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Abstract We define the empiric stochastic stability of an invariant measure in the
finite-time scenario, adapting the classical definition of stochastic stability. We prove
that an invariant measure of a continuous system is empirically stochastically stable
if and only if it is physical. We also define the empiric stochastic stability of a weak∗-
compact set of invariant measures instead of a single measure. Even when the system
has not physical measures it still has minimal empirically stochastically stable sets
of measures. We prove that such sets are necessarily composed by pseudo-physical
measures. Finally, we apply the results to the one-dimensional C1-expanding case to
conclude that the measures of empirically stochastically sets satisfy Pesin Entropy
Formula.

Keywords Empiric stochastic stability · Physical measures · Pseudo physical
measures · Pesin Entropy Formula

1 Introduction

The purpose of this paper is to study a type of stochastic stability of invariant mea-
sures, which we call “empiric stochastic stability” for continuous maps f : M �→ M
on a compact RiemannianmanifoldM of finite dimension, with or without boundary.
In particular, we are interested on the empirically stochastically stable measures of
one-dimensional continuous dynamical systems, and among them, theC1-expanding
maps on the circle.
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Let us denote by (M, f ) the deterministic (zero-noise) dynamical systemobtained
by iteration of f , and by (M, f, Pε) the randomly perturbed system whose noise
amplitude is ε. Even ifwewillworkon awide scenariowhich includes any continuous
dynamical system (M, f ), we restrict the stochastic system (M, f, Pε) by assuming
that the noise probability distribution is uniform (i.e. it has constant density) on all the
balls of radius ε > 0 of M (for a precise statement of this assumption see formula (1)
below). We call ε the noise level, or also the amplitude of the random perturbation.
To define the empiric stochastic stability we will take ε → 0+.

In the stochastic system (M, f, Pε), the symbol Pε denotes the family of proba-
bility distributions, which are called transition probabilities, according to which the
noise is added to f (x) for each x ∈ M . Precisely, each transition probability is, for
all n ∈ N, the distribution of the state xn+1 of the noisy orbit conditioned to xn = x ,
for each x ∈ M . As said above, the transition probability is supported on the ball with
center at f (x) and radius ε > 0. So, the zero-noise system (M, f ) is recovered by
taking ε = 0; namely, (M, f ) = (M, f, P0). The observer naturally expects that if
the amplitude ε > 0 of the random perturbation were small enough, then the ergodic
properties of the stochastic system “remembered” those of the zero-noise system.

The foundation and tools to study the random perturbations of dynamical systems
were early provided in [4, 19, 28]. The stochastic stability appears in the literature
mostly defined through the stationarymeauresμε of the stochastic system (M, f, Pε).
Classically, the authors prove and describe, under particular conditions, the existence
and properties of the f -invariant measures that are the weak∗-limit of ergodic sta-
tionary measures as ε → 0+. See for instance the early results of [8, 20–22, 30]),
and the later works of [1–3, 25]. For a review on stochastic and statistical stability
of randomly perturbed dynamical systems, see for instance [29] and Appendix D
of [7].

The stationary measures of the ramdom perturbations provide the probabilistic
behaviour of the noisy systemasymptotically in the future.Nevertheless, froma rather
practical or experimental point of view the concept of stochastic stability should not
require the knowledge a priori of the limit measures of the perturbed system as
n → +∞. For instance [15] presents numerical experiments on the stability of one-
dimensional noisy systems in a finite time. The ergodic stationary measure is in
fact substituted by an empirical (i.e. obtained after a finite-time observation of the
system) probability. Also in other applications of the theory of random systems (see
for instance [16, 18]), the stationary measures are usually unkown, are not directly
obtained from the experiments, but substituted by the finite-time empiric probabilities
which approximate the stationary measures if the observations last enough.

Summarizing, for a certain type of stochastically stable properties, one should not
need the infinite-time noisy orbits. Instead, onemay take the noisy orbits up to a large
finite time n, which are indeed those that the experimenter observes and predicts. The
statistics of the observations and predictions of the noisy orbits still reflect, for the
experimenter and the predictor, the behaviour of the stochastic system, but only up
to some finite horizon.

Motivated by the above arguments, in Sect. 2 we will define the empiric stochastic
stability. Roughly speaking, an f -invariant probability for the zero-noise system
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(M, f ) is empirically stochastically stable if it approximates, up to an arbitrarily
small errorρ > 0, the statistics of sufficiently large pieces of the noisy orbits, for some
fixed time n, provided that the noise-level ε > 0 is small enough (see Definition 4).
This concept is a reformulation in a finite-time scenario of one of the usual definition
of infinite-time stochastic stability (see for instance [1, 8, 30]).

1.1 Setting the Problem

Let ε > 0 and x ∈ M . Denote by Bε(x) ⊂ M the open ball of radius ε centered at x .
Consider the Lebesgue measure m, i.e. the finite measure obtained from the volume
form induced by the Riemannian structure of the manifold. For each point x ∈ M ,
we take the restriction ofm to the ball Bε( f (x)). Precisely, we define the probability
measure pε(x, ·) by the following equality:

pε(x, A) := m
(
A ∩ Bε( f (x))

)

m
(
Bε( f (x))

) ∀ A ∈ A , (1)

where A is the Borel sigma-algebra in M .

Definition 1 (Stochastic system with noise-level ε.) For each value of ε > 0, con-
sider the stochastic process or Markov chain {xn}n∈N ⊂ MN in the measurable space
(M,A ) such that, for all A ∈ A :

prob(x0 ∈ A) = m(A), prob(xn+1 ∈ A|xn = x) = pε(x, A),

where pε(x, ·) is defined by equality (1).
The system whose stochastic orbits are the Markov chains as above is called

stochastic system with noise-level ε. We denote it by (M, f, Pε), where

Pε := {pε(x, ·)}x∈M .

The stochastic systems with noise-level ε > 0 are usually studied by assuming
certain regularity of the zero-noise systems (M, f ), and by taking the ergodic station-
ary measures με of the stochastic system (M, f, Pε) (see for instance [30]). When
assuming that the transition probabilities satisfy equality (1), all the stationary proba-
bility measures become absolutely continuous with respect to the Lebesgue measure
m (see for instance [6]). Therefore, if a property holds for the noisy orbits for με-
a.e initial state x ∈ M , it also holds for a Lebesgue-positive set of states.

When looking at the noisy system, the experimenter usually obtains the values
of several bounded measurable functions ϕ, which are called observables, along the
stochastic orbits {xn}n∈N. From Definition 1, the expected value of ϕ at instant 0 is
E(ϕ)0 = ∫

ϕ(x0) dm(x0). Besides, from the definition of the transition probabilities
by equality (1), for any given state x ∈ M the expected value of ϕ(xn+1) conditioned
to xn = x is

∫
ϕ(y) pε(x, dy). So, in particular at instant 1 the expected value of ϕ is
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E(ϕ)1 =
∫∫

ϕ(x1) pε(x0, dx1) dm(x0),

and its expected value at instant 2 is

E(ϕ)2 =
∫∫∫

ϕ(x2) pε(x1, dx2) pε(x0, dx1) dm(x0).

Analogously, by induction on n we obtain that for all n ≥ 1, the expected value
E(ϕ)n of the observable ϕ is

E(ϕ)n =
∫∫∫

...

∫
ϕ(xn)pε(xn−1, dxn)... pε(x1, dx2) pε(x0, dx1) dm(x0). (2)

Since theLebesguemeasurem is not necessarily stationary for the system (M, f, Pε),
the expected value of the same function ϕ at each instant n, if the initial distribution
is m, may change with n.

As said at the beginning, we assume that the experimenter only sees the values of
the observable functions along finite pieces of the noisy orbits because his experiment
and his empiric observations can not last forever. When analyzing the statistics of the
observed data, he considers for instance the time average of the collected observations
along those finitely elapsed pieces of randomly perturbed orbits. These time averages
can be computed by the integrals of the observable functions with respect to certain
probability measures, which are called empiric stochastic probabilities for finite time
n (see Definition 3). Precisely, for any any fixed time n ≥ 1 and for any initial state
x0 ∈ M , the empiric stochastic probability σε,n,x0 is defined such that the time average
of the expected values of any observable ϕ at instants 1, 2, . . . , n along the noisy
orbit initiating at x0, can be computed by the following equality:

1

n

n∑

j=1

E(ϕ(x j )|x0) =
∫

ϕ(y)dσε,n,x0(y),

where

E(ϕ(x j )|x0) =
∫∫

. . .

∫
ϕ(x j ) pε(x j−1, dx j ) . . . pε(x1, dx2)pε(x0, dx1). (3)

Wealso assume that the experimenter only seesLebesgue-positive sets in the phase
space M . So, when analyzing the statistics of the observed data in the noisy system,
he will not observe all the empiric stochastic distributions σε,n,x , but only those for
Lebesgue-positive sets of initial states x ∈ M . If besides he can only manage a finite
set of continuous observable functions, then he will not see the exact probability
distributions, but some weak∗ approximations to them up to an error ρ > 0, in the
metric space M of probability measures.

For some classes of mappings on the manifold M , even with high regularity (for
instanceMorse-SmaleC∞ diffeomorphismswith two ormore hyperbolic sinks), one
single measure μ is not enough to approximate the empiric stochastic probabilities
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of the noisy orbits for Lebesgue-a.e. x ∈ M . The experimenter may need a set K
composed by several probability measures instead of a single measure. Motivated by
this phenomenon, we define the empiric stochastic stability of a weak∗-compact set
K of f -invariant probability measures (see Definition 8). This concept is similar to
the empiric stochastic stability of a single measure, with two main changes: first, it
substitutes the measure μ by a weak∗-compact set K of probabilities; and second,
it requires K be minimal with the property of empiric stochastic stability, when
restricting the stochastic system to a fixed Lebesgue-positive set of noisy orbits. In
particular, a globally empirically stochastically stable set K of invariant measures
minimally approximates the statistics of Lebesgue-a.e. noisy orbits. We will prove
that it exists and is unique.

1.2 Main Results

A classical concept in the ergodic theory of zero-noise dynamical systems is that
of physical measures [14]. In brief, a physical measure is an f -invariant measure
μ whose basin of statistical attraction has positive Lebesgue measure. This basin is
composed by the zero-noise orbits such that the time average probability up to time
n converges to μ in the weak∗-topology as n → +∞ (see Definitions 11 and 12).

One of the main purposes of this paper is to answer the following question:

Question 1. Is there some relation between the empirically stochastically stable
measures and the physical measures? If yes, how are they related?

Wewill give an answer to this question in Theorem 1 andCorollary 1 (see Sect. 2.1
for their precise statements). In particular, we will prove the following result:

Theorem. An f -invariant measure is empirically stochastically stable if and only if
it is physical.

A generalization of physical measures, is the concept of pseudo-physical proba-
bility measures, which are sometimes also called SRB-like measures [10–12]. They
are defined such that, for all ρ > 0, their weak∗ ρ-neighborhood, has a (weak) basin
of statistical attraction with positive Lebesgue measure (see Definitions 11 and 12).

To study this more general scenario of pseudo-physics, our second main purpose
is to answer the following question:

Question 2. Do empirically stochastically stable sets of measures relate with pseudo-
physical measures? If yes, how do they relate?

We will give an answer to this question in Theorem 2 and its corollaries, whose
precise statements are in Sect. 2.1. In particular, we will prove the following result:

Theorem. A weak∗-compact set of invariant probability measures is empirically
stochastically stable only if all its measures are pseudo-physical. Conversely, any
pseudo-physical measure belongs to the unique globally empirically stochastically
stable set of measures.
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2 Definitions and Statements

We denote by M the space of Borel probability measures on the manifold M ,
endowed with the weak∗-topology; and by M f the subspace of f -invariant proba-
bilities, where (M, f ) is the zero-noise dynamical system. Since the weak∗ topology
inM is metrizable, we can choose and fix a metric dist∗ that endows that topology.

To make formula (2) and other computations concise, it is convenient to introduce
the following definition:

Definition 2 (The transfer operatorsLε andL ∗
ε ). Denote by C

0(M,C) the space
of complex continuous functions defined in M . For the stochastic system (M, f, Pε),
we define the transfer operator Lε : C0(M,C) �→ C0(M,C) as follows:

(Lεϕ)(x) :=
∫

ϕ(y) pε(x, dy) ∀ x ∈ M, ∀ ϕ ∈ C0(M,C). (4)

From equality (1) it is easy to prove that pε(x, ·) depends continuously on x ∈ M
in the weak∗ topology. So, Lεϕ is a continuous function for any ϕ ∈ C0(M,C).

Through Riesz representation theorem, for any measure μ ∈ M there exists a
unique measure, which we denote byL ∗

ε μ, such that

∫
ϕd(L ∗

ε μ) :=
∫

(Lεϕ) dμ ∀ ϕ ∈ C0(M,C). (5)

We call L ∗
ε : M �→ M the dual transfer operator or also, the transfer operator in

the space of measures.

From the above definition, we obtain the following property for any observable
function ϕ ∈ C0(M,C): its expected value at the instant n along the stochastic
orbits with noise level ε is

E(ϕ)n =
∫

(Lε
nϕ) dm =

∫
ϕ d(L ∗

ε
nm).

We are not only interested in the expected values of the observables ϕ, but also in
the statistics (i.e time averages of the observables) along the individual noisy orbits.
With such a purpose, we first consider the following equality:

(Lε
nϕ)(x) =

∫
ϕ d(L ∗

ε
n
δx ) ∀ x ∈ M, (6)

where δx denotes the Dirac probability measure supported on {x}. Second, we intro-
duce the following concept of empiric probabilities for the stochastic system:

Definition 3 (Empiric stochastic probabilities) For any fixed instant n ≥ 1, and for
any initial state x ∈ M , we define the empiric stochastic probability σε,n,x of the
noisy orbit with noise-level ε > 0, with initial state x , and up to time n, as follows:
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σε,n,x := 1

n

n∑

j=1

L ∗
ε

j
δx . (7)

Note that the empiric stochastic probabilities for Lebesgue almost x ∈ M allow
the computation of the time averages of the observable ϕ along the noisy orbits.
Precisely,

1

n

n∑

j=1

(L j
ε ϕ)(x) =

∫
ϕ(y) dσε,n,x (y) ∀ ϕ ∈ C0(M,C). (8)

Definition 4 (Empiric stochastic stability of a measure) We call a probability mea-
sureμ ∈ M f empirically stochastically stable if there exists ameasurable set Â ⊂ M
with positive Lebesgue measure such that:

For all ρ > 0 and for all n ∈ N
+ large enough there exists ε0 > 0 (which may

depend on ρ and on n but not on x) satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0, for Lebesgue a.e. x ∈ Â.

Definition 5 (Basin of empiric stochastic stability of a measure) For any probability
measure μ, we construct the following (maybe empty) set in the ambient manifold
M :

Âμ :=
{
x ∈ M : ∀ρ > 0 ∃ N = N (ρ) such that ∀ n ≥ N ∃ ε0 = ε0(ρ, n) > 0 satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0

}
. (9)

We call the set Âμ ⊂ M the basin of empiric stochastic stability of μ. Note that it is
defined for anyprobabilitymeasureμ ∈ M , but itmaybe empty, or even if nonempty,
it may have zero Lebesgue-measure when μ is not empirically stochastically stable.

The set Âμ is measurable (see Lemma 2). According to Definition 4, a probability
measure μ is empirically stochastically stable if and only if the set Âμ has positive
Lebesgue measure (see Lemma 3).

Definition 6 (Global empiric stochastic stability of a measure)We say thatμ ∈ M f

is globally empirically stochastically stable if it is empirically stochastically stable,
and besides its basin Âμ of empiric stability has full Lebesgue measure.

Definition 7 (Basin of empiric stochastic stability of a set of measures) For any
nonempty weak∗-compact setK ⊂ M , we construct the following (maybe empty)
set in the space manifold M :

ÂK := {x ∈ M : ∀ρ > 0 ∃ N = N (ρ) such that ∀ n ≥ N ∃ ε0 = ε0(ρ, n) > 0 satisfying

dist∗(σε,n,x , K ) < ρ ∀ 0 < ε ≤ ε0}. (10)
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We call ÂK ⊂ M the basin of empiric stochastic stability of K .

Note that ÂK is defined for any nonempty weak∗-compact setK ⊂ M . But it may
be empty, or even if nonempty, it may have zero Lebesgue measure when K is not
empirically stochastically stable, according to the following definition:

Definition 8 (Empiric stochastic stability of a set of measures) We call a nonempty
weak∗-compact set K ⊂ M f of f -invariant probability measures empirically
stochastically stable if :

(a) There exists a measurable set Â ⊂ M with positive Lebesgue measure, such
that:
For all ρ > 0 and for all n ∈ N

+ large enough, there exists ε0 > 0 (which may
depend on ρ and n, but not on x), satisfying:

dist∗(σε,n,x , K ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â.

(b) K is minimal in the following sense: if K ′ ⊂ M f is nonempty and weak∗-
compact, and if ÂK ⊂ ÂK ′ Lebesgue-a.e., then K ⊂ K ′.

By definition, if K is empirically stochastically stable, then the set Â ⊂ M sat-
isfying condition (a), has positive Lebesgue measure and is contained in ÂK . Since
ÂK is measurable (see Lemma 4), we conclude that it has positive Lebesgue mea-
sure.

Nevertheless, for a nonempty weak∗-compact setK be empirically stochastically
stable, it is not enough that ÂK has positive Lebesgue measure. In fact, to avoid the
whole setM f of f -invariant measures be always an empirically stochastically stable
set, we askK to satisfy condition (b). In brief, we require a property of minimality
of K with respect to Lebesgue-a.e. point of its basin ÂK of empiric stochastic
stability.

Definition 9 (Global empiric stochastic stability of a set of measures) We say that a
nonempty weak∗-compact setK ∈ M f is globally empirically stochastically stable
if it is empirically stochastically stable, and besides its basin ÂK of empiric stability
has full Lebesgue measure.

We recall the following definitions from [11]:

Definition 10 (Empiric zero-noise probabilities and pω-limit sets) For any fixed
natural number n ≥ 1, the empiric probability σn,x of the orbit with initial state
x ∈ M and up to time n of the zero-noise system (M, f ), is defined by the following
equality:

σn,x := 1

n

n∑

j=1

δ f j (x).

It is standard to check, from the construction of the empiric stochastic probabilities in
Definition 3, thatσε,n,x is absolutely continuouswith respect to the Lebesguemeasure
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m. In contrast, the empiric probability σn,x for the zero-noise orbits is atomic, since
it is supported on a finite number of points.

The p-omega limit set pωx in the spaceM of probabilitymeasures, corresponding
to the orbit of x ∈ M , is defined by:

pωx := {μ ∈ M : ∃ ni → +∞ such that lim∗
i→+∞σni ,x = μ},

where lim∗ is taken in the weak∗-topology ofM . It is standard to check that pωx ⊂
M f for all x ∈ M .

Definition 11 (Strong andρ-weak basin of statistical attraction) For any f -invariant
probability measure μ ∈ M f , the (strong) basin of statistical attraction of μ is the
(maybe empty) set

Aμ : = {
x ∈ M : pωx = {μ}}. (11)

For any f -invariant probability measure μ ∈ M f , and for any ρ > 0, the ρ-weak
basin of statistical attraction of μ is the (maybe empty) set

Aρ
μ : = {

x ∈ M : dist∗(pωx , {μ}) < ρ
}
.

Definition 12 (Physical and pseudo-physical measures) For the zero-noise dynam-
ical system (M, f ), an f -invariant probability measure μ is physical if its strong
basin of statistical attraction Aμ has positive Lebesgue measure.

An f -invariant probability measure μ is pseudo-physical if for all ρ > 0, its
ρ-weak basin of statistical attraction Aρ

μ has positive Lebesgue measure.

It is standard to check that, even if the ρ-weak basin of statistical attraction Aρ
μ

depends on the chosen weak∗-metric in the space M of probabilities, the set of
pseudo-physical measures remains the same when changing this metric (provided
that the new metric also induces the weak∗-topology).

Note that the strong basin of statistical attraction of any measure is always con-
tained in the ρ-weak basin of the same measure. Hence, any physical measure (if
there exists some) is pseudo-physical. But not all the pseudo-physical measures are
necessarily physical (see for instance example 5 of [10]).

We remark that we do not require the ergodicity of μ to be physical or pseudo-
physical. In fact, in [17] it is proved that the C∞ diffeomorphism, popularly known
as the Bowen Eye, exhibits a segment of pseudo-physical measures whose extremes,
and so all the measures in the segement, are non ergodic. Also, for some C0-version
of Bowen Eye (see example 5 B of [10]) there is a unique pseudo-physical measure,
it is physical and non-ergodic.
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2.1 Statement of the Results

Theorem 1 (Characterization of empirically stochastically stable measures) Let
f : M �→ M be a continuous map on a compact Riemannian manifold M. Let μ be
an f -invariant probability measure. Then, μ is empirically stochastically stable if
and only if it is physical.

Besides, if μ is physical, then its basin Âμ ⊂ M of empiric stochastic stability
equals Lebesgue-a.e. its strong basin Aμ ⊂ M of statistical attraction.

We will prove Theorem 1 and the following corollaries in Sect. 3.

Corollary 1 Let f : M �→ M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i) There exists an f -invariant probability measureμ1 that is globally empirically
stochastically stable.

(ii) There exists an f -invariant probability measure μ2 that is physical and such
that its strong basin of statistical attraction has full Lebesgue measure.

(iii) There exists a unique f -invariant probability measure μ3 that is pseudo-
physical.

Besides, if (i), (ii) or (iii) holds, then μ1 = μ2 = μ3, this measure is the unique
empirically stochastically stable, and the set {μ1} is the unique weak∗-compact set
in the space of probability measures that is empirically stochastically stable.

Before stating the next corollary, we fix the following definition: we say that a
property of the maps on M is C1-generic if it holds for a countable intersection of
open and dense sets of maps in the C1- topology.

Corollary 2 For C1-generic and for all C2 expandingmaps of the circle, there exists
a unique ergodic measure μ that is empirically stochastically stable. Besides μ is
globally empirically stochastically stable and it is the unique measure that satisfies
the following Pesin Entropy Formula [23, 24]:

hμ( f ) =
∫

log | f ′| dμ. (12)

Theorem 1 is a particular case of the following result.

Theorem 2 (Empirically stochastically stable sets and pseudo-physics)
Let f : M �→ M be a continuous map on a compact Riemannian manifold M.

(a) IfK is a nonemptyweak∗-compact set of f -invariantmeasures that is empirically
stochastically stable, then any μ ∈ K is pseudo-physical.
(b) A set K of f -invariant measures is globally empirically stochastically stable if
and only if it coincides with the set of all the pseudo-physical measures.

We will prove Theorem 2 and the following corollaries in Sect. 4.
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Corollary 3 For any continuous map f : M �→ M on a compact Riemannian mani-
fold M, there exists and is unique the nonempty weak∗-compact setK of f -invariant
measures that is globally stochastically stable. Besides, μ ∈ K if and only if μ is
pseudo-physical.

Corollary 4 If a pseudo-physical measureμ is isolated in the set of pseudo-physical
measures, then it is empirically stochastically stable; hence physical.

Corollary 5 Let f : M �→ M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i) The set of pseudo-physical measures is finite.
(ii) There exists a finite number of (individually) empirically stochastically stable

measures, hence physical measures, and the union of their strong basins of
statistical attraction covers Lebesgue a.e.

Corollary 6 If the set of pseudo-physical measures is countable, then there exists
countably many empirically stochastically stable measures, hence physical, and the
union of their strong basins of statistical attractions covers Lebesgue a.e.

Corollary 7 For all C1-expanding maps of the circle, all the measures of any empir-
ically stochastically stable setK satisfy Pesin Entropy Formula (12).

Corollary 8 For C0-generic maps of the interval, the globally empirically stochas-
tically stable set K of invariant measures includes all the ergodic measures but is
meager in the whole space of invariant measures.

3 Proof of Theorem 1 and its Corollaries

We decompose the proof of Theorem 1 into several lemmas:

Lemma 1 For ε > 0 small enough:
(a) The transformation x ∈ M �→ pε(x, ·) ∈ M is continuous.
(b) The transfer operator L ∗

ε : M �→ M is continuous.
(c) The transformation x ∈ M �→ σε,n,x ∈ M is continuous.
(d) lim∗

ε→0+ pε(x, ·) = δ f (x) uniformly on M.
(e) lim∗

ε→0+L ∗
ε
nδx = δ f n(x) uniformly on M.

(f) lim∗
ε→0+σε,n,x = σn,x uniformly on M.

Proof (a): It is immediate from the construction of the probability measure pε(x, ·)
by equality (1), and taking into account that the Lebesgue measure restricted to a
ball of radius ε depends continuously on the center of the ball.
(b): Take a convergent sequence {μi }i∈N ⊂ M and denote μ = lim∗

i μi . For any
continuous function ϕ : M �→ M , we have
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∫
ϕdL ∗

ε μi =
∫

Lεϕ dμi . (13)

Since (Lεϕ)(x) = ∫
ϕ(y)pε(x, dy) and pε(x, ·) depends continuously on x , we

deduce that Lεϕ is a continuous function. So, from (13) and the definition of the
weak∗ topology inM , we obtain:

lim
i→+∞

∫
ϕdL ∗

ε μi = lim
i→+∞

∫
Lεϕ dμi =

∫
Lεϕ dμ =

∫
ϕdL ∗

ε μ.

We conclude that lim∗
i L

∗
ε μi = L ∗

ε μ, hence L ∗
ε is a continuous operator on M .

(c): Since the composition of continuous operators is continuous, we have thatL ∗
ε

j :
M �→ M is continuous for each fixed j ∈ N

+. Besides, it is immediate to check that
the transformation x ∈ M �→ δx ∈ M is continuous. Thus, also the transformation
x ∈ M �→ L ∗

ε
jδx ∈ M is continuous. We conclude that, for fixed ε > 0 and fixed

n ∈ N
+, the transformation

x ∈ M �→ σε,n,x = 1

n

n∑

j=1

L ∗
ε

j
δx ∈ M

is continuous.
(d): For any given ρ > 0 we shall find ε0 > 0 (independent on x ∈ M) such that,
dist∗(pε(x, ·), δ f (x)) < ρ for all 0 < ε < ε0 and for all x ∈ M . For any metric dist∗
that endows the weak∗ topology in M , the inequality dist∗(pε(x, ·), δ f (x)) < ρ

holds, if and only if, for a finite number (which depends on ρ and on the metric)
of continuous functions ϕ : M �→ C, the difference | ∫ ϕ(y) pε(x, dy) − ϕ( f (x))|
is smaller than a certain ε′ > 0 (which depends on ρ and on the metric). Let us
fix such a continuous function ϕ. Since M is compact, ϕ is uniformly continuous
on M . Thus, for any ε′ > 0 there exists ε0 such that, if dist(y1, y2) < ε ≤ ε0, then
|ϕ(y1) − ϕ(y2)| < ε′. Since pε(x, ·) is supported on the ball Bε( f (x)), we deduce:

∣
∣∣
∫

ϕ(y)pε(x, dy) − ϕ( f (x))
∣
∣∣ ≤

∫ ∣∣ϕ(y) − ϕ( f (x)
∣∣ pε(x, dy) ≤ ε′,

because dist(y, f (x)) < ε ≤ ε0 for pε(x, ·)- a.e. y ∈ M .
Since ε0 does not depend on x , we have proved that lim∗

ε→0+ pε(x, ·) = δ f (x)

uniformly for all x ∈ M .
(e): Let us prove that limε→0+ L ∗

ε
nδx = δ f n(x) uniformly on x ∈ M . By induction

on n ∈ N
+:

If n = 1, for any continuous function ϕ : M �→ C we compute the following
integral

∫
ϕ dL ∗

ε δx =
∫

(Lεϕ) dδx = (Lεϕ)(x) =
∫

ϕ(y) pε(x, dy).
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From the unicity of the probability measure of Riesz Representation Theorem, we
obtain L ∗

ε δx = pε(x, ·). Applying part d), we conclude

lim∗
ε→0+L ∗

ε δx = lim∗
ε→0+ pε(x, ·) = δ f (x), uniformly on x ∈ M.

Now, assume that, for some n ∈ N
+, the following assertion holds:

lim∗
ε→0+L ∗

ε
n
δx = δ f n(x), uniformly on x ∈ M. (14)

Let us prove the same assertion for n + 1, instead of n: Fix a continuous function
ϕ : M �→ C. As proved in part (d), for any ε′ > 0, there exists ε0 > 0 (independent
on x ∈ M) such that

|Lεϕ)(x) − ϕ( f (x))| = |
∫

ϕ(y)pε(x, dy) − ϕ( f (x))| <
ε′
2

∀ 0 < ε ≤ ε0, ∀ x ∈ M.

Thus

∣
∣∣
∫

ϕ dL ∗
ε
n+1

δx −
∫

(ϕ ◦ f ) dL ∗
ε
n
δx

∣
∣∣ =

∣
∣∣
∫

(Lεϕ) dL ∗
ε
n
δx −

∫
(ϕ ◦ f ) dL ∗

ε
n
δx

∣
∣∣

≤
∫ ∣∣Lεϕ) − ϕ ◦ f

∣∣ dL ∗
ε
n
δx

∣∣∣ <
ε′

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M. (15)

Besides, the induction assumption (14) implies that, if ε0 is chosen small enough,
then for the continuous function ϕ ◦ f the following inequality holds:

∣∣∣
∫

(ϕ ◦ f ) dL ∗
ε
n
δx − ϕ( f n+1(x))

∣∣∣ =

=
∣
∣∣
∫

(ϕ ◦ f ) dL ∗
ε
n
δx −

∫
(ϕ ◦ f ) dδ f n(x)

∣
∣∣ <

ε′

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M. (16)

Joining inequalities (15) and (16) we deduce that for all ε′ > 0, there exists ε0 > 0
(independent of x) such that

∣
∣∣
∫

ϕ dL ∗
ε
n+1

δx −
∫

ϕ dδ f n+1(x)

∣
∣∣ < ε′ ∀ 0 < ε ≤ ε0, ∀ x ∈ M.

In other words:

lim∗
ε→0+L ∗

ε
n+1

δx = δ f n+1(x) uniformly on x ∈ M,

ending the proof of part (e).
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(f): Since σε,n,x = 1
n

∑n
j=1 L

∗
ε

jδx , applying part (e) to each probability measure

L ∗
ε

jδx , we deduce that

lim∗
ε→0+L ∗

ε
n+1

δx = 1

n

n∑

j=1

δ f j (x) = σn,x uniformly on x ∈ M,

ending the proof of Lemma 1. �

Lemma 2 For any probability measure μ consider the (maybe empty) basin of
stochastic stability Âμ defined by equality (9), and the (maybe empty) strong basin
of statistical attraction Aμ defined by equality (11).

Then, Âμ and Aμ are measurable sets and coincide. Besides, they satisfy the
following equality:

Âμ = Aμ =
⋂

k∈N+

⋃

N∈N+

⋂

n≥N

Cn, 1/k(μ), (17)

where, for any real number ρ > 0 and any natural number n ≥ 1, the set Cn, ρ(μ)

is defined by
Cn, ρ(μ) := {x ∈ M : dist∗(σn,x , μ) < ρ}.

Proof From equality (11), we re-write the strong basin of statistical attraction of μ

as follows:

Aμ =
{
x ∈ M : lim∗

n→+∞σn,x = μ
}

=
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Cn,ρ(μ). (18)

From equality (9) we have:

Âμ =
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Dn,ρ(μ), (19)

where Dn,ρ(μ) is defined by

Dn,ρ(μ) :=
⋃

ε0>0

⋂

0<ε≤ε0

{x ∈ M : dist∗(σε,n,x , μ) < ρ}.

The assertion dist∗(σε,n,x , μ) < ρ for all 0 < ε ≤ ε0 implies

lim
ε→0+

dist∗(σε,n,x , μ) ≤ ρ < 2ρ.

Thus, applying part (f) of Lemma 1, we deduce that dist∗(σn,x , μ) < 2ρ for all
x ∈ Dn,ρ(μ). In other words,
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Dn,ρ(μ) ⊂ Cn,2ρ(μ),

which, joint with equalities (18) and (19), implies:

Âμ ⊂ Aμ.

To prove the converse inclusion, we apply again part (f) of Lemma 1 to write:

Cn,ρ(μ) = {x ∈ X : dist∗(lim∗
ε→0+σε,n,x , μ) < ρ}

Therefore
lim

ε→0+
dist∗(σε,n,x , μ) < ρ ∀ x ∈ Cn,ρ(μ).

Thus,

Cn,ρ(μ) ⊂
⋃

ε0>0

⋃

0<ε≤ε0

{x ∈ M : dist∗(σε,n,x , μ) < ρ} = Dn,ρ(μ).

The above inclusion, joint with equalities (18) and (19), implies

Aμ ⊂ Âμ.

We have proved that

Âμ = Aμ =
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Cn,ρ(μ).

Since the set Cn,ρ(μ) decreases when ρ decreases (with n and μ fixed), the family

{ ⋃

N∈N+

⋂

n≥N

Cn,ρ(μ).
}

ρ>0
,

whose intersection is Aμ, is decreasing when ρ decreases. Therefore, its intersection
is equal to the intersection of its countable subfamily

{ ⋃

N∈N+

⋂

n≥N

Cn, 1/k(μ).
}

k∈N+
.

We have proved equality (13) of Lemma 2.
Finally, note that the set Cn, 1/k(μ) ⊂ M is open, because σn,x = (1/n)

∑n
j=1

δ f j (x) (with fixed n) depends continuously on x . Since equality (13) states that Âμ =
Aμ is the countable intersection of a countable union of a countable intersection of
open sets, we conclude that it is a measurable set, ending the proof of Lemma 2. �
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Lemma 3 A probability measure μ is empirically stochastically stable, according
to Definition 4, if and only if its basin Âμ of empiric stability, defined by equality (9),
has positive Lebesgue measure.

Proof If μ is empirically stochastically stable, then from Definition 4, there exists a
Lebesgue-positive set Â ⊂ M such that Â ⊂ Âμ. Hence m( Âμ) > 0.

To prove the converse assertion, assume that m( Âμ) = α > 0. Let us construct a
positive Lebesgue set Â ⊂ Âμ such that for any ρ > 0, there exists N ∈ N

+ (uniform
on x ∈ Â), such that for all n ≥ N there exists ε0 > 0 (uniform on x ∈ Â) satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â (to be proved). (20)

Applying Lemma 2 we have

Âμ =
⋂

k∈N+

⋃

N∈N+
EN ,1/k, where EN ,1/k :=

⋂

n≥N

Cn,1/k(μ).

For fixed k ∈ N
+ we have EN+1,1/k ⊂ EN ,1/k for all N ≥ 1, and

Âμ =
⋃

N∈N+
(EN ,1/k ∩ Âμ). Then lim

N→+∞m(EN ,1/k ∩ Âμ) = m( Âμ) = α.

Therefore, for each k ≥ 1 there exists N (k) ≥ 1 such that

α(1 − 1/3k) ≤ m(EN (k),1/k ∩ Âμ) ≤ α.

We construct
Â :=

⋂

k∈N+
(EN (k),1/k ∩ Âμ).

Wewill prove that Â has positive Lebesguemeasure and that assertion (20) is satisfied
uniformly for all x ∈ Â. First,

m( Âμ \ Â) = m(
⋃

k≥1

( Âμ \ EN (k),1/k) ≤
+∞∑

k=1

(α − m(EN (k),1/k ∩ Âμ)) ≤
+∞∑

k=1

α

3k
= α

2
,

from where
m( Â) = m( Âμ) − m(Aμ \ Â) ≥ α − α

2
= α

2
> 0.

Second, for all ρ > 0, there exists a natural number k ≥ 2/ρ, and a set
BN (k),1/k ⊃ Â such that

x ∈ Cn,1/k(μ) ∀ n ≥ N (k), ∀ x ∈ BN (k),1/k .

Therefore, for all n ≥ N (k) (which is independent on x) we obtain:
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dist∗(σn,x , μ) <
1

k
≤ ρ

2
∀ x ∈ Â. (21)

Finally, applying part (f) of Lemma 1, for each fixed n ≥ N (k) there exists ε0 > 0
(independent of x), such that

dist∗(σε,n,x , σn,x ) <
ρ

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M̂ . (22)

Inequalities (21) and (22) end the proof of inequality (20); hence Lemma 3 is
proved. �

End of the proof of Theorem 1.

Proof From Lemma 3, μ is empirically stochastically stable if and only if m( Âμ) >

0. From Definition 12, μ is physical if and only if m(Aμ) > 0. Applying Lemma
2 we have Âμ = Aμ. We conclude that μ is empirically stochastically stable if and
only if μ is physical. �

Before proving Corollary 1, we recall the following theorem taken from [11]:

Theorem 3 Let f : M �→ M be a continuous map on a compact Riemannian mani-
fold M. Then, the setO f of pseudo-physical measures for f is nonempty and weak∗-
compact, and contains pωx for Lebesgue-a.e. x ∈ M.

Moreover,O f is theminimal nonemptyweak∗-compact set of probabilitymeasures
that contains pωx for Lebesgue-a.e. x ∈ M.

Proof See [11, Theorem 1.5].

Proof of Corollary 1.

Proof (i) implies (ii): If μ1 is globally empirically stable, then by Definition 6
m( Âμ1) = m(M). Applying Theorem 1, μ1 is physical. Besides, from Lemma 2,
we know Âμ1 = Aμ1 . Then m(Aμ1) = m(M). So, there exists μ2 = μ1 that is phys-
ical and whose strong basin of statistical attraction has full Lebesgue measure, as
wanted.

(ii) implies (iii): If μ2 is physical and m(Aμ2) = m(M), then from Definitions 10
and 11, we deduce that the set {μ2} contains pωx for Lebesgue-a.e. x ∈ M . Besides
{μ2} is nonempty andweak∗-compact. Hence, applying the last assertion of Theorem
3,we deduce that {μ2} is thewhole setO f of pseudo physicalmeasures for f . In other
words, there exists a unique measure μ3 = μ2 that is pseudo-physical, as wanted.

(iii) implies (i): If there exists a unique measure μ3 that is pseudo-physical for f ,
then, applying Theorem 3 we know that that the set {μ3} contains pωx for Lebesgue-
a.e. x ∈ M . From Definitions 10 and 11, we deduce that the strong basin Aμ3 of
statistical attraction of μ3 has full Lebesgue measure. Then, μ3 is physical, and
applying Theorem 1μ3 is empirically stochastically stable. Besides, from Lemma 2,
we obtain that the basin Âμ3 of empiric stochastic stability of μ3 coincides with Aμ3 ;
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hence it has full Lebesgue measure. From Definition 6 we conclude that there exists
a measure μ1 = μ3 that is globally empirically stochastically stable, as wanted.

We have proved that (i), (ii) and (iii) are equivalent conditions. Besides, we have
proved that if these conditions holds, the three measures μ1, μ2 and μ3 coincide.
This ends the proof of Corollary 1. �

Proof of Corollary 2.

Proof On the one hand, a classical theorem by Ruelle states that any C2 expanding
map f of the circle S1 has a unique invariant measureμ that is ergodic and absolutely
continuous with respect to the Lebesgue measure. Thus, from Pesin’s Theory [26,
27], it is the unique invariant measure that satisfies Pesin Entropy Formula (12).

On the other hand, Campbell and Quas [9] have proved thatC1-generic expanding
maps in the circle have a unique invariant measure μ that satisfies Pesin Entropy
Formula, but nevertheles μ is mutually singular with the Lebesgue measure (see
also [5]).

Applying the above known results, to prove this corollary we will first show that
for any C1 expanding map f , if it exhibits a unique invariant measureμ that satisfies
(12), thenμ is the unique empirically stochastically stable measure. In fact, in [12] it
is proved that any pseudo-physical measure of any C1 expanding map of S1 satisfies
Pesin Entropy Formula (12). Hence, we deduce that, for our map f , μ is the unique
pseudo-physical measure. Besides in [11], it is proved that if the set of pseudo-
physical or SRB-like measures is finite, then all the pseudo-physical measures are
physical. We deduce that our map f has a unique physical measure μ. Applying
Theorem 1, μ is the unique empirically stochastically stable measure, as wanted.

Now, to end the proof of this corollary, let us show that themeasureμ that was con-
sidered above, is globally empirically stochastically stable. From Theorem 3, the set
O f of all the pseudo-physical measures is the minimal weak∗-compact set of invari-
ant measures such that pω(x) ⊂ O f for Lebesgue-a.e. x ∈ S1. But, in our case, we
have O f = {μ}; hence pω(x) = {μ} for Lebesgue-a.e. x ∈ S1. Applying Definition
11, we conclude that the strong basin of statistical attraction Aμ has full Lebesgue
measure; and so, by Theorem 1 the basin Âμ of empirically stochastic stability of
μ covers Lebesgue-a.e. the space; hence μ is globally empirically stochastically
stable. �

4 Proof of Theorem 2 and its Corollaries

For any nonempty weak∗-compact set K of f -invariant measures, recall Defini-
tion 7 of the (maybe empty) basin ÂK ⊂ M of empiric stochastic stability of K
constructed by equality (10).

Similarly to Definition 11, in which the strong basin Aμ of statistical attraction
of a single measure μ is constructed, we define now the (maybe empty) strong basin
of statistical attraction AK ⊂ M of the set K ⊂ M , as follows:
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AK := {x ∈ M, pωx ⊂ K }, (23)

where pωx is the p-omega limit set (limit set in the space M of probabilities)
for the empiric probabilities along the orbit with initial state in x ∈ M (recall
Definition 10).

We will prove the following property of the basins ÂK and AK :

Lemma 4 For any nonempty weak∗-compact setK in the spaceM of probability
measures, the basins ÂK ⊂ M and AK ⊂ M, defined by equalities (10) and (23)
respectively, are measurable sets and coincide. Moreover

ÂK = Âμ =
⋂

k∈N+

⋃

N∈N+

⋂

n≥N

Cn,1/k(K ),

where, for all ρ > 0 the set Cn,ρ(K ) ⊂ M is defined by

Cn,ρ(K ) = {x ∈ M : dist∗(σn,x , K ) < ρ}.

Proof Repeat the proof of Lemma 2, with the set K instead of the single measure
μ, and using equalities (10) and (23), instead of (9) and (11) respectively. �

Lemma 5 The set O f of all pseudo-physical measures is globally empirically
stochastically stable.

Proof From Theorem 3, pωx ⊂ O f for Lebesgue-a.e. x ∈ M . Thus, the strong basin
of statistical attraction AO f of O f , defined by equality (23), has full Lebesegue
measure. After Lemma 4, the basin ÂO f of empiric stochastic stability of O f , has
full Lebesgue measure. Therefore, if we prove that O f is empirically stochastically
stable, it must be globally so.

We now repeat the proof of Lemma 3, using O f instead of a single measure μ, to
construct a Lebesgue-positive set Â ⊂ M such that, for all ρ > 0 and for all n large
enough, there exists ε0 > 0 (independenly of x ∈ Â) such that

dist∗(σε,n,x , O f ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â.

Thus, O f satisfies condition (a) of Definition 8, to be empirically stochastically
stable. Let us prove that O f also satisfies condition (b):

Assume that K ⊂ M f is nonempty and weak∗-compact and ÂO f ⊂ ÂK

Lebesgue-a.e. We shall prove that O f ⊂ K . Arguing by contradiction, assume that
there exists a probability measure ν ∈ O f \ K . Choose

0 < ρ <
dist∗(ν, K )

2
(24)

On the one hand, since ν is pseudo-physical, applying Definitions 11 and 12, the
ρ-weak basin Aρ

ν of statistical attraction of ν has positive Lebesguemeasure. In brief:
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m({x ∈ M : lim inf
n→+∞ dist∗(σn,x , ν) < ρ}) > 0. (25)

From inequalities (24) and (25), and applying equality (23), we deduce that

m({x ∈ M : pωx �⊂ K }) > 0, m(AK ) < m(M). (26)

On the other hand, applying Lemma 4 and the hypothesis ÂO f ⊂ ÂK Lebesgue-
a.e., we deduce

AO f ⊂ AK Lebesgue a.e..

Applying Theorem 3 and equality (23), we have

m(AO f ) = m(M), from where we deduce m(AK ) = m(M),

contradicting the inequality at right in (26).
We have proved that O f ⊂ K . Thus O f satisfies condition (b) of Definition 8,

ending the proof of Lemma 5. �

End of the proof of Theorem 2.

Proof We denote by O f the set of all pseudo-physical measures.
(a) LetK ⊂ M f be empirically stochastically stable, according to Definition 8. We
shall prove that K ⊂ O f . Assume by contradiction that there exists ν ∈ K \ O f .
So, ν is not pseudo-physical, and applying Definition 12, there exists ρ > 0 such
that the ρ-weak basin Aρ

ν of statistical attraction of ν has zero Lebesgue measure. In
brief, after Definition 11, we have

m({x ∈ M : dist∗(pωx , ν) < ρ}) = 0,

from where we deduce that

pωx ⊂ M f \ Bρ(ν) Lebesgue-a.e. x ∈ M, (27)

where Bρ(ν) is the open ball in the space M of probability measures, with center
at ν and radius ρ.

Applying Lemma 4 and equality (23) we have

ÂK = AK = {x ∈ X : pωx ⊂ K }.

Joining with assertion (27), we deduce that AK ⊂ AK \B ρ(ν) Lebesgue-a.e.; and
applying again Lemma 4 we deduce:

ÂK ⊂ ÂK \B ρ(ν) Lebesgue-a.e.
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But, by hypothesisK is empirically stochastically stable. Thus, it satisfies condition
(b) of Definition 8. We conclude thatK ⊂ K \ Bρ(ν), which is a contradiction,
ending the proof of part (a) of Theorem 2.

(b) According to Lemma 5, if K = O f , then K is globally empirically stochasti-
cally stable. Now, let us prove the converse assertion. Assume that K is globally
empirically stochastically stable. We shall prove thatK = O f . Applying part (a) of
Theorem 2, we know that K ⊂ O f . So, it is enough to prove now that O f ⊂ K .

By hypothesis m( ÂK ) = m(M). From Lemma 4 we have ÂK = AK ). We
deduce thatm(AK ) = m(M). From this latter assertion and equality (23), we obtain

pωx ⊂ K for Lebesgue-a.e. x ∈ M.

Finally, we apply the last assertion of Theorem 3 to conclude that O f ⊂ K , as
wanted. This ends the proof of Theorem 2. �

Proof of Corollary 3.

Proof This corollary is immediate after Theorem 2 and Lemma 5. In fact, Lemma
5 states that the set O f , which is composed by all the pseudo-physical measures, is
globally empirically stochastically stable. And part (b) of Theorem 2, states that O f

is the unique set of f -invariant measures that is globally empirically stochastically
stable. �

Before proving Corollaries 4, 5 and 6, we recall the following known result:

Theorem 4 For all x ∈ M the p-omega limit set pωx has the following property:
For any pair of measures μ0, μ1 ∈ pωx and for every real number 0 ≤ λ ≤ 1

there exists a measure μλ such that dist∗(μ0, μλ) = λdist∗(μ0, μ1).

Proof See [11, Theorem 2.1].

Proof of Corollary 4.

Proof Assume that μ is pseudo-physical and isolated in the set O f of all pseudo-
physical measures. Then, there exists ρ > 0 such that:

if ν ∈ O f and dist∗(ν, μ) < ρ, then ν = μ. (28)

Since μ is pseudo-physical, from Definition 12 we know that the ρ-weak basin Aρ
μ

of statistical attraction of μ has positive Lebesgue measure. From Definition 11 we
deduce that

m(Aρ
μ = m({x ∈ M : dist∗(pωx , μ) < ρ}) > 0. (29)

Applying Theorem 3, we know that pωx ⊂ O f for Lebesgue-a.e. x ∈ M . Joining
the latter assertion with (28) and (29) we deduce that

{μ} = pωx

⋂
Bρμ for Lebesgue-a.e. x ∈ Aρ

μ,
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where Bρμ is the ball in the space of probability measures, with center at μ and
radius ρ.

Besides, from Theorem 4 we deduce that pωx = {μ} for Lebesgue-a.e. x ∈
Aρ

μ, hence for a Lebesgue-positive set of points x ∈ M . Applying Definition 12,
we conclude that the given pseudo-physical measure μ is physical; hence, from
Theorem 1, μ is empirically stochastically stable. �

Proof of Corollary 5.

Proof (i) implies (ii): If the setO f of pseudo-physical measures is finite, then all the
pseudo-physical are physical due to Corollary 4. Then, applying Theorem 1, all of
them are (individually) empirically stochastically stable. Besides the union of their
strong basins of statistical attraction has full Lebesgue measure: In fact, applying
Definition 11 and equality (23), that union is the set AO f ; and, due to Theorem 3,
the set AO f has full Lebesgue measure. So, assertion (ii) is proved.

(ii) implies (i): Assume that there exists a finite number r ≥ 1 of empirically
stochastically stable measures μ1, μ2, . . . , μr (hence, physical measures, due to
Theorem 1). Assume also that the strong basins Aμi of statistical attraction have
an union

⋃r
i=1 Aμi that covers Lebesgue-a.e.. Applying Definition 11 and equality

(23), we deduce that A{μ1,...,μr } = ⋃r
i=1 Aμi has full Lebesgue measure. So, from

the last assertion of Theorem 3, O f ⊂ {μ1, . . . , μr }. In other words, the set O f of
pseudo-physical measures is finite, proving assertion (i). �

Proof of Corollary 6.

Proof If the setO f is finite, then we apply Corollary (5) to deduce that there exists a
finite number of empirically stochastically stable measures, hence physical, and that
the union of their strong basins of statistical attraction has full Lebesgue measure.

Now let us consider the case for which, by hypothesis, the set O f of pseudo-
physical measures is countably infinite. In brief: O f = {μi }i∈N.

Applying Theorem 3, the p-omega limit sets pωx are contained in O f for
Lebesgue-a.e. x ∈ M . But, from Theorem 4 we know that pωx is either a single
measure or uncountably infinite. Since it is contained in the countable set O f , we
deduce the pωx is composed by a single measure of O f for Lebesgue-a.e. x ∈ M .
Now, recalling Definition 11 and equality (23), we deduce that

AO f =
+∞⋃

i=1

Aμi ,

+∞∑

i=1

m(Aμi ) = m(M).

Therefore, there exists finitely many or countable infinitely many pseudo-physical
measures μin : 1 ≤ n ≤ r ∈ N

+ ∪ {+∞} such that

μ(Aμin
) > 0 ∀ 1 ≤ n ≤ r,

r∑

n=1

m(Aμn ) = m(M). (30)
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From Definition 12, each measure μin is physical; hence empirically stochastically
stable due to Theorem 1. Besides, from equality at right in (30), we deduce that the
union

⋃r
n=1 Aμin

has full Lebesgue measure, as wanted.
Finally, to end the proof of Corollary 6, let us show that the set {μin : 1 ≤ n ≤ r

of physical measures above constructed, can not be finite. In brief, let us prove that
r = +∞. In fact, if there existed afinite number r ∈ N + of physicalmeasureswhose
basins of statistical attraction have an union with full Lebesgue measure, then, we
would apply Corollary 5 and deduce that the set O f of pseudo-physical measures is
finite. But in our case, by hypothesis, O f is countably infinite, ending the proof of
Corollary 6. �

Proof of Corollary 7.

Proof From part (a) of Theorem 2 we know that all the measures of any empirically
stochastically stable set K ⊂ M f is pseudo-physical. Besides, in [12] it is proved
that, for any C1 expanding map f of the circle, any pseudo-physical or SRB-like
measure satisfies Pesin Entropy Formula (12). We conclude that all the measures of
K satisfy this formula. �

Proof of Corollary 8.

Proof From part (b) of Theorem 2 we know that the globally empirically stochasti-
cally stable setK coincides with the set O f of pseudo-physical measures. Besides,
in [13] it is proved that, for C0-generic maps f of the interval, any ergodic mea-
sure belongs to O f but, nevertheless O f is a weak∗-closed with empty interior in
the space M f of invariant measures. We conclude that all ergodic measures belong
to the globally empirically stochastically stable set K and that this set of invariant
measures is meager inM f , as wanted. �
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