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Abstract. Salient Object Detection (SOD) aims to model human visual
attention system to cope with the complex natural scene which contains
various objects at different scales. Over the past two decades, a wide
range of saliency features have been introduced in the SOD field, how-
ever feature selection has not been widely investigated for selecting infor-
mative, non-redundant, and complementary features from the existing
features. In SOD, multi-level feature extraction and feature combination
are two fundamental stages to compute the final saliency map. However,
designing a good feature combination framework is a challenging task
and requires domain-expert intervention. In this paper, we propose a
genetic programming (GP) based method that is able to automatically
select the complementary saliency features and generate mathematical
function to combine those features. The performance of the proposed
method is evaluated using four benchmark datasets and compared to
nine state-of-the-art methods. The qualitative and quantitative results
show that the proposed method significantly outperformed, or achieved
comparable performance to, the competitor methods.

Keywords: Salient Object Detection · Genetic programming ·
Feature combination · Feature selection

1 Introduction

Human visual system can easily cope with the complex natural scene containing
various objects at different scales using the visual attention mechanism. Salient
Object Detection (SOD) aims to simulate the mentioned capability of the human
visual system in prioritizing objects for high-level processing. SOD can be helpful
to relieve complex vision problems such as scene understanding by detecting and
segmenting salient objects [12]. Objects apparently catch more attention than
background regions such as grass, sea, and sky. Therefore, if all generic objects
can be detected in the first place, then scene understanding would be easily
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performed at the subsequent stages. SOD serves as an important pre-processing
step for many tasks, such as image classification, image retargeting and object
recognition [12]. Several applications benefit from saliency detection such as:
visual tracking, image and video compression, content-based image retrieval,
human-robot interaction, object recognition [12].

SOD methods are broadly classified into two groups, bottom-up and top-
down methods [29]. In the bottom-up methods, multiple low-level features, such
as intensity, color, and texture, are extracted from an image to compute the
saliency values. Top-down methods are task-dependent and they usually utilize
domain specific knowledge [22]. SOD methods generally comprise the follow-
ing steps [26]: (a) extract/design some saliency features from the input image,
(b) compute individual feature maps using biologically plausible filters such as
Gabor or difference of Gaussian filters, and (c) combine these different features
to generate the final saliency map.

To date, domain experts have designed different types of saliency features
such as local contrast, global contrast, edge density, backgroundness, focuses,
objectness, convexity, spatial distribution, and spareness [12]. Regarding the
feature extraction stage, the design of new saliency features stimulates some
possible questions. For example, whether the newly designed feature is informa-
tive for different image types (e.g., images with no much color variation, having
cluttered background, having multiple objects, etc.), how does it effect other fea-
tures, whether it is a duplicate feature (already exist) in the domain, which types
of features it can complement, and how can we effectively use the new feature
in different application scenarios. It is very difficult to provide definite answers
for such questions. There are some potential ways to answer the aforementioned
questions. One plausible way is to be a domain expert, this way suffers from some
difficulties such as requiring domain knowledge of the task, domain experts are
not always available and are very expensive to employ. Another way is develop-
ing a heuristic method which is very common in the literature [25,27]. However,
it is becoming more and more challenging to design heuristic methods that are
able to fully explore the potential of the existing features [12]. The next possible
and suitable solution is to develop an automatic domain independent method.
This method can widely explore characteristics of the existing and newly created
features and find the relationship between them. In addition, it has the ability
to select informative and non-redundant features that complement each other
for different image types.

As mentioned before, the feature combination stage is one of the fundamen-
tal stages in SOD for generating the final saliency map [11]. In this regard, a
few studies attempt to address the feature combination problem by finding the
optimal values for the weights in the linear combination. For example, Liu et al.
[23] employed the conditional random field (CRF) framework to learn the linear
combination weights for different features. Afzali et al. [5] utilized particle swarm
optimization (PSO) to learn a suitable weight vector for the saliency features
and linearly combine the weighted features. Due to the highly nonlinearity of
the visual attention mechanism, the above linear mapping might not perfectly



310 S. Afzali et al.

capture the characteristics of feature combination of human visual system. Con-
sequently, nonlinear methods are required to fuse saliency features to achieve
higher performance on different image types. Moreover, in the majority of exist-
ing methods [17,22,29], saliency features and the combination stage have been
manually designed by domain experts. In this scenario, the feature extraction
and combination tasks are highly dependent on domain-knowledge and human
intervention.

Genetic programming (GP) which is a well-known evolutionary computa-
tion (EC) technique has the ability to tackle image-related problems, such as
region detection, feature extraction, feature selection, and classification, in a
wide variety of applications [7]. GP can automatically generates solutions, it
is problem-independent, and it has a flexible representation and global search
ability. The tree-based representation of GP makes it a suitable tool to do fea-
ture manipulation such as feature construction and feature selection. GP has
a good capability in creating different solutions which is not thought about by
domain experts. Moreover, GP is well-known for being flexible due to the ability
of evolving various models, e.g., linear and non-linear models, and operating on
different types of data such as numerical and categorical data [18]. The afore-
mentioned properties of GP motivates us to utilize it for feature selection and
feature combination problems in SOD.

1.1 Goal

This paper aims at utilizing GP to automatically select features from different
level and scales, and combine those selected features for the task of saliency
object detection.

– Introduce a new automatic GP-based feature selection and feature combina-
tion method;

– Formulate an appropriate fitness function to evaluate GP solutions (pro-
grams);

– Evaluate the proposed method using dataset of varying difficulties to test the
generalisability property of this method; and

– Compare the performance of the proposed method to that of nine hand-
crafted SOD methods to test whether those automatically evolved pro-
grams have the potential to achieve better or comparable performance to
the domain-expert designed ones.

2 Background

2.1 Saliency Features

Jiang et al. [17] developed a discriminative regional feature integration (DRFI)
approach which is a supervised SOD method. In DRFI, 93 features have been
introduced, which contains three types of regional saliency descriptor including
regional contrast, regional backgroundness, regional property. Regional contrast
descriptor is a 29-dimensional feature vector contains color and texture features.
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Color features are extracted from three different color spaces including RGB (red,
green, and blue), HSV hue, saturation, and value), and L∗a∗b∗. For texture fea-
ture extraction, they used local binary patterns (LBP) feature [14] and responses
of Leung-Malik (LM) filter bank [17]. Regional backgroundness descriptor that is
a 29-dimensional feature vector extracted by computing the difference between
each region and a pseudo-background region as a reference. Finally, regional
property descriptor that is 35-dimensional feature vector computed by consider-
ing the generic properties of a region such as appearance and geometric features.
Hence, a 93-dimensional (2 × 29 + 35) feature vector is obtained.

2.2 Related Work

Over the past two decades [16], an extremely rich set of saliency detection meth-
ods have been developed. Most previous methods have focused on designing vari-
ous hand-crafted features to find objects with visual features different than those
from the background. As a pioneer, Itti et al. [16] proposed bottom-up visual
saliency method using center-surround differences across multi-scale image fea-
tures. Prior efforts employed simple features such as color and grayscale, edges,
or texture, as well as more complex features such as objectness, focusness and
backgroundness. The reader shall refer to the survey paper by Borji et al. [12]
for more details on traditional saliency features.

In addition to the feature extraction, many SOD methods attempt to design
different feature combination frameworks. Zhu et al. [30] used an optimization-
based framework to combine multiple foreground and background features as
well as the smoothness terms to automatically infer the optimal saliency val-
ues. Zhou et al. [29] developed a SOD method by integrating compactness and
local contrast features. [29] addressed the drawback of combining global contrast
and compactness features by considering local contrast, since local contrast can
detect some salient regions ignored by compactness. In [29], a diffusion process
based on manifold ranking is employed to propagate saliency information. Lin
et al. [22] introduced a method to predict salient object by extracting multi-
ple features such as local contrast, global contrast, and background contrast in
different feature extraction scales, e.g., pixel-level, region-level and object-level.
In [22], the authors manually designed a framework to integrate the features,
e.g., background priors, refined global contrast, and local contrast. Liu et al.
[23] employed the conditional random field to learn an optimal linear combi-
nation of of local, regional, and global features. Jiang et al. [17] used random
forest to the fusion weights of feature maps. In [17], they used three types of
regional saliency features including contrast, backgroundness, and property to
93-dimensional feature vector for each region. The majority of the aforemen-
tioned studies suffers from requiring domain-knowledge and human intervention
in designing a good feature combination method. Hence, recent studies attempt
to address the mentioned problem by developing automatic approaches.

Compared with traditional methods that use hand-crafted features, convolu-
tional neural network (CNN) based methods that adaptively extract high-level
semantic information from raw images have shown impressive results in pre-
dicting saliency maps [28]. Lee et al. [20] considered both hand-crafted features
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and high-level features extracted from CNNs. To combine the features together,
they designed a unified fully connected neural network to compute saliency maps.
Recently, Hou et al. [15] developed a CNN method which combines both low-level
and high-level features from different scales. Although CNN based developments
have achieved high performance in the SOD domain in recent years, the top CNN
methods require nontrivial steps such as generating object proposals, applying
post-processing, enforcing smoothness through the use of superpixels or defining
complex network architectures [24].

Among EC techniques, GP has the ability to solve various complex prob-
lems in many research areas such as feature extraction, classification, and object
detection [10]. Lensen et al. [21] developed a GP approach to automatically
select regions, extract histogram of oriented gradients (HOG) features and per-
form binary classification on a given image. Al-Sahaf et al. [8] showed that GP
has the ability to automatically extract features, perform feature selection and
image classification. Later on, Al-Sahaf et al. [9], used multitree GP represen-
tation to automatically evolve image descriptors. Unlike existing hand-crafted
image descriptors, [9] automatically extracts feature vectors. Afzali et al. [4] uti-
lized GP to construct informative foreground and background features from the
extracted saliency features, then combined the constructed two features employ-
ing a spatial blending phase. However, this method was not fully automatic
and required human intervention in the feature combination stage. Ain et al.
[6] developed GP-based method to do feature selection and feature construction
for skin cancer image classification. The authors claimed that the GP selected
and constructed features helped the classification algorithms to produce effec-
tive solutions for the real-world skin cancer detection problem. In the mentioned
studies, GP made the proposed approaches free from any requirement for human
intervention or domain-specific knowledge. Apart from the existing GP methods,
this study investigates using GP for feature selection and feature combination
in SOD field.

3 The Proposed Method

This section describes the proposed GP based method for automatically feature
selection and feature combination (GPFSFC) for saliency detection. The over-
all structure is depicted in Fig. 1. For the training stage, first, different image
segmentation-levels are computed for each image in the training set, then saliency
features are extracted from the segmented images. Second, the saliency feature
set and ground truth are fed into GP. Third, the GP process generates and eval-
uates the GP programs. Finally, the GP process results 50 evolved individuals.
For the validation stage, after completing the segmentation and feature extrac-
tion parts, the saliency feature set and ground truth of the validation images
are used to select the best individual from the evolved GP individuals. For the
test stage, for a given test image, similar to the training and validation stages,
multi-level image segmentation and feature extraction are computed. Then, the
saliency map of the image is produced by employing the selected GP individual.
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Fig. 1. The overall algorithm of GPFSFC.

Fig. 2. Feature extraction from different segmentation levels.

3.1 Feature Selection and Feature Combination by GP

GP evolves the initial population using the ramped-half-and-half method. Each
individual in the population takes saliency features and constants as terminals
and combines them using the operations from the function set. The goodness
of each individual is evaluated by a fitness function (more details below). The
fitness value of each individual is computed by taking the average of the perfor-
mance over all training images. In the subsequent generation, a population of
new individuals are generated by applying the different genetic operators such
as crossover, mutation and elitism on some individuals selected from the current
population. This process continues until the maximum number of generations is
reached, and the best evolved program is then returned which is a mathematical
function of different selected operations and features. The terminal set, function
set and fitness function are presented and discussed in detail in the following
sections.
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Terminal Set. In order to provide the terminal set for the GP process, the
following preprocessing steps are employed. Firstly, for a given image I, a set of
m-level segmentations L = {L1, L2, ..., Lm} is computed, each segmentation is a
decomposition of the image I (Fig. 2). Here, the graph-based image segmentation
method [13] is employed to generate multiple segmentations using m groups of
different parameters. In this study, m is set to 48 by following [17]. Second, each
region of a segmentation level is represented by D-dimensional feature vector
(Fig. 2). D is set to 103 (10 + 93) by collecting 10 saliency features from [4] and
93 features from the DRFI method [17]. Since a large number of saliency features
have been introduced in the literature, it is worthwhile to develop an automatic
method which can explore and tackle with the large search space of different
features. In this study, we provided a wide range of features to investigate how
GP can cope with. Figure 2 demonstrates visualizations of different segmentation
levels and saliency features belong to each level.

Function Set. The function set is made up from three arithmetic operators, one
trigonometric function and one conditional function, which are {+,−,×, sin, if }.
The first three arithmetic operators and the trigonometric operator have their
regular meaning, and if operator takes three input arguments and returns the
second argument if the first is less than the second; otherwise, it returns the
third argument.

Fitness Function. The proposed fitness function is based on the Kullback-
Leibler (KL) divergence (also called relative entropy) [19], which measures the
difference between two probability distributions. The fitness value is computed
by taking the average of the KL value over all training images as follow

Fitness =
1
n

n∑

i=1

KL(Ii, Gi) (1)

where, n is the number of images, Ii and Gi are the ith image (the output saliency
image computed using GP) and its corresponding ground truth. We utilize the
KL divergence to see whether the output of GP is closer to the ground truth.
Before applying KL divergence, we apply softmax on the output of GP and the
ground truth to compute the probability of each one for the KL divergence. The
KL divergence is defined as

KL(p, q) =
∑

r∈R

p(r)
ln p(r)
q(r)

(2)

where r is a region from the region vector R. p and q are two probability distri-
butions of the ground truth and the output of GP, respectively.
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4 Experiment Design

4.1 Benchmark Datasets

In this paper, we evaluate the performance of the proposed method using four
benchmark datasets in SOD. We choose these datasets based on the following
four criteria: (1) being widely-used, (2) containing both large and small number
of images, and (3) having different biases (e.g. number of salient objects, image
clutter, center-bias). We split each dataset into three parts: a training set (60%),
a validation set (20%) and a test set (20%).

The first dataset is single-object (SED1 ), which is a subset of the SED dataset
[12]. The SED1 dataset includes 100 images containing only one salient object in
each image. Pixel-wise ground truth annotations for the salient objects in SED1
are provided. Here, we employed the SED1 dataset, since we only considered
single salient object images.

The second dataset is ASD, which is a subset of the MSRA10K dataset
[23]. The MSRA10K dataset provides bounding boxes manually drawn around
salient regions by nine users. However, a bounding box-based ground truth is far
from being accurate. Thus, [23] created an accurate object-contour based ground
truth dataset of 1000 images. Each image is manually segmented into foreground
and background. Most images have only one salient object and strong contrast
between objects and backgrounds.

The third dataset is ECSSD dataset which contains 1000 semantically mean-
ingful but structurally complex images [12]. In contrast to some simple datasets
such as MSRA, in which background structures are simple and smooth, the
ECSSD dataset contains more complex image types. Ground truth masks are
provided by 5 subjects.

The fourth dataset is PASCAL which contains 850 images [11]. The reason
to use PASCAL-S datasets was to assess performance of the proposed method
over scenes with multiple objects with high background clutter.

In this study, the raw images and respective ground truth are re-sized to
200 × 200 pixels to leverage computational efficiency.

Following [12], we utilized three universally-agreed, standard, and easy-to-
compute evaluation criteria, which are precision-recall (PR) curve, receiver oper-
ating characteristic (ROC) curve and F-measure to evaluate the different SOD
methods. We used these criteria to compute the quantitative performance of
each SOD method.

The PR curve is obtained by binarizing the saliency map using a number
of thresholds ranging from 0 to 255, as in [25]. To compare the quality of the
different saliency maps, the threshold is varied from 0 to 255, and the preci-
sion and recall at each value of the threshold are computed by comparing the
binary mask and the corresponding ground truth. Then a precision-recall curve
is plotted using the sequence of precision-recall pairs. Precision corresponds to
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the fraction of the pixels correctly labeled against the total number of pixels
assigned salient, whereas recall is the fraction of the pixels correctly labeled in
relation to the number of ground truth salient pixels.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

where TP (true positive) is the number of foreground pixels that are correctly
detected as foreground, FP (false positive) is the number of background pix-
els that are incorrectly detected as foreground, and FN (false negative) is the
number of foreground pixels that are incorrectly detected as background.

The ROC curve can also be generated based on the true positive rates (TPR)
and false positive rates (FPR) obtained during the calculation of the PR curve.
TPR and FPR can be computed as

TPR =
TP

TP + FN
(5)

FPR =
FP

FP + TN
(6)

An image dependent adaptive threshold Ta proposed by Achanta et al. [1]
is used to binarize the saliency map (S). Ta is computed as twice as the mean
saliency of S.

Ta =
2

W × H

W∑

x=1

H∑

y=1

S(x, y) (7)

where W and H are the width and height of the saliency map S, respectively,
and S(x, y) is the saliency value of the pixel at position (x, y).

Often, neither precision nor recall can fully evaluate the quality of a saliency
map. To this end, the F-measure (Fβ) (Eq. 8) is used as the weighted harmonic
mean of precision and recall with a non-negative weight β2.

Fβ =
(1 + β2)Precision × Recall

β2Precision + Recall
(8)

As suggested in many salient object detection works [1,25], we set β2 to 0.3,
to weight precision more. The reason is because recall rate is not as important
as precision [23]. For instance, 100% recall can be easily achieved by setting the
whole map to be foreground.

4.2 Parameter Tuning

GP has a number of parameters which can be altered for a given problem. In
this study, the initial population is created by ramped half-and-half method. The
population size is restricted to 300 individuals, since the computational costs of
dealing with images is high. The minimum tree depth is 2 and the maximum
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Table 1. GP parameters.

Parameter Value Parameter Value

Population size 300 Initial population Half-and-half

Generations 50 Tree depth 2–10

Mutation rate 0.40 Selection type Tournament

Crossover rate 0.60 Tournament size 7

depth is 10. The evolutionary process is terminated when the maximum number
of 50 generations is reached. The evolutionary process is independently exe-
cuted 30 times using different random seed values and the average performance
is reported. Here, the mutation and crossover rates are set to 40% and 60%,
respectively, based on the fact that a higher mutation rate could produce better
training performance by allowing a wider exploration of the search space. The
best evolved program is kept to prevent the performance of the subsequent gen-
eration from degrading. The tournament selection method is used for selecting
individuals for the mating process and the tournament size is set to 7. Table 1
gives a summary for the GP parameters.

4.3 Methods for Comparison

The proposed method is compared to nine state-of-the-art methods, five methods
including DRFI, GS, GMR, SF, and RBD are selected from [12], and four other
methods including MSSS [2], wPSO [5], GPFBC [4], and FBC [3].

5 Results and Discussions

5.1 Quantitative Comparisons

In Fig. 3(a) and (b), precision-recall and ROC curves of GPFSFC is comparable
with DRFI and outperforms other methods on the SED dataset. Figure 3(c)
shows that GPFSFC has similar average precision and F-measure results to
DRFI, but higher average recall than DRFI. On the SED dataset, DRFI and
GPFSFC have generally good results regarding the average precision, recall,
and F-measure among the other SOD methods.

As it can be seen in Fig. 4(a) and (b), GPFSFC is performing as the second
best method after DRFI regarding the precision-recall and ROC curves on the
ASD dataset. In Fig. 4(c), although GPFSFC has slightly lower average recall
than DRFI, RBD, GS, and FBC on the ASD dataset, GPFSFC has the high-
est average precision and F-measure among all the other methods. Regarding
precision-recall and ROC curves in Fig. 5(a) and (b), GPFSFC is the third good
performing method among the nine state-of-the-art methods, where DCNN out-
performing all the methods, although it could not perform as good as GPFSFC
and DRFI on the SED and ASD datasets. In Fig. 6 similar to Fig. 5, GPFSFC
shows the good results after DCNN and DRFI on the PASCAL dataset.
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Considering quantitative results, although GPFSFC loses its performance
to DCNN on the ECSSD and PASCAL datasets, it shows good performance
comparing to DCNN on the SED and ASD datasets. This limitation is mainly
due to lack of high-level features in the feature set of GPFSFC, while DCNN
benefits of combining both low-level and high-level features. Extracting more
powerful feature representations and training the method with complex scenes
can be used to deal with the challenging datasets.

To compare GPFSFC with DRFI, as DRFI employed an ensemble learning
containing a large number of decision trees to predict the saliency value of the
regions, it can generally generate more accurate results than the automatically
evolved GP programs which is only one independent tree in this experiment.

5.2 Qualitative Comparisons

The qualitative comparisons of GPFSFC and nine other state-of-the-art meth-
ods are illustrated in Figs. 7 and 8. For the qualitative comparison, multiple
representative images are selected from different datasets which incorporate a
variety of difficult circumstances, including complex scenes, salient objects with
center bias, salient objects with different sizes, low contrast between foreground
and background. Figure 7 presents some challenging cases where GPFSFC can
successfully highlight the salient object and suppress the background. For exam-
ple, the first row is a complex image where the building is not homogeneous,
it has reflection on the water and complex background. However, GPFSFC and
DRFI can deal with it, while other methods such as DCNN, RBD, GMR, GS,
SF, and MSSS performs poorly to detect the object. DRFI is good in detecting
object, but it wrongly highlights some part of the background regions.

In 4th row, GPFSFC can completely suppress background where the back-
ground is cluttered. This is due to the advantage of selecting informative back-
ground features by the evolved GP program. As can be seen in the 5th image,
it has non-homogeneous foreground and complex background, GPFSFC shows
good performance, while the other nine methods are struggling in both high-
lighting the object and completely suppressing the background. In the 6th row,
GPFSFC properly covers the foreground object, although the color contrast
between the object and background is low. Choosing informative contrast, back-
groundness, and property (appearance and geometric) features and combining
them using suitable mathematical operations is the key point for having good
performance on the aforementioned images.

Figure 7 shows that DCNN fails to completely detect salient object when the
image has complex background and low contrast between the foreground and
background. One potential reason can be lack of segment-level information like
prior knowledge on segment level.

Although both GPFSFC and DRFI show good performance in different sce-
narios, these methods suffer in some challenging cases such as images in Fig. 8.
GPFSFC fails to completely identify the foreground object in all three images
and wrongly highlights the background in the 2nd and 3rd images. This problem
is due to the lack of the high-level knowledge and enough training samples to
learn different scenarios and object types.



Genetic Programming for Feature Selection and Feature Combination 319

0 0.2 0.4 0.6 0.8 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

o
n

DRFI
DCNN
RBD
GMR
GS
SF
MSSS
wPSO
FBC
GPFBC
GPFSFC

(a)

0 0.2 0.4 0.6 0.8 1
False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e 
p

o
si

ti
ve

 r
at

e

DRFI
DCNN
RBD
GMR
GS
SF
MSSS
wPSO
FBC
GPFBC
GPFSFC

(b)
(c)

Fig. 3. Performance of GPFSFC compared to nine other methods on SED1.
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Fig. 4. Performance of GPFSFC compared to nine other methods on ASD.
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Fig. 5. Performance of GPFSFC compared to nine other methods on ECSSD.
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Fig. 6. Performance of GPFSFC compared to nine other methods on PASCAL.

Original GT DRFI DCNN RBD GMR GS SF MSSS wPSO FBC GPFBC GPFSFC

Fig. 7. Some visual examples of tGPFSFC and nine other SOD methods.

5.3 Further Analysis

Figure 9 shows an example of evolved GP program with high performance on the
ASD dataset. Overall, there are 27 nodes in this program where 14 nodes are
leaves and the other 13 are functions. The description of the selected features
by GP represented in Table 2. As it can be seen in Fig. 9, five regional back-
groundness features {f32, f34, f35, f36, f40} are selected to suppress background
regions. Three regional property features {f65, f66, f71} are selected to consider
the generic properties of regions. Finally, three contrast features {f0, f94, f96}
are chosen to capture the color differences space (changes), as a region is likely
thought to be salient if it is different from the other regions. This GP pro-
gram only chooses 11 features from 103 features and decrease the dimensionality
nearly nine times. The GP process considers complementary characteristic of
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Original GT DRFI DCNN RBD GMR GS SF MSSS wPSO FBC GPFBC GPFSFC

Fig. 8. Some visual examples of GPFSFC and nine other SOD methods.

Table 2. Selected feature’s description.

Feature Description Feature type

f0 Average R value [17] Regional contrast

f32 Average B value [17] Regional backgroundness

f34 Average H value [17] Regional backgroundness

f35 Average S value [17] Regional backgroundness

f36 Average V value [17] Regional backgroundness

f40 Average b∗ value [17] Regional backgroundness

f65 Normalized perimeter [17] Regional property

f66 Aspect ratio of the bounding box [17] Regional property

f71 Variances of the a∗ value [17] Regional property

f94 Local contrast [23]

f96 Global contrast [23]

Fig. 9. Sample program evolved by GP.
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features in feature selection and combination stages using the fitness value of
the evolved GP programs. Figure 9 demonstrates that the evolved GP program
or mathematical expression is a non-linear function. Furthermore, it represents a
good example to present how the combination of different types of features such
as color, backgroundness, appearance and geometric is important in properly
detecting salient object.

6 Conclusions

In this study, GP has been successfully employed to automatically select and
combine saliency features to produce the final saliency map. The proposed
method can easily incorporate any additional features and select the features
complement each other. It makes no assumption of linear superposition or equal
weights of features and it does not require domain-expert. GPFSFC has the
ability to tackle a wide range of saliency features from different segmentation
levels and explore various mathematical expressions for the feature combination
stage. The saliency features by themselves are not that accurate and sufficient to
properly detect the salient object and suppress background. Therefore, a good
feature selection and combination method plays an important role in achieving
high performance. The quantitative and qualitative results reveal that GPFSFC
can effectively choose the features which complement each other and have good
effect on each other, thus, the final combination of those features results in a
good saliency map. In this paper, although GPFSFC was slightly worse on the
ECSSD and PASCAL datasets, it showed promising results by outperforming
one of the well-know and recent CNN methods (DCNN) on two datasets, i.e.,
SED and ASD.

For future work, as GP showed promising results for feature selection, fea-
ture construction, and feature combination processes, it is worth studying the
use of GP for automatically extracting saliency features from the row images
and investigate whether GP is successful in generating new features that are as
informative as the hand-crafted features. Moreover, we would like to explore GP
for extracting semantic (high-level) saliency features and provide further analysis
on the extracted features.
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