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Abstract. The usage of renewable energy sources, storage devices, and
flexible loads has the potential to greatly improve the overall efficiency of a
building complex or factory. However, one needs to consider a multitude of
upgrade options and several performance criteria. We therefore formulated
this task as a many-objective optimization problem with 10 design param-
eters and 5 objectives (investment cost, yearly energy costs, CO2 emis-
sions, system resilience, and battery lifetime). Our target was to investi-
gate the variations in the outputs of different optimization algorithms. For
this we tested several many-objective optimization algorithms in terms of
their hypervolume performance and the practical relevance of their results.
We found substantial performance variations between the algorithms, both
regarding hypervolume and in the basic distribution of solutions in objec-
tive space. Also the concept of desirabilities was employed to better visu-
alize and assess the quality of solutions found.

Keywords: Many-objective optimization · Energy management ·
Desirabilities

1 Introduction

Many-objective optimization algorithms are a hot topic in the field of evolu-
tionary computation, due to both increasing interest from the application side
as well as a number of unsolved issues. In this work we will evaluate the per-
formance of several well-known many-objective optimization (MAO) algorithms
on a challenging real-world problem: finding the optimal configuration of the
energy system of a heterogeneous business building complex. The usage of local
energy production and storage facilities has become increasingly interesting both
in terms of energy costs and CO2 emissions. Facility management is therefore
looking how to optimally invest in extensions to the current building energy
system. Example extensions are large-scale Photo Voltaic (PV) systems or bat-
tery storage capacity. There is typically a large number of options for adding
new modules or optimizing the usage of existing ones. With increasing system
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complexity the number of objectives to be considered increases, resulting in a
difficult optimization problem for the decision makers, especially considering
the high investment costs. One has to consider that different modules might be
linked, for example optimal battery and PV system size. A serious problem for
both optimization and analysis of solutions is the wide range of objective values,
which can vary over many orders of magnitude. In order to deal with the latter
issue we propose to use desirability functions as discussed in [1].

There is a number of recent works targeting many-objective optimization of
energy management systems [2,3]. For single objective optimization of energy
systems, methods from the field of Linear Programming (LP) are commonly used
since they are comparatively fast and provide performance guarantees [4,5]. How-
ever, LP approaches are based on simplified system models where many aspects
are difficult to consider such as battery aging, temperature-dependent efficien-
cies, or dynamic user behavior. For this reason we employ a very detailed building
simulation based on the Modelica standard [6,7] that can model most real-world
effects. The simulator is treated as a black box by the optimization, meaning
that we do not make any assumptions about the structure of the problem. The
ability of evolutionary algorithms to handle these types of problems is one of
their greatest assets. Please consult Fig. 1 for a view of the simulation environ-
ment with our building model and Fig. 2 for a sketch of the information flow
from optimizer to simulator and back.

We will first introduce the specific application example. Afterwards we are
going to sketch the optimization algorithms used in this paper and the exper-
imental setting. We will then show results of different MAO algorithms using
the hypervolume indicator. Furthermore, we will compare results found by the
optimization with manually selected baseline results. Finally, we summarize our
results and present some future work.

Note that our target is not a ranking of optimizers, but a better understand-
ing if, from a practical point of view, the use of different optimizers for this
specific problem is necessary.

An initial study on this application was already published earlier [8]. In the
present work we compare a much larger variety of optimization algorithms since
prior experiments suggested that some optimizers struggled with this applica-
tion. We furthermore used findings from this earlier work to adapt the optimiza-
tion problem (different parameter ranges), added new parameters and a new
objective to include battery aging.

In order to capture essential seasonal effects one would normally consider
at least one full year but to be able to perform more test runs we reduced
the simulated time from one year to a single month. This could in practice
lead to sub-optimal performance of the selected configuration, but allows us to
thoroughly compare different optimizers. In the real application case, one would
obviously revert to the simulation of at least one year using one of the better
performing algorithms as identified by this study.
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Fig. 1. System view of building simulator. The model contains a detailed simula-
tion of the building’s Heating-Ventilation-A/C system, including heat storage and
co-generator (CHP), plus modules for Photo Voltaics (PV), grid connection, and a
stationary battery including corresponding controller.

1.1 Overview

The target of the optimization is to find optimal configurations for the energy
layout of a medium-sized research campus with about 200 employees. With con-
figuration we mean a combination of different modules like PV system, battery
or heat storage, and settings of a controller.

The building has a rather conventional load profile with peak loads above
500 kW mostly around noon, due to HVAC (heating/ventilation/air -
conditioning) demands and a baseload of about 200 kW. Total annual energy
costs for gas and electricity are in the range of several 100,000 Euros. The campus
is already equipped with a co-generator for heat and power (CHP) that provides
200 kW electric and 300 kW thermal output. Further improvement options have
been identified and are described below.

1.2 Investment Options

There are several promising areas for investment that define the search space for
the configuration optimization presented here:

1. A large-scale PV system on the building roof or car-port
2. An extension of the internal heat storage
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Fig. 2. Overview of optimization loop.

3. A stationary battery with a control algorithm that charges the battery in
times of low energy demand and discharges when energy demand is high

4. Optimization of the operation of the CHP

1.3 Design Parameters

Based on the above defined investment options we decided to consider in total
10 independent parameters:

1. Inclination angle αPV , orientation angle βPV , and peak output power
PPeakPV (in kW) of PV system.

2. Capacity EBatt (in kWh), and linked to that maximum charging/discharging
power Pmax

batt (in kW), of a stationary battery storage system, where we assume
a maximum charging power of 1 C (i.e. battery fully charged or discharged
within one hour).

3. Min and max battery state-of-charge (SOC) level SOCmin and SOCmax.
4. Charging ucharge

Batt and discharging udischarge
Batt threshold for the battery con-

troller. The battery will discharge when current load exceeds udischarge
Batt ,

and correspondingly charge when demand is below ucharge
Batt . The battery will

charge or discharge to keep the load below the given charging threshold level
(as long as the battery is within its SOC limits and Pmax

batt allows). The charg-
ing controller is visualized in Fig. 3.

5. Total volume of heat storage in m3, Vstor. From this value we also derive the
diameter of the heat storage dstor as dstor =

√
Vstor/3.

6. Operation threshold of the CHP system. The generator will only turn on if
ambient temperature is below this level. This was implemented to avoid too
frequent on/off switches (resulting in high maintenance costs) and is realized
by using an upper (uhigh

CHP ) and lower (ulow
CHP ) temperature threshold with

a difference of 1.0◦ as ulow
CHP = uhigh

CHP − 1.0. The CHP is turned off when
ambient temperature exceeds uhigh

CHP and restarted when it falls below ulow
CHP .
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Fig. 3. Controller logics for stationary battery. The main controller inputs are the state-
of-charge (SOC) of the stationary battery and the sum of building energy consumption
and energy produced by CHP and PV (PCHP and PPV ) (note that produced energy
is by convention negative). The controller output is the charging power of the battery
PBatt.

Please consult Table 1 for a list of minimum and maximum values for all
design parameters. Those ranges have been defined in cooperation with a build-
ing energy specialist considering actual physical constraints (e.g. available space)
of the building.

1.4 Objectives

The quality of an investment solution will depend on a number of factors. We
have chosen the following five objectives which cover the main factors in the
respective domains. Values are computed based on outputs of the simulator.

1. Initial investment cost. We limit ourselves to the main (hardware) purchasing
costs: PV system (as a function of peak power) CPV = 1000 Euro ·PPeakPV

(in kW), battery (total capacity) CBatt = 250 Euro ·EBatt (in kWh), and
finally heat storage (volume) CHeatStor = 700 Euro ·Vstor (in m3). Total
investment cost is the sum of all module costs (in Euro):

CInvest = CPV + CBatt + CHeatStor. (1)
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Table 1. Parameters and their ranges.

Parameter Min Max Parameter Min Max

αPV 0.0◦ 45◦ βPV 120.0◦ 250◦

PPeakPV 0 kW 450 kW EBatt 5 kWh 400 kWh

SOCmin 0% 40% SOCmax 50% 95%

ucharge
Batt –500 kW 0 kW udischarge

Batt 300 kW 700 kW

Vstor 1 m3 5 m3 uhigh
CHP 10◦ C 25◦ C

2. Annual operation cost. This is the sum of grid electricity cost (CGridE), gas
consumption (CGas) from CHP and conventional boilers, peak electricity
load (from the grid) fee, CHP maintenance cost CCHP (which is propor-
tional to the total operation hours hCHP : CCHP = 4.3 Euro ·hCHP ) minus
CHP subsidies SCHP of 4.35 ct per produced kWh (assuming very high self-
consumption rates) and reimbursements for feeding excess electricity back to
grid (CFeedIn). Total annual cost is then (in Euro):

CAnnual = CGrid − CFeedIn + CGas + CPeak + CCHP − SCHP . (2)

For gas we assume a price of cGas = 2.5 ct/kWh (thermal), grid electricity
costs of cEl = 13.0 ct/kWh, and a feed-in tariff of cFeedIn = 7 ct/kWh. The
peak load cost is 76 Euros for each kW at the highest energy load (averaged
over a 15 min interval) within the whole calendar year. All consumption values
are provided by the simulation tool.

3. Annual CO2 emissions. Reducing CO2 emissions is a high-priority task. We
compute the combined CO2 from purchasing grid electricity emisgrid (at
500 g/ kWh, approximated data for Germany) and gas emisgas (for CHP
and boilers, at 185 g/kWh thermal), based on simulated electricity and gas
consumption. Total CO2 emission is then:

emistotal = emisgrid + emisgas. (3)

4. Resilience. The availability of local energy production and electric storage
capacity would allow a system operation even in case of severe grid malfunc-
tions. This ability is termed resilience and in our specific case refers to the
duration the company could operate if no grid power is available. Specifi-
cally we are using the minimum of battery charging level BatLevel (in kWh)
divided by current grid load ELoad (in kW), over the complete simulation
period. This represents a worst case scenario (grid failure occurs at worst pos-
sible time). Obviously, one could also consider other formulations, like mean
instead of min, or using a fixed “emergency” power demand. The resulting
resilience (in seconds) in our case was computed as:

resi = min
(

BatLevel

ELoad

)
· 3600 (4)
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5. Battery lifetime. We are using a coarse model of battery aging based on cal-
endaric and cyclic aging. Please note that the quantitative results should
be viewed with care since battery aging strongly depends on the underlying
battery chemistry. In this work a generic Li-Ion battery was used. The simula-
tion tool will compute the final battery State-Of-Health (SOH1m) after a one
month of operation, which represents the remaining battery capacity (relative
to the initial capacity). Battery lifetime (in years) will then be computed as
the number of years before state of health falls to θSOH = 90%:

lifetime =
1
12

log(θSOH)
log(SOH1m)

(5)

The first three objectives (investment cost, annual cost, CO2 emissions) are
minimized, while resilience and battery lifetime are maximized. Results for yearly
costs and emissions are approximated by simply scaling up all values from the
monthly simulation by a factor 12.

1.5 Desirabilities

With 5 different objectives that vary within different ranges, visualization of
solutions becomes a challenge. In order to avoid various scaling operations at
different stages of the optimization process, we decided to employ the concept
of desirability functions [1,9]. The desirability d(Y ) for an objective Y is given
by:

d(Y ) = exp (− exp (− (b0 + b1Y ))) (6)

The closer the desirability score to one, the more satisfying the quality of the
objective value. For controlling the shape of the desirability function, we define
two pairs of values to compute the parameters b0 and b1. These are two example
objective values (Y (1) and Y (2)) and corresponding desirability scores (d(1) and
d(2)), for details see e.g. [1].

b0 = − log(− log(d(1))) − b1Y
(1) (7)

b1 =
− log(− log(d(2))) + log(− log(d(1)))

Y (2) − Y (1)
(8)

Specific values for (d, Y ) pairs are given in Table 2. In practice one would first
discuss with the actual decision maker about her preferences and then adapt the
desirability functions accordingly. Here the selection was based on the baseline
configurations described in the next section. To formulate the optimization as
a minimization problem we internally used 1 − d(Y ) as objective values, i.e.
0.0 represents the optimal value and 1.0 the worst possible solution, which is
additionally used as the reference point for the hypervolume computation with
an ε = 10−5 added.
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Table 2. Control points for desirability function for different objectives.

Objective d(1) Y (1) d(2) Y (2)

CInvest (Euro) 0.9 100,000 0.1 600,000

CAnnual (Euro) 0.9 350,000 0.1 400,000

emistotal (t) 0.9 2,100 0.1 2,200

resi (s) 0.1 1 0.9 900

Lifetime (y) 0.1 10 0.9 30

1.6 Simulation System

Since we want to investigate a variety of different aspects of the energy system
we need a simulation tool that can handle various physical domains (electricity,
heat, cold, e-mobility among others). We therefore decided to use the Model-
ica [6] simulation language that is based on physical equations and well suited
for simulation of complex systems including non-linear effects. The model was
built based on an analysis of the real building and smart meter measurements
of energy consumption over several years. The simulator provides all required
output information like energy consumption or battery charge levels. A typical
simulation now runs for approximately 10 s, but some configurations require far
more than this. We therefore decided to stop any simulation that runs longer
than a threshold value of 20 s and assign worst possible values for all objectives.
See [8] for a discussion of this issue.

2 Optimization Task

Our application instance is a many-objective optimization problem (MaOP) with
10 parameters and 5 objectives. Prior work (e.g. [10]) investigated several algo-
rithms for the optimization of a hybrid car controller and found that they exhibit
different performance qualities. We now want to compare several optimization
algorithms of different types on our test application. Due to the long simula-
tion (fitness computation) times, we performed all tests on a computing cluster,
allowing us to run all solutions of a single generation in parallel. For all algo-
rithms we use a population size of μ = 35 individuals. The total number of
objective function calls was limited at 5250. All experiments were repeated 10
times with different random number seeds. Design parameters were hard lim-
ited to the range specified above. The software we employ for the optimizers is
PlatEMO V1.5 [11]. All hyperparameters were chosen as the default values from
the above software, since an extensive hyperparameter scan (as for example via
irace [12]) is way too time-consuming. Please also consult [13] for some thoughts
on selecting the proper optimizer for compute-intensive application problems.

We used the following algorithms to cover a broad range of approaches,
which span the range from 2001–2016 as the year of publication: NSGA-II [14],
NSGA-III [15], RVEA [16], IBEA [17], SPEA [18], KnEA [19], GDE3 [20],
MOPSO [21], PICEAg [22], TwoArch2 [23].
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Note that there are 77 algorithms within PlatEMO V1.5, so that any selection
is to a substantial degree arbitrary. It is not our target to benchmark these algo-
rithms but to evaluate if there is a practical difference in performance between
different optimizers. As far as possible, evaluation of solutions was parallelized.
As this is not trivially possible for steady-state algorithms (like [24,25]), those
were not tested. Average run-times for all algorithms (a single (out of 10) runs
for one specific optimizer) are around two hours but would be around 24 h for
steady state algorithms.

3 Results

Due to the large run-times we only used default settings for all optimizers and
kept population sizes for all optimizers at the same value (35 individuals). Since
we do not know the true Pareto front we are using the hypervolume as the main
performance indicator.

3.1 Baseline Solutions

For a realistic performance assessment in addition to hypervolume values we
compare results for our optimized configurations with some manually chosen
baseline configurations. The results (objectives) of these basic configurations
were also used to determine reasonable values for the parameters of the desir-
ability function. Please note that actual results for the explicit simulation of a
complete year are substantially different (mostly better) compared to the values
shown here, which were extrapolated from a single month.

Current Configuration. The baseline configuration of the building has a
10 kW peak PV system, no stationary battery, a moderate heat storage of 1.3 m3

and a CHP threshold setting of 17 ◦C. The corresponding parameter values and
the resulting objectives are found in Table 3 under the row Current. Investment
cost is minimal but yearly costs and CO2 emissions are high, and the system
does not have any resilience capacity.

Moderate Expansion. A moderate expansion configuration is simulated by
setting PV size, battery capacity, and heat storage volume to intermediate val-
ues ((Max-Min)/2). The battery is used at a range from 20–80% capacity, it
is charged when energy production exceeds demand (ucharge

Batt = 0 kW) and dis-
charges when energy demand is above 600 kW (udischarge

Batt = 600 kW). Inclination
and orientation angle of the PV system and CHP threshold are the same as for
the current configuration. Parameters and objectives can be found in row Mod-
erate. We see that with an investment of 280,000 Euros, a reduction of annual
costs by around 9,500 Euro, and CO2 emissions by 34 tons/year is possible com-
pared to the current solution. In addition the system now has a resilience, being
able to operate on its own for 450 s in case of a grid failure. With the current
desirability settings this value is considered sufficient.
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Full Set-Up. The third configuration we analyze represents a maximum invest-
ment with the largest possible size of PV system, battery, and heat storage. The
remaining parameters are kept as before, except for battery SOC settings which
we set to the range 5–95% and a more ambitious battery discharge threshold of
500 kW. It is interesting to see that the effects are almost linear (roughly dou-
ble investment costs and double savings on annual costs and emissions). This
indicates that the larger PV system can be fully used.

Table 3. Parameters (top) and objective values (bottom) of different alternative con-
figurations. For all configurations αPV = 35◦, βPV = 180◦, uhigh = 17 ◦C is used.
Desirabilities are shown in brackets.

Parameter PPeakPV EBatt ucharge
Batt udischarge

Batt SOCmin SOCmax Vstor

Current 10 kWp 0 — — — — 1.3 m3

Moderate 230 kWp 200 kWh 0 kW 600 kW 20 % 80 % 3 m3

Full 450 kWp 400 kWh 0 kW 500 kW 5% 95% 5 m3

Objective CInvest CAnnual emistotal resi lifetime
Current 0.0 (1.0) 382285 (0.46) 2202 t (0.08) 0.0 s (0.0) —
Moderate 281185 (0.72) 372735 (0.65) 2168 t (0.42) 449 s (0.61) 26.6 y (0.75)

Full 550665 (0.18) 363517 (0.78) 2140 t (0.69) 1223 s (0.96) 26.5 y (0.73)

3.2 Optimizer Results

Now we take a look at the results of the various optimization runs. Our main
quality indicator is the maximum hypervolume of the parent population in the
final generation. All hypervolume values are computed in desirability space. For
a better comparison of hypervolume values we present final hypervolume results
in a boxplot, see Fig. 4.

Our findings show that there is a substantial variation in both the mean
HV values of different optimizers as well as variations over different runs of the
same optimizer. The MOPSO method obviously struggles substantially with a
lowest HV of 0.06. This might be due to sub-optimal hyperparameter settings,
an implementation problem or some feature of our application problem. The
remaining optimizers all stay in a range of HV values of [0.20, 0.29]. Still this
means that some runs produced 50% better hypervolume values than other runs.
Another interesting observation is that we can’t see a direct trend for increas-
ing performance over time of publication. The oldest (SPEA2) and the newest
(RVEA) algorithm are very similar in their HV values.

Results from the optimization runs could be used in a number of ways, some
of which will be shown exemplary below. First we plot desirabilities for all final
solutions from all runs in a parallel coordinate plot (Fig. 5). This type of rep-
resentation allows us to understand the relations between the objectives for all
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Fig. 4. Boxplot of hypervolume results for all runs and optimizers. Note that optimizers
are sorted by year of publication - from oldest (2001, left) to newest (2016, right).

populations. We see a large spread of solutions in desirability space. A clear cor-
relation is that investment cost is inversely proportional to annual cost and emis-
sions, while the latter two are strongly correlated. But for example for resilience
and battery lifetime the relations are more diverse. A very interesting finding is
shown in Fig. 6, where we plot desirability values for objective 2 (annual cost)
vs objective 1 (investment cost) for all runs of 5 optimizers. Each symbol rep-
resents one final solution. Individual runs show patterns different in detail but
overall rather similar. We can see that solutions from different optimizers can
cover different parts of objective space. In our example solutions from IBEA and
RVEA strongly overlap, while MOPSO, SPEA, and especially PICEAg occupy
different areas (note that some of the shown solutions might be dominated).

Fig. 5. Parallel coordinate plot of desirabilities
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Fig. 6. Desirabilities for emissions vs. initial investment for different optimizers

To better understand the solutions we also studied the ranges of found param-
eters. Due to space limitations we can only show three exemplary parameter
histograms (Fig. 7). We see that almost all solutions select a charging threshold
of 0, which means that the battery is charged as soon as surplus power is avail-
able (top). This makes sense as feeding energy back to the grid is less desirable
than self-consumption. In the middle panel we see a large variety in discharging
thresholds which is probably due to a low impact of the battery for the overall
energy flows (the battery is mainly used for resilience and peak shaving, but the
latter is a very tricky business). The bottom row finally demonstrates that in all
cases a larger heat storage is beneficial.

Fig. 7. Histograms of parameter values of all final solutions from all runs. Top: battery
charging threshold uCharge

Batt , middle battery discharging threshold Udischarge
Batt , bottom

heat storage volume Vstor
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Table 4. Best and worst objective values (desirabilities in brackets) for all found
solutions, please compare these values to results from Table 3.

Objective Max. desirability Min. desirability

CInvest 11,600 Euros (0.94) 550,000 Euros (0.18)

CAnnual 359,000 Euros (0.84) 393,000 Euros (0.22)

emistotal 2134 t (0.74) 2225 t (0.01)

resi 1252 s (0.97) 1.7 s (0.10)

lifetime 28.7 a (0.85) 17.4 a (0.01)

Fig. 8. Results (yearly emissions vs. investment cost) for 5 selected optimizer (all runs)
plus initial configurations.

A look at the minimum and maximum desirability values for all objectives
over all final solutions from all runs (Table 4) shows that we can find a large
variety of solutions with higher peak desirabilities (except for investment cost)
compared to the three baseline configurations (see Table 3).

3.3 Comparison to Baseline Solutions

In Fig. 8 we show for 5 selected optimizers and all runs the desirabilities for objec-
tive 3 vs objective 1. We also added the three reference solutions. It is obvious
that coverage in desirability space is not the same for all optimizers. In relation
to the baseline solutions we see that most found solutions are clear improvements
and both middle and full extension baseline configuration are clearly dominated
by the majority of solutions (this is also true for other objectives).
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4 Summary and Outlook

For the application of building energy system optimization we compared 10 dif-
ferent many-objective optimization algorithms using the hypervolume indicator.
We found that different optimizers exhibit substantial differences in their perfor-
mance as indicated by the hypervolume of the final population. Interestingly, we
don’t see a clear trend for increasing performance with more recent algorithms
compared to older work. This means that at least when using the default hyper-
parameters we don’t see any clear benefits from using more recently published
algorithms compared to older ones. Among the 10 test optimizers, and with-
out any tuning of hyperparameters, IBEA was the best performing algorithm
in terms of hypervolume. It also exhibited, along with TwoArch2, a very stable
performance (low performance variations between runs).

When looking at solutions from individual runs the different optimizers show
very different patterns of solutions. We conclude that the choice of the optimizer
is not arbitrary, and other optimizers might further improve the results.

We used desirabilities to confine all objectives to the range of [0,1]. We found
desirabilities to ease the handling of results for visualization and analysis of
solutions, but in several cases (test) decision makers requested that the real
objective values are shown.

As future work we plan to extend the system under study by e-mobility mod-
ules (electric vehicles and charging stations). As optimization runs still require
too much time, we plan to investigate different options for speeding the pro-
cess up like meta-modeling [26]. Finally, we need to investigate preference-based
methods [10] and Multi-Criteria Decision Making (MCDM) on this application
to actually identify a promising upgrade option in cooperation with a human
decision maker.
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