functional repair mechanisms, are currently under study and development. For 
example, autologous mesenchymal stem cells (MSCs) transplantation has been 
proposed for the treatment of MS (Connick et al. 2012; Jadasz et al. 2012; Rivera 
and Aigner 2012). However, to achieve this final therapeutic goal, it is imperative to 
understand the mechanisms that rule myelin repair.

 Remyelination

At the end of the nineteenth century Joseph Babinski studying MS pathology 
described demyelinating axons that displayed short areas with thin myelin sheaths, 
suggesting for the first time that remyelination exists in the CNS. Today, it is clear 
that myelin sheaths are re-established along demyelinated axons in humans and in 
the various animal models (Franklin and Ffrench-Constant 2008; Lassmann et al. 
1997; Smith et al. 1979; Woodruff and Franklin 1999) but it is still unknown the 
reason why remyelinated sheaths end up to be thinner than the myelin sheaths 
produced during development (Blakemore 1974; Ludwin and Maitland 1984). 
Currently, two hypotheses might explain this observation. The first one involves 
differences in axonal properties (Franklin and Hinks 1999) while the second con-
siders that adult oligodendrocyte progenitors might show a weaker remyelination 
capability compared to the ones of developmental progenitors (Wolswijk and 
Noble 1989).

 Oligodendrocyte Precursor/Progenitor Cells (OPCs)

In the early 1980s, Martin Raff and colleagues provided the first evidence on the 
existence of oligodendroglial precursor/progenitor cells (OPCs). They isolated 
these proliferating cells from the optic nerve and discovered their ability to 
differentiate into oligodendrocytes and type 2 astrocytes, fulfilling all criteria for 
OPCs in  vitro (Raff et  al. 1983, 1984). A few years later, Raff and colleagues 
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described OPCs as the cells responsible for CNS remyelination (Ffrench-Constant 
and Raff 1986a, b). OPCs represent 5–8% of total glial cells and are widely spread 
throughout the CNS in the white and gray matter (Levine et al. 2001). OPCs are 
known to express specific markers such as ganglioside antigens recognized by the 
A2B5 antibody (Wolswijk and Noble 1989), chondroitin sulfate NG2 (Dawson 
et  al. 2000; Keirstead et  al. 1998), platelet-derived growth factor receptor alpha 
(PDGFRalpha) (Redwine and Armstrong 1998), and the transcription factor olig1 
(Arnett et  al. 2004). The statement that OPCs are the major source for new 
myelinating oligodendrocytes in adult CNS (Franklin and Kotter 2008) is endorsed 
by four substantial evidences: (1) lacZ-encoding retroviral tracing studies 
demonstrated that focal lysolecithin-induced demyelination in the white matter 
labeled proliferating cells that give rise to remyelinating oligodendrocytes (Gensert 
and Goldman 1997); (2) transplanted adult OPCs into a myelin-deficient (md) rat 
were shown to remyelinate bared axons (Zhang et  al. 1999); (3) upon focal 
demyelination OPCs repopulation was observed before new mature oligodendrocytes 
appear (Levine and Reynolds 1999; Sim et al. 2002; Watanabe et al. 2002); (4) the 
existence of cells with a transitional expression of markers for OPCs and mature 
oligodendrocyte argues for OPCs as the source of newly generated myelin-producing 
cells in the adult CNS (Fancy et al. 2004; Zawadzka et al. 2010). Using a genetic 
fate mapping strategy and chemical-induced demyelination, demonstrated that 
CNS-resident PDGFRalpha/NG2-expressing cells (OPCs) give rise not only to 
remyelinating oligodendrocytes, but also to Schwann cells (Zawadzka et al. 2010).

In general, remyelination process via OPCs, involves  three steps regulated by 
extrinsic and intrinsic factors that may  act as either remyelination inhibitors or 
activators (Rivera et  al. 2010): activation, recruitment and differentiation (Bruce 
et  al. 2010; Franklin and Kotter 2008). Upon demyelination, OPCs become 
mitotically active and induce the expression of oligodendrogenic genes such as 
Olig2 and Nkx2.2 (Fancy et al. 2004; Levine and Reynolds 1999; Reynolds et al. 
2002). Astrocytes and microglia get activated upon demyelination and release 
mitogens, probably, acting on OPCs as proliferation mediators (Redwine and 
Armstrong 1998; Schonrock et al. 1998; Wilson et al. 2006). OPCs’ recruitment is 
intrinsically modulated by the cell cycle regulatory protein p27Kip1 (Crockett et al. 
2005) and promoted by platelet-derived growth factor (PDGF) and fibroblast growth 
factor (FGF) (Murtie et al. 2005; Woodruff et al. 2004; Zhou et al. 2006). In addition 
to this, the coordinated interaction between cell surface molecules and extracellular 
matrix (ECM) is crucial for OPC recruitment (Larsen et al. 2003). Oligodendroglial 
differentiation and maturation is further subdivided into three steps: (1) OPCs 
establish contact with bare axons; (2) OPCs activate myelin genes expression and 
generate the myelin membrane; and (3) Myelin membrane compactly wraps around 
the axons forming the myelin sheath (Franklin and Kotter 2008).

It is well known that the generation of new oligodendrocytes declines with aging, 
and age is considered a limiting factor for spontaneous and endogenous CNS myelin 
repair (Sim et  al. 2002; Franklin and Ffrench-Constant 2008; Shen et  al. 2008; 
Shields et al. 1999). Nevertheless, it has been shown that remyelination efficiency 
in aged animals can be rescued after exposure to a youthful systemic milieu via 
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heterochronic parabiosis (Ruckh et al. 2012 or after treatment with molecules such 
as 9-cis retinoic acid (Huang 2011, p. 1160). In summary, all these observations 
suggest that age-related myelin regeneration restrictions can be reverted by the 
contribution of a strong regenerative microenvironment or stimulus.

 Subventricular Zone-Derived Oligodendrogenesis

Apparently, OPCs are not the only immature cells within the adult CNS, which can 
generate new oligodendrocytes. Altman and Das (Altman and Das 1964; Altman 
1969; Altman and Das 1965) discovered newly generated neurons in the adult 
brain revealing the existence of an undifferentiated population of cells responsible 
for this. Neural stem cells (NSCs) reside mainly in a particular cellular and extra-
cellular microenvironment termed stem cell niche in the subventricular zone (SVZ) 
of the wall of the lateral ventricles (Alvarez-Buylla and Garcia-Verdugo 2002; 
Doetsch and Scharff 2001; Gage 2000). In the SVZ, NSCs proliferate and differ-
entiate into neuronal precursors migrating along the rostral migratory stream 
(RMS) to the olfactory bulb (OB), where they functionally integrate and differenti-
ate into granule and periglomerular neurons (Carleton et  al. 2003; Doetsch and 
Scharff 2001; Lois et al. 1996). Interestingly, the SVZ shows a very peculiar cel-
lular organization that can be classified relying on three cell types (Alvarez-Buylla 
and colleagues). Based on the cell’s location, expression profile, ultrastructural 
features, proliferation rate and their function in the SVZ they are classified in type 
A, B or C (Doetsch 2003; Doetsch and Alvarez-Buylla 1996; Doetsch et al. 1997, 
1999). Type B cells are assumed to be the NSCs and are slowly proliferating 
GFAP-expressing cells in close proximity to ependymal cells. Type B cells give 
rise to transit-amplifying precursors type C cells that are fast proliferating cells 
with an elongated morphology. These type C cells generate neuroblasts, known as 
the type A cells. These type A cells migrate as homotypic chains along the RMS 
towards the OB.

In addition to neurons, SVZ-residing NSCs are able to generate oligodendro-
cytes. For example, type B cells give rise to a small subpopulation of Olig2-
expressing transit-amplifying type C cells that in turn generate PSA-NCAM/
PDGFRalpha- positive cells (Menn et  al. 2006). This subpopulation migrates 
towards the corpus callosum (CC), the striatum and to the fimbria fornix where they 
differentiate into oligodendrocytes. NSCs from SVZ differentiate into oligodendro-
cytes also in response to a demyelinating lesion. For example, it has been shown 
that upon lysolecithin-induced demyelination of the CC, PSA-NCAM-expressing 
progenitors in the RMS, proliferate, migrate towards the lesioned CC and differenti-
ate into oligodendrocytes and astrocytes (Nait-Oumesmar et al. 1999). In an EAE 
model, characterized by a chronic demyelination, SVZ-derived progenitors do 
respond to demyelination following the same pattern mentioned earlier. In conclusion, 
the SVZ stem cell niche constitutes a second source for new oligodendrocytes.
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 Animal Models for Multiple Sclerosis and Remyelination

 Experimental Encephalomyelitis Models

Animal models aiming to reveal the cellular and molecular mechanisms of demye-
linating diseases and/or to develop a novel therapy for MS treatment have substan-
tially contributed to this research field. Experimental encephalomyelitis can be 
achieved by different means. For example, inflammatory demyelination can be pro-
voked by the use of Theiler’s murine encephalomyelitis virus (TMEV), which 
infects neurons and glia and induces lethal encephalomyelitis (Brahic 2002; Dal 
Canto and Rabinowitz 1982; Scheikl et al. 2010). Nevertheless, the most commonly 
used animal model to study MS pathophysiology is the experimental autoimmune 
encephalomyelitis (EAE) (Lassmann 2007a). This was first described in non-human 
primates (Rivers, 1933, p.  866), but now EAE is very frequently carried out in 
rodent species. EAE is induced either through the adoptive transfer of myelin- 
reactive T lymphocytes or by active immunization with myelin-derived antigens, 
such as myelin basic protein (MBP), myelin oligodendrocytes protein (MOG), 
myelin proteolipid protein (PLP) (Kabat et  al. 1951; Kuchroo et  al. 2002). 
Alternatively, immunization may be performed with immunodominant peptides 
derived from myelin antigens, such as MOG35–55. The pathology as well as the 
clinical symptoms closely depend on the animal strain and the antigen used for 
immunization. However, typically around 2 weeks after immunization a susceptible 
rodent will debut with the first clinical symptoms developing a relapsing-remitting 
form of EAE. Thus, symptoms begin with tail atony leading in tail paralysis followed 
by reduced tonicity and progressive paralysis of hind- and finally forelimbs 
(quadriplegia) (Krishnamoorthy and Wekerle 2009). To a certain extent, EAE 
models resemble pathological features of MS, such as demyelination, inflammation, 
and neurodegeneration, which makes this model particularly attractive for the 
development of new MS therapies.

 Chemically Induced Demyelination Models

Demyelination represents an extremely relevant aspect of MS pathology, especially 
when considering that remyelination is very limited or even it completely fails 
during this myelin disorder. Therefore, there are several animal models aiming to 
exclusively study the cellular and molecular mechanisms that may contribute to 
myelin repair as well as to develop therapeutic strategies able to enhance 
remyelination in MS.  Overall, these models are based on the administration of 
chemicals that promote systemic or focal CNS demyelination. For example, 
cuprizone (bis-cyclohexanone-oxaldihydrazone) is one of the toxins widely used in 
preclinical MS research. It is easily administrated orally through food pellets, and 
once in the organism, it chelates copper, resulting in a systemic copper deficiency. 
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Copper deficiency affects in particular oligodendrocytes and induces a rapid and 
synchronous demyelination in various CNS regions such as, cortex, corpus callosum, 
hippocampus, superior cerebellar peduncles, optic chiasm, olfactory bulb, brainstem, 
etc. (Blakemore 1972, 1973; Kesterson and Carlton 1971; Komoly et  al. 1987; 
Ludwin 1978; Matsushima and Morell 2001; Silvestroff et al. 2010; Skripuletz et al. 
2008). This model is frequently used in mice as it induces a robust demyelination 
within weeks (Blakemore 1972; Ludwin 1978) and remyelination is quite evident 
1–2 weeks after cuprizone removal and largely complete after 4 weeks (Matsushima 
and Morell 2001; Silvestroff et  al. 2010). Also, the cuprizone model allows the 
analysis of de- and remyelination events without interference by inflammatory and 
immune-mediated mechanisms, since cuprizone treatment does not affect BBB 
integrity (Matsushima and Morell 2001).

Besides cuprizone, other toxic agents that are commonly used to investigate de- 
and remyelination are lysophosphatidylcholine (lysolecithin, LPC) and ethidium 
bromide (EtBr). In contrast to cuprizone, these chemicals are injected locally into 
the desired site of demyelination. 24 hours after stereotactic injection demyelination 
rapidly takes place and is reversible as remyelination is induced. LPC is a membrane- 
solubilizing agent that displays toxicity mainly on myelin-producing cells, while 
EtBr is a DNA intercalating agent that besides oligodendrocytes it also damages 
astrocytes (Woodruff and Franklin 1999). In general, these substances are injected 
into white matter CNS regions such as caudal cerebellar peduncle (CCP), spinal 
cord or corpus callosum (Jablonska et  al. 2010; Woodruff and Franklin 1999; 
Zawadzka et  al. 2010). Two relevant advantages of using these models when 
compared to cuprizone intoxication are that the demyelinated lesion is placed in a 
known location and OPC response to myelin damage as well as remyelination are 
easier to follow (Woodruff and Franklin 1999). Shortly after demyelination OPC 
proliferation and migration are induced, which peak at 5 days post-lesion-induction 
(dpl), followed by OPC differentiation, which is ongoing at 14 dpl. Remyelination 
is completed by 21 dpl. Although these models do not depict the full pathogenesis 
and pathology observed in MS, they allow to study an important CNS response to 
myelin damage, remyelination.

 Pericytes in the Central Nervous System

Pericytes were firstly described by the end of the nineteenth century (Rouget 1874; 
Zimmermann 1923) as a cell population tightly associated with vasculature. 
Pericytes are flat cells with projections that wrap continuously around the capillaries 
(Fig. 8.1a) directly in contact with the endothelial cells (ECs) sharing a common 
basement membrane with microvascular endothelial cells. Under pathological 
condition, pericytes retract the projection wrapping the microvessels acquiring a 
migrating feature (Fig.  8.1b). (Diaz-Flores et  al. 2009; Dore-Duffy and Cleary 
2011; Kamouchi et al. 2011; Lange et al. 2013). The location of pericytes allows 
direct communication with ECs through gap junctions and peg-and-socket contacts 
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stabilizing microvessels and regulating blood flow by their contractile and relaxant 
properties (Yemisci et al. 2009) (Peppiatt et al. 2006; Takata et al. 2009). In general, 
pericytes are known to express the immunologic markers such as a-smooth muscle 
actin, the chondroitin sulfate proteoglycan NG2, RGS-5, platelet-derived growth 
factor receptor beta (PDGFRbeta; CD140b), aminopeptidases-A and -N, Sca-1, 
CD34, 3G5, alkaline phosphatase, CD146 (MCAM), c-glutamyl transpeptidase, 
butyrylcholinesterase, FcR, CD4, CD11b, major histocompatibility complex 
(MHC) class I, II, and desmin (Dore-Duffy and Cleary 2011). However, not all 
pericytes display the same marker expression profile suggesting the existence of 
pericyte heterogeneity (Dore-Duffy 2008). Moreover, it seems that pericytes are not 
simple to distinguish as there are other cell types that have a similar marker 
expression profile and are located also at the vascularity, such as perivascular 
fibroblasts (Vanlandewijck et  al. 2018). Therefore, a proper characterization is 
necessary to accurately identify bona fide pericytes.

In the CNS, pericytes (CNS-PCs) play an essential role in vascular homeostasis. 
Noteworthy, compared to other tissues and organs, the adult brain and spinal cord 
display a very high pericyte density with respect to EC population. Their distribution 
is around capillaries and rarely are found in bigger brain vessels. Depending on their 
location in the adult brain and spinal cord, CNS-PCs originate from different 
embryonic layers such as, neuroectoderm, neural crest and mesoderm (Winkler 
et  al. 2011). CNS-PCs and other cells from the vasculature (ECs, and vascular 
smooth muscle cells) together with neural cells (neurons, astrocytes, 
oligodendrocytes, microglia) form a particular microenvironment, called 
neurovascular unit (NVU). The NVU facilitates the coupling between neural activity 
and vascular function through the BBB. This structure acts as a highly selective 
interface barrier between the systemic blood circulation and the interstitial fluid of 
the brain parenchyma, allowing tight regulation of brain homeostasis that maintains 
an optimal microenvironment for neuronal survival (ElAli et al. 2014; Tsai et al. 

Fig. 8.1 Pericyte phenotype in microvessels. Pericytes are mural cells embedded in the basal 
membrane of capillaries and venules. (a) Normally they appear as flat cells with finger-like 
projections that wrap around microvessels. (b) When confronted with pathologic conditions, 
pericytes retract their projections and develop a surveillance-migration phenotype
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2016) (Fig. 8.2). Overall, CNS-PCs express all pericyte markers but display few 
specific features that distinguish them from perivascular cells from other tissues and 
organs. For example, CNS-PCs express the potassium channel kir6.1 (Bondjers 
et al. 2006) conferring them specific physiological roles. Indeed, CNS-PCs display 
a number of specific functions that are essential for vascular homeostasis in the 
neural tissue. Animal models deficient in CNS-PCs show BBB leakage and 
breakdown due to a not well-established boundary between vessels (Lindahl et al. 
1997), denoting their crucial role in BBB stability, permeability and in the regulation 

Fig. 8.2 The neurovascular unit. It consists of a collective of cells that populate the abluminal/
parenchymal side of brain’s microvasculature and contribute to the formation and support of the 
BBB. Endothelial Cells (EC) at the neurovascular unit establish a highly selective barrier of 
Claudin tight junctions facing the lumen of microvessels (apical side). Pericytes (PC) reside at the 
basal lamina of microvessels (abluminal side/basal side) and contribute to their maintenance and 
remodelling. These cells establish peg-socket connections with endothelial cells that allow the 
formation of gap junctions for cell communication. Basal Membrane (BM) is predominantly com-
posed of laminins, collagen IV, nidogen, and heparan sulfate proteoglycans, produced by EC and 
PC, which provide a network for the presentation of trophic and immunological factors [4]. 
Astrocytes (Ast) end-foot partially encase the capillary network, producing a glial layer that meta-
bolically couples with endothelial cells. Oligodendroglial Progenitor Cells (OPCs) are widely dis-
persed through gray and white matter and can be sited at the perivascular region of the NVU. 
Microglia (Mi) are resident immune cells of CNS that in response to demyelination produce 
TNF-α (Tumoral Necrosis Factor α) which in turn stimulate Pericyte proliferation and migration 
[5]. Neurons (Neu) often localize near to capillary networks for metabolic coupling with the 
NVU. Oligodendrocytes (OL) form the myelin ensheathing around neuronal axons in the CNS
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of capillary blood flow (Quaegebeur et al. 2010). In addition to this, prenatal CNS- 
PCs- deficient mice suffer of EC hyperplasia, evidencing the impact of CNS-PCs in 
the regulation of ECs proliferation, migration and stabilization during developmen-
tal angiogenesis and neovascularization (Ribatti et al. 2011; Armulik et al. 2005; 
Bell et al. 2010; Hellstrom et al. 2001; Krizbai et al. 2000). Besides vascular homeo-
stasis, recent findings extend CNS-PCs’ function towards neuroregeneration and, 
particularly, in myelin repair (De La Fuente et al. 2017) that will be further dis-
cussed in this chapter.

 Pericytes Contribution to Myelin Repair in Multiple Sclerosis

 Pericytes Support Myelin Development, Maintenance, 
and Regeneration

The NVU physiology is well coupled to OPC/oligodendrocyte function contribut-
ing to the regulation of myelin formation, maintenance, and repair. Indeed, the rela-
tion between brain vascularization and myelin formation rises early at embryonal 
stages (around gestational day 11.5 in mice and week 36 in humans), as the angio-
genic sprouting of microvessels through the neuropil serves as scaffolds for OPC 
migration (Tsai et al. 2016) that, in turn, will give rise to myelinating oligodendro-
cytes. Particularly, CNS-PCs may regulate OPC function during myelin develop-
ment. Histological examination in the white matter of adult OPC reporter mice as 
well as in human biopsies revealed that, within the perivascular region, OPCs local-
ize in close proximity to microvessels containing bona fide CNS-PCs (Maki et al. 
2015). This scenario may facilitate functional interactions between CNS-PCs and 
OPCs, especially when considering the capability of CNS-PCs to secrete trophic 
factors enabling them to exert a paracrine action on neighboring cells (Gaceb et al. 
2017). Besides this, CNS-PCs can indirectly influence myelin sheath formation and 
stability. As CNS myelination is an energetically extremely demanding process, it 
depends on the metabolic coupling between cells from the oligodendrocyte lineage 
and the NVU (Fünfschilling et al. 2012; Rinholm et al. 2011), where blood supply 
results are essential. In this regard, CNS-PCs have emerged as essential regulators 
of the NVU function, since these cells substantially contribute to the formation and 
integrity of BBB as well as the control of CNS blood perfusion (Armulik et  al. 
2010a; Crawford et  al. 2013). Hence, CNS-PCs malfunctions may alter myelin 
sheaths. In fact, a recent study has revealed in a pericyte-deficient animal model that 
alterations in the microvasculature are associated with an increase of BBB 
permeability through transcytosis and the accumulation of toxic deposits of 
fibrin(ogen) in the CNS parenchyma leading to white matter dysfunction (Montagne 
et  al. 2018). This correlates with previous observations in which the deficit of 
pericytes causes changes in the genetic expression pattern of endothelial cells, 
leading to an increase in permeability and alterations in the cellular polarity of the 
astrocytes end-foots at the NVU (Armulik et  al. 2010b; Montagne et  al. 2018). 
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Therefore, CNS-PCs contribute to myelin development and maintenance by 
different means, either directly modulating OPCs/oligodendrocytes function or 
through the regulation of the BBB integrity and NVU biology.

As previously mentioned, remyelination in the CNS represents a regenerative 
response to demyelination by which myelin sheaths are restored around bared 
axons. This process mainly depends on the proliferative, migratory and differentiation 
capacities of OPCs. Contribution of CNS-PCs to myelin is not restricted to its 
formation and maintenance as these cells also impact on myelin regeneration. As 
during development, in the adult brain CNS-PCs can regulate OPC physiology 
through the remodelling of the extracellular matrix (ECM), and the secretion of 
trophic factors. CNS-PCs have been spotted as important source of pro-regenerative 

Fig. 8.3 Pericytes respond to demyelinated lesions. After a demyelinated insult, non-vessel asso-
ciated pericyte-like cells (PDGFRbeta+ cells) develop at the core of the lesion and can be sited 
near to immature oligodendrocytes. In addition, pericytes can infuse paracrine stimulation to OPC 
differentiation by the secretion of LAMA2 subunit, a constituent of perivascular matrix of the basal 
lamina
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molecules upon PDGF-BB/PDGFRbeta signalling (Gaceb et al. 2017). In response 
to focal demyelination in the CCP of adult rats, PDGFRbeta-expressing CNS-PCs 
proliferate and locate in close proximity to differentiating OPCs. In parallel, a new 
population of non-vessel associated PDGFRbeta+ cells (CNS-PCs-like cells, PLCs) 
develop within the lesion, however, is not known whether and how these PLCs 
may contribute to myelin repair. Notwithstanding this undisclosed issue, there is 
evidence showing that CNS-PCs secrete Laminin alpha2-chain (Lama2) modifying 
the ECM and favoring the generation of new oligodendrocytes (De La Fuente et al. 
2017) (Fig. 8.3). Thus, recent studies have demonstrated that Lama2-derived from 
CNS-PCs promote OPC differentiation (De La Fuente et al. 2017) and oligodendro-
cyte fate choice in adult NSCs (Silva et al. 2019). Consistent with this, a CNS-PCs-
deficient mouse model shows a delayed OPC differentiation during CNS 
remyelination (De La Fuente et al. 2017). A previous study has shown that the para-
crine pro-oligodendrogenic effect exerted by CNS-PCs apparently depends on 
A-Kinase Associated Protein 12 (AKAP12). In the adult brain, AKAP12 is well 
expressed in CNS-PCs while only very few OPCs express this protein. AKAP12 is 
a PKA/CREB scaffold protein involved in the regulation of paracrine secretion and 
cell survival. Soluble factors derived from CNS-PCs that lackAKAP12 expression 
lost their capacity to promote OPC differentiation compared to conditioned media 
harvested from normal CNS-PCs (Takakuni Maki et  al. 2018). These findings 
suggest that AKAP12 expression/activity is necessary for CNS-PCs to regulate 
OPC function. However, further studies are necessary to reveal the exact role and 
contribution of CNS-PCs (particularly, of PLCs) to remyelination.

 Pericytes Abnormalities in MS Pathology

Pathological features of MS include the presence of infiltrated immune cells and 
blood-borne elements within the nervous parenchyma with a consistent disruption 
of the BBB that occurs at early stages and progressively manifests in areas of lesion 
(demyelinating plaques) (Zlokovic 2008). Imaging analysis in patients suffering 
from Clinically Isolated Syndrome (which often manifests before progressive forms 
of MS) revealed an early BBB breakdown suggesting that this event might precede 
the appearance of demyelinated plaques (Gündüz et al. 2018; Broman 1964). EAE, 
an animal model for MS, is characterized by significant angiodynamic changes 
during the course of the pathology. Upon exposure to chronic mild low oxygen 
apparently modulates these angiodynamic changes improving EAE clinical score 
(Esen et  al. 2013). Due to their contribution to microvascular integrity, several 
studies have aimed at determining the role of CNS-PCs on microvascular remodeling 
during inflammation. Some of these studies have focused, particularly, in 
MS.  PDGFRbeta-positive CNS-PCs specifically express the purinergic receptor 
P2X7R (ATP-gated P2X receptor cation channel) known to be relevant for 
inflammatory response (Grygorowicz et  al. 2018). During the course of EAE, 
overexpression of P2X7R in CNS-PCs correlates with a downregulation of 
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PDGFRbeta as well as with lower levels of claudin-5 protein, a tight junction 
building element normally expressed by endothelial cells. The administration of a 
P2X7R antagonist increases the expression of PDGFRbeta and claudin-5, 
diminishing EAE clinical signs. Therefore, activation of P2X7R expressed by CNS- 
PCs contribute to microvascular abnormalities and BBB breakdown during EAE, 
suggesting that this particular receptor may participate in MS pathology 
(Grygorowicz et  al. 2018). Furthermore, CNS-PCs well couple inflammation to 
vascular remodeling by different means. It seems that TNF-alpha, a pro-inflammatory 
cytokine, induces alpha2 integrin expression in CNS-PCs, apparently, allowing 
them to contribute to vascular remodeling in EAE (Tigges et al. 2013). Evidence 
supporting a role of CNS-PCs in MS is not restricted to animal models. Human 
biopsies obtained from patients suffering from both early progressive and late 
progressive MS (EPMS and LPMS, respectively) have revealed that perivascular 
cells subpopulations  (including CNS-PCs) behave differently depending on the 
lesion type where they are located (Iacobaeus E et al. 2017). Overall, active lesions 

Fig. 8.4 BBB contribution to multiple sclerosis. (a) Healthy tissue: [1] OPCs represent the main 
source of myelinating oligodendrocytes of the CNS. Oligodendrocytes form a myelin sheathing 
that support the synaptic saltatory conduction of multiple neurons. By doing so, mature 
oligodendrocytes couple with the NVU. [2] Oligodendroglial progenitor cells (OPCs) reside near 
to the NVU with some of them attached to the basal membrane of capillaries, in which the pericytes 
are embedded. (b) Multiple sclerosis: [1] The autoimmune response elicits by microglia and 
leukocytes against myelin-derived constituents produce oligodendrocyte cell death and 
demyelination. [2] BBB breakdown of BBB manifests itself together with a lower coverage of 
pericytes in the capillaries. Higher permeability of disruption of BBB causes infiltration of toxic 
blood-derived elements and lymphocytes to CNS. [3] Different populations of non-vessel associ-
ated PDGFRbeta+ cells appear within the demyelinated plaque
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contain high numbers of proliferative (CD146+/PDGFRbeta+/Ki67+) and quiescent 
(CD73+/CD271+/PDGFRbeta+/Ki67−)  perivascular cells, compared to inactive 
lesions. However, chronic lesions display lower numbers of proliferative perivascular 
cells compared to normal-appearing white matter (healthy tissue). All these findings 
together indicate that during MS, CNS-PCs display phenotypic changes according 
to the pathological progression that involves inflammation, demyelination, eventual 
remyelination, axonal death, and scar formation (details in Fig.  8.4). Therefore, 
CNS-PCs have been suggested as an attractive therapeutic target for the treatment 
of MS (Azevedo et al. 2018).

 Comments on Future Directions

As previously mentioned, recent studies indicate two main findings: (1) CNS-PCs 
react to demyelination and modulate OPCs function, probably, contributing to 
myelin repair and (2) CNS-PCs suffer of pathological changes that might alter their 
functionality during MS.  In this scenario, it results in urgency to determine the 
mechanism(s) by which CNS-PCs might impact on remyelination and to find out 
how MS may alter CNS-PCs function impeding their contribution to myelin repair 
and/or affecting the NVU, eventually, favoring demyelination and neurodegeneration. 
Revealing these keys would allow to develop new therapies aiming to restore CNS- 
PCs function in MS.
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Chapter 9
Pericytes in Ischemic Stroke

Turgay Dalkara, Luis Alarcon-Martinez, and Muge Yemisci

Abstract Recent stroke research has shifted the focus to the microvasculature from 
neuron-centric views. It is increasingly recognized that a successful neuroprotection 
is not feasible without microvascular protection. On the other hand, recent studies 
on pericytes, long-neglected cells on microvessels have provided insight into the 
regulation of microcirculation. Pericytes play an essential role in matching the met-
abolic demand of nervous tissue with the blood flow in addition to regulating the 
development and maintenance of the blood–brain barrier (BBB), leukocyte traffick-
ing across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to 
injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably 
impacts the stroke-induced tissue damage and brain edema by disrupting microvas-
cular blood flow and BBB integrity. Strongly supporting this, clinical imaging stud-
ies show that tissue reperfusion is not always obtained after recanalization. 
Therefore, prevention of pericyte dysfunction may improve the outcome of recana-
lization therapies by promoting microcirculatory reperfusion and preventing hemor-
rhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels 
and promote angiogenesis and neurogenesis, and hence positively effect stroke 
outcome. Expectedly, we will learn more about the place of pericytes in CNS 
pathologies including stroke and devise approaches to treat them in the next decades.
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 Introduction: Pericytes and Stroke

Pericytes play a role in matching the metabolic demand of nervous tissue with 
the blood flow in addition to regulating the development and maintenance of the 
blood–brain barrier (BBB) (Abbott et al. 2006; Armulik et al. 2011; Attwell et al. 
2010; Daneman et al. 2010; Iadecola 2004), leukocyte trafficking across the BBB 
(Proebstl et al. 2012; Dohgu and Banks 2013; Stark et al. 2013; Leick et al. 2014) 
and angiogenesis (Ozerdem and Stallcup 2003; Gerhardt and Betsholtz 2003; Díaz-
Flores et al. 2009). Ischemic injury to pericytes on cerebral microvasculature unfa-
vorably impacts the stroke-induced tissue damage and brain edema by disrupting 
microvascular blood flow and BBB integrity, whereas ischemia-triggered signaling 
in pericytes on the vasculature within the peri-infarct area positively effect stroke 
outcome by promoting post-stroke angiogenesis and neurogenesis (Ozerdem and 
Stallcup 2003; Gerhardt and Betsholtz 2003; Zhang et al. 2012).

 CNS Pericytes

Pericytes are present on almost all microvessels in the body; however, their density 
is highest in the CNS and retina in accordance with their role in fine regulation of 
the microcirculatory blood flow and maintenance of the blood–brain/retina barrier 
(Frank et al. 1987; Shepro and Morel 1993; Winkler et al. 2011a; Armulik et al. 
2011). Pericytes are located on pre-capillary arterioles, capillaries, and post-capil-
lary venules (Sims 1986; Dore-Duffy and Cleary 2011a; Armulik et  al. 2011) 
(Fig. 9.1a, b). Unlike smooth muscle cells (SMCs), pericytes are embedded within 
two layers of basement membrane (Shepro and Morel 1993). Adjoining membranes 
of the neighboring pericytes are interconnected with gap junctions, serving as a 
communication pathway along the microvascular wall (Peppiatt et  al. 2006; 
Hamilton et al. 2010). Pericytes extend processes around microvessels, which are 
largely circumferential at the arteriole side of the microvascular bed and at branch-
ing points, more longitudinal in the middle of the capillary bed, and have a stellate 
morphology at the venular side (Fig. 9.1b) (Hartmann et al. 2015). Pericytes are 
structurally plastic cells (Berthiaume et al. 2018) and their morphology and protein 
expression vary along the course of microvasculature, presumably to accommodate 
differing functions (Nehls and Drenckhahn 1991; Armulik et al. 2011; Dore-Duffy 
and Cleary 2011a; Hill et al. 2015; Hartmann et al. 2015; Jung et al. 2018). Pericytes 
are heterogeneous in their origin (Dias Moura Prazeres et al. 2017). Several transi-
tional forms are observed along the vascular bed at various developmental stages 
or after pathological stimuli (Sims 1986; Dore-Duffy and Cleary 2011a; Armulik 
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et  al. 2011; Sharma et  al. 2012). The transition from smooth muscle cells to 
pericytes is not sharp. Smooth muscle-pericyte “hybrid” cells precede the prearte-
riolar pericytes having mesh-like circular processes (Sims 1986; Hartmann et  al. 
2015). Pericytes that give out more circumferential processes express more α-SMA, 
when assessed either with immunohistochemistry of brain sections ex vivo (Nehls 
and Drenckhahn 1991) or in mice cortex expressing reporter dyes under control of 
the α-SMA promoter in vivo (Hill et al. 2015; Hartmann et al. 2015). Detection of 
α-SMA in pericytes has been a controversial issue because of the some technical 
drawbacks that were missed in the methods used. First of all, It should be noted that 
reporter dyes expressed under the control of α-SMA promoter are membrane- bound, 
and therefore basically label the pericyte membrane, whereas immunohistochemis-
try directly detects the α-SMA protein (mainly in the cytoplasm of the soma and 
processes). However, the detection of the small pool of α-SMA in their relatively 
short processes by immunohistochemistry requires rapid fixation before α-SMA 
depolymerises during tissue processing (Alarcon-Martinez et al. 2018) (Fig. 9.2), 
whereas low level of α-SMA expression could be difficult to visualize due to disper-
sion of the limited amount of reporter fluorescent protein diffused over the large 
surface area of the pericyte membrane (Hill et al. 2015). Of note, α-SMA expression 
in pericytes is readily induced by tissue injury such as trauma, ischemia and injec-
tions (Dore-Duffy et al. 2000; Bai et al. 2018; Alarcon-Martinez et al. 2018).

 Pericytes Regulate Microcirculatory Blood Flow in CNS  
and Retina

Functional hyperemia is an essential phenomenon in CNS by which oxygen and 
nutrients are supplied to tissue in accordance with metabolic demand generated by 
neuronal activity (Attwell et al. 2010). This tight pairing between the neural firing 
and blood flow, named neurovascular coupling, is provided by the neurovascular 

Fig. 9.1 Neurovascular unit and pericytes. (a) The neurovascular unit is composed of the endothe-
lia and tight junctions between them, pericytes, the basal lamina encircling endothelia and peri-
cytes, and astrocyte endfeet surrounding the microvessel. Note the peg and socket type contacts 
between endothelia and pericytes (Reproduced from Dalkara and Alarcon-Martinez 2015 with 
permission). (b) Pericyte processes are highly varied with shapes ranging from thin singular 
strands that run parallel to the microvasculature to more complex mesh processes that enwrap the 
entire vessel lumen. Pericytes located closer to the arteriolar end of the microcirculation exhibit 
more circular processes that may be essential to their contractile function (Reproduced from 
Hartmann et al. 2015 with permission)
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unit composed of neurons, astrocytes, vascular endothelia, smooth muscle cells, and 
pericytes (Iadecola 2004; Attwell et al. 2010; Dalkara and Alarcon-Martinez 2015). 
The neurovascular unit shows structural and functional differences between capil-
laries, which are covered by pericytes that respond to local activity in immediate 
vicinity and the intra-parenchymal arteries/arterioles, which are wrapped by smooth 
muscle cells and regulated by signals coming from a larger cohort of neurons as 
well as distal microvasculature (Hall et  al. 2014; Dalkara and Alarcon-Martinez 
2015; Biesecker et al. 2016; Mishra et al. 2016; Kisler et al. 2017). Both smooth 
muscle cells and pericytes contain α-SMA; a contractile protein that mediates the 
vascular diameter changes associated with neurovascular coupling (Herman and 
D’Amore 1985; Kelley et al. 1987; Hall et al. 2014; Alarcon-Martinez et al. 2018). 
The capability of pericytes to change vascular diameter in response to neural activa-
tion has been debated because blood flow is regulated at the level of arterioles in the 
peripheral circulation where a very focal flow regulation is not required unlike the 
CNS and retina. Failure of some laboratories to detect α-SMA in capillary pericytes 
strengthened these reservations. However, it has recently been proposed that this 
failure was caused by rapid depolymerization of small pool of α-SMA in capillary 
pericytes during slow tissue fixation with paraformaldehyde because rapid fixation 
methods disclosed that even small pericytes on high order capillaries expressed 
α-SMA (Alarcon-Martinez et  al. 2018) as originally shown by Herman and 
D’Amore (Herman and D’Amore 1985). By using short interfering RNA, Alarcon- 
Martinez et al. readily suppressed α-SMA expression in distal capillary pericytes, 
but not in upstream larger microvessels where α-SMA is more abundant, supporting 
the view that the histological detection of the small pool of α-SMA in capillary 
pericytes is challenging compared to the α-SMA-rich pericytes on pre-capillary 
arterioles and vascular smooth muscle cells (Alarcon-Martinez et al. 2018). Indeed, 
as reviewed in detail by Díaz-Flores et al. (2009), the pericyte contractility is sup-
ported by several lines of evidence including their characteristic morphology with 

Fig. 9.2 Capillary pericytes express α-SMA. (a) Rapid fixation with methanol allowed visualiza-
tion of α-SMA expression (red) in a deeper plexus capillary pericyte by preventing depolymeriza-
tion of a small pool of α-SMA during tissue processing. This mural cell was also immunopositive 
for the pericyte marker PDGFRβ (green). Scale bar: 5 μm. (b) Stabilization of F-actin with intra-
vitreal injection of Jasplakinolide before sacrificing the mouse disclosed α-SMA immunolabeling 
(red) on a sixth order retinal capillary visualized with lectin (green). Arrows point to pericyte 
somas and numbers indicate the branch order. Scale bar: 10  μm. (Reproduced from Alarcon- 
Martinez et al. 2018 with permission)
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processes that envelop the microvessels as well as ultrastructural and immunohisto-
chemical demonstration of contractile proteins (Wallow and Burnside 1980; Herman 
and D’Amore 1985; Joyce et al. 1985a, b; Fujimoto and Singer 1987; Kelley et al. 
1987; Das et al. 1988; Nehls and Drenckhahn 1991; Shepro and Morel 1993; Allt 
and Lawrenson 2001; Bandopadhyay et  al. 2001) in addition to the presence of 
receptors for vasoactive mediators on their surface (Peppiatt et al. 2006; Puro 2007; 
Hamilton et al. 2010). In vitro studies on cerebellar, cerebral, and retinal slices or on 
isolated microvessels or cultured pericytes and recent in vivo studies have disclosed 
that pericytes are indeed capable of contracting or dilating in response to vasoactive 
mediators and physiological stimuli (Herman and D’Amore 1985; Kelley et  al. 
1987; Peppiatt et al. 2006; Puro 2007; Fernandez-Klett et al. 2010; Hall et al. 2014; 
Biesecker et al. 2016; Mishra et al. 2016; Kisler et al. 2017). A recent in vivo study 
showed that cortical capillaries dilated before arterioles during sensory stimulation, 
supporting the view that microvascular blood flow in the CNS is regulated by peri-
cytes in response to the very focal demand originating from a small group of nearby 
cells as a final step of flow regulation after the arterioles, which serve a larger cohort 
of cells (Hall et al. 2014). This flow regulation with fine spatial resolution may be 
essential for tissues with high functional specialization such as the brain and retina. 
However, it should be noted that all microvascular pericytes are not contractile and 
proportion of the contractile ones may vary with the tissue, species and develop-
mental stage as well as along the arteriovenous axis (Krueger and Bechmann 2010; 
Fernández-Klett and Priller 2015; Hill et al. 2015).

When Rouget discovered the pericytes in 1873, he proposed that they might have 
contractile capability and regulate microcirculatory blood flow because of their 
shape and position on microvessels (Rouget 1873). This hypothesis has been sup-
ported and elaborated by many in vitro and in vivo studies over the years. The capil-
lary diameter changes during metabolic demand were recently proposed to be 
mediated by astrocytic calcium increase through ATP-gated channels and pericyte 
relaxation on release of PGE2 from astrocyte endfeet (Mishra et al. 2016). In line 
with the findings from CNS, Biesecker et  al. showed that calcium signaling in 
Müller cell endfeet was sufficient to evoke capillary but not arteriole dilation in the 
retina (Biesecker et  al. 2016). Kisler et  al. showed that transgenic mice with a 
decreased number of pericytes had a deficient neurovascular coupling, reinforcing 
the importance of pericytes in blood flow regulation (Kisler et al. 2017). Moreover, 
during ischemia, it was shown in situ that pericytes constricted capillaries by 
calcium- induced α-SMA contraction, impairing microcirculatory re-flow after 
recanalization (Yemisci et al. 2009; Hall et al. 2014) (Fig. 9.3). Hill et al. observed 
that most of the mural cells on the first 4 order capillaries expressed α-SMA and 
contracted in response to physiological stimuli or ischemia; however, they named 
these cells as smooth muscle cells because they expressed α-SMA and reserved the 
name pericyte for only strand-like mural cells lacking α-SMA (Hill et al. 2015). 
An opinion article entitled “What is a pericyte?” discusses this unconventional defi-
nition of pericyte and point to the fact that Hill et al.’s findings in fact confirm previ-
ous reports demonstrating pericyte contractility under physiological and ischemic 
conditions, once pericytes are defined as first described by Zimmerman in 1923 
(Attwell et al. 2016).
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 Pericytes Are Vulnerable to Ischemic Injury

Pericyte contractility is regulated by intracellular Ca2+ concentrations (Kamouchi 
et al. 2004; Hamilton et al. 2010). The energy loss triggered by acute cerebral isch-
emia disrupts Ca2+ homeostasis and leads to an uncontrolled rise in intracellular 
Ca2+ in these metabolically dynamic cells (Hamilton et al. 2010). Calcium overload 
is likely to be potentiated by reactive oxygen species (ROS) (Kamouchi et al. 2007; 
Nakamura et al. 2009) coming from multiple sources during ischemia-reperfusion, 

Fig. 9.3 Ischemia causes persistent pericyte contraction, which is not restored after complete 
recanalization of the occluded artery. Mice were subjected to 2 h of proximal MCA occlusion and 
intravenously injected with horseradish peroxidase (HRP) before decapitation 6 h after reopening 
of the MCA. HRP-filled microvessels exhibited sausage-like segmental constrictions in ischemic 
areas on brain sections (upper row). The differential interference contrast (DIC) microscopy 
images illustrate frequent interruptions in the erythrocyte column in an ischemic capillary contrary 
to a continuous row of erythrocytes flowing through an intact capillary (middle row). The con-
stricted segments colocalized with α-smooth muscle actin (α-SMA) immunoreactive pericytes 
(bottom row). IF denotes immunofluorescence. Scale bar for upper and middle row, 20 μm; bottom 
row 10 μm (Reproduced from Yemisci et al. 2009 with permission)
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including mitochondria in pericytes, astrocyte endfeet and endothelia (Gürsoy- 
Ozdemir et  al. 2004, 2012) and, ROS generating enzymes on the microvascular 
wall. Pericytes express high quantities of a major superoxide-producing enzyme, 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) (Manea 
et al. 2005; Kuroda et al. 2014; Nishimura et al. 2016). This enzyme was shown to 
be upregulated in microvascular pericytes of the peri-infarct region in a MCAo 
stroke model, which contributed activation of metalloproteinase-9 and BBB break-
down (Vallet et  al. 2005; Nishimura et  al. 2016). Reactive oxygen and nitrogen 
species, and their reaction product, the potent oxidant peroxynitrite are intensely 
generated on the microvascular wall during ischemia and reperfusion, and constrict 
microvessels by contracting pericytes (Chan 1996; Yemisci et  al. 2009; Gursoy- 
Ozdemir et  al. 2012). Importantly, pericytes on microvessels remain contracted 
after recanalization of the occluded artery; therefore, the microcirculatory flow can-
not completely be restored. The impaired reperfusion despite recanalization, known 
as the ‘no-reflow’ phenomenon, negatively affects post-stroke tissue survival 
(Hallenbeck et al. 1986; del Zoppo et al. 1991a; Yemisci et al. 2009; del Zoppo et al. 
2011; Dziennis et  al. 2015) (Figs. 9.3 and 9.4). Therefore, the experimental evi-
dence still warrants pursuit of this goal (Diener et al. 2008; Amaro and Chamorro 
2011; Gursoy-Ozdemir et al. 2012; Taskiran-Sag et al. 2018) despite failure of an 
antioxidant agent in clinical trials (Diener et al. 2008).

 Incomplete Microcirculatory Reflow After Recanalization

An impaired tissue reperfusion after recanalization of an occluded artery or restora-
tion of blood flow following circulatory collapse was first noted more than half a 
century ago and named as no-reflow phenomenon (Ames et al. 1968; Crowell and 
Olsson 1972). Unfortunately, some later studies measuring capillary patency with 
serum flow claimed that all capillaries were reperfused after restoration of blood 
flow (Theilen et al. 1993; Li et al. 1998). Recent studies with modern imaging tech-
niques recording from intact mice brain clearly illustrated that fluorescently labeled 
serum continued to flow at the periphery of clogged capillaries (though slowly), 
creating the illusion that capillaries remained patent when only serum was moni-
tored (Yemisci et al. 2009; Hill et al. 2015). Fortunately, interest in no-reflow phe-
nomenon was re-kindled with studies on post-ischemic microcirculatory failure 
caused by leukocytes, platelets, fibrin and, recently, by pericytes (Hallenbeck et al. 
1986; del Zoppo et al. 1991a; 2011; Zhang et al. 1999; Yemisci et al. 2009; Hall 
et al. 2014).

The impaired reflow emerges as a function of the duration and severity of isch-
emia, which varies between brain regions. Ten to twenty minutes of global ischemia 
is sufficient to induce no-reflow. For focal ischemia, proximal MCA occlusion in 
the mouse induces nodal microvascular constrictions that generally do not recover 
after recanalization starting 1 h after ischemia and affecting half of the microvessels 
within 2 h (Yemisci et al. 2009; Hill et al. 2015) (Fig. 9.3). Capillary constrictions 
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emerge earlier when focal ischemia was induced by photothrombosis, perhaps due 
to an additional injury induced by this method (Underly et al. 2017). Microvessel 
lumina at the constricted segments are filled with entrapped erythrocytes (RBCs), 
leukocytes, and fibrin-platelet deposits (Little et al. 1976; Hallenbeck et al. 1986; 
Garcia et al. 1994; Zhang et al. 1999; Morris et al. 2000; Belayev et al. 2002). RBCs 
are the predominant cell type in aggregates possibly because they are the most prev-
alent cells in circulation. In addition to the constricted segments observed at the 
arteriolar end of microcirculation and capillaries, leukocytes adhered to postcapil-
lary venules for entering to the parenchyma also induce luminal aggregates together 
with fibrin and platelets (Belayev et al. 2002; Zhang et al. 1999; del Zoppo et al. 
1991b; Ritter et al. 2000).

Fig. 9.4 Incomplete microcirculatory reflow after recanalization. Dynamic imaging of cortical 
blood flow using optical microangiography during 90-minute proximal MCA occlusion followed 
by recanalization illustrates the lack of microcirculatory blood flow in the MCA territory (the 
green area) during occlusion and its partial recovery after recanalization (incomplete microcircula-
tory reperfusion) in the mouse. Consecutive images are shown at 10-min intervals. Image size is 
2.2 × 4.4 mm2. The image in the lower right is the optical microangiography image taken at 50 min 
overlaid on the 24 h infarct analysis by histological staining as the area of pallor. Scale bar = 500 μm 
(Reproduced from Dziennis et al. 2015 with permission)
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Experimental data strongly suggest that incomplete restoration of the microcir-
culatory blood flow negatively impacts tissue recovery even if reopening of the 
occluded artery is achieved within the time window when there is still salvageable 
penumbral tissue (Yemisci et al. 2009; del Zoppo et al. 2011; McCabe et al. 2018). 
Recent clinical data from large prospective studies that examined recanalization as 
well as tissue reperfusion concluded that reperfusion was essential to achieve good 
functional recovery such that a satisfactory reperfusion was 4 times stronger in 
predicting the outcome than recanalization or collateral status (Eilaghi et al. 2013; 
Cho et al. 2015; Catanese et al. 2017). Interestingly, reperfusion provided through 
collaterals was also associated with good clinical outcome even when recanaliza-
tion could not be attained (Makris et al. 2019). Anti-thrombotic agents and genetic 
manipulations reducing microvascular clogging by inhibiting leukocyte adherence, 
platelet activation, or fibrin-platelet interactions have been shown to restore micro-
circulation and improve stroke outcome in animal models (Hallenbeck et al. 1986; 
Mori et al. 1992; Choudhri et al. 1998; Belayev et al. 2002; Ishikawa et al. 2005). 
Current guidelines, however, do not recommend anti-thrombotic medication use in 
patients undergoing recanalization therapies because of increased risk of hemor-
rhage (Powers et  al. 2018). Interestingly, adenosine-squalene nanoparticles have 
been shown to improve microcirculation by relaxing contracted pericytes during 
ischemia in mouse stroke models (Gaudin et  al. 2014) (Fig. 9.5). Radiolabeling 
studies disclosed that adenosine nanoparticles did not enter the brain parenchyma 
but provided neuroprotection by improving microcirculation with slowly released 
adenosine in endothelia. Importantly, the neuroprotection was also obtained with 
other BBB-impermeable agents such as L-N5-(1-iminoethyl)-ornithine (L-NIO) 
and 2-sulfo-phenyl-N-tert-butyl nitrone (S-PBN), strongly supporting the idea that 
restoring microvascular patency can alone improve stroke outcome independently 
of parenchymal mechanisms (Yemisci et al. 2009; Gaudin et al. 2014). A recent 
study by simultaneously imaging ROS formation in the parenchyma and vascula-
ture, demonstrated that S-PBN, a BBB-impermeable analog of the ROS scavenger 
PBN provided neuroprotection by improving microcirculatory reperfusion and 
then secondarily reducing parenchymal ROS formation without entering paren-
chyma (Taskiran-Sag et al. 2018). Consequently, restitution of the microcirculatory 
reperfusion emerges as an exciting target to improve the success rate of recanaliza-
tion (Dalkara and Arsava 2012) and neuroprotection therapies (Gursoy-Ozdemir 
et al. 2012).

In the past, ischemia-induced capillary constrictions were thought to be caused 
by swollen astrocyte endfeet around microvessels (Little et al. 1976; Garcia et al. 
1994). However, this idea is hard to reconcile with the nodal character of constric-
tions because the endfeet homogenously encircle capillaries, hence, should lead to 
an even narrowing of the lumen. The pericyte contraction-induced segmental con-
strictions fit better with these observations as pericytes are intermittently spaced 
along the microvessels (Yemisci et al. 2009; Dore-Duffy and Cleary 2011b; Hall 
et al. 2014; Alarcon-Martinez et al. 2018) (Figs. 9.2b and 9.3). Nomenclature dis-
agreements in naming capillary mural cells notwithstanding, the important point for 
the stroke pathophysiology is that contractile cells on brain microvessels impede 
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reperfusion after ischemia and unfavorably impact the outcome of recanalization. 
It should be noted that even small decreases in capillary radius caused by subtle 
pericyte contractions can lead to erythrocyte entrapments because capillary luminal 
size hardly allows passage of RBCs (Yemisci et  al. 2009; Hamilton et  al. 2010) 
(Fig. 9.3 middle row). Entrapped erythrocytes trigger platelet and fibrin aggregation 
by impeding passage of blood cells (Zhang et  al. 1999; del Zoppo and Hamann 
2011). The failure of erythrocyte circulation within some of the microvessels will 
lead to accelerated passage through the patent ones causing inefficient O2 extraction 
(shunting). Modeling studies suggest that this increased heterogeneity of RBC tran-
sit times through patent capillaries (due to varying degrees of capillary resistances) 
can catastrophically reduce O2 delivery to the tissue struggling to recover from 
ischemia- induced perturbations (Jespersen and Østergaard 2012). Since the plasma 
flow in constricted capillaries is relatively less restricted compared to RBC flux, 
glucose supply to some parts of the tissue may exceed O2 supply and stimulate 
anaerobic glycolysis, hence, lactic acidosis (Yemisci et  al. 2009; Dalkara et  al. 
2011) (please see supplementary movies mmc 5–7 in Hill et al. 2015). Current MR 
or CT techniques measure perfusion by detecting passage of contrast agent but not 
RBCs through the ischemic tissue, therefore, might be overestimating tissue 

Fig. 9.5 Systemic administration of squalenoyl-adenosine (SQAd) nano-assemblies (NAs) 
provides significant neuroprotection in a mouse model of focal cerebral ischemia. (a) Infarct areas 
in control and treated mice subjected to transient (2 h MCAo and 22 h reperfusion) focal cerebral 
ischemia were identified by reduced Nissl staining under a light microscope (magnification ×10). 
(b) In untreated mice, capillaries in the ischemic brain were filled with trapped erythrocytes, whose 
hemoglobin was rendered fluorescent by treating brain sections with NaBH4 (b, red, arrowheads) 
6 h after re-opening of the MCA following 2 h of occlusion, whereas the majority of capillaries 
were not clogged in SQAd nano-assemblies-treated mice (c). Unlike adenosine infusion, slow 
release from squalenoyladenosine nanoparticles did not cause cardiotoxicity or hypotension in the 
mouse model used. (Reproduced from Gaudin et al. 2014 with permission)

T. Dalkara et al.



199

oxygenation. However, since plasma flow is related to capillary resistance, perfusion 
parameters based on the transit time may still be used to assess the microcirculatory 
reperfusion and its disturbances (Engedal et al. 2017). Distal embolization and re-
occlusion are not uncommonly encountered during thrombolysis or endovascular 
therapies (Alexandrov and Grotta 2002; Janjua et al. 2008); however, microcircula-
tory failure appears as an independent factor than flow reduction due to occlusion at 
proximal sites and predicts tissue to be infarcted in recanalized as well as non-
recanalized patients (Engedal et al. 2017). In line with these findings, our group 
recently showed that the presence of microcirculatory failure distal to the thrombus 
prior to attempting recanalization is an unfavorable prognostic factor for a satisfac-
tory reperfusion and clinical outcome in acute ischemic stroke patients treated 
with clot retrievers (Arsava et al. 2018).

 Pericytes and Post-Stroke BBB Leakiness

The BBB is fundamental for normal functioning of the CNS. The sealed endothelial 
cells by tight junction proteins, astrocyte endfeet, and extracellular matrix form the 
main physical barrier between the blood and CNS parenchyma. A close communi-
cation between the pericytes and endothelia as well as astrocytes is required for 
development and functioning of the BBB (Armulik et  al. 2010; Daneman et  al. 
2010). Pericytes regulate the expression of tight junction proteins and inhibit tran-
sendothelial vesicular transport and immune cell extravasation into CNS (Armulik 
et al. 2010; Daneman et al. 2010; Sweeney et al. 2016). Thereby, pericytes play a 
critical role in vascular stability at the microcirculatory level such that the number 
of pericytes per endothelial cell and the surface area of the vascular wall covered by 
pericytes determine the relative permeability of capillaries (Winkler et al. 2011b; 
Armulik et al. 2011). Accordingly, pericyte dysfunction as well as deficiency causes 
increased BBB permeability (Armulik et  al. 2010, 2011; Daneman et  al. 2010; 
Winkler et al. 2011a)

Injury to pericytes during acute ischemia contributes to BBB breakdown, hence 
brain edema in the ischemic territory in addition to impairing microcirculation 
(Simard et al. 2007; Underly et al. 2017). Death of the damaged pericytes may fur-
ther aggravate BBB breakdown at later hours along with other factors such as MMP 
activation (Hall et al. 2014; Underly et al. 2017; Neuhaus et al. 2017). However, in 
the peri-infarct areas, pericytes were shown to migrate from microvessels within 1 h 
following ischemia. This migration may be protective by providing guidance for 
peri-infarct angiogenesis, but also be detrimental as it could increase microvascular 
permeability by disrupting the interaction of pericytes and tight junctions (Kamouchi 
et al. 2011; Liu et al. 2012). In the long run, however, post-stroke angiogenesis and 
neurogenesis in peri-infarct area plays an important role in stroke outcome (Wang 
et al. 2004; Ergul et al. 2012; Zhang et al. 2012; Cai et al. 2017).

Diabetic patients are prone to cerebral hemorrhage. This could be due to dys-
functional microvascular pericytes, as suggested for diabetic retinopathy manifested 
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by retinal edema and hemorrhage (Wardlaw et al. 2009; Willard and Herman 2012; 
Desilles et al. 2013). Increased BBB permeability predisposes to intraparenchymal 
hemorrhage in about 5–6% of patients receiving recanalization treatments (Donnan 
et al. 2011). Diabetes is considered a risk factor for thrombolysis-related hemor-
rhage and adversely influences post-stroke recovery. These negative effects of 
diabetes are considered to be a reflection of microvascular dysfunction, and peri-
cytes might play a central role in this. Most of the knowledge about diabetes and 
pericyte dysfunction comes from the observations in diabetic retinopathy (Ergul 
et al. 2014). The loss of pericyte coverage around retinal endothelial cells in diabe-
tes has been shown to trigger pathological angiogenesis, endothelial cell apoptosis, 
and plasma leakage (Prakash et al. 2013; Ergul et  al. 2014, 2015). Although the 
effects of diabetes on brain pericytes are not fully known, a decreased pericyte den-
sity has been reported within the cerebral microcirculation as well (Prakash et al. 
2012). Experimental stroke in diabetic animals has led to an increase in hemor-
rhagic transformation after ischemia in diabetic mice (Ergul et al. 2007) and impair-
ment in vascular repair mechanisms critical for neovascularization and angiogenesis 
(Prakash et al. 2013).

Interestingly, pericyte loss is increasingly reported for conditions that are risk 
factors for stroke, such as aging, hypertension as well as diabetes, the impact of 
which on stroke outcome needs to be clarified with future research (Østergaard et al. 
2016). Cerebral pericytes in hypertensive animals show irregular profiles, associ-
ated with fragmentation of their processes and thickening in their basement mem-
branes (Suzuki et al. 2003). These changes are reportedly led to decreased endothelial 
coverage by pericytes, capillary thrombotic occlusion, and luminal collapse (Suzuki 
et al. 2003). Capillary dysfunction induced by the above cerebrovascular disease 
risk factors has also been proposed to contribute to the risk of subsequent stroke and 
cognitive decline (Østergaard et al. 2016).

 Post-Stroke Angioneurogenesis and Pericytes

Pericytes are essential, especially, for the early phase of neovascularization 
(angiogenic sprouting) (Ozerdem and Stallcup 2003; Gerhardt and Betsholtz 2003). 
Pericytes and endothelial cells communicate with each other for regulation of 
angiogenesis (Ozerdem and Stallcup 2003; Gerhardt and Betsholtz 2003; Díaz- 
Flores et al. 2009) (Fig. 9.6). Platelet-derived growth factor-β (PDGFβ), transform-
ing growth factor-β (TGFβ), notch, angiopoietin and sphingosine-1-phosphate 
signaling, and the vascular endothelial grow factor and its receptor-2 (VEGF/
VEGFR2) mediate this crosstalk (Gaengel et  al. 2009; Armulik et  al. 2011). 
Through those signaling pathways, pericyte may drive angiogenesis after stroke 
(Kokovay et al. 2006; Dore-Duffy et al. 2007; Beck and Plate 2009; Ergul et al. 
2012; Zechariah et al. 2013a, b; Cai et al. 2017). First, endothelial cells start to 
proliferate and give off vessel sprouts 12–24  h after brain ischemia, leading to 
formation of new vessels in the peri-infarct region 3  days after ischemic injury 
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(Hayashi et al. 2003; Chopp et al. 2007; Beck and Plate 2009). Following a similar 
time course, the PDGFRβ expression is upregulated in pericytes, which increase in 
number and start migrating from the microvessel wall to the newly formed vessel 
sprouts to foster their maturation after ischemic injury (Takahashi et al. 1997; Dore-
Duffy et  al. 2000; Marti et  al. 2000; Renner et  al. 2003; Arimura et  al. 2012; 
Dulmovits and Herman 2012). Renner et al. found that PDGFRβ increased in peri-
cytes 48 hours after permanent ischemia (Renner et al. 2003). This upregulation of 
PDGFRβ in pericytes is proposed to be promoted by ischemia-induced increase in 
the basic fibroblast growth factor (bFGF) (Nakamura et al. 2016). Similarly, NG2+ 
or PDGFRβ+ pericytes are reportedly increased in peri-infarct areas 1–3  weeks 
after transient MCA occlusion (Fernández-Klett et al. 2013; Yang et al. 2013). A 
proportion of locally proliferating pericytes give rise to microglial cells (Özen et al. 
2014). Corroborating these studies, conditional knockout of PDGFβ/PDGFRβ signal-
ing in adult mice that have normally developed brain vasculature led to larger 
infarcts than controls when subjected to focal cerebral ischemia (Shen et al. 2012). 
Similarly, Zechariah et al. showed that pericytes did not appropriately cover the brain 

Fig. 9.6 Role of pericytes in angiogenesis. The interaction between PDGFβ secreted by the endo-
thelium and its receptor localized on pericytes (PDGFRβ) is essential for recruitment of undiffer-
entiated mesenchymal cells/pericytes to newly formed vessels. Once pericytes are at the vascular 
wall, reciprocal Notch signaling between the endothelia and pericytes as well as interactions 
between TGFβ secreted by endothelial cells and its receptor TGFβR2 located at pericytes differen-
tiate mural cells and attach them to the newly formed vessels. The TGFβ/TGFβR2 interaction also 
promotes formation of the common basement membrane and stabilizes newly formed vessels by 
inhibiting endothelial proliferation. Ang-1, which is secreted by pericytes, activates its endothelial 
receptor Tie2 and promotes blood–brain barrier formation. Finally, S1P, whose receptor is abun-
dantly expressed on pericytes down regulates genes related to vascular permeability and promotes 
both endothelial-endothelial (VE-cadherin) and pericyte-endothelial cell (N-cadherin) intercon-
nections (Reproduced from Dalkara and Alarcon-Martinez 2015 with permission)
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capillaries in hyperlipidemic mice exposed to ischemia, and this was associated 
with attenuation of post- stroke angiogenesis (Zechariah et al. 2013b). Moreover, 
after ischemic stroke, brain pericytes may also start to express other angiogenic 
signaling mediators. For instance, during hypoxia, pericytes begin to secrete VEGF 
(Dore-Duffy et al. 2007), which activates VEGFR2 in endothelial cells (Greenberg 
and Jin 2005; Beck and Plate 2009) and promote neovascularization in the peri-
infarct region (Marti et al. 2000). Additionally, TGFβ, which is expressed in endo-
thelial cells and pericytes (Gaengel et al. 2009), increased significantly in capillaries 
of the ischemic areas (Haqqani et al. 2005). Finally, following an ischemic injury, 
an upregulation of the angiopoietin and sphingosine-1-phosphate signaling path-
way in the peri-infarct capillaries has been reported (Lin et al. 2000; Zhang and 
Chopp 2002).

Kokovay et al. showed that, following brain ischemia, bone marrow-derived cells 
with a pericytic phenotype and expressing angiogenic factors as VEGF and TGF-b 
were recruited to cerebral capillaries (Kokovay et al. 2006). Angiogenesis is also 
essential to promote neurogenesis after stroke (Palmer et al. 2000; Kamouchi et al. 
2012; Nih et al. 2012). In fact, newly formed neurons are located near to the remod-
eled vessels (Okano et al. 2007), probably because vascular cells recruit and form a 
niche for neural stem cells (Palmer et al. 2000; Licht and Keshet 2015). Since peri-
cytes express factors that can induce neurogenesis as well as angiogenesis, they may 
also be involved in post-stroke neurogenesis not only as neuroblast recruiters but 
also as a source of neural stem cells (Parent et al. 2002; Wang et al. 2004; Dore- 
Duffy and Cleary 2011b). After acute ischemic stroke in rodents, neurogenesis is 
activated within the subventricular zone (Parent et al. 2002). Recently, Wang et al. 
showed that PDGFR signaling was essential for the recruitment of neuroblasts 
formed at the subventricular zone to the infarct area after ischemic stroke (Wang 
et  al. 2017). In line with this, in vitro studies have shown that the brain-derived 
pericytes have potential to differentiate into neurons in response to trophic factors 
(Dore-Duffy et al. 2006; Paul et al. 2012; Karow et al. 2012; Karow 2013). It has 
been reported that pericytes extracted from ischemic mouse brain regions expressed 
various stem cell markers or essential factors for reprogramming such as c-myc, 
Klf4, and Sox2 (Nakagomi et al. 2015). Similarly, Nakata et al. found that, after 
transient brain ischemia/reperfusion injury in the mouse, PDGFRβ+ pericytes were 
located within injured areas and commenced to expressed neural stem cell markers 
as nestin and immature neuronal markers as doublecortin (Nakata et al. 2017). In 
accordance with this, culture experiments showed that human brain pericytes under 
oxygen/glucose deprivation expressed not only pericyte markers as PDGFRb, NG2, 
or α-SMA but also Sox2 or Klf4 (Nakagomi et al. 2015). After examining post- 
stroke human brain tissue, Tatebayashi et al. also found the presence of nestin+ cells 
localized near blood vessels and co-expressing the pericytic markers α-SMA and 
NG2 (Tatebayashi et al. 2017). Finally, pericytes obtained from ischemic MCA tis-
sue of adult animals or pericytes cultured under ischemic conditions also showed 
capability to differentiate to cells of neural as well as vascular lineage (Nakagomi 
et al. 2015).
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 Role of Pericytes in CADASIL

Cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoen-
cephalopathy (CADASIL) is caused by mutations in the NOTCH3 gene (Joutel 
et al. 1996). The protein encoded by the NOTCH3 gene is expressed in pericytes and 
vascular SMCs. Studies in Notch3 transgenic mice expressing one of the human 
mutations showed that Notch3 aggregated around microvascular pericytes, leading 
to pericyte loss or reduced coverage of capillaries (Gu et  al. 2012; Ghosh et  al. 
2015). These changes were associated with decrease in BBB impermeability and 
neurovascular dysfunction. In line with these findings, pericyte loss was also 
detected in skin and muscle biopsies of CADASIL patients (Dziewulska and 
Lewandowska 2012).

 Future Trends and Directions

Recent research has clearly documented the important role of pericytes on micro-
vascular physiology, especially in the brain and retina. Significant clues to the roles 
played by pericytes under several pathological conditions such as stroke, diabetic 
retinopathy, Alzheimer’s disease, CADASIL have also been identified, creating 
novel targets for neuroprotection and restoring microvascular health. Expectedly, 
we will learn more about the place of pericytes in CNS pathologies and devise 
approaches to treat them in the next decades. It seems that it will be an exciting time 
for researchers interested in pericytes and microvasculature in health and disease.
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Chapter 10
Pericytes in Hereditary Hemorrhagic 
Telangiectasia

Georgios Galaris, Jérémy H. Thalgott, and Franck P. G. Lebrin

Abstract Hereditary hemorrhagic telangiectasia (HHT) is a genetic disorder char-
acterized by multi-systemic vascular dysplasia affecting 1  in 5000 people world-
wide. Individuals with HHT suffer from many complications including nose and 
gastrointestinal bleeding, anemia, iron deficiency, stroke, abscess, and high-output 
heart failure. Identification of the causative gene mutations and the generation of 
animal models have revealed that decreased transforming growth factor-β (TGF-β)/
bone morphogenetic protein (BMP) signaling and increased vascular endothelial 
growth factor (VEGF) signaling activity in endothelial cells are responsible for the 
development of the vascular malformations in HHT.  Perturbations in these key 
pathways are thought to lead to endothelial cell activation resulting in mural cell 
disengagement from the endothelium. This initial instability state causes the blood 
vessels to response inadequately when they are exposed to angiogenic triggers 
resulting in excessive blood vessel growth and the formation of vascular abnormali-
ties that are prone to bleeding. Drugs promoting blood vessel stability have been 
reported as effective in preclinical models and in clinical trials indicating possible 
interventional targets based on a normalization approach for treating HHT. Here, we 
will review how disturbed TGF-β and VEGF signaling relates to blood vessel desta-
bilization and HHT development and will discuss therapeutic opportunities based 
on the concept of vessel normalization to treat HHT.
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 Introduction

Blood vessel instability and malfunction in combination with inflammatory triggers 
are the underlying cause of some of the most serious diseases affecting Western 
society. Conditions range from cardiovascular disease and heart failure to cognitive 
decline and dementia. Hereditary hemorrhagic telangiectasia (HHT) is one such 
condition. Albeit rare, vessels of HHT patients exhibit the salient features of other 
vascular disorders and as such provide tractable preclinical models for research and 
defined patient groups for clinical trials. This chapter introduces the current con-
cepts that are proposed to explain the development of vascular malformations in 
HHT. Specifically, we highlight the roles of pericytes in the pathogenesis of HHT 
and examine how defective transforming growth factor-β (TGF-β)/bone morphoge-
netic protein (BMP) signaling pathways contribute to blood capillary destabiliza-
tion. Finally, we will discuss recent blood capillary normalization-based therapies 
used in HHT patients to treat bleeding from vascular malformations.

 Hereditary Hemorrhagic Telangiectasia (HHT)

 Clinical Overview

HHT (also known as Osler-Weber-Rendu) is an autosomal dominant inherited dis-
ease characterized by multiple vascular malformations. The prevalence is estimated 
to be 1 in 5000–8000 affecting theoretically between 950,000 and 1,500,000 per-
sons worldwide (Shovlin 2010; McDonald et al. 2011; Kroon et al. 2018). HHT is 
therefore relatively common. However, it remains a largely undiagnosed disease 
because people and doctors are not familiar with the wide variety of symptoms and 
only 500,000 people are indeed diagnosed with HHT around the world.

Individuals with HHT are affected by large Arteriovenous Malformations (AVMs) 
in the lungs, liver, and brain that consist of direct connections between arteries and 
veins without an intervening capillary bed. These AVMs are a potential source of 
serious morbidity and mortality as they can lead to ischemic stroke, abscess due to 
shunting through pulmonary AVMs, or to heart failure related to shunting effects of 
hepatic AVMs (Shovlin 2010). Many patients also suffer spontaneous and recurrent 
nose and gastrointestinal bleeding associated with severe anemia that significantly 
affect their quality of life. Bleeding occurs because of small and fragile dilated capil-
laries called telangiectasias that are near the surface of skin and mucous membranes 
(Shovlin 2010). To limit blood loss, several therapeutic options have been introduced 
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in the last two decades including hormonal  manipulation in the form of estrogen–
progesterone or tamoxifen (Minami and Haji 2016; Yaniv et al. 2011), anti-fibrino-
lytic therapies (Zaffar et  al. 2015), immunomodulatory therapy with tacrolimus 
(Sommer et al. 2018) and the use of inhibitors of angiogenesis such as bevacizumab 
(Halderman et al. 2018) or thalidomide (Lebrin et al. 2010). Unfortunately, there is 
as far, no demonstration of the long-term safety and benefit using these drugs in 
prevention of HHT hemorrhages (Shovlin 2010).

 Genetic Basis of the Disease

Identification of the causative gene mutations has revealed that disruption of TGF-β/
BMP signaling in endothelial cells underlines HHT. Mutations in the ENG gene 
(Endoglin) (McAllister et al. 1994) or in the ACVRL1 gene (activin receptor-like 
kinase 1 or ALK1) (Johnson et al. 1996) are responsible for HHT1 or HHT2, respec-
tively and account for more than 80% of cases of HHT. Both ENG and ACVRL1 
encode for receptors of TGF-β/BMP that are expressed in endothelial cells and 
share functions in signaling (Lebrin et al. 2005). All classical features of HHT can 
be seen in both HHT1 and HHT2, but the prevalence of specific vascular anomalies 
varies according to the genotype. Pulmonary and cerebral AVMs are more common 
in HHT1 than HHT2 while HHT2 patients have a higher incidence of hepatic AVMs 
and gastrointestinal hemorrhages (van Gent et al. 2010; Letteboer et al. 2006; Lesca 
et al. 2007). A rare form of HHT disease in which vascular lesions are combined 
with Juvenile Polyposis is associated with mutations in the gene MADH4 (Mothers 
Against Decapentaplegic Homolog 4). MADH4 encodes for SMAD4, a downstream 
effector of TGF-β/BMP family ligands (Gallione et al. 2004). While HHT3 (Cole 
et al. 2005) and HHT4 (Bayrak-Toydemir et al. 2006) have only been linked to a 
particular locus and no specific genes have been identified yet, HHT5 is due to 
mutations in the Growth Differentiation Factor 2 (GDF2) gene (Wooderchak- 
Donahue et  al. 2013). GDF2 gene encodes for BMP9, a high-affinity ligand for 
ALK1 that controls endothelial cell quiescence (David et al. 2007).

Known gene mutations include deletion, insertion, and missense mutations as 
well as splice site changes and represent null allele indicating that haploinsuffi-
ciency is the underlying mechanism of HHT. As consequence, the remaining wild- 
type allele is unable to contribute sufficient protein for normal TGF-β/BMP signaling 
in endothelial cells leading to blood vessel dysfunctions (Abdalla and Letarte 2006).

 Current Concepts for the Generation of AVM and Telangiectasia

Animal models have confirmed that Gdf2, Eng, Acvrl1, or Smad4 mutations causes 
HHT and have brought important insights into the mechanisms by which HHT 
mutations lead to the development of vascular malformations. These models have 
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employed classical null and heterozygous mice for either Eng or Acvrl1 (Bourdeau 
et al. 1999; Li et al. 1999; Arthur et al. 2000; Srinivasan et al. 2003; Torsney et al. 
2003), mice bearing conditional loxP knockout alleles for Eng, Acvrl1, or Smad4 
crossed with endothelial or mural tissue specific Cre-recombinase mouse lines 
(Park et al. 2009; Mahmoud et al. 2010; Walker et al. 2011; Choi et al. 2012, 2014; 
Chen et  al. 2013; Garrido-Martin et  al. 2014; Ola et  al. 2016, 2018; Crist et  al. 
2018), mice injected with blocking antibodies targeting BMP9 and BMP10 (Ruiz 
et al. 2016) or Zebrafish embryos harboring a mutation in alk1 or eng gene (Roman 
et al. 2002; Corti et al. 2011; Rochon et al. 2016; Sugden et al. 2017). From these 
studies, it appears that HHT mutations are deleterious predominantly during some 
forms of angiogenesis and that additional triggers to the gene mutations are required 
for AVMs to form (Fig. 10.1). The heterozygous for Eng or Acvrl1 mice that are the 
closest genetic models of HHT patients in terms of genotype exhibit a very mild 
phenotype with HHT-like features appearing only at low frequency and in an unpre-
dictable manner. Blood vessels develop and function normally in these mice, 
although they have a widespread abnormality of the vascular walls due to defective 
mural cell recruitment and attachment (Torsney et al. 2003; Lebrin et al. 2010; Li 
et al. 2011; Thalgott et al. 2015, 2018). Defective blood vessel stability represents 
the baseline situation in HHT and is caused by decreased TGF-β bioavailability 
(Carvalho et al. 2004) and increased VEGF signaling in endothelial cells (Thalgott 
et al. 2018) (Fig. 10.1). This is thought to favor inadequate responses of the endo-
thelial cells to angiogenic triggers leading to excessive angiogenesis and the devel-
opment of vascular malformations. Others and we have reported that a second event 
such as inflammation, infection, wound healing and/or angiogenesis is indeed 
required to initiate the formation of AV shunts (Xu et al. 2004; Peter et al. 2014; 
Gkatzis et al. 2016; Thalgott et al. 2018) (Fig. 10.1). Finally, advanced real-time 
imaging technologies using skinfold window chamber systems have revealed that 
the initial AV shunts are able to remodel due to hemodynamic changes with veins 
and arteries that dilate and adjacent blood capillaries that regress resulting in the 
maturation of the AV shunts (Park et al. 2009; Garrido-Martin et al. 2014; Han et al. 
2014). Interestingly, recent studies point in the direction of a specific synergy 
between blood flow and Endoglin-Alk1 signaling pathway for the regulation of ves-
sel caliber supporting the key role of shear stress in AVM formation and maturation 
(Baeyens et  al. 2016; Gkatzis et  al. 2016; Sugden et  al. 2017; Jin et  al. 2017). 
Additional events to the heterozygosity of HHT gene mutation and pro-angiogenic 
stimuli have been proposed to trigger the development of AVMs in HHT. These 
include the concept of local loss of heterozygosity where a somatic mutation in the 
Eng or Acvrl1 gene would result in a group of endothelial cells that has lost the 
remaining wild-type allele precipitating the development of AV shunts (Fig. 10.1) 
(Tual-Chalot et  al. 2015). This concept is supported by the recent generation of 
conditional knockout mice for Eng, Acvrl1, or Smad4, which develop robust AVMs 
resembling those seen in HHT individuals (Mahmoud et al. 2010; Tual-Chalot et al. 
2014; Crist et al. 2018). However, the local loss of heterozygosity concept may be 
somehow simplistic to explain HHT pathogenesis. It seems really unlikely that 
many endothelial cells over the entire body could acquire somatic mutations in the 
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Eng or Acvrl1 gene to explain the multiplicity of vascular malformations found in 
patients with HHT. Moreover, AVMs have been reported to express the same level 
of endoglin (approximately one half normal) than the unaffected blood vessels in 
HHT1 patients (Bourdeau et al. 2000; Matsubara et al. 2000). Alternatively, inflam-
matory cytokines such as tumor necrosis factor-α (TNF-α) that regulate receptor 
release from the cell surface have been proposed to result in a transient and local 
null-endoglin phenotype during inflammation, although this hypothesis needs to be 
experimentally confirmed (Mahmoud et al. 2010). Finally, several genetic modifiers 

Decreased TGF /BMP 
signaling in endothelial cells

Increased VEGF signaling
Decreased TGF

bioactivity to pericytes

Blood vessel instability

Infection
Wound healing

Loss of heterozygosity

Pathological angiogenesis

remodeling

Vascular malformations
hemorrhages

Basal conditions

Second hit

Severity

Fig. 10.1 How gene mutations in HHT leads to the development of AVMs. Decreased TGFβ/BMP 
signaling in endothelial cells leads is combined with increased VEGF signaling leading to blood 
capillary destabilization and poor mural cell attachment. A second hit such as inflammation, infec-
tion, wound healing or loss of heterozygosity is required to induce pathological angiogenesis and 
the formation of vessel abnormalities that subsequently remodel due to blood flow changes to form 
stable and mature AVMs. In addition, modifier genes are contributing to the severity of the 
disease
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have also been described to play a role in susceptibility to HHT disease (Bourdeau 
et  al. 2001; Letteboer et  al. 2015; Gkatzis et  al. 2016; Pawlikowska et  al. 2018; 
Benzinou et al. 2012) (Fig. 10.1).

 Blood Vessel Instability Is a Major Hallmark of HHT Disease

 Mural Cell Organization and Function

Blood vessels are composed of endothelial cells that form the inner lining of the ves-
sel walls and of mural cells referred to as vascular smooth muscle cells (VSMCs) and 
pericytes. VSMCs surround arteries and arterioles and primarily function to regulate 
vascular tone. They are densely packed and orientated in a circle around the vascular 
lumen forming multiple layers with the cells being perpendicular to the direction of 
the blood flow. They also coat veins where they adopt a stellate-like morphology 
with individual cells extending thin branching processes. Pericytes are spatially iso-
lated cells with bump-on-log somas that enwrap intermediate-sized vessels at the 
arteriole-end, extend long longitudinal processes in the middle of the capillary bed, 
and have a more stellate morphology at the venule-end of the vascular bed (Thalgott 
et al. 2015; Berthiaume et al. 2018). Pericytes not only vary in their morphology 
along the AV axis, but also in their protein expression. All markers currently used are 
not specific and are dynamic in their expression. It is therefore essential to first iden-
tify the different vascular zones and populations of mural cells that reside within a 
specific zone to elucidate pericyte biology (Berthiaume et al. 2018). To achieve this, 
single-cell RNA sequencing has recently been performed providing molecular defi-
nitions for the principal types of blood vascular cells at different anatomical posi-
tions and levels of the AV axis in adult mouse brain and lungs (Vanlandewijck et al. 
2018; Zeisel et al. 2018). Along the AV axis, Platelet-Derived Growth Receptor-β 
(PDGFR-β) and Chondroitin Sulfate Proteoglycan 4 (Cspg4, NG2, neuron-glial 
antigen 2) have been shown to be highly expressed across all mural cells 
(Vanlandewijck et al. 2018). At the arteriole-end of the capillary bed, it has been 
reported that pericytes express at low levels, proteins related to the contractile 
machinery such as Acta2 (α2-smooth muscle actin) supporting a role for regulating 
cerebral blood flow (Zeisel et al. 2018; Hall et al. 2014). However, controversies still 
exist regarding the existence of contractile pericytes (Vanlandewijck et al. 2018; Hill 
et al. 2015), but the discrepancies seem apparent rather than real and likely reflect a 
problem of definition of what we consider pericytes, and which group of cells have 
been included as pericytes in the studies when analyzing their molecular signatures 
(Attwell et al. 2016). Pericytes from the middle capillary bed to the venule site have 
been found to highly express membrane transporters such as abcc9 (ATP-binding 
cassette sub-family C member 9, SUR2, Sulfonylurea receptor 2) supporting their 
role for maintaining blood–brain barrier (BBB) (Vanlandewijck et al. 2018; Daneman 
et al. 2010). Recent findings suggest that pericytes are a dynamic cell population 
with high plasticity that do not only vary in their morphology, molecular signatures 
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and function along the AV axis but also among vascular beds of different organs to 
acquire specializations and adaptations that match the local physiological needs 
(Vanlandewijck et al. 2018). This heterogeneity may also be expected in disease and 
should be systemically addressed adding a further dimension of complexity to peri-
cyte biology.

Pericytes influence blood vessel formation, homeostasis and disease. They regu-
late angiogenesis by promoting blood vessel stabilization, modulate local blood 
flow and control vessel permeability to molecules and immune cells. In addition, 
pericytes may be pluripotent stem cells, remove debris through phagocytosis, regu-
late wound healing and provide trophic signals (Hall et  al. 2014; Armulik et  al. 
2010; Daneman et al. 2010; Cupovic et al. 2016; Stapor et al. 2014; Dias et al. 2018; 
Gautam and Yao 2018; Guimaraes-Camboa et  al. 2017). Recent studies have 
revealed that pericytes have important roles in numerous disorders including dia-
betic retinopathy and diabetic nephropathy, cancers or central nervous system 
(CNS) disorders such as Alzheimer’s disease, Huntington’s disease, radiation necro-
sis, epilepsy, or ischemic stroke (Cheng et al. 2018; Armulik et al. 2011). Pericyte 
dysfunctions include early pericyte constriction of blood capillaries and pericyte 
death or migration away from blood vessels. These lead to hypo-perfusion of the 
tissue, increase vascular permeability, excessive immune cell infiltration and inflam-
mation combined with blood capillary death and/or abnormal angiogenesis.

 Mural Cells Fail to Show Normal Blood Vessel Coverage 
in HHT

Eng or Acvrl1 null mice exhibit similar phenotypes with embryos that die at mid- 
gestation due to severe cardiovascular defects. Vasculogenesis—the de novo pro-
duction of endothelial cells and the initial formation of the primitive vascular 
plexus—appears to progress normally in these embryos but angiogenesis—the pro-
cess through which new blood vessels form from existing vasculature—is impaired 
and major blood vessels of the Eng−/− or Acvrl1−/− mice at embryonic day E9.5–10.5 
show reduced VSMCs coverage (Bourdeau et al. 1999; Li et al. 1999; Arthur et al. 
2000; Oh et  al. 2000). Moreover, the failure in blood vessel remodeling is not 
restricted to embryonic tissue. The vasculature of the yolk sac also failed to organize 
and has shown poor VSMC recruitment and differentiation (Li et al. 1999; Carvalho 
et al. 2004). Heterozygous Eng or Acvrl1 mice develop to adulthood with no effect 
on survival (Tual-Chalot et al. 2015). However, these mice exhibit a general defect 
in the organization of the vessel walls. Irregular layers of VSMCs combined with 
variations in the number of collagen fibers and loss of integrity of elastin fibers have 
been reported in the skin vasculature of adult Eng+/− mice resulting in fragile vessels 
that are prone to bleeding (Fig. 10.2a). An increase in the number of perivascular 
degranulated mast cells in the reticular and papillary dermis was also observed in 
these mice supporting the idea that inflammation may exacerbate the development 
of HHT lesions (Torsney et  al. 2003). Confocal images of the ear skin of 

10 Pericytes in Hereditary Hemorrhagic Telangiectasia



222

Eng+/− mice during the first postnatal month also confirmed defective VSMC cover-
age of the arteries (Lebrin et al. 2010). Defective maturation of the blood vascula-
ture has been reported in Acvrl1+/− mice too. Histological examination of the 
Acvrl1+/− adult mice has revealed thin-walled dilated vessels in the skin and in mul-
tiple internal organs that resemble to those seen in HHT patients (Srinivasan et al. 
2003). More recently, we have characterized the vasculature of the Acvrl1+/− tra-
cheas. The mouse trachea has a segmented two-dimensional network of blood ves-
sels aligned with a cartilage ring allowing a clear observation of the vasculature not 

Fig. 10.2 Defective mural cell coverage in HHT mouse models. (a) Confocal image of skin sec-
tions of Eng+/− stained for PECAM-1 (Platelet Endothelial Cell Adhesion Molecule) (endothelial 
cells, red) and for α-SMA (VSMCs, green) showing defective coverage. (b) Confocal image of the 
tracheal vasculature of Acvrl1+/− mice stained for PECAM-1 (Platelet Endothelial Cell Adhesion 
Molecule) (endothelial cells, red) and Desmin (pericytes, green) revealing defective pericyte 
attachment
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only in healthy conditions but also in pathological situations such as inflammation 
when blood vessel changes occur (Thalgott et al. 2018). The overall vascular archi-
tecture of the Acvrl1+/− tracheas did not differ from control mice and Acvrl1+/− tra-
cheas showed normal VSMC coverage. However, blood capillaries that are arranged 
in a ladder-like pattern in the mucosa overlying cartilage rings were significantly 
enlarged in Acvrl1+/− tracheas. Pericytes had shorter protrusions and were partially 
detached from the endothelium in the Acvrl1+/− tracheas, although the number of 
pericytes was unchanged compared to control mice (Thalgott et  al. 2018) 
(Fig. 10.2b). The recent development of conditional knockout animals has provided 
important insights into the pathogenesis of HHT allowing us to study the effects of 
gene inactivation in different cell types and at different times. In early postnatal 
development, global or endothelial specific deletion of Eng, Acvrl1, or Smad4 gene 
led to rapid death due to either pulmonary hemorrhage for iKO-Acvrl1 mice or to 
gastrointestinal bleeding for iKO-Eng or iKO-Smad4. From these studies, it appeared 
that specific gene deletion in endothelial cells was a prerequisite for the develop-
ment of HHT. In contrast, conditional deletion in mural cells did not trigger AVM 
formation in any organ studied (Garrido-Martin et al. 2014; Chen et al. 2014a). All 
conditional knockout mouse models reproducibly developed AVM combined with 
enlarged veins and hyper-branching of the capillary plexus in the neonatal retina. 
The radial expansion of the retinal vasculature was decreased in these mutants indi-
cating migration defects (Crist et al. 2018; Kim et al. 2018; Tual-Chalot et al. 2014; 
Garrido-Martin et al. 2014; Mahmoud et al. 2010). The retinal vascular plexus is a 
well-established model amenable to studying sprouting angiogenesis. The vascula-
ture develops in the first week of postnatal life to form a simple two-dimensional 
vascular network. It is highly organized showing an alternating pattern of arteries 
covered by α-smooth muscle actin (α-SMA) positive VSMCs and veins with an 
intervening capillary bed that includes endothelial tip cells at the sprouting front of 
the plexus (Fruttiger 2007). In contrast, the smooth muscle organization was found 
to not be longer arterial specific in mutant mice. α-SMA expression was shown to 
reproducibly follow the pattern of predicted blood flow across the AVM and into 
veins on the downstream side of the shunt. Elevated α-SMA expression is therefore 
likely a secondary response to increased blood flow (Crist et al. 2018; Kim et al. 
2018; Tual-Chalot et al. 2014; Garrido-Martin et al. 2014; Mahmoud et al. 2010). 
Blood capillaries in the iKO-Acvrl1 or iKO-Smad4 also resulted in loss of pericyte 
coverage (Tual-Chalot et al. 2014; Crist et al. 2018). Consistent with this phenotype, 
focal Acvrl1 deletion in the brain led to the formation of blood vessel abnormalities 
following VEGF stimulation that are similar to that of brain AVM in HHT patients. 
Vascular integrity was found impaired in the affected brain regions with a marked 
reduced number of pericytes. Consistent with this phenotype, BBB dysfunctions 
were observed as evidenced by increased fibrin and iron deposition, by the presence 
of small pockets of red blood cells (RBCs) outside the vessels and by infiltration of 
immune cells into the brain parenchyma (Chen et al. 2014b). Destabilization of the 
endothelial barrier has also been reported in Eng heterozygous mice. Although not 
elucidated in vivo, these results suggested a critical role for endoglin in integrin- 
mediated adhesion of mural cells (Rossi et al. 2016).
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Despite the histological observations indicating that mural cell disengagement 
from the vessel wall is a hallmark of HHT disease, mural cell biology in HHT 
remains poorly understood and important questions are still unresolved. For exam-
ple, the populations of mural cells that are affected along the AV axis and in different 
organs in the various HHT models are still not identified. How defective mural cell 
coverage affects blood vessel function is unclear. Is the loss of mural cell coverage 
implicated in the development of AVM or is it a secondary effect due to blood vessel 
remodeling? These questions are certainly important subjects of future research.

 Mechanisms Underlying Blood Capillary Instability in HHT

 Disturbed TGF-β/BMP Signaling in Endothelial Cells Impair 
Blood Vessel Stabilization

Identification of the causative gene mutations and the development of preclinical 
models have revealed that the primary cause of HHT is considered dysfunction of 
TGF-β/BMP signaling in endothelial cells with specific effects on blood vessel sta-
bility (Lebrin et al. 2005; Lebrin and Mummery 2008; Thalgott et al. 2015). The 
TGF-β/BMP superfamily of ligands comprises a large number of evolutionary con-
served pleiotropic secreted cytokines that include TGF-βs, BMPs, activins, inhibins, 
growth differentiation factors (GDFs), glial derived neurotrophic factors (GDNFs), 
nodal, lefty and anti-Müllerian (AMH) hormone. They act on virtually of cell types 
of the body regulating multiple processes both during development and in adult life 
and have important roles in disease progression (Miyazono et  al. 2010; Shi and 
Massague 2003). The cardiovascular system is no exception here, and both TGF-β 
and BMP receptors are expressed on endothelial cells and on mural cells where they 
play critical roles in the development and maintenance of blood vessels (Pardali and 
ten Dijke 2012; ten Dijke and Arthur 2007; Goumans and Mummery 2000). The 
action of TGF-β/BMP ligands is mediated by at least two trans- membrane serine/
threonine kinases, type I and type II receptors. After ligand binding, type II receptors 
phosphorylate type I receptors leading to their activation. Activated type I receptors 
are then able to recruit and phosphorylate downstream transcription factors called 
R-Smads. On activation, R-Smads form heteromeric complexes with a related part-
ner molecule Smad4 and accumulate in the nucleus where they participate in the 
transcriptional control of target genes (Miyazono et  al. 2010; Shi and Massague 
2003). Despite the large number and distinct functions of the TGF-β/BMP super-
family ligands, there is an enormous convergence in signaling to only five type II 
receptors (TβRII, BMPRII, ActRIIa, ActRIIb, and AMHRII) and seven type I recep-
tors also described as activin receptor-like kinase (ALK) and two main SMAD intra-
cellular pathways (ten Dijke and Arthur 2007). TGF-β/BMP ligands can also 
associate with type III receptors including Betaglycan and Endoglin (predominantly 
expressed in endothelial cells) that in turn are capable of fine-tuning the availability 
of TGF-β/BMP ligands to the signaling receptors (Lebrin and Mummery 2008).
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In endothelial cells, TGF-β can transduce signals via ALK1 in addition to ALK5 
and is thought to contribute to the stimulatory and inhibitory effects of TGF-β on 
angiogenesis. Upon TGF-β binding, ALK5 phosphorylates Smad2/3 leading to 
reduce endothelial cell proliferation and migration. In contrast, ALK1 phosphory-
lates Smad1/5/8 inducing opposite effects on angiogenesis (Goumans et al. 2002) 
(Fig.  10.3). The differential activation of these two type I receptor pathways by 
TGF-β provides an intricate mechanism to precisely regulate, and even switch, 
TGF-β-induced biological responses. Several hypotheses have been envisioned to 
explain how endothelial cells modulate the ALK1/ALK5 balance system. 
Differences in the expression levels of ALK1 and ALK5 on endothelial cells have 
been reported in tissues (Seki et al. 2006; Nguyen et al. 2011). Low concentrations 
of active TGF-β have been suggested to primarily activate ALK1 signaling 
(Goumans et al. 2002). We have also reported that endoglin is required for efficient 
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ALK5 on mural cells, it stimulates the production of contractile proteins, mural cell quiescence 
and differentiation
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TGF-β/ALK1 signaling in endothelial cells which indirectly inhibits TGF-β/ALK5 
signaling (Lebrin et al. 2004). We showed that endothelial cells lacking endoglin did 
not proliferate due to reduced TGF-β/ALK1 signaling and increased TGF-β/ALK5 
signaling. Endoglin is highly expressed in endothelial cells in sites of active angio-
genesis where its expression overlaps with ALK1 supporting a role of TGF-β/ALK1 
signaling in the active phase of angiogenesis (Lebrin et al. 2004). Together, these 
suggest that in HHT, reduce TGF-β/ALK1 signaling activity in endothelial cells 
would therefore inhibit endothelial cell proliferation and migration. Paradoxically, 
we have reported that Eng+/− or Acvrl1+/− retinas at postnatal day 7 show excessive 
angiogenesis (Thalgott et al. 2018; Lebrin et al. 2010). How can these observations 
be reconciled with the ALK1/ALK5 balance model? Others and we have demon-
strated that endothelial cells from mice or HHT patients did adapt to the hyperactiv-
ity of TGF-β/ALK5 signaling-mediated growth arrest by inhibiting ALK5 expression 
(Lebrin et al. 2004; Xu et al. 2004; Fernandez et al. 2005). The mechanism leading 
to decrease ALK5 expression is not elucidated yet, although it is suspected to be a 
consequence of a transcriptional modulation of ALK1 signaling (Fernandez et al. 
2005). ALK5 stimulates blood vessel maturation favoring endothelial cell growth 
arrest, differentiation and extracellular matrix production suggesting that in HHT, 
impaired TGF-β/ALK5 signaling may result in the inability of the blood vessels to 
mature properly (Thalgott et al. 2015).

BMP9 and BMP10 have been shown to bind to ALK1 with a much higher affin-
ity than TGF-β (Brown et al. 2005; David et al. 2007; Scharpfenecker et al. 2007). 
Since then, accumulative evidence indicates that BMP9/BMP10 through the ALK1- 
Smad1/5 signaling pathway play essential functions in vascular development and in 
the maintenance of the vascular quiescence (David et al. 2007; Scharpfenecker et al. 
2007; Ricard et al. 2012; Levet et al. 2015) (Fig. 10.3). Although BMP10−/− mice 
exhibit a cardiac phenotype (Chen et al. 2004), its role on the vasculature should not 
be disregarded. BMP10 through ALK1 has been shown to induce flow-arterial qui-
escence in Zebrafish (Laux et  al. 2013). BMP9−/− mice do not display defective 
vasculature (Chen et al. 2004; Ricard et al. 2012), unless BMP10 is removed from 
the circulation leading to impairment of the retinal vasculature and defective closure 
of the ductus arteriosus (Ricard et al. 2012; Levet et al. 2015). BMP9/ALK1 signal-
ing has been shown to regulate target genes important for blood vessel maturation 
and stabilization. These genes included Notch targets (Hes1, Jag1, Hey1, Hey2), 
inhibitors of VEGF signaling (VEGFR1), Angiopoietin-2 (Angpt2) and suppression 
of endothelial tip cell markers (Unc5b) (Crist et al. 2018; Larrivee et al. 2012; Moya 
et al. 2012). Unfortunately, their role in the context of HHT has not been elucidated 
for most of them.

Recently, we have highlighted a key role of VEGFR1 in the etiology of HHT2 and 
have provided mechanisms explaining why HHT2 blood vessels respond abnormally 
to angiogenic signals (Thalgott et al. 2018) (Fig. 10.4). VEGF-A through its binding 
to VEGFR2 is the major driver of angiogenesis in physiological and pathological 
situations. Activation of VEGFR2 promotes endothelial cell survival, proliferation, 
vessel sprouting, and vessel permeability. While VEGF and VEGFR2 are crucial for 
the development of the vasculature, a proper regulation at low levels of VEGFR2 
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activity remains essential for vessel stability and homeostasis, whereas high levels of 
VEGFR2 activity promote sprouting angiogenesis (Moens et al. 2014). VEGF not 
only binds to VEGFR2 but it can also bind to VEGFR1 that acts as a molecular rheo-
stat that negatively modulate VEGFR2-signaling to favor vessel quiescence (Kappas 
et al. 2008; Chappell et al. 2009). We have revealed that Acvrl1 haploinsufficiency 
was associated with a marked reduction of VEGFR1 expression both in mice and in 
HHT2 patients. This imbalance in VEGFR1 expression and VEGF bioavailability 
contributed to elevated VEGFR2 activity in endothelial cells combined with defects 
in pericyte attachment. These resulted in excessive angiogenesis and the formation 
of vascular abnormalities in Acvrl1+/− mice (Thalgott et al. 2018). In the same line of 
thought, several studies have reported that HHT patients have increased serum or 
plasma VEGF when compared to healthy donors (Cirulli et al. 2003; Sadick et al. 
2005a, b, 2008; Botella et al. 2015). Blockage of BMP9 signaling has been shown to 
enhance the phosphatidyl inositol 3-kinase- protein kinase B (PI3K/PKB) pathway 
certainly through the regulation of Pten. The PI3K/PKB pathway is downstream of 
VEGFR2 (Fig. 10.4). Importantly, they found that inhibition of Pi3Kinase was suf-
ficient to inhibit and even revert the formation of AVMs in iKO-Acvrl1 mice (Ola 
et al. 2016). Alternatively, it has been reported altered VEGFR2 recycling in Eng 
mutant mice that may promote VEGFR2 activity in endothelial cells (Jin et al. 2017) 
(Fig. 10.4). Although there is no evidence showing that vascular abnormalities in 
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HHT2 arise from perturbations of Notch signaling (Thalgott et al. 2018), the role of 
Notch target genes in the pathogenesis of HHT should not be disregarded. Indeed, Li 
et al. have analyzed the BBB integrity and pericyte coverage in mice harboring a 
specific genetic ablation of Smad4 in brain endothelial cells. These mice showed 
numerous microvascular abnormalities with hemorrhages, reduced mural cell cover-
age and dilation of capillaries. Pericyte recruitment was not affected, but pericytes 
failed to properly attach to the vessel walls. Interestingly, they have deciphered the 
underlying mechanism and found that Smad4 in cooperation with Notch signaling 
regulated the expression of N-Cadherin (Li et  al. 2011). N-Cadherin is known to 
form heterotypic adhesion between endothelial cells and mural cells maintaining 
mural cell attachment and restricting endothelial cell permeability (Kruse et  al. 
2019). Finally, loss of Smad4 has been reported to cause increased Angptl2 in endo-
thelial cells stimulated by BMP9. Angiopoietin-1 (Angptl1) is produced by mural 
cells and activates endothelial Tie2 receptor to stimulate interactions between endo-
thelial cells and mural cells promoting blood vessel maturation. In contrast, Angptl2 
is produced by endothelial cells and upon binding to Tie2 acts as a destabilizing 
factor (Saharinen et al. 2017). Loss of Smad4 led AVM formation, increased blood 
vessel calibers and changes in endothelial cell morphology in the retina, phenotypes 
that could be prevented by blocking Angptl2 function (Crist et al. 2018).

 Defective Paracrine TGF-β Signaling Between Endothelial Cells 
and Mural Cells Impairs Mural Cell Differentiation

The exact molecular changes leading to HHT are not clear yet. However, following 
the recent identification of targets implicated in blood capillary stabilization, this 
would suggest that the baseline situation in HHT is likely to be an abnormal activa-
tion of the endothelium that may affect mural cell attachment. Indeed, one of the 
best-understood roles of TGF-β signaling in vascular development is that of pro-
moting mural cell differentiation (Thalgott et al. 2015; ten Dijke and Arthur 2007). 
Muscularization is achieved when endothelial cells promote paracrine TGF-β sig-
naling to the neighboring mural cells to promote their differentiation. Upon TGF-β 
binding to ALK5 expressed on mural cells, ALK5 phosphorylates Smad2/3 to pro-
mote the production of contractile proteins inducing cell quiescence and differentia-
tion to mature VMSCs or pericytes (Owens 1998; Van Geest et al. 2010) (Fig. 10.3). 
Importantly, the establishment of close physical endothelial cell-mural cell contacts 
is absolutely required for TGF-β activation and mural cell differentiation (Hirschi 
et  al. 2003). The mechanism by which latent TGF-β is converted into the active 
form to promote mural cell differentiation is not fully understood, but Connexin-43 
and Connexin-45, Tissue Factor, and integrins such as αvβ8 have been suggested to 
play a role (Thalgott et al. 2015). How defective TGF-β/BMP signaling in endothe-
lial cells affect mural cell differentiation has also been studied. Carvalho et al. have 
analyzed TGF-β signaling in yolk sacs from endoglin knockout embryos. They 
revealed that endothelial disrupted TGF-β signaling in endothelial cells also affected 
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TGF-β/ALK5 signaling in the adjacent mesenchymal cells. Interestingly, they also 
demonstrated that application of exogenous TGF-β in cultured yolk sacs was suffi-
cient to induce VSMC differentiation (Carvalho et al. 2004).

 Targeting Blood Capillary Stability to Prevent Bleeding 
from HHT Vascular Malformations

Drugs promoting endothelial–mural cell interactions, inhibiting angiogenesis or 
stimulating endoglin/Alk1 signaling have been shown effective in HHT-mice and in 
incidental patient case-reports, suggesting that interventional targets based on ves-
sel stabilization could be effective (Table 10.1).

Most notably in this context, we discovered several years ago that Thalidomide, 
which was used to treat multiple myeloma (MM), was found to prevent excessive 
nosebleeds (or epistaxis) in a small group of HHT patients (Lebrin et al. 2010; Wang 
et al. 2013; Invernizzi et al. 2015; Fang et al. 2017; Baysal et al. 2019). Oral admin-
istration of 100  mg of thalidomide daily significantly lowered the frequency and 
duration of epistaxis in the majority of patients with HHT, all within the first month 
of administration of the first dose. The dose given was comparable to that prescribed 
in 1960s to treat nausea during pregnancy. The average hemoglobin concentration in 
peripheral blood increased without additional iron supplementation. Some of these 
patients with HHT required between one to six blood transfusions before treatment 
to prevent anemia. No additional blood transfusion was required during thalidomide 
treatment. Long-term follow-up, however, showed that some patients became resis-
tant to the drug and/or developed neuropathy (Lebrin et al. 2010; Alam et al. 2011; 
Hosman et al. 2015). Several clinical studies confirmed later that low dose of thalido-
mide was indeed effective to reduce bleeding in HHT patients (Lebrin et al. 2010; 
Fang et al. 2017; Harrison et al. 2018; Buscarini et al. 2019). We have showed that 
the anti-hemorrhagic property of thalidomide was not the result of direct inhibition 
of endothelial cell proliferation and migration, but is rather due to increased mural 
cell coverage of the vasculature. Thalidomide increased the number of pericytes and 
their recruitment to blood vessels, enhancing the apposition between the inner endo-
thelial and supportive pericyte layers and resulting in vessel stabilization. Moreover, 
thalidomide was able to reduce brain AVM hemorrhage in a mouse model of focal 
loss of Acvrl1 by improving mural cell coverage (Zhu et al. 2018). At the molecular 
level, others and we have revealed that thalidomide increased platelet-derived growth 
factor-B (PDGF-B) levels in endothelial cells to promote pericyte recruitment and 
vessel maturation and target pericytes directly to stimulate their proliferation and 
ability to form protrusions independently of PDGF-B (Lebrin et al. 2010; Zhu et al. 
2018). These data have provided to our knowledge the first evidence that a therapy 
targeting pericytes to stimulate vessel maturation can have beneficial effects on 
bleeding from vascular malformations. However, thalidomide treatment has poor 
specificity, affecting a range of physiological processes and has side effects. The 
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development of thalidomide analogues, which retain the immunomodulatory effects 
of the parent compound, while minimizing the adverse reactions brought about a 
class of agents, termed the immunomodulatory drugs (IMiDs) that represent a prom-
ising new class of compounds for the treatment of cancers. Some are under clinical 
investigation and CC-5013 (lenalidomide) and CC-4047 (pomalidomide, actimid) 
have obtained FDA approvals for 5q-myelodysplasia and for multiple myeloma 
(MM). Recently, lenalidomide has been described to promote mural cell recruitment 
and to reduce brain AVM hemorrhage (Zhu et al. 2018). There is a novel clinical trial 
related to the use of pomalidomide to treat HHT, although the results are not avail-
able yet.

Alternatively, strategies targeting VEGF signaling have shown efficacy to prevent 
the formation of AVMs in preclinical models of HHT (Thalgott et al. 2018; Kim et al. 
2017; Ola et al. 2016; Ardelean et al. 2014) and have been found effective to treat 
bleeding from HHT patients (Riss et al. 2015; Al-Samkari et al. 2019; Dupuis-Girod 
et al. 2012; Parambil et al. 2018; Faughnan et al. 2019). Several clinical studies are 
now completed and revealed that either intranasal submucosal delivery or intravenous 
injection of Bevacizumab reduced the duration and frequency of bleeds in patients 
with HHT (Riss et al. 2015; Al-Samkari et al. 2019; Dupuis-Girod et al. 2012). In 
contrast, a phase I double-blind randomized placebo-controlled study (ELLIPSE 
study, NCT01507480) that tested the efficacy of a nasal spray delivering Bevacizumab 
to treat patients with HHT failed to show beneficial effects (Dupuis-Girod et al. 2014). 
Also not fully proven, one explanation of the effects of the anti-VEGF therapies in 
HHT might be a reduction of VEGFR2 signaling activity in endothelial cells, VEGFR2 
activity levels that may become normalized promoting blood vessel stabilization. 
Bevacizumab is quite expensive, alternatives using small chemical inhibitors such as 
VEGFR2 inhibitors have been tested both in animal models and in patients with HHT 
(Kim et al. 2017; Parambil et al. 2018; Faughnan et al. 2019).

Tacrolimus (FK-506) is a potent immunomodulator that has been shown to 
inhibit bleeding complications in one patient with HHT (Sommer et al. 2018). Its 
mechanism of action in HHT remains poorly understood, although a recent study 
points in the direction that tacrolimus could upregulate ALK1 and endoglin expres-
sion levels in endothelial cells, correcting haploinsufficiency in HHT models 
(Albinana et al. 2011; Ruiz et al. 2017). Tranexamic acid that can inhibit bleeding 
in HHT (Sabba et al. 2001; Geisthoff et al. 2014; Gaillard et al. 2014) has also been 
identified as a novel molecule stimulating ALK1 signaling activity in endothelial 
cells (Fernandez et  al. 2007). By promoting ALK1 signaling, tacrolimus or 
tranexamic acid may stimulate blood vessel quiescence and mural cell attachment. 
Although this hypothesis needs to be experimentally proven.

 Conclusions and Future Directions

Albeit rare, capillaries from HHT also exhibit the salient features of other vascular 
disorders associated with defects in mural cell function and such as provide tracta-
ble preclinical models of research and defined patient groups for clinical trials. 
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There are likely three major mechanisms underlying HHT: reduced blood vessel 
stability through mural cell dysfunction, excessive angiogenesis with weak-walled 
vessels, and chronic inflammation, which exacerbates symptoms. Targeting these 
mechanisms alone or in combination is likely to provide a set of drugs from which 
physicians can select the most effective for individual patients in a personalized 
approach to therapy.

Recently, drugs promoting vessel stabilization, stimulating ALK1 signaling 
activity, inhibiting angiogenesis and/or modulating immune pathways to induce 
blood vessel stabilization have been shown to be effective in preclinical models, 
indicating possible interventional targets for treating HHT vascular lesions. Some 
drugs that have been investigated mechanistically have already shown promising 
clinical outcomes in one disease symptom, namely reducing profuse nosebleeds in 
HHT patients. However, each drug has its own caveat: the drug mechanism of action 
may not always be well defined, the drug may lack specificity affecting a range of 
physiological processes, have serious (long-term) side effects or may be expensive. 
Minimal effective doses are also often unknown. Moreover, resistant and/or relapse 
have been reporter for these drugs. Having a repertoire of alternatives that would act 
via different pathways to promote vessel stabilization, i.e., re-enforcing endothelial 
cell–mural cell interactions may therefore be important to ensure long-term benefit 
when patients become treatment resistant and relapse, develop side effects or are 
nonresponsive to current treatments. The stabilization strategy opens new avenues 
for vascular therapy that may benefit not only patients with HHT but also patients 
with neurodegeneration, diabetic complications, or cancers.
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Chapter 11
Pericytes in Primary Familial Brain 
Calcification

Yvette Zarb, Francesca Daniela Franzoso, and Annika Keller

Abstract Pericytes are perivascular cells along capillaries that are critical for the 
development of a functional vascular bed in the central nervous system and other 
organs. Pericyte functions in the adult brain are less well understood. Pericytes have 
been suggested to mediate functional hyperemia at the capillary level, regulate the 
blood–brain barrier and to give rise to scar tissue after spinal cord injury. Furthermore, 
pericyte loss has been suggested to precede cognitive decline in mouse models of 
Alzheimer’s disease. Despite this observation, there is no convincing causality 
between pericyte loss and the pathogenesis of Alzheimer’s disease. However, recent 
loss-of-function mutations in PDGFB and PDGFRB genes have implicated peri-
cytes as the principle cell type affected in primary familiar brain calcification 
(PFBC), a neuropsychiatric disorder with dominant inheritance. Here we review the 
role of the PDGFB/PDGFRB signaling pathway in pericyte development and briefly 
discuss homeostatic functions of pericytes in the brain. We provide an overview of 
recent studies with mouse models of PFBC and discuss suggested pathogenic mech-
anisms for PFBC with special reference to pericytes.
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 Introduction

Cerebrovascular disease is a major contributor to dementia in the elderly. Vascular 
dementia is the second most common cause of dementia after Alzheimer’s disease (AD). 
However, the largest proportion of dementia cases show mixed pathology with com-
bined features of AD and ischemic lesions (reviewed in Iadecola 2013). In addition, it is 
estimated that 3–6% cases of Parkinsonism have a vascular cause (reviewed in Korczyn 
2015). The importance of brain vasculature in optimal brain functioning is further illus-
trated by monogenic diseases such as glucose deficiency syndrome (SLC2A1) (OMIM 
phenotype #606777, # 612126), polymicrogyria (MFSD2A) (OMIM phenotype 
#616486), and autism spectrum disorders (SLC7A5) (Tarlungeanu et al. 2016) where the 
primary defect is found in brain endothelial cells. Endothelial cells line the vessel lumen 
and possess several brain-specific characteristics collectively referred to as the blood–
brain barrier (BBB). The expression of nutrient transporters at the BBB ensures the 
delivery of nutrients into the brain parenchyma since endothelial cell–cell junctions do 
not allow a free passage of circulating molecules. The above-listed diseases arise because 
brain endothelial cells fail to allow the delivery of energy and nutrients into the brain. 
Relatively little is known about disease causing mutations in genes expressed by mural 
cells that reside on the abluminal side and provide structural stability and regulate vascu-
lar tone. Mural cells can be further divided into vascular smooth muscle cells (covering 
arteries, arterioles, veins) and pericytes (covering capillaries). However, mutations in 
NOTCH3 which is expressed by vascular smooth muscle cells and pericytes cause 
CADASIL (OMIM phenotype # 125310), the most common form of hereditary stroke. 
NOTCH3 mutations lead to degeneration of vascular smooth cells around small arteries 
and arterioles that lead to luminal stenosis (reviewed in Ayata 2010). Although pericyte 
degeneration has been described in CADASIL patients (Dziewulska and Lewandowska 
2012), the role of pericytes in CADSIL in the pathogenesis is unclear. Pericyte defi-
ciency/dysfunction has been suggested to precede and drive cognitive decline in mouse 
models of AD (reviewed in Sweeney et al. 2016); however, whether pericyte loss is 
causal for AD has not been demonstrated. The discovery that mutations in PDGFB and 
PDGFRB genes cause a neurodegenerative disease that manifests with basal ganglia 
calcifications has raised the question of pericyte involvement in the pathogenesis of pri-
mary familial brain calcification (PFBC). Here, we provide a brief background on the 
PDGFB/PDGFRB pathway in pericyte development as well as mouse models of PFBC 
and discuss the evidence for pericyte involvement in PFBC.

 Development of CNS Blood Vessels and the Role of PDGFB/
PDGFRB in Pericyte Recruitment

The CNS vasculature develops through the process of angiogenesis. In mice, angio-
genic sprouting is initiated from the perineural vascular plexus formed by E8.5 
around the developing neural tube (Hogan and Bautch 2004). Cerebral 
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vascularization is directed by Wnt7a/Wnt7b, which is expressed by neuronal cells 
via interactions with membrane proteins including Lrp5, Gpr124, Fdz, Reck 
expressed by vascular endothelial cells (Cho et al. 2017). Pericytes enter the CNS 
parenchyma together with endothelial cells. The platelet-derived growth factor B 
(PDGFB) and platelet-derived growth factor receptor beta (PDGFRB) signaling 
axis is important for mural cell (pericytes and vascular smooth muscle cells 
(VSMC)) investment and recruitment to developing vasculature. The targeted 
knockout of Pdgfb and Pdgfrb in mice indicates that in the absence of PDGFB or 
PDGFRB, vascular mural cells fail to expand during angiogenic growth of blood 
vessels in embryonic and early postnatal phases (Lindahl et  al. 1997; Hellström 
et al. 1999). PDGFB is synthesized and secreted by endothelial cells as a dimer into 
the extracellular matrix, where it binds to heparan sulfate proteoglycans. This 
ensures the localization of PDGF-BB around angiogenic endothelial cells. 
Extracellular PDGF-BB acts on neighboring PDGFRΒ positive mural cells to elicit 
their expansion and co-migration along angiogenic vessel sprouts. In the absence of 
either Pdgfb or Pdgfrb, mural cell investment along the vessels is poor and the 
resulting capillary bed is largely devoid of pericytes (reviewed in Armulik et  al. 
2011). Several mouse genetic studies have shown that without proper pericyte cov-
erage or endothelial-pericyte cross-talk, blood vessels become hemorrhagic and/or 
show irregularities in vessel diameter (reviewed in Armulik et al. 2011). The result-
ing molecular changes in blood vessels due to the altered pericyte-endothelial cross-
talk are less well understood.

 Homeostatic Roles of Pericytes in the Adult CNS

The vasculature in any given organ has specific characteristics that are tailored to 
the vascular needs of the organ in question. In the CNS, endothelial cells comprise 
features collectively referred to as a blood–brain barrier (BBB). The BBB ensures 
the delivery of nutrients, while preventing the entry of xenobiotics into the brain 
parenchyma. The term “BBB” fails to underline the dynamic nature of the blood–
brain interface where BBB function is collectively established by all cell types con-
stituting to the neurovascular unit and is regulated by the physiological state of the 
organism. A number of functions have been attributed to pericytes in adult vascula-
ture, some of which  are relevant only in the pathological setting (reviewed in 
Armulik et al. 2011). However, the function(s) of pericytes in the adult brain during 
homeostasis is far from being fully understood. Several models of adult Pdgfb 
mouse mutants have demonstrated that pericytes play a critical role in the BBB by 
negatively regulating endothelial transcytosis (Armulik et al. 2010). A wide range 
of tracers that differ in molecular size and chemical composition have been shown 
to pass from blood to brain by vesicular transport (possibly by pinocytosis) in 
pericyte- deficient mice. However, the mechanism by which pericytes control endo-
thelial transcytosis in the brain is currently unclear. Importantly, pericytes do not 
regulate the major CNS-specific physical barrier and molecular properties of the 
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BBB. Pericyte-deficient brain vessels express the general molecular hallmarks of 
BBB endothelium, and their endothelial junctions appear normal by ultrastructural 
analysis (Armulik et al. 2010). In addition to altered BBB permeability, pericyte- 
deficient vessels show abnormal astrocyte end-feet polarization (Armulik et  al. 
2010). The molecular pathway by which pericytes induce astrocyte end-feet polar-
ization is not known. However, pericyte-derived components of the extracellular 
matrix (e.g., Lama2) may be necessary for localization of aquaporin 4 and dystro-
phin complexes on astrocyte endfeet (Tham et  al. 2016; Menezes et  al. 2014; 
Gautam et al. 2016).

It is unclear whether acute pericyte loss in an adult organism leads to a similar 
phenotype seen in various adult Pdgfb mutants. Acute ablation of a single pericyte 
resulted in a widening of vessel diameter. Interestingly, uncovered regions of the 
endothelium were covered by the extension of processes from neighboring pericytes 
(Berthiaume et al. 2018).

Pericytes have been also suggested to mediate blood flow changes evoked by func-
tional hyperemia (Hall et al. 2014; Peppiatt et al. 2006). This topic has remained con-
troversial possibly due to the lack of consensus regarding the definition of pericyte 
coverage along the vascular bed (artery-arteriole-capillary-venule). Recent, carefully 
conducted two-photon imaging studies (Hartmann et al. 2015; Hill et al. 2015) and 
single-cell transcriptional profiling of pericytes (Vanlandewijck et al. 2018) have shed 
light on this issue. Most likely, the controversies stem from slight differences in the 
precise anatomical localization of investigated mural cells/pericytes.

Recent years have seen an increased interest in understanding vascular changes 
during aging and neurodegenerative diseases. In addition to thickening of the vessel- 
basement membrane and thinning of the endothelial lining, morphological changes 
in pericytes have been reported in preclinical models and human cases (reviewed in 
Erdo et al. 2017). Studies from the B. Zlokovic lab have shown that Pdgfrb hetero-
zygosity (Pdgfrb+/−) and reduced signaling capacity (PdgfrbF7/F7) cause pericyte loss 
in old mice, which in turn accelerates age-dependent BBB breakdown and cerebral 
hypoperfusion. These processes often precede neurodegeneration, cognitive impair-
ment and white matter dysfunction (Bell et al. 2010; Kisler et al. 2017; Montagne 
et  al. 2018). However, other studies have not observed an age-dependent loss of 
pericytes in old Pdgfrb heterozygote mice, even in the absence of one functional 
Pdgfb allele (Vanlandewijck et al. 2015). Thus, it remains unclear if observed func-
tional differences in old Pdgfrb+/− and PdgfrbF7/F7 animals are caused by pericyte 
loss or result from an altered pericyte, or another, PDGFRB expressing cell. There 
may be other functions of PDGFB and PDGFRB in the brain that have gone unde-
tected in studies of vascular development on various mouse Pdgfb and Pdgfrb 
mutants. Cell types other than vascular cells express PDGFB and PDGFRB in the 
CNS.  Several studies have implicated a neuroprotective role for PDGFB and 
PDGFRΒ in vivo (Ishii et al. 2006; Shen et al. 2012), as well as in memory and 
cognitive function (Phuong et al. 2011; Ishii et al. 2008; Xu et al. 2013). Several 
studies have reported pericyte loss in human autopsy samples and mouse models of 
neurodegenerative diseases such as AD and amyotrophic lateral sclerosis which 
were suggested to be caused by an altered PDGFB/PDGFRB signaling (reviewed in 
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Sweeney et al. 2016), and no causal relationship between a neurodegenerative dis-
ease and an altered PDGFB/PDGFRB signaling in human could be found until 
2013. Unexpectedly, loss-of-function mutations in PDGFRB and its ligand PDGFB 
were reported to cause idiopathic basal ganglia calcification, a familial neurodegen-
erative disease, which has been renamed primary familial brain calcification (Keller 
et al. 2013; Nicolas et al. 2013a).

 Genetics of Primary Familial Brain Calcification

PFBC is a dominantly inherited neurodegenerative disease with a heterogeneous 
clinical presentation (parkinsonism, psychosis, seizures, migraine, cognitive decline 
and impairment, and cerebellar involvement (ataxia)) (Quintans et al. 2018). Recent 
studies on genetically confirmed PFBC patients have shown that psychiatric signs 
are the most common clinical feature in symptomatic patients, followed by cogni-
tive impairment and movement disorders (Nicolas et al. 2015). After the exclusion 
of all causes of secondary calcification (e.g., viral infection, altered levels of para-
thyroid hormones, and systemic mineral imbalance), the presence of intracranial 
bilateral basal ganglia calcifications is critical for the diagnosis of the disease 
(Quintans et al. 2018). PFBC shows incomplete clinical penetrance; however, radio-
logical penetrance of the disease is 100% at the age of 50 (Tadic et  al. 2015). 
Affected brain regions may also include the cerebellum, thalamus, cortical white 
and gray matter, and the brain stem (Manyam 2005). A recent analysis of total cal-
cification score of genetically confirmed PFBC cases identified four patterns of cal-
cification which correlated positively with patients age (Nicolas et al. 2015). Some 
patients with brain calcifications are asymptomatic. Historically, PFBC was first 
described by Delacour in 1850 (Delacour 1850). There are more than 30 different 
names in literature that have been used to describe this condition (Manyam 2005). 
The most common is “Fahr’s disease”; however, this name is now considered a 
misnomer (Westenberger and Klein 2014).

Deleterious mutations in four genes are linked to  autosomal dominant 
PFBC  (AD-PFBC). In addition to mutations in PDGFRB (OMIM # 615007) 
(Nicolas et al. 2013a) and PDGFB (OMIM # 615483) (Keller et al. 2013), muta-
tions in the sodium-dependent P(i) transporter SLCA20A2 (also called PiT2) (OMIM 
#213600) (Wang et al. 2012) and inorganic phosphate exporter – XPR1 (OMIM # 
616413) (Legati et al. 2015) have been described. The estimated minimal preva-
lence of PFBC is 4.5 p. 10,000, suggesting that PFBC is not a rare disorder and is 
likely underdiagnosed (Nicolas et al. 2018). Mutations in the SLCA20A2 gene are a 
major cause of PFBC, representing approximately 50% of investigated families 
(reviewed in Taglia et al. 2015). However, four known PFBC genes do not account 
for all the cases of PFBC, indicating the presence of other causative PFBC genes. 
Recently, biallelic recessive mutations in MYORG were reported to cause autosomal 
recessive form of primary familial brain calcification (Yao et al. 2018).
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 Pathology of Primary Familiar Brain Calcification

Pathological findings from rare autopsy cases and in vivo imaging data from case 
studies reveal the evidence of microvascular insufficiency. Histologically, calcified 
nodules encrust capillaries (Norman and Urich 1960; Kozik and Kulczycki 1978; 
Miklossy et al. 2005). Furthermore, calcium precipitates have been reported on neu-
rons and astrocytes (Miklossy et al. 2005). Neurons generally remain preserved in 
PFBC (Miklossy et al. 2005), although neuronal loss has been reported in severely 
affected areas (Kozik and Kulczycki 1978). In addition, extravasation of plasma pro-
teins and signs of neuroinflammation around calcifications are observed (Miklossy 
et  al. 2005). Noninvasive imaging techniques such as MRI reveal the presence of 
vasogenic edema in PFBC patients (Gomez et al. 1989). In addition to brain edema, 
white matter abnormalities have been described in one family carrying PDGFB muta-
tions (Biancheri et al. 2016). Severe calcifications in basal ganglia can lead to changes 
in regional blood flow (Uygur et al. 1995; Paschali et al. 2009; Shoyama et al. 2005) 
and reduction in glucose metabolism (Shoyama et al. 2005; Saito et al. 2010). PET 
studies in idiopathic and genetically confirmed PFBC cases have demonstrated pre- 
and postsynaptic nigro-striatal dopaminergic dysfunction (Saito et al. 2010; Koyama 
et  al. 2017). Interestingly, several cases of sporadic and familiar PFBC have been 
described to have neurofibrillary tangles, Lewy bodies or other evidence of 
α-synucleinopathy in addition to vessel calcification (Nomoto et al. 2002; Shibayama 
et al. 1986; Ikeda et al. 1994). PDGFRB, PDGFB and XPR1 mutation carriers show 
microangiopathy also in skin vessels (Biancheri et al. 2016; Nicolas et al. 2017). Thus, 
there is considerable heterogeneity of the histopathological findings of the 
PFBC. However, many reports on PFBC pathology and neurology appeared before 
the genetic causes of PFBC were known, and may represent diverse disease etiolo-
gies. It is unclear to what extent different histopathological and neurological features 
are causally correlated. Calcifications have been found to be more severe in symptom-
atic versus asymptomatic individuals, but the type of symptoms and calcification site 
were independent (Nicolas et al. 2013b, 2015; Tadic et al. 2015).

 Impact of PFBC Mutations on Protein Function

Genetic data indicate that mutations in PFBC genes are loss-of-function (LOF) 
mutations leading to haploinsufficiency as the proposed disease mechanism. The 
identification of large genomic deletions in PFBC genes (e.g., SLC20A2, PDGFB) 
further supports this conclusion (Baker et al. 2013; Nicolas et al. 2014). The func-
tional consequences of selected PFBC mutations have been studied in vitro. 
Mutations in SLC20A2 (S601W, S601L, T595M, E575K, G498R, and V42del) and 
XPR1 (S136N, L140P, L145P, and L218S)) did not affect the cell surface expression 
but rather reduced the inorganic phosphate (Pi) transporting capacity of SLC20A2 
and XPR1 when tested in vitro (Wang et  al. 2012; Legati et  al. 2015; Yao et  al. 
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2017). Co-expression of the mutant SLC20A2 (S601W or E575K) with wild-type 
SLC20A2 in Xenopus oocytes and mutant XPR1 (L145P) with wild-type XPR1 in 
mammalian cells had no obvious effect on the Pi-transport activity of wild-type 
proteins, thus supporting the haploinsufficiency as a mechanism for disease (Wang 
et al. 2012; Yao et al. 2017). However, a recent functional study in mammalian cells 
showed that the expression of SLC20A2 variants-associated PFBC can exert domi-
nant negative effects on the Pi-transport function of wild-type SLC20A2. 
Accordingly, this effect could result in more severely impaired cellular Pi-transport 
function than the absence of a functional protein from one allele (Larsen et  al. 
2017). In addition, mutations have been reported to affect protein cell surface 
expression (XPR1  - L87P) or alter the subcellular localization of the protein 
(SLC20A2—p.Trp626_Thr629dup) (Anheim et al. 2016; Taglia et al. 2018). Thus, 
the molecular mechanisms of SLC20A2 and XPR1 mutations leading to PFBC 
might be heterogeneous.

Six analyzed PDGFB mutations (M1?, *242Yext*89, L119P, Q145*, Q147*, 
and R149*) reported by Keller et  al. (2013) caused complete loss of functional 
PDGF-BB protein production in HEK293 cells (Vanlandewijck et al. 2015). In vitro 
functional studies of PDGFRB mutations described in PFBC families have revealed 
that these mutations cause complete or reduced autophosphorylation (p.L658P, p.
R695C) or reduced protein production (p.R987W) of PDGFRB when expressed in 
vitro individually (Vanlandewijck et  al. 2015; Sanchez-Contreras et  al. 2014). It 
would be informative to investigate whether PDGFB and PDGFRB mutations 
described in PFBC patients act as a dominant-negative in the presence of a single 
wild-type allele.

 Mouse Models and the Pathogenic Mechanism of Primary 
Familial Brain Calcification

Analysis of mouse models that mimic certain aspects of PFBC have advanced our 
understanding of the pathogenesis of this neuropsychiatric disease. However, it is 
not known why mutations in genes belonging to structurally and functionally differ-
ent protein families such as growth factor and its receptor (PDGFB, PDGFRB), the 
inorganic phosphate transporters (SLC20A2, XPR1), intracellular putative glycosi-
dase (MYORG) lead to the common pathology of brain calcification (Yao et  al. 
2018; Keller et al. 2013; Jensen et al. 2013). No interaction between SLC20A2 and 
PDGFRB has been reported. However, a recent study showed that PDGFRB and 
XPR1 might form complexes on the cell membrane (Yao et al. 2017).

Currently, four genetically modified mouse lines that have reduced levels of 
either Slc20a2, Pdgfb, Myorg have been reported to develop intracranial brain cal-
cifications (Keller et al. 2013; Yao et al. 2018; Jensen et al. 2013). As discussed 
above, the PDGFB/PDGFRΒ signaling pathway is important for the development 
of functional neurovascular unit. However, the developmental role of other PFBC 
genes in the brain are not known. Interestingly, XPR1 (xpr1b) deletion in zebrafish 
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results in defective differentiation of tissue-resident macrophages, including 
microglia (Meireles et al. 2014). XPR1 is used by xenotropic and polytropic murine 
leukemia viruses to enter cells but the cellular function of XPR1 remained elusive. 
In 2013, it was reported that XPR1 mediates phosphate export from mammalian 
cells. Given the high conservation of XPR1 sequences from fly to human, XPR1 
most likely mediates phosphate export in metazoans (Giovannini et  al. 2013). 
Selective knockout of Xpr1 in renal tubule leads to hypophosphatemic rickets sec-
ondary to renal dysfunction, further substantiating the role of XPR1 in phosphate 
homeostasis (Ansermet et  al. 2017). The cellular function of MYORG, which 
encodes an intracellular transmembrane protein belonging to glycosyl hydrolase 
family, is currently unknown. Knock-out Myorg (AI464131) in mice leads no gross 
developmental defects (Yao et  al. 2018). Developmental abnormalities have not 
been described in Slc20a2−/− knockout embryos; however, heterozygosity of 
Slc20a2 in pregnant females leads to placental calcification (Wallingford et  al. 
2016). All five PFBC genes show a different expression pattern in the developing 
mouse embryo, in the adult mouse and in human brain (Figs. 11.1 and 11.2), which 
are expressed by several cell types. However, the expression of Myorg has been 
exclusively attributed to S100β positive astrocytes in mouse brain (Yao et al. 2018) 
(Fig. 11.1c, d).

 PDGFB/PDGFRB Signaling Axis

Complete knock-out of Pdgfb and Pdgfrb in mice is lethal. Postnatal functions of 
PDGFB and PDGFRΒ have been investigated using mutations that change the func-
tion of the respective gene (Heuchel et al. 1999; Tallquist et al. 2003; Lindblom et al. 
2003; Bjarnegard et al. 2004; Olson and Soriano 2011), or are inducible null muta-
tions (Bjarnegard et al. 2004; Enge et al. 2002; Nguyen et al. 2011). Most studies 
using these mouse lines have focused on the role of pericytes in an adult organism on 
the endothelial function or pathogenesis of AD (discussed above). Therefore, the find-
ing that the Pdgfb retention motif knockout mice (Pdgfbret/ret) develop vessel- associated 
brain calcifications in deep brain regions that increase with age is unexpected (Keller 
et al. 2013). Pdgfbret/ret animals lack a C-terminal so-called “retention motif,” which 
binds heparan sulfate proteoglycans due to a targeted mutation at the Pdgfb locus. 
PDGF-BB retains its receptor binding/activating ability but is diffusible, which most 
likely leads to lower extracellular concentrations of PDGF-BB near the producer cell 
(Lindblom et  al. 2003; Abramsson et  al. 2007), thus functioning as a hypomorph. 

Fig. 11.1 (continued) of the four PFBC genes in brain vascular (PC – pericyte, vSMC – venous 
smooth muscle cells (SMC), aaSMC – arteriolar SMC, aSMC – arterial SMC, MG – microglia, 
FB1 – fibroblast-like 1, FB2 – fibroblast-like 2, OL – oligodendrocyte, EC1 – endothelial cell (EC) 
type 1, EC2 – EC type 2, EC3 – EC type 3, vEC – venous EC, caplEC – capillary EC, aEC – arte-
rial EC, AC – astrocyte) obtained using single-cell RNAseq. Data were taken from http://betsholt-
zlab.org/VascularSingleCells/database.html (Vanlandewijck et al. 2018)
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Fig. 11.1 The expression of Ai464131 (MYORG), Xpr1, Slc20a2, Pdgfb, and Pdgfrb at the RNA 
level in different cell types and tissue in mouse. (a) Sagittal sections of mouse embryos at day 14.5 
(section thickness 20 μm and inter-section distance of 100 μm). Scale bar 400 μm. Images were 
taken from GenePaint public database available at website: http://www.genepaint.org and described 
in (Visel et al. 2004). (b) Sagittal brain sections of male mouse at P56. Image credit: Allen Institute. 
Images are available at website: http://mouse.brain-map.org/. Scale bar is 2098 μm. Zoomed fig-
ures represent cortex (red lining), choroid plexus (blue lining), midbrain (green lining). Scale bar 
is 839 μm. (c) RNAseq of different cell types (A – astrocyte, N – neuron, OPC – oligodendrocyte 
progenitor cell, NFO – newly formed oligodendrocyte, MO – myelinating oligodendrocyte, M – 
microglia/macrophage, EC – endothelial cell) isolated from mouse brains. Data were taken from 
www.brainrnaseq.org (Zhang et al. 2014). (d) A graphical representation of the average expression 
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Pdgfbret/ret mice show reduced pericyte coverage of their blood vessels in the embryo 
and adult. Further investigations reflect the role of pericytes in the development of 
conduit vessels (Nystrom et al. 2006), kidney glomeruli (Bjarnegard et al. 2004), liver 
sinusoidal vessels (Raines et al. 2011), retinal vasculature (Lindblom et al. 2003; Enge 
et  al. 2002), and blood–brain barrier (BBB) (Armulik et  al. 2010). In addition to 
Pdgfbret/ret animals, two other mouse PDGFB hypomorphs (Pdgfb−/−; 
Tie2CreR26hPDGFBtg/0 or tg/tg)) develop cerebrovascular calcifications (Keller et  al. 

A

B

SLC20A2

FA MA N OL M EC

PDGFRB

FA MA N OL M EC

PDGFB

FA MA N OL M EC

XPR1

FA MA N OL M EC

MYORG
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XPR1SLC20A2PDGFRBPDGFB

Fig. 11.2 The expression of MYORG, XPR1, SLC20A2, PDGFB, and PDGFRB at the RNA and 
protein level during different human developmental stages and adulthood. (a) RNAseq of different 
cell types (FA – fetal astrocyte, MA – mature astrocyte, N – neurons, OL – oligodendrocyte, M – 
microglia/macrophage, EC – endothelial cells) isolated from human brains. Data were taken from 
www.brainrnaseq.org (Zhang et al. 2016). (b) Autopsy cases from normal brain tissue from the 
cortex of patients aged between 54 and 70 years of age. Brain sections were stained using an atlas 
antibody against the protein (XPR1  – HPA016557; SLC20A2  – HPA026540; PDGFB  – 
CAB018341; PDGFRB  – CAB018144). A representative image from the brain section was 
selected. Data were taken from Human Protein Atlas available from www.proteinatlas.org. Scale 
bar is 50 μm
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2013). Interestingly, endothelial expression of PDGFB is protective of brain vascular 
calcifications, indicating that vessel calcification might be caused by reduced PDGFB/
PDGFRB signaling at the neurovascular unit. In addition, it has been found that the 
severity of calcification correlated overall with the degree of pericyte deficiency and 
the extent of BBB dysfunction (Keller et al. 2013).

Thus, the initial analysis of mouse Pdgfb hypomorphs led to the suggestion that 
vessel calcification may be caused by pericyte deficiency, leading to BBB disruption 
and the subsequent formation of calcified lesions (Keller et al. 2013). Autopsy cases 
supported the plausibility of BBB dysfunction in PFBC (Miklossy et al. 2005). In 
addition, several other neurodevelopmental disorders show BBB deficiency and 
brain calcifications (O’Driscoll et al. 2010; Fischer et al. 2013). However, careful 
spatial analysis of brains of Pdgfbret/ret mice demonstrated that vascular calcification 
did not correlate with pericyte loss and BBB dysfunction. Although Pdgfbret/ret mice 
invariably develop vessel-associated brain calcifications, certain brain regions (e.g., 
cerebral cortex) with severe pericyte loss and BBB deficiency do not develop brain 
calcifications (Keller et al. 2013). Investigation of the spatial relationship between 
pericyte coverage, BBB permeability and the formation of vessel calcification in 
Pdgfbret/ret mice showed that calcification-prone regions (i.e., thalamus, mesencepha-
lon, and dorsal pons) showed a significantly higher pericyte coverage compared to 
non-prone regions (e.g., motor cortex, hippocampus), which was inversely correlated 
with BBB permeability. Thus, the vasculature in calcification- prone regions showed 
significantly less BBB permeability than brain regions that did not calcify 
(Vanlandewijck et al. 2015). These data strengthen the evidence for BBB impairment 
and pericyte loss at the global level. In addition, they demonstrate that pericyte loss 
and BBB impairment are not sufficient to lead to microvascular calcification.

Heterozygous mouse knockouts of Pdgfb or Pdgfrb, and even the double hetero-
zygotes (Pdgfb+/−;Pdgfrb+/−), do not develop brain calcifications (Vanlandewijck 
et  al. 2015). Furthermore, Pdgfrbredeye/redeye mice, which show 90% reduction in 
PDGFRB on protein level lack cerebral microvascular calcifications. This finding is 
similar to Slc20a2 where only the full knockout of gene leads to cerebrovascular 
calcifications in mice (Jensen et al. 2018). Interestingly, both Pdgfb+/−, Pdgfrb+/− 
and Pdgfrbredeye/redeye mice do not show marked pericyte loss (Vanlandewijck et al. 
2015) indicating that pericyte loss in Pdgfbret/ret mice might contribute to microvas-
cular calcifications.

PDGFB and PDGFRB are expressed in the brain as well as in cell types other 
than vascular cells (Figs. 11.1 and 11.2). The function of PDGFB/PDGFRB signal-
ing in these cells (e.g., astrocytes) is not known. It is plausible that PFBC mutations 
cause changes in homeostasis in these cell types in addition to pericytes.

 SLC20A2—Phosphate Transporter

SLC20A2 belongs to the type III family of Pi importers that consists of two proteins—
SLC20A1 (frequently used protein name is PiT1) and SLC20A2 (PiT2), which main-
tain cellular phosphate homeostasis (Lederer and Miyamoto 2012). The expression 
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pattern of SLC20A2/PiT2 has been reported to be ubiquitous, but very few studies have 
investigated SLC20A2 expression at the cellular level. A recent immunohistochemical 
study reported Slc20a2 expression in mouse brain in neurons, astrocytes, and endothe-
lial cells (Inden et al. 2013). Gene and protein expression data deposited in publically 
available databases show a ubiquitous expression of SLC20A2 in human and mouse 
brain on the RNA and the protein level (Figs. 11.1 and 11.2).

Slc20a2−/− animals develop vessel-associated brain calcifications that increase 
with age, similar to SLC20A2 mutation carriers (Jensen et al. 2013, 2018). It has 
been reported that also Slc20a2 heterozygosity in mice causes calcifications 
(Wallingford et al. 2017); however, another study using the same knockout line did 
not confirm this finding (Jensen et al. 2018). Analysis of mouse Pdgfb hypomorphs 
indicated pericyte deficiency as a potential cause for vessel calcifications. However, 
no reduction of vessel pericyte coverage or altered BBB permeability is seen in 
Slc20a2 deficient animals (Nahar and Betsholtz, personal communication). 
Calcifications formed in the absence of Slc20a2 are extracellular and vessel associ-
ated similarly to the pathology observed in Pdgfb hypomorphs. However, electron 
microscopy shows that calcifications can be detected intracellularly in pericytes and 
astrocytes in Slc20a2−/− mice and human autopsy cases (Jensen et  al. 2018; 
Kobayashi et al. 1987).

Interestingly, Slc20a2 ko animals and also SLC20A2 mutation carriers show ele-
vated levels of Pi in cerebrospinal fluid (Wallingford et al. 2017; Jensen et al. 2016; 
Hozumi et al. 2018; Paucar et al. 2017). Thus, vessel calcifications could be initiated 
by an imbalance of Pi concentrations in the glymphatic space at the vessel wall.

 Pericytes and PFBC

Currently, although PDGFB/PDGFRB is recognized as an important signaling path-
way for pericyte recruitment, the role of pericytes in PFBC is unclear. Since PFBC 
genes are expressed by several cell types at neurovascular, the pathogenesis could 
be due to dysfunction of different cell types. It is possible that PDGFRB, PDGFB, 
SLC20A2, XPR1, MYORG mutations lead to microvascular calcification, but the 
primary affected cell type is different. Mouse genetic studies using cell type- specific 
knockouts of PFBC genes should clarify the role of pericytes and other brain cells 
(e.g., endothelial cells, vessel-associated astrocytes) involved in the formation of 
vessel calcification.

It is possible that impaired PDGFB/PDGFRB signaling in Pdgfbret/ret mice 
accelerates an age-dependent phenotype in pericytes that leads to the formation 
of capillary calcification. Phenotypic alteration and senescence of vascular 
smooth muscle cells have been shown to drive arterial calcification (Durham et al. 
2018). Microvascular calcification is accompanied by an osteogenic environment 
and formation of bone cells in Pdgfbret/ret mice and human PFBC autopsy cases 
(Zarb et al. 2019). Lineage tracing studies in mouse models of PFBC should 
clarify whether pericytes transdifferentiate into osteoblasts. Further analysis of 
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pericytes of PFBC models using the single-cell RNA sequencing could generate 
insight into gene expression alteration in pericytes and help to clarify the role in 
pericytes in PFBC.

 Conclusion

Many unanswered questions remain about the pathogenesis of PFBC. Further anal-
ysis of mouse models of PFBC will bring additional insights into the pathogenic 
mechanism. It is presently unclear whether all PFBC genes initiate vessel calcifica-
tion by a similar mechanism. However, AD-PFBC patients present a similar spec-
trum of clinical symptoms regardless of which gene mutations are causal (Nicolas 
et al. 2015). Importantly, it is unclear if cerebrovascular calcifications are causal for 
progressive neurodegeneration. Recent progress in understanding vessel- 
calcification mechanism using PFBC mouse models will hopefully lead to the 
development of strategies to lower the vessel calcification load. Pdgfbret/ret mice 
exhibit behavioral alterations that resemble those described in PFBC patients (Zarb 
et al. 2019), and thus can be used to test whether reduction of the calcification load 
leads to objective evidence of behavioral improvement.

Insights into PFBC pathogenesis might also shed light on the causes of brain 
calcifications occurring during aging (e.g., pineal gland, basal ganglia) as well as 
various brain pathologies (e.g., viral infection, neurodegeneration, vasculopathies, 
tumors, type I interferonopathies). It is possible that despite the wide-ranging 
 etiologies, brain vessel calcification shares a common pathogenic mechanism(s), 
thus providing an ideal therapeutic target.
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Chapter 12
Pericytes in Type 2 Diabetes

Katherine L. Hayes

Abstract Pericytes are mural cells that are found ubiquitously throughout  the 
microvasculature. Their main physiological roles are to support endothelial cells, 
regulate microvascular blood flow, and respond to perturbations in their microen-
vironment. Pericytes are sensitive to the metabolic abnormalities that are charac-
teristic of type 2 diabetes mellitus, including dyslipidemia, hyperglycemia, and 
hyperinsulinemia. As a consequence of these abnormalities, advanced glycation 
end products, reactive oxygen species, polyol pathway activation, and protein 
kinase C isoform activation cause pericyte dysfunction and contribute to the patho-
genesis of many common complications of type 2 diabetes. Pericyte dysfunction 
is known to be a contributing factor to the pathogenesis of retinopathy, nephropa-
thy, neuropathy, beta cell dysfunction, and peripheral artery disease in people with 
type 2 diabetes. Therapies should target pericytes to treat these common diabetic 
complications.

Keywords Beta cell · Retinopathy · Neuropathy · Nephropathy · Peripheral artery 
disease · Hyperglycemia · Hyperinsulinemia · Dyslipidemia · Mural cell  
Advanced glycation end products · Blood–retina barrier · Blood–nerve barrier 
Microvasculature

 Introduction

Diabetes mellitus is a group of metabolic disorders characterized by impaired glu-
cose homeostasis. According to recently published global estimates, over 450 mil-
lion people had diabetes in 2017, and it was attributed to over 5 million deaths (Cho 
et al. 2018). The prevalence of diabetes is expected to exceed 690 million people by 
2045 (Cho et al. 2018). The overwhelming majority of people with diabetes have 
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type 2 diabetes, comprising approximately 90–95% of all diabetes cases. In 2013, 
382 million people worldwide had type 2 diabetes; and 592 million people are pro-
jected to have type 2 diabetes by the year 2035 (Defronzo et al. 2015).

Type 2 diabetes mellitus is characterized by insulin resistance, hyperglycemia, 
and β-cell decompensation (Defronzo et al. 2015). Both genetics and environmental 
factors, including energy imbalance from a combination of overnutrition and inad-
equate physical activity, contribute to the development of type 2 diabetes. Type 2 
diabetes is a considerable public health concern because macrovascular complica-
tions lead to cardiovascular diseases and an increased risk of death from cardiovas-
cular diseases, including stroke and coronary artery disease. Microvascular 
dysfunctions also lead to devastating complications, including peripheral neuropa-
thy, nephropathy, and retinopathy.

Metabolic disturbances, such as dyslipidemia, hyperglycemia, and hyperinsu-
linemia, drive the development of microvascular complications by activating sev-
eral pathophysiological processes (Stratton et  al. 2000; Folli et  al. 2011). These 
metabolic disturbances enhance polyol pathway flux, increase the formation of 
advanced glycation end products, activate protein kinase C isoforms, and increase 
intracellular reactive oxygen species (Brownlee 2005; Giacco and Brownlee 2010). 
Microvascular endothelial cells, as well as their associated pericytes, are negatively 
affected by the activation of these pathways. This chapter will focus on the effects 
of type 2 diabetes on pericytes, the mural cells of the microvasculature.

 Pericyte Dysfunction in Type 2 Diabetes

Pericyte dysfunction contributes to the pathogenesis and symptomology in type 2 
diabetes. As microvascular-associated cells, the physiological role of pericytes is to 
regulate blood flow and maintain microvascular homeostasis by responding to per-
turbations through signaling with endothelial cells and even differentiation into ter-
minal cell types (Armulik et al. 2011). Pericyte number and function are impaired 
in many tissues of type 2 diabetic patients. Specifically, pericyte dysfunction in the 
pancreas, retina, kidney, peripheral endoneurium, and skeletal muscle is pronounced 
in type 2 diabetes, and leads to the overt symptoms of type 2 diabetes, including 
impaired glucose homeostasis, retinopathy, neuropathy, nephropathy, and periph-
eral artery disease (Fig. 12.1).

 Pancreatic Pericytes

The pancreas contains islets, which are specialized clusters of cells containing 
insulin- producing beta cells. Pancreatic islets are highly capillarized to allow for 
glucose sensing and insulin secretion. As a tissue with high capillary density, pan-
creatic pericytes make up approximately 3% of human and mouse islet cells; 

K. L. Hayes



267

however, their cytoplasmic processes cover up to 40% of microvascular capillaries 
in healthy individuals without diabetes (Almaca et al. 2018). Pancreatic pericytes 
regulate capillary islet blood flow by contracting and relaxing, which occurs in 
response to oscillating glucose concentrations (Almaca et al. 2018). High glucose 
concentrations activate beta cells, which leads to insulin being co-released with 
adenosine triphosphate (ATP). Endogenous adenosine is derived from ATP and 
mediates pericyte relaxation. Pericyte relaxation leads to capillary dilation. In con-
trast, pericyte contraction is mediated by sympathetic innervation. The result of 
pericyte contraction is reduced capillary blood flow (Almaca et al. 2018).

In addition to regulating blood flow, pericytes in the pancreas support beta cell 
function. It is suggested that pericytes exert effects on beta cells directly (Sasson 
et al. 2016), through their association with microvascular capillaries (Almaca et al. 
2018), and through signaling molecules (Sakhneny et al. 2018; Houtz et al. 2016). 
Sasson et al. (2016) showed that pericytes in pancreatic islets are required for proper 
beta cell functionality. They demonstrated that selective ablation of pancreatic islet 
pericytes results in mice with elevated fasting blood glucose and impaired glucose 
tolerance. The islets of pericyte-depleted transgenic mice secreted less insulin 
despite normal islet morphology and beta cell number. Further, these mice dis-
played markers of immature beta cells, indicating that pericytes were important for 
beta cell maturation. Houtz et al. (2016) provided mechanistic insight into the role 
for pericytes in insulin secretion from beta cells. They showed that glucose was able 
to stimulate nerve growth factor secretion from pancreatic islet pericytes, which 

Type 2 Diabetes

Pericyte
Dysfunction

Retinopathy

Beta Cell
Dysfunction Nephropathy

Peripheral
NeuropathySkeletal

Muscle 
Complications

Fig. 12.1 Pericyte-mediated complications in type 2 diabetes. Metabolic abnormalities that are 
characteristic of type 2 diabetes, namely hyperglycemia, hyperinsulinemia, and dyslipidemia, con-
tribute to pericyte dropout and dysfunction in tissues throughout the body. Pericyte dysfunction 
contributes to many of the common complications of type 2 diabetes. Therapies aimed at treating 
pericyte dysfunction are promising for relieving complications from type 2 diabetes
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signaled for insulin granule exocytosis from beta cells. All together, these studies 
provide key insights into the role for pancreatic pericytes in glucose homeostasis 
and insulin secretion in physiological conditions.

Pericytes also have roles in pancreatic beta cell dysfunction in the pathological 
context of type 2 diabetes. In general, human cadaver studies have shown that type 
2 diabetic patients experience pancreatic islet changes including fibrosis and amy-
loid deposition. Animal models of type 2 diabetes have been used to characterize the 
effect of the disease on pancreatic pericytes specifically (Hayden et al. 2010). In 
rodent models of insulin resistance and type 2 diabetes, Hayden et al. (2010) used 
transmission electron microscopy to observe a widening at the islet exocrine inter-
face in the pancreas. The widening was observed between the endocrine-islet and 
the exocrine-acinar portion of the pancreas. Coinciding with the widening was a 
hypercellularity of pericytes. They also observed morphological changes in these 
pericytes, namely elongated cytoplasmic processes. Evidence suggests that the 
hypercellular pericytes contribute to pancreatic fibrosis by depositing collagen. The 
hypercellularity of pericytes is also supported by evidence from the db/db model of 
type 2 diabetes in mice. Hayden et al. (2010) reported a pancreatic islet pericyte 
degeneration in a model of human islet amyloid deposition in non-obese type 2 
diabetic rats. Pericyte degeneration was confirmed in type 2 diabetic patients as 
demonstrated by decreased pericyte coverage of capillaries (Almaca et al. 2018). 
Additionally, pericyte coverage was inversely related to duration of disease. Finally, 
a mechanism for loss of pericyte-supported beta cell function in the pathogenesis of 
diabetes showed that Tcf712-knockout animals had impaired glucose homeostasis, 
despite not developing overt type 2 diabetes (Sakhneny et al. 2018). The polymor-
phism in TCF7L2 gene is strongly correlated to type 2 diabetes in humans. Sakhneny 
et  al. (2018) showed that pancreatic pericytes express the transcription factor 
TCF7L2, and its physiological role in pancreatic pericytes is to support beta cell 
function through Tcf7l2-dependent secretion of cytokines, including bone morpho-
genetic protein-4. Loss of function of Tcf7l2 in pericytes impairs beta cell function 
and glucose homeostasis (Sakhneny et al. 2018). Overall, while few studies have 
examined pancreatic pericyte dysfunction in type 2 diabetes, pericyte dropout and 
dysfunction is evident, and clearly contributes to disease etiology.

 Skeletal Muscle Pericytes

Skeletal muscle is another highly vascularized tissue, and pericytes are found in the 
skeletal muscle at 1:10–1:100 ratio of pericytes to endothelial cells (Armulik et al. 
2011). Within skeletal muscle, pericytes perform their canonical functions of regu-
lating blood flow and responding to perturbations in their microenvironment by 
either direct differentiation or indirect signaling with neighboring cells. Importantly, 
the skeletal muscle is the primary tissue for insulin-mediated glucose uptake. Insulin 
resistance is a hallmark of type 2 diabetes, and insulin resistance precedes the devel-
opment of overt type 2 diabetes.
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Skeletal muscle pericyte dysfunction has been characterized in type 2 diabetes. 
Specifically, pericyte apoptosis and deterioration has been observed along with 
reduced capillary density (Hayden et al. 2010). Tilton et al. (1981) described capil-
lary dimensions and pericyte distribution in skeletal muscle obtained from human 
autopsies of diabetic people and age- and sex-matched controls. They observed a 
marked increase in pericyte degeneration and capillary basement membrane thick-
ening within diabetic muscles compared to non-diabetic muscles (Tilton et al. 1981, 
1985). While early work in cadaver muscles did not observe differences in pericyte 
coverage of capillaries in the skeletal muscle of diabetic patients compared to non- 
diabetic controls, recent evidence indicates that pericyte abundance is markedly 
decreased in the skeletal muscle of type 2 diabetic patients. Vono et al. (2016) dem-
onstrated that not only do pericytes from type 2 diabetic patients have decreased 
abundance in the skeletal muscle, the pericytes that remain have ultrastructural 
abnormalities, including increased blebbing and vacuolization, as identified by 
transmission electron microscopy. Furthermore, skeletal muscle pericytes from dia-
betics exhibited decreased capacity for myogenic differentiation and decreased abil-
ity to support endothelial cell tube formation in vitro (Vono et al. 2016).

A devastating manifestation of diabetes in the skeletal muscle is the development 
of peripheral artery disease. Peripheral artery disease is an atherosclerotic occlusive 
disease that most commonly affects the lower limbs. Patients with peripheral artery 
disease experience pain, decreased mobility, and poor quality of life. While periph-
eral artery disease is a macrovascular complication of type 2 diabetes, microvascu-
lar abnormalities also contribute to the ischemic condition. Microvascular pericytes 
are proangiogenic, present in the skeletal muscle, and able to respond to ischemic 
insults; therefore, pericytes are a potential cell therapy target to treat peripheral 
artery disease, which has very few non-surgical interventions to revascularize isch-
emic tissue. Several preclinical studies have shown that skeletal muscle pericytes 
augment postischemic neovascularization in a murine model of critical limb isch-
emia, which is a severe form of peripheral artery disease (Dar et al. 2012; Birbrair 
et al. 2014; Gubernator et al. 2015; Hayes et al. 2018). Birbrair et al. (2014) demon-
strated that transplanted skeletal muscle pericytes improved limb revascularization, 
which was assessed via MRI angiography at 10 days after the induction of ischemia 
via femoral artery ligation. Dar et  al. (2012) showed that intramuscularly trans-
planted pluripotent stem cell (iPSC)-derived pericytes enhanced blood flow recov-
ery in mice up to 28  days post-induction of limb ischemia. Importantly, they 
provided evidence that iPSC-derived pericytes incorporated into both the regenerat-
ing muscle and vasculature (Dar et al. 2012). Skeletal muscle pericytes have also 
been shown to incorporate into existing collateral arteries to promote postischemic 
neovascularization via collateral artery enlargement; however, incorporation into 
regenerating skeletal muscle was not observed in that study (Hayes et  al. 2018). 
Others have shown that cell types similar to pericytes, including mesenchymal stem 
cells and saphenous vein adventitial progenitor cells, can also improve neovascular-
ization in vivo in mice (Gubernator et al. 2015; Yan et al. 2012).

Unfortunately, stem cell therapies appear to be less effective in diabetic environ-
ments (Efimenko et al. 2015; Yan et al. 2012; Hayes et al. 2018). Diabetes is strongly 
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associated with an elevated risk of peripheral artery disease, and peripheral artery 
disease is more severe in diabetic patients. Work from Yan et  al. (2012) demon-
strated that the diabetic environment negatively impacts the therapeutic potential of 
bone marrow mesenchymal stem cells, a cell type that shares similarities with skel-
etal muscle resident pericytes (Yan et al. 2012, 2013). Using a hindlimb ischemia 
model, bone marrow-derived mesenchymal stem cells isolated from type 2 diabetic 
mice had an impaired ability to support neovascularization compared to mesenchy-
mal stem cells isolated from wild-type mice (Yan et al. 2012). Furthermore, mesen-
chymal stem cells from diabetic donors favored adipocyte differentiation compared 
to endothelial cell differentiation in vivo; and oxidative stress was implicated as a 
cause of this dysfunction (Yan et al. 2012). Endothelial cell differentiation may be 
critical for angiogenesis and arteriogenesis during postischemic neovascularization 
whereas adipocyte accumulation in ischemic tissues may impair effective blood 
flow recovery. Similarly, diabetes was shown to impair the therapeutic potential of 
skeletal muscle pericytes to treat peripheral artery disease in type 2 diabetic mice 
(Hayes et  al. 2018). In that study, hyperinsulinemia induced pericyte oxidative 
stress that impaired pericyte tube formation in vitro, thus indicating that diabetes- 
induced oxidative stress inhibits the angiogenic potential of skeletal muscle peri-
cytes (Hayes et al. 2018). Evidence from Vono et al. (2016) also provides support 
for stem cell dysfunction in type 2 diabetes due to activated pro-oxidative pathways. 
They showed that skeletal muscle pericytes isolated from humans with diabetic 
peripheral artery disease showed impaired differentiation and impaired ability to 
support endothelial cell tube formation in vitro. The noted impairments were likely 
due to oxidative stress since reactive oxygen species scavengers and PKCβII inhibi-
tors were able to restore the angiogenic and myogenic capacity of diabetic pericytes 
(Vono et al. 2016). Another study demonstrated impaired neovascularization fol-
lowing limb ischemia in diabetic mice due to inflammation in endothelial cells that 
negatively impacted crosstalk with skeletal muscle pericytes (Caporali et al. 2011). 
In summary, inflammation and oxidative stress associated with type 2 diabetes neg-
atively affects the ability of pericytes to augment neovascularization in models of 
peripheral artery disease.

 Retinal Pericyte

The retina is a complex neurovascular unit that is comprised of functionally coupled 
neurons, glial cells, and vasculature (Metea and Newman 2007). Located at the back 
of the eye, the retina serves to sense light and provides signals to the brain for 
vision. The retina is highly vascularized; and as such, pericytes play a key physio-
logical role within the retinal microvasculature. Similar to their role in most tissues, 
pericytes are important for angiogenesis and vessel stabilization in the retina. 
However, unlike in tissues such as the pancreas or skeletal muscle, pericytes in the 
retina are specialized for maintenance of the blood–retina barrier (Trost et al. 2016). 
The blood–retina barrier is highly regulated to control the flow of fluids, signaling 
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molecules, and chemicals. The controlled barrier is regulated by tight and adherens 
junctions between pericytes and endothelial, neuronal, and glial cells (Trost et al. 
2016; Kim et al. 2009). The breakdown of the blood–retina barrier is detrimental to 
retinal health and is a contributing factor to diabetic retinopathy.

Diabetic retinopathy is the most frequent cause of blindness in adults aged 
20–74. According to one study, approximately 60% of type 2 diabetic patients have 
retinopathy (Fong et al. 2003). Diabetic retinopathy first emerges as mild abnor-
malities of the retina, including increased vascular permeability. As retinopathy pro-
gresses, moderate-to-severe retinopathy presents as nonproliferative disease that is 
characterized by degenerated, non-perfused capillaries. In the most progressive 
form of the disease, proliferative retinopathy presents with neovascularization of the 
retina and vitreous. Macular edema, characterized by retinal thickening, often co- 
occurs with diabetic retinopathy.

In both human and animal studies, diabetes-induced retinal pericyte dysfunction 
contributes to the microvascular abnormalities that lead to retinopathy. The earliest 
morphological change following the onset of diabetes is a decrease in retinal peri-
cyte coverage of capillaries (Mizutani et  al. 1996; Engerman 1989; Cogan et  al. 
1961). Early work showed that hyperglycemia is implicated in pericyte-induced 
apoptosis via the accumulation of advanced glycation end products (Stitt et  al. 
1997). Further metabolic abnormalities seen in type 2 diabetic patients, such high 
levels of plasma free fatty acids, may contribute to pericyte apoptosis. Specifically, 
in vitro apoptosis of retinal pericytes was shown to be caused by palmitate, a satu-
rated fatty acid that activates apoptosis via NAD(P)H oxidases and NF-κB (Cacicedo 
et al. 2005). Relatedly, another contributing factor to pericyte dysfunction in type 2 
diabetes is a downregulation of PPARα in the retina (Hu et al. 2013). PPARα is a 
modulator of lipid metabolism. Evidence suggests that maintenance of PPARα 
expression in the retina can attenuate diabetes-induced pericyte apoptosis and capil-
lary degeneration in streptozotocin-induced diabetic mice, which is a model of type 
1 diabetes. Future studies should investigate this mechanism in models of type 2 
diabetes, specifically. The potential mechanism by which PPARα works to maintain 
pericyte density in the retina is by suppressing oxidative stress and inhibiting inflam-
mation. Understanding the protective effects of PPARα against pericyte dropout 
provides the potential for therapeutic intervention using PPARα agonists, such as 
fenofibrate (Ding et al. 2014). In addition to the negative effects of fatty acids on 
pericytes, hyperglycemia has also been shown to increase inflammation to promote 
retinal pericyte apoptosis via NF-κB activation (Ding et al. 2014). Park et al. (2014) 
used the streptozotocin-induced type 1 diabetes model to show that hyperglycemia 
induces pericyte apoptosis via endothelial cell angiopoietin-2 interacting with peri-
cyte integrins to activate the p53 pathway. Again, this study in a type 1 diabetes 
model may not translate completely to type 2 diabetes; therefore, while it provides 
insights into diabetic retinopathy in type 2 diabetic patients, future studies should 
utilize type 2 diabetes models to elucidate mechanisms specific to type 2 diabetes. 
Still, the work from type 1 diabetes models suggests that angiopoietin-2 and integ-
rins are targets for therapeutic intervention.
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It is clear that pericyte apoptosis is a defining characteristic of diabetic retinopa-
thy and many factors mediate retinal pericyte dropout. A major consequence of this 
pericyte loss is microangiopathy, including microaneurysm, microhemorrhage, and 
nerve layer infarcts as a result of weakened capillaries (Valdez et al. 2014). Pericyte 
loss has also been shown to lead to reduced inhibition of endothelial cell prolifera-
tion in vivo (Hammes et al. 2002). An emphasis of future studies should be to target 
the pericyte in order to maintain retinal function and prevent blindness in people 
with type 2 diabetes.

 Renal Pericyte

The precise regulation of renal blood flow is necessary for maintaining ion gradi-
ents, waste disposal, and glomerular filtration in the kidney. Renal pericytes have 
been identified within the tubular system and vasa recta capillaries in the kidney 
where they have been shown to express α-SMA and play roles in regulating medul-
lary blood flow and stabilizing glomeruli (Park et al. 1997; Crawford et al. 2012; 
Kramann and Humphreys 2014; Lenoir et al. 2015). An isolated, perfused vasa recta 
model was used to determine that renal capillary constriction and dilation are medi-
ated by pericytes in response to vasoactive substances, including angiotensin-II, 
endothelin-1, nitric oxide, adenosine, and prostaglandin E2, released by various 
sources including endothelial cells, tubular epithelium, the hypothalamus, sympa-
thetic nerves, and parasympathetic nerves (Kennedy-Lydon et  al. 2013; Pallone 
1994; Pallone and Silldorff 2001). In addition to these vasoactive peptides and hor-
mones, nitric oxide and reactive oxygen species are also important for regulating 
renal blood flow in the microcirculation. Crawford et al. (Crawford et al. 2012) used 
an in situ intact kidney slice model to show that inhibition of nitric oxide causes 
pericyte-mediated vasoconstriction in the vasa recta; and conversely, that pericytes 
mediate vasodilation of the vasa recta in the presence of a nitric oxide donor.

Diabetic nephropathy is the most common cause of end-stage renal disease in the 
world (Remuzzi et al. 2002). Nephropathy develops in approximately 20–40% of 
patients with type 2 diabetes within 20 years of diabetes onset (Ritz and Orth 1999). 
While the exact mechanisms for the pathogenesis of diabetic nephropathy are 
unknown, it has been suggested that proteinuria, genetics, hypoxia, ischemia, and 
ultimately, inflammation contribute to kidney injury and disease pathogenesis 
(Fernandez Fernandez et al. 2012). Damage to the kidney results in an inflammatory 
response that is necessary for tissue repair and restoration of homeostasis. 
Dysregulated inflammation and abnormal tissue repair results in fibrosis, which is 
the first step in kidney disease development. Fibrotic kidney tissue becomes patho-
logical when kidney structure and function are compromised.

Pericytes are implicated as contributors to fibrosis and the pathogenesis of dia-
betic nephropathy. Protein kinase C activation is central to pericyte dysfunction 
during diabetic nephropathy pathogenesis (Inoguchi et  al. 2003). Research has 
shown that hyperglycemia activates protein kinase C in mesangial cells, which are 
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cells similar to pericytes, in the pathogenesis of diabetic nephropathy (Haneda et al. 
1997). Koyo and colleagues further implicated pericyte-like mesangial cell dys-
function in diabetic nephropathy by showing that PKCβ inhibition prevents detri-
mental mesangial expansion and attenuates glomerular dysfunction in a mouse 
model of type 2 diabetes (Koya et al. 2000). PKCβ activation induces reaction oxy-
gen species formation by NADPH oxidase enzymes. The increase in reaction oxy-
gen species then induces expression of transforming growth factor-β, which 
promotes excess extracellular matrix deposition and fibrosis. In support of this, 
Isono et al. (Isono et al. 2002) used a type 1 diabetes model to show that hypergly-
cemia activates TGF-β and SMAD signaling in the kidney leading to the promotion 
of profibrotic mesangial gene expression changes in diabetic nephropathy. Future 
studies should continue to examine the role of pericytes in diabetic nephropathy 
with special emphasis on identifying the specific contribution of genuine pericytes 
to fibrosis and kidney complications in type 2 diabetes.

 Peripheral Nerve Pericytes

Pericytes surround endoneurial microvessels within nerves and serve as important 
components of the blood–nerve barrier. Within the peripheral nervous system, the 
pericyte to endothelial cell ratio is higher than within organs without a blood barrier, 
such as the skeletal muscle (Miyoshi et al. 1979). Similar to the known roles of 
pericyte in the blood–retina barrier, endoneurial pericytes are functionally impor-
tant for maintaining and regulating the blood–nerve barrier. Peripheral nerve peri-
cytes were shown to express molecule transporters, including Glut-1 (Shimizu et al. 
2008). It has been suggested that transport proteins allow pericytes to cooperate 
with endothelial cells for the transportation of glucose and other molecules between 
the blood and organs. Peripheral nerve pericytes have also been shown to express 
growth factors that are commonly expressed by barrier-supporting astrocytes in the 
central nervous system; therefore, suggesting that pericytes serve to support the 
blood–nerve barrier in the periphery, which lacks astrocytes (Shimizu et al. 2011a). 
Shimizu and colleagues demonstrated that basic fibroblast growth factor released 
from peripheral nerve pericytes augments barrier formation through claudin-5, a 
major component of tight junctions, in peripheral nerve endothelial cells. 
Additionally, they also demonstrated that vascular endothelial growth factor, angio-
poietin- 1, and transforming growth factor-β secreted from pericytes decreased bar-
rier function of peripheral nerve endothelial cells through claudin-5. Recent research 
has shown that peripheral nerve pericytes maintain the basement membrane in the 
blood–nerve barrier through the production of fibronectin, collagen type IV, matrix 
metalloproteinase-2, and tissue inhibitor of metalloproteinases-1 (Shimizu et  al. 
2011b). It has also been suggested the peripheral nerve pericyte nerve growth factor 
and glial cell-derived neurotrophic factor may protect axons from inflammatory 
damage (Shimizu et al. 2011a).
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Diabetic neuropathy is a common complication of type 2 diabetes. In diabetic 
neuropathy, microangiopathy of the endoneurium is observed. The cause of diabetic 
neuropathy is thought to be due to a breakdown in the blood–nerve barrier. As key 
components of physiological blood–nerve barrier function, pericyte dysfunction is 
suggested to contribute to diabetic neuropathy (Giannini and Dyck 1995). Gianni 
and Dyck showed that endoneurial basement membrane hyperplasia and pericyte 
loss are characteristic in nerve biopsies from type 1 and type 2 diabetic patients. 
Accumulation of advanced glycation end products are one potential mechanism for 
diabetes-induced pericyte loss and blood–nerve barrier dysfunction (Wada and 
Yagihashi 2005). Advanced glycation end product accumulation has been observed 
in the nerves of diabetic patients (Wada and Yagihashi 2005). Shimizu et al. (2011b) 
showed that advanced glycation end products directly stimulate fibronectin and col-
lagen type IV production from peripheral nerve pericytes in vitro; thus, providing 
further evidence for type 2 diabetes to cause pericyte dysfunction that leads to dia-
betic neuropathy. Interestingly, Hayes et al. (2018) demonstrated a potentially novel 
therapeutic opportunity to treat diabetic neuropathy with skeletal muscle pericytes. 
In that study, skeletal muscle pericytes were intramuscularly transplanted into isch-
emic hindlimbs of type 2 diabetic mice. They showed that pericytes can differentiate 
into S100-positive Schwann cells in vivo when transplanted into both wild-type and 
type 2 diabetic mice (Fig.  12.2). Typically, type 2 diabetes impairs stem cell 
 therapies, but the evidence of in vivo differentiation of pericytes into Schwann cells 
in a type 2 diabetic mouse warrants further investigation into pericyte cell therapies 
for diabetic neuropathy.

Fig. 12.2 Pericyte differentiation into Schwann cells in ischemic skeletal muscle. GFP+ skeletal 
muscle pericytes were isolated from wild-type mice and then intramuscularly transplanted into the 
ischemic hindlimbs of wild-type C57Bl/6 or db/db mice to test for the ability of pericytes to aug-
ment postischemic neovascularization. Unexpectedly, GFP+ skeletal muscle pericytes differenti-
ated into S100 Schwann cells in vivo in both (A) wild-type and (B) db/db mice, indicating their 
potential for peripheral neuropathy therapy. Scale bar is 50 μm. “→” indicates “transplanted into.” 
This figure was reproduced from Hayes et al. 2018 AJP-Cell Physiology

K. L. Hayes



275

 Commentary and Trends

Pericytes are ubiquitous cells that are an integral component of microvascular 
health. Type 2 diabetes impairs the number and function of pericytes, resulting in 
microvascular dysfunction in many organs throughout the body, which manifests in 
many common complications for type 2 diabetic patients. In order to prevent the 
pericyte dropout and dysfunction that causes these complications, therapies should 
target mechanisms for maintaining pericyte coverage and function in the microvas-
culature. Interestingly, pericytes also have therapeutic potential for use in stem cell 
therapies, especially due to their ability to differentiate into terminal cell types. 
Therefore, they provide a unique opportunity for cell transplantation in an attempt 
to support the cells in the injured tissue for the treatment of diabetic complications, 
especially peripheral artery disease. However, therapeutic strategies must consider 
how to overcome the negative effect of the diabetic environment, including hyper-
glycemia, hyperinsulinemia and dyslipidemia, on the pericytes. In order to do this, 
preclinical basic and translational studies must be tested in clinically relevant mod-
els of type 2 diabetes.
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Abstract Pericytes are pluripotent cells found in the vascular wall of both capillar-
ies and large blood vessels. Pericytes are highly heterogeneous cells in terms of 
phenotype, tissue distribution, origin and functions, and they play an important role 
in the regulation of vascular morphogenesis and function. Pericytes were shown to 
be involved in tissue development and homeostasis, as well as in pathological pro-
cesses, including atherosclerosis. Both microvascular and macrovascular pericytes 
form the cellular network of the arterial wall and are actively involved in lipid accu-
mulation, growth, and neovascularization of the atherosclerotic plaque, local inflam-
mation and thrombosis. According to current understanding, pericytes originate 
from the multipotent stem cells capable of mesenchymal differentiation to oligopo-
tent lineages, such as osteoclasts, chondrocytes, and adipocytes, and also serve as 
mesenchymal local progenitors in tissues. Pericyte multilineage potential is funda-
mental for vascular pathology, including atherosclerotic lesion formation. Pericytes 
express various surface proteins that can be used for their identification in aid of 
diagnosis and therapeutic strategies for atherosclerosis and other vascular 
pathologies.
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 Introduction

Coronary artery disease (CAD) as a consequence of atherosclerosis is a leading 
cause of morbidity and mortality worldwide (Mozaffarian et al. 2015). Atherosclerotic 
lesion development occurs in the arterial subendothelial intima, especially in the 
regions of perturbed blood flow, such as vessel bifurcations. The pathological pro-
cess is characterized by an interplay between the endothelial dysfunction and sub-
endothelial lipid accumulation, resulting in chronic inflammation in the arterial wall 
(Tabas et al. 2015). In that regard, cell types that can participate in these processes, 
and therefore provide the potential targets for therapeutic intervention, attract spe-
cial attention. Among the vascular wall cell types, pericytes are the most enigmatic 
due to their phenotypic variety and multifunctionality. Pericytes are able to differ-
entiate into several cell lineages, and, therefore, contribute to the formation, matura-
tion, and homeostasis of the entire human vascular bed (Montiel-Eulefi et al. 2012). 
Moreover, pericytes vary functionally and morphologically between different 
organs and tissues, adding to the complexity of the vascular wall composition. Thus, 
for example, central nervous system (CNS) pericytes are functionally distinct from 
the peripheral blood vessels pericytes (Wang et al. 1992; Balabanov and Dore-Duffy 
1998). Pericyte content also varies considerably between different tissues and 
organs. For instance, these cells are more numerous in the walls of larger blood ves-
sels that must maintain higher blood pressure. According to Sims (2000), the endo-
thelial cell-to-pericyte ratio is the highest (1:1) in the CNS and retina. Significantly 
lower proportions were reported for lung and skin tissues (1:10) and skeletal mus-
cles (1:100). However, these cells have proven difficult to identify and quantify 
precisely due to their high heterogeneity and the lack of a single specific marker. 
Because of these challenges, the role of pericytes in health and disease remains to 
be studied in detail (Krueger and Bechmann 2010).

In this chapter, we will discuss the morphological and functional significance of 
pericytes in vascular homeostasis and their involvement in various aspects of ath-
erosclerosis pathogenesis, such as endothelial dysfunction, angiogenesis (neovascu-
larization of plaques), local inflammation, calcification, and thrombosis. We will 
also revise current and evolving concepts on the pericyte ontogeny.

 Functional and Morphological Features of Pericytes

In the blood vessel wall, pericytes are located in the proximity of the endothelial 
cells, in the basal membrane. They are characterized by a prominent round nucleus 
and a relatively small content of cytoplasm. Pericytes form contacts with endothe-
lial cells of the capillary wall, as well as with other cells and with each other, by 
means of long cytoplasmic processes. These contacts play important role in main-
taining the endothelial structure and function (Mazanet and Franzini-Armstrong 
1982; Rucker et al. 2000). Recent experiments revealed the regulatory and signal-
ling activities of pericytes towards the endothelium. For instance, pericytes were 
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shown to inhibit endothelial cell division via activation of TGF-β (Betsholtz et al. 
2005). Gap junction contacts formed by pericytes permit interchange of ions and 
small molecules, including N-cadherin, fibronectin, connexin and various integrins 
(Bergers and Song 2005; Armulik et al. 2005; Dore-Duffy and Cleary 2011). These 
endothelium–pericyte interactions are functionally associated with active regulation 
of blood flow throughout the body, hence, blood pressure that can be particularly 
important in vascular adaptation to hypotoxic injury. Moreover, in capillaries, peri-
cytes participate in controlling the blood flow by their contractile ability, conveyed 
by the expression of varying amounts of essential contractile proteins, such as actin, 
myosin, smooth muscle actin alpha (SMA-α), tropomyosin and desmin 
(Bandopadhyay et al. 2001). Pericyte participation in regulating the vessel diameter 
was observed in retinal and medullary microvessels in response to depolarization 
and neuronal activity (Wu et al. 2003; Peppiatt et al. 2006). Moreover, several vaso-
active molecules that regulate pericyte contraction and relaxation have been identi-
fied, including cholinergic α-2 and adrenergic β-2 receptors, angiotensin II and 
endothelin-1 (Bergers and Song 2005). Noteworthy, pericyte contractility can be 
important for regulation of capillary blood flow in pathological conditions, such as 
ischaemia (Yemisci et al. 2009; Hall et al. 2014). However, in the aorta and other 
large blood vessels, the contractile ability of pericytes is not that important, as the 
vascular tone is maintained by other mechanisms (Orekhov et  al. 2016a). 
Physiological functions of perivascular pericytes that are known to date are listed in 
Table 13.1.

The diversity of pericyte biological functions is reflected by the numerous abnor-
malities of these cells associated with pathological conditions. Vascular disorders, 
including atherosclerosis, are accompanied by such alterations as abnormal count 
and size of endothelial cell–pericyte interfaces, excess or deficiency in pericyte cov-
erage, and changes in pericyte contractility. These changes, in turn, lead to altered 
vessel sprouting, remodelling, maturation and stabilization (Gerhardt and Betsholtz 
2003; Hughes et al. 2006).

Table 13.1 Functions of perivascular pericytes

Function References

Angiogenesis and vessel 
stabilization

Betsholtz et al. (2005), Raza et al. (2010)

Capillary blood flow regulation Cuevas et al. (1984), Pallone et al. (1998, 2003), Stefanska 
(2013)

Vascular morphogenesis, maturation 
and remodelling

Leveen et al. (1994), Hellstrom et al. (2001), Chen et al. 
(2007), Herman (2010), Warmke et al. (2016)

Vascular permeability Glentis et al. (2014)
Maintenance functional integrity of 
the blood–brain barrier

Dohgu et al. (2005), Peppiatt et al. (2006), Koh et al. 
(2008), Krueger and Bechmann (2010), Al Ahmad et al. 
(2011)

Blood coagulation (thrombosis) Bouchard et al. (1997), Kim et al. (2006), Dulmovits and 
Herman (2012)

Lymphocyte activation Thomas (1999), Bose et al. (2013)
Phagocytosis Guillemin and Brew (2004)
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 Methods of Pericyte Identification

Being pluripotent heterogeneous cells, pericytes are difficult to identify in organs 
and tissues. Only a few markers of pericytes have been established, and none of 
them is universal, hence specific for all pericyte subtypes and under any circum-
stances. The expression patterns of the pericyte antigens are tissue-specific and can 
be up- or downregulated in pathological conditions. Moreover, the expression of 
some of the markers depends on the developmental stage of a blood vessel. Cell 
culture conditions can also influence the expression of marker proteins in pericytes 
cultured in vitro.

Many of the proteins expressed by pericytes are expressed in other cell types as 
well. The most obvious example is smooth muscle actin (SMA-α), which is a typi-
cal protein in vascular smooth muscle cells (SMCs) (van Dijk et al. 2015). It was 
found that vascular pericytes are often positive for SMA-α, but SMA-α-negative 
pericytes can also be observed (Bandopadhyay et al. 2001). For instance, a popula-
tion of SMA-α-positive intimal cells was found that expressed CD68, protein atypi-
cal for vascular SMCs, which is usually regarded as a macrophage marker (Andreeva 
et al. 1997b). Interestingly, the ratio of SMA-α+CD68+ (double positive) cells was 
increased in atherosclerotic lesions, as well as in primary cell culture exposed to 
atherogenic-modified low-density lipids (LDL) (Orekhov et  al. 1998). Another 
example is platelet-derived growth factor receptor beta (PDGFR-β), which, apart 
from pericytes, is also present in fibroblasts, astrocytes, and some tumour cells 
(Lindahl et al. 1997). Furthermore, pericyte-like cells in the human aortic intima 
express S-100 and CD1, which are common for dendritic cells (Bobryshev and Lord 
2000; Bobryshev et al. 2011).

Hence, immunocytochemical identification of pericytes should be performed 
using combinations of markers. The markers proposed for common pericyte identi-
fication include SMA-α, PDGFR-β, aminopeptidase A and N (CD13), neuron-glial 
2 (NG2), and desmin (Armulik et al. 2011). Other potential pericyte markers are 
CD146, endoglin, non-muscle myosin, nestin, vimentin, O-sialoganglioside 3G5, 
and melanoma chondroitin sulphate proteoglycan 2A7 (Nazarova et  al. 1995; 
Morikawa et al. 2002; Dondossola et al. 2013; Ivanova et al. 2015; Rossi et al. 2016; 
Chen et al. 2017).

 Origin of Vascular Pericytes

Lineage-tracing studies showed that pericytes’ ontogeny is rather complex. Pericytes 
are considered to be pluripotent stem cells that exhibit multilineage developmental 
features of mesenchymal stromal stem cell (MSC). MSCs are involved in the main-
tenance of high turnover tissues like liver, skin, skeletal muscles, adipose tissue, and 
dental pulp. Furthermore, MSC participates in neurogenesis, which probably con-
firms the neuroectodermal origin of CNS pericytes (Nakata et al. 2017). Similarly, 
during developmental stages, neuroectodermal cells can possibly differentiate into 
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vascular SMCs of embryonic cerebral vessels (Korn et  al. 2002). To achieve the 
alignment in MSC identification across different studies, International Society for 
Cellular Therapy created a position statement formulating the MSC minimum regu-
lar criteria. First, MSCs are adherent to plastic when maintained in standard culture 
conditions. Second, MSCs can be characterized by specific surface antigens (posi-
tive for CD105, CD73, and CD90 and negative for CD45, CD34, CD14, CD11b, 
CD79α, CD19, or HLA-DR). Third, MSCs are able to differentiate into osteoblasts, 
adipocytes, and chondroblasts in vitro (Dominici et al. 2006).

It was shown that vascular pericytes may serve as a source for local mesenchy-
mal progenitor cells in adults (Crisan et al. 2007). Numerous in vivo and in vitro 
experiments demonstrated pericyte ability for differentiation into several lineages, 
giving rise to osteoblasts, chondrocytes, adipocytes, SMCs, fibroblasts, and Leydig 
cells (Kirton et al. 2006; Birbrair et al. 2015). Pericytes can give rise to multiple 
mesodermal tissues in situ, in response to PDGFR-β (Bouacida et al. 2012).

Direct relationship between MSC and perivascular pericytes was established 
based on the common expression markers and differentiation abilities of these cell 
types. This supported the point of view on pericytes as potential progenitor cells 
with wide differentiation capacity continuously present in developed adult tissues 
(Chen et al. 2009). In this regard, it is important to understand whether MSC, mul-
tipotent adult progenitor cells (MAPC), muscle-derived stem cells (MDSC), and 
adipose tissue-derived stem cells share a common progenitor in multiple developed 
organs. Studies of these progenitor cell lineages were hindered by the fact that all of 
them have only been identified and studied in primary cultures of donor tissues.

Several independent studies described novel subsets of endothelial cells in 
embryonic tissues that contribute to blood vessel formation and develop into non- 
vascular cell lineages promoting post-natal growth and regeneration of tissues. For 
instance, vascular endothelium generating embryonic haematopoietic cells and plu-
ripotent mesoangioblasts have been derived from the aorta and other blood vessels 
of the embryo (Oberlin et al. 2002; Zambidis et al. 2006; Chen et al. 2009; Zheng 
et al. 2007).

The relationship between pericytes and MSCs was studied in more details both 
in situ and in  vitro (Crisan et  al. 2008). To that end, a combination of markers 
expressed by perivascular pericytes in human foetal and adult organs was used. 
Pericytes were identified as cells positive for CD146, NG2, PDGFRβ, and ALP and 
negative for CD34, CD45, vWF, and CD144. It was found that human perivascular 
cells extracted from various tissues and brought to culture gave rise to adherent, 
multilineage precursor cells that exhibited apparent MSC features and could dif-
ferentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. These 
findings allowed making a provocative speculation that all MSCs are pericytes. The 
multilineage potential of pericytes may contribute to muscle regeneration, as well as 
fat accumulation (Birbrair et al. 2013; Kostallari et al. 2015).

However, at present, the understanding of these mural stem/progenitor popula-
tions, as well as their potential biologic function, is unclear. The hypothesis that any 
of these populations are associated with a stem cell niche remains to be supported 
experimentally (Kovacic and Boehm 2009; Murray et al. 2014).
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 Role of Pericytes in Atherosclerosis

Initially, pericytes were believed to be present only in capillaries, where they par-
ticipate in contractility and angiogenesis. However, further studies revealed the 
presence of pericytes in the vascular wall of large arteries and veins, where they 
populate the subendothelial layer of the intima (Orekhov et al. 2014; Juchem et al. 
2010). In these tissues, pericytes can be distinguished as stellar-shaped cells with 
multiple processes that form contacts with each other and with the adjacent endo-
thelial cells, thereby creating a cellular network of the intima that may play impor-
tant regulatory function. As mentioned above, in large blood vessels, the contractile 
function of pericytes is essentially lost, which is reflected by reduced or absent 
expression of SMA-α (Orekhov et  al. 2016a). Moreover, in large blood vessels, 
pericytes are also present as part of vasa vasorum, the capillaries of the vascular wall 
(Andreeva et al. 1998; Campagnolo et al. 2010; Juchem et al. 2010).

Atherosclerotic lesion development is associated with profound qualitative and 
quantitative changes in the cellular composition of the affected site. Most of these 
changes occur in the innermost layer of the intima, involving the endothelium and 
subendothelial space. Microscopic studies revealed that in the affected area, the cel-
lular network becomes disrupted, with reduction in cell-to-cell interaction ratio and 
the number of gap junctions. Such disruption is likely to be a consequence of lipid 
accumulation (Orekhov et  al. 2016a). The extent of the intercellular interactions 
through the gap junctions can be estimated by the expression of cell surface protein 
connexin 43 (Cx43), which is an essential component of the intercellular contacts. 
In atherosclerotic lesions, the number of Cx43 plaques per cell was greater in lipid- 
free cells, compared to lipid-laden cells, and was decreasing towards the lumen, 
which was not the case in the grossly normal intima. These observations may indi-
cate that intracellular lipid accumulation can have a causative role in pathological 
pericytes alterations and cellular network disruption (Orekhov et al. 2016a).

Early studies showed that atherosclerotic changes in the vascular wall are associ-
ated with the increase in a number of 3G5-positive pericyte-like cells in the 
proteoglycan- rich layer of the aortic intima (Nayak et  al. 1988). Morphological 
analysis demonstrated that atherosclerotic lesions had a six-fold increase in stellate 
cell (likely pericytes) count in comparison to grossly normal areas, while the num-
ber of elongated cells (likely SMCs) and total cell count were increased by two-fold 
(Orekhov et al. 2014). A direct link was confirmed between the increased number of 
stellate cells and the content of cholesteryl esters and total lipids in the vascular wall 
(Orekhov et al. 2016b).

At advanced stages of atherosclerotic lesion development, neovascularization of 
the plaques becomes evident and plays an important role in the plaque growth. This 
process is likely to be mediated by T-cadherin signalling (Moreno et al. 2012). As 
stated by Collett and Canfield (2005), angiogenesis may influence atherosclerotic 
lesion formation in the following ways: (1) the expansion of new blood vessels in 
lipid-laden plaques modifies artery permeability, when thickening diminishes oxy-
gen diffusion; (2) albumin and fibrinogen leaking into the artery wall contribute to 
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the plaque formation; (3) intimal microvessels are associated with haemorrhagic 
sites and ruptures on the plaques; (4) additionally, the presence of inflammatory 
cells, i.e. leukocytes, macrophages, and mast cells around neovessels of lipid-rich 
plaques, is indicative that these new vessels are immediately involved in the recruit-
ment of inflammatory cells, therefore, lesion progression, calcification, and 
destabilization.

The finding that pericytes can differentiate into osteoblasts and chondrocytes is 
suggestive that they may be involved in the maladaptive ectopic calcification, occur-
ring in atheromatous vessels, where they act as a source of osteoprogenitor cells in 
the lesions. This process is followed by matrix remodelling and increased recruit-
ment of calcifying vascular cells (CVCs) (Collett and Canfield 2005). Interestingly, 
CVCs were identified in bovine aortic media as a phenotypic modulation of SMCs 
(Steitz et al. 2001). Similar to pericytes, CVCs also have the potential to differenti-
ate along several mesenchymal cell lineages, but with a distinct differentiation pat-
tern. Thus, CVCs may obtain osteogenic and chondrogenic phenotypes in the 
arterial intima, but, unlike pericytes, they do not reveal any potential for adipogenic 
differentiation. It can be hypothesized that CVCs may represent second-generation 
pluripotent cells that are transitional between the precursor and terminally differen-
tiated mesenchymal cells (Tintut et al. 2003).

Ectopic calcification of blood vessels is a common feature of advanced athero-
sclerotic plaques. In association with pericytic chondrogenesis and osteogenesis, 
proteins, including osteopontin, osteoprotegerin, bone sialoprotein, matrix Gla 
protein, Axl, alkaline phosphatase, and bone morphogenetic protein-2 (BMP-2) 
and BMP-4, were detected in the aortic valve atherosclerotic lesions (Rajamannan 
et al. 2003).

Activation of adventitial cells was described in the following conditions: vein 
grafting, hypoxia, and hypertension. Under physical stress, adventitial cells may 
differentiate into myofibroblasts that migrate into the inner layers of the tunica 
adventitia, followed by the release of paracrine factors regulating vascular remodel-
ling (Haurani and Pagano 2007). Corselli et al. (2012) demonstrated two indepen-
dent perivascular MSC progenitors: pericytes in microvessels and adventitial cells 
around larger vessels persist, and hence adventitial cells are able to gain pericytes- 
like phenotype. Furthermore, Andreeva et al. (1997a) indicated that pericyte-like 
cells account for over 30% of total cell count of the intima. Also, they have pointed 
out that a network of 3G5 antigen-positive pericyte-like cells is present mainly in 
the subendothelial layer. These findings suggested that functions of macropericytes 
are determined by subendothelial localization and are similar to those of the capil-
lary pericytes. In addition, 3G5-positive pericyte-like cells have been identified in 
the bovine aorta, in the human unaffected intima and in calcified atherosclerotic 
plaques (Bostrom et al. 1993). It should be noted that branching regions of larger 
vessels are most abundant in pericyte-like cells (Moore and Tabas 2011). In addi-
tion, Nicosia (2009) reported that pericytes contribute to organogenesis of the aorta 
in embryos.

It is well known that atherosclerotic lesion formation is triggered by the circulat-
ing modified LDL that provoke endothelial damage and accumulate in the arterial 
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wall. In turn, distorted morphology of the endothelial cells, frequently observed in 
the atherosclerosis-affected sites, compromises their function leading to the inade-
quate vasoconstriction, leukocyte infiltration, coagulation, increased permeability 
that facilitates LDL entry in the subendothelial space, and accelerated proliferation 
or apoptosis (Groschner et al. 2012; Favero et al. 2014). It is worth mentioning that 
the atherogenic effects of modified LDL are not limited to lipid accumulation. In 
fact, the numerous studies have demonstrated pro-apoptotic effects of oxidized 
LDL (oxLDL), i.e. the induction of oxidative stress that can disturb endothelial 
function and, in turn, promote atherosclerotic lesion formation (Mollace et al. 2015; 
Salvayre et al. 2002). In addition, the exposure to oxLDL caused apoptosis in cul-
tured multipotent progenitor cells through their membrane damage (Li et al. 2014).

Since pericytes reside immediately below the endothelium and are essential for 
maintaining endothelial function (van Dijk et al. 2015), it is possible that they are 
engaged in the atherogenesis-induced endothelial alterations initiating atheroscle-
rotic plaque formation (Fig. 13.1). It was established that lipid accumulation by the 
subendothelial cells of human aortic intima impairs cell-to-cell communications 
through the gap junctions in the proteoglycan-rich layer (Andreeva et  al. 1991; 
Rekhter et al. 1993; Juchem et al. 2010). Furthermore, assuming that there is a con-
nection between intracellular lipid content and the rate of cell-to-cell communica-
tion, Andreeva et  al. (1995) using fluorescent dye injected into cells with and 
without visual lipid inclusions demonstrated that the proportion of lipid-free cells 
communicating via gap junctions was similar to that of cells cultured from grossly 
normal areas of intima. At the same time, the rate of intercellular communication of 
cells with lipid inclusions was two-fold lower, compared to that of lipid-free cells. 
In addition, the presence of lipid-rich cells resembling so-called foam cells was 
typical for cultures derived from atherosclerotic lesions (Andreeva et al. 1995).

It can be hypothesized that functional changes of the gap junctions are one of the 
causes of atherosclerosis-related breakdowns of cellular networks formed by the 
proteoglycan-rich layer intimal pericytes. However, the exact role of pericytes in the 
endothelial dysfunction associated with lipid accumulation is still vague. 
Endothelium is likely to be damaged from the luminal side by the disturbed blood 
flow, especially at branching sites, where blood flow is non-linear and undergoing 
shear stress leads to augmented inflammatory signalling and inflammatory cell 
recruitment (Pantakani and Asif 2015).

Based on the assumption that intracellular lipid accumulation caused by modi-
fied LDL is the crucial event in atherogenesis, it was suggested that aortic pericytes 
are capable of active lipid accumulation in the subendothelial layer of the arterial 
intima that changes their phenotype from dormant to proliferative (active) (Ivanova 
and Orekhov 2016). Moreover, when activated, pericytes may turn into aberrant dif-
ferentiation to chondrogenic, osteogenic, macrophage, and myofibroblast lineages 
contributing to the pathogenesis of atherosclerosis and vascular calcification. Thus, 
it can be suggested that upon formation of the atherosclerotic lesions, the functional 
state of the pericytes in the proteoglycan-rich layer of the intima is changed and 
associated with variations in antigenic expression (Orekhov and Bobryshev 2015).
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Accordingly, the expression of 2A7 antigen is attributed to activated pericytes. 
That was proven by the presence of 2A7+ cells in atherosclerotic plaques using anti-
 2A7 antibody that adheres to activated pericytes, while no 2A7+ cells were identi-
fied in normal intima (Orekhov and Bobryshev 2015).

Moreover, acquiring the phagocytic phenotype, pericytes express CD68 
macrophage- associated antigen, which is a scavenger receptor. These scavenger 
receptors of pericytes appear to promote uptake and accumulation of LDL, indicat-
ing their participation in active phagocytosis (Shashkin et al. 2005; Song et al. 2011; 
Cochain and Zernecke 2015). Such phagocytic ability of pericytes, i.e. engulfing of 
LDL particles, can lead to the development of foam cells and thickening of the arte-
rial wall. In line with this suggestion, lipid-laden, stellate pericyte-like cells enriched 
by synthesizing organelles were found in atherosclerotic plaques (Orekhov et al. 
1986; Andreeva et al. 1991, 1997b).

Further lipid accumulation via phagocytosis aggravates the situation in the ath-
erosclerotic lesion leading to segregation of cells, breakdown of cell-to-cell con-
tacts, and disruption of the cellular network. In addition, like fibroblasts, pericytes 
can rapidly proliferate accelerating thickening of the arterial wall and contributing 
to the extracellular matrix synthesis (Ivanova and Orekhov 2016).

The most pronounced changes associated with atherosclerosis occur in the 
proteoglycan- rich layer of the intima: lipid deposition and thickening determined by 
the accumulation of all types of collagen fibres with disrupted orientation, espe-
cially in the fibrous cap (Andreeva et  al. 1997a, 1997b; Ivanova et  al. 2015). 
Microscopic studies of atherosclerosis-affected and grossly normal aortic intima 
showed a number of distinct features: the presence of lipid droplets and vesicles 

Endothelium
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Basal membrane
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Internal limiting
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Fig. 13.1 Schema is presenting the organization of the arterial intima. The proteoglycan-rich layer 
containing a heterogeneous population of cells, including macrovascular pericytes, is located just 
below the endothelial monolayer. Intimal pericytes forming a network of cells linked via gap junc-
tions. The muscular-elastic layer, formed by elongated contractile smooth muscular cells, is imme-
diately below the proteoglycan-rich layer. Note: World Journal of Cardiology. 2015;7(10):583–593. 
Doi: https://doi.org/10.4330/wjc.v7.i10.583
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between the interstitial collagen fibres, thickened proteoglycan-rich layer with 
increased collagen content, and altered longitudinal alignment of collagen fibres 
was accompanied by the formation of thick capsules around subendothelial cells 
(Orekhov et  al. 2016b). Notably, the total lipid content in the proteoglycan-rich 
layer was increased by 3.2- and 8-fold in fatty streaks and atherosclerotic plaques, 
respectively, in comparison to healthy tissue (Andreeva et al. 1998). The highest 
content of (up to 25%) lipid-laden cells was found in fatty streaks located in the 
upper section of the proteoglycan-rich layer, encompassing almost two-thirds of it 
(Orekhov and Bobryshev 2015).

Thus, microscopic analysis of intimal thickness along the vessels affected with 
atherosclerosis, compared to normal tissues, revealed that proteoglycan-rich layer 
was 2- and 4-fold thicker in fatty streaks and atherosclerotic plaques, respectively 
(Orekhov et al. 2016b). In contrast, muscular-elastic layer remained intact in fatty 
streaks and was only slightly thickened in the atherosclerotic plaque areas (Orekhov 
et al. 2016b). Taken together, these observations clearly indicated that, governed by 
lipid and collagen accumulation, intima of atherosclerosis-affected arteries was 
abnormally and considerably thickened in the proteoglycan-rich layer. In addition, 
lipid and collagen accumulation determine the severity of lipidosis and fibrosis 
associated with atherosclerosis. Thickening of the proteoglycan-rich layer of the 
intima is the major cause of the arterial stenosis. Continuously growing plaque nar-
rows the arteries leading to the severe ischaemia, which can have severe conse-
quences. Even more dangerous is potential plaque rupture that in many cases can be 
lethal, leading to acute coronary syndrome, stroke and atherothrombosis (Chistiakov 
et al. 2015).

Besides, lipid accumulation triggers cellular expansion of the intimal cells. 
Comparative studies of grossly normal aortic intima and atherosclerosis-affected 
regions demonstrated that alterations of the proteoglycan-rich layer in the athero-
sclerotic plaque were associated with the increased cell count (Orekhov et  al. 
2016b).

According to the current knowledge, the increased cellularity in the proteoglycan- 
rich layer of atherosclerotic intima is caused by the recruitment of circulating 
immune cells and/or enhanced proliferation of the resident intimal cells (pericytes). 
The highest number of cells was detected in lipofibrous plaques. Intimal resident 
cells account for a majority of the intimal cell population (84-93%), therefore, the 
rise in their number determines the increase in the cellularity of atherosclerotic 
lesions.  Nevertheless, the level of resident intimal cell proliferation is vari-
able depending on plaque developmental stage and location (Orekhov et al. 2016b). 
Thus, the amount of resident proliferating cells in the lipid-laden atherosclerotic 
lesions, i.e. the early-stage lesions (fatty streak and fibrolipid plaques), was 10- to 
20-fold greater than in uninvolved intima. Also, the number of resident proliferating 
cells in fibrous plaques, which are the later stage lesions, was detected to be lower 
than in lipid-enriched lesions, but considerably higher than in uninvolved intima 
(Orekhov et al. 1998). Moreover, the inflammatory cell proliferation is also present 
in the vascular wall; however, the proliferative index of inflammatory cells does not 
change in atherosclerotic lesions. Apparently, increased number of the inflamma-
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tory cells is a result of their migration into subendothelial intima from the circula-
tion. In contrast to pericytes, proliferative activity of inflammatory cells is not 
stimulated in atherosclerosis (Orekhov et al. 2010). Hence, these findings indicated 
that the increase in cellularity of the arterial intima is a result of proliferative ‘splash’ 
of resident cells in lipid-rich lesions (fatty streaks and fibrolipid plaques) and the 
migration of the inflammatory cells. Additionally, robust data confirming the close 
correlation between the number of pericytes and the content of intimal lipids were 
obtained. The correlation coefficients between the number of pericyte-like cells and 
collagen content, and intimal thickness were more significant than between other 
cell types of the intima (Orekhov and Bobryshev 2015). Relying on the findings that 
proliferating pericytes to a large extent are responsible for the increased cellularity 
and also are associated with lipid and collagen accumulation in the atherosclerosis 
affected site, they were suggested to be the key cells driving the process of intimal 
medial thickness, and, consequently, the growth of atherosclerotic lesion.  

 From this point of view, the main manifestations of atherosclerosis are accom-
panied by the following changes on the cellular level: lipid accumulation leading to 
the development of foam cells, local increase in the cell count as a result of cell 
proliferation and migration, accumulation of connective tissue matrix, and disrup-
tion of intercellular communication. These functional alterations of intimal cells 
were shown to be related to the stages of atherosclerotic lesion development. Thus, 
as described by Orekhov et al. (2016b), lipidosis, proliferative activity and collagen 
synthesis were presented in a bell-shaped manner. Proliferative activity and colla-
gen accumulation were increased from a low or even zero level in uninvolved intima 
to the maximum in lipid-rich lesions (fatty streak and atheroma), but declined in 
fibrous plaques. Cellular lipidosis was gradually increased from uninvolved intima 
to fibrolipid plaques and then decreased in fibrous plaques, becoming lower than in 
uninvolved intima. Notably, the intracellular communication rate was on a constant 
decrease along the lesion progression, down to the zero level in fibrous plaques, 
where the cellular network was disrupted, compared to uninvolved intima, where 
integrity of cell network was maintained.

Furthermore, it was demonstrated that lipid accumulation caused by circulating 
LDL can orchestrate pro-inflammatory environment in the arterial intima, stimulat-
ing both adaptive and innate immunity (Hartvigsen et al. 2009). Consequently, the 
atherosclerotic plaque growth is linked to the local inflammation. Microscopic stud-
ies made it evident that upon lipid accumulation, pericytes, along with macrophages 
and dendritic cells, express antigen-presenting complexes (APC) and  that 
is  indicative of their involvement in the antigen presentation and the inflammatory 
progression in the arterial wall (Ivanova et al. 2015) (Fig. 13.2).

Thus, a population of stellate subendothelial cells expressing HLA-DR compo-
nent of the major histocompatibility complex class II (MHC II), secreting pro- 
inflammatory cytokines and chemokines positively correlated with a number of 
immune-inflammatory cells in the atherosclerotic lesion (Handunnetthi et al. 2010; 
Bobryshev et al. 2011; Psaltis and Simari 2015).

Apart from lipid accumulation, intimal thickening and inflammation, the pro-
cesses that directly contribute to atherosclerotic lesion development, pericytes play 
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additional roles in this pathology, including neovascularization, plaque calcification 
and regulation of thrombogenesis. In atherosclerotic lesions, pericyte involvement 
in angiogenesis is mediated by upregulated expression of T-cadherin. This process 
is stimulated via activation of Erk1/2 tyrosine kinase pathway and NF-B nuclear 
translocation in pericytes, followed by the inhibition of adipogenic and activation of 
their chondrogenic differentiation pathways. Inhibition of adipogenic and stimula-
tion of chondrogenic differentiation is regulated by Wnt/beta-catenin pathway 
(Kirton et  al. 2007) and enhanced with transforming growth factor (TGF)-β3 
expressed by macrophages, foam cells and vSMCs in the atherosclerotic plaque 
(Bobik 2006). Also, TGF-β3 signalling is associated with augmented glycosamino-
glycan accumulation in the extracellular matrix during the development of fatty 
streaks and subsequent atheroma (Farrington-Rock et al. 2004).

Moreover, pericytes can be recruited to neovessels in atherosclerotic plaques via 
hepatocyte growth factor signalling activation triggering c-Met-PI3K/Akt pathway 
(Ivanova et al. 2015).

In addition, vascular calcification-associated factor expression was detected in 
the intentional pericytes promoting vascular calcification in the pro-inflammatory 
environment of the plaque (Ivanov et al. 2001; Takeuchi and Ohtsuki 2001).

Pericyte

Monocyte/
macrophage

Dendritic
cell

Smooth
muscular
cell

Phagocytosis, lipid
accumulation

Cytokine secretion Antigen presentation

Fig. 13.2 Scheme is presenting the roles of arterial intimal cells in atherogenesis. Several types of 
arterial intimal cells participate in lipid accumulation and formation of foam cells. Macrophages 
and intimal pericytes accumulate lipids via their phagocytic activity and participate in the local 
inflammatory process secreting pro-inflammatory cytokines  and chemokines. Dendritic cells, 
along with macrophages and intimal pericytes, express antigen-presenting complexes, further pro-
moting the local inflammatory process. Note: World Journal of Cardiology. 2015;7(10):583–593. 
Doi: https://doi.org/10.4330/wjc.v7.i10.583
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At advanced stages of atherosclerotic plaque development, excessive expression 
of thrombogenic tissue factor by the subendothelial cells (pericytes) in the 
endothelium- uncovered arterial wall results in platelet aggregation and the forma-
tion of so-called fibrous cap covering the plaque (Ardissino et al. 2001; Orekhov 
et al. 2014). According to current understanding, fibrous cap has protective func-
tion, insulating the plaque from the blood flow. Its damage, however, can rapidly 
lead to thrombus formation, often with severe consequences.

 Commentary on Likely Future Trends and Directions

Pericytes, as a part of cellular re-arrangements in the vascular wall, play a crucial 
role in atherosclerotic lesion formation. However, many questions about this enig-
matic cell type remain unanswered. It would be important to further explore the 
relationship between MSC and pericytes in anticipation of unequivocal perceptions 
of pericyte origin. Furthermore, reliable pericyte markers or their combinations 
should be established. Such markers may serve as potential molecular targets in aid 
of diagnosis and therapeutic strategies in atherosclerosis and other vascular patholo-
gies. Moreover, pericytes remain interesting potential points of therapeutic inter-
vention, since they likely orchestrate the key atherosclerosis-related processes at the 
local tissue level, including local inflammation, plaque development, calcification 
and fibrosis, and further plaque growth accompanied by neovascularization.
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Chapter 14
Pericytes in Chronic Lung Disease

Bushra Shammout and Jill R. Johnson

Abstract Pericytes are supportive mesenchymal cells located on the abluminal 
surface of the microvasculature, with key roles in regulating microvascular 
homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of 
pericytes with progenitor cell function has recently been identified, with evidence 
demonstrating the capacity of tissue-resident pericytes to differentiate into the 
classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the 
regenerative capacity of these cells, studies have shown that pericytes play crucial 
roles in various pathologies in the lung, both acute (acute respiratory distress 
syndrome and sepsis-related pulmonary edema) and chronic (pulmonary 
hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic 
obstructive pulmonary disease). Taken together, this body of evidence suggests that, 
in the presence of acute and chronic pulmonary inflammation, pericytes are not 
associated with tissue regeneration and repair, but rather transform into scar-forming 
myofibroblasts, with devastating outcomes regarding lung structure and function. It 
is hoped that further studies into the mechanisms of pericyte-to-myofibroblast 
transition and migration to fibrotic foci will clarify the roles of pericytes in chronic 
lung disease and open up new avenues in the search for novel treatments for human 
pulmonary pathologies.
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 Lung Pericytes: Identification, Function, and Ultrastructure

The lung is a highly vascularized organ, with a large surface area of approximately 
90 m2 dedicated to effective gas exchange (Donoghue et al. 2006). As in the rest of 
the body, the entire pulmonary vascular system is lined by a continuous layer of 
endothelial cells surrounded by a thin basement membrane separating the endothelial 
cell vascular lining from the underlying tissue (Armulik et al. 2011). This basement 
membrane is composed of proteins including laminins, collagens, and proteoglycans 
(Armulik et  al. 2011); pericytes are embedded within this matrix and associated 
directly with endothelial cells (Damianovich et al. 2013). The extensive vascular 
bed of the lung is closely associated with the alveoli to allow for gas exchange. 
Based on stereological studies, 87.5% of the lung volume is taken up by the 
parenchyma (alveoli and associated capillaries), while only 5.4% is taken up by 
larger vessels and 7.1% is the bronchial volume (Wiebe and Laursen 1995). 
Moreover, the lung is unique in its dual blood supply, as the systemic bronchial 
arteries supply oxygen to the trachea and bronchi, including the bronchial lamina 
propria and epithelium, while the pulmonary circulation arising from the right 
ventricle supplies the bulk of the lung parenchyma (McCullagh et al. 2010). Between 
the epithelial (alveoli) and endothelial (vasculature) layers of the lung parenchyma 
lies an elastic matrix containing the lymphatic vasculature, resident and migratory 
leukocytes, as well as a poorly characterized population of mesenchymal stromal 
cells, putatively identified as a mixture of fibroblasts and pericytes. These cells are 
important for maintaining healthy lung structure and function, but have also been 
implicated in pathological processes such as pulmonary edema, fibrosis, tumor 
formation, hypertension, and microangiopathy (Bagnato and Harari 2015; Barron 
et al. 2016).

In his initial description of pericytes in the lung parenchyma, Weibel (1974) used 
electron microscopy to demonstrate the presence of pericytes in the lungs of humans, 
dogs, guinea pigs, and rats. Lung pericytes were identified by their close association 
with the capillary basement membrane and branched cytoplasmic processes forming 
complex interactions with endothelial cells, similar to those observed in venular 
smooth muscle cells, suggesting a phenotypic continuum of vascular mesenchymal 
cells. Weibel also observed the presence of pericytes associated with alveolar 
capillaries, but at a lower density compared to systemic capillaries and with fewer 
connections with endothelial cells (Weibel 1974).

Various markers for pericytes have been identified and found to be useful in 
labeling pericytes in a number of organs, including the lung (Kramann et al. 2015; 
Paiva et  al. 2018): CD146, CD13, platelet-derived growth factor receptor β 
(PDGFβR), neural glial antigen 2 (NG2), RGS5 and 3G5, and contractile 
myofilaments (α-smooth muscle actin and SM22) as well as intermediate filaments 
(desmin and vimentin) (Johnson et al. 2015; Crisan et al. 2008). Similar to pericytes 
throughout the body, pulmonary pericytes express contractile myofilaments 
(α-smooth muscle actin and SM22) as well as intermediate filaments (desmin and 
vimentin), but the expression of these filaments varies according to the type of blood 
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vessel. In the mouse trachea, pericytes associated with arterioles express high levels 
of both α-SMA and NG2, whereas venule-associated pericytes do not express NG2 
and capillary-associated pericytes express NG2 but not α-SMA; all pulmonary 
pericytes express the intermediate filaments desmin and vimentin (although at 
variable levels) as well as the key signaling molecule PDGFRβ (Johnson et al. 2015; 
Crisan et al. 2012).

With the advent of genetic labeling techniques, the identification of lung peri-
cytes and the roles they play in mediating lung disease has been greatly facilitated. 
These genetic models include a Cspg4-dependent Cre lineage-tagging system, but 
pericyte labeling was highly inefficient in this study (Rock et al. 2011). Another 
study used an Abcg2-dependent Cre labeling system to identify a subpopulation of 
ABCG2+ mesenchymal stem cells in the lung, distinct from NG2 pericytes (Marriott 
et al. 2014). However, similar to a study in which a Foxd1-dependent Cre mouse 
(Hung et al. 2013) was used to identify pericytes, the presence of these markers in 
other mesenchymal cell types complicates the differentiation of a distinct pericyte 
population; the latter study identified collagen-I(α)1-expressing cells as a population 
of fibroblasts distinct from pericytes (Hung et al. 2013). Genetically labeling Gli1+ 
cells may also be an effective method of identifying lung-resident pericytes, as these 
cells have been found to express MSC markers, undergo trilineage differentiation, 
and exhibit colony-forming capacity, representing a small subset of the lung 
PDGFRβ+ cell population, which presumably also includes fibroblasts (Kramann 
et al. 2015). More recently, our group used a DsRed-labeling strategy to identify the 
location and pathological roles of NG2+ pericytes in the lung (Johnson et al. 2015).

Similar to pericytes associated with other vascular beds, pulmonary pericytes 
have been identified as a subset of mesenchymal progenitor cells. In vitro, pericytes 
isolated from the lungs display standardized mesenchymal stem cell properties 
established by the International Society of Stem Cell Research, including adherence 
to plastic, differentiation capacity (into chondrocytes, adipocytes, and osteocytes), 
positive expression of CD105, CD72, and CD90, and negative expression of CD45, 
CD34, CD11b, CD14, CD79a, and HLA-DR. Notably, murine lung pericytes also 
demonstrate positive expression of CD106 and Sca-1 and the absence of CD45, 
CD11b, and CD31 expression (Wong et al. 2015).

Based on numerous discoveries made by employing lineage tracing, techniques 
conditional ablation, and targeted gene deletion of mesenchymal cell subpopulations 
in rodents, it is clear that pulmonary pericytes are crucial for forming and maintaining 
the lung vascular network, sensing damage, recruiting inflammatory cells, and 
remodeling the extracellular matrix in cases of persistent inflammation and aberrant 
wound repair. Functional alterations in the pulmonary vascular bed have been 
observed in a plethora of lung diseases. Dysfunctional pericyte–endothelial cell 
interactions are a possible focal point at which microvascular dysfunction and 
vasculopathy accompanying disease progression may originate. As discussed below, 
perturbations in endothelial–pericyte signaling may indeed represent key 
mechanisms by which the microvasculature becomes dysregulated, unstable, and 
ultimately pathogenic in chronic lung disease.
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 Pericyte–Endothelial Crosstalk in the Lung

Throughout the body, and certainly in the lung, pericytes and endothelial cells form 
specialized junctions with each other. Peg-socket contacts are formed by pericyte 
cytoplasmic fingers that are inserted into invaginations within the endothelium, 
adherens junctions create contact inhibition between endothelial cells and pericytes 
via contractile forces, and gap junctions between the cytoplasm of pericytes and 
endothelial cells enable the passage of metabolites and ionic currents (Armulik 
et  al. 2011). Under healthy conditions, pericytes regulate key endothelial cell 
functions, including proliferation, differentiation, and permeability, and in some 
regions of the vasculature also regulate contractility and tone (Geevarghese and 
Herman 2014). Extensive studies performed on mouse retinas (reviewed by Armulik 
et  al. 2011) have demonstrated that Notch signaling is critically required for 
angiogenic sprouting and endothelial–mural interactions. The most important Notch 
interaction during angiogenesis has been found to be mediated by Jagged-1 (Jag-1), 
which is expressed by endothelial cells upon induction by pericytes as an 
autoregulatory loop (Liu et  al. 2009). Additional players include interactions 
between the angiopoietins Ang-1 and Ang-2 with their receptor Tie-2 (Liu et  al. 
2010; Hammes et al. 2004) as well as the Ephrin pathway (Armulik et al. 2011). 
However, the precise roles of and interactions between these mediators under 
quiescent conditions, during angiogenesis, and in response to stress, inflammation, 
and injury have yet to be determined.

Lung pericytes play key roles in lung immune surveillance. It is well-understood 
that the vascular endothelium mediates the extravasation of inflammatory cells, but 
recent studies have demonstrated that pericytes also play a key role in this process. 
Subsequent to the well-described processes of leukocyte tethering and rolling on 
activated ECs, followed by adhesion and diapedesis, pericytes form preferential 
sites for leukocyte extravasation, i.e., regions of low of basement membrane protein 
expression and high expression of ICAM-1 (Wang et  al. 2006). Importantly, the 
permeability of this additional barrier to leukocyte infiltration can be modified by 
inflammatory cytokines such as TNF-α (Lauridsen et al. 2014). More specific to the 
lung, pericytes have been found to be critical to maintaining vascular stability 
during inflammation. Using a mouse model of Mycoplasma pulmonis infection, it 
was found that PDGFRβ signaling is critical to maintaining endothelial cell–pericyte 
contacts and a stable microvasculature (Fuxe et al. 2011). In response to bacterial 
infection, the bronchial microvasculature became more densely populated with 
pericytes; inhibition of PDGFRβ signaling prevented this increase in pericyte 
coverage. The consequences of this included increase vascular leakage and less 
efficient bacterial clearance, suggesting that the loss of pericytes may have 
compromised leukocyte extravasation, thereby exacerbating the disease (Fuxe et al. 
2011).

A recent study showed that lung pericytes are activated and regulate inflamma-
tion and vascular barrier integrity in the context of sterile lung inflammation driven 
by intratracheal LPS delivery; pericytes in LPS-exposed lungs dramatically upregu-
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late their expression of the adhesion molecule ICAM-1 and produce high levels of 
chemokines that recruit monocytes and neutrophils (IL-6, CXCL1, and CCL2). 
Additionally, isolated lung pericytes stimulated in vitro with the bronchoalveolar 
lavage fluid collected from mice from the lungs of LPS-exposed mice increase their 
expression of functional Toll-like receptors and chemokines, indicating that lung 
pericytes are primed to detect epithelial injury and act as immune sentinels by 
detecting signals released by epithelial cells in response to damage and by 
modulating the recruitment of leukocytes (Hung et al. 2017).

 Pericyte Dysfunction in Pulmonary Vascular Disease

 Altered Vascular Permeability in Acute Pulmonary Disease

Due to their abovementioned ability to express TLRs and respond to LPS by secret-
ing high levels of inflammatory cytokines and chemokines, it has been postulated 
that pericytes are crucial to the development of pulmonary edema seen in acute 
respiratory distress syndrome (ARDS) and sepsis-associated microvascular dys-
function (Hung et al. 2017; Zeng et al. 2016). Pericytes mediate vascular stability 
and permeability under both physiological and pathological conditions. A number 
of investigations using the LPS model of sepsis in mice have demonstrated increased 
vascular permeability within 24 h of LPS delivery, associated with pericyte uncou-
pling from endothelial cells, leading to increased microvascular permeability, vas-
cular leakage, and neutrophil/macrophage infiltration (Chintalgattu et  al. 2013; 
Nishioku et al. 2009). However, the molecular mechanisms responsible for pericyte 
uncoupling and the disruption of endothelial cell–pericyte interactions during sepsis 
were not clarified in these studies. To uncover this, using a model of LPS-induced 
acute lung injury, Zeng et al. (2016) demonstrated that a reduction in lung levels of 
Sirtuin3, an aging-related mediator of histone modifications, was responsible for 
pericyte dysfunction and increased vascular permeability during sepsis. They fur-
ther showed that disruption of the angiopoietin/Tie-2 and HIF-2α/Notch3 signaling 
pathways played a role in the observed LPS-induced reduction in Sirtuin3 levels, 
diminished pericyte coverage, and microvascular dysfunction. The involvement of 
Ang2 signaling in the process of pericyte uncoupling from the endothelium was 
recently supported by a study investigating the association between Ang2 expres-
sion and increased pulmonary vascular permeability in human subjects with acute 
lung disease, compared to patients with chronic lung disease (IPF) and healthy con-
trols (Ando et al. 2016). Intriguingly, Ang2 levels were higher in both serum and 
bronchoalveolar lavage in patients with idiopathic interstitial pneumonia and ARDS 
and correlated positively with pulmonary vascular dysfunction. Moreover, declin-
ing Ang2 levels were observed in survivors or acute lung disease, whereas levels 
remained high in non-survivors (Ando et al. 2016). These results provide a positive 
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impetus to investigate the viability of targeting Ang2 and pericyte-vascular uncou-
pling in the search for more effective treatments for acute lung failure.

 Pulmonary Hypertension

Pulmonary hypertension is defined as structural changes to pulmonary vessels, with 
prominent vascular fibrosis, the accumulation of α-SMA+ contractile cells, and 
persistent inflammation, ultimately leading to increased blood pressure in the 
pulmonary vasculature and failure of the right ventricle (Rowley and Johnson 2014). 
Pericyte proliferation has recently been investigated as an early event in pulmonary 
hypertension, since abnormal pericyte coverage of the pulmonary vasculature has 
been observed in clinical specimens with pulmonary hypertension (Rowley and 
Johnson 2014). On a more mechanistic level, in a rat model of pulmonary 
hypertension driven by hyperoxia, Jones et al. (2006) observed that PDGFRβ was 
highly overexpressed in pericytes in hypertensive lungs compared with control 
lungs; PDGF-BB was similarly overexpressed in the early stages of the disease. In 
clinical studies, pulmonary hypertension is similarly associated with higher 
expression of PDGF-BB by type II pneumocytes and endothelial cells, accompanied 
by increased PDGFRβ expression by pericytes associated with remodeled capillaries 
in the lungs of pulmonary hypertension patients (Assaad et al. 2007). Ricard et al. 
(2014) also observed an overabundance of pericytes on remodeled distal vessels, 
associated with increased expression of FGF-2 and IL-6 by endothelial cells, 
although no differences in PDGF-BB expression were observed. Based on these 
findings and others, the current hypothesis is that pulmonary hypertension is driven 
by endothelial cell abnormalities that provoke excess pericyte/vascular smooth 
muscle coverage and vascular remodeling via perturbation of the FGF and 
PDGF-BB/PDGFRβ signaling pathways.

Other studies have shown the involvement of the Wnt (Yuan et al. 2015), Notch, 
and TGF-β signaling pathways (Wang et  al. 2016) in pericyte-mediated vascular 
remodeling in pulmonary hypertension. Using immunoglobulin G-coated magnetic 
beads specific for the pericyte cell surface marker 3G5, Yuan et al. (2015) isolated 
pericytes from the lungs of healthy subjects and patients with pulmonary 
hypertension. The initial discovery that disease pericytes did not perform adequately 
in a three-dimensional tube formation assay prompted these authors to investigate 
alterations in the planar cell polarity pathway in these cells; in fact, diseased 
pericytes showed reduced expression of frizzled 7 (Fzd7) and cdc42, crucial genes 
in the planar cell polarity pathway (Yuan et al. 2015). Further investigation showed 
that the restoration of Fzd7 and cdc42 in diseased pericytes improved interactions 
with endothelial cells and vascular network formation. Altered hypoxia signaling in 
endothelial cells (through HIF-2α) has also been reported as a potential initiating 
event in pulmonary hypertension. Wang et al. (2016) assessed this by knocking out 
endothelial cell-specific expression of prolyl hydroxylase-2 (PHD2), which resulted 
in increased pericyte vascular coverage, elevated fibroblast-specific protein-1 
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 (FSP- 1) levels, and increased expression of Notch3 and TGF-β in the lung. Further 
investigations using small molecule inhibitors to target these pathways in pericytes 
may provide a novel direction in the treatment of pulmonary hypertension.

 Pulmonary Tumor Microvasculature

From a particular point of view, cancer can be seen as a vascular disease, as growing 
tumors require a steady supply of gases and nutrients and escaping metastatic cells 
exploit the vasculature to disseminate to other sites in the body. Similar to 
physiological angiogenesis, pericytes are recruited to tumor blood vessels by the 
PDGF-BB/PDGFRβ signaling pathway (Armulik et  al. 2011). As the role of 
pericytes in the tumor microenvironment has been thoroughly covered elsewhere, 
the following will cover recent findings regarding pericytes in lung cancer and lung 
metastases.

Although known to be present in the human lung, the presence and functional 
orientation of pericytes within non-small cell lung cancer (NSCLC) tumors have not 
yet been thoroughly studied. Using a multiparameter flow cytometric approach, 
Bichsel et  al. (2017) isolated CD73+/CD90+ mesenchymal cells from human 
primary NSCLC samples and found increased expression of the immunosuppressive 
ligand PD-L1, IL-6, and αSMA compared to the same population obtained from the 
healthy lung. Moreover, tumor-derived CD73+CD90+ cells were able to form 
perfusable vessels in vitro, but these demonstrated significantly greater permeability 
compared to vessels constructed from healthy cells (Bichsel et al. 2017), suggesting 
that pericyte abnormalities in the tumor microenvironment are directly linked to 
leaky vessels. In a related study, Keskin et al. (2015) found that pericyte depletion 
using genetic and pharmacological techniques in small, non-hypoxic tumors 
suppressed angiogenesis and tumor growth and prevented tumor cell metastasis to 
the lung. In contrast, pericyte depletion in advanced, hypoxic tumors with an 
established vasculature resulted in enhanced hypoxia, decreased tumor growth, but 
increased lung metastasis. Further assessments revealed that Ang2 signaling was 
increased following pericyte depletion; however, contemporaneous pericyte 
depletion and blockade of Ang2 restored vascular stability and prevented tumor cell 
metastasis to the lung (Keskin et al. 2015).

Moreover, pericytes have recently been shown to contribute to the formation of a 
premetastatic niche and encourage metastasis to the lung. Murgai et  al. have 
observed that, in the tumor microenvironment, pericytes undergo phenotypic 
switching, increase their expression of extracellular matrix (ECM) proteins, and 
display increased migratory capacity away from blood vessels, with the end of 
result of making lung tissue more prone to colonization by circulating tumor cells 
(Murgai et  al. 2017; Paiva et  al. 2018). Using a genetic modification strategy in 
mice, these authors demonstrated that Kruppel-like factor 4 (KLF4) expression in 
pericytes is crucial for these processes to occur. Specifically, under conditions of 
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pericyte-specific KLF4 ablation, pulmonary pericytes expressed lower levels of the 
ECM protein fibronectin and decreased the number of metastatic cancer cells in the 
lung; however, this strategy had no effect on primary tumor growth. It is anticipated 
that further studies in this direction may lead to the development of novel treatments 
to prevent cancer metastasis, which would lead to major clinical benefits.

Conversely, activation of the prostaglandin I2 (PGI2) pathway in pericytes has 
been reported to impair tumor cell metastasis by increasing tumor vessel pericyte 
coverage and maturation. Minami et  al. (2015) examined the effects of a PGI2 
agonist on metastasis in mice bearing Lewis lung carcinoma tumors and found that 
PGI2 stimulation over a period of 3 weeks decreased the number and size of lung 
metastases, increased the number of tumor vessel-associated pericytes, and 
decreased intratumor hypoxia (Minami et al. 2015). Collectively, these studies sug-
gest that pericytes are vital to functional vascular maturation in tumors and modify-
ing pericyte function in tumors may result in fewer metastases and improved 
survival in patients with solid tumors.

 Pericyte Dysfunction in Pulmonary Fibrotic Disease

Chronic lung disease, including idiopathic pulmonary fibrosis (IPF), asthma, and 
chronic obstructive pulmonary disease (COPD), is the fourth leading cause of 
mortality worldwide (Rowley and Johnson 2014). Despite differing 
pathophysiologies, all chronic lung diseases exhibit varying degrees of persistent 
inflammation, airway narrowing leading to airflow limitation, and structural 
alterations of the pulmonary airways and vessels. Fibrosis, i.e., the formation of scar 
tissue, is a characteristic feature of chronic lung disease, characterized by 
extracellular matrix deposition and structural changes to the lung structure that 
result in restricted airflow or gas exchange due to the thickening and stiffening of 
tissue (Rowley and Johnson 2014). The loss of functional gas exchange capacity 
due to fibrosis is a significant contributor to the morbidity and mortality associated 
with chronic lung disease.

Current treatments for chronic fibrotic lung disease are palliative. There is a sig-
nificant demand for anti-fibrotic therapies, as very few European Medicines Agency 
(EMEA) or Food and Drug Administration (FDA)-approved anti-fibrotic therapies 
currently exist (Rowley and Johnson 2014). To accelerate the design of anti-fibrotic 
therapies, recent research has focused on defining the origin of fibrosis- producing 
myofibroblasts, because the primary difference between healthy wound repair and 
fibrosis appears to be the fate of activated myofibroblasts. Several recent studies 
utilizing cutting-edge genetic cell labeling techniques have drawn attention to the 
pericyte as a major myofibroblast progenitor (Barnes and Glass 2011; Barron et al. 
2016). Understanding the capacity of pericytes to serve as myofibroblast progenitor 
cells may allow us to arrest or reverse fibrosis in certain disease settings.

Many studies on pulmonary fibrosis have employed a commonly used mouse 
model of IPF induced by an intratracheal instillation of the chemotherapeutic agent 
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bleomycin; the pathology is characterized by a brief but intense burst of pulmonary 
inflammation, followed by intense and widespread lung fibrosis (Rock et al. 2011; 
Hung et al. 2013; Marriott et al. 2014; Kramann et al. 2015). More recently, studies 
using a mouse model of chronic allergic airway inflammation driven by sustained 
respiratory house dust mite extract (HDM) exposure have been performed to 
highlight the role of pericytes in the development of airway remodeling associated 
with allergic airway disease (Johnson et al. 2015).

Myofibroblasts are recognized as the primary source of extracellular matrix 
(ECM) proteins and, as such, are considered the main driver of tissue fibrosis. 
Myofibroblasts characteristically express high levels of α-SMA and are responsible 
for the secretion of extracellular matrix (ECM) proteins, particularly collagen 
(Bagnato and Harari 2015). The myofibroblast cytoplasm is organized into 
cytoplasmic stress fibers that apply contractile pressure onto the neighboring 
ECM. In the healthy lung, the ECM is broken down by matrix metalloproteases. 
However, during chronic inflammation, normal ECM degradation becomes 
dysregulated, and ECM proteins are deposited by myofibroblasts at a greater rate 
than at which they are degraded, resulting in fibrotic scar formation and the loss of 
tissue function (Campanholle et al. 2013).

Current research suggests that the initiating factor in tissue fibrosis may be 
related to the disruption of stable pericyte–endothelial cell homeostasis such that 
lung developmental programs restart, thereby disrupting normal homeostasis and 
facilitating the switch to a pro-remodeling phenotype, i.e., pericyte-to-myofibroblast 
transition. Vessel integrity depends on the regulation of stimulatory (angiogenic) 
and inhibitory (angiostatic) factors (Eberhard et  al. 2000; Kloc et  al. 2015). It 
appears likely that in chronic fibrotic lung disease, this balance is disrupted. It is 
understood that growth factors including Ang1, Ang2, vascular endothelial growth 
factor (VEGF), and TGF-β mediate interactions between the lung endothelium and 
pericytes and have been independently studied as drivers of fibrosis (Ballermann 
and Obeidat 2014). Additionally, environmental stressors such as oxidative stress 
have been implicated in this process, with the downstream effects of endoplasmic 
reticulum stress and mitochondrial damage (Cheresh et  al. 2013). Crucially, 
oxidative stress has been shown to contribute to excessive TGF-β production 
(Cheresh et al. 2013), inferring the presence of a positive feedback loop involving 
environmental stress and pro-fibrotic signals in myofibroblast differentiation 
(Fig.  14.1). This emphasizes the need to define and delineate the interactions 
between pericytes and endothelial cells in the normal lung and during chronic 
pulmonary inflammation and fibrosis.

The capacity of pericytes to differentiate into fibrosis-causing myofibroblasts is 
not the only reason why they are of interest as antifibrotic targets. As detailed above, 
the intimate relationship between pericytes and endothelial cells is responsible for 
the regulation of vessel permeability, neutrophil extraversion, leukocyte trafficking, 
T-cell activation, angiogenesis, endothelial cell proliferation, structural support of 
existing blood vessels, and the formation the basement membrane (Barron et  al. 
2016). Dysfunction in endothelial–pericyte signaling in particular represents a key 
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mechanism by which the microvascular becomes dysregulated, unstable, and 
ultimately pathogenic in chronic fibrotic lung disease (Bagnato and Harari 2015).

 Idiopathic Pulmonary Fibrosis

Pulmonary fibrosis is a debilitating disease characterized by excessive matrix depo-
sition, angiogenesis, and epithelial cell hyperplasia that impedes overall tissue func-
tion. During pulmonary fibrosis, the accumulation of fibrotic tissue within the 
alveolar parenchyma is merely a symptom of disease; the etiology of this pathology 
in humans varies greatly (Hung et al. 2013). Since the reason behind this defective 
repair is unknown, although a combination of immunological, genetic, and 
environmental factors is suspected, it is very difficult to model disease in a clinically 
relevant fashion.

The most common method used to model pulmonary fibrosis in mice is adminis-
tration of the chemotherapeutic agent bleomycin; this agent is known to cause pul-

Fig. 14.1 Proposed mechanism of environmental stress/oxidant-induced pulmonary fibrosis. 
Environmental toxins/oxidants may induce the generation of ROS through the induction of 
endoplasmic reticulum stress, mitochondrial damage, and the activation of inflammatory cells, 
such as macrophages and neutrophils. ROS-generated and inflammatory stimuli perturb pericyte–
endothelial cell interactions and permit pericyte uncoupling from the vasculature. These uncoupled 
pericytes then undergo migration and differentiation into myofibroblasts, the main driver of tissue 
fibrosis

B. Shammout and J. R. Johnson



309

monary fibrosis in humans as well, but this may not accurately reflect the true 
etiology of most cases of human disease (Andersson-Sjöland et al. 2016). Novel Cre 
fate tracing techniques in bleomycin-administered mice show that FoxD1-positive 
and PDGFRβ-positive pericytes proliferate and differentiate into α-SMA-positive 
myofibroblasts, the primary driver cell of fibrosis (Greenhalgh et al. 2013). Lineage 
tracing studies have confirmed that 45–68% of myofibroblasts (defined by α-SMA 
expression) are derived from Foxd1 cells expressing the pericyte markers PDGFRβ, 
NG2, and CD146 (Hung et al. 2013). Using a similar model of bleomycin-driven 
lung injury in mice, Rock et al. (2011) showed strong expression pericyte markers 
including PDGFR-β, NG2, and desmin within fibrotic foci. NG2CreER BAC trans-
genic were mice crossed with ROSA farnesylated GFP reporter mice to genetically 
label lung pericytes; it was found that although pericytes proliferated under fibrotic 
conditions, few increased their expression of α-SMA+ phenotype, indicating little 
pericyte to myofibroblast transition in this model (Rock et al. 2011). However, given 
the inefficiency of the genetic labeling technique using in this study, the number of 
pericytes contributing to the myofibroblast population in this study may have been 
underestimated. Using a different labeling strategy, i.e., double-transgenic mice 
expressing GFP in Nestin-positive cells and DsRed in NG2- positive pericytes, 
Birbrair et al. (2014) demonstrated that a particular subset of pulmonary pericytes, 
called type-1 pericytes (Nestin-GFP–/NG2-DsRed+), are the primary cell type 
involved in producing collagen after lung injury brought about by intratracheal 
bleomycin delivery. Moreover, type 1 pericytes were found to accumulate in areas 
of fibrosis in this model of pulmonary fibrosis (Birbrair et al. 2014). In the milder 
subcutaneous bleomycin model, the development of pulmonary fibrosis has been 
related to endothelial cell oxidative stress and activation, with subsequent effects on 
pericyte localization and myofibroblast transition, mediated through Wnt3a signal-
ing (Andersson-Sjöland et al. 2016). Similarly, Wnt/β-catenin signaling was found 
to be the primary pathway involved in the transition of ATP- binding cassette protein 
ABCG2 (ABCG2+) pericyte progenitors into myofibroblasts in a mouse model of 
pulmonary fibrosis driven by bleomycin exposure (Gaskill et al. 2017).

Some recent studies have been performed to determine the origin of α-SMA 
expressing myofibroblasts in clinical samples from IPF patients. Sava et al. (2017) 
demonstrated the presence of α-SMA+ cells coexpressing the pericyte marker 
NG2 in human IPF lung samples. Furthermore, healthy human lung pericytes cul-
tured on decellularized IPF lung matrices demonstrated increased expression of 
α-SMA, suggesting that pericytes are able to undergo phenotypic transition into 
myofibroblasts through a mechanism related to the stiffness, not the composition, of 
the underlying ECM.  Interestingly, treatment with the tyrosine-kinase inhibitor 
nintedanib, which has been approved for IPF treatment, reduced the stiffness of 
fibrotic lung matrices, which subsequently reversed the α-SMA+ pericyte pheno-
type (Sava et al. 2015).

Although progress has been made into defining the vascular abnormalities that 
are present in IPF and the roles of pericytes in the development of this disease, many 
unanswered questions remain. A better understanding of vascular remodeling and 
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pericyte differentiation into myofibroblasts in IPF is required before targeted thera-
pies can possibly lead to new targets for the treatment of fibrosis.

 Chronic Obstructive Pulmonary Disease

Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway 
obstruction, restricted airflow as a result of peribronchial fibrosis, loss of alveolar 
cells (emphysema), accumulation and activation of inflammatory cells, increased 
ECM deposition, and reduced elastic recoil. The etiology of COPD is highly 
complex and is believed to develop after many years of tobacco smoking in 
combination with other known factors such as genetic susceptibility or environmental 
factors (Rowley and Johnson 2014). In similarity to asthma, inflammation is a major 
component in COPD, but the leukocyte profile is very different: the most prominent 
players in COPD-related inflammation are neutrophils and, to some degree, 
macrophages, rather than the predominant eosinophilic infiltration of the airways 
commonly seen in allergic asthma (Rowley and Johnson 2014). Currently, there are 
no studies directly investigating the role of pericytes due to the difficulty in modeling 
COPD in vitro and in vivo. Nonetheless the structural changes in the pulmonary 
vasculature and increase in vascular mediators will likely encourage pericyte 
migration away from the vasculature and pericyte differentiation into myofibroblasts.

Although little is known about microvascular remodeling in COPD, a slightly 
denser pulmonary vasculature has been observed in some areas of the COPD lung 
(Calabrese et  al. 2006), along with increased expression of TGF-β1 (Konigshoff 
et al. 2009). This growth likely plays a major role in tissue remodeling in COPD, 
due its proliferative effects on fibroblasts and pericytes. Furthermore, increased 
expression of VEGF has been observed in some COPD patients and has been 
negatively correlated to lung function (Kranenburg et al. 2005). Pericytes secrete 
VEGF (Darland et  al. 2003), so it is possible that pericytes are involved in 
microvascular remodeling in COPD. Ang2 levels also increase in COPD patients 
during exacerbations (Cho et al. 2011). As described above, Ang2 facilitates pericyte 
uncoupling from endothelial cells, leading to vessel destabilization.

Beyond alterations in growth factor expression and signaling, the induction of 
oxidative stress in the lung as a consequence of cigarette smoking or environmental 
air pollution may have a significant impact on the pulmonary vasculature. Reactive 
oxygen species (ROS) play important roles in vascular homeostasis, but excessive 
ROS can perturb the pulmonary vasculature; in fact, pulmonary hypertension and 
vascular remodeling are commonly seen featured of COPD at later stages. 
Inflammatory cell infiltration and endothelial dysfunction are both correlated to the 
severity of COPD and likely contribute to disease pathology (Zuo et al. 2017). It has 
also been shown that endothelial cell damage results in the aberrant release of 
vasoactive mediators that promote the proliferation of pericytes of SMC and ECM 
deposition (Peinado et al. 2008).
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Although these studies do not provide direct evidence supporting a role for peri-
cytes in driving structural alterations in the COPD lung, they highlight areas that 
require further investigation. Based on our current knowledge, it can be hypothesized 
that altered pericyte behavior is responsible for several aspects of altered lung 
structure and function in COPD (Fig. 14.2).

 Asthma

Allergic asthma results from a chronic immune response to inhaled allergens. 
According to Asthma UK, asthma is estimated to affect 300 million people globally; 
in the UK, asthma affects 18% of the UK population and asthma care is estimated 
to cost the UK £1.1 billion per year (Rowley and Johnson 2014). Current treatments 
for asthma involve either symptom relief (bronchodilators) or anti-inflammatory 
drugs (corticosteroids). Despite the effectiveness of these therapies, approximately 
4% of asthmatics suffer from inadequately controlled asthma and significantly 
impaired quality of life, underscoring the need for potent and novel treatments for 
lung fibrosis (Rajapaksa et al. 2016).

Loss of structural support 
Alveolar fragmentation

Compromised gas exchange
Emphysema

Vasculature Pericyte Uncoupled pericyte

Ageing-related oxidative stress
in the context of environmental 

pollution, cigarette smoke 
exposure, and/or neutrophilic 

inflammation leads to impaired 
pericyte-endothelial cell 

connectivity, increased pericyte 
mobility, and pericyte migration 

to areas of inflammation

Type I pneumocyte

Increased collagen production
Myofibroblast transition

Fibrosis

Myofibroblast

Pericyte accumulation
Increased small vessel muscularisation

Pulmonary hypertension

Type II pneumocyte Neutrophil

In the healthy alveolus, pericytes
are tightly associated with the 

vasculature, where they provide 
structural support and maintain

tissue integrity

TGF-β
VEGF
Ang1

Fig. 14.2 Proposed mechanism of the involvement of pericytes in lung structural remodeling 
associated with chronic obstructive pulmonary disease (COPD). A combination of environmental 
stress and inflammation induces pericyte uncoupling from the pulmonary microvasculature, 
resulting in alveolar fragmentation as well as pericyte migration and differentiation into a 
contractile, myofibroblast phenotype
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Asthma is characteristically defined as a Th2-polarized chronic inflammatory 
disorder of the airways that induces structural changes to the airway wall, in a 
process known as airway remodeling/fibrosis. Cytokines released from leukocytes 
initiate the inflammatory response, resulting in the expression of TGF-β and other 
growth factors ultimately leading to myofibroblast recruitment (Johnson et  al. 
2015). Fibrosis in chronic asthma patients manifests as excess mucus production 
and epithelial shedding, the accumulation of ECM, and smooth muscle thickening. 
This causes the airway wall to thicken, which narrows the airway lumen; 
consequently, airflow is decreased and lung function is impaired. This results in the 
characteristic symptoms seen in asthmatics, including episodes of wheezing and 
dyspnea (Johnson et al. 2015). Changes in the bronchial vasculature are associated 
with remodeling of the airway wall. Increased number of vessels, increased vessel 
activity (vasodilation, leakage, and leukocyte extravasation), and increased growth 
factor secretion have been observed in asthmatics increasing with the severity of the 
disease compared with healthy control subjects (Barron et al. 2016). A number of 
studies reported the involvement of specific growth factors in chronic asthma. In 
particular, PDGF-BB has been implicated as a major player in lung fibrosis (Armulik 
et al. 2011). Recent work has shown that perturbed PDGFRβ signaling as a result of 
pharmacological inhibition in the context of sustained allergic inflammation 
promoted pericyte migration away from bronchial vessels and towards the airway 
wall. Under these disease conditions, pericytes were found contribute to airway 
remodeling by differentiating into myofibroblasts and contributing to airway smooth 

Pericyte attachment
PDGF-B secretion by endothelial cells

binds to PDGFRβ on pericytes
and promotes contact

Pericyte detachment
↓PDGF-B expression
↓PDGFRβ activation

Inflammatory response to allergen exposure

Chemokine gradient

Airway epithelial cell Microvasculature Pericyte Uncoupled pericyte Myofibroblast

Pericyte function
Contribution to airway resistance

Fig. 14.3 Proposed mechanism of the involvement of pericytes in lung structural remodeling 
associated with allergic asthma. Persistent Th2-polarized airway inflammation induces a decrease 
in lung PDGF-BB expression and pericyte uncoupling from the pulmonary microvasculature. 
Pericytes subsequently undergo directed migration to the airway wall, where they differentiate into 
a contractile, myofibroblast phenotype and incorporate into airway smooth muscle bundles, 
thereby contributing to increased airway stiffness and airway hyperreactivity
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muscle thickening and airway hyperresponsiveness (Johnson et al. 2015). Based on 
the findings of this study, it appears that pericyte differentiation into myofibroblasts 
begins to occur during the process of pericyte uncoupling form the microvasculature, 
as α-SMA-positive pericytes can be observed detaching from capillaries (Fig. 14.3); 
under healthy conditions, these cells are α-SMA negative (Johnson et  al. 2015). 
Further studies are anticipated to examine the role of inflammatory mediators 
(chemokines, cytokines, and growth factors) on pericyte–endothelial cell 
interactions, pericyte uncoupling, and pericyte-to-myofibroblast transition in mouse 
models of chronic allergic airway inflammation.

 Future Directions

The vascular compartment of the lung plays significant and varied roles in a number 
of acute and chronic lung conditions. Despite being a key regulator of angiogenesis, 
vascular permeability, and vessel contractility, pericytes have been studied only 
recently in the context of asthma, IPF, and pulmonary arterial hypertension. Recent 
studies have also shown that pericytes participate in inflammatory reactions and 
possess MSC-like progenitor capabilities, and are therefore likely to play multiple 
roles in pathological changes to lung structure and function related to disease. A 
comprehensive understanding of the involvement of pericytes in chronic lung 
disorders may lead to the development of new therapeutic strategies.
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Chapter 15
Pericytes in Muscular Dystrophies

Louise Anne Moyle, Francesco Saverio Tedesco, and Sara Benedetti

Abstract The muscular dystrophies are an heterogeneous group of inherited 
myopathies characterised by the progressive wasting of skeletal muscle tissue. 
Pericytes have been shown to make muscle in vitro and to contribute to skeletal 
muscle regeneration in several animal models, although recent data has shown this 
to be controversial. In fact, some pericyte subpopulations have been shown to con-
tribute to fibrosis and adipose deposition in muscle. In this chapter, we explore the 
identity and the multifaceted role of pericytes in dystrophic muscle, potential thera-
peutic applications and the current need to overcome the hurdles of characterisation 
(both to identify pericyte subpopulations and track cell fate), to prevent deleterious 
differentiation towards myogenic-inhibiting subpopulations, and to improve cell 
proliferation and engraftment efficacy.
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 Skeletal Muscle and Muscular Dystrophies

Skeletal muscle is the most abundant tissue in humans, and its main roles are to 
generate movement, support soft tissues, maintain posture, and contribute to energy 
metabolism and temperature control (Frontera and Ochala 2015). It is characterised 
by a well-defined structure of connective tissues and muscle fibres (or myofibres), 
which are multinucleated, post-mitotic syncytial cells containing contractile units 
named sarcomeres. During skeletal muscle development, muscle fibres are gener-
ated by the fusion of paired-box transcription factor 3- (Pax3) and Pax7-expressing 
mesodermal progenitors (Bentzinger et  al. 2012; Buckingham 2006; Comai and 
Tajbakhsh 2014). Postnatally, myofibres grow in size thanks to the fusion of satellite 
cells (Yablonka-Reuveni 2011; Yin et al. 2013), a population of muscle stem cells 
located between the plasma membrane of myofibres (sarcolemma) and the basal 
lamina, that are responsible for growth, repair, and regeneration of adult skeletal 
muscle (Mauro 1961; Relaix and Zammit 2012). Satellite cells are quiescent in 
physiological conditions but can be activated after muscle injury or by specific sig-
nalling pathways (Dumont et al. 2015; Relaix and Zammit 2012; Verdijk et al. 2014; 
Yin et al. 2013). Once activated, they proliferate and the majority of their myoblast 
progeny differentiate along the myogenic programme in order to replace damaged 
muscle fibres. Alternatively, they undergo self-renewal to replenish the stem cell 
pool (Rocheteau et al. 2012; Zammit et al. 2004). Satellite cells are characterised by 
the expression of the transcription factor Pax7. Many also express caveolin- 1, 
integrin-α7, M-cadherin, CD56/NCAM, CD29/integrin-β1 and syndecans 3 and 4, 
although differences in expression patterns are observed between species, location 
and activation stage [reviewed in detail in (Boldrin et al. 2010; Tedesco et al. 2010, 
2017; Yin et al. 2013)]. Satellite cells and their derived myoblast progeny are con-
sidered the main muscle stem cells, required for complete myogenic regeneration 
[reviewed in (Relaix and Zammit 2012; Zammit et  al. 2006)]. In the last two 
decades, several muscle and non-muscle stem/progenitor cells with variable myo-
genic potencies have been isolated. For comprehensive reviews on the topic, please 
refer to (Negroni et al. 2016; Tedesco et al. 2010, 2017).

Muscular dystrophies are a clinically and genetically heterogeneous group of 
rare neuromuscular genetic disorders sharing common pathological features 
(Mercuri and Muntoni 2013). Despite their heterogeneity in muscle wasting distri-
bution, disease severity, inheritance, age of onset and progression rate, they are 
characterised by repeated cycles of skeletal muscle degeneration/regeneration, 
changes in myofibre size and inflammation, which ultimately results in progressive 
muscle wasting. In the most severe forms, muscle weakness leads to early loss of 
ambulation and to a premature death by cardiorespiratory failure (Manzur and 
Muntoni 2009; Mercuri and Muntoni 2013). Many muscular dystrophies are caused 
by mutations in genes coding for proteins that belong to the dystrophin-associated 
glycoprotein complex (DAGC) (Ervasti and Campbell 1991). The DAGC is a mul-
tiprotein complex located at the sarcolemma and provides a strong mechanical link 
between intracellular cytoskeleton and the extracellular matrix; it plays a pivotal 
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role in stabilising the sarcolemma and in maintaining myofibre integrity during 
muscle contraction (Emery 2002; Straub and Campbell 1997). Consequently, muta-
tions disrupting the DAGC result in increased sarcolemma fragility and contraction-
induced fibre damage, which in turn lead to repeated cycles of myofibre degeneration/
regeneration and ultimately to the replacement of the skeletal muscle tissue with 
fibrotic and adipose tissues (Matsumura and Campbell 1994; Michalak and Opas 
1997; Straub and Campbell 1997; Worton 1995). Other muscular dystrophies can be 
caused by mutations in ubiquitously expressed proteins that result in muscle pathol-
ogies, such as mutations of nuclear envelope components. Recently, next-genera-
tion sequencing has helped to identify new genes responsible for previously 
undefined muscular dystrophies (Carss et al. 2013; Hara et al. 2011; Mitsuhashi and 
Kang 2012).

The most common muscular dystrophies are Duchenne (DMD), Becker (BMD) 
and limb-girdle (LGMD). DMD is caused by mutations in the X-linked gene that 
codifies for dystrophin, a rod-shaped cytoplasmic protein belonging to the DAGC 
(Ervasti and Campbell 1991; Michalak and Opas 1997; Straub et al. 1992). DMD 
has an early onset and a severe disease progression. BMD is the milder allelic vari-
ant of DMD, which has a slower progression and later onset. LGMDs represent one 
of the most heterogeneous groups, which are further subclassified according to the 
genetic defect responsible for the individual forms and inheritance (Emery 2002; 
Mercuri and Muntoni 2013).

Although muscular dystrophies are often fatal diseases for which no cure cur-
rently exists, many therapeutic strategies are being developed and tested in basic, 
preclinical and clinical studies [reviewed in (Benedetti et al. 2013; Bengtsson et al. 
2016; Lin and Wang 2018; Negroni et al. 2016; Pini et al. 2017; Scoto et al. 2018)].

 Skeletal Muscle Pericytes

 Pericyte Ontogeny

Pericytes are an heterogeneous population of contractile mural cells that surround 
and support blood vessels in all vascularised tissues (Hirschi and D'Amore 1996). 
They were thought to be exclusively associated with the microvasculature, but evi-
dence supports their presence also on higher-order vessels (Campagnolo et  al. 
2010), except the lymphatic vessels (Norrmen et al. 2011). Pericytes can be defined 
and distinguished from other perivascular cells, such as smooth muscle cells, by a 
combination of criteria including anatomical location, morphology and gene/pro-
tein expression pattern (Armulik et  al. 2011). Notably, pericytes can be distin-
guished from other endothelial-associated perivascular cells by their location 
embedded within the vascular basement membrane (Sims 1986).

Despite pericytes being observed and described for the first time more than a 
century ago (Eberth 1871; Rouget 1873; Zimmermann 1923), fundamental  questions 
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about their origin and functions remain partially unanswered. This is mainly due to 
the struggle in identifying a common pericyte ancestor. Numerous lineage- tracing 
experiments have shown that during embryogenesis, pericytes from different tissues 
originate from diverse sources, so that as a result a single vessel may be composed 
of pericytes from multiple developmental origins (Majesky 2007; Majesky et  al. 
2011). Recent, lineage-tracing studies have shown even more diversity, with subsets 
of pericytes with haematopoietic (Yamazaki et al. 2017) and macrophage (Prazeres 
et al. 2018) origin.

Interestingly, pericytes in the aorta appear to have multiple developmental 
sources (Majesky 2007; Majesky et al. 2011), adding an additional layer of com-
plexity to the pericyte’s ontogeny debate (Birbrair et al. 2017; Dias Moura Prazeres 
et al. 2017). This hints towards the idea that instead of having a common ancestor, 
pericytes share a mural precursor with the vascular smooth muscle cells (VSMCs) 
of the tissue in which they reside (Armulik et al. 2011; Majesky et al. 2011). This 
might explain the relative heterogeneity of pericytes derived from different tissues. 
Although undetermined in most organs, there is some evidence of this phenomenon 
in brain pericyte lineage tracing (Etchevers et al. 2001). In vitro studies using plu-
ripotent stem cells (PSCs) have also alluded to a common mural progenitor (Kumar 
et al. 2017). Whilst the source of pericytes within many organs has been established, 
the developmental origin of pericytes in skeletal muscle remains elusive.

 Pericyte Plasticity

Pericytes have several common functions regardless of their tissue of origin, namely 
blood vessel stabilisation and permeability, vascular development/maturation and 
regulation of blood flow (Armulik et al. 2011; Enge et al. 2002; Hall et al. 2014; 
Hellstrom et al. 2001; Leveen et al. 1994; Lindahl et al. 1997; Pallone and Silldorff 
2001; Pallone et al. 1998; Peppiatt et al. 2006; Soriano 1994). In addition, in the last 
decade, many studies have identified pericytes as tissue-resident progenitors able to 
contribute to histogenesis and/or regeneration of multiple human tissues (Dellavalle 
et al. 2011; Sacchetti et al. 2016). A recent study by Evans and colleagues chal-
lenged this view, showing that Tbx18+ mouse pericytes maintain their mural identity 
and do not generate other cell types in injured and ageing tissues, including brain, 
heart, fat and skeletal muscle (Guimaraes- Camboa et al. 2017). This suggests that 
plasticity seen in vitro or after transplantation could be an artefact of ex vivo cell 
culture. The discrepancy between this data and previous studies suggests that mural 
cells can behave as progenitors, but that this behaviour is dependent on the organ 
and on the developmental stage. Alternatively, it may be that a small population of 
pericytes with progenitor capabilities do not express Tbx18, and hence were not 
labelled in the Tbx18-cre strain. This could be possibly due to the heterogeneous 
nature of pericytes. The model of endogenous pericytes as tissue-resident progeni-
tors might therefore need further investigation, perhaps using additional or alterna-
tive pericyte lineage-tracing tools (Cano et al. 2017).
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Beside their role in supporting the microvasculature and their putative role as 
tissue progenitors, pericytes can also display tissue-dependent functions [reviewed 
in (Holm et al. 2018)]. For example, brain pericytes support the blood–brain barrier 
integrity (Al Ahmad et al. 2011; Armulik et al. 2010; Daneman et al. 2010; Dohgu 
et al. 2005; Nakagawa et al. 2007), whilst in the immune system they contribute to 
the regulation of lymphocyte activation (Balabanov et al. 1999; Fabry et al. 1993; 
Tu et al. 2011; Verbeek et al. 1995). In skeletal muscle, pericytes contribute to mus-
cle growth, regeneration, fibrosis, fat deposition and ossification [reviewed in 
(Birbrair et al. 2015; Murray et al. 2017; Kostallari et al. 2015). We shall detail later 
in this chapter the role of pericytes in these processes in the specific context of mus-
cular dystrophies. Generally, pericytes and their associated blood vessels run paral-
lel to muscle fibres, where cross talk is thought to regulate nutrient uptake and 
postnatal myogenesis. Early studies suggest that pericyte location in capillary ves-
sels of skeletal muscle is fibre type- specific (Gaudio et al. 1985; Levy et al. 2001) 
and that specific subset of pericytes within skeletal muscle do have distinct roles 
(Birbrair et al. 2013b). Interestingly, in contrast to the widely accepted view, there 
is no clear evidence that pericytes can actively alter blood flow in skeletal muscles 
[reviewed in (Murray et al. 2017; Sims 1986)].

 Molecular Signature and Skeletal Muscle-Specific Pericyte 
Subpopulations

As mentioned above, despite their fundamental roles in health and disease and their 
ubiquitous presence in all body’s tissues and organs, pericytes’ identification is 
made difficult by their heterogeneity, which concerns not only origin and distribu-
tion but also the pattern and dynamic of molecular markers they do express (Armulik 
et al. 2011). In general, it can be said that (1) none of the pericyte markers are spe-
cific; (2) not all pericytes do express all the markers at once; (3) pericytes from 
different tissues express different markers; (4) marker expression is determined by 
the developmental and activation stage (Armulik et al. 2011). Although efforts are 
being made to characterise skeletal muscle pericytes, many putative markers over-
lap with other muscle cells, and there is no single all-encompassing pericyte- specific 
marker in skeletal muscle. For this reason and as for other tissues, skeletal muscle 
pericytes are often identified as much by their anatomical location as by the expres-
sion of a pool of molecular markers/proteins [reviewed in (Tedesco et al. 2017)]. 
However, it is worth mentioning that in sites of active angiogenesis or disorganised 
tissue, such as dystrophic muscle, it can be difficult to determine which cells are 
located within the vascular basement membrane and therefore to define the exact 
location of cells expressing pericyte markers. In addition, the mechanisms regulat-
ing pericyte quiescence, activation and their transition between these two states are 
still unknown, as most studies have focussed on homing factors or determining final 
fate.
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Some of the most common markers used for pericytes are neural-glia antigen 2 
(NG2), platelet-derived growth factor receptor β (PDGFRβ), smooth muscle α-actin 
(α-SMA), desmin, CD13, regulator of G protein signalling 5 (RGS5), CD146 and 
Nestin (Armulik et al. 2011; Birbrair et al. 2011; Tedesco et al. 2017). None of these 
markers are unique for pericytes. In skeletal muscle for example, several of these 
and other proteins are expressed in both satellite cells/myoblasts and a subset of 
muscle pericytes, including Pax3 (Dellavalle et al. 2007; Sacchetti et al. 2016), and 
Nestin (Birbrair et al. 2011; Day et al. 2007). This may be due to a shared develop-
mental origin for these two cell types (Esner et al. 2006). A subpopulation of non-
myogenic muscle pericytes also share the expression of PDGFRα with fibro/
adipogenic progenitors (FAPs), a PDGFRα+/CD34+ and stem cell antigen-1 (Sca1) 
+ muscle interstitial cell population able to differentiate into myofibroblasts and/or 
adipose cells (Joe et al. 2010; Uezumi et al. 2010).

Fate-tracing experiments in mice have revealed that a subpopulation of muscle 
pericytes can have myogenic fate. This includes a subpopulation expressing alkaline 
phosphatase (AP), which is able to fuse with developing muscle fibres and enter the 
satellite cell compartment, both during postnatal development and following acute/
chronic muscle injury (Dellavalle et  al. 2011). Whether they become bona fide, 
functional satellite cells, however, still needs to be elucidated. In addition, Birbrair 
et  al. used Nestin-GFP/NG2-DsRed double transgenic mice to demonstrate the 
existence of type-2 (Nestin+/NG2+) and type-1 (Nestin−/NG2+) pericytes. Both pop-
ulations express the typical pericyte markers PDGFRβ and CD146 and are associ-
ated to capillaries. However, type-2 pericytes are able to form myotubes in vitro and 
in vivo and enter the satellite cell compartment (Birbrair et al. 2013c), whilst type-1 
are PDGFRα+ and contribute to fat accumulation and fibrosis (Birbrair et al. 2013b, 
c). A comparison of the AP+ and Nestin+ type-2 populations has not been made.

In humans, a subpopulation of AP+ interstitial muscle cells associated to small 
vessels has also been observed (Dellavalle et  al. 2007). These human interstitial 
cells (presumed to be of pericyte origin but obtained from un-purified biopsies) 
were initially characterised as expressing the pericyte markers AP, desmin, PDGFRβ, 
vimentin, Annexin V and Integrin-β1/CD29, whilst being negative for myogenic 
genes Pax7, MyoD, and NCAM/CD56, endothelial marker CD31 and haematopoi-
etic markers CD34/CD45. However, these interstitial cells did not express all peri-
cyte markers; expression of M-cadherin/CD146, NG2 and α-SMA was variable 
among different preparations (Dellavalle et al. 2007). Moreover, variable expression 
of NCAM/CD56 and myogenic regulatory factors in this population has been 
observed in a subsequent publication (Meng et al. 2011), further contributing to the 
evidence that this is a variable population in human muscles. Nevertheless, another 
studies showed that CD146+ subendothelial cells isolated from the postnatal human 
skeletal muscle microvasculature have high spontaneous myogenic potential 
in vitro, and they generate myotubes and myofibre in vivo (Sacchetti et al. 2016).

Further studies will be needed to address the relationships existing between these 
different subpopulations of skeletal muscle pericytes from both murine and human 
origin.
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 Pericytes and Satellite Cells

Within skeletal muscles, satellite cells are located beneath the basement membranes 
of muscle fibres and are closely connected with capillary endothelial cells. As a 
result, a close interaction also occurs between pericytes and satellite cells. This has 
led to speculation that there is cross talk between these two cell types (Christov 
et al. 2007; Dellavalle et al. 2011). This relationship is multifaceted. For example, 
the juxta-vascular position of satellite cells is thought to enable co-ordinated angio-
myogenesis (Christov et  al. 2007), on the other hand Kostallari et  al. found that 
pericytes directly form a niche for satellite cells, regulating their quiescence and 
contributing to myogenesis through Angiopoietin 1 and insulin-like growth factor 1 
(IGF-1), respectively (Kostallari et al. 2015). Whilst the authors proposed that only 
Nestin+ type-2 pericytes were involved in these processes, future lineage-tracing 
experiments and selective ablation of type-1 or type-2 subtypes are required to give 
us a clear answer on this matter.

The relationship between pericytes and satellite cells/myoblasts might even be 
more complex than the one just described above. Several years ago, Cossu and 
Bianco proposed that during development, cells associated to the growing vessels 
might be recruited to adopt the local fate of the specific tissue they were invading. 
In the case of the skeletal muscle, cells associated to the blood vessels that enter the 
muscle anlagen might be recruited to adopt a myogenic fate and contribute to its 
histogenesis (Bianco and Cossu 1999). This concept was partially confirmed in the 
finding that the embryonic dorsal aorta contains skeletal myogenic cells, named 
mesoangioblasts, that co-express endothelial and myogenic markers and can con-
tribute to muscle regeneration (De Angelis et al. 1999; Minasi et al. 2002). In vitro 
co-cultures of embryonic dorsal aortas and murine myotubes demonstrated that 
Noggin secreted from newly formed muscle fibres recruits NG2+ dorsal aorta pro-
genitors and promotes their conversion to a myogenic fate. Conversely, myogenesis 
is inhibited by bone morphogenetic factor 2 (BMP2) expressed by the aorta (Ugarte 
et al. 2012). This data indicates that skeletal muscle and blood vessels compete to 
recruit mesodermal progenitor cells to a myogenic or to a perivascular fate during 
foetal muscle development and that the final decision of which cell fate to adopt 
might be due to the balance existing between Noggin and BMP2 expression. These 
data also suggest that a fate switch might also occur in the other direction, with 
skeletal myoblasts being recruited to a pericyte fate. In this direction, Cappellari 
et  al. showed that exposure of both embryonic and foetal skeletal myoblasts to 
Notch Delta ligand 4 (Dll4), expressed by the developing endothelium (Kume 
2012), and PDGF-BB, which recruits pericytes from the surrounding mesenchyme 
(Hellstrom et al. 1999), downregulates myogenic genes, upregulates pericyte mark-
ers and recruits myoblasts to a perivascular position when co-cultured with endothe-
lial cells. Moreover, they showed that myoblasts also occasionally adopt a 
perivascular position in vivo, ruling out that the direct conversion of skeletal myo-
blasts into pericytes is simply an artefact of ex vivo cell manipulations (Cappellari 
et  al. 2013). Altogether, this data suggests that the endothelium, via Dll4 and 
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PDGF-BB expression, might induce a fate switch in adjacent skeletal myoblasts. 
Cossu and Cappellari postulated that the reason for lineage promiscuity between 
muscle cells and perivascular cells might be explained by developmental timing and 
the specific need of the skeletal muscle tissue during histogenesis: for the muscle to 
grow, it recruits not only myoblasts but also unorthodox mesodermal cells that 
undergo myogenesis once exposed to muscle-specification molecules; once muscle 
growth is complete, hypoxia is triggered with consequent vascular endothelial 
growth factor release and activation of angiogenesis, with developing blood vessels 
in the muscles recruiting supporting perivascular cells from the surrounding meso-
derm (Fig. 15.1) (Cappellari et al. 2013; Cappellari and Cossu 2013). Recent work 
in our laboratory has demonstrated that this mechanism is also conserved in adult 
murine and human satellite cell-derived myoblasts, and that it can be exploited to 
enhance migration of myoblasts when transplanted (Gerli et al. 2019).

 Pericytes Contribution to Muscle Regeneration

 Pericytes as Stem/Progenitor Cells for Muscular Dystrophies

Stem cell transplantation therapies for muscular dystrophies have long been touted 
as a method to improve clinical features. Satellite cell-derived myoblasts were ini-
tially considered the ideal candidate cell population for the cell therapy of muscular 
dystrophies (Partridge et al. 1989). However, successive clinical studies revealed 
that although some level of dystrophin was produced, no efficacy was achieved in 
patients with DMD, one of the most severe and common forms of muscular dystro-
phy [reviewed in (Negroni et al. 2016; Partridge 2000; Tedesco et al. 2010)]. Whilst 
researchers tried to identify the possible culprit(s) for this result (Fan et al. 1996; 

Fig. 15.1 A schematic representation of the hypothetical model explaining lineage promiscuity 
between muscle pericytes and satellite cell-derived myoblasts during development. The figure has 
been generated using Servier Medical Art
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Guerette et al. 1997; Huard et al. 1992; Skuk and Tremblay 2011) and find possible 
therapeutic solutions (Arpke et al. 2013; Boldrin et al. 2012; Cerletti et al. 2008; 
Collins et al. 2005; Gilbert et al. 2010; Montarras et al. 2005; Morales et al. 2013; 
Palmieri et al. 2010; Rocheteau et al. 2012; Sacco et al. 2008; Skuk et al. 2006, 
2007, 2004; Smythe et al. 2000; Tanaka et al. 2009), the search was started for alter-
native cell types that could be effective in cell therapy protocols for muscle. Whilst 
several candidate stem/progenitor populations have been identified as contributing 
to skeletal muscle regeneration [reviewed in (Loperfido et al. 2015; Negroni et al. 
2016; Tedesco et al. 2010, 2017)], pericyte-derived cells seem to hold a preferential 
place.

Data obtained from different laboratories in the past years support an important 
role for myogenic pericytes in skeletal muscle regeneration. As mentioned earlier in 
this chapter, fate-tracing of AP+ murine skeletal muscle pericytes reveals how this 
subset of pericytes contributes to the formation of new muscle fibres in a LGMD 2D 
mouse model (Dellavalle et al. 2011). In human skeletal muscle, AP+ pericytes are 
increased in muscle biopsies of some dystrophic patients compared to healthy con-
trols and neuropathic patients (myopathic 9.4% vs. and controls 4.7% vs. neuro-
pathic 5.7%) (Diaz-Manera et  al. 2012). These results are supported by another 
study showing an increase in the population of NG2+ pericytes in acute muscular 
injury (Valero et al. 2012). Conversely, we have reported a significant decrease (of 
approximately 55%) in the numbers and myogenic capacity of AP+ muscle pericytes 
both in mice and patients with LGMD2D (Tedesco et al. 2012). This apparently 
contrasting data could be explained by the different stage of disease progression of 
the biopsies/samples used in these two studies. We propose that in dystrophic mus-
cles, during the first phase of muscle degeneration/regeneration AP+ skeletal muscle 
pericytes are transiently amplified to sustain the continuous need for new muscle 
fibres in cooperation with satellite cells and other muscle stem cells. Over time, 
cycles of muscle degeneration/regeneration lead to an exhaustion of the pool of AP+ 
pericytes.

Myogenic pericyte transplantation has also been tested in preclinical models of 
muscular dystrophies, where they have the advantageous characteristic of being 
deliverable through the arterial circulation. These reports show active contribution 
of pericytes to muscle regeneration in dystrophic animal models (Berry et al. 2007; 
Bonfanti et al. 2015; Dellavalle et al. 2007; Diaz-Manera et al. 2010; Domi et al. 
2015; Galvez et al. 2006; Iyer et al. 2018; Minasi et al. 2002; Morosetti et al. 2011; 
Pessina et al. 2012; Quattrocelli et al. 2014; Sampaolesi et al. 2006, 2003; Sciorati 
et al. 2006; Tedesco et al. 2011).

As with other myogenic progenitor populations, one of the major hurdles to 
improve the feasibility of pericytes as a transplantation therapy for muscular dystro-
phy is the low level of engraftment. Recently, a first-in-human phase I/II clinical 
trial based upon intra-arterial transplantation of HLA-matched allogeneic pericyte- 
derived mesoangioblasts in 5 DMD boys showed that whilst relatively safe, there 
was limited dystrophin production (1 of 5 biopsies), probably due to low level of 
cell engraftment (Cossu et al. 2015). Optimisation of this methodology is therefore 
required for future therapeutic use.
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Lastly, Zazt and colleagues investigated the effect of repeated intraperitoneal 
injections of adipose human pericytes on the lifespan and motor function of a severe 
DMD mouse model. They reported that adipose tissue-derived pericytes led to an 
increased lifespan of one month, possibly mediated by immune modulation rather 
than a regenerative ability (Valadares et al. 2014). In view of the unusual delivery 
route (intraperitoneal), the lack of histological evidence of engraftment or ameliora-
tion of tissue pathology and as none of the functional tests revealed differences 
between the groups, additional evidence would be required to assess the feasibility 
and clinical relevance of this strategy.

 Limitations to Cell Therapy and Possible Solutions

Despite numerous preclinical and clinical studies on cell transplantation, muscular 
dystrophies still remain incurable, and there are still several challenges to be 
addressed before becoming routinely used in a clinical setting, including engraft-
ment efficacy, transplantation route and modulation of the immune response 
[reviewed in (Maffioletti et al. 2014; Negroni et al. 2016)]. The main challenge is 
due to the fact that skeletal muscle is the most abundant human tissue, covering 
30–38% of total body mass (Janssen et al. 2000). Transplanting stem cells has been 
shown to result in clinical improvement when specific muscles are affected, such as 
the recent trial for oculopharyngeal muscular dystrophy using intramuscular injec-
tions of autologous myoblasts (Perie et al. 2014). However, replacing large volumes 
of dystrophic muscle affected in widespread muscular dystrophies (such as DMD) 
would require the successful engraftment of billions of myogenic progenitors. 
Indeed, as with other myogenic progenitor populations, there are two major hurdles 
to be overcome in order to improve the feasibility of pericytes and pericyte-derived 
cells as a transplantation therapy for muscular dystrophies: (1) the low levels of cell 
engraftment to the dystrophic muscle and (2) the limited cell expansion potential 
in vitro.

In this direction, several strategies have been developed to improve homing and 
engraftment of pericyte-derived cells. These include making blood vessels more 
accessible for cell extravasation (Giannotta et al. 2014), treating transplanted cells 
with homing factors (Quattrocelli et al. 2014) and modulating the immune response 
(Maffioletti et al. 2014; Noviello et al. 2014). Exposure to cytokines and integrins 
can also improve pericyte-derived mesoangioblast engraftment (Galvez et al. 2006; 
Palumbo et al. 2004; Tagliafico et al. 2004). However, it is important to assess the 
possible side effects of transplanting engineered cells, as whilst they can promote 
extravasation and homing, the expression of different surface molecules could mod-
ulate the immune response following transplantation, including deleteriously 
increasing donor cell clearance. The interaction between muscle, pericytes and 
immune cells via adhesion molecules is well documented [reviewed in (Maffioletti 
et al. 2014; Noviello et al. 2014)]. Of interest, intracellular adhesion molecule 1 
(ICAM-1/CD54) expression is increased in inflamed endothelial cells and muscle 
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fibres (Bartoccioni et  al. 1994; Tews and Goebel 1995). However, leukocyte 
function- associated antigen 1 (LFA-1) expressed on T cells binds to ICAM-1, 
resulting in cytotoxic T-cell infiltration (Bartoccioni et al. 1994). Also, expression of 
VCAM-1 and its ligand VLA-4 has been observed in muscle capillaries and infil-
trating cells of patients with inflammatory myopathies (Tews and Goebel 1995). 
Interestingly, VCAM-1 expression is associated with increased engraftment of 
CD133+ cells, another class of myogenic vessel-associated cells, which have been 
transplanted intra-arterially into dystrophic mice (Gavina et al. 2006). In this paper, 
Gavina and colleagues found that VCAM-1 expression in muscle capillaries 
increased after exercise and improved engraftment, whilst conversely, blocking 
VCAM-1 expression significantly reduced engraftment (Gavina et  al. 2006). In 
summary, careful assessment of the transplant population and donor muscle tissue 
should be performed to maximise engraftment.

Another important factor for optimal muscle cell therapy is the ability of myo-
genic cells to proliferate in vitro and produce large numbers of transplantable pro-
genitors. This point is of particular importance as in muscular dystrophies the 
myogenic cells (including pericytes) are exhausted or defective (Blau et al. 1983; 
Cassano et  al. 2011; Kudryashova et  al. 2012; Sacco et  al. 2010; Tedesco et  al. 
2012). To overcome the limitation of expansion potential of biopsy-derived patient-
derived induced pluripotent stem cells (iPSCs) can be obtained and differentiated 
towards the myogenic lineage. One such protocol developed by our group is to 
produce iPSC-derived inducible myogenic cells similar to pericyte-derived mesoan-
gioblasts, which have an unlimited proliferative potential and could then efficiently 
be induced to skeletal myogenesis with a short expression of the myogenesis regula-
tor MyoD (Gerli et al. 2014; Maffioletti et al. 2015; Tedesco et al. 2012).

Another strategy to extend the proliferative potential of pericyte-derived meso-
angioblasts is to provide them with an indefinite lifespan via expression of immor-
talising genes. Our group has recently shown that reversibly immortalising lentiviral 
vectors expressing the catalytic subunit of human telomerase hTERT and the poly-
comb gene Bmi-1 is safe and efficacious at extending the proliferative capacity of 
human DMD pericyte-derived mesoangioblasts, enabling them to have a human 
artificial chromosome containing the whole dystrophin locus (DYS-HAC) trans-
ferred (Benedetti et al. 2018). After DYS-HAC transfer, genetically corrected DMD 
pericyte-derived clones were expanded to reach a number of cells potentially suffi-
cient to treat a paediatric DMD patient [in the range of 109 cells; (Benedetti et al. 
2018; Cossu et al. 2015)].

In the quest for an ideal cell type for muscle cell therapy, our group also explored 
a different approach by taking advantage of the findings that embryonic and foetal 
myoblasts could be converted to the pericyte fate following activation of Notch and 
PDGF pathways via Dll4 and PDGF-BB (Cappellari et  al. 2013; Cappellari and 
Cossu 2013). As mentioned earlier in this chapter, adult murine and human satellite 
cell-derived myoblasts exposed to Dll4 and PDGF-BB also acquired perivascular 
cell features, including transendothelial migration ability, whilst maintaining myo-
genic capacity (Gerli et al. 2019). We propose that this strategy could generate a 
hybrid pericyte-myoblast cell retaining the two most advantageous and peculiar 
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characteristics of both cell types: the ability to generate muscle with high efficacy 
(myoblast) alongside transendothelial migration capacity (pericyte-derived cells).

In conclusion, there are several promising strategies in development using 
pericyte- like cells for cell therapy of muscular dystrophies. Nevertheless, it is cru-
cial that both the transplanted cell and the host environment are considered in order 
to improve engraftment efficacy. Therefore, it is likely that future clinical studies 
will focus on combined therapies, where stem cell transplantation is merged with 
other therapeutic interventions, such as administration of anti-fibrotic and pro-
angiogenic drugs, which have been shown to improve pathology in mouse models 
of muscular dystrophy (Cordova et al. 2018; Gargioli et al. 2008).

 Non-Myogenic Role of Skeletal Muscle Pericytes

 Pericyte Contribution to Fat Accumulation

Intramuscular deposition and accumulation of adipose tissue is a typical hallmark of 
disease progression and severity in muscular dystrophies, especially in DMD 
(Lukjanenko et al. 2013; Mankodi et al. 2016; Wren et al. 2008). Pericytes from dif-
ferent tissues, including skeletal muscle, have shown adipogenic potential when 
cultured in vitro (Crisan et  al. 2008a; Farrington-Rock et  al. 2004; Minasi et  al. 
2002). In skeletal muscle, a subset of quiescent cells expressing the adipogenic pro-
genitor marker PDGFRα is closely associated to the vasculature and located in the 
interstitial space between muscle fibres. Following muscle injury, these cells, later 
called fibro/adipogenic progenitors (FAPs), exit quiescence, start proliferating and 
contribute to ectopic fat accumulation in skeletal muscle (Joe et al. 2010; Rodeheffer 
2010; Uezumi et al. 2010). Other groups have demonstrated that PDGFRα+ type-1 
but not PDGFRα− type-2 pericytes have adipogenic potential in vitro (Birbrair et al. 
2013a; Gautam et al. 2017). Moreover, cultured type-1 pericytes generated ectopic 
white fat when delivered intramuscularly in a mouse model of fatty degeneration 
(Birbrair et al. 2013a). Future lineage-tracing studies might clarify whether type-1 
pericytes do indeed contribute to fat accumulation in skeletal muscle in situ. In addi-
tion, a recent lineage-tracing study by Strickland and colleagues demonstrated that 
PDGFRβ+ skeletal muscle pericytes were able to differentiate into perilipin+ adipo-
cytes in a congenital muscular dystrophy model (Yao et al. 2016).

 Pericyte Contribution to Chondrogenesis

In addition to committing to a myogenic fate, pericytes have been shown to undergo 
chondrogenic and osteogenic differentiation in vitro (Crisan et al. 2008b; Farrington- 
Rock et al. 2004; James et al. 2012; Levy et al. 2001; Zhang et al. 2011). Whether 
pericytes contribute to skeletal muscle ossification in  vivo, however, remains 
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undetermined. Interestingly, ectopic calcification has been reported in animal mod-
els of DMD including the mdx mouse (Geissinger et al. 1990) and dog (Nguyen 
et al. 2002). Additionally, it has recently been shown that AP+ pericytes are reduced 
in immune-deficient scgb/Rag2/γc-null mice (a model of LGMD2E), whilst calcifi-
cation of skeletal muscles is increased (Giovannelli et al. 2018). Unsurprisingly, this 
has led to the implication that pericytes are involved in the ectopic calcification of 
blood vessels in skeletal muscle, especially in the context of ongoing angiogenesis 
[reviewed in (Collett and Canfield 2005)]. Of note, AP+ mononuclear interstitial 
cells from adult human skeletal muscle have been shown to express the osteogenic 
marker osteocalcin when cultured in vitro (Levy et al. 2001), and in fibrodysplasia 
ossificans progressiva (FOP) progressive ossification of skeletal muscle has been 
shown to be caused by mesenchymal-like stromal cells expressing smooth muscle 
markers (Hegyi et al. 2003). Whilst the authors postulate that these cells are peri-
cytes, more recent data suggests it may be due to the Tie2+ FAP population (Lees- 
Shepard et al. 2018). Again, this points to the requirement for subpopulations of 
FAPs and pericytes to be clearly distinguished.

 Pericytes and Fibrosis

Increased fibrosis is a typical feature of aged and dystrophic muscles, which ulti-
mately results in muscle weakness, atrophy and reduction of its regenerative poten-
tial (Kragstrup et al. 2011; Mann et al. 2011; Ryall et al. 2008; Thompson 2009; 
Walston 2012). A major contributor to fibrosis is the myofibroblast (Duffield et al. 
2013; Humphreys et al. 2010; Lin et al. 2008; Quan et al. 2006; Willis et al. 2006; 
Wynn 2008; Zeisberg et al. 2007). Myofibroblasts are responsible for the production 
and deposition of collagenous extracellular matrix, with consequent reduction of 
muscle fibre contractility, disruption of the muscle structure and eventually skeletal 
muscle dysfunction. Several putative myofibroblast progenitor populations have 
been associated to muscle fibrosis, including FAPs and cells expressing PDGFRα 
(Uezumi et al. 2010) and ADAM12 (Dulauroy et al. 2012). As some of these mark-
ers are also expressed by pericytes, it has been hypothesised that pericytes may be a 
source of myofibroblasts during skeletal muscle fibrosis. Indeed, Birbrair et  al. 
showed that skeletal muscle PDGFRα+ pericytes are fibrogenic in vitro when cul-
tured in the presence of transforming growth factor β (TGFβ), whilst in vivo, they 
produce collagen, responsible for increasing skeletal muscle fibrosis in old mice 
(Birbrair et al. 2014, 2013c).

In parallel, using a complex triple transgenic mouse that expressed tetracycline 
under ADAM12 locus, Cre recombinase under control of the tetracycline transacti-
vator and the conditional reporter Rosa26floxSTOP-YFP, Dulauroy et al. showed 
the existence of a transient subpopulation of ADAM12+ interstitial cells that become 
active after muscle injury. With this approach, they revealed that the large majority 
of collagen-producing myofibroblasts were generated starting from ADAM12+ 
cells, which are located in a perivascular position and are positive for PDGFRβ. 
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Moreover, ablation of ADAM12+ cells reduced the number of profibrotic cells and 
collagen accumulation (Dulauroy et al. 2012). This data corroborates the hypothesis 
that in skeletal muscle ADAM12 identifies a myofibroblast progenitor with pericyte 
characteristics.

 Pericyte Role in the Vascular Compartment

Muscle ischemia has been observed in biopsies from patients with DMD for many 
decades (Engel 1967) and clinical symptoms were once hypothesised to be caused 
by local infarctions. Whilst there have not been consistent reports in changes to 
blood flow or microvascular architecture observed in DMD patients [reviewed in 
(Thomas 2013)], it has been shown that dystrophin-deficient muscle fibres are more 
susceptible to muscle ischemia though a neuronal nitric oxide synthase μ (nNOSμ)-
specific mechanism. Localised muscle ischemia results in increased exercise- 
induced fatigue and microvessel constriction, elevating clinical symptoms 
(Kobayashi et al. 2008). This mechanism is not specific to DMD; changes to sarco-
lemmal nNOS expression have been observed in biopsies from other several mus-
cular dystrophies including limb-girdle and congenital muscular dystrophy 
(Kobayashi et al. 2008). Whether or not pericytes actively contribute to the vascular 
pathology observed in muscular dystrophies, it has been shown that improving the 
reduced blood flow improves clinical symptoms and cell therapy in preclinical mod-
els (Brunelli et al. 2007; Gargioli et al. 2008). Of note, treatment of dystrophic mice 
with nitric oxide-releasing drugs improves the efficacy of mesoangioblast trans-
plantation (Brunelli et al. 2007).

 Derivation of Pericytes from Pluripotent Stem Cells

Pluripotent stem cell (PSC)-derivatives are of great importance for studying devel-
opment and organogenesis, whilst also being promising candidates for cell trans-
plantation studies, due to their unlimited expansion potential. Differentiating PSCs 
into pericyte-like cells enables the possibility to study developmental relationships 
between mural cells of different developmental origins. For example, Kumar et al. 
found using clonal analyses that mesodermal-derived progenitors could make mes-
enchymal stromal cells, VSMCs and pericytes (Kumar et al. 2017). Additionally, 
this protocol was used to derive arteriolar and capillary subtypes of pericytes 
through the modulation of growth factors. Protocols to differentiate vascular cells 
from different embryonic lineages (neural crest, lateral plate mesoderm and paraxial 
mesoderm) have also been developed in order to study different forms of vascular 
development (Cheung et al. 2012; Chin et al. 2018; Cochrane et al. 2018; Orlova 
et al. 2014). In muscle pathology, PSC-derived pericyte-like cells have shown path-
ological improvement in preclinical models of muscular dystrophy (Tedesco et al. 
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2012) and ischemia (Dar et al. 2012). Determining whether PSC-derived cells are 
truly functional pericytes when transplanted in vivo is difficult. However, using lin-
eage determinants to produce a pericyte-like mesenchymal (or neural ectodermal) 
progenitor, which when transplanted differentiates into a regeneration-supporting 
cell, could be a more feasible option.

 Concluding Remarks

Since their initial description, there has been important progress in understanding 
pericyte biology and function; however, their exact role and involvement in the 
pathogenic process of muscle degeneration and regeneration is still in need of a 
definitive model. Nonetheless, the clinical relevance of pericyte is now more impor-
tant than ever before, both as a target for possible therapeutic intervention (e.g. 
reduction of fibrosis) and as advanced therapy medicinal products. We foresee that 
in the upcoming decade the ontogeny and characteristics of this elusive cell type 
will become clearer, setting the foundation for their organotypic derivation from 
human PSCs and use in next-generation experimental therapies for muscle 
diseases.
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