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Chapter 8
Intranasal Delivery of Drugs for Ischemic 
Stroke Treatment: Targeting IL-17A

Yun Lin, Jiancheng Zhang, and Jian Wang

Abstract  Stroke is the second most common cause of death worldwide and a major 
cause of disability. However, uncertainty surrounds the efficacy and safety of 
peripheral or intracerebroventricular drug administration for stroke treatment. 
Intranasal delivery is emerging as a noninvasive option for delivering drugs to the 
central nervous system with minimal peripheral exposure. Use of the intranasal 
route could potentially reduce systemic exposure and side effects. Intranasal deliv-
ery provides rapid onset that occurs within minutes. Additionally, this method facili-
tates the delivery of large and/or charged molecules, which fail to effectively cross 
the blood-brain barrier. We have shown previously that intranasal delivery of exog-
enous interleukin-17A (IL-17A) promotes the survival, neuronal differentiation, 
and subsequent synaptogenesis of neural precursor cells in the subventricular zone 
during stroke recovery, as well as spontaneous recovery and angiogenesis. Therefore, 
although IL-17A is well-known for contributing to damage in acute ischemic stroke, 
it might also mediate neurorepair and spontaneous recovery after stroke when deliv-
ered intranasally.
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8.1  �Introduction

Stroke is the second most common cause of death and a major cause of permanent 
disability in adults worldwide [1, 2]. Tissue plasminogen activator (tPA) is the only 
drug approved by the U.S. Food and Drug Administration for thrombolytic therapy 
after ischemic stroke, but its efficacy and safety are limited by its narrow treatment 
time window and side effects [3]. In contrast, a broader window exists to promote 
repair and decrease stroke-associated disability in late phases. Under physiologic 
conditions, the normal adult brain contains two neurogenic regions: the subven-
tricular zone (SVZ) of the lateral ventricle and the dentate gyrus of the hippocampus 
[4]. Although stroke induces neurogenesis in the SVZ and the migration of neural 
precursor cells into the injured striatum [5, 6], the contribution of endogenous neu-
rogenesis to spontaneous recovery after stroke is exceptionally limited, leaving the 
affected individual with life-long neurologic deficits [7]. Angiogenesis has been 
shown to be coupled with neurogenesis in brain tissue repair and remodeling after 
stroke [8]. Therefore, therapeutic interventions are required to promote recovery 
after stroke by increasing SVZ neurogenesis and angiogenesis.

Traditionally, neurologic disorders, like many bodily disorders, have been treated 
through peripheral drug administration (predominantly oral administration). 
However, a variety of disadvantages are associated with using peripheral adminis-
tration to treat central nervous system (CNS) diseases. Systemic administration can 
lead to side effects and low bioavailability as a result of first-pass hepatic and intes-
tinal metabolism, plasma protein binding, and the ability of the blood-brain barrier 
(BBB) to severely restrict entry of all but small, nonpolar compounds. Substantial 
evidence has shown that intranasal administration represents the most promising, 
novel, noninvasive method for delivering therapeutic substances directly to the 
CNS. Here we discuss the advantages of using the intranasal route over peripheral 
or intracerebroventricular (ICV) routes for treating ischemic stroke. We also intro-
duce our recent study, which showed that intranasal delivery of interleukin-17A 
(IL-17A) promotes neurogenesis and functional recovery in the later phases of 
stroke.

8.2  �Intranasal Delivery for the Treatment of Neurologic 
Disorders

The intranasal delivery method was first developed by Frey in 1989 for targeting 
neurotrophic factors (e.g., nerve growth factor and fibroblast growth factor-2) to the 
CNS [8]. This noninvasive delivery method targets therapeutics to the CNS, reduc-
ing systemic exposure and side effects. Thus, the intranasal route can be advanta-
geous for delivery of many CNS drugs, including those that can cross the BBB upon 
systemic administration. Intranasal delivery of therapeutics to the CNS is rapid, 
occurring within minutes.
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Routing drugs directly from the nasal cavity to the brain sidesteps the first-pass 
effect, during which metabolism in the liver, kidney filtration, and degradation 
greatly reduce the amount of active drug that eventually reaches the brain [9]. The 
duration and intensity of a drug’s actions can also be affected by the degree to 
which it binds to proteins within blood plasma. The more drug that binds to pro-
tein, the less efficiently it can transport across the BBB [10]. Another concern with 
systemic administration is adverse systemic or even toxic side effects. Although 
ICV injection can deliver drugs directly to the brain, it is a highly invasive and 
risky procedure [11]. Insufflation of drugs through the nose is noninvasive, associ-
ated with few complications, and directs compounds directly to the CNS [12–14]. 
Because the effect is often reached within 5 min, nasal administration can be used 
as an alternative to oral administration. A variety of growth factors, hormones, 
neuropeptides, and stem cells can be delivered intranasally. Even large and/or 
charged therapeutics, which do not effectively cross the BBB, can be delivered via 
the intranasal method. Therefore, this route holds promise for treatment of many 
CNS-related diseases, including stroke [14]. Nevertheless, each drug must be 
tested for effects on the nasal mucosa, sense of smell, and immune system, as 
drugs will likely enter the nasal-associated lymphatics and deep cervical lymph 
nodes.

8.3  �Intranasal Administration of Growth Factor Confers 
Protective Effects Against Ischemic Stroke

Numerous experimental studies have shown that a wide variety of peptide and pro-
tein therapeutics delivered by the intranasal route have the potential to treat isch-
emic stroke. In a study by Liu et al. [15] intranasal administration of insulin-like 
growth factor-1 (IGF-1, MW = 7.65 kDa) significantly reduced infarct size by 54% 
when given at 2  h after ischemia induction and 39% when given at 4  h. It also 
improved neurologic function. Intranasal delivery of recombinant human erythro-
poietin (rHu-EPO) was shown to reduce neurologic and cognitive deficits, as well 
as histologic damage in gerbils exposed to experimentally induced focal cerebral 
ischemia [16]. Fletcher et al. [17] demonstrated that EPO (MW = 30–34 kDa) plus 
IGF-1 penetrated the brain more efficiently when delivered by the intranasal route 
than when delivered by intravenous, intraperitoneal, and or subcutaneous injections. 
The intranasal combination of EPO and IGF-1 delivered 1 h after middle cerebral 
artery occlusion (MCAO) significantly reduced infarct volumes 24  h later and 
improved neurologic function up to 90 days later. Intranasal nerve growth factor 
(MW = 26.5 kDa) enhanced neurogenesis in the striatum and improved functional 
recovery when administered 24 h after MCAO [18]. Intranasal delivery of recombi-
nant human VEGF (MW = 38.2 kDa) also reduced infarct volume, improved behav-
ioral recovery, and enhanced angiogenesis following MCAO in rats [19]. In mice 
subjected to MCAO, intranasal delivery of TGF-β1 (MW = 25 kDa) reduced infarct 
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volume, increased neurogenesis in the SVZ, and improved functional recovery [20]. 
Ma et al. [21] reported improved neurologic function and reduced infarct volume in 
rats when basic fibroblast growth factor was delivered intranasally after cerebral 
ischemia/reperfusion. Rats that received intranasal basic fibroblast growth factor 
daily for 6 days beginning 1 day after MCAO also showed enhanced neurogenesis 
[22].

8.4  �Intranasal Delivery of IL-17A Promotes Neurogenesis 
and Functional Recovery After Ischemic Stroke

The IL-17A family consists of several cytokines that participate in both acute and 
chronic inflammatory responses [23]. IL-17A is the most widely investigated cyto-
kine of this family, and its production has been mainly attributed to T helper 17 
(Th17) cells [23]. Recent studies have revealed that IL-17A is mainly produced by 
gamma delta (γδ) T cells in the acute phase of ischemic stroke [24, 25]. As a linkage 
between innate and adaptive immunity, IL-17A secreted from γδ T cells plays det-
rimental roles in acute ischemic stroke [24, 26]. Evidence has shown that IFN-γ 
produced by CD4+ T cells induces TNF-α production in macrophages, whereas 
IL-17A secreted by γδ T cells triggers neutrophil recruitment to the infarcted hemi-
sphere. The synergistic effect of TNF-α and IL-17A on astrocytes enhanced secre-
tion of neutrophil-attracting chemokine CXCL-1 [25]. CXCL-1 binds to its receptor 
CXCR-2, resulting in the recruitment of neutrophils to the infarcted site, thus 
amplifying the inflammatory response and contributing to tissue damage [27]. 
Application of an IL-17A-blocking antibody after ischemic stroke induction 
decreases infarct size and improves neurologic outcome in the murine model. 
Additionally, IL-17A-positive lymphocytes were detected in postmortem brain tis-
sue of patients who had experienced a stroke, suggesting that this aspect of the 
inflammatory cascade also occurs in the human brain [24]. In our previous study, 
we found that IL-17A from reactive astrocytes maintained and augmented the sur-
vival and neuronal differentiation of neural precursor cells in the SVZ during stroke 
recovery and subsequent synaptogenesis and spontaneous recovery through the p38 
mitogen-activated protein kinase (MAPK)/calpain 1 signaling pathway [28]. We 
have also shown that pro-angiogenesis effects of IL-17A are involved in post-stroke 
functional recovery [29]. Therefore, although IL-17A is well-known for its damag-
ing role in acute stroke, it might be an essential mediator for ischemia-induced 
neurorepair and spontaneous recovery. Our findings reveal a previously unrecog-
nized role for IL-17A in neurogenesis, angiogenesis, and subsequent synaptogene-
sis and long-term functional recovery after ischemic stroke (Fig.  8.1) [28]. 
Importantly, these results indicate that IL-17A may have a biphasic role in different 
phases of ischemic stroke.
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8.5  �The Dual Effects of IL-17A in Different Stages 
of Ischemic Stroke

Signals that are deleterious during the acute stage of stroke may play beneficial 
roles during the recovery phase. Many reports in the literature based on cell and 
animal models suggest that N-methyl-d-aspartate (NMDA) receptor, the matrix 
metalloproteinase (MMP) family, and high-mobility-group-box-1 (HMGB1) 
worsen acute brain injury after stroke. However, recent studies suggest that they all 
could promote endogenous neurogenesis in the later phases of stroke recovery [30–
33]. Another example of the biphasic nature of molecular signals involves nitric 
oxide (NO). Accumulating data indicate that NO is deleterious when large amounts 
are produced by uncontrolled neuronal or inducible nitric oxide synthase isoforms 
[34, 35]. Alternatively, however, NO promotes angiogenic sprouting [36]. 
Angiogenesis is an important feature of the peri-infarct cortex during stroke recov-
ery [37, 38]. Therefore, some molecular signals may have biphasic roles after stroke.

Similar patterns may emerge when one looks at other stroke injury mechanisms. 
Among various immune cytokines, we focused on IL-17A because of two recently 
proposed ideas. First is the suggestion that IL-17A can exert both deleterious and 
beneficial effects in neuroinflammation [24, 39, 40]. Second, the crosstalk between 

Fig. 8.1  Intranasal delivery of IL-17A promotes functional recovery by enhancing neural progeni-
tor cell (NPC) survival, neuroblast migration, neuronal differentiation, and synaptogenesis through 
the p38 MAPK/calpain 1 signaling pathway
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central reactive astrocytes and precursor cells during stroke recovery supports neu-
rovascular remodeling and functional recovery [33]. In neuroinflammatory diseases, 
IL-17A is specifically expressed in reactive astrocytes [40, 41]. As expected, we 
showed that IL-17A from reactive astrocytes promoted neurorepair and long-term 
functional recovery [28]. Therefore, our results indicate that IL-17A may have a 
biphasic role in ischemic stroke. IL-17A from γδ T cells may worsen acute brain 
injury in the acute stage of stroke [24], whereas IL-17A from astrocytes may pro-
mote neurogenesis, angiogenesis, and functional recovery.

8.6  �Intranasal Application of IL-17A After Cerebral 
Ischemia

In consideration of the possible detrimental effects of IL-17A in various peripheral 
tissues and organs during stroke recovery, the perilesional accumulation of IL-17A 
in the brain seems to be the key to its neurogenic effects after ischemic stroke. 
Therefore, we chose the intranasal delivery route for our previous study [28]. We 
used a sterile 26-G Hamilton microsyringe (80330; Hamilton Company, Reno, NV) 
to intranasally administer 2  μL drops of recombinant mouse IL-17A (rIL-17A) 
diluted in PBS containing 0.1% albumin (0.1 μg/μL) or its vehicle (PBS containing 
0.1% albumin) to alternating nostrils, with a 2-min interval between applications. 
Drops were placed at the opening of the nostril, allowing the mouse to inhale each 
drop into the nasal cavity. A total of 10 μL of solution, containing 1 μg rIL-17A, was 
delivered over the course of 5 min. The administration of rIL-17A (or vehicle) was 
repeated every 24 h for 2 weeks starting at 14 days post-ischemia.

We should note that, although IL-17A delivered through the nasal route may 
promote neurorepair and functional recovery, systemic (intravenous and intraperito-
neal, etc.) administration of IL-17A may confer detrimental effects on peripheral 
tissues and organs because of its proinflammatory effects. Whether intranasal 
IL-17A can reach systemic circulation and confer detrimental effects in the periph-
eral system remains unknown.

8.7  �Intranasal Application of EPO After Cerebral Ischemia

Another example of a compound that can be administered nasally is EPO. rHu-EPO 
has been tested in experimental stroke models, but its hematopoietic effect, as well 
as alterations in platelet function and hemostasis, might elicit potential adverse 
effects if used systemically in patients [42]. The main advantages of intranasal 
administration of EPO include the lack of hematopoietic activity and the lower 
doses required. Evidence has shown that intranasal delivery of rHu-EPO confers 
long-term neuroprotection without side effects on the hematopoietic system [43].
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8.8  �Conclusion

Thus, intranasal administration could be the most promising, efficient, and noninva-
sive route for delivering therapeutic substances directly to brain for the treatment of 
ischemic stroke without invasiveness or systemic adverse effects. It also could 
increase patient comfort and compliance. Intranasal delivery of IL-17A or other 
compounds may hold promise for promoting post-stroke neurovascular repair and 
long-term functional recovery.
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