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Preface

This volume presents the proceedings of the meeting New Trends in
One-dimensional Dynamics, celebrating the 70th anniversary of Welington de
Melo, which was held at IMPA, Rio de Janeiro, November 14–18, 2016. The
occasion was particularly gratifying for us because of the active participation of a
number of experts in this field, many of Welington de Melo’s co-authors and all his
former doctoral students. Collecting the articles for this volume was initially
intended as an opportunity to celebrate the success of the meeting and Welington de
Melo’s joy at the excellent scientific level of the lectures and the friendly atmo-
sphere that week. Unfortunately, Welington de Melo passed away a month after the
meeting. He is sorely missed by the Brazilian mathematical community, and the
publication of this volume became more a tribute to Welington de Melo. His role in
the development of mathematics is indisputable, especially in the area of low-level
dynamics, and his legacy includes, in addition to numerous articles with funda-
mental contributions, books that are mandatory references for beginners in this area.
Welington had only seven formal Ph.D. students, and we were both honored of
being two of them. It is worth mentioning that Artur Avila, the 2014 Fields Medal
winner, was also Welington’s Ph.D. student.

We are including in this volume an obituary by Sebastian Van Strien and Edson
de Faria, two dear friends and co-authors; an article by Jacob Palis and Fernando
Lenarduzzi describing how Welington came to know his Ph.D. Advisor Jacob Palis
at IMPA, how he began his successful scientific career, and comments on the
outcomes of his thesis; the first of his published articles; and photos of Welington
taken throughout his life.

We are indebted to our colleagues and friends for their contributions, which
made the meeting possible. We are also indebted to Leticia Ribas and Renata
Maiato, from the Department of Events at IMPA, who helped with the meeting’s
logistics and secretarial work. We would like to express our deepest gratitude to all
of them.

Niterói, Brazil Pablo Guarino
Rio de Janeiro, Brazil Maria José Pacifico
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Welington de Melo and Jacob Palis:
Their First Meeting, Some of Their Work
on Structural Stability and a Lifetime
of Friendship

Jacob Palis and Fernando Lenarduzzi

Abstract The present publication is a symbol of the appreciation of those who
attended to the conference in memory of Welington’s important contribution to the
theory of Dynamical Systems. They have sailed in Angra, proved theorems and
wrote a book together, but the most valuable thing for them was the friendship they
shared. Throughout the text, we will tell the story of how they became friends and
scientific partners, telling a bit aboutWelington’s thesis and its relation to the Stability
Conjecture.

Keywords Stability Conjecture · Structural Stanility and Axiom A

1 Brave and Bold

Howdid Jacob firstmeet him?Welingtonwas his first Ph.D. student, an excellent one,
whose participation in IMPA’s Dynamical Systems Seminars was always precious.
The seminars started upon Palis’ return from the University of California Berkeley,
in 1969, where he got his Ph.D. under the guidance of Steve Smale that had recently
been awarded with the Fields Medal.

The Seminar that Jacob organized in that occasion took place in week days, in-
cluding Saturday mornings. In one of those Saturdays, Welington knocked at Jacob’s
door at IMPA and presented himself as a student accepted by IMPA to obtain a Mas-
ter Degree. He informed Palis that he had attended Elon Lima’s course in a recent
Brazilian Mathematical Colloquium in Poços de Caldas. He added that he would
very much like to study Dynamical Systems to obtain a Ph.D. in this area. At first
Jacob had some doubts but the resemblance of his own case at the University of
California in Seminars removed those doubts.

J. Palis (B) · F. Lenarduzzi
Instituto de Matemática Pura e Aplicada-IMPA, Rio de Janeiro, Brazil
e-mail: jpalis@impa.br

F. Lenarduzzi
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2 J. Palis and F. Lenarduzzi

Curiously, one Saturday, when returning home from one of those seminars, in the
neighborhood of Laranjeiras, Palis unexpectedly met José Pelúcio Ferreira, who was
working at FINEP, a Funding Authority for Studies and Projects. He told Jacob that
he was very surprised to learn of IMPA’s Seminars on Saturday mornings and that
he would consider the case of some financial support for such promising scientific
activity. Palis was, of course, very happy with that possible support and so, as soon
as he got home, he phoned Maurício Peixoto, Elon Lima and the Director of IMPA,
Lindolpho de Carvalho Dias.

Jacob also looked for Welington’s colleagues at the University of Minas Gerais
to obtain further information about his performance as a student there. That was
when he was informed that de Melo was an excellent student and very determined to
learn new relevant topics in mathematics. With all the positive reactions Palis have
received, he asked Welington to present one of the important Seminar topics. It was
a success! With that, Jacob have formalized his request to the Direction of IMPA to
accept de Melo as a Ph.D. student, under his guidance. A couple of weeks after that,
Welington came to Jacob’s office to say that he had discovered a serious gap in one
of his mathematical papers. Happily, it turned out it was not a serious gap.

In two years Welington de Melo concluded his Ph.D. with a beautiful thesis
denominated “Structure Stability in 2 Dimensional Manifolds”, that was considered
excellent by a number of mathematicians. It was published in the high level journal
Inventiones Mathematicae [9].

Right after the presentation and overwhelmingly approval of Welington’s thesis,
Palis proposed him to be hired by IMPA as a researcher. Actually he had, indeed,
a brilliant performance at IMPA since the beginning. After some time, he focused
his studies especially in unidimensional dynamical systems, becoming a high level
mathematician guiding excellent younger researchers. A very exceptional example
is that of Artur Avila that some years later received the famous Fields Medal.

Welington’s scientific production was indeed continuous and profound. Jacob
always says that it is a pleasure to point out the good international repercussion of
the book “Introdução aos Sistemas Dinâmicos” that they wrote together.Welington’s
text with Sebastien Van Strien on unidimensional dynamics have also become a basic
reference in this topic.

With all these successful achievements, they realized that they could indeed orga-
nize an excellent Symposium on Dynamical Systems, which took place in Salvador
in 1971. It represented a very special moment to the consolidation of IMPA’s im-
portant place in the Brazilian intellectual structure. In fact it had the participation
of worldwide outstanding mathematicians such as Jurgen Moser, Maurício Peixoto,
Rene Thom, Christopher Zeeman, Sheldon Newhouse, Floris Takens, John Mather,
as well as young talented mathematicians like, Ricardo Mañé, Jorge Sotomayor,
César Camacho, Welington de Melo himself, among others. The Proceedings of this
important Congress was edited by Maurício Peixoto and published in 1973 by Aca-
demic Press, which has one preview of Welington’s thesis. This Congress launched
the development of several other areas of research in mathematics at IMPA.

In 2006 another congress took place in Salvador, celebrating Welington 60th
anniversary, under the organization of his first Ph.D. student, Maria José Pacifico.
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It is important to stress how meaningful the presence of his wife Gilza de Melo
guided all aspects of Welington’s life, including the scientific one.

2 The Stability Conjecture and Welington

Here we want to say something about Welington’s early work and to say some words
about how the subject he worked with still evolving. We want to link what was his
first contribution to research and first steps to become the successful mathematician
he would come to be. The key words to his thesis are structural stability.

Just to be clear, we would like to recall some basic concepts to make this text
fully comprehensible and establish some notation. We say that a diffeomorphism
f : M → M is Cr structurally stable if there exists a Cr -neighborhood of f such
that every element g of it is topologically conjugated to f , that is, there exists an
homeomorphism h of M such that f ◦ h = h ◦ g. We will denote by Per( f ) and
�( f ) the set of periodic points of f and the set non-wondering points f , respectively.

One of the first works that dealt with this subject we can cite is the one Peixoto
proved in [5] the stability for flows in two manifolds, however the proof depends
highly on the geometry of two dimensions of the manifolds.

We can also say something about Anosov’s work [1], in which he proves the
structural stability for diffeomorphism and vector fields when the whole manifold
M has a hyperbolic structure, the Anosov systems.

Then we had the work developed by Palis and Smale They proved in [4] the struc-
tural stability of diffeomorphisms and flows such that the non-wandering set �( f )
is a finite number of orbits and the strong transversality condition is satisfied, that is,
for all x, y ∈ �( f ), we have that stable manifold Ws(x) and the unstable manifold
Wu(y) have a transversal intersection. The precise statement is the following

Teorema A (Palis-Smale) Let the set of non-wondering points �( f ) to be finite
and hyperbolic. Also, assume that it has the strong transversality condition. If f ∈
Di f f r (M) then f is structurally stable.

The idea consists into using the simple structure of the non-wondering set find
fundamental domains and unstable disks, to get a foliation in a neighborhood around
each one of the orbits in �( f ). The way these foliations are constructed is made
compatible to the iterates, the so called compatible tubular families.

Definition An unstable tubular family for � is a continuous foliationFu in a neigh-
borhood V of � that satisfies the following properties

(i) the leaves are Cr manifolds immersed in M and transversal to the stable mani-
folds to the points in �;

(ii) the leaf that contains a point x ∈ � is the connected component of Wu(x) ∩ V
containing x ;

(iii) the tangent spaces of each one of the leaves vary continuously;
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(iv) the foliation is f invariant: f −1(Fu(x)) ⊂ Fu( f −1(x)), where Fu(x) is the
leaf that contains x .

The proof lies into using the tubular families as a system of coordinates to do the
conjugacy for two diffeomorphisms.

However, the construction of the neighborhood lies in the finitude of the non-
wondering set and that is one of the fundamental steps Welington was able to take in
his thesis. He was able to mimic the construction of the compatible tubular families
into a more general setting: two-dimensional manifold and a diffeomorphism with
the Axiom A property, that is, �( f ) is hyperbolic and Per( f ) = �( f ).

Teorema B (de Melo) If M is two-dimensional and f ∈ Di f f 1(M) is Axiom A,
satisfying the strong transversality condition, then f is structurally stable.

The proof here is based in the geometry and the dimension 2 and it is not clear
how to take the same ideas to higher dimensions. Welington’s remarkable thesis also
had two other stability results about the stability of proper hyperbolic sets.

Teorema C Let M be a n-dimensional manifold, f ∈ Di f f 1(M) Axiom A and �

be an attractor of f whose stable manifolds have co-dimension 1. Then f is locally
stable with respect to �.

Teorema D Let M be a two-dimensional manifold, f ∈ Di f f 1(M) Axiom A and
� be a basic set of f , then f is locally stable with respect to �.

Using the same ideas of construction the compatibility, in 1971 Robbin proved
that if f is C2 then hyperbolicity is a sufficient condition for structural stability [7],
and in 1976 Robinson reduced the C2 hypothesis to C1 [8].

Recall the conjecture stated by Palis and Smale in their paper in 1968:

Conjecture (The Stability Conjecture) f ∈ Di f f r (M) is structurally stable if and
only if f satisfies

(a) Axiom A: �( f ) is hyperbolic and the set of periodic points is dense in �( f );
(b) Strong Transversality Condition: for all x, y ∈ �( f ), we have that Ws(x) and

Wu(y) have a transversal intersection.

As we already mentioned, some beautiful and meaningful mathematics was made
trying to prove this conjecture. So far, we have only talked about the implication that
tries to prove that “Axiom A implies Stability” and one the most remarkable work
that explores the converse was written by Mañé in [3].

Teorema E (Mañé) Every C1 structurally stable diffeomorphism of a closed mani-
fold of any dimension satisfies Axiom A.

The Cr structural stability conjecture for r ≥ 2 remains wide open. Every tech-
nique known today is restricted to the C1 topology. The C1 perturbations with con-
trolled dynamical properties is an obstacle that holds progress in the r ≥ 2 direction:
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the closing lemma, connecting lemma and Frank’s lemma are either unknown or they
are false in higher topologies.

The conjecture itself can still inspire some interesting and relevant mathematics.
Instead of trying to adapt the C1 techniques to higher dimensions, one could try
to attack the conjecture into different approaches, surfaces or using new types of
systems that emerged, as proposed by Pujals [6] and [2] for example.
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Welington de Melo (1946–2016)

Edson de Faria and Sebastian van Strien

Abstract In memorian: Welington de Melo

Keywords One-dimensional dynamics

Classifications 01A70

Welington de Melo passed away on December 21st, 2016, shortly after a conference
held at IMPA celebrating his 70th birthday. The present volume was originally meant
to be a tribute in life toWelington’s accomplishments as a mathematician, but sadly it
has turned instead into amemorial volume. Theworld has lost a great mathematician,
a leader in the area of Dynamical Systems, and we have lost a great colleague, a
mentor, and a dear friend.

Welington was born on November 17th, 1946, in the city of Guapé, Minas Gerais.
He became an electrical engineer in 1969, but found mathematics more interesting
and completed his Ph.D. under the supervision of Jacob Palis at IMPA in 1972. His
thesis dealt with the structural stability, via geometric methods, of Axiom A maps
on two-dimensional manifolds. After his Ph.D. at IMPA, he held a postdoc position
for two years with Steve Smale in Berkeley, stayed for a few months in Warwick,
and for the remainder of his mathematical career worked at IMPA.

Throughout his career, Welington wrote 39 papers and 5 books (including an
unpublished book on differential topology). Welington believed that a mathematical
paper should present results that are as complete as possible, and disliked accordingly
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8 E. de Faria and S. van Strien

the idea of publishing mere partial results. Hence his papers tended to be few in
number but quite substantial, in content as well as in length.

His first book was written in collaboration with J. Palis, originally in Portuguese
[1] and later translated into English [2], Russian [3] and Chinese. It became a very
influential book in the area of Dynamical Systems, and in particular a standard text-
book reference on structural stability. His second book [4], written in collaboration
with one of us (SvS), represented at the time of publication the state of the art in
One-dimensional Dynamics, and it is still regarded as the most complete and author-
itative reference on the subject. Welington also wrote two other books with one of
us (EdF) on two completely different subjects [5–8].

Those of us who knew Welington well have always been impressed by his in-
tellectual integrity, his frankness, and his overall honesty. Dennis Sullivan adds the
adjective relentless. In pursuing the details of the proof of period doubling rigidity,
Welington was relentless about understanding and confirming every point. Indeed,
as Dennis recalls, the last detail was actually completed by Welington himself at the
Orsay pool with his observation “but that map is injective so by Koebe Distortion
…” at which point Dennis said “Yes, bingo!”. For Welington, the most important
thing was always the pursuit of truth and excellence, in Mathematics and elsewhere.
He will be sorely missed.

1 His Mathematical Contributions

What follows is a brief account of Welington’s major accomplishments as a mathe-
matician.

1.1 Structural Stability: Thesis

One of the main problems in dynamical systems is to describe the systems that are
structurally stable. In the early 1970s this led to:

Theorem 1 (Palis, Palis-Smale, Robin, deMelo, Robinson) C1 diffeomorphisms on
a compact manifold that satisfy Axiom A (a hyperbolicity assumption) and the strong
transversality condition are structurally stable within the set of C1 diffeomorphisms.

This goes back to Jacob Palis’ 1968 thesis in which he proved this for C1 Morse-
Smale systems in dimension two, and a year or so later this was extended by Jacob
Palis and Steve Smale to arbitrary dimension. This work introduced the notions of
tubular families (foliations in neighbourhoods of the stable and unstable manifolds).

About the same time, Joel Robin in the C2 topology and somewhat later Clark
Robinson in the C1 topology proved the above theorem using a functional analytic
approach (in the spirit of Anosov, Moser and others).
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The functional analytic approach is appealing but is less flexible than the geo-
metric approach. This was the inspiration for Welington’s thesis (which predates the
functional analytic proof in the C1 setting). In his beautiful thesis [9], which was
published in Inventiones Mathematicae, Welington was able to show that the geo-
metric approach works for C1 Axiom A maps in the two-dimensional setting (or
rather in the case where stable foliations are codimension one).

1.2 Economics (1974–1979)

Welingtonwas verymuch influenced bySteveSmalewho in the early 1970swas quite
interested in economics. Inspired by Steve’s work, Welington studied the problem
of simultaneously optimizing several functions. Forever the pure mathematician,
he wrote that this ‘is a natural question to consider, even in some basic models in
economics’.

More formally, let f = ( f1, . . . , fd) : Mn → R
d be a C∞ mapping on the com-

pact n-dimensional manifold-without-boundary M . A point p in M is a local Pareto
optimum (LPO) of f if there is a neighborhood U of p in M such that

q ∈ U, fi (q) ≥ fi (p) ∀i =⇒ f (q) = f (p) .

A smooth curve a : [0, 1] → M on which each fi is strictly increasing is called an
admissible curve for f .

One result of Welington in this direction is [12]:

Theorem 2 (1976, Welington de Melo) For a generic f , there exist an admissible
curve from any point q in M to some LPO provided dim M > max{d − 1, 2d − 4}.

The proof uses a combination of the singularity theory of maps and ideas from
dynamical systems.

1.3 Geometric Theory of Dynamical Systems (1978)

After returning to IMPA, Welington started to write lecture notes on dynamical
systems together with Jacob Palis [1]. No doubt the resulting text book Geometric
Theory of Dynamical Systemswas among themost influential text books in dynamical
systems. It was translated into English [2], Russian [3] and Chinese. Without this
book, dynamical systems would have become a much more disjointed discipline,
because unlike many textbooks it was also showing a research programme.
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1.4 Moduli of Stability (1979–1987)

What do we know about maps which are not structurally stable? Can we classify
conjugacy classes of such maps? Jacob Palis had initiated this research programme
in the mid 70s. Many people, in particular Welington but also Floris Takens (the
thesis advisor of SvS) had started working on this.

More precisely, a diffeomorphism f ∈ Diff∞(M) is said to have modality k if
this is the minimal integer for which there exists a small neighbourhood U which
contains a countable number of k-parameter C1 families of diffeomorphisms such
that each diffeomorphism inU is conjugate to at least one diffeomorphism from these
families. In particular, if f is structurally stable or if there are at most a countable
number of different conjugacy classes in a neighbourhood U of f then the number
of moduli is defined to be zero.

An example where one needs a one-parameter of diffeomorphisms to parametrize
conjugacy classes is when one has a two-dimensional diffeomorphism f with saddle-
points p and q such that

W u(p) and W s(q) have a quadratic tangency.

Jacob Palis showed that such a map has modality ≥ 1: if another nearby diffeomor-
phism f̃ also has a quadratic tangency then

log |a|
log |b| = log |ã|

log |b̃|

where a, ã and b, b̃ are the eigenvalues corresponding to W s(p), W s( p̃) resp
W u(q), W u(q̃).

Let A be the space of Axiom A diffeomorphisms on compact surfaces. In [21],
SvS andWelington managed to describe the subspace ofA of diffeomorphisms with
finite modality.

Theorem 3 (1987, Welington de Melo and SvS) If f ∈ Diff∞(M2) is in A, then f
has finite modality if and only if f ∈ M where M is defined below.

Here f ∈ M ⊂ A whenever f has no cycles and moreover

• if x, y ∈ �( f ) are such that W u(x) is not transverse to W s(y), then the basic sets
containing x and y consist of periodic orbits;

• there is only a finite number of nontransversal intersections between stable and
unstable manifolds and the contact between these manifolds along each of these
orbits is of finite order;

• if p, q ∈ Per( f ) are such that W u(p) has an orbit of nontransversal intersection
with W s(q) then the number of orbits in W s(p) [resp. in W u(q)] belonging to
some unstable [resp. stable] manifolds of a periodic saddle point of f is finite;
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• if x is a point of nontransversal intersection of W u(p) and W s(q) then there exists
an arc � transversal to W u(p) at x such that no connected component of � − {x}
contains points of both stable and unstable manifolds of saddles;

• if W u(p) has a point of nontransversal intersection with W s(q), and W u(q) has a
point of nontransversal intersection with W s(r), then there is no saddle point of f
whose unstable manifold [resp. stable manifold] intersects W s(p) [resp. W u(r)].

Since every diffeomorphism in A satisfying the transversality condition is
structurally stable, Theorem 3 generalizes the structural stability result for two-
dimensional manifolds.

The proof of this theorem is interesting and builds on the geometric construction
that Welington knew so well from his Ph.D. The flexibility of the ‘geometric ap-
proach’ in constructing topological conjugacies was crucial in being able to tackle
the types of tangencies of invariant foliations that occur.

1.5 One Dimensional Dynamics (1987–2016)

Inspired by the following results, Welington realised in the late 1980s that it was
time to concentrate on interval dynamics:

• May’s paper on chaos had made the study of iterations of x 	→ ax(1 − x) popular,
but the number of results was still small;

• Milnor-Thurston’s combinatorics paper;
• the introduction of Schwarzian derivative;
• the Feigenbaum-Coullet-Tresser conjectures on renormalization had been proved
in special cases;

• Sullivan had introduced the notion of quasiconformal maps into iterations of holo-
morphic maps, and was working hard to prove his theorem on renormalization.

Welington’s intuition was right because since that time a rich, beautiful and remark-
ably complete theory has emerged:

• a complete combinatorial description (Milnor-Thurston theory);
• a complete topological description (Denjoy-Fatou-Sullivan theory in the real case);
• a measure-theoretic description (number of ergodic components, existence and
non-existence of absolutely continuous invariant measures);

• geometric rigidity (real bounds, quasiconformal rigidity, density of hyperbolicity);
• a fairly complete renormalization theory;
• results towards the Palis conjecture in dimension 1: prevalence of systems which
are hyperbolic or admit absolutely continuous invariant measures.

In many of these developments Welington played a major role.
Let us describe Welington’s first result in this area. Consider maps f : M → M

where M = S1 or M = [0, 1]. What can you say about their dynamics? One of the
most basic results is the absence of wandering intervals, as was proved by Denjoy
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for circle diffeomorphisms. The analogue of this result for smooth unimodal interval
maps was proved in [24]:

Theorem 4 (1987, de Melo and SvS) If f : M → M is unimodal, C3 and satisfies
a non-flatness condition then it has no wandering intervals.

Under the assumption of negative Schwarzian, this result was proved previously
by Guckenheimer. The main contribution of the above paper was the cross-ratio
(inspired by a paper of Yoccoz who had previously used a particular cross-ratio for
his study of smooth circle maps with critical points). The cross-ratio came to be a
standard tool in one-dimensional dynamics, because it can be used to control the
non-linearity of high iterates of a map.

Encouraged by the above result, and the work of Sullivan, Welington and SvS
continued working in this direction.

In 1918 Julia gave the following description of the dynamics of rational maps on
the Riemann sphere: there are periodic domains attracting an open set of points, and
outside this set there is a closed set (the Julia set), and may be some open sets which
‘wander’ and which are attracted to this Julia set. The remaining problems were:

• Can a rational map have infinitely many periodic domains?
• Do such wandering domains exist?

The answer in both cases is no (Fatou, 1919) and (Sullivan, 1985).
In the circle diffeomorphism case the corresponding results were obtained by

Poincaré and Denjoy. For general one-dimensional (piecewise monotone) maps the
combinatorial study was done by Milnor and Thurston (and others). Building on
work of Denjoy, Guckenheimer, de Melo and SvS, Blokh and Lyubich, Lyubich,
Welington, together with SvS and his Ph.D. student Marco Martens were able to
prove the following [26]:

Theorem 5 (1992, Martens, de Melo and SvS) If f : M → M is C2 and satisfies a
non-flat condition then

• it has no wandering intervals
• the period of periodic attractors is bounded.

Subsequently, a completely different proof of this result was given by Edson
Vargas, a former Ph.D. student of Welington, and SvS. This approach also provides
‘real’ bounds, that one can get rid of the Schwarzian derivative condition in the most
general setting.

1.6 One-Dimensional Dynamics: The 1993 Monograph

Welington always felt that one should spend time to obtain optimal results and proofs,
and that the success of a research area depended on well-written text books which
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also described a research programme. He convinced SvS to join in this endeavour
and together we spend a couple of years to write the research monograph ‘One-
dimensional dynamics.We tried very hard to make thematerial up-to-date. Of course
one of the hardest, and most interesting parts of working on this book was to extract
fromDennis Sullivan his proof on renormalization. Welington (and also SvS) visited
Dennis many times in New York at CUNY, and in Paris at IHES. Typically, Dennis
would first explain something to Welington who then would try it out on SvS.

To our delight, the resulting monograph [4] was well received. Over the last
decade, Welington and SvS often discussed a new edition of the monograph which
was to include the exciting developments since the early 1990s.

1.7 Renormalization and Rigidity: Circle Maps (1994–2016)

The phenomenon of rigidity was first observed in Geometry, through the work of
G. D. Mostow, and was later seen to be present in Dynamics as well. In the lat-
ter context, rigidity means that a small number of dynamical invariants completely
determines the fine scale structure of orbits. Thus, roughly speaking, the rigidity
paradigm states that, under a minimum number of preset conditions, maps that are
topologically conjugate are in fact more smoothly conjugate. In low-dimensional
dynamics, especially in dimension one, rigidity is oftentimes achieved through the
study of an underlying renormalization operator. Renormalization of a dynamical
systemmeans a suitably rescaled first returnmap to a neighborhood of a special point
in phase space—usually a critical point. The starting point—in the late 1980s—for
the modern study of rigidity and renormalization (in the context of one-dimensional
real or complex systems)was Sullivan’s theorem stating that any two period-doubling
quadratic-like maps are always quasiconformally conjugate.

For critical circle maps (with a single critical point of power-law type), the only
invariant is the rotation number—this is a fundamental result due to J-C. Yoccoz.
But there are additional difficulties. Since the first return map to a neighborhood of
the critical point on the circle is discontinuous, one has to work with commuting
pairs of maps—as introduced by O. Lanford. The notion of holomorphic commuting
pair, introduced in EdF’s thesis in 1992, opened the door for the use of Sullivan’s
holomorphic and quasi-conformal methods in the circle setting. Welington was very
much interested in this work, and soon afterwards he and EdF embarked on a project
for understanding more deeply the rigidity, universality and renormalization con-
vergence of critical circle maps. Building on the complex bounds first obtained in
EdF’s thesis and later generalized by Yampolsky, they obtained the following result
[32, 34].

Theorem 6 (2000, W. de Melo and EdF) Any two real-analytic critical circle maps
with the same rotation number of bounded type and the same (odd) power-law at
their critical points are C1+α conjugate.
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This may be regarded as the analogue of Herman’s KAM theorem for circle
diffeomorphisms. This result was later extended by Khanin and Teplinskii, Khmelev
and Yampolsky to cover all rotation numbers, not just bounded type. The price to pay
is that one can only deduce that the conjugacy isC1. There are good reasons as towhy
this is the best one can expect: in [32], the authors constructed C∞ counterexamples
to C1+α-rigidity, and later Ávila constructed real-analytic counterexamples.

The main ingredient in the proof of Theorem 6 is to show that one has exponential
convergence to zero of the C0 distance between the successive renormalizations of
both maps. This uses an adaptation of the tower construction of McMullen to holo-
morphic pairs. In fact, in his 1998 Fields Medal address, McMullen cited Theorem
6 as one of the main applications of his theory.

Theorem 6 was generalized for C3 critical circle maps by P. Guarino in his the-
sis, written under Welington’s supervision, and this resulted in a very nice paper by
Guarino and Welington [46]. Subsequently, in [47], Guarino, Martens and Weling-
ton removed the hypothesis of bounded type on the rotation number, at the cost of
requiring one more degree of differentiability for the maps. Thus, the final result can
be stated as follows.

Theorem 7 (2018, W. de Melo, P. Guarino, M. Martens) Any two C4 critical circle
maps with the same irrational rotation number and with a unique critical point of the
same odd power-law type are conjugate by a C1 diffeomorphism. Morevoer, there
exists a full-measure set of rotation numbers (containing those with bounded type)
for which the conjugacy is in fact C1+α.

This can be regarded as the state of the art concerning renormalization and rigidity
of critical circle maps.

1.8 Hyperbolicity of Renormalization: Unimodal Maps
(1999–2006)

In the late 90s, Welington teamed up with EdF and Alberto Pinto in order to establish
the global hyperbolicity of the renormalization operator in the context of unimodal
maps having a finite degree of smoothness—this had been conjectured almost 20
years earlier by Lanford. The basic idea was to combine Lyubich’s breakthrough
concerning the hyperbolicity of renormalization in the space of quadratic-like germs
with a strong generalization of certain non-linear functional-analytic techniques first
developed by A. Davie in the context of Lanford’s period-doubling renormaliza-
tion. Several technical difficulties had to be overcome, mostly having to do with
the fact that, in the world of Cr maps, the renormalization operator is not Fréchet
differentiable—so that the notion of hyperbolicity a-priori does not even make sense.
In the end, a full proof of Lanford’s conjecture in the bounded combinatorics setting
was obtained. In very informal terms, the result can be stated as follows (see [39]).
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Theorem 8 (2006,W. deMelo, E. de Faria,A. Pinto) If r ≥ 2 + α, where 0 < α < 1
is close to 1, the limit set of the renormalization operator in the space of Cr unimodal
maps of bounded combinatorial type is a hyperbolic Cantor set where the operator
acts as the full shift in a finite number of symbols. In addition, for points of such limit
set,

(i) The local unstable manifolds are real analytic curves;
(ii) The local stable manifolds are of class C1, and together they form a continuous

lamination whose holonomy is C1+β for some β > 0;

In [39], the authors also proved that the global stablemanifolds of renormalization
are of class C1. This was done combining Theorem 8 with the implicit function theo-
rem in Banach spaces, at the expenses of losing one more degree of differentiability
(i.e., assuming that r ≥ 3 + α with α close to one).

1.9 Interval Maps: Stochasticity (2002–2003)

Another question is the following: How typical is it for a map from the quadratic
family to be either

• stochastic, or
• hyperbolic.

A result in this direction was proved by Lyubich.

Theorem 9 (2002, M. Lyubich) For Lebesgue almost all a, either fa(x) = ax(1 −
x) is hyperbolic or a summability condition is satisfied.

By a result of Martens and Nowicki this summability condition implies a summa-
bility criterion for the existence of absolutely continuous invariant measures due to
Nowicki and SvS.

As an aside, no growth condition is needed. A recent paper by Bruin, Shen and
SvS shows that for any map (possibly multimodal) the summability criterion can
be replaced by something much weaker: for any f without periodic attractors there
exists C > 0 so that if for any critical point c one has |D f n( f (c))| ≥ C then f has
an acip.

As one of the outcomes of a very successful collaboration, Artur Ávila,Welington
and Misha Lyubich proved the following:

Theorem 10 (2003, A. Ávila, W. de Melo, M. Lyubich) Within any non-trivial real-
analytic family of quasiquadratic maps, for almost all parameters the above dichoto-
my holds.

The proof is based on the following ingredients:
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• The space of analytic maps is foliated by codimension-one analytic submanifolds,
‘hybrid classes’: maps in these submanifolds are topologically conjugate and, in
the hyperbolic case, they have the same multiplier at attracting cycles.

• hybrid classes laminate a neighbourhood of any non-parabolic map.
• This allows the authors to transfer the regular or stochastic property of the quadratic
family to any nontrivial real analytic family: The holonomy along the foliation
occurs in a quasisymmetric manner, since it comes from holomorphic motions
parametrized by a complex Banach ball. But in general it is not absolutely con-
tinuous. However, the holonomy respects the property of exponential decay of the
parapuzzle geometry (and therefore the Martens-Nowicki criterion).

• The main point is a construction of a transverse vector field v at f (crossing hybrid
classes transversally). A solution α of the equation

v(z) = α( f (z)) − f ′(z)α(z)

yields an infinitesimal quasiconformal change of coordinates used to perform an
infinitesimal change of f in the direction of the vector field v. One finds v such
that the equation does not have a solution, i.e. v cannot be “horizontal” (tangent
to hybrid classes).

• To construct v, they start with a smooth vector field v, holomorphic on the critical
value puzzle piece U1 and vanishing on other preimages of a central puzzle piece
U0 leading to U1. The fact that one has large scales (since the critical point is
quadratic) and a Key Lemma are used to show that this vector field cannot be
horizontal.

• They then approximatev byaholomorphic vectorfieldusingMergelyan’s theorem.

1.10 Two More Books (2001–2010)

In the beginning of 2001, Welington took up the task of writing notes for a short
course to be delivered at the 23rd BrazilianMath Colloquium at IMPA later that year.
Soon after starting on his own, he decided to invite one of us (EdF) to join in the
project, and the set of notes was published as [5]. A few years later, these notes were
expanded and polished to a full-size book. The goal of the book was to present the
most important mathematical tools of a holomorphic and/or quasiconformal nature
that are used in the study of one-dimensional dynamical systems. This book was
published by Cambridge in 2008 (see [7]).

In the meantime, Welington became interested in Mathematical Physics, more
precisely in Quantum Field Theory (QFT), thanks primarily to several conversations
with Dennis Sullivan. In order to learn more about the subject, he decided to teach
a summer course about it. He eventually convinced EdF to embark on the project of
writing a longish set of notes [6] for a course to be delivered at the 26rd Brazilian
Math Colloquium at IMPA, in 2007. The idea was to write a book which would help
clarify many of the difficult ideas appearing in QFT in a way that would be accessible
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and make sense to mathematicians. This was quite an adventure, since both authors
were coming from outside Mathematical Physics. This book, too, was published by
Cambridge, in 2010 (see [8]).

In fact, the story behind these two Cambridge books is a bit more non-linear
than the previous two paragraphs suggest. In 2006, during the ICM held in Madrid,
Welington met David Tranah, the editor at Cambridge University Press. In their con-
versation,Welingtonmentioned that he andEdFwerewriting a book onmathematical
aspects of QFT. Tranah said that he might be interested in publishing such a book.
Upon his return to Brazil, Welington urged EdF to write to Tranah. In the e-mail
exchange that followed, EdF mentioned the first book (on holomorphic dynamics),
and Tranah told him that he might be interested in publishing that one too.

1.11 Prizes

Welington was elected to the Brazilian Academy of Sciences in 1991, gave a talk
at the International Congress of Mathematics in 1998 and became a member of the
Third World Academy of Science in 2003.

2 Welington, the Person

Welington met his wife Gilza while he was still quite young. They were inseparable,
truly adored each other and even felt comfortable squabbling in front of others. No
doubt, Gilza was instrumental in Welington’s success.

Usually Welington and Gilza lived relatively modestly. However, occasionally
Welington would love to eat out in famous restaurants and talked about these mem-
orable meals for years after.

Welington loved to be near the sea and in particular to sail and the sense of
adventure and freedom. As soon as he could afford it, he and Gilza bought a weekend
condominium in Angra dos Reis together with a sailing boat. Many, many weekends
Gilza andWelington would invite visitors from IMPA to stay with them there. There
was a strict ritual: to go sailing after breakfast, starting to drink beers at noon (and
definitely not a minute before) and then to swim, snorkel or go for a hike on one of
the beautiful islands in the bay. Lunch would be in one of the lovely small beach
restaurants or a packed lunchwith self-picked oysters.During these tripsmathematics
was always the main topic of discussion (Gilza would normally prefer to stay in
the condominium), but the atmosphere would also be light hearted. At SvS’s 60th
birthday party he reminisced about the time that Henk Broer threw Dennis Sullivan
(and SvS) overboard, but was unsure whether to tackle Welington, who after all was
the captain.

In 1987, Welington made a trip of 700 nautical miles from Berkeley to the Mar-
quesas islands. The idea of the trip came from Steve Smale in whose boat the trip
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was made. Steve was the captain, and Welington and Charles Pugh were the crew.
Oftentimes Welington spoke with amazement about this extraordinary trip.

Welington’s website contains a quote from Richard Bode’s book ‘First you have
to row a little boat’which no doubt describes his philosophy of life, one of embracing
life as an exciting adventure:

For the truth is that I already know as much about my fate as I need to know. The day will
come when I will die. So the only matter of consequence before me is what I will do with
my allotted time. I can remain on shore, paralyzed with fear, or I can raise my sails and dip
and soar in the breeze.

3 Welington’s Ph.D. Students

Welington was a mentor to many young mathematicians but took on relatively few
Ph.D. students. He always had high standards and was very proud of his students.
Perhaps unbeknownst to them, he followed their careers with great interest.

Maria José Pacífico (1980)
Antonio Augusto Gaspar Ruas (1982)
Edson Vargas (1989)
Artur Ávila (2001)
Daniel Smania (2001)
Alejandro Kocsard (2007)
Pablo Guarino (2012)
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Some Monoids of Pisot Matrices

Artur Avila and Vincent Delecroix

Abstract A matrix norm gives an upper bound on the spectral radius of a matrix.
Knowledge on the location of the dominant eigenvector also leads to upper bound
of the second eigenvalue. We show how this technique can be used to prove that
certain semi-group of matrices arising from continued fractions have a Pisot spec-
trum: namely for all primitive matrices in this semi-group all eigenvalues except the
dominant one is smaller than one in absolute value.

Keywords Pisot matrices · Spectral radius · Pisot spectrum

1 Introduction

A dominant eigenvalue of a real square matrix is an eigenvalue of maximum modu-
lus. We call a square matrix Pisot if it has non-negative integer entries, its dominant
eigenvalue is simple and all eigenvalues different from the dominant one have abso-
lute values less than one. Recall that a non-negative square matrix A is primitive if
there exists a positive integer n so that An has all its entries positive. In this article,
we prove that several monoids of non-negative matrices enjoy the property that all
of its primitive elements are Pisot.

Our first family of matrices is related to the so called fully subtractive (multidi-
mensional) continued fraction algorithm. For an integer d ≥ 2 we define for each
k = 1, . . . , d the matrix A(k)

FS,d by
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(A(k)
FS,d)i j =

{
1 if j = k or i = j,
0 otherwise

For d = 3 this boils down to the three matrices

A(1)
FS,3 =

⎛
⎝1 0 0
1 1 0
1 0 1

⎞
⎠ , A(2)

FS,3 =
⎛
⎝1 1 0
0 1 0
0 1 1

⎞
⎠ , A(3)

FS,3 =
⎛
⎝1 0 1
0 1 1
0 0 1

⎞
⎠ .

All non-degenerate products of the matrices A(k)
FS,d satisfy the Pisot property.

Theorem 1 Let A = A(i1)
FS,d A

(i2)
FS,d . . . A(in)

FS,d be a product of the fully subtractive
matrices in dimension d. Then the matrix A is primitive if and only if all letters
{1, . . . , d} appear in the sequence (i1, i2, . . . , in). Moreover, if the matrix A is prim-
itive then it is Pisot.

The case d = 3 of Theorem 1 was proved in [3]. The authors used an induction on
characteristic polynomials and our approach is radically different.

The same result holds for another set of 3 × 3 matrices related to the Brun mul-
tidimensional continued fractions. Let

A(1)
Br =

⎛
⎝1 1 0
0 1 0
0 0 1

⎞
⎠ , A(2)

Br =
⎛
⎝1 1 0
1 0 0
0 0 1

⎞
⎠ , A(3)

Br =
⎛
⎝1 0 1
1 0 0
0 1 0

⎞
⎠ .

Theorem 2 Let A = A(i1)
Br A

(i2)
Br . . . A(in)

Br be a product of the 3 × 3 Brun matrices.
Then, A is primitive if and only if the matrix A(3)

Br appears in the product. Moreover,
if A is primitive then it is Pisot.

This result was already known since the work of Brun [6].
The proofs of Theorems 1 and 2 only involves linear algebra and more precisely

relations between eigenvalues and matrix norms. To some extent, it is very close to
the following inequality that holds for a non-negative primitive d × d matrix A

λ2 ≤ sup
x∈v⊥\{0}

‖Ax‖
‖x‖ .

where v is the Perron-Frobenius eigenvector of A, λ2 the second largest absolute
value and ‖.‖ is any norm on Rd . Our proof uses a partial information on v provided
by the continued fraction algorithm associated to the matrices.

From a diophantine approximation point of view, the Pisot property is particularly
interesting because it provides the so called exponential convergence of the continued
fraction expansion for almost every vectors (see [9]). We show that the above results
naturally extends to this situation in Sect. 6.
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Beyond continued fractions, Pisot matrices are of special interest in substitutive
dynamical systems. More precisely, replacing matrices with so called substitutions,
one can build a uniquely ergodic subshift X of low complexity. The Pisot properties
implies the existence of a rotation on a d − 1 dimensional torus that is a factor of
X (interestingly this rotation only depends on the matrix). In many cases X can be
proved to be measurably conjugate to this rotation (see [7] Chap.7). This was the
main motivation for the study of the fully subtractive matrices in [3].

We gratefully thank Eric Domenjoud and Milton Minervo for careful reading of
earlier versions.

2 Fully Subtractive and Brun Continued Fractions

Our main focus are the fully subtractive and Brun algorithm. However, most of the
definitions can be set in amore general context. To that purpose, let us consider a finite
or countable setA that we call alphabet and for each i ∈ A a matrix A(i) ∈ SL(d,R).
In the case of the fully subtractive algorithm we have AFS,d = {1, 2, . . . , d} while
for Brun algorithm ABr = {1, 2, 3}.

To the data (A, (A(i))i∈A)we associate the set of infinite words� = AN, the shift
map T : � → � and a cocycle

∀x ∈ �,∀n ≥ 0, An(x) = A(x0)A(x1) . . . A(xn−1).

The maps An : � → SL(d,R) satisfy the so called (transposed) cocycle property:
Am+n(x) = Am(x)An(Tmx).

Recall that the projective space P(Rd) is the quotient of Rd\{0} by the relation
v ∼ αv for anyα 
= 0. In otherwords, it is the set of lines inRd . It can also constructed
as a quotient of the d − 1-dimensional sphere. P(Rd) is compact.

Our main tool is the following definition.

Definition 3 Let (A(i))i∈A be a set of matrices in SL(d,R) where A is a finite or
countable alphabet. We say that a set D ⊂ P(Rd) is adapted to these matrices if it is
non-empty, it is the closure of its interior and for all i ∈ A we have A(i)D ⊂ D.

For example P(Rd) is always adapted. But we will be interested in the somewhat
smallest adapted set in order to localize the dominant eigenvector.

Let

DFS,d = {(x1, . . . , xd) ∈ P(Rd
+) : ∀i, j, k xi < x j + xk}

and

DBr = {(x, y, z) ∈ P(R3
+) : x > y > z}.
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A
(1)
FS,3 =

⎛
⎝
1 0 0
1 1 0
1 0 1

⎞
⎠ A

(2)
FS,3 =

⎛
⎝
1 1 0
0 1 0
0 1 1

⎞
⎠

A
(3)
FS,3 =

⎛
⎝
1 0 1
0 1 1
0 0 1

⎞
⎠ .

12

3

(110)

(101)

(211) (121)

(011)
(112)

Fig. 1 Fully subtractive partition of the domains with d = 3. The points (xyz) in the picture
corresponds to the point in P(R3+)with coordinates (x, y, z). In other words, to the lineR+(x, y, z)

A
(1)
Br =

⎛
⎝
1 1 0
0 1 0
0 0 1

⎞
⎠ A

(2)
Br =

⎛
⎝
1 1 0
1 0 0
0 0 1

⎞
⎠

A
(3)
Br =

⎛
1 0 1
1 0 0
0 1 0

⎞
.

1 2

3

(100) (110)

(111)

(211)

(210)

Fig. 2 The matrices and domains for the Brun algorithm

Then it is easily seen that DFS,d is adapted for the fully subtractive matrices in
dimension d and DBr is adapted for the Brun matrices.

Given a countable collection of matrices (A(i))i∈A and D ⊂ P(Rd) adapted, we
define D(i) = A(i)D. In Figs. 1 and 2 one can see the projective picture of the domains
D(1), D(2) and D(3). Note that in these cases, the domains D(i) are disjoint but that
it is not a requirement in our definition. Moreover, one can see that in the Brun case
the D(i) form a partition while it is not the case for the fully subtractive.

If the D(i) are disjoint one can define a continued fraction algorithm as follows.
One defines a partial map f : D ��� D by setting f x = (A(i))−1x on D(i).

One can compute that for Brun one has

fBr (x, y, z) = sort(x − y, y, z)

where sort : P(R3+) → D is the map which permutes the coordinates in order to sort
them. While for the fully subtractive one has

fFS,d(x) = (x1 − xi , x2 − xi , . . . , xi−1 − xi , xi , xi+1 − xi , . . . , xd − xi )

if xi = min(x1, . . . , xd).
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3 Strategy

The proofs of Theorems 1 and 2 follow a general strategy that we describe now.
Let (A(i))i∈A be a finite or countable set of matrices as in Sect. 2. Let also� = AN

and D ⊂ P(Rd) be adapted. We define for a finite word w = i0i1 . . . in−1 ∈ An the
set D(w) = A(i0)A(i1) . . . A(in−1)D. It generalizes the definition D(i) that we already
used for words of length 1 (identified to letters). In terms of continued fractions, it
corresponds to the set of points in D corresponding to the cylinder [w] induced by
the coding by A. Note that for any w the set D(w) is not empty. Given an infinite
word x = x0x1 . . . ∈ � we also set Dn(x) = An(x)D = D(x0x1...xn−1). In particular
D0(x) = D and D1(x) = D(x0). Given x , the set Dn(x) are nested and we define
D∞(x) = ⋂

n≥0 Dn(x).
We let ‖.‖ be the L∞ norm on R

d and the associated operator norm on matrices.
That is for a vector v and a matrix A

‖v‖ = max(|v1|, . . . , |vd |) and ‖A‖ = max
i=1,...,d

∑
j=1,...,d

|ai j |.

In this section the norm used on Rd has no importance. But it turns out that, to apply
the results to continued fraction algorithms in Sects. 4 and 5 the most convenient one
was twice the L∞ norm.

To a non-zero vector v in R
d , we associate its dual hyperplane Hv = {z ∈

R
d; 〈v, z〉 = 0}. Given a non zero vector v in Rd we define the following semi-norm

on d × d matrices

‖B‖v = sup
z∈Hv\{0}

‖Bz‖
‖z‖ = max

‖z‖≤1
z∈Hv

‖Bz‖.

More generally, if � ⊂ R
d is a cone, we define

‖B‖� = sup
v∈P(�)

‖B‖v.

These semi-norm will be applied to the transposed cocycle B of A that is B(w) =
(A(w))∗ for finite wordsw and Bn(x) = (An(x))∗ for points x ∈ D and n ≥ 0. These
matrices satisfy the cocycle property Bm+n(x) = Bn(Tmx)Bm(x).

Lemma 4 Let (A(i))i∈A be a finite or countable set of matrices in SL(d,R) and let
D ⊂ P(Rd) be adapted. Let B(i) (respectively Bn(x)) denote the transposed of A(i)

(resp. An(x)). If for all i ∈ A we have

∥∥B(i)
∥∥
D(i) ≤ 1. (1)
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Then for any point x = x0x1 . . . ∈ � we have

‖Bn(x)‖Dn(x) ≤ 1

where Dn(x) = An(x)D.

The corollary below shows that under the assumption (1), the generated monoid
satisfies a “weak Pisot” condition.

Corollary 5 Under the same assumption of Lemma 4, each matrix A(w) = A(i0)A(i1)

. . . A(in−1) has at most one eigenvalue (with multiplicity) greater than one in absolute
value.

Proof of Lemma 4. We prove the Lemma by induction. The hypothesis corresponds
to the case n = 1. Assume that this inequality holds for some n. By definition
An+1(x) = A1(x)An(T x) and Dn+1(x) = A1(x)Dn(T x). Hence v ∈ Dn(T x) if and
only if A1(x)v ∈ Dn+1(x). Let us choose v ∈ Dn(T x), then

‖Bn+1(x)‖A1(x)v = ‖Bn(T x)B1(x)‖A1(x)v ≤ ‖Bn(T x)‖v · ‖B1(x)‖A1(x)v.

This inequality shows that if ‖Bn(T x)‖v ≤ 1 then ‖Bn+1(x)‖A1(x)v ≤ 1 which con-
cludes the proof of the Lemma. �

Proof of Corollary 5. Let us consider the point x = (i0i1 . . . i p−1)
∞ in � so that

Bp(x) = B(i0) . . . B(in−1). Because Bp(x) is simply the transposed of Ap(x) we can
simply prove the statement for Bp.

By Lemma 4 and because D∞(x) ⊂ Dp(x) we have

‖Bp(x)‖D∞(x) ≤ 1.

Now the union M =
⋃

v∈D∞(x)

Hv is preserved by Bp(x). On the other hand, we have

a direct sum R
d = Eu ⊕ Es where Eu (respectively Es) is the direct sum of the

eigenspaces ker(Bp(x) − λI )d with eigenvalue λ whose absolute value is greater
than 1 (resp. smaller or equal than 1). By the above inequality, any eigenvector of
Bp(x) contained in M must have an eigenvalue of absolute less than one. More
generally, Eu does not intersect M . Now, M contains a d − 1 vector space and hence
Eu has dimension at most 1. �

4 Pisot Property for Arnoux-Rauzy Matrices

In this section we prove Theorem 1. Let d ≥ 2 be an integer and let e1, e2, …ed
be the canonical basis of Rd . Let e = e1 + e2 + . . . + ed and for i = 1, . . . , k let
fi = e − ei . The domain DFS,d is the convex hull of the rays vectors R+ fi .
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Let as usual B(w) = (A(w))∗ and Bn(x) = (An(x))∗. We claim that we have the
following stronger property than (1) from Lemma 4

∀i = 1, . . . , d, ‖B(i)‖D ≤ 1.

Let us prove this claim. Let v ∈ D∞, then we may write v = μ1 f1 + μ2 f2 + . . . +
μd fd for some non-negative numbers μi that satisfy μ1 + μ2 + . . . + μd = 1. We
hence have v = e − ∑

μi ei and

Hv = {z ∈ R
d; 〈z, v〉 = 0} = {z ∈ R

d;
∑

z j =
∑

μ j z j }.

Given z ∈ Hv wehave B(i)z = (z1, . . . , zi−1,
∑

j μ j z j , zi+1, . . . , zd), In otherwords,
B(i) acts on Hv as a stochastic matrix P(i, v) which is the identity except its i-th row
which is (μ1,μ2, . . . ,μd). In particular ‖B(i)‖v = ‖P(i, v)‖v ≤ 1.

By the claim, the monoid generated by the matrices A(i)
FS,d satisfies the weak Pisot

condition of Corollary 5.What remains to prove is that when a product is irreducible,
there is no remaining eigenvalue of absolute value 1. To that purpose, let us consider
a finite product A = A(i0)

FS,d A
(i1)
FS,d . . . A

(i p−1)

FS,d . If one of the letter {1, . . . , d} is missing
in the sequence (i0, i1, . . . , i p−1) then Aei = ei and so the matrix is not primitive. On
the other hand, if all letters appear it is easy to see that all entries in A are positive.

Now let x = (x0x1 . . . xp−1)
∞ be a periodic point that contains all letters from

A. Because of positivity the dominant eigenvalue of Ap(x) is simple and its asso-
ciated eigenvector v0 is so that D∞(x) = R+v0. Let vn = An(x)−1v0 be the Perron-
Frobenius eigenvector of Ap(T nx). Each vn is positive and hence the coefficients
μ1, μ2, …, μd that appear in the stochastic matrices P(xi , vi ) are all positive. Now,
the product P(xp−1, vp−1) . . . P(x1, v1)P(x0, v0) is a stochastic matrix with all its
entries positive. Hence, its second eigenvalue, which is also the second eigenvalue
of Ap(x), is less than 1 in absolute value.

5 Pisot Property for Brun Algorithm (in Dimension 3)

We now turn to the proof of Theorem 2. LetA = {1, 2, 3} and A(1)
Br , A

(2)
Br , A

(3)
Br be the

matrix of the Brun algorithm. We let � = AN and denote by A and B respectively
the cocycle and the transposed cocycle. We claim that, as in the case of the fully
subtractive, we have the stronger property that

∀i ∈ {1, 2, 3}, ‖B(i)‖D ≤ 1.

Weonly need to consider thematrix B(1) =
⎛
⎝1 0 0
1 1 0
0 0 1

⎞
⎠ since the other two are obtained

by multiplying by a permutation matrix which will not change the L∞-norm.
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Letv = μ1(1 : 0 : 0) + μ2(1 : 1 : 0) + μ3(1 : 1 : 1) ∈ D for someμ1,μ2,μ3 such
that μ1 + μ2 + μ3 = 1 and Hv = {z ∈ R

d; z1 + z2 = μ1z2 − μ3z3}. Now, for any
z ∈ Hv we have B(1)(z1, z2, z3) = (z1, z1 + z2, z3) = (z1,μ1z2 − μ3z3, z3). In par-
ticular ‖B(1)(z1, z2, z3)‖ ≤ ‖(z1, z2, z3)‖. As in the case of the fully subtractive algo-

rithmwe define P(v, 1) =
⎛
⎝1 0 0
0 μ1 −μ3

0 0 1

⎞
⎠ that is so that the action of B(1) and P(1, v)

coincide on Hv . Similarly, we define P(2, v) and P(3, v) corresponding to B(2) and
B(3). Note that, contrarily to the fully subtractive case, P(i, v) is not a stochastic
matrix.

Now, given a product A = A(i0)
Br . . . A(in−1)

Br , if 3 does not appear in the sequence
(i0, . . . , in−1) then Ae3 = e3 and hence the matrix A can not be irreducible. Conver-
sly, if 3 appears then A3 is easily seen to be positive.

As in the fully subtractive case we consider the sequence of eigenvectors (vn)n≥0

and the product P = P(xp−1, vp−1) . . . P(x1, v1)P(x0, v0). For a primitive product
we got that the numbers μ j appearing in the definition of each P(xi , vi ) are all
positive. As a consequence, the absolute value of the sum of each row of the product
P is strictly smaller than 1. In other words ‖P‖v0 = ‖Bp(x)‖v0 < 1 which prove that
there is no eigenvalue 1.

6 Lyapunov Exponents

Let (A(i))i∈A be a finite or countable set of matrices. Let�, T , A, B denote as before
the infinite words, the shift map the cocycle and the transposed cocycle. Let also D
be adapted to these matrices.

The asymptotics of the cocycle (or the transposed cocycle) are studied through
Lyapunov exponents. Given a T -invariant ergodic probability measure μ on �, we
associate the real numbers γ

μ
1 ≥ γ

μ
2 ≥ . . . ≥ γ

μ
d defined by

∀k ∈ {1, 2, . . . , d}, γ1 + γ2 + . . . + γk = lim
n→∞

∫
�

log ‖ ∧k An(x)‖
n

dμ(x).

In order to be well defined we assume that
∫

�

max
(
log ‖A1(x)‖, log ‖A1(x)

−1‖) dμ(x) < ∞ (2)

and we refer to this condition as the log-integrability of the cocycle. If the alphabet
A is finite the cocycle is automatically log-integrable. If x is a periodic point of T
and μ = (δx + δT x + . . . + δT n−1x )/n is the sum of Dirac masses distributed along
its orbit, then the associated Lyapunov exponents are the logarithms of the absolute
values of eigenvalues of An(x) where n is the period of x . In that sense, Lyapunov
exponents generalize eigenvalues.

Given ameasureμ forwhich the cocycle is log-integrable,we say that (�, T, A,μ)

has Pisot spectrum if the associated Lyapunov exponents satisfy γ
μ
1 > 0 > γ

μ
2 . This
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property is related to the strong convergence of higher dimensional continued fraction
algorithm [9].

Now we restate Lemma 4 in a more dynamical context.

Lemma 6 Let (A(i))i∈A be a finite or countable set of non-negative matrices in
SL(d,R). Let (�, T, A, B) be the associated full shift with its cocycle and its trans-
posed cocycle. Let also D be adapted. Assume that

∀i ∈ A,
∥∥(

A(i)
)∥∥

D(i) ≤ 1.

Let μ be a T -invariant and ergodic measure on D so that

• the cocycle An is log-integrable,
• there exists a cylinder [w] such that μ([w]) > 0, A(w) is positive and

‖B(w)‖D(w) < 1.

Then two first Lyapunov exponents of the cocycle An for the measure μ satisfies
γ

μ
1 > 0 > γ

μ
2 .

Proof Let us first prove that γ1 > 0.
Now, by definition, for μ-almost every x

γ1 = lim
n→∞

log ‖An(x)‖
n

Let m = |w| be the length of w and consider the positions which are multiple of m.
For a μ-generic x we have by Birkhoff theorem that

lim
n→∞

#{i ≤ n : T i (x) ∈ [w]}
n

= μ([w])

In other words, given a sequence of length n large enoughwe can find a linear number
of disjoint occurrences of w (up to a sublinear error). Let kn be the number of these
occurrences, then necessarily each entry of An(x) is larger than the corresponding
one in Ckn where C is the matrix which contains a 1 in every position. In particular
γ1 > 0.

From the existence of w it also follows that for a μ-generic x the cone D∞(x)
is reduced to a line contained in the interior of Rd+. We can hence define μ-almost
everywhere a function v : � → R

d+ by D∞(x) = R+v(x) and ‖v(x)‖ = 1. We then
have the following formulas which holds for μ-almost every x

γ1 = lim
n→∞

− log ‖An(x)−1v(x)‖
n

and γ2 = lim
n→∞

log ‖Bn(x)‖v(x)

n
.

It is then easy to derive the estimate for γ2. The map x �→ v(x) and the dual hyper-
planes Hv(x) satisfy the following covariance properties

D∞(T x) = A(x)−1D∞(x) and HA−1v = A∗Hv.
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Hence as in the proof of Lemma 4, we deduce that for all v ∈ D∞(x)

‖Bm+n(x)‖v(x) ≤ ‖Bm(x)‖v(x)‖Bn(T
mx)‖v(Tmx)

In particular, forμ-almost every x ∈ [w], any largen ≥ |w|weget that‖Bn(x)‖v(x) <

1. Let δ = ‖B(w)‖D(w) < 1. Using the same argument as in the estimation of γ1 we
get that

γ2 ≤ lim inf
n→∞

kn log δ

n
.

And the above limit is strictly negative. �
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On the Statistical Attractors
and Attracting Cantor Sets for Piecewise
Smooth Maps

P. Brandão, J. Palis and V. Pinheiro

Abstract We discuss some aspects of the asymptotic behavior of the forward orbits
of most points for piecewise smooth maps of the interval, specially for contracting
Lorenz maps. We are particularly interested in the statistical aspects of most orbits,
the existence of statistical attractors and how most orbits in the basin of attraction of
an attracting Cantor sets approach the attractor.

Keywords Metrical attractors · Statistical attractors · Contracting Lorenz maps ·
Piecewise smooth maps of the interval · Inaccessible basin of attraction · Strong
ergodicity

In Memoriam of Welington de Melo
Just after concluding his Ph.D. at Berkeley, Jacob Palis returned to Rio de Janeiro and
started to work at IMPA, conducting a seminar mostly concerned with new results
on Dynamics. The seminar was intense, promoting talks even on Saturday mornings.

In one of these occasions a young student asked Palis to allow him to participate
in the seminar, following a suggestion by Elon Lima who met this student at the
Brazilian Mathematical Colloquium of 1969 in Poços de Caldas. This fellow was
Welington de Melo. He assured Palis that he would study a lot and so, would much
profit from the seminar. Palis was surprised, specially because this young student had
just been accepted to the Master Program at IMPA. Palis was so impressed by his
determination that finally said yes to him. Welington’s performance was indeed out-
standing: he concluded his doctorate in twoyears after joining the seminar, publishing
his thesis in the celebrated journal “Inventiones mathematicae”. This episode shows
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two of the main features of his personality: strong determination and mathematical
competence.

Welington became one of the world leaders in one-dimensional dynamics. He
collaborated with main names in the field, taking part in several main moments of
the development of the subject and finally, he was the Ph.D. advisor of Artur Avila.
We observe that Avila was the first mathematician to win a Fields medal whose initial
career was fully developed in the Southern hemisphere.

Above all, Welington cultivated in his whole life a “joie de vivre”, specially
crossing seas with friends in his boat. We do miss him.

1 Introduction

Mathematicians, and scientists in general, have been using strategies to reduce the
dynamics that they are studying (or at least, features of them) to some more treatable
low dimensional dynamical models, particularly to dynamics generated by maps of
the interval. When one tries to reduce a multidimensional smooth dynamical system
to the dynamics generated by a map f of the interval, it is not so surprising that f
may not carry the same smoothness of the original dynamics.

One example of that concerns Lorenz flows and its attractors. Lorenz flows are
specific three dimensional flows that were first studied by the meteorologist Edward
Lorenz. He was trying to study some unpredictable behavior normally associated
to weather using Navier-Stokes equations, which is a model of fluid convection
and an infinite dimensional dynamical system. After he published his remarkable
paper “Deterministic non-periodic flows” (1963), Lorenz flowswere studied bymany
mathematicians, physicists, engineers and others. Eventually, V.S. Afraimovich, V.V.
Bykov, L.P. Shil’nikov, in [1], and Guckenheimer and Williams, in [17], introduced
the geometric Lorenz flows, similar to Lorenz’s ones and exhibiting the same peculiar
characteristics of the original Lorenz flows. This model consists of considering a
hyperbolic singularity p = (0, 0, 0) ∈ R

3 with one dimensional unstable manifold
such that, in a linearizable neighborhood V = (−r, r)3 of p, the local stable and
unstable manifolds areWs

r (p) = V ∩ ({0} × R
2) andWu

r (p) = V ∩ (R × {(0, 0)}),
the return of each branch of Wu(p) \ {p} to this neighborhood cuts transversally
the plane z = constant , with eigenvalues λ2 < λ3 < 0 < λ1 (see Fig. 1), and the
expanding condition λ3 + λ1 > 0. The dynamics of a geometric Lorenz flow can
be reduced to the dynamics of a map of preserving orientation interval map with a
single discontinuity, called a Lorenz map. It is worth to be told that the geometric
Lorenz flows (and so, the Lorenz maps) were the appropriate approach to study
Lorenz flows, as it was proved by W. Tucker [37], that the original Lorenz flows are
indeed geometric Lorenz ones.

In [3], Arneodo, Coullet and Tresser began to study a model obtained in the same
way as the one obtained by Guckenheimer and Williams, just modifying the relation
between the eigenvalues of the singularity, taking λ3 + λ1 < 0. This model is known
as the contracting Lorenz flow and the attractors associated to it are more unstable
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Fig. 1 Dynamics of the geometric Lorenz flows

than the Lorenz original ones, presenting far more diversified dynamics and many
deferent types of attractors. In particular, the one dimensional maps associated to
them “contain”, as we will see later, all the possible dynamics of the Logistic maps
(another very well known and studied class of dynamics).

The dynamics of smooth maps of the interval was studied exhaustively in the
last four decades, in particular, properties as finiteness of attractors, non-existence
of wandering intervals, classification of attractors, physical/SRB measures, generic
families of unimodal maps with most parameters being stochastic or deterministic,
the density of deterministic dynamics and so on. Nevertheless, several of the key
techniques developed to smooths maps do not work for maps with discontinuities.
Because of that, even for the simplest maps of the interval with one discontinuity,
the Lorenz maps (particularly, the contractive ones), most of the equivalent results
already obtained to smooth maps are not known.

Here wewill try to point out some of the problems inwhichwe aremore interested
in and that are open formapswith discontinuities.Wemention a few open conjectures
about such maps, some of them due to de Melo. To be concise and also because it is
the simplest case, most of the definitions will be done in Sect. 2 only for contracting
Lorenz maps, nevertheless everything can be set in a similar way to the general
context of piecewise smooth maps of the interval. Still in Sect. 2, we use the concept
of ergodicity for measures that are not necessarily invariant to define the (Ilyashenko)
statistical attractors and compare them to Milnor attractors. In particular, we show
in Proposition 2.5 that, if a contracting Lorenz map f has a cycle of intervals and
the closure of the forward orbits of the critical values has empty interior, then f is
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ergodic with respect to Lebesgue and it has a single Milnor attractor containing a
unique Ilyashenko statistical attractor.

Motivated by the questions raised in Sect. 2, we present in Sect. 3 the main result
of the paper, Theorem 2, about how a typical orbit is attracted by an absorbing
Cantor set. A point p ∈ A is accessible from an A-outside point if ∃ q /∈ A and a
continuous curve γ such that γ(0) = q, γ(1) = p and γ((0, 1)) ∩ A = ∅.We say that
p is asymptotically accessible from an A-outside point (for short, asymptotically
accessible) if there exists q /∈ A such that for every n ≥ 0 there is a j ≥ n and
a continuous curve γ such that γ(0) = q, γ(1) = f j (p) and γ((0, 1)) ∩ A = ∅.
Every point of an attracting Cantor set is asymptotically inaccessible, i.e., it is not
asymptotically accessible and Theorem 2 says that the same is true for almost every
point in the basin of attraction of an attracting Cantor set. This is equivalent to say
that the orbit of almost every point in the basin of attraction intersects a given gap of
the Cantor set only a finite number of times.

2 Contracting Lorenz Maps

A contracting Lorenz map is a local difeomorphisrm f : [0, 1] \ {c} → [0, 1], 0 <

c < 1, such that 0 and 1 are fixed points, f has no repelling fixed points in (0, 1)
and limx→c f ′(x) = 0. A C3 interval map f has negative Schwarzian derivative if
S f (x) < 0 for every point x such that f ′(x) 	= 0, where

S f (x) = f ′′′(x)
f ′(x)

− 3

2

(
f ′′(x)
f ′(x)

)2

(1)

A C3 contracting Lorenz map f : [0, 1] \ {c} → R is called non-flat if there exist
ε > 0, constants α,β ≥ 1 and C3 diffeomorphisms φ0 : [c − ε, c] → Im(φ0) and
φ1 : [c, c + ε] → Im(φ1) such that

f (x) =
{
f (c−) + (

φ0(x − c)
)α

if x ∈ (c − ε, c) ∩ (0, 1)

f (c+) + (
φ1(x − c)

)β
if x ∈ (c, c + ε) ∩ (0, 1)

In the remaining of this section (Sect. 2), f is a C3 contracting Lorenz map
f : [0, 1] \ {c} → [0, 1], c ∈ (0, 1), with negative Schwarzian derivative.
The pre-orbit of a set U ⊂ [0, 1] is O−

f (U ) := ⋃
j≥0 f − j (U ). If x /∈ O−

f (c), the
forward orbit of x isO+

f (x) = { f j (x) ; j ≥ 0}. On the other hand, if x ∈ f −n([0, 1])
and f n(x) = c, thenO+

f (x) = {x, · · · , f n(x)}. Theω-limit set of a point x /∈ O−
f (c),

denoted by ω f (x), is the set of accumulating points of the forward orbit of x . That
is,

ω f (x) := {y ∈ [0, 1] ; y = lim
j→∞ f n j (x) for some sequence n j → +∞}.
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Consider also the lateral ω-limit sets ω f (x−) and ω f (x+) as

ω f (x±) := {y ∈ [0, 1] ; y = lim
j→∞ f n j (x±) for some sequence n j → +∞},

where f n j (x−) = lim0<ε→0 f n j (x − ε) and f n j (x+) = lim0<ε→0 f n j (x + ε). The
nonwandering set of f , denoted by �( f ), is the set of points p such that #{ j ≥
1 ; (p − ε, p + ε) ∩ f − j ((p − ε, p + ε)) 	= ∅} = ∞ for every ε > 0. It is easy to
see that ω f (x) ⊂ �( f ) for every x ∈ [0, 1] \ O−

f (c).
Since Poincaré’s theory for circle homeomorphisms, it was observed that the

existence of wandering intervals makes the classification and analysis of one dimen-
sional dynamical systems far more complicated. We note that wandering intervals
are not just intervals outside �( f ), as one can see in the definition below, and this
is the reason that some authors have called them strongly wandering intervals. A
wandering interval is an open interval I = (a, b) ⊂ [0, 1] such that (1) f n|I is a
homeomorphism between I and f n(I ) for every n ≥ 1, (2) I does not intersect the
basin of attraction of a periodic-like attractor and (3) f n(I ) ∩ f m(I ) = ∅ for every
0 ≤ n < m.

Due to the complexity of most dynamical systems, Poincaré has suggested that
instead of attempting to describe the asymptotic behavior of all orbits of a dynamics,
one can focus on the behavior of most orbits, thus avoiding the most pathological or
peculiar. Because of that, attractors play a fundamental role in the study of dynamical
systems for the understanding of future evolution of typical (not uncommon) initial
states.

Definition 2.1 (Milnor [30]) A compact set A is called a (metrical) attractor for f
if its basin of attraction β f (A) := {x ; ω f (x) ⊂ A} has positive Lebesgue measure
and there is no compact set A′

� A so that β f (A′) is the same as β f (A) up to a zero
measure set.

Theorem 1 below characterizes the attractors (in Milnor sense) for contracting
Lorenz maps. In particular, it says that either f has periodic-like attractors (at most
two of them) and the the union of their basins of attraction has full Lebesgue measure
or f has a single (non-periodic) attractor A containing almost every point in its basin
of attraction and ω f (x) = A for almost every x .

Theorem 1 ([9], see also [19, 32]) Let f be a C3 contracting Lorenz map f :
[0, 1] \ {c} → [0, 1], c ∈ (0, 1), with negative Schwarzian derivative. If f does not
have periodic-like attractors, then f has an attractor A such that ω f (x) = A for
almost every x ∈ [0, 1]. In particular, Leb(β f (A)) = 1.

Furthermore, f can have at most two periodic-like attractors. If f has a single
periodic attractor, its basin of attraction has full Lebesgue measure. In the case that
f has two periodic-like attractors, the union of their basins of attraction has full
Lebesgue measure.

If f does not have periodic-like attractors, then A is either a cycle of intervals or
a transitive Cantor set.
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If A is a Cantor set, then A = ω f (c−) or ω f (c+). Moreover, if f is non-flat and
A is a Cantor set, then c− and c+ ∈ A = ω f (c−) = ω f (c+).

An attractor A is called a periodic-like attractor when A is a finite set and,
given p ∈ A we have A = ⋃n

j=1 f j (p−) or
⋃n

j=1 f j (p+), where n = #A. Periodic-
like attractors generalizes the concept of attracting periodic orbits in the context of
piecewise smooth maps.

A cycle of intervals is a finite union of disjoint closed intervals I1 ∪ · · · ∪ In
such that f |I1∪···∪In is transitive. For any continuous map h : [0, 1] → [0, 1] a cycle
of intervals is always a chaotic attractor, in the sense that the topological entropy
of f restricted to the cycle of interval is always positive. In contrast, contracting
Lorenz maps can have both: chaotic cycle of intervals and cycle of intervals with
zero topological entropy (as for Cherry attractors below).

If the attractor A is a Cantor set, it is called an attracting Cantor set. An attracting
Cantor set can be a solenoid, aCherry attractor or awild attractor.A solenoid attractor
appears when f is infinitely many times renormalizable. That is, when there exits a
nested sequence of intervals [an, bn]with a1 < · · · < an ↗ c ↙ bn < · · · < b1 such
that the first return map to each [an, bn] is conjugated to a contracting Lorenz map.
In [8], Brandão shows that the topological attractor A of an infinitely renormalizable
contracting Lorenz map is a minimal set, i.e., every orbit of A is dense in A. Notice
that, as c ∈ A and f cannot be extended continuously through c, the argument in [8]
is more delicate than the usual argument for continuous maps.

A topological attractor A is a compact set such that β f (A) := {x ; ω f (x) ⊂ A}
is not a meager set and there is no compact set A′

� A so that β f (A′) is the same as
β f (A) up to a meager set. Recall that a set � is called meager if it is contained in a
countable union of compact set with empty interior. In this context of subsets of the
interval, � ⊂ [0, 1] is not meager if and only if � contains a residual subset of some
open set U ⊂ [0, 1].

A Cherry attractor [13, 23] appears when there exists an interval [a, b], with
a < b < c such that F , the first return map by f to [a, b], is conjugate to an injective
map of the circle h : S1 \ {1} → S1 with an irrational rotation number, S1 = {z ∈
C ; |z| = 1}. As it has irrational rotation number, it follows from the theory of circle
maps thatωh(x) = �(h) for every x ∈ S1 \ {1}, where�(h) is the nonwandering set
of h. Furthermore, Ah := �(h) is aminimal set and Ah is either thewhole circle or an
attracting Cantor set (with all its gaps being wandering intervals). By the conjugacy
with the first return map F , the attractor Ah induces an attractor AF for F and also
an attractor A for f , called a Cherry attractor for f . This Cherry attractor is always
a minimal set for f and it is either a cycle of intervals or an attracting Cantor set. If
the Cherry attractor is a Cantor set, then some of its gaps are wandering intervals.

A far as we know, the wandering intervals associated to Cherry attractors are
the only known examples of wandering intervals for C2 non-flat contracting Lorenz
maps. The existence of this kind of intervals for contracting Lorenz map that are not
associated to Cherry attractors is an open problem with very little progress in the
past 20 years. For C2 diffeomorphism of the circle, the non-existence of wandering
intervals was established in 1930 by Denjoy [15] and, in 1989, for non-flat C2 maps
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of the interval, by de Melo and van Strien [27]. In the context of Lorenz maps, what
is expected to happen in terms of wandering intervals is the following:

Conjecture 1 (Martens and deMelo [24]) Let f : [0, 1] \ {c} → [0, 1] be aC2 non-
flat contracting Lorenz maps. If f has a wandering interval then f has a Cherry
attractor.

Even for contracting Lorenz maps that are C3 and have negative Schwarzian
derivative, Martens and de Melo’s conjecture remains almost untouched. We may
note that the fact that f cannot be extended continuously through c together with
f ′(c±) being 0 plays a main role to make this conjecture hard to be proved. Indeed, if
f ′(c±) 	= 0, the conjecture is true, proved by Mestel and Berry [29] in the beginning
of 1990’s decade.

An attractor A is called a wild attractor (also called an absorbing Cantor set) for
the contracting Lorenz map f if it is properly contained in some compact transitive
set �, i.e., A � �. If f does not admit wandering intervals, � must be a circle of
intervals.

For continuous maps of the interval, a wild attractor occurs when one has a
(metrical) attractor properly contained in a topological one. The question about the
existence of wild attractors for S-unimodal maps was asked by Milnor [30] and
proved by Bruin, Keller, Nowicki and van Strien in [11].

A C1 map g : [0, 1] → [0, 1] is called a symmetric unimodal map if g(0) =
g(1) = 0, g′(x) 	= 0 for x 	= 1/2 and g satisfies the symmetry g(x) = g(1 − x) ∀ x .
A particularly famous class of examples of symmetric unimodal maps is the one
of the Logistic maps gt : [0, 1]to[0, 1] defined by gt (x) = 4t x(1 − x), where t is
a parameter varying on [0, 1]. Given a symmetric unimodal map g, let L : [0, 1] \
{1/2} → [0, 1] be the Lorenz map defined by

L(x) =
{

g(x) if x < 1/2

1 − g(x) if x > 1/2
.

Note that g ◦ L = g ◦ g. Indeed, If x < 1/2 then L(x) = g(x) and so, g(L(x)) =
g2(x). If x > 1/2 then L(x) = 1 − g(x) and by the symmetric, g ◦ L(x) = g(1 −
g(x)) = g(g(x)) = g2(x). Thus, g ◦ L(x) = g2(x) for every x ∈ [0, 1] \ {1/2}. This
means that g and L are semi-conjugated maps, with a at most two to one semi-
conjugation and so, g and L have essentially the same dynamics. Moreover, as
|L ′(x)| = |g′(x)|, we get that

|(Ln)′(x)| = |L ′(Ln−1(x))||(Ln−1)′(x)| = |g′(Ln−1(x))||(Ln−1)′(x)| =

= |(g ◦ Ln−1)′(x)| = |(gn−1 ◦ g)′(x)| = |(gn)′(x)|

for every n ≥ 1 and x /∈ O−
g (1/2). That is, up to a sign, the derivative of points along

the orbits of g and L are the same (Fig. 2).
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Fig. 2 A symmetric unimodal map g and its associated (symmetric) Lorenz map L

As the S-unimodal maps presented in [11] are symmetric and with wild attractors
contained in cycle of intervals, one can use the contracting Lorenzmaps associated to
them to show, for Lorenz maps, the existence of wild attractors A � � with � being
a cycle of intervals. In contrast with the wild attractors that come from symmetric
unimodal maps, if there exists a contracting Lorenz map having wandering intervals
as well as a wild attractor, A � �, then the transitive set � is a Cantor set.

Thewild attractor generated by symmetric unimodalmaps is always aminimal set.
But it is not expected that these are the only possible wild attractors that a contracting
Lorenz map can display, even if the map does not have wandering intervals. Hence,
one can ask about the minimality (as a set) of the wild attractors for contracting
Lorenz maps, see Question 2.8.

An attractor A is called a physical attractor if it is the support of an ergodic
f -invariant probability μ, called a physical measure, such that Lebesgue almost
every point x ∈ β f (A) is a μ-generic point, that is, 1

n

∑n−1
j=0 δ f j (x) converges in the

weak* topology to the measure μ. The simplest example of a physical attractor is
a periodic-like attractor A, in this case μ = 1

#A

∑
p∈A δp is the physical measure.

When the physical measure is absolutely continuous with respect to Lebesgue, it is
called a Sinai-Ruelle-Bowen (SRB) measure.

Milnor’s definition of an attractor A deals only with the topological aspects of
the asymptotical behavior of the orbits of the most points in β f (A). In contrast, if A
is a physical attractor, the physical measure μ gives an accurate information about
the average of time that a point will spend in a given open set V . Precisely, given
x ∈ [0, 1] \ O−

f (c) and V ⊂ [0, 1], define the visiting frequency of x to V as

τx (V ) = τx, f (V ) = lim sup
n→∞

1

n
#{0 ≤ j < n ; f j (x) ∈ V },

then, for almost every point x ∈ β f (A) and any open set V , we have that τx (V ) ≥
μ(V ). Moreover, if μ(∂V ) = 0 then τx (V ) = μ(V ) for almost every x ∈ β f (A).
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Nevertheless, even symmetric S-unimodal maps may not have physical attractors
(see [18]). Hence, the same is true to contracting Lorenz maps. A concept more
flexible than physical attractor, and that also gives informations about the visiting
frequency, is the concept of statistical attractors proposed by Ilyashenko. For that,
define the statistical ω-limit set of a point x ∈ [0, 1] \ O−

f (c) as

ω∗
f (x) = {y ; τx (Bε(y)) > 0 for all ε > 0},

where Bε(y) = (y − ε, y + ε) is the ball of radius ε and center y.

Definition 2.2 (Ilyashenko, see page 148 of [4]) A compact set A is called a statis-
tical attractor for f if its statistical basin of attraction β∗

f (A) = {x ; ω∗
f (x) ⊂ A}

has positive Lebesgue measure and there is no compact set A′
� A so that β∗

f (A
′) is

the same as β∗
f (A) up to a zero measure set.

A (not necessarily invariant) probability μ is called ergodic if μ(U ) = 0 or 1
for every invariant set U , i.e., f −1(U ) = U . It was proved by Blokh and Lyubich
[7] that every S-unimodal map without periodic attractors is ergodic with respect
to Lebesgue measure. Let us show that ergodicity implies the existence of a single
attractor, a single statistical attractor and a good behavior of the visiting frequency.

Proposition 2.3 LetXbea compactmetric space, V ⊂ XaBorel set andg : V → X

a measurable map. If g is ergodic with respect to a Borel probability μ, then there
are compact sets A∗ ⊂ A ⊂ X such that ωg(x) = A and ω∗

g (x) = A∗ for almost
every x ∈ ⋂

n≥0 g−n(V ). Furthermore, x �→ τx,g(U ) is constant for almost every
x ∈ ⋂

n≥0 g−n(V ) and every measurable set U ⊂ X.

Proof As X is compact, for every x ∈ X := ⋂
j≥0 g−1(X), we have that ωg(x) and

ω∗
g (x) are nonempty compact sets. Furthermore, note that ωg(x) = ωg(g(x)) and

ω∗
g (x) = ω∗

g (g(x)) for every x ∈ X .Wemay assume thatμ(X) > 0.As g−1(X) = X ,
it follows from the ergodicity of μ that μ(X) = 1. Let K be the set of all non-
empty compact subsets ofXwith the Hausdorff metric dH (A, B) = inf{ε > 0 ; A ⊂
Bε(B) and B ⊂ Bε(A)}, where Br (C) := ⋃

x∈C Br (x) is the ball of radius r > 0with
“center” C ⊂ X. As X is a compact metric space, it is well known that (K, dH ) is
also a compact metric space.

The proof of the existence of compact sets A and A∗ such that ωg(x) = A and
ω∗

g (x) for μ almost every x ∈ X (= X mod μ) follows from the Lemma 2.4 below
applied to the maps ϕ,ψ : X → K, where ϕ(x) = ωg(x) and ψ(x) = ω∗

g (x). As
ωg(x) ⊃ ω∗

g (x) always, we get that A
∗ ⊂ A. Finally, given a Borel set U ⊂ X, con-

sider ξ : X → [0, 1] defined by ξ(x) = τx,g(U ). As ξ(g(x)) = ξ(x) ∀ x ∈ X , it fol-
lows from Lemma 2.4 that ξ is constant for μ almost every x ∈ X , proving the
proposition. �

Although Lemma 2.4 is a well known fact for invariant measures, as we are not
assuming the invariance of μ, we are providing a brief proof of it.
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Lemma 2.4 Let X and Y be separable metric spaces, g : X → X a measurable
map, μ a Borel probability on X and W ⊂ X a measurable set. If μ is a g-ergodic
probability (not necessarily invariant) withμ(W ) = 1 andϕ : W → Y is g-invariant
(i.e., ϕ ◦ g = ϕ), then ϕ is μ-almost constant, i.e., ∃ y ∈ Y such that ϕ(x) = y for
μ-almost every x.

Proof Consider ν = ϕ∗μ = μ ◦ ϕ−1, the push-forward of μ. Suppose that the sup-
port of ν, supp ν, hasmore than one point. Say, p, q ∈ supp ν with p 	= q. Take ε > 0
such that Bε(p) ∩ Bε(q) = ∅. Asϕ is g-invariant, we get that V0 := ϕ−1(Bε(p)) and
V1 := ϕ−1(Bε(q)) are f -invariant sets with V0 ∩ V1 = ∅. As p, q ∈ supp ν, we have
thatμ(V0) = ν(Bε(p)) > 0 andμ(V1) = ν(Bε(q)) > 0, contradicting the ergodicity
of μ. �

So, it follows from Blokh and Lyubich [7] and Proposition 2.3 that every S-
unimodal map g without periodic attractors has only one attractor Ag and only one
statistical attractor A∗. Furthermore, ωg(x) = Ag and ω∗

g (x) = A∗
g for almost every

x ∈ [0, 1] and τx,g(U ) = τy,g(U ) for almost every x and y ∈ [0, 1] and every mea-
surableU ⊂ [0, 1]. Unfortunately, it is not clear that Blokh and Lyubich’s result can
have some extension to contracting Lorenz maps in general. For instance, the exis-
tence of wandering intervals is an obstruction to the Lebesgue ergodicity of a map.
Indeed, if J = (a, b) is a wandering interval, then one can consider any p ∈ (a, b)
and V = ⋃

n≥0 f −n
(⋃

j≥0 f j ((a, p))
)
. As V is f invariant and 0 < Leb(V ) < 1,

because (p, b) ∩ V = ∅, we get that f cannot be ergodic. At least in one case, we can
show that f is ergodic with respect to Lebesgue measure, see Proposition 2.5 below
(as the proof of this proposition is a bit more technical, we left it to the Appendix).

Proposition 2.5 If O+
f (c−) ∪ O+

f (c+) has empty interior and the attractor of f is
a cycle of intervals, then f is ergodic with respect to Lebesgue.

Hence, under the hypotheses of Proposition 2.5, f has a unique statistical attrac-
tor A∗ ⊂ A such that ω∗

f (x) = A∗ for almost every x . Furthermore, x �→ τx (U ) is
constant for almost every x and every U ⊂ [0, 1].

As f (ω∗
f (x) \ {c}) = ω∗

f (x), that is, ω
∗
f (x) is a forward invariant set, another way

to show that the contracting Lorenz map f has a unique statistical attractor is to
prove that its attractor A is a minimal set. Indeed, as ω∗

f (x) ⊂ ω f (x) = A for almost
every x , if A is a minimal set, it follows from the forward invariance of ω∗

f (x) that
ω∗

f (x) = A for almost every x . In this direction we have the following result.

Proposition 2.6 If f is infinitely renormalizable and non-flat, then the solenoid
attractor A = ω f (c−) = ω f (c+) is a Cantor set that is a minimal set. Furthermore,
ω f (x) = ω∗

f (x) = A for every x ∈ β f (A), β f (A) is a residual subset of [0, 1] and
Leb(β f (A)) = 1.

Proof As f is infinitely many times renormalizable, the (measurable) attractor A
cannot be a cycle of intervals neither a periodic-like attractor. Thus, it follows
Theorem1 that the (measurable) attractor is aCantor set A = ω f (c−) or A = ω f (c+).
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On the other hand, by Theorem A of [8], the topological attractor Atop of f
is a minimal Cantor set and it contains c. Thus, ω f (c−) = ω f (c+) = Atop and so,
A = ω f (c−) = ω f (c+) = Atop is a minimal set. As commented before, it follows
from ω∗

f (x) ⊂ ω f (x) = A, for almost every x , together with the minimality of A and
the forward invariance of ω∗

f (x) that ω
∗
f (x) = A for almost every x . That is, A∗ = A

is the statistical attractor of f and Leb(β∗
f (A

∗)) = 1. Finally, the fact that β f (A) is
a residual set comes from Theorem D of [8]. �

Our first question is about the existence and finiteness of statistical attractors for
general contracting Lorenz maps.

Question 2.7 Is almost every point x ∈ [0, 1] contained in the basin of attraction of
a statistical attractor? Is the number of statistical attractors of Contracting Lorenz
maps finite?

As noted before, one can use the minimality of an attractor A to conclude that A
is also a statistical attractor. So, our second question is about the minimality of A as
a set.

Question 2.8 For contracting Lorenz maps, are all attracting Cantor sets minimal
sets?

Although this is not the focus of this paper, we want end this section mentioning
that there are many other aspects of Contracting Lorenz maps that have been studied
by many authors in the past 30 years. Some of them are on combinatorial properties
[6, 20, 25, 32, 33, 35, 36] or bifurcation and features of the parameter space of
two parameter families [14, 33, 35, 36] and characterization of complete families
[25]. There are papers about existence of attractors of positive Lyapunov exponents
[34], SRBmeasures [26], statistical stability of SRBmeasures [2], about entropy [6],
thermodynamic formalism for contracting Lorenz maps and flows [31], generalizing
chaotic contracting Lorenz maps to higher dimensions [5], etc. Finally, we want to
mention [12] where one can have a discussion about some variations of the definition
of statistical attractors.

3 Piecewise Smooth Maps of the Interval

If a map f of the interval is piecewise C3 with negative Schwarzian negative (Theo-
rem 1) or if f is a non-flat piecewiseC2 maps (see [10]), then there is a finite number
of non-periodic attractors attracting almost every point that does not belong to the
basin of attraction of some periodic-like attractor. Furthermore, if A is one of those
non-periodic attractors then ωg(x) = A for almost every x in the basin of attraction
of A. Hence, A is somehow transitively approximated from outside for almost every
point of its basin of attraction. Nevertheless, it is not clear that if, or when, A is a
transitive set. As we saw in Sect. 2, all attracting Cantor sets of contracting Lorenz
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maps are transitive. What we don’t know, in the Lorenz case, is if they are minimal
sets. For general non-flat piecewise C2 maps, even the transitivity of an attracting
Cantor set is not known.

An initial approach by A. Avila and V. Pinheiro aiming to build an example of a
non-transitive attracting Cantor set was the following. Let f : [0, 1] → [0, 1] be a
non-flat C2 map of the interval. Suppose that f has an attracting Cantor set � such
that

Leb({x ∈ β f (�) ; #(O+
f (x) ∩ J ) = ∞}) > 0

for some gap J = (a, b) of �. For instance, you can assume that f is an unimodal
map. A gap of a Cantor set � ⊂ [0, 1] is a connected component of [0, 1] \ �. If
such � and J exists, one can consider a new map g : [0, 2] \ Cg → [0, 2] given by

g(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (x) if x ∈ [0, 1) \ [a, b]
f (x) + 1 if x ∈ J

f (x − 1) + 1 if x − 1 ∈ (0, 1] \ [a, b]
f (x − 1) if x − 1 ∈ J

.

whereCg = C f ∪ {a, b, 1, a + 1, b + 1}.Note thatg is a non-flat piecewiseC2.Given
a set U ⊃ [0, 1], let 1 +U := {1 + x ; x ∈ U }. Note that, �g := � ∪ (1 + �) is
an attracting Cantor set for g with ωg(x) = �g for almost every x ∈ βg(�g) =
β f (�) ∪ (1 + β f (�)). Nevertheless, g(�) = � and g(1 + �) = �. That is, �g is
not a transitive set. So, the existence of such � and J implies the existence of non-
transitive attracting Cantor sets. However, it turns out that this strategy can not be
implemented, as one can see in Corollary 3.2.

We say that the orbitO+
f (x) of a point x ∈ β f (A) is asymptotically inaccessible if

given any p /∈ A there is a n0 ≥ 0 such that {(1 − t)p + t f n(x) ; t ∈ (0, 1)} contains
a point of A for every n ≥ n0.

Definition 3.1 An attracting Cantor set A has an asymptotically inaccessible basin
of attraction if the forward orbit of almost every point in β f (A) is asymptotically
inaccessible. This is equivalent to say that #(O+

f (x) ∩ J ) < ∞ for almost every
x ∈ β f (A) and every gap J of A.

Theorem 2 Let f be a non-flat piecewise C2 map and A an attracting Cantor set
of f . For almost every point x ∈ β f (A), either x belongs to a wandering interval or
the forward orbit of x is asymptotically inaccessible.

As commented before, non-flat C2 maps of the interval do not admit wandering
intervals [27]. Hence, we get the following corollary.

Corollary 3.2 The basin of attraction of any attracting Cantor set for a non-flat C2

map is always asymptotically inaccessible.

To prove Theorem 2, we need Lemma 3.3 and Proposition 3.4 below. A (not
necessarily invariant) probability μ is called strongly ergodic with respect to a mea-
surable map f if μ(U ) = 0 or 1 for every forward invariant set U , i.e., f (U ) ⊂ U .
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As every invariant set is a forward invariant one, it follows that a strongly ergodic
measure is an ergodic one.

Lemma 3.3 Let X be a compact metric space, μ a Borel probability on X and
f : X → X a measurable map. If μ is strongly ergodic with respect to f and μ is
f -non-singular, i.e., μ ◦ f −1 � μ, then μ(ω f (x)) = 1 for μ almost every x ∈ X.

Proof As μ is also ergodic, it follows from Proposition 2.3 that there is a compact
set A ⊂ X such that ω f (x) = A for μ almost every x ∈ X. Suppose that μ(A) =
0. In this case one can choose an open neighborhood V of A such that μ(V ) <

1/2. Given n ≥ 1, letUn = {x ∈ X ; f j (x) ∈ V ∀ j ≥ n}. As ω f (x) = A for almost
every x , we have that μ(

⋃
n≥1Un) = 1. Hence, there is n0 ≥ 1 such that μ(Un0) > 0.

Note that μ( f n0(Un0)) > 0 because μ ◦ f −1 � μ. As Un0 is a forward invariant set,
f n0(Un0) is also forward invariant. Thus, it follows from the strong ergodicity of μ
that μ( f n0(Un0)) = 1, which is a contradiction with f n0(Un0) ⊂ V and μ(V ) < 1/2.
As a consequence, μ(A) > 0. Thus, as f (A) = A, it follows again from the strong
ergodicity of μ that μ(A) = 1.

Proposition 3.4 Let f : [0, 1] \ C f → [0, 1] be a non-flat C2 local diffeomorphism,
with C f ⊂ (0, 1) being a finite set. Let B( f ) denote the union of all wandering
intervals of f with the basin of attraction of all periodic-like attractors of f . Let
F : U → (a, b) be the first return map by f to an interval (a, b), where U = {x ∈
(a, b) ; O+

f ( f (x)) ∩ (a, b) 	= ∅}. If F(P) = (a, b) for every connected component
of U, then

Leb

( ⋂
n≥0

F−n((a, b)) \ (B( f ) ∪ O−
f (Per( f )))

)
is either 0 or b − a.

Furthermore, if Leb
( ⋂

n≥0 F
−n((a, b)) \ (B( f ) ∪ O−

f (Per( f )))
) = b − a then

Leb |(a,b) is F strongly ergodic and ωF (x) = [a, b] for almost every x ∈ (a, b).

Proof Write V0 = ⋂
n≥0 F

−n((a, b)) \ (B( f ) ∪ O−
f (Per( f ))). As there is nothing

to prove when Leb(V0) = 0, we may assume that Leb(V0) > 0.
Given n ≥ 1, let Pn be the set of connected components of F−n((a, b)). Given

x ∈ F−n((a, b)), letPn(x) be the element ofPn containing x . Note that Fn(Pn(x)) =
(a, b) for every n ≥ 1 and x ∈ F−n((a, b)).

Consider any F forward invariant set V , i.e., F(V ) ⊂ V , with positive measure
and contained in V0. One example of such a set is V0 itself. Let p0 ∈ V be a Lebesgue
density point of V , i.e.,

lim
δ→0

Leb(V ∩ Bδ(p0))

Leb(Bδ(p0))
= 1.

As V ⊂ V0, Pn(p0) is well defined for every n ≥ 1 and Fn(Pn(p0)) = (a, b).
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Claim 3.5 diameter(Pn(p0)) → 0 when n → ∞.

Proof of the claim As P1(p0) ⊃ P2(p0) ⊃ P3(p0) ⊃ · · · , if limn diameter(Pn(p0))
> 0, then (α,β) := interior(

⋂
n≥1 Pn(p0)) is an interval with α < β and such that

Fn|(α,β) is a diffeomorphism for every n ≥ 1. This means that a is a homterval
(see Appendix). This leads to a contradiction. Indeed, by the Homterval Lemma
(Lemma 3.9 in Appendix), (α,β) ⊂ B( f ) ∪ O−

f (Per( f )), and on the other hand,
Leb((α,β) \ (B( f ) ∪ O−

f (Per( f )))) ≥ Leb((α,β) ∩ V )) > 0 (because p0 is a den-
sity point of V ).

Given ε > 0, choose a < a′ < p0 < b′ < b so that Leb((a, b) \ (a′, b′)) < ε/2.
Let us write J := (a′, b′) ⊂ (a, b) =: I . As f is a first return map, we have that
f j (Pn(p0)) ∩ f i (Pn(p0)) = ∅ for every 0 ≤ j < i < n. As a consequence, both
max{| f j (Pn(p0))| ; 0 ≤ j ≤ n} and ∑n−1

j=0 | f j (Pn(p0))| are smaller or equal to 1.
Thus, it follows from item 1 of Proposition 3.11 in Appendix that there is K > 0,
depending only on f , a′−a

b−a and b−a′
b−a (in particular, not depending on n), such that

∣∣∣∣ (F
n)′(p)

(Fn)′(q)

∣∣∣∣ ≤ K ,∀p, q ∈ Jn(p0) and n ≥ 1, (2)

where Jn(p0) := (Fn|Pn(p0))
−1(J ) is the connected component of F−n(J ) containing

p0.
So, it follows from the bounded distortion given by (2) and the forward invariance

of V that Leb((a′, b′) \ V ) = 0. Indeed, as (a′, b′) = Fn(Jn(p0)), we get from (2)
that

Leb((a′, b′) \ V )
�≤ Leb(Fn(Jn(p0) \ V )) = Leb((a′, b′))

Leb(Fn(Jn(p0) \ V ))

Leb(Fn(Jn(p0)))
≤

≤ Leb((a′, b′))K
Leb(Jn(p0) \ V )

Leb(Jn(p0))
→ 0

Here the inequality (�) follows from the fact that V ⊃ Fn(Jn(p0) ∩ V ) and, then,
(a′, b′) \ V ⊂ (a′, b′) \ Fn(Jn(p0) ∩ V ) = Fn(Jn(p0) \ V ).

Finally, as we can take a′ as close to a and b′ as close to b as wished, we conclude
that Leb(I \ V ) = 0. That is, Leb(V ) = 1 for every forward invariant set with pos-
itive measure, proving that Leb is strongly ergodic. In particular, Leb(V0) = b − a.
Applying Lemma 3.3, we get that Leb(ωF (x)) = b − a for almost every x and, by
the compactness of theω-limit,ωF (x) = [a, b] for Lebesgue almost every x ∈ [a, b]

Now, we can prove Theorem 2.
Proof of Theorem 2 As f is piecewise C2, there is a finite set C f such that (1)
g := f |[0,1]\C f is aC

2 local diffeomorphismand that (2) g cannot be extended through
c ∈ C f as a C2 local diffeomorphism.

As O−
f (C f ) is a countable set (so, with zero Lebesgue measure) and O+

f (x) =
O+

g (x) for every x ∈ [0, 1] \ O+
f (C f ), we may consider g instead of f . That is, let us

assume that f : [0, 1] \ C f → [0, 1] is a non-flat C2 local diffeomorphism. Without
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loss of generality, we may also assume that { f (0), f (1)} ⊂ {0, 1} (see, for instance,
Remark 11 in [10]).

Let W( f ) be the union of all wandering intervals of f . We may assume that
Leb(β f (A) \ W( f )) > 0, otherwise there is nothing to be proved. Consider a gap J
of A and suppose by contradiction that there is L ⊂ β f (A) \ W( f )with Leb(L) > 0
and such that #(O+

f (x) ∩ J ) = ∞ for every x ∈ L .
We say that c− ∈ ω f (x) if there is a sequence n j → ∞ such that f n j (x) < c ∀ j

and c = lim j→∞ f n j (x). Similarly,we define c+ ∈ ω f (x). It follows fromTheorem1
in [10] that

ω f (x) =
⋃

c± ∈ ω f (x)
c ∈ C f

O+
f (c±) :=

⋃
c− ∈ ω f (x)

c ∈ C f

O+
f (c−) ∪

⋃
c+ ∈ ω f (x)

c ∈ C f

O+
f (c+),

for almost every x ∈ [0, 1] \ (
B0( f ) ∪ B1( f ) ∪ O−

f (Per( f ))
)
, where B0( f ) is the

union of the basins of attraction of all attracting periodic-like orbits of the map f
and B1( f ) is the set of all points x such that ω f (x) is a cycle of intervals.

As a consequence,

A = ω f (x) =
⋃

c± ∈ ω f (x)
c ∈ C f

O+
f (c±),

for almost every x ∈ β f (A).
Let C− = {c ∈ C f ; c− /∈ ω f (x) for almost every x ∈ β f (A)} and C+ = {c ∈

C f ; c+ /∈ ω f (x) for almost every x ∈ β f (A)}.
Remark 3.6 Note that c− ∈ ω f (x) for almost every x ∈ β f (x) and c ∈ C f \ C−.
Similarly, c+ ∈ ω f (x) for almost every x ∈ β f (x) and c ∈ C f \ C+.

Given r > 0 let

B(r) :=
⋃
c∈C−

(c − r, c) ∪
⋃
c∈C+

(c, c + r)

and set, for n ≥ 1,

Un = {x ∈ β f (A) ; O+
f (x) ∩ B(1/n) = ∅}.

As Leb(β f (A) \ ⋃
n≥1Un) = 0 and Leb(L) > 0, let � ≥ 1 be so that Leb(L ∩

U�) > 0.
Consider any non-flat C2 map g : [0, 1] \ C f → [0, 1] such that g(x) = f (x) for

every x /∈ U� and that g(c−) ∈ {0, 1} for every c ∈ C− and g(c+) ∈ {0, 1} for every
c ∈ C+ (in Fig. 3 we have an illustration of such a map g).
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Fig. 3 The map g on the right is the deformation in the “lateral neighborhood” (c − 1/n, c) of a
critical point c ∈ C− of the map f , on the left side of the picture, as asked in the proof of Theorem 2

Note thatO+
g (x) = O+

f (x) for every x ∈ L and so ωg(x) = A for every x ∈ L . It
follows from Remark 3.6 that g j (c−) = f j (c−) ∈ A for every j ≥ 1 and c ∈ C f \
C−. Also, g j (c+) = f j (c+) ∈ A for every j ≥ 1 and c ∈ C f \ C+. As g j (c−) ∈ {0, 1}
for every j ≥ 1 and c ∈ C− and, as g j (c+) ∈ {0, 1} for every j ≥ 1 and c ∈ C+, we
get that g j (c±) /∈ J for every j ≥ 1 and c ∈ C f . Furthermore, as ∂ J ⊂ A ∪ {0, 1},
we get that g j (∂ J ) ∩ J = ∅ for every j ≥ 1, that is, J is a nice interval for g.
Therefore, if U = {x ∈ J ; O+

g (g(x)) ∩ J 	= ∅} and G : U → J is the first return
map to J by g, we get that G(P) = J for every connected component P ofU (here,
we are using that J is nice together with fact that forward orbit of critical values,
g(c±) with c ∈ C f , does not intersect J ).

As
L ∩U� ⊂

⋂
n≥0

G−n(J ) \ (B(g) ∪ O−
g (Per(g))),

where B(g) = B0(g) ∪ W(g), it follows from Proposition 3.4 that ωG(x) = J for
every x ∈ L ∩U�, but this is a contradiction, as A is a Cantor set and ωG(x) ⊂
ωg(x) = ω f (x) = A for every x ∈ L ∩U�.

Now, we present two questions about piecewise smooth maps of the interval.
Question 3.7 below is a natural one, if one has in mind the conjecture of Martens
and de Melo (Conjecture 1). We say that A is a Cherry-like attractor if #A = ∞ and
there is an open set U such that A ∩U 	= ∅ and ω f (x) = A for every x ∈ U .

Question 3.7 Are all the wandering intervals of a non-flat piecewise C2 map con-
tained in the basin of attraction of Cherry-like attractors?

The question below was proposed by de Melo to the authors during the Interna-
tional Conference on Dynamical Systems, Búzios, 2016.
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Question 3.8 Is there an upper bounded for the period of non expanding periodic
points of a given non-flat piecewise C2 map of the interval?

Recall that a periodic point p is called expanding if |( f n)′(p)| > 1, where n is
the period of p. For C2 non-flat maps of the interval (that is, maps without disconti-
nuities), the answer of the question above was proved byWelington de Melo himself
in a joint work with Sebastian van Strien [27].

Appendix

A homterval is an open interval I = (a, b) such that f n|I is a homeomorphism for
n ≥ 1. This is equivalent to assume that I ∩ O−

f (C f ) = ∅. A homterval I is called
a wandering interval if I ∩ B0( f ) = ∅ and f j (I ) ∩ f k(I ) = ∅ for all 1 ≤ j < k,
where B0( f ) the union of the basins of attraction of all periodic-like attractors.

Lemma 3.9 (Homterval Lemma, see [28]) Let I = (a, b) be a homterval of f . If I
is not a wandering interval, then I ⊂ B0( f ) ∪ O−

f (Per( f )). Furthermore, if f is C
3

with S f < 0, and I is not a wandering interval, then the set I \ B0 has at most one
point.

Lemma 3.10 (Koebe’s Lemma [28]) For every ε > 0, ∃K > 0 such that the fol-
lowing holds: Let M, T be intervals in R with M ⊂ T and denote respectively by
L and R the left and right components of T \ M. If f : T → f (T ) ⊂ R is a C3

diffeomorphism with negative Schwarzian derivative and

| f (L)| ≥ ε| f (M)| and | f (R)| ≥ ε| f (M)|,

then |Df (x)|
|Df (y)| ≤ K for x, y ∈ M.

Proposition 3.11 [See Proposition 3 in [10] and Proposition 2 of [38]] Let
C f ⊂ (0, 1) be a finite set. If f : [0, 1] \ C f → [0, 1] is a C2 non-flat local dif-
feomorphism, then there exists a function O(ε) with O(ε) → 0 as ε ↘ 0 with
the following property: Let J ⊂ T be an interval, R, L the connected compo-
nents of T \ J and δ := min{|R|/|J |, |L|/|J |}. Let n be an integer and T0 ⊃ J0
intervals such that f n|T0 is a diffeomorphism, f n(T0) = T and f n(J0) = J . If
ε := max{| f j (T0)| ; 0 ≤ j ≤ n}, then
(1)

∣∣ Df n(x)
Df n(y)

∣∣ ≤ (
1+δ
δ

)2
eO(ε)

∑n−1
i=0 | f i (J0)|, for all x, y ∈ J0;

(2) ∃δ′ > 0 depending only on ε and
∑n−1

i=0 | f i (J0)| such that, for all x, y ∈ J0 and

1 ≤ j ≤ n, we have
∣∣ Df j (x)
Df j (y)

∣∣ ≤ (
1+δ′
δ′

)2
eO(ε)

∑n−1
i=0 | f i (J0)|;

(3) |Df n(x)|
|Df n(y)| ≤ exp

(
2

δ|J | | f n(x) − f n(y)| + O(ε)
∑n−1

i=0 | f i (x) − f j (y)|) for every
x, y ∈ J0.

Proposition 3.12 (Proposition 3.4 for maps with negative Schwarzian derivative)
Let U be an open subset of an interval (a, b) and F : U → (a, b) be a C3 local
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diffeomorphism with negative Schwarzian derivative and such that F(P) = (a, b)
for every connected component of U. If B(F) denotes the union of all wandering
intervals of F with the basin of attraction of all periodic-like attractors of F, then

Leb

( ⋂
n≥0

F−n((a, b)) \ B(F)

)
is either 0 or b − a.

Furthermore, if Leb
( ⋂

n≥0 F
−n((a, b)) \ B(F)

) = b − a then Leb |(a,b) is F
strongly ergodic and ωF (x) = [a, b] for almost every x ∈ (a, b). �

Proof Similar to the proof of Proposition 3.4. Essentially, one only need to replace
Proposition 3.11 by Koebe’s Lemma (Lemma 3.10).

Proof of Proposition 2.5 As the attractor A is a cycle of intervals, we get from
Theorem 1 that ω f (x) = A for almost every x ∈ [0, 1]. In particular, this forbids f

to have wandering intervals and periodic attractors. AsO+
f (c−) ∪ O+

f (c+) has empty

interior, we can consider a connected component J 	= ∅ of A \ (O+
f (c−) ∪ O+

f (c+)).

As O+
f (c−) ∪ O+

f (c+) 	= A, A is not a minimal set and so it cannot be a Cherry
attractor. Hence, it follows from Theorem D of [8] that A is a chaotic cycle of
intervals. In particular, this implies that Per( f ) ∩ A = A. Thus, choose q, p ∈
Per( f ) ∩ interior(J ) with p < q. Let I be any connected component of (p, q) \
O+

f (c−) ∪ O+
f (c+). Note that I is a nice interval, that is, O+

f (∂ I ) ∩ I = ∅. Let
I ∗ = {x ∈ I ; O+

f ( f (x)) ∩ I 	= ∅} and F : I ∗ → I the first return map, by f , to
I . As ω f (x) ⊃ I for almost every x ∈ [0, 1] and Leb ◦ f −1 � Leb, we get that
Leb(I ) = Leb(I ∗) = Leb(

⋂
n≥0 F

−1(I ∗)). Thus, it follows from Proposition 3.12
that Leb |I is strongly ergodic with respect to F , in particular, F is ergodic.

The ergodicity of Leb |I with respect to f implies that Leb is also ergodic with
respect to f . Indeed, if V = f −1(V ) and Leb(V ) > 0 then, as Leb ◦ f −1 � Leb
and O+

f (x) ∩ I 	= ∅ for Leb almost all x ∈ [0, 1], we get that Leb(V ∩ I ) > 0. As
F is the first return map to I , it follows that F−1(V ∩ I ) = V ∩ I . Thus, by the
ergodicity with respect to F , Leb(V ∩ I ) = Leb(I ). That is, Leb(I \ V ) = 0. Using
that Leb ◦ f −1 � Leb, we get that Leb([0, 1] \ V ) = 0, proving that Leb is ergodic
with respect to f .
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Abstract This paper surveys some recent results concerning the dynamics of two
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which is the correspondence fc : z → w defined by the relation

(w − c)q = z p.

Both can be regarded as generalizations of the family of quadratic maps fc(z) =
z2 + c. We describe dynamical properties for the familyFa which parallel properties
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and Yoccoz inequality, and we give a detailed account of the very recent theory of
holomorphic motions for hyperbolic multifunctions in the family fc.

Keywords Holomorphic correspondences · Holomorphic motions · Yoccoz
inequality · Hausdorff dimension · Matings · External rays

1 Introduction

A holomorphic correspondence on the Riemann sphere is a relation z �→ w given
implicitly by a polynomial equation P(z, w) = 0. Any rational map is an example
of a holomorphic correspondence. Indeed, if f (z) = p(z)/q(z), then w = f (z) iff
P(z, w) = 0, where P(z, w) = wq(z) − p(z). In particular, the family of quadratic
polynomials fc(z) = z2 + c (parametrized by c ∈ C) can be regarded as an analytic
family of holomorphic correspondences. The grand orbits of any finitely generated
Kleinian group can also be regarded as those of a holomorphic correspondence.

This paper is concerned with two families of holomorphic correspondences which
generalize quadratic polynomials in differentways.Thefirst is the familyFa : z → w

defined by

(
aw − 1

w − 1

)2

+
(

aw − 1

w − 1

)(
az + 1

z + 1

)
+

(
az + 1

z + 1

)2

= 3, (1)

where a ∈ C and a �= 1, introduced in the early nineties by Bullett and Penrose [4].
They proved:

Theorem 1.1 For every a in the real interval [4,7], the correspondence Fa is a
mating between some quadratic map fc(z) = z2 + c and the modular group � =
PSL(2,Z),

and conjectured that the connectedness locus for this family is homeomorphic to the
Mandelbrot set.

The second family is
fc(z) = zβ + c, c ∈ C, (2)

where β > 1 is a rational number and zβ = exp 1
q (log z p). If β = p/q in lowest

terms, then each member of the family (2) of multifunctions is a holomorphic cor-
respondence, defined by the relation (w − c)q = z p. Hence fc maps every z �= 0 to
a set consisting of q points. If p and q are not relatively prime, we shall use the
notation z p/q + c to express the holomorphic correspondence (w − c)q = z p. Thus
z2 + c and z4/2 + c denote different correspondences.

In this paper we describe the dynamics of holomorphic correspondences from var-
ious perspectives, exploring the concepts of hyperbolicity and holomorphic motions
for (2) and describing results concerning a Böttcher map, periodic geodesics, and
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a Yoccoz inequality for the family of matings (1). As we shall see, the techniques
involved in the two studies are independent, but as we have already noted, both fam-
ilies can be viewed as generalizations of the quadratic family, and our techniques for
studying them are motivated by the notions of hyperbolicity, external rays, Yoccoz
inequalities and local connectivity, which are inextricably related to one another in
the study of quadratic polynomials fc(z) = z2 + c. For this reason, it will be con-
venient to start by recalling some well known facts, techniques and open questions
concerning this celebrated family ofmaps. Excellent sources for details are the books
of Milnor [19] and de Faria and de Melo [8]. An overview of a century of complex
dynamics is presented in the article by Rees [25].

1.1 Dynamics of Quadratic Maps

Consider the action of fc(z) = z2 + c on the Riemann sphere Ĉ. For any polynomial
of degree d ≥ 2 acting on Ĉ, the point z = ∞ is a superattracting fixed point. LetAc

denote its basin of attraction. The filled Julia set Kc = K fc is the set of points with
bounded orbit, that is Kc = Ĉ \ Ac. The Julia set Jc = J fc is the common boundary
of these regions: Jc = ∂Kc = ∂Ac. The Mandelbrot set M is the connectedness
locus of the family fc(z) = z2 + c; that is the set of all parameters c ∈ C such that
Jc is connected.

On a neighbourhood of ∞, the quadratic polynomial fc is conformally conjugate
to f0(z) = z2 by the Böttcher map ϕc, which is the conjugacy tangent to the identity
at infinity. In the caseJc (or equivalently Kc) is connected, the Böttcher map extends
to a conformal conjugacy:

ϕc : C \ Kc → C \ D1

(An analogue of this map for the family Fa will appear in Sect. 2.4.) The external
ray Rc

θ ∈ C \ Kc with argument θ ∈ R/Z is the preimage under the Böttcher map ϕc

of the half-line te2πiθ ∈ C \ D1, with t ∈ (1,∞). When

lim
t→1+

ϕ−1
c (te2πiθ) = z,

we say that Rc
θ lands at z. We know that rational rays land [9, 19], and that repelling

and parabolic periodic points are landing points of at least one and at most finitely
many rays [19]. By Carathéodory’s theorem, if Jc is locally connected, then every
external ray lands. We remark that the Böttcher map and external rays can also
be defined for degree d polynomials, and in this case as well rational rays land and
repelling and parabolic periodic points are landing points [19]. (Hyperbolic geodesics
play an analogous role for the familyFa and enjoy similar properties to external rays,
see Sect. 2.4).

Using the Böttcher map, Douady and Hubbard constructed a conformal homeo-
morphism between the complement of the Mandelbrot set and the complement of
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the closed unit disk:
� : C \ M → C \ D1

c → ϕc(c),

proving that theMandelbrot set is compact and connected [9]. This isomorphism also
allows the definition of parameter space external rays: the parameter ray of argument
θ is Rθ = �−1(R0

θ ). The celebrated conjecture that M is locally connected (known
as MLC) implies that every parameter space external ray lands. MLC is crucial
in one dimensional complex dynamics, since it has been proved ([10]) to imply
density of hyperbolicity (Conjecture 1.1) for the family of quadratic polynomials. A
rational map is called hyperbolic when all its critical points are attracted to attracting
cycles. Hyperbolic maps are among the best understood rational maps. Indeed, if the
quadratic polynomial fc is hyperbolic then (i) every orbit in the interior of the filled
Julia set Kc (if non-empty) converges to the finite attracting cycle (which is unique
since fc is quadratic); (ii) every orbit outside Kc converges to ∞; and (iii) fc is
expanding and topologically mixing on the Julia set Jc = ∂Kc. A major conjecture
in holomorphic dynamics is:

Conjecture 1.1 (Density of hyperbolicity) The set of hyperbolic rational maps is
open and dense in the space of rational maps Ratd of the same degree.

A version of this conjecture dates back to Fatou, and for this reason Conjecture 1.1 is
often known as the Fatou conjecture. Note that it concerns density of hyperbolicity,
since openness of the set of hyperbolic maps is known.

Strongly related to hyperbolicity is the concept of structural stability. A map fa

is structurally stable if fc is topologically conjugate to fa, for every c in an open set
containing a. For rational maps on the Riemann sphere J -stability, which roughly
speaking means stability on a neighborhood of the Julia set, is usually considered
[25]. Mañé, Sad and Sullivan [21] have shown that the set of J -structurally stable
rationalmaps is open and dense in the space of rationalmaps Ratd of the same degree.
Since in any family of holomorphic maps the set of hyperbolic parameters forms an
open and closed subset of the J -stable parameters, Conjecture 1.1 is equivalent to
the following (see [18]):

Conjecture 1.2 A J-stable rational map of degree d is hyperbolic.

For quadratic polynomials, Conjecture 1.1 claims that the set of c such that fc(z) =
z2 + c is hyperbolic is an open and dense subset of the complex plane. On the other
hand, density of J -stability implies that each of the infinitely many components
U of C \ ∂M is the parameterization domain of a holomorphic motion hc : Ja →
Jc, c ∈ U (holomorphic motions are defined in Sect. 3.1), with base point a ∈ U
arbitrarilyfixed, and everyhc being aquasi-conformal conjugacy. IfU is a component
of C \ ∂M having one point a for which fa(z) = z2 + a is hyperbolic, then fc is
hyperbolic for every c inU , and thus in the quadratic settingdensity of hyperbolicity is
equivalent to conjecturing that every component of C \ ∂M is hyperbolic. Note that,



Correspondences in Complex Dynamics 55

sinceJ0 = S
1, it follows thatJc is a quasicircle (image of S1 under a quasiconformal

homeomorphism) for every c close to zero (more precisely, for every c in the same
hyperbolic component as c = 0). (A generalization of this fact for zβ + c is given by
Theorem 3.4).

In the late eighties J.-C. Yoccoz made a major contribution towards the MLC
conjecture, proving thatMLCholds at everypoint c ∈ ∂M such that fc is not infinitely
renormalizable. A key ingredient is what is now known as the Yoccoz inequality.
It can be shown that if z is a repelling fixed point for a degree d polynomial P
with connected filled Julia set, then just finitely many external rays γi , say q ′, land
at z. Each γi is periodic with the same period, and there exists p′ < q ′ such that
P ◦ γi = γi+p′ for any i . The number of cycles of rays landing at z ism = gcd(p′, q ′),
and θ = p/q = (p′/m)/(q ′/m) is called the combinatorial rotation number of P
at z.

Theorem 1.2 (Yoccoz-Pommerenke-Levin inequality [13, 15, 22]) If z is a repelling
fixed point of a degree d polynomial P with connected filled Julia set, and θ = p/q
is its combinatorial rotation number in lowest terms, then

Re τ

|τ − 2πiθ|2 ≥ mq

2 log d
, (3)

for some branch τ of log P ′(z).

(A Yoccoz inequality for the family Fa is developed by the first two authors in
[3]; see Theorem 1.3. While the original Yoccoz inequality is proven for degree d
polynomials, and so applies to iterates of degree 2 polynomials and hence to periodic
orbits, an inequality of the form presented in Theorem 1.3 has so far only been proved
for repelling fixed points.)

In 1994, C. McMullen made a deep contribution toward MLC, by proving that
every component of the interior of the Mandelbrot set meeting the real axis is hyper-
bolic [18]. In the late nineties, M. Lyubich [17], and independently Graczyk and
Swiatek [12] proved density of hyperbolicity for the real quadratic family. About ten
years later Kozlovski, Shen and van Strien proved it for real polynomials of higher
degree, by proving that any real polynomial can be approximated by hyperbolic real
polynomials of the same degree [14]. However, density of hyperbolicity for degree
d rational maps on Ĉ is still open.

1.2 Dynamics of Holomorphic Correspondences

We now outline our main results described in this paper, concerning the families (1)
and (2): these involve generalizations of the concepts presented in Sect. 1.1. Readers
who want to see the proofs—as Welington always did—can find those concerning
family (1) in [2, 3], and those concerning family (2) in [26–29].
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Part I. We start with an abstract definition of matings between quadratic maps
and PSL(2,Z) (Sect. 2.1) with the help of Minkowski’s question mark function.
This description dates back to 1994, when the first author together with Bullett and
Penrose [4] started investigating the family Fa . The formal definitions of limit sets
and the connectedness locus C� for this family are given in Sect. 2.2. There we also
define a mating between the modular group and a map in the parabolic quadratic
family

Per1(1) = {PA(z) = z + 1/z + A | A ∈ C}/(A ∼ −A),

and present a result which is a significant advance on Theorem 1.1, namely that for
any a ∈ C�, the correspondence Fa is a mating between PSL(2,Z) a parabolic map
in Per1(1) (see Theorem 2.1, and Figs. 4 and 5).

We open Sect. 2.4 by recalling the existence of a Böttcher map for the family Fa

when a ∈ C� (see Theorem 2.2), and we then use it to construct periodic geodesics
on the regular domain of Fa (an analogue of periodic external rays). These land (see
Theorem 2.3), analogously to the rational external rays for the quadratic family of
polynomials.

By a quite technical and deep argument [3] it can be shown that when a is in C�

every repelling fixed point z of Fa is the landing point of exactly one periodic cycle
of geodesics. It follows, as for polynomials, that z has a well-defined combinatorial
rotation number θ = p/q. A geodesic in the cycle is stabilized by a Sturmian word
Wp/q , in α and β, of rotation number p/q (Sturmian words are defined in Sect. 2.5:
Wp/q is unique up to cyclic permutation for any given p/q).

Theorem 1.3 (Yoccoz inequality) Let a ∈ C� and z be a repelling fixed point of fa

whose combinatorial rotation number is θ = p/q in lowest terms. Then there is a
branch τ of log f ′

a(z) such that

Re τ

|τ − 2πiθ|2 ≥ q2

4p log(�q/p� + 1)
, if θ ≤ 1/2; and

Re τ

|τ − 2πiθ|2 ≥ q2

4(q − p) log(�q/(q − p)� + 1)
, if θ > 1/2.

The inequalities of both Theorems 1.2 and 1.3 have geometric interpretations as
restricting the logarithm of the derivative at a repelling fixed point to a round disk
for each p/q. See Fig. 1 for illustrations.

Theorem 1.3 provides a key step in the strategy of the first two authors to prove
that the part M� = C� ∩ {z : |z − 4| ≤ 3} of the connectedness locus C� of the fam-
ily (1) is homeomorphic to the connectedness locus M1 of the parabolic family
{z �→ z + 1

z + A : A ∈ C}/(A ∼ −A). With the result announced by Carsten Peter-
son and Pascale Roesch that M1 is homeomorphic to the Mandelbrot set M [23],
this will finally prove the long-standing conjecture that M� (pictured in Fig. 6) is
homeomorphic to M .
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Fig. 1 Disks in the τ -plane
permitted by the Yoccoz
inequality: on the left for the
matings Fa , and on the right
for the classical case of
quadratic polynomials. (In
each case the disks plotted
correspond to all
p/q ∈ [0, 1/2] with q ≤ 8,
and to 1/16)

Part II. Section 3describes the dynamics of hyperbolic correspondences in the family
(2).We start by defining Julia sets (see Fig. 7 for an example). Themain subject is the
generalization of holomorphicmotions, which involves the construction of a solenoid
associated to the Julia set of fc(z) = zβ + c (Theorem 3.4). For parameters c close to
zero, the dynamics of zβ + c on its Julia set Jc is the projection of a (single-valued)
dynamical system fc : U → U given by as holomorphic map defined on a subset
U ⊂ C

2. The maximal invariant set of fc is a solenoid whose projection is Jc. The
projection of the holomorphicmotion inC2 yields a branched holomorphicmotion on
the plane, as defined by Lyubich and Dujardin [11] for polynomial automorphisms
of C2. Branched holomorphic motions are described in greater generality for the
family (2) in [29].

The advantage of the solenoid construction is that it makes possible to apply
certain techniques of Thermodynamic Formalism to the family of maps fc : U → U
and use them to estimate the Hausdorff dimension of Jc. For example,

Theorem 1.4 (Hausdorff dimension) If q2 < p then for every c sufficiently close to
zero,

dimH Jc < 2,

where dimH denotes the Hausdorff dimension of Jc.

In the family of Fig. 2 we have p = 5 and q = 2. Since 22 < 5, it follows that
Jc is the projection of a solenoid having zero Lebesgue measure. The assumption
q2 < p may not be sharp. The essential idea is that dimH Jc → 2 as β → 1, which
is supported by many experiments.

Notation and Terminology.

1. Holomorphic correspondences are denoted byF ,G, . . . in the context ofmatings,
or by f, g, . . . when studying hyperbolic multifunctions.

2. By the term multifunction we mean any multivalued map. Every multifunction
maps points to subsets.
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Fig. 2 Julia sets of zβ + c, where β = 5/2 is fixed. The values of c are, respectively, 0.05, (1 +
i)/5, 0.7 and 2 + i, read from upper-left to bottom-right. Jc is a circle at the singularity c = 0,
but the first figure reveals that Jc is the shadow of a solenoid for every c close to zero with c �= 0.
As we perform the branched motion, more bifurcations are added to Jc. The complexity increases
up to a certain moment (third to fourth steps) when the process reverses and Jc becomes a Cantor
dust. The first three are connected and the fourth is a Cantor set. In this family, Jc is a Cantor set
for |c| sufficiently large

3. S
1 = {z ∈ C : |z| = 1}, Ĉ = C ∪ {∞}, H = {z = x + iy ∈ C : y > 0}, and

f n = f ◦ · · · ◦ f︸ ︷︷ ︸
n

.

4. � = PSL(2,Z) is the modular group consisting of all Möbius transformations

z �→ az + b

cz + d
,

where ad − bc = 1 and a, b, c, d ∈ Z.The operation is the standard composition
◦. The generators of the modular group that we shall use are the maps

α(z) = z + 1 and β(z) = z

z + 1
.
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Consider
P(z, w) = (w − (z + 1))(w(z + 1) − z) = 0. (4)

The grand orbits of PSL(2,Z) on H are identical to those of the holomorphic
correspondence H : Ĉ → Ĉ determined by P(z, w) = 0.

2 Mating Quadratic Maps with PSL(2,Z)

Recall that in the case of hyperbolic quadratic polynomials fc(z) = z2 + c, the topo-
logical mating between fc and fc′ is the map

g : Kc ∪ Kc′

∼ → Kc ∪ Kc′

∼
induced by fc and fc′ on the quotient space, where ∼ is the smallest closed relation
such that ϕc(z) ∼ ϕc′(z), for every z ∈ S

1 (ϕc is the boundary extension of the
Böttcher coordinate and Kc is a copy of the filled Julia set). The two maps are
matable if the quotient space is a sphere, and g can be realized as a rational map.
By applying Thurston’s characterization of rational maps among critically finite
branched coverings of the sphere, Tan [30] and Rees [24] proved that two quadratic
polynomials fc, fc′ with periodic critical points are matable if and only if c and c′
do not belong to complex conjugate limbs of the Mandelbrot set.

Matings can also be constructed between Fuchsian groups: by applying the Bers
Simultaneous Uniformization Theorem certain Fuchsian groups can be mated with
(abstractly isomorphic) Fuchsian groups to yield quasifuchsianKleinian groups. (See
[7] for a discussion of matings in various contexts in conformal dynamics.) What is
a surprise when first encountered is that certain Fuchsian groups can be mated with
polynomial maps (see Sect. 2.1). This is achieved in a larger category of conformal
dynamical systems, containing both rational maps and finitely generated Kleinian
groups, the category of holomorphic correspondences on the Riemann sphere. These
are multifunctions F : Ĉ → Ĉ, for which there is a polynomial P(z, w) in two
complex variables such that F(z) = {

w ∈ Ĉ : P(z, w) = 0
}
.

2.1 Mating Quadratic Polynomials with PSL(2,Z)

Examples of matings between quadratic polynomials and the modular group were
discovered by thefirst author andChristopher Penrose in the early ’90s. To understand
their existencewefirst consider howone can construct an abstract (topological)model
(see also [1, 4] for more details).
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Topogical Mating: Minkowski’s Question Mark Function. Let

h : R̂≥0 → [0, 1]

denote the homeomorphismwhich sends x ∈ R represented by the continued fraction

[x0; x1, x2, . . .] = x0 + 1

x1 + 1

x2 + 1

x3 + . . .

to the binary number
h(x) = 0. 1 . . . 1︸ ︷︷ ︸

x0

0 . . . 0︸ ︷︷ ︸
x1

1 . . . 1︸ ︷︷ ︸
x2

. . .

This is a version of Minkowski’s question mark function [20]. It conjugates the
pair of maps α : x → x + 1, β : x → x/(x + 1) to the pair of maps t → t/2, t →
(t + 1)/2 (the inverse binary shift).

If the Julia set J ( fc) of fc : z → z2 + c is connected and locally connected then
the Böttcher map ϕc : Ĉ \ D → Ĉ \ K ( fc) extends to a continuous surjection S1 →
J ( fc), which semi-conjugates the map z → z2 on S1 (the binary shift) to the map
fc on J ( fc). We deduce that we may use the homeomorphism h described above to
glue the action of f −1

c on J ( fc) to that of α, β on R̂≥0/{0∼∞}. Equally well we can
glue the action of f −1

c on J ( fc) to that of α−1, β−1 on R̂≤0/{0∼−∞}.
We now take two copies K− and K+ of the filled Julia set Kc of fc and glue them

together at the boundary point of external angle 0 to form a space K− ∨ K+. Each
point z ∈ Kc has a corresponding z′ defined by fc(z′) = fc(z). Consider the (2 : 2)
correspondence defined on K− ∨ K+ by sending

• z ∈ K− to fc(z) ∈ K− and to z′ ∈ K+;
• z ∈ K+ to f −1

c (z) ∈ K+.
It is an elementary exercise to check that this correspondence on K− ∨ K+ can

be glued to the correspondence defined by α and β on the complex upper half-plane
using the homeomorphisms R̂≥0/{0 ∼ ∞} → ∂K− and R̂≤0/{0 ∼ −∞} → ∂K+
defined above. Thus we have a topological mating between the action of the modular
group on the upper half-plane and our (2 : 2) correspondence on K− ∨ K+.

Holomorphic Mating. Reassured by the existence of this topological construction,
we define a (holomorphic) mating between a quadratic polynomial fc, c ∈ M and
� = P SL(2,Z) to be a (2 : 2) holomorphic correspondence F such that:

1. there exists a completely invariant open simply-connected region � and a con-
formal bijection ϕ : � → H conjugating F |� to α|H and β|H;

2. Ĉ \ � = � = �− ∪ �+, where �− ∩ �+ = {P} (a single point) and there exist
homeomorphisms φ± : �± → Kc conjugating respectively F |�− to fc|Kc and
F |�+ to f −1

c |Kc
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In 1994 the first author and C. Penrose proved that for all parameters a in the real
interval [4, 7], the correspondence Fa is a mating between a quadratic polyno-
mial fc(z) = z2 + c, c ∈ [−2,+1/4] ⊂ R and the modular group � = P SL(2,Z)

(see [4]).

2.2 The Regular and Limit Sets of Fa

Consider the family of holomorphic correspondences Fa : Ĉ → Ĉ, defined by the
polynomial equation (1). The change of coordinate φa : Ĉ → Ĉ given by

φa(z) = az + 1

z + 1

conjugates Fa to the correspondence

J ◦ CovQ
0 , (5)

where J is the (unique) conformal involution fixing 1 and a, and CovQ
0 is the deleted

covering correspondence of the function Q(z) = z3, that is to say, the correspondence
defined by the relation

Q(w) − Q(z)

w − z
= 0, i.e. z2 + zw + w2 = 3.

So Fa and J ◦ CovQ
0 are the same correspondence in different coordinates, and in

that sense we write Fa = J ◦ CovQ
0 .

By a fundamental domain for CovQ
0 (respectively J ) we mean any maximal open

set U which is disjoint from CovQ
0 (U ) (respectively J (U )). We require our funda-

mental domains to be simply-connected and bounded by Jordan curves (see Fig. 3).

Klein Combination Locus. Let P = 1 denote the common fixed point of CovQ
0 and

J.The point P is a parabolic fixed point. TheKlein combination locusK is the subset
of C consisting of all a for which there are fundamental domains �Cov and �J of
CovQ

0 and J , respectively, such that

�Cov ∪ �J = Ĉ \ {P}.

We call such a pair of fundamental domains a Klein Combination pair.
In [2] we show that {a ∈ C : |a − 4| ≤ 3, a �= 1} ⊂ K, and that when a is in

the interior of this disk the standard fundamental domains (see Fig. 3) are a Klein
combination pair. More generally we prove that for every a ∈ K, we can always
choose a Klein combination pair whose boundaries ∂�Cov and ∂�J are transversal
to the attracting-repelling axis at P .
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Fig. 3 Standard
fundamental domains for
CovQ

0 and J. The curve in

blue is CovQ
0 ((−∞,−2]).

The region to the right of this
curve is a fundamental
domain �Cov of CovQ

0 . The
unbounded region
determined by the red circle
is a fundamental domain �J
of the involution J. The
parabolic fixed point P is the
point 1

Now suppose a ∈ K and let�Cov and�J be a corresponding pair of fundamental
domains of CovQ

0 and J such that ∂�Cov and ∂�J are transversal to the attracting-
repelling axis at P. It follows that P ∈ Fn

a (�J ), for everyn, andFa(�J ) is compactly
contained in �J ∪ {P}. By definition,

�a,+ =
∞⋂

n=1

Fn
a (�J ) (6)

whereFa = J ◦ CovQ
0 , is the forward limit set ofFa.Similarly, since�Cov is forward

invariant, the complement of �Cov is invariant under F−1
a and

�a,− =
∞⋂

n=1

F−n
a (Ĉ \ �Cov) (7)

is the backward limit set of Fa . The sets �a,− and �a,+ have only one point in
common, the point P. Their union, �a, is the limit set of Fa . An example of a plot
of a limit set of Fa is displayed in Fig. 4. (In this plot we use the original coordinate
system of (1), so P = 0 and J is the involution z ↔ −z.)

We haveF−1
a (�a,−) = �a,−, and the restriction ofFa to this set is a (2 : 1) single-

valued holomorphic map denoted by fa . The involution J maps �a,− onto �a,+ and
determines a conjugacy from fa to

F−1
a : �a,+ → �a,+.

The regular domain of Fa is �a = Ĉ \ �a . This set is completely invariant under
Fa (forward and backwards). By the Klein Combination Theorem it can be shown
that if �a contains no critical points it is tiled by copies of the intersection of any
pair of Klein combination domains, [6].
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Fig. 4 A connected limit set
for Fa, where
a = 4.56 + 0.42i

Fig. 5 Julia set of the hybrid
equivalent member of
Per1(1)

Connectedness Locus. The connectedness locus C� of the family Fa is the subset
of K consisting of all a such that the limit set �a is connected. When a ∈ C� , the
regular domain �a contains no critical points, and moreover is simply connected.

Bullett and Penrose [4] conjectured that for every a ∈ C�, the correspondence
Fa is a mating between some quadratic map fc(z) = z2 + c and the modular group
PSL(2,Z). More recently, this conjecture was settled affirmatively by Bullett and
Lomonaco [2], provided the quadratic family is replaced by a quadratic family of
parabolic maps (see Figs. 4 and 5).
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Fig. 6 A plot of M� = C� ∩ {z : |z − 4| ≤ 3}, which is conjecturally homeomorphic to the Man-
delbrot set [4]

2.3 Mating Parabolic Maps with PSL(2,Z).

The family Per1(1) consists of quadratic rational maps of the form PA(z) = 1 +
1/z + A, where A ∈ C. The maps in Per1(1) all have a persistent parabolic fixed
point at ∞ and critical points at ±1. The connectedness locus for the family Per1(1)
is the parabolic Mandelbrot set M1, which has been proved to be homeomorphic to
the Mandelbrot set by Petersen and Roesch [23]. We say thatFa is a mating between
PA and PSL(2,Z) if:

1. on the completely invariant open simply-connected region �a there exists a con-
formal bijection ϕa : �a → H conjugating Fa : �a → �a to α|H and β|H; and

2. the (2 :1) branch of Fa which fixes �a,− (given by the holomorphic map fa) is
hybrid equivalent to PA on the backward limit set �a,−.

In [2], using the theory of parabolic-like maps developed by the second author
(see [16]), the first two authors proved the following (see Figs. 4 and 5):

Theorem 2.1 For every a ∈ C�, the correspondence Fa is mating between a
parabolic map in Per1(1) and PSL(2,Z).

The following conjecture has been open for at least 20 years [4] (Figs. 6, 7, 8):
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Fig. 7 The Julia set of z �→ z
3
2 + 2

Fig. 8 Filled Julia sets in the family fc(z) = zβ + c, where β = 5/4. In the first figure (left), Kc
is a full compact set corresponding to c = 3 + 2i. In the second we have a Carpet for c = 26. If |c|
is sufficiently large, Kc is a Cantor repeller. Since the Mandelbrot set M is contained in a disk of
radius 2 around the origin, the fact that c = 26 and Jc is still connected seems odd. However, this
is one of the main features of the family (2), and it is experimentally clear that Mβ tends to cover
the plane as β → 1+
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Conjecture 2.1 The Mandelbrot set is homeomorphic to M� .

The first two authors have developed a detailed strategy for proving that M� is
homeomorphic to M1. This, together with the proof by Petersen and Roesch that
M1 is homeomorphic to M , would finally prove Conjecture 2.1. A key step in the
strategy to prove that M� is homeomorphic to M1 makes use of a Yoccoz inequality
for matings, which we prove using a generalization of the technique of external rays
(the subject of the next section).

2.4 Periodic Geodesics

Böttcher Coordinates. Consider the holomorphic correspondence H on the upper
half-plane obtained from the generators α(z) = z + 1 and β(z) = z/(z + 1) of
PSL(2,Z), i.e. defined by the polynomial equation (4). As part of the proof of The-
orem 2.1 it is shown in [2] that:

Theorem 2.2 (Böttcher map) If a ∈ C�, there is a unique conformal homeomor-
phism ϕa : �a → H such that

H ◦ ϕa = ϕa ◦ Fa .

By the Schwarz lemma, the Böttcher map is an isometry with respect to the
hyperbolicmetric, andmaps geodesics to geodesics. Geodesics in�a , or equivalently
inH, play a role for the correspondencesFa analogous to the role played by external
rays for quadratic polynomials fc.

Periodic Geodesics Land. We call a geodesic γ in the hyperbolic plane periodic if
Wγ = γ for some W in the semi-group generated by α and β, that is

W = g1 ◦ g2 ◦ · · · ◦ gn

where n ≥ 1 and each gi ∈ {α,β}. (Note that the decomposition of W must include
both α and β, since αn and βn , being parabolic, do not preserve any geodesic.)

Since H is geodesically complete, γ is a curve R → H, and the limits

γ(−∞) := lim
t→−∞ γ(t), γ(∞) := lim

t→∞ γ(t)

are by definition the landing points of γ. Every periodic geodesic in the hyperbolic
plane lands: its landing points are in R \ {0}.

If a ∈ C�, the regular domain is a hyperbolic Riemann surface, that is, it has
a unique complete metric of constant curvature −1 determining its geometry. A
geodesic γ̂ in �a is called periodic if ϕa ◦ γ̂ is a periodic geodesic of H.

We say that a periodic geodesic γ̂ : R → �a lands if the limits γ̂(∞) and γ̂(−∞)

exist. They are the right and left landing points, respectively.
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Theorem 2.3 If a ∈ C�, then every periodic geodesic lands. The left landing point
belongs to �a,− and the right landing point is in �a,+.

Asacorollary, theBöttchermapextends to all landingpoints of periodic geodesics.
Indeed it extends to all landing points of preperiodic geodesics, and moreover these
correspond underϕa to the set of all quadratic irrationals inR (the set of real numbers
with preperiodic continued fraction expansions).

2.5 Repelling Fixed Points, and Sturmian Sequences

The following result is again analogous to a result for quadratic polynomials, but
the proof is quite technical and deep (even more so than in the case of polynomials,
which is already difficult, see [3]), and at present we only have a proof for repelling
fixed points, whereas for polynomials it is known for repelling and parabolic cycles:

Theorem 2.4 A repelling fixed point in �−(Fa) of a correspondenceFa with a ∈ C�

is the landing point of exactly one periodic cycle of geodesics.

This theorem has the consequence that to a repelling fixed point z ∈ �− of a corre-
spondenceFa with a ∈ C� we can associate a periodic geodesic γ̂ which lands there,
and a finite word W in α and β which fixes ϕa ◦ γ̂. Letting fa denote the (locally
defined) branch of Fa which fixes z, we deduce that since fa is locally a homeomor-
phism the cyclic order of the images of γ̂ around z is preserved by fa . Thus fa has a
well-defined combinatorial rotation number around z, and this number is rational.

Sturmian Sequences. Recall that a sequence (si ) ∈ {0, 1}N is Sturmian if, for every
n, the number of 1′s in any two blocks of length n differs by at most one. There is
an obvious equivalent definition for bi-infinite sequences.

If (si ) is Sturmian, then the points of the orbit of x = 0.s1s2 . . . (binary) under
f (z) = z2 on the unit circle are necessarily in the same order as the points of some
rigid rotation Rθ, and vice versa. This θ is uniquely determined; it is by definition
the rotation number of (si ). Equivalently, θ is the limiting frequency of 1′s in the
sequence [5].

For each rational p/q (modulo 1) in lowest terms, there is a unique (up to cyclic
permutation) finite word Wp/q = (si ) ∈ {0, 1}q such that the orbit of x = 0.s1 . . . sq

under f (z) = z2 is in the same order around the circle as the points of an orbit
of the rigid rotation Rp/q (here s1 . . . sq denotes a recurring block). For example
W1/3 = 001, and W2/5 = 00101.

We call Wp/q the finite Sturmian word of rotation number p/q, since the bi-
infinite sequence made up of repeated copies of Wp/q is the unique (up to shift)
periodic Sturmian sequence of rotation number p/q. Finally we remark that there
is nothing special about the symbols 1 and 0: identical terminology for Sturmian
sequences and words may be applied if we replace 1 and 0 by α and β respectively.
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We now return to the situation that a ∈ C� , and z is a repelling fixed point of
fa : �a,− → �a,−. If γ̂ is a periodic geodesic landing at z, it has a combinatorial
rotation number p/q (by Theorem 2.4), and any finite word W inα and β which fixes
ϕa ◦ γ̂ is Sturmian, hence (a cyclic permutation of) a power of Wp/q . By establishing
and applying bounds for the eigenvalues of the Sturmian words Wp/q in α and β, we
prove our Yoccoz inequality, Theorem 1.3 (see [3]).

3 Hyperbolic Correspondences

We now turn to the study of the one parameter family of holomorphic correspon-
dences defined by (2). This family is perhaps the simplest generalization of the
quadratic family as a multifunction.

It will be useful to recall some well-known facts directly related to the dynamics
of fc(z) = zβ + c when β > 1 is a rational number.

Hyperbolic Quadratic Maps. The notion of hyperbolicity can be given in several
equivalent forms. According to the simplest one, fc(z) = z2 + c is hyperbolic if
f n
c (0) converges to an attracting cycle. Since the fixed point at infinity is an attracting

cycle, every parameter in the complement of the Mandelbrot set corresponds to a
hyperbolic map.

Since every finite attracting cycle attracts the orbit of a critical point, the map fc

can have at most one finite attracting cycle. Any quadratic mapwith a finite attracting
cycle corresponds to a point in the interior of theMandelbrot set M, and an equivalent
form of the Fatou conjecture states that this is the only possibility for a quadratic
map in the interior of M.

The closure of attracting cycles is denoted byJ ∗
c . It turns out that fc is hyperbolic

iff the basin of attraction of J ∗
c is Ĉ \ Jc. For this reason, we call J ∗

c the dual Julia
set of fc.

This equivalent definition of hyperbolicity should be preserved in any generaliza-
tion, mainly because of its intrinsic dynamical significance.

We shall use this equivalent property to define hyperbolic correspondences and
centers in the family fc(z) = zβ + c, but first we need to extend the concepts of orbit,
Julia set and multiplier of a cycle.

Cycles. Consider the family (2). Every sequence (zi )
∞
0 for which the points satisfy

zi+1 ∈ fc(zi ) is a forward orbit. A backward orbit is characterized by zi+1 ∈ f−1
c (zi ).

If ϕ : U → C is an injective holomorphic map from a region U of the plane such
that ϕ(z) ∈ fc(z), for every z in U, then ϕ is a univalent branch of fc. By a cycle of
length n we mean any periodic forward orbit with minimal period n. The quantity

λ =
n−1∏
0

ϕ′
i (zi ),
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where ϕi is the unique univalent branch taking zi to zi+1, is the multiplier of the
cycle. If z = 0 then there is no univalent branch defined at z; if some point of the
cycle is 0, then by definition λ = 0.

The cycle is repelling if |λ| > 1, and attracting if |λ| < 1.

Julia Sets, Hyperbolic Correspondences. The Julia set of fc, denoted by Jc, is the
closure of the union of all repelling cycles of fc. Similarly, the dual Julia set J ∗

c is
the closure of the union of all attracting cycles in C.

The ω-limit set of a point z, denoted ω(z), consists of every ζ such that zik →
ζ as k → ∞, for some bounded forward orbit (zi ) starting at z0 = z, and some
subsequence (zik ). We may use ω(z, fc) to make explicit the dependence on the
dynamics of fc.

The dual Julia set is a hyperbolic attractor ifJ ∗
c is forward invariant and supports

an attracting conformal metric ρ(z)|dz|, in the sense that

sup
z,ϕ

‖ϕ′(z)‖ρ < 1,

where the sup is taken over all z ∈ J ∗
c and all univalent branches ϕ of fc at z. It

is implicit in this definition that J ∗
c does not contain the critical point, for then no

univalent branch is defined at 0.
If J ∗

c is a hyperbolic attractor, then the basin of attraction of J ∗
c ∪ {∞} is well

defined and consists of all z such that ω(z) ⊂ J ∗
c ∪ {∞}.

Definition 3.1 We say that fc is hyperbolic if J ∗
c is a hyperbolic attractor and the

basin of attraction of J ∗
c ∪ {∞} is Ĉ \ Jc.

Connectedness Locus. For every c there is bounded disk B centered at 0 whose com-
plement is invariant under fc, and every forward orbit of a point in C \ B converges
exponentially fast to ∞.

We define
Kc =

⋂
n>0

f−n
c (B) (8)

as the filled Julia set of fc. A point z belongs to Kc iff there is at least one bounded
forward orbit under fc starting at z.

A connected compact subset of the plane is full if its complement in the Riemann
sphere is connected.

Theorem 3.1 If β = p/q and p is prime, then Kc is either connected or totally
disconnected. If 0 ∈ Kc, then Kc is full.

The connectedness locusMβ of the family fc is by definition the set of all parameters
c for which Kc is connected.
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Another important subset of the parameter space is

Mβ,0 = {c ∈ C : 0 ∈ Kc}. (9)

Notice that both sets generalize the definition of Mandelbrot set for the quadratic
family, but if β is not an integer, there is no reason to believe that Mβ = Mβ,0. In
view of Theorem 3.1,

Mβ,0 ⊂ Mβ,

if p is prime.
What is the structure of Kc when c belongs to Mβ \ Mβ,0? Below we answer

this question.

Carpets. A set � ⊂ C is a hyperbolic repeller of fc if (i) f−1
c (�) = �; and (ii) �

supports an expanding conformal metric defined on a neighborhood of�. (See [29]).
A filled Julia set Kc is a Carpet if (i) Kc is connected but not full; and (ii) Kc is a
hyperbolic repeller.

Intuitively, every Carpet presents holes, and by the contraction of the branches of
f−1
c , every hole comes with infinitely many small copies.
We say that Kc is a Cantor repeller if Kc is a hyperbolic repeller and also a Cantor

set. In this case, Jc = Kc.

Theorem 3.2 If β = p/q and p is prime, then Kc can be classified as

1. full if c ∈ Mβ,0;
2. a Carpet with Kc = Jc, if c belongs to Mβ \ Mβ,0; and
3. a Cantor repeller if c is in C \ Mβ .

Centers. A center is a point c of the parameter space such that

gn
c (0) = {0},

for some n > 0, where gc : Kc → Kc is the restriction of the correspondence fc to
the set Kc (gc is well-defined, since every point of Kc has at least one image in Kc).

This definition ismotivated by awell-known fact from the quadratic family, where
every bounded hyperbolic component U has a center [9, 10] defined as the unique
point c ∈ U for which the multiplier of the finite attracting cycle of fc is zero.

Hence, in the case of the quadratic family, the number of bounded hyperbolic
components is countably infinite, and every such component is encoded by a solution
of f n

c (0) = 0, for some n > 0.

Simple Centers. A center is called simple if there is only one orbit of 0 under gc,

and this orbit is necessarily a cycle containing 0.
Let Sd = {a ∈ C : ad−1 = −1}, for d > 1. For every pair (d, a) in the infinite set

⋃
d>1

{d} × Sd ,
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the point a is a simple center of family of the holomorphic correspondences fc : z �→
w given by (w − c)2 = z2d . Indeed, it was shown in [29] that the first two iterates of
0 under fa are 0 �→ a �→ an + a = 0 and 0 �→ a �→ −an + a = −2an,where−2an

is a point in the basin of infinity of fa .

Open Problems. A fundamental program for the family fc(z) = zβ + c is given by
the following problems:

I. Show that every perturbation of a center corresponds to a hyperbolic correspon-
dence;

II. Show that the set M′
β of hyperbolic parameters is indeed open and every com-

ponent of M′
β is encoded by a center;

III. Decide if the set of parameters for which c �→ Jc is continuous in the Haus-
dorff topology is open and dense (computer experiments seem to support this
statement);

IV. Show that every component of C \ ∂Mβ is hyperbolic.
V. Classify Julia sets with zero Lebesgue measure.

The first Problem I can be solvedwith a generalization of the proof of Theorem 3.3
(see [27] for a detailed exposition); the second is very realistic but still unresolved;
the third is in many aspects a generalization of the celebrated work of Mañé, Sad and
Sullivan [21] (see also [29] and Sect. 3.1 for a discussion of holomorphic motions in
the family (2)); and the fourth and fifth may be as difficult as the Fatou conjecture
(which has been open for a century). Indeed, the Fatou conjecture is equivalent to the
following assertion [21]: if c is in the interior of the Mandelbrot set, then the Julia
set of fc(z) = z2 + c has zero Lebesgue measure. Theorem 1.4 is perhaps the first
result towards this classification.

Theorem 3.3 (Hyperbolicity) If c is in the complement of Mβ,0, or c is sufficiently
close to a simple center, then fc is hyperbolic.

3.1 Holomorphic Motions

Quasiconformal deformations of Julia sets in the family fc can be explained by the
theory of branched holomorphic motions introduced by Lyubich and Dujardin [11]
for polynomial automorphisms of C2. For more details, see [29].

First, let us recall some classical facts about holomorphic motions.
Let � ⊂ C

n and U ⊂ C be an open set. A family of injections hc : � → C
n is a

holomorphic motion with base point a ∈ U if (i) ha is the identity, and (ii) c �→ hc(z)
is holomorphic on U , for every z fixed in �.

Branched Holomorphic Motions. Let � and U be subsets of C and suppose U
open and nonempty. A branched holomorphic motion with base point a ∈ U is a
multifunction h : U × � → C with the following properties: (i) h(a, z) = {z}, for
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every z ∈ �. In other words, ha = h(a, ·) is the identity; and (ii) there is a family F
of holomorphic maps f : U → C such that

⋃
z∈�

Gz(h) =
⋃
f ∈F

G( f ),

where G( f ) = {(z, f z); z ∈ U } is the graph of f and Gz(h) is the graph of c �→
hc(z).

The key difference in the definitions of branched and (non-branched) holomorphic
motion is that bifurcations are allowed in the branched family, so that hc(z) is a set
instead of a single point.

3.2 Solenoidal Julia Sets

Recently, Siqueira and Smania have presented another way of interpreting branched
holomorphic motions on the plane as projections of (non-branched) holomorphic
motions on C2. The method is general and applies to every hyperbolic Julia set [29],
but we shall restrict to bifurcations near c = 0.

There is a family of holomorphic maps fc : U0 → V0 such that U0 and V0 are
open subsets of C2, the closure of U0 is contained in V0, and the maximal invariant
set

Sc =
∞⋂

n=1

f −n
c (V0)

is the closure of periodic points of fc. (All periodic points are repelling in a certain
generalized sense, see [29]). This description holds for every c in a neighborhood
of zero. The dynamics of fc on Jc is a topological quotient of fc : Sc → Sc, in the
sense that π(Sc) = Jc and π sends two points in Sc related by fc to two points in Jc

related by fc: π fc(x) is an image of π(x) under fc, for every x ∈ Sc.

Let πc : Sc → Jc denote the projection (z, w) �→ z.

Theorem 3.4 (Holomorphic motions) There is a holomorphic motion hc : S0 → C
2

with base point c = 0 such that

1. hc(S0) = Sc and hc is a conjugacy (homeomorphism) from f0 : S0 → S0 to fc :
Sc → Sc.

2. the projected motion hc(z) = πc ◦ fc ◦ π−1
0 (z) is a branched holomorphic motion

mapping J0 = S
1 to Jc = hc(S

1).

3. S0 is a solenoid, and fc is hyperbolic, for every c in U.

See [29] for the solenoidal description of S0 (indeed, S0 is the Williams-Smale
solenoid for certain values of p and q).

In Fig. 2, the motion of Jc is illustrated in four steps.
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3.3 Conformal Iterated Function Systems

Dual Julia sets J ∗
c in the family (2) often appear as limit sets of conformal iterated

function systems (CIFS). This phenomenon is easy to explain when c is close to zero,
and very convenient to motivate further generalizations.

Indeed, using the contraction of fc around z = 0 one can prove that for every
c �= 0 close to zero, there is an open disk D such that D1 = fc(D) is another disk
avoiding zero and compactly contained in D.

Since D1 is simply connected, there are q conformal branches f j : D1 → C such
that fc(z) = { f j (z)} j , for every z ∈ D1. Moreover, the images f j (D1) are disjoint
disks. It follows that

fc(D1) ⊂ fc(D) = D1;

and the family of maps f j : D1 → D1 is a CIFS. The limit set of this CIFS is
� = ∩nω

n(D1), where

ω(A) =
q⋃

j=1

f j (A),

for any A ⊂ D1. The most important fact derived from this construction is that � is
the closure of attracting periodic orbits: � = J ∗

c .

This analysis hasmanygeneralizations, includingholomorphicmotions andHaus-
dorff dimension. Theorem 1.4, for example, is stated in great generality in [28].

In [27] we give a general account establishing a rigidity result which states thatJ ∗
c

is finite at simple centers, but anyperturbationof c yields a hyperbolic correspondence
whose dual Julia set is a Cantor set. In the case of c close to zero, for example, J ∗

c
is either a Cantor set if c �= 0 (indeed, � comes from a CIFS without overlaps) or a
single point set J ∗

0 = {0}.
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Braid Equivalence in the Hénon Family I

A. de Carvalho, T. Hall and P. Hazard

Abstract We give two general constructions of braid equivalences which exist
between certain deformations of the 2-branched Horsehoemap.We then give numer-
ical evidence suggesting that these constructions of braid equivalences are always
realised in the Hénon family.

Keywords Combinatorial dynamics · Braids · Surface homeomorphisms

1 Introduction

During the last three decades of the twentieth century, much effort was devoted to the
study of families of low-dimensional dynamical systems depending on parameters.
There is today a very thorough theory explaining the dynamics of families of one-
dimensional (real and complex) endomorphisms. The dynamics of the real quadratic
family fa(x) = a − x2, for example, is nearly completely understood [12]. In the
1970s Hénon introduced the family1 which now bears his name, a two-dimensional
analog of the quadratic family: Fa,b(x, y) = ( fa(x) − by, x). This is a family of
plane diffeomorphisms depending on two parameters which, for b = 0, degenerates

1Hénon considered a different parametrisation of this family,

Ha,b(x, y) = (−y + 1 − ax2, bx).
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to the quadratic family. In contrast to the quadratic family, and despite the existence
of several beautiful results about it, our understanding of the Hénon family is still
rather rudimentary.While there aremany similarities between the two families which
make it possible to use knowledge of the former to help in understanding the latter,
there are also many fundamental differences which demand that different techniques
be developed.

One of the most basic aspects of the dynamics of a parametrized family is the
way in which the periodic orbit structure changes as the parameters vary. This article
is concerned with periodic orbits in Hénon family in the parameter regions close to
degeneration, and exploits both similarities and differences between the quadratic
and Hénon families.

Periodic orbits of endomorphisms of the real line are specified by their associated
cyclic permutation: the way that their points, ordered on the line, are permuted by
the endomorphism. For homeomorphisms of the plane such as Hénon maps, the
analogous specification, introduced by Boyland [2, 3], is the braid type. If F : R2 →
R

2 is an orientation-preserving homeomorphism and P is a periodic orbit of F , then
the braid type bt(P, F) is the isotopy class of F relative to P , up to topological
conjugacy. In other words, the braid type of P is determined by fixing the action
of F on P but allowing it to be deformed by isotopy in the complement of P , and
also allowing a global change of coordinates.

The periodic orbit structure of maps in the quadratic family—or, indeed, of any
unimodal map f—is easily understood using techniques of kneading theory. The
critical point c is used to divide the line into left and right halves, and the kneading
sequence of f is the itinerary of the critical value f (c): the sequence of lefts and rights
along the orbit ( f n(c))n≥1. There is then a simple recipe for generating the set of
all itineraries of points x ∈ R from this kneading sequence. Permutations associated
to periodic orbits of unimodal maps—which are called unimodal permutations—
are determined by the itineraries of the points on the orbit. The set of permutations
of periodic orbits of a unimodal map f is therefore determined by the kneading
sequence of the map, and can be enumerated by a straightforward algorithm.

The situation for the Hénon family is quite different. We have very little idea, to
this day, of the way in which braid types of periodic orbits are built up in the family,
going from none to a full horseshoe’s worth, as the parameter a increases. In fact,
by the result of Kan, Koçak and Yorke [11], periodic orbits of the Hénon family are
both created and destroyed near every homoclinic tangency, and it is not even known
whether or not all periodic orbits which appear in the Hénon family have the same
braid type as periodic orbits of the horseshoe.

The diagrams in Fig. 1 show regions in the parameter plane for the Hénon family
where attracting periodic orbits of periods 8, 9, 10, and 11 were found. (Similar loci,
for various periods, were first considered by El Hamouly and Mira [7].) These plots
have a very rich structure, and understanding how the dynamics varies in the Hénon
family includes explaining this structure. In this paper we are particularly interested
in the hook-like structures, also called swallow configurations by Milnor [13] in the
one-dimensional cubic case. These structures are open sets consisting of a main body
and four limbs, two of which intersect the a-axis in two distinct (small) intervals.
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(a) (b)

(c) (d)

Fig. 1 Scatterplots of parameters (a, b) ∈ [1.75, 2.00] × [0.0, 0.25] for which the Hénonmap Fa,b
possesses an attracting periodic orbit of period p = 8, 9, 10, 11. One of the “hook-like” structures
for period 8 can be seen intersecting the a-axis in two intervals at approximately a = 1.8517 and
a = 1.87 respectively

Each of these hooks indicates that there is one attracting periodic orbit in the Hénon
family which can be deformed into two different attracting periodic orbits of the
quadratic family. That is, we expect each of the hooks to be associated to attracting
periodic orbits of the corresponding Hénon maps whose braid type is constant in
the region b > 0 and which degenerate into periodic orbits of the quadratic family
with two different permutations as b ↓ 0 along each of the two ends of the hook.
Viewing this in the opposite direction, the hooks indicate that there are certain pairs
of unimodal permutations which coalesce into a single Hénon periodic orbit.
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In this paper we identify mechanisms which lead to this coalescence on the
level of unimodal permutations. More precisely, we describe two mechanisms which
associate to unimodal permutations pairs of equivalent braids, and provide numeri-
cal evidence showing that the hooks in Fig. 1 can all be explained in terms of these
mechanisms.

There are at least two distinct reasons for which it is useful to be able to relate
unimodal permutations to braid equivalences in theHénon family. First, asmentioned
above, our understandingof the periodic orbit structure ofHénonmaps is very limited,
and being able to connect Hénon braid types to unimodal permutations provides a
means of deducing information about the former from the latter (about which we
know everything); one of the consequences of our results is that we predict the
existence of infinitely many hooks in the Hénon family, each of which associates
a braid type with a pair of intervals in the parameter space of the quadratic family.
Second, the more general problem of deciding whether or not two braid types are
equal is a difficult one, and mechanisms for constructing equivalent braids can be
useful. For example, there are conjectural constraints [4] on the possible orders
in which horseshoe braid types can be built up in families which pass from trivial
dynamics to a full horseshoe; and if this conjecture holds, then each pair of equivalent
braids generates an infinite family of pairs of equivalent braids.

We next review some definitions and terminology which will make it possible
to give rough descriptions of the two mechanisms mentioned above. A geometric
braid on n strands (see Fig. 3) is a diagram with n arcs (strands) connecting two
ordered sets of n points lined up vertically, so that only double intersections are
allowed and at each of them it is specified which strand goes above and which goes
below. The points at the top are called initial endpoints and those at the bottom are
called terminal endpoints. To each geometric braid is associated a braid type, and
braid types determine geometric braids up to conjugacy (these facts will be discussed
further in the text). Geometric braids also induce permutations on n elements in the
obvious way: associate to the initial endpoint the terminal endpoint along the same
strand. Since this association forgets all information about crossings of strands, it
is far from being one-to-one. It is possible, however, to associate a unique braid to
a unimodal permutation by requiring that each pair of strands crosses at most once
and that, when two strands cross, the one which started to the left goes above the one
which started to the right. In this waywe can talk about the unimodal braid associated
with a unimodal permutation.

Given a unimodal permutation υ, let f be a unimodalmap realising υ as its critical
orbit. The dynamical preimage of a point in the critical orbit is the preimage under
f which is also contained in the critical orbit (corresponding to the unique preimage
at the level of the permutation). The other preimage of a point of the critical orbit is
called the non-dynamical preimage.

The first mechanism is as follows. First we ‘break’ f at the dynamical preimage
of the critical point: that is, we perturb f in a neighbourhood of this point. Assuming
that the break is small, we get a new point which is a closest return to the critical
point. Make this new point follow the sequence of forward iterates of the critical
point: we may do this for any finite time by making the break sufficiently small. If



Braid Equivalence in the Hénon Family I 81

we arrive near the non-dynamical preimage of the critical point, we can ‘reconnect’
this iterate of the new point to the critical point. Again, this means that we perturb
f in a neighborhood of this iterate so that its image is the critical point. Depending
on which side of the critical point the new point lies, we get a pair of distinct critical
orbit types. (In terms of braids this construction is a generalisation of the cabling
construction for a braid, followed by a half-twist between strands.)

The second mechanism takes a pair of equivalent unimodal permutations υ− and
υ+, such as those generated by the first mechanism, and produces another equivalent
pair υ1− and υ1+ of unimodal permutations. Let f− and f+ denote unimodal maps
whose critical orbits realise υ− and υ+ respectively. As before, we break f− and
f+ at the dynamical preimage, but in both cases the break is large so that the new
point is a second closest return to the critical point. This is done to ensure that the
image of the new point is close to the image of the first closest return. We make this
image of the new point follow the forward iterates of the first closest return until it
arrives close to the dynamical preimage of the critical point. It is then reconnected to
the critical point as before. By repeating this process, a chain of pairs of equivalent
braids can be generated.

In Sect. 2 we present some background on braids and unimodal maps; in Sects. 3
and 4 the first and second constructions of braid equivalences are described; and in
Sect. 5 we discuss applications to the Hénon family and numerical results.

2 Notation and Terminology

2.1 Braids and Braid Equivalence

Let � ⊂ R
2 denote the closed unit disk. Let Homeo+(�) denote the group of

orientation-preserving homeomorphisms of �. Given a subset A ⊂ � let Homeo+
(�, A) denote the group of orientation-preserving homeomorphisms f of� satisfy-
ing f (A) = A. Where necessary we endow these groups with the uniform topology.

2.1.1 Braid Equivalence

Let p ∈ N. Let Pcan ⊂ Δ° denote the unique set of p points contained in the horizontal
axis, whose complement in this axis has connected components all of equal length.
Let F ∈ Homeo+(�, Pcan). Denote by [F]Pcan the isotopy class of F rel Pcan. When
it is clear from the context, we will also use the notation [F].

The group of such isotopy classes under composition is called the mapping class
group of (�, Pcan) and is denoted by MCGp.

Let F ∈ Homeo+(�) possess a periodic orbit P of smallest period p. We assume
P is in the interior of �: if not, we extend F arbitrarily over a collaring of �. Let
H : (�, Pcan) → (�, P) be any homeomorphism. Then the braid type of (P, F)
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is the conjugacy class 〈[H−1 ◦ F ◦ H ]〉 of [H−1 ◦ F ◦ H ] in MCGp. Denote the
braid type of (P, F) by bt(P, F). Let BTp denote the set of all braid types of a
fixed period p.

Remark 2.1 The braid type is independent of the collaring and the choice of home-
omorphism H (see [8] for more details).

Let F0, F1 ∈ Homeo+(�) possess periodic orbits P0 and P1 respectively.We say that
the pair (P0, F0) and (P1, F1) are braid equivalent if bt(P0, F0) = bt(P1, F1). Denote
this equivalence by (P0, F0) ∼BE (P1, F1). Equivalently, (P0, F0) ∼BE (P1, F1) if
there exists a homeomorphism H : (�, P0) → (�, P1) such that F0 � H−1 ◦ F1 ◦
H rel P0 in �.

2.1.2 Braids

We now relate the notion of braid equivalence to that of a braid. Let Bp denote the
braid group on p strands (see [1]). Denote the composition of braids α, β ∈ Bp by
α · β. If α and β are conjugate we write α ∼ β. If α and β are reverse-conjugate,
i.e. α · γ = γ −1 · β for some γ ∈ Bp, we write α ∼r β.

Remark 2.2 Wewill consider braids, geometric braids and braid diagrams. Typically
we will not make the distinction. However, where necessary we will use the notation
a � b to denote that the geometric braids a and b are isotopic. We will also denote
their product by a · b, whenever the set of terminal endpoints of b coincides with the
set of initial endpoints of a.

Let Z(Bp) denote the centre of Bp. It is known that Bp/Z(Bp) is naturally iso-
morphic to MCGp (see [9]). Hence BTp is in one-to-one correspondence with the
set of conjugacy classes of Bp/Z(Bp) whose underlying permutation is a cycle (and
hence close up to give a knot, rather than just a link). Therefore, given (PF , F) we
denote by β(PF , F) the conjugacy class in Bp/Z(Bp) corresponding to bt(PF , F).

Remark 2.3 The following is well-known. Let (P0, F0) and (P1, F1) have associated
braids β0 and β1. Then (P0, F0) ∼BE (P1, F1) if and only if there exists a braid σ and
m ∈ Z such that σ−1 · β0 · σ can be deformed into β1 · τm by a sequence of isotopies,
2nd and 3rd Reidemeister moves and their inverses, where τ is a braid associated to
a generator of Z(Bp).

Finally, we observe that if F ∈ Homeo+(�) possesses a periodic orbit P of small-
est period p which corresponds to an isolated fixed point of non-zero index for the
iterate F p, then any small perturbation F ′ ∈ Homeo+(�) will also possess a peri-
odic orbit P ′ which is a continuation of P and of the same period. Therefore we can
define bt(P, F) = bt(P ′, F ′). Since having an isolated fixed point of non-zero index
is an open property, this is well-defined.
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2.1.3 Braid Equivalence in Families

Definition 2.4 (Braid equivalence in parametrised families) Let k ∈ N. Let B ⊂ R
k

be a contractible bounded open set. Let F ∈ C(B,Homeo+(�)) be a k-parameter
family of continuous self-maps. We will use the notation Fb for the map F(b). Let
B0 = {b ∈ B : Fb ∈ Homeo+(�)}. Let b0, b1 ∈ B satisfy the property that Fb0 and
Fb1 have periodic orbits P0 and P1 respectively, both of smallest period p. Then
(P0, Fb0) and (P1, Fb1) are braid equivalent in the family F if

1. there exists a collection of p pairwise distinct points

P(t) = {P1(t), P2(t), . . . , P p(t)} ⊂ � (2.1)

where Pi (t) varies continuously with t ∈ [0, 1] for each i = 1, 2, . . . , p, such
that P0 = P(0) and P1 = P(1);

2. there exists a path γ : [0, 1] → B such that γ (0) = b0, γ (1) = b1 and P(t) is a
periodic orbit for Fγ (t), for each t ∈ [0, 1].
(Observe, necessarily P(t) must have smallest period p for Fγ (t) as the Pi (t) are

distinct.) In other words, the one-parameter sub-family Fγ (t) realises a strongNielsen
equivalence between (P0, Fb0) and (P1, Fb1).

Remark 2.5 Braid equivalence in a parametrised family implies braid equivalence.

Wewill be specifically interested in the casewhenb0, b1 ∈ B \ B0 andγ (b0, b1) ⊂
Homeo+(�). (The motivating example will be that F denotes the family of Hénon
maps and Fb0 , Fb1 will correspond to quadratic maps.)

2.1.4 Braids and Braid Diagrams

Recall that braids can be represented by braid diagrams. Braid diagrams will be
normalised in the following way: They lie in the unit square [−1, 1] × [−1, 1]. Each
strand has an initial endpoint lying in [−1, 1]init = [−1, 1] × {1}. Each strand has a
terminal endpoint lying in [−1, 1]term = [−1, 1] × {−1}. The vertical line through
any initial endpoint contains a terminal endpoint (and vice versa). All crossings are
transverse. Only double points are allowed. The strands are directed downwards.
(The last condition ensures no strand can ‘backtrack’.) Consequently, if α and β are
braids with associated diagrams, then the braid diagram corresponding to the product
α · β is the braid formed by placing the diagram corresponding to β directly above
the diagram corresponding to α and rescaling.

Remark 2.6 We adopt this convention as it coincides with the convention of com-
posing maps or isotopies from the right. For example, if the isotopy Fα

t realises the
braid α and the isotopy Fβ

t realises the braid β then Fα
t · Fβ

t realises the braid α · β.

Let β be a braid diagram. Denote by Sβ the set of strands. Denote by E init
β the set

of initial endpoints. We will denote the points in E init
β , ordered from left to right, by
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0init, 1init, . . . , (p − 1)init . Similarly, denote by E term
β the set of terminal endpoints.

Wewill denote the points in E term
β , ordered from left to right, by 0term, 1term, . . . , (p −

1)term.We denote the strand emanating from i init by sβ(i). Letπ : [−1, 1]2 → [−1, 1]
denote the projection to the first coordinate. Then by assumption π(i init) = π(i term)

for all i = 0, 1, . . . , p − 1.
Given a strand s ∈ Sβ let s init and s term denote its initial and terminal endpoints

respectively. When it is clear which braid β is being considered we will drop β from
our notation, so that sβ(i) becomes s(i), sβ(i)init becomes s(i)init , and so on.

2.2 Unimodal Dynamics

2.2.1 Unimodal Permutations

Remark 2.7 In this section we consider only intervals in {0, 1, . . . , p − 1}, e.g. for
i, j ∈ {0, 1 . . . , p − 1} satisfying i < j we let

[i, j] = {k ∈ {0, 1, . . . , p − 1} : i ≤ k ≤ j} (2.2)

Define (i, j), [i, j) and (i, j] similarly. In later sections we may also assume they
are embedded in R but it will be clear from the context what is meant.

Definition 2.8 Let p ∈ N. Endow the set {0, 1, . . . , p − 1}with its natural ordering.
A permutation υ of the set {0, 1, . . . , p − 1} is unimodal if there exists m ∈ (0, p −
1), such that

1. υ is order-preserving on the interval [0,m];
2. υ is order-reversing on the interval [m, p − 1].
We call m the folding point of υ. We denote the set of unimodal permutations on
{0, 1, . . . , p − 1} by Up. Let U = ⋃

p∈NUp.

If a unimodal permutation υ is cyclic then we can introduce the following,
which we call cyclic notation: Define o : {0, 1, . . . , p − 1} → {0, 1, . . . , p − 1}
by o(υ i (m)) = i for i = 0, 1, . . . , p − 1. Then we may uniquely represent υ by
(o(0), o(1), o(2), . . . , o(p − 1)). Observe that o is a bijection. Hence we can recover
υ by setting υ(o−1(i)) = o−1(i + 1 mod p).

Example 2.9 The cyclic unimodal permutation υ of {0, 1, 2, 3, 4} given by

υ(0) = 1, υ(1) = 3, υ(2) = 4, υ(3) = 2, υ(4) = 0 (2.3)

has folding point m = 2 and therefore o(2) = 0. Applying υ iteratively gives

o(4) = 1, o(0) = 2, o(1) = 3, o(3) = 4. (2.4)
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In cyclic notation2 we write (o(0), o(1), o(2), o(3), o(4)) = (2, 3, 0, 4, 1). (In other
words, cyclic notation is just shorthand for the collection of inequalities υ2(m) <

υ3(m) < m < υ4(m) < υ(m).)

Definition 2.10 Let υ ∈ Up be cyclic. Let q ∈ {0, 1, . . . , p − 1}. We call q a right
closest return time to the folding point if υq(m) < m and the interval (υq(m),m)

does not contain υr (m) for any integer r . Similarly, call q a left closest return time to
the folding point if m > υq(m) and the interval (m, υq(m)) does not contain υr (m)

for any integer r . Finally, we call q ∈ {0, 1, . . . , p − 1} a closest return time to the
folding point if the interval (υq+1(m), υ(m)) does not contain any point υr (m) for
any integer r .

Note that a closest return time will either be a left or right closest return time.

Definition 2.11 Let υ ∈ Up. Let i, j, k ∈ {0, 1, . . . , p − 1}, i < j . We say the
closed interval [i, j]maps over k if k ∈ υ[i, j] andmaps strictly over k if k ∈ υ(i, j).

Remark 2.12 For each k ∈ {0, 1, . . . , p − 1}, k �= 0 or p − 1, it is clear that there
exists an interval mapping strictly over k. It is also clear that each interval mapping
strictly over the folding point m contains at least one subinterval of shortest length
which alsomaps strictly overm. (The interval [υ−1(k) − 1, υ−1(k) + 1]maps strictly
over k and no strict subinterval also satisfies this property.) In fact, there are at most
two intervals mapping over k of shortest length.

Definition 2.13 Let υ ∈ Up. For each k ∈ {0, 1, . . . , p − 1} we call υ−1(k) the
dynamical preimage of k. If k �= 0, p − 1, the interval containing the dynamical
preimage of k is the shortest closed interval mapping strictly over k which contains
the dynamical preimage υ−1(k) of k. If k = 0 or p − 1, the interval containing the
dynamical preimage of k is the shortest closed intervalmapping over k which contains
υ−1(k).

The other shortest closed interval strictly mapping over k, when it exists, is called
the interval containing the non-dynamical preimage of k.

Example 2.14 The unimodal cyclic permutation υ of {0, 1, 2, 3} given by

υ(0) = 2, υ(1) = 3, υ(2) = 1, υ(3) = 0 (2.5)

(which in cyclic notation is given by (2, 0, 3, 1)) does not have an interval containing
the non-dynamical preimage of the folding point m = 1. To see this, observe that 1
has dynamical preimage 2 lying in the right interval. The only non-empty subinterval
of the left interval is the left interval itself, [0, 1]. This maps to the interval [2, 3]. As
[2, 3] doesn’t contain the folding point, the unimodal permutation υ does not have
an interval containing the non-dynamical preimage of the folding point.

2Note that we will use underlinings to distinguish representations, so 3 denotes the third point in
the orbit of 1 = p − 1, but 3 denotes the third point from the left.
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Definition 2.15 Let υ ∈ Up be cyclic. Given i, j ∈ {0, 1, . . . , p − 1}, denote by
κ = κ(i, j) > 0 the smallest positive integer such that j = υκ(i). If υl(i) �= m for
all 0 ≤ l < κ , let

ρ(i, j) = card{0 ≤ l < κ : υl(i) > m} (2.6)

Definition 2.16 Let υ ∈ Up be cyclic. We say that υ is reconnectable at the dynam-
ical preimage if the following property holds: let D = [d−, d+] denote the interval
containing the dynamical preimage d of 0. Then either ρ(1, d−) is odd or ρ(1, d+)

is even, or both.
We say that υ is reconnectable at the non-dynamical preimage if the following

properties hold:

1. [Preimage condition] The interval containing the non-dynamical preimage of m
exists. Denote it by E = [e−, e+].

2. [Parity condition] Either ρ(1, e−) is odd or ρ(1, e+) is even, or both.

Remark 2.17 It will become clear in what follows that this notion also makes sense
for other points k ∈ {0, 1, . . . , p − 1}, k �= m. However, for simplicity we will only
consider reconnections at the folding point.

Recall that we aim to construct braid-equivalent pairs of unimodal combinatorial
types starting from a given unimodal combinatorial type. In what follows it will
become clear that the construction we propose works precisely when the initial com-
binatorial type is reconnectable, either at the dynamical preimage or non-dynamical
preimage.

Example 2.18 Given a cyclic unimodal permutationυ, even if the interval containing
the non-dynamical preimage of m exists it may not be reconnectable. For example
consider, in cyclic notation, (2, 7, 3, 8, 0, 5, 4, 9, 6, 1). The dynamical preimage 9 of
the folding point 0 lies to the right of 0. The interval containing the non-dynamical
preimage of 0 is [7, 3]. To calculate ρ(1, 3) we count the number of elements of
{1, 2} lying to the right of 0, of which there is 1. Similarly there are 4 elements of
{1, 2, 3, 4, 5, 6} lying to the right of 0. Hence ρ(1, 3) = 1 and ρ(1, 7) = 4. Since
7 < 3 the parity condition isn’t satisfied.

2.2.2 Unimodal Braids

Wecall a braid positive if each crossing is positive (see Fig. 2). A braid is direct if each
strand crosses any other strand at most once.3 It is known that for any permutation
υ ∈ Up there is a unique positive, direct braid β which induces υ. We call such
braids unimodal. Denote the set of unimodal braids on p strands byUBp. LetUB =⋃

p∈NUBp.

3In the literature such braids are called permutation braids—however, it will be useful to have an
adjective to describe this property, as in [8].
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Fig. 2 The two types of
crossings used to construct
braid diagrams

(a) Positive crossing (b) Negative crossing

Fig. 3 The braid β for the
cyclic unimodal permutation
(2, 3, 0, 4, 1)

0init 1init2init 3init 4init

0term 1term2term 3term 4term

A unimodal braid β possesses a canonical braid diagram satisfying:

1. All strands initiated at m or to the left of m travel rightwardly.
2. All strands initiated at a point to the right ofm travel rightwardly, touch the folded

line π−1(p − 1), then travel leftwardly.

We call strands satisfying Properties1 and 2 unimodal strands. Henceforth we will
identify a unimodal braid β with the corresponding canonical unimodal braid dia-
gram. For example, the canonical unimodal braid diagram for the permutation
(2, 3, 0, 4, 1), is shown in Fig. 3.

Let S be a collection of unimodal strands, not necessarily forming a braid, which
are positive, direct and which contains a folding strand s(0). Let s be a strand in S.
The strand r unimodally follows s in S if

1. r is unimodal, r init neighbours s init , and r term neighbours s term,
2. the collection S ∪ {r} is positive and direct,
3. r has crossings of the following types
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• if t is a strand crossing s: then it also crosses r and the crossing is of the same
type. All such crossings occur in the same order for r as they do for s.

• if s hits the folded line: then r hits the folded line and they cross once, when s
is moving rightwardly but r is still moving leftwardly, or vice versa. Otherwise
there is no crossing.

Let s and s ′ be strands in S such that s init < s ′init are neighbours lying on the same
side of 0. A strand r unimodally follows the pair s, s ′ in S if

1. r is unimodal, r init lies between s init and s ′init , and r term lies between s term and
s ′term,

2. the collection S ∪ {r} is positive and direct,
3. r has crossings of three types

• if t is a strand crossing both s and s ′: then t makes the same type of crossing
with r between its crossings with s ′ and s;

• if t is a strand crossing s ′ but not s: if r term lies between s ′term and t term, then
r makes the same type of crossing with t after s ′ crosses t . Otherwise there is
no crossing. Similarly, if t crosses s but not s ′;

• if s and s ′ hit the folded line, then r makes a single crossing both with s and
with s ′, either side of the single crossing between s and s ′. Otherwise there
are no crossings.

Before proceeding, let us make the following trivial observation concerning the
action of half-twists on a cabled pair of strands.

Observation 2.19 (Fundamental Observation) Let β be a braid. Let s be a strand of
β. Form a new strand s ′ which follows the strand s (i.e. makes the same crossings
with all other strands and in the same order). Allow an arbitrary number of crossings
between s and s ′. Let β ′ denote the resulting braid.4 Let τinit denote a positive half-
twist between s init and s ′init . Let τterm denote a positive half-twist between s term and
s ′term. Then β ′ · τinit = τterm · β ′.

3 Breaking Braids via First Closest Returns

3.1 Cabling

Our first construction extends that by Holmes [10] which generalised the cabling5

construction for iterated torus knots to horseshoe braids. Our description is in terms
of braids rather than templates, but they are equivalent. Note that Holmes did not

4Formally, these are not braids as they do not have the same set of initial and terminal endpoints.
To avoid confusion, let us call these objects almost-braids.
5Although Holmes only used the term cabling for iterated torus knots (not iterated horseshoe knots)
we will use the term for both cases.
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consider braid equivalence of the pairs of braids created by this construction. He
considered only the single unimodal braid that resulted.

We now give an informal description of the cabling procedure. Given a cyclic
braid β ∈ Bp, take the folding strand s0. ‘Break’ the braid by disconnecting s0 from
s term0 and ‘glue’ it to a neighbouring point r term0 which is not already the endpoint
of some strand. Let r init1 and s init1 denote the vertical projection of r term0 and s term0
respectively. Let s1 denote the strand emanating from s init1 .

Add a strand r1 with initial point r init1 and which unimodally follows s1. Then r1
has a terminal point r term1 neighbouring s term1 . Now repeat the process: Let r init2 and
s init2 denote the vertical projection of r term1 and s term1 respectively. Add a strand r2
unimodally following s2, etc.

The final strand rp−1 has initial point r initp−1 and terminal point r term0 . However, it
may not be possible for rp−1 to follows sp−1 unimodally, as r term0 may lie on the
wrong side of s term0 . Therefore rp−1 unimodally follows sp−1 until all other crossing
in have been made, then makes a negative crossing between sp−1 and rp−1 before
connecting to r term0 .

Given a unimodal braid β we can cable it in two distinct ways: to the left or
right of the folding strand. It can be shown that this pair of braids are conjugate or
reverse-conjugate. However, they are not both unimodal.

Observe that the cabling can be closed-up to form a braid whenever we land inside
the interval containing the dynamical preimage of the folding point. More precisely,
choose q ∈ N so that r termq lies in an interval (s termq , s termq ′ ), not containing any terminal
endpoints ofβ, and such that it maps over s term0 . Let r initq+1 denote the vertical projection
of r termq . At this last step, construct a strand rq emanating from r termq which, rather than
completely following sq , only follows sq until we can reconnect rq to s term0 without
creating any further crossings. We call this a generalised cabling at the dynamical
preimage. Again there are two distinct cablings: to the left or right of the folding
strand. As in the cabling case, the pair of braids are conjugate or reverse-conjugate.
However, they are never both unimodal.

In Construction 3.1 below, we observe that the cabling can be closed-up at any
point in time at whichwe lie in the interval containing the non-dynamical preimage of
the folding point. We call this generalised cabling at the non-dynamical preimage.
There are two preferred cablings, either side of the folding strand. Theorem 3.3
says this pair is conjugate or reverse-conjugate. What is important is that, unlike the
previous two constructions, the braids produced by this process are both unimodal.

Construction 3.1 (Generalised Cabling—At the Non-Dynamical Preimage) Let
β ∈ UBp be cyclic and reconnectable at the non-dynamical preimage. Let υ ∈ Up

denote the corresponding unimodal permutation. Let E = [e−, e+] denote the inter-
val containing the non-dynamical preimage of the folding point. Then either ρ(1, e−)

is odd or ρ(1, e+) is even, or both. Let q − 1 denote either of the points e− or e+
satisfying this parity condition.

Choose ε > 0 small. Let r− ∈ (0 − ε, 0) and r+ ∈ (0, 0 + ε). Let r1 ∈ (1 − ε, 1),
r2 ∈ (2, 2 + ε) and choose points ri ∈ (i − ε, i + ε), i = 3, . . . , q − 1,which satisfy
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ri ∈
{

(i − ε, i) if ρ(1, i) is even
(i, i + ε) if ρ(1, i) is odd

(3.1)

For i = ±, 1, 2 . . . , q − 1, let r initi and r termi denote the projection of ri to [−1, 1]init
and [−1, 1]term respectively.Thesewill be endpoints for the strands constructedbelow.

First, let r±(0) denote the strand with initial endpoint r init± and terminal endpoint
r term1 , which follows unimodally the strand s(0).

Secondly, assume r±(i) have been constructed for i = 0, . . . , j − 1, where
0 < j ≤ q − 2. Let r+( j) = r−( j) denote the strand with initial endpoint r initi and
terminal endpoint r termi+1 which follows unimodally the strand s(i).

Thirdly, assume that the strands r±(i) have been constructed for all i = 0, 1, . . . ,
q − 2. Construct the strand r±(q − 1) as follows. As [e−, e+] maps over the folding
point, one of the strands s(e−) or s(e+) has a terminal endpoint which lies on the
same side of the folding point as its initial endpoint. Call it s and the other strand
s ′. Let r±(q − 1) denote the strand with initial endpoint r initq−1 and terminal endpoint
r term± which unimodally follows s and s ′. We make modifications to r±(q − 1) as
follows:

(I) [If 0 < p − 1.] Since r term+ > s(p − 1)term and r initq−1 < 0init < s(p − 1)init we
need an additional crossing between r+(q − 1) and s(p − 1). Make a single
negative crossing between r+(q − 1) and s(p − 1) after all other crossings,
resulting from r+(q − 1) following s and s ′, have been made.
Since r term− < s(p − 1)term and r initq−1 < 0init < s(p − 1)init no additional cross-
ings between r−(q − 1) and s(p − 1) are necessary.

(II) [If p − 1 < 0.] Since r term− < s(p − 1)term and s(p − 1)init < 0init < r initq−1 we
need an additional crossing between r+(q − 1) and s(p − 1). Make a single
negative crossing between r+(q − 1) and s(p − 1) after all other crossings,
resulting from r+(q − 1) following s, have been made.
Since r term+ > s(p − 1)term and s(p − 1)init < 0init < r initq−1 no additional cross-
ings between r+(q − 1) and any other strand are necessary.

Let α± denote the braid consisting of the strands of β, together with the strands
r±( j), j = 0, 1, . . . , q − 1 formed above. Note that α± is not cyclic. In fact, it is not
necessarily unimodal. Let τ± denote the positive half-twist between r± and 0. (That
is, τ± is the Artin generator exchanging 0 and r± via a single positive crossing.) Let
β± = τ± · α±. Note that β± is a cyclic braid. Moreover, after cancelling appropriate
positive and negative crossings between the strands r±(q − 1) and s(p − 1) via
Reidemeister moves and isotopy, we see that, in both cases (I) and (II), that β− and
β+ are unimodal. See Fig. 4.

Example 3.2 Consider the cyclic unimodal permutation υ from Example 2.9. In
cyclic notation it is given by (2, 3, 0, 4, 1). Then the interval containing the non-
dynamical preimage is E = [2, 3]. Since ρ(1, 2) = 1 is odd, υ is reconnectable at
the nondynamical preimage. Let β denote the corresponding unimodal braid and β±
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sinitp−1rinitq−1sinit
d− sinit

d+
sinit0rinit−

α−

τ−

rterm− sterm0stermd−+1 stermd++1 rterm1 sterm1

(a) β− in Construction 3.1(I).

sinitp−1 rinitq−1sinit
d− sinit

d+
sinit0 rinit−

α−

τ−

rterm−sterm0stermd−+1 stermd++1 rterm1 sterm1

(b) β− in Construction 3.1(II).

sinitp−1sinit
d−sinit

d− sinit
d+

sinit0 rinit+

α+

τ+

sterm0 rterm+stermd−+1 stermd++1 rterm1 sterm1

(c) β+ in Construction 3.1(I).

sinitp−1 rinitq−1sinit
d− sinit

d+
sinit0 rinit+

α+

τ+

sterm0 rterm+stermd−+1 stermd++1 rterm1 sterm1

(d) β+ in Construction 3.1(II).

Fig. 4 The braids β− and β+ from Construction 3.1. Only the necessary strands are shown. Strands
from the original braid β are black, while new strands are red. (Only the first and last new strands
are depicted)
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the pair of braids fromConstruction 3.1. Ifυ± denotes the permutation corresponding
to β± then

υ− = (2, 7, 3, 5, 0, 4, 6, 1) υ+ = (2, 7, 3, 0, 5, 4, 6, 1) (3.2)

See Fig. 5 for the construction of β± in this case.

More generally, consider the case when the dynamical preimage of the folding
point lies to the right of m. Then β− and β+ are depicted in Fig. 4a, c respectively.
Identifying the sets of initial and terminal endpoints of β− and β+ in an order-
preserving manner, then precomposing β− with a positive half-twist between the
strand s(0) and its neighbour r−, and post-composing by the inverse of this twist,
yields the braid β+. A similar argument can be given when the dynamical preimage
of the folding point lies to the left of m. Then β− and β+ are shown in Fig. 4b,
d. However, in this case we precompose and post-compose by the same positive
half-twist. Hence we have the following Theorem (See Fig. 5).

Theorem 3.3 Let p ∈ N. Let β ∈ UBp be cyclic. Assume β is reconnectable at the
non-dynamical preimage. Let β− and β+ denote the braids from Construction 3.1.

1. If the non-dynamical preimage lies to the left of m then β+ ∼ β−.
2. If the non-dynamical preimage lies to the right of m then β+ ∼r β−.

Theorem 3.3 and Remark 2.3 imply the following important corollary.

Corollary 3.4 Let p ∈ N. Letυ ∈ Up be reconnectable at the non-dynamical preim-
age. Let υ− and υ+ denote the unimodal permutations from Construction 3.1.

If f−, f+ ∈ C([−1, 1], [−1, 1]) are unimodal maps with periodic critical orbits
C− and C+ of type υ− and υ+ respectively, then (C−, f−) ∼BE (C+, f+).

4 Breaking Braids via Second Closest Returns

4.1 Generalised Cabling Process

Wenowdescribe a second construction that, given a braid-equivalent pair of unimodal
permutations υ− and υ+ satisfying conditions given below, generates another pair
of braid-equivalent unimodal permutations. Moreover, the new pair satisfy the same
conditions and hence we can apply the construction once more. The idea is the
following. Take υ± as given by Construction 3.1. Break the connection at 0term

and glue the free strand to a point just outside the interval [pterm− , pterm+ ], making a
second closest return. Then consecutively add strands, starting from this point, that
unimodally follow the strands from initial endpoints pinit± , p + 1init± , etc. Stop once
a terminal endpoint lands inside D, the interval containing the dynamical preimage
of the folding point. Finally, to close-up the braids, glue the last strand back to 0term.
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However, since wewill define the process inductively we need to enlarge the space of
such pairs (not just those coming from Construction 3.1). Before giving the general
construction, however, let us consider the following example.

Example 4.1 Let β± denote the braids from Example 3.2. For notational clarity, let
us initially denote the underlying permutations by

υ− = (2−, 7−, 3−, 5−, 0−, 4−, 6−, 1−) (4.1)

and
υ+ = (2+, 7+, 3+, 0+, 5+, 4+, 6+, 1+). (4.2)

The braids β± are shown in Fig. 7a. The initial and terminal endpoints of β± are
denoted by 0init± , 1init± , . . . , 7init± and 0term± , 1term± , . . . , 7term± respectively. Denote the
corresponding strands by s(0±), . . . , s(7±). We may assume that the endpoints of
the strands in β± have been moved, in an order-preserving manner, so that for all
k �= 5, k init− = k init+ and k term− = k term+ . We may also assume that the strands have been
deformed so that s(k−) = s(k+) for all k �= 4 or 5 (i.e., any strand whose set of initial
or terminal endpoints does not contain 5init± or 5term± ). Therefore, for all k �= 5, denote
the points k init± and k term± by k init and k term respectively. Similarly, for all k �= 4 or 5,
denote the strands s(k±) simply by s(k). See Fig. 6. Let us do the following to the
braids β− and β+. As shown in Fig. 7a, add an initial endpoint, shown in green, to
the left of 5init− in both diagrams. Add a strand, also shown in green, from this new
initial endpoint which unimodally follows the strand s(5−). See Fig. 7b. Next, add a
new initial endpoint directly above the terminal endpoint of this last strand, which
neighbours 6init . From this initial endpoint add a new strand which unimodally fol-
lows the next strand s(6). See Fig. 7c. Observe that the new terminal endpoint lies
inside the interval containing the dynamical preimage. Add a final initial endpoint
directly above this terminal endpoint, necessarily neighbouring 7init. From this initial
endpoint add a strand which unimodally follows the strand s(7) until s(7) has made
all its crossings except possibly for a single crossing with s(4). Make the new strand
form a negative crossing with the strand s(7) before ending at a terminal endpoint
directly below the very first initial endpoint we started with. See Fig. 7d. This gives
a pair of unimodal braids, which are non-cyclic (there are exactly two cycles). To
form a pair of cyclic braids, perform a negative half-twist between this final terminal
endpoint and s(0)term. There is a complication in that for one of these braids, there is
another terminal endpoint, namely 5term+ , lying in between: we take the strand from
this endpoint goingunder the half-twist. SeeFig. 7e.Denote the resulting braids byβ1−
and β1+. Conjugating β1+ by a positive half-twist between 0 and 5+, the resulting braid
can be deformed by a series of isotopies and Reidemeister moves into the braid β1+.
Next, we need the following notions to simplify exposition. Given a unimodal per-
mutation υ ∈ Up and ı ∈ {0, 1, . . . , p − 1}, ı �= 0, we add a point ı̄ to the linearly
ordered set {0, 1, . . . , p − 1}, whichwe call the opposite of ı with respect to υ, which
satisfies

(i) ı̄ < 0 if and only if ı > 0,
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Fig. 6 The braids β± with
strands in the same diagram,
from Example 4.1. The
strands with long dashes
come from β−, while the
strands with short dashes
come from β+

0init 1init2init 3init 4init

0term 1term2term 3term 4term

(ii) ı̄ ∈ (j , k) if and only if υ(ı) ∈ (υ(j), υ(k)).

Remark 4.2 Observe that, if the set {1, . . . , p − 1} is embedded in the line in an
order-preserving manner and υ is realised by a unimodal endomorphism f , then the
opposite of a point ı just corresponds to the preimage of f (ı) under f which is not ı .

In what follows we only need to consider closest return times to the folding point, so
we will simply say that p is the closest return time. (See Sect. 2.2 for the definition.)

For positive integers p and q, let Up,q denote the set of cyclic unimodal permu-
tations of length p + q with closest return time p. Given υ ∈ Up,q , let C = [p, p̄],
where p̄ denotes the opposite point of p with respect to υ. Let D = [d−, d+]
denote the interval containing the dynamical preimage d = p + q − 1 of 0. Let
D− = [d−, d] and D+ = [d, d+]. Let E = [e−, e+] denote the interval containing
the non-dynamical preimage.

Example 4.3 Observe that the unimodal permutations constructed in Example 3.2
and also considered in Example 4.1,

υ− = (2, 7, 3, 5−, 0, 4, 6, 1) and υ+ = (2, 7, 3, 0, 5+, 4, 6, 1) (4.3)

both lie in U5,3, where we have kept the notation convention of Example 4.1. If we
denote the intervals C, D, D±, E for the permutation υ± by C±, D±, D±

±, E±, then
we find that C− = [5−, 5+] = C+, D− = [2, 3] = D+, D−

− = [2, 7] = D−
+ , D

+
− =

[7, 3] = D+
+ , E− = [0, 4], and E+ = [4, 6].
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Now consider the general situation. Let υ± ∈ Up,q . In cyclic notation denote υ±
by (2±, . . . , 0±, . . . , 1±). Assume the following:

1. (closest returns lie on opposite sides of the folding point) p− < 0− and 0+ < p+.
2. (all remaining points are in order-preserving bijection) for all k, l �= p, k− < l− if

and only if k+ < l+. Hence, if k± are embedded in the line in an order-preserving
manner, as in the preceding example, we may assume that k− = k+ for all k �= p.
Consequently, for each k �= p, we may denote the point k± by k.

3. (the closest return is not contained in the interval containing the dynamical preim-
age of the folding point) p± /∈ ∂D±.

4. (the dynamical preimage of the folding point and the dynamical preimage of the
closest return lie on opposite sides of the folding point) either p + q − 1± <

0± < p − 1±, or p − 1± < 0± < p + q − 1±.

LetC±, D±, D±
±, E± denote the corresponding intervals for υ±. Then by (1) we may

assume that p− = p+ and hence C− = C+. Denote this interval by C . Properties (2)

and (3) then imply that D− = D+. Denote this interval by D. Similarly D±
− = D±

+ and
wemay denote this interval by D±. Note that, as we saw in the previous Example 4.3,
E− and E+ do not necessarily coincide.

By the discussion in Sect. 3, Condition (2) implies the following property, that
will be used in the proof of Theorem 4.8 below.

2′. Let β± denote the canonical unimodal braid of υ±. Then there exists a braid γ

with p + q strands, with the property that outside of C = [p−, p+], γ is trivial,
and such that one of the following holds:

2′+. β− · γ = γ · β+
2′−. β− · γ = γ −1 · β+

Finally we will need the following trivial observation:

5. (existence of the transit time from the closest return to the interval containing the
dynamical preimage of the folding point) The orbit segment p + 1, p + 2, . . . ,
p + q − 1, of the image of the closest return point to the interval D does not
intersect the interval C .

Call t = q − 2 the transit time. We say it is a left transit time if the parity, given by
ρ(p + 1, p + t + 1), is even and a right transit time if this parity is odd.

Example 4.4 Let us continue considering υ± from Example 4.3. Then the transit
time is t = 1, since q = 3. It is a right transit time. If we imagine a point neigh-
bouring p + 1 to the left, then the image of that point lies in the interval containing
the dynamical preimage, i.e., we land inside the interval containing the dynamical
preimage after a single iterate. Moreover, this image lies to the right of the dynamical
preimage of the folding point, therefore it is a right transit time.

Remark 4.5 Any pair (υ−, υ+) of equivalent unimodal permutations fromConstruc-
tion 3.1 satisfies Properties (1)–(5). In particular, the unimodal permutations from
Example 4.3 satisfy these conditions.
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Construction 4.6 (Generalised Cabling Process.) Let (υ−, υ+) denote a pair of
cyclic unimodal permutations satisfying properties (1)–(4). Recall thatC±, D±, etc.,
denote the corresponding intervals for υ±. Recall that we may assume C− = C+
and D− = D+. Denote these intervals by C and D respectively. Observe that
υ−(D) = υ+(D) and this interval contains 0 and p± in its interior.

Let β± denote the canonical braid corresponding to υ±. Denote the set of strands
for β± by S±. For k = 0, 1, . . . , p + q − 1, denote the k-th strand by s±(k). The
strand s±(k) lies between initial endpoint s±(k)init = k init± and terminal endpoint
s±(k)term = k + 1term± , where addition is taken modulo p + q. By property (4) above
we may assume, after applying an isotopy if necessary, that s−(k) = s+(k) for all
k �= p − 1 or p.

Remark 4.7 Wewill also use the notation sk for the projection to [−1, 1] of the initial
endpoint of s(k) for k = 0, 1, . . . , p−, p+, . . . , p + q − 1.

Let t be the transit time. Construct a pair (υ1−, υ1+) of unimodal permutations as
follows:

To begin, we define points ri , r initi and r termi for i = 0, 1, . . . , t + 1. Choose ε > 0
small. Let r1 ∈ (p + 1 − ε, p + 1), and choose points ri ∈ (p + i − 1, p + i + 1),
i = 2, . . . , t + 1, which satisfy

ri ∈
{

(p + i − ε, p + i) if ρ(p + 1, p + i) even
(p + i, p + i + ε) if ρ(p + 1, p + i) odd

(4.4)

Finally, choose r0 ∈ (p− − 1, p+ + 1) which satisfies

r0 ∈
{

(p− − ε, p−) if D < 0 and t a right time, or 0 < D and t a left time.
(p+, p+ + ε) if D < 0 and t a left time, or 0 < D and t a right time.

(4.5)
For i = 0, 1, 2, . . . , t + 1 let r initi and r termi denote the projections of ri onto [−1, 1]init
and [−1, 1]term respectively. As before, these will be endpoints for the strands con-
structed inductively below.

First, let r±(1) denote the strand with initial endpoint r init1 and terminal endpoint
r term2 which follows unimodally the strand s±(p + 1).

Secondly, assume that the strands r±(i) have been constructed for i = 1, . . . , j −
1, for some 0 < j < t + 1. Let r±( j) denote the strand with initial endpoint r initj and
terminal endpoint r termj+1 which follows unimodally the strand s±(p + j).

Thirdly, assume that the strands r±(i) have been constructed for all i = 1, 2, . . . , t .
Then r±(t + 1) denotes the strand with initial endpoint r initt+1 and terminal endpoint
r term0 which, in each of the four cases below, satisfies the following:

(Ii) [If p + q − 1 < 0 and t is a left transit time.]
Let r−(t + 1) unimodally follow the strand s−(p + t + 1) rightwardly until
s−(p + t + 1) has only one crossing to make, which is necessarily with
s−(p − 1), before reconnecting to its terminal endpoint. Then r−(t + 1) forms
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a negative crossingwith s−(p + t + 1), after which itmakes a positive crossing
with s−(p − 1) before connecting to its terminal endpoint. See Fig. 8a.
Let r+(t + 1) unimodally follow the strand s+(p + t + 1) rightwardly until
s+(p + t + 1) has no more crossings to make before reconnecting to its termi-
nal endpoint. Then r+(t + 1) forms a negative crossing with s+(p + t + 1),
after which it makes a positive crossing with s+(p − 1) before connecting to
its terminal endpoint. See Fig. 8c.

(Iii) [If p + q − 1 < 0 and t a right transit time.]
Let r−(t + 1) unimodally follow the strand s−(p + t + 1) rightwardly until
s−(p + t + 1) has only one crossing to make, which is necessarily with
s−(p − 1), before reconnecting to its terminal endpoint. Then r−(t + 1) forms
a negative crossing with s−(p + t + 1) before connecting to its terminal end-
point. See Fig. 8b.
Let r+(t + 1) unimodally follow the strand s+(p + t + 1) rightwardly until
s+(p + t + 1) has no further crossings to make before reconnecting to its ter-
minal endpoint. Then r+(t + 1) forms a negative crossing with s+(p + t + 1)
before connecting to its terminal endpoint. See Fig. 8d.

(IIi) [If 0 < p + q − 1 and t a left transit time.]
Let r−(t + 1) unimodally follow s−(p + t + 1) until s−(p + t + 1) has no
more crossings to make before reconnecting to its terminal endpoint. Then
r−(t + 1) forms a negative crossing with s−(p + t + 1), after which it makes
a positive crossing with s−(p − 1) before connecting to its terminal endpoint.
See Fig. 9a.
Let r+(t + 1) unimodally follow s+(p + t + 1) until s+(p + t + 1) has only
one crossing to make, which is necessarily with s+(p − 1), before reconnect-
ing to its terminal endpoint. Then r+(t + 1) forms a positive crossing with
s+(p − 1), after which it makes a negative crossing with s+(p + t + 1) before
connecting to its terminal endpoint. See Fig. 9c.

(IIii) [If 0 < p + q − 1 and t + 1 a right transit time.]
Let r−(t + 1) unimodally follow s−(p + t + 1) until s−(p + t + 1) has no
further crossings to make before connecting to its terminal endpoint. Then
r−(t + 1) forms a single negative crossing with s−(p + t + 1) before con-
necting to its terminal endpoint. See Fig. 9b.
Let r+(t + 1) unimodally follow s+(p + t + 1) until s+(p + t + 1) has only
one crossing to make, which is necessarily with s+(p − 1), before connecting
to its terminal endpoint. Then r+(t + 1) forms a single negative crossing with
s+(p + t + 1) before connecting to its terminal endpoint. See Fig. 9d.

Finally, let r±(0) denote the strand with initial endpoint r init0 and terminal endpoint
r term1 which, in cases (Ii) and (IIii), follows unimodally the strand s(p+) and, in cases
(Iii) and (IIi), follows unimodally the strand s(p−).

Let α1± ∈ Bp+q+t+2 denote the braid consisting of the strands of β± together
with the strands r±(i), i = 0, 1, . . . , t + 1, formed above. (As before, after rela-
belling the endpoints this gives a well-defined braid diagram normalised as in
Sect. 2.2.2. However, for the moment we will keep the labelling as above.) Note
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sinitp−1sinit0sinitp+
rinit0rinitt+1 sinitp+t+1

α1−

τ 1
−

stermp− sterm0 stermp+1rterm0 rterm1 sterm1

(a) β− in Construction 4.6(Ii).

sinitp−1sinit0sinitp−rinit0rinitt+1sinitp+t+1

α1−

τ 1
−

stermp− sterm0 stermp+1rterm0 rterm1 sterm1

(b) β− in Construction 4.6(Iii).

sinitp−1sinit0 sinitp+ rinit0rinitt+1 sinitp+t+1

α1
+

τ 1
+

stermp−sterm0 stermp+1rterm0 rterm1 sterm1

(c) β+ in Construction 4.6(Ii).

sinitp−1sinit0 sinitp+rinit0rinitt+1sinitp+t+1

α1
+

τ 1
+

sterm0 stermp+ stermp+1rterm0 rterm1 sterm1

(d) β+ in Construction 4.6(Iii).

Fig. 8 β− and β+ in Construction 4.6(I)

that α1± is not a cyclic braid. Note also that α1± is not necessarily a unimodal
braid. In fact, in all cases α1± is direct but neither positive nor unimodal. See
Figs. 8a–9d.
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sinitp−1 sinit0sinitp− rinitt+1 sinitp+t+1rinit0

α1
−

τ 1
−

stermp− sterm0 stermp+1rterm0 rterm1 sterm1

(a) β− in Construction 4.6(IIi).

sinitp−1 sinit0sinitp− rinitt+1sinitp+t+1rinit0

α1
−

τ 1
−

stermp− sterm0 stermp+1rterm0 rterm1 sterm1

(b) β− in Construction 4.6(IIii).

sinitp−1 sinit0 sinitp+
rinitt+1 sinitp+t+1rinit0

α1
+

τ 1
+

sterm0 stermp+ stermp+1rterm0 rterm1 sterm1

(c) β+ in Construction 4.6(IIi).

sinitp−1 sinit0 sinitp+
rinitt+1sinitp+t+1rinit0

α1
+

τ 1
+

sterm0 stermp+ stermp+1rterm0 rterm1 sterm1

(d) β+ in Construction 4.6(IIii).

Fig. 9 β− and β+ in Construction 4.6(II)

As in the previous construction, we now compose α1± with a positive half-twist
τ 1±. However, in terms of the diagram there is an extra complication due to either
sp− or sp+ lying between s0 and r0. (Recall that, for each k, sk denotes the projection
to [−1, 1] of the initial endpoint of s(k).) Therefore let τ(i, i + 1) denote the Artin
generator positively interchanging i and i + 1. Then

(Ii) τ 1− denotes a single positive half-twist τ(s0, r0) between s0 and r0.
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τ 1+ denotes τ(s0, sp+)−1 · τ(sp+ , r0) · τ(s0, sp+).
(Iii) τ 1− denotes τ(sp− , s0) · τ(r0, sp−) · τ(sp− , s0)−1.

τ 1+ denotes a single positive half-twist τ(r0, s0) between r0 and s0.
(IIi) τ 1− denotes τ(sp− , s0)−1 · τ(r0, sp−) · τ(sp− , s0).

τ 1+ denotes a single positive half-twist τ(r0, s0) between r0 and s0.
(IIii) τ 1− denotes a single positive half-twist τ(s0, r0) between s0 and r0.

τ 1+ denotes τ(sp+ , r0)−1 · τ(s0, sp+) · τ(sp+ , r0).

Let β1± = τ 1± · α1±. Note that β1± is a cyclic braid. Moreover, after cancelling appro-
priate crossings between strands r±(t + 1), s±(p + t + 1) and s±(p − 1) via Reide-
meister moves and isotopy, we find that β1− and β1+ are both unimodal. Again, see
Figs. 8a–9d.

Let use investigate what is going on in more detail. Consider the case (Ii). Then
β− and β+ are depicted in Fig. 8a, c respectively. Identifying the sets of initial and
terminal endpoints of β− and β+ in an order-preserving manner, then precomposing
β− with a positive half-twist between the strand s(0) and its neighbour s(p−), and
post-composing by the inverse of this twist, yields the braid β+. A similar argument
can be given in cases (Iii)–(IIii). See Figs. 8b–9d. However, in cases (IIi) and (IIii)
we pre-compose and post-compose by the same positive half-twist. Hence we have
the following.

Theorem 4.8 Given (υ−, υ+), satisfying Properties (1)–(4). Let β− and β+ denote
the corresponding unimodal braids. Let (β1−, β1+) denote the pair of braids produced
from Construction 4.6.

1. If β− ∼ β+ then β1− ∼ β1+.
2. If β− ∼r β+ then β1− ∼r β1+.

Moreover, the corresponding unimodal permutations (υ1−, υ1+) also satisfy the Prop-
erties (1)–(4).

5 Applications to the Hénon Family

We have constructed twomechanisms for constructing braid equivalences. However,
we would like to restrict ourselves to equivalences realised in the Hénon family.

Before proceeding, let us give a brief description of the parameter space of the
quadratic family and the Hénon family. Recall from the introduction that fa(x) =
a − x2 denotes the quadratic family and Fa,b(x, y) = (a − x2 − by, x) denotes the
Hénon family. In the (a, b)-plane, for b positive the map Fa,b is an orientation-
preserving diffeomorphism. For b ∈ (0, 1) the map Fa,b is area-contracting. In fact,
Jac(Fa,b)(x, y) = b for all (a, b) ∈ R

2 and (x, y) ∈ R
2.

The parabola
(1 + b)2 + 4a = 0 (5.1)
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is the saddle-node bifurcation locus. For all parameters (a, b) on this curve Fa,b

possesses a unique fixed point. The parabola passes through the a-axis at a = −1/4.
All parameters to the left of this curve possess no fixed point and the iterates of all
points escape to infinity. All parameters to the right of the curve possess two fixed
points, one saddle and one sink, and hence the non-wandering set is non-trivial.

The curve
a = (5 + 2

√
5)(1 + b)2 (5.2)

lies to the right of the saddle-node bifurcation curve above. It was shown byDevaney-
Nitecki [6] that for all parameters (a, b) lying to the right of this curve the map Fa,b

possesses a full horseshoe, and all points either escape to infinity or converge to this
invariant set under iteration.

For a fixed b sufficiently small, increasing a from the saddle-node bifurcation
locus to the horseshoe locus themap Fa,b undergoes a period-doubling cascade. Each
period-doubling bifurcation curve is algebraic and they accumulate upon an analytic
curve which intersects the a-axis at the Feigenbaum-Collet-Tresser parameter a =
1.401.... For parameters to the left of the accumulation of period-doubling, the map
Fa,b has simple dynamics: there are finitely many periodic orbits each of period 2n

for some non-negative integer n.
After this accumulation of period-doubling less is known. However, restricting

to the a-axis we know more. Here between the accumulation of period-doubling
and the horseshoe locus, uncountably many bifurcations occur. For each periodic
kneading sequence there corresponds a hyperbolic component, i.e., an interval such
that for each parameter in this interval Fa,b has a periodic attractor whose itinerary
is determined by the given periodic kneading sequence. For example, there is an
interval around the point a = 1.7549.., for which every parameter has an attractive
cycle of period three. (This parameter is actually the critically-periodic parameter,
or centre, of the unique period-three hyperbolic component.)

These hyperbolic intervals extend to open subsets of the (a, b)-plane, where the
periodic attractor persists. The loci of all such parameters, for fixed periods, were
first considered by El-Hamouly and Mira [7]. Many components of this locus have
the following structure: there exists a main ‘body’ out of which four ‘limbs’ emanate.
Then limbs do not intersect; the union of the limbs and body is simply connected;
two of the limbs intersect {b = 1}; the two remaining limbs intersect {b = 0}. (Sim-
ilar configurations have been observed for the one-dimensional cubic family. These
configurations have been called swallow configurations by Milnor [13].) Numerical
investigations into the braid-equivalences exhibited in the (a, b)-plane were carried
out by Holmes [10]. (See also Sannami [15].) However, currently very little is under-
stood about these configurations. Their apparent prevalence, in the chaotic parameter
region for the Hénon family as well as in other families, also requires explanation.

Remark 5.1 The braid equivalences we constructed were based on the initial uni-
modal permutation υ possessing a non-dynamical preimage. This can only be satis-
fied if the corresponding kneading sequence satisfies κ � 10C or, equivalently, has
hyperbolic parameter interval lying to the right of the period-three hyperbolic param-
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Fig. 10 The isotracal curves of periods 8, 11, 14 and 17 generated from head 1001C are shown in
red. The grey region show the scatterplots for periods 8, 11, 14 and 17. The darker the colour, the
higher the period

eter interval. Consequently, all numerical example given below intersect the a-axis
in the interval [1.7549..., 2]. However, in [5] we will describe a generalisation of the
construction of braid equivalences given here which do not have this restriction.

Following the numerical evidence given below, we ask the following questions.
Let υ− and υ+ be an arbitrary pair of combinatorial types from Construction 3.1.

Question A. Let a−, a+ ∈ [−1/4, 2] be such that fa− and fa+ have critical orbits c− and c+
of types υ− and υ+ respectively. Let C− and C+ denote the corresponding periodic orbits
for Fa−,0 and Fa+,0 respectively. Does there exist a braid equivalence in the family Fa,b
connecting (C−, Fa−,0) and (C+, Fa+,0)?

The above question only deal with braid equivalences coming fromConstruction 3.1.
Now, given an initial braid equivalent pair (υ0−, υ0+), let us consider a sequence of
equivalent pairs (υ i−, υ i+) coming from Construction 4.6.
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(a) (b)

(c) (d)

Fig. 11 For the Hénon family Fa,b, in Fig. 11a zero isotracal paths are plotted for heads 1001C ,
10011C , 100111C and 1001111C . In Figs. 10, 11b, c the same paths are plotted, for a fixed head,
together with scatterplots of parameters with attracting points of the same period

Question B. For each positive integer i , let ai−, ai+ ∈ [−1/4, 2] be parameters such that fai−
and fai+ have critical orbits ci− and ci+ of types υi− and υi+ respectively. Let Ci− and Ci+
denote the corresponding periodic orbits for Fai−,0 and Fai+,0 respectively. Does there exist,

for each i , a braid equivalence in the family Fa,b connecting (Ci−, Fai−,0) and (Ci+, Fai+,0)?

Are the paths γ i in the (a, b)-plane which realise these braid equivalences pairwise disjoint?

We now give numerical evidence suggesting A and B are true. For simplicity we
represent unimodal combinatorial types by the itinerary of the critical point (with
respect to the standard partition I0 = [0,m), IC = m, I1 = (m, p − 1].) Fig. 1a–d
showed plots of parameters for which Fa,b possessed an attracting periodic orbit of
a fixed period p. These regions connected distinct degenerate Hénon parameters.
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Numerically we construct a curve between such parameters as follows. First, take
a unimodal permutation υ satisfying the hypotheses of Construction 3.1, i.e., it is
reconnectable at the non-dynamical preimage, and the non-dynamical preimage lies
to the left of the folding point. Call υ the head. Apply Construction 3.1, giving a
braid-equivalent pair υ0− and υ0+. Then apply Construction 4.6 inductively, giving
braid-equivalent pairs υ i− and υ i+ for i = 1, 2, 3. This was repeated for various υ.
See Table 1 for orbits listed by itinerary and grouped by head, with the associated per-
mutation given in cyclic notation. They are listed in pairs obtained as just described:
the first pair is obtained from the head by Construction 3.1 and subsequent ones from
Construction 4.6, inductively.

For each pair υ i− and υ i+ we computed the superattracting parameters a− and a+
in the quadratic family with critical orbit of type υ− and υ+ respectively. Then the
parameter locus of

F p
a,b(xin, yin) = (xin, yin), trDF p

a,b(xin, yin) = 0. (5.3)

passing through the parameters (a−, 0) and (a+, 0) was computed. We call a param-
eter curve lying in the locus (5.3) a zero isotracal path. (More generally an isotracal
path satisfies (5.3), but with the trace set to some fixed constant instead of zero.) We
compute an isotracal curve iteratively by starting from the initial data given by

a = a±, b = 0, xin = a±, yin = 0. (5.4)

On each slice {b = b0}, Newton’s method was used to find a = a(b0), xin = xin(b0)
and yin = yin(b0) satisfying Eq. (5.3). The value of b was then incremented and the
values of a, xin and yin from the previous step were used as initial data. The algorithm
terminated once a−(b) and a+(b) were sufficiently close.

Table 2 shows some of the braid equivalences which were realised in the Hénon
family. The paths in the parameter region of (a, b) ∈ [1.8, 1.9] × [0.0, 0.1] are shown
in Fig. 11a. The red curves show the period 8, 11, 14 and 17 curves associated with
head 1001C given in Table 2. They are shaded so that the darker the curve is, the
higher the period. Similarly, the green curves show the period 9, 12, 15 and 18 curves
associated with the head 10011C from Table 2. The blue curves show the period 10,
13, 16 and 19 curves associated with the head 100111C from Table 2. The yellow
curves show the period 11, 14, 17 and 20 curves associated with the head 1001111C
from Table 2. In each of these cases, the darker the curve is, the higher the period.

These plots were then superimposed with the scatterplots in Figs. 10–11d. The
grey region denoting the data from the first algorithm. So, for example, Fig. 10 shows
the curves of period 8, 11, 14 and 17 in Fig. 11a together with the scatterplot data
from the introduction for periods 8, 11, 14, and 17, where the darker the grey is the
lower the period. Figure11b, c are similar.

Table 2 also gives the prefix and decoration to compare the current mechanism
with that given by the first and second authors (see [4] for more details on prefixes
and decorations). For example consider the kneading sequences 10011110C and
10011010C (see Table 2). These have the same prefix 1001 but different decorations,
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Table 1 Braid equivalences in cyclic notation
Critical itinerary Cyclic notation

1001010C 2,7,3,5,0,4,6,1

1001110C 2,7,3,0,5,4,6,1

1001010010C 2,7,10,3,8,5,0,4,9,6,1

1001110010C 2,7,10,3,8,0,5,4,9,6,1

1001010010110C 2,7,13,10,3,8,5,0,11,4,9,12,6,1

1001110010110C 2,7,13,10,3,8,0,5,11,4,9,12,6,1

1001010010110110C 2,7,16,13,10,3,8,5,0,14,11,4,9,12,15,6,1

1001110010110110C 2,7,16,13,10,3,8,0,5,14,11,4,9,12,15,6,1

10011110C 2,8,3,0,6,4,5,7,1

10011010C 2,8,3,6,0,4,5,7,1

10011110010C 2,8,11,3,9,0,6,4,5,10,7,1

10011010010C 2,8,11,3,9,6,0,4,5,10,7,1

10011110010110C 2,8,14,11,3,9,0,6,12,4,5,10,13,7,1

10011010010110C 2,8,14,11,3,9,6,0,12,4,5,10,13,7,1

10011010010110110C 2,8,17,14,11,3,9,6,0,15,12,4,5,10,13,16,7,1

10011110010110110C 2,8,17,14,11,3,9,0,6,15,12,4,5,10,13,16,7,1

100111010C 2,9,3,7,0,5,4,6,8,1

100111110C 2,9,3,0,7,5,4,6,8,1

100111010010C 2,9,12,3,10,7,0,5,4,6,11,8,1

100111110010C 2,9,12,3,10,0,7,5,4,6,11,8,1

100111010010110C 2,9,15,12,3,10,7,0,13,5,4,6,11,14,8,1

100111110010110C 2,9,15,12,3,10,0,7,13,5,4,6,11,14,8,1

100111010010110110C 2,9,18,15,12,3,10,7,0,16,13,5,4,6,11,14,17,8,1

100111110010110110C 2,9,18,15,12,3,10,0,7,16,13,5,4,6,11,14,17,8,1

1001111110C 2,10,3,8,0,6,4,5,7,9,1

1001111010C 2,10,3,8,6,0,4,5,7,9,1

1001111110010C 2,10,13,3,11,0,8,6,4,5,7,12,9,1

1001111010010C 2,10,13,3,11,8,0,6,4,5,7,12,9,1

1001111110010110C 2,10,16,13,3,11,0,8,14,6,4,5,7,12,15,9,1

1001111010010110C 2,10,16,13,3,11,8,0,14,6,4,5,7,12,15,9,1

1001111110010110110C 2,10,19,16,13,3,11,0,8,17,14,6,4,5,7,12,15,18,9,1

1001111010010110110C 2,10,19,16,13,3,11,8,0,17,14,6,4,5,7,12,15,18,9,1

100110010100110C 2,11,6,15,3,12,7,9,0,4,13,8,14,5,10,1

100110011100110C 2,11,6,15,3,12,7,0,9,4,13,8,14,5,10,1

1001100101001100100110C 2,11,18,6,15,22,3,12,19,7,16,9,0,4,13,20,8,21,14,5,17,10,1

1001100111001100100110C 2,11,18,6,15,22,3,12,19,7,16,0,9,4,13,20,8,21,14,5,17,10,1

10011001010011001001101100110C 2,11,25,18,6,15,29,22,3,12,26,19,7,16,9,0,23,4,13,27,20,8,
21,28,14,5,17,24,10,1

10011001110011001001101100110C 2,11,25,18,6,15,29,22,3,12,26,19,7,16,0,9,23,4,13,27,20,8,
21,28,14,5,17,24,10,1

100110010100110010011011001101100110C 2,11,32,25,18,6,15,36,29,22,3,12,33,26,19,7,16,9,0,30,23,4,
13,34,27,20,8,21,28,35,14,5,17,24,31,10,1

100110011100110010011011001101100110C 2,11,32,25,18,6,15,36,29,22,3,12,33,26,19,7,16,0,9,30,23,4,13,
34,27,20,8,21,28,35,14,5,17,24,31,10,1
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110 and 010 respectively, showing that braid equivalent sequences constructed by
the mechanism in this article may have different decorations.

We can weaken Questions A and B by asking if these braid equivalences are
realisable in a more general class of maps containing the Hénon family. The typical
generalisation of the Hénon family is that of Hénon-like maps. These are maps of
the form

F(x, y) = ( f (x) − ε(x, y), x) (5.5)

where f is unimodal on some interval J and ε : J × J → R satisfies ∂yε > 0. These
are diffeomorphisms onto their images which appear, after a suitable change of vari-
ables, when consideringmaps in the neighbourhood of a homoclinic bifurcation [14].

Question A’. Given unimodal maps f− and f+ of type υ− and υ+ respectively, does there
exist a family Ft , t ∈ [−1, 1], of Hénon-like diffeomorphisms such that F−1 = ι( f−) and
F+1 = ι( f+), where ι is some embedding of the set of unimodal maps into the boundary of
the space of Hénon-like diffeomorphisms?

and

Question B’. For each positive integer i , let f−,i and f+,i have critical orbits ci− and ci+ of
types υi− and υi+ respectively. Let Ci− and Ci+ denote the corresponding periodic orbits for
the degenerate Hénon-like maps F−,i,0 and F+,i,0 respectively. Does there exist, for each
i , a one-parameter family of Hénon-like maps Fi,t realising a braid equivalence connecting
(Ci−, F−,i,0) and (Ci+, F+,i,0)?
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Abstract We define the empiric stochastic stability of an invariant measure in the
finite-time scenario, adapting the classical definition of stochastic stability. We prove
that an invariant measure of a continuous system is empirically stochastically stable
if and only if it is physical. We also define the empiric stochastic stability of a weak∗-
compact set of invariant measures instead of a single measure. Even when the system
has not physical measures it still has minimal empirically stochastically stable sets
of measures. We prove that such sets are necessarily composed by pseudo-physical
measures. Finally, we apply the results to the one-dimensional C1-expanding case to
conclude that the measures of empirically stochastically sets satisfy Pesin Entropy
Formula.
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Let us denote by (M, f ) the deterministic (zero-noise) dynamical systemobtained
by iteration of f , and by (M, f, Pε) the randomly perturbed system whose noise
amplitude is ε. Even ifwewillworkon awide scenariowhich includes any continuous
dynamical system (M, f ), we restrict the stochastic system (M, f, Pε) by assuming
that the noise probability distribution is uniform (i.e. it has constant density) on all the
balls of radius ε > 0 of M (for a precise statement of this assumption see formula (1)
below). We call ε the noise level, or also the amplitude of the random perturbation.
To define the empiric stochastic stability we will take ε → 0+.

In the stochastic system (M, f, Pε), the symbol Pε denotes the family of proba-
bility distributions, which are called transition probabilities, according to which the
noise is added to f (x) for each x ∈ M . Precisely, each transition probability is, for
all n ∈ N, the distribution of the state xn+1 of the noisy orbit conditioned to xn = x ,
for each x ∈ M . As said above, the transition probability is supported on the ball with
center at f (x) and radius ε > 0. So, the zero-noise system (M, f ) is recovered by
taking ε = 0; namely, (M, f ) = (M, f, P0). The observer naturally expects that if
the amplitude ε > 0 of the random perturbation were small enough, then the ergodic
properties of the stochastic system “remembered” those of the zero-noise system.

The foundation and tools to study the random perturbations of dynamical systems
were early provided in [4, 19, 28]. The stochastic stability appears in the literature
mostly defined through the stationarymeauresμε of the stochastic system (M, f, Pε).
Classically, the authors prove and describe, under particular conditions, the existence
and properties of the f -invariant measures that are the weak∗-limit of ergodic sta-
tionary measures as ε → 0+. See for instance the early results of [8, 20–22, 30]),
and the later works of [1–3, 25]. For a review on stochastic and statistical stability
of randomly perturbed dynamical systems, see for instance [29] and Appendix D
of [7].

The stationary measures of the ramdom perturbations provide the probabilistic
behaviour of the noisy systemasymptotically in the future.Nevertheless, froma rather
practical or experimental point of view the concept of stochastic stability should not
require the knowledge a priori of the limit measures of the perturbed system as
n → +∞. For instance [15] presents numerical experiments on the stability of one-
dimensional noisy systems in a finite time. The ergodic stationary measure is in
fact substituted by an empirical (i.e. obtained after a finite-time observation of the
system) probability. Also in other applications of the theory of random systems (see
for instance [16, 18]), the stationary measures are usually unkown, are not directly
obtained from the experiments, but substituted by the finite-time empiric probabilities
which approximate the stationary measures if the observations last enough.

Summarizing, for a certain type of stochastically stable properties, one should not
need the infinite-time noisy orbits. Instead, onemay take the noisy orbits up to a large
finite time n, which are indeed those that the experimenter observes and predicts. The
statistics of the observations and predictions of the noisy orbits still reflect, for the
experimenter and the predictor, the behaviour of the stochastic system, but only up
to some finite horizon.

Motivated by the above arguments, in Sect. 2 we will define the empiric stochastic
stability. Roughly speaking, an f -invariant probability for the zero-noise system
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(M, f ) is empirically stochastically stable if it approximates, up to an arbitrarily
small errorρ > 0, the statistics of sufficiently large pieces of the noisy orbits, for some
fixed time n, provided that the noise-level ε > 0 is small enough (see Definition 4).
This concept is a reformulation in a finite-time scenario of one of the usual definition
of infinite-time stochastic stability (see for instance [1, 8, 30]).

1.1 Setting the Problem

Let ε > 0 and x ∈ M . Denote by Bε(x) ⊂ M the open ball of radius ε centered at x .
Consider the Lebesgue measure m, i.e. the finite measure obtained from the volume
form induced by the Riemannian structure of the manifold. For each point x ∈ M ,
we take the restriction ofm to the ball Bε( f (x)). Precisely, we define the probability
measure pε(x, ·) by the following equality:

pε(x, A) := m
(
A ∩ Bε( f (x))

)

m
(
Bε( f (x))

) ∀ A ∈ A , (1)

where A is the Borel sigma-algebra in M .

Definition 1 (Stochastic system with noise-level ε.) For each value of ε > 0, con-
sider the stochastic process or Markov chain {xn}n∈N ⊂ MN in the measurable space
(M,A ) such that, for all A ∈ A :

prob(x0 ∈ A) = m(A), prob(xn+1 ∈ A|xn = x) = pε(x, A),

where pε(x, ·) is defined by equality (1).
The system whose stochastic orbits are the Markov chains as above is called

stochastic system with noise-level ε. We denote it by (M, f, Pε), where

Pε := {pε(x, ·)}x∈M .

The stochastic systems with noise-level ε > 0 are usually studied by assuming
certain regularity of the zero-noise systems (M, f ), and by taking the ergodic station-
ary measures με of the stochastic system (M, f, Pε) (see for instance [30]). When
assuming that the transition probabilities satisfy equality (1), all the stationary proba-
bility measures become absolutely continuous with respect to the Lebesgue measure
m (see for instance [6]). Therefore, if a property holds for the noisy orbits for με-
a.e initial state x ∈ M , it also holds for a Lebesgue-positive set of states.

When looking at the noisy system, the experimenter usually obtains the values
of several bounded measurable functions ϕ, which are called observables, along the
stochastic orbits {xn}n∈N. From Definition 1, the expected value of ϕ at instant 0 is
E(ϕ)0 = ∫

ϕ(x0) dm(x0). Besides, from the definition of the transition probabilities
by equality (1), for any given state x ∈ M the expected value of ϕ(xn+1) conditioned
to xn = x is

∫
ϕ(y) pε(x, dy). So, in particular at instant 1 the expected value of ϕ is
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E(ϕ)1 =
∫∫

ϕ(x1) pε(x0, dx1) dm(x0),

and its expected value at instant 2 is

E(ϕ)2 =
∫∫∫

ϕ(x2) pε(x1, dx2) pε(x0, dx1) dm(x0).

Analogously, by induction on n we obtain that for all n ≥ 1, the expected value
E(ϕ)n of the observable ϕ is

E(ϕ)n =
∫∫∫

...

∫
ϕ(xn)pε(xn−1, dxn)... pε(x1, dx2) pε(x0, dx1) dm(x0). (2)

Since theLebesguemeasurem is not necessarily stationary for the system (M, f, Pε),
the expected value of the same function ϕ at each instant n, if the initial distribution
is m, may change with n.

As said at the beginning, we assume that the experimenter only sees the values of
the observable functions along finite pieces of the noisy orbits because his experiment
and his empiric observations can not last forever. When analyzing the statistics of the
observed data, he considers for instance the time average of the collected observations
along those finitely elapsed pieces of randomly perturbed orbits. These time averages
can be computed by the integrals of the observable functions with respect to certain
probability measures, which are called empiric stochastic probabilities for finite time
n (see Definition 3). Precisely, for any any fixed time n ≥ 1 and for any initial state
x0 ∈ M , the empiric stochastic probability σε,n,x0 is defined such that the time average
of the expected values of any observable ϕ at instants 1, 2, . . . , n along the noisy
orbit initiating at x0, can be computed by the following equality:

1

n

n∑

j=1

E(ϕ(x j )|x0) =
∫

ϕ(y)dσε,n,x0(y),

where

E(ϕ(x j )|x0) =
∫∫

. . .

∫
ϕ(x j ) pε(x j−1, dx j ) . . . pε(x1, dx2)pε(x0, dx1). (3)

Wealso assume that the experimenter only seesLebesgue-positive sets in the phase
space M . So, when analyzing the statistics of the observed data in the noisy system,
he will not observe all the empiric stochastic distributions σε,n,x , but only those for
Lebesgue-positive sets of initial states x ∈ M . If besides he can only manage a finite
set of continuous observable functions, then he will not see the exact probability
distributions, but some weak∗ approximations to them up to an error ρ > 0, in the
metric space M of probability measures.

For some classes of mappings on the manifold M , even with high regularity (for
instanceMorse-SmaleC∞ diffeomorphismswith two ormore hyperbolic sinks), one
single measure μ is not enough to approximate the empiric stochastic probabilities
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of the noisy orbits for Lebesgue-a.e. x ∈ M . The experimenter may need a set K
composed by several probability measures instead of a single measure. Motivated by
this phenomenon, we define the empiric stochastic stability of a weak∗-compact set
K of f -invariant probability measures (see Definition 8). This concept is similar to
the empiric stochastic stability of a single measure, with two main changes: first, it
substitutes the measure μ by a weak∗-compact set K of probabilities; and second,
it requires K be minimal with the property of empiric stochastic stability, when
restricting the stochastic system to a fixed Lebesgue-positive set of noisy orbits. In
particular, a globally empirically stochastically stable set K of invariant measures
minimally approximates the statistics of Lebesgue-a.e. noisy orbits. We will prove
that it exists and is unique.

1.2 Main Results

A classical concept in the ergodic theory of zero-noise dynamical systems is that
of physical measures [14]. In brief, a physical measure is an f -invariant measure
μ whose basin of statistical attraction has positive Lebesgue measure. This basin is
composed by the zero-noise orbits such that the time average probability up to time
n converges to μ in the weak∗-topology as n → +∞ (see Definitions 11 and 12).

One of the main purposes of this paper is to answer the following question:

Question 1. Is there some relation between the empirically stochastically stable
measures and the physical measures? If yes, how are they related?

Wewill give an answer to this question in Theorem 1 andCorollary 1 (see Sect. 2.1
for their precise statements). In particular, we will prove the following result:

Theorem. An f -invariant measure is empirically stochastically stable if and only if
it is physical.

A generalization of physical measures, is the concept of pseudo-physical proba-
bility measures, which are sometimes also called SRB-like measures [10–12]. They
are defined such that, for all ρ > 0, their weak∗ ρ-neighborhood, has a (weak) basin
of statistical attraction with positive Lebesgue measure (see Definitions 11 and 12).

To study this more general scenario of pseudo-physics, our second main purpose
is to answer the following question:

Question 2. Do empirically stochastically stable sets of measures relate with pseudo-
physical measures? If yes, how do they relate?

We will give an answer to this question in Theorem 2 and its corollaries, whose
precise statements are in Sect. 2.1. In particular, we will prove the following result:

Theorem. A weak∗-compact set of invariant probability measures is empirically
stochastically stable only if all its measures are pseudo-physical. Conversely, any
pseudo-physical measure belongs to the unique globally empirically stochastically
stable set of measures.
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2 Definitions and Statements

We denote by M the space of Borel probability measures on the manifold M ,
endowed with the weak∗-topology; and by M f the subspace of f -invariant proba-
bilities, where (M, f ) is the zero-noise dynamical system. Since the weak∗ topology
inM is metrizable, we can choose and fix a metric dist∗ that endows that topology.

To make formula (2) and other computations concise, it is convenient to introduce
the following definition:

Definition 2 (The transfer operatorsLε andL ∗
ε ). Denote by C

0(M,C) the space
of complex continuous functions defined in M . For the stochastic system (M, f, Pε),
we define the transfer operator Lε : C0(M,C) �→ C0(M,C) as follows:

(Lεϕ)(x) :=
∫

ϕ(y) pε(x, dy) ∀ x ∈ M, ∀ ϕ ∈ C0(M,C). (4)

From equality (1) it is easy to prove that pε(x, ·) depends continuously on x ∈ M
in the weak∗ topology. So, Lεϕ is a continuous function for any ϕ ∈ C0(M,C).

Through Riesz representation theorem, for any measure μ ∈ M there exists a
unique measure, which we denote byL ∗

ε μ, such that

∫
ϕd(L ∗

ε μ) :=
∫

(Lεϕ) dμ ∀ ϕ ∈ C0(M,C). (5)

We call L ∗
ε : M �→ M the dual transfer operator or also, the transfer operator in

the space of measures.

From the above definition, we obtain the following property for any observable
function ϕ ∈ C0(M,C): its expected value at the instant n along the stochastic
orbits with noise level ε is

E(ϕ)n =
∫

(Lε
nϕ) dm =

∫
ϕ d(L ∗

ε
nm).

We are not only interested in the expected values of the observables ϕ, but also in
the statistics (i.e time averages of the observables) along the individual noisy orbits.
With such a purpose, we first consider the following equality:

(Lε
nϕ)(x) =

∫
ϕ d(L ∗

ε
n
δx ) ∀ x ∈ M, (6)

where δx denotes the Dirac probability measure supported on {x}. Second, we intro-
duce the following concept of empiric probabilities for the stochastic system:

Definition 3 (Empiric stochastic probabilities) For any fixed instant n ≥ 1, and for
any initial state x ∈ M , we define the empiric stochastic probability σε,n,x of the
noisy orbit with noise-level ε > 0, with initial state x , and up to time n, as follows:
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σε,n,x := 1

n

n∑

j=1

L ∗
ε

j
δx . (7)

Note that the empiric stochastic probabilities for Lebesgue almost x ∈ M allow
the computation of the time averages of the observable ϕ along the noisy orbits.
Precisely,

1

n

n∑

j=1

(L j
ε ϕ)(x) =

∫
ϕ(y) dσε,n,x (y) ∀ ϕ ∈ C0(M,C). (8)

Definition 4 (Empiric stochastic stability of a measure) We call a probability mea-
sureμ ∈ M f empirically stochastically stable if there exists ameasurable set Â ⊂ M
with positive Lebesgue measure such that:

For all ρ > 0 and for all n ∈ N
+ large enough there exists ε0 > 0 (which may

depend on ρ and on n but not on x) satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0, for Lebesgue a.e. x ∈ Â.

Definition 5 (Basin of empiric stochastic stability of a measure) For any probability
measure μ, we construct the following (maybe empty) set in the ambient manifold
M :

Âμ :=
{
x ∈ M : ∀ρ > 0 ∃ N = N (ρ) such that ∀ n ≥ N ∃ ε0 = ε0(ρ, n) > 0 satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0

}
. (9)

We call the set Âμ ⊂ M the basin of empiric stochastic stability of μ. Note that it is
defined for anyprobabilitymeasureμ ∈ M , but itmaybe empty, or even if nonempty,
it may have zero Lebesgue-measure when μ is not empirically stochastically stable.

The set Âμ is measurable (see Lemma 2). According to Definition 4, a probability
measure μ is empirically stochastically stable if and only if the set Âμ has positive
Lebesgue measure (see Lemma 3).

Definition 6 (Global empiric stochastic stability of a measure)We say thatμ ∈ M f

is globally empirically stochastically stable if it is empirically stochastically stable,
and besides its basin Âμ of empiric stability has full Lebesgue measure.

Definition 7 (Basin of empiric stochastic stability of a set of measures) For any
nonempty weak∗-compact setK ⊂ M , we construct the following (maybe empty)
set in the space manifold M :

ÂK := {x ∈ M : ∀ρ > 0 ∃ N = N (ρ) such that ∀ n ≥ N ∃ ε0 = ε0(ρ, n) > 0 satisfying

dist∗(σε,n,x , K ) < ρ ∀ 0 < ε ≤ ε0}. (10)
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We call ÂK ⊂ M the basin of empiric stochastic stability of K .

Note that ÂK is defined for any nonempty weak∗-compact setK ⊂ M . But it may
be empty, or even if nonempty, it may have zero Lebesgue measure when K is not
empirically stochastically stable, according to the following definition:

Definition 8 (Empiric stochastic stability of a set of measures) We call a nonempty
weak∗-compact set K ⊂ M f of f -invariant probability measures empirically
stochastically stable if :

(a) There exists a measurable set Â ⊂ M with positive Lebesgue measure, such
that:
For all ρ > 0 and for all n ∈ N

+ large enough, there exists ε0 > 0 (which may
depend on ρ and n, but not on x), satisfying:

dist∗(σε,n,x , K ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â.

(b) K is minimal in the following sense: if K ′ ⊂ M f is nonempty and weak∗-
compact, and if ÂK ⊂ ÂK ′ Lebesgue-a.e., then K ⊂ K ′.

By definition, if K is empirically stochastically stable, then the set Â ⊂ M sat-
isfying condition (a), has positive Lebesgue measure and is contained in ÂK . Since
ÂK is measurable (see Lemma 4), we conclude that it has positive Lebesgue mea-
sure.

Nevertheless, for a nonempty weak∗-compact setK be empirically stochastically
stable, it is not enough that ÂK has positive Lebesgue measure. In fact, to avoid the
whole setM f of f -invariant measures be always an empirically stochastically stable
set, we askK to satisfy condition (b). In brief, we require a property of minimality
of K with respect to Lebesgue-a.e. point of its basin ÂK of empiric stochastic
stability.

Definition 9 (Global empiric stochastic stability of a set of measures) We say that a
nonempty weak∗-compact setK ∈ M f is globally empirically stochastically stable
if it is empirically stochastically stable, and besides its basin ÂK of empiric stability
has full Lebesgue measure.

We recall the following definitions from [11]:

Definition 10 (Empiric zero-noise probabilities and pω-limit sets) For any fixed
natural number n ≥ 1, the empiric probability σn,x of the orbit with initial state
x ∈ M and up to time n of the zero-noise system (M, f ), is defined by the following
equality:

σn,x := 1

n

n∑

j=1

δ f j (x).

It is standard to check, from the construction of the empiric stochastic probabilities in
Definition 3, thatσε,n,x is absolutely continuouswith respect to the Lebesguemeasure
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m. In contrast, the empiric probability σn,x for the zero-noise orbits is atomic, since
it is supported on a finite number of points.

The p-omega limit set pωx in the spaceM of probabilitymeasures, corresponding
to the orbit of x ∈ M , is defined by:

pωx := {μ ∈ M : ∃ ni → +∞ such that lim∗
i→+∞σni ,x = μ},

where lim∗ is taken in the weak∗-topology ofM . It is standard to check that pωx ⊂
M f for all x ∈ M .

Definition 11 (Strong andρ-weak basin of statistical attraction) For any f -invariant
probability measure μ ∈ M f , the (strong) basin of statistical attraction of μ is the
(maybe empty) set

Aμ : = {
x ∈ M : pωx = {μ}}. (11)

For any f -invariant probability measure μ ∈ M f , and for any ρ > 0, the ρ-weak
basin of statistical attraction of μ is the (maybe empty) set

Aρ
μ : = {

x ∈ M : dist∗(pωx , {μ}) < ρ
}
.

Definition 12 (Physical and pseudo-physical measures) For the zero-noise dynam-
ical system (M, f ), an f -invariant probability measure μ is physical if its strong
basin of statistical attraction Aμ has positive Lebesgue measure.

An f -invariant probability measure μ is pseudo-physical if for all ρ > 0, its
ρ-weak basin of statistical attraction Aρ

μ has positive Lebesgue measure.

It is standard to check that, even if the ρ-weak basin of statistical attraction Aρ
μ

depends on the chosen weak∗-metric in the space M of probabilities, the set of
pseudo-physical measures remains the same when changing this metric (provided
that the new metric also induces the weak∗-topology).

Note that the strong basin of statistical attraction of any measure is always con-
tained in the ρ-weak basin of the same measure. Hence, any physical measure (if
there exists some) is pseudo-physical. But not all the pseudo-physical measures are
necessarily physical (see for instance example 5 of [10]).

We remark that we do not require the ergodicity of μ to be physical or pseudo-
physical. In fact, in [17] it is proved that the C∞ diffeomorphism, popularly known
as the Bowen Eye, exhibits a segment of pseudo-physical measures whose extremes,
and so all the measures in the segement, are non ergodic. Also, for some C0-version
of Bowen Eye (see example 5 B of [10]) there is a unique pseudo-physical measure,
it is physical and non-ergodic.
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2.1 Statement of the Results

Theorem 1 (Characterization of empirically stochastically stable measures) Let
f : M �→ M be a continuous map on a compact Riemannian manifold M. Let μ be
an f -invariant probability measure. Then, μ is empirically stochastically stable if
and only if it is physical.

Besides, if μ is physical, then its basin Âμ ⊂ M of empiric stochastic stability
equals Lebesgue-a.e. its strong basin Aμ ⊂ M of statistical attraction.

We will prove Theorem 1 and the following corollaries in Sect. 3.

Corollary 1 Let f : M �→ M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i) There exists an f -invariant probability measureμ1 that is globally empirically
stochastically stable.

(ii) There exists an f -invariant probability measure μ2 that is physical and such
that its strong basin of statistical attraction has full Lebesgue measure.

(iii) There exists a unique f -invariant probability measure μ3 that is pseudo-
physical.

Besides, if (i), (ii) or (iii) holds, then μ1 = μ2 = μ3, this measure is the unique
empirically stochastically stable, and the set {μ1} is the unique weak∗-compact set
in the space of probability measures that is empirically stochastically stable.

Before stating the next corollary, we fix the following definition: we say that a
property of the maps on M is C1-generic if it holds for a countable intersection of
open and dense sets of maps in the C1- topology.

Corollary 2 For C1-generic and for all C2 expandingmaps of the circle, there exists
a unique ergodic measure μ that is empirically stochastically stable. Besides μ is
globally empirically stochastically stable and it is the unique measure that satisfies
the following Pesin Entropy Formula [23, 24]:

hμ( f ) =
∫

log | f ′| dμ. (12)

Theorem 1 is a particular case of the following result.

Theorem 2 (Empirically stochastically stable sets and pseudo-physics)
Let f : M �→ M be a continuous map on a compact Riemannian manifold M.

(a) IfK is a nonemptyweak∗-compact set of f -invariantmeasures that is empirically
stochastically stable, then any μ ∈ K is pseudo-physical.
(b) A set K of f -invariant measures is globally empirically stochastically stable if
and only if it coincides with the set of all the pseudo-physical measures.

We will prove Theorem 2 and the following corollaries in Sect. 4.
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Corollary 3 For any continuous map f : M �→ M on a compact Riemannian mani-
fold M, there exists and is unique the nonempty weak∗-compact setK of f -invariant
measures that is globally stochastically stable. Besides, μ ∈ K if and only if μ is
pseudo-physical.

Corollary 4 If a pseudo-physical measureμ is isolated in the set of pseudo-physical
measures, then it is empirically stochastically stable; hence physical.

Corollary 5 Let f : M �→ M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i) The set of pseudo-physical measures is finite.
(ii) There exists a finite number of (individually) empirically stochastically stable

measures, hence physical measures, and the union of their strong basins of
statistical attraction covers Lebesgue a.e.

Corollary 6 If the set of pseudo-physical measures is countable, then there exists
countably many empirically stochastically stable measures, hence physical, and the
union of their strong basins of statistical attractions covers Lebesgue a.e.

Corollary 7 For all C1-expanding maps of the circle, all the measures of any empir-
ically stochastically stable setK satisfy Pesin Entropy Formula (12).

Corollary 8 For C0-generic maps of the interval, the globally empirically stochas-
tically stable set K of invariant measures includes all the ergodic measures but is
meager in the whole space of invariant measures.

3 Proof of Theorem 1 and its Corollaries

We decompose the proof of Theorem 1 into several lemmas:

Lemma 1 For ε > 0 small enough:
(a) The transformation x ∈ M �→ pε(x, ·) ∈ M is continuous.
(b) The transfer operator L ∗

ε : M �→ M is continuous.
(c) The transformation x ∈ M �→ σε,n,x ∈ M is continuous.
(d) lim∗

ε→0+ pε(x, ·) = δ f (x) uniformly on M.
(e) lim∗

ε→0+L ∗
ε
nδx = δ f n(x) uniformly on M.

(f) lim∗
ε→0+σε,n,x = σn,x uniformly on M.

Proof (a): It is immediate from the construction of the probability measure pε(x, ·)
by equality (1), and taking into account that the Lebesgue measure restricted to a
ball of radius ε depends continuously on the center of the ball.
(b): Take a convergent sequence {μi }i∈N ⊂ M and denote μ = lim∗

i μi . For any
continuous function ϕ : M �→ M , we have
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∫
ϕdL ∗

ε μi =
∫

Lεϕ dμi . (13)

Since (Lεϕ)(x) = ∫
ϕ(y)pε(x, dy) and pε(x, ·) depends continuously on x , we

deduce that Lεϕ is a continuous function. So, from (13) and the definition of the
weak∗ topology inM , we obtain:

lim
i→+∞

∫
ϕdL ∗

ε μi = lim
i→+∞

∫
Lεϕ dμi =

∫
Lεϕ dμ =

∫
ϕdL ∗

ε μ.

We conclude that lim∗
i L

∗
ε μi = L ∗

ε μ, hence L ∗
ε is a continuous operator on M .

(c): Since the composition of continuous operators is continuous, we have thatL ∗
ε

j :
M �→ M is continuous for each fixed j ∈ N

+. Besides, it is immediate to check that
the transformation x ∈ M �→ δx ∈ M is continuous. Thus, also the transformation
x ∈ M �→ L ∗

ε
jδx ∈ M is continuous. We conclude that, for fixed ε > 0 and fixed

n ∈ N
+, the transformation

x ∈ M �→ σε,n,x = 1

n

n∑

j=1

L ∗
ε

j
δx ∈ M

is continuous.
(d): For any given ρ > 0 we shall find ε0 > 0 (independent on x ∈ M) such that,
dist∗(pε(x, ·), δ f (x)) < ρ for all 0 < ε < ε0 and for all x ∈ M . For any metric dist∗
that endows the weak∗ topology in M , the inequality dist∗(pε(x, ·), δ f (x)) < ρ

holds, if and only if, for a finite number (which depends on ρ and on the metric)
of continuous functions ϕ : M �→ C, the difference | ∫ ϕ(y) pε(x, dy) − ϕ( f (x))|
is smaller than a certain ε′ > 0 (which depends on ρ and on the metric). Let us
fix such a continuous function ϕ. Since M is compact, ϕ is uniformly continuous
on M . Thus, for any ε′ > 0 there exists ε0 such that, if dist(y1, y2) < ε ≤ ε0, then
|ϕ(y1) − ϕ(y2)| < ε′. Since pε(x, ·) is supported on the ball Bε( f (x)), we deduce:

∣
∣∣
∫

ϕ(y)pε(x, dy) − ϕ( f (x))
∣
∣∣ ≤

∫ ∣∣ϕ(y) − ϕ( f (x)
∣∣ pε(x, dy) ≤ ε′,

because dist(y, f (x)) < ε ≤ ε0 for pε(x, ·)- a.e. y ∈ M .
Since ε0 does not depend on x , we have proved that lim∗

ε→0+ pε(x, ·) = δ f (x)

uniformly for all x ∈ M .
(e): Let us prove that limε→0+ L ∗

ε
nδx = δ f n(x) uniformly on x ∈ M . By induction

on n ∈ N
+:

If n = 1, for any continuous function ϕ : M �→ C we compute the following
integral

∫
ϕ dL ∗

ε δx =
∫

(Lεϕ) dδx = (Lεϕ)(x) =
∫

ϕ(y) pε(x, dy).
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From the unicity of the probability measure of Riesz Representation Theorem, we
obtain L ∗

ε δx = pε(x, ·). Applying part d), we conclude

lim∗
ε→0+L ∗

ε δx = lim∗
ε→0+ pε(x, ·) = δ f (x), uniformly on x ∈ M.

Now, assume that, for some n ∈ N
+, the following assertion holds:

lim∗
ε→0+L ∗

ε
n
δx = δ f n(x), uniformly on x ∈ M. (14)

Let us prove the same assertion for n + 1, instead of n: Fix a continuous function
ϕ : M �→ C. As proved in part (d), for any ε′ > 0, there exists ε0 > 0 (independent
on x ∈ M) such that

|Lεϕ)(x) − ϕ( f (x))| = |
∫

ϕ(y)pε(x, dy) − ϕ( f (x))| <
ε′
2

∀ 0 < ε ≤ ε0, ∀ x ∈ M.

Thus

∣
∣∣
∫

ϕ dL ∗
ε
n+1

δx −
∫

(ϕ ◦ f ) dL ∗
ε
n
δx

∣
∣∣ =

∣
∣∣
∫

(Lεϕ) dL ∗
ε
n
δx −

∫
(ϕ ◦ f ) dL ∗

ε
n
δx

∣
∣∣

≤
∫ ∣∣Lεϕ) − ϕ ◦ f

∣∣ dL ∗
ε
n
δx

∣∣∣ <
ε′

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M. (15)

Besides, the induction assumption (14) implies that, if ε0 is chosen small enough,
then for the continuous function ϕ ◦ f the following inequality holds:

∣∣∣
∫

(ϕ ◦ f ) dL ∗
ε
n
δx − ϕ( f n+1(x))

∣∣∣ =

=
∣
∣∣
∫

(ϕ ◦ f ) dL ∗
ε
n
δx −

∫
(ϕ ◦ f ) dδ f n(x)

∣
∣∣ <

ε′

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M. (16)

Joining inequalities (15) and (16) we deduce that for all ε′ > 0, there exists ε0 > 0
(independent of x) such that

∣
∣∣
∫

ϕ dL ∗
ε
n+1

δx −
∫

ϕ dδ f n+1(x)

∣
∣∣ < ε′ ∀ 0 < ε ≤ ε0, ∀ x ∈ M.

In other words:

lim∗
ε→0+L ∗

ε
n+1

δx = δ f n+1(x) uniformly on x ∈ M,

ending the proof of part (e).
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(f): Since σε,n,x = 1
n

∑n
j=1 L

∗
ε

jδx , applying part (e) to each probability measure

L ∗
ε

jδx , we deduce that

lim∗
ε→0+L ∗

ε
n+1

δx = 1

n

n∑

j=1

δ f j (x) = σn,x uniformly on x ∈ M,

ending the proof of Lemma 1. �

Lemma 2 For any probability measure μ consider the (maybe empty) basin of
stochastic stability Âμ defined by equality (9), and the (maybe empty) strong basin
of statistical attraction Aμ defined by equality (11).

Then, Âμ and Aμ are measurable sets and coincide. Besides, they satisfy the
following equality:

Âμ = Aμ =
⋂

k∈N+

⋃

N∈N+

⋂

n≥N

Cn, 1/k(μ), (17)

where, for any real number ρ > 0 and any natural number n ≥ 1, the set Cn, ρ(μ)

is defined by
Cn, ρ(μ) := {x ∈ M : dist∗(σn,x , μ) < ρ}.

Proof From equality (11), we re-write the strong basin of statistical attraction of μ

as follows:

Aμ =
{
x ∈ M : lim∗

n→+∞σn,x = μ
}

=
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Cn,ρ(μ). (18)

From equality (9) we have:

Âμ =
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Dn,ρ(μ), (19)

where Dn,ρ(μ) is defined by

Dn,ρ(μ) :=
⋃

ε0>0

⋂

0<ε≤ε0

{x ∈ M : dist∗(σε,n,x , μ) < ρ}.

The assertion dist∗(σε,n,x , μ) < ρ for all 0 < ε ≤ ε0 implies

lim
ε→0+

dist∗(σε,n,x , μ) ≤ ρ < 2ρ.

Thus, applying part (f) of Lemma 1, we deduce that dist∗(σn,x , μ) < 2ρ for all
x ∈ Dn,ρ(μ). In other words,
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Dn,ρ(μ) ⊂ Cn,2ρ(μ),

which, joint with equalities (18) and (19), implies:

Âμ ⊂ Aμ.

To prove the converse inclusion, we apply again part (f) of Lemma 1 to write:

Cn,ρ(μ) = {x ∈ X : dist∗(lim∗
ε→0+σε,n,x , μ) < ρ}

Therefore
lim

ε→0+
dist∗(σε,n,x , μ) < ρ ∀ x ∈ Cn,ρ(μ).

Thus,

Cn,ρ(μ) ⊂
⋃

ε0>0

⋃

0<ε≤ε0

{x ∈ M : dist∗(σε,n,x , μ) < ρ} = Dn,ρ(μ).

The above inclusion, joint with equalities (18) and (19), implies

Aμ ⊂ Âμ.

We have proved that

Âμ = Aμ =
⋂

ρ>0

⋃

N∈N+

⋂

n≥N

Cn,ρ(μ).

Since the set Cn,ρ(μ) decreases when ρ decreases (with n and μ fixed), the family

{ ⋃

N∈N+

⋂

n≥N

Cn,ρ(μ).
}

ρ>0
,

whose intersection is Aμ, is decreasing when ρ decreases. Therefore, its intersection
is equal to the intersection of its countable subfamily

{ ⋃

N∈N+

⋂

n≥N

Cn, 1/k(μ).
}

k∈N+
.

We have proved equality (13) of Lemma 2.
Finally, note that the set Cn, 1/k(μ) ⊂ M is open, because σn,x = (1/n)

∑n
j=1

δ f j (x) (with fixed n) depends continuously on x . Since equality (13) states that Âμ =
Aμ is the countable intersection of a countable union of a countable intersection of
open sets, we conclude that it is a measurable set, ending the proof of Lemma 2. �
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Lemma 3 A probability measure μ is empirically stochastically stable, according
to Definition 4, if and only if its basin Âμ of empiric stability, defined by equality (9),
has positive Lebesgue measure.

Proof If μ is empirically stochastically stable, then from Definition 4, there exists a
Lebesgue-positive set Â ⊂ M such that Â ⊂ Âμ. Hence m( Âμ) > 0.

To prove the converse assertion, assume that m( Âμ) = α > 0. Let us construct a
positive Lebesgue set Â ⊂ Âμ such that for any ρ > 0, there exists N ∈ N

+ (uniform
on x ∈ Â), such that for all n ≥ N there exists ε0 > 0 (uniform on x ∈ Â) satisfying

dist∗(σε,n,x , μ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â (to be proved). (20)

Applying Lemma 2 we have

Âμ =
⋂

k∈N+

⋃

N∈N+
EN ,1/k, where EN ,1/k :=

⋂

n≥N

Cn,1/k(μ).

For fixed k ∈ N
+ we have EN+1,1/k ⊂ EN ,1/k for all N ≥ 1, and

Âμ =
⋃

N∈N+
(EN ,1/k ∩ Âμ). Then lim

N→+∞m(EN ,1/k ∩ Âμ) = m( Âμ) = α.

Therefore, for each k ≥ 1 there exists N (k) ≥ 1 such that

α(1 − 1/3k) ≤ m(EN (k),1/k ∩ Âμ) ≤ α.

We construct
Â :=

⋂

k∈N+
(EN (k),1/k ∩ Âμ).

Wewill prove that Â has positive Lebesguemeasure and that assertion (20) is satisfied
uniformly for all x ∈ Â. First,

m( Âμ \ Â) = m(
⋃

k≥1

( Âμ \ EN (k),1/k) ≤
+∞∑

k=1

(α − m(EN (k),1/k ∩ Âμ)) ≤
+∞∑

k=1

α

3k
= α

2
,

from where
m( Â) = m( Âμ) − m(Aμ \ Â) ≥ α − α

2
= α

2
> 0.

Second, for all ρ > 0, there exists a natural number k ≥ 2/ρ, and a set
BN (k),1/k ⊃ Â such that

x ∈ Cn,1/k(μ) ∀ n ≥ N (k), ∀ x ∈ BN (k),1/k .

Therefore, for all n ≥ N (k) (which is independent on x) we obtain:
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dist∗(σn,x , μ) <
1

k
≤ ρ

2
∀ x ∈ Â. (21)

Finally, applying part (f) of Lemma 1, for each fixed n ≥ N (k) there exists ε0 > 0
(independent of x), such that

dist∗(σε,n,x , σn,x ) <
ρ

2
∀ 0 < ε ≤ ε0, ∀ x ∈ M̂ . (22)

Inequalities (21) and (22) end the proof of inequality (20); hence Lemma 3 is
proved. �

End of the proof of Theorem 1.

Proof From Lemma 3, μ is empirically stochastically stable if and only if m( Âμ) >

0. From Definition 12, μ is physical if and only if m(Aμ) > 0. Applying Lemma
2 we have Âμ = Aμ. We conclude that μ is empirically stochastically stable if and
only if μ is physical. �

Before proving Corollary 1, we recall the following theorem taken from [11]:

Theorem 3 Let f : M �→ M be a continuous map on a compact Riemannian mani-
fold M. Then, the setO f of pseudo-physical measures for f is nonempty and weak∗-
compact, and contains pωx for Lebesgue-a.e. x ∈ M.

Moreover,O f is theminimal nonemptyweak∗-compact set of probabilitymeasures
that contains pωx for Lebesgue-a.e. x ∈ M.

Proof See [11, Theorem 1.5].

Proof of Corollary 1.

Proof (i) implies (ii): If μ1 is globally empirically stable, then by Definition 6
m( Âμ1) = m(M). Applying Theorem 1, μ1 is physical. Besides, from Lemma 2,
we know Âμ1 = Aμ1 . Then m(Aμ1) = m(M). So, there exists μ2 = μ1 that is phys-
ical and whose strong basin of statistical attraction has full Lebesgue measure, as
wanted.

(ii) implies (iii): If μ2 is physical and m(Aμ2) = m(M), then from Definitions 10
and 11, we deduce that the set {μ2} contains pωx for Lebesgue-a.e. x ∈ M . Besides
{μ2} is nonempty andweak∗-compact. Hence, applying the last assertion of Theorem
3,we deduce that {μ2} is thewhole setO f of pseudo physicalmeasures for f . In other
words, there exists a unique measure μ3 = μ2 that is pseudo-physical, as wanted.

(iii) implies (i): If there exists a unique measure μ3 that is pseudo-physical for f ,
then, applying Theorem 3 we know that that the set {μ3} contains pωx for Lebesgue-
a.e. x ∈ M . From Definitions 10 and 11, we deduce that the strong basin Aμ3 of
statistical attraction of μ3 has full Lebesgue measure. Then, μ3 is physical, and
applying Theorem 1μ3 is empirically stochastically stable. Besides, from Lemma 2,
we obtain that the basin Âμ3 of empiric stochastic stability of μ3 coincides with Aμ3 ;
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hence it has full Lebesgue measure. From Definition 6 we conclude that there exists
a measure μ1 = μ3 that is globally empirically stochastically stable, as wanted.

We have proved that (i), (ii) and (iii) are equivalent conditions. Besides, we have
proved that if these conditions holds, the three measures μ1, μ2 and μ3 coincide.
This ends the proof of Corollary 1. �

Proof of Corollary 2.

Proof On the one hand, a classical theorem by Ruelle states that any C2 expanding
map f of the circle S1 has a unique invariant measureμ that is ergodic and absolutely
continuous with respect to the Lebesgue measure. Thus, from Pesin’s Theory [26,
27], it is the unique invariant measure that satisfies Pesin Entropy Formula (12).

On the other hand, Campbell and Quas [9] have proved thatC1-generic expanding
maps in the circle have a unique invariant measure μ that satisfies Pesin Entropy
Formula, but nevertheles μ is mutually singular with the Lebesgue measure (see
also [5]).

Applying the above known results, to prove this corollary we will first show that
for any C1 expanding map f , if it exhibits a unique invariant measureμ that satisfies
(12), thenμ is the unique empirically stochastically stable measure. In fact, in [12] it
is proved that any pseudo-physical measure of any C1 expanding map of S1 satisfies
Pesin Entropy Formula (12). Hence, we deduce that, for our map f , μ is the unique
pseudo-physical measure. Besides in [11], it is proved that if the set of pseudo-
physical or SRB-like measures is finite, then all the pseudo-physical measures are
physical. We deduce that our map f has a unique physical measure μ. Applying
Theorem 1, μ is the unique empirically stochastically stable measure, as wanted.

Now, to end the proof of this corollary, let us show that themeasureμ that was con-
sidered above, is globally empirically stochastically stable. From Theorem 3, the set
O f of all the pseudo-physical measures is the minimal weak∗-compact set of invari-
ant measures such that pω(x) ⊂ O f for Lebesgue-a.e. x ∈ S1. But, in our case, we
have O f = {μ}; hence pω(x) = {μ} for Lebesgue-a.e. x ∈ S1. Applying Definition
11, we conclude that the strong basin of statistical attraction Aμ has full Lebesgue
measure; and so, by Theorem 1 the basin Âμ of empirically stochastic stability of
μ covers Lebesgue-a.e. the space; hence μ is globally empirically stochastically
stable. �

4 Proof of Theorem 2 and its Corollaries

For any nonempty weak∗-compact set K of f -invariant measures, recall Defini-
tion 7 of the (maybe empty) basin ÂK ⊂ M of empiric stochastic stability of K
constructed by equality (10).

Similarly to Definition 11, in which the strong basin Aμ of statistical attraction
of a single measure μ is constructed, we define now the (maybe empty) strong basin
of statistical attraction AK ⊂ M of the set K ⊂ M , as follows:
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AK := {x ∈ M, pωx ⊂ K }, (23)

where pωx is the p-omega limit set (limit set in the space M of probabilities)
for the empiric probabilities along the orbit with initial state in x ∈ M (recall
Definition 10).

We will prove the following property of the basins ÂK and AK :

Lemma 4 For any nonempty weak∗-compact setK in the spaceM of probability
measures, the basins ÂK ⊂ M and AK ⊂ M, defined by equalities (10) and (23)
respectively, are measurable sets and coincide. Moreover

ÂK = Âμ =
⋂

k∈N+

⋃

N∈N+

⋂

n≥N

Cn,1/k(K ),

where, for all ρ > 0 the set Cn,ρ(K ) ⊂ M is defined by

Cn,ρ(K ) = {x ∈ M : dist∗(σn,x , K ) < ρ}.

Proof Repeat the proof of Lemma 2, with the set K instead of the single measure
μ, and using equalities (10) and (23), instead of (9) and (11) respectively. �

Lemma 5 The set O f of all pseudo-physical measures is globally empirically
stochastically stable.

Proof From Theorem 3, pωx ⊂ O f for Lebesgue-a.e. x ∈ M . Thus, the strong basin
of statistical attraction AO f of O f , defined by equality (23), has full Lebesegue
measure. After Lemma 4, the basin ÂO f of empiric stochastic stability of O f , has
full Lebesgue measure. Therefore, if we prove that O f is empirically stochastically
stable, it must be globally so.

We now repeat the proof of Lemma 3, using O f instead of a single measure μ, to
construct a Lebesgue-positive set Â ⊂ M such that, for all ρ > 0 and for all n large
enough, there exists ε0 > 0 (independenly of x ∈ Â) such that

dist∗(σε,n,x , O f ) < ρ ∀ 0 < ε ≤ ε0, ∀ x ∈ Â.

Thus, O f satisfies condition (a) of Definition 8, to be empirically stochastically
stable. Let us prove that O f also satisfies condition (b):

Assume that K ⊂ M f is nonempty and weak∗-compact and ÂO f ⊂ ÂK

Lebesgue-a.e. We shall prove that O f ⊂ K . Arguing by contradiction, assume that
there exists a probability measure ν ∈ O f \ K . Choose

0 < ρ <
dist∗(ν, K )

2
(24)

On the one hand, since ν is pseudo-physical, applying Definitions 11 and 12, the
ρ-weak basin Aρ

ν of statistical attraction of ν has positive Lebesguemeasure. In brief:
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m({x ∈ M : lim inf
n→+∞ dist∗(σn,x , ν) < ρ}) > 0. (25)

From inequalities (24) and (25), and applying equality (23), we deduce that

m({x ∈ M : pωx �⊂ K }) > 0, m(AK ) < m(M). (26)

On the other hand, applying Lemma 4 and the hypothesis ÂO f ⊂ ÂK Lebesgue-
a.e., we deduce

AO f ⊂ AK Lebesgue a.e..

Applying Theorem 3 and equality (23), we have

m(AO f ) = m(M), from where we deduce m(AK ) = m(M),

contradicting the inequality at right in (26).
We have proved that O f ⊂ K . Thus O f satisfies condition (b) of Definition 8,

ending the proof of Lemma 5. �

End of the proof of Theorem 2.

Proof We denote by O f the set of all pseudo-physical measures.
(a) LetK ⊂ M f be empirically stochastically stable, according to Definition 8. We
shall prove that K ⊂ O f . Assume by contradiction that there exists ν ∈ K \ O f .
So, ν is not pseudo-physical, and applying Definition 12, there exists ρ > 0 such
that the ρ-weak basin Aρ

ν of statistical attraction of ν has zero Lebesgue measure. In
brief, after Definition 11, we have

m({x ∈ M : dist∗(pωx , ν) < ρ}) = 0,

from where we deduce that

pωx ⊂ M f \ Bρ(ν) Lebesgue-a.e. x ∈ M, (27)

where Bρ(ν) is the open ball in the space M of probability measures, with center
at ν and radius ρ.

Applying Lemma 4 and equality (23) we have

ÂK = AK = {x ∈ X : pωx ⊂ K }.

Joining with assertion (27), we deduce that AK ⊂ AK \B ρ(ν) Lebesgue-a.e.; and
applying again Lemma 4 we deduce:

ÂK ⊂ ÂK \B ρ(ν) Lebesgue-a.e.
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But, by hypothesisK is empirically stochastically stable. Thus, it satisfies condition
(b) of Definition 8. We conclude thatK ⊂ K \ Bρ(ν), which is a contradiction,
ending the proof of part (a) of Theorem 2.

(b) According to Lemma 5, if K = O f , then K is globally empirically stochasti-
cally stable. Now, let us prove the converse assertion. Assume that K is globally
empirically stochastically stable. We shall prove thatK = O f . Applying part (a) of
Theorem 2, we know that K ⊂ O f . So, it is enough to prove now that O f ⊂ K .

By hypothesis m( ÂK ) = m(M). From Lemma 4 we have ÂK = AK ). We
deduce thatm(AK ) = m(M). From this latter assertion and equality (23), we obtain

pωx ⊂ K for Lebesgue-a.e. x ∈ M.

Finally, we apply the last assertion of Theorem 3 to conclude that O f ⊂ K , as
wanted. This ends the proof of Theorem 2. �

Proof of Corollary 3.

Proof This corollary is immediate after Theorem 2 and Lemma 5. In fact, Lemma
5 states that the set O f , which is composed by all the pseudo-physical measures, is
globally empirically stochastically stable. And part (b) of Theorem 2, states that O f

is the unique set of f -invariant measures that is globally empirically stochastically
stable. �

Before proving Corollaries 4, 5 and 6, we recall the following known result:

Theorem 4 For all x ∈ M the p-omega limit set pωx has the following property:
For any pair of measures μ0, μ1 ∈ pωx and for every real number 0 ≤ λ ≤ 1

there exists a measure μλ such that dist∗(μ0, μλ) = λdist∗(μ0, μ1).

Proof See [11, Theorem 2.1].

Proof of Corollary 4.

Proof Assume that μ is pseudo-physical and isolated in the set O f of all pseudo-
physical measures. Then, there exists ρ > 0 such that:

if ν ∈ O f and dist∗(ν, μ) < ρ, then ν = μ. (28)

Since μ is pseudo-physical, from Definition 12 we know that the ρ-weak basin Aρ
μ

of statistical attraction of μ has positive Lebesgue measure. From Definition 11 we
deduce that

m(Aρ
μ = m({x ∈ M : dist∗(pωx , μ) < ρ}) > 0. (29)

Applying Theorem 3, we know that pωx ⊂ O f for Lebesgue-a.e. x ∈ M . Joining
the latter assertion with (28) and (29) we deduce that

{μ} = pωx

⋂
Bρμ for Lebesgue-a.e. x ∈ Aρ

μ,
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where Bρμ is the ball in the space of probability measures, with center at μ and
radius ρ.

Besides, from Theorem 4 we deduce that pωx = {μ} for Lebesgue-a.e. x ∈
Aρ

μ, hence for a Lebesgue-positive set of points x ∈ M . Applying Definition 12,
we conclude that the given pseudo-physical measure μ is physical; hence, from
Theorem 1, μ is empirically stochastically stable. �

Proof of Corollary 5.

Proof (i) implies (ii): If the setO f of pseudo-physical measures is finite, then all the
pseudo-physical are physical due to Corollary 4. Then, applying Theorem 1, all of
them are (individually) empirically stochastically stable. Besides the union of their
strong basins of statistical attraction has full Lebesgue measure: In fact, applying
Definition 11 and equality (23), that union is the set AO f ; and, due to Theorem 3,
the set AO f has full Lebesgue measure. So, assertion (ii) is proved.

(ii) implies (i): Assume that there exists a finite number r ≥ 1 of empirically
stochastically stable measures μ1, μ2, . . . , μr (hence, physical measures, due to
Theorem 1). Assume also that the strong basins Aμi of statistical attraction have
an union

⋃r
i=1 Aμi that covers Lebesgue-a.e.. Applying Definition 11 and equality

(23), we deduce that A{μ1,...,μr } = ⋃r
i=1 Aμi has full Lebesgue measure. So, from

the last assertion of Theorem 3, O f ⊂ {μ1, . . . , μr }. In other words, the set O f of
pseudo-physical measures is finite, proving assertion (i). �

Proof of Corollary 6.

Proof If the setO f is finite, then we apply Corollary (5) to deduce that there exists a
finite number of empirically stochastically stable measures, hence physical, and that
the union of their strong basins of statistical attraction has full Lebesgue measure.

Now let us consider the case for which, by hypothesis, the set O f of pseudo-
physical measures is countably infinite. In brief: O f = {μi }i∈N.

Applying Theorem 3, the p-omega limit sets pωx are contained in O f for
Lebesgue-a.e. x ∈ M . But, from Theorem 4 we know that pωx is either a single
measure or uncountably infinite. Since it is contained in the countable set O f , we
deduce the pωx is composed by a single measure of O f for Lebesgue-a.e. x ∈ M .
Now, recalling Definition 11 and equality (23), we deduce that

AO f =
+∞⋃

i=1

Aμi ,

+∞∑

i=1

m(Aμi ) = m(M).

Therefore, there exists finitely many or countable infinitely many pseudo-physical
measures μin : 1 ≤ n ≤ r ∈ N

+ ∪ {+∞} such that

μ(Aμin
) > 0 ∀ 1 ≤ n ≤ r,

r∑

n=1

m(Aμn ) = m(M). (30)
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From Definition 12, each measure μin is physical; hence empirically stochastically
stable due to Theorem 1. Besides, from equality at right in (30), we deduce that the
union

⋃r
n=1 Aμin

has full Lebesgue measure, as wanted.
Finally, to end the proof of Corollary 6, let us show that the set {μin : 1 ≤ n ≤ r

of physical measures above constructed, can not be finite. In brief, let us prove that
r = +∞. In fact, if there existed afinite number r ∈ N + of physicalmeasureswhose
basins of statistical attraction have an union with full Lebesgue measure, then, we
would apply Corollary 5 and deduce that the set O f of pseudo-physical measures is
finite. But in our case, by hypothesis, O f is countably infinite, ending the proof of
Corollary 6. �

Proof of Corollary 7.

Proof From part (a) of Theorem 2 we know that all the measures of any empirically
stochastically stable set K ⊂ M f is pseudo-physical. Besides, in [12] it is proved
that, for any C1 expanding map f of the circle, any pseudo-physical or SRB-like
measure satisfies Pesin Entropy Formula (12). We conclude that all the measures of
K satisfy this formula. �

Proof of Corollary 8.

Proof From part (b) of Theorem 2 we know that the globally empirically stochasti-
cally stable setK coincides with the set O f of pseudo-physical measures. Besides,
in [13] it is proved that, for C0-generic maps f of the interval, any ergodic mea-
sure belongs to O f but, nevertheless O f is a weak∗-closed with empty interior in
the space M f of invariant measures. We conclude that all ergodic measures belong
to the globally empirically stochastically stable set K and that this set of invariant
measures is meager inM f , as wanted. �
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Blender-horseshoes in Center-unstable
Hénon-like Families

Lorenzo J. Díaz and Sebastián A. Pérez

To Welington de Melo, in memoriam

Abstract A blender-horseshoe is a locally maximal transitive hyperbolic set that
appears in dimension at least three carrying a distinctive geometrical property: its
local stable manifold “behaves” as a manifold of topological dimension greater than
the expected one (the dimension of the stable bundle). This property persists under
perturbations turning this kind of dynamics an important piece in the global descrip-
tion of robust non-hyperbolic systems. In this paper, we consider a parameterized
family of center-unstableHénon-like of endomorphisms in dimension three and show
how blender-horseshoes naturally occur in a specific parameter range.
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1 Introduction

Naively, a blender is a transitive hyperbolic set that appears in dimension at least
three and whose special geometrical configuration implies that the “dimension” of
its stable set is larger than the “expected” one. To be a bit more precise, recall that
the index of a transitive hyperbolic set �, denoted by ind(�), is the dimension of its
unstable bundle (by transitivity, the index is well defined). The leaves of the (local)
stable sets of points in� have dimension ind(�), however the (local) stable set of the
blender � behaves as a set of dimension ind(�) + 1 (or greater). In practical terms
and applications, blenders are dynamical “local plugs” which in some (semi-local
or global) configurations carry further important properties of the dynamics (see the
next paragraph). For an informal presentation of blenders and a discussion on their
role in smooth dynamical systems we refer to [5] and [10, Chap. 6.2]. Blenders
were introduced in [6] as a formalisation of the constructions in [11] in the context
of bifurcations via heterodimensional cycles. In [6], blenders were used to construct
new classes of robustly transitive diffeomorphisms. Later, blenders were used in
several dynamical contexts: Generation of robust heterodimensional cycles [7] and
homoclinic tangencies [8], stable ergodicity [1, 25], Arnold diffusion [20], and con-
struction of nonhyperbolic measures [4], among others. Each of these applications
involves a specific type of blender such as blender-horseshoes [8], symbolic blenders
[2, 20], dynamical blenders [4], and super-blenders [1].

In the original definition in [6] the main emphasis is placed on the persistence
of its geometrical configuration that was key to guarantee the robust transitivity of
non-hyperbolic sets, see the discussion in [10, Chap. 6]. Although in many contexts
the “original” blenders in [6] are shown to be very useful, a major con of them is that
they fail to be locally maximal sets, this deficiency carries some constraints in their
use and applications, for further discussions see Remark 2.5. This weakness was
bypassed in [8] by introducing a special type of blenders, called blender-horseshoes,
which are locally maximal and also conjugate to the standard Smale horseshoe,
see Definition 2.3. These two additional useful properties can be explored to get
additional relevant properties: blender-horsehoes are the key local plugs to get robust
heterodimensional cycles and robust homoclinic tangencies in the C1-topology, see
[7] and [8]. In some cases, one can also get some extra “fractal-like” information
about these blenders, see [12] and also [19]. Considering these aspects and also the
use of blenders to get robust cycles in bifurcation theory, one can think of blender-
horseshoes as a version of the so-called thick horseshoes introduced by Newhouse
in the construction of robust homoclinic tangencies of surface diffeomorphisms,
see [21].

Inwhat follows, for simplicity and also considering the scope of this paper, our dis-
cussion is restricted to the three-dimensional case (adjustments to higher dimensions
are straightforward). There are some settings where blender-horseshoes appear in a
natural way. A first one is the bifurcation of heterodimensional cycles (i.e., there are
a pair of saddles having indices one and two whose invariant manifolds meet cycli-
cally). In this context, the occurrence of blender-horseshoes is related to the existence
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Fig. 1 Non-normally hyperbolic dynamics

of some non-normally hyperbolic dynamics that can be illustrated as follows. Think
of a standard horseshoe defined on a “square” and “multiply” this dynamics by a
“weak expansion” in the normal direction (to the square), see Fig. 1. In this way, one
gets a hyperbolic set (of index two) contained in a non-normally hyperbolic (local)
manifold.1 Persistence of hyperbolicity implies that this horseshoe has continuations
for small perturbations of the dynamics. However, since the horseshoe is contained
in a non-normally hyperbolic square, the new horseshoes are in general not contained
in a local surface. It turns out that appropriate perturbations of the initial dynamics
provide blender-horseshoes. For a complete discussion of this construction (and also
with explicit formulae) we refer to [9] (note that in [9] the term blenders is not used).

An interesting question is to provide explicit examples of maps (with an explicit
analytic formula) exhibiting blender-horseshoes. This leads to the second ingredient
of this paper, a family of endomorphisms so-called center-unstable Hénon-like fami-

1This means that in the “square” containing the horseshoe there is a direction whose expansion is
greater than the expansion in the normal direction, the arrows in Fig. 1 describe this feature.
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lies, see equation (1.1). We recall that in the two-dimensional case, Hénon-like maps
are a fundamental ingredient in the study of homoclinic bifurcations which provide
a “limit dynamics”: there exists a sequence of bifurcation parameters providing a
sequence of return maps at the homoclinic tangency converging to a Hénon-like
map in suitable rescaled coordinates. This construction, known as renormalisation
scheme, when performed at homoclinic tangencies allows to translate (robust) prop-
erties of the Hénon-like family to the dynamics of diffeomorphisms nearby the bifur-
cating one, for details see [22, Chap. 3]. Two remarkable examples of such portable
properties are the persistence of homoclinic tangencies [22, Chap. 3] and the exis-
tence on strange attractors [17].

In view of the above discussion, it is natural to ask about renormalisation schemes
and limit dynamics in heterodimensional settings. In this direction, in [13] it is
considered a heterodimensional cycle involving a heteroclinic orbit corresponding
to the tangential contact of the two-dimensional invariant manifolds of the saddles.
This heteroclinic orbit is called a heterodimensional tangency, see [14]. In [13] it
is provided a renormalisation scheme whose limit dynamics is a center-unstable
Hénon-like family. This discussion justifies the following technical remark. On the
onehand, the theory of homoclinic bifurcations and renormalisation schemes requires
at least C2-regularity of the diffeomorphisms.2 On the other hand, the construction
of robustly non-hyperbolic dynamics (robust cycles and tangencies) associated to
heterodimensional cycles is mostly developed in the C1-case.3 Thus, an interesting
problem is to develop these theories in higher regularity.

First, for direct approach dealing with perturbation of product dynamics (a hyper-
bolic part times the identity) we refer to [3]. On the other hand, bifurcations of het-
erodimensional tangencies seem to be an appropriate setting for obtaining robustly
non-hyperbolic dynamics in high regularity, see for instance [16] where C2-robust
heterodimensional tangencies andC2-robust heterodimensional cycles involving het-
erodimensional tangencies are obtained using blenders and the results of [23]. Our
results are motivated by the ideas of [13], where blenders are generated at the bifur-
cation of heterodimensional cycles in high regularity topologies. More precisely, in
[13] blenders are obtained for some (open) range of parameters of the center-unstable
Hénon-like family and some applications (involving a renormalisation scheme) are
given for the bifurcation of heterodimensional cycles in high regularity (in the spirit
of [22]). In this paper, we prove that the blenders obtained in [13] are indeed blender-
horseshoes. This step will allow (in further applications) to improve versions of [13,
Theorem 1.4], getting robust cycles and robust tangencies in higher regularity (in the
same spirit as in [7, 8]). In a forthcoming paper (see also [24]) we will introduce a
renormalisation scheme for some non-transverse heterodimensional cycles (cycles

2Besides the regularity of the maps, necessary for the convergence of the renormalisation scheme,
another key fractal-like ingredient is the thickness of a hyperbolic set, which has a radically different
behaviour in the C1 and C2-topologies, see [26] and [18].
3The starting point of this progress is due to the development of a series of typically C1-tools
(started with Pugh’s C1 closing lemma and with Franks derivative perturbation lemma) that to the
current date have no equivalents in Cr -topologies with r > 1. On the other hand, C1-regularity is
not sufficient to some results requiring control of the distortion.
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with heterodimensional tangencies) converging to the center-unstable Hénon-like
family (1.1) and state the persistence of cycles and tangencies (in higher regularity)
after its bifurcation.

Finally, let us observe that [15] provides a quite complete numerical analysis
of the center-unstable Hénon family in (1.1), showing strong numerical evidences
of the occurrence of blenders in a parameter range wider than the one in [13] and
illustrates the vanishing of these blenders beyond this range. We believe that the
blenders detected in [15] are indeed blender-horseshoes.

It follows the main result of this paper.

Theorem 1 Consider the center-unstable Hénon-like family of endomorphisms

(1.1) G(ξ,μ,κ,η)(x, y, z)
def= (y,μ + y2 + κ y z + η z2, ξ z + y), ξ > 1.

Then there is ε > 0 such that for every

ν̄ = (ξ,μ,κ, η) ∈ Oε
def= (1.18, 1.19) × (−10,−9) × (−ε, ε)2

the endomorphism G ν̄ has a blender-horseshoe in the cube �
def= [−4, 4]2 × [−40,

22].
As a consequence, every diffeomorphism or endomorphism sufficiently C1-close

to G ν̄ has a blender-horseshoe in �.

The consequence pointed out in the theorem arises from the C1-persistence of
blenders, see Remarks 2.4 and 2.9. Let us observe that this result is a version of [13,
Theorem 1.1] where blenders are replaced by blender-horseshoes in a similar range
of parameters.

This paper is organised as follows. In Sect. 2, we introduce the definitions
of blender and blender-horseshoe and state the distinctive property of a blender-
horseshoe (Lemmas 2.6 and 2.7). In Sect. 3, we prove Theorem 1.

2 Blenders and Blender-horseshoes

2.1 Blenders

The notion of a cu-blender (or simply blender) was introduced in [6], where were
used to generate C1-robust transitivity in the non-hyperbolic setting. The main virtue
of a blender comes from its special internal geometry: a cu-blender is a transitive
hyperbolic set whose (local) stable set robustly “behaves” as manifold of topolog-
ical dimension larger than the dimension of its stable bundle. We now discuss the
(axiomatic) definition of blenders in the three-dimensional case.
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Definition 2.1 (cu-Blender, Definition 3.1 in [8]) Let f : M → M be a three-
dimensional diffeomorphism. A transitive hyperbolic compact set � of index two of
f is a cu-blender if there are a C1-neighbourhood U of f and a C1-open set D of
embeddings of one-dimensional discs D into M such that for every g ∈ U and every
disc D ∈ D the local stable manifold W s

loc(�g) of the continuation �g intersects D.
The set D is called the region of superposition of the blender.

2.2 Blender-horseshoes

This kind of blenders was introduced in [8] as a mechanism for the generation of
C1-robust tangencies in dimension equal to or greater than three. Comparing with
the standard blenders, blender-horseshoes satisfy the following additional property:
they are locally maximal invariant sets conjugate to a complete shift of two symbols.
These properties provide a complete description of its local stable manifold as well
as a nice geometrical structure: the local stable manifold of a blender-horseshoe is
the Cartesian product of a “fat Cantor set” by an “interval”, see Remark 2.4. We now
give the definition of a blender-horseshoe following [8, Sect. 3.2], for further details
we refer to that paper. As the construction is local, we assume that the ambient space
is R3. We start with some preliminary definitions.

For a > 0 consider the interval Ia
def= [−a,+a] and for x, y, z ∈ R

+ the cube

�
def= Ix × Iy × Iz ⊂ R

3.

We divide the boundary ∂� of � into three parts as follows:

∂s�
def= ∂Ix × Iy × Iz, ∂uu�

def= Ix × ∂Iy × Iz, ∂u�
def= Ix × ∂(Iy × Iz).

Note that ∂� = ∂s� ∪ ∂u� and ∂uu� ⊂ ∂u�.
Given θ > 0 and p ∈ R

3, define the s-, uu- and u-cone fields of size θ contained
in Tp� as follows:

(2.1)

Cs
θ(p)

def=
{
(u, v, w) ∈ TpR

3 :
√

v2 + w2 < θ|u|
}
,

Cuu
θ (p)

def=
{
(u, v, w) ∈ TpR

3 :
√

u2 + w2 < θ|v|
}
,

Cu
θ (p)

def=
{
(u, v, w) ∈ TpR

3 : |u| < θ
√

v2 + w2
}
.

Note that Cuu
θ (p) ⊂ Cu

θ (p).
Related to these cone fields, we define sθ- and uuθ-discs and uθ-strips as follows:

• Let L be a regular curve. We say that L is an sθ-disc if it is contained in
�, Tp L ⊂ Cs

θ(p) for each p ∈ L , and its end-points are contained in differ-
ent connected components of ∂s�. Similarly, we say that L is a uuθ-disc if
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L ⊂ R × Iy × R, Tp L ⊂ Cuu
θ (p) for each p ∈ L , and its end-points are contained

in different connected components of R × ∂Iy × R.
• A surface S ⊂ � is a uθ-strip if Tp S ⊂ Cu

θ (p) for every p in S and there exists aC1-
embedding E : Iy × J → � (where J is a subinterval of Iz) such that E(Iy × J) = S

and L(z)
def= E(Iy × {z}) is a uuθ-disc for every z ∈ J. The width of S, denoted by

w(S), is the infimum of the length of the curves in S which are transverse to Cuu
θ

and join the two components of E(Iy × ∂J)

Remark 2.2 (Right and left classes of uu-discs) In what follows, we fix θ,ϑ > 0.
Note that every sϑ-discW such that (W \ ∂W ) is contained in the interior of� defines
two different (free) homotopy classes of uuθ-discs disjoint from W . This allows us
to consider uuθ-discs at the left and at the right of W (corresponding to the two
different homotopy classes), denoted by U �

W and U r
W , respectively. The right class

U r
W (resp., left class U �

W ) is the class containing the uuθ-disc {0} × Iy × {z+} (resp.,
containing the {0} × Iy × {z−}). With a slight abuse of notation, we also denote by
U i

W the union of the uu-discs in U i
W , i = r, �.

Similarly, a u-strip S through � is at the right (resp. at the left) of W if it is
foliated by uu-discs at the right (resp. at the left) of W .

We are now ready to recall the definition of a blender-horseshoe in [8].

Definition 2.3 (Blender-horseshoe) The maximal invariant �F
def= ∩i∈ZFi (�) ⊂

int(�) of a (local) diffeomorphism F : � → F(�) ⊂ R
3 is a blender-horseshoe if

conditions (BH1)–(BH6) below hold:

(BH1) s- and u-legs : There are a connected subsets A and B of �, called s-legs of
the blender, with

A ∩ B = ∅ and (A ∪ B) ∩ ∂uu� = ∅

such that

F(�) ∩ (R × Iy × R) = F(A) ∪ F(B) ⊂ (x−, x+) × Iy × R.

Note that the sets F(A) and F(B) are the connected components of F(�) ∩ (R ×
Iy × R), they are called the u-legs of the blender. See Fig. 2.

(BH2) Contracting and expanding invariant cone fields. There exist θ,ϑ > 0, � ∈
N, c > 1, and cone fields Cs

ϑ, Cu
θ , and Cuu

θ such that:

(i) Strict invariance: for every p ∈ A ∪ B we have that

DF�
p(Cs

ϑ(p)) ⊃ Cs
ϑ(F�(p)),

DF�
p(Cu

θ (p)) ⊂ Cu
θ (F�(p)), and DF�

p(Cuu
θ (p)) ⊂ Cuu

θ (F�(p)).

(ii) Expansion/Contraction. For every v ∈ Cs
ϑ(p) and every w ∈ Cu

θ (p) we have
that
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B

AY

XZ

A

F (A)

B

F (B)

x+
x−

y+

y−

(a) (b)

Fig. 2 a s-legs of the blender-horseshoes. b Projection of F(�) ∩ (R × Iy × R) in the plane XY

|DF�
pv| ≤ c−1|v| and |DF�

pw| ≥ c|w|.

Conditions (BH1) and (BH2) imply the existence of two fixed saddles P ∈ A and
Q ∈ B, called the reference saddles of �F . We define the local stable manifolds of
P and Q by

(2.2) W s
loc(R)

def= connected component of W s(R) ∩ � containing R,

where R = P, Q. These local stable manifolds are s-discs (in what follows we
omit the dependence of θ and ϑ). Thus, either U �

W s
loc(P) ∩ U r

W s
loc(Q) �= ∅ or U r

W s
loc(P) ∩

U �
W s

loc(Q) �= ∅. We assume that the first case holds and denote by Ub def= U �
W s

loc(P) ∩
U r

W s
loc(Q). The family of discs Ub is called the superposition region of the blender-

horseshoe. We say that a uu-disc is in between if it is contained Ub. Similarly, a
u-strip is in between if it is foliated by uu-discs in between.

(BH3) Markov partition. The connected components of F−1(�) ∩ � are the sets

A
def= F−1(F(A) ∩ �) and B

def= F−1(F(B) ∩ �),

which satisfy

A ∪ B ⊂ Ix × (y−, y+) × (z−, z+), F(A) ∪ F(B) ⊂ (x−, x+) × Iy × R.

(BH4) uu-discs through the local stable manifolds of P and Q: Let L and L ′ be
uu-discs such that L ∩ W s

loc(P) �= ∅ and L ′ ∩ W s
loc(Q) �= ∅. Then

L ∩ (
∂u� \ ∂uu�

) = ∅, L ′ ∩ (
∂u� \ ∂uu�

) = ∅.

(BH5) Positions of images of uu-discs: Let L be a uu-disc in � and consider
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LC
def= L ∩ C, C = A,B.

By (BH1) and (BH2), F(LC) is a uu-discs in Ix × Iy × R. The relative
position of F(LC) obeys the following rules:

(1) if L ∈ U r
W s

loc(P) then F(LA) ∈ U r
W s

loc(P),

(2) if L ∈ U �
W s

loc(P) then F(LA) ∈ U �
W s

loc(P),
(3) if L ∈ U r

W s
loc(Q) then F(LB) ∈ U r

W s
loc(Q),

(4) if L ∈ U �
W s

loc(Q) then F(LB) ∈ U �
W s

loc(Q),
(5) if L ∈ U r

W s
loc(P) or L ∩ W s

loc(P) �= ∅ then F(LB) ∈ U r
W s

loc(P), and

(6) if L ∈ U �
W s

loc(Q) or L ∩ W s
loc(Q) �= ∅ then F(LA) ∈ U �

W s
loc(Q).

(BH6) Positions of images of uu-discs in Ub: Let L be a uu-disc in � such that
L ∈ Ub, then either F(LA) or F(LB) is contained in Ub.

Figure 3 illustrates a prototypical blender-horseshoe.
We nowpointed out some consequences of conditions (BH1)–(BH6), see [8, Sect.

3.2.4] for more details.

Remark 2.4

• The existence of the invariant (contracting or expanding) cone fields in (BH2)
implies the hyperbolicity (and partial hyperbolicity) of the set �F : the set �F is
hyperbolic and partially hyperbolic with a dominated splitting

T�F (R3) = E s ⊕ Ecu ⊕ Euu,

where E s and Eu = Ecu ⊕ Euu are the stable and unstable bundles of �F , respec-
tively.

• From (BH1)–(BH2), one gets that {A,B} is a Markov partition generating �F .
Therefore, the dynamics of F in �F is hyperbolic and conjugate to the full shift
of two symbols. In particular, the set �F contains exactly two fixed points of F ,
P ∈ A and Q ∈ B.

• Since �F is locally maximal, we have that

W s
loc(�F )

def=
⋂
n∈N

F−n(�) =
⋃

x∈�F

W s
loc(x) ⊂ W s(�F ),

where W s
loc(x) is the connected component of W s(x) ∩ � containing x . We can

write the local stable manifold W s
loc(�F ) as the Cartesian product of a Cantor set,

say C , by an interval. This Cantor set is “fat” in the following sense: the projection
of C in the center-unstable direction contains (open) intervals. See Fig. 3b.

• Conditions (BH1)–(BH6) are C1-open. Hence if �F is a blender-horseshoe of F
then the continuation �G of �F is a blender-horseshoe for every G sufficiently
C1-close to F (with the same reference cube �).
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Fig. 3 a Prototypical
blender-horseshoe. b
Projection in plane YZ of a
uu-disc L in the region of
superposition of the
blender-horseshoe Ub

Q

P
L

X

Y

Z

(a) (b)

Remark 2.5 (Blenders vs. blender-horseshoes) In the introduction, we briefly com-
pare blenders and blender-horseshoes. First, let us note that blender-horseshoes are
dynamical blenders in the sense of [4]: there is an open family of uu-discsD such that
the image of any disc of the family D contains a disc of D. This invariance property
and the fact that the familyD is intimately related to the locally maximal hyperbolic
set �F plays a key role for obtaining robust cycles and tangencies (which are related
to the hyperbolic set �F ). Moreover, as we saw in Remark 2.4, the hyperbolic set
�F is conjugate to the full shift of two symbols and some fractals properties of �F

can be obtained, as in [9, 12].

The next lemma states the distinctive property of a blender-horseshoe.

Lemma 2.6 (Lemma 3.13 in [4]) For every L ∈ Ub it holds L ∩ W s
loc(�F ) �= ∅.

Proof. Consider L = L ′
0 ∈ Ub. By condition (BH6), F(L) contains a disc L ′

1 ∈ Ub.
We let F−1(L ′

1) = L1 ⊂ L . We inductively define Ln ⊂ L and L ′
n ∈ Ub for n > 1

as follows. Assuming defined L ′
n−1 ∈ Ub and Ln−1 ⊂ L0 with L ′

n−1 ⊂ F(L ′
n−2)

and F−n+1(L ′
n−1) = Ln−1, we consider L ′

n ∈ Ub contained in F(L ′
n−1) and let

F−n(L ′
n) = Ln ⊂ L . The sequence (Ln) is nested and hence ∅ �= ⋂

n Ln ⊂ L . By
construction,

⋂
n Ln ⊂ W s

loc(�F ). �

We also have the following refinement of the above lemma.

Lemma 2.7 Every u-strip in between intersects transversely W s(P).

Proof. Note that F−1(W s
loc(P)) ∩ � consists of two connected components. We

denote by W s
0 the connected component that does not contain P . Note that this set

is an s-disc. Observe that there is α > 0 such that every u-strip S with w(S) > α
intersets W s

0 transversely. Conditions (BH2) and (BH6) imply that the width of a
u-strip S ⊂ � in between grows exponentially after iterations by F (for simplicity
let us assume that � in (BH2) is � = 1): there is c′ > 1 (independent of the strip)
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such that there are two possibilities, either F(S) intersects (transversely) W s
loc(P) or

F(S) contains a u-strip S′ in between such that w(S′) > c′w(S).
Take now a u-strip S = S0 in between. If S ∩ W s

0 �= ∅ we are done. Otherwise we
consider F(S). If F(S) intersects either W s

0 or W s
loc(P) we are also done. Otherwise

we get a new u-strip S1 in between contained in F(S0) with w(S1) > c′w(S0). We
now argue inductively, at some step we get a first n such that either F(Sn) intersects
W s

0 or W s
loc(P) orw(Sn) > α and hence Sn intersects W s

0 . In both cases, we are done.
This proves the lemma. �

2.2.1 Blender-horseshoes for Endomorphisms

For endomorphisms the blender horseshoe are defined as in the case of diffeomor-
phisms.

Definition 2.8 (Blender-horseshoes for endomorphisms) The maximal invariant
set �G := ⋂

i∈Z Gi (�) ⊂ int(�) of an endomorphism G : � → R
3 is a blender-

horseshoes if G satisfies the conditions (BH1)–(BH6).

Remark 2.9 (Continuations of blender-horseshoes for endomorphisms)Assume that
the endomorphism G has a blender-horseshoe in �. Then every diffeomorphism or
endomorphism F such that F |� is sufficiently close to G|� has a blender-horseshoe
in �.

3 Proof of Theorem 1

Theorem 1 is a consequence of following result and Remark 2.9.

Theorem 3.1 For every (ξ,μ) ∈ P def= (1.18, 1.19)×(−10,−9), the endomorphism

G(ξ,μ,0,0)(x, y, z) = (y,μ + y2, ξ z + y)

has a blender-horseshoe in � = [−4, 4]2 × [−40, 22].
The proof of this theorem involves some preliminary steps. First, for the endomor-

phisms Gξ,μ
def= G(ξ,μ,0,0), where (ξ,μ) ∈ P , we study their hyperbolic fixed points

and their invariant manifolds. As we will see, these fixed points will be the reference
saddles of the blender-horseshoe of Gξ,μ in �.

3.1 Hyperbolic Fixed Points of Gξ,μ

We calculate the hyperbolic fixed points of Gξ,μ and their invariant manifolds.
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Lemma 3.2 For every (ξ,μ) ∈ P , the endomorphism Gξ,μ has two hyperbolic fixed
saddles Pξ,μ = (pξ,μ, pξ,μ, p̃ξ,μ) and Qξ,μ = (qξ,μ, qξ,μ, q̃ξ,μ) in �, where

(3.1)
pξ,μ = μ + (pξ,μ)

2 = (1 − ξ) p̃ξ,μ, pξ,μ = pμ = 1 − (1 − 4μ)1/2

2
,

qξ,μ = μ + (qξ,μ)
2 = (1 − ξ) q̃ξ,μ, qξ,μ = qμ = 1 + (1 − 4μ)1/2

2
.

Proof. A simple calculation shows that Pξ,μ = (pμ, pμ, p̃ξ,μ) and Qξ,μ =
(qμ, qμ, q̃ξ,μ) are the two solutions of Gξ,μ(x, y, z) = (x, y, z). Using Eq. (3.1) and
that (ξ,μ) ∈ P , we get the following estimates for the coordinates of Pξ,μ and Qξ,μ:

(3.2)
−2.71 < pμ < −2.5, 13 < p̃ξ,μ < 15,

3.5 < qμ < 3.71, −20.6 < q̃ξ,μ < −18.4.

Thus, Pξ,μ, Qξ,μ ∈ �. We observe that the eigenvalues of DGξ,μ(Pξ,μ), and
DGξ,μ(Qξ,μ) are, respectively,

λs(Pξ,μ) = 0, λcu(Pξ,μ) = ξ, λuu(Pξ,μ) = 2 pμ,

λs(Qξ,μ) = 0, λcu(Qξ,μ) = ξ, λuu(Qξ,μ) = 2 qμ,

with respective eigenvectors

vs(Pξ,μ) = (1, 0, 0), vcu(Pξ,μ) = (0, 0, 1), vuu(Pξ,μ) = (
2 pμ − ξ, 2 pμ(2pμ − ξ), 2 pμ

)
,

vs(Qξ,μ) = (1, 0, 0), vcu(Qξ,μ) = (0, 0, 1), vuu(Qξ,μ) = (
2 qμ − ξ, 2 qμ (2qμ − ξ), 2 qμ

)
.

As ξ > 1 and |λuu(Pξ,μ)| = 2 | pμ| > 5 and |λuu(Qξ,μ)| = 2 | qμ| > 7, we have that
Pξ,μ and Qξ,μ are hyperbolic fixed points of Gξ,μ for every (ξ,μ) ∈ P , ending the
proof of the lemma. �

Remark 3.3 (Invariant directions and foliations) For R = P, Q consider the eigen-
spaces

E s(Rξ,μ)
def= R × {(0, 0)} and Ecu(Rξ,μ)

def= {(0, 0)} × R,

associated to the eigenvalues λs(Rξ,μ) = 0 and λcu(Rξ,μ) = ξ > 1, and consider the
straight lines through Rξ,μ:

{
Rξ,μ + (t, 0, 0) : t ∈ R

}
and

{
Rξ,μ + (0, 0, t) : t ∈ R

}
.

These lines are, respectively, tangent to the eigenspaces E s(Rξ,μ) and Ecu(Rξ,μ) at
Rξ,μ, and invariant by Gξ,μ:

Gξ,μ

(
Rξ,μ + (t, 0, 0)

) = Rξ,μ, Gξ,μ

(
Rξ,μ + (0, 0, t)

) = Rξ,μ + (0, 0, ξt),

for every t ∈ R. Moreover,
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(3.3) W s(Rξ,μ) = {
Rξ,μ + (t, 0, 0) : t ∈ R

}
, R = P, Q.

We define the center unstable manifold of Rξ,μ by

(3.4) W cu(Rξ,μ)
def= {

Rξ,μ + (0, 0, t) : t ∈ R
}
, R = P, Q.

Consider the endomorphism ofR2 obtained by projecting Gξ,μ into theYZ-plane,

(3.5) gξ,μ : R2 → R
2, gξ,μ(y, z)

def= (μ + y2, ξ z + y).

This endomorphism preserves the foliation F = {{y} × R : y ∈ R
}
. In particular,

for r = p, q, the leaves

W cu
ξ,μ(rμ, r̃ξ,μ)

def= {
(rμ, r̃ξ,μ + t) : t ∈ R

}
,

are invariant by gξ,μ.

3.2 The Legs of the Blender-horseshoe

In this section, we will concentrate on property (BH1) of blender-horseshoes. The
definitions of s- and u-legs involve some preliminary constructions that we describe
below.

For μ ∈ (−10,−9), consider the points

(3.6) aμ
def= −√

4 − μ, bμ
def= −√−4 − μ, cμ

def= √−4 − μ, dμ
def= √

4 − μ.

Note that if μ ∈ (−10,−9) it holds

(3.7) −√
14 < aμ = −dμ < −√

13, −√
6 < bμ = −cμ < −√

5.

Consider the intervals Iμ
def= [aμ, bμ] and Jμ

def= [cμ, dμ]. The choice of the parameter
μ and the estimates in (3.7) imply that

(3.8) Iμ = [aμ, bμ] ⊂ (−4, 0) and Jμ = [cμ, dμ] ⊂ (0, 4).

Consider the sub-cubes of � defined by

(3.9) Aξ,μ
def= [−4, 4] × Iμ × [−40, 22], Bξ,μ

def= [−4, 4] × Jμ ×[−40, 22].

From (3.8) it follows

Aξ,μ ∩ Bξ,μ = ∅ and (Aξ,μ ∪ Bξ,μ) ∩ ∂uu� = ∅.
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Gξ,μ(Δ)

Δ

Aξ,μ

Bξ,μ

Y

X

Z

Y

Z

Fig. 4 The blender-horseshoe of Gξ,μ

Remark 3.4 If μ ∈ (−10,−9) then pμ ∈ (aμ, bμ), qμ ∈ (cμ, dμ), and thus Pξ,μ ∈
interior(Aξ,μ) and Qξ,μ ∈ interior(Bξ,μ).

Hence the sets Aξ,μ and Bξ,μ satisfy the first part of condition (BH1). To prove
that Gξ,μ(Aξ,μ) and Gξ,μ(Bξ,μ) satisfy the second part of (BH1), as in the case of the
boundary of �, we split the boundary of Aξ,μ as follows. Let

∂uuAξ,μ
def= [−4, 4] × ∂Iμ × [−40, 22],

∂uAξ,μ
def= [−4, 4] × ∂

(
Iμ × [−40, 22]),

∂sAξ,μ
def= ∂([−4, 4]) × Iμ × [−40, 22].

Note that ∂Aξ,μ = ∂uAξ,μ ∪ ∂sAξ,μ and ∂uuAξ,μ ⊂ ∂uAξ,μ. Analogously, we split
the boundary of Bξ,μ.

Remark 3.5 We observe that for C = A,B it holds that

∂Cξ,μ \ (∂uuCξ,μ ∪ ∂sCξ,μ) ⊂ ∂u� \ ∂uu�, (ξ,μ) ∈ P.

Roughly, these relations between the boundaries say that the “front” and “rear cover”
ofAξ,μ and Bξ,μ are contained in the “front” and “rear cover” of�, respectively, (see
Fig. 4).

Lemma 3.6 For every (ξ,μ) ∈ P it holds

(a) Gξ,μ(�) ∩ (R × [−4, 4] × R) = Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ),

(b) Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ) ⊂ (−4, 4) × [−4, 4] × R.

Proof. We begin showing the equality of the item a). Keeping in mind Remark 3.5,
the inclusion “⊂” is obtained from the relations (see Fig. 4):
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Gξ,μ(Aξ,μ) ∩ Gξ,μ(Bξ,μ) = ∅, Gξ,μ

(
� \ (Aξ,μ ∪ Bξ,μ)

) ∩ � = ∅,

(ξ,μ) ∈ P.
(3.10)

The reciprocal inclusion “⊃” follows from the relation:

(3.11) Gξ,μ

(
∂uuAξ,μ ∪ ∂uuBξ,μ

) ⊂ {|y| = 4}, (ξ,μ) ∈ P.

To get the first relation in (3.10), it is sufficient to study the projections of Gξ,μ(Aξ,μ)

and Gξ,μ(Bξ,μ) in the plane XY. We denote such projection by �3.

Claim 3.7 For every (ξ,μ) ∈ P it holds �3(Gξ,μ(Aξ,μ)) ∩ �3(Gξ,μ(Bξ,μ)) = ∅.

Proof. Let (ξ,μ) ∈ P , then we have that

�3(Gξ,μ(Aξ,μ)) = {
(y, μ + y2) : y ∈ Iμ

}
, �3(Gξ,μ(Bξ,μ)) = {

(y, μ + y2) : y ∈ Jμ
}
.

From Iμ ∩ Jμ = ∅ it follows that�3(Gξ,μ(Aξ,μ)) ∩ �3(Gξ,μ(Bξ,μ)) = ∅, ending the
proof of the claim. �

Remark 3.8 Equation (3.8) and the proof of the claim above also imply that

�3
(
Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ)

) ⊂ (−4, 4) × [−4, 4], for every (ξ,μ) ∈ P.

We now prove (3.11) and the second part of (3.10). Since the endomorphisms
Gξ,μ collapse the X-direction, it is sufficient to study the corresponding projections
in the plane YZ. For this, consider the sets

�μ
def=

(
[−4, aμ) ∪ (bμ, cμ) ∪ (dμ, 4]

)
× [−40, 22],

C1
μ

def= {aμ} × [−40, 22], C2
μ

def= {bμ} × [−40, 22],
C3

μ
def= {cμ} × [−40, 22], C4

μ
def= {dμ} × [−40, 22].

Note that �μ, C1
μ, C2

μ, C3
μ, and C4

μ are, respectively, the projections on the plane YZ
of the sets

� \ (Aξ,μ ∪ Bξ,μ),

∂uuAξ,μ ∩ {y = aμ}, ∂uuAξ,μ ∩ {y = bμ},
∂uuBξ,μ ∩ {y = cμ}, ∂uuBξ,μ ∩ {y = dμ}.

Recall the definition of the endomorphism gξ,μ in (3.5).

Claim 3.9 For every (ξ,μ) ∈ P it holds that

(a’) gξ,μ(�μ) ∩ ([−4, 4] × [−40, 22]) = ∅,
(b’) gξ,μ(C1

μ ∪ C4
μ) ⊂ {y = 4}, and

(c’) gξ,μ(C2
μ ∪ C3

μ) ⊂ {y = −4}.
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Proof. Consider the projection π2(y, z)
def= y. It is easy to check the following equal-

ities:
π2

(
gξ,μ

([−4, aμ) × [−40, 22])
)

= (4,μ + 16],
π2

(
gξ,μ

(
(bμ, cμ) × [−40, 22])

)
= [μ,−4),

π2

(
gξ,μ

(
(dμ, 4] × [−40, 22])

)
= (4,μ + 16].

Recalling that μ ∈ (−10,−9) we get item (a’). From Remark 3.3 and equation (3.6)
it follows

• gξ,μ preserves the foliation F = {{y} × R : y ∈ R}, and
• μ + a2

μ = μ + d2
μ = −(μ + b2

μ) = −(μ + c2μ) = 4.

These two facts imply items (b’) and (c’). This ends the proof of the claim. �

The proof of item (a) of the lemma is now complete. Finally, item (b) follows
directly from Remark 3.8. The proof of the lemma is now complete. �

3.3 Contracting/Expanding Invariant Cone Fields

In this section, we study the condition (BH2) of a blender-horseshoe involving invari-
ance, contraction, and expansion of the cone fields in (2.1). This condition is a con-
sequence of the following lemma.

Lemma 3.10 Let 0 < ϑ < 1 and θ = 1/2. Then, for every (ξ,μ) ∈ P and every
p ∈ Aξ,μ ∪ Bξ,μ the following holds:

(i) Cs
ϑ

(
Gξ,μ(p)

) ⊂ D(Gξ,μ)p
(Cs

ϑ(p)
)
,

(ii) D(Gξ,μ)p
(Cu

θ (p)
) ⊂ Cu

θ

(
Gξ,μ(p)

)
,

(iii) D(Gξ,μ)p
(Cuu

θ (p)
) ⊂ Cuu

θ

(
Gξ,μ(p)

)
,

(iv) DGξ,μ|Cu
θ

is uniformly expanding and DGξ,μ|Cs
ϑ

is uniformly contracting for
every ϑ sufficiently small.

Proof. Consider p = (x, y, z) ∈ Aξ,μ ∪ Bξ,μ and v = (u, v, w) ∈ Tp�, write

(u1, v1, w1)
def= D(Gξ,μ)p(v) = (v, 2 y v, v + ξ w).

Recalling (3.9) and (3.7), we have that if (x, y, z) ∈ Aξ,μ ∪ Bξ,μ then y ∈ Iμ ∪ Jμ
and thus |y| >

√
5, for every μ ∈ (−10,−9).

The items of the lemma are proved in the following claims.

Claim 3.11 (Item (i)) Let 0 < ϑ < 1. For every v ∈ ∂Cs
ϑ(p) \ {0̄} we have

D(Gξ,μ)p(v) ∈ (Cs
ϑ(Gξ,μ(p)

))c
.
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Proof. If v ∈ ∂Cs
ϑ(p) \ {0̄} then ϑ (

√
v2 + w2) = |u|. Since |y| >

√
5, we get that

√
v2
1 + w2

1 ≥ |v1| ≥ 2 |y| |v| > 2
√
5 |v| = 2

√
5 |u1| > |u1| > ϑ |u1|.

Therefore D(Gξ,μ)p(v) /∈ Cs
ϑ(Gξ,μ(p)

)
, proving the claim. �

Claim 3.12 (Item (ii)) For every v ∈ Cu
1/2(p) it holds D(Gξ,μ)p(v) ∈ Cu

1/2

(
Gξ,μ(p)

)
.

Proof. Since |y| >
√
5, we have that

√
v2
1 + w2

1 ≥ |v1| = 2 |y| |v| > 2
√
5 |v| > 2 |u1|,

proving the claim. �

Claim 3.13 (Item (iii)) For every v ∈ Cuu1/2(p) it holds D(Gξ,μ)p(v) ∈ Cuu1/2
(
Gξ,μ(p)

)
.

Proof. We need to check that

√
u2 + w2 <

1

2
|v| ⇒

√
u2
1 + w2

1 <
1

2
|v1|.

Note that
√

u2 + w2 < 1
2 |v| implies that |w| < 1

2 |v|, and hence

u2
1 + w2

1 = v2 + (v + ξ w)2 ≤ 2 v2 + 2 ξ |v| |w| + ξ2 |w|2 ≤
(
2 + ξ +

(
ξ

2

)2
)

v2.

Now ξ ∈ (1.18, 1.19) implies that

(
2 + ξ

2
+

(
ξ

2

)2
)

< 4

and hence
u2
1 + w2

1 < 4v2.

Thus, since p = (x, y, z) ∈ Aξ,μ ∪ Bξ,μ implies that |y| >
√
5, it follows

2
√

u2
1 + w2

1 < 4 |v| < 2 |y| |v| = |v1|,

proving the claim. �

Claim 3.14 (Item (iv)) DGξ,μ|Cu
1/2

is uniformly expanding and, if ϑ is small enough,
DGξ,μ|Cs

ϑ
is uniformly contracting.
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Proof. The uniform contraction of the cone field Cs
ϑ for small ϑ follows from the fact

that D(Gξ,μ)p is an endomorphism whose eigenspace associated the eigenvalue 0 is
spanned by (1, 0, 0).

To see that DGξ,μ uniformly expands the vectors in Cu
1/2 consider the norm

|(u, v, w)|∗ def= max
{
|u|,

√
v2 + w2

}
.

Take v = (u, v, w) ∈ Cu
1/2(p) and write D(Gξ,μ)p(v) = (u1, v1, w1) = (v, 2 y v,

v + ξ w). We claim that if v ∈ Cu
1/2(p) then |D(Gξ,μ)pv|∗ > |v|∗. By compact-

ness, this implies that |D(Gξ,μ)pv|∗ > c0 |v|∗, for some uniform c0 > 1. Note that
the Euclidean norm || · || and | · |∗ are equivalent, hence there is κ > 1 such that
κ−1||v|| ≤ |v|∗ ≤ κ||v||. The number � in (BH2) is the first �0 with c�0

0 > κ.
We now prove that |D(Gξ,μ)pv|∗ > |v|∗. Note that for v = (u, v, w) ∈ Cu

1/2(p)

we have |v|∗ = √
v2 + w2 and

(3.12) v2
1 + w2

1 = 4 v2 y2 + (v + ξ w)2 ≥ 4 v2 y2 + v2 − 2 ξ |v| |w| + ξ2 w2.

We divide the proof into two cases: (6.5) |v| ≥ |w| and (6.5) |v| ≤ |w|. If (6.5) |v| ≥
|w|, using that ξ ∈ (1.18, 1.19) and |y| >

√
5, we get that

(3.13) 4 v2 y2 − 2 ξ |v| |w| ≥ (20 − 13 ξ) v2 > 4 v2 ≥ 0.

Equations (3.12) and (3.13) immediately imply that

v2
1 + w2

1 > 5 v2 + ξ2 w2 > v2 + w2.

Hence, |D(Gξ,μ)pv|∗ > |v|∗, proving the first case. Similarly, if (6.5) |v| ≤ |w| then

v21 + w2
1 ≥ 4 y2 v2 + ξ2 w2 − 2 ξ |v| |w| + v2 > 4y2v2 + ξ2 w2 − 2 ξ (6.5)−1 w2 + v2.

Condition ξ ∈ (1.18, 1.19) implies that

ξ2 − 2 ξ (6.5)−1 > 1.

Thus
v2
1 + w2

1 ≥ v2 + w2.

Thus, |D(Gξ,μ)pv|∗ > |v|∗. This ends the proof of the claim. �

The proof of the lemma is now complete. �

Remark 3.15 For each p = (x, y, z) ∈ R
3 we identify TpR

3 with R
3 and consider

the canonical basis {i, j, k}. Note that D(Gξ,μ)p(i) = 0, D(Gξ,μ)p(j) = i + 2 y j +
k, and D(Gξ,μ)p(k) = ξ k. In particular, 〈D(Gξ,μ)p(j), j〉 < 0 (resp. > 0) if y < 0
(resp. y > 0). As a consequence, for every θ > 0 and every p ∈ Aξ,μ, the derivative
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D(Gξ,μ)p sends the semi-positive cone Cuu
θ (p) ∩ {y > 0} (resp. semi-negative cone)

into the semi-space {y < 0} (resp. {y > 0}). When p ∈ Bξ,μ the derivative D(Gξ,μ)p

maps the semi-positive cone Cuu
θ (p) ∩ {y > 0} (resp. semi-negative cone) into {y >

0} (resp. {y > 0}).

3.4 The Markov Partition

To define the Markov partition in Condition (BH3) we need some preliminary con-
structions.

For (ξ,μ) ∈ P consider the auxiliary straight lines R1
ξ,μ, R2

ξ,μ in the plane YZ

defined by the equations and depicted in Fig. 5,

R1
ξ,μ

def= {(
y, z1ξ(y)

) : z1ξ(y) = ξ−1 (22 − y), y ∈ R
}
,

R2
ξ,μ

def= {(
y, z2ξ(y)

) : z2ξ(y) = ξ−1 (−40 − y), y ∈ R
}
.

Recall the definition of the intervals Iμ = [aμ, bμ] and Jμ = [cμ, dμ] in (3.8). Consider
the auxiliary parallelogram Aξ,μ in the plane YZ whose boundary consists of the
following segments (see Fig. 5):

Ł1
ξ,μ

def= {(
y, z1ξ(y)

) : y ∈ Iμ
}
, Ł2

ξ,μ
def= {aμ} × [

z2ξ(aμ), z1ξ(aμ)
]
,

Ł3
ξ,μ

def= {(
y, z2ξ(y)

) : y ∈ Iμ
}
, Ł4

ξ,μ
def= {bμ} × [

z2ξ(bμ), z1ξ(bμ)
]
.

Analogously, consider the parallelogram Bξ,μ in the plane YZ bounded by

Ł̃1
ξ,μ

def= {(
y, z1ξ(y)

) : y ∈ Jμ
}
, Ł̃2

ξ,μ
def= {cμ} × [

z2ξ(cμ), z1ξ(cμ)
]
,

Ł̃3
ξ,μ

def= {(
y, z2ξ(y)

) : y ∈ Jμ
}
, Ł̃4

ξ,μ
def= {dμ} × [

z2ξ(dμ), z1ξ(dμ)
]
.

Remark 3.16 Since (ξ,μ) ∈ P , it follows that Aξ,μ and Bξ,μ are contained in
(−4, 0) × (−40, 22) and (0, 4) × (−40, 22), respectively. By the definitions of Aξ,μ

and Bξ,μ, it holds that

gξ,μ(∂Aξ,μ) = gξ,μ

( ∪4
i=1 Ł

i
ξ,μ

) = ∂
([−4, 4] × [−40, 22]),

gξ,μ(∂Bξ,μ) = gξ,μ

( ∪4
i=1 Ł̃

i
ξ,μ

) = ∂
([−4, 4] × [−40, 22]),

and thus
gξ,μ(Aξ,μ) = gξ,μ(Bξ,μ) = [−4, 4] × [−40, 22].

We now show that the sets Aξ,μ and Bξ,μ (see Fig. 5).
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Aξ,μ

Bξ,μ

Aξ,μ

Bξ,μ

Z

Y

X

R1
ξ,μR2

ξ,μ

Iμ

Jμ

Z

Y

Fig. 5 The Markov partition of the blender-horseshoe

Aξ,μ
def= [−4, 4] × Aξ,μ and Bξ,μ

def= [−4, 4] × Bξ,μ.

form a Markov partition of the blender-horseshoe of Gξ,μ in �. Observe first that

Aξ,μ = (Gξ,μ|�)−1(Gξ,μ(Aξ,μ) ∩ �)
)
, Bξ,μ = (Gξ,μ|�)−1(Gξ,μ(Bξ,μ) ∩ �)

)
.

The next lemma completes the proof of condition (BH3).

Lemma 3.17 For every (ξ,μ) ∈ P the following holds

(a) Aξ,μ ∪ Bξ,μ ⊂ [−4, 4] × (−4, 4) × (−40, 22),
(b) Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ) ⊂ (−4, 4) × [−4, 4] × R.

Proof. Item (a) follows fromRemark 3.16. For item (b), note that Lemma 3.6 implies
that

Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ) ⊂ Gξ,μ(Aξ,μ) ∪ Gξ,μ(Bξ,μ) ⊂ (−4, 4) × [−4, 4] × R,

completing of proof of lemma. �

3.5 uu-Discs Through the Local Stable Manifolds

We study Condition (BH4) of blender horseshoes about the relative position of
the uu-discs through the local stable manifolds of Pξ,μ = (pμ, pμ, p̃ξ,μ) and Qμ =
(qμ, qμ, q̃ξ,μ) with respect to the boundary of �. We reduce this analysis to the two
dimensional case by projecting these discs on the plane YZ. Consider the projection
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Fig. 6 The lines L1
ξ,μ, L2

ξ,μ
and the projections in the
plane YZ of the cube � and
the uu-cones at Pξ,μ, Qξ,μ

Z

Y

pμ

qμ

p̃ξ,μ

q̃ξ,μ

L1
ξ,μL2

ξ,μ

22

4

−40

−4

Cuu
1/2(Pξ,μ)

Cuu
1/2(Qξ,μ)

�1 : R3 → R
2, �1(x, y, z)

def= (y, z).

Recalling the formulae for the stable manifolds W s(Pξ,μ) and W s(Qξ,μ) in (3.3), we
get �1(W s(Pξ,μ)) = (pμ, p̃ξ,μ) and �1(W s(Qξ,μ)) = (qμ, q̃ξ,μ).

Consider the auxiliary straight lines in the plane YZ through (pμ, p̃ξ,μ) and
(qμ, q̃ξ,μ):

L1
ξ,μ

def=
{(

y, z1ξ,μ(y)
) : z1ξ,μ(y) = 1

2
(y − pμ) + p̃ξ,μ, y ∈ R

}
,

L2
ξ,μ

def=
{(

y, z2ξ,μ(y)
) : z2ξ,μ(y) = 1

2
(y − qμ) + q̃ξ,μ, y ∈ R

}
.

Note that L1
ξ,μ and L2

ξ,μ are contained in the boundary of �1
(Cuu

1/2(Pξ,μ)
)
and of

�1
(Cuu

1/2(Qξ,μ)
)
, respectively. These conditions are depicted in Fig. 6. Thus (BH4)

follows now from the next lemma.

Lemma 3.18 For every (ξ,μ) ∈ P it holds that

L1
ξ,μ ∩ (

�1(�) ∩ {z = 22}) = ∅, L2
ξ,μ ∩ (

�1(�) ∩ {z = −40}) = ∅.

Proof. To prove the lemma it is enough to check that

z1ξ,μ(4) < 22 and z2ξ,μ(−4) > −40, for every (ξ,μ) ∈ P.

The choice of parameters (ξ,μ) and the estimates of pμ, qμ, p̃ξ,μ, q̃ξ,μ in (3.2), lead
directly to these inequalities. �
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3.6 Position of Images of uu-Discs

We now study the relative positions of the images of uu-discs contained in� in Con-
dition (BH5). We see that this condition follows from the one-dimensional dynamics
on the unstable center manifolds of the saddles Pξ,μ and Qξ,μ, recall (3.4).

3.6.1 One-Dimensional Associated Dynamics

Recall that Pξ,μ = (pμ, pμ, p̃ξ,μ) and Qμ = (qμ, qμ, q̃ξ,μ) and that the restriction
of Gξ,μ to the one-dimensional center unstable manifolds W cu(Pξ,μ), W cu(Qξ,μ) in
(3.4) is just an affine multiplication by ξ > 1, see Remark 3.3. Denote by φr

ξ,μ the
restriction map Gξ,μ|W cu(Rξ,μ)∩�, r = p, q and R = P, Q, that is given by

φr
ξ,μ : [−40, 22] → R, φr

ξ,μ(z)
def= ξ z + rμ = ξ z + (1 − ξ) r̃ξ,μ, r = p, q,

wherewe use the relation rμ = (1 − ξ) r̃ξ,μ. For r = p, q, consider the interval Irξ,μ
def=

[αr
ξ,μ,β

r
ξ,μ], where

αr
ξ,μ

def= ξ−1(−40 − (1 − ξ) r̃μ,ξ), βr
ξ,μ

def= ξ−1(22 − (1 − ξ) r̃ξ,μ).

Note that φr
ξ,μ(I

r
ξ,μ) = [−40, 22] and φr

ξ,μ(r̃ξ,μ) = r̃ξ,μ ∈ Irξ,μ.

Lemma 3.19 Given a uu-disc L contained in � let LCξ,μ

def= L ∩ Cξ,μ, with C = A,B.
Then Gξ,μ(LCξ,μ

) satisfies (BH5).

Proof. We first show item (1) of (BH5). Items (2), (3), and (4) are obtained similarly
and their proofs will be omitted.

From (2.2) and (3.3), the local stable manifolds of Pξ,μ and Qξ,μ are given by

(3.14)
W s

loc(Pξ,μ) =
{
(t + pξ,μ, pξ,μ, p̃ξ,μ) : −4 − pξ,μ ≤ t ≤ 4 − pξ,μ

}
,

W s
loc(Qξ,μ) =

{
(t + qξ,μ, qξ,μ, q̃ξ,μ) : −4 − qξ,μ ≤ t ≤ 4 − qξ,μ

}
.

Given a uu-disc L ⊂ � consider the intersections

X L
μ

def= L ∩ (
� ∩ {y = pμ}

) = LAξ,μ
∩ (

� ∩ {y = pμ}
) = (xμ, pμ, zμ),

X̄ L
μ

def= L ∩ (
� ∩ {y = qμ}

) = LBξ,μ
∩ (

� ∩ {y = qμ}
) = (x̄μ, qμ, z̄μ).

Remark 3.20 Recall the definitions of the right and left classes of uu-discs U r
W and

U �
W , respectively, in Remark 2.2. Using (3.14) we have the following:

• L ∈ U �
W s

loc(Pξ,μ) iff zμ < p̃ξ,μ and L ∈ U r
W s

loc(Pξ,μ) iff zμ > p̃ξ,μ,

• L ∈ U �
W s

loc(Qξ,μ) iff z̄μ < q̃ξ,μ and L ∈ U r
W s

loc(Qξ,μ) iff z̄μ > q̃ξ,μ.
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To prove (1) in (BH5), take any L ∈ U r
W s

loc(Pξ,μ). We will see that Gξ,μ(LAξ,μ
) ∈

U r
W s

loc(Pξ,μ). By Remark 3.20, the point X L
μ = (xμ, pμ, zμ) satisfies zμ > p̃ξ,μ. Note

that
Gξ,μ(X L

μ ) = (
pμ, pμ,φ

p
ξ,μ(zμ)

) = (
pμ, pμ, ξzμ + (1 − ξ) p̃ξ,μ

)
.

Since zμ > p̃ξ,μ it follows that φ
p
ξ,μ(zμ) > p̃ξ,μ. Remark 3.20 now implies that

Gξ,μ(LAξ,μ
) ∈ U r

W s
loc(Pξ,μ).

Since items (5) and (6) of (BH5) are analogouswe just prove item (5).We just need
to check that if L ∈ U r

W s
loc(Pξ,μ) or L ∩ W s

loc(Pξ,μ) �= ∅ then Gξ,μ(LBξ,μ
) ∈ U r

W s
loc(Pξ,μ).

Remark 3.21 Consider the projection �1(x, y, z) = (y, z) and note that

�1
(
L ∩ {y ≥ pμ}

) ⊂ �ξ,μ
def= {

(y, z) : z ≥ z∗
ξ,μ(y)

}
,

see Fig. 7. Moreover, �1(LBξ,μ
) ⊂ �ξ,μ ∩ �1(Bξ,μ).

Note that the worst case to prove (5) in (BH5) occurs when L is contained in the
planeYZ and equal to the straight line L∗

ξ,μ in the planeYZ through (pμ, p̃ξ,μ) given
by

(3.15) L∗
ξ,μ

def=
{(

y, z∗
ξ,μ(y)

) : z∗
ξ,μ(y) = −1

2
(y − pμ) + p̃ξ,μ, y ∈ R

}
.

Consider the segment of L∗
ξ,μ given by (see Fig. 7)

γξ,μ
def= {(

y, z∗
ξ,μ(y)

) : y ∈ Jμ
} ⊂ L∗

ξ,μ ∩ �1(Bξ,μ)

and the point z̃ξ,μ defined by

X

Y

Z

Pξ,μ

L
Bξ,μ

Cuu
1/2(Xμ)

• Xμ

Jμ

Y

Z

γξ,μ

pμ

p̃ξ,μ

L∗
ξ,μ

Π1(L)

Π1(Bξ,μ)

22

4

−4

0

(a) (b)

Fig. 7 a L is a uu-disc in Ur
W s

loc(Pξ,μ)
. b Projection of L in the plane YZ



160 L. J. Díaz and S. A. Pérez

(3.16) gξ,μ(γξ,μ) ∩ {y = pμ} = {(pμ, z̃ξ,μ)},

where the endomorphism gξ,μ obtained by projecting Gξ,μ into the planeYZ defined
in (3.5). By Remark 3.20 to get Gξ,μ(LBξ,μ

) ∈ U r
W s

loc(Pξ,μ) it is sufficient to show that
z̃ξ,μ > p̃ξ,μ.

Claim 3.22 It holds z̃ξ,μ > p̃ξ,μ for every (ξ,μ) ∈ P .

Proof. The intersection (3.16) is defined by the conditions

(pμ, z̃ξ,μ) = (y2 + μ, ξ z∗
ξ,μ(y) + y), y > 0.

Recalling the definition of z∗
ξ,μ(y) in (3.15) we get

z̃ξ,μ = ξ z̃∗
ξ,μ

(√
pμ − μ

) + √
pμ − μ = ξ

2
pμ +

(
1 − ξ

2

)√
pμ − μ + ξ p̃ξ,μ.

Hence

z̃ξ,μ − p̃ξ,μ = ξ

2
pμ +

(
1 − ξ

2

)√
pμ − μ + (ξ − 1) p̃ξ,μ.

The estimates in (3.2) and the choice of (ξ,μ) ∈ P imply that

ξ

2
pμ > −1.6065,

(
1 − ξ

2

)√
pμ − μ > 1.014, (ξ − 1) p̃ξ,μ > 2.34.

These inequalities imply that z̃ξ,μ − p̃ξ,μ > 0, proving the claim. �

The proof of the lemma is now complete. �

3.7 Position of Images of uu-Discs in Between

Condition (BH6) is given by Lemma 3.23 below. First, recall the definition of the
family of discs in between Ub def= U �

W s
loc(P) ∩ U r

W s
loc(Q).

Lemma 3.23 Consider any L ∈ Ub. Then either Gμ,ξ(LAξ,μ
) or Gμ,ξ(LBξ,μ

) con-
tains a uu-disc in Ub.

Proof. Consider L ∈ Ub. By item (2) in (BH5), if Gξ,μ(LAξ,μ
) ∈ U r

W s
loc(Qξ,μ) then

Gξ,μ(LAξ,μ
) ∈ Ub and we are done. Similarly, by item (3) in (BH5), if Gξ,μ(LBξ,μ

) ∈
U �

W s
loc(Pξ,μ) then Gξ,μ(LBξ,μ

) ∈ Ub and we are done. Thus in what follows we argue by
contradiction assuming that:

(a) Gξ,μ(LAξ,μ
) ∈ U �

W s
loc(Qξ,μ) or intersects W s

loc(Qξ,μ) and
(b) Gξ,μ(LBξ,μ

) ∈ U r
W s

loc(Pξ,μ) or intersects W s
loc(Pξ,μ).
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L

̂LI
μ

̂LJ
μ

Iμ

Jμ

p̃ξ,μ

q̃ξ,μ

̂Lμ

22

4

−4

−40

̂Lp
ξ,μ

̂Lq
ξ,μ

Fig. 8 The segments L̂a
μ and L̂b

μ and the lines L̂ p
ξ,μ and L̂q

ξ,μ

To prove the lemma we need some auxiliary constructions. Consider the point
Y L

μ = (xμ, aμ, zμ)
def= L ∩ {y = aμ}, where aμ is defined in (3.6). In the plane YZ,

take the auxiliary straight line L̂μ through (aμ, zμ) given by (see Fig. 8)

L̂μ
def=

{(
y, za

μ(y)
) : za

μ(y) = 1

2
(y − aμ) + zμ, y ∈ R

}
.

Observe that L̂μ ⊂ ∂�1
(Cuu

1/2(Y
L
μ )

)
. Consider the sub segments of L̂μ given by (see

Fig. 8)

L̂ I
μ

def= {(
y, za

μ(y)
) : y ∈ Iμ

}
and L̂ J

μ
def= {(

y, za
μ(y)

) : y ∈ Jμ
}
.

Recall that Pξ,μ = (pμ, pμ, p̃ξ,μ) and Qμ = (qμ, qμ, q̃ξ,μ) and consider the straight
lines L̂ p

ξ,μ and L̂q
ξ,μ contained in ∂�1

(Cuu
1/2(Pξ,μ)

)
and ∂�1

(Cuu
1/2(Qξ,μ)

)
, respectively,

given by

L̂ p
ξ,μ

def=
{(

y, z p(y)
) : z p(y) = 1

2
(y − pμ) + p̃ξ,μ, y ∈ R

}
,

L̂q
ξ,μ

def=
{(

y, zq(y)
) : zq(y) = −1

2
(y − qμ) + q̃ξ,μ, y ∈ R

}
.

Finally, consider the following subsets of �

�
p
ξ,μ

def=
(
[−4, 4] × L̂ p

ξ,μ

)
∩ �, �

q
ξ,μ

def=
(
[−4, 4] × L̂q

ξ,μ

)
∩ �.



162 L. J. Díaz and S. A. Pérez

Observe that � \ �r
ξ,μ, r = p, q, consists of two connected components. We let

�
Q
ξ,μ,right the connected component of � \ �

q
ξ,μ containing Pξ,μ and by �

Q
ξ,μ,left the

other component. Similarly, we let �P
ξ,μ,left the connected component of � \ �

p
ξ,μ

containing Qξ,μ and by �P
ξ,μ,right the other component.

After these preliminary constructions, we are now ready to prove the lemma.
Note that by Remark 3.15 “Gξ,μ

([−4, 4] × L̂ I
μ

)
is at the left of Gξ,μ(LAξ,μ

)” and
“Gξ,μ

([−4, 4] × L̂ J
μ

)
is at the right of Gξ,μ(LBξ,μ

)”. Therefore

• condition (a) implies that Gξ,μ

([−4, 4] × L̂ I
μ

) ⊂ closure(�Q
ξ,μ,left),

• condition (b) implies that Gξ,μ

([−4, 4] × L̂ J
μ

) ⊂ closure(�P
ξ,μ,right).

We now see that these two conditions cannot hold simultaneously. Consider
ω I

ξ,μ,ω
J
ξ,μ ∈ Z given by

gξ,μ

(
L̂ I

μ

) ∩ {y = qμ} = (qμ,ω
I
ξ,μ) and gξ,μ

(
L̂ J

μ

) ∩ {y = pμ} = (pμ,ω
J
ξ,μ).

Arguing as in Claim 3.22, we get

ω I
ξ,μ = ξ

2
(qμ − aμ) + ξzμ + qμ and ω J

ξ,μ = ξzμ + aμ.

On the other hand, our assumptions and Remark 3.20 imply that ω I
ξ,μ ≤ q̃ξ,μ and

ω J
ξ,μ ≥ p̃ξ,μ. Thus

|q̃ξ,μ − p̃ξ,μ| ≤ |ω I
ξ,μ − ω J

ξ,μ| ≤
(ξ

2
+ 1

)
|qμ − aμ| ≤ 12.16,

where the last inequality follows from the estimates in (3.2) and (3.7). Since, also by
(3.2), we have that |q̃ξ,μ − p̃ξ,μ| ∈ [31.4, 35.6]we derive a contradiction, completing
the proof of the lemma. �
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exponential growth-rate function is replaced by an arbitrary gauge function. This
generalized topological entropy had previously been described byGalatolo in 2003—
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same as that described by Zhao and Pesin in 2015 (that involves a re-parameterization
of time). One of the main motivations for studying this new set of invariants comes
from the need to distinguish maps with zero (standard) topological entropy. In such
cases, if the dynamics is not equicontinuous, then there exists at least one gauge
for which the corresponding generalized entropy is positive. After illustrating this
simple qualitative criterion, we perform a more quantitative study of the growth
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1 Introduction

The search for topological invariants that would help classify zero entropy maps
goes back at least to the mid-1970’s with the work of Goodman [15] who, inspired
by the work of Kushnirenko [19], introduced the concept of topological sequence
entropy (see also [20]). There are several such invariants, but in this paper we will
only consider the generalized entropy proposed by Galatolo [14], and later by Zhao
and Pesin [28] under the name of scaled entropy (in a slightly different formulation
that involves a re-parameterization of time).

Recall that, for metric spaces, topological entropy can be computed in at least
three different ways—either as the exponential growth rate in n of the maximal
cardinality of (n, ε)-separated sets, or as the exponential growth rate in n of the
minimum cardinality of (n, ε)-spanning sets (in the limit as ε → 0) or, in a yet
more subtle way, via coverings. Galatolo observed in [14] that if one replaces the
exponential gauge by other gauges, the resulting growths associated to these three
quantities (still exist and) are the same. This equality allows him to conclude that,
just like topological entropy, these generalized entropies are topological invariants,
a conclusion similarly found in [28].

The generalized entropies studied in the present paper appear in various guises in
the literature, under a variety of different names. Thus, Zhao and Pesin [28] use the
expression ‘scaled entropy’ for the general case. We will often use the expression
‘slow entropy’ when the growth is a priori known (or at least expected) to be sub-
exponential—in agreement with the terminology employed by Katok and Thouvenot
in [18]. Likewise, the expression ‘fast entropy’ can be usedwhen the growth is known
(or at least expected) to be super-exponential. As it turns out, fast entropy happens
generically in low smoothness [7, 8]. In this paper, however, we are only interested
in slow entropy, since all examples we treat here are maps with zero topological
entropy.

Measuring the precise growth rate of spanning or separated sets of a given dynam-
ical system can be a formidable task. This is one of themain reasons whywe focus on
a few simple, computable examples. Amuch easier task is to determinewhether there
exists some gauge γ (a growth-rate function) for which the corresponding γ-entropy
is positive. Here, a simple criterion is available: a topological dynamical system has
zero growth of all orders (i.e., has zero γ-entropy for every gauge γ) if and only if it is
equicontinuous. This was observed by Galatolo in [14] as an immediate consequence
of a result on topological complexity proved by Blanchard, Host and Maass in [3].
Note that every isometry of ametric space is equicontinuous. Examples of dynamical
systems that are not equicontinuous include, among many others: (i) smooth endo-
morphisms with an unstable periodic point (either a source or a saddle); in particular
interval maps with a repelling periodic orbit, embeddings of the two-disk possessing
a saddle such as Hénon maps, or their generalizations to dimensions greater than
two; (ii) circle homeomorphisms with Bohl-Denjoy invariant Cantor sets [4, 11];
(iii) continuous twist-maps whose rotation set is an arc with positive length.
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Going beyond these simple qualitative examples, our goal here is to be a bit
more quantitative and provide actual estimates on the slow-entropy of the following
examples:

• Period-doubling interval maps, along the cascade of period-doubling bifurcations,
especially the accumulation point at the boundary of zero topological entropy;

• Certain bi-Hölder homeomorphisms of the 2-dimensional annulus (or 2-torus)
with zero topological entropy and without periodic points.

The study of the former set of examples uses a generalization, for sub-exponential
growth, of a famous result due to Misiurewicz and Szlenk [22], expressing the topo-
logical entropy of a piecewise-monotone interval map as the exponential growth rate
of the lap numbers of the iterates of the map. For the statement of this more general
version, see Sect. 4.1. We consider smooth enough unimodal maps at the boundary
of zero topological entropy satisfying the functional fixed-point equation introduced
in [6, 13, 25]. (We only need the weakest of proofs of existence of the fixed point).

Concerning the latter family of examples, our original motivation for study-
ing such maps was an attempt at understanding what happens in situations lying
‘between’ Katok’s Theorem [16], stating that, if a C1+α diffeomorphism of a com-
pact surface does not possess a horseshoe then it has zero topological entropy (so
for maps with sufficient regularity, complicated dynamics requires the existence of
a horseshoe), and Rees’s example [23] of a minimal homeomorphism of the 2-torus
with positive topological entropy (thus showing that for maps with little or no regu-
larity, complicated dynamical behaviour may occur without a horseshoe).

For both sets of examples above, our results are merely sketched in the present
paper, but full details will be given in [9].

2 Slow Entropy

We start with an informal description of slow entropy and then proceed to a for-
mal definition. Suppose f : X → X is a continuous self-map of a compact metric
space X . It is well-known since Bowen [5] and independently Dinaburg [12] that
the topological entropy of f is a non-negative extended real number that measures
the exponential growth rate in n of the maximal size of a set of ε-distinguishable1

orbit segments x, f (x), . . . , f n−1(x) of length n, in the limit as ε → 0. The orig-
inal definition, due to Adler, Konheim and McAndrew [1], is given in terms of
(open) coverings (see below) and is valid for continuous self-maps of arbitrary com-
pact Hausdorff spaces. However, the Bowen-Dinaburg definition is oftentimes more
practical, and in fact applicable also to uniformly continuous maps of non-compact
metric spaces.

1We say that two orbit segments x, f (x), . . . , f n−1(x) and y, f (y), . . . , f n−1(y) are ε-distin-
guishable if there exists 0 ≤ j ≤ n − 1 such that d( f j (x), f j (y)) > ε, where d is the metric of X .
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The concept of generalized entropy, or γ-entropy is obtained simply by replacing
the notion of ‘exponential growth rate’ in the above definition by ‘γ-growth rate’,
where γ : R+ → R

+ is a non-decreasing monotone function such that γ(t) → +∞
as t → +∞. Thus, ordinary topological entropy corresponds to the casewhen γ(t) =
et . We refer to γ as the (entropy) gauge, or (entropy) growth function. Since here we
are only interested in gauges γ that grow less than the exponential, we sometimes
use the expression slow entropy when referring generically to such γ-entropies.

Let us now present the formal definitions. Most of what follows is standard, and
the details on what is standard can be found in [27]. What is not standard is kept here
to a bare minimum—much more will be given in [9].

2.1 Definition Via Covers

Let X be a compact Hausdorff topological space. When we refer to a cover of X ,
we mean a collection A ⊆ P(X) of (not necessarily open) subsets of X such that
X = ⋃

A∈A A. Given two covers A and B of X we denote their join by A ∨ B, i.e.,
A ∨ B = {A ∩ B : A ∈ A, B ∈ B}.

Let f : X → X be a continuous map, and letA be a cover. We define f −1(A), as
usual, to be the cover of X consisting of sets f −1(A), A ∈ A. Then f −1(A ∨ B) =
f −1(A) ∨ f −1(B).
Given a cover A of X , define N (A) to be the minimal cardinality of all finite

subcovers of A. If there are no such subcovers we set N (A) = ∞. This minimal
cardinality satisfies several simple but important properties, such as: (i) N (A ∨ B) ≤
N (A)N (B) (sub-multiplicativity); (ii) N (A) ≤ N (B) whenever B is a refinement2

of A (monotonicity); (iii) N ( f −1A) ≤ N (A), and equality holds whenever f is
surjective (invariance under surjective maps).

For each n ≥ 1, define

An
f =

n−1∨

k=0

f −kA . (2.1)

Given a coverA of X , define the γ-topological entropy of f with respect toA by

hγ( f,A) = lim sup
n→∞

log N (An
f )

log γ(n)
. (2.2)

Note that hγ( f,A) ≤ hγ( f,B) whenever B is a refinement of A.

Remark 2.1 When γ(t) = exp(t), the above lim sup can be replaced by lim. This

follows by observing that the sequence an = log N
(∨n−1

i=0 f −iA
)
is subadditive,

and then invoking the standard subadditivity lemma.

2A cover A is said to be a refinement of the cover B if every member of A is a subset of a member
of B.
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Definition 2.1 The γ-topological entropy of f : X → X is given by

hγ( f ) = sup hγ( f,A) , (2.3)

where the supremum is taken over all open covers A of X .

Of course, the supremum always exists, though it may be infinite.
The following proposition is a slight extension of [27, Theorem 7.2].

Proposition 2.1 If γ is any given gauge, then γ-entropy is a topological-conjugacy
invariant. More precisely, let f : X → X and g : Y → Y be continuous, and let
φ : X → Y be a continuous surjection such thatφ ◦ f = g ◦ φ. Then hγ( f ) ≥ hγ(g).
In particular, if φ is a homeomorphism then hγ( f ) = hγ(g)

The following is a straightforward generalization of [1, Theorem 4].

Proposition 2.2 Let f : X → X be a continuousmap of a compactHausdorff space.
Then for each gauge γ we have the following facts.

(1) If � is a closed f -invariant subset of X, then hγ( f |�) ≤ hγ( f ).
(2) If X = �1 ∪ �2 ∪ · · · ∪ �N , where each � j is closed and f -invariant, then

hγ( f ) = max1≤ j≤N hγ( f |� j )

Everything so far holds true for an arbitrary gauge. However, another desirable prop-
erty for our generalized entropy is that it should grow as we iterate the map (or at
the very least not decrease). In order to establish such a property, we need to impose
some condition on the gauge.

Definition 2.2 We say that the gauge γ is very good if for all n ∈ N,

�(n) = lim
m→∞

log γ(mn)

log γ(m)
(2.4)

exists and is finite. We say that γ is eventually very good if the above limit exists for
all n ∈ N sufficiently large.

Proposition 2.3 If γ is a very good gauge, then for each positive integer n, we have
hγ( f n) = �(n)hγ( f ).

For a proof of Proposition 2.3, and more, see [9].
Examples. Besides the standard exponential gauge, there are plenty of very good

gauges. Indeed, every gauge of the form γr,s,t,C (n) = nr exp{Cns (log n)t }, where
C > 0 and r, s, t are non-negative real numbers (not simultaneously zero), is a very
good gauge. If �r,s,t,C (n) denotes the limit in (2.4) when γ = γr,s,t,C , then an easy
calculation shows that �r,s,t,C (n) = ns when s > 0, and �r,s,t,C (n) = 1 when s = 0.
This family of gauges includes in particular all exponential gauges (r = t = 0, s = 1)
and power-law gauges (s = t = 0, r > 0). All gauges appearing in the present paper
are of this form.
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2.2 Definitions Via Separated and Spanning Sets

Just as with ordinary topological entropy, γ-entropy can be defined à la Bowen and
Dinaburg, in terms of separated or spanning sets.

Given a metric space (X, d) let K ⊂ X be compact, and let f : X → X be a
continuous map. A set E ⊂ K is (n, ε)-separated for K with respect to f if for
all pairs of distinct points x, y ∈ E , there exists an integer 0 ≤ i< n such that
d( f i (x), f i (y)) ≥ ε. We will denote by S f (n, ε, K ) the maximal cardinality of an
(n, ε)-separated set for K with respect to f . The set E is (n, ε)-spanning for K with
respect to f if for each x ∈ K , there exists y ∈ E such that d( f i (x), f i (y)) < ε
for all 0 ≤ i< n. We denote by R f (n, ε, K ) the minimal cardinality of an (n, ε)-
spanning set for K with respect to f . When X is compact and K = X , we write
S f (n, ε) for S f (n, ε, X) and R f (n, ε) for R f (n, ε, X), respectively. The following is
classical [27, Sect. 7.2].

Proposition 2.4 For each ε′ > ε > 0, n ∈ N and compact K , we have

(i) S f (n, ε′, K ) ≤ S f (n, ε, K ),
(ii) R f (n, ε′, K ) ≤ R f (n, ε, K ),
(iii) R f (n, ε, K ) ≤ S f (n, ε, K ) ≤ R f (n, ε/2, K ).

This implies that the following limits exist (though they may be infinite) and are
equal, for every given gauge γ:

hγ
d( f, K ) = lim

ε→0
lim sup
n→∞

log S f (n, ε, K )

log γ(n)
= lim

ε→0
lim sup
n→∞

log R f (n, ε, K )

log γ(n)
. (2.5)

Accordingly, we formulate the following definition.

Definition 2.3 We define the γ-entropy of the map f with respect to the metric d to
be the non-negative extended real number given by

hγ
d( f ) = sup

K
hγ
d( f, K ) , (2.6)

where the supremum is taken over all compact subsets K of X .

The following can be found in [27, Corollary 7.7.1].

Proposition 2.5 Let (X, d) be a compact metric space, and let f : X → X be a
continuous map. For each positive δ, denote by Aδ the cover of X by all balls of
radius δ. Then for each ε > 0 and each n ∈ N, we have

N

(
n−1∨

i=0

f −iA2ε

)

≤ R f (n, ε) ≤ S f (n, ε) ≤ N

(
n−1∨

i=0

f −iAε/2

)

. (2.7)

This yields the following result.
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Corollary 2.1 If (X, d) is a compact metric space and f : X → X is a continuous
map, then for each gauge γ we have hγ

d( f ) = hγ( f ).

This immediately implies that, for a continuousmap f : X → X of a compactmetriz-
able space X and anymetric d generating its topology, the γ-entropy of f is indepen-
dent of d. Here are some simple situations in which the computation of γ-entropy is
trivial.

Proposition 2.6 (Eventually weak contractions) Let (X, d) be a compact metric
space and f : X → X a continuous mapping. Let K be a compact subset of X on
which f is eventually weakly contracting, i.e., there exists some k ∈ N such that

d( f k(x), f k(y)) ≤ d(x, y) ∀x, y ∈ K . (2.8)

Then hγ
d( f, K ) = 0 for every gauge function γ.

Remark 2.2 In particular, isometries have no growth of any order.

A similar argument also gives the following.

Proposition 2.7 Let (X, d) be a compact metric space and f : X → X a continuous
mapping. Let K be a compact subset of X for which limk→∞ diam( f k(K )) = 0. Then
hγ
d( f, K ) = 0 for every gauge function γ.

For these basic facts and more, see [9].

3 Equicontinuity Versus Slow Entropy

As we have seen in Sect. 2.2, Remark 2.2, every isometry of a compact metric space
has zero growth of all orders. In this section, we give a simple characterization of
maps which have zero growth of all orders. This characterization is due to Galatolo,
who observed in [14] that such maps are precisely those that have zero topological
complexity in the sense of Blanchard, Host and Maass [3] (see Definition 3.1).

Recall that a continuous dynamical system f : X → X acting on a metric space
(X, d) is said to be equicontinuous if for any ε > 0 there exists η > 0 such that
if x and y belong to X then d(x, y) < η implies that d( f n(x), f n(y)) < ε for all
n ≥ 0. One can also speak of local equicontinuity (as when studying, for instance,
the dynamics of a rational map in its Fatou set—see [21]), but this need not concern
us here.

Definition 3.1 The topological complexity function of the finite cover A of X with
respect to the dynamical system f : X → X is the non-decreasing function

comp(A, n) = N (An
f ) . (3.1)
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The following result, given by Blanchard, Host and Maas in [3, Proposition 2.2]
offers a characterization of equicontinuity in terms of the combinatorics of open
covers.

Proposition 3.1 The following two statements are equivalent:

(i) The dynamical system f : X → X is equicontinuous;
(ii) For each finite open cover A, there exists k ≥ 0 such that comp(A, n) ≤ k.

As a straightforward consequence of this result, Galatolo deduced the following in
[14, Proposition 20].

Proposition 3.2 The dynamical system f : X → X is equicontinuous if and only if
for each gauge γ the equality hγ( f ) = 0 holds true.

Note that every eventually weak contraction (hence every isometry) is equicontin-
uous, so Proposition 3.2 implies Proposition 2.6. More generally, every map which is
topologically conjugate to an eventually weak contraction is equicontinuous as well.
This includes translations on compact abelian groups; in particular, every adding
machine3 is equicontinuous.

With the characterization of zero growth of all orders given by Proposition 3.2 at
hand, Galatolo obtained in [14, Theorem 21] the following result.

Galatolo’s Theorem. The quadratic unimodal map q∞ at the boundary of positive
topological entropy is not equicontinuous, so that there exists some gauge γ such
that hγ(q∞) > 0.

It is well-known that the map q∞ is such that the closure of the forward orbit of its
critical point is an invariant Cantor set K∞, and that the action of q∞ on K∞ is con-
jugate to the dyadic adding machine (see for instance [10, Proposition 4.5, p. 242]).
Hence the positive slow entropy guaranteed by Galatolo’s Theorem is ‘happening’
away from the Cantor set K∞. Indeed, the proof of the above theorem uses, besides
Proposition 3.2, the fact that q∞ has expanding periodic orbits (of periods given by
powers of two) lying in the gaps of K∞.

It should be clear that one can use the criterion given by Proposition 3.2 to produce
many other examples of dynamical systems having positive slow entropy. It is often
quite easy to decide whether a system is or is not equicontinuous. Here is a list of
well-known examples.

Theorem 3.1 The following dynamical systems are not equicontinuous.

(i) Smooth self-maps f : M → M of a compact manifold having an unstable peri-
odic orbit.

3By an adding machine we mean a translation in the compact abelian group arising as the inverse
limit of a sequenceof homomorphisms . . . → Zmk−1 → Zmk → · · ·Zm2 → Zm1 ,where each cyclic
group Zmk is given the discrete topology, and for each k ≥ 1, mk−1 divides mk , and the homomor-
phism Zmk → Zmk−1 is reduction modulo mk−1. The translation map is induced by the add-one
map x �→ x + 1 in each Zmk . Whenmk = 2k for all k, the adding machine is called dyadic. See [2]
for a thorough discussion of general adding machines and references therein.
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(ii) Circle homeomorphisms f : T1 → T
1withBohl-Denjoy invariantCantor sets4.

(iii) Skew products (or twist maps) of the 2-torus T2 = R
2/Z2, say f : T2 → T

2,
of the form f (x, y) = (x + α, y + ϕ(x)) (mod Z

2), where α ∈ R and ϕ :
[0, 1] → R is continuous, ϕ(0) = 0 and ϕ(1) = m ∈ Z, m �= 0.

In particular, each of these systems has positive γ-entropy for some gauge γ.

Proof The arguments establishing failure of equicontinuity in cases (i), (ii) and (iii)
are straightforward. We give the argument only for case (ii), and leave the other two
cases as exercises for the reader. If f : T1 → T

1 is a map in (ii), we know that f has
a wandering interval J ⊂ T

1. Let Jn = f n(J ) for each n ∈ Z, and let 0 < ε < |J |.
Since the intervals Jn are pairwise disjoint, we have |Jn| → 0 as |n| → ∞. Given
δ > 0, choose n ∈ N so large that J−n has length less than δ. Then the endpoints of
J−n are less than δ apart, and yet their images under f n are the endpoints of J , which
are more than ε apart. This shows that f is not equicontinuous. �

Note that Per( f ) = Ø for all maps in (ii), and the same is true for all maps in
(iii) for which α is irrational. Also, it is clear that the quadratic unimodal map q∞
introduced above is of type (i). Thus, Galatolo’s Theorem is a special case of Theo-
rem 3.1. Regarding the latter, we could of course have added several other systems
to our list, such as continuous twist maps on the two-dimensional annulus (or the
two-dimensional torus) with a rotation set of positive length, skew-products over
translations on other compact abelian groups, etc. In each case, failure of equiconti-
nuity is fairly easy to prove.

Regarding topological complexity, we wish to point out that, in [20], Li and
Shen proved the following interesting result. Let f be a C3 unimodal map with a
non-flat critical point c, and suppose that f has a Cantor attractor. Then for each
open cover U of ω(c), the topological complexity function satisfies the inequality
comp (U , n) ≤ Cn log n for some constantC > 0 that may depend onU . From this it
easily follows that, if γ is any super-polynomial gauge, then hγ( f |ω(c)) = 0. Thus, if
such a unimodal map has super-polynomial growth, then such growth is coming from
outside the ω-limit set of its critical point. As we shall see in Sect. 4.2, the period-
doubling map (or the quadratic unimodal map q∞ in Galatolo’s Theorem) does have
super-polynomial growth, and therefore it perfectly illustrates this situation.

4 Slow Growth for One-Dimensional Maps

The qualitative results of Sect. 3, obtained via a simple criterion for non-equiconti-
nuity, are obviously not very satisfactory.Weneed quantitativemethods and/or results
that allow us to compute exactly, or at least estimate, the γ-growth rate of a system
for a given gauge γ. It seems quite hard to findmethods that work in ample generality,

4In other words, circle homeomorphisms having an exceptional minimal set. These go back to
Poincaré in the C0 category. Bohl [4] was the first to construct C1 diffeomorphisms with this
property, and later Denjoy [11] constructed C1+α examples of this type.
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but for one-dimensional systems—more precisely, for piecewise-monotone interval
maps—a very useful method is available, provided γ is a very good gauge in the
sense of Definition 2.2. In such cases, it suffices to find (through whatever means)
the γ-growth rate in n of the total number of turning points of the n-th iterate of the
map. This fact is a generalization of a well-known theorem due to Misiurewicz and
Szlenk [22], and its precise statement is given in Sect. 4.1.

In Sect. 4.2, we examine an interesting non-trivial example: an interval unimodal
map at the boundary of chaos—the period-doubling fixed point, or any map topo-
logically conjugate to it. We obtain some good estimates on the growth of maximal
separated sets, or equivalently of the number of critical points, as we iterate the map.
The precise growth-rate is super-polynomial but sub-exponential.

4.1 Slow Growth and Lap Numbers

Let us denote by I the interval [−1, 1]. Given a piecewise (strictly) monotone map
f : I → I , let

crit( f ) = {c ∈ I : f is not locally monotone at c} . (4.1)

Observe that this set is finite. Its elements are called turning points or critical points.
Since the composition of locally monotonemaps is locally monotone, for each n ∈ N

we have
crit( f n) =

⋃

0≤k<n

f −k(crit( f )) . (4.2)

For each k ∈ N, let

C f (k) = f −k(crit( f )) \ f −k+1(crit( f )). (4.3)

Then crit( f n) = ⋃
0≤k<n C f (k). We call c f (k) = CardC f (k) the k-th cutting num-

berof f .Define a lapof f to be amaximal closed subinterval of I onwhich f ismono-
tone. The collection of all laps of f n is denoted L f (n). We call � f (n) = Card L f (n)

the n-th lap number of f . Observe that since crit( f n) ∩ ∂ I = Ø it follows that
� f (n) = 1 + ∑

0≤k<n c f (k).

Theorem 4.1 Assume that γ is eventually very good, the γ-topological conditional
entropy of f n with respect to L f (n) satisfies hγ( f n|L f (n)) = o(�(n)), and either

(i) limn→∞ �(n) = +∞; or
(ii) if Uε denotes the ε-neighbourhood of the critical set crit( f ) in I then

lim
ε→0

lim sup
n→∞

log card(Uε ∩ crit( f n))

log card(crit( f n))
= 0 .
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Then

hγ( f ) = lim sup
n→∞

log � f (n)

log γ(n)
. (4.4)

This is the promised generalization, for very good gauges, of Misiurewicz-
Szlenk’s theorem [22]. The proof is a straightforward adaptation of their original
argument, and it will be given in [9].

4.2 Maps at the Accumulation of Period-Doubling

In this section we examine the period-doubling map f : I → I (where, as before,
I = [−1, 1]) from the point of view of slow entropy. The map f is the unique
quadratic unimodal map (meaning a unimodal map with a quadratic turning point)
arising as the solution to the functional equation

f (x) = − 1

α
f ◦ f (−αx) , for all x ∈ I , (4.5)

where 0 < α < 1 is the unique fixed point of f in the interior of I . Cascades of
period-doubling bifurcations in smooth one-parameter families of unimodal maps
typically terminate in a map topologically conjugate to f . Thus, unimodal maps
topologically conjugate to f are said to lie at the accumulation of period-doubling.
(See [26] for more details.)

Although f is a map with zero topological entropy, we will show that f exhibits
super-polynomial growth of maximal separated sets (we will shorten this expression
to super-polynomial growth). Since slow entropy is a topological invariant, the same
result is also true for the quadratic polynomial q∞, as well as any other map which
is topologically conjugate to f . Thus we will obtain the following.

Theorem 4.2 Every quadratic unimodal map which lies at the accumulation of
period-doubling has super-polynomial growth.

The super-polynomial growth of f , and thus the above theorem, is a straightfor-
ward consequence of the following lemma.

Lemma 4.1 Let f : I → I be the period-doubling map. Then the maximal cardi-
nality of an (n, ε)-separated set for f , namely S f (n, ε), has super-polynomial growth
in n. More precisely, there exists a constant C > 0 such that, for each sufficiently
small ε > 0, we have

lim sup
n→∞

log S f (n, ε)

log n
≥ C log

1

ε
. (4.6)

Proof Consider the central interval J0 = [−α,α] ⊂ I , which is invariant under f 2.
Denote by J1 the unique component of f −1(J0) which lies to left of the critical
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J0J1J2

f

f2

a−a

f f

Fig. 1 The graph of the period-doublingmap f . Here J0 denotes the central interval and J1, J2, . . .,
denotes the sequence of left-preimages of J0

point 0; note that J1 is in fact adjacent to J0 (their common endpoint being −α).
Inductively, define Jn as the unique component of f −1(Jn−1) which lies to left of 0.
It follows inductively that the intervals Jn and Jn−1 are adjacent, Jn being to the left
of Jn−1, and f (Jn) = Jn−1 (see Fig. 1).

Now let us fix 0 < ε < |J1| and n ≥ 1, and let E0 ⊂ J0 be an (n, ε)-separated
set for f 2|J0 : J0 → J0 with maximal cardinality S f 2|J0 (n, ε) = S f 2(n, ε, J0). Since
f 2|J0 is linearly conjugate to f with linear scaling given by α = |J0|/|I | (as we can
see from (4.5)), it follows that

Card(E0) = S f 2(n, ε, J0) = S f (n,
ε

α
) . (4.7)

Define Ek = f −k(E0) ∩ Jk for all k, and let G = ⋃n
k=0 E2k .

Claim G is a (2n, ε)-separated set for f 2 : I → I .

To prove this claim, let x, y ∈ G be any two distinct elements. If, on the one
hand, there exists 0 ≤ k ≤ n such that x, y ∈ E2k , then the points x∗ = f 2k(x) and
y∗ = f 2k(y) both belong to E0, so x∗ and y∗ get ε-separated after at most n iterates
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under f 2. This means that x and y get ε-separated after at most k + n ≤ 2n iterates
under f 2 in this case. If, on the other hand, x ∈ E2 j and y ∈ E2k with, say, j > k,
then y∗ = f 2k(y) ∈ E0, whereas x∗ = f 2k(x) ∈ E2( j−k). But then

|x∗ − y∗| ≥ dist(J2( j−k) , J0) ≥ |J1| > ε .

Hence x and y get ε-separated after k < n iterates under f 2. This proves the claim.
From the claim it follows that

S f 2(2n, ε) ≥ Card(G) > nCard(E0)

= nS f 2(n, ε, J0) . (4.8)

Since every (2n, ε)-separated set for f 2 : I → I is clearly a (4n, ε)-separated set for
f : I → I , we also have

S f 2(2n, ε) ≤ S f (4n, ε) . (4.9)

Combining (4.7), (4.8) and (4.9), we get the inequality

S f (4n, ε) ≥ nS f (n,
ε

α
) . (4.10)

Now, as long as ε/α is still smaller than |J1|, we can repeat the argument with ε
replaced by ε/α, and so on, by induction. More precisely, let m ∈ N be such that

ε

αm
< |J1| ≤ ε

αm+1
. (4.11)

Given k > m, we apply (4.10) with n = 4k− j for each j = 0, 1, . . . ,m − 1 and get

S f (4
k− j ,

ε

α j
) ≥ 4k− j−1S f (4

k− j−1,
ε

α j+1
) for 0 ≤ j ≤ m − 1 .

From this we deduce that

S f (4
k, ε) ≥ S f (4

k−m,
ε

αm
)

m−1∏

j=0

4k− j−1 ≥ 4− m(m+1)
2 · 4mk .

This last inequality can be re-written as

log S f (4k, ε)

log 4k
≥ m − m(m + 1)

2k
. (4.12)

Note from (4.11) that
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m =
⎡

⎢
⎢
⎢
⎢

log
|J1|
ε

log
1

α

⎤

⎥
⎥
⎥
⎥

≥ C log
1

ε
, (4.13)

where C = (2 log 1
α
)−1, provided 0 < ε < |J1|2/ log 1

α . Hence, taking the lim sup as
k → ∞ in (4.12) and using (4.13), we finally get

lim sup
n→∞

log S f (n, ε)

log n
≥ lim sup

k→∞
log S f (4k, ε)

log 4k
≥ C log

1

ε
.

This establishes (4.6) and the lemma is proved. �
The above result has the following immediate consequence. For each s > 0, con-

sider the gauge function γs(n) = ns .

Corollary 4.1 Let f : I → I denote the period-doubling map. Then hγs ( f ) = ∞,
for all s > 0.

Once again, it is clear that the same result is valid for any map which is topologically
conjugate to f .

One can go much further than Theorem 4.6, getting not only a better lower bound
for growth, but also an upper-bound. This is achieved by carefully analysing the
growth of the pre-images of the critical point, or equivalently, the growth in n of the
number of critical points of f n , and then invoking Theorem 4.1.

Theorem 4.3 Let f : I → I denote the period-doubling map. Then the following
assertions hold.

(i) For all n ≥ 1,
Card (crit( f n)) ≤ n

3
2 exp

{
B0 (log n)2

}
,

where B0 = (log 2)−1 − 1
2 log 2 ≈ 1.096.

(ii) For each δ ∈ (0, 1) there exists Cδ > 0 such that for all n ≥ 1,

Card (crit( f n)) ≥ Cδn
1−δ exp

{
B1 (log n)2

}
,

where B1 = (4 log 2)−1 ≈ 0.3607.

The proof of (a sharper version of) Theorem 4.3 will be given in [9].
Summarizing, as an immediate consequence of these results, we can state that

the number of critical points of f n grows super-polynomially but sub-exponentially
with n, and in fact:

• We have hγ( f ) < ∞ for the gauge γ(n) = n
3
2 eB0 (log n)2 = n

3
2 +B0 log n .

• For each δ ∈ (0, 1), we have hγ( f ) > 0 when we take γ to be the gauge γ(n) =
n1−δ exp

{
B1 (log n)2

} = n1−δ+B1 log n .
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The full analysis of growth for the period-doubling map f , to be carried out in
[9], will be based on a careful study of the generating function of the sequence cn =
Card (crit( f n)) which, perhaps not surprisingly, is intimately related via Milnor-
Thurston theory to the dynamical zeta-function of f , which is well-known (see for
instance [24, p. 888]).

5 Slow Growth for Two-Dimensional Maps

What else, besides the qualitative results of Sect. 3, can be said about the growth of
orbits of two-dimensional zero-entropy homeomorphisms? Computing slow entropy
in such broad generality is a difficult problem. The best we can do at this point is
to investigate what happens in certain specific families of examples. In this spirit,
we offer the following result, whose proof will be given in [9]. The theorem below
is stated for self-maps of the annulus only, but such examples can be easily grafted
onto any other surface. For each α ∈ (0, 1), let us denote by γα the subexponential
gauge given by γα(n) = exp (nα).

Theorem 5.1 For each α ∈ (0, 1) and each ε > 0 sufficiently small, there exists a
bi-Hölder homeomorphism F : T1 × I → T

1 × I of class C1−α−ε without periodic
points such that hγα

(F) > 0.

The details will be given in [9]. A very rough sketch of the proof goes as follows.

(i) We start with a diffeomorphism F0 : T1 × I → T
1 × I of the form f × id,

where f : T1 → T
1 is a C1+β Denjoy example (for some β > 0), i.e., a circle

diffeomorphism without periodic points having a Cantor minimal set K .
(ii) WewriteT1 \ K = ⋃

n∈Z Jn ,where each Jn is an interval (gap).Wemayassume
that f (Jn) = Jn+1 for all n (so that f is transitive on gaps). We also refer to
the rectangles Rn = Jn × I as gaps.

(iii) We also consider a smooth, orientation-preserving horseshoe diffeomorphism
φ : Q → Q with support inside the square Q = I × I (so that φ|∂Q ≡ id). The
measurable Riemann mapping theorem yields us an isotopy between φ and the
identity map.

(iv) For each N ∈ N, we slice the above isotopy in such a way as to be able to write
φ = φN ,N ◦ φN−1,N ◦ · · · ◦ φ1,N , where each φ j,N : Q → Q is a diffeomor-
phismwhich isHölder-close to the identity (successively closer as N increases).

(v) We choose a sequence of natural numbers N1 < N2 < · · · < Nk < · · · , and for
each Nk weperform the above slicing. In this fashion, for eachm ∈ Nwesee that
φm has been sliced as a composition of N1 + N2 + · · · + Nm diffeomorphisms.
The choice of the sequence (Nk)will depend on what kind of growth (or gauge)
we wish to achieve (i.e., on the value of α).

(vi) Next we build, in succession, an affine copy of each slice φ j,Nk as a map
ϕn : Rn → Rn of the appropriate gap Rn , where n = j + ∑k−1

i=1 Ni . Each ϕn

is Hölder close to the identity (for a Hölder exponent smaller than 1 − α, as it
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turns out),and it extends to a global homeomorphism of the annulus, being the
identity outside Rn .

(vii) Finally, we define F as a limit, F = limn→∞ ϕn ◦ · · · ◦ ϕ2 ◦ ϕ1 ◦ F0. Note that
the maps ϕn have pairwise disjoint supports (in particular they commute with
each other).We are able to show (using a quantitative form of the Arzelá-Ascoli
theorem) that the limit exists as a bi-Hölder homeomorphismwithHölder expo-
nent slightly smaller than 1 − α.

Acknowledgements We would like to thank IME-USP for their hospitality during the period in
which this note was conceived and written, and the anonymous referee for their comments and sug-
gestions.We also thank the editors, Maria José Pacífico and Pablo Guarino, for their encouragement
while we were writing this paper, and for their patience in awaiting the final version.

References

1. R.L. Adler, A.G. Konheim, M.H. MacAndrew, Topological entropy. Trans. Am. Math. Soc.
114(2), 309–319 (1965)

2. H. Bass, M.V. Otero-Espinar, D. Rockmore, C. Tresser, in Cyclic Renormalization and Auto-
morphism Groups of Rooted Trees. Lecture Notes in Mathematics, vol. 1621. Springer (1995)

3. F. Blanchard, B. Host, A. Maass, Topological complexity. Ergod. Theory Dyn. Syst. 20, 641–
662 (2000)

4. P. Bohl, Über die Hinsichtlich der Unabhängigen und Abhängigen Variabeln Periodische Dif-
ferentialgleichung Erster Ordnung. Acta Math. 40, 321–336 (1916)

5. R. Bowen, Entropy for group endomorphisms and homogeneous spaces. Trans. Am. Math.
Soc. 153, 401–414 (1971)

6. P. Coullet, C. Tresser, Itérations d’endomorphismes et groupe de renormalisation. J. Phys.
Colloq. C5, C5-25–C5-28 (1978)

7. E. de Faria, P. Hazard, C. Tresser, Infinite entropy is generic in Hölder and Sobolev spaces. C.
R. Acad. Sci. Paris Sér. I(355), 1185–1189 (2017)

8. E. de Faria, P. Hazard, C. Tresser, inGenericity of Infinite Entropy forMapswith LowRegularity
(2017). arXiv:1709.02431

9. E. de Faria, P. Hazard, C. Tresser, in Growth, Entropy-Type Invariants and Regularity, (Parts I
and II) (In preparation)

10. W. de Melo, S. van Strien, in One-Dimensional Dynamics. Ergebnisse der Mathematik und
ihrer Grenzgebiete (3), vol. 25 (Springer, Berlin, 1993)

11. A. Denjoy, Sur les courbes définies par les équations différentielles à la surface du tore. J. de
Math. Pures et Appl. 11, 333–376 (1932)

12. E.I. Dinaburg, The relation between topological entropy and metric entropy. Sov. Math. 11,
13–16 (1970)

13. M.J. Feigenbaum, Quantitative universality for a class of nonlinear transformations. J. Stat.
Phys. 19, 133–141 (1978)

14. S. Galatolo, Global and local complexity in weakly chaotic dynamical systems. Discret. Cont.
Dyn. Syst. 9, 1607–1624 (2003)

15. T.N.T. Goodman, Topological sequence entropy. Proc. Lond. Math. Soc. 29, 331–350 (1974)
16. A. Katok, Lyapunov exponents, entropy and periodic points for diffeomorphisms. Publ. Math

I.H.É.S. 51(1), 137–173 (1980)
17. A. Katok, B. Hasselblatt, in Introduction to the Modern Theory of Dynamical Systems. Ency-

clopedia of Mathematics and its Applications, vol. 54 (Cambridge University Press, 1995)

http://arxiv.org/abs/1709.02431


On Slow Growth and Entropy-Type Invariants 181

18. A. Katok, J.P. Thouvenot, Slow entropy type invariants and smooth realization of commuting
measure-preserving transformations. Ann. Inst. H. Poincaré Probab. Statist. 33(3), 323–338
(1997)

19. A.G. Kushnirenko, On metric invariants of entropy type. Russ. Math. Surv. 22, 53–61 (1967)
20. S. Li, W. Shen, The topological complexity of Cantor attractors for unimodal interval maps.

Trans. Am. Math. Soc. 368, 659–688 (2016)
21. J. Milnor, in Dynamics in One Complex Variable. Annals of Mathematics Studies, vol. 160

(Princeton University Press, 2006)
22. M. Misiurewicz, W. Szlenk, in Entropy of Piecewise Monotone Mappings. Studia Math. Tome

LXVII.1-4, pp. 45–63 (1980)
23. M. Rees, A minimal positive entropy homeomorphism of the 2-torus. J. Lond. Math. Soc. (2)

23(3), 537–550 (1981)
24. D. Ruelle, Dynamical zeta functions and transfer operators. Not. Am. Math. Soc. 887–895

(2002)
25. C. Tresser, P. Coullet, Itérations d’endomorphismes et groupe de renormalisation. C. R. Acad.

Sci. Paris 287A, 577–580 (1978)
26. C. Tresser, P. Coullet, E. de Faria, Period doubling. Scholarpedia 9(6), 3958 (2014). http://

www.scholarpedia.org/article/Period_doubling
27. P. Walters, in An Introduction to Ergodic Theory. Graduate Texts in Mathematics, vol. 79

(Springer, 1982)
28. Y. Zhao, Y. Pesin, Scaled entropy for dynamical systems. J. Stat. Phys. 158, 447–475 (2015)

http://www.scholarpedia.org/article/Period_doubling
http://www.scholarpedia.org/article/Period_doubling


Mixing Properties in Coded Systems

Jeremias Epperlein, Dominik Kwietniak and Piotr Oprocha

Abstract Weshow that topologicalmixing,weakmixing, the strong property P , and
total transitivity are equivalent for coded systems (shift spaces presented by labeling
the edges of a countable irreducible graphs by symbols from a finite alphabet).
We provide an example of a topologically mixing coded system which cannot be
approximated by any increasing sequence of topologically mixing shifts of finite
type, has only periodic points of even period and each set of its generators consists
of blocks of even length. We prove that such an example cannot be a synchronized
system.
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1 Introduction

We consider coded systems and their recurrence properties that are stronger than
topological transitivity. We are interested in topological (weak) mixing, and proper-
ties like the strong property P , which is a variant of the specification property.

Recall that a shift space is a coded system if it can be presented by an irreducible
directed graph whose edges are labeled by symbols from a finite alphabet A. Here,
“presented” means that the shift space is the closure inAZ of all bi-infinite sequences
of symbols which are labels for bi-infinite paths in the graph. Equivalently, X is a
coded system if it is a closure in AZ of the set of all bi-infinite sequences obtained
by freely concatenating the words in a (possibly infinite) list of words over A. Such
a list is the set of generators of X .

Transitive sofic shifts are coded systems which can be presented by a finite irre-
ducible directed graph. Coded systems were introduced by Blanchard and Hansel
[5], who showed that any factor of a coded system is coded. This is a generalization
of a well-known property of sofic shifts [19, Corollary 3.2.2].

It is natural to ask which properties of irreducible sofic shifts extend to coded
systems. Here we prove that several properties known to be equivalent to topological
mixing for sofic shifts remain equivalent for coded systems. We give an example
showing that, quite surprisingly, another condition equivalent to topological mixing
for sofic shifts does not need to hold for topologically mixing coded systems. The
counter-intuitive nature of this example is in our opinion the most interesting feature
of this paper, but we hope that our other results will fill a gap in the literature.
Furthermore, there has been a resurgence in interest in coded systems in general, and
their notable subclasses in particular (for example S-gap shifts [2, 9, 12], β-shifts [9,
23], Dyck shifts [20, 21]). Coded systems often provide a testing ground for further
extensions (see [10], where the line of investigation initiated in [9] is developed and
extended to non-symbolic systems). Therefore understanding the situation for coded
systems may lead to solutions of more general problems.

In order to describe our results, note first that any coded system is topologically
transitive (irreducible). Recall also that for a non trivial transitive sofic shift X the
following stronger variants of transitivity (for their definitions, see the next section)
are equivalent:

(a) X is topologically mixing;
(b) X has the strong property P;
(c) X is topologically weakly mixing;
(d) X is totally transitive;
(e) X has two periodic points with relatively prime primary periods;
(f) X has the periodic specification property.

It seems that this is a folklore theorem, but we could not find it in this form in the
literature. In brief outline, here is the main idea of the proof using the terminology
presented in [19]. First recall that for every shift space (a) implies all other properties.
Furthermore, it is not hard to see that (a) or (b) implies (c) and the latter implies
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(d). For the proof of remaining implications we assume that X is a nontrivial sofic
shift. Observe that every transitive sofic shift has a minimal, right-resolving, and
follower separated presentation (e.g. see Theorem 3.3.2, Proposition 3.3.11, and
Corollaries 3.3.19–20 in [19]). Using synchronizing words and any condition on
the list (a)–(e) it is not hard to show that this presentation has two cycles with
relatively prime lengths (as in the proof of Lemma 7.2 below). But then, using
standard techniques (e.g. see [16]) we obtain that there is N > 0 such that for every
n > N there is a path of length n between any two vertices in this presentation. This
immediately implies (f) and hence all other properties on the list hold (see also the
proof of Lemma 7.1 below).

It is well known, that every shift space with the periodic specification property is
synchronized (again, see the next section for details) and hence it is coded, but the
converse is not true: there are synchronized systems without specification property,
and coded systems which are not synchronized. It follows that (f) is no longer equiv-
alent to (a)–(e) for shift spaces which are not sofic. For example all β-shifts are coded
and topologically mixing but some are not synchronized and some are synchronized
but do not have the specification property (see [8, 22]).

Herewe examine the remaining possible connections between transitivity variants
(a)–(e) for not necessarily sofic coded systems. Note that the proof of equivalence
of properties (a)–(e) for shifts of finite type can be adapted for irreducible Markov
shifts over countable alphabets. Furthermore, every coded system contains a dense
subset which is a factor of an irreducible countable Markov shift. This suggests that
properties (a)–(e) should remain equivalent for coded systems. And this is almost
the case. For coded systems (a)–(d) are equivalent, but the condition (e) no longer
follows, nor implies (a). To show that (e) is not a consequence of (a) we construct
a topologically mixing coded system without a periodic point of odd period and
hence without a generator of odd length. We note that such a system cannot contain a
topologically mixing shift of finite type. Krieger [17] characterized coded systems as
those shift spaces which contain an increasing sequence of irreducible shifts of finite
typewith dense union. Krieger’s characterization is the best possible, in the sense that
there exists an increasing sequence of sofic shifts whose closure is a shift spacewhich
is not a coded system [6]. It follows fromour result that there are topologicallymixing
coded systems, which cannot be approximated from the inside by topologically
mixing shifts of finite type as they do not contain any topologically mixing sofic
shift1. We also present an example (suggested by a remark of one of the reviewers)
showing that the mere existence of two periodic points with relatively prime primary
periods is not enough to imply topological mixing even for synchronised systems
((e) does not imply (a)). The reason is that every cycle in an irreducible labelled
graph presenting a coded system X leads to a periodic point in X , but the converse
is not true if the graph is infinite. That is, to form a coded system we take the closure
of the set of all bi-infinite sequences of symbols which are labels for bi-infinite paths

1Another example of this kind was obtained independently in [11]. Preprint version of [11] was
posted on arXiv on July 29, 2015 as arXiv:1507.08048. Preprint of our paper was posted on March
10, 2015 as arXiv:1503.02838.

http://arxiv.org/abs/1507.08048
http://arxiv.org/abs/1503.02838
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in the graph, thus some periodic points may appear as limit points. These periodic
points may not correspond to a label of any closed path in the graph. In addition, we
show that if X is a transitive but not totally transitive coded system, then for some
prime p we can write X = X1 ∪ . . . ∪ X p, where the X j ’s are closed subsets of X
cyclically permuted by the shift map σ, each X j is σ p invariant, Xi ∩ X j is nowhere
dense for i �= j , and (X j ,σ

p) is topologically mixing.
Finally,we note that replacing (e) by (e∗) the conditions (a)–(e∗) are still equivalent

for synchronized shift spaces. The new condition (e∗) says that there are two cycles
with relatively prime lengths in the canonical presentation of a synchronized shift
space.

This paper is organized as follows: In the next section we set up the notation and
terminology. In Sect. 3 we prove a structure theorem for topologically mixing coded
systems and that total transitivity, topological weak mixing and topological mixing
are equivalent for coded systems. Section4 contains an example of a shift spacewhich
has the strong property P , but is not topologically mixing. In Sect. 5 we describe a
topologically mixing coded system without a periodic point of odd period. In Sect. 6
we establish an equivalence of the strong property P and topological mixing for
coded systems. In Sect. 7 we present some complementary results on synchronized
systems. They imply that (a)–(e∗) are equivalent for synchronized systems, thus our
example does not have any synchronizing words. In the last section of this paper we
present the example suggested by the reviewer.

The following theorem summarizes our results on the connections between vari-
ants of transitivity for coded systems. We give the proof in Section 8.

Theorem 1.1 Let X be a non trivial coded system. Then the following conditions
are equivalent:

(a) X is topologically mixing;
(b) X has the strong property P;
(c) X is topologically weakly mixing;
(d) X is totally transitive.

Additionally, if X is synchronized, then any of the above conditions is equivalent to

(e*) X can be canonically presented by an irreducible directed graph (Fischer cover)
with two cycles of relatively prime lengths.

Moreover, there exists a coded system X fulfilling (a)–(d), but not (e∗).

2 Notation and Definitions

We assume the reader is familiar with elementary symbolic dynamics as in [19]. We
fix a finite set A with at least two elements and call it the alphabet. Let AZ denote
the set of bi-infinite (two-sided) sequences

x = (xi )i∈Z = ...x−3x−2x−1x0x1x2 . . . ,
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such that xi ∈ A for all i . We equip A with the discrete topology and we consider
AZ as a compact metric space in the product topology. The shift operator on AZ is
denoted by σ. A shift space over the alphabet A is a shift-invariant subset of AZ

which is closed in that topology. The setAZ itself is a shift space called the full shift.
In this paper all shift spaces will be two-sided and transitive.

A block of length k is an element w = w1w2 . . . wk ofAk . Throughout this paper
“a word” is a synonym for “a block”. The length of a block is denoted |w|. The set of
all words over A is denoted by A∗. Given x ∈ AZ and i, j ∈ Z with i ≤ j we write
x[i, j] to denote the block xi xi+1 . . . x j . We say that a blockw occurs in x ifw = x[i, j]
for some i, j ∈ Z. A language of a shift space X is the set B(X) of all blocks that
occur in X . The set of blocks of length n in the language of X is denoted Bn(X).
Similarly, the set of all words that occur in a point x ∈ AZ is denoted B(x). The
empty word ⊥ is the unique word of length 0. We write A+ for the set of nonempty
words over A.

A central cylinder set of a word u ∈ B2r+1(X), where r ∈ N, is the set [u] ⊂ X of
points from X in which the block u occurs starting at position −r , that is, {y ∈ X :
y[−r,r ] = u}. Central cylinders (or cylinders for short) are open and closed subsets of
X . The family

{[x[−r,r ]] : r ∈ N}

of cylinder sets determined by a central subblock of x is a neighbourhood basis for
a point x ∈ X . We use a multiplicative notation for concatenation of words, so that
wn = w . . . w (n-times) and w∞ = www . . . ∈ AN.

Given a set of words Q ⊂ A+, we define Q0 = {⊥}, and Qn = Qn−1Q = {uw :
u ∈ Qn−1, w ∈ Q}.We also letQ+ denote the set of all possible finite concatenations
of words from Q, that is, Q+ = ⋃∞

n=1 Qn . In particular, Q ⊂ Q+.
By QZ we denote the set containing all possible bi-infinite concatenations of

elements of Q, that is, x ∈ QZ if x can be partitioned into elements of Q.
Dynamical properties like those mentioned in (a)–(d) and (f) above are usually

defined for a continuous map acting on a metric space. Here we define them in the
language of symbolic dynamics.

A shift space X is:

(1) transitive if for any u, v ∈ B(X) there is w ∈ B(X) such that uwv ∈ B(X);
(2) totally transitive if for any u, v ∈ B(X) and any n > 0 there is w ∈ B(X) such

that uwv ∈ B(X) and n divides |uw|;
(3) topologically weakly mixing if for any u1, v1, u2, v2 ∈ B(X) there are w1, w2 ∈

B(X) such that u1w1v1, u2w2v2 ∈ B(X) and |u1w1| = |u2w2|;
(4) topologically mixing if for every u, v ∈ B(X) there is N > 0 such that for every

n > N there is w ∈ Bn(X) such that uwv ∈ B(X).

We say that a shift space X has:

(1) the strong property P if for any k ≥ 2 and any words u1, . . . , uk ∈ B(X) with
|u1| = . . . = |uk | there is an n ∈ N such that for any N ∈ N and function
ϕ : {1, . . . , N } → {1, . . . , k} there are words w1, . . . , wN−1 ∈ Bn(X) such that
uϕ(1)w1uϕ(2) . . . uϕ(N−1)wN−1uϕ(N ) ∈ B(X);
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(2) the specification property if there is an integer N ≥ 0 such that for any u, v ∈
B(X) there is w ∈ BN (X) such that uwv ∈ B(X).

Blanchard [7] introduced the strong property P in order to provide an easy to verify
criterion for another property he was interested in: uniform positive entropy. The
strong property P is easily seen to follow from the specification property. For the
details we refer to [7]. Blanchard proved there that the strong property P implies
topological weak mixing, and does not imply topological mixing. Therefore the
strong property P is strictly weaker then the specification property.

It is convenient to rephrase the above definitions using the sets

Nσ([u], [v]) = {� ∈ N : uwv ∈ B(X) for some w ∈ A∗ such that |uw| = �},

where u, v ∈ B(X). For example a shift space X is topologically weakly mixing
if for every u, v ∈ B(X) the set Nσ([u], [v]) contains arbitrarily long intervals of
consecutive integers (see [14, Theorem 1.11]). A shift space X is transitive for σk

where k ∈ N if and only if the set

Nσk ([u], [v]) = {� ∈ N : uwv ∈ B(X) for some w ∈ A∗ such that |uw| = k�},

is non-empty for every u, v ∈ B(X).
If a dynamical system on a compact metric space is transitive, then there is a dense

Gδ-set of points with dense orbit. In particular, in a transitive shift space X in every
cylinder set there is a point x such that every block in B(X) occurs infinitely many
times in x .

By a countable graph we mean a directed graph with at most countably many
vertices and edges. A countable graph is irreducible if given any pair of its vertices,
say (vi , v j ), there is a path from vi to v j . A countable graph G is labeled if there is
a labeling � which is simply a function from the set of edges of G to the alphabet
A. A labeling of edges extends, in an obvious way, to a labeling of all finite (respec-
tively, infinite, bi-infinite) paths on G by blocks (respectively, infinite or bi-infinite
sequences) over A. The set YG of bi-infinite sequences constructed by reading off
labels along a bi-infinite path on a labeled graph (G,�) is shift invariant, but usually
it is not closed and therefore not a shift space. Nevertheless, its closure X = YG inAZ

is a shift space, and we say that X is presented by (G,�). Any shift space admitting
an irreducible presentation is a coded system. Irreducibility of the graph presentation
implies that all coded systems are transitive. If there is a finite irreducible graph
presenting a shift space X , then X is a transitive sofic shift.

A word w is magic for a coded system presented by (G,�) if w ∈ B(X) and all
paths in G labeled by w end at the same vertex of G. A set of generators for a shift
space X is a family of wordsQ ⊂ A∗ such that the language of X coincides with the
set of all subblocks occurring in elements ofQ+. Equivalently, X is the closure ofQZ

inAZ. Since the generators can be freely concatenated, every shift space possessing
themmust be transitive. Every coded system has a set of generators, and the converse
also holds: if a shift space has a set of generators then it is a coded system. The class
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of transitive sofic shift spaces coincides with the class of shift spaces having a finite
set of generators.

A synchronizing word for a shift space X is an element v of B(X) such that
uv, vw ∈ B(X) for any blocks u, w over A imply uvw ∈ B(X). A synchronized
system is a transitive shift space with a synchronizing word. Synchronized systems
were introduced in [5]. Every synchronized system is coded, because if v is the syn-
chronizing word for X , then {wv : vwv ∈ B(X)} is a set of generators for X . The
uniqueness of theminimal right-resolving presentation known for sofic shifts extends
to synchronized systems as outlined in [19, p. 451] (see also [24, p. 1241] and ref-
erences therein). This special presentation is called the Fischer cover. Synchronized
systems and their generalizations were extensively studied in [13].

Let x1, x2, . . . , xn be positive integers. It is well-known that every sufficiently
large integer can be represented as a non-negative integer linear combination of
the xi if and only if gcd(x1, x2, . . . , xn) = 1. For a later reference we formulate an
important consequence of this result as a remark.

Remark 2.0.1 Let x1, x2, x3, . . . be positive integers. If gcd(x1, x2, x3, . . .) = k, then
every sufficiently large multiple of k can be represented as a non-negative integer
linear combination of the xi .

3 Total Transitivity Implies Topological Mixing for Coded
Systems

We prove that total transitivity, topological weak mixing and topological mixing are
equivalent for coded systems. This leads to a structure theorem for coded systems
which are not totally transitive.

Theorem 3.1 Suppose that X is a coded system and let D ⊂ X be a closed set with
nonempty interior such that σk(D) = D for some k > 0. If the shift space (D,σk)

is totally transitive, then it is topologically mixing and the set of periodic points of
σk is dense in D.

Proof Let G be an irreducible countable labeled graph presenting X . Since D has
nonempty interior, for each r ∈ N large enough there is w ∈ B(X) of length 2r + 1
such that the cylinder [w] = {x ∈ X : x[−r,r ] = w} is contained in the interior of D.

We claim that the periodic points of (D,σk) are dense in D. Let V be a nonempty
open subset of D. Then there is an open set U ⊂ X with V = U ∩ D. Without loss
of generality we may assume that U is a cylinder set of some block u ∈ B(X). By
total transitivity there is s ∈ B(X) and a path on G labeled by wsu such that the
length of ws is jk for some integer j . We can join the last vertex on the path labeled
bywsu with the first vertex of the same path by a path labeled by a word t . Therefore
there is a bi-infinite periodic sequence y ∈ X such that y[−r,∞) = (wsut)∞ for some
words s, t ∈ B(X). But then y ∈ [w] ⊂ D and σ jk(y) ∈ [u] because |ws| = jk. On
the other hand y ∈ D, hence σ jk(y) ∈ D and then σ jk(y) ∈ U ∩ D = V . This shows
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that periodic points are dense in D under σk . Since every totally transitive dynamical
system with dense set of periodic points is topologically weakly mixing (e.g. see
Corollary 1.1 in [3]), it follows that (D,σk) is topologically weakly mixing.

We proceed to a proof of topological mixing of (D,σk). We recall that by [15,
Lemma 3.1] a shift system (D,σk) is topologically mixing if for each cylinder v in
some neighborhood basis of a point with dense orbit in D the set Nσk ([v], [v]) is
cofinite. Let x̄ ∈ [w] be a point whose orbit is dense in D under σk . Given a ≥ r set
va = x̄[−a,a] and

[va] = {x ∈ D : x[−a,a] = va}.

Note that x̄ ∈ [va] ⊂ [w] ⊂ D, hence the cylinder of va in X and in D coincide.
Furthermore, ([va])a≥r is a neighborhood basis of x̄ .

It is now enough to show that the set Nσk ([va], [va]) is cofinite. Let u be a word
such that vau is a labeling of a loop in G and let m be the length of vau. Without
loss of generality we may assume that k divides m (we replace vau by (vau)k if
necessary). Denote the loop presenting vau on G by ξ. By topological weak mixing
of (D,σk) the set Nσk ([va], [va]) contains a set of m consecutive integers, hence
there is an integer q > 0 such that for each i = 1, . . . ,m the graph G contains a
path ηi labeled vaviva where |vi | = (q + i)k − |va|. Since G is irreducible, for each
i = 0, 1, . . . ,m there exists a path γi in G such that the following path is a loop on
G:

π = ξγ0η1γ1η2 . . . γm−1ηmγm .

Let p = |π|. We claim that for every j ≥ 1 and i = 1, . . . ,m we have

p + (mj) + (q + i)k ∈ Nσ([va], [va]).

In order to show this, consider the labeling of the following path:

ηiγi . . . ηmγm(ξ) jγ0η1γ1 . . . γi−1ηi .

It starts and ends with va (it is a path on G because π and ξ are loops). This proves
that Nσk ([va], [va]) is cofinite. �

Corollary 3.2 If a coded system X is totally transitive, then it is topologicallymixing.

Proof Take D = X and apply Theorem 3.1. �

We will now describe the structure of coded systems which are not totally transi-
tive. Banks proved in [3] that if a dynamical system (X, T ) is transitive, but (X, T k)

is not transitive for some k > 1 then there is a regular periodic decomposition of X
of length k, that is, one can find a finite cover {D0, . . . , Dk−1} of X by non-empty
regular closed sets with pairwise disjoint interiors such that T (Di−1) ⊆ Di (mod k)

for each 1 ≤ i ≤ k. Recall that a set is regular closed if it is the closure of its inte-
rior. We say that a dynamical system (X, T ) is relatively mixing with respect to
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regular periodic decomposition D = {D0, . . . , Dk−1} of X if (Di , T k) is topologi-
cally mixing for 0 ≤ i < k. Observe that (X, T ) is relatively mixing with respect to
D = {D0, . . . , Dk−1} if and only if (D0, T k) is topologicallymixing. It was proved in
[3] that if there is an upper bound on the possible lengths of periodic decompositions
of a transitive dynamical system then there exists a regular periodic decomposition
D0, D1, . . . , Dn−1 such that (Di , T n) is totally transitive for every 0 ≤ i < n (this
decomposition is called terminal). In addition, in that casewe also have T n(Di ) = Di

for every 0 ≤ i < n, beacuse totally transitive maps are onto.

Theorem 3.3 Every coded system is relatively mixing with respect to some regular
periodic decomposition.

Proof Let X be a coded system. By Theorem 3.1 and the result of Banks mentioned
above, it suffices to show that there is an upper bound on the possible lengths of
regular periodic decompositions of X .

Let G be an irreducible countable labeled graph presenting X and let k be the
length of a cycle η in G. We claim that the length of a periodic decomposition of
X can not be greater than k. On the contrary, assume that D0, . . . , Dn−1 is a regular
periodic decomposition and n > k. Since D0 is regularly closed, there is r ∈ N and a
word w of length 2r + 1 such that the cylinder [w] = {x : x[−r,r ] = w} ⊂ D0. Since
for each i > 0 the interior of a regular closed set Di is disjoint with the interior of
D0, we have Di ∩ [w] = ∅ for each i > 0.

Since G is irreducible, there are paths π, γ with |π| ≥ |w| such that πηγ is a cycle
on G labeled wu ∈ B(X) for some word u. Repeating the path πηγ if necessary we
may assume that n divides |πηγ| = |wu|. Let a word wu′ ∈ B(X) be the label of the
path πηηγ on G. We have |wu′| = nj + k for some j ≥ 1. Note that wu′w ∈ B(X)

because πηηγπ is a path on G and hence there is x ∈ X with x[−r,t] = wu′w for
some t > r . But then x and σnj+k(x) both belong to [w] ⊂ D0. On the other hand

σnj+k(x) ∈ σnj+k(D0) = σk(D0) = Dk .

Since k < n, we have [w] ∩ Dk = ∅ which leads to a contradiction. �

4 The Strong Property P Does Not Imply Topological
Mixing

Weconstruct a topologicallyweaklymixing but not topologicallymixing shift Y with
the strong property P . This shows that the strong property P and topological mixing
are not equivalent in general. Note that Y can not be a coded system by Corollary
3.2. A similar example was first given by Blanchard [7], but our construction is much
simpler.

Given R ⊂ N we follow [18] and define a spacing shift �R as the set of all
x ∈ {0, 1}Z such that the condition xi = x j = 1 for some i, j ∈ Zwith i �= j implies
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|i − j | ∈ R. Elements of B(�R) are called R-allowed blocks (see [4, 18] for more
properties of spacing shifts).

Theorem 4.1 There is a shift space Y with the strong property P, which is not
topologically mixing.

Proof We construct a spacing shift with the desired properties. Below we write 〈n〉2
for the binary representation of a positive integer n, that is,

〈1〉2 = 1, 〈2〉2 = 10, 〈3〉2 = 11, . . . .

Also foru = u1 . . . un ∈ {0, 1}n we let�(u) = {|i − j | : 1 ≤ j < i ≤ n, ui = u j =
1}.

Let R = N \ {2k : k ∈ N}. Define Y = �R , and note that R is thick, thus �R is
nontrivial and topologically weaklymixing (see [18]).We claim that for every k ∈ N,
L = 2k , w = 02L and any family of R-allowed blocks v0, v1, . . . , vt of length L , the
block u = v0wv1wv2 . . . vt−1wvt is also R-allowed. This clearly implies that the
spacing shift �R has the strong property P . A simple calculation yields that

�(u) ⊂
(

{1, . . . , L − 1} ∩ R

)

∪
( ∞⋃

m=0

{(3m + 2)L + 1, . . . , (3m + 4)L − 1}
)

.

It is enough to show that no power of 2 is in �(u).
Note that any

q ∈
∞⋃

m=0

{(3m + 2)L + 1, . . . , (3m + 4)L − 1}

can be written as q = a + b where a ∈ {2k+1 + 1, . . . , 2k+2 − 1} and b = 3m · 2k .
If b = 0 then clearly q = a is not a power of 2, hence we may assume that m > 0.
Then 〈b〉2 = 〈3m〉20k and 〈a〉2 = 1xk . . . x0, where not all xi ’s are 0. Denote

〈a + b〉2 = yl yl−1 . . . yk . . . y0.

Note that l > k + 1. If xi �= 0 for some i = 0, 1, . . . , k − 1, then yi �= 0 and a + b
is not a power of 2. If x0 = x1 = . . . = xk−1 = 0 and xk = 1, then a = 3 · 2k . In that
case, a + b is also divisible by 3 and hence it is not a power of 2. Therefore�(u) ⊂ R
and �R has the strong property P .

On the other hand �R is not topologically mixing because it is easy to see that
N ([1]R, [1]R) = R. Since R does not contain powers of 2, the set N ([1]R, [1]R) is
not cofinite which is a necessary condition for topological mixing (see [4], cf. [18]).
Here [1]R = {x ∈ �R : x0 = 1} is a nonempty open subset of �R . �
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5 A Topologically Mixing Coded System Without Periodic
Points of Odd Period

We construct a topologically mixing coded system without periodic points of odd
period and such that every set of generators for this system contains only words of
even length.

Let t = t0t1t2 . . . = 10010110 . . . be the Prouhet-Thue-Morse sequence (see [1]).
Recall that it obeys t2n = tn and t2n+1 = 1 − tn . It is well-known that t is a cube-free
sequence, in particular neither 000 nor 111 occur in t . Let B(t) be the set of all words
occurring in t . It is well-known thatB(t) is a language of a minimal and non-periodic
shift space XTM.

We first define auxiliary sets Ln ⊂ {0, 1}∗ for n = 1, 2, . . . and a sequence of
words {ak}∞k=0. We begin by setting a0 = 01 and L1 := {a0}. Assume that we have
performed n − 1 steps of our construction (n ∈ N). We are given the set Ln−1 and
{ak}∞k=0 is defined for indices 0, 1, . . . , sn − 1, that is, sn denotes the number of words
in the sequence {ak} constructed up to the step n. In particular, we have s1 = 0 and
s2 = 1. At each step n ≥ 2 we enumerate the blocks in Ln−1 starting from sn , that
is, we write

Ln−1 = {wsn , . . . , wsn+|Ln−1|−1}.

We extend the sequence {ak} by adding words

a j = 01110t[0,4 j−3]011110w j011110t[0,4 j−1]01110.

for j = sn, . . . , sn + |Ln−1| − 1. Then we set

Ln :=
{

asn , asn+1, . . . , asn+1−1

}

∪
n⋃

k=1

Lk
n−1,

where Lk
n−1 = {w1w2 . . . wk : w j ∈ Ln−1 for j = 1, . . . , k}. This completes the step

n and our induction. Let Q := {ai ; i ∈ N0}.
Wewill call thewords 01110 and 011110markers. Note that a0 is the only element

ofQ without markers, and since 111 is not in B(t) the positions of markers in ak are
unique and therefore we can identify positions of blocks t[0,4 j−3] and t[0,4 j−1]. Hence
knowing that w ∈ Q and the length of the longest subblock from B(t) in w between
two markers (when w �= a0) we can uniquely determine k such that w = ak .

Notice that

Ln ⊂ Ln+1 and Q+ =
∞⋃

n=1

Ln. (1)

Thus Q and
⋃∞

n=1 Ln generate the same coded system denoted by X.

Lemma 5.1 The coded system X is topologically mixing.
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Proof Every block u ∈ B(X) is a subword of some concatenation of generators.
Therefore it is enough to show that for any k, � ∈ N and u1, . . . , uk, v1 . . . v� ∈
Q there is M ∈ N such that for all m > M there is a block w ∈ {0, 1}m with
u1 . . . u�wv1 . . . vk ∈ B(X).

Observe that by (1) there is n ∈ N such that u1, . . . , uk ∈ Ln . Clearly, wemay also
assume that n > k. Then it follows directly from the construction that u = u1 . . . uk ∈
Ln+1 and there is q ∈ N such that

aq = 01110t[0,4q−3]011110u011110t[0,4q−1]01110 ∈ Ln+2.

Define s2q−1 = t[0,4q−3] and s2q = t[0,4q−1]. Set M = 4q + 11. Ifm > M is odd, then
we have

aqa
m−4q−11

2
0 v1 . . . vk =

01110s2q−1011110 u1 . . . u�︸ ︷︷ ︸
u

011110s2q01110(01)
m−4q−11

2

︸ ︷︷ ︸
w∈{0,1}m

v1 . . . vk ∈ Q+.

For even m > M we have

ua
m
2
0 v1 . . . vk = u(01)

m
2 v1 . . . vk ∈ Q+.

This completes the proof, since Q+ ⊂ B(X). �

Lemma 5.2 If X is a non trivial coded system generated by a set Q and there is a
wordw ∈ Q with odd length, then X contains a periodic point of odd primary period
greater than one.

Proof Since X is a nontrivial coded system generated by Q, there must be a non
constant word u in Q+ as otherwise X would consist of a single fixed point. Thus
uu ∈ Q∗ is a non constant word of even length. Then the word uuw is a non constant
word of odd length k in Q+ whose infinite concatenation is a non fixed periodic point
with an odd primary period dividing k. �

We are going to prove that X has no periodic points with odd period. For n ∈ N

let Yn be the coded system obtained by taking Ln as a set of generators. Since Ln is
finite, Yn is sofic. We show that an odd periodic point cannot occur in Yn .

Lemma 5.3 For every n ∈ N the sofic shift Yn generated by the set Ln does not
contain a periodic point with odd prime period.

Proof Fix any n ∈ N and let x ∈ Yn be a periodic point with prime period q. Clearly,
q > 1 because the lengths of runs of 0’s and 1’s in B(X) are bounded. If x does not
contain anymarker then x = (01)∞ and q is even. Thus wemay assume that there are
(infinitely many) markers in x . Let � be the length of the longest block w from B(t)
appearing in x between twomarkers. Then� = 4k for some k, and theremust be j ∈ Z

such that x[ j, j+|ak |−1] = ak (no word ar with r > k can appear in x , since then we
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would have � ≥ 4k + 4). Because x has period q, we also have x[ j+q, j+q+|ak |−1] = ak .
Let w ∈ Q+ be a word which contains x[ j, j+q+|ak |−1] as a subblock and which does
not contain a block from B(t) of length greater than 4k. Write w = v1 . . . vt where
v j ∈ Q. By the above observation, we have that x[ j, j+|ak |−1] = x[ j+q, j+q+|ak |−1] =
ak ∈ Q must be among vi . This immediately implies that x[ j, j+q−1] ∈ Q+ and since
all words in Q have even length, we find that q = |x[ j, j+q−1]| is even. �

Finally we show that taking the closure of
⋃∞

n=1 Yn does not introduce periodic
points. We will use the fact that the Prouhet-Thue-Morse sequence t is cube-free,
that is, for every word w over {0, 1} we have www /∈ B(t).

Lemma 5.4 Any element x ofX \ ⋃∞
n=1 Yn contains arbitrary long blocks fromB(t).

In particular, x cannot be periodic.

Proof First, note that if x ∈ X \ ⋃∞
n=1 Yn is periodic and contains arbitrary long

blocks from t , then for some word w we would have www ∈ B(t) contradicting that
t is cube-free. Now, assume that there is x ∈ X \ ⋃∞

n=1 Yn such that the longest block
from B(t) appearing in x has length at most 4k for some integer k > 0. Then x must
contain infinitely many markers as subwords, as otherwise x = . . . a0a0wa0a0 . . .

for some w ∈ Ln and some n, thus x ∈ Yn .
Therefore there exists an infinite set J ⊂ Z and a strictly increasing infinite

sequence of integers (ni )i∈J such that x[ j, j+4] = 01110 if and only if there is i ∈ J
such that j = ni . The set J is the set of positions at which markers occur in x . Let
m be the least integer such that ak ∈ Lm .

We claim that every word ws,i := x[ns ,...,ni+4] for any s, i ∈ J , s < i is contained
inB(Ym). Note that by the definition eachws,i starts and ends with the marker 01110.
Let j be the smallest positive integer, such that ws,i ∈ B(Y j ). There must be some
word g ∈ L+

j such that g = bws,i c with b, c ∈ B(X). Either j ≤ m, in which case
we are done, or j > m and g must contain a� for some � > k. Since ws,i starts
and ends with 01110, the two longest blocks of symbols from B(t) occurring in a�

must be contained in b and c and thus ws,i is already contained in the middle word
ξ = 01110u01110 of a�, where u ∈ L j−1. Note that ξ is an element of L+

j−1. This
contradicts the minimality of j . Therefore our claim holds. If J is bi-infinite, then
x ∈ Ym which is a contradiction. Otherwise, either

a = inf{ni : i ∈ J } = min{ni : i ∈ J } > −∞, or

b = sup{ni : i ∈ J } = max{ni : i ∈ J } < ∞.

If a > −∞, then x(−∞,a−1] does not contain markers and x[a,a+4] = 011110 which
implies that x(−∞,a−1] = . . . a0a0a0. In the second case b < ∞ and we obtain that
x[b+1,∞) = a0a0a0 . . ., hence both cases imply again that x ∈ Ym and this contradic-
tion completes the proof. �

Theorem 5.5 There exists a coded system X which is topologically mixing, but does
not have periodic points with odd periods. In particular, every set of generators for
X contains only blocks of even length.
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Proof The shift X is topologically mixing by Lemma 5.1. Using Lemmas 5.3 and
5.4 we see that X does not contain a periodic point with odd prime period. Then it
follows from Lemma 5.2 that every set of generators for X contains only blocks of
even length. �

6 The Strong Property P and Topologically Mixing Coded
Systems

As we have seen before, the strong property P does not imply topological mix-
ing. Clearly, the converse implication is not true either, since Blanchard [7] proved
that the property P implies positive topological entropy and there are examples of
topologically mixing shifts with zero topological entropy.

The purpose of this section is to show that every topologically mixing coded
system has the strong property P .

Lemma 6.1 Let X be a topologically mixing coded system, Q be its generator, and
k = gcd{|u| : u ∈ Q}. Then for each u ∈ B(X) with |u| = 0 mod k there is a word
v ∈ Q+ such that v = aub with |a| = 0 mod k and |b| = 0 mod k.

Proof Since X is topologically mixing, there is a word v ∈ Q+ such that for some
ã, b̃, z1, . . . , zk ∈ B(X) we have

v = ãuz1uz2uz3 . . . uzkb̃

with |zi | = 1 mod k for each i = 1, . . . , k. Replacing v by vk if necessary, we may
assume that |v| = 0 mod k. There is � ∈ {0, . . . , k − 1} such that |ã| = −� mod k.
Leta = ãuz1uz2 . . . uz� andb = z�+1uz�+2 . . . uzkb̃ and observe that |a| = 0 mod k,
|b| = |v| − |a| − |u| = 0 mod k and v = aub. �

Theorem 6.2 If X is a toplogically mixing coded system, then X has the strong
property P.

Proof Blanchard [7, Proposition 4] proved that a shift space X over A has the
strong property P if for any integer p belonging to some infinite strictly increas-
ing sequence of integers there exists an integer q = q(p) such that for any s ≥ 2 and
any words u1, . . . , us ∈ Bp(X) there are words w1, . . . , ws−1 ∈ Bq(X) such that
u1w1u2 . . . us−1ws−1us ∈ B(X). Let Q be a set of generators of X and k = gcd{|u| :
u ∈ Q}.

We will show that Blanchard’s criterion [7, Proposition 4] applies to any p ∈ {� ∈
N : � = 0 mod k}. To this end, fix p = 0 mod k and enumerate all blocks of length
p by v1, . . . , vn . We use Lemma 6.1 to obtain a1, . . . , an, a′

1, . . . , a
′
n ∈ B(X) such

that
0 = |a1| = · · · = |an| = |b1| = · · · = |bn| mod k
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and aivi a′
i ∈ Q+ for i ∈ {1, . . . , n}. By Remark 2.0.1 there exists N such that for any

j ≥ N there is a word ē j ∈ Q+ with |ē j | = k j . Let |ai | = �i k and |a′
i | = �′

i k where
�i , �

′
i ∈ N. Set L = N + max{�i , �′

i : i = 1, . . . , n}. Define j (i) = L − �i ≥ N and
j ′(i) = L − �′

i ≥ N . Set ci = ē j (i) and di = ē j ′(i) for i = 1, . . . , n. Thus we have
found c1, . . . , cn ∈ Q+ and d1, . . . , dn ∈ Q+ such that Lk = |ciai | = |a′

i di | for
i = 1 . . . , n. Now let u1, . . . , us be any words in Bp(X). Then there is a func-
tion φ : {1, . . . , s} → {1, . . . , n} with u j = vφ( j) for j = 1, . . . , s. Observe that
cφ( j), dφ( j), aφ( j)u ja′

φ( j) ∈ Q+, hence

aφ(1)u1(a
′
φ(1)dφ(1)cφ(2)aφ(2)

︸ ︷︷ ︸
w1

)u2(a
′
φ(2)dφ(2)cφ(3)aφ(3)

︸ ︷︷ ︸
w2

)u3 . . . cφ(s)aφ(s)usa
′
φ(s) ∈ Q+.

Therefore u1w1u2 . . . us−1ws−1us ∈ B(X). We set q(p) = 2Lk and we obtain that
X has the strong property P by [7, Proposition 4]. �

7 Two Folklore Results

We finish the paper with two results which are probably folklore, but we were unable
to find them in the literature so we attach them for completeness. Combining them
with Corollary 3.2 we obtain that the stronger forms of transitivity mentioned in the
Introduction are equivalent for synchronized systems.

Lemma 7.1 Let X be a coded system presented by a labeled graph G. If there are
two cycles on G with relatively prime lengths, then X is topologically mixing.

Proof Denote byα1 andα2 two cycles onG with relatively prime lengths, k j = |α j |,
j = 1, 2. Let e j be a vertex of some edge belonging to α j for j = 1, 2. Let u j

be the label of α j for j = 1, 2 read off traversing α j from e j . Take any words
w1, w2 ∈ B(X). Since X is coded,we can find paths γ1, γ2 onG labeled, respectively,
byw1, w2. Let a2 be the initial vertex of γ2, and b1 be the terminal vertex of γ1. Let �1
(�2) be the length of the shortest path π1 (π2) on G from b1 to e1 (from e2 to a2) and
m be the length of the the shortest path ρ on G from e1 to e2. Let v1, v2, z ∈ B(X)

be labels of π1,π2, ρ, respectively. It follows that for each p, q ∈ N the path

π(p, q) = γ1π1(α1)
pρ(α2)

qπ2γ2

is labeled by w1v1(u1)pz(u2)qv2w2. Since k1 and k2 are relatively prime, the set
{pk1 + qk2 : p, q ∈ N} is cofinite. Therefore there is N > 0 such that if we fix any
n ≥ N then we can find pn, qn ∈ N so that n = �1 + pnk1 + m + qnk2 + �2 and the
path π(pn, qn) on G has length n + |w1| + |w2|. Therefore for each n ≥ N the word
w(n) = v1(u1)pn z(u2)qnv2 has length n and w1w

(n)w2 ∈ B(X). It follows that X is
topologically mixing. �
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Fiebig and Fiebig proved in [13] that every synchronized system X can be pre-
sented by a special labeled graph called the Fischer cover. Furthermore, they showed
that the Fischer cover of X is unique up to an isomorphism of labeled graphs. The
Fischer cover of a synchronized systemmay be characterized as the countable labeled
graph (G,�) presenting X which is right-resolving, follower separated, and every
synchronized word w for X is a magic word for (G,�). This generalizes the notion
of a minimal, right-resolving, and follower separated presentation of sofic shifts. For
details we refer the reader to [13] or [24].

Lemma 7.2 A synchronized shift X is topologically mixing if and only if there are
two cycles with relatively prime lengths in its Fischer cover.

Proof The “if” part follows from Lemma 7.1. For the “only if” part assume that X is
topologically mixing. Let w be a synchronizing word for X . Thenw is a magic word
for the Fischer cover (G,�) of X , that is, there is a vertex e ofG such that every path
labeled by w ends at e. Since X is topologically mixing there is N ∈ N and there are
words u1, u2 with |u1| = N , |u2| = N + 1 such thatwu1w,wu2w ∈ B(X). Because
each path labeled by w ends at e, there are cycles in G labeled by u1w and u2w with
relatively prime lengths. �

8 Proof of Theorem 1.1

Finally, we can prove our main result.
Proof of Theorem 1.1 To prove equivalence of (a)–(d), it is enough to combine
Corollary 3.2, Theorem 6.2 and [7] (the strong property P implies topological weak
mixing). The equivalence of these conditions with (e∗) follows from Lemma 7.2.
Finally, the “moreover” part is a consequence of Theorem 5.5. �

9 Additional Example

The following example (suggested by a referee) shows that in order to obtain a
condition equivalent to (a)–(d) for synchronized systems it is necessary to strengthen
the condition (e) to (e∗). Consider the coded system over {0, 1, 2, 3, 4} generated by
the code words

220101(010101)n444444 and 333001(001001)n444444 for n = 1, 2, . . . .

Note that 444444 is a synchronizing word for this system, and it is clearly transitive,
hence it is a synchronized system. It is also easy to see, that it contains two periodic
points with relatively prime primary periods generated by 01 and 001. The shift space
is not totally transitive: the set of return times to the cylinder of 333 contains only
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integers of the form 6n + 9 for n = 1, 2, . . ., so σ2 is not transitive on our shift space.
Thus no two cycles in any presentation of this shift have co-prime lengths, as this
implies total transitivity by Theorem 1.1.
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Transversality for Critical Relations
of Families of Rational Maps:
An Elementary Proof

Genadi Levin, Weixiao Shen and Sebastian van Strien

In memory of our dear friend and colleague Welington de Melo.

Abstract In this paper we will give a short and elementary proof that critical rela-
tions unfold transversally in the space of rational maps.

Keywords Holomorphic dynamics · Rational maps · Transversality

1 Introduction

In this short paper we will give an elementary proof of some transversality properties
for families of rational maps. We will consider the space Ratμμμd of rational maps
of degree d with precisely ν critical points of multiplicities (μ1, μ2, . . . , μν). In
Theorem 2.1 we will show that this space of maps can be locally parametrised by
critical values. Given f ∈ Ratμμμd , let ζ = ζ( f ) ≥ 0 be the maximal number of critical
points with pairwise disjoint infinite orbits and define N = ν − ζ( f ). In Theorem3.2
we will show that if f is not a flexible Lattès map then one can organise the set of
critical relations of f in the form
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{ f mk (cik ) = f nk (c jk ), k = 1, . . . , N }

so that the map

Ratμμμd � g �→ {σ(gmk (cik (g))) − σ(gnk (c jk (g)))}Nk=1 (1.1)

has maximal rank for g near f , where σ is any Möbius transformation with
σ( f mk (cik )) �= ∞. Property (1.1) obviously is a transversality condition.

In fact, the choice of critical relations is in general not unique, but as long as the
selected collection is full, as made explicit in Definition 3.6 below, the maximal rank
property holds.

Indeed, we should emphasise that some care is required in the choice of critical
relations. For example, in the case of ft (z) = z2 + t with t = 0, the derivative of
t �→ f 2t (0) − ft (0) vanishes at t = 0. The correct way of expressing transversal
unfolding of the critical relation ft (0) = 0 in (1.1) is by taking m1 = 1 and n1 = 0
in this equation, i.e. by asserting that the derivative t �→ ft (0) − 0 is non-zero at
t = 0.

In the unicritical case, transversal unfolding of critical relations in the pre-periodic
case goes back to Douady and Hubbard [5] and Tsujii [32], see also [16, Remark
5.10]. Milnor and Thurston [28] and Sullivan, see [25, Theorem VI.4.2], proved a
‘topological’ version of transversality.

An abstract approach to transversality for finite type maps was developed by A.
Epstein, see [8, 9], obtaining in Part 1 of [8] transversality within the Teichmüller
deformation spaceDefBA( f ), and in Sect. 5.4 in [8] the loci defined by critical relations
within DefBA( f ) is discussed. Part 2, and in particular Sect. 10, of [8] goes into a
strategy for transferring the transversality results obtained in DefBA( f ) to the space
of rational functions.However,wewere not able to find an explicit statement covering
Theorem 3.2 or Theorem 3.3. Nevertheless, it is likely that the strategy in [8] can be
executed to obtain statements similar to the ones in this paper.

Our results also hold in the setting of degenerate critical points and gives unfold-
ings of critical relations even when critical points share the same critical value. For
this we use that Ratμμμd is a manifold and that Ratμμμd � f �→ ( f (c1), . . . , f (cν)) has
rank ν, see Theorem 2.1.

In this short and self-contained paper we prove transversality following the
approach developed by Levin in [17–20], see also [15]. The starting point of this
paper are calculations from [18, 20] which show that if the transversality prop-
erty (1.1) fails at g = f , then one can construct a non-zero integrable meromorphic
quadratic differential that is invariant under push-forward by f , which in turn implies
that f is a flexible Lattès example. Indeed, the main Theorem 3.3 can be proved as
in [20], see Remark 5.1, although we shall provide a more direct and shorter proof
in this paper.

The idea of using quadratic differentials appeared first in Thurston’s characteri-
zation of post-critically finite branched covering of the 2-sphere [6]. It has been used
in for example [7, 15] and this was also used in [33] to obtain a similar statement to
ours for the quadratic case.
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Theorem 3.2 was proved previously for the case that critical points are non-
degenerate and eventually mapped into repelling periodic orbits, but never into a
critical point, see [3, 30] and also [13, Theorem 4.8].

Transversality also holds in other settings. For example, if each critical point is
mapped into a hyperbolic set, see [30], when a summability condition holds along
the orbit of critical values, see [2, 20], for the unfolding of multipliers of periodic
orbits, see [8, 18] and for a large class of interval maps, see [21].

As mentioned, the aim of this paper is to present a proof of transversality for
rational maps with critical relations in a complete and readily accessible form.

In Sect. 6 we discuss corresponding results for polynomials.

2 Parametrising Rational Maps by Their Critical Values

Let Ratd denote the collection of all rational maps of degree d ≥ 2. This space is
naturally parameterized by an open set in PC

2d+1.
Given a non-ordered listμμμ = (μ1, μ2, . . . , μν)with

∑ν
i=1 μi = 2d − 2, we say a

rational map f ∈ Ratd is in the classRat
μμμ

d if f has precisely ν distinct critical points
c1, c2, . . . , cν withmultiplicitiesμ1, μ2, . . . , μν respectively. Taking1 = (1, . . . , 1),
Rat1d corresponds to the space of rational maps with 2d − 2 non-degenerate critical
points.

Rational maps are not fully determined by their critical values (not even on small
open subsets W ⊂ Ratμμμd ), because one can precompose a rational map by a Möbius
transformation without changing its critical values. However one can find a neigh-
bourhood W of f and a normalisation (based on precompositions with Möbius
transformations) so that critical values parametrise all maps in W satisfying this
normalisation:

Theorem 2.1 For each μμμ, Ratμμμd is an embedded submanifold of dimension ν + 3
of Ratd and the functions defined by the critical values form a partial holomorphic
local coordinate system, i.e. the map Ratμμμd � f �→ ( f (c1), . . . , f (cν)) has rank ν

and can be completed by 3 other coordinates to be a holomorphic coordinate system.

Remark 2.1 Theorem 2.1 is not new. Similar statements are proved e.g. in [11, 19]
(see also [12]) using the Measurable Riemann Mapping Theorem with dependence
on parameters; the idea of those proofs goes back probably to [31]. Our proof borrows
an idea of Douady and Sentenac [29, Appendix A], and is short and elementary. The
case μν = d − 1 corresponds to the polynomial case, which in some real cases was
dealt with in [25, p. 120] and [29], see also [10].

Theorem 2.1 follows from Proposition 2.2 below. Assume without loss of gen-
erality (by post and pre composing f by Möbius transformations if necessary)
that the critical points and the critical values avoid the point at ∞. Then for each
i = 1, 2, . . . , ν,
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f ′(ci ) = f ′′(ci ) = · · · = f (μi )(ci ) = 0, f (μi+1)(ci ) �= 0.

Applying the Implicit Function Theorem to the maps (g, ζi ) �→ g(μi )(ζi ) for (g, ζi )
near ( f, ci ), gives that there exists a neighborhood W of f in Ratd and uniquely
defined functions ζi : W → C which are holomorphic such that ζi ( f ) = ci and
g(μi )(ζi (g)) = 0, g(μi+1)(ζi (g)) �= 0 for each g ∈ W . Replacing W by a smaller
neighborhood, for each g ∈ W the equation g′(ζ ) = 0 has μi solutions ζ (count-
ing multiplicity) near ci . It follows that for any g ∈ W ∩ Ratμμμd , g′(ζ ) = 0 has a
unique solution near ci (with multiplicity μi ); hence ζi (g) is the only critical point
of g ∈ W ∩ Ratμμμd near ci and it has multiplicity μi .

For g ∈ W , write

ζ 0
i (g) = g(ζi (g)), ζ

1
i (g) = g′(ζi (g)), ζ 2

i (g) = g′′(ζi (g)), . . . .

Thus ζi (g) is a critical point of g with multiplicity μi if and only if ζ
j
i (g) = 0 for all

1 ≤ j ≤ μi − 1 (note that g(μi )(ζi (g)) = 0, g(μi+1)(ζi (g)) �= 0 holds automatically
for all g ∈ W ). Define G : W → C

2d−2 by

g → (ζ 0
1 (g), ζ 1

1 (g), . . . , ζ
(μ1−1)
1 (g), . . . , ζ 0

ν (g), ζ 1
ν (g), . . . , ζ (μν−1)

ν (g)).

Since W has dimension 2d + 1, Theorem 2.1 follows immediately from:

Proposition 2.2 For each rational map f as above, the Jacobian of G has rank
2d − 2 at g = f .

This proposition also immediately implies:

Corollary 2.3 Assume that all critical points of f are non-degenerate. Then there
exists a neighbourhood W of f inRatd so that the critical points c1(g), . . . , c2d−2(g)
of g depend holomorphically on g ∈ W and the Jacobian of the map

g �→ (g(c1(g)), g(c2(g)), . . . , g(c2d−2(g)))

has maximal rank at every g ∈ W.

2.1 Proof of Proposition 2.2

Proof of Proposition 2.2. Arguing by contradiction, assume that the assertion of the
proposition is false. Then there exist complex numbers A j

i , 1 ≤ i ≤ ν, 0 ≤ j < μi ,
not all equal to zero, such that all partial derivatives of the map

G(g) =
ν∑

i=0

μi−1∑

j=0

A j
i ζ

( j)
i (g)
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are equal to zero at g = f . This means that for any holomorphic curve ft in Ratd ,
passing through f at t = 0, the map G(t) = G( ft ) satisfies G ′(0) = 0. Let us write

ft (z) =
∑d

k=0 ak(t)z
k

∑d
k=0 bk(t)z

k
=: Pt (z)

Qt (z)
,

where ak(t), bk(t) are holomorphic in a neighborhood of 0 and P0 and Q0 are co-
primepolynomials. For 1 ≤ i ≤ ν, j = 0, . . . , μi − 1define vi, j (t) = ζ

( j)
i ( ft ). Then

v′
i, j (0) =

(∑d
k=0 a

′
k(0)z

k Q0(z) − ∑d
l=0 b

′
l(0)z

l P0(z)

Q0(z)2

)( j)
∣
∣
∣
∣
∣
∣
z=ci

,

where we use f ( j+1)(ζi ( f )) = f ( j+1)(ci ) = 0. So

0 = G ′(0) =
∑

i, j

A j
i v

′
i, j (0)

=
∑

i, j

A j
i

(∑d
k=0 a

′
k(0)z

k Q0(z) − ∑d
l=0 b

′
l(0)z

l P0(z)

Q0(z)2

)( j)
∣
∣
∣
∣
∣
∣
z=ci

. (2.1)

We claim that for any polynomial T , we have

∑

i, j

A j
i

(
T (z)

Q0(z)2

)( j)
∣
∣
∣
∣
∣
z=ci

= 0. (2.2)

To see this, first notice that since T0(z) = ∏ν
i=1(z − ci )μi has a zero at z = ci of

multiplicityμi , the Eq. (2.2) holds for T = T0 and T = T0U , whereU is an arbitrary
polynomial. Since deg(T0) = 2d − 2 and any polynomial can be written as T0U + T
where deg(T ) < 2d − 2 it therefore suffices to prove (2.2) in the case that deg(T ) <

2d − 2. For such a polynomial T , we can find polynomials R, S of degree at most
d − 1 such that T = RQ0 − SP0, since P0 and Q0 are coprime and one of them has
degree d. Choosing ak, bl suitably such that R(z) = ∑

k a
′
k(0)z

k and S = ∑
l b

′
l(0)z

l

and applying (2.1), we obtain (2.2).
We shall now deduce from this equation that A j

i = 0 for all i, j and thus obtain a
contradiction. Indeed, (2.2) implies that for any polynomial V , we have

∑

i, j

A j
i V

( j)(ci ) = 0.

Fix 1 ≤ i0 ≤ ν, 1 ≤ j0 < μi0 , take
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V (z) =
∏

i �=i0

(z − ci )
μi (z − ci0)

j0 .

Then V ( j0)(ci0) �= 0 and V ( j)(ci ) = 0 for any other (i, j). Therefore A j0
i0

= 0. The
proof is completed. �

3 Transversality Results for Rational Maps

Throughout this section we again consider a map f in the space Ratμμμd of rational
maps of degree d, with ν distinct critical points c1, c2, . . . , cν with multiplicities
μμμ = (μ1, μ2, . . . , μν) where

∑ν
i=1 μi = 2d − 2. For g in a small neighborhood of

f in Ratμμμd , the critical points c1(g), c2(g), . . . , cν(g) depends holomorphically on g.
We are interested in the smoothness of sets defined by a set of critical relations of

the form gm(ci (g)) = gn(c j (g)). A particular case of our main result in this direction
is the following:

Theorem 3.1 Let f ∈ Ratμμμd and assume that there exists 1 ≤ i, j ≤ ν and m > 0
so that f m(ci ) = c j . Then the equation

gm(ci (g)) = c j (g)

defines an embedded submanifold of Ratμμμd of codimension one near f .

In order to state a more general result, we have to prepare some terminology. Let
us say that a quadruple (i, j;m, n) is a (candidate) critical relation if 1 ≤ i, j ≤ ν,
and m, n are non-negative integer with m + n > 0. We say that this critical relation
is realized by f if f m(ci ( f )) = f n(c j ( f )).

Given f , let ζ = ζ( f ) ≥ 0 be themaximal number of critical points with pairwise
disjoint infinite orbits. Note that this number is well-defined, but that one cannot say
which critical points are ‘free’. For example, if f has three distinct critical points
c1, c2, c3, so that the forward orbits of f (c1) = f (c2) and c3 are disjoint and infinite,
then ζ( f ) = 2; of course one could consider c1, c3 as the free critical points of f ,
but equally well also c2, c3.

In this section we will show

Theorem 3.2 Assume f ∈ Ratμμμd is not a flexible Lattès map. Then there exists a set

F = {(ik, jk;mk, nk), k = 1, . . . , N } with N = ν − ζ( f )

of critical relations f mk (cik ) = f nk (c jk ) which are realised by f , such that the Jaco-
bian of the map

Rσ
F : g �→ (σ (gmk (cik (g))) − σ(gnk (c jk (g))))

N
k=1 (3.1)
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atg = f has rank N,wheneverσ is aMöbius transformation forwhichσ( f mk (cik )) ∈
C, k = 1, . . . , N.

Remark 3.1 The assumption that σ( f mk (cik )) ∈ C is made to ensure that (3.1) is
holomorphic near f . The kernel of the Jacobian ofRσ

F at f , hence its rank, does not
depend on σ , as long as σ( f mk (cik )) �= ∞ for all k = 1, . . . , N . Indeed, a tangent
vector ofRatμμμd at f belongs to the kernel if and only if it has the same image under the
tangent map of the maps g �→ (gmk (cik (g)))

N
k=1 and g �→ (gnk (c jk (g)))

N
k=1 at g = f

(both are holomorphic maps from a neighborhood of f in Ratμμμd into C
N
).

In particular, to prove Theorem 3.2, we can and will assume that the critical obits
of f avoid ∞ and only prove that RF = Rid

F has rank N at g = f . Indeed, we can
always choose z0 (arbitrarily close to ∞) which avoids the critical orbits of f . Put
σ(z) = z0z/(z0 − z) and f̃ = σ ◦ f ◦ σ−1. Then ∞ avoids the critical orbits of f̃ .
Since Rσ

F (g) = Rid
F (σ ◦ g ◦ σ−1), once we prove that the Jacobian of g �→ Rid

F (g)

has rank N at g = f̃ , it follows that the Jacobian of Rσ
F has rank N at g = f .

Remark 3.2 There are several ways of assigning a set of critical relationsF to f . As
we will prove in Sect. 4.2, for any set of critical relations which is full in the sense
of Definition 3.6, Theorem 3.2 holds.

Remark 3.3 A flexible Lattès map is by definition a rational map that is conformally
conjugate to a map of the form L/∼: T/∼→ T/∼, where T = C/(Z ⊕ γ Z), γ ∈ H

(where H is the upper-half plane), ∼ is the equivalence relation on C defined by
z ∼ −z and L : C → C is of the form L(z) = az + b with a ∈ Z and 2b ∈ Z ⊕ γ Z,
see [27]. Such maps can be of two types: either each critical point is mapped in two
iterates into a repelling fixed point or in one iterate into a repelling periodic point of
period two, see [27].

Remark 3.4 Theorem 3.2 and the implicit function theorem, imply that manifolds
defined by critical relations corresponding to disjoint subsetsF ′,F ′′ ofF are smooth
and transversal to one another.

For completeness we prove the following corollary of Theorem 3.2:

Corollary 3.5 If each critical point ci is eventually mapped to a repelling periodic
point pi with f mi (ci ) = pi and f j (ci ) /∈ {c1, . . . , cν} for all j = 1, . . . ,mi then the
Jacobian of

Ratμμμd � g �→ {σ(gmi (ci (g))) − σ(pi (g))}νi=1 (3.2)

has maximal rank at g = f , where σ is a Möbius transformation with σ(pi ) �= ∞
for all i .

Proof For the same reason as explained in Remark 3.1, we only need to consider the
case where ∞ avoids the critical orbits and σ = id. Let R denote the map in (3.2).
The corollary follows from the following claim by Theorem 3.2.

Claim. If ft is a holomorphic curve in Ratμμμd passing through f at t = 0 which
represents a vector in the kernel of D fR, then for any critical relations (i, j;m, n)

realized by f , we have
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f mt (ci ( ft )) − f nt (c j ( ft )) = o(t) as t → 0.

Indeed, the claim implies that the kernel of D fR is contained in the kernel of
D fRF for any finite collection F of critical relations. By Theorem 3.2, we can
choose F such that D fRF has maximal rank. Thus D fR has maximal rank.

Let us prove the claim. Choose k large enough such thatm + k ≥ mi and n + k ≥
m j . Since f m+k−mi (pi ) = f n+k−m j (p j ), the periodic points pi and p j have the same
period, denoted by s. Moreover, if pi (t) (resp. p j (t)) denotes the repelling periodic
point of f st near pi (resp. p j ), then

f m+k−mi
t (pi (t)) = f

n+k−m j
t (p j (t)).

Since f mi
t (ci ( ft )) − pi (t) = o(t) as t → 0, we have

f m+k
t (ci ( ft )) − f m+k−mi

t pi (t) = o(t) as t → 0.

Similarly, we have

f n+k
t (c j ( ft )) − f

n+k−m j
t (p j (t)) = o(t) as t → 0.

Therefore,
f m+k
t (ci ( ft )) − f n+k

t (c j ( ft )) = o(t) as t → 0.

Since f m+k ′
(ci ) is not critical for each 0 ≤ k ′ < k, it follows that f mt (ci ( ft )) −

f nt (c j ( ft )) = o(t) as t → 0. �

3.1 How to Associate Critical Relations to a Rational Map

There are several ways to record the (infinitely many) critical relations of a rational
map. In this subsection we will show how one can associate these in an efficient way
so that in particular no critical relation is counted twice.

As above, let c1, c2, . . . , cν be the critical points of a rational map in the class
Ratμμμd . For an arbitrary collection F of critical relations realized by f , let ∼F denote
the smallest equivalence relation in the set � := {(i,m) : 1 ≤ i ≤ ν,m ≥ 0} such
that (i,m + k) ∼F ( j, n + k) for each (i, j;m, n) ∈ F and each k ≥ 0.

So ∼F defines the set of critical relations that can be ‘read off’ from F . So for
example, if ν = 4 and F = {(1, 2; 1, 1), (1, 3; 1, 1)} then (i, 1 + k) ∼F ( j, 1 + k)
for all i, j ∈ {1, 2, 3} and all k ≥ 0, but (i,m) �F (4, n) for i ∈ {1, 2, 3} and all
m, n ≥ 0.

Roughly speaking, we say that a collection F of critical relations is full if it
‘essentially’ explains all critical relations of f and F is minimally full if it does not
contain redundant critical relations. More precisely,
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Fig. 1 The orbit diagram of a map with ζ( f ) = 3 and f 2(c1) = f (c2), f (c1) = f 4(c3), f 3(c4) =
f 4(c5) = c6, f (c7) = f 4(c8), f (c8) = f (c9). Each of the collections {(2, 1; 1, 2), (3, 1; 4, 1),
(4, 6; 3, 0), (5, 4; 4, 3), (8, 7; 4, 1), (9, 8; 1, 1)}, {(2, 1; 1, 2), (3, 1; 4, 1), (4, 6; 3, 0), (5, 6; 4, 0),
(9, 7; 4, 1), (9, 8; 1, 1)} and {(2, 1; 2, 3), (3, 1; 5, 2), (4, 6; 3, 0), (5, 6; 4, 0), (9, 7; 4, 1), (9, 8;
2, 2)} is minimally full

Definition 3.6 We say that a collection F of critical relations realized by f is full
if for any critical relation (i, j;m, n) realised by f , i.e. whenever f m(ci ) = f n(c j ),
there exists k ≥ 0 such that (i,m + k) ∼F ( j, n + k) and such that f m+k ′

(ci ) =
f n+k ′

(c j ) /∈ {c1, . . . , cν} for each 0 ≤ k ′ < k.
Note that any full collection contains at least ν − ζ( f ) relations. A full collection

F is called minimally full if #F = ν − ζ( f ) (Fig. 1).
If F is minimally full then in particular there exists no 1 ≤ i1, i2, · · · , ik ≤ ν,

k ≥ 2, such that

(i1, i2; 1, 1), (i2, i3; 1, 1), . . . , (ik, i1; 1, 1) ∈ F . (3.3)

We refer to the last property as the non-cyclic condition.

So if f has critical points c1, . . . , c4 with critical relations f k(c1) = f k(c2) =
f k(c3) for all k ≥ 1 and there are no other critical relations, then ζ( f ) = 2 and

F1 = {(1, 2; 1, 1), (1, 3; 1, 1)} but also F2 = {(1, 2; 2, 2), (1, 3; 3, 3)}

are minimally full collections.
Note that if F is minimally full and (i, j;m, n) ∈ F then ( j, i; n,m) /∈ F . Later

on, we will define a convenient choice for a minimally full collection F , see
Definition 4.2 and in Lemma 4.4 we will show that such a choice can always be
made.

3.2 An Even More General Theorem

Let g be a rational map with critical points c1(g), . . . , cν(g). Associate to each
(i, j;m, n) the following rational map
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Qg
i, j;m,n(z) =

m∑

r=1

Dgm−r (gr (ci (g)))

z − gr (ci (g))
−

n∑

s=1

Dgn−s(gs(c j (g)))

z − gs(c j (g))
,

when gr (ci (g)), gs(c j (g)) �= ∞ for all 1 ≤ r ≤ m, 1 ≤ s ≤ n. (Convention: Form =
0 or n = 0, the corresponding sum is understood as 0.)

Given ameromorphic quadratic differential Q = q(z)dz2, define its push-forward
as f∗Q = q̂(z)dz2, where

q̂(z) =
∑

w∈ f −1(z)

q(w)

f ′(w)2
.

It is not difficult to check that f∗Q is again a meromorphic quadratic differential.
The assignment Q �→ f∗Q is often called the Thurston operator, see [14, 23], and
was used in Thurston’s rigidity theorem, see [6]. M. Tsujii was probably the first to
use quadratic differentials in the context of transversality, see [26, 32, 33], but see
also [2, 8, 9, 17, 18, 20, 22].

Theorem 3.2 will follow from

Theorem 3.3 Assume that the critical orbits of f ∈ Ratμμμd avoid∞. LetF be a finite
set of critical relations (cik , c jk ,mk, nk), k = 1, 2, . . . , N, which are realized by f
and which satisfies the non-cyclic condition (3.3). If the Jacobian of the map

Ratμμμd � g �→ {gmk (cik (g)) − gnk (c jk (g))}Nk=1 (3.4)

at g = f has rank less than N, then there exist complex numbers a1, a2, · · · , aN ,
such that

• for some k, (mk, nk) �= (1, 1) and ak �= 0;
• f∗(q(z)dz2) = q(z)dz2, where

q(z) =
∑

1≤k≤N
(mk ,nk )�=(1,1)

akQ
f
ik , jk ;mk ,nk

(z). (3.5)

If in addition f is not a flexible Lattés example, then q(z) ≡ 0.

Remark 3.7 If f has 2d − 2distinct critical values, then the converse statement of the
theorem also holds. Namely, for any finite setF as above, if f∗(q(z)dz2) = q(z)dz2,
then the Jacobian of the map (3.1) has rank less than N .

Remark 3.8 Take f ∈ Ratμμμd and a manifold S passing through f of dimension p,
that is transverse to the orbit O( f ) of f under Möbius conjugacies. Assume that the
map defined in (3.1) has maximal rank. Then the restriction of this map to S also has
maximal rank. This holds because the value of the map (3.1) is constant on O( f ).
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4 Theorems 3.1–3.2 Follow from Theorem 3.3

4.1 Proof of Theorem 3.1

If f m(ci ) = c j then f is not a Lattés example. We may assume without loss of
generality that ∞ avoids the critical orbits of f so that Theorem 3.3 applies. It is
clear that

Q f
i, j;m,0(z) = Df m−1( f (ci ))

z − f (ci )
+ · · · + 1

z − f m(ci )

has a pole at c j , so it is not identically zero and thus the conclusion follows from the
last sentence of Theorem 3.3. �

4.2 An Improved Way to Organise Critical Relations
and the Proof of Theorem 3.2

In general, one can associate several full collectionsF to f each giving rise to a map
Rσ

F as in (3.1). Let us first prove, as claimed in Remark 3.2, that any full collection
gives rise to the same rank:

Lemma 4.1 Forany full collectionsF andF ′ of critical relations for f , the Jacobian
matrices of Rσ

F and Rσ
F ′ at g = f have the same rank.

Proof According to Remark 3.1, we may assume the critical orbits avoid ∞ and
σ = id. Consider a holomorphic curve ft , passing through f at t = 0. This curve
represents a vector in the kernel of DRF if and only if the derivative of t �→
f mt (ci ( ft )) − f nt (c j ( ft )) vanishes at t = 0 for each (i, j;m, n) ∈ F , and therefore if
and only if t �→ f mt (ci ( ft )) − f nt (c j ( ft )) vanishes at t = 0 for each (i,m) ∼F ( j, n)

where∼F is the equivalence relation associated toF as defined in the first paragraph
of Sect. 3.1.

Assume that (i, j;m, n) is realised by f . Since F is full, there exists k ≥
0 so that (i,m + k) ∼F ( j, n + k) and so that Df k( f m(ci )) = Df k( f n(c j )) �=
0. So if ft represents a vector in the kernel of DRF then the derivative of
t �→ f m+k

t (ci ( ft )) − f n+k
t (c j ( ft )) vanishes at t = 0. Since f m(ci ) = f n(c j ) and

Df k( f m(ci )) = Df k( f n(c j )) �= 0, this implies that the derivative of t �→ f mt
(ci ( ft )) − f nt (c j ( ft )) vanishes at t = 0.

On the other hand, if for each (i, j;m, n) which is realised by f the derivative
of t �→ f mt (ci ( ft )) − f nt (c j ( ft )) vanishes at t = 0, then in particular this holds for
each (i, j;m, n) ∈ F and so the holomorphic curve ft represents a vector in the
kernel of DRF .

It follows that ft represents a vector in the kernel of DRF if and only if for each
(i, j;m, n) which is realised by f the derivative of t �→ f mt (ci ( ft )) − f nt (c j ( ft ))
vanishes at t = 0. The last condition is independent of the choice of the full collection
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F . Since both F and F ′ are full, the rank-nullity theorem implies that the rank of
the Jacobian matrices are the same. �

We will find it convenient to prove Theorem 3.2 for a conveniently chosen min-
imal collection F , namely one which satisfies the following stronger minimality
assumption.

Definition 4.2 We say that a collection F is proper for f if it is minimally full and
satisfies the following extra properties:

(1) (i, j;m, n) ∈ F implies m > 0 and either i ≥ j or n = 0. If i = j then m > n.
(2) if (i, j;m, n) ∈ F then the collection of points f k(ci ), k = 1, . . . ,m − 1 is

pairwise disjoint and does not intersect c1, . . . , cν nor the forward orbits of
c1, . . . , ci−1.

(3) For each 1 ≤ i ≤ ν there exists at most one critical relation of the form
(i, j;m, n) ∈ F .

(4) For each 1 ≤ j ≤ ν there exists at most one critical relation of the form
(i, j;m, 0) ∈ F ;

(5) For each 1 ≤ j ≤ ν and each n > 1 there exists at most one critical relation of
the form (i, j; 1, n) ∈ F ;

(6) If (i, j;m, n) ∈ F with m > 1 and n > 0, and (k, i; 1, l) ∈ F for some k and l,
then l < m.

Remark 4.3 If the collection F is proper then it satisfies the non-cyclic condition
(3.3).

Lemma 4.4 There exists a proper collection of critical relations which are realised
by f .

Proof For each i = 1, . . . , ν, inductively define mi > 0 maximal so that f (ci ), . . . ,
f mi−1(ci ) are distinct and also distinct from

{ f k(c j ); 0 ≤ k < m j , j = 1, . . . , i − 1} ∪ {c1, . . . , cν}.

(When i = 1 we take this union to be {c1, . . . , cν}.) If mi is finite, then there are two
possibilities:

(a) f mi (ci ) = f n ji (c ji ) for some 1 ≤ ji ≤ i and some finite n ji with 0 < n ji < m ji .
In this case associate to ci the critical relation (i, ji ,mi , n ji ).

(b) f mi (ci ) = c j with 1 ≤ j ≤ ν and in this case associate to ci the critical relation
(i, j, ni , 0).

These choices ensure that properties (1) and (2) in the above definition hold. To
take care that properties (3)–(6) hold we also make the following requirement:

If both (a) and (b) hold, then only assign to ci the critical relation as in (a). If
(a) holds for several ji ≤ i , then choose the smallest possible ji with n ji = 1 and if
there is no ji with n ji = 1 then simply choose the smallest possible ji . Assign to i
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only the corresponding critical relation. Once we have done this for i then repeat this
construction for i + 1.

In this way we define no new critical relation for each 1 ≤ i ≤ ν whose orbit is
infinite and disjoint from forward orbits of c1, . . . , ci−1 and from c1, . . . , cν , but a
unique critical relation for each of the other i’s. Thus we get N = ν − ζ( f ) critical
relations.

The resulting set of critical relations is realised by f . By construction F is
proper. �

Proof of Theorem 3.2. By Remark 3.1, it is enough to consider the case that σ is
the identity and the critical orbits avoid ∞. Let F be a proper collection of critical
relations realized by f . Note that if m, n ≥ 1 then Q f

i,k;m,n(z) is equal to

Q f
i, j;m,n(z) =

m−1∑

r=1

Df m−r ( f r (ci ))

z − f r (ci )
−

n−1∑

s=1

Df n−s( f s(c j ))

z − f s(c j )
(4.1)

and ifm = n = 1 then Q f
i, j;m,n(z) = 0. By property (2) of Definition 4.2, (i, j;m, n)

∈ F and m, n ≥ 1 imply

Df m−1( f (ci )) �= 0, Df n−1( f (c j )) �= 0 (4.2)

and if i �= j then

f (ci ), . . . , f m−1(ci ), f (c j ), . . . , f n−1(c j ) (4.3)

are all distinct and distinct from c1, . . . , cν . Similarly, if i = j then by properties
(1), (2) of Definition 4.2,m > n and f (ci ), . . . , f m−1(ci ), c1, . . . , cν are all distinct.
Hence, if m, n ≥ 1 and i �= j then Q f

i, j;m,n(z) has a non-removable pole in each of
the points from the collection (4.3) and nowhere else. In particular, c1, . . . , cν is not
a pole for any Qi, j;m,n(z) when m, n ≥ 1 (this holds even when i = j). On the other
hand, Q f

i, j;m,0(z) does have a pole at c j and only critical relations of this form in F
have a pole at c j .

Suppose that the Jacobian does not have full rank. By Theorem 3.3 this implies

∑

1≤k≤N
(mk ,nk )�=(1,1)

akQ
f
ik , jk ;mk ,nk

(z) = 0. (4.4)

Let F0 be the set of relations (ik, jk;mk, nk) in F in this sum for which ak �= 0 and
with (mk, nk) �= (1, 1). So (4.4) is equal to the sum over the setF0. By Theorem 3.3,
F0 consists of at least one critical relation, and obviously the properties stated in
Definition 4.2 are also satisfied for F0.

Suppose first that there exists a critical relation (i, j;m, 0) ∈ F0. In this case by
property (4) inDefinition 4.2 there exists no i ′ �= i ,m ′ > 0 so that (i ′, j;m ′, 0) ∈ F0.
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It follows from this that (i, j;m, 0) is the only term in the sum (4.4) which leads to
a pole at z = c j . So the corresponding coefficient ak = 0, a contradiction.

Fromnowon, let us assume that for any (i, j;m, n) ∈ F0, n > 0. Then by property
(1) of Definition 4.2, we have i ≥ j . Because of property (3) of Definition 4.2 we
can rearrange, if necessary, the critical relations in F0 so that they are of the form
(ik, jk;mk, nk), 1 ≤ k ≤ N0, with i1 < i2 < · · · < iN0 . If mk = 1 holds for all 1 ≤
k ≤ N0, then by property (5), ( jk, nk) are pairwise distinct. Since Q f

ik , jk ;1,nk has

poles precisely at the points f (c jk ), f 2(c jk ), · · · , f nk−1(c jk ),
∑N0

k=1 akQ
f
ik , jk ;mk ,nk

has
a pole, a contradiction! So let us assume that there is a maximal N1 ≤ N0 such that
mN1 ≥ 2. By property (6) of Definition 4.2, for each N0 ≥ k > N1, either jk �= iN1 ,
or jk = iN1 and nk < mN1 . Together with property (2) of Definition 4.2, this implies
that Q f

ik , jk ;mk ,nk
= Q f

ik , jk ;1,nk does not have a pole at f mN1−1(ciN1 ). For each k < N1,

since iN1 > ik ≥ jk , by property (2) of Definition 4.2, Q
f
ik , jk ;mk ,nk

does not have a pole

at f mN1−1(cN1) either. Therefore
∑N0

k=1 akQ
f
ik , jk ;mk ,nk

has a pole at f mN−1−1(cN1), a
contradiction! �

5 A Proof of Theorem 3.3

Remark 5.1 Aproof of Theorem 3.3 is contained essentially in [20].We only outline
it here (and then present another proof). Denote v j ( f ) = f (c j ( f )) for j = 1, · · · , ν.
Conjugating f by a Möbius transformation, one can assume that f (∞) = ∞,
Df (∞) �= 0. We label the critical values so that for some 0 ≤ ν ′ ≤ ν the following
holds: v j ( f ) ∈ C for 1 ≤ j ≤ ν ′ and v j ( f ) = ∞ for ν ′ < j ≤ ν. Consider a subset
� f,ν ⊂ Ratμμμd of maps g such that there exists σ(g), b(g) ∈ C so that g(z) = σ(g)z +
b(g) + O(1/z) as z → ∞. By [19], � f,ν has a structure of ν + 2 dimensional
complex manifold and (σ (g), b(g), v1(g), · · · , vν ′(g), vν ′+1(g)

−1, · · · , vν(g)
−1) is

a holomorphic coordinate of g ∈ � f,ν . Proposition 10 of [20] implies that for any
(i, j;m, n), if (i, j;m, n) is realized by f and f m(ci ( f )), f n(c j ( f )) �= ∞, then

Q f
i, j;m,n(x)− Q̂ f

i, j;m,n(x) =
∑ν ′

k=1
1

vk ( f )−x
∂(gm (ci (g))− f n(c j (g)))

∂vk
|g= f ,

(5.1)

where Q̂ f
i, j;m,n(x)dx

2 = f∗(Q
f
i, j;m,n(x)dx

2). Now Theorem 3.3 can be proved by
repeating the proof of the main result of [20] after replacing Proposition 13 of that
paper by (5.1). Instead of going into more details we give here a direct and short
proof of the theorem.



Transversality for Critical Relations … 215

5.1 Proof of Theorem 3.3.

Let us first apply Thurston’s pull back argument to obtain a relation of partial deriva-
tives of g �→ gm(ci (g)) − gn(c j (g)) with the quadratic differential Qi, j;m,n(z)dz2.
Let L∞(C) denote the space of all Borel measurable functions μ with ‖μ‖∞ < ∞.
Note that f ∗μ(z) = μ( f (z)) f ′(z)/ f ′(z) also belongs to the class L∞(C).

Lemma 5.2 Givenμ ∈ L∞(C) which vanishes in a neighborhood of∞ and f (∞),
there exists a holomorphic family ft of rational maps of degree d, t ∈ Dε, with
f0 = f , and such that the following holds: For any (i, j;m, n),

− 1

π

∫

C

(μ − f ∗μ)Qi, j;m,n|dz|2 = d( f mt (ci ( ft )) − f nt (c j ( ft )))

dt

∣
∣
∣
∣
t=0

.

Proof Assume without loss of generality that ‖μ‖∞ ≤ 1. Then for each t ∈ D, there
are qc maps ϕt , ψt : C → Cwith complex dilatations tμ and t f ∗μ respectively such
that (see e.g. [1])

• ϕt (z) = z + o(1), ψt (z) = z + o(1) as z → ∞ for each t ;
• ft defined by ft ◦ ψt = ϕt ◦ f is a family of rational maps.

Then ϕt and ψt depends on t holomorphically [1] and thus ∂ ft/∂̄t = 0 in the sense
of distribution, which implies that ft depends holomorphically on t . Let

Ln(z) = d f nt (z)

dt
|t=0

and L(z) = L1(z). Then

L(x) + Df (z)
d

dt
ψt (z) = d

dt
φt ( f (z)) (5.2)

and therefore
L(z) + Df (z)X̂(z) = X ( f (z)), (5.3)

where

X (z) = − 1

π

∫

C

μ(ζ )

ζ − z
|dζ |2, X̂(z) = − 1

π

∫

C

f ∗μ(ζ )

ζ − z
|dζ |2.

The latter formulas come from the following fact. Let ν ∈ L∞(C) have a compact
support, ‖ν‖∞ ≤ 1 and ht (|t | < 1) is the (unique) qc map with complex dilatation
tν such that ht (z) = z + o(1) as z → ∞. Then

dht (z)

dt
|t=0 = − 1

π

∫

C

ν(ζ )

ζ − z
|dζ |2. (5.4)
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The formula (5.4) is well-known and follows for example from the formula (6) in
the proof of Theorem 1 of [1], Chap.V (noting that a different normalisation for ht
is chosen there) or by differentiating the formula on the 2nd line of page 25 in [4].

For any h ∈ {1, 2, . . . , ν} and non-negative integer l, define

Sl(ch) =
l∑

r=1

Df l−r ( f r (ch))X ( f r (ch))

and

Ŝl(ch) =
l∑

r=1

Df l−r ( f r (ch))X̂( f r (ch))

It suffices to show that for any l, h as above,

Sl(ch) − Ŝl(ch) = d f lt (ch( ft ))

dt

∣
∣
∣
∣
t=0

− X̂( f l(ch)). (5.5)

If l = 0, then the left hand is equal to zero, and the right hand side is also equal to
zero, since X̂(ch) = dψt (ch)

dt |t=0 and ch( ft ) = ψt (ch). For l ≥ 1, we use (5.3):

Sl(ch) =
l∑

r=1

Df l−r ( f r (ch))X ( f r (ch))

=
l∑

r=1

Df l−r ( f r (ch))L( f r−1(ch)) +
l∑

r=2

Df l−r+1( f r−1(ch))X̂( f r−1(ch))

= Ll(ch) +
l−1∑

r=1

Df l−r ( f r (ch))X̂( f r (ch))

= Ll(ch) + Ŝl(ch) − X̂( f l(ch)).

Since
d f lt (ch( ft ))

dt

∣
∣
∣
∣
t=0

= d f lt (ch)

dt

∣
∣
∣
∣
t=0

,

Equation (5.5) follows. �

Proof (Proof of Theorem 3.3) Assume that the Jacobian matrix has rank less than N .
Then there exist complex numbers a1, a2, · · · , aN such that all the partial derivatives
of the map

g �→
N∑

k=1

ak
(
gmk (cik (g)) − gnk (c jk (g))

)
(5.6)
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is equal to 0 at g = f . Since F satisfies the non-cyclic condition (3.3), by
Theorem 2.1, there exists k such that (mk, nk) �= (1, 1) and ak �= 0.

Given μ ∈ L∞(C) which vanishes in a neighbourhood of ∞ and f (∞), let ft be
given by the previous lemma. Then for each k = 1, 2, . . . , N , we have

− 1

π

∫

C

(μ − f ∗μ)Qik , jk ;mk ,nk |dz|2 = d( f mt (ci ( ft )) − f nt (c j ( ft )))

dt

∣
∣
∣
∣
t=0

.

Thus for q defined as in (3.5), and q̂(z)dz2 = f∗(q(z)dz2), we have

∫

C

μ(q̂ − q)|dz|2

=
∫

C

(μ − f ∗μ)q(z)|dz|2

= − π

N∑

k=1

ak
d( f mt (ci ( ft )) − f nt (c j ( ft )))

dt

∣
∣
∣
∣
t=0

= 0,

where the last equality follows from the argument in the previous paragraph. It
follows that q̂ = q.

Assume now that f is not a flexible Lattés example. Let us prove that q = 0. To
this end, first assume f (∞) �= ∞. Let ϕi be the local inverse diffeomorphic branches
of f near ∞. Then q̂ = q implies that

q(z) =
d∑

i=1

q(ϕi (z))ϕ
′
i (z)

2

holds near ∞. Since ϕi (∞) ∈ C (and is not equal to one of the finitely many poles
of q) and ϕ′

i (z) = O(1/z2) as z → ∞, it follows from the displayed formula q(z) =
O(1/z4) at infinity. Thusq(z)dz2 is an integrablemeromorphic quadratic differential.
By a well-known argument, this implies that q(z) = 0, see for example Sect. 3.5 of
[6, 24].

If f (∞) = ∞, then we can find a sequence of Möbius transformations σl , l =
1, 2, . . ., converging to the identity uniformly, such that f(l) = σl ◦ f ◦ σ−1

l satisfies
f(l)(∞) �= ∞ and ∞ avoids the critical orbits of f(l). Putting g(l) = σl ◦ g ◦ σ−1

l , by
(5.6), all partial derivatives of the map

g �→
N∑

k=1

ak
(
σ−1
l

(
gmk

(l)

(
cik (g(l))

)) − σ−1
l

(
gnk(l)

(
c jk (g(l))

)))

are equal to zero at g = f , hence all partial derivatives of the map
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g �→
N∑

k=1

ak
σ ′

(l)( f
mk (cik ))

((gmk (cik (g)) − gnk (c jk (g)))

are equal to zero at g = f(l). Since f(k) is not a Lattés example, as above we obtain

that q(l) := ∑N
k=1

ak
σ ′

(l)( f
mk (cik ( f )))

Q
f(l)
ik , jk ;mk ,nk

≡ 0. By continuity we conclude that

q = 0. �

6 The Polynomial Case

The previous theorems also hold in the space of polynomials of degree d. In
that case, let μμμ = (μ1, . . . , μν) so that

∑ν
i=1 μi = d − 1 and let Polμμμd be the

set of maps with critical points c1, . . . , cν ∈ C of orders μ1, . . . , μν . The space
Polμμμd is clearly an embedded submanifold of Ratμ̂μμd of codimension one, where
μ̂μμ = (μ1, μ2, · · · , μν, d − 1).

Theorem 6.1 Assume f ∈ Polμμμd . Then there exists a set

F = {(ik, jk;mk, nk), k = 1, . . . , N } with N = ν − ζ( f )

of critical relations f mk (cik ) = f nk (c jk ) which are realised by f , such that the Jaco-
bian of the map

Polμμμd � g �→ (gmk (cik (g)) − gnk (c jk (g)))
N
k=1 (6.1)

at g = f has rank N.

Proof Let cν+1 = ∞. For maps g in Ratμ̂μμd close to f , let c j (g) denote the crit-
ical point of g close to ci , 1 ≤ i ≤ ν + 1. By Theorem 3.2, there is a set F̂ =
{(ik, jk;mk, nk)}N+1

j=1 of critical relations of f so that the Jacobian of the map

Rσ

F̂ : Ratμ̂μμd � g �→ (σ (gmk (cik (g))) − σ(gnk (c jk (g))))
N+1
k=1

has rank N + 1 at g = f , whereσ is aMöbius tansformation such thatσ( f mk (cik )) �=
∞ for all k. Since F̂ is full, there is k0 such that (ik0 , jk0;mk0 , nk0) = (ν + 1, ν +
1; 1, 0) (or (ν + 1, ν + 1; 0, 1)). Assume without loss of generality k0 = N + 1. Let
F = {(ik, jk;mk, nk) : 1 ≤ k ≤ ν} and let R denote the map defined by (6.1). Note
that the kernel of D fR is contained in the kernel of D fRσ

F̂ , so its dimension is at

most dim(Ratμ̂μμd ) − (N + 1) = dim(Polμμμd ) − N . Thus the rank of D fR is at least N .
The rank is not more than N , so it is equal to N . �



Transversality for Critical Relations … 219

Acknowledgements The authors thank Alex Eremenko for a discussion about Theorem 2.1, Adam
Epstein for pointing out an error in the last paragraph of Sect. 5.1 in a previous version, Xavier Buff
and Lasse Rempe-Gillen for helpful comments on the introduction of the final version of this paper
and the referee for carefully reading the paper. This project was partly supported by the ISF grant
no: 1226/17, ERC AdG grant no: 339523 RGDD and the NSFC grant no: 11731003.

References

1. L.V. Ahlfors, Lectures on quasiconformal mappings, vol. 38, 2nd edn. Van Nostrand, Princeton
1966; A.M.S. University Lecture Series (2006)

2. M. Astorg, Summability condition and rigidity for finite type maps, arXiv:1602.05172v1
3. X. Buff, A. Epstein, Bifurcation measure and postcritically finite rational maps. Complex Dyn.

491, 512 (2009)
4. L. Carleson, T.W. Gamelin, Complex Dynamics (Springer, 1992)
5. A.Douady, J.H.Hubbard, Étude dynamique des polynômes complexes. PublicationsMathéma-

tiques d’Orsay, 84–2. Université de Paris-Sud, Département de Mathématiques, Orsay (1984),
75 pp

6. A. Douady, J.H. Hubbard, A proof of Thurston’s topological characterization of rational func-
tions. Acta Math. 171(2), 263–297 (1993)

7. A. Epstein, Infinitesmimal Thurston rigidity and the Fatou-Shishikura inequality, Stony Brook
IMS preprint 1999#1

8. A.Epstein,Transversality in holomorphic dynamics, http://homepages.warwick.ac.uk/~mases/
Transversality.pdf

9. A. Epstein, Slides of talk available in https://icerm.brown.edu/materials/Slides/sp-s12-w1/
Transversality_Principles_in_Holomorphic_Dynamics_%5D_Adam_Epstein,_University_
of_Warwick.pdf

10. A. Eremenko, A. Gabrielov, Rational functions with real critical points and the B. and M.
Shapiro conjecture in real enumerative geometry. Ann Math. 155, 105–129 (2002)

11. A. Eremenko,M. Lyubich, Dynamical properties of some classes of entire functions. Ann. Inst.
Fourier 42(4), 1–32 (1992)

12. A. Eremenko, A Markov-type inequality for arbitrary plane continua. Proc. AMS 135, 1505–
1510 (2007)

13. C. Favre, T. Gauthier, Distribution of postcritically finite polynomials. Isr. J. Math. 209, 235–
292 (2015)

14. F. Gardiner, Teichmuller theory and quadratic differentials (Wiley, 1987)
15. G. Levin, M.L. Sodin, P.M. Yuditski, A Ruelle operator for a real Julia set. Comm.Math. Phys.

141(1), 119–132 (1991)
16. G.M. Levin,On the theory of iterations of polynomial families in the complex plane. Translation

from: Toeriya Funkzii, Funkzionalnyi Analiz i Ih Prilozheniya, no. 51, 94–106 (1989)
17. G.M. Levin, Polynomial Julia sets and Pade’s approximations (in Russian), in Proceedings of

XIII Workshop on Operator’s Theory in Functional Spaces, Kyubishev, 6–13 October 1988
(Kyubishev State University, Kyubishev, 1988), pp. 113–114

18. G. Levin, On an analytic approach to the Fatou conjecture. Fund.Math. 171(2), 177–196 (2002)
19. G. Levin, Multipliers of periodic orbits in spaces of rational maps. Ergod. Theory Dynam. Syst.

31, 197–243 (2011)
20. G. Levin, Perturbations of weakly expanding critical orbits. Front. Complex Dyn., 163–196

(2014). Princeton Math. Ser., 51, Princeton University Press, Princeton, NJ
21. G. Levin,W. Shen, S. van Strien,Monotonicity of entropy for one-parameter families of interval

maps. Preprint Oct 2016
22. P. Makienko, Remarks on the Ruelle operator and the invariant line fields problem. II. Ergod.

Theory Dynam. Syst. 25(5), 1561–1581 (2005)

http://arxiv.org/abs/1602.05172v1
http://homepages.warwick.ac.uk/~mases/Transversality.pdf
http://homepages.warwick.ac.uk/~mases/Transversality.pdf
https://icerm.brown.edu/materials/Slides/sp-s12-w1/Transversality_Principles_in_Holomorphic_Dynamics_%5D_Adam_Epstein,_University_of_Warwick.pdf
https://icerm.brown.edu/materials/Slides/sp-s12-w1/Transversality_Principles_in_Holomorphic_Dynamics_%5D_Adam_Epstein,_University_of_Warwick.pdf
https://icerm.brown.edu/materials/Slides/sp-s12-w1/Transversality_Principles_in_Holomorphic_Dynamics_%5D_Adam_Epstein,_University_of_Warwick.pdf


220 G. Levin et al.

23. C.McMullen, Amenability, Poincaré series and quasiconformalmaps. Invent.Math 97, 95–127
(1989)

24. C. McMullen, Complex Renormalisation and Renormalisation (Princeton University Press,
Princeton, 1994)

25. W. de Melo, S. van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer
Grenzgebiete (Springer, Berlin, 1993)

26. J. Milnor, Tsujii’s monotonicity proof for real quadratic maps, unpublished 2000
27. J. Milnor, On Lattès maps, in Dynamics on the Riemann Sphere, pp. 9–43 (2006). Eur. Math.

Soc, Zürich
28. J. Milnor, W. Thurston, On iterated maps of the interval, in Dynamical Systems, College Park,

MD, 1986–87. Lecture Notes in Math., 1342 (Springer, Berlin, 1988), pp. 465–563
29. J. Milnor, C. Tresser, On entropy and monotonicity for real cubic maps. Commun. Math. Phys.

209, 123–178 (2000)
30. S. van Strien,Misiurewiczmaps unfold generically (even if they are critically non-finite). Fund.

Math. 163(1), 39–54 (2000)
31. O. Teichmüller, Eine Anwendung, quasikonformer Abbildungen auf das Typenproblem.

Deutsche Math. 2, 321–327 (1937). Gesammelte Abhandlungen, Springer, Berlin, 1982, 171–
177

32. M. Tsujii, A note on Milnor and Thurston’s monotonicity theorem, in Geometry and Analysis
in Dynamical Systems (Kyoto, 1993), pp. 60–62, Adv. Ser. Dynam. Systems, 14, World Sci.
Publ., River Edge, NJ, 1994

33. M. Tsujii, A simple proof of monotonicity of entropy in the quadratic family. Ergod. Theory
Dynam. Syst. 20, 925–933 (2000)



Teichmüller Space of Fibonacci Maps

Mikhail Lyubich

Dedicated to memory of Welington de Melo.

Abstract We prove that all smooth Fibonacci maps with quadratic critical point
are quasisymmetrically conjugate. The proof is based upon an idea of asymptoti-
cally conformal extension, which provides a link between smooth and holomorphic
dynamics.

Keywords Fibonacci map · Asymptotically conformal extension · Teichmüller
metric

Preamble This paper was written 25 year ago, but appeared only as a Stony Brook
Preprint (# 12, 1993). Its main result states that all smooth Fibonacci maps with
quadratic critical point are quasisymmetrically conjugate. The proof is based upon
an idea of asymptotically conformal extension. It provides a link between smooth
and holomorphic dynamics that allowed us to apply some holomorphic techniques to
the smooth case. Today this paper can serve as an illustration of this idea in a simple
setting which is not overshadowed by combinatorial and geometric complications.
Further applications of the asymptotically conformal extension to smooth dynamics
have been carried in the work of Avila and Krikoryan [24], Graczek et al. [26],
and Guarino and de Melo [27]. A strategy of how our result can be generalized to
arbitrary smooth unimodalmapswas outlined in [28], §12.2. Very recently, Clark and
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1 Introduction

According to Sullivan, a space E of unimodal maps with the same combinatorics
(modulo smooth conjugacy) should be treated as an infinite-dimensional Teich-
müller space. This is a basic idea in Sullivan’s approach to the Renormalization
Conjecture [14, 15]. One of its principle ingredients is to supply E with the Teich-
müller metric. To have such a metric one has to know, first of all, that all maps of
E are quasi-symmetrically conjugate. This was proved in [6, 7] for some classes of
non-renormalizable maps (when the critical point is not too recurrent). Here we con-
sider a space of non-renormalizable unimodal maps with in a sense fastest possible
recurrence of the critical point (called Fibonacci). Our goal is to supply this space
with the Teichmüller metric.

Let f be a unimodal map with critical point c. A Fibonacci unimodal map f
can be defined by saying that the closest returns of the critical point occur at the
Fibonacci moments. This combinatorial type was suggested by Hofbauer and Keller
[5] as extremal among non-renormalizable types (see [11] for more detailed history).
Its combinatorial, geometric and measure-theoretical properties were studied in [11]
under the assumption that f is quasi-quadratic, i.e., it is C2-smooth and has the
quadratic-like critical point (see also [8]). We will assume this regularity throughout
the paper.

A principal object of our combinatorial considerations is a nested sequence of
intervals I 0 ⊃ I 1 ⊃ ... obtained subsequently by pulling back along the critical orbit.
Our proof is based upon the geometric result of [11] which says that the scaling fac-
torsμn = |I n|/|I n−1| characterizing the geometry of the Fibonacci map decay expo-
nentially. It follows that appropriately defined renormalizations Rn f are becoming
purely quadratic near the critical point. This reduces the renormalization process to
compositions of quadratic maps.

The next idea is to consider a quasi-conformal continuation of f to the complex
plane which is asymptotically conformal on the real line.1 Thenwe consider complex
generalized renormalizations, and prove that the renormalized maps are becoming
purely quadratic in the complex plane as well. Hence the geometric patterns of renor-
malized maps are subsequently obtained by the Thurston pull-back transformation
(up to an exponentially small error) in an appropriate Teichmüller space. It follows
that these patterns converge (after rescaling) to the corresponding pattern of the
quadratic map p : z �→ z2 − 1. In particular, the shape of the complex puzzle-pieces
converges to the Julia set of p, see Fig. 1 (this is perhaps the most surprising outcome
of our analysis).

To each renormalization we then associate a pair of pants Qn by removing from
the critical puzzle-piece of level n two puzzle-pieces of the next level. Using the
same type of argument as above, we show that the pairs of pants Qn and Q̃n stay on
bounded distance. This yields the quasi-conformal equivalence of the critical sets of
f and f̃ .

1This idea was also used in [7] with a reference to D. Sullivan’s lectures.
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Fig. 1 A Fibonacci puzzle-piece (made by S. Sutherland and B. Yarrington)

To complete the construction of the quasi-symmetric conjugacy, we apply a
Sullivan-like pull-back argument. However, this is not quite straightforward since
there is no dilatation control away from the real line.

In the last section we prove that two Fibonacci maps that stay on zero Teichmüller
distance are smoothly conjugate. So this pseudo-metric is non-degenerate on the
smooth equivalence classes.

Wewill use abbreviations qc and qs for “quasi-conformal” and “quasi-symmetric”
respectively.

Remark 1 The dilatation of the conjugacy we construct depends only on the geom-
etry of the maps in question.

Remark 2 It is proved in [12] that, as in the Fibonacci case, the scaling factors of
any non-renormalizable quasi-quadratic map decay exponentially. This allows us to
generalize the above result to all combinatorial classes of quasi-quadratic maps. The
exposition of this result is more technical, and it will be the subject of forthcoming
notes.2 Note that for polynomial-like maps this result follows from the Yoccoz The-
orem (see [4] for the exposition of this theorem, and [10] for an alternative proof
based upon a pull-back argument).

Remark 3 In this paper we concentrate on the dynamical constructions, and do not
touch the issue of the sharp regularity for which the theory can be built up. Compare
[2] and [15].

2See [28], §12.2.
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2 Asymptotically Conformal Continuation
and Generalized Renormalization

Real renormalization (see [11]). Given a Fibonacci map f , there is a sequence of
maps

gn : I n0 ∪ I n1 → I n−1
0 , n = 1, 2, ...

constructed in the following way. Let I 0 ≡ I 00 be a c-symmetric interval3 satisfying
the property f n(∂ I 0) ∩ I 0 = ∅, n = 1, 2, .... Now given I n−1 ≡ I n−1

0 	 c by induc-
tion, let us consider the first return map fn : ∪I nj → I n−1. Its domain of definition
generally consists of infinitelymany intervals I nj ⊂ I n−1. However, for the Fibonacci
map, only two of them, I n ≡ I n0 	 c (the “central” one) and I n1 , intersect the critical
set ω(c). Let us define gn as the restriction of fn to these two intervals. These maps
satisfy the following properties:
(i) gn : I n1 → I n−1

0 is a diffeomorphism and gn(∂ I n0 ) ⊂ ∂ I n−1
0 ;

(ii) gn I n0 ⊃ I n0 (high return);
(iii) gnc ∈ I n1 and g2nc ∈ I n0 .

By rescaling I n to somedefinite sizeT (e.g.,T = [0, 1]),weobtain the generalized
n-fold renormalization

Rn f : T n
0 ∪ T n

1 → T

of f . The asymptotic properties of the renormalized maps express the small scale
information about the critical set ω(c).

Let us now introduce the principle geometric parameters, the scaling factors

μn = |I n|
|I n−1| = |T n|

|T | .

The main result of [11] says that they decrease to 0 exponentially at the following
rate:

μn ∼ a

(
1

2

)n/3

. (1)

It follows by theKoebe principle that up to an exponentially small error the restriction
of Rn f to the central interval T n

0 is purely quadratic, while the restriction to T n
1 is

linear. This is all we need to know for the comprehensive study of f .

Asymptotically conformal continuation. Let us represent f as h ◦ φ where φ(z) =
(z − c)2 is the quadratic map, while h is a C2-diffeomorphism of appropriate inter-
vals. Let us continue h to a diffeomorphism of a bounded C2 norm on the whole real
line, and then consider the Ahlfors-Beurling continuation of h to the complex plane:

3We assume for simplicity that f is even.



Teichmüller Space of Fibonacci Maps 225

ĥ(x + iy) = 1

2y

∫ x+y

x−y
h(t)dt + 1

y

(∫ x+y

x
h(t)dt −

∫ x

x−y
h(t)dt

)
.

This is clearly a C2-map, and one can check by calculation that ∂̄ ĥ = 0 on the real
line. Hence ∂̄ ĥ/∂ ĥ = O(|y|) as |y| → 0. This provides us with a C2 extension of f
which is asymptotically conformal on the real line in the sense that

μ(z) ≡ ∂̄ f̂ /∂ f̂ = O(|y|) (2)

as well. In what follows we denote the extended h and f by the same letters.

Complex pull-back. Given an interval I ⊂ R and θ ∈ (0, π/2), let Dθ (I ) denote the
domain bounded by the union of two R-symmetric arcs of the circles which touch
the real line at angle θ . In particular, Dπ/2(I ) ≡ D(I ) is the Euclidean disk with
diameter I . Observe that I is a hyperbolic geodesic in the domain C � (R � I ) and
Dθ (I ) is its hyperbolic neighborhood of radius depending only on θ .

We say than an interval Ĩ is obtained from the I by α-scaling if these intervals
are cocentric and | Ĩ | = (1 + α)|I |.
Lemma 1 Let α < 1, n be sufficiently big. Let us consider the α-scaled interval
Ĩ n ⊃ I n. Let � = D( Ĩ n), and �′ be the pull-back of � by gn+1|I n+1. Then �′ ⊂
D( Ĩ n+1) where Ĩ n+1 is obtained from I n+1 by β-scaling with β = α + O(μn).

Proof Let us skip the index n in the notations of objects of level n and mark the
objects of level n + 1 with a prime. Set g|I ′ = f p, and let us consider the pull-back
I, I−1, ..., I−p ≡ I ′ of I along the orbit { f kc}pk=0. Then

p∑
k=0

|I−k | = O(μ). (3)

Since the map f k : I−k → I has the Koebe space covering I n−1, the pull-back Ĩ−k

of Ĩ along the same orbit also has the total length O(μ).
Let us now take the disk � and pull it back along the same orbit. We obtain

a sequence of pieces �−k based upon the intervals Ĩ−k . Assume by induction that
�−l ⊂ Dθ(k)( Ĩ−l), l = 0, ..., k < p, with

θl = α + O(

l−1∑
j=0

| Ĩ− j |). (4)

Represent f as h ◦ φ and carry out the next pull-back in two steps: first by the
diffeomorphism h and then by the quadratic map φ. Let h−1 Ĩ−k = L−k . If we rescale
the intervals Ĩ−k and L−k to the unit size, the C1-distance from the rescaled map
H−1 : [0, 1] → [0, 1] to id is O(|I−k |). It follows that

h−1�−k ⊂ Dθ(k+1)(L−k) (5)
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with θ(k + 1) as in (4).
Consider now two cases. Let first k < p − 1. Then φ : Ĩ−(k+1) → L−k is a dif-

feomorphism and by the Schwarz lemma (see the above hyperbolic interpretation of
the Dθ (I ))

�−(k+1) ⊂ Dθ(k+1)( Ĩ−(k+1)).

Let us now carry out the last pull-back corresponding to k = p − 1. Then
φ|I−(k+1) = φ|I ′ is the quadratic folding map into L ≡ L−(p−1). Moreover, what
is important is that φ I ′ covers at least half (up to an error of order O(μ)) of the
interval L (It follows from the high return property of g and the estimate of its non-
linearity). Hence we can find an interval K ⊃ L centered at the critical value f (c)
such that

Dθ(p−1)(L) ⊂ D(K )

and
|K | = 2|φ I ′|(1 + O(μ)).

Two last equations together with (4) yield the required. �

Let us now take the Euclidean disk � = D(I m) and pull it back by the maps gn
continued to the complex plane. Denote the corresponding domains by �n

0 and �n
1,

n > m.

Corollary 2 If m is sufficiently big then the diam�n
j is commensurable with the

diamI nj .

Proof Applying the previous lemma n − m times, we see that diam �n
j is

|I nj |
(
1 + O(

∑n

k=m
μk)

)
. Since μk decay exponentially, we are done. �

3 Thurston’s Transformation and the Shape
of the Complex Puzzle-Pieces

Let us consider the quadratic map p : z �→ z2 − 1 and mark on C a set A of
three points −1, 0, and a = (1 + √

5)/2. The first two form a cycle, while the
last one is fixed. Taking a conformal structure ν on the thrice punctured plane
S = C � A, we can pull it back by p. This induces a “Thurston’s transformation”
L of the Teichmüller space TS of thrice punctured planes into itself (compare [1] or
[13]). The main property of L is that it strictly contracts the Teichmüller metric, and
hence all trajectories Lnτ exponentially converge to the single fixed point τ0 ∈ TS
represented by the standard conformal structure.

Let us consider the involution ρ : TS → TS induced by the reflection of the con-
formal structure about the real line. This involution commutes with L , and so the
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subspace T ∗
S of R-symmetric structures is L-invariant. This subspace can be iden-

tified with the set of triples on the real line up to affine transformations. We can
normalize the triples, say, as follows: {γ, 0, a}, γ < 0. To pull back such a triple, we
should take the quadratic polynomial pγ which fixes a and carries 0 to γ , and take
the negative preimage of 0.

Let us rescale both intervals I n and I n−1 to the size T = [−a, a] with a as above.
LetGn : T → T be the rescaled gn : I n → I n−1 (observe that this is a non-dynamical
procedure, compare [9]). Let us select the orientation in such a way that 0 is the
minimum point of Gn .

Lemma 3 The maps Gn converge to the polynomial p(z) = z2 − 1 in C1 norm on
compact subsets of C.

Proof If we pull back the Euclidean disk � = D(I n), we obtain a sequence of
puzzle-pieces whose diameter is commensurable with their traces on the real line
(Corollary 2). By the Denjoy distortion argument,

Dh−1
n (z) = Dh−1

n (0)(1 + O(
√

μn)), z ∈ �,

so that h−1
n in � is an exponentially small perturbation of a linear map. Rescaling,

we conclude that Gn = Hn ◦ pγ (n) where Hn are diffeomorpisms converging expo-
nentially to id inC1 on compact sets, and pγ (n) are quadratic polynomials introduced
above.

Let us now consider a sequence τn ∈ T ∗
S represented by triples (Gn(0), 0, a). It

was shown in [11] that |Gn(0)|/a stays away from 0 and 1. Hence τn+1 = L ◦ Qn(τn)

where L is the Thurston transformation, while Qn is exponentially close to id in the
Teichmüller metric. Since L is strictly contracting, τn must converge to its fixed point
τ0.

We conclude that Gn(0) → −1, hence pγ (n) → p and Gn → p. �

Let us consider the following topology on the spaceK of connected full compact
subsets K of C. Let ψK : {z : |z| > 1} → C � K be the Riemann map normalized
at ∞ by ψ(z) ∼ qz with q > 0. Then the topology on K is induced by the compact
device open topology on the space of univalent functions.4

Let us now consider the complex pieces �n based upon the intervals I n . Here �n

is the gn-pull-back of�n−1. Rescaling of I n to T leads to the corresponding rescaled
pieces Pn .

Lemma 4 The pieces Pn converge to the filled-in Julia set of p(z) = z2 − 1.

Proof The piece Pn is the Gn-pull-back of Pn−1. By Lemma 1, diamPn is bounded.
Hence Gn|Pn is an exponentially small perturbation of p which yields the
desired. �

4It is called the Carathéodory topology.
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4 Qc Conjugacy on the Critical Sets

Let us consider the complex renormalizations of f ,

Fn = Rn f : V n
0 ∪ V n

1 → Pn,

where V n
i are the rescaled puzzle-pieces based upon the intervals T n

i . We use the
same letters for the complex extensions of different maps. In particular, let Gn :
Pn → Pn−1 be the rescaled gn : �n → �n−1 (see5 Fig. 2).

Let us parametrize smoothly the boundary of the piece P0, γ : T → ∂P0.
This parametrization can be naturally lifted to the parametrization γ1 : T → ∂P1,
namely G1 ◦ γ1 = γ (z2), then to the parametrization of ∂P2 etc. We refer to these
parametrizations the boundary markings.

Let us also consider another Fibonacci map f̃ whose data will be labeled by tilde.
The Teichmüller distance between two marked puzzle-pieces is the best dilatation of
qc maps between the pieces respecting the boundary marking.

Lemma 5 The marked puzzle-pieces Pn and P̃n stay bounded Teichmüller distance
apart.

Proof Let us have a K -qcmap Hn−1 : Pn−1 → P̃n−1 of themarked pieces respecting
the positions of the critical points and the critical values, that is, Hn−1(0) = 0 and
Hn−1(γn−1) = γ̃n−1. It can be lifted to the K (1 + O(μn))-qc map hn : Pn → P̃n .
This map respects boundary marking and 0-points but it does not respect γ -points.
However, it respects these points up to exponentially small error, namely hn(γn) and
γ̃n are exponentially close.

Indeed, let qn ∈ T n
1 be the Gn-preimage of 0. As the length of Tn is exponentially

small, the points qn and γn are exponentially close. Moreover, by Lemma 4 the
distance from these points to the boundary ∂Pn is bounded frombelow.By theHölder
continuity of qc maps we conclude that hn(qn) and hn(γn) are also exponentially
close. As hn(qn) = q̃n , the points hn(γn) and γ̃n are exponentially close as well.

As the distance from these points to the boundary ∂ P̃n and from 0 is bounded from
below, they are exponentially close with respect to the Poincaré metric of P̃n . Hence
there is a diffeomorphism ψ : P̃n → P̃n with exp small dilatation keeping ∂ P̃n and
0 fixed, and pushing hn(γn) to γ̃n . Then Hn = ψ ◦ hn is a (K+exp small)-qc map
between the marked puzzle-pieces Pn and P̃n respecting the positions of the critical
points and the critical values.

Proceeding in a such a way we construct uniformly qc maps between Pn and
P̃n on all levels (as the exponentially small addings to dilatation sum up to a finite
value). �

Let us now consider the pairs of pants Qn = Pn
� (V n

0 ∪ V n
1 ), where V n

0 ≡ Pn+1,
with the naturally marked boundary.

5According to our convention, V n
1 on this picture should actually be placed to the left of V n

0 .
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Fig. 2 The Fibonacci scheme

Lemma 6 The pairs of pants Qn and Q̃n stay bounded Teicmüller distance apart.

Proof Let us consider a K -qc homeomorphism Hn−1 : Qn−1 → Q̃n−1 of marked
pairs of pants. It follows from the previous lemma that we can extend these maps
across V n−1

j . Indeed, the previous lemma provides us with the continuation to V n−1
0 .

Moreover, it provides us with a map Pn−1 → P̃n−1 which then can be pulled back
to V n−1

1 . Let us keep the notation Hn−1 for this extension.
Let us now consider the pull-back Wn−1 ⊂ V n−1

1 of V n−1
0 by Fn−1. Its boundary

is also naturally marked. By one more pull-back of Hn−1 we can reconstruct it in
such a way that it will respect this marking. Let us consider the annulus An−1 =
Pn−1

� Wn−1 with marked boundary.
The annulus Ln = Pn

� V n
0 double covers An−1 under Gn . So we can pull Hn−1

back to a K -qcmap Hn : Ln → L̃n . Moreover, this map respects the parametrization
of ∂V n

1 , and hence can be restricted to the K -qc map of marked pairs of pants of
level n. �
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Fig. 3 Pairs of pants decomposition

We are prepared to obtain the desired result of this section.

Lemma 7 There is an R-symmetric qc map which conjugates f and f̃ on their
critical sets.

Proof The critical set can be represented as

ω(c) = ∩∞
n=1 ∪ Qn

i ,

where Qn
i are dynamically constructed disjoint pairs of pants (see Fig. 3). They are

obtained by univalent pull-backs of appropriate central pairs of pants. As these pull-
backs haveboundeddilatations, Lemma6 implies thatQn

i stay aboundedTeichmüller
distance from Q̃n

i . Gluing together all these pairs of pants, we obtain the desired
result. �

5 Pull-Back Argument

Sullivan’s pull-back argument allows us to construct a qc conjugacy between two
polynomial-like maps as long as there is a qc conjugacy on their critical sets. In this
paper we deal with asymptotically conformal maps, so that we need the dilatation
control of pull-backs. Lemma 1 will provide us with such a control along the real
line. However, away from the real line the dilatation can grow, so that we should stop
the construction at an appropriate moment. Let us show how it works. First we need
some extra analysis on the real line.

Let fn : ∪I nj → I n−1 be the full return map to the interval I n−1.

Lemma 8 Let I n ≡ J0, J−1, ... be any pull-back (finite or infinite) of the interval
I n. Then
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∑
|J−k | = O(μn).

Proof Denote by J the union of the intervals in the pull-back. Let us first assume
that the intervals J−k do not intersect I n . Let K0 ≡ J0, K1, ... be the piece of the
pull-back which belongs to I n−1,K = J ∩ I n−1 be the union of these intervals. This
is actually the pull-back under the map fn . This map is expanding with a bounded
distortion on the I nj (actually, is very strongly expanding and is almost linear on the
I nj ). Hence ∑

|K j | = O(μn). (6)

Let us now consider all intervals Li obtained by pulling I n−1 backwhich aremaximal
in the sense that they do not belong to another pull-back interval. In other words,
there is an m = m(i) such that f m Li = I n−1 but f l Li ∩ I n−1 = ∅ for l < m. These
intervals are mutually disjoint (and cover almost everything).

Let Ki = J ∩ Li . Then f m(i) maps Ki with bounded distortion (actually almost
linearly) ontoK. Hence dens(Ki |Li ) = O(μn). Summing up over i we get the claim.

Assume now that there are intervals in I n but there are no ones in I n+1. Let J−l

be the first interval belonging to I n . Then for the further pull-backs we can repeat
the same argument on level n instead of n − 1 (taking into account that the Poincaré
lengths of the I n+1

j in I n are O(μn)).
In general, let us divide the pull-back into the pieces Jl between the first landing

at I l and the first landing at I l+1. Let us pull I l along the corresponding piece. This
pull-back does not intersect I l+1 either, and according to the previous considerations
its total length is O(μl). All the more this is true for the total length of Jl .

Hence the total length of J is O

(∑
l≥n

μl

)
= O(μn). �

Let us now state the complex version of the above lemma.

Lemma 9 Let � = D(I n),�−1, ... be any pull-back of the disk � along the real
line. Then ∑

diam�−k = O(μn).

Proof LetW denote the unionof the disks in this pull-back.As in the above argument,
let us decompose it into the stringsW j in between levels j and j + 1. Let � j be the
first puzzle-piece in the j th string.

On the other hand, let � j denote the pull-backs of � based upon the intervals I j .
Then by the Markov property of the whole family of pull-backs, � j ⊂ � j . Hence
the pull-backW j can be inscribed into the corresponding pull-backD j of the puzzle-
piece � j .

It follows from Lemma 1 that the sum of the diameters of pieces in D j is com-
mensurable with the total length of its trace on the real line. By the previous lemma,
the latter is O(μn), and we are done. �
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Let us now select a high level n and consider the complex renormalization Fn :
V n
0 ∪ V n

1 → Pn . Let us re-denote all these objects as F : U 1
0 ∪U 1

1 → U 0. As above,
the corresponding objects for another Fibonacci map f̃ will be labeled with the tilde.
The following statement shows that two renormalizations of sufficiently high order
are qc-conjugate.

Proposition 10 There is a qc map U 0 → Ũ 0 which conjugates F and F̃ on the real
line.

Proof By Lemma 7, there is a qc map h0 : U 0 → Ũ 0 which conjugates F to F̃ on
the critical sets and on the ∂(U 1

0 ∪U 1
1 ). Let us start to pull it back.

Let Un
j denote the family of puzzle-pieces of depth n (that is, the components of

F−nU 0) which meet the real line. Let us assume by induction that we have already
constructed a qc map hn : U 0 → Ũ 0 which conjugates F to F̃ on their critical sets
and on (U 1

0 ∪U 1
1 ) � int(∪Un

j ). Then construct hn+1 as the lift of hn to all puzzle-
pieces Un

j .
Since the puzzle-pieces Un

j shrink to points, the sequence hn has the continuous

pointwise limit h which conjugates F and F̃ on the real line. Moreover, by (2) and
Lemma 9, the hn have uniformly bounded dilatations. Hence h is qc. �

Let us re-denote I n by J ≡ J 0, and let � = D(J ). Let us now consider the full
first return map f1 to �. Its domain intersects the real line by the union of intervals
J 1
j ≡ I n+1

j . Let�1
j be the pull-back of� intersecting the real line by I n+1

j ,D1 = ∪�1
j

(see Fig. 4).
The goal of the next three lemmas is to construct a qc map h : � → �̃ which

conjugates f1|∂D1 to f̃1|∂D̃1 (as well as f1|ω(c) to f̃1|ω(c̃)). This will be the start-

Fig. 4 The initial quasi-disk
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ing data for the pull-back argument. The problem is that the boundary ∂D is not
piecewise-smooth.

Given a set U , denote by U+ the intersection of U with the upper half-plane.

Lemma 11 The topological discs�1
j are pairwise disjoint. The set W = (� � D)+

is a quasi-disk.

Proof The map fn : �1
j → � has exponentially small non-linearity. Hence �1

j is a
minor distorted round disk. On the other hand, the intervals J 1

i and J 1
j are exponen-

tially small as compared with the gap Gi j in between. It follows that the disks �1
i

and �1
j are disjoint.

Let � = ∂W . It follows from the previous discussion that this curve is rectifiable.
Take two close points z, ζ ∈ �. Let δ be the shortest path connecting z and ζ in
� ∪ R (it is “typically” the union of an interval of the real line and two almost circle
arcs), and γ be the shortest arc in � connecting z and ζ . Then the length of δ is
commensurable with both the length of γ and the dist(z, ζ ). �

For the further discussion it is convenient to make a more special choice of the
interval J (compare [3, 4, 7]). Namely, let α be the fixed point of f with negative
multiplier σ ≡ f ′(α). Let Y (0) be the partition of T by α into two intervals. Pulling
this partition back, we obtain partitions Y (n) by n-fold preimages of α. Let us call
the elements of this partition the puzzle-pieces of depth n. The element containing
c is called critical. We select J = [β, β ′] as the critical puzzle-piece of sufficiently
high depth N .

Set τ = log |σ̃ |/ log |σ |.
Let us now start with a qcR-symmetricmap H : � → �̃which carries the critical

set of f1 to the critical set of f̃1 and such that

|H(z) − β̃| � |z − β|τ . (7)

Moreover, let H commute with the symmetry around c induced by f and f̃ .
Pull H back to a map h : D → D̃. Since the union∪J 1

j is dense in J , this map can

be continued to a homeomorphism h : J → J̃ . Let also h|∂� = H . This defines h
on the topological semi-circle S = ∂�+. Since S and S̃ are piecewise smooth curves,
we can naturally define the notion of a quasi-symmetric map between them.

Lemma 12 The map h : S → S̃ is quasi-symmetric.

Proof Let us consider an extension H : T → T̃ of H : J → J̃ which carries the
puzzle-pieces of depth N to the corresponding puzzle-pieces, and has the asymptotics
(7) near the boundary points of these puzzle-pieces.

Let K be the expanding Cantor set of points which never land in intJ . Each com-
ponent L of T � K (a “gap”) is a monotone pull-back of J with bounded distortion.
So we can lift the map H to qs maps on all the gaps L . These maps clearly glue
together to a homeomorphism φ : T → T̃ which respect the dynamics on the Cantor
sets K and K̃ . Moreover, if we rescale the corresponding gaps L and L̃ to the unit
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size then the rescaled φ near the boundary points will have asymptotics (7) uniformly
in L .

Furthermore, it easily follows from the bounded distortion properties of expanding
dynamics that φ|K can be extended to a qs conjugacy ψ in a neighborhood of K .
This conjugacy must have the same asymtotics (7) on the rescaled gaps (since the
conjugacy near the fixed points has such asymptotics). It follows that φ and ψ are
comparable on the gaps, and hence φ is qs on the whole interval.

Observe now that h : J → J̃ is the lift of φ by the almost quadratic maps f |J
and f̃ | J̃ . Hence h|J is qs and has asymptotics (7) near the boundary. Since it has the
same asymptotics on the opposite side of β, β ′ on the arc S � J , it is qs on S. �

Lemma 13 The map h : ∂W → ∂W̃ allows a qc extension to W → W̃ .

Proof Let E be the exterior component of C � S. By the previous lemma, there is
a qc extension of h from S to h0 : E → Ẽ (which changes the original values of h
below the real line).

We can now glue h : D+ → D̃+ with h0 to a qc map h∗ : C � W → C̃ � W
(since they agree on the real line). Since W is a quasi-disk (by Lemma 11), h∗ can
be reflected to the interior of W , and this is a desired extension. �

Corollary 14 There is an R-symmetric qc map h : � → �̃ which conjugates f1 to
f̃1 on the critical sets and on the boundary of D.

Proof Lemma 13 gives us a desired qc extension of the original h from D ∪ ∂�

to �. �

Now we are ready to prove the main result.

Theorem I Any two Fibonacci quasi-quadratic maps are qc conjugate.

Proof Starting with the qc map h given by Corollary 14, we can go through the
pull-back argument in the same way as in Proposition 10. This provides us with a
qs conjugacy between the return maps f1 and f̃1. Then we can spread it around the
whole interval T as in the proof of Lemma 12. �

6 Teichmüller Metric

Let Kh denote the dilatation of a qc map h. Given two Fibonacci maps f and g
and the qs conjugacy between them, the Teichmüller pseudo-distance distT ( f, g) is
defined as the infimum of log Kh for all qc extensions of h.

Theorem II If distT ( f, g) = 0 then f and g are smoothly conjugate.6

6This result was generalized by M. Martens and W. de Melo to arbitrary unimodal maps which are
not infinitely renormalizable [29].
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Proof Our first step is the same as Sullivan’s [14]: If distT ( f, g) = 0 then the mul-
tipliers of the corresponding periodic orbits of the maps are equal. However, as we
do not have yet a proper thermodynamical formalism for unimodal maps, we will
proceed by a concrete geometric analysis.

The next observation is that the parameter a in (1) must be the same for f and
g. Indeed, it can be explicitly expressed via the multipliers of the fixed points of the
return maps gn : I n → I n−1 (since the gn are asymptotically quadratic). By [11] this
already yields the smoothness of the conjugacy on the critical sets.

Let us now take a point x ∈ I n � I n−1 and push it forward by iterates of gn until the
firstmoment it lands in I n (if any), then apply the iterates of gn+1 until the firstmoment
it lands in I n+1, etc. This provides us with a nested sequence of intervals around x
whose lengths can be expressed (up to a bounded error) through the scaling factors
and the multipliers of appropriate periodic points (by shadowing). This implies that
h is Lipschitz continuous. Moreover, when we approach the critical point, then the
errors in the above argument exponentially decrease. Hence h is smooth at the critical
point.

Given now any pair of intervals I ⊃ J , let us show that

∣∣∣∣ |h J |
|J | : |hI |

|I | − 1

∣∣∣∣ = O(|I |). (8)

This is enough to prove locally at any point b. By the previous considerations, this
is true at the critical point. Since the critical set ω(c) is minimal, this is also true for
any b ∈ ω(c).

Let now b /∈ ω(c), and I be a tiny interval around b. Remark that almost all points
x ∈ I eventually return back to I . Let us take the pull-back of I corresponding to
this return. This provides us with the covering of almost all of I by intervals Lk . The
distortion of the return map g is O(|I |) on all L ′

ks. Let σk be the multiplier of the
g-fixed point in Lk . Then we conclude that

∣∣∣∣ |I |
|Lk | : σk − 1

∣∣∣∣ = O(|I |), (9)

and the analogous estimate holds for the second map. Since the corresponding mul-
tipliers of these maps are equal, we obtain (8) with J = Lk . Repeating now this
procedure for returns of higher order, we obtain an arbitrarily fine covering of almost
the whole of I by intervals for which (8) hold. This implies (8) for any J ⊂ I .

Let εn = 1/2n , and let us consider the sequence of functions

ρn(x) = h(x + εn) − h(x − εn)

2εn
.
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According to (8) and Lipschitz continuity,

|ρn(x) − ρn+1(x)| = O(εn) (10)

uniformly in x . Hence the ρn uniformly converge to the derivative of h.
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On the Three-Legged Accessibility
Property

Jana Rodriguez Hertz and Raúl Ures

Abstract We show that certain types of the three-legged accessibility property of a
partially hyperbolic diffeomorphism imply the existence of a unique minimal set for
one strong foliation and the transitivity of the other one. In case the center dimension
is one, we also give a criterion to obtain three-legged accessibility in a robust way.
We show some applications of our results to the time-onemap of Anosov flows, skew
products and certain Anosov diffeomorphisms with partially hyperbolic splitting.

Keywords Accessibility · Partial hyperbolicity · Minimal set

1 Introduction

A diffeomorphism f of a closed manifold M is partially hyperbolic if the tangent
bundle T M ofM , splits into three invariant sub-bundles: T M = Es ⊕ Ec ⊕ Eu such
that all unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:

‖Tx f vs‖ < ‖Tx f vc‖ < ‖Tx f vu‖ (1.1)

for some suitable Riemannian metric. The stable bundle Es must also satisfy
‖T f |Es‖ < 1 and the unstable bundle, ‖T f −1|Eu‖ < 1. The bundle Ec is called
center bundle.

It is a well-known fact that the strong bundles, Es and Eu , are uniquely integrable
[3, 13]. That is, there are invariant strong foliationsWs andWu tangent, respectively
to the invariant bundles Es and Eu (However, the integrability of Ec is amore delicate
matter).
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In this paper we will deal with partially hyperbolic diffeomorphisms that satisfy a
certain type of accessibility property. Recall that such a diffeomorphism f satisfies
the accessibility property (we will also say that f is accessible) if any pair of points
can be joined by a curve that is piecewise tangent to either Es or Eu . We will say
that f has the three-legged accessibility property if in the definition of accessibility
you can choose the curve joining each pair of points consisting of three arcs tangent
to either Es or Eu and with uniformly bounded length. Moreover, we will say that f
is sus-accessible if it satisfies the three-legged accessibility property and the three-
legged curve of the definition can be chosen, for all pair of points, in such a way that
the first arc is stable, the second unstable and the last one stable. The usu-accessibility
property is defined in a analogous way.

These more restrictive accessibility properties impose some limitations to the
strong foliations of a partially hyperbolic diffeomorphism. Our first result is in this
direction and states the following:

Theorem 1.1 1 Let f ∈ C1 be an usu-accessible partially hyperbolic diffeomorphism.
Then,

(1) Wu has a unique minimal set.
(2) Ws is transitive, that is, it has a dense leaf.

The importance of the uniqueness of the minimal sets of Wu lies in the fact that
it imposes important obstructions to the presence of attractors, in fact, under certain
conditions they are unique. We will establish this result in the following theorem.

Theorem 1.2 Let f be a C1+α partially hyperbolic diffeomorphism and assume that
Wu( f ) has a unique minimal set �. If there is an u-Gibbs measure μ supported
on � for which all center Lyapunov exponents are negative then, μ is the unique
u-Gibbs measure for f and, as a consequence, it is SRB.

Before showing some applications of Theorem 1.1 we give some necessary con-
ditions to obtain sus-accessibility.

Theorem 1.3 Let f ∈ C1 be an accessible partially hyperbolic diffeomorphism
with one-dimensional center such that Wu is minimal. Then, there is an open C1-
neighborhood U of f such that every g ∈ U is usu-accesible.

Of course we have the analogous result ifWs is minimal. In fact, in their pioneer
paper about stable ergodicity [11], Grayson, Pugh and Shub showed that the time-one
map ϕ of the geodesic flow of a closed surface of constant negative curvature is both
sus- and usu-accessible. Dolgopyat [8] used this property to get some consequences
about the uniqueness of SRB measures in a neighborhood of ϕ. In Sect. 4 we show
that most time-one maps of Anosov flows, including the case of geodesic flows,
are both sus- and usu-accessible. This generalizes Burns, Pugh and Wilkinson [5]

1The authors jointly with Federico Rodriguez Hertz already had a proof of this result more than ten
years ago.
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result about the accessibility of Anosov flows. Also, as an application of Theorem
1.1 we obtain a generalization of the main result of Bonatti and Guelman [1] about
the approximation of time-one maps of Anosov flows by AxiomA diffeomorphisms.

We also give some applications to skew products (Sect. 5) and to Anosov diffeo-
morphisms (Sect. 6). In the case of skew products we show that our results can be
applied to an open and dense set of isometric circle extensions of volume-preserving
partially hyperbolic diffeomorphisms. In the case of Anosov diffeomorphisms, we
answer positively the following conjecture of Gogolev, Maimon and Kolgomorov
[10]. Let A be a hyperbolic automorphism of the 3-torus with three real eigenvalues
|λ1| < 1 < |λ2| < |λ3|.
Conjecture 1.4 For all analytic diffeomorphisms f in a sufficiently small neigh-
borhood of A the strong unstable foliation Wuu is transitive, i.e., it has a dense
leaf.

In fact, we get a stronger result. We obtain the transitivity of Wuu for any 3-
dimensional C1 Anosov diffeomorphism f with a partially hyperbolic splitting.

2 Preliminaries

2.1 Partial Hyperbolicity

Definition 2.1 A diffeomorphism f of a closed manifold M is partially hyperbolic
if the tangent bundle T M of M , splits into three invariant sub-bundles: T M = Es ⊕
Ec ⊕ Eu such that all unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:

‖Tx f vs‖ < ‖Tx f vc‖ < ‖Tx f vu‖ (2.1)

for some suitable Riemannian metric. The stable bundle Es must also satisfy
‖T f |Es‖ < 1 and the unstable bundle, ‖T f −1|Eu‖ < 1. The bundle Ec is called
center bundle.

We also call Ecu = Ec ⊕ Eu and Ecs = Ec ⊕ Es .

It is a well-known fact that the strong bundles, Es and Eu , are uniquely integrable
[3, 13]. That is, there are invariant strong foliations Ws( f ) and Wu( f ) tangent,
respectively, to the invariant bundles Es and Eu . (However, the integrability of Ec is
a more delicate matter) In general, we will callWσ ( f ) any foliation tangent to Eσ ,
σ = s, u, c, cs, cu, whenever it exists andW σ

f (x) the leaf ofWσ ( f ) passing through
x . A subset � is σ -saturated if ⊂ � for every x ∈ �. A closed σ -saturated subset
K is minimal if W σ

f (x) = � for every x ∈ �. We say that a foliation is minimal if
M is a minimal set for it. A foliation is transitive if it has a dense leaf.
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2.2 Skew Products

In this subsection we consider skew products for which the base is a volume-
preserving Anosov diffeomorphism and the fibers are circles (also known as isomet-
ric circle extensions) That means that we have Fϕ : M × S

1 → M × S
1 such that

Fϕ(x, θ) = ( f (x), Rϕ(x)θ) where f : M → M is a Cr volume-preserving Anosov
diffeomorphisms, Rα is the rotation of angle α and ϕ : M → S

1 is a Cr map, r ≥ 2.
These diffeomorphisms are partially hyperbolic, see [3]. Since f is volume preserv-
ing we have that Fϕ preserves the measure given by the product of the volume of M
and the Lebesgue measure on S

1 (the Haar measure of S1 seen as a Lie group).
The following is proved in [3] (see also Proposition 2.1 in [4]) The center bundle

of Fϕ is tangent to the circle fibers and the strong stable and strong unstable bundles
have the same dimension as the corresponding bundles of the base Anosov diffeo-
morphism. In particular, it has a center foliation and its leaves are the circle fibers.
Fϕ is dynamically coherent, that means that there are invariant foliations Wcσ (Fϕ)

tangent tangent to Ecσ , σ = s, u. Each leaf ofWcσ (Fϕ) is the preimage under π of a
leaf ofWσ ( f ), σ = s, u (π : M × S

1 → M is the projection on the first coordinate)
In particular, any leaf ofWcσ (Fϕ) is dense and it is the product of a leaf ofWσ ( f )
and S1 again σ = s, u. Each leaf of a strong foliation is is the graph of a Cr function
from the corresponding leaf of the corresponding strong foliation of f to S1.

2.3 u-Gibbs Measures

Wewill only give a very brief introduction to the u-Gibbs measures with the purpose
of doing this paper as self-contained as possible. For a more complete presentation
we refer to [2, 7].

Definition 2.2 Let f be aC1+α partially hyperbolic diffeomorphism.An f -invariant
probability measureμ is u-Gibbs if it admits conditional measures along local strong
unstable leaves which are absolutely continuous with respect to Lebesgue.

The condition that f is C1+α is needed in order to get the absolute continuity of
the strong unstable foliation.

The densities of the conditionalmeasures are bounded away from zero and infinity
and then, the support of a u-Gibbs measure consists of entire strong unstable leaves.
The set of u-Gibbs measures is a convex compact subset of the set of probability
measures.

Recall that an SRB measure is an invariant probability measure such that admits
conditional measures along unstablemanifolds which are absolutely continuous with
respect to Lebesgue. Observe the difference with u-Gibbs measures for which these
conditional measures are taken along strong unstable leaves. SRB measures of par-
tially hyperbolic diffeomorphisms are always u-Gibbs measures. In general the con-
verse is not true but if f admits a unique u-Gibbs measure μ then, μ is SRB (see,
for instance, [2, Theorem 11.16]).
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3 Proofs of the Main Results

3.1 Proof of Theorem 1.1

Proof of (a). Let A, B ⊂ M be two closed u-saturated sets, a ∈ A, b ∈ B and K a
bound of the length of the curves given by the definition of usu-accessibility. Let
n ∈ N and γ a curve of length less than K joining f −n(a) and f −n(b) consisting of
three arcs γi i = 1, 2, 3 such that γ1 and γ3 are tangent to Eu and γ2 is tangent to Es .
Observe that, since A and B are u-saturated, γ1 ⊂ f −n(A) and γ3 ⊂ f −n(B). On the
one hand, the previous observation gives that f n(γ2) is an arc joining A and B. On
the other hand, since γ2 is tangent to Es , we have that the length of f n(γ2) is less than
Kλn for someuniformλ < 1. Thus, the distance between A and B is less than Kλn for
all n ∈ N. This implies that A ∩ B 	= ∅. We have that any pair of closed u-saturated
subsets has nonempty intersection and since the intersection of u-saturated sets is an
u-saturated set we obtain that the family of all closed u-saturated sets satisfies the
FIP. This implies that S = ⋂{A ⊂ M; A is closed and u-saturated} 	= ∅. It is not
difficult to see that S is the unique minimal set of Wu . This ends the proof of the
first part of Theorem 1.1. �

Remark 3.1 Observe that since f is a diffeomorphism and Wu is f -invariant we
have that the minimal set given by Theorem 1.1 is f -invariant.

Proof of (b). Let U, V ⊂ M be to open sets. It is enough to show that there is a leaf
of Ws that has nonempty intersection with both U and V .

Take x ∈ U , y ∈ V and n ∈ N. Then, there is curve γ of length less than K joining
f n(x) and f n(y) consisting of three arcs γi i = 1, 2, 3 such that γ1 and γ3 are tangent
to Eu and γ2 is tangent to Es . Since γ1 and γ3 are tangent to Eu we have that the
length of f −n(γi ) i = 1, 3 is less than Kλn for for some uniform λ < 1. Observe
that x and y are extreme points of the arcs f −n(γ1) and f −n(γ3) respectively and
the other two extremes are in the same stable leaf. Since Kλn → 0 we have that
for n large enough f −n(γ1) ⊂ U and f −n(γ3) ⊂ V . Then, there is a stable leaf
intersecting simultaneously U and V . This finishes the proof of the second part of
Theorem 1.1. �

3.2 Proof of Theorem 1.3

In order to proofTheorem1.3weneed to introduce a newdefinition. In this subsection
we will assume that dim(Ec) = 1.

Definition 3.2 We say that two unstable disks U1 and U2 are skew iff

(1) There is a dimension dim(Eu) + 1 disk D containing U2.
(2) U2 separates D into two connected components.
(3) U1 and D define the holonomy map hs : U1 → D as hs(x) = Ws

ε (x) ∩ D for ε

small.
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(4) hs(U1) intersects both connected components of D \U2

Remark 3.3 (1) Being skew is an open condition in the following sense: if we have
two disks U ′

1 and U ′
2 close enough to U1 and U2 they are also skew and this

remains true ifU ′
1 andU

′
2 are unstable disks of a diffeomorphism g close enough

to f .
(2) If U1 and U2 are skew there exist xi ∈ Ui i = 1, 2 such that x2 ∈ Ws

ε (x1).

Proof of Theorem1.3. It is already known that accessibility implies the existence
of two unstable disks Ui i = 1, 2 that are skew (see [6, 16]) Given neighborhoods
Vi of Ui i = 1, 2 there exists C > 0 such that Wu

C(x) intersect both V1 and V2. This
implies that given any pair of points xi ∈ M i = 1, 2,Wu

C(xi ) contains a disk in Vi for
i = 1, 2. The continuos dependence of the unstable foliation on the diffeomorphisms
imply that the same is true, with the same constant C , for any g close enough to f
(maybe we have to take Vi i = 1, 2 a little bit larger) So, the two disks are skew
(see Remark 3.3) and have two points yi i = 1, 2 that are joined by a stable curve of
length less than ε. The previous considerations imply that yi con be joined to xi by
an unstable arc of length less than C , i = 1, 2. That means that g is usu-accessible
for all g C1 close enough to f with K = 2C + ε and finishes the proof of the
theorem. �

3.3 Proof of Theorem 1.2

Proof Let F be a leaf of Wu( f ). Since � is the unique minimal set of Wu( f ) we
have that� ⊂ F . Sinceμ is supported on� and all its center Lyapunov exponents are
negative, the absolute continuity of the stable partition implies that F has a positive
Lebesgue measure set of points that are in the basin of μ. This clearly implies that
μ is the unique u-Gibbs measure for f . �

4 Anosov Flows

In this section wewill apply our results to the time-onemaps of Anosov flows. On the
one hand, Burns, Pugh andWilkinson [5] (see also [6]) proved that ifϕ is the time-one
map of a transitive Anosov flow, accessibility is equivalent to the fact of Es ⊕ Eu

not being integrable. On the other hand, Plante [14] showed that in case Es ⊕ Eu

is integrable the flow is topologically equivalent to a suspension of a hyperbolic
diffeomorphism. Moreover, in dimension three, joint integrability implies that the
flow is a suspension. These comments lead to the following result.

Theorem 4.1 Let ϕt be a transitive Anosov flow and assume that Es ⊕ Eu is not
integrable. Then, there is a C1-neighborhood U of ϕ = ϕ1 such that the strong
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unstable and the strong stable foliations of any g ∈ U are transitive and have a
unique minimal set.

Proof Since the Anosov flow is transitive and Es ⊕ Eu is not integrable we have that
ϕ is accessible and both strong foliations are minimal. Since ϕ is partially hyperbolic
with one dimensional center we can apply Theorem 1.3 that immediately implies the
thesis. �

In particular, any g ∈ U can have at most one transitive hyperbolic attractor (in
fact it would be topologically mixing) and one transitive hyperbolic repeller. Then,
we obtain as corollary the following generalization of the main result of [1].

Corollary 4.2 If the time-onemap of a transitive Anosov flowϕt is C1-approximated
by diffeomorphisms having more than one transitive hyperbolic attractor, then Es ⊕
Eu is integrable. In particular, ϕt is topologically equivalent to the suspension of a
hyperbolic diffeomorphism. Moreover, if the dimension of the ambient manifold is
three then, ϕt is the suspension of an Anosov diffeomorphisms.

Proof Since an attractor is a compact u-saturated set it necessarily contains the
unique minimal set given by Theorem 4.1. Since transitive hyperbolic attractors
are disjoint g ∈ U can have only one hyperbolic attractor. This proves the
corollary. �

In fact, to obtain the thesis of this corollary the only thingwe need is the robustness
of the uniqueness of the minimal set of the strong unstable foliation. Then, the same
proof yields the following theorem.

Theorem 4.3 Let f be a stably usu-accessible partially hyperbolic diffeomorphism.
Then, there is a C1 neighborhood U of f such that every g ∈ U has at most one
transitive hyperbolic attractor.

Observe that the uniqueness of the minimal set of Wu( f ) implies that the tran-
sitive hyperbolic attractor, if it exists, is in fact topologically mixing.

In case the diffeomorphisms are C1+α the previous results are consequence of
Theorem 1.2.

5 Skew Products

In this section we consider skew products (also known as isometric extensions)
for which the base is a volume-preserving Anosov diffeomorphism and the fibers
are circles. That means that we have Fϕ : M × S

1 → M × S
1 such that Fϕ(x, θ) =

( f (x), Rϕ(x)θ) where f : M → M is a Cr volume-preserving Anosov diffeomor-
phisms, Rα is the rotation of angle α and ϕ : M → S

1 is a Cr map. r ≥ 2. These
diffeomorphisms are partially hyperbolic and their ergodic theory is well known.
Burns and Wilkinson [4] proved the following (in fact they prove a much stronger
result).
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Theorem 5.1 ([4]) The set of accessible isometric S
1-extensions of a volume-

preserving Anosov diffeomorphism is open and dense in the Cr -topology.

We will show that if a skew product as above satisfies the accessibility property,
both the strong stable and the strong unstable foliation are minimal. The arguments
to show this fact are inspired in similar arguments of Plante [14].

Observe that Fϕ commutes with Gα : M × S
1 → M × S

1, Gα(x, θ) = (x, Rαθ)

∀α ∈ S
1. This implies that Wσ (Fϕ) is Gα-invariant for σ = s, u.

Theorem 5.2 Let Fϕ be as above and suppose that it satisfies the accessibility prop-
erty. Then, Wσ (Fϕ) is minimal, σ = s, u.

In fact, the previous theorem is a consequence of the following stronger fact.

Proposition 5.3 Let Fϕ be as above and suppose thatWσ (Fϕ) is not minimal. Then,
Es ⊕ Eu is integrable.

Proof Suppose that there is x ∈ M × S
1 such thatWu

Fϕ
(x) is not dense. SinceWu

Fϕ
(x)

is u-saturated we can take K ⊂ Wu
Fϕ

(x) a minimal subset. Call π : M × S
1 → M to

the projection onto M , that is π(y, θ) = y. It is not difficult to see that π(Wu
Fϕ

(z)) =
Wu

f (π(z)). In particular, since f is transitive and K is compact and u-saturated we
have that π(K ) = M . The strategy is to prove that K is also s-saturated. This will
immediately imply that Fϕ is not accessible (moreover, the invariance of the strong
foliations under Gα ∀α ∈ S

1 will imply that Es ⊕ Eu is integrable).
Our first claim is that #(K ∩ {y} × S

1) is finite for every y ∈ M . Suppose that
it is false, then there is y0 ∈ M such that for every ε > 0, S = {y0} × S

1 has two
points (y0, θ1) and (y0, θ2) at distance less than ε. This means that α = θ2 − θ1 < ε.
Observe that Gα(y0, θ1) = (y0, θ2) and then, Gα(K ) ∩ K 	= ∅. Since K is minimal
and Wu(Fϕ) is Gα-invariant we have that Gα(K ) = K . Then, Gnα(y0, θ1) ∈ K
∀n ∈ Z. In particular, K is ε-dense in S. Since ε is arbitrary we obtain that S ⊂ K .
This implies thatWu

Fϕ
(S) ⊂ K and it is not difficult to see thatWu

Fϕ
(S) is dense, then

K = M × S
1 contradicting that Wu

Fϕ
(x) is not dense.

The previous considerations allow us to define � : M → N as �(y) = #(K ∩
{y} × S

1). Our second claim is that this function is upper semicontinuous. Suppose
it is false. Then, there is a sequence (yn)n ⊂ M such that yn → y and �(yn) → η >

�(y). Since K is compact, we also have that lim(K ∩ {yn} × S
1) ⊂ K ∩ {y} × S

1.
In particular, we have that for any ε > 0 and n large enough there two points in
{yn} × S

1 at distance less than ε. An argument similar to the one used in the proof
of our first claim gives that {y} × S

1 ⊂ K and then, K = M × S
1, a contradiction.

Now we want to proof that � is constant. On the one hand, observe that if y′ ∈
Wu

f (y),�(y′) = �(y).On the other hand, since� is semicontinuous it has continuity
points and it is locally constant at this kind of points. Then, the minimality of the
unstable foliation of f implies that � is equal to a constant h.

The previous considerations imply that (K , π) is an h-fold covering of M and it
is not difficult to see that K = ∪α∈S1Gα(K ) is a C0 foliation of M × S

1 with com-
pact leaves homeomorphism to K . Since Fϕ is an isometric extension distc(K1, K2) =
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min{dist (k1, k2); k1 ∈ K1, k2 ∈ K2, π(k1) = π(k2)} = distc(Fϕ(K1), Fϕ(K2))where
K1, K2 ∈ K . In particular, dist(Fn

ϕ (K1), Fn
ϕ (K2) does not go to zero. Then, any sta-

ble manifold intersects only one leaf of K . That means that the leaves of K are
s-saturated and then, K is a foliation tangent to Es ⊕ Eu . �

We get the following corollary of Theorems 5.1 and 1.3 for an open and dense set
of skew products over volume-preserving Anosov diffeomorphisms.

Corollary 5.4 Let F be an accessible isometric circle extension of a volume-
preserving Anosov diffeomorphism. Then, there is a C1 neighborhood U of F such
that:

• Wσ (F) has a unique minimal set, σ = s, u.
• Wσ (F) is transitive, σ = s, u.

Moreover, we can apply Theorems 1.2 and 4.3 to these diffeomorphisms and
obtain the corresponding conclusions.

Remark 5.5 Hammerlindl and Potrie [12] have shown that partially hyperbolic dif-
feomorphisms on 3-nilmanifolds (different than the torus) always are sus- and usu-
accessible. In particular we can also apply Theorems 1.2 and 4.3 to them. On the
other hand, Shi [17] has announced that, on 3-nilmanifolds, there are partially hyper-
bolic diffeomorphism satisfying Axiom A. Of course, they have only one attractor
and one repeller.

6 Anosov Diffeomorphisms

In this section we will suppose that A is a hyperbolic automorphism of T3 with three
real eigenvalues |λ1| < 1 < |λ2| < |λ3|. Along this section we will assume that f is
anAnosov diffeomorphism isotopic to A and such that it admits a partially hyperbolic
splitting Es ⊕ Ec ⊕ Eu . Observe that Ec ⊕ Eu corresponds to the unstable bundle of
the hyperbolic splitting of f . We obtain the following result that answers Conjecture
1.4 by Gogolev, Maimon and Kolmorgorov.

Theorem 6.1 Let f be as above. Then, the strong unstable foliation of f is transitive.

Proof Call h to the conjugacy between f and A. Observe that since the strong stable
manifolds of f are its stable manifolds we have that h sends strong stable manifolds
of f into strong stable manifolds of A. Thus, the strong stable foliations of f is
minimal.

Ren, Gan and Zhang [15] have proved that, in our setting, the following statements
are equivalent:

• f is not accessible.
• Es ⊕ Eu is integrable.
• h sends strong unstable manifolds of f into strong unstable manifolds of A.
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Then, on the one hand, if f is not accessible we have thatWu( f ) is minimal and,
in particular, it is transitive. On the other hand, if f is accessible, since we already
know that Ws( f ) is minimal, we can apply Theorem 1.3 (with the roles of u and s
reversed) We get the transitivity ofWu( f ) by applying Theorem 1.1. This ends the
proof of the theorem. �
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Adapted Metrics for Codimension One
Singular Hyperbolic Flows
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Abstract For a partially hyperbolic splitting T�M = E ⊕ F of �, a C1 vector field
X on a m-manifold, we obtain singular-hyperbolicity using only the tangent map
DX of X and its derivative DXt whether E is one-dimensional subspace. We show
the existence of adapted metrics for singular hyperbolic set � for C1 vector fields if
� has a partially hyperbolic splitting T�M = E ⊕ F where F is volume expanding,
E is uniformly contracted and a one-dimensional subspace.

Keywords Dominated splitting · Partial hyperbolicity · Sectional hyperbolicity ·
Lyapunov function
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1 Introduction

LetM be a connected compact finitem-dimensionalmanifold,m ≥ 3,with orwithout
boundary. We consider a vector field X , such that X is inwardly transverse to the
boundary ∂M , if ∂M �= ∅. The flow generated by X is denoted by Xt .

A hyperbolic set for a flow Xt on a finite dimensional Riemannian manifold
M is a compact invariant set � with a continuous splitting of the tangent bundle,
T�M = Es ⊕ EX ⊕ Eu , where EX is the direction of the vector field, for which the
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subbundles are invariant under the derivative DXt of the flow Xt

DXt · E∗
x = E∗

Xt (x), x ∈ �, t ∈ R, ∗ = s, X, u; (1)

and Es is uniformly contracted by DXt and Eu is likewise expanded: there are
K ,λ > 0 so that

‖DXt |Es
x
‖ ≤ Ke−λt , ‖(DXt |Eu

x
)−1‖ ≤ Ke−λt , x ∈ �, t ∈ R. (2)

Very strong properties can be deduced from the existence of such hyperbolic struc-
ture; see for instance [9, 10, 15, 22, 24].

An important feature of hyperbolic structures is that it does not depends on the
metric on the ambientmanifold (see [13]).We recall that ametric is said to be adapted
to the hyperbolic structure if we can take K = 1 in Eq. (2).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolic-
ity, volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been
developed to encompass larger classes of systems beyond the uniformly hyperbolic
ones; see [8] and specifically [2, 6, 26] for singular hyperbolicity and Lorenz-like
attractors.

In the same work [13], Hirsch, Pugh and Shub asked about adapted metrics for
dominated splittings. The positive answer was given by Gourmelon [12] in 2007,
where it is given adapted metrics to dominated splittings for both diffeomorphisms
and flows, and he also gives an adapted metric for partially hyperbolic splittings as
well.

In fact, in [29], Wojtkowski proved that if a diffeomorphism f is strictly J-
separated then it has a dominated splitting and affirmed that the continuous rie-
mannian metric induced by J is an adapted one. In other words, we can use the
quadratic form to produce an adapted metric. Here, in Lemma 3.1, we give a proof
of this affirmation in our setting.

Proving the existence of some hyperbolic structure is, in general, a non-trivial
matter, even in its weaker forms.

In [16], Lewowicz stated that a diffeomorphismon a compact riemannianmanifold
is Anosov if and only if its derivative admits a nondegenerate Lyapunov quadratic
function.

An example of application of the adapted metric from [12] is contained in [3],
where the first author jointly with V. Araújo, following the spirit of Lewowicz’s
result, construct quadratic formswhich characterize partially hyperbolic and singular
hyperbolic structures on a trapping region for flows.

In [4], the first author and V. Araújo provided an alternative way to obtain sin-
gular hyperbolicity for three-dimensional flows using the same expression as in
Proposition2.3 applied to the infinitesimal generator of the exterior square ∧2DXt

of the cocycle DXt . This infinitesimal generator can be explicitly calculated through
the infinitesimal generator DX of the linear multiplicative cocycle DXt associated
to the vector field X .
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Here, we provide a similar result as above for m-dimensional flows if this admits
a partially hyperbolic splitting for which one of the invariant subbundles is one-
dimensional.

Moreover, we show the existence of adapted metrics for a singular hyperbolic set
� for C1 vector fields if � has a partially hyperbolic splitting T�M = E ⊕ F , where
F is volume expanding, E is uniformly contracted and one-dimensional subbundle.

1.1 Statements of Main Results

In the sequel, we write J̃(v) =< J̃xv, v >, where J̃x is given in Proposition 2.3, that
is, J̃(v) is the time derivative of a quadratic form J under the action of the flow.

The absolute value of the cross product (also called vector product) on a 3-
dimensional vector space V , denote by w = u × v, provides the length of the vector
w. It is very useful to calculate the area expansion of the parallelogram generated by
u, v, under the action of a linear operator.

Following this way, in [4], the first author and V. Araújo proved the result below.

Theorem 1.1 ([4, Theorem B]) Suppose that X is 3-dimensional vector field on M
which is non-negative strictly J-separated over a non-trivial subset �, where J has
index 1. Then

(1) ∧2DXt is strictly (−J)-separated;
(2) � is a singular hyperbolic set if either one of the following properties is true

(a) ˜�t
0(x) −−−−→

t→+∞ −∞ for all x ∈ �.

(b) J̃ − 2 tr(DX)J > 0 on �.

Here, we generalized this result to m and k = m − 1, as follows.

If ∧k DXt is strictly separated with respect to some family J of quadratic forms,
then there exists the function δk as stated in Proposition 2.3 with respect to the cocyle
∧k DXt . We set

˜�b
a(x) :=

∫ b

a
δk(Xs(x)) ds

the area under the function δk : U → R given by Proposition 2.3 with respect to
∧k DXt and its infinitesimal generator.

If k = m − 1, it is not difficult to see that this function is related to X and δ
as follows: let δ : � → R be the function associated to J and DXt , as given by
Proposition2.3, then δk = 2 tr(DX) − δ, where tr(DX) represents the trace of the
linear operator DXx : TxM �, x ∈ M .

We recall that J̃ = ∂tJ is the time derivative of J along the flow; see Remark 2.4.
Our first main result is the following.
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Theorem A Suppose that X is m-dimensional vector field on M which is non-
negative strictly J-separated over a non-trivial subset �, where J has index 1. Then

(1) ∧(m−1)DXt is strictly (−J)-separated;
(2) � is a singular hyperbolic set if either one of the following properties is true

(a) ˜�t
0(x) −−−−→

t→+∞ −∞ for all x ∈ �.

(b) J̃ − 2 tr(DX)J > 0 on �.

Wework herewith exterior products of codimension one. See [11] formore details
on this subject.

This result provides useful sufficient conditions for a m-dimensional vector field
to be singular hyperbolic if k = m − 1, using only one family of quadratic forms
J and its space derivative DX , avoiding the need to check cone invariance and
contraction/expansion conditions for the flow Xt generated by X on a neighborhood
of �.

Now we recall the definition of adapted metrics in the singular hyperbolic setting.

Definition 1 We say a Riemannian metric 〈·, ·〉 adapted to a singular hyperbolic
splitting T� = E ⊕ F if it induces a norm | · | such that there exists λ > 0 satisfying
for all x ∈ � and t > 0 simultaneously

|DXt |Ex | · ∣

∣(DXt |Fx )
−1| ≤ e−λt , |DXt |Ex | ≤ e−λt and | det(DXt |Fx )| ≥ eλt .

We call it singular adapted metric, for simplicity.

In [4], the first author and V. Araújo proved the next result.

Theorem 1.2 ([4, Theorem C]) Let � be a singular-hyperbolic set for a C1 three-
dimensional vector field X. Then � admits a singular adapted metric.

Here, we generalize this result for any codimension one singular hyperbolic flow
in higher dimensional manifolds. Consider a partially hyperbolic splitting T�M =
E ⊕ F where E is uniformly contracted and F is volume expanding.We show that for
C1 flows having a singular-hyperbolic set� such that E is one-dimensional subspace
there exists a metric adapted to the partial hyperbolicity and the area expansion, as
follows.

Theorem B Let � be a singular-hyperbolic set of codimension one for a C1 m-
dimensional vector field X. Then � admits a singular adapted metric.

We present the relevant definitions and auxiliary results in the next section.
The paper is organized as follow. In the present Sectionwe provide an introduction

and statement of main results. In Sect. 2 we give the main definitions and useful
properties of quadratic forms. In Sect. 3 we provide some auxiliary results. Finally,
in Sect. 4 are given the proofs of our theorems.
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2 Preliminary Definitions and Results

We now present preliminary definitions and results.
We recall that a trapping region U for a flow Xt is an open subset of the manifold

M which satisfies: Xt (U ) is contained in U for all t > 0, and there exists T > 0
such that Xt (U ) is contained in the interior of U for all t > T . We define �(U ) =
�X (U ) := ∩t>0Xt (U ) to be the maximal positive invariant subset in the trapping
region U .

A singularity for the vector field X is a point σ ∈ M such that X (σ) = 0 or,
equivalently, Xt (σ) = σ for all t ∈ R. The set formed by singularities is the singular
set of X denoted Sing(X). We say that a singularity is hyperbolic if the eigenvalues
of the derivative DX (σ) of the vector field at the singularity σ have nonzero real
part.

Definition 2 A dominated splitting over a compact invariant set � of X is a con-
tinuous DXt -invariant splitting T�M = E ⊕ F with Ex �= {0}, Fx �= {0} for every
x ∈ � and such that there are positive constants K ,λ satisfying

‖DXt |Ex‖ · ‖DX−t |FXt (x)
‖ < Ke−λt , for all x ∈ �, and all t > 0. (3)

A compact invariant set � is said to be partially hyperbolic if it exhibits a dom-
inated splitting T�M = E ⊕ F such that subbundle E is uniformly contracted, i.e.,
there exists C > 0 and λ > 0 such that ‖DXt |Ex‖ ≤ Ce−λt for t ≥ 0. In this case F
is the central subbundle of �. Or else, we may replace uniform contraction along E
by uniform expansion along F (the right hand side condition in (2).

We say that a DXt -invariant subbundle F ⊂ T�M is a sectionally expanding
subbundle if dim Fx ≥ 2 is constant for x ∈ � and there are positive constants C,λ
such that for every x ∈ � and every two-dimensional linear subspace Lx ⊂ Fx one
has

| det(DXt |Lx )| > Ceλt , for all t > 0. (4)

Definition 3 ([17, Definition 2.7]) A sectional-hyperbolic set is a partially hyper-
bolic set whose central subbundle is sectionally expanding.

This is a particular case of the so called singular hyperbolicitywhose definitionwe
recall now. A DXt -invariant subbundle F ⊂ T�M is said to be a volume expanding
if in the above condition 4, we may write

| det(DXt |Fx )| > Ceλt , for all t > 0. (5)

Definition 4 ([18, Definition 1]) A singular hyperbolic set is a partially hyperbolic
set whose central subbundle is volume expanding.

Clearly, in the three-dimensional case, these notions are equivalent.
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This is a feature of the Lorenz attractor as proved in [25] and also a notion that
extends hyperbolicity for singular flows, because sectional hyperbolic sets without
singularities are hyperbolic; see [2, 19].

2.1 Linear Multiplicative Cocycles Over Flows

Let A : G × R → G be a smooth map given by a collection of linear bijections

At (x) : Gx → GXt (x), x ∈ �, t ∈ R,

where � is the base space of the finite dimensional vector bundle G, satisfying the
cocycle property

A0(x) = I d, At+s(x) = At (Xs(x)) ◦ As(x), x ∈ �, t, s ∈ R,

with {Xt }t∈R a complete smooth flow over M ⊃ �. We note that for each fixed t > 0
the map At : G → G, vx ∈ Gx �→ At (x) · vx ∈ GXt (x) is an automorphism of the
vector bundle G.

The natural example of a linear multiplicative cocycle over a smooth flow Xt on a
manifold is the derivative cocycle At (x) = DXt (x) on the tangent bundle G = T M
of a finite dimensional compactmanifoldM . Another example is given by the exterior
power At (x) = ∧k DXt of DXt acting on G = ∧kT M , the family of all k-vectors
on the tangent spaces of M , for some fixed 1 ≤ k ≤ dimG.

It is well-known that the exterior power of a inner product space has a naturally
induced inner product and thus a norm. Thus G = ∧kT M has an induced norm from
the Riemannian metric of M . For more details see e.g. [7].

In what follows we assume that the vector bundle G has a smoothly defined inner
product in each fiber Gx which induces a corresponding norm ‖ · ‖x , x ∈ �.

Definition 5 A continuous splitting G = E ⊕ F of the vector bundle G into a pair
of subbundles is dominated (with respect to the automorphism A over �) if

• the splitting is invariant: At (x) · Ex = EXt (x) and At (x) · Fx = FXt (x) for all x ∈ �

and t ∈ R; and
• there are positive constants K ,λ satisfying

‖At |Ex‖ · ‖A−t |FXt (x)
‖ < Ke−λt , for all x ∈ �, and all t > 0. (6)

We say that the splitting G = E ⊕ F is partially hyperbolic if it is dominated
and the subbundle E is uniformly contracted: ‖At | Ex‖ ≤ Ce−μt for all t > 0 and
suitable constants C,μ > 0.
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2.2 Fields of Quadratic Forms, Positive and Negative Cones

Let EU be a finite dimensional vector bundle with inner product 〈·, ·〉 and base given
by the trapping regionU ⊂ M . Let J : EU → R be a continuous family of quadratic
forms Jx : Ex → Rwhich are non-degenerate and have index 0 < q < dim(E) = n.
The index q of J means that the maximal dimension of subspaces of non-positive
vectors is q. Using the inner product, we can represent J by a family of self-adjoint
operators Jx : Ex � as Jx (v) = 〈Jx (v), v〉, v ∈ Ex , x ∈ U .

We also assume that (Jx )x∈U is continuously differentiable along the flow. The
continuity assumption on J means that for every continuous section Z of EU the
map U � x �→ J(Z(x)) ∈ R is continuous. The C1 assumption on J along the flow
means that the map R � t �→ JXt (x)(Z(Xt (x))) ∈ R is continuously differentiable
for all x ∈ U and each C1 section Z of EU .

UsingLagrange diagonalization of a quadratic form, it is easy to see that the choice
of basis to diagonalize Jy depends smoothly on y if the family (Jx )x∈U is smooth,
for all y close enough to a given x . Therefore, choosing a basis for Tx adapted to Jx
at each x ∈ U , we can assume that locally our forms are given by 〈Jx (v), v〉 with
Jx a diagonal matrix whose entries belong to {±1}, J ∗

x = Jx , J 2
x = I and the basis

vectors depend as smooth on x as the family of forms (Jx )x .
We let C± = {C±(x)}x∈U be the family of positive and negative cones associated

to J

C±(x) := {0} ∪ {v ∈ Ex : ±Jx (v) > 0}, x ∈ U,

and also let C0 = {C0(x)}x∈U be the corresponding family of zero vectors C0(x) =
J−1
x ({0}) for all x ∈ U .

2.3 Strict J-Separation for Linear Multiplicative Cocycles

Let A : E × R → E be a linear multiplicative cocycle on the vector bundle E over
the flow Xt . The following definitions are fundamental to state our results.

Definition 6 Given a continuous field of non-degenerate quadratic forms J with
constant index on the positively invariant open subsetU for the flow Xt , we say that
the cocycle At (x) over Xt is

• J-separated if At (x)(C+(x)) ⊂ C+(Xt (x)), for all t > 0 and x ∈ U (simple cone
invariance);

• strictly J-separated if At (x)(C+(x) ∪ C0(x)) ⊂ C+(Xt (x)), for all t > 0 and x ∈
U (strict cone invariance).

• J-monotone if JXt (x)(DXt (x)v) ≥ Jx (v), for each v ∈ TxM \ {0} and t > 0;
• strictly J-monotone if ∂t

(

JXt (x)(DXt (x)v)
) |t=0> 0, for all v ∈ TxM \ {0}, t > 0

and x ∈ U ;
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• J-isometry if JXt (x)(DXt (x)v) = Jx (v), for each v ∈ TxM and x ∈ U .

We say that the flow Xt is (strictly) J-separated on U if DXt (x) is (strictly) J-
separated on TUM . Analogously, the flow of X on U is (strictly) J-monotone if
DXt (x) is (strictly) J-monotone.

Remark 2.1 If a flow is strictly J-separated, then for v ∈ TxM such that Jx (v) ≤
0 we have JX−t (x)(DX−t (v)) < 0, for all t > 0, and x such that X−s(x) ∈ U for
every s ∈ [−t, 0]. Indeed, otherwise JX−t (x)(DX−t (v)) ≥ 0 would imply Jx (v) =
Jx

(

DXt (DX−t (v))
)

> 0, contradicting the assumption that v was a non-positive
vector.

This means that a flow Xt is strictly J-separated if, and only if, its time reversal
X−t is strictly (−J)-separated.

Remark 2.2 Let V be a real finite dimensional vector space, and L : V → V be a
J-separated linear operator. Then L can be uniquely represented by L = RU , where
U is a J-isometry(i.e. J(U (v)) = J(v), v ∈ V ) and R is J-symmetric with positive
spectrum; the operator operator R can be diagonalized by a J-isometry, and there
exist constants r− and r+ such that the operator L is (strictly) J-monotonous if, and
only, if r− ≤ (<) 1 and r+ ≥ (>) 1. For more details see [3, Proposition 2.4] and
comments below of the Theorem 1.2 in [29].

A vector field X is J-non-negative onU if J(X (x)) ≥ 0 for all x ∈ U , and J-non-
positive on U if J(X (x)) ≤ 0 for all x ∈ U . When the quadratic form used in the
context is clear, we will simply say that X is non-negative or non-positive.

We say that a C1 family J of indefinite and non-degenerate quadratic forms is
compatible with a continuous splitting E� ⊕ F� = E� of a vector bundle over some
compact subset � if Ex is a J-negative subspace and Fx is a J-positive subspace for
all x ∈ �.

Proposition 2.3 ([3, Proposition 1.3]) A J-non-negative vector field X on U is
strictly J-separated if, and only if, there exists a compatible family J0 of forms
and there exists a function δ : U → R such that the operator J̃0,x := J0 · DX (x) +
DX (x)∗ · J0 satisfies

J̃0,x − δ(x)J0 is positive definite, x ∈ U,

where DX (x)∗ is the adjoint of DX (x) with respect to the adapted inner product.

Remark 2.4 The expression for J̃0,x in terms of J0 and the infinitesimal generator
of DXt is, in fact, the time derivative of J0 along the flow direction at the point x ,
which we denote ∂t J0; see item 1 of Proposition 2.10. We keep this notation in what
follows.

A characterization of dominated splittings, via quadratic forms is given in [3] (see
also [29]) as follow.
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Theorem 2.5 [3, Theorem 2.13] The cocycle At (x) is strictly J-separated if, and
only if, EU admits a dominated splitting F− ⊕ F+ with respect to At (x) on the
maximal invariant subset � of U, with constant dimensions dim F− = q, dim F+ =
p, dim M = p + q.

This is an algebraic/geometrical way to prove the existence of dominated split-
tings. As we have said in the introduction, proving existence of some hyperbolic
structure is not an easy work to do, in general. One of the most habitual way is to
use cone field techniques, see for instance [14, 20, 21].

In [4, Example 5], the first author and V. Araújo checked out the singular hyper-
bolicity of geometric Lorenz attractor, in a most simple way, by using Theorem 1.1.
It was proved by Tucker [25], under computer assistance, that the Lorenz attractor
exist for the classical parameters. It is expected, in a work in progress, that Theorem
1.1 may be used to prove the same result without computer assistance or at least
simplify the proof given by Tucker.

In fact, we have an analogous result about partial hyperbolic splittings, as follow.
We say that a compact invariant subset � is non-trivial if

• either � does not contain singularities;
• or � contains at most finitely many singularities, � contains some regular orbit
and is connected.

Theorem 2.6 ([3, Theorem A]) A non-trivial compact invariant subset � is a par-
tially hyperbolic set for a flow Xt if, and only if, there is a C1 field J of non-degenerate
and indefinite quadratic forms with constant index, equal to the dimension of the sta-
ble subspace of �, such that Xt is a non-negative strictly J-separated flow on a
neighborhood U of �.

Moreover E is a negative subspace, F a positive subspace and the splitting can
be made almost orthogonal.

Here strict J-separation corresponds to strict cone invariance under the action of
DXt and 〈·, ·〉 is a Riemannian inner product in the ambient manifold. We recall that
the index of a field quadratic forms J on a set � is the dimension of the J-negative
space at every tangent space TxM for x ∈ U . Moreover, we say that the splitting
T�M = E ⊕ F is almost orthogonal if, given ε > 0, there exists a smooth inner
product 〈·, ·〉 on T�M so that |〈u, v〉| < ε, for all u ∈ E, v ∈ F , with ‖u‖ = 1 = ‖v‖.

We note that the condition stated in Theorem 2.6 allows us to obtain partial
hyperbolicity checking a condition at every point of the compact invariant set that
depends only on the tangent map DX to the vector field X together with a family J

of quadratic forms without using the flow Xt or its derivative DXt . This is akin to
checking the stability of singularity of a vector field using a Lyapunov function. For
example, it is well known by Lyapunov’s Stability Theorem that if a singularity σ
of a C1 vector field Y : U ⊂ R

n → R
n , defined over an open set U , admits a strict

Lyapunov function on σ, then this is a asymptotically stable singularity. Lewowicz,
in [16], used this idea replacing stability of a singularity by topological stability of
Anosov diffeomorphisms.
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2.4 Exterior Powers

We note that if E ⊕ F is a DXt -invariant splitting of T�M , with {e1, . . . , e�} a
family of basis for E and { f1, . . . , fh} a family of basis for F , then ˜F = ∧k F gen-
erated by { fi1 ∧ · · · ∧ fik }1≤i1<···<ik≤h is naturally ∧k DXt -invariant by construction.
In addition, Ẽ generated by {ei1 ∧ · · · ∧ eik }1≤i1<···<ik≤� together with all the exte-
rior products of i basis elements of E with j basis elements of F , where i + j = k
and i, j ≥ 1, is also ∧k DXt -invariant and, moreover, ˜E ⊕ ˜F gives a splitting of the
kth exterior power ∧kT�M of the subbundle T�M . Let T�M = E� ⊕ F� be a DXt -
invariant splitting over the compact Xt -invariant subset � such that dim F = k ≥ 2.
Let ˜F = ∧k F be the ∧k DXt -invariant subspace generated by the vectors of F and
Ẽ be the ∧k DXt -invariant subspace such that ˜E ⊕ ˜F is a splitting of the kth exterior
power ∧kT�M of the subbundle T�M .

We consider the action of the cocycle DXt (x) on k-vector that is the k-exterior
∧k DXt of the cocycle acting on ∧kT�M .

We denote by ‖ · ‖ the standard norm on k-vectors induced by the Riemannian
norm of M , see [7].

Remark 2.7 Let V to be a vector space of dimension N .

(i) The dimension of space∧r V is dim∧r V =
(

N
r

)

. If {e1, · · · , eN } is a basis of
V , so the set {ek1 ∧ · · · ∧ ekr : 1 ≤ k1 < · · · < kr ≤ N } is a basis in ∧r V with
(

N
r

)

elements.

(i i) If V has the inner product 〈, 〉, then the bilinear extension of

〈u1 ∧ · · · ∧ ur , v1 ∧ · · · ∧ vr 〉 := det(〈ui , v j 〉)r×r

defines a inner product in ∧r V . In particular, ||u1 ∧ · · · ∧ ur || =
√

det(〈ui , u j 〉)r×r is the volume of r -dimensional parallelepiped H spanned by
u1, · · · , ur , we write vol(u1, · · · , ur ) = vol(H) = det(H) = | det(u1, · · · ,

ur )|.
(i i i) If A : V → V is a linear operator then the linear extension of ∧r A(u1 ∧

· · · ∧ ur ) = A(u1) ∧ · · · ∧ A(ur ) defines a linear operator ∧r A on ∧r V .
(iv) Let A : V → V , and ∧r A : ∧r V → ∧r V linear operators with G spanned

by v1, · · · , vs ∈ V . Define H := A|G , then H is spanned by A(v1), · · · , A(vs)

. So | det A|G | = vol(A|G) = vol(H) = vol(A(v1), · · · , A(vs)) = ||A(v1) ∧
· · · ∧ A(vs)|| = || ∧s A(v1 ∧ · · · ∧ vs)||.

When DXt (ui ) = vi (t) = vi , where G is spanned by u1, · · · , ur ∈ T�M , and H
is spanned by v1, · · · , vr , we have H = DXt (G) = DXt |G . Thus,

| det(DXt |G)| = vol(DXt (u1), · · · , DXt (ur )) =
||DXt(u1) ∧ · · · ∧ DXt (ur )|| = || ∧r DXt (u1 ∧ · · · ∧ ur )||.
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It is natural to consider the linear multiplicative cocyle ∧k DXt over the flow Xt

of X on U , that is, for any k choice, u1, u2, · · · , uk of vectors in TxM, x ∈ U and
t ∈ R such that Xt (x) ∈ U we set

(∧k DXt ) · (u1 ∧ u2 ∧ · · · ∧ uk) = (DXt · u1) ∧ (DXt · u2) ∧ · · · ∧ (DXt · uk)

see [7, Chap. 3, Sect. 2.3] or [27] for more details and standard results on exterior
algebra and exterior products of linear operator.

In [4], the authors proved the following relation between a dominated splitting
and its exterior power.

Theorem 2.8 ([4, Theorem A]) The splitting T�M = E ⊕ F is dominated for DXt

if, and only if, ∧kT�M = ˜E ⊕ ˜F is a dominated splitting for ∧k DXt .

Hence, the existence of a dominated splitting T�M = E� ⊕ F� over the compact
Xt -invariant subset�, is equivalent to the bundle∧kT�M admits a dominated splitting
with respect to ∧k DXt : ∧kT�M → ∧kT�M .

As a consequence, they obtain the next characterization of three-dimensional
singular sets.

Corollary 2.9 ([4, Corollary 1.5]) Assume that M has dimension 3, E is uniformly
contracted by DXt , and that k = 2. Then E ⊕ F is a singular-hyperbolic splitting
for DXt if, and only if, ˜E ⊕ ˜F is partially hyperbolic splitting for ∧2DXt such that
˜F is uniformly expanded by ∧2DXt .

2.5 Properties of J-Separated Linear Multiplicative Cocycles

We present some useful properties about J-separated linear cocycles whose proofs
can be found in [3].

Let At (x) be a linear multiplicative cocycle over Xt . We define the infinitesimal
generator of At (x) by

D(x) := lim
t→0

At (x) − I d

t
. (7)

The following is the basis for arguments given by the first author and V. Araújo
in [3] to prove the Theorem 2.6.

Proposition 2.10 ([3, Proposition 2.7]) Let At (x) be a cocycle over Xt defined on
an open subset U and D(x) its infinitesimal generator. Then

(1) J̃(v) = ∂tJ(At (x)v) = 〈 J̃Xt (x)At (x)v, At (x)v〉 for all v ∈ Ex and x ∈ U, where

J̃x := J · D(x) + D(x)∗ · J (8)
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and D(x)∗ denotes the adjoint of the linear map D(x) : Ex → Ex with respect
to the adapted inner product at x;

(2) the cocycle At (x) is J-separated if, and only if, there exists a neighborhood V
of �, V ⊂ U and a function δ : V → R such that

J̃x ≥ δ(x)Jx for all x ∈ V . (9)

In particular we get ∂t log |J(At (x)v)| ≥ δ(Xt (x)), v ∈ Ex , x ∈ V, t ≥ 0;
(3) if the inequalities in the previous item are strict, then the cocycle At (x) is strictly

J-separated. Reciprocally, if At (x) is strictly J-separated, then there exists a
compatible family J0 of forms on V satisfying the strict inequalities of item (2).

(4) For a J-separated cocycle At (x), we have
|J(At2 (x)v)|
|J(At1 (x)v)| ≥ exp�

t2
t1(x) for all v ∈ Ex

and reals t1 < t2 so that J(At (x)v) �= 0 for all t1 ≤ t ≤ t2, where �
t2
t1(x) was

defined in (10).

(5) we can bound δ at every x ∈ � by infv∈C+(x)
J̃(v)

J(v)
≤ δ(x) ≤ supv∈C−(x)

J̃(v)

J(v)
.

Remark 2.11 We stress that the necessary and sufficient condition in items (2–3) of
Proposition 2.10, for (strict) J-separation, shows that a cocycle At (x) is (strictly)
J-separated if, and only if, its inverse A−t (x) is (strictly) (−J)-separated.

Remark 2.12 Item (2) above of Proposition 2.10 shows that δ is a measure of the
“minimal instantaneous expansion rate” of |J ◦ At (x)|.

The area under the function δ provided by Proposition 2.10 allows us to detect
different dominated splittings with respect to linear multiplicative cocycles on vector
bundles (Proposition 2.13). For this, define the function

�b
a(x) :=

∫ b

a
δ(Xs(x)) ds, x ∈ �, a, b ∈ R. (10)

Proposition 2.13 ([3, Theorem 2.23]) Let � be a compact invariant set for Xt

admitting a dominated splitting E� = F− ⊕ F+ for At (x), a linear multiplicative
cocycle over � with values in E. Let J be a C1 family of indefinite quadratic forms
such that At (x) is strictly J-separated. Then

(1) F− ⊕ F+ is partially hyperbolic with F+ uniformly expanding if �t
0(x) −−−−→

t→+∞
+∞ for all x ∈ �.

(2) F− ⊕ F+ is partially hyperbolic with F− uniformly contracting if �t
0(x) −−−−→

t→+∞
−∞ for all x ∈ �.

(3) F− ⊕ F+ is uniformly hyperbolic if, and only if, there exists a compatible family
J0 of quadratic forms in a neighborhood of � such that J′

0(v) > 0 for all v ∈ Ex

and all x ∈ �.

For the proof and more details about the Proposition 2.13, see [3].
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3 Auxiliary Results

3.1 Adapted Metric for Dominated Splittings from Quadratic
Forms

Let A : G × R → G be a linear multiplicative cocycle on the vector bundle G over
the flow Xt . We assume from now on that the family At (x) of linear multiplicative
cocycles on a vector bundle GU over the flow Xt on trapping region U ⊆ M has
been given, together with a field of non-degenerate quadratic forms J on GU .

Let us consider a C1 field of non-degenerate quadratic forms J with constant
index on the positively invariant open set U for the flow Xt , such that the cocycle
At (x) over Xt is strictly J-separated. In [3, Theorem 2.13], the authors showed that
GU admits a dominated splitting F− ⊕ F+ with to respect to At (x), on the maximal
invariant subset � ofU . In fact, in [29, Proposition 4.1], Wojtkowski have made this
to diffeomorphisms and affirmed that the J-metric is an adapted one. In other words,
we can obtain adapted metrics from the quadratic forms.

Following the arguments into the proofs from [3, Theorem 2.13] and [29, Propo-
sition 4.1], we are going to show, in the next lemma, that the metric induced by
the quadratic forms J over GU is indeed an adapted one to the dominated splitting
F− ⊕ F+.

Lemma 3.1 Consider a C1 field of non-degenerate quadratic forms J with constant
index on the positively invariant open subset U for the flow Xt , such that the cocycle
At (x) over Xt is strictly J-separated. Then the induced J-metric on GU is adapted
to the dominated splitting F− ⊕ F+.

Proof Following [3, Theorem 2.13], we know that for each x in � there exist sub-
spaces F−(x) and F+(x) such thatGx = F−(x) ⊕ F+(x) and At (x)(Fa(x)) = Fa(x)
for a ∈ {+,−}. It is also proved there that, for every x ∈ Xt (U ) and every pair of
unit vectors u ∈ F− and v ∈ F+, we have

|At (x)u|
|At (x)v| ≤ r t−(x)

r t+(x)
≤ ωt := sup

x∈�

r t−(x)

r t+(x)
< 1,

where r t− and r t+ represent the values r− and r+ in Remark 2.2 with respect to the
strictly J-separated cocycle At (x) with a fixed t .

Then, lim
t→∞

|At (x)|F− |
|At (x)|F+ | = 0 for x ∈ �.

We claim that sup
t

ωt < 1.

Suppose, in contrary, that there exists a sequence (ωtn )n converging to 1.
Then there exist sequences (xn)n in �, (un)n in F−, and (vn)n in F+ such that

|Atn (xn)un |
|Atn (xn)vn | converge to 1. By compactness of �, we can suppose that (xn)n converges
to x in �.

If (tn)n goes to infinity, we have a contradiction with lim
t→∞

|At (x)|F− |
|At (x)|F+ | = 0.
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Now, suppose that (tn)n is a bounded sequence, we can assume that (tn)n con-
verges for some t inR, but |At (x)u|

|At (x)v| < ωt < 1, this contradiction proves the claim and
completes the proof of the Lemma. �

3.2 Exterior Products and Main Lemma

Fromnow,we present some properties about exterior products and themain lemma to
prove the Theorem A. Next, we are going to use Proposition 2.13 to obtain sufficient
conditions for a flow Xt on a m-manifold M to have a ∧m−1DXt -invariant one-
dimensional uniformly expanding direction orthogonal to the (m − 1)-dimensional
center-unstable bundle.

Let V a m-dimensional vector space, we denote V by Vm , consider ∧kV m where
2 ≤ k ≤ m. LetB = {e1, · · · , em} abasis ofVm . So {e j1 ∧ · · · ∧ e jk : 1 ≤ j1 < · · · <

jk ≤ m} is a basis of∧kV m , and J := {( j1, · · · , jk) ∈ N
k : 1 ≤ j1 < · · · < jk ≤ m}.

Let l =
(

m
k

)

, so we have l combination of k vectors in {e1, · · · , em}, and |J | = l.

Take u1, u2, · · · , uk ∈ Vm where u j = (u1j , u
2
j , · · · , umj )B for all j ∈ {1, · · · , k}.

Define

C :=
⎛

⎝

u11 ... u1k
... ... ...

um1 ... umk

⎞

⎠

m×k

. (11)

For ( j1, · · · , jk) ∈ J , consider

C j1,..., jk :=
⎛

⎝

u j1
1 ... u j1

k
... ... ...

u jk
1 ... u jk

k

⎞

⎠

k×k

(12)

The following result holds

u1 ∧ · · · ∧ uk =
∑

( j1,..., jk )∈J

det(C j1,..., jk )(e j1 ∧ · · · ∧ e jk ). (13)

Let A : Vm → Vm a linear operator with matrix in basis B given by

⎛

⎝

a11 a12 ... a1m
... ... ... ...

am1 am2 ... amm

⎞

⎠

(m×m)

. (14)

We will denote this matrix by A too.
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Consider ∧k A : ∧kV m → ∧kV m , note that A(u1) ∧ · · · ∧ A(uk) = ∧k A(u1 ∧
· · · ∧ uk), by (13) and the linearity of ∧k A, we have that

A(u1) ∧ · · · ∧ A(uk) =
∑

( j1,··· , jk )∈J

det(C j1,··· , jk ) ∧k A(e j1 ∧ · · · ∧ e jk ) (15)

Define A j := A(e j ), so A j is the j-th column of A, i.e., A(e j ) = A j = (a1 j , · · · ,

amj )
T , so A(e j ) = [ai j ]m×1. Let A j1··· jk := (A j1 · · · A jk )m×k where ( j1, · · · , jk) ∈ J .

For each (i1 · · · ik), ( j1 · · · jk) ∈ J consider

Ai1···ik
j1··· jk :=

⎛

⎝

ai1 j1 ... ai1 jk
... ... ...

aik j1 ... aik jk

⎞

⎠

k×k

(16)

Using that ∧k A(e j1 ∧ · · · ∧ e jk ) = A(e j1) ∧ · · · ∧ A(e jk ) with matrix

A j1··· jk := (A j1 · · · A jk )m×k,

by (13) we obtain that

A(e j1) ∧ · · · ∧ A(e jk ) =
∑

(i1,··· ,ik )∈J

det(Ai1···ik
j1··· jk )(ei1 ∧ · · · ∧ eik ). (17)

Lemma 3.2 Let V to be vector space and A : V → V to be a linear operator then
∧(m−1)A = det(A) · (A−1)∗.

Proof Consider k = m − 1. We use the following identification between ∧(m−1)V
and V . For each ( j1, · · · , jm−1) ∈ J , we identify e j1 ∧ · · · ∧ e jk in ∧(m−1)V by δpep
in V , where p /∈ { j1, · · · , jm−1}, δp = 1 if p is odd, and δp = −1 if p is even.

Wemust show that for each ( j1, · · · , jm−1) ∈ J the exterior product∧(m−1)A(e j1 ∧
· · · ∧ e jk ) corresponds to the det(A) · (A−1)∗(δpep), where δpep is given as above.

Define S := det(A) · (A−1)∗, using that A−1 = 1
det(A)

Adj(A), we obtain that S =
cof(A)where cof(A) = [(−1)i+ j Mi j ]m×m and Mi j is the determinant of the subma-
trix formed by deleting the i-th row and j-th column.We have thatMi j = det(Ar1···rk

s1···sk )
where i /∈ r1, · · · , rk and j /∈ s1, · · · , sk .

Note that

cof(A)(δpep) = δp cof(A)(ep) = δp((−1)1+pM1p, (−1)2+pM2p, · · · , (−1)m+pMmp)B.

In case p is odd, δp = 1 and cof(A)(δpep) = (M1p,−M2p, · · · , (−1)m+pMmp)B.
We obtain that

cof(A)(δpep) = M1pe1 + M2p(−e2) + · · · + Mmp(−1)m+p =
M1p(e1δ1) + M2p(e2δ2) + · · · + Mmp(empδmp).
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Using that

A(e j1) ∧ · · · ∧ A(e jk ) =
∑

(i1,··· ,ik )∈J

det(Ai1···ik
j1··· jk )(ei1 ∧ · · · ∧ eik )

and Mi j = det(Ar1···rk
s1···sk ) where i /∈ r1, · · · , rk and j /∈ s1, · · · , sk , we have that

cof(A)(δpep) ∼= A(e j1) ∧ · · · ∧ A(e jk ). �
This concludes the proof.

Remark 3.3 Under suitable identification, the last formula holds for differential of
a diffeomorphism of a compact finite dimensional manifold.

The result below generalizes Corollary 2.9 to arbitrary n and k. Themain difficulty
here is working on the dimensions of the subbundles and its exterior powers.

Lemma 3.4 The subbundle F� is volume expanding by DXt if, and only if, ˜F is
uniformly expanded by ∧k DXt .

In particular, E ⊕ F is a singular hyperbolic splitting, where F is volume expand-
ing for DXt if, and only if, ˜E ⊕ ˜F is partially hyperbolic splitting for ∧k DXt such
that ˜F is uniformly expanded by ∧k DXt .

Proof We consider the action of the cocycle DXt (x) on k-vector that is the k-exterior
power ∧k DXt of the cocycle acting on ∧kT�M .

Denote by ‖ · ‖ the standard norm on k-vectors induced by the Riemannian norm
of M ; see, e.g. [7]. We write m = dim M .

Suppose that T�M admits a splitting E� ⊕ F� with dim E� = m − k and
dim F� = k.

We note that if E ⊕ F is a DXt -invariant splitting of T�M , with {e1, . . . , el} a
family of basis for E and { f1, . . . , fk} a family of basis for F , then ˜F = ∧k F gen-
erated by { fi1 ∧ · · · ∧ fik }1≤i1<···<ik≤k is naturally ∧k DXt -invariant by construction.
Then, the dimension of ˜F is one with basis given by the vector f1 ∧ · · · ∧ fk .

Assume that F� is volume expanding by DXt . We must show that there exist
C and λ > 0 such that | ∧k DXt |P | ≥ Ceλt , for all t > 0, where P is spanned by
f1 ∧ · · · ∧ fk .
Note that

|| ∧k DXt |P || = || ∧k DXt ( f1 ∧ · · · ∧ fk)|| = ||DXt ( f1) ∧ · · · ∧ DXt ( fk)||.

But f1, · · · , fk is a basis for F , by hypothesis there exist constants C and λ > 0
such that | det(DXt |F )| ≥ C.eλt for all t > 0. So,

| det(DXt |F )| = vol(DXt ( f1), · · · , DXt ( fk)) = ||DXt ( f1) ∧ · · · ∧ DXt ( fk)||.
The reciprocal statement is straightforward.
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Given a basis { f1, · · · , fk} of F , we have that

| det(DXt |F )| =
vol(DXt ( f1), · · · , DXt ( fk)) = ||DXt ( f1) ∧ · · · ∧ DXt ( fk)|| =

|| ∧k DXt ( f1 ∧ · · · ∧ fk)|| = || ∧k DXt |P ||

where P is spanned by f1 ∧ · · · ∧ fk .
However, by hypothesis, there existC and λ > 0 such that || ∧k DXt |P || ≥ Ceλt ,

for all t > 0.

Corollary 3.5 Assume that E is uniformly contracted by DXt . E ⊕ F is a singular-
hyperbolic splitting for DXt if, and only if, ˜E ⊕ ˜F is partially hyperbolic splitting
for ∧k DXt such that ˜F is uniformly expanded by ∧k DXt .

Let M Riemannian manifoldm-dimensional with 〈·, ·〉 inner product in T�M , and
〈·, ·〉∗ the inner product in ∧kT�M induced by 〈·, ·〉 where ∧kT�M = ⋃

x∈� ∧kTxM .
So for x ∈ �, we have that 〈·, ·〉 is acting on TxM , and 〈·, ·〉∗ is acting on ∧kTxM .

Lemma 3.6 Let M be a riemannian m-dimensional manifold. Then, for all [·, ·]∗
inner product in ∧(m−1)T�M there exists a inner product [·, ·] on T�M such that
[·, ·]∗ is induced by [·, ·].
Proof Let M be a riemannian manifold m-dimensional with 〈·, ·〉 an inner product
in T�M , and 〈·, ·〉∗ the inner product in ∧(m−1)T�M induced by 〈·, ·〉.

Take [·, ·]∗∗ an arbitrary inner product in∧(m−1)T�M . Using that [·, ·]∗∗ and 〈·, ·〉∗
are inner products in ∧(m−1)T�M there exists J : ∧(m−1)T�M → ∧(m−1)T�M iso-
morphism linear such that [u, v]∗∗ = 〈J (u), J (v)〉∗.

Define ϕ : GL(T�M) → GL(∧(m−1)T�M) given by A �→ ∧(m−1)A.
Note that ϕ is an injective linear homomorphism, and due to the dimensions of

the spaces, ϕ is a linear isomorphism.
Hence, there exists A ∈ GL(T�M) such that ∧(m−1)A = J .
Consider [x, y] := 〈A(x), A(y)〉 for x, y ∈ T�M , then [u, v]∗

= det([ui , v j ])(m−1)×(m−1), where u = u1 ∧ · · · ∧ u(m−1) and v = v1 ∧ · · · ∧ v(m−1).
We have that

[u, v]∗ = det(〈A(ui ), A(v j )〉)(m−1)×(m−1).

On the other hand,

[u, v]∗∗ = 〈∧(m−1)A(u),∧(m−1)A(v)〉∗ = det(〈A(ui ), A(v j )〉)(m−1)×(m−1).

Therefore, [·, ·]∗ = [·, ·]∗∗, and we are done.
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4 Proofs of Main Results

We are now able to prove our main results.

4.1 Proof of Theorem A

Proof Consider M is a m-manifold and � is a compact Xt -invariant subset hav-
ing a singular-hyperbolic splitting T�M = E� ⊕ F� . By Theorem 2.8 we have a
∧(m−1)DXt -invariant partial hyperbolic splitting ∧(m−1)T�M = ˜E ⊕ ˜F with
dim ˜F = 1 and ˜F uniformly expanded. Following the proof of Theorem 2.8, if
we write e for a unit vector in Ex and {u1, u2, · · · , um−1} an orthonormal base
for Fx , x ∈ �, then ˜Ex is a (m − 1)-dimensional vector space spanned by set
{e ∧ ui1 ∧ ui2 ∧ · · · ∧ uim−2} with i1, · · · , im−2 ∈ {1, · · · ,m − 1}.

FromTheorem 2.6 and the existence of adaptedmetrics (see e.g. [12]), there exists
a field J of quadratic forms so that X is J-non-negative, DXt is strictly J-separated
on a neighborhood U of �, E� is a negative subbundle, F� is a positive subbundle
and these subspaces are almost orthogonal. In other words, there exists a function δ :
� → R such that J̃x − δ(x)Jx > 0, x ∈ � and we can locally write J(v) = 〈J (v), v〉
where J = diag{−1, 1, · · · , 1} with respect to the basis {e, u1, · · · , um−1} and 〈·, ·〉
is the adapted inner product; see [3].

By Lemma 3.2, ∧(m−1)A = det(A) · (A−1)∗ with respect to the adapted inner
product which trivializes J, for any linear transformation A : TxM → TyM . Hence
∧m−1DXt (x) = det(DXt (x)) · (DX−t ◦ Xt )

∗ and a straightforward calculation
shows that the infinitesimal generator D(m−1)(x) of ∧(m−1)DXt equals tr(DX (x) ·
I d − DX (x)∗.

Therefore, using the identification between ∧(m−1)TxM and TxM through the
adapted inner product and Proposition 2.10

Ĵx = ∂t (−J)(∧(m−1)DXt · v) |t=0 = 〈−(J · D(m−1)(x) + D(m−1)(x)∗ · J )v, v〉
= 〈[(J · DX (x) + DX (x)∗ · J) − 2 tr(DX (x))J]v, v〉
= (J̃ − 2 tr(DX (x))J)(v). (18)

To obtain strict (−J)-separation of∧(m−1)DXt we search a function δ(m−1) : � → R

so that

(J̃ − 2 tr(DX)J) − δ(m−1)(−J) > 0 or J̃ − (2 tr(DX) − δ(m−1))J > 0.

Hence it is enough to make δ(m−1) = 2 tr(DX) − δ. This shows that in our setting
∧(m−1)DXt is always strictly (−J)-separated.

Finally, according to Proposition 2.13, to obtain the partial hyperbolic splitting of
∧(m−1)DXt which ensures singular-hyperbolicity, it is sufficient that either Ĵx is pos-
itive definite or ˜�b

a(x) = ∫ b
a δ(m−1)(Xs(x)) ds satisfies item (1) of Proposition 2.13,
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for all x ∈ �. This amounts precisely to the sufficient condition in the statement of
Theorem A and we are done. �

Finally, we present the proof of Theorem B.

4.2 Proof of Theorem B

Proof Let singular-hyperbolic set � for vector field with a partially hyperbolic split-
ting T�M = E ⊕ F where E is uniformly contracted and F is volume expanding.

Suppose that T�M admits a splitting E� ⊕ F� with dim E� = 1 and dim F� =
k = m − 1.

We note that if E ⊕ F is a DXt -invariant splitting of T�M , with {e1} a basis for
E and { f1, . . . , fk} a family of basis for F , then ˜F = ∧k F generated by { fi1 ∧ · · · ∧
fik }1≤i1<···<ik≤k is naturally ∧k DXt -invariant by construction. Then, the dimension
of ˜F is one with basis given by the vector f1 ∧ · · · ∧ fk .

By Corollary 3.5, we have a partially hyperbolic splitting ˜E ⊕ ˜F for∧k DXt such
that ˜F is uniformly expanded by ∧k DXt . Hence, from [12, Theorem 1] , there exists
an adapted inner product 〈·, ·〉∗ for ∧k DXt . There exists λ > 0 satisfying for all
x ∈ � and t > 0 such that || ∧k DXt |

˜Fx
|| ≥ eλt for all t > 0.

By Lemma 3.6, 〈·, ·〉∗ is induced by an inner product 〈·, ·〉 in T�M . So, we have a
partially hyperbolic splitting ˜E ⊕ ˜F for ∧k DXt such that ˜F is uniformly expanded
by ∧k DXt . By Theorem 2.8, we have that E ⊕ F is a dominated splitting for DXt .
From Theorem 2.5, there exists C1 field of quadratic J such that DXt is strictly
J-separated.

But DXt is strictly J-separated, this ensures, in particular, by Lemma 3.1, that the
norm

|w| = √

J(wE )2 + J(wF )2 is adapted to the dominated splitting E ⊕ F for the
cocycle DXt , where w = wE + wF ∈ Ex ⊕ Fx , x ∈ �. This means that there exists
μ > 0 such that |DXt |Ex | · |DX−t |FXt (x)

| ≤ e−μt for all t > 0.
Moreover, from the definition of the inner product and ∧, it follows that
| det(DXt |Fx )| = ‖(∧k DXt )(u1 ∧ · · · ∧ uk)‖ = ‖(∧k DXt ) |

˜F ‖ ≥ eλt for all t >

0, so | · | is adapted to the volume expanding along F .
To conclude, we are left to show that E admits a constantω > 0 such that |DXt |E

| ≤ e−ωt for all t > 0.
But since E is uniformly contracted, we know that X (x) ∈ Fx for all x ∈ �.

Lemma 4.1 Let � be a compact invariant set for a flow X of a C1 vector field X on
M. Given a continuous splitting T�M = E ⊕ F such that E is uniformly contracted,
then X (x) ∈ Fx for all x ∈ �.

Proof See [1, Lemma 5.1] and [3, Lemma 3.3].
Define the norm | · |∗ = ξ| · | where ξ is a small constant such that sup{|X (z)| :

z ∈ �} ≤ 1. We note that the choice of the positive constant ξ does not change any
of the previous relations involving | · |.
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On the one hand, on each non-singular point x of � we obtain for each w ∈ Ex

e−μt ≥ |DXt · w|
|DXt · X (x)| = |DXt · w|

|X (Xt (x))| ≥ |DXt · w|
sup{|X (z)| : z ∈ �} ≥ |DXt · w|.

On the other hand, for σ ∈ � such that X (σ) = 0, we fix t > 0 and, since � is
a non-trivial invariant set, we can find a sequence xn → σ of regular points of �.
The continuity of the derivative cocycle ensures |DXt |Eσ

| = limn→∞ |DXt |Exn
| ≤

e−λt . Since t > 0was arbitrarily chosen, we see that | · | is adapted for the contraction
along Eσ .

This shows that λ = μ and completes the proof.
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On Conformal Measures and Harmonic
Functions for Group Extensions

Manuel Stadlbauer

Abstract We prove a Perron-Frobenius-Ruelle theorem for group extensions of
topological Markov chains based on a construction of σ-finite conformal measures
and give applications to the construction of harmonic functions.

Keywords Group extension · Conformal measures · Harmonic functions

1 Introduction

The Perron-Frobenius-Ruelle theorem is a statement about the maximal eigenvalue
of an operator L who preserves the cone of positive functions. Namely, it provides
existence of a function f in this cone and ν in its dual, such that L f = ρ f and L∗ν =
ρν, withρ referring to the spectral radius of L . Thefirst result of this typewas obtained
by Perron in [21] as a byproduct of his analysis of periodic continued fractions.
He proved that, for a strictly positive n × n-matrix A, the maximal eigenvalue ρ is
simple.Moreover, his proof reveals that there exist strictly positive vectors x, y ∈ R

n

such that xt A = ρxt , Ay = ρy and that ρ−n An converges to y · xt . Even though
there were many important contributions to the theory of positive operators in the
following decades, e.g. by Doeblin-Fortet [10] or Birkhoff [4], whose methods are
today standard tools in proving exponentially fast convergence of the iterates (see,
e.g., [3, 17]), it was only at the end of the 60’s when Ruelle obtained an analog of
Perron’s theorem for the one-dimensional Ising model with long range interactions
from mathematical physics ([25, Theorem 3]). In the context of dynamical systems,
as observed by Bowen, the result of Ruelle has the following formulation in terms
of shift spaces. For a fixed k ∈ N, let

� := {(xi : i ∈ N) : xi ∈ {1, . . . , k} ∀i ∈ N} ,

θ : � → � (x1, x2, . . .) �→ (x2, x3, . . .)
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and suppose thatϕ : � → (0,∞) is a log-Hölder continuous functionwith respect to
the shift metric (for details, see below). The associated operator, the Ruelle operator,
is then defined by

Lϕ( f )(x) :=
∑

θ(y)=x

ϕ(y) f (y).

Ruelle’s theoremstates that there exist a strictly positiveHölder continuous functionh
and a probability measure μ such that Lϕ( f ) = ρ f , L∗

ϕ(μ) = ρμ and lim ρ−n Ln
ϕ f =∫

f dμ · h. Furthermore, ρ−n Ln
ϕ f → ∫

f dμ · h converges exponentially fast, which
implies, among many other things, that h is unique and that the measure μ is exact
(and, in particular, ergodic).

The aim of this note is to establish an analogue of the result for dynamical systems
of the form

T : � × G → � × G, (x, g) �→ (θx, gψ(x)),

where G is a discrete group G, � a shift space with the b.i.p.-property as defined
below and ψ : � → G a locally constant function. This kind of dynamical system is
called group extension, or, as they first were considered by Rokhlin in [24], Rokhlin
transformation. Even though one might be tempted to think of ψ as a cocycle, the
probably most fruitful approach is to consider T as a kind of random walk on G.
That is, by fixing a potential function ϕ which only depends on the first coordinate,
ϕ(x) stands for the transition probability to go from (x, g) to (θx, gψ(x)), which
is also reflected by the fact that the Ruelle operator Lϕ associated to T has many
similarities to the Markov operator of a random walk.

In this setting, it is possible to obtain the following operator theorem which is the
main result (Theorem5.1) of this note. Under a technical condition (which is satisfied
if, e.g.,� is compact), it is shown that there exists aLipschitz continuousmapμ → νμ

from the space of probability measures on � × G to the space of σ-finite, conformal
measures, that is νμ is σ-finite and L∗

ϕ(νμ) = ρνμ. This map is constructed using the
method by Denker-Urbanski in [8]. By adapting ideas of Patterson [20] and Sullivan
[31] from hyperbolic geometry, one obtains by variation of μ a family of strictly
positive, ρ-harmonic functions. In here, we refer to h : � × G → R as harmonic or
ρ-harmonic if Lϕ(h) = ρh. In particular, Theorem5.1 gives rise to families of σ-
finite, conformal measures {νμ}, ρ-harmonic, positive functions {h}, and T -invariant
measures {hdνμ}. Furthermore, as the conformal measures are pairwise equivalent,
the function K(μ, z) := (dνμ/dν)(z) for a fixed conformal reference measure ν is
defined and, as shown in Theorem5.1, its logarithm is locally Lipschitz continuous
with respect to the first coordinate and T -invariant with respect to the second.

It is important to point out that these families might not be one-dimensional. For
example, the classical and general result of Zimmer in [34] (see [14] for a version
for group extensions) states that ergodicity implies amenability. Hence, as G not
necessarily is amenable, νμ might not be ergodic and the standard argument for
uniqueness of conformal measures no longer is applicable. However, for the setting
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in here, a sharp criterium of classical flavour holds (Proposition 5.3). That is, νμ is
conservative and ergodic if and only if

∞∑

n=1

ρ−n
∑

T n(x,id)=(x,id)

n−1∏

k=0

ϕ(θk(x)) = ∞.

Hence, it is of interest to analyse the families of conformal measures and harmonic
functions if T is non-ergodic. In order to have explicit examples at hand, we use the
fact that a random walk with independent increments can be identified with a group
extension. For T associated with the random walk on Z

d or the free group Fd , the
d-dimensional central limit theorem and the local limit theorem by Gerl and Woess
in [12], respectively, allow to explicitly determine K. For these specific examples,
it turns out that the family of conformal measures is one-dimensional for Zd and
non-trivial for Fd .

For a further analysis of the general setting, these conformal measures are
employed to construct a positive map from the space of functions C whose loga-
rithm is uniformly continuous to the space of harmonic functions H satisfying a
certain local Lipschitz condition (Theorem6.1). Then, in order to at least roughly
determine the behaviour of harmonic functions and ν at infinity, further ideas from
probability and ergodic theory are employed. Namely, for a given pair (h, ν) of a
positive harmonic function and a conformal measure, hdν is invariant and therefore,
the natural extension of (T, hdν) is well-defined. Therefore, through Martingale
convergence, it is possible to show (Corollary 6.3) for G non-amenable and under a
symmetry condition that

νμ

({
(x,ψ(ω) · · · ψ(θn−1(ω))) : x ∈ �

}) = o(ρn),

for a.e. ω ∈ � with respect to the equilibrium measure of (�, θ,ϕ). These results
also have a canonical application to the dimension theory of graph directed Markov
systems, which is outlined in Theorem7.1.

Remark. After submitting the article, the author was made aware of the results
inspired by Martin boundaries by Shwartz in [29]. In there, a complete description
of harmonic functions and conformal measures on locally compact shift spaces was
obtained.

2 Topological Markov Chains

We begin with defining the basic object of our analysis, that is topological Markov
chains and their group extensions. For a countable alphabet W and a matrix (ai j :
i, j ∈ W) with ai j ∈ {0, 1} for all i, j ∈ W and no rows and columns equal to 0, let
the pair (�, θ) denote the associated one-sided topological Markov chain given by
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� := {
(wk : k = 1, 2, . . .) : wk ∈ W, awkwk+1 = 1 ∀i = 0, 1, . . .

}
,

θ : � → �, θ : (wk : k = 1, 2, . . .) �→ (wk : k = 2, 3, . . .).

A finite sequence w = (w1w2 . . . wn) with n ∈ N, wk ∈ W for k = 1, 2, . . . , n and
awkwk+1 = 1 for k = 1, 2, . . . , n − 1 is referred to as admissible or as word of length
n, the set of words of length n will be denoted byWn and the set

[w] := {(vk) ∈ � : wk = vk ∀k = 1, 2, . . . , n}

is referred to as a cylinder of length n. Furthermore, |w| denotes the length of a word
and W∞ = ⋃∞

n=1 Wn the set of all admissible words. Since θn : [w] → θn([w]) is
a homeomorphism, observe that the inverse τw : θn([w]) → [w] is well defined.

As it is well known, � is a Polish space with respect to the topology generated by
cylinders and � is compact with respect to this topology if and only ifW is a finite
set. Moreover, the topology generated by cylinders is compatible with the metric
defined by, for r ∈ (0, 1) and (wk), (vk) ∈ �,

dr ((wk), (vk)) := rmin(i :wi �=vi )−1.

Observe that with respect to this definition, the rn-neighbourhood of (wk) ∈ � is
given by the cylinder [w1w2 . . . wn] of length n. Also recall that � is topologically
transitive if for all a, b ∈ W , there exists n ∈ N such that θn([a]) ∩ [b] �= ∅ and is
topologically mixing if for all a, b ∈ W , there exists N ∈ N such that θn([a]) ∩ [b] �=
∅ for all n ≥ N . Moreover, a topological Markov chain is said to have big images
and big preimages if there exists a finite set Ibip ⊂ W such that for all v ∈ W , there
exists β1,β2 ∈ Ibip such that (vβ1) ∈ W2 and (β2v) ∈ W2. Finally, we say that a
topological Markov chain satisfies the big images and preimages (b.i.p.) property if
the chain is topologically mixing and has big images and preimages (see [27]). Note
that the b.i.p. property coincides with the notion of finite irreducibility for topological
mixing topological Markov chains as introduced by Mauldin and Urbanski [18].

Potentials. A further basic object for our analysis is a fixed, strictly positive function
ϕ : � → Rwhich is referred to as a potential. This function might be seen as weight
on the preimages of a point and in many applications, ϕ is defined as the conformal
derivative of an underlying iterated function system. For n ∈ N and w ∈ Wn , set
�n := ∏n−1

k=0 ϕ ◦ θk and �w := �n ◦ τw. We refer to ϕ as a potential of (locally)
bounded variation if

sup

{
�n(x)

�n(y)
: n ∈ N, w ∈ Wn, x, y ∈ [w]

}
< ∞.

From now on, for positive sequences (an), (bn) we will write an � bn if there exists
C > 0 with an ≤ Cbn for all n ∈ N, and an � bn if an � bn � an . For example, the
above could be rewritten by �|w|(x) � �|w|(y) for all w ∈ W∞ and x, y ∈ [w]. A
further, stronger assumption on the variation is related to local Hölder continuity.
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Recall that the n-th variation of a function f : � → R is defined by

Vn( f ) = sup{| f (x) − f (y)| : xi = yi , i = 0, 1, 2, . . . , n − 1}.

The function f is referred to as a locally Hölder continuous function if there exists
0 < r < 1 and C ≥ 1 such that Vn( f ) � rn for all n ≥ 1. Moreover, we refer to a
locallyHölder continuous functionwith‖ f ‖∞ < ∞ as aHölder continuous function.
We now recall a well-known estimate. For n ≤ m, x, y ∈ [w] for somew ∈ Wm , and
a locally Hölder continuous function f ,

∣∣
n−1∑

k=0

f ◦ θk(x) − f ◦ θk(y)
∣∣ � 1

1 − r
rm−n. (1)

In particular, if logϕ = f is locally Hölder continuous, then ϕ is a potential of
bounded variation. Moreover, as rm−n = d(θn(x), θn(y)), there exists Cϕ ≥ 1 such
that

|�w(x)/�w(y) − 1| ≤ Cϕd(x, y) and �w(x)/�w(y) ≤ Cϕ

for all w ∈ W∞ and x, y ∈ [w].
Conformal measures. In here, due to the fact that the constructions canonically
lead to σ-finite measures, we will make use of a slightly more general definition of
conformality by allowing infinite measures. We refer to a σ-finite Borel measure μ
as a ϕ-conformal measure if

μ(θ(A)) =
∫

A

1

ϕ
dμ

for all Borel sets A such that θ|A is injective. For w = (w1 . . . wn) ∈ Wn and a
potential of bounded variation, it then immediately follows that

μ([w]) � �n(x) μ(θ([wn])) (2)

for all x ∈ [w]. Note that this estimate implies that PG(θ,ϕ) = 0 is a necessary
condition for the existence of a conformal measure with respect to a potential of
bounded variation. Moreover, if μ(θ([w])) � 1 (e.g., if μ is finite and θ has the big
image property), we obtain that

μ([w]) � �n(x) (3)

for all n ∈ N, w ∈ Wn and x ∈ [w]. Also note that a probability measure satisfying
(3) is referred to as a ϕ-Gibbs measure.

Ruelle’s operator, b.i.p. and Gibbs-Markov maps. Ruelle’s operator is defined,
for f : � → R in a suitable function space to be specified later, by
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Lϕ( f ) =
∑

v∈W
1θ([v]) · ϕ ◦ τv · f ◦ τv.

Furthermore, there is an associated action on the space of σ-finite Borel measures
defined through

∫
f d L∗

ϕ(ν) := ∫
Lϕ( f )dν, for each continuous f : � → [0,∞).

We then have that ν is a ϕ/ρ conformal measure if and only if L∗
ϕ(ν) = ρν. If,

in addition, there is a measurable function h : � → [0,∞) with Lϕ(h) = ρh, then
dμ := hdν defines an invariant, σ-finite measure, that is μ = μ ◦ θ−1. Moreover, for
ϕ′ := ϕh/(ρh ◦ θ), we have Lϕ′(1) = 1.

An important consequence of the b.i.p. property is a Perron-Frobenius-Ruelle
theorem in case of an infinite alphabet W1 (see [18, 27]). That is, if (�, θ) has the
b.i.p. property, logϕ is Hölder continuous and ‖Lϕ(1)‖∞ < ∞, then there exists
a Gibbs measure μ and a Hölder continuous, strictly positive eigenfunction h of
Lϕ, which is uniformly bounded from above and below. Moreover, in this situation,
(�, θ,μ) has theGibbs-Markov property, that is μ is a Borel probability measure, for
all w ∈ W1, μ and μ ◦ τw are equivalent, inf

{
μ(θ([w])) : w ∈ W1

}
> 0 and there

exists 0 < r < 1 such that, for all m, n ∈ N, v ∈ Wm , w ∈ Wn with (vw) ∈ Wm+n ,

sup
x,y∈[w]

∣∣∣∣log
dμ ◦ τv

dμ
(x) − log

dμ ◦ τv

dμ
(y)

∣∣∣∣ � rn. (4)

As it is well known, the action on the space of bounded continuous functions of
the transfer operator with respect to μ coincides with Lϕ/ρ and, with h referring to
the function given by the Perron-Frobenius-Ruelle, hdμ is an invariant probability
measurewith exponential decay of correlations and associated transfer operator given
by L(ϕh)/(ρh◦θ) (see [3, 27]).

Furthermore, several arguments in here are based on an inequality in the flavour
of Doeblin-Fortet or Lasota-Yorke for arbitrary topological Markov chains (�, θ)
and potentialsϕ such that logϕ is locally Hölder continuous. For f : � → R, define

D( f ) : � → [0,∞), (x1, x2 . . .) �→ sup
y,ỹ∈[x1]

| f (y) − f (ỹ)|
dr (y, ỹ)

.

That is, D( f )(x) is the local Hölder coefficient of the function f restricted to [a],
with x ∈ [a]. Now assume that Ln

ϕ( f ) is well-defined. Then, for x, y in the same
cylinder,

∣∣Ln
ϕ( f )(x) − Ln

ϕ( f )(y)
∣∣

=
∣∣∣∣∣
∑

v∈Wn

(
1 − �v(y)

�v(x)

)
�v(x) f ◦ τv(x) + �v(y) ( f ◦ τv(x) − f ◦ τv(y))

∣∣∣∣∣

≤ CϕLn
ϕ(| f |)(x)dr (x, y) + rn Ln

ϕ(D( f ))(y)dr (x, y)

≤ Cϕ dr (x, y) Ln
ϕ

(| f | + rn D( f )
)
(x) (5)
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If, in addition, for all a ∈ W1, either f (x) = 0 for all x ∈ [a] or | f (x)/ f (y) − 1| ≤
Cadr (x, y) for all x, y ∈ [a], set L D( f )(x) := 0 in the first case and L D( f )(x) :=
sup{| f (x)/ f (y) − 1|/dr (x, y) : x, y ∈ [a]} in the second case. By the same argu-
ments,

∣∣Ln
ϕ( f )(x) − Ln

ϕ( f )(y)
∣∣

≤ Cϕ dr (x, y) Ln
ϕ (| f |) (x) + Cϕ

∑

v∈Wn

�v(x) | f ◦ τv(x)|
∣∣∣∣

f ◦ τv(y)

f ◦ τv(x)
− 1

∣∣∣∣

≤ Cϕ dr (x, y) Ln
ϕ

(| f | (1 + rn L D( f )
))

(x) (6)

3 Group Extensions of Topological Markov Chains

Fix a countable group G and a map ψ : � → G such that ψ is constant on [w] for
all w ∈ W1. Then, for X := � × G equipped with the product topology of � and
the discrete topology on G, the group extension or G-extension (X, T ) of (�, θ) is
defined by

T : X → X, (x, g) �→ (θx, gψ(x)).

Note that (X, T ) is a topological Markov chain with respect to the alphabetW1 × G
and the following transition rule: ((a, g), (b, h)) is admissible if and only if (ab) ∈
W2 and gψ(a) = h, where ψ(a) := ψ(x), for some x ∈ [a]. Furthermore, set Xg :=
� × {g} and

ψn(x) := ψ(x)ψ(θx) · · · ψ(θn−1x)

for n ∈ N and x ∈ �. Observe that ψn : � → G is constant on cylinders of length n
which implies that ψk(w) := ψk(x), for some x ∈ [w], k ≤ n and w ∈ Wn , is well
defined. If k = n, we will write ψw := ψn(w). It is then easy to see that the finite
words of (X, T ) can be identified with W∞ × G by

((w0, . . . , wn), g) ≡ ((w0, g), (w1, gψ1(w)), . . . , (wn, gψn(w))).

Also observe that topologically transitivity of (X, T ) implies that {ψ(a) : a ∈ W1}
is a generating set for G as a semigroup.

Throughout, we now fix a topological mixing topological Markov chain (�, θ),
and a topological transitive G-extension (X, T ). Furthermore, we fix a (positive)
potential ϕ : � → R with PG(θ,ϕ) = 0. Note that ϕ lifts to a potential ϕ∗ on X
by setting ϕ∗(x, g) := ϕ(x). For ease of notation, we will not distinguish between
ϕ∗ and ϕ. Moreover, for v ∈ W∞, the inverse branch given by [v, ·] will be as well
denoted by τv , that is τv(x, g) := (τv(x), gψ(v)−1). In order to distinguish between
the Ruelle operator of θ and T , these objects for the group extension will be written
in calligraphic letters. That is, for a ∈ W , ξ ∈ [a] × {id}, (η, g) ∈ X , and n ∈ N,
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L( f )(ξ, g) :=
∑

v∈W
ϕ(τv(ξ)) f ◦ τv(ξ, g).

Remark 3.1 In the context of topological transitivity, it is natural to ask whether
(X, T ) is ergodic with respect to the product of the Gibbs measure on � and the
counting measure. For example, a classical result of Zimmer in [34] (see also [14])
states that ergodicity of (X, T ) implies that G is amenable, that is, there exists a
sequence (Kn) of finite subsets of G with

⋃
n Kn = G such that

lim
n→∞ |gKn�Kn|/|Kn| = 0 ∀g ∈ G,

where � refers to the symmetric difference and | · | to the cardinality of a set. More-
over, it was shown in [30] for this class of extensions that PG(T ) = PG(θ) implies
that G is amenable. Hence, if G is a non-amenable group, then PG(T ) < PG(θ) and
(X, T ) is not ergodic. In particular, by bounded distortion, T has to be totally dis-
sipative. For a further criterion for ergodicity, we also refer to Corollary 5.3 below.
Also note that the classical result of Varopoulos on recurrent groups motivates the
conjecture that a group extension only can be ergodic if G is a finite extension of the
trivial group, Z or Z2.

Symmetric extensions. In several interesting applications, group extensions are sat-
isfying a certain notion of symmetry. In here, we will use a pathwise notion (as in
[30]) in contrast to the more general notion in [13]. Namely, we say that (�, θ,ψ) is
symmetric if there exists W1 → W1, w �→ w† with the following properties.

1. For w ∈ W1, (w†)† = w.
2. For v,w ∈ W1, the word (vw) is admissible if and only if (w†v†) is admissible.
3. ψ(v†) = ψ(v)−1 for all v ∈ W1.

Moreover, we refer to (�, θ,ψ,ϕ) as a symmetric group extension if (�, θ,ψ) is
symmetric and, with † : W∞ → W∞ defined by (w1 . . . wn)

† := (w†
n . . . w

†
1),

sup
n∈N

sup
x∈[w],y∈[w†]

�n(x)

�n(y)
< ∞.

4 Conformal σ-Finite Measures

As a first step towards a Ruelle theorem for group extensions, we now adapt ideas
from [8, 20] in order to obtain invariantmeasures for the dual of theRuelle operator. In
contrast to [8, 20], themethod in here gives rise to conformalσ-finitemeasures,which
seems to be advantageous as group extensions in many cases are totally dissipative
dynamical systems and therefore might not admit finite invariant measures. We now
fix ξ ∈ � and, for n ∈ N, set



On Conformal Measures and Harmonic Functions for Group Extensions 279

Zn(ξ) =
∑

θn(x)=ξ,ψn(x)=id

�n(x) = Ln
ϕ(1Xid )(ξ, id).

Since the construction relies on the divergence of a power series at its radius of
convergence, recall that, for a sequence of positive real numbers (an), the radius of
convergence of

∑
n an xn is equal to 1/ρ where, by Hadamard’s formula,

ρ := lim sup
n→∞

n
√

an.

We now ensure divergence at the radius of convergence by pointwise multiplication
with a slowly diverging sequence as given by the following result. For the proof, we
refer to [8].

Lemma 4.1 For a positive sequence (an) with ρ < ∞, there exists a nondecreasing
sequence (bn : n ∈ N) with bn ≥ 1 for all n ∈ N such that limn→∞ bn/bn+1 = 1 and
for all s ≥ 0,

∞∑

n=1

bnans−n

{
= ∞ s ≤ ρ

< ∞ s > ρ.

Moreover, there exists a non-increasing sequence (λ(n) : n ∈ N) with λ(n) ≥ 1 and
λ(n) → 1 such that bn = ∏n

k=1 λ(k).

Now suppose that ρ = lim sup n
√Zn(ξ) < ∞. Then, for (bn) given by Lemma 4.1

applied to an = Zn(ξ), we have that

P(s) :=
∑

n∈N
s−nbnZn(ξ).

diverges as s ↘ ρ. Furthermore, for ρ < s < ∞, set

ms := 1

P(s)

∑

n∈N
s−nbn

∑

T n(z)=(ξ,id)

�n(x)δz, (7)

where δz refers to the Dirac measure supported in z. Note that, by construction,
ms(Xid) = 1 for all s > ρ. In order to construct a σ-finite, conformal measure, we
consider an accumulation point ν of {ms} in the weak∗ topology, i.e. convergence
of

∫
f dms to

∫
f dν for every bounded and continuous function f . For ease of

notation, we now identify � with Xid and, for B ⊂ � with T k |B×{id} invertible and
T k(B × {id}) ⊂ Xid , the restriction T k |B×{id} with θk |B .

Lemma 4.2 Assume that, for sl ↘ ρ, there exists a probability measure m on �

which is the weak∗-limit of (msl : l ∈ N). Then, for each pair (B, k) with B ∈ B(�),
k ∈ N such that T k |B×{id} is invertible and T k(B × {id}) ⊂ Xid ,
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m(θk(B)) =
∫

B
ρk/�kdm. (8)

Proof Suppose that B is a cylinder, that is B = [w] for some w ∈ Wm and m > k.
Since T k is injective on B × {id}, we have, for s > ρ, that

ms(θ
k(B)) = 1

P(s)

∑

n∈N

∑

x∈θn(B)∩En

bn�n(x)

sn
= 1

P(s)

∑

n∈N

∑

x∈B∩θ−k (En)

bn�n(θ
k x)

sn

= 1

P(s)

∑

n∈N

∑

x∈B∩En+k

bn+k�n+k(x)

sn+k

bnsk

bn+k�k(x)

In particular this gives

∣∣∣∣ms(θ
k(B)) −

∫

B

sk

�k(x)
dms

∣∣∣∣ ≤ 1

P(s)

∑

n∈N

∣∣∣ bn
bn+k

− 1
∣∣∣

∑

x∈B∩En+k

bn+k�n+k(x)

sn+k

+ 1

P(s)

k∑

n=1

∑

x∈B∩En

bn�k−n(θ
n(x))sk−n.

By Lemma 4.1, it follows that limP(sl) = ∞, and hence the second term of the
right hand side tends to zero as l → ∞. Since limn→∞ bn/bn+k = 1, we then obtain
that the first summand also tends to zero. Moreover, by applying the Portmanteau
theorem to the open and closed set [w], it follows that (8) holds for [w]. As B(�) is
generated by cylinders, the lemma follows. �

As it seems to be impossible to show the existence of a weak∗-accumulation point
of (ms) in full generality, the following condition is introduced.

Definition 4.3 We say that the group extension (�, θ,ϕ) satisfies property (C) if
there exists (bn) as in Lemma 4.1 and (sk) with sk ↘ ρ such that (msk ) converges
weakly∗ to some probability measure on Xid as k → ∞.

In order to obtain criteria for property (C), recall that Prohorov’s theorem states
that a sequence (msk ) has a weak

∗-accumulation point if and only if for each ε > 0
there exists a compact set K and k0 ∈ N such that msk (K ) ≥ 1 − ε for all k ≥ k0, or
in other words, if (msk ) is tight. In particular, if � is a subshift of finite type, then the
property is always satisfied. By lifting the limit from � to X as in [7, 9] we arrive at
a conformal, not necessarily finite measure for T .

Theorem 4.4 Assume that (�, θ) satisfies the b.i.p. property, logϕ is Hölder contin-
uous, ‖Lϕ(1)‖∞ < ∞ and that (X, T ) be a topologically transitive group extension
with property (C). Then there exists a σ-finite, nonatomic, (ρ/ϕ)-conformal measure
ν with ν(Xg) < ∞, for each g ∈ G. Furthermore, there exists a sequence (sk) with
sk ↘ ρ, such that, for each non-negative, continuous function f : X → R,
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∫
f dν = lim

k→∞
1

P(sk)

∑

n∈N
bns−n

k (Ln
ϕ f )(ξ, id). (9)

Before giving the proof, recall that the conditions on (�, θ,ϕ) are equivalent to
the existence of a probability measure μ such that (�, θ,μ) is a Gibbs-Markov map
with the b.i.p. property. Hence, the above theorem holds in verbatim for topologically
transitive group extensions of Gibbs-Markov maps, with μ playing the rôle of a
reference measure.

Proof By property (C), there exists sk ↘ ρ and m such that m is the weak∗-limit of
(msk : k ∈ N). Using Eq. (8) in Lemma 4.2, we extend m to a measure ν on B(X)

as follows. For b ∈ W1 and g ∈ G, there exists by transitivity j ∈ N and u ∈ W j+1

with T j ([u, id]) = [b, g]. The restriction of ν on [b, g] is now defined by

∫

[b,g]
f (x)dν(x, h) :=

∫

[u]
f ◦ θ jρ j/� j dm,

for each bounded and continuous function f : � → R. In particular, if f is supported
on [b], then by the same arguments as in the proof of Lemma 4.2,

∫

Xg

f (x)dν(x, h) =
∫

[u]
f ◦ θ jρ j/� j dm

= lim
k→∞

1

P(sk)

∑

n∈N
bnρ

j s−n
k

∑

x∈En∩[u]
f ◦ θ j (x)(� j (x))−1 · �n(x)

= lim
k→∞

1

P(sk)

∑

n> j

bn− j s
j−n
k

∑

(y,g)∈T j−n({(ξ,id)})∩[b,g]
�n− j (y) f (y).

This proves Eq. (9). Finally, using the construction of ν fromm and the big preimages
property, it easily can be seen that ν(Xg) < ∞ for each g ∈ G. �

We now collect several immediate consequences from conformality and the b.i.p.-
property in the base.

Proposition 4.5 For the measure ν given by Theorem4.4, the following holds.

1. If limn Zn(ξ)ρ−n = 0, then ν(X) = ∞.
2. If Lϕ(1) = 1, then dν ◦ T −1 = ρ−1dν.
3. For w ∈ Wn, x ∈ [w] and g ∈ G, we have ρnν([w, g]) � �n(x)ν(Xgψn(x)).
4. If the extension is symmetric, then

ν(Xg) � ν(Xg−1), ν([w†,ψ−1
w g−1ψw]) � ν([w, g]).

Proof The first assertion follows from (9) applied to f = 1. In order to prove part
2, note that Lϕ(1) = 1 implies that Lϕ(1) = 1. Hence, for f ∈ L1(ν), we have
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1

P(s)

∑

n∈N
bns−n(Ln

ϕ f ◦ T )(ξ, id) = 1

P(s)

∑

n∈N
bns−n(Ln−1

ϕ f )(ξ, id)

= s−1

P(s)

∑

n∈N

bn

bn−1
bn−1s−n+1(Ln−1

ϕ f )(ξ, id).

Since P(s) ↗ ∞ as s → ρ and limn bn/bn−1 = 1 as s → ∞, we obtain that
∫

f ◦
T dν = ρ−1

∫
f dν. Part 3 is a consequence of conformality and the b.i.p. property.

Namely, by (2),

ρnν([w, g]) � �n(x)ν
(
θn([w]) × {gψn(x)}) ≤ �n(x)ν

(
Xgψn(x)

)
.

Furthermore, by the big images property, there exists a ∈ Ibip such that [a] ⊂
θn([w]). Hence, it remains to show that ν([a, h]) � ν(Xh) for all h ∈ G. By the
big preimages property, for each y ∈ �, there exists b ∈ Ibip such that y ∈ θ([b]).
Hence, by transitivity of T , there exists a finite word w such that awb is admissible
and ψawb = id. Hence, ν([a, h]) ≥ ν([awb, h]) � ν(θ([b]) × {h}) with respect to
a constant only depending on awb, which implies that

|Ibip|ν([a, h]) �
∑

b∈Ibip

ν(θ([b]) × {h}) ≥ ν(Xh).

The proof of the remaining assertion relies on a similar argument. For eachw ∈ W∞
with ψw = g and ξ ∈ θ|w|([w]), there exists by transitivity a finite word u such that
such that wu is admissible, ξ ∈ θ|w|+|u|([w†u]) and ψu = id. As Ibip is finite, u can
be chosen from a finite set. Hence, by the definition of ν and the symmetry of ϕ, we
have ν(Xg−1) � ν(Xg) which implies that ν(Xg−1) � ν(Xg). The second assertion
follows from this and part 3. �

5 The Ruelle-Perron-Frobenius Theorem for Group
Extensions

In order to prove the existence of eigenfunctions for the Ruelle operator, we make
use of a well-known idea from hyperbolic geometry (see [20, 31]): As the reference
point for the construction in Theorem4.4 was chosen arbitrarily, there exists a family
{νζ : ζ ∈ X} of conformal measures. It is then relatively easy to show that ζ �→
dνζ/dν defines an eigenfunction, provided that {νζ} is a family of pairwise equivalent
measures. In here, this approach is partially generalized by constructing a conformal
measure νμ for a given probability measure μ on X . In order to do so, recall that the
Vaserstein distance W of two probability measures μ, μ̃ is a metric compatible with
the weak convergence and is equal to, by Kantorovich’s duality,
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W (μ, μ̃) = sup

{∫
f d(μ − μ̃) : D( f ) ≤ 1

}
,

where D( f ) := sup{| f (ζ) − f (ζ̃)|/d(ζ, ζ̃) : ζ, ζ̃ ∈ X} denotes the Lipschitz coeffi-
cient with respect to the metric defined by d((x, g), (y, g)) = dr (x, y) and d((x, g),

(x, h)) = 1 for g �= h. In the following theorem, ν refers to the σ-finite, conformal
measure on X given by Theorem4.4 with respect to some fixed base point in Xid .

Theorem 5.1 Let (X, T ) be a topologically transitive group extension with property
(C) of a Gibbs-Markov map with the b.i.p. property. Then there exists a sequence
(sk) with sk ↘ ρ such that for each μ ∈ M(X),

νμ := lim
k→∞

1

P(sk)

∑

n∈N
bns−n

k (Ln
ϕ)∗(μ) (10)

exists. Furthermore, {νμ : μ ∈ M(X)} is a family of pairwise equivalent measures
and for the Radon-Nikodym derivativeK : P(X) × X → R, (μ, z) �→ (dνμ/dν)(z),
we have the following.

1. There exists D > 0 such that for ν-a.e. z ∈ X, g ∈ G and probability measures
μ1,μ2 supported on Xg ,

| logK(μ1, z) − logK(μ2, z)| ≤ DW (μ1,μ2).

2. For all μ ∈ M(X), we have K(L∗
ϕ(μ), z) = ρK(μ, z) for ν-a.e. z.

3. For each μ ∈ M(X), the map K(μ, ·) is T -invariant, that is K(μ, z) = K(μ,

T (z)) for ν-a.e. z ∈ X. In particular, if T is ergodic with respect to ν, then νμ

is a multiple of ν, K(μ, z) is constant with respect to z and {νμ : μ ∈ M(X)} is
one-dimensional.

Remark 5.2 Before giving the proof, we discuss a relation to Ruelle’s operator the-
orem. Namely, by considering the restriction X → Mσ(X), x �→ νx := νδx , part
(ii) of the above implies that hz : x �→ K(δx , z) satisfies Lϕ(hz) = ρhz . Hence,
the above gives rise to the construction of a family of σ-finite, conformal mea-
sures {νμ : μ ∈ M(X)} and a family of eigenfunctions {hz : z ∈ X}. If ν is ergodic,
these families are one dimensional, that is, they are subsets of {tν : t > 0} and
{(x → tνx(Xid) : t > 0}, respectively.
Proof We begin with the construction of νμ for the case that μ is a Dirac measure
δζ . So assume that ζ ∈ E(ξ) := ⋃

n∈N T −n({(ξ, id)}), for ξ ∈ � and define, for a
non-negative, continuous function f : X → R and s > ρ,

ms
ζ( f ) := 1

P(s)

∑

n∈N
bns−n(Ln

ϕ f )(ζ),
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whereP(s) is given by (7). It follows fromproperty (C) thatms
ζ restricted to functions

on Xid defines a tight family of measures, and hence that, for a suitable subsequence
(sk j : j ∈ N) of (sk) given by property (C),

mζ( f ) := lim
j→∞

1

P(sk j )

∑

n∈N
bns−n

k j
(Ln

ϕ f )(ζ) (11)

exists for each non-negative, continuous function f : X → R. In particular, mζ

defines a measure. Since E(ξ) is countable it is moreover possible to choose the
subsequence (sk j ) such that the limit in (11) exists for all ζ ∈ E(ξ) and f non-
negative and continuous. Moreover, as limn bn/bn+k = 1 for each k ∈ N, it follows
that

mζ( f ) = ρ−k
∑

v∈Wk :ζ∈θk ([v])×{g}
�k(τv(ζ))mτv(ζ)( f ) = ρ−kLk

ϕ(m ·( f )(ζ)). (12)

Hence, for ζ with T n(ζ) = (ξ, id), it follows from (12) that, for each Borel set A,
mξ,id(A) = ν(A) ≥ ρ−n�n(ζ)mζ(A). On the other hand, it follows from transitivity
that there existv ∈ Wm andm ∈ N such that τv(ζ) and (ξ, id) are in the samecylinder.
Hence, by combining the above argument with bounded distortion, we obtain that

ρm�m(ξ)−1mζ(A) � ν(A) ≥ ρ−n�n(ζ)mζ(A).

In particular, the measures are equivalent and the Radon-Nikodym derivative
K(ζ, ·) := dmζ/dν exists and is a.s. strictly positive.

We now prove that mζ1(A) � mζ2(A) whenever the second coordinates coincide,
that is ζ1, ζ2 ∈ E(ξ) ∩ Xg for some g ∈ G. In order to do so, assume that ζ2 ∈ [a, g]
for some a ∈ Ibip. By the b.i.p.-property, there exist b ∈ Ibip and h ∈ G such that
ζ1 ∈ T ([b, h]) and by transitivity a finite word w such that awb is admissible with
ψawb = id. As above, it follows that�|awb|(x)mζ2(A) � mζ1(A) for any x ∈ [awb].
Hence, as Ibip is finite, mζ2(A) � mζ1(A) with respect to a constant which does not
depend on ζ1 and a ∈ Ibip.

In order to prove the opposite direction, for each b ∈ Ibip choose xb ∈ [b]. Also
note that, for each v ∈ W1 with ζ1 ∈ θ([v]) × {g}, there exists b(v) ∈ Ibip such that
vb(v) is admissible. As ϕ(τv(ζ1)) � ϕ(τv((xb(v), g)), we have by the above that

mζ1(A) = ρ−1
∑

v:ζ1∈θ([v])×{g}
ϕ(τv(ζ1)) mτv(ζ1)(A)

� ρ−1
∑

v:ζ1∈θ([v])×{g}
ϕ(τv((xb(v), g))) mτv((xb(v),g))(A)

≤
∑

b∈Ibip

m(xb,g)(A) � |Ibip| mζ2(A).
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Hence, mζ1(A) � mζ2(A) which implies that

sup

({
K((x1, g), z)

K((x2, g), z)
: (x1, g), (x2, g) ∈ E(ξ), g ∈ G, z ∈ X

})
< ∞. (13)

In order to extend K(·, ·) to a globally defined function, we now show that ζ �→
K(ζ, z) is log Hölder. For k, n ∈ N, ζ1, ζ2 ∈ [a, g] ∩ E(ξ), a ∈ W1, b ∈ Wk with
k ≤ n and h ∈ G, we obtain by (5) that

|Ln
ϕ(1[b,h])(ζ1) − Ln

ϕ(1[b,h])(ζ2)| ≤ Cϕd(ζ1, ζ2)Ln
ϕ(1[b,h])(ζ1), (14)

with Cϕ only depending on the Hölder constant of ϕ. Hence,

|ms
ζ1
([b, h]) − ms

ζ2
([b, h])| ≤ Cϕms

ζ1
([b, h])d(ζ1, ζ2)

and, by taking the limit,

|mζ1([b, h]) − mζ2([b, h])| ≤ Cϕmζ1([b, h])d(ζ1, ζ2).

Since cylinder sets are generating the Borel algebra and are stable under intersec-
tions it follows by taking the limit as [b, h] → z ∈ X that |(dmζ1/dmζ2)(z) − 1| �
d(ζ1, ζ2) for ν-a.e. z ∈ X . Furthermore, as ζ1, ζ2 ∈ Xg , it follows from (13) that
dmζ1/dmζ2 � 1. Hence, | log(dmζ1/dmζ2)(z)| � d(ζ1, ζ2), which proves that the
function ζ �→ logK(ζ, z) is Lipschitz continuous on E(ξ) ∩ [a, g] with respect to a
Lipschitz coefficient which is independent from z and [a, g]. By a further applica-
tion of (13), there is a uniform bound for | log(dmζ1/dmζ2)(z)|which is independent
from z and g. As E(ξ) is dense by transitivity, there exists a unique locally Lipschitz
continuous extension of ζ �→ logK(ζ, z)) to X . By taking the exponential of this
extension, we obtain a globally defined function which, for ease of notation, will also
be denoted by K(·, ·). As the function has the same regularity as the one defined on
E(ξ), we have shown that there exists D > 0 such that, for all g ∈ G, ζ1, ζ2 ∈ Xg

and ν-a.e. z ∈ X ,

|logK(ζ1, z) − logK(ζ2, z)| ≤ Dd(ζ1, ζ2).

In order to obtain the representation (10), note that the construction of mζ through
(11) extends to all ζ ∈ X by the estimate (14) and the fact that E(ξ) is dense in X .
The next step is to verify that (11) extends to an arbitrary Borel probability measure
μ on X . In analogy to the above, define
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Ms
μ( f ) := 1

P(s)

∑

n∈N
bns−n

∫
f d(Ln

ϕ)∗(μ)

= 1

P(s)

∑

n∈N
bns−n

∫
Ln

ϕ( f )dμ =
∫

ms
ζ( f )dμ(ζ),

where the last equality follows frommonotone convergence. By a further application
of monotone convergence, it follows that limk Msk

μ ( f ) = ∫
mζ( f )dμ which proves

that (11) defines a measure and that νμ( f ) := ∫
mζ( f )dμ. Moreover, as

∫
f dνμ =

∫
mζ( f )dμ =

∫∫
f (z)K(ζ, z)dν(z)dμ(ζ), (15)

it follows that dνμ/dν = ∫
K(ζ, z)dμ(ζ), which will also be denoted byK(μ, z), by

a slight abuse of notation. This finishes the proof of the existence of νμ. Part 1 of the
theorem then follows from the definition of W through Kantorovich’s duality.

In order to prove part 2, note that (10) implies that, for ζ ∈ X and each positive
and continuous function f , that

∫
f (z)K(ζ, z)dν(z) =

∫
f dνζ = lim

k→∞
1

P(sk)

∑

n∈N
bns−n

k (Ln
ϕ( f ))(ζ)

=
∑

v∈W
ϕ ◦ τv(ζ) lim

k→∞
1

P(sk)

∑

n∈N
bns−n

k (Ln−1
ϕ ( f ))(τv(ζ))

=
∑

v∈W
ϕ ◦ τv(ζ)ρ−1

∫
f dντv(ζ) =

∑

v∈W
ϕ ◦ τv(ζ)ρ−1

∫
f K(τv(ζ), ·)dν

=ρ−1
∫

f (z)Lϕ(K(·, z))(ζ)dν(z) (16)

where the last identity follows from monotone convergence. Hence, by (15),

ρ

∫
f K(μ, ·)dν =

∫
f (z)

∫
Lϕ(K(·, z))(ζ)dμ(ζ)dν(z)

=
∫

f (z)
∫

K(·, z)dL∗
ϕ(μ)dν(z) =

∫
f K(L∗

ϕ(μ), ·)dν.

As f is arbitrary, ρK(μ, z) = K(L∗
ϕ(μ), z) almost surely, which is part 2 of the

theorem.
For the proof of part 3, note that X is a Besicovitch space and that each νμ is

conformal. Therefore, we have for ν-a.e. ((wi ), g) ∈ X , that

K(μ, ((wi ), g)) = lim
n→∞

νμ([(w1 . . . wn), g])
ν([(w1 . . . wn), g]) = lim

n→∞
ρ−1

∫
[(w2...wn),gψw1 ] ϕdνμ

ρ−1
∫
[(w2...wn),gψw1 ] ϕdν

.
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It hence follows from continuity of ϕ thatK is T -invariant in the second coordinate.
The second statement is a standard application of the ergodic theorem. �

We now give a brief characterization of the measures given by above theorem
in case of an ergodic extension (as e.g. in Example 1 below for d = 1, 2). For ease
of exposition, we assume that the base transformation is a Gibbs-Markov map with
respect to the invariant probability μ on �. In this situation, the product measure μG

of μ and the counting measure on G clearly is 1/ϕ-conformal and T -invariant, i.e.
μG = μG ◦ T −1. However, note that μG in many cases is totally dissipative, e.g. if
G is non-amenable [14, 34].

If T is conservative with respect toμG , then T also is ergodic and
∑

n Zn
w(ξ) = ∞

(see [1, 3] and the proof of Proposition 5.3 below). In particular, ρ = 1 and G is
amenable by a result in [30]. Since μG and νζ are both 1/ϕ-conformal, as observed
by Sullivan, dν/dμG exists, is T -invariant and hence constant. This then implies that
the measures νξ are all multiples of the product measure μG . If T is conservative
with respect to ν and ρ ≤ 1, then the same arguments show that the measures νξ are
again all multiples of ν. In this situation, a result by Jaerisch [14] shows that the
invariant measure h(x, z)dν(x) is unique and is the product of another measure on
� and counting measure on G.

As a corollary of the existence of ρ−1Lϕ-invariant functions as shown in Remark
5.2, one obtains the following criterion of classical flavor for ergodicity.

Proposition 5.3 The map T is either conservative or totally dissipative with respect
to ν. If T is conservative, then T is ergodic. Furthermore, T is conservative and
ergodic if and only if ∑

n

ρ−nZn(ξ) = ∞.

Proof Observe that T is a transitive topological Markov chain and that it follows
from

(dν/dν ◦ T )(x, g) = ρφ(x)

that dν/dν ◦ T is a potential of bounded variation. Hence, (T, ν) is aMarkov fibered
system with the bounded distortion property as in [3]. In particular, (T, ν) either is
totally dissipative or conservative and if (T, ν) is conservative, then it is ergodic.
Note that ρ−1Lϕ acts as the transfer operator on L1(ν). It hence follows from the
definition of the transfer operator that, for all W measurable and n ∈ N,

∫
1W ρ−nLn

ϕ(x, g)dν(x, g) =
∫

1W ◦ T n1Xid dν = ν
(
T −n(W ) ∩ Xid

)
.

Now assume that
∑

n ρ−nZn(ξ) = ∞. It follows from bounded variation and transi-
tivity that the sum diverges for all ξ ∈ �. For W := {z ∈ Xid : T n(z) /∈ Xid∀n ≥
1}, we hence have that ν(W ) = 0. Hence, the first return map

TXid : Xid → Xid , (x, id) �→ T nx (x, g), nx := min{n ≥ 1 : T n(x, id) ∈ Xid}



288 M. Stadlbauer

is well defined. By substituting ν with an equivalent, invariant measure given by
the above theorem, an application of Poincaré’s recurrence theorem gives that TXid is
conservative. It is then easy to see that T also is conservative, and hence ergodic. The
remaining assertion is a consequence of the standard result in ergodic theory, that
T is ergodic and conservative if and only if

∑
n ρ−nLn

ϕ( f ) diverges for all f ≥ 0,∫
f dν > 0 (see [1, Proposition 1.3.2]). �

6 Harmonic Functions

By applying Theorem5.1 to Dirac measures, it is possible to construct a map � :
C → H from a subspace of the continuous functions to a subspace of ρ-harmonic
functions. In here, we refer to f : X → R as ρ-harmonic ifLϕ( f ) = ρ f . In order to
define C, fix a reference point ξ0 ∈ Xid and set νo := νξ0 . The space C is now defined
by

C :=
{

f : X → R : νo(| f |) < ∞, lim
n→∞ Cn( f ) = 0

}
, where

Cn( f ) := inf
({

C : | f (z1) − f (z2)| ≤ C | f (z1)|∀z1, z2 ∈ [w, g], w ∈ Wn, g ∈ G
})

.

The space might be alternatively characterised as the space of log-uniformly con-
tinuous functions with an integrability condition. Namely, if Cn( f ) < ∞, then for
[w, g], w ∈ Wn and g ∈ G either f |[w,g] = 0 or f (z) �= 0 for z ∈ [w, g]. In partic-
ular, with 0/0 = 1, it follows that

| f (z1)/ f (z2) − 1| < Cn( f ), ∀z1, z2 ∈ [w, g].

Hence, ifCn( f ) < 1, then f (z1)/ f (z2) > 0, that is the sign of f is constant on [w, g].
These arguments show that f ∈ C if and only if log f+ and log f− are uniformly
continuous, with f± referring to the strictly positive and negative parts of f and
{ f �= 0} is a union of cylinders of length n, for some n depending on f .

In order to defineH, recall that dr refers to the shift metric on X , with r ∈ (0, 1)
adapted to the Hölder continuity of logϕ. In order to be able to not only consider
positive ρ-harmonic functions, the following coefficients for the local regularity of
a function f : X → R are useful.

Dx ( f ) := sup {| f (x) − f (z)|/dr (x, z) : dr (x, z) < 1}
L D( f ) := sup

{∣∣∣ f (z1)
f (z2)

− 1
∣∣∣ /dr (z1, z2) : dr (z1, z2) < 1

}

The spaceH is now defined through a control of the local Lipschitz constant Dx ( f )

as follows.
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H+ := {
( f : X → [0,∞)) : Lϕ( f ) = ρ f, L D( f ) < ∞}

,

H := {
( f : X → R) : Lϕ( f ) = ρ f, ∃h ∈ H+ s.t. Dx ( f ) ≤ h(x)∀x ∈ X

}
.

The map � is then defined by, for f ∈ C,

�( f )(z) := νz( f ) =
∫

K(δz, y) f (y)dνo(y).

Based on a slightly more involved version of the argument used in the proof of log-
Hölder continuity ofK in Theorem5.1 we are now in position to prove that� is well
defined and that L D is always bounded by

Cϕ := sup
{∣∣∣�n◦τv(z1)

�n◦τv(z2)
− 1

∣∣∣ /dr (z1, z2) : dr (z1, z2) < 1
}

< ∞.

Theorem 6.1 The map � : C → H is well defined. If f ∈ H and f ≥ 0, then
L D( f ) ≤ Cϕ and, in particular, f ∈ H+.

Proof Suppose that f ∈ C. By applying the arguments in (16) to f shows that
Lϕ(�( f )) = ρ�( f ). Hence, it remains to obtain a bound on Dx ( f ). For ease of nota-
tion, set fv := f ◦ τv , for v ∈ Wn and n ∈ N. Suppose that z1, z2 ∈ [w, g] with w ∈
Wk , g ∈ G and that n is sufficiently large such that for all v ∈ Wn , either fv(z1) =
fv(z2) = 0 or fv(z1), fv(z2) �= 0. Setting 0/0 := 1 and An := supv∈Wn

∣∣∣ fv(z1)
fv(z2)

− 1
∣∣∣,

we obtain by a similar argument as in (5) that

∣∣Ln
ϕ( f )(z1) − Ln

ϕ( f )(z2)
∣∣

≤
∑

v∈Wn

∣∣(�n,v(z1) − �n,v(z2)
)

fv(z1)
∣∣ +

∑

v∈Wn

∣∣�n,v(z2) ( fv(z1) − fv(z2))
∣∣

≤
∑

v∈Wn

∣∣∣
(
1 − �n,v (z2)

�n,v (z1)

)
�n,v(z1) fv(z1)

∣∣∣ +
∑

v∈Wn

∣∣∣�n,v(z2) fv(z2)
(

fv(z1)
fv(z2)

− 1
)∣∣∣

≤Cϕdr (z1, z2) · Ln
ϕ(| f |)(z1) + An · Ln

ϕ(| f |)(z2).

Since limn→∞ An = 0, we have

|�( f )(z1) − �( f )(z2)| = |νz1( f ) − νz2( f )|
≤ Cϕdr (z1, z2)νz1(| f |) = Cϕdr (z1, z2)�(| f |)(z1).

Hence, Dz1( f ) ≤ Cϕ�(| f |)(z1). By dividing with �(| f |) and substituting f with
| f |, the same argument shows that L D(�(| f |)) ≤ Cϕ. In particular, �(| f |) ∈ H+.
Now assume that f ∈ H and f ≥ 0. Then there exists ĥ ≥ 0 with Dz(h) ≤ ĥ and
Lϕ(ĥ) = ρĥ. By similar arguments,
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|h(z1) − h(z2)| = ρ−n
∣∣Ln

ϕ(h)(z1) − Ln
ϕ(h)(z2)

∣∣

≤ ρ−n
(
Cϕdr (z1, z2)Ln

ϕ(h)(z1) + rndr (z1, z2)Ln
ϕ(D·(h))(z2)

)

≤ Cϕdr (z1, z2)
(

h(z1) + rnĥ(z2)
)

.

Since n is arbitrary and r ∈ (0, 1), L D(h) < Cϕ. �

The classical Martin boundary of a random walk on a group is a quotient of the
space of paths, where two paths (gk), (hk) in G are identified if limk K (·, gk) =
limk K (·, hk), where K refers to the Martin kernel (see, e.g., [33]). In the context of
group extensions, the natural candidate for a path in G is given by (ψk(x)), for some
x ∈ �, whereas the function (z, g) �→ νz(Xg)/νo(Xg) might serve as the analogue
of the Martin kernel.

Here, the situation is different. Assume that (x, g) = ((wk), g) ∈ X . Using the
conformality of ν in Proposition 4.5, we have by Theorem5.1 that, for fn :=
1[w1...wn ,g]/νo([w1 . . . wn, g]),

νz(Xgψn(x))

νo(Xgψn(x))
� νz([w1 . . . wn, g])

νo([w1 . . . wn, g]) = �( fn) (z)
n→∞−−−→ K(z, (x, g)).

6.1 Natural Extensions and Immediate Implications

In order to obtain information on the asymptotic behavior of elements ofH, we now
employ ideas from the theory of Markov processes, which are similar but somehow
dual to the ones for Markov maps. Namely, in order to obtain a stochastic process
associated with (X, T ), we consider the process with transition probability (dm ◦
τv/dm)(x) for transitions from x to τv(x), wherem is an T -invariantmeasure. Hence,
the appropriate object are the left-infinite sequences with respect to an invariant
measure m̂ constructed from m. That is, the stochastic process is the left half of
the natural extension of (X, T, m) whose construction in case of an underlying shift
space we recall now. Set

Y := {
((wi , gi ) : i ∈ Z) : wi ∈ W1, gi ∈ G, awi wi+1 = 1, gi+1 = giψ(wi )

}
,

S : Y → Y, ((wi , gi )) → ((w′
i , g

′
i )), with w′

i = wi+1, g′
i = gi+1 ∀i ∈ Z.

In other words, S is the left shift on the two sided shift space Y . The cylinder sets of
Y are given by, for (w0w1 · · · wn) ∈ Wn+1, hi ∈ G and k ∈ Z,

[((w0, g0) · · · (wn, gn))]k

:= {
((vi , hi )) ∈ Y : (vk+ j , hk+ j ) = (w j , g j ), for j = 0, 1, . . . , n

}
.
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If m is T -invariant, then m̂([((w0, g0) · · · (wn, gn))]k) := m([(w0w1 · · · wn), g0])
defines a measure m̂ on Y . As it easily can be seen, we then have, for

π : Y → X, ((wi , gi )) → ((wi : i ≥ 0), g0),

that π ◦ S = T ◦ π, m̂ = m ◦ π−1, S is invertible, m̂ is S-invariant and (Y, S, m̂)

is minimal in the sense that the σ-algebra F generated by the cylinder sets of Y
is generated by

{
Sn(π−1(B)) : n ∈ Z

}
, with B referring to the σ-algebra generated

by the cylinder sets of X . In particular, (Y, S,F , m̂) is the natural extension of
(X, T,B, m) (see, e.g., [6]).

Observe that there are several canonical choices for the invariant measure m.
Either μ is θ-invariant and m is the product μG of μ and the counting measure on G,
or dm = hdνo, for some h ∈ H+. However, in both cases, it is possible to identify
martingales with respect to the filtration (Fn : n ∈ N), where Fn := Sn ◦ π−1(B).
We begin with the analysis of (Y, S) with respect to μ̂G .

Proposition 6.2 Suppose that μ is θ-invariant and that h ∈ H+. Then, for μ̂G-a.e.
z ∈ Y ,

h∞(z) := lim
n→∞ ρ−nh ◦ π ◦ S−n(z)

exists. If ρ < 1, then h∞ = 0, and if ρ = 1, then h∞ = h∞ ◦ S and h∞ < ∞ a.s.

Proof Set Wn := ρ−nh ◦ π ◦ S−n . Since μ̂G is S-invariant,
∫

f ◦ T gdμG =∫
f L(g)dμG and Lϕ(h) = ρh, we have for all A ∈ B that

∫

Sn(π−1(A))

E(Wn+1|Fn)dμ̂G

=ρ−n−1
∫

1A ◦ π ◦ S−n h ◦ π ◦ S−n−1dμ̂G

=ρ−n−1
∫

1A ◦ T hdμG = ρ−n
∫

1AhdμG

=ρ−n
∫

1A ◦ π ◦ S−nh ◦ π ◦ S−ndμ̂G =
∫

Sn(π−1(A))

Wndμ̂G .

Hence, E(Wn+1|Fn) = Wn and (Wn,Fn) is a positive martingale. In particular,
h∞ := limn Wn by Doob’s convergence theorem. As it easily can be verified, we
have h∞ = ρh∞ ◦ S. Furthermore, by Fatou’s Lemma and the martingale property,∫
π−1 A h∞dμ̂ ≤ ∫

A hdμ for all measurable sets A ⊂ X , which implies that h∞ < ∞
a.s. �

By applying the proposition to �(1Xid ), we obtain the decay of ν along μ-a.s. path
as n → −∞. If the extension is symmetric, the result also transfers to paths with
n → ∞.

Corollary 6.3 If ρ < 1 and μG is invariant, then, for μ̂G-a.e. ((wi ), g) ∈ Y ,



292 M. Stadlbauer

lim
n→∞ νo(Xgψw−n ···ψw−1

)/ρn = 0, lim
n→∞

νo([w−n . . . w−1, g])
μ([w−n . . . w−1]) = 0.

Moreover, if the group extension is symmetric, then for μ-a.e. x ∈ � and g ∈ G,

lim
n→∞ νo(Xψn(x))/ρ

n = 0, lim
n→∞

νo([w1 . . . wn,ψn(x)gψn(x)−1])
μ([w1 . . . wn]) = 0.

Proof The first two assertions follow from ν(x,g)(Xid) � νo(Xg−1) and (iii) of Propo-
sition 4.5, whereas the last two assertions are a consequence of the fact that Y → Y ,
((wi ), g) �→ ((w

†
−i ), g) is a non-singular automorphism. �

By considering the natural extension of the invariant version of νo, we obtain
a further convergence. That is, as the measure dmh := hdνo is T -invariant, there
exists a unique extension to an invariant, σ-finite, S-invariant measure m̂h on Y . The
analogue of Proposition 6.2 is as follows.

Proposition 6.4 Suppose that f, h ∈ H, h > 0 such that ‖ f/h‖∞ < ∞. Then, for
m̂h-a.e. z ∈ Y ,

�h( f )(z) := lim
n→∞

f ◦ π ◦ S−n(z)

h ◦ π ◦ S−n(z)

exists, �h( f ) ◦ S = �h( f ) and Em̂h (�h( f )|F0) = f ◦ π/h ◦ π. Moreover, for the
signed invariant measure m̂ f , we have dm̂ f /dm̂h = �h( f ).

Proof The proof that ( f ◦ π ◦ S−n/h ◦ π ◦ S−n|Fn) is a bounded martingale and
is the same as above and therefore omitted. Hence, �h( f ) is well defined and by
bounded convergence, we have for A ∈ B and k ∈ N that

∫

Skπ−1(A)

�h( f )dm̂h

= lim
n→∞

∫
1A ◦ π ◦ S−k f ◦ π ◦ S−n

h ◦ π ◦ S−n
dm̂h

= lim
n→∞

∫
1A ◦ T n−k f dνo =

∫
1A f dνo = m f (A) = m̂ f (Skπ−1(A)).

Since F is generated by {Fn : n ∈ N}, we have �h( f )dm̂h = dm̂ f . The remaining
assertion in the conditional expectation is a consequence of the above for k = 0. �

7 Applications and Examples

The construction of conformal measures has the following application to conformal
graph directed Markov systems. In order to have a zero of the pressure function, we
have to assume that there exists h > 0 such that
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lim sup
n→∞

n

√
Ln

ϕh (1Xid )(ξ, id) = 1, (17)

‖Lϕh (1)‖∞ < ∞ (18)

are satisfied. It follows from standard arguments that the expression on the left hand
side of (17), seen as a function of h, is continuous and strictly decreasing to 0 on its
domain of definition. Hence, if there exists h′ such that the left hand side of (17) is
finite and greater than or equal to 1 and (18) holds, then there exists a zero of the
pressure function. In the context of graph directed Markov systems, this property is
known as strong regularity (see [19]). Furthermore, if |W1| < ∞, then this is true
for h′ = 0, and in particular there always exists a zero of the pressure function in this
case.

Now let δ be given by (17) and set ρδ := exp(PG(θ,ϕδ)) ≥ 1. It then follows from
the Ruelle-Perron-Frobenius theorem for systems with the b.i.p. property (see, e.g.,
[27]) that there exists a ρδ/ϕ

δ-conformal probability measure μδ and a Hölder con-
tinuous function hδ with Lϕδ (hδ) = ρδhδ such that θ has the Gibbs-Markov property
with respect to the invariant measure given by hδdμδ . As an application of Theorem
4.4 and Proposition 4.5 we obtain that there exists a σ-finite measure ν on X which
is 1/ϕδ-conformal, and which satisfies, for w ∈ Wn and x ∈ [w],

ν([w, g]) � �δ
n(x)ν(Xgψn(x)). (19)

Theorem 7.1 Assume that the group extension is symmetric and that property (C),
(17) and (18) are satisfied. Then, for μδ-a.e. (wk) ∈ �,

lim
n→∞

log(ν([w1 · · · wn, id]))
log�n(x)

= δ + PG(θ,ϕδ)∫
(logϕ)hδdμδ

.

Moreover, the group G is amenable if and only if the above limit is equal to δ. If G
is non-amenable, then, for μδ-a.e. (wk) ∈ �,

lim
n→∞ ρn

δ

ν([w1 · · ·wn, id]))
(�n(x))δ

= 0.

Before giving the proof, we sketch a straight forward application to conformal
dynamical systems. Namely, if � is given by a conformal iterated function system,
the inverse branch τw corresponds to a conformal map and�|w| ◦ τw to its conformal
derivative. In this situation, the above limit can be identified with the ν-dimension
dimν of the support of μδ . Hence, with H(hδdμδ) referring to the entropy of hδdμδ ,
it follows from the variational principle that

dimν(supp(μδ)) = δ + PG(θ,ϕδ)∫
(logϕ)hδdμδ

= 2δ + H(hδdμδ)∫
(logϕ)hδdμδ

.
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Moreover, note that in many regular situations, δ is equal to the Hausdorff dimension
dim(K ) of the attractor K of the iterated function system. In this situation, the
amenability of G is equivalent to dimν(supp(μδ)) = dim(K ).

Proof of Theorem7.1 By symmetry and Proposition 6.2, limn(log ν(Xψn(x)))/n =
log ρδ . Hence, by (19),

lim
n→∞

log(ν([wn, id]))
log�n(x)

= δ + lim
n→∞

log ν(Xψn(x))

log�n(x)
= δ + PG(θ,ϕδ)

limn→∞(log�n(x))/n
.

The above limit exists by application of the ergodic theorem. The amenability cri-
terion is an immediate corollary of Kesten’s criterion for group extensions in [30],
where it is shown that PG(θ,ϕδ) = 0 if and only if G is amenable. For the remain-
ing assertion, note that ρδ < 1 by non-amenability. The assertion then follows from
Corollary 6.3. �

In order to have concrete examples of the σ-finite measure at hand, we give two
examples from probability theory, where known local limit theorems give rise to
explicit expressions.

Example 1 The first example is Polya’s random walk on Z
d . Choose (pi ∈ (0, 1) :

i ∈ {±1, . . . ,±d}) with ∑d
i=1(pi + p−i ) = 1 and consider the random walk on Z

d

with transition probabilities P(±ei ) = p±i , where ei refers to the i-th element of the
canonical basis of Zd .

This random walk has an equivalent description through the following group
extension. Let� be the full shift with 2d symbols {−d, . . . ,−1, 1, . . . , d} and ϕ the
locally constant function defined by ϕ|[±i] := p±i . Note that

∑d
i=1(pi + p−i ) = 1

implies that Lϕ(1) = 1. Moreover, it is well known that the measure defined by
μ([i1 . . . in]) := pi1 · · · pin is θ-invariant, ergodic and 1/ϕ-conformal. The associated
group extension is defined through

ψ : � → Z
d , (i1i2 · · · ) �→

{
ei1 : i1 > 0

−e−i1 : i1 < 0
.

As � is the full shift and ϕ is constant on cylinders, it follows from the construction
that ν(x,g) = ν(y,g) for all x, y ∈ � and g ∈ G. Therefore, we only will write νg for
ν(x,g). In order to apply known local limit theorems from probability theory, observe
that

Ln
ϕ(1Xid )(x, g) =

∑

w∈Wn : ψn(w)=g

φn(τw(x)) = P(Xn = g),

where Xn = h refers to the random walk at time n started in the identity with dis-
tribution (pi ) and P to the probability of the associated Markov process. By the
local limit theorem for Polya’s random walk ([32, Theorem 13.12]), we have that,
for (k1, . . . , kd) ∈ Z

d and n ∈ N such that n − (k1 + · · · + kd) is even,
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P(Xn = (k1, . . . , kd)) ∼ Cn−d/2
(
2

∑d
i=1

√
pi p−i

)n d∏

i=1

(√
pi/p−i

)ki

.

Hence, ρ = 2
∑d

i=1
√

pi p−i and, with λi := √
pi/p−i ,

Ln
ϕ(1X(k1 ,...,kd )

)(x, id) ∼ Cn−d/2ρn
d∏

i=1

λ−ki
i .

Recall that a random walk is called symmetric if pi = p−i for all i = 1, . . . , d.
The estimate then implies that ρ = 1 if and only if the random walk is symmetric.
Furthermore, by Proposition 5.3, the term n−d/2 implies that the group extension
is ergodic and conservative with respect to ν if and only if d = 1 or d = 2. It is
remarkable that this conclusion is independent of symmetry. In order to determine
νid explicitly, note that the local limit theorem implies that

νid(X(k1,...,kd )) = lim
k→∞

∑
n∈N bns−n

k (Ln
ϕ1X(k1 ,...,kd )

)(x, id)
∑

n∈N bns−n
k (Ln

ϕ1Xid )(x, id)
=

d∏

i=1

λ−ki
i .

Using conformality then gives that, for a cylinder [(i1, . . . , in), z] in � × Z
d ,

νid([(i1 . . . in), z]) = ρ−n pi1 · · · pin νid(Xz+ψn(i1...in))

= ρ−n pi1 · · · pin νid(Xz)

n∏

k=1

λ−1
ik

= ρ−nνid(Xz)

n∏

k=1

√
pik p−ik

= 1

2n
νid(Xz)

n∏

k=1

√
pik p−ik∑d

i=1
√

pi p−i

(20)

In particular, the last term in (20) reveals the local symmetry

νid([(i1 . . . ik . . . in), z]) = νid([(i1 . . . − ik . . . in), z]), (k ∈ 1, . . . , n),

whereas globally, the measure is multiplicative with respect to the last component,
that is

νid([(i1 . . . in), z1 + z2]) = νid([(i1 . . . in), z1])νid([(i1 . . . in), z2]).

Furthermore, (20) implies that the the function K from Theorem5.1 is given by

K(δ(x,g), (y, h)) = dνg

dνid
(y, h) = ν(Xg).
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These considerations might be summarized as follows. Ifϕ is symmetric, then ρ = 1
and ν(Xg) = 1 for all g ∈ Z

d . If ϕ is not symmetric, then ρ < 1 and {νid(Xg) :
g ∈ Z

d} neither is bounded from below nor from above. Moreover, the function h
defined by h(x, g) := νg(Xid) is an Lϕ-proper function by Remark 5.2. Therefore,
dm := hdν is T -invariant. However, as it easily can be verified, m(Xg) = 1 for all
g ∈ Z

d and, in particular, m is the measure associated to the symmetric random walk
with transition probabilities P(±ei ) = √

pi p−i/(2
∑

k
√

pk p−k).

Example 2 In this example, we replace the group Z
d with the free group Fd with d

generators g1, . . . , gd . As above, the transition probabilities are given by P(g±i ) =
p±i , where g−i := g−1

i . The construction of the associated group extension then has
to be adapted only by changing ψ to

ψ : � → Fd , (i1i2 · · · ) �→ gi1 .

As above, we now apply a local limit theorem. The result of Gerl and Woess in [12]
is applicable in full generality, however, for ease of exposition, we restrict ourselves
to the special case where q := √

pi p−i does not depend on i . Then, by (5.3) and
(5.4) in [12], we have that ρ = 2q

√
2d − 1 and that

lim
n→∞

P(Xn = gi1 · · · gik )

P(Xn = id)
= (

1 + d−1
d k

)
(2d − 1)−k/2

k∏

i=1

λik , (21)

for n and k even and gi1 · · · gik in reduced form, that is il �= −il+1, for l = 1, . . . , n −
1. Also note that there is a misprint in Eq. (5.4) in [12]. In there, one has to replace
d/(d − 1) in the first factor by its inverse as in (21). As above, the right hand side
in (21) is equal to νid(Xgi1 ···gik

). Using the identities for q and ρ and setting Ck :=
1 + k(d − 1)/d, this gives that

νid(Xgi1 ···gik
) = Ck(2/ρ)k

k∏

i=1

qλ−ik = Ck(2/ρ)k
k∏

i=1

p−ik .

Since the identity requires that g = gi1 · · · gik is in reduced form, we have to intro-
duce the following operations on finite words in order to obtain a formula for arbi-
trary cylinders. For w = (i1 . . . in) ∈ Wn , there exists a unique k ≤ n and a word
( j1 . . . jk) ∈ Wk such that ψn(w) = g j1 · · · g jk is in reduced form. We will refer to
r(w) := ( j1 . . . jk) as the active part of w, whereas the word which is obtained by
deleting the entries of r(w) fromw is referred to as the inactive part i(w) ∈ Wn−k of
w. Note that ψk(r(w)) = ψn(w) and ψn−k(i(w)) = id. Moreover, for a given word
v = (i1 . . . in) ∈ Wn , we will refer to κ(v) := (−in, . . . ,−i2,−i1) as the inverse
word of v. For ease of notation, we also will make use of the Bernoulli measure on
� defined through μ([i1 . . . in]) = pi1 · · · pin .

As it will be shown below, themeasure of a cylinder [w, g], forw ∈ Wn and g ∈ G
and the function K given by Theorem5.1 depend on possible cancelations of the
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concatenation of the path to g ∈ G and w. So, let vg ∈ Wm be given by ψm(vg) = g
and i(vg) = ∅, that is vg is given by the reduced form of g. With k := |r(vgw)|, the
conformality of νid implies that

νid([w, g]) = ρ−nμ([w])νid(Xgψn(w)) = ρ−nμ([w])Ck(2/ρ)kμ([κ(r(vgw))])

in case that r(vgw) �= ∅. If r(vgw) �= ∅, then νid([w, g]) = ρ−nμ([w]) by the same
arguments. The identity now allows to determine the function K explicitly. That is,
for g1, g2 ∈ G, x ∈ � and (w(n)) with w(n) ∈ Wn and x = limn[w(n)], we have νid

a.s., that

K(g1, (x, g2)) = lim
n→∞

νg1([w(n), g2])
νid([w(n), g2]) = lim

n→∞
νid([w(n), g

−1
1 g2])

νid([w(n), g2])

= lim
n→∞

C|r(v
g−1
1 g2

w(n))|

C|r(vg2w)|

(
2

ρ

)|r(v
g−1
1 g2

w(n))|−|r(vg2w(n))| μ([κ(r(vg−1
1 g2

w(n)))])
μ([κ(r(vg2w(n)))]) .

Observe that total dissipativity implies that (ψn(x) : n ∈ N) = (ψn(w(n)) : n ∈ N)

will almost surely only return finitely many times to a finite subset of G. Hence, the
first term in the product converges to 1 whereas the second and third eventually are
constant. By setting kg1,g2(x) := limn→∞ |g−1

1 g2ψn(x)| − |g2ψn(x)|, analyzing the
cancelations in vg−1

1
vg2w(n) and vg2w(n) and using that q2 = pi p−i , it follows that

K(g1, (x, g2)) = (2/ρ)kg1 ,g2 (x) lim
n→∞

μ([κ(r(vg−1
1 g2

w(n)))])
μ([κ(r(vg2w(n)))])

=(2/ρ)kg1 ,g2 (x) · μ([vg1])
q |g1|−kg1,g2 (x)

= (2d − 1)−
kg1,g2 (x)

2
√

μ([vg1])/μ([κvg1]).

The regularity of h can now be analyzed through kg1,g2 . In order to do so, for each
open subset U of X and g = g1 ∈ G, observe that kg,g2(U ) is equal to {−|g|, 2 −
|g|, . . . , |g| − 2, |g|}. This implies that

sup
z,z̃∈U

K(g, z)

K(g, z̃)
= (2d − 1)|g|

√
μ([vg])
μ([κvg]) .

In particular, the fluctuations of h(g, ·) only depend on |g| and the quantity μ([vg])/
μ([κvg]), which measures the asymmetry of the random walk. If the random walk is
symmetric, that is pi = p−i = 1/2d for all i = 1, . . . , d, then this simplifies to

ρ = √
2d − 1/d, νid(Xg) = C|g|(2d − 1)−

|g|
2 , K(g1, (x, g2)) = (2d − 1)−

kg1 ,g2 (x)

2 .
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The Boundaries of Golden-Mean Siegel
Disks in the Complex Quadratic Hénon
Family Are Not Smooth

Michael Yampolsky and Jonguk Yang

Abstract As was recently shown by the first author and others in Gaidashev et al.
(Renormalization and Siegel disks for complex Henon maps, [12]), golden-mean
Siegel disks of sufficiently dissipative complex quadratic Hénon maps are bounded
by topological circles. In this paper we investigate the geometric properties of such
curves, and demonstrate that they cannot be C1-smooth.

Keywords Henon map · Renormalization · Siegel disk · Complex dynamics

1 Introduction

Up to a biholomorphic conjugacy, a complex quadratic Hénon map can be written
as

Hc,a(x, y) = (x2 + c + ay, ax) for a �= 0;

this form is unique modulo the change of coordinates (x, y) �→ (x,−y), which
conjugates Hc,a with Hc,−a . In this paper we will always assume that the Hénon map
is dissipative, |a| < 1. Note that for a = 0, the map Hc,a degenerates to

(x, y) �→ ( fc(x), 0),

where fc(x) = x2 + c is a one-dimensional quadratic polynomial. Thus for a fixed
small value of a0, the one parameter family Hc,a0 can be seen as a small perturbation
of the quadratic family.
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As usual, we let K± be the sets of points that do not escape to infinity under for-
ward, respectively backward iterations of the Hénon map. Their topological bound-
aries are J± = ∂K±. Let K = K+ ∩ K− and J = J− ∩ J+. The sets J±, K± are
unbounded, connected sets in C2 (see [3]). The sets J and K are compact (see [13]).
In analogy to one-dimensional dynamics, the set J is called the Julia set of the Hénon
map.

Note that a Hénon map Hc,a is determined by the multipliers μ and ν at a fixed
point uniquely up to changing the sign of a. In particular,

μν = −a2,

the parameter c is a function of a2 and μ:

c = (1 − a2)

(
μ

2
− a2

2μ

)
−

(
μ

2
− a2

2μ

)2

.

Hence, we sometimes write Hμ,ν instead of Hc,a , when convenient.
When ν = 0, the Hénon map degenerates to

Hμ,0(x, y) = (Pμ(x), 0), where Pμ(x) = x2 + μ/2 − μ2/4. (1)

We say that a dissipative Hénon map Hc,a has a semi-Siegel fixed point (or simply
that Hc,a is semi-Siegel) if the eigenvalues of the linear part of Hc,a at that fixed point
are μ = e2πiθ, with θ ∈ (0, 1)\Q and ν, with |ν| < 1, and Hc,a is locally biholomor-
phically conjugate to the linear map

L(x, y) = (μx, νy).

The classic theorem of Siegel states, in particular, that Hμ,ν is semi-Siegel when-
ever θ is Diophantine, that is qn+1 < cqd

n , where pn/qn are the continued fraction
convergents of θ. The existence of a linearization is a local result, however, in this
case there exists a linearizing biholomorphism φ : D × C → C

2 sending (0, 0) to
the semi-Siegel fixed point,

Hμ,ν ◦ φ = φ ◦ L ,

such that the image φ(D × C) is maximal (see [15]). We call φ(D × C) the Siegel
cylinder; it is a connected component of the interior of K+ and its boundary coincides
with J+ (see [4]). We let

� = φ(D × {0}),

and by analogy with the one-dimensional case call it the Siegel disk of the Hénon
map. Clearly, the Siegel cylinder is equal to the stable manifoldWs(�), and � ⊂ K
(which is always bounded). Moreover, ∂� ⊂ J , the Julia set of the Hénon map.
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Remark 1.1 Let q be the semi-Siegel fixed point of the Hénon map. Then � ⊂
Wc(q), the center manifold of q (see e.g. [18] for a definition of Wc). The center
manifold is not unique in general, but all center manifolds Wc(q) must coincide
on the Siegel disk (it is unknown if they may extend beyond its boundary). This
phenomenon is nicely illustrated in [16], Fig. 5.

In a recent paper [12] it was shown that:

Theorem 1.2 ([12]) There exists ε > 0 such that the following holds. Let θ∗ =
(
√
5 − 1)/2 be the inverse goldenmean,μ∗ = e2πiθ∗ , and let |ν| < ε. Then the bound-

ary of the Siegel disk of Hμ∗,ν is a homeomorphic image of the circle.
Furthermore, the linearizing map

φ : D × {0} → � (2)

extends continuously and injectively to the boundary. However, the restriction

φ : S1 × {0} → ∂�

is not C1-smooth.

This is the first result of its kind on the structure of the boundaries of Siegel disks of
complex Hénon maps. It is based on a renormalization theory for two-dimensional
dissipative Hénon-like maps, developed in [10]. While renormalization technique is
new in the study of two-dimensional Siegel disks and Siegel Julia sets, it has a history
of one-dimensional applications (see e.g. [14, 21]). Below, we will briefly review
the relevant renormalization results.

Theorem 1.2 raises a natural question whether the boundary ∂� can ever lie on a
smooth curve. Classical results (see [20]) imply that the smoothness of ∂� must be
less than C1+ε – otherwise, φ would have a C1+ε extension to the boundary, contra-
dicting Theorem 1.2. However, we can ask, whether ∂� can be a C1-smooth curve.
In the present note we answer this in the negative:

Main Theorem Let ε > 0 be as in Theorem 1.2 and |ν| < ε. Then the boundary of
the Siegel disk of Hμ∗,ν is not C1-smooth.

We note that the question of smoothness of Siegel disk boundaries for polynomial
maps of C has a rich history. For quadratic polynomials

Qθ(z) = z2 + e2πiθz, θ ∈ R,

with Brjuno rotation numbers θ, in particular, it is known that the boundary of the
Siegel disk Dθ at 0 can be smooth for some rotation numbers (see [1] and references
therein). In contrast, for θ = θ∗ (andmore generally, for rotation numbers of bounded
type), it is known that ∂Dθ is not smooth, is a quasicircle, and contains the critical
point 0 [7]. The proof of the latter theorem, due to A. Douady, E. Ghys, M. Herman,
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and M. Shishikura, is based on the technique of quasiconformal surgery, which is
very specifically one-dimensional, and does not generalize to maps of C2.

Let us also mention that Bedford and Kim [2] have recently shown that the set J+
cannot be smooth. Note, however, that the Julia set of a quadratic polynomial Qθ is
never smooth [17], however, as mentioned above, it may possess a Siegel disk with
a smooth boundary.

2 Review of Renormalization Theory for Siegel Disks

In this section we give a brief summary of the relevant statements on renormalization
of Siegel disks; we refer the reader to [10] for the details.

2.1 One-Dimensional Renormalization: Almost-Commuting
Pairs

For a domain Z ⊂ C, we denote H(Z) the Banach space of bounded analytic func-
tions f : Z → C equipped with the norm

‖ f ‖ = sup
x∈Z

| f (x)|. (3)

Denote H(Z ,W ) the Banach space of bounded pairs of analytic functions ζ =
(η, ξ) from domains Z ⊂ C and W ⊂ C respectively to C equipped with the norm

‖ζ‖ = 1

2
(‖η‖ + ‖ξ‖) . (4)

Henceforth, we assume that the domains Z and W contain 0.
For a pair ζ = (η, ξ), define the rescaling map as

�(ζ) := (s−1
ζ ◦ η ◦ sζ , s

−1
ζ ◦ ξ ◦ sζ), (5)

where
sζ(x) := λζx and λζ := ξ(0).

Definition 2.1 We say that ζ = (η, ξ) ∈ H(Z ,W ) is a critical pair if η and ξ have
a simple unique critical point at 0. The space of critical pairs is denoted by C(Z ,W ).

Definition 2.2 We say that ζ = (η, ξ) ∈ C(Z ,W ) is a commuting pair if

η ◦ ξ = ξ ◦ η.



The Boundaries of Golden-Mean Siegel Disks in the Complex Quadratic … 305

Definition 2.3 We say that ζ = (η, ξ) ∈ C(Z ,W ) is an almost commuting pair (cf.
[5, 19]) if

di (η ◦ ξ − ξ ◦ η)

dxi
(0) = 0 for i = 0, 2,

and
ξ(0) = 1.

The space of almost commuting pairs is denoted by B(Z ,W ).

Note that if ζ = (η, ξ) ∈ C(Z ,W ), then the first order commuting relation is
automatically satisfied:

d(η ◦ ξ − ξ ◦ η)

dx
(0) = η′(ξ(0))ξ′(0) − ξ′(η(0))η′(0) = 0.

Proposition 2.4 (cf. [10]) The spaces C(Z ,W ) and B(Z ,W ) have the structure of
an immersed Banach submanifold ofH(Z ,W ) of codimension 2 and 5 respectively.

Denote
c(x) := x̄ .

Definition 2.5 Let ζ = (η, ξ) ∈ B(Z ,W ). The pre-renormalization of ζ is defined
as:

pR((η, ξ)) := (η ◦ ξ, η).

The renormalization of ζ is defined as:

R((η, ξ)) := �(c ◦ η ◦ ξ ◦ c, c ◦ η ◦ c).

It is easy to see that

Proposition 2.6 The renormalization of an (almost) commuting pair is an (almost)
commuting pair (on different domains).

The following is shown in [10]:

Theorem 2.7 There exist topological disks Ẑ � Z and Ŵ � W, and an almost
commuting pair ζ∗ = (η∗, ξ∗) ∈ B(Z ,W ) such that the following hold:

(1) There exists a neighbourhoodN (ζ∗) of ζ∗ in the submanifoldB(Z ,W ) such that

R : N (ζ∗) → B(Ẑ , Ŵ )

is an anti-analytic operator.
(2) The pair ζ∗ is the unique fixed point of R in N (ζ∗).
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(3) The differential DR2|ζ∗ is a compact linear operator. It has a single, simple
eigenvalue with modulus greater than 1. The rest of its spectrum lies inside the
open unit disk D (and hence is compactly contained in D by the spectral theory
of compact operators).

2.2 Renormalization of Two-Dimensional Maps

For a domain � ⊂ C
2, we denote H(�) the Banach space of bounded analytic

functions F : � → C
2 equipped with the norm

‖F‖ = sup
(x,y)∈�

‖F(x, y)‖. (6)

Define
‖F‖y := sup

(x,y)∈�

‖∂y F(x, y)‖. (7)

Moreover, for

F =
[
f1
f2

]
,

define
‖F‖diag := sup

(x,y)∈�

‖ f1(x, y) − f2(x, y)‖. (8)

Denote H(�, �) the Banach space of bounded pairs of analytic functions � =
(A, B) from domains � ⊂ C

2 and � ⊂ C
2 respectively to C

2 equipped with the
norm

‖�‖ = 1

2
(‖A‖ + ‖B‖) . (9)

Define

‖�‖y := 1

2

(‖A‖y + ‖B‖y
)
. (10)

Moreover,

‖�‖diag := 1

2

(‖A‖diag + ‖B‖diag
)
. (11)

Henceforth, we assume that

� = Z × Z and � = W × W,

where Z and W are subdomains of C containing 0.
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For a pair � = (A, B) ∈ H(�, �), define the rescaling map as

�(�) := (s−1
� ◦ A ◦ s�, s−1

� ◦ B ◦ s�), (12)

where
s�(x, y) := (λ�x,λ� y) and λ� := p1B(0).

Let U = Z or W , and consider F : U ×U → C
2 given by

F(x, y) :=
[
f1(x, y)
f2(x, y)

]
.

Define p1F : U → C and p2F : U → C as

p1F(x) := f1(x, 0) and p2F(x) := f2(x, 0).

The operator p1 is a projection map from the set of two-dimensional maps to the set
of one-dimensional maps.

Let f : U → C be a one-dimensional map. Define ι( f ) : U ×U → C
2 by

ι( f )(x, y) =
[
f (x)
f (x)

]
.

Note that we have
||ι( f )||y = ||ι( f )||diag = 0,

and
p1 ◦ ι = Id.

The operator ι is an embedding from the set of one-dimensional maps to the set of
two-dimensional maps.

Let ζ = (η, ξ) and � = (A, B) be a one-dimensional pair and a two-dimensional
pair respectively. Define

ι(ζ) := (ι(η), ι(ξ)) and p1(�) := (p1A, p1B).

Definition 2.8 For 0 < κ ≤ ∞, we say that � = (A, B) ∈ H(�, �) is a κ-critical
pair if p1A and p1B have a simple unique critical point which is contained in
a κ-neighbourhood of 0. The space of κ-critical pairs in H(�, �) is denoted by
C2(�, �,κ).

Definition 2.9 We say that � = (A, B) ∈ C2(�, �,κ) is a commuting pair if

A ◦ B = B ◦ A.
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Definition 2.10 We say that � = (A, B) ∈ C2(�, �,κ) is an almost commuting
pair if

di p1[A, B]
dxi

(0) := di p1(A ◦ B − B ◦ A)

dxi
(0) = 0 for i = 0, 2,

and
p1B(0) = 1.

The space of almost commuting pairs in C2(�, �,κ) is denoted by B2(�, �,κ).

Proposition 2.11 (cf. [10]) The spaceB2(�, �,κ) has the structure of an immersed
Banach submanifold ofH(�, �) of codimension 3.

For 0 < ε, δ ≤ ∞, letH(�, �, ε, δ) be the open subset ofH(�, �) consisting of
pairs � = (A, B) such that the following holds:

(1) ‖�‖y < ε, and
(2) ‖�‖diag < δ.

We denote
C2(�, �, ε, δ,κ) := H(�, �, ε, δ) ∩ C2(�, �,κ), (13)

and
B2(�, �, ε, δ,κ) := H(�, �, ε, δ) ∩ B2(�, �,κ). (14)

Define C2(�, �, 0, 0, 0) as the set of pairs ζ such that ζ ∈ C2(�, �, ε, δ,κ) for all
ε, δ,κ > 0. The definition of B2(�, �, 0, 0, 0) is similar. Note that

ι(C(Z ,W )) = C2(�, �, 0, 0, 0), and ι(B(Z ,W )) = B2(�, �, 0, 0, 0),

where C(Z ,W ) andB(Z ,W ) denotes the space of one-dimensional critical pairs and
almost commuting pairs respectively.

Proposition 2.12 (cf. [10]) If ε, δ, and κ are sufficiently small, then there exists an
analytic map �ac : C2(�, �, ε, δ,κ) → B2(�, �, ε, δ,κ) such that

�ac|B2(�,�,ε,δ,κ) ≡ Id. (15)

We are now ready to define the 2D renormalization operator R. Our approach
is to extend the action of the 1D operator R on ι(B(Z ,W )) = B2(�, �, 0, 0, 0)
to nearby 2D pairs � = (A, B) ∈ B2(�, �, ε, δ,κ). It turns out that in order to
ensure the hyperbolicity of R, the definition of R(�) must incorporate non-linear
changes of coordinates that are only well-defined away from the critical values of
p1(�) = (p1A, p1B). This requires us to take four iterates ofR before extending it
to 2D pairs.



The Boundaries of Golden-Mean Siegel Disks in the Complex Quadratic … 309

Notation 2.13 Let I be the space of all finite multi-indexes

ω = (a1, . . . , a2n) ∈ ({0} ∪ N)2n for some n ∈ N.

For a pair ζ = (η, ξ) and a multi-index ω = (a1, . . . , a2n) ∈ I, denote

ζω = ξa2n ◦ ηa2n−1 ◦ . . . ◦ ξa2 ◦ ηa1

Similarly, for a pair � = (A, B), denote

�ω = Ba2n ◦ Aa2n−1 ◦ . . . ◦ Ba2 ◦ Aa1 .

Let ζ = (η, ξ) ∈ B(Z ,W ) be a four-times 1D renormalizable pair. Define multi-
indexes a1, b1, a

′
1, and b

′
1 by

(ζa1 , ζb1 ) := pR4(ζ) = (η ◦ ξ ◦ η2 ◦ ξ ◦ η ◦ ξ ◦ η, η ◦ ξ ◦ η2 ◦ ξ) =: (η ◦ ξ ◦ ζa
′
1 , η ◦ ξ ◦ ζb

′
1 ).

(16)

Let D(�, �, 0) be the subset of H(�, �) consisting of pairs � = (A, B) such
that the following holds:

(1) The functions A : � → C
2 and B : � → C

2 are of the form

A(x, y) =
[
η(x)
h(x)

]
and B(x, y) =

[
ξ(x)
g(x)

]
.

(2) The pair ζ := (η, ξ) is contained in B(Z ,W ) and is four-times 1D renormaliz-
able.

(3) The function g is conformal on ζa
′
1(U ) ∪ ζb

′
1(U ), where

U := λpR4(ζ)Z ∪ W.

Let D(�, �, ε) ⊂ H(�, �, ε,∞) be a neighbourhood of D(�, �, 0) consisting
of pairs � = (A, B) such that for

�̃ := (�a1 , �b1), (17)

the pair �(�̃) is a well-defined element of H(�, �). Moreover, for

V := λ�̃Z ∪ W,

the following holds:

(1) p1A is conformal on (p1A)−1(V ),
(2) p1(A ◦ B) is conformal on (p1(A ◦ B))−1(V ), and
(3) p2B is conformal on p1�a′

1(V ) and p1�b
′
1(V ).
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Consider the fixed point ζ∗ = (η∗, ξ∗) ∈ B(Z ,W ) of the 1D renormalization oper-
atorR given in Theorem 1.2. Fix ε > 0, and let N̂ (ι(ζ∗)) ⊂ D(�, �, ε) be a neigh-
bourhood of ι(ζ∗) whose closure is contained in D(�, �, ε). Let

� = (A, B) =
([

a
h

]
,

[
b
g

])

be a pair contained in N̂ (ι(ζ∗)). Denote

ηi (x) := pi A(x) and ξi (x) := pi B(x) , for i ∈ {1, 2},

and let
ζ := (η1, ξ1).

Denote
ay(x) := a(x, y),

and consider the following non-linear changes of coordinates:

H(x, y) :=
[
ay(x)
y

]
and V (x, y) :=

[
x

η1 ◦ ξ1 ◦ ξ−1
2 (y)

]
. (18)

Observe that

A ◦ H−1(x, y) =
[
ay ◦ a−1

y (x)
g(a−1

y (x), y)

]
=

[
x

g(a−1
y (x), y)

]
.

Furthermore,

V ◦ H ◦ B =
[

ag ◦ b
η1 ◦ ξ1 ◦ ξ−1

2 ◦ g

]
.

Thus, we have

‖A ◦ H−1‖y < O(ε) and ‖V ◦ H ◦ B − ι(η1 ◦ ξ1)‖ < O(ε).

Let
A1 := V ◦ H ◦ A−1 ◦ �a1 ◦ A ◦ H−1 ◦ V−1,

and
B1 := V ◦ H ◦ A−1 ◦ �b1 ◦ A ◦ H−1 ◦ V−1.

Define the pre-renormalization of � as

pR(�) = �1 := (A1, B1). (19)
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By the definition ofD(�, �, ε), the pair�(pR) is awell-defined element ofH(�, �).
From the above inequalities, it follows that

‖pR(�) − ι(pR4(ζ))‖ < O(ε) and ‖pR(�)‖y < O(ε2). (20)

By the argument principle, if ε is sufficiently small, then the function p1B1 ◦ A1

has a simple unique critical point ca near 0. Set

Ta(x, y) := (x + ca, y). (21)

Likewise, the function p1T−1
a ◦ A1 ◦ B1 ◦ Ta has a simple unique critical point cb

near 0. Set
Tb(x, y) := (x + cb, y). (22)

Note that if � is a commuting pair (i.e. A ◦ B = B ◦ A), then Tb ≡ Id.
Define the critical projection of pR(�) as

�crit ◦ pR(�) = (A2, B2) := (T−1
b ◦ T−1

a ◦ A1 ◦ Ta, T
−1
a ◦ B1 ◦ Ta ◦ Tb). (23)

Note that
0 = (

p1(B2 ◦ A2)
)′
(0) = (p1A2)

′(0) + O(ε2),

and likewise
0 = (

p1(B2 ◦ A2)
)′
(0) = (p1B2)

′(0) + O(ε2).

Hence,
(p1A2)

′(0) = O(ε2) and (p1B2)
′(0) = O(ε2). (24)

It follows that there exists a uniform constant C > 0 such that the rescaled pair
� ◦ �crit ◦ pR(�) is contained in C2(�, �,Cε2,Cε,Cε2) (recall that this means
� ◦ �crit ◦ pR(�) is a Cε2-critical pair with Cε2 dependence on y that is Cε away
from the diagonal; see (13)).

Finally, define the 2D renormalization of � as

R(�) := �ac ◦ � ◦ �crit ◦ pR(�), (25)

where the projection map �ac is given in Proposition 2.12.

Proposition 2.14 If � = (A, B) ∈ D(�, �, ε) is a commuting pair (i.e. A ◦ B =
B ◦ A), then R(�) is conjugate to (�a1 , �b1).
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Proof If � is a commuting pair, then �crit is equal to conjugation by the translation
map

Ta(x, y) := (x + ca, y).

Moreover, by Proposition 2.12, �ac is equal to the identity when restricted to almost
commuting pairs. The claim follows. �

Theorem 2.15 ([10]) Let ζ∗ be the fixed point of the 1D renormalization given
in Theorem 1.2. For any sufficiently small ε > 0, let N̂ (ι(ζ∗)) ⊂ D(�, �, ε) be a
neighbourhood of ι(ζ∗) whose closure is contained inD(�, �, ε) . Then there exists
a uniform constant C > 0 depending on N̂ (ι(ζ∗)) such that the 2D renormalization
operator

R : D(�, �, ε) → H(�, �),

is a well-defined compact analytic operator satisfying the following properties:

(1) R|N̂ (ι(ζ∗)) : N̂ (ι(ζ∗)) → B2(�, �,Cε2,Cε,Cε2).
(2) If � = (A, B) ∈ N̂ (ι(ζ∗)) and ζ := (p1A, p1B), then

‖R(�) − ι(R4(ζ))‖ < Cε.

Consequently, ifN (ζ∗) ⊂ B(Z ,W ) is a neighbourhood of ζ∗ such that ι(N (ζ∗))
⊂ N̂ (ι(ζ∗)), then

R ◦ ι|N (ζ∗) ≡ ι ◦ R4|N (ζ∗).

(3) The pair ι(ζ∗) is the unique fixed point of R in N̂ (ι(ζ∗)).
(4) The differential Dι(ζ∗)R is a compact linear operator whose spectrum coincides

with that of Dζ∗R4. More precisely, in the spectral decomposition of Dι(ζ∗)R,
the complement to the tangent space Tι(ζ∗)(ι(N (ζ∗))) corresponds to the zero
eigenvalue.

We denote the stable manifold of the fixed point ι(ζ∗) for the 2D renormalization
operator R by Ws(ι(ζ∗)) ⊂ D(�, �, ε).

Let Hμ∗,ν be the Hénon map with a semi-Siegel fixed point q of multipliers μ∗ =
e2πiθ∗ and ν, where θ∗ = (

√
5 − 1)/2 is the inverse golden mean rotation number,

and |ν| < ε. We identify Hμ∗,ν as a pair in D(�, �, ε) as follows:

�Hμ∗ ,ν
:= �(H 2

μ∗,ν, Hμ∗,ν). (26)

The following is shown in [12]:

Theorem 2.16 The pair �Hμ∗,ν
is contained in the stable manifold Ws(ι(ζ∗)) ⊂

D(�, �, ε) of the fixed point ι(ζ∗) for the 2D renormalization operator R.
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3 Proof of Main Theorem

3.1 Preliminaries

Let
ζ∗ = (η∗, ξ∗)

be the fixed point of the 1D renormalization operator R given in Theorem 1.2. By
Theorem 2.15, the fixed point of the 2D renormalization operator

R : N̂ (ι(ζ∗)) → B2(�, �,Cε2,Cε).

is the diagonal embedding ι(ζ∗) of ζ∗. Thus, we have

ι(ζ∗) = R(ι(ζ∗)) = (s−1
∗ ◦ ι(ζ)a1 ◦ s∗, s−1

∗ ◦ ι(ζ)b1 ◦ s∗),

where
s∗(x, y) := (λ∗x,λ∗y) , |λ∗| < 1.

Let � = (A, B) be a pair contained in the stable manifold Ws(ι(ζ∗)) of the fixed
point ι(ζ∗). Assume that � is commuting, so that

A ◦ B = B ◦ A.

Set

�n = (An, Bn) =
([

an
hn

]
,

[
bn
gn

])
:= Rn(�).

Let
ηn(x) := p1An(x) = an(x, 0) and ξn(x) := p1Bn(x) = bn(x, 0).

By Theorem 2.15, we may express

An = ι(ηn) + En and Bn = ι(ξn) + Fn (27)

where the error terms En and Fn satisfy

‖En‖ < Cε2
n−1

and ‖Fn‖ < Cε2
n−1

. (28)

Hence, the sequence of pairs {�n}∞n=0 converges to B2(�, �, 0, 0, 0) super-
exponentially.

Let

Hn(x, y) :=
[
an(x, y)

y

]
and Vn(x, y) :=

[
x

ηn ◦ ξn ◦ (p2Bn)
−1(y)

]
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be the non-linear changes of coordinates given in (18), let

Tn(x, y) := (x + dn, y),

be the translation map given in (21), and let

sn(x, y) := (λnx,λn y), |λn| < 1

be the scaling map so that if

φn+1 := H−1
n ◦ V−1

n ◦ Tn ◦ sn, (29)

then by Proposition 2.14, we have

An+1 = φ−1
n+1 ◦ A−1

n ◦ �a1
n ◦ An ◦ φn+1

and
Bn+1 = φ−1

n+1 ◦ A−1
n ◦ �b1

n ◦ An ◦ φn+1.

For k > n, denote
�k

n := φn+1 ◦ φn+1 ◦ . . . ◦ φk−1 ◦ φk .

Notation 3.1 Consider the space I of finite multi-indexes defined in Notation 2.13.
We endow I with a partial order relation ≺ defined as follows:

(a1, a1, . . . , a2k, b, c) ≺ (a0, a1, . . . , a2n, a2n+1, a2n+2)

if either k < n and

(1) b ≤ a2k+1 and c = 0, or
(2) b = a2k+1 and c ≤ a2k+2;

or k = n and

(1) b < a2n+1 and c = 0, or
(2) b = a2n+1 and c < a2n+2.

Notation 3.2 We denote by

p�n = (pAn, pBn) for n ∈ N

the sequence of pairs of iterates of � = (A, B) defined as follows:

(1) let p�0 := �, and
(2) for n ≥ 0, let

p�n+1 = (pAn+1, pBn+1) := (pA−1
n ◦ p�a1

n ◦ pAn, pA
−1
n ◦ p�b1

n ◦ pAn).
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Define multi-indexes αn and βn by

(�αn , �βn ) := p�n.

It is easy to see that for k > n, we have

�αk = p�αk−n
n and �βk = p�

βk−n
n . (30)

Lemma 3.3 Let k > n. Then

Rk−n(�n) = (
(�k

n)
−1 ◦ �αk−n

n ◦ �k
n, (�

k
n)

−1 ◦ �
βk−n
n ◦ �k

n

)
.

Proof By replacing � with �n if necessary, we can assume that n = 0. We need to
show

Rk(�) = (Ak, Bk) = (
(�k

0)
−1 ◦ �αk ◦ �k

0, (�
k
0)

−1 ◦ �βk ◦ �k
0

)
= (

(�k
0)

−1 ◦ pAk ◦ �k
0, (�

k
0)

−1 ◦ pBk ◦ �k
0

)
.

Clearly, it is true for k = 1. Assume it is true for k ∈ N. For

Rk+1(�) = (Ak+1, Bk+1),

we have
Ak+1 = φ−1

k+1 ◦ A−1
k ◦ �

a1
k ◦ Ak ◦ φk+1

and
Bn+1 = φ−1

k+1 ◦ A−1
k ◦ �

b1
k ◦ Ak ◦ φk+1.

By the induction hypothesis, we see that

A−1
k ◦ �

a1
k ◦ Ak = (�k

0)
−1 ◦ (pAk)

−1 ◦ p�a1
k ◦ pAk ◦ �k

0 = (�k
0)

−1 ◦ pAk+1 ◦ �k
0

and

B−1
k ◦ �

b1
k ◦ Bk = (�k

0)
−1 ◦ (pBk)

−1 ◦ p�b1
k ◦ pBk ◦ �k

0 = (�k
0)

−1 ◦ pBk+1 ◦ �k
0.

The statement follows. �

For k > n, denote

�k
n := �k

n(�) and �k
n := �k

n(�).

Define
Uk

n :=
⋃

ω≺αk−n

�ω
n (�k

n) and V k
n :=

⋃
ω≺βk−n

�ω
n (�k

n).
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It is not hard to see that {Uk
n ∪ V k

n }∞k=n+1 form a nested sequence of open domains in
C

2:
Un+1

n ∪ V n+1
n � Un+2

n ∪ V n+2
n � . . . .

Define the renormalization arc of �n as

γn :=
∞⋂

k=n+1

Uk
n ∪ V k

n . (31)

Proposition 3.4 For any k > n, denote

pkn :=
⋃

ω≺αk−n

�ω
n (�k

n(γk ∩ �)) and qk
n :=

⋃
ω≺βk−n

�ω
n (�k

n(γk ∩ �)).

Then
γn = pkn ∪ qk

n .

Proof By replacing � with �n if necessary, we can assume that n = 0. Let m > k.
By Lemma 3.3 and (30), for any multi-index ω ≺ αm−k , we have

�k
0 ◦ �ω

k (�m
k ) = p�ω

k ◦ �k
0(�

m
k ) = p�ω

k (�m
0 ) = �σ(�m

0 )

for some σ ≺ αm . Similarly, for any multi-index κ ≺ βm−k , we have

�k
0 ◦ �κ

k (�
m
k ) = p�κ

k ◦ �k
0(�

m
k ) = p�κ

k (�
m
0 ) = �τ (�m

0 )

for some τ ≺ βm . It follows that �
k
0(γk) ⊂ γ0.

Conversely, let σ ≺ αm and τ ≺ βm . By (30), we see that

�σ(�m
0 ) = �σ′ ◦ p�ω

k (�m
0 ) = �σ′ ◦ �k

0 ◦ �ω
k (�m

k )

and
�τ (�m

0 ) = �τ ′ ◦ p�κ
k (�

m
0 ) = �τ ′ ◦ �k

0 ◦ �κ
k (�

m
k ),

where

(1) ω ≺ αm−k ;
(2) κ ≺ βm−k ;
(3) σ′ ≺ αk and �ω

k (�m
k ) ⊂ �, or σ′ ≺ βk and �ω

k (�m
k ) ⊂ �; and

(4) τ ′ ≺ αk and �κ
k (�

m
k ) ⊂ �, or τ ′ ≺ βk and �κ

k (�
m
k ) ⊂ �.

The result follows. �

Let θ∗ = (
√
5 − 1)/2 be the golden mean rotation number, and let
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IL := [−θ∗, 0] and IR := [0, 1].

Define L : IL → R and R : IR → R as

L(t) := t + 1 and R(t) := t − θ∗.

The pair (R, L) represents rigid rotation of R/Z by angle θ∗.
The following is a classical result about the renormalization of 1D pairs.

Proposition 3.5 Suppose ‖�‖y = 0. Then for every n ≥ 0, there exists a quasi-
symmetric homeomorphism between IL ∪ IR and the renormalization arc γn that
conjugates the action of �n = (An, Bn) and the action of (R, L). Moreover, the
renormalization arc γn contains the unique critical point cn = 0 of ηn.

The following is shown in [12].

Theorem 3.6 Let � = (A, B) be a commuting pair contained in the stable man-
ifold Ws(ι(ζ∗)) of the 2D renormalization fixed point ι(ζ∗). Then for every n ≥ 0,
there exists a homeomorphism between IL ∪ IR and the renormalization arc γn that
conjugates the action of �n = (An, Bn) and the action of (R, L). Moreover, this
conjugacy cannot be C1 smooth.

Theorem 1.2 follows from the above statement and the following:

Theorem 3.7 ([12]) Suppose
� = �Hμ∗,ν

,

where �Hμ∗ ,ν
is the renormalization of the Hénon map given in Theorem 2.16. Then

the linear rescaling of the renormalization arc s0(γ0) is contained in the boundary
of the Siegel disc � of Hμ∗,ν . In fact, we have

∂� = s0(γ0) ∪ Hμ∗,ν ◦ s0(γ0).

Henceforth, we consider the renormalization arc of �n as a continuous curve
γn = γn(t) parameterized by IL ∪ IR . The components of γn are denoted

γn(t) =
[
γx
n (t)

γ
y
n (t)

]
.

Lastly, denote the renormalization arc of ι(ζ∗) by

γ∗(t) =
[
γx∗ (t)
γ
y
∗ (t)

]
.

The following are consequences of Theorem 2.15.

Corollary 3.8 As n → ∞, we have the following convergences (each of which
occurs at a geometric rate):
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(1) ηn → η∗,
(2) λn → λ∗ (hence sn → s∗),
(3) φn → ψ∗, where

ψ∗(x, y) =
[
η−1∗ (λ∗x)
η−1∗ (λ∗y)

]
, and

(4) γn → γ∗ (hence |γx
n (0)| → 0).

3.2 Normality of the Compositions of Scope Maps

Define

ψn+1(x, y) :=
[
η−1
n (λnx)

η−1
n (λn y)

]
.

For k > n, denote
	k

n := ψn+1 ◦ ψn+2 ◦ . . . ◦ ψk−1 ◦ ψk .

Let [
σk
n 0
0 σk

n

]
:= (D(0,0)	

k
n )

−1.

Proposition 3.9 There exists a domain U ⊂ C
2 that contains � ∪ Ak(�) ∪ � ∪

Bk(�) for all k sufficiently large such that the family {σk
n	

k
n }∞k=n is normal on U.

Proof ByCorollary 3.8, there exists a domainU ⊂ C
2 and a uniform constant λ < 1

such that for all k sufficiently large, the map ψk is well defined on U , and

� ∪ Ak(�) ∪ � ∪ Bk(�) � λU.

Thus, by choosing a smaller domain U if necessary, we can assume that ψk and
hence, 	k

n extends to a strictly larger domain V � U . It follows from applying
Koebe distortion theorem to the first and second coordinate that {σk

n	
k
n }∞k=n is a

normal family on U . �

Proposition 3.10 There exists a uniform constant M > 0 such that

||φn − ψn|| < Mε2
n−1

.

Proof The result follows readily from (27) and (28). �

Proposition 3.11 There exists a uniform constant K > 0 such that

σk
n ||�k

n − 	k
n || < K ε2

n
.
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Proof By Proposition 3.10, we have

φk−1 = ψk−1 + Ẽk−1 and φk = ψk + Ek,

where ||Ẽk−1|| < Mε2
k−2

and ||Ek || < Mε2
k−1
. Observe that

φk−1 ◦ φk = φk−1 ◦ (ψk + Ek)

= φk−1 ◦ ψk + Ēk

= (ψk−1 + Ẽk−1) ◦ ψk + Ēk

= ψk−1 ◦ ψk + Ẽk−1 ◦ ψk + Ēk,

where ||Ēk || < Lε2
k−1

for some uniform constant L > 0 by Corollary 3.8. Let

Ek−1 := Ẽk−1 + Ēk ◦ ψ−1
k .

By Corollary 3.8, ψ−1
k is uniformly bounded, and hence, we have

||Ek−1|| < Mε2
k−2 + 2Lε2

k−1
< 2Mε2

k−2
.

Thus, we have
φk−1 ◦ φk = ψk−1 ◦ ψk + Ek−1 ◦ ψk .

Proceeding by induction, we obtain

�k
n = 	k

n + En+1 ◦ 	k
n+1,

where
||En+1|| < 2Mε2

n
.

By definition, we have
σk
n D(0,0)	

k
n = Id.

Factor the scaling constant as
σk
n := σ̃k

nσ
k
n+1,

so that
σ̃k
n D	k

n+1(0,0)
ψn+1 = Id,

and
σk
n+1D(0,0)	

k
n+1 = Id.

Let
C := sup

x∈Z
η′

∗(x).
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Observe that σ̃k
n is uniformly bounded by λ−1

n C . Moreover, by Proposition 3.9, we
have that ‖σk

n+1D(x,y)	
k
n+1‖ is also uniformly bounded. Therefore,

‖σk
n D(x,y)(En+1 ◦ 	k

n+1)‖ = ‖σ̃k
n D	k

n+1(x,y)
En+1‖ · ‖σk

n+1D(x,y)	
k
n+1‖

= K sup
(x,y)

‖D(x,y)En+1‖

< K ε2
n

for some universal constant K > 0. �

By Propositions 3.9 and 3.11, we have the following theorem.

Theorem 3.12 There exists a domain U ⊂ C
2 that contains � ∪ Ak(�) ∪ � ∪

Bk(�) for all k sufficiently large such that the family {σk
n�

k
n}∞k=n is normal on U.

3.3 The Boundary of the Siegel Disk Is Not Smooth

Let [tl, tr ] ⊂ R be a closed interval, and let C : [tl, tr ] → C be a smooth curve. For
any subset N ⊂ C intersecting the curve C , we define the angular deviation of C on
N as

�arg(C, N ) := sup
t,s∈C−1(N )

| arg(C ′(t)) − arg(C ′(s))|, (32)

where the function arg: C → R/Z is defined as

arg(re2πθi ) := θ. (33)

Lemma 3.13 Let θ ∈ R/Z, and let Cθ : [0, 1] → C be a smooth curve such that
Cθ(0) = 0 and Cθ(1) = e2πθi . Then for some t ∈ [0, 1], we have

arg(C ′
θ(t)) = θ.

Lemma 3.14 Let

q2(x) := x2 and AR
r := {z ∈ C | r < |z| < R}. (34)

Suppose C : [tl, tr ] → DR is a smooth curve such that |C(tl)| = |C(tr )| = R, and
|C(t0)| < r for some t0 ∈ [tl, tr ]. Then for every δ > 0, there exists M > 0 such
that if mod(AR

r ) > M, then either �arg(C,DR) or �arg(q2 ◦ C,DR2) is greater than
1/6 − δ.

Proof Without loss of generality, assume that R = 1, and C(tr ) = 1. We prove the
case when r = 0, so that C(t0) = 0. The general case follows by continuity.
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Suppose that �arg(C,DR) < 1/6. Then by Lemma 3.13, we have

1/3 < arg(C(tl)) < 2/3.

This implies that
−1/3 < 2 arg(C(tl)) < 1/3.

Hence, by Lemma 3.13, we have �arg(q2 ◦ C,DR2) > 1/6. �

Corollary 3.15 Let W ⊂ C be a simply connected neighbourhood of 0, let C :
[tl, tr ] → W and E : [tl, tr ] → C be smooth curves, and let f : W → C be a holo-
morphic function with a unique simple critical point at c ∈ Dr for r < 1. Consider
the smooth curve

C̃ := f ◦ C + E .

Suppose C(tl),C(tr ) ∈ ∂W, and |C(t0)| < r for some t0 ∈ [tl, tr ]. Then for every
δ > 0, there exists ρ > 0 and M > 0 such that if ‖E‖ < ρ and mod(W \ Dr ) > M,
then either �arg(C,W ) or �arg(C̃, f (W )) is greater than 1/6 − δ.

Let U ⊂ Z ⊂ C be a simply-connected domain containing the origin. For all k
sufficiently large, the unique critical point ck of ηk is contained in U . Let Vk :=
ηk(U ). Then there exists conformal maps uk : (D, 0) → (U, ck) and vk : (D, 0) →
(Vk, ηk(ck)) such that the following diagram commutes:

D
uk−−−−→ U⏐⏐
q2

⏐⏐
ηk

D
vk−−−−→ Vk

By Corollary 3.8, we have the following result:

Proposition 3.16 The maps uk : (D, 0) → (U, ck) and vk : (D, 0) → (Vk, ηk(ck))
converge to conformalmapsu∗ : (D, 0) → (U, 0)andv∗ : (D, 0) → (η∗(U ), η∗(0)).
Moreover, the following diagram commutes:

D
u∗−−−−→ U⏐⏐
q2

⏐⏐
η∗

D
v∗−−−−→ η∗(U )

Proof ofNon-smoothnessByTheorem3.12, the sequence {σk
0�

k
0}∞k=0 has a converging

subsequence. By replacing the sequence by this subsequence if necessary, assume
that {σk

0�
k
0}∞k=0 converges. Consider the following commutative diagrams:
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D
uk−−−−→ U⏐⏐
q2

⏐⏐
ηk

D
vk−−−−→ Vk

and

�
�k

0−−−−→ �⏐⏐
Ak

⏐⏐
A0

Ak(�)
�k

0−−−−→ A0(�)

.

Since {σk
0�

k
0}∞k=0 converges, we can choose R > 0 sufficiently small so that if

Xk := uk(DR) ⊂ U, and Yk := vk(DR2) ⊂ Vk,

then for any smooth curves C1 ⊂ � := U ×U and C2 ⊂ Ak(�) intersecting Xk ×
Xk and Yk × Yk respectively, we have

κ�arg(C1, Xk × Xk) < �arg(�
k
0 ◦ C1,�

k
0(Xk × Xk))

and
κ�arg(C2,Yk × Yk) < �arg(�

k
0 ◦ C2,�

k
0(Yk × Yk))

for some uniform constant κ > 0.
Write

Ak(x, y) =
[
ak(x, y)
hk(x, y)

]
= ι(ηk)(x, y) + Ek(x, y) =

[
ηk(x) + ex (x, y)
ηk(x) + ey(x, y)

]
.

By (28), we have
‖Ek‖ → 0 as k → ∞.

Consider the renormalization arc of �n:

γn(t) =
[
γx
n (t)

γ
y
n (t)

]
.

Recall that we have
γx
n , γ

y
n → γ∗ as n → ∞,

where γ∗ is the renormalization arc of the 1D renormalization fixed point ζ∗.
Let 0 < δ < 1/6. Choose r > 0 is sufficiently small so that the annulus Xk \ Dr

satisfies the condition of Corollary 3.15. Next, choose K sufficiently large so that
for all k > K , we have

|ck |, |γx
k (0)| < r and ‖Ek‖ < ρ,

where ρ > 0 is given in Corollary 3.15.
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Now, suppose towards a contradiction that the renormalization arc γ0 of �0, and
hence the renormalization arc γk of �k for all k ≥ 0, are smooth. By the above
estimates, we can conclude:

�arg(γ0,�
k
0(Xk × Xk)) = �arg(�

k
0 ◦ γk,�

k
0(Xk × Xk))

> κ�arg(γk, Xk × Xk)

> κ�arg(γ
x
k , Xk)

and

�arg(γ0,�
k
0(Yk × Yk)) = �arg(�

k
0 ◦ γk,�

k
0(Yk × Yk))

> κ�arg(γk,Yk × Yk)

= κ�arg(Ak ◦ γk,Yk × Yk)

> κ�arg(ak ◦ γk,Yk)

= κ�arg(ηk ◦ γx
k + ex (γk),Yk).

By Lemma 3.15, either �arg(γ
x
k , Xk) or �arg(ak ◦ γk,Yk) is greater than 1/6

− δ > 0. Hence,

max{�arg(γ0,�
k
0(Xk × Xk)),�arg(γ0,�

k
0(Yk × Yk))} > l

for someuniformconstant l > 0. Since�k
0(Xk × Xk) and�k

0(Yk × Yk)both converge
to a point in γ0 as k → ∞, this is a contradiction. �
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Appendix A
Some Wellington’s Photos From Childhood
to Academic Life

See Figs. A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8.
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1

4

7 8

9 10

5
6

2 3

Fig. A.1 1., 3. and 5. : As a child, 2. with his parents and wife Gilza; 4. with his parents and sisters;
6. with his parents; 7. with his mother, grandmother and sister; 8. with his mother and sisters; 9.
with his sisters; 10. with his sister
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Fig. A.2 Sailing his boat Doisdu and dancing with his wife Gilza
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1

2

3

4

Fig. A.3 1, 2, 3 and 4.: with Steve Smale, Jacob Palis, Mauricio Peixoto and formal students Maria
Jos Pacifico, Antonio Gaspar Ruas, Edson Vargas, Daniel Smania, Alejandro Kocsard, Artur Avila
and Pablo Guarino
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1 2

3
4

5

6

7 8

Fig. A.4 with: 1.M. J. Pacifico, his brother Cleber deMelo, L. J. Díaz, D. Smania; 2.M. Peixoto, 3.
J. Palis; 4. A. Kocsard, M. J. Pacifico, S. Van Strien; 5. A. Verjovsky; 6. Y. Lequain, A. M. Doering,
M. J. Carneiro, J-M. Gambaudo; 8. S. Smale, S. Newhouse, M. J. Pacifico
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1 2

3

4

5

6

7

Fig. A.5 with: 1. M. J. Pacifico, Gilza; 2. E. de Faria, Gilza, Alcilea Augusto, M. Peixoto, Benar
Svaiter; 3. A. Katok, L. F. da Rocha, E. Zehnder, C. I. Doering; 4. F. Takens; 5. Y. Lequain, A. M.
Doering; 6. J. Palis, Gilza; 7. J. Palis, S. Smale
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Fig. A.6 with: 1. Sabrina, Gilza de Melo, Artur Avila; 2. Marcelo Viana, Konstantin Khanin, Artur
Avila; 3. Dennis Sullivan; 4. Jean-Christophe Yoccoz, Yakov Sinai; 5. Sheldon Newhouse, Alberto
Pinto, Sebastian Van Strien; 6. Gilza de Melo; 7. Suely Lima, Gilza de Melo, Konstantin Khanin,
Marcelo Viana, Maria José Pacifico, Artur Avila; 8. Mikhail Lyubich; 9. Edson de Faria, Daniel
Smania, Jorge Rocha, Roberto Markarian, José Alves, Gilza de Melo, J-M. Gambaudo; 10. Gilza
de Melo
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1 2

3

4

5

Fig. A.7 with: 1. Artur Avila; 2. Gilza de Melo; 3. Celebrating the 70 years; 4. Blowing the 70’s
candles; 5.Opening table of themeeting:Maria José Pacifico,MarceloViana, Steve Smale,Mauricio
Peixoto, Welington de Melo and Jacob Palis
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