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Abstract. Casa dos Marcos is the largest specialized medical and resi-
dential center for rare diseases in the Iberian Peninsula. The large number
of patients and the uniqueness of their diseases demand a considerable
amount of diverse and highly personalized therapies, that are nowadays
largely managed manually. This paper aims at catering for the emer-
gent need of efficient and effective artificial intelligence systems for the
support of the everyday activities of centers like Casa dos Marcos. We
present six predictive data models developed with a genetic program-
ming based system which, integrated into a web-application, enabled
data-driven support for the therapists in Casa dos Marcos. The pre-
sented results clearly indicate the usefulness of the system in assisting
complex therapeutic procedures for children suffering from rare diseases.
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1 Introduction

The term rare disease is used to identify any disease that affects a tiny percentage
of the population. From a regulatory perspective, rare diseases are defined as
those diseases where less than 200,000 persons are affected in the USA or no more
than one person over 2,000 is affected in the general population of the European
Union (EU). Such diseases usually have a genetic basis, often affecting patients
early in childhood or even since birth, and are frequently progressive, disabling
and life threatening. Nowadays approximately 7,000 different rare diseases have
been identified, and the number of people suffering from a rare disease in the
USA and EU exceeds 55 million, highlighting the enormous social impact of these
diseases. For all these reasons, in the last two decades there has been a substantial
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increase worldwide in the number of specialized medical and therapeutic centers
for the care and treatment of patients affected by these diseases [1]. In Portugal
there has been a development in the treatment and care of this type of patients, in
particular after the foundation of the Portuguese Association of Mental and Rare
Diseases in 2002. This association, called Raŕıssimas, is a non-profit organization
whose mission is to support people affected by rare diseases and their relatives. In
2010, Raŕıssimas, with substantial contribution of private capitals and donations,
gave birth to Casa dos Marcos, a medical and residential center. Casa dos Marcos
is a highly specialized center, with a clinic with the capacity to receive 5,000
patients per year and a Physical Medicine and Rehabilitation unit.

Although extremely active, Casa dos Marcos is presently facing several chal-
lenges, many of which are shared by the analogous medical centers worldwide:
(1) rare diseases are, by their very nature, diverse among each other and thus
unique, which makes personalized therapies a must; (2) all the actions related to
the planning of the therapies, the hospitalization and recovery of the patients and
the organization of their everyday life in the medical center are, in large part,
performed manually. These issues naturally demand for accurate and efficient
computational systems. Many of the activities of the center, in fact, demand for
efficient and effective predictive models able to support medical decisions.

The objective of this paper is to contribute towards the achievement of such
an ambitious goal, using the development of a Machine Learning (ML) system
able to generate six predictive models to forecast the effect of a specialized ther-
apy on one global and five local factors. These models were integrated into a spe-
cially designed web-application to support the decision-making processes of Casa
dos Marcos. The system which generated the models is based on Genetic Pro-
gramming (GP), and more in particular on one of the newest developments
of GP: The Evolutionary Demes Despeciation Algorithm (EDDA). GP holds
tremendous potential for this type of application, for at least the following rea-
sons. First, it has the potentiality of generating highly non-linear models of
multiple features. Second, it can automatically perform feature selection during
the learning phase. Additionally, GP produces models which enable subsequent
interpretation and feature importance analysis. To the best of our knowledge,
the one presented in this paper is the first GP-based system developed in the
context of Rare Diseases.

The document is organized as follows. Section 2 introduces the reader to
the context of this study. Section 3 presents the research track regarding prac-
tical applications of state-of-the-art ML tools in the field of medicine. Section 4
describes the methodological approach. Section 5 presents the experimental set-
tings and discusses the results obtained. Finally, Sect. 6, summarizes the main
findings of this work and provides some suggestions for future work.
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2 Problem Description and Data

2.1 The Pediasuit Protocol

Pediasuit is a modern, intensive therapy suit. It is inspired by the Penguin
suit, developed by the Soviet space program to neutralize the harmful effects of
weightlessness and hypokinesis on the body of astronauts during space flights [2].
It is currently used by Casa dos Marcos during some therapeutic procedures.
The Pediasuit Protocol is a therapeutic approach which uses Pediasuit, initially
designed for people who happen to have neurological disorders, such as cerebral
palsy, developmental delay, autism and other conditions that affect motor devel-
opment and/or cognitive functions [2]. With the help of tension elastics, than
can create an almost anti-gravity effect, patients are able to perform movements
that would otherwise seem impossible and will be able to train their muscles
and posture in a very specific manner. In this way, the therapy helps minimize
pathological reflexes and promote the establishment of new, correct and func-
tional movements.

The Pediasuit Protocol is one of the therapeutic treatments performed by
Casa dos Marcos to assist patients, mostly children, with rare, predominantly
neurodegenerative, diseases. Concretely, the therapists’ goal consists of achiev-
ing an improvement, or, at least, a situation of freezing, regarding motor and
mental functioning, taking into account the progressive degeneration of nerve
cells. The Pediasuit Protocol lasts for four weeks, with daily sessions of two or
four hours each. Moreover, since it requires the assistance of highly specialized
physiotherapists, the price ranges from 1300 euros to 2500 euros, according to
the number of hours per session [3].

Gross Motor Function Measure. The Gross Motor Function Mea-
sure (GMFM) is a clinical tool designed to evaluate changes in gross motor
function in patients (usually children) with cerebral palsy, traditionally using
88 measures (GMFM-88) [4]. The measures of the GMFM-88 standard span a
large set of motor activities, each with its own summary-measures (from now on
called factors): lying and rolling (17 measures), sitting (20 measures), crawling
and kneeling (14 measures), standing (13 measures) and walking, running and
jumping (24 measures). For each factor, therapists ask patients to perform a set
of specific movements and exercises (the measures), which accuracy is then eval-
uated on an ordinal scale ranging from 0 to 3, where 0 means “does not initiate”,
1 means “initiates”, 2 means “partially completes”, and 3 means “completes”.
At the end, global assessment measures are calculated: one total and five local
scores (one for each factor). The GMFM international standard was adopted by
Casa dos Marcos to measure the improvement, in terms of motor functional-
ity, of patients who attended the Pediasuit Protocol. Each patient is evaluated
through GMGM-88 twice: one before the start of the therapy and another after
its conclusion.
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2.2 The Data

Casa dos Marcos provided one dataset, with records of 27 different patients
undergoing the therapy. Through data pre-processing procedures, one patient
was removed from the analysis because of the high amount of missing values.
Each patient underwent the therapy at least once and, for each therapy, two
examinations under the GMFM standard were performed. Besides the GMFM
measures and six summary indicators, the dataset also contains three socio-
demographic attributes: gender, birth date and diagnosis. In total, considering
other operational attributes, 108 variables were provided.

Given a dataset with the information related to only 26 patients, developing
predictive models with more than 100 attributes is not an easy task. Given this
difficulty, to increase the size of the training data, we decided to consider one
training instance per therapy. As a result, 41 data instances became available for
the analysis. At first glance, it seems inaccurate to consider different therapies
of the same patient as independent training data instances. However, given the
problem specificity, this decision has two motivational arguments. First, most of
the patients who have undergone the therapy present neurodegenerative diseases.
Given this fact, a unique and unpredictable deviation is expected, in terms of
GMFM, between subsequent therapies taken by the same patient. Second, the
same patient is expected to react differently to equivalent therapies performed
in different time periods, due to the disease progression status. Furthermore,
the GMFM of such a patient, after one year, is expected to vary in a negative
fashion.

3 Related Work

This section presents a selection of previous studies where GP was used to tackle
challenging problems in the field of health-care and medicine. One of the first
studies appeared in [5], where a constrained-syntax GP-based algorithm for dis-
covering classification rules in medical data sets was proposed. To address that
problem, the authors defined a GP framework containing several syntactic con-
straints to be enforced by the system using a disjunctive standard form represen-
tation, so that individuals represent valid rule sets that are easy to interpret. GP
was compared against a decision-tree-building algorithm over five medical data
sets, and it was able to obtain good results with respect to predictive accuracy
and rule comprehensibility, by comparison with decision trees.

Another study where GP was used to solve a problem in the field of medicine
was proposed in [6], where the authors tackled a problem related to the physio-
chemical properties of proteins. More in detail, the problem addressed in their
work was the prediction of the physiochemical properties of proteins tertiary
structure, with the objective of predicting the size of the residues considering
the protein tertiary structure data. The authors employed a semantics-based
GP framework to solve the problem successfully, and the system produced a
superior performance with respect to other considered techniques like artificial
neural networks and support vector machines.
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In 2018, Ting et al. [7] used GP to analyze feature importance for
metabolomics [8]. In their work the authors analyzed a population-based
metabolomics dataset on osteoarthritis and developed a Linear GP (LGP) algo-
rithm to search classification models that can best predict the disease outcome,
as well as to identify the most important metabolic markers associated with the
disease. The LGP algorithm produced satisfactory performance, also being able
to identify a set of key metabolic markers that may be useful for achieving a
better understanding of the biochemistry of the disease.

Other successful applications of GP and its variants are in the field of phar-
macokinetics, where several contributions appeared in recent years [9–11]. In
several of these contributions, one crucial aspect strengthened by the authors
is the ability of GP in producing a human-understandable model, a fundamen-
tal feature in the field of medicine that also motivates the choice of GP as the
elected ML method for solving the problem considered in this study.

The interested reader is referred to [12] for a recent overview of the main
contribution of genetic and evolutionary computation in the medical field.

4 Methodology

4.1 Geometric Semantic Genetic Programming

In the current terminology adopted by a considerable part of the Genetic Pro-
gramming (GP) [13] research community, the term semantics indicates the vector
of output values of a solution, calculated on the training observations [14,15].
Under this perspective, a GP individual can be seen as a point in a multidimen-
sional space (its semantics). This space, called semantic space, has a number of
dimensions equal to the number of observations in the training set.

Geometric Semantic Genetic Programming (GSGP) [14] is a recently intro-
duced variant of GP in which standard crossover and mutation are replaced by
so-called Geometric Semantic Operators (GSOs). The former operators allow the
algorithm to exploit semantic awareness and induce precise geometric properties
on the semantic space. GSOs, introduced by Moraglio et al. [14], gained popular-
ity in the GP community [15] because of their property of inducing a unimodal
error surface (characterized by the absence of locally optimal solutions) for any
supervised learning problem. The proof of this property can be found in [14].

Here, we report the definition of the GSOs, as given by Moraglio et al. for
real functions domains, since these are the operators that will be used in the
experimental phase. For applications that consider other types of data, the reader
is referred to [14]. Geometric Semantic Crossover (GSC) generates, as the unique
offspring of parents T1, T2 : Rn → R, the expression: TXO = (T1 · TR) + ((1 −
TR) · T2), where TR is a random real function whose output values range in the
interval [0, 1]. Geometric Semantic Mutation (GSM) returns, as the result of the
mutation of an individual T : Rn → R, the expression: TM = T+ms·(TR1−TR2),
where TR1 and TR2 are random real functions with codomain in [0, 1] and ms is
a parameter called the mutation step.
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This work considers the GSOs’ implementation presented in [16].
A recognized drawback of GSGP consists of the potential weakness of GSC.

Given that GSC generates an offspring whose semantics stands on the segment
joining two points representing the parents (in the semantic space), it can only
achieve the global optimum solution if the semantics of the individuals in the
population “surround” the semantics of the global optimum. Using the termi-
nology of [17,18], GSC only has the possibility of generating a globally optimal
solution only if this solution lays within the semantic convex hull identified by the
population. The need for overcoming this drawback has led to several methods
to properly initialize a population of GSGP, like for instance the ones presented
in [19–21].

4.2 Evolutionary Demes Despeciation Algorithm

Initialization is known to play a very important role for any population-based
algorithm. The same happens in GP, where a wide variety of programs of various
sizes and shapes are desirable [13]. With the introduction of GSOs, new tech-
niques taking their particularities into consideration, have been developed [19].
The Evolutionary Demes Despeciation Algorithm (EDDA) is contextualized in
this research track.

In Biology, demes are independent populations, or sub-populations, of indi-
viduals that actively interbreed and mature, and the term despeciation indicates
the combination of demes of previously distinct species into a new population,
where distinct biological lineage is blended. The despeciation phenomenon rarely
occurs in Nature, but in some cases it is known to fortify populations. In EDDA,
the initial population of GSGP is generated using the best individuals obtained
from a set of independent sub-populations (demes), that evolved for few genera-
tions and under different evolutionary conditions: some demes use standard GP,
while others use GSGP and each deme is being evolved under distinct search
parameters [20]. EDDA was recently introduced in the GP community [22,23]
and owes its success to its simplicity and wide scope of applications. Although
EDDA was originally developed to take into consideration the particularities
of GSGP, it can also be used to initialize any population-based algorithm.

GSGP using EDDA demonstrated its superiority over GSGP initialized with
the traditional Ramped Half-and-Half (RHH) [13] method over six complex
symbolic regression applications [20]. More specifically, on all problems, EDDA
allowed for generation of solutions with comparable or even better generalization
ability and of significantly smaller size than using RHH. The efficacy of EDDA
depends on two main parameters: the proportion of GSGP demes in the system
(n) and the number of generations to evolve each deme (m). Using an algorithm-
specific notation, given two natural numbers n and m, where n ∈ [0, 100], EDDA-
n% represents a system where demes are left to evolve for m generations such
that n% of the population was initialized using individuals from GSGP demes,
while the remaining (100 − n)% was initialized using standard GP demes. The
pseudo-code in Fig. 1 explains the process.
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EDDA-n% (evolving demes for m generations):

1. Create an empty population P of size N ;
2. Repeat N ∗ (n/100) times:

(a) Create an empty deme;
(b) Randomly initialize this deme using a classical initialization algorithm (RHH

used here);
(c) Evolve individuals from 2.b) for m generations using GSGP;
(d) After finishing 2.c), select the best individual from the deme and store it in P ;

3. Repeat N ∗ (1 − n/100) times:
(a) Create an empty deme;
(b) Randomly initialize this deme using a classical initialization algorithm (RHH

used here);
(c) Evolve individuals from 3.b) for m generations using standard GP;
(d) After finishing 3.c), select the best individual from the deme and store it in P ;

4. Retrieve P and use it as the initial population of GSGP

Fig. 1. Pseudo-code of the EDDA-n% system, in which demes are left to evolve for m
generations.

In the pseudo-code in Fig. 1, points 2(b), 2(c), 3(b) and 3(c) implement the
evolution of demes, while points 2(d) and 3(d) implement the despeciation phase.
In the former step, the different demes evolve independently; in the latter phase,
individuals coming from different demes, and thus from different evolutionary
dynamics and histories, are joined in a new population (P in the pseudo-code).
To evolve this new population, GSGP is preferred over standard GP because in
several application domains GSGP is known to outperform standard GP [24].
For this reason, in this study, after the despeciation phase, we used GSGP to
conduct the main evolutionary process (MEP).

5 Experiments

Given that the therapy’s impact can be assessed through six possible sum-
mary measures (factors), to predict it’s impact on a given patient, six different
supervised-learning models have to be created for each factor.

5.1 Experimental Settings

The training dataset for each one of the six supervised-learning problems
consisted of 41 training data instances and 97 input features. The terminal
set consisted of all input features and nine constants defined in [−1, 1] as
{−1.0, − 0.75, − 0.5, − 0.25, 0.0, 0.25, 0.5, 0.75, 1.0}. The function set
contained the primitive functions {+, −, ∗, /, sin, cos,

√
, ln}, where

√
x

and ln(x) return x if its value does not fall within their respective domain.
Similarly, a/x returns a if x equals to zero.
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The fitness was calculated as the Root Mean Squared Error (RMSE) between
predicted and expected outputs. Tournament selection with a selection pressure
of 10% was used to select the parents. Similarly to [20,24], the probability of
applying a given variation operator was randomly drawn at the beginning of each
generation and the mutation step, in the case of geometric semantic mutation,
was randomly generated, with uniform probability in [0, 1], at each mutation
event. Survival was elitist, i.e., the best individual was copied unchanged into
the next population at each generation.

For all the considered algorithm executions, populations of two-hundred indi-
viduals were used (both in the initialization and in the main algorithm). Conse-
quently, since we used EDDA to initialize the population, there were two-hundred
demes consisting of two-hundred individuals each. Given the restricted number
of training data instances allied to the high dimensionality of the problem, each
initial population contained a set of 97 individuals, each of which composed by
one single terminal (one distinct input feature). This was done in order not to
misuse potentially relevant features during the phase of random initialization of
the demes. At each deme, tree initialization of the remaining 103 individuals was
performed by using RHH, with maximum initial depth equal to 5. Individuals
growth was not limited throughout the whole evolutionary process.

For each factor, EDDA was studied in 5 different configurations, as in [20]:
EDDA-0, 25, 50, 75, 100%. For each on of these, we studied a version in which
each deme was evolved for 5, 10, 20 and 40 generations. As such, 20 benchmarks
were considered for each GMFM factor (target), where each benchmark consisted
of a pair (maturation, EDDA-n%). This totaled to 120 benchmarks to tune
EDDA. For each benchmark, at the end of the evolution of each deme, the best
individual (in terms of training error) was selected to seed the initial population
of GSGP.

Given that there were only 41 data instances, Leave-One-Out (LOO) cross-
validation was applied. More concretely, at the beginning of each run, one differ-
ent data instance was left out to assess generalization, while the remaining n−1
were used to train the model. For this reason, 41 independent runs of EDDA
were performed.

5.2 Experimental Results

Figure 2 exhibits all 120 benchmarks conducted to study the impact of matu-
ration and proportion of the GSGP demes in EDDA for each target (GMFM
factor). Each sub-figure summarizes all 41 runs of each benchmark, conducted
for a given target, through a median validation error (gray bars with the left
vertical axis) and median depth (black lines with the right vertical axis). Both
summary statistics were obtained from the analysis of the best individual at the
end of each run. Notice that in each sub-figure, the benchmarks were sorted in
ascending order by median validation error.

The following paragraph provides a discussion of the results presented in
Fig. 2. It is important to notice that our choice of the EDDA parameters was
guided not only by validation error but also by the size of the individuals.
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(a) Benchmark for factor A (b) Benchmark for factor B

(c) Benchmark for factor C (d) Benchmark for factor D

(e) Benchmark for factor E (f) Benchmark for global factor

Fig. 2. Evolution of the median best validation error (gray bars measured through left
vertical axis) and median depth (black lines measured through right vertical axis) for
factors: A (a), B (b), C (c), D (d), E (e) and global factor (f).

Three arguments motivated this. First, Occam’s razor, i.e., given models with
similar training performance, the simplest (in our case, smallest) model should
be preferred. Second, the need for delivering final individuals through a web-
application, used by the therapists. Third, models interpretability is important
in this application, mainly because the domain experts have to trust the mod-
els, and smaller models should be easier to interpret (even though we are aware
that this may not always be true). Here are, the chosen parameters with a short
motivation for each case reported in Fig. 2:

– sub-plot (a): it was decided to opt for the parameterization provided by bench-
mark number 7, i.e. (5, 75), due to its noticeably lower median depth com-
pared to parameterizations with slightly better generalization ability;
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– sub-plot (b): the first benchmark, i.e. (5, 25), because it exhibited the best
combination of summary statistics, i.e., lowest median error and depth;

– sub-plot (c): the second benchmark, i.e. (5, 75), since it demonstrated a sig-
nificantly lower median depth at almost no penalty in terms of generalization
ability;

– sub-plot (d): the first benchmark, i.e. (5, 25), because it exhibited the best
combination of the summary statistics.

– sub-plot (e): the first benchmark, i.e. (5, 0), because it demonstrated the best
combination of summary statistics;

– sub-plot (f): the first benchmark, i.e. (5, 50), since it exhibited the best com-
bination of summary statistics.

After selecting the initialization parameters, detailed analysis of the evolution-
ary process, succeeding EDDA initialization, was performed and its results are
discussed in the continuation.

Figure 3 provides visualization of the evolutionary process conducted for
each factor, for 50 generations. Each sub-figure summarizes 41 runs through
the median training and validation error (gray and black solid lines on the left
vertical axis) and median depth (dashed gray line on the right vertical axis).

Analysis of Fig. 3 suggests that the evolutionary process should not take more
than 5 generations, excepting factor C, where it is reasonable to conduct it for
20 generation. Further evolution, in median terms, does not seem to contribute
for the generalization ability of the final individuals, because the validation error
does not decrease anymore or starts to increase.

It is worth noticing that, after applying EDDA initialization technique, the
evolutionary process turns out to be a mean of recombination of (potentially
local) optimal solutions which (potentially) surround global optima. For this
reason, the evolution does not require many iterations.

Table 1 exhibits the main features of the selected individuals (predictive mod-
els) for each of six factors. The second column of the table provides the general-
ization ability, measured as the RMSE calculated on validation set and averaged
across 41 runs. The third column provides information about efficiency of the
models, calculated as standard deviation of RMSE. Finally, the last fourth col-
umn provides the depth of each individual.

Table 1. Assessment of generalization ability of evolved individuals for prediction of
the six factors.

Factor RMSE sRMSE Depth

A 3.83 4.36 13

B 4.54 4.89 21

C 4.71 4.94 20

D 5.93 6.23 13

E 2.95 2.84 17

Global 3.78 3.91 14
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(a) Benchmark for factor A (b) Benchmark for factor B

(c) Benchmark for factor C (d) Benchmark for factor D

(e) Benchmark for factor E (f) Benchmark for global factor

Fig. 3. Evolution of the median best error (left vertical axis) and median depth (right
vertical axis), on training and validation data for factors: A (a), B (b), C (c), D (d),
E (e) and the global factor (f). The legend for the all sub-plots in the figure is:
training error validation error depth.
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Advantages of EDDA. In order to fully understand the practical advantage of
EDDA, consider Fig. 4, which exhibits one of the six evolved predictive models.
Only the fact individuals can fit in one-third of an A4 page is fascinating. Com-
pared to a classical initialization algorithm (like RHH) applied to evolve a GSGP
population, the final solutions for exactly the same problem and comparable gen-
eralization ability, would hardly fit on all the pages of this Proceedings volume.
This issue is extremely important, because, for example, we were able to settle
all six models in a web-application, where therapists only need to input GMFM
values of a given patient.

Fig. 4. The best model we have been able to evolve for the prediction of the global
factor, expressed in Polish prefix notation

Considering the model reported in Fig. 4, Fig. 5 exhibits its most relevant
features (predictors). The following list provides the five most frequent features,
among the ones reported in Fig. 5, and their interpretation in the context of
Pediasuit Protocol:

– Factor E: one of the main groups in GMFM which encloses 24 measures into
the Walking, Running and Jumping category. This summary measure is the
most advanced in terms of GMFM. If therapists are able to improve patients
motor functioning in this category, they will be able to improve patients motor
functioning as a whole;

– B26: one of the 88 GMFM measures, embedded in the category Sitting.
Following [4], it can be described as the ability of a patient, while sitting on a
mat, to touch a toy placed 45◦ behind his/her right side and return to start;

– C38: another GMFM measure, embedded in the category Sitting. Follow-
ing [4], it can be described as the ability of the patient to creep 1.8 m forward;
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Fig. 5. The features (predictors) that appear more frequently in the model of Fig. 4,
together with their worth factor (frequency).

– C47: another GMFM measure, embedded in the category Sitting. Follow-
ing [4], it can be described as the ability of the patient to crawl backward
down four steps on their hands and knees/feet. The fact B26, C38 and C47
appear to be the most frequent states their importance in therapeutic con-
text. We speculate that a change in therapeutic design, which takes more in
consideration improvement in these specific (or similar) motor activities, can
produce a better improvement in patients health.

– Age: the age of the patient taken before performing the therapy. Our findings
demonstrate that patients in different age groups respond differently to the
therapy: those whose age is below nine years old show twice as good improve-
ment, measured in terms of the global factor, as the patients whose age is
equal or higher than nine years old. This evidence, according to the thera-
pists, has to do with the fact that the body of a younger patient is, naturally,
in a more dynamic phase of growth, and this reflects positively on their gross
motor functioning improvement after the therapy.

More Than Prediction. In the context of the Pediasuit Protocol, more than
merely providing a prediction, the six models that were developed bring other
practical benefits:

– they can be a reference for the efficiency of the therapy. Concretely, if, after
attempting the therapy, the final GMFM evaluation of a given patient will
differ highly from the expectation, then the therapeutic approach at hand (its
intensity, aim, coordination, etc.), might be inadequate for that particular
patient;
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– they can be used to prioritize the queue of patients. Concretely, and hypoth-
esizing the lack of internal resources to address the needs of all the patients,
models can help to decide which patients should attempt the therapy first.
For example, a patient who may present an extremely debilitated motor func-
tioning and whose expected improvement will be high, can receive higher pri-
ority over a patient whose motor functioning is significantly better and the
expected improvement is smaller (this should require the agreement of both
parties);

– they can be used as a simple informative tool, answering a elementary ques-
tion: “will this treatment help my beloved and how much?” People who take
their relatives to such therapy have hope in improvement. This hope can
be concretized by providing an estimate of improvement in terms of motor
function through different factors;

– they can be used to confirm the diagnosis. In the field of rare diseases, one of
the main challenges for the doctors is to identify the diagnosis correctly. This
comes from the simple fact that the diseases are rare and, for some of them,
there is no concise and extensive framework for their identification;

– they can be used as means of therapeutic design improvement. One of the
main features of GP is that individuals can be interpreted. By studying their
structure, one can identify the most relevant predictors and their impact. As
such, one can say which attributes are determinant for the improvement of
the patients at each GMFM factor.

6 Conclusion

Patients affected by rare diseases need very specific and personalized therapies.
Casa dos Marcos is the largest specialized medical and residential center for
rare diseases in the Iberian Peninsula and has the capacity for hosting several
thousands of patients per year. Nowadays, the design and development of person-
alized therapies and treatments is widely done manually by a team of specialists.
Besides conceivably slow, this manual process is also subjective, and thus prone
to errors. This motivates the impelling demand for intelligent computational
systems, able to support and speedup the decision process. Machine learning is
clearly a reasonable option, and predictive models, able for instance to give infor-
mation about possible reactions of patients to therapies, can be of paramount
importance for the development of Casa dos Marcos and the improvement of
their everyday work.

This paper summarizes the main outcomes of a project that our research team
developed in collaboration with Casa dos Marcos: a Genetic Programming (GP)
based system, able to generate predictive models for important motor functioning
factors concerning patients who happen to have rare diseases, after some specific
therapies.

The presented system uses a very recent development of GP, called Evo-
lutionary Demes Despeciation Algorithm (EDDA). EDDA integrates both the
standard version of GP and Geometric Semantic GP (GSGP) in the initial-
ization phase, aiming at capturing the advantages of both these techniques,
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while at the same time mitigating their respective flaws. One of the major advan-
tages of EDDA is the ability to generate models with comparable accuracy of the
ones generated by GSGP, but at the same time with a much smaller size. This
is an extremely important characteristic, since the models generated by GSGP
are known to be very accurate, but also extremely large. Exploiting this abil-
ity, in this paper, we have been able to show and comment on the best model
evolved by EDDA, something that would have been unimaginable for GSGP.
The reported model is very informative on the effect of the therapy and experts
have validated the small subset of features that it uses. Being able to see and, at
least partially, interpret the evolved model has been of fundamental importance
because it has allowed the personnel of Casa dos Marcos to trust our system.
Also, thanks to this increased trust, the models evolved by the presented sys-
tem are now integrated in a web application, that we have developed, and is
nowadays presently in use in Casa dos Marcos.
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