
Compact Optimization Algorithms
with Re-Sampled Inheritance

Giovanni Iacca1(B) and Fabio Caraffini2

1 Department of Information Engineering and Computer Science,
University of Trento, 38123 Povo, Italy

giovanni.iacca@unitn.it
2 Institute of Artificial Intelligence, School of Computer Science and Informatics,

De Montfort University, Leicester LE1 9BH, UK
fabio.caraffini@dmu.ac.uk

Abstract. Compact optimization algorithms are a class of Estimation
of Distribution Algorithms (EDAs) characterized by extremely limited
memory requirements (hence they are called “compact”). As all EDAs,
compact algorithms build and update a probabilistic model of the dis-
tribution of solutions within the search space, as opposed to population-
based algorithms that instead make use of an explicit population of solu-
tions. In addition to that, to keep their memory consumption low, com-
pact algorithms purposely employ simple probabilistic models that can
be described with a small number of parameters. Despite their simplicity,
compact algorithms have shown good performances on a broad range of
benchmark functions and real-world problems. However, compact algo-
rithms also come with some drawbacks, i.e. they tend to premature con-
vergence and show poorer performance on non-separable problems. To
overcome these limitations, here we investigate a possible algorithmic
scheme obtained by combining compact algorithms with a non-disruptive
restart mechanism taken from the literature, named Re-Sampled Inheri-
tance (RI). The resulting compact algorithms with RI are tested on the
CEC 2014 benchmark functions. The numerical results show on the one
hand that the use of RI consistently enhances the performances of com-
pact algorithms, still keeping a limited usage of memory. On the other
hand, our experiments show that among the tested algorithms, the best
performance is obtained by compact Differential Evolution with RI.

Keywords: Compact Optimization · Differential evolution ·
Bacterial foraging optimization · Particle Swarm Optimization ·
Genetic Algorithm

1 Introduction

Compact Optimization [1] is a branch of Computational Intelligence Optimiza-
tion devoted to the study of optimization algorithms characterized by limited
memory requirements. From an algorithmic point of view, compact algorithms
belong to the family of the Estimation of Distribution Algorithms (EDAs) [2],
c© Springer Nature Switzerland AG 2019
P. Kaufmann and P. A. Castillo (Eds.): EvoApplications 2019, LNCS 11454, pp. 523–534, 2019.
https://doi.org/10.1007/978-3-030-16692-2_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16692-2_35&domain=pdf
http://orcid.org/0000-0001-9723-1830
http://orcid.org/0000-0001-9199-7368
https://doi.org/10.1007/978-3-030-16692-2_35


524 G. Iacca and F. Caraffini

i.e. algorithms that instead of evolving a population of solutions (as is typi-
cally done in population-based optimization algorithms, such as Evolutionary
Algorithms and Swarm Intelligence algorithms), build and update a probabilis-
tic model of the distribution of solutions within the search space. Depending
on the specific probabilistic model (Gaussian, binomial, etc.), different EDAs
can be implemented. In this regard, the specificity of compact algorithms is
that they employ a separate distribution for each variable of the problem, and
update it as long as the evolutionary process proceeds. Therefore, differently from
population-based algorithms where at least n D-dimensional arrays need to be
stored in memory (being n the population size and D the problem dimension),
compact algorithms need to store only a much more compact “Probability Vec-
tor” (PV) that describes the parameters of the probabilistic model. For instance,
binary-encoded compact algorithms use as PV a single D-dimensional array
p = [p1, p2, . . . , pD]. Each pi ∈ [0, 1], i = 1, 2, . . . ,D, represents the probability
that the i–th variable has value 1 (i.e., the relative frequency in a corresponding
“virtual population” of Np individuals, with Np a parameter of the algorithm).
Similarly, real-valued compact algorithms based on Gaussian distributions use
as PV two D-dimensional arrays: an array of means μ = [μ1, μ2, . . . , μn] and
an array of variances σ = [σ1, σ2, . . . , σn], describing a (normalized) Gaussian
distribution of each variable in the search space.

In the past two decades, the Compact Optimization concept has been
declined in a number of compact algorithms, sparkling from the seminal works
by Harik et al. [3] and Corno et al. [4], who devised a similar algorithm dubbing it
respectively “compact Genetic Algorithm” (cGA) and “Selfish Gene” (SG). The
family of compact algorithms was then extended to include improved versions of
cGA [5,6], real-valued cGA (rcGA) [7], compact Differential Evolution (cDE) [8]
and many of its variants [9–18], compact Particle Swarm Optimization (cPSO)
[19], compact Bacterial Optimization (cBFO) [20], and, more recently, compact
Teaching-Learning Based Optimization (cTLBO) [21,22], compact Artificial Bee
Colony (cABC) [23,24], and compact Flower Pollination Algorithm (cFPA) [25].

Due to their limited usage of memory, compact algorithms are particularly
suited for embedded devices, such as Wireless Sensor Networks motes, wearable
devices, embedded controllers for robots and industrial plants, etc. Unsurpris-
ingly, the literature abounds with successful examples of compact algorithms
applications based on this kind of devices: for instance, cDE has been applied
especially in control applications, such as real-time hardware-in-the-loop opti-
mization of a control system for a permanent-magnet tubular linear synchronous
motor [8], or real-time trajectory optimization of robotic arms [18,26] and Carte-
sian robots [17]. In [6], cGA was applied to micro-controller design, while cPSO
was used for optimizing a power plant controller in [19]. In [27], cABC was used
for topology control in Wireless Sensor Networks. The more recent cTLBO was
instead applied to train Artificial Neural Networks in [22].

In this paper, we aim to push forward this research area by tackling the
two main drawbacks of compact algorithms, i.e. their tendency to premature
convergence (as they do not keep an actual population, they do not main-
tain explicitly diversity), and a poorer performance on non-separable problems



Compact Optimization Algorithms with Re-Sampled Inheritance 525

(which is due to the fact that they process each variable separately). To over-
come these limitations, we study the effect of a special case of restart named
Re-Sampled Inheritance (RI) [28,29], which simply generates a random solution
and then recombines it - by using an exponential crossover operator similarly to
Differential Evolution - with the best solution detected so far by the compact
algorithm. Previous works [29,30] have shown that the RI mechanism is a sim-
ple yet effective way to improve the performance of an optimization algorithm,
as it allows to escape from local optima while preserving some of the informa-
tion from the current best, thus guaranteeing a kind of inheritance and avoiding
an excessively disruptive restart (compared to other restart mechanisms). Our
hypothesis is then that on the one hand the re-sampling should allow compact
algorithms to escape from local optima, on the other hand the inheritance mecha-
nism -since it processes blocks of variables- should enable an overall performance
improvement especially (but not only) on non-separable problems. Moreover, as
the RI mechanism only needs to sample a random solution and recombine it
with the current best, it does not require any additional memory with respect
to a compact algorithm, therefore allowing to keep a low memory consumption.

To assess the effect of RI on different compact algorithms, we apply it sepa-
rately to four (real-valued) compact algorithms taken from the literature, namely
cDE (specifically, its ‘light” version [11]), rcGA, cPSO, and cBFO, and perform
extensive tests on the CEC 2014 benchmark [31] in 10, 50 and 100 dimensions.

The rest of this paper is organized as follows: Sect. 2 presents the background
concepts on Compact Optimization. Section 3 describes the general algorithmic
scheme which combines compact algorithms with Re-Sampled Inheritance. The
numerical results are then presented and discussed in Sect. 4. Finally, Sect. 5
concludes this work.

2 Background

In the rest of this paper, we focus on real-valued compact algorithms as they
have been shown to perform better than their binary-encoded counterparts [7].
In case of real values, the general structure of a compact algorithm is quite
straightforward and can be described as follows. First of all, for each i-th variable
a Gaussian Probability Distribution Function (PDF) is considered, truncated
within the interval [−1, 1], with mean μi and standard deviation σi taken from
the Probability Vector PV = [μ,σ]. The height of the PDF is normalized in
order to keep its area equal to 1.

At the beginning of the optimization process, for each design variable i, μi = 0
(unless Re-Sampled Inheritance is used, see next section) and σi = λ, where λ is a
large positive constant (e.g. λ = 10), such that it simulates a uniform distribution
(thus exploring the search space). Subsequently, a starting individual, elite, is
generated by sampling each i-th variable from the corresponding PDF. For more
details about the sampling mechanism, see [7].

Then, the iterative process starts. At each step, depending on the specific
compact algorithm, a candidate solution x is generated by sampling one or more
individuals from the current PV. E.g., in rcGA [7], x is obtained by generating a



526 G. Iacca and F. Caraffini

single individual and recombining it with elite with binomial crossover. In cDE
[8], x is obtained by generating a mutated individual (for instance sampling
three individuals from PV and applying the rand/1 DE mutation), and then
recombining it with the current elite by using either binomial or exponential
crossover. Other compact algorithm paradigms, such as cPSO and cBFO, use the
same mechanism for sampling new individuals, but apply different algorithmic
operators inspired from the corresponding biological metaphor to generate a new
candidate solution x. In all cases, the fitnesses of elite and x are compared and,
according to the chosen elitism scheme (persistent or non-persistent, see [1]),
elite is replaced by x. Furthermore, the fitness comparison is used to update
the PV, i.e. it changes its μ and σ values by “moving” the Gaussian PDF towards
the better solution and “shrinking” the PDF around it. Details for this update
mechanism are given in [7]. This iterative process is executed until a certain stop
condition is met. The pseudo-code of a general real-valued compact algorithm is
given in Algorithm 1.

Algorithm 1. General structure of a compact algorithm
1 initialize PV = [μ, σ];
2 generate elite by means of PV;
3 while stop condition is not met do
4 generate candidate solution x (according to the specific operators);
5 compare fitness of x and elite;
6 if elite replacement condition is true then
7 elite = x;
8 end if
9 update PV;

10 end while
11 Return: elite

3 Compact Optimization Algorithms with Re-Sampled
Inheritance

The general scheme of a compact algorithm with Re-Sampled Inheritance is
shown in Algorithm 2. The only difference w.r.t. the original compact algorithm
shown in Algorithm 1 is the RI component, which enables the restart mechanism
with inheritance, and is activated at the end of each execution of the compact
algorithm (that is continued for a given % of the total budget).

The Re-Sampled Inheritance (see [28,29] for more details) first randomly gen-
erates a solution x from a uniform distribution within the given search space.
Then, it recombines x with the current best solution xbest by applying the
exponential crossover used in Differential Evolution. More specifically, a random
initial index is selected in [0,D), and the corresponding variable is copied from
xbest into x. Then, as long as a (uniform) random number rand(0, 1) is less than
or equal to Cr, the design variables from xbest are copied into the corresponding
positions of x, starting from the initial index. Cr, the crossover rate, is a param-
eter affecting the number of variables inherited from xbest, and is set as in [11],



Compact Optimization Algorithms with Re-Sampled Inheritance 527

i.e. Cr = 1/ Dα
√

2, where Dα is the expected number of variables that are copied
from xbest. As soon as rand(0, 1) > Cr, the copy process is interrupted. The
copy is handled as in a cyclic buffer, i.e. when the D-th variable is reached during
the copy process the next to be copied is the first one. When the copy stops, the
fitness of x is compared with that of xbest. If the newly generated solution x
outperforms the current best solution, the latter gets updated (i.e. xbest = x).
The compact algorithm is then restarted after setting its mean value μ (that is
used in the Probability Vector PV) equal to the new restarted point, i.e. μ = x.
This way, the new initial distribution is centered in a new point which, despite
being randomly sampled, still contains some inheritance from the current best
solution. At the end of each compact optimization routine, see Algorithm 1, an
elite solution is returned and compared for replacement against the current best
solution, as shown in Algorithm 2.

Algorithm 2. Compact algorithm with Re-Sampled Inheritance
1 generate a random solution x in the search space and set xbest = x;
2 while stop condition is not met do
3 // Compact algorithm
4 set μ = x and run compact algorithm as in Algorithm 1 (for a % of the

budget);
5 if elite is better than xbest then
6 xbest = elite;
7 end if
8 // Re-Sampled Inheritance
9 generate a random solution x (from a uniform distribution);

10 generate i = round (D · rand (0, 1));
11 x[i] = xbest[i];
12 k = 1;
13 while rand (0, 1) ≤ Cr and k < D do
14 i = i + 1;
15 if i == D then
16 i = 1;
17 end if
18 x[i] = xbest[i];
19 k = k + 1;

20 end while
21 if x is better than xbest then
22 xbest = x;
23 end if

24 end while

The rationale behind the RI mechanism is then to restart the algorithm from
a partially random solution, i.e. a solution that is randomly generated but still
inherits part of the variables from the current best. This way the restart is not
entirely disruptive, but preserves at least a block of (an expected number of)
Dα variables. This partial inheritance allows the algorithm to keep some infor-
mation from one restart and the next one, but also to escape from local optima.



528 G. Iacca and F. Caraffini

From this point of view, the RI mechanism shares some resemblance with the
Iterated Local Search (ILS) methods [32], that try to apply a small perturbation
to the best-so-far solution during restart (in fact, as small as possible to not
disrupt it much, but as large as needed to allow the local search to converge
to a different local optimum). However, ILS has been especially designed for
(and applied to) combinatorial optimization, while here we focus on continuous
optimization.

4 Numerical Results

In the following we present the numerical results obtained on the CEC 2014
benchmark [31]. This benchmark is composed of 30 functions, with different
properties in terms of separability, ill-conditioning, and landscape structure. In
particular, it is worth noting that except for f8 (Shifted Rastrigin’s Function)
and f10 (Shifted Schwefel’s Function), all CEC 2014 benchmark functions are
non-separable. Therefore this benchmark is particularly suited for testing the
performance of optimization algorithms on non-separable problems.

We considered the following four real-valued compact algorithms, with the
parametrization proposed in their original papers:

– cDE “light” [11] with exponential crossover and parameters: Np = 300, F =
0.5, and αm = 0.25;

– rcGA [7], with persistent elitism and parameters: Np = 300;
– cPSO [19], with parameters: Np = 300, φ1 = 0.2, φ2 = 0.07, φ3 = 3.74,

γ1 = 1, and γ2 = 1;
– cBFO [20], with parameters: Np = 300, Ci = 0.1, and Ns = 4.

As for the corresponding versions with RI (dubbed, respectively as RIcDE,
RIrcGA, RIcPSO and RIcBFO), the same parametrization was kept for the
compact optimazion process while the RI component was parametrized with
α = 0.05 (such that only 5% of the variables are inherited, on average, from
the current best). A number of fitness function calls equal to 25% of the total
computational budget was assigned to execute the compact algorithm after each
restart. It should be noted that these are the only two parameters of the RI
mechanism and they were empirically set after having observed their effect in
preliminary experiments.

Furthermore, in order to assess the effect of the RI mechanism w.r.t. a simple
random restart without any form of inheritance, we included in our experimental
setup also four variants of the same compact algorithms where the restart was
applied, with the same period of the RI variants (25% of the total computational
budget), by simply applying a uniform re-sampling of a new solution x within the
search space, and restarting the compact algorithm by setting μ = x. We dub
these compact algorithms with random restart, respectively, as RecDE, RercGA,
RecPSO and RecBFO.



Compact Optimization Algorithms with Re-Sampled Inheritance 529

Finally, to provide a baseline for all the compact algorithms with/without
restart tested in this paper, we evaluated the performance of a simple Random
Walk (RW) algorithm where at each step a new solution is generated by apply-
ing a uniform re-sampling within the search space. From our numerical results
(see Table 5) it can be seen that its performance is -as expected- considerably
worse than any of the compact algorithms considered in the experiments, thus
highlighting that the “compact” logic is more than a mere random sampling and
performs significantly better w.r.t. pure uniform random searches.

To assess the scalability of all the algorithms, we performed experiments
in 10, 50 and 100 dimensions. Thus, the total experimental setup consists of 13
algorithms (4 compact algorithms, 4 RI variants, 4 variants with random restart,
and RW) and 30×3 = 90 optimization problems (i.e. 30 functions each tested in
three different dimensionalities). On each benchmark function, each algorithm
was executed for 30 independent runs, to collect statistics on the fitness values
obtained in each run at the end of the allotted computational budget. Each run
was executed for a total budget of 5000 × D function evaluations, being D the
problem dimension.

In the following, for the sake of brevity we will show only a compact represen-
tation of the main experimental results1. For that, we will use the sequentially
rejective Holm-Bonferroni procedure [33,34]. This procedure consists of the fol-
lowing: considering NTP test problems (in our case, 90) and NA optimization
algorithms, the performance obtained by each algorithm on each problem is
computed. This is measured as average of the best fitness values obtained by the
algorithm on that problem over multiple (in our case, 30) independent runs, at
the end of the computational budget (in our case, 5000×D function evaluations).
Then, for each problem a score Ri is assigned to each algorithm, being NA the
score of the algorithm displaying the best performance (i.e., assuming minimiza-
tion, the minimum average of the fitness values) on that problem, NA − 1 the
score of the second best, and so on. The algorithm displaying the worst per-
formance scores 1. These scores are then averaged, for each algorithm, over the
whole set of NTP test problems. The algorithms are sorted on the basis of these
average scores. Indicating with R0 the rank of an algorithm taken as reference,
and with Rj for j = 1, . . . , NA − 1 the rank of the remaining algorithms, the
values zj are calculated as:

zj =
Rj − R0√
NA(NA+1)

6NT P

. (1)

By means of the zj values, the corresponding cumulative normal distribution
values pj are derived. These pj values are then compared to the corresponding
δ/j where δ is the confidence interval, set to 0.05: if pj > δ/j, the null-hypothesis
(that the algorithm taken as reference has the same performance as the j-th
algorithm) is accepted, otherwise is rejected as well as all the subsequent tests.

1 Detailed numerical results are available at: http://www.cse.dmu.ac.uk/∼fcaraf00/
NumericalResults/RICompactOptResults.pdf.

http://www.cse.dmu.ac.uk/~fcaraf00/NumericalResults/RICompactOptResults.pdf
http://www.cse.dmu.ac.uk/~fcaraf00/NumericalResults/RICompactOptResults.pdf


530 G. Iacca and F. Caraffini

Table 1. Holm-Bonferroni procedure (reference: RIcDE, Rank = 2.63e+00)

j Optimizer Rank zj pj δ/j Hypothesis

1 RecDE 2.33e+00 −2.85e+00 2.21e−03 5.00e−02 Rejected

2 cDE 1.03e+00 −1.52e+01 2.44e−52 2.50e−02 Rejected

Table 2. Holm-Bonferroni procedure (reference: RIrcGA, Rank = 2.53e+00)

j Optimizer Rank zj pj δ/j Hypothesis

1 RercGA 2.47e+00 −6.32e−01 2.64e−01 5.00e−02 Accepted

2 rcGA 1.00e+00 −1.45e+01 3.07e−48 2.50e−02 Rejected

Let us first consider, for each compact algorithm, how the corresponding algo-
rithms with RI and random restart perform w.r.t. the original compact algorithm
without restart. Tables 1, 2, 3 and 4 show, respectively, the results of the Holm-
Bonferroni procedure (in this case with NA = 3) on cDE, rcGA, cPSO and cBFO
based algorithms. The tables display the ranks, zj values, pj values, and corre-
sponding δ/j obtained by this procedure. In each case we considered as reference
algorithm the corresponding algorithm with RI, whose rank is shown in parenthe-
sis in each table caption. Moreover, we indicate in each table whether the null-
hypothesis (that the algorithm taken as reference has the same performance as
each other algorithm in the corresponding table row) is accepted or not.

From these Holm-Bonferroni procedures, we can observe that, except for the
case of cPSO (where, quite surprisingly, cPSO shows the same performance as
the corresponding algorithms with RI and random restart) in all other cases
the algorithms with RI score a better rank than their corresponding compact
algorithms. It is also interesting to note that, while in the case of cDE RIcDE
performs better also than RecDE, on the other compact algorithms it results that
the RI variant is statistically equivalent to the variant with random restart (note
that the null-hypothesis is accepted in those cases). This equivalence between
RI and random restart in the case of rcGA, cPSO and cBFO might be due
to parametrization used for RI (number of restarts and number of variables
inherited from the current best), as well as the different algorithmic logics used
by these algorithms compared to cDE. In general though, these observations
demonstrate that the use of restarts, and, especially in the case of cDE, the use
of RI is beneficial in terms of optimization performance.

Table 3. Holm-Bonferroni procedure (reference: RIcPSO, Rank = 1.99e+00)

j Optimizer Rank zj pj δ/j Hypothesis

1 RecPSO 2.01e+00 2.11e−01 5.83e−01 5.00e−02 Accepted

2 cPSO 2.00e+00 1.05e−01 5.42e−01 2.50e−02 Accepted



Compact Optimization Algorithms with Re-Sampled Inheritance 531

Table 4. Holm-Bonferroni procedure (reference: RIcBFO, Rank = 1.84e+00)

j Optimizer Rank zj pj δ/j Hypothesis

1 RecBFO 1.88e+00 3.16e−01 6.24e−01 5.00e−02 Accepted

2 cBFO 1.54e+00 −2.85e+00 2.21e−03 2.50e−02 Rejected

Finally, we provide an overall comparison of all the 12 compact optimization
algorithms, in addition to the Random Walk algorithm. The resulting Holm-
Bonferroni procedure is reported in Table 5, where RIcDE is considered as ref-
erence algorithm (as it shows the highest rank) and NA = 13. In this case,
except for RecDE, all the hypotheses are sequentially rejected, meaning that
when all the algorithms are considered together, RIcDE is statistically equivalent
to RecDE (although it shows a slightly higher rank), but it shows a statistically
better performance (on average, on the entire set of tested problems) than all
other algorithms under study. As expected, the Random Walk algorithm per-
forms worse than all other papers. Moreover, the rank shows that each compact
algorithm with RI (or random restart) performs better (on average) than the
corresponding compact algorithm, confirming the fact that the RI component is
beneficial to all the compact algorithms considered in our experimentation.

Table 5. Holm-Bonferroni procedure (reference: RIcDE, Rank = 1.09e+01)

j Optimizer Rank zj pj δ/j Hypothesis

1 RecDE 1.06e+01 −6.41e−01 2.61e−01 5.00e−02 Accepted

2 RecBFO 8.56e+00 −4.38e+00 5.86e−06 2.50e−02 Rejected

3 RIcBFO 8.52e+00 −4.44e+00 4.40e−06 1.67e−02 Rejected

4 RIrcGA 8.38e+00 −4.71e+00 1.22e−06 1.25e−02 Rejected

5 RercGA 8.30e+00 −4.86e+00 5.93e−07 1.00e−02 Rejected

6 cBFO 8.07e+00 −5.29e+00 6.04e−08 8.33e−03 Rejected

7 cDE 8.03e+00 −5.35e+00 4.30e−08 7.14e−03 Rejected

8 rcGA 5.68e+00 −9.74e+00 1.05e−22 6.25e−03 Rejected

9 RecPSO 3.97e+00 −1.29e+01 1.73e−38 5.56e−03 Rejected

10 RIcPSO 3.97e+00 −1.29e+01 1.73e−38 5.56e−03 Rejected

11 cPSO 3.89e+00 −1.31e+01 2.61e−39 5.00e−03 Rejected

12 RW 1.43e+00 −1.76e+01 6.80e−70 4.55e−03 Rejected

5 Conclusions

In this paper we have presented an algorithmic scheme for solving continuous
optimization problems on devices characterized by limited memory. The pro-
posed scheme is based on a combination of a compact algorithm with a restart



532 G. Iacca and F. Caraffini

mechanism based on Re-Sampled Inheritance (RI). We tested this scheme on four
different compact algorithms presented in the literature (namely: cDE, rcGA,
cPSO, and cBFO) and performed numerical experiments on a broad range of
benchmark functions in several dimensionalities. Our experiments show that the
use of RI consistently enhances the performances of compact algorithms, still
keeping a limited usage of memory. In addition to that, we noted that among the
tested algorithms the best performance was obtained by cDE with Re-Sampled
Inheritance.

In future works, we will further investigate the effect of the parametrization
on the proposed compact algorithms with Re-Sampled Inheritance, focusing in
particular on the influence of the number of restarts, as well as the number
of variables inherited from the best individual at each restart. We will also
investigate alternative inheritance mechanisms, for instance based on binomial
crossover or exponential crossover on shuffled variables.

Acknowledgments. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 665347.

References

1. Neri, F., Iacca, G., Mininno, E.: Compact optimization. In: Zelinka, I., Snášel,
V., Abraham, A. (eds.) Handbook of Optimization. Intelligent Systems Refer-
ence Library, vol. 38, pp. 337–364. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-30504-7 14

2. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool
for Evolutionary Computation. Kluwer Academic Publishers, Boston (2001)

3. Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic algorithm. IEEE
Trans. Evol. Comput. 3(4), 287–297 (1999)

4. Corno, F., Reorda, M.S., Squillero, G.: The selfish gene algorithm: a new evolu-
tionary optimization strategy. In: ACM Symposium on Applied Computing, pp.
349–355 (1998)

5. Ahn, C.W., Ramakrishna, R.S.: Elitism-based compact genetic algorithms. IEEE
Trans. Evol. Comput. 7(4), 367–385 (2003)

6. Gallagher, J.C., Vigraham, S., Kramer, G.: A family of compact genetic algorithms
for intrinsic evolvable hardware. IEEE Trans. Evol. Comput. 8(2), 111–126 (2004)

7. Mininno, E., Cupertino, F., Naso, D.: Real-valued compact genetic algorithms for
embedded microcontroller optimization. IEEE Trans. Evol. Comput. 12(2), 203–
219 (2008)

8. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact differential evolution.
IEEE Trans. Evol. Comput. 15(1), 32–54 (2011)

9. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Global supervi-
sion for compact differential evolution. In: IEEE Symposium on Differential Evo-
lution, pp. 1–8 (2011)

10. Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan, P.N.: Super-fit and
population size reduction in compact differential evolution. In: IEEE Workshop on
Memetic Computing, pp. 1–8 (2011)

11. Iacca, G., Caraffini, F., Neri, F.: Compact differential evolution light: high perfor-
mance despite limited memory requirement and modest computational overhead.
J. Comput. Sci. Technol. 27(5), 1056–1076 (2012)

https://doi.org/10.1007/978-3-642-30504-7_14
https://doi.org/10.1007/978-3-642-30504-7_14


Compact Optimization Algorithms with Re-Sampled Inheritance 533

12. Iacca, G., Mininno, E., Neri, F.: Composed compact differential evolution. Evol.
Intel. 4(1), 17–29 (2011)

13. Iacca, G., Neri, F., Mininno, E.: Opposition-based learning in compact differential
evolution. In: Di Chio, C., et al. (eds.) EvoApplications 2011, Part I. LNCS, vol.
6624, pp. 264–273. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-20525-5 27

14. Iacca, G., Neri, F., Mininno, E.: Noise analysis compact differential evolution. Int.
J. Syst. Sci. 43(7), 1248–1267 (2012)

15. Jewajinda, Y.: Covariance matrix compact differential evolution for embedded
intelligence. In: IEEE Region 10 Symposium, pp. 349–354 (2016)

16. Mallipeddi, R., Iacca, G., Suganthan, P.N., Neri, F., Mininno, E.: Ensemble strate-
gies in compact differential evolution. In: IEEE Congress on Evolutionary Compu-
tation, pp. 1972–1977 (2011)

17. Neri, F.: Memetic compact differential evolution for cartesian robot control. IEEE
Comput. Intell. Mag. 5(2), 54–65 (2010)

18. Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation compact differential evo-
lution for limited memory optimization problems. Inf. Sci. 181(12), 2469–2487
(2011)

19. Neri, F., Mininno, E., Iacca, G.: Compact particle swarm optimization. Inf. Sci.
239, 96–121 (2013)

20. Iacca, G., Neri, F., Mininno, E.: Compact bacterial foraging optimization. In:
Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A.,
Zurada, J.M. (eds.) EC/SIDE -2012. LNCS, vol. 7269, pp. 84–92. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-29353-5 10

21. Yang, Z., Li, K., Guo, Y.: A new compact teaching-learning-based optimization
method. In: Huang, D.-S., Jo, K.-H., Wang, L. (eds.) ICIC 2014. LNCS (LNAI),
vol. 8589, pp. 717–726. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
09339-0 72

22. Yang, Z., Li, K., Guo, Y., Ma, H., Zheng, M.: Compact real-valued teaching-
learning based optimization with the applications to neural network training.
Knowl.-Based Syst. 159, 51–62 (2018)

23. Banitalebi, A., Aziz, M.I.A., Bahar, A., Aziz, Z.A.: Enhanced compact artificial
bee colony. Inf. Sci. 298, 491–511 (2015)

24. Dao, T.-K., Chu, S.-C., Nguyen, T.-T., Shieh, C.-S., Horng, M.-F.: Compact artifi-
cial bee colony. In: Ali, M., Pan, J.-S., Chen, S.-M., Horng, M.-F. (eds.) IEA/AIE
2014. LNCS (LNAI), vol. 8481, pp. 96–105. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-07455-9 11

25. Dao, T.K., Pan, T.S., Nguyen, T.T., Chu, S.C., Pan, J.S.: A compact flower pol-
lination algorithm optimization. In: International Conference on Computing Mea-
surement Control and Sensor Network, pp. 76–79 (2016)

26. Iacca, G., Caraffini, F., Neri, F., Mininno, E.: Robot base disturbance optimization
with compact differential evolution light. In: Di Chio, C., et al. (eds.) EvoAppli-
cations 2012. LNCS, vol. 7248, pp. 285–294. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-29178-4 29

27. Dao, T.K., Pan, T.S., Nguyen, T.T., Chu, S.C.: A compact artificial bee colony
optimization for topology control scheme in wireless sensor networks. J. Inf. Hiding
Multimed. Signal Process. 6(2), 297–310 (2015)

28. Caraffini, F., Iacca, G., Neri, F., Picinali, L., Mininno, E.: A CMA-ES super-fit
scheme for the re-sampled inheritance search. In: IEEE Congress on Evolutionary
Computation, pp. 1123–1130 (2013)

https://doi.org/10.1007/978-3-642-20525-5_27
https://doi.org/10.1007/978-3-642-20525-5_27
https://doi.org/10.1007/978-3-642-29353-5_10
https://doi.org/10.1007/978-3-319-09339-0_72
https://doi.org/10.1007/978-3-319-09339-0_72
https://doi.org/10.1007/978-3-319-07455-9_11
https://doi.org/10.1007/978-3-319-07455-9_11
https://doi.org/10.1007/978-3-642-29178-4_29
https://doi.org/10.1007/978-3-642-29178-4_29


534 G. Iacca and F. Caraffini

29. Caraffini, F., Neri, F., Passow, B.N., Iacca, G.: Re-sampled inheritance search: high
performance despite the simplicity. Soft Comput. 17(12), 2235–2256 (2013)

30. Caraffini, F., Iacca, G., Yaman, A.: Improving (1+1) covariance matrix adapta-
tion evolution strategy: a simple yet efficient approach. In: International Global
Optimization Workshop (2018)

31. Liang, J., Qu, B., Suganthan, P.: Problem definitions and evaluation criteria for
the CEC 2014 special session and competition on single objective real-parameter
numerical optimization. Zhengzhou University, Zhengzhou China and Technical
Report, Nanyang Technological University, Singapore, Computational Intelligence
Laboratory (2013)

32. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search: framework and
applications. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics.
International Series in Operations Research & Management Science, vol. 272, pp.
363–397. Springer, Cham (2010). https://doi.org/10.1007/978-3-319-91086-4 5

33. Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: A study of statistical tech-
niques and performance measures for genetics-based machine learning: accuracy
and interpretability. Soft Comput. 13(10), 959–977 (2008)

34. Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat.
6(2), 65–70 (1979)

https://doi.org/10.1007/978-3-319-91086-4_5

	Compact Optimization Algorithms with Re-Sampled Inheritance
	1 Introduction
	2 Background
	3 Compact Optimization Algorithms with Re-Sampled Inheritance
	4 Numerical Results
	5 Conclusions
	References




