
SysML Model Transformation for Safety
and Security Analysis

Rabéa Ameur-Boulifa1(B), Florian Lugou2, and Ludovic Apvrille1

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
Rabea.Ameur-Boulifa@telecom-paristech.fr

2 Prove & Run, Paris, France

Abstract. While the awareness toward the security and safety of
embedded systems has recently improved due to various significant
attacks, the issue of building a practical but accurate methodology for
designing such safe and secure systems still remains unsolved. Where test
coverage is dissatisfying, formal analysis grants much higher potential to
discover security vulnerabilities during the design phase of a system. Yet,
formal verification methods often require a strong technical background
that limits their usage. In this paper, we formally describe a verifica-
tion process that enables us to prove security-oriented properties such
as confidentiality on block and state machine diagrams of SysML. The
mathematical description of the translation of these formally defined dia-
grams into a ProVerif specification enables us to prove the correctness
of the verification method.

Keywords: Model-Driven Engineering · Verification · Safety ·
Security · Embedded systems

1 Introduction

In our increasingly connected world, security is a growing concern for embedded
systems. This remark firstly applies to critical systems such as connected vehicles
or industrial systems. There are already many approaches (i.e. methods, models
and tools) to evaluate critical aspects of these systems independently from their
security: real-time schedulability, formal verification techniques based e.g. on
model-checking or correct-by-construction techniques. Model-Driven Engineer-
ing often considers safety aspects with coherence checks between diagrams or
with model-to-formal-specification algorithms in order to evaluate safety prop-
erties from e.g. UML diagrams. Concerning security aspects, a usual practice is
to rely on dedicated models and tools that are focused on the security aspect
e.g. ProVerif [1] and Avispa [6], and are thus not compatible with safety-related
models and tools. As a result, security is often seen as the right way to use the
right tools, if not totally ignored. This however leads to more subtle bugs when
out-of-the-box cryptographic solutions are not suitable, and in particular when
the importance of an asset or communication is misunderstood. Such a security
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 35–49, 2019.
https://doi.org/10.1007/978-3-030-16874-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_3

36 R. Ameur-Boulifa et al.

issue can be minor when the number of devices affected is small and when the
vulnerability can be fixed easily, e.g. with a software patch. However, this is typ-
ically not the case for embedded systems where design flaws can be impossible
to fix and can affect a whole range of products. Even when a security vulnera-
bility is discovered before the product is released, the amount of work needed to
rethink the whole architecture may be prohibitive.

To facilitate the design of critical systems with security requirements, we
suggest enhancing safety-related models with security mechanisms, and to offer,
from the same model, safety-to-formal-specification and in addition, security-to-
formal-specification transformations. In the paper, we present the SysML-Sec
environment that supports both safety and security. Then, we elaborate on the
SysML-Sec-model-to-security-formal-specification that was first sketched in [16].
This transformation algorithm is valuable as it enables us to perform security
verification on general-purpose design models and thus avoids error-prone dupli-
cation of models. However, the transformation algorithm had not been formally
described yet. This paper gives a formal description of the transformation algo-
rithm in order to prove the correctness of the method. Throughout the paper, we
will illustrate our explanation of the different phases of modeling and verification
on a pedagogical example. Although the example has purposely been kept to its
bare minimum so that the reader can easily refer to it, it could still be used as
a sub-part of a greater real-life design. In the presented scenario, two partici-
pants (called Alice and Bob) communicate through an unsafe (public) channel.
Alice repeatedly sends sensitive data to Bob. The messages are encrypted by
Alice before being transmitted over the public channel. The two participants
have beforehand shared a cryptographic key and we assume the way the sharing
was performed does not need to be modeled. In practice, the key could have
been physically shared, built from asymmetric key material (through a Diffie-
Hellman protocol for instance) or it could have been provided to Alice and Bob
by a trusted third party. The key used by Alice to encrypt her communications
periodically changes, and thus a new key is created. So each time Alice sends a
new message, she attaches the newly created key so that Bob is able to decrypt
the next message. We typically want to verify that the data sent by Alice can not
be retrieved by a potential attacker eavesdropping and manipulating messages
on the public channel. Other more complex security protocols and systems have
been modeled and verified using the method described in this paper.

The verification method enables us to prove confidentiality and authentic-
ity properties on these models within an acceptable time (less than 5 min on
a general-purpose computer). We will not detail these case studies in the cur-
rent paper but refer the interested reader to the SysML-Sec website1 where the
corresponding models are freely accessible.

The paper is organised as follows: in Sect. 2, we present the methodology
chosen here and give a formal description of the modeling language (a SysML
profile). Section 3 presents the basic model ProVerif language and we give a
translation of SysML model to ProVerif model. Section 4 acts as a validation of

1 http://sysml-sec.telecom-paristech.fr/.

http://sysml-sec.telecom-paristech.fr/

SysML Model Transformation for Safety and Security Analysis 37

our approach that can be used to assert the validity of our translation. Section 5
surveys related work before concluding in Sect. 6.

2 SysML-Sec Language

SysML-Sec [5] is a modeling language following a model-driven approach to
design embedded systems with safety, security and performance constraints. This
modeling language was chosen as it enables the user to analyze behaviors that
will be implemented by the system and specifically targets embedded systems.
Moreover, it is supported by a free and open-source tool to which the presented
algorithm was added.

Designing an Application: Basically, SysML-Sec supports two main modeling
phases:

1. The system-level HW/SW partitioning phase includes capturing func-
tional elements of the target application, modeling candidate architectures
and finally mapping functional elements—including communications between
functions—to candidate architectures. Then a verification sub-phase follows
in which safety, security and performance constraints are evaluated in order
to select the “best” HW/SW partition.

2. A software design phase follows a successful partitioning phase. Software
components are first built from high-level functions mapped onto processor
nodes at the previous phase. Then, they are progressively refined. Refine-
ment typically concerns the accurate description of algorithms and protocols,
including security protocols.

Design elements of the two phases are built from (safety and security) require-
ments. Verification is supported in all modeling stages in order to assess the
security and safety requirements. Attack trees also help capture potential attacks
that are feasible in the considered mapping models.

TTool is a free and open-source tool that supports the different phases
and models of SysML-Sec. It offers a press-button approach for safety, security
and performance verification, and can backtrace verification results to modeling
views.

Software Design Verification: As formalized below, a software design is built
upon communicating blocks whose behaviors are described with state machine
diagrams. Software design verification intends to evaluate the fulfillment of safety
and security properties. Safety verification checks a large set of properties includ-
ing safety (e.g. deadlock-free) and liveness (e.g. reachability) properties. Prop-
erties can be modeled either with a subset of temporal logic language e.g. CTL,
or with the use of observers in the model that are expressed with state machine
diagrams. TTool relies on UPPAAL model checking tool for verification.

38 R. Ameur-Boulifa et al.

2.1 Syntax

In the software design phase, the SysML-Sec diagrams intend to describe a soft-
ware design. This section provides a formal definition of software designs.

Definition 1 Design. A design is defined by a network of blocks interconnected
by links and a set of pragmas:
D = 〈B, C,P〉 where B is a set of blocks, C is a set of channels, and P is a set
of pragmas.

Fig. 1. A graphical representation of SysML-Sec design example

Figure 1 displays two blocks Alice and Bob as well as a public link—as
denoted by the illuminati symbol—between the two. In this paper, we don’t
mention data types as they only act as syntactic sugar as far as security analysis
is concerned.

SysML blocks consist of a set of methods and attributes. Communication
ports can be attached to a block, and to each port are attached interfaces and
signals [12]. For simplicity, we directly attach signals to SysML blocks.

Definition 2 Block. A block is a tuple:
block = 〈ident ,A,M,S, behav〉 where

– ident is a block name.
– A is a set of attributes.
– M is a set of methods.
– S is a set of directed signals. For each s ∈ S, type(s) ∈ {in, out}.
– behav is a state machine diagram.

We define a function block that, for a given design D, returns the set of its
blocks; and functions sig and att that b return the set of signals and attributes
for a given block respectively.

Definition 3 Channel. A channel connects signals between blocks: channel =
〈type,R〉 where type is a physical property which can be either private or public,
and R is one-to-one correspondence between two sets of signals, R ⊆ sig(b1) ×
sig(b2) where b1, b2 ∈ block(D) such that ∀(s1, s2) ∈ R, type(s1) �= type(s2).

SysML Model Transformation for Safety and Security Analysis 39

SysML design supports the notion of pragma. Pragmas enable us to describe
properties of the system in the initial state, and to query a property of the design
that will be checked during verification. To simplify this description, we will
consider only two types of pragmas which: - express that two attributes have the
same value at the beginning of the execution (Pinit); - query the confidentiality
of an attribute (Psecret).

Definition 4 Pragma. Let D be a design. We define a pragma as a pair: P =
(Pinit,Psecret) where

Pinit⊆
(⋃

b∈block(D) att(b)
)2

and Psecret⊆
⋃

b∈block(D)att(b)

A state machine diagram is a labelled transition system with variables
named attributes; a state machine diagram can have guards and assignments of
attributes on transitions. Attributes can be manipulated, defined, or accessed.
Let f range over function names, xi range over variable names, and c are channel
names. The set Actions of action terms in state machine diagrams is defined as
follows:

a ∈ Actions ::= f(x1, . . . , xn) function call
| x := exp assignment expression
| c〈x〉 input action
| c̄〈x〉 output action
| ν.x random action
| ε empty action

Expressions (exp) in SysML-Sec can be variables and function calls (x and
f(x1, . . . , xn)). The set Guards is the set of boolean expressions.

Definition 5 State Machine Diagram. A state machine diagram is a rooted
directed graph: behav = 〈Q, q0, q⊥, E〉 where

– Q is a set of nodes.
– q0 ∈ Q is an initial state node.
– q⊥ ∈ Q is a (possibly empty) final state node.
– E ⊆ Q × Guards × Actions × Q.

A name is given by the designer to each state. We define a labelling function
L that returns the name of a given state. Given an edge e = (q, g, a, q′), we define
functions source(e) = q, guard(e) = g, action(e) = a, and target(e) = q′. A trace
σ ∈ Actions∗ is a sequence of actions a0 a1,. . . an such that there is a sequence
of states q0 q1,. . . qn and (qi−1, g, ai, qi) ∈ E for all i = 1, . . . , n.

Syntactic Constraints on Activity Diagram. TTool enforces some basic properties
on the state machine diagrams, namely:

1. The initial state node may only occur in the source of an edge.
2. The final state node may only occur in the target of an edge.
3. For any state node, there is a path from the initial state node to this node.

40 R. Ameur-Boulifa et al.

4. Any state node different from the final state node has at least one outgoing
transition.

We introduce the notion of basic block that we will use in our translation. A
basic block can be seen as a sub-design that offers a single point of entry and
that can be triggered by several points. Precisely, it is a connected sub-graph for
which all the states have exactly one incoming edge, except for one state that we
name root. We will use Out function that returns the set of transitions outgoing
from a given state. We also define a predicate UniqueOut and UniqueIn that
take a state q and return true only if no two different transitions have q as a
source and target state respectively.

UniqueOut(q) ⇔
(∀(q1, g1, a1, q

′
1), (q2, g2, a2, q

′
2) ∈ E .

q1 =q ∧ q2 =q ⇒ g1 =g2 ∧ a1 =a2 ∧ q′
1 =q′

2

)

UniqueIn(q) ⇔
(∀(q1, g1, a1, q

′
1), (q2, g2, a2, q

′
2)∈E .

q′
1 =q ∧ q′

2 =q ⇒q1 =q2 ∧ g1 =g2 ∧ a1 =a2

)

Figures 2a and b show the graphical representation of the two state machine
diagrams of Alice and Bob respectively. Note that empty actions and “true”
guards are not shown in the diagrams. States are depicted by colored boxes
(except for the initial state which is a circle), transitions by arrows, and actions
are either represented by textual expressions next to arrows (for function calls
and assignment expression) or by white boxes with various forms (for the other
types of actions). For instance, the state machine of Alice is composed of an initial
state linked to a state named generateNewKey by an empty transition. This
state is linked to another state sendSecret by a transition bearing 4 actions: a
random action and 3 assignment expressions. Another transition links sendSecret
to generateNewKey and bears an output action. Note that in the diagrams,
multiple actions appear on each transition. This is semantically equivalent to
multiple chained transitions, each of which bearing a single action and a true
guard.

3 From SysML-Sec to Proverif

Our goal is to provide an environment to design safe and secure systems with
the SysML language. Our plan is to give a formal definition of the behavioural
semantics of SysML, and get a standard code to do the security analysis. This
section describes the behavioural semantics of SysML design allowing security
analysis.

3.1 ProVerif Language

ProVerif [7] is a cryptographic protocol verification tool operating on a symbolic
model. ProVerif specifications are described in a custom language following a
well-defined structure [8]. It consists of a sequence of declarations and a process.
Our translation use a core of ProVerif language, excluding only some declara-
tions. In detail, it covers the following features, which form a complete language
for generating well-formed code for security analysis:

SysML Model Transformation for Safety and Security Analysis 41

Fig. 2. State machine diagrams in the SysML-Sec methodology

– Function declaration (referred to by fun and reduc keywords). They are
typically used to describe cryptographic primitives such as hash, symmet-
ric encryption, etc. and they don’t depend on the particular design we are
translating.

– Variable declaration (denoted by channel and free keywords). They declare
channels and other variables that are shared by every participant and can be
either public or private.

– Queries (referred to by query keyword) express the security properties that
a user wishes to prove on the design

– Sub-processes declaration (referred to by let keyword). Each sub-process
declaration contains a behavioral description of part of the state machine
diagrams of the design. They may be referenced by other sub-processes or
by the main process. If they are not referenced by anyone, they are simply
ignored.

– The main process (referred to by process keyword), which is the entry point
of the design. It can reference any sub-process.

Global structure of an example of ProVerif code is presented in Listing 1.1.
In particular, we see a constructor declaration (sencrypt), a destructor

declaration (sdecrypt), two shared variables declarations (token Bob 0
and token Alice 0), a confidentiality query, the declaration of a sub-
process (Bob 0) and the main process which creates a new private name
(Alice key data).

(∗ Functions ∗)
fun sencrypt (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
reduc f o r a l l x : b i t s t r i n g , k : b i t s t r i n g ;

sdecrypt (sencrypt (x , k) , k) = x .
. . .

42 R. Ameur-Boulifa et al.

(∗ Var iab l e s ∗)
f r e e token Bob 0 : b i t s t r i n g [p r i va t e] .
f r e e t o k e n A l i c e 0 : b i t s t r i n g [p r i va t e] .
. . .

(∗ Quer ies ∗)
query a t tacke r (new A l i c e s e c r e t d a t a) .
. . .

(∗ Sub−p ro c e s s e s ∗)
l e t Bob 0 =

new s t r ong Bob 02 : b i t s t r i n g ;
out (chControl , s t r ong Bob 02) ;
. . .

(∗ Main proce s s ∗)
p roce s s

new A l i c e k e y da t a : b i t s t r i n g ;
. . .

Listing 1.1. Global structure of a ProVerif file

3.2 Translation of SysML-Sec Design to ProVerif

We now give the semantics of a SysML-Sec design, expressed as a translation
from SysML-Sec designs into ProVerif specifications. For each SysML-Sec design
D, the interpretation function is expressed under the form:

�D�E = FE(D) ⊕ VE(D) ⊕ QE(D) ⊕ PE(D) ⊕ "process" ⊕ MainE(D)

It relies on several auxiliary functions for expressing the semantics of spe-
cific parts of the designs. The core entities of this semantics include five func-
tions: FE(D) for generating the set of functions, VE(D) for generating the set
of variables, QE(D) for generating the set of queries from pragmas, PE(D) for
generating the set of processes, and MainE(D) that generates the main process
that manages global instantiation of other processes. The construction of these
functions relies on the notion of environment denoted E = (Eq, Ev) that keeps
track of the states that have to be visited (Eq) and those that have already been
visited (Ev) during state machine traversal.

Before defining the interpretation function, it is helpful to introduce some
notations. We use the quote (") character to indicate the beginning and ending
of a string (corresponding to ProVerif instruction). Quoted strings placed next to
each other are concatenated (by ⊕ operator) to produce a whole string (complete
source code). −→a a∈S denotes a list of parameters over the set S.

(1) Declarations part
Functions. They include a list of common cryptographic primitives that can
be used in all SysML-Sec designs. They also include additional functions tok
and untok (used to protect variables), and a pair of encryption and decryption
functions that are added to each private channel.
Variables. They consist of three types channels used for public communication,
channels controlling messages (referred to by chctrl) and variable for each basic

SysML Model Transformation for Safety and Security Analysis 43

block (referred to by token . . .). Note that the token . . . variables can only be
generated once the sub-processes are generated.
Queries. In this paper, we focus on the confidentiality property. For each vari-
able v for which the designer would like to check the confidentiality, we generate
a query of the form "query attacker(new v)".

(2) Processes generation
Sub-processes. They are generated by walking through the state machine dia-
gram of every basic block of the SysML-Sec design. To do this, the interpretation
function relies on a queue of states to be visited Eq that is initialized to con-
tain the root state of each basic block, and a list Ev that contains all the states
that have already been visited (which is empty at the beginning). While there
are unexplored states, one state s is picked from the Eq set, it is added to the
explored set Ev set, a sub-process is created by using the first function �s�

p
E

(see Table 1). The idea is that the translation function goes through the whole
basic block starting from the root and generates a Proverif instruction for each
constructor encountered by calling the appropriate interpretation function. All
interpretation functions are defined in Table 1. They use the terminology fresh
variable which means that the variable is a new one and it has no occurrence
anywhere in the code except in the instruction that creates it. Informally, the
interpretation functions, as described in Table 1, translate states to a correspond-
ing ProVerif event used for reachability queries; and transitions by translating
their guards into if conditions (�., .�tE) and their actions into ProVerif instructions
(�., .�aE). The continuation of the translation of following states is completed by
�.�cE function. Two interpretation functions require special attention: multiple
outgoing transitions and transitions linking states of two different basic blocks.
For the former, the resulting ProVerif process generates a token for each possible
transitions and makes them available to the attacker (�.�mE). Then, it triggers the
path by asking the attacker to accept one token. For the latter, the process also
generates a token (�.�bE). This token must contain the current state of the block
(as described by its attributes) and the identifier of the basic block to be called
(the token variables). In order to prevent the attacker from replaying previous
tokens, the token includes a nonce that is issued by the callee. This token is
protected from modification and spying by the attacker by encapsulating it into
a private function tok.

Main Process. The main process is then appended to the end of the ProVerif
specification. Its purpose is first to create one unique tok(. . .) message for each
state machine so that the attacker can call2 the process corresponding to each
basic block whose root is the initial state of a state machine. To create each token
for a block, the main process needs to instantiate the attributes of the block,
wait for a nonce and send the token. Then, it runs all the created processes in
parallel (as denoted by the | operator) infinitely (as denoted by the ! operator).

2 The term call here is abusive. Indeed, the attacker has no control over the execution
flow of each process. It is however able to pass a token to a particular process which
is blocked waiting for it.

44 R. Ameur-Boulifa et al.

Table 1. Interpretation function of state machine diagrams

MainE(D) =
(⊕
b∈block(D)

(⊕
a∈att(b)

"new a;" ⊕ "in(chctrl, nonce);

out(chctrl, tok(token L(q0), nonce, args))"
))

"
∣∣∣"

q∈Ev

(
"!proclabel L(q)"

)

with args = −→a a∈att(b)

4 Validation

The purpose of this section is to provide arguments validating the semantics
given in this paper. The first part shows formally that we didn’t introduce any

SysML Model Transformation for Safety and Security Analysis 45

new information in our translation process; the second part focuses on an exam-
ple to show how our translation works in practice.

4.1 Correctness Theorem

We first proved that our translation algorithm is sound: if there is a possible dis-
closure of a secret in the software design, then there is a disclosure in the ProVerif
specification. Soundness of translation algorithm states that each ProVerif code
generated by MainE(D), is compliant with the software design D, according to
the property of confidentiality.

Proposition 1. If a term M is a secret in the SysML-Sec model, then M is a
secret in the generated ProVerif specification.

The proof is done by induction on the length of all possible execution traces of
SysML-Sec model (proof detailed in [15]).

For checking properties like confidentiality, ProVerif tries to prove it by find-
ing all possible execution traces that would lead to a violation of this property in
an approximated model. This approximated model—which is needed since prov-
ing secrecy properties in the Dolev-Yao model has been proved to be undecidable
in the general case [4,10]—is constructed so that each possible trace on the real
model produces a possible trace in the approximated model. As such, ProVerif
can issue three types of results (given for secrecy here):

– Property is true. ProVerif did not find any trace leading to a violation of the
property in the approximated model. Since the approximation is sound, this
means that the property is true also on the real model.

– Property is false. ProVerif has found a trace on the approximated design and
has managed to construct a corresponding trace on the real model. The trace
found is provided with the result by ProVerif.

– Property cannot be proved. ProVerif has found a trace on the approximated
design but this trace did not match a valid trace on the real model. In this
case, ProVerif is not able to conclude but the trace on the approximated
model is returned so that the designer can decide whether this matches a
valid trace or not.

We keep these three possible results and make them available to the designer
through the TTool interface.

4.2 Verification Results in TTool

In order to enable the designer to simultaneously see the results of the previous
verification and accordingly continue modeling, verification results are displayed
on the diagrams that are built by the designer. Results for the reachability,
confidentiality and authenticity properties are displayed on the block and state
machine diagrams in the form of green (when property is true) or red (when

46 R. Ameur-Boulifa et al.

property is false) locks. For instance, we can see in Fig. 3a that the waitForMes-
sage and received states are reachable. Also, in order to ease debugging and
when it is available, the designer is provided with a trace that shows why the
property is true (for instance how a state is reachable) or false (how a secret can
be disclosed). This trace is automatically constructed based on the trace issued
by ProVerif and displayed as a sequence diagram. As such, the trace presents
the messages exchanged by the participants (all blocks and the attacker) and
the states that each block goes through. As shown in Fig. 3b, we see how the
received state inside Bob’s state machine can be reached by receiving the message
sent by Alice to Bob containing the data: (sencrypt((Alice.secret, Alice.newKey),
Alice.Key).

5 Related Work

Assessing security properties when designing software components mostly relies
on formal approaches. For example, [20] proposes verifying cryptographic pro-
tocols with a probabilistic analysis approach. Protocols are represented as trees
whose nodes capture knowledge while edges are assigned transition probabilities.
Although these trees could include malicious agents in order to model attacks
and threats, nevertheless security properties are not explicitly represented. More-
over, for threat analysis, attacks should be explicitly expressed and manually
solved. [21] defines a formal basic set of security services for accomplishing secu-
rity goals. In this approach, security property analysis strongly relies on the
designer’s experience. Moreover, threat assessment is not easily feasible. There
are numerous approaches for formal verification of security properties. Most of
them are not automated and cannot be used as an engineering tool e.g. [9,17]
and [2]. Among the research dedicated to engineering-oriented security verifi-
cation that we are aware of, the closest are [13,14] and [19]. UMLsec [13] is a
modeling framework aimed at defining security properties of software compo-
nents and their composition within a UML framework. It also features a rather
complete framework addressing various stages of model-driven secure software
engineering from the specification of security requirements to tests, including

Fig. 3. Trace expressing ProVerif results (Color figure online)

SysML Model Transformation for Safety and Security Analysis 47

logic-based formal verification regarding the composition of software compo-
nents. In [14], Kordy et al. exposed a formal description of attack-defense trees.
In these diagrams, interactions between the attacker and the system (defender)
are modeled as attacks and countermeasures. In this sense, our approach is dif-
ferent as it relies on attacker capabilities and on a description of the system
behaviour, meaning that the verification algorithm presented in this paper is
able to prove that a design is secure against a certain class of attacker, with-
out prior knowledge of the form of the attack. On the other hand, verification
algorithms on attack-defense trees can solely prove that a countermeasure is effi-
cient against a specific attack. More recently, [19] developed an expanded UML
model extending the sequence diagrams of UML for security protocol verifica-
tion. Their approach includes translating models into ProVerif for verification
of confidentiality and correspondence. While sequence diagrams are particularly
well suited to evaluating observational equivalence properties as they show the
messages exchanged between participants, state machine diagrams –as used in
this paper– allow modeling of precise behavioural properties more intuitively
(such as conditional statements or loops). Furthermore, our process includes
verification of weak and strong authenticity.

This paper expands on previous publications on SysML-Sec, proposing how to
better model certain situations (e.g., loops) and their models-to-ProVerif trans-
formation, taking into account the capabilities and limitations of ProVerif. We
thus manage to limit cases where the proof of security properties would fail,
without impacting the verification capabilities of SysML-Sec diagrams.

6 Conclusion

The paper describes a formal and novel Model-Driven Approach for (safety)
and security modeling and verification of embedded systems. The paper itself
focuses on the formal SysML-to-ProVerif transformation, and sketches a proof
of the soundness of our approach. Last but not least, this new transformation
is already available in TTool, and it includes backtracing capabilities. The over-
all approach is exemplified with a toy example. However, it has already been
successfully applied to a large range of systems, including an authenticated
and non-authenticated versions of the TLS protocol, an implementation of the
X3DH protocol used by messaging applications such as Signal/Telegram or a
key exchange protocol targeting Intel SGX architecture, and the design of the
embedded architecture of an autonomous vehicle. Our formal description set the
frameworks for a future proof of equivalence or soundness. Proof limitations of
ProVerif could also be addressed using other proving techniques, e.g. relying on
Prolog.

48 R. Ameur-Boulifa et al.

References

1. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52, 102–146 (2005)

2. Ali, Y., El-Kassas, S., Mahmoud, M.: A rigorous methodology for security archi-
tecture modeling and verification. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences (2009)

3. Allamigeon, X., Blanchet, B.: Reconstruction of attacks against cryptographic pro-
tocols. In: 18th IEEE Workshop on Computer Security Foundations, CSFW-18
2005 (2005)

4. Amadio, R.M., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290, 695–740 (2003)

5. Apvrille, L., Roudier, Y.: Designing safe and secure embedded and cyber-physical
systems with SysML-Sec. In: Desfray, P., et al. (eds.) Model-Driven Engineering
and Software Development, vol. 580, pp. 293–308. Springer, Switzerland (2016).
https://doi.org/10.1007/978-3-319-27869-8 17

6. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

7. Blanchet, B., et al.: An efficient cryptographic protocol verifier based on prolog
rules. In: CSFW, vol. 1, pp. 82–96 (2001)

8. Blanchet, B., Smyth, B., Cheval, V.: Automatic cryptographic protocol verifier.
User Manual and Tutorial, Technical report (2015)

9. Drouineaud, M., Bortin, M., Torrini, P., Sohr, K.: A first step towards formal
verification of security policy properties for RBAC. In: QSIC 2004 (2004)

10. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Workshop on Formal Methods and Security Protocols (1999)

11. Eames, D.P., Moffett, J.D.: The integration of safety and security requirements.
In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 468–480.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48249-0 40

12. OM Group: System modeling language specification (SysML), version 1.5. Techni-
cal report

13. Jürjens, J.: Developing secure embedded systems: pitfalls and how to avoid them.
In: 29th International Conference on Software Engineering (2007)

14. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

15. Lugou, F.: Environments for analyzing the security of smart objects. Ph.D. thesis,
Télécom ParisTech, France (2018)

16. Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R.: SysML models and model
transformation for security. In: 4th International Conference on Model-Driven
Engineering and Software Development (2016)

17. Maña, A., Pujol, G.: Towards formal specification of abstract security properties.
In: The Third International Conference on Availability, Reliability and Security.
IEEE (2008)

18. Pedroza, G., Knorreck, D., Apvrille, L.: AVATAR: a SysML environment for the
formal verification of safety and security properties. In: The 11th IEEE Conference
on Distributed Systems and New Technologies, NOTERE 2011 (2011)

https://doi.org/10.1007/978-3-319-27869-8_17
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/3-540-48249-0_40
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6

SysML Model Transformation for Safety and Security Analysis 49

19. Shen, G., Li, X., Feng, R., Xu, G., Hu, J., Feng, Z.: An extended UML method for
the verification of security protocols. In: 19th International Conference on Engi-
neering of Complex Computer Systems (ICECCS) (2014)

20. Toussaint, M.J.: A new method for analyzing the security of cryptographic proto-
cols. IEEE J. Sel. Areas Commun. 11, 702–714 (1993)

21. Trcek, D., Blazic, B.J.: Formal language for security services base modelling and
analysis. Elsevier Sci. J. Comput. Commun. 18, 921–928 (1995)

	SysML Model Transformation for Safety and Security Analysis
	1 Introduction
	2 SysML-Sec Language
	2.1 Syntax

	3 From SysML-Sec to Proverif
	3.1 ProVerif Language
	3.2 Translation of SysML-Sec Design to ProVerif

	4 Validation
	4.1 Correctness Theorem
	4.2 Verification Results in TTool

	5 Related Work
	6 Conclusion
	References

