
Brahim Hamid · Barbara Gallina ·
Asaf Shabtai · Yuval Elovici ·
Joaquin Garcia-Alfaro (Eds.)

 123

LN
CS

 1
15

52

ESORICS 2018 International Workshops, ISSA 2018 and CSITS 2018
Barcelona, Spain, September 6–7, 2018
Revised Selected Papers

Security and Safety
Interplay of Intelligent
Software Systems

Lecture Notes in Computer Science 11552

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Brahim Hamid • Barbara Gallina •

Asaf Shabtai • Yuval Elovici •

Joaquin Garcia-Alfaro (Eds.)

Security and Safety
Interplay of Intelligent
Software Systems
ESORICS 2018 International Workshops, ISSA 2018 and CSITS 2018
Barcelona, Spain, September 6–7, 2018
Revised Selected Papers

123

Editors
Brahim Hamid
University of Toulouse
Toulouse, France

Barbara Gallina
Mälardalen University
Västerås, Sweden

Asaf Shabtai
Ben-Gurion University
Beer-Sheva, Israel

Yuval Elovici
Ben-Gurion University
Beer-Sheva, Israel

Joaquin Garcia-Alfaro
Télécom SudParis
Evry, France

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-16873-5 ISBN 978-3-030-16874-2 (eBook)
https://doi.org/10.1007/978-3-030-16874-2

Library of Congress Control Number: 2019936518

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6952-1053
https://orcid.org/0000-0003-0630-4059
https://orcid.org/0000-0002-7453-4393
https://doi.org/10.1007/978-3-030-16874-2

Foreword from the ISSA 2018 Program Chairs

Several frameworks have been proposed to help the designers of software system
applications. However, we currently lack methodological tool support to take into
account the interplay between security and safety and the other architecture properties.
Just consider cyber-physical systems and the added complexity they offer. For exam-
ple, the security of cars has been already compromised with the possibility to interact
with different safety-related functionality like releasing the brakes while driving. Thus,
security and safety in CPS can only be addressed holistically. Dealing with the com-
plexity and connectivity of modern CPS can be challenging from a security and safety
perspective because the architecture style can compromise security and safety, and vice
versa.

This volume contains the proceedings of the International Workshop on Interplay of
Security, Safety and System/Software Architecture (ISSA 2018), held in Barcelona,
during September 6–7, 2018. The main focus of ISSA is on the topic of making
security and safety expert knowledge available to system and software engineering
processes. Special emphasis was devoted to promote discussion and interaction
between researchers and practitioners focused on the particularly challenging task to
efficiently integrate security and safety solutions within the restricted available design
space for software systems.

The Program Committee of ISSA 2018 accepted for presentation three full papers
and one short paper, out of ten submissions. Each submitted paper received at least
three reviews. These proceedings contain the revised versions of these papers, covering
topics such as software security engineering, domain-specific security and privacy
architectures, and automative security. In addition, the program was complemented by
an invited talk, by Gabriel Pedroza, from CEA France, on safety and security
co-engineering intertwining.

We are grateful to the ESORICS Symposium Steering Committee and its chair,
Sokratis Katsikas, for all the arrangements that made the satellite events possible, as
well as Joaquin Garcia-Alfaro (ESORICS 2018 Workshop Chair), Miguel Soriano
(ESORICS 2018 General Chair), and Josep Pegueroles (ESORICS 2018 Organization
Chair) for their support in the workshop organization and logistics.

March 2019 Brahim Hamid
Barbara Gallina

Organization

International Workshop on Interplay of Security,
Safety and System/Software Architecture—ISSA 2018

Program Chairs

Brahim Hamid University of Toulouse, France
Barbara Gallina Mälardalen University, Sweden

Program Committee

Morayo Adedjouma CEA LIST, France
Corinne Beider ENAC, France
Julien Brunel ONERA, France
Veronique Delebarre SafeRiver, France
Raymond Feodoroff Raytheon, Australia
Edouardo Fernandez Florida Atlantic University, USA
Stefan Gruner University of Pretoria, South Africa
Sigrid Gurgens Fraunhofer SIT, Germany
Jason Jaskolka Carleton University, Canada
Christophe Jouvray Valeo, France
Jan Jurjens University of Dortmund, Germany
Ferhat Khendek University of Concordia, Canada
Thierry Lecomte ClearSy, France
Antonio Mana University of Malaga, Spain
Fabio Massacci University of Trento, Italy
Anas Motii Thales, France
Simin Nadjm-Tehrani Linköping University, Sweden
Stéphane Paul Thales, France
Genaina Rodrigues University of Brasilia, Brazil
Carsten Rudolph University of Monash, Australia
Jungwoo Ryoo The Pennsylvania State University-Altoona, USA
Francesca Saglietti University of Erlangen-Nuremberg, Germany
Christoph Schmittner AIT Austrian Institute of Technology, Austria
Lionel Seinturier University of Lille, France
Mark Strembeck University fo Vienna, Austria
Matthias Tichy University of ULM, Germany
Yanjun Wen National University of Defense Technology, China
Godard Wenceslas Airbus, France
Uwe Zdun University of Vienna, Austria

Foreword from the CSITS 2018 Program Chairs

This volume contains the proceedings of the International Workshop on Cyber Security
for Intelligent Transportation Systems (CSITS 2018), held in onjunction with the 23rd
European Symposium on Research in Computer Security (ESORICS) in Barcelona,
Spain.

Ever since humanity invented transportation systems, it has also introduced new
problems, previously unknown. After inventing a boat, it was clear that a life-saving
device must be invented as well. After inventing a car, it was clear that a safety belt as
well as airbags were the new necessity. Today’s boats and cars are being rapidly
digitalized, thus introducing even more advanced problems. Similarly, today’s digital
life-saving devices and safety belts are digital, too. The physical problems that were
affiliated for many decades with the transportation domain are now spilling out into the
digital realm. It is therefore expected that the solutions to such new problems will
emerge within the digital domain as well. Since modern vehicles, whether they drive,
sail, or fly, are becoming more and more digitalized, they are also inheriting the
cyber-security problems previously associated purely with the digital domain. The
intersection between physical and digital is being blurred, and smart transportation is
located at the center of this metamorphosis. Moreover, some of the security problems
forged by the collision of digital and physical realms introduce cyber security
phenomena, which are unique to intelligent transportation and may cost human lives. It
is therefore critical to address the emerging cyber security-related problems, which may
be inflicted upon the various phases of smart transportation.

The CSITS workshop attracted nine submissions from across 11 countries. All the
papers were reviewed by at least three Program Committee members. Five full papers
and one short paper were accepted, leading to a 66% acceptance rate. The accepted
papers were organized into two thematic groups: car security and aviation security.

The keynote address was given by Prof. Ivan Martinovic, from the University of
Oxford, with a talk entitled “Security and Privacy in a World of Safety: Analyzing
Avionic Data Links and NextGen ATC Networks.” In his talk, Prof. Martinovic
presented insights into the various security and privacy challenges of next-generation
air traffic surveillance technologies, shedding light on the practicability of different
threats and the main factors that impact the success of realistic attacks. In addition, he
described the OpenSky platform (https://opensky-network.org), which is a
community-based receiver network collecting air traffic data. With over four trillion
messages collected from more than 1000 sensors around the world, currently pro-
cessing over 260K messages per second, the OpenSky Network exhibits the largest air
traffic dataset of its kind. It is available to the research community for realistic and
large-scale evaluation of various aspects of aviation systems and networks.

We wish to thank all of the people who made CSITS 2018 possible, including
foremost the authors of all submissions for offering their work to this venue. We are
grateful to the Program Committee for volunteering their time to review papers and

https://opensky-network.org

engaging in a great deal of constructive discussion. Finally, we thank our colleagues at
ESORICS for taking care of all of the logistics of this workshop. We thank the
ESORICS Symposium Steering Committee and its chair, Sokratis Katsikas, for all the
arrangements that made the satellite events possible as well as Joaquin Garcia-Alfaro
(ESORICS 2018 Workshop Chair), Miguel Soriano (ESORICS 2018 General Chair),
and Josep Pegueroles (ESORICS 2018 Organization Chair) for their support in the
workshop organization and logistics.

March 2019 Yuval Elovici
Asaf Shabtai

viii Foreword from the CSITS 2018 Program Chairs

Organization

International Workshop on Cyber Security for Intelligent
Transportation Systems—CSITS 2018

Program Chairs

Yuval Elovici Ben-Gurion University of the Negev, Israel
Asaf Shabtai Ben-Gurion University of the Negev, Israel

Program Committee

Martin Strohmeier University of Oxford, UK
Nils Ole Tippenhauer Singapore University of Technology and Design,

Singapore
Rami Puzis Ben-Gurion University of the Negev, Israel
Chris Johnson Glasgow University, UK
Jianying Zhou Singapore University of Technology and Design,

Singapore
Anupam Chattopadhyay Nanyang Technological University, Singapore
Ariel Stulman Jerusalem College of Technology, Israel
Elisa Canzani iABG Innovation Center, Germany
Masaki Hashimoto Institute of Information Security, Japan

Contents

Invited Paper

Towards Safety and Security Co-engineering: Challenging Aspects
for a Consistent Intertwining . 3

Gabriel Pedroza

Safety and Security Interplay

Understanding Common Automotive Security Issues
and Their Implications . 19

Aljoscha Lautenbach, Magnus Almgren, and Tomas Olovsson

SysML Model Transformation for Safety and Security Analysis 35
Rabéa Ameur-Boulifa, Florian Lugou, and Ludovic Apvrille

The Challenge of Safety Tactics Synchronization for Cooperative Systems. . . 50
Elena Lisova and Svetlana Girs

SAM: A Security Abstraction Model for Automotive Software Systems. 59
Markus Zoppelt and Ramin Tavakoli Kolagari

Car Security

CAN-FD-Sec: Improving Security of CAN-FD Protocol 77
Megha Agrawal, Tianxiang Huang, Jianying Zhou,
and Donghoon Chang

INCANTA - INtrusion Detection in Controller Area Networks
with Time-Covert Authentication . 94

Bogdan Groza, Lucian Popa, and Pal-Stefan Murvay

Detection of Injection Attacks in Compressed CAN Traffic Logs 111
András Gazdag, Dóra Neubrandt, Levente Buttyán, and Zsolt Szalay

Key is in the Air: Hacking Remote Keyless Entry Systems 125
Omar Adel Ibrahim, Ahmed Mohamed Hussain, Gabriele Oligeri,
and Roberto Di Pietro

Aviation Security

Surveying Aviation Professionals on the Security of the Air Traffic
Control System . 135

Martin Strohmeier, Anna K. Niedbala, Matthias Schäfer,
Vincent Lenders, and Ivan Martinovic

On the Security of MIL-STD-1553 Communication Bus 153
Orly Stan, Adi Cohen, Yuval Elovici, and Asaf Shabtai

Author Index . 173

xii Contents

Invited Paper

Towards Safety and Security
Co-engineering

Challenging Aspects for a Consistent Intertwining

Gabriel Pedroza(B)

CEA, LIST, Point Courrier 174, 91191 Gif-sur-Yvette, France
gabriel.pedroza@cea.fr

Abstract. The emergence of systems identified as both safety and secu-
rity critical has motivated research and industry to search for novel
approaches to conduct multi-concern engineering (co-engineering). But
several aspects and issues have arisen during the process what has lim-
ited the advances. Among them, there are the specificities found in con-
cepts, methods and development cycles, the current standalone practices
of safety and security, and the lack of consolidated metrics for safety-
security assessment. This paper presents synthetic discussions on referred
topics along with some suggestions for solutions and perspectives.

Keywords: Safety · Security · Development cycle · Co-engineering ·
MDE · Safety-security metrics

1 Introduction

Safety and security are topics often referred in the literature as major con-
cerns to be addressed in systems engineering. Along with the difficulties found
in the practice of safety and security in their usual standalone mode, research
and industry should also face new challenges arisen from the need of a com-
mon practice. The referred need does not only obey to a mere optimization of
resources, but it is essentially generated by the emergence - or evolution - of
application domains which are identified as both safety and security critical.
Indeed, the observed dependencies between safety and security aspects in dif-
ferent use cases, the potential conflicts between proposed solutions, the variety
of development and analysis methods, and the growing number of exigencies to
improve systems’ trustworthiness lead to a singular problematics. Structuring
the aspects for a seamless co-engineering process is a vast, complex and, thus,
very tough task. This short paper aims to describe, in a non-exhaustive man-
ner, some aspects to move forward, highlight identified issues and perspectives
for solutions, and, finally, address some questions that may enrich the ongoing
discussions. In particular, it aims to raise attention on the need for a common
practice of safety and security via the consistent integration of known techniques.

The rest of the paper is structured as follows. The Sect. 2 presents a con-
ceptual positioning of safety and security. The Sect. 3 gives an overview of the
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 3–16, 2019.
https://doi.org/10.1007/978-3-030-16874-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_1

4 G. Pedroza

standards ecosystem. A MDE approach that can be leveraged for safety-security
co-engineering is explained in Sect. 4. Some difficulties to achieve integration and
adoption of safety and security development cycles comes in Sect. 5. A discussion
on the consistent integration of safety and security techniques is given in Sect. 6.
Finally, the overall perspectives come in Sect. 7.

2 Positioning Safety and Security

This section introduces a minimal background to make explicit what safety and
security stand for in this paper. To do so, some application domains are recalled
including representative use cases which are recognized by the community as
both safety and security critical. Afterwards, a conceptual positioning of safety
w.r.t. security (or conversely) is given. This positioning helps to highlight com-
monalities and also specificities of both areas.

2.1 Application Domains Positioning w.r.t. Safety and Security

Industry application domains are defined by categories of problematics and by
the technology applied/developed to tackle them. A wide variety of systems are
developed within each application domain. They include software and hardware
artifacts structured by an architecture which is often networked. Despite there
is no consensus on metrics to assess criticality, the systems are labeled as critical
regarding the goals and missions they should/must accomplish and the potential
unwanted impacts of not succeeding in doing so. Several instances of critical sys-
tems can be found in aerospace, railway, automotive, health, and nuclear domains
but also in other sectors like e-commerce, e-voting, and social-network based sys-
tems. The operation of systems in the different domains has been impacted by
the evolution of Information and Communication Technology (ICT), and by the
progress in autonomy, automation and - more recently - in artificial intelligence
techniques. Despite these evolutions, it is likely that the emerging systems will
lead to a handful of new relevant risks which have not been foreseen nor already
faced by human-beings. If that occurs, our current paradigms to perceive sys-
tems’ criticality will remain valid across time irrespective of the type of concern.
However, what is changing for sure is the increasing gain in (1) usage of ICT over
formerly manual works and missions, (2) systems automation, smartness, and
complexity, and (3) physical and virtual accessibility of systems. All in all, the
main stake is the trustworthiness that human-beings have on those systems, i.e.,
the proven reliability, safety, security, etc. of those highly automated-networked-
complex systems. By definition, catastrophic risks related to a safety critical
system endanger human-being lives [1]. As long as those systems exhibit the
three features previously listed, they will also become security critical. Thus for
instance, a railway system including ICT artifacts, mostly automated, and phys-
ically and virtually accessible will certainly face critical security risks. On the
contrary, certain security critical systems will be in no way safety-related, e.g., e-
voting, e-commerce, social network, mobile-communication systems (see Fig. 1).

Towards Safety and Security Co-engineering 5

This difference implies that certain application domains have technical speci-
ficities. The identification, assessment and management of risks may demand a
clear understanding of them.

Fig. 1. Relationship between safety and security critical systems

2.2 Conceptual Positioning of Safety and Security

The current standalone practices of safety and security consists in separately
integrate aspects to an engineering development cycle. The outcome is a couple
of concern-oriented cycles that allow engineers to separately perform the dif-
ferent development phases up to the system disposal. Figure 2 roughly depicts
the current state of safety and security engineering processes and their funda-
mental elements. Regarding the intersection between safety and security engi-
neering processes, we can highlight the existence of commonalities between both
processes. More specifically, there are conceptually similar terms and notions in
both areas, like for instance, risk, severity, likelihood, etc. As long as those terms
and notions are proven to be semantically related, they constitute a basis for a
common safety-security engineering process. But constitute such common basis
is rather bulky, in particular, due to the variability of terms and notions found
in standards, methods, guides and other technical documents. Some aspects to
consider when determining notions similarity are:

Syntactically Similar Terms with Different Meanings. It refers to syntactically
similar terms used in both safety and security having different meanings. For
instance, even if the term Feared Event is used in both safety and security risks
analyses, it does not necessarily have the same meaning nor structural form. A
Feared Event in safety can be considered as a combination of a hazard and an
operational situation [2] whereas a Feared Event in security can be the violation
of a security goal [3] which is structured by a set of requirements, typed by a
criterion or property (confidentiality, integrity, authenticity).

6 G. Pedroza

Fig. 2. Conceptual positioning of safety and security elements

Syntactically Different Terms with Equivalent Meanings. In this case, two dif-
ferent terms respectively used in safety and security stand for the same notion.
For instance, the term Threat Condition introduced in the standards ED202 [5],
ED-203 [6] mostly correspond to the notion of Feared Event found in standards
like ISO-27005 [3] and also in methods like EBIOS [4].

It is expected that a common engineering process shall include metrics useful
to evaluate both safety and security risks. Referred metrics are necessary when
a path to a risk combines both safety and security events, and their likelihood
of occurrence and severity of impact need to be evaluated. Along with previous
commonalities, several specificities have been already identified:

Specific Criteria for Evaluation. The technical criteria for evaluation of safety
and security are almost specific to each area. Known security criteria are for
instance authenticity, integrity, confidentiality, non-repudiation, freshness, con-
trolled access, etc. On the other side, relevant safety criteria are for instance
reliability, availability, maintainability, etc. Despite for some cases certain crite-
ria become common to both areas, for instance availability), to our knowledge,
most of the criteria remain specific either to security or to safety.

Different Nature of Events. Safety and security analyses aim to asses the robust-
ness of a system w.r.t. certain unwanted events. However, the nature of those
events is rather different for each analysis. As for safety events, we can mention
accidents, system failures and functions faults. As for security events, we can
mention cyber or physical attacks, intrusions, and intentional damages and fail-
ures. Therefore, the physics of components, the system usage and its exposure
to an environment are the root causes of safety events. On the contrary, secu-
rity events are mostly determined by human-related factors like the motivations,
gains and opportunities of attackers. In addition, successful events may require
for an attacker to acquire certain knowledge, skills, and resources.

Towards Safety and Security Co-engineering 7

3 Standards, Development Cycles and Methods

3.1 Standards Ecosystem

A wide variety of standards have been published targeting safety or security
aspects. The Fig. 3 shows some of them. Most standards are elaborated not
only targeting a given problematics but also considering the particularities of an
application domain. In the safety area, the standard IEC-61508 [7] is a generic
reference to conduct functional safety analyses of so called Electrical-Electronic-
Electronically Programmable (E/E/EP) systems. This generic standard has been
taken as a reference in order to adapt and specialize the safety analyses for differ-
ent application domains. An analogous pattern can be found in the development
of standards pertaining to the security area (e.g., assuming ISO-27005 [3] as
a generic standard). However, the level of maturity, consensus and/or adop-
tion of security standards is still questionable and many discussions and work
are in progress. This disparity can be partially explained by the “delay” in the
emergence of security as a strategic topic in the industry-research landscape. In
addition, the identified security specificities introduce new elements and raise
questions which increase the complexity of discussions.

Fig. 3. Overview of some relevant standards for safety and security

Standards not only provide a conceptual basis but also guidelines for the inte-
gration of concerns in the development cycle. Thus, typically functional develop-
ment cycles can be completed via the integration of safety and security aspects.
A representative instance of such integrated process can be found in the ISO-
26262 standard [2] (safety of road vehicles). A common practice of safety and
security engineering will demand and integration of both safety and security
aspects.

3.2 Towards an Unified Development Cycle

If a development process integrating safety and security aspects is required, such
integration does not suffice to achieve an effective safety-security co-engineering.

8 G. Pedroza

For instance, typical standalone instances of safety and security development
cycles include a requirements elicitation phase. A direct integration into a single
cycle is to first conduct safety requirements elicitation and afterwards the secu-
rity requirements phase (or conversely). This rather simple integration is largely
inefficient and may even become ineffective, since it does not address potential
conflicts between requirements. Moreover, conflicts may not only appear dur-
ing the problem space phases but also during the solution phases in the devel-
opment cycle, e.g., a cypher mechanism deployed to protect frames confiden-
tiality impacts system’s performance and violates real-time safety constraints.
Therefore, an unified development cycle should not only consider the integra-
tion of development processes and phases, but also the methods and techniques
used in safety and security - in addition to the specificities of the application
domains. The achievement of such unified development cycle shall be a milestone
of industry-research working groups. However its definition is limited by: (1) the
observed disparity between security vs. safety standards (maturity, consensus
and adoption), and (2) the complexity of ensuring coherence between safety and
security methods and techniques.

4 Model-Driven Approaches for Co-engineering

The importance of integrating not only processes but also methods for safety
and security analyses was highlighted in previous section. This section pro-
vides insights on model-driven engineering (MDE) techniques for achieving co-
engineering of safety and security.

4.1 Standalone Safety and Security Engineerings

The current state of practice shows that safety and security engineering are con-
ducted in standalone mode and guided by independent processes and methods.
Figure 4 shows an overview of two instances of processes to conduct safety and
security activities in the development cycle. To tackle the structural complexity
and integrate both processes into a single one, the following high level common-
alities are observed:

– The usage of evaluation criteria is present in both processes and some criteria
rely upon discrete evaluation scales (qualitative and quantitative).

– Both processes demand the definition of metrics or scales to evaluate risks,
likelihood, and severity.

– Both processes are risk oriented and the evaluation of risks is based upon
likelihood and severity scales.

– A function to classify the acceptability of risks exists in both processes.
– The elicitation of Feared Events is targeted in both processes.

Regarding the last item, notice that Feared Events identified during the safety
analysis might be also targeted by attackers. Conversely, some Feared Events,
unveiled during the security analysis, might also be caused by purely accidental
functional failures. In such cases, common or interdependent Feared Events can
be the basis to conduct the expected co-engineering.

Towards Safety and Security Co-engineering 9

Fig. 4. Overview of standalone safety and security development processes

4.2 Model-Driven Approaches for Multi-concern Analyses

It is assumed that the reader is familiar with MDE principles and techniques.
Even so, non-savvy readers can consult these references [16,17]. Model Driven
Engineering (MDE) has been applied to support engineers during several phases
of the development cycle, e.g., design and verification [8,9]. In particular, dur-
ing the design phases a model of the target system is usually constructed. The

Fig. 5. View of safety and security models obtained after annotations

model is based upon standardized languages like UML [10] and SysML [11] which
facilitate typical design tasks like system structuring, refinement, decomposi-
tion, extension, and/or transformation. MDE languages are flexible enough to
be extended and specialized so as to capture the elements necessary to conduct
safety and security analyses. Indeed, fundamental concepts, the relationships
between them, and analyses steps can also be represented and implemented.
Following typical MDE approaches, the system model can be enriched either
with the elements related to safety or security. Annotating finally yields two
models suitable to -separately- conduct safety or security analyses (see Fig. 5);
the annotated models are insufficient to support joint safety-security analyses.
However, they provide a basis to construct the co-engineering framework as
explained in next subsection.

10 G. Pedroza

4.3 Joint Safety-Security Engineering

To support joint safety-security analyses (co-engineering), the MDE framework
can be leveraged in the following way:

Integration of meta-models. Safety and security annotations are defined in
separated meta-models. The meta-models allow to capture the fundamental
notions, principles associated to the concern and also capture their relation-
ships. The conceptual alignment necessary to achieve joint safety-security
analyses can be started by the identification of common elements and the
subsequent integration of meta-models. The Fig. 6 shows an excerpt of a dia-
gram used to approach concepts pertaining to different standards.

Solving conflicts. Once meta-models are aligned and common parts linked,
the dependencies can be observed and the potential conflicts along methods
phases can be better identified and solved. Recall that conflicts can appear
from the application of safety and security methods and techniques and also
between their outcomes. In particular, when a technique is applied over mod-
eling instances that are out of the common metamodel part.

Integration of processes and phases. Once method phases are supposed to
be “free of conflicts”, the processes can be integrated. When conflicts can not
be identified in advance, the integrated development cycle should be enriched
with new phases to identify and solve conflicts over concrete model instances.
For instance, conflicts between safety and security requirements elicited at
different phases, are solved upon specific case studies.

Framework implementation. The framework supporting joint safety-security
analyses can be implemented following typical MDE development steps: meta-
model implementation via an UML/SysML profile, generation of profile code,
implementation of safety and security algorithms, customization of the frame-
work front-end, and building the tool product.

Fig. 6. Excerpt of a diagram showing meta-models integration

Towards Safety and Security Co-engineering 11

5 Difficulties to Achieve Integration of Safety
and Security Processes and Their Adoption

In previous section, a generic, coarse description was provided about leveraging
MDE techniques in order to achieve safety-security co-engineering. Our involve-
ment in several academy-industry projects (AMASS, SESNA, ModSécAéro)
allows us to prove the effectiveness of those MDE techniques. By doing so, sev-
eral technical and non technical difficulties have been identified which may limit
the scope of ongoing work. Regarding the current state of standalone safety
and security development processes, they are in general complex, costly and
mostly human based (few support to automate tasks). Despite there exist devel-
opment processes that show certain integration of safety and security aspects
(e.g., [5]), they are mostly specific to an application domain. Generally speaking,
a low level of maturity is observed in aspects like integration, tool support and
automation. Other aspects impacting the dissemination and progress of safety-
security co-engineering are related to current field practices. Globally, conduct
joint safety-security analyses is a quite recent research and engineering area. To
our knowledge, information about case studies showing co-engineering in practice
are rare. In addition, there is almost no feedback from industry on the effective-
ness of applied methods and techniques. It is reasonable to believe that some
years are still necessary to consolidate our understanding on the topic. For many
industry sectors and several application domains, cyber-security is almost an
emerging concern. In those cases, a posteriori reaction to cyber-security threats
is observed; the lack of a cyber-security risks management culture often leads to
underestimate, misunderstand or believe not concerned by the potential threats.
Last but not least, some market, organizational and engineers practices may
facilitate the adoption of new engineering processes. In particular, certification
is a powerful mechanism to align technical criteria and ensure trustworthiness
which finally shapes markets. However today, no certification process for safety-
security critical systems exists so far. The impact of safety and security concerns
in current organizations and engineers practices should be clearly identified in
order to better understand it and disseminate their importance.

6 Integration of Safety and Security Techniques

This section is dedicated to explain an instance of integration of techniques which
are usually applied in safety and security. The instance is relevant since it helps
to highlight some challenges for a consistent safety-security intertwining.

6.1 Combined Attack-Fault Trees

Fault and attack trees are known techniques respectively used in safety and secu-
rity areas. They are means to structure and evaluate unwanted events impacting
a target system. On one side, fault trees are often composed by nodes represent-
ing system failures as boolean variables. The fault nodes are linked by logical

12 G. Pedroza

gates AND, OR and can be assigned with a probability of occurrence. On the
other side attack trees can be composed by nodes representing vulnerable states
of the system, attacker actions, or conditions for attack progression. They are
also linked by logical gates AND, OR. Despite the assignation of probabilities to
attack nodes has been suggested, the estimation and interpretation of outcomes
are still arguable (more details in Subsect. 6.4). Several approaches have been
proposed to integrate (merge) fault and attack trees, e.g., [13]. However, the inte-
gration is mostly structural and, in general, several issues still remain unsolved.
Some pros and cons observed in approaches for tree merging are described in
the following items:

Pros: Most algorithms for integration of fault and attack trees have a polynomial
complexity on the number of nodes. Those algorithms can be implemented
thus providing support for trees merging automation. In certain cases, the
attack tree is transformed towards the fault tree what yields a merged tree
with a simpler structure. It is also observed that safety metrics and functions
are often reused for evaluating certain properties of attacks. In particular,
failure rate, and Mean Time to Failure inspire their security counterparts,
namely, Attack rate, and Mean Time to Attack. These metrics and functions
are useful to estimate the probability of attacks occurrence.

Cons: The variety of attack tree nodes semantics is higher than their safety
counterparts. Indeed, irrespective of the reference considered, the definition
of fault trees remains mostly equivalent. On the contrary, there is no com-
mon definition for attack trees and consequently an heterogeneous variety
of definitions exist; there is no common semantic for attack tree nodes. As
a consequence, nodes describing attack steps or actions, can be specified at
different levels of abstraction and granularity. Since vulnerabilities can be
present at different system levels (HW/SW) and caused by different types
of flaws, nodes representing them are also heterogeneous. Attack nodes rep-
resenting the conditions for attack progression show similar characteristics.
Referred specificities suggest that, to be consistent, fault and attack trees
merging shall mostly remain a human-based task. Since the semantics and
nature of nodes (safety and security events) are different, reusing safety met-
rics and functions to evaluate security aspects should be more thoroughly
considered.

6.2 Discussion on Metrics for Safety Assessment

The so called Mean Time Before Failure (MTBF) is a central metrics applied in
safety to estimate systems life and other related features. The MTBF is com-
puted by obtaining the mathematical mean of a probability distribution function
(pdf) with exponential basis (see Fig. 7). The exponential pdf measures the prob-
ability of occurrence of failures and is characterized by its parameter λ; λ is a
failure rate which measures the failures of a component (or system) per unit
of time. However, as shown in Fig. 7, the exponential-based pdf is not the only
probability distribution available.

Towards Safety and Security Co-engineering 13

Fig. 7. Some metrics and functions used for systems safety assessment

The exponential pdf is currently adopted as a valid metric thanks to (1)
the experiments that can be conducted to compute λ and (2) the effectiveness of
MTBF predictions w.r.t. systems life observed at field. This means that a suitable
correspondence between the mathematical model and the physical phenomenon
(systems ageing) has been settled. One of the main hypothesis for the estimation
of the MTBF is that the failure rate λ remains constant but this hypothesis
has a limited validity. The Fig. 8 depicts the actual evolution of components
failure rate across their life time. It is observed that the failure rate is mostly
constant during the normal life interval, but rapidly changes during youth and
ageing stages. All in all, even if the mathematical model reflects the essence
of a phenomenon, the model remains limited by the validity of its hypotheses.
Recent experimental results show that certain MTBF predictions may differ
from real life time of systems observed at field [14]. According to this study, the
failure rate λ is not only determined by the physics of components, their nominal
usage, and exposure to a given environment. It also depends upon the quality
of the process for components (and subcomponents) development. In addition,
accidental damages occurred during manufacturing over-stress components and
finally increase their failure rate. A more precise calculation of λ shall require to
consider previous factors.

6.3 Discussion on Metrics for Security Assessment

Many approaches found in the literature rely upon variants of the exponential-
based pdf to estimate the probability of an attack. But not all of them address
the question on the adequacy of this choice w.r.t. the modeled phenomenon;
attack progression. The work in [12] follows a pragmatic approach and provides
experimental measures on the time to compromise a large informatics system.
The proposed metrics is named Mean Time to First Attack (MTFA) and is cal-
culated from data gathered from intrusions at field. The collected data are used
to compute attacks frequency and afterwards to compute parameters of several
pdf ’s (and in particular λ). The predictions of the MTFA relying upon different

14 G. Pedroza

Fig. 8. Typical evolution of failure rate across time. The graph is borrowed from [14]

pdf ’s are then compared to the real periods of attacks’ occurrence. The results
of the comparison show that the best fitted model is not the exponential one but
the Pareto based pdf [12]. Thus, it is reasonable to question about other poten-
tial issues like the ones identified for the safety assessment metrics. For instance,
whether the attack rate may remain constant along a given period during the
systems life. More specifically, whether the use of the attack rate suffices to char-
acterize the whole phenomenon (including threats and vulnerabilities). A first
element to answer these questions is that, along with factors affecting elements
manufacturing (quality of development process, accidental damages), the attack
rate is likely also impacted by other factors appearing before and during attack
execution. Those factors can be observed and analyzed by studying phases of
attack preparation and deployment. The so called intrusion kill chain [15] (see
Fig. 9) defines several attack phases which can be useful for that purpose.

6.4 Perspectives for Consistent Assessment of Safety and Security

The use of field data to feed a mathematical model for attack prediction seems
a quite consistent approach. However, the metrics used for security assessment
may need to be validated in larger case studies and for other kind of systems.
The pdf ’s for predicting safety and security events occurrence might be better
rely upon other basis than the exponential. Further studies may help to unveil
the accuracy of predictions already obtained with the exponential model. To gain
representativeness in the security assessment, larger and more diversified field
data are necessary, for instance, data from different attack categories, known
vulnerabilities, and application domains. To improve the computation of attack
rates, factors related to attack preparation and deployment phases need to be
introduced, for instance, attacker resources, skills, smartness, and motivations.
Nonetheless, increasing the accuracy of a mathematical model also increases its
complexity, and the cost and complexity of the prediction method. Consequently,
more guidance and support will be necessary to bring forward these suggestions.

Towards Safety and Security Co-engineering 15

Fig. 9. Phases of the so named intrusion kill chain. Image borrowed from [15]

7 Overall Perspectives

Safety and security co-engineering is rather a young area and further works and
progress are expected to gain in maturity. Regarding the conceptual and pro-
cesses integration, certain engineering techniques (like MDE) will contribute to
enlarge the intersection between safety and security. However, certain specificities
of each area will remain and it is likely that standalone development practices
will prevail for a while. The choice of an unified safety-security development
cycle seems feasible but its deployment and adoption remains, for now, complex
and costly to achieve. Further methodological and tool support are needed to
help concerned communities to overcome these issues. Regarding the metrics
for safety-security assessment, the consistency and representativity of metrics
need to be ensured so as to achieve more accurate predictions. For that, the
application of mathematical models in security assessment still waits for further
validations.

References

1. SAE International : ARP4754A - Guidelines for Development of Civil Aircraft
and Systems. SAE International (2010). https://www.sae.org/standards/content/
arp4754a/

2. International Organization for Standardization: ISO 26262 - Road vehicles - Func-
tional safety. ISO (2011). https://www.iso.org/standard/43464.html

3. International Organization for Standardization: ISO 27005 - Information technol-
ogy - Security techniques - Information security risk management. ISO (2018).
https://www.iso.org/standard/75281.html

4. Agence Nationale de la Sécurité des Systèmes d’Information: EBIOS - Expression
des Besoins et Identification des Objectifs de Sécurité. ANSSI (2010). https://www.
ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs
-de-securite/

https://www.sae.org/standards/content/arp4754a/
https://www.sae.org/standards/content/arp4754a/
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/75281.html
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/
https://www.ssi.gouv.fr/guide/ebios-2010-expression-des-besoins-et-identification-des-objectifs-de-securite/

16 G. Pedroza

5. European Organization for Civil Aviation Equipment: ED202 - Airworthiness Secu-
rity Process Specification. EUROCAE (2014). https://eurocae.net/

6. European Organization for Civil Aviation Equipment: ED203 - Airworthiness Secu-
rity Methods and Considerations. EUROCAE (2018). https://eurocae.net/

7. International Electrotechnical Commission: IEC 61508 - Functional safety of
electrical/electronic/programmable electronic safety-related systems. IEC (2010).
https://webstore.iec.ch/publication/22273

8. Pedroza, G., Idrees, M.S., Apvrille, L., Roudier, Y.: A formal methodology applied
to secure over-the-air automotive applications. In: Proceedings on Vehicular Tech-
nology Conference (VTC Fall), pp. 1–5. IEEE, San Francisco (2011)

9. Hamid, B., Gürgens, S., Fuchs, A.: Security patterns modeling and formalization
for pattern-based development of secure software systems. J. Innov. Syst. Softw.
Eng. 12(2), 109–140 (2016)

10. Object Management Group: Unified Modeling Language Specification. OMG
(2017). https://www.omg.org/spec/UML/About-UML/

11. Object Management Group: System Modeling Language Specification. OMG
(2017). https://www.omg.org/spec/SysML/About-SysML/

12. Holm, H.: A large-scale study of the time required to compromise a computer sys-
tem. In: IEEE Proceedings of Transactions on Dependable and Secure Computing,
vol. 11, no. 1, pp. 2–15, January–February 2014

13. Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees.
Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009). ScienceDirect, LNCS Elsevier

14. Institut pour la Mâıtrise des Risques: Experimentation of the new reliability predic-
tion method FIDES. IMDR (2017). https://eeepitnl.tksc.jaxa.jp/mews/en/20th/
data/1 10.pdf

15. U.S. Senate-Committee on Commerce, Science, and Transportation: A “Kill
Chain” Analysis of the 2013 Target Data Breach-March 26 2013. USA (2014).
https://www.commerce.senate.gov/public/

16. Object Management Group (2019). https://www.omg.org
17. The Eclipse Foundation: Papyrus (2019). https://www.eclipse.org/papyrus/

https://eurocae.net/
https://eurocae.net/
https://webstore.iec.ch/publication/22273
https://www.omg.org/spec/UML/About-UML/
https://www.omg.org/spec/SysML/About-SysML/
https://eeepitnl.tksc.jaxa.jp/mews/en/20th/data/1_10.pdf
https://eeepitnl.tksc.jaxa.jp/mews/en/20th/data/1_10.pdf
https://www.commerce.senate.gov/public/
https://www.omg.org
https://www.eclipse.org/papyrus/

Safety and Security Interplay

Understanding Common Automotive
Security Issues and Their Implications

Aljoscha Lautenbach(B) , Magnus Almgren , and Tomas Olovsson

Chalmers University of Technology, Gothenburg, Sweden
{aljoscha,magnus.almgren,tomas.olovsson}@chalmers.se

Abstract. With increased connectivity of safety-critical systems such as
vehicles and industrial control systems, the importance of secure software
rises in lock-step. Even systems that are traditionally considered to be
non safety-critical can become safety-critical if they are willfully manip-
ulated. In this paper, we identify 8 important security issues of auto-
motive software based on a conceptually simple yet interesting example.
The issues encompass problems from the design phase, including require-
ments engineering, to the choice of concrete parameters for an API. We
then investigate how these issues are perceived by automotive security
experts through a survey.

The survey results indicate that the identified issues are indeed prob-
lematic in real industry use-cases. Based on the collected data, we draw
conclusions which problems deserve further attention and how the prob-
lems can be addressed. In particular, we find that key distribution is a
major issue. Finally, many of the identified issues can be addressed by
improved documentation and access to security experts.

Keywords: Automotive application development ·
Automotive security · Expert survey

1 Introduction

Imagine that, while driving on the highway, the driver seat suddenly starts
to slide back and forth, and the seat adjustment controls are not responding.
Clearly, the driver will have problems to drive the car safely: she may be unable
to reach the brakes in a critical moment, or her movement may be so restricted
that it is impossible to steer correctly. Perhaps the driver would be able to han-
dle the situation for a short time, but after a while she would become fatigued
from having to constantly adjust her body to the changing seat position, which
can lead to dangerous situations. There are many safety-critical systems in a car,
but as this example shows, even not directly safety-critical systems such as the
seat adjustment system can have a negative impact on safety when attacked.

In the last few years, a growing number of cyber security problems have been
discovered in automotive systems. The first systematic security investigations
started early this millennium [24], but only the more recent works by Checkoway
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 19–34, 2019.
https://doi.org/10.1007/978-3-030-16874-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_2&domain=pdf
http://orcid.org/0000-0001-5666-9940
http://orcid.org/0000-0002-3383-9617
http://orcid.org/0000-0001-9548-819X
https://doi.org/10.1007/978-3-030-16874-2_2

20 A. Lautenbach et al.

et al. [4,10], Miller and Valasek [13] and others brought the problem to the
attention of a wider audience. Automotive systems face the same challenge as all
embedded systems in the wake of ubiquitous connectivity: their technology was
designed when connectivity was limited, and malicious attackers were not seen as
a serious threat since local access was required to do any damage [9]. Therefore,
security mechanisms are missing and must now be added in retrospect [24].
A first step to help remedy this situation is the “SAE J3061 Cybersecurity
Guidebook for Cyber-Physical Vehicle Systems” [17].

In general, automotive software engineers are well trained in the safety
aspects of their work, but few have security training. This is complicated by
the fact that, depending on the context, the same terms may have different
meanings across disciplines [3,6,8,12,16]. Without security training, even cyclic
redundancy checks (CRCs) can easily be misconstrued as sufficient for secu-
rity [25]. More generally, there is a broad consensus among security experts that
implementing secure systems and using cryptographic libraries correctly requires
finesse and training [2,11]. A recent study by Acar et al. [1] showed that the API
of cryptographic libraries has a significant impact on the security of the resulting
application code.

In this paper, we have used a conceptually simple example of a seat con-
trol application and enumerate issues that may arise or questions that need to
be answered in the course of the development. This resulted in eight issues a
developer faces, ranging from the open-ended act of understanding the threats
to the much more concrete choice of key length for encrypted or authenticated
data. These eight issues form the basis for a survey sent to automotive security
experts, and the data is further analyzed before we present our recommendations
and conclusions.

2 Methodology

Considering the design of a simple automotive control application, such as a seat
control application, there are several security issues which arise naturally dur-
ing the development process. We chose this simple use-case to capture the most
common issues, and more elaborate use-cases will almost certainly unearth addi-
tional issues. In order to investigate to what extent the identified security issues
are perceived to be problematic, we surveyed automotive security experts. We
also questioned the experts to what extent some given recommendations address
the issues. The survey was distributed to several contacts at seven automotive
original equipment manufacturers (OEMs) and a small number of consultancy
companies. Participation was voluntary and anonymous, and company affilia-
tions were not tracked to preserve anonymity. This implies that participant dis-
tribution among the companies is unknown. The survey was roughly structured
into four main parts: (a) background questions, (b) introduction of the contexts,
(c) questions for each issue and (d) questions on the recommendations.

In part (a), we asked some demographic questions about the participants’
background. This included questions on their number of years of experience with

Understanding Common Automotive Security Issues and Their Implications 21

automotive systems, security, and safety respectively, and what their primary
work task is (requirements engineering, software development, etc).

In part (b), we explicitly introduced three contexts, since some of the ques-
tions about the security issues can be understood slightly differently depending
on each participant’s interpretation of the context. The presented contexts were:
(1) an independent context (i.e., “in a general sense”), (2) in the context of the
participants’ own work and (3) in the context of a scenario we called “simple
automotive control application (SACA)”. The scenario was described as follows.

You are developing a simple automotive control application (SACA) that
operates on two electronic control units (ECUs), which are connected via a
CAN bus (max bandwidth of 1 Mbit/s). The two ECUs exchange messages
periodically.

In part (c), the questions for each issue were presented. At this point it is
important to point out that the issues were phrased in a neutral way as activities
to avoid leading the subjects. For the same reason, illustrating examples and
elaborations were avoided, with the assumptions that security experts would be
familiar with the various difficulties that accompany each of the chosen issues.
The issues were roughly grouped into the categories of “Design and architecture”,
“Programming” and “Parameters”. The questions for each issue followed a fixed
pattern. There were four questions per issue that can be paraphrased as follows:

1. Importance: How important is “activity X”?
2. Difficulty: To what extent do you agree that “X” is a difficult activity?
3. Frequency: How often do you perform “activity X” in your own work?
4. Comments: Do you have recommendations how to simplify/improve “activity

or situation X”? Do you have any other comments? (optional free text)

(a) Participants’ experience with automotive systems, security and safety

(b) Participants’ primary work tasks (multiple choice)

Fig. 1. Survey participants’ background

22 A. Lautenbach et al.

The questions on importance and difficulty were asked for all three contexts,
while the frequency question was only asked in the context of the person’s own
work. The particularly interesting activities are those which are both important
and difficult. An activity that is both frequent and difficult might also be of
some interest, even if it is not perceived to be important.

3 Survey Participants

In total, eight industry professionals completed the survey.1 Even though this
is a rather low number of participants for a general survey, we argue that given
the very specific target group of automotive security experts, eight is still a
good number in this highly specific context. These are people with considerable
expertise and knowledge of the area (see Fig. 1a). We considered to include non-
experts in the survey, but felt that it would not benefit the quality of the results,
and so it was deemed better to have relevant answers from a small but targeted
group.

One demographic question was about the participants’ experience with auto-
motive systems, security and safety, and the results are shown in Fig. 1a, empha-
sizing that our target group has significant experience with security.

Figure 1b shows the distribution of the primary work tasks, which was a mul-
tiple choice question. Nobody answered that they primarily work with “Testing”,
“Academic research” or “Other”, so these options are not shown in Fig. 1b. It
is notable that seven out of eight respondents work with either architecture or
requirements engineering, which may introduce a certain bias. Furthermore, only
two respondents indicated that they primarily work with system, hardware or
software development. Much system development happens at suppliers, so this
makes sense.

4 Common Automotive Security Issues

As outlined in Sect. 2, we identified eight common automotive security issues by
considering the security needs of a simple networked control application, and we
designed a survey with the aim to identify which of these issues may warrant
deeper investigation.

For the importance and difficulty related questions of the survey, we will only
present the answers for the person’s own context, the answers for the other two
contexts are typically similar. In fact, there is a general trend that the importance
of the issues is rated highest for the person’s own work, and importance in the
general context is rated lower than in the SACA scenario. The exact same trend
can be observed for difficulty.

In the following subsections we present the eight identified issues together
with the aggregated survey data, roughly grouped into Design and architecture,
Parameters and Programming. Since the dataset is small, we present the survey
answers per participant in the final subsection, and make some observations
about possible correlations.
1 As stated earlier, we did not track company affiliations to preserve anonymity.

Understanding Common Automotive Security Issues and Their Implications 23

4.1 Design and Architecture

Designing secure systems involves several steps, the first of which is to identify
the threats to the system. The next steps are to choose security measures to
counter the identified threats and to implement those security measures. Without
identifying the threats first it is difficult to choose appropriate countermeasures.

D1 Identification of Threats. There are many different ways to gather the
security requirements of an application, but they all require some experience and
training. The identification of threats is typically paired with a risk assessment
procedure, similar to the way hazard analysis is paired with risk assessment in
safety engineering [7]. Therefore the identification of threats is the first issue to
consider.

Once the threats have been identified and the security measures have been
chosen, it is time to implement them. Many, if not most, security measures use
cryptography in some form. For in-vehicle communication, the question of sym-
metric versus asymmetric cryptography is relatively simple to answer: symmetric
cryptography is strongly preferred due to much better performance. Asymmet-
ric cryptography still has a place in the vehicle for functions where speed is not

(a) The number of answers to how important the investigated design issues are

(b) The number of answers to whether the investigated design issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
design issues in their own work

Fig. 2. Survey results for the design related issues

24 A. Lautenbach et al.

critical, e.g., signatures for remote software updates, or when pre-shared keys
are impractical, e.g., when communicating over the internet.

D2 Choice of a Key Distribution Mechanism. When symmetric cryptog-
raphy is used, the keys must be available at both communication ends before
communication starts. There are several ways key distribution can be done. One
possibility is to use an out-of-band channel (pre-shared keys). This is usually
done during production. Alternatives are public key schemes such as the Diffie-
Hellman key exchange protocol or certificates.

The choice of the key distribution mechanism has both practical and secu-
rity implications. For instance, repair and maintenance is an important criteria
to consider [15]. If an electronic control unit (ECU) breaks, maybe due to an
accident, and keys on that ECU become inaccessible, there must be a way to
handle this. Additionally, the automotive ecosystem includes many multi-tiered
suppliers, and some ECUs that arrive at the vehicle manufacturer for assembly
are essentially black boxes, developed to precise specifications. This raises the
questions, who installs the pre-shared key, and how is it installed on other ECUs
that need to communicate with the ECU?

Survey Results. Figures 2a to c depict the survey results for design and archi-
tecture issues. As Fig. 2a shows, there is strong agreement among the experts
that these are important issues. There is also strong agreement that key distri-
bution is a difficult problem to solve, while the opinions on threat identification
are slightly split (Fig. 2b). The answers also indicate that threat identification
happens frequently, whereas choosing a key distribution mechanism is rare. This
somewhat reflects that many of the participants work with requirements engi-
neering and architecture. The high frequency of threat identification may explain
why some disagree that it is a difficult task.

4.2 Parameters

Once the basic design decisions have been made, several parameters have to be
chosen to implement the chosen security mechanisms. Parameter choices can
include the choice of a cryptographic algorithm, choosing an appropriate key
length and choosing a mechanism to ensure freshness.

Pa1 Choice of Suitable Cryptographic Algorithms. The choice of a cryp-
tographic algorithm is not always straightforward. Cryptographers constantly
try to find weaknesses in published algorithms, and an algorithm which was
considered secure five years ago may not be so today, although this is often a
gradual process. A good example for gradual deprecation is the SHA-1 crypto-
graphic hash algorithm: first attacks have already been discovered in 2005 [23],
and it has been considered weak for many years, but the first collision was
only publicized in 2017 [19]. Since automotive products have a lifetime of 10 to

Understanding Common Automotive Security Issues and Their Implications 25

20 years, the algorithms must be chosen with care. Apart from pure security con-
siderations, automotive systems have strict requirements for performance, and
trade-offs must be considered.

Pa2 Choosing a Suitable Key Length. Once an algorithm has been chosen,
another parameter must be considered: the length of the key (also known as
secret), which is also a factor in the security of the scheme. Once again, the
main consideration is the trade-off between security and overhead: in general,
longer keys offer greater security, but they also require higher processing power
which can be very limited on a microcontroller. However, in order to judge which
key size is sufficient for what level of security requires a basic understanding of
the algorithm and its weaknesses.

Pa3 How to Implement a Freshness Mechanism. In replay attacks, an
attacker records a previous message which is encrypted or authenticated and
resends it to achieve a particular goal. In order to avoid replay attacks, a freshness

(a) The number of answers to how important the investigated parameter issues are

(b) The number of answers to whether the investigated parameter issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
parameter issues in their own work

Fig. 3. Survey results for the parameter related issues

26 A. Lautenbach et al.

mechanism is used. This can be a monotonic counter or a timestamp added to
the message, so that two otherwise identical messages will be different. There
are several practical difficulties with freshness counters or timestamps. For one,
a counter must be chosen appropriately large: once the counter wraps around, a
new key must be used. It is also important that the counters are synchronized
so that only particular counter values are accepted at particular times. Clock
synchronization is a particularly tricky subject.

Survey Results. Figures 3a to c show the survey results for the parameter
issues. In general, there is consensus that these are important issues (Fig. 3a),
but the responses on the difficulty are more nuanced. There is only slight agree-
ment that choosing a suitable cryptographic algorithm is difficult, and there is
strong disagreement that choosing a suitable key length is difficult (Fig. 3b). One
participant remarked that for choosing parameters such as key length there are
recommendations from NIST and AUTOSAR which simplify the process, a point
we will return to in the recommendations in Sect. 5. We assume the availability
of documented recommendations by trusted organizations is the reason for the
perception of key length choice as an easy problem, and to a lesser extent for
the algorithm choice. Another participant pointed out that the possibility for
software updates, which are not universally supported in embedded systems, are
of paramount importance to ensure continued security. For the most part, all
three parameter choices happen rather infrequently (Fig. 3c).

4.3 Programming

At some point, the chosen security measures must be implemented, and various
pitfalls await the developer: from the correct use of APIs over implementation
of cryptographic primitives to programming language pitfalls.

Pr1 Incorrect API Use. One such source of difficulty for developing secure
programs is the correct use of APIs. If the application programmer uses an API
incorrectly, this may lead to insecure programs [1,2,5,11,14]. For instance, if
programmers do not understand why an initialization vector is necessary, they
may pass NULL for it, which may be allowed by the API but is semantically
incorrect.

Pr2 Writing Secure C Code. In addition to API specific problems, there
are also typical development pitfalls that apply to any program written in the
C programming language. It is easy to write insecure code, e.g., due to faulty
memory management, pointer handling or lack of input validation [18]. These
problems are well known and well documented, and yet they still occur in prac-
tice [21,22]. Since most automotive software is developed in C, writing secure C
code is another programming issue.

Understanding Common Automotive Security Issues and Their Implications 27

Pr3 Implementing Cryptographic Primitives or Libraries. In order to
implement security measures that use cryptography, cryptographic libraries or
primitives must be available. However, since automotive systems are highly het-
erogeneous and often use minimal libraries, there is a chance developers may be
tempted to implement their own cryptographic primitives. Consider for example
the AUTOSAR standard for automotive software: AUTOSAR defines interfaces
to access cryptographic libraries, but the standard also clearly states that the
underlying implementation is the responsibility of the software vendor. Crypto-
graphic libraries should always be written by cryptographers or security experts,
otherwise there is a high probability that they are insecure [2,11]. If this is not
immediately obvious, consider the Debian SSL bug discovered in 2008: two small,
superficially harmless changes by the Debian maintainers significantly lowered
the entropy during SSL key generation, which led to a huge number of insecure
keys. Thus, the implementation of cryptographic primitives or libraries is the
final programming issue we consider.

Survey Results. Figures 4a to c show the survey results for the programming
related issues, some of which are surprising. Figure 4a shows an outlier for the
importance of correct cryptographic implementations. However, since the con-

(a) The number of answers to how important the investigated programming issues are

(b) The number of answers to whether the investigated programming issues are difficult

(c) The number of answers to how frequent the participants encounter the investigated
programming issues in their own work

Fig. 4. Survey results for the programming related issues

28 A. Lautenbach et al.

Table 1. Responses per survey participant (see legend below), in the context of their
own work

Primary Experience a

work tasks (Auto., Security, Safety) D1b D2b Pa1b Pa2b Pa3b Pr1b Pr2b Pr3b

Participant 1 Management 5,4,5 5,4,3 5,3,2 4,4,2 4,4,2 4,3,2 4,4,3 5,4,3 4,4,2
Participant 2 Industrial Research 5,4,1 3,3,3 3,4,2 2,3,2 1,3,2 4,4,2 2,4,2 4,3,2 2,4,2
Participant 3 Architecture 5,4,4 2,4,3 5,4,2 4,4,3 3,3,2 3,3,1 4,4,1 2,3,1 3,4,1
Participant 4 Architecture 4,5,1 5,4,5 5,4,2 3,4,4 3,4,3 2,3,2 2,3,5 4,3,1 5,4,1
Participant 5 Requirements Eng. 5,4,1 5,3,5 5,4,2 3,3,3 2,2,2 4,2,2 3,3,3 3,3,2 1,1,1
Participant 6 Req. Eng., Arch. 3,5,5 2,4,5 4,4,3 4,4,3 2,4,3 4,4,3 2,4,1 4,4,1 2,4,1
Participant 7 Req. Eng, Arch.,

Dev.
3,5,1 4,4,5 5,4,4 5,4,5 3,3,4 5,4,5 4,4,5 4,4,5 4,4,5

Participant 8 Development 2,3,1 4,4,5 4,4,4 3,4,3 3,4,4 4,4,3 4,4,3 4,4,3 4,4,3

1 Never Disagree completely Not important Never
2 Less than 1 year Disagree Slightly important Every few years

Experience Difficulty Importance Frequency

Legend Every few months3 1–3 years Neither agree nor disagree Important
4 3–5 years Agree Extremely important Every few weeks
5 More than 5 years Agree completely Every few days

aTriplets in the order: Automotive, Security, Safety
bTriplets in the order: Difficulty, Importance, Frequency

text is the person’s own work, it may simply be that the person never works
with cryptography, and thus finds it unimportant. There is consensus that it is
an important issue in the other contexts, thus supporting this assumption.

Most surprising is that only half of the respondents agree that implementing
cryptographic primitives is a difficult problem (Fig. 4b). We expected complete
agreement here. Two people strongly stated in the comments that you should
never implement your own “crypto”, which may be a hint for the reasoning
behind the results: if you outsource it, it is not difficult. However, even in a
general context several people answered that this is not difficult. Another possible
reason may be hidden in the frequency (Fig. 4c): half of the experts answered
that they never implement cryptographic primitives in their own work.

4.4 Intra and Inter Question Correlations

So far we have only considered aggregate survey results, but it may also be of
interest to look at the participants’ individual answers to investigate possible
correlations. We will only highlight a few observations here.

Table 1 presents the dataset (in the context of each person’s own work) in a
codified form, and Table 2 summarizes the eight identified issues for easy cross
reference with Table 1. Each row in Table 1 corresponds to the answer of one
survey participant, and each answer is represented by one number, grouped in
triplets. For experience, the triplet represent the answers for automotive, security
and safety experience, respectively. For the eight issues, the triplet represents
the answers for difficulty, importance and frequency, respectively. For instance,

Understanding Common Automotive Security Issues and Their Implications 29

participant 1, who primarily works with management, has more than 5 years of
experience with both automotive systems and safety, and 3–5 years of experience
with security.

Table 2. Identified issues

D1 Identification of threats

D2 Choice of a key distribution mechanism

Pa1 Choice of suitable cryptographic algorithms

Pa2 Choosing a suitable key length

Pa3 How to implement a freshness mechanism

Pr1 Incorrect API use

Pr2 Writing secure C code

Pr3 Implementing cryptographic primitives or libraries

Studying this data, several interesting observations can be made. For
instance, not one participant has more than 5 years of experience with both
automotive systems and security, hinting at the fact that security is still rel-
atively new in the automotive industry. It is also worth pointing out that the
three participants with the most security experience collectively answered 20
times that the issues are extremely important, and 4 times that they are impor-
tant, indicating a strong agreement with our claims, averaging at 3.835. For the
remaining five participants, the average is 3.5, still a high level of agreement.
Another, perhaps unexpected, observation is that, compared to the participants
with less automotive experience, more experience in the automotive industry is
negatively correlated to the importance participants ascribe the issues. This may
be a side effect of the first observation, i.e., that participants with less automotive
experience have more experience with security. Either way, the averages are still
high, 3.375 for the group with extensive automotive experience (auto exp = 5),
and 3.875 for the group without (auto exp < 5). Similar analysis shows that the
more frequently a person is involved in a particular activity, the more difficult
and important they rate that activity.

5 Recommendations

As we have seen, security is a pervasive design issue which affects every level
of the development process, and even trivial systems can be dangerous when
exploited by an attacker. Consequently, security must be included in all devel-
opment steps. Based on the previously identified issues, we give four recommen-
dations how automotive software development can be made more secure.

R1. Improve documentation, for instance by adding look-up tables for rec-
ommended key lengths, algorithms, MAC length and freshness parameters.

30 A. Lautenbach et al.

Rationale: Software developers in the automotive industry are usually well
trained in safety, but they often have little or no training in security. As a result,
they may inadvertently introduce security relevant bugs into their code. There-
fore, it should be made as easy as possible for automotive software developers
to write secure code. This can in part be achieved through improved documen-
tation. For instance, the difficulties in choosing the right key length, choosing
the right cryptographic algorithm and choosing good parameters to guarantee
freshness can be alleviated by adding more security related documentation.

R2. The vehicle manufacturer should develop a process for key manage-
ment.

Rationale: The topic of key management deserves special attention, because of
its wide ranging implications. If symmetric keys or a public key infrastructure
setup are chosen, the vehicle manufacturer must maintain a central infrastruc-
ture to store and retrieve those keys on demand in a secure manner. The key
management also needs to be coordinated with suppliers to clarify how and when
the keys are installed. Furthermore, the keys must be accessible to licensed work-
shops for repair and maintenance.

R3. Every development team should have access to at least one security
expert and every team should have at least one developer who is trained in
security.

Rationale: Some of the identified issues can be alleviated by providing developer
training or by providing access to security or cryptography experts. For exam-
ple, for identifying threats at the architectural stage, a security expert should
be available to provide an analysis. For the implementation of cryptographic
libraries, cryptographers should be used, and developers should confirm that the
library they use was developed by experts. Finally, API misuse can obviously be
limited through developer training, too.

R4. Adhere to the MISRA C guidelines.

Rationale: The MISRA C guidelines were developed specifically to make the
C programming language safer to use in critical systems.2 One effective result
of requiring conformance to MISRA C is that all unsafe C library functions are
implicitly forbidden to be used in production code. There are several commercial
compilers which check MISRA C code compliance, but MISRA C contains many
items which can not be checked automatically, or which require additional formal
verification tools. Moreover, bugs which lead to security vulnerabilities can still

2 There are several other coding guidelines for embedded, safety-critical or secure
software, such as the JPL C Coding Standard, the SEI CERT C Coding Standard,
or The Power of 10 - Rules for Developing Safety Critical Code, but a more detailed
discussion is out of scope for this paper.

Understanding Common Automotive Security Issues and Their Implications 31

Fig. 5. Answers to what extent the recommendations address or mitigate the various
issues: positive values indicate a high extent of mitigation, whereas negative values
indicate a low extent of mitigation

happen. For example, it is possible to allocate a fixed-size buffer and accidentally
write beyond its boundaries due to missing or insufficient run-time checks. Nev-
ertheless, adherence to the MISRA C guidelines strengthens the security of the
code considerably, even more so in combination with formal verification tools.

Survey Results: In order to validate the recommendations, for each recom-
mendation the survey also included the question to which extent it addresses
the issues discussed earlier. The results are summarized in aggregated form in
Fig. 5: if a majority answered “Not at all” or “Slightly”, the issue is depicted with
a negative value, and if a majority answered “Significantly” or “Completely”, the
issue is depicted with a positive value. The results are not surprising. Since R2
(key management) and R4 (MISRA C adherence) address very specific issues,
they are only of value in those particular circumstances, whereas R1 (improve
documentation) and R3 (security experts) help with almost all of the issues.
This also echoes some of the findings of Acar et al. [1].

6 Related Work

As outlined in the introduction, interest in automotive security has been slowly
on the rise for the last 15 years. Wolf, Weimerskirch and Paar [24] pioneered
an initial analysis, and Koscher et al. [10], Checkoway et al. [4], and Miller
and Valasek [13] demonstrated practical attacks, both local and remote. An
added difficulty stems from the safety-critical nature of automotive engineer-
ing and the necessary integration of safety and security [3,6,8,12,16,25]. Stud-
nia et al. [20] wrote a survey summarizing many automotive security issues.
Similarly, we highlight commonly encountered security issues, but we addition-
ally investigate how security experts perceive them.

7 Conclusion

With the increased communication of cyber-physical systems, securing software
is of ever-increasing importance. Even systems which are generally perceived

32 A. Lautenbach et al.

to have no safety-critical components can pose dangers when exploited by an
attacker. An implication is that the interplay of safety and security must be
examined closer; traditional views of safety may no longer be adequate.

The results of our survey with automotive security experts indicate that
three of the eight issues we discussed are of particular interest. According to our
survey, key distribution is a very important problem that is also very complex
and it should be further investigated. Similarly, the choice and implementation
of a mechanism for freshness is also an important and challenging problem.
Both of these problems have been very well covered by academic research in the
last 30 years, so it may be slightly counter-intuitive that they are still difficult
to solve in the automotive context. However, this can be explained with the
strongly constrained requirements for such systems. Threat identification on the
other hand is an interesting problem because it is both an important and a
frequent activity. Since it is a very dynamic activity that is strongly dependent
on the concrete system under review, it will likely remain very important.

Some of the results may not be particularly surprising, but we believe it is
still of value to formally document them in form of this survey. Conversely, some
results were surprising, e.g., that several experts did not consider cryptographic
implementations difficult.

Automotive software developers are typically well trained in addressing safety
requirements, but writing secure software requires additional knowledge and
skills. Consequently, new frameworks, platforms and standards should make it
easier to write secure code, and they should foster an environment which sup-
ports secure development. As the survey results indicate, this can be partially
achieved with supporting documentation to facilitate informed choices about
security measures. However, improved documentation alone is not enough. In
order to integrate security into the entire development process, cultural and
organizational changes are needed. For instance, as the survey results illustrate,
having ready access to security experts should alleviate many of the issues.

In order to achieve such a security conducive environment, several aspects
must come together. First and foremost, there must be organizational support.
Secure development can not be done without a security budget. Then there are
the complex interactions of OEMs and suppliers which must be coordinated.
More documentation how to securely use existing security functions should be
added. Moreover, development processes must be adapted to include security
reviews and security testing. All of the above entails a cultural change, so a
concerted effort of all involved partners in the automotive industry is needed
to secure future vehicles. Finally it can be noted that much of this discussion
probably extends to embedded system development in other domains as well.

Acknowledgments. We would like to thank all survey participants for their valuable
time and input. We would also like to thank all anonymous reviewers for their con-
structive feedback. The research leading to these results has been partially supported
by VINNOVA, the Swedish Governmental Agency for Innovation Systems, through
the project “HoliSec” (2015-06894), and by the Swedish Civil Contingencies Agency
(MSB) through the project “RICS”.

Understanding Common Automotive Security Issues and Their Implications 33

References

1. Acar, Y., et al.: Comparing the usability of cryptographic APIs. In: Proceedings
of the 38th IEEE Symposium on Security and Privacy (2017)

2. Anderson, R.: Why cryptosystems fail. In: Proceedings of the 1st ACM Conference
on Computer and Communications Security, CCS 1993, pp. 215–227. ACM, New
York (1993)

3. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Trans. Dependable Secure Com-
put. 1(1), 11–33 (2004)

4. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: Proceedings of the 20th USENIX Security Symposium, San Francisco,
CA, USA, pp. 77–92, August 2011

5. Fahl, S., Harbach, M., Perl, H., Koetter, M., Smith, M.: Rethinking SSL develop-
ment in an appified world. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer and Communications Security (CCS), pp. 49–60. ACM (2013)

6. Firesmith, D.G.: Common concepts underlying safety security and survivability
engineering. Technical report CMU/SEI-2003-TN-033, Software Engineering Insti-
tute - Carnegie Mellon University, December 2003

7. Islam, M.M., Lautenbach, A., Sandberg, C., Olovsson, T.: A risk assessment frame-
work for automotive embedded systems. In: Proceedings of the 2nd ACM Interna-
tional Workshop on Cyber-Physical System Security, pp. 3–14. ACM (2016)

8. Jonsson, E.: Towards an integrated conceptual model of security and dependability.
In: The First International Conference on Availability, Reliability and Security,
ARES 2006, pp. 646–653. IEEE (2006)

9. Koopman, P.: Embedded system security. Computer 37(7), 95–97 (2004)
10. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:

2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462, May 2010
11. Lazar, D., Chen, H., Wang, X., Zeldovich, N.: Why does cryptographic software

fail? A case study and open problems. In: Proceedings of 5th Asia-Pacific Workshop
on Systems, APSys 2014, pp. 1–7. ACM, New York (2014)

12. Line, M., Nordland, O., Røstad, L., Tøndel, I.: Safety vs. security. In: Proceed-
ings of the 8th International Conference on Probabilistic Safety Assessment and
Management (PSAM), pp. 685–699. IAPSAM (2006)

13. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Technical report, Defcon 23, August 2015. http://illmatics.com/Remote%20Car
%20Hacking.pdf

14. Myers, B.A., Stylos, J.: Improving API usability. Commun. ACM 59(6), 62–69
(2016)

15. Nowdehi, N., Lautenbach, A., Olovsson, T.: In-vehicle CAN message authenti-
cation: an evaluation based on industrial criteria. In: 2017 IEEE 86th Vehicular
Technology Conference (VTC-Fall), pp. 1–7. IEEE (2017)

16. Piètre-Cambacédès, L., Chaudet, C.: The SEMA referential framework: avoiding
ambiguities in the terms “security” and “safety”. Int. J. Crit. Infrastruct. Prot.
3(2), 55–66 (2010)

17. SAE International: SAE J3061 201601 - Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems, January 2016

18. Seacord, R.C.: Secure Coding in C and C++. Pearson Education, London (2005)
19. Stevens, M., et al.: Announcing the first SHA1 collision, February 2017. https://

security.googleblog.com/2017/02/announcing-first-sha1-collision.html

http://illmatics.com/Remote%20Car%20Hacking.pdf
http://illmatics.com/Remote%20Car%20Hacking.pdf
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html
https://security.googleblog.com/2017/02/announcing-first-sha1-collision.html

34 A. Lautenbach et al.

20. Studnia, I., Nicomette, V., Alata, E., Deswarte, Y., Kaaniche, M., Laarouchi, Y.:
Survey on security threats and protection mechanisms in embedded automotive
networks. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems
and Networks Workshop (DSN-W), pp. 1–12 (2013)

21. Szekeres, L., Payer, M., Wei, T., Song, D.: SoK: eternal war in memory. In: 2013
IEEE Symposium on Security and Privacy (SP), pp. 48–62, May 2013

22. van der Veen, V., dutt-Sharma, N., Cavallaro, L., Bos, H.: Memory errors: the past,
the present, and the future. In: Balzarotti, D., Stolfo, S.J., Cova, M. (eds.) RAID
2012. LNCS, vol. 7462, pp. 86–106. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33338-5 5

23. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 2

24. Wolf, M., Weimerskirch, A., Paar, C.: Security in automotive bus systems. In:
Proceedings of the Workshop on Embedded Security in Cars (ESCAR), November
2004

25. Zalman, R., Mayer, A.: A secure but still safe and low cost automotive communica-
tion technique. In: Proceedings of the 51st Annual Design Automation Conference,
DAC 2014, pp. 1–5. ACM, New York (2014)

https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/978-3-642-33338-5_5
https://doi.org/10.1007/11535218_2

SysML Model Transformation for Safety
and Security Analysis

Rabéa Ameur-Boulifa1(B), Florian Lugou2, and Ludovic Apvrille1

1 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France
Rabea.Ameur-Boulifa@telecom-paristech.fr

2 Prove & Run, Paris, France

Abstract. While the awareness toward the security and safety of
embedded systems has recently improved due to various significant
attacks, the issue of building a practical but accurate methodology for
designing such safe and secure systems still remains unsolved. Where test
coverage is dissatisfying, formal analysis grants much higher potential to
discover security vulnerabilities during the design phase of a system. Yet,
formal verification methods often require a strong technical background
that limits their usage. In this paper, we formally describe a verifica-
tion process that enables us to prove security-oriented properties such
as confidentiality on block and state machine diagrams of SysML. The
mathematical description of the translation of these formally defined dia-
grams into a ProVerif specification enables us to prove the correctness
of the verification method.

Keywords: Model-Driven Engineering · Verification · Safety ·
Security · Embedded systems

1 Introduction

In our increasingly connected world, security is a growing concern for embedded
systems. This remark firstly applies to critical systems such as connected vehicles
or industrial systems. There are already many approaches (i.e. methods, models
and tools) to evaluate critical aspects of these systems independently from their
security: real-time schedulability, formal verification techniques based e.g. on
model-checking or correct-by-construction techniques. Model-Driven Engineer-
ing often considers safety aspects with coherence checks between diagrams or
with model-to-formal-specification algorithms in order to evaluate safety prop-
erties from e.g. UML diagrams. Concerning security aspects, a usual practice is
to rely on dedicated models and tools that are focused on the security aspect
e.g. ProVerif [1] and Avispa [6], and are thus not compatible with safety-related
models and tools. As a result, security is often seen as the right way to use the
right tools, if not totally ignored. This however leads to more subtle bugs when
out-of-the-box cryptographic solutions are not suitable, and in particular when
the importance of an asset or communication is misunderstood. Such a security
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 35–49, 2019.
https://doi.org/10.1007/978-3-030-16874-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_3

36 R. Ameur-Boulifa et al.

issue can be minor when the number of devices affected is small and when the
vulnerability can be fixed easily, e.g. with a software patch. However, this is typ-
ically not the case for embedded systems where design flaws can be impossible
to fix and can affect a whole range of products. Even when a security vulnera-
bility is discovered before the product is released, the amount of work needed to
rethink the whole architecture may be prohibitive.

To facilitate the design of critical systems with security requirements, we
suggest enhancing safety-related models with security mechanisms, and to offer,
from the same model, safety-to-formal-specification and in addition, security-to-
formal-specification transformations. In the paper, we present the SysML-Sec
environment that supports both safety and security. Then, we elaborate on the
SysML-Sec-model-to-security-formal-specification that was first sketched in [16].
This transformation algorithm is valuable as it enables us to perform security
verification on general-purpose design models and thus avoids error-prone dupli-
cation of models. However, the transformation algorithm had not been formally
described yet. This paper gives a formal description of the transformation algo-
rithm in order to prove the correctness of the method. Throughout the paper, we
will illustrate our explanation of the different phases of modeling and verification
on a pedagogical example. Although the example has purposely been kept to its
bare minimum so that the reader can easily refer to it, it could still be used as
a sub-part of a greater real-life design. In the presented scenario, two partici-
pants (called Alice and Bob) communicate through an unsafe (public) channel.
Alice repeatedly sends sensitive data to Bob. The messages are encrypted by
Alice before being transmitted over the public channel. The two participants
have beforehand shared a cryptographic key and we assume the way the sharing
was performed does not need to be modeled. In practice, the key could have
been physically shared, built from asymmetric key material (through a Diffie-
Hellman protocol for instance) or it could have been provided to Alice and Bob
by a trusted third party. The key used by Alice to encrypt her communications
periodically changes, and thus a new key is created. So each time Alice sends a
new message, she attaches the newly created key so that Bob is able to decrypt
the next message. We typically want to verify that the data sent by Alice can not
be retrieved by a potential attacker eavesdropping and manipulating messages
on the public channel. Other more complex security protocols and systems have
been modeled and verified using the method described in this paper.

The verification method enables us to prove confidentiality and authentic-
ity properties on these models within an acceptable time (less than 5 min on
a general-purpose computer). We will not detail these case studies in the cur-
rent paper but refer the interested reader to the SysML-Sec website1 where the
corresponding models are freely accessible.

The paper is organised as follows: in Sect. 2, we present the methodology
chosen here and give a formal description of the modeling language (a SysML
profile). Section 3 presents the basic model ProVerif language and we give a
translation of SysML model to ProVerif model. Section 4 acts as a validation of

1 http://sysml-sec.telecom-paristech.fr/.

http://sysml-sec.telecom-paristech.fr/

SysML Model Transformation for Safety and Security Analysis 37

our approach that can be used to assert the validity of our translation. Section 5
surveys related work before concluding in Sect. 6.

2 SysML-Sec Language

SysML-Sec [5] is a modeling language following a model-driven approach to
design embedded systems with safety, security and performance constraints. This
modeling language was chosen as it enables the user to analyze behaviors that
will be implemented by the system and specifically targets embedded systems.
Moreover, it is supported by a free and open-source tool to which the presented
algorithm was added.

Designing an Application: Basically, SysML-Sec supports two main modeling
phases:

1. The system-level HW/SW partitioning phase includes capturing func-
tional elements of the target application, modeling candidate architectures
and finally mapping functional elements—including communications between
functions—to candidate architectures. Then a verification sub-phase follows
in which safety, security and performance constraints are evaluated in order
to select the “best” HW/SW partition.

2. A software design phase follows a successful partitioning phase. Software
components are first built from high-level functions mapped onto processor
nodes at the previous phase. Then, they are progressively refined. Refine-
ment typically concerns the accurate description of algorithms and protocols,
including security protocols.

Design elements of the two phases are built from (safety and security) require-
ments. Verification is supported in all modeling stages in order to assess the
security and safety requirements. Attack trees also help capture potential attacks
that are feasible in the considered mapping models.

TTool is a free and open-source tool that supports the different phases
and models of SysML-Sec. It offers a press-button approach for safety, security
and performance verification, and can backtrace verification results to modeling
views.

Software Design Verification: As formalized below, a software design is built
upon communicating blocks whose behaviors are described with state machine
diagrams. Software design verification intends to evaluate the fulfillment of safety
and security properties. Safety verification checks a large set of properties includ-
ing safety (e.g. deadlock-free) and liveness (e.g. reachability) properties. Prop-
erties can be modeled either with a subset of temporal logic language e.g. CTL,
or with the use of observers in the model that are expressed with state machine
diagrams. TTool relies on UPPAAL model checking tool for verification.

38 R. Ameur-Boulifa et al.

2.1 Syntax

In the software design phase, the SysML-Sec diagrams intend to describe a soft-
ware design. This section provides a formal definition of software designs.

Definition 1 Design. A design is defined by a network of blocks interconnected
by links and a set of pragmas:
D = 〈B, C,P〉 where B is a set of blocks, C is a set of channels, and P is a set
of pragmas.

Fig. 1. A graphical representation of SysML-Sec design example

Figure 1 displays two blocks Alice and Bob as well as a public link—as
denoted by the illuminati symbol—between the two. In this paper, we don’t
mention data types as they only act as syntactic sugar as far as security analysis
is concerned.

SysML blocks consist of a set of methods and attributes. Communication
ports can be attached to a block, and to each port are attached interfaces and
signals [12]. For simplicity, we directly attach signals to SysML blocks.

Definition 2 Block. A block is a tuple:
block = 〈ident ,A,M,S, behav〉 where

– ident is a block name.
– A is a set of attributes.
– M is a set of methods.
– S is a set of directed signals. For each s ∈ S, type(s) ∈ {in, out}.
– behav is a state machine diagram.

We define a function block that, for a given design D, returns the set of its
blocks; and functions sig and att that b return the set of signals and attributes
for a given block respectively.

Definition 3 Channel. A channel connects signals between blocks: channel =
〈type,R〉 where type is a physical property which can be either private or public,
and R is one-to-one correspondence between two sets of signals, R ⊆ sig(b1) ×
sig(b2) where b1, b2 ∈ block(D) such that ∀(s1, s2) ∈ R, type(s1) �= type(s2).

SysML Model Transformation for Safety and Security Analysis 39

SysML design supports the notion of pragma. Pragmas enable us to describe
properties of the system in the initial state, and to query a property of the design
that will be checked during verification. To simplify this description, we will
consider only two types of pragmas which: - express that two attributes have the
same value at the beginning of the execution (Pinit); - query the confidentiality
of an attribute (Psecret).

Definition 4 Pragma. Let D be a design. We define a pragma as a pair: P =
(Pinit,Psecret) where

Pinit⊆
(⋃

b∈block(D) att(b)
)2

and Psecret⊆
⋃

b∈block(D)att(b)

A state machine diagram is a labelled transition system with variables
named attributes; a state machine diagram can have guards and assignments of
attributes on transitions. Attributes can be manipulated, defined, or accessed.
Let f range over function names, xi range over variable names, and c are channel
names. The set Actions of action terms in state machine diagrams is defined as
follows:

a ∈ Actions ::= f(x1, . . . , xn) function call
| x := exp assignment expression
| c〈x〉 input action
| c̄〈x〉 output action
| ν.x random action
| ε empty action

Expressions (exp) in SysML-Sec can be variables and function calls (x and
f(x1, . . . , xn)). The set Guards is the set of boolean expressions.

Definition 5 State Machine Diagram. A state machine diagram is a rooted
directed graph: behav = 〈Q, q0, q⊥, E〉 where

– Q is a set of nodes.
– q0 ∈ Q is an initial state node.
– q⊥ ∈ Q is a (possibly empty) final state node.
– E ⊆ Q × Guards × Actions × Q.

A name is given by the designer to each state. We define a labelling function
L that returns the name of a given state. Given an edge e = (q, g, a, q′), we define
functions source(e) = q, guard(e) = g, action(e) = a, and target(e) = q′. A trace
σ ∈ Actions∗ is a sequence of actions a0 a1,. . . an such that there is a sequence
of states q0 q1,. . . qn and (qi−1, g, ai, qi) ∈ E for all i = 1, . . . , n.

Syntactic Constraints on Activity Diagram. TTool enforces some basic properties
on the state machine diagrams, namely:

1. The initial state node may only occur in the source of an edge.
2. The final state node may only occur in the target of an edge.
3. For any state node, there is a path from the initial state node to this node.

40 R. Ameur-Boulifa et al.

4. Any state node different from the final state node has at least one outgoing
transition.

We introduce the notion of basic block that we will use in our translation. A
basic block can be seen as a sub-design that offers a single point of entry and
that can be triggered by several points. Precisely, it is a connected sub-graph for
which all the states have exactly one incoming edge, except for one state that we
name root. We will use Out function that returns the set of transitions outgoing
from a given state. We also define a predicate UniqueOut and UniqueIn that
take a state q and return true only if no two different transitions have q as a
source and target state respectively.

UniqueOut(q) ⇔
(∀(q1, g1, a1, q

′
1), (q2, g2, a2, q

′
2) ∈ E .

q1 =q ∧ q2 =q ⇒ g1 =g2 ∧ a1 =a2 ∧ q′
1 =q′

2

)

UniqueIn(q) ⇔
(∀(q1, g1, a1, q

′
1), (q2, g2, a2, q

′
2)∈E .

q′
1 =q ∧ q′

2 =q ⇒q1 =q2 ∧ g1 =g2 ∧ a1 =a2

)

Figures 2a and b show the graphical representation of the two state machine
diagrams of Alice and Bob respectively. Note that empty actions and “true”
guards are not shown in the diagrams. States are depicted by colored boxes
(except for the initial state which is a circle), transitions by arrows, and actions
are either represented by textual expressions next to arrows (for function calls
and assignment expression) or by white boxes with various forms (for the other
types of actions). For instance, the state machine of Alice is composed of an initial
state linked to a state named generateNewKey by an empty transition. This
state is linked to another state sendSecret by a transition bearing 4 actions: a
random action and 3 assignment expressions. Another transition links sendSecret
to generateNewKey and bears an output action. Note that in the diagrams,
multiple actions appear on each transition. This is semantically equivalent to
multiple chained transitions, each of which bearing a single action and a true
guard.

3 From SysML-Sec to Proverif

Our goal is to provide an environment to design safe and secure systems with
the SysML language. Our plan is to give a formal definition of the behavioural
semantics of SysML, and get a standard code to do the security analysis. This
section describes the behavioural semantics of SysML design allowing security
analysis.

3.1 ProVerif Language

ProVerif [7] is a cryptographic protocol verification tool operating on a symbolic
model. ProVerif specifications are described in a custom language following a
well-defined structure [8]. It consists of a sequence of declarations and a process.
Our translation use a core of ProVerif language, excluding only some declara-
tions. In detail, it covers the following features, which form a complete language
for generating well-formed code for security analysis:

SysML Model Transformation for Safety and Security Analysis 41

Fig. 2. State machine diagrams in the SysML-Sec methodology

– Function declaration (referred to by fun and reduc keywords). They are
typically used to describe cryptographic primitives such as hash, symmet-
ric encryption, etc. and they don’t depend on the particular design we are
translating.

– Variable declaration (denoted by channel and free keywords). They declare
channels and other variables that are shared by every participant and can be
either public or private.

– Queries (referred to by query keyword) express the security properties that
a user wishes to prove on the design

– Sub-processes declaration (referred to by let keyword). Each sub-process
declaration contains a behavioral description of part of the state machine
diagrams of the design. They may be referenced by other sub-processes or
by the main process. If they are not referenced by anyone, they are simply
ignored.

– The main process (referred to by process keyword), which is the entry point
of the design. It can reference any sub-process.

Global structure of an example of ProVerif code is presented in Listing 1.1.
In particular, we see a constructor declaration (sencrypt), a destructor

declaration (sdecrypt), two shared variables declarations (token Bob 0
and token Alice 0), a confidentiality query, the declaration of a sub-
process (Bob 0) and the main process which creates a new private name
(Alice key data).

(∗ Functions ∗)
fun sencrypt (b i t s t r i n g , b i t s t r i n g) : b i t s t r i n g .
reduc f o r a l l x : b i t s t r i n g , k : b i t s t r i n g ;

sdecrypt (sencrypt (x , k) , k) = x .
. . .

42 R. Ameur-Boulifa et al.

(∗ Var iab l e s ∗)
f r e e token Bob 0 : b i t s t r i n g [p r i va t e] .
f r e e t o k e n A l i c e 0 : b i t s t r i n g [p r i va t e] .
. . .

(∗ Quer ies ∗)
query a t tacke r (new A l i c e s e c r e t d a t a) .
. . .

(∗ Sub−p ro c e s s e s ∗)
l e t Bob 0 =

new s t r ong Bob 02 : b i t s t r i n g ;
out (chControl , s t r ong Bob 02) ;
. . .

(∗ Main proce s s ∗)
p roce s s

new A l i c e k e y da t a : b i t s t r i n g ;
. . .

Listing 1.1. Global structure of a ProVerif file

3.2 Translation of SysML-Sec Design to ProVerif

We now give the semantics of a SysML-Sec design, expressed as a translation
from SysML-Sec designs into ProVerif specifications. For each SysML-Sec design
D, the interpretation function is expressed under the form:

�D�E = FE(D) ⊕ VE(D) ⊕ QE(D) ⊕ PE(D) ⊕ "process" ⊕ MainE(D)

It relies on several auxiliary functions for expressing the semantics of spe-
cific parts of the designs. The core entities of this semantics include five func-
tions: FE(D) for generating the set of functions, VE(D) for generating the set
of variables, QE(D) for generating the set of queries from pragmas, PE(D) for
generating the set of processes, and MainE(D) that generates the main process
that manages global instantiation of other processes. The construction of these
functions relies on the notion of environment denoted E = (Eq, Ev) that keeps
track of the states that have to be visited (Eq) and those that have already been
visited (Ev) during state machine traversal.

Before defining the interpretation function, it is helpful to introduce some
notations. We use the quote (") character to indicate the beginning and ending
of a string (corresponding to ProVerif instruction). Quoted strings placed next to
each other are concatenated (by ⊕ operator) to produce a whole string (complete
source code). −→a a∈S denotes a list of parameters over the set S.

(1) Declarations part
Functions. They include a list of common cryptographic primitives that can
be used in all SysML-Sec designs. They also include additional functions tok
and untok (used to protect variables), and a pair of encryption and decryption
functions that are added to each private channel.
Variables. They consist of three types channels used for public communication,
channels controlling messages (referred to by chctrl) and variable for each basic

SysML Model Transformation for Safety and Security Analysis 43

block (referred to by token . . .). Note that the token . . . variables can only be
generated once the sub-processes are generated.
Queries. In this paper, we focus on the confidentiality property. For each vari-
able v for which the designer would like to check the confidentiality, we generate
a query of the form "query attacker(new v)".

(2) Processes generation
Sub-processes. They are generated by walking through the state machine dia-
gram of every basic block of the SysML-Sec design. To do this, the interpretation
function relies on a queue of states to be visited Eq that is initialized to con-
tain the root state of each basic block, and a list Ev that contains all the states
that have already been visited (which is empty at the beginning). While there
are unexplored states, one state s is picked from the Eq set, it is added to the
explored set Ev set, a sub-process is created by using the first function �s�

p
E

(see Table 1). The idea is that the translation function goes through the whole
basic block starting from the root and generates a Proverif instruction for each
constructor encountered by calling the appropriate interpretation function. All
interpretation functions are defined in Table 1. They use the terminology fresh
variable which means that the variable is a new one and it has no occurrence
anywhere in the code except in the instruction that creates it. Informally, the
interpretation functions, as described in Table 1, translate states to a correspond-
ing ProVerif event used for reachability queries; and transitions by translating
their guards into if conditions (�., .�tE) and their actions into ProVerif instructions
(�., .�aE). The continuation of the translation of following states is completed by
�.�cE function. Two interpretation functions require special attention: multiple
outgoing transitions and transitions linking states of two different basic blocks.
For the former, the resulting ProVerif process generates a token for each possible
transitions and makes them available to the attacker (�.�mE). Then, it triggers the
path by asking the attacker to accept one token. For the latter, the process also
generates a token (�.�bE). This token must contain the current state of the block
(as described by its attributes) and the identifier of the basic block to be called
(the token variables). In order to prevent the attacker from replaying previous
tokens, the token includes a nonce that is issued by the callee. This token is
protected from modification and spying by the attacker by encapsulating it into
a private function tok.

Main Process. The main process is then appended to the end of the ProVerif
specification. Its purpose is first to create one unique tok(. . .) message for each
state machine so that the attacker can call2 the process corresponding to each
basic block whose root is the initial state of a state machine. To create each token
for a block, the main process needs to instantiate the attributes of the block,
wait for a nonce and send the token. Then, it runs all the created processes in
parallel (as denoted by the | operator) infinitely (as denoted by the ! operator).

2 The term call here is abusive. Indeed, the attacker has no control over the execution
flow of each process. It is however able to pass a token to a particular process which
is blocked waiting for it.

44 R. Ameur-Boulifa et al.

Table 1. Interpretation function of state machine diagrams

MainE(D) =
(⊕
b∈block(D)

(⊕
a∈att(b)

"new a;" ⊕ "in(chctrl, nonce);

out(chctrl, tok(token L(q0), nonce, args))"
))

"
∣∣∣"

q∈Ev

(
"!proclabel L(q)"

)

with args = −→a a∈att(b)

4 Validation

The purpose of this section is to provide arguments validating the semantics
given in this paper. The first part shows formally that we didn’t introduce any

SysML Model Transformation for Safety and Security Analysis 45

new information in our translation process; the second part focuses on an exam-
ple to show how our translation works in practice.

4.1 Correctness Theorem

We first proved that our translation algorithm is sound: if there is a possible dis-
closure of a secret in the software design, then there is a disclosure in the ProVerif
specification. Soundness of translation algorithm states that each ProVerif code
generated by MainE(D), is compliant with the software design D, according to
the property of confidentiality.

Proposition 1. If a term M is a secret in the SysML-Sec model, then M is a
secret in the generated ProVerif specification.

The proof is done by induction on the length of all possible execution traces of
SysML-Sec model (proof detailed in [15]).

For checking properties like confidentiality, ProVerif tries to prove it by find-
ing all possible execution traces that would lead to a violation of this property in
an approximated model. This approximated model—which is needed since prov-
ing secrecy properties in the Dolev-Yao model has been proved to be undecidable
in the general case [4,10]—is constructed so that each possible trace on the real
model produces a possible trace in the approximated model. As such, ProVerif
can issue three types of results (given for secrecy here):

– Property is true. ProVerif did not find any trace leading to a violation of the
property in the approximated model. Since the approximation is sound, this
means that the property is true also on the real model.

– Property is false. ProVerif has found a trace on the approximated design and
has managed to construct a corresponding trace on the real model. The trace
found is provided with the result by ProVerif.

– Property cannot be proved. ProVerif has found a trace on the approximated
design but this trace did not match a valid trace on the real model. In this
case, ProVerif is not able to conclude but the trace on the approximated
model is returned so that the designer can decide whether this matches a
valid trace or not.

We keep these three possible results and make them available to the designer
through the TTool interface.

4.2 Verification Results in TTool

In order to enable the designer to simultaneously see the results of the previous
verification and accordingly continue modeling, verification results are displayed
on the diagrams that are built by the designer. Results for the reachability,
confidentiality and authenticity properties are displayed on the block and state
machine diagrams in the form of green (when property is true) or red (when

46 R. Ameur-Boulifa et al.

property is false) locks. For instance, we can see in Fig. 3a that the waitForMes-
sage and received states are reachable. Also, in order to ease debugging and
when it is available, the designer is provided with a trace that shows why the
property is true (for instance how a state is reachable) or false (how a secret can
be disclosed). This trace is automatically constructed based on the trace issued
by ProVerif and displayed as a sequence diagram. As such, the trace presents
the messages exchanged by the participants (all blocks and the attacker) and
the states that each block goes through. As shown in Fig. 3b, we see how the
received state inside Bob’s state machine can be reached by receiving the message
sent by Alice to Bob containing the data: (sencrypt((Alice.secret, Alice.newKey),
Alice.Key).

5 Related Work

Assessing security properties when designing software components mostly relies
on formal approaches. For example, [20] proposes verifying cryptographic pro-
tocols with a probabilistic analysis approach. Protocols are represented as trees
whose nodes capture knowledge while edges are assigned transition probabilities.
Although these trees could include malicious agents in order to model attacks
and threats, nevertheless security properties are not explicitly represented. More-
over, for threat analysis, attacks should be explicitly expressed and manually
solved. [21] defines a formal basic set of security services for accomplishing secu-
rity goals. In this approach, security property analysis strongly relies on the
designer’s experience. Moreover, threat assessment is not easily feasible. There
are numerous approaches for formal verification of security properties. Most of
them are not automated and cannot be used as an engineering tool e.g. [9,17]
and [2]. Among the research dedicated to engineering-oriented security verifi-
cation that we are aware of, the closest are [13,14] and [19]. UMLsec [13] is a
modeling framework aimed at defining security properties of software compo-
nents and their composition within a UML framework. It also features a rather
complete framework addressing various stages of model-driven secure software
engineering from the specification of security requirements to tests, including

Fig. 3. Trace expressing ProVerif results (Color figure online)

SysML Model Transformation for Safety and Security Analysis 47

logic-based formal verification regarding the composition of software compo-
nents. In [14], Kordy et al. exposed a formal description of attack-defense trees.
In these diagrams, interactions between the attacker and the system (defender)
are modeled as attacks and countermeasures. In this sense, our approach is dif-
ferent as it relies on attacker capabilities and on a description of the system
behaviour, meaning that the verification algorithm presented in this paper is
able to prove that a design is secure against a certain class of attacker, with-
out prior knowledge of the form of the attack. On the other hand, verification
algorithms on attack-defense trees can solely prove that a countermeasure is effi-
cient against a specific attack. More recently, [19] developed an expanded UML
model extending the sequence diagrams of UML for security protocol verifica-
tion. Their approach includes translating models into ProVerif for verification
of confidentiality and correspondence. While sequence diagrams are particularly
well suited to evaluating observational equivalence properties as they show the
messages exchanged between participants, state machine diagrams –as used in
this paper– allow modeling of precise behavioural properties more intuitively
(such as conditional statements or loops). Furthermore, our process includes
verification of weak and strong authenticity.

This paper expands on previous publications on SysML-Sec, proposing how to
better model certain situations (e.g., loops) and their models-to-ProVerif trans-
formation, taking into account the capabilities and limitations of ProVerif. We
thus manage to limit cases where the proof of security properties would fail,
without impacting the verification capabilities of SysML-Sec diagrams.

6 Conclusion

The paper describes a formal and novel Model-Driven Approach for (safety)
and security modeling and verification of embedded systems. The paper itself
focuses on the formal SysML-to-ProVerif transformation, and sketches a proof
of the soundness of our approach. Last but not least, this new transformation
is already available in TTool, and it includes backtracing capabilities. The over-
all approach is exemplified with a toy example. However, it has already been
successfully applied to a large range of systems, including an authenticated
and non-authenticated versions of the TLS protocol, an implementation of the
X3DH protocol used by messaging applications such as Signal/Telegram or a
key exchange protocol targeting Intel SGX architecture, and the design of the
embedded architecture of an autonomous vehicle. Our formal description set the
frameworks for a future proof of equivalence or soundness. Proof limitations of
ProVerif could also be addressed using other proving techniques, e.g. relying on
Prolog.

48 R. Ameur-Boulifa et al.

References

1. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52, 102–146 (2005)

2. Ali, Y., El-Kassas, S., Mahmoud, M.: A rigorous methodology for security archi-
tecture modeling and verification. In: Proceedings of the 42nd Hawaii International
Conference on System Sciences (2009)

3. Allamigeon, X., Blanchet, B.: Reconstruction of attacks against cryptographic pro-
tocols. In: 18th IEEE Workshop on Computer Security Foundations, CSFW-18
2005 (2005)

4. Amadio, R.M., Lugiez, D., Vanackère, V.: On the symbolic reduction of processes
with cryptographic functions. Theor. Comput. Sci. 290, 695–740 (2003)

5. Apvrille, L., Roudier, Y.: Designing safe and secure embedded and cyber-physical
systems with SysML-Sec. In: Desfray, P., et al. (eds.) Model-Driven Engineering
and Software Development, vol. 580, pp. 293–308. Springer, Switzerland (2016).
https://doi.org/10.1007/978-3-319-27869-8 17

6. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). https://doi.org/
10.1007/11513988 27

7. Blanchet, B., et al.: An efficient cryptographic protocol verifier based on prolog
rules. In: CSFW, vol. 1, pp. 82–96 (2001)

8. Blanchet, B., Smyth, B., Cheval, V.: Automatic cryptographic protocol verifier.
User Manual and Tutorial, Technical report (2015)

9. Drouineaud, M., Bortin, M., Torrini, P., Sohr, K.: A first step towards formal
verification of security policy properties for RBAC. In: QSIC 2004 (2004)

10. Durgin, N., Lincoln, P., Mitchell, J., Scedrov, A.: Undecidability of bounded secu-
rity protocols. In: Workshop on Formal Methods and Security Protocols (1999)

11. Eames, D.P., Moffett, J.D.: The integration of safety and security requirements.
In: Felici, M., Kanoun, K. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 468–480.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48249-0 40

12. OM Group: System modeling language specification (SysML), version 1.5. Techni-
cal report

13. Jürjens, J.: Developing secure embedded systems: pitfalls and how to avoid them.
In: 29th International Conference on Software Engineering (2007)

14. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Foundations of attack–
defense trees. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS,
vol. 6561, pp. 80–95. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19751-2 6

15. Lugou, F.: Environments for analyzing the security of smart objects. Ph.D. thesis,
Télécom ParisTech, France (2018)

16. Lugou, F., Li, L.W., Apvrille, L., Ameur-Boulifa, R.: SysML models and model
transformation for security. In: 4th International Conference on Model-Driven
Engineering and Software Development (2016)

17. Maña, A., Pujol, G.: Towards formal specification of abstract security properties.
In: The Third International Conference on Availability, Reliability and Security.
IEEE (2008)

18. Pedroza, G., Knorreck, D., Apvrille, L.: AVATAR: a SysML environment for the
formal verification of safety and security properties. In: The 11th IEEE Conference
on Distributed Systems and New Technologies, NOTERE 2011 (2011)

https://doi.org/10.1007/978-3-319-27869-8_17
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/11513988_27
https://doi.org/10.1007/3-540-48249-0_40
https://doi.org/10.1007/978-3-642-19751-2_6
https://doi.org/10.1007/978-3-642-19751-2_6

SysML Model Transformation for Safety and Security Analysis 49

19. Shen, G., Li, X., Feng, R., Xu, G., Hu, J., Feng, Z.: An extended UML method for
the verification of security protocols. In: 19th International Conference on Engi-
neering of Complex Computer Systems (ICECCS) (2014)

20. Toussaint, M.J.: A new method for analyzing the security of cryptographic proto-
cols. IEEE J. Sel. Areas Commun. 11, 702–714 (1993)

21. Trcek, D., Blazic, B.J.: Formal language for security services base modelling and
analysis. Elsevier Sci. J. Comput. Commun. 18, 921–928 (1995)

The Challenge of Safety Tactics
Synchronization for Cooperative Systems

Elena Lisova(B) and Svetlana Girs

Malardalen University, Vasteras, Sweden
{elena.lisova,svetlana.girs}@mdh.se

Abstract. Given rapid progress in integrating operational and indus-
trial technologies and recent increase in the level of automation in safety-
related systems, cooperative cyber-physical systems are emerging in a
self-contained area requiring new approaches for addressing their criti-
cal properties such as safety and security. The notion of tactics is used
to describe a relation between a system input and its corresponding
response. Cooperative functionalities often rely on wireless communi-
cation and incoherent behavior of different wireless channels makes it
challenging to achieve harmonization in deployment of systems’ tactics.
In this work we focus on safety tactics for cooperative cyber-physical
systems as a response to inputs related to both safety and security, i.e.,
we are interested in security informed safety, and formulate a challenge
of synchronization of safety tactics between the cooperating systems.
To motivate the requirement on such synchronization we consider a car
platoon, i.e., a set of cooperative vehicles, as an example and illustrate
possible hazards arising from unsynchronized tactics deployment.

Keywords: Cooperative CPSs · Safety tactics · Synchronization ·
Platooning

1 Introduction

Today we are witnessing a significant progress in industrial and operational
technologies allowing to merge them in a system that combines physical pro-
cesses and computational capabilities, can have external connections, communi-
cate and cooperate with other systems and have different degrees of autonomy.
Such cooperative cyber-physical systems (CO-CPSs) are more efficient and can
have functionalities that are exceeding the onces coming from traditional sys-
tems. However, new challenges arise in these systems as well, as, e.g., wireless
solutions, together with benefits in terms of reconfiguration, weight and complex-
ity, also bring a challenge towards security due to openness of wireless channels
possibly allowing an adversary to receive transmitted messages or interfere with
the channel. Moreover, the majority of such systems are safety-critical as they
have humans in the loop and thus, their safety has to be addressed. Safety of
CO-CPSs cannot be guaranteed without incorporating security considerations,
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 50–58, 2019.
https://doi.org/10.1007/978-3-030-16874-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_4

The Challenge of Safety Tactics Synchronization for Cooperative Systems 51

as a security breach can potentially contribute to hazards. Thus, CO-CPSs are
required to have safety reactions to inputs coming from the sub-systems and sur-
rounding environment, which might indicate on failures caused by both safety or
security reasons. Moreover, given the complexity of CO-CPSs and frequent sys-
tem updates due to security considerations, e.g., patches, safety reactions can
be required to evolve with time. Emerging behavior is an immense challenge
to address for such systems, and one of the aspects to solve in this domain is
alignment of how CO-CPSs are seeing each other, e.g., common awareness of
communication channels failures, and how their reactions are synchronized.

As system reactions are based on inputs from environment or other systems,
communicational infrastructure and its state assessment play an important role.
By assessment here we mean estimation of its current reliability level, as this
level is directly connected to how much a CO-CPS can trust in correctness of
inputs from other CO-CPSs and consequently to which extent the CO-CPS shall
make decisions on its own. Moreover, grounds for further analyses and decision
making need to be considered already during the system architecture design,
once a particular architecture for collaborative systems is chosen [3].

On the system architectural level, safety can be discussed in terms of tactics.
A tactic can be defined as “a design decision that influences the control of a
quality attribute response” [2]. Initially this term was proposed for six quality
attributes (availability, modifiability, security, performance, usability and testa-
bility), but later extended by Wu and Kelly [16] to be applied for safety. A
safety tactic captures how to get a desired system safety response for various
stimuli coming as inputs to the system. Each attribute can be associated with
a set of attribute primitives, e.g., some of security primitives are encryption,
integrity, firewalls [2]. Such primitives can be developed in architectural pat-
terns that incorporate features necessary for such primitive being in place. The
notion of tactics is defined on the system architecture level, however, system
tactics influence the quality of the considered attribute, i.e., they influence the
decision making process and system response. In this work we use the term tac-
tic as it was initially proposed on the architectural level, but also to refer to its
exact implementation. Thus, the discussed above challenge of safety responses
synchronization and their implementations for CO-CPSs falls into safety tactics
synchronization challenges. As was proposed by Wu and Kelly, safety tactics may
include aim, description, rationale expressed with Goal-Structuring Notation
(GSN), applicability, consequences, side effects, practical strategies and related
patterns and other tactics. From what is important for our consideration, a tac-
tic includes a logical input-processing-output chain along with deadlines for each
step and can be refined further depending on the required level of details. We
assume that safety tactics include possible input to the system that can be also
provoked by an attack on it. Thus, we advocate security informed safety tactics
instead of pure safety tactics as communication interfaces of a CO-CPS signif-
icantly increase its attack surface and make it impossible to claim a CO-CPS
being safe if it is not secure.

52 E. Lisova and S. Girs

This paper is our initial effort in tackling CO-CPS’s wireless communica-
tion assessment and handling of failures originated in communication channels
and related to both safety and security. These failures have to be addressed as
CO-CPSs depend on communication. It is crucial to analyze how a communi-
cation channel failure can be perceived by different cooperating systems, e.g.,
whether the failure is detected by all communicating systems, whether detection
can be done within a predefined time range and whether the cause of the failure
can be assessed in a similar way by all the cooperative systems. In this paper
we look at a car platoon as an example of a set of CO-CPSs that cooperate
(drive and maneuverer together) to achieve a common goal, e.g., reduction of
fuel consumption. Some of the questions that arise in this example are whether
a failure of the leading vehicle will be perceived in the same manner by all par-
ticipants and, e.g., disengaging maneuver will be performed in a safe manner,
whether a failure of one of the platooning vehicles will be detected by others in
time (this is important as a not detected failure of one vehicle can be hazardous
to the whole platoon, e.g., if a vehicle that is compromised by an adversary
ruins the string stability of the system [5]). As CO-CPSs form a relatively new
domain, a gap can be observed in literature discussing their architecture prin-
ciples, which include communication infrastructure, and knowledge about their
practical realization [11]. Looking at platooning, there are papers describing
particular aspects of in-platoon communication, e.g., a platoon leader trustwor-
thiness [7] or communication topologies [10] for vehicles within the platoon, but
it is not straightforward to find information in regard to overall communication
infrastructure [1], i.e., where intelligence/decision making is placed, what the
vehicles’ tactics and platoon strategies are. For example, it is clear that pla-
toon members should estimate reliability of communication channels in order
to understand when to stop following the commands from the leading vehicle,
however a realization of this monitoring and a logic behind making such deci-
sions is not well presented in the literature. Even though platoon demonstrators
from such manufacturers as Volvo and SCANIA exist, due to novelty of the area
and its continuous development there is a lack of common agreement on how to
analyze such systems. Hence, the contribution of this paper is, looking at a car
platoon as an example of CO-CPSs, formulation of safety tactics synchronization
challenge and a proposal on how to address it. Two scenarios of a communica-
tion failure are used to illustrate the hazards arising from safety tactics being
unsynchronized. Moreover, possible ways to address the challenge are discussed
and proposed as future work.

The remainder of the paper is structured as following: Sect. 2 introduces
platooning, while the considered scenarios of failure perception are presented in
Sect. 3. Next, Sect. 4 discusses the synchronization of safety tactics and Sect. 5
concludes the paper.

2 Example – A Platoon

The use case considered in this work is a platoon of vehicles which drive close
together and in a collaborative manner, led by the front vehicle, Fig. 1. Each

The Challenge of Safety Tactics Synchronization for Cooperative Systems 53

vehicle has a set of sensors, radars and other equipment to sense the road and
any other cars or obstacles in the proximity. Moreover, every vehicle within the
platoon is equipped with communication infrastructure to exchange information
with other platoon members. It was shown before that, having all necessary
sensors, vehicles are able to operate safely and detect acceleration or breaking
performed by the vehicle in front even without communicating [12]. However,
performance of a platoon where vehicles do not communicate with each other
is significantly lower as communication provides additional source of informa-
tion in the system [17]. Moreover, with communication not only the follow-
ing vehicle, but also the other members of the platoon can be timely informed
about a maneuver. Various communication strategies for organizing information
exchange between the vehicles within a platoon exist [9,10] including options
with neighboring cars communicating only with each other or with each other
and also the platoon leader, scenarios with the platoon leader sending com-
mands to all vehicles directly or intermediate members forwarding the infor-
mation. Selection of a concrete communication scheme is outside of the scope
of this paper, but to have a more specific scenario we consider a case where
the leading vehicle coordinates the platoon by communicating to every mem-
ber directly and informing the members about its position, speed and maneuver
intentions. To make this possible, there exist a communication link between
every platoon member and the leader vehicle. Additionally, platoon as a whole
establishes connection with the surrounding environment such as other vehicles
or road infrastructure nodes. This information exchange supports the work of
various safety applications such as, e.g., cooperative forward collision warning,
warning about an approaching emergency vehicle, pre-crash sensing warnings,
and aims at providing drivers with information about critical situations in order
to prevent accidents. One important feature of cooperative driving is the way
the cooperating vehicles influence each other’s behavior, e.g., by triggering auto
brake in following vehicles if the lead one issues such command. Performance of
such collaborative schemes depends of reliability of the communication between
the members and timely reaction on the changes both in behavior of the vehicles
and communication quality.

3 Failure Perception in a Platoon

As demonstrated in Fig. 1, we consider two scenarios of a failure occurrence and
its propagation in a platoon. In Scenario A, one of the platooning vehicles expe-
riences a failure of its communication channel to the leading vehicle, i.e., this
vehicle cannot rely on timely and correct transmission of its messages and can-
not trust in correctness of incoming packets (if any comes). We do not consider
a particular cause of the failure, e.g., packet losses or delays, failure of receiving
hardware [6], but assume that it can be triggered by causes associated with both
safety and security domains. We assume that such failure is detected by the pla-
tooning vehicle and a decision about consequent actions, i.e., safety mechanisms,
aligned with the corresponding safety tactic is made. In Scenario A, there are

54 E. Lisova and S. Girs

two aspects to consider. First, is whether the failure is detected in a similar way
by both ends of this communication channel, i.e., if both the leading and the
platooning vehicles recognize the failure and if they do it synchronously, i.e.,
the difference between moments of failure detection is below a certain threshold.
Upon failure detection, both vehicles are supposed to activate safety mechanisms
from their predefined safety strategies; obviously, these tactics have to be aligned
with each other. If the failure is not recognized in the same way by the two vehi-
cles, then, for example, the platooning vehicle can make a decision about leaving
the platoon (one of possible safety mechanisms for the platooning vehicle upon
a communication failure), while there is no command from the leading vehicle to
the rest of the platoon to make space for the disengaging vehicle (for disengag-
ing, the distances between the vehicle leaving the platoon and its neighbors have
to be increased). We assume alike mechanisms for channel reliability estimation
and failure detection being deployed within communicating nodes, however the
same mechanism does not guarantee the same response as nodes communicating
over the same wireless channel might not experience the same channel quality.

The second aspect to consider in Scenario A is the perception of such failure
by other platooning vehicles. It is important both that other platoon members
cooperate and allow the vehicle that detected the failure to disengage, but also
that they have situation awareness in general (i.e., which failures have been
detected and by whom), which may be of interest for all platooning vehicles as
they all influence each-other’s decision making process. Such awareness of the
status of platooning vehicles can be seen as redundant and not needed during the
normal operation of the platoon, given that control of the platoon is managed by
the leading vehicle. However, it can be of use when failures occur, especially if
they are caused by related attacks as then additional measures may be required
to take back the control over vehicles.

Scenario B represents a situation where the platoon leader experiences a
communication failure, e.g., its communication hardware has failed or its com-
munication channels have been jammed. Obviously, such a failure needs to be
recognized by the platooning vehicles and a corresponding action has to be taken,
e.g., the whole platoon can disengage or it has to be reconfigured into a platoon
with a new leader. Different vehicles can assess the same wireless communication
channel differently and thus, timely detection of a failure in such communication
channel is a challenge from a CO-CPS design point of view. Moreover, to disen-
gage, vehicles need to increase the distances between each other, which requires
cooperation and negotiation to complete the maneuver. And, as such maneu-
ver is a part of safety tactics of platooning vehicles, we again see the need for
synchronization of the safety tactics.

These examples of communication failures and how they are perceived by CO-
CPSs are indicating that the challenge of synchronization of CO-CPSs’ safety
tactics (which include a particular failure and its cause, safety reaction to the
failure and timing requirements for the reaction) needs to be addressed.

The Challenge of Safety Tactics Synchronization for Cooperative Systems 55

A:

B:

Fig. 1. Examples of failure scenarios in a platoon: A – communication failure of a single
platooning vehicle; B – communication failure of the leading vehicle.

4 Safety Tactics Synchronization for CO-CPSs

In the previous section we showed how a failure in a wireless communication
channel can be perceived differently within a set of CO-CPSs and how it can
potentially contribute to a hazard. Based on the considered example we can
distinguish three levels of required synchronization in CO-CPSs’ safety tactics.
Accordingly, we formulate three following sub-challenges:

1. Alignment of sets of the predefined safety tactics in different CO-CPSs (e.g.,
having in mind different manufactures).

2. Sufficient synchronization of communication reliability assessment done by
different CO-CPSs.

3. Synchronized deployment of selected safety tactics by CO-CPSs.

The first sub-challenge belongs to the design phase of CO-CPSs and requires
corresponding standardization grounds. Having platooning as an example, in a
perspective it is expected that all platoon eligible vehicles would be able to join
an existing platoon, regardless of their manufacturer. This can be addressed via
a corresponding legislation, making manufacturers synchronize the set of safety
tactics between each other, or at least have the same minimum set of required
tactics. From a design point of view, to achieve such unification among vehicle
components responsible for failure detection and deployment of corresponding
safety mechanisms, one can look at the concept of Safety Element out of Context
(SEooC) proposed by the automotive functional safety standard ISO 26262 [8].
The SEooC concept enables design of an element outside of the context of a spe-
cific system, but upon assumptions about safety relevant properties that need to
be validated later during integration of the element. Given that such CO-CPS
component needs to be reused in all communicating CO-CPSs, its development
may be required to comply with high integrity demands. In this regard, SEooC
development and assurance process have been already extended with semi-formal
assumption/guarantee contract methodology [14]. Thus, the concept of SEooC
can be a good candidate to be used for component design for CO-CPSs respon-
sible for assessment of communication quality.

The second sub-challenge is provoked by the nature of wireless commu-
nication. Packets transmitted over wireless media are subjects to bit errors

56 E. Lisova and S. Girs

and packet delays and losses caused by pathloss, i.e., degradation of the sig-
nal strength with distance, multipath fading and shadowing. Moreover, wireless
channels are not necessary symmetrical in both directions, change their char-
acteristics with time and in space. Thus, communicating nodes might observe
different levels of packet errors and losses, making channel estimation and com-
mon agreement on its reliability level a challenging task. If a communication
channel is not reliable anymore, all CO-CPSs using this channel need to make
the same estimation and decision about channel reliability. This is required as
correct operation of the system needs cooperation. When channel quality esti-
mation is done at the communication end-points, the “black channel” model
proposed in IEC 61508 [4] can be used for handling the inherent unreliability
of wireless links. This model implies that we cannot guarantee communication
properties of the channel and a challenge of communication assessment and cor-
responding reactions should be handled by the CO-CPSs.

The last sub-challenge refers to a necessity for a CO-CPS “to understand”
what other CO-CPSs are doing, what they are responding to and what may
follow, i.e, which particular safety tactic is being currently deployed. It may be
of high importance for a CO-CPS to be aware if one of other CO-CPSs has
detected a communication failure and whether its cause comes from safety or
security domain. This is important as it may, for example, indicate a general
problem with communication that can affect other channels with time or a secu-
rity breach that can lead to jeopardizing all involved CO-CPSs. Distinguishing
between security and safety causes of a failure is a separate challenging task and
may require additional techniques being deployed to determine the origin of the
failure. Identification of the cause is crucial, as, e.g., in case of a security breach
some of the usual fail-safe modes as shutting down and rebutting can make the
situation worse, unless the adversary is located and isolated from communica-
tion network. Otherwise, the adversary can gain even more advantage if being
present during the network reboot.

As the first step to address the challenge of safety tactics synchronization
presented by a combination of sub-challenges above, we propose to design a
CO-CPS channel state manager. Such manager can be developed as a part of a
CO-CPS aiming to assess the reliability of the black channel in light of communi-
cation anomalies. This can be done by, e.g., extending the SEooC contract-based
development process by detailing it further for a particular case of a CO-CPS
channel state manager. To be able to assess the reliability level of communica-
tion, the channel state manager needs to have an incorporated monitor assessing
parameters that are chosen based on related security and safety analyses. Even
though traditionally safety and security analyses are conducted separately [13],
for such monitor we need to consider them jointly as we want to catch pos-
sible interdependencies. Thus, first we need to develop a methodology of such
monitor design as it will require corresponding joint analyses to determine rele-
vant failure modes and attacks. The next step in regard to the CO-CPS channel
state manager is its evaluation in terms of effectiveness and applicability. Fur-
ther, the CO-CPS channel state manager needs to be integrated into a CO-CPS

The Challenge of Safety Tactics Synchronization for Cooperative Systems 57

state manager [15], which is responsible for making a decision about the current
system state and a particular safety mechanism being deployed, as information
gained from the channel state manager can affect the decisions made by the
CO-CPS state manager.

5 Conclusions

In this paper we formulated and motivated a challenge of safety tactics synchro-
nization for cooperative systems. We considered two scenarios of possible failure
occurrences in a system of platooning vehicles that illustrate the need of common
perception of a wireless communication channel state among the collaborating
systems. The challenge was refined into three sub-challenges reflecting the need
for design of common safety tactics, coherent failure perception and synchro-
nization of corresponding safety reactions. We also proposed a CO-CPS channel
state manager as the fist step in addressing the formulated challenges.

Future work includes development of a design methodology for a CO-CPS
channel state manager in which safety and security are threated jointly and its
further evaluation. The latter includes simulations to evaluate applicability and
effectiveness of the manager and later implementation. In parallel, we plan to
consider how a system response is handled, i.e., to integrate the CO-CPS channel
state manager into the system state manager.

Acknowledgments. The work is supported by the Swedish Foundation for Strate-
gic Research (SSF) via the Future factories in the Cloud (FiC) and the Secure and
Dependable Platforms for Autonomy (Serendipity) projects.

References

1. Axelsson, J.: Safety in vehicle platooning: a systematic literature review. IEEE
Trans. Intell. Transp. Syst. 18(5), 1033–1045 (2017)

2. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-
Wesley, London (2003)

3. Bauer, B., Müller, J.P., Roser, S.: Decentralized business process modeling and
enactment: ICT architecture topologies and decision methods. In: Dastani, M.,
El Fallah Seghrouchni, A., Ricci, A., Winikoff, M. (eds.) ProMAS 2007. LNCS
(LNAI), vol. 4908, pp. 1–26. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-79043-3 1

4. CENELEC: IEC 61508: Functional Safety of E/E/PE Safety-Related Systems. Part
2: Requirements for E/E/PE Safety-Related Systems (2007)

5. Dadras, S., Gerdes, R.M., Sharma, R.: Vehicular platooning in an adversarial envi-
ronment. In: Proceedings of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS 2015, pp. 167–178 (2015)

6. Girs, S., Sljivo, I., Jaradat, O.: Contract-based assurance for wireless cooperative
functions of vehicular systems. In: IECON 2017–43rd Annual Conference of the
IEEE Industrial Electronics Society, pp. 8391–8396 (2017)

https://doi.org/10.1007/978-3-540-79043-3_1
https://doi.org/10.1007/978-3-540-79043-3_1

58 E. Lisova and S. Girs

7. Hu, H., Lu, R., Zhang, Z., Shao, J.: REPLACE: a reliable trust-based platoon
service recommendation scheme in VANET. IEEE Trans. Veh. Technol. 66(2),
1786–1797 (2017)

8. International Organization for Standardization (ISO): ISO 26262: Road Vehicles -
Functional Safety (2011)

9. Jia, D., Lu, K., Wang, J., Zhang, X., Shen, X.: A survey on platoon-based vehicular
cyber-physical systems. IEEE Comm. Surv. Tutor. 18(1), 263–284 (2016)

10. Michaud, F., Lepage, P., Frenette, P., Letourneau, D., Gaubert, N.: Coordinated
maneuvering of automated vehicles in platoons. IEEE Trans. Intell. Transp. Syst.
7(4), 437–447 (2006)

11. Pop, P., Scholle, D., Šljivo, I., Hansson, H., Widforss, G., Rosqvist, M.: Safe coop-
erating cyber-physical systems using wireless communication: the SafeCOP app-
roach. Microprocess. Microsyst. 53, 42–50 (2017)

12. Sheikholeslam, S., Desoer, C.A.: Longitudinal control of a platoon of vehicles with
no communication of lead vehicle information: a system level study. IEEE Trans.
Veh. Technol. 42(4), 546–554 (1993)

13. Čaušević, A.: A risk and threat assessment approaches overview in autonomous
systems of systems. In: Proceedings of the XXVI International Conference on Infor-
mation, Communication and Automation Technologies (ICAT), pp. 1–6 (2017)

14. Šljivo, I., Gallina, B., Carlson, J., Hansson, H.: Using safety contracts to guide
the integration of reusable safety elements within ISO 26262. In: Proceedings of
the IEEE 21st Pacific Rim International Symposium on Dependable Computing
(PRDC), pp. 129–138 (2015)

15. Šljivo, I., Gallina, B., Kaiser, B.: Assuring degradation cascades of car platoons via
contracts. In: Proceedings of the 6th International Workshop on Next Generation
of System Assurance Approaches for Safety-Critical Systems, September, pp. 317–
329 (2017)

16. Wu, W., Kelly, T.: Safety tactics for software architecture design. In: 2004 Pro-
ceedings of the 28th Annual International Computer Software and Applications
Conference, COMPSAC 2004, vol. 1, pp. 368–375 (2004)

17. Xu, L., Wang, L.Y., Yin, G., Zhang, H.: Communication information structures
and contents for enhanced safety of highway vehicle platoons. IEEE Trans. Veh.
Technol. 63(9), 4206–4220 (2014)

SAM: A Security Abstraction Model
for Automotive Software Systems

Markus Zoppelt(B) and Ramin Tavakoli Kolagari(B)

Nuremberg Institute of Technology, Nuremberg, Germany
{markus.zoppelt,ramin.tavakolikolagari}@th-nuernberg.de

Abstract. Due to the emergence of (semi-)autonomous vehicles and
networked technologies in the automotive domain, the development of
secure and reliable vehicles plays an increasingly important role in the
protection of road users. Safe and secure road transport is a major soci-
etal and political objective, which is substantiated by the concrete goal
of the European Commission to “move close to zero fatalities in road
transport” (White Paper of the European Commission Roadmap to a
Single European Transport Area—Towards a competitive and resource
efficient transport system, 2011, page 10.) within the next three decades.
One historically often neglected aspect of this objective in automotive
system development is security, i.e., freedom from maliciously imple-
mented threats. In the automotive software industry, model-based engi-
neering is the current state of the practice. Instead of integrating secu-
rity into the entire system development process, it currently tends to
be an afterthought. Because of the tight interdependencies and integra-
tion of components, the consequences of gaping security flaws are grave.
The contribution of this paper is a secure modeling approach enabling
the automotive engineer to analyze the software system in the context
of industrial model-based engineering in an early phase. The security
modeling language specification is presented as a proposed annex to the
relevant industry standard EAST-ADL, and therefore offers a common
modeling approach for architectural and security aspects. All security
extensions are in line with this standard and its meta level, which is
shared with AUTOSAR. The security modeling language specification
is demonstrated in a small modeling example, along with a formal eval-
uation which applies the Grounded Theory method to a set of expert
interviews, showing that it is comprehensive and embraces even non-
standardized pertinent research.

Keywords: Automotive security · Safety and secrurity ·
Security requirements

1 Introduction

The growing complexity of electrical automotive systems forces original equip-
ment manufacturers (OEMs) to have expertise in all software-relevant quality

Supported by the ZD.B and the BayWISS Consortium Digitization.

c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 59–74, 2019.
https://doi.org/10.1007/978-3-030-16874-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_5&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_5

60 M. Zoppelt and R. T. Kolagari

objectives, in particular security, safety and dependability. Moreover, the context
of the industry is changing and the controllability is shifting away from OEMs,
i.e., they do not fully control the aftermarket of external components such as
smartphones, tablets, infotainment systems etc. Nonetheless, they are respon-
sible for providing a common platform with secure interfaces to the required
exterior components. Customers of automobiles ask for reliability, privacy and
safety along with common convenience features like keyless entry and internet
connectivity. In most cases, these convenience features collide with basic secu-
rity principles and ultimately lead to a less secure product. A lack of security
can effectuate safety risks as well as endanger the driver, fellow passengers and
other road users. Car hacking, route sponsoring and even lethal accidents may be
the impending consequence. The manufacturer’s reputation is at stake as well.
Therefore, it is expedient to provide a platform-independent base for modeling
secure software for automotive systems. The problem addressed in this paper is
the lack of constructive security applied during systems engineering processes
associated with automotive systems. Instead of integrating security into the
entire system development process, it currently tends to be an afterthought.
Neglecting security is always fatal, especially regarding the tight interdepen-
dencies and integration of components in modern automotive systems. System
architects and software engineers need a common basis for collaboration and
sharing concepts in the early phase of the system’s development. An overview
of the automotive core development process is described in Sect. 3.1.

In this paper we show:

– A combination of security principles and architectural system models, for-
malizing and transferring established security properties to the automotive
software engineering context.

– A user story of a conventional security modeling method as a basis for extract-
ing relevant requirements for automotive security modeling.

– An extension of the automotive-specific architecture description language
EAST-ADL to compensate for the lack of methods and tools for security
modeling in the automotive domain.

– A practical example based on the user story, applying the extension, proposed
to illustrate the solution approach at hand.

– A short analysis of the practical relevance of our combined approach through
Grounded Theory interviews with industry experts.

It is not in the scope of the paper, though, to provide an empirical feasibility
study, because the used techniques are feasible themselves. We only propose a
combined approach in form of a language specification, modeling the interplay
of security and safety within architectural models.

2 Targeting “Driving Computers”

Developing secure automotive systems is a major challenge in particular for intel-
ligent cars acting more as a computer than a traditional vehicle. Modern cars

SAM: A Security Abstraction Model for Automotive Software Systems 61

are interconnected networks, with potentially more than 150 Electronic Control
Units (ECUs) in luxury models [18] communicating with each other and with
the environment (Car-2-X communication). Attackers do not target cars in the
same way like they would attack standard computer systems; cars use different
networks, protocols and architectures [30,33]. Countermeasures like firewalls do
not exist for cars, yet. Even trivial Denial-of-Service (DoS) attacks are easy to
perform [23]. Moreover, cars carry burdensome legacy mechanisms with insecure
and unencrypted protocols (e.g., CAN, Controller Area Network) in their sys-
tem design and were originally not designed in line with contemporary security
principles [8,13]. Secure automotive network architectures were not prioritized in
the past due to the general preconception in the last three decades that cars are
secure because of their technical complexity (security by obscurity). However,
numerous attack vectors [20,31] on cars and their network of ECUs, actuators
and sensors exist. In contrast to desktop computers, human lives are at stake
when these “driving computers” are the target of an attack. Cyber attacks should
always be considered highly critical when passengers’ lives are at risk. Today,
everybody is fully aware of the necessity to increase the security standard of
cars and we are constantly reminded of that fact by regular press releases about
car attacks [20]. This paper tackles the automotive security problem by address-
ing security at the beginning of the automotive system development process,
enabling the automotive engineers to document, analyze and control the secu-
rity design, which is the crucial prerequisite for even implementing security in
the automotive system.

3 Automotive Software Systems Engineering

This section gives an overview of automotive software systems engineering with
a special focus on modeling automotive systems according to EAST-ADL and
AUTOSAR, two major international automotive standards. It is necessary to
understand the specifics of the automotive software development process in gen-
eral and the (meta)modeling approach applied by EAST-ADL and AUTOSAR in
particular to understand the remainder of the paper, especially Sect. 5 describing
the innovative contribution. A reader knowledgeable in the automotive software
development process can skip this section.

3.1 Automotive Core Development Process

The automotive core development process is basically organized according to
the traditional software engineering V-Model [14]. The core development process
reflects the fact that automotive systems are typically embedded—with specific
demands on hardware and software—by a parallel illustration of the product
development on hardware and software level, according to the respective struc-
ture in the ISO26262 standard [12], an international standard for functional
safety of automotive systems, see Sect. 5.2. Each phase of the V-Model stands
for a coherent set of process steps in which a set of artifacts are produced. The

62 M. Zoppelt and R. T. Kolagari

phases are logically organized, not temporally. In the System Analysis phase,
requirements are elicited and documented, in the System Design phase, a log-
ical, function-oriented architectural structure is developed that is the basis for
both the hardware and software development phases, which finally results in
the implementation of the automotive system. The descending branches of the
“Vs” cover constructive phases of the system development process: an artifact
produced in a lower phase (concrete artifact) must be compliant to all artifacts
produced in the immediate upper phase (abstract artifacts), i.e., concrete arti-
facts are validated by abstract artifacts. Ascending branches of the “Vs” cover
verification and integration phases. The core development process is accompa-
nied by a set of supporting processes like functional safety, configuration, change,
requirements management etc., but these processes are not in the scope of this
paper.

Fig. 1. EAST-ADL abstraction layers and extensions [4]

3.2 Modeling Automotive Systems with EAST-ADL
and AUTOSAR

EAST-ADL [4] is a language to describe system architectures of automotive
software-intensive systems by an information model that represents technical
information in a standardized way. Aspects covered include vehicle functions
and features as well as functional and hardware architecture. The EAST-ADL
model is structured in abstraction levels, with each sub-model representing the
complete embedded system in relevant details of the respective abstraction level.

SAM: A Security Abstraction Model for Automotive Software Systems 63

The architecture models can be translated to various software architectures,
including AUTOSAR [1], JasPar [26] and in-house frameworks, see Fig. 1.

The Technical Feature Model describes the system at the topmost level of
abstraction and does not constitute an architecture. It is developed in the anal-
ysis phases (System Analysis, Hardware Analysis, Software Analysis) together
with the corresponding requirements. The FunctionalAnalysisArchitecture
is developed in the System Design phase. The HardwareDesignArchitecture
is developed in the Hardware Design phase and the FunctionalDesign
Architecture is developed in the Software Design phase. The AUTOSAR
specification (see Sect. 3.3) of the automotive system is produced in the Soft-
ware Implementation phase. The semi-formal modeling language EAST-ADL is
described and explained by a language specification. This specification presents
all language features, i.e., all notions, their essential meanings, interrelationships,
applicable uses and constraints. Essentially, this specification could be described
in a natural language (only fully formal languages require a logical/mathematical
specification) but it is common practice to describe the language specification
model-based as well. The model that is used to specify a language resides on
the so-called metalevel (abbreviated M2); therefore, the concrete language spec-
ification model is called the metamodel. This metamodel comprises the afore-
mentioned precise definition of the language. A concrete model of a system that
makes use of the entities set forth in the metamodel resides on the type-level
(abbreviated M1, sometimes also called User Models). Selected metamodel enti-
ties are instantiated and populated with concrete values, if necessary.

3.3 Adaptive AUTOSAR

AUTOSAR [1] is an international consortium formed by all major OEMs, sup-
pliers, and tool vendors with the aim to develop a standard for automotive
software architectures, i.e., a language specification (M2) for implementation
modules. These implementation modules are called Software-Components and
are used to encapsulate runnables, which are elementary C functions. The app-
roach of AUTOSAR is to abstract away from all (irrelevant) details, hiding
them in a Runtime Environment; in doing so, the system engineer is able to
develop an application on the system level, and the complete car—with its com-
plex underlying hardware topology—acts seemingly as a single computer. The
AUTOSAR Adaptive Platform [2] goes one step further than the traditional app-
roach (AUTOSAR Classic) and implements the Runtime Environment (RTE) for
adaptive applications, which will become increasingly relevant with the perspec-
tive of (fully) autonomous automotive systems in near future. This platform uses
virtual machines instead of embedded systems and its RTE dynamically links
services and clients during runtime. The Adaptive Platform also features a ded-
icated component “Security Management”, which is responsible for the crypto
stack, identity and access management, secure communication, and a protected
runtime environment [2, p. 7]. Furthermore, it offers protection against memory
corruption attacks, horizontal isolation through virtual memory and OS-level
visualization, and vertical isolation (i.e., “sandboxing”).

64 M. Zoppelt and R. T. Kolagari

4 User Story

In order to motivate the need for a dedicated security modeling support, this
section gives a brief overview of the current state of practice when an auto-
motive software system development team identifies security threats. Our main
contribution is described in Sect. 5.

4.1 Automotive Security Management—State of the Practice

Our assumption: A car company assembles a task force to increase the secu-
rity of their engine ECU. The task force consists of a system architect, secu-
rity experts and software engineers. The security experts try to identify threats
and vulnerabilities of a system, while the software engineers try to fix bugs
and implement security functionality, e.g., cryptographic functions. The system
architect defines the architecture of the system (i.e., the software and hardware
topology), taking—among other things—security requirements into considera-
tion. The team’s job is to identify threats, attacks and vulnerabilities to address
them in the current development. They start by creating a threat-risk analysis
of different attacks against their main product line. Their company uses EAST-
ADL to design a functional architecture. The team’s security experts need to
report threats and circumstances for real-world scenarios to the team. The secu-
rity experts have already constructed attack trees [27] and estimated the attack
potential [10] of possible attacks. The team’s findings are documented in a tex-
tual requirements specification. The security experts attach a textual note to
the modeled design function (DesignFunction) explaining an identified threat
and possible countermeasures. The software engineers now need to check for
the textual notes manually and implement them. The system architect, though,
is usually not responsible for checking the notes or validating the content of
the note. During subsequent testing of the system, the security experts wonder
why no countermeasures have been implemented for this design function. They
figure out that the software engineers did not take the note into account in the
first place because the engineers have not interpreted the relevance of the threat
correctly or could not decide for what purpose or security goal the note was
intended.

The team’s work will be interrupted as they discuss the use-case again to find
out what the originally intended security goal was in the first place. Because the
only documentation of the attack and adversary’s motivation was only captured
as a single textual note, the security experts also need to re-imagine the attack
vector completely. Security has an inner complexity, though, which a textual note
cannot fully explain, especially considering the requirements entailed. In addi-
tion, requirements alone are not sufficient enough. The system architect and the
security experts need some sort of reciprocity and mutual possibilities for anno-
tating the same model. Only then they can make the necessary adjustments to
the system’s architecture. To this date, there is no defined interaction through an
iterative process between the system architect and the security experts. More-
over, information about safety precautions may pile up and show cross-references

SAM: A Security Abstraction Model for Automotive Software Systems 65

to other quality characteristics, like safety, security and timing. This might indi-
cate that a certain component might be badly engineered in the first place.

4.2 Identifying Requirements for Automotive System Modeling

Classic AUTOSAR is the de-facto standard to this date. However, it allows the
use for embedded ECUs only in the car and its model representation. This fact
alone limits the focus on security. Some domain-specific architecture descrip-
tion languages (ADLs) exist, like EAST-ADL and AADL1, but the modeling
environment is scattered and not platform-agnostic.

The most relevant requirements for our combined approach of established
security techniques and automotive security modeling are:

– Classifying attacks and security threats.
– Defining security goals.
– Extending the metamodel with entities to represent actors and link them to

consequences and affected modeling entities.
– Representing the attack vector and all its stages—from attacker to breach—to

affected vehicle features.
– A core solution idea for the attack vector handling.

5 SAM—Security Abstraction Model

In this section we describe our innovative contribution; a Security Abstraction
Model (SAM) language specification for the automotive modeling environment as
an extension for the EAST-ADL. SAM is a solution approach for the challenges
and implications from the user story pictured in Sect. 4. We clarify the differ-
ences between security modeling and functional safety modeling and describe
our metamodel entities of SAM. SAM is available as an open source project2.
The complete metamodel of SAM (including entity descriptions) is also available
as an online HTML version3.

5.1 SAM Metamodel

SAM contains a concrete set of security modeling entities that are fully compliant
to the EAST-ADL and AUTOSAR specifications. As such, SAM is a proposi-
tion for an annex extending EAST-ADL with security modeling facilities, which
are currently not covered by the existing language specification. To provide a
sufficient modeling environment for automotive security modeling we introduce
new entities for the EAST-ADL metamodel. These entities can be used on the
type-level (M1) to create functional architectures for safe and secure automotive
systems.
1 www.aadl.info.
2 https://github.com/MarkusZoppelt/SAM.
3 http://www.in.th-nuernberg.de/SAM.

www.aadl.info
https://github.com/MarkusZoppelt/SAM
http://www.in.th-nuernberg.de/SAM

66 M. Zoppelt and R. T. Kolagari

The entities are:

– Attack: Represents a cyber-physical attack on the system described by an
attack vector. An attack vector is a path or means by which an adversary
can gain unauthorized access to a target system [29] or hurts one or more
SecurityGoals. Attack vectors can be identified and extracted via attack
trees.

– Adversary: Attacks are performed by either an individual or the system’s
environment. Either way, adversaries are derivates of the system environment
because they are not part of the main systems model and interact from the
outside. An adversary can, however, come from within the system, e.g., from
an unauthorized part or device.

– AttackMotivation: An abstract representation of the adversary’s motiva-
tions. There is at least one AttackMotivation in an attack tree (its root).
AttackMotivations collide with SecurityGoals.

– Harm: A threat by an attack meant to actively or passively harm passengers
and other road users.

– InformationRetrieval: A threat by an attack meant to, e.g., invade the pri-
vacy of passengers, other road users and other situational or political stake-
holders, e.g., the OEM. Furthermore, getting access to other types of info,
e.g., software/firmware by performing reverse engineering.

– FinancialGain: A threat by an attack meant to steal or cause financial or
material gain for the adversary, service workshops or insurance companies.
This usually leads to a financial loss for the owner or the OEM.

– ProductModification: A threat by tampering with the product’s specifi-
cation, e.g., getting more functionality out the car or tampering with the
software in general, e.g., down-/upgrading.

– AbstractFailure: An abstract failure of a set of items, i.e., an inability to
fulfill one or several of its requirements.

– AttackableProperty: Characteristics or certain properties of items an adver-
sary searches / needs for his attack to succeed, e.g., wireless communication
capabilities.

– Vulnerability: In order to represent the weak spots in the system architec-
ture, Vulnerability describes the weakness and affiliation to one or more
Items.

– SecurityGoal: This entity offers enumerations for common security
goals [6] across any communication or data flow. These goals are: Confi
dentiality, Integrity, Availability, Authenticity, Reliability and
Accountability.

– Requirement: To define Requirements to fix Vulnerabilities, a so-called
Requirement is the packed result of lesson’s learned and is derived from
Attack.

– FunctionalSecurityConcept: Represents the set of functional security
requirements that together fulfill a SecurityGoal, e.g., according to Com-
mon Criteria (CC) ISO/IEC 15408.

SAM: A Security Abstraction Model for Automotive Software Systems 67

– TechnicalSecurityConcept: Represents the set of technical security
requirements that together fulfill a FunctionalSecurityConcept and
SecurityGoal, e.g., according to Common Criteria (CC) ISO/IEC 15408.

– SecL: SecL is an enumeration metaclass with enumeration literals indicating
the level of security in accordance with the SAHARA method [17].

– Environment: The Environment is not a newly introduced entity as it already
exists in its own package, though it is extended due to the adversary’s ability
to use the environment for his attacks and himself being conceptually part of
the environment.

– SecurityExpert: An abstract class that is used to provide an attribute knowl-
edgeLevel to be inherited by the Adversary. It can be useful to know where
the Adversary has gotten his knowledge or skill-set from, even if the security
expert may not be the direct cause of an attack.

– VehicleFeature: Provided by the Dependability package, a VehicleFeature
represents a special kind of feature intended for use on Vehicle Level. Items
enable a feature.

5.2 Methodical Context for SAM

In order to protect and defend a system from attacks and threats it is necessary
to identify and classify these threats first. The categorization of AttackMotiva-
tions already creates methodological benefits with regard to the identification of
attacks. Systematic security analyses can be used to quantify the required effort
for a potential attack. There is a constant battle between the attacker with his
efforts and the layers of security devised by system engineers. Because no system
can be completely secured against any sort of attack, system engineers compro-
mise on varying levels of security abstractions to reach an acceptable degree of
security. Hence, any security system ultimately results in a trade-off.

Although SAM does not instill security in the system design, it enforces reflec-
tion about attacks and their consequences for the system, ideally as a collabora-
tion between system engineers and security experts. While SAM’s metalevel is
rather abstract, its application becomes concrete on metalevel M1. Notice that
the multiplicity from AttackMotivation to Item is 1..* to 1..*, requiring the
system engineer to describe at least one attack motivation for every item of the
automotive system. This is an important methodical support for the discovery
of threats. If a single item has no associated motivation for an attack, increased
caution is required, e.g., because no attack against the item is known yet. In
this case, system engineers might simply desist to scrutinize an item for possible
attack motivations.

SAM has structural and methodical similarities to safety modeling (depend-
ability). The main difference between safety modeling and security modeling
for automotive software systems is the classification of hazards (safety) ver-
sus attacks (security). For functional safety, hazards are classified according to
the ISO 26262 [12] ASIL levels. An equivalent standard for security threats
does not yet exist. There is an ISO standard, called ISO/SAE AWI 21434

68 M. Zoppelt and R. T. Kolagari

“Road Vehicles—Cybersecurity engineering”, which is currently under devel-
opment at the time of writing this paper. SAM has no explicit specifications
for a FunctionalSecurityConcept or a TechnicalSecurityConcept. However,
SAM proposes Common Criteria (CC) ISO/IEC 15408 protection profiles [32] as
a possible solution. Common Criteria is an established standard in the security
domain to provide guidance during the development of dependable systems.

The main difference between safety risks and security threats is that security
threats do not happen at random (i.e., they are not bound by probability) but
always occur in worst-case scenarios. For safety hazards, a statistical probability
can be assumed. Cyber attacks are performed by an intelligent attacker at the
most suitable time for the adversary and at the lowest defense barrier. Applicable
measurements to classify attacks in levels are used in the SAHARA method [17].
The SAHARA approach combines the automotive HARA (hazard analysis and
risk assessment) with the security domain STRIDE [5] to further strengthen the
compatibility between functional safety and security. This is why SAM uses SecL
from the SAHARA method as a classifier. Furthermore, it can be misleading to
confuse safety goals with security goals. Security threats, however, can cause
safety hazards and vice-versa. Though it is not recommended to treat them
in the same way during the system design phase for reasons mentioned above.
Additionally, text annotations are bad practice. Usually, the transfer from anno-
tations in natural language is imprecise and the original intent of the security
experts, which is needed to represent the system model and its security mech-
anisms accordingly, might be lost during the transfer. An extensive reuse of
security solutions can be established by embedding SAM in the “Dependability”
package of EAST-ADL and the subsequent integration into AUTOSAR. This
makes it possible to keep the development effort at a minimum and to imple-
ment comprehensive safety and security solutions in a wide range of applications
in the vehicle.

SAM offers the possibility to model socio-technical systems by providing
the modeling entity Adversary. Security goals need to be fulfilled in a socio-
technical context or a socio-technical system. The definition of a socio-technical
system is an organized group of humans and connected technologies, which are
constructed in a certain manner to produce a specific result [6]. Nevertheless,
trying to improve security simply by adding cryptography to the system is a fal-
lacy. At best, cryptography can ensure confidentiality but cannot cover security
goals like availability, reliability or accountability. With our approach, we offer
co-engineering processes of security and safety for automotive software engineer-
ing (security and safety by design).

6 Evaluation

To prove that SAM is feasible, we have evaluated our solution approach via
conducting a modeling example and through “Grounded Theory” [7] interviews
with experts from the automotive industry. The modeling example takes up the
scenario from the user story and illustrates the methods introduced in Sect. 5

SAM: A Security Abstraction Model for Automotive Software Systems 69

as an instantiation of the metamodel. The interviews give convincing evidence
that the entities added in the SAM metamodel are correct or sufficient enough
to address the problem of automotive systems modeling.

6.1 Modeling Example

SAM enables the system architect from the user story described in Sect. 4 to
model a security architecture for automotive software systems. By using the
model entities provided, the system architect is able to represent attacks and
model threats accordingly. His team plans to do an analysis on a hijacking attack
vector via wireless keyfobs. The adversary performing the attack is a Thief. He is
the only person attacking the vehicle and wants to steal another person’s vehicle
by opening the car wirelessly and driving away undetected. His knowledgeLevel
is equal to the defined minimalKnowledgeLevel of a KeyfobAttack. To per-
form the attack, he is searching for the AttackableProperty RollingCode
and the target vehicle needs to be parking, i.e., its condition is “standing and
locked” (Mode). The SecL of a possible KeyfobAttack is classified as 2. The
attack motivation is FinancialGain, which is associated with CarTheft. If the
adversary successfully performs the attack this would mean a WirelessVul-
nerability affecting Items used for the VehicleFeature KeylessEntry. To
counter a possible attack the team needs to define WirelessEncryption as a
resulting requirement. This modeling example is illustrated as a M1 model in
Fig. 2.

Fig. 2. Exemplary architecture model for hijacking attack on M1.

6.2 Interviews with Experts from the Automotive Industry

We conducted an empirical analysis through ‘Grounded Theory’ [7] by inter-
viewing two experts (security and software engineering) from the automotive
industry. The interviews were aimed at finding out whether the entities added
in the SAM metamodel are correct or sufficient enough to address the problem

70 M. Zoppelt and R. T. Kolagari

of secure automotive systems’ modeling. Both interview partners have a profes-
sional background in automotive systems engineering and/or embedded security.
Although the number of interview partners seems rather small, they were very
qualified and fitting for this evaluation due to their strong overlappings with
automotive, security and software engineering. The results of our evaluation are
also available publicly online4, including the Grounded Theory code networks,
selected quotes and code tables. The interview was structured into multiple parts:
At first, we asked some general questions about automotive security to find out
how pertinent our proposed solution is. Afterwards, we explained our approach
and showed SAM and its metamodel to the experts. We continued to interview
them about details, such as the concept and the introduced entities. Finally, we
asked them about their estimation for the acceptance in the industry.

The following is a corresponding summary of the interview transcript: We
asked the experts how they would define requirements for a secure automotive
system and how they would visually describe attacks. The requirements they
mentioned (e.g., tamper protection in a way that does not jeopardize lives and
economic values, not being able to get unauthorized information out of the vehi-
cle, etc.) were compliant to our defined security goals. They also all agreed on
using diagrams and graphs to describe attack scenarios rather than text. The
use of attack trees was also proposed.

We asked if our attack motivations are sufficient or if the experts were
missing some additional category. Beside some minor wording differences (e.g.,
FinancialGain was previously named FinancialLoss) the interviewees com-
pletely agreed with our categorization. The experts even put emphasis on the
importance of the unique attack motivations for their own fields of work and
helped clarifying the benefit of different attack motivations for different scenar-
ios. They also accepted the introduction of the Adversary entity to represent
the attacker in the EAST-ADL model.

According to the experts, the SAM extension tends to be more useful for
the security experts than the system engineers. “Though, to some extent, it’s
the system engineer who has derived some software requirements that can be
diffused from a model like this”, one expert said, “its main value is early in the
development chain. Consequently, as soon as the developers are looking at the
software architecture and software implementation as well, the developers will
make sure to have this information”.

One of the experts underlined the aspect of attack motivations and the SecL
classification level. He said that combining attack motivations with SecL would
be a good way to “present to managers” how important some security scenario
can or will be. We also presented SAM to a member of the EAST-ADL Associ-
ation and he confirmed our approach as valuable and valid, especially because
the symmetry to the dependability package is clearly noticeable. The described
medium would also be in line with the EAST-ADL paradigm. Since the inter-
views have been conducted, we have made all necessary changes to SAM to meet
the expectations and suggestions of the experts.

4 https://www.in.th-nuernberg.de/Professors/AS2E/SAM/GT-Eval.pdf.

https://www.in.th-nuernberg.de/Professors/AS2E/SAM/GT-Eval.pdf

SAM: A Security Abstraction Model for Automotive Software Systems 71

7 Related Work

With SAM we are trying to fill the gap between other approaches and solutions
achieved in related work and transfer the knowledge to an automotive context to
actually be used in the industry by integrating it in the EAST-ADL. This section
discusses related work from security modeling, security requirements analysis
and automotive software systems engineering. SAM utilizes common concepts of
the listed projects and related work. A non-trivial foundation includes the work
of Holm [11], featuring a Cyber Security Modeling Language (CySeMoL) for
enterprise architectures, Mouratidis [21] (Secure Tropos), papers such as “Model-
based security engineering for cyber-physical systems: A systematic mapping
study” [22], Juerjens [15], featuring UMLSec which allows to express security-
relevant information within the diagrams in a system specification, INCOSE
work on integrating system engineering with system security engineering [9],
NIST SP 800-160 [25] and other NIST work on cyber-physical systems [16].
SAM’s unique characteristic and advantage over those existing approaches is
that it is already integrated into an existing system model (i.e. EAST-ADL).
SAM uses existing entities of the EAST-ADL system model (e.g., Environment,
Hazard, Item, etc.) and is therefore tightly coupled with the system model. This
enables a seamless integration of a security model into a system model that is
extensively used in the automotive industry.

A well-explained taxonomy of attacks and defenses in the automotive context
was given by Thing and Wu [29] to describe common terms from the point of
view of attacker and defender. Smith [28] describes many different penetration
testing techniques for monitoring and manipulating car functionalities are shown
and illustrated. He also gives an introductory explanation of threat rating sys-
tems [28, pp. 11–14] like DREAD [24] and CVSS [19] in comparison to the ISO
26262 ASIL levels. Cars use the CAN bus to transmit and receive information
between their ECUs. Smith lists the basic and essential hardware and software
tools to get started with monitoring the CAN bus and reverse engineering car
functions.

Beside Adaptive AUTOSAR (see Sect. 3.3), there are other projects dedicated
to security for automotive systems and cyber-physical systems: PRESERVE was
an “EU-funded project running from 2011 to 2015 and contributed to the security
and privacy of future vehicle-to-vehicle and vehicle-to-infrastructure communi-
cation systems. It provides security requirements of vehicle security architec-
tures” [3]. The EVITA project tries to “design, verify and prototype an archi-
tecture for automotive on-board networks where security-relevant components
are protected against tampering and sensitive data are protected against com-
promise. It focuses on V2X (vehicle to anything) communications and provides
a base for secure deployment of electronic safety applications” [10].

8 Conclusion and Future Work

In this paper we have presented a solution for modeling secure automotive sys-
tems in the early system development phase in order to reduce risks connected to

72 M. Zoppelt and R. T. Kolagari

late identification of security threats and vulnerabilities in the automotive system
life cycle. The approach tightly couples security management and model-based
systems engineering by an abstract description of automotive security model-
ing principles. The resulting SAM language specification is based on security
requirements elicited from common industrial scenarios. It is a suitable solu-
tion for representing attack vectors on vehicles and provides a thorough security
modeling for the automotive industry. By conducting a qualitative analysis in
accordance with the methodology of Grounded Theory we gathered evidence that
our solution is relevant to the industry and is conform to the general paradigms
of automotive software engineering. By improving the identification and prob-
ing of security attack vectors, we provide a robust foundation for automotive
security testing.

Future work will concentrate on implementing the results of our current
work in form of a novel application for OEMs to apply and implement secu-
rity principles as shown in this paper. For example, the concepts and benefits
from SAM and our work could serve as a motivation for further development
of the Adaptive AUTOSAR Platform (see Sect. 3.3). Moreover, the SecL levels
lack certain dynamics. Once an attack is published, the scenario immediately
changes to level 3 and this particular attack is suddenly notoriously underval-
ued. There is a need for a more dynamic security level system which covers this
aspect as well. A major challenge that goes beyond the language-centric scope
of this paper is support for security experts to systematically derive a system-
atic TechnicalSecurityConcept from a FunctionalSecurityConcept. Even
CC does not provide a systematic derivation process. As soon as this process is
available anyone can define the hardware and software at the implementation
level. Further work may also focus on developing an integrated development envi-
ronment (IDE) for SAM that performs checks for consistency, completeness and
integrity on each SAM-based software project, e.g., in MetaEdit+. Ideally, this
would validate the scalability of SAM with respect to the size and real-world
complexity of automotive software and the wide range of cyber and physical
attacks against it. Furthermore, our top-down approach for a functional archi-
tecture description provides the groundwork for one of the main applications
of networked vehicle technology: ECU architectures for highly automated and
autonomous driving.

References

1. AUTOSAR: Enabling Continuous Innovations (2018). https://www.autosar.org/
2. AUTOSAR AP Release 17–10: Requirements on Security Management for

Adaptive Platform. https://www.autosar.org/fileadmin/user upload/standards/
adaptive/17-10/AUTOSAR RS SecurityManagement.pdf

3. Bißmeyer, N., et al.: PREparing SEcuRe VEhicle-to-X Communication Systems -
Deliverable 1.3 - V2X Security Architecture v2 (2014)

4. Blom, H., et al.: EAST-ADL-an architecture description language for automo-
tive software-intensive systems-white paper version 2.1.12. http://www.maenad.
eu/public/conceptpresentations/EAST-ADL WhitePaper M2. Accessed Jan 2013

https://www.autosar.org/
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-10/AUTOSAR_RS_SecurityManagement.pdf
https://www.autosar.org/fileadmin/user_upload/standards/adaptive/17-10/AUTOSAR_RS_SecurityManagement.pdf
http://www.maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2
http://www.maenad.eu/public/conceptpresentations/EAST-ADL_WhitePaper_M2

SAM: A Security Abstraction Model for Automotive Software Systems 73

5. Chen, M., Qian, Y., Mao, S., Tang, W., Yang, X.: Software-defined mobile networks
security. Mob. Netw. Appl. 21(5), 729–743 (2016)

6. Dalpiaz, F., Paja, E., Giorgini, P.: Security requirements engineering via commit-
ments. In: Socio-technical Aspects in Security and Trust (STAST), pp. 1–8. IEEE
(2011). https://doi.org/10.1109/STAST.2011.6059249

7. Glaser, B.G., Strauss, A.L., Strutzel, E.: The discovery of grounded theory; strate-
gies for qualitative research. Nurs. Res. 17(4), 364 (1968)

8. Happel, A., Ebert, C.: Security in vehicle networks of connected cars. In: Bargende,
M., Reuss, H.C., Wiedemann, J. (eds.) 15. Internationales Stuttgarter Sympo-
sium: Automobil- und Motorentechnik (March), pp. 233–246. Springer, Wiesbaden
(2015). https://doi.org/10.1007/978-3-658-08844-6 16

9. Haskins, C., Forsberg, K., Krueger, M., Walden, D., Hamelin, D.: Systems engi-
neering handbook. In: INCOSE (2006)

10. Henniger, O., Apvrille, L., Fuchs, A., Roudier, Y., Ruddle, A., Weyl, B.: Secu-
rity requirements for automotive on-board networks. In: 2009 9th International
Conference on Intelligent Transport Systems Telecommunications, ITST 2009, pp.
641–646. IEEE (2009). https://doi.org/10.1109/ITST.2009.5399279

11. Holm, H., Ekstedt, M., Sommestad, T., Korman, M.: A Manual for the Cyber
Security Modeling Language (2014)

12. International Organization for Standardization: Road vehicles - functional safety -
Part 2: Management of functional safety. International Organization for Standard-
ization 066(20), 26 (2009)

13. ISO/IEC: ISO/IEC 15408–1:2009 - Evaluation Criteria for IT Security 2009, 64
(2009)

14. Johansson, C., Bucanac, C.: The V-Model. IDE, University Of Karlskrona, Ron-
neby (1999)

15. Jürjens, J.: UMLsec: extending UML for secure systems development. In: Jézéquel,
J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 412–425.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X 32

16. Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry
4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)

17. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-
hazards and security-threat analysis method for automotive systems. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1 21

18. Mash, C.: Ethernet set to bring about radical shift in how automotive networks are
implemented, January 2018. http://www.digitimes.com/news/a20180115PR203.
html

19. Mell, P., Scarfone, K., Romanosky, S.: A complete guide to the common vulnerabil-
ity scoring system version 2.0. In: Published by FIRST-Forum of Incident Response
and Security Teams, vol. 1, p. 23 (2007)

20. Miller, C., Valasek, C.: A survey of remote automotive attack surfaces. Defcon 22,
1–90 (2014)

21. Mouratidis, H., Giorgini, P.: Secure tropos: a security-oriented extension of the tro-
pos methodology. Int. J. Softw. Eng. Knowl. Eng. 17(02), 285–309 (2007). https://
doi.org/10.1142/S0218194007003240

22. Nguyen, P.H., Ali, S., Yue, T.: Model-based security engineering for cyber-physical
systems: a systematic mapping study (2017). https://doi.org/10.1016/j.infsof.2016.
11.004

https://doi.org/10.1109/STAST.2011.6059249
https://doi.org/10.1007/978-3-658-08844-6_16
https://doi.org/10.1109/ITST.2009.5399279
https://doi.org/10.1007/3-540-45800-X_32
https://doi.org/10.1007/978-3-319-24249-1_21
http://www.digitimes.com/news/a20180115PR203.html
http://www.digitimes.com/news/a20180115PR203.html
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1142/S0218194007003240
https://doi.org/10.1016/j.infsof.2016.11.004
https://doi.org/10.1016/j.infsof.2016.11.004

74 M. Zoppelt and R. T. Kolagari

23. Palanca, A., Evenchick, E., Maggi, F., Zanero, S.: A stealth, selective, link-layer
denial-of-service attack against automotive networks. In: Polychronakis, M., Meier,
M. (eds.) DIMVA 2017. LNCS, vol. 10327, pp. 185–206. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-60876-1 9

24. Rao, K.R.M., Pant, D.: A threat risk modeling framework for Geospatial Weather
Information System (GWIS): a DREAD based study. Int. J. Adv. Comput. Sci.
Appl. 1(3) (2010)

25. Ross, R., McEvilley, M., Carrier Oren, J.: Systems security engineering: considera-
tions for a multidisciplinary approach in the engineering of trustworthy secure sys-
tems, vol. 160, November 2016. https://doi.org/10.6028/NIST.SP.800-160. http://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf

26. Sandelin, A., Alkema, W., Engström, P., Wasserman, W.W., Lenhard, B.: JAS-
PAR: an open-access database for eukaryotic transcription factor binding profiles.
Nucleic Acids Res. 32(Suppl. 1), D91–D94 (2004)

27. Schneier, B.: Attack trees. Dr. Dobb’s J. 24(12), 21–29 (1999)
28. Smith, C., Francisco, S.: The Car Hacker’s Handbook a Guide for the Penetration

Tester About the Contributing Author About the Technical Reviewer (2016)
29. Thing, V.L., Wu, J.: Autonomous vehicle security: a taxonomy of attacks and

defences. In: Proceedings - 2016 IEEE International Conference on Internet of
Things; IEEE Green Computing and Communications; IEEE Cyber, Physical, and
Social Computing; IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data
2016, pp. 164–170 (2017). https://doi.org/10.1109/iThings-GreenCom-CPSCom-
SmartData.2016.52

30. Tuohy, S., Glavin, M., Hughes, C., Jones, E., Trivedi, M., Kilmartin, L.: Intra-
vehicle networks: a review (2015). https://doi.org/10.1109/TITS.2014.2320605

31. Valasek, C., Miller, C.: Adventures in automotive networks and control units. Tech-
nical White Paper, vol. 21, p. 99 (2013)

32. Van Tilborg, H.C.A., Jajodia, S.: Encyclopedia of Cryptography and Security.
Springer, New York (2014)

33. Zeng, W., Khalid, M.A., Chowdhury, S.: In-vehicle networks outlook: achievements
and challenges. IEEE Commun. Surv. Tutor. 18(3), 1552–1571 (2016). https://doi.
org/10.1109/COMST.2016.2521642

https://doi.org/10.1007/978-3-319-60876-1_9
https://doi.org/10.6028/NIST.SP.800-160
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-160.pdf
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.52
https://doi.org/10.1109/iThings-GreenCom-CPSCom-SmartData.2016.52
https://doi.org/10.1109/TITS.2014.2320605
https://doi.org/10.1109/COMST.2016.2521642
https://doi.org/10.1109/COMST.2016.2521642

Car Security

CAN-FD-Sec: Improving Security
of CAN-FD Protocol

Megha Agrawal1(B), Tianxiang Huang2, Jianying Zhou3,
and Donghoon Chang1

1 Indraprastha Institute of Information Technology, Delhi, India
meghaa@iiitd.ac.in

2 Chongqing University of Posts and Telecommunications, Chongqing, China
3 Singapore University of Technology and Design, Singapore, Singapore

Abstract. A modern vehicle consists of more than 70 Electronic Control
Unit (ECUs) which are responsible for controlling one or more subsys-
tems in the vehicle. These ECUs are interconnected through a Controller
Area Network (CAN) bus, which suffers from some limitations of data
payload size, bandwidth, and the security issues. Therefore, to overcome
the CAN bus limitations, CAN-FD (CAN with Flexible Data) has been
introduced. CAN-FD has advantages over the CAN in terms of data
payload size and the bandwidth. Still, security issues have not been con-
sidered in the design of CAN-FD. All those attacks that are possible
to CAN bus are also applicable on CAN-FD. In 2016, Woo et. al pro-
posed a security architecture for in-vehicle CAN-FD. They used an ISO
26262 standard that defines the safety level to determine the security
requirements for each ECU, based on that they provided encryption,
authentication, both or no security to each ECU. In this paper, we pro-
pose a new security architecture for the communication between ECUs
on different channels through gateway ECU (GECU). Our experimental
results also demonstrate that using an authenticated encryption scheme
has better performance than applying individual primitives for encryp-
tion and authentication.

Keywords: Controller Area Network (CAN) ·
CAN-FD (CAN with flexible data rate) · Security of in-vehicle network

1 Introduction

Over the past 30 years, with the emergence of vehicle information and commu-
nication technology (ICT), several electronic communication devices have been
installed in the vehicles. These electronic communication devices, known as Elec-
tronic Control Units (ECU) are responsible for controlling the one or various
subsystems of the vehicle including the break, doors, tyre pressure and so on.
Nowadays, a typical vehicle consists of more than 70 ECUs [8]. These ECUs are
generally on a single chip, using an 8-bit microcontroller with around 100 bytes
of RAM, 32 kB of ROM and a few I/O pins to connect to sensors, actuators,
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 77–93, 2019.
https://doi.org/10.1007/978-3-030-16874-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_6

78 M. Agrawal et al.

and a network interface [16]. Data exchange among these ECUs is facilitated
through various communication networks such as Local Interconnect network
(LIN), Controller Area Network (CAN), Byteflight [6], and FlexRay [9]. Among
all these communication networks, CAN [7] has been standardized for all the
communications among various ECUs.

Controller Area Network (CAN) is a serial bus based communication pro-
tocol. It was introduced by Robert Bosch GmBH in 1983 and standardized in
1994 under the ISO 11898-1 [1]. All the ECUs in the vehicle are interconnected
through CAN bus. There is no security consideration in the design of CAN bus
except the standard CRC-15. All the messages between ECUs are transmitted
in plaintext without any security feature. An adversary can eavesdrop all com-
munications between ECUs and later can launch a replay attack [12] or he can
modify the existing message and inject into the system to alter the usual vehicle
behaviour. These kind of attacks can result in some catastrophic consequences.
Various attacks on the CAN bus security are shown in [12–15,17,21]. All these
attacks become possible because of no implementation of the essential security
features: confidentiality, authentication, and integrity. Confidentiality of the data
can be achieved using encryption whereas authentication and integrity can be
incorporated by using MAC algorithm (Message Authentication Code). One of
the other disadvantages of the CAN is the small data packet size. CAN can
support data payload of up to 8 bytes only. Due to the low payload size, it is
impossible to use MAC algorithm as it adds a tag to the data, which increases
the data payload size at least twice.

To match the modern vehicle requirements and to overcome the current lim-
itation of CAN, Bosch developed a new protocol in 2011 known as CAN-FD
(CAN with flexible data) [11]. CAN-FD has an almost similar structure as CAN
with some additional advantages. Following are the advantages of CAN-FD over
CAN [2]:

– CAN-FD supports data payload of up to 64 bytes.
– It can support bandwidth up to 8 Mbps whereas CAN can support up to

1 Mbps only.
– It has lower latency and better real-time performance.
– CAN-FD is compatible with CAN and can support existing software and

applications with the minimum changes.

CAN-FD is supposed to replace CAN gradually by 2020 [4]. However CAN-FD
also suffers from the same security issues as CAN. Here data is transmitted in the
plaintext without any security. Hence all the existing attacks on CAN are also
applicable to CAN-FD. In [21], authors have shown a practical wireless attack
using a real vehicle in a connected car environment where driver’s smartphone is
connected to the in-vehicle CAN. This attack assumes that a driver downloads
the malicious self-diagnostic application that has been uploaded by an adver-
sary. Once it has been downloaded to the driver’s smartphone, the adversary
can control the driver’s smartphone and can inject malicious CAN data frame
that may cause an abnormal behaviour leading an accident or any devastating
scenario. The same attack is also applicable on CAN-FD as it does not have any

CAN-FD-Sec: Improving Security of CAN-FD Protocol 79

security features as well. Later in [20], authors proposed a security architecture
for CAN-FD to resist against these kind of attacks. In that paper, it considered
a characteristics of ISO 26262 Automotive Safety Integrity Level and defined the
security requirements for ECUs. More details of their work is explained in the
next section. We will demonstrate that the security architecture for CAN-FD
proposed in [20] is not practical and has high overhead.

In this paper, we proposed an improvement over the existing security archi-
tecture for the CAN-FD bus. The main contributions of this paper are:

– Proposed a group-based approach to the communication among different
ECUs. Groups are divided based on the existing channels.

– Modified the existing key management protocol to satisfy the group commu-
nication.

– Provided an experimental analysis by replacing the individual encryption and
authentication scheme with a single primitive called authenticated encryption
to provide confidentiality and authenticity.

2 Background and Related Work

A typical in-vehicle network consists of several ECUs responsible for controlling
various subsystems. Controller Area Network (CAN) uses a serial bus commu-
nication to interconnect those ECUs in an in-vehicle network. It is a multicast
message-oriented transport protocol which facilitates all in-vehicle data commu-
nication where each node (ECU) can act as a transmitter or receiver. An ECU
that initiates a message is called a transmitter, which broadcasts the message
to all other ECUs on the bus. All receiving ECUs read the message and decide
if it is relevant to them. All these ECUs communicate with each other using a
fixed length data packet over a CAN bus. It supports data payload of at most
8 bytes and data rate up to 1 Mbps. CAN-FD is built upon CAN protocol and
retains most of its characteristics. It provides better real-time performance and
supports higher bandwidth up to 8 Mbps. CAN-FD supports data payload of
up to 64 bytes. CAN and CAN-FD data frames are shown in Fig. 1. As shown
in the figure, some additional bits have been added to CAN-FD in control field.

Fig. 1. CAN and CAN-FD data frame

80 M. Agrawal et al.

Communication. In an in-vehicle network, ECUs are categorized into several
subsystems or channels. All these channels are connected through a gateway
ECU which is supposed to be more powerful than the usual ECUs. All ECUs on
one channel form the internal subnetwork. The communication between these
channels is facilitated through gateway ECU. If an ECU on one channel wants
to send messages to another ECU on a different channel, it first sends to GECU.
Then GECU broadcasts the messages to another channel.

Related Work. The area of securing CAN-based communication has drawn lots
of attentions. As a result, various solutions for providing secure communication
in CAN networks have been proposed. Vecure [19] and LeiA [18] are two authen-
tication protocols designed for CAN which rely on symmetrically shared keys and
MACs for data authentication. LiBrA-CAN [10] provides authentication based
on key sharing in groups of nodes. With the introduction of CAN-FD, more effi-
cient transmission of bigger payloads is possible, resulting in development of new
security mechanisms. In [20], authors have proposed a security architecture for
in-vehicle CAN-FD. The idea is to use an ISO 26262 standard to define security
requirements for each ECUs. Based on this they define the four automotive secu-
rity level (from 0–3) and categorize each ECU under these four levels. The higher
the level number, more security it requires. Details are given in Table 1. If the
ECU having ASL scale 0 wants to broadcasts a message, it just sends it to GECU
without any security feature which further broadcast it. Others ECU belonging
to ASL scale 1, 2 and 3 uses authentication, encryption and both respectively. If
these ECUs want to send messages, they encrypt or compute MAC or do both
and send it to GECU. GECU then decrypt and verify the MAC. Based on the
verification it further encrypts and computes MAC using keys shared between
different ECUs and GECU and sends it to respective ECU.

Table 1. Defining automotive security level

ASL Security requirement Security provided

0 No security Inbuilt CRC

1 Data authentication Authentication

2 Data confidentiality,
data authentication

Encryption,
athentication

3 Data confidentiality,
data authentication,
external access

Encryption,
authentication,
access control

The main issue with this approach is the excess overload on GECU while
broadcasting encrypted packet as it needs to encrypt the packet with an indi-
vidual key for each ECU. For instance, if GECU wants to transmit it to 10 ECU’s,
then it needs to perform ten encryptions as all the ECU’s shared their secret
key with GECU only. If the message requires authentication also, then GECU

CAN-FD-Sec: Improving Security of CAN-FD Protocol 81

again have to compute individual tags for each ECU as it uses the separate key
for encryption and authentication.

3 Security Requirements

In the previous sections, we mentioned the existing vulnerabilities in CAN-FD
bus that attacker can exploit to launch an attack to cause damage to the vehicle
or the driver. Following are the security requirements that must be followed by
CAN-FD bus to work without any vulnerabilities.

– Confidentiality: As all the messages over CAN-FD bus are communicated
in plaintext, an adversary can eavesdrop the valid communication and ana-
lyze the messages to plan an attack. To overcome this, all communication
should happen in encrypted form so that only legitimate parties can access
the original data. This can be achieved by using an existing block cipher like
AES in a valid encryption mode.

– Authenticity: Receiving node on a CAN-FD bus identify the data frame
based on the sender information. An adversary can eavesdrop the commu-
nication and later can replay a data frame by masquerading a valid sender.
CAN-FD uses CRC sequence only to check for the error, which fails to detect
this kind of attacks. Hence, authentication must be used to verify the identity
of the sender and to prevent this kind of attacks. A cryptographic Message
Authentication Code(MAC) algorithm can be used to achieve authentication.

A cryptographic primitive that achieves Confidentiality and Authenticity
simultaneously in a single step is called an Authenticated Encryption(AE). Intro-
duce by Bellare and Rogaway in [5], an AE scheme Π can be defined as set of
3 algorithms Π = (K, E ,D) where K is a non-empty set of strings, E is a ran-
domized encryption algorithm and D represents a deterministic decryption algo-
rithm. Encryption algorithm E takes a key K, message M and associated data
A (optional) as an input and generate a ciphertext tag pair (C, T). Decryption
algorithm D takes a key K, A and (C, T) as an input and returns either M or
Invalid based on the verification of the tag. There is an advantage of using AE
over an individual cryptographic primitive for confidentiality and authenticity.
Individual primitive requires a separate key for encryption and authentication
and two passes over the message while authenticated encryption uses only one
key and require only one pass which results in better performance.

In this paper, we use the AEGIS [23] authenticated encryption from the
ongoing CAESAR [3] competition for the implementation and compare its per-
formance against using individual primitives for encryption(AES) and authenti-
cation(CCM).

82 M. Agrawal et al.

Fig. 2. CAN-FD architecture

Table 2. Notations

Notations Meaning

GECU Gateway ECU

i ith channel

j jth ECU

ECUij Refers to jth ECU on ith channel

K1
ij ,K

2
ij Preshared long term keys between ECUij and GECU

seedkij Seed for kthsession

skk
ij Individual key for ECUij of kth session

gkk
i Group key for ith channel of kth session

AEK Authenticated encryption using key K

KDFK Key derivation function using key K

M Plaintext

(C, T) Ciphertext tag pair

4 A Secure CAN-FD Protocol

In this work, we present a new security architecture for the CAN-FD (Fig. 2).
Our proposed solution works on the following assumptions:

– All the communication between different ECUs is done through Gateway
ECU (GECU), which is supposed to have more computing power than other
ECUs.

– All ECUs are preloaded with the two keys that they share with GECU. Out
of which, one is used to authenticate each other and other is used for further
session key generation.

– All ECUs have been divided into the fixed no of channels and the communi-
cation happens among these channels through gateway ECU (GECU).
The notations we used in this paper are shown in Table 2.

CAN-FD-Sec: Improving Security of CAN-FD Protocol 83

4.1 Message Structure

Deployment of the proposed security approach will affect the structure of the
message packets. Therefore, the data fields of different types of CAN-FD packets
are processed in segments. The following rules need to be followed when adding
a new feature to the protocol:

– The impact on non-encrypted data packets is as small as possible. If the
protocol structure occupies more effective data segment length, the original
communication architecture will be greatly affected, which will make it incon-
venient for the deployment of the program, and will also have an impact on
the real-time communication performance.

– Easy maintenance. For the later program improvement, we must reserve a
certain amount of space.

– Consistency. Applicable to multiple nodes in the network, both parties can
effectively identify the communication.

The details of the message structure formulated in this paper is shown in
Fig. 3.

Fig. 3. Modified data field for CAN-FD packet

The CAN-FD network message is divided into three categories: plaintext,
ciphertext, and command messages. The first two bytes of the data field out
of 64 bytes are used as the header segment to distinguish among these 3 type
of messages. At present, an only first byte is used where 0x55 represents the
plaintext and 0xFF represents the ciphertext, and the second byte is reserved for
the future use. For the plaintext message, an effective data payload can be up to
62 bytes. However, we restrict it up to 36 bytes as rest of the bytes we require
for the tag and IV usage in the ciphertext. We used an authenticated encryption
scheme to generate the ciphertext. Hence its valid data segment can be up to
36 bytes, followed by a 16-byte authentication tag and 10 byte IV(Initialization
Vector). Command messages are used for key management. They are divided
into address segments (used to indicate the receiving node) and content segments
(used to transmit random numbers or authentication codes, etc.).

84 M. Agrawal et al.

4.2 Proposed Security Architecture

The overall security procedure is divided into several steps. We will explain these
steps in detail below (Fig. 4).

Step 1: Initialization. During the initialization phase, each ECU is loaded on
their respective channel. A typical modern vehicle consists of following channels:
powertrain, chassis, body, safety, and Infotainment serving different purposes.
Details about the channels and ECUs under these channels are given in Table 3.

Table 3. Characteristics of various channels on an in-vehicle network

Subsystems/
channels

Powertrain Chassis Body Telematic safety

Functions Engine control,
automatic
transmission,
hybrid control

Steering,
brake,
suspension

Instrumental
panel,
door, key,
window

Audio,
navigation,
traffic
information

Pre crash
safety

No of ECUs 3–6 6–10 14–30 4–12 11–12

Safety High High Low Low Very high

ECUs
example

ECM
TCM

BCM
SUM

DDM
PDM

TBOX ABS

Step 2: Key Loading. As mentioned above each ECU in the vehicle is
preloaded with the two keys Kij and LKij which are shared with GECU. So, if
there are n ECUs in the vehicle, GECU is loaded with total 2n keys (n no. of
K ′

ijs and n LK ′
ijs). These loading of the keys are done during the manufacturing

of a vehicle or when some ECU need to be changed.

Step 3: Session-Key Generation. After a vehicle starts, each ECU performs
a session key generation with GECU in a fixed order. This process is divided into
2 steps. In the first step, every ECU on different channels perform an individual
session key generation with GECU. During the second step, when every ECU
on the different channel have their session key, GECU generate a group key
for each channel by hashing the individual session key for each ECU on that
channel and then distribute this group key on that channel by encrypting it
with the ECU’s session key. Algorithms for individual session key generation
and group key generation are shown in Algorithms 1 and 2 respectively.

CAN-FD-Sec: Improving Security of CAN-FD Protocol 85

Step 4: Authenticated Encryption. Once the individual session key and the
group key has generated, confidentiality and authenticity is provided to the data
frames using Authenticated Encryption (AE) scheme. For example, if ECU1 on
channel 1 wants to send a message to the ECU’s on channel 2, then ECU1 will
use the AE using their session key and send it to GECU. GECU will then verify
the message, if it gets verified, then GECU will encrypt the message with channel
2 group key and forward it on that channel otherwise it will discard the message.
Details are given in Algorithm3.

Step 5: Key Update. Individual and the group session key between ECUs
and GECU are updated in the following scenarios:

– After a fixed predefined period say T .
– If any ECU leaves or joins the network.
– if any external device tries to connect.

Fig. 4. Data flow diagram showing session key generation

5 Discussion on Security

Security of the proposed protocol depends on the underlying key management
and authenticated encryption scheme.

5.1 Key Management

We assumed that each ECU is preloaded with two long-term symmetric keys
during the manufacturing phase. Each ECU share these keys with GECU only.
Further, these keys are used to generate individual session keys using existing

86 M. Agrawal et al.

Algorithm 1. Individual session key generation
for 1 → i do

for 1 → j do
ECUij generates random no Rij and send it to GECU.
GECU generates random seed1 and compute
MAC1 = HKij (ECUij ||GECU ||Rij ||seed1)
GECU sends seed1||MAC1 to ECUij .
ECUij verifies MAC1,
if correct then

skij = KDFLKij (seed1)
else

FAIL
end
ECUij generates MAC2 = HKij(ECUij ||seed1) and send it to GECU.
GECU verifies MAC2,
if correct then

skij = KDFLKij (seed1)
else

FAIL
end

end

end

Algorithm 2. Group key generation
for 1 → i do

gki = H(ski1||ski2 . . . ||skij)
end

Algorithm 3. Authenticated Encryption
1. Sender ECUij applies a AE scheme on message M using his own session key
and compute (C, T) = AEskij (M) and send it to GECU.
2. GECU receives (C, T) pair and verifies it.
3. if correct then

GECU further applies AE algorithm using group key gki of the receiving
channel and compute (C′, T ′) and forward it on that channel.

else
Discard the message.

end
4. All ECUs on the receiving channel will receive (C, T) and do the verification.
5. if correct then

Keep the message
else

Discard
end

CAN-FD-Sec: Improving Security of CAN-FD Protocol 87

AKEP2 protocol. It is a three pass protocol and provides perfect forward secrecy
which means compromise of long-term keys does not compromise the past session
keys. A protocol is considered to be secure if compromise of these keys doesn’t
have any adverse effect like

– It should not subvert subsequent authentication.
– it should not reveal any information about other session keys.

Group session key is generated by taking a hash of all individual keys on the same
channel whose security depends on the hash function used in the computation.

5.2 Authenticated Encryption

The proposed protocol is considered to be secure if the underlying AE scheme
is secure. In this work, we used AEGIS, an existing authenticated encryption
scheme from CAESAR competition. Hence, we can directly adapt their security
analysis from [22].

6 Implementation Results

In this section, we will discuss the implementation results of our proposed
security architecture. To make the implementation scenario more realistic, we
design a small-size CAN-FD network and schedule communication of each ECU.
Figure 5 shows the HIL (Hardware-In-the-Loop) network topology.

Fig. 5. CAN-FD network topology

To simulate nodes on the hardware, we use LPC54618 microcontroller which
supports two CAN-FD channels and baud-rate up to 180 Mhz. On the software,
we use CANoe testing tool to build virtual ECUs which are programmed in
CAPL (Communication Access Programming Language). VN5610 is a CAN(FD)
interface connecting those two parts. Figure 6 shows our setup for the hardware
and software environments. We divide real-time performance test into 2 phases:

88 M. Agrawal et al.

1. First phase known as initialization includes session key generation and dis-
tribution, group key generation and distribution.

2. Second phase includes authenticated encryption and decryption for a one
message forwarding event by the ECU.

Fig. 6. Evaluation environment

Initialization Phase. During this phase initial key distribution time is
recorded. The usual startup time of vehicle is around 200 ms after ignition
turned on. All ECUs need to execute key distribution during these 200 ms only.
Our mechanism, to some extent, is limited by the hardware performance of
ECU nodes. We compute the initialization time by considering key distribution
between GECU and n no. of ECU’s which includes individual and group key
distribution. To compute the timing results more accurately, we use the Trace
function of CANoe to capture the timestamp of first and last frame of this pro-
gram. Results are shown in Fig. 7 considering different number of channels and
ECU’s.

We can see in the Fig. 8, with the increase in the number of ECU’s over a
channel, the delay also increase. But most of the points are within allowable
limits.

Message Forwarding Phase. This test is about the real-time performance of
secure data transmission. We consider a test scenario where GECU facilitates a
transfer of message between two channels, Fig. 9 shows a data flow diagram.

CAN-FD-Sec: Improving Security of CAN-FD Protocol 89

Fig. 7. Key distribution results

Fig. 8. Graph representation of key distribution results

As shown in Fig. 9 ECU11 encrypt the original message OMsgp with the key
GK1 to get the ciphertext OMsgc and then sends it to GECU. On receiving
OMsgc, GECU decrypts and verifies it. If the verification fails, GECU discards
the message otherwise it encrypts the decrypted message OMsgp with key GK2

(group key for channel 2) to get ciphertext FMsgc and sends it over channel 2.

90 M. Agrawal et al.

Fig. 9. Data flow diagram showing communication between ECU’s over different chan-
nels through GECU.

All EC U’s on channel 2 receive FMsgc, and they decrypt and verify it with
GK2 to get the original message OMsgp. By capturing the start time of ECU11

to generate the OMsgp and finish time of ECU21 and ECU22 to decrypt and
verify FMsgc, we can get the total time of computation. Figure 10 shows the
Trace interface of CANoe as we can see to get the start time, we add an initial
message. After ECU21 and ECU22 finishes decryption and verification, they send
an end message. Therefore, by noticing these two-time stamps, we can get the
accurate time.

Fig. 10. Trace interface of CANoe

CAN-FD-Sec: Improving Security of CAN-FD Protocol 91

As the GECU is always fixed, we set it’s clock speed at 180 Mhz and varies the
clock speed for rest of the ECU’s. Figure 11 shows the time on the same microcon-
troller with different clock speed and different baud rate for CAN-FD. Here we
use AEGIS [23] authenticated encryption scheme for the secure communication
and compare its results against AES with CCM mode for authentication. In the
graph shown in Fig. 11, solid lines shows the secure communication with AEGIS
and the dotted line denotes no security at all. Obviously, in this result, the time
depends on the microcontroller performance, and the time is controlled below
2 ms, which is allowed in-vehicle communication. The graph in Fig. 12 shows the
results using AES (no hardware acceleration) with CCM. As we can see the time
taken by AES-CCM is more than AEGIS, especially at lower frequency. Hence,
we can conclude that use of fast authenticated encryption scheme can optimize
the secure communication and meet the real-time requirements.

Fig. 11. AEGIS implementation results Fig. 12. AES-CCM implementation results

7 Conclusion

In this paper, we provided an improved security architecture for the CAN-FD
network. We proposed a new group-based approach for the secure communication
between ECUs connected on the CAN-FD network. In addition, we also used
the authenticated encryption scheme instead of applying individual primitives
for encryption and authentication. We tested our results using AEGIS which
is a fast authenticated encryption scheme satisfying real-time requirements. We
compared the AEGIS implementation results against individual primitives (AES
for encryption and CCM for authentication), and found that AEGIS performs
better than AES-CCM. Hence, we can conclude authenticated encryption is a
good choice for providing secure communication over CAN-FD network.

Acknowledgement. This work was supported by SUTD start-up research grant
SRG-ISTD-2017-124. The first author’s work was done during her internship in SUTD.

92 M. Agrawal et al.

References

1. Can standardization. http://elearning.vector.com/index.php?&wbt ls seite id=48
9557&root=378422&seite=vl can introduction en

2. Comparing can FD with classical can. https://www.kvaser.com/wp-content/
uploads/2016/10/comparing-can-fd-with-classical-can.pdf

3. Caesar: Competition for authenticated encryption: security, applicability, and
robustness (2014). http://competitions.cr.yp.to/caesar.html

4. Can 2020: The future of can technology (2016). https://www.can-cia.org/news/
cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/

5. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. J. Cryptol. 21(4), 469–491
(2008)

6. Berwanger, J., Peller, M., Griessbach, R.: Byteflight - a new protocol for safety
critical applications (2000)

7. Can specification (1991). http://esd.cs.ucr.edu/webres/can20.pdf
8. Charette, R.N.: This car runs on code. IEEE Spectr. 46, 3 (2009)
9. Next generation car network- flexray (2006). http://www.fujitsu.com/downloads/

CN/fmc/lsi/FlexRay-EN.pdf
10. Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a

lightweight broadcast authentication protocol for controller area networks. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
185–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-
5 15

11. Florian Hartwich and Robert Bosch Gmbh. icc 2012 can in automation can with
flexible data-rate, 2012

12. Hoppe, T., Dittman, J.: Sniffing/replay attacks on can buses: a simulated attack on
the electric window lift classified using an adapted cert taxonomy. In: Proceedings
of the 2nd Workshop on Embedded Systems Security (WESS) (2007)

13. Hoppe, T., Kiltz, S., Dittmann, J.: Security threats to automotive can networks –
practical examples and selected short-term countermeasures. In: Harrison, M.D.,
Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 235–248. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-87698-4 21

14. Huang, T., Zhou, J., Bytes, A.: ATG: an attack traffic generation tool for security
testing of in-vehicle CAN bus. In: ARES (2018)

15. Huang, T., Zhou, J., Wang, Y., Cheng, A.: On the security of in-vehicle hybrid
network: status and challenges. In: Liu, J.K., Samarati, P. (eds.) ISPEC 2017.
LNCS, vol. 10701, pp. 621–637. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-72359-4 38

16. Kopetz, H.: Automotive electronics: present state and future prospects. In: Pro-
ceedings of the Twenty-Fifth International Conference on Fault-tolerant Comput-
ing, FTCS 1995, pp. 66–75. IEEE Computer Society, Washington, DC (1995)

17. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP 2010, pp.
447–462. IEEE Computer Society, Washington, DC (2010)

18. Radu, A.-I., Garcia, F.D.: LeiA: a lightweight authentication protocol for can. In:
ESORICS (2016)

19. Wang, Q., Sawhney, S.: VeCure: a practical security framework to protect the can
bus of vehicles. In: 2014 International Conference on the Internet of Things (IOT),
pp. 13–18, October 2014

http://elearning.vector.com/index.php?&wbt_ls_seite_id=489557&root=378422&seite=vl_can_introduction_en
http://elearning.vector.com/index.php?&wbt_ls_seite_id=489557&root=378422&seite=vl_can_introduction_en
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
https://www.kvaser.com/wp-content/uploads/2016/10/comparing-can-fd-with-classical-can.pdf
http://competitions.cr.yp.to/caesar.html
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
https://www.can-cia.org/news/cia-in-action/view/can-2020-the-future-of-can-technology/2016/3/21/
http://esd.cs.ucr.edu/webres/can20.pdf
http://www.fujitsu.com/downloads/CN/fmc/lsi/FlexRay-EN.pdf
http://www.fujitsu.com/downloads/CN/fmc/lsi/FlexRay-EN.pdf
https://doi.org/10.1007/978-3-642-35404-5_15
https://doi.org/10.1007/978-3-642-35404-5_15
https://doi.org/10.1007/978-3-540-87698-4_21
https://doi.org/10.1007/978-3-319-72359-4_38
https://doi.org/10.1007/978-3-319-72359-4_38

CAN-FD-Sec: Improving Security of CAN-FD Protocol 93

20. Woo, S., Jo, H.J., Kim, I.S., Lee, D.H.: A practical security architecture for in-
vehicle CAN-FD. IEEE Trans. Intell. Transp. Syst. 17(8), 2248–2261 (2016)

21. Woo, S., Jo, H.J., Lee, D.H.: A practical wireless attack on the connected car
and security protocol for in-vehicle can. IEEE Trans. Intell. Transp. Syst. 16(2),
993–1006 (2015)

22. Wu, H., Preneel, B.: AEGIS: a fast authenticated encryption algorithm. In: Lange,
T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS, vol. 8282, pp. 185–201.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7 10

23. Wu, H., Preneel, B.: AEGIS: A Fast Authenticated Encryption Algorithm (v1)
(2015). http://competitions.cr.yp.to/round1/aegisv1.pdf

https://doi.org/10.1007/978-3-662-43414-7_10
http://competitions.cr.yp.to/round1/aegisv1.pdf

INCANTA - INtrusion Detection
in Controller Area Networks

with Time-Covert Authentication

Bogdan Groza(B), Lucian Popa, and Pal-Stefan Murvay

Faculty of Automatics and Computers,
Politehnica University of Timisoara, Timişoara, Romania
bogdan.groza@aut.upt.ro, lucian.popa.lp@gmail.com,

stefan.murvay@gmail.com

Abstract. We explore the use of delays to create a time-covert crypto-
graphic authentication channel on the CAN bus. The use of clock skews
has been recently proposed for detecting intrusions on CAN, using sim-
ilar mechanisms that were previously exploited in computer or mobile
networks in the past decade. However, the fine-grained control of timers
easily allows controllers to adjust their clock potentially making such
mechanisms ineffective as we argue here and was also proved by a recent
research work. We exploit this potential shortcoming in a constructive
sense, i.e., the accuracy of arrival times on in-vehicle buses and the fine-
grained control of timer/counter circuits on automotive controllers allows
us to use time as a covert channel to carry cryptographic authentication.
Based on this procedure we propose an effective authentication and intru-
sion detection mechanism that is fully back-ward compatible with legacy
implementations on CAN. Our proposal directly applies to any modern
in-vehicle bus, e.g., CAN-FD, FlexRay, etc.

1 Introduction and Motivation

We are at a decade of research on attacks and countermeasures for in-vehicle net-
works. From proof-of-concept attacks on laboratory setups [11] to attacks on real-
world vehicles [3,16,21,22] we are witnessing each year more and more threats
to the future of automobiles. Without proper countermeasures, such attacks
may jeopardize the development of future technologies such as self-driving cars,
autonomous intersection management systems, etc. Many security proposals
were brought to attention by research works. Various cryptographic authentica-
tion techniques are explored from regular message authentication codes [10,30]
to well established protocols in sensors networks such as the TESLA protocol
[9] or group key-sharing between nodes [8]. Attention is also payed to efficient
allocation of signals in each frame [19]. Other works account for the physical
layer in order to discard forged frames by error flags [17], hide authentication
bits within regular CAN bits [37] or distinguish between nodes based on signal
characteristics [26]. Particularities of the physical signalling on the bus have also
been exploited to securely share a cryptographic key [12,25].
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 94–110, 2019.
https://doi.org/10.1007/978-3-030-16874-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_7

INCANTA - INtrusion Detection in Controller Area Networks 95

Recently, the design of intrusion detection for the CAN bus has been explored
by several research works. Solutions include the use of entropy [20,27], inclusion
of anomaly detection sensors [28], the analysis of voltage levels on the bus [5] or
the use of cryptographic authentication [2]. Hardware implementations based on
the error-confinement mechanism of CAN are discussed in [7]. Artificial intelli-
gence techniques have been also recently employed by the use neural networks in
[13,14,34], machine learning [36] and regression learning [18]. Other techniques
include hidden Markov models [29], multivariate time series [35] and finite-state
automatons [33].

Still, the most basic feature of the communication on the CAN bus which can
be used to build intrusion detection mechanisms is the periodicity of messages
on the bus. As industry implementations usually demand simplicity, such mech-
anisms cannot be neglected. Using frame periodicity to detect intrusions was
discussed in several research works, e.g., [24] and [32]. Further, the periodicity
of messages can be exploited to extract clock skews (which is a unique finger-
print due to physical imperfections in oscillators) and identify the sender of the
message as discussed in [4]. The use of clock skews has been previously explored
in computer networks [15] and was also applied to smart-phones [6]. However,
as we point out in the analysis from the forthcoming section, the fine grained
control of time-triggered interrupts and the low-level access to the system clock,
may easily allow an embedded device to mimic the clock-skew of another. This
was already proved by recent research in [31] which proposes cloaking attacks
and may render mechanisms such as the work in [4] ineffective in detecting intru-
sions. In contrast, in this work we exploit this fine-grain control of timer-counter
circuits in a constructive manner and envision the design of a time-covert cryp-
tographic authentication and intrusion detection system for the CAN bus, i.e.,
INCANTA (INtrusion detection in Controller Area Networks with Time-covert
cryptographic Authentication).

Our work is organized as follows. For clarity we begin by presenting the exper-
imental setup in Sect. 2, this comprises high-end automotive-grade controllers as
well as industry standard tools, e.g., CANoe, that are used both for simulat-
ing real-world in-vehicle traffic and measuring delays. In Sect. 3 we discuss some
theoretical notions on measuring clock offsets and present our first experimental
results on measuring delays in our setup. Then, in Sect. 4 we embed authentica-
tion information in delays, i.e., we create a time-covert authentication channel,
and present experimental results. Section 5 holds the conclusions of our work.

2 Experimental Setup

For gathering frame arrival timestamps we employed off-the-shelf devices and
applications to build an experimental setup. Our setup, as suggested in Fig. 1,
consists on three nodes linked over a 500 kbit/s CAN bus. Two of the nodes
were implemented on AURIX development boards, while the third was a Vector
VN1610 PC to CAN adapter. The Vector VN device was connected to a PC
running CANoe 8.0.35 used to record all frames sent over the bus along with their

96 B. Groza et al.

Fig. 1. Experimental setup used for gathering frame arrival timestamp data

arrival timestamps. A second set of frame arrival timestamps was recorded on
one of the AURIX development boards which acted as a receiver node. To assure
consistency of the results, the receiver node was generally either the VN1610 or
a TC277 board which used the System Timer module to generate a 10ns base
tick for recording the local time.

The target bus traffic was generated by the second of the AURIX-based
nodes. Table 1 presents specifications for the 6 different AURIX boards featuring
three different Infineon AURIX microcontrollers used as sender nodes in our data
recording setup. The sender node was set to send a cyclic message once every
100 ms. The timing functionality is implemented on the AURIX nodes using
the on-chip System Timer module configured in the Compare Match Interrupt
Control mode to generate interrupts at 100 ms.

Table 1. Features of AURIX development boards employed in our experiments

Microcontroller
characteristics

Development board model

AURIX TC224 TFT AURIX TC277 TFT AURIX TC299 TFT

RAM 96KB 472KB 728KB

FLASH 1MB 4MB 8MB

EEPROM 128KB 384KB 384KB

Top frequency 133MHz 200MHz 300MHz

CAN nodes 3 4 6

Employed board count 2 2 2

INCANTA - INtrusion Detection in Controller Area Networks 97

To provide more realistic results under normal bus operating conditions, a
separate set of message arrival timestamps was recorded while generating addi-
tional bus traffic in the previously described setup. The additional traffic con-
sisted of traffic recorded on a real-world high-end vehicle and replayed on our
CAN bus setup by CANoe through the VN CAN adapter. The additional traffic
consists of ≈100 different CAN message types sent on event or periodically with
various cycle times. By introducing the recorded traffic the busload increased
from 0.49% to around 50%.

3 Analysis of Clock Accuracy in Automotive-Grade
Controllers

We begin with some theoretical foundations then proceed to a practical analysis
of delays on the automotive-grade platforms of our setup.

3.1 Theoretical Background

Existing definitions from [23] provide sufficient theoretical background on clock
offsets, skews and drifts that characterize differences between clock measure-
ments. These were used in the works from [4] for in-vehicle networks, [15] for
computer networks and [6] for smart-phones over wireless-networks. In all these
scenarios, delays are used to identify a particular sender. We stay to the same
notions but make small modifications according to our needs.

Distinct to the case of a general clock-adjustment scenario in computer net-
works, e.g., [15] or [6], we are missing the time-stamps of each participant and
rely only on local clocks. Subsequently, we want to infer on the clock offset
based on local timestamps and also from the a-priori knowledge of the precise
time intervals at which frames are broadcast. We note that delays are generally
fixed in automotive applications and thus we can infer on the intended delay
since this is usually a hardcoded constant 10, 50, 100, 500, 1000ms, etc.

Figures 2 and 3 shows how the local timestamps are formed and how they
account for delays that are expressed as random variables. Whenever principal
μC1 sends a cyclic frame, the frame is sent at delay δμC1 which is a random
variable that accounts for imperfections in the local clock of μC1. Subsequently,
the frame travels on the bus and propagation delays are accounted which are
again represented by a random variable δμC1,μC2 (the propagation delay includes
delays due to arbitration loss or mere propagation of the packet on the bus, etc.).
Finally, the time-stamp of the frame is quantized on μC2 this time accounting
for new clock imperfections due to the local clock of μC2 that are represented in
the random variable δμC2 . In principle, random variable δμC2 has a mean that
is smaller than the mean of δμC1,μC2 which can get significantly larger when the
busload is high, while the mean of δμC1 is much larger than any of the two as it
accounts for the delays at which the frame is sent.

We formally refine the timing metrics that we use in the following definition
in attempt to set a theoretical background for our experimental measurements.

98 B. Groza et al.

Fig. 2. The travelling time for a frame
from µC1 over the CAN bus to µC2

Fig. 3. Offset of the recorded time-
stamps in case of ideal clocks

Definition 1. Let ΔT be the random variable that accounts for the delay
between consecutive occurrences on the bus of frame identified by its ID sent
by principal μC1 and let TμC = {ΔT1,ΔT2, . . . ,ΔTn} be a recording by prin-
cipal μC2 of n consecutive values of variable ΔT , i.e., ΔTi = Ti − Ti−1, i =
1 . . . n,T0 = 0. We define the following non-random variables that correspond to
reference clocks:

i. C�
ideal(t) = tδ where δ is the intended constant delay between frames,

ii. C�
min(t) = tvmin where vmin is the minimum value in TμC ,

iii. C�
med(t) = tvmed where vmed is the median of the values in TμC ,

vi. C�
mean(t) = tvμ where vμ is the mean of the values in TμC .

Subsequently, we define the cumulative clock offset of principals μC1 and μC2

with respect to reference clock C�
� where placeholder � ∈ {min,mean,med} as

CμC1,μC2(t)−C�
�(t) where CμC1,μC2 =

∑
i=1,t ΔTi. In the following subsection we

analyze the variation of delays with respect to these four reference clocks. While
in the protocol description we analyze variations only with respect to C�

ideal,
evaluating the other three clocks should not appear meaningless since without
proper evaluation it would have been improper to rule them out as possible
indicators.

3.2 Experimental Measurements of Delays

We first perform experiments in order to choose which of the four metrics C�
ideal,

C�
min, C�

med, C�
mean is best suited for our approach. We also analyze the case when

forced constant delays are added to each packet. For illustration purposes, these
delays are fixed to ±100, ±250 and ±500 clock ticks. In case of the TC277 boards
(the main actor of our experiments) 1 tick of the System Timer is the equivalent
of 10ns. Then we focus on the impact on changing delays by very small variations
(in the order of hundreds of clock ticks) on the measurements from the receiver
side. Nonetheless we discuss the behavior of lower priority IDs which may lose
arbitration and thus add more to the propagation delay.

INCANTA - INtrusion Detection in Controller Area Networks 99

Our experimental measurements clearly point toward C�
ideal as the best ref-

erence value for the clock drift. Indeed, C�
ideal is a constant fixed at design time,

but it is also easy to determine by empirical evidence on an existing network
since manufacturers always choose fixed delays, e.g., 50 ms, 100 ms.

We now comment why the other indicators, i.e., C�
min, C�

med, C�
mean do not seem

to offer a better approximation. The main problem consists in the gap between
measurements on a free bus and measurements on a bus that features regular
network traffic. We do rely on the minimum, median and mean of the first 100
received packets (by increasing this value the results do improve but not enough
to justify the use of these three reference clocks) the subsequent plots are done
over the next 1400 frames. When the bus is free of additional traffic the variations
between the mean and median values are very small and results computed over
a limited number of packets prove to be a bad indicator. The plots appear to
be mixed between distinct delays with no obvious separation. This is plotted
on the upper side of Figs. 4 and 5. When the bus becomes loaded, variations
increase by two orders of magnitude and become stable, this is plotted on the
lower side of Figs. 4 and 5. For C�

min apparently there is good separation both in
the case of a free bus and a bus that is loaded with regular network traffic, this
is depicted in Fig. 6. However, the variations are not correctly aligned with the
value of the delay, which suggests that the difference toward the minimum value
is again a poor separator. For the same measurements C�

ideal proves to be a very
good classifier with or without network traffic, measurements are presented in
Fig. 7.

In Figs. 4, 5, 6 and 7 we have contrasted between independent measurements
on the Infineon board and CANoe since the similarities between the indepen-
dent measurements prove the correctness of the results. The plots suggest that
using the clock drift from a single packet may lead to wrong classifications but
the cumulative clock drift computed over a few dozen packets is a very good
separator to identify a specific delay.

Fig. 4. C�
mean for a frame sent from an Infinenon TC277 as measured on another Infi-

neon board (left) and on CANoe (right) - results over a free bus (up) or with network
traffic (down)

100 B. Groza et al.

3.3 Forcing Delays on the Bus

We now discuss the impact on manipulating delays at fine grain clock modifi-
cations. This discussion is essential for embedding the authentication values in
delays which is the objective of the INCANTA protocol.

Figure 8 shows these delays (±100, ±250 and ±500 clock ticks) when they are
measured from another TC277 board without (left) and with additional traffic
(right). In Fig. 9 we show the same delays when measured from a CANoe/VN
device at the same time. Here we choose to present the plot at finer grain by tak-
ing only 500 packets, otherwise these plots are consistent with the plots already
shown in Fig. 7. The slope of the lines are distinct since the clock of the reference

Fig. 5. C�
med for a frame sent from an Infinenon TC277 as measured on another Infineon

board (left) and on CANoe (right) - results over a free bus (up) or with network traffic
(down)

Fig. 6. C�
min for a frame sent from an Infinenon TC277 as measured on another Infineon

board (left) and on CANoe (right) - results over a free bus (up) or with network traffic
(down)

INCANTA - INtrusion Detection in Controller Area Networks 101

Fig. 7. C�
ideal for a frame sent from an Infinenon TC277 as measured on another Infineon

board (left) and on CANoe (right) - results over a free bus (up) or with network traffic
(down)

Fig. 8. Delays for a frame sent from an Infinenon TC277 as measured on another
Infineon board without (left) and with network traffic (right)

Fig. 9. Delays for a frame sent from an Infinenon TC277 as measured from CANoe/VN
CAN adapter without (left) and with network traffic (right)

clock from the VN CAN adapter device is distinct. Overlapping the plots in the
two cases (with and without traffic) for each reference clock in Fig. 10 shows
that traffic does not cause significant changes in the clock skew over multiple
packets. While small variations can be encountered, the slopes are close for the
two cases.

Low Priority IDs. Switching to low priority IDs leads to significant changes in
the delay at which packets arrive. Computed over multiple packets, the clock

102 B. Groza et al.

Fig. 10. Delays for a frame sent from an Infinenon TC277 as measured by an Infineon
board (left) or from CANoe/VN CAN adapter (right) with and without traffic (overlap)

Fig. 11. Delays for TC277 on several testbeds: a bus with no traffic (i), with regular
traffic and high priority ID (ii) and regular traffic with lowest priority extended ID (iii)
and overlap of the three cases (iv) (the slope is similar in all cases)

skew remains the same, but individual packets may come at significant delays.
In Fig. 11 we illustrate delays for one of the TC277 boards in the case with no
additional traffic on the bus (i), a bus loaded at 50% with delays computed on a
packet with the highest priority ID (ii) and delays in case of the lowest priority
extended ID (iii). In the later case, it is easy to note that inter-packet delays
may have large variations. In part (iv) we overlap these 3 plots and the result
confirms that the clock skew is the same for the node. Small variations appear in
the case when the delay is set to 0,±100 and ±250 between the three cases but
the slope of the line that mediates these values is still close, making identification
possible.

Repeated Randomized Trials. To get a convincing image on the correctness of
the results we proceed to a set of randomized trials that consist in taking small
portions of the trace at random positions and compute the variation of clock on
the smaller data set. We consider both the case of a free bus and that of a bus
loaded with regular network traffic. We performed these tests with 4 Infineon

INCANTA - INtrusion Detection in Controller Area Networks 103

controllers: TC277, TC297, TC224 and a second TC224. Moreover, these tests
are again performed for all the induced delays on packet arrival: ±100,±250 and
±500, Fig. 12 graphically depicts the results. For each board the first set of data
which is encircled in the figure represent the packet arrival time without any
forced delay, the subsequent tests are for plus 100, 250 and 500 ticks and it can
be clearly seen that the arrival time increases and is correctly determined by the
receiver. Then the delay decreases by 100, 250 and 500 ticks and so does the
arrival time measured by the receiver. In the case when regular traffic is present,
variations exists due to the obvious fact that the bus may not be free when
data is sent and the time-stamp of these packets alone does not offer sufficient
information to identify a sender node (or the intended delay). Fortunately, even
with a loaded bus for the majority of packets the delay is correctly estimated as
can be seen in Fig. 12. In the next section we do discuss how to exploit this delay
in order to hide authentication information and how additional traffic influences
the accuracy of our estimation (some packets do deviate significantly from the
expected delay and unavoidably they will contribute to the false positive rate).

Fig. 12. Results after 100 tests at randomized locations in the trace for all 4 Infineon
controllers: TC277, TC297, TC224 and a second TC224 and the six added delays
±100,±250 and ±500 with (right) and without (left) regular network traffic

4 The Proposed Protocol and Results

In this section we give a brief overview of the proposed protocol which uses a
covert timing channel to embed authentication tags. Then we present experi-
mental results.

104 B. Groza et al.

4.1 Protocol Overview

The protocol description is written for frames which are cyclic in nature. Fortu-
nately the large majority of CAN bus traffic fits into this category. Frames that
are on-event can be treated distinctly provided that there is a reference frame
for computing the delay. For example one can use the delay toward the previous
cyclic frame as a covert channel. It is out of scope for the current work to address
on-event frames.

We consider that a shared secret key k exists on each ECUs from the CAN
bus. We do not discuss how this key is shared since procedures for this are well
known. The INCANTA (INtrusion detection in Controller Area Networks with
Time-covert cryptographic Authentication) protocol consists in the following set
of actions that are to be followed by each node:

1. SendCyclic(id ,m) is the procedure triggered at some fixed delay δ for a
frame with identifier field id at which the sender computes the tag tag =
MAC k(i, id ,m) where i is a counter that is incremented for each ID. The
sender then sets T = �tag�� and performs a wait operation wait(T) then
broadcasts message (id ,m),

2. RecCyclic(id ,m) at which a message having identifier id and data-field m is
received at time t, the receiver computes tag = MAC k(id ,m) and T = �tag��

then checks if |t−iδ+T| ≤ ε and if this fails it drops the frame and reports an
intrusion by returning Intrusion (here i is the counter for the corresponding
frame).

In the description above, we assume that the CAN message having the iden-
tifier id is sent at delay δ while the expected arrival time differs by a small
constant ε which compensates for both synchronization error and propaga-
tion/computation delays. The desired security level is denoted by �. For practi-
cal purposes this must be set to a value that introduces a reasonable delay. For
example, by using � = 16 and assuming signed values the maximum delay would
be ±215 ticks, i.e., 327680 ns, and the 327µs should be negligible considering a
frame that regularly arrives at 100ms.

4.2 Results on Embedding Authentication in Delays

The analysis in this section deals with deviations of the arrival time from the
expected value and with the analysis of the adversarial success rate in injecting
forged frames. The broader image in Fig. 12 makes it clear that in case when
regular bus traffic is present, frame arrival time may deviate by large amounts.
We do discuss how this affects the detection rate and the improvements that can
be done.

Deviations from the Expected Value. Due to existing traffic (and also due to
measurement imprecisions but by a much smaller amount) some of the genuine
frames may be marked as potential intrusions, i.e., the false positives rate FPR.
To begin with, in Fig. 13 we show the deviations as recorded in our experiments

INCANTA - INtrusion Detection in Controller Area Networks 105

in case when there is no additional traffic on the bus (i)–(ii) and in case when
the bus is loaded with additional traffic (iii)–(iv). Clearly, the distribution of
delays is Gaussian in both cases but it is greatly influenced by existing traffic.
Figure 14 proves that these deviations are mostly independent on the receiver’s
clock by illustrating the distribution of delays as recorded both on CANoe vs. the
Infineon board. Indeed, the distributions are similar which suggests as expected
that the busload is the only cause for the delays.

Fig. 13. Delay deviations on a free
bus recorded by Infineon receiver (i)
vs. CANoe trace (ii) and on a bus
with regular traffic recorded by Infi-
neon receiver (iii) or CANoe trace (iv)

Fig. 14. Comparative deviations
between delays on Infineon and
CANoe traces with MD5 (i–ii) and
SHA2 (iii–iv) on a free bus (left) and
a bus with regular traffic (right)

Detection Rate, True Negatives and False Positives. The experiments are per-
formed both with MD5 and SHA256 as the underlying hash functions (messages
are hashed along with a secret key as required by regular Message Authentica-
tion Codes) and the delay is fixed to the last 16, 20 or 22 bits of the resulting
authentication tag. MD5 is known to be insecure but this is irrelevant to our
experiments since our security level is even lower than that of MD5. Experimen-
tal data is used to compute the acceptance rate for legitimate frames, i.e., the
true negatives rate TNR, while we estimate the success rate of an adversary, i.e.,
false negatives rate FNR, synthetically as:

εadv =
ε

θ2�

Here ε is the delay tolerance for accepting a frame, θ is the value of a tick
(in seconds) and � is the security level. This comes from the assumption that
an adversary can at best insert a frame at some random point and hope that it
will match the expected delay. Figure 15 shows the contrast for the advantage
of legitimate frames when compared to frames injected by an adversary. Plots
(i) and (ii) address the case without additional bus-load. Since there are no
delays, the probability of accepting a legitimate frame quickly increases to 1 by

106 B. Groza et al.

using a tolerance of several hundreds ticks. The bus-load however greatly affects
the acceptance rate and in case when additional traffic is present the tolerance
needs to be increased to more than ten thousands ticks. While the advantage
of an adversary is much higher, the acceptance rate for legitimate frames is still
superior. The results are also summarized in Table 2 for the case of a free bus and
Table 3 for the case of a bus loaded with regular traffic. As expected on the free
bus, by considering a tolerance of around one thousand ticks, legitimate frames
are accepted at a 99.9% rate while a false negative can occur between 1.40% and
0.02% according to the security level. This is a very good detection/acceptance
rate. For the case of a bus loaded with regular network traffic only by a tolerance
close to 20,000 ticks we get an acceptance rate of 90% for legitimate frames and
from 1.80% to 0.47% false negative rate at 20–22 bit security for the embedded
authentication delay. This is satisfactory but not perfect and may be improved
by better allocation of bus traffic which out reach for our current work. For
16-bit authentication tags hidden in delays the false negative rate is somewhat
high at 27% which suggest that 20–22 bits should be preferred.

Nonetheless we find it relevant to note that the chance of legitimate frames
to be accepted increases rapidly after only several hundred ticks in tolerance and
then reaches a first 0-growth point (a point where the acceptance probability does
not increase at the next tick that is added in tolerance). At the 0-growth point the
advantage of the adversary is extremely small, e.g., 0.0002% to 0.4%, while the
acceptance rate (TNR) of legitimate frames is much higher, e.g., 4.89% to 25%.
While such an acceptance rate is too low to be useful for practical scenarios, the
discrepancy between the TNR and FNR can be positively exploited by deciding
the intrusion over several consecutive frames. This happens because in case of
legitimate frames there is a high chance that at least one frame fits the expected
arrival time while it is less likely for any of the adversarial frames to match the
expected arrival time. For example, if each authentication tag is computed over
the content of the previous k frames, then each frame may eventually benefit from

Fig. 15. Advantage of genuine frames in front of adversarial frames at a security level
of 16 bits with no bus-load as recorded by the Infineon receiver (i) or CANoe trace (ii)
and with bus-load by the Infineon receiver (iii) or CANoe trace (iv)

INCANTA - INtrusion Detection in Controller Area Networks 107

Table 2. Detection rate in case of a bus with no traffic

Tolerance at
90% TNR

FNR at 90%
TNR

Tolerance at
99.9% TNR

FNR at 99.9%
TNR

16 bit (MD5) 469 0.70% 941 1.40%

16 bit (SHA256) 505 0.77% 1033 1.57%

20 bit (SHA256) 510 0.04% 981 0.09%

22 bit (SHA256) 504 0.01% 998 0.02%

Table 3. Detection rate in case of a bus with regular traffic

0-growth
point
tolerance

TNR at
0-growth

FNR at
0-growth

Tolerance
at 90%
TNR

FNR at
90% TNR

16 bit (MD5) 312 25.00% 0.4% 18289 27.00%

16 bit (SHA256) 291 26.00% 0.44% 17976 27.00%

20 bit (SHA256) 65 4.89% 0.006% 19596 1.80%

22 bit (SHA256) 121 9.16% 0.002% 19814 0.47%

a tag embedded in k distinct delays. The probability for at least a single frame
out of the k frames to yield the correct delay which matches the authentication
tag is 1−FPRk = 1−(1−TNR)k while the probability that an adversary injects
one frame with a correct delay remains 1−TPRk = 1−(1−FPR)k. Substituting
with data from the second row of Table 3 we get for k = 8 a correct classification
rate of 1−(1−0.26)8 = 91% while the false negative rate is 1−(1−0.0044)8 = 3%.
This is only a quick estimation and further experiments in this direction will be
subject of future work for us.

5 Discussion and Conclusion

Our work proves that the cyclic nature of in-vehicle communication and the
accuracy of timers on automotive-grade controllers can facilitate the creation of
an efficient time-covert authentication channel on the CAN bus.

INCANTA stays at the borderline between a conventional intrusion detection
mechanism and regular cryptographic authentication. By relying on cryptogra-
phy our detection system should be superior to conventional intrusion detec-
tion systems which can be easily fooled by messages build to satisfy intrusion
classification rules (e.g., simulating the delay of another device/frame). Since
false-negatives are still present, we do not eliminate the need for a conventional
IDS which may easily coexist with the current solution. Since the security level
that can be embedded in delays, i.e., 16–20 bits, is obviously lower than the size
of a regular cryptographic MAC, e.g., 128 bits, we cannot claim to achieve per-
fect security in a cryptographic sense. However, recently introduced standards in

108 B. Groza et al.

automotive security require only 24 bits of security [1] for authentication values
used on in-vehicle modules (this may be enough for real-time communication).
Depending on the network traffic, by cumulating authentication data over con-
secutive frames we may get closer to this limit.

Besides relying on cryptography which makes it more solid than regular intru-
sion detection systems, INCANTA has at least two merits: first it is fully back-
ward compatible and second it does not increase the bus-load which is already
at its limit on the CAN bus. Nonetheless, the solution is bus independent and
can be ported on modern buses such as CAN-FD, FlexRay or BroadRReach
without much modifications. Limitations do exist as in the case of a loaded bus
a small rate of false positives and true negatives does occur. But we hope that
this limitation can be overcome by better allocation of the rest of the traffic
from the bus. For the moment this was out-of-reach for our work and we used
a real-world trace from a vehicle bus that was not specifically designed for our
experiments. As future work we do believe that better allocation of the traffic
on the bus can lead to excellent results and we hope that our work opens road in
this direction where clever engineering can merge with cryptographic techniques
to build efficient intrusion detection by using covert timing channels on CAN or
other in-vehicle buses.

Acknowledgement. We thank the reviewers for their comments which have helped
us to improve our work. This work was supported by a grant of the Romanian National
Authority for Scientific Research and Innovation, CNCS-UEFISCDI, project num-
ber PN-II-RU-TE-2014-4-1501 (2015–2017) http://www.aut.upt.ro/∼bgroza/projects/
cseaman/.

References

1. AUTOSAR: Specification of Secure Onboard Communication, 4.3.1 edn (2017)
2. Boudguiga, A., Klaudel, W., Boulanger, A., Chiron, P.: A simple intrusion detec-

tion method for controller area network. In: 2016 IEEE International Conference
on Communications (ICC), pp. 1–7. IEEE (2016)

3. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: USENIX Security Symposium, San Francisco (2011)

4. Cho, K.-T., Shin, K. G.: Fingerprinting electronic control units for vehicle intrusion
detection. In: 25th USENIX Security Symposium (2016)

5. Choi, W., Joo, K., Jo, H.J., Park, M.C., Lee, D.H.: VoltageIDS: low-level com-
munication characteristics for automotive intrusion detection system. IEEE Trans.
Inf. Forensics Secur. 13(8), 2114–2129 (2018)

6. Cristea, M., Groza, B.: Fingerprinting smartphones remotely via ICMP times-
tamps. IEEE Commun. Lett. 17(6), 1081–1083 (2013)

7. Giannopoulos, H., Wyglinski, A.M., Chapman, J.: Securing vehicular controller
area networks: an approach to active bus-level countermeasures. IEEE Veh. Tech-
nol. Mag. 12(4), 60–68 (2017)

http://www.aut.upt.ro/~bgroza/projects/cseaman/
http://www.aut.upt.ro/~bgroza/projects/cseaman/

INCANTA - INtrusion Detection in Controller Area Networks 109

8. Groza, B., Murvay, S., van Herrewege, A., Verbauwhede, I.: LiBrA-CAN: a
lightweight broadcast authentication protocol for controller area networks. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
185–200. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-
5 15

9. Groza, B., Murvay, S.: Efficient protocols for secure broadcast in controller area
networks. IEEE Trans. Industr. Inf. 9(4), 2034–2042 (2013)

10. Hartkopp, O., Reuber, C., Schilling, R.: MaCAN-message authenticated CAN.
In: 10th International Conference on Embedded Security in Cars (ESCAR 2012)
(2012)

11. Hoppe, T., Dittman, J.: Sniffing/replay attacks on can buses: a simulated attack on
the electric window lift classified using an adapted cert taxonomy. In: Proceedings
of the 2nd Workshop on Embedded Systems Security (WESS), pp. 1–6 (2007)

12. Jain, S., Guajardo, J.: Physical layer group key agreement for automotive controller
area networks. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol.
9813, pp. 85–105. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
53140-2 5

13. Kang, M.-J., Kang, J.-W.: Intrusion detection system using deep neural network
for in-vehicle network security. PLoS One 11(6), e0155781 (2016)

14. Kang, M.-J., Kang, J.-W.: A novel intrusion detection method using deep neural
network for in-vehicle network security. In: 2016 IEEE 83rd Vehicular Technology
Conference (VTC Spring), pp. 1–5. IEEE (2016)

15. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE
Trans. Dependable Secure Comput. 2(2), 93–108 (2005)

16. Koscher, K., et al.: Experimental security analysis of a modern automobile. In:
2010 IEEE Symposium on Security and Privacy (SP), pp. 447–462. IEEE (2010)

17. Kurachi, R., Matsubara, Y., Takada, H., Adachi, N., Miyashita, Y., Horihata, S.:
CaCAN - centralized authentication system in CAN (controller area network).
In: 14th International Conference on Embedded Security in Cars (ESCAR 2014)
(2014)

18. Li, H., Zhao, L., Juliato, M., Ahmed, S., Sastry, M.R., Yang, L.L.: POSTER:
intrusion detection system for in-vehicle networks using sensor correlation and
integration. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 2531–2533. ACM (2017)

19. Lin, C.-W., Zhu, Q., Sangiovanni-Vincentelli, A.: Security-aware modeling and
efficient mapping for CAN-based real-time distributed automotive systems. IEEE
Embed. Syst. Lett. 7(1), 11–14 (2015)

20. Marchetti, M., Stabili, D., Guido, A., Colajanni, M.: Evaluation of anomaly detec-
tion for in-vehicle networks through information-theoretic algorithms. In: Research
and Technologies for Society and Industry Leveraging a better Tomorrow (RTSI),
pp. 1–6. IEEE (2016)

21. Miller, C., Valasek, C.: Adventures in automotive networks and control units. DEF
CON 21, 260–264 (2013)

22. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA (2015)

23. Moon, S.B., Skelly, P., Towsley, D.: Estimation and removal of clock skew from
network delay measurements. In: INFOCOM 1999, Eighteenth Annual Joint Con-
ference of the IEEE Computer and Communications Societies, Proceedings, vol. 1,
pp. 227–234. IEEE (1999)

https://doi.org/10.1007/978-3-642-35404-5_15
https://doi.org/10.1007/978-3-642-35404-5_15
https://doi.org/10.1007/978-3-662-53140-2_5
https://doi.org/10.1007/978-3-662-53140-2_5

110 B. Groza et al.

24. Moore, M.R., Bridges, R.A., Combs, F.L., Starr, M.S., Prowell, S.J.: Modeling
inter-signal arrival times for accurate detection of can bus signal injection attacks:
a data-driven approach to in-vehicle intrusion detection. In: Proceedings of the
12th Annual Conference on Cyber and Information Security Research, pp. 11.
ACM (2017)

25. Mueller, A., Lothspeich, T.: Plug-and-secure communication for CAN. CAN Newsl.
4, 10–14 (2015)

26. Murvay, P.-S., Groza, B.: Source identification using signal characteristics in con-
troller area networks. IEEE Signal Process. Lett. 21(4), 395–399 (2014)

27. Müter, M., Asaj, N.: Entropy-based anomaly detection for in-vehicle networks.
In: 2011 IEEE of the Intelligent Vehicles Symposium (IV), po. 1110–1115. IEEE
(2011)

28. Müter, M., Groll, A., Freiling, F.C.: A structured approach to anomaly detection
for in-vehicle networks. In: 2010 Sixth International Conference on Information
Assurance and Security (IAS), pp. 92–98. IEEE (2010)

29. Narayanan, S.N., Mittal, S., Joshi, A.: OBD SecureAlert: an anomaly detection
system for vehicles. In: 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), pp. 1–6. IEEE (2016)

30. Radu, A.-I., Garcia, F.D.: LeiA: a Lightweight authentication protocol for CAN.
In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016.
LNCS, vol. 9879, pp. 283–300. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45741-3 15

31. Sagong, S.U., Ying, X., Clark, A., Bushnell, L., Poovendran, R.: Cloaking the
clock: emulating clock skew in controller area networks. In: Proceedings of the
9th ACM/IEEE International Conference on Cyber-Physical Systems, pp. 32–42.
IEEE Press (2018)

32. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the anal-
ysis of time intervals of can messages for in-vehicle network. In: 2016 International
Conference on Information Networking (ICOIN), pp. 63–68. IEEE (2016)

33. Studnia, I., Alata, E., Nicomette, V., Kaâniche, M., Laarouchi, Y.: A language-
based intrusion detection approach for automotive embedded networks. Int. J.
Embed. Syst. 10(1), 1–12 (2018)

34. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control
network data with long short-term memory networks. In: 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pp. 130–139. IEEE
(2016)

35. Theissler, A.: Detecting known and unknown faults in automotive systems using
ensemble-based anomaly detection. Knowl.-Based Syst. 123, 163–173 (2017)

36. Tian, D., et al.: An intrusion detection system based on machine learning for CAN-
Bus. In: Chen, Y., Duong, T.Q. (eds.) INISCOM 2017. LNICST, vol. 221, pp.
285–294. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74176-5 25

37. Van Herrewege, A., Singelee, D., Verbauwhede, I.: CANAuth-a simple, backward
compatible broadcast authentication protocol for CAN bus. In: ECRYPT Work-
shop on Lightweight Cryptography, vol. 2011 (2011)

https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-45741-3_15
https://doi.org/10.1007/978-3-319-74176-5_25

Detection of Injection Attacks
in Compressed CAN Traffic Logs

András Gazdag1(B), Dóra Neubrandt1, Levente Buttyán1, and Zsolt Szalay2

1 Laboratory of Cryptography and System Security,
Department of Networked Systems and Services,

Budapest University of Technology and Economics, Budapest, Hungary
{agazdag,dneubrandt,buttyan}@crysys.hu
2 Department of Automotive Technologies,

Faculty of Transportation Engineering and Vehicle Engineering,
Budapest University of Technology and Economics, Budapest, Hungary

zsolt.szalay@gjt.bme.hu

Abstract. Prior research has demonstrated that modern cars are vul-
nerable to cyber attacks. As such attacks may cause physical accidents,
forensic investigations must be extended into the cyber domain. In order
to support this, CAN traffic in vehicles must be logged continuously,
stored efficiently, and analyzed later to detect signs of cyber attacks.
Efficient storage of CAN logs requires compressing them. Usually, this
compressed logs must be decompressed for analysis purposes, leading
to waste of time due to the decompression operation itself and most
importantly due to the fact that the analysis must be carried out on a
much larger amount of decompressed data. In this paper, we propose an
anomaly detection method that works on the compressed CAN log itself.
For compression, we use a lossless semantic compression algorithm that
we proposed earlier. This compression algorithm achieves a higher com-
pression ratio than traditional syntactic compression methods do such as
gzip. Besides this advantage, in this paper, we show that it also supports
the detection of injection attacks without decompression. Moreover, with
this approach we can detect attacks with low injection frequency that
were not detected reliably in previous works.

Keywords: CAN · Anomaly detection · CAN traffic compression

1 Introduction

These days vehicles can be the target of various cyber attacks. In a modern auto-
mobile, there are numerous ECUs (Electronic Control Units) which are respon-
sible for different functionalities. These ECUs are connected together with the
Control Area Network (CAN) bus and they communicate with each other using
the CAN protocol. There are several external interfaces which can be used to gain
access to this inner network of the vehicle such as wireless interfaces (Bluetooth,
WiFi, wireless TPMS) and the on-board diagnostic port (OBD). The design
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 111–124, 2019.
https://doi.org/10.1007/978-3-030-16874-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_8&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_8

112 A. Gazdag et al.

of the inner network and its protocol and interfaces makes the CAN vulnera-
ble against several attacks. We will elaborate more on these attacks in Sect. 3.
While in the past, such attacks were considered low risk and not a real concern,
recently, researches have demonstrated [1–3] that they are not so difficult to
carry out and, hence, the risk is indeed considerable.

Cyber attacks on vehicles can cause physical accidents. This means that
when an accident happens, forensic analysis must be extended into the cyber
domain, and investigators must analyze whether the accident was caused or
made possible by a cyber attack. Imagine, for example, that a compromised ECU
provides false data and as a consequence, misleading information is displayed to
the driver on the dashboard, or the airbag is disabled silently before a crash,
or some autonomous driving function is enabled and the driver loses control
over the vehicle. All these can either lead to an accident or increase its fatality.
As the cyber attack on the vehicle may occur well before the accident that it
causes, forensic analysis can be successful only if detailed logs are recorded for
an extended period of time, not just for a few seconds before the accident1.

In our view, in the future, especially with the increased penetration of
autonomous vehicles, it will be indispensable to continuously record CAN traffic
in vehicles and efficiently store these logs for later forensic analysis. Efficient stor-
age of CAN logs requires compressing them. Compression not only saves storage
space, but it also makes it easier to off-load logs from the vehicle. Usually, the
compressed log must be decompressed for analysis purposes, and the analysis is
carried out on large amount of decompressed data. This increases the inefficiency
of the analysis itself. In this paper, we study the problem of detecting anoma-
lies that may indicate cyber attacks on the compressed CAN traffic log, hence
making analysis faster by not requiring decompression and most importantly by
reducing the amount of data on which the analysis must be performed.

Anomaly detection cannot be performed on any kind of compressed CAN log,
but the compression method must support the analysis of the compressed data.
Hence, for compression, we use a lossless semantic compression algorithm that
we proposed earlier [4]. This compression algorithm achieves a higher compres-
sion ratio than traditional syntactic compression methods such as gzip. Besides
this advantage, in this paper, we show that it also supports the detection of cer-
tain types of attacks in the CAN log without decompression. More specifically,
we can easily detect flooding attacks, where the attacker (e.g., a compromised
ECU) injects a given type of periodic CAN message with a smaller repetition
time (higher frequency) than its normal repetition time. Most of the attacks
demonstrated in prior work were of this kind [1–3]. The increased frequency of
injected false messages usually results in “overriding” the information carried in
the legitimate messages. We show that such an attack causes a well-identifiable
anomaly pattern in the compressed log even when the frequency of the fake
messages is just slightly larger than the normal frequency.

The remainder of the paper is organized as follows: In Sect. 2, we give an
overview on the existing anomaly detection works on CAN traffic. In Sect. 3,

1 https://www.nhtsa.gov/research-data/event-data-recorder.

https://www.nhtsa.gov/research-data/event-data-recorder

Detection of Injection Attacks in Compressed CAN Traffic Logs 113

we describe how the CAN protocol and the CAN compression algorithm we
use work. In Sect. 4, we discuss the attack scenario and the possible attacks
against the CAN protocol that we and recent works take into consideration. We
present our anomaly detection approach and its evaluation in Sect. 5. Finally,
we conclude in Sect. 6.

2 Related Work

Anomaly detection on the CAN bus has been an actively researched field recently.
Multiple approaches have been proposed varying in the interpretation of the
CAN traffic. If the interpretation of the CAN messages are accessible it is possible
to collect the actual vehicle parameters. Approaches using this knowledge usually
perform anomaly detection on this high level data. The researches not using
a CAN matrix are mainly focused on the communications properties such as
repetition times of the messages.

Taylor et al. proposed a method from the first approach in [8]. They inter-
preted the CAN massages to build a current state of the vehicle. Then with
a Long Short-Term Memory Network (LSTM) predicted the next state of the
car. If the actual state, based on the following messages, is diverging from the
predicted state they detect it as an anomaly.

Narayanan et al. proposed a hidden Markov models based approach to
anomaly detection [11]. They used the OBD port available in every modern
car to access the CAN bus. Packets captured through this interface are inter-
preted then and used to build the Markov model. They also understand states
of the vehicle and define the possible state transitions. If an unexpected state
transition is detected that means an anomaly in their model.

In [10] Marchetti et al. showed that anomaly detection can be efficiently
performed based on CAN ID sequences. From the CAN traffic they only use
the ID field of the messages. They build a transition matrix to understand the
connection between messages. If during normal traffic an ID follows another
then this transition is marked as normal in the matrix. Their anomaly detection
method analyzes whether a not allowed transition appears in the traffic.

In another paper Taylor et al. [5] presented an anomaly detection approach
that is based on repetition times of the messages on the CAN bus. They first
splitted the traffic into flows. For every flow various measures are calculated such
as the number of packets in the flow, the average Hamming distance between
successive packet data fields and the average time difference between successive
packets. During their analysis they show that the only reliable parameter for
anomaly detection is the average time difference between successive packets.
They use a one-class support vector machine (OCSVM) to classify the benign
traffic and to detect anomalies. They measure the efficiency of their work only
on syntactically generated traffic.

Although anomaly detection on compressed traffic has several advantages,
this idea was not researched so far. We aim to close this gap by analyzing normal
and attacked compressed CAN traffic to determine what kind of anomalies could
be detected with this approach.

114 A. Gazdag et al.

3 Technical Background

3.1 CAN Protocol

In modern cars the ECUs are controlling several processes. They measure their
surroundings and according to the available information they perform opera-
tions. They are connected together with the CAN bus and communicate by its
protocol, the CAN protocol, which uses CAN messages. In the protocol there
is no authentication, and broadcast is used, so every ECU gets every message
and selects which interests it. That is, all traffic is visible to everyone and any
controller can send any type of message. The above mentioned attributes make
the CAN vulnerable against several attacks. For example an attacker can easily
send arbitrary messages once he gained access to the inner network.

A CAN message has the following format. Every message has an ID which
can be 11 or 29 bits long. The meaning and the range of the IDs are manufacturer
specific. The lower the value of the identifier field the more prior is the message.
After the ID comes the data length field then comes the data.

1481492674.734327 0x260 8 00 00 00 00 00 00 00 6a

1481492674.736055 0x2c4 8 05 c8 00 0f 00 00 92 3c

1481492674.738092 0x2c1 8 08 03 35 01 6a d9 00 4f

1481492674.754306 0x260 8 00 00 00 00 00 00 00 6a

1481492674.759605 0x2c4 8 05 c8 00 0f 00 00 92 3c

1481492674.769823 0x2c1 8 08 03 39 01 70 d9 00 59

1481492674.774302 0x260 8 00 00 00 00 00 00 00 6a

1481492674.783129 0x2c4 8 05 c2 00 0f 00 00 92 36

1481492674.794246 0x260 8 00 00 00 00 00 00 00 6a

1481492674.801541 0x2c1 8 08 03 3b 01 74 d9 00 5f

Example 1.1. Simplified CAN traffic log

In Example 1.1 a CAN traffic log is shown. Each row corresponds to a mes-
sage. The first column is the arrival time of the message (Unix time), the second
column is the message ID, in the third column there are specific flags (which in
our captured data are not used), the fourth column shows the length of the data
in the message, and the last column is the data.

3.2 CAN Compression Algorithm

We used a recently published semantic compression algorithm [4] made specifi-
cally for CAN traffic compression. It achieves a good compression ratio on CAN
traffic, exceeding other state of the art syntactic compression algorithms, such
as gzip. It is a lossless compression method which is a necessary requirement for
being able to use it in forensic investigations after an incident.

Detection of Injection Attacks in Compressed CAN Traffic Logs 115

0x260

start_time:1481492674.734327

period:19984

00 00 00 00 00 00 00 6a: 0#0,1#-5,1#12,1#-40,

1#-3,1#105,1#-87,

1#-16

0x2c4

start_time:1481492674736055

period:23540

05 c8 00 0f 00 00 92 3c: 0#0,1#10

05 c2 00 0f 00 00 92 36: 1#-16, 1#20

05 c5 00 0f 00 00 92 39: 1#111

05 c8 00 0f 00 00 92 3c: 1#-113, 1#-22

0x2c1

start_time:1481492674738092

period:31728

08 03 35 01 6a d9 00 4f: 0#0

08 03 39 01 70 d9 00 59: 1#3

08 03 3b 01 74 d9 00 5f: 1#440, 1#14

08 03 38 01 72 d9 00 5a: 1#-5

Example 1.2. Compressed CAN traffic log

The compression algorithm works as follows.

1. First, it separates the messages according to their message ID-s.
2. For each message ID, it records the time of the first message in the recorded

traffic. (See ‘start time’ in Example 1.2.)
3. It calculates the average time between messages with the same ID-s.
4. For a given ID, it sorts the messages into groups according to their data, so

messages with the same data go into the same group.
5. Store the number of elapsed periods and the difference between the period

based and the actual time stamp.

It is unnecessary to store the time for each message in every group, because
the periodic nature of the bus arbitration can be exploited. Thus, it is enough to
store how many periods elapsed since the previous message (in the group) and
the difference from it in microseconds. For example 1#440 means that, after the
previous message 1 period and 440µs elapsed.

4 CAN Attacks

An attacker could try to interfere with the normal operation of the CAN bus
in multiple ways depending on the malicious intent. It is possible to achieve an
anomaly with just a few messages but in most cases to make an attack reliable a

116 A. Gazdag et al.

large number of messages are necessary. In the following paragraphs we describe
the various possibilities of an attacker organized by the number of messages
required. In the second part of this section we describe how we recorded infected
CAN logs for this research.

4.1 Taxonomy of CAN Attacks

DOS Against the CAN Bus: In this scenario the goal of the attacker is to
completely disable the communication on the CAN bus. This can be achieved
at least with two extreme approaches.

An attacker could disturb the transmission of every CAN packet by starting
its own dummy transmission in the middle of every other packet. This way an
error will occur during the reception of every packet. This attack does not need
a full packet to be sent by the attacker just a few bits with the correct timing.

Similar effect can be achieved with the transmission of packets with the ID
0. The ID field of the CAN packet is also determines the priority of the message.
The value of the ID decides which packet can be transmitted in case of multiple
colliding packets. The smaller the ID of a packet is the higher its priority is. If
an attacker sends continuously packets with the ID 0 then there won’t be any
resource left for the normal traffic.

Both of these attacks are operation critical for a vehicle. A complete DOS
against the CAN bus isolates the ECUs from each other disabling most of their
operations. These scenarios are trivial to detect but very difficult to handle.

Messages with New IDs: It is common in car manufacturing that the same
hardware parts are used in various car models. This practice makes it possi-
ble for an attacker to try to trigger functionality in a car that would not be
used otherwise. On the CAN level this means that messages could appear with
previously unseen IDs.

Some attacks are realized with the usage of debug packets [1]. These scenarios
also introduce packets with new IDs on the bus.

If all benign IDs are known in advance, identifying these attacks is simple.
Messages with IDs not seen before can effectively be found with basic white-
listing or simple anomaly detection.

Irregular Messages with Known IDs: Some CAN messages are only trans-
mitted as a response to certain events. These messages are encountered rarely
because they are responses to environmental changes and are not part of the
regular operation of a vehicle. An attacker could inject any of these messages at
random times to force an inconsistency in the operation.

Without an external source of information the only way to detect these mes-
sages is to correlate information from other packets. This is a challenging task
in most cases if even possible.

Detection of Injection Attacks in Compressed CAN Traffic Logs 117

Messages with Regular Repetition Times: To interfere with the normal
operation of a vehicle the regular communication of the ECUs should be altered.
It is hard to remove a messages from the CAN bus (if en error occurs during
transmission usually a re-transmission logic is triggered at the sender) thus the
best possible option for an attacker is to send malicious packets additionally. A
packet with fake content could force the vehicle into a compromised state until
the next packet with correct content arrives. Most attacks require to keep the
vehicle in a compromised state for the majority of the time. This means that
the attacker is required to send a lot of malicious packets to minimize the effect
of the original benign traffic.

Based on the goal of the attacker the frequency of the malicious packets could
be anything between 1x and 10x of the original traffic. Our measurements and
previous research [1] results also showed that a malicious traffic with ∼10x the
frequency of the original traffic forces the vehicle to stay in a compromised state
almost constantly.

4.2 Realized Attacks

We used a test vehicle to demonstrate some of the attacks described previously.
It allowed us to test our anomaly detection approach in a real life scenario as
well.

Speed Indicator Modification: In this attack we were able to change the
displayed speed of the vehicle. We achieved that even when the car was standing
still without the engine running.

We performed this test with different attack frequencies. In the first attempt
the frequency of the forged packets was the same as the original one effectively
doubling the number of packets with the given ID. This caused the speed indica-
tor to oscillate between the real speed (0 km/h) and the forged speed (30 km/h)
(Fig. 1).

In our second attempt we increased the frequency of the malicious packets
to 10x the frequency of the normal traffic. This created a stable attack where
the indicator showed continuously the speed defined by our attack (Fig. 2).

Transmission Dashboard Modification: We also attacked the transmission
signal for the dashboard (Fig. 3). The engine was still not running but we were
able to force the display to show that the vehicle was in gear 1.

To achieve this goal we used a packet observed during previous test drives.
The malicious packet injection frequency was also 10x of the original rate. As a
side-effect we also modified the fuel level indicator and some control lights from
the engine. In the original state the fuel level was low whereas during the attack
it showed that the tank is half full (Fig. 4). This indicates that the fuel level and
some of the control signals are transmitted in the same packet as the current
gear.

118 A. Gazdag et al.

Fig. 1. Speed indicator attack with 1x frequency caused oscillation of the indicator
needle.

Fig. 2. Speed indicator attack with 10x frequency. The indicator shows 28 km/h while
the real speed was 0 km/h.

Fig. 3. Original state of the transmission display.

Detection of Injection Attacks in Compressed CAN Traffic Logs 119

Fig. 4. Attack on the transmission display. The engine was not running but the indica-
tor showed gear 1. The control lights were switched off and the fuel level was increased.

5 Anomaly Detection

5.1 Data Sets

During the research we created two data sets. First, we created a synthetic data
set where the attacks were manually injected into a clean CAN traffic log. Then
we also performed some attacks against a real vehicle that gave us real life
infected traffic logs.

Synthetic Data Set: We have captured a few hours of benign traffic from a mid
class vehicle. With reverse engineering we found the signal used to display the
RPM of the engine on the dashboard. We used this signal during our attacks to
simulate an attack where false information is displayed to the driver. The RPM
value is sent by an ECU in a message with the ID 110. Normally this message is
send in every 10 ms. This attack belongs to the “Messages with regular repetition
times” category described in Sect. 4.

We created a packet with a malicious content to insert into the traffic. The
packet contained a higher RPM value than found in normal traffic.

We generated the malicious traffic with multiple steps. First we splitted the
normal traffic into smaller chunks. Each chunk contained approximately 1 min
of traffic. As a base rule we decided that every attack should be at least 5 s long
because a shorter attack on the dashboard would probably not disturb the driver
thus it would not achieve any goal. We also generated longer attacks. For each
attack scenario we increased the attack length with 5 s. This resulted in attacks
with random length in these intervals: 5–10; 10–15; 15–20; 20–25 and 25–30 s.

For every attack scenario we generated 100 malicious samples. They were
each tested in our algorithm together with 100 benign samples.

We generated the malicious traffic simulating the normal operation of the
CAN bus (including the bus arbitration). First, we generated 10000 of the mali-

120 A. Gazdag et al.

cious packets. The time stamp of the first packet was randomly chosen from the
first half of the benign sample, the rest of the time stamps were calculated based
on the chosen attack frequency. Then, we merged the benign and the malicious
packets according to the time stamps. If two messages overlapped than the one
with the higher time stamp was shifted after the other. If there was enough
time until the next message then the shifted message was simply inserted. Oth-
erwise the same logic was repeated again to resolve further conflicts in the time
stamps. Generally, the bus load was relatively low in our test vehicle resulting a
low number of those conflicts.

Once we had the 100 malicious and 100 benign samples for every scenario
we compressed all of the logs with the chosen compression algorithm.

Furthermore we examined how the detectability of such an attack changes
with the modification of the message injection frequency. We generated attacks
where the injection frequency was 10 times, 5 times and 2 times higher than
the original frequency of the given ID. We considered the 10 times higher fre-
quency the default frequency for a flooding attack as our real life tests and other
researchers also demonstrated it is an adequate frequency for an attack to have
a stable effect.

In our captured traffic there are 18 different IDs. There are IDs with regular
(14) and irregular (4) repetition times. We only focused on the regular IDs.

Real Life Data Set: We implemented CAN attacks on a vehicle with real
impact. We targeted both the speed and the transmission indicator. For the
speed indicator we used 3 different attack frequencies: ∼10 times higher, 2 times
higher and the exact same frequency as the original messages have. For the
transmission indicator we also used a frequency 10 times of the original. We also
collected benign traffic from the vehicle to compare it to the malicious logs.

5.2 Our Anomaly Detection Algorithm

Our detection algorithm has the goal to decide whether a given message in the
compressed CAN traffic log belongs to an attack or not. To address this, first we
split the compressed log into separate ID files, where each file contains messages
of a given ID. These files are analyzed separately.

We calculated different features of the malicious and benign logs to find the
ones that distinguish them the most efficiently. Although, the changes of the
repetition times had a significant impact on the structure of the compressed
traffic log, the simplest and most powerful feature turned out to be the number
of messages during a constant time window.

Number of Messages per Minute: In a time window of 1 min we count the
number of messages for each ID. Thus we get a feature for each ID: the number
of messages in a minute. This will be different in a normal and an attacked
traffic log. This approach is also intuitive. If we inject additional messages of an

Detection of Injection Attacks in Compressed CAN Traffic Logs 121

ID that has an approximately constant message rate per minute, the increase in
the message rate per minute will indicate an attack.

This feature proved to be reliable for attacks both with higher and lower
frequencies.

Attack Detection: Based on the previously suggested feature, attacks can be
detected efficiently. As can be seen in Sect. 5.3, this approach separates malicious
traffic logs from benign logs even visually making the decision easy.

5.3 Results

We evaluated our method on both synthetic and real life data with different
attack frequencies.

On synthetic data we used the above mentioned 100-100 normal and attacked
samples for attacks with different frequency. The histogram of the distribution
of the attacks can be seen in Figs. 5 and 6. They demonstrate that the attacked
traffic is efficiently distinguishable from the normal traffic even when the attack
frequency is as low as 2 times of the original.

Fig. 5. The deviation of the number of messages per minute feature for 100 - 100
samples at 10x frequency (synthetic attack).

On the data from the real world attacks we performed the same calculations.
Figs. 7 and 8 show that our algorithm achieves the same reliable results in the
real life scenarios as well.

122 A. Gazdag et al.

Fig. 6. The deviation of the number of messages per minute feature for 100 - 100
samples at 2x frequency (synthetic attack).

Fig. 7. Real attacks on the speed indicator. Comparison of the number of messages in
normal and attacked scenarios.

These results show that with this approach it is possible to achieve correct
classification in every case. For the stable attacks, where a high message fre-
quency is used, the proposed method produces a reliable result with 0 false
positive and false negative rates. As the message injection rate decreases the
confidentiality is also reduced but even for attacks with 1x injection frequency
it remains high enough for a correct decision.

Detection of Injection Attacks in Compressed CAN Traffic Logs 123

Fig. 8. Real attacks on the transmission indicator. Comparison of the number of mes-
sages in normal and attacked scenarios.

6 Conclusion

In this paper, we argued that cyber attacks on vehicles may cause physical acci-
dents, therefore, forensic investigations must be extended into the cyber domain.
In order to support this, CAN traffic in vehicles must be logged continuously
and stored efficiently for later analysis. Our main contribution in this paper
was a novel anomaly detection method that works on compressed CAN traffic
logs. The advantage of running anomaly detection on the compressed logs is
that less amount of data needs to be analyzed, hence, the efficiency of forensic
investigations can be increased.

Our anomaly detection algorithm is based on analyzing the average frequen-
cies of messages with given CAN IDs. The compression algorithm that we use
preserves the number of messages per unit time in an easily extractable form in
the compressed CAN log, which makes it possible to use our anomaly detection
algorithm on the compressed logs. We demonstrated that this approach works
reliably in a range of scenarios, including using data sets captured in real vehicles
and modified with synthetically generated attacks as well as data sets captured
in real vehicles under real attacks. Our algorithm was capable to identify attacks
is both cases.

Observing the average frequencies of messages with given CAN IDs may
appear to be a simplistic approach for anomaly detection; nevertheless, it works
reliably for detecting injection attacks. In addition, many prior works suggested
that injection attacks are easy to carry out and they have noticeable effects,
hence, this type of attack is one of the most important attacks to consider.
Whether our method of analyzing the compressed logs can be adapted to other
types of attacks, where message frequencies are not changed, is an open question
and subject of our future work.

124 A. Gazdag et al.

Acknowledgement. The work presented in this paper was partially supported from
the grant GINOP-2.1.1-15. The project has been supported by the European Union,
co-financed by the European Social Fund. EFOP-3.6.2-16-2017-00002.

References

1. Miller, C., Valasek, C.: Adventures in automotive networks and control units. Tech-
nical report, IOActive Labs Research, August 2013

2. Koscher, K., et al.: Experimental security analysis of a modern automobile, pp.
447–462 (2010)

3. Checkoway, S., et al.: Comprehensive experimental analyses of automotive attack
surfaces. In: Proceedings of the 20th USENIX Conference on Security, SEC 2011.
USENIX Association, Berkeley (2011)

4. Gazdag, A., Buttyan, L., Szalay, Z.: Efficient lossless compression of CAN traffic
logs. In: 2017 25th International Conference on Software, Telecommunications and
Computer Networks (SoftCOM), Split (2017)

5. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the
automotive CAN bus. In: World Congress on Industrial Control Systems Security
(WCICSS), London, pp. 45–49 (2015)

6. Song, H.M., Kim, H.R., Kim, H.K.: Intrusion detection system based on the anal-
ysis of time intervals of CAN messages for in-vehicle network. In: 2016 Interna-
tional Conference on Information Networking (ICOIN), Kota Kinabalu, pp. 63–68
(2016)

7. Miller, C., Valasek, C.: Remote exploitation of an unaltered passenger vehicle.
Black Hat USA (2015)

8. Taylor, A., Leblanc, S., Japkowicz, N.: Anomaly detection in automobile control
network data with long short-term memory networks. In: 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), Montreal, QC, pp.
130–139 (2016)

9. Evenchick, E.: Hopping On the CAN Bus. Black Hat Asia (2015)
10. Marchetti, M., Stabili, D.: Anomaly detection of CAN bus messages through anal-

ysis of ID sequences. In: IEEE Intelligent Vehicles Symposium (IV), Los Angeles,
CA, pp. 1577–1583 (2017)

11. Narayanan, S.N., Mittal, S., Joshi, A.: OBD SecureAlert: an anomaly detection
system for vehicles. In: 2016 IEEE International Conference on Smart Computing
(SMARTCOMP), St. Louis, MO (2016)

Key is in the Air: Hacking Remote
Keyless Entry Systems

Omar Adel Ibrahim1(B), Ahmed Mohamed Hussain2(B),
Gabriele Oligeri1(B), and Roberto Di Pietro1(B)

1 Division of Information and Computing Technology,
College of Science and Engineering,

Hamad Bin Khalifa University, Doha, Qatar
oaibrahim@mail.hbku.edu.qa, {goligeri,rdipietro}@hbku.edu.qa

2 Electrical Engineering Department, College of Engineering,
Qatar University, Doha, Qatar
ahmed.hussain@qu.edu.qa

Abstract. A Remote Keyless Systems (RKS) is an electronic lock that
controls access to a building or vehicle without using a traditional
mechanical key. Although RKS have become more and more robust over
time, in this paper we show that specifically designed attack strategies
are still effective against them. In particular, we show how RKS can be
exploited to efficiently hijack cars’ locks.

Our new attack strategy—inspired to a previously introduced strat-
egy named jam-listen-replay—only requires a jammer and a signal logger.
We prove the effectiveness of our attack against six different car models.
The attack is successful in all of the tested cases, and for a wide range of
system parameters. We further compare our solution against state of the
art attacks, showing that the discovered vulnerabilities enhance over past
attacks, and conclude that RKS solutions cannot be considered secure,
calling for further research on the topic.

1 Introduction

Remote Keyless Systems (RKS) are a critical component of modern car security.
Such systems allow the user to lock/unlock the car without resorting to any
mechanical key but only by clicking a button on the car’s fob or even by get-
ting close to the car itself. RKS mainly implements a request-response protocol
between the fob and the car’s radio transceiver with minimal security protec-
tion [3]. During the years, several security flaws have been identified and RKS
evolved mitigating such attacks. An interesting example is the so-called rolling
codes that prevent an eavesdropper to reuse a code sequence from the past. At
each transmission, a new code is generated invalidating the old one by resort-
ing to hash function computations. Unfortunately, rolling codes do not protect
against either proxy attacks or jam-listen-replay attacks [11]. The first class of
attacks involve to proxy the code sequence from a further distance to the car
without the user consent. This is a classical attack that is played as follows: a
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 125–132, 2019.
https://doi.org/10.1007/978-3-030-16874-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_9

126 O. A. Ibrahim et al.

user, leaving the fob unattended, allows an adversary to activate the fob (without
stealing it, just pressing the button) and to proxy the fob emitted code sequence
to the car leveraging another radio technology such as WiFi, Bluetooth or either
GSM. Proxy attacks can be mitigated using distance bounding and proximity
solutions [12]. Nevertheless, jam-listen-replay attacks are still an open issue due
to the difficulty of mitigating jamming attacks. Indeed, the adversary prevents
the reception of the code sequence by jamming the car radio transceiver, and at
the same time, he logs it for the future hijacking of the car.
Contribution. This paper pushes further the analysis of the jam-listen-replay
attack proposed in [11]. We propose an improved attack scenario by exploiting
cheap hardware and commonly available Linux tools. We show the results of a
real measurement campaign highlighting the effectiveness of the proposed attacks
and comparing it against the ones introduced by [11]. We observe how, given the
current state of the art, these types of attacks cannot be solved without resorting
to novel authentication mechanisms, hence justifying further research efforts by
both industry an academia on this topic.
Roadmap. Next section reviews the current state of the art as for RKS security.
Section 3 details the attack scenario; Sect. 4 introduces the adopted equipment
and its configuration, while Sect. 5 reports on our measurement campaign and
discuss the differences of our attack with respect to the state-of-the-art. Finally,
some concluding remarks are presented in Sect. 6.

2 Related Work

A major family of attacks exploits jamming and two subsequent phases: prevent-
ing the delivery of the message to the car (by jamming) and recording the trans-
mitted message for the subsequent re-transmission. An early contribution has
been provided by [11]. Authors firstly propose an efficient brute-force technique
for hacking garage doors remote controllers. Secondly, they introduce RollJam, a
combined jamming and radio-recording technique enabling the adversary to hack
the communications between the car and its associated fob. RollJam involves
very cheap devices such as Teensy 3.1 and two CC1101 transceivers. RollJam
works by preventing one or more messages to be delivered to the car from the
fob while recording them. Eventually, RollJam allows the user to get in the car
but a sequence of valid messages have been stolen and they can be reused later
on for opening the car.

Van de Beek et al. in [5] and subsequently in [4], revised the jamming-
based attack considering pulse electromagnetic interference despite of contin-
uous interference. They analyzed the effects of pulsed interference on envelope
detectors through both simulations and measurements. They also suggested an
improved receiver design based on synchronous transmitter-receiver communi-
cations, which turn out to be more robust against pulsed interference.

Francillon et al. in [10] demonstrated the relay attack on Passive Key-less
Entry Systems (PKES) used in modern cars. They set up two low-cost and
powerful attack scenarios, using wireless and wired physical layer relays enabling

Key is in the Air: Hacking Remote Keyless Entry Systems 127

the adversary to open the car and start the engine by relaying the messages
between the key and the car.

A general overview describing several techniques of potential attacks against
passive entry systems is introduced in [3]. Authors proposed a solution to protect
the vehicle from such attacks by exploiting the difference in power levels of the
received bits.

3 Scenario

Our attack scenario involves three entities: the car, the car’s owner (user) and
the adversary who wants to steal the user’s car. The adversary implements his
strategy in 3 subsequent steps as depicted in Fig. 1: (i) set-up, (ii) jamming and
recording, and (iii) hijacking.

Fig. 1. The attack is performed in a sequence of 3 steps: (a) Set-up the jammer and
activation, (b) Jamming the communication between the user and the car and forc-
ing the user to use the mechanical key, and finally (c) when the user leaves the car
unattended, the adversary hijacks the car.

Set-Up. This is a preliminary phase that is performed by the adversary when
the car is left unattended by the user. Indeed, the adversary has to install a
jammer on the car. As it will be clear in the following, the jammer is a very
portable device mainly constituted by a Raspberry Pi v3 (RPiv3) connected to
a HackRF One, a very cheap and ready to be deployed Software Defined Radio
(SDR). The overall equipment can be hidden in several places outside of the car,
e.g., by using a magnet under the car platform.
Jamming and Recording. The equipment should be activated after its instal-
lation and it will prevent the communication between the fob and the car by
jamming a specific frequency. Since the user will not be able to open the car by
using the fob, after several attempts, he will resort to the mechanical key. Con-
versely, the adversary will record one or more code sequences transmitted by the
fob (and never received by the car) by eavesdropping the fob-car communication
channel.
Hijacking. The car’s owner will eventually drive the car away and close it
still using the mechanical key. We recall that a jammer is installed on the car
preventing the fob to control the lock mechanism of the car. Subsequently, the
adversary will perform his attack by replaying one of the previously recorded
code sequences, and allow him to hijack the car.

128 O. A. Ibrahim et al.

The only unknown parameter to the previous procedure is the communication
frequency adopted by the car brand. The adversary can easily discriminate it
by running a discovering session sensing fractions of the radio spectrum. Our
experiments show that the majority of the cars we used adopts a frequency
band close to 433 MHz.

4 Equipment: Hardware, Software and Set-Up
Configuration

Our system consists of 2 components: the Jammer and the code sequence Log-
ger.

4.1 Jammer

We implemented a mobile jammer by connecting a Raspberry Pi v3 to a HackRF
One and a power bank as depicted in Fig. 2.
HackRF One: HackRF One is an open source, half-duplex Software Defined
Radio device developed by Great Scott Gadgets and has the capability to receive
or transmit radio signals starting from 1 MHz to 6 GHz.
ANT500 Antenna: ANT500 is a general purpose, telescopic antenna developed
by Great Scott Gadgets and is designed to operate in the range from 75 MHz up
to 1 GHz. Its length is configurable starting from 20 cm up to 88 cm.
Raspberry Pi v3: We installed GNU Radio on the RPiv3 and exploited the
Python SDK to control the Hack RF One. The result is a script to transmit
white Gaussian noise on a target frequency.
Power-bank: We adopted a generic power bank of 5000 mA guaranteeing a long
lasting life to our system (about half a day).

Fig. 2. The Jammer: An RPiv3 controls the HackRF One transmitting white Gaussian
noise at the frequency of 434MHz. The power bank guarantees half a day of jamming
activity.

We exploited the embedded WiFi in the RPiv3 to access it through SSH,
changing the various jamming parameters and switching it on and off. We observe

Key is in the Air: Hacking Remote Keyless Entry Systems 129

that the jamming frequency (433 MHz) is far away from that one used by the
WiFi (2.4 GHz), and therefore, the jammer can be remotely controlled. We set
all the gains for the HackRF One platform to 40 dB, i.e., radio band (RF),
intermediate band (IF) and base band (BB) gain. Finally, we set the sampling
rate (sps) to 2M as an empirical trade-off to jam the fob-car communication
without disturbing any other communications in the neighborhood.

4.2 Logger

The logger is mainly constituted by a mobile platform able to log the code
sequence transmitted by the fob to the car. We adopted the following set-up:
Laptop: We configured a laptop with a Linux Ubuntu distribution and GNU
Radio Companion.
HackRF One and ANT500 Antenna: A HackRF One has been connected to
the above laptop to record all the code signals transmitted in the neighborhood.

Figure 3 resumes our logger setup and the main connections.

Fig. 3. The Logger: a laptop equipped with Ubuntu and GNURadio Companion is
used to receive and log the code sequence transmitted by the fob.

We considered the following configuration for the SDR: frequency 434 MHz,
sampling rate 2M (sps), RF Gain 10 dB, IF Gain 20 dB, and BB Gain 20 dB. We
observe that the gains figures adopted by the logger are significantly different
from that one used by the jammer. Indeed, the logger has to mitigate the noise
power from the jammer in order to decode the code sequence transmitted by
the fob. The above values are the result of several trials and they take also into
account the relative distances between the jammer, the fob and the logger.

5 Measurement Results

We performed several measurements in the parking of our university (College of
Science and Engineering - Hamad Bin Khalifa University, Doha, Qatar) during
the week-end when the parking was empty, not to interfere with other users. The
first step of our attack consists in identifying the communication frequency used

130 O. A. Ibrahim et al.

by the fob-car communication link. Although different car brands might use dif-
ferent frequencies, there are mainly two different frequencies adopted world-wide
[2]: 315 MHz for North America for 433.92 MHz for Europe and Asia. Therefore,
an adversary can easily detect which frequency band is used in a couple of con-
secutive trials. Other unknown parameters such as the modulation scheme (ASK,
FSK, PSK) can be easily detected as well by using simple Linux tools such as
gqrx [1].

We tested the attack on six different cars: Škoda Yeti (2016), Škoda Octavia
(2009), Mazda 6 (2009), Toyota Rav4 (2014), Mitsubishi Pajero (2015) and Nis-
san Sunny (2014). Another minor challenge introduced by our attack is to find
the most effective position for the jammer in the car. Of course, the best position
is close to the car signal receiver, which unfortunately is unknown to the adver-
sary. We tried several positions all around the target car taking into account that
the jammer should remain hidden to the user and an optimal position turned
out to be in the back of the car (for all the car models).

Our measurement scenario is constituted by the target car, the user with the
fob and the logger displaced as in Fig. 4.

Fig. 4. Measurement scenario: the distance between the car and the user is dCF while
the distance between the user and the logger is dFR.

5.1 Results and Discussion

We considered 6 different displacements, i.e., dCF ∈ {5, 10} and dFL ∈
{1, 2, 3, 4}, while each configuration has been run 20 times as depicted in Table 1.
Firstly, we observe that the chances of the attack being successful get reduced
when the distance between the logger and the fob (dFL) increases. Moreover, we
highlight that the presence of the jammer itself partially prevents the logger to
eavesdrop the code sequence. Indeed, this is proved by the fact that when the
distance between the jammer/car and the fob (dCF) gets larger, the logger can
record a good code sequence at 3 m from the fob (that distance is reduced to
only 1 m when the fob is 5 m away from the jammer).
Comparison with [11]. The attack proposed in [11] exploits the combination of
both a logger and a jammer as well. Nevertheless, there are significant differences

Key is in the Air: Hacking Remote Keyless Entry Systems 131

Table 1. Measurement results.

dCF (m) dFL (m) Successful attack
frequency

5 1 1

5 2 0.4

5 3 0.05

10 2 1

10 3 1

10 4 0.1

that make our attack scenario even more effective. Firstly, the attack proposed
in [11] involves a precisely tuned jammer in order to prevent the self-jamming
phenomena, i.e., the jammer on the car prevents the logger to collect a clean
code sequence. Our measurements show that the self-jamming phenomena does
not happen if the logger is close to the fob (1 m); moreover, if the distance
between the user and the car is about 10 m, the adversary has a wider range of
action (up to 3 m) having more chances to be hidden to the user. Secondly, our
attack is much more flexible. Adopting a fully portable, and remotely controllable
jammer, allows us to install the jammer on the car, preventing all the fob-
car communications and intrinsically, having more chances to collect and log
more code sequences. Finally, there is another significant difference with [11]:
Kamkar et al. propose to collect two rolling codes: one for opening the car,
while the second one for the future hijacking of the car. This approach might
eventually turn out to be very difficult to implement. Indeed, every time the user
clicks on the fob’s button invalidates the previous codes (assuming the deployed
RKS adopts the rolling code strategy). The user might keep trying to open and
close the car, even after the car has been opened by the code sequence sent
by the adversary. Unfortunately, this makes the solution proposed in [11] very
dependent of the user’s behaviour and consequently, the attack has to be strictly
supervised by the adversary. Conversely, our attack scenario is more effective,
since it prevents all the communications between the fob and the car, forcing
the user to eventually use the mechanical key to enter the car.
Discussion. The proposed attack is very difficult to mitigate. An early strategy
has been proposed in [11] involving a jammer detector. Although this strategy
might detect an ongoing attack and raise an alarm to the user, it cannot be
used to improve the robustness of the keyless communication system. This is
mainly due to the intrinsic difficulty of dealing with jamming mitigation [6–
9]. Moreover, depending on how “smart” is the car, the jammer might prevent
other on-board communications such as the authentication of the key itself, and
therefore, preventing the engine to switch on.

132 O. A. Ibrahim et al.

6 Conclusion

We have proposed a novel scenario attack for remote keyless entry systems
involving a new jamming strategy and a remote controlled signal recorder. We
tested the attack against six different car models considering different deploy-
ment strategies. The cheap HW employed, the easiness of attack deployment, and
its effectiveness—always successful, even for a wide range of system parameters—
show that RKS are still not secure and that further research by both industry
and academia is needed.

References

1. Gqrx SDR. http://gqrx.dk. Accessed 26 June 2018
2. Remote Keyless Systems. https://en.wikipedia.org/wiki/Remote keyless system.

Accessed 26 June 2018
3. Alrabady, A.I., Mahmud, S.M.: Some attacks against vehicles’ passive entry secu-

rity systems and their solutions. IEEE Trans. Veh. Technol. 52(2), 431–439 (2003)
4. van de Beek, S., Leferink, F.: Vulnerability of remote keyless-entry systems against

pulsed electromagnetic interference and possible improvements. IEEE Trans. Elec-
tromagnet. Compat. 58(4), 1259–1265 (2016)

5. van de Beek, S., Vogt-Ardatjew, R., Leferink, F.: Robustness of remote keyless
entry systems to intentional electromagnetic interference. In: 2014 International
Symposium on Electromagnetic Compatibility, pp. 1242–1245, September 2014

6. Di Pietro, R., Oligeri, G.: Jamming mitigation in cognitive radio networks. IEEE
Netw. 27(3), 10–15 (2013)

7. Di Pietro, R., Oligeri, G.: Freedom of speech: thwarting jammers via a probabilistic
approach. In: Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, WiSec 2015, pp. 4:1–4:6. ACM, New York (2015)

8. Di Pietro, R., Oligeri, G.: Silence is golden: exploiting jamming and radio silence
to communicate. ACM Trans. Inf. Syst. Secur. 17(3), 9:1–9:24 (2015)

9. Di Pietro, R., Oligeri, G.: Enabling broadcast communications in presence of jam-
ming via probabilistic pairing. Comput. Netw. 116, 33–46 (2017)

10. Francillon, A., Danev, B., Capkun, S.: Relay attacks on passive keyless entry and
start systems in modern cars. In: Proceedings of the Network and Distributed Sys-
tem Security Symposium (NDSS). Eidgenössische Technische Hochschule Zürich,
Department of Computer Science (2011)

11. Kamkar, S.: Drive it like you hacked it: new attacks and tools to wirelessly steal
cars. In: DEFCON 23 (2015)

12. Wang, X., Hou, X., Rios, R., Hallgren, P., Tippenhauer, N.O., Ochoa, M.: Location
proximity attacks against mobile targets: analytical bounds and attacker strategies.
In: Proceedings of the European Symposium on Research in Computer Security
(ESORICS), September 2018

http://gqrx.dk
https://en.wikipedia.org/wiki/Remote_keyless_system

Aviation Security

Surveying Aviation Professionals
on the Security of the Air Traffic

Control System

Martin Strohmeier1(B), Anna K. Niedbala1, Matthias Schäfer2,
Vincent Lenders3, and Ivan Martinovic1

1 University of Oxford, Oxford, UK
martin.strohmeier@cs.ox.ac.uk

2 University of Kaiserslautern, Kaiserslautern, Germany
3 armasuisse, Thun, Switzerland

Abstract. In this paper, we report findings from an exploratory study
concerning the security of 15 different wireless technologies used in avi-
ation. 242 aviation professionals and experts from 24 different countries
completed an on-line questionnaire about their use and perceptions of
each of these technologies. We examine the respondents’ familiarity with
and reliance on each technology, with particular regard to their security.
Furthermore, we analyse respondents’ perceptions of the possible impact
of a wireless attack on the air traffic control system, from both a safety
and a business point of view. We deepen these insights with statistical
analysis comparing five different stakeholder groups: pilots, air traffic
controllers, aviation authorities, aviation engineers, and private pilots.

Keywords: Aviation security · Air traffic control · Survey ·
Transportation systems

1 Introduction

Over the past decade, the (cyber) security of wireless aviation technologies has
gained increasing attention. With both hackers [5] and academic researchers [3]
detailing flaws in the fundamentally insecure protocols, awareness of the issue
has risen, particularly with regards to the newest, ‘next generation’ technologies
such as the Automatic Dependent Surveillance–Broadcast (ADS–B) protocol [9].

Attempting to fix these security problems requires broad awareness, agree-
ment, and potentially also education across the different stakeholder groups
found in aviation. To create the necessary momentum for implementing such
changes in a system as slow-moving, safety-focused, and globalised as aviation,
a sufficiently large number of people must be familiar with the security problems,
their potential impact, and possible solutions. To assess the current level of such
awareness, we conducted a survey across all aviation circles. This survey is the
first to address these issues publicly, and we are thankful to all involved aviation
authorities and air navigation service providers (ANSPs) for their help.
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 135–152, 2019.
https://doi.org/10.1007/978-3-030-16874-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_10

136 M. Strohmeier et al.

We focus on two specific areas within our research. First, we examine the sur-
vey respondents’ familiarity and knowledge of 15 different wireless technologies,
in particular with regards to their security. Second, we examine the respondents’
views of the potential impact of wireless attacks on each technology from a safety
and business point of view, respectively. We deepen our analysis by comparing
the perceptions of the different stakeholder groups.

It is important to note that our goal was not to survey those members of the
aviation community with specialist knowledge of computer and systems secu-
rity. Rather, we attempt to capture the realistic perceptions of typical aviation
stakeholders, as we believe these views are more representative, and thus more
crucial to influencing key decision making processes.

Some findings from this survey—concretely, an assessment of threat
scenarios—have previously been reported in [9]. In the present paper, we focus
instead on new quantitative and qualitative data from previously unreported
questions and comments, providing novel results and insights through compre-
hensive statistical analysis. Further, we detail our experiences while conducting
this survey and relate these to prevalent attitudes in aviation.

The concrete contributions we make in this work are the following:

– We report insights from an exploratory study with 242 aviation professionals
regarding the security of the wireless technologies on which they rely.

– We present previously unreported data on the technological familiarity and
dependency of different stakeholder groups found in aviation.

– We analyze the perceptions of flight safety and business impact through
attacks on different key technologies and how they vary between stakeholders.

The remainder of this work is organized as follows: Sect. 2 provides the nec-
essary background on the air traffic control technologies examined. Section 3
describes the design of the survey, Sect. 4 its results and Sect. 5 the possible
limitations. The related work is outlined in Sect. 6. Section 7 discusses potential
implications, and finally, Sect. 8 concludes this paper.

2 Air Traffic Surveillance Technologies

We provide a very brief overview of the type of technologies that we surveyed.
For a full description of the specific aviation technologies and a review of the
related technical work concerning their security, we refer the reader to [9].

Table 1 lists the full name of the technologies that were given to the aviation
professionals in our survey. We systematize them into four different categories,
illustrated in Fig. 1:

– Air Traffic Control: These technologies serve to establish the surveillance
picture of the airspace. VHF, or voice communication, is the primary means
of surveillance for most purposes. Primary and Secondary Surveillance
Radar are the traditional means of locating aircraft’s positions, altitude, and
identities and providing them to the controller. ADS-B and Multilatera-
tion, on the other hand, are the ‘next generation’ approach, providing a more
accurate surveillance picture with enhanced information.

Surveying Aviation Professionals on the Security 137

Table 1. Overview of the surveyed technologies.

Abb. Technology

Air Traffic Control

VHF Voice (Very High Frequency)

PSR Primary Surveillance Radar

SSR Secondary Surveillance Radar (Modes A, C and S)

ADS-B Automatic Dependent Surveillance-Broadcast

MLAT Multilateration

General Purpose Data Links

CPDLC Controller-Pilot Data Link Communication

ACARS Aircraft Communications Addressing and Reporting System

Special Information Services

TCAS Traffic Alert and Collision Avoidance System

FIS-B Flight Information System-Broadcast

TIS-B Traffic Information System-Broadcast

Navigation Aids

GPS Global Positioning System

VOR VHF Omnidirectional Radio Range

ILS Instrument Landing System

NDB Non-directional Beacon

DME Distance-measuring Equipment

– General Purpose Data Links: ACARS and CPDLC are data links that
can be used to transmit arbitrary data, from clearances over weather reports
and maintenance data to free text. Apart from direct line of sight communi-
cation, they also offer High Frequency (HF) and satellite options.

– Special Information Services: Contrary to the last group, these technolo-
gies provide specialized information: TCAS uses SSR and ADS-B to deliver
collision avoidance to pilots, TIS-B provides traffic information, and FIS-B
delivers well-defined services such as weather and other flight information.
Both TIS-B and FIS-B are ground-based, and are provided by the FAA for
general aviation; thus, they are currently only available in the US.

– Navigation Aids: The remaining five technologies help pilots navigate.
GPS provides satellite positioning, while VOR, NDB, and DME are
ground-based systems, delivering directions and distances. Finally, ILS pro-
vides the pilot with an acoustic indication of the correct glide slope for
landing.

138 M. Strohmeier et al.

3 Survey Design

We planned and conducted our survey with the help of private pilots and a
full-time professional ATCO. They advised us on the appropriate question lan-
guage with relation to aviation subject terms. Furthermore, they provided us
with the necessary aviation expertise and background at every stage during the
design, implementation, and execution of this survey. We report the questions
and answer options in AppendixA, and the comments in AppendixB.

Our survey was conducted fully anonymously over the internet, in order to
protect respondents from potential repercussions when speaking freely about the
security of ATC systems or disclosing potential safety problems. We designed
and distributed the questionnaire using SurveyMonkey,1 without storing partic-
ipants’ IP addresses or other metadata. Thus, no inferences about location or
employer could be made from the responses. The study was approved by the
University of Oxford Social Sciences & Humanities Inter-Divisional Research
Ethics Committee (IDREC) under the reference SSD/CUREC1A/15-033.

Fig. 1. Overview of wireless communication between ground stations, aircraft and
satellites. Colours indicate groups, arrows the communication direction. (Color figure
online)

3.1 Recruitment

We recruited participants through two channels: controlled dissemination (CD)
and open dissemination (OD). In the CD phase, we sent our survey to about

1 https://www.surveymonkey.com.

https://www.surveymonkey.com

Surveying Aviation Professionals on the Security 139

20 air navigation service providers, airlines, and other aviation-related organisa-
tions across Europe and the United States. We asked these institutions to post
our recruitment page on their mailing list and disseminate it further to other
interested entities. This phase lasted from 27 March until 23 June 2015.

In the OD phase, we distributed the questionnaire link in eight large but
closely-moderated aviation forums. Two of these forums, focussed mainly on
private pilots, agreed to post our survey. This second phase was significantly
shorter, owing to the limited time our dissemination link was seen widely in
these forums. It lasted from until 21 April until 29 April 2015.

A total of 242 participants completed the survey: 110, or 45.5% in the CD
phase, and 132, or 54.5%, in the OD phase. We analyse the responses as a whole.
The average response time length was 31 min 10 s.

Table 2. Overview of occupations and self-assessed technical comms knowledge.

Occupation Group Number Share [%] Avg. Knowl.

Pilot Private 79 32.6 3.51

Commercial 64 26.4 3.92

Military 5 2.1 3

Air Traffic Control (ATCO) Civil 39 16.1 4.13

Military 4 1.7 3.25

Aviation Engineer (AE) - 19 7.9 4.11

Aviation Authority (AA) - 11 4.5 4.18

Other - 21 8.7 3.29

Recruitment Experiences. Anecdotally, the attitudes of the aviation stakeholders
contacted via email proved to be positive, interested, and encouraging (where
informal feedback was provided). This may naturally be influenced by the fact
that the contact persons knew someone in the recruiting team with one or two
degrees of separation and were acting in their professional capacity.

The response in the pseudonymous aviation forums was very different. The
two that posted the survey, only did so after thorough vetting of our ‘bona fides’.
Several negative questions about the intent of the research were posed, reflecting
on aviation as a highly guarded community. This sentiment was multiplied in
the other six forums, which were not willing to post our survey. Four did not
give a reason for declining our request, i.e., they did not allow publication of our
recruitment page or deleted it shortly after posting. Two stated that they were
explicitly concerned with potential negative publicity for the aviation sector as a
whole, presumably because negative media headlines about the security of avia-
tion systems are perceived to be either unfair, uninformed and/or unduly hurting
the community, which is best poised to fix these problems without outside help.2

2 This was epitomized by the well-known ‘It’s a trap’ meme among the forum replies,
which aimed to deter other users from answering the survey.

140 M. Strohmeier et al.

3.2 Demographics

Illustrated in Table 2 is the response to Question 1 about the respondents’ occu-
pation. A majority were private (33%) or commercial pilots (26%) followed by
civil ATCOs (16%) and aviation engineers (8%). Among the respondents who
chose ‘Other’, the professions ranged from software developers in aviation to
Flight Information Service Officers. A slight majority (56%) of all OD respon-
dents were private pilots, compared to less than 4% of CD respondents.

The participants’ aviation (work) experience (Q2) was distributed fairly
evenly, with 32% having 20 years or more, and about 22% offering an exper-
tise of less than 5 years, 5–10 years, and 10–20 years, respectively.

The top working countries (Q3) were the UK (89 respondents) and the US
(55). A further 86 worked in Continental Europe, with Germany (21), Esto-
nia (15), Switzerland (10), Spain (7), Norway (7) making up the majority. Six
respondents work in countries around the world (Indonesia, Hong Kong, Canada,
UAE, Greenland, Armenia), six did not answer this question.

3.3 Self-assessed General Knowledge and Work Environment

We asked the pilots which aircraft type(s) they were most familiar with (Q4).
Among the commercial pilots, the most named model was the A320 (31 times),
followed by the B737 (21). Airbus models overall were mentioned 41 times, Boe-
ing 36 times, and Embraer 11 times. The most named single-engine piston was
the Piper PA28 (35), followed by several Cessna models (22).

The respondents estimated their general knowledge about aviation comms
(Q5) with a mean of 3.76 out of a symmetric, equidistant 5-point Likert-type
scale, where 1 is ‘very bad’ and 5 is ‘very good’. Table 2 illustrates small differ-
ences between the stakeholders on this general self-assessment.

4 Survey Results

In this section, we present the results of our survey. We report the answers
to six questions: two regarding the familiarity of the respondents with the 15
technologies, two concerning trust and security issues, and two in which the
respondents were asked to assess the impact of any potential attacks. The full
details on these questions are included in AppendixA.

We group the respondents into six different stakeholder types: professional
pilots (commercial and military), air traffic controllers (civil and military),
employees of aviation authorities, aviation engineers, private pilots, and oth-
ers not fitting into any of the previous groups (e.g., software engineers and
consultants).

Statistical analyses were completed using cumulative link mixed models, a
type of ordinal logistic regression that estimates both fixed (predictors) and
random (variance groups) effects for ordinal dependent variables. Unless other-
wise noted, random intercepts for years of experience (Q2) and country (Q3)

Surveying Aviation Professionals on the Security 141

were included in each model to account for variance arising from these factors.
Responses were coded as ordered factors with the same labels used in the survey
(e.g. ‘Very Unlikely’–‘Very Likely’), and factor level contrasts were computed
by re-parametrising the fitted model with different contrast codes and reference
levels. All analyses were completed using the ordinal package in R [2,6]. It is
important to note that this study was exploratory, thus any effects reported here
require further research and confirmatory analysis.

4.1 Self-assessment of Technical Familiarity and Dependence

First, we wanted to know which technologies were used by the respondents and
how this varied across the different stakeholder groups. Respondents were asked
to rate how familiar they were with the 15 technologies (Q6) and how much
they relied on each one in their work (Q7). The answers were given on 5-point
Likert-type Scales with a separate ‘Not heard of this technology’ option for these
and all following questions. Figure 2 shows the results.

The technologies that respondents across all groups considered themselves
most familiar with are VHF and SSR, followed by navigation aids, in particular
GPS. This is explained by the prevalence and importance of these technolo-
gies in current aviation processes: SSR and VHF are also the most relied upon

VHF PSR SSR ADS−B MLAT CPDLC ACARS TCAS FIS−B TIS−B GPS VOR ILS NDB DME

Pilot
ATC

Av. Auth.
Av. Eng.

N
iA / Priv.

O
ther

50%
100%

50%
100%

50%
100%

50%
100%

50%
100%

50%
100%

Technology

Stakeholder Type / R
esponse R

ate [%
]

Question Familiarity with Technology Reliance on Technology

V
er

y
Fa

m
ili

ar
 /

S
tro

ng
ly

 D
ep

en
de

nt
N

ot
 F

am
ili

ar
/D

ep
en

de
nt

M
ea

n
R

es
po

ns
e

S
om

ew
ha

t F
am

ili
ar

/ D
ep

en
de

nt

Fig. 2. Mean response values for familiarity with and reliance on all technologies by
different stakeholders with 95% confidence intervals. The dotted lines illustrate the
response rate for each stakeholder and technology.

142 M. Strohmeier et al.

technologies, followed by navigation aids. As is to be expected, there are dif-
ferences between the different stakeholder groups. While commercial pilots and
ATCOs are both familiar with and reliant on TCAS and ILS, this is not the case
for private pilots, who do not usually have these technologies available to them.
Respondents familiar with flying under instrument flight rules are unsurprisingly
more likely to depend on all technologies, as they feed these instruments. This
is in contrast to private pilots, who typically fly under visual flight rules.

At the end of the scale, we can find TIS-B and FIS-B, which are services
that are currently only offered to general aviation in the United States; thus,
a significant part of our sample would not be familiar with these technologies
or use them in their work/aviation experience. Similarly, CPDLC is only being
deployed slowly and for few IFR airspaces. Very interestingly, however, more
than 50% of all respondents answered that they already rely on ADS-B to some
extent, despite the protocol not being operational in most airspaces until 2020.

4.2 Assessment of Trust and Security Issues

Second, we examine the perceived attack likelihood and trustworthiness of each
technology, again broken down by different stakeholder groups. Figure 3 shows
the results for Q8 (How would you rate the trustworthiness of information derived
from these technologies against intentional manipulation by a malicious party?)

VHF PSR SSR ADS−B MLAT CPDLC ACARS TCAS FIS−B TIS−B GPS VOR ILS NDB DME

Pilot
ATC

Av. Auth.
Av. Eng.

N
iA / Priv.

O
ther

 50%
100%

 50%
100%

 50%
100%

 50%
100%

 50%
100%

 50%
100%

Technology

Stakeholder Type / R
esponse R

ate [%
]

Question Likelihood of Injection Attack Trustworthiness Against Manipulation

V
er

y
Li

ke
ly

 /
V

er
y

In
se

cu
re

V
er

y
U

nl
ik

el
y

/ V
er

y
S

ec
ur

e
M

ea
n

R
es

po
ns

e
S

om
ew

ha
t L

ik
el

y
/ I

ns
ec

ur
e

Fig. 3. Mean response values for attack likelihood (dark colour) and trustworthiness
(light colour) of all technologies as seen by different stakeholders.

Surveying Aviation Professionals on the Security 143

and Q9 (How do you rate the likelihood that a malicious party injects false infor-
mation into these technologies?).

The most obvious result is the fact that the likelihood of injection attacks is
considered relatively low across almost all technologies and stakeholders. With
the (very notable) exception of VHF, which was rated as significantly less trust-
worthy (average z = −5.39± 1.9, all ps < 0.001) and significantly more likely to
be attacked (average z = −3.43 ± 2.25, all ps < 0.01), than all other technolo-
gies when controlling for stakeholder type, the remaining technologies average a
moderate or lower likelihood. As suggested by several comments (see Sect. 4.4),
this is likely due to first- or second-hand experience with VHF interference. Such
experiences may also explain the high likelihood rating of GPS. The technologies
least likely to be attacked using wireless injection were also analog: DME and
VOR, followed by PSR. We further note that while there is a correlation between
attack likelihood and trust assessments (Spearman’s ρ = 0.324), the values for
the latter question were generally more similar across technologies, clustering
around ‘Moderately Secure’.

There were also differences in views between the different stakeholder groups.
ATCOs found VHF by far the least trustworthy and most likely to be attacked
compared to the other groups, in significant or marginally significant contrast
to Pilots (commercial and military; trust z = −1.95, p = 0.051, attack likeli-
hood z = −3.76, p < 0.001). Similarly to the previous set of questions, fewer
pilots answered questions about MLAT (25%, compared to over 50% of ATCOs
and over 90% of AEs), but those that did answer believed it to be significantly
less likely to be attacked compared to the ATCOs (z = −2.55, p = 0.011) and
engineers (z = −2.76, p = 0.006). Lastly, the private pilots judged a signifi-
cantly lower attack likelihood across all technologies compared to ATCOs (z =
3.79, p < 0.001), AAs (z = 2.01, p = 0.044), and AEs (z = 3.97, p < 0.001), while
their trust ratings across all technologies trended towards a significant difference
compared to AEs and Others (z = 1.75, p = 0.081 and z = 1.72, P = 0.085,
respectively).

4.3 Assessment of Attack Impact

Finally, we examine the perceived impact of attacks on flight safety as judged by
the respondents, and how this contrasts with indirect impact on the business side
(i.e., not through effects on safety, but e.g., through causing delays). Figure 4
shows the full results for Q10 (How would you rate the impact on flight safety by
false information injected by a malicious party into each of these technologies?)
and Q11 (How would you rate the business or monetary consequences of false
information injected by a malicious party into each of these technologies? Assume
no direct safety incidents.)

First, it is notable that the flight safety impact is considered higher than the
business impact across all technologies and stakeholders: a one-point increase in
safety impact rating (e.g. from ‘Mod. Severe’ to ‘Severe’) predicted an approxi-
mately 56% increase in business impact ratings, controlling for technology type
and the respondent’s familiarity with it (Q6). It is difficult to estimate the rea-
sons for this; the respondents may hold an overall bias towards safety. There

144 M. Strohmeier et al.

VHF PSR SSR ADS−B MLAT CPDLC ACARS TCAS FIS−B TIS−B GPS VOR ILS NDB DME

Pilot
ATC

Av. Auth.
Av. Eng.

N
iA / Priv.

O
ther

 50%
100%

 50%
100%

 50%
100%

 50%
100%

 50%
100%

 50%
100%

Technology

M
ea

n
R

es
po

ns
e

Stakeholder Type / R
esponse R

ate [%
]

Question Business Impact of Injection Attack Safety Impact of Injection Attack

N
ot

 S
ev

er
e

M
od

er
at

el
y

S
ev

er
e

V
er

y
S

ev
er

e

Fig. 4. Mean response values for business impact and safety impact of attacks on each
technologies as considered by different stakeholders.

are some exceptions, however: respondents working for AAs judged the business
impact of some technologies (SSR, ADS-B, MLAT, CPDLC, ACARS) as equally
severe or more severe than their safety impact, while ATCOs did the same for
data links (CPDLC, ACARS) and special information services (FIS-B, TIS-B).

Across technologies, the highest safety impact values are found for ILS,
TCAS, and VHF. This reflects their status as directly safety-critical technolo-
gies. TCAS features the largest difference between potential safety and business
impact, indicating that other technologies may be more easily used to force e.g.
unnecessary turnarounds or other flight-prolonging manoeuvres. In general, we
find the highest impact ratings among the ATC and navigation aids and the low-
est for general and specialized data links, with the notable exception of TCAS.

Stakeholders’ judgements of safety impact depended strongly on the different
groups’ usage and familiarity. Responses to Question 6 (Familiarity) significantly
predicted severity ratings of safety and business impact (z = −2.67, p = 0.008
and z = −3.35, p < 0.001, respectively), with a 13% likelihood of increasing
severity ratings for safety impact and 18% for business impact across all tech-
nologies and stakeholder groups. This varied significantly by stakeholder group,
however. Controlling for familiarity, ATCOs were 40% more likely to judge the
safety impact as higher and 63% more likely to judge the business impact as
higher than were pilots across all technologies (z = 3.16, p = 0.002 and z = 1,
respectively). We speculate that this is due to a different view on the aviation
system in general, i.e., the importance of the communication technologies as

Surveying Aviation Professionals on the Security 145

compared to the importance of the pilot. This is also illustrated by the differ-
ences in judging MLAT’s impact in particular. MLAT is a passive localization
technology that pilots do not normally come into direct contact with. Here,
pilots’ business impact ratings are as low as 2.1± 1.2 for private pilots (2.5± 1.2
for commercial pilots) but average around 3.7 ± 1 for ATCOs, AAs, and AEs.
Overall, ATCOs and AAs were 61% more likely to rate an attack on MLAT as
having a severe business impact (z = 5.65 and 3.75, both ps < 0.001; AEs were
24% more likely, but this contrast did not reach statistical significance, p > 0.1).

4.4 Qualitative Analysis

In addition to quantitatively-scaled questions, participants had the option to
provide comments and additional thoughts in two free-response questions. All
of these responses are enumerated in Appendix B. While some participants con-
flated both questions, we received 33 comments overall, with three main themes:

– Direct feedback on the survey: The largest group consisted of feedback
on the survey, both about its design and perceived impact. On the design,
this included positive (12, 14, 31) and negative comments (4, 8, 15, 16, 21,
24, 28, 29). Notably, none of the latter pointed out any concrete flaws but
stayed very general. Several others pointed out that as private pilots they may
not be able to answer all questions fully (7, 30, 32), which was the intended
outcome.

– Personal anecdotes about cybersecurity incidents: Several comments
(1, 3, 6, 10, 11, 17, 29) mentioned personal experiences of wireless interference,
mostly on VHF but also SSR and GPS. Some of these were seen as malicious,
in particular on VHF, where detection is straightforward. Two comments (25,
27) discussed potential countermeasures, suggesting the use of independent
penetration testing or identity-based encryption for ADS-B.

– Comments on the importance of security research: Five respondents
(3, 5, 13, 14, 19) emphasized the lack of current security research and hoped
for increased activity in this area. One (22) hoped that legal threats will
prevent any attacks, another suggested that digitalization may be the entirely
wrong direction for aviation, in preventing future accidents. Finally, three
comments (2, 9, 20) related to the fact that drones/Unmanned Aerial Vehicles
(UAV) may be a bigger and more urgent problem to aviation than cyber
security at this point in time.

5 Limitations

While we tried to carefully design our survey, limitations exist. Some of the more
impactful ones are caused by characteristics inherent in the underlying aviation
technology others by our design. We discuss all in the following:

– Exploratory study design: Participants are likely to have varying grasp of
the technical security terms ‘authentication’ or ‘integrity’, which is difficult

146 M. Strohmeier et al.

to mitigate without extensive briefing and instruction—something unlikely to
be completed by most respondents. Thus, we had to focus on the relative dif-
ferences, i.e., between groups and technologies. Since this was an exploratory
study, there were no a-priori hypotheses to examine, and thus some signifi-
cant differences are possibly due to random chance, given the large number
of comparisons. However, all significant reported p-values survive a Holm-
Bonferroni correction for multiple comparisons.

– Participant selection: Our survey cannot necessarily be considered fully
representative of the aviation community and its different subgroups. While
the sample size is large, there are certainly concerns regarding distribution
and potential self-selection. However, we have good reason to believe in the
general validity of the results, as they fit in well not only with the existing
literature but also with our own extensive experiences in this space as well as
the reports of experts we have consulted during this and previous studies.

– Design: Because of the varying labels assigned to each survey question (e.g.
‘Severe’, ‘Likely’, ‘Familiar’), the Likert-type scale items cannot be assumed
to be equidistant, and thus, it is possible that some scales are slightly imbal-
anced. This was corrected for in the statistical models. Also, as only one
question was posed for each construct we measured, the reliability and valid-
ity of the questions cannot be ascertained. Rather, this survey provides a
snapshot of individuals’ attitudes that can inform future research.

– Proprietary technology: Many of the surveyed technologies are imple-
mented by different companies, following open standards that are compara-
bly loose, or even non-existent, as in the case of MLAT. Even some of the
very widely used protocols (e.g., ACARS or CPDLC) have proprietary ele-
ments that are not freely available. Thus, we were more interested in the
participants’ general assessment and experiences with the abstract systems,
no matter the exact implementation.

– Fragmentation: Likewise, there is a forest of different systems, regulations,
and processes in aviation. Depending on the airspace, the availability, knowl-
edge, and usage of the discussed protocols differs. However, we mitigated
this problem by surveying experts from many countries, making sure their
judgement of security in aviation technologies did not vary significantly.

6 Related Work

Survey-based analysis is an accepted tool in aviation research, in particular when
it comes to examining opinions on and perceptions of safety. For example, a
recent article [7] recently used it to analyse the safety of the ADS-B In technology
(including the related FIS-B and TIS-B, also covered in our survey). The authors
report that almost two thirds of the respondents who used ADS-B-based services
felt that they have helped them to visually acquire traffic; more than 40% even
believed the information provided aided in the prevention of mid-air collisions.
The results clearly illustrate the safety-related benefits of these technologies.

Following recent headlines and increased awareness on security, at least in the
academic community, there have been some attempts at extracting the opinions

Surveying Aviation Professionals on the Security 147

of aviation professionals on this matter. Besides our own survey, the authors in
[10] complement our mostly quantitative approach on aviation security percep-
tions with a number of expert interviews specifically on ADS-B security. Their
findings indicate which concrete cyber attack classes are more likely to seriously
impact the work of pilots and controllers.

Finally, there have been similar attempts recently to capture the cyber secu-
rity perceptions of professionals working in the maritime sector, an industry
suffering from the same problems as aviation [8].

7 Discussion

Our overall results suggest that knowledge about security issues in ATC technol-
ogy is limited, experience-dependent, and varies strongly across different stake-
holder groups. However, while this indicates that the state of cybersecurity in
aviation leaves much to be desired—both in knowledge about and awareness of
the problem among key stakeholders—there is a slow and steady change in the
right direction. In recent years, many regulators and authorities have finally put
security higher on the agenda. There are concrete new efforts with regards to
information sharing, including the European Centre for Cyber Security in Avi-
ation (ECCSA), which is currently being developed by the European Air Safety
Agency (EASA). Along similar lines, a Cyber Air Act has been discussed in the
US [1]. We hope that our survey can help to additionally inform these initiatives.

Related to the previous point, we further suggest a reassessment of the wider
industry’s approach to security and obscurity. The current state of defensive-
ness and secrecy encountered on security issues in aviation (not only during the
implementation of this survey) is notably reminiscent of the behaviour of large
software companies in the 1990s, which often preferred to take legal measures
against independent security researchers instead of working closely with them
as they do today. This has been reflected in our experiences during the recruit-
ment phase of this survey. However, we also found many helpful individuals,
typically aided by pre-existing relationships, in particular when established on
the personal rather than the institutional level.

It is clear that the fast pace of emerging cybersecurity threats clashes with the
time that it takes for new aviation standards and technologies to be conceived,
deployed, and finally used operationally on a global scale. This conservative
approach has worked well to improve aviation’s safety record by minimizing
software bugs and hardware problems. However, with regards to wireless security
vulnerabilities, aviation has moved at a pace much slower than seen in other,
less safety-oriented industries, and it is quickly running out of time.3

3 In Feb. 2018, the US Government Accountability Office stressed this point: “Given
the amount of time that has transpired since DOD initially raised security concerns
in 2008 and the amount of time it will take to formalize, operationalize, and train
employees to implement any agreements prior to the January 1, 2020, deadline, it is
critical that both DOD and FAA make this a high priority.” [4].

148 M. Strohmeier et al.

We do not discuss any concrete security countermeasures, technical or pro-
cedural, as they are out of the scope of this paper. We argue that educating
those stakeholders that use the affected systems regarding their security and
and working closely with them may be one clear avenue to improve the current
state of the art. Due to space limitations, we also do not analyze the accuracy
of the perceptions individually; it is trivially obvious that all technologies are
inherently insecure as security was never part of their design phase, despite some
differences in the ease of exploitation. For an extensive overview of the technical
possibilities, the reader is referred to [9].

8 Conclusion

In this paper, we reported from a survey about the security of wireless technolo-
gies used in aviation. We captured and analysed the knowledge and perceptions
of almost 250 aviation professionals and experts, from pilots over air traffic con-
trollers to aviation engineers. As seen during the survey dissemination and the
quantitative and qualitative analysis of our findings, there are very different atti-
tudes concerning the topic of security, ranging from ignorance and complacency
to hyper-awareness and anxiety.

In summary, we believe that increased awareness by all aviation stakehold-
ers can provide the necessary basis for a change in the aviation community’s
approach to cybersecurity issues. Without all parties on board, crucial regula-
tory, educational and technical changes are unlikely to be implemented within
reasonable time frames.

Acknowledgements. We thank Rui Pinheiro for his input on the survey design and
all things air traffic control and Kasper B. Rasmussen for his point of view as a private
pilot.

Appendix

A Survey Questions

Question 1: What is your current line of work?
Answer options: Commercial Pilot, Civil Air Traffic Controller, Military Air
Traffic Controller, Aviation Engineer, Military Pilot, Aviation Authority, Air-
line Operator, Not working in aviation; Private Pilot, Other (please specify)
Question 2: How long have you been in your current line of work?
Answer options: <5 years, 5–10 years, 10–20 years, >20 years
Question 3: In what country is your current work based?
Answer options: 249 global countries.
Question 4: What aircraft type(s) are you most familiar with?
Answer options: Free text.
Question 5: In general, how would you judge your knowledge of air traffic
comm. technologies?

Surveying Aviation Professionals on the Security 149

Answer options: 5-point Likert scale, 1 = Very bad, 5 = Very good.
Question 6: Which of these specific air traffic communication technologies are
you familiar with?
Answer options: List of all 15 technologies, 5-point Likert scale, 1 = Very familiar,
5 = Not familiar (but heard of it). Separate option ‘Not heard of this technology’,
also covering all following questions.
Question 7: Which of those technologies do you rely on in your work?
Answer options: 5-point Likert scale, 1 = Very bad, 5 = Very good.
Question 8: How would you rate the trustworthiness of information derived
from these technologies against intentional manipulation by a malicious party?
Answer options: 5-point Likert scale, 1 = Very insecure, 5 = Very secure.
Question 9: How do you rate the likelihood that a malicious party injects false
information into these technologies?
Answer options: 5-point Likert scale, 1 = Very unlikely, 5 = Very likely.
Question 10: How would you rate the impact on flight safety by false informa-
tion injected by a malicious party into each of these technologies?
Answer options: 5-point Likert scale, 1 = Not severe, 5 = Very severe.
Question 11: How would you rate the business or monetary consequences of
false information injected by a malicious party into each of these technologies?
Assume no direct safety incidents.
Answer options: 5-point Likert scale, 1 = Not severe, 5 = Very severe.

B Survey Comments

Comment 1: Have experienced external parties checking in and disturbing
on actual air traffic control frequencies, fortunately without any serious conse-
quence.
Comment 2: New RPAS/UAV threat could ease both jamming ATC to pilots
communication, and spoofing ATC instructions. Mechanisms to authentify (and
encrypt) controllers-pilots communication will become necessary.
Comment 3: I do research in Mode S based systems. I think they are by far too
easy to attack. Problem is that my company [an ANSP] is very closed-minded
and not open for any help or suggestions to improve their systems. Existing
problems are not recognized (missing Know-How) or are ignored intentionally.
Actions are taken AFTER regulations are released by authorities (ex: Eurocon-
trol). I think, a lot of huge companies behave this way to save costs. EU is very
strict in expecting air traffic service providers to reduce costs. So the main target
of this research should be informing these authorities about the problems (not
directly industry or air traffic service provider) to put them in a position being
able to release necessary regulations to improve mentioned systems.
Comment 4: This survey is grossly misleading and the construction of the
questions pay scant regard to the real world. There are many examples of these
episodes occurring, and having been involved with some of them, this survey
misses the mark totally.

150 M. Strohmeier et al.

Comment 5: Security is often considered as “just existing” investment is often
stopped because management finds everything safe and above mentioned sce-
narios as too far fetched history states it different (9/11).
Comment 6: VHF is an increasingly common comms signal to be maliciously
emulated by non involved parties. Particularly on tower frequencies. Anyone can
buy a transceiver without licence.
Comment 7: I am a CPL working as a Flying Instructor on light aircraft. Con-
sequently the impact of many of the technologies mentioned is limited for me.
Comment 8: You need to talk to Air Traffic Controllers face to face if you
genuinely wish to formulate meaningful questions; you must also understand the
if an aircraft does not carry a transponder, it will not show on TCAS hence your
questions are irrelevant.
Comment 9: Commercially available drones are becoming more of a problem
to general aviation. Those in control of the drones could deliberately endanger
aircraft. Also the comms controlling the drones are susceptible to interference
from terrorists. A potential development for airliners is the onboard systems
overruling pilots thought to be deliberately trying to crash into mountains. If
that is done by some remote override, the system needs to be robust against ter-
rorists using that system and/or spoofing other navigation system information
to remotely crash the airliner! I still prefer the pilot to be in ultimate control of
where the plane is going.
Comment 10: There are plenty of known occurrences in Europe where things
go wrong on 1030/1090 MHz. In most cases, it is not an intentional issue, but
the effects are there.
Comment 11: I am not aware of any, other than spurious GPS during recent
jamming exercises that were carried out, but this did not affect me directly.
Comment 12: Interesting survey which hopefully will contribute to form basis
for future contingency policy on Aviation/ATM Security.
Comment 13: ADS-B has to be secured in case it becomes the primary means
(and it will!).
Comment 14: In my point of view this study, is a very important area of
research as a malicious attack on Aviation Technology can cause severe damage,
and the entire aviation community should work together to enhance Security in
aviation. Congratulations! Well done.
Comment 15: From the way you asked your questions and what you asked you
should not expect to draw scientifically sound conclusions from the question-
naire.
Comment 16: As a human factors and system safety researcher, if a student of
mine proposed a questionnaire such as this, there would be discussion about its
limitations and council not to field as is. I can see not valid data being generated
– it will lacks authority and credibility.

Surveying Aviation Professionals on the Security 151

Comment 17: Updates on navigational aids e.g. running SkyDemon on an iPad
using an external GPS. I recently carried out the iOS update on my iPad which
had bugs which then did not allow SkyDemon to recognise location date being
transmitted by the external GPS. All flights then were solely carried out using
traditional charts!!!
Comment 18: That government which governs least, governs best. That ATC
system that controls least, controls best. And is the most secure. More see and
avoid, not more computerize and avoid, is not only safer, it is more secure. The
enemy can outmaneuver us better if we are not looking. Patrol vigorously, less
reliance on gadgets. I have been to many airports that lock pilots out of the
ramp but don’t even have a fence to keep a terrorist to set up on the end of the
runway with a Stinger.
Comment 19: A general lack of appreciation, ignorance and complacency sur-
rounds the vulnerability of civil aviation comms.
Comment 20: RC comms with multirotor RC aircraft seem a more likely route
to attack than aviation specific comms.
Comment 21: Sorry, but the questions are phrased rather badly. Are you pilots?
Comment 22: I’m amazed that we still rely on the systems that we do. Even
simple things like VHF. They’re not secure, but they work and the cost to
improve them is likely unmanageable. Hopefully laws will continue to work in
preventing nasties.
Comment 23: Impact on automated operations is different - all the systems
today are human mediated.
Comment 24: Well that survey isn’t leading the answers in any way at all...
Comment 25: Need to make portable ADS-B out units assigned to a specific
pilot with a encoded id an option for small private aircraft for a reasonable cost.
Comment 26: Silly survey questions. Adapted from a internet-like cyber secu-
rity. Remember aviation is behind by 30 years!
Comment 27: Similar to pen testing in my industry (IT Security), can it be
attempted to prove that hacking into the on-board system will not mean access
to the primary flight controls (A/P). It would calm the travelling public, if that
be undertaken by an independent/academic institute.
Comment 28: The writer needs to understand aviation technology a little bet-
ter before embarking on a piece of work like this.
Comment 29: Some of the questions might have been worded better....perhaps
should have run them past a pilot or controller first, or maybe even used some
risk analysis from an aviation SMS. Just a thought. Quite interesting possible
concepts though...the only time we really experience malicious interference is on
VHF, and that, thankfully, is rare where we operate.
Comment 30: Many questions not comprehensible to simple private pilot.
Comment 31: Hope it’s not too boring compiling this survey. Thank you for
your good work. I’m sure the pub beckons soon...
Comment 32: Not so sure as a private pilot if I help in this survey, perhaps
those with an IR and above [are] more helpful.
Comment 33: You are missing FPL comms.

152 M. Strohmeier et al.

References

1. Avionics, P.: What are the Biggest Threats to Airlines? January 2018. https://up.
panasonic.aero/2018/01/18/cybersecurity-biggest-threats-airlines

2. Christensen, R.H.B.: Ordinal: Regression Models for Ordinal Data (2018). R pack-
age version 2018.4-19: https://CRAN.R-project.org/package=ordinal

3. Costin, A., Francillon, A.: Ghost is in the air(traffic): on insecurity of ADS-B
protocol and practical attacks on ADS-B devices. In: Black Hat USA, pp. 1–12,
July 2012

4. Kirschbaum, J.: Urgent need for DOD and FAA to address risks and improve
planning for technology that tracks military aircraft. Technical report GAO-18-
177, US Government Accountability Office, January 2018

5. Polstra, P., Polly, C.: Cyber-hijacking airplanes: truth or fiction? Presented at
DEFCON 22, Las Vegas, USA, August 2014

6. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing. Vienna (2017). https://www.R-project.org/

7. Silva, S.S., Jensen, L., Hansman Jr., R.J.: Safety benefit of automatic dependent
surveillance-broadcast traffic and weather uplink services. J. Aerosp. Inf. Syst.
12(8), 579–586 (2015)

8. Skoglund, R.: Perceived information security in the maritime sector. Master’s the-
sis, Norwegian University of Science and Technology (2017)

9. Strohmeier, M., Schäfer, M., Pinheiro, R., Lenders, V., Martinovic, I.: On percep-
tion and reality in wireless air traffic communication security. IEEE Trans. Intell.
Transp. Syst. 18(6), 1338–1357 (2017)

10. Viveros, C.A.P.: Analysis of the cyber attacks against ADS-B perspective of avia-
tion experts. Master’s thesis, University of Tartu (2016)

https://up.panasonic.aero/2018/01/18/cybersecurity-biggest-threats-airlines
https://up.panasonic.aero/2018/01/18/cybersecurity-biggest-threats-airlines
https://CRAN.R-project.org/package=ordinal
https://www.R-project.org/

On the Security of MIL-STD-1553
Communication Bus

Orly Stan(B), Adi Cohen, Yuval Elovici(B), and Asaf Shabtai(B)

Department of Software and Information Systems Engineering,
Ben-Gurion University of the Negev, Beersheba, Israel

stan@post.bgu.ac.il, {elovici,shabtaia}@bgu.ac.il

Abstract. MIL-STD-1553 is a military standard that defines the physi-
cal and logical layers, and a command/response time division multiplex-
ing of a communication bus used in military and aerospace avionic plat-
forms for more than 40 years. As a legacy platform, MIL-STD-1553 was
designed for high level of fault tolerance while less attention was taken
with regard to security. Recent studies already addressed the impact
of successful cyber-attacks on aerospace vehicles that are implementing
MIL-STD-1553. In this work we present a security analysis of MIL-STD-
1553, which enumerates the assets and threats to the communication
bus, as well as defines the attacker’s profile.

Keywords: MIL-STD-1553 · Anomaly detection ·
Communication bus security

1 Introduction

MIL-STD-1553 is a military standard developed by the US Department of
Defense (DoD) for the purpose of military platform integration [2] which has
served as the backbone of military and aerospace avionic platforms (e.g., F-15,
AH-64 Apache, F-16, V-22, X-45A, F-35) for more than 40 years. It is primar-
ily used for mission-critical systems that require a high level of fault tolerance,
since it is deterministic and dual redundant; it also uses a reduced cable topol-
ogy, connecting all devices on a single bus in a multipoint topology, as opposed
to point-to-point topologies.

MIL-STD-1553 is considered deterministic, because it is based on a mas-
ter/slave methodology in which the master issues messages based on a predefined
order and timing. Although other modern, reliable and deterministic data buses
have been introduced [3,9,13,15], MIL-STD-1553 remains the most widely used
standard in military aviation as it has been for the last 40 years, and is expected
to be used in the future. The main reason that alternative deterministic commu-
nication buses are not used in existing platforms is the difficulty of modifying
an entire operational platform and replacing the main data transmission topol-
ogy. Moreover, subsequent standards are based on the communication protocol
defined by MIL-STD-1553, or contains original MIL-STD-1553 components in
c© Springer Nature Switzerland AG 2019
B. Hamid et al. (Eds.): ISSA 2018/CSITS 2018, LNCS 11552, pp. 153–171, 2019.
https://doi.org/10.1007/978-3-030-16874-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16874-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-16874-2_11

154 O. Stan et al.

order to preserve high reliability [13]. For these reasons, MIL-STD-1553 will
likely be an integral component of critical military platforms for many more
years to come.

MIL-STD-1553 was developed long before the notion of cyber security was
familiar and even basic cyber-attacks, such as denial-of-service (DoS) attacks [4],
had not yet been introduced. Research regarding DoS attacks initially reported
in the early 1980s, several years after the release of the most recent version of
MIL-STD-1553 in 1978, and focused mainly on DoS in operating systems, rather
than computer networks [4]. The Designer’s Notes for MIL-STD-1553 include a
chapter discussing several aspects of network system security which should be
addressed when implementing a 1553 communication bus [2]:

– system security policy: defines the classification levels of the system, data,
and personnel that are related to the communication bus;

– system security architecture – specifies four approaches for designing systems
that process classified plain text data and unclassified data;

– Tempest: states that all components processing unencrypted classified data
should be protected against compromising emanation;

– Encryption: should be used in order to isolate components with different
classification levels from classified data;

– Trusted message routing and control design: maintaining low bit error rate,
parity coding of control words, and monitoring the bus controller can help in
detecting errors in messages or in their routing.

Although the Designer’s Notes provide references to security aspects, they
only contain general guidelines, including references to standards that might not
be appropriate for all MIL-STD-1553-based systems (e.g., military vessels devel-
oped by other countries might have different or additional compliance require-
ments than those defined in MIL-STD-1553). Moreover, because the standard is
defined for military purposes, more specific guidelines cannot be provided due
to confidentiality requirements. Finally, the standard is implemented by various
types of systems with diverse objectives, which makes it extremely complicated
to provide more specific requirements will suite all existing systems.

Therefore, despite the attention paid to security issues in the Designer’s
Notes, MIL-STD-1553 still contains vulnerabilities that expose the platforms
implementing it to cyber-attacks. Moreover, as presented in Sect. 4, there are
modern attacks that are not addressed in the Designer’s Notes.

As cyber-attacks play a major role in modern warfare and since military
platforms are likely to be attractive targets for attackers [7,11], it has become
clear that systems implementing the MIL-STD-1553 standard require improved
protection. Recent studies have already addressed the impact of successful cyber-
attacks on aerospace vehicles that implement MIL-STD-1553 [10,14]. In [14] the
author presents some of the associated vulnerabilities and suggests theoretical
methods for creating covert channels over the communication bus. The authors
in [10] illustrated the physical impact of simulated cyber-attack on an aerospace
vehicle. However, none of them proposed a solution for detect and/or prevent
such attacks.

On the Security of MIL-STD-1553 Communication Bus 155

The following sections provide: an overview of the MIL-STD-1553 architec-
ture and communication protocol (Sect. 2); a review of related works regarding
the security of systems implementing MIL-STD-1553 and other communication
bus technologies (Sect. 3); a security analysis of MIL-STD-1553 (Sect. 4); a con-
clusion of the paper and a suggestion towards an IDS architecture for identifying
attacks on a MIL-STD-1553 communication bus (Sect. 5).

2 1553 Communication Bus - Background

MIL-STD-1553 defines a dual redundant serial communication bus used for
transmitting data between a bus controller and remote terminals using a mul-
tipoint, master-slave bus topology. It was first published in 1973 and the latest
version, MIL-STD-1553B, published in 1978, is still used in many military and
aerospace systems to this day. MIL-STD-1553 defines the physical layer of the
communication bus as well as the logical layer and a command/response time
division multiplexing methodology using a 1 Mbps transfer rate data bus, while
specifying the transmission timings.

2.1 Bus Architecture

The 1553 communication bus includes five key elements: Remote terminal (RT),
bus controller (BC), bus monitor (BM), coupler, and the bus itself (illustrated
in Fig. 1). The bus is redundant – if a message cannot be transmitted on the
main channel it will be retransmitted on the backup channel. Although there
are redundant channels, only one element can transmit data over the bus at a
time. All elements connected to the bus are continuously exposed to the data
transmitted, even if not designated for them. The communication is managed by
the BC, and all other elements follow its commands. The bus can support up to
31 connected remote terminals.

Fig. 1. The MIL-STD-1553 bus architecture and its primary components.

Remote Terminal (RT): consists of three components. The hardware
transceiver is responsible for data transfer between the bus and the subsystem.

156 O. Stan et al.

It is connected directly to the bus and exchanges data with the subsystem via a
dual port RAM (DPR). In addition, it must be able to decode and buffer mes-
sages, detect transmission errors, and perform data validation tests. Invalid data
should be discarded. The DPR is shared memory which enables data transfer
between the transceiver and the subsystem. Both the transceiver and subsystem
have read and write permission to this memory. The subsystem is the computa-
tional unit (platform computer) of the RT. The subsystem is responsible for all
data processing and calculations required for the system to function.

Bus Controller (BC): responsible for managing the communication between
the RTs connected to the bus using command/response messages. It is the only
component that initiates data transfers on the bus to/from RTs or between two
RTs. There may be several terminals with BC capabilities connected to the same
bus for backup, but only one of them can function as the active BC at a given
time. The BC initiates commands to the RTs based on a predefined order and
timing.

Bus Monitor (BM): responsible for listening and collecting data from the bus
in order to observe the state and operational mode of the system and subsystems.
The BM is a passive device and does not send any messages, and therefore cannot
provide a status report on the data transferred over the bus.

Coupler: a physical component used to isolate the components connected to
the bus from one another and eliminate the possibility of damage to the bus in
case one of the components malfunctions.

Data Bus: the transmission medium that physically enables all communication
between the components connected to it.

2.2 Communication Protocol

Words are the data structure used for transmitting commands, data, and sta-
tus over the bus. A collection of words defines a message used for receiving or
transmitting data. Messages can be periodic or aperiodic. Periodic messages are
sent at fixed time intervals (i.e., time cycles). A major frame is a predefined
time frame in which all periodic messages are transmitted at least once (derived
from the periodic message with the longest time cycle). Aperiodic messages are
event-driven and therefore are not sent in fixed time cycles. However, they have
a fixed time slot in the major frame.

The standard defines three types of words: command, data, and status (illus-
trated in Fig. 2). All words are 20 bits long, starting with three bits of synchro-
nization and ending with a parity bit.

Command Word: initiated by the BC and designated to an RT. The command
specifies the action that the RT should perform: whether to receive or transmit
data. The remaining 16 bits are defined as follows:

– Terminal address (TA): a five bit field containing the address of the RT that
the command is designated for. It can contain up to 31 RT addresses (00000B

On the Security of MIL-STD-1553 Communication Bus 157

Fig. 2. Communication protocol words structure.

to 11110B), since the terminal address 11111B is reserved for broadcast com-
mand.

– T/R bit: a single bit that indicates the direction of the required data transfer.
Logic 1 indicates that the RT should transmit data, and logic 0 indicates that
the RT should receive data.

– Subaddress/Mode: a five bit field indicating the subaddress of the RT to
receive/transmit the data, or that this command is a mode code (in this case
it is set to 00000B or 11111B). Mode codes are special commands used to
change the operation mode of the RTs such as: timing synchronization, RT
transmitter shut down, and request to initiate self-test.

– Data word count/mode code: a five bit field which contains the number of
data words to be received/transmitted. If a mode code is set, these five bits
indicate the mode code.

Data Word: Contains the actual data being transferred on the bus. There is
no predefined structure for data words.

Status Word: Sent by the RT to the BC upon receiving a valid message, in
order to report its status to the BC. It contains different flags indicating different
types of errors, such as received data error, data processing error, and circuitry
error. It also allows the RT to request a service from the BC.

2.3 Communication Formats

There are four types of communication between elements over the bus, all of
which are initiated by the BC. The communication formats are designed to
maintain high reliability of the protocol by acknowledging every message sent
on the bus and flagging for errors and validation of the messages (using status
words).

158 O. Stan et al.

Fig. 3. BC-RT (a) and RT-BC (b) transfer format.

Fig. 4. RT-RT transfer format.

BC-RT/RT-BC Data Transfer: the communication between the BC and an
RT has two formats: ‘receive’ (BC-RT) and ‘transmit’ (RT-BC). In order to
initiate a BC-RT communication (Fig. 3(a)), the BC issues a ‘receive’ command
to the RT, and immediately transmits the data words. The RT receives and
validates the data, and responds with a status word. In order to start a RT-BC
communication (Fig. 3(b)), the BC issues a ‘transmit’ command to the RT. The
RT receives the command and responds with a status word, which is immediately
followed by the data words it should transmit.

RT-RT Data Transfer: in RT-RT communication (Fig. 4), one RT transmits
data to another RT. The BC starts the communication by issuing a ’receive’ com-
mand to the receiving RT, which is immediately followed by sending a ’transmit’
command to the transmitting RT. The transmitting RT responds with a status
word and transmits its data words. Upon receiving the data, the receiving RT
responds with a status word.

Mode Code Transfer: the BC can send a mode command by setting the
subaddress/mode field to 00000B or 11111B. In this case the word count field
defines which mode code should be performed. A mode command can be sent
to a specific RT or to all RTs. A mode command can be associated with up to
one data word.

Broadcast Transfer: the standard also supports broadcast messages. Broad-
cast can be used with messages in which only the BC is transmitting data and
all others are receiving. The broadcast message format is similar to the non-
broadcast messages, with two exceptions: the terminal address field is set to
11111B, and all receiving RTs suppress their status word transmission.

On the Security of MIL-STD-1553 Communication Bus 159

3 Related Work

Although MIL-STD-1553 is the basis for many mission-critical platforms, there
has been very little research conducted regarding its security. The security of
mission-critical and embedded systems was discussed in [1,5,16]. In 2005, Chong
et al. [1] suggested design principles and guidelines for a survivability system
architecture and applied it to a DoD information system. In 2016, Vai et al.
[16] developed a methodology for designing a general mission-critical embedded
system that considers cyber security aspects. The authors suggest a modular
system architecture that contains cyber security features (e.g., cryptographic
components and a separation kernel), and monitoring and recovering services.

These kind of security measures are suitable for systems that are in their
design phase, in which different security features and principles can be consid-
ered and integrated correctly; however, they are not suitable for enhancing the
security of existing 1553 bus implementations, because changing components of
the 1553 communication bus is cost prohibitive due to its extensive deployment
in wide range of aircrafts and vehicles.

In the context MIL-STD-1553, in 2014, McGraw et al. [10] explored the
impact of malicious actions on a satellite that uses a 1553 communication
bus for intercommunication between its subsystems. The communication bus
was modeled using SimPy (a simulation framework written in Python), and
consists of a BC, BM, and 10 RTs. In addition, STK SOLIS (a simulation
environment for spacecraft) was used for generating a high fidelity model and
data exchange between the simulated subsystems. In order to explore malicious
actions, McGraw et al. [10] characterized the normal behavior of a space asset
and used it to detect perturbations which may indicate the presence of a malware.
Two scenarios of abnormal behavior were simulated: the presence of solar flares
or ionization activity, and the presence of a malware. These abnormal scenarios
were simulated by injecting noises (of different magnitudes) into the sensors’
models. Manual analysis of the results indicated that it is possible to detect
the anomalous events. Moreover, the authors were able to distinguish between
events that might be caused by ionization and those that might be caused by a
malware. The authors also observed a significant change in the satellite physical
position in the presence of malware.

In 2015, Nguyen [14] introduced several methods for creating covert channels
over a 1553 communication bus, in order to leak data from high security level
subsystems to lower subsystems. The suggested attacks utilize different features
and behavioral characteristics of the communication protocol defined by the
standard, in order to establish a signaling mechanism between two cooperating
subsystems connected to the same communication bus. Nguyen presented three
attack scenarios and categorized them into two types: timing and storage attacks.
Timing attacks utilize time delays between messages defined by MIL-STD-1553,
while storage attacks utilize word structure and programmer-defined features.
More specifically, the storage attacks utilize the ‘command illegalization’ imple-
mentation (which is a programmer defined feature), and the Service Request
(SR) feature defined by the standard which enables an RT to notify the BC that

160 O. Stan et al.

it needs to transmit or receive data. The suggested attack scenarios are merely
theoretical and were not empirically tested. In addition, the suggested attacks
rely on assumptions which are not necessarily correct or applicable for all 1533
communication buses and are inefficient. For example, if the RT that executes
a timing attack is able to control its response delays to the granularity of one
microsecond, it can leak up to three bits per message. Covert channel attacks
were taken into consideration in the security analysis we present in Sect. 4.

4 Security Analysis of the 1553 Communication Protocol

In this section we present a comprehensive security analysis of the MIL-STD-
1553 communication protocol which consists of the following elements.

Asset: an element, which is part of the 1553 communication bus, that (1) an
attacker might be interested in, and (2) has the potential to disrupt the system’s
operation or leak information when compromised. An asset might be a physical
component (e.g., a subsystem), or data present in the system (e.g., transmitted
messages, data stored in a subsystem).

Attacker Profile: an individual, group, organization, or government that have
interest in attacking the system’s assets and attempt to access them via attack
vectors.

Attack Vector: indicating various methods used by an attacker to penetrate
the system in order to perform the malicious activity.

Threat Agent: an entity (individual, software, hardware), internal or external
to the system, that uses its privileges in order to execute the attack.

Attack Method: the actions that an attacker should perform in order to exe-
cute an attack.

4.1 Assets

The identified assets that are part of a MIL-STD-1553 communication bus and
might have value to a potential attacker are can be categorized as follows.

Connectivity Assets: the physical components responsible for data transfer
between the different components at different levels:

– Transmission medium (the bus itself) (component 8 in Fig. 1): the physical
wires that connect the RTs and enable all communication and data transmis-
sion.

– Transceiver (component 2 in Fig. 1): responsible for decoding the analog sig-
nals into digital data which is comprehensible to the subsystem (and vice
versa) and thus enables data transfer between the bus and the subsystem.

– Coupler (component 7 in Fig. 1): an electrical unit that isolates the bus from
an RT and connects the transceivers to the transmission medium.

On the Security of MIL-STD-1553 Communication Bus 161

Damage to one of these components might harm the availability of a part, or the
entire, system. Denying a critical subsystem to transmit data (by sabotaging its
connectivity assets for example) prevents inputs for other component that might
fail in performing their tasks, potentially leading to disconnection between com-
ponents. Since these components are physical, they are capable for compromising
emanation, which harms the confidentiality of the system. The integrity of the
system is also threatened by these assets, since they have access to the inputs
and outputs of each component, and once compromised, they can manipulate
these data.

Data Assets: the data stored in different parts of the system:

– DPR data (component 3 in Fig. 1): the data stored in the shared memory of
the transceiver and the subsystem (DPR).

– Subsystem data (component 4 in Fig. 1): the data that is stored in the memory
of the subsystem and consumed by the subsystem in order to perform its tasks
(e.g., geographical location).

– Data in motion (components 8 in Fig. 1): the current signals (data) transmit-
ted over the bus.

Any damage or changes made to these assets violates the integrity of the sys-
tem. Moreover, as previously described, manipulation of the inputs and out-
puts of subsystems can damage the system’s availability. Moreover, lack of data
encryption breaks the system’s confidentiality once leaked outside.

Computational Units: the subsystem (component 4 in Fig. 1) consists of phys-
ical components (e.g., CPU, memory, sensors) and the software responsible for
performing the subsystem’s tasks (e.g., reporting the current position, calculat-
ing distance from objects).

Compromised subsystems can manipulate or generate false outputs and break
the system’s integrity, stop communication with other subsystems and damage
its availability, or abuse access to other devices in order to leak data and violate
the system’s confidentiality.

The table in AppendixA provides more detailed description of each asset and
the security concerns (i.e., potential consequences) related to it, categorized by
integrity, confidentiality, and availability.

4.2 Attacker Profile

Since MIL-STD-1553 is mainly implemented in military platforms, most of the
attack vectors require physical access to the system (e.g., change components’
code, eavesdropping), or access to external devices that interact with the system
(such as USB devices or CDs) or sensors (such as GPS or RADAR). This kind
of access requires highly skilled attacker such as a state actor.

The attack vectors can be categorized into three main groups: code injec-
tion and manipulation, data injection, and physical tampering. The attacker is
assumed to have the ability to execute at least one of these attack vectors dur-
ing the life cycle of the system (e.g., development, supply chain, deployment, or

162 O. Stan et al.

maintenance stages). These individuals can abuse their access rights in order to
sabotage various components.

Once the attacker gained access to the system he/she executes the attack via
a component connected to the system or an individual that have physical access
to it, which are referred to as threat agents.

Attack Vectors

Code Injection and Manipulation: this attack vector refers to the ability to
inject or manipulate the code of the system’s components in order to perform
the attack. This includes the program coded in the transceiver, as well as the
operating system or software of a subsystem. Malicious code can be injected
during the main phases of the component’s life cycle: development, supply chain,
and deployment and maintenance.

The development phase includes all processes that take place before deliver-
ing the product to the client: hardware manufacturing, code writing, integration,
and testing. During the development phase, malicious individuals can exploit
their access to the components and insert erroneous or malicious code, or phys-
ically tampering with components. Though components are tested before they
are delivered to clients, a sophisticated attacker can inject code that is pro-
grammed to operate within a specific context and can identify when it is in the
real environment, thereby evading detection tools.

During the deployment and maintenance phase various procedures performed
may expose the system to malicious code injection. These procedures include:
operating system and software updates, bug fixes, system configuration, and
data loading. Such maintenance activities may be performed via wireless com-
munication or physically via CD/DVD, USB connection, or through a computer
that is connected to the bus. In this phase, code injection and manipulation may
also be performed by another component that was previously compromised and
is connected to the bus.

False Data Injection: data injection refers to false data provided by sen-
sors, such as Global Positioning System (GPS) or Radio Detection And Rang-
ing (RADAR) systems, or an external device (e.g., magnetic tape, CD/DVD, or
computer). In recent years extensive research has been conducted regarding false
data injection attacks on control systems, mainly on electrical power grids [8,12].
In this type of attack, the attacker injects crafted data into the system through
sensors (or other input devices) that alter the normal behavior of the system and
might lead to failures and even the execution of malicious code. Note, however,
that in order to perform a successful data injection attack without detection,
the attacker must have in depth knowledge of the system and its vulnerabilities.

Physical Tampering: every electronic device emits electromagnetic radiation.
By eavesdropping on the device and analyze its electromagnetic emanations,
an attacker can reveal information regarding the device’s operation. This type
of attack is called tempest [6], and it is addressed in the Designer’s Notes for
MIL-STD-1553. However, a malicious individual who has physical access to the
system can make subtle changes to the system, such as adding computational

On the Security of MIL-STD-1553 Communication Bus 163

capabilities to a coupler, manipulating wiring or the coupler’s grounding. Such
modifications may not change the component’s behavior significantly, but does
create some type of side effect (such as amplified electromagnetic radiation),
which may also go undetected if the system is not specifically tested for those
specific side effects.

Threat Agents

After the attacker managed to gain access to the system, he/she can use one of
the following threat agents in order to execute an attack: a component connected
to the bus or a malicious individual (human) possessing access permissions to
the system.

Component (RT and BC): we distinguish between two types – a compromised
component and a fake component. A compromised component is a component
which was originally part of the system and was manipulated by the attacker.
This may include components that are not constantly connected to the bus and
are connected on demand (e.g., for uploading configurations, downloading logs,
and maintenance). A fake component was not part of the system and was con-
nected to it illegitimately. Once connected, the fake component becomes part
of the system and can transmit data and listen to all communications. We also
distinguish between BC and RT components, since the functionality of the BC
is more extensive than the functionality of the RT, and hence has greater capa-
bilities for executing attacks.

Malicious Individual: an individual (human) that cooperates with the
attacker (or the attacker himself) and has access to the system, who can tamper
with its components physically (by sabotaging their circuitry, for instance), or
logically (e.g., by inserting errors in a component’s code).

4.3 Attack Methods and Consequences

This section describes the threats to the MIL-STD-1553 communication proto-
col, which are categorized by their consequence: denial of service, data leakage
and data integrity violation. The following subsections elaborate on the different
threats to the 1553 communication bus and provide methods to execute them.
Appendix B provides more detailed description of each attack method, cate-
gorized by message manipulation and behavior manipulation. Message manip-
ulation refers to modification of legitimate words (command, data, or status)
transmitted over the bus. Behavior manipulation refers to altering the behav-
ior of the compromised component, for example, transmitting fake (malicious)
messages in unusual timing or order.

Denial of Service (DoS). DoS can be achieved by damaging physically or
logically the system’s assets, and will usually require only one threat agent.
Physical damage to a component can harm its ability to perform operations,
produce outputs, or transmit them over the bus. In particular, if the damaged
component is the bus itself, there could be a complete disconnection between all
of the components connected to it.

164 O. Stan et al.

Logical damage refers to exceptions occurred during component’s normal
operation, component’s incorrect operation, or data manipulation and corrup-
tion. These scenarios result in corrupted output or lack of response, which can
lead to denying the operation of one or more components. Following a description
of possible methods to achieve DoS to an 1553 communication bus.

Message Manipulation: compromised components with BC capabilities can
change fields of a command word (e.g. WC, T/R, and TA) to control data
routing and cause collisions. For example: denying a ‘transmit’ command from
reaching the GPS by changing its TA field will cause other subsystems (e.g.
navigation, artillery, etc.) rely on outdated data, which can have severe outcomes.
Manipulating status words by a threat agent to falsely indicate on errors in the
target RT might lead to termination of the communication with it, although it
operates correctly. Data words can be easily corrupted by different threat agents,
by causing collisions or manipulating them at the subsystem’s level. Lack of
sufficient input validation by the component can lead to an incorrect operation
and even crash it.

Behavior Manipulation: compromised components that can control their
response delays and transmission times or behave differently than the command
specifies can also cause collisions and failures to other component, thus lead to
DoS.

Possible Operational Consequences: DoS to the 1553 communication bus
can have devastating results, especially because it is used for mission critical
systems. The attack can be executed upon detection of some operation in order
to intercept it. For example, an attacker that listens to the bus can identify
that the system entered a certain geographic zone and deny location data from
updating the navigation system, or identify that the system is aiming to fire at
a target and deny the firing command from reaching the relevant components
(as illustrated in Fig. 5(a)).

Data Leakage. Data leakage in the context of the MIL-STD-1553 communi-
cation bus is the result of unauthorized data transmission between components
(i.e. components of different security levels) or outside the system.

Message Manipulation: by changing the WC or TA fields in a command word,
a threat agent can instruct a component to transmit exceeding data words, or
to transmit data words to another component (that may have lower security
level). Data can also be leaked using the reserved bits of a status word, or by
modulating additional payload on legitimate data words.

Behavior Manipulation: threat agents that can control their behaviors are
capable of creating a covert channels in order to leak data as presented by Neugen
in [14]. If the threat agent has BC capabilities it can also utilize idle time on the
bus and initiate unauthorized data transfers. Moreover, if the threat agent has
an access to an external device or removable hardware it can utilize it to leak
data outside the system. Data can also be leaked physically by eavesdropping
the electromagnetic emanations of components.

On the Security of MIL-STD-1553 Communication Bus 165

Possible Operational Consequences: leaked data can help the attacker con-
clude information about the operation of the system. Usually vehicle have service
ports (e.g. USB) that are easily accessible to maintenance crew for debugging and
investigating the vehicle’s performance. A malicious crew member can extract
logs and traffic traces from the system and pass them to the attacker. Sensi-
tive information, such as: current vehicle location, targets, and destinations, can
be leaked by a compromised component outsize the vehicle by using legitimate
external communication channels (e.g., radio).

Violation of Data Integrity. Violation of data integrity refers to invalid or
incorrect data that flows inside the system and causes other component to fail
or operate incorrectly. Incorrect data can get inside the system by a threat
agent external to the system (see Sect. 4.2) or by an inside threat agent that can
manipulate messages exchanged over the bus or send fake data in the behalf of
another component (i.e., spoofing), and cause the system to behave abnormally.

Possible Operational Consequences: by altering the data words an attacker
can cause the system to navigate to the wrong destination, fire at the wrong
target, and even to no fire at all, or withhold/add objects from/to the vehi-
cle’s dashboards and deceive the crew aboard. Figure 5(b) illustrates an attack
scenario in which the attacker provides fake object location by utilizing: (1)
the transmission time gap between two legitimate messages; and (2) the refresh
timing of the displays RT.

(a) DoS attack illustration. (b) Integrity violation attack illustra-
tion.

Fig. 5. Attacks illustration.

166 O. Stan et al.

5 Conclusions and Future Work

MIL-STD-1553 is a widely used standard in military avionics, which is vulner-
able to cyber-attacks that potentially lead to devastating results. In this paper
we present a security analysis of MIL-STD-1553 that enumerates the assets and
threats to a MIL-STD-1553 communication bus, as well as defines the attacker’s
profile. To the best of our knowledge, there are no security solutions for identi-
fying and/or preventing cyber-attacks on a MIL-STD-1553 communication bus.
Thus, a security solution is required.

In future work, we plan to establish an operational testbed and implement
the attacks described in this work. In addition, we plan to develop an intrusion
detection system (IDS) which will monitor the bus continuously in order to
identify malicious activities. The IDS will focus on the presented attack methods:
(1) identifying data transmissions from illegitimate source (i.e. spoofing); (2)
identifying anomalous message sequences (DoS and data leakage attacks); and
(3) identifying anomalous data words (integrity violation attacks).

A Assets and Potential Consequences

Asset Integrity Confidentiality Availability

Transceiver Compromised transceiver

can provide corrupted

data to the subsystem it

connects to the bus or to

other components

connected to the bus

which can lead to

incorrect operation

Compromised/corrupted

transceiver can stop data

transfer between the bus

and the subsystem which

can lead to DoS to the

subsystem it connects to

the bus, and/or to other

components that depend

on the data it should

transmit

Transmission

medium (the

bus itself)

Shorts or failure of the

transmission medium

may provide corrupted

data to the components

connected to the bus

which can further lead to

incorrect operation of the

system

Electromagnetic energy

emanating from

compromised

transmission medium

may be used to deduce

the information

transmitted on the bus

and compromise the

system’s confidentiality

Shorts or failure of the

transmission medium

may lead to total

disconnection of the

communication over the

bus and interrupt the

system’s operation

(continued)

On the Security of MIL-STD-1553 Communication Bus 167

(continued)

Asset Integrity Confidentiality Availability

Coupler Compromised coupler can

provide corrupted data to

the RT it connects to the

bus, or to other

components connected to

the bus which can lead to

incorrect operation

Electromagnetic energy

emanating from a

compromised coupler

may be used to deduce

the information

transmitted on the bus

and compromise the

system’s confidentiality

Unavailable coupler

disconnects the RTs

connected to the coupler

from the bus. In some

cases it can also cause

DoS to other components

connected to the bus

Subsystem Compromised subsystem

can provide corrupted

data to other components

and lead to incorrect

operation. It can also

spoof as another

component by changing

the TA field of a

command

Compromised subsystem

can abuse access to

devices that have the

ability to transmit data

outside the system (i.e.,

radio transmitter) and

leak sensitive information

Unavailable subsystem

stops responding to

commands and data

transmission which might

lead to DoS to other

components depending

on its outputs and

possibly even to the

entire system. Corrupted

data sent by a

compromised subsystem

to other subsystems may

also result in DoS

DPR data Corrupted data provided

to a component can lead

to incorrect operation

Classified data that leaks

outside the system in

plain text can be abused

by malicious individuals

Unavailable or corrupted

data may lead to DoS to

the components

depending on it, and

possibly even to the

entire system

Subsystem

data

Corrupted data provided

to a component can lead

to incorrect operation of

the system

Classified data and/or

operation logic that leaks

outside the system in

plain text can be abused

by malicious individuals

Unavailable or corrupted

data may lead to failure

of the subsystem’s

operation and may also

result in DoS to the

components depending

on its outputs and

possibly even to the

entire system

Data in

motion

Corrupted data provided

to a component can lead

to incorrect operation of

the system

Classified data and/or

operation logic can be

leaked outside the system

by compromising

emanation and can be

abused by malicious

individuals

Unavailable data might

lead to DoS to the

components depending

on it and possibly even

to the entire system

168 O. Stan et al.

B Threats and Attack Methods

Category DoS attack Data leakage Data integrity vaiolation

Message manipulation

Command

word

WC field

– Changing the WC field to a

smaller number causes the tar-

get RT to receive or transmit

partial data which can lead to

an error in the target RT or

other RTs depending on its out-

put

– Changing the WC field to a

larger number can also lead to

an error due to collisions and

corrupted data reception

T/R bit

– Flipping the T/R bit in a

‘transmit’ command causes the

target RT to receive a ‘receive’

command that causes the tar-

get RT to respond with an error

or wait for data to arrive (while

no data is transmitted); fur-

thermore the RT won’t send

the data it should to other RTs

and they won’t get their inputs

– Flipping the T/R bit in a

‘receive’ command causes the

target RT to receive a ‘trans-

mit’ command that can lead to

an error or data transmission

that causes collision (since the

BC continues to transmit the

data of the ‘receive’ command)

TA field

– Changing the TA field to

another/unsupported RT

address prevents the command

from reaching its target RT

and can cause a failure in the

RT’s operation or failure of

other RTs depending on it

WC field

– By changing the WC field of a

‘transmit’ command to a larger

number the threat agent might

cause the target RT to trans-

mit more data than it should.

If the attacker is familiar with

the memory map of the target

RT, he/she can use this method

to access restricted areas in the

target RT’s memory

TA field

– By changing the TA field in a

‘transmit’ command to another

RT address the threat agent

might obtain data from a sub-

system that it is not authorized

to hold

– By changing the TA field of

a ‘receive’ command, the

threat agent can force an RT

to accept data that it might

not be authorized to hold

A threat agent with BC

capabilities can be used to

tamper with the

communication between the

real BC and various RTs.

The threat agent can

corrupt the original

command when it is

transmitted over the bus,

and send its own command

to the target component

instead. The target

component will send its

response without knowing

that the command received

is different than the original

one, and the real BC will

receive a response for a

command it did not send

Status

word

A compromised RT can

impersonate as another and

set the ‘Busy’, ‘Terminal’, or

‘Subsystem’ flags in its status

word and provide a falsely

indication to the BC regarding

a malfunction or inability to

handle messages and thus

disrupt the communication

with that RT. Similarly, a fake

BC can respond on behalf of

the target RT and signal the

BC to stop sending commands

to the target component

Leaking data via status words

can be done by utilizing the

‘reserved’ bits (see Fig. 2) -

three bits that are reserved for

future development of the

standard. The standard

specifies that these bits should

be unused and remain set to

zero. A lack of status word

monitoring enables

cooperating threat agents to

easily transfer any data

without detection

Any threat agent connected

to the bus (with BC or RT

capabilities) can corrupt

status words transmitted

back to the real BC and

send fake statuses as if is

the transmitting RT

(continued)

On the Security of MIL-STD-1553 Communication Bus 169

(continued)

Asset Integrity Confidentiality Availability

Data

word

– A malicious BC or RT can

alter legitimate data transmit-

ted and cause failure in the tar-

get component (if the target

component doesn’t perform val-

idation at the subsystem level)

– An attacker who has prior

knowledge about the target

component can generate and

inject fake data that can cause

failure, disrupt the normal

operation, or impair the

outputs of the target

component

Any threat agent can use

the data words it

transmits in order to

modulate additional

payload. This type of

attack requires a

cooperating threat agent

who is familiar with the

modulation method and

can then decode the

additional payload

Threat agents can utilize

idle times on the bus and

resend fake commands to

target components on

behalf of legitimate

components, in order to

override the real data

stored in the target

components’ memory.

The target components

will consider the fake

data to be the real data

received from the

legitimate component

Behavior manipulation

Command

word

Fake command

Issuing fake commands (either

defined by the standard or

meaningless) that are not part

of the system’s normal oper-

ation may result in collisions,

blocking all communication

over the bus or affecting the

proper system’s operation (e.g.

issuing shut-down commands or

clock synchronizing at incorrect

timings)

WC field

– Sending less data than speci-

fied by the WC field of a com-

mand causes the target compo-

nent to receive incomplete data

and may fail to operate

– Sending excessive amount of

data can cause a collision if the

target component responds

with its status while the threat

agent is still transmitting data

Neugen presented in [14]

a storage attack method

to create covert channel

between two

compromised components

of different security levels

over the 1553 bus, which

requires a compromised

BC and a compromised

RT, and is based on the

RT’s specific ‘command

illegalization’

implementation

Status

word

Neugen presented in [14]

a storage attack method

to create covert channel

between two

compromised components

of different security levels

over the 1553 bus, which

is based on the Service

Request (SR) bit of a

status word and requires

a cooperating BC and RT

(continued)

170 O. Stan et al.

Asset Integrity Confidentiality Availability

Transmission

timings

– Threat agents that can con-

trol the timing of their trans-

missions can transmit messages

at the time of choice. Sending

unexpected messages to target

components may result in fail-

ures.

– Threat agents that can

control the timing of their

transmissions can cause

collisions that corrupt data

transmitted over the bus (e.g.,

by transmitting at random

timing) and can lead to error

or incorrect operation of other

components

– Neugen presented in [14] a

timing attack method to cre-

ate covert channel between

two compromised compo-

nents of different security

levels over the 1553 bus, in

which two cooperating RTs

establish a signaling mecha-

nism based on their response

time delays that are inter-

preted into binary data

– Threat agent with BC

capabilities can utilize idle

time periods on the bus and

initiate data transfer with

any RT in order to extract

data. If there is a

cooperating threat agent

connected to the bus, then

the agent with BC

capabilities can initiate

RT-RT communication and

transfer data from the

target RT to the

cooperating threat agent

BM imper-

sonation

Any threat agent connected

to the bus can act as a BM

and record the data

transmitted over the bus

which is available to all

components connected to

the bus. This data may be

further leaked to other

components or external

devices via removable

hardware (e.g., USB, CD, or

magnetic tape), an available

connection to other

networks, or covert channels

Tempest Malicious individuals can

eavesdrop and capture the

electromagnetic emanations

of components [6] (which

can be enhanced by

physically sabotaging the

components), and analyze

them in order to obtain

information about the

target component’s

operation that can imply on

other operations and

characteristics of the entire

system and help the

attacker better understand

it

On the Security of MIL-STD-1553 Communication Bus 171

References

1. Chong, J., Pal, P., Atigetchi, M., Rubel, P., Webber, F.: Survivability architec-
ture of a mission critical system: the DPASA example. In: 21st Annual Computer
Security Applications Conference (ACSAC 2005), December 2005, pp. 10, 504

2. Data Device Corporation: MIL-STD-1553 Designer’s Guide (1998)
3. Gillen, A., Shelton, J.: Introduction of 3910 high speed data bus. In: Military Com-

munications Conference, MILCOM 1992, Conference Record. Communications-
Fusing Command, Control and Intelligence, pp. 956–960. IEEE (1992)

4. Gligor, V.D.: A note on the denial-of-service problem. In: IEEE Symposium on
Security and Privacy, pp. 139–149 (1983)

5. Jiang, W., Guo, W., Sang, N.: Periodic real-time message scheduling for
confidentiality-aware cyber-physical system in wireless networks. In: 2010 Fifth
International Conference on Frontier of Computer Science and Technology, pp.
355–360, August 2010

6. Kuhn, M.G., Anderson, R.J.: Soft tempest: hidden data transmission using elec-
tromagnetic emanations. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp.
124–142. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49380-8 10

7. Lindsay, J.R.: Stuxnet and the limits of cyber warfare. Secur. Stud. 22(3), 365–404
(2013)

8. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation
in electric power grids. ACM Trans. Inf. Syst. Secur. (TISSEC) 14(1), 13 (2011)

9. Mayoux, J.-J.: The data bus of the next generation European fighters. In: Proceed-
ings of the IEEE 1993 National Aerospace and Electronics Conference, NAECON
1993, pp. 152–156. IEEE (1993)

10. McGraw, R.M., Fowler, M.J., Umphress, D., MacDonald, R.A.: Cyber threat
impact assessment and analysis for space vehicle architectures. In: International
Society for Optics and Photonics SPIE Defense+ Security, p. 90850K (2014)

11. Miller, B., Rowe, D.: A survey SCADA of and critical infrastructure incidents. In:
Proceedings of the 1st Annual Conference on Research in Information Technology,
RIIT 2012, pp. 51–56. ACM (2012)

12. Mo, Y., Sinopoli, B.: False data injection attacks in control systems. In: Preprints
of the 1st Workshop on Secure Control Systems, pp. 1–6 (2010)

13. Murdock, J.K., Koenig, J.R.: Open systems avionics network to replace MIL-STD-
1553. In: Proceedings of 19th Digital Avionics Systems Conference, 19th DASC
(Cat. No. 00CH37126), vol. 1, pp. 4E5/1–4E5/6, October 2000

14. Nguyen, T.D.: Towards MIL-STD-1553B covert channel analysis. Technical report,
Naval Postgraduate School, Monterey, California (2015)

15. US Department of Defense: Fiber Optics Mechanization of an Aircraft Internal
Time Division Command/Response Multiplex Data Bus, May 1988

16. Vai, M., et al.: Systems design of cybersecurity in embedded systems. In: 2016 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–6, September
2016

https://doi.org/10.1007/3-540-49380-8_10

Author Index

Agrawal, Megha 77
Almgren, Magnus 19
Ameur-Boulifa, Rabéa 35
Apvrille, Ludovic 35

Buttyán, Levente 111

Chang, Donghoon 77
Cohen, Adi 153

Di Pietro, Roberto 125

Elovici, Yuval 153

Gazdag, András 111
Girs, Svetlana 50
Groza, Bogdan 94

Huang, Tianxiang 77
Hussain, Ahmed Mohamed 125

Ibrahim, Omar Adel 125

Lautenbach, Aljoscha 19
Lenders, Vincent 135

Lisova, Elena 50
Lugou, Florian 35

Martinovic, Ivan 135
Murvay, Pal-Stefan 94

Neubrandt, Dóra 111
Niedbala, Anna K. 135

Oligeri, Gabriele 125
Olovsson, Tomas 19

Pedroza, Gabriel 3
Popa, Lucian 94

Schäfer, Matthias 135
Shabtai, Asaf 153
Stan, Orly 153
Strohmeier, Martin 135
Szalay, Zsolt 111

Tavakoli Kolagari, Ramin 59

Zhou, Jianying 77
Zoppelt, Markus 59

	Foreword from the ISSA 2018 Program Chairs
	Organization
	Contents
	Invited Paper
	Towards Safety and Security Co-engineering
	1 Introduction
	2 Positioning Safety and Security
	2.1 Application domains positioning
	2.2 Conceptual positioning

	3 Standards, Development Cycles and Methods
	3.1 Standards Ecosystem
	3.2 Towards an Unified Development Cycle

	4 Model-Driven Approaches for Co-engineering
	4.1 Standalone Safety and Security Engineerings
	4.2 Model-Driven Approaches for Multi-concern Analyses
	4.3 Joint Safety-Security Engineering

	5 Difficulties to Achieve Integration of Safety and Security Processes and Their Adoption
	6 Integration of Safety and Security Techniques
	6.1 Combined Attack-Fault Trees
	6.2 Discussion on Metrics for Safety Assessment
	6.3 Discussion on Metrics for Security Assessment
	6.4 Perspectives for Consistent Assessment of Safety and Security

	7 Overall Perspectives
	References

	Safety and Security Interplay
	Understanding Common Automotive Security Issues and Their Implications
	1 Introduction
	2 Methodology
	3 Survey Participants
	4 Common Automotive Security Issues
	4.1 Design and Architecture
	4.2 Parameters
	4.3 Programming
	4.4 Intra and Inter Question Correlations

	5 Recommendations
	6 Related Work
	7 Conclusion
	References

	SysML Model Transformation for Safety and Security Analysis
	1 Introduction
	2 SysML-Sec Language
	2.1 Syntax

	3 From SysML-Sec to Proverif
	3.1 ProVerif Language
	3.2 Translation of SysML-Sec Design to ProVerif

	4 Validation
	4.1 Correctness Theorem
	4.2 Verification Results in TTool

	5 Related Work
	6 Conclusion
	References

	The Challenge of Safety Tactics Synchronization for Cooperative Systems
	1 Introduction
	2 Example – A Platoon
	3 Failure Perception in a Platoon
	4 Safety Tactics Synchronization for CO-CPSs
	5 Conclusions
	References

	SAM: A Security Abstraction Model for Automotive Software Systems
	1 Introduction
	2 Targeting ``Driving Computers''
	3 Automotive Software Systems Engineering
	3.1 Automotive Core Development Process
	3.2 Modeling Automotive Systems with EAST-ADL and AUTOSAR
	3.3 Adaptive AUTOSAR

	4 User Story
	4.1 Automotive Security Management—State of the Practice
	4.2 Identifying Requirements for Automotive System Modeling

	5 SAM—Security Abstraction Model
	5.1 SAM Metamodel
	5.2 Methodical Context for SAM

	6 Evaluation
	6.1 Modeling Example
	6.2 Interviews with Experts from the Automotive Industry

	7 Related Work
	8 Conclusion and Future Work
	References

	Car Security
	CAN-FD-Sec: Improving Security of CAN-FD Protocol
	1 Introduction
	2 Background and Related Work
	3 Security Requirements
	4 A Secure CAN-FD Protocol
	4.1 Message Structure
	4.2 Proposed Security Architecture

	5 Discussion on Security
	5.1 Key Management
	5.2 Authenticated Encryption

	6 Implementation Results
	7 Conclusion
	References

	INCANTA - INtrusion Detection in Controller Area Networks with Time-Covert Authentication
	1 Introduction and Motivation
	2 Experimental Setup
	3 Analysis of Clock Accuracy in Automotive-Grade Controllers
	3.1 Theoretical Background
	3.2 Experimental Measurements of Delays
	3.3 Forcing Delays on the Bus

	4 The Proposed Protocol and Results
	4.1 Protocol Overview
	4.2 Results on Embedding Authentication in Delays

	5 Discussion and Conclusion
	References

	Detection of Injection Attacks in Compressed CAN Traffic Logs
	1 Introduction
	2 Related Work
	3 Technical Background
	3.1 CAN Protocol
	3.2 CAN Compression Algorithm

	4 CAN Attacks
	4.1 Taxonomy of CAN Attacks
	4.2 Realized Attacks

	5 Anomaly Detection
	5.1 Data Sets
	5.2 Our Anomaly Detection Algorithm
	5.3 Results

	6 Conclusion
	References

	Key is in the Air: Hacking Remote Keyless Entry Systems
	1 Introduction
	2 Related Work
	3 Scenario
	4 Equipment: Hardware, Software and Set-Up Configuration
	4.1 Jammer
	4.2 Logger

	5 Measurement Results
	5.1 Results and Discussion

	6 Conclusion
	References

	Aviation Security
	Surveying Aviation Professionals on the Security of the Air Traffic Control System
	1 Introduction
	2 Air Traffic Surveillance Technologies
	3 Survey Design
	3.1 Recruitment
	3.2 Demographics
	3.3 Self-assessed General Knowledge and Work Environment

	4 Survey Results
	4.1 Self-assessment of Technical Familiarity and Dependence
	4.2 Assessment of Trust and Security Issues
	4.3 Assessment of Attack Impact
	4.4 Qualitative Analysis

	5 Limitations
	6 Related Work
	7 Discussion
	8 Conclusion
	A Survey Questions
	B Survey Comments
	References

	On the Security of MIL-STD-1553 Communication Bus
	1 Introduction
	2 1553 Communication Bus - Background
	2.1 Bus Architecture
	2.2 Communication Protocol
	2.3 Communication Formats

	3 Related Work
	4 Security Analysis of the 1553 Communication Protocol
	4.1 Assets
	4.2 Attacker Profile
	4.3 Attack Methods and Consequences

	5 Conclusions and Future Work
	A Assets and Potential Consequences
	B Threats and Attack Methods
	References

	Author Index

