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Abstract. Test cases play an important role in testing and debugging
software. Smaller tests are easier to understand and use for these tasks.
Given a test that demonstrates a bug, test case reduction finds a smaller
variant of the test case that exhibits the same bug. Classically, one of the
challenges for test case reduction is that the process is slow, often taking
hours. For hierarchically structured inputs like source code, the state of
the art is Perses, a recent grammar aware and queue driven approach for
test case reduction. Perses traverses nodes in the abstract syntax tree
(AST) of a program (test case) based on a priority order and tries to
reduce them while preserving syntactic validity.

In this paper, we show that Perses’ reduction strategy suffers from pri-
ority inversion, where significant time may be spent trying to perform
reduction operations on lower priority portions of the AST. We show that
this adversely affects the reduction speed. We propose PARDIS, a tech-
nique for priority aware test case reduction that avoids priority inversion.
We implemented PARDIS and evaluated it on the same set of benchmarks
used in the Perses evaluation. Our results indicate that compared to
Perses, PARDIS is able to reduce test cases 1.3x to 7.8x faster and with
46% to 80% fewer queries.

Keywords: Test case reduction - Automated debugging -
Priority aware reduction

1 Introduction

Test case reduction is a technique that aids in testing and debugging software.
When an input for a program causes the program to exhibit a property of interest,
like a bug, finding a smaller input that also exhibits the property can help to
explain the behavior [1-3]. Given an input I € I and an oracle ¢ : I — B that
performs a test and returns true iff a property holds, test case reduction aims to
find a smaller input I’ such that ¢ (I") = true. Often, this problem is approached
through Delta Debugging (DD), a longstanding and effective algorithm for test
case reduction that essentially generalizes binary search [2]. However, for inputs
with significant structure, generic DD can perform poorly, requiring significant
time and not performing much reduction [3,4]. For compilers in particular, where
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the inputs must be valid programs, this has led to specialized techniques like
Hierarchical Delta Debugging [3,4], language specific reducers like C-Reduce [5],
and most recently to Syntax Guided Program Reduction as seen in Perses [6].
Syntax Guided Program Reduction (SGPR) is the present state of the art
for compiler targeted test case reduction. The intuition behind SGPR is that the
grammar defining the language of inputs eliminates many invalid sub-inputs from
the search space. For example, when an input must adhere to the C programming
language [7], removing the return type of a function declaration would not be
valid because the C grammar specifies that the return type is required. Such
syntactically invalid inputs are removed from the search space by SGPR.
Perses, a form of SGPR, takes as arguments not only a program p and oracle
1, but also the context free grammar G of valid inputs [6]. It transforms the
grammar so that removable parts of the input can be identified by the names
of the grammar rules used to parse them. This also normalizes the grammar so
that all removable components are expressed through quantifiers in an extended
context free grammar [8], i.e. optionality (?) and lists (*, +). This transformation
is illustrated in Fig. 1. Notice, for instance, that the recursive rule BAR denoting
a list is transformed (=) into a Kleene-+ quantified list. Individual elements of
the list may be removed while preserving syntactic validity. Perses then parses
the input of interest into an abstract syntax tree (AST) and traverses the AST
while trying to (1) remove optional nodes and (2) perform DD to minimize
the children of nodes representing lists. The grammar transformations have the
benefit of making many syntactically correct removals easy and efficient to locate.

FOO — a FOO_opt BAR — BAR_plus

FOO - alab= BAR — ¢ | ¢ BAR =

FOO_opt — b? BAR_plus — c+
(a) Optional elements like b are refac- | (b) Lists of elements are refactored into
tored into rules with ? quantifiers. rules with * or + quantifiers.

Fig. 1. Overview of Perses grammar transformations for SGPR.

Perses has significantly improved the speed of program reduction. However,
it still takes several hours to reduce some inputs. Consider the code in Listing 1.1
along with its AST in Fig. 3. This example is similar to a C program generated
by the compiler testing tool CSmith [9]. In this example, Perses first considers
the root node with ID (1) of the AST. Since the rule for this node ends in _star,
it is a list node, and its children are the elements of the list. Thus, Perses applies
DD to the list of children for node (1) to minimize the number of children. When
such lists are long, significant time can be devoted to this task. We show in
Sect. 4 that this can lead to substantial stalls in reduction, where no progress
is made while a list is being processed. However, most of the children of this
node have low token weight, the number of tokens beneath a given node that
is denoted by w: in Fig.3. Indeed, greater value would be found by focusing
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on just one of its children, node (5), which contains the majority of the input
beneath it. By spending greater effort up front on portions of the AST of lesser
value, Perses suffers from a form of priority inversion. Priority inversion occurs
when a low priority task is scheduled instead of a high priority task. In this case,
Perses focuses on removing low token weight nodes instead of high token weight
nodes. Indeed, Perses may even fail to remove elements that would enable better
reduction success overall. In this case, the declarations of foo, S, and d are used
within the code beneath node @ Thus, those uses need to be eliminated before
any of the declarations can be removed successfully. In practice, we find that
priority inversion has a significant impact on reduction time in SGPR.

To address priority inversion, we have developed priority aware reduction
strategies for program reduction. By focusing the reduction effort on the nodes
of the AST that cover the greatest number of tokens, we prioritize reduction
of the most complex parts of the input first. This has multiple important ben-
efits: (1) Dependencies between program elements are more likely to be broken
by eliminating the complex uses first. (2) Stalls in reduction from unsuccessful
rounds of DD can be mitigated. (3) By removing large portions of an input ear-
lier on, each oracle query to ¢ can take less time because smaller inputs tend to
be faster to check. We have designed and evaluated a tool, PARDIS, that makes
use of these techniques and found that it leads to consistent and significant
performance improvements over Perses on the Perses benchmarks [6].

In summary, this paper makes the following contributions:

1. Priority awareness. We identify priority inversion as a key problem facing
SGPR techniques and develop priority aware reduction strategies as a poten-
tial solution. Priority aware reduction strategies focus the reduction effort on
the complex portions of an input first, enabling earlier and thus faster test
case reduction (Sects. 3, 4.1).

2. Optimization. We identify redundancies in the reduction process when using
Perses’ transformed grammars and develop a solution to prune them from the
candidate search space (Sect. 3.2).

3. Significant performance improvement. We implemented our strategies
in a tool, PARDIS, and evaluated it on the same benchmarks used by Perses.
Experimental results show that PARDIS both removes more of the input earlier
on and is faster overall. Compared to Perses, PARDIS reduces test cases 1.3x
to 7.8x faster and with 46% to 80% fewer oracle queries (Sect.4.1).

2 Background and Motivation

Consider again the example in Fig. 3 and suppose that the oracle (¢) checks that
this program p should print "Hello World!" on line 24 (marked with ). Thus,
the smallest subprogram for which 1 returns true is the main function with the
desired print statement.

To search for this smaller input inside the original input, Perses traverses the
AST using a priority queue ordered by the token weight. In each trial, the node
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Listing 1.1: A C program with property node to| o ed
of interest on line 24. Lemove |
node(s) to {1} ¥

1 |double d = 0.10; remove removed {5} F

2 | struct S { 12,3457 7 {7} F

3 int f1; 53 P {11} 0

4 int f2; {15} F {4} T

5 }; {é} F {3} T

6 | void foo(struct S s, char str[]){ (3} F {10} T

7 double v = s.f2 + s.f2 x d; {1} F {9} T

8 printf("%s %f\n",str ,v); {5} F {8} T

9 (3.45) P {12} F

10 | int main() { 2’4’5} P {2} T

11 unsigned int a = 1; {2’3’4} F (b) PARDIS

12 char b[] = "first"; {2’3’5} F

12 (.:har cl] = "second”; {8,9,10,11,12,13} F node(s) to removed

if (a) { {8910} F remove

15 struct S sl; {11’1’2 13} P {1} F
16 s1.fl = 1; (8.9} b {5} F
17 s1.f2 — 4000; (1011 = {7} F
18 struct S s2; {12’13} F {11} T
19 $2.f1 = 2; ®) T 14} T
20 $2.f2 = 2000; to} T {3} i
21 foo(sl, b); {12} F {9,10} T
22 foo(s2, c¢); 5 {8} T
23 } (a) Perses {12} F
24 printf ("Hello World!\n"); (*) {2} T
25 return 0; (c) PArDIS HYBRID
26 |}

Fig.2. One round of removal trials in
Perses, PARDIS and PARDIS HYBRID for
the AST in Fig. 3. Numbers are node IDs.

1.translationUnit_ star) w:137

|
1 |4.func_def_foo| w:36 (S.func_def_main) w:85

6.compound__stmt) w:81

main

decl al/‘ decl _b |ﬁ

decl o

|s1.f1 =

|struct S sl; r

foo(s2, ¢);

Fig. 3. AST of the program in Listing 1.1. w denotes the token weight of each node.

with the maximum weight is removed from the work queue and traversed. In
our example, the queue starts out containing only the root of the AST, node @
Perses performs specific reduction operations on different types of nodes during
traversal. For instance, on optional nodes, Perses tries to remove the optional
child node. For list nodes, Perses minimizes the list of children using DD. Any
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remaining children of the traversed node are then added to the priority queue
in order to be traversed in the future.

Observe that in this example, Perses will first examine node @ and remove
it from the queue. Because @ is a list node, DD is applied to the children of @
Different combinations of children are removed from (1) and the result is checked
by % to find a smaller input. First, all children are removed and % is checked.
After this fails, the first half of the children ((2) and (3)) are removed, but
returns false again because this removes required declarations. Since removing
the second half of the children ((4) and (5)) also fails, the process continues
recursively. First DD tries shrinking the list by removing each individual child,
and next it tries only keeping each individual child. Ultimately none of the trials
succeed, so all children are added to the queue, and reduction continues with
node (5). The intervening node (6) is not tested by SGPR because it is not
syntactically removable. The next node removed from the work queue is node
@. This continues until the queue is empty. The precise trials exercised in this
process are illustrated in Fig. 2(a). Note that 16 steps elapse until a successful
trial occurs.

While the priorities used by Perses are controlled by the token weight, they
determine how the children of the traversed nodes are removed. Thus, any node
whose parent in the AST is a list is given the same priority as all other elements
in the list. This is because DD recursively tries to minimize the entire list until
no single element can be removed, regardless of the priorities of individual list
elements. As a result, Perses must employ DD on the entirety of the children of
(D) even though it would be more beneficial to focus on just one child, node (5).

Instead, PARDIS more directly models the priorities. We note that in an
optional or list node, such as @, each child may be removed in a syntactically
valid fashion. We call such removable nodes nullable. When traversing a nullable
node in the AST, we can simply try directly to remove it, adding its children
if the removal fails. For instance, in the running example, we would visit @
first. Because @ cannot get removed, we would simply add its children to the
priority queue. Note that all children of @ are nullable, but @ has the highest
token weight. Thus, we next select (5) to traverse but removing (5) also fails.
From the given token weights, we next traverse (6), which is syntactically not
removable, and then @, which we attempt to remove but is unsuccessful. Next
@ is visited and successfully removed. Removing @ enables the removal of @,
@ and @ Thus, they are removed in a single pass of the tree using PARDIS,
whereas Perses would require multiple traversals of the AST to remove them.
This process continues until the desired output is achieved. As seen in Fig. 2(b),
just 4 steps elapse until the first successful trial removes node @

Note that in this example, PARDIS is able to reduce to the desired output in
a single pass, while Perses requires multiple passes of the AST. In practice, all
program reduction techniques continue until a fixed point is reached, including
PARDIS, however PARDIS can achieve greater reduction in a single traversal of
the AST, accelerating convergence on the fixed point.

This priority aware approach can still have drawbacks, however. After focus-
ing on the highest priority nodes, there may be many lower priority nodes remain-
ing. For example, there are multiple remaining nodes of weight 7 in the tree after
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performing the reduction by PARDIS as described above. We also show experi-
mentally that these lower priority nodes occur in practice in Sect. 5. The above
approach of PARDIS considers each node one at a time, which can have poor per-
formance when reducing such long lists. In addition, we thus propose a hybrid
approach that still prioritizes nodes by maximum token weight but also uses a list
based reduction technique for spans of nodes that have the same token weight.
This hybrid approach is able to achieve the benefits of being priority aware while
still avoiding the cost of considering each node of the AST individually.
Section 3 presents the algorithms behind these techniques in detail.

3 Approach

Recall that the core of PARDIS, similar to Perses, maintains a priority queue of
the nodes in an AST and traverses the nodes in order to process them. It also
makes use of Perses Normal Form, the result of the grammar transformations
that Perses introduced [6]. The key difference is that instead of using the token
weight of a parent node to determine when its nullable children may be removed,
PARDIS identifies all nullable nodes (see Sect. 3.2) and uses their token weights
directly to prioritize the search. The core algorithm for this process is quite
straightforward and presented in Algorithm 1.

Algorithm 1: Priority queue driven program reduction.

Input: P : P — The program to reduce as an AST
Input: ¢ : P — B — Oracle for the property to preserve
Input: p: V — N X ... X N — Prioritizer for AST nodes
Result: A minimum program p € P s.t. ¢ (p)
work <— MaxPriorityQueue({p.root}, p)
while /work.empty() do
node < work.takeMax()
if node.isNullable && 1 (p — node) then
| P+ p-node
else
| work.insert(node.children)

P IR I VI

8 return p

Line 1 of the algorithm constructs the priority queue (a max-heap), initial-
izing it with the root of the AST and using a parameterizable priority p. p is
simply a function that takes a node and returns its priority as a tuple. The
priority queue selects the element with a lexicographically maximal priority, so
ties on the first element of the priority tuple are broken by the second element
and so on. As seen in Fig. 4, for PARDIS, pparpis returns a pair of numbers, the
token weight of the node and the position of the node in a decreasing, right-to-
left, breadth first search. The specific breadth first order means that for an AST
with n nodes, bfsOrder(p.root)=n, the last child ¢ of p.root has bfsOrder(c)=n-1,
and so on. Thus, if several nodes have the same token weight, the one highest in
the AST and furthest to the right is selected next. This ordering decreases the
chances of trying to remove a declaration before its uses [10].

Line 2 starts the core of the algorithm. While there are more nodes to explore
in the queue, the node with the next highest priority is considered. If it is nullable
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and can be successfully removed, we remove it from the AST, otherwise we add
its children to the queue so that they will also be traversed.

While the algorithm is surprisingly simple, we have found it to perform sig-
nificantly better than the state of the art in practice. As we explore in Sect. 4.2,
this results from prioritizing the search toward those portions of the input where
reduction can have the greatest impact. To more closely compare with Perses,
consider a version of Perses that upon visiting a list or optional node only tries
removing each child of that node once'. This “one node at a time” variant of
Perses can also be implemented using Algorithm 1 by carefully choosing the pri-
ority formula p. Because Perses considers removing the children of the nodes it
traverses, it actually prioritizes the work queue using the token weight of the par-
ent rather than the token weight of nullable nodes being considered for removal.
This leads to the alternative prioritizer pperses presented in Fig. 4. Observe that
all children of a list node receive the same token weight, that of the entire list.
This can inflate the priority of some nodes in the work queue and leads to poor
performance.

Definitions:
tokensBelow(n) — returns the number of tokens beneath an AST node n.
returns the position of an AST node n in a decreasing,

bfsOrder(n) - right to left, breadth first search.
Prioritizers:
PPARDIS = (tOkenSBe|0W(N), bstrder(n))
let parentWeight < tokensBelow(n.parent) if n.parent else oo in
Pperses = { let parentOrder « bfsOrder(n.parent) if n.parent else co in
(parentWeight, parentOrder)

_ { let parentOrder <— bfsOrder(n.parent) if n.parent else co in
PParois Hysrio = (tokensBelow(n), parentOrder, bfsOrder(n))

Fig. 4. Prioritizers used for PARDIS, node at a time Perses, and PARDIS HYBRID.

Like other program reduction algorithms [3,5,6,11,12], Algorithm 1 is used
to compute a fixed point. That is, in practice the algorithm is repeated until
no further reductions can be made. As in prior work, we omit this from our
presentation for clarity. In theory, this means that the worst case complexity of
the technique is O(n?) where n is the number of nodes in the AST. This arises
when only one leaf of the AST is removed in each pass through the algorithm.
In practice, most nodes are not syntactically nullable, and we show in Sect. 4.1
that performance of PARDIS exceeds the state of the art.

In addition, while we focus on removing nodes of the AST, Perses also tries
to replace non-list and -optional nodes with compatible nodes in their subtrees.
We do not focus on this aspect of the algorithm. In practice, we found it to

! We compare against both versions of Perses in Sect. 4.1.
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significantly hurt performance (see Sect.4.1) and we consider efficient replace-
ment strategies to be orthogonal to and outside the scope of this work.

3.1 PARDIS HYBRID

The initial priority aware technique from Algorithm 1 can also encounter perfor-
mance bottlenecks, however. The original motivation for using DD on lists of
children in the AST was that its best case behavior is O(log(n)) where n is the
number of children in the list. This is because it tries removing multiple children
at the same time. Processing one node at a time, however, requires that every
list element is considered individually, guaranteeing O(n) time for one round of
Algorithm 1. Priority aware reduction that proceeds one node at a time faces a
different set of inefficiencies that can still cause stalls in the reduction process.

Thus, we desire a means of removing multiple elements from lists at the
same time while still preserving priority awareness. In order to achieve this, we
developed PARDIS HYBRID, as presented in Algorithm 2. This approach uses a
modified prioritizer as presented in Fig. 4 that first orders by token weight, then
by parent traversal order, then by node traversal order. The effect this has is
that all children of the same parent with the same weight are grouped together.
As a result, we can remove them from the priority queue together and perform
list based reduction (like DD) to more efficiently remove groups of elements in
a list that have the same priority (for instance, nodes (9) and (0 get removed as
a group in one trial using PARDIS HYBRID as shown in Fig. 2(c)). Because the
search is still primarily directed by the token weights of the removed nodes, the
technique still fully respects the priorities of the removed nodes.

Algorithm 2: PARDIS HYBRID algorithm with priority aware list re-

duction.
Input: p : P — The program to reduce as an AST
Input: ¢ : P — B — Oracle for the property to preserve
Result: A minimum program p € P s.t. ¢ (p)
work <— MaXPriorit)’Queue({p-mOt}v PPARDIS H\'mm;)
while !work.empty() do
nodes < work.takeWithSameWeightAndParent()
nullable, nonnullable < partitionNullable(nodes)
removed, retained <— minimize(p, nullable, 1))
p < p - removed

work.insert(U

N oG A e N R

. x.children
zeretainedunonnullable )

8 return p

Similar to the previous approach, line 1 of Algorithm 2 starts by creating the
priority queue. Note that it specifically uses the prioritizer pparpis Hysrin, Which
groups children having the same token weight in the priority queue. As long as
there are more nodes to consider, line 3 takes all nodes from the queue with the
same weight and parent. If the weight of a node is unique, this simply returns
a list of length 1. Line 4 filters out non-nullable nodes from the trial, and line
5 just applies list based reduction to any nullable nodes. Lines 6 and 7 then
remove the eliminated nodes from the tree and add the children of remaining
nodes to the work queue. Again, this algorithm actually runs to a fixed point.
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While the worst case behavior of DD is O(n?) [2], this can be improved
to O(n) by giving up hard guarantees on minimality [13]. Since this reduction
process is performed to a fixed point anyway, minimize on line 5 makes use of this
O(n) approach to list based reduction (OPDD) without losing 1-minimality. As
a result, the theoretical complexity of PARDIS HYBRID is the same as PARDIS.

3.2 Nullability Pruning

Finally, we observed that many oracle queries were simply unnecessary. Specif-
ically, recall that a node can be tagged nullable because it is an element of a
list or a child of an optional node, as previously defined by Perses grammar
transformations [6]. The complete algorithm for this tagging is in TagNullable of
Algorithm 3. However, for example, a list of one element could contain another
list of one element. In the AST, this appears as a chain of nodes, at least two of
which are nullable. Removing any one of these nodes removes the same tokens
from the AST. Thus, it is only necessary to select a single nullable node from
any chain of nodes, and the others can be disregarded.

We exploit this through an optimization called nullability pruning. We tra-
verse every chain of nodes in the AST, preserving the nullability of the highest
node in the chain and removing nullability from those below it. The complete
algorithm is presented in PruneNullable of Algorithm 3. In effect, it is just a
depth first search that removes redundant nullability from nodes along the way
instantaneously.

In practice, we find that this can statically (ahead of time) prune most of the
AST from the search space. Specifically, in the benchmarks we examine in Sect. 4,
we find that of 1,593,875 total nullable nodes, 17% are redundant optional nodes
and 44% are redundant list element nodes. We observe the impact of this pruning
on the actual reduction process in Sect. 4.1.

Algorithm 3: Nullability tagging and pruning.

1 Function TagNullable(p)
Input: p : P — The program to reduce as an AST

2 foreach Node n € p do
3 if n € KleeneStar U KleenePlus U Optional then
a | foreach c € n.children do c.isNullable « true

5 Function PruneNullable(p)
Input: p : P — The program to reduce as an AST

6 Function OptimizeBelow(n)

7 hasNullable <+ false

8 Loop

9 if hasNullable then

10 | n.isNullable «+ false

11 else if n.isNullable then
12 | hasNullable < true

13 if 1 == |n.children| then
14 | break

15 n < n.getOnlyChild()
16 foreach ¢ € n.children do OptimizeBelow(n)

17 | OptimizeBelow(p.root)
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4 FEvaluation

We evaluate PARDIS’s performance and examine the impact of priority inversion
on reduction by answering the following research questions:

e RQ1. How does PARDIS perform compared to Perses in terms of reduction
time and speed, number of oracle queries, and size of the reduced test case?

e RQ2. Does priority inversion adversely affect the reduction efficiency? In
particular, does reduction require more work with a traversal order suffering
from priority inversion?

4.1 RQ1. Performance: PARDIS vs. Perses

Experimental Set-Up. We evaluate PARDIS on the set of C test cases used
in the evaluation of Perses, including the oracle scripts provided by authors of
Perses. While using these, we observed that they still allowed for some unde-
fined behavior [5,14], so we updated all oracles to reject test case variants with
undefined behavior. As a result, we were able to reproduce bugs for 14 out of
20 original test cases. The remaining benchmarks that could not reproduce their
original failures were elided for this study. Since the implementation of Perses’
components is not publicly available, we implemented the Perses grammar trans-
formations and reduction based on the algorithms available in the paper [6] using
the C++ bindings of ANTLR [15]. All of our implementations have been made
available?. Our experiments were conducted on an Intel Xeon E5-2630 CPU and
64 GB memory running Ubuntu.

Variants of Reduction Techniques. To better explain performance dif-
ferences, we benchmark several algorithms that each add one difference. All
approaches compute fixed points as previously described.

e Perses DD- The removal-based algorithm of Perses that applies DD on chil-
dren of list nodes [6].

e Perses OPDD- The same as Perses DD but using the O(n) reduction algo-
rithm of OPDD [13]. It is faster than Perses DD in practice.

e Perses N- The one node at a time Perses that does not apply DD on list
elements but removes them one by one using Perses’ parent oriented priorities.

e PARDIS W/0O PRUNING- This uses the PARDIS algorithm but does not apply
nullability pruning optimization proposed in Sect. 3.2.

e PARDIS- Our proposed removal algorithm that also applies nullability
pruning.

e PARDIS HYBRID- The hybrid version of PARDIS with nullability pruning and
OPDD as its version of DD.

2 https://github.com/golnazgh /PARDIS.
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Table 1. Original and reduced test case size and number of oracle queries.

Perses Perses Perses PARDIS PARDIS PARDIS
DD OPDD N W/0 PRUNING ) i HYBRID

R#) Q@) | R#) Q@) | R#) Q@) | R#) Q@) | R#) Q@) | R#) Q)

clang-22382 | 21,068 | 597 5,323 | 507 4,865 | 354 3,203 | 354 2,702 | 354 | 2,011 | 354 2,319
clang-22704 | 184,444| 250 4,181 | 250 3,775 | 220 5,083 | 236 4,956 | 236 4,342 | 236 | 2253
clang-23309 | 38,647 | 1,624 8,688 | 1,624 8,095 | 1,522 6,106 | 1,726 4,618 | 1,726/3,004 | 1,726 3,684
clang-25900 | 78,960 | 618 4,455 | 618 4,020 | 600 2,816 | 618 2,343 | 618 1,652 | 618 1,997
clang-27137 | 174,538| 725 9,035 | 725 8,299 | 681 6,858 | 807 5,880 | 807 4,293 | 807 4,891
clang-27747 | 173,840| 379 3,171 | 379 2,845 | 311 1,773 | 313 1,418 | 313 1,074 | 308 1,218
clang-31259 | 48,799 | 821 4,457 | 821 4,073 | 821 3,282 | 538 2,464 | 538 1,662 | 538 1,853
gce-64990 | 148,931| 776 5,913 | 776 5,438 | 1,215 5,165 | 776 3,781 | 776 2,632 | 776 3,148
gce-65383 | 43,942 | 462 5,503 | 462 5,002 | 486 3,502 | 598 2,559 | 598 1,839 | 598 2,204
gcc-66186 | 47,481 | 1,176 6,101 | 1,176 5,727 | 1,178 4,532 | 1,176 3,944 | 1,176 2,562 | 1,176 3,167
gcc-66375 | 65,488 | 1,232 7,989 | 1,232 6,780 | 1,198 4,202 | 1,232 4,512 | 1,232 3,036 | 1,232 3,851
gce-70127 | 154,816| 600 5,610 | 600 5,201 | 593 3,700 | 600 3,063 | 600 2,240 | 600 2,723
gce-70586 | 212,259 1,583 7,671 | 1,583 7,276 | 1,489 5,582 | 1,497 5,233 | 1,497 3,491 | 1,497 4,318
gee-71626 | 6,133 | 58 1,151 | 58 1,135| 58 1,013 | 58 330| 58 264 | 58 | 228
geomean | 70300 | 609 5126 | 609 4705 | 583 3670 | 574 2881 | 574 | 2066 | 574 2270
median | 72,224 | 672 5556 | 672 5,102 | 640 3,951 | 609 3,422 | 609 2,401 | 609 2521

O, R and Q denote number of tokens in the original test case, reduced one and total number of oracle
queries performed by the reduction technique, respectively.

Bug O#)

Reduction Performance. We compare these techniques in terms of the number
of oracle queries (Q), reduction quality or size of the final reduced test case (R),
reduction time (T), and reduction speed or the average number of tokens removed
per second (E). Results are presented in Tables 1 and 2. The best values of queries,
time, and speed are highlighted for each test case. As can be seen, in all cases,
either PARDIS or PARDIS HYBRID outperform all variants of Perses. Compared to
the full removal-based Perses algorithm (Perses DD), our proposed algorithms
reduce 1.3x to 7.8x faster and with 46% to 80% fewer queries. The results
across variants suggest that these benefits arise from priority awareness and
nullability pruning. Due to fixed point computation, all approaches produce test

Table 2. Reduction time and speed for different variants of reduction techniques.

Perses Perses Perses PARDIS PARDIS PARDIS

DD OPDD N W/0 PRUNING ) HYBRID
Bug T() B/ |Ts) B/ |Te) Ese) | Te) E@/e) | T E@/ | Ty E/s
clang-22382 | 3,198 63,122 713,489 63,067 712,977 712,004 10
clang-22704 | 1,527 121 | 1,304 141 | 5,243 35| 3,323 55| 3,219 57 | 1,160 159
clang-23309 | 2,571 14 | 2,414 15| 1,920 19| 1,423 26 | 1,007 37 | 1,062 35
clang-25900 | 1,375 57| 1,220 64 | 1,025 76 | 690 114 | 526 149 | 518 151
clang-27137 | 6,972 25 | 6,379 27 | 5,717 30 | 4,428 39 | 3,423 51 | 3,538 49
clang-27747 | 1,194 145 | 1,060 164 | 771 225 | 571 304 | 463 375 | 453 383
clang-31259 | 1,698 28| 1,577 301,471 331,239 39| 814 59 | 800 60
gce-64990 | 1,980 75| 1,768 84 | 1,981 751,237 120 | 932 159 | 916 162
gce-65383 | 1,762 251,615 27 11,304 33| 892 49 | 704 62 | 699 62
gce-66186 | 1,583 29 11,493 311,299 36| 1,016 46 | 691 67 | 741 62
gee-66375 | 2,782 23 | 2,568 251,851 35| 1,705 38 (1,173 55| 1,311 49
gce-70127 | 3,083 50 | 2,812 55 | 2,265 68 | 1,520 101 | 1,124 137 | 1,173 131
gce-70586 | 4,417 48 | 4,119 51| 3,450 61 | 2,545 83 | 1,791 118 | 1,984 106
gce-71626 156 39| 156 39 | 206 29| 57 107 | 54 112 | 20 304
geomean 1900 36 | 1750 40 | 1740 40 | 1202 58 | 933 75| 807 86
median 1,871 34| 1,692 35| 1,886 351,331 52| 970 64 | 989 84

T is reduction time in seconds. E is the efficiency of removal (number of tokens removed per second).
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cases from which no one token can be removed while satisfying ¢ (1-minimal) [2],
but they can produce different final reduced test cases [2]. On average, PARDIS
yields reduced test cases with 574 tokens compared to Perses DD with 609 tokens.

In addition, we graphed the reduction progress of each test case for the
different variants. Fig.5 shows the percentage of remaining tokens over time
during reduction. For sake of space, we only include graphs for six of the test
cases. Note that the y-axis is log scaled. PARDIS and PARDIS HYBRID show much
faster convergence to a reduced test case compared to Perses variants. Recall that
the only factor differentiating Perses N from PARDIS w/0O PRUNING is the order
in which the queue of nodes is traversed. Unlike Perses N, PARDIS W/0O PRUNING
does not suffer from priority inversion and guides the reduction process based
on token weights of the nodes to remove. As can be seen, this advantage leads
to faster convergence to a reduced test case. We examine the impact of priority
inversion on reduction speed more rigorously in Sect.4.2.

Replacement. As mentioned in Sect.3, Perses also considers a replacement
strategy for non-list or -optional nodes in addition to removal for other nodes. For
instance, in Fig. 3, Perses will attempt to replace node (6) with node (4 because
they both match the same grammar rule (compound_stmt). This replacement
fails since required declarations will get removed and v will return false.
Including replacement significantly increases the work done by reduction. For
completeness, we implemented Perses DD with replacement as described in their
paper [6] and defined a four-hour timeout for the reduction process. In 11 out
of 14 cases, Perses DD with replacement could not finish the reduction process
before reaching the timeout. In the remaining three, it generated reduced test
cases with the same size or slightly smaller while performing a significantly larger
number of oracle queries (more than 3x over Perses DD without replacement).

4.2 RQ2. The Impact of Priority Inversion

As shown in Fig. 5, avoiding priority inversion leads to faster convergence. One
explanation for this is that priority awareness may decrease the amount of work
required to remove a token (as seen in the motivating example). We explore
this in a case study on gcc-64990 with 148,931 tokens. The number of removal
attempts for a token is number of times a single token is considered for removal.
Removing any ancestor of a token in the AST will remove that token, so if a
first attempt fails, a deeper ancestor may be attempted. We compute this for
every token of the test case to get a sense of the work required for each token.
A better traversal order of the AST should cause fewer overall token removal
attempts. To measure only the impact of different traversal orders, we compare
PARDIS W/0O PRUNING with Perses N. As described in Sect. 4.1, they follow the
exact same reduction rules and differ only in their traversal orders.

Figure 6 depicts histograms of the distributions of token removal attempts for
PARDIS W/0 PRUNING and Perses N. For clearer visualization, we show only the
distributions for the number of attempts less than or equal to 20. We can see how
Perses N distribution is inclined toward a larger number of removal attempts,
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Fig. 5. Converging to a reduced test case in six variants of reduction techniques.

an indicator of more work required in order to remove individual tokens. In
addition, we statically measure that the difference between the removal attempt
distributions is significant. We use a one sided Wilcoxon rank-sum test [16] to
determine whether the distribution of Perses N is indeed greater than that of
PARDIS W/0 PRUNING. The p-value computed for our data was less than 2.2¢ =16
which strongly supports this observation.



422 G. Gharachorlu and N. Sumner

Pardis Perses N

N
o

=
v

Number of token removal attempts
w E

=]

100 75 50 25 00 25 50 75 100
*103 103

Fig. 6. Distributions of token removal attempts for PARDIS W/O PRUNING and
Perses N.

5 Discussion

PARrRDIS HYBRID as a sweet spot in reducing test cases: As discussed earlier,
unlike Perses, PARDIS HYBRID does not suffer from priority inversion because it
prioritizes the search primarily on the token weight of nodes being considered
for removal. Moreover, unlike PARDIS, it does not strictly remove one node at a
time and allows the removal of nodes with the same weight and the same parent
as a group. Hence, it can be considered a sweet spot in reducing test cases. We
conduct two studies that can further explore this idea.

(1) Oracle Verification Time. The number of oracle queries is a common met-
ric used in similar studies to reason about reduction efficiency since it directly
impacts the total reduction time [2,3,6,13,17]. For instance, both PARDIS and
PARrDIS HYBRID perform fewer oracle queries and take less time than Perses.
However, the number of oracle queries is not the only factor involved. The time
required to run each of these queries, or oracle verification time, also affects
the total running time. For instance, as presented in Sect.4.1, PARDIS has the
smallest number of oracle queries in 12 out of 14 test cases. However, in terms
of total reduction time and speed, PARDIS HYBRID is the fastest in 8 out of 14
cases, even while performing more queries compared to PARDIS in 6 of them.
Oracle verification time can depend on multiple elements such as the size and
complexity of the test case. Since PARDIS HYBRID takes advantage of the possi-
bility to remove more than one node at a time, it may try variants of the test
case that are smaller and may be faster to verify compared to PARDIS. To check
this hypothesis, we conducted a case study on gcc-64990 and recorded the run-
ning time of each oracle query during reduction. As shown in Tables1 and 2,
PARDIS reduces this test case in 932s with 2,632 queries, and PARDIS HYBRID
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has a total reduction time of 916s (16s shorter) while performing 3,148 oracle
queries (516 more queries). Both techniques yield the same final test case.

Figure 7 depicts the distribution of oracle verification times in PARDIS and
PArDIS HYBRID, showing that PARDIS has more queries that take longer com-
pared to PARDIS HYBRID. The shorter queries in PARDIS HYBRID directly
decrease its overall reduction time making it reduce test cases with fewer queries
compared to Perses and shorter queries compared to PARDIS.

2000 B Pardis Hybrid 200 Pardis
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1500
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500 200
0
NTowa 3 100
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| [N | I
enseg ~ 0
SECEcE o 10° 10! 10? 10° 10* 10°
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Fig. 7. Distribution of oracle verification Fig. 8. Distribution of token weights of
time for PARDIS and PARDIS HYBRID. nodes visited during PARDIS reduction.

(2) Distribution of Token Weights. The motivation behind proposing
PARDIS HYBRID as discussed in Sect. 3.1 was that if lists in a test case shrink
after removing nodes with large unique token weights, applying DD on list ele-
ments with the same weight can be beneficial. In fact, the more of the remaining
nodes that share token weights, the more beneficial using DD becomes since it
provides the opportunity to remove those nodes in just one trial. This can avoid
the possibly time-consuming process of visiting nodes one by one. To understand
the distribution of token weights in practice, we perform PARDIS (the one node
at a time removal) on gcc-64990 and record token weights of nodes visited dur-
ing the removal process. Figure 8 shows the distribution with 5 as the median of
token weights of nodes visited during the reduction. The small median motivates
the use of PARDIS HYBRID in practice since it indicates that half of the nodes
have one of only five different token weights and can benefit from the grouped
removals.

Syntactic vs Semantic Validity: Perses and PARDIS discard syntactically
invalid variants of the test case during reduction. However, there are also seman-
tically invalid queries such as removing the declaration of a variable before remov-
ing its use. SGPR techniques cannot entirely avoid these queries since they guide
the reduction process based on the syntax of the grammar. However, the priority
order of PARDIS can mitigate this problem. By prioritizing by token weight, it
is more likely to visit and remove uses before spending effort on declarations.
One reason for this is that a higher token weight tends to mean that there are
more uses beneath that node. For instance, in Fig. 3, uses of variables a, b and
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c are descendants of node (1) with nodes (8), (9) and @0 as their declarations.
PARDIS removes the uses by first removing (1) while Perses tries to remove the
declarations first due to priority inversion. Hence, PARDIS prunes nodes in one
pass of the AST that Perses may require a fixed point mode to remove.
Threats to Validity: We evaluated PARDIS on the same set of C test cases
used in the evaluation of Perses. The implementation of Perses’ grammar trans-
formations and reduction is not publicly available, so we reimplemented Perses
as described in its paper. Our implementation has been made available to pro-
vide a consistent platform for future work. However, the exact implementations,
environmental settings and the scripts to check the property of interest can
all impact the final results. For instance, the final sizes of the reduced test
cases reported for the original Perses’ implementation [6] are smaller than those
using our reimplemented version of Perses. As discussed in Sect. 4.1, this may be
because Perses’ oracles allowed for undefined behavior, which can lead through
smaller but invalid reduced test cases. To mitigate this problem, we made the
oracles strictly prevent undefined behavior for both PARDIS and Perses. Note
that PARDIS significantly outperforms both Perses’ original implementation [6]
and our reimplementation in terms of number of oracle queries.

While the techniques presented in PARDIS are general in ability, our eval-
uation focuses on C in order to compare with Perses. Further investigation is
required to claim that the performance benefits extend to other languages.

6 Related Work

The closest work to this paper is Perses [6]. Unlike PARDIS, it suffers from
priority inversion that adversely affects the reduction speed. Other generic
test case reduction techniques are Delta Debugging (DD) [2], its O(n) vari-
ant [13], and Berkeley Delta [18]. These face challenges when reducing hier-
archical inputs. Several techniques focus on reducing hierarchically structured
test cases [3,4,6,11,12,19,20]. Among these, only Perses is priority aware, in
spite of its priority inversion. Indeed, most techniques process the input level by
level. Like PARDIS, Perses and Simp [20] are notable exceptions in that they can
search across levels when deciding how to reduce. However, Simp is specific to
SQL Queries. GTR [12] is notable in that it is trained when to apply different
reduction operations. Finally, C-Reduce [5] is a tool for reducing C/C++ test
cases that requires extensive domain-specific knowledge.

7 Conclusions

We have shown that the prior state of the art for test case reduction suffers from
priority inversion and that this causes a significant increase in reduction time.
We proposed priority aware reduction techniques, PARDIS and PARDIS HYBRID,
that focus reduction effort where they can have the most impact. These tech-
niques can speed reduction by 1.3x to 7.8x over the prior state of the art.
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