
Arnaud Liefooghe
Luís Paquete (Eds.)

 123

LN
CS

 1
14

52

19th European Conference, EvoCOP 2019
Held as Part of EvoStar 2019
Leipzig, Germany, April 24–26, 2019, Proceedings

Evolutionary Computation
in Combinatorial Optimization



Lecture Notes in Computer Science 11452

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA



More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407


Arnaud Liefooghe • Luís Paquete (Eds.)

Evolutionary Computation
in Combinatorial Optimization
19th European Conference, EvoCOP 2019
Held as Part of EvoStar 2019
Leipzig, Germany, April 24–26, 2019
Proceedings

123



Editors
Arnaud Liefooghe
University of Lille
Lille, France

Luís Paquete
University of Coimbra
Coimbra, Portugal

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-16710-3 ISBN 978-3-030-16711-0 (eBook)
https://doi.org/10.1007/978-3-030-16711-0

Library of Congress Control Number: 2019936143

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2019, corrected publication 2019, 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-3283-3122
https://doi.org/10.1007/978-3-030-16711-0


Preface

Combinatorial optimization problems arise very often in the demanding life that each
of us face everyday, from timetabling to planning routes, from resource allocation to
the location of facilities. The main challenge to the scientific community is to develop
solution methods that are able to achieve high-quality solutions to these problems in a
short amount of time. This is, by far, a non-trivial task. The underlying difficulty
of these problems poses relevant research questions concerning the trade-off between
solution quality and run-time that can ever be achieved on these problems.
Evolutionary techniques and related metaheuristics are particularly well suited for
grasping these trade-offs since they are able to return solutions at anytime of their
search process. Their search strategies are simple and intuitive, very much tied to
human reasoning for problem solving. For this reason, they have been extremely
popular among both the scientific community and practitioners, and they are selected as
de facto techniques for solving real-life optimization problems.

This volume contains the proceedings of EvoCOP 2019, the 19th European
Conference on Evolutionary Computation in Combinatorial Optimization. The con-
ference was held in Leipzig, Germany, during April 24–26, 2019. The EvoCOP con-
ference series started in 2001, with the first workshop specifically devoted to
evolutionary computation in combinatorial optimization. It became an annual confer-
ence in 2004. EvoCOP 2019 was organized together with EuroGP (the 22nd European
Conference on Genetic Programming), EvoMUSART (the 8th International Conference
on Computational Intelligence in Music, Sound, Art and Design), and EvoApplications
(the 22nd European Conference on the Applications of Evolutionary Computation,
formerly known as EvoWorkshops), in a joint event collectively known as EvoStar
2019. Previous EvoCOP proceedings were published by Springer in the Lecture Notes
in Computer Science series (LNCS volumes 2037, 2279, 2611, 3004, 3448, 3906, 4446,
4972, 5482, 6022, 6622, 7245, 7832, 8600, 9026, 9595, 10197, and 10782). The table
on the next page reports the statistics for each of the previous conference.

This year, 13 out of 37 papers were accepted after a rigorous double-blind process,
resulting in a 35% acceptance rate. We would like to acknowledge the quality and
timeliness of our Program Committee members’ work. Decisions considered both the
reviewers’ report and the evaluation of the program chairs. The 14 accepted papers
cover a wide spectrum of topics, ranging from the foundations of evolutionary com-
putation algorithms and other search heuristics, to their accurate design and application
to combinatorial optimization problems. Fundamental and methodological aspects deal
with runtime analysis, the structural properties of fitness landscapes, the study of
metaheuristics core components, the clever design of their search principles, and their
careful selection and configuration. Applications cover problem domains such as
scheduling, routing, partitioning, and general graph problems. It is our hope that the



range of topics covered in this volume of EvoCOP proceedings reflects the current state
of research in the fields of evolutionary computation and combinatorial optimisation.

EvoCOP LNCS vol. Submitted Accepted Acceptance (%)

2019 11452 37 13 35.1
2018 10782 37 12 32.4
2017 10197 39 16 41.0
2016 9595 44 17 38.6
2015 9026 46 19 41.3
2014 8600 42 20 47.6
2013 7832 50 23 46.0
2012 7245 48 22 45.8
2011 6622 42 22 52.4
2010 6022 69 24 34.8
2009 5482 53 21 39.6
2008 4972 69 24 34.8
2007 4446 81 21 25.9
2006 3906 77 24 31.2
2005 3448 66 24 36.4
2004 3004 86 23 26.7
2003 2611 39 19 48.7
2002 2279 32 18 56.3
2001 2037 31 23 74.2

We would like to express our appreciation to the various persons and institutions
who helped make EvoCOP 2019 a successful event. Firstly, we thank the local
organization team led by Hendrik Richter, the Faculty of Electrical Engineering and
Information Technology of HTWK Leipzig University of Applied Sciences for sup-
porting the local organization, and the HTWK Leipzig University of Applied Sciences
for their patronage of the event. We extend our acknowledgments to Marc Schoenauer
from Inria Saclay, France, for his continued assistance in providing the MyReview
conference management system, and to Pablo García-Sánchez from the University of
Cádiz, Spain, for taking care of the EvoStar publicity, website, and social media.
Thanks are also due to our EvoStar coordinator Anna I Esparcia-Alcázar, from
Universitat Politècnica de València, Spain, as well as to the SPECIES (Society for the
Promotion of Evolutionary Computation in Europe and its Surroundings) executive
board, including Marc Schoenauer (President), Anna I Esparcia-Alcázar (Secretary and
Vice President), and Wolfgang Banzhaf (Treasurer). We finally wish to thank our
prominent keynote speakers, Manja Marz from the Friedrich Schiller University Jena,
Germany, and Risto Miikkulainen from the University of Texas, USA.

vi Preface



Special thanks also to Christian Blum, Francisco Chicano, Carlos Cotta, Peter
Cowling, Jens Gottlieb, Jin-Kao Hao, Bin Hu, Jano van Hemert, Manuel Lopéz-Ibáñez,
Peter Merz, Martin Middendorf, Gabriela Ochoa, and Günther R. Raidl for their hard
work and dedication at past editions of EvoCOP, making this one of the reference
international events in evolutionary computation and metaheuristics.

April 2019 Arnaud Liefooghe
Luís Paquete

Preface vii



Organization

EvoCOP 2019 was organized as a part of EvoStar 2019, jointly with EuroGP 2019,
EvoMUSART 2019, and EvoApplications 2019.

Organizing Committee

Program Chairs

Arnaud Liefooghe University of Lille, France
Luís Paquete University of Coimbra, Portugal

Local Organization

Hendrik Richter Leipzig University of Applied Sciences, Germany

Publicity Chair

Pablo García-Sánchez University of Cádiz, Spain

EvoCOP Steering Committee

Christian Blum Artificial Intelligence Research Institute (IIIA-CSIC),
Bellaterra, Spain

Francisco Chicano University of Málaga, Spain
Carlos Cotta University of Málaga, Spain
Peter Cowling University of York, UK
Jens Gottlieb SAP AG, Germany
Jin-Kao Hao University of Angers, France
Bin Hu AIT Austrian Institute of Technology, Austria
Jano van Hemert Optos, UK
Manuel Lopéz-Ibáñez University of Manchester, UK
Peter Merz Hannover University of Applied Sciences and Arts,

Germany
Martin Middendorf University of Leipzig, Germany
Gabriela Ochoa University of Stirling, UK
Günther Raidl Vienna University of Technology, Austria

Society for the Promotion of Evolutionary Computation
in Europe and Its Surroundings (SPECIES)

Marc Schoenauer (President)
Anna I Esparcia-Alcázar (Secretary and Vice President)
Wolfgang Banzhaf (Treasurer)



Program Committee

Hernán Aguirre Shinshu University, Japan
Enrique Alba University of Málaga, Spain
Richard Allmendinger University of Manchester, UK
Thomas Bartz-Beielstein Cologne University of Applied Sciences, Germany
Matthieu Basseur University of Angers, France
Benjamin Biesinger Austrian Institute of Technology, Austria
Christian Blum Artificial Intelligence Research Institute (IIIA-CSIC),

Bellaterra, Spain
Sandy Brownlee University of Stirling, UK
Pedro Castillo University of Granada, Spain
Marco Chiarandini University of Southern Denmark, Denmark
Francisco Chicano University of Málaga, Spain
Carlos Coello Coello CINVESTAV-IPN, Mexico
Carlos Cotta University of Málaga, Spain
Bilel Derbel University of Lille, France
Karl Doerner Johannes Kepler University Linz, Austria
Carola Doerr CNRS and Sorbonne University Paris, France
Benjamin Doerr LIX-Ecole Polytechnique, France
Paola Festa Universitá di Napoli Federico II, Italy
Carlos M. Fonseca University of Coimbra, Portugal
Bernd Freisleben University of Marburg, Germany
Carlos Garcia-Martinez University of Córdoba, Spain
Adrien Goeffon University of Angers, France
Jens Gottlieb SAP SE, Germany
Andreia Guerreiro University of Coimbra, Portugal
Walter Gutjahr University of Vienna, Austria
Jin-Kao Hao University of Angers, France
Emma Hart Edinburgh Napier University, UK
Geir Hasle SINTEF Digital, Norway
Bin Hu Austrian Institute of Technology, Austria
Thomas Jansen Aberystwyth University, UK
Andrzej Jaszkiewicz Poznan University of Technology, Poland
Ahmed Kheiri Lancaster University, UK
Mario Koeppen Kyushu Institute of Technology, Japan
Timo Kötzing Hasso Plattner Institute, Germany
Frederic Lardeux University of Angers, France
Per Kristian Lehre University of Birmingham, UK
Rhyd Lewis Cardiff University, UK
Arnaud Liefooghe University of Lille, France
Manuel López-Ibáñez University of Manchester, UK
Jose Antonio Lozano University of the Basque Country, Spain
Gabriel Luque University of Málaga, Spain
Juan Julian Merelo University of Granada, Spain
Krzysztof Michalak University of Economics, Wroclaw, Poland

x Organization



Martin Middendorf University of Leipzig, Germany
Christine L. Mumford Cardiff University, UK
Nysret Musliu Vienna University of Technology, Austria
Gabriela Ochoa University of Stirling, UK
Pietro Oliveto University of Sheffield, UK
Beatrice Ombuki-Berman Brock University, Canada
Luís Paquete University of Coimbra, Portugal
Mario Pavone University of Catania, Italy
Paola Pellegrini French Institute of Science and Technology

for Transport, France
Francisco J. Pereira University of Coimbra, Portugal
Daniel Porumbel CNAM, France
Jakob Puchinger SystemX-Centrale Supélec, France
Günther Raidl Vienna University of Technology, Austria
Maria Cristina Riff Universidad Técnica Federico Santa María, Chile
Marcus Ritt Universidade Federal do Rio Grande do Sul, Brazil
Eduardo Rodriguez-Tello CINVESTAV - Tamaulipas, Mexico
Andrea Roli Università di Bologna, Italy
Peter Ross Edinburgh Napier University, UK
Frederic Saubion University of Angers, France
Patrick Siarry University of Paris 12, France
Kevin Sim Edinburgh Napier University, UK
Jim Smith University of the West of England, UK
Giovanni Squillero Politecnico di Torino, Italy
Thomas Stützle Université Libre de Bruxelles, Belgium
Andrew Sutton University of Minnesota Duluth, USA
El-ghazali Talbi University of Lille, France
Sara Tari University of Angers, France
Renato Tinós University of São Paulo, Brazil
Nadarajen Veerapen University of Lille, France
Sebastien Verel Université du Littoral Cote d’Opale, France
Darrell Whitley Colorado State University, USA
Carsten Witt Technical University of Denmark, Denmark
Bing Xue Victoria University of Wellington, New Zealand
Takeshi Yamada NTT Communication Science Laboratories, Japan
Christine Zarges Aberystwyth University, UK

Organization xi



Contents

A Cooperative Optimization Approach for Distributing Service Points
in Mobility Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Thomas Jatschka, Tobias Rodemann, and Günther R. Raidl

A Binary Algebraic Differential Evolution for the MultiDimensional
Two-Way Number Partitioning Problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Valentino Santucci, Marco Baioletti, Gabriele Di Bari,
and Alfredo Milani

A New Representation in Genetic Programming for Evolving Dispatching
Rules for Dynamic Flexible Job Shop Scheduling . . . . . . . . . . . . . . . . . . . . 33

Fangfang Zhang, Yi Mei, and Mengjie Zhang

An Iterated Local Search Algorithm for the Two-Machine Flow Shop
Problem with Buffers and Constant Processing Times on One Machine . . . . . 50

Hoang Thanh Le, Philine Geser, and Martin Middendorf

Route Planning for a Fleet of Electric Vehicles with Waiting Times
at Charging Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Baoxiang Li, Shashi Shekhar Jha, and Hoong Chuin Lau

Multiple Periods Vehicle Routing Problems: A Case Study . . . . . . . . . . . . . 83
Bilal Messaoudi, Ammar Oulamara, and Nastaran Rahmani

Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers . . . 99
Paul McMenemy, Nadarajen Veerapen, Jason Adair,
and Gabriela Ochoa

Runtime Analysis of Discrete Particle Swarm Optimization Applied
to Shortest Paths Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Alexander Raß, Jonas Schreiner, and Rolf Wanka

Quasi-Optimal Recombination Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Francisco Chicano, Gabriela Ochoa, Darrell Whitley, and Renato Tinós

Insights into the Feature Selection Problem Using Local
Optima Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Werner Mostert, Katherine M. Malan, Gabriela Ochoa,
and Andries P. Engelbrecht

Clarifying the Difference in Local Optima Network Sampling Algorithms . . . 163
Sarah L. Thomson, Gabriela Ochoa, and Sébastien Verel



A Unifying View on Recombination Spaces and Abstract Convex
Evolutionary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Marcos Diez García and Alberto Moraglio

Program Trace Optimization with Constructive Heuristics
for Combinatorial Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

James McDermott and Alberto Moraglio

Correction to: Evolutionary Computation in Combinatorial Optimization . . . . C1
Arnaud Liefooghe and Luís Paquete

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

xiv Contents



A Cooperative Optimization Approach
for Distributing Service Points

in Mobility Applications

Thomas Jatschka1(B), Tobias Rodemann2(B), and Günther R. Raidl1(B)

1 Institute of Logic and Computation, TU Wien, Vienna, Austria
{tjatschk,raidl}@ac.tuwien.ac.at

2 Honda Research Institute Europe, Offenbach/Main, Germany
tobias.rodemann@honda-ri.de

Abstract. We investigate a variant of the facility location problem con-
cerning the optimal distribution of service points with incomplete infor-
mation within a certain geographical area. The application scenario is
generic in principle, but we have the setup of charging stations for elec-
tric vehicles or rental stations for bicycles or cars in mind. When plan-
ning such systems, estimating under which conditions which customer
demand can be fulfilled is fundamental in order to evaluate and optimize
possible solutions. In this paper we present a cooperative optimization
approach for distributing service points that incorporates potential cus-
tomers not only in the data acquisition but also during the optimization
process. A surrogate objective function is used to evaluate intermediate
solutions during the optimization. The quality of this surrogate objec-
tive function is iteratively improved by learning from the feedback of
potential users given to candidate solutions. For the actual optimization
we consider a population based iterated greedy algorithm. Experiments
on artificial benchmark scenarios with idealized simulated user behavior
show the learning capabilities of the surrogate objective function and the
effectiveness of the optimization.

Keywords: Cooperative optimization · Facility location problem ·
Surrogate objective function · Metaheuristics

1 Introduction

Identifying optimal locations for setting up charging stations for electric vehicles
(EVs), rental stations in public bike or car sharing systems, or, more generally
some kind of service stations for mobility applications is always a challenging
problem when planning such systems. Usually, the goal is to place stations at
locations with high customer demand in order to maximize the usage and revenue

T. Jatschka—acknowledges the financial support from Honda Research Institute
Europe.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 1–16, 2019.
https://doi.org/10.1007/978-3-030-16711-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_1&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_1


2 T. Jatschka et al.

of such systems. However, estimating the customer demand that can possibly
be fulfilled is challenging. Demographic data is usually interlinked with geo-
graphic information, data on public transport, the street network, knowledge on
manifold special locations, etc. Additionally, surveys of potential customers are
performed. Customer demand information determined in such ways typically is
vague, and not uncommonly a system built on such assumptions is not as effec-
tive as originally hoped for due to major deviations in reality. The actual usage
of a service system by a user will in general depend not only on the construc-
tion of service points on a few specific locations but more globally on non-trivial
relationships of the user’s necessities and preferences in conjunction with larger
parts of the whole service system. For example in the case of charging stations
for EVs, consider the situation that a station is not built in close proximity to
a location a user is interested in, e.g., the user’s place of work. Intuitively, one
might say that the user’s demand cannot be fulfilled. However, such a conclusion
may be too naive. It might easily be the case that some other location is covered
that provides a reasonable alternative for the user, e.g., by additionally using
some public transport. Thus, there might be alternatives for fulfilling demand
that cannot all be foreseen or exactly pre-specified by potential users.

Hence, a crucial assumption that makes the situation challenging and appears
to be particularly valid in the context of the above mentioned mobility applica-
tions is the following: We are in general not able to obtain complete information
from potential users about the conditions under which how much demand will
be fulfilled, even when assuming absolutely rational users, neglecting uncertainty,
and ignoring aspects arising from competition from many users on possibly scarce
resources.

To overcome this problem, we investigate a cooperative optimization app-
roach. More generally, interactive optimization approaches incorporate potential
users on a large scale and more tightly into the data acquisition as well as
the optimization process; for a review see [19]. We confront the potential users
with carefully selected candidate solutions and ask how these suit the needs.
Obtained feedback is used to incrementally gain more knowledge on how much
demand may be fulfilled under which conditions. The optimization core relies
on a surrogate objective function that approximates the real fulfilled demand.
It is based on machine learning models that are trained by the user feedback.
Having obtained a new so far best solution from the optimization core, new,
more promising candidate solutions can be derived and again be presented to
the users. The process is iterated on a large scale with many potential users and
several rounds until a satisfactory solution is reached.

We test the approach in a proof-of-concept manner on artificial benchmark
scenarios simulating user behavior in an idealized fashion. Results document the
learning capabilities of the surrogate objective function and the effectiveness of
the optimization.

The paper is structured as follows. In Sect. 2 the Service Point Distribu-
tion Problem (SPDP) is formally introduced. Section 3 discusses related work.
Section 4 introduces the cooperative optimization approach (COA) for solving
the SPDP. Finally, in Sect. 5 we experimentally evaluate the COA and present
obtained results.



A Cooperative Optimization Approach for Distributing Service Points 3

2 The Service Point Distribution Problem

In this section we specify the problem we consider more formally. In the
Service Point Distribution Problem (SPDP) we are given a set of locations
V = {1, . . . , n} at which service points may be built and a set of potential users
U = {1 . . . , m}. The fixed costs for setting up a service point at location v ∈ V
are cv ≥ 0, and this service point’s maintenance over a defined time period is
supposed to induce variable costs zv ≥ 0. The total construction costs must not
exceed a maximum budget B > 0. Erected service stations may satisfy customer
demand, and for each unit of satisfied customer demand a prize p > 0 is earned.
We remark that for simplicity we do not consider here any capacity restrictions
at service points. A solution to the SPDP is given by a binary incidence vector
x = (xv)v∈V , where xv = 1 indicates that a service point is to be set up at
location v.

The problem is incompletely specified in the sense that we do not have a
function for calculating the fulfilled demand for a candidate solution upfront.
Instead, we assume here that we are only able to evaluate solutions “exactly”
by presenting them to the potential customers U and collecting their feedback.
These user evaluations are denoted by d(u, v, x) which specifies the demand of
user u ∈ U fulfilled at location v ∈ V in solution x. If a service station is not
ideal for a user but somewhat acceptable for him to be used and there are no
better alternatives in solution x, this is modeled by a correspondingly reduced
fulfilled demand value d(u, v, x); i.e., the user is less likely to use this service
point and therefore the expected fulfilled demand is lower. Clearly, the number
of candidate solutions that are evaluated in this interactive way are a major
concern. We cannot confront each user with hundreds or thousands of evaluation
requests. Instead, we carefully have to select the solutions to be evaluated by
each user in an individual fashion, avoiding redundancies as far as possible.

Naturally, the demand fulfilled at any location must always be non-negative
and can only be positive when a service point is set up there, i.e.,

d(u, v, x) ≥ 0, xv = 0 → d(u, v, x) = 0 u ∈ U, v ∈ V. (1)

A solution x is feasible if its total fixed costs do not exceed the maximum bud-
get B, i.e.,

c(x) =
∑

v∈V

cvxv ≤ B. (2)

The objective is to find a feasible solution that maximizes the prizes earned for
satisfied customer demands reduced by the variable costs for maintaining the
service points

f(x) = p ·
∑

u∈U

∑

v∈V

d(u, v, x) −
∑

v∈V

zvxv. (3)



4 T. Jatschka et al.

3 Related Work

The SPDP can be classified as a variant of the Facility Location Problem (FLP).
In the FLP a set of potential facility sites and a set of demand points is given.
The task is to select a subset of these sites in order to serve the demand points
w.r.t. some optimization goal subject to a set of constraints. For a survey on
FLPs see [6], for a more comprehensive book on location theory see [11]. More
specifically, our SPDP is closely related to the uncapacitated FLP [4] in which
each facility can satisfy an arbitrary amount of demand – with the substantial
difference that in our case user demands are not known upfront but must be
learned via user interaction.

The problem of optimizing the distribution of charging stations for EVs has
gained increased attention recently. An essential question of contributions con-
cerning this topic always is how to determine potential customer demands. Chen
et al. [2] substitute charging demand with parking demand in order to identify
good locations for public charging stations. The parking demand is derived from
parking information of a travel survey. In [9], a maximal covering model [3]
for identifying charging stations is proposed. The demands are estimated using
regression analysis based on surveys on the number of cars per household, the
average travel distance of cars, the estimated range of an EV etc. In [1], the
charging demand of a location is modeled as the expected duration of charging
all drivers that need to charge their EV at this location. The number of drivers
in a location is derived from a mobility survey as part of a case study of the city
of Coimbra, Portugal. In [14] charging stations for an on-demand bus system
are located using taxi probe data of Tokyo. While the focus in this paper lies
on distributing charging stations for EVs, our approach is a general framework
capable of planning service point based systems of any kind, such as bike or car
sharing systems [10].

Opposite to the aforementioned contributions, we assume to have essentially
no knowledge on customer demand in advance but aim at obtaining this infor-
mation on the fly in an interactive way by integrating potential customers in
the optimization process. More generally, in interactive optimization algorithms,
humans are typically used to evaluate the quality of solutions; e.g., in [15] an
interactive genetic algorithm for designing dresses is proposed. Instead of explic-
itly defining a fitness function, the fitness of a solution is decided by a user. For
a survey on interactive optimization algorithms see [19]. A major disadvantage
of interactive algorithms is that their performance strongly depends on the qual-
ity of the feedback given by the interactors. Continuous user interactions will
eventually result in user exhaustion [17], negatively influencing the reliability
of the obtained feedback. Therefore, user interactions should not only be con-
sidered time consuming but users also need to be treated as a scarce resource
– the interaction should be kept to a required minimum. A common way to
overcome this problem is to combine interactive optimization algorithms with a
surrogate-based approach [22,23]. Surrogate models are typically used as a proxy
of functions which are either unknown or extremely time consuming to compute.
Classic candidates for such surrogates are machine learning (ML) models. In [16]



A Cooperative Optimization Approach for Distributing Service Points 5

a survey of popular surrogate functions is provided, ranging from polynomial
regression [8] to more sophisticated techniques such as neural networks [12] and
support vector regression [7].

Our approach also exhibits similarities to so-called interactive ML
approaches. Such methods are typically used when the number of training sam-
ples is not sufficient to properly train an ML model. To compensate this prob-
lem, a human is used as a guide to reduce the search space during the learning
phase [13]. One way to reduce the search space is to reduce the number of fea-
tures considered during the learning phase [5]. Our approach can be considered
as an interactive ML algorithm in the sense that the ML models in use are
continuously improved and corrected through user evaluations.

4 Cooperative Optimization Algorithm

The proposed solution framework, which we call Cooperative Optimization Algo-
rithm (COA), consists of the following interacting components: an evaluation
component (EC), an optimization component (OC), a feedback component (FC),
and a solution management component (SMC).

The FC is responsible for selecting or deriving for each user individual candi-
date solutions that are then presented to him for evaluation. A user u ∈ U gives
feedback to a proposed solution x by stating how much of his demand would actu-
ally be satisfied at which locations, i.e., he returns the values d(u, v, x), v ∈ V .

The EC provides a function for evaluating candidate solutions. This in par-
ticular also includes intermediate solutions that are not directly evaluated by the
users. Should for a solution x the values d(u, v, x) be known for each user u ∈ U
and all locations {v ∈ V | xv = 1}, we can calculate the exact objective value
f(x) according to (3). Otherwise, we resort to a surrogate objective function
f̃(x) based on an ML model that estimates the real objective value based on
the information gained from the users’ feedback so far. The respective learning
mechanism also is part of the EC.

One call of the OC solves the SPDP by using the EC’s current surrogate
objective function for evaluating any intermediate solutions and yields one or
more optimal or close-to-optimal solutions w.r.t. the current state of the EC.
Note that the surrogate objective function never changes during one call of the
OC. Instead, the OC is called repeatedly in each major iteration of the framework
after having obtained new user feedback and re-trained the EC.

Finally, the SMC efficiently stores and manages information on all candidate
solutions that are relevant for more than one of the above components and in
particular also the solutions for which users have given feedback.

Figure 1 illustrates the communication between the components, and Algo-
rithm 1 shows how the components of the framework interact with each other
within the main program. The algorithm starts with the FC by presenting each
user the solution in which all locations are selected, i.e., xv = 1, v ∈ V . The
information acquired in this way over all users serves as initial training data for
the EC. The following subsections describe each component’s functionality in
more detail.



6 T. Jatschka et al.

SMC

OC

FC EC

Users

optimized
solutions

initial
solutions

optimized solutions

user
feedback

solutions
to present
to users

user feedback data for learning

(surrogate) obj. function

surrogate obj. function

Fig. 1. Components of the framework and their interaction. The framework consists
of the feedback component (FC), the evaluation component (EC), the optimization
component (OC), and the solution management component (SMC). Users can interact
with the framework via the FC.

4.1 Solution Management Component

As the number of locations |V | is usually much larger than the number of service
stations that can actually be built in a feasible solution, candidate solutions in
the SMC are compactly represented by the subset of locations chosen for setting
up service points. Let us denote this set of locations by s(x) = {v ∈ V | xv = 1}.

Next to storing all considered candidate solutions, the SMC also maintains
for each solution the users for which the exact fulfilled demand is already known,
and for each user u ∈ U a set of so far identified relevant locations Vu, which
includes any location for which the user has indicated positive demand in at
least one solution. Note that the complete set of relevant locations in general is
unknown. However, it is the task of the FC to choose the solutions presented to
the users in such a way that as many relevant locations as possible are identified
(see Sect. 4.2).

Another important task of the SMC is to derive a user’s demand for scenarios
where this can be efficiently achieved through logical implications from previous
scenario evaluations. For example, any scenario that is a superset of a scenario
with already maximum fulfillable demand dmax

u will also achieve this maximum.

4.2 Feedback Component

In each major generation of Algorithm 1, the FC generates for each user u ∈ U
an individual set of solutions to evaluate. It is assumed here that any user u
evaluates each solution in a completely rational way so that the total fulfilled
demand is maximal. The number of user evaluations of solutions needs to be
kept as low as possible to avoid user fatigue [17], we cannot ask real users to
evaluate hundreds of solutions. Thus, each solution presented to a user must be



A Cooperative Optimization Approach for Distributing Service Points 7

Algorithm 1. Basic Framework
Input : an instance of the SPDP
Output: a solution x = (xv)v∈V ∈ {0, 1}n

1: XOC = {(1, . . . , 1)} // initial solution, later best solution(s) from the OC while
no termination criterion satisfied do

2: Feedback Component:
3: for u ∈ U do
4: determine set of solutions X ′

u to be evaluated by u from XOC and
further data in the SMC;

5: let user u evaluate X ′
u, update the SMC with evaluated solutions

from X ′
u;

6: end for

7: Evaluation Component:

8: train surrogate objective function f̃(x) with data from the SMC;
9: re-evaluate all solutions stored in the SMC with the new surrogate

objective function;

10: Optimization Component:
11: adopt so far best solutions from the SMC as initial solutions;
12: XOC ← perform optimization using the EC’s surrogate objective

function f̃(x);
13: when possible, calculate exact f(x) for x ∈ XOC ;
14: store the solution(s) from XOC in the SMC;

15: end while

16: return overall best found solution x∗ w.r.t. f̃ ;

non-redundant and meaningful in the way that we likely obtain new knowledge
on his needs that is valuable for finding an overall optimal solution.

It appears natural that a solution presented to a user should be similar to
the best solutions identified so far by the OC or, otherwise, provide substantial
information gain on locations that are potentially interesting for the user. Next to
finding new relevant locations for a user, it is also necessary to gain information
on the relationship between relevant locations.

We apply the following combination of strategies for compiling a set of at
most κ solutions presented to each user u ∈ U , where κ is a strategy parameter
and is set to 15 in the experiments performed for this article.1 Note that solutions
generated with these strategies may not necessarily be feasible, which, however,
does not immediately matter for the intended purpose.

Best Solution Strategy. Let f(x) be the evaluation function in which we consider
exact fulfilled demands d(u, v, x) and let f̃ be the surrogate function, which will
be defined in Sect. 4.3. Select the γ1 best feasible solutions w.r.t. to f and the
γ2 best feasible solutions w.r.t. the surrogate function f̃ (see Sect. 4.3) for which
no exact total fulfilled demand is known yet for user u. Hereby, γ1 and γ2 are
1 All parameter values stated in the text have been tuned in comprehensive preliminary

tests.



8 T. Jatschka et al.

strategy parameters, which are both set to 2 in the experiments performed for
this article. This strategy clearly focuses on getting exact evaluations for the
currently most promising solutions.

Irrelevant Locations Strategy. This strategy focuses purely on finding new rele-
vant locations for a user u, which might lead to good alternative solutions. For
this purpose a solution in which the locations in V \Vu are selected is generated.

Best Solution Mutation Strategy. This strategy is a combination of the previous
strategies and tries to gain information on the relationship between locations by
replacing a subset of s(x) ∩ Vu of a solution x obtained from the best solution
strategy for a user u with a set of locations for which it is so far unclear if
they are relevant: A new solution x′ is constructed from a copy of an existing
solution x by setting xv = 0 with v ∈ s(x) ∩ Vu with a certain probability ξ for
each v, where ξ is a strategy parameter which is set to 0.5 in the experiments
throughout this article. Afterwards, we set xv = 1 for n′ uniformly at random
chosen locations v ∈ V \ s(x) with n′ being chosen uniformly at random from
{0, . . . , |V | − |s(x)|}.

4.3 Evaluation Component

The EC provides the means for evaluating solutions, in particular also temporary
solutions generated within the OC. Within the OC the objective value of a
solution is estimated by a surrogate objective function f̃(x), which is defined in
accordance to f(x) but makes use of estimated fulfilled demands

d̃(u, v, x) =

{
0 if v �∈ Vu ∨ xv = 0
max(0, gu,v(x)) else

(4)

for each user u ∈ U and each location v ∈ V , where gu,v(x) represents an ML
model trained by all solutions so far evaluated by user u. Note that our definition
of d̃(u, v, x) ensures that conditions (1) are always fulfilled and gives function
gu,v(x) more freedom in the sense that it may return negative values, which
are mapped to zero, and arbitrary values in case of xv = 0. Furthermore, for
any location v for which user u has so far never indicated any positive fulfilled
demand in any solution, i.e., for any so far not relevant location v ∈ V \ Vu,
gu,v(x) = 0 is assumed and no ML model needs to be maintained.

Similarly to [21], we use an adaptive surrogate function in the sense that
the ML model for each gu,v(x) is initially simple and is upgraded to a higher
complexity model during the course of the algorithm when the error of the
model – measured in terms of the usual mean squared error MSE of d̃(u, v, x) –
exceeds a certain threshold τ . In this way we stay as efficient as possible from a
computational perspective and substantially reduce problems with overfitting.

Our initial choice for gu,v(x) is the linear model (LM)

gLMu,v (x) = wu,v +
∑

v′∈Vu\{v}
w′

u,v,v′ · xv′ . (5)



A Cooperative Optimization Approach for Distributing Service Points 9

Ridge regression with a penalization factor of one is used for determining the
weights wu,v and w′

u,v,v′ . This model is sufficient for covering simple scenarios
where users have independent demands that can be fulfilled at specific locations.
Furthermore, it can even accurately represent the case where for a user one
demand can be fulfilled at a specific primary location or, with a possibly reduced
amount, at one alternative location if no service station is set up at the primary
location. More complex dependencies, including in particular more than one
alternative location, are, however, beyond the capability of the LM.

In this case, which is detected by a remaining MSE of d̃(u, v, x) larger than
a threshold τ = 0.075, we turn to a neural network, starting with a single layer
perceptron with a leaky rectified linear unit (ReLU) activation function [18].
This simple neural network realizes the function

gNN
u,v (x) = φ

(
gLMu,v (x)

)
with φ(S) =

{
S if S ≥ 0
ε · S else.

(6)

The leaky ReLU activation function φ serves as an extension of the LM in the
sense that this perceptron takes actively into account that satisfied demands
cannot be negative. Due to this non-linearity, it can accurately represent sce-
narios in which for a user a demand can be fulfilled at an arbitrary number of
ordered alternative locations, where a service station at one of these locations
will only fulfill a certain amount of the demand when no station is set up at any
of the preceding alternative locations in the order. We use here the leaky ReLU
function with parameter ε = 0.01 which returns small negative values in case
the sum S is negative.

While the above perceptron is already more powerful, it is still limited when a
user has more than one demand that can be fulfilled partly at the same locations,
or more generally, when the different demands are related in some way. Again,
we detect the insufficiency of the perceptron by a MSE that exceeds τ and turn
in this case to a more complex feed forward neural network with one hidden layer
that contains initially two hidden neurons. These neurons again make use of the
leaky ReLU activation function, while the single output layer neuron corresponds
to a simple summation of the inputs. Initially, we use two hidden neurons and
increase this number until, after training, either the MSE does not exceed τ
anymore or a maximum of λ = 6 hidden neurons is reached.

Note that the solutions used for training the models are not required to be
feasible, since user evaluations do not consider the budget at all.

4.4 Optimization Component

Remember that the OC is called in each major iteration of the whole framework
and makes use of the current surrogate function provided by the EC, which does
not change during each individual run of the OC. The OC is thus supposed
to return an optimal or close-to-optimal solution w.r.t. the current surrogate
function.



10 T. Jatschka et al.

The OC is implemented as a Variable Neighborhood Search (VNS) and fol-
lows the classical scheme from [20]. It consists of a randomized construction
heuristic, a local search part, and a shaking mechanism for escaping local optima.
The initial solution is generated via the randomized construction heuristic that
considers all locations in random order and sets up a station at a location as
long as the budget is not exceeded.

Our local search follows a first improvement strategy and utilizes a two-
exchange neighborhood structure, in which a location in the solution is replaced
by a location not contained in the solution. The VNS only considers feasible
solutions, hence, we skip all moves in the neighborhood resulting in budget
constraint violations. Moreover, after each feasible move, we try to additionally
improve the solution by adding stations at further locations to the solution in a
random order as long as the budget allows it.

Shaking removes stations from a number of uniformly selected random loca-
tions and then iteratively adds stations to other locations in a uniform random
order, such that the solution stays feasible and no more locations can be added.
The number of stations to be removed corresponds to the index of the shaking
neighborhood and varies from one to two.

The VNS terminates if no better solution has been found within 40 iterations.

5 Experimental Evaluation

We test the suggested framework in a proof-of-concept manner on artificial
benchmark scenarios using an idealized simulation of all user interaction. To
a large degree, the proposed framework is independent of the concrete applica-
tion as long as our general problem formulation is suitable. The machine learning
models in the EC, however, were already designed with a few assumptions on
user requirements, as they appear, for example, in the context of setting up
charging stations for EVs: Users would like to have certain needs associated
with use cases fulfilled that are related to particular geographic locations, such
as their home and/or work address or other places they visit regularly. While
ideally respective service stations would be set up at precisely these locations,
the respective demands can to a certain degree also be fulfilled by service sta-
tions located in the vicinity. The degree (amount) of fulfilled demand, however
is assumed to decrease with the distance. In this way, we implicitly also consider
the convenience for the users. It is generally assumed that for fulfilling a demand,
a user always uses a station that is closest to the demand’s original location.

5.1 Benchmark Scenarios

The primary parameters for our benchmark scenarios are the number of potential
locations for service stations n and the number of users m, and we consider
here the combinations n = 50, 60, . . . , 100 with m = 50 and n = 50 with m =
50, 60, . . . , 100. The n locations correspond to points in the Euclidean plane with
coordinates chosen uniformly at random from the grid {0, . . . , L − 1}2, where



A Cooperative Optimization Approach for Distributing Service Points 11

L = 	10
√

n� is the underlying width and height. The fixed costs cv as well as
the variable costs zv for setting up a service station at each location v ∈ V are
uniformly chosen at random from {50, . . . , 100}. The budget is assumed to be
B = 	7.5 · n� so that about 10% of the stations with average costs can be set
up. We assume each of the m users u ∈ U has ρu so-called use cases, where ρu

is chosen randomly according to a shifted Poisson distribution with offset one
and expected value three. Each of these use cases i = 1, . . . , ρu is associated
with a particular geographical location ru,i ∈ {0, . . . , L − 1}2 and a respective
demand d∗

u,i that could ideally be fulfilled there. This demand can, for example,
be the expected number of usages of a service point in a time period. Here,
we choose each d∗

u,i uniformly at random from {5,. . . ,50}. In a real scenario,
the locations where demand arises will clearly not be uniformly distributed over
the whole considered geographic area. There will be more popular regions as
well as less popular ones. We want to consider this aspect and therefore first
choose α = 	(L/50)2� attraction points A with uniform random coordinates from
{0, . . . , L − 1}2 and then derive the location for each use case from a uniformly
selected attraction point (ax, ay) ∈ A by

ru,i = (�N (ax, 20) mod L, �N (ay, 20) mod L), (7)

where N (·, ·) denotes a random value sampled from a normal distribution with
the respectively given mean value and standard deviation.

For each use case i = 1, . . . , ρu of each user u ∈ U , demand is always only
fulfilled at the closest location vclst

u,i (x) ∈ V w.r.t. the Euclidean distance where
a service station is set up in the current candidate solution x (ties are broken
according to the locations’ natural order) and when a maximum distance, chosen
here as 12, is not exceeded. We further assume an exponential decay of the
fulfilled demand in dependence of the distance and round down to the closest
integer, obtaining

di(u, v, x) =

{
�d∗

u,i · e−||ru,i−vclst
u,i (x)||/10 if v = vclst

u,i (x) ∧ ||ru,i − v|| ≤ 12
0 else,

(8)

where || · || denotes the L2 norm. These fulfilled demands for each use case i are
finally summed up in order to obtain the overall fulfilled demands d(u, v, x) =∑

i=1 di(u, v, x) for each user u ∈ U and location v ∈ V under candidate
solutionx. Finally, the prize earned for eachunit of fulfilled demand in our objective
function is assumed to be p = 50.

For each combination of n and m 30 independent scenarios were created, and
they are available at https://www.ac.tuwien.ac.at/research/problem-instances.
The benchmarks were also specifically designed with the ability in mind to cal-
culate proven optimal solutions to which we will compare the solutions of our
framework. Exploiting the complete knowledge of the data and specific structure
in a “white-box” manner allows the problem to be expressed as mixed-integer
linear programming (MIP) model, which we solved with the MIP-solver Gurobi2.
2 http://www.gurobi.com/.

https://www.ac.tuwien.ac.at/research/problem-instances
http://www.gurobi.com/


12 T. Jatschka et al.

5.2 Computational Experiments

The OC was implemented in C++, compiled with GNU G++ 5.5.0, while the
remaining components of the framework were realized in Python 3.7. For linear
regression scikit-learn 0.17 was used and for the perceptrons and neural networks
Keras 2.2.2 on top of Theano 1.0.2 (without GPU support). The perceptrons and
neural networks were trained with the adam optimizer (learning rate 0.1) over
5000 epochs with a batch size of 32 in order to minimize the MSE. All test
runs have been executed on an Intel Xeon E5-2640 v4 with 2.40 GHz machine.
Our framework terminated when no improved solution could be found over five
iterations or when the CPU-time limit of 7200 s had been reached and returned
the overall best found solution x∗ w.r.t. the approximate evaluation function f̃ .

Table 1 lists average results of COA over all 30 instances for each considered
combinations of n and m. Each line shows the average number of iterations
nit, the average of the exact objective values of the finally returned solutions
f(x∗) and the corresponding optimal solutions f(xopt) obtained from Gurobi by
solving the white-box MIP, the average optimality gap %-gap and corresponding
standard deviation σ%-gap, where the %-gap is calculated for a final solution x∗

of COA in relation to an optimal solution xopt as %-gap = 100% · (f(xopt) −
f(x∗))/f(xopt), the average percentage error of the surrogate function values
of final solutions %-Δf̃ (serving as an indicator for the quality of the surrogate
function) and the corresponding standard deviation σ%-Δf̃ , with %-Δf̃ = 100% ·
|f̃(x∗)−f(x∗)|/f(x∗), and the median of the computation times in seconds. The
table shows that COA finds near optimal solutions for almost all instances.
Average final gaps to optimal solutions are always less than 0.6%. Moreover,
the surrogate function predicts the actual user demand at least for the final
solutions excellently; for all instance groups the average percentage error of the
surrogate function values is below 0.55%. The percentage errors and computation
times tend to slightly increase with an increasing number of users, while the
optimization gaps show no such behavior. Neither the number of users, nor the
number of locations seems to have an impact on the optimality gaps, indicating
that our algorithm is able to also solve larger instances with a similar solution
quality. The generally rather high computation times can be explained by the
large number of machine learning models that need to be trained in each iteration
but also by the fact that the OC is implemented as pure black-box optimization.

Next, in Fig. 2, we take a closer look at the percentage errors of the surrogate
function. The boxplots in Fig. 2 show the distribution of %-Δf̃ for all instances.
The figure shows that the percentage error of the final surrogate function of an
instance is almost always below 1%. As observed in Table 1, one can see a slight
increase of the percentage errors as the number of users increases, i.e. there seems
to be a correlation of the size of the percentage errors and the number of users.

Figures 3a–b visualize for an exemplary run with n = 100 and m = 50 the
best solutions w.r.t. f̃ at the first and at the last iteration of COA, respec-
tively. Blue dots show the locations of users’ use cases with their sizes indicating
the respective maximal satisfiable demands d∗

u,i. Diamonds show the potential



A Cooperative Optimization Approach for Distributing Service Points 13

Table 1. Average results of COA.

n m nit f(x∗) f(xopt) %-gap σ%-gap %-Δf̃ σ%-Δf̃ time[s]

50 50 10 56499 56717 0.34 0.67 0.19 0.14 2063

50 60 10 67134 67467 0.38 1.05 0.31 0.19 2594

50 70 11 78562 78845 0.21 0.58 0.33 0.34 2936

50 80 10 88003 88283 0.28 0.51 0.35 0.32 3522

50 90 10 98408 98961 0.56 0.89 0.37 0.34 3867

50 100 11 106604 107020 0.28 0.48 0.41 0.44 4424

60 50 11 59189 59354 0.46 1.43 0.53 1.35 2335

70 50 11 61685 62097 0.49 0.93 0.38 0.48 2447

80 50 12 64425 64690 0.49 0.73 0.27 0.28 2904

90 50 11 66689 66870 0.27 0.40 0.23 0.19 2946

100 50 13 71030 71229 0.26 0.44 0.28 0.27 3889

Fig. 2. Distributions of the percentage errors of the surrogate function values of final
solutions.

locations of service stations V , with the larger ones with the discs correspond-
ing to those chosen in the best solution of the iteration. The actually fulfilled
demand of a service station is indicated by the size of the diamonds, and the
discs illustrate the covered area in respect to the maximum distance of 12. We
can see that already the solution obtained in the first iteration is quite meaning-
ful. Although the final solution is similar at the first glance, a closer look reveals
a significantly better coverage of demands in the final solution.

This observation is also confirmed by Fig. 3c showing the corresponding devel-
opment of the best solution’s exact objective value over the iterations in compar-
ison to the optimal solution value f(xopt). We can see that already the solution
of the first iteration has a relatively high objective value, which is continuously
improved in few iterations until the optimum is almost reached.



14 T. Jatschka et al.

Finally, Fig. 3d shows the distribution of the model sizes of the surrogate
function’s underlying machine learning models at the final iteration of COA. A
model size of zero refers to LMs, size one to perceptrons, and larger sizes to
neural networks with the respective number of neurons in the hidden layer. The
distribution shown in Fig. 3d is typical for all instances tested. It shows that
the majority of machine learning models is made up of LMs and perceptrons.
Larger size neural networks are rarely needed. However, the figure also shows a
small peak at the largest neural network with six neurons in its hidden layer.
This peak is caused by unpopular service point locations resulting in training
data in which most customer demands are zero. The neural networks often fail
to properly learn such data, however, on the other hand, as these locations are
the least popular service point locations, they usually have no large impact on
the final solution.

(a) iteration 1 (b) iteration 8

(c) solution quality over iterations (d) model distribution

Fig. 3. An exemplary run with n = 100 and m = 50: (a–c) best solutions at different
iterations and (d) exact objective value of best solution per iteration.



A Cooperative Optimization Approach for Distributing Service Points 15

6 Conclusion

We proposed a cooperative algorithm framework for distributing service points
within a geographical area in mobility applications under incomplete informa-
tion. Instead of estimating user demands by combining a variety of more or
less reliable sources, our method directly incorporates potential customers in
the optimization process. Our proof-of-concept implementation is still based on
comparatively simple components. Nevertheless we could show that the machine
learning models in our evaluation component are able to learn the non-trivial
user behavior of all our benchmark scenarios reliably after relatively few user
interactions, and the optimization is able to indeed find solutions with only small
remaining optimality gaps. The careful derivation of the candidate solutions to
be presented to the users in the feedback component also plays a particularly
important role.

In future work we will investigate the approach on more complex scenarios
such as bike sharing systems, where a use case always relates to two, usually
different locations for renting and returning a bike, respectively. Considering
capacity limits and different possible configuration options for the service points
is another practically highly relevant aspect. Another challenge is to improve the
scalability of the approach towards more potential locations and more users. To
this end it seems necessary to replace the individual machine learning models we
currently have for each user and each location by a more integrated approach.
Even though, we use a surrogate function to unburden the customers from eval-
uating too many solutions, the current number of solutions a user needs to
evaluate is still very high. Additional efforts need to be made to further reduce
this number. Last but not least, improvements should also be possible in the
optimization component.

References

1. Cavadas, J., Homem, G.d.A.C., Gouveia, J.: A MIP model for locating slow-
charging stations for electric vehicles in urban areas accounting for driver tours.
Transp. Res. Part E Log. Transp. Rev. 75, 188–201 (2015)

2. Chen, T., Kockelman, K.M., Khan, M.: The electric vehicle charging station loca-
tion problem: a parking-based assignment method for Seattle. In: 92nd Annual
Meeting of the Transportation Research Board in Washington DC (2013)

3. Church, R., ReVelle, C.: The maximal covering location problem. Pap. Reg. Sci.
32, 101–118 (1974)

4. Cornuéjols, G., Nemhauser, G.L., Wolsey, L.A.: The uncapacitated facility location
problem. In: Mirchandani, P.B., Francis, R.L. (eds.) Discrete Location Theory,
pp. 119–171. Wiley, New York (1990)

5. Fails, J.A., Olsen Jr., D.R.: Interactive machine learning. In: Proceedings of the
8th International Conference on Intelligent User Interfaces, pp. 39–45. IUI 2003.
ACM, New York (2003)

6. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms
and Case Studies. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
7908-2151-2

https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/978-3-7908-2151-2


16 T. Jatschka et al.

7. Forrester, A., Andras, S., Keane, A.: Engineering Design via Surrogate Modelling:
A Practical Guide. Wiley, New York (2008)

8. Forrester, A.I., Keane, A.J.: Recent advances in surrogate-based optimization.
Prog. Aerosp. Sci. 45(1), 50–79 (2009)

9. Frade, I., Ribeiro, A., Gonçalves, G., Antunes, A.: Optimal location of charging
stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transp. Res.
Rec. J. Transp. Res. Board 2252, 91–98 (2011)

10. Gavalas, D., Konstantopoulos, C., Pantziou, G.: Design and management of
vehicle-sharing systems: a survey of algorithmic approaches. In: Obaidat, M.S.,
Nicopolitidi, P. (eds.) Smart Cities and Homes, pp. 261–289. Elsevier (2016)

11. Laporte, G., Nickel, S., da Gama, F.S. (eds.): Location Science. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-13111-5

12. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Engle-
wood Cliffs (1998)

13. Holzinger, A.: Interactive machine learning for health informatics: when do we need
the human-in-the-loop? Brain Inf. 3(2), 119–131 (2016)

14. Kameda, H., Mukai, N.: Optimization of charging station placement by using taxi
probe data for on-demand electrical bus system. In: König, A., Dengel, A., Hinkel-
mann, K., Kise, K., Howlett, R.J., Jain, L.C. (eds.) KES 2011. LNCS (LNAI),
vol. 6883, pp. 606–615. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-23854-3 64

15. Kim, H.S., Cho, S.B.: Application of interactive genetic algorithm to fashion design.
Eng. Appl. Artif. Intell. 13(6), 635–644 (2000)

16. Koziel, S., Ciaurri, D.E., Leifsson, L.: Surrogate-based methods. In: Koziel, S.,
Yang, X.S. (eds.) Computational Optimization, Methods and Algorithms. Studies
in Computational Intelligence, vol. 356, pp. 33–59. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-20859-1 3

17. Llorà, X., Sastry, K., Goldberg, D.E., Gupta, A., Lakshmi, L.: Combating user
fatigue in iGAs: partial ordering, support vector machines, and synthetic fitness.
In: Proceedings of the 7th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2005, pp. 1363–1370. ACM, New York (2005)

18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Workshop on Deep Learning for Audio, Speech and
Language Processing, ICML 2013 (2013)

19. Meignan, D., Knust, S., Frayret, J.M., Pesant, G., Gaud, N.: A review and tax-
onomy of interactive optimization methods in operations research. ACM Trans.
Interact. Intell. Syst. 5(3), 17:1–17:43 (2015)

20. Mladenović, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res.
24(11), 1097–1100 (1997)

21. Shi, L., Rasheed, K.: ASAGA: an adaptive surrogate-assisted genetic algorithm.
In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Com-
putation, GECCO 2008, pp. 1049–1056. ACM, New York (2008)

22. Sun, X.Y., Gong, D., Li, S.: Classification and regression-based surrogate model-
assisted interactive genetic algorithm with individual’s fuzzy fitness. In: Proceed-
ings of the 11th Annual Conference on Genetic and Evolutionary Computation,
GECCO 2009, pp. 907–914. ACM, New York (2009)

23. Sun, X., Gong, D., Jin, Y., Chen, S.: A new surrogate-assisted interactive genetic
algorithm with weighted semisupervised learning. IEEE Trans. Cybern. 43(2), 685–
698 (2013)

https://doi.org/10.1007/978-3-319-13111-5
https://doi.org/10.1007/978-3-642-23854-3_64
https://doi.org/10.1007/978-3-642-23854-3_64
https://doi.org/10.1007/978-3-642-20859-1_3


A Binary Algebraic Differential Evolution
for the MultiDimensional Two-Way

Number Partitioning Problem

Valentino Santucci1(B), Marco Baioletti2, Gabriele Di Bari2,
and Alfredo Milani2

1 Department of Humanities and Social Sciences,
University for Foreigners of Perugia, Perugia, Italy

valentino.santucci@unistrapg.it
2 Department of Mathematics and Computer Science, University of Perugia,

Perugia, Italy
{marco.baioletti,alfredo.milani}@unipg.it, gabriele.dibari@unifi.it

Abstract. This paper introduces MADEB, a Memetic Algebraic Differ-
ential Evolution algorithm for the Binary search space. MADEB has been
applied to the Multidimensional Two-Way Number Partitioning Prob-
lem (MDTWNPP) and its main components are the binary differential
mutation operator and a variable neighborhood descent procedure. The
binary differential mutation is a concrete application of the abstract alge-
braic framework for the binary search space. The variable neighborhood
descent is a local search procedure specifically designed for MDTWNPP.
Experiments have been held on a widely accepted benchmark suite and
MADEB is experimentally compared with respect to the current state-
of-the-art algorithms for MDTWNPP. The experimental results clearly
show that MADEB is the new state-of-the-art algorithm in the problem
here investigated.

Keywords: Binary algebraic differential evolution ·
Multidimensional Two-Way Number Partitioning Problem ·
Variable neighborhood descent

1 Introduction

In this paper we propose a memetic binary variant of the Algebraic Differential
Evolution (ADE) algorithm [1], namely, MADEB, for the multidimensional two-
way number partitioning problem (MDTWNPP) [2].

MDTWNPP has been originally introduced in [2] as a multidimensional gen-
eralization of the more famous number partitioning problem (NPP) [3].

An instance of MDTWNPP is given as a set S of n real-valued vectors of
dimension d, i.e., S = {wk ∈ R

d : 1 ≤ k ≤ n}. The objective is to partition S
into two subsets S0 and S1, i.e., S0 ∪ S1 = S, S0 ∩ S1 = ∅, and such that the

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 17–32, 2019.
https://doi.org/10.1007/978-3-030-16711-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_2&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_2


18 V. Santucci et al.

sum of the vectors in S0 is as close as possible to that of S1. Formally, given the
partition {S0, S1}, the objective function to be minimized is

f(S0, S1) = max
1≤j≤d

∣
∣
∣
∣
∣

∑

wi∈S0

wij −
∑

wi∈S1

wij

∣
∣
∣
∣
∣
, (1)

where wij is the j-th component of the vector wi.
Clearly, any partition {S0, S1} can be represented as a n-length bit-string x,

i.e., x ∈ B
n, in such a way that x(i) = 0 when wi ∈ S0, and x(i) = 1 when

wi ∈ S1. Therefore, MDTWNPP is a binary optimization problem.
MDTWNPP is NP-hard because, for d = 1, it reduces to the optimization

variant of classical NPP. Moreover, as described in [2], MDTWNPP is even
more difficult than NPP, because the computational complexity of its instances
does not decrease together with the ratio between the number of bits needed to
express any input element and the quantity of input elements (as it has been
observed to happen in NPP instances [3,4]). This greater complexity has been
also experimentally confirmed in [5], where it has been observed that CPLEX,
applied to an integer linear programming model for MDTWNPP, has never been
able to compute a better lower bound than the trivial one, i.e., zero.

For these reasons, meta-heuristic algorithms have recently been applied to
MDTWNPP [5–7]. Following this line of research, here we introduce a binary
variant of the Algebraic Differential Evolution (ADE) algorithm specifically
designed for MDTWNPP. ADE has been originally introduced in [1,8] and,
though it has been extensively applied to permutation-based optimization prob-
lems [9–13], the abstract algebraic framework at its bases works with any finitely
generated group [1,14].

In this paper, we show how it is possible to see the binary search space
B
n as a finitely generated group, thus we formally derive an algebraically and

geometrically consistent implementation of the differential mutation operator for
the B

n space. It is worthwhile to note that our proposal is substantially different
from the other binary DE schemes in the literature. For example, [15] and [16]
propose two binary DEs that mainly work in the continuous space and decode
back the numerical vectors to bit-strings as soon as they are needed.

Besides, we introduce two new algorithmic components: (i) a modified ini-
tialization scheme, (ii) an effective variable neighborhood descent scheme for
MDTWNPP.

Due to these considerations, we will call our algorithm MADEB (Memetic
Algebraic Differential Evolution for the Binary space) in the rest of paper, that
has been organized as follows. Section 2 provides a brief review of the state-of-the-
art algorithms for MDTWNPP. The main scheme of MADEB is introduced in
Sect. 3. Its key operators, i.e., the binary algebraic differential mutation and the
variable neighborhood descent are introduced and motivated in Sects. 4 and 5.
Computational experiments have been described and analyzed in Sect. 6. Finally,
conclusion are drawn in Sect. 7 which also depicts some possible future lines of
research.



A Binary Algebraic Differential Evolution 19

2 Related Work

In this section we describe the main approaches used to solve MDTWNPP.
Although this problem is a direct generalization of the number partitioning prob-
lem [3], many techniques used to solve the latter cannot be extended to the multi-
dimensional case, like, for instance, the Karmarkar-Karp heuristic (see [2]).

The MDTWNPP has been defined in [2], where an integer linear program-
ming formulation is provided. Here, a set of 210 benchmark instances have been
randomly generated and solved by using the linear programming solver CPLEX.

A memetic algorithm (MA) has been defined in [6] for solving a generaliza-
tion of the MDTWNPP, called multidimensional multiway number partitioning
problem, in which the vectors must be partitioned in p ≥ 2 subsets. The MA is
a genetic algorithm which produces, at each generation, 10 offsprings for every
population individual by means of crossover, mutation and local search opera-
tors. The best offsprings are then selected for the next-generation population.
The local search method uses a k-change neighborhood, for k = 1, 2, 3, where k
denotes the number of bits changed by a single move. The authors performed
computational experiments also in the case of p = 2, i.e., in the MDTWNPP
problem. The results show that MA outperforms CPLEX in most instances.

Two other meta-heuristic approaches have been introduced in [7].
The first one is a VNS-like procedure which operates on a incumbent solution

x, represented as a bit-string. A series of increasing neighborhoods Nk(x) are
employed in the shaking phase, along with a local search whose elementary step
is to flip a 0-bit and a 1-bit of x. This corresponds to swap two vectors: one
vector moves from partition S0 to partition S1, while the other one moves in the
opposite direction. The generic neighborhood Nk(x) is defined as the set of all
the bit-strings having Hamming distance k from x. The parameter k is increased
from kmin = 2 to kmax = min{30, �n/4	} (in a circular way) at every iteration
where the new solution does not improve the incumbent one.

The second meta-heuristic uses an Electromagnetism-like (EM) approach.
Solutions are represented as real vectors with components in [0, 1]. The partition
associated to a solution is defined by applying a threshold equal to 0.5. At each
generation, every solution undergoes to a local search and scale operators, then
all the solutions are moved according to “electromagnetic forces” that can be
attractive or repulsive and depend on the objective values.

The experimental results show that VNS and EM obtained comparable per-
formances and both outperform MA and CPLEX.

Finally, in [5], a GRASP equipped with an Exterior Path Relinking method
is described. The algorithm evolves a set of solutions, called elite set. At each
step, the GRASP procedure produces a new solution by means of two operations:
construction and local improvement. The former operation builds-up a solution
by means of a greedy method, while the latter iteratively improves the incumbent
solution by using a possibly restricted local search in the space of the 2-change
neighborhood. Then, the Path Relinking phase explores a path from the new
solution si to a randomly selected solution sG in the elite set (Interior PR)
or beyond sG (Exterior PR), returning the best solution found in the path.



20 V. Santucci et al.

The configuration with the Exterior Path Relinking, i.e., GRASP+ePR, resulted
in better performances and, compared with VNS and CPLEX, it almost always
outperformed them, thus representing the current state-of-the-art algorithm for
MDTWNPP.

3 The General Scheme of MADEB

The classical Differential Evolution (DE) [17,18] is a popular and effective evolu-
tionary algorithm for continuous optimization problems that iteratively evolves
a population of numerical vectors by means of three genetic operators: differen-
tial mutation, crossover, and selection. In particular, the differential mutation is
widely considered to be the key component of DE [19]. Despite its proven effec-
tiveness in numerical optimization [20,21], most of the DE schemes for combi-
natorial problems are not so effective, perhaps, because their search behavior is
loosely connected to the working mechanisms of continuous DE (see, for exam-
ple, [15,16]). In order to fill this gap, in [1], an original algebraic framework
has been introduced in order to design a differential mutation for combinatorial
search spaces in such a way that it consistently simulates the behavior of its
numerical counterpart. The framework abstractly defines the design of the com-
binatorial differential mutation in any finitely generated group. In the previous
works, implementations for the permutations search space have been proposed
[8,12]. In MADEB, we introduce the first instantiation of the abstract combina-
torial differential mutation for binary search spaces.

Therefore, MADEB evolves a population of N bit-strings by iterative appli-
cations of the following operators: binary algebraic differential mutation, vari-
able neighborhood descent, and selection. Its general scheme is depicted in
Algorithm 1.

Algorithm 1. General scheme of MADEB
1: function MADEB(N, init)
2: Initialize N bit-strings {x1, . . . , xN} by means of the init procedure
3: while termination condition has not been satisfied do
4: for i = 1 to N do
5: yi ← AlgebraicDifferentialMutation(xi)
6: zi ← VariableNeighborhoodDescent(yi)
7: end for
8: for i = 1 to N do
9: xi ← Selection(xi, zi)

10: end for
11: if xbest has not been updated in the last 1 000 generations then
12: Reinitialize the bit-strings in {x1, . . . , xN} \ {xbest} by using init
13: end if
14: end while
15: return the best visited bit-string xbest

16: end function



A Binary Algebraic Differential Evolution 21

Two population initialization procedures are considered. When init = R, the
bit-strings are randomly initialized as usual, i.e., every bit xi(j), with 1 ≤ i ≤ N
and 1 ≤ j ≤ n, is initialized to 0 or 1, with probability 0.5. When init = U , a
probability value pi ∈ [0, 1] is randomly generated for every individual xi, and
its bits xi(j) are independently set to 1 with probability pi, or 0 otherwise. In
this way, the expected number of 1-bits throughout the population individuals
is uniformly distributed. The rationale behind the init = U scheme is to allow a
more diverse population initialization.

For every population individual xi, AlgebraicDifferentialMutation generates
a mutant yi as follows:

yi ← xi ⊕ Fi � (xr1  xr2), (2)

where: Fi > 0 is the DE scale factor, r1, r2 ∈ [1, N ] are randomly generated
indexes different between them and with respect to i, and the ⊕,,� are the
binary versions of our algebraic operators that are introduced and discussed
in Sect. 4. It is worthwhile to note that the scale factor is self-adapted during
the evolution by means of the popular jDE scheme [22]. In particular: every
individual has its own Fi value; the differential mutation is computed using a
scale factor randomly generated in [0.1, 2] with probability 0.1, or Fi otherwise;
if the trial individual replaces xi during the selection, then Fi is updated with
the employed scale factor.

After the differential mutation, the mutant yi undergoes a local search phase.
The local search procedure VariableNeighborhoodDescent adopts two neighbor-
hood definitions and generates the trial individual zi in such a way that zi is a
local minimum of both neighborhoods. VariableNeighborhoodDescent is further
described in Sect. 5.

The Selection procedure replaces xi with zi if and only if f(zi) < f(xi), where
f is the fitness function defined in Eq. (1). Moreover, if the best population
individual xbest has not been updated during the last 1 000 generations, the
population, except xbest , is randomly reinitialized by means of the chosen init
procedure.

Summarizing, MADEB requires only two parameters to be set: the popula-
tion size N , and the initialization procedure init ∈ {R,U}.

4 Algebraic Differential Mutation for the Binary Space

The binary algebraic differential mutation is the main component of MADEB. In
the following, after briefly recalling the abstract algebraic framework (originally
introduced in [1,12]), we introduce its implementation for the binary space.
This allows to present the binary algebraic differential mutation, that is further
analyzed in the last part of this section.

4.1 Abstract Algebraic Framework

A combinatorial search space is a set X of discrete solutions. X forms a group
if there exists a binary operation � between the elements of X such that: � is



22 V. Santucci et al.

associative, there exists a unique neutral element, and any x ∈ X has a unique
inverse x−1 ∈ X. The group is finitely generated if there exists a subset H ⊆ X
such that every x ∈ X can be decomposed as x = h1 � h2 � · · · � hl, for some
h1, h2, . . . , hl ∈ H. H is the generating set of X and its elements are called
generators.

A search space representable by a finitely generated group (X, �,H) can be
visualized by its Cayley graph C(X, �,H), whose vertices are the solutions in X,
and there is an arc from x ∈ X to y ∈ X, labeled by h ∈ H, if and only if
x � h = y.

Interestingly, the labels in a shortest path from x to y corresponds to the
sequence of generators in a minimal decomposition of x−1 � y. We denote the
length of the minimal decomposition (or, equivalently, of the shortest path) by
|y−1 � x|.

These aspects allow us to define the algebraic operators ⊕,,� that simulate,
in the Cayley graph (i.e., the combinatorial search space), the geometric behavior
of their numerical counterparts.

We define x ⊕ y := x � y and y  x := x−1 � y. The sum s = x ⊕ y can be
interpreted in the Cayley graph as starting from vertex x and moving (towards s)
by iteratively choosing the arcs corresponding to a minimal decomposition of y.
The difference d = y x can be interpreted as the composition of the generators
in a shortest path going from x to y, thus d is a synthetic representation of this
path. As in the numerical case, x ⊕ (y  x) = x � (x−1 � y) = y.

Moreover, given a scalar F ≥ 0, the multiplication F � x can be described
as follows. Let us interpret x as the representation of a shortest path between
two arbitrary vertices of the Cayley graph, then, when F ≤ 1 (or F > 1),
F � x represents, a truncation (or an extension) of the path represented by x.
Algebraically, this geometric interpretation can be encoded by requiring z =
F � x to satisfy these properties: (i) |z| = �F · |x|�, (ii) if F ≤ 1, the sequence
of generators in a minimal decomposition of z is a prefix of the sequence of
generators in a minimal decomposition of x, or (iii) vice versa, when F > 1.
Since, in general, minimal decompositions (thus shortest paths) are not unique,
there can be multiple z ∈ X satisfying these properties, therefore, we define
� as a stochastic operator that randomly returns an element with the given
properties.

Summarizing, the geometric interpretation of the algebraic differential muta-
tion of Eq. (2) is as follows. Let first compute the generators in a (shortest) path
from xr2 to xr1 ; truncate (or extend) the sequence of generators considering the
scalar F ; start from the vertex xi and move, towards the result yi, by following
one by one the arcs labeled with the generators in the truncated (or extended)
sequence.

4.2 Binary Algebraic Differential Mutation

B
n is the set of all the bit-strings of length n and it forms an Abelian group

with respect to the bit-wise XOR operation �. Indeed, � is commutative and



A Binary Algebraic Differential Evolution 23

associative, the zero bit-string 0 is the neutral element, and the inverse of each
x ∈ B

n is itself, i.e., x = x−1.
Given x ∈ B

n, we denote by x(i) the i–th bit of x, for 1 ≤ i ≤ n. We
recall that the Hamming weight |x| is the number of 1-bits of x. The Hamming
distance between two bit-strings x and y is the number of positions i such that
x(i) �= y(i).

Moreover, Bn is a finitely generated group. Its generating set U is composed
by the n bit-strings with Hamming weight equal to 1, thus the generic generator
ui ∈ U , for 1 ≤ i ≤ n, is such that ui(i) = 1, while the rest of its bits are 0.

Therefore, any x ∈ B
n can be written as x = ui1 � ui2 � . . . � uil , where

i1, i2, . . . , il are the indexes of the 1-bits of x. Clearly, l = |x|. The decomposition
is minimal and unique, up to reordering the indexes i1, i2, . . . , il. We exploit this
property and we represent the minimal decomposition of x ∈ B

n as the set
Ux = {ui ∈ U : x(i) = 1}. Note anyway that any ordering of the generators in
Ux is a sequence that fulfills the abstract framework definitions.

Importantly, note that, for each x ∈ B
n, the application of the generator ui

to x, i.e., x � ui, corresponds to flipping the i–th bit of x.
As any other finitely generated group, (Bn,�, U) has its associated Cayley

graph. Since � is commutative and each bit-string is the inverse of itself, the Cay-
ley graph C(Bn,�, U) reduces to an indirected labelled graph, which corresponds
to the hypercube with n vertices, where all the pairs of bit-strings, differing in
a single bit i, are connected by an edge labelled with ui.

Therefore, by following the abstract definitions given in Sect. 4.1, it is now
possible to concretely derive the operations ⊕,,� for the binary space.

The addition ⊕ is defined as x ⊕ y := x � y for x, y ∈ B
n. The subtraction

uses the property that x−1 = x for each x ∈ B
n, hence y x := x� y. Note that,

in this particular group, ⊕ and  coincide.
Given F ≥ 0 and x ∈ B

n, the stochastic scalar multiplication F � x is
defined as randomly selecting a z ∈ B

n such that its decomposition Uz: (i) has
size k = �F · |x|�, and (ii) when F ≤ 1, Uz ⊆ Ux, while, (iii) if F > 1, Uz ⊇ Ux.
It is easy to see that any ordering of the generators in Uz satisfies the three
properties described in Sect. 4.1.

When F ≤ 1, z is computed by randomly selecting one of the
(|x|

k

)

subsets
of size k of Ux.

When F > 1, Uz is computed as Ux∪A, where A is randomly selected among
the

(
n−|x|
k−|x|

)

subsets of U \ Ux. This is equivalent to randomly flipping some of
the 0-bits of x.1

Since this is a concrete realization of the abstract framework of Sect. 4.1, all
the geometric considerations previously provided are valid also in this search
space. In particular, it is interesting to note that the elementary search moves
here considered are bit-flip moves, that is, the most common and natural moves
adopted in the binary search space.

1 For this reason, |F � x| cannot be larger than n, thus we truncate F to F
(x)
max = n

|x|
whenever F > F

(x)
max.



24 V. Santucci et al.

4.3 Search Characteristics of the Binary Differential Mutation

Here we analyze the binary implementation of the algebraic differential mutation
provided in Eq. (2).

We start by describing the computation of the mutant yi ← xi⊕F�(xr1xr2)
according to the definitions introduced in Sect. 4.2. Lets first compute the bit-
wise XOR between xr1 and xr2 . This corresponds to selecting the positions
where the bits of xr1 and xr2 differ. A subset (or a superset) of these positions is
computed by considering the scalar F . Finally, xi is moved, towards the result
yi, by flipping all the bits of xi at the positions previously computed.

As an illustrative example, let consider xi = (1010), xr1 = (1001), xr2 =
(1110), and F = 0.66. The difference between xr1 and xr2 is computed as d =
xr1  xr2 = xr1 � xr2 = (0111). Its Hamming weight is |d| = 3, thus we have to
randomly select �F · |d|� = 2 1-bits from d. Let’s choose the last two 1-bits of d,
thus F � d = (0011). Finally, yi = xi ⊕ (F � d) = xi � (F � d) = (1001).

It is interesting to note that, by denoting the Hamming distance with dH , we
have that dH(xi, yi) = F · dH(xr1 , xr2), i.e., the amount of perturbation applied
to xi is decided by the scale factor F and the two randomly selected population
individuals xr1 and xr2 . Moreover, even the positions where the bit-flips are
applied are computed by means of xr1 and xr2 . This behavior is quite analogous
to what happens when classical differential mutation is applied in the continuous
space [17].

However, the structural characteristics of the binary space can introduce
some issues in the search behavior of the binary differential mutation. Indeed,
binary ⊕ and  are actually the bit-wise XOR operator. Moreover, the bit-strings
xi, xr1 , xr2 , involved in the differential mutation formula, are three individuals
taken from the current MADEB population. This implies that, when the pop-
ulation reaches consensus on a bit (i.e., when all individuals have their i-th bit
set to the same value), it is impossible to flip that bit in the future generations
by only using the binary differential mutation with F ≤ 1. This is the reason of
why we use an interval with a right bound larger than 1 for the scale factor F ,
i.e., F ∈ [0.1, 2].

Furthermore, it is worthwhile to note that most of the binary crossovers in the
literature are somehow special cases of our binary differential mutation. Indeed,
a binary crossover between two generic x, y ∈ B

n usually computes an offspring
z ∈ B

n such that the bit value z(j) is equal to x(j) or y(j), for 1 ≤ j ≤ n.
Possible examples are the uniform crossover, the one-point crossover or the more
general k-points crossover [23]. It is easy to see that the computation of such an
offspring can be reproduced in the algebraic framework as z = x ⊕ F � (y  x),
by using F ∈ [0, 1]. For instance, the uniform crossover which takes z(j) = x(j)
with probability 0.5, or z(j) = y(j) otherwise, for j = 1, . . . , n, is equivalent on
average to z = x ⊕ 0.5 � (y  x). Other crossover operators can be obtained by
simply considering different selection strategies (other than the random one) in
the � definition. Therefore, since a binary crossover is a special case of our binary
differential mutation, we have decided to not employ the crossover operator in
MADEB.



A Binary Algebraic Differential Evolution 25

5 Variable Neighborhood Descent for MDTWNPP

In MADEB, every mutant y undergoes a local search procedure implemented as
a variable neighborhood descent scheme.

The VariableNeighborhoodDescent procedure uses two different neighbor-
hoods N1 and N2. N1(y) is the classical bit-flip neighborhood, while N2(y) is the
2-change neighborhood that contains all the bit-strings which can be obtained
from y by flipping one 0-bit and one 1-bit.

The two neighborhoods are explored alternatively until no better solution is
found as depicted in Algorithm 2.

A first-improvement style is used in every iteration of the neighborhood local
searches (lines 4–8 and 9–13 of the pseudocode), i.e., as soon as an improving

Algorithm 2. Pseudocode of VariableNeighborhoodDescent
1: function VariableNeighborhoodDescent(y)
2: imp1 ← true
3: while imp1 do
4: z ← y
5: /* Local Search in N1 */
6: imp2 ← true
7: while imp2 do
8: Randomly permute the solutions in N1(y)
9: y′ ← the first solution in N1(y) s.t. f(y′) < f(y), or nil if no improvement

10: if y′ is not nil then
11: y ← y′

12: else
13: imp2 ← false
14: end if
15: end while
16: /* Local Search in N2 */
17: imp2 ← true
18: while imp2 do
19: Randomly permute the solutions in N2(y)
20: y′ ← the first solution in N2(y) s.t. f(y′) < f(y), or nil if no improvement
21: if y′ is not nil then
22: y ← y′

23: else
24: imp2 ← false
25: end if
26: end while
27: /* Main loop operations */
28: if f(y) = f(z) then
29: imp1 ← false
30: end if
31: end while
32: return y
33: end function



26 V. Santucci et al.

neighbor is found, it is returned. Moreover, the neighbors in N1 and N2 are
randomly scanned. Finally, it is important to note that the computation of a
neighbor solution is not made by scratch, but incrementally with respect to the
incumbent solution. Indeed, by keeping track of the two partition sums, it is
possible to compute the objective value of a neighbor in both N1 and N2 in
Θ(d) time.

It is easy to prove that the overall computational cost for each iteration of
the local search in N1 is Θ(n · d), while for N2 is Θ(n2 · d).

6 Experiments

The behavior of MADEB in the MDTWNP problem has been experimentally
analyzed by considering the benchmark set of 210 instances provided in [2],
where the author proposed 5 instances for each problem configuration n, d with
n ∈ {50, 100, 200, 300, 400, 500} and d ∈ {2, 3, 4, 5, 10, 15, 20}.

Following the methodology adopted in [5], we have divided the instances
in two sets: tuning and test instances. The tuning set consists of the first two
instances in every problem configuration n, d and it has been adopted in order to
select a good setting for MADEB. The rest of the instances have been devoted to
experimentally compare the tuned MADEB with the state-of-the-art algorithms
for MDTWNPP.

In order to make a fair comparison, as in [5], for each problem instance,
MADEB has been executed 10 times with a computational budget of 600 seconds
per execution. The experiments were carried out on a machine equipped with
an Intel Xeon X5650 processor clocking at 2.67 GHz, which has a very similar
computational power with respect to the machine adopted in [5].

In the following, we present the tuning of the MADEB setting and the exper-
imental comparison with the state-of-the-art results for MDTWNPP.

6.1 Experimental Tuning of MADEB

MADEP has two parameters to be set: the population size N , and the ini-
tialization procedure init . Eight MADEB settings have been analyzed, with
N ∈ {50, 100, 150, 200} and init ∈ {R,U}, by performing a full factorial analysis
on 84 tuning instances.

The average objective values obtained by every MADEB setting, on its exe-
cutions on every tuning instance, have been recorded. In Table 1, we provide the
ranks of the MADEB settings averaged over all the tuning instances.

The best setting is (N = 50, init = U), which reached the lowest average
rank of 4.04. Therefore, this is the setting used for the experimental comparison
discussed in Sect. 6.2.

Moreover, as recommended in [24], we have conducted a non-parametric
Friedman test in order to analyze the statistical differences among the settings.
Since the Friedman test shows that there is no significant difference among the
eight settings, MADEB can be considered a robust algorithm.



A Binary Algebraic Differential Evolution 27

Table 1. Average ranks of MADEB settings in the experimental tuning.

MADEB setting Avg rank

N = 50, init = U 4.04

N = 50, init = R 4.27

N = 150, init = U 4.40

N = 100, init = U 4.43

N = 200, init = R 4.43

N = 100, init = R 4.45

N = 200, init = U 4.56

N = 150, init = R 4.95

6.2 Comparison with State-of-the-Art MDTWNPP Algorithms

In this section we compare MADEB, using the setting (N = 50, init = U), with
the state-of-the-art MDTWNPP algorithms described in Sect. 2.

As in [5], MADEB has been executed 10 times on every one of the 126 test
instances. Its results have been compared with those obtained by GRASP+ePR
[5], VNS [7], and CPLEX [2]. The results for the competitor algorithms have
been directly obtained from the supplementary material of [5] available online
at https://sci2s.ugr.es/MDTWNP.

The performance of each algorithm A, on every instance i, is measured by
the commonly adopted average relative percentage deviation (ARPD) [25]:

ARPDA
i =

1
k

k∑

j=1

(Aj
i − Best i)
Best i

× 100, (3)

where Aj
i is the objective value obtained by the algorithm A in its j-th run on the

instance i, and Best i is the best objective value achieved among all executions
of all the algorithms on the problem instance i.

Moreover, in order to detect the statistical differences among the ARPD
results, as suggested in [24], the non-parametric Friedman test and the Finner
post-hoc procedure have been applied.

For each problem instance, the best objective value and the ARPDs of each
algorithm are provided in Table 2. The best ARPD on each instance is reported
in bold, while the best objective value is in bold when it has been reached by
(at least) an execution of MADEB. The table is divided in six groups accord-
ing to the different values of n. For any group of instances, the average rank
of every algorithm is provided together with a symbol indicating the result of
the statistical comparison with MADEB: “+” means that MADEB significantly
outperforms the competing algorithm. Moreover, the average ranks aggregated
for every value of n and d are shown, respectively, in Figs. 1a and b.

https://sci2s.ugr.es/MDTWNP


28 V. Santucci et al.

Table 2. Experimental comparison of MADEB with state-of-the-art algorithms.

Problem Best
MADEB

GRASP
VNS CPLEX

Problem Best
MADEB

GRASP
VNS CPLEX

Instance Obj. Val. +ePR Instance Obj. Val. +ePR

50 2c 3.083 45.20 76.86 141.71 1784492.93 300 2c 0.759 198.30 339.24 657.69 1529412.52
50 2d 1.349 113.36 46.30 306.27 3115763.60 300 2d 0.433 272.93 892.89 1378.71 863410.39
50 2e 2.938 97.80 119.91 189.55 1135570.52 300 2e 0.917 33.82 244.25 928.60 588013.41
50 3c 142.935 1.07 2.78 2.78 232764.59 300 3c 214.729 4.69 15.82 16.79 109847.42
50 3d 96.410 5.07 8.55 4.13 358105.58 300 3d 91.207 26.42 34.62 51.23 269626.01
50 3e 211.797 1.59 1.59 2.45 325728.98 300 3e 167.205 10.95 41.30 22.88 229009.18
50 4c 452.007 0.88 0.81 1.42 398.81 300 4c 885.348 1.24 1.52 12.57 127.67
50 4d 1018.573 0.30 0.42 0.42 192.14 300 4d 765.805 30.47 41.12 27.66 126.28
50 4e 1202.624 0.30 0.43 0.51 438.27 300 4e 736.131 22.18 23.63 22.56 135125.25
50 5c 1398.771 0.39 32.16 6.84 334.37 300 5c 901.749 1.11 1.32 126.17 430.23
50 5d 2269.686 0.16 0.17 0.47 63.77 300 5d 2115.419 0.52 19.29 7.01 178.64
50 5e 4360.613 1.70 4.35 2.83 40.99 300 5e 1543.701 0.32 0.57 25.15 177.60
50 10c 14125.537 7.76 23.15 26.68 71.35 300 10c 15971.771 0.06 0.13 5.23 68.21
50 10d 14915.871 0.06 3.38 23.47 50.64 300 10d 15812.711 7.84 17.66 10.35 59.91
50 10e 15356.800 1.86 7.75 8.64 96.02 300 10e 15291.777 2.14 10.39 12.64 142.85
50 15c 29456.850 4.76 18.34 24.96 78.96 300 15c 22220.712 27.14 42.70 42.66 138.53
50 15d 21655.890 0.00 28.88 59.13 133.79 300 15d 28891.210 13.59 18.29 20.76 77.21
50 15e 31800.690 1.17 5.86 14.54 47.81 300 15e 28754.344 1.65 4.61 20.00 81.33
50 20c 50560.860 0.18 9.32 6.64 34.47 300 20c 34247.615 18.34 41.50 48.49 77.57
50 20d 53955.960 1.90 4.62 6.46 33.10 300 20d 42351.439 8.14 20.75 21.77 67.56
50 20e 48281.499 0.00 21.09 9.86 47.95 300 20e 37132.464 19.65 32.14 34.36 108.58
Average Rank 1.17 2.17 2.67 4.00 Average Rank 1.05 2.29 2.67 4.00
Stat. Comp. vs MADEB + + + Stat. Comp. vs MADEB + + +

100 2c 0.768 307.97 499.79 1129.65 2030759.38 400 2c 0.884 123.39 167.83 694.05 1419357.01
100 2d 0.001 61140.00 213560.00 643980.00 3833499900.00 400 2d 1.164 87.21 297.39 715.05 2524.57
100 2e 1.067 14.55 28.88 140.17 4919581.35 400 2e 0.406 340.64 636.31 1786.97 3609013.30
100 3c 231.512 7.45 15.14 7.58 330.18 400 3c 66.576 153.85 256.07 139.45 434203.65
100 3d 243.989 1.20 2.82 3.49 209597.57 400 3d 212.073 4.11 8.28 31.62 135968.24
100 3e 135.305 4.51 4.51 28.95 367653.59 400 3e 155.001 10.63 30.76 24.73 245907.45
100 4c 896.038 0.65 0.99 1.60 96.57 400 4c 807.262 10.43 11.19 25.30 218.84
100 4d 1090.117 0.67 0.59 1.57 44.96 400 4d 806.920 1.25 11.33 11.85 123275.06
100 4e 508.289 1.32 1.92 8.74 174.41 400 4e 725.451 23.47 28.36 26.62 116.37
100 5c 2769.736 1.93 2.21 1.04 63.89 400 5c 902.131 1.27 1.55 129.45 342.50
100 5d 2969.833 0.17 0.16 0.45 101.24 400 5d 1667.575 49.72 49.88 21.07 239.24
100 5e 2448.321 52.88 54.22 30.54 142.58 400 5e 1595.032 0.77 1.15 26.64 239.76
100 10c 11984.020 15.69 23.46 18.81 145.19 400 10c 14503.050 7.97 15.32 17.85 113.16
100 10d 14904.240 4.35 17.14 12.71 59.72 400 10d 13723.390 5.42 10.77 16.53 75.20
100 10e 12182.070 18.01 32.75 12.60 150.43 400 10e 11571.600 39.64 40.86 35.61 183.04
100 15c 31112.332 3.23 7.74 12.73 37.64 400 15c 26815.632 3.60 12.16 21.41 108.86
100 15d 30690.906 0.47 8.09 13.80 64.74 400 15d 26395.830 16.89 25.34 23.54 99.42
100 15e 30250.569 1.35 6.17 8.41 91.59 400 15e 30105.307 1.85 2.98 12.46 78.08
100 20c 46021.607 7.91 25.64 16.24 60.14 400 20c 45374.378 2.07 11.29 10.40 63.91
100 20d 43786.661 7.53 21.48 16.78 53.39 400 20d 41384.465 4.87 15.65 21.38 59.66
100 20e 43923.294 10.32 23.09 17.57 56.30 400 20e 39541.150 9.05 21.45 25.04 76.03
Average Rank 1.26 2.31 2.43 4.00 Average Rank 1.14 2.33 2.52 4.00
Stat. Comp. vs MADEB + + + Stat. Comp. vs MADEB + + +

200 2c 0.690 91.43 241.59 436.93 6394972.46 500 2c 0.578 64.71 372.73 728.53 2333117.99
200 2d 0.237 499.83 1353.50 1846.75 11773317.72 500 2d 0.202 603.86 941.58 3457.08 3.96
200 2e 0.451 138.14 371.84 829.18 6777948.78 500 2e 0.205 611.37 1070.78 1679.32 7324290.24
200 3c 1.526 159.95 209.89 12237.23 36695640.50 500 3c 96.343 39.49 95.09 55.76 391556.89
200 3d 77.565 46.30 52.20 50.38 774080.36 500 3d 1.522 330.93 421.16 4294.56 20003973.59
200 3e 105.284 55.99 91.57 54.65 199011.93 500 3e 3.056 84.79 144.71 3267.62 9173885.60
200 4c 3.047 65.25 50.26 22036.19 65850.77 500 4c 633.460 47.44 69.00 85.70 103.02
200 4d 770.115 30.52 38.66 28.90 255.22 500 4d 3.057 159.54 194.40 23031.45 72864.34
200 4e 508.023 73.13 142.78 43.84 313.03 500 4e 552.412 3.76 53.09 44.45 153.71
200 5c 3.052 79.97 114.95 21439.79 163770.90 500 5c 1891.494 23.11 51.26 43.38 168.56
200 5d 2130.675 11.31 20.91 14.09 160.83 500 5d 3.053 159.97 154.91 42282.41 999801.74
200 5e 1231.049 201.39 207.33 100.74 277.90 500 5e 2526.657 0.39 6.41 7.77 176.26
200 10c 12785.776 2.74 23.75 34.85 150.40 500 10c 14567.870 19.45 21.82 16.04 60.34
200 10d 17390.299 3.05 7.60 11.92 43.43 500 10d 12875.890 0.12 2.69 13.25 86.87
200 10e 17794.136 0.03 0.05 2.60 63.35 500 10e 15527.300 4.07 11.73 9.50 64.39
200 15c 30467.014 0.05 0.30 7.79 100.80 500 15c 27109.630 0.08 6.49 23.23 55.07
200 15d 22837.984 16.25 42.28 47.55 118.27 500 15d 29550.430 0.31 7.97 10.06 85.27
200 15e 28602.541 3.10 17.88 19.96 100.96 500 15e 25010.130 20.61 25.06 30.11 106.69
200 20c 41990.638 9.37 19.81 25.52 83.76 500 20c 37587.384 10.89 25.91 32.81 87.31
200 20d 41177.738 4.52 20.56 26.18 83.11 500 20d 43249.879 5.36 10.22 15.77 49.51
200 20e 39411.579 11.22 21.00 34.81 84.52 500 20e 39011.410 11.10 21.95 22.43 96.33
Average Rank 1.24 2.24 2.52 4.00 Average Rank 1.14 2.24 2.76 3.86
Stat. Comp. vs MADEB + + + Stat. Comp. vs MADEB + + +

The results provided in Table 2 clearly show that MADEB outperforms all
the other algorithms. In particular, our algorithm reached the best objective
value in 76 instances over 126. Moreover, MADEB obtained the best ARDP
value on 106 instances, i.e., about the 84% of the benchmark suite. Importantly,



A Binary Algebraic Differential Evolution 29

50 100 200 300 400 500

1

2

3

4

n

(a)

MADEB
GRASP+ePR

VNS
CPLEX

2 3 4 5 10 20

1

2

3

4

d

(b)

Fig. 1. Average ranks aggregated by the values of (a) n and (b) d

the statistical test has detected noticeable differences between our algorithm
and the competitors: in every group of instances, MADEB is significantly better
than all the other algorithms. Indeed, the worst Finner p-value (obtained in
the comparison with GRASP+ePR on the group of instance n = 200) is about
2 ·10−6, which is well below the commonly considered critical threshold 0.05 [24].

Finally, the better performances of MADEP with respect to its competitors
are apparent also from the data provided in the two graphs of Figs. 1a and b.
Clearly, MADEB always obtained the best average rank, both when the instances
are grouped by the values of n or the values of d.

7 Conclusions and Future Work

In this paper we have described a Memetic Algebraic Differential Evolution algo-
rithm for solving Binary combinatorial optimization problems (MADEB). The
main components of MADEB are: a binary algebraic differential mutation, and
a variable neighborhood descent procedure. In particular, the binary differen-
tial mutation has been introduced as an instantiation of the abstract algebraic
framework [1,26–28].

MADEB has been applied to the MDTWNP problem. Experiments have
been held on widely adopted benchmark instances, and the experimental results
show that our approach has outperformed the state-of-the-art MDTWNPP
algorithms.

As a future lines of research we are considering to apply MADEB to other
binary optimization problems, like the knapsack problem and its variations, and
to develop an algebraic particle swarm scheme [29] for the binary space.

Another possible future work is to extend MADEB for solving the multi-way
generalization of MDTWNPP, as defined in [6], which would however require a
major change to MADEB, because the solutions are no more binary strings.



30 V. Santucci et al.

Acknowledgement. The research described in this work has been partially supported
by: the research grant “Fondi per i progetti di ricerca scientifica di Ateneo 2019” of
the University for Foreigners of Perugia under the project “Algoritmi evolutivi per
problemi di ottimizzazione e modelli di apprendimento automatico con applicazioni
al Natural Language Processing”; and by RCB-2015 Project “Algoritmi Randomiz-
zati per l’Ottimizzazione e la Navigazione di Reti Semantiche” and RCB-2015 Project
“Algoritmi evolutivi per problemi di ottimizzazione combinatorica” of Department of
Mathematics and Computer Science of University of Perugia.

References

1. Santucci, V., Baioletti, M., Milani, A.: Algebraic differential evolution algorithm for
the permutation flowshop scheduling problem with total flowtime criterion. IEEE
Trans. Evol. Comput. 20(5), 682–694 (2016). https://doi.org/10.1109/TEVC.2015.
2507785

2. Kojić, J.: Integer linear programming model for multidimensional two-
waynumber partitioning problem. Comput. Math. Appl. 60(8), 2302–2308 (2010).
http://www.sciencedirect.com/science/article/pii/S0898122110005882

3. Mertens, S.: The easiest hard problem: number partitioning. Comput. Complex.
Stat. Phys. 125(2), 125–139 (2006)

4. Corus, D., Oliveto, P.S., Yazdani, D.: Artificial immune systems can find arbitrarily
good approximations for the NP-hard partition problem. In: Proceedings of 15th
International Conference on Parallel Problem Solving from Nature-PPSN XV -
Part II, pp. 16–28 (2018)

5. Rodriguez, F.J., Glover, F., Garćıa-Mart́ınez, C., Mart́ı, R., Lozano, M.: Grasp
with exterior path-relinking and restricted local search for the multidimensional
two-way number partitioning problem. Comput. Oper. Res. 78, 243–254 (2017).
http://www.sciencedirect.com/science/article/pii/S0305054816302209

6. Pop, P.C., Matei, O.: A memetic algorithm approach for solving the mul-
tidimensional multi-way number partitioning problem. Appl. Math. Model.
37(22), 9191–9202 (2013). http://www.sciencedirect.com/science/article/pii/
S0307904X13002692

7. Kratica, J., Kojić, J., Savić, A.: Two metaheuristic approaches for solving multidi-
mensional two-way number partitioning problem. Comput. Oper. Res. 46, 59–68
(2014). http://www.sciencedirect.com/science/article/pii/S0305054814000045

8. Santucci, V., Baioletti, M., Milani, A.: A differential evolution algorithm for the
permutation flowshop scheduling problem with total flow time criterion. In: Bartz-
Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672,
pp. 161–170. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-
2 16

9. Santucci, V., Baioletti, M., Milani, A.: Solving permutation flowshop scheduling
problems with a discrete differential evolution algorithm. AI Commun. 29(2), 269–
286 (2016). https://doi.org/10.3233/AIC-150695

10. Santucci, V., Baioletti, M., Milani, A.: An algebraic differential evolution for the
linear ordering problem. In: Companion Material Proceedings of Genetic and Evo-
lutionary Computation Conference, GECCO 2015, pp. 1479–1480 (2015). https://
doi.org/10.1145/2739482.2764693

https://doi.org/10.1109/TEVC.2015.2507785
https://doi.org/10.1109/TEVC.2015.2507785
http://www.sciencedirect.com/science/article/pii/S0898122110005882
http://www.sciencedirect.com/science/article/pii/S0305054816302209
http://www.sciencedirect.com/science/article/pii/S0307904X13002692
http://www.sciencedirect.com/science/article/pii/S0307904X13002692
http://www.sciencedirect.com/science/article/pii/S0305054814000045
https://doi.org/10.1007/978-3-319-10762-2_16
https://doi.org/10.1007/978-3-319-10762-2_16
https://doi.org/10.3233/AIC-150695
https://doi.org/10.1145/2739482.2764693
https://doi.org/10.1145/2739482.2764693


A Binary Algebraic Differential Evolution 31

11. Baioletti, M., Milani, A., Santucci, V.: Linear ordering optimization with a combi-
natorial differential evolution. In: Proceedings of 2015 IEEE International Confer-
ence on Systems, Man, and Cybernetics, SMC 2015, pp. 2135–2140 (2015). https://
doi.org/10.1109/SMC.2015.373

12. Baioletti, M., Milani, A., Santucci, V.: An extension of algebraic differential evo-
lution for the linear ordering problem with cumulative costs. In: Handl, J., Hart,
E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016.
LNCS, vol. 9921, pp. 123–133. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-45823-6 12

13. Baioletti, M., Milani, A., Santucci, V.: MOEA/DEP: an algebraic decomposition-
based evolutionary algorithm for the multiobjective permutation flowshop schedul-
ing problem. In: Liefooghe, A., López-Ibáñez, M. (eds.) EvoCOP 2018. LNCS, vol.
10782, pp. 132–145. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77449-7 9

14. Baioletti, M., Milani, A., Santucci, V.: Learning Bayesian networks with alge-
braic differential evolution. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado,
P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 436–448.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 35

15. Wang, L., Fu, X., Mao, Y., Menhas, M.I., Fei, M.: A novel modified binary differ-
ential evolution algorithm and its applications. Neurocomputing 98, 55–75 (2012).
http://www.sciencedirect.com/science/article/pii/S0925231212004316

16. Pampara, G., Engelbrecht, A.P., Franken, N.: Binary differential evolution. In: 2006
IEEE International Conference on Evolutionary Computation, pp. 1873–1879, July
2006

17. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

18. Milani, A., Santucci, V.: Asynchronous differential evolution. In: 2010 IEEE
Congress on Evolutionary Computation (CEC 2010), pp. 1–7 (2010). https://doi.
org/10.1109/CEC.2010.5586107

19. Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical App-
roach to Global Optimization. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-31306-0

20. Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art.
IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

21. Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution-an
updated survey. Swarm Evol. Comput. 27, 1–30 (2016). http://www.sciencedirect.
com/science/article/pii/S2210650216000146

22. Brest, J., Greiner, S., Boskovic, B., Mernik, M., Zumer, V.: Self-adapting control
parameters in differential evolution: a comparative study on numerical benchmark
problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)

23. Pavai, G., Geetha, T.V.: A survey on crossover operators. ACM Comput. Surv.
49(4), 72:1-72:43 (2016). http://doi.acm.org/10.1145/3009966

24. Derrac, J., Garćıa, S., Molina, D., Herrera, F.: A practical tutorial on the use
of nonparametric statistical tests as a methodology for comparing evolution-
ary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011).
http://www.sciencedirect.com/science/article/pii/S2210650211000034

25. Ceberio, J., Irurozki, E., Mendiburu, A., Lozano, J.A.: A distance-based ranking
model estimation of distribution algorithm for the flowshop scheduling problem.
IEEE Trans. Evol. Comput. 18(2), 286–300 (2014)

https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1109/SMC.2015.373
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-45823-6_12
https://doi.org/10.1007/978-3-319-77449-7_9
https://doi.org/10.1007/978-3-319-77449-7_9
https://doi.org/10.1007/978-3-319-99259-4_35
http://www.sciencedirect.com/science/article/pii/S0925231212004316
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1109/CEC.2010.5586107
https://doi.org/10.1109/CEC.2010.5586107
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/3-540-31306-0
http://www.sciencedirect.com/science/article/pii/S2210650216000146
http://www.sciencedirect.com/science/article/pii/S2210650216000146
http://doi.acm.org/10.1145/3009966
http://www.sciencedirect.com/science/article/pii/S2210650211000034


32 V. Santucci et al.

26. Baioletti, M., Milani, A., Santucci, V.: Algebraic particle swarm optimization for
the permutations search space. In: Proceedings of 2017 IEEE Congress on Evolu-
tionary Computation (CEC 2017), pp. 1587–1594 (2017). https://doi.org/10.1109/
CEC.2017.7969492

27. Baioletti, M., Milani, A., Santucci, V.: Automatic algebraic evolutionary algo-
rithms. In: Pelillo, M., Poli, I., Roli, A., Serra, R., Slanzi, D., Villani, M. (eds.)
WIVACE 2017. CCIS, vol. 830, pp. 271–283. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-78658-2 20

28. Baioletti, M., Milani, A., Santucci, V.: Algebraic crossover operators for permuta-
tions. In: 2018 IEEE Congress on Evolutionary Computation (CEC 2018), pp. 1–8
(2018). https://doi.org/10.1109/CEC.2018.8477867

29. Santucci, V., Milani, A.: Particle swarm optimization in the EDAs framework. In:
Gaspar-Cunha, A., Takahashi, R., Schaefer, G., Costa, L. (eds.) Soft Computing
in Industrial Applications. Advances in Intelligent and Soft Computing, vol. 96,
pp. 87–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20505-
7 7

https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1109/CEC.2017.7969492
https://doi.org/10.1007/978-3-319-78658-2_20
https://doi.org/10.1007/978-3-319-78658-2_20
https://doi.org/10.1109/CEC.2018.8477867
https://doi.org/10.1007/978-3-642-20505-7_7
https://doi.org/10.1007/978-3-642-20505-7_7


A New Representation in Genetic
Programming for Evolving Dispatching
Rules for Dynamic Flexible Job Shop

Scheduling

Fangfang Zhang(B), Yi Mei, and Mengjie Zhang

School of Engineering and Computer Science,
Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand

{fangfang.zhang,yi.mei,mengjie.zhang}@ecs.vuw.ac.nz

Abstract. Dynamic flexible job shop scheduling (DFJSS) is a very
important problem with a wide range of real-world applications such
as cloud computing and manufacturing. In DFJSS, it is critical to make
two kinds of real-time decisions (i.e. the routing decision that assigns
machine to each job and the sequencing decision that prioritises the
jobs in a machine’s queue) effectively in the dynamic environment with
unpredicted events such as new job arrivals and machine breakdowns.
Dispatching rule is an ideal technique for this purpose. In DFJSS, one
has to design a routing rule and a sequencing rule for making the two
kinds of decisions. Manually designing these rules is time consuming and
requires human expertise which is not always available. Genetic program-
ming (GP) has been applied to automatically evolve more effective rules
than the manually designed ones. In GP for DFJSS, different features
in the terminal set have different contributions to the decision making.
However, the current GP approaches cannot perfectly find proper com-
binations between the features in accordance with their contributions.
In this paper, we propose a new representation for GP that better con-
siders the different contributions of different features and combines them
in a sophisticated way, thus to evolve more effective rules. The results
show that the proposed GP approach can achieve significantly better
performance than the baseline GP in a range of job shop scenarios.

Keywords: Representation · Dispatching rules
Dynamic flexible job shop scheduling · Genetic programming

1 Introduction

Job shop scheduling (JSS), as an important optimisation problem, has received a
great deal of attention from both academics and industry researchers. It captures
practical and challenging issues in real world scheduling tasks such as managing
grid/cloud computing [1] and designing manufacturing processes [2]. JSS aims

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 33–49, 2019.
https://doi.org/10.1007/978-3-030-16711-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_3&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_3


34 F. Zhang et al.

to make a schedule to process a number of jobs with a set of machines. Each
job consists of a sequence of operations which need to be processed one by
one. Classical JSS assumes that one operation can be processed on only one
specific machine. Thus, the task is to schedule the operations in the queue of the
machines.

Flexible job shop scheduling (FJSS) is different from the classic JSS in
that each operation can be processed by multiple candidate machines. There-
fore, FJSS includes two sub-tasks, which are machine assignment and operation
sequencing. Machine assignment is to select an appropriate machine for each
operation from its candidate machines. Operation sequencing is to determine
the order of processing the allocated jobs in each machine to obtain feasible and
satisfactory solutions. FJSS is NP-hard [3].

In practice, the JSS problems are typically in dynamic environment. For
instance, the jobs arrive over time and their attributes are not completely known
until they arrive in the shop floor. There are also other types of dynamic events
in JSS problem such as order cancellations [4] and machine breakdowns [5]. In
this paper, we focus on dynamic new job arrivals because it is the most frequent
and common factor in the shop floor. The challenge of dynamic flexible job shop
scheduling (DFJSS) is how to capture both the machine assignment (routing)
decision and operation sequencing (sequencing) decision simultaneously along
with the new jobs arriving over time.

Exact approaches to search for optimal solutions, such as dynamic program-
ming [6] and branch-and-bound [7], are too time-consuming and inapplicable for
solving large scale JSS problems. Therefore, heuristic search methods such as
tabu search [8] and genetic algorithm [9] have been commonly adopted to find
“near-optimal” solutions in a reasonable time. However, heuristic search meth-
ods are not suitable for solving DFJSS problems because of their lack of ability
to react to the dynamic events in real time. Dispatching rules are promising in
this case because of their low time complexity, the ease of implementation and
the ability to cope with dynamic situations in the job shop. Since the term dis-
patching rule has been used in different contexts, it is worth highlighting that the
concept of a dispatching rule in DFJSS consists of a routing rule and a sequenc-
ing rule (i.e. two kinds of rules). The dispatching rules are normally designed
manually, which is very time-consuming and requires human expertise which is
not always available. In addition, many manually designed dispatching rules are
relatively simple and normally restricted to some specific assumptions [10] and
have difficulties in handling complex practical scenarios [11,12]. Genetic pro-
gramming (GP) has been proven to be a dominating method to automatically
design dispatching rules for JSS [11–14]. In order to evolve both the routing
rule and sequencing rule for DFJSS, GP was hybridised with the cooperative
co-evolution framework to co-evolve the two kinds of rules [15,16].

In GP for DFJSS, different features in the terminal set have different contri-
butions to the decision making. For example, the feature named WIQ (work in
queue, i.e. the total processing time of operations in the queue of a machine) is
known to be a dominating feature for making the routing decision, as intuitively



A New Representation in Genetic Programming 35

a machine with lighter workload should be preferred [17]. On the other hand,
machine ready time is another important feature for routing decisions, i.e., it
tends to be better to assign the operation to a machine that can become idle
in the earliest time. However, the contribution of machine ready time should be
smaller than WIQ. Intuitively, a machine with a lighter workload but a later
ready time should still be better than a machine with a heavier workload but an
earlier ready time. However, the existing GP approaches fail to properly combine
the features in accordance with their contributions. As a result, the evolved rout-
ing rules usually focus too much on WIQ, but overlook the other non-dominating
features. The schedules obtained may become ineffective over the longer term
when facing the real-world shop environments.

In this paper, we aim to develop a new representation for routing rule to
help GP evolve more effective rules for DFJSS. In particular, we consider the
following research objectives:

– Develop a novel component that can appropriately take the information of
workload of machines into consideration.

– Propose a novel representation that tends to take into account the effect of
the dominating feature WIQ and other non-dominating features properly.

– Verify the effectiveness of proposed GP approach with new representation by
comparing its performance with the baseline GP.

– Analyse the rules evolved by the proposed GP approach.

2 Background

2.1 Dynamic Flexible Job Shop Scheduling

Given a set of machines M = {M1,M2, ...,Mm} and jobs J = {J1, J2, ..., Jn},
FJSS aims to determine which machine to process a particular job and which
job will be chosen to process next by a particular machine. To be specific, each
job Jj has a sequence of lj (lj <= m) operations Oj = (Oj1, Oj2, ..., Ojlj ). Each
operation Oij can only be processed by one of its own optional machines π(Oij)
and its processing time δ(Oij) depends on the machine that processes it. Then
FJSS is to find an effective schedule subject to the following constraints:

(1) The (j + 1)th operation of Ji (denotes by Oi(j+1)) can only be processed
after its preceding operation Oij has been processed.

(2) Each operation Oij can be processed on one of the corresponding set of
machines π(Oij) ⊆ M with δ(Oij).

(3) Each machine can process at most one operation at a time.
(4) The scheduling is non-preemptive, i.e. the processing of an operation cannot

be stopped or paused until it is completed.

For the dynamic job shop scheduling problem, jobs arrive in the job shop
over time and their information can only be known when they arrive.



36 F. Zhang et al.

2.2 Dispatching Rules in Dynamic Flexible Job Shop Scheduling

In DFJSS, a routing decision situation will be generated when a new job arrivals
or an operation is finished and its subsequent operation becomes a ready oper-
ation. A sequencing decision situation will be derived when a machine becomes
idle and its queue is not empty. Two kinds of dispatching rules are needed in
DFJSS, which are routing rule and sequencing rule, respectively. The quality of
a schedule depends highly on how well the routing rule and the sequencing rule
work together. The routing rule will be triggered to decide which machine to allo-
cate the operation when a routing decision situation is derived. The sequencing
rule will be triggered to determine which operation in its queue will be chosen
to process next when a sequencing decision situation is derived. Once the trigger
conditions are met, the corresponding decisions will be made immediately.

The machine or operation with the highest priority assigned by routing or
sequencing rule is identified respectively. Once one operation is finished, its infor-
mation related to objectives will be recorded to its corresponding job. After all
the operations are processed, the recorded information related to all jobs is
obtained. Finally, the fitness can be calculated based on the information accord-
ing to different objectives.

2.3 Related Work

In recent years, GP has been widely used to automatically design dispatching
rules for solving JSS problems [18,19]. Tree-based GP is commonly used in many
studies [20,21]. In 2007, Tay and Ho [2] proposed a GP approach to evolve
priority rules for FJSS with multiple objectives by combining them into a single
function. Hildebrandt et al. [11] then used GP to evolve dispatching rules in
different simulations for the single objective of meanflow time. The results show
that the evolved rules perform very well in different scenarios. However, the early
studies only aim to evolve sequencing rule by fixing the routing rule. Cooperation
co-evolution was applied to GP to evolve the rules at the same time in [15]. The
results show that the evolved rules are more effective.

However, in the standard GP, all the features are considered equally in the
terminal set. The WIQ feature is a dominating factor [17,22] that is much more
important than other features for routing decisions, therefore, the routing rules
tend to select the machine with minimal WIQ. In this case, WIQ tends to be
dominant and overweights the other non-dominating features. However, there
are many other features in the job shop and they might be less important than
WIQ, but still contribute to the routing decisions. Using them improperly could
lead to suboptimal performance.

3 The Proposed GP Approach

In order to identify effective combinations of the features with different impor-
tance, this paper considers to separate WIQ from other features, thus to expect
GP can focus more on non-dominating features during the evolutionary process.



A New Representation in Genetic Programming 37

A new representation for routing rule is designed to learn dispatching rules
which can take more information of non-dominating features. It is noted that the
representation design only applies on routing rule. In this section, the proposed
representation is presented first, followed by the designed components.

3.1 Representation

The routing rule is defined as the product of two parts, which are named as com-
ponent 1 and component 2 (i.e. the details will be given in Sect. 3.2). Component
1 is predefined and component 2 is evolved by GP approach automatically. The
motivation of this design is to separate the WIQ with non-dominating features.
It is worth mentioning that a machine with smallest priority value (i.e. highest
priority) will be chosen in this paper. Multiplication is used here to combine
these two components together as it is a more appropriate combination opera-
tor than addition and subtraction. Specifically, the value of component 2 might
be much larger than the value of component 1. An example of the routing rule
is shown in Fig. 1. The terminals and functions in Fig. 1 will be described in
Sect. 4.2.

WISWIQ

MWT

TIS NIQ

/

_
+

*

component 1 component 2

1

1 /

/

Fig. 1. An example of routing rule with new representation.

3.2 Components Design

The goal of component 1 is to extract the information of the current state solely
related to the workload of machines. To this end, component 1 is designed not
only to consider the information of WIQ, but also to consider the workload
distribution of machines in the system. The workload ratio (i.e. workload of
one machine over the entire workload in the system) that can help measure the
distribution of allocated jobs of machines. This is to prevent a solution from
assigning too much work on a single machine. Thus, the design of component



38 F. Zhang et al.

1 needs to meet two requirements. Firstly, it can be used to indicate the infor-
mation of workload of individual machines properly. Secondly, it should express
the difference of the workload of different machines in the system appropriately.

Under the above consideration, the expression of the proposed component 1 is
shown in Eq. (1), where WIQ stands for the total processing time of operations
in the queue of a machine, and WIS (work in system. i.e. the total processing
time of operations in the queue of all machines) denotes the sum of the workload
of all the machines in the job shop. The component2 is the value (VGP ) obtained
by GP method.

component1 = 1/(1 − WIQ/WIS) (1)

component2 = VGP (2)

Priority = component1 ∗ component2 (3)

As shown in Eq. (1), component 1 has the following two characteristics. Firstly,
it can ensure that all the values obtained by Eq. (1) are larger than 1. It means
that component 1 will enlarge the value obtained by the GP approach. In other
words, component 1 plays a role of a penalty coefficient. Secondly, the penalty of
each machine is different. The heavier the workload of a machine, the severer the
punishment is given to that machine. This way, a machine with a lighter workload
tends to have a smaller priority value, and is more likely to be selected.

An example of the combination mechanism is shown as follows. We assume
there are two candidate machines for one operation. The value obtained by orig-
inal GP approach are VGP1 and VGP2. The workloads of these two machines are
denoted by WIQ1 and WIQ2. At one decision point, the workload in the entire
shop floor (WIS, i.e. work in system) is the same for all the machines. According
to the Eqs. (1), (2) and (3), the different situations of the proposed represen-
tation are shown in Table 1, where C() stands for the relationship between the
corresponding elements. In Table 1, “ =, >,< ” are used to show the relation-
ship between VGP1 and VGP2, WIQ1 and WIQ2, component1 and component2,
Priority1 and Priority2.

Table 1 shows how the difference between machines workload (WIQ) can
influence the final priority value (Priority) under different situations categorised
by VGP . All the cases of VGP1 = VGP2 and most cases of VGP1 > VGP2 and
VGP1 < VGP2 have the same trend that the WIQ is positively correlated with
component1 and Priority. This means a machine with lighter workload will get
a smaller component 1 and final priority value, and vice versa. This ensures
that the priority values obtained by GP is well considered. There are some
special cases as follows. When VGP1 > VGP2 (VGP1 < VGP2), if WIQ1 < WIQ2

(WIQ1 > WIQ2), the final priority value (Priority) is not sure and depends on
the accurate result according to Eqs. (1), (2) and (3). Thus, on one hand, the
machine with heavier workload but small VGP still has chance to have a small
priority value, and thus be selected. On the other hand, the machine with a poor
VGP can also be selected if its workload is very light.



A New Representation in Genetic Programming 39

Table 1. The situations of the final priority values with the proposed components.

C(VGP ) C(WIQ) C(component1) C(Priority)

= < < <

= = =

> > >

> < < ?

= = >

> > >

< < < <

= = <

> > ?

Overall, the proposed priority function with the above two components is
expected to consider the effect of both the workload of machines (in component
1) and the other features (in component 2), and combine them together properly
by multiplication.

4 Experiment Design

This work applies the framework (i.e. cooperative evolution genetic program-
ming, CCGP) in [15], which is the current state-of-the-art algorithm of DFJSS
to evolve routing and sequencing rules simultaneously. The proposed algorithm,
which is named as rCCGP, is compared with CCGP [15] to verify its effectiveness
on different job shop scenarios using three commonly used objectives, namely:
(1) max-flowtime, (2) mean-flowtime, and (3) mean-weighted-flowtime.

To verify the performance of the evolved rules, we will use the test beds based
on dynamic flexible simulation model [23,24]. In order to test the effectiveness
and robustness of proposed algorithm, six simulation scenarios based on the
three objectives and two utilisation levels (3 ∗ 2) are investigated.

4.1 Simulation Configuration

For dynamic simulation, commonly used configuration is adopted. In the job
shop, there are ten machines, which has been proven to be a good showcase for
job shop environment. There are 5000 jobs that need to be processed by ten
machines. In order to get a steady state, a warm up period of 1000 jobs is used
and we collect data from the next 5000 jobs. The new jobs keep coming until
the 6000th job is finished. In each problem instance, jobs arrive stochastically
according to a Poison process with rate λ and the average processing time for
machines has mean μ. The utilisation is the proportion of time (p) that a machine
is busy as shown in Eq. (4). Two utilisation levels (i.e. 0.85 and 0.95) are used
in this paper.

p = λ ∗ μ ∗ PM (4)



40 F. Zhang et al.

In Eq. (4), PM is the probability of a job visiting a machine. For example, if
each job has two operations and there are ten machines, PM is 2/10.

Different weights are set to jobs to indicate the urgency or importance of jobs
(weight 1 (20%), weight 2 (60%), weight 4 (20%)). Uniform discrete distribution
between 1 and 10 is designed for deciding both the number of operations per job
and the number of candidate machines per operation. In addition, processing
time of each operation will follow uniform discrete distribution between 1 and
99. In this work, the processing time of each operation is the same for all the
candidate machines.

4.2 Parameter Settings

In our experiment, the terminal set and function set in [24] are adopted. The
details are shown in Table 2. It is worth mentioned that “/” is the protected
division that returns 1 if divided by 0.

Table 2. The terminal and function sets.

Terminals Description

NIQ The number of operations in the queue

WIQ Current work in the queue

MWT Waiting time of a machine

PT Processing time of an operation

NPT Median processing time for next operation

OWT The waiting time of an operation

WKR Median amount of work remaining of a job

NOR The number of operations remaining of a job

W Weight of a job

TIS Time in system

Functions +, −, ∗, /, max, min

The GP parameter settings follow the standard setting that have been used in
most existing studies [15,20,22]. The population size is 1024 and the maximum
depth of programs is 8. The crossover, mutation and reproduction rates are 0.80,
0.15 and 0.05, respectively. The rates of terminal and non-terminal selection are
0.10 and 0.90. Tournament selection is set as parent selection method with a
tournament size of 7. The learning process continues until the generation reaches
the maximum number of generations, which is set to 51.

5 Results and Discussions

The proposed GP approach with respect to the test performance and distribu-
tion of average objective value is investigated. 50 independent runs are executed,



A New Representation in Genetic Programming 41

which assures that the results represent the average behavior instead of extreme
situations. Then, the evolved rules are analysed. The (−,+) marks show whether
our proposed approaches converge significantly better or poorer than the basic
approach in Wilcoxon rank sum test with a significance level of 0.05. Better
results of min and max values are shown in bold. For the convenience of descrip-
tion, <obj, uti> indicates the simulation scenarios, where obj and uti are the
objective and the utilisation level.

5.1 Test Performance of Evolved Rules

The comparison of the performance of the evolved rules obtained by rCCGP
and CCGP are shown in Table 3. The statistical tests show that the evolved
rules obtained by rCCGP are significantly better than the rules obtained by
CCGP in four (scenario <Tmax, 0.95>, <Tmean, 0.85>, <WTmean, 0.85>
and <WTmean, 0.95>) out of six scenarios. In scenario <Tmax, 0.85>, the
performance is quite similar between rCCGP and CCGP with respective to the
mean(sd), min and max value. In scenario <Tmean, 0.95>, although the rules
evolved by rCCGP is not significantly better, the min, mean(sd) and max value
are all better than their counterparts. In addition, rCCGP can reach better
best-case and worse worst-case performance than CCGP in most cases.

Table 3. The mean(standard error), min and max of the objective value of rCCGP
and CCGP over 50 independent runs for six dynamic scenarios.

Scenario mean(sd) min max

rCCGP CCGP rCCGP CCGP rCCGP CCGP

<Tmax,0.85> 1202.96(28.34) 1202.36(30.98) 1158.79 1152.97 1273.17 1270.26

<Tmax,0.95> 1864.83(30.69)(-) 1883.66(36.67) 1813.77 1829.47 1942.71 2034.34

<Tmean,0.85> 384.36(2.28)(-) 385.81(2.58) 382.31 382.72 396.83 395.81

<Tmean,0.95> 550.32(4.80) 552.14(6.46) 543.18 545.64 569.43 577.49

<WTmean,0.85> 828.30(6.02)(-) 829.38(3.47) 823.08 824.68 856.29 839.67

<WTmean,0.95> 1107.63(12.47)(-) 1110.72(10.77) 1095.88 1097.74 1169.34 1143.34

5.2 Distribution of Average Objective Value

Figure 2 shows the violin plot of the average objective value obtained by rCCGP
and CCGP. When further looking into the violin plot in Fig. 2, we can see that in
most scenarios, the value obtained by rCCGP are distributed at lower positions
compared with the value achieved by CCGP expect for scenario <Tmax, 0.85>.
Although in <Tmean, 0.85>, <WTmean, 0.85> and <WTmean, 0.95>, there
are some outliers which are higher than the maximum outlier in CCGP, the
number of outliers is still smaller than their counterparts. Except for the outliers,
the value obtained by rCCGP are more concentrated than that of CCGP, even
in scenario <Tmax, 0.85>. This suggests that the performance of GP with the
proposed new representation is more stable and effective.



42 F. Zhang et al.

<Tmax, 0.95> <Tmean, 0.95> <WTmean, 0.95>

<Tmax, 0.85> <Tmean, 0.85> <WTmean, 0.85>

rCCGP CCGP rCCGP CCGP rCCGP CCGP

rCCGP CCGP rCCGP CCGP rCCGP CCGP

830

840

850

1110

1130

1150

1170

382

386

390

394

550

560

570

1150

1175

1200

1225

1250

1275

1850

1900

1950

2000

Algorithm

Av
er

ag
e 

O
bj

ec
tiv

e 
Va

lu
e 

on
 T

es
t I

ns
ta

nc
es

rCCGP CCGP

Fig. 2. Violin plot of average objective value obtained by rCCGP and CCGP.

5.3 Rule Analyses

Routing Rule. The proposed strategy for GP approach only works on routing
process directly. The results show that the number of occurrences of the feature
WIQ appeared in the final routing rules evolved by rCCGP is much lower than
that of evolved by CCGP. For instance, in scenario <WTmean, 0.95>, the num-
ber of occurrences for feature WIQ in 50 best routing rules of CCGP (131) is
41% lighter than in rCCGP (93). This is consistent with our expectation as in
the proposed rCCGP, the workload of machines is considered in component 1,
so that the GP-evolved component 2 can be more focused on the other features.

Figure 3 shows the simplified component 2 of one promising routing evolved
by rCCGP in the scenario <Tmax, 0.95>. It obtains a Tmax of 1831. There
is no WIQ in the GP evolved rule (component 2). The component 2 consists of
four parts and these four parts are added together. So, we can analyses them one
by one. The details are shown in Eqs. (5)–(8). Note that based on the definition
in Table 2, PT and NPT for all the candidate machines of an operation are
equal in our experiment. NOR for a job is also the same for routing at the
decision point. In addition, TIS and WKR are equal for an ready operation. In
summary, by definition given in Table 2, at any routing decision situation, the
PT , NPT , NOR, TIS and WKR features can be treated as constants, as they
are the same for all the candidate machines. Adding or subtracting a constant
can be removed from the priority function, since it will not change the relative



A New Representation in Genetic Programming 43

preference between machines. In our experiment, the smaller the priority value,
the higher the priority.

part1 =1 + max{min{NIQ,MWT}, PT − MWT}
− min(W,MWT + NOR)

(5)

The first part is shown as Eq. (5). Obviously, 1 and W are small constants,
and thus min(W,MWT + NOR) equals W in most cases since W is usually
smaller than MWT + NOR. Therefore, Eq. (5) can be further simplified as
max{min{NIQ,MWT}, PT − MWT}. It shows that the routing rule prefers
machines with larger MWT , i.e. the earlier available machine (MWT = current
time - machine ready time).

part2 = PT ∗ (1 + NIQ) − 2 ∗ MWT − NOR + min{NPT, TIS} (6)

The second part can be presented as Eq. (6). After ignoring some variables that
can be considered as constants, Eq. (6) can be further simplified to PT ∗NIQ−
2 ∗ MWT . It means the routing rule prefers machines with smaller NIQ (i.e.
number of operations in the queue) and larger MWT .

part3 =NPT + WKR

− min{NIQ ∗ PT,max{min(NIQ,MWT ), PT − MWT}} (7)

The third part is described as Eq. (7). It can be simplified as -min{NIQ ∗ PT,
max{min(NIQ,MWT ), PT − MWT} after ignoring the first two con-
stant terms. In addition, no matter what min{NIQ ∗ PT,max{min(NIQ,
MWT ), PT − MWT} returns, it will be cancelled out by the same component
in part1 or part2.

part4 =
MWT ∗ (PT + NPT + min{NIQ,MWT})

OWT ∗ W
(8)

The last part can be denoted as Eq. (8). OWT (i.e. the waiting time of an
operation) for a ready operation in routing process equals zero in our experiment
(i.e. the details are shown in Sect. 2.2), therefore, the part4 will return 1 (i.e.
protected division).

According to the analysis mentioned above, this routing rule can be roughly
simplified as max{min{NIQ,MWT}, PT −MWT}−2∗MWT or PT ∗NIQ−
2 ∗ MWT .

Table 4 shows the number of times (proportion) a feature appears in the
routing rule mentioned above and the counterpart in scenario <Tmax, 0.95>.
The number of occurrences of features in the routing rule evolve by rCCGP and
CCGP are 39 and 25, respectively. The number of designed terminals is 10 and
the details can be seen in Table 2. The number of considered features in rCCGP
(8) is more than that of evolved by CCGP (6). It suggests that the proposed GP
approach can pay more attention to other features to get more information, thus
to improve its performance. It is worth mentioning that the number of features
considered in rCCGP is nine in fact because we consider WIQ by component 1.



44 F. Zhang et al.

1
0

m
ax

m
in

m
in

N
IQ

M
W

T
PT

M
W

T

W

M
W

T
N

O
R

PT
M

W
T

M
W

T
N

O
R

m
in

N
PT

TI
S

N
IQ

PT

TI
S

M
W

T
M

W
T

TI
S

M
W

T

m
in

N
PT

M
W

T
W

K
R

m
ax

N
IQ

PT
m

in

N
IQ

M
W

T
PT

M
W

T

PT

M
W

T

O
W

T
W

N
PT

m
in

N
IQ

M
W

T

M
W

T

O
W

T
W

Fig. 3. Component 2 of one of the best performing rules for routing evolved by rCCGP
in the scenario <tmax, 0.95>.



A New Representation in Genetic Programming 45

Table 4. The number of occurrences (proportion) of features in one promising routing
rule evolved by rCCGP (component 2) and CCGP in scenario <Tmax,0.95>.

Feature Count (rCCGP) Count (CCGP)

MWT 15 (0.38) 7 (0.28)

PT 6 (0.15) 0(0.00)

NIQ 5 (0.13) 6 (0.24)

NPT 3 (0.08) 0 (0.00)

TIS 3 (0.08) 2 (0.08)

W 3 (0.08) 0 (0.00)

NOR 2 (0.05) 2 (0.08)

OWT 2 (0.05) 5 (0.20)

WKR 0 (0.00) 0 (0.00)

WIQ 0 (0.00) 3 (0.12)

Total 39 25

min

PT W WKR max

WKR min

max PT

OWT

PT W

max

WKR NPT min max

WIQ NOR min NIQ

WIQ NOR

W W PT W

W W NIQ WKR

Fig. 4. Component 2 of one of the best performing rules for routing evolved by rCCGP
in the scenario <tmax, 0.95>.

MWT, which occurs 15 times, is the most frequently seen feature (15/39 =
0.38) of the evolved rule by rCCGP. For CCGP, MWT is also the most popularly
used one, however, in terms of the proportion, it is less considered than that of
in rCCGP (0.28 < 0.38). rCCGP and CCGP pay different attention to different
features (i.e. the features have different importance in rCCGP and CCGP).

Sequencing Rule. The corresponding sequencing rule of the routing rule com-
pared in last section is observed here. This is mainly to investigate what effect



46 F. Zhang et al.

W
IQ

W

m
in

m
ax

W
IQ

W
TIS

N
IQ PT

W

m
ax

PT
N

PT
W

K
R

W
T

W

W
IQ

W
PT

W
W

IQ
W PT

W

m
ax

W
IQ

WPT
N

PT
W

K
R

M
W

T

W

W
IQ

W

PT
W

W
K

R
N

IQ

Fig. 5. The corresponding sequencing rule of the routing rule mentioned in last section
evolved by CCGP in the scenario <tmax, 0.95>.



A New Representation in Genetic Programming 47

routing rule will have on sequencing rule. The sequencing rule evolved by rCCGP
and CCGP are shown in Figs. 4 and 5. The size (i.e. number of nodes) of the
sequencing rule is 45 evolved by rCCGP while the sequencing rule evolved by
CCGP in the same scenario is 67. Obviously, the sequencing is much smaller.

When looking at the sequencing rule evolved by rCCGP, the most popular
pattern is PT −W followed by W ∗W and min{WIQ,NOR}. WIQ/W appears
most often (i.e. six times) followed by PT −W in the sequencing rule evolved by
CCGP. It means if the workload is not well considered in routing process, the
machine might be assigned too many tasks. Thus, the sequencing rule should
take WIQ into account. Intuitively, a machine with lots of work should take
different processing strategy compared with a machine has fewer tasks.

6 Conclusions and Future Work

The goal of this paper was to help GP evolve more effective dispatching rules
for DFJSS. The goal has been successfully achieved by developing a new repre-
sentation. The new representation is based on the domain knowledge that the
workload of a machine WIQ is the dominating feature for making the routing
decision. To fully explore the best way of using the other non-dominating fea-
tures, the new representation was designed as a combination of two parts, one
solely related to the workload of machines, and the other focused on the other
non-dominating features. This way, GP can focus on exploring more appropriate
ways of using the other features than the dominating feature.

The results show that the proposed GP approach with new representation can
achieve significantly better performance in most of the involved scenarios. To be
specific, the distributions of average objective values obtained by rCCGP in five
out of six scenarios are better than that of in CCGP. This means the proposed
new representation works well in almost all the examined instances. It confirms
the effectiveness of the proposed component for workload information and the
combination strategy. It is also known that the routing rule obtained by rCCGP
can focus more on the non-dominating features with the proposed new repre-
sentation. In addition, the evolved corresponding sequencing rule is also affected
to consider different information and tended to be smaller than its counterpart.
Overall, the results demonstrate that the proposed way of using domain knowl-
edge successfully helps GP evolve more effective routing and sequencing rules
for DFJSS.

In the future, more strategies will be investigated to make full use of the
information provided by features. In addition, useful techniques will be adopted
to inspect the evolved rules.

References

1. Nguyen, S.B.S., Zhang, M.: A hybrid discrete particle swarm optimisation method
for grid computation scheduling. In: 2014 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 483–490. IEEE (2014)



48 F. Zhang et al.

2. Tay, J.C., Ho, N.B.: Evolving dispatching rules using genetic programming for
solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–
473 (2008)

3. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Com-
puting 45(4), 369–375 (1990)

4. Oktaviandri, M., Hassan, A., Shaharoun, A.M.: Decision support tool for job shop
scheduling with job cancellation. In: International Conference on Engineering of
Taru-managara (ICET) (2013)

5. Sabuncuoglu, I., Bayız, M.: Analysis of reactive scheduling problems in a job shop
environment. Eur. J. Oper. Res. 126(3), 567–586 (2000)

6. Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P., Bertsekas, D.P.: Dynamic Pro-
gramming and Optimal Control, vol. 1. Athena Scientific, Belmont (2005)

7. Lawler, E.L., Wood, D.E.: Branch-and-bound methods: a survey. Oper. Res. 14(4),
699–719 (1966)

8. Nowicki, E., Smutnicki, C.: A fast taboo search algorithm for the job shop problem.
Manage. Sci. 42(6), 797–813 (1996)

9. Pezzella, F., Morganti, G., Ciaschetti, G.: A genetic algorithm for the flexible job-
shop scheduling problem. Comput. & OR 35(10), 3202–3212 (2008)

10. Gomes, M.C., Barbosa-Póvoa, A.P., Novais, A.Q.: Reactive scheduling in a make-
to-order flexible job shop with re-entrant process and assembly: a mathematical
programming approach. Int. J. Prod. Res. 51(17), 5120–5141 (2013)

11. Hildebrandt, T., Heger, J., Scholz-Reiter, B.: Towards improved dispatching rules
for complex shop floor scenarios: a genetic programming approach. In: Proceedings
of the 12th Annual Conference on Genetic and Evolutionary Computation, pp.
257–264. ACM (2010)

12. Pickardt, C.W., Hildebrandt, T., Branke, J., Heger, J., Scholz-Reiter, B.: Evolu-
tionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. Int. J. Prod. Econ. 145(1), 67–77 (2013)

13. Nguyen, S., Zhang, M., Johnston, M., Tan, K.C.: A computational study of rep-
resentations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013)

14. Zhang, F., Mei, Y., Zhang, M.: Genetic programming with multi-tree represen-
tation for dynamic flexible job shop scheduling. In: Mitrovic, T., Xue, B., Li, X.
(eds.) AI 2018. LNCS (LNAI), vol. 11320, pp. 472–484. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03991-2 43

15. Yska, D., Mei, Y., Zhang, M.: Genetic programming hyper-heuristic with coopera-
tive coevolution for dynamic flexible job shop scheduling. In: Castelli, M., Sekanina,
L., Zhang, M., Cagnoni, S., Garćıa-Sánchez, P. (eds.) EuroGP 2018. LNCS, vol.
10781, pp. 306–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
77553-1 19

16. Zhang, F., Mei, Y., Zhang, M.: Surrogate-assisted genetic programming for
dynamic flexible job shop scheduling. In: Mitrovic, T., Xue, B., Li, X. (eds.) AI
2018. LNCS (LNAI), vol. 11320, pp. 766–772. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-03991-2 69

17. Haupt, R.: A survey of priority rule-based scheduling. Oper.-Res.-Spektrum 11(1),
3–16 (1989)

18. Branke, J., Nguyen, S., Pickardt, C.W., Zhang, M.: Automated design of produc-
tion scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124
(2016)

19. Nguyen, S., Mei, Y., Zhang, M.: Genetic programming for production scheduling:
a survey with a unified framework. Complex Intell. Syst. 3(1), 41–66 (2017)

https://doi.org/10.1007/978-3-030-03991-2_43
https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-319-77553-1_19
https://doi.org/10.1007/978-3-030-03991-2_69
https://doi.org/10.1007/978-3-030-03991-2_69


A New Representation in Genetic Programming 49

20. Mei, Y., Nguyen, S., Xue, B., Zhang, M.: An efficient feature selection algorithm
for evolving job shop scheduling rules with genetic programming. IEEE Trans.
Emerg. Top. Comput. Intell. 1(5), 339–353 (2017)

21. Nguyen, S., Mei, Y., Xue, B., Zhang, M.: A hybrid genetic programming algorithm
for automated design of dispatching rules. Evol. Comput. 1–31 (2018)

22. Mei, Y., Zhang, M., Nyugen, S.: Feature selection in evolving job shop dispatching
rules with genetic programming. In: Proceedings of the Genetic and Evolutionary
Computation Conference 2016, pp. 365–372. ACM (2016)

23. Hildebrandt, T., Branke, J.: On using surrogates with genetic programming. Evol.
Comput. 23(3), 343–367 (2015)

24. Mei, Y., Nguyen, S., Zhang, M.: Evolving time-invariant dispatching rules in job shop
scheduling with genetic programming. In: McDermott, J., Castelli, M., Sekanina, L.,
Haasdijk, E.,Garćıa-Sánchez, P. (eds.) EuroGP2017. LNCS, vol. 10196, pp. 147–163.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55696-3 10

https://doi.org/10.1007/978-3-319-55696-3_10


An Iterated Local Search Algorithm
for the Two-Machine Flow Shop Problem

with Buffers and Constant Processing
Times on One Machine

Hoang Thanh Le(B) , Philine Geser, and Martin Middendorf

Swarm Intelligence and Complex Systems Group, Institute of Computer Science,
University of Leipzig, Leipzig, Germany

{lht,middendorf}@informatik.uni-leipzig.de

Abstract. This paper considers a special case of two-machine flow shop
scheduling problems with buffers, namely, the case where all processing
times on one of the two machines are equal. This case is interesting
because it occurs in various applications, e.g., when one machine is a
packing machine. For the buffers we consider two types of buffers that
have been studied in the literature for flow shops. It is shown that all con-
sidered buffered flow shop problems remain NP -hard for the makespan
criterion and permutation schedules even with the restriction to equal
processing times on one machine. Two specific heuristics for solving the
problems are proposed: (i) a modification of the commonly used NEH
heuristic (mNEH) and (ii) an Iterated Local Search heuristic (2BF-ILS)
that uses the mNEH heuristic for computing its initial solution. It is
shown experimentally that the proposed 2BF-ILS heuristic obtains bet-
ter results than two state-of-the-art algorithms for buffered flow shop
problems from the literature and an Ant Colony Optimization algorithm.
In addition, it is shown experimentally that 2BF-ILS can obtain the same
solution quality as the standard NEH heuristic with a smaller number of
function evaluations.

Keywords: Flow shops with buffers · Iterated Local Search ·
NEH heuristic · Permutation schedules

1 Introduction

Flow shop problems are a large class of job scheduling problems where each job
(or object) goes through a set of m processing steps such that the ith processing
step is done on machine Mi for i ∈ {1, . . . , m}. The objective is to schedule the
processing of jobs such that certain constraints are satisfied and certain criteria
relating to efficiency, job throughput or incurred costs are optimized. In this
paper we restrict ourselves to permutation schedules where the sequence of jobs
is the same on all machines.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 50–65, 2019.
https://doi.org/10.1007/978-3-030-16711-0_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_4&domain=pdf
http://orcid.org/0000-0003-3963-0467
http://orcid.org/0000-0002-5426-1092
https://doi.org/10.1007/978-3-030-16711-0_4


An Iterated Local Search Algorithm 51

The flow shop problems that are studied here are special cases of a two-
machine flow shop with buffer constraints. In these problems each job takes up
a given amount of buffer space for a certain time period and the scheduling
has to be done such that the available buffer capacity is not exceeded. Buffer
constraints occur in many practical applications where not only the time, but
also the size of the processed objects has to be taken into account as, e.g., in
production facilities with limited space for temporary storage. In particular, we
consider two types of buffer constraints that have been studied for flow shops in
the literature and which differ by the time span where the buffer is occupied by a
job. Flow shops of these types occur, e.g., in waste processing or the production
of metal parts for the aerospace industry [17], the scheduling of deliveries [2],
the food industry or in the production of chemicals [14].

In this paper we consider the special case of buffered two-machine flow shops
where for one of the two machines all jobs have the same processing time. This case
is interesting because there exist many applications where in one stage of the flow
shop the processing steps tend to be relatively similar for all objects. One example
is a two-machine flow shop were different objects are produced on the first machine
and packed on the second machine. In many applications of this type the produc-
tion times might vary but packing is a standardized process which takes approxi-
mately the same time for each object. Another example is an application where a
robot—which corresponds to the first machine—transports the materials for the
production of different objects to the second machine where the manufacturing
takes place. In many applications of this type the transportation times might be
similar, e.g., when allmaterials are stored in the same storage hall, whereas the pro-
duction times might differ strongly. In other applications of this type the opposite
might hold: the transportation times are different whereas all production times are
similar.

It is shown that the considered buffered two-machine flow shops remain
NP -hard for the makespan criterion and permutation schedules even under the
restriction to equal processing times on one machine. To solve the problems we
propose a modification of the well-known NEH heuristic. Moreover, an Iterated
Local Search heuristic (2BF-ILS) is proposed that uses the modified NEH heuris-
tic for computing its initial solution. 2BF-ILS is studied experimentally and is
compared with two state-of-the-art heuristics for buffered flow shops from the
literature and also with an Ant Colony Optimization algorithm. 2BF-ILS is also
compared experimentally to the standard NEH heuristic.

A short overview of recent works on buffer-constrained flow shop problems
is given in Sect. 2. A formal description of the considered buffered flow shop
problems is presented in Sect. 3. The NP -hardness results are shown in Sect. 4.
The modified NEH heuristic is described in Sect. 5 and the Iterated Local Search
heuristic is introduced in Sect. 6. Experimental results are presented in Sect. 7.
Conclusions are given in Sect. 8.

2 Related Work

In the most often considered type of flow shop problem with buffers, there
exists a buffer between each two adjacent machines Mi and Mi+1 and each job



52 H. T. Le et al.

NEH GA

[28]

PSO[13] CHS[20] HVNS[18]

TS

[3]

ISA

[8]

IWA

[24]

DDE

[21]

DABC[30]

[30]

NEH: Nawaz-Enscore-Ham heuristic
GA: Genetic Algorithms
PSO: Particle Swarm Optimization
CHS: Chaotic Harmony Search
HVNS: Hybrid Variable Neighborhood
Search

TS: Tabu Search
ISA: Immune System Algorithm
IWA: Invasive Weed Algorithm
DDE: Discrete Differential Evolution
DABC: Discrete Artificial Bee Colony

Fig. 1. Overview of works containing comparisons between algorithms. The notation
A ← B indicates that algorithm A is outperformed by algorithm B in the given reference.
However, the arrows are to be interpreted with some care: It does not mean that A is
worse than B for two-machine flow shops with buffer constraints. It only means that
B obtained better results (on average) than A for the considered test instances in the
respective work.

occupies the buffer after it finishes on Mi and before it starts on machine Mi+1.
This type of buffer is called intermediate buffer. It is known that the flow shop
problem with intermediate buffers is NP-complete [22] and several authors have
proposed heuristics for this problem, including a Tabu Search [11], Variable
Neighborhood Search [18], Genetic Algorithms [28], methods based on Differ-
ential Evolution [21] and Particle Swarm Optimization [13]. Other examples of
biologically inspired algorithms that have been applied on flow shop problems
are a Discrete Artificial Bee Colony [30] and Immune System algorithms [1,8]. In
most of these studies the performance of different heuristics has been compared.
Figure 1 summarizes the results of these comparisons.

Another type of buffer-constraint that is considered in the literature is where
the buffer between machines Mi and Mi+1 is used by each job from its starting
time on Mi until its finishing time on Mi+1. This type of buffer is referred to as
spanning buffer. The flow shop problem with spanning buffer is also NP-complete
[12]. Examples for methods from the literature for this type of flow shop are a
Variable Neighborhood Search [10] and a Branch and Bound algorithm [12].

3 Formal Description of the Problem

For the two-machine flow shop problems (2-flow shop) considered in this paper
there is a given set J = {J1, . . . , Jn} of n jobs and two machines M1 and M2.
Each job Ji has two processing times ai > 0, bi > 0 where ai is the processing
time on M1 and bi is the processing time on M2. In a 2-flow shop each job
has to be finished on machine M1 before it can be started on machine M2. The
processing of a job on a machine is non-preemptive and a machine can process at
most one job at a time. A schedule for a 2-flow shop is denoted by σ and specifies



An Iterated Local Search Algorithm 53

0 5 10 15

Buffer

M2

M1

Time

J2

J3

J4

J5

J1 J2 J3 J4 J5

J1 J2 J3 J4 J5

0 5 10 15

Buffer

M2

M1

Time

J1

J2

J3

J4

J5

J1 J2 J3 J4 J5

J1 J2 J3 J4 J5

Fig. 2. Examples of a bi-2-flow-shop (left) with buffer capacity Ω = 3 and a bs-2-
flow-shop (right) with buffer capacity Ω = 7 and si = ai for i ∈ {1, . . . , n}. In each
case a valid permutation schedule σ is shown with π(σ) = (J1, J2, J3, J4, J5). Blocks
with diagonal lines indicate phases where M1 is idle and the next job has to wait until
enough buffer capacity becomes available.

the starting time Sj
i (σ) and the completion time Cj

i (σ) of Ji on Mj for each job
Ji and each machine Mj (i ∈ {1, . . . , n}, j ∈ {1, 2}). Thus, a schedule σ specifies
permutations π1(σ), π2(σ) describing the order of jobs on the machines M1 and
M2, respectively. A schedule σ is a permutation schedule if π1(σ) = π2(σ).

For the 2-flow-shop with buffer (b-2-flow-shop) there exists a buffer with a
given capacity Ω ≥ 0 and each job Ji ∈ J has a size si which specifies how
many buffer units Ji occupies when stored in the buffer. Two types of buffers
are considered in this paper which differ by the time span in which a job occupies
the buffer for a given schedule σ: (i) an intermediate buffer is occupied by job Ji

from C1
i (σ) until S2

i (σ) and (ii) a spanning buffer is occupied by Ji from S1
i (σ)

until C2
i (σ). The two types of b-2-flow-shops are denoted by bi-2-flow-shop and

bs-2-flow-shop, respectively. A schedule σ is valid for a b-2-flow-shop when at
every time step the total amount of buffer that is occupied by the jobs does
not exceed Ω. If we impose the condition that all jobs are processed as early
as possible, it is sufficient to specify the permutations π1(σ) and π2(σ) in order
to define a schedule σ. Figure 2 shows examples of a bi-2-flow-shop (left) and a
bs-2-flow-shop (right) together with a valid permutation schedule.

In this paper we concentrate on the special case of bs-2-flow-shop and bi-2-
flow-shops where the processing times on one of the machines are the same for
all jobs, i.e., it holds that ai = c or bi = c for i ∈ {1, . . . , n} with a constant c.
With respect to the buffer usage of the jobs, two common models are studied
in the literature: (i) the buffer is interpreted as a “counter” for the number of
stored jobs and thus si = 1 for i ∈ {1, . . . , n} (see, e.g., [18,30]), and (ii) the
amount of storage that is used by a job equals its processing time on the first
machine, i.e., si = ai for i ∈ {1, . . . , n} (see, e.g., [6,10,12]). In the second model
the size of the job Ji is interpreted as being proportional to the amount of work
during its initial processing step.



54 H. T. Le et al.

0 5 10 15 20 25

Buffer

M2

M1

Time

J2

J3

J1 J2 J3 J4

J1 J2 J3 J4

0 5 10 15 20 25

Buffer

M2

M1

Time

J3

J2

J4 J3 J2 J1

J4 J3 J2 J1

Fig. 3. Example for “mirroring” schedules in order to obtain the case bi = c, si = ai

Depending on whether the buffer usage si equals ai, bi, or 1 and whether the
processing times on M1 or M2 are equal, it is possible to distinguish between
six different cases. However, it can be shown that only two cases have to be
considered since all other cases can be reduced to them. These two cases are (i)
bi = c, si = ai and (ii) bi = c, si = 1. The reduction can be done by rescaling
all values by si (if si is constant for all jobs) and/or by defining a new schedule
σ′ with the same makespan that “mirrors” the processing times (i.e., a′

i = bi,
b′
i = ai and s′

i = si) as well as the time axis (see Fig. 3 for an example).
The criterion to be optimized is the makespan Cmax (i.e., the time where the

last job is completed on the last machine). This is also the criterion used by the
studies mentioned in Sect. 2 and based on these works, we also restrict ourselves
to permutation schedules where the sequence of jobs on both machines is the
same. Hence, a schedule is determined by a single permutation π of all jobs.
However, it should be noted that this imposes a restriction for the cases with
si = ai, i.e., there exist instances where the set of optimal schedules contains no
permutation schedule (for example, the bi-2-flow-shop in Fig. 3 right). For the
case si = 1, there always exists a permutation schedule that is optimal [7].

4 Complexity Results

In this section, we show that for the considered b-2-flow-shops the special case
where all processing times on machine M2 are the same is NP-complete for the
makespan criterion. Due to space limitations, the proof is sketched only for the
case with intermediate buffer and si = ai. The NP -completeness for the other
considered flow shops can be shown with similar arguments.

Theorem 1. The decision problem if there exists a valid permutation schedule
σ∗ with Cmax(σ∗) ≤ L for a given integer L is NP-complete for the following
type of flow shops:

(i) bi-2-flow-shop with si = ai and bi = c for c > 0,



An Iterated Local Search Algorithm 55

(ii) bs-2-flow-shop with si = ai and bi = c for c > 0,
(iii) bi-2-flow-shop with si = 1 and bi = c for c > 0,
(iv) bs-2-flow-shop with si = 1 and bi = c for c > 0.

Proof (sketch for (i)). The problem is in NP since it can be checked in polyno-
mial time if a schedule σ∗ is valid and satisfies Cmax(σ∗) ≤ L. To show the
NP -hardness consider an instance of 3Partition: given are integers
x1, x2, . . . , x3m and an integer B such that B/4 < xj < B/2 for all j and
∑3m

j=1 xj = mB. The question is if there exists a partition of {x1, x2, . . . , x3m}
into m subsets S1, S2, . . . , Sm such that each set Sk satisfies |Sk| = 3 and∑

x∈Sk
x = B. We denote the given instance from 3Partition as I3P . The

corresponding flow shop instance IF2 with intermediate buffers is constructed
with n = 4m + 1 jobs which are defined as follows:

– Job g0 with ag0 = B/4,
– A set G of m jobs g1, g2, . . . , gm with agk

= 3B for k ∈ {1, 2, . . . ,m}, and
– A set H of 3m jobs h1, h2, . . . , h3m with ahk

= xk for k ∈ {1, 2, . . . , 3m}.

In addition, it is set that Ω = 3B/4, c = B, L = 4mB +B +B/4 and si = ai

for all jobs. Now it is shown that I3P has a solution if and only if IF2 has a
schedule σ∗ with Cmax(σ∗) ≤ L.

“⇐”: Due to the properties of the jobs and the maximum makespan L, it
can be argued that any solution σ∗ to IF2 must have a structure as shown in
Fig. 4 where H0,H1, . . . , Hm−1 are sets of jobs in H and all jobs in G ∪ {g0} are
processed in succession without any delay. No other idle times are allowed and
there are no H-jobs at the beginning or at the end of the schedule. Thus, all
H-jobs must be processed in the “gaps” formed by the jobs in G. It can then be
shown that the set H0 contains exactly three H-jobs which are the same for both
machines and satisfy

∑
h∈H0

ah = B as well as
∑

h∈H0
bh = 3B. The arguments

can be repeated to show the same properties for Hi, i ∈ {1, 2, . . . ,m − 1}. The
sets Hi then allows to construct a corresponding solution for the instance I3P of
3Partition.

“⇒”: Given the subsets S1, S2, . . . , Sm satisfying |Sk| = 3 and
∑

x∈Sk
x = B

for k ∈ {1, 2, . . . ,m}, it is possible to construct a schedule as shown in Fig. 4
where the H-jobs corresponding to the subsets are scheduled between the
G-jobs. This leads to a schedule σ∗ satisfying Cmax(σ∗) = L such that the
resulting schedule σ∗ is a solution for IF2. �	

5 A Modification of the NEH Heuristic

The NEH algorithm [19] is a very successful and the most famous heuristic for
makespan minimization in permutation flow shop problems. It is an iterative
heuristic that starts with an empty permutation building it up by iteratively
inserting jobs (in decreasing order of the sums of their processing times) into
the positions which lead to the smallest increase in makespan. Several variants



56 H. T. Le et al.

B
4 B 3B B 3B B 3B B

M2

M1 g0 g1 g2 gmH0 H1 Hm−1

g0 g1 gm−1 gmH0 H1 Hm−1

Fig. 4. Visualization for Theorem 1

of the NEH heuristic have been studied in the literature. Most of them deal
with ties [5] or use different orders of job insertions, e.g., based on the moments
of processing times [15] or using genetic programming [27]. A disadvantage of
the NEH heuristic is its relatively large run time since it checks Θ(n2) insertion
points. In particular, when the solution of the NEH heuristic is further used
by improvement heuristics, e.g., as the starting solution for an Iterated Local
Search heuristic, it is desirable to have a faster heuristic for the computation of
a starting solution.

Here, we introduce a modification of the NEH heuristic (mNEH) that is faster
and particularly suitable for the considered two-machine flow shops with buffers
where all processing times on the second machine M2 are equal. In this case, the
jobs differ only by their processing time on M1. Therefore, it will often happen
that many jobs are similar or even identical. This property is used in the mNEH
heuristic to reduce the number of positions that are checked for the insertions
of the jobs and thus the total number of evaluated schedules. The main idea is
to split the n jobs into G(n) groups of similar jobs and to maintain for each
group a list of L(n) “good” candidate positions for the insertion. This is based
on the assumption that insertions of similar jobs at the same positions will lead
to similar schedules.

Algorithm 1. Modified NEH heuristic (mNEH)
Parameters: number of groups G(n), number of positions L(n) to memorize

1: πsort ← sorted sequence of jobs by descending ai

2: π ← empty permutation
3: S1, S2, . . . , SG(n) ← partition of πsort into G(n) groups of equal size
4: for S ∈ {S1, S2, . . . , SG(n)−1} do
5: (j1, j2, . . . , jk) ← jobs in the current group S
6: test insertion of j1 in all possible positions of π and memorize the best L(n) insertions
7: insert j1 at the best position in π
8: update list of memorized L(n) positions
9: for � ∈ {2, 3, . . . , k} do
10: test insertion of j� into π̂ at the memorized L(n) positions
11: test insertion of j� into neighbor positions of j�−1
12: insert j� at the best tested position in π
13: update list of memorized L(n) positions, if necessary
14: end for
15: end for
16: insert the jobs in SG(n) into π as in the standard NEH heuristic
17: return π



An Iterated Local Search Algorithm 57

A pseudocode of the modified heuristic is given in Algorithm 1. The number
of evaluations to be performed can then be adjusted by appropriate choice of
L(n) and G(n). In this paper we memorize L(n) = 2

√
n positions for each of

G(n) =
√

n groups of equal size (an exception is the last group as described
later) and it follows that the resulting algorithm performs O(n

√
n) evaluations.

It should be noted that in this case the incomplete permutation π contains less
than L(n) jobs during the scheduling of the first two groups S1 and S2. For
the jobs in these two groups, the mNEH heuristic tests all possible insertion
positions in the same way as in the standard NEH heuristic. For the last group
SG(n), all possible positions are checked since this group contains the shortest
jobs allowing for a finer optimization of the partial permutation π. Regarding
the time complexity (including the time to evaluate a permutation as well as
the time to build and update the list) it can be shown that the mNEH heuristic
with the used parameter values is faster than the standard NEH heuristic by a
factor of O(

√
n).

6 Iterated Local Search

In this section we propose an Iterated Local Search heuristic for the two-machine
flow shop problems with buffers. The heuristic is denoted by 2BF-ILS. The local
search operations that are considered for 2BF-ILS are the following:

– Inserting a job on position i into another position j (insert)
– Inserting a pair of adjacent jobs at the positions (i, i + 1) into the positions

(j, j + 1) (pairInsert)
– Swapping two jobs at the positions i and j (swap)

The actual selection of these operations and their order used in the exper-
iment is later determined by the algorithm configurator irace in Sect. 7.3. As
such, the following description is based on the generalized case where a sequence
op1, op2, . . . , op� is given with opi ∈ {insert , pairInsert , swap} for i ∈ {1, . . . , �}.
Each of the considered operations op ∈ {insert , pairInsert , swap} takes two
parameters i and j so that we denote the result of op applied on π with these
parameters as op(π, i, j). The resulting neighborhood of permutations around π
is denoted Nop(π) = {π′ | ∃i, j : op(π, i, j) = π′}, i.e., the set of all permutations
π′ that can be obtained by a single application of op on π. The size of the neighbor-
hoods for the considered operations is quadratic with respect to the problem size
n since the number of possible values for the parameters i and j linearly increases
with n. One way to reduce the size is to fix a parameter i:

Nop
i (π) = {π′ | ∃j : op(π, i, j) = π′}

This lowers the number of checked permutations leading to potentially good
solutions being missed. However, the linear size of the resulting neighborhood
allows for more local search steps to be performed in the same amount of time.



58 H. T. Le et al.

Algorithm 2. 2BF-ILS
Parameters: initial perturbation strength psinit , finite sequence of operations (op1, op2, . . . , op�)

1: π0 ← permutation generated by mNEH (Algorithm 1)
2: ps ← psinit
3: while termination criterion not satisfied do
4: πcur ← best known solution
5: πrand ← random job permutation
6: if best solution did not improve in previous iteration then
7: πcur ← perturb(πcur , ps)
8: end if
9: for s ∈ {1, 2, . . . , �} do
10: op ← ops

11: repeat � local search
12: for k ∈ {1, 2, . . . , n} do

13: i ← kth element in πrand

14: π̂ ← best permutation in the neighborhood Nop
i (πcur )

15: if Cmax(π̂) ≤ Cmax(π
cur ) then

16: πcur ← π̂
17: end if
18: end for
19: until πcur does not improve
20: end for
21: if best known solution did not improve in current iteration then
22: ps ← ps + ε
23: else
24: ps ← psinit
25: end if
26: end while
27: return best known solution

The Algorithm 2 outlines the main steps of our proposed method: It starts
with the solution obtained from the mNEH heuristic proposed in Sect. 5 (with
G(n) =

√
n and L(n) = 2

√
n). Then 2BF-ILS iterates through a sequence of

operations (op1, op2, . . . , op�) and repeatedly performs local search steps with
changing neighborhoods. The choice of which parameter i to fix in Nop

i (π) is
based on a random permutation πrand calculated beforehand. The search steps
with the current operation op are repeated until the permutation πcur obtained
so far cannot be improved further. Afterwards, the local search procedure is
restarted with the next given operation.

If the best known solution obtained so far did not improve after all opera-
tions, the next iteration of the algorithm uses a perturbed variant of the best
known solution. The perturbation we use is based on a geometric distribution: We
repeatedly draw (uniformly) random numbers r from [0, 1] and then randomly
apply one of the given operations with random parameters on the permutation
until r is greater than ps. This distribution favors a small number of perturba-
tions. The strength of perturbation ps increases additively (here set as ε = 0.05
with ps maxed out at 0.99) if successive iterations do not yield any improvement
of the best known solution. If it is improved, the value ps is reset to the initial
value ps init .



An Iterated Local Search Algorithm 59

7 Computational Evaluation

In this section we describe the experiments and their results.

7.1 Choice of Algorithms for Comparison

Based on the literature overview given in Sect. 2 and Fig. 1, we selected the
Hybrid Variable Neighborhood Search (HVNS) and the Discrete Artificial Bee
Colony (DABC) for a comparison with our proposed method since these algo-
rithms are described in fairly recent works [18,30] and have not been outper-
formed by any other algorithm to the best of our knowledge. For the implemen-
tation, we asked the authors of both algorithms for the source code but did not
receive a reply. Thus, we reimplemented both algorithms.

In addition to HVNS and DABC we also used an Ant Colony Optimization
algorithm (ACO) for comparison. The reason is that ACO generally achieves
good results for many scheduling problems. It is thus a promising algorithm
which so far has not been applied to flow shops with buffers. The ACO in this
work is a standard ACO where each pheromone value τij encodes the desirability
that job Jj is the successor of job Ji. At each iteration the pheromone values are
updated by the solution that was obtained by 2BF-ILS applied to the permu-
tation generated by the best ant in the current iteration (i.e., the iteration best
solution became πcur in line 4 in Algorithm 2). Each application of 2BF-ILS was
limited to 1000 search steps.

7.2 Generation of Problem Instances

The commonly used benchmark instances for flow shop problems (from Taillard
[25], Reeves [23], Carlier [4] and the recent VRF benchmark [26]) work with
at least five machines and contain no buffer constraints so that they cannot
be directly applied to the b-2-flow shop cases considered here. Authors that
studied buffered flow shop problems with two machines (e.g., in [10,12]) gener-
ated instances with random processing times uniformly drawn over the interval
{1, . . . , 100}. Based on the studies performed by the these authors, we generated
instances for our experimental study as described in the following.

We chose n ∈ {50, 100, 150} as the number of jobs for small, medium and
large instances and created three “incomplete instances” for each size that con-
tain only the M1 processing times aj drawn randomly from a uniform distri-
bution over the set {1, 2, . . . , 100}. Each of these incomplete instances was then
used to build three subordinate instances by choosing the constant processing
times c on M2 as the 25%, 50% or the 75% percentile q0.25, q0.50, q0.75 of the
values ai. Each value of c was then used to create (complete) instances for the
intermediate buffer (or spanning buffer) by setting si = 1 and Ω = 1 (Ω = 3)
or si = ai and Ω = q0.25 (Ω = max ai + q25). Note that the buffer capacity
Ω cannot be smaller than max si for the spanning buffer model or else there
exists no valid schedule. The resulting set of instances contained 108 flow shop
problems.



60 H. T. Le et al.

7.3 Parameter Values

For the algorithms 2BF-ILS and ACO the parameter values were determined
with the algorithm configurator irace [16]. The configuration was performed on
a separate set of instances with 100 jobs (generated using the method described
in Subsect. 7.2) with the standard irace parameter values and a budget of 250
runs for each algorithm. The limits used by irace for the parameter values
were chosen as psinit ∈ (0.01, 0.99), ρ ∈ (0.01, 0.05), Nants ∈ {1, 2, . . . , 20}.
As possible sequences for operations we considered all sequences of length 1,2
or 3 that can be formed by the operations insert , pairInsert or swap (without
repetition leading to 15 possible sequences in total). The algorithms HVNS and
DABC were applied with the parameters given by the respective authors as well
as tuned parameters calculated by irace on the same instances. In the following,
the tuned versions of these algorithms are referred to as HVNS-T and DABC-T.

Table 1. Parameters for ACO and 2BF-ILS calculated by irace

Algorithm Parameter Result Description

ACO ps init 0.914 Initial perturbation strength

op (swap, insert , pairInsert) Sequence of operations

Nants 19 Number of ants

ρ 0.018 Pheromone evaporation

2BF-ILS ps init 0.240 Initial perturbation strength

op (pairInsert , insert , swap) Sequence of operations

The resulting parameter values are given in Table 1. Due to page limitations,
we refer the reader to https://github.com/L-HT/TwoMachineFlowShopBuffers
where the resulting parameter values for HVNS-T and DABC-T as well as the
source code for each algorithm and the following evaluations (written in R and
C++) are available. After the configuration, each algorithm was executed on all
108 instances and the resulting values were averaged over 10 replications. All test
runs were performed on a computer with eight 3.4-GHz-cores (each run being
executed on one core) and 32 GB RAM with time limits of 5, 10 and 15 min for
the small, medium and large problems, respectively.

7.4 Comparison of 2BF-ILS with Other Metaheuristics

The performance of each algorithm was evaluated based on (i) the number of per-
formed function evaluations FE to calculate the makespan and (ii) the elapsed
absolute runtime. The latter was used to calculate the normalized runtime NT
as a time measure where the reference runtime for a given instance was chosen
as the mean runtime of 10 runs of the standard NEH heuristic.

For each instance and each time measure, we generated (similar to what is
done in [29]) the progress curve (PC, the quality of the best known solution

https://github.com/L-HT/TwoMachineFlowShopBuffers


An Iterated Local Search Algorithm 61

Table 2. Relative area under curve (AUC) values for each algorithm, evaluation dia-
gram and time measure (indicated by the subscript NT or FE). For each instance,
the area under the curve was calculated for each diagram and the best obtained value
was chosen as the “reference” to calculate the relative values for the other algorithms.
The obtained values were averaged over all 108 instances. A low number indicates that
the curves for the respective algorithm show a high similarity (on average) to the best
performing algorithm on each instance.

HVNS HVNS-T DABC DABC-T ACO 2BF-ILS

PCFE 2.22 2.13 1.81 1.66 2.01 1.03

PCNT 2.41 2.40 1.54 1.71 2.06 1.04

ERTFE 2.62 2.59 3.07 3.02 2.58 1.11

ERTNT 2.49 2.48 1.91 2.36 2.60 1.25

ECDFFE 1.28 1.27 1.23 1.23 1.44 1.00

ECDFNT 1.35 1.35 1.21 1.22 1.50 1.00

over time), the estimated running time (ERT, indicating the time necessary to
reach a given solution quality) and the empirical cumulative distribution function
(ECDF, describing the percentage of runs reaching a given solution quality over
time) with respect to the relative percentage difference RPD = (F (π) − F̂ )/F̂
between the solution quality F (π) of the permutation π and the best solution
quality F̂ found in all runs on this instance. The target value of the ECDF was
chosen as a 1%-deviation of F̂ such that these diagrams show how consistent an
algorithm reaches the performance RPD ≤ 0.01.

Since an individual evaluation of over 600 diagrams is not feasible, we cal-
culated the area under curve (AUC) as an aggregate quality measure for the
PC, ERT and ECDF diagrams (with respect to both time measures) since algo-
rithms with low AUC values (for PC and ERT diagrams) and high AUC values
(for ECDF diagrams) tend to find better solutions faster [29]. As such, these val-
ues quantify the performance of an algorithm for a given instance over time. The
relative AUC values, averaged over all instances used in this study, are shown
in Table 2 It can be seen that 2BF-ILS outperformed the other algorithms and
their irace-tuned versions with respect to all evaluation measures. ACO shows
a competitive performance when compared to HVNS and DABC with respect
to the values for the PC diagrams which indicates that it quickly improves at
the beginning when the first solutions are created. One reason why ACO does
not perform very well on the studied type of buffered flow shop problems is that
there exist many similar or equal jobs which causes a problem for the ants.

In addition, we observed for most instances with the makespan criterion and
si = 1 (for both buffer types) that the algorithms quickly reached a state of con-
vergence with the same solution quality (with an example shown in Fig. 5 left). A
comparison with the lower bound given by Johnson’s algorithm [9] for flow shops
without buffer constraints showed that in most cases an optimal solution was
reached. We performed further experiments using additional instances of this
type with similar results which indicates that this special case could be “easier”



62 H. T. Le et al.

0 50000 150000 250000

0.
00

0
0.

00
4

0.
00

8
0.

01
2

evaluation

R
PD

 (M
ak

es
pa

n)
HVNS
DABC
ACO
2BF−ILS
HVNS−T
DABC−T

0 50000 100000 150000

0.
00

0.
02

0.
04

0.
06

0.
08

evaluation

R
PD

 (M
ak

es
pa

n)

HVNS
DABC
ACO
2BF−ILS
HVNS−T
DABC−T

Fig. 5. Progress curve for an instance using the intermediate buffer, si = 1, c = q0.50
and 50 jobs (left) and an instance with spanning buffer, si = ai, c = q0.50 and 100 jobs
(right)

to solve than other problems (even though in theory it is still NP-complete).
This was not observed for the instances with sj = aj where a slower convergence
occurred in most cases (see Fig. 5 right for an example).

Table 3. Results of the pairwise comparisons between the algorithms using the two-
sided sign test (n = 108 instances). The first value in each cell shows the test result
with respect to the performance at 100 000 evaluations and the second value refers to the
performance reached at the end of the time limit. A triangle indicates that the measured
difference is statistically significant (p < 0.05/15 due to Bonferroni correction) and that
the algorithm at which the triangle is pointed at is significantly better according to the
test statistic.

HVNS HVNS-T DABC DABC-T ACO 2BF-ILS

HVNS - / - �/� �/� - / - �/�
HVNS-T - / - - /� �/� - / - �/�
DABC �/� - /� - / - - /� �/�
DABC-T �/� �/� - / - �/� �/�
ACO - / - - / - - /� �/� �/�
2BF-ILS �/� �/� �/� �/� �/�

To compare the performance of the algorithms at specific points in time the sign
test for paired samples was applied. This non-parametric test neither requires the
given data to be normally distributed nor the difference distributions between the
methods to be symmetric. Using this test, we compared the performance of the
algorithms during the run (at 100 000 evaluations) and the performance that was
reached at the end of the time limit. The results are shown in Table 3 for these
two points in time. Note that this table is symmetric since the 15 possible pair-
wise comparisons for each of the two points in time were performed with two-sided



An Iterated Local Search Algorithm 63

0 2500 5000 7500 10000 12500

72
00

74
00

76
00

78
00

80
00

evaluation

m
ak

es
pa

n

●

0 2500 5000 7500 10000 12500

80
00

84
00

88
00

92
00

evaluation

m
ak

es
pa

n ●

Fig. 6. Comparison between the standard NEH and 2BF-ILS for an instance with 150
jobs, spanning buffer, si = 1, c = q0.50 (left) and an instance with 150 jobs, spanning
buffer, si = ai and c = q0.50 (right). Dashed lines indicate when the standard NEH
finishes (vertical lines) and the attained solution quality (horizontal lines). A cross
marks the quality of the initial mNEH solution and a circle marks the number of
evaluations at which a better quality than NEH was reached for the first time.

tests. Similar to Table 2, it can be seen that 2BF-ILS obtained a significantly bet-
ter performance than the other algorithms and their tuned versions at both points
indicating a high and consistent performance over time.

7.5 Comparison of 2BF-ILS with NEH

In this section we compare the standard NEH with 2BF-ILS which uses mNEH
with the parameter values G(n) =

√
n and L(n) = 2

√
n for constructing its

starting solution. In particular, the time was measured for 2BF-ILS to obtain
the same solution quality CNEH as the standard NEH. This experiment was
performed using the same instances described in Subsect. 7.2.

For an example instance, Fig. 6 shows the solution quality of the standard
NEH heuristic as well as the performance over time for 2BF-ILS (averaged over
10 replications). In the left part of Fig. 6 it can be seen that mNEH only needed
approximately half as many evaluations as NEH and initially obtained a slightly
worse solution quality. However, the reduced number of evaluations allowed
2BF-ILS to obtain the quality CNEH with fewer evaluations than NEH. This
was observed for most problem instances and the sign test (n = 108) showed
that 2BF-ILS needed significantly fewer evaluations to reach CNEH than NEH
(p < 0.001). For some instances with a spanning buffer and si = ai, mNEH even
obtained a better initial performance (e.g., Fig. 6 right). Even though the dif-
ferences for these instances were not statistically significant (n = 27, p = 0.08),
it is interesting to further investigate for which b-2-flow-shops mNEH performs
particularly well.



64 H. T. Le et al.

8 Conclusion

A specific class of two-machine flow shops with buffers was studied in this paper
where all processing times on one of the machines are equal. In particular, we
considered two types of buffers (intermediate buffers and spanning buffers) and
two types of buffer usage. It was shown that all considered cases of buffered two-
machine permutation flow shops remain NP-hard under the makespan criterion.
For these special cases a modified version of the NEH heuristic (mNEH) was
proposed that uses fewer function evaluations than the standard NEH. Moreover,
an Iterated Local Search (2BF-ILS) was proposed that uses mNEH for computing
its starting solution. It was experimentally shown that 2BF-ILS obtains better
schedules than a standard Ant Colony Optimization algorithm as well as two
state-of-the-art algorithms for buffered flow shop problems from the literature. In
addition, experimental results showed that 2BF-ILS obtains the same solution
quality as the standard NEH heuristic but uses a smaller number of function
evaluations.

Acknowledgements. This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) - project number 392050753.

References

1. Abdollahpour, S., Rezaeian, J.: Minimizing makespan for flow shop scheduling
problem with intermediate buffers by using hybrid approach of artificial immune
system. Appl. Soft Comput. 28(C), 44–56 (2015)

2. Aloulou, M.A., Bouzaiene, A., Dridi, N., Vanderpooten, D.: A bicriteria two-
machine flow-shop serial-batching scheduling problem with bounded batch size.
J. Sched. 17(1), 17–29 (2014)

3. Brucker, P., Heitmann, S., Hurink, J.: Flow-shop problems with intermediate
buffers. Oper. Res. Spektrum 25(4), 549–574 (2003)

4. Carlier, J.: Ordonnancements a contraintes disjonctives. R.A.I.R.O. Recherche
operationelle 12, 333–351 (1978)

5. Fernandez-Viagas, V., Framinan, J.M.: NEH-based heuristics for the permutation
flowshop scheduling problem to minimise total tardiness. Comput. Oper. Res. 60,
27–36 (2015)

6. Fung, J., Zinder, Y.: Permutation schedules for a two-machine flow shop with
storage. Oper. Res. Lett. 44(2), 153–157 (2016)

7. Geser, P.: Zur Komplexität des 2-Maschinen-Flow-Shop-Problems mit Zwischen-
speicher. Diploma thesis, Leipzig University (2017)

8. Hsieh, Y.C., You, P.S., Liou, C.D.: A note of using effective immune based approach
for the flow shop scheduling with buffers. Appl. Math. Comput. 215(5), 1984–1989
(2009)

9. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times
included. Naval Res. Logist. Q. 1(1), 61–68 (1954)

10. Kononova, P.A., Kochetov, Y.A.: The variable neighborhood search for the two
machine flow shop problem with a passive prefetch. J. Appl. Ind. Math. 7(1),
54–67 (2013)



An Iterated Local Search Algorithm 65

11. Li, S., Tang, L.: A tabu search algorithm based on new block properties and speed-
up method for permutation flow-shop with finite intermediate storage. J. Intell.
Manuf. 16(4), 463–477 (2005)

12. Lin, F.C., Hong, J.S., Lin, B.M.T.: A two-machine flowshop problem with process-
ing time-dependent buffer constraints-an application in multimedia presentations.
Comput. Oper. Res. 36(4), 1158–1175 (2009)

13. Liu, B., Wang, L., Jin, Y.H.: An effective hybrid PSO-based algorithm for flow
shop scheduling with limited buffers. Comput. Oper. Res. 35(9), 2791–2806 (2008)

14. Liu, S.Q., Kozan, E.: Scheduling a flow-shop with combined buffer conditions. Int.
J. Prod. Econ. 117(2), 371–380 (2009)

15. Liu, W., Jin, Y., Price, M.: A new improved NEH heuristic for permutation flow-
shop scheduling problems. Int. J. Prod. Econ. 193, 21–30 (2017)

16. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Stützle, T., Birattari, M.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

17. Martinez, S., Dauzère-Pérès, S., Guéret, C., Mati, Y., Sauer, N.: Complexity of
flowshop scheduling problems with a new blocking constraint. Eur. J. Oper. Res.
169, 855–864 (2006)

18. Moslehi, G., Khorasanian, D.: A hybrid variable neighborhood search algorithm
for solving the limited-buffer permutation flow shop scheduling problem with the
makespan criterion. Comput. Oper. Res. 52, 260–268 (2014)

19. Nawaz, M., Enscore, E.E., Ham, I.: A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega 11, 91–95 (1983)

20. Pan, Q.K., Wang, L., Gao, L.: A chaotic harmony search algorithm for the flow
shop scheduling problem with limited buffers. Appl. Soft Comput. 11, 5270–5280
(2011)

21. Pan, Q.K., Wang, L., Gao, L., Li, W.D.: An effective hybrid discrete differential
evolution algorithm for the flow shop scheduling with intermediate buffers. Inf. Sci.
181(3), 668–685 (2011)

22. Papadimitriou, C.H., Kanellakis, P.C.: Flowshop scheduling with limited tempo-
rary storage. J. Assoc. Comput. Mach. (JACM) 27(3), 533–549 (1980)

23. Reeves, C.: A genetic algorithm for flowshop sequencing. Comput. Oper. Res.
22(1), 5–13 (1995)

24. Sang, H.Y., Pan, Q.K.: An effective invasive weed optimization algorithm for the
flow shop scheduling with intermediate buffers. In: 25th Chinese Control and Deci-
sion Conference (CCDC), pp. 861–864 (2013)

25. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64,
278–285 (1993)

26. Vallada, E., Ruiz, R., Framinan, J.M.: New hard benchmark for flowshop schedul-
ing problems minimising makespan. Eur. J. Oper. Res. 240, 666–677 (2015)

27. Vázquez-Rodŕıguez, J.A., Ochoa, G.: On the automatic discovery of variants of the
neh procedure for flow shop scheduling using genetic programming. J. Oper. Res.
Soc. 62(2), 381–396 (2011)

28. Wang, L., Zhang, L., Zheng, D.Z.: An effective hybrid genetic algorithm for flow
shop scheduling with limited buffers. Comput. Oper. Res. 33, 2960–2971 (2006)

29. Weise, T., Chiong, R., Lassig, J., Tang, K., Tsutsui, S., Chen, W., Michalewicz,
Z., Yao, X.: Benchmarking optimization algorithms: an open source framework for
the traveling salesman problem. IEEE Comput. Intell. Mag. 9(3), 40–52 (2014)

30. Zhang, S.J., Gu, X.S.: An effective discrete artificial bee colony algorithm for flow
shop scheduling problem with intermediate buffers. J. Central South Univ. 22(9),
3471–3484 (2015)



Route Planning for a Fleet of Electric
Vehicles with Waiting Times

at Charging Stations

Baoxiang Li(B), Shashi Shekhar Jha, and Hoong Chuin Lau

Fujitsu-SMU Urban Computing and Engineering Corporate Lab,
School of Information Systems, Singapore Management University,

Singapore, Singapore
bxli@smu.edu.sg

Abstract. Electric Vehicles (EVs) are the next wave of technology in the
transportation industry. EVs are increasingly becoming common for per-
sonal transport and pushing the boundaries to become the mainstream
mode of transportation. Use of such EVs in logistic fleets for delivering
customer goods is not far from becoming reality. However, managing such
fleet of EVs bring new challenges in terms of battery capacities and charg-
ing infrastructure for efficient route planning. Researchers have addressed
such issues considering different aspects of the EVs such as linear battery
charging/discharging rate, fixed travel times, etc. In this paper, we address
the issue of waiting times due to limited charging capacity at the charging
stations while planning the routes of EVs for providing pickup/delivery
services. We provide an exact mathematical model of the problem consid-
ering waiting times of vehicle based on their arrival at the charging sta-
tions. We further develop a genetic algorithm approach that embeds Con-
straint Programming to solve the problem. We test our approach on a set
of benchmark Solomon instances.

Keywords: Electric Vehicle Routing Problem ·
Mixed integer linear programming · Constraint Programming ·
Genetic algorithm

1 Introduction

With rising pollution levels globally, cities are adopting means and technologies
that are social and environmental friendly for various activities. The movement of
vehicles on the roads is one of the major contributors of the overall rise in the air
pollution over the globe. Recent advancements in the electric vehicle technology
with high power and compact batteries have opened up new modalities to shape
the transportation for people and goods. The prominent advantage of using
electric vehicles is that they do not emit the green house gases that act as the
major contributor to the global pollution. For large scale logistics operations
such Electric Vehicles (EVs) now provide more viable green technology to serve
customers (mostly referred as green logistics). However, EVs have their own
c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 66–82, 2019.
https://doi.org/10.1007/978-3-030-16711-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_5


Route Planning for a Fleet of Electric Vehicles 67

share of drawbacks which limits their usage. At the very basic, it is the limited
driving range with one complete charge that EVs can scale up to. The maximum
driving range of the EVs is around 100–150 miles which gets further reduced by
the operating and environmental conditions such as low temperatures, battery
age, weight of the vehicle with payload, etc. Further EVs can take more than
half-an-hour to completely charge their batteries which is also dependent on the
type of batteries and the capacity of charging outlets.

To make way for the EVs to join the mainstream commercial logistics services,
one needs to consider all such constraints for route planning and scheduling of these
vehicles. Although researchers have considered the limited battery capacity of the
EVs in planning the routes, the limited capacity of charging stations have scarcely
been addressed in the literature. The scarcity of charging station resources is par-
ticularly pertinent in cities where EVs are still in the infant stage of adoption. The
station locations, number of charging outlets and charge delivery capacities put
limitations to the number of EVs that can be charged simultaneously at a charg-
ing station. In addition, due to the long charging time of EVs with limited charging
infrastructure, one needs to consider the significant queuing time at the charging
stations while planning routes for logistics fleet operations.

In this paper, our focus is to plan the routes for a fleet of EVs for logistics
operations by allowing the EVs to queue and wait at the fixed capacity charging
stations. We present an exact mathematical formulation of the classical VRP
problem with the considerations of limited battery charge, cargo capacity con-
straints and waiting times at the charging stations. One major difficulty in mod-
eling this problem is to handle the queuing sequence at each charging station,
which we overcome by using a subtour elimination technique commonly used for
solving the Traveling Salesman Problem (TSP). Such considerations can make
the route planning of EVs more viable for real world operations. Further, the last
mile delivery operations can further be streamlined with such EVs taking the
central stage with carefully planned routes and visits to the charging stations.
Hence, our work extends the current literature by addressing the challenging
aspect of route planning for a logistics fleet with an explicit modeling of wait-
ing times at the charging stations. Further in our proposed solution, we handle
the constraints (such as charging sequence of EVs) by integrating a Constraint
Programming (CP) model in our heuristic approach.

The rest of the paper is organized as follows. In the next section, we discuss
the related literature for solving EV routing. The succeeding sections present the
problem formulation as an MIP considering the limited battery capacities of EVs
and waiting times at the charging stations. Next, we present a GA method to
solve large problem instances and the results gathered from the numerical exper-
iments. The last sections concludes the paper with avenues of future research.

2 Related Literature

The Electric Vehicle Routing Problem (EVRP) is a special case of the tradi-
tional Vehicle Routing Problem with the additional set constraints due to the
electric engine technology. Schneider et al. [1] describe the EVRP with Time



68 B. Li et al.

Windows (EVRPTW) as an MIP formulation and propose a heuristic combin-
ing variable neighborhood search and tabu search. In their problem formulation,
the authors considered charging stations having no capacity constraint on num-
ber of chargers. In addition, they have not considered any waiting times at the
charging stations. Goeke and Schneider [2] extended the EVRPTW model for a
mixed fleet of conventional and electric vehicles with time windows and capacity
constraint. The authors emphasize on the energy consumption models for the
conventional and electric vehicles which is non-linear by nature. Sassi and Oula-
mara [3] considered an electric vehicle scheduling and optimal charging problem
in order to assign vehicles to tours and minimize the charging cost. In their
model, they considered constraints related to chargers, electricity grid, and EVs
driving range.

In [4], the authors discuss the formulation of a mixed fleet with a case study at
the city of Amsterdam. In their objective, the authors factors in the fixed cost of
vehicles and the variable cost which depends on the en-route time and distance.
Although the authors consider the battery capacity constraints of the electric
vehicles, there is no consideration given to the amount of time a vehicle may
need to spend at a charging station. The authors in [5] considers partial charging
of electric vehicles with non-linear charging functions. The non-linearity of the
battery charging function is handled using a piece-wise linear approximation.
The authors model the problem to minimize the total time which includes the
travel time and time spent at the charging stations.

Qin and Zhang [6] discuss the scheduling of charging activities with minimal
waiting time of EVs in a network of EVs and charging stations. The authors
consider EVs in general not involving a logistic fleet operation. Although, the
authors address the problem of waiting time at the charging stations which
translates to the availability of the charging outlets, the routing problem of the
vehicle is not considered. Additionally, Froger et al. [7] address the problem of
limited capacity charging stations for vehicle routing and provide matheuristic
based approach to solve the problem. EVRP can be considered a specialized
problem of the larger set of the Green Vehicle Routing Problem (G-VRP) that
focuses on the use of alternative fuel sources for the vehicles. Hence, G-VRP also
focuses on similar issues such as the limits to driving range and limited refueling
stations. In [8] for example, the authors discuss the G-VRP and provide an MIP
formulation for this problem.

As can be noted from the discussions above, the literature on EVs is segre-
gated in two broad groups - those who consider it as a routing problem for fleet
of EVs and those who consider the problem of scheduling and congestion at the
charging stations. There is also a third variant which is related to the placement
of charging stations infrastructure such as the one discussed in [9]. However, the
problem of restricted number of charging outlets at the charging stations for
the EV fleet operations does not seem to be addressed in the literature. The
waiting times due to unavailability of charging outlets or scheduling the vehicle
at the charging stations while planning their routes in a traditional VRP setting
warrants further considerations to come up with real-world solutions.



Route Planning for a Fleet of Electric Vehicles 69

Table 1. Variables and parameters of our proposed EVRP model

Notations Description

0, N + 1 Start and end depot

V Set of customer nodes {1. . .N}
V0 Set of customer nodes with start depot

VN+1 Set of customer nodes with end depot

V0,N+1 Set of customer nodes with start and end depots

V ′ Set of nodes - the customer nodes and charging station outlets

associated dummy nodes

V ′
0 Set of nodes - the customer nodes, charging stations outlets

associated dummy nodes, and depot {0}
V ′
N+1 Set of nodes - the customer nodes, charging stations outlets

associated dummy nodes, and depot {N+1}
Ω Set of vehicles {1. . .W}
R Set of charging station outlets {1. . .K}
Rk Set of dummy nodes (indicate potential vehicles visit for a station)

for charging station outlet k, set size equals to W , and W ≤ N

Parameters

T Maximum time duration of a route

C Cargo capacity of each vehicle

B Battery capacity of each vehicle

δ Rate of battery discharge

β Rate of battery charging

si Service time at node i

dij Distance between two nodes i and j

tij Travel time between two nodes i and j

Di Demand at node i

Variables

xij Binary decision variable for visit from node i to j; 1 if (i,j) is

traveled, 0 otherwise

τi Decision variable specifying the time of arrival at node i

τ�

N+1 Decision variable specifying the time of arrival at the end depot for

vehicle �

wi Decision variable specifying the time of start of charging at the

charging station outlet i

fi Decision variable specifying the remaining cargo on arrival at node i

yi Decision variable specifying the remaining charge available on

arrival at node i

bkuv Binary decision variable for a vehicle visiting the uth dummy node

of charging station outlet k in sequence (order) index v; 1 if u takes

the sequence (order) index v and 0 otherwise

zk
u Decision variable specifying the sequence (order) of charging service

at station outlet k for each u ∈ Rk

a1
m,u,v, a2

m,u,v, am,u,v Intermediate binary decision variables for deriving the service

sequence of visits at a charging station outlet

auv Binary decision variable to derive the sequence of visit at the

charging station; 1 if dummy node v is visited after u and 0

otherwise



70 B. Li et al.

3 Mathematical Model

The primary objective of our work is to address the limited capacities of the
charging stations which may result in the formation of queues in order to service
a logistics fleet of EVs. A charging station consists of a set of charging outlets
wherein a vehicle is plugged in to recharge its battery. Such charging outlets
could be limited in number at the charging stations depending upon the electric
grid capacity and charging stations’ space constraints. In this section, we provide
the exact mathematical model for our EVRP considering waiting times of the
vehicles at the charging stations.

Let V be the set of customer nodes and R be the set of charging stations.
Let the start and end depot node instances be denoted by 0 and N + 1. We
will use 0 and N + 1 in the subscript to denote the set of nodes with start or
end depot instance or both as in [1]. Table 1 lists the variables and parameters
used in our model. To allow multiple visits to the charging station outlets, we
create dummy nodes for every charging stations outlet in R. We further consider
a linear discharge of the vehicle batteries and the distance among the nodes is
Euclidean. We assume that the vehicles leave the depot with full charge and will
not visit charging station outlet before completing their first delivery. Moreover,
each visit to the charging station outlet results in full battery charge of the
vehicles.

The objective function in our mixed integer program is to minimize the sum of
route durations, which includes the travel time, the service time at the customer
nodes, the charging and waiting times at the charging station outlets.

min
∑

�∈Ω

τ�

N+1 (1)

Subject to:
∑

j∈V
′
N+1

xij = 1, ∀i ∈ V (2)

∑

j∈V
′
N+1

xij ≤ 1, ∀i ∈ R (3)

∑

i∈V
′
N+1

xji −
∑

i∈V
′
0

xij = 0, ∀j ∈ V ′ (4)

τi + (tij + si)xij − T (1 − xij) ≤ τj , ∀i ∈ V0, ∀j ∈ V
′ (5)

wi + β(B − yi) + tijxij − (T + βB)(1 − xij) ≤ τj , ∀i ∈ V0, ∀j ∈ V
′
N+1 (6)

τi + (ti,N+1 + si)xi,N+1 − T (1 − xi,N+1) ≤ τ�

N+1, ∀i ∈ V, � ∈ Ω (7)

wi + β(B − yi) + ti,N+1xi,N+1 − (T + βB)(1 − xi,N+1) ≤ τ�

N+1, ∀i ∈
⋃

k∈R

Rk, � ∈ Ω (8)



Route Planning for a Fleet of Electric Vehicles 71

τi ≤ wi, ∀i ∈ Rk (9)

ui − Dixij + C(1 − xij) ≥ fj ≥ 0, ∀i ∈ V
′
0 , ∀j ∈ V

′
N+1 (10)

C ≥ f0 ≥ 0 (11)

yi − δdijxij + B(1 − xij) ≥ yj ≥ 0, ∀j ∈ V
′

N+1, ∀i ∈ V (12)

B − δdijxij ≥ yj ≥ 0, ∀j ∈ V
′

N+1, ∀i ∈ Rk, k ∈ R (13)
∑

u∈Rk

bk
uv ≤ 1, ∀v ∈ Ω, ∀k ∈ R (14)

∑

v∈V

bk
uv −

∑

v∈V

xuv = 0, ∀u ∈ Rk, ∀k ∈ R (15)

∑

v∈V

vbk
uv = zk

u, ∀u ∈ Rk, ∀k ∈ R (16)

zk
v − zk

u − (m − 1) − Ma1
m,u,v ≤ 0, ∀m ∈ Ω\N, u, v ∈ Rk (17)

(m + 1) − (zk
v − zk

u) − Ma2
m,u,v ≤ 0, ∀m ∈ Ω\N, u, v ∈ Rk (18)

a1
m,u,v + a2

m,u,v − am,u,v ≤ 1, ∀m ∈ Ω\N, u, v ∈ Rk (19)
∑

m∈Ω\N

am,u,v = auv, ∀u, v ∈ Rk (20)

(auv − 1)M ≤ τv − τu, ∀u, v ∈ Rk (21)
wv − wu + (1 − auv)M ≥ (B − yu)β, ∀u, v ∈ Rk (22)

xij ∈ {0, 1}, ∀i ∈ V
′
0 , j ∈ V

′
N+1 bk

uv ∈ {0, 1}, ∀u ∈ Rk, v ∈ Ω, k ∈ R (23)

Equation (1) minimizes the sum of route duration of each individual route.
Constraint (2) specifies that all the customer nodes must be visited. Constraint
(3) defines the visit to the charging station outlets. The constraint in (4) ensures
flow conservation, which basically means all the outflows from a node and inflows
to a node must be equal i.e. all the vehicles that leave a node must be equal
to the number of vehicles that arrived at that node. Constraints (5) and (6)
provide the arrival time at a node from a customer node and charging station
outlet respectively. Constraints (7) and (8) provide the arrival time at the depot
from a customer node and charging station outlet. Constraint (9) forces that
the start of charging at the charging station outlet must be after the arrival
and possible waiting. Constraints (10) and (11) is for the fulfillment of customer
demand while constraints (12) and (13) are to ensure that the vehicles batteries
always have positive charge.

Constraints (14)–(22) are meant to derive the waiting times of the vehicles
that queue at a charging station outlet. The basic idea here is to sequence the
vehicle based on their arrivals at the charging station outlet and use this sequence
to calculate the start of charging of the vehicles at the charging station outlet.
Constraint (14) forces that whenever a vehicle visits the charging station outlet,
it gets assigned a sequence index. Constraint (15) ensures that all the vehicles
that has arrived, also leave the charging station outlet, while (16) assigns the
sequence index to the vehicles that arrive at the charging station outlet after



72 B. Li et al.

serving a given customer node. Constraints (17)–(20) ensure the vehicle sequence
of charging at the charging station outlet. Finally, constraints (21)–(22) calculate
the time to start the charging based on the sequence index of the vehicles.

The binary variables a1
m,u,v, a2

m,u,v and am,u,v are introduced to get the vis-
iting order of the EVs at a charging station outlet based on m. The associated
constraints (17)–(20) ensures that, if a1

m,u,v equals to 1, Zk
v − Zk

u > m − 1, simi-
larly, if a2

m,u,v equals to 1, it means Zk
v − Zk

u < m + 1, and if am,u,v equals to 1, it
means Zk

v − Zk
u = m + 1. Constraint (17–20) is to define the sequence of vehicles

visit at charge station and deduct the waiting time. Note that m belongs to the set
of {1,. . . , N-1}, hence, the big M in (17) and (18) can be defined as N.

4 Genetic Algorithm (GA)

In this Section, we present our Genetic Algorithm (GA) approach to solve our
EVRP problem defined above. The initial population size is set to Λ. We use
a greedy algorithm to generate the initial population of solutions, which vary
the order of selection of customer nodes to generate different individuals of the
population. The fitness function used to evaluate an individual solution is the
total route duration of all the routes to serve all the customers in the prob-
lem instance. The children solutions are improved by applying a local search
heuristics and battery charge station visiting algorithm.

To generate an initial solution, we first assign an empty route that start and
end at depot to each vehicle. We then randomly insert a customer node at the
best position of the route for the vehicle with the smallest additional cost. If the
battery charge of the vehicle cannot support visiting to the next customer, we
add a charging station outlet visit. Once the route has been updated, we block
the corresponding charging station outlet time interval occupied by this vehicle.
When no more customer nodes could be added to the first vehicle, we proceed
to the second vehicle, and so on. We repeat this process until all customers are
fully served.

We represent each individual solution (chromosome) as a sequence of node
labels. Hence, each chromosome starts with a depot label and ends with a depot
label. All the customers and stations labels are inserted in between based on the
routes taken. The end/start of each route is marked by the depot label. Hence, a
single chromosome can be divided into a set of segments with starting and ending
depot labels. Each such segment represents a vehicle route. Figure 1 depicts the
representation of a chromosome with three routes, two charging station outlets
and eight customer nodes wherein D denotes depot, C denotes customer nodes,
and S denotes the charging station outlets. Hence, when we evaluate the fitness
function, we will translate the chromosome to multi-routes, which is split by D,
then, we calculate the sum of route durations.



Route Planning for a Fleet of Electric Vehicles 73

D C1 C2 S1 C3 S2 D C5 S2 C4 C6 D C7 S1 C8 D

Fig. 1. An individual solution representation in the GA

Table 2. Variables and parameters of the CP model

Parameters

succi Successive node in a path after serving customer i

ti,succi Travel time from node i to the successive node

λi Battery charging time plus service time associated with node i

Variables

arri Earliest arrival time to start service at a node i

servi Service start time at node i

sk Start depot node of vehicle k

ek End depot nodes of vehicle k

R Set of charging station

Ro Set of nodes (dummy nodes) of oth charging location

Co Charging station outlet capacity of oth charging location

V Set of nodes in the vehicles route

E Set of end depot nodes in the vehicles route

4.1 Constraint Programming (CP) for Fitness Evaluation

We vary the order of selection of customer nodes to generate different individuals
of the population. The fitness function used to evaluate an individual solution
is the total route duration to serve all the customers in the problem instance.

Let c(s) be the routing cost (that is, sum of the travel time and service time)
of route s. The fitness function f is defined to be the sum of routing costs and
waiting times of all routes, each route has a fitness value f(s) = c(s)+w(s), where
w(s) is the total waiting time incurred for route s. Interestingly, for a route s, c(s)
is easy to calculate, but the calculation of waiting time is complicated, as vehicles
can visit charging station outlet many times, and wait either at charging station
or customer locations. This makes the calculation of the consequent waiting
times (if any) non-trivial. For this purpose, we apply a Constraint Programming
(CP) model for calculating the optimal fitness value.

For the CP model, we first find that the solution satisfies the capacity and
battery charge constraints for the vehicle. If the constraints are satisfied, then,
we apply the CP model to calculate the fitness value of the total route duration.

min
∑

k∈Ω

servek
− arrsk

(24)



74 B. Li et al.

Subject to:

arri ≤ servi,∀ i ∈ V (25)
servi + λi + ti,succi = arrsucci ,∀ i ∈ V \E (26)

CUMULATIV E({servi, λi : i ∈ Ro}, 1, Co),∀ Ro ∈ R (27)

The variables and parameters used in the CP model are listed in Table 2. The
objective function (24) minimizes the total route duration. Constraints (25)–(26)
define the earliest arrival time, and start time of charging at node i. The charging
resource constraint (27) is modeled using the global constraint, where servi, λi,
1 and Co represent the start time of charging, duration, resource requirement,
and the capacity of the resource respectively. The cumulative constraint (27)
specifies the requirements on tasks which need to be scheduled on a number of
resources. It expresses the fact that at any time instant the total use of these
resources for the tasks does not exceed a given limit. For our problem, we have a
list of charging tasks, each task requires only one resource, and the upper limit
of the amount of charging resources limit equals to Co.

The average running time for our CP model is around 2 seconds for 100-
nodes problem instances. Hence, we provide the following model simplification
procedure before running the CP model: (1) If a vehicle never visits any charging
station outlet, we can remove the whole path of vehicle k from the model; (2)
If there are fewer than Co visits for oth charging station, it is unnecessary to
check the cumulative constraint (27) as the constraint is automatically satisfied;
(3) Suppose a charging station has only been visited by the same vehicle k, then
we can also remove the whole path of vehicle k since there is no dependency on
other vehicles.

Algorithm 1. Virtual charging station outlet booking algorithm
Input: battery charge task i, earliest service start time τi, service duration λi,

initial �i = 0, vi = 0
1 if charge station εj is available at time interval [τi, τi + λi]
2 �i = 0;
3 assign battery charge task i to time interval [τi, τi + λi] on εj ;
4 stop
5 end if
6 Let Θ be the set of booked battery charge tasks that intersect with time τi, and

τ ′
i denotes the earliest completion time of tasks in Θ

7 if [τ ′
i , τ

′
i + λi] is within the planning horizon (no penalty)

8 assign battery charge task i to [τ ′
i , τ

′
i + λi]

9 record waiting time �i, and update charging outlet booking
10 else
11 assign battery charge task i after τi

12 record waiting time �i and penalty vi, and update charging outlet booking
13 end if

Output: �i and vi



Route Planning for a Fleet of Electric Vehicles 75

Unfortunately, it is still quite time-consuming to apply CP to compute the
exact waiting time in every iteration, hence, we only trigger CP under two cases:
(1) when we manage to find a solution that satisfies vehicle capacity and time
window constraints; and (2) after every p (a parameter that we set default value
to 20) iterations. In other cases, we apply a heuristic to estimate the waiting
times. The basic idea of this heuristic is to simulate a virtual booking system
that will compute an approximated waiting time and station capacity violation
whenever a vehicle visits a charging station as follows.

Heuristic for Charging Station Waiting Time Calculation. Let us define
a charging station visit as a special task. Since waiting time is a global variable
that depends on the arrival times at all charging station visited by all vehicles,
we are not able to compute the exact waiting time by simply considering each
trip independently. Therefore, for a given charging task i in the solution, we
apply Algorithm 1 to estimate the waiting time. Let τi be the earliest service
start time for charging task i, and λi be the charge time at charge station m.

– Case 1: charging station m has an available (i.e. unoccupied) time interval at
[τi, τi + λi].
This is very straightforward - we assign [τi, τi + λi] to charging task i (shown
in lines 1–5 in Algorithm 1).

– Case 2: charging station m has an available time interval with length at least
λi but later than τi. Let Θ be the set of booked charging outlets intersect
with time τi, and τ ′

i denote the earliest completion time of charging tasks in
Θ. We assign [τ ′

i , τ
′
i + λi] to charging task i (shown in lines 6–8).

– Case 3: there is no available time interval that can fit charging task i.
We assign task i after time τi (line 11). Note that by doing so, the booked
charging outlets time interval will be overlapping (i.e. the solution is infeasi-
ble). Therefore, penalties need to be imposed (line 12).

Overall, the total waiting time w(s) is evaluated by sum of all tasks �i and vi.

4.2 Selection and Crossover

The top K elite individuals are kept for the next generation based on their
fitness. All the individuals will participate to produce new individuals generated
by applying the crossover operator. Noted that the crossover rate is 100%, as
we will apply our local search operator in Sect. 4.4, which is more powerful
than general mutation operator in the GA. The pair of parents for crossover are
chosen using tournament selection method. This means, we randomly sample
two individuals from the individuals. The partially matched crossover operator
is used to create two new individuals to replace the parents. For given parents
P1 and P2, two cutting points are chosen. With the middle sub-path kept intact,
we swap the arc and nodes between two parents. Figure 2 shows an example.
The top two rows represent parents individuals, and bottom two rows stand
for the children individuals. The crossover operation results in the creation of



76 B. Li et al.

new children. All the customers must be served in our problem instance, hence
if left arcs or nodes cannot be inserted to the child because of vehicle load or
vehicle available time infeasibility, we add empty vehicles and insert the leftover
arcs/nodes to the empty vehicles. The two new individuals along with the current
population form the new population for the next generation of GA. We terminate
GA when there is no improvement in the best solution for a fixed number of
generations or the number of iterations reaches the upper limit.

4.3 Columns Based Chromosome Generation

In every 1000 iterations of GA generations, we generate new chromosomes by
recording the last 1000 iterations of feasible vehicle paths in the population as
columns. We find the best combination of those columns, generate new chromo-
somes and add them to the population. Let R be the set of all columns, V be
the set of customers included in the columns, and P stands for presetting price
of a customer. Parameters include cr and ai

r, where cr equals to the travel time
of column and r, ai

r is a parameter that equals 0 or 1, where 1 indicates node
i is served by column r. Binary decision variables include yi and zr, yi which
equals to 1 if customer i is selected. Similarly, zr equals to 1 if column (trip) r
is selected. We aim to generate better solutions from a population of historical
solutions, with the Set Covering formulation shown as follows:

max
∑

i∈V

Pyi −
∑

r∈R

crzr (28)

Subject to:
∑

r∈R

ai
rzr = yi, ∀ i ∈ V (29)

We assume serving a customer leads to revenue P , hence the objective func-
tion (28) maximize the revenue minus the total travel time. We use yi to check
customer i be served or not in Constraints (29). If not all the customers can be
served, we will insert the leftover customers to the solution one by one to the
position with the smallest insertion cost added.

D C1 C2 S1 C3 S2 D C5 S2 C4 C6 D C7 S1 C8 D

D C1 C7 S1 C3 S2 D C5 S2 C4 C6 D C2 S1 C8 D

D C1 C7 S1 D S2 C3 C2 S1 D C4 C5 C6 S2 C8 D

D C7 S1 C8 D S2 C3 C2 S1 D C4 C6 S2 C1 C5 D

Fig. 2. Crossover operator



Route Planning for a Fleet of Electric Vehicles 77

4.4 Local Search on Solutions

Once a new chromosome been generated, we improve the solution by local search.
Customer nodes are selected and added to a perturbation set. To select the
customer nodes, we use an objective value based operator. By checking the
vehicle routes, we calculate the objective value after removing one customer
node, then, descending sort the values, we choose the top 10% customer nodes
and added to the perturbation set.

After the customer nodes selection, three perturbation operators (I1-I3) are
used. The probability of using first operator is set to 0.5 while the probability
of using second and third operators is set to 0.25. We accept the new solution if
the fitness value is better after applying local search.

1-by-1 (I1): The selected customer nodes are sequentially removed one by one
and reinserted into the best position (the highest improvement for the current
objective value).

1-by-1 different vehicle (I2): Suppose, customer node i is removed from some
route k, this operator tries to insert the customer node i into different route
(which is not k) in a better position.

1-by-1 same vehicle (I3): Suppose, customer node i is removed from some
route k, this operator tries to insert the node i into the same route k again
but in a better position.

4.5 Management of Charging Station Visits

If no feasible solution can be obtained because of the violation of battery limit
constraint, we add charging station outlet visits (described in Algorithm 2) to fix
the infeasibility. Basically, we include charging station visits if only the vehicles
cannot reach to the customer nodes ρi with the available charge in their batteries.
The position to insert the charging station visit can be any location before ρi,
hence, we find the best position to insert the closest charging station (line 4–
9 of Algorithm 2). In case, a charging station cannot be inserted (due to long
distance) then we split the visits to customers to two or more vehicles.

During the GA iterations, once a charging station has been removed, we
reinsert it only if the same would lead to a better fitness value. Besides that, every
20 iterations, we double check the current iteration solution, and remove useless
charging stations and insert new charging station. Once a new best solution or
new best feasible solution has been found, the charging station visit gets updated
as well.



78 B. Li et al.

Algorithm 2. Insert charge station visits in a given vehicle path
Input: path (ρ1, ρ2, . . . , ρN ), fitness value f(s) and f(s)old (both equals to

fitness value of path s)
1 do
2 for all ρ1, ρ2, . . . , ρN do
3 check the battery when vehicle arrive at location ρi

4 if battery is lower than 0
5 find the best charge station in 1, . . . , K and best insertion point between

ρ1, . . . , ρi−1 with smallest fitness value
6 if lowest fitness value is smaller than f(s)old

7 insert charge station, update path s, and f(s)old := f(s), f(s):= smallest
fitness value

8 else break;
9 end if

10 end for
11 while f(s) < f(s)old

Output: f(s) and updated path s

5 Numerical Experiments

To evaluate our approach, we performed numerical experiments using two sets
of problem instances on an Intel Xeon E5-2667v4 8C/16T (3.2 GHz) 16 core
CPU 32 GB RAM machine. We used a batch file to utilize all the 16 cores
while running the numerical experiments wherein each instance used one sin-
gle core. The first set is the self-generated small instances (having 5 and 10
number of customers), aimed to compare the solutions between the heuristic
approach and math model (using CPLEX solver version 12.8.0) along with the
verification of the solution details such as travel time, waiting time and charging
time. The second set is based on instances provided by Schneider et al. [1] that
are adapted from Solomon [10] instances to include charging stations. These
instances are provided in three different categories with 100 customer nodes.
With our specific problem setup that focuses on limited charging capacity at
the charging stations, we realized that generating instances suitable this prob-
lem is in itself a complex problem. As the literature do not provide Solomon
instances with more than 100 customer nodes, we only focus on the variety of
100 nodes instances for our experimentation. According to our problem defini-
tion, we ignore the customer time windows available in the Solomon instances.
All test instances can be found at https://unicen.smu.edu.sg/research/urban-
logistics/electric-vehicles-routing-problem-waiting-times-charging-stations.

For the first set of instances, the battery capacity was fixed at 30, charging
station outlet capacity equals to 1, and the vehicle capacity was set to 100. The
service time at all the customer nodes was set to 10 time units. The second set
of instances used the parameters as defined in the type “C”, “R” and “RC”
of Solomon instances. The vehicle battery capacity was set to 62.14 or 79.69,
number of charging station locations was set to a random number between 5–18,

https://unicen.smu.edu.sg/research/urban-logistics/electric-vehicles-routing-problem-waiting-times-charging-stations
https://unicen.smu.edu.sg/research/urban-logistics/electric-vehicles-routing-problem-waiting-times-charging-stations


Route Planning for a Fleet of Electric Vehicles 79

charging station outlet capacity equals to 1, the location is randomly chosen
within the spatial distribution, and charging rate was set to full charge bat-
tery divided by average customer service time. For GA, we use the following
parameter values: initial population size Λ = 100, number of top elite individual
K = 20, number of iterations was set to 5000, penalty parameter equals to 20
for waiting time approximation, and customer price in column based operator
was set to twice of average travel time between nodes. All the experiments were
performed for 10 times and the best result from the multiple runs are reported.
Before discussing the results, we depict the evolution of GA in Fig. 3 for one
typical instance. As can be seen, the fitness value decreases in the number of
generations, and improves from 5979 to 2218 in about 3000 generations and stop
improving afterwards.

5.1 Results

Table 3 compares the results from the exact math model solved using Cplex and
the GA based heuristics for the first set of small instances. The table shows the
fitness value which is the sum of route durations, travel time (TT), service time
(ST), the combined waiting and charging time (WCT), and the running time in

2000

4000

6000

0 1500 3000

Fig. 3. GA converge curve

Table 3. Cplex and GA heuristic based solution on 5 and 10 nodes instances

Instance Cplex GA

Vehicles Fitness TT WCT Time
(sec)

Vehicles Fitness TT WCT Time
(sec)

5–1 3 405 196 159 165 4 427 228 149 10

5–2 3 400 195 155 315 3 400 180 170 11

5–3 4 522 236 236 46 4 554 229 275 16

5–4 4 493 245 198 44 4 497 227 220 11

5–5 4 489 246 193 22 4 489 223 216 19

10–1 4 747 358 289 10800 5 696 316 330 24

10–2 4 783 365 328 10800 4 702 332 270 18

10–3 4 1160 546 514 10800 4 571 280 191 32

10–4 4 984 437 450 10800 4 943 354 489 29

10–5 3 665 318 247 10800 3 622 286 246 35



80 B. Li et al.

Table 4. Results of GA based heuristics solution on the 100-node Solomon instances.

Instance Best
Obj.

No.
Veh.

TT WCT Ave.
Obj.

Ave. No.
Veh.

Ave.
TT

Ave.
WCT

c101 10753 12 1133 620 11234 15 1373 862

c102 10475 13 1200 275 10974 16 1540 434

c103 10740 12 1140 600 11712 22 1895 817

c104 10732 15 1255 477 11709 22 1906 803

c105 10698 13 1328 470 11104 13 1390 714

c106 10548 11 1085 463 11064 13 1477 588

c107 10883 17 1497 386 11684 22 1757 927

c108 10654 13 1123 531 11317 25 1902 416

c109 10843 19 1244 599 11319 18 1657 662

r101 2329 14 1246 83 2941 18 1765 176

r102 2385 16 1320 65 2700 18 1587 113

r103 2467 13 1353 114 2885 20 1542 343

r104 2315 14 1216 99 2431 15 1345 86

r105 2392 17 1322 70 2931 22 1789 142

r106 2284 12 1192 92 2605 17 1509 96

r107 2270 14 1193 77 2589 17 1475 115

r108 2250 14 1185 65 2559 15 1457 102

r109 2375 15 1263 112 2545 15 1442 103

r110 2312 14 1209 103 2572 18 1493 79

r111 2343 14 1273 70 2683 17 1561 122

r112 2158 12 1097 61 2324 14 1239 86

rc101 2667 15 1608 59 2883 16 1787 96

rc102 2748 17 1655 93 3038 18 1897 141

rc103 2729 18 1657 72 3088 17 1968 120

rc104 2730 15 1645 85 2902 16 1805 98

rc105 2847 17 1746 101 3175 19 2015 160

rc106 2997 18 1843 154 3199 19 2041 158

rc107 2820 15 1726 94 2960 16 1838 122

rc108 2768 15 1690 78 3207 19 2083 124

Ave.: Average, Obj.: Objective value, TT: travel time
WCT: Combined waiting and charging time, No. Veh.: Number of Vehicles

seconds for all different instances. As can be observed the gap between the travel
time for Cplex and GA is quite comparable for the instances with 5 customer
nodes. A similar trend can be noted for the waiting and charging time. However,
for instances with 10 customer nodes, GA based solutions seems to spend less
time in travel as well as waiting and charging. The results shows that considering



Route Planning for a Fleet of Electric Vehicles 81

waiting time at the charging stations while planning the routes for EV based
fleet is crucial as the amount of time spend in waiting and charging is almost
equal to the travel time.

One can see, for the 5 customer node instances, Cplex can solve it quickly,
while for the instances with 10 customer nodes, we have to stop Cplex after 3
hrs (10800 secs) and get the best solution discovered so far. In comparison to
the best solution found by Cplex, the GA heuristics fairs well with very less
execution time. For problem instances with 5 customer nodes, there are very
low gap between the solutions while in case of instances with 10 customer nodes,
GA always finds a better quality solution in very less time as compared to the
Cplex.

Table 4 lists the best and average results for the set of Solomon instances using
the GA based heuristics approach. The best objective value (from 10 runs) is the
sum of the route durations of all the vehicles after they return to the depot. On
average, the CPU time equals to 10 min overall instances. Since our objective
value involve charging and waiting times at the charging stations, the same is
not directly comparable with the literature [10]. We observed that the “R” group
Solomon instances have longest travel time, while “C” and “RC” group instances
have similar travel times. This happens as the distribution of “R” group Solomon
instances are more disperse than other two groups. Further, the waiting times
of “C” group instances are much longer than other two groups, mainly because
of the difference in the rate of charging.

6 Conclusions

The advancement of electric vehicles technology has paved the way forward for
EV based logistic fleets for customer delivery. However, the route planning with
EVs brings forward new challenges to the already complex problem of vehicle
routing. In this paper, we consider the problem of formation of vehicle queues
at the charging stations en-route to customers. We consider the extra waiting
time due to the queue at the charging stations to formulate an exact mathemat-
ical model for route planning of EV based logistics fleet. The evaluations are
performed on a set of problem instances catering to specific requirement of our
problem setup. Although it is difficult to get a solution from the exact mathemat-
ical model beyond 10 customer nodes, the GA heuristic based solution has shown
comparable performance and can be quickly executed for large size instances.
In the future, we plan to extend our work by adding more practical constraints
in our model such as customer time-windows, partial charging of vehicle at the
charging stations, etc. Further, using the current results as benchmark, more
comparative evaluations with variety of instances can be carried out in order to
validate the scalability and efficiency of our GA based heuristics approach.

Acknowledgement. This research is funded by the National Research Foundation
Singapore under its Corp Lab @ University scheme and Fujitsu Limited as part of the
A*STAR-Fujitsu-SMU Urban Computing and Engineering Centre of Excellence.



82 B. Li et al.

References

1. Schneider, M., Stenger, A., Goeke, D.: The electric vehicle-routing problem with
time windows and recharging stations. Transp. Sci. 48(4), 500–520 (2014)

2. Goeke, D., Schneider, M.: Routing a mixed fleet of electric and conventional vehi-
cles. Eur. J. Oper. Res. 245(1), 81–99 (2015)

3. Sassi, O., Oulamara, A.: Electric vehicle scheduling and optimal charging prob-
lem: complexity, exact and heuristic approaches. Int. J. Prod. Res. 55(2), 519–535
(2017)

4. Van Duin, J., Tavasszy, L.A., Quak, H.: Towards electric-urban freight: first promis-
ing steps in the electric vehicle revolution (2013)

5. Montoya, A., Guéret, C., Mendoza, J., Villegas, J.: The electric vehicle rout-
ing problem with partial charging and nonlinear charging function. Ph.D. thesis,
LARIS (2015)

6. Qin, H., Zhang, W.: Charging scheduling with minimal waiting in a network of
electric vehicles and charging stations. In: Proceedings of the Eighth ACM inter-
national workshop on Vehicular inter-networking, pp. 51–60. ACM (2011)

7. Froger, A., Mendoza, J.E., Jabali, O., Laporte, G.: A matheuristic for the electric
vehicle routing problem with capacitated charging stations. Research report, Cen-
tre interuniversitaire de recherche sur les reseaux d’entreprise, la logistique et le
transport (CIRRELT), June 2017. https://hal.archives-ouvertes.fr/hal-01559524

8. Erdoğan, S., Miller-Hooks, E.: A green vehicle routing problem. Transp. Res. Part
E Logist. Transp. Rev. 48(1), 100–114 (2012)

9. Xiong, Y., Gan, J., An, B., Miao, C., Bazzan, A.L.: Optimal electric vehicle charg-
ing station placement. In: IJCAI, pp. 2662–2668 (2015)

10. Solomon benchmark 100 nodes. https://www.sintef.no/projectweb/top/vrptw/
solomon-benchmark/100-customers/. Accessed 15 Jun 2018

https://hal.archives-ouvertes.fr/hal-01559524
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/


Multiple Periods Vehicle Routing
Problems: A Case Study

Bilal Messaoudi1,2(B) , Ammar Oulamara1, and Nastaran Rahmani2

1 Universiy of Lorraine - LORIA UMR 7503, Campus Scientifique,
615 Rue du Jardin-Botanique, 54506 Vandoeuvre-les-Nancy, France

bilal.messaoudi@univ-lorraine.fr
2 Antsway SA, ARTEM - 92, Rue du Sergent Blandan, 54042 Nancy Cedex, France

Abstract. In this paper, we consider a challenging problem faced by a
hygiene services company. The problem consists of planning and rout-
ing a set of customers over a 3-month horizon period where multiple
frequencies of visits can be required simultaneously by each single cus-
tomer. The objective is then threefold: (1) balancing workload between
vehicles (agents) (2) minimizing number of visits to the same customer
(3) minimizing total routing costs. In this context, a routing plan must
be prepared for the whole horizon, taking into account all constraints of
the problem. We model the problem using a decomposition approach of
planning horizon, namely, weeks planning and days planning optimiza-
tion. We propose an adaptive large neighborhood search with several
operators for routing phase of solving approach. To evaluate the perfor-
mance of the solving approach we solve an industrial instance with more
than 6000 customers and 69951 requests of visits. The results show an
excellent performance of the solving approach in terms of solution quality
compared with the existing plan used by the hygiene services company.

Keywords: Vehicle routing problem · Planning and routing ·
Adaptive large neighborhood search

1 Introduction

Vehicle Routing Problems (VRP) have been widely considered in the literature
due to their economic impact on real and industrial applications where optimized
transport planning can save up to 20% of logistics costs. In some applications,
visiting customers several times during a given planning horizon (one or several
weeks) is necessary to overcome the reduction in storage space at the customer’s
site, or industrial client using a just-in-time production system. Furthermore, rout-
ing over a planning horizon allows smoothing customer demands and rational use
of resources (vehicles, agents, etc.) without asking for external resources that gen-
erate additional costs. In addition, these routing problems enable grouping visits of

The original version of this chapter was revised: Errors in Section 4.1 and Equations 4
and 5 were corrected. The correction to this chapter is available at https://doi.org/10.
1007/978-3-030-16711-0 14

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 83–98, 2019.
https://doi.org/10.1007/978-3-030-16711-0_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_6&domain=pdf
http://orcid.org/0000-0002-7552-9529
https://doi.org/10.1007/978-3-030-16711-0_14
https://doi.org/10.1007/978-3-030-16711-0_14
https://doi.org/10.1007/978-3-030-16711-0_6


84 B. Messaoudi et al.

clients positioned close to each other and reducing routing costs of the fleet of vehi-
cles. Considering several periods (days orweeks) of planning horizonmakes routing
problems more complex and introduces a new category of vehicle routing problem
in the literature known as periodic or multiple periods vehicle routing problems.

In this paper, we study a routing problem of a French enterprise special-
ized in the hygiene service for companies such as sanitary cleaning. Professional
clients are visited with different frequencies depending on requested services, and
planning of the routes occurs over a planning horizon of several days. Clients
locations, together with their requested products and frequency of visits are
known. A finite set of heterogeneous capacitated vehicles are available over the
planning horizon, to serve clients. A solution to this problem consists of sets of
routes that satisfy the demand and the frequency constraints, the capacity and
the time shift of vehicles. The objective is to minimize the total costs of routes,
while balancing workload over the planning horizon.

Clearly, this industrial case is a multilevel combinatorial optimization prob-
lem. We propose a heuristic solution method that builds a solution in three
phases, each of which concerns one of the decisions to be made. In the first
phase, we decide on which week each client will be served, at the second phase,
the assignment of clients to each day is decided over all weeks, and at the third
phase a classical VRP for each day of the planning horizon is solved. The pro-
posed heuristic solution method is numerically shown to be efficient on the indus-
trial instance and an efficient improvement of the existing solution is proposed.

The rest of the paper is organized as follows: in Sect. 2, we briefly review the
main works on periodic vehicle routing problems; in Sect. 3, we present the indus-
trial case problem and provide a formal description and notations; in Sect. 4, the
solution method is presented, which consists of our decomposition approach.
Experimental results are presented in Sect. 5 and compared with the solution
exploited by the company. Finally, some conclusions are drawn in Sect. 6.

2 Literature Review

In the periodic vehicle routing problem (PVRP), clients require visits on one
or more days over a planning horizon of several days. Besides, there exists a
set of feasible visit options for each client. First, each client must be assigned
to a feasible visit option; a vehicle routing problem must then be solved for
each day of the planning horizon, while total cost over the planning horizon is
minimized. The periodic vehicle routing problem has received much attention
in the literature, since it is used in many real-world applications such as waste
collection [1], residential garbage collection [2], animal waste [3], replenish of
retail stock [4], home healthcare nurses [5], maintenance of elevators [6]. More
real application examples can be found in [7].

The periodic vehicle routing problem was first introduced by Beltrami and
Bodin [8]. They considered one week planning horizon with the objective of
minimizing both the number of used vehicles and the total travel time. They
solved independent VRPs for each day of the period. Russell and Igo [9] gave a
formal definition of the problem and proposed three heuristics that minimize the



Multiple Periods Vehicle Routing Problems: A Case Study 85

total distance travelled per week and balance vehicle requirements. Christofides
and Beasley [10] presented an exact integer programming formulation of the
periodic vehicle routing, and proposed a heuristic consisting of two steps to solve
the problem. Russell and Gribbin [11] presented a solution method that consists
of an initial route design, followed by three different improvement phases.

Meta-heuristic approaches are also developed for the PVRPs. Cordeau et al.
[12] presented a tabu search method for solving the multi-depot vehicle routing
problem (MDVRP) and the periodic traveling salesman problem (PTSP). Two
types of neighborhood operators are proposed. Cordeau et al. [13], extended
the work of [12] for PVRP with time windows. Francis et al. [14] developed an
exact solution method for the PVRP with service choice. The solution method
is based on Lagrangian relaxation and a branch-and-bound procedure is used
to close the gap between the upper and the lower bounds. Alegre et al. [15]
considered a periodic pick-up of raw materials for a manufacturer of automo-
bile parts. They proposed a Scatter Search to solve this problem. The algorithm
is based on a two-phase approach, the first phase assigns orders to days and
the second phase constructs routes for each day. Mourgaya and Vanderbeck [16]
developed a model to simultaneously address two objective criteria: balance of
the workload across vehicles, regional compactness of the routes. The authors
used a Dantzig-Wolfe reformulation and a column generation approach to solve
the relaxed problem, and the resulting solution is rounded to produce a feasi-
ble solution to the PVRP by heuristically exploring the branch-and-bound tree.
Hemmelmayr et al. [17] proposed a variable neighborhood search (VNS) algo-
rithm using three neighborhood structures and the solution acceptance is based
on simulated annealing. Vidal et al. [18] developed a hybrid genetic algorithm
(GA) for the PVRP. A survey on periodic vehicle routing problems are proposed
by Campbell and Wilson [7].

3 Problem Description and Notation

3.1 Industrial Problem

This paper focuses on a challenging problem encountered by a company that
provides hygiene services to a set of professional clients. The company offers
a sanitary cleaning service in addition to the distribution of products such as
cleaning gel, toilet papers, in its clients’ sanitary blocks, etc.

To solve the planning and routing problem, the company used software that
did not match all of its operational constraints, so several manual changes were
made on the solution to meet all constraints. Another disadvantage faced by the
company was the quality of the solution in terms of total distance travelled, num-
ber of vehicles used, number of visits to each customer and balance of workload
between drivers.

The company asked us to examine possible refinements of the company’s
service planning system in view of making it more cost effective, in order to pro-
vide improved customer service at a lower cost than that currently being expe-
rienced. The goal of this study is developing a new framework of optimization



86 B. Messaoudi et al.

methods that include all operational constraints in route planning optimization
that decrease manual changes in the planning after the optimization and route
planning production, while the workload between drivers is balanced and total
traveled distance, size of the fleet of used vehicles together with number of visits
to each client are minimized.

The company serves 6000 clients over 12 weeks planning horizon; clients are
geographically dispersed. Depending on sanitary blocks characteristics, environ-
ment, and usage, agents perform various cleaning tasks, in addition to replenish
of cleaning gel and toilet papers. Company assigns each client to the same agent.
Among the factors considered in assigning tasks to agents are the geographic
proximity, agent workload and customers relations.

Each client requests a set of products. There are 14 different products, and
the request of each client to each product is characterized by a quantity and a
frequency over the planning horizon. Delivery frequency of the products takes
value in the set {1, 2, 3, 6, 12}, where the frequency represents the number of
visits over 12 weeks. The service duration of visits to clients consists of cleaning
service time and delivery service time. Delivery service time depends on the
type (frequency) and quantity of products to be delivered for each client, while
cleaning service time is the time spend at each client independent of the type
and quantity of the product. The latter is calculated only once per visit.

The company uses a fleet of 40 heterogeneous vehicles with different capaci-
ties. Each vehicle starts and finishes its route at the depot. The goal is to serve
the demand of clients using available vehicles, respecting the following opera-
tional constraints:

1. Vehicle capacity constraint: states that the total demand of the customers on
any route should not exceed the vehicle capacity.

2. Route duration constraint: ensures that the total duration of a route does not
exceed an agent working shift duration.

3. Same day visit constraint: requires that each client must be visited on the
same day of the week for all weeks when a visit is scheduled.

4. One day visit constraint: states that each client must be visited at most once
per week.

5. Same agent constraint: assures that each customer is visited by the same
agent for all weeks when a visit is scheduled.

3.2 Formal Description

A formal description of the problem can be defined as follows. Let G = (V ;E)
be a network with V = {0, . . . , n} a set of n + 1 vertices where vertex 0 is
the depot and vertices 1, . . . , n represent clients to be visited, and E set of
arcs, where each arc (i, j) represents the direct-travel possibility from i to j
with travel time equal to tij and travel distance equal to dij . The planning
period has a length of H weeks and each week has length of D days. A client is
visited during this time period according to frequencies that depend on the type
and quantities of requested products. At the depot, a set of m heterogeneous



Multiple Periods Vehicle Routing Problems: A Case Study 87

vehicles are available for servicing clients, and each vehicle v has a capacity cv,
v = 1, . . . , m and a maximum service duration T , where the service duration of
the vehicle is computed as the sum of total travel time and total service times
of visited clients. A visit of a client consists in delivering a set of products in
addition to an on-site activity such as toilet cleaning. Furthermore, each client
i is characterized by a time window for visits, a list Pi of requested products,
and for each product j ∈ Pi, a frequency fij and quantity qij requested over
the time horizon. The frequency fij defines the number of visits to clients i over
the planning horizon H, for instance, if fij = 2, client i is delivered twice for
product j during the time horizon with equal gaps between the visits. In our
industrial case, the set of frequencies is {1, 2, 3, 6, 12} over the time horizon of
12 weeks. Additional operational constraints are imposed by the industrial case
study, covering agent (driver) working regulation such as working time, together
with allowing visits of the same client every time by the same agent. The goal
is to find a scenario of visits for every client and a set of routes for each day of
the planning horizon, such that vehicle-capacity, route-duration and operational
constraints are respected, where the number of visits to the same client, due to
the multiple frequencies is minimized, workload between agents is balanced, the
number of used vehicles as well as the total travel time is minimized.

4 Solution Approach

Due to the complex nature of the problem, which includes tactical and opera-
tional levels, solving it in one step, for example using a MIP solver, is impracti-
cable, due to the complexity of constraints and the size of the actual instances
to be solved which exceeds 6000 visits. We propose a decomposition approach
to solve the problem, precisely, we develop a two-stage solution approach: in
stage one clients are assigned to weeks depending on the requested products and
frequency of each product, the clients of each week are then assigned to days.
The second stage will solve the routing problem for each day of the planning
horizon.

4.1 Weeks Planning Model

In this section, we focus on the problem of assigning clients to weeks with
the objective of balancing workload over H weeks (w1, . . . , wH) of planning
horizon while satisfying requests of customers. Given a set V of clients, and
a set P of products, each client i asks for a subset of products Pi and for
each product pij ∈ Pi is associated a requested quantity qij and a deliv-
ery frequency fij over the H weeks of the planning horizon, where H is the
lowest common multiple of fij , ∀i ∈ V,∀j ∈ P . For each product pij with
frequency fij , we define a set of possible delivery scenarios Rij , where each
scenario is a list of fij weeks, uniformly distributed over the planning hori-
zon, and one scenario of Rij is selected to supply product j to client i. For
instance, if fij = 2, then the set of possible delivery scenarios of product pij is



88 B. Messaoudi et al.

{< w1, wH
2 +1 >,< w2, wH

2 +2 >, . . . , < wH
2
, wH >} of weeks. In addition, select-

ing a scenario for a product pij is equivalent to selecting the first week wl1 , and
the kth visit occurs in week wlk = wl1 +k H

fij
, k = 1, . . . , fij −1. Thus, a solution

of the weeks planning problem consists in selecting, for each product pij with
frequency fij , the first visit in a set {1, 2, . . . H

fij
} that minimizes the total num-

ber of clients’ visits over the planning horizon, while respecting the capacity load
of each week and balancing the workload over the planning horizon. We define
rij = H

fij
, ∀i ∈ V, j ∈ Pi and for each client i we denote by g the index of the

product with the highest frequency fij , i.e. fig = max{fij | j ∈ Pi}. Let hg
ij be

the greatest common divisor between rig and rij , ∀j ∈ Pi and ∀i ∈ V. Finally,
we introduce the notation u ≡ v[s] which means that (u mod s) = (v mod s).

In the following, we use a MILP to model the weeks planning problem. The
binary xi,j,l variable indicates whether or not the first delivery of the product
j of client i is done on week l. The objective is minimizing the maximal service
time of all clients over the weeks.

min L
∑

i∈V

∑

j∈Pi

(sij · xi,j,l) ≤ L l = 1, ...,H (1)

∑

i∈V

∑

j∈Pi

(qij · xi,j,l) ≤ C l = 1, ...,H (2)

rij∑

l=1

xi,j,l = 1 ∀i ∈ V,∀j ∈ Pi (3)

xi,j,l = xi,j,(l+k.rij)

∀i ∈ V,∀j ∈ Pi, l = 1, ..., rij ,

∀k ∈ {1, ..., fij − 1} (4)

xi,g,l ≤
∑

l′∈Hl

xi,j,l′
∀i ∈ V,∀j ∈ Pi, l = 1, ..., rig,

H ′
l = {k = 1, ..., rij : k ≡ l[hg

ij ]}
(5)

The first constraints (1) restrict the total workload of each week. Constraints
(2) ensure that vehicles weekly capacity is not exceeded. Constraints (3) ensure
that exactly one week is chosen for the first visit for each product and each
customer and so that the customer is visited according to the frequency of the
product in following weeks as stated in constraints (4). Constraints (5) restrict
the number of visits to each client, depending on requested products and their
frequencies. For instance, for a given client who requests two products p1 and p2
with frequencies 6 and 3, respectively, over 12 weeks planning period. The first
visit of the client for product p1 is either week 1 or week 2, while for product p2,



Multiple Periods Vehicle Routing Problems: A Case Study 89

the first visit takes a value in the set {1, 2, 3, 4}. Thus, if the MILP chooses week
1 for p1 then, the first visit of product p2 is restricted to the set {1, 3} so that
the customer visit coincides with frequencies of the two products p1 and p2.

The weeks planning model is a generalization of the Bin Packing problem
which is an NP-Hard problem. We can solve this MILP optimally using an
optimization solver like CPLEX. Notice that the location of the clients is ignored
in this model, however, this disadvantage is mitigated by the size of industrial
instances (about 6000 visits) and low spatial spread of clients.

4.2 Days Planning Model

Given a weeks planning solution obtained in Sect. 4.1, in this section, the days
planning model is presented, which consists in assigning clients to each day of
the weeks. Notice that a client is assigned to the same day of the week over all
the weeks of the planning horizon once client visits are scheduled (Sect. 4.1). The
objective of days planning model is to balance the workload between days of the
week.

Let Cw be the set of clients assigned to week w. Besides, Siw and Qiw denote
the service time and the demand quantity of client i during the week w, respec-
tively, obtained by solving the weeks planning model. Let Cwf be the set of
customers assigned to week w having a highest frequency equal to f , and let
Cd be the total capacity of vehicles during a day d, d ∈ D. We define Td as a
decision variable representing the maximal service time of all clients during each
day of planning horizon and xid as a decision variable equal to 1 if client i is
visited on day d.

min Td

Td ≥
∑

i∈Cw

Siwxid ∀w ∈ H,∀d ∈ D (6)

Cd ≥
∑

i∈Cw

Qiwxid ∀w ∈ H,∀d ∈ D (7)

∑

d∈D

xid = 1 ∀i ∈ C (8)

∑

i∈Cwf

xid ≤
⌈ |Cwf |

|D|
⌉

∀w ∈ H,∀d ∈ D,∀f ∈ {1, 2, 3, 6, 12} (9)

The first Constraints (6) restrict the total workload of each day. Constraints
(7) guarantee that vehicles daily capacity Cd is not exceeded. Constraints (8)
make sure that exactly one day is selected for every client. Constraints (9) bal-
ance different frequencies of the customers between days of the week.

4.3 Routing Phase

Having assigned all customers to planning days using weeks and days planning
models (Sects. 4.1 and 4.2), we need to solve for each day of the planning horizon



90 B. Messaoudi et al.

a variant of VRP, for which specific constraints need to be taken into account.
More precisely, in addition to classical VRP constraints such as vehicle capacities,
time windows of visits, and limited driving hours per vehicle per day, we need
to consider a strong constraint of visiting customers by the same driver. This
constraint prevents us from dealing with the VRP for each day of the planning
horizon independently.

The objective of routing phase is building optimized routes for each day of
the planning horizon in which customers are visited by the same vehicle. This
problem is equivalent to selecting a subset of customers to be visited by each
vehicle throughout the planning horizon, and for each subset, the route must
be optimized in terms of distance, it must not be overloaded on days with high
numbers of visits and not underloaded on days with a low number of visits.

In this section, we develop a general framework for solving daily routing
problem over planning horizon, while respecting all classical VRP constraints
including customer visits by the same vehicle. The framework proceeds as follows:

1. Construct a set of day-types, each containing a list of customers to be visited
and requests associated with these customers.

2. Generate routes of each typical day.
3. Project and adjust obtained routes over the days of the planning horizon.

Day-Types Construction. The constraint of having the same customers vis-
ited by the same vehicle (agent) prevents us from building routes for each day
independently of each other. This first step of solving approach aims to con-
struct day-types so that the routes of each day-type are reused in days of weeks
represented by that day-types. More precisely, this step builds a set of d day-
types (in our case d = 5). Each day-type aggregates all data (customers to
be visited, quantities to be served, etc.) of days represented by that day-type,
and each day-type corresponds to the same day of the H weeks of the plan-
ning horizon. For example, the first day-type contains all data (customers to be
visited, etc.) of the first day of every week of the planning horizon. Let SJki

be the set of customers assigned to the kth day of week i in days planning
model (Sect. 4.2), and let pjJki

= {p1,jJki
, . . . , pr,jJki

} be a set of products requested
by customer j, j ∈ SJki, and let q1,jJki

, . . . , qr,jJki
be the requested quantities of

products p1,jJki
, . . . , pr,jJki

, respectively. We define J̃1, . . . , J̃d as d day-types, and
denote SJ̃k

the set of customers to be visited in the day-type J̃k, then we
set SJ̃k

= ∪H
i=1SJki, and for each customer j of set SJ̃k

, we define his set
of requested products as p̃j

J̃ki
= ∪H

i=1p
j
Jki

and each product l of set p̃j
J̃ki

is

requested by a quantity q̃lj =
qlj+q

lj

2 , where qlj = max{ql,jJki
|i = 1, . . . , H} and

q
lj

= min{ql,jJki
|i = 1, . . . , H}. At the end of this first step, d day-types are built,

and are independent in terms of data (customers to be visited, quantities to be
served, etc.) and thus a second phase of routes construction for each day-type
can then be launched.



Multiple Periods Vehicle Routing Problems: A Case Study 91

Routes Construction. In this step we develop an ALNS method for con-
structing routes of each day-type obtained in step Sect. 4.3, with the objective
of minimizing the number of used vehicles and the total distance traveled. The
classical ALNS algorithm [19] is an iterative process where, at each iteration, a
part of the current solution is destroyed and then reconstructed in order to find
a better solution. The destruction step consists in removing some nodes from
current routes using destroy operators, and placing them into the unassigned
set. The construction step then inserts the nodes from unassigned set into the
routes of the partial solution using repair operators. From a set of destroy and
repair operators, an adaptive heuristic selects the most successful one to apply
in each phase based on a roulette-wheel selection mechanism, favoring the opera-
tors that have been successful in recent iterations. This succession of destruction
and construction steps are embedded within a local search framework to handle
acceptance of new solutions. An outline of proposed ALNS approach is described
on Algorithm 1.

Algorithm 1 ALNS outline
Input: initial feasible solution s
Output: best feasible solution sb

1: sb ← s;
2: initializeWeights(ρ−, ρ+); � ρ−, ρ+: Destroy and repair operators weights
3: repeat
4: selectOperators(Ω−, Ω+); � Ω−, Ω+: Destroy and repair operators vectors
5: st ← repair(destroy(s));
6: if accept(st, s) then s ← st;

7: if obj(st) < obj(sb) then sb ← st;

8: updateWeights(ρ−, ρ+);
9: until stop criterion is met;

10: return sb;

Destroy Operators. A destroy operator disconnects q nodes from the current
solution, with q being a random number in [n · ξmin, n · ξmax], where n refers
to the number of nodes composing the current solution. We used a Random-
Removal and a Cluster-Removal operators in our algorithm.

• Random-Removal selects q nodes randomly and disconnects them from the
current solution and removes them.

• Cluster Removal, which was introduced in [20], tries to disconnect a large
set of related nodes in terms of distance. Cluster Removal starts by choosing
one route randomly, then a clustering step is performed. A clustering step
consists in partitioning nodes of the current route into two clusters, using a
modified Kruskal’s algorithm for the minimum spanning tree problem, where
algorithm stops when two connected components (clusters) are left in the
graph (route). Then one of the two components is selected randomly, and



92 B. Messaoudi et al.

nodes of this component are disconnected and added to the unassigned set.
Another route is selected and the whole process is repeated until q nodes are
disconnected.

Repair Operators. A repair operator tries to insert in the current solution the
nodes that have been removed and placed in unassigned set together with nodes
that could not be inserted in previous solution. This set of nodes is denoted by
U . In our method we used the Best-Insertion and the Regret-Insertion operators.

• Best-Insertion. At each iteration, the best insertion cost is computed for each
node in the set U and the node with the lowest insertion cost is inserted at
its best position. The heuristic stops when U is empty or none of the nodes
can be inserted.

• Regret-Insertion. For each node in U Δfi,l designates the insertion cost of the
node i in the lth best of all routes. At each iteration, the node i∗ is selected for
the insertion at its best position where i∗ = argmaxi∈U (

∑k
l=1(Δfi,l−Δfi,1)).

The heuristic stops when no more unassigned node can be inserted in a route
or if U is empty. In this paper, we set k to two.

The Objective function used to evaluate the solution of each iteration of
ALNS method has three components: the first concerns total distance traveled by
vehicles in the current solution, the second is the number of used vehicles and the
third one is the number of unassigned jobs. All these components are weighted
by coefficients α, β and γ respectively, and to satisfy problem requirements, these
coefficients are set to values where α � β � γ.

Routes Projection. The constructed routes for day-types allow the same cus-
tomer to be served by the same vehicle. However, when applying the route-types
on weekdays, some customers present in route-types are not planned for visits
in some weeks. In such case, unplanned customers are removed from route-types
and then the routes are optimized again. The problem of daily intra-route re-
optimization corresponds to traveling salesman optimization problem [21], and
Lin-Kernighan heuristic [22] is used.

5 Experimental Results

In this section, we present experimental results on the industrial instance. The
different algorithms were implemented in Java 8. Mathematical models of first
and second stages of solving approach are solved using CPLEX 12.8 in single
thread mode, and the ALNS method was implemented in single-threaded sequen-
tial mode. Tests are performed on a personal computer with 3.10 GHz Intel Core
i7-7920HQ processor and 32 GB RAM running on Windows 10. In our experi-
ment we have not paid attention to the running times of our approach, since the
industrial application did not impose limitations on the calculation time used.
However, the running times of the different steps of our solving approach are
reported.



Multiple Periods Vehicle Routing Problems: A Case Study 93

In the following, detailed characteristics of the industrial instance are pro-
vided and experimental results are shown. Note that we cannot solve the problem
optimally due to the size of the industrial instance. Furthermore, results of our
computational experiment have been analyzed in terms of the objective set at
each step of the solving approach and also the final result is compared to the
solution already used by the company.

5.1 Instance Description

Here we describe the industrial instance. The company serves 6062 customers,
spread out over Paris and Ile-de-France region (see Fig. 1). The planning horizon
is 12 weeks and 5 days per week. The company provides a set of 14 types of
products, and products are requested with frequencies 1, 2, 3, 6 and 12, where
frequency represents the number of visits during the planning horizon. Each
customer requests a subset of products and frequency of visits for each product
over the planning horizon. In total there are 20813 product-customer requests
and when the frequencies are included, the number of requests reaches 69951,
which corresponds on average to 11.54 requests per customer. Table 1 gives an
overview on the distribution of the number of customers by requested products
and Table 2 gives an overview on the distribution of customers by frequency of
visits. The average service time of customers is in the interval [2, 328] min. The
company uses 40 vehicles of 12 different capacity types (payloads), ranging from
500 Kg to 1600 Kg. There is a central depot where routes start and end. The
maximum driving and servicing time is limited to 7 h per day for each driver.

Table 1. Distribution of customers by requested products

# Products 1 2 3 4 5 6 7 8 9 10 11 12 13 14

# Customers 1400 545 1235 1103 1109 328 182 79 43 25 9 1 3 0

Table 2. Distribution of customers by requested frequencies

Frequency 1 2 3 6 12

# Customers 247 369 3403 1259 784

5.2 Weeks Planning Results

The MILP weeks planning model is optimally solved in 8 s. Results are presented
in Table 3. Table 3 reports, for each week, the total service time in hours, the
number of customers assigned and the maximum distance between two customers
in kilometres. The results clearly show a well-balanced total service time between



94 B. Messaoudi et al.

Fig. 1. Overview of customers location

weeks, with a maximum difference of 26 min. However, the number of customers
is less balanced between weeks, but this is still a non-essential criterion since
customer service times are in a wide range [2, 328] min. It can also be seen
that the clients are well distributed geographically since the maximum distances
between the clients are almost the same for all weeks.

5.3 Days Planning Results

The MILP days planning model is solved with a gap of 0.2% in 3 min, then
no improvement of the solution was observed beyond 30 min. Table 4 reports,
for each week and each day of the planning horizon, the total service time in
hours, while Table 5 gives, for each day, the distribution of customers over, and
the total number of customers assigned to weekdays. The results show a well
balanced total service time and the number of customers over days of each week.



Multiple Periods Vehicle Routing Problems: A Case Study 95

Table 3. Results of weeks planning model

Week 1 2 3 4 5 6 7 8 9 10 11 12

Total service

time (hours)

547.72 548.13 547.98 548.15 547.83 547.92 547.97 547.98 548.08 548.12 548.08 548.08

#Customers 3120 2308 2137 1987 3043 2240 2171 1839 3051 2386 2123 1823

Maximum

distance (km)

86.76 86.90 86.10 86.91 86.76 86.90 86.10 82.59 86.76 87.04 87.76 82.69

Table 4. Service time distribution in days planning model

Week

1 2 3 4 5 6 7 8 9 10 11 12

Monday 109.72 109.50 109.13 109.72 109.23 109.67 109.57 109.50 109.53 109.68 109.60 109.35

Tuesday 109.27 109.77 109.55 109.85 109.42 109.52 109.68 109.87 109.42 109.77 109.58 109.65

Wednesday 109.62 109.82 109.78 109.55 109.57 109.18 109.62 109.82 109.57 109.63 109.67 109.73

Thursday 109.63 109.35 109.68 109.65 109.82 109.78 109.57 109.72 109.87 109.58 109.48 109.75

Friday 109.48 109.70 109.83 109.38 109.80 109.77 109.53 109.08 109.70 109.45 109.75 109.60

Table 5. Customers distribution in days planning model

Week Total

1 2 3 4 5 6 7 8 9 10 11 12

Monday 625 462 428 397 610 450 435 369 611 478 426 367 1218

Tuesday 621 462 426 399 608 448 434 365 609 477 424 366 1212

Wednesday 623 461 426 399 608 449 433 368 608 478 425 362 1210

Thursday 626 461 429 398 608 445 434 368 610 476 423 365 1211

Friday 625 462 428 394 609 448 435 369 613 477 425 363 1211

5.4 Routing Results

After constructing day-types from previous assignment results (see Sect. 5.3),
we proceed in generating corresponding routes for each day of planning hori-
zon using ALNS algorithm embedded in a simulated annealing (SA) framework
as presented in Sect. 4.3. In order to calibrate parameters of our ALNS, we run
some preliminary experiments. Some parameters such as adaptive parameters for
weight adjustment of destroy and repair operators (σ1, σ2, σ3) are taken from the
literature while the remaining parameters are chosen after preliminary experi-
ments as shown in Table 6. Time and distance travel matrices are computed
using Google Distance Matrix API [23].

First, we solved the five day-types instances resulting from the assignment of
customers to day-types (Sect. 5.3). For each day-type instance, we restricted the
route duration limit to 7 h and 15 min per driver as these instances include all
customers of specific days of planning horizon. A computing time limit of 2 h was



96 B. Messaoudi et al.

Table 6. Parameter setting of ALNS

Parameters [ξmin, ξmax] SA init.
temper.

SA cooling
rate
temper.

(σ1, σ2, σ3) (α, β, γ)

Values [0.01, 0.05] 200 0.9996 (33, 9, 13) (1, 3000, 120000)

set for all instances. Ten test runs per instance were performed, showing a very
small difference in final results. Best results are reported in Table 7 showing, for
each day, the number of used vehicles, the total distance traveled in kilometres
and the average route duration per vehicle. We observe that the number of
vehicles used in each day-type is the same and the number of kilometres is well
balanced between day-types.

Table 7. Day-types routing results

Days #Customers #Used
vehicles

Total distance
(km)

Average route
duration (hours)

Monday 1218 35 2606.38 7.16

Tuesday 1212 35 2508.65 7.19

Wednesday 1210 35 2697.38 7.20

Thursday 1211 35 2569.46 7.15

Friday 1211 35 2433.69 7.16

The last step in the routing phase was re-optimizing route-types for each
day of the planning horizon as described in Sect. 4.3. Tables 8 and 9 report total
distances and the average routing duration obtained for each day of every week,
respectively. For each weekday, the average distance over all weeks varies between
75.1% and 90.4% of the total distances calculated for day-types whereas the aver-
age routing time varies between 63,1% and 74,5% of the average time calculated
for day-types. These gaps are explained by the absence of some clients, con-
sidered in day-types, in the actual sets of clients to be served in each day of
planning horizon. To improve those results, we tried to increase values of route
duration limit set actually to 7 h and 15 min in day-types routing generation, and
we observe that a higher route duration limit leads to some customer demands
which cannot be inserted in real instances as they violate the 7-h limit of drivers.

The company uses 40 vehicles in their actual solution, so we obtain a gain of
5 vehicles. Note that our results are strongly dependent with choosing day-types
as an approach to tackle the problem, especially with the constraint stating that
customers must always be served by the same agent. We believe that current
solution can still be improved in terms of number of used vehicles, as the average
routing duration has not reached yet the 7-h limit.



Multiple Periods Vehicle Routing Problems: A Case Study 97

Table 8. Total distances obtained for real instances over weeks in kilometres

Weeks

1 2 3 4 5 6 7 8 9 10 11 12

Monday 2257.6 2226.8 2148.5 2152.5 2251.2 2188.1 2191.3 2036.2 2241.7 2267.8 2176.7 2046.2

Tuesday 2052.6 2053.9 2036.9 2061.4 2051.3 2058.2 2032.1 1997.7 2048.4 2162.6 2037.9 1998.5

Wednesday 2439.3 2263.8 2185.3 2146.1 2414.2 2321.9 2219.0 2025.8 2414.9 2299.0 2160.4 2120.5

Thursday 2297.5 2182.7 2005.0 2080.8 2270.2 2183.1 2012.5 1971.4 2271.4 2223.3 2000.1 2002.2

Friday 2188.9 1994.8 2016.0 1892.7 2179.9 1983.2 2022.9 1934.2 2152.8 2041.3 2018.5 1858.9

Table 9. Average routing durations obtained for real instances over weeks in hours

Weeks

1 2 3 4 5 6 7 8 9 10 11 12

Monday 5.27 5.09 5.04 4.73 5.27 4.97 5.14 4.73 5.22 5.05 5.04 4.79

Tuesday 5.39 5.22 5.09 4.90 5.33 5.16 5.10 4.82 5.29 5.21 5.14 4.92

Wednesday 5.37 5.12 4.78 4.85 5.34 5.18 4.79 4.70 5.35 5.09 4.78 4.55

Thursday 5.26 5.06 4.98 4.94 5.15 4.93 4.93 4.69 5.30 5.11 4.79 4.72

Friday 5.27 5.03 4.92 4.93 5.32 5.08 4.97 4.83 5.30 5.12 5.00 4.81

6 Conclusion

In this paper, we have investigated the design of tactical plans for a routing
problem involved in a company of hygiene services. We modeled the problem
as multiple periods VRP and proposed a decomposition approach, using integer
programming models and ALNS method. We were able to improve the current
routes of company using 5 vehicles less over the planning horizon. In order to
improve the solving approach, future research will include more sophisticated
optimization techniques for weeks and days planning models that consider dis-
tances between customers, and improve the routing phase to reach the restricted
limit duration of routes.

References

1. Nuortio, T., Kytöjoki, J., Niska, H., Bräysy, O.: Improved route planning and
scheduling of waste collection and transport. Expert Syst. Appl. 30(2), 223–232
(2006)

2. Matos, A.C., Oliveira, R.C.: An experimental study of the ant colony system
for the period vehicle routing problem. In: Dorigo, M., Birattari, M., Blum, C.,
Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol.
3172, pp. 286–293. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-28646-2 26

3. Coene, S., Arnout, A., Spieksma, F.C.R.: On a periodic vehicle routing problem.
J. Oper. Res. Soc. 61(12), 1719–1728 (2010)

https://doi.org/10.1007/978-3-540-28646-2_26
https://doi.org/10.1007/978-3-540-28646-2_26


98 B. Messaoudi et al.

4. Ronen, D., Goodhart, C.A.: Tactical store delivery planning. J. Oper. Res. Soc.
59(8), 1047–1054 (2008)

5. An, Y.J., Kim, Y.D., Jeong, B.J., Kim, S.D.: Scheduling healthcare services in a
home healthcare system. J. Oper. Res. Soc. 63(11), 1589–1599 (2012)

6. Blakeley, F., Argüello, B., Cao, B., Hall, W., Knolmajer, J.: Optimizing periodic
maintenance operations for Schindler elevator corporation. Interfaces 33(1), 67–79
(2003)

7. Campbell, A.M., Wilson, J.H.: Forty years of periodic vehicle routing. Networks
63(3), 276–276 (2014)

8. Beltrami, E.J., Bodin, L.D.: Networks and vehicle routing for municipal waste
collection. Networks 4(1), 65–94 (1974)

9. Russell, R., Igo, W.: An assignment routing problem. Networks 9(1), 1–17 (1979)
10. Christofides, N., Beasley, J.E.: The period routing problem. Networks 14(2), 237–

256 (1984)
11. Russell, R.A., Gribbin, D.: A multiphase approach to the period routing problem.

Networks 21(7), 747–765 (1991)
12. Cordeau, J.F., Gendreau, M., Laporte, G.: A tabu search heuristic for periodic and

multi-depot vehicle routing problems. Netw. Int. J. 30(2), 105–119 (1997)
13. Cordeau, J.F., Laporte, G., Mercier, A.: A unified tabu search heuristic for vehicle

routing problems with time windows. J. Oper. Res. Soc. 52(8), 928–936 (2001)
14. Francis, P., Smilowitz, K., Tzur, M.: The period vehicle routing problem with

service choice. Transp. Sci. 40(4), 439–454 (2006)
15. Alegre, J., Laguna, M., Pacheco, J.: Optimizing the periodic pick-up of raw mate-

rials for a manufacturer of auto parts. Eur. J. Oper. Res. 179(3), 736–746 (2007)
16. Mourgaya, M., Vanderbeck, F.: Column generation based heuristic for tactical

planning in multi-period vehicle routing. Eur. J. Oper. Res. 183(3), 1028–1041
(2007)

17. Hemmelmayr, V.C., Doerner, K.F., Hartl, R.F.: A variable neighborhood search
heuristic for periodic routing problems. Eur. J. Oper. Res. 195(3), 791–802 (2009)

18. Vidal, T., Crainic, T.G., Gendreau, M., Lahrichi, N., Rei, W.: A hybrid genetic
algorithm for multidepot and periodic vehicle routing problems. Oper. Res. 60(3),
611–624 (2012)

19. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

20. Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing
problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006)

21. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: a survey. Oper.
Res. 16(3), 538–558 (1968)

22. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21(2), 498–516 (1973)

23. Google: Distance matrix API. https://developers.google.com/maps/
documentation/distance-matrix/start. Accessed 30 Oct 2018

https://developers.google.com/maps/documentation/distance-matrix/start
https://developers.google.com/maps/documentation/distance-matrix/start


Rigorous Performance Analysis
of State-of-the-Art TSP Heuristic Solvers

Paul McMenemy1(B) , Nadarajen Veerapen2 , Jason Adair1 ,
and Gabriela Ochoa1

1 Computing Science and Mathematics, University of Stirling, Stirling, UK
paul.mcmenemy@stir.ac.uk

2 Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, 59000 Lille, France

Abstract. Understanding why some problems are better solved by one
algorithm rather than another is still an open problem, and the sym-
metric Travelling Salesperson Problem (TSP) is no exception. We apply
three state-of-the-art heuristic solvers to a large set of TSP instances
of varying structure and size, identifying which heuristics solve specific
instances to optimality faster than others. The first two solvers consid-
ered are variants of the multi-trial Helsgaun’s Lin-Kernighan Heuristic (a
form of iterated local search), with each utilising a different form of Par-
tition Crossover; the third solver is a genetic algorithm (GA) using Edge
Assembly Crossover. Our results show that the GA with Edge Assembly
Crossover is the best solver, shown to significantly outperform the other
algorithms in 73% of the instances analysed. A comprehensive set of fea-
tures for all instances is also extracted, and decision trees are used to
identify main features which could best inform algorithm selection. The
most prominent features identified a high proportion of instances where
the GA with Edge Assembly Crossover performed significantly better
when solving to optimality.

Keywords: TSP · Algorithm selection · EAX · GPX ·
Performance analysis

1 Introduction

Despite decades of intense study, the Travelling Salesperson Problem (TSP)
sustains its practical and theoretical interest. It has inspired the design of pow-
erful exact and heuristic solvers, able to tackle TSP problems of increasing size
in shorter computing time. The objective in the TSP, given a set of n locations
(generally called cities) and pairwise distances between them, is to find the short-
est round-trip through all cities such that the total length of the trip (a tour)
is minimised. Here we consider the most common case of the problem, the 2D
symmetric TSP, where cities correspond to points in the Euclidean plane and
distances are also Euclidean. The current TSP state-of-the-art exact solver, Con-
corde [1], remains unbeaten. Concorde has been used to optimally solve instances
c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 99–114, 2019.
https://doi.org/10.1007/978-3-030-16711-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_7&domain=pdf
http://orcid.org/0000-0002-5280-425X
http://orcid.org/0000-0003-3699-1080
http://orcid.org/0000-0003-0198-9095
http://orcid.org/0000-0001-7649-5669
https://doi.org/10.1007/978-3-030-16711-0_7


100 P. McMenemy et al.

of several thousand cities and, for fewer than 1 000 cities, does so in very feasi-
ble running times. However, there is interest in developing inexact or heuristic
solvers, as they can provide surprisingly good results for large instances in reason-
ably short amounts of time when compared to obtaining a solution via Concorde.
The scenario of heuristic solvers was previously dominated by a single contender
for several years: Helsgaun’s Lin-Kernighan Heuristic (LKH+IPT) [2,3]. How-
ever, recent evolutionary algorithms using the Edge Assembly Crossover (EAX)
[4], as well as hybrid approaches using the Generalised Partition Crossover in
concert with LKH (LKH+GPX2), have been shown to match and improve upon
LKH+IPT performance in some instances [5].

An outstanding challenge in heuristic optimisation is to understand how to
find the most suitable algorithm for a given problem instance or set of instances.
Corne and Reynolds [6] introduce the notion of the ‘footprint’ of an algorithm to
indicate how its performance generalises across different dimensions of instance
space. Smith-Miles and Lopes [7] followed this by proposing a methodology to
determine the relative performance of optimisation algorithms across various
classes of instances. Later works by Pihera and Musliu [8], Kotthoff [9], and
Kerschke et al. [10] show that per-instance automated algorithm selection tech-
niques can be used to improve the state-of-the-art in inexact TSP solving.

The main goal of this study is to perform rigorous tests comparing the run-
times to optimality of the three previously mentioned TSP heuristic solvers: (i)
LKH+IPT; (ii) an evolutionary algorithm with EAX; and (iii) a hybrid evolu-
tionary algorithm combining LKH with GPX2. A comprehensive set of features
is then to be used to characterise TSP instances taken from the available bench-
mark sets and instance generators in the literature, with the aim of identifying
specific instance space features which can provide guidance on which solver is
most effective in solving to optimality.

2 Methodology

2.1 Instances

For this study 1800 symmetric TSP instances were generated, comprised of vary-
ing instance sizes and structures:

Random Uniform Euclidean (RUE): instances generated by placing a num-
ber of points (representing the cities to be visited) randomly within a planar
square (e.g., Fig. 1(a)). The distances between the cities are determined as the
Euclidean distances between the respective points, where the cost of travel
between cities is specified as the Euclidean distance rounded to the nearest
whole number. Instances were generated using the DIMACS Portgen gener-
ator1 with sizes n ∈ {500, 1 000, 1 500, 2 000}. One hundred and fifty seeds of
each instance size n were generated for this study.

1 http://archive.dimacs.rutgers.edu/Challenges/TSP/.

http://archive.dimacs.rutgers.edu/Challenges/TSP/


Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 101

0 250000 500000 750000 1000000

(a) RUE - 500

0 250000 500000 750000 1000000

(b) MORPH - 500-10

0 250000 500000 750000 1000000

(c) NETGEN - 500-10

0 50 100 150 200

(d) LIB - rat575

30000 31000 32000 33000 34000 35000

(e) World - uy734

0 25 50 75 100

(f) VLSI - dkg813

Fig. 1. Instance type problem domains. Plots (a)–(c) are examples of the RUE,
MORPH & NETGEN instances, all with n = 500. The MORPH example, (b), is
constructed from (a) and (c), with α = 0.5. Plot (d) shows rat575, a rattled grid of
575 locations; plot (e) is the World instance with 734 town/cities in Uruguay (uy734);
and (f) is the VLSI problem denoted as dkg813

Random Clustered Euclidean (NETGEN): a set of instances generated
with sizes n ∈ {500, 1 000, 1 500, 2 000}. Each instance was created with a
corresponding parameter, c ∈ {2, 5, 10}, which specifies the number of clus-
ters located within the instance by latin hypercube method. City locations
are then distributed with respect to the cluster centres, maintaining clus-
ter segregation, Fig. 1(c). Instances were created using the netgen software
package within the open source software R [11,12]. Again, 150 instances were
generated for each size n, split into 50 instances per combination of c and n.

Morphed Euclidean (MORPH): instances which have been generated from
a combination of equal n-sized RUE and NETGEN instances. Pairs of RUE
(xi) and NETGEN (yi) cities are greedily matched, the first pair (x1, y1)
being the closest by euclidean distance, with this repeated ∀i ∈ {2, 3, ..., n}
until all cities have been matched. Each MORPH city is then generated by
relocating a proportional distance (defined by a parameter α) along a straight
line from xi to yi. Figure 1(b) shows a MORPH instance, generated from a
500-city RUE instance, Fig. 1(a), and 500 city NETGEN instance with 10
clusters, Fig. 1(c). The MORPH examples in this study were generated using
the TSPMETA package [13] and with α = 0.5.



102 P. McMenemy et al.

LIB: a widely-used collection of instances with different characteristics and TSP
applications [14]. Instances with size 400 � n < 5 000 and edge weight types
EUC 2D & CEIL 2D were selected for this study.

World: instances from the World benchmark set2 which are based on real loca-
tions of cities in different countries. Cities with duplicate coordinates were
not considered, all instances with size 400 < n < 5 000 were selected.

VLSI: a set of instances that originate from an application in very large scale
integration (VLSI) circuit design. These instance types are known to be par-
ticularly hard for many TSP solvers, including Concorde. Again, all instances
with sizes 400 < n < 5 000 were included in this study [15].

Only 93 instances of the required size and edge weight types are available, hence the
requirement to generate a large, supplemental set of instances. Where appropriate,
the combined instances of LIB, World and VLSI will be referred to as TSPLIB.

2.2 Solvers

Our study considers three high-performance heuristic solvers for the symmet-
ric TSP. The three solvers incorporate a form of recombination (crossover)
and, according to the literature [10,16], achieve state-of-the-art performance
on Euclidean TSP instances. The first two solvers are modern variants of the
powerful Lin-Kernighan-Helsgaun (LKH) heuristic [3].

LKH+IPT & LKH+GPX2: Multi-try LKH variants. LKH is an iter-
ated local search algorithm based on the the Lin-Kernighan heuristic (LK)
[17], a variable-depth method that generates complex local search moves by
heuristically constructing a sequence of edge exchanges. Over the years, sev-
eral improvements have been incorporated to LKH. The best results in the
literature have been obtained with a version known as multi-trial LKH, where
solutions generated by soft restarts of the LK heuristic are recombined using
Iterative Partial Transcription (IPT). An alternative version of multi-trial
LKH has been recently proposed [16], where the IPT recombination operator
is substituted by GPX2, a new generalised partition crossover proposed for the
TSP. Both IPT and GPX2 are forms of partition crossover, which are deter-
ministic recombination operators that use features common to the parents
to decompose the evaluation function. Following [16] we consider these two
versions of multi-try LKH, and name them as LKH+IPT and LKH+GPX2.

EAX: GA with Edge Assembly Crossover. A series of high-performing
evolutionary algorithms for the TSP integrate variants of edge assembly
crossover, a recombination operator that combines the edges of two parent
solutions trying to add only few, short edges not found in any of the two par-
ents [18]. We consider the most recent version of EAX [4], which aggregates
three key enhancements: (i) initialisation of the population by local optimi-
sation, (ii) improved local and global variants of the edge assembly crossover
operator, and (iii) specific diversity preservation techniques that use edge
entropy measures in the population replacement scheme.

2 http://www.math.uwaterloo.ca/tsp/world/countries.html.

http://www.math.uwaterloo.ca/tsp/world/countries.html


Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 103

2.3 Experimental Setup

Each of the solvers are implemented as single-threaded programs and were run
on Intel Xeon Gold 6138 2.0 GHz CPUs3. The common termination criterion
applied is one hour of CPU time. For the analyses in this study, the PAR10
penalised runtime was implemented [10]. This assigns a penalized runtime of 10
times the termination criterion to runs that fail to solve to optimality within
that limit. Each solver is run 30 times on each instance and times are recorded.

For EAX, the parameters used are the ones prescribed by Nagata and Koba-
yashi [4] for “small” instances (n < 10 000) in the readme file accompanying
their source code. The population size is therefore set to 100 and the number of
offspring set to 30. For LKH, version 2.0.9 is used and the default parameters
specified within the source code and the example configuration file are consid-
ered. The RECOMBINATION parameter is set to either IPT or GPX2 in order to
select the appropriate crossover operator.

Neither EAX nor LKH implement a time-based termination criterion but use
a fixed number of trials instead. The source code was therefore modified to run
within a specific amount of time and allow for consistent comparison between
EAX and the two LKH variants.

In order to know whether a solver was successful, the result of each run is
compared to the known optimal objective function values for library instances.
For generated instances, the state-of-the-art exact TSP solver Concorde [1,19]
was used to generate an optimal solution whose objective function value is used
for comparison.

2.4 Instance Features

Two sets of features were calculated and combined together for use in this study:

TSPMETA: a set of features described by Mersmann et al. [13] which provide
a group of standard geometric features derived from TSP instances. The
features were calculated using the TSPMETA package within the R software
package [12], with 64 features generated in total.

Pihera: a feature set defined by Pihera and Musliu [8] which are based on
kNN graph transformations of each instance and the generation of extensive
summary statistics of the kNN graphs. This generated 285 features, mainly
comprised of kNN-graph transformation metrics and their summary statistics.

Pihera features were calculated for each of the instance type sets described
earlier, with no group taking longer than 30 s using the openly available C++
software4. The TSPMETA features took noticeably longer to calculate, roughly
doubling in execution time as sizes incremented by 500 cities. Both the TSP-
META and the Pihera features were combined to generate a comprehensive fea-
ture set of 349 features. This combined group of features improved the likelihood
of extracting feature(s) which could best inform heuristic selection.
3 https://www.archie-west.ac.uk.
4 https://tspalgsel.github.io/#software.

https://www.archie-west.ac.uk
https://tspalgsel.github.io/#software


104 P. McMenemy et al.

2.5 Statistical Evaluation of Heuristic Performance

Performance analysis was carried out on the three state-of-the-art solvers
described earlier (LKH+IPT, EAX, LKH+GPX2). A round-robin set of sta-
tistical comparisons was carried out on pairs of heuristics: i.e., EAX versus
LKH+IPT, LKH+IPT versus LKH+GPX2, and LKH+GPX2 versus EAX.
Mann-Whitney statistical tests were carried out on these pairs for each TSP
instance: the thirty runs of each heuristic pair were tested against each other to
determine whether their respective runtimes could be from the same distribu-
tion of values. This was carried out at the 99% confidence level, thus ensuring
a high level of likelihood that runtimes were identified as being from differing
distributions if the Mann-Whitney tests’ p-values < 0.01. When this occurred,
a further comparison of each heuristic’s median runtimes was carried out, and
the solver with the lower median runtime value was deemed to be the best of
the two tested.

The null hypothesis of the Mann-Whitney test posits that the runtimes of the
two solvers being tested against one another are from the same distribution of
values and so, if p-values > 0.01, then the null hypothesis could not be rejected.
In this circumstance it was deemed that neither heuristic was significantly better
than the other at solving the instance to optimality, and so neither was desig-
nated as the best heuristic for the particular instance being tested. This outcome
was labelled as “ANY” in the following results.

3 Performance Analysis

Runtime performance of each heuristic was carried out using the methodol-
ogy described in the previous section. Here, results are presented by pairwise
combination, i.e., one heuristic is measured against another heuristic’s perfor-
mance. Firstly, scatter plots of the median runtimes per instance are presented,
with plots further subdivided by the instance types NETGEN, MORPH, RUE
and TSPLIB included in this study. In all plots, red scatter points correspond
to when EAX performed significantly better, blue points to LKH+GPX2, and
green to LKH+IPT. Black scatter points denote instances where one heuristic
was not deemed to be significantly quicker than the other. Diagonal black lines
on each plot indicate equality of median runtimes; boxplots of median runtime
values are also provided, located adjacent to opposite axes to provide additional
comparison of performance.

For each paired comparison, tables showing the numbers and percentages of
times of classifications are also presented, with the TSPLIB instances broken
down by VLSI, World and LIB instance types. The tables provide further detail
that can be occluded in scatter plots by coincidental or clustered data points.

3.1 EAX v LKH+IPT Performance Results

Firstly, the relative performances of EAX versus LKH+IPT are considered, and
results are shown in Fig. 2 and Table 1. It can be seen from Fig. 2(a) and (b)



Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 105

that EAX is vastly superior in solving NETGEN and MORPH instance types
to optimality when compared with LKH+IPT. The median value of the boxplot
for EAX in Fig. 2(a) (which is the overall median value of all EAX runs for
NETGEN) is 7.2 s, whereas the corresponding value for LKH+IPT is 107.7 s.
Similar values are returned for the MORPH instances, with median EAX runtime
= 7.6 s and median LKH+IPT = 116.4 s.

However, for the RUE instances, Fig. 2(c) shows that LKH+IPT greatly
improves performance when compared against EAX. Results shown in Table 1
reinforce this result, showing that LKH+IPT solved 41.5% of instances signifi-
cantly quicker than EAX (median LKH+IPT runtime = 9.0 s). Conversely, EAX
only solved 23.8% of RUE instances better than LKH+IPT (median EAX run-
time 10.6 s).

1

10

100

1000

10000

PAR10

1 10 100
EAX runtime, (secs)

LK
H

+I
PT

 ru
nt

im
e,

 (s
ec

s)

ANY
EAX
LKH+IPT

(a) NETGEN

1

10

100

1000

10000

PAR10

1 10 100 1000
EAX runtime, (secs)

LK
H

+I
PT

 ru
nt

im
e,

 (s
ec

s)

(b) MORPH

1

10

100

1000

10000

PAR10

1 10 100 1000
EAX runtime, (secs)

LK
H

+I
PT

 ru
nt

im
e,

 (s
ec

s)

(c) RUE

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
EAX runtime, (secs)

LK
H

+I
PT

 ru
nt

im
e,

 (s
ec

s)

(d) TSPLIB

Fig. 2. EAX v LKH+IPT runtime performance results. All plot axes are log-scaled;
scatter points are median values of 30 runs of pairwise instances in the form
(median(EAX), median(LKH+IPT)); diagonal lines represent equality of median per-
formance; boxplots on axes show distribution of median runtime values (Color figure
online)



106 P. McMenemy et al.

Table 1. EAX versus LKH+IPT classifications

Instance type EAX LKH+IPT ANY

RUE 143 (23.8%) 249 (41.5%) 208 (34.7%)

MORPH 562 (93.7%) 16 (2.7%) 22 (3.7%)

NETGEN 567 (94.5%) 11 (1.8%) 22 (3.7%)

TSPLIB:

VLSI 38 (66.7%) 8 (14.0%) 11 (19.3%)

World 3 (100.0%) 0 (0.0%) 0 (0.0%)

LIB 18 (54.5%) 8 (24.2%) 7 (21.2%)

Total 1331 (70.3%) 292 (15.4%) 270 (14.3%)

For the LIB instances, EAX still performed better than LKH+IPT; how-
ever, EAX did not overwhelmingly outperform LKH+IPT as it had for the
NETGEN and MORPH instance types. The 3 World instances included in our
study (uy734, zi929 and mu1979) were solved significantly better by EAX than
LKH+IPT. Focusing on VLSI only, the median runtime value for EAX was
12.8 s, with LKH+IPT returning a median runtime of 59.2 s. When considering
these with the results in Table 1, it is apparent that EAX solves VLSI instances
to optimality with noticeably greater speed than LKH+IPT.

3.2 LKH+GPX2 v EAX Performance Results

Examining both Fig. 3 and Table 2, it is apparent that EAX provides consider-
ably better results than LKH+GPX2. As with the results for EAX v LKH+IPT
in the previous section, EAX performs substantially better than LKH+GPX2,
most notably for NETGEN (95.0% EAX) and MORPH (93.5% EAX) instances.
Again, however, EAX performs less effectively versus LKH+GPX2 when solv-
ing RUE types; EAX drops to 25.8%, whereas LKH+GPX2 rises to 38.8% best
effectiveness.

Comparing the classifications for EAX across Tables 1 and 2, there exists
very little difference between all results, thus inferring that EAX performs as
well against LKH+IPT as it does versus LKH+GPX2. Also, note again that
EAX is the dominant solver for VLSI, with 64.9% of all VLSI instances solved
best by EAX, and only 7 out of 57 best solved by LKH+GPX2.



Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 107

●

●
●●

●●
●

●●
●

●

●
● ●● ●

●●●

●

●
●●●

●● ●●●
●

● ●
●

●
●●● ●

●
●

●
●

●

●●●

●

●● ●

●
●

●
●●

●
●

●
●

●
● ●

● ●●
●

●

●
● ●●●

●
●

●
●●

●
● ●●●● ● ●

● ●● ●
●

●●●●●● ●●
●

●● ● ●●
● ●

●● ● ●
●

●
● ●

●● ● ●●● ●
●

●
●

●
●

● ●
●

●

●
● ●● ●●

●
●

●
●

● ●●
● ●●

● ●
●●

●
●

●
●●

●

●

●

● ●
●

●
●

●
●● ● ●

●

●
● ●

●

●
●

●
● ● ●

●

●

●
●●

●● ●● ●●

●

● ●● ●

●
●

●

●

●

● ● ●●
● ●● ●

●●

●
●

●
●● ●●

●
●

●● ● ●● ●●● ● ●●
● ●
● ● ●

●

●
●●● ●● ●●● ●●● ●●

●
● ●●

● ● ●●
●●

●
●●● ●●

●
● ●

●
●

●
●●

●

●
● ●●

● ●● ●
●

● ● ●● ● ●●●●

●

●
● ●

●●●

●

●

●

●
●

●●

●

●

●

●●
●

●●

● ●
●●● ●
●

●

●

● ●

●

●●
●

●

● ●

●

●

● ●

●

●

●

● ● ●●

●

●
●

●●
●

●

●

●● ● ●

●

●● ●●●

●

●
●● ●

● ●
●● ● ●● ●

●
●

●

● ● ●
●●

●
● ●

●
● ●

●
● ●●

●
●

●

●●● ●

●

●

●● ●
●

●●
●

●

●●

●

●●●
●●● ●

● ●●
●● ●●

●

●

●● ● ●● ●●●● ●

●

●

●
● ●●

●

● ● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●●

●
●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●● ●●

●

●

●

● ●
●

●

●

●
●● ●

●
●

● ●
●

● ●● ●

●

● ●
●

●
●

●
●● ●

●

●
●●

●

●
●●

●

●

●
●

●

● ●● ●●● ●●● ●
● ● ●●

●
●

●
● ●

●
● ●●● ● ●●

● ●
●

●

●

●●● ●
●

●●

●
●

●●
●● ●
●

1

10

100

1 10 100 1000 10000 PAR10
LKH+GPX2 runtime, (secs)

EA
X 

ru
nt

im
e,

 (s
ec

s)

●

●

●

ANY
EAX
LKH+GPX2

●●●●●●●●●●●●●●●●●●●●●

●

(a) NETGEN

●● ●●●● ●
●

● ●● ●
●

● ●●● ● ●
●

●
● ●●● ● ●● ●

●
● ●● ● ●● ● ● ●● ●●

●

● ●● ●
● ● ●

●●
● ●

●● ●● ● ●●●●
● ● ●

●
●

● ●●●
●

●
● ●● ●

●●● ●● ●
● ●

●● ● ●
● ●

●●●
●

●●● ●
●

● ●●●● ●●
● ● ● ●●● ●

●
●

●●
● ●●● ●

●●
●

●
●●

●
● ●●●

●
● ●● ●●

●
●

●

●
●

●
●

●
●

●
● ●●

●

●● ●●

●

●●●●

●
●● ●● ● ●

●

●
●

●●
●

●

●

●

●

●●
● ● ●

●

● ●●

●

●

●

● ●● ●

●

●
●

●
● ● ●●

● ●●●
● ● ●

●

●

●
● ●● ●●

● ●●

●
●

●● ● ●
●

●

●

●●

●

●● ●
● ●

●
●

●
●●●● ●

●
● ●● ●●●● ●●

●
● ●●
● ● ●●

● ●●

●
●●●● ●

● ● ●
● ●●●● ●●

●
● ●● ●●● ● ●●

●

●

●

●
●

●
●

●●●

●

●●

●

●
● ●●

●

●

●

●

●
●● ● ●

●

●
●

● ●●●

●

●

●

●

●
●

● ●●

●

●● ●

●

●

●
●

● ● ●
●

●●
●●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

● ●●
●● ●●●
●

●

● ●●
●

●

●

● ●●

●
●

●
●

●●

●

●●● ●
● ●●

●

● ●●
●

●●

●

●●

●

● ● ●●●●

●

●
●

●● ●●● ●● ● ●● ●●●
●

●

●

●● ●● ● ●
●●

●●

●●
●

● ●

●

●
●

● ● ●
●

●

●

●
●

●●
●● ●
●●

●

●●

●

●

●

●

●

●

●

●
●

● ● ●●
●● ●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●●● ●
●

●

● ●

●

●●
● ●

●

●

●

●
●

●

●

● ●● ●●● ●

●

●●

●

●●●

●

●● ●●
● ●● ● ●

●

● ●
●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●●
●● ●●

●

● ●
●

●

●●
●● ● ● ●

●● ●●●
●

●

1

10

100

1000

1 10 100 1000 10000 PAR10
LKH+GPX2 runtime, (secs)

EA
X 

ru
nt

im
e,

 (s
ec

s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●

(b) MORPH

● ●●

●

●

●
● ●●

● ●

●
●●●

●
●●

●
●

●● ●
●●
● ●

● ●●
● ●●

●
●●

●●
●

●
● ●●
●

●

●

●

●

●
●

● ●
●●●

●
● ●●

●

●

●
●●● ●●

●
●

●●
●

●● ● ●
●●

●

●
●

●
● ●●●

●

●
●● ●●

●
●●●

●
●●

●
●

● ●
●

●

●

●

●
● ●● ●●

●●●

●
●

●● ●

●●

●●

● ●●
●

●
●

●

●
●● ● ●

●
● ●●

●
●

● ●● ●● ●●

●
●

●●
●

●
●●●● ●● ● ●

●

● ●

● ●

●

● ●● ●● ●●●
●

●
● ●

●

● ●
●●

●

●

●
●● ●● ●

●●
●

● ●

●

●

●●

●

●
●
●● ●

●● ●● ●● ●● ●
●

●● ●

●

●●●

●

●● ● ●
●

●

●● ●● ●●
●

●● ● ●●

●
● ●● ●●

●
●

●

●● ●●

●

●
●●

●

●

●

● ● ●●●● ●● ●

●

●
●

●

●
● ●●

●

● ●
●

●

●●

●

●●

●

●●

●

● ●●

●●

●

●

●

●

●

●

●

●

●●
●● ●

●

●●

●

●

●

●

●

●

●
●

●
●● ●

●
●

●

●●
●

●
●

● ●

●

●
●

●● ●●

●

●●

●
●

●

●

●

●
●

●

●
●

●
●●

●●
●

●
●

●

●

●

●
●● ●● ●

●

●

● ●

●

●●●

●

●●

● ●● ●●
●

●

● ●● ●●

●

●

●

●● ●

●

●

●

●
●●●

●

●●●

●

●

●

●
● ●● ●●

●●
●

● ●
●

●● ● ●
●

●

●

●● ●●

●

●

●

●

●

●●

●

●

●
●

● ●

●●

●

●
● ● ●●

●

●

●

● ●

●

●
●●

●

●

●

●
●

● ●
●● ●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●

●

● ● ●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●
●

●

●

●
●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

1

10

100

1000

1 10 100 1000 10000 PAR10
LKH+GPX2 runtime, (secs)

EA
X 

ru
nt

im
e,

 (s
ec

s)

●

●

(c) RUE

●

●

●

●

●
●

●●
●

●

●

●

●●

●●
●

●

●

● ●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●● ●

● ●
● ●

●
●●

●
●

●

●●● ● ●

●

● ●● ●●● ●

●●

●
●●

●●

●

●●● ●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●●

●

●●

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
LKH+GPX2 runtime, (secs)

EA
X 

ru
nt

im
e,

 (s
ec

s)

●●●●●

●

●

●

(d) TSPLIB

Fig. 3. LKH+GPX2 v EAX runtime performance results. All plot axes are log-scaled;
scatter points are median values of 30 runs of pairwise instances (LKH+GPX2, EAX);
diagonal lines represent equality of median performance; boxplots on axes show distri-
bution of median runtime values (Color figure online)

Table 2. LKH+GPX2 versus EAX classifications

Instance type LKH+GPX2 EAX ANY

RUE 233 (38.8%) 155 (25.8%) 212 (35.3%)

MORPH 14 (2.3%) 561 (93.5%) 25 (4.2%)

NETGEN 10 (1.7%) 570 (95.0%) 20 (3.3%)

TSPLIB:

VLSI 7 (12.3%) 37 (64.9%) 13 (22.8%)

World 3 (100.0%) 0 (0.0%) 0 (0.0%)

LIB 9 (27.3%) 19 (57.6%) 5 (15.2%)

Total 276 (14.6%) 1342 (70.9%) 275 (14.5%)



108 P. McMenemy et al.

3.3 LKH+IPT v LKH+GPX2 Results

As inferred by their relative performances against EAX, the runtime results
for LKH+IPT versus LKH+GPX2 exhibit very little variation. Both Fig. 4 and
Table 3 show that, for instances of these sizes and types, and with a stopping
criterion of one hour, there exists little appreciable difference in their relative
performances. The four plots in Fig. 4 show that almost all scatter points lie
very closely to the line of median equality. When this did not hold, for example
in Fig. 4(d) where a single point is located at (1329, PAR10) (corresponding to
VLSI instance bck2217), the Mann-Whitney test does not always allow rejection
of its null hypothesis and so the instance is labelled as ANY.

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●● ●

●
● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
LKH+IPT runtime, (secs)

LK
H

+G
PX

2 
ru

nt
im

e,
 (s

ec
s)

●

●

●

ANY
LKH+IPT
LKH+GPX

●●●●●●● ●●●●●●●●●●● ●●● ●●

●●●●●●●●●●●●●●●●●●●●●

(a) NETGEN

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

● ●

●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●●

●

●
●

●

●

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
LKH+IPT runtime, (secs)

LK
H

+G
PX

2 
ru

nt
im

e,
 (s

ec
s)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

(b) MORPH

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●●
●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●
●

●

●

●●

●●
●

●

●

●
●

●
●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

● ●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●●

●
●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●
●

●
●
●

●

●

●

●
●

●●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●

●●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
LKH+IPT runtime, (secs)

LK
H

+G
PX

2 
ru

nt
im

e,
 (s

ec
s)

●●

●

(c) RUE

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

● ●

●

●

●
●●

●

●●

●
●
●

●

●

●●

●

●

1

10

100

1000

10000

PAR10

1 10 100 1000 10000 PAR10
LKH+IPT runtime, (secs)

LK
H

+G
PX

2 
ru

nt
im

e,
 (s

ec
s)

●●●●

●●●●●

(d) LIB

Fig. 4. LKH+IPT v LKH+GPX2 runtime performance scatter plots

Table 3 further emphasises the similarities of runtimes for both LKH+IPT
and LKH+GPX2. 97.8% of the 1893 instances studied were classed as being best
solved by either heuristic: only the RUE types returned any notable numbers of
instances solved better by either solver.



Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 109

Table 3. LKH+IPT versus LKH+GPX2 classifications

Instance type LKH+IPT LKH+GPX2 ANY

RUE 12 (2.0%) 17 (2.8%) 571 (95.2%)

MORPH 4 (0.6%) 3 (0.5%) 593 (98.8%)

NETGEN 1 (0.1%) 3 (0.5%) 596 (99.3%)

TSPLIB:

VLSI 0 (0.0%) 0 (0.0%) 57 (100.0%)

World 0 (0.0%) 0 (0.0%) 3 (100.0%)

LIB 0 (0.0%) 2 (6.5%) 31 (93.9%)

Total 17 (0.9%) 25 (1.3%) 1851 (97.8%)

3.4 Overall Performance Classification

Due to the overall dominance of EAX in these results, and the similar behaviours
of LKH+IPT and LKH+GPX2 (now referred to jointly as SET-LKH), an appro-
priate question to answer to determine the best solver is “When should we not
apply EAX?”. If this can be answered, then three courses of action are available:
(i) Use EAX only; (ii) use one of SET-LKH; (iii) use any of the above. Due
to the close similarity between the SET-LKH results, only the results from the
EAX v LKH+IPT and EAX v LKH+GPX2 comparisons were used to determine
the overall best heuristic per instance. For overall classification, it is assumed
that LKH+IPT and LKH+GPX2 did not perform significantly differently for
any instances; only 2.2% of instances were solved significantly more quickly by
one than the other (cf. Table 3), and thus is a reasonable simplification to make
which does not adversely affect best solver selection.

Table 4 summarises the classification permutations (excluding LKH+IPT v
LKH+GPX2) and their outcomes which are used to determine the best over-
all heuristic per instance. Each permutation of EAX v LKH+IPT and EAX
v LKH+GPX2 results in different hierarchical results which are shown as pic-
tograms in Table 4; LKH+IPT denoted by a green “I”, EAX (red “E”) and
LKH+GPX2 (blue “G”).

EAX was deemed the best heuristic if it was significantly better than both SET-
LKH solvers, or better than one while not defeated by the other (top 3 rows of
Table 4). The same reasoning applies for SET-LKH (middle 3 rows), whereas the
ANY class was applied only if EAX was not significantly better than both SET-
LKH solvers, and vice versa. The permutations where EAX defeated one of the
SET-LKH solvers but was defeated by the other did not occur in our study, and
so is not shown here. Applying this methodology we can determine whether EAX,
one of the SET-LKH heuristics, or ANY of the three would be the best approach.

Table 5 shows that, out of the 1893 instances tested, 1361 were solved sig-
nificantly better by EAX. EAX also comprises part of the ANY category, and
so can be identified as being the most effective heuristic, or at least one of the
most effective, for 84.1% of the instances tested.



110 P. McMenemy et al.

Table 4. Best heuristic classification by instance

EAX v
LKH+IPT

EAX v
LKH+GPX2

Pictogram Best Heuristic

EAX EAX EAX

EAX ANY EAX

ANY EAX EAX

LKH+IPT ANY SET-LKH

ANY LKH+GPX2 SET-LKH

LKH+IPT LKH+GPX2 SET-LKH

ANY ANY ANY

Excluding the RUE instances, the proportion best solved by the classifi-
cations EAX or ANY rises to 96.6%. Conversely, considering only the RUE
instances, we see that the SET-LKH heuristics perform effectively 72.5% of the
time when combined with the ANY classification. The VLSI instances, often con-
sidered the most intractable or difficult to solve to optimality, are best solved by
EAX 68.4%; only 14.0% are solved significantly quicker by SET-LKH solvers.

Table 5. Best overall heuristic classifications

Type EAX SET-LKH ANY

RUE 165 (27.5%) 257 (42.8%) 178 (29.7%)

MORPH 563 (93.8%) 16 (2.7%) 21 (3.5%)

NETGEN 572 (95.3%) 11 (1.8%) 17 (2.8%)

TSPLIB:

VLSI 39 (68.4%) 8 (14.0%) 10 (17.5%)

World 3 (100.0%) 0 (0.0%) 0 (0.0%)

LIB 19 (57.5%) 9 (27.3%) 5 (15.2%)

Total 1361 (72.9%) 301 (15.9%) 231 (12.2%)



Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 111

The marked variations in these results show how important it is to understand
the underlying TSP instance itself, and the features of the instance. Doing so can
provide important guidance on which solver can be implemented most effectively.

4 Heuristic Selection by Minimal Feature Extraction

It is important to be able to identify instance features which can inform specific
algorithm selection. To this end, a decision tree model was trained using the
Pihera and TSPMETA feature sets described earlier. A decision tree is a simple
but useful technique for creating “rules of thumb” that can be applied to identify
instance traits that may hamper the performance of specific solvers. This process
identified key features (and their associated values) which can be used to select
the most effective instance-specific algorithms. From the head of the decision tree
shown in Fig. 5, two key features were extracted which can be used to identify
a significant variance in performance between the EAX and SET-LKH solvers:
nn5.sc.max.n, from the Pihera feature set; and mst dists median, from the
TSPMETA feature set.

Fig. 5. Decision tree trained on all instance features (tree depth = 2)

It can be seen that 72% of instances were solved significantly faster by EAX
than either of the SET-LKH heuristics and, in a further 16%, no significant
difference was found (cf. Table 5 and Fig. 5(a)). The intuitive choice, therefore,
would be to use EAX by default; however, note that 12% of all instances tested
were best solved by the SET-LKH heuristics. It was found that 67% of all
instances exhibited nn5.sc.max.n < 0.71; of these, 93% were solved best by
EAX (cf. Figs. 5(b) and 6(a)). When nn5.sc.max.n >= 0.71, 71% were solved
by SET-LKH heuristics in comparable (29%) or less (42%) time, Fig. 5(c).



112 P. McMenemy et al.

0

1

2

3

0.25 0.50 0.75 1.00
nn5.sc.max.n

de
ns

ity

ANY
EAX
SET−LKH

0

20

40

60

0.01 0.02 0.03
mst_dists_median

de
ns

ity

(a) Kernels of nn5.sc.max.n (b) Kernels of mst_dists_median

Fig. 6. Plots show kernels of ANY, EAX, SET-LKH classed instances for features
nn5.sc.max.n (a) and mst dists median (b). Vertical lines indicate the threshold values
obtained from the decision tree in Fig. 5 (Color figure online)

This branch of the decision tree can be further broken down when feature
mst dists median >= 0.021, with 87% of instances on that branch solved in
similar or less time by SET-LKH, Fig. 5(e). In cases where mst dists median <
0.021, we see a less distinctive split in performance, with EAX and SET-LKH
performing best in a similar number of cases, Fig. 5(d).

Figures 6(a) and (b) show that the ANY kernels, labelled as being blue in
colour, are completely masked by the EAX and SET-LKH kernels either side
of the decision tree threshold values. This infers that the instances classified as
ANY may defy simple identification using decision tree methods.

5 Conclusions

We have carried out an empirical runtime analysis of three state-of-the-art TSP
heuristic solvers (LKH+IPT, LKH+GPX2, and EAX), ranking their respective
performances using robust statistical methods. The algorithms were run on 1893
distinct instances, made up of 600 uniformly distributed, 600 strongly clustered,
600 loosely clustered, and 93 TSP problems selected from available benchmark
datasets. Our results show that EAX performs significantly better than the oth-
ers, especially for the NETGEN and MORPH instances with almost all of those
types solved significantly better by EAX. However, for the RUE types, EAX
does not perform as well as the SET-LKH solvers: EAX was only classed as the
best solver ∼25% of the time.

EAX was ranked the best overall solver per instance, identified as being
significantly better in 72.9% of instances. Including the ANY category (instances
where no heuristic proved to be significantly better), EAX could be applied to
85% of all instances tested to return the quickest time to optimality. Even though
we observed EAX as being strongly dominant, these results further support the
“No Free Lunch” theorem [20], i.e., that no heuristic outperforms any other
solver for all problems.



Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers 113

Best algorithm selection is a topic of ongoing research across all combinatorial
optimisation problems [8,9,21]. For the TSP instance set analysed here, we have
shown that the simple use of a decision tree can allow identification of a few dis-
criminatory features of the instance space that pinpoint which algorithm is best
applied. Our analysis identified one feature from the Pihera set (nn5.sc.max.n)
whose value strongly predicts when to use EAX. When this is used in concert
with another feature from the TSPMETA group (mst dists median), we can
quickly identify when to apply one of the SET-LKH solvers. Thus, calculat-
ing both TSPMETA and Pihera features sets of the TSP instances can provide
strong guidance to inform which solver to use.

There is no evidence to assume that EAX would continue to remain dominant
over the SET-LKH solvers for increased instance sizes, or that the similar results
for both LKH+IPT and LKH+GPX2 would also hold. Therefore an extension
of the work presented here would be to carry out similar analyses for symmet-
ric TSP instances of size >2 000. It is anticipated that, due to the effects of
combinatorial explosion, a similar study of increased instance size would need to
implement a timeout criterion greater than the one hour used here. Renato et al.
[16] indicate that LKH+GPX2 does outperform LKH+IPT for most instances
they studied which had sizes in the range [3056, 115475]; however, their study
was not limited by a timeout criterion, and instead enforced a minimum number
of trials per run. Thus, increasing the timeout criterion for larger instances may
allow the LKH+GPX2 heuristic the capacity to realise any advantage it may
have over LKH+IPT and EAX for larger instances. We must also consider that
LKH+GPX2 is a newly developed algorithm which may not have fully opti-
mised implementation methods, and any refinements may significantly improve
its future performance.

Acknowledgements. This work was supported by the Leverhulme Trust [award num-
ber RPG-2015-395] and by the UK’s Engineering and Physical Sciences Research Coun-
cil [grant number EP/J017515/1]. Results were obtained using the EPSRC-funded
ARCHIE-WeSt High Performance Computer (www.archie-west.ac.uk, EPSRC grant
EP/K000586/1).

Data Access. All data generated for this research are openly available from the Stirling
Online Repository for Research Data (http://hdl.handle.net/11667/127).

References

1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman
Problem: A Computational Study. Princeton University Press, Princeton (2007)

2. Helsgaun, K.: Effective implementation of the Lin-Kernighan traveling salesman
heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000)

3. Helsgaun, K.: An effective implementation of k-opt moves for the Lin-Kernighan
TSP heuristic. Technical report 109, Roskilde University (2007)

4. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly
crossover for the traveling salesman problem. INFORMS J. Comput. 25(2), 346–
363 (2013)

www.archie-west.ac.uk
http://hdl.handle.net/11667/127


114 P. McMenemy et al.

5. Whitley, D., Hains, D., Howe, A.: A hybrid genetic algorithm for the traveling
salesman problem using generalized partition crossover. In: Schaefer, R., Cotta,
C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 566–575.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5 57

6. Corne, D.W., Reynolds, A.P.: Optimisation and generalisation: footprints in
instance space. In: Schaefer, R., Cotta, C., Ko�lodziej, J., Rudolph, G. (eds.) PPSN
2010. LNCS, vol. 6238, pp. 22–31. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15844-5 3

7. Smith-Miles, K., Lopes, L.: Measuring instance difficulty for combinatorial opti-
mization problems. Comput. Oper. Res. 39(5), 875–889 (2012)

8. Pihera, J., Musliu, N.: Application of machine learning to algorithm selection for
TSP. In: IEEE 26th International Conference on Tools with Artificial Intelligence,
pp. 47–54 (2014)

9. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the
art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens,
C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6 18

10. Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H.H.: Leveraging TSP solver comple-
mentarity through machine learning. Evol. Comput. 26(4), 597–620 (2018)

11. Bossek, J.: netgen: Network Generator for Combinatorial Graph Problems (2016).
https://CRAN.R-project.org/package=netgen, R package version 1.3

12. R Core Team: R: A language and environment for statistical computing, Vienna
(2018). https://www.R-project.org/

13. Mersmann, O., Bischl, B., Trautmann, H., Wagner, M., Bossek, J., Neumann,
F.: A novel feature-based approach to characterize algorithm performance for the
traveling salesperson problem. Ann. Math. Artif. Intell. 69(2), 151–182 (2013)

14. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput.
3(4), 376–384 (1991)

15. Rohe, A.: VLSI data sets (2017). http://www.math.uwaterloo.ca/tsp/vlsi/.
Accessed 5 Nov 2018

16. Tinós, R., Helsgaun, K., Whitley, D.: Efficient recombination in the Lin-Kernighan-
Helsgaun traveling salesman heuristic. In: Auger, A., Fonseca, C.M., Lourenço, N.,
Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11101, pp.
95–107. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99253-2 8

17. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-
salesman problem. Oper. Res. 21, 498–516 (1973)

18. Nagata, Y., Kobayashi, S.: Edge assembly crossover: a high-power genetic algo-
rithm for the travelling salesman problem. In: ICGA, pp. 450–457 (1997)

19. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003).
http://www.math.uwaterloo.ca/tsp/concorde.html

20. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE
Trans. Evol. Comput. 1(1), 67–82 (1997)

21. Bischl, B., Mersmann, O., Trautmann, H., Preuß, M.: Algorithm selection based
on exploratory landscape analysis and cost-sensitive learning, p. 313 (2012)

https://doi.org/10.1007/978-3-642-15844-5_57
https://doi.org/10.1007/978-3-642-15844-5_3
https://doi.org/10.1007/978-3-642-15844-5_3
https://doi.org/10.1007/978-3-319-19084-6_18
https://CRAN.R-project.org/package=netgen
https://www.R-project.org/
http://www.math.uwaterloo.ca/tsp/vlsi/
https://doi.org/10.1007/978-3-319-99253-2_8
http://www.math.uwaterloo.ca/tsp/concorde.html


Runtime Analysis of Discrete Particle
Swarm Optimization Applied to Shortest

Paths Computation

Alexander Raß(B), Jonas Schreiner, and Rolf Wanka

Department of Computer Science, University of Erlangen-Nuremberg, Erlangen,
Germany

{alexander.rass,jonas.schreiner,rolf.wanka}@fau.de

Abstract. We mathematically analyze a discrete particle swarm opti-
mization (PSO) algorithm solving the single-source shortest path (SSSP)
problem. Key features are an improved and extended study on Markov
chains expanding the adaptability of this technique and its application on
the well-known SSSP problem. The results are upper and lower bounds
on the expected optimization time. For upper bounds, we combine return
times within a Markov model with the well known fitness level method
which is appropriate even for the non-elitist PSO algorithm. For lower
bounds we prove that the recently introduced property of indistinguisha-
bility applies in this setting and we also combine it with a further Markov
chain analysis. We prove a cubic upper and a quadratic lower bound and
an exponential upper and lower bound on the expected runtime, respec-
tively, depending on a PSO parameter.

Keywords: Discrete particle swarm optimization · Runtime analysis ·
Single-source shortest paths · Markov chains

1 Introduction

In practice, optimization problems often do not have one single algorithm solving
every problem instance in the best possible way. Instead there is a wide variety of
algorithms each having situations where it works best in performance, quality or
other measures. Meta-heuristics can be used successfully for optimizing a large
number of problems, even if there is almost nothing known about the objective
function which has to be optimized. That is, the objective function is given in a
black-box setting.

However, due to a difficult structure of such algorithms and the applied
problems, it is hard to prove performance indicators, i.e., quality guarantees, as
well as estimating the number of steps until some criterion is met. In the present
work we consider measuring the expected time it takes until a specific meta-
heuristic, more precisely, the Particle Swarm Optimization (PSO) algorithm,
finds the optimal solution.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 115–130, 2019.
https://doi.org/10.1007/978-3-030-16711-0_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_8&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_8


116 A. Raß et al.

For reasons of comparison to specially designed algorithms, it is desired that
good meta-heuristics solve black-box versions of tractable problems provably
fast, i.e., in polynomial time. To prove this desired behavior, we use here the
classical single-source shortest path problem as a reference for a discrete version
of PSO. For a swarm of size one, we obtain a complete classification of the
runtime for the single-source shortest path problem depending on the algorithm’s
parameter.

Runtime bounds are available for related nature-inspired meta-heuristics,
for example evolutionary algorithms (EAs) [1,2] and ant colony optimization
(ACO) [3,4], which are algorithms devoted to discrete domains. Another bio-
inspired meta-heuristic originally devoted to continuous domains developed by
Eberhart and Kennedy [5,6] is Particle Swarm Optimization (PSO). Schmitt
and Wanka [7] proved that a slightly modified PSO finds local optima almost
surely in the setting of continuous objective functions. PSO has already been
adapted to multiple discrete problems, for instance for binary problems [8] and
the traveling salesperson problem [9,10].

The PSO algorithm is inspired by the behavior of bird flocks or fish schools
searching for good locations for residence. The algorithm organizes a collec-
tion (swarm) of particles, the bird flock in nature, where each of them has an
admissible solution and a velocity. Additionally the best solution found by a
single particle which is called local attractor is stored. Particles are interact-
ing by sharing the global attractor, the best solution found by all particles. The
particles move according to their velocity partially redirected by a randomly per-
turbated pull towards its local and global attractor. The algorithm’s parameters
balance the influence of the attractors to have a tradeoff between exploration
and exploitation.

Several authors have adapted PSO to discrete domains which requires a com-
plete reinterpretation of movement within the search space. We will focus on the
OnePSO proposed in [11] because it can be adapted easily to various optimiza-
tion problems.

The main contribution of this paper is the extension of the Markov model
used in [11]. In [11], transitions are only allowed to neighboring states, whereas
here also self-loops are allowed. Interestingly, the SSSP problem provides a show-
case where such self-loops are actually needed. We will see that the computation
of expected return times in this Markov model extended by self-loops is possible,
and, hence, we provide an easy to use mathematical analysis tool for applications
extending those from [11].

We will evaluate the optimization time in the number of function evaluations
of the objective function as this is the established method for measuring the
algorithm runtime.

Related Work. The results relevant to this work concern the (1+1)-EA algorithm
and ACO algorithm. We give a brief overview of two related results for meta-
heuristics on discrete problems.

The authors of [12] propose an ACO algorithm for the single destination
shortest path (SDSP) problem as well as for the all-pairs shortest path (APSP)



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 117

problem. Among other results they prove upper bounds of O(Δ · l · l∗ + l/ρ)
expected iterations with n objective function evaluations in each iteration on
SDSP and O(Δ·l·l∗/ρ) expected iterations with n2 objective function evaluations
in each iteration on APSP, where Δ is the maximum degree, l is the maximum
number of edges on any shortest path, l∗ = max{l, ln n} and ρ is the evaporation
factor of the ACO algorithm.

In [1] one of the most comparable results can be found. There a (1 + 1)-EA
performing optimization on the same genotype as we will do with the OnePSO.
The authors bound the expected optimization time of SSSP on n vertices by
O(n3) and Ω(n2). We will receive the same bounds in the case if we choose the
algorithm parameter c > 1/2, the probability of moving towards the attractor.
In [2] the results are improved to O(n2 · l∗) with high probability and for special
graphs they also have a lower bound of Ω(n2 · l∗) with high probability.

Organization of Paper. The paper is organized as follows. In Sect. 2, we present in
general the discrete PSO algorithm that is investigated in this paper. The SSSP
problem description and used data structures are described in Sect. 3. In Sect. 4,
we describe the mathematical runtime model based on Markov chains with self-
loops. Section 5 presents the technical basis on the Markov model necessary for
the analysis of the PSO applied to the SSSP problem and Sect. 6 provides the
Runtime analysis.

2 Discrete PSO

We now describe the OnePSO algorithm introduced in [11], which minimizes
discrete functions. Given is a finite set X, the search space, and an objective
function f : X → R. The task is to find an optimal x∗ ∈ X that minimizes f .
OnePSO consists of a single particle that iteratively explores solution candidates
to find such an optimal x∗. In the original PSO, a particle’s next position is
always within the current neighborhood. To apply OnePSO to a problem one
has to define a neighborhood relation on the search space. The set of neighbors
of a node x ∈ X is denoted by N (x) ⊆ X. Interpreting solutions as nodes and
neighborhoods as edges results in the solution graph.

Additionally we define a metric on the solution graph by the minimal number
of edges on a path between two solutions.

Algorithm 1 describes the exact workings of OnePSO. Input is the objective
function f : X → R and the parameter c ∈ (0, 1] determining the probability of
a move towards the best solution found so far, which is called the attractor a.
OnePSO starts by selecting an initial position x ∈ X u.a.r. and updating the
attractor a. After initialization, the steps of the particle are calculated iteratively.
There are two possibilities, either the particle moves to a random neighbor or
towards the attractor. With probability c the OnePSO performs a move towards
the attractor, i.e., a move which decreases the minimal distance to the attrac-
tor in the solution graph. Otherwise the particle moves to a random neighbor,
which may also decrease the distance to the attractor. A movement towards the



118 A. Raß et al.

attractor is called an attractor move. If the function value of a new position is
smaller, i.e., better, than the function value of the attractor, the attractor is
updated.

Algorithm 1 OnePSO

Require: f : X → R, c ∈ ]0, 1]
1: choose position x ∈ X u.a.r. (uniformly at random)
2: a ← x
3: loop
4: choose q ∈ ]0, 1] u.a.r.
5: if x = a or q > c then
6: choose x′ ∈ N (x) u.a.r.
7: else
8: choose x′ ∈ {y ∈ N (x) | distX(a, y) < distX(a, x)} u.a.r.
9: end if

10: x ← x′

11: if f(x) < f(a) then
12: a ← x
13: end if
14: end loop

3 Problem Structure

We now introduce the single-source shortest path problem (SSSP). In the SSSP,
a directed graph G = (V,E) with nodes V = {1, ..., n}, edges E ⊆ V × V and
a weight function λ : E → R

+ is given. If e �∈ E, we set λ(e) = ∞. All shortest
paths between the source node s and all other nodes are to be found. W.l.o.g.,
s = n. A path from s to i ∈ V is called s-i-path.

3.1 Shortest Path Trees

In order to apply the OnePSO algorithm to the shortest path problem, we
need a suitable representation of candidate solutions. Since the goal is to find
n−1 shortest paths, a suitable representation must contain information on n−1
paths. Nodes on any (shortest) path have exactly one predecessor, which allows
us to represent solution candidates by a predecessor subgraph [13, p. 475], a data
structure that is widely used in the context of shortest path computation.

A genotype of a shortest path tree is obtained by storing each node’s pre-
decessor in its (shortest) path from s. That is, given a node i and the path
from s to i, we store its predecessor vi ∈ {1, . . . , n} \ {i}. A node must not have
itself as its predecessor. Therefore a shortest path tree can be represented as a
vector of predecessors (v1, v2, . . . , vn−1), where the i-th entry is the predecessor
of node i. Note that there is no predecessor of the source node s = n. There are



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 119

vectors that do not represent valid shortest path trees, e.g., when no node has
the predecessor s, or the graph contains cycles.

We use this vector representation as nodes for the solution graph, and say that
two nodes are adjacent, iff they can be transformed into one another with a local
operation. This operation can be chosen arbitrarily. We will use transpositions,
which replace the predecessor of a node by a new one:

Definition 1 (Transpositions). Let (v1, . . . , vn−1) be a shortest path tree. A
transposition is a tuple (i, j), with i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n} \ {i, vi}.
Applying (i, j) to a shortest path tree changes the predecessor vi of the i-th node
to j. In concrete terms: applying (i, j) to (v1, . . . , vi, . . . , vn−1) results in the tree
(v1, . . . , j, . . . , vn−1). Since there are n − 1 places, and each predecessor can be
replaced by n − 2 others, the total number of transpositions is (n − 1)(n − 2).

3.2 Objective Function

Now we define the objective function we are going to use for the analysis.

Definition 2 (Objective Function). Let v = (v1, . . . , vn−1) be the represen-
tation of a predecessor subgraph (and s = n). We define the objective function

f(v) = (dist(v, s, 1),dist(v, s, 2), . . . ,dist(v, s, n − 1)),

where dist(v, s, i) is the distance from s to i in the predecessor subgraph defined
by v, if there exists a valid path from s to i in that subgraph and ∞ otherwise.

To be able to compare function values we define a partial order. Let v, v′ be
solution candidates, then

f(v′) < f(v) ⇔ ∀i : dist(v′, s, i) ≤ dist(v, s, i) ∧ ∃j : dist(v′, s, j) < dist(v, s, j).

This objective function is often used if an EA is optimizing SSSP [1,2]. In [14],
a single objective approach is analyzed in the context of a (1 + 1)-EA solving
SSSP.

There is exactly one vector δ∗ = (δ∗
1 , . . . , δ

∗
n−1), which contains the lengths

of all shortest paths from s. There may be multiple search points v, such that
f(v) = δ∗, but it is irrelevant which one is found.

4 Model

We will present a general way to model the behavior of the OnePSO algorithm.
Note that this model does not depend on a specific problem. For the upper
runtime bounds we assume that the OnePSO algorithm can find better positions
exclusively at the attractor. This means that the runtime depends mainly on the
number of steps OnePSO needs to return to the attractor, if no improvement
was achieved. We are going to model the behavior of OnePSO between two
improvement attempts as a Markov process.



120 A. Raß et al.

If the particle is not at the attractor, there are three possibilities for the
next move. Either the particle does an attractor move, moves away from the
attractor, or keeps the current distance to the attractor. We use the fitness level
method [15] and partition the search space into the levels S0, S1, . . . , Sn. Please
note that for SSSP we have only levels S0, . . . , Sn−1 as we store only n − 1
predecessors (root has no predecessor) and therefore the diameter in X is only
n − 1. Assuming a is the attractor, then

Si := {x ∈ X | distX(a, x) = i}.

If x ∈ Si is the current position, then OnePSO can move to either Si−1, Si+1,
or stay in Si. OnePSO does attractor moves with probability c and random
moves with probability 1 − c. The fitness level after a random move depends on
the number of neighbors and the distribution of the neighbors over Si−1, Si and
Si+1. The probabilities to move to Si−1, stay in Si and move to Si+1 are denoted
by p+i , p=i and p−

i , respectively. For OnePSO these probabilities are

p+i := c + (1 − c) · |N (x) ∩ Si−1|/|N (x)|, (1)
p=i := (1 − c) · |N (x) ∩ Si|/|N (x)|, (2)

p−
i := (1 − c) · |N (x) ∩ Si+1|/|N (x)|. (3)

Note that state S0 contains only the single solution a and therefore OnePSO
will certainly be in S1 after one move. Conversely, in Sn the distance can-
not be increased. This implies p+0 , p=0 and p−

n are zero and p−
0 = 1. The

model is visualized in Fig. 1. An instance of this Markov model is denoted by
M((p+i , p=i , p−

i )1≤i≤n).

. . . SnSn−1S1S0

p=np=n−1p=1p=0 = 0
p+np+n−1p+2p+1

p−0 = 1 p−1 p−n−2 p−n−1

Fig. 1. State diagram of the Markov model with states S0, . . . , Sn and corresponding
state transition probabilities.

Also in [16] Markov chains are covered and equations similar to the following
equations are obtained, which are used as a starting point for further analysis
and insights.

We are interested in the expected number of steps to move from the state Si

to Si−1. We call this number of steps Hi. Suppose OnePSO is currently in Si.
With probability p=i OnePSO remains in Si and then needs Hi steps to get to
Si−1. With probability p−

i the particle moves to Si+1 and has to get back to Si



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 121

before the next improvement attempt. Therefore the expected number of steps
is Hi+1 +Hi. In case of success OnePSO needs just one step. Altogether we get

Hi = 1 + p=i · Hi + p−
i · (Hi + Hi+1)

1=p+
i +p=

i +p−
i⇔ Hi =

1
p+i

+
p−
i

p+i
· Hi+1 (4)

Hn =
1

p+n
. (5)

We expand the expression for H1 k times and get

H1 =
k∑

i=1

⎛

⎝ 1
p+i

·
i−1∏

j=1

p−
j

p+j

⎞

⎠ + Hk+1 ·
k∏

i=1

p−
i

p+i
. (6)

For k = n − 1 we get

H1 =
n−1∑

i=1

⎛

⎝ 1
p+i

·
i−1∏

j=1

p−
j

p+j

⎞

⎠ + Hn ·
n−1∏

i=1

p−
i

p+i
. (7)

To receive an upper bound on Hi we set p−
i = 1 − p+i and omit p=i . Instances of

this model are denoted by M((p+i )1≤i≤n). Application of Eq. (4) in this simplified
model leads to

Hi =
1

p+i
(1 + Hi+1) − Hi+1 Hn =

1
p+n

(8)

and its corresponding expansion results in

H1 =
n∑

i=1

⎛

⎝ 1
p+i

·
i−1∏

j=1

1 − p+j

p+j

⎞

⎠ − 1
p+n

n∏

j=1

1 − p+j

p+j
. (9)

5 Technical Results

If all probabilities p+i are constant, Eq. (8) becomes a linear recurrence and can
be solved with standard methods.

Theorem 1 ([11], Theorem 1). Let p+1 = p+2 = . . . = p+n−1 = p be constant
for some p ∈ ]0, 1] and p+n = 1, then the expected return time H1 to S0 is

H1 =

{
1−2p( 1−p

p )n
2p−1 for p �= 1/2

2n − 1 otherwise .

If p+i is of the form p+i = 1/2 + i/2A(n), where A(n) : N → N is some non-
decreasing function of n such that limn→∞ A(n) = ∞, we can approximate
Expression (9).



122 A. Raß et al.

Theorem 2 ([11], Theorem 3). Let M = M((p+i )1≤i≤n), with p+i = 1/2 +
i/2A(n), then H1 = Θ(min(

√
A(n), n)).

For the simplified model [17] presented the following theorem, which is proved
by approximating the sum in Eq. (9) by an integral.

Theorem 3 ([17], Theorem 7). Let M = M((p+(i))1≤i≤n), with p+ : [0, n] →
]0, 1], p+ non-decreasing, then

H1 = Ω
(
base(p+, n)n

)
,

H1 = O (
n · base(p+, n)n

)
and

H1 = Θ∗ (
base(p+, n)n

)
, where

base(p+, n) = sup
k∈[0,n[

exp

(∫ k
n

0

ln
(

1 − p+(n · x)
p+(n · x)

)
dx

)
.

base(p+, n) is maximized by the k, which satisfies p+(k) = 1/2.

This theorem can be extended easily to our full model.

Theorem 4. Let M = M((p+(i), p=(i), p−(i))1≤i≤n), with p+ : [0, n] →]0, 1],
p=, p− : [0, n] → [0, 1], (p−(i)/p+(i)) is non-increasing, then

H1 = Ω
(
base(p+, p−, n)n

)
,

H1 = O (
n · base(p+, p−, n)n

)
and

H1 = Θ∗ (
base(p+, p−, n)n

)
, where

base(p+, p−, n) = sup
k∈[0,n[

exp

(∫ k
n

0

ln
(

p−(n · x)
p+(n · x)

)
dx

)
.

base(p+, p−, n) is maximized by the k, which satisfies p+(k) = p−(k).

Proof. One can easily adapt the proof presented in [17], by replacing the quo-
tient (1 − p(i))/p(i) with p−(i)/p+(i). Note that to ensure that the quotient
p−(i)/p+(i) is non-increasing it suffices to have p+(i) non-decreasing and p−(i)
non-increasing.

6 Runtime Analysis

We get an upper bound on the expected time it takes until OnePSO finds an
optimal solution by assuming the n − 1 predecessors are found iteratively and
improvements are only achieved by moves from the attractor. For lower bounds
we consider the expected time it takes to perform the very last improvement.

First of all, we need closed form expressions for the state transition probabil-
ities of the Markov model. The probabilities can be calculated by Eqs. (1)–(3).
This means we have to determine N (x) and Si, Si−1 and Si+1 respectively, for



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 123

given n, i and x. Let x ∈ Si, then the set of neighbors N (x) is determined by all
possible transpositions. There are (n−1)(n−2) possible transitions according to
Definition 1. The current level is the i-th, therefore the number of different entries
among x and the attractor is exactly i. For each of these i entries, there exists
exactly one transposition which replaces the entry with that of the attractor.
The probability to move to Si−1 is thus

p+i = c + (1 − c) · i

(n − 1)(n − 2)
. (10)

All other transpositions that change the predecessors of one of the i differing
entries cause OnePSO to remain in Si. Thus the probability to stay in Si is

p=i = (1 − c) · i(n − 3)
(n − 1)(n − 2)

. (11)

Therefore p=i is usually not zero and the reduced model without self loops is not
sufficient. Since p+i + p=i + p−

i = 1 we can directly determine the probability to
move to Si+1.

p−
i = 1 − p+i − p=i = (1 − c) ·

(
1 − i

n − 1

)
(12)

Please note that these values are independent of x ∈ Si.
Now we will calculate H1 for different values of c.

Lemma 1. Let c = 1/2 and M = M((p+i , p=i , p−
i )1≤i≤n), with p+i , p=i and p−

i

as specified in Equations (10)–(12), then H1 = Θ(
√

n).

Proof. Let c = 1/2. For a lower bound we increase the probability p+i of moving
towards the attractor by p=i and omit the chance to stay in Si:

p̃+i := p+i + p=i =
1
2

+
i

2(n − 1)
.

Now we can apply Theorem 2 to M((p̃+i )1≤i<n), which results in H1 = Ω(
√

n).
For an upper bound we scale p+i and p−

i with 1/(1−p=i ) and omit the proba-
bility p=i from the model. This again allows us to use the simpler Markov model
with two state transition possibilities M (

(p̃+i )1≤i≤n−1

)
with p̃+i = p+i /(1 − p=i ).

This change decreases the expected optimization time by the factor 1/(1 − p=i ),
the expected number of iterations OnePSO can stay in the same state, but this
value is at most 2 as c = 1/2 and 1/2 ≤ 1 − p=i ≤ 1. Therefore the expected
optimization time is changed only by a constant factor which can be neglected.

p̃+i =
1
2 + i

2(n−1)(n−2)

1 − i(n−3)
2(n−1)(n−2)

≥
1
2

2(n−1)(n−2)−i(n−3)
2(n−1)(n−2)

=
1
2

(
1 +

i(n − 3)
2(n − 1)(n − 2) − i(n − 3)

)
n≥4

≥ 1
2

(
1 +

i

4(n − 1)

)
=: p̂+i

Now we can apply Theorem 2 to M((p̂+i )1≤i≤n−1) to receive the upper bound
H1 = O(

√
n), which completes the proof.



124 A. Raß et al.

Lemma 2. Let c ∈ ]0, 1/2[ and M = M((p+i , p=i , p−
i )1≤i≤n), with p+i , p=i and

p−
i as specified in Eqs. (10)–(12) then for any arbitrarily small ε > 0 the expected

return time to the attractor is bounded by

H1 = O (n · α(c)n) and H1 = Ω ((α(c) − ε)n) , where

α(c) = e−(1−2c)/(1−c) · (
1−c
c

)
.

0 0.1 0.2 0.3 0.4 0.5
1

3

5

7

c

Fig. 2. The function α(c) with c ∈ ]0, 1/2]

Proof. To apply Theorem 4 we have to convert the discrete probabilities into
continuous functions. We achieve this by extending the domains of Eqs. (10)–
(12) to R. This is allowed, since these equations can be applied to any i ∈ R.
As p+ is non-decreasing and p− is non-increasing the fraction p−/p+ is non-
increasing. The k, which solves p+(k) = p−(k), maximizes the integral.

p+(k) != p−(k) ⇔ k = (n − 2) · (1 − 2c)/(1 − c)

Now we can calculate a value for base(p+, p−, n − 1) as specified in Theorem 4:

base(p+, p−, n − 1) = exp

(∫ k
n−1

0

ln
(

p−((n − 1) · x)
p+((n − 1) · x)

)
dx

)

= exp

(∫ n−2
n−1 · 1−2c

1−c

0

ln

(
(1 − c)(1 − x)

x + (1 − c) · x
n−2

)
dx

)

The indefinite integral can be calculated by
∫

ln

(
(1 − c)(1 − x)

c + (1 − c) · x
n−2

)
dx

=
∫

ln (1 − c) dx +
∫

ln (1 − x) dx −
∫

ln
(

c + (1 − c) · x

n − 2

)
dx

= [x · ln(1 − c)] + [−x − (1 − x) · ln(1 − x)]

+
[
− ln

(
c + (1 − c) · x

n − 2

)
·
(

x +
c · (n − 2)

1 − c

)
+ x

]



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 125

= ln

(
(1 − c)(1 − x)

c + (1−c)
n−2 · x

)
· x − ln(1 − x) − c · (n − 2)

1 − c
· ln

(
c +

1 − c

n − 2
· x

)
=: I(x).

We get the definite integral by evaluating the bounds.

I

(
n − 2
n − 1

· 1 − 2c

1 − c

)
− I(0)

=
[
0 − ln

(
c

1 − c
·
(

1 +
1

n − 1
· 1 − 2c

c

))
− c · (n − 2)

1 − c
· ln

(
c +

1 − 2c

n − 1

)]

−
[
0 − 0 − c · (n − 2)

1 − c
· ln(c)

]

= − ln
(

c

1 − c

)
− ln

(
1 +

1
n − 1

· 1 − 2c

c

)
− c · (n − 2)

1 − c
· ln

(
1 +

1 − 2c

c · (n − 1)

)

= − ln
(

c

1 − c

)
− 1

n − 1
· 1 − 2c

c
+ O (

n−2
)

− c · (n − 2)
1 − c

·
(

1 − 2c

c · (n − 1)
− 1

2
·
(

1 − 2c

c · (n − 1)

)2

+ O (
n−3

)
)

= − ln
(

c

1 − c

)
− 1

n − 1
· 1 − 2c

c
+ O (

n−2
)

− 1 − 2c

1 − c
·
(

1 − 1
n − 1

)
+

(1 − 2c)2

(1 − c) · 2c
· 1
n − 1

− O (
n−2

)

= ln
(

1 − c

c

)
− 1 − 2c

1 − c
− 1

n − 1
·
(

1 − 2c

c
− 1 − 2c

1 − c
− (1 − 2c)2

(1 − c) · 2c

)
± O (

n−2
)

= ln
(

1 − c

c

)
− 1 − 2c

1 − c
− 1

n − 1
· (1 − 2c)2

(1 − c) · 2c
± O (

n−2
)
.

Therefore we have

base(p+, p−, n − 1) =
(

1 − c

c

)
· e− 1−2c

1−c · e− 1
n−1 · (1−2c)2

(1−c)·2c±O(n−2).

Using Theorem 4 concludes the proof, because e− 1
n−1 · (1−2c)2

(1−c)·2c±O(n−2) ∈ [1 − ε, 1]
for arbitrary small but positive value ε if n is large enough.

6.1 Upper Bounds

We use the fitness level method [15] and the Markov model to calculate the
expected time OnePSO needs to compute the shortest path tree beginning with
the root. This means, that we have to find all shortest s-i-paths consisting of
k edges, before we can find a shortest s-i-path consisting of l > k edges. To
achieve provable bounds the objective functions must be unimodal in the sense
that a function f : X → Y is unimodal iff there is always a neighbor with a
better function value, except at a global minimum. The multi-objective function



126 A. Raß et al.

described in Sect. 3.2 is unimodal according to this definition, since the current
position v is either minimal, or there exists a position i, whose predecessor can
be replaced by the optimal predecessor. Building the shortest path tree from the
root provides an upper bound, since the tree can have some randomly correct
positions upon initialization. Furthermore, we assume that better positions can
exclusively be found at the attractor. Additionally we take advantage of the
fact, that the attractor does not get updated, if already found shortest s-i-paths
would be forgotten.

First some definitions to talk about edge-shortest paths.

Definition 3 ([1]). Consider all shortest paths from s to i. By li we denote the
minimal number of edges of all such paths. Furthermore,

1. let mt = |{i | li = t}| be the number of nodes, whose shortest s-i-path has
minimal number of edges t

2. and let l = max{li | i ∈ V }.
Now we can compute the desired upper bounds.

Theorem 5. The expected optimization time T (n), to solve the single-source
shortest path problem with n nodes is bounded from above by

T (n) =

⎧
⎪⎨

⎪⎩

O(n3) ifc ∈]1/2, 1]
O(n7/2) ifc = 1/2
O (

n4 · α(c)n
)

ifc ∈ ]0, 1/2[.

Proof. We consider a prototypical step of OnePSO. Suppose the attractor has
just been updated, then a t exists, with 0 ≤ t < n − 1, and all shortest paths to
nodes i, with li < t, have been found. We calculate the expected time, OnePSO
needs to find the shortest paths to all nodes j, with lj = t. A predecessor node
u, on a shortest path to one of the nodes j, is a node with lu = t − 1 and the
shortest path to u has already been found. The shortest path to a fixed node j
would be found, if the transposition (j, u) is chosen. Since there are (n−1)(n−2)
transpositions and exactly one is desired, the probability is 1/(n−1)(n−2). We
multiply this ratio with mt and get mt/(n − 1)(n − 2) for the probability to
find the first new shortest path. The inverse of this is the expected number of
attempts for an improvement. If OnePSO makes a move that does not improve
the position, then the particle has to return to the attractor, which takes H1

steps. For a fixed t this results in an expected optimization time of up to

mt∑

i=1

(
(H1 + 1)

(
n2

i
− 1

)
+ 1

)
.

Since t can have values 1, . . . , l, we get a total expected optimization time of

l∑

t=1

mt∑

i=1

(
(H1 + 1)

(
n2

i
− 1

)
+ 1

)
≤ (H1 + 1) · n2 ·

l∑

t=1

(ln(mt) + 1)



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 127

= O (
H1 · n3

)
.

Using Chernoff bounds similarly as in [2] one can improve the upper bound and
prove that O(H1 ·n2 ·max{l, log(n)}) is an upper bound with high probability. As
l can be as large as n we omit the maximum and use n instead. Now we calculate
H1 for different c ∈ ]0, 1]. With c ∈ ]1/2, 1] the probability of moving towards the
attractor is at least c > 1/2. Therefore M

(
(c)1≤i≤n−1

)
supplies by Theorem1

an upper bound for H1 which is O(1). It follows, that T (n) = O(n3) for c > 1/2.
Let c = 1/2. We apply Lemma 1 and get H1 = O(

√
n) and thus T (n) = O(n7/2).

Finally let c ∈ ]0, 1/2[. We apply Lemma 2 and get H1 = O (n · α(c)n). With that
we have T (n) = O (

n4 · α(c)n
)
.

6.2 Lower Bounds

We consider only the expected optimization time it takes for OnePSO to suc-
cessfully perform the last improvement, because the optimization time is domi-
nated by this step. For this purpose we combine the property of indistinguisha-
bility introduced in [11] with lower bounds calculated for H1 earlier in this
paper. We repeat the concept of indistinguishable states to characterize the set
of neighbors of the attractor.

Definition 4 (Definition 17, Indistinguishable States [11]). Let M be a
Markov process with a finite set of states Y and let Y ⊆ Y . Furthermore, let
(Zi)i≥0 be the sequence of visited states of M and let T = min{t > 0 | Zt ∈ Y }.
Then Y is called indistinguishable with respect to M if

1. the initial state Z0 is uniformly distributed over Y , i.e., for all y ∈ Y :

P[Z0 = y] = 1y∈Y /|Y | :=

{
1/Y ify ∈ Y

0 ify /∈ Y

2. and the probabilities to reach states in Y from states in Y are symmetric, i.e.,
for all y1, y2 ∈ Y :

P[ZT = y2|Z0 = y1] = P[ZT = y1|Z0 = y2].

One may think of indistinguishable states as a plateau. But actually each of the
indistinguishable states may have a different function value and indeed in our
case at least one of these states, the optimum, is better than all other states
in the indistinguishable set. Definition 4 is used to derive a lower limit for the
expected number of steps needed, to visit a fixed state of the amount Y .

Theorem 6 (Theorem 18, [11]). Let M be a Markov process as in Defini-
tion 4 and let Y be indistinguishable with respect to M . Let h(M) ∈ R

+, such
that E[T ] ≥ h(M), then the expected time to reach a fixed y ∈ Y , is bounded
below by h(M) · Ω

(|Y |).



128 A. Raß et al.

We show that the neighbors of the attractor in the last step of OnePSO are
indistinguishable as in Definition 4, and estimate T , to get a lower limit on the
optimization time as one of these indistinguishable states is the global optimum.

Lemma 3. Let Y = X1 be the set of neighbor nodes in the last step of
OnePSO, and assume, that OnePSO is at the attractor, then Y is indistin-
guishable as in Definition 4.

Proof. 1. Since the particle is at the attractor, the particle moves to a random
element in X1 = Y with the next move. Since transpositions are chosen u.a.r.
all states Z0 ∈ Y have equal probability.

2. In Y there are only solutions that differ from the attractor a by a single
value within the predecessor vector. If we inspect two solutions u,w ∈ Y then
they either differ in the same position from the attractor or they differ in two
different positions. Paths from u to w can be converted bijectively to paths
from w to u which have the same probability by substituting predecessors in
solutions appearing in the path. The substitutions on an intermediate solution
v is performed as described in the following: First, we consider the case where
u and w differ in the same index d compared to the attractor. If vd ∈ {ud, wd}
then we change vd to the other non equal value. Second, we consider the case
where u and w differ not in the same index from the attractor a. Let du and
dw be the differing index in u and w compared to a respectively. A change in
the index du in v has to be converted to a change in the index dw, such that if
vdu

= udu
or vdu

= adu
before substitution then vdw

= wdw
or vdw

= adw
after

substitution respectively.
As any path has a corresponding path in the opposite direction with the same

probability we receive that the probabilities to reach states in Y from states in
Y are symmetric according to Definition 4.

Theorem 7 The expected optimization time T (n) to solve the single-source
shortest path problem with n nodes is bounded from below by

T (n) =

⎧
⎪⎨

⎪⎩

Ω(n2) ifc ∈ ]1/2, 1]
Ω(n5/2) ifc = 1/2
Ω ((α(c) − ε)n) ifc ∈ ]0, 1/2[.

Proof. We assume that the attractor has just been updated, and the only better
position, the global optimum x∗, has distance one to the attractor, therefore
x∗ ∈ X1. The set Y = X1 is indistinguishable, according to Lemma 3. Invoking
Theorem 6 we get the lower bound h(M) · Ω(|Y |). To get a value for h(M) we
calculate E[T ], the expected time it takes until OnePSO returns to Y when it
is currently in a random position in Y . If OnePSO’s current position is in Y ,
then either OnePSO can do an attractor move and returns to Y in the next
step, or it can stay in Y , or it can move to X2 and then returns to Y with H2

steps.

E[T ] = 2 · p+1 + p=1 + p−
1 · (1 + H2) = Ω(H2) =: h(M)



Runtime Analysis of Discrete PSO Applied to Shortest Paths Computation 129

We can bound H2 by using the Recurrence (4).

H1 =
1

p+1
+

p−
1

p+1
· H2 ⇔ H2 =

1
p−
1

· (p+1 · H1 − 1) ≥ c · H1 − 1
1 − c

.

It follows that H2 = Ω(H1), and thus the lower bound on the expected opti-
mization time is Ω(H1 · |Y |). For c ∈]0, 1/2[ we invoke Lemma 2 and get
H1 = Ω((α(c) − ε)n). For c = 1/2 we apply Lemma 1 and get H1 = Ω(

√
n).

Finally, for c ∈ ]1/2, 1] we choose the trivial bound H1 = Ω(1).

7 Conclusion

We analyzed the expected optimization time needed for OnePSO to optimize
the SSSP. For this purpose we calculated expected return times on an extension
to recently introduced Markov chains. Depending on the algorithm parameter c,
which is the probability of moving towards the attractor, the expected optimiza-
tion time may be polynomial (c ≥ 1/2) and exponential (c < 1/2), respectively.
Hereby we provide an easy to use mathematical analysis tool to evaluate Markov
chains extending [11].

For future work one can apply the presented tools on further optimization
problems. Also further algorithms could be analyzed. In particular, our tools may
be useful in the analysis of non-elitist meta-heuristics, for instance the Strong
Selection Weak Mutation (SSWM) evolutionary regime [18] as an example of a
non-elitist algorithm.

Acknowledgement. The authors would like to thank Bernd Bassimir for useful dis-
cussions.

References

1. Scharnow, J., Tinnefeld, K., Wegener, I.: The analysis of evolutionary algorithms
on sorting and shortest paths problems. J. Math. Model. Algorithms 3(4), 349–366
(2004). https://doi.org/10.1023/B:JMMA.0000049379.14872.f5

2. Doerr, B., Happ, E., Klein, C.: Tight analysis of the (1+1)-EA for the single source
shortest path problem. Evol. Comput. 19(4), 673–691 (2011). https://doi.org/10.
1162/EVCO a 00047

3. Neumann, F., Witt, C.: Runtime analysis of a simple ant colony optimization
algorithm. Algorithmica 54(2), 243–255 (2007). https://doi.org/10.1007/s00453-
007-9134-2

4. Doerr, B., Neumann, F., Sudholt, D., Witt, C.: On the runtime analysis of the 1-
ANT ACO algorithm. In: Proceedings of the 9th ACM Genetic and Evolutionary
Computation Conference (GECCO), pp. 33–40 (2007). https://doi.org/10.1145/
1276958.1276964

5. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In:
Proceedings of the 6th International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215

https://doi.org/10.1023/B:JMMA.0000049379.14872.f5
https://doi.org/10.1162/EVCO_a_00047
https://doi.org/10.1162/EVCO_a_00047
https://doi.org/10.1007/s00453-007-9134-2
https://doi.org/10.1007/s00453-007-9134-2
https://doi.org/10.1145/1276958.1276964
https://doi.org/10.1145/1276958.1276964
https://doi.org/10.1109/MHS.1995.494215


130 A. Raß et al.

6. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the
IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995).
https://doi.org/10.1109/ICNN.1995.488968

7. Schmitt, M., Wanka, R.: Particle swarm optimization almost surely finds local
optima. Theoret. Comput. Sci. 561A, 57–72 (2015). https://doi.org/10.1016/j.
tcs.2014.05.017

8. Sudholt, D., Witt, C.: Runtime analysis of a binary particle swarm optimizer.
Theoret. Comput. Sci. 411(21), 2084–2100 (2010). https://doi.org/10.1016/j.tcs.
2010.03.002

9. Clerc, M.: Discrete particle swarm optimization, illustrated by the traveling sales-
man problem. In: New Optimization Techniques in Engineering, vol. 141, pp. 219–
239. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8 8

10. Hoffmann, M., Mühlenthaler, M., Helwig, S., Wanka, R.: Discrete particle
swarm optimization for TSP: theoretical results and experimental evaluations. In:
Bouchachia, A. (ed.) ICAIS 2011. LNCS (LNAI), vol. 6943, pp. 416–427. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-23857-4 40

11. Mühlenthaler, M., Raß, A., Schmitt, M., Siegling, A., Wanka, R.: Runtime anal-
ysis of a discrete particle swarm optimization algorithm on sorting and OneMax.
In: Proceedings of the 14th ACM/SIGEVO Workshop on Foundations of Genetic
Algorithms (FOGA), pp. 13–24 (2017). https://doi.org/10.1145/3040718.3040721

12. Sudholt, D., Thyssen, C.: Running time analysis of ant colony optimization for
shortest path problems. J. Discrete Algorithms 10, 165–180 (2012). https://doi.
org/10.1016/j.jda.2011.06.002

13. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, McGraw-Hill, Cambridge (1990)

14. Baswana, S., Biswas, S., Doerr, B., Friedrich, T., Kurur, P.P., Neumann, F.:
Computing single source shortest paths using single-objective fitness. In: Proceed-
ings of the 10th ACM/SIGEVO Workshop on Foundations of Genetic Algorithms
(FOGA), pp. 59–66 (2009). https://doi.org/10.1145/1527125.1527134

15. Wegener, I.: Methods for the analysis of evolutionary algorithms on pseudo-Boolean
functions. In: Sarker, R., et al. (eds.) Evolutionary Optimization, pp. 349–369.
Springer, Boston (2002). https://doi.org/10.1007/0-306-48041-7 14

16. Droste, S., Jansen, T., Wegener, I.: Dynamic parameter control in simple evolu-
tionary algorithms. In: Proceedings of the 6th ACM/SIGEVO Workshop on Foun-
dations of Genetic Algorithms (FOGA), pp. 275–294 (2001). https://doi.org/10.
1016/B978-155860734-7/50098-6

17. Mühlenthaler, M., Raß, A., Schmitt, M., Wanka, R.: Exact Markov chain-based
runtime analysis of a discrete particle swarm optimization algorithm on sorting
and OneMax (2019). https://arxiv.org/abs/1902.01810, extended version of [11]

18. Gillespie, J.H.: Some properties of finite populations experiencing strong selection
and weak mutation. Am. Nat. 121(5), 691–708 (1983). https://doi.org/10.1086/
284095

https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.tcs.2014.05.017
https://doi.org/10.1016/j.tcs.2014.05.017
https://doi.org/10.1016/j.tcs.2010.03.002
https://doi.org/10.1016/j.tcs.2010.03.002
https://doi.org/10.1007/978-3-540-39930-8_8
https://doi.org/10.1007/978-3-642-23857-4_40
https://doi.org/10.1145/3040718.3040721
https://doi.org/10.1016/j.jda.2011.06.002
https://doi.org/10.1016/j.jda.2011.06.002
https://doi.org/10.1145/1527125.1527134
https://doi.org/10.1007/0-306-48041-7_14
https://doi.org/10.1016/B978-155860734-7/50098-6
https://doi.org/10.1016/B978-155860734-7/50098-6
https://arxiv.org/abs/1902.01810
https://doi.org/10.1086/284095
https://doi.org/10.1086/284095


Quasi-Optimal Recombination Operator

Francisco Chicano1(B) , Gabriela Ochoa2 , Darrell Whitley3,
and Renato Tinós4

1 University of Malaga, Málaga, Spain
chicano@lcc.uma.es

2 University of Stirling, Stirling, UK
gabriela.ochoa@cs.stir.ac.uk

3 Colorado State University, Fort Collins, USA
whitley@cs.colostate.edu

4 University of Sao Paulo, São Paulo, Brazil
rtinos@ffclrp.usp.br

Abstract. The output of an optimal recombination operator for two
parent solutions is a solution with the best possible value for the objective
function among all the solutions fulfilling the gene transmission property:
the value of any variable in the offspring must be inherited from one of the
parents. This set of solutions coincides with the largest dynastic potential
for the two parent solutions of any recombination operator with the gene
transmission property. In general, exploring the full dynastic potential is
computationally costly, but if the variables of the objective function have
a low number of non-linear interactions among them, the exploration can
be done in O(4β(n + m) + n2) time, for problems with n variables, m
subfunctions and β a constant. In this paper, we propose a quasi-optimal
recombination operator, called Dynastic Potential Crossover (DPX), that
runs in O(4β(n+m)+n2) time in any case and is able to explore the full
dynastic potential for low-epistasis combinatorial problems. We compare
this operator, both theoretically and experimentally, with two recently
defined efficient recombination operators: Partition Crossover (PX) and
Articulation Points Partition Crossover (APX). The empirical compari-
son uses NKQ Landscapes and MAX-SAT instances.

Keywords: Recombination operator · Dynastic potential ·
Gray box optimization

1 Introduction

Many binary recombination operators for genetic algorithms have the property
of gene transmission [1]. When the solutions are represented by a set of vari-
ables taking values from a set (possibly different for each of them) with no
other constraint among the variables, this property implies that any variable

This research is funded by the Spanish Ministry of Economy and Competitiveness and
FEDER under contract TIN2017-88213-R, and the University of Malaga.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 131–146, 2019.
https://doi.org/10.1007/978-3-030-16711-0_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_9&domain=pdf
http://orcid.org/0000-0003-1259-2990
http://orcid.org/0000-0001-7649-5669
http://orcid.org/0000-0003-4027-8851
https://doi.org/10.1007/978-3-030-16711-0_9


132 F. Chicano et al.

in any child will take the value of the same variable in one of the parents. In
particular, the variables having the same value for both parents will have the
same value in all the children (i.e., the respect property [1] is obeyed). The
other (differing) variables will take one of the values coming from a parent solu-
tion. The set of all the solutions that can be generated by a recombination
operator from two parents is called dynastic potential. If we denote by d(x, y)
the Hamming distance (number of differing variables) between two solutions
x and y, the largest dynastic potential of a recombination operator is 2d(x,y).
Uniform crossover has this dynastic potential. The dynastic potential of single-
point crossover has size 2d(x, y) and the one of two-point crossover has size
2d(x, y) +

(
d(x,y)−1

2

)
= 1 + d(x, y)(d(x, y) + 1)/2. In general, z-point crossover

has a dynastic potential of size O(d(x, y)z) for z << n, with n variables.
Our goal in this paper is to design an Optimal Recombination Operator [2],

which is one obtaining the best offspring from the largest dynastic potential.
In the worst case, however, such a recombination operator is computationally
expensive, since finding the best offspring in the largest dynastic potential is an
NP-hard problem. For this reason, we design a Quasi-Optimal Recombination
Operator, with worst time complexity O(4β(n + m) + n2) where m is the num-
ber of subfunctions and β is an arbitrary constant. This operator will find the
best offspring of the largest dynastic potential if the objective function has low
espitasis, that is, if the number non-linear interactions among variables is small.

Our proposed operator, called Dynastic Potential Crossover (DPX), uses the
variable interaction graph of the objective function to simplify the evaluation of
the 2d(x,y) solutions in the dynastic potential by using dynamic programming.
The ideas for this efficient evaluation date back to Hammer’s basic algorithm for
variable elimination [3] and are also commonly used in operations over Bayesian
networks [4]. Since it requires more information than just the objective function
to do the job, this operator is framed in the so-called gray box optimization [5].

Recently defined crossover operators similar to ours are Partition Crossover
(PX) [6] and Articulation Points Partition Crossover (APX) [7]. Although they
were proposed to work with pseudo-Boolean functions, they can also be applied
to the more general representation of variables defined over a finite alphabet.
PX and APX also use the variable interaction graph of the objective function
to efficiently compute a good offspring among a large number of them. PX and
APX have O(n2 + m) time complexity and both of them obtained excellent
performance in different problems [7–10]. When combined with other gray box
optimization operators, partition crossover was capable of optimizing instances
with 1 million variables in seconds. We compare DPX with these two operators
from a theoretical point of view and in the experimental section.

The paper is organized as follows. Section 2 presents the required background
to understand the working principles of DPX. The proposed recombination oper-
ator is presented in Sect. 3. Section 4 describes the experiments and presents the
results and, finally, Sect. 5 concludes the paper.



Quasi-Optimal Recombination Operator 133

2 Background

We will work along the paper with functions defined over a set of variables xi,
each one taking values in a finite set, Xi, not necessarily the same for all the
variables. We say that a function f of n variables has k-bounded epistasis if it
can be written as a sum of m subfunctions fl, each one depending on at most k
variables:

f(x) =
m∑

l=1

fl(xil,1 , xil,2 , . . . , xil,k), (1)

where il,j is the index of the j-th variable in subfunction fl. In the case of binary
variables, these functions have been named Mk Landscapes by Whitley et al. [5].
In Gray Box Optimization, the optimizer can evaluate the set of m subfunctions
in Eq. (1) (although their internal structure is unknown). This contrasts with
Black Box Optimization, where the optimizer can only evaluate solutions and
get their fitness value.

2.1 Variable Interaction Graph

The Variable Interaction Graph (VIG) [5] is a useful tool that can be constructed
under Gray Box Optimization. It is a graph V IG = (V,E), where V is the set
of variables and E is the set of edges representing all pairs of variables (xi, xj)
having nonlinear interactions. These nonlinear interactions can be captured in
two ways. First, assuming that every pair of variables appearing together in a
subfunction have a nonlinear interaction. A second approach is to apply the
Fourier transform [11], and then look at every pair of variables to determine if
there is a non-zero Fourier coefficient associated to a term with the two variables.
This second method is more precise and not very expensive, because the Fourier
transform can be constructed in O(n) time for k-bounded epistasis functions.

An example of the construction of the variable interaction graph for a func-
tion with n = 18 variables (numbered from 0 to 17) and k = 3, is given below.
We will refer to variables using numbers, e.g., 9 = x9. The objective function is
the sum over the following 18 subfunctions:

f0(0, 6, 14) f5(5, 4, 2) f10(10, 2, 17) f15(15, 7, 13)
f1(1, 0, 6) f6(6, 10, 13) f11(11, 16, 17) f16(16, 9, 11)
f2(2, 1, 6) f7(7, 12, 15) f12(12, 10, 17) f17(17, 5, 2)
f3(3, 7, 13) f8(8, 3, 6) f13(13, 12, 15)
f4(4, 1, 14) f9(9, 11, 14) f14(14, 4, 16)

From these subfunctions, assume we extract the nonlinear interactions that
are shown in Fig. 1. In this example, every pair of variables that appear together
in a subfunction has a nonlinear interaction.



134 F. Chicano et al.

0

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

Fig. 1. Sample Variable Interaction Graph (VIG).

2.2 Recombination Graph

Let us assume that we have two solutions to recombine using the optimal recom-
bination operator. We call these two solutions the red and the blue parents. All
the variables with the same value in both parents will also share the same value
in the offspring and the solutions in the dynastic potential will be in a hyperplane
determined by the common variables. In the solution representation we will use
digit 0 to denote that the variable has the same value as in the red parent and
1 to denote that the value is different. Thus, the red solution will be the string
with all 0s. For example, let the two parents be

red = 000000000000000000 and blue = 111101011101110110

in our sample function of Sect. 2.1. Therefore, x4, x6, x10, x14, and x17 are
identical in both parents. The rest of the variables are different. Both parents
reside in a hyperplane denoted by h = ∗∗∗∗0∗0∗∗∗0∗∗∗0∗∗0 where ∗ denotes
the variables that are different in the two solutions, and 0 marks the positions
where they have the same variable values.

We use the hyperplane h = ∗ ∗ ∗ ∗ 0 ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗0 to decompose the
VIG in order to produce a Recombination Graph. We remove all the variables
(vertices) that have the same “shared variable assignments” and also remove all
edges that are incident on the vertices corresponding to these variables. This
produces the recombination graph shown in Fig. 2.

The recombination graph also defines a reduced evaluation function. This
new evaluation function is linearly separable, and decomposes into q subfunctions
defined over the recombining components. In our example:

g(x′) = a + g1(9, 11, 16) + g2(0, 1, 2, 5) + g3(3, 7, 8, 12, 13, 15),

where g(x′) = f |h(x′) and x′ are restricted to a subspace of the hyperplane
h that contains the parent strings as well as the full dynastic potential. The
constant a = f(x′) − ∑3

i=1 gi(x′) depends on the common variables.



Quasi-Optimal Recombination Operator 135

0

1

2

3

5

7

8

9
11

12

13

15

16

Fig. 2. Recombination Graph for the solutions (parents) red = 000000000000000000
and blue = 111101011101110110.

The Partition Crossover operator (PX), defined by Tinós et al. [6] is based
on this recombination graph. Every recombination graph with q connected com-
ponents induces a new separable function g(x′) that is defined as:

g(x′) = a +
q∑

i=1

gi(x′). (2)

Partition Crossover selects the parent yielding the best partial solution for each
subfunction gi(x′). All of the variables in the same recombining component in
the recombination graph must be inherited together from one of the two parents.

Articulation Points Partition Crossover (APX) [7] goes further and finds
the articulation points of the recombination graphs. They are variables whose
removal increases the number of connected components. Variables x1, x2 and
x3 are articulation points in our example (see Fig. 2). Then, APX efficiently
simulates what happens when the articulation points are removed, one at a
time, from the recombination graph by flipping the articulation point in any of
the parent solutions before applying PX, and the best solution is returned as
offspring. With the appropriate data structures, this can be done in O(n2 + m),
the same complexity of PX.

3 Dynastic Potential Exploration

The proposed Dynastic Potential Crossover Operator (DPX) takes the idea of
PX and APX even further. DPX starts from the recombination graph, like the
one in Fig. 2, and tries to exhaustively explore all the possible combinations of the
parent values in the variables of each connected component to find the optimal
recombination regarding the hyperplane h defined by the blue and red parents.
This exploration is not done by brute force, but using dynamic programming.
Following with our example, in order to compute the best combination for the
variables x9, x11 and x16, we need to enumerate the 8 ways of taking each variable
from each parent, and this is not better than brute force. However, component
x0, x1, x2, x5, forms a thread. In this case we can store in a table which is the



136 F. Chicano et al.

best option for variable x0 when any of the two possible values for variable x1

are selected and we can store in the same table what is the value of the sum
of subfunctions depending only on x0 and x1 (and possibly common variables
eliminated in the recombination graph). After this step, we can consider that
variable x0 has been removed from the problem and we can proceed in the same
way with the rest of the variables in the order x1, x2 and x5. At the end, only
12 evaluations are necessary, while a brute force would require 16 evaluations.

The idea of variable elimination using dynamic programming dates back to
the 1960’s and Hammer’s basic algorithm [3]. It is well-known that the com-
plexity of this approach is O(N2t), where t is the treewidth of the graph. Com-
puting the treewidth of a graph is an NP-hard problem [4]. Thus, heuristics
should be applied to find an elimination order for the variables. The problem
of variable elimination has also been studied in other contexts, like Gaussian
Elimination [12] and Bayesian Networks [4]. In fact, we follow the works done
for computing the junction tree in Bayesian Networks. In order to do this, we
first need a chordal graph and then compute the clique tree (or junction tree),
which will fix the order in which the variables are eliminated using Dynamic
Programming. Our contribution in this work consists in applying these ideas to
the recombination operator. The high level pseudocode of the proposed DPX is
presented in Algorithm 1. In the next subsections we will detail each of these
steps.

Algorithm 1. Pseudocode of DPX
Input: two parents x and y
Output: one offspring z
1: Compute the Recombination Graph of x and y as in [6]
2: Apply Maximum Cardinality Search to the Recombination Graph [12]
3: Apply the fill-in procedure to make the graph chordal [12]
4: Apply the Clique Tree construction procedure [13]
5: Assign subfunctions to cliques in the clique tree
6: Apply Dynamic Programming to find the offspring (see Algorithm 2)
7: Build z using the tables filled by Dynamic Programming

3.1 Chordal Graphs

A chordal graph is a graph where all the cycles of length 4 or more have a chord
(edge joining two nodes not adjacent in the cycle). All the connected components
in Fig. 2 are chordal graphs. Tarjan and Yannakis [12] provided algorithms to
test if a graph is chordal and add new edges to make it chordal if it is not.
Their algorithms run in time O(n + e), where e is the number of edges in the
graph. In the worst case the complexity is O(n2). The first step to check the
chordality is to number the nodes using Maximum Cardinality Search (MCS).
This algorithm numbers each node in descending order, choosing always the



Quasi-Optimal Recombination Operator 137

unnumbered node with a higher number of numbered neighbors and solving the
ties arbitrarily. Figure 3 (left) shows the result of applying MCS to the third
connected component of Fig. 2.

3

7

8

12

13

15

2

5

1

6

3

4

C1 = {7, 12, 13, 15}
S1 = ∅
R1 = {7, 12, 13, 15}

C2 = {3, 7, 13}
S2 = {7, 13}
R2 = {3}

C3 = {3, 8}
S3 = {3}
R3 = {8}

Fig. 3. Maximum Cardinality Search applied to the third connected component of
Fig. 2 (left) and clique tree with the sets of separators and residues (right).

If the graph is chordal then MCS will provide a numbering of the nodes such
that for each triple of nodes u, v and w, with (u, v), (u,w) ∈ E and u has a lower
number than v, w, it happens that (v, w) ∈ E. If this is not the case, the graph is
not chordal. A fill-in algorithm tests this condition and adds the required edges
to make the graph chordal. This algorithm runs in O(n + s′) time, where s′ is
the number of edges in the final chordal graph. Again, in the worst case, the
complexity is O(n2). These two steps, MCS and fill-in, can be computed to each
connected component separately or to the complete recombination graph with
the same result. The algorithms are applied in Lines 2 and 3 of Algorithm 1.

3.2 Clique Tree

Dynamic Programming is based on the exhaustive exploration of the cliques1

in the chordal graph. The maximum size of a clique in the chordal graph is
an upper bound of its treewidth, and determines the complexity of applying
dynamic programming to find the optimal solution. A clique tree of a chordal
graph is a tree where the nodes are cliques and for any variable appearing in
two of such cliques, the path among the two cliques in the tree is composed of
cliques containing the variable (junction tree property). We can also identify a
clique tree with a tree-decomposition of the chordal graph [4]. This clique tree
will determine the order in which the variables can be eliminated.

Starting from the chordal graph provided in the previous steps, we apply an
algorithm by Galinier et al. [13] to find the clique tree (Line 4 in Algorithm 1).
1 We will use the term clique to refer to a maximal complete subgraph, as the cited

literature does. However, the term clique is sometimes used to refer to a complete
subgraph (not necessarily maximal).



138 F. Chicano et al.

This algorithm runs also in O(n + e′) time and finds all the O(n) cliques of
the chordal graph. The cliques will be denoted with Ci, where i is an index
that increases when a clique is discovered by the algorithm. An edge joining two
cliques in the clique tree is labelled with a separator, which is the intersection of
the variables in both cliques. A clique Ci is parent of a clique Cj if they are joined
by an edge and i < j. In each clique Ci the residue, Ri, is the set of variables
that are not in the separator with its parent. In each clique Ci, the residue, Ri,
and the separator with the parent, Si, forms a partition of the variables in Ci.
It is not hard to prove that each variable is in the residue of one clique only. In
Fig. 3 (right) the residues and separators for all the cliques of the third connected
component of Fig. 2 are shown.

After computing the clique tree, all the subfunctions fl depending on a
nonempty set V of differing variables must be assigned to one (and only one)
clique Ci containing V (Line 5 in Algorithm 1). They will be evaluated when this
clique is processed. There can be more than one clique where the subfunction
can be assigned. All of them are valid for a correct evaluation. We denote with
FCi

the set of subfunctions assigned to clique Ci.
The optimal offspring is found by iteratively reducing the variables in the

residue of the cliques (Line 6 in Algorithms 1 and 2). The clique tree must
be traversed in post-order in order to do this. During the clique evaluation, for
each combination of variables in the separator Si (Line 2 in Algorithm 2), all the
combinations of variables in the residue Ri are considered (Line 4 in Algorithm 2)
and evaluated over the subfunctions assigned to the clique (Lines 6–8) and their
child cliques (Lines 9–11). The evaluation in post-order makes it possible to
have the value array of the child cliques filled when they are evaluated. The
best combination of the variables in Ri for each combination of the variables of
Si is stored in the array variable in Line 14. This array will be used in the
reconstruction of the offspring solution (Line 7 in Algorithm 1). In Algorithm 2
we assume that value 0 for a variable means the value in the red parent and a 1
means the value in the blue parent. The term xV for V a set of variables, will
denote a vector with the variables in V .

The operator described is an Optimal Recombination operator: it finds the
best offspring from the largest dynastic potential. The time required to evaluate
one clique in Algorithm 2 is O((|FCi

|+ |children(Ci)|)2|Ci|), where children(Ci)
is the set of child cliques of Ci. The number of children is bounded by n and the
number of subfunctions m is bounded by O(nk) due to the k-bounded epistasis of
f . However, the exponential factor is a threat to the efficiency of the algorithm.
In the worst case Ci can contain all the variables and the factor would be 2n.

3.3 Limiting the Complexity

In order to avoid the exponential runtime, we propose to limit the exploration in
Lines 2 and 4. Instead of iterating over all the possible combinations for all the
variables in Si and Ri we fix a bound β on the number of variables that will be
exhaustively explored. The remaining variables will jointly take only two values,
each one coming from one of the parents. This reduces the exponential part of the



Quasi-Optimal Recombination Operator 139

Algorithm 2. Optimal Offspring Computation
1: for all cliques Ci of the clique tree in post-order do
2: for xSi ∈ {0, 1}|Si| do
3: value[xSi ] = −∞
4: for xRi ∈ {0, 1}|Ri| do
5: aux = 0
6: for f ∈ FCi do
7: aux = aux + f(x)
8: end for
9: for children cliques C′ of Ci do

10: aux = aux + value[xC′ ];
11: end for
12: if aux > value[xSi ] then
13: value[xSi ] = aux
14: variable[xSi ] = xRi

15: end if
16: end for
17: end for
18: end for

complexity of Algorithm 2 to 22β . Since β is a predefined constant decided by the
user of the algorithm, the exponential factor turns into a constant. The operator
is not anymore an optimal recombination operator, and this is the reason why we
call it quasi-optimal. In the cases where β ≥ |Ci| for all the cliques, the operator
will still return the optimal offspring. The next theorem presents the complexity
of DPX.

Theorem 1. Given a function in the form of (1) with m subfunctions, the com-
plexity of DPX with a constant bound β for the number of exhaustively explored
variables is O(4β(n + m) + n2).

Proof. We have seen in Sect. 3.1 that the complexity of Maximum Cardinal-
ity Search, the fill-in procedure and the clique tree construction is O(n2). The
assignment of subfunctions to cliques can be done in O(n + m) time, using the
variable ordering found by MCS to assign the subfunctions that depends on each
visited variable to the only clique where the variable is a residue. The complexity
of the dynamic programming computation is:

O

(
∑

i

(|FCi
| + |children(Ci)|)2|Ci|

)

= O

(

22β
∑

i

(|FCi
| + |children(Ci)|)

)

= O

(

4β(m +
∑

i

|children(Ci)|)
)

= O(4β(m + n)),



140 F. Chicano et al.

where we used the fact that the sum of the cardinality of the children for all the
cliques is the number of edges in the clique tree, which is the number of cliques
minus one, and the number of cliques is O(n). The reconstruction of the offpsring
solution requires to read all the variable tables until building the solution. The
complexity of this procedure is O(n). ��

In many cases, the number of subfunctions m is O(n) or O(n2). This is true,
in particular, when the function has k-bounded epistasis. In these cases, the
complexity of DPX reduces to O(4βn2).

3.4 Theoretical Comparison with (A)PX

It is clear that DPX is no worse than PX, since it considers each connected com-
ponent in the recombination graph and, in the worst case, it will do the same
as PX and will pick the variables from one of the parent solutions. We wonder,
however, if this happens with APX. If β is large enough for a given recombi-
nation, it cannot be worse than any recombination operator with the property
of gene transmission and, in particular, cannot be worse than APX. If β is not
that large and the limit in the exploration (SubSect. 3.3) is applied, it could
happen that articulation points are not explored as they are in APX. One pos-
sible threat to the articulation points exploration in DPX is that they disappear
after making the graph chordal. The next result proves that articulation points
survive the fill-in procedure and inspires a mechanism to reduce the probability
that a solution explored in APX is not explored in DPX.

Theorem 2. Articulation points of a graph are kept after the fill-in procedure.

Proof. Proving that all articulation points survive the fill-in procedure is equiv-
alent to proving that all the edges added by the fill-in procedure join vertices of
one single bi-connected component. If an edge (v, w) is added joining vertices of
two different bi-connected components, then two paths would exist to go from
v to w: the original path traversing at least one articulation point a and the
new edge. But, in this case, the articulation point a could be removed from the
graph. In the other direction, adding edges to a bi-connected component never
removes articulation points.

We assume that MCS has been applied to the graph. We denote with γ(v)
the number assigned by MCS to node v. Let us prove the claim by contradiction.
Imagine that edge (v, w) is added in the fill-in procedure, where v and w are in
different bi-connected components. The definition of fill-in (see [12]) implies that
there is a path among v and w where all the intermediate nodes have a γ value
lower than v and w. In particular, since v and w are in different bi-connected
components, all the paths between them include the same set of articulation
points and for all of them the value of γ is lower than min(γ(v), γ(w)). MCS
numbers the nodes in a connected component in decreasing order and in such
a way that all the numbered nodes are connected. Thus, in all the bi-connected
components the first node numbered by MCS is an articulation point, with the
only exception of the bi-connected component where the numbering starts. This



Quasi-Optimal Recombination Operator 141

implies that in one of the bi-connected components, say the one of v, there is
an articulation point av with γ(av) > γ(v) that was the first numbered in that
bi-connected component. Regarding the bi-connected component of w, if it is
the one where the numbering started, then there must be an alternative path
from w to v though av. But this means that w and v belongs to the same bi-
connected component, what is a contradiction. If the bi-connected component
of w is not where the numbering started, there must be an articulation point aw

with γ(aw) > γ(w) where the numbering started in that bi-connected compo-
nent. Once again, there must be an alternative path between v and w through
aw and av, contradicting the fact that v and w are in different bi-connected
components. Then, the fill-in procedure will not add edge (v, w). ��

The previous theorem implies that articulation points of the original recom-
bination graph are also articulation points of the chordal graph. Articulation
points of a chordal graph are minimal separators of cardinality 1 (see [13]) and
they will appear as separators Si in some cliques Ci. They are, thus, identi-
fied during the clique tree construction. In each clique Ci when β variables are
chosen to be exhaustively explored (Lines 2 and 4 of Algorithm 2) we choose
the articulation points first. This way, articulation points can be exhaustively
explored with higher probability. The only thing that can prevent articulation
points from being explored is that many of them appear in one single clique.
This situation is illustrated in Fig. 4. For β ≤ 1, the clique of articulation points
is evaluated only in the two parent solutions, and the same happens with the
other cliques, giving a total of 16 explored combinations. However, APX would
explore 20 combinations in this situation (see Eq. (6) in [7]).

3 6 4 1

5

2 C1 = {4, 5, 6}
S1 = ∅
R1 = {4, 5, 6}

C2 = {3, 6}
S2 = {6}
R2 = {3}

C3 = {2, 5}
S3 = {5}
R3 = {2}

C4 = {1, 4}
S4 = {4}
R4 = {1}

Fig. 4. Pathological component (left) in a recombination graph where DPX with β ≤ 1
explores less solutions (16) than APX (20) and its clique tree (right).

4 Experiments

In order to experimentally analyze the performance of DPX, we included it in the
Deterministic Recombination and Iterated Local Search (DRILS) algorithm [7].
We think this allows us to explore the performance of the operator in a real
scenario, rather than generating random solutions and providing them to the
operator. DRILS [8] uses a first improving move hill climber to reach a local



142 F. Chicano et al.

optimum. Then, it perturbs the solution by randomly flipping αN bits, where
α is the so-called perturbation factor. It then applies local search to the new
solution to reach another local optimum and applies crossover to the last two
local optima, generating a new solution that is improved further with the hill
climber. This process is repeated until a time limit is reached.

In our case, the recombination operator is DPX, but we also present results
with PX and APX in SubSect. 4.2 to compare the operators. In all the runs we set
a time limit of 60 s (1 min). Since the algorithms are stochastic, we performed 10
independent runs for each instance and algorithm. We tested DRILS with DPX
in NP-hard problems: random NKQ Landscapes with K ≥ 2, which allows us
to parameterize the density of edges in the VIG by changing K; and MAX-SAT
instances of the MAX-SAT Evaluation 2017. Random NKQ (‘Quantized’ NK)
landscapes [14] can be seen as Mk landscapes with one subfunction per variable
(m = n). Each subfunction fl depends on variable xl and other K = k−1 random
variables, and the codomain of each subfunction is the set {0, 1, . . . , Q−1}, where
Q is a positive integer. The values of the subfunctions are randomly generated.
Random NKQ landscapes are NP-hard when K = k − 1 ≥ 2. The computer
used for the experiments is a multicore machine with four Intel Xeon CPU (E5-
2670 v3) at 2.3 GHz, a total of 48 cores, 64 GB of memory and Ubuntu 16.04
LTS. The source code of all the algorithms can be found at https://github.com/
jfrchicanog/EfficientHillClimbers.

4.1 DPX Statistics

In a first experiment, we compute statistics about DPX. In particular, in Tables 1
and 2 we count the average number of connected components identified in the
recombination graph (Comp.), the average logarithm (in base 2) of the number of
explored solutions (Exp.), the percentage of applications where the full dynastic
potential is explored (Full) and the average runtime in milliseconds (Time). We
used instances of random NKQ Landscapes with n = 10 000 and n = 100 000
variables. The value for K varies from 2 to 5, Q = 64 and β varies from 2
to 5. For each combination of the parameters n and K we generated 10 random
instances and run DRILS with DPX 10 times. Thus, the numbers in the tables
are averages over 100 runs (the percentage of full explorations counts all the
applications of crossover in the 100 runs). The perturbation factor (α) in DRILS
was set to α = 0.05 in the cases K = 2, 3 and α = 0.01 in the cases K = 4, 5.
These values were taken from the recommendations in [8].

We observe in the tables that the percentage of applications of DPX where
the full dynastic potential is explored is high, almost always around or above
90%, except in the case of N =100 000 and K = 3. This percentage should
increase with β and it normally does, being the exceptions not significant. But
the fact that the value is high for low values of β (2 or 3) is an indication that
the cliques found in the recombination graph are small, with size 2 or 3 in most
of the cases. One can imagine that this corresponds to threads of variables with
some triangles sometimes. This corresponds with the plots presented by Chen et
al. in [9]. Due to this high percentage of success we can trust that the logarithm

https://github.com/jfrchicanog/EfficientHillClimbers
https://github.com/jfrchicanog/EfficientHillClimbers


Quasi-Optimal Recombination Operator 143

Table 1. DPX Statistics for n =10 000 variables.

Comp. Exp. Full (%) Time (ms) Comp. Exp. Full (%) Time (ms)

K = 2 K = 4

β=2 64 212 99.9 6.8 β=2 13 44 99.3 6.2

β=3 64 210 100.0 3.9 β=3 12 42 100.0 3.5

β=4 64 210 100.0 3.9 β=4 12 42 100.0 3.4

β=5 64 210 100.0 3.9 β=5 12 42 100.0 3.6

K = 3 K = 5

β=2 50 232 94.7 8.4 β=2 11 42 99.0 7.1

β=3 50 225 99.8 4.7 β=3 11 39 99.9 3.8

β=4 50 226 99.9 4.7 β=4 11 39 99.9 3.8

β=5 50 226 99.9 4.8 β=5 11 40 100.0 4.0

Table 2. DPX Statistics for n =100 000 variables.

Comp. Exp. Full (%) Time (ms) Comp. Exp. Full (%) Time (ms)

K = 2 K = 4

β=2 668 2 249 99.9 75.5 β=2 140 567 91.2 69.2

β=3 668 2 249 100.0 74.1 β=3 140 566 99.1 68.8

β=4 668 2 248 100.0 72.5 β=4 141 571 99.3 71.0

β=5 670 2 261 100.0 81.6 β=5 142 587 99.2 82.2

K = 3 K = 5

β=2 505 2 693 63.2 110.6 β=2 121 570 89.6 75.9

β=3 505 2 691 94.0 109.6 β=3 121 570 89.6 75.9

β=4 506 2 702 94.7 113.3 β=4 122 575 96.9 77.2

β=5 505 2 726 94.8 126.1 β=5 123 596 96.8 91.9

of the number of explored solutions (column “Exp.” in the tables) is a good
measure of the number of differing variables in the parent solutions. If we divide
this number by the number of components we find a value between 3 and 4. This
must be the average number of variables in each connected component.

Both the number of components and the differing variables are approximately
multiplied by 10 when we compare the 10 K variable instances with the 100 K
variable instances. We observe, however, that these values are similar for K = 2, 3
and are divided by 4 or 5 when K = 4, 5. The reason is the perturbation factor
α, which is also divided by 5 in these instances.

The runtime is in the order of a few milliseconds for 10 K variables and 70 to
100 ms for 100 K variables. This runtime should increase with β but we observe
some exceptions for low β. The reason has to do with the procedures in DPX
used to identify the group of variables that will be exhaustively explored and
the one for which only the parent solutions will be evaluated. From the results



144 F. Chicano et al.

of the tables, we conclude that a value for β of 3 or 4 is the best one for these
instances. Two other parameters affecting the runtime are the perturbation fac-
tor α, because it will determine the number of differing variables (the higher
the value the higher the runtime), and K, since it will add edges to the recom-
bination graph. This is why we observe that runtime increases from K = 2 to
K = 3 and from K = 4 to K = 5. Anyway, this runtime is small compared to
the number of solutions that are explored. If we take the results for N =100K
and K = 3 as an example, DPX is exploring 22693 solutions in 110 ms. This
is equivalent to exploring around 10800 solutions per nanosecond (ns) if a black
box approach is used.

4.2 Comparison with PX and APX for NKQ Landscapes

In this section we compare DPX with PX and APX. Table 3 shows a comparison
regarding three aspects: exploration capacity, runtime and performance inside
DRILS. The first two aspects depend only on the crossover operators and the
third one depends also on the algorithm (DRILS). For the exploration capacity
we show the logarithm in base 2 of the number of explored solutions by each
operator. We observe how DPX has the largest exploration capacity, around the
square of the one of APX (the logarithm is around double) and between the
fourth and fifth power compared to the one of PX. In terms of runtime, DPX
requires more time than PX and APX, as expected, and this time is between
20% and 70% higher than PX and APX. Finally, we compare the performance
of DRILS using each of the crossover operators. For each instance (ten per value
of K) we compare the medians of the algorithms after 1 min of computation
and we apply the Mann-Whitney test (with significant level 0.05) to check if the
differences are statistically significant. The numbers followed by a black triangle
(�), white triangle (�) and equal sign (=) are the numbers of instances in which
DRILS with DPX is statistically better, worse or similar to DRILS with the
operator of that column (PX or APX). The performance comparison suggests
that DPX is improving the search of DRILS only for K = 3. In the other cases
the other two operators (specially APX) are better. A complete explanation of
this observation requires further research, but we can guess that DPX can be too
greedy, providing a solution which is a (near) local optimum difficult to escape
from. It also requires more time to run and this time is used in the other versions
of DRILS to escape from the local optima. Both ideas can be checked with a
Local Optimal Network (LON) analysis, which we defer to future work.

4.3 Comparison with PX and APX for MAX-SAT

In Table 4 we compare PX, APX and DPX using MAX-SAT instances from the
MAX-SAT Evaluation 20172. We used the same instances as in [7]3 to allow an
easy comparison. They are 160 unweighted and 132 weighted instances.

2 http://mse17.cs.helsinki.fi/benchmarks.html.
3 The list of instances is at https://github.com/jfrchicanog/EfficientHillClimbers.

http://mse17.cs.helsinki.fi/benchmarks.html
https://github.com/jfrchicanog/EfficientHillClimbers


Quasi-Optimal Recombination Operator 145

Table 3. Comparison of PX, APX and DPX for N =100 000 variables. The value for
α depends on K as described in the text and in DPX we used β = 4.

K Exploration DRILS performance Runtime (ms)

PX APX DPX PX APX PX APX DPX

2 662 1 311 2 248 1� 0� 9 = 0� 8� 2 = 46 55 73

3 503 1 105 2 702 10� 0� 0 = 2� 0� 8 = 73 67 113

4 138 286 571 0� 4� 6 = 0� 9� 1 = 52 55 71

5 119 254 575 0� 9� 1 = 0� 10� 0 = 52 63 77

Table 4. Comparison of PX, APX and DPX for MAX-SAT instances (weighted and
unweighted). In all the cases α = 0.3 in DRILS and β = 4 in DPX.

Instances DRILS performance Runtime (μs)

PX APX PX APX DPX

Unweighted 126� 2� 32 = 96� 19� 45 = 1 060 849 1 907

Weighted 102� 14� 16 = 90� 17� 25 = 1 713 2 365 5 171

We observe how DPX required on average twice the time required by PX and
APX in each run, in the order of 2 to 5 ms. However, the performance of DRILS
using DPX is significantly better in most of the instances than the performance
when PX or APX is used. In particular, DPX is statistically better than APX
and PX in 96 and 126 unweighted instances, respectively. The difference in the
weighted instances is not so high, but still large enough to be promising. Inter-
estingly, weighted MAX-SAT instances must have a fitness landscape similar
to NKQ Landscapes while unweighted instances have a different fitness land-
scape, with many plateaus difficult to escape from. DRILS with DPX seems to
work better than DRILS with PX and APX in such a plateau-based landscape.
We defer to future work the detailed analysis of this performance and the big
difference with NKQ Landscapes.

5 Conclusions

In this paper we propose a new gray box crossover operator, DPX, with the
ability to obtain the best offspring out of the full dynastic potential if the density
of interactions among the variables is low. We have provided theoretical results
proving that DPX is no worse than Partition Crossover (PX) and usually no
worse than Articulation Points Partition Crossover (APX). We also compared
these three operators inside the DRILS algorithm in NKQ Landscapes and MAX-
SAT, certifying its exploration ability.

An interesting future line of research is to analyze the operator using Local
Optima Networks and the shape of the connected components of the recombi-
nation graph to understand the reasons for the observed different performance



146 F. Chicano et al.

in NKQ Landscapes and MAX-SAT. It would also be interesting to check the
performance of the operator in other algorithms and to develop a competitive
MAX-SAT solver based on it.

References

1. Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4),
339–384 (1994)

2. Eremeev, A.V., Kovalenko, J.V.: Optimal recombination in genetic algorithms.
CoRR abs/1307.5519 (2013). http://arxiv.org/abs/1307.5519

3. Hammer, P.L., Rosenberg, I., Rudeanu, S.: On the determination of the minima of
pseudo-boolean functions. Stud. Cerc. Mat. 14, 359–364 (1963)

4. Bodlaender, H.L.: Discovering treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30577-4 1

5. Whitley, D., Chicano, F., Goldman, B.W.: Gray box optimization for mk land-
scapes (nk landscapes and max-ksat). Evol. Comput. 24, 491–519 (2016)

6. Tinós, R., Whitley, D., Chicano, F.: Partition crossover for pseudo-boolean opti-
mization. In: Proceedings of the 2015 ACM Conference on Foundations of Genetic
Algorithms XIII FOGA 2015, pp. 137–149. ACM, New York (2015)

7. Chicano, F., Ochoa, G., Whitley, D., Tinós, R.: Enhancing partition crossover
with articulation points analysis. In: Proceedings of GECCO. GECCO 2018, pp.
269–276. ACM, New York (2018)

8. Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference GECCO 2017, pp. 753–760
(2017)

9. Chen, W., Whitley, D., Tinós, R., Chicano, F.: Tunneling between plateaus:
improving on a state-of-the-art maxsat solver using partition crossover. In: Pro-
ceedings of GECCO. GECCO 2018, pp. 921–928. ACM, New York (2018)

10. Tinós, R., Zhao, L., Chicano, F., Whitley, D.: Nk hybrid genetic algorithm for
clustering. IEEE Trans. Evol. Comput. 22(5), 748–761 (2018)

11. Terras, A.: Fourier Analysis on Finite Groups and Applications. Cambridge
University Press, Cambridge (1999)

12. Tarjan, R.E., Yannakakis, M.: Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM J. Comput. 13(3), 566–579 (1984)

13. Galinier, P., Habib, M., Paul, C.: Chordal graphs and their clique graphs. In: Nagl,
M. (ed.) WG 1995. LNCS, vol. 1017, pp. 358–371. Springer, Heidelberg (1995).
https://doi.org/10.1007/3-540-60618-1 88

14. Newman, M.E.J., Engelhardt, R.: Effect of neutral selection on the evolution of
molecular species. Proc. R. Soc. London B 256, 1333–1338 (1998)

http://arxiv.org/abs/1307.5519
https://doi.org/10.1007/978-3-540-30577-4_1
https://doi.org/10.1007/3-540-60618-1_88


Insights into the Feature Selection
Problem Using Local Optima Networks

Werner Mostert1(B), Katherine M. Malan2(B), Gabriela Ochoa3(B),
and Andries P. Engelbrecht1(B)

1 Stellenbosch University, Stellenbosch Central, Stellenbosch, South Africa
werner.mostert1@gmail.com, engel@sun.ac.za

2 University of South Africa, Muckleneuk, Pretoria 0002, South Africa
malankm@unisa.ac.za

3 University of Stirling, Stirling FK9 4LA, UK
gabriela.ochoa@cs.stir.ac.uk

Abstract. The binary feature selection problem is investigated in this
paper. Feature selection fitness landscape analysis is done, which allows
for a better understanding of the behaviour of feature selection algo-
rithms. Local optima networks are employed as a tool to visualise and
characterise the fitness landscapes of the feature selection problem in
the context of classification. An analysis of the fitness landscape global
structure is provided, based on seven real-world datasets with up to 17
features. Formation of neutral global optima plateaus are shown to indi-
cate the existence of irrelevant features in the datasets. Removal of irrel-
evant features resulted in a reduction of neutrality and the ratio of local
optima to the size of the search space, resulting in improved performance
of genetic algorithm search in finding the global optimum.

Keywords: Local optima networks · Feature selection ·
Fitness landscape analysis

1 Introduction

To further the development of a generalised theoretical framework for feature
selection, and to better understand the feature selection problem, this paper
analyses fitness landscapes of the feature selection problem.

The binary feature selection problem has the goal of finding the subset of
all features that are the most relevant for a classification task. A full enumer-
ation of candidate solutions (i.e subsets of features) is performed to construct
a complete fitness landscape for a number of real-world classification problems.
The size of the solution space grows exponentially as the number of features
increases, making a full enumeration computationally infeasible for a large num-
ber of features. Therefore, only datasets with a small number of features (less
than 18) are considered in this paper.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 147–162, 2019.
https://doi.org/10.1007/978-3-030-16711-0_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_10&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_10


148 W. Mostert et al.

A number of different approaches have been proposed for solving the feature
selection problem [4,12–14,23,24]. Chandrashekar et al. [4] showed that the per-
formance of different feature selection techniques are often problem dependent
and that the methods show vast disparity in their success ratios. This paper uses
two wrapper methods and one filter method to analyse the behaviour of feature
selection algorithms with respect to problem landscape characteristics. Fitness
landscapes can be a valuable tool to understand problems and to analyse search
algorithm behaviour [20], since fitness landscapes possess structural attributes
that influence the performance of search algorithms [16].

Local optima networks [19] have previously been used to characterise the
global structure of fitness landscapes for benchmark combinatorial problems.
The quadratic assignment problem [6], NK -landscapes [22] and the number par-
titioning problem [18] are examples of combinatorial problem case studies using
local optima networks as an analytical tool. For small instances of the feature
selection problem (in this study with less than 18 features), a full enumeration
of all candidate solutions is computationally practical. This allows for the con-
struction of complete local optima networks and a full analysis of the global
structure of fitness landscapes for instances of classification problems.

New insights to the nature of the feature selection problem are obtained using
local optima networks. The local optima networks for the real world classifica-
tion problems reveal interesting fitness landscape characteristics of the feature
selection problem, before and after feature removal. Removal of irrelevant fea-
tures shows a reduction in neutrality in the fitness landscape, a reduction in the
ratio of local optima to the size of the search space, and a reduction in problem
difficulty for genetic algorithm search.

The following section gives an overview of the feature selection problem
and local optima networks, while Sect. 3 describes the experimental process and
algorithm details. Finally, the results obtained are discussed in Sect. 4 and the
paper is concluded in Sect. 5.

2 Background and Related Work

This section discusses the general feature selection problem and gives an overview
of local optima networks.

2.1 The Feature Selection Problem

The feature selection problem is concerned with finding a set of the most relevant
features from the set of all available features for a classification task. A solution
to the feature selection problem can be represented as a binary string of length n,
where n is the number of features in the dataset and each bit indicates whether
the feature is selected or not.

Feature selection is applied as a pre-processing technique in order to reduce
the dimensionality of a problem by removing redundant and irrelevant features.
The issue of feature irrelevance can be misleading since two mutually exclusive



Insights into the Feature Selection Problem Using Local Optima Networks 149

features could be useless, but the union of these features could be information
rich with respect to the dependant variable [10]. The utilisation of a subset of
relevant features as opposed to the set of all features has been shown to increase
classifier performance, reduce computational complexity, and lead to a better
understanding of the data for machine learning [4].

Feature selection algorithms can be categorised into three distinct categories,
namely filter, wrapper and embedded methods. Filter methods [4] establish how
important features are based on information with respect to the dependent vari-
able, using measures such as correlation or mutual information. Wrapper meth-
ods [4] use subsets of features, for which a measure of the model accuracy is
obtained per subset of features. Heuristic search is used by wrapper methods to
determine the set of most relevant features with the model accuracy as objective
function. Embedded methods [4] search for the most relevant features by taking
advantage of the built in learning process, such as with decision trees [10].

Choosing the most suitable feature selection algorithm for a given dataset is
an unsolved problem, since there is a lack of an underlying theoretical framework
and a limited understanding of the nature of the feature selection problem [10].
Fitness landscapes can be used to better understand the nature of the search
spaces of optimisation problems [16] and in this paper, local optima networks
are employed to characterise and visualise the fitness landscapes for the feature
selection problem.

2.2 Local Optima Networks

A fitness landscape is formulated as a triplet (S,N, f) [21], where S is the set of
all candidate solutions, N is an operator that defines a neighbourhood structure
in the solution space, and f : S −→ R is a fitness (objective) function that
assigns to all s ∈ S a solution quality. Binary solution spaces are have a size of
|S| = 2N , where N represents the dimensionality of the problem.

Local optima networks [19] are inspired by the work of Doye [7] in modelling
physical energy landscapes of atomic clusters as complex networks, serving as a
powerful tool to analyse the global structure of a fitness landscape. For combi-
natorial spaces, the idea is adapted from connected energy minima to weighted
graphs of local optima in the fitness landscape [19]. Definitions of the components
of the local optima network model are given below, assuming a maximisation
problem.

Local Optimum. A local optimum s∗ ∈ S∗, where S∗ ⊂ S is the set of locally
optimum solutions, is defined as a solution where ∀s ∈ N(s∗), f(s) < f(s∗).

Local Optima Network. A local optima network, G = (S∗, E), represents the
weighted graph of all local optima solutions S∗, where an escape edge eij ∈ E
exists between nodes S∗

i and S∗
j .

Escape Edge. An escape edge [22] represents the probability of moving into a
neighbouring basin of attraction from a local optimum, after a defined controlled
perturbation followed by a hill-climbing local search to find the connecting local
optima.



150 W. Mostert et al.

Basin of Attraction. A basin of attraction of a local optimum s∗
i is the set

bi = {s ∈ S | LocalSearch(s) = s∗
i }. The number of solutions, |bi|, in the basin

of attraction represents the size of the basin.

Monotonic Local Optima Network (M-LON). The monotonic local optima net-
work, M-LON = (S∗, E), is the graph where the nodes s∗

i ∈ S∗ are the local
optimum plateaus, and there is an edge eij ∈ E, with weight wij , between two
nodes s∗

i and s∗
j if wij > 0.

M-LON Plateau. The set of connected nodes in the M-LON with equal fitness.

Compressed LON Nodes. The set of M-LON plateaus, C∗.

Compressed Monotonic Local Optima Network (CM-LON). The local optima
network, CM-LON= (C∗, E), is the graph where the nodes ci ∈ C∗ are M-LON
plateaus. Weighted edges in the CM-LON are aggregated for the edges of nodes
in the M-LON plateau.

3 Experimental Setting

This section describes the classification datasets used in this study. The con-
struction of the fitness landscape using the full enumeration of feature subsets
is then described, followed by the different feature selection algorithms and the
approach used to construct and visualise the local optima networks.

3.1 Datasets

The University of California, Irvine (UCI), Machine Learning Repository [15]
contains a wide range of datasets that can be used for various machine learn-
ing objectives. Seven of the UCI repository classification datasets, containing
a variety of nominal and numerical features, were used in this study and are
summarised in Table 1.

Table 1. Datasets

Dataset Nominal Numerical # Classes # Data elements # Features

breast-cancer Yes No 2 286 9

zoo Yes Yes 7 101 17

page-blocks No Yes 5 5473 10

vowel Yes Yes 11 990 13

breast-w No Yes 2 699 9

heart-statlog No Yes 2 270 13

diabetes No Yes 2 768 8

The number of features for the datasets considered were kept small in order
to be able to compute a full enumeration of the search space, taking into account
that the search space expands exponentially with every feature that is considered.



Insights into the Feature Selection Problem Using Local Optima Networks 151

3.2 Fitness Function

A measure of classification accuracy based on a test dataset is used as the fitness
value for a solution, s, where s is a subset of features. A bit string representation
is used for solutions to indicate inclusion or exclusion of a specific feature. The
test dataset is obtained by doing a 50/50 split of the original dataset, where the
training dataset is used to perform the feature selection.

The classic k-nearest-neighbour [1] using Euclidean distance, a simple non-
stochastic classifier, is used as implemented in the Weka Machine Learning
software development kit [11]. Stochasticity involved with calculating fitness is
avoided since it would introduce noise into the fitness landscape. The best value
for k is problem dependant. For the purpose of this paper, it is not necessary to
use optimal values for k since the focus of this paper is to understand the effect
of the inclusion and exclusion of features on the fitness landscape. Therefore, k
is arbitrarily chosen as k = 3.

The measure of classification accuracy is defined as Cohen’s Kappa-statistic,
a measure non-biased by class imbalance. Cohen’s Kappa is defined as [3]:

κ =
P0 − Pc

1 − Pc
(1)

where Pc is the probability of agreement by chance and P0 is the total agreement
(i.e. the number of correctly classified instances). The Kappa statistic allows for
the level of agreement with respect to each class label to be measured. The Kappa
statistic is a robust measure of accuracy, normalised to the range [−1, 1], where
total disagreement is represented as κ = −1, completely random classification
as κ = 0, and total agreement as κ = 1. Using non-biased measures of classifier
accuracy is important since a raw percentage of correct classification may be
statistically biased due to a skewed distribution of classes.

A full enumeration of candidate solutions is done. For datasets with a large
number of features, it becomes computationally infeasible to do a full enumera-
tion (an NP-hard problem [2]). A full enumeration for small binary spaces allows
the construction of a complete local optima network to analyse and visualise the
feature selection problem.

3.3 Feature Selection Algorithms

This section describes the filter method and the two wrapper methods that
are used to conduct feature selection in this study. The three feature selection
methods below are chosen since each method addresses the problem in a very
different way.

Filter Method. The information gain [5] feature evaluation measurement is
selected for use by the ranker filter method, as implemented in Weka [11]. Using
the training dataset, the features are ranked based on relevance with respect to
the class, from high to low. Given a list of ranked features, each linear combina-
tion of features from highest relevance to lowest relevance is considered and the
fitness of the solution is evaluated.



152 W. Mostert et al.

For example, for the set of all features sorted by decreasing information
gain, F = {1, 5, 2, 4, 3}, the following five feature sets are considered in order:
{1}, {1, 5}, {1, 5, 2}, {1, 5, 2, 4}, and {1, 5, 2, 4, 3}. The fitness of each subset of
features is computed by applying k-NN on the test dataset with the subset of
features and using the Kappa statistic as an accuracy measure. The feature set
with the highest fitness value is selected as the output of the filter method. The
data instances used to determine information gain are restricted to the training
set only. This is done to fairly evaluate the performance against the wrapper
methods, which use the same set for training.

Sequential Forward Selection Wrapper Method. The sequential forward selection
(SFS) algorithm is used as implemented by GreedyStepwise in Weka [11]. The
SFS algorithm starts with an initial empty set of features and sequentially adds
a feature that results in better fitness up until there are no features that can be
added that will result in better fitness than the current solution.

Genetic Algorithm Wrapper Method. The genetic algorithm wrapper method
uses the classic genetic algorithm as described by Goldberg [9]. The following
parameters were set for the genetic algorithm:

– Population size : 20
– Number of generations : 20
– Crossover probability : 0.6
– Mutation probability : 0.033

The Weka [11] default parameters were used for all datasets. Since the genetic
algorithm has a stochastic element, fitness is reported as the mean over 30 inde-
pendent runs of the algorithm.

3.4 Local Optima Network Generation and Visualisation

The open source Java library by Fieldsend [8] was used to generate the local
optima network (LON) graph. Since a full enumeration of the candidate solutions
in the search space is done, an exhaustive LON is generated which indicates all
of the local and global optima that exist for each problem. In the LON graph,
therefore, each node is either a local or a global optimum.

An edge between two nodes in the LON indicates that the two basins con-
taining the optima are regarded as neighbours in the search space. Two common
concepts used to define neighbourhood between basins in a LON are basin tran-
sitions [17] and escape edges [22]. In this study, the escape edges definition of
neighbourhood is used since the basin transition definition, for a full enumera-
tion, produces vastly dense networks. Using escape edges, two local optima are
defined as neighbours in the LON if it is possible for any candidate solution in
the basin of one local optimum to reach a candidate solution in the basin of
the other optimum after a controlled perturbation. In this study, the ‘controlled
perturbation’ for defining neighbourhood between basins is set to 2 bit flips. A
larger value for the number of bit flips results in a less connected LON, whereas
a single bit flip results in a more densely connected LON.



Insights into the Feature Selection Problem Using Local Optima Networks 153

The generated local optima network is visualised, with the size of the nodes
proportional to the basin sizes for the local optima. The edge weights, repre-
sented as the width of the edges in the visualisation, between nodes indicates
the probability of moving to the connected node.

The nodes and edges are coloured as described in Table 2.

Table 2. Local optima network node & edge colours

Node colour Node description Edge colour Edge description

Red Global optima Green Deteriorating fitness

Blue Best local optima in a non-global funnel Blue Neutral fitness

Gray All other local optima Gray Improving fitness

Compressed monotonic local optima networks [18], as defined in Sect. 2.2, is
an adaptation of the local optima networks for connected local optima with equal
fitness. Compressed monotonic local optima networks are used for visualisation
of neutrality for the feature selection fitness landscapes. The compressed local
optima networks show the size of the local optima plateaus as a box, where the
length of box is proportional to the size of the plateau.

4 Results

The feature selection algorithm performance for each respective dataset is sum-
marised in Table 3. The performance ratio, Pratio, is calculated as,

Pratio = 1 − f(sglobal − f(sbest))
sglobal

where f is the fitness function using Cohen’s Kapa statistic for k-KNN, sglobal
is the solution with the best fitness of all candidate solutions (obtained by a full
enumeration) and sbest is the solution that is returned by the feature selection
algorithm. A performance ratio of 1.0 means that the algorithm found a global
optimum. For the genetic algorithm (GA) wrapper method, the mean of the
fitness values for each run of the algorithm is used to calculate the performance
ratio. The GA success ratio is presented as the number of times a single run of
the genetic algorithm found a global optimum as a proportion of the number
of independent runs (30) of the algorithm. The values in bold show the best
performance per feature selection algorithm.

The sequential forwards selection wrapper (SFS) method found a global opti-
mum for two of the datasets. The GA wrapper method found a global optimum
for at least one of the runs for all datasets, evident since the success ratio is
always greater than 0. The filter method comes close to finding the global opti-
mum, as can be seen in the breast-w dataset with a performance ratio of 0.9920,
but failed to find a global optimum for any of the datasets.



154 W. Mostert et al.

Table 3. Feature selection algorithm performance

Dataset Pratio(Filter) Pratio(SFS) Pratio(GA) GA success ratio

breast-cancer 0.8315 0.9827 0.9758 0.3666

zoo 0.9711 0.8281 0.9872 0.1333

page-blocks 0.9409 1.0 0.9896 0.0666

vowel 0.8228 1.0 0.9826 0.7

breast-w 0.9920 0.9845 0.9992 0.8666

heart-statlog 0.9443 0.9443 0.9626 0.2

diabetes 0.9284 0.8899 0.9682 0.2333

The GA wrapper method comes close to finding a global optimum in terms
of fitness, but shows a largely disparate success ratio with 0.1333 for the vowel
dataset and 0.8666 for the breast-w dataset.

Table 4 summarises metrics calculated for the local optima networks for each
of the datasets. The metrics give an analytical indication to the structure of the
local optima networks. The values in bold represent the highest value for each
metric for the different data sets that are analysed.

Table 4. Local optima network metrics

Dataset N optima N global Bsize global Str global N coptima Prop neutral

breast-cancer 30 1 0.0605 0.2252 24 0.2

zoo 4938 2 0.0012 0.0094 1342 0.7282

page-blocks 11 1 0.0958 0.152 11 0

vowel 42 4 0.1472 0.4988 15 0.6428

breast-w 40 3 0.1192 0.2423 14 0.65

heart-statlog 135 1 0.0135 0.062 109 0.1925

diabetes 8 1 0.1607 0.354 8 0

Table 4 contains the following metrics, with definitions as follows:

– N optima: Number of nodes (total number of optima, including global and
local)

– N global : Number of different global optima
– Bsize global : Normalised size of the global optimum. Notice that there can be

more than one global optimum
– Str global : Incoming strength of global optimum normalised by the total

incoming strength
– N coptima: Number of compressed local optima
– Prop neutral : Proportion of local optima that have a neutral connection

(N optima−N coptima
N optima )



Insights into the Feature Selection Problem Using Local Optima Networks 155

Three of the datasets exhibited multiple global optima, where the remainder
of the datasets exhibited a single global optimum. The dataset that contained
the most global optima is the vowel dataset with four global optima. The three
datasets that exhibited more than one global optimum also show the largest
proportion of neutrality between nodes in the local optima network. The zoo
local optima network shows a 0.7282 local optima neutrality proportion, which
indicates that 72.82% of all optima in the local optima network have at least
one local optimum to which it is connected via a neutral edge (i.e. equal fitness
between connected nodes).

The number of local optima are evidently correlated with the size of the
search space, but does not necessarily tend to the same exponential scale since
the ratio of global optima with regards to the number of candidate solutions
differ.

(a) breast-w LON (b) vowel LON (c) zoo LON

Fig. 1. Local optima networks

The constructed local optima networks are shown in Fig. 1. Only the datasets
with multiple global optima are presented. Due to the size of the zoo local optima
network, it has been pruned to 258 out of the 4938 with a fitness value threshold
for visualisation purposes.

It is observed from the local optima network visualisations in Fig. 2 that
there are multiple global optima that are closely co-located. The nodes that are
global optima form a fully connected sub-graph with neutral edges between them.
Figure 2 shows a three dimensional visualisation of the local optima network that
clearly illustrates the neutral plateau formed by the global optima for the breast-
w dataset. The global optima neutral plateau can be seen in Fig. 2 by the three
red nodes (global optima) that are fully connected with blue (neutral) edges.

To investigate the presence of other (local) optima plateaus in the LON, a
compressed monotonic LON (CM-LON ) representation is used. This represen-
tation shows interconnected local optima via neutral edges as a box in the local
optima network, where the length of the box is representative of the number
of local optima that are connected. Nodes are still represented as circles where
there are no local optima connected via a neutral edge. The CM-LON for each



156 W. Mostert et al.

Fig. 2. 3D Local Optima Network for breast-w dataset. (Color figure online)

of the three datasets with multiple global optima are presented in Fig. 3. The
colouring scheme remains the same as for the full local optima networks.

(a) breast-w CM-LON (b) vowel CM-LON (c) zoo CM-LON

Fig. 3. Compressed monotonic local optima networks.

Note that the individual nodes of the global optima are now collapsed into
a single node, confirming the observation that the global optima are connected
via neutral edges. The breast-w dataset exhibits a proportionally large local
optima plateau and several smaller local optima plateaus, where the zoo dataset
exhibits multiple proportionally larger local optima plateaus. Neutrality in a
landscape represents a lack of information for search and metaheuristic search
algorithms, such as genetic algorithms. Genetic algorithms require strategies for
coping with high levels of neutrality. The vowel CM-LON shows that there is no
local optimum in the network that does not have at least one other connected
local optimum with equal fitness.



Insights into the Feature Selection Problem Using Local Optima Networks 157

The formation of global optima plateaus shows that there are features in the
global optima solutions that have no effect on fitness. Therefore, the symmetric
intersection of the feature subsets will result in the set of irrelevant features.
Table 5 shows the bit string representation of 10 local optima with the highest
fitness represented as s∗

i where i = 1, ..., 10 is decreasing in fitness. The bits in
bold represent the irrelevant features.

Table 5. Feature subsets for top 10 highest fitness local optima.

zoo breast-w vowel

Solution Features Solution Features Solution Features

s∗
1 00111101100011001 s∗

1 110001110 s∗
1 0011111100100

s∗
2 00111101100011011 s∗

2 110101011 s∗
2 0111111100100

s∗
3 01111101010011001 s∗

3 110101111 s∗
3 1011111100100

s∗
4 01111101010011011 s∗

4 010001111 s∗
4 1111111100100

s∗
5 00011101110011011 s∗

5 110011010 s∗
5 0001111110100

s∗
6 00011101110111011 s∗

6 101001100 s∗
6 1001111110100

s∗
7 00011101100011101 s∗

7 101001101 s∗
7 0001101110110

s∗
8 01011101100011101 s∗

8 111101000 s∗
8 0101101110110

s∗
9 00011101100011111 s∗

9 010001010 s∗
9 1001101110110

s∗
10 01011101100011111 s∗

10 111001010 s∗
10 1101101110110

The irrelevant features for the three datasets with multiple global optima
are removed and the local optima networks reconstructed. The expectation is
that the number of global optima should decrease. Figure 4 shows the newly con-
structed local optima networks for the three respective datasets when removing
the irrelevant features as determined in Table 5.

(a) breast-w LON (b) vowel LON (c) zoo LON

Fig. 4. Local optima networks after feature removal.

Visually, the local optima networks for the breast-w and vowel datasets indi-
cate the existence of a single global optimum after removal of the irrelevant



158 W. Mostert et al.

features. The zoo dataset, however, still has two global optima. Another feature
has now been highlighted as being irrelevant, after removal of the first irrelevant
feature that was detected in Table 5. This occurrence highlights the complex
relationship between features and how the existence of one feature may affect
the informational value of other features. The irrelevant feature is determined
by calculating the symmetric intersection between the sets of features for the
two global optimum solutions. After removal of the irrelevant feature, the local
optima network for the zoo dataset is shown in Fig. 5 (now with two features
removed). The fitness landscape of the zoo problem now has a single global
optimum.

(a) zoo LON

Fig. 5. Local optima networks after feature removal, round 2.

(a) breast-w CM-LON (b) vowel CM-LON (c) zoo CM-LON

Fig. 6. Compressed monotonic local optima networks after feature removal

The number of neutral edges in the zoo local optima network after removal
of two irrelevant features still stands out among the non-global local optima.
The number of neutral edges for the vowel and breast-w datasets after remov-
ing the irrelevant features has visually decreased. The compressed monotonic
local optima networks are given in Fig. 6, where all irrelevant features have been
removed.



Insights into the Feature Selection Problem Using Local Optima Networks 159

The contrast between the compressed monotonic local optima networks for
Fig. 6 (after irrelevant feature removal) and Fig. 3 (before irrelevant feature
removal) shows the reduction in the number and size of the local optima neutral
plateaus. The local optima network metrics for the now single global optima
datasets are given in Table 6.

Table 6. Local optima network metrics after feature removal.

Dataset N optima N global Bsize global Str global N coptima Prop neutral

zoo 656 1 0.0039 0.0452 193 0.7057

vowel 13 1 0.1252 0.5948 12 0.0769

breast-w 3 1 0.3513 0.6522 3 0.25

The feature selection problem dimensionality reduction obtained by removing
the irrelevant features is apparent in the now reduced number of local optima
as indicated in Table 6.

The visual observation of the reduction of neutrality in local optima net-
works in Fig. 4 is confirmed by the metrics in Table 6. The proportion of con-
nected nodes with neutral edges for the vowel and breast-w datasets decreased
drastically from 0.6428 to 0.0769 and 0.65 to 0.25, respectively. The zoo dataset
showed a smaller reduction less, from 0.7282 to 0.7057.

The removal of a feature changes the search space of the feature selection
problem, which will affect the behaviour of the feature selection search process.
The distribution of local optima and the shape of the fitness landscape changes,
therefore search algorithms have different information to guide search. Running
the feature selection algorithms on the now reduced datasets yield the perfor-
mance as summarised in Table 7. The values in bold represent an improvement
in performance.

Table 7. Feature selection algorithm performance after feature removal.

Dataset Pratio(Filter) Pratio(SFS) Pratio(GA) GA success ratio

zoo 0.9711 0.8281 0.9890 0.1333

vowel 0.8228 1.0 0.9888 0.8

breast-w 0.9923 0.9923 0.9997 0.9666

The genetic algorithm wrapper method performed better for all of the
datasets after removal of the irrelevant features, with significant improvement
in the success ratio for the vowel and breast-w datasets improving by 14.3%. As
a result of the increased success ratio, the performance ratio for the problems
also increased, albeit slightly. A Mann-Whitney U test on the samples of per-
formance ratio values for each run of the genetic algorithm, was conducted at



160 W. Mostert et al.

a p = 0.05 level of significance. The Mann-Whitney U test indicated that the
performance improvement is not statistically significant with regards to the per-
formance ratio. The zoo dataset did not show an improvement in success ratio
and showed a negligible increase in performance ratio at the third decimal.

The performance of the filter and sequential forward selection algorithms
was not affected by the removal of the irrelevant features for the zoo and vowel
datasets. A small to negligible improvement in performance ratio is observed
on the breast-w dataset for the filter and wrapper methods. The GA wrapper
method did not improve in its success ratio, which could be due to other factors
affecting the difficulty of the problem. The LON for this problem is observed
to contain local optima neutral plateaus that persist after the removal of the
neutrality directly attributed to irrelevant features, as seen in Fig. 6.

As previously mentioned, the number of local optima are correlated with
the size of the search space but are also affected by the presence of irrelevant
features. The zoo dataset, before irrelevant feature removal, exhibits a ratio of
0.0376 (4938217 ) local optima with respect to the total number of solutions. After
irrelevant feature removal the ratio changes to 0.02 (656215 ). The vowel and breast-
w ratio of local optima to number of solutions changed from 0.0051 and 0.0781 to
0.0063 and 0.0469, respectively. The removal of the irrelevant features therefore
resulted in a reduction in the ratio of local optima to number of solutions by
46.8% for the zoo dataset and 39.9% for the breast-w dataset. The vowel dataset
shows an increase in the number of optima at the third decimal which is seen as
a negligible change in local optima ratio to number of solutions.

The normalised incoming strength of the global optimum consistently
increases for all the datasets. The increased strength to the global optimum
from connected local optima indicates that there is a better chance for search
to move from a connected local optimum to the global optimum. Removing
irrelevant features therefore resulted in a higher probability of reaching a global
optimum and can be regarded as a reduction in search difficulty for algorithms
utilising neighbourhood in the search space.

5 Conclusion

The purpose of this paper was to conduct an analysis on the fitness landscapes
of the feature selection problem.

The construction of local optima networks for the feature selection problem
exhibited interesting problem properties that were previously unknown. These
insights allowed a better understanding of the performance differences between
feature selection algorithms for search spaces with and without irrelevant fea-
tures.

The construction of the local optima networks for the real world datasets that
were used, showed that the feature selection problem had either a single global
optimum or several global optima. For problems with multiple global optima,
the global optima were located within a single bit-flip neighbourhood of other
global optima forming a neutral plateau. Since the inclusion or exclusion of a



Insights into the Feature Selection Problem Using Local Optima Networks 161

particular feature had no effect on fitness (classification accuracy), it could be
deduced that these features were irrelevant to the classification task.

The incoming strength of escape edges to the global optima represents the
probability of moving towards the global optima from a connected local optima.
The consistent increase of the normalised incoming strength, after irrelevant fea-
ture removal, of the global optimum indicates a reduction in problem difficulty.
The proportion of local optima connected via neutral edges in the local optima
network consistently reduced when irrelevant features were removed. The pro-
portion of local optima connected via neutral edges fluctuated from a low amount
to a very high amount on a per problem basis.

The performance ratio of the filter and wrapper feature selection algorithms
did not significantly improve after removing irrelevant features. The success ratio
of the genetic algorithm did improve, and remained the same for one dataset,
after removing irrelevant features. There was no statistically significant improve-
ment in the performance ratio of the genetic algorithm wrapper method. The
improvement in success ratio serves as an indication that the genetic algorithm
found the global optima more often and is therefore an indication that the prob-
lem difficulty decreased.

Irrelevant features introduce misinformation in the search space, as evident
in the reduction of the proportion of local optima that exists in relation to the
size of the search space. Removal of irrelevant features generally reduces the
number of local optima, both as a result of the dimensionality reduction and
removal of misinformation.

The insights gained on the effect of irrelevant features on the fitness land-
scape and the global structure of the feature selection problem informs on the
behaviour of the feature selection algorithms and contributes to the greater goal
of meta-learning. Possible future work includes the study of the effect on the
fitness landscape using different classifiers and other approaches to feature selec-
tion. The effect of increased dimensionality on the fitness landscape is another
area of interest for future research.

References

1. Aha, D., Kibler, D.: Instance-based learning algorithms. Mach. Learn. 6, 37–66
(1991)

2. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables
or unsatisfied relations in linear systems. Theoret. Comput. Sci. 209(1), 237–260
(1998)

3. Ben-David, A.: Comparison of classification accuracy using cohen’s weighted
kappa. Expert Syst. Appl. 34(2), 825–832 (2008)

4. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput.
Electr. Eng. 40(1), 16–28 (2014)

5. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York
(2012)

6. Daolio, F., Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of the
quadratic assignment problem. In: 2010 IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 1–8. IEEE (2010)



162 W. Mostert et al.

7. Doye, J.P., Massen, C.P.: Characterizing the network topology of the energy land-
scapes of atomic clusters. J. Chem. Phys. 122(8), 84105 (2005)

8. Fieldsend, J.E.: Computationally efficient local optima network construction. In:
Proceedings of the Genetic and Evolutionary Computation Conference Companion,
pp. 1481–1488. ACM (2018)

9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley, Boston (1989)

10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach.
Learn. Res. 3, 1157–1182 (2003)

11. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009). https://doi.org/10.1145/1656274.1656278

12. Hancer, E., Xue, B., Zhang, M.: Differential evolution for filter feature selection
based on information theory and feature ranking. Knowl.-Based Syst. 140, 103–119
(2018)

13. Kira, K., Rendell, L.A.: The feature selection problem: traditional methods and a
new algorithm. In: AAAI, vol. 2, pp. 129–134 (1992)

14. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1),
273–324 (1997)

15. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

16. Malan, K.M., Engelbrecht, A.P.: A survey of techniques for characterising fitness
landscapes and some possible ways forward. Inf. Sci. 241, 148–163 (2013)

17. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)

18. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transi-
tions with local optima networks: number partitioning as a case study. In: Hu, B.,
López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55453-2 16

19. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: a new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes. ECC, vol.
6, pp. 233–262. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-
41888-4 9

20. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis.
In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intel-
ligent Engineering Systems, vol. 378, pp. 161–191. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-23229-9 8

21. Reidys, C.M., Stadler, P.F.: Combinatorial landscapes. SIAM Rev. 44(1), 3–54
(2002)

22. Vérel, S., Daolio, F., Ochoa, G., Tomassini, M.: Local optima networks with escape
edges. In: Hao, J.-K., Legrand, P., Collet, P., Monmarché, N., Lutton, E., Schoe-
nauer, M. (eds.) EA 2011. LNCS, vol. 7401, pp. 49–60. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-35533-2 5

23. Xue, B., Zhang, M., Browne, W.N.: Particle swarm optimization for feature selec-
tion in classification: a multi-objective approach. IEEE Trans. Cybern. 43(6),
1656–1671 (2013)

24. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based
filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

https://doi.org/10.1145/1656274.1656278
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://doi.org/10.1007/978-3-319-55453-2_16
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-41888-4_9
https://doi.org/10.1007/978-3-642-23229-9_8
https://doi.org/10.1007/978-3-642-35533-2_5


Clarifying the Difference in Local Optima
Network Sampling Algorithms

Sarah L. Thomson1(B) , Gabriela Ochoa1 , and Sébastien Verel2

1 Computing Science and Mathematics, University of Stirling, Stirling, UK
{s.l.thomson,gabriela.ochoa}@stir.ac.uk

2 Université du Littoral Côte d’Opale, EA 4491 - LISIC, Calais, France
verel@uni-littoral.fr

Abstract. We conduct the first ever statistical comparison between two
Local Optima Network (LON) sampling algorithms. These methodolo-
gies attempt to capture the connectivity in the local optima space of a
fitness landscape. One sampling algorithm is based on a random-walk
snowballing procedure, while the other is centred around multiple traced
runs of an Iterated Local Search. Both of these are proposed for the
Quadratic Assignment Problem (QAP), making this the focus of our
study. It is important to note the sampling algorithm frameworks could
easily be modified for other domains. In our study descriptive statistics
for the obtained search space samples are contrasted and commented
on. The LON features are also used in linear mixed models and ran-
dom forest regression for predicting heuristic optimisation performance
of two prominent heuristics for the QAP on the underlying combinato-
rial problems. The model results are then used to make deductions about
the sampling algorithms’ utility. We also propose a specific set of LON
metrics for use in future predictive models alongside previously-proposed
network metrics, demonstrating the payoff in doing so.

Keywords: Combinatorial fitness landscapes ·
Local optima networks · Quadratic Assignment Problem

1 Introduction

Local optima networks (LON ) are a partial fitness landscape of a combinatorial
optimisation problem [1]. Features of the networks have repeatedly been linked
to heuristic search in various famous problem domains ([2–5]). LONs were orig-
inally used for fully-enumerated fitness landscapes and therefore reflected small
problems. More recently, sampling algorithms have been proposed [5–7] with
the aim of using the analysis on larger problems. The nature, biases and resul-
tant samples of the algorithms are of critical importance in moving LON analysis
towards real-world systems. In this study we conduct the first comparison of sam-
pling algorithms for this purpose. Features of the samples are contrasted, and the

The paper “Clarifying the Difference in Local Optima Network Sampling Algorithms”
contained an error. The correct text was added at the end of the correction chapter.
The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-16711-0 14

c© Springer Nature Switzerland AG 2019, corrected publication 2021
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 163–178, 2019.
https://doi.org/10.1007/978-3-030-16711-0_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_11&domain=pdf
http://orcid.org/0000-0001-6971-7817
http://orcid.org/0000-0001-7649-5669
http://orcid.org/0000-0003-1661-4093
https://doi.org/10.1007/978-3-030-16711-0_14
https://doi.org/10.1007/978-3-030-16711-0_11


164 S. L. Thomson et al.

features are used in linear and random forest models for predicting heuristic per-
formance on the underlying combinatorial problems. In other words, we examine
which of the two most recent sampling algorithms ([6,7]) produces LONs with
more predictive power, in terms of their ability to measure search difficulty. We
also propose using funnel metrics as features for predictive models of algorithm
performance. A funnel is a large fitness landscape feature and is essentially a
basin of attraction at the level of local optima. The main contributions of this
paper are:

1. The first descriptive comparison of local optima network sampling algorithms.
2. Contrast of the differences in predictive power of the LON features for explain-

ing meta-heuristic variance.
3. The addition of a specific funnel metric set for predicting algorithm perfor-

mance in LON models using linear and random forest regression.

2 Definitions

A fitness landscape [8] is a triplet (S,N, f) where S is the set of all possible
solutions, N : S −→ 2S , a neighbourhood structure, is a function that assigns
to every s ∈ S a set of neighbours N(s), and f is a fitness (objective value)
function such that f : S −→ R, where the fitness value is a real number that can
be viewed as the height of a given solution in the landscape.

A local optima network is a representation of the fitness landscape at the
level of local optima. We now formally define the constituent parts of a local
optima network, before proceeding to describe the object as a whole.

Nodes. The set of nodes, LO, is comprised of local optima, i.e. a solution loi

satisfies the condition that it has superior fitness to all other solutions in its
neighbourhood: ∀n ∈ N(loi) : f(loi) ≥ f(n), where N(loi) is the neighbourhood
and n is a single neighbour.

Edges. The set of edges, E, consists of directed and weighted links. An edge is
traced if the probability of ‘escape’—using perturbation and then hill-climbing—
from the source node to the destination is greater than zero, and is weighted
with the probability. Formally, local optima loi and loj form the source and
destination of an edge iff wij > 0.

Local Optima Network (LON). The weighted local optima network LON =
(LO,E) is a graph where the nodes loi ∈ LO are the local optima, and there
exists an edge eij ∈ E, with weight wij , between two nodes loi and loj if wij > 0.
Note that wij may be different than wji. Thus, two weights are needed in general,
and so a local optima network is an oriented transition graph.

2.1 The ‘Network’ Feature Set

We now describe and introduce terminologies for the complex network features
we use in this study. The number of edges found in one of our sampled networks



Clarifying the Difference in Local Optima Network Sampling Algorithms 165

is referred to as edges. We also use the mean fitness found in the sample of
local optima comprising the network nodes, and denote this as meanfitness. The
network diameter (the longest possible length in number of edges separating
two nodes), diam, and the average out-degree (the number of edges which are
directed away from a particular node), outdegree, are also included.

2.2 The ‘Funnel’ Feature Set

A fitness landscape funnel is a basin of attraction at the level of local optima.
Instead of a single local optimum as an attractor for surrounding solutions,
every member of a funnel is a local optimum. Each of these is on a path which,
if followed, terminates at a single high-quality local optimum—the bottom of
the funnel. These funnel bottoms are also referred to as sinks from a graph
theory perspective, and are simply the nodes with no outgoing edges. We uncover
the funnels by first pruning off any LON edges which are non-improving in
fitness, and then by commencing a depth-first search from a funnel bottom, in
the process revealing the sequences of local optima which must terminate there.

We use four features relating to fitness landscape funnels in our analysis here.
The first is simply the amount of funnels as a proportion of the total node count,
funnel. We also use the number of compressed local optima. The compression
process happens during the network pre-processing for funnel analysis, where the
non-improving edges are removed, and then plateaus at the local optima level
are joined into a single node. The metric ncoptima is the number of optima left
after this processing of the network. Also considered is the incoming flow to sub-
optimal funnel bottoms or sinks (which can be calculated by the addition of the
incoming edge-weights to the sink nodes)—this is referred to as substrength, and
it comes as a proportion of the total flow going to all funnel bottoms, including
optimal ones. The fourth funnel feature is sinkfitness, which is simply the mean
fitness of funnel bottom nodes (sinks in the network).

3 Experimental Setting

3.1 Benchmark Test Problem

Our test instances are Quadratic Assignment Problems (QAP), where an optimal
assignment of N facilities to N locations is sought. Each facility, location pair
has an associated distance and flow between them. An instance of QAP, then, is
defined with two matrices: a distances matrix, and a flow matrix. A solution to
the QAP, π, is a permutation of facilities, while the objective value is calculated
as follows:

C(π) =
n∑

i=1

n∑

j=1

aijbπiπj

where A = {aij} and B = {bij} are the distance and flow matrices, respectively.



166 S. L. Thomson et al.

We focus exclusively on the much-studied Quadratic Assignment Problem
Library (QAPLIB). QAPLIB boasts a diverse selection of problems, both syn-
thetic and real-world, from different classes. Here we use 30 moderately-sized
instances, from various problem classes. The problem dimensions N are between
25 and 50, meaning 25–50 facilities to be assigned. Occurrences of the QAP
can largely be placed in one of four categories: Uniform random distances and
flows; random flows on grids; real-world problems; and random real-world like
problems. Instances from all of these categories are considered.

Uniform Random Distances and Flows. This class of QAP is known to be diffi-
cult for optimisation heuristics. The entries for both the distance and flow matri-
ces are taken at random from a Gaussian distribution. The naming convention
for them in the QAPLIB is tainna, with nn being the problem dimension. The
nature of the points on the plane is random. We use here tai25a, tai30a, tai35a,
and tai40a.

Random Flows on Grids. For these problems, the locations are each situated in
one square on an m*n grid, which is rectangular. The flow matrix entries are
generated randomly. From this category, we use nug25, nug27, nug28, nug30,
sko42, tho30, tho40, and wil50.

Real-World Problems. These problems arise from practical applications. We
briefly describe the instances used in this article. We use two bur instances,
which comprise of the average stenotypist’s typing data. Also included are some
kra problems: these were used to plan a German hospital. The esc instance we
use presents itself in computer science (the testing of sequential circuits). In the
ste problem set, the goal is to minimise the length of connections between units
that have to be placed on a rectangular grid. The real-world instances we use in
our analysis are bur26a, bur26b, esc32e, kra30a, kra30b, kra32, lipa30a, lipa30b,
lipa40a, lipa40b, ste36a, ste36b, and ste36c.

Random Real-World like Problems. The naming convention is tainnb, where nn
is the problem dimension. We use the problems tai25b, tai30b, tai35b, and tai40b.

Miscellaneous. The chr set of problems are a special occurrence of the QAP and
do not fit into any of the previous categories. The flow matrix forms a math-
ematical tree, with no particular specification for the definition of the distance
matrix. We use chr25a from this set.

3.2 The Sampling Algorithms

Snowball (Chain-Referral) Sampling. Snowball sampling is a process, originating
in the social sciences, where each respondent in a survey asks a few of their friends
to complete the survey as well. The social network of survey respondents is then
analogous to an ever-growing rolling snowball, growing larger with every step.



Clarifying the Difference in Local Optima Network Sampling Algorithms 167

Fig. 1. A representative LON for an instance from the Quadratic Assignment Problem
Library. Figures show LON samples as obtained by two different sampling methods.
The global optimum or optima in the samples are shown in red. (Color figure online)

This was introduced as the mechanism behind a sampling algorithm for local
optima networks very recently [7].

To construct the local optima network sample, the algorithm first starts from
a random solution and hill-climbs to a local optimum, xt. This local optimum
is the start-point of the walk. Then the recursive snowball procedure branches
from xt: the neighbouring local optima are explored, and then the neighbours
of those are explored, up to a specified ‘depth’ given by a parameter d. The
local optima are found by carrying out mutations followed by hill-climbing. The
hill-climbing used to obtain local optima is best-improvement and uses a random
pairwise swap of facilities as the operator. The perturbation operator is four of
these mutations in a row, i.e. four swaps.

After the snowball expansion of xt, the algorithm returns to the initial local
optimum xt and continues on its walk from there. Specifically, a neighbouring
local optimum which is not already present in the walk is found. If all neighbour-
ing local optima have been expanded, a new random solution is generated and
hill-climbing applied to find a local optimum for inclusion in the random walk.
Then, that optimum is included in the walk as xt+1 and becomes the ‘centre’
from which a new iteration of snowballing expansion begins. The algorithm then
goes back xt+1 and finds a neighbour to be xt+2 on the walk, and so on. The
walk xt...t+n is of a length given by the sampling parameter l.

LON snowball sampling is configurable with three parameters: l (length of
random walk), d (depth of snowballing), and m (number of sampled edges).
We use the three (l, d) combinations suggested in [7] for obtaining our LONs:
(100, 60), (400, 30), and (100, 30), alongside the suggested value for m, which is
two. The parameters l and d can be used to tune the sample obtained.

A full description of LON snowballing, including pseudo-code and descriptive
figures, can be found in [7] and its Algorithm 2 is particularly helpful. In the text



168 S. L. Thomson et al.

that follows, we refer to this sampling algorithm using the term walkSample, to
reflect the fact it is a sample based on a random walk.

Iterated Local Search Sampling. This sampling method is built around the com-
petent Improved Iterated Local Search [9] heuristic for the QAP, and was pro-
posed in [6]. The local optima network is built while the heuristic algorithm is
attempting optimisation. In essence, 200 ILS runs are commenced from different
random solutions; for each run, as the ILS progresses in the minimisation pro-
cess, all local optima encountered are recorded. Alongside these, every transition
between two local optima (using perturbation and then hill-climbing) is saved
as an edge in the network (LON), or if the edge has already been recorded, the
weight of the edge is incremented. Each run terminates either when the global
optimum is found, or after 10000 iterations without improvement.

The local search stage uses a first improvement hill-climbing variant with a
random pairwise swap operator (the same as the LS in walkSample. The pertur-
bation operator exchanges k randomly chosen items. In the original ILS algo-
rithm code, a few settings for k are suggested. We use a subset of those in this
study, namely: n

4 , n
2 , and 3n

4 . These settings are important for the construc-
tion of the LONs, because the perturbation mechanism controls the discovery
and inclusion of network edges (connections between nodes). A comprehensive
description of both the original ILS and the modified version for LON sampling
can be found in [6]. We refer to this sampling process henceforth by optSample,
to reflect the fact that the sampling is done alongside heurisitic optimisation.

Figure 1 compares a sample from optSample algorithm with one obtained
using walkSample. The Figure serves as a precursor to a formal comparative
analysis later on, but captures a remarkable amount of information. Both are
sampled local optima networks, extracted from the same Quadratic Assignment
Problem. The sample in Fig. 1a is extracted using optSample, while walkSample
was used to obtain the network in Fig. 1b.

In red is the global optimum (or the global optima), while all other nodes are
grey in colour. Both samples have been capped by fitness: only optima in the top
5% (Fig. 1a) and 0.05% (Fig. 1b) of the fitness distributions are included in the
plots. The latter percentile is lower because the sample had orders of magnitude
more optima and edges crowding its network at this fitness level.

Comparing the two plots, there are striking differences. Taking them in turn,
we can see that the high-quality sub-LON which optSample produces (Fig. 1a) is
extremely sparse, and indeed the two global optima are disconnected (isolated)
nodes in this graph. This could indicate that a heuristic would be unlikely to
end up at one of these apparently inaccessible nodes; alternatively, it could be
that the global optima are well connected nodes (or even network hubs), but
their network neighbours exist in lower-quality fitness levels.

Casting our attention to the LON in Fig. 1b—produced by walkSample—
it is a markedly more dense network. There are significantly more nodes and
edges between them. Recalling that this is only the highest-quality 0.05% of
local optima which were sampled, the implication is that this sampling method
exposes much of the neighbourhood (at the local optima level) surrounding the



Clarifying the Difference in Local Optima Network Sampling Algorithms 169

global optimum, and may be more suited to characterising this promising area
of the search space. A global optimum can be seen in the centre Fig. 1b.

3.3 Heuristics

To gain a view of empirical complexity of the chosen problem instances, we must
collect optimisation data by competent heuristic algorithms.

Two competitive algorithms from the literature are deployed: Stützle’s
Improved ILS for the QAP (IILS) [9], and Taillard’s Robust Taboo Search for the
QAP (TS) [10]. IILS comes with a wealth of viable parameter configurations. We
choose here first improvement hill-climbing, in combination with a perturbation
strength of 3n

4 pairwise exchanges of facilities.
To quantify their performance on the thirty problems, we use the performance

gap metric, which is the obtained fitness as a proportion of the desired fitness
after a fixed budget of iterations (1000 here). We take the average of this value
over 1000 runs. In the results that follow, this metric is referred to as IILSp and
TSp (shorthand for ILS and TS performance).

3.4 Predictive Model Setup

We use both linear mixed models and random forest regression models for algo-
rithm performance prediction. When considering our full (90 sampled LON per
sampling algorithm) sets of observations, we conduct random repeated sub-
sampling cross-validation (also known as bootstrapping) for 1000 iterations, each
time shuffling the observations randomly. We do this with an 80–20 training-test
split. The predictors are normalised as p = (p−E(p))

sd(p) . For the smaller datasets
(split by parameter set), we only have 30 observations, so we do not split into
training and test data, but use all 30 for regression. We still use bootstrapping
to average the model statistics over 1000 iterations.

In the results that follow, we focus on the adjusted R2 associated with each
of the models, which quantifies the amount of variance in the response variable
(in our case either IILSp or TSp) explainable using the set of features in question
(either the full metric set, which is the union of the network and funnel features,
or the funnel or network features exclusively).

For the random forest regression models, we also report the best four pre-
dictors for the models in terms of importance, computed during the model for-
mation. We do not conduct random forest regression on the smaller sets of 30
LONs—only on our two full sets of 90 LONs—to provide enough data for the
process.

4 Results

4.1 Sampling Algorithm Comparison

To have two sampling algorithms produce networks which are somehow corre-
lated would be encouraging. We rely on sampling algorithms for local optima



170 S. L. Thomson et al.

networks on problems of any reasonable size. As a result, before the algorithms
reach real-world applications, they must be refined. Table 1 provides Spearman
correlation coefficients, calculated between features of LONs obtained by opt-
Sample and walkSample, respectively. An indication of the p-value is given, as
described in the caption. Both network features and funnel features are included
as variables. These were introduced in Sects. 2.1 and 2.2, respectively.

Most of the features have a fairly weak correlation, but with a p-value less
than the threshold 0.05, giving evidence against the null hypothesis that the
sample features are unrelated. The correlation for the out-degree of the samples
is moderate, and has an encouragingly small p-value of < 0.001. The two
strongest associations are for the mean fitness in the network, and the mean
fitness of the funnel bottoms (sinkfitness), respectively. These two features seem
to show a great deal of agreement, gaining very strong correlations indicating
statistical significance.

Table 2 attempts to quantify the predictability of optSample and walkSam-
ple. This is done by looking at the ranges of values for important features of
the obtained LONs. The minimum value in the sample set is represented as a
proportion of the maximum value found.

Looking first at the column giving the information on optSample, we can see
that the proportions are mostly much nearer to zero than to one. This means
that the smallest values are completely dwarfed by the values of the largest. The
deduction from this is that you cannot tell this sampling methodology exactly
what which trajectory to follow. This is advantageous in the sense that it is
not rigid or artificially contained, but could also have the potential to result in
unreliable samples. It is, however, promising when considering the wide range
of the average outdegree of the obtained networks; this hints at hub-and-spoke
network structure being exposed (where it exists).

In contrast, the column showing the range information for walkSample shows
much larger proportions between 0.29 and 0.99, telling us that this algorithm
produces a fairly predictable and therefore tuneable number of nodes and edges.
However, because the range for the outdegree is very small (the smallest outde-
gree is almost as big as the largest, arising due to the nature of the algorithm),
important connections between local optima will likely be missed and so-called
network ‘hubs’ may never be found. These are critical because much of the flow
of the network—in our case, prospective heuristic search trajectories—may pass
through them or be drawn towards them.

4.2 Prediction of Heuristic Competence on the Problems

For our predictions, we computed models based on all 90 sampled LONs (that
is, 90 per sampling algorithm), which comprise LONs generated using three
parameter sets, each of them used for all 30 instances.

We also wanted to see the predictive power when using LONs generated using
a single, fixed set of parameters; therefore, we also considered subsets of the LON
datasets, where we split into sets of 30.



Clarifying the Difference in Local Optima Network Sampling Algorithms 171

Table 1. Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, for pairs
of features from the two sampling algorithms.

Predictor Corr.

optima 0.239∗

edges 0.149

ncoptima 0.249∗

outdegree 0.441∗∗∗

diam –0.212∗

meanfitness 0.990∗∗∗

sinks 0.112

sinkfitness 0.990∗∗∗

substrength 0.274∗∗

Table 2. The variance (represented as the minimum value as a proportion of the
maximum value) of some key metrics for the sampled LONs.

Predictor optSample walkSample

optima 0.0003 0.2499

edges 0.0003 0.2499

outdegree 0.0508 0.9999

sinks 0.0003 0.2499

For optSample, the parameter difference came from the perturbation setting
used in the construction of the edges, connecting optima in the sample. The three
settings of this were n

4 , n
2 and 3n

4 , and the LON sets corresponding to these are
referred to as set 1, set 2, and set 3 (in that order) in the models that follow.
The set of all 90 LONs together is set 4.

In the case of walkSample, the parameter combinations were of the sampling
depth, d and length of walk, l. The sets used were (60, 100), (30, 400), and (30,
100); these are referred to as set 1, set 2, and set 3, respectively. Again, the set
of all 90 LONs combined is set 4.

Table 3 reports the adjusted R2 for several predictive models. Each row gives
information on the models in question. The columns represent, in order, the
sampling algorithm used to obtain the LON samples (Sample); the type of pre-
dictive methodology (Model, one of random forest, rf, or linear mixed model,
lm); the set of features used as predictors (Features); the parameter set used in
the construction of the network samples (Param); and an indication of whether
ILS or TS performance gap was the response variable. The higher the values
for the models, the more explainable the variance in the optimisation metric is
using that set of predictors.



172 S. L. Thomson et al.

Table 3. Adjusted R2 values for linear and random forest models to explain heuristic
performance variation on the combinatorial problems.

Sample Model Features Param. ILS TS

optSample lm all set 1 0.733 0.425

optSample lm all set 2 0.727 0.592

optSample lm all set 3 0.757 0.734

optSample lm all set 4 0.673 0.539

optSample lm funnel set 1 0.544 0.144

optSample lm funnel set 2 0.428 0.170

optSample lm funnel set 3 0.487 0.265

optSample lm funnel set 4 0.434 0.167

optSample lm network set 1 0.480 0.399

optSample lm network set 2 0.471 0.424

optSample lm network set 3 0.535 0.595

optSample lm network set 4 0.539 0.366

optSample rf all set 4 0.799 0.543

optSample rf funnel set 4 0.615 0.444

optSample rf network set 4 0.678 0.521

walkSample lm all set 1 0.584 0.299

walkSample lm all set 2 0.723 0.809

walkSample lm all set 3 0.673 0.608

walkSample lm all set 4 0.511 0.328

walkSample lm funnel set 1 0.449 0.289

walkSample lm funnel set 2 0.431 0.276

walkSample lm funnel set 3 0.434 0.393

walkSample lm funnel set 4 0.320 0.328

walkSample lm network set 1 0.355 0.086

walkSample lm network set 2 0.445 0.463

walkSample lm network set 3 0.366 0.136

walkSample lm network set 4 0.262 0.098

walkSample rf all set 4 0.497 0.337

walkSample rf funnel set 4 0.274 0.217

walkSample rf network set 4 0.217 0.001

Focusing on the optSample entries, we can see that the general trend is that
more variance is explained in the ILS than in the TS (compare ILS column with
TS column). When considering the 90 LONs together, using all the features
together (all) produces the strongest models of the three predictor sets (all,
funnel, and network). These are followed by the network predictor set models,



Clarifying the Difference in Local Optima Network Sampling Algorithms 173

Table 4. Predictor rankings for the size random forest models.

Sample Features Param Resp. 1 2 3 4

optSample funnel set 4 ILS sinkfitness ncoptima funnel substrength

optSample network set 4 ILS meanfitness edges outdegree diam

optSample all set 4 ILS meanfitness sinkfitness ncoptima edges

walkSample funnel set 4 ILS sinkfitness ncoptima funnel substrength

walkSample network set 4 ILS meanfitness outdegree edges diam

walkSample all set 4 ILS meanfitness sinkfitness outdegree substrength

optSample funnel set 4 TS sinkfitness ncoptima funnel substrength

optSample network set 4 TS meanfitness outdegree edges diam

optSample all set 4 TS outdegree sinkfitness edges meanfitness

walkSample funnel set 4 TS sinkfitness ncoptima funnel substrength

walkSample network set 4 TS meanfitness outdegree edges diam

walkSample all set 4 TS sinkfitness meanfitness outdegree ncoptima

with the funnel set coming in lowest. This being said, the R2 values for the full
predictor set are higher than for using the network metrics alone, meaning that
including the funnel features provides some extra information on the performance
of the ILS and TS.

The poorest fits of the optSample linear mixed models come from the predic-
tion of TS response using only funnel variables, with only a maximum of 27%
of variance being explained. If we compare the random forest models with the
linear mixed models—taking the bottom three optSample rows against the set 4
(full set) optSample rows—it can be seen that these are stronger than the linear
predictions.

The walkSample models are summarised in the lower half of Table 3. Let us
first consider the values obtained using the full set of 90 sampled LONs (the
rows where column Param. is stated as set 4 ). Comparing these three with one
another, we see that for ILS, the best predictor set is all the metrics together. The
funnel set work the next-best, with the network set coming in last for predictive
power. For Tabu Search prediction, using the full feature set produces an R2

value of 0.328. Interestingly, using exclusively the funnel set produces the same
strength of model. Using only the network features has a very poor result, with
only 0.098% of variance in performance gap being explained by these.

Just like with the optSample models, the trend over the models here is that
more of the variance in ILS is explainable with the predictors than that of the
TS. This can be seen by locating the ILS column and checking against the
neighbouring TS column entries.

The random forest models for walkSample LONs are generally a bit weaker
than their linear counterparts (the bottom three rows compared with the set 4
rows above). In the random forest section, we can see that for these, using the
full set of features produces the highest R2 values. For ILS, using the funnel or
network predictor sets is basically comparable (0.274 and 0.217 respectively),



174 S. L. Thomson et al.

but for TS the network set is basically useless (0.001) while the funnel set has
some utility (roughly 22% of variance explained).

We now compare the random forest models for the two sampling methodolo-
gies and look at six rows in total (all rows where Model is rf ). What is clear,
if going by these alone, is that optSample has more predictive power for these
problems and algorithms than walkSample. This can be seen in the uniformly
higher R2 entries.

Doing the same comparison for the linear models for each of our two sampling
algorithms (every row where Model is stated as lm), it is less of a clear-cut
distinction. Granted, the general trend is that optSample has higher R2 values,
but there are exceptions, notably in the funnel set predictions for Tabu Search,
which are poorer than the equivalent models for the walkSample.

Table 4 reports a ranking of features in terms of importance in their predictive
random forest models. They are ranked from 1–4. The column labelled ‘1’ shows
the most important feature from the model specified in that row. In the cases
where the full feature set are used as predictors (the rows where Features are
stated as ‘all’), there were eight variables used, but only the best four are reported
in the Table.

We can see from examining the ‘1’ row that almost always, the meanfitness
(mean local optimum fitness in the network) and sinkfitness (mean funnel bottom
fitness in the network) are ranked as the most important. Outdegree seems to be
important for prediction of the response variables too.

Looking to the last column, we can see that substrength and diam populate
most of it, indicating these are of lower importance as predictors.

Correlation Study. Figure 2 is a correlation matrix contrasting observed fea-
tures (edges, meanfitness, outdegree, diam, substrength, sinkfitness, funnel, and
ncoptima), of the local optima networks sampled by optSample with heuristic
performance on the underlying combinatorial problem (IILSp and TSp).

Each entry in the upper-right triangle is a Spearman correlation between
the row and column variables. The black text is the overall correlation for all 90
LONs, while the coloured text is the correlations for only LONs from a particular
parameter set (red is set 1, green is set 2, and blue is set 3). The diagonal
shows density plots for the features, with the lower-left triangle showing pairwise
scatterplots.

We are, of course, principally interested in the connections between our
heuristic performance metrics, and the features of the sampled LONs. The eas-
iest way to approach this is by locating the IILSp and TSp rows and looking
along them, checking against the intersections for interesting correlations. For
IILSp, we can see that (if we are taking p < 0.05 to be indication of statisti-
cal significance), many correlations seem notable: ncoptima, funnel, sinkfitness,
substrength, diam, outdegree, meanfitness, and edges.

The deduction while reading these is that of those listed, the ones with neg-
ative coefficients are correlated to a better heuristic search (a lower performance



Clarifying the Difference in Local Optima Network Sampling Algorithms 175

−0.658***
−0.472**

−0.776***
−0.779***

0.470***
1: 0.388*

2: 0.537**
3: 0.575**

−0.566***
−0.645***
−0.556**

−0.585***

−0.289**
1: −0.243
2: −0.346
3: −0.350

0.240*
P1: 0.281
P2: 0.322
P3: 0.147

0.111
P1: 0.111
P2: 0.111
P3: 0.111

0.470***
: 0.491**
2: 0.421*
3: 0.431*

−0.161
1: −0.043
2: −0.314
3: −0.258

0.377***
P1: 0.351
2: 0.481**
3: 0.475**

−0.253*
1: −0.229
2: −0.273
3: −0.323

0.115
P1: 0.203
P2: 0.119
P3: 0.003

0.003
P1: 0.083
2: −0.037
3: −0.064

−0.311**
1: −0.311
2: −0.311
3: −0.311

0.103
P1: 0.103
P2: 0.103
P3: 0.103

−0.072
1: −0.026
2: −0.078
3: −0.193

−0.034
P1: 0.047
2: −0.269
−0.581***

0.239*
P1: 0.147
2: 0.395*
 0.717***

−0.291**
1: −0.114
2: −0.270
−0.587***

−0.154
1: −0.225
2: −0.068
3: −0.053

0.406***
1: 0.410*
P2: 0.165
3: −0.058

0.116
P1: 0.011
P2: 0.160
P3: 0.095

0.346***
P1: 0.293
P2: 0.345
P3: 0.208

−0.089
P1: 0.135
2: −0.173
3: −0.176

0.298**
P1: 0.169
2: 0.427*
P3: 0.341

−0.028
1: −0.077
2: −0.130
3: −0.074

0.832***
 0.782***
 0.901***
 0.813***

−0.102
1: −0.057
2: −0.102
3: −0.121

0.355***
P1: 0.143
P2: 0.216
P3: 0.106

0.652***
: 0.474**
 0.772***
 0.772***

−0.993***
−0.974***
−0.999***
−0.996***

0.577***
 0.673***

2: 0.556**
 0.592***

−0.218*
1: −0.274
2: −0.312
3: −0.131

0.158
P1: 0.047
P2: 0.311
P3: 0.254

−0.012
1: −0.134
P2: 0.035
P3: 0.058

−0.227*
1: −0.111
: −0.389*
−0.719***

0.089
1: −0.161
P2: 0.175
P3: 0.172

0.116
P1: 0.200
P2: 0.125
P3: 0.005

−0.008
P1: 0.083
2: −0.042
3: −0.069

−0.310**
1: −0.309
2: −0.311
3: −0.311

0.102
P1: 0.103
P2: 0.102
P3: 0.102

−0.070
1: −0.030
2: −0.077
3: −0.194

0.999***
 1.000***
 0.999***
 0.999***

0.121
P1: 0.002
P2: 0.156
P3: 0.086

−0.099
1: −0.051
2: −0.096
3: −0.125

−0.002
1: −0.134
P2: 0.040
P3: 0.062

ncoptima funnel ILSp TSp edges meanfitness outdegree diam substrength sinkfitness

ncoptim
a

funnel
ILSp

TSp
edges

m
eanfitness

outdegree
diam

substrength
sinkfitness

0 2 4 00.157.005.052.000.0 −10 −5 0−6−5−4−3−2−10 0 2 4 0 1 2 3 0 2 4 0 2 4 00.157.005.052.000.0 0 1 2 3

0.0
0.2
0.4
0.6
0.8

0.00

0.25

0.50

0.75

1.00

−10

−5

0

−6
−5
−4
−3
−2
−1

0

0

2

4

0

1

2

3

0

2

4

0

2

4

0.00

0.25

0.50

0.75

1.00

0

1

2

3

Fig. 2. Correlation matrices of performance metrics and optSample-produced LON
features. Lower triangle: pairwise scatter plots. Diagonal: density plots. Upper triangle:
pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.



176 S. L. Thomson et al.

−0.132
P1: 0.088
2: −0.010
3: −0.251

−0.071
1: −0.214
2: −0.089
3: −0.144

0.069
P1: 0.033
2: −0.057
P3: 0.211

0.100
P1: 0.296
2: 0.405*
3: 0.398*

0.236*
P1: 0.282
P2: 0.167
P3: 0.280

0.111
P1: 0.111
P2: 0.111
P3: 0.111

0.898***
P1: 0.052
2: −0.107
P3: 0.134

−0.104
1: −0.165
P2: 0.112
3: −0.175

0.015
1: −0.027
P2: 0.117
P3: 0.067

0.031
P1: 0.095
P2: 0.145
P3: 0.104

0.315**
0.928***
0.855***
0.888***

−0.069
P1: 0.085
P2: 0.054
3: −0.301

−0.287**
1: −0.287
2: −0.287
3: −0.287

0.171
P1: 0.172
P2: 0.172
P3: 0.172

−0.025
1: −0.016
2: −0.261
P3: 0.030

0.395***
1: −0.283
2: −0.252
3: −0.133

0.181
1: −0.236
P2: 0.339
P3: 0.098

−0.203
1: −0.160
2: −0.306
3: −0.228

−0.150
1: −0.173
2: −0.319
3: −0.180

0.482***
1: −0.011
2: 0.433*
P3: 0.099

−0.027
1: −0.202
2: −0.116
3: −0.035

−0.146
1: −0.214
2: −0.211
: −0.365*

0.051
1: −0.081
P2: 0.056
P3: 0.105

−0.015
P1: 0.034
P2: 0.052
3: −0.172

0.071
1: −0.009
P2: 0.239
3: −0.037

−0.025
1: −0.038
0.659***

P3: 0.220

−0.247*
1: −0.105
2: −0.357
: −0.455*

0.369***
0.707***

2: 0.528**
P3: 0.305

0.282**
P1: 0.071
P2: 0.271
P3: 0.356

−0.233*
1: −0.212
2: −0.174
: −0.363*

−0.051
1: −0.217
P2: 0.091
3: −0.049

0.013
1: −0.025
2: −0.080
P3: 0.148

0.211*
P1: 0.096
P2: 0.127
P3: 0.235

0.257*
P1: 0.001
P2: 0.344
P3: 0.303

0.051
1: −0.161
2: −0.015
3: −0.203

−0.068
1: −0.172
2: −0.081
P3: 0.043

0.315**
0.928***
0.855***
0.888***

−0.069
P1: 0.085
P2: 0.054
3: −0.301

−0.287**
1: −0.287
2: −0.287
3: −0.287

0.171
P1: 0.172
P2: 0.172
P3: 0.172

−0.025
1: −0.016
2: −0.261
P3: 0.030

1.000***
1.000***
1.000***
1.000***

−0.027
1: −0.202
2: −0.116
3: −0.035

−0.247*
1: −0.105
2: −0.357
: −0.455*

0.257*
P1: 0.001
P2: 0.344
P3: 0.303

ncoptima funnel ILSp TSp edges meanfitness outdegree diam substrength sinkfitness

ncoptim
a

funnel
ILSp

TSp
edges

m
eanfitness

outdegree
diam

substrength
sinkfitness

5.00.05.0−0.1−5.1− 40−e440−e200+e0 −10 −5 0−6−5−4−3−2−10 5.00.05.0−0.1−5.1− 0 1 2 3 −1 0 1 2 −1 0 1 2 0000.1 6999.0 2999.0 80+e500+e080+e5−

0

200

400

600

0e+00

2e−04

4e−04

−10

−5

0

−6
−5
−4
−3
−2
−1

0

−1.5
−1.0
−0.5

0.0
0.5

0

1

2

3

−1

0

1

2

−1

0

1

2

0.9992

0.9996

1.0000

−5e+08

0e+00

5e+08

Fig. 3. Correlation matrices of performance metrics and walkSample-produced LON
features. Lower triangle: pairwise scatter plots. Diagonal: density plots. Upper triangle:
pairwise Spearman’s rank correlation, ∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05.



Clarifying the Difference in Local Optima Network Sampling Algorithms 177

gap), while those with positive values are correlated with a larger performance
gap by our heuristics.

For IILSp, those that fall into the first (desirable) category are funnel, sink-
fitness, outdegree, and meanfitness. Those correlated with a larger performance
gap are ncoptima, substrength, diam, and edges. In general, the correlations with
the features and the performance metrics are stronger in the case of ILS than
for TS. However, there are a few to note for TS, selected for their associated
p-value: ncoptima, funnel, substrength, and edges.

Figure 3 has precisely the same layout as Fig. 2, but shows results for walk-
Sample instead of optSample.

If we assess things in the same way: the intersections of IILSp and TSp with
other columns and rows. In general, there are much weaker correlations with the
performance gap data here than we saw for the features of the optSample LONs.
This can be seen in the smaller values and lack of p-value indications for the
feature-performance pairs.

There are a few correlations of note, however: for IILSp, there are negative
correlations with statistically-sound p-values with meanfitness and sinkfitness –
i.e. if optima, and funnel bottoms, are of a higher-quality fitness, this is correlated
with a smaller performance gap attained by the ILS. There is also a positive
correlation between TSp and funnel, indicating funnels are correlated with a
larger performance gap for TS.

5 Conclusions and Thoughts

We have conducted an empirical comparison between two sampling algorithms
for local optima networks of the Quadratic Assignment Problem. It is essential
to refine sampling for local optima networks before we bring them to real world
systems. A descriptive statistical comparison was reported, as well as findings
pertaining to the algorithms’ predictive power in estimating the performance
gap obtained by two prominent meta-heuristics on the underlying combinatorial
problem.

We found that the two sampling methods exhibited some agreement in the
networks they produced and that we could reject the null hypothesis that they
produce completely independent samples. They differed from a descriptive per-
spective in that walkSample was tuneable and predictable, while optSample var-
ied widely but seemed good at finding hub-and-spoke structure in the local
optima space.

A correlation study for the LON features and the heuristic performance met-
rics was conducted. The correlations were stronger and clear when considering
the features of the LONs obtained using optSample than walkSample. We also
worked on predicting heuristic algorithm performance on the problems using
linear and random forest models, and found that the sampled LON features (for
both optSample and walkSample) better fit the ILS response variable than the
TS one. We saw that generally, including both the funnel metric set and the
network set would be advantageous in explaining search discrepancies for these



178 S. L. Thomson et al.

two heuristics. For both optSample and walkSample, the extracted funnel metrics
proved useful. Going off the random forest models alone, optSample uniformly
had more predictive power than its competitor, for these choices of instances
and heuristics.

From the random forest rankings, the most important predictors were those
pertaining to fitness in the sampled networks: the fitness of funnel bottoms, and
of nodes in general in the network. This hints that perhaps fitness levels in the
local optima space are more pertinent to heuristic search than the subset of
transition edges sampled by the LON algorithms.

Acknowledgements. This work is supported by the UK’s Engineering and Physical
Sciences Research Council (grant number EP/J017515/1). Data generated during this
research are available from the Stirling Online Repository for Research Data (http://
hdl.handle.net/11667/91).

References

1. Ochoa, G., Tomassini, M., Vérel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the 10th Annual Conference
on Genetic and Evolutionary Computation, pp. 555–562. ACM (2008)

2. Ochoa, G., Veerapen, N.: Mapping the global structure of TSP fitness landscapes.
J. Heuristics 24(3), 1–30 (2017)

3. Herrmann, S., Ochoa, G., Rothlauf, F.: Communities of local optima as funnels in
fitness landscapes. In: Proceedings of the 2014 Annual Conference on Genetic and
Evolutionary Computation, pp. 325–331 (2016)

4. McMenemy, P., Veerapen, N., Ochoa, G.: How perturbation strength shapes the
global structure of TSP fitness landscapes. In: European Conference on Evolution-
ary Computation in Combinatorial Optimization, pp. 34–49 (2018)

5. Iclanzan, D., Daolio, F., Tomassini, M.: Data-driven local optima network charac-
terization of QAPLIB instances. In: Proceedings of the 2014 Annual Conference on
Genetic and Evolutionary Computation GECCO 2014, pp. 453–460. ACM, New
York (2014). http://doi.acm.org/10.1145/2576768.2598275

6. Ochoa, G., Herrmann, S.: Perturbation strength and the global structure of QAP
fitness landscapes. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P.,
Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 245–256.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4 20

7. Verel, S., Daolio, F., Ochoa, G., Tomassini, M.: Sampling local optima networks
of large combinatorial search spaces: the QAP case. In: Auger, A., Fonseca, C.M.,
Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS,
vol. 11102, pp. 257–268. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-99259-4 21

8. Stadler, P.F.: Fitness landscapes. In: Lässig, M., Valleriani, A. (eds.) Biological
Evolution and Statistical Physics, vol. 585, pp. 183–204. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45692-9 10

9. Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J.
Oper. Res. 174(3), 1519–1539 (2006)

10. Taillard, É.: Robust taboo search for the quadratic assignment problem. Parallel
Comput. 17(4–5), 443–455 (1991)

http://hdl.handle.net/11667/91
http://hdl.handle.net/11667/91
http://doi.acm.org/10.1145/2576768.2598275
https://doi.org/10.1007/978-3-319-99259-4_20
https://doi.org/10.1007/978-3-319-99259-4_21
https://doi.org/10.1007/978-3-319-99259-4_21
https://doi.org/10.1007/3-540-45692-9_10


A Unifying View on Recombination
Spaces and Abstract Convex

Evolutionary Search

Marcos Diez Garćıa(B) and Alberto Moraglio

Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK
{md518,a.moraglio}@exeter.ac.uk

Abstract. Previous work proposed to unify an algebraic theory of fit-
ness landscapes and a geometric framework of evolutionary algorithms
(EAs). One of the main goals behind this unification is to develop an ana-
lytical method that verifies if a problem’s landscape belongs to certain
abstract convex landscape classes, where certain recombination-based
EAs (without mutation) have polynomial runtime performance. This
paper advances such unification by showing that: (a) crossovers can be
formally classified according to geometric or algebraic axiomatic prop-
erties; and (b) the population behaviour induced by certain crossovers
in recombination-based EAs can be formalised in the geometric and
algebraic theories. These results make a significant contribution to the
basis of an integrated geometric-algebraic framework with which analyse
recombination spaces and recombination based EAs.

Keywords: Abstract convex landscape · Abstract convex search ·
Convex hull closure · Geometric crossover · Recombination P-structure

1 Introduction

An open challenge in evolutionary computing is to identify (without running any
experiments) if a fitness landscape class is well matched with an evolutionary
algorithm (EA) class, where good performance guarantees can be provided. Pre-
vious work [1] laid the foundations for an analytical fitness landscape method
that determines if a problem’s landscape belongs to certain abstract convex
landscape classes, where certain recombination-based EAs exhibit polynomial
runtime [2]. The theories we began unifying, namely a general geometric frame-
work (GF) of EAs [3] and an algebraic theory of fitness landscapes known as
elementary landscapes (EL) [4], complement each other towards such challenge
even if they originally pursue distinct aims.

On the one hand, GF naturally frames (geometric) mutation and recombina-
tion operators within the same search space structure when viewed as a metric
space. Among the many benefits of this approach we find: having a clear way

The full version of this article, including some omitted proofs, can be found online at
https://www.researchgate.net/profile/Marcos Diez Garcia.

c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 179–195, 2019.
https://doi.org/10.1007/978-3-030-16711-0_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_12&domain=pdf
http://orcid.org/0000-0003-2802-1287
https://www.researchgate.net/profile/Marcos_Diez_Garcia
https://doi.org/10.1007/978-3-030-16711-0_12


180 M. D. Garćıa and A. Moraglio

of comparing mutation and crossover in a fitness landscape, the formal design
and analysis of EAs across many representations (real vectors, sets, permuta-
tions, syntactic trees, etc.), and generalisations of particle swarm optimisation
and genetic programming with important applications [3]. Besides, there has
been a recent development of general runtime analysis in GF [2]. Particularly,
geometric-crossover EAs (without mutation) are proved to find optimal solutions
in polynomial time by restricting to classes of problems with certain abstract
convex landscapes. However, GF lacks analytic tools to tell whether a given
landscape is abstractly convex.

On the other hand, EL provides algebraic means to analyse combinatorial land-
scapes. Some of them, called ‘elementary’, have received special attention because:
they satisfy desirable conditions related to smoothness (i.e. correlation between
fitness values) and structure of local optima, and they are present in important
NP-complete problems (e.g. travelling salesman, graph colouring, weight parti-
tioning, etc.). However, the algebraic structures known as P-structures that model
crossover are not so readily intuitive as geometric crossovers in GF [5]. Further-
more, studies on population-based search algorithms using P-structures are scarce
[6], and no runtime analysis has been done in this algebraic context.

Recombination landscapes are not essentially different in both theories and
can be unified, meaning that EL can be applied consistently to analyse certain
landscapes arising in GF [1]. This paper extends their unification, by showing
that the algebraic approach of EL admits dual formalisations of two fundamen-
tal aspects about crossovers and their behaviour in GF: classification of geomet-
ric crossovers and abstract convex search (accomplished by geometric-crossover
EAs). The main contributions are:

1. Proving the existence of two broad classes of crossovers: those which are
recombination P-structures, including geometric crossovers [1], and those
which are neither geometric nor recombination P-structures. This justifies
that a unification of GF and EL would not be an ‘empty’ theory (i.e. a the-
ory encompassing all recombination operators).

2. A formalisation of abstract convex search in EL, describing the population-
behaviour of recombination P-structure EAs; a class that is larger than
complete geometric-crossover EAs. It also provides a characterisation of
population-based EAs less restrictive than the existing one in EL.

This paper is organised as follows. Section 2 introduces recombination and
abstract convex search in GF. Section 3 introduces recombination in EL and
other concepts necessary to unify abstract convex search. Section 4 presents the
main results. Section 5 summarises this work and suggests future research.

2 Recombination in the Geometric Framework

Moraglio proposed a general geometric framework (GF) of EAs, independent
of the problem and representation of solutions, solely based on an axiomatic
definition of distance across metric spaces [3]. In GF, the search space of config-
urations (representing candidate solutions) is defined as a metric space (X, d),



A Unifying View on Recombination Spaces 181

with configuration set X and metric d : X × X → [0,∞). Thus, a metric space
constitutes the structure of a fitness landscape (X, d, f) with an arbitrary real-
valued fitness function f : X → R. This geometric view of the search space
allows mutation1 and crossover operators to be conceived within the same space
structure, by means of metric balls and metric segments respectively.

Definition 1 (Metric ball and segment [7]). Let (X, d) be any metric space.
A closed ball centered at point x ∈ X with radius r ∈ R≥0 is defined as
Bd[x; r] := {y ∈ X | d(x, y) ≤ r}. A geodesic interval or metric segment is
defined as [x; y]d := {z ∈ X | d(x, z) + d(z, y) = d(x, y)}, where x, y ∈ X are
called the extremes of the segment and d(x, y) its length.

Many kinds of crossovers can be modelled in GF (e.g. multi-parental or prob-
abilistic). For notational simplicity, we assume crossovers taking two parents and
returning one offspring; and, denote by Im[ξ(·, ·)] the set of all offspring produced
with non-zero probability by a crossover ξ, called the image set.

Definition 2 ([Complete] geometric crossover [3]). Let (X, d) be any met-
ric space. A crossover operator ξ is a geometric crossover for (X, d), if all offspring
belong to the parents’ metric segment. That is, ∀x, y ∈ X : Im[ξ(x, y)] ⊆ [x; y]d.
If ∀x, y ∈ X : Im[ξ(x, y)] = [x; y]d, then it is called complete geometric crossover.

Example 1 (Uniform geometric crossover). Let a Hamming metric space
(Hn

q , dH) be defined by a set Hn
q := {0, 1, . . . , q −1}n of n-dimensional Hamming

sequences on a q-ary alphabet for q ≥ 2, and the Hamming metric dH. Traditional
uniform crossover, denoted Uniform(x, y) for any parents x, y ∈ Hn

q , is an
example of a crossover that is geometric and also complete. For instance, consider
parents 100, 001 ∈ H3

2. Then, we have Im[Uniform(100, 001)] = [100; 001]dH .
The same holds for other pair of parents as well [3].

Example 2 (Non-complete geometric crossover). Consider the traditional
one-point crossover on Hamming sequences, but returning only a single offspring
with its ‘head’ coming from the first parent and its ‘tail’ from the second parent:
OnePoint(i) : Hn

q × Hn
q → Hn

q , (x, y) 	→ z = (x1, . . . , xi−1, yi, . . . , yn); where z
is offspring of parents x and y, at crossover point i: 1 ≤ i ≤ n. Notice for example,
OnePoint(2)(000, 111) = 011 is not generated by OnePoint(i)(111, 000) for
any 1 ≤ i ≤ 3. Therefore, it is not a complete geometric crossover, because it is
asymmetric, and still is geometric since offspring belong to parents segment [3].

However, some crossovers are not geometric. That is, for any metric on a given
set X, there always exist some offspring that lie outside the metric segment of
some parents. See Sect. 4.1 for examples of non-geometric crossovers.

1 Geometric mutation is defined by requiring that the mutated offspring belongs to
the d-metric ball of its single parent.



182 M. D. Garćıa and A. Moraglio

Proposition 1 (Existence of non-geometric crossovers [3,8]). The set of
non-geometric crossovers GX is not empty. Therefore, recombination operators
split into two proper classes: geometric GX and non-geometric GX . The class of
complete geometric crossovers, GX -complete, is a proper subclass of GX .

Achieving generality in a theory may come at the expense of depth, only
being able to assert trivial or tautological statements. Proposition 1 justifies
that this is not the case in GF, because it is not a theory of all crossovers,
rather it restricts to geometric crossovers only. Moreover, this crossover class is
relevant, since many crossovers across different representations are geometric,
and polynomial runtime guarantees are possible for geometric-crossover EAs in
problem classes with certain abstract convex fitness landscapes [2,3]. Essentially,
the abstract convex nature of landscapes is what enables good performance of
geometric-crossover EAs.

2.1 Abstract Convexity

To formalise the abstract convex search performed by geometric-crossover EAs
(Sect. 2.2), a more general notion of convexity than that of traditional Euclidean
spaces is required. A natural choice would be geodesic convexity, since GF under-
stands recombination in terms of geodesic intervals.

Definition 3 (Geodesic convex space [7]). Let (X, d) be a metric space. A
point z ∈ X is geodesically between two points x, y ∈ X, if and only if z ∈ [x; y]d.
Then, a subset C ⊆ X is geodesically convex if and only if all points geodesically
between any two points x and y in C are also in C, that is ∀x, y ∈ C : [x; y]d ⊆ C.
The family C of all geodesically convex subsets C on X is called the geodesic
convexity of (X, d), and the pair (X, C) a geodesically convex space.

Geodesic convexity is not equivalent to convexity (Definition 4); the latter
being more abstract, where metrics are undefined and the concepts of neigh-
bourhood or nearness are stated in terms of (convex hull) closure operators in a
set-theoretical fashion. We explain next why geodesic convexity is problematic
in our context.

Definition 4 (Convexity space [7]). A family C of subsets of a set X is called
a convexity on X if: (I) the empty set ∅ and the universal set X are in C; (II)
C is stable under arbitrary intersections, that is if D ⊆ C, then

⋂ D ∈ C; and,
(III) C is stable under arbitrary nested unions, that is if D ⊆ C is totally ordered
by inclusion, then

⋃ D ∈ C. The pair (X, C) is called convexity space; and the
members of C are called convex sets.

Definition 5 (Convex hull closure [7]). Let (X, C) be a convexity space. The
convex hull closure of a set A, co(A) :=

⋂{C | A ⊆ C ∈ C}, is the intersection of
all convex supersets C ∈ C, or equally the smallest convex set, that includes A.



A Unifying View on Recombination Spaces 183

Abstract convex search relies on convexity of sets, and precisely the prob-
lem with geodesic convexity is that it cannot guarantee across representations
(i.e. metric spaces) that a population set would be a convex set as in Defi-
nition 4. This is because metric segments do not share the convexity proper-
ties of convex hulls. In other words, metric segments need not be convex hulls:
[x; y]d ⊆ co({x, y}) for all x, y ∈ X [7]. Convexity spaces where equality holds
(i.e. geodesic convex sets equal the convex hull of their extreme points) are called
convex geometries [9].

2.2 Abstract Convex Search

GF postulates that the core behaviour of (recombination-based) EAs can be
described axiomatically across representations and problems, and, ultimately,
the differences between EAs stem from the representation of solutions and ade-
quacy of search operators [2,3,10]. To support this claim, GF proved that the
main operations of geometric-crossover EAs (i.e. selection, geometric crossover
and replacement) produce new individuals that always belong to the convex
hull of their ancestors; regardless of the representation, problem, geometric
crossover, offspring probability distribution imposed on the geometric crossover,
selection and replacement strategies [3,10]. This relationship between parents
and offspring via convex hulls is the key property characterising the population
behaviour of any geometric-crossover EA through generations (Fig. 1).

Fig. 1. Abstract convex search in two-dimensional Euclidean space: relationship
between parent P , mating pool after selection Psel and offspring Poffs populations,
and their respective convex hulls co(P ), co(Psel) and co(Poffs).

Proposition 2 (Abstract convex search [3]). Let (X, d) be a metric space
and Pt ⊆ X a population at generation t. For any EA doing the cycle selection-
geometric crossover-replacement: co(P0) ⊇ co(P1) ⊇ · · · ⊇ co(Pt) ⊇ co(Pt+1).



184 M. D. Garćıa and A. Moraglio

3 Recombination in Elementary Landscapes Theory

Stadler proposed an algebraic theory of fitness landscapes known as elementary
landscapes (EL) [4]. If the geometric approach of GF (Sect. 2) allows us to seam-
lessly understand mutation and recombination structures in the same space, in
EL the situation is more complicated. Originally, EL defines the search space
structure (X,N ) in terms of (mutation) neighbourhoods N : X → Xk mapping
an individual to some k > 0 possible neighbours (e.g. bit-flip mutation). This
naturally leads to formalise the search space as a graph, with the structure given
by the adjacency matrix. To model recombination, EL uses an algebraic notion
of interval (Definition 6) that captures general recombination structures, not just
genetic crossovers [11,12].

Definition 6 (Recombination P-structure [5]). Let X be a non-empty finite
set of configurations, P(X) its power set and an operator R : X × X → P(X)
mapping a pair of parents into a set of possible offspring. We call (X,R) a
recombination P-structure if ∀x, y, z ∈ X: (I) fix-point: R(x, x) = {x}; (II)
symmetry: R(x, y) = R(y, x); (III) null-recombination: {x, y} ⊆ R(x, y); and
(IV) size-monotonicity: if z is in R(x, y), then |R(x, z)| ≤ |R(x, y)|.

Example 3 (Uniform recombination P-structure). Let parents x, y ∈ Hn
q

be arbitrary Hamming sequences. Then, RΩ(x, y) := {(z1, . . . , zn) | zi ∈ {xi, yi},
1 ≤ i ≤ n} is a recombination P-structure [11]. For instance, consider x := 100
and y := 001 in H3

2, then we have offspring: RΩ(100, 001) = {100, 001, 000, 101}.

Fig. 2. Hypergraph of the uniform recombination P-structure RΩ in three-dimensional
binary Hamming space: vertices are ‘circles’, hyperedges are both ‘solid’ and ‘dotted-
enclosing lines’ (left). Enclosed vertices define hyperedges, not the ‘lines shapes’ or
their colours. Examples of specific hyperedges, offspring of RΩ and uniform geometric
crossover, and corresponding schema (right).



A Unifying View on Recombination Spaces 185

Example 4 (One-point recombination P-structure). Let parents x, y ∈
Hn

q be arbitrary Hamming sequences. Recall the single-offspring one-point cross-
over OnePoint(i) : Hn

q × Hn
q → Hn

q , (x, y) 	→ z = (x1, . . . , xi−1, yi, . . . , yn),
1 ≤ i ≤ n, from Example 2. Then, the one-point recombination P-structure
is R1(x, y) :=

⋃
1≤i≤n{OnePoint(i)(x, y),OnePoint(i)(y, x)} [12]. For exam-

ple, R1(000, 111) =
⋃

1≤i≤3{OnePoint(i)(000, 111),OnePoint(i)(111, 000)}
= {0, 1}3 \ {010, 101}.

However, recombination, acting on pairs of parents, does not have a natu-
ral interpretation in graphs. Instead, [5,12] propose hypergraphs (Definition 7),
where vertices remain as in graphs but edges are generalised to represent the
offspring sets produced by recombining pairs of parents. Figure 2 shows an
example for three-dimensional binary sequences and the uniform recombination
P-structure RΩ, other cases are difficult to visualise clearly.

Figure 2 also illustrates via hyperedges of RΩ hypergraph the following coin-
cidence: offspring produced by the uniform recombination P-structure RΩ and
Hamming segments are equivalent [11], and, independently, [10,13] show it for
Hamming segments, convex hulls and traditional schema [14]. For instance, the
schema 0** corresponding to the hyperedge {000, 001, 010, 011} is obtained by
RΩ(010, 001), [010; 001]dH or co({010, 001}).

Definition 7 (Hypergraph [5]). Let (X,R) be a recombination P-structure.
Its hypergraph (X,E ) has vertex set X and hyperedge set E := {R(x, y) |
R(x, y) �= ∅ ∧ x, y ∈ X}, where offspring R(x, y) represent a hyperedge.

Despite recombination search spaces are then formalised using hypergraphs,
they are comparable (i.e. topologically equivalent) to mutation spaces on graphs
under certain conditions [5].

3.1 Crossover Random Walk

Discrete-time dynamical systems may be used to model the behaviour of recom-
bination P-structure EAs, but this is often analytically impractical for realistic
EAs [6]. Instead, the model adopted in EL is a crossover random walk, a variation
on the simple random walk based on mutation moves: start with a prescribed
‘father’ x0 in a population, mate it with a ‘mother’ y0 randomly sampled from
the population to produce a ‘child’ z1, then repeat the cycle using the child as
father in the next recombination (Fig. 3) [4–6].

Fig. 3. Schematic representation of a crossover-walk over time.



186 M. D. Garćıa and A. Moraglio

In this manner, the sequence of fathers (or children) is a crossover ran-
dom walk. The main reason [4–6] use this model is that the generalised adja-
cency matrices of hypergraphs, associated to recombination P-structures, can be
seen as transition matrices of a Markov process. That is the population search
behaviour induced by recombination P-structures can be studied in terms of
Markov processes. However, [6] makes two important assumptions that cause the
model not to be general. First, it is assumed that there exists none or little sta-
tistical interdependence between genes (i.e. epistasis), and low selection genetic
pressure; otherwise, the analysis of population behaviour is impractical. Sec-
ondly, it is formalised exclusively for traditional string crossovers (e.g. one-point
or uniform), not all crossovers that can be described by general recombination
P-structures. Generalising this model remains as an open problem.

3.2 Bridge to the Geometric Framework

Figure 2 hints at a close relationship between geometric crossovers and recom-
bination P-structures. This is not coincidental. Indeed, complete geometric
crossovers are also recombination P-structures (Proposition 3). Note it does not
hold for general geometric crossovers, as [1] unwittingly claimed. For example,
any geometric crossover where offspring never include the parents will not fulfil
the null-recombination axiom (Definition 6), also the crossover in Example 2 is
geometric but not a recombination P-structure due to asymmetry.

Proposition 3 (GX -complete crossovers are recomb. P-structures [1]).
Let (X, d) be any metric space with finite set X, and any crossover ξ(x, y) :=
[x; y]d for arbitrary parents x, y ∈ X. Then, ∀x, y ∈ X and any metric d, (X, ξ)
is a recombination P-structure.

Fig. 4. Schematic comparison of (a) the convex hull closure, shaded in ‘grey’; (b)
recombination P-structure closure clR, in ‘solid lines’; and, (c) the twice-iterated cl2R,
in ‘solid and dotted lines’. For a given subset S := {A,B,C,D} of some space X.

Besides, recombination P-structures can be used to define closures that are
equivalent to convex hulls [11,12]. One may attempt to define one by taking the
union over all pairs of points for a given set, and collect their intervals given by
a P-structure (Fig. 4b). Precisely, this is the closure clR(S) :=

⋃
x,y ∈S R(x, y),

where S ⊆ X for a general recombination P-structure (X,R) [12]. However, it



A Unifying View on Recombination Spaces 187

Fig. 5. Space covered on the hypercube, with set of parents {000, 111}, by: one-point
recombination closure with one iteration cl1R1 (left), uniform recombination closure
cl1RΩ

and one-point twice-iterated cl2R1 (center). Super-indices indicate number of clo-
sure iterations, and sub-indices the recombination P-structure chosen.

does not equal the convex hull (Fig. 4a) because, unlike convex hulls, the closure
clR is not idempotent [7,15]. In general clR(clR(S)) �= clR(S), compare Fig. 4b
and c. See Fig. 5 for an example on the one-point recombination P-structure R1.
Since clR is not idempotent, [12] suggests to define a recursive version, for some
natural number k ∈ N0, as follows:

clkR(S) :=

⎧
⎪⎪⎨

⎪⎪⎩

S if k = 0,

clR(S) =
⋃

x,y ∈S

R(x, y) if k = 1,

clk−1
R (clR(S)) if k ≥ 2 .

(1)

The smallest k that makes clkR idempotent is the closure iteration number2,
denoted cin(S), of the subset S ⊆ X: cin(S) := mink∈N0 clk+1

R (S) = clkR(S); and
the maximum closure iteration number of X is cin∗(X) := maxS⊆X cin(S) [17].

However, what [12] does not explicitly notice is that clkR (Eq. 1) is an equiva-
lent definition of the convex hull closure, not just for recombination P-structures
but more generally for ‘relaxed’ recombination P-structures satisfying only the
null-recombination and symmetry axioms (also known as interval spaces).

Proposition 4 (Convex hull ≡ recomb. P-structure closure [7,17]). Let
(X,R) be a recombination P-structure. Then, for any subset S ⊆ X and any
natural number k ≥ cin(S): co(S) = clkR(S).

4 Main Results

This section contains the two main contributions of this paper. Section 4.1
shows that the geometric versus non-geometric crossovers classification can be
expanded by incorporating new recombination P-structures classes. Section 4.2
formalises abstract convex search for recombination P-structure EAs.
2 Certain crossover families (e.g. one-point and masked crossovers) have logarithmic

upper-bounds for the closure iteration number, with increasing dimension of the
search space [16]. In short, idempotency does not require excessively many iterations.



188 M. D. Garćıa and A. Moraglio

4.1 Axiomatic Classification of Crossovers

Proposition 1 justifies that GF is not a futile theory encompassing all crossovers,
because not all of them are geometric. Since recombination P-structures may be a
larger class than complete geometric crossovers, as Proposition 3 suggests, three
non-trivial relevant questions that we consider here are: (Q1) do recombination
P-structures encompass all crossovers, thus making GF-ELs unification futile;
(Q2) is there any crossover that is a recombination P-structure but not geometric;
and, (Q3) how recombination P-structures and geometric crossover classes com-
pare to each other. We tackle them in order as follows: Lemmas 1 and 2 answer
question (Q1) negatively; Theorem 1 together with Lemma 5 and Theorem 2
answer question (Q2) positively; and, Theorem 3 for question (Q3). The proofs
of Lemmas 3, 5 and 6, and the proofs of Theorems 1 and 2 have been omitted due
to page limit restrictions. The full version including proofs is available online.

Let us begin (Q1) by proving that Koza subtree swap crossover, which was
proved to be non-geometric [8], is not a recombination P-structure.

Lemma 1. Koza subtree swap crossover is not a recombination P-structure.

Proof. It is not geometric since it does not fulfill the purity inbreeding property
(i.e. recombining a parent with itself is the parent itself) [8]. Therefore, it does
not fulfil the fix-point axiom of recombination P-structures R(x, x) = {x}. ��

Davis order crossover is non-geometric [8]. Now, we prove it is not a recom-
bination P-structure, because it fails the symmetry axiom (Example 5); and,
neither for a symmetric version (Definition 9), because it is not size-monotonic
(Example 6).

Definition 8 (Davis order crossover [18]). Let individuals x, y, z ∈ Sn be
permutations of length n of a finite set S. Pick at random loci i and j such
that 1 ≤ i ≤ j ≤ n, as indices delimiting the crossover section3. Then, from the
first parent x (the ‘cutter’) copy into offspring positions zi, . . . , zj the crossover
section xi, . . . , xj . Finally, from left to right, fill in order the remaining positions
of z with the genes of the second parent y (the ‘filler’) except those that have been
copied. We denote this crossover, parametrised with crossover section indices i
and j, by Davis(i, j) : Sn × Sn → Sn, (x, y) 	→ z = Davis(i, j)(x, y).

Example 5 (Davis order crossover is asymmetric). Let parents x :=
312 (the ‘cutter’) and y := 123 (the ‘filler’). Consider offspring 213 =
Davis(2, 2)(312, 123), where 1 is the crossover section. Notice that 213 cannot
be generated by Davis(i, j)(123, 312) for any crossover section indices i and j,
because it is not possible to generate 2 at the first position. Either the second par-
ent places 3 or 1 as fillers, or the first parent places 1 with the crossover section.
Therefore, Davis(i, j)(312, 123) �= Davis(i, j)(123, 312), for 1 ≤ i ≤ j ≤ 3.

3 Notice that a crossover section with all parent’s genes is also a valid contiguous
section.

https://www.researchgate.net/profile/Marcos_Diez_Garcia


A Unifying View on Recombination Spaces 189

Example 4 demonstrated that if a crossover is asymmetric, it does not mean
there are no (symmetric) recombination P-structures based on it. In fact, that
example shows how symmetry is enforced on recombination P-structures for tra-
ditional genetic crossovers (e.g. two-point or uniform crossovers) [5,12]. Likewise,
we may define a symmetric Davis order crossover.

Definition 9 (Symmetric Davis order crossover). Let arbitrary parents
x, y ∈ Sn be permutations of length n of a finite set S. Then, s-Davis(x, y) :=⋃

1≤i≤j≤n{Davis(i, j)(x, y),Davis(i, j)(y, x)} is what we call symmetric Davis
order crossover ; producing all possible offspring of parents x and y, over all
possible crossover sections.

Example 6 (Symmetric Davis order crossover is not size-monotonic).
Using the same parents as in the previous example, we have s-Davis(312, 123)
= {312, 123, 321, 132, 213}. That is |s-Davis(312, 123)| = 5. Recombining now
parent x := 312 with offspring z := 213 we have s-Davis(312, 213) = {231} ∪ s-
Davis(312, 123). Therefore, |s-Davis(312, 213)| = 6 > 5 = |s-Davis(312, 123)|,
so s-Davis is not size-monotonic.

Lemma 2. Neither Davis order crossover (Davis) nor its symmetric version
(s-Davis) are recombination P-structures.

Proof. Examples 5 and 6 provide counterexamples respectively. ��
Therefore, the answer to (Q1) is negative by Lemmas 1 and 2, because GF-

EL unification is not a theory encompassing all crossovers. Regarding question
(Q2), we show next two examples of crossovers that are not geometric but are
recombination P-structures, at least in Hamming graphs: the all-paths crossover
(Definition 10), and the intersecting-balls crossover (Definition 11). Note that
these crossovers are not restricted to a particular representation, like Uniform
crossover on strings, so one must be specified when proving whether they are
geometric crossovers or recombination P-structures: choose a graph for all-paths,
or a metric space for intersecting-balls.

Definition 10 (All-paths crossover [11]). Let G be a connected graph with
vertex set V (G). Let also x, y, z ∈ V (G). Then, we define AllPaths(x, y) := {z |
z lies on any x-y path in G}, as the all-paths crossover that returns offspring z
lying on any path between parents x and y.

Example 7 (All-paths crossover in hypercubes). Let (H3
2, dH) be the

Hamming metric space of the three-dimensional hypercube graph. If parents are
identical, offspring equal parents: AllPaths(001, 001) = 001. But, if the par-
ents are different, then offspring are the whole vertex set: AllPaths(000, 001) =
{0, 1}3.

Lemma 3. Let x, y ∈ Hn
q be distinct vertices of a Hamming graph. Then,

AllPaths(x, y) returns all sequences Hn
q as offspring.

Proof. Omitted due to space restrictions. See the full paper version for details.

https://www.researchgate.net/profile/Marcos_Diez_Garcia


190 M. D. Garćıa and A. Moraglio

Theorem 1. Let (Hn
q , dH) be the Hamming metric space of an arbitrary Ham-

ming graph. Then, AllPaths(x, y) is not a geometric crossover, but it is a
recombination P-structure, for any parents x, y ∈ Hn

q .

Proof. Omitted due to space restrictions. See the full paper version for details.

Definition 11 (Intersecting-balls crossover). Let (X, d) be any metric
space and arbitrary parents x, y ∈ X. Then, we define the intersecting-balls
crossover as Balls(d) : X ×X → S ⊆ X, (x, y) 	→ Bd[x; d(x, y)]∩Bd[y; d(y, x)],
parametrised with metric d.

Lemma 4 is necessary to justify that [19] used an equivalent definition of the
intersecting-balls crossover, which they suggested to be geometric when in fact
it is not necessarily geometric (Lemma 5).

Lemma 4. Rothlauf’s crossover R(x, y) := {z | max{d(x, z), d(z, y)} ≤ d(x, y)}
is identical to Balls(d)(x, y), for any metric space (X, d) and any x, y, z ∈ X.

Proof. Follows directly: z ∈ R(x, y) ⇐⇒ d(x, z) ≤ d(x, y) and d(z, y) ≤ d(x, y)
⇐⇒ z ∈ (Bd[x; d(x, y)] ∩ Bd[y; d(y, x)]) ⇐⇒ z ∈ Balls(d)(x, y). ��
Definition 12 (Hamming intersecting-balls crossover). Let (Hn

q , dH) be
any Hamming metric space and any x, y ∈ Hn

q . Then, the Hamming intersecting-
balls crossover is Balls(dH)(x, y) := BdH [x; dH(x, y)] ∩ BdH [y; dH(y, x)].

Lemma 5. Let (Hn
q , dH) be any Hamming metric space. Then, Balls(dH) is

not a geometric crossover.

Proof. Omitted due to space restrictions. See the full paper version for details.

Lemma 6. Let (X, d) be any metric space. Then, for all x, y ∈ X it holds: if
z ∈ [x; y]d, then Balls(d)(x, z) ⊆ Balls(d)(x, y).

Proof. Omitted due to space restrictions. See the full paper version for details.

Theorem 2. Let (Hn
q , dH) be the Hamming metric space. Then, (Hn

q ,
Balls(dH)) is a recombination P-structure.

Proof. Omitted due to space restrictions. See the full paper version for details.

Using the previous results we now compare recombination P-structures with
geometric crossover classes (Q3).

Theorem 3 (Crossover classes). Let RP be the set of recombination
P-structures (resp. RP for crossovers that are not recombination P-structures),
GX be the geometric crossovers, and GX -complete be the complete geometric
crossovers. It holds that: (a) RP �= ∅; (b) GX �= RP; (c) RP ∩ GX �= ∅; (d)
GX -complete ⊂ RP; and (e) RP ⊂ GX -complete.

https://www.researchgate.net/profile/Marcos_Diez_Garcia
https://www.researchgate.net/profile/Marcos_Diez_Garcia
https://doi.org/10.13140/RG.2.2.35415.11682
https://www.researchgate.net/profile/Marcos_Diez_Garcia


A Unifying View on Recombination Spaces 191

Proof.(a) Lemmas 1 and 2 prove, respectively, that neither Koza subtree swap
nor (symmetric) Davis order crossovers are recombination P-structures.

(b) Example 2 shows that the single-offspring one-point crossover (OnePoint)
is geometric, but it is not a recombination P-structure due to its asymmetry.

(c) In Hamming graphs, Theorem 1 proves it for the AllPaths crossover, also
Lemma 5 and Theorem 2 prove it for Balls(dH) crossover.

(d) Follows from Proposition 3, and (c) makes the inclusion strict: complete
geometric crossovers are a subclass of geometric crossovers (Proposition 1).

(e) Let U be the universal set of crossovers, where GX -complete, RP ⊂ U .
Then, using (d) and taking complements, RP ⊂ GX -complete follows.

��

Fig. 6. Classification within the universal set U of crossovers by geometric crossovers
GX and recombination P-structures RP, with class members examples: all-paths
(AllPaths), Hamming intersecting-balls (Balls(dH)), Davis order (Davis), sym-
metric Davis order (s-Davis), Koza subtree swap (Koza), single-offspring one-point
(OnePoint) and uniform (Uniform) crossovers.

The main purpose of Theorem 3, summarised in Fig. 6, is to start developing
a unified and systematic understanding of crossovers within the geometric GF
(Sect. 2) and algebraic EL (Sect. 3) theories. By relaxing the axioms of recombi-
nation P-structures or properties of geometric crossovers, new formal crossover
subclasses can be incorporated, which can give us deeper insight not only into the
similarities and differences in behaviour of crossovers, but also about the theo-
ries themselves. For instance, EL landscape analysis is possible when a crossover
belongs to GX -complete or RP, but not necessarily for all those in GX -complete
(e.g. OnePoint) [1]. It should be clear that the focus of this classification is not
on the practical value of crossovers (e.g. Koza is useful, however GX and RP
miss it), but what crossovers can and cannot be studied within GF and ELs.

4.2 Algebraic Abstract Convex Search

We switch our attention from recombination P-structures themselves (Sect. 4.1)
to characterising the population-behaviour of EAs using them. Specifically, we
prove that any recombination P-structure EA, using any selection and replace-
ment strategies but no mutation, exhibits an abstract convex search behaviour
analogue to Proposition 2.



192 M. D. Garćıa and A. Moraglio

Theorem 4 (Algebraic abstract convex search). Let (X,R) be a recom-
bination P-structure and Pt ⊆ X the population at generation t. Then, there
exists a maximum closure iteration number m := cin∗(X) such that: clmR(P0) ⊇
clmR(P1) ⊇ · · · ⊇ clmR(Pt) ⊇ clmR(Pt+1); for any EA repeating the cycle: selection,
recombination R and replacement.

Proof. We need to prove that: (a) such maximum closure iteration number exists;
and, (b) the closure of recombination P-structures produces a nested chain of
inclusions of population sets.

(a) From Proposition 4 we know that for any population Pt ⊆ X there exists
a natural number k ≥ cin(Pt), such that co(Pt) = clkR(Pt). Since all
populations Pt are subsets of X, the maximum closure iteration number
m := cin∗(X) exists. By definition (see below Eq. 1), cin∗(X) ≥ cin(Pt) for
all populations Pt. Therefore, co(Pt) = clmR(Pt) for all populations Pt.

(b) Since (a) proves that there exists a maximum closure iteration number such
that co(Pt) = clmR(Pt) for any Pt, we know also that co(Pt) ⊇ co(Pt+1) if
and only if clmR(Pt) ⊇ clmR(Pt+1) for any Pt. Therefore, a chain of inclusions
is formed, provided that selection and replacement can only return a subset
of the convex hull of a population [10]. ��

Example 8 (Abstract convex search of all-paths crossover). AllPaths
convex search is ‘degenerate’ because, as long as the current population contains
different parents, the vertex set of the Hamming graph is returned as offspring;
until other mechanism like replacement or selection returns a population with the
same individual. For instance, if P1 := {001, 010, 111}, the following chain may
be generated: cl1AllPaths(P1) = {0, 1}3 ⊇ {0, 1}3 ⊇ . . . ⊇ {0, 1}3 ⊇ 001. Notice
that the maximum closure iteration number of AllPaths is one, because All-
Paths generates at once the whole vertex set or a singleton set of the Hamming
graph, which are convex sets [17].

It remains as future work to find whether ‘degenerate’ cases like Example 8
are the only kind of algebraic abstract convex search for crossovers in the class
RP ∩ GX (i.e. non-geometric crossovers that are recombination P-structures).

Note that Proposition 2 and Theorem 4 become equivalent for complete geo-
metric crossovers in finite metric spaces, since they are a subclass of recombina-
tion P-structures (Theorem 3). Table 1 illustrates it for the uniform recombina-
tion P-structure RΩ, which is a complete geometric crossover, whose maximum
closure iteration number is one for all populations P : co(P ) = cl1RΩ

(P ) [11].
Theorem 4 has significant implications for GF and EL. First, it shows that

the convex search of complete geometric-crossover EAs can be phrased alge-
braically in EL via recombination P-structures, in a way that remains consistent
with GF. Secondly, that the abstract convex behaviour of some non-geometric
crossovers, for example the AllPaths crossover (Definition 10), can be formally
justified. Finally, we now have a proper characterisation of population behaviour
for recombination P-structures EAs, which is less restrictive than the previous
crossover-walk model (Sect. 3.1) because it is defined for general recombination



A Unifying View on Recombination Spaces 193

Table 1. A small trace of abstract convex search for the three-dimensional binary
Hamming space using uniform recombination with initial population {001, 010, 111},
population size equal three, generational replacement and no selection.

P-structures not just string crossovers, and no assumptions are made on selection
pressure or genes interdependence (epistasis). Moreover, it has a clear geometri-
cal interpretation (Sect. 2.2) and GF has demonstrated that is analytically useful
to study recombination-based EAs [2]. As a final remark, some of our results
(e.g. Proposition 3 or Theorem 4) can be further generalised to more abstract
algebraic spaces like interval spaces [7], by relaxing the axioms of recombination
P-structures and keeping only the nullary and symmetric ones (Definition 6).
It turns out that Proposition 4, which is key for Theorem 4, remains true [7].
However, our aims here have not required such degree of generality.

5 Summary and Future Work

Previous work [1] established the foundations for developing a unified approach
to analyse fitness landscapes, based on an algebraic theory of fitness landscapes
(Sect. 3) and a geometric framework of EAs (Sect. 2). Aiming for a solution to
an open challenge in evolutionary computing: to determine a priori for a given
problem if its fitness landscape matches a class of EAs where good performance
can be guaranteed across representations. However, to use EL as an analytic tool,
we needed to show that recombination landscapes seen from EL and GF can be
unified, that is their underlying space structures are not essentially different.



194 M. D. Garćıa and A. Moraglio

This paper expands the unification between GF and EL to eventually develop
an integrated GF-EL framework; where EAs can be analysed and designed across
representations (GF), but also it is possible to know analytically if good per-
formance can be guaranteed for a given problem landscape (EL). First, we aug-
mented the classification of crossovers in GF with algebraic crossover classes from
EL (Sect. 4.1). Then, we formalised the abstract convex population behaviour of
recombination P-structure EAs, as an extension of complete geometric-crossover
EAs, which provides a more general characterisation of population behaviour
than the existing model in EL (Sect. 4.2).

As future work, we consider the following questions. First, to augment the
classification of crossovers with new classes or members and compare them. Sec-
ondly, to study the relation between abstract convex spaces (e.g. convex geome-
tries [9]) and crossovers, by looking at how the presence or absence of convex-
ity influences crossover behaviour. Thirdly, to export the runtime analysis of
geometric-crossover EAs [2] to recombination P-structure EAs; and, conversely,
use the ideas presented here to derive new insights about runtime analysis of
geometric-crossover EAs. Finally, it would be interesting to integrate mutation
within GF-EL unification to understand more realistic EAs using mutation and
recombination operators.

References

1. Garćıa, M.D., Moraglio, A.: Bridging elementary landscapes and a geometric theory
of evolutionary algorithms: first steps. In: Auger, A., Fonseca, C.M., Lourenço, N.,
Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018, Part II. LNCS, vol.
11102, pp. 194–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
99259-4 16

2. Moraglio, A., Sudholt, D.: Principled design and runtime analysis of abstract con-
vex evolutionary search. Evol. Comput. 25(2), 205–236 (2017)

3. Moraglio, A.: Towards a Geometric Unification of Evolutionary Algorithms. Doc-
toral thesis, University of Essex, Essex, UK, November 2007

4. Stadler, P.F.: Towards a theory of landscapes. In: López-Peña, R., Waelbroeck, H.,
Capovilla, R., Garćıa-Pelayo, R., Zertuche, F. (eds.) Complex Systems and Binary
Networks. Lecture Notes in Physics, vol. 461, pp. 78–163. Springer, Heidelberg
(1995). https://doi.org/10.1007/BFb0103571

5. Stadler, P.F., Wagner, G.P.: Algebraic theory of recombination spaces. Evol. Com-
put. 5(3), 241–275 (1998)

6. Stadler, P.F., Seitz, R., Wagner, G.P.: Population dependent fourier decomposition
of fitness landscapes over recombination spaces: evolvability of complex characters.
Bull. Math. Biol. 62(3), 399–428 (2000). Society for Mathematical Biology

7. van de Vel, M.L.J.: Theory of Convex Structures. North-Holland Mathematical
Library, North-Holland (1993)

8. Moraglio, A., Poli, R.: Inbreeding properties of geometric crossover and non-
geometric recombinations. In: Stephens, C.R., Toussaint, M., Whitley, D., Stadler,
P.F. (eds.) FOGA 2007. LNCS, vol. 4436, pp. 1–14. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-73482-6 1

https://doi.org/10.1007/978-3-319-99259-4_16
https://doi.org/10.1007/978-3-319-99259-4_16
https://doi.org/10.1007/BFb0103571
https://doi.org/10.1007/978-3-540-73482-6_1


A Unifying View on Recombination Spaces 195

9. Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Algebr.
Discret. Meth. 66(3), 231–247 (1986). Society for Industrial and Applied Mathe-
matics

10. Moraglio, A.: Abstract convex evolutionary search. In: Proceedings of the 11th
Workshop on Foundations of Genetic Algorithms, FOGA 2011, pp. 151–162. ACM,
Schwarzenberg, Austria (2011)

11. Changat, M., et al.: Topological Representation of the Transit Sets of k-Point
Crossover Operators. arXiv:1712.09022 (2017)

12. Gitchoff, P., Wagner, G.P.: Recombination induced hypergraphs: a new approach
to mutation-recombination isomorphism. Complexity 2(1), 37–43 (1996)

13. Moraglio, A., Togelius, J., Silva, S.: Geometric differential evolution for combina-
torial and programs spaces. Evol. Comput. 21(4), 591–624 (2013)

14. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory
Analysis With Applications to Biology, Control, and Artificial Intelligence. Com-
plex Adaptive Systems. MIT Press, Cambridge (1992, reprint edn)

15. Stadler, B.M.R., Stadler, P.F.: Generalized topological spaces in evolutionary the-
ory and combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42(3), 577–585 (2002).
American Chemical Society

16. Mitavskiy, B.: Crossover invariant subsets of the search space for evolutionary
algorithms. Evol. Comput. 12(1), 19–46 (2004)

17. Pelayo, I.M.: Geodesic Convexity in Graphs. Springer Briefs in Mathematics.
Springer, New York (2013). https://doi.org/10.1007/978-1-4614-8699-2

18. Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proceedings of
the 9th International Joint Conference on Artificial Intelligence-Volume 1, IJCAI
1985, pp. 151–162. Morgan Kaufmann Publishers Inc. (1985)

19. Thorhauer, A., Rothlauf, F.: On the bias of syntactic geometric recombination
in genetic programming and grammatical evolution. In: Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, GECCO 2015,
pp. 1103–1110. ACM, New York, NY, USA (2015)

http://arxiv.org/abs/1712.09022
https://doi.org/10.1007/978-1-4614-8699-2


Program Trace Optimization
with Constructive Heuristics
for Combinatorial Problems

James McDermott1(B) and Alberto Moraglio2

1 National University of Ireland, Galway, Ireland
james.mcdermott@nuigalway.ie

2 University of Exeter, Exeter, UK
A.Moraglio@exeter.ac.uk

Abstract. Program Trace Optimisation (PTO), a highly general opti-
misation framework, is applied to a range of combinatorial optimisa-
tion (COP) problems. It effectively combines “smart” problem-specific
constructive heuristics and problem-agnostic metaheuristic search, auto-
matically and implicitly designing problem-appropriate search operators.
A weakness is identified in PTO’s operators when applied in conjunc-
tion with smart heuristics on COP problems, and an improved method
is introduced to address this. To facilitate the comparison of this new
method with the original, across problems, a common format for PTO
heuristics (known as generators) is demonstrated, mimicking GRASP.
This also facilitates comparison of the degree of greediness (the GRASP
α parameter) in the heuristics. Experiments across problems show that
the novel operators consistently outperform the original without any loss
of generality or cost in CPU time; hill-climbing is a sufficient metaheuris-
tic; and intermediate levels of greediness are usually best.

Keywords: Constructive heuristics · GRASP · Search operators

1 Introduction

Many heuristic and metaheuristic methods have been applied in the field of
combinatorial optimisation (COP). Often they achieve good results on problems
where exact methods become infeasible. Research in this area is somewhat dis-
unified in that many methods have been individually specialised to many prob-
lems: in each case, a combination of domain expertise and algorithmic expertise
is required to design suitable representations and operators.

However, many of these methods do share common concepts, such as (in
constructive heuristics) sampling of solution elements biased by their cost, and
(in metaheuristics) perturbation of existing solutions. It is a natural goal to
unify these methods in a single, general approach. It is also desirable to achieve
a degree of automation in the application of these methods to problems, rather
than requiring algorithmic expertise to be re-applied to each new problem.
c© Springer Nature Switzerland AG 2019
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, pp. 196–212, 2019.
https://doi.org/10.1007/978-3-030-16711-0_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_13&domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_13


Program Trace Optimization with Constructive Heuristics 197

Program trace optimisation (PTO) [1] is a recent optimisation framework
which is highly general and unifying, and which does (in a sense to be clarified
later) automate the work of adapting an algorithm to a problem; and so it
responds to these research challenges.

In fact, PTO is not just highly general but in a sense maximally general,
because it uses a representation which by the Church-Turing thesis is the most
general possible – the program trace, that is a data structure representing a
history of execution of a program. The program in question is a non-deterministic
solution generator, which plays the role of a genotype-phenotype map, seeing the
program trace as a genotype and a candidate solution as a phenotype. To be
specific, the generator is a program or function which randomly samples one
element from the solution space, with or without bias, for example in a bitstring
space it returns a single bitstring chosen randomly. With bias, it becomes a
constructive or generative heuristic. PTO thus gives a unifying view.

Heuristic and metaheuristic approaches are commonly hybridised, for exam-
ple in GRASP [2]. In PTO, both the heuristic and metaheuristic aspects are
pluggable, and it is natural in PTO to compare a given heuristic across sev-
eral metaheuristics. In this paper, we borrow well-known constructive heuristics
for several problems as PTO generators. This re-use of known-good ideas is a
central goal of PTO. We write all of them in a GRASP-like format, and this
gives the ability to understand and compare PTO program traces and search
behaviour across problems. It allows for a systematic experiment also on the
well-understood “greediness” parameter of GRASP.

In most metaheuristics, the ability to make small perturbations is essential
to success: the perturbation operator should give a new solution which retains or
re-uses almost all of the information of the previous solution. But on some COP
problems, with typical constructive heuristics as generators, it turns out that the
PTO operators do not succeed in re-using as much of this information as they
could. The problem is due to the repair mechanism which runs after each genetic
variation operator. Therefore, in this paper an improved repair mechanism is
designed, which succeeds in re-using as much information as possible.

Reader’s Guide. In the next section, Sect. 2, we describe PTO itself and pre-
vious related work, with an expanded explanation of PTO mechanisms. We then
describe in detail our fixed format for generators for COP problems in Sect. 3.
The novel repair mechanism is described in Sect. 4. Experiments and results are
in Sect. 5, and we conclude with Sect. 6.

2 PTO and Related Work

PTO uses a user-supplied non-deterministic generator function as an implicit
definition of the representation. PTO sees the sequence of random decisions
made during execution of this program as a genotype.

PTO’s modular design is shown in Fig. 1. The user supplies a problem-specific
generator and fitness function. The core of PTO executes the generator once



198 J. McDermott and A. Moraglio

Knapsack (generator, fitness)

Ordering (generator, fitness)

TSP (generator, fitness)

JSSP (generator, fitness)
PTO Core (tracer)

Genetic algorithm

Random search

Hill-climber

Fig. 1. PTO architecture

per individual. Each execution gives both a trace (genotype) and a solution
(phenotype). Any metaheuristic can be plugged-in as the solver, carrying out its
genetic operations on the trace.

The idea of using such a sequence of decisions as a genotype was introduced
in the Program Optimisation with Dependency Injection (PODI) system [3]. The
generators used varied from uniform sampling of the space for symbolic regres-
sion problems, to initialisation operators from previous metaheuristic research
in communications network design, re-purposed as generators, to idiosyncratic
hand-written code originally intended only as a tool for random generation of
3D structures. PTO goes beyond PODI by using a more sophisticated trace
representation, allowing improved re-use of genetic material.

The idea of hybridising constructive heuristics with metaheuristic search is
well-established in the COP literature. GRASP combines a greedy heuristic with
path relinking and local search [2]. As a generalisation, biased randomisation and
simulated annealing have been combined [4,5]. PTO with GRASP-like generators
differs from GRASP itself by allowing any metaheuristic to be plugged-in. In
some hybrid approaches, the greedy constructive procedure is used as a “smart”
initialisation, after which the algorithm uses metaheuristic search alone [6]. PTO
uses the heuristic throughout the metaheuristic search process.

In the evolutionary computation literature, the genotype-phenotype mapping
is a common research topic. “Smart” mappings seek to build problem-awareness
(e.g. constraint handling) directly into the algorithm, e.g. [7]. PTO differs from
such approaches by using a program trace as the genotype and aims more for
universality and modularity – the algorithm is unchanged for new problems.

2.1 The Program Trace: A Universal Solution Representation

As already explained, in PTO the program trace is the sequence of outcomes of
(random) decisions made by the generator in producing a particular solution.
The trace can be manipulated: it can be “played back” in the generator to
redo the same sequence of decisions and produce the same solution; it can be
edited and played back to produce a variant solution; two parent traces can
be combined and the result played back to produce a child solution. That is,
the trace is a genotype, the solution is the corresponding phenotype, and the
playback mechanism in the generator is a developmental mapping; editing and
recombination of traces are search operators.



Program Trace Optimization with Constructive Heuristics 199

The trace is a “universal representation” that applies to any problem because
it is implicit in the problem definition (in the generator) and can be extracted
automatically by tracing. No other representation can be more general or more
powerful, since the generator can use Turing-complete code. Metaheuristics
defined on such a representation can be applied unchanged to any problem,
thus becoming universal optimisers.

The trace representation is a dictionary. Each entry is a key-value pair cor-
responding to one random decision made by a random function call during exe-
cution of the generator. The value is simply the output of the random function
call, for example an integer or float. The key gives the structural position of that
decision in the execution trace, rather like a stack address: it includes the list of
functions, their line numbers, and their loop indices, that precede the random
call in the call stack. This scheme follows the approach of Wingate et al. [8].
Examples in the context of well-known COP problems are given in Sect. 3.

2.2 Solvers and Search Operators

The search operators required by metaheuristics such as hill-climbers and evo-
lutionary algorithms are defined on the trace representation. They are defined
in a principled way based on the geometric framework [9].

Initialisation runs the generator and traces its execution. The resulting
trace becomes the newly-initialised genotype, and the output of the generator
becomes its phenotype. Point mutation picks a random entry of the trace and
replaces its value with a value drawn from the same random call. Uniform
crossover aligns parent traces on their names (i.e. dictionary keys). For names
that appear in both parents, the offspring inherits the corresponding entries
from either parent at random, i.e. using a random mask to select. For names
that appear in only one parent, the offspring inherits all of them.

Repair is applied after each alteration of the trace, i.e., after the application
of any variation operator. The repair takes place when running the modified
trace in the generator in playback mode to generate the corresponding solution.
If there is a mis-match, i.e. the current value comes from a random call other
than the one identified by the name, then a new random value is drawn from
the correct random call. If the trace is used up before the generator finishes, the
trace is extended with new random entries as needed. Excess entries in the trace,
not used by the generator, are deleted. Repair is discussed further in Sect. 4.

Given these operators, metaheuristic solvers such as random search, hill-
climbing, and a GA can be defined. The trace becomes the genotype, and the
generator becomes the genotype-phenotype map.

2.3 The Role of the Generator

The PTO generator can be seen as a genotype-phenotype mapping, where the
genotype is the program trace and the phenotype is a candidate solution. PTO
search operators work directly on the genotype, but we can also see them as
implicitly working on the phenotype. What is their behaviour at that level?



200 J. McDermott and A. Moraglio

In the framework of Jones [10], a search problem begins with an object space
– in which the possible solutions are contained. The user is required to provide
a representation space, that is a space in which points can be manipulated by
search operators, and points can be mapped “forward” to the object space.
E.g. in the TSP, the object space is the space of tours, and the representation
space is the space of permutations. The distinction captures the extra meaning
and structure associated with the object space. Objects in the object space
are human-readable; those in the representation space, machine-manipulable.
In PTO, the generator implicitly defines the object space. The job of the PTO
user is to supply a generator which samples from the object space, rather than
to design a representation space and operators on it. This workflow may suit
domain experts better (but may be less familiar to metaheuristics researchers).
One feature of PTO which is interesting for constrained COP problems such as
JSSP is that it searches the space of feasible solutions. For many such problems
it is not difficult to write a generator giving only feasible solutions, but it is
difficult to design mutation and crossover operators that given feasible parents
are guaranteed to return feasible offspring. PTO’s search operators preserve
feasibility automatically.

The operators applied by PTO on the trace representation correspond, when
viewed at the level of the solution, to operators well-designed for the problem,
in the sense that they take advantage of the meaning and structure of the object
space. For example, if the solution space is of bitstrings, then a natural generator
gives operators equivalent to well-known GA bitstring operators. If a generator
uses nested loops, the implicit representation is a matrix; if one uses recursion
the implied representation is a tree. Thus the same operators on traces result
in meaningful operators for vectors, matrices and trees. This has been demon-
strated in previous work [1], giving confidence that the PTO implicit adaptation
works well. The case of permutations is different and is treated in Sect. 4. For a
further example, when a greedy, randomised constructive heuristic is used as the
generator, PTO can be expected to behave similarly to mutate-and-repair meth-
ods already well-known in the COP literature [4,5]. Although the end result may
replicate a known-good method, the benefit for researchers and practitioners is
in the automation: good problem-appropriate operators are derived, requiring
domain knowledge but not algorithmic knowledge on the part of the user.

However, some caveats apply. The operators designed by PTO will be well-
designed for the meaning and structure of the object space only to the extent that
this meaning and structure is present in the user-supplied generator. Two gen-
erators which are semantically identical but syntactically different may induce
different operators. As an example, given a list L from which the generator must
sample an element, i = random.choice(range(len(L))); x = L[i] is seman-
tically equivalent to x = random.choice(L), but the latter expresses problem
structure more directly. It is an assumption of PTO that the user will use direct
formulations such as this. Also, in its implicit design of operators, PTO uses only
the generator, not the objective function. For example, both the n-queens prob-
lem and the TSP can be represented as permutation problems, so a generator



Program Trace Optimization with Constructive Heuristics 201

which uniformly samples permutations could be used equally for both. It would
give no advantage on either problem relative to a standard permutation repre-
sentation. A domain expert might see that for the TSP, a more suitable generator
might iteratively build a solution heuristically guided by inter-city distance. This
is a method of building problem knowledge into the representation.

2.4 Open Questions

Several important research questions remain open. (1) As described, PTO auto-
matically designs operators for each problem. We wish to explore how well PTO
performs across COP problems with the minimum input of expertise. (2) A
beneficial side-effect of the PTO unifying view is the ability to compare across
problems. To further this comparison, in the current paper we make use of a
fixed format, borrowed from the core idea of GRASP, for the solution generators
for several different problems. These generators are parameterised by a single
parameter α which controls greediness. Furthermore, in PTO any metaheuristic
can be used in combination with any generator, including combinations which
may be rare in the COP literature. We wish to compare performance and the
obtained traces and solutions, across problems, searchers and α values. (3) PTO
relies for its success on the ability to manipulate the trace data structure. As
we will see, in some COP problems the natural generator leads to a trace in
which, after manipulation, many elements of the trace cannot be re-used, and
so learning is lost. We introduce to PTO a novel mechanism to prevent this and
allow strong re-use of trace elements, and we investigate its effect. We do not
aim in this paper to compare PTO performance with other approaches.

3 GRASP in PTO

To apply PTO to solve COP problems, we need to provide a problem-specific
solution generator. In this paper we use a fixed GRASP-like generator scheme
for all problems, as shown in Algorithm 1. It assumes that problem solutions
are characterised as aggregations of features: for example, in TSP the cities are
features and a solution is a list of cities. At each step, it finds a list of allowed
features (a subset of those not yet chosen); calculates their per-feature cost in
the presence of the in-progress solution; filters them for low cost, forming the
restricted candidate list (RCL); and chooses randomly.

Algorithm 1 is generic, suitable for several COP problems. It remains to
fill in its sub-procedures empty-solution(), complete(), allowed-features(),
cost-feature(), and add-feature() in a problem-specific way. These proce-
dures are shown for several problems in Algorithms 2–4. For TSP, only the
cost-feature procedure is shown as the others are the same as for Ordering.
JSSP procedures are omitted due to lack of space but are specified in our source
code available online.



202 J. McDermott and A. Moraglio

The only source of randomness in our generators is add-feature() (line 9 of
Algorithm 1). This is the only part of the generator affecting the trace represen-
tation, hence we will have a uniform, sequential trace structure for all problems.
The parameter α controls the level of greediness in the heuristic (α = 0 is fully
greedy, α = 1 is fully random), and has the same interpretation across problems
(and in previous GRASP literature). As we will see, this fixed generator format
also leads to a fixed trace format, aiding our understanding of the algorithm.

Algorithm 1. GRASP’s greedy randomised construction scheme
1: procedure greedy-randomised-construction()
2: solution ← empty-solution()
3: while not complete(solution) do
4: features ← allowed-features(solution)
5: for f in features do
6: costs[f] ← cost-feature(solution, f)
7: end for
8: RCL ← { f | costs[f] ≤ min(costs) + α(max(costs) - min(costs))}
9: solution ← add-feature(solution, random.choice(RCL)) � Randomness

10: end while
11: return solution
12: end procedure

Algorithm 2. Procedures for the Ordering problem on n items
1: procedure empty-solution()
2: return empty list
3: end procedure
4: procedure allowed-features(solution)
5: return {i | 1 ≤ i ≤ n ∧ i �∈ solution}
6: end procedure
7: procedure cost-feature(solution, f)
8: if solution is empty then
9: last-item ← 0

10: else
11: last-item ← last element of solution
12: end if
13: return |f−last-item+1| � equal to 0 for consecutive integers
14: end procedure
15: procedure complete(solution)
16: return solution has length n? � True or False
17: end procedure
18: procedure add-feature(solution, f)
19: return append f to solution
20: end procedure



Program Trace Optimization with Constructive Heuristics 203

Algorithm 3. New procedures for TSP on n cities with distance matrix D

1: procedure cost-feature(solution, f)
2: if solution is empty then
3: return 0 � all cities have zero cost as start city
4: else
5: last-item ← last element of solution
6: end if
7: return D[last-item, f] � travel cost from current to next city
8: end procedure

Algorithm 4. Procedures for a Knapsack problem with items 1 . . . n, weights
w, profits p, and weight limit W

procedure allowed-features(solution)
remaining ← {i | 1 ≤ i ≤ n ∧ i �∈ solution}
current ← ∑{w[i] | i ∈ solution}
return {i | i ∈ remaining ∧ current + w[i] ≤ W}

end procedure
procedure cost-feature(solution, f)

return −p[f] � negative: p is a profit but we must return a cost
end procedure
procedure complete(solution)

current ← ∑{w[i] | i ∈ solution}
min-weight-left ← min{w[i] | i �∈ solution}
return solution has length n? or current + min-weight-left > W

end procedure

3.1 Examples of Genotype-Phenotype Correspondence

In the following, we give two examples to illustrate the information contained in
the trace representation (genotype), and how the same genotype corresponds to
different types of solutions (phenotypes) for different problems.

Let us consider TSP with 10 cities and with α = 0.5. The phenotype [0, 9, 2,

1, 6, 3, 4, 7, 5, 8] (tour of cities) corresponds to the trace shown in Table 1:

Table 1. Example trace for TSP on 10 cities with phenotype [0, 9, 2, 1, 6, 3, 4,

7, 5, 8].

Address Type Value

0 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 0

1 random.choice([2, 4, 8, 9]) 9

2 random.choice([1, 2, 3, 4, 5]) 2

3 random.choice([1, 3, 4, 5]) 1

4 random.choice([5, 6, 7]) 6

5 random.choice([3, 4, 5]) 3

6 random.choice([4, 5]) 4

7 random.choice([7, 8]) 7

8 random.choice([5]) 5

9 random.choice([8]) 8



204 J. McDermott and A. Moraglio

The trace has three parts: (i) a runtime address (or name) of each entry in
the trace; (ii) an entry type which consists of the elementary random genera-
tor and the values passed to it as argument; (iii) the value generated by the
random generator. In all examples in this paper, the sequential nature of the
GRASP generator means that the runtime address simplifies to an incrementing
integer. The elementary random generator here is always random.choice as it is
the only source of randomness in the GRASP generator. The argument passed
to it is the RCL available at the moment of the call of the elementary random
generator. This argument at different point in the execution is naturally differ-
ent depending on the features still available at that point (e.g. cities not yet
used in the construction of the solution) as well as features that have passed
the selection based on the specific heuristic used in the construction (e.g. cities
nearer to the last city of the tour under construction). The last column contains
the actual values sampled by the elementary random generator with the specific
argument. So, e.g., in the second line the value 9 was sampled from the call to
random.choice([2, 4, 8, 9]).

As a second example, let us consider KNAPSACK with 10 items and with
α = 1.0 (fully random generator). This removes the effect of the heuristic, leaving
only the constraining effects of previously selected items and backpack capacity.

The phenotype (knapsack items) [9, 3, 1, 0, 2] corresponds to the trace
shown in Table 2:

Table 2. Example trace for KNAPSACK with 10 items with phenotype [9, 3, 1,

0, 2].

Address Type Value

0 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) 9

1 random.choice([0, 1, 2, 3, 4, 5, 6, 7, 8]) 3

2 random.choice([0, 1, 2, 4, 5]) 1

3 random.choice([0, 2]) 0

4 random.choice([2]) 2

The interpretation of the trace is analogous to the TSP case. The TSP and
Knapsack are different problems, but have the same trace representation as they
use the same generator format, and in particular the same source of randomness
in the same program execution context. The same is true of the other problems
considered in this paper.

4 New Repair Method in PTO

In the following, we explain the current trace repair method in PTO, and why
this needs refining, especially in conjunction with smart generators.



Program Trace Optimization with Constructive Heuristics 205

The trace in PTO is annotated with names and types on each entry. The
name of an entry provides its ‘execution address’. The type of an entry is the
elementary generator and the arguments passed to it, which was used to generate
the value in the trace at that entry.

Variation operators acting on the trace are typed, i.e., they change the values
of the trace in conformity to their entry types, e.g., point mutation replaces the
value at an entry in the trace with a new value obtained by re-sampling the asso-
ciated elementary random generator to that entry (with the input arguments).
However, this may still result in invalid traces, which present inconsistencies
when expressed into phenotypes, because of the (implicit) ‘runtime’ dependen-
cies between entries of the trace. For this reason, PTO has a repairing method
that is applied to each trace when modified.

The current repairing method is as follows. When generating the correspond-
ing phenotype of a trace (by playing back the trace in the generator), if we get a
mismatch between the required type from the generator (i.e., the current elemen-
tary random function called in the generator) and the type of the corresponding
entry in the trace (identified by its ‘execution address’), then the entry of the
trace is repaired by replacing its type with the required type, and discarding the
value at that entry, which is then regenerated by sampling it from the new type
(i.e., new random function and its argument) of the entry.

This repairing method correctly amends traces to produce valid phenotypes,
but it may also be quite disruptive as it may require substantial change to a trace
to produce a valid trace (see example below). This effectively would correspond
to a form of macro-mutation (applied in addition to the intended modification
done by variation operator) that may be detrimental for search performance.
Ideally, we would like a repair method that produces a valid phenotype while
making a minimal change to the trace. This is the aim of the new repair method.

Analogously to the old method, the new method repairs the type of an entry
when a mismatch is encountered, however the value at that entry is kept (not
re-sampled) if that value could have been obtained by running the elementary
random function linked with the new entry type. For example, if the type and
value of an entry in the trace is random.choice([1,2,3]) : 2 and the required
type from that generator is random.choice([2,3,4]), the value 2 at that entry
can be “recycled” as it could have been obtained from random.choice([2,3,4]),
and only the type of the entry is amended, giving random.choice([2,3,4]) : 2.

The new repair method is much less disruptive in generators in which ele-
mentary random functions are called with arguments that depend on random
outcomes in the generator at earlier stages. This is the situation that arises when
using GRASP-in-PTO generators (but also in many other cases) in which the
list of items available to be sampled at a point in time (the argument of the
random.choice function) to be added to a solution under construction are those
that have not been selected previously (as random outcomes at previous stages
in the generator).

Using the old repair method, a single change in a value of the trace (point
mutation) triggers a ‘snowball’ effect of type-mismatch in all the subsequent



206 J. McDermott and A. Moraglio

Table 3. Point mutation (top) and 1-point crossover (bottom).

Trace Mutated trace Old repair New repair
1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1
2 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 7 [2,3,4,5,6,7] : 7 [2,3,4,5,6,7] : 7
3 [3,4,5,6,7] : 3 [3,4,5,6,7] : 3 [2,3,4,5,6] : ? [2,3,4,5,6] : 3*
4 [4,5,6,7] : 4 [4,5,6,7] : 4 [2,3,4,5,6] : ? [2,4,5,6] : 4*
5 [5,6,7] : 5 [5,6,7] : 5 [2,3,4,5,6] : ? [2,5,6] : 5*
6 [6,7] : 6 [6,7] : 6 [2,3,4,5,6] : ? [2,6] : 6*
7 [7] : 7 [7] : 7 [2,3,4,5,6] : ? [2] : ?
Phenotype Phenotype Phenotype
(1 2 3 4 5 6 7) (1 7 ? ? ? ? ?) (1 7 3 4 5 6 ?)

Parent trace 1 Parent trace 2 Recombined trace Old repair New repair
1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 7 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1 [1,2,3,4,5,6,7] : 1
2 [2,3,4,5,6,7] : 2 [1,2,3,4,5,6] : 6 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 2 [2,3,4,5,6,7] : 2
3 [3,4,5,6,7] : 3 [1,2,3,4,5] : 5 [1,2,3,4,5] : 5 [3,4,5,6,7] : ? [3,4,5,6,7] : 5*
4 [4,5,6,7] : 4 [1,2,3,4] : 4 [1,2,3,4] : 4 [3,4,5,6,7] : ? [3,4,6,7] : 4*
5 [5,6,7] : 5 [1,2,3] : 3 [1,2,3] : 3 [3,4,5,6,7] : ? [3,6,7] : 3*
6 [6,7] : 6 [1,2] : 2 [1,2] : 2 [3,4,5,6,7] : ? [6,7] : ?
7 [7] : 7 [1] : 1 [1] : 1 [3,4,5,6,7] : ? [6,7] : ?
Phenotype Phenotype Phenotype Phenotype
(1 2 3 4 5 6 7) (7 6 5 4 3 2 1) (1 2 ? ? ? ? ?) (1 2 5 4 3 ? ?)

entries of the trace as the arguments of these types depend on the value that
was changed. So, the overall effect of point mutation together with the old repair
is effectively a macro-mutation, which is clearly an unintended effect of point
mutation.

Using the new repair method, a single change in a value of the trace (point
mutation) has only a limited effect on the subsequent entries of the trace, as the
arguments of these types even if different are still compatible with the values
down the line in the trace. So, in this case the overall effect of the point mutation
together with the new repair is a much less disruptive form of mutation.

The exact effects of the old and new repair methods are dependent on the
specific generator, but in general the new method is guaranteed to be less dis-
ruptive than the old.

In Table 3, we compare the disruption of the old and new repair methods
on an illustrative example, that of iteratively sampling from a list to produce a
permutation. Here, ? indicates that a resampling event is required, while * indi-
cates “recycling” as described above. As we can see, the new repair mechanism
triggers fewer resampling events.

5 Experiments and Results

The goal of our experiments is to explore the performance of PTO with GRASP-
like generators on a range of COP problems, the effect of the novel trace repair



Program Trace Optimization with Constructive Heuristics 207

mechanism, and the effect of the α parameter. Our goal is not to achieve
state-of-the-art results, and in fact we can expect the results to be similar to
those achieved by GRASP itself with the same parameters.

Our code is available in Github1 and a dedicated script for the following
experiments is available. The PTO implementation is written in Python, and has
been adapted for execution in PyPy2 for an approximate 8× speed-up relative
to pure Python (our bottleneck is algorithmic rather than numerical, so PyPy
is more effective than the numerical library Numpy).

5.1 Problems and Instances

We have chosen a mix of dataset-based COP problems for realism and syn-
thetic problem instances (of sizes comparable to real-world datasets) for con-
trolled investigation of scalability. The TSP, JSSP and Knapsack problem are
well-known. We use the simplest, most canonical version in each case, and in
particular we use the 1-dimensional Knapsack. In the Ordering problem of size
n, a “toy problem”, the solution is a permutation of size n and the goal is sim-
ply to assemble the permutation (12 . . . n). The objective function penalises each
entry xi in the permutation by |xi−1 − xi + 1|. Since PTO is phrased as a max-
imising algorithm, we define Ordering fitness as the negative of that summed
penalty. Similarly, TSP fitness is defined as negative cost, and JSSP as negative
makespan.

For Ordering, we use the instances of sizes 10, 20, 40, 80, 160, 320. For
Knapsack, we generate random instances of the same sizes. For TSP, we have
taken 6 instances from TSPLIB3, named att48, berlin52, eil101, u159, a280,
and rat575 (where the integer gives the size). For JSSP, we have taken the
instances azb5-azb9 [11] and yn4 [12] from the OR Library4 file jobshop1.txt,
with sizes 10 × 10, 10 × 10, 20 × 15, 20 × 15, 20 × 15, 20 × 20. Although these
instances are not large, they are commonly used in modern JSSP research [13].

5.2 Experimental Design

We use three solvers plugged-in to PTO: Random Search (RS), Hill-Climbing
(HC), and an Evolutionary Algorithm (EA). In HC a move is accepted if better
than or equal to the current point. In the EA, we use 0.5-truncation selection, a
crossover rate of 1 and a mutation rate of 1 per individual. The budget is set to
20,000 evaluations for all experiments, as in previous work [1]. For the EA, PTO
internally sets the number of generations = population size =

√
20000 = 141.

This is in keeping with the PTO philosophy of minimising the amount of user
configuration required.

1 https://github.com/program-trace-optimisation/PTO.
2 https://pypy.org.
3 http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.
4 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/jobshopinfo.html.

https://github.com/program-trace-optimisation/PTO
https://pypy.org
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/jobshopinfo.html


208 J. McDermott and A. Moraglio

The novel trace repair mechanism introduced in Sect. 4 is compared against
the original PTO trace repair mechanism. We will refer to these as Strong reuse
and Weak reuse respectively. We compare 5 α values, {0.0, 0.1, 0.5, 0.9, 1.0}.

We have a total of (4 problems) × (6 instances per problem) × (3 solvers) ×
(2 re-use approaches) × (5 α values) × (20 repetitions) = 14400 runs.

5.3 Results

Results are shown in Fig. 2. By inspection, we have four main results. (1) Strong
reuse is better than Weak reuse. The original trace repair mechanism, giving
Weak reuse, was too disruptive for the type of generator (constructive heuristic)
used on these problems. (2) Table 4 shows also the mean time taken per run.
As expected, the time taken increases with problem size. There is no important
difference in time taken between the Weak and Strong re-use methods. A further
result is not shown: increasing α tends to increase the time taken, since it gives
a larger RCL. (3) the HC solver is better than either RS or EA. The use of
HC over RS amounts to the difference between using a combined constructive
heuristic/search metaheuristic (as in GRASP and PTO) and using a constructive
heuristic alone (with equivalent effort). The advantage is clear-cut. However, an
EA does not improve performance further. (4) The other main result is that on
the Knapsack and JSSP problems, an intermediate level of greediness (α = 0.5)
tends to outperform highly greedy construction (small α) or highly randomised
construction (large α). For the Ordering problem, a purely greedy approach
(α = 0.0) solves the problem perfectly. This is the expected result since Ordering
is unimodal. It is more surprising that a greedy approach does well on TSP.

Results 1–3 are clear-cut and quite consistent across problems and instances.
Result 4 is more problem-dependent, as expected. Perhaps the best setup for
difficult problems is the HC solver with α = 0.5. For this setup, we give results
across all problems in Table 4.

5.4 Discussion

We have seen that performance of hill-climbing is better than the evolutionary
algorithm, overall. Two main hypotheses can be suggested to explain this result.

(1) Perhaps our crossover operator is disruptive, i.e. despite the improved repair
mechanism, it fails to retain enough good information from the parents and
recombine it in a way that it remains “good”. The PTO crossover operator
is a uniform crossover on the dictionary of trace entries. This choice was
made because a one-point crossover on trace entries is difficult to define for
the general case. However, there are some possibilities to do so, or to do so
for the special case of GRASP-like generators. These will be considered in
future work.

(2) When hill-climbing does well, it suggests that the landscape is somewhat
unimodal. Thus, we may ask: what is the effect on the fitness landscape of
using “smart” constructive heuristics as PTO generators? Our speculative



Program Trace Optimization with Constructive Heuristics 209

Fig. 2. Results for one instance of each problem type. Top to bottom: Ordering, JSSP,
Knapsack, TSP. Left: strong re-use only; analysis by solver and α. Right: HC only;
analysis by α and strong versus weak re-use. For all problems, higher values are better
(closer to zero, for negative values). Horizontal axes (fitness) scaled by 103 or 104 as
shown.



210 J. McDermott and A. Moraglio

answer involves seeing constructive heuristics as epigenetic, developmental
processes. In epigenetics, the development of an individual from genotype to
phenotype is seen as a process, not an instantaneous step, and it has its own
type of optimisation behaviour. The metaphor of rolling downhill – already
familiar in the fitness landscape – applies also during development of a single
individual. Waddington argued [14] that multiple starting points (genomes)
can lead, in some epigenetic landscapes, to a similar end-point (phenotype).
This occurs if there are “valleys” or “basins of attraction” in the epigenetic
landscape. It is given the name canalisation. It gives a form of robustness – a
good phenotype can be achieved despite noise in the genotype and environ-
ment. We can see constructive heuristics as developmental processes with a
canalisation effect. Suppose we have a genotype which gives the optimum
phenotype to a TSP, and some noise is added to the genotype, altering one
of the edges which is constructed early in the development process. The
constructive heuristic will make subsequent choices which are heuristically-
guided good ones, and may replicate the effects of those made in the previous
individual, leading eventually to a phenotype which shares many of the orig-
inal phenotype’s properties. The improved repair mechanism introduced in
this paper accentuates this effect. This smooths the fitness landscape, tending
to help hill-climbing to perform well. This allows hill-climbing to perform
well. In this context, the highly exploitative hill-climbing approach may out-
perform the exploration-exploitation trade-off chosen by the evolutionary
algorithm.

Table 4. Problem (instance), mean objective value and standard deviation, and elapsed
time (in seconds), for weak and strong re-use methods. Results are shown for the HC
metaheuristic and α = 0.5 only. For all problems, a higher objective value is better
(closer to zero, for negative values), and a lower time.

Weak reuse Strong reuse
Inst. Obj. sd T(s) Obj. sd T(s)

Ordering
10 0 0 5 0 0 4
20 -5 6 10 0 0 8
40 -175 26 22 -18 8 19
80 -1018 110 63 -238 36 53
160 -5138 405 190 -1722 178 203
320 -24088 1444 719 -9020 670 736

JSSP
abz5 -1277 21 77 -1270 19 81
abz6 -1008 19 78 -1000 19 77
abz7 -774 12 322 -783 15 325
abz8 -795 19 324 -793 18 328
abz9 -817 13 323 -817 11 317
yn1 -1046 20 487 -1043 20 469

Weak reuse Strong reuse
Inst. Obj. sd T(s) Obj. sd T(s)

Knapsack
10 331 0 3 331 0 3
20 460 0 3 460 0 4
40 677 4 6 680 0 6
80 839 45 9 894 0 11
160 1096 81 15 1317 0 23
320 1385 146 30 2015 7 59

TSP
att48 -64720 3891 28 -46665 2380 24
berlin52 -15564 790 32 -11063 477 27
eil101 -1861 56 88 -1263 79 78
u159 -206070 4381 186 -136750 7680 167
a280 -16806 464 546 -12612 610 506
rat575 -61021 1070 2571 -49457 1187 2448



Program Trace Optimization with Constructive Heuristics 211

6 Conclusions and Future Work

In this paper we have explored the use of “smart”, GRASP-like, constructive
heuristics as generators in the PTO framework, to solve combinatorial optimi-
sation problems. They are a natural fit, and can be seen as a generalisation of
previous work, or in a sense as a replication but with automation. We have intro-
duced an improved PTO trace repair mechanism which runs after each genetic
operation, and which gives stronger re-use of genetic material relative to the
original. After extensive experimentation, we then have four main results:

1. The novel strong re-use method beats weak re-use;
2. Strong re-use does not incur a penalty in computation time;
3. HC beats RS and EA;
4. Medium levels of greediness in the heuristic are often best for real problems.

There are then many lines of research open for the future. Although for
convenience in this paper we have introduced a GRASP-like common format for
PTO generators for COP problems, generators going beyond this format are also
possible. In fact, the freedom of the user to write or supply a generator in any
format is a claimed strength of PTO, and in future work novel generators which
do not emulate GRASP in this way will be introduced.

If we see the GRASP restricted candidates list as a stepped-uniform dis-
tribution on the remaining items ordered by their costs, then we can consider
generalising by plugging in a different distribution, such as the triangular dis-
tribution suggested by Juan et al. [4]. There is also the possibility of using α to
give a threshold on rank of cost as opposed to a threshold on cost.

The current PTO crossover is a uniform crossover, but a one-point crossover
can also be defined, either for the special case of GRASP or for the general case.

Acknowledgements. Thanks to Carlos Fonseca for discussion and to anonymous
reviewers. This work was carried out while JMcD was at University College Dublin.

References

1. Moraglio, A., McDermott, J.: Program trace optimization. In: Auger, A., Fonseca,
C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018,
Part II. LNCS, vol. 11102, pp. 334–346. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-99259-4 27

2. Feo, T.A., Resende, M.G.: Greedy randomized adaptive search procedures. J.
Global Optim. 6(2), 109–133 (1995)

3. McDermott, J., Carroll, P.: Program optimisation with dependency injection. In:
Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013.
LNCS, vol. 7831, pp. 133–144. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-37207-0 12

4. Juan, A.A., Faulin, J., Ferrer, A., Lourenço, H.R., Barrios, B.: MIRHA: multi-
start biased randomization of heuristics with adaptive local search for solving non-
smooth routing problems. TOP 21(1), 109–132 (2013)

https://doi.org/10.1007/978-3-319-99259-4_27
https://doi.org/10.1007/978-3-319-99259-4_27
https://doi.org/10.1007/978-3-642-37207-0_12
https://doi.org/10.1007/978-3-642-37207-0_12


212 J. McDermott and A. Moraglio

5. de Armas, J., Keenan, P., Juan, A.A., McGarraghy, S.: Solving large-scale time
capacitated arc routing problems: from real-time heuristics to metaheuristics. Ann.
Oper. Res. 273(1–2), 135–162 (2019)

6. Ahuja, R.K., Orlin, J.B., Tiwari, A.: A greedy genetic algorithm for the quadratic
assignment problem. Comput. Oper. Res. 27(10), 917–934 (2000)

7. Bean, J.C.: Genetic algorithms and random keys for sequencing and optimization.
ORSA J. Comput. 6(2), 154–160 (1994)

8. Wingate, D., Stuhlmueller, A., Goodman, N.: Lightweight implementations of
probabilistic programming languages via transformational compilation. In: Gor-
don, G., et al. (eds.) AISTATS. PMLR, vol. 15, pp. 770–778, 11–13 April 2011

9. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (2008)

10. Jones, T.: Evolutionary Algorithms, Fitness Landscapes and Search. Ph.D. thesis,
University of New Mexico, Albuquerque (1995)

11. Adams, J., Balas, E., Zawack, D.: The shifting bottleneck procedure for job shop
scheduling. Manage. Sci. 34, 391–401 (1988)

12. Yamada, T., Nakano, R.: A genetic algorithm applicable tolarge-scale job-shop
instances. In: Manner, R., Manderick, B. (eds.) Parallel Problem Solving from
Nature, vol. 2, pp. 281–290. North-Holland, Amsterdam (1992)

13. Bierwirth, C., Kuhpfahl, J.: Extended GRASP for the job shop scheduling problem
with total weighted tardiness objective. Eur. J. Oper. Res. 261(3), 835–848 (2017)

14. Waddington, C.H.: Canalization of development and the inheritance of acquired
characters. Nature 150(3811), 563 (1942)



Correction to: Evolutionary Computation
in Combinatorial Optimization

Arnaud Liefooghe and Luís Paquete

Correction to:
A. Liefooghe and L. Paquete (Eds.): Evolutionary Computation
in Combinatorial Optimization, LNCS 11452,
https://doi.org/10.1007/978-3-030-16711-0

1. Chapter 6.
In the originally published version the indexes of some variables in Section 4.1,
including Constraints (4) and (5) of the model, include a wrong offset of one position.
Some errors occurred in notations of variable indexes in Constraints (4) and (5) con-
ditions of the model in Section 4.1, together with some ambiguities that may lead to
misunderstanding for the reader. This was corrected in the updated version.

2. Chapter 11.
The originally published version of the paper “Clarifying the Difference in Local
Optima Network Sampling Algorithms” contained an error. The additional text cor-
recting the error has been added below.

Summary
During a re-analysis of the data-set, the lead author realised that she had made ana-
lytical errors while computing the results for this paper. This erratum presents the
corrected numeric results in Section 3. These correspond to Tables 3 and 4 and Figures
2 and 3 — all of which are from Section 4.2 in the original paper. This report discusses
the affect on the main conclusions of the work in the next Section. We found that while
the numeric results are changed, most of the conclusions are still generally correct.

Affect on Conclusions
Conclusion 1. We found that the two sampling methods exhibited some agreement in
the networks they produced and that we could reject the null hypothesis that they
produce completely independent samples. They differed from a descriptive perspective
in that walkSample was tuneable and predictable, while optSample varied widely but

The updated version of these chapter can be found at
https://doi.org/10.1007/978-3-030-16711-0_6
https://doi.org/10.1007/978-3-030-16711-0_11

© Springer Nature Switzerland AG 2021
A. Liefooghe and L. Paquete (Eds.): EvoCOP 2019, LNCS 11452, p. C1–C5, 2021.
https://doi.org/10.1007/978-3-030-16711-0_14

https://orcid.org/0000-0003-3283-3122
https://doi.org/10.1007/978-3-030-16711-0
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_14&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16711-0_14&amp;domain=pdf
https://doi.org/10.1007/978-3-030-16711-0_6
https://doi.org/10.1007/978-3-030-16711-0_11
https://doi.org/10.1007/978-3-030-16711-0_14


seemed good at finding hub-and-spoke structure in the local optima space. This con-
clusion is still correct.

Conclusion 2. The correlations were stronger and clear when considering the features
of the LONs obtained using optSample than walkSample. This conclusion is still
correct.

Conclusion 3. We also worked on explaining heuristic algorithm performance on the
problems using linear and random forest models, and found that the sampled LON
features (for both optSample and walkSample) better fit the ILS response variable than
the TS one. This conclusion is now reversed, i.e., the sampled LON features better fit
the TS response variable than the ILS one.

Conclusion 4. We saw that generally, including both the funnel metric set and the
network set would be advantageous in explaining search discrepancies for these two
heuristics. This conclusion is still correct.

Conclusion 5. For both optSample and walkSample, the extracted funnel metrics
proved useful. This conclusion is still correct with a nuance, i.e. the extracted funnel
metrics proved useful with respect to TS as a response variable.

Conclusion 6. Going off the random forest models alone, optSample uniformly had
more predictive power than its competitor, for these choices of instances and heuristics.
This conclusion is still correct overall; optSample generally had more predictive
power, but not uniformly.

Conclusion 7. From the random forest rankings, the most important predictors were
those pertaining to fitness in the sampled networks: the fitness of funnel bottoms, and of
nodes in general in the network. This hints that perhaps fitness levels in the local
optima space are more pertinent to heuristic search than the subset of transition edges
sampled by the LON algorithms. This conclusion is still correct.

This work is supported by the UK’s Engineering and Physical Sciences Research
Council (grant number EP/J017515/1). Data generated during this research are avail-
able from the Stirling Online Repository for Research Data (http://hdl.handle.net/
11667/128).

Corrected Results

Table 1. Corrected results for Table 3 in the original paper. R2 values for linear and random
forest models to explain heuristic performance variation on the combinatorial problems.

Sample Model Features Param. ILS TS

optSample lm all set 1 0.124 0.963
optSample lm all set 2 0.135 0.963
optSample lm all set 3 0.182 0.964
optSample lm all set 4 0.109 0.974
optSample lm funnel set 1 0.114 0.125
optSample lm funnel set 2 0.117 0.124

(continued)

C2 A. Liefooghe and L. Paquete

http://hdl.handle.net/11667/128
http://hdl.handle.net/11667/128


Table 1. (continued)

Sample Model Features Param. ILS TS

optSample lm funnel set 3 0.162 0.127
optSample lm funnel set 4 0.094 0.125
optSample lm network set 1 0.069 0.957
optSample lm network set 2 0.065 0.957
optSample lm network set 3 0.075 0.958
optSample lm network set 4 0.061 0.954
optSample rf all set 4 0.307 0.820
optSample rf funnel set 4 0.216 0.892
optSample rf network set 4 0.247 0.775
walkSample lm all set 1 0.640 0.980
walkSample lm all set 2 0.339 0.955
walkSample lm all set 3 0.294 0.964
walkSample lm all set 4 0.158 0.968
walkSample lm funnel set 1 0.200 0.956
walkSample lm funnel set 2 0.104 0.946
walkSample lm funnel set 3 0.086 0.954
walkSample lm funnel set 4 0.061 0.901
walkSample lm network set 1 0.062 0.027
walkSample lm network set 2 0.245 0.042
walkSample lm network set 3 0.248 0.117
walkSample lm network set 4 0.112 0.016
walkSample rf all set 4 0.045 0.910
walkSample rf funnel set 4 −0.017 0.632
walkSample rf network set 4 −0.084 0.249

Table 2. Corrected results for Table 4 in the original paper. Predictor rankings for the random
forest models.

Sample Features Param Resp. 1 2 3 4

optSample funnel set 4 ILS sinkfitness substrength funnel ncoptima
optSample network set 4 ILS meanfitness edges outdegree diameter
optSample all set 4 ILS meanfitness sinkfitness ncoptima funnel
walkSample funnel set 4 ILS sinkfitness ncoptima funnel substrength
walkSample network set 4 ILS meanfitness outdegree edges diameter
walkSample all set 4 ILS outdegree meanfitness sinkfitness ncoptima
optSample funnel set 4 TS sinkfitness ncoptima funnel substrength
optSample network set 4 TS meanfitness edges diameter outdegree
optSample all set 4 TS sinkfitness meanfitness substrength funnel
walkSample funnel set 4 TS substrength funnel sinkfitness ncoptima
walkSample network set 4 TS meanfitness outdegree diameter edges
walkSample all set 4 TS sinkfitness meanfitness outdegree ncoptima

Correction to: Evolutionary Computation in Combinatorial Optimization C3



r=
0.
44

0*
**

r=
0.
66

3*
**

r=
0.
55

0*
**

r=
−0

.2
89

**

r=
−0

.1
69

r=
−0

.0
82

r=
0.
47

0*
**

r=
−0

.2
04

r=
0.
18

3

r=
−0

.2
53

*

r=
0.
11

5

r=
0.
02

5

r=
−0

.1
17

r=
0.
10

3

r=
−0

.0
72

r=
−0

.0
34

r=
−0

.3
65

**
*

r=
−0

.1
33

r=
−0

.1
54

r=
0.
40

6*
**

r=
0.
11

6

r=
0.
34

6*
**

r=
−0

.2
20

*

r=
0.
10

4

r=
−0

.0
28

r=
0.
83

2*
**

r=
−0

.1
02

r=
0.
35

5*
**

r=
0.
65

2*
**

r=
0.
86

7*
**

r=
0.
68

2*
**

r=
−0

.2
18

*

r=
0.
15

8

r=
−0

.0
12

r=
−0

.2
27

*

r=
0.
08

9

r=
0.
11

6

r=
0.
03

5

r=
−0

.1
16

r=
0.
10

2

r=
−0

.0
70

r=
0.
99

9*
**

r=
0.
12

1

r=
−0

.0
99

r=
−0

.0
02

nc
op

tim
a

fu
nn

el
IL
Sp

TS
p

ed
ge

s
m
ea

nf
itn

es
s

ou
td
eg

re
e

di
am

su
bs

tre
ng

th
si
nk

fit
ne

ss

ncoptima funnel ILSp TSp edges meanfitness outdegree diam substrength sinkfitness

Fig. 1. Corrected results for Figure 2 in the original paper. Correlation matrix of performance
metrics and optSample-produced LON features. Lower triangle: pairwise scatter plots. Diagonal:
density plots. Upper triangle: pairwise Spearman’s rank correlation, ���p\0:001, ��p\0:01,
�p\0:05.

C4 A. Liefooghe and L. Paquete



r=
0.
80

6*
**

r=
0.
03

6

r=
0.
01

0

r=
0.
10

0

r=
0.
09

4

r=
−0

.0
82

r=
0.
89

8*
**

r=
0.
64

0*
**

r=
0.
03

9

r=
0.
03

1

r=
0.
31

5*
*

r=
0.
50

2*
**

r=
−0

.0
94

r=
0.
17

1

r=
−0

.0
25

r=
0.
39

5*
**

r=
0.
33

4*
*

r=
−0

.1
38

r=
−0

.1
50

r=
0.
48

2*
**

r=
−0

.0
27

r=
−0

.1
46

r=
−0

.2
28

*

r=
−0

.0
12

r=
0.
07

1

r=
−0

.0
25

r=
−0

.2
47

*

r=
0.
36

9*
**

r=
0.
28

6*
*

r=
0.
29

5*
*

r=
0.
16

1

r=
0.
01

6

r=
0.
21

7*

r=
0.
24

9*

r=
0.
05

4

r=
−0

.0
58

r=
0.
31

5*
*

r=
0.
50

2*
**

r=
−0

.0
94

r=
0.
17

1

r=
−0

.0
25

r=
1.
00

0*
**

r=
−0

.0
27

r=
−0

.2
47

*

r=
0.
24

9*

nc
op

tim
a

fu
nn

el
IL
Sp

TS
p

ed
ge

s
m
ea

nf
itn

es
s

ou
td
eg

re
e

di
am

su
bs

tre
ng

th
si
nk

fit
ne

ss
ncoptima funnel ILSp TSp edges meanfitness outdegree diam substrength sinkfitness

Fig. 2. Corrected results for Figure 3 in the original paper. Correlation matrix of performance
metrics and walkSample-produced LON features. Lower triangle: pairwise scatter plots.
Diagonal: density plots. Upper triangle: pairwise Spearman’s rank correlation, ���p\0:001,
��p\0:01, �p\0:05.

Correction to: Evolutionary Computation in Combinatorial Optimization C5



Author Index

Adair, Jason 99

Baioletti, Marco 17

Chicano, Francisco 131

Di Bari, Gabriele 17

Engelbrecht, Andries P. 147

García, Marcos Diez 179
Geser, Philine 50

Jatschka, Thomas 1
Jha, Shashi Shekhar 66

Lau, Hoong Chuin 66
Le, Hoang Thanh 50
Li, Baoxiang 66

Malan, Katherine M. 147
McDermott, James 196
McMenemy, Paul 99
Mei, Yi 33
Messaoudi, Bilal 83
Middendorf, Martin 50

Milani, Alfredo 17
Moraglio, Alberto 179, 196
Mostert, Werner 147

Ochoa, Gabriela 99, 131, 147, 163
Oulamara, Ammar 83

Rahmani, Nastaran 83
Raidl, Günther R. 1
Raß, Alexander 115
Rodemann, Tobias 1

Santucci, Valentino 17
Schreiner, Jonas 115

Thomson, Sarah L. 163
Tinós, Renato 131

Veerapen, Nadarajen 99
Verel, Sébastien 163

Wanka, Rolf 115
Whitley, Darrell 131

Zhang, Fangfang 33
Zhang, Mengjie 33


	Preface
	Organization
	Contents
	A Cooperative Optimization Approach for Distributing Service Points in Mobility Applications
	1 Introduction
	2 The Service Point Distribution Problem
	3 Related Work
	4 Cooperative Optimization Algorithm
	4.1 Solution Management Component
	4.2 Feedback Component
	4.3 Evaluation Component
	4.4 Optimization Component

	5 Experimental Evaluation
	5.1 Benchmark Scenarios
	5.2 Computational Experiments

	6 Conclusion
	References

	A Binary Algebraic Differential Evolution for the MultiDimensional Two-Way Number Partitioning Problem
	1 Introduction
	2 Related Work
	3 The General Scheme of MADEB
	4 Algebraic Differential Mutation for the Binary Space
	4.1 Abstract Algebraic Framework
	4.2 Binary Algebraic Differential Mutation
	4.3 Search Characteristics of the Binary Differential Mutation

	5 Variable Neighborhood Descent for MDTWNPP
	6 Experiments
	6.1 Experimental Tuning of MADEB
	6.2 Comparison with State-of-the-Art MDTWNPP Algorithms

	7 Conclusions and Future Work
	References

	A New Representation in Genetic Programming for Evolving Dispatching Rules for Dynamic Flexible Job Shop Scheduling
	1 Introduction
	2 Background
	2.1 Dynamic Flexible Job Shop Scheduling
	2.2 Dispatching Rules in Dynamic Flexible Job Shop Scheduling
	2.3 Related Work

	3 The Proposed GP Approach
	3.1 Representation
	3.2 Components Design

	4 Experiment Design
	4.1 Simulation Configuration
	4.2 Parameter Settings

	5 Results and Discussions
	5.1 Test Performance of Evolved Rules
	5.2 Distribution of Average Objective Value
	5.3 Rule Analyses

	6 Conclusions and Future Work
	References

	An Iterated Local Search Algorithm for the Two-Machine Flow Shop Problem with Buffers and Constant Processing Times on One Machine
	1 Introduction
	2 Related Work
	3 Formal Description of the Problem
	4 Complexity Results
	5 A Modification of the NEH Heuristic
	6 Iterated Local Search
	7 Computational Evaluation
	7.1 Choice of Algorithms for Comparison
	7.2 Generation of Problem Instances
	7.3 Parameter Values
	7.4 Comparison of 2BF-ILS with Other Metaheuristics
	7.5 Comparison of 2BF-ILS with NEH

	8 Conclusion
	References

	Route Planning for a Fleet of Electric Vehicles with Waiting Times at Charging Stations
	1 Introduction
	2 Related Literature
	3 Mathematical Model
	4 Genetic Algorithm (GA)
	4.1 Constraint Programming (CP) for Fitness Evaluation
	4.2 Selection and Crossover
	4.3 Columns Based Chromosome Generation
	4.4 Local Search on Solutions
	4.5 Management of Charging Station Visits

	5 Numerical Experiments
	5.1 Results

	6 Conclusions
	References

	Multiple Periods Vehicle Routing Problems: A Case Study
	1 Introduction
	2 Literature Review
	3 Problem Description and Notation
	3.1 Industrial Problem
	3.2 Formal Description

	4 Solution Approach
	4.1 Weeks Planning Model
	4.2 Days Planning Model
	4.3 Routing Phase

	5 Experimental Results
	5.1 Instance Description
	5.2 Weeks Planning Results
	5.3 Days Planning Results
	5.4 Routing Results

	6 Conclusion
	References

	Rigorous Performance Analysis of State-of-the-Art TSP Heuristic Solvers
	1 Introduction
	2 Methodology
	2.1 Instances
	2.2 Solvers
	2.3 Experimental Setup
	2.4 Instance Features
	2.5 Statistical Evaluation of Heuristic Performance

	3 Performance Analysis
	3.1 EAX v LKH+IPT Performance Results
	3.2 LKH+GPX2 v EAX Performance Results
	3.3 LKH+IPT v LKH+GPX2 Results
	3.4 Overall Performance Classification

	4 Heuristic Selection by Minimal Feature Extraction
	5 Conclusions
	References

	Runtime Analysis of Discrete Particle Swarm Optimization Applied to Shortest Paths Computation
	1 Introduction
	2 Discrete PSO
	3 Problem Structure
	3.1 Shortest Path Trees
	3.2 Objective Function

	4 Model
	5 Technical Results
	6 Runtime Analysis
	6.1 Upper Bounds
	6.2 Lower Bounds

	7 Conclusion
	References

	Quasi-Optimal Recombination Operator
	1 Introduction
	2 Background
	2.1 Variable Interaction Graph
	2.2 Recombination Graph

	3 Dynastic Potential Exploration
	3.1 Chordal Graphs
	3.2 Clique Tree
	3.3 Limiting the Complexity
	3.4 Theoretical Comparison with (A)PX

	4 Experiments
	4.1 DPX Statistics
	4.2 Comparison with PX and APX for NKQ Landscapes
	4.3 Comparison with PX and APX for MAX-SAT

	5 Conclusions
	References

	Insights into the Feature Selection Problem Using Local Optima Networks
	1 Introduction
	2 Background and Related Work
	2.1 The Feature Selection Problem
	2.2 Local Optima Networks

	3 Experimental Setting
	3.1 Datasets
	3.2 Fitness Function
	3.3 Feature Selection Algorithms
	3.4 Local Optima Network Generation and Visualisation

	4 Results
	5 Conclusion
	References

	Clarifying the Difference in Local Optima Network Sampling Algorithms
	1 Introduction
	2 Definitions
	2.1 The `Network'Feature Set
	2.2 The `Funnel'Feature Set

	3 Experimental Setting
	3.1 Benchmark Test Problem
	3.2 The Sampling Algorithms
	3.3 Heuristics
	3.4 Predictive Model Setup

	4 Results
	4.1 Sampling Algorithm Comparison
	4.2 Prediction of Heuristic Competence on the Problems

	5 Conclusions and Thoughts
	References

	A Unifying View on Recombination Spaces and Abstract Convex Evolutionary Search
	1 Introduction
	2 Recombination in the Geometric Framework
	2.1 Abstract Convexity
	2.2 Abstract Convex Search

	3 Recombination in Elementary Landscapes Theory
	3.1 Crossover Random Walk
	3.2 Bridge to the Geometric Framework

	4 Main Results
	4.1 Axiomatic Classification of Crossovers
	4.2 Algebraic Abstract Convex Search

	5 Summary and Future Work
	References

	Program Trace Optimization with Constructive Heuristics for Combinatorial Problems
	1 Introduction
	2 PTO and Related Work
	2.1 The Program Trace: A Universal Solution Representation
	2.2 Solvers and Search Operators
	2.3 The Role of the Generator
	2.4 Open Questions

	3 GRASP in PTO
	3.1 Examples of Genotype-Phenotype Correspondence

	4 New Repair Method in PTO
	5 Experiments and Results
	5.1 Problems and Instances
	5.2 Experimental Design
	5.3 Results
	5.4 Discussion

	6 Conclusions and Future Work
	References

	Correction to: Evolutionary Computation in Combinatorial Optimization
	Correction to: A. Liefooghe and L. Paquete (Eds.): Evolutionary Computation in Combinatorial Optimization, LNCS 11452, https://doi.org/10.1007/978-3-030-16711-0 

	Author Index



