
Formal Verification of Safety & Security
Related Timing Constraints for a
Cooperative Automotive System

Li Huang1 and Eun-Young Kang2(B)

1 School of Data and Computer Science, Sun Yat-Sen University, Guangzhou, China
huangl223@mail2.sysu.edu.cn

2 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
Odense, Denmark
eyk@mmmi.sdu.dk

Abstract. Modeling and analysis of timing constraints is crucial in real-
time automotive systems. Modern vehicles are interconnected through
wireless networks which creates vulnerabilities to external malicious
attacks. Violations of cyber-security can cause safety related accidents
and serious damages. To identify the potential impacts of security related
threats on safety properties of interconnected automotive systems, this
paper presents analysis techniques that support verification and valida-
tion (V&V) of safety & security (S/S) related timing constraints on those
systems: Probabilistic extension of S/S timing constraints are specified
in PrCcsl (probabilistic extension of clock constraint specification lan-
guage) and the semantics of the extended constraints are translated into
verifiable Uppaal models with stochastic semantics for formal verifica-
tion. A set of mapping rules are proposed to facilitate the translation. An
automatic translation tool, namely ProTL, is implemented based on the
mapping rules. Formal verification are performed on the S/S timing con-
straints using Uppaal-SMC under different attack scenarios. Our app-
roach is demonstrated on a cooperative automotive system case study.

Keywords: Automotive system · Safety and security · PrCcsl ·
Uppaal-SMC

1 Introduction

Model based development (MBD) is rigorously applied in automotive systems in
which the software controllers interact with physical environments. The contin-
uous time behaviors of those systems often rely on complex dynamics as well as
on stochastic behaviors. Formal verification and validation (V&V) technologies
are indispensable and highly recommended for development of safe and reliable
automotive systems [11,12]. Conventional V&V, i.e., testing and model checking
have limitations in terms of assessing the reliability of hybrid systems due to both
stochastic and non-linear dynamical features. To ensure the reliability of safety
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 210–227, 2019.
https://doi.org/10.1007/978-3-030-16722-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_12

Formal Verification of Safety & Security Related Timing Constraints 211

critical hybrid dynamic systems, statistical model checking (SMC) techniques
have been proposed [7,8,19]. These techniques for fully stochastic models vali-
date probabilistic performance properties of given deterministic (or stochastic)
controllers in given stochastic environments.

Modern vehicles are being equipped with communication devices and inter-
connected with each other through wireless networks. Vehicular Ad Hoc Net-
works (Vanet) [28] are the technologies of wireless networks that establish com-
munication among vehicles and roadside units (RSU). Nevertheless vehicular
communication contributes to the safety and efficiency of traffic, it introduces
vulnerabilities to vehicles. Transmitted information can be corrupted or modified
by attackers, resulting in serious safety consequences (e.g., rear-end collision).
Analysis of the potential impacts of cyber-security violations on safety proper-
ties is crucial in automotive systems. However, traditional automotive system
design often addresses the correctness of safety properties without consideration
of security breaches. There is still a lack of techniques that enable an integrated
analysis of safety & security (S/S) properties. Moreover, message transmission
in Vanet that pertains to S/S requires restrictions by time deadlines [10]. In
this paper, we focus on S/S related timing constraints and propose analysis tech-
niques that support formal verification on interconnected automotive systems.

East-adl [9,22] is an architectural description language for modeling of
automotive systems. The latest release of East-adl has adopted the time
model proposed in Timing Augmented Description Language (Tadl2) [5], which
expresses and composes basic timing constraints, i.e., repetition rates, end-to-end
delays. Tadl2 specializes the time model of MARTE, the UML profile for Mod-
eling and Analysis of Real-Time and Embedded systems [30]. MARTE provides
Ccsl, a Clock Constraint Specification Language, that supports specification of
both logical and dense timing constraints, as well as functional causality con-
straints [16,23]. A probabilistic extension of Ccsl, called PrCcsl [14], has been
proposed to formally specify timing constraints associated with stochastic prop-
erties in weakly-hard real-time systems [4], i.e., a bounded number of constraints
violations would not lead to system failures when the results of the violations
are negligible.

In this paper, we present a formal analysis of S/S related timing constraints
for interconnected automotive systems at the design level: 1. To identify vulner-
abilities of automotive systems under malicious attacks, we adopt and modify
the behavioral model of a cooperative automotive system (CAS) [13] in Uppaal-
SMC by adding it with the models of an RSU-aided (Raise) communication
protocol in Vanet and malicious attacks. The modification results in a refined
behavioral model of the system, i.e., more details in terms of vehicular commu-
nication and security breaches are depicted; 2. Probabilistic extension of S/S
timing constraints are specified in PrCcsl and the semantics of the extended
constraints are translated into verifiable models with stochastic semantics for
formal verification; 3. A set of mapping rules are proposed to facilitate the
translation, based on which an automatic translation tool ProTL is implemented;

212 L. Huang and E.-Y. Kang

4. Formal verification is performed on the S/S timing constraints using Uppaal-
SMC under different attack scenarios.

The paper is organized as follows: Sect. 2 presents an overview of PrCcsl and
Uppaal-SMC. CAS is introduced as a running example in Sect. 3. Section 4.1
presents the Uppaal-SMC model of CAS complemented with model of Raise
protocol and three types of attacks. S/S related timing constraints are specified
in PrCcsl and translated into verifiable Uppaal-SMC models in Sect. 5. The
applicability of our approach is demonstrated by performing verification on CAS
case study in Sect. 6. Sections 7 and 8 present related works and conclusion.

2 Preliminary

In our framework, S/S related timing constraints are specified in PrCcsl.
Uppaal-SMC is employed to perform formal verification on the timing
constraints.

2.1 Probabilistic Extension of Clock Constraint Specification
Language (PrCCSL)

PrCcsl [14] is a probabilistic extension of Ccsl [3,23] for formal specification
of timing constraints associated with stochastic behaviors. In PrCcsl, a clock
represents a sequence of (possibly infinite) instants. An event is a clock and
the occurrences of an event correspond to a set of ticks of the clock. PrCcsl
provides two types of clock constraints, i.e., expressions and relations, to specify
the progression/occurrences of clocks. An expression derives new clocks from the
already defined clocks [3]. Let c1, c2 ∈ C, ITE (if-then-else) expression, denoted
as β ? c1 : c2, defines a new clock that behaves either as c1 or as c2 according
to the value of the boolean variable/formula β. DelayFor (denoted ref (d) �
base) results in a new clock by delaying the reference clock ref for d ticks (or d
time units) of a base clock. FilterBy (c � base � u(v)) builds a new clock c by
filtering the instants of a base clock according to a binary word w=u(v), where
u is the prefix and v is the period. “(v)” denotes the infinite repetition of v. This
expression results in a clock c that ∀ k ∈ N+, if the kth bit in w is 1, then at
the kth tick of base, c ticks.

A relation limits the occurrences among different events, which are defined
based on run and history. A run corresponds to an execution of the system
model where the clocks tick/progress. The history of a clock c represents the
number of times the clock c has ticked prior to the current step.

Definition 1 (Run). A run R consists of a finite set of consecutive steps where
a set of clocks tick at each step i. The set of clocks ticking at step i is denoted as
R(i), i.e., for all i, 0 � i � n, R(i) ∈ R, where n is the number of steps of R.

Definition 2 (History). The history of clock c in a run R is a function: Hc
R:

N → N. Hc
R(i) indicates the number of times the clock c has ticked prior to step

i in run R, which is initialized as 0 at step 0. It is defined as: (1) Hc
R(0) = 0;

Formal Verification of Safety & Security Related Timing Constraints 213

(2) ∀ i ∈ N
+, c /∈ R(i) =⇒ Hc

R(i + 1) = Hc
R(i); (3) ∀ i ∈ N

+, c ∈ R(i) =⇒
Hc

R(i + 1) = Hc
R(i) + 1.

A probabilistic relation in PrCcsl is satisfied if and only if the probability of
the relation constraint being satisfied is greater than or equal to the probability
threshold p ∈ [0, 1]. Given k runs = {R1, . . . , Rk}, the probabilistic subclock,
coincidence, exclusion and precedence in PrCcsl are defined as follows:

Probabilistic Subclock: c1⊆pc2 ⇐⇒ Pr[c1⊆c2] � p, where Pr[c1⊆c2] =

1
k

k∑

j=1

{Rj |= c1⊆c2}, representing the ratio of runs that satisfies the relation

out of k runs. A run Rj satisfies the subclock relation between c1 and c2 “if
c1 ticks, c2 must tick” holds at every step i in Rj , s.t., (Rj |= c1⊆c2) ⇐⇒ (∀i
0 � i � n, c1 ∈ R(i) =⇒ c2 ∈ R(i)). “Rj |= c1⊆c2” returns 1 if Rj satisfies
c1⊆c2, otherwise it returns 0.

Probabilistic Coincidence: c1≡pc2 ⇐⇒ Pr[c1≡c2] � p, where Pr[c1≡c2] =

1
k

k∑

j=1

{Rj |= c1≡c2}, which represents the ratio of runs that satisfies the

coincidence relation out of k runs. A run, Rj satisfies the coincidence relation on
c1 and c2 if the assertion holds: ∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 ∈ R(i))∧ (c2 ∈
R(i) =⇒ c1 ∈ R(i)). In other words, the satisfaction of coincidence relation is
established when the two conditions “if c1 ticks, c2 must tick” and “if c2 ticks,
c1 must tick” hold at every step.

Probabilistic Exclusion: c1#pc2 ⇐⇒ Pr[c1#c2] � p, where Pr[c1#c2] =

1
k

k∑

j=1

{Rj |= c1#c2}, indicating the ratio of runs that satisfies the exclusion

relation out of k runs. A run, Rj , satisfies the exclusion relation on c1 and c2 if
∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 /∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 /∈ R(i)), i.e., for
every step, if c1 ticks, c2 must not tick and vice versa.

Probabilistic Precedence: c1≺pc2 ⇐⇒ Pr[c1≺c2] � p, where Pr[c1≺c2] =

1
k

k∑

j=1

{Rj |= c1≺c2}, which denotes the ratio of runs that satisfies the precedence

relation out of k runs. A run Rj satisfies the precedence relation if the condition
∀i, 0 � i � n, (Hc1

R (i) � Hc2
R (i)) and (Hc2

R (i) = Hc1
R (i)) =⇒ (c2 /∈ R(i)) hold,

i.e., the history of c1 is greater than or equal to the history of c2, and c2 must
not tick when the history of the two clocks are equal.

2.2 UPPAAL-SMC

UPPAAL-SMC [31] performs the probabilistic analysis of properties by monitor-
ing simulations of the complex hybrid system in a given stochastic environment
and using results from the statistics to determine whether the system satisfies
the property with some degree of confidence. Uppaal-SMC provides a number
of queries related to the stochastic interpretation of Timed Automata (STA)

214 L. Huang and E.-Y. Kang

[8] and they are as follows, where N and bound indicate the number of sim-
ulations to be performed and the time bound on the simulations respectively:
1. Probability Estimation estimates the probability of a requirement property
φ being satisfied for a given STA model within the time bound: Pr[bound] φ;
2. Hypothesis Testing checks if the probability of φ is satisfied within a certain
probability P0: Pr[bound] φ ≥ P0; 3. Simulations: Uppaal-SMC runs multiple
simulations on the STA model and the k (state-based) properties/expressions
φ1, ..., φk are monitored and visualized along the simulations: simulate N [≤
bound]{φ1, ..., φk}.

3 Running Example

A cooperative automotive system (CAS) [13] is adopted to illustrate our
approaches. CAS includes distributed and coordinated sensing, control, and actu-
ation over three vehicles (denoted as vi, where i ∈ {0, 1, 2}) which are running
in the same lane. As shown in Fig. 1, a lead vehicle (v0) runs automatically by
recognizing traffic signs on the road. The following vehicle must set its desired
velocity identical to that of its immediate preceding vehicle. Vehicles should
maintain sufficient braking distance to avoid rear-end collision while remaining
close enough to guarantee communication quality. Vehicle movement relies on
availability of environmental information, e.g., traffic signs, obstacles, etc. The
position of vi is represented by Cartesian coordinate (xi, yi), where xi and yi are
distances measured from the vehicle to the two fixed perpendicular lines, i.e.,
x-axis and y-axis, respectively.

Fig. 1. Overview of Cooperative Automotive System

The cooperative driving of CAS requires prompt and secure information
transmission among vehicles. We adopt a roadside unit aided (Raise) [33] com-
munication protocol in Vanet to achieve the data transmission. Each vehicle
periodically broadcasts its own position and velocity to its immediate following
vehicle through wireless connection. The authentication of the identities of each
vehicle and verification of messages sent by the vehicles is performed by RSU.
For further details of Raise, refer to Sect. 4.1. The following S/S properties on
CAS are considered:
R1. The follower vehicle should not overtake its leading vehicle when the vehicles
run at a positive direction of x-axis.
R2. When the lead vehicle detects a stop sign, all the three vehicles must stop
within a given time, e.g., 2000 ms.

Formal Verification of Safety & Security Related Timing Constraints 215

R3. If the distance between a vehicle and its preceding vehicle is less than mini-
mum safety distance, the vehicle should decelerate within a certain time (200 ms).
R4. If the distance between a vehicle and its preceding vehicle is greater than
the maximum safety distance (e.g., 100 m), the vehicle should accelerate within
a certain time, e.g., 300 ms.
R5. When the lead vehicle starts to turn left (or turn right), the two follower
vehicles should finish turning and run in the same lane within a given time.
R6. Authenticity: If a vehicle receives a message, its preceding vehicle must have
sent a corresponding message before, i.e., the protocol should be resistant to
message spoofing attack.
R7. Secrecy: Symmetric keys of vehicles should be kept confidential to attackers.
R8. Integrity: The content of messages must not be modified during transmission,
i.e., the protocol should be resistant to message falsification attack.
R9. Freshness: The vehicles should not accept an “obsolete” message, namely, the
difference between the current time and the timestamp of the accepted message
should be less than the predefined time threshold.
R10. The symmetric key agreement (i.e., mutual authentication) process between
RSU and three vehicles should be completed within a certain time, e.g., 600 ms.
R11. A vehicle should send messages to its subsequent vehicle periodically with
a period 200 ms and a jitter 100 ms.

Among the above S/S requirements, R1–R5 are safety [20] properties, which
specify that the system should not cause undesirable results on its environment
and aim at protecting human lives, health and assets from being damaged. R6-
R11 are security properties, which refer to the inability of the environment to
affect the system in an undesirable way and aim to guarantee the confidential-
ity and integrity of transmitted information. The interdependencies among those
S/S properties are conditional dependencies [17], i.e., violations of security prop-
erties can lead to the violations on safety properties. The events associated with
those S/S properties can be interpreted as logical clocks in PrCcsl, which pro-
vides a way to express S/S properties in the logical time manner [16]. Therefore,
S/S properties can be interpreted as logical timing constraints, i.e., the temporal
and causality clock relations in PrCcsl.

The methodology for analysis of S/S related timing constraints in this paper
can be generalized in Fig. 2. First, on the basis of the existing behavioral model
of CAS described in [13], we enhance the CAS model by augmenting (paral-
lelly composing) it with models of Raise protocol and malicious attacks, result-
ing in a refined CAS model regarding vehicular communication characteristics
and security-related adversary interference. Second, we specify S/S timing con-
straints (R1–R11) in PrCcsl and translate the PrCcsl specifications into corre-
sponding STA and probabilistic queries. Finally, we combine the model of CAS
and the STA of PrCcsl specifications, and perform formal verification based on
the combined model using Uppaal-SMC.

216 L. Huang and E.-Y. Kang

Fig. 2. Methodology for analysis of S/S timing constraints

4 Modeling and Refinement of CAS in UPPAAL-SMC

The behaviors of CAS are modeled as a network of stochastic timed automata
(NSTA) in Uppaal-SMC described in [13]. In this section, we refine the CAS
model by adding it with the models of Raise protocol and security attacks.

4.1 Modeling of RAISE Protocol in UPPAAL-SMC

We present a simplified version of Raise protocol [33] and its Uppaal-SMC
model. The original Raise protocol is modified to facilitate the communica-
tion mechanism of CAS, i.e., each follower vehicle receives messages from its
immediate preceding vehicle and RSU. Furthermore, timing constraints are also
appended to restrict the time duration of each step (e.g., encryption and decryp-
tion) during communication process. There are two phases in Raise protocol,
i.e., symmetric key agreement and information transmission.
1. Symmetric key agreement (SKA) is performed to obtain symmetric key ki
for guaranteeing security of communication and generates pseudo identities IDi

of vehicles for covering their real identities. The shared symmetric key between
RSU and vi is ki = gab, where g, a, b are three positive random numbers. As
shown in Fig. 3, Encry(msg, k) (Decry(msg, k)) denotes the encryption (decryp-
tion) of message msg with key k, where k can be either a public key or symmetric
key. Sign(msg, k) generates signature of msg with a private key k. We use PKi

to denote the public key of vi and SKi to represent the corresponding private
key. “||” is the concatenation operation on messages.

Initially, vi randomly picks g and a (step 1), encrypts “g||a” and sends the
encrypted result (mi) to RSU (step 2). Upon receiving mi, RSU decrypts the
message (step 3). It then generates b and IDi, signs and sends the signed message
(rmi) to vi (step 4 and 5). vi verifies the rmi’s signature (step 6) and sends back
the signature of g||a||b||IDi (step 7). Finally, RSU verifies the signature si (step
8). If all the steps are completed correctly, the key agreement process succeeds.

Fig. 3. Symmetric key agreement in Raise

Formal Verification of Safety & Security Related Timing Constraints 217

2. Information transmission (IT) initiates after the SKA is completed. The
traffic information (i.e, brake, direction, position and speed) of vi is integrated
into a message msgi = brakei||directioni||xi||yi||speedi. As presented in Fig. 4,
initially, vi generates the message authentication code (MAC) of msgi with the
symmetric key ki (generated in SKA). Then, vi concatenates the MAC code with

Fig. 4. Information transmission in Raise

msgi and sends it to RSU and vi+1 (step 1). Upon receiving vmi, vi+1 checks
the freshness of the message (step 2), i.e., if the time interval between the current
time and the time when vmi is sent is greater than the predefined threshold,
vi+1 drops vmi. At the same time, RSU checks the authenticity of vmi (step
3). If maci is correct, RSU computes the hash code hi of message msgi (step
4). Afterwards, it encrypts hi and sends the encrypted result hmi to vi+1 (step
5). vi+1 decrypts hmi and get the hash code h (step 6). Furthermore, to ensure
the consistency of the message, vi+1 itself also computes the hash code of msgi
(step 7). It then verifies whether the hash code calculated by itself is the same
as the decrypted hash code and decides to accept or reject msgi (step 8).

To model Raise in Uppaal-SMC, interactions among vehicles and RSU (i.e.,
sending/receiving messages) are modeled by synchronization channels [31] and
global variables. The cryptographic operations in Raise refer to public and pri-
vate key encryption and decryption, i.e., a message encrypted by public key can
be decrypted using the corresponding private key, and vice versa. The automaton
of cryptographic device [6] is adopted to model the encryption and decryption.
Figure 5 presents the STA capturing behaviors of vehicle vi and RSU in SKA.
startEn (resp. startDe) and finDe (resp. finEn) are channels for indicating the
starting and finishing of encryption (resp. decryption). The encryption/decryp-
tion result is denoted en res/de res. In the STA, names of locations indicate the
corresponding steps pictured in Fig. 3.

IT phase from v0 to v1 is established with the help of RSU, modeled as the
STA shown in Fig. 6 (the transmission from v1 to v2 can be modeled similarly).
The behaviors of v0 (sender), v1 (receiver) and RSU in the IT phase are modeled
in IT v0, IT v1 and IT RSU STA, respectively.

The SKA (or IT) succeeds if each step of the SKA (IT) is completed correctly
within a given time interval, modeled by invariant “t≤ d” (the value of d varies
in different steps). If timeout occurs (i.e., “t≥ d”), fail location will be activated
and the procedure is restarted from the initial step.

218 L. Huang and E.-Y. Kang

Fig. 5. Uppaal-SMC model of SKA

Fig. 6. Uppaal-SMC model of IT

4.2 Modeling of Attacks in UPPAAL-SMC

We present the modeling of three types of attacks commonly used in the secu-
rity analysis, i.e., message falsification, message replaying and message spoofing
attacks [2]. The models of attacks are illustrated in Fig. 7, where the ls parame-
ter (ls ∈ [0, 100]) serves as an indicator of level of adversarial strength while qc
(qc ∈ [0, 100]) is an indicator of the adversarial channel quality.

Message Falsification Attack (MFA) aims to falsify messages transmitted
from vi to vi+1, which is modeled as MFA STA in Fig. 7. As described earlier, in
Raise, RSU verifies the authenticity of messages by checking the correctness of
the MAC code of messages. To deceive the RSU on the validity of the modified
message and avoid exposing itself to RSU, MFA attempts to obtain the symmet-
ric key and utilizes the key to compute the MAC code of the falsified message. At
s1 state, MFA eavesdrops on rmi (generated at step 5 in Fig. 3), which contains
the information for symmetric key generation (i.e., g, a, b). It tries to decrypt rmi

when receiving it via sendrm[i]?. The probability that the decryption can suc-
ceed is ls%, modeled by probabilistic choices [31] (dashed edges) with probability
weight as ls

100 and 100−ls
100 . If the decryption succeeds, MFA obtains the symmet-

ric key of vi based on the decrypted result (getKey(de res)). Finally, it modifies
the content of message using the key, and tries to send the modified message to
vi+1 (sendvm[i]!). The probability that the message can be sent successfully is

Formal Verification of Safety & Security Related Timing Constraints 219

(100-qc)%. In our setting, MFA modifies the speedi field in the message into a
random value in [100, 120], and changes the direction as directioni = 4, which
indicates that the vi is running at the positive direction on y-axis.

Fig. 7. STA of attacks

Message Replaying Attack (MRA) targets to replay obsolete messages that
contain old information. The MRA STA represents an MRA that replays messages
sent by vi. Upon capturing a message (via sendvm[i]?), MRA stores the message
(m=vm[i]) and tries to replay it at a later time (i.e., after 10 s). The probability
that the attacker can replay the message successfully is (100-qc)%.

Message Spoofing Attack (MSA) impersonates a vehicle (vi) in order to
inject fraudulent information into its subsequent vehicle (vi+1). Similar to MFA,
MSA STA first obtains the symmetric key of vi by detecting and decrypting
rmi. It then fabricates a new message whose content is “brakei = 0, speedi =
0, directioni = 4, xi = 0, yi = 10” (denoted “encode(i)”) and tries to send
the message to vi+1 (sendvm[i]!), with the probability of the message being sent
successfully as (100-qc)%.

5 Representation of S/S Related Timing Constraints
in UPPAAL-SMC

To enable the formal verification of S/S related timing constraints (given in
Sect. 3), we first investigate how to specify those constraints in PrCcsl. Then,
translation from PrCcsl specifications of the constraints into verifiable STA is
demonstrated. Furthermore, a tool ProTL that supports the automatic trans-
formation based on the proposed translation rules is introduced.

5.1 Specifications of S/S Related Timing Constraints in PrCCSL

The specifications of R1–R11 are presented in Table 1, where ac is a clock that
always ticks while nc represents a clock that never ticks. R1 is specified as an
exclusion relation between xdir (the event that the vehicles are running at the
positive direction of x-axis) and ovtake (the event that the position of follower v1
on x-axis is greater than that of leader v0). Similarly, R7 and R9 can be specified
as exclusion relations.

In the specification of R2, stopD is a clock generated by delaying stopSign
(the event that the leader vehicle detects a stop sign) for 2000 ms. vstop refers

220 L. Huang and E.-Y. Kang

Table 1. PrCCSL specifications of R1–R11

Req PrCCSL Specification

R1 xdir � dir = 1? ac : nc, ovtake � x1 ≥ x0 ? ac : nc, xdir #0.95 ovtake

R2 stopSign � sign = 5 ? signRec : nc, stopD � stopSign (2000) � ms,
vstop �0.95 stopD

R3 vUnsafeDe � vUnsafe (200) � ms, vDec ≺0.95 vUnsafeDe

R4 vFarDisDe � vFarDis (300) � ms, startAcc ≺0.95 vFarDisDe

R5 v0TurnDe � v0Turn (3000) � ms, finTurn �0.95 v0TurnDe

R6 msgRec ⊆0.95 msgSent

R7 leakK #0.95 ac

R8 validMsg � rMsg = sMsg ? msgRec : nc, msgRec ≡0.95 validMsg

R9 oldMsg � time − ts > thre ? msgAcpt : nc, msgAcpt #0.95 oldMsg

R10 startSKADe � startSKA (600) � ms, finSKA ≺0.95 startSKADe

R11 fclk � msgSent �01(1), sentDe1 � msgSent (100) � ms,

sentDe2 � msgSent (300) � ms, sentDe1 �0.95 fclk,
fclk �0.95 sentDe2

to the event that three vehicles are completely stopped, which should occur no
later than stopD. Hence, R2 is expressed as a causality relation between vstop
and stopD. R3–R5 can be specified in a similar manner.

R6 (authenticity) is expressed as a subclock relation between msgRec and
msgSent, where msgRec (msgSent) represents the event that a message is
received (sent) by the follower (leader) vehicle. R8 is specified as a coincidence

relation between msgRec and validMsg, where validMsg is a clock that ticks
with msgRec when the received message rMsg is identical with the sent message
sMsg (i.e., rMsg== sMsg). For R10, startSKA (finSKA) represents the starting
(completion) of SKA. startSKADe is a clock constructed by delaying startSKA
for 600 ms. R10 delimits that finSKA must occur before startSKADe. R11 states
that two consecutive occurrences of msgSent must has a interval of [period −
jitter, period+ jitter]ms (i.e., [100, 300] ms). In the specification of R11, fclk is
a clock generated by filtering out the 1st tick of msgSent. sentDe1 and sentDe2
are two clocks generated by delaying msgSent for 100 ms and 300 ms. R11 can
be interpreted as: ∀i ∈ N

+, the ith tick of fclk should occur later than the ith

tick of sentDe1 but prior to the ith tick of sentDe2.

5.2 Translation of PrCCSL into STA

We present how the S/S related timing constraints specified in PrCcsl can
be transformed into STA and probabilistic queries in Uppaal-SMC. We first
describe how clock tick and history (introduced in Sect. 2) can be represented in
Uppaal-SMC. Using the mapping, we then demonstrate that expressions and
relations in PrCcsl can be translated into STA and queries.

Formal Verification of Safety & Security Related Timing Constraints 221

In the earlier work [14], the semantics of PrCcsl operators are translated into
STA based on discrete time, i.e., the continuous physical time is discretized into
a set of equalized steps. As a result, two clock instants are still considered coinci-
dent even if they are one time step apart. To alleviate this restriction and enable
the representation of PrCcsl that pertains to continuous real-time semantics,
the mapping patterns are refined: two clock instants are coinstantaneous only if
the time difference between them is insignificant, i.e., the time difference between
them is less than a positive infinitesimal value e, e.g., e = 0.000001.

Fig. 8. History

In PrCcsl, a logical clock represents an event and the
instants of the clock correspond to the occurrences of the
event. A logical clock c is represented as a synchronization
channel c! in Uppaal-SMC. The history of c is modeled
as the STA shown in Fig. 8: whenever c occurs (c?), the
value of its history is increased by 1 (i.e., h++).

Based on the mapping patterns of tick and history, the PrCcsl expressions
(including ITE, DelayFor and filterBy), as well as relations (including subclock,
coincidence, exclusion and precedence), can be represented as STA and queries
shown in Fig. 9.

The STA of expressions trigger the ticks of the new clock (denoted res!)
based on the occurrences of existed clocks. To represent relations, observer STA
that capture the semantics of standard subclock, coincidence, exclusion and
precedence relations are constructed. Each observer STA contains a “fail” loca-
tion (see Fig. 9), which indicates the violation of the corresponding relation.
Recall the definition of PrCcsl in Sect. 2, the probability of a relation being
satisfied is interpreted as a ratio of runs that satisfies the relation among all
runs. It is specified as Hypothesis Testing queries in Uppaal-SMC, H0: m

k � p
against H1: m

k < p, where m is the number of runs satisfying the given relation
out of all k runs. As a result, the probabilistic relations are interpreted as the
query (see Fig. 9): Pr[bound]([] ¬STA.fail) ≥ p, which means that the proba-
bility of the “fail” location of the observer STA never being reached should be
greater than or equal to p. The STA of expressions and relations are composed to
the system NSTA in parallel. Then, the probabilistic analysis is performed over
the composite NSTA that enables us to verify the S/S related timing constraints
over the entire system using Uppaal-SMC.

Tool support: Manual translation of PrCcsl specifications into Uppaal mod-
els for verification can be time-consuming and error-prone. To improve the accu-
racy and efficiency of translation, we implement a tool ProTL (Probabilistic-
Ccsl TransLator) [26] that provides a push-button transformation from PrCcsl
specifications into corresponding STA & queries. Furthermore, verification and
simulation support is provided in ProTL by employing the Uppaal-SMC as the
backend analysis engine. ProTL encompasses the following features: (1) An edi-
tor for editing PrCcsl specification of requirements (stored as “.txt” files); (2)
Automated transformation of PrCcsl specifications into Uppaal-SMC STA;
(3) Integration of the STA and the system behavioral model (imported by users);
(4) A configuration palette for setting parameters (e.g., time bound of simula-

222 L. Huang and E.-Y. Kang

Fig. 9. STA of PrCcsl operators

tion, number of simulations) used for verification and simulation; (5) Automatic
generation of probabilistic queries (introduced in Sect. 2) based on user-specified
parameters; (6) Capability of performing verification and simulation on PrCcsl
specifications against the integrated model and generated queries.

The GUI of ProTL is implemented by applying the Python package TKIN-
TER [27]. The implementation of Translator is achieved by the ANother Tool
for Language Recognition (ANTLR) [24], a parser generator that can constructs
lexical parsers for a language by analyzing user-defined syntax of the language.
We specified the syntax of PrCcsl in Backus-Naur Form (BNF) and apply
ANTLR to generate a parser that can analyze and recognize encodings in the
format of PrCcsl. The parser reads the PrCcsl specifications and generates
abstract syntax trees (AST), i.e., an intermediate form that has tree structures.

Formal Verification of Safety & Security Related Timing Constraints 223

By traversing AST, the information (i.e., operators and parameters) of PrCcsl
can be extracted and utilized for generation of corresponding STA.

6 Experiment

To identify vulnerabilities of system to external malicious attackers, we combine
the refined CAS system model (including the models of Raise protocol) with
models of three different attackers. Formal verification on S/S related timing
constraints (R1–R11) for the combined model is performed by Uppaal-SMC.
The combined CAS model contains the stochastic behaviors in terms of the
unpredictable environments (e.g., the traffic signs are randomly recognized by the
leader vehicle of CAS and the probability of each sign type occurring is equally
set as 16.7%), as well as the indeterministic behaviors modeled by weighted
probability choices in the STA of attacks (see Fig. 7). In our setting, ls and qc
are configured as 10 and 90, respectively. To estimate the probability of an attack
being launched on CAS successfully, Probability Estimation query is applied to
check the probability that the “attack” location in each attack STA is reachable
from the system NSTA. The time bound of the verification is set as 10000.
The probability of message falsification, message replaying and message spoofing
attack being successfully completed by the corresponding attacker is within the
range of [0.109, 0.209], [0.563, 0.663] and [0.143, 0.243], respectively.

In our experiments, S/S related timing constraints are specified in PrCcsl
and transformed into STA using ProTL. Each constraint is specified as a PrCcsl
relation (as described in Sect. 5.1) whose probability threshold is 95%. The verifi-
cation results are demonstrated in Table 2, in which “

√
” denotes the correspond-

ing requirement is satisfied while “×” indicates the violation of the requirement:
Under the message replaying attack, all the S/S timing constraints are estab-
lished as valid with 95% level of confidence. In the message falsification attack,
the secrecy and integrity properties (R7 and R8), as well as three safety proper-
ties (R3–R5), are violated. The MSA damages the authenticity (R6) and secrecy
(R7) of communication, and leads to the violations of four safety properties, i.e.,
R1 and R3–R5.

Table 2. Verification results of timing constraints under different attacks

Attacks R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Average Time Mem (Mb)

Message Falsification
√ √ × × × √ × × √ √ √

40.20 57.94

Message Replaying
√ √ √ √ √ √ √ √ √ √ √

68.33 61.49

Message Spoofing × √ × × × × × √ √ √ √
58.11 40.23

The experiment results indicate the severity of impacts on safety and security
caused by the demonstrated attacks on CAS: No requirement is violated under
MRA scenario while the MSA causes the violations of most safety properties.

224 L. Huang and E.-Y. Kang

When CAS is attached with the STA of MSA or MFA, the secrecy of symmetric
key is violated. With the obtained symmetric key, MSA can masquerade message
as legitimate vehicles and MFA is able to tamper the content of messages without
being detected, leading to the violations of authenticity (R6) and integrity (R7)
respectively. To explore how the malicious attackers can influence the safety of
system, we conduct simulation by using Simulations queries. The simulation
results in Fig. 10 illustrate how an MSA drives the system to undesirable states.

(a) R1 (b) R4

Fig. 10. Simulation results of R1 and R4: (a) At Time = 2345, the attack occurs (indi-
cated by the rising edge of the red line). MSA sends the fabricated position information
of V0 to V1 (the value of recx becomes 0), which tricks V1 to think that the distance
between V0 and V1 exceeds the maximum limit. V1 keeps increasing its speed (speed1)
and thus leading to the collision (indicated by x0 == x1) at Time = 3815, which vio-
lates R1. (b) When an attack takes place at Time = 2496 (indicated by the rising edge
of the blue line), V1 receives the message from the attacker and is deluded into believing
that the speed of V0 is 0. Therefore, V1 keeps decreasing its speed even if the distance
between V0 and V1 becomes greater than 100 m, which violates R4. (Color figure online)

7 Related Work

Formal verification of (non)-functional properties of automotive systems con-
taining stochastic behaviors were investigated in several works [13–15]. In these
works, systems are by default resilient to security threats and the safety prop-
erties are analyzed under no malicious attack scenarios, which is inadequate for
design of automotive systems interconnected via wireless communications. Com-
bined analysis of safety and security (S/S) properties for interconnected cyber
physical systems have been addressed in earlier works [1,21,29], which are how-
ever, limited to theoretical frameworks and high-level descriptions of S/S prop-
erties without the support for formal verification. Pedroza et al. [25] proposed
a SysML based environment called AVATAR for the formal verification of S/S
properties, which enables assessment of the impacts of cyber-security threats on

Formal Verification of Safety & Security Related Timing Constraints 225

functional safety. Wardell et al. [32] proposed an approach for identifying secu-
rity vulnerabilities of industrial control systems by modeling malicious attacks as
PROMELA models amenable to formal verification. However, those approaches
lack precise probabilistic annotations specifying stochastic properties regarding
to S/S aspects. Kumar et al. [18] introduced the attack-fault trees formalism for
descriptions of attack scenarios and conducted formal analysis by using Uppaal-
SMC to obtain quantitative estimation on impacts of system failures or security
threats. On the other hand, our work is based on the probabilistic extension of
S/S related timing constraints with the focus on probabilistic verification of the
extended constraints.

8 Conclusion

This paper presents a model-based approach for probabilistic formal analysis of
safety and security (S/S) related timing constraints for interconnected automo-
tive system in East-adl at the early design phase. The behavioral model of
automotive system in Uppaal-SMC is refined by adding the models of vehic-
ular communication protocol and malicious attacks, which facilitates to exploit
the impacts of adversary environment on S/S of the system. Timing constraints
are specified in PrCcsl and translated into stochastic timed automata (STA)
amenable to formal verification using Uppaal-SMC. A set of translation rules
from PrCcsl to STA, as well as the corresponding tool support for automating
the translation are provided. We demonstrate our approach by performing formal
verification on a cooperative automotive system (CAS) case study. Although, we
have shown the one-to-one mapping patterns from a subset of PrCcsl operators
to STA for conducting formal verification on timing constraints using Uppaal-
SMC, as ongoing work, systematic and formal translation techniques covering a
full set of PrCcsl constraints are further studied. Furthermore, new features
of ProTL with respect to analysis of Uppaal-SMC models involving wider
range of variable/query types (e.g., urgent channels, bounded integers) are further
developed.

Acknowledgment. This work is supported by the EASY project funded by NSFC,
a collaborative research between Sun Yat-Sen University and University of Southern
Denmark.

References

1. Abdo, H., Kaouk, M., Flaus, J.M., Masse, F.: A safety/security risk analysis app-
roach of industrial control systems: a cyber bowtie-combining new version of attack
tree with bowtie analysis. Comput. Secur. 72, 175–195 (2018)

2. Amoozadeh, M., et al.: Security vulnerabilities of connected vehicle streams and
their impact on cooperative driving. IEEE Commun. Mag. 53(6), 126–132 (2015)

3. André, C.: Syntax and semantics of the clock constraint specification language
(CCSL). Ph.D. thesis, Inria (2009)

226 L. Huang and E.-Y. Kang

4. Bernat, G., Burns, A., Llamosi, A.: Weakly hard real-time systems. Trans. Comput.
50(4), 308–321 (2001)

5. Blom, H., et al.: TIMMO-2-USE timing model, tools, algorithms, languages,
methodology, use cases. Technical report, TIMMO-2-USE (2012)

6. Corin, R., Etalle, S., Hartel, P.H., Mader, A.: Timed model checking of security pro-
tocols. In: ACM Workshop on Formal Methods in Security Engineering (FMSE),
pp. 23–32. ACM (2004)

7. David, A., et al.: Statistical model checking for stochastic hybrid systems. In:
Hybrid Systems and Biology (HSB), pp. 122–136. EPTCS (2012)

8. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL-SMC
tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015)

9. EAST-ADL: EAST-ADL specification v2.1.9. Technical report, MAENAD (2011).
https://www.maenad.eu/public/EAST-ADL-Specification M2.1.9.1.pdf

10. Engoulou, R.G., Belläıche, M., Pierre, S., Quintero, A.: VANET security surveys.
Comput. Commun. 44, 1–13 (2014)

11. IEC 61508: Functional safety of electrical electronic programmable electronic safety
related systems (2010)

12. ISO 26262–6: Road vehicles functional safety part 6. Product development at the
software level (2011)

13. Kang, E.Y., Huang, L., Mu, D.: Formal verification of energy and timed require-
ments for a cooperative automotive system. In: ACM/SIGAPP Symposium On
Applied Computing (SAC), pp. 1492–1499. ACM (2018)

14. Kang, E.-Y., Mu, D., Huang, L.: Probabilistic verification of timing constraints in
automotive systems using UPPAAL-SMC. In: Furia, C.A., Winter, K. (eds.) IFM
2018. LNCS, vol. 11023, pp. 236–254. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-98938-9 14

15. Kang, E.Y., Mu, D., Huang, L., Lan, Q.: Verification and validation of a cyber-
physical system in the automotive domain. In: IEEE International Conference on
Software Quality, Reliability and Security Companion (QRS), pp. 326–333. IEEE
(2017)

16. Khan, A.M., Mallet, F., Rashid, M.: Combining SysML and MARTE/CCSL to
model complex electronic systems. In: Information Systems Engineering (ICISE),
pp. 12–17. IEEE (2016)

17. Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of
approaches combining safety and security for industrial control systems. Reliab.
Eng. Syst. Saf. 139, 156–178 (2015)

18. Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-
fault trees. In: High Assurance Systems Engineering (HASE), pp. 25–32. IEEE
(2017)

19. Legay, A., Viswanathan, M.: Statistical model checking: challenges and perspec-
tives. Int. J. Softw. Tools Technol. Transf. 17(4), 369–376 (2015)

20. Line, M.B., Nordland, O., Røstad, L., Tøndel, I.A.: Safety vs. Security. In: Inter-
national Conference on Probabilistic Safety Assessment and Management (PSAM)
(2006)

21. Macher, G., Höller, A., Sporer, H., Armengaud, E., Kreiner, C.: A combined safety-
hazards and security-threat analysis method for automotive systems. In: Koorn-
neef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 237–250.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1 21

22. MAENAD (2011). http://www.maenad.eu/
23. Mallet, F., De Simone, R.: Correctness issues on MARTE/CCSL constraints. Sci.

Comput. Program. 106, 78–92 (2015)

https://www.maenad.eu/public/EAST-ADL-Specification_M2.1.9.1.pdf
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-319-98938-9_14
https://doi.org/10.1007/978-3-319-24249-1_21
http://www.maenad.eu/

Formal Verification of Safety & Security Related Timing Constraints 227

24. Parr, T.: The definitive ANTLR 4 reference. Pragmatic Bookshelf (2013)
25. Pedroza, G., Apvrille, L., Knorreck, D.: Avatar: a SysML environment for the

formal verification of safety and security properties. In: New Technologies of Dis-
tributed Systems (NOTERE), pp. 1–10. IEEE (2011)

26. ProTL. https://sites.google.com/view/protl
27. Tkinter: Python interface to Tcl/Tk. https://docs.python.org/3/library/tkinter.

html
28. Raya, M., Hubaux, J.P.: Securing vehicular Ad Hoc networks. J. Comput. Secur.

15(1), 39–68 (2007)
29. Sabaliauskaite, G., Mathur, A.P.: Aligning cyber-physical system safety and secu-

rity. In: Cardin, M.A., Krob, D., Lui, P., Tan, Y., Wood, K. (eds.) Complex Systems
Design & Management Asia, pp. 41–53. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-12544-2 4

30. Specification, O.: UML profile for MARTE: modeling and analysis of real-time
embedded systems. Technical report, Object Management Group (2011)

31. UPPAAL-SMC. http://people.cs.aau.dk/∼adavid/smc/
32. Wardell, D.C., Mills, R.F., Peterson, G.L., Oxley, M.E.: A method for revealing and

addressing security vulnerabilities in cyber-physical systems by modeling malicious
agent interactions with formal verification. Proc. Comput. Sci. 95, 24–31 (2016)

33. Zhang, C., Lin, X., Lu, R., Ho, P.H., Shen, X.: An efficient message authentication
scheme for vehicular communications. IEEE Trans. Veh. Technol. 57(6), 3357–3368
(2008)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://sites.google.com/view/protl
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://doi.org/10.1007/978-3-319-12544-2_4
https://doi.org/10.1007/978-3-319-12544-2_4
http://people.cs.aau.dk/~adavid/smc/
http://creativecommons.org/licenses/by/4.0/

	Formal Verification of Safety & Security Related Timing Constraints for a Cooperative Automotive System
	1 Introduction
	2 Preliminary
	2.1 Probabilistic Extension of Clock Constraint Specification Language (PrCCSL)
	2.2 UPPAAL-SMC

	3 Running Example
	4 Modeling and Refinement of CAS in UPPAAL-SMC
	4.1 Modeling of RAISE Protocol in UPPAAL-SMC
	4.2 Modeling of Attacks in UPPAAL-SMC

	5 Representation of S/S Related Timing Constraints in UPPAAL-SMC
	5.1 Specifications of S/S Related Timing Constraints in PrCCSL
	5.2 Translation of PrCCSL into STA

	6 Experiment
	7 Related Work
	8 Conclusion
	References

