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Preface

This volume presents the proceedings of the meeting New Trends in
One-dimensional Dynamics, celebrating the 70th anniversary of Welington de
Melo, which was held at IMPA, Rio de Janeiro, November 14-18, 2016. The
occasion was particularly gratifying for us because of the active participation of a
number of experts in this field, many of Welington de Melo’s co-authors and all his
former doctoral students. Collecting the articles for this volume was initially
intended as an opportunity to celebrate the success of the meeting and Welington de
Melo’s joy at the excellent scientific level of the lectures and the friendly atmo-
sphere that week. Unfortunately, Welington de Melo passed away a month after the
meeting. He is sorely missed by the Brazilian mathematical community, and the
publication of this volume became more a tribute to Welington de Melo. His role in
the development of mathematics is indisputable, especially in the area of low-level
dynamics, and his legacy includes, in addition to numerous articles with funda-
mental contributions, books that are mandatory references for beginners in this area.
Welington had only seven formal Ph.D. students, and we were both honored of
being two of them. It is worth mentioning that Artur Avila, the 2014 Fields Medal
winner, was also Welington’s Ph.D. student.

We are including in this volume an obituary by Sebastian Van Strien and Edson
de Faria, two dear friends and co-authors; an article by Jacob Palis and Fernando
Lenarduzzi describing how Welington came to know his Ph.D. Advisor Jacob Palis
at IMPA, how he began his successful scientific career, and comments on the
outcomes of his thesis; the first of his published articles; and photos of Welington
taken throughout his life.

We are indebted to our colleagues and friends for their contributions, which
made the meeting possible. We are also indebted to Leticia Ribas and Renata
Maiato, from the Department of Events at IMPA, who helped with the meeting’s
logistics and secretarial work. We would like to express our deepest gratitude to all
of them.

Nitero6i, Brazil Pablo Guarino
Rio de Janeiro, Brazil Maria José Pacifico
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Welington de Melo and Jacob Palis: )
Their First Meeting, Some of Their Work | @i
on Structural Stability and a Lifetime

of Friendship

Jacob Palis and Fernando Lenarduzzi

Abstract The present publication is a symbol of the appreciation of those who
attended to the conference in memory of Welington’s important contribution to the
theory of Dynamical Systems. They have sailed in Angra, proved theorems and
wrote a book together, but the most valuable thing for them was the friendship they
shared. Throughout the text, we will tell the story of how they became friends and
scientific partners, telling a bit about Welington’s thesis and its relation to the Stability
Conjecture.

Keywords Stability Conjecture - Structural Stanility and Axiom A

1 Brave and Bold

How did Jacob first meet him? Welington was his first Ph.D. student, an excellent one,
whose participation in IMPA’s Dynamical Systems Seminars was always precious.
The seminars started upon Palis’ return from the University of California Berkeley,
in 1969, where he got his Ph.D. under the guidance of Steve Smale that had recently
been awarded with the Fields Medal.

The Seminar that Jacob organized in that occasion took place in week days, in-
cluding Saturday mornings. In one of those Saturdays, Welington knocked at Jacob’s
door at IMPA and presented himself as a student accepted by IMPA to obtain a Mas-
ter Degree. He informed Palis that he had attended Elon Lima’s course in a recent
Brazilian Mathematical Colloquium in Pocos de Caldas. He added that he would
very much like to study Dynamical Systems to obtain a Ph.D. in this area. At first
Jacob had some doubts but the resemblance of his own case at the University of
California in Seminars removed those doubts.

J. Palis (X)) - F. Lenarduzzi
Instituto de Matematica Pura e Aplicada-IMPA, Rio de Janeiro, Brazil
e-mail: jpalis@impa.br

F. Lenarduzzi
e-mail: fernl@impa.br
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2 J. Palis and F. Lenarduzzi

Curiously, one Saturday, when returning home from one of those seminars, in the
neighborhood of Laranjeiras, Palis unexpectedly met José Peliicio Ferreira, who was
working at FINEP, a Funding Authority for Studies and Projects. He told Jacob that
he was very surprised to learn of IMPA’s Seminars on Saturday mornings and that
he would consider the case of some financial support for such promising scientific
activity. Palis was, of course, very happy with that possible support and so, as soon
as he got home, he phoned Mauricio Peixoto, Elon Lima and the Director of IMPA,
Lindolpho de Carvalho Dias.

Jacob also looked for Welington’s colleagues at the University of Minas Gerais
to obtain further information about his performance as a student there. That was
when he was informed that de Melo was an excellent student and very determined to
learn new relevant topics in mathematics. With all the positive reactions Palis have
received, he asked Welington to present one of the important Seminar topics. It was
a success! With that, Jacob have formalized his request to the Direction of IMPA to
accept de Melo as a Ph.D. student, under his guidance. A couple of weeks after that,
Welington came to Jacob’s office to say that he had discovered a serious gap in one
of his mathematical papers. Happily, it turned out it was not a serious gap.

In two years Welington de Melo concluded his Ph.D. with a beautiful thesis
denominated “Structure Stability in 2 Dimensional Manifolds”, that was considered
excellent by a number of mathematicians. It was published in the high level journal
Inventiones Mathematicae [9].

Right after the presentation and overwhelmingly approval of Welington’s thesis,
Palis proposed him to be hired by IMPA as a researcher. Actually he had, indeed,
a brilliant performance at IMPA since the beginning. After some time, he focused
his studies especially in unidimensional dynamical systems, becoming a high level
mathematician guiding excellent younger researchers. A very exceptional example
is that of Artur Avila that some years later received the famous Fields Medal.

Welington’s scientific production was indeed continuous and profound. Jacob
always says that it is a pleasure to point out the good international repercussion of
the book “Introducéo aos Sistemas Dindmicos” that they wrote together. Welington’s
text with Sebastien Van Strien on unidimensional dynamics have also become a basic
reference in this topic.

With all these successful achievements, they realized that they could indeed orga-
nize an excellent Symposium on Dynamical Systems, which took place in Salvador
in 1971. It represented a very special moment to the consolidation of IMPA’s im-
portant place in the Brazilian intellectual structure. In fact it had the participation
of worldwide outstanding mathematicians such as Jurgen Moser, Mauricio Peixoto,
Rene Thom, Christopher Zeeman, Sheldon Newhouse, Floris Takens, John Mather,
as well as young talented mathematicians like, Ricardo Maiié, Jorge Sotomayor,
César Camacho, Welington de Melo himself, among others. The Proceedings of this
important Congress was edited by Mauricio Peixoto and published in 1973 by Aca-
demic Press, which has one preview of Welington’s thesis. This Congress launched
the development of several other areas of research in mathematics at IMPA.

In 2006 another congress took place in Salvador, celebrating Welington 60th
anniversary, under the organization of his first Ph.D. student, Maria José Pacifico.
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It is important to stress how meaningful the presence of his wife Gilza de Melo
guided all aspects of Welington’s life, including the scientific one.

2 The Stability Conjecture and Welington

Here we want to say something about Welington’s early work and to say some words
about how the subject he worked with still evolving. We want to link what was his
first contribution to research and first steps to become the successful mathematician
he would come to be. The key words to his thesis are structural stability.

Just to be clear, we would like to recall some basic concepts to make this text
fully comprehensible and establish some notation. We say that a diffeomorphism
f M — M is C" structurally stable if there exists a C"-neighborhood of f such
that every element g of it is topologically conjugated to f, that is, there exists an
homeomorphism % of M such that f o h = h o g. We will denote by Per(f) and
Q(f) the set of periodic points of f and the set non-wondering points f, respectively.

One of the first works that dealt with this subject we can cite is the one Peixoto
proved in [5] the stability for flows in two manifolds, however the proof depends
highly on the geometry of two dimensions of the manifolds.

We can also say something about Anosov’s work [1], in which he proves the
structural stability for diffeomorphism and vector fields when the whole manifold
M has a hyperbolic structure, the Anosov systems.

Then we had the work developed by Palis and Smale They proved in [4] the struc-
tural stability of diffeomorphisms and flows such that the non-wandering set 2 (f)
is a finite number of orbits and the strong transversality condition is satisfied, that is,
for all x, y € 2(f), we have that stable manifold W*(x) and the unstable manifold
W*(y) have a transversal intersection. The precise statement is the following

Teorema A (Palis-Smale) Let the set of non-wondering points Q2(f) to be finite
and hyperbolic. Also, assume that it has the strong transversality condition. If f €
Diff" (M) then f is structurally stable.

The idea consists into using the simple structure of the non-wondering set find
fundamental domains and unstable disks, to get a foliation in a neighborhood around
each one of the orbits in (). The way these foliations are constructed is made
compatible to the iterates, the so called compatible tubular families.

Definition An unstable tubular family for A is a continuous foliation 7* in a neigh-
borhood V of A that satisfies the following properties

(i) the leaves are C" manifolds immersed in M and transversal to the stable mani-
folds to the points in A;
(i1) the leaf that contains a point x € A is the connected component of W*(x) NV
containing x;
(ii1) the tangent spaces of each one of the leaves vary continuously;
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(iv) the foliation is f invariant: f‘l(F”(x)) C F“(f‘l(x)), where F"(x) is the
leaf that contains x.

The proof lies into using the tubular families as a system of coordinates to do the
conjugacy for two diffeomorphisms.

However, the construction of the neighborhood lies in the finitude of the non-
wondering set and that is one of the fundamental steps Welington was able to take in
his thesis. He was able to mimic the construction of the compatible tubular families
into a more general setting: two-dimensional manifold and a diffeomorphism with
the Axiom A property, that is, €2 (f) is hyperbolic and Per(f) = Q2(f).

Teorema B (de Melo) If M is two-dimensional and f € Diffl(M) is Axiom A,
satisfying the strong transversality condition, then f is structurally stable.

The proof here is based in the geometry and the dimension 2 and it is not clear
how to take the same ideas to higher dimensions. Welington’s remarkable thesis also
had two other stability results about the stability of proper hyperbolic sets.

Teorema C Let M be a n-dimensional manifold, f € Diff'(M) Axiom A and A
be an attractor of f whose stable manifolds have co-dimension 1. Then f is locally
stable with respect to A.

Teorema D Let M be a two-dimensional manifold, f € Diff'(M) Axiom A and
A be a basic set of f, then f is locally stable with respect to A.

Using the same ideas of construction the compatibility, in 1971 Robbin proved
that if f is C? then hyperbolicity is a sufficient condition for structural stability [7],
and in 1976 Robinson reduced the C? hypothesis to C' [8].

Recall the conjecture stated by Palis and Smale in their paper in 1968:

Conjecture (The Stability Conjecture) f € Diff" (M) is structurally stable if and
only if f satisfies

(a) Axiom A: Q2(f) is hyperbolic and the set of periodic points is dense in Q(f);
(b) Strong Transversality Condition: for all x,y € Q(f), we have that W*(x) and
W"(y) have a transversal intersection.

As we already mentioned, some beautiful and meaningful mathematics was made
trying to prove this conjecture. So far, we have only talked about the implication that
tries to prove that “Axiom A implies Stability” and one the most remarkable work
that explores the converse was written by Maié in [3].

Teorema E (Maiié) Every C' structurally stable diffeomorphism of a closed mani-
fold of any dimension satisfies Axiom A.

The C” structural stability conjecture for » > 2 remains wide open. Every tech-
nique known today is restricted to the C! topology. The C' perturbations with con-
trolled dynamical properties is an obstacle that holds progress in the r > 2 direction:
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the closing lemma, connecting lemma and Frank’s lemma are either unknown or they
are false in higher topologies.

The conjecture itself can still inspire some interesting and relevant mathematics.
Instead of trying to adapt the C' techniques to higher dimensions, one could try
to attack the conjecture into different approaches, surfaces or using new types of
systems that emerged, as proposed by Pujals [6] and [2] for example.
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Welington de Melo (1946-2016) )

Check for
updates

Edson de Faria and Sebastian van Strien

Abstract In memorian: Welington de Melo
Keywords One-dimensional dynamics

Classifications 01A70

Welington de Melo passed away on December 21st, 2016, shortly after a conference
held at IMPA celebrating his 70th birthday. The present volume was originally meant
to be a tribute in life to Welington’s accomplishments as a mathematician, but sadly it
has turned instead into a memorial volume. The world has lost a great mathematician,
a leader in the area of Dynamical Systems, and we have lost a great colleague, a
mentor, and a dear friend.

Welington was born on November 17th, 1946, in the city of Guapé, Minas Gerais.
He became an electrical engineer in 1969, but found mathematics more interesting
and completed his Ph.D. under the supervision of Jacob Palis at IMPA in 1972. His
thesis dealt with the structural stability, via geometric methods, of Axiom A maps
on two-dimensional manifolds. After his Ph.D. at IMPA, he held a postdoc position
for two years with Steve Smale in Berkeley, stayed for a few months in Warwick,
and for the remainder of his mathematical career worked at IMPA.

Throughout his career, Welington wrote 39 papers and 5 books (including an
unpublished book on differential topology). Welington believed that a mathematical
paper should present results that are as complete as possible, and disliked accordingly
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University of Sdo Paulo-USP, Sao Paulo, Brazil
e-mail: edson@ime.usp.br
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the idea of publishing mere partial results. Hence his papers tended to be few in
number but quite substantial, in content as well as in length.

His first book was written in collaboration with J. Palis, originally in Portuguese
[1] and later translated into English [2], Russian [3] and Chinese. It became a very
influential book in the area of Dynamical Systems, and in particular a standard text-
book reference on structural stability. His second book [4], written in collaboration
with one of us (SvS), represented at the time of publication the state of the art in
One-dimensional Dynamics, and it is still regarded as the most complete and author-
itative reference on the subject. Welington also wrote two other books with one of
us (EdF) on two completely different subjects [5—8].

Those of us who knew Welington well have always been impressed by his in-
tellectual integrity, his frankness, and his overall honesty. Dennis Sullivan adds the
adjective relentless. In pursuing the details of the proof of period doubling rigidity,
Welington was relentless about understanding and confirming every point. Indeed,
as Dennis recalls, the last detail was actually completed by Welington himself at the
Orsay pool with his observation “but that map is injective so by Koebe Distortion
... at which point Dennis said “Yes, bingo!”. For Welington, the most important
thing was always the pursuit of truth and excellence, in Mathematics and elsewhere.
He will be sorely missed.

1 His Mathematical Contributions

What follows is a brief account of Welington’s major accomplishments as a mathe-
matician.

1.1 Structural Stability: Thesis

One of the main problems in dynamical systems is to describe the systems that are
structurally stable. In the early 1970s this led to:

Theorem 1 (Palis, Palis-Smale, Robin, de Melo, Robinson) C' diffeomorphisms on
a compact manifold that satisfy Axiom A (a hyperbolicity assumption) and the strong
transversality condition are structurally stable within the set of C' diffeomorphisms.

This goes back to Jacob Palis’ 1968 thesis in which he proved this for C! Morse-
Smale systems in dimension two, and a year or so later this was extended by Jacob
Palis and Steve Smale to arbitrary dimension. This work introduced the notions of
tubular families (foliations in neighbourhoods of the stable and unstable manifolds).

About the same time, Joel Robin in the C? topology and somewhat later Clark
Robinson in the C! topology proved the above theorem using a functional analytic
approach (in the spirit of Anosov, Moser and others).
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The functional analytic approach is appealing but is less flexible than the geo-
metric approach. This was the inspiration for Welington’s thesis (which predates the
functional analytic proof in the C' setting). In his beautiful thesis [9], which was
published in Inventiones Mathematicae, Welington was able to show that the geo-
metric approach works for C! Axiom A maps in the two-dimensional setting (or
rather in the case where stable foliations are codimension one).

1.2 Economics (1974-1979)

Welington was very much influenced by Steve Smale who in the early 1970s was quite
interested in economics. Inspired by Steve’s work, Welington studied the problem
of simultaneously optimizing several functions. Forever the pure mathematician,
he wrote that this ‘is a natural question to consider, even in some basic models in
economics’.

More formally, let f = (fi,..., fs): M" — R? be a C*> mapping on the com-
pact n-dimensional manifold-without-boundary M. A point p in M is a local Pareto
optimum (LPO) of f if there is a neighborhood U of p in M such that

geU, fiq)> filp¥Vi = f(@=f(p).

A smooth curve a: [0, 1] - M on which each f; is strictly increasing is called an
admissible curve for f.
One result of Welington in this direction is [12]:

Theorem 2 (1976, Welington de Melo) For a generic f, there exist an admissible
curve from any point q in M to some LPO provided dim M > max{d — 1, 2d — 4}.

The proof uses a combination of the singularity theory of maps and ideas from
dynamical systems.

1.3 Geometric Theory of Dynamical Systems (1978)

After returning to IMPA, Welington started to write lecture notes on dynamical
systems together with Jacob Palis [1]. No doubt the resulting text book Geometric
Theory of Dynamical Systems was among the most influential text books in dynamical
systems. It was translated into English [2], Russian [3] and Chinese. Without this
book, dynamical systems would have become a much more disjointed discipline,
because unlike many textbooks it was also showing a research programme.
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1.4 Moduli of Stability (1979-1987)

What do we know about maps which are not structurally stable? Can we classify
conjugacy classes of such maps? Jacob Palis had initiated this research programme
in the mid 70s. Many people, in particular Welington but also Floris Takens (the
thesis advisor of SvS) had started working on this.

More precisely, a diffeomorphism f € Diff*°(M) is said to have modality k if
this is the minimal integer for which there exists a small neighbourhood U which
contains a countable number of k-parameter C' families of diffeomorphisms such
that each diffeomorphismin U is conjugate to at least one diffeomorphism from these
families. In particular, if f is structurally stable or if there are at most a countable
number of different conjugacy classes in a neighbourhood U of f then the number
of moduli is defined to be zero.

An example where one needs a one-parameter of diffeomorphisms to parametrize
conjugacy classes is when one has a two-dimensional diffeomorphism f with saddle-
points p and g such that

W*"(p) and W*(q) have a quadratic tangency.

Jacob Palis showed that such a map has modality > 1: if another nearby diffeomor-
phism f also has a quadratic tangency then

logla|  loglal
log|b|  log|b|

where a,d and b, b are the eigenvalues corresponding to W*(p), W*(p) resp
W (q), W (q).

Let A be the space of Axiom A diffeomorphisms on compact surfaces. In [21],
SvS and Welington managed to describe the subspace of A of diffeomorphisms with
finite modality.

Theorem 3 (1987, Welington de Melo and SvS) If f € Diff>*(M?) is in A, then f
has finite modality if and only if f € M where M is defined below.

Here f € M C A whenever f has no cycles and moreover

e if x,y € Q(f) are such that W*(x) is not transverse to W*(y), then the basic sets
containing x and y consist of periodic orbits;

e there is only a finite number of nontransversal intersections between stable and
unstable manifolds and the contact between these manifolds along each of these
orbits is of finite order;

e if p, g € Per(f) are such that W“(p) has an orbit of nontransversal intersection
with W¥(g) then the number of orbits in W*(p) [resp. in W*(g)] belonging to
some unstable [resp. stable] manifolds of a periodic saddle point of f is finite;
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e if x is a point of nontransversal intersection of W*(p) and W*(g) then there exists
an arc X transversal to W*(p) at x such that no connected component of ¥ — {x}
contains points of both stable and unstable manifolds of saddles;

e if W*(p) has a point of nontransversal intersection with W¥(q), and W*(g) has a
point of nontransversal intersection with W*(r), then there is no saddle point of f
whose unstable manifold [resp. stable manifold] intersects W*(p) [resp. W¥(r)].

Since every diffeomorphism in 4 satisfying the transversality condition is
structurally stable, Theorem 3 generalizes the structural stability result for two-
dimensional manifolds.

The proof of this theorem is interesting and builds on the geometric construction
that Welington knew so well from his Ph.D. The flexibility of the ‘geometric ap-
proach’ in constructing topological conjugacies was crucial in being able to tackle
the types of tangencies of invariant foliations that occur.

1.5 One Dimensional Dynamics (1987-2016)

Inspired by the following results, Welington realised in the late 1980s that it was
time to concentrate on interval dynamics:

e May’s paper on chaos had made the study of iterations of x — ax(1 — x) popular,
but the number of results was still small;

Milnor-Thurston’s combinatorics paper;

the introduction of Schwarzian derivative;

the Feigenbaum-Coullet-Tresser conjectures on renormalization had been proved
in special cases;

Sullivan had introduced the notion of quasiconformal maps into iterations of holo-
morphic maps, and was working hard to prove his theorem on renormalization.

Welington’s intuition was right because since that time a rich, beautiful and remark-
ably complete theory has emerged:

e a complete combinatorial description (Milnor-Thurston theory);

e acomplete topological description (Denjoy-Fatou-Sullivan theory in the real case);

e a measure-theoretic description (number of ergodic components, existence and
non-existence of absolutely continuous invariant measures);

e geometric rigidity (real bounds, quasiconformal rigidity, density of hyperbolicity);

e a fairly complete renormalization theory;

e results towards the Palis conjecture in dimension 1: prevalence of systems which
are hyperbolic or admit absolutely continuous invariant measures.

In many of these developments Welington played a major role.

Let us describe Welington’s first result in this area. Consider maps f: M — M
where M = S' or M = [0, 1]. What can you say about their dynamics? One of the
most basic results is the absence of wandering intervals, as was proved by Denjoy
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for circle diffeomorphisms. The analogue of this result for smooth unimodal interval
maps was proved in [24]:

Theorem 4 (1987, de Melo and SvS) If f: M — M is unimodal, C3 and satisfies
a non-flatness condition then it has no wandering intervals.

Under the assumption of negative Schwarzian, this result was proved previously
by Guckenheimer. The main contribution of the above paper was the cross-ratio
(inspired by a paper of Yoccoz who had previously used a particular cross-ratio for
his study of smooth circle maps with critical points). The cross-ratio came to be a
standard tool in one-dimensional dynamics, because it can be used to control the
non-linearity of high iterates of a map.

Encouraged by the above result, and the work of Sullivan, Welington and SvS
continued working in this direction.

In 1918 Julia gave the following description of the dynamics of rational maps on
the Riemann sphere: there are periodic domains attracting an open set of points, and
outside this set there is a closed set (the Julia set), and may be some open sets which
‘wander’ and which are attracted to this Julia set. The remaining problems were:

e Can a rational map have infinitely many periodic domains?
e Do such wandering domains exist?

The answer in both cases is no (Fatou, 1919) and (Sullivan, 1985).

In the circle diffeomorphism case the corresponding results were obtained by
Poincaré and Denjoy. For general one-dimensional (piecewise monotone) maps the
combinatorial study was done by Milnor and Thurston (and others). Building on
work of Denjoy, Guckenheimer, de Melo and SvS, Blokh and Lyubich, Lyubich,
Welington, together with SvS and his Ph.D. student Marco Martens were able to
prove the following [26]:

Theorem 5 (1992, Martens, de Melo and SvS) If f: M — M is C? and satisfies a
non-flat condition then

e it has no wandering intervals
e the period of periodic attractors is bounded.

Subsequently, a completely different proof of this result was given by Edson
Vargas, a former Ph.D. student of Welington, and SvS. This approach also provides
‘real’ bounds, that one can get rid of the Schwarzian derivative condition in the most
general setting.

1.6 One-Dimensional Dynamics: The 1993 Monograph

Welington always felt that one should spend time to obtain optimal results and proofs,
and that the success of a research area depended on well-written text books which
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also described a research programme. He convinced SvS to join in this endeavour
and together we spend a couple of years to write the research monograph ‘One-
dimensional dynamics. We tried very hard to make the material up-to-date. Of course
one of the hardest, and most interesting parts of working on this book was to extract
from Dennis Sullivan his proof on renormalization. Welington (and also SvS) visited
Dennis many times in New York at CUNY, and in Paris at IHES. Typically, Dennis
would first explain something to Welington who then would try it out on SvS.

To our delight, the resulting monograph [4] was well received. Over the last
decade, Welington and SvS often discussed a new edition of the monograph which
was to include the exciting developments since the early 1990s.

1.7 Renormalization and Rigidity: Circle Maps (1994-2016)

The phenomenon of rigidity was first observed in Geometry, through the work of
G. D. Mostow, and was later seen to be present in Dynamics as well. In the lat-
ter context, rigidity means that a small number of dynamical invariants completely
determines the fine scale structure of orbits. Thus, roughly speaking, the rigidity
paradigm states that, under a minimum number of preset conditions, maps that are
topologically conjugate are in fact more smoothly conjugate. In low-dimensional
dynamics, especially in dimension one, rigidity is oftentimes achieved through the
study of an underlying renormalization operator. Renormalization of a dynamical
system means a suitably rescaled first return map to a neighborhood of a special point
in phase space—usually a critical point. The starting point—in the late 1980s—for
the modern study of rigidity and renormalization (in the context of one-dimensional
real or complex systems) was Sullivan’s theorem stating that any two period-doubling
quadratic-like maps are always quasiconformally conjugate.

For critical circle maps (with a single critical point of power-law type), the only
invariant is the rotation number—this is a fundamental result due to J-C. Yoccoz.
But there are additional difficulties. Since the first return map to a neighborhood of
the critical point on the circle is discontinuous, one has to work with commuting
pairs of maps—as introduced by O. Lanford. The notion of holomorphic commuting
pair, introduced in EdF’s thesis in 1992, opened the door for the use of Sullivan’s
holomorphic and quasi-conformal methods in the circle setting. Welington was very
much interested in this work, and soon afterwards he and EdF embarked on a project
for understanding more deeply the rigidity, universality and renormalization con-
vergence of critical circle maps. Building on the complex bounds first obtained in
EdF’s thesis and later generalized by Yampolsky, they obtained the following result
[32, 34].

Theorem 6 (2000, W. de Melo and EdF) Any two real-analytic critical circle maps
with the same rotation number of bounded type and the same (odd) power-law at
their critical points are C17® conjugate.
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This may be regarded as the analogue of Herman’s KAM theorem for circle
diffeomorphisms. This result was later extended by Khanin and Teplinskii, Khmelev
and Yampolsky to cover all rotation numbers, not just bounded type. The price to pay
is that one can only deduce that the conjugacy is C'. There are good reasons as to why
this is the best one can expect: in [32], the authors constructed C*° counterexamples
to C'*-rigidity, and later Avila constructed real-analytic counterexamples.

The main ingredient in the proof of Theorem 6 is to show that one has exponential
convergence to zero of the C° distance between the successive renormalizations of
both maps. This uses an adaptation of the tower construction of McMullen to holo-
morphic pairs. In fact, in his 1998 Fields Medal address, McMullen cited Theorem
6 as one of the main applications of his theory.

Theorem 6 was generalized for C? critical circle maps by P. Guarino in his the-
sis, written under Welington’s supervision, and this resulted in a very nice paper by
Guarino and Welington [46]. Subsequently, in [47], Guarino, Martens and Weling-
ton removed the hypothesis of bounded type on the rotation number, at the cost of
requiring one more degree of differentiability for the maps. Thus, the final result can
be stated as follows.

Theorem 7 (2018, W. de Melo, P. Guarino, M. Martens) Any two C* critical circle
maps with the same irrational rotation number and with a unique critical point of the
same odd power-law type are conjugate by a C' diffeomorphism. Morevoer; there
exists a full-measure set of rotation numbers (containing those with bounded type)
for which the conjugacy is in fact C'*°.

This can be regarded as the state of the art concerning renormalization and rigidity
of critical circle maps.

1.8 Hyperbolicity of Renormalization: Unimodal Maps
(1999-2006)

In the late 90s, Welington teamed up with EdF and Alberto Pinto in order to establish
the global hyperbolicity of the renormalization operator in the context of unimodal
maps having a finite degree of smoothness—this had been conjectured almost 20
years earlier by Lanford. The basic idea was to combine Lyubich’s breakthrough
concerning the hyperbolicity of renormalization in the space of quadratic-like germs
with a strong generalization of certain non-linear functional-analytic techniques first
developed by A. Davie in the context of Lanford’s period-doubling renormaliza-
tion. Several technical difficulties had to be overcome, mostly having to do with
the fact that, in the world of C" maps, the renormalization operator is not Fréchet
differentiable—so that the notion of hyperbolicity a-priori does not even make sense.
In the end, a full proof of Lanford’s conjecture in the bounded combinatorics setting
was obtained. In very informal terms, the result can be stated as follows (see [39]).
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Theorem 8 (2006, W.de Melo, E. de Faria, A. Pinto) Ifr > 2 4+ o, where() < o < 1
is close to 1, the limit set of the renormalization operator in the space of C" unimodal
maps of bounded combinatorial type is a hyperbolic Cantor set where the operator
acts as the full shift in a finite number of symbols. In addition, for points of such limit
set,

(i) The local unstable manifolds are real analytic curves;
(ii) The local stable manifolds are of class C', and together they form a continuous
lamination whose holonomy is C'*” for some 3 > 0;

In [39], the authors also proved that the global stable manifolds of renormalization
are of class C'. This was done combining Theorem 8 with the implicit function theo-
rem in Banach spaces, at the expenses of losing one more degree of differentiability
(i.e., assuming that » > 3 + « with « close to one).

1.9 Interval Maps: Stochasticity (2002-2003)

Another question is the following: How typical is it for a map from the quadratic
family to be either

e stochastic, or
e hyperbolic.

A result in this direction was proved by Lyubich.

Theorem 9 (2002, M. Lyubich) For Lebesgue almost all a, either f,(x) = ax(1 —
x) is hyperbolic or a summability condition is satisfied.

By aresult of Martens and Nowicki this summability condition implies a summa-
bility criterion for the existence of absolutely continuous invariant measures due to
Nowicki and SvS.

As an aside, no growth condition is needed. A recent paper by Bruin, Shen and
SvS shows that for any map (possibly multimodal) the summability criterion can
be replaced by something much weaker: for any f without periodic attractors there
exists C > 0 so that if for any critical point ¢ one has |Df"(f(c))| > C then f has
an acip.

As one of the outcomes of a very successful collaboration, Artur Avila, Welington
and Misha Lyubich proved the following:

Theorem 10 (2003, A. Avila, W. de Melo, M. Lyubich) Within any non-trivial real-
analytic family of quasiquadratic maps, for almost all parameters the above dichoto-
my holds.

The proof is based on the following ingredients:
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e The space of analytic maps is foliated by codimension-one analytic submanifolds,
‘hybrid classes’: maps in these submanifolds are topologically conjugate and, in
the hyperbolic case, they have the same multiplier at attracting cycles.

e hybrid classes laminate a neighbourhood of any non-parabolic map.

e This allows the authors to transfer the regular or stochastic property of the quadratic
family to any nontrivial real analytic family: The holonomy along the foliation
occurs in a quasisymmetric manner, since it comes from holomorphic motions
parametrized by a complex Banach ball. But in general it is not absolutely con-
tinuous. However, the holonomy respects the property of exponential decay of the
parapuzzle geometry (and therefore the Martens-Nowicki criterion).

e The main point is a construction of a transverse vector field v at f (crossing hybrid
classes transversally). A solution « of the equation

V(@) = a(f (@) — f@Da)

yields an infinitesimal quasiconformal change of coordinates used to perform an
infinitesimal change of f in the direction of the vector field v. One finds v such
that the equation does not have a solution, i.e. v cannot be “horizontal” (tangent
to hybrid classes).

e To construct v, they start with a smooth vector field v, holomorphic on the critical
value puzzle piece U; and vanishing on other preimages of a central puzzle piece
Uy leading to U;. The fact that one has large scales (since the critical point is
quadratic) and a Key Lemma are used to show that this vector field cannot be
horizontal.

e They then approximate v by aholomorphic vector field using Mergelyan’s theorem.

1.10 Two More Books (2001-2010)

In the beginning of 2001, Welington took up the task of writing notes for a short
course to be delivered at the 23rd Brazilian Math Colloquium at IMPA later that year.
Soon after starting on his own, he decided to invite one of us (EdF) to join in the
project, and the set of notes was published as [5]. A few years later, these notes were
expanded and polished to a full-size book. The goal of the book was to present the
most important mathematical tools of a holomorphic and/or quasiconformal nature
that are used in the study of one-dimensional dynamical systems. This book was
published by Cambridge in 2008 (see [7]).

In the meantime, Welington became interested in Mathematical Physics, more
precisely in Quantum Field Theory (QFT), thanks primarily to several conversations
with Dennis Sullivan. In order to learn more about the subject, he decided to teach
a summer course about it. He eventually convinced EdF to embark on the project of
writing a longish set of notes [6] for a course to be delivered at the 26rd Brazilian
Math Colloquium at IMPA, in 2007. The idea was to write a book which would help
clarify many of the difficult ideas appearing in QFT in a way that would be accessible
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and make sense to mathematicians. This was quite an adventure, since both authors
were coming from outside Mathematical Physics. This book, too, was published by
Cambridge, in 2010 (see [8]).

In fact, the story behind these two Cambridge books is a bit more non-linear
than the previous two paragraphs suggest. In 2006, during the ICM held in Madrid,
Welington met David Tranah, the editor at Cambridge University Press. In their con-
versation, Welington mentioned that he and EdF were writing a book on mathematical
aspects of QFT. Tranah said that he might be interested in publishing such a book.
Upon his return to Brazil, Welington urged EdF to write to Tranah. In the e-mail
exchange that followed, EJF mentioned the first book (on holomorphic dynamics),
and Tranah told him that he might be interested in publishing that one too.

1.11 Prizes

Welington was elected to the Brazilian Academy of Sciences in 1991, gave a talk
at the International Congress of Mathematics in 1998 and became a member of the
Third World Academy of Science in 2003.

2  Welington, the Person

Welington met his wife Gilza while he was still quite young. They were inseparable,
truly adored each other and even felt comfortable squabbling in front of others. No
doubt, Gilza was instrumental in Welington’s success.

Usually Welington and Gilza lived relatively modestly. However, occasionally
Welington would love to eat out in famous restaurants and talked about these mem-
orable meals for years after.

Welington loved to be near the sea and in particular to sail and the sense of
adventure and freedom. As soon as he could afford it, he and Gilza bought a weekend
condominium in Angra dos Reis together with a sailing boat. Many, many weekends
Gilza and Welington would invite visitors from IMPA to stay with them there. There
was a strict ritual: to go sailing after breakfast, starting to drink beers at noon (and
definitely not a minute before) and then to swim, snorkel or go for a hike on one of
the beautiful islands in the bay. Lunch would be in one of the lovely small beach
restaurants or a packed lunch with self-picked oysters. During these trips mathematics
was always the main topic of discussion (Gilza would normally prefer to stay in
the condominium), but the atmosphere would also be light hearted. At SvS’s 60th
birthday party he reminisced about the time that Henk Broer threw Dennis Sullivan
(and SvS) overboard, but was unsure whether to tackle Welington, who after all was
the captain.

In 1987, Welington made a trip of 700 nautical miles from Berkeley to the Mar-
quesas islands. The idea of the trip came from Steve Smale in whose boat the trip
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was made. Steve was the captain, and Welington and Charles Pugh were the crew.
Oftentimes Welington spoke with amazement about this extraordinary trip.

Welington’s website contains a quote from Richard Bode’s book ‘First you have
to row a little boat’ which no doubt describes his philosophy of life, one of embracing
life as an exciting adventure:

For the truth is that I already know as much about my fate as I need to know. The day will
come when I will die. So the only matter of consequence before me is what I will do with
my allotted time. I can remain on shore, paralyzed with fear, or I can raise my sails and dip
and soar in the breeze.

3  Welington’s Ph.D. Students

Welington was a mentor to many young mathematicians but took on relatively few
Ph.D. students. He always had high standards and was very proud of his students.
Perhaps unbeknownst to them, he followed their careers with great interest.

Maria José Pacifico (1980)

Antonio Augusto Gaspar Ruas (1982)
Edson Vargas (1989)

Artur Avila (2001)

Daniel Smania (2001)

Alejandro Kocsard (2007)

Pablo Guarino (2012)
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Abstract A matrix norm gives an upper bound on the spectral radius of a matrix.
Knowledge on the location of the dominant eigenvector also leads to upper bound
of the second eigenvalue. We show how this technique can be used to prove that
certain semi-group of matrices arising from continued fractions have a Pisot spec-
trum: namely for all primitive matrices in this semi-group all eigenvalues except the
dominant one is smaller than one in absolute value.

Keywords Pisot matrices - Spectral radius - Pisot spectrum

1 Introduction

A dominant eigenvalue of a real square matrix is an eigenvalue of maximum modu-
lus. We call a square matrix Pisot if it has non-negative integer entries, its dominant
eigenvalue is simple and all eigenvalues different from the dominant one have abso-
lute values less than one. Recall that a non-negative square matrix A is primitive if
there exists a positive integer n so that A" has all its entries positive. In this article,
we prove that several monoids of non-negative matrices enjoy the property that all
of its primitive elements are Pisot.

Our first family of matrices is related to the so called fully subtractive (multidi-
mensional) continued fraction algorithm. For an integer d > 2 we define for each
k=1,...,d the matrix A%y , by
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w6 \ _Jlif j=kori=}j
(AFS.d)U - {O otherwise

For d = 3 this boils down to the three matrices

100 110 101
AL —1110 A% . =1010 A2 =1o11
FS3 — ’ FS,3 — ’ FS3 —

101 011 001

All non-degenerate products of the matrices A% 4 satisfy the Pisot property.

Theorem 1 Let A = Ag]s),dAgzs),d . A(Fi’g’d be a product of the fully subtractive
matrices in dimension d. Then the matrix A is primitive if and only if all letters
{1, ..., d} appear in the sequence (i, i, ..., i,). Moreover, if the matrix A is prim-
itive then it is Pisot.

The case d = 3 of Theorem 1 was proved in [3]. The authors used an induction on
characteristic polynomials and our approach is radically different.

The same result holds for another set of 3 x 3 matrices related to the Brun mul-
tidimensional continued fractions. Let

110 110 101
AV =To10|, A@=[100|, aAP=1]100
001 001 010

Theorem 2 Let A = Ag;)Ag? .. Ag’;) be a product of the 3 x 3 Brun matrices.
Then, A is primitive if and only if the matrix Agg appears in the product. Moreover,
if A is primitive then it is Pisot.

This result was already known since the work of Brun [6].

The proofs of Theorems 1 and 2 only involves linear algebra and more precisely
relations between eigenvalues and matrix norms. To some extent, it is very close to
the following inequality that holds for a non-negative primitive d x d matrix A

[ Axl

veotvoy Xl

A <

where v is the Perron-Frobenius eigenvector of A, )\, the second largest absolute
value and ||. || is any norm on R“. Our proof uses a partial information on v provided
by the continued fraction algorithm associated to the matrices.

From a diophantine approximation point of view, the Pisot property is particularly
interesting because it provides the so called exponential convergence of the continued
fraction expansion for almost every vectors (see [9]). We show that the above results
naturally extends to this situation in Sect. 6.
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Beyond continued fractions, Pisot matrices are of special interest in substitutive
dynamical systems. More precisely, replacing matrices with so called substitutions,
one can build a uniquely ergodic subshift X of low complexity. The Pisot properties
implies the existence of a rotation on a d — 1 dimensional torus that is a factor of
X (interestingly this rotation only depends on the matrix). In many cases X can be
proved to be measurably conjugate to this rotation (see [7] Chap.7). This was the
main motivation for the study of the fully subtractive matrices in [3].

We gratefully thank Eric Domenjoud and Milton Minervo for careful reading of
earlier versions.

2 Fully Subtractive and Brun Continued Fractions

Our main focus are the fully subtractive and Brun algorithm. However, most of the
definitions can be set in a more general context. To that purpose, let us consider a finite
or countable set A that we call alphabet and for eachi € .4 amatrix A”) e SL(d, R).
In the case of the fully subtractive algorithm we have Args, = {1, 2, ..., d} while
for Brun algorithm Ap, = {1, 2, 3}.

To the data (A, (A®);c.4) we associate the set of infinite words A = AN, the shift
map T : A — A and a cocycle

Vx e A,Vn>0, A,(x)=AMA  AG-D

The maps A, : A — SL(d, R) satisfy the so called (transposed) cocycle property:
Apmin(x) = Ap(X) A (T"x).

Recall that the projective space P(RY) is the quotient of R?\{0} by the relation
v ~ avforany a # 0.Inother words, it is the set of lines in R“. It can also constructed
as a quotient of the d — 1-dimensional sphere. P(R) is compact.

Our main tool is the following definition.

Definition 3 Let (A®);c4 be a set of matrices in SL(d, R) where A is a finite or
countable alphabet. We say that a set D C P(RY) is adapted to these matrices if it is
non-empty, it is the closure of its interior and for all i € A we have AV D C D.

For example P(R?) is always adapted. But we will be interested in the somewhat
smallest adapted set in order to localize the dominant eigenvector.
Let
Drsa = {(x1,....xa) € PRY) : Vi, jok xi < xj + i)

and

Dp ={(x,y,2) ePR)) : x >y >z}
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(112)
(101) (011)
100 110 2 1
Apb,=(1 10 Apk,=(0 1 0
1 01 011 (211) (121)
101 3
AP =10 11
00 1
(110)

Fig. 1 Fully subtractive partition of the domains with d = 3. The points (xyz) in the picture
corresponds to the point in P(Ri) with coordinates (x, y, z). In other words, to the line R (x, y, 2)

(111)

110 110

211

AV—1o0 10 A =110 0 (

001 00 1

) 1 01 1 2

Ag, = (1 0 0]. (100) (110)
010 (210)

Fig. 2 The matrices and domains for the Brun algorithm

Then it is easily seen that Dpg 4 is adapted for the fully subtractive matrices in
dimension d and Dg, is adapted for the Brun matrices.

Given a countable collection of matrices (A?);c4 and D C P(R) adapted, we
define D = A D.InFigs. 1 and 2 one can see the projective picture of the domains
DD, D@ and D®. Note that in these cases, the domains D) are disjoint but that
it is not a requirement in our definition. Moreover, one can see that in the Brun case
the D® form a partition while it is not the case for the fully subtractive.

If the D are disjoint one can define a continued fraction algorithm as follows.
One defines a partial map f : D --» D by setting fx = (A?)~'x on D®,

One can compute that for Brun one has

Ser(x,y,2) =sort(x —y,y,2)

where sort : }P’(]Ri) — D is the map which permutes the coordinates in order to sort
them. While for the fully subtractive one has

Srsa(x) = (X1 — X, X0 — X4y ooy Xim) — Xiy Xi, Xig] — Xiy ooy Xg — Xi)

if x; = min(xyq, ..., xg).
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3 Strategy

The proofs of Theorems 1 and 2 follow a general strategy that we describe now.

Let (A®);c 4 be a finite or countable set of matrices as in Sect. 2. Letalso A = AN
and D C P(R?) be adapted. We define for a finite word w = igi; ...i,_; € A" the
set D™ = AW A@)  AG-D D It generalizes the definition D that we already
used for words of length 1 (identified to letters). In terms of continued fractions, it
corresponds to the set of points in D corresponding to the cylinder [w] induced by
the coding by A. Note that for any w the set D™ is not empty. Given an infinite
word x = xpx; ... € A we also set D, (x) = A,(x)D = D¥0*1=*-1_In particular
Dy(x) = D and D;(x) = D). Given x, the set D,(x) are nested and we define
Do (x) = mnzo D, (x).

We let ||.|| be the L norm on R? and the associated operator norm on matrices.
That is for a vector v and a matrix A

In this section the norm used on R? has no importance. But it turns out that, to apply
the results to continued fraction algorithms in Sects.4 and 5 the most convenient one
was twice the L* norm.

To a non-zero vector v in RY, we associate its dual hyperplane H, = {z €
R?; (v, z) = 0}. Given a non zero vector v in R? we define the following semi-norm

on d x d matrices

| Bz||
IBll, = sup ——= = max|Bz|.

llzll=<1
zem\0) 12l Jag

More generally, if A C R4 is a cone, we define

IBlla = sup [Bll.
veP(A)

These semi-norm will be applied to the transposed cocycle B of A that is B® =
(A™)Y* for finite words w and B, (x) = (A, (x))* for points x € D andn > 0. These
matrices satisty the cocycle property By, 1,(x) = B,(T"x)B,,(x).

Lemma 4 Let (AD);c 4 be a finite or countable set of matrices in SL(d, R) and let
D C P(RY) be adapted. Let B® (respectively B, (x)) denote the transposed of A®
(resp. A, (x)). If for all i € A we have

”B(i)HD(i) =L (D
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Then for any point x = xox1 ... € A we have
| Bn ()l D, ey =1

where D, (x) = A, (x)D.

The corollary below shows that under the assumption (1), the generated monoid
satisfies a “weak Pisot” condition.

Corollary 5 Under the same assumption of Lemma 4, each matrix AW = A A@)
... A%-D has at most one eigenvalue (with multiplicity) greater than one in absolute
value.

Proof of Lemma 4. We prove the Lemma by induction. The hypothesis corresponds
to the case n = 1. Assume that this inequality holds for some n. By definition
Ap1(x) = A1(x)A,(Tx)and D, 1(x) = A1 (x)D,(Tx). Hence v € D,(Tx) if and
only if Aj(x)v € D,41(x). Let us choose v € D, (Tx), then

1Br1C a0 = 1Ba(TX)Br ()l a,xyv < 1B (Tx) |y - 1B1(O) ] 4, (x)o-

This inequality shows that if || B, (Tx)|[, < 1 then || B,+1(x)|l4,)» < 1 which con-

cludes the proof of the Lemma. ]

Proof of Corollary 5. Let us consider the point x = (ipiy ...i,—1)> in A so that
B,(x) = B ... BU-D Because B,(x) is simply the transposed of A,(x) we can
simply prove the statement for B,,.

By Lemma 4 and because Dy (x) C D,(x) we have

1B, poe) < 1.

Now the union M = U H, is preserved by B, (x). On the other hand, we have
veDy (x)
a direct sum R? = E, ® E; where E, (respectively E,) is the direct sum of the
eigenspaces ker(B,(x) — Al )¢ with eigenvalue \ whose absolute value is greater
than 1 (resp. smaller or equal than 1). By the above inequality, any eigenvector of
B,(x) contained in M must have an eigenvalue of absolute less than one. More
generally, E,, does not intersect M. Now, M contains ad — 1 vector space and hence
E, has dimension at most 1. O

4 Pisot Property for Arnoux-Rauzy Matrices

In this section we prove Theorem 1. Let d > 2 be an integer and let ey, e, ...e4
be the canonical basis of RY. Lete = ey + e, +...+eg and fori =1, ...,k let
fi = e —e;. The domain Dpg 4 is the convex hull of the rays vectors R, f;.
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Let as usual B® = (A®)* and B, (x) = (A,,(x))*. We claim that we have the
following stronger property than (1) from Lemma 4

Vi=1,...,d, ||B?p<1.

Let us prove this claim. Let v € Do, then we may write v = 1 fi + o fo + ... +
tq fa for some non-negative numbers y; that satisfy p; 4+ pp 4+ ...+ pug = 1. We
hence have v = ¢ — ) u;e; and

H, ={z e R% (z,v) =0} = {z e RY sz = Zujzj}.

Givenz € H,wehave BVz = (zy, ..., zi_1, Zj [jZjs Zitls - - - » Za), Inother words,
B acts on H, as a stochastic matrix P (i, v) which is the identity except its i-th row
which is (u1, f12, - . ., pa). In particular | B, = ||P(@i, v)||, < 1.

By the claim, the monoid generated by the matrices Aié)s 4 satisfies the weak Pisot
condition of Corollary 5. What remains to prove is that when a product is irreducible,
there is no remaining eigenvalue of absolute value 1. To that purpose, let us consider
a finite product A = A;f;”s)’dAg‘S)_d o A%”Sf;. If one of the letter {1, ..., d} is missing
in the sequence (io, i1, ..., ,—1) then Ae; = ¢; and so the matrix is not primitive. On
the other hand, if all letters appear it is easy to see that all entries in A are positive.

Now let x = (xpx;...x,-1) be a periodic point that contains all letters from
A. Because of positivity the dominant eigenvalue of A,(x) is simple and its asso-
ciated eigenvector vy is so that D (x) = R vg. Let v, = A, (x)~ vy be the Perron-
Frobenius eigenvector of A,(T"x). Each v, is positive and hence the coefficients
W1, W2, ..., Mg that appear in the stochastic matrices P (x;, v;) are all positive. Now,
the product P(x,_1, vp—1) ... P(x1, v1) P (xp, vo) is a stochastic matrix with all its
entries positive. Hence, its second eigenvalue, which is also the second eigenvalue
of A,(x), is less than 1 in absolute value.

5 Pisot Property for Brun Algorithm (in Dimension 3)

‘We now turn to the proof of Theorem 2. Let A = {1, 2, 3} and Agr), Ag:, A(gz be the
matrix of the Brun algorithm. We let A = A" and denote by A and B respectively
the cocycle and the transposed cocycle. We claim that, as in the case of the fully
subtractive, we have the stronger property that

Vie{1,2,3}, |B?|p<1.

100

We only need to consider the matrix B = | 1 1 0 | since the other two are obtained
001

by multiplying by a permutation matrix which will not change the L°°-norm.
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Letv=p;(1:0:0) 4+ pp(1:1:0)4+ ps(1:1:1) € Dforsome iy, s, 43 such
that p; + o + 3 =1and H, ={z € RY 7,420 = wi1z2 — p3zz}. Now, for any
z € H, we have B (zy, 22, 23) = (21, 21 + 22, 23) = (21, 122 — {1323, 23). In par-
ticular || BV (zy, 22, 23)|| < II(z1. 22, z3)||. As in the case of the fully subtractive algo-

10 O
rithm we define P (v, 1) = | 0 p; —u3 | thatis so that the action of BV and P (1, v)
00 1

coincide on H,. Similarly, we define P(2, v) and P (3, v) corresponding to B® and
B®. Note that, contrarily to the fully subtractive case, P (i, v) is not a stochastic
matrix. .

Now, given a product A = Ag‘;) e Ag’;"), if 3 does not appear in the sequence
(ig, ..., I,_1) then Ae; = e3 and hence the matrix A can not be irreducible. Conver-
sly, if 3 appears then A? is easily seen to be positive.

As in the fully subtractive case we consider the sequence of eigenvectors (vy,),>0
and the product P = P(x,_1, vp—1) ... P(x1, v1)P(x9, vg). For a primitive product
we got that the numbers ; appearing in the definition of each P(x;, v;) are all
positive. As a consequence, the absolute value of the sum of each row of the product
P is strictly smaller than 1. In other words || P||,, = || B,(x)lls, < 1 which prove that
there is no eigenvalue 1.

6 Lyapunov Exponents

Let (A?);c 4 be afinite or countable set of matrices. Let A, T, A, B denote as before
the infinite words, the shift map the cocycle and the transposed cocycle. Let also D
be adapted to these matrices.

The asymptotics of the cocycle (or the transposed cocycle) are studied through
Lyapunov exponents. Given a T -invariant ergodic probability measure ;1 on A, we
associate the real numbers 7}’ > 74 > ... > +/ defined by

. log | A¥ A, ()l
Vke{l,2,....d}, i+7n+...+% = lim ———dux).
n—00 J A n
In order to be well defined we assume that
/ max (log [| A1 (x)||, log [ A1(x) ™)) dpu(x) < o0 2
A

and we refer to this condition as the log-integrability of the cocycle. If the alphabet
A is finite the cocycle is automatically log-integrable. If x is a periodic point of T
and p = (0y + d7x + ...+ d7n-1,)/n is the sum of Dirac masses distributed along
its orbit, then the associated Lyapunov exponents are the logarithms of the absolute
values of eigenvalues of A, (x) where n is the period of x. In that sense, Lyapunov
exponents generalize eigenvalues.

Given ameasure i for which the cocycle is log-integrable, we say that (A, T, A, p)
has Pisot spectrum if the associated Lyapunov exponents satisfy )" > 0 > ~4'. This
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property is related to the strong convergence of higher dimensional continued fraction
algorithm [9].
Now we restate Lemma 4 in a more dynamical context.

Lemma 6 Let (A©);c4 be a finite or countable set of non-negative matrices in
SL{d, R). Let (A, T, A, B) be the associated full shift with its cocycle and its trans-
posed cocycle. Let also D be adapted. Assume that

Vie A [(A7)]pn = 1.

Let p be a T -invariant and ergodic measure on D so that

e the cocycle A, is log-integrable,
e there exists a cylinder [w] such that p([w]) >0, AW s positive and
1B poy < 1.

Then two first Lyapunov exponents of the cocycle A, for the measure p satisfies
H 0 M
N =YV=7

Proof Let us first prove that y; > 0.
Now, by definition, for p-almost every x

_log[[A, ()l
v = lim —————

n—oo n

Let m = |w| be the length of w and consider the positions which are multiple of m.
For a p-generic x we have by Birkhoff theorem that

lim #i<n: Z () € wl) _ ()

In other words, given a sequence of length n large enough we can find a linear number
of disjoint occurrences of w (up to a sublinear error). Let &, be the number of these
occurrences, then necessarily each entry of A, (x) is larger than the corresponding
one in C* where C is the matrix which contains a 1 in every position. In particular
v > 0.

From the existence of w it also follows that for a y-generic x the cone Dy, (x)
is reduced to a line contained in the interior of ]Ri. We can hence define p-almost
everywhere a function v : A — R‘i by Do (x) = Riv(x) and |Jv(x)| = 1. We then
have the following formulas which holds for p-almost every x

. —log |4, ()" tw()|| . log || By (1) [lve)
v = lim and 7y = lim ——.

n—o00 n o) n

It is then easy to derive the estimate for 7,. The map x + v(x) and the dual hyper-
planes H,(y) satisfy the following covariance properties

Doo(Tx) = A(xX) 'Doo(x) and Hy-1, = A*H,.
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Hence as in the proof of Lemma 4, we deduce that for all v € Dy (x)

I Birn C) oy =< 1B (0 Loy | B (T ) Loy
In particular, for yi-almostevery x € [w], any largen > |w|we getthat || B, (x) [y <

1.Let § = || B™| pm < 1. Using the same argument as in the estimation of ; we
get that

k, logd
< liminf 2282
n—oo n
And the above limit is strictly negative. (I
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On the Statistical Attractors )
and Attracting Cantor Sets for Piecewise | @i
Smooth Maps

P. Brandio, J. Palis and V. Pinheiro

Abstract We discuss some aspects of the asymptotic behavior of the forward orbits
of most points for piecewise smooth maps of the interval, specially for contracting
Lorenz maps. We are particularly interested in the statistical aspects of most orbits,
the existence of statistical attractors and how most orbits in the basin of attraction of
an attracting Cantor sets approach the attractor.

Keywords Metrical attractors + Statistical attractors - Contracting Lorenz maps *
Piecewise smooth maps of the interval - Inaccessible basin of attraction * Strong
ergodicity

In Memoriam of Welington de Melo
Just after concluding his Ph.D. at Berkeley, Jacob Palis returned to Rio de Janeiro and
started to work at IMPA, conducting a seminar mostly concerned with new results
on Dynamics. The seminar was intense, promoting talks even on Saturday mornings.
In one of these occasions a young student asked Palis to allow him to participate
in the seminar, following a suggestion by Elon Lima who met this student at the
Brazilian Mathematical Colloquium of 1969 in Pocos de Caldas. This fellow was
Welington de Melo. He assured Palis that he would study a lot and so, would much
profit from the seminar. Palis was surprised, specially because this young student had
just been accepted to the Master Program at IMPA. Palis was so impressed by his
determination that finally said yes to him. Welington’s performance was indeed out-
standing: he concluded his doctorate in two years after joining the seminar, publishing
his thesis in the celebrated journal “Inventiones mathematicae”. This episode shows
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two of the main features of his personality: strong determination and mathematical
competence.

Welington became one of the world leaders in one-dimensional dynamics. He
collaborated with main names in the field, taking part in several main moments of
the development of the subject and finally, he was the Ph.D. advisor of Artur Avila.
We observe that Avila was the first mathematician to win a Fields medal whose initial
career was fully developed in the Southern hemisphere.

Above all, Welington cultivated in his whole life a “joie de vivre”, specially
crossing seas with friends in his boat. We do miss him.

1 Introduction

Mathematicians, and scientists in general, have been using strategies to reduce the
dynamics that they are studying (or at least, features of them) to some more treatable
low dimensional dynamical models, particularly to dynamics generated by maps of
the interval. When one tries to reduce a multidimensional smooth dynamical system
to the dynamics generated by a map f of the interval, it is not so surprising that f
may not carry the same smoothness of the original dynamics.

One example of that concerns Lorenz flows and its attractors. Lorenz flows are
specific three dimensional flows that were first studied by the meteorologist Edward
Lorenz. He was trying to study some unpredictable behavior normally associated
to weather using Navier-Stokes equations, which is a model of fluid convection
and an infinite dimensional dynamical system. After he published his remarkable
paper “Deterministic non-periodic flows” (1963), Lorenz flows were studied by many
mathematicians, physicists, engineers and others. Eventually, V.S. Afraimovich, V.V.
Bykov, L.P. Shil’nikov, in [1], and Guckenheimer and Williams, in [17], introduced
the geometric Lorenz flows, similar to Lorenz’s ones and exhibiting the same peculiar
characteristics of the original Lorenz flows. This model consists of considering a
hyperbolic singularity p = (0, 0, 0) € R? with one dimensional unstable manifold
such that, in a linearizable neighborhood V = (—r, r)? of p, the local stable and
unstable manifolds are Wi (p) = V N ({0} x R?) and Wi (p) =V NR x{0,0)}),
the return of each branch of W“(p) \ {p} to this neighborhood cuts transversally
the plane z = constant, with eigenvalues A\, < A3 < 0 < A (see Fig. 1), and the
expanding condition A3 + A; > 0. The dynamics of a geometric Lorenz flow can
be reduced to the dynamics of a map of preserving orientation interval map with a
single discontinuity, called a Lorenz map. It is worth to be told that the geometric
Lorenz flows (and so, the Lorenz maps) were the appropriate approach to study
Lorenz flows, as it was proved by W. Tucker [37], that the original Lorenz flows are
indeed geometric Lorenz ones.

In [3], Arneodo, Coullet and Tresser began to study a model obtained in the same
way as the one obtained by Guckenheimer and Williams, just modifying the relation
between the eigenvalues of the singularity, taking A3 + A; < 0. This model is known
as the contracting Lorenz flow and the attractors associated to it are more unstable
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contracting
directions

Fig. 1 Dynamics of the geometric Lorenz flows

than the Lorenz original ones, presenting far more diversified dynamics and many
deferent types of attractors. In particular, the one dimensional maps associated to
them “contain”, as we will see later, all the possible dynamics of the Logistic maps
(another very well known and studied class of dynamics).

The dynamics of smooth maps of the interval was studied exhaustively in the
last four decades, in particular, properties as finiteness of attractors, non-existence
of wandering intervals, classification of attractors, physical/SRB measures, generic
families of unimodal maps with most parameters being stochastic or deterministic,
the density of deterministic dynamics and so on. Nevertheless, several of the key
techniques developed to smooths maps do not work for maps with discontinuities.
Because of that, even for the simplest maps of the interval with one discontinuity,
the Lorenz maps (particularly, the contractive ones), most of the equivalent results
already obtained to smooth maps are not known.

Here we will try to point out some of the problems in which we are more interested
in and that are open for maps with discontinuities. We mention a few open conjectures
about such maps, some of them due to de Melo. To be concise and also because it is
the simplest case, most of the definitions will be done in Sect. 2 only for contracting
Lorenz maps, nevertheless everything can be set in a similar way to the general
context of piecewise smooth maps of the interval. Still in Sect. 2, we use the concept
of ergodicity for measures that are not necessarily invariant to define the (Ilyashenko)
statistical attractors and compare them to Milnor attractors. In particular, we show
in Proposition 2.5 that, if a contracting Lorenz map f has a cycle of intervals and
the closure of the forward orbits of the critical values has empty interior, then f is
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ergodic with respect to Lebesgue and it has a single Milnor attractor containing a
unique Ilyashenko statistical attractor.

Motivated by the questions raised in Sect. 2, we present in Sect. 3 the main result
of the paper, Theorem 2, about how a typical orbit is attracted by an absorbing
Cantor set. A point p € A is accessible from an A-outside point if 3¢ ¢ A and a
continuous curve v such that v(0) = ¢, ~v(1) = pandv((0, 1)) N A = . We say that
p is asymptotically accessible from an A-outside point (for short, asymptotically
accessible) if there exists ¢ ¢ A such that for every n > 0 there is a j > n and
a continuous curve v such that y(0) = ¢, v(1) = f/(p) and v((0, 1)) N A = ¢.
Every point of an attracting Cantor set is asymptotically inaccessible, i.e., it is not
asymptotically accessible and Theorem 2 says that the same is true for almost every
point in the basin of attraction of an attracting Cantor set. This is equivalent to say
that the orbit of almost every point in the basin of attraction intersects a given gap of
the Cantor set only a finite number of times.

2 Contracting Lorenz Maps

A contracting Lorenz map is a local difeomorphisrm f : [0, 1]\ {c¢} — [0, 1],0 <
¢ < 1, such that 0 and 1 are fixed points, f has no repelling fixed points in (0, 1)
and lim,_,. f'(x) = 0. A C? interval map f has negative Schwarzian derivative if
Sf(x) < 0 for every point x such that f’(x) # 0, where

ﬂu»z
f'x)

Sf(r) = S (

1
J'(x) M

A C? contracting Lorenz map f : [0, 1]\ {c} — R is called non-flat if there exist
e > 0, constants ¢, 3 > 1 and C3 diffeomorphisms ¢y : [c — €, c] = Im(¢p) and
¢1 : [c, c + €] = Im(¢y) such that

£y = fleo) + (dolx — c)) ifxe(c—ec)N(,1)
flen+ (e —0)’ ifxe(ecten 1)

In the remaining of this section (Sect. 2), f is a C? contracting Lorenz map
f 10,17\ {c} — [0, 1], ¢ € (0, 1), with negative Schwarzian derivative.

The pre-orbit of aset U C [0, 1]is O (U) := ;5 WU Ifx ¢ O (o), the
forward orbit of x is O (x) = {f/(x); j > 0}.Onthe other hand, if x € f~"([0, 1])
and f"(x) = c,then O+(x) {x, -, f"(x)}. The w-limit set of a point x ¢ OJ?(C),
denoted by wy(x), is the set of accumulating points of the forward orbit of x. That
is,

l‘l,‘

wyr(x) :={y €l[0,1]; y = lim f"(x) for some sequence n; — +oo}.
Jj—o0



On the Statistical Attractors and Attracting Cantor ... 35
Consider also the lateral w-limit sets w(x_) and w(x) as

wr(xy) :={y €[0,1]; y = lim f"/(x4) for some sequence n; — +0o0},
Jj—o00

where " (x_) =limg..o f"(x —¢) and " (xy) = limgeco f" (x + €). The
nonwandering set of f, denoted by Q(f), is the set of points p such that #{;j >
l; (p—e,p+e)Nf((p—e, p+e)) #0) = oo for every € > 0. It is easy to
see that wy(x) C Q(f) forevery x € [0, 1]\ (’);(c).

Since Poincaré’s theory for circle homeomorphisms, it was observed that the
existence of wandering intervals makes the classification and analysis of one dimen-
sional dynamical systems far more complicated. We note that wandering intervals
are not just intervals outside €2( f), as one can see in the definition below, and this
is the reason that some authors have called them strongly wandering intervals. A
wandering interval is an open interval I = (a, b) C [0, 1] such that (1) f"|; is a
homeomorphism between I and f"(I) for every n > 1, (2) I does not intersect the
basin of attraction of a periodic-like attractor and (3) f"(1) N f™ (1) = ¥ for every
0<n<m.

Due to the complexity of most dynamical systems, Poincaré has suggested that
instead of attempting to describe the asymptotic behavior of all orbits of a dynamics,
one can focus on the behavior of most orbits, thus avoiding the most pathological or
peculiar. Because of that, attractors play a fundamental role in the study of dynamical
systems for the understanding of future evolution of typical (not uncommon) initial
states.

Definition 2.1 (Milnor [30]) A compact set A is called a (metrical) attractor for f
if its basin of attraction 3;(A) := {x; wy(x) C A} has positive Lebesgue measure
and there is no compact set A’ ; A so that B (A’) is the same as 3¢ (A) up to a zero
measure set.

Theorem 1 below characterizes the attractors (in Milnor sense) for contracting
Lorenz maps. In particular, it says that either f has periodic-like attractors (at most
two of them) and the the union of their basins of attraction has full Lebesgue measure
or f has a single (non-periodic) attractor A containing almost every point in its basin
of attraction and wy(x) = A for almost every x.

Theorem 1 ([9], see also [19, 32]) Let f be a C? contracting Lorenz map f :
[0, 1]\ {c} — [0, 1], ¢ € (0, 1), with negative Schwarzian derivative. If f does not
have periodic-like attractors, then f has an attractor A such that wy(x) = A for
almost every x € [0, 1]. In particular, Leb(3¢(A)) = 1.

Furthermore, f can have at most two periodic-like attractors. If f has a single
periodic attractor, its basin of attraction has full Lebesgue measure. In the case that
f has two periodic-like attractors, the union of their basins of attraction has full
Lebesgue measure.

If f does not have periodic-like attractors, then A is either a cycle of intervals or
a transitive Cantor set.
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If A is a Cantor set, then A = wy(c_) or wy(cy). Moreover, if f is non-flat and
Ais a Cantor set, then c_ and cy € A = wy(c_) = wy(cy).

An attractor A is called a periodic-like attractor when A is a finite set and,
given p € Awehave A = J]_, f/(p-) or U}_, f/(p4), where n = #A. Periodic-
like attractors generalizes the concept of attracting periodic orbits in the context of
piecewise smooth maps.

A cycle of intervals is a finite union of disjoint closed intervals Iy U ---U [,
such that f|;,u...us, 1 transitive. For any continuous map 4 : [0, 1] — [0, 1] a cycle
of intervals is always a chaotic attractor, in the sense that the topological entropy
of f restricted to the cycle of interval is always positive. In contrast, contracting
Lorenz maps can have both: chaotic cycle of intervals and cycle of intervals with
zero topological entropy (as for Cherry attractors below).

If the attractor A is a Cantor set, it is called an attracting Cantor set. An attracting
Cantor set can be a solenoid, a Cherry attractor or a wild attractor. A solenoid attractor
appears when f is infinitely many times renormalizable. That is, when there exits a
nested sequence of intervals [a,,, b,] witha; < --- <a, /¢ / b, <--- < by such
that the first return map to each [a,, b,] is conjugated to a contracting Lorenz map.
In [8], Brandao shows that the topological attractor A of an infinitely renormalizable
contracting Lorenz map is a minimal set, i.e., every orbit of A is dense in A. Notice
that, as ¢ € A and f cannot be extended continuously through c, the argument in [8]
is more delicate than the usual argument for continuous maps.

A topological attractor A is a compact set such that 3,(A) 1= {x; ws(x) C A}
is not a meager set and there is no compact set A’ g A so that 87 (A’) is the same as
B (A) up to a meager set. Recall that a set I' is called meager if it is contained in a
countable union of compact set with empty interior. In this context of subsets of the
interval, I' C [0, 1] is not meager if and only if I" contains a residual subset of some
openset U C [0, 1].

A Cherry attractor [13, 23] appears when there exists an interval [a, b], with
a < b < csuch that F, the first return map by f to [a, b], is conjugate to an injective
map of the circle & : S'\ {1} — S! with an irrational rotation number, S! = {z €
C; |z| = 1}. As it has irrational rotation number, it follows from the theory of circle
maps that wy, (x) = Q(h) forevery x € S' \ {1}, where Q (k) is the nonwandering set
of h. Furthermore, A, := Q2 (h) is aminimal set and A, is either the whole circle or an
attracting Cantor set (with all its gaps being wandering intervals). By the conjugacy
with the first return map F, the attractor Aj; induces an attractor Ay for F and also
an attractor A for f, called a Cherry attractor for f. This Cherry attractor is always
a minimal set for f and it is either a cycle of intervals or an attracting Cantor set. If
the Cherry attractor is a Cantor set, then some of its gaps are wandering intervals.

A far as we know, the wandering intervals associated to Cherry attractors are
the only known examples of wandering intervals for C? non-flat contracting Lorenz
maps. The existence of this kind of intervals for contracting Lorenz map that are not
associated to Cherry attractors is an open problem with very little progress in the
past 20 years. For C? diffeomorphism of the circle, the non-existence of wandering
intervals was established in 1930 by Denjoy [15] and, in 1989, for non-flat C> maps
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of the interval, by de Melo and van Strien [27]. In the context of Lorenz maps, what
is expected to happen in terms of wandering intervals is the following:

Conjecture 1 (Martens and de Melo [24]) Let f : [0, 1]\ {¢} — [0, 1] be a C? non-
flat contracting Lorenz maps. If f has a wandering interval then f has a Cherry
attractor.

Even for contracting Lorenz maps that are C* and have negative Schwarzian
derivative, Martens and de Melo’s conjecture remains almost untouched. We may
note that the fact that f cannot be extended continuously through ¢ together with
f'(c+) being 0 plays a main role to make this conjecture hard to be proved. Indeed, if
f'(c+) # 0, the conjecture is true, proved by Mestel and Berry [29] in the beginning
of 1990’s decade.

An attractor A is called a wild attractor (also called an absorbing Cantor set) for
the contracting Lorenz map f if it is properly contained in some compact transitive
set A, ie., A ; A.If f does not admit wandering intervals, A must be a circle of
intervals.

For continuous maps of the interval, a wild attractor occurs when one has a
(metrical) attractor properly contained in a topological one. The question about the
existence of wild attractors for S-unimodal maps was asked by Milnor [30] and
proved by Bruin, Keller, Nowicki and van Strien in [11].

A C' map ¢:[0,1] — [0, 1] is called a symmetric unimodal map if g(0) =
g(1) =0, ¢'(x) # 0 for x # 1/2 and g satisfies the symmetry g(x) = g(1 — x) V x.
A particularly famous class of examples of symmetric unimodal maps is the one
of the Logistic maps g, : [0, 1]70[0, 1] defined by g,(x) = 4¢tx(1 — x), where ¢ is
a parameter varying on [0, 1]. Given a symmetric unimodal map g, let L : [0, 1]\
{1/2} — [0, 1] be the Lorenz map defined by

L {g(x) ifx < 1/2
1—gkx) ifx>1/2

Note that g o L = g o g. Indeed, If x < 1/2 then L(x) = g(x) and so, g(L(x)) =
g*(x). If x > 1/2 then L(x) = 1 — g(x) and by the symmetric, g o L(x) = g(1 —
g(x)) = g(g(x)) = ¢g*>(x). Thus, g o L(x) = ¢g*(x) forevery x € [0, 1]\ {1/2}. This
means that g and L are semi-conjugated maps, with a at most two to one semi-
conjugation and so, g and L have essentially the same dynamics. Moreover, as
L' (x)| = |¢g'(x)|, we get that

[(L™Y ()| = L' (L") (LY ()] = g/ (L o)L (x)] =
=[(go L") =1(g"" 0 g) )| = l(g") )

foreveryn > landx ¢ O, (1/2). That s, up to a sign, the derivative of points along
the orbits of g and L are the same (Fig. 2).
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Fig. 2 A symmetric unimodal map ¢ and its associated (symmetric) Lorenz map L

As the S-unimodal maps presented in [11] are symmetric and with wild attractors
contained in cycle of intervals, one can use the contracting Lorenz maps associated to
them to show, for Lorenz maps, the existence of wild attractors A g A with A being
a cycle of intervals. In contrast with the wild attractors that come from symmetric
unimodal maps, if there exists a contracting Lorenz map having wandering intervals
as well as a wild attractor, A ; A, then the transitive set A is a Cantor set.

The wild attractor generated by symmetric unimodal maps is always a minimal set.
Butitis not expected that these are the only possible wild attractors that a contracting
Lorenz map can display, even if the map does not have wandering intervals. Hence,
one can ask about the minimality (as a set) of the wild attractors for contracting
Lorenz maps, see Question 2.8.

An attractor A is called a physical attractor if it is the support of an ergodic
f-invariant probability u, called a physical measure, such that Lebesgue almost
every point x € 3(A) is a u-generic point, that is, % Z;’;(') d#ix) converges in the
weak* topology to the measure p. The simplest example of a physical attractor is
a periodic-like attractor A, in this case p = # 3 peA dp is the physical measure.
When the physical measure is absolutely continuous with respect to Lebesgue, it is
called a Sinai-Ruelle-Bowen (SRB) measure.

Milnor’s definition of an attractor A deals only with the topological aspects of
the asymptotical behavior of the orbits of the most points in 37 (A). In contrast, if A
is a physical attractor, the physical measure p gives an accurate information about
the average of time that a point will spend in a given open set V. Precisely, given
x € [0, 1]\ O;(c) and V C [0, 1], define the visiting frequency of x to V as

1 .
(V) =7 s (V) =limsup —#{0 < j <n; f/(x) € V},
n—oo N

then, for almost every point x € 37(A) and any open set V, we have that 7, (V) >
w(V). Moreover, if 4(9V) = 0 then 7,(V) = u(V) for almost every x € 3,(A).
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Nevertheless, even symmetric S-unimodal maps may not have physical attractors
(see [18]). Hence, the same is true to contracting Lorenz maps. A concept more
flexible than physical attractor, and that also gives informations about the visiting
frequency, is the concept of statistical attractors proposed by Ilyashenko. For that,
define the statistical w-limit set of a point x € [0, 1]\ O; (c) as

w}(x) ={y; T(B:(y)) > O forall ¢ > 0},

where B-.(y) = (y — &, y + €) is the ball of radius ¢ and center y.

Definition 2.2 (Ilyashenko, see page 148 of [4]) A compact set A is called a statis-
tical attractor for f if its statistical basin of attraction /6’35 (A) = {x; wji (x) C A}
has positive Lebesgue measure and there is no compact set A’ ; A so that 5} (A)is
the same as B}(A) up to a zero measure set.

A (not necessarily invariant) probability w is called ergodic if (U) =0 or 1
for every invariant set U, i.e., f~'(U) = U. It was proved by Blokh and Lyubich
[7] that every S-unimodal map without periodic attractors is ergodic with respect
to Lebesgue measure. Let us show that ergodicity implies the existence of a single
attractor, a single statistical attractor and a good behavior of the visiting frequency.

Proposition 2.3 Let X be a compact metric space, V C XaBorelsetandg : V — X
a measurable map. If g is ergodic with respect to a Borel probability y, then there
are compact sets A* C A C X such that wg(x) = A and w;‘(x) = A* for almost
every x € (\,-09 " (V). Furthermore, x — 7y 4(U) is constant for almost every
x €20 g~ (V) and every measurable set U C X.

Proof As X is compact, for every x € X := ﬂjzo ¢~ (X), we have that wy(x) and
w;‘ (x) are nonempty compact sets. Furthermore, note that wy(x) = w,(g(x)) and
w;(x) = w;(g(x)) forevery x € X.We may assume that ;1(X) > 0. As g~ (X) = X,
it follows from the ergodicity of u that u(X) = 1. Let K be the set of all non-
empty compact subsets of X with the Hausdorff metricdy (A, B) = inf{e > 0; A C
B.(B)and B C B.(A)}, where B,(C) := |, B-(x) is the ball of radius r > 0 with
“center” C C X. As X is a compact metric space, it is well known that (K, dp) is
also a compact metric space.

The proof of the existence of compact sets A and A* such that w,(x) = A and
w;‘ (x) for u almost every x € X (= X mod ) follows from the Lemma 2.4 below
applied to the maps ¢, 1) : X — K, where ¢(x) = wy(x) and ¢(x) = w;‘;(x). As
wy(x) D wjy(x) always, we get that A* C A. Finally, given a Borel set U C X, con-
sider £ : X — [0, 1] defined by £(x) = 7, 4(U). As &(g(x)) = &(x) Vx € X , it fol-
lows from Lemma 2.4 that £ is constant for p almost every x € X, proving the
proposition. (]

Although Lemma 2.4 is a well known fact for invariant measures, as we are not
assuming the invariance of p, we are providing a brief proof of it.
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Lemma 2.4 Let X and Y be separable metric spaces, g : X — X a measurable
map, [ a Borel probability on X and W C X a measurable set. If j1 is a g-ergodic
probability (not necessarily invariant) with (W) = land p : W — Y is g-invariant
(i.e., pog =) then ¢ is p-almost constant, i.e., Iy € Y such that ¢(x) =y for
p-almost every x.

Proof Consider v = @, 1 = p1 o ¢!, the push-forward of x. Suppose that the sup-
port of v, supp v, has more than one point. Say, p, g € supp v with p # q. Takee > 0
such that B.(p) N B.(q) = @. As @ is g-invariant, we get that V; := ¢~ ! (B.(p)) and
Vi := ¢ 1(B.(q)) are f-invariant sets with Vo N V| = @. As p, g € supp v, we have
that (Vp) = v(B:(p)) > 0and u(Vy) = v(B:(g)) > 0, contradicting the ergodicity
of . (]

So, it follows from Blokh and Lyubich [7] and Proposition 2.3 that every S-
unimodal map g without periodic attractors has only one attractor A, and only one
statistical attractor A*. Furthermore, wy(x) = Ay and wy(x) = Aj for almost every
x €[0,1] and 7, 4(U) = 7y 4(U) for almost every x and y € [0, 1] and every mea-
surable U C [0, 1]. Unfortunately, it is not clear that Blokh and Lyubich’s result can
have some extension to contracting Lorenz maps in general. For instance, the exis-
tence of wandering intervals is an obstruction to the Lebesgue ergodicity of a map.
Indeed, if J = (a, b) is a wandering interval, then one can consider any p € (a, b)
and V. =,-o /(U2 f7((a, p))). As V is f invariant and 0 < Leb(V) < 1,
because (p, b) NV = (J, we get that f cannot be ergodic. Atleast in one case, we can
show that f is ergodic with respect to Lebesgue measure, see Proposition 2.5 below
(as the proof of this proposition is a bit more technical, we left it to the Appendix).

Proposition 2.5 If (’);? (coHu (9;7 (cy) has empty interior and the attractor of f is
a cycle of intervals, then f is ergodic with respect to Lebesgue.

Hence, under the hypotheses of Proposition 2.5, f has a unique statistical attrac-
tor A* C A such that w}(x) = A* for almost every x. Furthermore, x — 7, (U) is
constant for almost every x and every U C [0, 1].

As f (w} @)\ {c}h) = w} (x), that is, w;‘c (x) is a forward invariant set, another way
to show that the contracting Lorenz map f has a unique statistical attractor is to
prove that its attractor A is a minimal set. Indeed, as w_’; (x) C wy(x) = A for almost
every x, if A is a minimal set, it follows from the forward invariance of w; (x) that
w;ﬁ (x) = A for almost every x. In this direction we have the following result.

Proposition 2.6 If f is infinitely renormalizable and non-flat, then the solenoid
attractor A = wy(c-) = wy(cy) is a Cantor set that is a minimal set. Furthermore,
wyr(x) = w;(x) = A for every x € B7(A), Bs(A) is a residual subset of [0, 1] and
Leb(3/(A)) = 1.

Proof As f is infinitely many times renormalizable, the (measurable) attractor A

cannot be a cycle of intervals neither a periodic-like attractor. Thus, it follows
Theorem 1 that the (measurable) attractoris a Cantorset A = wy(c_)or A = wyr(cy).
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On the other hand, by Theorem A of [8], the topological attractor A,,, of f
is a minimal Cantor set and it contains c. Thus, wy(c_) = wy(cy) = A,y and so,
A =wys(co) = wy(cy) = Asop is a minimal set. As commented before, it follows
from w’; (x) Cwy(x) = A, for almost every x, together with the minimality of A and
the forward invariance of wf;- (x) that wf;- (x) = A for almost every x. Thatis, A* = A
is the statistical attractor of f and Leb(ﬁ} (A*)) = 1. Finally, the fact that 3¢(A) is
a residual set comes from Theorem D of [§]. O

Our first question is about the existence and finiteness of statistical attractors for
general contracting Lorenz maps.

Question 2.7 Is almost every point x € [0, 1] contained in the basin of attraction of
a statistical attractor? Is the number of statistical attractors of Contracting Lorenz
maps finite?

As noted before, one can use the minimality of an attractor A to conclude that A
is also a statistical attractor. So, our second question is about the minimality of A as
a set.

Question 2.8 For contracting Lorenz maps, are all attracting Cantor sets minimal
sets?

Although this is not the focus of this paper, we want end this section mentioning
that there are many other aspects of Contracting Lorenz maps that have been studied
by many authors in the past 30 years. Some of them are on combinatorial properties
[6, 20, 25, 32, 33, 35, 36] or bifurcation and features of the parameter space of
two parameter families [14, 33, 35, 36] and characterization of complete families
[25]. There are papers about existence of attractors of positive Lyapunov exponents
[34], SRB measures [26], statistical stability of SRB measures [2], about entropy [6],
thermodynamic formalism for contracting Lorenz maps and flows [31], generalizing
chaotic contracting Lorenz maps to higher dimensions [5], etc. Finally, we want to
mention [12] where one can have a discussion about some variations of the definition
of statistical attractors.

3 Piecewise Smooth Maps of the Interval

If amap f of the interval is piecewise C* with negative Schwarzian negative (Theo-
rem 1) orif f is a non-flat piecewise Cc? maps (see [10]), then there is a finite number
of non-periodic attractors attracting almost every point that does not belong to the
basin of attraction of some periodic-like attractor. Furthermore, if A is one of those
non-periodic attractors then w,(x) = A for almost every x in the basin of attraction
of A. Hence, A is somehow transitively approximated from outside for almost every
point of its basin of attraction. Nevertheless, it is not clear that if, or when, A is a
transitive set. As we saw in Sect. 2, all attracting Cantor sets of contracting Lorenz
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maps are transitive. What we don’t know, in the Lorenz case, is if they are minimal
sets. For general non-flat piecewise C2 maps, even the transitivity of an attracting
Cantor set is not known.

An initial approach by A. Avila and V. Pinheiro aiming to build an example of a
non-transitive attracting Cantor set was the following. Let f : [0, 1] — [0, 1] be a
non-flat C? map of the interval. Suppose that f has an attracting Cantor set A such
that

Leb({x € Br(A); #(O}”(x) NJ)y=o0}) >0

for some gap J = (a, b) of A. For instance, you can assume that f is an unimodal
map. A gap of a Cantor set A C [0, 1] is a connected component of [0, 1]\ A. If
such A and J exists, one can consider a new map g : [0, 2] \ C, — [0, 2] given by

fx) ifx € [0, D)\ [a, b]
fx)+1 ifxelJ

g(x) = , .
fx—1D+1 ifx—1€(0,1]\[a,b]
f(x—=1 ifx—1elJ

whereC, = Cy U {a, b, 1,a + 1, b 4 1}. Note that g is anon-flat piecewise C2.Given
aset U D[0,1],let 1 +U :={1+x; x € U}. Note that, A; ;=AU (1 4+ A) is
an attracting Cantor set for g with w,(x) = A, for almost every x € 8,(A,) =
Br(A)U (1 4+ B(A)). Nevertheless, g(A) = A and g(1 + A) = A. That is, Ay is
not a transitive set. So, the existence of such A and J implies the existence of non-
transitive attracting Cantor sets. However, it turns out that this strategy can not be
implemented, as one can see in Corollary 3.2.

We say that the orbit O}r (x) of apointx € 3(A) isasymptotically inaccessible if
givenany p ¢ Athereisang > Osuchthat{(1 —#)p +1¢f"(x); t € (0, 1)} contains
a point of A for every n > ny.

Definition 3.1 An attracting Cantor set A has an asymptotically inaccessible basin
of attraction if the forward orbit of almost every point in 3/(A) is asymptotically
inaccessible. This is equivalent to say that #((’)}r (x) N J) < oo for almost every
x € B7(A) and every gap J of A.

Theorem 2 Let f be a non-flat piecewise C* map and A an attracting Cantor set
of f. For almost every point x € 37(A), either x belongs to a wandering interval or
the forward orbit of x is asymptotically inaccessible.

As commented before, non-flat C2 maps of the interval do not admit wandering
intervals [27]. Hence, we get the following corollary.

Corollary 3.2 The basin of attraction of any attracting Cantor set for a non-flat C*
map is always asymptotically inaccessible.

To prove Theorem 2, we need Lemma 3.3 and Proposition 3.4 below. A (not
necessarily invariant) probability p is called strongly ergodic with respect to a mea-
surable map f if u(U) = 0 or 1 for every forward invariant set U, i.e., f(U) C U.
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As every invariant set is a forward invariant one, it follows that a strongly ergodic
measure is an ergodic one.

Lemma 3.3 Let X be a compact metric space, |1 a Borel probability on X and
f : X' — X a measurable map. If 1 is strongly ergodic with respect to f and i is
f-non-singular, i.e., o f~' < p, then wwyr(x)) =1 for u almost every x € X.

Proof As p is also ergodic, it follows from Proposition 2.3 that there is a compact
set A C X such that ws(x) = A for p almost every x € X. Suppose that (1(A) =
0. In this case one can choose an open neighborhood V of A such that u(V) <
1/2.Givenn > 1,letU, = {x € X; f/(x) € VVj > n}. Asw;(x) = A for almost
every x, we have that (| J,-, U,) = 1. Hence, there is ng > 1 such that 1(U,,) > 0.
Note that p(f"(U,,)) > 0 because pio f~' < p. As U, is a forward invariant set,
f"(U,,) is also forward invariant. Thus, it follows from the strong ergodicity of p
that p( f"°(U,,)) = 1, which is a contradiction with f"(U,,) C V and (V) < 1/2.
As a consequence, 1(A) > 0. Thus, as f(A) = A, it follows again from the strong
ergodicity of p that u(A) = 1.

Proposition 3.4 Let f : [0, 1]\ Cy — [0, 1] be a non-flat C? local diffeomorphism,
with Cy C (0, 1) being a finite set. Let B(f) denote the union of all wandering
intervals of f with the basin of attraction of all periodic-like attractors of f. Let
F : U — (a, b) be the first return map by f to an interval (a, b), where U = {x €
(a,b); O}L(f(x)) N (a, b) # B}. If F(P) = (a, b) for every connected component
of U, then

Leb <ﬂ F7((a,b))\ B(fHU (’)f(Per(f)))> is either O or b — a.

n>0

Furthermore, if Leb ( ﬂnzo F7"((a,b))\ B(f)U OJ? (Per(f)))) =b—a then
Leb | (4,5 is F strongly ergodic and wg(x) = [a, b] for almost every x € (a, b).

Proof Write V = ﬁnzO F7"((a,b)) \ B(f)U (9; (Per(f))). As there is nothing
to prove when Leb(Vy) = 0, we may assume that Leb(V;) > 0.

Given n > 1, let P, be the set of connected components of F~"((a, b)). Given
x € F7"((a, b)), let P,(x) be the element of P, containing x. Note that F" (P, (x)) =
(a,b) foreveryn > l and x € F7"((a, b)).

Consider any F forward invariant set V, i.e., F'(V) C V, with positive measure
and contained in V. One example of such a set is Vj itself. Let pg € V be a Lebesgue
density point of V, i.e.,

Leb(V N B5(po))

lim
00 Leb(Bs(po))

As V C Vy, Pu(po) is well defined for every n > 1 and F"(P,(po)) = (a, b).
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Claim 3.5 diameter(P,(po)) — 0 when n — oo.

Proof of the claim As P1(po) D P2(po) D P3(po) D - - -, if lim,, diameter (P, (po))
> 0, then (o, 3) := interior([),~, P.(po)) is an interval with o« < /3 and such that
F"|(a.5 is a diffeomorphism for every n > 1. This means that a is a homterval
(see Appendix). This leads to a contradiction. Indeed, by the Homterval Lemma
(Lemma 3.9 in Appendix), («, 5) C B(f) U (’);(Per( f)), and on the other hand,
Leb((a, B) \ (B(f) U O/?(Per(f)))) > Leb((ar, ) N V)) > 0 (because py is a den-
sity point of V).

Given ¢ > 0, choose a < a’ < pg < b’ < b so that Leb((a, b) \ (¢’, b)) < €/2.
Let us write J := (a’,b’) C (a,b) =: I. As f is a first return map, we have that
FI(Pu(po)) N FL(P.(po)) =9 for every 0 < j <i < n. As a consequence, both
max{| f/(Pu(po))|: 0 < j < n} and 35~ | f/ (Pu(po))| are smaller or equal to 1.
Thus, it follows from item 1 of Proposition 3.11 in Appendix that there is K > 0,

depending only on f, ‘ZT_;’ and 'z__‘: (in particular, not depending on n), such that
(F")'(p)
———| < K,VYp,q € Jy(po) andn > 1, 2
(F")'(q) '

where J, (po) := (F"|p, ,,0))’1 (J) is the connected component of F~"*(J) containing
Po-

So, it follows from the bounded distortion given by (2) and the forward invariance
of V that Leb((¢’, ') \ V) = 0. Indeed, as (da’, ') = F"(J,(py)), we get from (2)
that

Leb(F"(J,(po) \ V)) -

Leb((a', ') \ V) < Leb(F"(J,(po) \ V)) = Leb((a’, ")) Leb(F" (Jy (po))

Leb(Jx(po) \ V)

= Leb((a, O K= o)

Here the inequality (x) follows from the fact that V. O F"(J,(po) N V) and, then,
(@, b)Y\ V C(@,b)\ F"(Ju(po) NV) = F"(J(po) \ V).

Finally, as we can take a’ as close to a and &’ as close to b as wished, we conclude
that Leb(/ \ V) = 0. That is, Leb(V) = 1 for every forward invariant set with pos-
itive measure, proving that Leb is strongly ergodic. In particular, Leb(Vy) = b — a.
Applying Lemma 3.3, we get that Leb(wr(x)) = b — a for almost every x and, by
the compactness of the w-limit, wg (x) = [a, b] for Lebesgue almost every x € [a, b]

Now, we can prove Theorem 2.

Proof of Theorem 2 As f is piecewise C2, there is a finite set C ¢ such that (1)
g := flioane,isaC 2 Jocal diffeomorphism and that (2) g cannot be extended through
c € Cy as a C? local diffeomorphism.

As (’)17 (Cy) is a countable set (so, with zero Lebesgue measure) and (’)jf (x) =
(9;r (x) forevery x € [0, 1]\ (9}' (Cy), we may consider g instead of f. That s, let us
assume that f : [0, 1]\ Cs — [0, 1]is anon-flat C 2 Jocal diffeomorphism. Without
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loss of generality, we may also assume that { f(0), f(1)} C {0, 1} (see, for instance,
Remark 11 in [10]).

Let W(f) be the union of all wandering intervals of f. We may assume that
Leb(3,(A) \ W(f)) > 0, otherwise there is nothing to be proved. Consider a gap J
of A and suppose by contradiction that thereis L C 57(A) \ W(f) withLeb(L) > 0
and such that #((’);(x) N J) = oo forevery x € L.

We say that c_ € wy(x) if there is a sequence n; — oo such that f"/(x) < cVj
andc = lim;_, o f" (x).Similarly, we define c; € wy(x).Itfollows from Theorem 1
in [10] that

wp(x) = U Of(cx) = U Of(c) U U OF (e4),
¢t €wyr(x) - cwrx) e+ €wyr(x)
cecCy ceCy ceCy

for almost every x € [0, 1]\ (Bo(f) UB(f)U (’)J?(Per(f))), where By (f) is the
union of the basins of attraction of all attracting periodic-like orbits of the map f
and B, (f) is the set of all points x such that w(x) is a cycle of intervals.

As a consequence,

A=wi) = | Of(cw).

c+ € wr(x)
ceCy

for almost every x € 37(A).
Let C” ={c €Cs; c_ ¢ ws(x) for almost every x € 57(A)} and Ct ={c €
Cs; c4 ¢ wy(x) for almost every x € F5(A)}.

Remark 3.6 Note that c_ € wy(x) for almost every x € 3y(x) and c € Cy \ C™.
Similarly, ¢4 € wy(x) for almost every x € Bs(x) and c € Cy \ C*.

Givenr > 0 let

B(r) := U(c—r,c) U U(c,c+r)

ceC™ ceCt

and set, forn > 1,
U, = {x € B7(A); OF(x) N B(1/n) = @}.

As Leb(837(A)\U,~; Ux) =0 and Leb(L) > 0, let £ > 1 be so that Leb(L N
U,) > 0. -

Consider any non-flat C> map g : [0, 1] \ C; — [0, 1] such that g(x) = f(x) for
every x ¢ U, and that g(c_) € {0, 1} for every ¢ € C~ and g(c,) € {0, 1} for every
¢ € C* (in Fig. 3 we have an illustration of such a map g).
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0 L - 0
0 c-iin ¢ 1 0 c-1/n ¢ 1

Fig. 3 The map g on the right is the deformation in the “lateral neighborhood” (¢ — 1/n, ¢) of a
critical point ¢ € C™ of the map f, on the left side of the picture, as asked in the proof of Theorem 2

Note that O;r x) = (9}' (x) forevery x € L and so wy(x) = A forevery x € L. It
follows from Remark 3.6 that g/(c_) = f/(c_) € A forevery j > 1 and c € Cy \
C™.Also, g’ (cy) = f/(cy) € Aforevery j > landc € Cy \ CT. Asg/(c_) € {0, 1}
forevery j > 1 and ¢ € C™ and, as g’ (cy) € {0, 1} for every j > landc € CT, we
get that g/ (cy) ¢ J for every j > 1 and ¢ € Cy. Furthermore, as 0J C A U {0, 1},
we get that gj ©J)yNJ =@ for every j > 1, that is, J is a nice interval for g.
Therefore, if U = {x € J ; (’);“(g(x)) NJ # W@} and G : U — J is the first return
map to J by g, we get that G(P) = J for every connected component P of U (here,
we are using that J is nice together with fact that forward orbit of critical values,
g(c+) with ¢ € Cy, does not intersect J).

As

LNU, ()G \ B(g) UO, (Per(g))).

n>0

where B(g) = Bo(g) U W(g), it follows from Proposition 3.4 that wg(x) = J for
every x € L N Uy, but this is a contradiction, as A is a Cantor set and wg(x) C
wy(x) =wys(x) = Aforeveryx € LNU,.

Now, we present two questions about piecewise smooth maps of the interval.
Question 3.7 below is a natural one, if one has in mind the conjecture of Martens
and de Melo (Conjecture 1). We say that A is a Cherry-like attractor if #A = oo and
there is an open set U such that AN U # P and wy(x) = A forevery x € U.

Question 3.7 Are all the wandering intervals of a non-flat piecewise C* map con-
tained in the basin of attraction of Cherry-like attractors?

The question below was proposed by de Melo to the authors during the Interna-
tional Conference on Dynamical Systems, Buzios, 2016.
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Question 3.8 Is there an upper bounded for the period of non expanding periodic
points of a given non-flat piecewise C* map of the interval?

Recall that a periodic point p is called expanding if |(f")'(p)| > 1, where n is
the period of p. For C? non-flat maps of the interval (that is, maps without disconti-
nuities), the answer of the question above was proved by Welington de Melo himself
in a joint work with Sebastian van Strien [27].

Appendix

A homterval is an open interval I = (a, b) such that f"|; is a homeomorphism for
n > 1. This is equivalent to assume that I N OJ? (Cy) =9. A homterval I is called
a wandering interval if I NBo(f) =@ and f/ ()N f¥(I) =P forall 1 <j <k,
where By ( f) the union of the basins of attraction of all periodic-like attractors.

Lemma 3.9 (Homterval Lemma, see [28]) Let I = (a, b) be a homterval of f. If I
is not a wandering interval, then I C By(f) U (9_; (Per(f)). Furthermore, if f is C*
with Sf < 0, and I is not a wandering interval, then the set I \ By has at most one
point.

Lemma 3.10 (Koebe’s Lemma [28]) For every € > 0, 3K > 0 such that the fol-
lowing holds: Let M, T be intervals in R with M C T and denote respectively by
L and R the left and right components of T\ M. If f : T — f(T) CRis a C?
diffeomorphism with negative Schwarzian derivative and

[F(D)] = el f(M)| and | f(R)| = €| f(M))],

then :g}’:g;: <K forx,yeM.

Proposition 3.11 [See Proposition 3 in [10] and Proposition 2 of [38]] Let
Cr C (0,1) be a finite set. If f:[0,1]\Cy — [0,1] is a C? non-flat local dif-
feomorphism, then there exists a function O(g) with O(e) — 0 as € \( 0 with
the following property: Let J C T be an interval, R, L the connected compo-
nents of T\ J and 6 :== min{|R|/|J|, |L|/|J|}. Let n be an integer and Ty D J
intervals such that f"|7, is a diffeomorphism, f"(Ty) =T and f"(Jo) =J. If
e :==max{| f/(To)|; 0 < j < n}, then

Df" ) 2 B n—l ci .
(1) |33 < (M) 60T 0 orall .y € o

(2) 30" > 0 depending only on € and Z,"l;ol | Fi(Jo)| such that, forall x, y € Jy and

. j N\ 2 n—1 ¢
1 S ] S n, we have |%| S (10;,5) 60(5)2,‘:0 |f (JU)|;

(3) 1Bt < exp (55710 (0) = f" W] + 0) TiZg 1f1 () = fI (W) for every
x,y € Jo.

Proposition 3.12 (Proposition 3.4 for maps with negative Schwarzian derivative)
Let U be an open subset of an interval (a,b) and F : U — (a, b) be a C? local
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diffeomorphism with negative Schwarzian derivative and such that F(P) = (a, b)
for every connected component of U. If B(F) denotes the union of all wandering
intervals of F with the basin of attraction of all periodic-like attractors of F, then

Leb ( () F~"((a. b))\ IB(F)) is either 0 or b — a.

n>0

Furthermore, if Leb ( ﬂnzO F7"((a, b))\ B(F)) =b—a then Leb|yyp is F
strongly ergodic and wr(x) = [a, b] for almost every x € (a, b). ([l

Proof Similar to the proof of Proposition 3.4. Essentially, one only need to replace
Proposition 3.11 by Koebe’s Lemma (Lemma 3.10).

Proof of Proposition 2.5 As the attractor A is a cycle of intervals, we get from
Theorem 1 that wy(x) = A for almost every x € [0, 1]. In particular, this forbids f

to have wandering intervals and periodic attractors. As (9}' (co)U O}' (c4+) has empty

interior, we can consider a connected component J 7# J of A \ ((9}r (c_)U (9;? (ct)).

As (9;? (c)U O]JE(C+) # A, A is not a minimal set and so it cannot be a Cherry
attractor. Hence, it follows from Theorem D of [8] that A is a chaotic cycle of
intervals. In particular, this implies that Per(f) N A = A. Thus, choose ¢, p €
Per(f) Ninterior(J) with p < ¢g. Let I be any connected component of (p, g) \
O (c-)UOF(cy). Note that [ is a nice interval, that is, O7(91) N I = ¢. Let
I*={xe I; Of(f(x))N1 # ¥} and F : I* — I the first return map, by f, to
I. As wy(x) D I for almost every x € [0, 1] and Leb of~! « Leb, we get that
Leb(I) = Leb(I*) = Leb([),~ F~1(I")). Thus, it follows from Proposition 3.12
that Leb |; is strongly ergodic with respect to F, in particular, F is ergodic.

The ergodicity of Leb |; with respect to f implies that Leb is also ergodic with
respect to f. Indeed, if V = f~!(V) and Leb(V) > 0 then, as Lebof~! « Leb
and O}(x) N I # @ for Leb almost all x € [0, 1], we get that Leb(V N I) > 0. As
F is the first return map to I, it follows that F~'(V N 1) = V N I. Thus, by the
ergodicity with respect to F', Leb(V N I) = Leb(/). Thatis, Leb(I \ V) = 0. Using
that Lebo f~! « Leb, we get that Leb([0, 1]\ V) = 0, proving that Leb is ergodic
with respect to f.
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and Yoccoz inequality, and we give a detailed account of the very recent theory of
holomorphic motions for hyperbolic multifunctions in the family f,.

Keywords Holomorphic correspondences < Holomorphic motions + Yoccoz
inequality -+ Hausdorff dimension + Matings + External rays

1 Introduction

A holomorphic correspondence on the Riemann sphere is a relation z = w given
implicitly by a polynomial equation P(z, w) = 0. Any rational map is an example
of a holomorphic correspondence. Indeed, if f(z) = p(z)/q(z), then w = f(z) iff
P(z, w) =0, where P(z, w) = wq(z) — p(z). In particular, the family of quadratic
polynomials f,.(z) = z> + ¢ (parametrized by ¢ € C) can be regarded as an analytic
family of holomorphic correspondences. The grand orbits of any finitely generated
Kleinian group can also be regarded as those of a holomorphic correspondence.
This paper is concerned with two families of holomorphic correspondences which
generalize quadratic polynomials in different ways. The firstis the family 7, : z — w

defined by
aw — 1\? aw — 1 az+1 az + 1 2
+ + =3, (L
w—1 w— 1 z+1 z+1
where a € C and a # 1, introduced in the early nineties by Bullett and Penrose [4].
They proved:

Theorem 1.1 For every a in the real interval [4,7], the correspondence F, is a
mating between some quadratic map f.(z) = z> + ¢ and the modular group T =
PSL(2, Z),

and conjectured that the connectedness locus for this family is homeomorphic to the
Mandelbrot set.
The second family is
f.z) =7"+¢, ceC, )

where > 1 is a rational number and z” = exp L(logz?). If 3 = p/q in lowest
terms, then each member of the family (2) of multifunctions is a holomorphic cor-
respondence, defined by the relation (w — ¢)? = z”. Hence f. maps every z # 0 to
a set consisting of g points. If p and g are not relatively prime, we shall use the
notation z”/¢ + ¢ to express the holomorphic correspondence (w — ¢)? = z”. Thus
72 4 c and z*/? + ¢ denote different correspondences.

In this paper we describe the dynamics of holomorphic correspondences from var-
ious perspectives, exploring the concepts of hyperbolicity and holomorphic motions
for (2) and describing results concerning a Bottcher map, periodic geodesics, and
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a Yoccoz inequality for the family of matings (1). As we shall see, the techniques
involved in the two studies are independent, but as we have already noted, both fam-
ilies can be viewed as generalizations of the quadratic family, and our techniques for
studying them are motivated by the notions of hyperbolicity, external rays, Yoccoz
inequalities and local connectivity, which are inextricably related to one another in
the study of quadratic polynomials f.(z) = z> + c. For this reason, it will be con-
venient to start by recalling some well known facts, techniques and open questions
concerning this celebrated family of maps. Excellent sources for details are the books
of Milnor [19] and de Faria and de Melo [8]. An overview of a century of complex
dynamics is presented in the article by Rees [25].

1.1 Dynamics of Quadratic Maps

Consider the action of f.(z) = z? + c on the Riemann sphere C. For any polynomial
of degree d > 2 acting on C, the point z = oo is a superattracting fixed point. Let A,
denote its basin of attraction. The filled Julia set K. = K, is the set of points with
bounded orbit, that is K, = C \ A.. The Julia set 7, = J, is the common boundary
of these regions: J. = 0K, = 0.A.. The Mandelbrot set M is the connectedness
locus of the family f.(z) = z> + c; that is the set of all parameters ¢ € C such that
J. is connected.

On a neighbourhood of oo, the quadratic polynomial f, is conformally conjugate
to fo(z) = z2 by the Béttcher map ., which is the conjugacy tangent to the identity
at infinity. In the case J. (or equivalently K ) is connected, the Bottcher map extends
to a conformal conjugacy:

0. :C\ K, - C\ Dy,

(An analogue of this map for the family F, will appear in Sect. 2.4.) The external
ray Rj € C\ K, with argument 6 € R/Z is the preimage under the Bottcher map .
of the half-line te*™? € C \ Dy, with # € (1, 00). When

lim @:l(teZWie) =7z,
t—1+

we say that R§ lands at z. We know that rational rays land [9, 19], and that repelling
and parabolic periodic points are landing points of at least one and at most finitely
many rays [19]. By Carathéodory’s theorem, if 7, is locally connected, then every
external ray lands. We remark that the Bottcher map and external rays can also
be defined for degree d polynomials, and in this case as well rational rays land and
repelling and parabolic periodic points are landing points [19]. (Hyperbolic geodesics
play an analogous role for the family F, and enjoy similar properties to external rays,
see Sect. 2.4).

Using the Bottcher map, Douady and Hubbard constructed a conformal homeo-
morphism between the complement of the Mandelbrot set and the complement of
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the closed unit disk: .
d:C\M— C\D

c — o),

proving that the Mandelbrot set is compact and connected [9]. This isomorphism also
allows the definition of parameter space external rays: the parameter ray of argument
fis Ry = ! (Rg). The celebrated conjecture that M is locally connected (known
as MLC) implies that every parameter space external ray lands. MLC is crucial
in one dimensional complex dynamics, since it has been proved ([10]) to imply
density of hyperbolicity (Conjecture 1.1) for the family of quadratic polynomials. A
rational map is called hyperbolic when all its critical points are attracted to attracting
cycles. Hyperbolic maps are among the best understood rational maps. Indeed, if the
quadratic polynomial f. is hyperbolic then (i) every orbit in the interior of the filled
Julia set K, (if non-empty) converges to the finite attracting cycle (which is unique
since f. is quadratic); (ii) every orbit outside K. converges to oco; and (iii) f. is
expanding and topologically mixing on the Julia set 7. = 0K,.. A major conjecture
in holomorphic dynamics is:

Conjecture 1.1 (Density of hyperbolicity) The set of hyperbolic rational maps is
open and dense in the space of rational maps Rat, of the same degree.

A version of this conjecture dates back to Fatou, and for this reason Conjecture 1.1 is
often known as the Fatou conjecture. Note that it concerns density of hyperbolicity,
since openness of the set of hyperbolic maps is known.

Strongly related to hyperbolicity is the concept of structural stability. A map f,
is structurally stable if f. is topologically conjugate to f,, for every c in an open set
containing a. For rational maps on the Riemann sphere J-stability, which roughly
speaking means stability on a neighborhood of the Julia set, is usually considered
[25]. Maiié, Sad and Sullivan [21] have shown that the set of J-structurally stable
rational maps is open and dense in the space of rational maps Rat, of the same degree.
Since in any family of holomorphic maps the set of hyperbolic parameters forms an
open and closed subset of the J-stable parameters, Conjecture 1.1 is equivalent to
the following (see [18]):

Conjecture 1.2 A J-stable rational map of degree d is hyperbolic.

For quadratic polynomials, Conjecture 1.1 claims that the set of ¢ such that f.(z) =
72 + c is hyperbolic is an open and dense subset of the complex plane. On the other
hand, density of J-stability implies that each of the infinitely many components
U of C\ OM is the parameterization domain of a holomorphic motion 4. : J, —
Je, ¢ € U (holomorphic motions are defined in Sect. 3.1), with base point a € U
arbitrarily fixed, and every h. being a quasi-conformal conjugacy.If U is acomponent
of C\ OM having one point a for which f,(z) = z> + a is hyperbolic, then f, is
hyperbolic for every c in U, and thus in the quadratic setting density of hyperbolicity is
equivalent to conjecturing that every component of C\ OM is hyperbolic. Note that,
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since Jy = S!, it follows that 7, is a quasicircle (image of S! under a quasiconformal
homeomorphism) for every c close to zero (more precisely, for every c in the same
hyperbolic component as ¢ = 0). (A generalization of this fact for z” + ¢ is given by
Theorem 3.4).

In the late eighties J.-C. Yoccoz made a major contribution towards the MLC
conjecture, proving that ML.C holds atevery point ¢ € 0M such that f is notinfinitely
renormalizable. A key ingredient is what is now known as the Yoccoz inequality.
It can be shown that if z is a repelling fixed point for a degree d polynomial P
with connected filled Julia set, then just finitely many external rays ~;, say ¢’, land
at z. Each ~; is periodic with the same period, and there exists p’ < ¢’ such that
P o ; = ;4p foranyi. The number of cycles of rays landing at zism = gcd(p’, ¢'),
and 0 = p/q = (p'/m)/(q’/m) is called the combinatorial rotation nhumber of P
at z.

Theorem 1.2 (Yoccoz-Pommerenke-Levininequality [13, 15, 22]) If z is a repelling
fixed point of a degree d polynomial P with connected filled Julia set, and 6 = p/q
is its combinatorial rotation number in lowest terms, then

ReT . _mq
|7 — 2762 ~ 2logd’

3)

for some branch T of log P'(2).

(A Yoccoz inequality for the family F, is developed by the first two authors in
[3]; see Theorem 1.3. While the original Yoccoz inequality is proven for degree d
polynomials, and so applies to iterates of degree 2 polynomials and hence to periodic
orbits, an inequality of the form presented in Theorem 1.3 has so far only been proved
for repelling fixed points.)

In 1994, C. McMullen made a deep contribution toward MLC, by proving that
every component of the interior of the Mandelbrot set meeting the real axis is hyper-
bolic [18]. In the late nineties, M. Lyubich [17], and independently Graczyk and
Swiatek [12] proved density of hyperbolicity for the real quadratic family. About ten
years later Kozlovski, Shen and van Strien proved it for real polynomials of higher
degree, by proving that any real polynomial can be approximated by hyperbolic real
polynomials of the same degree [14]. However, density of hyperbolicity for degree
d rational maps on Cis still open.

1.2 Dynamics of Holomorphic Correspondences

‘We now outline our main results described in this paper, concerning the families (1)
and (2): these involve generalizations of the concepts presented in Sect. 1.1. Readers
who want to see the proofs—as Welington always did—can find those concerning
family (1) in [2, 3], and those concerning family (2) in [26-29].
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Part 1. We start with an abstract definition of matings between quadratic maps
and PSL(2, Z) (Sect. 2.1) with the help of Minkowski’s question mark function.
This description dates back to 1994, when the first author together with Bullett and
Penrose [4] started investigating the family F,. The formal definitions of limit sets
and the connectedness locus Cr for this family are given in Sect. 2.2. There we also
define a mating between the modular group and a map in the parabolic quadratic
family
Peri(1) = {Pa(z) =z+1/z+A|A € C}/(A ~ —A),

and present a result which is a significant advance on Theorem 1.1, namely that for
any a € Cr, the correspondence F, is a mating between PSL(2, Z) a parabolic map
in Per; (1) (see Theorem 2.1, and Figs. 4 and 5).

We open Sect. 2.4 by recalling the existence of a Bottcher map for the family F,
when a € Cr (see Theorem 2.2), and we then use it to construct periodic geodesics
on the regular domain of F, (an analogue of periodic external rays). These land (see
Theorem 2.3), analogously to the rational external rays for the quadratic family of
polynomials.

By a quite technical and deep argument [3] it can be shown that when a is in Cr
every repelling fixed point z of F, is the landing point of exactly one periodic cycle
of geodesics. It follows, as for polynomials, that z has a well-defined combinatorial
rotation number 6§ = p/q. A geodesic in the cycle is stabilized by a Sturmian word
W4, in o and 3, of rotation number p/q (Sturmian words are defined in Sect. 2.5:
W, /4 is unique up to cyclic permutation for any given p/q).

Theorem 1.3 (Yoccoz inequality) Let a € Cr and z be a repelling fixed point of f,
whose combinatorial rotation number is 0 = p/q in lowest terms. Then there is a
branch T oflog f)(z) such that

ReT q°
=5 = ’
|7 —2mif|> ~ 4p log([q/p1+ 1)

if 0 <1/2; and

ReT q°

7 — 207 — 4(q — p)log(lq/(@ — )1+ 1)’

if 0> 1/2.

The inequalities of both Theorems 1.2 and 1.3 have geometric interpretations as
restricting the logarithm of the derivative at a repelling fixed point to a round disk
for each p/q. See Fig. 1 for illustrations.

Theorem 1.3 provides a key step in the strategy of the first two authors to prove
that the part M = Cr N {z : |z — 4| < 3} of the connectedness locus Cr- of the fam-
ily (1) is homeomorphic to the connectedness locus M; of the parabolic family
{z+—>z+ % + A: A e C}/(A ~ —A). With the result announced by Carsten Peter-
son and Pascale Roesch that M; is homeomorphic to the Mandelbrot set M [23],
this will finally prove the long-standing conjecture that My (pictured in Fig. 6) is
homeomorphic to M.
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Fig. 1 Disks in the 7-plane
permitted by the Yoccoz
inequality: on the left for the
matings F,, and on the right
for the classical case of
quadratic polynomials. (In
each case the disks plotted
correspond to all

p/q €[0,1/2] withg <8,
and to 1/16)

PartII. Section 3 describes the dynamics of hyperbolic correspondences in the family
(2). We start by defining Julia sets (see Fig. 7 for an example). The main subject is the
generalization of holomorphic motions, which involves the construction of a solenoid
associated to the Julia set of f.(z) = z” + ¢ (Theorem 3.4). For parameters c close to
zero, the dynamics of z2% + ¢ on its Julia set 7. is the projection of a (single-valued)
dynamical system f, : U — U given by as holomorphic map defined on a subset
U C C?. The maximal invariant set of f, is a solenoid whose projection is 7. The
projection of the holomorphic motion in C? yields a branched holomorphic motion on
the plane, as defined by Lyubich and Dujardin [11] for polynomial automorphisms
of C2. Branched holomorphic motions are described in greater generality for the
family (2) in [29].

The advantage of the solenoid construction is that it makes possible to apply
certain techniques of Thermodynamic Formalism to the family of maps f. : U — U
and use them to estimate the Hausdorff dimension of .7.. For example,

Theorem 1.4 (Hausdorff dimension) If g> < p then for every c sufficiently close to
zero,
dimgy J. < 2,

where dimy denotes the Hausdorff dimension of J..

In the family of Fig. 2 we have p = 5 and ¢ = 2. Since 2% < 5, it follows that
J. is the projection of a solenoid having zero Lebesgue measure. The assumption
q2 < p may not be sharp. The essential idea is that dimy J. — 2 as 3 — 1, which
is supported by many experiments.

Notation and Terminology.

1. Holomorphic correspondences are denoted by F, G, . . . in the context of matings,
or by f, g, ... when studying hyperbolic multifunctions.

2. By the term multifunction we mean any multivalued map. Every multifunction
maps points to subsets.



58 S. Bullett et al.

Fig. 2 Julia sets of 7% + ¢, where [ =5/2 is fixed. The values of ¢ are, respectively, 0.05, (1 +
i)/5, 0.7 and 2 + i, read from upper-left to bottom-right. 7. is a circle at the singularity ¢ = 0,
but the first figure reveals that 7, is the shadow of a solenoid for every ¢ close to zero with ¢ # 0.
As we perform the branched motion, more bifurcations are added to 7... The complexity increases
up to a certain moment (third to fourth steps) when the process reverses and 7. becomes a Cantor
dust. The first three are connected and the fourth is a Cantor set. In this family, 7. is a Cantor set
for |c| sufficiently large

3. St={zeC: |zl =1}, @:(CU{OO}, H={z=x+4+iyeC:y >0}, and
fr=fo-of.
—_—

4. T' = PSL(2, Z) is the modular group consisting of all M&bius transformations

az+b
H—’
cz+d

where ad — bc = 1 anda, b, ¢, d € Z. The operation is the standard composition
o. The generators of the modular group that we shall use are the maps

z
2+ 1

a(z) =z+1land B(z) =
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Consider
Pz,w)=(w-—-+1D)(wiz+1) —2)=0. “4)

The grand orbits of PSL(2, Z) on H are identical to those of the holomorphic
correspondence H : C — C determined by P(z, w) =0.

2 Mating Quadratic Maps with PSL(2, Z)

Recall that in the case of hyperbolic quadratic polynomials f.(z) = z> + c, the topo-
logical mating between f, and f,/ is the map

K. UKy K. UKy
—_—

~ ~

g:

induced by f, and f, on the quotient space, where ~ is the smallest closed relation
such that ¢.(z) ~ ¢~ (7), for every z € S' (¢, is the boundary extension of the
Bottcher coordinate and K, is a copy of the filled Julia set). The two maps are
matable if the quotient space is a sphere, and g can be realized as a rational map.
By applying Thurston’s characterization of rational maps among critically finite
branched coverings of the sphere, Tan [30] and Rees [24] proved that two quadratic
polynomials f,, f. with periodic critical points are matable if and only if ¢ and ¢’
do not belong to complex conjugate limbs of the Mandelbrot set.

Matings can also be constructed between Fuchsian groups: by applying the Bers
Simultaneous Uniformization Theorem certain Fuchsian groups can be mated with
(abstractly isomorphic) Fuchsian groups to yield quasifuchsian Kleinian groups. (See
[7] for a discussion of matings in various contexts in conformal dynamics.) What is
a surprise when first encountered is that certain Fuchsian groups can be mated with
polynomial maps (see Sect. 2.1). This is achieved in a larger category of conformal
dynamical systems, containing both rational maps and finitely generated Kleinian
groups, the category of holomorphic correspondences on the Riemann sphere. These
are multifunctions F : C — C, for whichAthere is a polynomial P(z, w) in two
complex variables such that F(z) = {w eC:P(z,w) = 0}.

2.1 Mating Quadratic Polynomials with PSL(2, 7))

Examples of matings between quadratic polynomials and the modular group were
discovered by the first author and Christopher Penrose in the early *90s. To understand
their existence we first consider how one can construct an abstract (topological) model
(see also [1, 4] for more details).
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Topogical Mating: Minkowski’s Question Mark Function. Let

h:R.g— [0, 1]
denote the homeomorphism which sends x € R represented by the continued fraction

1

[x0; x1, X2, ... = X0+
X1+
X2 +

X3+ ...

to the binary number

h(x)=0.1...10...01...1...
—— S ——

X0 X1 X2

This is a version of Minkowski’s question mark function [20]. It conjugates the
pairof maps o : x — x + 1, 8 : x — x/(x + 1) to the pair of maps t — /2,1 —
(t + 1)/2 (the inverse binary shift).

If the Julia set J(f,) of f. : z — z> + c is connected and locally connected then
the Bottcher map ¢, : C \D — C \ K (f,) extends to a continuous surjection S' —
J(f.), which semi-conjugates the map z — z*> on S (the binary shift) to the map
Je on J(f:). We deduce that we may use the homeomorphism & described above to
glue the action of £.~! on J(/f.) to that of c, 3 on R>(/0~cc}- Equally well we can
glue the action of fc’1 on J(f.) tothatof o~ !, 57! on Rfo/{ow,w}.

We now take two copies K_ and K of the filled Julia set K, of f. and glue them
together at the boundary point of external angle O to form a space K_ v K. Each
point z € K, has a corresponding z’ defined by f,.(z') = f.(z). Consider the (2 : 2)
correspondence defined on K_ Vv K by sending

eze K tof.(z) e K_andtoz7 € Ky;

eze K to f(z) € K.

It is an elementary exercise to check that this correspondence on K_ Vv K can
be glued to the correspondence defined by « and 3 on the complex upper half-plane
using the homeomorphisms Rzo/{o ~ 0o} - 0K_ and RSO/{O ~ —o0} = 0K,
defined above. Thus we have a topological mating between the action of the modular
group on the upper half-plane and our (2 : 2) correspondence on K_ Vv K.

Holomorphic Mating. Reassured by the existence of this topological construction,
we define a (holomorphic) mating between a quadratic polynomial f,, ¢ € M and
I' = PSL(2,7Z) tobea (2 :2) holomorphic correspondence F such that:

1. there exists a completely invariant open simply-connected region 2 and a con-
formal bijection ¢ : € — H conjugating F|q to |y and (|m;

2. C\Q=A=A_UA,, where A_ N A; = {P} (asingle point) and there exist
homeomorphisms ¢4 : Ay — K, conjugating respectively F|,_ to f.|x, and
Fla, to f7 k.
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In 1994 the first author and C. Penrose proved that for all parameters a in the real
interval [4, 7], the correspondence F, is a mating between a quadratic polyno-
mial f.(z) =z>+c, ¢ € [-2,+1/4] C R and the modular group I' = PSL(2, Z)
(see [4)).

2.2 The Regular and Limit Sets of F,

Consider the family of holomorphic correspondences 7, : C - C, defined by the
polynomial equation (1). The change of coordinate ¢, : C — C given by

az+1
al\l) =
%@ z+1
conjugates JF, to the correspondence
Jo Cov((y), &)

where J is the (unique) conformal involution fixing 1 and a, and Covg2 is the deleted
covering correspondence of the function Q(z) = z°, thatis to say, the correspondence
defined by the relation

Ow) — Q@)

w—7z

=0, ie 72+ zw + w? = 3.

So F, and J o COVOQ are the same correspondence in different coordinates, and in
that sense we write 7, = J o Cov(go' .

By a fundamental domain for Covg (respectively J) we mean any maximal open
set U which is disjoint from COVOQ (U) (respectively J(U)). We require our funda-
mental domains to be simply-connected and bounded by Jordan curves (see Fig. 3).

Klein Combination Locus. Let P = 1 denote the common fixed point of Cové2 and
J. The point P is a parabolic fixed point. The Klein combination locus IC is the subset
of C consisting of all a for which there are fundamental domains A¢,, and A, of
COVOQ and J, respectively, such that

Acoy UA; =C\ {P).

We call such a pair of fundamental domains a Klein Combination pair.

In [2] we show that {a € C: |a — 4| <3,a # 1} C K, and that when a is in
the interior of this disk the standard fundamental domains (see Fig. 3) are a Klein
combination pair. More generally we prove that for every a € I, we can always
choose a Klein combination pair whose boundaries dAc,, and QA ; are transversal
to the attracting-repelling axis at P.
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Fig. 3 Standard
fundamental domains for
Covg and J. The curve in
blue is Covg ((—o0, —2]).
The region to the right of this
curve is a fundamental
domain Ac,y of CovOQ . The o2
unbounded region
determined by the red circle
is a fundamental domain A
of the involution J. The
parabolic fixed point P is the
point 1

Now suppose a € K and let A, and A, be a corresponding pair of fundamental
domains of COVOQ and J such that 9Ac,, and QA are transversal to the attracting-
repelling axis at P. Itfollowsthat P € F) (Ay), for everyn, and F, (A ) is compactly
contained in A; U {P}. By definition,

Ay =) Fa(A)) 6)

n=1

where F, = J o COVOQ, isthe forward limit set of F,. Similarly, since A¢,, is forward
invariant, the complement of Ac,, is invariant under 7 "and

Mg = [V F"(C\ Acor) (7)

n=1

is the backward limit set of F,. The sets A, _ and A, 4 have only one point in
common, the point P. Their union, A, is the limit set of F,. An example of a plot
of a limit set of 7, is displayed in Fig. 4. (In this plot we use the original coordinate
system of (1), so P = 0 and J is the involution z <> —z.)

We have ]—'a_' (Aq—) = A4 —, and the restriction of F, to this setisa (2: 1) single-
valued holomorphic map denoted by f,. The involution J maps A, _ onto A, 4 and
determines a conjugacy from f, to

.7:;1 tAa+ = Aoy
The regular domain of F, is Q2, = C \ A,. This set is completely invariant under
F, (forward and backwards). By the Klein Combination Theorem it can be shown
that if €2, contains no critical points it is tiled by copies of the intersection of any
pair of Klein combination domains, [6].
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Fig. 4 A connected limit set
for F,, where
a =456+ 0.42i

Fig. 5 Julia set of the hybrid
equivalent member of
Per (1)

Connectedness Locus. The connectedness locus Cr of the family F, is the subset
of K consisting of all a such that the limit set A, is connected. When a € Cr, the
regular domain €2, contains no critical points, and moreover is simply connected.

Bullett and Penrose [4] conjectured that for every a € Cr, the correspondence
F, is a mating between some quadratic map f.(z) = z> + ¢ and the modular group
PSL(2, Z). More recently, this conjecture was settled affirmatively by Bullett and
Lomonaco [2], provided the quadratic family is replaced by a quadratic family of
parabolic maps (see Figs. 4 and 5).
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Fig. 6 A plotof Mr = Cr N{z : |z — 4| < 3}, which is conjecturally homeomorphic to the Man-
delbrot set [4]

2.3 Mating Parabolic Maps with PSL(2, 7).

The family Per;(1) consists of quadratic rational maps of the form P,(z) =1+
1/z+4+ A, where A € C. The maps in Per;(1) all have a persistent parabolic fixed
point at oo and critical points at 1. The connectedness locus for the family Per; (1)
is the parabolic Mandelbrot set M|, which has been proved to be homeomorphic to
the Mandelbrot set by Petersen and Roesch [23]. We say that F, is a mating between
P, and PSL(2, Z) if:

1. on the completely invariant open simply-connected region €2, there exists a con-
formal bijection ¢, : 2, — H conjugating F, : 2, — 2, to a|y and (B|y; and

2. the (2:1) branch of F, which fixes A, _ (given by the holomorphic map f,) is
hybrid equivalent to P4 on the backward limit set A, _.

In [2], using the theory of parabolic-like maps developed by the second author
(see [16]), the first two authors proved the following (see Figs. 4 and 5):

Theorem 2.1 For every a € Cr, the correspondence F, is mating between a
parabolic map in Per, (1) and PSL(2, Z).

The following conjecture has been open for at least 20 years [4] (Figs. 6, 7, 8):
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Fig.7 The Julia setof z > z3 +2

Fig. 8 Filled Julia sets in the family f.(z) = % + ¢, where B = 5/4. In the first figure (left), K.
is a full compact set corresponding to ¢ = 3 + 2i. In the second we have a Carpet for ¢ = 26. If |c|
is sufficiently large, K is a Cantor repeller. Since the Mandelbrot set M is contained in a disk of
radius 2 around the origin, the fact that ¢ = 26 and 7, is still connected seems odd. However, this
is one of the main features of the family (2), and it is experimentally clear that Mg tends to cover
the plane as § — 1+
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Conjecture 2.1 The Mandelbrot set is homeomorphic to My-.

The first two authors have developed a detailed strategy for proving that Mr is
homeomorphic to M. This, together with the proof by Petersen and Roesch that
M, is homeomorphic to M, would finally prove Conjecture 2.1. A key step in the
strategy to prove that M is homeomorphic to M| makes use of a Yoccoz inequality
for matings, which we prove using a generalization of the technique of external rays
(the subject of the next section).

2.4 Periodic Geodesics

Bottcher Coordinates. Consider the holomorphic correspondence H on the upper
half-plane obtained from the generators a(z) =z + 1 and B(z) = z/(z+ 1) of
PSL(2, Z), i.e. defined by the polynomial equation (4). As part of the proof of The-
orem 2.1 it is shown in [2] that:

Theorem 2.2 (Boéttcher map) If a € Cr, there is a unique conformal homeomor-
phism @, : Q, — H such that

Ho@azgoaof’w

By the Schwarz lemma, the Bottcher map is an isometry with respect to the
hyperbolic metric, and maps geodesics to geodesics. Geodesics in €2, or equivalently
in H, play a role for the correspondences F, analogous to the role played by external
rays for quadratic polynomials f,.

Periodic Geodesics Land. We call a geodesic vy in the hyperbolic plane periodic if
W~ = ~ for some W in the semi-group generated by « and [, that is

W=giogpo---0g,

where n > 1 and each g; € {«, 8}. (Note that the decomposition of W must include
both « and 3, since o and 3", being parabolic, do not preserve any geodesic.)
Since H is geodesically complete, ~ is a curve R — H, and the limits

Y(=00) := lim ~(t), y(c0):= lim ~(r)

are by definition the landing points of ~. Every periodic geodesic in the hyperbolic
plane lands: its landing points are in R \ {0}.

If a € Cr, the regular domain is a hyperbolic Riemann surface, that is, it has
a unique complete metric of constant curvature —1 determining its geometry. A
geodesic 4 in Q,, is called periodic if p, o 4 is a periodic geodesic of H.

We say that a periodic geodesic 4 : R — , lands if the limits 4(oc0) and 4(—00)
exist. They are the right and left landing points, respectively.
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Theorem 2.3 Ifa € Cr, then every periodic geodesic lands. The left landing point
belongs to A, _ and the right landing point is in A, ..

Asacorollary, the Béttcher map extends to all landing points of periodic geodesics.
Indeed it extends to all landing points of preperiodic geodesics, and moreover these
correspond under ¢, to the set of all quadratic irrationals in R (the set of real numbers
with preperiodic continued fraction expansions).

2.5 Repelling Fixed Points, and Sturmian Sequences

The following result is again analogous to a result for quadratic polynomials, but
the proof is quite technical and deep (even more so than in the case of polynomials,
which is already difficult, see [3]), and at present we only have a proof for repelling
fixed points, whereas for polynomials it is known for repelling and parabolic cycles:

Theorem 2.4 A repelling fixed point in A_(F,) of a correspondence F, witha € Cr
is the landing point of exactly one periodic cycle of geodesics.

This theorem has the consequence that to a repelling fixed point z € A_ of a corre-
spondence F, with a € Cr we can associate a periodic geodesic 4 which lands there,
and a finite word W in « and (8 which fixes ¢, o 7. Letting f, denote the (locally
defined) branch of F, which fixes z, we deduce that since f, is locally a homeomor-
phism the cyclic order of the images of 4 around z is preserved by f,. Thus f, has a
well-defined combinatorial rotation number around z, and this number is rational.

Sturmian Sequences. Recall that a sequence (s;) € {0, 1}V is Sturmian if, for every
n, the number of 1’s in any two blocks of length n differs by at most one. There is
an obvious equivalent definition for bi-infinite sequences.

If (s;) is Sturmian, then the points of the orbit of x = 0.sys, ... (binary) under
f(2) = z* on the unit circle are necessarily in the same order as the points of some
rigid rotation Ry, and vice versa. This 6 is uniquely determined; it is by definition
the rotation number of (s;). Equivalently, 6 is the limiting frequency of 1’s in the
sequence [5].

For each rational p/q (modulo 1) in lowest terms, there is a unique (up to cyclic
permutation) finite word W, ,, = (s;) € {0, 1}¢ such that the orbit of x = 0.57. .5,
under f(z) = z> is in the same order around the circle as the points of an orbit
of the rigid rotation R/, (here s7...s, denotes a recurring block). For example
Wi,3 = 001, and Wy;5 = 00101.

We call W,,, the finite Sturmian word of rotation number p/g, since the bi-
infinite sequence made up of repeated copies of W/, is the unique (up to shift)
periodic Sturmian sequence of rotation number p/q. Finally we remark that there
is nothing special about the symbols 1 and 0: identical terminology for Sturmian
sequences and words may be applied if we replace 1 and O by « and 3 respectively.
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We now return to the situation that a € Cr, and z is a repelling fixed point of
fo i Aa— — A, _. If 4 is a periodic geodesic landing at z, it has a combinatorial
rotation number p/q (by Theorem 2.4), and any finite word W in v and 3 which fixes
©q © 4 is Sturmian, hence (a cyclic permutation of) a power of W, ,. By establishing
and applying bounds for the eigenvalues of the Sturmian words W, in o and 3, we
prove our Yoccoz inequality, Theorem 1.3 (see [3]).

3 Hyperbolic Correspondences

We now turn to the study of the one parameter family of holomorphic correspon-
dences defined by (2). This family is perhaps the simplest generalization of the
quadratic family as a multifunction.

It will be useful to recall some well-known facts directly related to the dynamics
of f.(z) = z° + ¢ when 3 > 1 is a rational number.

Hyperbolic Quadratic Maps. The notion of hyperbolicity can be given in several
equivalent forms. According to the simplest one, f.(z) = z> + ¢ is hyperbolic if
fJ(0) converges to an attracting cycle. Since the fixed point at infinity is an attracting
cycle, every parameter in the complement of the Mandelbrot set corresponds to a
hyperbolic map.

Since every finite attracting cycle attracts the orbit of a critical point, the map f,
can have at most one finite attracting cycle. Any quadratic map with a finite attracting
cycle corresponds to a point in the interior of the Mandelbrot set M, and an equivalent
form of the Fatou conjecture states that this is the only possibility for a quadratic
map in the interior of M.

The closure of attracting cycles is denoted by J.*. It turns out that f. is hyperbolic
iff the basin of attraction of J} is C\ J.. For this reason, we call J* the dual Julia
set of f..

This equivalent definition of hyperbolicity should be preserved in any generaliza-
tion, mainly because of its intrinsic dynamical significance.

We shall use this equivalent property to define hyperbolic correspondences and
centers in the family f.(z) = 7% + ¢, but first we need to extend the concepts of orbit,
Julia set and multiplier of a cycle.

Cycles. Consider the family (2). Every sequence (z;)g° for which the points satisfy
zi+1 € £.(z;) is a forward orbit. A backward orbit is characterized by z; 4 € £ (z)).
If ¢ : U — C is an injective holomorphic map from a region U of the plane such
that (z) € f.(z), for every z in U, then  is a univalent branch of f.. By a cycle of
length n we mean any periodic forward orbit with minimal period n. The quantity

n—1
A= H%’;(Zi),
0
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where ¢; is the unique univalent branch taking z; to z;41, is the multiplier of the
cycle. If z = 0 then there is no univalent branch defined at z; if some point of the
cycle is 0, then by definition A = 0.

The cycle is repelling if |\| > 1, and attracting if || < 1.

Julia Sets, Hyperbolic Correspondences. The Julia set of f., denoted by 7, is the
closure of the union of all repelling cycles of f.. Similarly, the dual Julia set J* is
the closure of the union of all attracting cycles in C.

The w-limit set of a point z, denoted w(z), consists of every ( such that z;, —
¢ as k — oo, for some bounded forward orbit (z;) starting at zo = z, and some
subsequence (z;, ). We may use w(z, f.) to make explicit the dependence on the
dynamics of f,.

The dual Julia set is a hyperbolic attractor if J7 is forward invariant and supports
an attracting conformal metric p(z)|dz|, in the sense that

sup [l¢" @, < 1,
29

where the sup is taken over all z € J and all univalent branches ¢ of f, at z. It
is implicit in this definition that 7 does not contain the critical point, for then no
univalent branch is defined at 0.

If J is a hyperbolic attractor, then the basin of attraction of J} U {oo} is well
defined and consists of all z such that w(z) C J U {oo}.

Definition 3.1 We say that f. is hyperbolic if J* is a hyperbolic attractor and the
basin of attraction of 7" U {oo} is ¢ \ Je.

Connectedness Locus. For every c there is bounded disk B centered at 0 whose com-
plement is invariant under f., and every forward orbit of a point in C \ B converges
exponentially fast to co.
We define
Ko =()£"(B) (8)

n>0

as the filled Julia set of f.. A point z belongs to K, iff there is at least one bounded
forward orbit under f, starting at z.

A connected compact subset of the plane is full if its complement in the Riemann
sphere is connected.

Theorem 3.1 If 3 = p/q and p is prime, then K. is either connected or totally
disconnected. If 0 € K, then K is full.

The connectedness locus M g of the family f,. is by definition the set of all parameters
¢ for which K, is connected.
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Another important subset of the parameter space is
Mpo={ceC:0e K.} ©)]

Notice that both sets generalize the definition of Mandelbrot set for the quadratic
family, but if 3 is not an integer, there is no reason to believe that Mz = Mg . In
view of Theorem 3.1,

Mg C Mg,

if p is prime.
What is the structure of K. when c belongs to Mg\ Mg ? Below we answer
this question.

Carpets. A set A C C is a hyperbolic repeller of f. if (i) £~ I(A) = A; and (ii) A
supports an expanding conformal metric defined on a neighborhood of A. (See [29]).
A filled Julia set K. is a Carpet if (i) K. is connected but not full; and (ii) K. is a
hyperbolic repeller.

Intuitively, every Carpet presents holes, and by the contraction of the branches of
f-!, every hole comes with infinitely many small copies.

We say that K is a Cantor repeller if K. is a hyperbolic repeller and also a Cantor
set. In this case, J. = K,.

Theorem 3.2 If 3 = p/q and p is prime, then K. can be classified as

1. full if c € Mp,o;
2. a Carpet with K. = J., if c belongs to Mg\ Mg o; and
3. a Cantor repeller if c is in C\ M.

Centers. A center is a point ¢ of the parameter space such that
g.(0) = {0},

for some n > 0, where g. : K. — K, is the restriction of the correspondence f, to
the set K, (g, is well-defined, since every point of K, has at least one image in K,).

This definition is motivated by a well-known fact from the quadratic family, where
every bounded hyperbolic component U has a center [9, 10] defined as the unique
point ¢ € U for which the multiplier of the finite attracting cycle of f, is zero.

Hence, in the case of the quadratic family, the number of bounded hyperbolic
components is countably infinite, and every such component is encoded by a solution
of f(0) =0, for some n > 0.

Simple Centers. A center is called simple if there is only one orbit of O under g,
and this orbit is necessarily a cycle containing 0.
LetS; = {a € C:a?! = —1}, ford > 1. Forevery pair (d, a) in the infinite set

Jtd} x 8,

d>1
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the point a is a simple center of family of the holomorphic correspondences f, : z —
w given by (w — ¢)? = 72 Indeed, it was shown in [29] that the first two iterates of
Ounderf,are0—~ a+—> a" +a =0and0 — a — —a" +a = —2a", where —2a"
is a point in the basin of infinity of f,.

Open Problems. A fundamental program for the family f.(z) = z° + c is given by
the following problems:

I. Show that every perturbation of a center corresponds to a hyperbolic correspon-
dence;
II. Show that the set M}, of hyperbolic parameters is indeed open and every com-
ponent of M/; is encoded by a center;

III. Decide if the set of parameters for which ¢ > 7 is continuous in the Haus-
dorff topology is open and dense (computer experiments seem to support this
statement);

IV. Show that every component of C \ .M is hyperbolic.

V. Classify Julia sets with zero Lebesgue measure.

The first Problem I can be solved with a generalization of the proof of Theorem 3.3
(see [27] for a detailed exposition); the second is very realistic but still unresolved;
the third is in many aspects a generalization of the celebrated work of Maiié¢, Sad and
Sullivan [21] (see also [29] and Sect. 3.1 for a discussion of holomorphic motions in
the family (2)); and the fourth and fifth may be as difficult as the Fatou conjecture
(which has been open for a century). Indeed, the Fatou conjecture is equivalent to the
following assertion [21]: if ¢ is in the interior of the Mandelbrot set, then the Julia
set of f.(z) = z> + ¢ has zero Lebesgue measure. Theorem 1.4 is perhaps the first
result towards this classification.

Theorem 3.3 (Hyperbolicity) If c is in the complement of Mg, or c is sufficiently
close to a simple center, then £, is hyperbolic.

3.1 Holomorphic Motions

Quasiconformal deformations of Julia sets in the family f. can be explained by the
theory of branched holomorphic motions introduced by Lyubich and Dujardin [11]
for polynomial automorphisms of C2. For more details, see [29].

First, let us recall some classical facts about holomorphic motions.

Let A € C" and U C C be an open set. A family of injections #, : A — C"isa
holomorphic motion with base pointa € U if (i) h, is the identity, and (ii) ¢ > h.(z)
is holomorphic on U, for every z fixed in A.

Branched Holomorphic Motions. Let A and U be subsets of C and suppose U
open and nonempty. A branched holomorphic motion with base point a € U is a
multifunction h : U x A — C with the following properties: (i) h(a, z) = {z}, for
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every z € A. In other words, h, = h(a, -) is the identity; and (ii) there is a family F
of holomorphic maps f : U — C such that

e =],

ZEA feF

where G(f) = {(z, fz); z € U} is the graph of f and G,(h) is the graph of ¢
h.(2).

The key difference in the definitions of branched and (non-branched) holomorphic
motion is that bifurcations are allowed in the branched family, so that h.(z) is a set
instead of a single point.

3.2 Solenoidal Julia Sets

Recently, Siqueira and Smania have presented another way of interpreting branched
holomorphic motions on the plane as projections of (non-branched) holomorphic
motions on C2. The method is general and applies to every hyperbolic Julia set [29],
but we shall restrict to bifurcations near ¢ = 0.

There is a family of holomorphic maps f. : Uy — V, such that Uy and V| are
open subsets of C?, the closure of Uy is contained in Vj, and the maximal invariant
set

Se=[£"(Vo)
n=1

is the closure of periodic points of f,. (All periodic points are repelling in a certain
generalized sense, see [29]). This description holds for every ¢ in a neighborhood
of zero. The dynamics of f. on 7, is a topological quotient of f.: S. — S, in the
sense that 7(S,) = J. and 7 sends two points in S, related by f, to two points in 7,
related by f.: 7 f.(x) is an image of 7(x) under f,, for every x € S..

Let . : S; — J. denote the projection (z, w) > z.

Theorem 3.4 (Holomorphic motions) There is a holomorphic motion h, : Sy — C?
with base point ¢ = 0 such that

1. h.(So) = S and h. is a conjugacy (homeomorphism) from fy : So — So to f. :
S. —> S..

2. the projected motionh.(z) = 7. o foomy ! (2) is a branched holomorphic motion
mapping Jo = S' to J. = h.(S").

3. So is a solenoid, and £, is hyperbolic, for every c in U.

See [29] for the solenoidal description of Sy (indeed, Sy is the Williams-Smale
solenoid for certain values of p and g).
In Fig. 2, the motion of 7, is illustrated in four steps.
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3.3 Conformal Iterated Function Systems

Dual Julia sets 7 in the family (2) often appear as limit sets of conformal iterated
function systems (CIFS). This phenomenon is easy to explain when c is close to zero,
and very convenient to motivate further generalizations.

Indeed, using the contraction of f. around z = 0 one can prove that for every
¢ # 0 close to zero, there is an open disk D such that D; = f.(D) is another disk
avoiding zero and compactly contained in D.

Since D; is simply connected, there are ¢ conformal branches f; : Dy — Csuch
that f.(z) = {fj(z)};, for every z € D;. Moreover, the images f;(D;) are disjoint
disks. It follows that

fo(Dy) C fe(D) = Dy;

and the family of maps f; : Dy — Dy is a CIFS. The limit set of this CIFS is
A =nN,w"(D;), where

q
w(A) = £,

Jj=1

for any A C D;. The most important fact derived from this construction is that A is
the closure of attracting periodic orbits: A = J.

This analysis has many generalizations, including holomorphic motions and Haus-
dorff dimension. Theorem 1.4, for example, is stated in great generality in [28].

In [27] we give a general account establishing a rigidity result which states that 7 *
is finite at simple centers, but any perturbation of ¢ yields a hyperbolic correspondence
whose dual Julia set is a Cantor set. In the case of ¢ close to zero, for example, J*
is either a Cantor set if ¢ # 0 (indeed, A comes from a CIFS without overlaps) or a
single point set J; = {0}.
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A. de Carvalho, T. Hall and P. Hazard

Abstract We give two general constructions of braid equivalences which exist
between certain deformations of the 2-branched Horsehoe map. We then give numer-
ical evidence suggesting that these constructions of braid equivalences are always
realised in the Hénon family.

Keywords Combinatorial dynamics - Braids « Surface homeomorphisms

1 Introduction

During the last three decades of the twentieth century, much effort was devoted to the
study of families of low-dimensional dynamical systems depending on parameters.
There is today a very thorough theory explaining the dynamics of families of one-
dimensional (real and complex) endomorphisms. The dynamics of the real quadratic
family f,(x) = a — x?, for example, is nearly completely understood [12]. In the
1970s Hénon introduced the family1 which now bears his name, a two-dimensional
analog of the quadratic family: F, ;(x, y) = (f,(x) — by, x). This is a family of
plane diffeomorphisms depending on two parameters which, for b = 0, degenerates
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to the quadratic family. In contrast to the quadratic family, and despite the existence
of several beautiful results about it, our understanding of the Hénon family is still
rather rudimentary. While there are many similarities between the two families which
make it possible to use knowledge of the former to help in understanding the latter,
there are also many fundamental differences which demand that different techniques
be developed.

One of the most basic aspects of the dynamics of a parametrized family is the
way in which the periodic orbit structure changes as the parameters vary. This article
is concerned with periodic orbits in Hénon family in the parameter regions close to
degeneration, and exploits both similarities and differences between the quadratic
and Hénon families.

Periodic orbits of endomorphisms of the real line are specified by their associated
cyclic permutation: the way that their points, ordered on the line, are permuted by
the endomorphism. For homeomorphisms of the plane such as Hénon maps, the
analogous specification, introduced by Boyland [2, 3], is the braid type. If F: R*> —
R? is an orientation-preserving homeomorphism and P is a periodic orbit of F, then
the braid type bt(P, F) is the isotopy class of F relative to P, up to topological
conjugacy. In other words, the braid type of P is determined by fixing the action
of F on P but allowing it to be deformed by isotopy in the complement of P, and
also allowing a global change of coordinates.

The periodic orbit structure of maps in the quadratic family—or, indeed, of any
unimodal map f—is easily understood using techniques of kneading theory. The
critical point c is used to divide the line into left and right halves, and the kneading
sequence of f is the itinerary of the critical value f (c): the sequence of lefts and rights
along the orbit (f"(c)),>1. There is then a simple recipe for generating the set of
all itineraries of points x € R from this kneading sequence. Permutations associated
to periodic orbits of unimodal maps—which are called unimodal permutations—
are determined by the itineraries of the points on the orbit. The set of permutations
of periodic orbits of a unimodal map f is therefore determined by the kneading
sequence of the map, and can be enumerated by a straightforward algorithm.

The situation for the Hénon family is quite different. We have very little idea, to
this day, of the way in which braid types of periodic orbits are built up in the family,
going from none to a full horseshoe’s worth, as the parameter a increases. In fact,
by the result of Kan, Kogak and Yorke [11], periodic orbits of the Hénon family are
both created and destroyed near every homoclinic tangency, and it is not even known
whether or not all periodic orbits which appear in the Hénon family have the same
braid type as periodic orbits of the horseshoe.

The diagrams in Fig. 1 show regions in the parameter plane for the Hénon family
where attracting periodic orbits of periods 8, 9, 10, and 11 were found. (Similar loci,
for various periods, were first considered by El Hamouly and Mira [7].) These plots
have a very rich structure, and understanding how the dynamics varies in the Hénon
family includes explaining this structure. In this paper we are particularly interested
in the hook-like structures, also called swallow configurations by Milnor [13] in the
one-dimensional cubic case. These structures are open sets consisting of a main body
and four limbs, two of which intersect the a-axis in two distinct (small) intervals.
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(a) (b)

g =

(0 d)

Fig.1 Scatterplots of parameters (a, b) € [1.75, 2.00] x [0.0, 0.25] for which the Hénon map F, ;,
possesses an attracting periodic orbit of period p = 8,9, 10, 11. One of the “hook-like” structures
for period 8 can be seen intersecting the a-axis in two intervals at approximately a = 1.8517 and
a = 1.87 respectively

Each of these hooks indicates that there is one attracting periodic orbit in the Hénon
family which can be deformed into two different attracting periodic orbits of the
quadratic family. That is, we expect each of the hooks to be associated to attracting
periodic orbits of the corresponding Hénon maps whose braid type is constant in
the region b > 0 and which degenerate into periodic orbits of the quadratic family
with two different permutations as b |, 0 along each of the two ends of the hook.
Viewing this in the opposite direction, the hooks indicate that there are certain pairs
of unimodal permutations which coalesce into a single Hénon periodic orbit.
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In this paper we identify mechanisms which lead to this coalescence on the
level of unimodal permutations. More precisely, we describe two mechanisms which
associate to unimodal permutations pairs of equivalent braids, and provide numeri-
cal evidence showing that the hooks in Fig. 1 can all be explained in terms of these
mechanisms.

There are at least two distinct reasons for which it is useful to be able to relate
unimodal permutations to braid equivalences in the Hénon family. First, as mentioned
above, our understanding of the periodic orbit structure of Hénon maps is very limited,
and being able to connect Hénon braid types to unimodal permutations provides a
means of deducing information about the former from the latter (about which we
know everything); one of the consequences of our results is that we predict the
existence of infinitely many hooks in the Hénon family, each of which associates
a braid type with a pair of intervals in the parameter space of the quadratic family.
Second, the more general problem of deciding whether or not two braid types are
equal is a difficult one, and mechanisms for constructing equivalent braids can be
useful. For example, there are conjectural constraints [4] on the possible orders
in which horseshoe braid types can be built up in families which pass from trivial
dynamics to a full horseshoe; and if this conjecture holds, then each pair of equivalent
braids generates an infinite family of pairs of equivalent braids.

We next review some definitions and terminology which will make it possible
to give rough descriptions of the two mechanisms mentioned above. A geometric
braid on n strands (see Fig.3) is a diagram with n arcs (strands) connecting two
ordered sets of n points lined up vertically, so that only double intersections are
allowed and at each of them it is specified which strand goes above and which goes
below. The points at the top are called initial endpoints and those at the bottom are
called terminal endpoints. To each geometric braid is associated a braid type, and
braid types determine geometric braids up to conjugacy (these facts will be discussed
further in the text). Geometric braids also induce permutations on # elements in the
obvious way: associate to the initial endpoint the terminal endpoint along the same
strand. Since this association forgets all information about crossings of strands, it
is far from being one-to-one. It is possible, however, to associate a unique braid to
a unimodal permutation by requiring that each pair of strands crosses at most once
and that, when two strands cross, the one which started to the left goes above the one
which started to the right. In this way we can talk about the unimodal braid associated
with a unimodal permutation.

Given a unimodal permutation v, let f be aunimodal map realising v as its critical
orbit. The dynamical preimage of a point in the critical orbit is the preimage under
f which is also contained in the critical orbit (corresponding to the unique preimage
at the level of the permutation). The other preimage of a point of the critical orbit is
called the non-dynamical preimage.

The first mechanism is as follows. First we ‘break’ f at the dynamical preimage
of the critical point: that is, we perturb f in a neighbourhood of this point. Assuming
that the break is small, we get a new point which is a closest return to the critical
point. Make this new point follow the sequence of forward iterates of the critical
point: we may do this for any finite time by making the break sufficiently small. If
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we arrive near the non-dynamical preimage of the critical point, we can ‘reconnect’
this iterate of the new point to the critical point. Again, this means that we perturb
f in a neighborhood of this iterate so that its image is the critical point. Depending
on which side of the critical point the new point lies, we get a pair of distinct critical
orbit types. (In terms of braids this construction is a generalisation of the cabling
construction for a braid, followed by a half-twist between strands.)

The second mechanism takes a pair of equivalent unimodal permutations v_ and
v4, such as those generated by the first mechanism, and produces another equivalent
pair v! and v}r of unimodal permutations. Let f_ and f, denote unimodal maps
whose critical orbits realise v_ and v, respectively. As before, we break f_ and
f+ at the dynamical preimage, but in both cases the break is large so that the new
point is a second closest return to the critical point. This is done to ensure that the
image of the new point is close to the image of the first closest return. We make this
image of the new point follow the forward iterates of the first closest return until it
arrives close to the dynamical preimage of the critical point. It is then reconnected to
the critical point as before. By repeating this process, a chain of pairs of equivalent
braids can be generated.

In Sect.2 we present some background on braids and unimodal maps; in Sects. 3
and 4 the first and second constructions of braid equivalences are described; and in
Sect.5 we discuss applications to the Hénon family and numerical results.

2 Notation and Terminology

2.1 Braids and Braid Equivalence

Let A C R? denote the closed unit disk. Let Homeo, (A) denote the group of
orientation-preserving homeomorphisms of A. Given a subset A C A let Homeo
(A, A) denote the group of orientation-preserving homeomorphisms f of A satisfy-
ing f(A) = A. Where necessary we endow these groups with the uniform topology.

2.1.1 Braid Equivalence

Let p € N.Let Py, C A denote the unique set of p points contained in the horizontal
axis, whose complement in this axis has connected components all of equal length.
Let F € Homeo (A, Pean). Denote by [F]p, the isotopy class of F rel Pey,. When
it is clear from the context, we will also use the notation [ F].

The group of such isotopy classes under composition is called the mapping class
group of (A, Peyy) and is denoted by MCG,.

Let F € Homeo, (A) possess a periodic orbit P of smallest period p. We assume
P is in the interior of A: if not, we extend F arbitrarily over a collaring of A. Let

H: (A, P.n) — (A, P) be any homeomorphism. Then the braid type of (P, F)



82 A. de Carvalho et al.

is the conjugacy class ((H™' o F o H]) of [H™' o F o H] in MCG,,. Denote the
braid type of (P, F) by bt(P, F). Let BT, denote the set of all braid types of a
fixed period p.

Remark 2.1 The braid type is independent of the collaring and the choice of home-
omorphism H (see [8] for more details).

Let Fy, F; € Homeo, (A) possess periodic orbits Py and P; respectively. We say that
the pair (Py, Fy) and (Py, Fy) are braid equivalent if bt(Py, Fy) = bt(P;, F;). Denote
this equivalence by (Py, Fo) ~pg (P1, F1). Equivalently, (Py, Fy) ~pr (P1, Fy) if
there exists a homeomorphism H : (A, Py) — (A, P;) such that Fy ~ H' o F} o
H rel Pyin A.

2.1.2 Braids

We now relate the notion of braid equivalence to that of a braid. Let B,, denote the
braid group on p strands (see [1]). Denote the composition of braids «, 8 € B, by
o - B. If @ and B are conjugate we write o ~ . If o« and 8 are reverse-conjugate,
ie.a -y =y Bforsomey € B,, we write & ~, B.

Remark 2.2 We will consider braids, geometric braids and braid diagrams. Typically
we will not make the distinction. However, where necessary we will use the notation
a >~ b to denote that the geometric braids a and b are isotopic. We will also denote
their product by a - b, whenever the set of terminal endpoints of b coincides with the
set of initial endpoints of a.

Let Z(B,) denote the centre of B,. It is known that B,/Z(B,,) is naturally iso-
morphic to MCG,, (see [9]). Hence BT, is in one-to-one correspondence with the
set of conjugacy classes of B,/Z(B,) whose underlying permutation is a cycle (and
hence close up to give a knot, rather than just a link). Therefore, given (Pr, F) we
denote by B(Pr, F) the conjugacy class in B,/Z(B)) corresponding to bt(Pr, F).

Remark 2.3 The following is well-known. Let (Py, Fy) and (P;, F}) have associated
braids By and 8,. Then (Py, Fy) ~pr (P, F1) if and only if there exists a braid o and
m € Zsuchthato ! - By - o can be deformed into B; - T by a sequence of isotopies,
2nd and 3rd Reidemeister moves and their inverses, where t is a braid associated to
a generator of Z(B)).

Finally, we observe thatif /' € Homeo. (A) possesses a periodic orbit P of small-
est period p which corresponds to an isolated fixed point of non-zero index for the
iterate F'”, then any small perturbation F’ € Homeo, (A) will also possess a peri-
odic orbit P’ which is a continuation of P and of the same period. Therefore we can
define bt(P, F) = bt(P’, F'). Since having an isolated fixed point of non-zero index
is an open property, this is well-defined.
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2.1.3 Braid Equivalence in Families

Definition 2.4 (Braid equivalence in parametrised families) Letk € N.Let B C RF
be a contractible bounded open set. Let F' € C(B, Homeo, (A)) be a k-parameter
family of continuous self-maps. We will use the notation F}, for the map F (). Let
B ={b e B: F, € Homeo,(A)}. Let by, b; € B satisfy the property that Fy, and
Fp, have periodic orbits Py and P; respectively, both of smallest period p. Then
(Po, Fp,) and (Py, Fp,) are braid equivalent in the family F if

1. there exists a collection of p pairwise distinct points
P(@t)={P'(t), P*’(t),..., PP()} C A (2.1)

where P!(t) varies continuously with ¢ € [0, 1] foreach i = 1,2, ..., p, such
that Py = P(0) and P, = P(1);

2. there exists a path y: [0, 1] — B such that y(0) = by, y(1) = b; and P(¢) is a
periodic orbit for F,,;, for each ¢ € [0, 1].

(Observe, necessarily P (¢) must have smallest period p for F, ;) as the Pi(z) are
distinct.) In other words, the one-parameter sub-family F), ) realises a strong Nielsen
equivalence between (P, Fp,) and (P, Fp,).

Remark 2.5 Braid equivalence in a parametrised family implies braid equivalence.

We will be specifically interested in the case when by, by € B \ B%and y (by, b)) C
Homeo, (A). (The motivating example will be that F denotes the family of Hénon
maps and Fy,,, F,, will correspond to quadratic maps.)

2.1.4 Braids and Braid Diagrams

Recall that braids can be represented by braid diagrams. Braid diagrams will be
normalised in the following way: They lie in the unit square [—1, 1] x [—1, 1]. Each
strand has an initial endpoint lying in [—1, 1]™ = [—1, 1] x {1}. Each strand has a
terminal endpoint lying in [—1, 1]°™ = [—1, 1] x {—1}. The vertical line through
any initial endpoint contains a terminal endpoint (and vice versa). All crossings are
transverse. Only double points are allowed. The strands are directed downwards.
(The last condition ensures no strand can ‘backtrack’.) Consequently, if « and g are
braids with associated diagrams, then the braid diagram corresponding to the product
« - B is the braid formed by placing the diagram corresponding to 8 directly above
the diagram corresponding to « and rescaling.

Remark 2.6 We adopt this convention as it coincides with the convention of com-
posing maps or isotopies from the right. For example, if the isotopy F;* realises the

braid o and the isotopy F,ﬂ realises the braid 8 then F - Ffﬂ realises the braid « - 8.

Let B be a braid diagram. Denote by Sg the set of strands. Denote by Ej;‘“ the set
of initial endpoints. We will denote the points in E g‘i‘, ordered from left to right, by
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oinit, [init . (p — 1), Similarly, denote by EE™ the set of terminal endpoints.
We will denote the points in Elt;'m‘, ordered from left to right, by 0™ 1™ (p —

1)®™ We denote the strand emanating from i ™ by s5(i). Let 7 : [—1, 11> — [—1, 1]
denote the projection to the first coordinate. Then by assumption 7 (i ™) = 7 (i**™)
foralli =0,1,...,p— 1.

Given a strand s € Sg let s™" and s*™ denote its initial and terminal endpoints
respectively. When it is clear which braid g is being considered we will drop 8 from
our notation, so that s (i) becomes (i), s5(i)™* becomes s (i), and so on.

init

2.2 Unimodal Dynamics

2.2.1 Unimodal Permutations

Remark 2.7 In this section we consider only intervals in {0, 1, ..., p — 1}, e.g. for
i,je{0,1..., p— 1}satisfyingi < j we let

i, jl=1ke{0,1,....p—1}:i <k < j} (2.2)

Define (i, j), [, j) and (i, j] similarly. In later sections we may also assume they
are embedded in R but it will be clear from the context what is meant.

Definition 2.8 Let p € N. Endow theset{0, 1, ..., p — 1} with its natural ordering.
A permutation v of the set {0, 1, ..., p — 1} is unimodal if there exists m € (0, p —
1), such that

1. v is order-preserving on the interval [0, m];
2. v is order-reversing on the interval [m, p — 1].

We call m the folding point of v. We denote the set of unimodal permutations on
{0,1,...,p—1}by U,. LetU =UP€NUP.

If a unimodal permutation v is cyclic then we can introduce the following,
which we call cyclic notation: Define o: {0,1,...,p—1} - {0,1,...,p—1}
by o(vi(m)) =i fori =0,1,..., p — 1. Then we may uniquely represent v by
(0(0), o(1), 0(2), ..., 0(p — 1)). Observe that o is a bijection. Hence we can recover
v by setting v 'G@) =0"'G +1 mod p).

Example 2.9 The cyclic unimodal permutation v of {0, 1, 2, 3, 4} given by
v(0) =1, v(l) =3, v2) =4, v(3) =2, v4) =0 (2.3)
has folding point m = 2 and therefore 0(2) = 0. Applying v iteratively gives

o) =1, 0o(0) =2, o(1) = 3, 0(3) = 4. (2.4)
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words, cyclic notation is just shorthand for the collection of inequalities v?(m) <
v3m) < m < v*(m) < v(m).)

Definition 2.10 Let v € U, be cyclic. Letg € {0, 1, ..., p — 1}. We call g a right
closest return time to the folding point if v?(m) < m and the interval (v?(m), m)
does not contain v (m) for any integer r. Similarly, call g a left closest return time to
the folding point if m > v?(m) and the interval (m, v?(m)) does not contain v" (m)
for any integer r. Finally, we call ¢ € {0, 1, ..., p — 1} a closest return time to the
folding point if the interval (v?*!(m), v(m)) does not contain any point v (m) for
any integer r.

Note that a closest return time will either be a left or right closest return time.

Definition 2.11 Let v e U,. Let i, j,k€{0,1,...,p—1}, i < j. We say the
closed interval [i, j] maps over k ifk € v[i, j]and maps strictly over k ifk € v(i, j).

Remark 2.12 Foreach k € {0,1,..., p— 1}, k #0 or p — 1, it is clear that there
exists an interval mapping strictly over k. It is also clear that each interval mapping
strictly over the folding point m contains at least one subinterval of shortest length
which also maps strictly over m. (The interval [u~! (k) — 1, v~! (k) 4+ 1] maps strictly
over k and no strict subinterval also satisfies this property.) In fact, there are at most
two intervals mapping over k of shortest length.

Definition 2.13 Let v € U,,. For each k € {0,1,..., p — 1} we call v~l(k) the
dynamical preimage of k. If k # 0, p — 1, the interval containing the dynamical
preimage of k is the shortest closed interval mapping strictly over k£ which contains
the dynamical preimage v~' (k) of k. If k = 0 or p — 1, the interval containing the
dynamical preimage of k is the shortest closed interval mapping over k which contains
vl (k).

The other shortest closed interval strictly mapping over k, when it exists, is called
the interval containing the non-dynamical preimage of k.

Example 2.14 The unimodal cyclic permutation v of {0, 1, 2, 3} given by
v(0) =2, v(1)=3, v@2)=1, v3)=0 (2.5)

(which in cyclic notation is given by (2, 0, 3, 1)) does not have an interval containing
the non-dynamical preimage of the folding point m = 1. To see this, observe that 1
has dynamical preimage 2 lying in the right interval. The only non-empty subinterval
of the left interval is the left interval itself, [0, 1]. This maps to the interval [2, 3]. As
[2, 3] doesn’t contain the folding point, the unimodal permutation v does not have
an interval containing the non-dynamical preimage of the folding point.

2Note that we will use underlinings to distinguish representations, so 3 denotes the third point in
the orbit of 1 = p — 1, but 3 denotes the third point from the left.
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Definition 2.15 Let v € U, be cyclic. Given i, j € {0, 1, ..., p — 1}, denote by
k = k(i, j) > 0 the smallest positive integer such that j = v*(i). If Vi) # m for
all0 <1 <k, let

p(i, j) =card{0 <[ <k : V' (i) > m} (2.6)

Definition 2.16 Letv € U, be cyclic. We say that v is reconnectable at the dynam-
ical preimage if the following property holds: let D = [d~, d™] denote the interval
containing the dynamical preimage d of 0. Then either p(1,d~) isodd or p(1,d™)
is even, or both.

We say that v is reconnectable at the non-dynamical preimage if the following
properties hold:

1. [Preimage condition] The interval containing the non-dynamical preimage of m
exists. Denote it by E = [e™, e™].
2. [Parity condition] Either p(1, e™) is odd or p(1, e*) is even, or both.

Remark 2.17 1t will become clear in what follows that this notion also makes sense
for other points k € {0, 1, ..., p — 1}, k # m. However, for simplicity we will only
consider reconnections at the folding point.

Recall that we aim to construct braid-equivalent pairs of unimodal combinatorial
types starting from a given unimodal combinatorial type. In what follows it will
become clear that the construction we propose works precisely when the initial com-
binatorial type is reconnectable, either at the dynamical preimage or non-dynamical
preimage.

Example 2.18 Given acyclic unimodal permutation v, even if the interval containing
the non-dynamical preimage of m exists it may not be reconnectable. For example
the folding point O lies to the ri?gh? of (_)_ The interval containing the non-dynamical
preimage of 0 is [7, 3]. To calculate p(1, 3) we count the number of elements of
{1, 2} lying to the right of 0, of which there is 1. Similarly there are 4 elements of

7 < 3 the parity condition isn’t satisfied.

2.2.2 Unimodal Braids

We call a braid positive if each crossing is positive (see Fig. 2). A braid is direct if each
strand crosses any other strand at most once.? It is known that for any permutation
v € U, there is a unique positive, direct braid g which induces v. We call such
braids unimodal. Denote the set of unimodal braids on p strands by UB,,. Let UB =

UpeN UBP‘

31n the literature such braids are called permutation braids—however, it will be useful to have an
adjective to describe this property, as in [8].
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Fig. 2 The two types of
crossings used to construct
braid diagrams

) Positive crossing b) Negative crossing

Fig. 3 The braid ﬂ for the Zinit §init Qinit éinit linit
cyclic unimodal permutation

/
/

/
/

2term 3term Oterm 4term 1term

A unimodal braid B possesses a canonical braid diagram satisfying:

1. All strands initiated at m or to the left of m travel rightwardly.
2. All strands initiated at a point to the right of m travel rightwardly, touch the folded
line m~'(p — 1), then travel leftwardly.

We call strands satisfying Properties1 and 2 unimodal strands. Henceforth we will
identify a unimodal braid g with the corresponding canonical unimodal braid dia-
gram. For example the canonical unimodal braid diagram for the permutation
- Ijet_ S_be_a collection of ummodal strands, not necessarily forming a braid, which
are positive, direct and which contains a folding strand s(0). Let s be a strand in S.
The strand r unimodally follows s in § if

1. r is unimodal, it neighbours ginit apd pterm neighbours '™
2. the collection S U {r} is positive and direct,

3. r has crossings of the following types
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e if 7 is a strand crossing s: then it also crosses r and the crossing is of the same
type. All such crossings occur in the same order for r as they do for s.

e if s hits the folded line: then r hits the folded line and they cross once, when s
is moving rightwardly but r is still moving leftwardly, or vice versa. Otherwise
there is no crossing.

Let s and s’ be strands in S such that s™ < s/t are neighbours lying on the same

side of 0. A strand r unimodally follows the pair s, s’ in S if
1. r is unimodal, r"it lies between s™t and s"™t and r*™ lies between s*™ and
/term
s ’
2. the collection S U {r} is positive and direct,
3. r has crossings of three types

e if ¢ is a strand crossing both s and s’: then  makes the same type of crossing
with r between its crossings with s” and s;

e if ¢ is a strand crossing s’ but not s: if r'*™ lies between s"*™ and 7™, then
r makes the same type of crossing with ¢ after s’ crosses ¢. Otherwise there is
no crossing. Similarly, if # crosses s but not s’;

e if s and s’ hit the folded line, then r makes a single crossing both with s and
with s’, either side of the single crossing between s and s’. Otherwise there
are no crossings.

Before proceeding, let us make the following trivial observation concerning the
action of half-twists on a cabled pair of strands.

Observation 2.19 (Fundamental Observation) Let 8 be a braid. Let s be a strand of
B. Form a new strand s” which follows the strand s (i.e. makes the same crossings
with all other strands and in the same order). Allow an arbitrary number of crossings
between s and s’. Let 8’ denote the resulting braid.* Let 7;,; denote a positive half-
twist between s™™ and 5", Let Ty, denote a positive half-twist between s*™ and
5" Then ﬂ/ * Tinit = Tterm * :3/~

3 Breaking Braids via First Closest Returns

3.1 Cabling

Our first construction extends that by Holmes [10] which generalised the cabling’
construction for iterated torus knots to horseshoe braids. Our description is in terms
of braids rather than templates, but they are equivalent. Note that Holmes did not

“Formally, these are not braids as they do not have the same set of initial and terminal endpoints.
To avoid confusion, let us call these objects almost-braids.

3 Although Holmes only used the term cabling for iterated torus knots (not iterated horseshoe knots)
we will use the term for both cases.
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consider braid equivalence of the pairs of braids created by this construction. He
considered only the single unimodal braid that resulted.

We now give an informal description of the cabling procedure. Given a cyclic
braid 8 € B, take the folding strand so. ‘Break’ the braid by disconnecting so from

sg™ and ‘glue’ it to a neighbouring point r™ which is not already the endpoint

of some strand. Let ri"' and si"' denote the vertical projection of r{*™ and si™

respectively. Let s; denote the strand emanating from silnit.

Add a strand r; with initial point r{“i‘ and which unimodally follows s;. Then r;
has a terminal point 7™ neighbouring s*™. Now repeat the process: Let ri"' and
sinit denote the vertical projection of ™ and s'™ respectively. Add a strand r;
unimodally following s,, etc.

The final strand r,,_; has initial point ™, and terminal point r§™. However, it
may not be possible for ,_; to follows s,_; unimodally, as ri™ may lie on the
wrong side of s;™. Therefore r,_; unimodally follows s,_; until all other crossing
in have been made, then makes a negative crossing between s,_; and r,_; before
connecting to ri™™.

Given a unimodal braid 8 we can cable it in two distinct ways: to the left or
right of the folding strand. It can be shown that this pair of braids are conjugate or
reverse-conjugate. However, they are not both unimodal.

Observe that the cabling can be closed-up to form a braid whenever we land inside
the interval containing the dynamical preimage of the folding point. More precisely,
choose g € Nso that rf]em‘ lies in an interval (s{‘f"n, s;"irm), not containing any terminal
endpoints of 8, and such that it maps over s;™. Let r;'fl denote the vertical projection
of r}frm. At this last step, construct a strand 7, emanating from r;e"“ which, rather than
completely following s,, only follows s, until we can reconnect r, to s;™ without
creating any further crossings. We call this a generalised cabling at the dynamical
preimage. Again there are two distinct cablings: to the left or right of the folding
strand. As in the cabling case, the pair of braids are conjugate or reverse-conjugate.
However, they are never both unimodal.

In Construction 3.1 below, we observe that the cabling can be closed-up at any
point in time at which we lie in the interval containing the non-dynamical preimage of
the folding point. We call this generalised cabling at the non-dynamical preimage.
There are two preferred cablings, either side of the folding strand. Theorem 3.3
says this pair is conjugate or reverse-conjugate. What is important is that, unlike the

previous two constructions, the braids produced by this process are both unimodal.

Construction 3.1 (Generalised Cabling—At the Non-Dynamical Preimage) Let
B € UB, be cyclic and reconnectable at the non-dynamical preimage. Let v € U,
denote the corresponding unimodal permutation. Let E = [¢~, e'] denote the inter-
val containing the non-dynamical preimage of the folding point. Then either p (1, ¢™)
is odd or p(1, e™) is even, or both. Let ¢ — 1 denote either of the points e~ or e
satisfying this parity condition. o

Choose € > Osmall. Letr_ € (0 —¢,0)andr, € (0,04 €).Letr; € (1 — ¢, 1),
rp € (2,2 + €)andchoosepointsr; € (i —€,i +¢€),i =3,...,q — 1, whichsatisfy
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(i—e€,i)if p(1,7)is even
e {(’_ i+e)if p(1,7)is odd (3.1)

Fori =+,1,2...,qg — 1, let rl.i“i‘ and r/*™ denote the projection of r; to [—1, [ ]init

and[—1, 1]*™ respectively. These will be endpoints for the strands constructed below.

First, let 1 (0) denote the strand with initial endpoint r‘““ and terminal endpoint
ri¥™, which follows unimodally the strand s (0).

Secondly, assume ry (i) have been constructed for i =0,..., j — 1, where
0<j <qg—2 Letri(j)=r_(j) denote the strand with initial endpoint rm“ and
terminal endpoint /<" which follows unimodally the strand s (7).

Thirdly, assume that the strands 7 (i) have been constructed for alli =0, 1, ...,
q — 2. Construct the strand 71 (g — 1) as follows. As [e~, e™] maps over the folding
point, one of the strands s(e~) or s(e™) has a terminal endpoint which lies on the
same side of the folding point as its initial endpoint. Call it s and the other strand
s’. Let r1(g — 1) denote the strand with initial endpoint r““‘l and terminal endpoint
ri™ which unimodally follows s and s’. We make modifications to ry(g — 1) as
follows:

(D [f0 < p—1]Since rf™ > s(p — )™ and rM"} < 0™ < s(p — D" we
need an additional crossing between r, (g — 1) and s(p — 1). Make a single
negative crossing between r, (¢ — 1) and s(p — 1) after all other crossings,
resulting from r, (g — 1) following s and s’, have been made.

Since r®™ < s(p — 1)'*™ and r‘}““ < O™t < g( p—1 1)nt no additional cross-

ings between r_ (g — 1) and s(p — 1) are necessary.

(D) [If p—1 <0.] Since r™ < s(p — 1)'™ and s(p — )"t < Q"' < it we
need an additional crossing between r1 (¢ — 1) and s(p — 1). Make a single
negative crossing between r,(qg — 1) and s(p — 1) after all other crossings,
resulting from r, (¢ — 1) following s, have been made.

Since r'f™ > s(p — )™ and s(p — )init < ginit < r;“_“l no additional cross-

ings between (g — 1) and any other strand are necessary.

Let oy denote the braid consisting of the strands of 8, together with the strands
re(j), j=0,1,...,q — 1 formed above. Note that ;. is not cyclic. In fact, it is not
necessarily unimodal. Let 7. denote the positive half-twist between r-. and 0. (That
is, T4 is the Artin generator exchanging 0 and r4 via a single positive crossing.) Let
B+ = T+ - ax. Note that B, is a cyclic braid. Moreover, after cancelling appropriate
positive and negative crossings between the strands r1 (¢ — 1) and s(p — 1) via
Reidemeister moves and isotopy, we see that, in both cases (I) and (II), that 8_ and
B+ are unimodal. See Fig.4.

Example 3. 2 Consider the cyclic unimodal permutation v from Example 29. In

dynamical preimage is E = [2, g]. Slnce p(l, 2) = 1 is odd, v is reconnectable at
the nondynamical preimage. Let 8 denote the corresponding unimodal braid and 84
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(a) A— in Construction 3.1(I). (b) B_ in Construction 3.1(IT).
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Fig.4 The braids _ and B from Construction 3.1. Only the necessary strands are shown. Strands
from the original braid § are black, while new strands are red. (Only the first and last new strands
are depicted)
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the pair of braids from Construction 3.1. If vy denotes the permutation corresponding
to B+ then

=2,7,3,50,4,61) v.=(273,05461) (3.2)

See Fig. 5 for the construction of S in this case.

More generally, consider the case when the dynamical preimage of the folding
point lies to the right of m. Then B_ and B are depicted in Fig.4a, c respectively.
Identifying the sets of initial and terminal endpoints of f_ and B in an order-
preserving manner, then precomposing B_ with a positive half-twist between the
strand s(0) and its neighbour r_, and post-composing by the inverse of this twist,
yields the braid S, . A similar argument can be given when the dynamical preimage
of the folding point lies to the left of m. Then f_ and B, are shown in Fig.4b,
d. However, in this case we precompose and post-compose by the same positive
half-twist. Hence we have the following Theorem (See Fig. 5).

Theorem 3.3 Let p € N. Let B € U B, be cyclic. Assume B is reconnectable at the
non-dynamical preimage. Let B_ and B denote the braids from Construction 3.1.

1. If the non-dynamical preimage lies to the left of m then B, ~ B_.
2. If the non-dynamical preimage lies to the right of m then B, ~, PB_.

Theorem 3.3 and Remark 2.3 imply the following important corollary.

Corollary 3.4 Letp € N. Letv € U, be reconnectable at the non-dynamical preim-
age. Let v_ and v, denote the unimodal permutations from Construction 3.1.

If f—, f+ € C([—1, 1], [—1, 1]) are unimodal maps with periodic critical orbits
C_ and C4 of type v_ and v, respectively, then (C_, f_) ~pr (C4, f1).

4 Breaking Braids via Second Closest Returns

4.1 Generalised Cabling Process

We now describe a second construction that, given a braid-equivalent pair of unimodal
permutations v_ and v, satisfying conditions given below, generates another pair
of braid-equivalent unimodal permutations. Moreover, the new pair satisfy the same
conditions and hence we can apply the construction once more. The idea is the
following. Take vy as given by Construction 3.1. Break the connection at 0™
and glue the free strand to a point just outside the interval [ Btfrm, E‘fm], making a
second closest return. Then consecutively add strands, starting from this point, that
unimodally follow the strands from initial endpoints pm“, D+ 1lmt etc. Stop once
a terminal endpoint lands inside D, the interval contammg the dynamlcal preimage
of the folding point. Finally, to close-up the braids, glue the last strand back to 0"™.
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However, since we will define the process inductively we need to enlarge the space of
such pairs (not just those coming from Construction 3.1). Before giving the general
construction, however, let us consider the following example.

Example 4.1 Let B4 denote the braids from Example 3.2. For notational clarity, let
us initially denote the underlying permutations by

v-=02.,7.,3.,5.,0.4.,6.1) (4.1)

and
Uy = (2+9z+7§+7Q+1§+1&+7§+7l+)‘ (42)

The braids B+ are shown in Fig.7a. The initial and terminal endpoints of S are
denoted by Ot (it 7t and Qe™ 1™ . 7™ respectively. Denote the
corresponding strands by s(0_), ..., s(7,). We may assume that the endpoints of
the strands in 1 have been moved, in an order-preserving manner, so that for all
k #5, k™ = kM and K™ = k'*™. We may also assume that the strands have been
deformed so that s(k_) = s(k ) forall k # 4 or 5 (i.e., any strand whose set of initial
or terminal endpoints does not contain §ii“n or 5Y™). Therefore, for all k # 5, denote
the points k" and k™ by k™' and k"™ respectively. Similarly, for all k # 4 or 5,
denote the strands s (k) simply by s(k). See Fig.6. Let us do the following to the
braids f_ and 8. As shown in Fig.7a, add an initial endpoint, shown in green, to
the left of Qii‘h in both diagrams. Add a strand, also shown in green, from this new
initial endpoint which unimodally follows the strand s(5_). See Fig. 7b. Next, add a
new initial endpoint directly above the terminal endpoint of this last strand, which
neighbours 6™, From this initial endpoint add a new strand which unimodally fol-
lows the next strand s(6). See Fig. 7c. Observe that the new terminal endpoint lies
inside the interval containing the dynamical preimage. Add a final initial endpoint
directly above this terminal endpoint, necessarily neighbouring 7", From this initial
endpoint add a strand which unimodally follows the strand s(7) until s(7) has made
all its crossings except possibly for a single crossing with s(4). Make the new strand
form a negative crossing with the strand s(7) before ending at a terminal endpoint
directly below the very first initial endpoint we started with. See Fig. 7d. This gives
a pair of unimodal braids, which are non-cyclic (there are exactly two cycles). To
form a pair of cyclic braids, perform a negative half-twist between this final terminal
endpoint and 5(0)'*™. There is a complication in that for one of these braids, there is
another terminal endpoint, namely Qf"“, lying in between: we take the strand from
this endpoint going under the half-twist. See Fig. 7e. Denote the resulting braids by 81
and ﬁ}r. Conjugating ﬂ}_ by a positive half-twist between O and 5, , the resulting braid
can be deformed by a series of isotopies and Reidemeister moves into the braid ,Bi.

Next, we need the following notions to simplify exposition. Given a unimodal per-

mutation v € U, and1 € {0,1,..., p— 1}, 1 # 0, we add a point 7 to the linearly
orderedset {0, 1, ..., p — 1}, which we call the opposite of 1 with respect to v, which
satisfies

(1) 1 <Qifand only if: > 0O,
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Fig. 6 The braids B+ with 9init ginit (init Ainit 1init
strands in the same diagram, B B B B B
from Example 4.1. The
strands with long dashes
come from B_, while the
strands with short dashes
come from S

2term 3term Oterm 4term 1term

(i) £ € (J, k) ifand only if v(1) € (v(y), v(K)).

Remark 4.2 Observe that, if the set {1,..., p — 1} is embedded in the line in an
order-preserving manner and v is realised by a unimodal endomorphism f, then the
opposite of a point  just corresponds to the preimage of f () under f whichisnot:.

In what follows we only need to consider closest return times to the folding point, so
we will simply say that p is the closest return time. (See Sect. 2.2 for the definition.)

For positive integers p and g, let U, , denote the set of cyclic unimodal permu-
tations of length p + g with closest return time p. Given v € U, 4, let C = [p, pl],
where p denotes the opposite point of p with respect to v. Let D =[d—,d "]
denote the interval containing the dynamical preimage d = p +¢ — 1 of 0. Let
D~ =[d ,d]and DT =[d,d"]. Let E = [e~, "] denote the interval containing
the non-dynamical preimage.

Example 4.3 Observe that the unimodal permutations constructed in Example 3.2
and also considered in Example 4.1,

v-=2,7,3,5.,0,4,6,)and vy =(2,7,3,0,5,,4,6, 1) (4.3)

both lie in Us 3, where we have kept the notation convention of Example 4.1. If we
denote the intervals C, D, D*, E for the permutation vy by C4, D, Di, E., then
we find that C_ =[5_,5,]1=Cy, D_=[2,3]1=D,, D- =[2,7] = D;, DT =
(7,31 = DY, E- =[0,4], and E; = [4, 6].
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Now consider the general situation. Let v+ € U, ;. In cyclic notation denote v
by 24,...,0,,...,1,). Assume the following:

L. (closest returns lie on opposite sides of the folding point) p_ < 0_and 0, < P,

2. (all remaining points are in order-preserving bijection) forallk,l # p,k_ < 1_if
andonlyif k, <[ .Hence, if k, are embedded in the line in an order-preserving
manner, as in the preceding example, we may assume that k_ =k forall k # p.
Consequently, for each k # p, we may denote the point k, by k.

3. (the closest return is not contained in the interval containing the dynamical preim-
age of the folding point) P, ¢ 0D,.

4. (the dynamical preimage of the folding point and the dynamical preimage of the
closest return lie on opposite sides of the folding point) either p +q — 1 L <

(_)i<p—1i,orp—li<(_)i<p+q—li.

LetC4, D4, DI, E . denote the corresponding intervals for vy. Then by (1) we may
assume that p = z+ and hence C_ = C, . Denote this interval by C. Properties (2)

and (3) then imply that D_ = D_.. Denote this interval by D. Similarly D* = Df and
we may denote this interval by D*. Note that, as we saw in the previous Example 4.3,
E_ and E do not necessarily coincide.

By the discussion in Sect.3, Condition (2) implies the following property, that
will be used in the proof of Theorem 4.8 below.

2'. Let B+ denote the canonical unimodal braid of v.. Then there exists a braid y
with p + ¢ strands, with the property that outside of C = [ P, E+]’ y 1s trivial,
and such that one of the following holds:

2By =v-Bs
2. B y=ylBs

Finally we will need the following trivial observation:

5. (existence of the transit time from the closest return to the interval containing the
dynamical preimage of the folding point) The orbit segment p + 1, p 4+ 2, ...,
p +q — 1, of the image of the closest return point to the interval D does not
intersect the interval C.

Call t = g — 2 the transit time. We say it is a left transit time if the parity, given by
p(p+1,p+1t+1),iseven and a right transit time if this parity is odd.

Example 4.4 Let us continue considering vy from Example 4.3. Then the transit
time is t = 1, since ¢ = 3. It is a right transit time. If we imagine a point neigh-
bouring p + 1 to the left, then the image of that point lies in the interval containing
the dynamical preimage, i.e., we land inside the interval containing the dynamical
preimage after a single iterate. Moreover, this image lies to the right of the dynamical
preimage of the folding point, therefore it is a right transit time.

Remark 4.5 Any pair (v_, v, ) of equivalent unimodal permutations from Construc-
tion 3.1 satisfies Properties (1)—(5). In particular, the unimodal permutations from
Example 4.3 satisty these conditions.
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Construction 4.6 (Generalised Cabling Process.) Let (v_, vy) denote a pair of
cyclic unimodal permutations satisfying properties (1)—(4). Recall that C, D4, etc.,
denote the corresponding intervals for vy. Recall that we may assume C_ = Cy
and D_ = D,. Denote these intervals by C and D respectively. Observe that
v_(D) = v, (D) and this interval contains 0 and P, in its interior.

Let B+ denote the canonical braid correspondmg to vt. Denote the set of strands
for B by Sy. Fork=0,1,..., p+ g — 1, denote the k-th strand by sy (k). The
strand sy (k) lies between initial endpoint s (k)™ = lgii"it and terminal endpoint
s+(k)' ™ = k + 15™, where addition is taken modulo p + g. By property (4) above
we may assume, after applying an isotopy if necessary, that s_(k) = s (k) for all

k#p—1lorp.

Remark 4.7 We will also use the notation s, for the projection to [—1, 1] of the initial
endpoint of s(k) fork =0,1,...,p_, py,....,p+q— 1.

Let ¢ be the transit time. Construct a pair (v, v'+) of unimodal permutations as
follows:

To begin, we define points r;, ri"' and ™ fori =0, 1,...,7 + 1. Choose € > 0
small. Letr; e (p+1—€,p+ 1) and choose points r; € (p +i—-1,p+i+1),
i =2,...,t+ 1, which satisfy T T

. {(p—l—z—e p+i)ifp(p+1,p+i)even 44)

(p+i.pt+it+e)ifp(p+1,p+i)odd

Finally, choose r € (E_ -1, r, + 1) which satisfies

(p_—€ p )if D <Qandrarighttime, or0 < D and ¢ a left time.
To € (p P, + €)if D < O and ¢ a left time, or 0 < D and ¢ a right time.
(4.5)
Fori =0,1,2,...,t+ 1letr and r/*™ denote the projections of r; onto [—1, 1]t
and [—1, 1]*™ respectively. As before, these will be endpoints for the strands con-
structed inductively below.
First, let r4 (1) denote the strand with initial endpoint r;
3™ which follows unimodally the strand si.(p + 1).
Secondly, assume that the strands 4 (i) have been constructed fori = 1, ..., j —
I,forsome0 < j <t + 1.Letry( ]) denote the strand with initial endpoint rlnlt and
terminal endpoint r;ef’l“ which follows unimodally the strand 51 (p + j).
Thirdly, assume that the strands r4 (i) have been constructed foralli =1, 2, ..., t.
Then r+(t + 1) denotes the strand with initial endpoint r/%} and terminal endpoint
r(ﬁerm which, in each of the four cases below, satisfies the following:

init and terminal endpoint

@) [Ufp+qg—1<0andt is aleft transit time.]
Let r_(¢ 4 1) unimodally follow the strand s_(p + ¢ 4 1) rightwardly until
s_(p+1t+1) has only one crossing to make, which is necessarily with
s_(p — 1), before reconnecting to its terminal endpoint. Then r_ (¢ + 1) forms
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anegative crossing withs_(p + t + 1), after which it makes a positive crossing
with s_(p — 1) before connecting to its terminal endpoint. See Fig. 8a.
Let r, (¢ + 1) unimodally follow the strand s, (p + ¢ + 1) rightwardly until
s+(p +t + 1) has no more crossings to make before reconnecting to its termi-
nal endpoint. Then r, ( 4 1) forms a negative crossing with s (p +¢ + 1),
after which it makes a positive crossing with s (p — 1) before connecting to
its terminal endpoint. See Fig. 8c. o

i) [If p+q — 1 < Qandt a right transit time.]
Let r_(¢t 4+ 1) unimodally follow the strand s_(p + ¢ 4 1) rightwardly until
s_(p+1t+1) has only one crossing to make, which is necessarily with
s_(p — 1), before reconnecting to its terminal endpoint. Then r_(¢ + 1) forms
a negative crossing with s_(p + t + 1) before connecting to its terminal end-
point. See Fig. 8b.
Let r4(t 4+ 1) unimodally follow the strand s, (p + ¢ 4 1) rightwardly until
s+(p +t + 1) has no further crossings to make before reconnecting to its ter-
minal endpoint. Then . (¢ 4 1) forms a negative crossing with s, (p +¢ 4+ 1)
before connecting to its terminal endpoint. See Fig. 8d.

@) [IfO0 < p+q — 1 and t a left transit time.]
Let r_(t + 1) unimodally follow s_(p 4+ ¢+ 1) until s_(p 4+ ¢+ 1) has no
more crossings to make before reconnecting to its terminal endpoint. Then
r—(t + 1) forms a negative crossing with s_(p 4t + 1), after which it makes
a positive crossing with s_(p — 1) before connecting to its terminal endpoint.
See Fig.9a. o
Let 7, (t + 1) unimodally follow s4(p +¢ + 1) until s (p + ¢ + 1) has only
one crossing to make, which is necessarily with s, (p — 1), before reconnect-
ing to its terminal endpoint. Then r, (z + 1) forms a positive crossing with
s+ (p — 1), after which it makes a negative crossing with s (p + t + 1) before
connecting to its terminal endpoint. See Fig.9c.

(Mi) [If0 < p+gq — 1 andt 4 1 a right transit time.]
Let r_(t + 1) unimodally follow s_(p 4+ ¢+ 1) until s_(p 4+ ¢ + 1) has no
further crossings to make before connecting to its terminal endpoint. Then
r_(t + 1) forms a single negative crossing with s_(p + ¢ 4 1) before con-
necting to its terminal endpoint. See Fig. 9b.
Let r.(z + 1) unimodally follow s (p + ¢ + 1) until s, (p + ¢ + 1) has only
one crossing to make, which is necessarily with s (p — 1), before connecting
to its terminal endpoint. Then r (# 4 1) forms a single negative crossing with
s+(p +t + 1) before connecting to its terminal endpoint. See Fig. 9d.

Finally, let r1 (0) denote the strand with initial endpoint r(i)“i‘ and terminal endpoint
ri¥™ which, in cases (Ii) and (I1ii), follows unimodally the strand s ( £+) and, in cases
(lii) and (Ili), follows unimodally the strand s(p ).

Let o} € By, 144142 denote the braid consisting of the strands of . together
with the strands r4(i), i =0, 1,...,¢ + 1, formed above. (As before, after rela-
belling the endpoints this gives a well-defined braid diagram normalised as in
Sect.2.2.2. However, for the moment we will keep the labelling as above.) Note
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nit init init  Ginit o init cinit init nit nit  ginit init init
T+l Sprt+1 Spy S0 To Sp—1 Sprt+1 Tyl To o Spo 5o Sp—1
Q
al al
i
Tl i Tl
H
i
i
O=O=O
term  term term term  term term term  term term term  term term
Sp_ S0 o T Sp+1 51 7o Sp 50 LU Spe S1
(a) - in Construction 4.6(1i). (b) B in Construction 4.6(Iii).
it ginit Jnit ginit dnit it init init nit gnit gnit ginit
Tivl  Sprte1 S0 Spy To Sp-1 Sprt+1 Tt oo S0 Spe Sp-1
1 1
al al
4
T &7 ¥
& i
L : H i Tl
S i
S5 H
O O=C OO
oterm term ,.term term cterm term term term term termterm  term
So o Sp_ To T Spr1 S1 o S0 Sy, T Spr1 S
(c) B+ in Construction 4.6(1i). (d) A+ in Construction 4.6(Iii).

Fig. 8 S_ and B, in Construction 4.6(I)

that o} is not a cyclic braid. Note also that o} is not necessarily a unimodal
braid. In fact, in all cases al_L is direct but neither positive nor unimodal. See

Figs. 8a-9d.
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init init  init init .init init init init  init init init init
Sp-1 Too Spl S0 Terl Spril Sp=1 Sp S0 To Spree1 Tigl
al
.
term  term _term term term _term Jterm  term .term term term term
To P S L Spe1 S1 S, S0 To L Spr1 S1
(a) f— in Construction 4.6(I1i). (b) - in Construction 4.6(Iii).
(init Jnit  ginit ginit .init  init Jinit Jinit init .init init pinit
Sp-1 To S0 Spy Tl Spre+t Sp-1 S0 Spy To Sprerr Tl
¢ al / o
+ +
( 4
; 1 ~1
H T+ Tt
e O=Cr
-ferm term  term pterm term  term term  term .term -term term term
e i e s s S s et s
(¢) B4 in Construction 4.6(IIi). (d) B4 in Construction 4.6(IIii).

Fig.9 B_ and B, in Construction 4.6(II)

As in the previous construction, we now compose o, with a positive half-twist
‘L':L. However, in terms of the diagram there is an extra complication due to either
sp_ors,, lying between sy and ry. (Recall that, for each k, s; denotes the projection
to [—1, 1] of the initial endpoint of s(k).) Therefore let t(i, i 4+ 1) denote the Artin
generator positively interchanging i and i + 1. Then

(M) 7! denotes a single positive half-twist T (sg, r9) between sy and ry.



102 A. de Carvalho et al.

7} denotes T(so, 5p,) " - T(sp,, o) - T(0, Sp,)-
(lii) 7! denotes T(s,_, s0) - T(ro, 5, ) - T(sp_,50) L.

r}_ denotes a single positive half-twist t(ry, so) between ry and sg.
(i) 7! denotes T(Sp_, s0)~" - T(r, Sp_) - T(Sp_, S0)-

‘L’Jr denotes a single positive half-twist t(r, so) between rqy and sp.
(Ilii) 7! denotes a single positive half-twist T (s, o) between s and 7.

7 denotes T(s,,, r0) " - T(s0, 5p,) - T(Sp, , 70)-

Let 8L = 7l - ol. Note that Bl is a cyclic braid. Moreover, after cancelling appro-
priate crossings between strands r4.(t + 1), s+(p + ¢ + 1) and s4.(p — 1) via Reide-
meister moves and isotopy, we find that 8! and ,Bi are both unimodal. Again, see
Figs. 8a—9d.

Let use investigate what is going on in more detail. Consider the case (Ii). Then
B- and B, are depicted in Fig. 8a, ¢ respectively. Identifying the sets of initial and
terminal endpoints of 8_ and B in an order-preserving manner, then precomposing
B— with a positive half-twist between the strand s(0) and its neighbour s(p ), and
post-composing by the inverse of this twist, yields the braid . A similar argument
can be given in cases (lii)—(Ilii). See Figs. 8b—9d. However, in cases (Ili) and (ITii)
we pre-compose and post-compose by the same positive half-twist. Hence we have
the following.

Theorem 4.8 Given (v_, v,), satisfying Properties (1)—(4). Let f_ and B denote
the corresponding unimodal braids. Let (B, ,3_1,_) denote the pair of braids produced
from Construction 4.6.

1. If B_ ~ B, then BL ~ ﬁi.
2. IfB- ~, By then B1 ~, L.

Moreover, the corresponding unimodal permutations (v, v }r) also satisfy the Prop-
erties (1)—(4).

5 Applications to the Hénon Family

We have constructed two mechanisms for constructing braid equivalences. However,
we would like to restrict ourselves to equivalences realised in the Hénon family.

Before proceeding, let us give a brief description of the parameter space of the
quadratic family and the Hénon family. Recall from the introduction that f,(x) =
a — x? denotes the quadratic family and F, ,(x,y) = (a — x%— by, x) denotes the
Hénon family. In the (a, b)-plane, for b positive the map F,, is an orientation-
preserving diffeomorphism. For b € (0, 1) the map F, ; is area-contracting. In fact,
Jac(F, ) (x,y) = b for all (a, b) € R? and (x, y) € R

The parabola

(14+b)*+4a=0 (5.1)
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is the saddle-node bifurcation locus. For all parameters (a, b) on this curve F,;
possesses a unique fixed point. The parabola passes through the a-axis ata = —1/4.
All parameters to the left of this curve possess no fixed point and the iterates of all
points escape to infinity. All parameters to the right of the curve possess two fixed
points, one saddle and one sink, and hence the non-wandering set is non-trivial.
The curve
a=(5+2V5)(1+b)> (5.2)

lies to the right of the saddle-node bifurcation curve above. It was shown by Devaney-
Nitecki [6] that for all parameters (a, b) lying to the right of this curve the map F, ;
possesses a full horseshoe, and all points either escape to infinity or converge to this
invariant set under iteration.

For a fixed b sufficiently small, increasing a from the saddle-node bifurcation
locus to the horseshoe locus the map F, ; undergoes a period-doubling cascade. Each
period-doubling bifurcation curve is algebraic and they accumulate upon an analytic
curve which intersects the a-axis at the Feigenbaum-Collet-Tresser parameter a =
1.401.... For parameters to the left of the accumulation of period-doubling, the map
F, » has simple dynamics: there are finitely many periodic orbits each of period 2"
for some non-negative integer n.

After this accumulation of period-doubling less is known. However, restricting
to the a-axis we know more. Here between the accumulation of period-doubling
and the horseshoe locus, uncountably many bifurcations occur. For each periodic
kneading sequence there corresponds a hyperbolic component, i.e., an interval such
that for each parameter in this interval F, ; has a periodic attractor whose itinerary
is determined by the given periodic kneading sequence. For example, there is an
interval around the point a = 1.7549.., for which every parameter has an attractive
cycle of period three. (This parameter is actually the critically-periodic parameter,
or centre, of the unique period-three hyperbolic component.)

These hyperbolic intervals extend to open subsets of the (a, b)-plane, where the
periodic attractor persists. The loci of all such parameters, for fixed periods, were
first considered by El-Hamouly and Mira [7]. Many components of this locus have
the following structure: there exists a main ‘body’ out of which four ‘limbs’ emanate.
Then limbs do not intersect; the union of the limbs and body is simply connected;
two of the limbs intersect { = 1}; the two remaining limbs intersect {b = 0}. (Sim-
ilar configurations have been observed for the one-dimensional cubic family. These
configurations have been called swallow configurations by Milnor [13].) Numerical
investigations into the braid-equivalences exhibited in the (a, b)-plane were carried
out by Holmes [10]. (See also Sannami [15].) However, currently very little is under-
stood about these configurations. Their apparent prevalence, in the chaotic parameter
region for the Hénon family as well as in other families, also requires explanation.

Remark 5.1 The braid equivalences we constructed were based on the initial uni-
modal permutation v possessing a non-dynamical preimage. This can only be satis-
fied if the corresponding kneading sequence satisfies k > 10C or, equivalently, has
hyperbolic parameter interval lying to the right of the period-three hyperbolic param-
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0.08 - R

0.04 =

Fig. 10 The isotracal curves of periods 8, 11, 14 and 17 generated from head 1001C are shown in
red. The grey region show the scatterplots for periods 8, 11, 14 and 17. The darker the colour, the
higher the period

eter interval. Consequently, all numerical example given below intersect the g-axis
in the interval [1.7549..., 2]. However, in [5] we will describe a generalisation of the
construction of braid equivalences given here which do not have this restriction.

Following the numerical evidence given below, we ask the following questions.
Let v_ and v be an arbitrary pair of combinatorial types from Construction 3.1.

Question A. Leta_, ay € [—1/4, 2] be such that f,_ and f,, have critical orbits c_ and c
of types v_ and vy respectively. Let C_ and C denote the corresponding periodic orbits
for Fy_ o and Fy, o respectively. Does there exist a braid equivalence in the family Fy p
connecting (C_, F,_ o) and (Cy, Fy, 0)?

The above question only deal with braid equivalences coming from Construction 3.1.
Now, given an initial braid equivalent pair (v°, Uﬁ’r), let us consider a sequence of
equivalent pairs (v, vl ) coming from Construction 4.6.
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Fig. 11 For the Hénon family F p, in Fig. 11a zero isotracal paths are plotted for heads 1001C,
10011C, 100111C and 1001111C. In Figs. 10, 11b, c the same paths are plotted, for a fixed head,

together with scatterplots of parameters with attracting points of the same period

Question B. For each positive integer i, let at, afF € [—1/4, 2] be parameters such that f i

and 'fai have critical orbits ¢/ and cﬂr of types v’ and UfF respectively. Let C. and Ci

denote the corresponding periodic orbits for F,;  and F, 4.0 respectively. Does there exist,

for each i, a braid equivalence in the family F, ; connecting (cL, F, ) and (Cj_, Fai,O)?

Are the paths ' in the (a, b)-plane which realise these braid equivalences pairwise disjoint?

We now give numerical evidence suggesting A and B are true. For simplicity we
represent unimodal combinatorial types by the itinerary of the critical point (with
respect to the standard partition Iy = [0, m), Ic = m, I} = (m, p — 1].) Fig. la—d
showed plots of parameters for which F, ; possessed an attracting periodic orbit of
a fixed period p. These regions connected distinct degenerate Hénon parameters.
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Numerically we construct a curve between such parameters as follows. First, take
a unimodal permutation v satisfying the hypotheses of Construction 3.1, i.e., it is
reconnectable at the non-dynamical preimage, and the non-dynamical preimage lies
to the left of the folding point. Call v the head. Apply Construction 3.1, giving a
braid-equivalent pair v° and vﬂ. Then apply Construction 4.6 inductively, giving
braid-equivalent pairs vl and ufr for i = 1,2, 3. This was repeated for various v.
See Table 1 for orbits listed by itinerary and grouped by head, with the associated per-
mutation given in cyclic notation. They are listed in pairs obtained as just described:
the first pair is obtained from the head by Construction 3.1 and subsequent ones from
Construction 4.6, inductively.

For each pair v’ and Ui we computed the superattracting parameters a_ and a
in the quadratic family with critical orbit of type v_ and v, respectively. Then the
parameter locus of

F(fb(xinv Yin) = Xins Yin), tI'DFa[fb(Xin, yin) = 0. (5.3)

passing through the parameters (a_, 0) and (a,., 0) was computed. We call a param-
eter curve lying in the locus (5.3) a zero isotracal path. (More generally an isotracal
path satisfies (5.3), but with the trace set to some fixed constant instead of zero.) We
compute an isotracal curve iteratively by starting from the initial data given by

a=ax, b=0, xp=ax, yn=0. 54

On each slice {b = by}, Newton’s method was used to find a = a(by), xin = xin(bo)
and yi, = yin(bo) satisfying Eq. (5.3). The value of b was then incremented and the
values of a, xj, and y;, from the previous step were used as initial data. The algorithm
terminated once a_(b) and a, (b) were sufficiently close.

Table 2 shows some of the braid equivalences which were realised in the Hénon
family. The paths in the parameter region of (a, b) € [1.8, 1.9] x [0.0, 0.1] are shown
in Fig. 11a. The red curves show the period 8, 11, 14 and 17 curves associated with
head 1001C given in Table 2. They are shaded so that the darker the curve is, the
higher the period. Similarly, the green curves show the period 9, 12, 15 and 18 curves
associated with the head 10011C from Table 2. The blue curves show the period 10,
13, 16 and 19 curves associated with the head 100111C from Table 2. The yellow
curves show the period 11, 14, 17 and 20 curves associated with the head 1001111C
from Table 2. In each of these cases, the darker the curve is, the higher the period.

These plots were then superimposed with the scatterplots in Figs. 10—-11d. The
grey region denoting the data from the first algorithm. So, for example, Fig. 10 shows
the curves of period 8, 11, 14 and 17 in Fig. 1 1a together with the scatterplot data
from the introduction for periods 8, 11, 14, and 17, where the darker the grey is the
lower the period. Figure 11b, c are similar.

Table 2 also gives the prefix and decoration to compare the current mechanism
with that given by the first and second authors (see [4] for more details on prefixes
and decorations). For example consider the kneading sequences 10011110C and
10011010C (see Table 2). These have the same prefix 1001 but different decorations,
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Table 1 Braid equivalences in cyclic notation

Critical itinerary

Cyclic notation

1001010C 2,7,3,5,0,4,6,1

1001110C 2,7,3,0,5,4,6,1

1001010010C 2,7,10,3,8,5,0,4,9,6,1

1001110010C 2,7,10,3,8,0,5,4,9,6,1

1001010010110C 2,7,13,10,3,8,5,0,11,4,9,12,6,1
1001110010110C 2,7,13,10,3,8,0,5,11,4,9,12,6,1
1001010010110110C 2,7,16,13,10,3,8,5,0,14,11,4,9,12,15,6,1
1001110010110110C 2,7,16,13,10,3,8,0,5,14,11,4,9,12,15,6,1
10011110C 2,8,3,0,6,4,5,7,1

10011010C 2,8,3,6,0,4,5,7,1

10011110010C 2,8,11,3,9,0,6,4,5,10,7,1

10011010010C 2,8,11,3,9,6,0,4,5,10,7,1

10011110010110C 2,8,14,11,3,9,0,6,12,4,5,10,13,7,1
10011010010110C 2,8,14,11,3,9,6,0,12,4,5,10,13,7,1
10011010010110110C 2,8,17,14,11,3,9,6,0,15,12,4,5,10,13,16,7,1
10011110010110110C 2,8,17,14,11,3,9,0,6,15,12,4,5,10,13,16,7,1
100111010C 29,3,7,0,5,4,6,8,1

100111110C 2,9,3,0,7,5.4,6,8,1

100111010010C 2,9,12,3,10,7,0,5,4,6,11,8,1

100111110010C 29,12,3,10,0,7,5,4,6,11,8,1
100111010010110C 2,9,15,12,3,10,7,0,13,5,4,6,11,14,8,1
100111110010110C 2,9,15,12,3,10,0,7,13,5,4,6,11,14,8,1
100111010010110110C 29,18,15,12,3,10,7,0,16,13,5,4,6,11,14,17,8,1
100111110010110110C 2,9,18,15,12,3,10,0,7,16,13,5,4,6,11,14,17,8,1
1001111110C 2,10,3,8,0,6,4,5,7,9,1

1001111010C 2,10,3,8,6,0,4,5,7,9,1

1001111110010C 2,10,13,3,11,0,8,6,4,5,7,12,9,1
1001111010010C 2,10,13,3,11,8,0,6,4,5,7,12,9,1
1001111110010110C 2,10,16,13,3,11,0,8,14,6,4,5,7,12,15,9,1
1001111010010110C 2,10,16,13,3,11,8,0,14,6,4,5,7,12,15,9,1
1001111110010110110C 2,10,19,16,13,3,11,0,8,17,14,6,4,5,7,12,15,18,9,1
1001111010010110110C 2,10,19,16,13,3,11,8,0,17,14,6,4,5,7,12,15,18,9,1
100110010100110C 2,11,6,15,3,12,7,9,0,4,13,8,14,5,10,1
100110011100110C 2,11,6,15,3,12,7,0,9,4,13,8,14,5,10,1

1001100101001100100110C

2,11,18,6,15,22,3,12,19,7,16,9,0,4,13,20,8,21,14,5,17,10,1

1001100111001100100110C

2,11,18,6,15,22,3,12,19,7,16,0,9,4,13,20,8,21,14,5,17,10,1

10011001010011001001101100110C

2,11,25,18,6,15,29,22,3,12,26,19,7,16,9,0,23,4,13,27,20,8,
21,28,14,5,17,24,10,1

10011001110011001001101100110C

2,11,25,18,6,15,29,22,3,12,26,19,7,16,0,9,23,4,13,27,20,8,
21,28,14,5,17,24,10,1

100110010100110010011011001101100110C

2,11,32,25,18,6,15,36,29,22,3,12,33,26,19,7,16,9,0,30,23 .4,
13,34,27,20,8,21,28,35,14,5,17,24,31,10,1

100110011100110010011011001101100110C

2,11,32,25,18,6,15,36,29,22,3,12,33,26,19,7,16,0,9,30,23,4,13,
34,27,20,8,21,28,35,14,5,17,24,31,10,1
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110 and 010 respectively, showing that braid equivalent sequences constructed by
the mechanism in this article may have different decorations.

We can weaken Questions A and B by asking if these braid equivalences are
realisable in a more general class of maps containing the Hénon family. The typical
generalisation of the Hénon family is that of Hénon-like maps. These are maps of
the form

F(x,y) = (f(x) —e(x, y), x) (5.5)

where f is unimodal on some interval J and e : J x J — Rsatisfies d,¢ > 0. These
are diffeomorphisms onto their images which appear, after a suitable change of vari-
ables, when considering maps in the neighbourhood of a homoclinic bifurcation [14].

Question A’. Given unimodal maps f_ and f of type v_ and v respectively, does there
exist a family F;, t € [—1, 1], of Hénon-like diffeomorphisms such that F_; = ¢(f_) and
Fy1 = (f}), where ¢ is some embedding of the set of unimodal maps into the boundary of
the space of Hénon-like diffeomorphisms?

and

Question B’. For each positive integer i, let f_; and f ; have critical orbits ¢/ and cﬂr of
types v’ and vi respectively. Let 7 and Cﬂr denote the corresponding periodic orbits for
the degenerate Hénon-like maps F_ ; o and Fy ; o respectively. Does there exist, for each
i, a one-parameter family of Hénon-like maps F; ; realising a braid equivalence connecting
(CL.F_ o) and (C}. Fy0)?
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Abstract We define the empiric stochastic stability of an invariant measure in the
finite-time scenario, adapting the classical definition of stochastic stability. We prove
that an invariant measure of a continuous system is empirically stochastically stable
if and only if it is physical. We also define the empiric stochastic stability of a weak*-
compact set of invariant measures instead of a single measure. Even when the system
has not physical measures it still has minimal empirically stochastically stable sets
of measures. We prove that such sets are necessarily composed by pseudo-physical
measures. Finally, we apply the results to the one-dimensional C1-expanding case to
conclude that the measures of empirically stochastically sets satisfy Pesin Entropy
Formula.

Keywords Empiric stochastic stability « Physical measures - Pseudo physical
measures + Pesin Entropy Formula

1 Introduction

The purpose of this paper is to study a type of stochastic stability of invariant mea-
sures, which we call “empiric stochastic stability” for continuous maps f : M — M
on a compact Riemannian manifold M of finite dimension, with or without boundary.
In particular, we are interested on the empirically stochastically stable measures of
one-dimensional continuous dynamical systems, and among them, the C'-expanding
maps on the circle.
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Letus denote by (M, f) the deterministic (zero-noise) dynamical system obtained
by iteration of f, and by (M, f, P;) the randomly perturbed system whose noise
amplitude is . Even if we will work on a wide scenario which includes any continuous
dynamical system (M, f), we restrict the stochastic system (M, f, P.) by assuming
that the noise probability distribution is uniform (i.e. it has constant density) on all the
balls of radius ¢ > 0 of M (for a precise statement of this assumption see formula (1)
below). We call ¢ the noise level, or also the amplitude of the random perturbation.
To define the empiric stochastic stability we will take & — 0.

In the stochastic system (M, f, P,), the symbol P, denotes the family of proba-
bility distributions, which are called transition probabilities, according to which the
noise is added to f(x) for each x € M. Precisely, each transition probability is, for
all n € N, the distribution of the state x,,.; of the noisy orbit conditioned to x, = x,
foreach x € M. As said above, the transition probability is supported on the ball with
center at f(x) and radius ¢ > 0. So, the zero-noise system (M, f) is recovered by
taking ¢ = 0; namely, (M, f) = (M, f, Py). The observer naturally expects that if
the amplitude ¢ > 0 of the random perturbation were small enough, then the ergodic
properties of the stochastic system “remembered” those of the zero-noise system.

The foundation and tools to study the random perturbations of dynamical systems
were early provided in [4, 19, 28]. The stochastic stability appears in the literature
mostly defined through the stationary meaures . of the stochastic system (M, f, P.).
Classically, the authors prove and describe, under particular conditions, the existence
and properties of the f-invariant measures that are the weak*-limit of ergodic sta-
tionary measures as ¢ — 0T. See for instance the early results of [8, 20-22, 30]),
and the later works of [1-3, 25]. For a review on stochastic and statistical stability
of randomly perturbed dynamical systems, see for instance [29] and Appendix D
of [7].

The stationary measures of the ramdom perturbations provide the probabilistic
behaviour of the noisy system asymptotically in the future. Nevertheless, from a rather
practical or experimental point of view the concept of stochastic stability should not
require the knowledge a priori of the limit measures of the perturbed system as
n — +o00. For instance [15] presents numerical experiments on the stability of one-
dimensional noisy systems in a finite time. The ergodic stationary measure is in
fact substituted by an empirical (i.e. obtained after a finite-time observation of the
system) probability. Also in other applications of the theory of random systems (see
for instance [16, 18]), the stationary measures are usually unkown, are not directly
obtained from the experiments, but substituted by the finite-time empiric probabilities
which approximate the stationary measures if the observations last enough.

Summarizing, for a certain type of stochastically stable properties, one should not
need the infinite-time noisy orbits. Instead, one may take the noisy orbits up fo a large
finite time n, which are indeed those that the experimenter observes and predicts. The
statistics of the observations and predictions of the noisy orbits still reflect, for the
experimenter and the predictor, the behaviour of the stochastic system, but only up
to some finite horizon.

Motivated by the above arguments, in Sect. 2 we will define the empiric stochastic
stability. Roughly speaking, an f-invariant probability for the zero-noise system
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(M, f) is empirically stochastically stable if it approximates, up to an arbitrarily
small error p > 0, the statistics of sufficiently large pieces of the noisy orbits, for some
fixed time n, provided that the noise-level ¢ > 0 is small enough (see Definition 4).
This concept is a reformulation in a finite-time scenario of one of the usual definition
of infinite-time stochastic stability (see for instance [1, 8, 30]).

1.1 Setting the Problem

Lete > Oand x € M. Denote by B.(x) C M the open ball of radius ¢ centered at x.
Consider the Lebesgue measure m, i.e. the finite measure obtained from the volume
form induced by the Riemannian structure of the manifold. For each point x € M,
we take the restriction of m to the ball B, (f (x)). Precisely, we define the probability
measure p,(x, -) by the following equality:

m(A N B.(f(x)))

c(x, A) :=
Pl A= B )

VAed, (1)

where <7 is the Borel sigma-algebra in M.

Definition 1 (Stochastic system with noise-level ¢.) For each value of ¢ > 0, con-
sider the stochastic process or Markov chain {x, },en C MY in the measurable space
(M, &) such that, for all A €

prob(xg € A) = m(A), prob(x,;1 € Alx, = x) = p:(x, A),

where p.(x, -) is defined by equality (1).
The system whose stochastic orbits are the Markov chains as above is called
stochastic system with noise-level ¢. We denote it by (M, f, P.), where

Py :={pe(x, )}rem-

The stochastic systems with noise-level ¢ > 0 are usually studied by assuming
certain regularity of the zero-noise systems (M, f), and by taking the ergodic station-
ary measures u. of the stochastic system (M, f, P.) (see for instance [30]). When
assuming that the transition probabilities satisfy equality (1), all the stationary proba-
bility measures become absolutely continuous with respect to the Lebesgue measure
m (see for instance [6]). Therefore, if a property holds for the noisy orbits for .-
a.e initial state x € M, it also holds for a Lebesgue-positive set of states.

When looking at the noisy system, the experimenter usually obtains the values
of several bounded measurable functions ¢, which are called observables, along the
stochastic orbits {x,},cn. From Definition 1, the expected value of ¢ at instant O is
E(p)o = f ¢ (xg) dm(xp). Besides, from the definition of the transition probabilities
by equality (1), for any given state x € M the expected value of ¢ (x,) conditioned
tox, = xis [ @(y) pe(x, dy). So, in particular at instant 1 the expected value of ¢ is
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E(¢) = ff (1) pe (o, dxr) dm(xo),

and its expected value at instant 2 is

E(¢) = / / / 0(x2) pe (x1 dxz) pa(xo, dxy) dm(xo).

Analogously, by induction on n we obtain that for all n > 1, the expected value
E(¢), of the observable ¢ is

E (@) =///~.-/<p(xn)ps(xn71,dxn)-.-ps(xl,dxz) De (X0, dx1) dm(xo). (2)

Since the Lebesgue measure m is not necessarily stationary for the system (M, f, P.),
the expected value of the same function ¢ at each instant #, if the initial distribution
is m, may change with n.

As said at the beginning, we assume that the experimenter only sees the values of
the observable functions along finite pieces of the noisy orbits because his experiment
and his empiric observations can not last forever. When analyzing the statistics of the
observed data, he considers for instance the time average of the collected observations
along those finitely elapsed pieces of randomly perturbed orbits. These time averages
can be computed by the integrals of the observable functions with respect to certain
probability measures, which are called empiric stochastic probabilities for finite time
n (see Definition 3). Precisely, for any any fixed time n > 1 and for any initial state
Xo € M, the empiric stochastic probability o, , , is defined such that the time average
of the expected values of any observable ¢ at instants 1, 2, ..., n along the noisy
orbit initiating at x, can be computed by the following equality:

1 n
S Elpx)lx) = / OG0 (7),
j=1

where
E(@(Xj)|xo)=//--~/<.0(xj)17£(xj—1,dxj)~--Pe(xl,dxz)Pe(Xo,dxl)- 3)

We also assume that the experimenter only sees Lebesgue-positive sets in the phase
space M. So, when analyzing the statistics of the observed data in the noisy system,
he will not observe all the empiric stochastic distributions o, , x, but only those for
Lebesgue-positive sets of initial states x € M. If besides he can only manage a finite
set of continuous observable functions, then he will not see the exact probability
distributions, but some weak* approximations to them up to an error p > 0, in the
metric space .# of probability measures.

For some classes of mappings on the manifold M, even with high regularity (for
instance Morse-Smale C* diffeomorphisms with two or more hyperbolic sinks), one
single measure u is not enough to approximate the empiric stochastic probabilities
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of the noisy orbits for Lebesgue-a.e. x € M. The experimenter may need a set %2~
composed by several probability measures instead of a single measure. Motivated by
this phenomenon, we define the empiric stochastic stability of a weak™-compact set
 of f-invariant probability measures (see Definition 8). This concept is similar to
the empiric stochastic stability of a single measure, with two main changes: first, it
substitutes the measure u by a weak*-compact set .2~ of probabilities; and second,
it requires .~ be minimal with the property of empiric stochastic stability, when
restricting the stochastic system to a fixed Lebesgue-positive set of noisy orbits. In
particular, a globally empirically stochastically stable set /" of invariant measures
minimally approximates the statistics of Lebesgue-a.e. noisy orbits. We will prove
that it exists and is unique.

1.2 Main Results

A classical concept in the ergodic theory of zero-noise dynamical systems is that

of physical measures [14]. In brief, a physical measure is an f-invariant measure

1 whose basin of statistical attraction has positive Lebesgue measure. This basin is

composed by the zero-noise orbits such that the time average probability up to time

n converges to u in the weak*-topology as n — +o00 (see Definitions 11 and 12).
One of the main purposes of this paper is to answer the following question:

Question 1. Is there some relation between the empirically stochastically stable
measures and the physical measures? If yes, how are they related?

We will give an answer to this question in Theorem 1 and Corollary 1 (see Sect.2.1
for their precise statements). In particular, we will prove the following result:

Theorem. An f-invariant measure is empirically stochastically stable if and only if
it is physical.

A generalization of physical measures, is the concept of pseudo-physical proba-
bility measures, which are sometimes also called SRB-like measures [10-12]. They
are defined such that, for all p > 0, their weak* p-neighborhood, has a (weak) basin
of statistical attraction with positive Lebesgue measure (see Definitions 11 and 12).

To study this more general scenario of pseudo-physics, our second main purpose
is to answer the following question:

Question 2. Do empirically stochastically stable sets of measures relate with pseudo-
physical measures? If yes, how do they relate?

We will give an answer to this question in Theorem 2 and its corollaries, whose
precise statements are in Sect.2.1. In particular, we will prove the following result:

Theorem. A weak*-compact set of invariant probability measures is empirically
stochastically stable only if all its measures are pseudo-physical. Conversely, any
pseudo-physical measure belongs to the unique globally empirically stochastically
stable set of measures.
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2 Definitions and Statements

We denote by .# the space of Borel probability measures on the manifold M,
endowed with the weak*-topology; and by .#; the subspace of f-invariant proba-
bilities, where (M, f) is the zero-noise dynamical system. Since the weak™* topology
in ./ is metrizable, we can choose and fix a metric dist* that endows that topology.

To make formula (2) and other computations concise, it is convenient to introduce
the following definition:

Definition 2 (The transfer operators £, and ). Denote by C°(M, C) the space
of complex continuous functions defined in M. For the stochastic system (M, f, P.),
we define the transfer operator £, : C°(M, C) — C°(M, C) as follows:

(Zep)(x) = /(p(y) pe(x,dy) Vx e M, V¢ eC'(M,C). “4)

From equality (1) it is easy to prove that p.(x, -) depends continuously on x € M
in the weak* topology. So, %, ¢ is a continuous function for any ¢ € C°(M, C).

Through Riesz representation theorem, for any measure p € .# there exists a
unique measure, which we denote by .Z,* i, such that

/ od (L) = / (Zep)dp ¥ eC'(M,O). (5)

We call £ 1 A +— M the dual transfer operator or also, the transfer operator in
the space of measures.

From the above definition, we obtain the following property for any observable
function @ € C°(M, C): its expected value at the instant n along the stochastic
orbits with noise level ¢ is

E(g), = / (L") dm = / 0 d(L " m).

We are not only interested in the expected values of the observables ¢, but also in
the statistics (i.e time averages of the observables) along the individual noisy orbits.
With such a purpose, we first consider the following equality:

(Z o)(x) = /wd(a?;*"fsx) VxeM, (6)

where §, denotes the Dirac probability measure supported on {x}. Second, we intro-
duce the following concept of empiric probabilities for the stochastic system:

Definition 3 (Empiric stochastic probabilities) For any fixed instant n > 1, and for
any initial state x € M, we define the empiric stochastic probability o, , , of the
noisy orbit with noise-level ¢ > 0, with initial state x, and up to time n, as follows:



Empiric Stochastic Stability of Physical and Pseudo-physical Measures 119
1 n

Ognx = ; Xl: iﬂ:'l 8X~ (7)
j=

Note that the empiric stochastic probabilities for Lebesgue almost x € M allow
the computation of the time averages of the observable ¢ along the noisy orbits.
Precisely,

1 « ,
Y Lo = [0 dons) Voo ®)
j=1

Definition 4 (Empiric stochastic stability of a measure) We call a probability mea-
sure i € .4y empirically stochastically stable if there exists a measurable set ACM
with positive Lebesgue measure such that:

For all p > 0 and for all n € N* large enough there exists &y > 0 (which may
depend on p and on n but not on x) satisfying

dist*(oenx, ) <p VYO0 <e <g, for Lebesgue a.e. x € A.

Definition 5 (Basin of empiric stochastic stability of a measure) For any probability
measure , we construct the following (maybe empty) set in the ambient manifold
M:

KM = [x eM: Vp>03IN=N(p)suchthatVn > N ey = ¢o(p, n) > 0 satisfying

dist* (Genr, W) <p VO <e< 80}. )

We call the set A uw C M the basin of empiric stochastic stability of j1. Note thatitis
defined for any probability measure i € ., butit may be empty, or even if nonempty,
it may have zero Lebesgue-measure when p is not empirically stochastically stable.

The set 4, 1 1s measurable (see Lemma 2). According to Definition 4, a probability
measure p is empirically stochastically stable if and only if the set A . has positive
Lebesgue measure (see Lemma 3).

Definition 6 (Global empiric stochastic stability of a measure) We say that i € s
is globally empirically stochastically stable if it is empirically stochastically stable,
and besides its basin A,, of empiric stability has full Lebesgue measure.

Definition 7 (Basin of empiric stochastic stability of a set of measures) For any
nonempty weak*-compact set %~ C .# , we construct the following (maybe empty)
set in the space manifold M:

ZE;{/ ={xeM: Vp>03IN=N(p)suchthatVn > N Jeg = ¢eg(p,n) > 0 satisfying
dist*(og.nx, H) <p YO <& <sgpl. (10)



120 E. Catsigeras

We call A, o C M the basin of empiric stochastic stability of ¢ .

Note that A 5 is defined for any nonempty weak*-compact set #~ C .# . But it may
be empty, or even if nonempty, it may have zero Lebesgue measure when %~ is not
empirically stochastically stable, according to the following definition:

Definition 8 (Empiric stochastic stability of a set of measures) We call a nonempty
weak*-compact set & C .#; of f-invariant probability measures empirically
stochastically stable if :

(a) There exists a measurable set A C M with positive Lebesgue measure, such
that:
For all p > 0 and for all n € N* large enough, there exists &y > 0 (which may
depend on p and 7, but not on x), satisfying:

dist* (0 px, ) <p YO0<e<g, Vxe A.

(b) £ is minimal in the following sense: if £ C .# is nonempty and weak*-
compact, and if A C A 4 Lebesgue-a.e., then ¢ C 4.

By definition, if % is empirically stochastically stable, then the set A C M sat-
isfying condition (a), has positive Lebesgue measure and is contained in A . Since
A  1s measurable (see Lemma 4), we conclude that it has positive Lebesgue mea-
sure.

Nevertheless, for a nonempty weak™*-compact set 2" be empirically stochastically
stable, it is not enough that :4\ » has positive Lebesgue measure. In fact, to avoid the
whole set .7 of f-invariant measures be always an empirically stochastically stable
set, we ask 7 to satisfy condition (b). In brief, we require a property of minimality
of J# with respect to Lebesgue-a.e. point of its basin Ay of empiric stochastic
stability.

Definition 9 (Global empiric stochastic stability of a set of measures) We say that a
nonempty weak*-compact set £~ € .# is globally empirically stochastically stable
if it is empirically stochastically stable, and besides its basin A of empiric stability
has full Lebesgue measure.

We recall the following definitions from [11]:

Definition 10 (Empiric zero-noise probabilities and pw-limit sets) For any fixed
natural number n > 1, the empiric probability o, , of the orbit with initial state
Xx € M and up to time n of the zero-noise system (M, f), is defined by the following

equality:
1 n
Opx ‘= ; Zﬁfi(x).
j=1

Itis standard to check, from the construction of the empiric stochastic probabilities in
Definition 3, that o, , , is absolutely continuous with respect to the Lebesgue measure
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m. In contrast, the empiric probability o, , for the zero-noise orbits is atomic, since
it is supported on a finite number of points.

The p-omega limit set pw, in the space .# of probability measures, corresponding
to the orbit of x € M, is defined by:

pw, = {u € A : In; — +oosuch that im; oy, « = i},

where lim* is taken in the weak*-topology of .Z . It is standard to check that pw, C
My forallx e M.

Definition 11 (Strong and p-weak basin of statistical attraction) For any f-invariant
probability measure . € .#, the (strong) basin of statistical attraction of u is the
(maybe empty) set

Ay ={x€M: pa)xz{,u,}}. (1

For any f-invariant probability measure 1 € .#, and for any p > 0, the p-weak
basin of statistical attraction of | is the (maybe empty) set

A = {x e M: dist*(poy, {1}) < p}.

Definition 12 (Physical and pseudo-physical measures) For the zero-noise dynam-
ical system (M, f), an f-invariant probability measure w is physical if its strong
basin of statistical attraction A, has positive Lebesgue measure.

An f-invariant probability measure p is pseudo-physical if for all p > 0, its
p-weak basin of statistical attraction A/, has positive Lebesgue measure.

It is standard to check that, even if the p-weak basin of statistical attraction Af
depends on the chosen weak*-metric in the space .# of probabilities, the set of
pseudo-physical measures remains the same when changing this metric (provided
that the new metric also induces the weak™*-topology).

Note that the strong basin of statistical attraction of any measure is always con-
tained in the p-weak basin of the same measure. Hence, any physical measure (if
there exists some) is pseudo-physical. But not all the pseudo-physical measures are
necessarily physical (see for instance example 5 of [10]).

We remark that we do not require the ergodicity of | to be physical or pseudo-
physical. In fact, in [17] it is proved that the C*° diffeomorphism, popularly known
as the Bowen Eye, exhibits a segment of pseudo-physical measures whose extremes,
and so all the measures in the segement, are non ergodic. Also, for some C°-version
of Bowen Eye (see example 5 B of [10]) there is a unique pseudo-physical measure,
it is physical and non-ergodic.
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2.1 Statement of the Results

Theorem 1 (Characterization of empirically stochastically stable measures) Let
f : M +— M be a continuous map on a compact Riemannian manifold M. Let u be
an f-invariant probability measure. Then, | is empirically stochastically stable if
and only if it is physical.

Besides, if (u is physical, then its basin A w C M of empiric stochastic stability
equals Lebesgue-a.e. its strong basin A,, C M of statistical attraction.

We will prove Theorem 1 and the following corollaries in Sect. 3.

Corollary 1 Let f : M — M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i) There exists an f-invariant probability measure . that is globally empirically
stochastically stable.
(ii)  There exists an f-invariant probability measure |1, that is physical and such
that its strong basin of statistical attraction has full Lebesgue measure.
(iii) There exists a unique f-invariant probability measure |3 that is pseudo-
physical.

Besides, if (i), (ii) or (iii) holds, then @, = wy = 3, this measure is the unique
empirically stochastically stable, and the set {j11} is the unique weak*-compact set
in the space of probability measures that is empirically stochastically stable.

Before stating the next corollary, we fix the following definition: we say that a
property of the maps on M is C'-generic if it holds for a countable intersection of
open and dense sets of maps in the C'- topology.

Corollary 2 For C'-generic andfor all C* expanding maps of the circle, there exists
a unique ergodic measure |4 that is empirically stochastically stable. Besides | is
globally empirically stochastically stable and it is the unique measure that satisfies
the following Pesin Entropy Formula [23, 24]:

h(£) Zfloglf'ldu- (12)

Theorem 1 is a particular case of the following result.

Theorem 2 (Empirically stochastically stable sets and pseudo-physics)

Let f : M +— M be a continuous map on a compact Riemannian manifold M.
(a) If X is a nonempty weak*-compact set of f -invariant measures that is empirically
stochastically stable, then any . € ¥ is pseudo-physical.

(b) A set & of f-invariant measures is globally empirically stochastically stable if
and only if it coincides with the set of all the pseudo-physical measures.

We will prove Theorem 2 and the following corollaries in Sect. 4.
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Corollary 3 Forany continuous map f : M +— M on a compact Riemannian mani-
fold M, there exists and is unique the nonempty weak*-compact set & of f -invariant
measures that is globally stochastically stable. Besides, u € ¢ if and only if u is
pseudo-physical.

Corollary 4 [fapseudo-physical measure  is isolated in the set of pseudo-physical
measures, then it is empirically stochastically stable; hence physical.

Corollary 5 Let f : M — M be a continuous map on a compact Riemannian man-
ifold M. Then, the following conditions are equivalent:

(i)  The set of pseudo-physical measures is finite.

(ii) There exists a finite number of (individually) empirically stochastically stable
measures, hence physical measures, and the union of their strong basins of
statistical attraction covers Lebesgue a.e.

Corollary 6 If the set of pseudo-physical measures is countable, then there exists
countably many empirically stochastically stable measures, hence physical, and the
union of their strong basins of statistical attractions covers Lebesgue a.e.

Corollary 7 For all C'-expanding maps of the circle, all the measures of any empir-
ically stochastically stable set & satisfy Pesin Entropy Formula (12).

Corollary 8 For C°-generic maps of the interval, the globally empirically stochas-
tically stable set % of invariant measures includes all the ergodic measures but is
meager in the whole space of invariant measures.

3 Proof of Theorem 1 and its Corollaries

We decompose the proof of Theorem 1 into several lemmas:

Lemma 1 For e > 0 small enough:

(a) The transformation x € M + p.(x, ) € M is continuous.
(b) The transfer operator £ : M > M is continuous.

(c) The transformation x € M + o, € M is continuous.
(d) im} _ ;¢ pe(x, ) = 85(x) uniformly on M.

(e) im} | o+ L8, = & pn(x) uniformly on M.
() im}_, y4 0% 0 x = O, uniformly on M.

Proof (a): It is immediate from the construction of the probability measure p,(x, -)
by equality (1), and taking into account that the Lebesgue measure restricted to a
ball of radius ¢ depends continuously on the center of the ball.

(b): Take a convergent sequence {/;}iey C .# and denote p = lim} ;. For any
continuous function ¢ : M +— M, we have
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/wdo%*ui = /%wdui- (13)

Since (Z.p)(x) = f(p(y)pg(x, dy) and p.(x, -) depends continuously on x, we
deduce that %, ¢ is a continuous function. So, from (13) and the definition of the
weak* topology in .#, we obtain:

im [ dzini = tim_ [ Zodu = [ Zoan= [ vazn.

i—+4o00

We conclude that lim? £ u; = £, hence £* is a continuous operator on .Z .
(c): Since the composition of continuous operators is continuous, we have that .Za*j :
M +— . is continuous for each fixed j € NT. Besides, it is immediate to check that
the transformation x € M +— §, € .# is continuous. Thus, also the transformation
x € M+ £§, € M is continuous. We conclude that, for fixed ¢ > 0 and fixed
n € N7, the transformation

I & ;
XEM > Oppy= —Z;@*]@x /A
n =

is continuous.

(d): For any given p > 0 we shall find &y > 0 (independent on x € M) such that,
dist*(pe(x, ), 85)) < pforall 0 < & < g and for all x € M. For any metric dist*
that endows the weak™ topology in .#, the inequality dist*(p.(x,-), 8x) < p
holds, if and only if, for a finite number (which depends on p and on the metric)
of continuous functions ¢ : M + C, the difference | fgo(y) pe(x,dy) — o(f(x))]
is smaller than a certain ¢’ > O (which depends on p and on the metric). Let us
fix such a continuous function ¢. Since M is compact, ¢ is uniformly continuous
on M. Thus, for any &’ > 0 there exists gy such that, if dist(y;, y2) < & < &g, then
lo(y1) — @(y2)| < €. Since p,(x, -) is supported on the ball B.( f(x)), we deduce:

| / P Pe(x.dy) = p(f(0)] = / e = @(F )] pe(x, dy) < &,

because dist(y, f(x)) < & < g for p.(x,-)-a.e.y € M.

Since g9 does not depend on x, we have proved that lim}_ ;. p.(x, ) = /(0
uniformly for all x € M.
(e): Let us prove that lim,_.o+ .28, = & n(,) uniformly on x € M. By induction
onn € NT:

If n = 1, for any continuous function ¢ : M > C we compute the following
integral

/(pdo?;*&c = /(i”sso)d&c = (Zp)(x) = /so(y) Pe(x, dy).
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From the unicity of the probability measure of Riesz Representation Theorem, we
obtain .£"8, = p.(x, -). Applying part d), we conclude

lim}_ , Z8, = lim]_ : pe(x, ) = 87(x), uniformly on x € M.
Now, assume that, for some n € N, the following assertion holds:
lim?_ . "8, = 8n(x), uniformly onx € M. (14)

Let us prove the same assertion for n + 1, instead of n: Fix a continuous function
¢ : M — C. As proved in part (d), for any &’ > 0, there exists &y > 0 (independent
on x € M) such that

/

|-Ze@)(x) —o(f ()] = I/w(y)Ps(x, dy) —o(f(x)] < % VO<e=<eg, YxeM.

Thus

|[oaze s~ [wonazes,

= ’/(fg(p) dfg*nax - /(QOO f) dfg*nSX

5/|.,5,@¢)—<pof|d.§f;*”3x <% Vo<e<s, VreM. (15)

Besides, the induction assumption (14) implies that, if &y is chosen small enough,
then for the continuous function ¢ o f the following inequality holds:

‘/(g{)of)d:g:nsx —(p(fnﬂ(x))) _

’

= ‘/(goof)d.,%*"&—/(goof)d(an(x) <% VO0<e<g, VxeM. (16)

Joining inequalities (15) and (16) we deduce that for all &’ > 0, there exists &g > 0
(independent of x) such that

‘/(ﬂd.,g:n-HSX _/godafnﬂ(x)

In other words:

<& VO0<e<sgy, VxeM.

lim:%m,,?;*"ﬂ&r = 8nt1(yy uniformly onx € M,

ending the proof of part (e).
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(f): Since o x = %Zj’:l D%*j 8y, applying part (e) to each probability measure
ciﬂs*j 8., we deduce that

1 n
limz_)wi”:”l(sx = - E 8fi(x) = Onx uniformly onx € M,
n
j=1

ending the proof of Lemma 1. ]

Lemma 2 For any probability measure |1 consider the (maybe empty) basin of
stochastic stability A u defined by equality (9), and the (maybe empty) strong basin
of statistical attraction A,, defined by equality (11).

Then, A\u and A, are measurable sets and coincide. Besides, they satisfy the
following equality:

Av=Ar=) U ) Cu yxw). (17)

keNT NeN+ n>N

where, for any real number p > 0 and any natural number n > 1, the set C, ,(u)
is defined by
Cu, p(u) :==1{x e M: dist*(0n,x, 1) < p}.

Proof From equality (11), we re-write the strong basin of statistical attraction of u
as follows:

A= {x eM: lim!  _ on, = u} N U NCuw. a8

p>0 NeN+t n>N

From equality (9) we have:

A= U M) Pusw). (19)

p>0 NeNt n>N

where D, ,(u) is defined by

D)= [ txeM: dist*(oenr. ) < p}.

£0>00<e<g)
The assertion dist*(o, ,.x, #) < p forall 0 < & < g implies

lim dist* (e, 1) < p < 2p.
e—>0F

Thus, applying part (f) of Lemma 1, we deduce that dist* (o, ., n) < 2p for all
x € D, ,(u). In other words,
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Dy p (1) C Cpop(1),
which, joint with equalities (18) and (19), implies:
A, CA,.
To prove the converse inclusion, we apply again part (f) of Lemma 1 to write:

Cn,p(ﬂ) ={xeX: diSt*(lim:ﬁO‘*’O‘é‘,n,X’ ) < /0}

Therefore
lim dist*(os ., ) < p YV x € Cpp(u).
e—>0t

Thus,

Copw) | | e M dist*(0ene, 1) < p) = Dy p(w).

£0>00<e<g)

The above inclusion, joint with equalities (18) and (19), implies
A, C A,

We have proved that

Av=Ac= U ) Cro.

p>0 NeNt n>N

Since the set C,, , () decreases when p decreases (with n and p fixed), the family

{U NG

NeNt n>N

whose intersection is A, is decreasing when p decreases. Therefore, its intersection
is equal to the intersection of its countable subfamily

[U N,

NeNt n>N

We have proved equality (13) of Lemma 2.

Finally, note that the set C, 1,x(n) C M is open, because o, = (1/n) Z'}zl
d7ix) (with fixed n) depends continuously on x. Since equality (13) states that A w =
A, is the countable intersection of a countable union of a countable intersection of
open sets, we conclude that it is a measurable set, ending the proof of Lemma 2. [J
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Lemma 3 A probability measure | is empirically stochastically stable, according
to Definition 4, if and only if its basin Xu of empiric stability, defined by equality (9),
has positive Lebesgue measure.
Proof 1f 11 is empirically stochastically stable, then from Definition 4, there exists a
Lebesgue-positive set A C M suchthat A C Au Hence m(A,t) > 0.

To prove the converse assert10n assume that m(A u) = o > 0. Let us construct a
positive Lebesgue set Ac A such that for any p > 0, there exists N € N+ (uniform
onx € A) such that for all n > N there exists &g > 0 (uniformon x € A) satisfying

dist* (o 0) <p YVO0<e<g, Vxe A (to be proved). (20)

Applying Lemma 2 we have

;‘\u= m U Enk, where Ey /i := m Co17k(1).

keNt NeN+ n>N

For fixed k € Nt we have Ey_1,1/x C En,i/x forall N > 1, and

A, = UJ Evapun A,). Then lim m(Ey;xNA,) =m(A,) = a
NoN+ N—>+o00

Therefore, for each k > 1 there exists N (k) > 1 such that
a(l = 1/3% < m(Eyw,1x N A,) < a.
We construct R R
A= ﬂ (EN(k),l/k N AH)'

keN+

We will prove that A has positive Lebesgue measure and that assertion (20) is satisfied
uniformly for all x € A. First,

+00 Too
—~ -~ —~ -~ o o
mAu\ A =m(J A\ Engo, 1700 = Y@ =mExngo ik VA = Y o5 =3,
k>1 k=1 k=1
from where R R R o« o
m(A) =m(A,) —m(A,\ A) Za—z = 5 > 0.

Second, for all p > 0, there exists a natural number £ > 2/p, and a set
Bn@),1/k D A such that

x€Cpip(n) Yn=Nk), Y x € Byu,ik-

Therefore, for all n > N (k) (which is independent on x) we obtain:
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VxeA. QD

=

1
IR

dist* (0.0, 1) <

Finally, applying part (f) of Lemma 1, for each fixed n > N (k) there exists &g > 0
(independent of x), such that

diSt* (Ge prs Ony) < g VO<g<g, VxeM. (22)

Inequalities (21) and (22) end the proof of inequality (20); hence Lemma 3 is
proved. (]

End of the proof of Theorem 1.

Proof From Lemma 3, i is empirically stochastically stable if and only if m (X w) >
0. From Definition 12, p is physical if and only if m(A,) > 0. Applying Lemma
2 we have A, « = A,. We conclude that p is empirically stochastically stable if and
only if u is physical. ]

Before proving Corollary 1, we recall the following theorem taken from [11]:

Theorem 3 Let f : M +— M be a continuous map on a compact Riemannian mani-
fold M. Then, the set Oy of pseudo-physical measures for f is nonempty and weak*-
compact, and contains pw, for Lebesgue-a.e. x € M.

Moreover, Oy is the minimal nonempty weak*-compact set of probability measures
that contains pw, for Lebesgue-a.e. x € M.

Proof See [11, Theorem 1.5].
Proof of Corollary 1.

Proof (i) implies (ii): If w; is globally empirically stable, then by Definition 6
m(;\\m) = m(M). Applying Theorem 1, u; is physical. Besides, from Lemma 2,
we know ;\\m = A, .Thenm(A,) = m(M). So, there exists u, = w that is phys-
ical and whose strong basin of statistical attraction has full Lebesgue measure, as
wanted.

(ii) implies (iii): If u, is physical and m(A,,) = m(M), then from Definitions 10
and 11, we deduce that the set {i,} contains pw, for Lebesgue-a.e. x € M. Besides
{m2} is nonempty and weak*-compact. Hence, applying the last assertion of Theorem
3, we deduce that {11, } is the whole set & ¢ of pseudo physical measures for f. In other
words, there exists a unique measure 3 = (W, that is pseudo-physical, as wanted.

(iii) implies (i): If there exists a unique measure w3 that is pseudo-physical for f,
then, applying Theorem 3 we know that that the set {13} contains pw, for Lebesgue-
a.e. x € M. From Definitions 10 and 11, we deduce that the strong basin A, of
statistical attraction of w3 has full Lebesgue measure. Then, w3 is physical, and
applying Theorem 1 p3 is empirically stochastically stable. Besides, from Lemma 2,
we obtain that the basin A, u, of empiric stochastic stability of p3 coincides with A ,,,;
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hence it has full Lebesgue measure. From Definition 6 we conclude that there exists
a measure (4 = (3 that is globally empirically stochastically stable, as wanted.
We have proved that (i), (ii) and (iii) are equivalent conditions. Besides, we have
proved that if these conditions holds, the three measures ., 1, and 3 coincide.
This ends the proof of Corollary 1. (]

Proof of Corollary 2.

Proof On the one hand, a classical theorem by Ruelle states that any C? expanding
map f of the circle S! has a unique invariant measure 1 that is ergodic and absolutely
continuous with respect to the Lebesgue measure. Thus, from Pesin’s Theory [26,
27], it is the unique invariant measure that satisfies Pesin Entropy Formula (12).

On the other hand, Campbell and Quas [9] have proved that C!-generic expanding
maps in the circle have a unique invariant measure p that satisfies Pesin Entropy
Formula, but nevertheles p is mutually singular with the Lebesgue measure (see
also [5]).

Applying the above known results, to prove this corollary we will first show that
for any C! expanding map f, if it exhibits a unique invariant measure p that satisfies
(12), then p is the unique empirically stochastically stable measure. In fact, in [12] it
is proved that any pseudo-physical measure of any C! expanding map of S' satisfies
Pesin Entropy Formula (12). Hence, we deduce that, for our map f, u is the unique
pseudo-physical measure. Besides in [11], it is proved that if the set of pseudo-
physical or SRB-like measures is finite, then all the pseudo-physical measures are
physical. We deduce that our map f has a unique physical measure w. Applying
Theorem 1, w is the unique empirically stochastically stable measure, as wanted.

Now, to end the proof of this corollary, let us show that the measure u that was con-
sidered above, is globally empirically stochastically stable. From Theorem 3, the set
O ¢ of all the pseudo-physical measures is the minimal weak*-compact set of invari-
ant measures such that pw(x) C Oy for Lebesgue-a.e. x € § ! But, in our case, we
have &y = {u}; hence pw(x) = {u} for Lebesgue-a.e. x € S'. Applying Definition
11, we conclude that the strong basin of statistical attraction A, has full Lebesgue
measure; and so, by Theorem 1 the basin A, .« of empirically stochastic stability of
u covers Lebesgue-a.e. the space; hence w is globally empirically stochastically
stable. O

4 Proof of Theorem 2 and its Corollaries

For any nonempty weak*-compact set % of f-invariant measures, recall Defini-
tion 7 of the (maybe empty) basin Ay CM of empiric stochastic stability of 2
constructed by equality (10).

Similarly to Definition 11, in which the strong basin A,, of statistical attraction
of a single measure u is constructed, we define now the (maybe empty) strong basin
of statistical attraction Ay C M of the set & C .#, as follows:
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Ay ={xeM, po, CHK}, (23)

where pw, is the p-omega limit set (limit set in the space .# of probabilities)
for the empiric probabilities along the orbit with initial state in x € M (recall
Definition 10).

We will prove the following property of the basins A w and Ay :

Lemma 4 For any nonempty weak™-compact set K in the space # of probability
measures, the basins Ay C M and A C M, defined by equalities (10) and (23)
respectively, are measurable sets and coincide. Moreover

Ay =;‘\u= ﬂ U an,l/k(«/"i/),

keN*t NeNt n>N
where, for all p > 0 the set C, ,(£') C M is defined by
Cop(H)={xeM: dist*(o,,, X) < p}.

Proof Repeat the proof of Lemma 2, with the set .#” instead of the single measure
W, and using equalities (10) and (23), instead of (9) and (11) respectively. O

Lemma 5 The set O of all pseudo-physical measures is globally empirically
stochastically stable.

Proof From Theorem 3, pw, C O for Lebesgue-a.e. x € M. Thus, the strong basin
of statistical attraction Ay, of Oy, defined by equality (23), has full Lebesegue
measure. After Lemma 4, the basin Zfﬁ ; of empiric stochastic stability of &, has
full Lebesgue measure. Therefore, if we prove that &'y is empirically stochastically
stable, it must be globally so.

We now repeat the proof of Lemma 3, using &'y instead of a single measure y, to
construct a Lebesgue-positive set A C M such that, for all p > 0 and for all n large
enough, there exists &y > 0 (independenly of x € A) such that

dist*(0pnx, Of) <p YO<e<g, Vxe A.

Thus, &'y satisfies condition (a) of Definition 8, to be empirically stochastically
stable. Let us prove that & also satisfies condition (b):

Assume that % C .#; is nonempty and weak*-compact and Ay , C Ay
Lebesgue-a.e. We shall prove that &y C J¢". Arguing by contradiction, assume that
there exists a probability measure v € & \ JZ". Choose

dist*(v, &
0 < p < L) (24)
2
On the one hand, since v is pseudo-physical, applying Definitions 11 and 12, the
p-weak basin A? of statistical attraction of v has positive Lebesgue measure. In brief:
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m({x € M : lim inf dist" (0,0, v) < p}) > 0. 25)

From inequalities (24) and (25), and applying equality (23), we deduce that
m({xeM: po, & #}) >0, m(Ay) <m(M). (26)

On the other hand, applying Lemma 4 and the hypothesis A, o, C A « Lebesgue-
a.e., we deduce
Ag, C Ay Lebesgue ae..

Applying Theorem 3 and equality (23), we have
m(Ag,) =m(M), from where we deduce m(A ) = m(M),
contradicting the inequality at right in (26).
We have proved that &y C J#". Thus O satisfies condition (b) of Definition 8,
ending the proof of Lemma 5. (]

End of the proof of Theorem 2.

Proof We denote by O’ the set of all pseudo-physical measures.

(a) Let #° C .# be empirically stochastically stable, according to Definition 8. We
shall prove that #* C O'y. Assume by contradiction that there exists v € &\ 0.
So, v is not pseudo-physical, and applying Definition 12, there exists p > 0 such
that the p-weak basin A# of statistical attraction of v has zero Lebesgue measure. In
brief, after Definition 11, we have

m({x € M: dist*(pw,, v) < p}) =0,
from where we deduce that
pwy C My \B,(v) Lebesgue-ae.x € M, 27
where %, (v) is the open ball in the space .# of probability measures, with center
at v and radius p.
Applying Lemma 4 and equality (23) we have

Z;g:A,;g:{xeX: pw, C K}.

Joining with assertion (27), we deduce that Ay C Ay \%,u) Lebesgue-a.e.; and
applying again Lemma 4 we deduce:

Xj/ C X%\ggﬂ(v) Lebesgue-a.e.
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But, by hypothesis . is empirically stochastically stable. Thus, it satisfies condition
(b) of Definition 8. We conclude that 2~ C ¢ \ 98,(v), which is a contradiction,
ending the proof of part (a) of Theorem 2.

(b) According to Lemma 5, if 2" = O, then %" is globally empirically stochasti-
cally stable. Now, let us prove the converse assertion. Assume that 7" is globally
empirically stochastically stable. We shall prove that #" = ;. Applying part (a) of
Theorem 2, we know that 2~ C &’y So, it is enough to prove now that &y C .
By hypothesis m(A\,;g/) = m(M). From Lemma 4 we have ;f,;/ =Ayy). We
deduce thatm(AZ") = m(M). From this latter assertion and equality (23), we obtain

pw, C & for Lebesgue-a.e. x € M.

Finally, we apply the last assertion of Theorem 3 to conclude that &y C JZ, as
wanted. This ends the proof of Theorem 2. (I

Proof of Corollary 3.

Proof This corollary is immediate after Theorem 2 and Lemma 5. In fact, Lemma
5 states that the set 0, which is composed by all the pseudo-physical measures, is
globally empirically stochastically stable. And part (b) of Theorem 2, states that &
is the unique set of f-invariant measures that is globally empirically stochastically
stable. ]

Before proving Corollaries 4, 5 and 6, we recall the following known result:

Theorem 4 For all x € M the p-omega limit set pw, has the following property:
For any pair of measures [Lo, L1 € pw, and for every real number 0 < A <1
there exists a measure vy, such that dist* (g, (4y,) = Adist™ (o, (1).

Proof See [11, Theorem 2.1].
Proof of Corollary 4.

Proof Assume that u is pseudo-physical and isolated in the set & of all pseudo-
physical measures. Then, there exists p > 0 such that:

if ve Opand dist* (v, u) < p, then v =pu. (28)

Since p is pseudo-physical, from Definition 12 we know that the p-weak basin Af)

of statistical attraction of x has positive Lebesgue measure. From Definition 11 we
deduce that

m(AL =m({x € M: dist"(pwy, u) < p}) > 0. (29)

Applying Theorem 3, we know that pw, C O for Lebesgue-a.e. x € M. Joining
the latter assertion with (28) and (29) we deduce that

{n} = po, ﬂ P, for Lebesgue-a.e. x € A?,
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where %, is the ball in the space of probability measures, with center at x and
radius p.

Besides, from Theorem 4 we deduce that pw, = {u} for Lebesgue-a.e. x €
A7, hence for a Lebesgue-positive set of points x € M. Applying Definition 12,
we conclude that the given pseudo-physical measure p is physical; hence, from
Theorem 1, p is empirically stochastically stable. (I

Proof of Corollary 5.

Proof (i) implies (ii): If the set &' of pseudo-physical measures is finite, then all the
pseudo-physical are physical due to Corollary 4. Then, applying Theorem 1, all of
them are (individually) empirically stochastically stable. Besides the union of their
strong basins of statistical attraction has full Lebesgue measure: In fact, applying
Definition 11 and equality (23), that union is the set A[)’f; and, due to Theorem 3,
the set Ay, has full Lebesgue measure. So, assertion (ii) is proved.

(ii) implies (i): Assume that there exists a finite number » > 1 of empirically
stochastically stable measures w;, s, ..., 4, (hence, physical measures, due to
Theorem 1). Assume also that the strong basins A, of statistical attraction have
an union Ji_, A,, that covers Lebesgue-a.e.. Applying Definition 11 and equality
(23), we deduce that A, ., = J._; Ay, has full Lebesgue measure. So, from

the last assertion of Theorem 3, &'y C {u1, ..., u,}. In other words, the set &'y of
pseudo-physical measures is finite, proving assertion (i). (I
Proof of Corollary 6.

Proof If the set O is finite, then we apply Corollary (5) to deduce that there exists a
finite number of empirically stochastically stable measures, hence physical, and that
the union of their strong basins of statistical attraction has full Lebesgue measure.

Now let us consider the case for which, by hypothesis, the set & of pseudo-
physical measures is countably infinite. In brief: 0r = {u;}ien.

Applying Theorem 3, the p-omega limit sets pw, are contained in & for
Lebesgue-a.e. x € M. But, from Theorem 4 we know that pw, is either a single
measure or uncountably infinite. Since it is contained in the countable set &y, we
deduce the pw, is composed by a single measure of 0’y for Lebesgue-a.e. x € M.
Now, recalling Definition 11 and equality (23), we deduce that

+o00 +00
Ap, = UA,L[, Zm(AM,.) = m(M).
i=1

i=1

Therefore, there exists finitely many or countable infinitely many pseudo-physical
measures i;, : 1 <n <r € N U {+o0} such that

wAL,)>0V1l<n<r > m(AL,) =m(M). (30)

n=1
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From Definition 12, each measure p;, is physical; hence empirically stochastically
stable due to Theorem 1. Besides, from equality at right in (30), we deduce that the
union [ J;_, A, has full Lebesgue measure, as wanted.

Finally, to end the proof of Corollary 6, let us show that the set {i; : 1 <n <r
of physical measures above constructed, can not be finite. In brief, let us prove that
r = 4o00. Infact, if there existed a finite number r € .4t of physical measures whose
basins of statistical attraction have an union with full Lebesgue measure, then, we
would apply Corollary 5 and deduce that the set & of pseudo-physical measures is
finite. But in our case, by hypothesis, & is countably infinite, ending the proof of
Corollary 6. ]

Proof of Corollary 7.

Proof From part (a) of Theorem 2 we know that all the measures of any empirically
stochastically stable set J#~ C .# is pseudo-physical. Besides, in [12] it is proved
that, for any C' expanding map f of the circle, any pseudo-physical or SRB-like
measure satisfies Pesin Entropy Formula (12). We conclude that all the measures of
J satisfy this formula. O

Proof of Corollary 8.

Proof From part (b) of Theorem 2 we know that the globally empirically stochasti-
cally stable set %" coincides with the set &' of pseudo-physical measures. Besides,
in [13] it is proved that, for C°-generic maps f of the interval, any ergodic mea-
sure belongs to & but, nevertheless 0 is a weak*-closed with empty interior in
the space .# of invariant measures. We conclude that all ergodic measures belong
to the globally empirically stochastically stable set .#" and that this set of invariant
measures is meager in .#, as wanted. O
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Abstract A blender-horseshoe is a locally maximal transitive hyperbolic set that
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local stable manifold “behaves” as a manifold of topological dimension greater than
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1 Introduction

Naively, a blender is a transitive hyperbolic set that appears in dimension at least
three and whose special geometrical configuration implies that the “dimension” of
its stable set is larger than the “expected” one. To be a bit more precise, recall that
the index of a transitive hyperbolic set A, denoted by ind(A), is the dimension of its
unstable bundle (by transitivity, the index is well defined). The leaves of the (local)
stable sets of points in A have dimension ind(A ), however the (local) stable set of the
blender A behaves as a set of dimension ind(A) + 1 (or greater). In practical terms
and applications, blenders are dynamical “local plugs” which in some (semi-local
or global) configurations carry further important properties of the dynamics (see the
next paragraph). For an informal presentation of blenders and a discussion on their
role in smooth dynamical systems we refer to [5] and [10, Chap. 6.2]. Blenders
were introduced in [6] as a formalisation of the constructions in [11] in the context
of bifurcations via heterodimensional cycles. In [6], blenders were used to construct
new classes of robustly transitive diffeomorphisms. Later, blenders were used in
several dynamical contexts: Generation of robust heterodimensional cycles [7] and
homoclinic tangencies [8], stable ergodicity [1, 25], Arnold diffusion [20], and con-
struction of nonhyperbolic measures [4], among others. Each of these applications
involves a specific type of blender such as blender-horseshoes [8], symbolic blenders
[2, 20], dynamical blenders [4], and super-blenders [1].

In the original definition in [6] the main emphasis is placed on the persistence
of its geometrical configuration that was key to guarantee the robust transitivity of
non-hyperbolic sets, see the discussion in [10, Chap. 6]. Although in many contexts
the “original” blenders in [6] are shown to be very useful, a major con of them is that
they fail to be locally maximal sets, this deficiency carries some constraints in their
use and applications, for further discussions see Remark 2.5. This weakness was
bypassed in [8] by introducing a special type of blenders, called blender-horseshoes,
which are locally maximal and also conjugate to the standard Smale horseshoe,
see Definition 2.3. These two additional useful properties can be explored to get
additional relevant properties: blender-horsehoes are the key local plugs to get robust
heterodimensional cycles and robust homoclinic tangencies in the C'-topology, see
[7] and [8]. In some cases, one can also get some extra “fractal-like” information
about these blenders, see [12] and also [19]. Considering these aspects and also the
use of blenders to get robust cycles in bifurcation theory, one can think of blender-
horseshoes as a version of the so-called thick horseshoes introduced by Newhouse
in the construction of robust homoclinic tangencies of surface diffeomorphisms,
see [21].

In what follows, for simplicity and also considering the scope of this paper, our dis-
cussion is restricted to the three-dimensional case (adjustments to higher dimensions
are straightforward). There are some settings where blender-horseshoes appear in a
natural way. A first one is the bifurcation of heterodimensional cycles (i.e., there are
a pair of saddles having indices one and two whose invariant manifolds meet cycli-
cally). In this context, the occurrence of blender-horseshoes is related to the existence
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Fig. 1 Non-normally hyperbolic dynamics

of some non-normally hyperbolic dynamics that can be illustrated as follows. Think
of a standard horseshoe defined on a “square” and “multiply” this dynamics by a
“weak expansion” in the normal direction (to the square), see Fig. 1. In this way, one
gets a hyperbolic set (of index two) contained in a non-normally hyperbolic (local)
manifold.! Persistence of hyperbolicity implies that this horseshoe has continuations
for small perturbations of the dynamics. However, since the horseshoe is contained
in a non-normally hyperbolic square, the new horseshoes are in general not contained
in a local surface. It turns out that appropriate perturbations of the initial dynamics
provide blender-horseshoes. For a complete discussion of this construction (and also
with explicit formulae) we refer to [9] (note that in [9] the term blenders is not used).

An interesting question is to provide explicit examples of maps (with an explicit
analytic formula) exhibiting blender-horseshoes. This leads to the second ingredient
of this paper, a family of endomorphisms so-called center-unstable Hénon-like fami-

I This means that in the “square” containing the horseshoe there is a direction whose expansion is
greater than the expansion in the normal direction, the arrows in Fig. 1 describe this feature.
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lies, see equation (1.1). We recall that in the two-dimensional case, Hénon-like maps
are a fundamental ingredient in the study of homoclinic bifurcations which provide
a “limit dynamics”: there exists a sequence of bifurcation parameters providing a
sequence of return maps at the homoclinic tangency converging to a Hénon-like
map in suitable rescaled coordinates. This construction, known as renormalisation
scheme, when performed at homoclinic tangencies allows to translate (robust) prop-
erties of the Hénon-like family to the dynamics of diffeomorphisms nearby the bifur-
cating one, for details see [22, Chap. 3]. Two remarkable examples of such portable
properties are the persistence of homoclinic tangencies [22, Chap. 3] and the exis-
tence on strange attractors [17].

In view of the above discussion, it is natural to ask about renormalisation schemes
and limit dynamics in heterodimensional settings. In this direction, in [13] it is
considered a heterodimensional cycle involving a heteroclinic orbit corresponding
to the tangential contact of the two-dimensional invariant manifolds of the saddles.
This heteroclinic orbit is called a heterodimensional tangency, see [14]. In [13] it
is provided a renormalisation scheme whose limit dynamics is a center-unstable
Hénon-like family. This discussion justifies the following technical remark. On the
one hand, the theory of homoclinic bifurcations and renormalisation schemes requires
at least C2-regularity of the diffeomorphisms.> On the other hand, the construction
of robustly non-hyperbolic dynamics (robust cycles and tangencies) associated to
heterodimensional cycles is mostly developed in the C'-case.? Thus, an interesting
problem is to develop these theories in higher regularity.

First, for direct approach dealing with perturbation of product dynamics (a hyper-
bolic part times the identity) we refer to [3]. On the other hand, bifurcations of het-
erodimensional tangencies seem to be an appropriate setting for obtaining robustly
non-hyperbolic dynamics in high regularity, see for instance [16] where C2-robust
heterodimensional tangencies and C2-robust heterodimensional cycles involving het-
erodimensional tangencies are obtained using blenders and the results of [23]. Our
results are motivated by the ideas of [13], where blenders are generated at the bifur-
cation of heterodimensional cycles in high regularity topologies. More precisely, in
[13] blenders are obtained for some (open) range of parameters of the center-unstable
Hénon-like family and some applications (involving a renormalisation scheme) are
given for the bifurcation of heterodimensional cycles in high regularity (in the spirit
of [22]). In this paper, we prove that the blenders obtained in [13] are indeed blender-
horseshoes. This step will allow (in further applications) to improve versions of [13,
Theorem 1.4], getting robust cycles and robust tangencies in higher regularity (in the
same spirit as in [7, 8]). In a forthcoming paper (see also [24]) we will introduce a
renormalisation scheme for some non-transverse heterodimensional cycles (cycles

2Besides the regularity of the maps, necessary for the convergence of the renormalisation scheme,
another key fractal-like ingredient is the thickness of a hyperbolic set, which has a radically different
behaviour in the C! and Cz—topologies, see [26] and [18].

3The starting point of this progress is due to the development of a series of typically C'-tools
(started with Pugh’s C! closing lemma and with Franks derivative perturbation lemma) that to the
current date have no equivalents in C”-topologies with 7 > 1. On the other hand, C!-regularity is
not sufficient to some results requiring control of the distortion.
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with heterodimensional tangencies) converging to the center-unstable Hénon-like
family (1.1) and state the persistence of cycles and tangencies (in higher regularity)
after its bifurcation.

Finally, let us observe that [15] provides a quite complete numerical analysis
of the center-unstable Hénon family in (1.1), showing strong numerical evidences
of the occurrence of blenders in a parameter range wider than the one in [13] and
illustrates the vanishing of these blenders beyond this range. We believe that the
blenders detected in [15] are indeed blender-horseshoes.

It follows the main result of this paper.

Theorem 1 Consider the center-unstable Hénon-like family of endomorphisms

def

(1.1) Gepry@® v, )= p+y +6yz+n°,€z+y), £> 1

Then there is € > 0 such that for every

def

7= (& p k) €O, 2 (118, 1.19) x (—10, —9) x (—¢, )2

the endomorphism Gy has a blender-horseshoe in the cube A < [—4, 4] x [—40,
22].

As a consequence, every diffeomorphism or endomorphism sufficiently C'-close
to G; has a blender-horseshoe in A.

The consequence pointed out in the theorem arises from the C'-persistence of
blenders, see Remarks 2.4 and 2.9. Let us observe that this result is a version of [13,
Theorem 1.1] where blenders are replaced by blender-horseshoes in a similar range
of parameters.

This paper is organised as follows. In Sect. 2, we introduce the definitions
of blender and blender-horseshoe and state the distinctive property of a blender-
horseshoe (Lemmas 2.6 and 2.7). In Sect. 3, we prove Theorem 1.

2 Blenders and Blender-horseshoes

2.1 Blenders

The notion of a cu-blender (or simply blender) was introduced in [6], where were
used to generate C'-robust transitivity in the non-hyperbolic setting. The main virtue
of a blender comes from its special internal geometry: a cu-blender is a transitive
hyperbolic set whose (local) stable set robustly “behaves” as manifold of topolog-
ical dimension larger than the dimension of its stable bundle. We now discuss the
(axiomatic) definition of blenders in the three-dimensional case.
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Definition 2.1 (cu-Blender, Definition 3.1 in [8]) Let f: M — M be a three-
dimensional diffeomorphism. A transitive hyperbolic compact set A of index two of
f is a cu-blender if there are a C'-neighbourhood ¢ of f and a C'-open set D of
embeddings of one-dimensional discs D into M such that for every g € U/ and every
disc D € D the local stable manifold W} _(A,) of the continuation A, intersects D.
The set D is called the region of superposition of the blender.

2.2 Blender-horseshoes

This kind of blenders was introduced in [8] as a mechanism for the generation of
C'-robust tangencies in dimension equal to or greater than three. Comparing with
the standard blenders, blender-horseshoes satisfy the following additional property:
they are locally maximal invariant sets conjugate to a complete shift of two symbols.
These properties provide a complete description of its local stable manifold as well
as a nice geometrical structure: the local stable manifold of a blender-horseshoe is
the Cartesian product of a “fat Cantor set” by an “interval”, see Remark 2.4. We now
give the definition of a blender-horseshoe following [8, Sect. 3.2], for further details
we refer to that paper. As the construction is local, we assume that the ambient space
is R®. We start with some preliminary definitions.
For a > 0 consider the interval I, & [—a, +a] and for x, y, z € R* the cube

def

AZT1, xI, xI, c R

We divide the boundary A of A into three parts as follows:

def def def

O°A=0I xI, xI,, O™A=1,x0l, xI;, 0"A=I x9(, xI).

Note that 0A = 0°A U 0" A and 0" A C 9"A.
Given f > 0 and p € R3, define the s-, uu- and u-cone fields of size 6 contained
in T, A as follows:

Ci(p) = {(u, v,w) € TR : Vo2 +uw? < 0|u|},
@1 Ci(p) 2 |, v, w) € TR < Va2 + w? < 0]},
Chp) = fwv.w) € TR+ jul < 05/7 + w2,

Note that Cy"(p) C Cy(p).
Related to these cone fields, we define sy- and uuy-discs and uy-strips as follows:

e Let L be a regular curve. We say that L is an sy-disc if it is contained in
A, T,L C Cj(p) for each p € L, and its end-points are contained in differ-
ent connected components of J°A. Similarly, we say that L is a uup-disc if
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LCcRxI, xR, T,L CCy"(p)foreach p € L, and its end-points are contained
in different connected components of R x JI, x R.

e Asurface S C Aisauy-stripif T,S C Cj(p) forevery p in S and there exists a C'-
embedding E : I, x J] — A (whereJisasubinterval of I,)suchthat E(I, x J) = S

def

and L(z) = E(I, x {z}) is a uuy-disc for every z € I. The width of S, denoted by
w(S), is the infimum of the length of the curves in § which are transverse to Cp"
and join the two components of E (I, x 0J)

Remark 2.2 (Right and left classes of uu-discs) In what follows, we fix 6, 9 > 0.
Note that every sy-disc W such that (W \ OW) is contained in the interior of A defines
two different (free) homotopy classes of uug-discs disjoint from W. This allows us
to consider uugy-discs at the left and at the right of W (corresponding to the two
different homotopy classes), denoted by L{‘ﬁ, and Uy, respectively. The right class
Uy, (resp., left class Z/{fv) is the class containing the uug-disc {0} x I, x {z*} (resp.,
containing the {0} x I, x {z7}). With a slight abuse of notation, we also denote by
Uév the union of the uu-discs in Z/lév, i=rdt.

Similarly, a u-strip S through A is at the right (resp. at the left) of W if it is
foliated by uu-discs at the right (resp. at the left) of W.

We are now ready to recall the definition of a blender-horseshoe in [8].

Definition 2.3 (Blender-horseshoe) The maximal invariant A p = Niez F1(A) C
int(A) of a (local) diffeomorphism F : A — F(A) C R3 is a blender-horseshoe if
conditions (BH1)-(BH6) below hold:

(BH1) s- and u-legs : There are a connected subsets A and B of A, called s-legs of
the blender, with

ANB=@ and (AUB)NIMA =0
such that
FIMONRxI,xR)=F(AUF®B) C (x,x") xI, xR.

Note that the sets F(A) and F(B) are the connected components of F(A) N (R x
I, x R), they are called the u-legs of the blender. See Fig. 2.

(BH2) Contracting and expanding invariant cone fields. There exist 6,9 > 0, £ €
N, ¢ > 1, and cone fields Cj, Cy, and Cy" such that:

(i) Strict invariance: for every p € AU B we have that

DF,(C}(p)) D Cy(F*(p)),
DF(Cj(p)) C Cy(F(p)), and DF,(Cj"(p)) C Cy"(F*(p)).

(ii) Expansion/Contraction. For every v € Cj(p) and every w € Cy(p) we have
that
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(b)
) Ee)
A 5
Ay - Y

Fig. 2 a s-legs of the blender-horseshoes. b Projection of F(A) N (R x I, x R) in the plane XY

IDFyv| < c”'v| and [DFyw| = clw].

Conditions (BH1) and (BH2) imply the existence of two fixed saddles P € A and
Q € B, called the reference saddles of A . We define the local stable manifolds of
P and Q by

2.2) Wi (R) & connected component of W*(R) N A containing R,

where R = P, Q. These local stable manifolds are s-discs (in what follows we

omit the dependence of ¢ and ¥). Thus, either uév; Py Uiy (o) F P or Uy (p) N
N

ung’oc(Q) # (). We assume that the first case holds and denote by U” = Z/lﬁ,lsoc( P
UCVIS (0)- The family of discs U" is called the superposition region of the blender-

horseshoe. We say that a uu-disc is in between if it is contained U”. Similarly, a
u-strip is in between if it is foliated by uu-discs in between.

(BH3) Markov partition. The connected components of F~!(A) N A are the sets
AZEF Y FANA) and B=F Y (FMB)NA),
which satisfy
AUBCL x (v ,yN) x(z,z"), FAUF®B) C(x ,x")xI, xR

(BH4) uu-discs through the local stable manifolds of P and Q: Let L and L’ be
uu-discs such that L N W (P) # @ and L' N W _(Q) # ?. Then

LNO(O"AN\OMA) =0, L'N(0"A\INA)=0.

(BHS) Positions of images of uu-discs: Let L be a uu-disc in A and consider
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def

Le=LNC, C=AB.

By (BH1) and (BH2), F(Lc) is a uu-discs in I, x I, x R. The relative
position of F(L¢) obeys the following rules:

(1) if L € Uy (p) then F(La) € Uy ),

Q) if L e uws py then F(L ) € u{mm,

(3) ifL e uws (o then F(Lp) € Uy o),

@) ifL e uws (0 then F(Lp) € uws 0

5) if L e Z/le (P Or LNW:.(P) ;é ¥ then F(Lg) e U, s Py and
6) if L € “WIzC<Q> or LN W.(Q) # @ then F(Ly) € qu;C(Q)

(BH6) Positions of images of uu-discs in U: Let L be a uu-disc in A such that
L € UY, then either F(L 4) or F(Lg) is contained in /°.

Figure 3 illustrates a prototypical blender-horseshoe.
‘We now pointed out some consequences of conditions (BH1)-(BH6), see [8, Sect.
3.2.4] for more details.

Remark 2.4

e The existence of the invariant (contracting or expanding) cone fields in (BH2)
implies the hyperbolicity (and partial hyperbolicity) of the set A p: the set Ay is
hyperbolic and partially hyperbolic with a dominated splitting

Ta, (R*) = E® E® @ E™,

where E® and EY = E @ E" are the stable and unstable bundles of A , respec-
tively.

e From (BH1)-(BH2), one gets that {A, B} is a Markov partition generating A .
Therefore, the dynamics of F in A is hyperbolic and conjugate to the full shift
of two symbols. In particular, the set Ay contains exactly two fixed points of F,
P e Aand Q €B.

e Since Ay is locally maximal, we have that

Wi (Ap) = () F(8) = | W) € W(AR).

neN XEAp

where Wi _(x) is the connected component of W*(x) N A containing x. We can
write the local stable manifold W} (A r) as the Cartesian product of a Cantor set,
say C, by an interval. This Cantor set is “fat” in the following sense: the projection
of C in the center-unstable direction contains (open) intervals. See Fig. 3b.

e Conditions (BH1)~(BH6) are C'-open. Hence if A is a blender-horseshoe of F
then the continuation Ag of Af is a blender-horseshoe for every G sufficiently
C'-close to F (with the same reference cube A).
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Fig. 3 a Prototypical (a) (b)
blender-horseshoe. b F(A) -
Projection in plane YZ of a e . __FYA)
uu-disc L in the region of = f—
superposition of the [ | [
blender-horseshoe 14® Al i A
z - F2(A)
/’//
/ et
Y L S—
X iy
Z Q ==

Remark 2.5 (Blenders vs. blender-horseshoes) In the introduction, we briefly com-
pare blenders and blender-horseshoes. First, let us note that blender-horseshoes are
dynamical blenders in the sense of [4]: there is an open family of uu-discs D such that
the image of any disc of the family D contains a disc of D. This invariance property
and the fact that the family D is intimately related to the locally maximal hyperbolic
set A r plays a key role for obtaining robust cycles and tangencies (which are related
to the hyperbolic set A ). Moreover, as we saw in Remark 2.4, the hyperbolic set
A is conjugate to the full shift of two symbols and some fractals properties of A g
can be obtained, as in [9, 12].

The next lemma states the distinctive property of a blender-horseshoe.
Lemma 2.6 (Lemma 3.13 in [4]) For every L € U it holds L N Wi (AF) #0.

Proof. Consider L = L, € U"°. By condition (BH6), F (L) contains a disc L} € U°.
We let F~'(L}) = Ly C L. We inductively define L, C L and L, € U* forn > 1
as follows. Assuming defined L/ , € 4’ and L,_; C Lo with L |, C F(L, ,)
and F~"*(L! )= L,_1, we consider L, € U4® contained in F(L/ ) and let
F™"(L;) =L, C L. The sequence (L,) is nested and hence # # (), L, C L. By
construction, (), L, C W .(AF). O

We also have the following refinement of the above lemma.
Lemma 2.7 Every u-strip in between intersects transversely W*(P).

Proof. Note that F ’I(Wlsoc(P)) N A consists of two connected components. We
denote by W the connected component that does not contain P. Note that this set
is an s-disc. Observe that there is a > 0 such that every u-strip S with w(S) > «
intersets W transversely. Conditions (BH2) and (BH6) imply that the width of a
u-strip S C A in between grows exponentially after iterations by F (for simplicity
let us assume that ¢ in (BH2) is £ = 1): there is ¢’ > 1 (independent of the strip)
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such that there are two possibilities, either F'(S) intersects (transversely) Wy .(P) or
F(S) contains a u-strip S’ in between such that w(S’) > ¢'w(S).

Take now a u-strip § = S in between. If S N W§ # @ we are done. Otherwise we
consider F'(S). If F(S) intersects either W or Wj _(P) we are also done. Otherwise
we get a new u-strip S; in between contained in F(Sp) with w(S;) > ¢’'w(Sp). We
now argue inductively, at some step we get a first n such that either F'(S,,) intersects
W or W _(P) or w(S,) > a and hence S, intersects W;. In both cases, we are done.

This proves the lemma. O

2.2.1 Blender-horseshoes for Endomorphisms

For endomorphisms the blender horseshoe are defined as in the case of diffeomor-
phisms.

Definition 2.8 (Blender-horseshoes for endomorphisms) The maximal invariant
set Ag := ﬂiez G'(A) C int(A) of an endomorphism G : A — R3 is a blender-
horseshoes if G satisfies the conditions (BH1)—(BH6).

Remark 2.9 (Continuations of blender-horseshoes for endomorphisms) Assume that
the endomorphism G has a blender-horseshoe in A. Then every diffeomorphism or
endomorphism F such that F| is sufficiently close to G| has a blender-horseshoe
in A.

3 Proof of Theorem 1

Theorem 1 is a consequence of following result and Remark 2.9.

def

Theorem 3.1 For every (&, ) € P = (1.18, 1.19) x (—10, —9), the endomorphism

G0, 3,2) = (v, p+ ¥4 E2+y)

has a blender-horseshoe in A = [—4, 4)* x [—40, 22].

The proof of this theorem involves some preliminary steps. First, for the endomor-
phisms G¢ = G¢,11,0,00, where (€, u) € P, we study their hyperbolic fixed points
and their invariant manifolds. As we will see, these fixed points will be the reference
saddles of the blender-horseshoe of G¢ , in A.

3.1 Hyperbolic Fixed Points of G¢

We calculate the hyperbolic fixed points of G¢ ;, and their invariant manifolds.
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Lemma 3.2 Forevery (€, i) € P, the endomorphism G, has two hyperbolic fixed
saddles Pe, = (pe.u, Peps Pey) and Q¢ = (Ge s Gep» Ge,p) in A, where

, i = (=4
Pep = M + (pf,u) =1~ g) Peyus Pép = Pu = f’
3.1

i 14 (1 — 4 )12
qep = 1 + (615,;1,)2 = (1 - f) qeps qep = qu = f

Proof. A simple calculation shows that P, = (pu, pu, pe) and Q¢ =
(qu> 9u» Ge,,) are the two solutions of G¢ ,(x, y, 2) = (x, y, z). Using Eq. (3.1) and
that (£, p) € P, we get the following estimates for the coordinates of P¢ , and Q¢ ,:

271 < p, < =25, 13 < p¢, <15,

(3.2) ~
35<gq, <371, =206 <g:, <—184.

Thus, Pg,, Qc, € A. We observe that the eigenvalues of DG¢ (P ,), and
DG ,(Q¢ ) are, respectively,

)\S(Pgnu) = 07 )‘CU(Pﬁ,,u) = 57 )\uu(P&H) = 2p/“

N(Qew) =0, AX(Qey) =& A"(Qc) =24q,

with respective eigenvectors

V3 (Pe ) = (1,0,0), v(Pe ) = (0,0, 1), v (Pep) = (2pu—&2pu2pu—86).2ppu),
v (Qe,) = (1,0,0), v™(Q¢.) =(0,0,1), v*(Qe,) = (29, — & 29, Cqu — €),2q,).
As & > 1and |[A"(P: )| = 2| pul > 5and [AN"(Q¢ )| = 2| q,l > 7, we have that

P¢,, and Q¢ , are hyperbolic fixed points of G¢ , for every (§, p) € P, ending the
proof of the lemma. O

Remark 3.3 (Invariant directions and foliations) For R = P, Q consider the eigen-

spaces
def def

E*(Re,) £R x {(0,0)) and E®(Re,) £ {(0,0)} x R,

associated to the eigenvalues A*(R¢ ;) = 0 and A**(R¢,,) = £ > 1, and consider the
straight lines through R¢ ,:

{Rep+(1,0,0):t €R} and {R¢,+(0,0,1):1 € R}.

These lines are, respectively, tangent to the eigenspaces E*(R¢ ) and E“*(R¢ ;) at
Re¢ ., and invariant by G¢ ,:

Gf.u(Rf,u + (t’ 07 0)) = RE,}M GE,M(R&M + (O’ 0, t)) = Ri,u + (0’ 07 51‘),

for every t € R. Moreover,
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(3.3) W(Re,) = {Re,+ (1,0,0): 1 €R}, R=P,0.
We define the center unstable manifold of R, by
(3.4) W(Re,) = {Re,, +(0,0,1) : 1 €R}, R=P,Q.
Consider the endomorphism of R? obtained by projecting G, into the YZ-plane,

(3.5) g R2—> R g, (0,2) = (u+yhEz+y).

This endomorphism preserves the foliation F = {{ yIxR:ye R}. In particular,
for r = p, g, the leaves

WL Ten) |y Feu+1) 1t €R),

are invariant by g¢ ;.

3.2 The Legs of the Blender-horseshoe

In this section, we will concentrate on property (BH1) of blender-horseshoes. The
definitions of s- and u-legs involve some preliminary constructions that we describe
below.

For p € (—10, —9), consider the points

(B6) a,=—d—p, by=—J/—4d—p c,=-4—p d,=J4—p
Note that if p € (—10, —9) it holds
3.7 —v14 <a,=—-d, <—~13, V6 < b,=—c, < —/5.

Consider the intervals I, = [a,, b,] and J,, = [c,, d,,]. The choice of the parameter

1 and the estimates in (3.7) imply that

(3.8) I, =1la, b, C(=4,0) and J, =[c,, d,] C (0,4).
Consider the sub-cubes of A defined by

(39) A, = [—4,4] x I, x [-40,22], B¢, = [—4,4] x 1, x[—40, 22].
From (3.8) it follows

AcyNBep =0 and (A, UBe,) NOMA = 0.
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Fig. 4 The blender-horseshoe of G¢

Remark 3.4 1f pn € (—10, -9) then p, € (a,, b,), q, € (c,,d,), and thus P¢ , €
interior (A¢ ,) and Q¢ , € interior(Be ).

Hence the sets A¢ , and B , satisfy the first part of condition (BH1). To prove
that G¢ ,(Ae ) and G (B¢ ) satisfy the second part of (BH1), as in the case of the
boundary of A, we split the boundary of A¢ ,, as follows. Let

O™ Ag i = [—4, 4] x 01, x [—40,22],
" Ag¢, = [—4,41 x 9(1, x [—40, 22]),

def

O Ae = 0([—4,4]) x I, x [—40, 22].

Note that 0A¢ , = 0" A¢ , U O°A¢ ,, and O™ A¢ ,, C 0" Ag ;.. Analogously, we split
the boundary of B ,,.

Remark 3.5 We observe that for C = A, B it holds that

3Ce, \ (OCc, UDCe,) CO"AN\I™MA, (£, p) € P.

Roughly, these relations between the boundaries say that the “front” and “rear cover”

of A¢ , and B , are contained in the “front” and “rear cover” of A, respectively, (see
Fig. 4).

Lemma 3.6 For every (&, 1) € P it holds

(@) Gep(A)N R X [—4,4] X R) = G (A ) U Ge u(Be. o),
(b) Gep(Acp) UGeu(Bey) C(—4,4) x [-4,4] x R.

Proof. We begin showing the equality of the item a). Keeping in mind Remark 3.5,
the inclusion “C” is obtained from the relations (see Fig. 4):
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G&u(AE,M) N Gf,u(B&u) =0, G&M(A \ (Aé,u U Bf,u)) NA =9,

(3.10)

& mweP.
The reciprocal inclusion “2>” follows from the relation:
(3.11) Ge (0™ A, UO™MBe,) Cllyl =4}, (&, ) eP.

To get the first relation in (3.10), it is sufficient to study the projections of G¢ ,,(A¢ )
and G¢ (B¢ ) in the plane XY. We denote such projection by IT3.

Claim 3.7 For every (&, p) € P it holds T13(G¢ ,(A¢.)) N T3(Ge 1 (Be,pw)) = 9.

Proof. Let (&, 1) € P, then we have that
M3(Ge u(Ag ) = {0+ yD) 1y € L), T3(Ge ,uBe,) = { o+ yH iy el

FromI, NJ, = @it follows that IT3(G¢,, (A ) N T3(Ge (Bt ) = ¥, ending the
proof of the claim. O

Remark 3.8 Equation (3.8) and the proof of the claim above also imply that
M3(Ge u(Ae ) U Ge (B ) C (—4,4) x [—4,4], forevery (€, p) € P.

We now prove (3.11) and the second part of (3.10). Since the endomorphisms
G, collapse the X-direction, it is sufficient to study the corresponding projections
in the plane YZ. For this, consider the sets

D 2 (14, @) U (B ) U (@ 41) x [-40,22],

def

C), = {a,} x [-40,22], C = {b,} x [—40,22],
Ch = {cy) x [-40,22], C, = {d,} x [—40,22].

Note that 'y, C /L, Cﬁ, Ci, and Cﬁ are, respectively, the projections on the plane YZ
of the sets
A \ (-Aé,p U B{,p,)y

8““A£,u N{y =a.}, 81]“./45,” N{y =b,},
DB, N {y =)y 9"Be, N {y =d,).

Recall the definition of the endomorphism g¢ ,, in (3.5).

Claim 3.9 For every (&, iv) € P it holds that

(@) geu(Ty) N ([—4, 4] x [-40,22]) = 4,

(') 8e,(CLUCH C (v =4), and

(') gen(C2UC)) C {y = —4).
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Proof. Consider the projection m(y, z) = y. It is easy to check the following equal-

ities:
Ly (gg,u([—4, a,) x [—40, 22])) = (4, p+ 16],

72 (8 ((Bys ) x [~40,221)) = [ —4),

72(8e.((dy 41 X [40,22])) = (4, + 16].

Recalling that € (—10, —9) we get item (a’). From Remark 3.3 and equation (3.6)
it follows

o g¢ . preserves the foliation 7 = {{y} x R: y € R}, and

These two facts imply items (b’) and (c’). This ends the proof of the claim. [l

The proof of item (a) of the lemma is now complete. Finally, item (b) follows
directly from Remark 3.8. The proof of the lemma is now complete. (]

3.3 Contracting/Expanding Invariant Cone Fields

In this section, we study the condition (BH2) of a blender-horseshoe involving invari-
ance, contraction, and expansion of the cone fields in (2.1). This condition is a con-
sequence of the following lemma.

Lemma 3.10 Let 0 < ¢ < 1 and 0 = 1/2. Then, for every (£, u) € P and every
p € A¢, U Bg , the following holds:

(i) C3(Geu(p) C D(Ge,)p(CH(P)).
(ii) D(Ge)p(Co(p)) C C(Gen(p)),
(ii}) D(Gew,p(C(p)) € C3(Ge (),
(iv) DGg ,lcy is uniformly expanding and DG ,|cs is uniformly contracting for
every 9 sufficiently small.

Proof. Consider p = (x,y,2) € A, UBc,and v = (u, v, w) € T, A, write

(u1, v, wi) = D(Ge ) p(V) = (0,2 y v, v+ Ew).

Recalling (3.9) and (3.7), we have that if (x, y,z) € A¢,UB¢, theny eI, UJ,
and thus |y| > /5, for every u € (—10, —9).
The items of the lemma are proved in the following claims.

Claim 3.11 (ltem (i)) Let 0 < v < 1. For every VG(‘)C;(p)\{(_)} we have
D(Ge,)p(¥) € (C3(Geu(p))"
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Proof. If v € dC5(p) \ {0} then ¥ (v/v2 + w?) = [ul. Since |y| > +/5, we get that
Vb +wl = vl = 2030 vl > 2V5 ] =25 [ur] > ] > 9 Juy .
Therefore D(G¢ ), (V) ¢ m, proving the claim. O
Claim 3.12 (Item (ii)) Foreveryv € C}‘/z(p) itholds D(G¢ ) (V) € C}l/z (Gg,,,,(p)).

Proof. Since |y| > V/5, we have that

o+ wd = il =20yl > 2V5 0] > 2,

proving the claim. (]
Claim 3.13 (Item (iii)) For every v € Ci‘yz(p) it holds D(G¢ ) p(v) € c;'yz(cg, u(P)).

Proof. We need to check that
/.2 > _ 1 2 21
U+ w <§|v| = u1+wl<§|v1|.
Note that v/u? + w? < % |v| implies that |w| < % |v|, and hence

2
W wl =02+ w+cw? <20 426w+ w)? < (2+§+<§) ) 2.

Now ¢ € (1.18, 1.19) implies that
£ (&Y
2424 (2 4
<+2+ 2) )=

ud +wh < 42,

and hence

Thus, since p = (x, y, 2) € A¢ , U Be,, implies that |y| > V3, it follows

2\ Jui +wi < 4| <2yl |v] = v,

proving the claim. O

Claim 3.14 (Item (iv)) DG ,|cv  is uniformly expanding and, if ) is small enough,

172
DGg ey is uniformly contracting.
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Proof. The uniform contraction of the cone field Cj, for small + follows from the fact
that D(G¢ ), is an endomorphism whose eigenspace associated the eigenvalue 0 is
spanned by (1, 0, 0).

To see that DG, uniformly expands the vectors in C} , consider the norm

e, v, w)l 2 max flul, Vo2 + w? ]

Take v= (u,v,w) € C}‘/z(p) and write D(G¢ ,)p(V) = (u1, v, w)) = (v, 2y v,
v+ & w). We claim that if v e C{'/z(p) then |D(Ge¢,,)pV]« > |V|x. By compact-
ness, this implies that [D(G¢ ) V]« > co V], for some uniform ¢y > 1. Note that
the Euclidean norm || - || and | - |, are equivalent, hence there is x > 1 such that
£~ 1|v|| < |v]x < &[|v||. The number £ in (BH2) is the first £, with cf,” > K.

We now prove that |D(Gg,,)pV|« > |V|«. Note that for v = (u, v, w) € C;'/z(p)

we have |v|, = v/v? + w? and
(.12)  vi4wi =40y + @+ Ew)? =407y + 07 = 2& | jw| + & w’

We divide the proof into two cases: (6.5) |[v| > |w]|and (6.5) |[v| < |w]|.If (6.5) |[v| >
|w|, using that £ € (1.18, 1.19) and |y| > V5, we get that

(3.13) 402 y* —2& vl jlw| = (20— 136) v > 40v% > 0.
Equations (3.12) and (3.13) immediately imply that
v+ w? > 507 + 2w > 0P +w’
Hence, |D(G¢,,) V|« > |V]+, proving the first case. Similarly, if (6.5) [v| < |w]| then
v+ wl > 4y20? £ 2w? - 26 vl [wl + 07 > 4y20? + 2 w? —26(6.5) 7 w? + 02
Condition £ € (1.18, 1.19) implies that

& —2£(657" > 1.

Thus

1)12—|—wl2 > 02 +w’.
Thus, | D(G¢ ) p V]« > |Vl This ends the proof of the claim. O
The proof of the lemma is now complete. (]

Remark 3.15 For each p = (x, y, z) € R we identify T,R?® with R* and consider
the canonical basis {i, j, k}. Note that D(G¢ ;) ,(1) =0, D(G¢,,), () =i+2yj+
k, and D(G¢ ), (k) = {k. In particular, (D(G¢ ) ,(j),j) <O (resp. > 0)if y <0
(resp. y > 0). As a consequence, for every § > 0 and every p € Ag ,, the derivative
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D(Gy¢ ), sends the semi-positive cone Cy"(p) N {y > 0} (resp. semi-negative cone)
into the semi-space {y < 0} (resp. {y > 0}). When p € B¢ , the derivative D(G¢ ),
maps the semi-positive cone Cg"(p) N {y > O} (resp. semi-negative cone) into {y >
0} (resp. {y > 0}).

3.4 The Markov Partition

To define the Markov partition in Condition (BH3) we need some preliminary con-
structions.

For (&, i) € P consider the auxiliary straight lines R5 o g " in the plane YZ
defined by the equations and depicted in Fig. 5,

RL, ={(v.2t) 1zl =& Q22— y), y e R},
R, ={(y.z2(») : 22 () =& ' (—40— y), y e R}.
Recall the definition of the intervals I, = [a,,, b,] andJ,, = [c,, d,,]in (3.8). Consider

the auxiliary parallelogram A¢ , in the plane YZ whose boundary consists of the
following segments (see Fig. 5):

L, = {(v.2i)) sy e L) R, =1a,) x [2@). 2@,
B, ={0h ) sy e Ly ke, = (bud x [220). 260

Analogously, consider the parallelogram B , in the plane YZ bounded by

def

L5,,—{(y )y el £§/, {eu} x [2E(e). 28 ()],
B = {(y ) sy el ). B =Hd) x [22(d). 2i(dy)]-

Remark 3.16 Since (&, u) € P, it follows that A, and B¢, are contained in
(—4,0) x (—40,22) and (0, 4) x (—40, 22), respectively. By the definitions of A¢ ,,
and B ,, it holds that

8e.u(OR¢ ;1) —gfu(ul ng#) ([ —4, 4] x [-40, 22])

8e.u (OB ) = g, /l(Ut 1L§ /1) ([ —4,4] x [-40, 22])’

and thus
gf,u(Aﬁ,p,) = gf,u(BE,u) = [_49 4] X [_407 22]

We now show that the sets A¢ , and B , (see Fig. 5).
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2 1
Re Jpe, Re

Fig. 5 The Markov partition of the blender-horseshoe

def def

Ag’ﬂ =[—4,4] x Agy and Bg’” =[—4,4] x Be,p-
form a Markov partition of the blender-horseshoe of G¢ , in A. Observe first that

Ag,;t = (GE,,U,|A)71(G§,}L(A£,}L) N A)), B{,/L = (Gf,/l,lA)il(Gf,/l(Bf,/l) N A))
The next lemma completes the proof of condition (BH3).

Lemma 3.17 For every (&, ) € P the following holds

(a) A¢,UBe, C[—4,4] x (—4,4) x (—40, 22),
(b) Geu(Ag,)UGe, (Be,) C(—4,4) x[—4,4] xR

Proof. Ttem (a) follows from Remark 3.16. For item (b), note that Lemma 3.6 implies
that

Gf,/l(Af,/t) U Gﬁ,u(Bf,/L) C Gﬁ,u(Ag,,u,) u G£,}L(B£,}L) C (_4’ 4) X [_4’ 4] X Ra

completing of proof of lemma. (]

3.5 wu-Discs Through the Local Stable Manifolds

We study Condition (BH4) of blender horseshoes about the relative position of
the uu-discs through the local stable manifolds of P, = (pu, pu, pe,,) and Q,, =
(Gu> 9u» Ge,,) With respect to the boundary of A. We reduce this analysis to the two
dimensional case by projecting these discs on the plane YZ. Consider the projection
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. . 1 2
Fig. 6 The. hn.es L{W LE,N L%,u
and the projections in the uu /
C1/2(P£,u) /
plane YZ of the cube A and /
the uu-cones at P ;,, Q¢
.'lI
/
p 7
De Y/
—40 f 122

[e, (Qe )

MR — R, Ti(x,y,2) = (3, 2).

Recalling the formulae for the stable manifolds W*(FP; ,) and W*(Q¢ ) in (3.3), we

get IT, (Wg(Pfu)) = (P;u ﬁfu) and IT; (Wg(Qﬁu)) = (51/15 qfu)
Consider the auxiliary straight lines in the plane YZ through (p,, p¢,,) and

(q/u 675,/)1
def

1 .
Le, = (0 26,0): 26,00 = 50/ = ) + Pegws ¥ € R},

ef 1 ~
L3, 2{(2,0): 2,00 = 500 = ) + e ¥ €Y.

Note that L{ , and L7 , are contained in the boundary of IT;(C}',(P¢,)) and of

Ty (C}‘;‘Z(Q& ), respectively. These conditions are depicted in Fig. 6. Thus (BH4)
follows now from the next lemma.

Lemma 3.18 For every (€, 1) € P it holds that
L, N(M(A)N{z=22}) =0, L;,N(I(A)N{z=—40}) = 0.
Proof. To prove the lemma it is enough to check that
26,4 <22 and z7,(—4) > —40, forevery (¢, p) € P.

The choice of parameters (, 1) and the estimates of p,,, ¢, P¢ u, ge,, in (3.2), lead
directly to these inequalities. ]
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3.6 Position of Images of wu-Discs

‘We now study the relative positions of the images of uu-discs contained in A in Con-
dition (BHS). We see that this condition follows from the one-dimensional dynamics
on the unstable center manifolds of the saddles Pt , and Q¢ ,, recall (3.4).

3.6.1 One-Dimensional Associated Dynamics

Recall that Pe,, = (py, pu» Pe,u) and O, = (g, 9, Ge,,) and that the restriction
of G¢ , to the one-dimensional center unstable manifolds W (P ,), W (Q¢ ) in
(3.4) is just an affine multiplication by £ > 1, see Remark 3.3. Denote by ¢ , the
restriction map Geplwerepna, ¥ = P, q and R = P, Q, that is given by

def

Pyt 740,221 > R, ¢p () =&z4r =82+ =Py r=p.4q,

def

where we use the relationr, = (1 — §) 7¢ ,. Forr = p, g, consider the interval I’5 "
[agyﬂ, ﬁg,u]’ where

af, N0 — (1 =R, B, = Q22— (1 —9Fe.

Note that ¢ ,(If ) = [—40, 22) and ¢} ,(Fe,.) = Fe, € 17 .

Lemma 3.19 Givenauu-disc L containedin Alet Lc, LN Ce o withC = A, B.
Then G¢ . (Le, ) satisfies (BHS).

Proof. We first show item (1) of (BHS). Items (2), (3), and (4) are obtained similarly
and their proofs will be omitted.
From (2.2) and (3.3), the local stable manifolds of P , and Q¢ , are given by

Wiee (Pe 1) = {(t + ey Peps Pe) t =4 — Pepy St <4 — pﬁ,ﬂ}’
(3.14)

Wiee(Qe ) = {(f + Geg e Gep) - =4 —qep <1 =4 - qg,u}-
Given a uu-disc L C A consider the intersections

X2 LN (AN =pu)) =La, N (AN{y = pu}) = s Py 2)s
Xp=Ln(Anty =g.) = Le, N (AN{y = qu}) = G qu- 2.
Remark 3.20 Recall the definitions of the right and left classes of uu-discs U/}, and

Uy, , respectively, in Remark 2.2. Using (3.14) we have the following:

l . ~ . ~

o Lely: p,iffzy < pepand L € Uy p iff 2, > pe i,
e . - ~ . - ~

o L e L{WISOC(QW) iff 7, < g¢pand L € Z/{%C(Qw) iff 7, > ge -
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To prove (1) in (BHS), take any L € Z/ICVIS‘(PW). We will see that G¢(Ly,,) €
Usys

s (P By Remark 3.20, the point Xﬁ = (X, Pu» 2,) satisfies z, > pe . Note
that

Gf,u(Xﬁ) = (p;u Pus (bgu(zy)) = (puv Pu» &z, + (1 = g)ﬁfﬂ)

Since z,, > p¢,, it follows that d)g N(z,,) > p¢.u- Remark 3.20 now implies that
Gep(La,) GUW\ .

Since items (5) and (6) of (BHS) are analogous we just prove item (5). We just need
to check thatif L € Uy, p, ) or LN Wy (Pe ) # @ then Ge (L) € Uy (p, )

Remark 3.21 Consider the projection IT; (x, y, z) = (y, z) and note that

M(LN{y = pu) CTep = {2 12> 25,0}

see Fig. 7. Moreover, IT(Lg, ) C I'c,, N IT1(Be ).

Note that the worst case to prove (5) in (BHS) occurs when L is contained in the
plane YZ and equal to the straight line L§ ., in the plane YZ through (p,, p¢,,) given
by

det

1 )
G15) L5, 2002, 0): 2,00 = =30 = P+ Bes v € R,

Consider the segment of L¢  given by (see Fig. 7)

Yeu = { (025, M) sy €T, } € LE, NTT(Be,)

and the point Z¢ ;, defined by

(a)

Fig.7 a L is a uu-disc in Uy, (Pe)” b Projection of L in the plane YZ
loc M
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(3.16) ge.(ve) Ny = pu) =Py, Ze )}

where the endomorphism g¢ ,, obtained by projecting G¢ , into the plane YZ defined
in (3.5). By Remark 3.20 to get G¢ ,(Lp,,) € U;VI it is sufficient to show that

Zen > Pep

o (Peji)
Claim 3.22 [t holds Z¢ ;, > pe . for every (€, 1) € P.
Proof. The intersection (3.16) is defined by the conditions

(P Zep) = O + . E25, (0 + ). y>0.

Recalling the definition of ZE, u( y) in (3.15) we get

Zep = ff;_u(\/pu _:”) +\/pu K= %p# + (1 - §>v Pu— KB+ & Py

Hence

Zep — Pep = %Pu‘i‘ (1 - %)vpu —p+ (€= 1) pep

The estimates in (3.2) and the choice of (£, 1) € P imply that

gpﬂ > —1.6065, (1 - 2)1/])# > 1014, (€—1) pe, > 2.34.

These inequalities imply that Z¢ , — p¢ , > 0, proving the claim.

The proof of the lemma is now complete.

3.7 Position of Images of wu-Discs in Between

Condition (BH6) is given by Lemma 3.23 below. First, recall the definition of the
family of discs in between U? = Uy o) N Ui (-

Lemma 3.23 Consider any L € U”. Then either Gue(La,) or G,¢(Lp,,) con-
tains a vu-disc in U®.

Proof. Consider L € U*. By item (2) in (BHS5), if Geu(La,) € Z/{‘CVIS (0 then
Geu(La,,) € U’ and we are done. Similarly, by item (3) in (BHS), if Geu(Lp,,) €
L{ﬁ,ﬁw( p., thenGe (Lp,,) € U" and we are done. Thus in what follows we argue by
contradiction assuming that:

(@ Gep(La,) € uéVliJQﬁ.u) or.intersects Wi (Q¢,,) and
(®) Geullp,,) € u‘;vlsoc(PE«ﬂ) or intersects Wy (P ).
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\\w LA// 4 5;/

—40 (7;.,,\ / / 22
N z

Fig. 8 The segments z/‘j and ZZ and the lines Zg , and Zg, p

To prove the lemma we need some auxiliary constructions. Consider the point
YHL = (X, ay, 2,) ZLN {y Zf“}’ where a,, is defined in (3.6). In the plane YZ,
take the auxiliary straight line L, through (a,, z,) given by (see Fig. 8)

def

~ B ; 1
L,= {(y, Zu(y))i ZM(}/) = E(y —a#) +zZu, Y€ R}

Observe that E/,, C oI, (C}%(Y If‘)) Consider the sub segments of ’L\,,, given by (see
Fig. 8)

L = {(.z0(»):yel} and L =1{(», ) :yel}.
Recallthat P, = (py, py, Pe,u) and @y = (g, Gy, ge, ;) and consider the straight

lines l{)g ,and L{  contained in 9T, (C}, (P¢ ,)) and O, (C(Q¢ 1)), respectively,
given by

> ef 1 ~

Ly, = {(y, () () = SO =P+ Do ¥ E R},
. 1 3

Ly, = {(y, 2(y): 2'(y) = —50 =) + g v € R}'

Finally, consider the following subsets of A

def def

p o TP q & 74
20,2 (-4 4 x 22, ) A, 52,8 (14,41 < IE ) n A,
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Observe that A\ X! | r = p, g, consists of two connected components. We let

&w
Ag uright the connected component of A\ ZZ’ ,, containing P, and by Ag lef the

other component. Similarly, we let A£ et the connected component of A \ Eg u

containing Q¢ , and by Ag’ juright the other component.

After these preliminary constructions, we are now ready to prove the lemma.
Note that by Remark 3.15 “Gf,u([_“’ 4] x L/’L) is at the left of Geu(La,)” and
“GE,,,,([—4, 4] x Zﬁ) is at the right of Gep(Lp,,)" Therefore

e condition (a) implies that Gg,,,,([—4, 4] x EL) C closure(Ag“W]eﬂ),
e condition (b) implies that G¢ ,([—4, 4] x Z,{) c closure(Ag right)-

We now see that these two conditions cannot hold simultaneously. Consider
Wi wéﬂ € 7Z given by

gﬁ,,u(LL) Ny = qu} = (Gp- Wéﬂ) and g{,/L(Li) Ny = put = (pu ng,#)-
Arguing as in Claim 3.22, we get

£
wé,u = E(qN - au) + fZH + qu and wijll = fzu +aﬂ'

On the other hand, our assumptions and Remark 3.20 imply that wg, u = ge,;, and
wéu > pe.u. Thus

. N §
|q€,y - pﬁ,u| < |W51,M - Wg,ﬂl < <§ + 1)"1;: - a,u,| < 12.16,

where the last inequality follows from the estimates in (3.2) and (3.7). Since, also by
(3.2), we have that |g¢ ,, — pe,u| € [31.4, 35.6] we derive a contradiction, completing
the proof of the lemma. (]
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On Slow Growth and Entropy-Type m
Invariants oo

Edson de Faria, Peter Hazard and Charles Tresser

Abstract We discuss a generalization of topological entropy in which the usual
exponential growth-rate function is replaced by an arbitrary gauge function. This
generalized topological entropy had previously been described by Galatolo in 2003—
up to a choice of notation in the defining formulas—which in turn is essentially the
same as that described by Zhao and Pesin in 2015 (that involves a re-parameterization
of time). One of the main motivations for studying this new set of invariants comes
from the need to distinguish maps with zero (standard) topological entropy. In such
cases, if the dynamics is not equicontinuous, then there exists at least one gauge
for which the corresponding generalized entropy is positive. After illustrating this
simple qualitative criterion, we perform a more quantitative study of the growth
of orbits in some low-dimensional examples of zero-entropy maps. Our examples
include period-doubling maps in dimension one, and maps of the annulus built from
circle homeomorphisms having an exceptional minimal set.
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1 Introduction

The search for topological invariants that would help classify zero entropy maps
goes back at least to the mid-1970’s with the work of Goodman [15] who, inspired
by the work of Kushnirenko [19], introduced the concept of topological sequence
entropy (see also [20]). There are several such invariants, but in this paper we will
only consider the generalized entropy proposed by Galatolo [14], and later by Zhao
and Pesin [28] under the name of scaled entropy (in a slightly different formulation
that involves a re-parameterization of time).

Recall that, for metric spaces, topological entropy can be computed in at least
three different ways—either as the exponential growth rate in n of the maximal
cardinality of (n, €)-separated sets, or as the exponential growth rate in n of the
minimum cardinality of (n, €)-spanning sets (in the limit as € — 0) or, in a yet
more subtle way, via coverings. Galatolo observed in [14] that if one replaces the
exponential gauge by other gauges, the resulting growths associated to these three
quantities (still exist and) are the same. This equality allows him to conclude that,
just like topological entropy, these generalized entropies are topological invariants,
a conclusion similarly found in [28].

The generalized entropies studied in the present paper appear in various guises in
the literature, under a variety of different names. Thus, Zhao and Pesin [28] use the
expression ‘scaled entropy’ for the general case. We will often use the expression
‘slow entropy’ when the growth is a priori known (or at least expected) to be sub-
exponential—in agreement with the terminology employed by Katok and Thouvenot
in [18]. Likewise, the expression ‘fast entropy’ can be used when the growth is known
(or at least expected) to be super-exponential. As it turns out, fast entropy happens
generically in low smoothness [7, 8]. In this paper, however, we are only interested
in slow entropy, since all examples we treat here are maps with zero topological
entropy.

Measuring the precise growth rate of spanning or separated sets of a given dynam-
ical system can be a formidable task. This is one of the main reasons why we focus on
afew simple, computable examples. A much easier task is to determine whether there
exists some gauge vy (a growth-rate function) for which the corresponding ~y-entropy
is positive. Here, a simple criterion is available: a topological dynamical system has
zero growth of all orders (i.e., has zero y-entropy for every gauge y) if and only if it is
equicontinuous. This was observed by Galatolo in [ 14] as an immediate consequence
of a result on fopological complexity proved by Blanchard, Host and Maass in [3].
Note that every isometry of a metric space is equicontinuous. Examples of dynamical
systems that are not equicontinuous include, among many others: (i) smooth endo-
morphisms with an unstable periodic point (either a source or a saddle); in particular
interval maps with a repelling periodic orbit, embeddings of the two-disk possessing
a saddle such as Hénon maps, or their generalizations to dimensions greater than
two; (ii) circle homeomorphisms with Bohl-Denjoy invariant Cantor sets [4, 11];
(iii) continuous twist-maps whose rotation set is an arc with positive length.
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Going beyond these simple qualitative examples, our goal here is to be a bit
more quantitative and provide actual estimates on the slow-entropy of the following
examples:

e Period-doubling interval maps, along the cascade of period-doubling bifurcations,
especially the accumulation point at the boundary of zero topological entropy;

e Certain bi-Holder homeomorphisms of the 2-dimensional annulus (or 2-torus)
with zero topological entropy and without periodic points.

The study of the former set of examples uses a generalization, for sub-exponential
growth, of a famous result due to Misiurewicz and Szlenk [22], expressing the topo-
logical entropy of a piecewise-monotone interval map as the exponential growth rate
of the lap numbers of the iterates of the map. For the statement of this more general
version, see Sect. 4.1. We consider smooth enough unimodal maps at the boundary
of zero topological entropy satisfying the functional fixed-point equation introduced
in [6, 13, 25]. (We only need the weakest of proofs of existence of the fixed point).

Concerning the latter family of examples, our original motivation for study-
ing such maps was an attempt at understanding what happens in situations lying
‘between’ Katok’s Theorem [16], stating that, if a C'*® diffeomorphism of a com-
pact surface does not possess a horseshoe then it has zero topological entropy (so
for maps with sufficient regularity, complicated dynamics requires the existence of
a horseshoe), and Rees’s example [23] of a minimal homeomorphism of the 2-torus
with positive topological entropy (thus showing that for maps with little or no regu-
larity, complicated dynamical behaviour may occur without a horseshoe).

For both sets of examples above, our results are merely sketched in the present
paper, but full details will be given in [9].

2 Slow Entropy

We start with an informal description of slow entropy and then proceed to a for-
mal definition. Suppose f: X — X is a continuous self-map of a compact metric
space X. It is well-known since Bowen [5] and independently Dinaburg [12] that
the topological entropy of f is a non-negative extended real number that measures
the exponential growth rate in n of the maximal size of a set of e-distinguishable'
orbit segments x, f(x), ..., f"fl(x) of length n, in the limit as ¢ — 0. The orig-
inal definition, due to Adler, Konheim and McAndrew [1], is given in terms of
(open) coverings (see below) and is valid for continuous self-maps of arbitrary com-
pact Hausdorff spaces. However, the Bowen-Dinaburg definition is oftentimes more
practical, and in fact applicable also to uniformly continuous maps of non-compact
metric spaces.

IWe say that two orbit segments x, f(x), ..., f”_l_(x) and y, f(y),..., £ U(y) are e-distin-
guishable if there exists 0 < j < n — 1 such thatd(f’ (x), f/(y)) > €, where d is the metric of X.
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The concept of generalized entropy, or y-entropy is obtained simply by replacing
the notion of ‘exponential growth rate’ in the above definition by ‘y-growth rate’,
where v: Rt — R™ is a non-decreasing monotone function such that v(¢) — +o00
ast — 4-o00. Thus, ordinary topological entropy corresponds to the case when y(f) =
e'. We refer to +y as the (entropy) gauge, or (entropy) growth function. Since here we
are only interested in gauges v that grow less than the exponential, we sometimes
use the expression slow entropy when referring generically to such y-entropies.

Let us now present the formal definitions. Most of what follows is standard, and
the details on what is standard can be found in [27]. What is not standard is kept here
to a bare minimum—much more will be given in [9].

2.1 Definition Via Covers

Let X be a compact Hausdorff topological space. When we refer to a cover of X,
we mean a collection A C P(X) of (not necessarily open) subsets of X such that
X =J,ca A Given two covers A and B of X we denote their join by AV B, i.e.,
AvB={ANB : Ac A, BeB).

Let f: X — X be a continuous map, and let A be a cover. We define f “1(A), as
usual, to be the cover of X consisting of sets f~!(A), A € A. Then f~'(AV B) =
I AV fUB).

Given a cover A of X, define N(A) to be the minimal cardinality of all finite
subcovers of A. If there are no such subcovers we set N(A) = oo. This minimal
cardinality satisfies several simple but important properties, such as: (i) N(A v B) <
N(A)N (B) (sub-multiplicativity); (ii) N (A) < N (1) whenever B is a refinement?
of A (monotonicity); (iii) N(f~'A) < N(A), and equality holds whenever f is
surjective (invariance under surjective maps).

For each n > 1, define

n—1
=\ r"A. 2.1
k=0
Given a cover A of X, define the y-topological entropy of f with respect to A by

log N(A”
hW(f, A = limsupog—(f)

2.2
n—oco logy(n) 2

Note that h7(f, A) < h7(f, B) whenever B is a refinement of A.

Remark 2.1 When () = exp(t), the above lim sup can be replaced by lim. This
follows by observing that the sequence a, = log N (\/7;0l f _iA> is subadditive,
and then invoking the standard subadditivity lemma.

2 A cover A is said to be a refinement of the cover B if every member of A is a subset of a member
of B.



On Slow Growth and Entropy-Type Invariants 169
Definition 2.1 The -topological entropy of f : X — X is given by
() =suph’(f, A), (2.3)

where the supremum is taken over all open covers A of X.

Of course, the supremum always exists, though it may be infinite.
The following proposition is a slight extension of [27, Theorem 7.2].

Proposition 2.1 [f v is any given gauge, then ~y-entropy is a topological-conjugacy
invariant. More precisely, let f: X — X and g: Y — Y be continuous, and let
¢: X — Y beacontinuous surjection suchthatp o f = g o ¢. ThenhV(f) > h7(g).
In particular, if ¢ is a homeomorphism then h” (f) = h7(g)

The following is a straightforward generalization of [1, Theorem 4].

Proposition 2.2 Let f: X — X be a continuous map of a compact Hausdorff space.
Then for each gauge v we have the following facts.

(1) If Ais a closed f-invariant subset of X, then k7 (f|px) < h7(f).
(2) If X=A1UA,U---UAy, where each A is closed and f-invariant, then
h'(f) = maxi<j<ny h7(fa;)

Everything so far holds true for an arbitrary gauge. However, another desirable prop-
erty for our generalized entropy is that it should grow as we iterate the map (or at
the very least not decrease). In order to establish such a property, we need to impose
some condition on the gauge.

Definition 2.2 We say that the gauge +y is very good if for alln € N,

F() = lim 2870 (2.4)
m—oo log~y(m)

exists and is finite. We say that v is eventually very good if the above limit exists for
all n € N sufficiently large.

Proposition 2.3 If is a very good gauge, then for each positive integer n, we have

Y (f") = Tmh(f).

For a proof of Proposition 2.3, and more, see [9].

Examples. Besides the standard exponential gauge, there are plenty of very good
gauges. Indeed, every gauge of the form v, ., c(n) = n” exp{Cn® (logn)'}, where
C > 0O andr, s, t are non-negative real numbers (not simultaneously zero), is a very
good gauge. If ', s ; ¢ (n) denotes the limit in (2.4) when v = ,5.c, then an easy
calculation shows that I',. 5 ; ¢ (n) = n® whens > 0,and ', 5 ; c(n) = 1 whens = 0.
This family of gauges includes in particular all exponential gauges (r =t = 0,5 = 1)
and power-law gauges (s =t = 0, r > 0). All gauges appearing in the present paper
are of this form.
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2.2 Definitions Via Separated and Spanning Sets

Just as with ordinary topological entropy, y-entropy can be defined a la Bowen and
Dinaburg, in terms of separated or spanning sets.

Given a metric space (X, d) let K C X be compact, and let f : X — X be a
continuous map. A set E C K is (n, €)-separated for K with respect to f if for
all pairs of distinct points x, y € E, there exists an integer 0 < i< n such that
d(fi(x), f1(y)) > e. We will denote by S¢(n, €, K) the maximal cardinality of an
(n, €)-separated set for K with respect to f. The set E is (n, €)-spanning for K with
respect to f if for each x € K, there exists y € E such that d(f(x), fi(y)) <€
for all 0 <i < n. We denote by Ry(n, ¢, K) the minimal cardinality of an (n, €)-
spanning set for K with respect to f. When X is compact and K = X, we write
Sr(n, ¢) for S¢(n, €, X) and Ry (n, €) for Ry(n, €, X), respectively. The following is
classical [27, Sect. 7.2].

Proposition 2.4 For each € > € > 0, n € N and compact K, we have

(i) Sy(n,€,K) < S¢(n, e K),
(ii) Ry(n,¢,K) < Ry(n, e, K),
(iii) Ry(n,e, K) < S;(n, e, K) < Ry(n, ¢/2, K).

This implies that the following limits exist (though they may be infinite) and are
equal, for every given gauge 7:

log Ss(n, e, K L logRs(n, e, K
W K) = limlimsup 8L KD i i qup PRI K)o 5,
=0 pooo log v (n) =0 pooo log~y(n)
Accordingly, we formulate the following definition.

Definition 2.3 We define the y-entropy of the map f with respect to the metric d to
be the non-negative extended real number given by

n)(f) = sup n)(f, K) , (2.6)

where the supremum is taken over all compact subsets K of X.

The following can be found in [27, Corollary 7.7.1].

Proposition 2.5 Let (X, d) be a compact metric space, and let f: X — X be a
continuous map. For each positive d, denote by As the cover of X by all balls of
radius 6. Then for each € > 0 and each n € N, we have

n—1 n—1
N (\/ f"'AzE> < Rj(n,e) < Sp(n,e) <N (\/ f_iAe/z) . QD

i=0 i=0

This yields the following result.
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Corollary 2.1 If (X, d) is a compact metric space and f: X — X is a continuous
map, then for each gauge y we have h}(f) = h" (f).

This immediately implies that, for a continuous map f : X — X of acompact metriz-
able space X and any metric d generating its topology, the y-entropy of f is indepen-
dent of d. Here are some simple situations in which the computation of «y-entropy is
trivial.

Proposition 2.6 (Eventually weak contractions) Let (X, d) be a compact metric
space and f: X — X a continuous mapping. Let K be a compact subset of X on
which f is eventually weakly contracting, i.e., there exists some k € N such that

d(f*@), ff) =dx,y)  ¥x,yeK. (2.8)
Then h)(f, K) = 0 for every gauge function .
Remark 2.2 In particular, isometries have no growth of any order.

A similar argument also gives the following.

Proposition 2.7 Let (X, d) be a compact metric space and f: X — X a continuous
mapping. Let K be a compact subset of X for whichlimy_, . diam( f*(K)) = 0. Then
h;(f, K) = 0 for every gauge function .

For these basic facts and more, see [9].

3 Equicontinuity Versus Slow Entropy

As we have seen in Sect.2.2, Remark 2.2, every isometry of a compact metric space
has zero growth of all orders. In this section, we give a simple characterization of
maps which have zero growth of all orders. This characterization is due to Galatolo,
who observed in [14] that such maps are precisely those that have zero topological
complexity in the sense of Blanchard, Host and Maass [3] (see Definition 3.1).

Recall that a continuous dynamical system f : X — X acting on a metric space
(X, d) is said to be equicontinuous if for any € > 0 there exists n > 0 such that
if x and y belong to X then d(x, y) < n implies that d(f"(x), f"(y)) < € for all
n > 0. One can also speak of local equicontinuity (as when studying, for instance,
the dynamics of a rational map in its Fatou set—see [21]), but this need not concern
us here.

Definition 3.1 The topological complexity function of the finite cover A of X with
respect to the dynamical system f: X — X is the non-decreasing function

comp(A, n) = N(A’}) . (3.1
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The following result, given by Blanchard, Host and Maas in [3, Proposition 2.2]
offers a characterization of equicontinuity in terms of the combinatorics of open
covers.

Proposition 3.1 The following two statements are equivalent:

(i) The dynamical system f: X — X is equicontinuous,
(ii) For each finite open cover A, there exists k > 0 such that comp(A, n) < k.

As a straightforward consequence of this result, Galatolo deduced the following in
[14, Proposition 20].

Proposition 3.2 The dynamical system f: X — X is equicontinuous if and only if
for each gauge ~y the equality h" (f) = 0 holds true.

Note that every eventually weak contraction (hence every isometry) is equicontin-
uous, so Proposition 3.2 implies Proposition 2.6. More generally, every map which is
topologically conjugate to an eventually weak contraction is equicontinuous as well.
This includes translations on compact abelian groups; in particular, every adding
machine® is equicontinuous.

With the characterization of zero growth of all orders given by Proposition 3.2 at
hand, Galatolo obtained in [14, Theorem 21] the following result.

Galatolo’s Theorem. The quadratic unimodal map q~, at the boundary of positive
topological entropy is not equicontinuous, so that there exists some gauge y such
that h"(g~) > 0.

It is well-known that the map g is such that the closure of the forward orbit of its
critical point is an invariant Cantor set K -, and that the action of g, on K is con-
jugate to the dyadic adding machine (see for instance [10, Proposition 4.5, p. 242]).
Hence the positive slow entropy guaranteed by Galatolo’s Theorem is ‘happening’
away from the Cantor set K .. Indeed, the proof of the above theorem uses, besides
Proposition 3.2, the fact that g, has expanding periodic orbits (of periods given by
powers of two) lying in the gaps of K.

It should be clear that one can use the criterion given by Proposition 3.2 to produce
many other examples of dynamical systems having positive slow entropy. It is often
quite easy to decide whether a system is or is not equicontinuous. Here is a list of
well-known examples.

Theorem 3.1 The following dynamical systems are not equicontinuous.

(i) Smooth self-maps f: M — M of a compact manifold having an unstable peri-
odic orbit.

3By an adding machine we mean a translation in the compact abelian group arising as the inverse
limit of a sequence of homomorphisms . .. — Z,,, | — Zy, —> -+ Ly, —> Ly, , whereeachcyclic
group Z,y, is given the discrete topology, and for each k > 1, my_; divides my, and the homomor-
phism Z,, — Zy,_, is reduction modulo m_1. The translation map is induced by the add-one
map x — x + 1 ineach Z,,,. When m; = 2% for all k, the adding machine is called dyadic. See [2]
for a thorough discussion of general adding machines and references therein.
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(ii) Circle homeomorphisms f: T' — T'with Bohl-Denjoy invariant Cantor sets®.

(iii) Skew products (or twist maps) of the 2-torus T> = R? /72, say f : T*> — T2,
of the form f(x,y) = (x +a,y+ ¢(x)) (mod Z?*), where oo € R and ¢ :
[0, 1] — R is continuous, ¢(0) = 0 and (1) =m € Z, m # 0.

In particular, each of these systems has positive y-entropy for some gauge .

Proof The arguments establishing failure of equicontinuity in cases (i), (ii) and (iii)
are straightforward. We give the argument only for case (ii), and leave the other two
cases as exercises for the reader. If f: T! — T! is a map in (ii), we know that f has
a wandering interval J C T!. Let J, = f"(J) foreachn € Z, and let 0 < € < |J]|.
Since the intervals J, are pairwise disjoint, we have |J,,| — 0 as |[n| — oo. Given
0 > 0, choose n € N so large that J_, has length less than §. Then the endpoints of
J_, are less than § apart, and yet their images under f” are the endpoints of J, which
are more than ¢ apart. This shows that f is not equicontinuous. ([

Note that Per(f) = @ for all maps in (ii), and the same is true for all maps in
(iii) for which « is irrational. Also, it is clear that the quadratic unimodal map ¢..
introduced above is of type (i). Thus, Galatolo’s Theorem is a special case of Theo-
rem 3.1. Regarding the latter, we could of course have added several other systems
to our list, such as continuous twist maps on the two-dimensional annulus (or the
two-dimensional torus) with a rotation set of positive length, skew-products over
translations on other compact abelian groups, etc. In each case, failure of equiconti-
nuity is fairly easy to prove.

Regarding topological complexity, we wish to point out that, in [20], Li and
Shen proved the following interesting result. Let f be a C? unimodal map with a
non-flat critical point ¢, and suppose that f has a Cantor attractor. Then for each
open cover U of w(c), the topological complexity function satisfies the inequality
comp (U, n) < Cnlogn for some constant C > 0 that may depend on /. From this it
easily follows that, if v is any super-polynomial gauge, then 42”7 (f|.)) = 0. Thus, if
such a unimodal map has super-polynomial growth, then such growth is coming from
outside the w-limit set of its critical point. As we shall see in Sect.4.2, the period-
doubling map (or the quadratic unimodal map g, in Galatolo’s Theorem) does have
super-polynomial growth, and therefore it perfectly illustrates this situation.

4 Slow Growth for One-Dimensional Maps

The qualitative results of Sect. 3, obtained via a simple criterion for non-equiconti-
nuity, are obviously not very satisfactory. We need quantitative methods and/or results
that allow us to compute exactly, or at least estimate, the y-growth rate of a system
for a given gauge . It seems quite hard to find methods that work in ample generality,

“In other words, circle homeomorphisms having an exceptional minimal set. These go back to
Poincaré in the C¥ category. Bohl [4] was the first to construct C! diffeomorphisms with this
property, and later Denjoy [11] constructed C'+® examples of this type.
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but for one-dimensional systems—more precisely, for piecewise-monotone interval
maps—a very useful method is available, provided -y is a very good gauge in the
sense of Definition 2.2. In such cases, it suffices to find (through whatever means)
the ~y-growth rate in n of the fotal number of turning points of the n-th iterate of the
map. This fact is a generalization of a well-known theorem due to Misiurewicz and
Szlenk [22], and its precise statement is given in Sect. 4.1.

In Sect. 4.2, we examine an interesting non-trivial example: an interval unimodal
map at the boundary of chaos—the period-doubling fixed point, or any map topo-
logically conjugate to it. We obtain some good estimates on the growth of maximal
separated sets, or equivalently of the number of critical points, as we iterate the map.
The precise growth-rate is super-polynomial but sub-exponential.

4.1 Slow Growth and Lap Numbers

Let us denote by I the interval [—1, 1]. Given a piecewise (strictly) monotone map
f:I—1,let

crit(f) = {c € I : f is not locally monotone at c} . 4.1)
Observe that this set is finite. Its elements are called turning points or critical points.

Since the composition of locally monotone maps is locally monotone, foreachn € N
we have

crit(f") = U £ R erit(f)) . 4.2)
0<k<n
Foreach k € N, let
Crk) = £~ (erit(f) \ £ (erit(f)). (4.3)

Then crit(f") = Uy, Cr (k). We call ¢ (k) = Card C (k) the k-th cutting num-
berof f.Definealap of f to beamaximal closed subinterval of / on which f is mono-
tone. The collection of all laps of (" is denoted L ;(n). We call £¢(n) = Card L ¢ (n)
the n-th lap number of f. Observe that since crit(f") N9l = @ it follows that
Crn) =143 o, crk).

Theorem 4.1 Assume that vy is eventually very good, the y-topological conditional
entropy of f" with respect to L ;(n) satisfies h” (f"|L s (n)) = o(I'(n)), and either

(i) lim,_ o '(n) = 400; or
(ii) if U, denotes the e-neighbourhood of the critical set crit(f) in I then

N log card(U, N crit(f"))
lim lim sup - =
e—0 oo log card(crit( "))
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Then

h7(f) = lim sup logt,(m)

. 4.4
n—soo logy(n) 4

This is the promised generalization, for very good gauges, of Misiurewicz-
Szlenk’s theorem [22]. The proof is a straightforward adaptation of their original
argument, and it will be given in [9].

4.2 Maps at the Accumulation of Period-Doubling

In this section we examine the period-doubling map f: I — I (where, as before,
I =[—1,1]) from the point of view of slow entropy. The map f is the unique
quadratic unimodal map (meaning a unimodal map with a quadratic turning point)
arising as the solution to the functional equation

fx) = —éfo f(—ax) , forallx e, (4.5)

where 0 < a < 1 is the unique fixed point of f in the interior of /. Cascades of
period-doubling bifurcations in smooth one-parameter families of unimodal maps
typically terminate in a map topologically conjugate to f. Thus, unimodal maps
topologically conjugate to f are said to lie at the accumulation of period-doubling.
(See [26] for more details.)

Although f is a map with zero topological entropy, we will show that f exhibits
super-polynomial growth of maximal separated sets (we will shorten this expression
to super-polynomial growth). Since slow entropy is a topological invariant, the same
result is also true for the quadratic polynomial g, as well as any other map which
is topologically conjugate to f. Thus we will obtain the following.

Theorem 4.2 Every quadratic unimodal map which lies at the accumulation of
period-doubling has super-polynomial growth.

The super-polynomial growth of f, and thus the above theorem, is a straightfor-
ward consequence of the following lemma.

Lemmad4.1 Let f: I — I be the period-doubling map. Then the maximal cardi-
nality of an (n, €)-separated set for f, namely S¢(n, €), has super-polynomial growth
in n. More precisely, there exists a constant C > 0 such that, for each sufficiently
small € > 0, we have

log S¢(n, 1
lim sup &5 cpoe (4.6)
n—00 logn €
Proof Consider the central interval Jy = [—«, o] C I, which is invariant under f 2,
Denote by J; the unique component of f~!(Jy) which lies to left of the critical
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—a a
2 1 10

Fig.1 The graph of the period-doubling map f. Here Jy denotes the central interval and Jy, Jo, . . .,
denotes the sequence of left-preimages of Jy

point 0; note that J; is in fact adjacent to Jy (their common endpoint being —a).
Inductively, define J,, as the unique component of f —1(J,_,) which lies to left of 0.
It follows inductively that the intervals J, and J,_; are adjacent, J,, being to the left
of J,_1, and f(J,) = J,—1 (see Fig. 1).

Now let us fix 0 < € < |J;| and n > 1, and let Ey C Jy be an (n, €)-separated
set for f2|J0 : Jo = Jo with maximal cardinality szho (n,€) = Syp2(n, €, Jo). Since
f21,, is linearly conjugate to f with linear scaling given by o = |Jo|/|I| (as we can
see from (4.5)), it follows that

Card(Ey) = Sp(n.e, Jo) = Sy(n, g). 4.7)

Define E; = f*(Eo) N Ji for all k, and let G = | J;_o Eax-
Claim G is a (2n, €)-separated set for f>: 1 — I.

To prove this claim, let x, y € G be any two distinct elements. If, on the one
hand, there exists 0 < k < n such that x, y € Ey, then the points x* = f % (x) and
y* = f?*(y) both belong to Ey, so x* and y* get e-separated after at most 7 iterates
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under f2. This means that x and y get e-separated after at most k + n < 2n iterates
under f 2 in this case. If, on the other hand, x € E» jand y € Ey with, say, j > k,
then y* = f?*(y) € E,, whereas x* = f*(x) € E>(j_1). But then

[x* —y*| > dist(Joj—ry, Jo) = |Ni] > €.

Hence x and y get e-separated after k < n iterates under f2. This proves the claim.
From the claim it follows that

S (2n,¢) > Card(G) > nCard(Eop)
= nSpn, e Jy) . (4.8)

Since every (2n, €)-separated set for 2 : I — I is clearly a (4n, €)-separated set for
f I — I, we also have
Sp@2n,e) < Sy(4n,e). 4.9)
Combining (4.7), (4.8) and (4.9), we get the inequality
Si@n,e) > nS;n, =) . (4.10)
@

Now, as long as €/« is still smaller than |J;|, we can repeat the argument with e
replaced by €/, and so on, by induction. More precisely, let m € N be such that

€
o = il = T

4.11)
Given k > m, we apply (4.10) withn = 4k=J for each j =0,1,...,m — 1 and get
—j € k—j—1 k—j-1 € .
Sr(4 J’J) > 4TS 4 ’F) for 0<j<m-—1.
From this we deduce that

m—1
Spd, 0 = Sp@ T, ) T4 = 4"t 4k
1o = sy o [T =

This last inequality can be re-written as

logSf(4k,€) - m(m + 1)

4.12
logat =" 2% “412)

Note from (4.11) that
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) [
08— 1
m = i > Clog—, 4.13)
log — €
«

where C = (2log é)’l, provided 0 < e < |Jy|*/1°¢ a. Hence, taking the lim sup as
k — oo in (4.12) and using (4.13), we finally get

log S (n, log Sy (4%, 1
lim sup ng—("lG) > lim sup ng—(ﬁ) > C log — .
00 logn k00 log 4% €

This establishes (4.6) and the lemma is proved. (I
The above result has the following immediate consequence. For each s > 0, con-
sider the gauge function v, (n) = n®.

Corollary 4.1 Let f: I — I denote the period-doubling map. Then h” (f) = oo,
forall s > 0.

Once again, it is clear that the same result is valid for any map which is topologically
conjugate to f.

One can go much further than Theorem 4.6, getting not only a better lower bound
for growth, but also an upper-bound. This is achieved by carefully analysing the
growth of the pre-images of the critical point, or equivalently, the growth in n of the
number of critical points of f”, and then invoking Theorem 4.1.

Theorem 4.3 Let f: I — I denote the period-doubling map. Then the following
assertions hold.

(i) Foralln > 1,
3
Card (crit(f")) < n2exp {By (logn)*} ,

where By = (log2)™" — 3 log2 ~ 1.096.
(ii) Foreach § € (0, 1) there exists Cs > 0 such that for alln > 1,

Card (crit(f")) > Csn'exp {B (logn)?} ,

where B; = (41og2)~! ~ 0.3607.

The proof of (a sharper version of) Theorem 4.3 will be given in [9].

Summarizing, as an immediate consequence of these results, we can state that
the number of critical points of f” grows super-polynomially but sub-exponentially
with n, and in fact:

e We have 17 (f) < oo for the gauge y(n) = n2eBodoem?® — p+Bilogn,
e For _each 6 € (0, 1), we have fﬂ (f) > 0 when we take vy to be the gauge y(n) =
nl—o exp {Bl (IOg}’l)z} — nl—O+Bl logn.
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The full analysis of growth for the period-doubling map f, to be carried out in
[9], will be based on a careful study of the generating function of the sequence ¢, =
Card (crit(f™)) which, perhaps not surprisingly, is intimately related via Milnor-
Thurston theory to the dynamical zeta-function of f, which is well-known (see for
instance [24, p. 888]).

5 Slow Growth for Two-Dimensional Maps

What else, besides the qualitative results of Sect. 3, can be said about the growth of
orbits of two-dimensional zero-entropy homeomorphisms? Computing slow entropy
in such broad generality is a difficult problem. The best we can do at this point is
to investigate what happens in certain specific families of examples. In this spirit,
we offer the following result, whose proof will be given in [9]. The theorem below
is stated for self-maps of the annulus only, but such examples can be easily grafted
onto any other surface. For each o € (0, 1), let us denote by v the subexponential
gauge given by v“(n) = exp (n®).

Theorem 5.1 For each o € (0, 1) and each € > 0 sufficiently small, there exists a
bi-Holder homeomorphism F: T' x I — T! x I of class C'=°~¢ without periodic
points such that h"" (F) > 0.

The details will be given in [9]. A very rough sketch of the proof goes as follows.

(i) We start with a diffeomorphism Fy: T' x I — T' x I of the form f x id,
where f: T! — T'is a C'*? Denjoy example (for some 3 > 0), i.e., a circle
diffeomorphism without periodic points having a Cantor minimal set K.

(i) WewriteT! \ K = UneZ J., where each J,, is aninterval (gap). We may assume
that f(J,) = J,41 for all n (so that f is transitive on gaps). We also refer to
the rectangles R, = J, x I as gaps.

(iii)) We also consider a smooth, orientation-preserving horseshoe diffeomorphism
¢: Q — Q with support inside the square Q = I x I (sothat ¢|sp = id). The
measurable Riemann mapping theorem yields us an isotopy between ¢ and the
identity map.

(iv) Foreach N € N, we slice the above isotopy in such a way as to be able to write
¢ =dnnOoPN_1nO 0@y, Where each ¢; y: O — Q is a diffeomor-
phism which is Holder-close to the identity (successively closer as N increases).

(v) We choose a sequence of natural numbers Ny < N, < --- < Ny < -+, and for
each N, we perform the above slicing. In this fashion, foreachm € N we see that
@™ has been sliced as a composition of Ny + N; + - - - + N, diffeomorphisms.
The choice of the sequence (Ny) will depend on what kind of growth (or gauge)
we wish to achieve (i.e., on the value of «).

(vi) Next we build, in succession, an affine copy of each slice ¢; y, as a map

©n : Ry — R, of the appropriate gap R,, where n = j + Zk_l N;. Each ¢,

i=1
is Holder close to the identity (for a Holder exponent smaller than 1 — «, as it
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turns out),and it extends to a global homeomorphism of the annulus, being the
identity outside R,,.

(vii) Finally, we define F' as alimit, F' = lim,,_, o o, 0 - - - 0 2 0 ¢ o Fy. Note that

the maps ¢, have pairwise disjoint supports (in particular they commute with
each other). We are able to show (using a quantitative form of the Arzeld-Ascoli
theorem) that the limit exists as a bi-Holder homeomorphism with Holder expo-
nent slightly smaller than 1 — a.
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1 Introduction

We consider coded systems and their recurrence properties that are stronger than
topological transitivity. We are interested in topological (weak) mixing, and proper-
ties like the strong property P, which is a variant of the specification property.

Recall that a shift space is a coded system if it can be presented by an irreducible
directed graph whose edges are labeled by symbols from a finite alphabet .A. Here,
“presented” means that the shift space is the closure in A% of all bi-infinite sequences
of symbols which are labels for bi-infinite paths in the graph. Equivalently, X is a
coded system if it is a closure in AZ of the set of all bi-infinite sequences obtained
by freely concatenating the words in a (possibly infinite) list of words over .A. Such
a list is the set of generators of X.

Transitive sofic shifts are coded systems which can be presented by a finite irre-
ducible directed graph. Coded systems were introduced by Blanchard and Hansel
[5], who showed that any factor of a coded system is coded. This is a generalization
of a well-known property of sofic shifts [19, Corollary 3.2.2].

It is natural to ask which properties of irreducible sofic shifts extend to coded
systems. Here we prove that several properties known to be equivalent to topological
mixing for sofic shifts remain equivalent for coded systems. We give an example
showing that, quite surprisingly, another condition equivalent to topological mixing
for sofic shifts does not need to hold for topologically mixing coded systems. The
counter-intuitive nature of this example is in our opinion the most interesting feature
of this paper, but we hope that our other results will fill a gap in the literature.
Furthermore, there has been a resurgence in interest in coded systems in general, and
their notable subclasses in particular (for example S-gap shifts [2, 9, 12], G-shifts [9,
23], Dyck shifts [20, 21]). Coded systems often provide a testing ground for further
extensions (see [10], where the line of investigation initiated in [9] is developed and
extended to non-symbolic systems). Therefore understanding the situation for coded
systems may lead to solutions of more general problems.

In order to describe our results, note first that any coded system is topologically
transitive (irreducible). Recall also that for a non trivial transitive sofic shift X the
following stronger variants of transitivity (for their definitions, see the next section)
are equivalent:

(a) X is topologically mixing;

(b) X has the strong property P;

(c) X is topologically weakly mixing;

(d) X is totally transitive;

(e) X has two periodic points with relatively prime primary periods;
(f) X has the periodic specification property.

It seems that this is a folklore theorem, but we could not find it in this form in the
literature. In brief outline, here is the main idea of the proof using the terminology
presented in [19]. First recall that for every shift space (a) implies all other properties.
Furthermore, it is not hard to see that (a) or (b) implies (c) and the latter implies



Mixing Properties in Coded Systems 185

(d). For the proof of remaining implications we assume that X is a nontrivial sofic
shift. Observe that every transitive sofic shift has a minimal, right-resolving, and
follower separated presentation (e.g. see Theorem 3.3.2, Proposition 3.3.11, and
Corollaries 3.3.19-20 in [19]). Using synchronizing words and any condition on
the list (a)—(e) it is not hard to show that this presentation has two cycles with
relatively prime lengths (as in the proof of Lemma 7.2 below). But then, using
standard techniques (e.g. see [16]) we obtain that there is N > 0 such that for every
n > N there is a path of length n between any two vertices in this presentation. This
immediately implies (f) and hence all other properties on the list hold (see also the
proof of Lemma 7.1 below).

It is well known, that every shift space with the periodic specification property is
synchronized (again, see the next section for details) and hence it is coded, but the
converse is not true: there are synchronized systems without specification property,
and coded systems which are not synchronized. It follows that (f) is no longer equiv-
alent to (a)—(e) for shift spaces which are not sofic. For example all 3-shifts are coded
and topologically mixing but some are not synchronized and some are synchronized
but do not have the specification property (see [8, 22]).

Here we examine the remaining possible connections between transitivity variants
(a)—(e) for not necessarily sofic coded systems. Note that the proof of equivalence
of properties (a)—(e) for shifts of finite type can be adapted for irreducible Markov
shifts over countable alphabets. Furthermore, every coded system contains a dense
subset which is a factor of an irreducible countable Markov shift. This suggests that
properties (a)—(e) should remain equivalent for coded systems. And this is almost
the case. For coded systems (a)—(d) are equivalent, but the condition (e) no longer
follows, nor implies (a). To show that (e) is not a consequence of (a) we construct
a topologically mixing coded system without a periodic point of odd period and
hence without a generator of odd length. We note that such a system cannot contain a
topologically mixing shift of finite type. Krieger [17] characterized coded systems as
those shift spaces which contain an increasing sequence of irreducible shifts of finite
type with dense union. Krieger’s characterization is the best possible, in the sense that
there exists an increasing sequence of sofic shifts whose closure is a shift space which
isnotacoded system [6]. It follows from our result that there are topologically mixing
coded systems, which cannot be approximated from the inside by topologically
mixing shifts of finite type as they do not contain any topologically mixing sofic
shift'. We also present an example (suggested by a remark of one of the reviewers)
showing that the mere existence of two periodic points with relatively prime primary
periods is not enough to imply topological mixing even for synchronised systems
((e) does not imply (a)). The reason is that every cycle in an irreducible labelled
graph presenting a coded system X leads to a periodic point in X, but the converse
is not true if the graph is infinite. That is, to form a coded system we take the closure
of the set of all bi-infinite sequences of symbols which are labels for bi-infinite paths

! Another example of this kind was obtained independently in [11]. Preprint version of [11] was
posted on arXiv on July 29, 2015 as arXiv:1507.08048. Preprint of our paper was posted on March
10, 2015 as arXiv:1503.02838.
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in the graph, thus some periodic points may appear as limit points. These periodic
points may not correspond to a label of any closed path in the graph. In addition, we
show that if X is a transitive but not totally transitive coded system, then for some
prime p we can write X = X; U...U X, where the X;’s are closed subsets of X
cyclically permuted by the shift map o, each X ; is o invariant, X; N X ; is nowhere
dense fori # j, and (X, o?) is topologically mixing.

Finally, we note that replacing (e) by (e*) the conditions (a)—(e*) are still equivalent
for synchronized shift spaces. The new condition (e*) says that there are two cycles
with relatively prime lengths in the canonical presentation of a synchronized shift
space.

This paper is organized as follows: In the next section we set up the notation and
terminology. In Sect. 3 we prove a structure theorem for topologically mixing coded
systems and that total transitivity, topological weak mixing and topological mixing
are equivalent for coded systems. Section 4 contains an example of a shift space which
has the strong property P, but is not topologically mixing. In Sect.5 we describe a
topologically mixing coded system without a periodic point of odd period. In Sect. 6
we establish an equivalence of the strong property P and topological mixing for
coded systems. In Sect.7 we present some complementary results on synchronized
systems. They imply that (a)—(e*) are equivalent for synchronized systems, thus our
example does not have any synchronizing words. In the last section of this paper we
present the example suggested by the reviewer.

The following theorem summarizes our results on the connections between vari-
ants of transitivity for coded systems. We give the proof in Section 8.

Theorem 1.1 Let X be a non trivial coded system. Then the following conditions
are equivalent:

(a) X istopologically mixing;

(b) X has the strong property P;

(c) X is topologically weakly mixing;
(d) X is totally transitive.

Additionally, if X is synchronized, then any of the above conditions is equivalent to

(e*) X can be canonically presented by an irreducible directed graph (Fischer cover)
with two cycles of relatively prime lengths.

Moreover, there exists a coded system X fulfilling (a)—(d), but not (e*).

2 Notation and Definitions

We assume the reader is familiar with elementary symbolic dynamics as in [19]. We
fix a finite set A with at least two elements and call it the alphabet. Let A” denote
the set of bi-infinite (two-sided) sequences

X = (x,‘)l‘ez = .. X_3X_2X_1XpoX1X2 ...,
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such that x; € A for all i. We equip A with the discrete topology and we consider
AZ as a compact metric space in the product topology. The shift operator on AZ is
denoted by o. A shift space over the alphabet A is a shift-invariant subset of A%
which is closed in that topology. The set .AZ itself is a shift space called the full shift.
In this paper all shift spaces will be two-sided and transitive.

A block of length k is an element w = wywy . . . wy of A¥. Throughout this paper
“aword” is a synonym for “a block”. The length of a block is denoted |w/|. The set of
all words over A is denoted by A*. Given x € A% and i, j € Z withi < j we write
X(i,j1 to denote the block x;x;41 ... x;. We say that a block w occurs in x if w = xy; j)
for some i, j € Z. A language of a shift space X is the set 5(X) of all blocks that
occur in X. The set of blocks of length n in the language of X is denoted 5, (X).
Similarly, the set of all words that occur in a point x € AZ is denoted B(x). The
empty word L is the unique word of length 0. We write A™ for the set of nonempty
words over A.

A central cylinder set of aword u € By,1(X), where r € N, is the set [u] C X of
points from X in which the block u occurs starting at position —r, thatis, {y € X :
Yi—rr] = u}. Central cylinders (or cylinders for short) are open and closed subsets of
X. The family

{[x[—r,r]] ‘re N}

of cylinder sets determined by a central subblock of x is a neighbourhood basis for
a point x € X. We use a multiplicative notation for concatenation of words, so that
w" =w...w (n-times) and w® = www ... € AV,

Given a set of words Q C A", we define Q° = {1},and 9" = Q" 'Q = {uw :
ue Q' we Q). Wealsolet QF denote the set of all possible finite concatenations
of words from Q, thatis, @+ = (J2, Q". In particular, Q C Q™.

By O we denote the set containing all possible bi-infinite concatenations of
elements of Q, that is, x € Q% if x can be partitioned into elements of Q.

Dynamical properties like those mentioned in (a)—(d) and (f) above are usually
defined for a continuous map acting on a metric space. Here we define them in the
language of symbolic dynamics.

A shift space X is:

(1) transitive if for any u, v € B(X) there is w € B(X) such that uwv € B(X);

(2) totally transitive if for any u, v € B(X) and any n > 0 there is w € B(X) such
that uwv € B(X) and n divides |uw|;

(3) topologically weakly mixing if for any uy, vy, uy, v, € B(X) there are wy, w, €
B(X) such that uyw;vy, uowrv, € B(X) and |ujw;| = |uyw,]|;

(4) topologically mixing if for every u, v € B(X) there is N > 0 such that for every
n > N there is w € B,(X) such that uwv € B(X).

We say that a shift space X has:

(1) the strong property P if for any k > 2 and any words uy, ..., u; € B(X) with
lui] = ... = |ui| there is an n € N such that for any N € N and function
p:{l,...,N} = {1, ..., k} there are words wy, ..., wy_; € B,(X) such that
u¢(1)w1u¢(2) e u¢(N_1)wN_1u¢(N) € B(X),
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(2) the specification property if there is an integer N > 0 such that for any u, v €
B(X) there is w € By (X) such that uwv € B(X).

Blanchard [7] introduced the strong property P in order to provide an easy to verify
criterion for another property he was interested in: uniform positive entropy. The
strong property P is easily seen to follow from the specification property. For the
details we refer to [7]. Blanchard proved there that the strong property P implies
topological weak mixing, and does not imply topological mixing. Therefore the
strong property P is strictly weaker then the specification property.

It is convenient to rephrase the above definitions using the sets

Ny([u], [v]) = {£ € N: uwv € B(X) for some w € A" such that |uw| = £},

where u, v € B(X). For example a shift space X is topologically weakly mixing
if for every u, v € B(X) the set N, ([u], [v]) contains arbitrarily long intervals of
consecutive integers (see [14, Theorem 1.11]). A shift space X is transitive for ok
where k € N if and only if the set

Nye([u], [v]) = {£ € N: uwv € B(X) for some w € A* such that |[uw| = k¢},

is non-empty for every u, v € B(X).

If a dynamical system on a compact metric space is transitive, then there is a dense
Gs-set of points with dense orbit. In particular, in a transitive shift space X in every
cylinder set there is a point x such that every block in B(X) occurs infinitely many
times in x.

By a countable graph we mean a directed graph with at most countably many
vertices and edges. A countable graph is irreducible if given any pair of its vertices,
say (v;, v;), there is a path from v; to v;. A countable graph G is labeled if there is
a labeling ® which is simply a function from the set of edges of G to the alphabet
A. A labeling of edges extends, in an obvious way, to a labeling of all finite (respec-
tively, infinite, bi-infinite) paths on G by blocks (respectively, infinite or bi-infinite
sequences) over .A. The set Y of bi-infinite sequences constructed by reading off
labels along a bi-infinite path on a labeled graph (G, ®) is shift invariant, but usually
itis not closed and therefore not a shift space. Nevertheless, its closure X = Y in A%
is a shift space, and we say that X is presented by (G, ®). Any shift space admitting
an irreducible presentation is a coded system. Irreducibility of the graph presentation
implies that all coded systems are transitive. If there is a finite irreducible graph
presenting a shift space X, then X is a transitive sofic shift.

A word w is magic for a coded system presented by (G, ®) if w € B(X) and all
paths in G labeled by w end at the same vertex of G. A set of generators for a shift
space X is a family of words Q C .A* such that the language of X coincides with the
set of all subblocks occurring in elements of Q. Equivalently, X is the closure of oz
in AZ. Since the generators can be freely concatenated, every shift space possessing
them must be transitive. Every coded system has a set of generators, and the converse
also holds: if a shift space has a set of generators then it is a coded system. The class
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of transitive sofic shift spaces coincides with the class of shift spaces having a finite
set of generators.

A synchronizing word for a shift space X is an element v of B(X) such that
uv, vw € B(X) for any blocks u, w over A imply uvw € B(X). A synchronized
system is a transitive shift space with a synchronizing word. Synchronized systems
were introduced in [S5]. Every synchronized system is coded, because if v is the syn-
chronizing word for X, then {wv : vwv € B(X)} is a set of generators for X. The
uniqueness of the minimal right-resolving presentation known for sofic shifts extends
to synchronized systems as outlined in [19, p. 451] (see also [24, p. 1241] and ref-
erences therein). This special presentation is called the Fischer cover. Synchronized
systems and their generalizations were extensively studied in [13].

Let x1, x2, ..., x, be positive integers. It is well-known that every sufficiently
large integer can be represented as a non-negative integer linear combination of
the x; if and only if ged(xy, x2, ..., x,) = 1. For a later reference we formulate an
important consequence of this result as a remark.

Remark 2.0.1 Letxy, x;, x3, ...bepositive integers. If gcd (x, x2, x3, ...) = k,then
every sufficiently large multiple of k£ can be represented as a non-negative integer
linear combination of the x;.

3 Total Transitivity Implies Topological Mixing for Coded
Systems

We prove that total transitivity, topological weak mixing and topological mixing are
equivalent for coded systems. This leads to a structure theorem for coded systems
which are not totally transitive.

Theorem 3.1 Suppose that X is a coded system and let D C X be a closed set with
nonempty interior such that c*(D) = D for some k > 0. If the shift space (D, o*)
is totally transitive, then it is topologically mixing and the set of periodic points of
ok is dense in D.

Proof Let G be an irreducible countable labeled graph presenting X. Since D has
nonempty interior, for each r € N large enough there is w € B(X) of length 2r + 1
such that the cylinder [w] = {x € X : x[_,,; = w} is contained in the interior of D.

We claim that the periodic points of (D, o) are dense in D. Let V be a nonempty
open subset of D. Then there is an open set U C X with V = U N D. Without loss
of generality we may assume that U is a cylinder set of some block u € B(X). By
total transitivity there is s € B(X) and a path on G labeled by wsu such that the
length of ws is jk for some integer j. We can join the last vertex on the path labeled
by wsu with the first vertex of the same path by a path labeled by a word ¢. Therefore
there is a bi-infinite periodic sequence y € X such that y|_, o) = (wsut)*> for some
words s, t € B(X). Butthen y € [w] C D and ajk(y) € [u] because |ws| = jk. On
the otherhand y € D, hence 0/%(y) € D and then 0/%(y) € U N D = V. This shows
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that periodic points are dense in D under o*. Since every totally transitive dynamical
system with dense set of periodic points is topologically weakly mixing (e.g. see
Corollary 1.1 in [3]), it follows that (D, ¢*) is topologically weakly mixing.

We proceed to a proof of topological mixing of (D, o*). We recall that by [15,
Lemma 3.1] a shift system (D, ¢*) is topologically mixing if for each cylinder v in
some neighborhood basis of a point with dense orbit in D the set N «([v], [v]) is
cofinite. Let X € [w] be a point whose orbit is dense in D under o*. Givena > r set
Vg = X[—a,q) and

[Ua] = {)C eD: X[—a,a] = Ua}-

Note that x € [v,] C [w] C D, hence the cylinder of v, in X and in D coincide.
Furthermore, ([v,]),>, is a neighborhood basis of x.

It is now enough to show that the set N «([v,], [v,]) is cofinite. Let u be a word
such that v,u is a labeling of a loop in G and let m be the length of v,u. Without
loss of generality we may assume that k divides m (we replace v,u by (v u)* if
necessary). Denote the loop presenting v,u on G by £. By topological weak mixing
of (D, o) the set Ny« ([v,], [v,]) contains a set of m consecutive integers, hence
there is an integer ¢ > O such that for each i =1, ..., m the graph G contains a
path 7; labeled v, v;v, where |v;| = (¢ + i)k — |v,]. Since G is irreducible, for each
i =0,1,...,m there exists a path ; in G such that the following path is a loop on
G:

T =EYMVIN2 - - - Yn—1Tm Vm -

Let p = |w|. We claim that for every j > 1 andi = 1, ..., m we have
p+ (mj) + (g +i)k € No([val, [va]).

In order to show this, consider the labeling of the following path:

NiVi - MY () Yo -« - Yiz1mi-

It starts and ends with v, (it is a path on G because 7 and & are loops). This proves
that N« ([v.], [v.]) is cofinite. O

Corollary 3.2 Ifacoded system X is totally transitive, then it is topologically mixing.
Proof Take D = X and apply Theorem 3.1. (]

We will now describe the structure of coded systems which are not totally transi-
tive. Banks proved in [3] that if a dynamical system (X, T) is transitive, but (X, T*)
is not transitive for some k > 1 then there is a regular periodic decomposition of X
of length k, that is, one can find a finite cover {Dy, ..., Dy_1} of X by non-empty
regular closed sets with pairwise disjoint interiors such that 7(D;_1) € D; (mod k)
for each 1 <i < k. Recall that a set is regular closed if it is the closure of its inte-
rior. We say that a dynamical system (X, T) is relatively mixing with respect to



Mixing Properties in Coded Systems 191

regular periodic decomposition D = {Dy, ..., Dy_,} of X if (D;, T*) is topologi-
cally mixing for 0 <i < k. Observe that (X, T') is relatively mixing with respect to
D = {D,, ..., Dy_;}ifand onlyif (D, T*) is topologically mixing. It was proved in
[3] that if there is an upper bound on the possible lengths of periodic decompositions
of a transitive dynamical system then there exists a regular periodic decomposition
Dy, Dy, ..., D,_; such that (D;, T") is totally transitive for every 0 <i < n (this
decomposition is called terminal). In addition, in that case we also have T" (D;) = D;
for every 0 <i < n, beacuse totally transitive maps are onto.

Theorem 3.3 Every coded system is relatively mixing with respect to some regular
periodic decomposition.

Proof Let X be a coded system. By Theorem 3.1 and the result of Banks mentioned
above, it suffices to show that there is an upper bound on the possible lengths of
regular periodic decompositions of X.

Let G be an irreducible countable labeled graph presenting X and let k be the
length of a cycle 1 in G. We claim that the length of a periodic decomposition of
X can not be greater than k. On the contrary, assume that Dy, ..., D, is a regular
periodic decomposition and n > k. Since Dy is regularly closed, there is » € Nand a
word w of length 2r + 1 such that the cylinder [w] = {x : x—.,; = w} C Dy. Since
for each i > 0 the interior of a regular closed set D; is disjoint with the interior of
Dy, we have D; N [w] = @ foreachi > 0.

Since G is irreducible, there are paths 7, v with || > |w| such that T~ is acycle
on G labeled wu € B(X) for some word u. Repeating the path 77y if necessary we
may assume that n divides |77y = |wu|. Leta word wu’ € B(X) be the label of the
path nny on G. We have |wu’| = nj + k for some j > 1. Note that wu'w € B(X)
because 7nny7 is a path on G and hence there is x € X with x_, ,; = wu'w for
some ¢ > r. But then x and 0"/ (x) both belong to [w] C Dy. On the other hand

otk (x) € ¢ (Dy) = 6" (Dy) = Dy.

Since k < n, we have [w] N D, = @ which leads to a contradiction. O

4 The Strong Property P Does Not Imply Topological
Mixing

‘We construct a topologically weakly mixing but not topologically mixing shift ¥ with
the strong property P. This shows that the strong property P and topological mixing
are not equivalent in general. Note that ¥ can not be a coded system by Corollary
3.2. A similar example was first given by Blanchard [7], but our construction is much
simpler.

Given R C N we follow [18] and define a spacing shift Qg as the set of all
x € {0, 1}% such that the condition x; = xj = lforsomei, j € Zwithi # jimplies
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li — j| € R. Elements of B(Q2g) are called R-allowed blocks (see [4, 18] for more
properties of spacing shifts).

Theorem 4.1 There is a shift space Y with the strong property P, which is not
topologically mixing.

Proof We construct a spacing shift with the desired properties. Below we write (1),
for the binary representation of a positive integer n, that is,

(Ia=1, (2)2 =10, 3)2=11,....

Alsoforu =wuy...u, € {0, 1} weletA(w) ={li —jl:1<j<i<n u=u;=
1}.

Let R = N\ {2% : k € N}. Define Y = Q, and note that R is thick, thus Qp is
nontrivial and topologically weakly mixing (see [18]). We claim that forevery k € N,
L = 2%, w = 0%L and any family of R-allowed blocks vy, vy, ..., v; of length L, the
block u = vowviwv, ... v,—jwv, is also R-allowed. This clearly implies that the
spacing shift Q2 has the strong property P. A simple calculation yields that

Am)cQLHWL—HﬂR)U(Lﬂ6m+mL+L””6m+®L—U)

m=0

It is enough to show that no power of 2 is in A (u).

Note that any
o0
ge | JIGm+DL+1,....Gm+4)L -1}
m=0
can be written as ¢ = a + b where a € {2¥*1 +1,...,252 — 1} and b = 3m - 2%,

If b = 0 then clearly g = a is not a power of 2, hence we may assume that m > 0.
Then (b), = (3m),0* and (a), = 1x . ..xo, where not all x;’s are 0. Denote

(a+b)=yyi-1... Y- Yo

Note that/ > k+ 1. If x; 20 forsomei =0,1,...,k—1,theny; #0anda + b
isnotapowerof 2. If xo =x; = ... = x4y =0and x; = 1,thena =3 - 2% In that
case, a + b is also divisible by 3 and hence it is not a power of 2. Therefore A(u) C R
and Qp has the strong property P.

On the other hand Q2 is not topologically mixing because it is easy to see that
N([1]g, [1]1g) = R. Since R does not contain powers of 2, the set N([1]g, [1]g) is
not cofinite which is a necessary condition for topological mixing (see [4], cf. [18]).
Here [1]z = {x € Qg : xo = 1} is a nonempty open subset of Q. O
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5 A Topologically Mixing Coded System Without Periodic
Points of Odd Period

We construct a topologically mixing coded system without periodic points of odd
period and such that every set of generators for this system contains only words of
even length.

Lett = tot1t, ... = 10010110. .. be the Prouhet-Thue-Morse sequence (see [1]).
Recall that it obeys f,, = 1,, and f5,,11 = 1 — t,,. It is well-known that 7 is a cube-free
sequence, in particular neither 000 nor 111 occur in 7. Let B(¢) be the set of all words
occurring in . It is well-known that B(t) is a language of a minimal and non-periodic
shift space Xty.

We first define auxiliary sets L, C {0, 1}* for n = 1,2, ... and a sequence of
words {a;}72,. We begin by setting ag = 01 and L; := {ap}. Assume that we have
performed n — 1 steps of our construction (n € N). We are given the set L,_; and
{ar)2, is defined forindices 0, 1, ..., s, — 1, thatis, s, denotes the number of words
in the sequence {a;} constructed up to the step n. In particular, we have s; = 0 and
s» = 1. At each step n > 2 we enumerate the blocks in L,_; starting from s,, that
18, we write

Lyt ={ws, ..., Ws 4L, -1}

We extend the sequence {a;} by adding words
aj = 01110¢0,4j-3;011110w;011110¢;9 4;1;01110.

for j =s,,...,8, + |La—1] — 1. Then we set

n
N k
Ln .—{d;n, s, 415+« as,,Hl} U U Ln,p
k=1

where Lﬁ71 ={wwy... wr:w; € L,y for j =1, ..., k}. This completes the step
n and our induction. Let Q := {a; ; i € Np}.

We will call the words 01110 and 011110 markers. Note that ag is the only element
of Q without markers, and since 111 is not in B(¢) the positions of markers in a; are
unique and therefore we can identify positions of blocks fjg 4;—3) and #(o 4 ;1. Hence
knowing that w € Q and the length of the longest subblock from B(z) in w between
two markers (when w # ag) we can uniquely determine k such that w = ay.

Notice that

00
L, C Ln+1 and Q+ = U L,. (D
n=I

Thus Q and |, L, generate the same coded system denoted by X.

Lemma 5.1 The coded system X is topologically mixing.
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Proof Every block u € B(X) is a subword of some concatenation of generators.
Therefore it is enough to show that for any k,¢ € N and uy, ..., uz, vy...v¢ €
Q there is M € N such that for all m > M there is a block w € {0, 1}"* with
uy...ugwvy ... € BX).

Observe that by (1) thereisn € Nsuchthatu, ..., u; € L,.Clearly, we may also
assume thatn > k. Then it follows directly from the constructionthatu = u;...u; €
L, and there is ¢ € N such that

ay = 01110t0,4,-3,011110401111080 4y1,01110 € Ly, .

Define $2g—1 = 1[0,4¢-3] and S2g = 10,49—1]- SetM =4g + 11.If m > M is odd, then
we have

m—4g—11
aga, > V...V =

m—dg—11

01110s24—1011110u; ... ue 011110s,,01110(01) 27 vy ... % € or.
——

u we{0,1)”

For even m > M we have
uag vy ... =u@2v;... v € .

This completes the proof, since Q" c B(X). O

Lemma 5.2 If X is a non trivial coded system generated by a set Q and there is a
word w € Q with odd length, then X contains a periodic point of odd primary period
greater than one.

Proof Since X is a nontrivial coded system generated by Q, there must be a non
constant word u in Q7 as otherwise X would consist of a single fixed point. Thus
uu € Q*is anon constant word of even length. Then the word uuw is a non constant
word of odd length k in O whose infinite concatenation is a non fixed periodic point
with an odd primary period dividing k. (]

We are going to prove that X has no periodic points with odd period. For n € N
let Y, be the coded system obtained by taking L, as a set of generators. Since L, is
finite, Y, is sofic. We show that an odd periodic point cannot occur in Y,.

Lemma 5.3 For every n € N the sofic shift Y, generated by the set L, does not
contain a periodic point with odd prime period.

Proof Fixanyn € Nandletx € Y, be a periodic point with prime period g. Clearly,
g > 1 because the lengths of runs of 0’s and 1’s in B(X) are bounded. If x does not
contain any marker then x = (01)°° and g is even. Thus we may assume that there are
(infinitely many) markers in x. Let £ be the length of the longest block w from B(r)
appearing in x between two markers. Then £ = 4k for some k, and there mustbe j € Z
such that xj; j4jq|-1] = @ (no word a, with r > k can appear in x, since then we
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would have £ > 4k + 4). Because x has period ¢, we alsohave x4, j+¢+la, 111 = a-
Let w € Q% be a word which contains X[ j4+4+4—1] as a subblock and which does
not contain a block from B(¢) of length greater than 4k. Write w = vy ... v, where
v; € Q. By the above observation, we have that X; j 1o, |—1] = X[j+q, j+q-+lal-1]1 =
ax € Q must be among v;. This immediately implies that x;; j4,—1) € Q% and since
all words in Q have even length, we find that ¢ = |x{; j+,—1;| is even. O

Finally we show that taking the closure of |-, ¥, does not introduce periodic
points. We will use the fact that the Prouhet-Thue-Morse sequence ¢ is cube-free,
that is, for every word w over {0, 1} we have www ¢ B(t).

Lemma 5.4 Anyelement x of X \ U, Y, contains arbitrary long blocks from B(t).
In particular, x cannot be periodic.

Proof First, note that if x € X\ (72, Y, is periodic and contains arbitrary long
blocks from ¢, then for some word w we would have www € B(t) contradicting that
1 is cube-free. Now, assume that there is x € X \ [ J7—, ¥, such that the longest block
from B(t) appearing in x has length at most 4k for some integer k > 0. Then x must
contain infinitely many markers as subwords, as otherwise x = ... apaowapay - . .
for some w € L, and some n, thus x € Y,,.

Therefore there exists an infinite set J C Z and a strictly increasing infinite
sequence of integers (n;);cs such that x(; ;44 = 01110 if and only if there is i € J
such that j = n;. The set J is the set of positions at which markers occur in x. Let
m be the least integer such that a; € L,,.

We claim that every word w;,; := X[, ... »,+4) forany s,i € J, s < i is contained
in B(Y,,). Note that by the definition each w; ; starts and ends with the marker 01110.
Let j be the smallest positive integer, such that w;; € B(Y;). There must be some
word g € L;’ such that g = bw, ;c with b, ¢ € B(X). Either j < m, in which case
we are done, or j > m and g must contain a, for some £ > k. Since wy; starts
and ends with 01110, the two longest blocks of symbols from B(¢) occurring in a,
must be contained in b and ¢ and thus w; ; is already contained in the middle word
& =01110u01110 of a,, where u € L;_;. Note that £ is an element of L;r_]. This
contradicts the minimality of j. Therefore our claim holds. If J is bi-infinite, then
x € Y, which is a contradiction. Otherwise, either

a=inf{n; :i € J} =min{n; :i € J} > —o0, or

b=sup{n;:i e J}=max{n; :i € J} < o0.

If a > —o0, then x(_o 4—17 does not contain markers and xj, 4+4; = 011110 which

implies that X(_xc q—1] = . . . @gdoap. In the second case b < oo and we obtain that
X[b+1.00) = dodody - . ., hence both cases imply again that x € Y,, and this contradic-
tion completes the proof. O

Theorem 5.5 There exists a coded system X which is topologically mixing, but does
not have periodic points with odd periods. In particular, every set of generators for
X contains only blocks of even length.
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Proof The shift X is topologically mixing by Lemma 5.1. Using Lemmas 5.3 and
5.4 we see that X does not contain a periodic point with odd prime period. Then it
follows from Lemma 5.2 that every set of generators for X contains only blocks of
even length. (]

6 The Strong Property P and Topologically Mixing Coded
Systems

As we have seen before, the strong property P does not imply topological mix-
ing. Clearly, the converse implication is not true either, since Blanchard [7] proved
that the property P implies positive topological entropy and there are examples of
topologically mixing shifts with zero topological entropy.

The purpose of this section is to show that every topologically mixing coded
system has the strong property P.

Lemma 6.1 Let X be a topologically mixing coded system, Q be its generator, and
k = ged{|u| : u € Q}. Then for each u € B(X) with |u| = 0 mod k there is a word
v € OV such that v = aub with |a| = 0 mod k and |b| = 0 mod k.

Proof Since X is topologically mixing, there is a word v € O™ such that for some
a,b,zy, ...,z € B(X) we have

V= auz uzsuzs ... uzb

with |z;| = 1 mod k for eachi = 1, ..., k. Replacing v by v* if necessary, we may
assume that [v] = 0 mod k. There is £ € {0, ..., k — 1} such that |a] = —¢ mod k.
Leta = auzjuzy ... uzgandb = zp 1 uze4s . . . uzkl; and observe that |a| = 0 mod &,
|b] = |v| — |a|] — |u| = 0 mod k and v = aub. ([l

Theorem 6.2 If X is a toplogically mixing coded system, then X has the strong
property P.

Proof Blanchard [7, Proposition 4] proved that a shift space X over A has the
strong property P if for any integer p belonging to some infinite strictly increas-
ing sequence of integers there exists an integer ¢ = ¢ (p) such that for any s > 2 and
any words uy, ..., u, € B,(X) there are words wy, ..., ws—1 € B,(X) such that
uiwily ... us_jws_1ug € B(X). Let Q be a set of generators of X and k = ged{|u| :
ue Q}.

We will show that Blanchard’s criterion [7, Proposition 4] applies to any p € {£ €
N : £ = 0 mod k}. To this end, fix p = 0 mod k and enumerate all blocks of length
p by vy, ..., v,. We use Lemma 6.1 to obtain ay, ..., a,, ay, ..., a, € B(X) such
that

0=la|=---=lay| = |by| =--- = |by| mod k
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and a;v;a] € Q1 fori € {1, ..., n}. By Remark 2.0.1 there exists N such that for any
j = N thereisaworde; € Q" with |¢;| = kj. Let |a;| = €;k and |a| = €.k where
£;,0; eN.SetL = N +max{{;, £;:i=1,...,n}.Define j(i) =L —¢; > N and
]/(l) =L— 6: > N. Set¢; = Ej(,') and d; = éj/(,') fori =1,...,n. Thus we have

found ¢y,...,c, € Q7 and di,...,d, € O such that Lk = |c;a;| = |a/d;| for
i=1...,n Now let uy,...,us be any words in B,(X). Then there is a func-
tion ¢: {1,...,s} = {I,...,n} with u; = vy, for j =1,...,s. Observe that

Cot)s Ao oyt jay ;y € O, hence

a1 (@) A1) o)A@ U2 (@) o) Co3)Ap3) U3 - - . Cos)Aois) sy € O

wi wr

Therefore uywiu; ... us_jws_ug € B(X). We set g(p) = 2Lk and we obtain that
X has the strong property P by [7, Proposition 4]. (]

7 Two Folklore Results

We finish the paper with two results which are probably folklore, but we were unable
to find them in the literature so we attach them for completeness. Combining them
with Corollary 3.2 we obtain that the stronger forms of transitivity mentioned in the
Introduction are equivalent for synchronized systems.

Lemma 7.1 Let X be a coded system presented by a labeled graph G. If there are
two cycles on G with relatively prime lengths, then X is topologically mixing.

Proof Denote by o and cr; two cycles on G with relatively prime lengths, k; = |« ],
J =1,2. Let e; be a vertex of some edge belonging to «; for j =1, 2. Let u;
be the label of «; for j = 1,2 read off traversing «; from e;. Take any words
wi, wy € B(X).Since X is coded, we can find paths 7, v, on G labeled, respectively,
by wi, ws. Let a, be the initial vertex of 7,, and b be the terminal vertex of ;. Let £,
(¢;) be the length of the shortest path 7 (7;) on G from b; to e; (from e; to a;) and
m be the length of the the shortest path p on G from e to e;. Let vy, v2, 7 € B(X)
be labels of 71, 73, p, respectively. It follows that for each p, g € N the path

m(p, q) = nimi(on)? plar)? 7oy,

is labeled by wjv;(u1)?z(uz)?vow,. Since k; and k, are relatively prime, the set
{pki + qk> : p, g € N} is cofinite. Therefore there is N > 0 such that if we fix any
n > N then we can find p,, g, € Nsothatn = £, + p,k; +m + g, k> + £» and the
path 7(p,, g») on G has length n + |w;| + |w;|. Therefore for eachn > N the word
w™ = v (u1)Pz(uz)% v, has length n and ww™ w, € B(X). It follows that X is
topologically mixing. O



198 J. Epperlein et al.

Fiebig and Fiebig proved in [13] that every synchronized system X can be pre-
sented by a special labeled graph called the Fischer cover. Furthermore, they showed
that the Fischer cover of X is unique up to an isomorphism of labeled graphs. The
Fischer cover of a synchronized system may be characterized as the countable labeled
graph (G, ®) presenting X which is right-resolving, follower separated, and every
synchronized word w for X is a magic word for (G, ®). This generalizes the notion
of a minimal, right-resolving, and follower separated presentation of sofic shifts. For
details we refer the reader to [13] or [24].

Lemma 7.2 A synchronized shift X is topologically mixing if and only if there are
two cycles with relatively prime lengths in its Fischer cover.

Proof The “if” part follows from Lemma 7.1. For the “only if” part assume that X is
topologically mixing. Let w be a synchronizing word for X. Then w is a magic word
for the Fischer cover (G, ®) of X, that is, there is a vertex e of G such that every path
labeled by w ends at e. Since X is topologically mixing there is N € N and there are
words uy, uy with |u;| = N, |us| = N + 1 such that wuw, wu,w € B(X). Because
each path labeled by w ends at e, there are cycles in G labeled by u;w and u,w with
relatively prime lengths. (]

8 Proof of Theorem 1.1

Finally, we can prove our main result.

Proof of Theorem 1.1 To prove equivalence of (a)—(d), it is enough to combine
Corollary 3.2, Theorem 6.2 and [7] (the strong property P implies topological weak
mixing). The equivalence of these conditions with (e*) follows from Lemma 7.2.
Finally, the “moreover” part is a consequence of Theorem 5.5. ]

9 Additional Example

The following example (suggested by a referee) shows that in order to obtain a
condition equivalent to (a)—(d) for synchronized systems it is necessary to strengthen
the condition (e) to (e*). Consider the coded system over {0, 1, 2, 3, 4} generated by
the code words

220101(010101)"444444 and 333001(001001)"444444 forn=1,2,....

Note that 444444 is a synchronizing word for this system, and it is clearly transitive,
hence it is a synchronized system. It is also easy to see, that it contains two periodic
points with relatively prime primary periods generated by 01 and 001. The shift space
is not totally transitive: the set of return times to the cylinder of 333 contains only
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integers of the form6n 4+ 9forn = 1,2, ..., s0 o2 is not transitive on our shift space.

Thus no two cycles in any presentation of this shift have co-prime lengths, as this
implies total transitivity by Theorem 1.1.
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Transversality for Critical Relations )
of Families of Rational Maps: i
An Elementary Proof

Genadi Levin, Weixiao Shen and Sebastian van Strien

In memory of our dear friend and colleague Welington de Melo.

Abstract In this paper we will give a short and elementary proof that critical rela-
tions unfold transversally in the space of rational maps.

Keywords Holomorphic dynamics + Rational maps + Transversality

1 Introduction

In this short paper we will give an elementary proof of some transversality properties
for families of rational maps. We will consider the space Ratg of rational maps
of degree d with precisely v critical points of multiplicities (i1, Uz, ..., i4y). In
Theorem 2.1 we will show that this space of maps can be locally parametrised by
critical values. Given f € Rat’,let¢ = ¢(f) > 0be the maximal number of critical
points with pairwise disjoint infinite orbits and define N = v — {(f). In Theorem 3.2
we will show that if f is not a flexible Lattes map then one can organise the set of
critical relations of f in the form
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{f™ (i) = f"(cj), k=1,..., N}

so that the map

Ratf 5 g > {0(g™ (ci,(9)) — o (¢" (c; (PN, (1.1)

has maximal rank for g near f, where o is any Mobius transformation with
o (f™(c;,)) # oo. Property (1.1) obviously is a transversality condition.

In fact, the choice of critical relations is in general not unique, but as long as the
selected collection is full, as made explicit in Definition 3.6 below, the maximal rank
property holds.

Indeed, we should emphasise that some care is required in the choice of critical
relations. For example, in the case of f;(z) = z> + ¢ with t = 0, the derivative of
t— ftz(O) — f7(0) vanishes at + = 0. The correct way of expressing transversal
unfolding of the critical relation f;(0) = 0in (1.1) is by taking m; = 1 and n; =0
in this equation, i.e. by asserting that the derivative ¢ — f;(0) — 0 is non-zero at
t=0.

In the unicritical case, transversal unfolding of critical relations in the pre-periodic
case goes back to Douady and Hubbard [5] and Tsujii [32], see also [16, Remark
5.10]. Milnor and Thurston [28] and Sullivan, see [25, Theorem VI1.4.2], proved a
‘topological’ version of transversality.

An abstract approach to transversality for finite type maps was developed by A.
Epstein, see [8, 9], obtaining in Part 1 of [8] transversality within the Teichmiiller
deformation space Def% (f), and in Sect. 5.4 in [8] the loci defined by critical relations
within Defﬁ (f) is discussed. Part 2, and in particular Sect. 10, of [8] goes into a
strategy for transferring the transversality results obtained in Def£(f) to the space
of rational functions. However, we were not able to find an explicit statement covering
Theorem 3.2 or Theorem 3.3. Nevertheless, it is likely that the strategy in [8] can be
executed to obtain statements similar to the ones in this paper.

Our results also hold in the setting of degenerate critical points and gives unfold-
ings of critical relations even when critical points share the same critical value. For
this we use that Rat)] is a manifold and that Rat} > f — (f(c1), ..., f(c,)) has
rank v, see Theorem 2.1.

In this short and self-contained paper we prove transversality following the
approach developed by Levin in [17-20], see also [15]. The starting point of this
paper are calculations from [18, 20] which show that if the transversality prop-
erty (1.1) fails at g = f, then one can construct a non-zero integrable meromorphic
quadratic differential that is invariant under push-forward by f, which in turn implies
that f is a flexible Lattés example. Indeed, the main Theorem 3.3 can be proved as
in [20], see Remark 5.1, although we shall provide a more direct and shorter proof
in this paper.

The idea of using quadratic differentials appeared first in Thurston’s characteri-
zation of post-critically finite branched covering of the 2-sphere [6]. It has been used
in for example [7, 15] and this was also used in [33] to obtain a similar statement to
ours for the quadratic case.
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Theorem 3.2 was proved previously for the case that critical points are non-
degenerate and eventually mapped into repelling periodic orbits, but never into a
critical point, see [3, 30] and also [13, Theorem 4.8].

Transversality also holds in other settings. For example, if each critical point is
mapped into a hyperbolic set, see [30], when a summability condition holds along
the orbit of critical values, see [2, 20], for the unfolding of multipliers of periodic
orbits, see [8, 18] and for a large class of interval maps, see [21].

As mentioned, the aim of this paper is to present a proof of transversality for
rational maps with critical relations in a complete and readily accessible form.

In Sect. 6 we discuss corresponding results for polynomials.

2 Parametrising Rational Maps by Their Critical Values

Let Rat; denote the collection of all rational maps of degree d > 2. This space is
naturally parameterized by an open set in PC2+!,

Given a non-ordered list 4 = (w1, w2, ..., K,) with 22';1 Wi =2d —2,wesaya
rational map f € Rat, is in the class Rat)] if f has precisely v distinct critical points
c1, ¢, ..., ¢, withmultiplicities iy, uo, ..., u, respectively. Taking1 = (1, ..., 1),
Rat}i corresponds to the space of rational maps with 2d — 2 non-degenerate critical
points.

Rational maps are not fully determined by their critical values (not even on small
open subsets W C Ratg ), because one can precompose a rational map by a Mobius
transformation without changing its critical values. However one can find a neigh-
bourhood W of f and a normalisation (based on precompositions with Mobius
transformations) so that critical values parametrise all maps in W satisfying this
normalisation:

Theorem 2.1 For each p, Rat{; is an embedded submanifold of dimension v + 3
of Rat; and the functions defined by the critical values form a partial holomorphic
local coordinate system, i.e. the map Rat’; > f = (f(c1),..., f(cy)) has rank v
and can be completed by 3 other coordinates to be a holomorphic coordinate system.

Remark 2.1 Theorem 2.1 is not new. Similar statements are proved e.g. in [11, 19]
(see also [12]) using the Measurable Riemann Mapping Theorem with dependence
on parameters; the idea of those proofs goes back probably to [31]. Our proof borrows
an idea of Douady and Sentenac [29, Appendix A], and is short and elementary. The
case (4, = d — 1 corresponds to the polynomial case, which in some real cases was
dealt with in [25, p. 120] and [29], see also [10].

Theorem 2.1 follows from Proposition 2.2 below. Assume without loss of gen-
erality (by post and pre composing f by Mobius transformations if necessary)
that the critical points and the critical values avoid the point at co. Then for each
i=1,2,...,v,
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)= f'(ci)="= f"(c;) =0, fPTV(c;) # 0.

Applying the Implicit Function Theorem to the maps (g, &;) — g% (¢;) for (g, &)
near (f,c;), gives that there exists a neighborhood W of f in Rat,; and uniquely
defined functions ¢;: W — C which are holomorphic such that ¢ (f) = ¢; and
g"(&(9)) =0, WitV (g;(g)) # 0 for each g € W. Replacing W by a smaller
neighborhood, for each g € W the equation ¢’'(¢) = 0 has w; solutions ¢ (count-
ing multiplicity) near c;. It follows that for any g € W N Rat’;, ¢'(¢) =0 has a
unique solution near ¢; (with multiplicity u;); hence ¢;(g) is the only critical point
of g € W N Rat!; near ¢; and it has multiplicity u;.
For g € W, write

2 (9) = 9(&i(9), &' (9) = 9 (i (9)), & (g) = 9" & (g)), - ..

Thus ¢;(g) is a critical point of g with multiplicity u; if and only if {l.j (g) = 0O for all
1 < j < u — 1 (note that g% (¢;(g)) = 0, g% TV (£;(g)) # 0 holds automatically
for all g € W). Define G: W — C??=2 by

9= @9, 1@, ), ), ), L 2D ).

Since W has dimension 2d + 1, Theorem 2.1 follows immediately from:

Proposition 2.2 For each rational map f as above, the Jacobian of G has rank
2d —2atg = f.

This proposition also immediately implies:

Corollary 2.3 Assume that all critical points of f are non-degenerate. Then there
exists a neighbourhood W of f in Rat, so that the critical points ¢1(g), . .., c2a—2(g)
of g depend holomorphically on g € W and the Jacobian of the map

g = (g(c1(9)), g(c2(9)), ..., g(c2a—2(9)))

has maximal rank at every g € W.

2.1 Proof of Proposition 2.2

Proof of Proposition 2.2. Arguing by contradiction, assume that the assertion of the
proposition is false. Then there exist complex numbers A{ ,1<i<v,0<j<u,
not all equal to zero, such that all partial derivatives of the map

v opui—1

Gy =Y. Al

i=0 j=0
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are equal to zero at g = f. This means that for any holomorphic curve f; in Rat,,
passing through f att = 0, the map G(¢t) = G(f;) satisfies G’'(0) = 0. Let us write

Zfzoak(t)zk _ P, (2)
S bk 0@

Ji(@) =

where a (1), b (¢) are holomorphic in a neighborhood of 0 and Py and Q are co-
prime polynomials.For1 <i <v,j =0,..., u; — ldefinev; ;(t) = ;i(”(f,).Then

U{ . (0) — Zz:() a,’( (O)Zk QO(Z) - ;1:0 b; (O)Zl PO (Z) v
" 00(2)? ’

=c;

where we use fUD (g (f) = FUTD(c;) = 0. So

0=G'(0)=)_ Alv, ;(0)

ij

)
_v i [ Eimo a0 Qo) — YLy b (0) Po() -
=24 00(2)? @b
bl I=C;i
We claim that for any polynomial 7', we have
)
Z A <LZ)2) ' =0. (2.2)
Y Qo(2) —

To see this, first notice that since To(z) = [[;_;(z — ¢;)* has a zero at z = ¢; of
multiplicity w;, the Eq. (2.2) holds for T = Ty and T = ToU, where U is an arbitrary
polynomial. Since deg(7y) = 2d — 2 and any polynomial can be written as ToU + T
where deg(T) < 2d — 2 it therefore suffices to prove (2.2) in the case that deg(7T") <
2d — 2. For such a polynomial 7', we can find polynomials R, S of degree at most
d — 1suchthat T = RQy — S Py, since Py and Qy are coprime and one of them has
degree d. Choosing ay, b; suitably such that R(z) = Y, a;(0)zF and § = 3", b;(0)Z
and applying (2.1), we obtain (2.2). ‘

We shall now deduce from this equation that A = 0 for all i, j and thus obtain a
contradiction. Indeed, (2.2) implies that for any polynomial V, we have

> AlvP(e) =o.

iJj

Fix I <ip <v,1 < jo < u;,, take
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V@) =[] —)" @ —ciy)”.
iio

Then VY0 (¢;)) # 0 and VY (¢;) = 0 for any other (i, j). Therefore Alj(? = 0. The
proof is completed. g

3 Transversality Results for Rational Maps

Throughout this section we again consider a map f in the space Rat! of rational
maps of degree d, with v distinct critical points ¢y, ¢, .. ., ¢, with multiplicities
w= (@1, 2, ..., py) where > ., ; = 2d — 2. For g in a small neighborhood of
fin RatZ , the critical points ¢ (g), c2(9), . . ., ¢, (g) depends holomorphically on g.

We are interested in the smoothness of sets defined by a set of critical relations of
the form g™ (¢c; (9)) = ¢"(c;(g)). A particular case of our main result in this direction
is the following:

Theorem 3.1 Let f € Rat"f and assume that there exists 1 <i,j <vandm > 0
so that f™(c¢;) = c;. Then the equation

9" (ci(9) = ¢;(9)

defines an embedded submanifold of Rat‘; of codimension one near f.

In order to state a more general result, we have to prepare some terminology. Let
us say that a quadruple (i, j; m, n) is a (candidate) critical relation if 1 < i, j <wv,
and m, n are non-negative integer with m 4+ n > 0. We say that this critical relation
is realized by f if f™(ci(f)) = f"(c;(f)).

Given f,let¢ = ¢(f) > 0 be the maximal number of critical points with pairwise
disjoint infinite orbits. Note that this number is well-defined, but that one cannot say
which critical points are ‘free’. For example, if f has three distinct critical points
c1, €2, €3, so that the forward orbits of f(c;) = f(c») and c3 are disjoint and infinite,
then ¢ (f) = 2; of course one could consider ¢y, c3 as the free critical points of f,
but equally well also ¢, c3.

In this section we will show

Theorem 3.2 Assume [ € Ratf; is not a flexible Lattes map. Then there exists a set
F =, jxs me, i), k=1,..., N} with N =v — ¢ (f)

of critical relations f™*(c;) = f"*(c; ) which are realised by f, such that the Jaco-
bian of the map

Ry g (0(g™(ci,(9))) — o (g™ (¢, (O 3.1)
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atg = f hasrank N, whenever o is a Mobius transformation forwhicho (f™ (c;,)) €
Ck=1,...,N.

Remark 3.1 The assumption that o (f"(c;)) € C is made to ensure that (3.1) is
holomorphic near f. The kernel of the Jacobian of R% at f, hence its rank, does not
depend on o, as long as o (f™(c;)) # oo forall k =1, ..., N. Indeed, a tangent
vector of Rat!; at f belongs to the kernel if and only if it has the same image under the
tangent map of the maps g — (g"*(c;, (9)))11?,:1 and g — (g™ (c;, (g))),’:’=1 atg=f
(both are holomorphic maps from a neighborhood of f in Rat/ into @N).

In particular, to prove Theorem 3.2, we can and will assume that the critical obits
of f avoid co and only prove that Rx = Rid has rank N at g = f. Indeed, we can
always choose zg (arbltranly close to 00) Wthh avoids the critical orbits of f. Put
0(2) = z0z/(z0 — z) and f =o0ofoo —!. Then oo avoids the critical orbits of f
Since R%(g9) = R’d(a o goo~!), once we prove that the Jacobian of g > R4 '7(9)
has rank N at g = f , it follows that the Jacobian of R% has rank N at g = f.

Remark 3.2 There are several ways of assigning a set of critical relations F to f. As
we will prove in Sect. 4.2, for any set of critical relations which is full in the sense
of Definition 3.6, Theorem 3.2 holds.

Remark 3.3 A flexible Lattés map is by definition a rational map that is conformally
conjugate to a map of the form L /~: T /~— T /~,where T = C/(Z & yZ),y € H
(where H is the upper-half plane), ~ is the equivalence relation on C defined by
z~—zand L: C — Cisofthe form L(z) = az + b witha € Zand2b € Z & yZ,
see [27]. Such maps can be of two types: either each critical point is mapped in two
iterates into a repelling fixed point or in one iterate into a repelling periodic point of
period two, see [27].

Remark 3.4 Theorem 3.2 and the implicit function theorem, imply that manifolds
defined by critical relations corresponding to disjoint subsets 7', " of F are smooth
and transversal to one another.

For completeness we prove the following corollary of Theorem 3.2:

Corollary 3.5 If each critical point c; is eventually mapped to a repelling periodic
point p; with f™ (¢c;) = p; and f/(c;) ¢ {c1,...,co)forall j =1, ..., m; then the
Jacobian of

Raty 5 g = {o (4" (ci(9))) — o (i@} (3.2)

has maximal rank at g = f, where o is a Mobius transformation with o (p;) # 00
foralli.

Proof For the same reason as explained in Remark 3.1, we only need to consider the
case where oo avoids the critical orbits and o = id. Let R denote the map in (3.2).
The corollary follows from the following claim by Theorem 3.2.

Claim. If f; is a holomorphic curve in Rat/ passing through f atz = 0 which
represents a vector in the kernel of DR, then for any critical relations (i, j; m, n)
realized by f, we have
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" ei(f)) = [ (c;(f)) = o(t) ast — 0.

Indeed, the claim implies that the kernel of DR is contained in the kernel of
D ;R for any finite collection F of critical relations. By Theorem 3.2, we can
choose F such that DRz has maximal rank. Thus D ;R has maximal rank.

Let us prove the claim. Choose k large enough such thatm + k > m; andn + k >
m;.Since fHk=mi(p;) = fr+*=mi(p;), the periodic points p; and p; have the same
period, denoted by s. Moreover, if p;(t) (resp. p;(t)) denotes the repelling periodic
point of f;’ near p; (resp. p;), then

ftm+k—m[ (pi (l‘)) _ ftn+k—mj (Pj (t))

Since ;" (ci(f;)) — pi(t) = o(t) as t — 0, we have
e () = [ pie) = o(t) as t — 0.

Similarly, we have

S e () = £ (1) = 0@y as 1 — 0.

Therefore,

Fm i () = e (f) = o(t) as t — 0.

Since f™*¥(c;) is not critical for each 0 < k" < k, it follows that £ (c;(f;)) —
1 ci(f)) =o()ast — 0. 0

3.1 How to Associate Critical Relations to a Rational Map

There are several ways to record the (infinitely many) critical relations of a rational
map. In this subsection we will show how one can associate these in an efficient way
so that in particular no critical relation is counted twice.

As above, let ¢y, ¢3, ..., ¢, be the critical points of a rational map in the class
Rat!;. For an arbitrary collection F of critical relations realized by f, let ~ = denote
the smallest equivalence relation in the set X := {(i,m) : 1 <i <v,m > 0} such
that (i, m + k) ~x (j, n + k) for each (i, j; m,n) € F and each k > 0.

So ~# defines the set of critical relations that can be ‘read off” from F. So for
example, if v =4 and F = {(1,2; 1, 1), (1,3; 1, 1)} then (i, 1 +k) ~x (j, 1 + k)
for all i, j € {1,2,3} and all kK > 0, but (i, m) ~x (4,n) for i € {1,2, 3} and all
m,n > 0.

Roughly speaking, we say that a collection F of critical relations is full if it
‘essentially’ explains all critical relations of f and F is minimally full if it does not
contain redundant critical relations. More precisely,
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Fig.1 The orbit diagram of amap with £ (f) = 3 and f2(c1) = f(c2), f(c1) = f*(c3), f3(cy) =
FA(es) = c, flc7) = f4(cs), f(cg) = f(co). Each of the collections {(2, 1; 1,2), (3, 1; 4, 1),
4,6:3,0), (5,4:4,3),(8,7:4,1),(9,8: 1, 1)}, {(2,1;1,2),(3,1;4,1), (4,6;3,0), (5,6;4,0),
9,7;4,1),9,8 1,1} and {(2,1;2,3),(3,1:5,2), (4, 6:3,0), (5,6:4,0), (9,7; 4, 1), (9, 8
2,2)} is minimally full

Definition 3.6 We say that a collection F of critical relations realized by f is full
if for any critical relation (i, j; m, n) realised by f,i.e. whenever f™"(c;) = f"(c;),
there exists k > 0 such that (i, m + k) ~# (j, n + k) and such that f"**(¢;) =
f ") ¢ e, ..., c0) foreach0 < k' < k.

Note that any full collection contains at least v — ¢ (f) relations. A full collection
F is called minimally full if #F = v — ¢(f) (Fig. 1).

If F is minimally full then in particular there exists no 1 <ij,ip, - -, iy <,
k > 2, such that

(ilviZ; 17 1)3 (i25i3; 17 1)7 s (ik’il; 17 1) e F. (33)

We refer to the last property as the non-cyclic condition.

So if f has critical points cy, ..., cs with critical relations f*(c;) = f*(c;) =
f*(c3) for all k > 1 and there are no other critical relations, then ¢ (f) = 2 and

Fi={121,1),(,3: 1, D} butalso 7, = {(1,2; 2,2), (1, 3; 3, 3)}

are minimally full collections.

Note that if F is minimally full and (i, j; m, n) € F then (j, i; n, m) ¢ F. Later
on, we will define a convenient choice for a minimally full collection F, see
Definition 4.2 and in Lemma 4.4 we will show that such a choice can always be
made.

3.2 An Even More General Theorem

Let g be a rational map with critical points c;(g), ..., c,(g). Associate to each
(i, j; m, n) the following rational map
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n

’ DTG (@) = D (g (e (9)
O jma@ =2 z— g (ci(g)) 2 72— g*(cj(g))

r=1 s=1

when g"(ci(9)), g°(c;j(g)) # ooforalll <r <m,1 <s < n.(Convention: Form =
0 or n = 0, the corresponding sum is understood as 0.)

Given a meromorphic quadratic differential Q = ¢(z)dz?, define its push-forward
as f.Q = q(z)dz?, where

~ q(w)
= Y ——.
wef1(2) frwy?

It is not difficult to check that f, Q is again a meromorphic quadratic differential.
The assignment Q +— f, Q is often called the Thurston operator, see [14, 23], and
was used in Thurston’s rigidity theorem, see [6]. M. Tsujii was probably the first to
use quadratic differentials in the context of transversality, see [26, 32, 33], but see
also [2, 8, 9, 17, 18, 20, 22].

Theorem 3.2 will follow from

Theorem 3.3 Assume that the critical orbits of f € Rat'; avoid co. Let F be a finite
set of critical relations (c;,, cj,, mg,ny), k =1,2,..., N, which are realized by f
and which satisfies the non-cyclic condition (3.3). If the Jacobian of the map

Rat) > g {g™(ci,(9)) — ¢" (¢j (9} (3.4

at g = f has rank less than N, then there exist complex numbers ay, ay, - - - , ay,
such that

hd for some k’ (mkv nk) 75 (11 1) and Ay 75 0;
e fi(q(z2)dz?) = q(2)dz?* where

q@= Y @0l .. .@. (3.5)
1<k<N
(my,ni)#(1,1)

If in addition f is not a flexible Lattés example, then q(z) = 0.

Remark 3.7 If f has2d — 2 distinct critical values, then the converse statement of the
theorem also holds. Namely, for any finite set F as above, if f,(g(z)dz?) = q(z)dz>,
then the Jacobian of the map (3.1) has rank less than N.

Remark 3.8 Take f € Rat! and a manifold S passing through f of dimension p,
that is transverse to the orbit O (f) of f under Mobius conjugacies. Assume that the
map defined in (3.1) has maximal rank. Then the restriction of this map to S also has
maximal rank. This holds because the value of the map (3.1) is constant on O(f).
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4 Theorems 3.1-3.2 Follow from Theorem 3.3

4.1 Proof of Theorem 3.1

If f™(c;) =c; then f is not a Lattés example. We may assume without loss of
generality that co avoids the critical orbits of f so that Theorem 3.3 applies. It is

clear that X
Df™m= C; 1
Q{j,mO(Z)ZMJr...JF—m
z— f(c) z— f"™(ci)
has a pole at ¢;, so it is not identically zero and thus the conclusion follows from the
last sentence of Theorem 3.3. (]

4.2 An Improved Way to Organise Critical Relations
and the Proof of Theorem 3.2

In general, one can associate several full collections F to f each giving rise to a map
‘R% as in (3.1). Let us first prove, as claimed in Remark 3.2, that any full collection
gives rise to the same rank:

Lemma 4.1 Forany full collections F and F' of critical relations for f, the Jacobian
matrices of Ry and R, at g = f have the same rank.

Proof According to Remark 3.1, we may assume the critical orbits avoid co and
o = id. Consider a holomorphic curve f;, passing through f at r = 0. This curve
represents a vector in the kernel of DR if and only if the derivative of ¢ —
S (ei(f) — fl'(c;(fy)) vanishes att = O foreach (i, j; m, n) € F, and therefore if
andonlyift — f"(ci(f;)) — f/'(c;j(f;)) vanishes att = Oforeach (i, m) ~x (j, n)
where ~ r is the equivalence relation associated to F as defined in the first paragraph
of Sect.3.1.

Assume that (i, j; m,n) is realised by f. Since F is full, there exists k >
0 so that (i,m +k) ~x (j,n+k) and so that Df¥(f™(c;)) = DfF(f"(c;)) #
0. So if f; represents a vector in the kernel of DR then the derivative of
t > (i (f) — f*(c;(f,)) vanishes at £ = 0. Since f™(c;) = f"(c;) and
Df*(f™(c;i)) = Df*(f"(c;)) # 0, this implies that the derivative of > f"
(ci(f) — fl'(c;(f;)) vanishes at t = 0.

On the other hand, if for each (i, j; m, n) which is realised by f the derivative
of t = f"(ci(f1)) — f!"(cj(f;)) vanishes at t = 0, then in particular this holds for
each (i, j;m,n) € F and so the holomorphic curve f; represents a vector in the
kernel of DR £.

It follows that f; represents a vector in the kernel of DR  if and only if for each
(i, j; m, n) which is realised by f the derivative of t = f"(c;(f;)) — f/"(c; (1))
vanishes at t = 0. The last condition is independent of the choice of the full collection
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F. Since both F and F’ are full, the rank-nullity theorem implies that the rank of
the Jacobian matrices are the same. O

We will find it convenient to prove Theorem 3.2 for a conveniently chosen min-
imal collection F, namely one which satisfies the following stronger minimality
assumption.

Definition 4.2 We say that a collection F is proper for f if it is minimally full and
satisfies the following extra properties:

(1) @, j;m,n) e Fimpliesm > 0 and eitheri > jorn =0.1fi = j thenm > n.
(2) if (i, j; m,n) € F then the collection of points f"(c,-),k =1,....m—11s

pairwise disjoint and does not intersect cy, ..., c, nor the forward orbits of
Cly...,Ci—1.

(3) For each 1 <i < v there exists at most one critical relation of the form
@i, j,m,n)eF.

(4) For each 1 < j <v there exists at most one critical relation of the form
@, jim,0) € F;

(5) Foreach 1 < j < v andeachn > 1 there exists at most one critical relation of
the form (i, j; 1,n) € F,

©) If (i, j;m,n) € Fwithm > 1andn > 0,and (k, i; 1,[) € F for some k and [,
thenl < m.

Remark 4.3 1f the collection F is proper then it satisfies the non-cyclic condition
(3.3).

Lemma 4.4 There exists a proper collection of critical relations which are realised
by f.

Proof Foreachi =1, ..., v, inductively define m; > 0 maximal so that f(c;), ...,
f™i~1(c;) are distinct and also distinct from

(fYc)0<k<mj,j=1,....i —1}U{cl,...,c).

(When i = 1 we take this union to be {cy, ..., ¢,}.) If m; is finite, then there are two
possibilities:

(@) f™Mi(c;) = f"i(cj,) forsome 1l < j; <iandsome finiten; withO < n; <m;j.
In this case associate to ¢; the critical relation (7, j;, m;, nj,).

(b) f™M(c;) =c; with1 < j < v and in this case associate to ¢; the critical relation
@i, j,n;,0).

These choices ensure that properties (1) and (2) in the above definition hold. To
take care that properties (3)-(6) hold we also make the following requirement:

If both (a) and (b) hold, then only assign to ¢; the critical relation as in (a). If
(a) holds for several j; < i, then choose the smallest possible j; with n; =1 and if

there is no j; with n; = 1 then simply choose the smallest possible j;. Assign to i
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only the corresponding critical relation. Once we have done this for i then repeat this
construction fori + 1.

In this way we define no new critical relation for each 1 < i < v whose orbit is
infinite and disjoint from forward orbits of ¢y, ..., ¢;—; and from ¢y, ..., c,, buta
unique critical relation for each of the other i’s. Thus we get N = v — ¢(f) critical
relations.

The resulting set of critical relations is realised by f. By construction F is
proper. O

Proof of Theorem 3.2. By Remark 3.1, it is enough to consider the case that o is
the identity and the critical orbits avoid oco. Let F be a proper collection of critical
relations realized by f. Note that if m, n > 1 then Q;.T kom.n(2) 18 equal to

”ilDfm—’(f’(c,-)) Z f” S(f%cj))

4.1
T ey & o)) @D

f _
Qi,j;m,n (Z) -

andifm = n = 1 then ij;m’n (z) = 0. By property (2) of Definition 4.2, (i, j; m, n)
€ Fandm,n > 1 imply

Df"(f(e) # 0. Df" "' (f(c)) #0 42)

and if i # j then
fle). oo [ e flep) o [ ey (4.3)
are all distinct and distinct from ¢y, ..., c¢,. Similarly, if i = j then by properties

(1), (2) of Definition 4.2, m > n and f(c,), oo f™ Yed), e, . . ., ¢y are all distinct.
Hence, if m,n > 1 and i # j then Q, _j:m.n(2) has a non-removable pole in each of
the points from the collection (4.3) and nowhere else. In particular, ¢y, ..., ¢, is not
apole forany Q; j.,u,,(z) whenm, n > 1 (this holds even wheni = j). On the other
hand, Q{ j;m,O(Z) does have a pole at ¢; and only critical relations of this form in F
have a pole at c;.

Suppose that the Jacobian does not have full rank. By Theorem 3.3 this implies

f —
Z Ak Qikqj%mky”k () = 0. 4.4)
1<k<N
(my,ni)#(1,1)

Let Fy be the set of relations (i, ji; my, ng) in F in this sum for which a; # 0 and
with (my, ny) # (1, 1). So (4.4) is equal to the sum over the set Fy. By Theorem 3.3,
Fo consists of at least one critical relation, and obviously the properties stated in
Definition 4.2 are also satisfied for Fy.

Suppose first that there exists a critical relation (i, j; m, 0) € Fy. In this case by
property (4) in Definition 4.2 there existsno i’ # i,m’ > Osothat (i’, j; m’, 0) € Fo.
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It follows from this that (i, j; m, 0) is the only term in the sum (4.4) which leads to
a pole at z = c¢;. So the corresponding coefficient a; = 0, a contradiction.

From now on, letus assume thatforany (i, j; m, n) € Fy,n > 0. Then by property
(1) of Definition 4.2, we have i > j. Because of property (3) of Definition 4.2 we
can rearrange, if necessary, the critical relations in Fy so that they are of the form
@k, jis mg, ng), 1 <k < No, with i} <ip <--- <iy,. If my =1 holds forall 1 <
k < Ny, then by property (5), (jx,nx) are pairwise distinct. Since Qf has

ik, Jis Long
poles precisely at the points f(c;,), fz(cjk), cee, f”k’l(cjk), Zgil ay Qifwk;mk’nk has
a pole, a contradiction! So let us assume that there is a maximal N; < Ny such that
my, > 2. By property (6) of Definition 4.2, for each Ny > k > Nj, either ji # iy,
or ji =iy, and ny < my,. Together with property (2) of Definition 4.2, this implies
that Qf = Qf does not have a pole at £ ~! (ciy, ). Foreach k < Nj,

i, jksmi,ng ik, Jis Long
since iy, > ix > ji, by property (2) of Definition 4.2, Q,{ e
at f™~!(cy,) either. Therefore Z,ivil ai Qifk jemym, Das a pole at fma=ley,), a
contradiction! (I

does not have a pole

5 A Proof of Theorem 3.3

Remark 5.1 A proof of Theorem 3.3 is contained essentially in [20]. We only outline
ithere (and then present another proof). Denote v; () = f(c;(f))forj =1,---,v.
Conjugating f by a Mobius transformation, one can assume that f(oo) = oo,
Df (00) # 0. We label the critical values so that for some 0 < V' < v the following
holds: v;(f) € Cfor1 < j <v'and v;(f) = oo for v’ < j < v. Consider a subset
Ag, C Ratg of maps g such that there exists o (¢g), b(g) € Csothat g(z) = o0(g9)z +
b(g) + O(1/z) as z — oo. By [19], Ay, has a structure of v + 2 dimensional
complex manifold and (0'(g), b(9), v1(9). -~ - , vu(9), Vus1(9) s+, vu(g)™") is
a holomorphic coordinate of g € A, . Proposition 10 of [20] implies that for any
@i, j;m,n),if (i, j; m, n) is realized by f and f"(c;(f)), f"(c;(f)) # oo, then

O jnn @)= 0 1) =
(5.1)

Zv’ 1A= f" )
k=1 u(H—x vy 9=f >

where Q\;’jj:m’n()c)dx2 = f*(Q;fj;m,n(x)dxz). Now Theorem 3.3 can be proved by
repeating the proof of the main result of [20] after replacing Proposition 13 of that
paper by (5.1). Instead of going into more details we give here a direct and short

proof of the theorem.
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5.1 Proof of Theorem 3.3.

Let us first apply Thurston’s pull back argument to obtain a relation of partial deriva-
tives of g = g™ (ci(9)) — ¢g"(c;(g)) with the quadratic differential Q; j;m,,,(z)dzz.
Let L (C) denote the space of all Borel measurable functions u with |||, < 00.
Note that f*u(z) = n(f(2)) f'(z)/f'(z) also belongs to the class L (C).

Lemma 5.2 Given u € L (C) which vanishes in a neighborhood of oo and f (00),
there exists a holomorphic family f; of rational maps of degree d, t € D,, with
fo = f, and such that the following holds: For any (i, j; m, n),

d(f" (ci(f) — f"(c;(f)))
dt -0

1 " 2
- / (= ) Qi jimanldz]” =
T Jc

Proof Assume without loss of generality that ||l < 1. Then for each t € D, there
are qc maps ¢y, ¥, : C — C with complex dilatations 7 and 7 f * i respectively such
that (see e.g. [1])

o 0, (z) =z+o0(), ¥, (z) =z+ o(l) as z — oo foreach t;
e f; defined by f; o ¥, = ¢, o f is a family of rational maps.

Then ¢, and v, depends on ¢ holomorphically [1] and thus 3f; /3 = 0 in the sense
of distribution, which implies that f; depends holomorphically on 7. Let

d n
L) = ﬁf%ﬂ
and L(z) = L£1(z). Then
d d
L(x) + Df(Z)EWt(Z) = Edh(f(z)) (5.2)
and therefore R
L(z) + Df(2)X(z) = X(f(2)), (3.3)

where

L[ n@) < L[ @)

X@=—= [ —=ld¢l’, X@@) = —— | ——=1d¢ .
TJct—z wJc §—2z

The latter formulas come from the following fact. Let v € L (C) have a compact

support, ||[V]l < 1 and k, (|t| < 1) is the (unique) qc map with complex dilatation

tv such that i,(z) = z 4+ o(1) as z = oo. Then

@, 1@
o= [ F e 5.4)
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The formula (5.4) is well-known and follows for example from the formula (6) in

the proof of Theorem 1 of [1], Chap.V (noting that a different normalisation for A,

is chosen there) or by differentiating the formula on the 2nd line of page 25 in [4].
Forany h € {1, 2, ..., v} and non-negative integer /, define

!
Si(en) = ) DT (f () X (" (cn)

r=1
and

1
Sien) =) DF (T e X (f" (en))

r=1

It suffices to show that for any /, & as above,

df! (en(£))

T — X(f'(en)). (5.5)

t=0

Si(en) — Si(en) =

If I = 0, then the left hand is equal to zero, and the right hand side is also equal to
zero, since X (cp) = %hzo and ¢, (f;) = ¥, (cp). Forl > 1, we use (5.3):

1
Si(en) = ) D (f ()X (" (cn)
r=1

1 !
=Y DfTU L ew) + Y DFTH T e X (T (en)
r=1 r=2
-1 N
= Li(ew) + Y DI (e X (f(en)

r=1

= Li(en) + Si(en) — X(f'(en)).

Since

df!(en(f)
dt

_dfl(cn)
=0 dt

s

t=0

Equation (5.5) follows. (]

Proof (Proof of Theorem 3.3) Assume that the Jacobian matrix has rank less than N.
Then there exist complex numbers aj, a,, - - - , ay such that all the partial derivatives

of the map
N

g Z a (9™ (ci (9)) — g™ (¢ (9))) (5.6)

k=1
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is equal to 0 at g = f. Since JF satisfies the non-cyclic condition (3.3), by
Theorem 2.1, there exists k such that (my, n;) # (1, 1) and a; # 0.

Given u € Ly (C) which vanishes in a neighbourhood of oo and f(00), let f; be
given by the previous lemma. Then foreach k = 1,2, ..., N, we have

d(f"(ci(f) — f'(c;(f)))
dt —0

1 *
__/(M - f I‘L)Qik,jk;mk,nk|dzlz =
T Jc
Thus for g defined as in (3.5), and §(2)dz?> = f.(q(z)dz?), we have

/ w@G — ldzP
C

- /C (n— frwq@ldzl?
N my . _ g,
3 AU = )

k=1 dt 1=0

:0’

where the last equality follows from the argument in the previous paragraph. It
follows that g = q.

Assume now that f is not a flexible Lattés example. Let us prove that g = 0. To
this end, first assume f (00) 7# 0o. Let ¢; be the local inverse diffeomorphic branches
of f near co. Then § = ¢ implies that

d
1) =) q(@i(2)¢] )’

holds near oco. Since ¢;(00) € C (and is not equal to one of the finitely many poles
ofg)and ¢{(z) = O (1/7?) as 7 — o0, it follows from the displayed formula g(z) =
O(1/z*) atinfinity. Thus ¢ (z)dz? is an integrable meromorphic quadratic differential.
By a well-known argument, this implies that ¢ (z) = 0, see for example Sect.3.5 of
[6, 24].

If f(00) = oo, then we can find a sequence of Mdbius transformations oy, [ =
1,2,..., converging to the identity uniformly, such that f;; =070 f o O’l_l satisfies
fay(00) # oo and oo avoids the critical orbits of fy). Putting gg) = 07 0 g o 0, ', by
(5.6), all partial derivatives of the map

g Zak <01 (9(1) (i, (9(1)))) —o " (g?f) (ci (9(1)))))

are equal to zero at g = f, hence all partial derivatives of the map
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N

90 Y ey (@ @ @) — g o)

=1 %0

are equal to zero at g = f{;). Since f, is not a Lattés example, as above we obtain
ax

o N fa _ P
that gg) == ) ink’jk;ka = 0. By continuity we conclude that
q=0. (]

6 The Polynomial Case

The previous theorems also hold in the space of polynomials of degree d. In

that case, let g = (i1, ..., uy) so that Y/, p; =d —1 and let Pols be the

set of maps with critical points cy, ..., ¢, € C of orders uy, ..., u,. The space

Pol’ is clearly an embedded submanifold of Ratdﬂ of codimension one, where
= (U1, u2, -+, py, d — 1),

Theorem 6.1 Assume f € Pol (’; . Then there exists a set
]:={(lk"]kamk’nk)vk= ls’N}WlthN= U_é‘(f)

of critical relations f™*(c;) = f"*(cj,) which are realised by f, such that the Jaco-
bian of the map
Poljf > g+ (9" (ci,(9)) — 9" (¢ (9L ©.1)

at g = f has rank N.

Proof Let ¢,y = oco. For maps g in Ratg close to f, let ¢;(g) denote the crit-
ical point of ¢ close to ¢;, 1 <i <v 4 1. By Theorem 3.2, there is a set F =
{G, Ji; mi, nk)}N+1 of critical relations of f so that the Jacobian of the map

R% :Rat} 5 g > (0(9™ (ci,(9))) — 0 (g™ (c;, (9N

hasrank N 4 1atg = f, where o is a Mobius tansformation such thato ( f"™* (c;,)) #
oo for all k. Since F is full, there is ko such that (ix,, jk,; Mk, nk,) = (v + 1, v +
1;1,0) (or (v + 1, v + 1; 0, 1)). Assume without loss of generality ko = N + 1. Let
F = {(g, jx; mg,ng) 1 1 <k <v}and let R denote the map defined by (6.1). Note
that the kernel of DR is contained in the kernel of D fR”f_, so its dimension is at

most dim(Rat’;‘) —(N+1)= dim(Polfl‘) — N.Thus the rank of DR is at least N.
The rank is not more than N, so it is equal to N. O
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1 Introduction

According to Sullivan, a space £ of unimodal maps with the same combinatorics
(modulo smooth conjugacy) should be treated as an infinite-dimensional Teich-
miiller space. This is a basic idea in Sullivan’s approach to the Renormalization
Conjecture [14, 15]. One of its principle ingredients is to supply £ with the Teich-
miiller metric. To have such a metric one has to know, first of all, that all maps of
& are quasi-symmetrically conjugate. This was proved in [6, 7] for some classes of
non-renormalizable maps (when the critical point is not too recurrent). Here we con-
sider a space of non-renormalizable unimodal maps with in a sense fastest possible
recurrence of the critical point (called Fibonacci). Our goal is to supply this space
with the Teichmiiller metric.

Let f be a unimodal map with critical point c. A Fibonacci unimodal map f
can be defined by saying that the closest returns of the critical point occur at the
Fibonacci moments. This combinatorial type was suggested by Hofbauer and Keller
[5] as extremal among non-renormalizable types (see [11] for more detailed history).
Its combinatorial, geometric and measure-theoretical properties were studied in [11]
under the assumption that f is quasi-quadratic, i.e., it is C?>-smooth and has the
quadratic-like critical point (see also [8]). We will assume this regularity throughout
the paper.

A principal object of our combinatorial considerations is a nested sequence of
intervals I° D I' O ... obtained subsequently by pulling back along the critical orbit.
Our proof is based upon the geometric result of [11] which says that the scaling fac-
tors i, = |1"|/|I"~"| characterizing the geometry of the Fibonacci map decay expo-
nentially. It follows that appropriately defined renormalizations R” f are becoming
purely quadratic near the critical point. This reduces the renormalization process to
compositions of quadratic maps.

The next idea is to consider a quasi-conformal continuation of f to the complex
plane which is asymptotically conformal on the real line.' Then we consider complex
generalized renormalizations, and prove that the renormalized maps are becoming
purely quadratic in the complex plane as well. Hence the geometric patterns of renor-
malized maps are subsequently obtained by the Thurston pull-back transformation
(up to an exponentially small error) in an appropriate Teichmiiller space. It follows
that these patterns converge (after rescaling) to the corresponding pattern of the
quadratic map p : z +> z?> — 1. In particular, the shape of the complex puzzle-pieces
converges to the Julia set of p, see Fig. 1 (this is perhaps the most surprising outcome
of our analysis).

To each renormalization we then associate a pair of pants O, by removing from
the critical puzzle-piece of level n two puzzle-pieces of the next level. Using the
same type of argument as above, we show that the pairs of pants Q" and Q" stay on
bounded distance. This yields the quasi-conformal equivalence of the critical sets of

fandf.

IThis idea was also used in [7] with a reference to D. Sullivan’s lectures.
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Fig. 1 A Fibonacci puzzle-piece (made by S. Sutherland and B. Yarrington)

To complete the construction of the quasi-symmetric conjugacy, we apply a
Sullivan-like pull-back argument. However, this is not quite straightforward since
there is no dilatation control away from the real line.

In the last section we prove that two Fibonacci maps that stay on zero Teichmiiller
distance are smoothly conjugate. So this pseudo-metric is non-degenerate on the
smooth equivalence classes.

We will use abbreviations qc and gs for “quasi-conformal” and “quasi-symmetric”
respectively.

Remark 1 The dilatation of the conjugacy we construct depends only on the geom-
etry of the maps in question.

Remark 2 1t is proved in [12] that, as in the Fibonacci case, the scaling factors of
any non-renormalizable quasi-quadratic map decay exponentially. This allows us to
generalize the above result to all combinatorial classes of quasi-quadratic maps. The
exposition of this result is more technical, and it will be the subject of forthcoming
notes.” Note that for polynomial-like maps this result follows from the Yoccoz The-
orem (see [4] for the exposition of this theorem, and [10] for an alternative proof
based upon a pull-back argument).

Remark 3 In this paper we concentrate on the dynamical constructions, and do not
touch the issue of the sharp regularity for which the theory can be built up. Compare
[2] and [15].

2See [28], §12.2.
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2 Asymptotically Conformal Continuation
and Generalized Renormalization

Real renormalization (see [11]). Given a Fibonacci map f, there is a sequence of
maps
GV -7 n=1,2,..

constructed in the following way. Let I° = I be a c-symmetric interval® satisfying
the property f"(31°) N 1° =@,n = 1,2, ....Now given I"~' = IJ~' 5 ¢ by induc-
tion, let us consider the first return map f, : UI} — "=1 Its domain of definition
generally consists of infinitely many intervals /7 C 1 "=1 However, for the Fibonacci
map, only two of them, I" = I > c (the “central” one) and I{', intersect the critical
set w(c). Let us define g, as the restriction of f, to these two intervals. These maps
satisfy the following properties:
@ gn: I — 16'_1 is a diffeomorphism and g, (3}) C 8[5‘_1;
(ii) g, Iy D Iy (high return);
(iii) gnc € I} and g2c € 1.

Byrescaling 1" to some definite size T (e.g., T = [0, 1]), we obtain the generalized
n-fold renormalization

R'f:TyUT' > T

of f. The asymptotic properties of the renormalized maps express the small scale
information about the critical set w(c).
Let us now introduce the principle geometric parameters, the scaling factors

T
Ty

n

The main result of [11] says that they decrease to O exponentially at the following

rate:
1 n/3
n~ — . 1
Hp ~a (2) (D

It follows by the Koebe principle that up to an exponentially small error the restriction
of R" f to the central interval T is purely quadratic, while the restriction to 77" is
linear. This is all we need to know for the comprehensive study of f.

Asymptotically conformal continuation. Let us represent f as & o ¢ where ¢ (z) =
(z — ¢)? is the quadratic map, while & is a C>-diffeomorphism of appropriate inter-
vals. Let us continue / to a diffeomorphism of a bounded C? norm on the whole real
line, and then consider the Ahlfors-Beurling continuation of % to the complex plane:

3We assume for simplicity that f is even.
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R 1 x+y 1 x+y X
hix +iy) = Z/ h(t)dt+;(f h(t)dt—/ h(t)dt).

This is clearly a C 2_map, and one can check by calculation that dh = 0 on the real
line. Hence dh/dh = O(|y|) as |y| — 0. This provides us with a C? extension of f
which is asymptotically conformal on the real line in the sense that

w@ =af/af =0y )

as well. In what follows we denote the extended /# and f by the same letters.

Complex pull-back. Given aninterval I C Rand 6 € (0, 7/2), let Dy (I) denote the
domain bounded by the union of two R-symmetric arcs of the circles which touch
the real line at angle 6. In particular, D,/»(I) = D(I) is the Euclidean disk with
diameter /. Observe that / is a hyperbolic geodesic in the domain C . (R \ [) and
Dy (1) is its hyperbolic neighborhood of radius depending only on 6.

We say than an interval / is obtained from the I by a-scaling if these intervals
are cocentric and |I| = (1 + a)|I|.

Lemma 1l Let o < 1, n be sufficiently big. Let us consider the a-scaled interval
1" D 1" Let A= D(I"), and A" be the pull-back of A by g, [I"*Y. Then A' C
D"y where It is obtained from 1" by B-scaling with 8 = a + O (i)

Proof Let us skip the index n in the notations of objects of level n and mark the
objects of level n + 1 with a prime. Set g|I’ = f7, and let us consider the pull-back
1,14, ..,1_, =1"of I along the orbit { f*c}/_. Then

P
D 1l = 0. 3)
k=0

Since the map f* : I_; — I has the Koebe space covering I"~!, the pull-back I
of I along the same orbit also has the total length O (u).

Let us now take the disk A and pull it back along the same orbit. We obtain
a sequence of pieces A_; based upon the intervals /_;. Assume by induction that
A C Dg(k)(i_[), [=0,..,k< P, with

-1

=a+00 I )

j=0

Represent f as h o ¢ and carry out the next pull-back in two steps: first by the
diffeomorphism / and then by the quadratic map ¢. Let h~'I_; = L_. If we rescale
the intervals I:k and L_; to the unit size, the C!-distance from the rescaled map
H™':[0,1] = [0, 1] toid is O(|I_k]). It follows that

h' Ak C Dos1y(L—x) (5
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with 6(k + 1) as in (4).

Consider now two cases. Let first k < p — 1. Then ¢ : f_(k+|) — L_ is a dif-
feomorphism and by the Schwarz lemma (see the above hyperbolic interpretation of
the Dy (1))

A1) € Doty (I—ges)-

Let us now carry out the last pull-back corresponding to k = p — 1. Then
@lI_+1) = ¢|I’ is the quadratic folding map into L = L_(,_y. Moreover, what
is important is that ¢I" covers at least half (up to an error of order O(u)) of the
interval L (It follows from the high return property of g and the estimate of its non-
linearity). Hence we can find an interval K O L centered at the critical value f(c)
such that

Dop—1y(L) C D(K)

and
K| =2[¢I'|(1 4+ O()).

Two last equations together with (4) yield the required. O

Let us now take the Euclidean disk A = D(I™) and pull it back by the maps g,
continued to the complex plane. Denote the corresponding domains by A and A7,
n>m.

Corollary 2 If m is sufficiently big then the diamA'; is commensurable with the
diaml’.
J

Proof Applying the previous lemma n —m times, we see that diam A’} is

|1 j’-’| (l + O(Zzzm uk)>. Since p; decay exponentially, we are done. O

3 Thurston’s Transformation and the Shape
of the Complex Puzzle-Pieces

Let us consider the quadratic map p :z+ z> —1 and mark on C a set A of
three points —1,0, and a = (1 + NG /2. The first two form a cycle, while the
last one is fixed. Taking a conformal structure v on the thrice punctured plane
S = C A, we can pull it back by p. This induces a “Thurston’s transformation”
L of the Teichmiiller space T of thrice punctured planes into itself (compare [1] or
[13]). The main property of L is that it strictly contracts the Teichmiiller metric, and
hence all trajectories L"t exponentially converge to the single fixed point 7y € Ty
represented by the standard conformal structure.

Let us consider the involution p : Ts — Ts induced by the reflection of the con-
formal structure about the real line. This involution commutes with L, and so the
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subspace T of R-symmetric structures is L-invariant. This subspace can be iden-
tified with the set of triples on the real line up to affine transformations. We can
normalize the triples, say, as follows: {y, 0, a}, y < 0. To pull back such a triple, we
should take the quadratic polynomial p, which fixes a and carries O to y, and take
the negative preimage of 0.

Let us rescale both intervals " and I"~! to the size T = [—a, a] with a as above.
LetG, : T — T betherescaled g, : I" — I"~! (observe that this is a non-dynamical
procedure, compare [9]). Let us select the orientation in such a way that O is the
minimum point of G,,.

Lemma 3 The maps G, converge to the polynomial p(z) = z> — 1 in C' norm on
compact subsets of C.

Proof If we pull back the Euclidean disk A = D(I"), we obtain a sequence of
puzzle-pieces whose diameter is commensurable with their traces on the real line
(Corollary 2). By the Denjoy distortion argument,

Dh'(z) = DR (0)(1 + O(V1in), z € A,

so that i, ! in A is an exponentially small perturbation of a linear map. Rescaling,
we conclude that G, = H, o p, () where H, are diffeomorpisms converging expo-
nentially to id in C' on compact sets, and p, (,) are quadratic polynomials introduced
above.

Let us now consider a sequence 1, € T represented by triples (G,(0), 0, a). It
was shown in [11] that |G, (0)|/a stays away from O and 1. Hence 7,1 = L o Q,,(7,)
where L is the Thurston transformation, while Q,, is exponentially close to id in the
Teichmiiller metric. Since L is strictly contracting, t, must converge to its fixed point
70-

We conclude that G,(0) — —1, hence p,» — p and G, — p. O

Let us consider the following topology on the space K of connected full compact
subsets K of C. Let ¢ : {z:|z] > 1} - C ~ K be the Riemann map normalized
at oo by ¥ (z) ~ gz with ¢ > 0. Then the topology on K is induced by the compact
device open topology on the space of univalent functions.*

Let us now consider the complex pieces A" based upon the intervals /”. Here A"
is the g,-pull-back of A"~!. Rescaling of I" to T leads to the corresponding rescaled
pieces P,.

Lemma 4 The pieces P, converge to the filled-in Julia set of p(z) = z> — 1.

Proof The piece P, is the G,-pull-back of P,_;. By Lemma 1, diam P, is bounded.
Hence G,|P, is an exponentially small perturbation of p which yields the
desired. (Il

“It is called the Carathéodory topology.
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4 Qc Conjugacy on the Critical Sets

Let us consider the complex renormalizations of f,
F,=R'f:VjUV'— P",

where V" are the rescaled puzzle-pieces based upon the intervals 7. We use the
same letters for the complex extensions of different maps. In particular, let G, :
P" — P"! be the rescaled g, : A" — A""! (see’ Fig. 2).

Let us parametrize smoothly the boundary of the piece P°, y : T — aP°.
This parametrization can be naturally lifted to the parametrization y; : T — P!,
namely G| o y; = y(z?), then to the parametrization of d P? etc. We refer to these
parametrizations the boundary markings.

Let us also consider another Fibonacci map f whose data will be labeled by tilde.
The Teichmiiller distance between two marked puzzle-pieces is the best dilatation of

gc maps between the pieces respecting the boundary marking.

Lemma 5 The marked puzzle-pieces P" and P" stay bounded Teichmiiller distance
apart.

Proof Letushavea K-qcmap H,_; : P"~' — P"~! of the marked pieces respecting
the positions of the critical points and the critical values, that is, H,,_;(0) = 0 and
H,_1(Yu—1) = Pu—1. It can be lifted to the K (1 + O(u,))-qc map h,, : P" — P,
This map respects boundary marking and O-points but it does not respect y -points.
However, it respects these points up to exponentially small error, namely %, (y,) and
¥, are exponentially close.

Indeed, let g, € T} be the G,-preimage of 0. As the length of T}, is exponentially
small, the points g, and y, are exponentially close. Moreover, by Lemma 4 the
distance from these points to the boundary d P" is bounded from below. By the Holder
continuity of qc maps we conclude that %, (g,) and h,(y,) are also exponentially
close. As h,(g,) = qn, the points h,(y,) and y, are exponentially close as well.

As the distance from these points to the boundary 8 P and from 0 is bounded from
below, they are exponentially close with respect to the Poincaré metric of P". Hence
there is a diffeomorphism ¢ : P" — P" with exp small dilatation keeping 3 P" and
0 fixed, and pushing %, (y,) to 9,. Then H, = ¢ o h, is a (K +exp small)-qc map
between the marked puzzle-pieces P, and P, respecting the positions of the critical
points and the critical values.

Proceeding in a such a way we construct uniformly qc maps between P" and
P" on all levels (as the exponentially small addings to dilatation sum up to a finite
value). [l

Let us now consider the pairs of pants Q" = P" ~ (V U V{"), where Vjj = Pt
with the naturally marked boundary.

5 According to our convention, V' on this picture should actually be placed to the left of V.
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n-4

P

13 n

Fig. 2 The Fibonacci scheme

Lemma 6 The pairs of pants Q" and Q" stay bounded Teicmiiller distance apart.

Proof Let us consider a K-qc homeomorphism H,_; : Q"' — Q"' of marked
pairs of pants. It follows from the previous lemma that we can extend these maps
across V;“l. Indeed, the previous lemma provides us with the continuation to VO"*I.

Moreover, it provides us with a map P"~! — P"~! which then can be pulled back
to V/' ~! Letus keep the notation H,_; for this extension.

Let us now consider the pull-back W~  V{'"! of VJ'~! by F,_;. Its boundary
is also naturally marked. By one more pull-back of H,_; we can reconstruct it in
such a way that it will respect this marking. Let us consider the annulus A"~! =
P!\ W"~! with marked boundary.

The annulus L" = P" \. Vj double covers A" under G,. So we can pull H"~!
back toa K-qc map H" : L" — L". Moreover, this map respects the parametrization
of V[, and hence can be restricted to the K-qc map of marked pairs of pants of
level n. O
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Fig. 3 Pairs of pants decomposition

We are prepared to obtain the desired result of this section.

Lemma 7 There is an R-symmetric gc map which conjugates f and f on their
critical sets.

Proof The critical set can be represented as
w(c) =N2, U or,

where Q7 are dynamically constructed disjoint pairs of pants (see Fig. 3). They are
obtained by univalent pull-backs of appropriate central pairs of pants. As these pull-
backs have bounded dilatations, Lemma 6 implies that Q% stay abounded Teichmiiller
distance from Qf’ Gluing together all these pairs of pants, we obtain the desired
result. O

S Pull-Back Argument

Sullivan’s pull-back argument allows us to construct a gc conjugacy between two
polynomial-like maps as long as there is a qc conjugacy on their critical sets. In this
paper we deal with asymptotically conformal maps, so that we need the dilatation
control of pull-backs. Lemma 1 will provide us with such a control along the real
line. However, away from the real line the dilatation can grow, so that we should stop
the construction at an appropriate moment. Let us show how it works. First we need
some extra analysis on the real line.
Let f, : UI} — I"~" be the full return map to the interval /"~".

Lemma 8 Let " = Jy, J_1, ... be any pull-back (finite or infinite) of the interval
I1". Then
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D1kl = 0Gu).

Proof Denote by J the union of the intervals in the pull-back. Let us first assume
that the intervals J_; do not intersect I". Let Ky = Jy, K1, ... be the piece of the
pull-back which belongs to 1", K = [ N I"~! be the union of these intervals. This
is actually the pull-back under the map f,. This map is expanding with a bounded
distortion on the /7! (actually, is very strongly expanding and is almost linear on the
1 j'?). Hence

D IK, = 0(un). 6)

Let us now consider all intervals L; obtained by pulling I"~! back which are maximal
in the sense that they do not belong to another pull-back interval. In other words,
there is an m = m(i) such that f"L; = I""'but f'L; N I"~! = ¢ forl < m. These
intervals are mutually disjoint (and cover almost everything).

Let K; = J N L;. Then f™® maps C; with bounded distortion (actually almost
linearly) onto K. Hence dens(/C;|L;) = O (u,,). Summing up over i we get the claim.

Assume now that there are intervals in /” but there are no ones in /"t!. Let J_;
be the first interval belonging to /". Then for the further pull-backs we can repeat
the same argument on level n instead of n — 1 (taking into account that the Poincaré
lengths of the 77" in I" are O (1,)).

In general, let us divide the pull-back into the pieces J; between the first landing
at I' and the first landing at 7'*!. Let us pull 1! along the corresponding piece. This
pull-back does not intersect 1/*! either, and according to the previous considerations
its total length is O (p;). All the more this is true for the total length of 7.

Hence the total length of J is O <Z u;) = 0(uy). O

I>n
Let us now state the complex version of the above lemma.

Lemma9 Ler Q = D(I"), Q_4, ... be any pull-back of the disk Q along the real
line. Then

Zdiamsz,k = O(un).

Proof Let WV denote the union of the disks in this pull-back. As in the above argument,
let us decompose it into the strings WV, in between levels j and j + 1. Let Q/ be the
first puzzle-piece in the jth string.

On the other hand, let A/ denote the pull-backs of 2 based upon the intervals /.
Then by the Markov property of the whole family of pull-backs, 2/ C A/. Hence
the pull-back W; can be inscribed into the corresponding pull-back D; of the puzzle-
piece A/,

It follows from Lemma 1 that the sum of the diameters of pieces in D; is com-
mensurable with the total length of its trace on the real line. By the previous lemma,
the latter is O (u,), and we are done. [l
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Let us now select a high level n and consider the complex renormalization F, :
Vi U V] — P". Letusre-denote all these objects as F : U(} U Ul1 — U°. As above,
the corresponding objects for another Fibonacci map f will be labeled with the tilde.
The following statement shows that two renormalizations of sufficiently high order
are gc-conjugate.

Proposition 10 There is a gc map U° — U° which conjugates F and F on the real
line.

Proof By Lemma 7, there is a qc map o : U° — U° which conjugates F to F on
the critical sets and on the d(Uj U U}). Let us start to pull it back.

Let U} denote the family of puzzle-pieces of depth n (that is, the components of
F~"U°) which meet the real line. Let us assume by induction that we have already
constructed a qc map h,, : U — U° which conjugates F to F on their critical sets
and on (U& U Ull) ~ int(UU;‘). Then construct A, as the lift of A, to all puzzle-
pieces U7

Since the puzzle-pieces U} shrink to points, the sequence /1, has the continuous
pointwise limit / which conjugates F and F on the real line. Moreover, by (2) and
Lemma 9, the k,, have uniformly bounded dilatations. Hence # is qc. (|

Let us re-denote I" by J = J 0 and let A = D(J). Let us now consider the full
first return map f; to A. Its domain intersects the real line by the union of intervals
J! = I"*".Let Al be the pull-back of A intersecting thereal line by I/, D' = UA!
(see Fig. 4).

The goal of the next three lemmas is to construct a gc map 4 : A — A which
conjugates f,|0D" to f11dD' (as well as fi|w(c) to fi]|w()). This will be the start-

Fig. 4 The initial quasi-disk
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ing data for the pull-back argument. The problem is that the boundary 9D is not
piecewise-smooth.
Given a set U, denote by U the intersection of U with the upper half-plane.

Lemma 11 The topological discs Ali are pairwise disjoint. The set W = (A \ D)™
is a quasi-disk. ‘

Proof The map f,, : A} — A has exponentially small non-linearity. Hence A} isa
minor distorted round disk. On the other hand, the intervals Ji1 and J jl are exponen-
tially small as compared with the gap G;; in between. It follows that the disks A}
and A} are disjoint.

LetI' = o W. It follows from the previous discussion that this curve is rectifiable.
Take two close points z, ¢ € I'. Let § be the shortest path connecting z and ¢ in
I UR (it is “typically” the union of an interval of the real line and two almost circle
arcs), and y be the shortest arc in I connecting z and ¢. Then the length of § is
commensurable with both the length of y and the dist(z, ¢). O

For the further discussion it is convenient to make a more special choice of the
interval J (compare [3, 4, 7]). Namely, let o be the fixed point of f with negative
multiplier o = f'(c). Let Y be the partition of T by « into two intervals. Pulling
this partition back, we obtain partitions J)™ by n-fold preimages of «. Let us call
the elements of this partition the puzzle-pieces of depth n. The element containing
c is called critical. We select J = [B, 8'] as the critical puzzle-piece of sufficiently
high depth N.

Set T =log|o|/log|o].

Letus now start with a qc R-symmetric map H : A — A which carries the critical
set of fi to the critical set of fl and such that

|H(z) — Bl =< |z — BI". (7)

Moreover, let H commute with the symmetry around ¢ induced by f and f.
Pull H back toamap h : D — D. Since the union UJ1 is dense in J, this map can

be continued to a homeomorphism i : J — J. Let also h|0A = H. This defines h
on the topological semi-circle S = dA™. Since S and S are piecewise smooth curves,
we can naturally define the notion of a quasi-symmetric map between them.

Lemma 12 The map h : S — S is quasi-symmetric.

Proof Let us consider an extension H : T — T of H : J — J which carries the
puzzle-pieces of depth N to the corresponding puzzle-pieces, and has the asymptotics
(7) near the boundary points of these puzzle-pieces.

Let K be the expanding Cantor set of points which never land in intJ. Each com-
ponent L of T \ K (a “gap”) is a monotone pull-back of J with bounded distortion.
So we can lift the map H to gs maps on all the gaps L. These maps clearly glue
together to a homeomorphism ¢ : 7 — T which respect the dynamics on the Cantor
sets K and K. Moreover, if we rescale the corresponding gaps L and L to the unit
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size then the rescaled ¢ near the boundary points will have asymptotics (7) uniformly
in L.

Furthermore, it easily follows from the bounded distortion properties of expanding
dynamics that ¢|K can be extended to a s conjugacy v in a neighborhood of K.
This conjugacy must have the same asymtotics (7) on the rescaled gaps (since the
conjugacy near the fixed points has such asymptotics). It follows that ¢ and i are
comparable on the gaps, and hence ¢ is gs on the whole interval.

Observe now that i : J — J is the lift of ¢ by the almost quadratic maps f|J
and f|J. Hence h|J is gs and has asymptotics (7) near the boundary. Since it has the
same asymptotics on the opposite side of 8, 8’ onthe arc S . J,itisqson §. [

Lemma 13 The map h : 9W — W allows a gc extensionto W — W.

Proof Let E be the exterior component of C \ S. By the previous lemma, there is
a qc extension of 4 from S to hg : E — E (which changes the original values of
below the real line).

We can now glue h : Dt — D+ with hg to a gc map h, : C~ W — C~ W
(since they agree on the real line). Since W is a quasi-disk (by Lemma 11), &, can
be reflected to the interior of W, and this is a desired extension. O

Corollary 14 There is an R-symmetric gc map h : A — A which conjugates f to
1 on the critical sets and on the boundary of D.

Proof Lemma 13 gives us a desired qc extension of the original 42 from D U dA
to A. O

Now we are ready to prove the main result.
Theorem I Any two Fibonacci quasi-quadratic maps are qc conjugate.

Proof Starting with the qc map 4 given by Corollary 14, we can go through the
pull-back argument in the same way as in Proposition 10. This provides us with a
gs conjugacy between the return maps f; and f] Then we can spread it around the
whole interval T as in the proof of Lemma 12. O

6 Teichmiiller Metric

Let K denote the dilatation of a qc map 4. Given two Fibonacci maps f and g
and the gs conjugacy between them, the Teichmiiller pseudo-distance disty (f, g) is
defined as the infimum of log K, for all qc extensions of 4.

Theorem I1 Ifdisty (f, g) = O then f and g are smoothly conjugate.®

OThis result was generalized by M. Martens and W. de Melo to arbitrary unimodal maps which are
not infinitely renormalizable [29].



Teichmiiller Space of Fibonacci Maps 235

Proof Our first step is the same as Sullivan’s [14]: If dist7 (f, g) = O then the mul-
tipliers of the corresponding periodic orbits of the maps are equal. However, as we
do not have yet a proper thermodynamical formalism for unimodal maps, we will
proceed by a concrete geometric analysis.

The next observation is that the parameter a in (1) must be the same for f and
g. Indeed, it can be explicitly expressed via the multipliers of the fixed points of the
return maps g, : 1" — I"~! (since the g, are asymptotically quadratic). By [11] this
already yields the smoothness of the conjugacy on the critical sets.

Letus now take apointx € I" ~. I"~! and push it forward by iterates of g, until the
firstmomentitlandsin /" (if any), then apply the iterates of g, until the first moment
it lands in I"*!, etc. This provides us with a nested sequence of intervals around x
whose lengths can be expressed (up to a bounded error) through the scaling factors
and the multipliers of appropriate periodic points (by shadowing). This implies that
h is Lipschitz continuous. Moreover, when we approach the critical point, then the
errors in the above argument exponentially decrease. Hence £ is smooth at the critical
point.

Given now any pair of intervals / O J, let us show that

'M~M—1‘—0<m) (8)
I " B '

This is enough to prove locally at any point b. By the previous considerations, this
is true at the critical point. Since the critical set w(c) is minimal, this is also true for
any b € w(c).

Letnow b ¢ w(c), and I be a tiny interval around b. Remark that almost all points
x € I eventually return back to 7. Let us take the pull-back of I corresponding to
this return. This provides us with the covering of almost all of 7 by intervals L;. The
distortion of the return map g is O(||) on all L;s. Let o} be the multiplier of the
g-fixed point in L. Then we conclude that

7]
‘|Lk| L Ok 1' o1, €))
and the analogous estimate holds for the second map. Since the corresponding mul-
tipliers of these maps are equal, we obtain (8) with J = L;. Repeating now this
procedure for returns of higher order, we obtain an arbitrarily fine covering of almost
the whole of I by intervals for which (8) hold. This implies (8) for any J C 1.

Let ¢, = 1/2", and let us consider the sequence of functions

h(x + En) B h(x - 6,,)
2¢, '

Pon(x) =



236 M. Lyubich

According to (8) and Lipschitz continuity,
lon (X) = P11 ()| = O (&) (10)

uniformly in x. Hence the p, uniformly converge to the derivative of 4.
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On the Three-Legged Accessibility m
Property et

Jana Rodriguez Hertz and Raiil Ures

Abstract We show that certain types of the three-legged accessibility property of a
partially hyperbolic diffeomorphism imply the existence of a unique minimal set for
one strong foliation and the transitivity of the other one. In case the center dimension
is one, we also give a criterion to obtain three-legged accessibility in a robust way.
‘We show some applications of our results to the time-one map of Anosov flows, skew
products and certain Anosov diffeomorphisms with partially hyperbolic splitting.

Keywords Accessibility - Partial hyperbolicity - Minimal set

1 Introduction

A diffeomorphism f of a closed manifold M is partially hyperbolic if the tangent
bundle T M of M, splits into three invariant sub-bundles: TM = E°* @ E° @ E* such
that all unit vectors v° € E{ (o0 =, ¢, u) with x € M satisfy:

1T fY I < ITe fyell < T fY2l (L1

for some suitable Riemannian metric. The stable bundle E° must also satisfy
ITflzsll <1 and the unstable bundle, |Tf'|g«|| < 1. The bundle E€ is called
center bundle.

It is a well-known fact that the strong bundles, E* and E*, are uniquely integrable
[3, 13]. Thatis, there are invariant strong foliations ‘W* and ‘W* tangent, respectively
to the invariant bundles E* and E* (However, the integrability of E¢ is a more delicate
matter).
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In this paper we will deal with partially hyperbolic diffeomorphisms that satisfy a
certain type of accessibility property. Recall that such a diffeomorphism f satisfies
the accessibility property (we will also say that f is accessible) if any pair of points
can be joined by a curve that is piecewise tangent to either E° or E". We will say
that f has the three-legged accessibility property if in the definition of accessibility
you can choose the curve joining each pair of points consisting of three arcs tangent
to either E¥ or E* and with uniformly bounded length. Moreover, we will say that f
is sus-accessible if it satisfies the three-legged accessibility property and the three-
legged curve of the definition can be chosen, for all pair of points, in such a way that
the first arc is stable, the second unstable and the last one stable. The usu-accessibility
property is defined in a analogous way.

These more restrictive accessibility properties impose some limitations to the
strong foliations of a partially hyperbolic diffeomorphism. Our first result is in this
direction and states the following:

Theorem 1.1 ! Let f € C! be an usu-accessible partially hyperbolic diffeomorphism.
Then,

1) ‘W*" has a unique minimal set.
q
(2) ‘W* is transitive, that is, it has a dense leaf.

The importance of the uniqueness of the minimal sets of “W* lies in the fact that
it imposes important obstructions to the presence of attractors, in fact, under certain
conditions they are unique. We will establish this result in the following theorem.

Theorem 1.2 Let f be a C'* partially hyperbolic diffeomorphism and assume that
W"(f) has a unique minimal set A. If there is an u-Gibbs measure [ supported
on A for which all center Lyapunov exponents are negative then, [ is the unique
u-Gibbs measure for f and, as a consequence, it is SRB.

Before showing some applications of Theorem 1.1 we give some necessary con-
ditions to obtain sus-accessibility.

Theorem 1.3 Let f € C' be an accessible partially hyperbolic diffeomorphism
with one-dimensional center such that W" is minimal. Then, there is an open C'-
neighborhood U of f such that every g € U is usu-accesible.

Of course we have the analogous result if ‘W* is minimal. In fact, in their pioneer
paper about stable ergodicity [11], Grayson, Pugh and Shub showed that the time-one
map ¢ of the geodesic flow of a closed surface of constant negative curvature is both
sus- and usu-accessible. Dolgopyat [8] used this property to get some consequences
about the uniqueness of SRB measures in a neighborhood of ¢. In Sect. 4 we show
that most time-one maps of Anosov flows, including the case of geodesic flows,
are both sus- and usu-accessible. This generalizes Burns, Pugh and Wilkinson [5]

I The authors jointly with Federico Rodriguez Hertz already had a proof of this result more than ten
years ago.



On the Three-Legged Accessibility Property 241

result about the accessibility of Anosov flows. Also, as an application of Theorem
1.1 we obtain a generalization of the main result of Bonatti and Guelman [1] about
the approximation of time-one maps of Anosov flows by Axiom A diffeomorphisms.

We also give some applications to skew products (Sect. 5) and to Anosov diffeo-
morphisms (Sect. 6). In the case of skew products we show that our results can be
applied to an open and dense set of isometric circle extensions of volume-preserving
partially hyperbolic diffeomorphisms. In the case of Anosov diffeomorphisms, we
answer positively the following conjecture of Gogolev, Maimon and Kolgomorov
[10]. Let A be a hyperbolic automorphism of the 3-torus with three real eigenvalues
A1l < 1 < |A2] < [A3].

Conjecture 1.4 For all analytic diffeomorphisms f in a sufficiently small neigh-
borhood of A the strong unstable foliation ‘W"" is transitive, i.e., it has a dense
leaf.

In fact, we get a stronger result. We obtain the transitivity of W** for any 3-
dimensional C' Anosov diffeomorphism f with a partially hyperbolic splitting.

2 Preliminaries

2.1 Partial Hyperbolicity

Definition 2.1 A diffeomorphism f of a closed manifold M is partially hyperbolic
if the tangent bundle T M of M, splits into three invariant sub-bundles: TM = E* @
E¢ @ E" such that all unit vectors v° € EY (0 = s, ¢, u) with x € M satisfy:

1T fY° I < ITe fyEll < I fY2l 2.1)

for some suitable Riemannian metric. The stable bundle E° must also satisfy
ITflzsll <1 and the unstable bundle, |Tf'|g«|| < 1. The bundle E€ is called
center bundle.

We also call E“ = E€ @ E* and E“ = E° @ E°.

It is a well-known fact that the strong bundles, E® and E“, are uniquely integrable
[3, 13]. That is, there are invariant strong foliations ‘W*(f) and W"(f) tangent,
respectively, to the invariant bundles E* and E". (However, the integrability of E€ is
a more delicate matter) In general, we will call ‘W (f) any foliation tangent to E°,
o =s,u,c,cs,cu, whenever it exists and W}’ (x) the leaf of W? ( f) passing through
x. A subset A is o-saturated if C A for every x € A. A closed o-saturated subset
K is minimal it W7 (x) = A for every x € A. We say that a foliation is minimal if
M is a minimal set for it. A foliation is transitive if it has a dense leaf.
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2.2 Skew Products

In this subsection we consider skew products for which the base is a volume-
preserving Anosov diffeomorphism and the fibers are circles (also known as isomet-
ric circle extensions) That means that we have F, : M x S! — M x S! such that
Fy(x,0) = (f(x), Ryx)0) where f: M — M is a C" volume-preserving Anosov
diffeomorphisms, R, is the rotation of angle « and ¢ : M — StisaC” map, r > 2.
These diffeomorphisms are partially hyperbolic, see [3]. Since f is volume preserv-
ing we have that F,, preserves the measure given by the product of the volume of M
and the Lebesgue measure on S' (the Haar measure of S! seen as a Lie group).

The following is proved in [3] (see also Proposition 2.1 in [4]) The center bundle
of F,, is tangent to the circle fibers and the strong stable and strong unstable bundles
have the same dimension as the corresponding bundles of the base Anosov diffeo-
morphism. In particular, it has a center foliation and its leaves are the circle fibers.
F, is dynamically coherent, that means that there are invariant foliations W<’ (F,)
tangent tangent to E°7, o = s, u. Each leaf of ‘W (F,) is the preimage under 7 of a
leaf of W (f),0 =s,u(w : M x S' — M is the projection on the first coordinate)
In particular, any leaf of W<’ (F,) is dense and it is the product of a leaf of W7 (f)
and S' again o = s, u. Each leaf of a strong foliation is is the graph of a C" function
from the corresponding leaf of the corresponding strong foliation of f to S'.

2.3 u-Gibbs Measures

We will only give a very brief introduction to the u-Gibbs measures with the purpose
of doing this paper as self-contained as possible. For a more complete presentation
we refer to [2, 7].

Definition 2.2 Let f bea C!** partially hyperbolic diffeomorphism. An f-invariant
probability measure p is u-Gibbs if it admits conditional measures along local strong
unstable leaves which are absolutely continuous with respect to Lebesgue.

The condition that f is C'** is needed in order to get the absolute continuity of
the strong unstable foliation.

The densities of the conditional measures are bounded away from zero and infinity
and then, the support of a u-Gibbs measure consists of entire strong unstable leaves.
The set of u-Gibbs measures is a convex compact subset of the set of probability
measures.

Recall that an SRB measure is an invariant probability measure such that admits
conditional measures along unstable manifolds which are absolutely continuous with
respect to Lebesgue. Observe the difference with u-Gibbs measures for which these
conditional measures are taken along strong unstable leaves. SRB measures of par-
tially hyperbolic diffeomorphisms are always u-Gibbs measures. In general the con-
verse is not true but if f admits a unique u-Gibbs measure u then, u is SRB (see,
for instance, [2, Theorem 11.16]).
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3 Proofs of the Main Results
3.1 Proof of Theorem 1.1

Proof of (a). Let A, B C M be two closed u-saturated sets, a € A, b € B and K a
bound of the length of the curves given by the definition of usu-accessibility. Let
n € N and y a curve of length less than K joining f~"(a) and f~"(b) consisting of
three arcs y; i = 1, 2, 3 such that y; and y; are tangent to E* and y; is tangent to E*.
Observe that, since A and B are u-saturated, y; C f~"(A) and y3 C f~"(B). On the
one hand, the previous observation gives that f"(y») is an arc joining A and B. On
the other hand, since y; is tangent to E*, we have that the length of " (y») is less than
K A" for some uniform A < 1. Thus, the distance between A and B is less than K A" for
all n € N. This implies that A N B # (J. We have that any pair of closed u-saturated
subsets has nonempty intersection and since the intersection of u-saturated sets is an
u-saturated set we obtain that the family of all closed u-saturated sets satisfies the
FIP. This implies that S = [J{A C M; A is closed and u-saturated} # @. It is not
difficult to see that S is the unique minimal set of “W*. This ends the proof of the
first part of Theorem 1.1. (I

Remark 3.1 Observe that since f is a diffeomorphism and W" is f-invariant we
have that the minimal set given by Theorem 1.1 is f-invariant.

Proof of (b). Let U, V C M be to open sets. It is enough to show that there is a leaf
of W that has nonempty intersection with both U and V.

Takex € U,y € V andn € N. Then, there is curve y of length less than K joining
f"(x)and f"(y) consisting of three arcs y; i = 1, 2, 3 such that y; and y; are tangent
to E* and y, is tangent to E°. Since y; and y; are tangent to E* we have that the
length of f~"(y;) i =1, 3 is less than KA" for for some uniform A < 1. Observe
that x and y are extreme points of the arcs f~"(y;) and f~"(y3) respectively and
the other two extremes are in the same stable leaf. Since KA" — 0 we have that
for n large enough f~"(y;) C U and f~"(y3) C V. Then, there is a stable leaf
intersecting simultaneously U and V. This finishes the proof of the second part of
Theorem 1.1. (]

3.2 Proof of Theorem 1.3

In order to proof Theorem 1.3 we need to introduce a new definition. In this subsection
we will assume that dim(E€) = 1.

Definition 3.2 We say that two unstable disks U; and U, are skew iff

(1) There is a dimension dim(E") + 1 disk D containing Us.

(2) U, separates D into two connected components.

(3) U and D define the holonomy map &, : Uy — D as hy(x) = Wi(x) N D fore
small.
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(4) hs(U)) intersects both connected components of D \ U,

Remark 3.3 (1) Being skew is an open condition in the following sense: if we have
two disks U| and Uj close enough to U; and U, they are also skew and this
remains true if U{ and U} are unstable disks of a diffeomorphism g close enough
to f.

(2) If Uy and U, are skew there exist x; € U; i = 1, 2 such that x, € W] (xy).

Proof of Theorem 1.3. It is already known that accessibility implies the existence
of two unstable disks U; i = 1, 2 that are skew (see [6, 16]) Given neighborhoods
Vi of Uj i =1, 2 there exists C > 0 such that W¢ (x) intersect both V| and V;. This
implies that given any pair of points x; € M i = 1, 2, W/ (x;) contains a disk in V; for
i = 1, 2. The continuos dependence of the unstable foliation on the diffeomorphisms
imply that the same is true, with the same constant C, for any g close enough to f
(maybe we have to take V; i = 1,2 a little bit larger) So, the two disks are skew
(see Remark 3.3) and have two points y; i = 1, 2 that are joined by a stable curve of
length less than . The previous considerations imply that y; con be joined to x; by
an unstable arc of length less than C, i = 1, 2. That means that g is usu-accessible
for all g C! close enough to f with K = 2C + ¢ and finishes the proof of the
theorem. (]

3.3 Proof of Theorem 1.2

Proof Let F be a leaf of W*(f). Since A is the unique minimal set of W"( f) we
havethat A C F. Since . is supported on A and all its center Lyapunov exponents are
negative, the absolute continuity of the stable partition implies that F has a positive
Lebesgue measure set of points that are in the basin of w. This clearly implies that
w is the unique u-Gibbs measure for f. O

4 Anosov Flows

In this section we will apply our results to the time-one maps of Anosov flows. On the
one hand, Burns, Pugh and Wilkinson [5] (see also [6]) proved that if ¢ is the time-one
map of a transitive Anosov flow, accessibility is equivalent to the fact of E* & E"
not being integrable. On the other hand, Plante [14] showed that in case E* & E*
is integrable the flow is topologically equivalent to a suspension of a hyperbolic
diffeomorphism. Moreover, in dimension three, joint integrability implies that the
flow is a suspension. These comments lead to the following result.

Theorem 4.1 Let ¢, be a transitive Anosov flow and assume that E° @ E" is not
integrable. Then, there is a C'-neighborhood U of ¢ = ¢, such that the strong
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unstable and the strong stable foliations of any g € U are transitive and have a
unique minimal set.

Proof Since the Anosov flow is transitive and E* @ E* is not integrable we have that
@ is accessible and both strong foliations are minimal. Since ¢ is partially hyperbolic
with one dimensional center we can apply Theorem 1.3 that immediately implies the
thesis. (]

In particular, any g € U can have at most one transitive hyperbolic attractor (in
fact it would be topologically mixing) and one transitive hyperbolic repeller. Then,
we obtain as corollary the following generalization of the main result of [1].

Corollary 4.2 Ifthe time-one map of a transitive Anosov flow ¢, is C'-approximated
by diffeomorphisms having more than one transitive hyperbolic attractor, then E* @
E" is integrable. In particular, ¢, is topologically equivalent to the suspension of a
hyperbolic diffeomorphism. Moreover, if the dimension of the ambient manifold is
three then, ¢; is the suspension of an Anosov diffeomorphisms.

Proof Since an attractor is a compact u-saturated set it necessarily contains the
unique minimal set given by Theorem 4.1. Since transitive hyperbolic attractors
are disjoint ¢ € U can have only one hyperbolic attractor. This proves the
corollary. d

In fact, to obtain the thesis of this corollary the only thing we need is the robustness
of the uniqueness of the minimal set of the strong unstable foliation. Then, the same
proof yields the following theorem.

Theorem 4.3 Let f be a stably usu-accessible partially hyperbolic diffeomorphism.
Then, there is a C' neighborhood U of f such that every g € U has at most one
transitive hyperbolic attractor.

Observe that the uniqueness of the minimal set of ‘W*( f) implies that the tran-
sitive hyperbolic attractor, if it exists, is in fact topologically mixing.

In case the diffeomorphisms are C'** the previous results are consequence of
Theorem 1.2.

5 Skew Products

In this section we consider skew products (also known as isometric extensions)
for which the base is a volume-preserving Anosov diffeomorphism and the fibers
are circles. That means that we have F, : M x S! —- M x S! such that F,(x,0) =
(f(x), Ryx)@) where f : M — M is a C" volume-preserving Anosov diffeomor-
phisms, R, is the rotation of angle o and ¢ : M — S' is a C" map. r > 2. These
diffeomorphisms are partially hyperbolic and their ergodic theory is well known.
Burns and Wilkinson [4] proved the following (in fact they prove a much stronger
result).
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Theorem 5.1 ([4]) The set of accessible isometric S'-extensions of a volume-
preserving Anosov diffeomorphism is open and dense in the C"-topology.

We will show that if a skew product as above satisfies the accessibility property,
both the strong stable and the strong unstable foliation are minimal. The arguments
to show this fact are inspired in similar arguments of Plante [14].

Observe that F, commutes with G, : M x S!' > M x S!, Gy(x,8) = (x, RyH)
Va e S'. This implies that W (F,) is Gy-invariant for o =5, u.

Theorem 5.2 Let F, be as above and suppose that it satisfies the accessibility prop-
erty. Then, W° (F,) is minimal, o = s, u.

In fact, the previous theorem is a consequence of the following stronger fact.

Proposition 5.3 Let F, be as above and suppose that ' W° (F,) is not minimal. Then,
E° @ E" is integrable.

Proof Suppose that thereisx € M x S' such that W“ (x) is not dense. Since W” (x)

is u-saturated we can take K C W” (x) a minimal subset Callw: M x S! — M to
the projection onto M, that is 7 (y, 9) = y. Itis not difficult to see that 7 ( W” (2)) =
W” (r(2)). In particular, since f is transitive and K is compact and u- saturated we
have that w(K) = M. The strategy is to prove that K is also s-saturated. This will
immediately imply that F,, is not accessible (moreover, the invariance of the strong
foliations under G, Ya € S! will imply that E @ E* is integrable).

Our first claim is that #(K N {y} x S') is finite for every y € M. Suppose that
it is false, then there is yo € M such that for every ¢ > 0, S = {yo} x S' has two
points (yg, 61) and (yg, 6») at distance less than ¢. This means that = 6, — 6, < ¢.
Observe that G (yo, 81) = (30, 82) and then, G,(K) N K # @. Since K is minimal
and W"(F,) is G-invariant we have that Go(K) = K. Then, G, (y0,01) € K
Vn € Z. In particular, K is e-dense in S. Since ¢ is arbitrary we obtain that § C K.
This implies that W;fw (S) C K and itis not difficult to see that W,’éw (S) is dense, then

K = M x S! contradicting that Wi (x) is not dense.

The previous considerations allow us to define ¥ : M — N as W(y) =#(K N
{y} x S"). Our second claim is that this function is upper semicontinuous. Suppose
it is false. Then, there is a sequence (y,), C M such thaty, — yand ¥(y,) - n >
W(y). Since K is compact, we also have that lim(K N {y,} x S") ¢ K N {y} x S".
In particular, we have that for any & > 0 and n large enough there two points in
{y,} x S! at distance less than &. An argument similar to the one used in the proof
of our first claim gives that {y} x S! C K and then, K = M x S', a contradiction.

Now we want to proof that W is constant. On the one hand, observe that if y' €
W’; (¥), W(y') = W(y).Onthe other hand, since W is semicontinuous it has continuity
points and it is locally constant at this kind of points. Then, the minimality of the
unstable foliation of f implies that W is equal to a constant /.

The previous considerations imply that (K, &) is an i-fold covering of M and it
is not difficult to see that K = U1 G4 (K) is a CO foliation of M x S! with com-
pactleaves homeomorphism to K. Since F, is anisometric extension dist. (K1, K3) =
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min{dist (ki, k2); k1 € K1, ko € K, (k1) = m(kp)} = distc(F, (K1), Fp(K2)) where
K, K, € K. In particular, dist(F(;’ (Ky), F(;' (K>) does not go to zero. Then, any sta-
ble manifold intersects only one leaf of K. That means that the leaves of K are
s-saturated and then, K is a foliation tangent to E* @ E". O

We get the following corollary of Theorems 5.1 and 1.3 for an open and dense set
of skew products over volume-preserving Anosov diffeomorphisms.

Corollary 5.4 Let F be an accessible isometric circle extension of a volume-
preserving Anosov diffeomorphism. Then, there is a C' neighborhood U of F such
that:

e W (F) has a unique minimal set, 0 = s, u.
o ‘W (F) is transitive, 0 = s, u.

Moreover, we can apply Theorems 1.2 and 4.3 to these diffeomorphisms and
obtain the corresponding conclusions.

Remark 5.5 Hammerlindl and Potrie [12] have shown that partially hyperbolic dif-
feomorphisms on 3-nilmanifolds (different than the torus) always are sus- and usu-
accessible. In particular we can also apply Theorems 1.2 and 4.3 to them. On the
other hand, Shi [17] has announced that, on 3-nilmanifolds, there are partially hyper-
bolic diffeomorphism satisfying Axiom A. Of course, they have only one attractor
and one repeller.

6 Anosov Diffeomorphisms

In this section we will suppose that A is a hyperbolic automorphism of T? with three
real eigenvalues |A;| < 1 < |A;| < |A3]. Along this section we will assume that f is
an Anosov diffeomorphism isotopic to A and such that it admits a partially hyperbolic
splitting E* @ E¢ @ E“. Observe that E¢ @ E" corresponds to the unstable bundle of
the hyperbolic splitting of f. We obtain the following result that answers Conjecture
1.4 by Gogolev, Maimon and Kolmorgorov.

Theorem 6.1 Let f be as above. Then, the strong unstable foliation of f is transitive.

Proof Call h to the conjugacy between f and A. Observe that since the strong stable
manifolds of f are its stable manifolds we have that # sends strong stable manifolds
of f into strong stable manifolds of A. Thus, the strong stable foliations of f is
minimal.

Ren, Gan and Zhang [15] have proved that, in our setting, the following statements
are equivalent:

e f is not accessible.
e E* @ E" is integrable.
e /1 sends strong unstable manifolds of f into strong unstable manifolds of A.
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Then, on the one hand, if f is not accessible we have that ‘W*( f) is minimal and,
in particular, it is transitive. On the other hand, if f is accessible, since we already
know that ‘W*(f) is minimal, we can apply Theorem 1.3 (with the roles of « and s
reversed) We get the transitivity of ‘W*(f) by applying Theorem 1.1. This ends the
proof of the theorem. (]
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Abstract For a partially hyperbolic splitting TrM = E @ F of T', a C' vector field
X on a m-manifold, we obtain singular-hyperbolicity using only the tangent map
DX of X and its derivative D X, whether E is one-dimensional subspace. We show
the existence of adapted metrics for singular hyperbolic set I' for C! vector fields if
I" has a partially hyperbolic splitting TrM = E @ F where F is volume expanding,
E is uniformly contracted and a one-dimensional subspace.
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1 Introduction

Let M be a connected compact finite m-dimensional manifold, m > 3, with or without
boundary. We consider a vector field X, such that X is inwardly transverse to the
boundary OM, if OM # (. The flow generated by X is denoted by X,.

A hyperbolic set for a flow X, on a finite dimensional Riemannian manifold
M is a compact invariant set ' with a continuous splitting of the tangent bundle,
TrM = E* @ EX @ E*, where EX is the direction of the vector field, for which the
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subbundles are invariant under the derivative DX, of the flow X,
DX,-E;‘:E;,(X), xel, teR, *x=s,X, u; (D

and E° is uniformly contracted by DX, and E* is likewise expanded: there are
K, )\ > 0so that

IDX; |g: || < Ke ™™, (DX, |p) ' <Ke™, xeT, teR. (2

Very strong properties can be deduced from the existence of such hyperbolic struc-
ture; see for instance [9, 10, 15, 22, 24].

An important feature of hyperbolic structures is that it does not depends on the
metric on the ambient manifold (see [ 13]). We recall that a metric is said to be adapted
to the hyperbolic structure if we can take K = 1 in Eq. (2).

Weaker notions of hyperbolicity (e.g. dominated splitting, partial hyperbolic-
ity, volume hyperbolicity, sectional hyperbolicity, singular hyperbolicity) have been
developed to encompass larger classes of systems beyond the uniformly hyperbolic
ones; see [8] and specifically [2, 6, 26] for singular hyperbolicity and Lorenz-like
attractors.

In the same work [13], Hirsch, Pugh and Shub asked about adapted metrics for
dominated splittings. The positive answer was given by Gourmelon [12] in 2007,
where it is given adapted metrics to dominated splittings for both diffeomorphisms
and flows, and he also gives an adapted metric for partially hyperbolic splittings as
well.

In fact, in [29], Wojtkowski proved that if a diffeomorphism f is strictly J-
separated then it has a dominated splitting and affirmed that the continuous rie-
mannian metric induced by J is an adapted one. In other words, we can use the
quadratic form to produce an adapted metric. Here, in Lemma 3.1, we give a proof
of this affirmation in our setting.

Proving the existence of some hyperbolic structure is, in general, a non-trivial
matter, even in its weaker forms.

In[16], Lewowicz stated that a diffeomorphism on a compact riemannian manifold
is Anosov if and only if its derivative admits a nondegenerate Lyapunov quadratic
function.

An example of application of the adapted metric from [12] is contained in [3],
where the first author jointly with V. Aradjo, following the spirit of Lewowicz’s
result, construct quadratic forms which characterize partially hyperbolic and singular
hyperbolic structures on a trapping region for flows.

In [4], the first author and V. Aratjo provided an alternative way to obtain sin-
gular hyperbolicity for three-dimensional flows using the same expression as in
Proposition2.3 applied to the infinitesimal generator of the exterior square A2DX,
of the cocycle DX, . This infinitesimal generator can be explicitly calculated through
the infinitesimal generator DX of the linear multiplicative cocycle DX, associated
to the vector field X.
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Here, we provide a similar result as above for m-dimensional flows if this admits
a partially hyperbolic splitting for which one of the invariant subbundles is one-
dimensional.

Moreover, we show the existence of adapted metrics for a singular hyperbolic set
I for C! vector fields if T has a partially hyperbolic splitting TrM = E & F, where
F is volume expanding, E is uniformly contracted and one-dimensional subbundle.

1.1 Statements of Main Results

In tpe sequel, we write j v) =< J; v, v >, where fx is given in Proposition 2.3, that
is, J(v) is the time derivative of a quadratic form J under the action of the flow.
The absolute value of the cross product (also called vector product) on a 3-
dimensional vector space V, denote by w = u X v, provides the length of the vector
w. It is very useful to calculate the area expansion of the parallelogram generated by
u, v, under the action of a linear operator.
Following this way, in [4], the first author and V. Aradjo proved the result below.

Theorem 1.1 ([4, Theorem B]) Suppose that X is 3-dimensional vector field on M
which is non-negative strictly J-separated over a non-trivial subset I, where J has
index 1. Then

(1) A’DX, is strictly (—J)-separated;
(2) T is a singular hyperbolic set if either one of the following properties is true

(a) zf)(x) —— —ooforall x € T.
t——+00

(b) J—2tr(DX)J > 0onT.
Here, we generalized this result to m and k = m — 1, as follows.

If A¥DX, is strictly separated with respect to some family J of quadratic forms,
then there exists the function ¢ as stated in Proposition 2.3 with respect to the cocyle
A*DX,. We set

b
Rbx) = f 5(X, () ds

the area under the function d; : U — R given by Proposition 2.3 with respect to
A¥D X, and its infinitesimal generator.

If k =m — 1, it is not difficult to see that this function is related to X and ¢
as follows: let 6 : I' — R be the function associated to J and DX,, as given by
Proposition 2.3, then ¢, = 2tr(DX) — §, where tr(DX) represents the trace of the
linear operator DX, :T\M O,x e M.

We recall that J = 9,4 is the time derivative of J along the flow; see Remark 2.4.

Our first main result is the following.
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Theorem A Suppose that X is m-dimensional vector field on M which is non-
negative strictly J-separated over a non-trivial subset I, where J has index 1. Then

(1) A"V DX, is strictly (—J)-separated;
(2) T is a singular hyperbolic set if either one of the following properties is true

(a) Ab(x) = —oo forall x € T.

() J—2w(DX)J >0onT.

We work here with exterior products of codimension one. See [11] for more details
on this subject.

This result provides useful sufficient conditions for a m-dimensional vector field
to be singular hyperbolic if kK = m — 1, using only one family of quadratic forms
J and its space derivative DX, avoiding the need to check cone invariance and
contraction/expansion conditions for the flow X, generated by X on a neighborhood
of I'.

Now we recall the definition of adapted metrics in the singular hyperbolic setting.

Definition 1 We say a Riemannian metric (-, -) adapted to a singular hyperbolic
splitting TT" = E @ F ifitinduces a norm | - | such that there exists A > 0 satisfying
forall x € " and ¢ > 0 simultaneously

IDX, |, |- |(DX; |p) 7' < e, DX, |p, | <e™ and |det(DX, |r)| = eV.

We call it singular adapted metric, for simplicity.
In [4], the first author and V. Aradjo proved the next result.

Theorem 1.2 ([4, Theorem C]) Let I" be a singular-hyperbolic set for a C' three-
dimensional vector field X. Then T admits a singular adapted metric.

Here, we generalize this result for any codimension one singular hyperbolic flow
in higher dimensional manifolds. Consider a partially hyperbolic splitting Tr M =
E @ F where E is uniformly contracted and F is volume expanding. We show that for
C! flows having a singular-hyperbolic set I" such that E is one-dimensional subspace
there exists a metric adapted to the partial hyperbolicity and the area expansion, as
follows.

Theorem B Let T' be a singular-hyperbolic set of codimension one for a C' m-
dimensional vector field X. Then I admits a singular adapted metric.

We present the relevant definitions and auxiliary results in the next section.

The paper is organized as follow. In the present Section we provide an introduction
and statement of main results. In Sect.2 we give the main definitions and useful
properties of quadratic forms. In Sect.3 we provide some auxiliary results. Finally,
in Sect. 4 are given the proofs of our theorems.
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2 Preliminary Definitions and Results

‘We now present preliminary definitions and results.

We recall that a trapping region U for a flow X; is an open subset of the manifold
M which satisfies: X, (U) is contained in U for all ¢+ > 0, and there exists 7 > 0
such that X, (U) is contained in the interior of U for all t > T. We define I'(U) =
I'x(U) := N;-0X:(U) to be the maximal positive invariant subset in the trapping
region U.

A singularity for the vector field X is a point ¢ € M such that X (o) = 0 or,
equivalently, X, (o) = o forall ¢ € R. The set formed by singularities is the singular
set of X denoted Sing(X). We say that a singularity is hyperbolic if the eigenvalues
of the derivative DX (o) of the vector field at the singularity ¢ have nonzero real
part.

Definition 2 A dominated splitting over a compact invariant set A of X is a con-
tinuous D X,-invariant splitting TaM = E @ F with E, # {0}, F; # {0} for every
x € A and such that there are positive constants K, A satisfying

IDX e N - I1DX il Fy, 0l < Ke ™ forallx € A, andall t > 0. 3)

A compact invariant set A is said to be partially hyperbolic if it exhibits a dom-
inated splitting 7o M = E @ F such that subbundle E is uniformly contracted, i.e.,
there exists C > 0 and A\ > 0 such that || DX;|g, || < Ce™ fort > 0. In this case F
is the central subbundle of A. Or else, we may replace uniform contraction along E
by uniform expansion along F' (the right hand side condition in (2).

We say that a DX,-invariant subbundle F C T\ M 1is a sectionally expanding
subbundle if dim F, > 2 is constant for x € A and there are positive constants C, A
such that for every x € A and every two-dimensional linear subspace L, C F, one
has

|det(DX,|..)| > CeM, forallt > 0. 4)

Definition 3 ([17, Definition 2.7]) A sectional-hyperbolic set is a partially hyper-
bolic set whose central subbundle is sectionally expanding.

This is a particular case of the so called singular hyperbolicity whose definition we
recall now. A D X,-invariant subbundle ' C TA M is said to be a volume expanding
if in the above condition 4, we may write

|det(DX,|r,)| > Ce™, forallz > 0. (5)

Definition 4 ([18, Definition 1]) A singular hyperbolic set is a partially hyperbolic
set whose central subbundle is volume expanding.

Clearly, in the three-dimensional case, these notions are equivalent.
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This is a feature of the Lorenz attractor as proved in [25] and also a notion that
extends hyperbolicity for singular flows, because sectional hyperbolic sets without
singularities are hyperbolic; see [2, 19].

2.1 Linear Multiplicative Cocycles Over Flows

Let A: G x R — G be a smooth map given by a collection of linear bijections
Ai(x): Gy — GX,(x), xel,rteR,

where I' is the base space of the finite dimensional vector bundle G, satisfying the
cocycle property

Ao(x) =1d, Ai(x) = A(X;(x)) 0 As(x), xeTl,t,seR,

with {X;},;cr a complete smooth flow over M O I'. We note that for each fixed t > 0
the map A, : G — G, v, € G, — A,;(x) - vy € Gx,(v) 15 an automorphism of the
vector bundle G.

The natural example of a linear multiplicative cocycle over a smooth flow X, on a
manifold is the derivative cocycle A;(x) = DX;(x) on the tangent bundle G = TM
of a finite dimensional compact manifold M. Another example is given by the exterior
power A, (x) = AKDX, of DX, acting on G = AT M, the family of all k-vectors
on the tangent spaces of M, for some fixed 1 <k < dimG.

It is well-known that the exterior power of a inner product space has a naturally
induced inner product and thus a norm. Thus G = A*T M has an induced norm from
the Riemannian metric of M. For more details see e.g. [7].

In what follows we assume that the vector bundle G has a smoothly defined inner
product in each fiber G, which induces a corresponding norm || - ||, x € .

Definition 5 A continuous splitting G = E @ F of the vector bundle G into a pair
of subbundles is dominated (with respect to the automorphism A over I') if

e thesplitting is invariant: A;(x) - E, = Ex,(yand A, (x) - Fy = Fx, () forallx € T’
andt € R; and
e there are positive constants K, A satisfying

NANE N - TA— | Fy, 0l < Ke™, forallx €T, andall 7 > 0. (6)
We say that the splitting G = E @ F is partially hyperbolic if it is dominated

and the subbundle E is uniformly contracted: ||A, | E.|| < Ce " for all ¢+ > 0 and
suitable constants C, p > 0.
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2.2 Fields of Quadratic Forms, Positive and Negative Cones

Let Ey be a finite dimensional vector bundle with inner product (-, -) and base given
by the trapping region U C M.LetJ : Ey — R be a continuous family of quadratic
forms J, : Ex — Rwhich are non-degenerate and have index 0 < g < dim(E) = n.
The index g of J means that the maximal dimension of subspaces of non-positive
vectors is ¢g. Using the inner product, we can represent J by a family of self-adjoint
operators J, : E; O as J,(v) = (Jy(v),v),v € E;,x € U.

We also assume that (Jy).cy is continuously differentiable along the flow. The
continuity assumption on J means that for every continuous section Z of Ey the
map U 3 x — J(Z(x)) € Ris continuous. The C' assumption on J along the flow
means that the map R > ¢ — Jx,)(Z(X,(x))) € R is continuously differentiable
for all x € U and each C! section Z of Ey;.

Using Lagrange diagonalization of a quadratic form, it is easy to see that the choice
of basis to diagonalize J, depends smoothly on y if the family (Jy) ey is smooth,
for all y close enough to a given x. Therefore, choosing a basis for 7, adapted to J,
at each x € U, we can assume that locally our forms are given by (J,(v), v) with
J, a diagonal matrix whose entries belong to {£1}, J} = J;, sz = [ and the basis
vectors depend as smooth on x as the family of forms (J;),.

We let C. = {C+(x)},cv be the family of positive and negative cones associated

to J
Ci(x):={0}U{veE,:£J,(v) >0}, xeU,

and also let Cy = {Cy(x)},ey be the corresponding family of zero vectors Cy(x) =
J-'(op forallx € U.

2.3 Strict J-Separation for Linear Multiplicative Cocycles

Let A: E x R — E be a linear multiplicative cocycle on the vector bundle E over
the flow X,. The following definitions are fundamental to state our results.

Definition 6 Given a continuous field of non-degenerate quadratic forms J with
constant index on the positively invariant open subset U for the flow X,, we say that
the cocycle A, (x) over X, is

e J-separated if A;(x)(Cy(x)) C C+(X;(x)),forallz > 0and x € U (simple cone
invariance);

e strictly J-separated if A;(x)(Cy(x) U Co(x)) C C+(X;(x)),forallt > Oand x €
U (strict cone invariance).

o J-monotone if Jx, (DX, (x)v) > J(v), foreachv € T,M \ {0} and ¢ > 0;

e strictly J-monotone if 8,(8X,<x)(DX,(x)v)) l;=0> 0, forallve T,M\ {0}, >0
andx € U;
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o J-isometry if Jx, (DX, (x)v) = Jx(v), foreachv € T\M and x € U.

We say that the flow X, is (strictly) J-separated on U if DX,(x) is (strictly) J-
separated on Ty M. Analogously, the flow of X on U is (strictly) J-monotone if
DX, (x) is (strictly) J-monotone.

Remark 2.1 If a flow is strictly J-separated, then for v € T, M such that J,(v) <
0 we have Jx ,»(DX_;(v)) <O, for all # > 0, and x such that X_;(x) € U for
every s € [—t, 0]. Indeed, otherwise Jx_,+)(DX_;(v)) > 0 would imply J,(v) =
Jdx (DXt(DX _,(v))) > 0, contradicting the assumption that v was a non-positive
vector.

This means that a flow X, is strictly J-separated if, and only if, its time reversal
X _, is strictly (—J)-separated.

Remark 2.2 Let V be a real finite dimensional vector space, and L : V — V be a
J-separated linear operator. Then L can be uniquely represented by L = RU, where
U is a J-isometry(i.e. J(U(v)) = J(v), v € V) and R is J-symmetric with positive
spectrum; the operator operator R can be diagonalized by a J-isometry, and there
exist constants r_ and r, such that the operator L is (strictly) J-monotonous if, and
only, if r— < (<) 1 and r > (>) 1. For more details see [3, Proposition 2.4] and
comments below of the Theorem 1.2 in [29].

A vector field X is J-non-negative on U if J(X (x)) > Oforall x € U, and J-non-
positive on U if J(X (x)) <0 for all x € U. When the quadratic form used in the
context is clear, we will simply say that X is non-negative or non-positive.

We say that a C! family J of indefinite and non-degenerate quadratic forms is
compatible with a continuous splitting Er @& Fr = Er of a vector bundle over some
compact subset I" if E, is a J-negative subspace and F} is a J-positive subspace for
allx e T.

Proposition 2.3 ([3, Proposition 1.3]) A J-non-negative vector field X on U is
strictly J-separated if, and only if, there exists a compatible family Joy of forms
and there exists a function § : U — R such that the operator jO,x =Jo-DX(x)+
DX (x)* - Jy satisfies

Jox —8(x)Jo is positive definite, x € U,

where DX (x)* is the adjoint of DX (x) with respect to the adapted inner product.

Remark 2.4 The expression for Jy , in terms of J, and the infinitesimal generator
of DX, is, in fact, the time derivative of J, along the flow direction at the point x,
which we denote 0, Jy; see item 1 of Proposition 2.10. We keep this notation in what
follows.

A characterization of dominated splittings, via quadratic forms is given in [3] (see
also [29]) as follow.
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Theorem 2.5 [3, Theorem 2.13] The cocycle A,(x) is strictly J-separated if, and
only if, Ey admits a dominated splitting F_ @ F, with respect to A;(x) on the
maximal invariant subset A of U, with constant dimensions dim F_ = g, dim F, =
p,dimM = p +q.

This is an algebraic/geometrical way to prove the existence of dominated split-
tings. As we have said in the introduction, proving existence of some hyperbolic
structure is not an easy work to do, in general. One of the most habitual way is to
use cone field techniques, see for instance [14, 20, 21].

In [4, Example 5], the first author and V. Aratjo checked out the singular hyper-
bolicity of geometric Lorenz attractor, in a most simple way, by using Theorem 1.1.
It was proved by Tucker [25], under computer assistance, that the Lorenz attractor
exist for the classical parameters. It is expected, in a work in progress, that Theorem
1.1 may be used to prove the same result without computer assistance or at least
simplify the proof given by Tucker.

In fact, we have an analogous result about partial hyperbolic splittings, as follow.

We say that a compact invariant subset A is non-trivial if

e cither A does not contain singularities;
e or A contains at most finitely many singularities, A contains some regular orbit
and is connected.

Theorem 2.6 ([3, Theorem A]) A non-trivial compact invariant subset T is a par-
tially hyperbolic set for a flow X, if, and only if, there is a C" field J of non-degenerate
and indefinite quadratic forms with constant index, equal to the dimension of the sta-
ble subspace of T, such that X; is a non-negative strictly J-separated flow on a
neighborhood U of T'.

Moreover E is a negative subspace, F a positive subspace and the splitting can
be made almost orthogonal.

Here strict J-separation corresponds to strict cone invariance under the action of
DX, and (-, -) is a Riemannian inner product in the ambient manifold. We recall that
the index of a field quadratic forms J on a set I" is the dimension of the J-negative
space at every tangent space 7, M for x € U. Moreover, we say that the splitting
TrM = E @ F is almost orthogonal if, given € > 0, there exists a smooth inner
product (-, -) on Tr M so that |[(u, v)| < ¢,forallu € E,v € F,with |lu| =1 = ||v].

We note that the condition stated in Theorem 2.6 allows us to obtain partial
hyperbolicity checking a condition at every point of the compact invariant set that
depends only on the tangent map DX to the vector field X together with a family J
of quadratic forms without using the flow X, or its derivative D X;. This is akin to
checking the stability of singularity of a vector field using a Lyapunov function. For
example, it is well known by Lyapunov’s Stability Theorem that if a singularity o
of a C! vector field Y : U ¢ R* — R”, defined over an open set U, admits a strict
Lyapunov function on o, then this is a asymptotically stable singularity. Lewowicz,
in [16], used this idea replacing stability of a singularity by topological stability of
Anosov diffeomorphisms.
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2.4 Exterior Powers

We note that if E® F is a DX,-invariant splitting of TrM, with {ey, ..., e} a
family of basis for E and { f1, ..., fi} a family of basis for F, then F=n F gen-
erated by {fi, A--- A f,‘k}lgil<4..<lk5h is naturally A¥ DX, -invariant by construction.
In addition, E generated by {e; A--- A e }i<i<..<i<¢ together with all the exte-
rior products of i basis elements of E with j basis elements of F', where i + j = k
and i, j > 1, is also AF D X;-invariant and, moreover, E®F gives a splitting of the
kth exterior power AKT-M of the subbundle Tr M. Let TrM = Er @ Fr be a DX,-
invariant splitting over the compact X, -invariant subset I such that dim F = k > 2.
Let F = AKF be the AFDX,-invariant subspace generated by the vectors of F' and
E be the AF D X,-invariant subspace such that E @ F is a splitting of the kth exterior
power AT M of the subbundle T M

We consider the action of the cocycle DX, (x) on k-vector that is the k-exterior
AKD X, of the cocycle acting on AKTrM.

We denote by || - || the standard norm on k-vectors induced by the Riemannian
norm of M, see [7].

Remark 2.7 Let V to be a vector space of dimension N.

(i) The dimension of space A"V isdim A"V = (];/) If {ey, --- , ey} is abasis of
V,sotheset{ex, A---Aep :1 <k <--- <k <N}isabasisin A"V with
elements.

(i7) If V has the inner product (, ), then the bilinear extension of
(Ml N ANUp, UL A A Ur> = det(<l/t,', Uj))rxr

defines a inner product in A"V. In particular, [lu; A---Au|l =
/det((u;, u;)),x, is the volume of r-dimensional parallelepiped H spanned by
uy, -+ ,u,, we write vol(uy,---,u,) = vol(H) = det(H) = |det(uy, --- ,
u)l.
(iii) If A: V — V is a linear operator then the linear extension of A"A(u; A
-« Aup) = A) A --- A A(u,) defines a linear operator A”A on A" V.
(fv) LetA:V — V,and A"A: A"V — A"V linear operators with G spanned

by vy, .-, vy € V.Define H := Alg, then H is spanned by A(vy), - -+, A(vy)
. So |det A|g| = vol(A|g) = vol(H) = vol(A(vy), - -+, A(vy)) = ||A(v)) A
S NAWHI =AY A(vr A Ayl
When DX, (u;) = v;(¢t) = v;, where G is spanned by u;, --- ,u, € TrM, and H
is spanned by vy, - -- , v, we have H = DX,(G) = DX,|g. Thus,

|det(DX,[c)| = vol(DX;(u1), - -+, DX;(u,)) =
IDX (u) A= ADX(u)ll = [| A" DX (uy A+ Aug)ll.
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It is natural to consider the linear multiplicative cocyle AK DX, over the flow X,
of X on U, that is, for any k choice, uy, us, - -- , u; of vectors in 7,M, x € U and
t € R such that X,(x) € U we set

(ADX) - i Aus A Aug) = (DX; - u)) A (DX; -un) A - A (DX, - ug)

see [7, Chap. 3, Sect. 2.3] or [27] for more details and standard results on exterior
algebra and exterior products of linear operator.

In [4], the authors proved the following relation between a dominated splitting
and its exterior power.

Theorem 2.8 ([4, Theorem A]) The splitting TrM = E & F is dominated for DX,
if. and only if,. ANNTrM = E @ F is a dominated splitting for N*DX,.

Hence, the existence of a dominated splitting T M = Er @ Fr over the compact
X, -invariant subset I', is equivalent to the bundle A* T M admits a dominated splitting
with respect to AKDX, : AKTE M — AFTE-M.

As a consequence, they obtain the next characterization of three-dimensional
singular sets.

Corollary 2.9 ([4, Corollary 1.5]) Assume that M has dimension 3, E is uniformly
contracted by DX,, and that k = 2. Then E @ F is a singular-hyperbolic splitting
Jor DX, if, and only if, E® Fis partially hyperbolic splitting for N> DX, such that
Fis uniformly expanded by A2DX,.

2.5 Properties of J-Separated Linear Multiplicative Cocycles

We present some useful properties about J-separated linear cocycles whose proofs
can be found in [3].

Let A;(x) be a linear multiplicative cocycle over X,. We define the infinitesimal
generator of A,(x) by

D(x) := lim M. (7)

The following is the basis for arguments given by the first author and V. Aratdjo

in [3] to prove the Theorem 2.6.

Proposition 2.10 ([3, Proposition 2.7]) Let A,(x) be a cocycle over X, defined on
an open subset U and D (x) its infinitesimal generator. Then

(1) g(v) =0, J(A;(x)v) = (jx,(x)A,(x)v, A;(x)v) forallv € E, and x € U, where

Jo:=J-Dx)+Dx)*-J (8)
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and D(x)* denotes the adjoint of the linear map D(x) : E, — E, with respect
to the adapted inner product at x;

(2) the cocycle A,;(x) is J-separated if, and only if, there exists a neighborhood V
of A, V C U and a function § : V — R such that

Je > 0(x)dx forall x € V. 9)

In particular we get 0, log |J(A,(x)v)| > 6(X,(x)),ve E;,x € V,t > 0;

(3) ifthe inequalities in the previous item are strict, then the cocycle A, (x) is strictly
d-separated. Reciprocally, if A;(x) is strictly J-separated, then there exists a
compatible family Jo of forms on 'V satisfying the strict inequalities of item (2).

[J(Ar, (x)v)] 5}
—lg(A,T(x)v)l > exp Aj(x)forallv € E;

and reals t; < tp so that J(A;(x)v) # 0 for all t; <t < t, where AZ (x) was
defined in (10).

(5) we can bound 6 at every x € I" by infyec, (v) % < 0(x) < SUPyec_ v gg—z;

(4) Fora J-separated cocycle A;(x), we have

Remark 2.11 We stress that the necessary and sufficient condition in items (2-3) of
Proposition 2.10, for (strict) J-separation, shows that a cocycle A,(x) is (strictly)
J-separated if, and only if, its inverse A_;(x) is (strictly) (—d)-separated.

Remark 2.12 Ttem (2) above of Proposition 2.10 shows that § is a measure of the
“minimal instantaneous expansion rate” of |J o A,(x)|.

The area under the function § provided by Proposition 2.10 allows us to detect
different dominated splittings with respect to linear multiplicative cocycles on vector
bundles (Proposition 2.13). For this, define the function

b
Ab(x) :=/ 8(Xs(x))ds, xeTl,a,beR. (10)

Proposition 2.13 ([3, Theorem 2.23]) Let I be a compact invariant set for X,
admitting a dominated splitting Er = F_ @ F. for A;(x), a linear multiplicative
cocycle over T" with values in E. Let § be a C' family of indefinite quadratic forms
such that A,(x) is strictly J-separated. Then

(1) F_ @& F, is partially hyperbolic with F. uniformly expanding if Aj(x) ——>

t——+00
400 forallx €T,
(2) F_ @& F, ispartially hyperbolic with F_ uniformly contracting if Aj(x) ——>

t——+00
—ooforallx €T.

(3) F_ @ F is uniformly hyperbolic if, and only if, there exists a compatible family
Jo of quadratic forms in a neighborhood of T" such that J;,(v) > 0 forallv € E,
andall x € T.

For the proof and more details about the Proposition 2.13, see [3].
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3 Auxiliary Results

3.1 Adapted Metric for Dominated Splittings from Quadratic
Forms

Let A: G x R — G be alinear multiplicative cocycle on the vector bundle G over
the flow X;. We assume from now on that the family A, (x) of linear multiplicative
cocycles on a vector bundle Gy over the flow X, on trapping region U € M has
been given, together with a field of non-degenerate quadratic forms J on Gy .

Let us consider a C! field of non-degenerate quadratic forms J with constant
index on the positively invariant open set U for the flow X/, such that the cocycle
A;(x) over X, is strictly J-separated. In [3, Theorem 2.13], the authors showed that
Gy admits a dominated splitting F_ @ F. with to respect to A,(x), on the maximal
invariant subset I of U. In fact, in [29, Proposition 4.1], Wojtkowski have made this
to diffeomorphisms and affirmed that the J-metric is an adapted one. In other words,
we can obtain adapted metrics from the quadratic forms.

Following the arguments into the proofs from [3, Theorem 2.13] and [29, Propo-
sition 4.1], we are going to show, in the next lemma, that the metric induced by
the quadratic forms J over G is indeed an adapted one to the dominated splitting
F_o®F,.

Lemma 3.1 Consider a C' field of non-degenerate quadratic forms J with constant
index on the positively invariant open subset U for the flow X;, such that the cocycle
A;(x) over X, is strictly J-separated. Then the induced J-metric on Gy is adapted
to the dominated splitting F_ @ F,.

Proof Following [3, Theorem 2.13], we know that for each x in I" there exist sub-
spaces F_(x) and F, (x) suchthat G, = F_(x) ® F+(x)and A;(x)(F,(x)) = F,(x)
for a € {4+, —}. It is also proved there that, for every x € X,(U) and every pair of
unit vectors u € F_ and v € F,, we have

|A; (x)ul ri(X) r(x)
< - Swpi=sup——— < 1,
[A; (x)v] r+(X) ver T (x)

where . and r!_ represent the values r_ and r in Remark 2.2 with respect to the
strictly J-separated cocycle A, (x) with a fixed ¢.

Then, lim 21 — o for x € T

f—o0 [A)F,|
We claim that supw, < 1.

t
Suppose, in contrary, that there exists a sequence (w, ), converging to 1.
Then there exist sequences (x,), in I', (u,), in F_, and (v,), in F such that
[A, ()t 1.B fT h
A G, converge to 1. By compactness of I', we can suppose that (x,)n converges
toxinT.

If (z,), goes to infinity, we have a contradiction with 11m Alr | _ =0.
e TA () ry |
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Now, suppose that (z,), is a bounded sequence, we can assume that (z,), con-

verges for some ¢ in R, but % < w; < 1, this contradiction proves the claim and
completes the proof of the Lemma. ]

3.2 Exterior Products and Main Lemma

From now, we present some properties about exterior products and the main lemma to
prove the Theorem A. Next, we are going to use Proposition 2.13 to obtain sufficient
conditions for a flow X, on a m-manifold M to have a A”~!DX,-invariant one-
dimensional uniformly expanding direction orthogonal to the (m — 1)-dimensional
center-unstable bundle.

Let V a m-dimensional vector space, we denote V by V™, consider ARV where

2<k<m.LetB=/{e, - ,e,}abasisof V".So{e; A---nej 1< ji< - <
jie <m}isabasisof AKXV and J = {(j1, -, ) e N1 <ji < - < jr <m).
Let/ = nk1>’ so we have [ combination of k vectors in {e, --- , e}, and |J| = [.
Take uy, uz, -+ ,ux € V" whereu; = (u},u%,u- ,ult)pforall j € {1,--- k.
Define
ul ]
Ci=| i v oo . (11)
u’ln Zl mxk
For (ji,---, jix) € J, consider
o u{l u,{'
Cloode = 0. (12)
wl oul)
The following result holds
WA Aue= Y detC R (e A Ae). (13)
1sees i) €S

Let A : V" — V™ alinear operator with matrix in basis B given by

ap a ... dim
(14)

A1 A2 o Amm )

We will denote this matrix by A too.



Adapted Metrics for Codimension One Singular Hyperbolic Flows 263

Consider A¥A : AV — AKV™ note that A(u)) A--- A A(ug) = AFA@uy A
-+« A Ug), by (13) and the linearity of A¥ A, we have that

AW) A A Adug) = Z det(C/ ) AR Aej, Ao Aeyy) (15)

(i) ed

Define A; := A(ej),s0 Ajisthe j-thcolumnof A,i.e., A(e;) = A; = (ay;, -,
amj)T,so A(ej) = [a,-j]mxl.Let Aj]"'jk = (Aj] . 'Ajk)mxk where (jl, e, ]k) elJ.
For each (i; - - - ix), (ji - - - jx) € J consider

iy jy -oe Qi

Alrie . (16)

JieeJk
i ji - Qicji ) ek

Using that /\kA(ejl A---Nej)=A(ej) A--- A A(ej,) with matrix
Aj]'"jk = (Aj1 Tt Ajk)mxk»
by (13) we obtain that

Alej) A NAlej) = D det(AT7% ) (e, Ao Ae). (17)

Jk
[UNENILN

Lemma 3.2 Let V to be vector space and A : V. — V to be a linear operator then
AM=DA = det(A) - (A7H)*.

Proof Consider k = m — 1. We use the following identification between A"~V

and V. Foreach (ji, -+, ju—1) € J, weidentifye;, A---Ae;, in A" DV byd,e,
inV,where p ¢ {ji,--, jm-1},0, = 1if pisodd, and §, = —1 if p is even.

We must show that foreach (ji, - -+ , ju—1) € J theexterior product A~V A(e;, A
-+ Aej,) corresponds to the det(A) - (A’l)*(épe,,), where d e, is given as above.

Define S := det(A) - (A~")*, using that A~! = de+w Adj(A), we obtain that § =
cof (A) where cof (A) = [(—1)""/ M;;1,uxm and M;; is the determinant of the subma-
trix formed by deleting the i-th row and j-th column. We have that M;; = det(Agjjjg‘;)
wherei ¢ ry,--- ,rrand j & s, -, Sk.

Note that

cof (A)(Gpep) = 3, cof (A)(ep) = 6, (=D TP My, (=1)* P Moy, -+, (=1)" TP Myp) 5.
In case p is odd, 6, = 1 and cof (A)(Opep) = (Mip, —M>p, - -+, (=1)" TP M) 5.
We obtain that

COf(A)((spep) = Mlpel + MZp(_eZ) + 4+ Mmp(_l)erp =
Mlp(elal) + M2p(€262) +--- 4+ Mmp(empdmp)-
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Using that
Alej) A AAGe) = Y det(Al (e, Av- Aep)
([|,~~-,ik)€]
and M;; = det(Agljjg’;) where i ¢ ry,---,r, and j ¢ s1,---, 8, we have that
cof (A)(Gpep) = Alej) A=+ A Alej). O

This concludes the proof.

Remark 3.3 Under suitable identification, the last formula holds for differential of
a diffeomorphism of a compact finite dimensional manifold.

The result below generalizes Corollary 2.9 to arbitrary n and k. The main difficulty
here is working on the dimensions of the subbundles and its exterior powers.

Lemma 3.4 The subbundle Fr is volume expanding by DX, if, and only if, F is
uniformly expanded by A*DX,.

Inparticular, E & F is a singular hyperbolic splitting, where F is volume expand-
ing for DX, if, and only if, E®Fis partially hyperbolic splitting for NDX, such
that F is uniformly expanded by N*DX,.

Proof We consider the action of the cocycle D X, (x) on k-vector that is the k-exterior
power A¥DX, of the cocycle acting on AXTy- M.

Denote by || - || the standard norm on k-vectors induced by the Riemannian norm
of M; see, e.g. [7]. We write m = dim M.

Suppose that Tr M admits a splitting Er @ Fr with dim Er =m — k and

We note that if E @ F is a DX,-invariant splitting of Tr M, with {el, ...,e}a
family of basis for E and { f1, ..., fi} a family of basis for F, then F=n F gen-
erated by {fi, A--- A ﬁd1§i1<---<1k§k is naturally A¥ D X ,-invariant by construction.
Then, the dimension of F is one with basis given by the vector fj A --- A f;.

Assume that Fr is volume expanding by DX,. We must show that there exist
C and X\ > 0 such that | A¥ DX,|p| > Ce, for all + > 0, where P is spanned by

fin-Afr
Note that
I A DX [pll = [| A DX, (fi A== A Ol = [IDX,(fi) A -+ A DX (fll.
But f1, -+, fx is a basis for F, by hypothesis there exist constants C and A > 0

such that |det(DX,|r)| > C.e* forall t > 0. So,
|det(DX;[r)| = vol(DX,(f1), -+ . DX:(fi)) = IDX,(f1) A--- A DX, (fi)ll.

The reciprocal statement is straightforward.
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Given a basis {f1, - - - , fi} of F, we have that
|det(DX,|F)| =
vol(DX,(f1), -+, DX:(fi)) = IDX;(fi) A ADX(f)ll =
IASDX (fi Ao A fOll = 1| A DXl

where P is spanned by fi A--- A fi.
However, by hypothesis, there exist C and A > 0 such that || AK DX,|p|| > Ce™,
forall > 0.

Corollary 3.5 Assume that E is uniformly contracted by DX,. E @ F is a singular-
hyperbolic splitting for DX, if, and only if, E @ F is partially hyperbolic splitting
for AXDX, such that F is uniformly expanded by AN*DX,.

Let M Riemannian manifold m-dimensional with (-, -) inner product in 7t M, and
(+, )« the inner product in A¥Tr M induced by (-, -) where A*Tr M = |, . A* T M.
So for x € I, we have that (-, -) is acting on T, M, and (-, -), is acting on A*T, M.

Lemma 3.6 Let M be a riemannian m-dimensional manifold. Then, for all [-, -],
inner product in A""~VTrM there exists a inner product [-,-] on TrM such that
[+, 1« is induced by [-, -].

Proof Let M be a riemannian manifold m-dimensional with (-, -) an inner product
in Tr M, and (-, -), the inner product in A"~V T M induced by (-, -).

Take [-, -]«« an arbitrary inner product in A=DTL M. Using that [, -], and (-, -},
are inner products in A™~DTpM there exists J : A" DT M — A™=DTr M iso-
morphism linear such that [u, v].. = (J (1), J(V))4.

Define ¢ : GL(TrM) — GL(A™ DT M) givenby A > A"DA,

Note that ¢ is an injective linear homomorphism, and due to the dimensions of
the spaces, ¢ is a linear isomorphism.

Hence, there exists A € GL(Tr M) such that A DA = J.

Consider [x, ¥] := (A(x), A(y)) for x,yeTrM, then [u, vy
= det([u;, Uj])(m—l)x(m—l)’ whereu =uy A--- A Um—1) andv=v; A---A V(m—1)-

We have that

[u, v], = det({A(u;), A(V;))) n—1)x(m—-1)-

On the other hand,
[, V]es = (A" "D A@), AV AW)). = det((A@u:), AN tn-1)xm—1)-

Therefore, [-, -]« = [-, -]+, and we are done.
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4 Proofs of Main Results

‘We are now able to prove our main results.

4.1 Proof of Theorem A

Proof Consider M is a m-manifold and I" is a compact X,-invariant subset hav-
ing a singular-hyperbolic splitting 7rM = Er & Fr. By Theorem 2.8 we have a

AU DX, -invariant partial hyperbolic ~splitting A ~VT-M = E®F with
dimF =1 and F uniformly expanded. Following the proof of Theorem 2.8, if

we write ¢ for a unit vector in E, and {uy, us, -+, u,_1} an orthonormal base
for Fy, x € ', then E, is a (m — 1)-dimensional vector space spanned by set
{6/\14,‘] A Uj, /\~‘~/\Mim72}Withl’],~'~ yimp €{l, - ,m—1}.

From Theorem 2.6 and the existence of adapted metrics (see e.g. [12]), there exists
a field J of quadratic forms so that X is J-non-negative, DX is strictly J-separated
on a neighborhood U of I, Er is a negative subbundle, FT is a positive subbundle
and these subspaces are almost orthogonal. In other words, there exists a function 9 :
I' > RsuchthatJ, — d(x)J; > 0, x € I" and we can locally write J(v) = (J (v), v)
where J = diag{—1, 1, - - - , 1} with respect to the basis {e, u;, --- , u,,—1} and (-, -)
is the adapted inner product; see [3].

By Lemma 3.2, A® DA =det(A) - (A~!)* with respect to the adapted inner
product which trivializes g, for any linear transformation A : T,M — T, M. Hence
A" DX, (x) = det(DX,(x)) - (DX_, 0 X,)* and a straightforward calculation
shows that the infinitesimal generator D™~V (x) of A~V DX, equals tr(DX (x) -
Id — DX (x)*.

Therefore, using the identification between A™~VT, M and T, M through the
adapted inner product and Proposition 2.10

Ix = (=D A" VDX, ) ;=0 = (=(J - D™ D) + DD ()" - Ty, v)
= ([(@- DX (x) + DX(x)* - §) — 2tr(DX (x))J]v, v)

= (J - 2u(DX(x)I) (V). (18)

To obtain strict (—J)-separation of A~V DX, we search a function §,—1 : I' — R
so that

@ —2w(DX)J) — 5u-1y(=3) > 0 or J— Q2tr(DX) = du-1))d > 0.

Hence it is enough to make d(,,—1) = 2tr(DX) — 4. This shows that in our setting
AM=D DX, is always strictly (—J)-separated.

Finally, according to Proposition 2.13, to obtain the partial hyperbolic sphttlng of
A™=1 DX, which ensures s1ngu1ar hyperbolicity, it is sufficient that either J, is pos-
itive definite or AZ (x) = fa Oom—1)(X;s(x)) ds satisfies item (1) of Proposition 2.13,
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for all x € I'. This amounts precisely to the sufficient condition in the statement of
Theorem A and we are done. O

Finally, we present the proof of Theorem B.

4.2 Proof of Theorem B

Proof Let singular-hyperbolic set I" for vector field with a partially hyperbolic split-
ting TrM = E @ F where E is uniformly contracted and F' is volume expanding.

Suppose that T M admits a splitting Er @ Fr with dim Er = 1 and dim Fr =
k=m—1.

We note that if £ @ F is a D X,-invariant splitting of 7- M, with {e,} a basis for
E and {fi, ..., fi} afamily of basis for F, then F = ArF generated by {fi, A--- A
Siedi<iy<-<i <k 1s naturally A¥D X, -invariant by construction. Then, the dimension
of F is one with basis given by the vector fi A -+ A fr.

By Corollary 3.5, we have a partially hyperbolic splitting E & F for A*DX, such
that F is uniformly expanded by ADX ;- Hence, from [12, Theorem 1] , there exists
an adapted inner product (-, -), for A*DX,. There exists A\ > 0 satisfying for all
x € Tand ¢ > O such that || AF DX, 7 1l = eM forallt > 0.

By Lemma 3.6, (-, -), is induced by an inner product (-, -) in 7T M. So, we have a
partially hyperbolic splitting E & F for A*DX, such that F is uniformly expanded
by AKDX,. By Theorem 2.8, we have that E @ F is a dominated splitting for DX, .
From Theorem 2.5, there exists C! field of quadratic J such that DX, is strictly
J-separated.

But DX, is strictly J-separated, this ensures, in particular, by Lemma 3.1, that the
norm

lw| = \/H(wE)z + J(wp)? is adapted to the dominated splitting E @ F for the
cocycle DX;, where w = wg + wr € E, @ F,, x € I'. This means that there exists
> Osuchthat | DX, |g, |- |DX— |Fy, | < e " forallt > 0.

Moreover, from the definition of the inner product and A, it follows that

|det(DX, |r)| = [(ADX)(ur A -+ Au)|| = [(ADX,) |7 || = M forallz >
0, so | - | is adapted to the volume expanding along F.

To conclude, we are left to show that E admits a constantw > O such that |DX; |g
| <e“ forallt > 0.

But since E is uniformly contracted, we know that X (x) € F forall x € I'.

Lemma 4.1 Let T be a compact invariant set for a flow X of a C' vector field X on
M. Given a continuous splitting Tr M = E @ F such that E is uniformly contracted,
then X(x) € F, forallx € T.

Proof See [1, Lemma 5.1] and [3, Lemma 3.3].

Define the norm | - |, = &] - | where £ is a small constant such that sup{| X (z)]| :
z € I'} < 1. We note that the choice of the positive constant & does not change any
of the previous relations involving | - |.
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On the one hand, on each non-singular point x of ' we obtain for each w € E,

DX, - w] IDX, - w |IDX, - w]
> = > > |DX
IDX, - X(x)| XX, ~ sup{|X(2)| : z € T'}

—ut

,-w|.

On the other hand, for ¢ € I" such that X (¢) = 0, we fix ¢ > 0 and, since I' is
a non-trivial invariant set, we can find a sequence x, — o of regular points of I'.

The continuity of the derivative cocycle ensures |[DX; |g, | = lim, o [DX; |Eg,, | <
e~M.Sincet > 0 was arbitrarily chosen, we see that | - | is adapted for the contraction
along E,.

This shows that A = p and completes the proof.
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On Conformal Measures and Harmonic m
Functions for Group Extensions L

Manuel Stadlbauer

Abstract We prove a Perron-Frobenius-Ruelle theorem for group extensions of
topological Markov chains based on a construction of o-finite conformal measures
and give applications to the construction of harmonic functions.

Keywords Group extension *+ Conformal measures - Harmonic functions

1 Introduction

The Perron-Frobenius-Ruelle theorem is a statement about the maximal eigenvalue
of an operator L who preserves the cone of positive functions. Namely, it provides
existence of a function f in this cone and v inits dual, such that Lf = pf and L*v =
pv, with p referring to the spectral radius of L. The first result of this type was obtained
by Perron in [21] as a byproduct of his analysis of periodic continued fractions.
He proved that, for a strictly positive n x n-matrix A, the maximal eigenvalue p is
simple. Moreover, his proof reveals that there exist strictly positive vectors x, y € R"
such that x'A = px’, Ay = py and that p~" A" converges to y - x’. Even though
there were many important contributions to the theory of positive operators in the
following decades, e.g. by Doeblin-Fortet [10] or Birkhoff [4], whose methods are
today standard tools in proving exponentially fast convergence of the iterates (see,
e.g., [3, 17]), it was only at the end of the 60’s when Ruelle obtained an analog of
Perron’s theorem for the one-dimensional Ising model with long range interactions
from mathematical physics ([25, Theorem 3]). In the context of dynamical systems,
as observed by Bowen, the result of Ruelle has the following formulation in terms
of shift spaces. For a fixed k € N, let

Yi={(x;:ieN):x;e{l,...,k} Vi e N},
0:% —> X (x1,x2,...)— (x2,x3,...)
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and suppose that p : ¥ — (0, 0o) is alog-Holder continuous function with respect to
the shift metric (for details, see below). The associated operator, the Ruelle operator,
is then defined by

Lo(H@) = Y o).

0(y)=x

Ruelle’s theorem states that there exist a strictly positive Holder continuous function A
and a probability measure p such that L, (f) = pf, L7,(1) = pprand lim p™" LE f =
J fdp - h.Furthermore, p~"L! f — [ fdu - h converges exponentially fast, which
implies, among many other things, that % is unique and that the measure p is exact
(and, in particular, ergodic).

The aim of this note is to establish an analogue of the result for dynamical systems
of the form

T:XxG— X xG,(x,9) — (Ox, g(x)),

where G is a discrete group G, X a shift space with the b.i.p.-property as defined
below and ¢ : ¥ — G alocally constant function. This kind of dynamical system is
called group extension, or, as they first were considered by Rokhlin in [24], Rokhlin
transformation. Even though one might be tempted to think of ¢ as a cocycle, the
probably most fruitful approach is to consider 7 as a kind of random walk on G.
That is, by fixing a potential function ¢ which only depends on the first coordinate,
(p(x) stands for the transition probability to go from (x, g) to (6x, gi(x)), which
is also reflected by the fact that the Ruelle operator £, associated to 7 has many
similarities to the Markov operator of a random walk.

In this setting, it is possible to obtain the following operator theorem which is the
main result (Theorem 5.1) of this note. Under a technical condition (which is satisfied
if, e.g., ¥ is compact), itis shown that there exists a Lipschitz continuous map u — v,
from the space of probability measures on ¥ x G to the space of ¢-finite, conformal
measures, that is v, is o-finite and £, (v,) = pv,,. This map is constructed using the
method by Denker-Urbanski in [8]. By adapting ideas of Patterson [20] and Sullivan
[31] from hyperbolic geometry, one obtains by variation of p a family of strictly
positive, p-harmonic functions. In here, we referto 2 : ¥ x G — R as harmonic or
p-harmonic if L,(h) = ph. In particular, Theorem 5.1 gives rise to families of o-
finite, conformal measures {1/}, p-harmonic, positive functions {/}, and T -invariant
measures {hdv,}. Furthermore, as the conformal measures are pairwise equivalent,
the function K(y, z) := (dv,/dv)(z) for a fixed conformal reference measure v is
defined and, as shown in Theorem 5.1, its logarithm is locally Lipschitz continuous
with respect to the first coordinate and 7 -invariant with respect to the second.

It is important to point out that these families might not be one-dimensional. For
example, the classical and general result of Zimmer in [34] (see [14] for a version
for group extensions) states that ergodicity implies amenability. Hence, as G not
necessarily is amenable, v, might not be ergodic and the standard argument for
uniqueness of conformal measures no longer is applicable. However, for the setting
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in here, a sharp criterium of classical flavour holds (Proposition 5.3). That is, v, is
conservative and ergodic if and only if

o0

n—1
Yot > [Te@ @) =co.

n=1 T (x,id)=(x,id) k=0

Hence, it is of interest to analyse the families of conformal measures and harmonic
functions if T is non-ergodic. In order to have explicit examples at hand, we use the
fact that a random walk with independent increments can be identified with a group
extension. For T associated with the random walk on Z¢ or the free group F, the
d-dimensional central limit theorem and the local limit theorem by Gerl and Woess
in [12], respectively, allow to explicitly determine K. For these specific examples,
it turns out that the family of conformal measures is one-dimensional for Z¢ and
non-trivial for Fy.

For a further analysis of the general setting, these conformal measures are
employed to construct a positive map from the space of functions C whose loga-
rithm is uniformly continuous to the space of harmonic functions H satisfying a
certain local Lipschitz condition (Theorem 6.1). Then, in order to at least roughly
determine the behaviour of harmonic functions and v at infinity, further ideas from
probability and ergodic theory are employed. Namely, for a given pair (k, v) of a
positive harmonic function and a conformal measure, hdv is invariant and therefore,
the natural extension of (7', hdv) is well-defined. Therefore, through Martingale
convergence, it is possible to show (Corollary 6.3) for G non-amenable and under a
symmetry condition that

vy ({G ) - (0" w))) 1 x € ) = 0(p"),

for a.e. w € ¥ with respect to the equilibrium measure of (X, 6, ). These results
also have a canonical application to the dimension theory of graph directed Markov
systems, which is outlined in Theorem 7.1.

Remark. After submitting the article, the author was made aware of the results
inspired by Martin boundaries by Shwartz in [29]. In there, a complete description
of harmonic functions and conformal measures on locally compact shift spaces was
obtained.

2 Topological Markov Chains

We begin with defining the basic object of our analysis, that is topological Markov
chains and their group extensions. For a countable alphabet VV and a matrix (g;; :
i, j € W)witha;; € {0,1} foralli, j € VW and no rows and columns equal to 0, let
the pair (X, 0) denote the associated one-sided topological Markov chain given by
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Z::{(wk: k=1,2,..) : wp € W, ayu,,, =1Vi=0,1,...},
0:X—>2,0:(wp: k=1,2,..)~> (wp: k=2,3,...).

A finite sequence w = (wjw; ... w,) withn e N, wp e Wfork=1,2,...,n and
Ay, = 1fork =1,2,...,n — lisreferred to as admissible or as word of length
n, the set of words of length n will be denoted by WW" and the set

[wl={(w)eX : wy=wnuVYk=1,2,...,n}

is referred to as a cylinder of length n. Furthermore, |w| denotes the length of a word
and W = qux;l W?" the set of all admissible words. Since 6" : [w] — 0" (Jw]) is
a homeomorphism, observe that the inverse 7, : 6" ([w]) — [w] is well defined.

As itis well known, X is a Polish space with respect to the topology generated by
cylinders and ¥ is compact with respect to this topology if and only if W is a finite
set. Moreover, the topology generated by cylinders is compatible with the metric
defined by, for r € (0, 1) and (wy), (v) € X,

dr (W), () = rmin(i;w,.#vl_)_] .

Observe that with respect to this definition, the r"-neighbourhood of (w;) € X is
given by the cylinder [wjw; ... w,] of length n. Also recall that ¥ is topologically
transitive if for all a, b € W, there exists n € N such that 8" ([a]) N [b] # @ and is
topologically mixing if forall a, b € W, there exists N € Nsuch that 6" ([a]) N [b] #
¢ for all n > N. Moreover, a topological Markov chain is said to have big images
and big preimages if there exists a finite set Zyi, C W such that for all v € W, there
exists 31, B> € Lyip such that (v3)) € W2 and () € W2, Finally, we say that a
topological Markov chain satisfies the big images and preimages (b.i.p.) property if
the chain is topologically mixing and has big images and preimages (see [27]). Note
that the b.i.p. property coincides with the notion of finite irreducibility for topological
mixing topological Markov chains as introduced by Mauldin and Urbanski [18].

Potentials. A further basic object for our analysis is a fixed, strictly positive function
¢ : ¥ — Rwhich is referred to as a potential. This function might be seen as weight
on the preimages of a point and in many applications, ¢ is defined as the conformal
derivative of an underlying iterated function system. For n € N and w € W", set
D, = ]_[Z;(l) pob* and &, := ®, o1,. We refer to ¢ as a potential of (locally)
bounded variation if

{ D, (x)
up { ——=

:neN, weW' x, e[w]}<oo.
@, (y) Y

From now on, for positive sequences (a,), (b,) we will write a,, <K b, if there exists
C > Owitha, < Ch, foralln € N,and a, < b, if a, < b, < a,.For example, the
above could be rewritten by ®,,,|(x) =< ®,,(y) forall w € W* and x, y € [w]. A
further, stronger assumption on the variation is related to local Holder continuity.
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Recall that the n-th variation of a function f : ¥ — R is defined by

Va(f) =sup{|f(x) = fODI 1% =i, i =0,1,2,....n—1}.

The function f is referred to as a locally Holder continuous function if there exists
0 <r < 1land C > 1 such that V,(f) « r" for all n > 1. Moreover, we refer to a
locally Holder continuous function with || f||oc < 00 asa Holder continuous function.
We now recall a well-known estimate. Forn < m, x, y € [w] for some w € WW", and
a locally Holder continuous function f,

n—1

1 —n
|k§f09"(x)—f00"(y)| K" (1)

In particular, if logp = f is locally Holder continuous, then ¢ is a potential of
bounded variation. Moreover, as ™" = d(8"(x), 6"(y)), there exists C,, > 1 such
that

[Pu(x)/Pu(y) — 1] < Cpd(x,y) and Py, (x)/Py(y) < Cy

forallw e W*® and x, y € [w].

Conformal measures. In here, due to the fact that the constructions canonically
lead to o-finite measures, we will make use of a slightly more general definition of
conformality by allowing infinite measures. We refer to a o-finite Borel measure p
as a p-conformal measure if

1
u(ﬁ(A))=/ —dp
AP

for all Borel sets A such that 6|, is injective. For w = (w; ... w,) € W" and a
potential of bounded variation, it then immediately follows that

p(fw]) =< @, (x) p(@(wil)) 2

for all x € [w]. Note that this estimate implies that P (6, ) = 0 is a necessary
condition for the existence of a conformal measure with respect to a potential of
bounded variation. Moreover, if p(@([w])) =< 1 (e.g., if u is finite and 0 has the big
image property), we obtain that

p(w]) < @, (x) 3)
foralln € N, w € W" and x € [w]. Also note that a probability measure satisfying
(3) is referred to as a w-Gibbs measure.

Ruelle’s operator, b.i.p. and Gibbs-Markov maps. Ruelle’s operator is defined,
for f : ¥ — R in a suitable function space to be specified later, by
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L,(f)= Z loquy - pomy - foTy.

veW

Furthermore, there is an associated action on the space of o-finite Borel measures
defined through [ fdL%(v) := [ L,(f)dv, for each continuous f : % — [0, 00).
We then have that v is a ¢/p conformal measure if and only if L% (v) = pv. If,
in addition, there is a measurable function 4 : ¥ — [0, c0) with L, (h) = ph, then
dp := hdv defines an invariant, o-finite measure, thatis y = p o 6~!. Moreover, for
¢ = @h/(ph o), we have L (1) = 1.

An important consequence of the b.i.p. property is a Perron-Frobenius-Ruelle
theorem in case of an infinite alphabet WW! (see [18, 27]). That is, if (X, ) has the
b.i.p. property, log ¢ is Holder continuous and || L,(1)]l < 00, then there exists
a Gibbs measure p and a Holder continuous, strictly positive eigenfunction 4 of
L, which is uniformly bounded from above and below. Moreover, in this situation,
(X, 0, ) has the Gibbs-Markov property, that is . is a Borel probability measure, for
allw € W', pand p o 7, are equivalent, inf {,u(@([w])) Twe Wl} > 0 and there
exists 0 < r < 1 such that, forallm,n € N,v € W", w € W" with (vw) € W™"*",

v d v
T (x)—log MU OT

di o
sup |log H | < r". €]

x,yelw] dﬂ

As it is well known, the action on the space of bounded continuous functions of
the transfer operator with respect to u coincides with L., and, with A referring to
the function given by the Perron-Frobenius-Ruelle, 2dy is an invariant probability
measure with exponential decay of correlations and associated transfer operator given
by L(L,:h)/(phoﬁ) (see [3, 27])

Furthermore, several arguments in here are based on an inequality in the flavour
of Doeblin-Fortet or Lasota-Yorke for arbitrary topological Markov chains (X, 6)
and potentials ¢ such that log ¢ is locally Holder continuous. For f : ¥ — R, define

D(f): T — [0,00), (x1.32..) > sup LSO
vielal  dr(y,Y)

That is, D(f)(x) is the local Holder coefficient of the function f restricted to [a],
with x € [a]. Now assume that L,’;( f) is well-defined. Then, for x, y in the same
cylinder,

ILL(f)x) = LE(H )]

®,(y)
Z 1— @, (x) f oTy(x) + Dy (y) (f o7 (x) — foT(y))

veWw” (DU(x)
< CoLL(1f D)y (x, y) +r"LE(D(f)(¥)dr (x, y)
< Cpdy(x, y) LL(If1 +7"D(f)) (x) &)
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If, in addition, for all a € W', either f(x) = Oforallx € [a]or |f(x)/f(y) — 1| <
Cud.(x,y) forall x, y € [a], set LD(f)(x) := 0 in the first case and LD (f)(x) :=
sup{|f(x)/f(y) —1]/d-(x,y) : x, y € [a]} in the second case. By the same argu-
ments,

ILL(F)(x) = L]

fon(y)
< Cpdy(x, ) LY (1fD) (x) + Cy q>v(x>|fon(x>|‘ —1‘
’ 7 XW: fom(x)
< Cpdy(x, ) LY (If1 (L +r"LD(f))) (x) (6)

3 Group Extensions of Topological Markov Chains

Fix a countable group G and a map ¥ : ¥ — G such that v is constant on [w] for
all w € W', Then, for X := ¥ x G equipped with the product topology of ¥ and
the discrete topology on G, the group extension or G-extension (X, T) of (X, 0) is
defined by

T:X — X, (x,9) — (0x, g¥(x)).

Note that (X, T) is a topological Markov chain with respect to the alphabet W' x G
and the following transition rule: ((a, g), (b, h)) is admissible if and only if (ab) €
W? and giy(a) = h, where ¥(a) := 1(x), for some x € [a]. Furthermore, set X, =
¥ x {g} and

Yn(x) 1= Y)P(@Ox) - - (0" ' x)

forn € Nand x € ¥. Observe that ¢, : ¥ — G is constant on cylinders of length n
which implies that ¥ (w) := ¥y (x), for some x € [w], k <n and w € W", is well
defined. If k = n, we will write ¥, := 9, (w). It is then easy to see that the finite
words of (X, T') can be identified with W™ x G by

((wo, ..., wn), 9) = ((wo, 9), (W1, gP1(W)), ..., (Wa, g¥n(W))).

Also observe that topologically transitivity of (X, T') implies that {¢)(a) : a € W'}
is a generating set for G as a semigroup.

Throughout, we now fix a topological mixing topological Markov chain (X, ),
and a topological transitive G-extension (X, 7). Furthermore, we fix a (positive)
potential ¢ : ¥ — R with Pg (0, ) = 0. Note that ¢ lifts to a potential ©* on X
by setting ¢*(x, g) := ¢(x). For ease of notation, we will not distinguish between
* and ¢. Moreover, for v € W, the inverse branch given by [v, -] will be as well
denoted by 7,, that is 7,(x, g) := (7, (x), g¢»(v)™"). In order to distinguish between
the Ruelle operator of § and T, these objects for the group extension will be written
in calligraphic letters. That is, fora € W, £ € [a] x {id}, (n,g) € X,andn € N,
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LUNHE 9 =) o) f oTu(&, 9)-

veW

Remark 3.1 In the context of topological transitivity, it is natural to ask whether
(X, T) is ergodic with respect to the product of the Gibbs measure on ¥ and the
counting measure. For example, a classical result of Zimmer in [34] (see also [14])
states that ergodicity of (X, T) implies that G is amenable, that is, there exists a
sequence (K,) of finite subsets of G with | J,, K, = G such that

lim |gK,AK,|/|Ky| =0 Vg€ G,
n—00

where A refers to the symmetric difference and | - | to the cardinality of a set. More-
over, it was shown in [30] for this class of extensions that Ps(7T) = P (#) implies
that G is amenable. Hence, if G is a non-amenable group, then P;(T) < Pg(0) and
(X, T) is not ergodic. In particular, by bounded distortion, 7" has to be totally dis-
sipative. For a further criterion for ergodicity, we also refer to Corollary 5.3 below.
Also note that the classical result of Varopoulos on recurrent groups motivates the
conjecture that a group extension only can be ergodic if G is a finite extension of the
trivial group, Z or Z2.

Symmetric extensions. In several interesting applications, group extensions are sat-
isfying a certain notion of symmetry. In here, we will use a pathwise notion (as in
[30]) in contrast to the more general notion in [13]. Namely, we say that (X, 8, ¥) is
symmetric if there exists W! — W!, w — w" with the following properties.

1. Forw e W, (wh" = w.
2. Forv, w € W', the word (vw) is admissible if and only if (w'v") is admissible.
3. Y =)~ forallv e W

Moreover, we refer to (X, 0, v, ©) as a symmetric group extension if (X, 0, ) is
symmetric and, with  : W — W™ defined by (w; ... w,)" := (w! ... w)),

sup  sup ®nl@)
neN xe[w],ye[w'] D, (y)

4 Conformal o-Finite Measures

As a first step towards a Ruelle theorem for group extensions, we now adapt ideas
from [8, 20] in order to obtain invariant measures for the dual of the Ruelle operator. In
contrast to [8, 20], the method in here gives rise to conformal o-finite measures, which
seems to be advantageous as group extensions in many cases are totally dissipative
dynamical systems and therefore might not admit finite invariant measures. We now
fix £ € ¥ and, forn € N, set
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2O = Y ) =Lk id).

6" (xX)=€,¥u (x)=id

Since the construction relies on the divergence of a power series at its radius of
convergence, recall that, for a sequence of positive real numbers (a,), the radius of
convergence of ), a,x" is equal to 1/p where, by Hadamard’s formula,

p = limsup V/a,.

n—o0o

We now ensure divergence at the radius of convergence by pointwise multiplication
with a slowly diverging sequence as given by the following result. For the proof, we
refer to [8].

Lemma 4.1 For a positive sequence (a,) with p < 0o, there exists a nondecreasing
sequence (b, : n € N) withb, > 1 foralln € N such that lim,,_,» b, /b1 = 1 and
forall s > 0,

> =00 s<p
E bya,s™" -
o <00 §>p.

Moreover, there exists a non-increasing sequence (\(n) : n € N) with A(n) > 1 and
A(n) — 1 such that b, = [],_; Ak).

Now suppose that p = lim sup </ Z"*(§) < oo. Then, for (b,) given by Lemma 4.1
applied to a, = Z"(£), we have that

P(s) =Y s"bu2"().

neN

diverges as s \ p. Furthermore, for p < s < 00, set

1 —n
my 1= o) Zs b, Z D, (x)d;, @)

neN T (2)=(.id)

where ¢, refers to the Dirac measure supported in z. Note that, by construction,
my(X;q) = 1 for all s > p. In order to construct a o-finite, conformal measure, we
consider an accumulation point v of {m,} in the weak* topology, i.e. convergence
of f fdmg to [ fdv for every bounded and continuous function f. For ease of
notation, we now identify ¥ with X;, and, for B C ¥ with T* Bx(id) Invertible and
T*(B x {id}) C Xia, the restriction T*|p. ;4 with 0¥|p.

Lemma 4.2 Assume that, for s; \( p, there exists a probability measure m on X
which is the weak*-limit of (my, : | € N). Then, for each pair (B, k) with B € B(X),
k € N such that TkIBX{,-d} is invertible and T*(B x {id}) C X4,
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m(0*(B)) = f ot/ ®rdm. (8)
B

Proof Suppose that B is a cylinder, that is B = [w] for some w € W" and m > k.
Since T* is injective on B x {id}, we have, for s > p, that

1 b, ®,(x) 1 anDn(ka)
m@ By == Yy A==y Y
P(s) neN xef"(B)NE, § Ps) neN xeBNO~*(E,) §
_ 1 bn+kq)n+k(x) bnsk
P(s) Z Z stk b @i (x)

neN xeBNE, 1

In particular this gives

k

1 bn kq)n k(x)
(04(B)) — S 4 | < — b Intk Ttk )
‘m‘( ) denk(x) m“‘ P(@%‘M ’ 2 s

X€BNE, 1

1 k

P(S)Z D by (6" (x))s*

n=1 xeBNE,

+

By Lemma 4.1, it follows that lim P(s;) = oo, and hence the second term of the
right hand side tends to zero as [ — oo. Since lim,,—, o b,, /b, = 1, we then obtain
that the first summand also tends to zero. Moreover, by applying the Portmanteau
theorem to the open and closed set [w], it follows that (8) holds for [w]. As B(X) is
generated by cylinders, the lemma follows. U

As it seems to be impossible to show the existence of a weak*-accumulation point
of (my) in full generality, the following condition is introduced.

Definition 4.3 We say that the group extension (X, 6, ¢) satisfies property (C) if
there exists (b,) as in Lemma 4.1 and (sx) with s; N\ p such that (m,) converges
weakly* to some probability measure on X;; as k — 0o.

In order to obtain criteria for property (C), recall that Prohorov’s theorem states
that a sequence (m,, ) has a weak*-accumulation point if and only if for each € > 0
there exists a compact set K and ko € N such that m,, (K) > 1 — e for all k > ko, or
in other words, if (m;,) is tight. In particular, if X is a subshift of finite type, then the
property is always satisfied. By lifting the limit from X to X as in [7, 9] we arrive at
a conformal, not necessarily finite measure for 7.

Theorem 4.4 Assume that (X, 0) satisfies the b.i.p. property, log @ is Holder contin-
uous, ||L,(1)|l < 00 and that (X, T) be a topologically transitive group extension
with property (C). Then there exists a o-finite, nonatomic, (p/p)-conformal measure
v with v(Xy) < oo, for each g € G. Furthermore, there exists a sequence (s) with
Sk \{ p, such that, for each non-negative, continuous function f : X — R,
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dv = bus " (L] id 9
/f MOP()ZM( N id). ©)

Before giving the proof, recall that the conditions on (X, 6, ) are equivalent to
the existence of a probability measure u such that (X, 8, u) is a Gibbs-Markov map
with the b.i.p. property. Hence, the above theorem holds in verbatim for topologically
transitive group extensions of Gibbs-Markov maps, with p playing the role of a
reference measure.

Proof By property (C), there exists s \ p and m such that m is the weak*-limit of
(mg, : k € N). Using Eq.(8) in Lemma 4.2, we extend m to a measure v on B(X)
as follows. For b € W' and g € G, there exists by transitivity j € Nand u € W/*!
with 77/ ([u, id]) = [b, g]. The restriction of v on [b, ¢] is now defined by

f@ydv(x,h):= | fobtlp//®;dm,
[b,g] [u]

for each bounded and continuous function f : ¥ — R.Inparticular, if f is supported
on [b], then by the same arguments as in the proof of Lemma 4.2,

/ f)dv(x,h)y= | foblp//d;dm
[u]

= lim bap’s; 0 0/ (x)(@;(x) " @, (x)
k=00 P(Sk) Z P xeg[u] f
i 1 ,
=k11>nolo P(sk) Zb” is ’i 1 Z Puj M)
¥ onsj 0TI (& id))NIb,g]

This proves Eq. (9). Finally, using the construction of v from m and the big preimages
property, it easily can be seen that v(X,) < oo foreach g € G. (]

We now collect several immediate consequences from conformality and the b.i.p.-
property in the base.

Proposition 4.5 For the measure v given by Theorem4.4, the following holds.

1. Iflim, Z"(&)p™ =0, then v(X) = 00

2. IfL,(1) =1, thendvo T™' = p~ldv.

3. Forw e W", x € [w]and g € G, we have p"v([w, g]) < ©,(x)v(X gy, x))-
4. If the extension is symmetric, then

v(Xy) =< v(X,), v(w', vy g, < v(w, gD).

Proof The first assertion follows from (9) applied to f = 1. In order to prove part
2, note that L, (1) = 1 implies that £,(1) = 1. Hence, for f € L'(v), we have
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gL —n g pn—1
P()Zb (LLf o T, id) = P()st (L NE id)

-1

S b” —n+1 n—1
P(S)Z o b LN ).

Since P(s) /" oo as s — pand lim, b, /b,_; = 1 as s — 0o, we obtain that [ f o
Tdv = p~' [ fdv. Part 3 is a consequence of conformality and the b.i.p. property.
Namely, by (2),

p"v([w, g1) = @, ) (0" (W) x {g1hn(0)}) < ©p (v (X gy, ) -

Furthermore, by the big images property, there exists a € Ty, such that [a] C
0" ([w]). Hence, it remains to show that v([a, h]) < v(X},) for all & € G. By the
big preimages property, for each y € X, there exists b € Zy, such that y € 6([b]).
Hence, by transitivity of 7', there exists a finite word w such that awb is admissible
and 1, = id. Hence, v([a, h]) > v([awb, h]) < v(0([b]) x {h}) with respect to
a constant only depending on awb, which implies that

| Toiplv(la, k1) > Y v(@([b]) x {h}) = v(Xy).
bEIbip

The proof of the remaining assertion relies on a similar argument. For each w € W™
with 10, = g and ¢ € §™!([w]), there exists by transitivity a finite word u such that
such that wu is admissible, & € 8™+ ([w'u]) and ¥, = id. As Zyip 1s finite, u can
be chosen from a finite set. Hence, by the definition of ~ and the symmetry of , we
have v(X,-1) < v(X,4) which implies that v(X,-1) < v(X,). The second assertion
follows from this and part 3. (]

5 The Ruelle-Perron-Frobenius Theorem for Group
Extensions

In order to prove the existence of eigenfunctions for the Ruelle operator, we make
use of a well-known idea from hyperbolic geometry (see [20, 31]): As the reference
point for the construction in Theorem 4.4 was chosen arbitrarily, there exists a family
{v¢ : ¢ € X} of conformal measures. It is then relatively easy to show that ¢
dv; /dv defines an eigenfunction, provided that {; } is a family of pairwise equivalent
measures. In here, this approach is partially generalized by constructing a conformal
measure v, for a given probability measure 1 on X. In order to do so, recall that the
Vaserstein distance W of two probability measures (i, (i is a metric compatible with
the weak convergence and is equal to, by Kantorovich’s duality,
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W(u,ﬁ)=sup{/fd(u—ﬂ) :D(f) < 1},

where D(f) := sup{| £ (C) — f(O1/d((,{) : ¢, ¢ € X} denotes the Lipschitz coeffi-
cient with respect to the metric defined by d((x, g), (v, 9)) = d,(x, y) and d((x, g),
(x, h)) = 1for g # h. In the following theorem, v refers to the o-finite, conformal
measure on X given by Theorem4.4 with respect to some fixed base point in X;,.

Theorem 5.1 Let (X, T) be a topologically transitive group extension with property
(C) of a Gibbs-Markov map with the b.i.p. property. Then there exists a sequence
(sx) with s, \y p such that for each . € M(X),

1
= lim —— Y b,s, "(L")* 10
Y s P(se) % St (B 1o

exists. Furthermore, {v, : p € M(X)} is a family of pairwise equivalent measures
and for the Radon-Nikodym derivative K : P(X) x X — R, (i, 2) = (dv,/dv)(2),
we have the following.

1. There exists D > 0 such that for v-a.e. z € X, g € G and probability measures
1, to supported on X g,

|log K(p1, 2) —log K(p2, 2)| = DW (11, p12)-

2. Forall u € M(X), we have K(C’;(u), 7) = pK(u, z) for v-a.e. z.

3. For each u € M(X), the map K(u, -) is T-invariant, that is K(u, z) = K(u,
T(z)) for v-a.e. z € X. In particular, if T is ergodic with respect to v, then v,
is a multiple of v, K(p, 2) is constant with respect to z and {v,, : i € M(X)} is
one-dimensional.

Remark 5.2 Before giving the proof, we discuss a relation to Ruelle’s operator the-
orem. Namely, by considering the restriction X — M, (X), x — v, 1= v;_, part
(ii) of the above implies that &, : x — K(Jy, z) satisfies L,(h;) = ph,. Hence,
the above gives rise to the construction of a family of o-finite, conformal mea-
sures {v, : 4 € M(X)} and a family of eigenfunctions {h; : z € X}. If v is ergodic,
these families are one dimensional, that is, they are subsets of {rv :¢ > 0} and
{(x = tvy(Xiq) : t > 0}, respectively.

Proof We begin with the construction of v, for the case that p is a Dirac measure
d¢. So assume that ( € E(§) := [,y T7"({(€, id)}), for £ € X and define, for a
non-negative, continuous function f : X — Rands > p,

s 1 —n n
m(f) = 5oy %bns (LLHQ),
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where P (s) is given by (7). It follows from property (C) that mz restricted to functions
on X;; defines a tight family of measures, and hence that, for a suitable subsequence
(s, : j € N) of (s¢) given by property (C),

: 1 —n n
me(f) = Jim 5o %bnsk_, LN (1n)

exists for each non-negative, continuous function f : X — R. In particular, m
defines a measure. Since E (&) is countable it is moreover possible to choose the
subsequence (si;) such that the limit in (11) exists for all ¢ € E(§) and f non-
negative and continuous. Moreover, as lim, b, /b, = 1 for each k € N, it follows
that

m(fy=p* Y ST Ome () = p LY (). (12)

veWk:(ebk ([v]) x{g}

Hence, for { with T"({) = (&, id), it follows from (12) that, for each Borel set A,
me ig(A) = v(A) = p7"®,({)m¢(A). On the other hand, it follows from transitivity
that there existv € W" andm € Nsuchthat 7, (¢) and (€, id) are in the same cylinder.
Hence, by combining the above argument with bounded distortion, we obtain that

P, () me(A) > v(A) = pT" D, (Ome(A).

In particular, the measures are equivalent and the Radon-Nikodym derivative
K((, +) :=dm¢/dv exists and is a.s. strictly positive.

We now prove that m, (A) =< m, (A) whenever the second coordinates coincide,
thatis (1, & € E(§) N X, for some g € G. In order to do so, assume that (; € [a, g]
for some a € Zyjp. By the b.i.p.-property, there exist b € Zy,;, and & € G such that
(1 € T([b, h]) and by transitivity a finite word w such that awb is admissible with
Yawp = id. As above, it follows that @4, (x)me, (A) K m¢, (A) forany x € [awb].
Hence, as Zyp is finite, m¢, (A) <K m¢, (A) with respect to a constant which does not
depend on ¢; and a € Zy;p.

In order to prove the opposite direction, for each b € Zy;, choose x; € [b]. Also
note that, for each v € W! with ¢; € 8([v]) x {g}, there exists b(v) € Tyip such that
vb(v) is admissible. As ©(7,((1)) < (T, ((Xp), g)), We have by the above that

mo(A)=p"" Y oT(C) M) (A)
v:(ref([v]) x{g}

=p! Z O (T ((Xpw)s 9))) M, (09,90 (A)
v:¢1ef([v]) x{g}

<Y Mg (A) L |Toipl mg, (A).
bEIbip
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Hence, m¢, (A) < m¢, (A) which implies that

sup ({K((X2, 9.2) (x1,9), (x2,9) € E(§),9€ G,z € X}) <oo. (13)

In order to extend K(:, -) to a globally defined function, we now show that {
K(C, z) is log Holder. For k,n € N, (1, & € [a, g1 N EE), a € W', b € WK with
k <nand h € G, we obtain by (5) that

L% L, m) (€)= LL M) ()] = Cod (Cro Q)L Lpn) (C1), (14)
with C,, only depending on the Holder constant of ¢. Hence,
jm2, ([b, k1) — m?, ([b, k]| < Cpm?, (b, KA (1. )
and, by taking the limit,

Im¢, ([b, h]) — mg, ([b, hD)| = Cyome, ([b, KA (C1, G2)-

Since cylinder sets are generating the Borel algebra and are stable under intersec-
tions it follows by taking the limit as [b, h] — z € X that [(dm¢, /dm)(z) — 1] K
d(Cy, ¢2) for v-a.e. z € X. Furthermore, as (i, (; € X, it follows from (13) that
dm¢, /dm¢, < 1. Hence, |log(dm, /dm¢,)(2)| < d((1, (2), which proves that the
function ¢ — log K((, z) is Lipschitz continuous on E (&) N [a, g] with respect to a
Lipschitz coefficient which is independent from z and [a, g]. By a further applica-
tion of (13), there is a uniform bound for | log(dm,, /dm¢,)(z)| which is independent
from z and g. As E () is dense by transitivity, there exists a unique locally Lipschitz
continuous extension of ¢ — log K((, z)) to X. By taking the exponential of this
extension, we obtain a globally defined function which, for ease of notation, will also
be denoted by K(-, -). As the function has the same regularity as the one defined on
E (&), we have shown that there exists D > 0 such that, for all g € G, (1, € X,
and v-ae. z € X,

llog K(¢1, 2) — log K(G2, )| = Dd(G1, &)

In order to obtain the representation (10), note that the construction of m through
(11) extends to all ( € X by the estimate (14) and the fact that E(§) is dense in X.
The next step is to verify that (11) extends to an arbitrary Borel probability measure
1 on X. In analogy to the above, define
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ME(f) = P()st [ rac e

= 7><s> %Zans*" / Lo(f)dp = f m(f)d (),

where the last equality follows from monotone convergence. By a further application
of monotone convergence, it follows that lim; M i f)= f m¢(f)dp which proves
that (11) defines a measure and that v, (f) := f m¢(f)dp. Moreover, as

/fdl/u =/m<(f)du=/ F @K, 2)dv(2)dpu(C), 15)

it follows that dv,, /dv = [ K((, z)d pu(¢), which will also be denoted by K(y, z), by
a slight abuse of notation. This finishes the proof of the existence of v,,. Part 1 of the
theorem then follows from the definition of W through Kantorovich’s duality.

In order to prove part 2, note that (10) implies that, for ( € X and each positive
and continuous function f, that

[ 1@ v = [ ra = jim > i ")

7’()

=) ¢om() lim T )Zb "L T

veWw neN

= pom(Qp / fdvio =Y wom(Qp [ SR, (), Hdv

veWw veW

=p~! / F@LLK(, 2))(dv(z) (16)

where the last identity follows from monotone convergence. Hence, by (15),

p [ = [ 1@ [ Lac©ducane
= [ 1@ [xCaacmane = [ ez, sav

As f is arbitrary, pK(u, z) = K(L (1), z) almost surely, which is part 2 of the
theorem.

For the proof of part 3, note that X is a Besicovitch space and that each v, is
conformal. Therefore, we have for v-a.e. ((w;), g) € X, that

-1
. p fw w, Spdl/

K(M, ((wl) g)) — lim u([(wl wn)a g]) — 1lim 1 [(wa...wn),g¢w, 1 “'

n—co V([(wy...wy),gl) n—oo p” f[(wz,,,w”),gwu,l]@dl/
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It hence follows from continuity of ¢ that K is 7-invariant in the second coordinate.
The second statement is a standard application of the ergodic theorem. O

We now give a brief characterization of the measures given by above theorem
in case of an ergodic extension (as e.g. in Example 1 below for d = 1, 2). For ease
of exposition, we assume that the base transformation is a Gibbs-Markov map with
respect to the invariant probability ;2 on X. In this situation, the product measure pg
of 1 and the counting measure on G clearly is 1/p-conformal and T'-invariant, i.e.
iG = pig o T~'. However, note that ;1 in many cases is totally dissipative, e.g. if
G is non-amenable [14, 34].

If T is conservative with respect to (g, then T alsois ergodicand ), 2 (§) = oo
(see [1, 3] and the proof of Proposition 5.3 below). In particular, p = 1 and G is
amenable by a result in [30]. Since ;16 and v are both 1/¢-conformal, as observed
by Sullivan, dv/d g exists, is T-invariant and hence constant. This then implies that
the measures v¢ are all multiples of the product measure . If 7 is conservative
with respect to v and p < 1, then the same arguments show that the measures v, are
again all multiples of v. In this situation, a result by Jaerisch [14] shows that the
invariant measure s (x, z)dv(x) is unique and is the product of another measure on
¥ and counting measure on G.

As a corollary of the existence of p~! £-invariant functions as shown in Remark
5.2, one obtains the following criterion of classical flavor for ergodicity.

Proposition 5.3 The map T is either conservative or totally dissipative with respect
to v. If T is conservative, then T is ergodic. Furthermore, T is conservative and
ergodic if and only if

D PN = o

Proof Observe that T is a transitive topological Markov chain and that it follows
from

(dv/dvoT)(x, 9) = po(x)

thatdv/dv o T is a potential of bounded variation. Hence, (7T, v) is a Markov fibered
system with the bounded distortion property as in [3]. In particular, (T, v) either is
totally dissipative or conservative and if (7, v) is conservative, then it is ergodic.
Note that p~'L,, acts as the transfer operator on L'(v). It hence follows from the
definition of the transfer operator that, for all W measurable and n € N,

/lwp"'ﬁ,:‘g(x,g)du(x,g) =/IWOT"IdeuzV(T’”(W)ﬁXid).

Now assume that ) °, p™" 2" (£) = oo. It follows from bounded variation and transi-
tivity that the sum diverges forall £ € X. For W :={z € X;y : T"(2) ¢ X;4Vn >
1}, we hence have that v(W) = 0. Hence, the first return map

Tx,, : Xia = Xig, (x,id) — T™(x,g), ny:=min{n > 1:T"(x,id) € X;4}
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is well defined. By substituting v with an equivalent, invariant measure given by
the above theorem, an application of Poincaré’s recurrence theorem gives that T,, is
conservative. It is then easy to see that 7" also is conservative, and hence ergodic. The
remaining assertion is a consequence of the standard result in ergodic theory, that
T is ergodic and conservative if and only if ) p~" L (f) diverges for all f >0,
[ fdv > 0 (see [1, Proposition 1.3.2]). O

6 Harmonic Functions

By applying Theorem 5.1 to Dirac measures, it is possible to construct a map © :
C — 'H from a subspace of the continuous functions to a subspace of p-harmonic
functions. In here, we refer to f : X — R as p-harmonic if L,(f) = pf.In order to
define C, fix a reference point {, € X;4 and set v, := vg,. The space C is now defined
by

Ci= {f X >R ue(f]) < 00, lim Ca(f) =0}, where

Cn(f) :=inf ({C:|f(z1) = f@)| < Clf(zD)IVz1, 22 € [w. gl w e W', g€ G}).

The space might be alternatively characterised as the space of log-uniformly con-
tinuous functions with an integrability condition. Namely, if C,,(f) < oo, then for
[w, g]l, w € W" and g € G either f]}, 4 = 0or f(z) # 0 for z € [w, g]. In partic-
ular, with 0/0 = 1, it follows that

[f(z)/f(z2) =11 < Cu(f), Vzi,22 € [w, g].

Hence,if C, (f) < 1,then f(z1)/f(z2) > 0, thatis the sign of f is constanton [w, g].
These arguments show that f € C if and only if log f} and log f_ are uniformly
continuous, with fi referring to the strictly positive and negative parts of f and
{f # 0} is a union of cylinders of length n, for some n depending on f.

In order to define H, recall that d, refers to the shift metric on X, with r € (0, 1)
adapted to the Holder continuity of log . In order to be able to not only consider
positive p-harmonic functions, the following coefficients for the local regularity of
a function f : X — R are useful.

Do(f) 1= supllf () = FQ@I/dy(x.2) : dr(x,2) < 1)
LD(f) = sup {| 483 — 1| /a1, 22) + dyar 2 < 1]

The space ‘H is now defined through a control of the local Lipschitz constant D, ( f)
as follows.
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HY ={(f: X = [0,00)) : L(f) =pf. LD(f) < o0},
H:={(f: X > R): L,(f) =pf, Fh € H' s.t. D(f) < h(x)Vx € X}.

The map O is then defined by, for f € C,

O(f)@) = 1.(f) = / KG.. ) f ()dva(y).

Based on a slightly more involved version of the argument used in the proof of log-
Holder continuity of K in Theorem 5.1 we are now in position to prove that ® is well
defined and that L D is always bounded by

®,07my .
#ﬂg;; - 1‘/dr(21722) 1de (21, 20) < 1} < oo.

C, :=sup {

Theorem 6.1 The map © : C — H is well defined. If f € H and f >0, then
LD(f) < C, and, in particular, f € H™.

Proof Suppose that f € C. By applying the arguments in (16) to f shows that
L,(O(f)) = pO(f).Hence, itremains to obtain abound on D, ( f). For ease of nota-
tion, set f;, := f o7, forv € W" and n € N. Suppose that z;, z» € [w, g] withw €
Wk, g € G and that n is sufficiently large such that for all v € W", either f,(z;) =
folz2) =001 f,(z1). fu(z2) # 0. Setting 0/0 := 1 and A, = sup, ey | £65 — 1
we obtain by a similar argument as in (5) that

s

|L2(f)z1) = L) ()]
< Z |((Dn,v(21) - (Dn,v(ZZ)) fv(Zl)| + Z |®n,v(Z2) (fv(Zl) — fv(ZZ))|

vewn veyyn
=3 (- =2 0@ fi)|+ Y | file) (£ 1))
veWwn veWwn

=Cyd,(z1,22) - LLU D) + An - LL1 D (22).

Since lim,,_, o, A, = 0, we have

1©(f)(z1) = O(f)(22)| = |v;, (f) — v, ()]
= Ctpdr(zlv ZZ)Vzl(|f|) = der(zl, Z2)®(|f|)(zl)

Hence, D, (f) < C,O(|f)(z1). By dividing with ®(] f|) and substituting f with
| f1, the same argument shows that LD(®(| f|)) < C,. In particular, ©(| f|) € H*.
Now assume that f € H and f > 0. Then there exists h > 0 with D,(h) < h and
£¢(fz) = ph. By similar arguments,



290 M. Stadlbauer

Ih(z1) = h(z2)| = p™" |LL () (z1) — L (h)(22) ]
< p7" (Cpdy (21, 22) L (M) (21) + 1"y (21, 22) L1(D.(1))(22))

< Cod, (21,2 (h@) +r"h(22))

Since n is arbitrary and r € (0, 1), LD(h) < C,. O

The classical Martin boundary of a random walk on a group is a quotient of the
space of paths, where two paths (gx), (hx) in G are identified if limy K (-, gx) =
lim; K (-, hy), where K refers to the Martin kernel (see, e.g., [33]). In the context of
group extensions, the natural candidate for a path in G is given by (¢ (x)), for some
x € X, whereas the function (z, g) = v,(X,)/v(X,) might serve as the analogue
of the Martin kernel.

Here, the situation is different. Assume that (x, g) = ((wy), g) € X. Using the
conformality of v in Proposition 4.5, we have by Theorem5.1 that, for f, :=
1w, w,.g1/Vo([wr - . . wa, g1),

v,(Xgy, ) _ vo([wi ... wy, g])

= =0 (f, 7% K(z, (x. 9)).
oK) ety gl O W) @) (& (. 9))

6.1 Natural Extensions and Immediate Implications

In order to obtain information on the asymptotic behavior of elements of H, we now
employ ideas from the theory of Markov processes, which are similar but somehow
dual to the ones for Markov maps. Namely, in order to obtain a stochastic process
associated with (X, T'), we consider the process with transition probability (dm o
Ty/dm)(x) for transitions from x to 7, (x), where m is an T -invariant measure. Hence,
the appropriate object are the left-infinite sequences with respect to an invariant
measure m constructed from m. That is, the stochastic process is the left half of
the natural extension of (X, T, m) whose construction in case of an underlying shift
space we recall now. Set

Y .= {((wiv gl) i€ Z) Wi € Wla gi € Gaaw;w;H = 17 gi+1 = glw(wl)} 5
S:Y =Y, (w,g)) — (W], g)), withw; = w;y1, ¢; = git1 Vi € Z.

In other words, S is the left shift on the two sided shift space Y. The cylinder sets of
Y are given by, for (wow; - - w,) € W', h; € G and k € Z,

[((w07 gO) tee (wnv gn))]k
= {((vi, h) €Y & Wiy b)) = (wj, g7), for j=0,1,...,n}.
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If m is T-invariant, then m([((wo, go) - - - (Wy, gu)) k) := m([(wowy - - - wy), gol)
defines a measure /7 on Y. As it easily can be seen, we then have, for

Y = X, (wi, g) = (w; i =0), go),

that roS=Tom m=momn ', S is invertible, m is S-invariant and (Y, S, m)
is minimal in the sense that the o-algebra JF generated by the cylinder sets of ¥
is generated by {S” (m7'(B)) :n € Z}, with B referring to the o-algebra generated
by the cylinder sets of X. In particular, (Y, S, F, m) is the natural extension of
(X, T, B,m) (see, e.g., [6]).

Observe that there are several canonical choices for the invariant measure m.
Either  is #-invariant and m is the product u¢ of 4 and the counting measure on G,
or dm = hdv,, for some h € H*. However, in both cases, it is possible to identify
martingales with respect to the filtration (7, : n € N), where F,, := S" o 7' (B).
We begin with the analysis of (Y, S) with respect to ig.

Proposition 6.2 Suppose that y is 0-invariant and that h € H*. Then, for Jig-a.e.
z€eYl,
hoo(z) :== lim p™"homo S7"(z)
n—oo

exists. If p < 1, then hoo = 0, and if p = 1, then hoo = hoo 0 S and ho, < 00 a.s.
Proof Set W, :=p"homoS™. Since fig is S-invariant, [ foTgduc =
[ fL(g)dug and L, (h) = ph, we have for all A € B that

f E(Wn+1|}—n)dﬁ6

S1(r=1(A)

=p ! / lyomoS™ homwoS™" \dlig
=p ! f 140T hdug = p™" / 14hdpc

=p7"/‘1Ao7roS7”ho7roS7”dﬁG = / W.diiG.
Sn(r=1(A))

Hence, E(W,41|F,) = W, and (W,, F,) is a positive martingale. In particular,
hs := lim, W, by Doob’s convergence theorem. As it easily can be verified, we
have hoo = phoo o S. Furthermore, by Fatou’s Lemma and the martingale property,
[y hood i < [, hdp for all measurable sets A C X, which implies that z, < 00
a.s. O

By applying the proposition to @ (1y,,), we obtain the decay of v along p-a.s. path
as n — —oo. If the extension is symmetric, the result also transfers to paths with
n — oo.

Corollary 6.3 If p < 1 and pc is invariant, then, for lig-a.e. (w;), g) € Y,
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Vo([w—y ... w_1, g]) _o.

lim vo(Xgp, v )/p" =0, lim
oo ° Gw-+bu_y n—00 ,u,([w_n .w_1])

Moreover, if the group extension is symmetric, then for p-a.e. x € ¥ and g € G,

Vo([ws - . wa, Y (X)gtn()~'D) _
p(lwy ... w,])

0.

lim I/O(Xw”(x))/pn =0, lim
n—00 n—00

Proof The first two assertions follow from v, 4 (X;q) < 14(X4-1) and (iii) of Propo-
sition 4.5, whereas the last two assertions are a consequence of the fact that Y — Y,
(w;), 9) — ((wii), g) is a non-singular automorphism. U

By considering the natural extension of the invariant version of 1,, we obtain
a further convergence. That is, as the measure dmj, := hdv, is T-invariant, there
exists a unique extension to an invariant, o-finite, S-invariant measure 77y, on Y. The
analogue of Proposition 6.2 is as follows.

Proposition 6.4 Suppose that f,h € H, h > 0 such that || f/ h|| < 00. Then, for
mp-a.e.z €Y,
. fomoST(2)
g = lim ————
w(f)(2) A 50)

exists, E4(f) o S = Bn(f) and Ez, (En(f)|Fo) = f o7/ h o w. Moreover, for the
signed invariant measure m ¢, we have dm ¢ /dmy, = E,(f).

Proof The proof that (f omo S™/homo S7"|F,) is a bounded martingale and
is the same as above and therefore omitted. Hence, E;,(f) is well defined and by
bounded convergence, we have for A € B and k € N that

/ En(f)dmy,
Ska=1(A)

S_n
= lim 1Ao7roS_ka7T—o

dmy,
n—00 homoS™™

=1lim [ 140T"*fdv, = /lAfduo =ms(A) =i (S*77'(A)).

n—o0o

Since F is generated by {F,, : n € N}, we have E,(f)dni, = dm . The remaining
assertion in the conditional expectation is a consequence of the above for k = 0. [J

7 Applications and Examples

The construction of conformal measures has the following application to conformal
graph directed Markov systems. In order to have a zero of the pressure function, we
have to assume that there exists # > 0 such that
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timsup o/£", (1, (€. id) = 1, (17)

Lo (Dloe < 00 (18)

are satisfied. It follows from standard arguments that the expression on the left hand
side of (17), seen as a function of 4, is continuous and strictly decreasing to O on its
domain of definition. Hence, if there exists i’ such that the left hand side of (17) is
finite and greater than or equal to 1 and (18) holds, then there exists a zero of the
pressure function. In the context of graph directed Markov systems, this property is
known as strong regularity (see [19]). Furthermore, if |[WW!| < oo, then this is true
for 4’ = 0, and in particular there always exists a zero of the pressure function in this
case.

Now let § be given by (17) and set ps := exp(Pg (#, ©°)) > 1.1t then follows from
the Ruelle-Perron-Frobenius theorem for systems with the b.i.p. property (see, e.g.,
[27]) that there exists a ps/¢°-conformal probability measure 15 and a Holder con-
tinuous function A5 with L s (hs) = pshs such that 6 has the Gibbs-Markov property
with respect to the invariant measure given by ssd 5. As an application of Theorem
4.4 and Proposition 4.5 we obtain that there exists a o-finite measure v on X which
is 1 /gp‘s-conformal, and which satisfies, for w € W”" and x € [w],

v([w, g1) = ®° OV (X gy, ) (19)

Theorem 7.1 Assume that the group extension is symmetric and that property (C),
(17) and (18) are satisfied. Then, for us-a.e. (wy) € %,

i 1080w -+ wy, idD) P60, ¢)
s log @, (x) J(ogp)hsdps’

Moreover, the group G is amenable if and only if the above limit is equal to 0. If G
is non-amenable, then, for ys-a.e. (wy) € X,

i L v([wi e wy,id]))
m Ps =

s (@,())° O

Before giving the proof, we sketch a straight forward application to conformal
dynamical systems. Namely, if X is given by a conformal iterated function system,
the inverse branch 7, corresponds to a conformal map and @), o 7, to its conformal
derivative. In this situation, the above limit can be identified with the v-dimension
dim,, of the support of y5. Hence, with H (hsd ) referring to the entropy of hsd s,
it follows from the variational principle that

P, ¢°) H (hsdps)

A U H) =0 o oymsdps — 2 Toghsdps
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Moreover, note that in many regular situations, J is equal to the Hausdorff dimension
dim(K) of the attractor K of the iterated function system. In this situation, the
amenability of G is equivalent to dim,, (supp(is)) = dim(K).

Proof of Theorem'1.1 By symmetry and Proposition 6.2, lim, (log v(Xy,)))/n =
log p°. Hence, by (19),

| s id 1 Xu x P50, ¢°
im og(v([wy, id])) — 5+ lim og v(Xy,x)) 4 (0, ¢°) '
n—oco  log @,(x) n—oco log ®,(x) lim,,_, oo (log ®,,(x))/n

The above limit exists by application of the ergodic theorem. The amenability cri-
terion is an immediate corollary of Kesten’s criterion for group extensions in [30],
where it is shown that Pg (0, <p5) = 0 if and only if G is amenable. For the remain-
ing assertion, note that ps < 1 by non-amenability. The assertion then follows from
Corollary 6.3. g

In order to have concrete examples of the o-finite measure at hand, we give two
examples from probability theory, where known local limit theorems give rise to
explicit expressions.

Example 1 The first example is Polya’s random walk on Z¢. Choose (p; € (0, 1) :
i €{£l,...,£d}) with Zle(p,v + p—i;) = 1 and consider the random walk on Vi
with transition probabilities P (+e;) = pi;, where ¢; refers to the i-th element of the
canonical basis of Z7.

This random walk has an equivalent description through the following group
extension. Let ¥ be the full shift with 2d symbols {—d, ..., —1,1,...,d} and ¢ the
locally constant function defined by ¢|[+;} := p+;. Note that Zf:l(p,v +p_i)=1
implies that L,(1) = 1. Moreover, it is well known that the measure defined by
w(liy ...in]) := pi, - - - pi, is O-invariant, ergodic and 1/p-conformal. The associated
group extension is defined through

i T 0
G 74 (i) ] T
—e€_j, Zl]<0

As X is the full shift and ¢ is constant on cylinders, it follows from the construction
that v, gy = vy, forall x, y € ¥ and g € G. Therefore, we only will write v, for
V(x,q)- In order to apply known local limit theorems from probability theory, observe
that

LAx)x 9= Y ) =PX,=g),

weW": i, (w)=g

where X, = h refers to the random walk at time n started in the identity with dis-
tribution (p;) and P to the probability of the associated Markov process. By the
local limit theorem for Polya’s random walk ([32, Theorem 13.12]), we have that,
for (ki,...,ks) € Z¢ and n € N such that n — (k; + - - - + k) is even,
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POy = (..o k) ~ 2 (2L, /pims) ﬁ( pl/p_,)k‘.

i=1

Hence, p = 225;1 JDip—i and, with \; := /p;/p_i,
Ll (Ly,, . )(x.id) ~Cn™"? ”HA"‘

Recall that a random walk is called symmetric if p; = p_; foralli =1,...,d.
The estimate then implies that p = 1 if and only if the random walk is symmetrlc.
Furthermore, by Proposition 5.3, the term n~%/? implies that the group extension
is ergodic and conservative with respect to v if and only if d =1 or d = 2. It is
remarkable that this conclusion is independent of symmetry. In order to determine
v;q explicitly, note that the local limit theorem implies that

—n n . d
Via(X,,...kp) = lim 2nen bnsi " (L4 Lxy, ) (X5 1) = l_[)\,—k,-
i (ST ) k— 00 ZnEN bnsk_n (‘CZIXM)(X, ld) .

1=
Using conformality then gives that, for a cylinder [(i{, ..., i,), z] in ¥ X 7z,
Via([G1 ... 10), 2)) = p " piy -+ DiVid Kegpn i)
n n
=p""pi - Pivia XD [ [N = p " wia XD [ [ VPoPe
k=1 k=1

\/pl'kp i (20)
i=1 v/ PiP—i

In particular, the last term in (20) reveals the local symmetry

—via(X z)]"[z

Vid([(il oIk ...in), Z]) = Vid([(il o=y ...in), Z]), (k el,... ,n),

whereas globally, the measure is multiplicative with respect to the last component,
that is

Vig([(1 .. 1), 21 + 22]) = vig([Gr - - - 00), 21 Dvia ([ - - 00), 22]).

Furthermore, (20) implies that the the function K from Theorem 5.1 is given by

d
Sy by = v(X,).

K (SX s 7h =
(0 .9) (y, h)) dvg
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These considerations might be summarized as follows. If ¢ is symmetric, then p = 1
and v(X,) =1 for all g € 74 If ¢ is not symmetric, then p < 1 and {v;4(X,) :
g € 7} neither is bounded from below nor from above. Moreover, the function A
defined by h(x, g) := v4(Xiq) is an L,-proper function by Remark 5.2. Therefore,
dm := hdv is T-invariant. However, as it easily can be verified, m(X,) =1 for all
g € Z¢ and, in particular, m is the measure associated to the symmetric random walk

with transition probabilities P(te;) = \/pip—i/ 2D /PkDP—k)-

Example 2 In this example, we replace the group Z¢ with the free group Fy with d
generators gi, .. ., g4. As above, the transition probabilities are given by P(gy;) =
p+i, where g_; := g !, The construction of the associated group extension then has
to be adapted only by changing v to

l/) Y= Fd, (lllz) = gi,-
As above, we now apply a local limit theorem. The result of Gerl and Woess in [12]
is applicable in full generality, however, for ease of exposition, we restrict ourselves

to the special case where q := ./p; p—; does not depend on i. Then, by (5.3) and
(5.4) in [12], we have that p = 2g+/2d — 1 and that

P(X, =gi,--gi,)

i — —1 k/2
R T e G VL l_[% 21
forn and k even and g;, - - - g;, inreduced form, thatis i; # —i;;,forl =1,...,n —

1. Also note that there is a misprint in Eq. (5.4) in [12]. In there, one has to replace
d/(d — 1) in the first factor by its inverse as in (21). As above, the right hand side
in (21) is equal to v;4(X i "'gik)' Using the identities for ¢ and p and setting Cy :=
1+ k(d — 1)/d, this gives that

k k
Via(Xg; g,) = Ce(2/p) H gA—i, = Cr(2/p) H Diy-

i=1 i=1

Since the identity requires that g = g;, - - - g;, is in reduced form, we have to intro-
duce the following operations on finite words in order to obtain a formula for arbi-
trary cylinders. For w = (i ...i,) € W", there exists a unique k < n and a word
(i - - - jx) € WK such that v, (w) = gj, -+ gj, 1s in reduced form. We will refer to
v(w) := (ji ... jx) as the active part of w, whereas the word which is obtained by
deleting the entries of t(w) from w is referred to as the inactive part i(w) € W"* of
w. Note that ¢, (v(w)) = ¥, (w) and ¥, (i(w)) = id. Moreover, for a given word
v=_(~>i...1,) € W", we will refer to x(v) := (—i,, ..., —ir, —i1) as the inverse
word of v. For ease of notation, we also will make use of the Bernoulli measure on
% defined through p([iy ... i) = pi, - pi, -

As it will be shown below, the measure of a cylinder [w, g],forw € W"andg € G
and the function K given by Theorem 5.1 depend on possible cancelations of the
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concatenation of the path to g € G and w. So, let v, € W" be given by 9,,(vy) = ¢
and i(vg) = ¥, that is v, is given by the reduced form of g. With k := |v(v,w)|, the
conformality of v;, implies that

via([w, g1) = p~ " u(wDvia(X g ) = p~" (w1 Cr(2/p)* ([ K (x(vyw))])

in case that t(vyw) # @. If t(v,w) # ¥, then v;4([w, g]) = p~"u([w]) by the same
arguments. The identity now allows to determine the function K explicitly. That is,
for g1, 9o € G, x € Z and (w¢,)) with w,) € W" and x = lim,[w(,)], we have vy
a.s., that

(wes 92D o via(wey, g7 ' g2])
K = lim 2200920y DB 9 920
91 (. 92)) = n—>00 Viq([Wey, g21) e Vig([wwy, g21)

= lim _Clt(vgf‘.vzw—(n))l <%>t(ug‘lf/2w(”’)t(v”zwm) LR, wen))])
P /J/([K'(t(vgzw(n)))])

100 Cle(y,, )|
Observe that total dissipativity implies that (¢, (x) : n € N) = (¥, (wq,y) : n € N)
will almost surely only return finitely many times to a finite subset of G. Hence, the
first term in the product converges to 1 whereas the second and third eventually are
constant. By setting kg, 4, (x) 1= lim, |gflggz/),,(x)| — |29, (x)], analyzing the
cancelations in v -1 vg, w) and vg, w(, and using that q* = pip-i, it follows that

k-1, we)))
K , _ 2 k”l qz(x)l 91 92
(91, (x, 92)) = (2/p) Jim u([n(t(vgzwm)))])

% = 2d = )7 g D /vy, .

=2/ p)knn® .

The regularity of 2 can now be analyzed through &, ,,. In order to do so, for each
open subset U of X and g = g1 € G, observe that k, 4, (U) is equal to {—]|g|, 2 —
lgl, .- -, lg] — 2, |g|}. This implies that

sup K(g, 2) —(2d — 1)|m w([vg])
vzev K(g, 2) pu([kvgl)

In particular, the fluctuations of & (g, -) only depend on |g| and the quantity p([vy])/
1([xvy]), which measures the asymmetry of the random walk. If the random walk is
symmetric, thatis p; = p_; = 1/2d foralli = 1, ..., d, then this simplifies to

kg, uz )

= V2d — 1/d, via(X,) = Cjyy2d — )™ %, K(g1, (x. g2)) = 2d — 1)"
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The Boundaries of Golden-Mean Siegel m
Disks in the Complex Quadratic Hénon L
Family Are Not Smooth

Michael Yampolsky and Jonguk Yang

Abstract As was recently shown by the first author and others in Gaidashev et al.
(Renormalization and Siegel disks for complex Henon maps, [12]), golden-mean
Siegel disks of sufficiently dissipative complex quadratic Hénon maps are bounded
by topological circles. In this paper we investigate the geometric properties of such
curves, and demonstrate that they cannot be C I_smooth.

Keywords Henon map + Renormalization - Siegel disk + Complex dynamics

1 Introduction

Up to a biholomorphic conjugacy, a complex quadratic Hénon map can be written
as
H.,(x,y) = (x> +c+ay,ax) for a #0;

this form is unique modulo the change of coordinates (x, y) + (x, —y), which
conjugates H, , with H, _,. In this paper we will always assume that the Hénon map
is dissipative, |a| < 1. Note that for a = 0, the map H, , degenerates to

(x, y) = (fe(x), 0),

where f.(x) = x? + c is a one-dimensional quadratic polynomial. Thus for a fixed
small value of ay, the one parameter family H. ,, can be seen as a small perturbation
of the quadratic family.
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As usual, we let KT be the sets of points that do not escape to infinity under for-
ward, respectively backward iterations of the Hénon map. Their topological bound-
aries are JT = 9K*. Let K = Kt N K~ and J = J~ N J*. The sets J*, K* are
unbounded, connected sets in C? (see [3]). The sets J and K are compact (see [13]).
In analogy to one-dimensional dynamics, the set J is called the Julia set of the Hénon
map.

Note that a Hénon map H, , is determined by the multipliers ;2 and v at a fixed
point uniquely up to changing the sign of a. In particular,

uy = —a?,

the parameter c is a function of @ and p:

wooal pooa\’
c=(1-a)|s-—)-(E-—) .
2 2u 2 2u
Hence, we sometimes write H,, , instead of H. ,, when convenient.
When v = 0, the Hénon map degenerates to

H,0(x,y) = (P,(x),0), where P, (x) = x> + /2 — 1i* /4. (1)

We say that a dissipative Hénon map H, , has a semi-Siegel fixed point (or simply
that H, , is semi-Siegel) if the eigenvalues of the linear part of H. , at that fixed point
are u = >, with § € (0, 1)\Q and v, with |v| < 1, and H,, is locally biholomor-
phically conjugate to the linear map

L(x,y) = (ux,vy).

The classic theorem of Siegel states, in particular, that H,, , is semi-Siegel when-
ever 6 is Diophantine, that is g, < cqff , where p, /q, are the continued fraction
convergents of #. The existence of a linearization is a local result, however, in this
case there exists a linearizing biholomorphism ¢ : D x C — C? sending (0, 0) to
the semi-Siegel fixed point,

H,,ocp=¢olL,

such that the image ¢(ID x C) is maximal (see [15]). We call ¢(D x C) the Siegel
cylinder; itis a connected component of the interior of K ™ and its boundary coincides
with J T (see [4]). We let

A = ¢(D x {0}),

and by analogy with the one-dimensional case call it the Siegel disk of the Hénon
map. Clearly, the Siegel cylinder is equal to the stable manifold W*(A),and A C K
(which is always bounded). Moreover, A C J, the Julia set of the Hénon map.
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Remark 1.1 Let q be the semi-Siegel fixed point of the Hénon map. Then A C
W¢(g), the center manifold of ¢q (see e.g. [18] for a definition of W¢). The center
manifold is not unique in general, but all center manifolds W¢(gq) must coincide
on the Siegel disk (it is unknown if they may extend beyond its boundary). This
phenomenon is nicely illustrated in [16], Fig.5.

In a recent paper [12] it was shown that:

Theorem 1.2 ([12]) There exists € > 0 such that the following holds. Let 0, =
(v/5 — 1)/2 be the inverse golden mean, ., = ¢*™%, andlet |v| < €. Then the bound-
ary of the Siegel disk of H,, ,, is a homeomorphic image of the circle.

Furthermore, the linearizing map

¢:Dx {0} —> A 2)
extends continuously and injectively to the boundary. However, the restriction
é:S'x {0} > dA

is not C'-smooth.

This is the first result of its kind on the structure of the boundaries of Siegel disks of
complex Hénon maps. It is based on a renormalization theory for two-dimensional
dissipative Hénon-like maps, developed in [10]. While renormalization technique is
new in the study of two-dimensional Siegel disks and Siegel Julia sets, it has a history
of one-dimensional applications (see e.g. [14, 21]). Below, we will briefly review
the relevant renormalization results.

Theorem 1.2 raises a natural question whether the boundary A can ever lie on a
smooth curve. Classical results (see [20]) imply that the smoothness of A must be
less than C!*¢ — otherwise, ¢ would have a C I+¢ extension to the boundary, contra-
dicting Theorem 1.2. However, we can ask, whether OA canbe a C 1_smooth curve.
In the present note we answer this in the negative:

Main Theorem Let € > 0 be as in Theorem 1.2 and |v| < €. Then the boundary of
the Siegel disk of H,,, , is not C'-smooth.

We note that the question of smoothness of Siegel disk boundaries for polynomial
maps of C has a rich history. For quadratic polynomials

00(z) =22+ ™7, e R,

with Brjuno rotation numbers 6, in particular, it is known that the boundary of the
Siegel disk Dy at 0 can be smooth for some rotation numbers (see [1] and references
therein). In contrast, for 8 = 6, (and more generally, for rotation numbers of bounded
type), it is known that 9Dy is not smooth, is a quasicircle, and contains the critical
point O [7]. The proof of the latter theorem, due to A. Douady, E. Ghys, M. Herman,
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and M. Shishikura, is based on the technique of quasiconformal surgery, which is
very specifically one-dimensional, and does not generalize to maps of C2.

Let us also mention that Bedford and Kim [2] have recently shown that the set J
cannot be smooth. Note, however, that the Julia set of a quadratic polynomial Qy is
never smooth [17], however, as mentioned above, it may possess a Siegel disk with
a smooth boundary.

2 Review of Renormalization Theory for Siegel Disks

In this section we give a brief summary of the relevant statements on renormalization
of Siegel disks; we refer the reader to [10] for the details.

2.1 One-Dimensional Renormalization: Almost-Commuting
Pairs

For a domain Z C C, we denote H(Z) the Banach space of bounded analytic func-
tions f : Z — C equipped with the norm

ILfII' = sup|f(x)]. 3)

xeZ

Denote H(Z, W) the Banach space of bounded pairs of analytic functions ¢ =
(n, &) from domains Z C C and W C C respectively to C equipped with the norm

1
ISl = 5 Climlt + 11D - “4)

Henceforth, we assume that the domains Z and W contain 0.
For a pair ( = (1, &), define the rescaling map as

A(Q) = (s; " omosc, s 0&os), (5)

where
sc(x) == Acx and A¢ = £(0).

Definition 2.1 We say that { = (n, &) € H(Z, W) is a critical pair if n and & have
a simple unique critical point at 0. The space of critical pairs is denoted by C(Z, W).

Definition 2.2 We say that { = (1, ) € C(Z, W) is a commuting pair if

no§=~¢on.
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Definition 2.3 We say that { = (1, £) € C(Z, W) is an almost commuting pair (cf.
[5, 19]) if '
d'(no&—Eom)

0)=0 for i =0,2,
I 0) or i

and
§€0) =1
The space of almost commuting pairs is denoted by B(Z, W).

Note that if { = (n, §) € C(Z, W), then the first order commuting relation is
automatically satisfied:

dino&—=Eomn

T (0) =7'(€0)E'(0) — £'(n(0))n'(0) =0.

Proposition 2.4 (cf. [10]) The spaces C(Z, W) and B(Z, W) have the structure of
an immersed Banach submanifold of H(Z, W) of codimension 2 and 5 respectively.

Denote
c(x) == x.

Definition 2.5 Let ( = (, §) € B(Z, W). The pre-renormalization of ( is defined
as:

PR((M,8) :=Mmo&, n).

The renormalization of ( is defined as:

R((n, &) :=A(conoloc,conoc).
It is easy to see that

Proposition 2.6 The renormalization of an (almost) commuting pair is an (almost)
commuting pair (on different domains).

The following is shown in [10]:

Theorem 2.7 There exist topological disks Z>Z and WD W, and an almost
commuting pair C = (s, &) € B(Z, W) such that the following hold:

(1) There exists a neighbourhood N ((y) of (. in the submanifold B(Z, W) such that
R:N(G) = BZ, W)

is an anti-analytic operator.
(2) The pair , is the unique fixed point of R in N'(,).
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(3) The differential DR2|<* is a compact linear operator. It has a single, simple
eigenvalue with modulus greater than 1. The rest of its spectrum lies inside the
open unit disk D (and hence is compactly contained in D by the spectral theory
of compact operators).

2.2 Renormalization of Two-Dimensional Maps

For a domain Q C C?, we denote () the Banach space of bounded analytic
functions F : Q — C? equipped with the norm

IFIl= sup [[F(x, »I. (6)
(x,y)e
Define
[Flly == sup [0yF(x, y)ll. (7N
(x,y)e
Moreover, for
Ji
F = ,
K
define
| Fllgiag := sup |l fi(x,y) — fax, V. (3
(x,y)eR

Denote H (€2, I') the Banach space of bounded pairs of analytic functions X =
(A, B) from domains  C C? and I' C C? respectively to C? equipped with the
norm

1
12 = 5 A+ 11B1) - )]
Define .
1=y = 3 (IIAlly + 1IB1ly) - (10
Moreover, :
12 | giag == 3 (Il Allgiag + I B lldiag) - (11)

Henceforth, we assume that
Q=ZxZ and '=W x W,

where Z and W are subdomains of C containing 0.
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For a pair ¥ = (A, B) € H(2, I'), define the rescaling map as
A(Z) = (s3' 0 Aosy, sy oBosy), (12)

where
se(x,y) ;== (Agx, Agy) and Ay := p;B(0).

Let U = Z or W, and consider F : U x U — C? given by
Sfilx, y)
F(x,y) = .

(. ) |:f2(x, y)

Define p)F : U — Cand p,F : U — Cas
piF(x) = fi(x,0) and p2F(x) := fo(x,0).

The operator p; is a projection map from the set of two-dimensional maps to the set
of one-dimensional maps.
Let f : U — C be a one-dimensional map. Define ¢(f) : U x U — C? by
Jfx)
(Hx,y) = .
(x ) [ )

Note that we have

eCOIy = 11t diag = O,

and
pLotLt= Id.

The operator ¢ is an embedding from the set of one-dimensional maps to the set of
two-dimensional maps.

Let{ = (n, &) and £ = (A, B) be a one-dimensional pair and a two-dimensional
pair respectively. Define

Q) := (), u(§)) and pi(X) := (P14, p1B).

Definition 2.8 For 0 < x < oo, we say that ¥ = (A, B) € H(2, ') is a k-critical
pair if piA and p;B have a simple unique critical point which is contained in
a rx-neighbourhood of 0. The space of k-critical pairs in H(€2, I') is denoted by
Cz(Q, F, IQ).

Definition 2.9 We say that ¥ = (A, B) € C,(R2, T, k) is a commuting pair if

AoB =BoA.
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Definition 2.10 We say that ¥ = (A, B) € C5(R2, T, k) is an almost commuting
pair if

d'pilA, B] d'pi(AoB—BoA)
"2 (0) = ,
dx! dxt

0)=0 for i =0,2,

and
p1BO) = 1.

The space of almost commuting pairs in C,(€2, I, k) is denoted by B, (2, ', ).

Proposition 2.11 (cf. [10]) The space B,(S2, T, k) has the structure of an immersed
Banach submanifold of H(2, ') of codimension 3.

For0 < €, § < oo, let H(2, T, €, §) be the open subset of H(S2, I') consisting of
pairs ¥ = (A, B) such that the following holds:

(M IZlly <€, and
(2 ”Z”diag < 4.

We denote
C(2, 1,66,k :=H(Q,T,6,0) NCX, T, k), (13)

and
B (2, T,¢,6,r) :=H(Q,T,60) NBR2, T, k). (14)

Define C,(2, T, 0,0, 0) as the set of pairs ¢ such that { € C,(2, T, ¢, 9, k) for all
€, 0, k > 0. The definition of B,(2, T, 0, 0, 0) is similar. Note that

WC(Z,W)) =Ca(2,T,0,0,0), and «(B(Z,W)) =B, T,0,0,0),

where C(Z, W) and B(Z, W) denotes the space of one-dimensional critical pairs and
almost commuting pairs respectively.

Proposition 2.12 (cf. [10]) Ife¢, 0, and k are sufficiently small, then there exists an
analytic map T, : C2(R2, T, ¢, 0, k) = B2(2, T, €, 9, k) such that

Hac|Bz(Q,F,e,5,/{) =Id. (15)

We are now ready to define the 2D renormalization operator R. Our approach
is to extend the action of the 1D operator R on «(B(Z, W)) = B,(2,T, 0,0, 0)
to nearby 2D pairs ¥ = (A, B) € B,(2, T, €, 6, k). It turns out that in order to
ensure the hyperbolicity of R, the definition of R(X) must incorporate non-linear
changes of coordinates that are only well-defined away from the critical values of
p1(X) = (p1A, p1B). This requires us to take four iterates of R before extending it
to 2D pairs.
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Notation 2.13 Let 7 be the space of all finite multi-indexes
T=(ai,...,ax) € ({0} UN)*" forsomen € N.
For a pair ( = (1, &) and a multi-index w = (ay, ..., az,) € Z, denote
F=Emonio. . 0l on™
Similarly, for a pair ¥ = (A, B), denote
¥ =B o0 A® ' o... 0 B” 0 A".

Let{ = (n, &) € B(Z, W) be a four-times 1D renormalizable pair. Define multi-
indexes @, b1, @, and E/l by

(€@, Py = pRY QO = (otonotonotonnobon’ol) = <no£o<5’unofo<(5';>6.)

Let D(2, T, 0) be the subset of H (2, I') consisting of pairs ¥ = (A, B) such
that the following holds:

(1) The functions A : @ — C? and B : I' — C2 are of the form

A(x,y) = [28} and B(x,y) = [ggﬂ .

(2) The pair ¢ := (1, £) is contained in B(Z, W) and is four-times 1D renormaliz-
able.
(3) The function g is conformal on (5/1 Uyu C” 1(U), where
U := )‘pRA(C)Z Uw.

Let D(2,T,€) C H(R2, T, €, 00) be a neighbourhood of D(£2, I', 0) consisting
of pairs ¥ = (A, B) such that for

3= (2@, xh), (17)
the pair A(f)) is a well-defined element of H (2, I'). Moreover, for
Vi=AZUW,

the following holds:

(1) piA is conformal on (p; A)~1(V),
(2) p1(A o B)is conformal on (p;(A o B))‘i(V), and
(3) p»B is conformal on p; % (V) and p; £ (V).
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Consider the fixed point {, = (7%, &) € B(Z, /V\V) of the 1D renormalization oper-
ator R given in Theorem 1.2. Fix € > 0, and let M (¢({,)) C D(R, T, €) be a neigh-
bourhood of ¢((,) whose closure is contained in D(2, T, €). Let

s—m=([2.[])

be a pair contained in N (¢(¢4)). Denote
n;(x) == p;A(x) and & (x):=p;B(x) , fori e{l,2},

and let
¢ =, &).

Denote
ay(x) :=a(x,y),

and consider the following non-linear changes of coordinates:

H(x,y):= |:ay)()X):| and V(x,y) = |:771 o0& iﬁz_l(y)]' 1o

Observe that

X

. [ayoa;')]
AoH '(x,y) = [ } - [g(ayl(x),y)]

g9(a; (x), y)
Furthermore,
VoHoB:[ d0b }
moé&o& og
Thus, we have

|[AoH ™', <O() and ||[VoHoB—i(no&)| < O).

Let B
Al'=VoHoA 'oXm"oAoH 'oV!,

and _
Bi:=VoHoA 'oX"0AoH 'oVL

Define the pre-renormalization of X as

PR(X) = Xy := (A4, By). (19)
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By the definition of D(€2, T, €), the pair A (pR) is a well-defined element of H(€2, T).
From the above inequalities, it follows that

IPR(E) = e(pRYO) < O(e) and [|pR(D)], < O(e?). (20)

By the argument principle, if ¢ is sufficiently small, then the function p;B; o A;
has a simple unique critical point ¢, near 0. Set

Ta(x,y) = (x +cq4» y)- 2y

Likewise, the function p;7, ! o Aj o By o T, has a simple unique critical point c;
near 0. Set
Tp(x,y) := (x +cp, ). (22)

Note that if ¥ is a commuting pair (i.e. Ao B = B o A), then T;, = Id.
Define the critical projection of pR(X) as

M0 pR(Z) = (A2, By) = (T, ' o T, ' 0 Ay o T,, T, 0 B0 T, 0 T)). (23)

Note that )
0= (p1(By 0 A2)) (0) = (p1A2) (0) + O(€),

and likewise
0= (pi(Bs o 42)'(0) = (p1B2) (0) + O(e)).

Hence,
(p142)(0) = O(€*) and (p1By)'(0) = O(€). (24)

It follows that there exists a uniform constant C > 0O such that the rescaled pair
A o i o pR(XT) is contained in C2(2, T, Ce2, Ce, Ce?) (recall that this means
A o I 0 pR(X) is a Ce?-critical pair with Ce? dependence on y that is Ce away
from the diagonal; see (13)).

Finally, define the 2D renormalization of X as

R(X) := My 0 A o Ierig 0 pR(X), (25)

where the projection map I, is given in Proposition 2.12.

Proposition 2.14 If ¥ = (A, B) € D(R2, T, €) is a commuting pair (i.e. Ao B =
B o A), then R(X) is conjugate to (@, o).
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Proof If X is a commuting pair, then I is equal to conjugation by the translation
map
T,(x,y) :=x+ca, y).

Moreover, by Proposition 2.12, IT,. is equal to the identity when restricted to almost
commuting pairs. The claim follows. (I

Theorem 2.15 ([10]) Let (. be the fixed point of the 1D renormalization given
in Theorem 1.2. For any sufficiently small € > 0, let N'(1((,)) C D(R, T, ¢) be a
neighbourhood of 1((,) whose closure is contained in D(2, T', €) . Then there exists
a uniform constant C > 0 depending on N (¢(Cy)) such that the 2D renormalization
operator

R:D(Q,T,e) > H(Q,T),

is a well-defined compact analytic operator satisfying the following properties:

(1) Rigucy i N@(G)) — Ba(Q, T, Ce, Ce, CE).
(2) If £ = (A, B) e N((¢)) and  := (p1A, p1 B), then

IR(Z) — «(R*O)|| < Ce.

Consequently, if N'(Cx) C B(Z, W) is a neighbourhood of (. such that L(N ((,))
C N (&), then
Ro iy = to R v

(3) The pair 1((,) is the unique fixed point of R in ./V(L((*)).

(4) The differential DR is a compact linear operator whose spectrum coincides
with that of DC*R“. More precisely, in the spectral decomposition of D )R,
the complement to the tangent space T,,)(t(N(())) corresponds to the zero
eigenvalue.

We denote the stable manifold of the fixed point ¢((,) for the 2D renormalization
operator R by W*(¢((,)) C D(2, T, ¢).

Let H,, , be the Hénon map with a semi-Siegel fixed point q of multipliers y, =
2% and v, where 6, = («/3 — 1)/2 is the inverse golden mean rotation number,
and |v| < e. We identify H),_, as a pair in D(L2, I', €) as follows:

XH

PV

= A(H, . Hy,.). (26)

The following is shown in [12]:

Theorem 2.16 The pair Xy, is contained in the stable manifold W*(1((,)) C

D(2, T, €) of the fixed point () for the 2D renormalization operator R.
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3 Proof of Main Theorem

3.1 Preliminaries

Let
Ce = (4, &)

be the fixed point of the 1D renormalization operator R given in Theorem 1.2. By
Theorem 2.15, the fixed point of the 2D renormalization operator

R : N () = Bo(Q, T, CE, Ce).
is the diagonal embedding ¢(() of (.. Thus, we have
UG = RUG)) = (57" 0 t(O)™ 054,571 0 (O 05,

where
5.0, y) == (Ax, Ay) L (Al < L

Let ¥ = (A, B) be a pair contained in the stable manifold W*(.((,)) of the fixed
point ¢((,). Assume that ¥ is commuting, so that

AoB =BoA.

5= (A By) = <[2] , [?D =R'(D).

M (x) := p1A,(x) = a,(x,0) and &,(x) := p1B,(x) = b,(x,0).

Set

Let

By Theorem 2.15, we may express
Ay, =1(m) + E, and B, = (&) + Fy (27
where the error terms E, and F,, satisfy
IEq|| < Ce" and ||F,|| < Ce& . (28)
Hence, the sequence of pairs {%,}7°, converges to B(2,T,0,0,0) super

exponentially.
Let

o= GVt v = [ g )
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be the non-linear changes of coordinates given in (18), let
Tu(x,y) := (x +du, y),
be the translation map given in (21), and let
Sn (X, ¥) 1= (X, Any)s Al <1
be the scaling map so that if
Gor1:=H "oV 10T, o0s,
then by Proposition 2.14, we have
App1 =410 A, 0 10 Ay 0 By

and _
—1 —1 b
Biy1=¢,10A, 0X) oA, 0duqr.

For k > n, denote
DX = i1 0 Pp1 0 ... 0By 0 P

(29)

Notation 3.1 Consider the space 7 of finite multi-indexes defined in Notation 2.13.

We endow Z with a partial order relation < defined as follows:

(ai,ai,...,ax,b,c) < (ap,ai, ..., auy, i1, A2p42)

if either k < n and

(1) b <axsyandc =0, or
(2) b = a1 and ¢ < asyo;

or k = n and

(1) b <azypq1andc =0, or
(2) b= Arp+1 and ¢ < arp+42.

Notation 3.2 We denote by
pE, = (pA,, pB,) for neN

the sequence of pairs of iterates of ¥ = (A, B) defined as follows:

(1) let pXp := X, and
(2) forn >0, let

PZnst = (PAutt, PBu1) = (pA, ' 0 pZit 0 pA,, pA,' o pEl o pA,).
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Define multi-indexes @, and 3, by
(£, 20y = px,.
It is easy to see that for k > n, we have
$% = pTi and T = pE). (30)
Lemma 3.3 Let k > n. Then
R(3,) = (@4) 0 S0 o @k (0F)~! o 57 0 0F).

Proof By replacing ¥ with X, if necessary, we can assume that n = 0. We need to
show

RY(D) = (Ar, Br) = (@) ' 0 2% 0 @, (df) ' o P o @f)
= (@) " o pAy o Bf, (PF) "' 0 pBy o BF).
Clearly, it is true for k = 1. Assume it is true for k € N. For

RN(D) = (Akt1, Biyr),

we have
-1 —1 a
App1 = ¢ 0 A o Xy o Ap o drp

and _
-1 -1 b
B”+1=¢k+IOAk OZk]OAkO(karl.

By the induction hypothesis, we see that
A o2 0 Ay = (®F) o (pA) T o pEI 0 pAg o @ = (@5) 7 o pAgy o D
and
B o=l o B = (®f)" o (pB) " 0 p=P o pBi o @k = (@) 0 pBiyy 0 DL
The statement follows. O

For k > n, denote

QF = df(Q) and T*:= o (D).

Define

Uf=J =7@) and V= () =7@h.

< <P
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It is not hard to see that {UX U Vf}72, | form a nested sequence of open domains in
C%
Ul‘l+1 U V’Z+1 IS UV!+2 U Vn+2 @
n n n n tet

Define the renormalization arc of X, as
oo
wi= () UfuVL. 31
k=n+1

Proposition 3.4 For any k > n, denote

ph= | B@ o n) and ¢ = | =@k D).

W<Qk—p wW=<f_,

Then

Tn = PﬁUCIﬁ-

Proof By replacing ¥ with ¥, if necessary, we can assume that n = 0. Let m > k.
By Lemma 3.3 and (30), for any multi-index w < &,,_x, we have

) o I (@) = pE{ 0 DY) = pI{(QF) = E7(Q)
for some & < @,,. Similarly, for any multi-index % < (3,,_;, we have
®f o T () = pEf 0 ®G(TY) = pEi(Tg) = T7(Ig)

for some 7 < Bm. It follows that ¢§(7k) C Y-
Conversely, let & < @,, and 7 < 3,,. By (30), we see that

LT =27 0 pEL(QE) = X7 0 O 0 TE(QM)

and
T =37 o pEF(T) = X7 0 @K o TF(IM),
where

(1) @ < Qs

(2) &< B 3

(3) @ <o and ZP(QY) C Q,0r5 < B and T (QY) C I'; and
@) 7 <agand T C Q,0or7 < B and ZF(IY") C T

The result follows. O

Letf, = (+/5—1) /2 be the golden mean rotation number, and let
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I} :==[-6,,0] and I :=][0,1].
Define L : I; — Rand R : I — Ras
L#):=t+1 and R(t) :=1t—0,.
The pair (R, L) represents rigid rotation of R/Z by angle 0,.

The following is a classical result about the renormalization of 1D pairs.

Proposition 3.5 Suppose | 2|, = 0. Then for every n > 0, there exists a quasi-
symmetric homeomorphism between I; U Ig and the renormalization arc vy, that
conjugates the action of X, = (A,, B,) and the action of (R, L). Moreover, the
renormalization arc y, contains the unique critical point ¢, = 0 of ;..

The following is shown in [12].

Theorem 3.6 Let ¥ = (A, B) be a commuting pair contained in the stable man-
ifold W* (¢(Cy)) of the 2D renormalization fixed point 1((,). Then for every n > 0,
there exists a homeomorphism between I, U I and the renormalization arc vy, that
conjugates the action of X, = (A, B,) and the action of (R, L). Moreover, this
conjugacy cannot be C' smooth.

Theorem 1.2 follows from the above statement and the following:
Theorem 3.7 ([12]) Suppose

X=%u,,

where Ty, , is the renormalization of the Hénon map given in Theorem 2.16. Then
the linear rescaling of the renormalization arc sy() is contained in the boundary
of the Siegel disc A of H,,, . In fact, we have

0A = SO(’YO) UH, A SO(’YO)~

Henceforth, we consider the renormalization arc of X, as a continuous curve
Yo = () parameterized by I; U Ig. The components of v, are denoted

Vo (1)
W (1) = .
" [v;r (r)}
Lastly, denote the renormalization arc of ¢((,) by

v (t)] ‘

=50

The following are consequences of Theorem 2.15.

Corollary 3.8 As n — oo, we have the following convergences (each of which
occurs at a geometric rate):
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(]) T]Yl - 7’]*)
(2) Aw = A (hence s, — s.),

(3) ¢, — 1)y, where
_ 77*1()‘*75)1|
Pe(x,y) = |:n*1(>\*y) , and

(4) Yn — 7« (hence |7, (0)] — 0).

3.2 Normality of the Compositions of Scope Maps

Define

Yrir(x, y) = [”Jl(k"x)].

77{1 (Any)

For k > n, denote
WK = 1 0Ppy2 0. 0Py 0 Uy

Let .
oy 0 _
[On o’k] = (Do ¥,
Proposition 3.9 There exists a domain U C C? that contains Q U A(Q) UT U
B () for all k sufficiently large such that the family {J,’j \Il,'f},fin is normal on U.

Proof By Corollary 3.8, there exists adomain U C C? and a uniform constant A < 1
such that for all k sufficiently large, the map v, is well defined on U, and

QUAQUTIUB(T) € \U.

Thus, by choosing a smaller domain U if necessary, we can assume that v, and
hence, W* extends to a strictly larger domain V 3 U. It follows from applying
Koebe distortion theorem to the first and second coordinate that {of Wk} is a
normal family on U. (]

Proposition 3.10 There exists a uniform constant M > 0 such that

llén = ull < M.
Proof The result follows readily from (27) and (28). U
Proposition 3.11 There exists a uniform constant K > 0 such that

ki) ok k 2on
o, 1P, — W, || < Ke™ .
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Proof By Proposition 3.10, we have

ok = + Exy and ¢ = Uy + Ex,
where [|Ex_1]| < Me* " and ||Ex|| < Me* ™. Observe that
k-1 0 P = 1 0 (Yr + Ex)
= Gr_1 0P + Ex

= (1 + Ex_1) o U + Ex
= 1oy + Ery oy + Ey,

where || E¢|| < Le*™" for some uniform constant L > 0 by Corollary 3.8. Let
Er1:=Eq + Ecot .
By Corollary 3.8, w,jl is uniformly bounded, and hence, we have
Eii|] < Mé® ™ +2L " <2Me .

Thus, we have

k-1 0 Pk = Y1 0 Y + Ex—1 0 Yy
Proceeding by induction, we obtain

O =W, + Epi10 ¥,
where
NEwiill < 2M€™.

By definition, we have
JﬁD(oqo)\Ifﬁ =1Id.

Factor the scaling constant as

ok = gkok

n* n“n+1»

so that

~k

0, Dyt 0.0)¥n+1 =1d,
and

k k

a'n-&-lD(O,())"pn-&-l = Id

Let

C := sup 1, (x).

xeZ
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Observe that 5ﬁ is uniformly bounded by A, 'C. Moreover, by Proposition 3.9, we
have that | o* D, y \IJ,’; 41l is also uniformly bounded. Therefore,

n+1
oy Dix,yy (Ens1 0 Wi DIl = 15, D Enpill - 1oy Dicyy Vil
0 P, y) Ent n+ D) = N0, Pk (x,y) Entl Opr1Px,y) Fnt1
= K sup || D, ) Enqtl
(x,y)
< K&
for some universal constant K > 0. O

By Propositions 3.9 and 3.11, we have the following theorem.

Theorem 3.12 There exists a domain U C C? that contains QU Ax(Q)UT U
By (') for all k sufficiently large such that the family {a,’jCDk Yoo, is normal on U.

n

3.3 The Boundary of the Siegel Disk Is Not Smooth

Let [, t,] C R be a closed interval, and let C : [, t,] — C be a smooth curve. For
any subset N C C intersecting the curve C, we define the angular deviation of C on
N as

Aug(C,N):= sup |arg(C'(1)) — arg(C'(s))], (32)

1,5€C~1(N)
where the function arg: C — R/Z is defined as

arg(re?™ == 0. (33)

Lemma 3.13 Let 0 € R/Z, and let Cy : [0, 1] = C be a smooth curve such that
Cp(0) = 0 and Cy(1) = 2, Then for some t € [0, 1], we have

arg(Cy(1)) = 6.
Lemma 3.14 Let
gr(x) :=x? and Af ={z€C|r <|z| < R}. (34)
Suppose C : [t;,t,] — Dy is a smooth curve such that |C(t;)| = |C(t,)| = R, and
|C(ty)| < r for some ty € [1;, t,]. Then for every 6 > 0O, there exists M > 0 such
that ifmod(Af) > M, then either Ay (C, D) or Ayg(g2 o C, Dge2) is greater than
1/6 — 6.

Proof Without loss of generality, assume that R = 1, and C(#,) = 1. We prove the
case when r = 0, so that C(zy) = 0. The general case follows by continuity.
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Suppose that A, (C, Dr) < 1/6. Then by Lemma 3.13, we have
1/3 < arg(C(%)) < 2/3.

This implies that
—1/3 < 2arg(C()) < 1/3.

Hence, by Lemma 3.13, we have Ay, (g2 0 C, Dg2) > 1/6. [l

Corollary 3.15 Let W C C be a simply connected neighbourhood of 0, let C :
(f;,t,] > W and E : [1;,t,] = C be smooth curves, and let f: W — C be a holo-
morphic function with a unique simple critical point at ¢ € D, for r < 1. Consider
the smooth curve

C:=foC+E.

Suppose C (1)), C(t,) € OW, and |C(ty)| < r for some ty € [t;,t,]. Then for every
d > 0, there exists p > 0 and M > O such that if | E|| < p and mod(W \ D) > M,
then either Ay, (C, W) or Aye(C, f(W)) is greater than 1/6 — 6.

Let U € Z C C be a simply-connected domain containing the origin. For all &
sufficiently large, the unique critical point ¢ of 7 is contained in U. Let V; :=
Nk (U). Then there exists conformal maps u; : (D, 0) — (U, ¢) and vy : (D, 0) —
(Vk, i (cr)) such that the following diagram commutes:

D%, vUu

bl

D L) Vk
By Corollary 3.8, we have the following result:

Proposition 3.16 The maps uy : (D, 0) — (U, cx) and v : (D, 0) = (Vi, mi(ck))
converge to conformal mapsu, : (D, 0) — (U, 0)andv, : (D, 0) — (n.(U), n.(0)).
Moreover, the following diagram commutes:

D% U

lqz lm
D —— n,.(U)

Proof of Non-smoothness By Theorem 3.12, the sequence {015 CI>’5 oo hasaconverging
subsequence. By replacing the sequence by this subsequence if necessary, assume

that {U’6d>’6},f°=0 converges. Consider the following commutative diagrams:
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" ok
D —— U Q — Q
llh lmf and J,Ak lAU .
D —%— v %
Ar(Q) —— Ap(2)

Since {015 <b/6},fio converges, we can choose R > 0 sufficiently small so that if
X :=ur(Dg) C U, and Y; := v (Dgr2) C Vg,

then for any smooth curves C; C Q2 := U x U and C, C A;(S2) intersecting X; X
X and Y, x Y; respectively, we have

HAarg(Clz Xi x Xi) < Aarg(q)](; o Cy, d>](E(Xk x Xi))

and
KD (Ca, Y X Yi) < Agrg(®f 0 Ca, D (Vi x Y1)

for some uniform constant x > 0.
Write

M (x) + e (x, y)] '

A, y) = |:ak(x, )’)] = 1) (x, ¥) + Ex(x, y) = |:77k(x) +ey(x, y)

hi(x, y)

By (28), we have
lEk] = 0 as k — oo.

Consider the renormalization arc of X,,:

_|[m®
%m—LmJ.

Recall that we have
Vus V) —> Y« as n — 00,

where 7, is the renormalization arc of the 1D renormalization fixed point (.

Let0 < § < 1/6. Choose r > 0 is sufficiently small so that the annulus X \ D,
satisfies the condition of Corollary 3.15. Next, choose K sufficiently large so that
for all k > K, we have

leel, e O <7 and [ Exl < p,

where p > 0 is given in Corollary 3.15.
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Now, suppose towards a contradiction that the renormalization arc ~, of X, and
hence the renormalization arc ; of X; for all k > 0, are smooth. By the above
estimates, we can conclude:

Aug (10, PH(Xx X X)) = Aurg (P 0 Y, Ph(Xi x X))
> KAqrg (Y, Xi X Xi)
> "{Aarg(’}/]fa Xk)

and

Aurg (DG 0 %, P (Vi X Yi))
KD arg (Vs Yie X Yi)
KAarg (A 0 Vi, Y X Y)

K Aarg (ar © Vi, Yi)

= KAag (M 0 3 + ex (), Ya).

Aurg (0, @5 (Yi X Y1)

v

\%

By Lemma 3.15, either Aguq(7;, Xi) or Agg(ax o vk, Yi) is greater than 1/6
— 6 > 0. Hence,

max{Aurg (10, Xk X X1)), Aurg (70, DYy X Yi))} > 1

for some uniform constant/ > 0. Since <I>’5 (X x Xp)and <I>’(‘)(Yk X Y) both converge
to a point in vy as k — 00, this is a contradiction. O
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Appendix A
Some Wellington’s Photos From Childhood
to Academic Life

See Figs. A.1, A2, A3, A4, A5, A6, A7, AS.
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Fig. A.1 1.,3.and>5.: As achild, 2. with his parents and wife Gilza; 4. with his parents and sisters;
6. with his parents; 7. with his mother, grandmother and sister; 8. with his mother and sisters; 9.
with his sisters; 10. with his sister
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Fig. A.2 Sailing his boat Doisdu and dancing with his wife Gilza
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Fig. A.3 1,2, 3 and 4.: with Steve Smale, Jacob Palis, Mauricio Peixoto and formal students Maria
Jos Pacifico, Antonio Gaspar Ruas, Edson Vargas, Daniel Smania, Alejandro Kocsard, Artur Avila
and Pablo Guarino
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Fig. A.4 with: 1. M. J. Pacifico, his brother Cleber de Melo, L. J. Diaz, D. Smania; 2. M. Peixoto, 3.
J. Palis; 4. A. Kocsard, M. J. Pacifico, S. Van Strien; 5. A. Verjovsky; 6. Y. Lequain, A. M. Doering,
M. J. Carneiro, J-M. Gambaudo; 8. S. Smale, S. Newhouse, M. J. Pacifico
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Fig. A.5 with: 1. M. J. Pacifico, Gilza; 2. E. de Faria, Gilza, Alcilea Augusto, M. Peixoto, Benar
Svaiter; 3. A. Katok, L. F. da Rocha, E. Zehnder, C. I. Doering; 4. F. Takens; 5. Y. Lequain, A. M.
Doering; 6. J. Palis, Gilza; 7. J. Palis, S. Smale
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Fig. A.6 with: 1. Sabrina, Gilza de Melo, Artur Avila; 2. Marcelo Viana, Konstantin Khanin, Artur
Avila; 3. Dennis Sullivan; 4. Jean-Christophe Yoccoz, Yakov Sinai; 5. Sheldon Newhouse, Alberto
Pinto, Sebastian Van Strien; 6. Gilza de Melo; 7. Suely Lima, Gilza de Melo, Konstantin Khanin,
Marcelo Viana, Maria José Pacifico, Artur Avila; 8. Mikhail Lyubich; 9. Edson de Faria, Daniel
Smania, Jorge Rocha, Roberto Markarian, José Alves, Gilza de Melo, J-M. Gambaudo; 10. Gilza
de Melo
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Hew Trends in

One-dimensional Dynamics

A, B e b, s
Frermbes 14 18, 2014

7 By Phamas

Fig. A.7 with: 1. Artur Avila; 2. Gilza de Melo; 3. Celebrating the 70 years; 4. Blowing the 70’s
candles; 5. Opening table of the meeting: Maria José Pacifico, Marcelo Viana, Steve Smale, Mauricio
Peixoto, Welington de Melo and Jacob Palis
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