
CHAPTER 6

Appendix

1. The real and complex number systems

In this appendix we organize some of the mathematical prerequisites for reading
this book. The reader must be thoroughly informed about basic real analysis (see
[Ro] and [F1]) and should know a bit of complex variable theory (see [A] and [D2]).

The real number system R is characterized by being a complete ordered field.
The field axioms enable the usual operations of addition, subtraction, multiplica-
tion, and division (except by 0). These operations satisfy familiar laws. The order
axioms allow us to manipulate inequalities as usual. The completeness axiom is
more subtle; this crucial property distinguishes R from the rational number system
Q. One standard way to state the completeness axiom uses the least upper bound
property:

Definition 6.1. If S is a non-empty subset of R and S is bounded above,
then S has a least upper bound α, written sup(S), and called the supremum of S.

Recall that a sequence of real numbers is a function n �→ xn from the natural
numbers to R. (Sometimes we also allow the indexing to begin with 0.) The
sequence {xn} converges to the real number L if, for all ε > 0, there is an integer
Nε such that n ≥ Nε implies |xn − L| < ε.

The least upper bound property enables us to prove that a bounded monotone
nondecreasing sequence {xn} of real numbers converges to the supremum of the
values of the sequence. It also enables a proof of the fundamental result of basic
real analysis: a sequence of real numbers converges if and only if it is a Cauchy
sequence. Recall that a sequence is Cauchy if, for every ε > 0, there is an Nε such
that n,m ≥ Nε implies |xn − xm| < ε. Thus a sequence has a limit L if the terms
are eventually as close to L as we wish, and a sequence is Cauchy if the terms are
eventually all as close to each other as we wish. The equivalence of the concepts
suggests that the real number system has no gaps.

For clarity we highlight these fundamental results as a theorem. The ability to
prove Theorem 6.1 should be regarded as a prerequisite for reading this book.

Theorem 6.1. If a sequence {xn} of real numbers is bounded and monotone,
then {xn} converges. A sequence {xn} converges to a real number L if and only if
{xn} is Cauchy.

Corollary 6.1. A monotone sequence converges if and only if it is bounded.

Remark 6.1. The first statement in Theorem 6.1 is considerably easier than
the second. It is possible to prove the difficult (if) part of the second statement
by extracting a monotone subsequence and using the first part. It is also possible
to prove the second statement by using the Bolzano-Weierstrass property from
Theorem 6.2 below.
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The complex number system C is a field, but it has no ordering. As a set C is
simply the Euclidean plane R2. We make this set into a field by defining addition
and multiplication:

(x, y) + (a, b) = (x + a, y + b)
(x, y) ∗ (a, b) = (xa − yb, xb + ya).

The additive identity 0 is then the ordered pair (0, 0) and the multiplicative identity
1 is the pair (1, 0). Note that (0, 1)∗ (0, 1) = (−1, 0) = −(1, 0). As usual we denote
(0, 1) by i and then write x + iy instead of (x, y). We then drop the ∗ from the
notation for multiplication, and the law becomes obvious. Namely, we expand
(x+ iy)(a+ ib) by the distributive law and set i2 = −1. These operations make R2

into a field called C.
Given z = x + iy we write z = x − iy and call z the complex conjugate of z.

We define |z| to be the Euclidean distance of z to 0; thus |z| =
√

x2 + y2 and
|z|2 = zz.

The non-negative real number |z − w| equals the Euclidean distance between
complex numbers z and w. The following properties of distance make C into a
complete metric space. (See the next section.)

• |z − w| = 0 if and only if z = w.
• |z − w| ≥ 0 for all z and w.
• |z − w| = |w − z| for all z and w.
• |z − w| ≤ |z − ζ| + |ζ − w| for all z, w, ζ. (the triangle inequality)

Once we know that |z − w| defines a distance, we can repeat the definition of
convergence.

Definition 6.2. Let {zn} be a sequence of complex numbers, and suppose
L ∈ C. We say that zn converges to L if, for all ε > 0, there is an Nε such that
n ≥ Nε implies |zn − L| < ε.

Let {an} be a sequence of complex numbers. We say that
∑∞

n=1 an converges
to L, if

lim
NÑ∞

N∑

n=1

an = L.

We say that
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| converges. It is often easy
to establish absolute convergence; a series of non-negative numbers converges if
and only if the sequence of partial sums is bounded. The reason is simple: if the
terms of a series are non-negative, then the partial sums form a monotone sequence,
and hence the sequence of partial sums converges if and only if it is bounded. See
Corollary 6.1 above. We also use the following standard comparison test; we include
the proof because it beautifully illustrates the Cauchy convergence criterion.

Proposition 6.1. Let {zn} be a sequence of complex numbers. Assume for all
n that |zn| ≤ cn, and that

∑∞
n=1 cn converges. Then

∑∞
n=1 zn converges.

Proof. Let SN denote the N -th partial sum of the series
∑

zn, and let TN

denote the N -th partial sum of the series
∑

cn. For M > N we have

|SM − SN | = |
M∑

N+1

zn| ≤
M∑

N+1

|zn| ≤
M∑

N+1

cn = TM − TN . (1)
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Since
∑

cn is convergent, {TN} is a Cauchy sequence of real numbers. By (1),
{SN} is also Cauchy, and hence

∑∞
n=1 zn converges by Theorem 6.1. �

We pause to recall and discuss the notion of equivalence class, which we pre-
sume is familiar to the reader. Let S be a set. An equivalence relation on S is a
relation ∼ such that, for all a, b, c ∈ S,

Reflexive property: a ∼ a
Symmetric property: a ∼ b if and only if b ∼ a
Transitive property: a ∼ b and b ∼ c implies a ∼ c.

Given an equivalence relation on a set S, we can form a new set, sometimes
written S/ ∼, as follows. We say that a and b are equivalent, or lie in the same
equivalence class, if a ∼ b holds. The elements of S/ ∼ are the equivalence classes;
the set S/ ∼ is called the quotient space.

We mention three examples. The first is trivial, the second is easy but funda-
mental, and the third is profound.

Example 6.1. Let S be the set of ordered pairs (a, b) of integers. We say that
(a, b) ∼ (c, d) if 100a + b = 100c + d. If we regard the first element of the ordered
pair as the number of dollars, and the second element as the number of cents, then
two pairs are equivalent if they represent the same amount of money. (Note that
we allow negative money here.)

Example 6.2. Let S be the set of ordered pairs (a, b) of integers, with b 	= 0.
We say that (a, b) ∼ (A,B) if aB = Ab. The equivalence relation restates, without
mentioning division, the condition that a

b and A
B define the same rational number.

Then S/ ∼ is the set of rational numbers. It becomes the system Q after we
define addition and multiplication of equivalence classes and verify the required
properties.

Example 6.3. The real number system R is sometimes defined to be the com-
pletion of the rational number system Q. In this definition, a real number is
an equivalence class of Cauchy sequences of rational numbers. Here we define a
sequence of rational numbers {qn} to be Cauchy if, for each positive integer K, we
can find a positive integer N such that m,n ≥ N implies |qm − qn| < 1

K . (The
number 1

K plays the role of ε; we cannot use ε because real numbers have not yet
been defined!) Two Cauchy sequences are equivalent if their difference converges
to 0. Thus Cauchy sequences {pn} and {qn} of rational numbers are equivalent if,
for every M ∈ N, there is an N ∈ N such that |pn − qn| < 1

M whenever n ≥ N .
Intuitively, we can regard a real number to be the collection of all sequences of
rational numbers which appear to have the same limit. We use the language of the
next section; as a set, R is the metric space completion of Q. As in Example 6.2,
we need to define addition, multiplication, and order and establish their properties
before we get the real number system R.

We are also interested in convergence issues in higher dimensions. Let Rn

denote real Euclidean space of dimension n and Cn denote complex Euclidean
space of dimension n. In the next paragraph, we let F denote either R or C.

As a set, Fn consists of all n-tuples of elements of the field F. We write
z = (z1, . . . , zn) for a point in Fn. This set has the structure of a real or complex
vector space with the usual operations of vector addition and scalar multiplication:

(z1, z2, . . . , zn) + (w1, w2, . . . , wn) = (z1 + w1, z2 + w2, . . . , zn + wn).
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c(z1, z2, . . . , zn) = (cz1, cz2, . . . , czn)

Definition 6.3 (norm). A norm on a real or complex vector space V is a
function v �→ ||v|| satisfying the following three properties:

(1) ||v|| > 0 for all nonzero v.
(2) ||cv|| = |c| ||v|| for all c ∈ C and all v ∈ V .
(3) (The triangle inequality) ||v + w|| ≤ ||v|| + ||w|| for all v, w ∈ V .

We naturally say normed vector space for a vector space equipped with a norm.
We can make a normed vector space into a metric space by defining d(u, v) =
||u − v||.

For us the notations Rn and Cn include the vector space structure and the
Euclidean squared norm defined by (2):

||z||2 = 〈z, z〉. (2)

These norms come from the Euclidean inner product. In the real case we have

〈x, y〉 =
n∑

j=1

xjyj (3.1)

and in the complex case we have

〈z, w〉 =
n∑

j=1

zjwj . (3.2)

In both cases ||z||2 = 〈z, z〉.

2. Metric spaces

The definitions of convergent sequence in various settings are so similar that
it is natural to put these settings into one abstract framework. One such setting is
metric spaces.

We assume that the reader is somewhat familiar with metric spaces. We recall
the definition and some basic facts. Let R+ denote the non-negative real numbers.

Definition 6.4. Let X be a set. A distance function on X is a function
d : X × X Ñ R+ satisfying the following properties:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y.
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

If d is a distance function on X, then the pair (X, d) is called a metric space and
d is called the metric.

The real numbers, the complex numbers, real Euclidean space, and complex
Euclidean space are all metric spaces under the usual Euclidean distance function.
One can define other metrics, with very different properties, on these sets. For
example, on any set X, the function d : X × X Ñ R+, defined by d(x, y) = 1 if
x 	= y and d(x, x) = 0, is a metric. In general sets admit many different useful
distance functions. When the metric is understood, one often says “Let X be a
metric space”. This statement is convenient but a bit imprecise.

Metric spaces provide a nice conceptual framework for convergence.
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Definition 6.5. Let {xn} be a sequence in a metric space (X, d). We say
that xn converges to x if, for all ε > 0, there is an N such that n ≥ N implies
d(xn, x) < ε. We say that {xn} is Cauchy if, for all ε > 0, there is an N such that
m,n ≥ N implies d(xm, xn) < ε.

Definition 6.6. A metric space (M,d) is complete if every Cauchy sequence
converges.

If a metric space (M,d) is not complete, then we can form a new metric space
called its completion. The idea precisely parallels the construction of R given Q.
The completion consists of equivalence classes of Cauchy sequences of elements of
(M,d). The distance function extends to the larger set by taking limits.

Here are several additional examples of metric spaces. We omit the needed
verifications of the properties of the distance function, but we mention that in
some instances proving the triangle inequality requires effort.

Example 6.4. Let X be the space of continuous functions on [0, 1]. Define
d(f, g) =

∫ 1

0
|f(x) − g(x)|dx. Then (X, d) is a metric space. More generally, for

1 ≤ p < ∞, we define dp(f, g) by

dp(f, g) =
(∫ 1

0

|f(x) − g(x)|pdx

) 1
p

.

We define d∞(f, g) by d∞(f, g) = sup |f − g|.
Of these examples, only (X, d∞) is complete. Completeness in this case follows

because the uniform limit of a sequence of continuous functions is itself continuous.
A subset Ω of a metric space is called open if, whenever p ∈ Ω, there is a positive

ε such that x ∈ Ω whenever d(p, x) < ε. In particular the empty set is open and
the whole space X is open. A subset K is called closed if its complement is open.

Proposition 6.2. Let (X, d) be a metric space. Let K ⊆ X. Then K is
closed if and only if, whenever {xn} is a sequence in K, and xn converges to x,
then x ∈ K.

Proof. Left to the reader. �

Let (M,d) and (M ′, d′) be metric spaces. The natural collection of maps
between them is the set of continuous functions.

Definition 6.7 (Continuity). f : (M,d) Ñ (M ′, d′) is continuous if, whenever
U is open in M ′, then f−1(U) is open in M .

Proposition 6.3. Suppose f : (M,d) Ñ (M ′, d′) is a map between metric
spaces. The following are equivalent:

(1) f is continuous
(2) Whenever xn converges to x in M , then f(xn) converges to f(x) in M ′.
(3) For all ε > 0, there is a δ > 0 such that

d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

Exercise 6.1. Prove Propositions 6.1 and 6.2.

We next mention several standard and intuitive geometric terms. The interior
of a set S in a metric space is the union of all open sets contained in S. The closure



210 6. APPENDIX

of a set S is the intersection of all closed sets containing S. Thus a set is open if and
only if it equals its interior, and a set is closed if and only if it equals its closure.
The boundary bΩ of a set Ω consists of all points in the closure of Ω but not in the
interior of Ω. Another way to define boundary is to note that x ∈ bΩ if and only
if, for every ε > 0, the ball of radius ε about x has a non-empty intersection with
both Ω and its complement.

Continuity often gets used together with the notion of a dense subset of a metric
space M . A subset S is dense if each x ∈ M is the limit of a sequence of points in
S. In other words, M is the closure of S. For example, the rational numbers are
dense in the real numbers. If f is continuous on M , then f(x) = limn f(xn), and
hence f is determined by its values on a dense set.

One of the most important examples of a metric space is the collection C(M)
of continuous complex-valued functions on a metric space M . Several times in
the book we use compactness properties in C(M). We define compactness in the
standard open cover fashion, called the Heine-Borel property. What matters most
for us is the Bolzano-Weierstrass property.

We quickly review some of the most beautiful results in basic analysis.

Definition 6.8. Let M be a metric space and let K ⊆ M . K is compact
if, whenever K is contained in an arbitrary union ∪Aα of open sets, then K is
contained in a finite union ∪N

k=1Aαk
of these open sets. This condition is often

called the Heine-Borel property.

This definition of compact is often stated informally “every open cover has a
finite subcover”, but these words are a bit imprecise.

Definition 6.9. Let (M,d) be a metric space. A subset K ⊆ M satisfies the
Bolzano-Weierstrass property if, whenever {xn} is a sequence in K, then there is a
subsequence {xnk

} converging to a limit in K.

Theorem 6.2. Let (M,d) be a metric space and let K ⊆ M . Then K is
compact if and only if K satisfies the Bolzano-Weierstrass property.

Theorem 6.3. A subset of Euclidean space is compact if and only if it is closed
and bounded.

Exercise 6.2. Prove Theorems 6.2 and 6.3.

Definition 6.10 (Equicontinuity). A collection K of complex-valued functions
on a metric space (M,d) is called equicontinuous if, for all x and for all ε > 0, there
is a δ > 0 such that

d(x, y) < δ =⇒ |f(x) − f(y)| < ε

for all f ∈ K.

Definition 6.11 (Uniformly bounded). A collection K of complex-valued
functions on a metric space (M,d) is called uniformly bounded if there is a C
such that |f(x)| ≤ C for all x ∈ M and for all f ∈ K.

We refer to [F1] for a proof of the following major result in analysis. The
statement and proof in [F1] apply in the more general context of locally compact
Hausdorff topological spaces. In this book we use Theorem 6.4 to show that certain
integral operators are compact. See Sections 10 and 11 of Chapter 2.
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Theorem 6.4 (Arzela-Ascoli theorem). Let M be a compact metric space. Let
C(M) denote the continuous functions on M with d(f, g) = supM |f(x) − g(x)|.
Let K be a subset of C(M). Then K is compact if and only if the following three
items are true:

(1) K is equicontinuous.
(2) K is uniformly bounded.
(3) K is closed.

Corollary 6.2. Let K be a closed, uniformly bounded, and equicontinuous
subset of C(M). Let {fn} be a sequence in K. Then {fn} has a convergent subse-
quence. That is, {fnk

} converges uniformly to an element of K.

Proof. By the theoremK is compact; the result then follows from the Bolzano-
Weierstrass characterization of compactness. �

Exercise 6.3. Let M be a compact subset of Euclidean space. Fix α > 0. Let
Hα denote the subset of C(M) satisfying the following properties:

(1) ||f ||∞ ≤ 1.
(2) ||f ||Hα

≤ 1. Here

||f ||Hα
= sup

x�=y

|f(x) − f(y)|
|x − y|α .

Show that Hα is compact.

A function f for which ||f ||Hα
is finite is said to satisfy a Hölder condition of

order α. See Definition 2.13.

3. Integrals

This book presumes that the reader knows the basic theory of the Riemann-
Darboux integral, which we summarize. See [Ro] among many possible texts.

Let [a, b] be a closed bounded interval on R, and suppose f : [a, b] Ñ R is a
bounded function. We define

∫ b

a
f(t)dt by a standard but somewhat complicated

procedure. A partition P of [a, b] is a finite collection of points pj such that a =
p0 < · · · < pj < · · · < pN = b. Given f and a partition P , we define the lower and
upper sums corresponding to the partition:

L(f, P ) =
N∑

j=1

(pj − pj−1) inf
[pj−1,pj ]

(f(x))

U(f, P ) =
N∑

j=1

(pj − pj−1) sup
[pj−1,pj ]

(f(x)).

Definition 6.12. A bounded function f : [a, b] Ñ R is Riemann integrable if
supP L(f, P ) = infP U(f, P ). If so, we denote the common value by

∫ b

a
f(t)dt or

simply by
∫ b

a
f .

An equivalent way to state Definition 6.12 is that f is integrable if, for each
ε > 0, there is a partition Pε such that U(f, Pε) − L(f, Pε) < ε.
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In case f is complex-valued, we define it to be integrable if its real and imagi-
nary parts are integrable, and we put

∫ b

a

f =
∫ b

a

u + iv =
∫ b

a

u + i

∫ b

a

v.

The integral satisfies the usual properties:

(1) If f, g are Riemann integrable on [a, b], and c is a constant, then f + g
and cf are Riemann integrable and

∫ b

a

f + g =
∫ b

a

f +
∫ b

a

g,

∫ b

a

cf = c

∫ b

a

f.

(2) If f is Riemann integrable and f(x) ≥ 0 for x ∈ [a, b], then
∫ b

a
f ≥ 0.

(3) If f is continuous on [a, b], then f is Riemann integrable.
(4) If f is monotone on [a, b], then f is Riemann integrable.

We assume various other basic results, such as the change of variables formula,
without further mention.

The collection of complex-valued integrable functions on [a, b] is a complex vec-
tor space. We would like to define the distance δ(f, g) between integrable functions
f and g by

δ(f, g) = ||f − g||L1 =
∫ b

a

|f(x) − g(x)|dx,

but a slight problem arises. If f and g agree for example everywhere except at a
single point, and each is integrable, then δ(f, g) = 0 but f and g are not the same
function. This point is resolved by working with equivalence classes of functions.
Two functions are called equivalent if they agree except on what is called a set of
measure zero. See Section 7 of Chapter 1. Even after working with equivalence
classes, this vector space is not complete (in the metric space sense). One needs to
use the Lebesgue integral to identify its completion.

Often one requires so-called improper integrals. Two possible situations arise;
one is when f is unbounded on [a, b], the other is when the interval is unbounded.
Both situations can happen in the same example. The definitions are clear, and we
state them informally. If f is unbounded at a, for example, but Riemann integrable
on [a + ε, b] for all positive ε, then we define

∫ b

a

f = lim
εÑ0

∫ b

a+ε

f

if the limit exists. If f is Riemann integrable on [a, b] for all b, then we put
∫ ∞

a

f = lim
bÑ∞

∫ b

a

f.

The other possibilities are handled in a similar fashion. Here are two simple exam-
ples of improper integrals:

(1)
∫ 1

0
xαdx = 1

α+1 if α > −1.
(2)

∫ ∞
0

e−xdx = 1.
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At several points in this book, whether an improper integral converges will be
significant. We mention specifically Section 8 of Chapter 3, where one shows that
a function has k continuous derivatives by showing that an improper integral is
convergent.

The following theorem is fundamental to all that we do in this book.

Theorem 6.5 (Fundamental theorem of calculus). Assume f is continuous on
[a, b]. For x ∈ (a, b) put F (x) =

∫ x

a
f(t)dt. Then F is differentiable and F ′(x) =

f(x).

The final theorem in this section is somewhat more advanced. We state this
result in Section 7 of Chapter 1, but we never use it. It is important partly because
its statement is so definitive, and partly because it suggests connections between
the Riemann and Lebesgue theories of integration.

Theorem 6.6. A function on a closed interval [a, b] is Riemann integrable if
and only if the set of its discontinuities has measure zero.

Exercise 6.4. Establish the above properties of the Riemann integral.

Exercise 6.5. Verify that
∫ b

a
cf = c

∫ b

a
f when c is complex and f is complex-

valued. Check that Re(
∫ b

a
f) =

∫ b

a
Re(f) and similarly with the imaginary part.

Exercise 6.6. Verify the improper integrals above.

The next three exercises involve finding sums. Doing so is generally much
harder than finding integrals.

Exercise 6.7. Show that
∑n

j=0

(
j
k

)
=

(
n+1
k+1

)
. Suggestion. Count the same

thing in two ways.

Exercise 6.8. For p a nonnegative integer, consider
∑n

j=1 jp as a function of

n. Show that it is a polynomial in n of degree p + 1 with leading term np+1

p+1 . If
you want to work harder, show that the next term is np

2 . Comment: The previous
exercise is useful in both cases.

Exercise 6.9. For p a positive integer, prove that
∫ 1

0
tpdt = 1

p+1 by using
the definition of the Riemann integral. (Find upper and lower sums and use the
previous exercise.)

Exercise 6.10. Prove the fundamental theorem of calculus. The idea of its
proof recurs throughout this book.

Exercise 6.11. Put f(0) = 0 and f(x) = x sgn(sin( 1
x )). Here sgn(t) = t

|t| for
t 	= 0 and sgn(0) = 0.

• Sketch the graph of f .
• Determine the points where f fails to be continuous.
• Show that f is Riemann integrable on [−1, 1].

4. Exponentials and trig functions

The unit circle is the set of complex numbers of unit Euclidean distance from
0, that is, the set of z with |z| = 1.

The complex exponential function is defined by
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ez =
∞∑

n=0

zn

n!
.

The series converges absolutely for all complex z. Furthermore the resulting
function satisfies e0 = 1 and ez+w = ezew for all z and w.

We define the complex trig functions by

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i
.

When z is real these functions agree with the usual trig functions. The reader who
needs convincing can express both sides as power series.

Note, by continuity of complex conjugation, we have ez = ez. Combining this
property with the addition law gives (assuming t is real)

1 = e0 = eite−it = |eit|2.

Thus z = eit lies on the unit circle. Its real part x is given by x = z+z
2 and its

imaginary part y is given by y = z−z
2i . Comparing with our definitions of cosine and

sine, we obtain the famous Euler identity (which holds even when t is complex):

eit = cos(t) + isin(t).

Complex logarithms are quite subtle. For a positive real number t we define
log(t), sometimes written ln(t), by the usual formula

log(t) =
∫ t

1

du

u
.

For a nonzero complex number z, written in the form z = |z|eiθ, we provisionally
define its logarithm by

log(z) = log(|z|) + iθ. (4)

The problem with this formula is that θ is defined only up to multiples of 2π.
We must therefore restrict θ to an interval of length 2π. In order to define the
logarithm precisely, we must choose a branch cut. Thus we first choose an open
interval of length 2π, and then we define the logarithm only for θ in that open
interval. Doing so yields a branch of the logarithm. For example, we often write
(4) for 0 	= z = |z|eiθ and −π < θ < π. Combining the identity eα+β = eαeβ with
(4), we obtain elog(z) = |z|eiθ = z. For a second example, suppose our branch cut
is the non-negative real axis; then 0 < θ < 2π. Then log(−1) = iπ, but logs of
positive real numbers are not defined! To correct this difficulty, we could assume
0 ≤ θ < 2π and obtain the usual logarithm of a positive number. The logarithm,
as a function on the complement of the origin in C, is then discontinuous at points
on the positive real axis.
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5. Complex analytic functions

The geometric series arises throughout mathematics. Suppose that z is a com-
plex number not equal to 1. Then we have the finite geometric series

n−1∑

j=0

zj =
1 − zn

1 − z
.

When |z| < 1, we let n Ñ ∞ and obtain the geometric series
∞∑

j=0

zj =
1

1 − z
.

The geometric series and the exponential series lie at the foundation of complex
analysis. We have seen how the exponential function informs trigonometry. The
geometric series enables the proof of Theorem 6.7 below; the famous Cauchy integral
formula (Theorem 6.8) combines with the geometric series to show that an arbitrary
complex analytic function has a local power series expansion.

A subset Ω of C is called open if, for all p ∈ Ω, there is an open ball about p
contained in Ω. In other words, there is a positive ε such that |z − p| < ε implies
z ∈ Ω. Suppose that Ω is open and f : Ω Ñ C is a function. We say that f is
complex analytic on Ω if, for each z ∈ Ω, f is complex differentiable at z. (in other
words, if the limit in (5) exists).

lim
hÑ0

f(z + h) − f(z)
h

= f ′(z) (5)

A continuously differentiable function f : Ω Ñ C satisfies the Cauchy-Riemann
equations if ∂f

∂z = 0 at all points of Ω. The complex partial derivative is defined by

∂

∂z
=

1
2
(

∂

∂x
+ i

∂

∂y
).

In most elementary books on complex variables, one writes f = u + iv in terms
of its real and imaginary parts, and writes the Cauchy-Riemann equations as the
pair of equations

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

Perhaps the most fundamental theorem in basic complex analysis relates com-
plex analytic functions, convergent power series, and the Cauchy-Riemann equa-
tions. Here is the precise statement:

Theorem 6.7. Assume that Ω is open and f : Ω Ñ C is a function. The
following are equivalent:

(1) f is complex analytic on Ω.
(2) For all p in Ω, there is a ball about p on which f is given by a convergent

power series:

f(z) =
∞∑

n=0

an(z − p)n.

(3) f is continuously differentiable and ∂f
∂z = 0 on Ω.
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The key step used in establishing Theorem 6.7 is the Cauchy integral formula.
Readers unfamiliar with complex line integrals should consult [A] or [D2], and
should read about Green’s theorem in Section 1 of Chapter 4 in this book. We
mention that, in the research literature on several complex variables, the word
holomorphic is commonly used instead of complex analytic.

Theorem 6.8 (Cauchy integral theorem and Cauchy integral formula). Let f
be complex analytic on and inside a positively oriented, simple closed curve γ. Then

∫

γ

f(z)dz = 0.

For z in the interior of γ, we have

f(z) =
1

2πi

∫

γ

f(ζ)
ζ − z

dζ.

We close this review of complex variable theory by recalling the Fundamental
Theorem of Algebra. Many proofs are known, but all of them require the methods
of analysis. No purely algebraic proof can exist, because the completeness axiom
for the real numbers must be used in the proof.

Theorem 6.9 (Fundamental theorem of algebra). Let p(z) be a non-constant
polynomial with complex coefficients and of degree d. Then p factors into a product
of d linear factors:

p(z) = c

d∏

j=1

(z − zj),

where the zj need not be distinct.

6. Probability

Many of the ideas in this book are closely connected with probability theory.
We barely glimpse these connections.

We begin by briefly discussing probability densities, and we restrict our consid-
eration to continuous densities. See a good text such as [HPS] for more information
and the relationship with Fourier transforms.

Let J be a closed interval on R; we allow the possibility of infinite endpoints.
Assume that f : J Ñ [0,∞) is continuous. Then f is called a continuous probability
density on J if

∫
J

f = 1. Let a denote the left-hand endpoint of J . We define the
cumulative distribution function F by

F (x) =
∫ x

a

f(t)dt.

For y < x, we interpret F (x) − F (y) =
∫ x

y
f(t)dt as the probability that a random

variable lies in the interval [x, y].
We do not attempt to say precisely what the phrase “Let X be a random

variable” means. In our setting, we are given the continuous density function f ,
and we say “X is a random variable with continuous density f” to indicate the
situation we have described. The intuition for the term random variable X is the
following. Suppose X is a real-valued function defined on some set, and for each
x ∈ R, the probability that X takes on a value at most x is well-defined. We
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write F (x) for this probability. Thus F (x) − F (y) denotes the probability that
F takes on a value in the interval (y, x]. In the case of continuous densities, the
probability that X takes on any specific value is 0. This property is sometimes
taken as the definition of continuous random variable. Hence F (x)−F (y) denotes
the probability that X takes on a value in the interval [y, x].

Let X denote a random variable on an interval J , with continuous density f .
We say that X has finite expectation if

∫

J

|t|f(t)dt < ∞.

We say that X has finite variance if
∫

J

(t − μ)2f(t)dt < ∞.

When these integrals are finite, we define the mean μ and variance σ2 of X by

μ =
∫

J

tf(t)dt

σ2 =
∫

J

(t − μ)2f(t)dt.

The mean is also known as the expected value. More generally, if g is any
function we call

∫
J

g(t)f(t)dt the expected value of g. Thus the variance is the
expected value of (t − μ)2 and hence measures the deviation from the mean.

Proposition 6.4. The variance satisfies σ2 =
∫

J
t2f(t)dt − μ2.

Proof. Expanding the square in the definition of the variance gives:
∫

J

(t − μ)2f(t)dt =
∫

J

t2f(t)dt − 2μ

∫

J

tf(t)dt + μ2

∫

J

f(t)dt.

Since μ =
∫

J
tf(t)dt and 1 =

∫
J

f(t)dt, the last two terms combine to give −μ2. �

The computation in Proposition 6.4 arises in many contexts. It appears, for
example, in the proof of the parallel axis theorem for moments of inertia. The same
idea occurs in verifying the equivalence of two ways of stating Poincaré inequalities
in Chapter 4. Compare also with the proof of Bessel’s inequality, Proposition 2.2.

Example 6.5 (The normal, or Gaussian, random variable). For 0 < σ2 < ∞
and x ∈ R, put g(x) = 1√

2πσ
e

−x2

2σ2 . See Example 1.7. Then the mean of the random
variable with density g is 0 and the variance is σ2.

Example 6.6 (The uniform random variable). Let f(x) = 1
b−a for a ≤ x ≤ b.

Then f is a probability density. Its cumulative distribution function F is given on
R by F (x) = 0 if x < a, by F (x) = 1 if x > b, and by F (x) = x−a

b−a for x ∈ [a, b].

Exercise 6.12. Show that the mean of the uniform random variable on [a, b]
is a+b

2 . Compute its variance.

Let X be a random variable with continuous density function f . The probability
that X ≤ x is by definition the integral

∫ x

−∞ f(t)dt. We write:

Prob(X ≤ x) =
∫ x

−∞
f(t)dt.
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Let φ be a strictly monotone differentiable function of one real variable. We can use
the fundamental theorem of calculus to compute the density of φ(X). Assuming
that φ is increasing, we have

Prob(φ(X) ≤ x) = Prob(X ≤ φ−1(x)) =
∫ φ−1(x)

−∞
f(t)dt.

Differentiating and using the fundamental theorem of calculus, we see that the
density of φ(X) is given by f ◦φ−1(φ−1)′. An example of this situation gets briefly
mentioned in Exercise 4.68, where X is the Gaussian and φ(x) = x2 for x ≥ 0. In
case φ is decreasing a similar calculation gives the answer −f ◦ φ−1(φ−1)′. Hence
the answer in general is f ◦ φ−1|(φ−1)′|.

We end this appendix by glimpsing the connection between the Fourier trans-
form and probability. Given a continuous random variable on R with density
f , we defined above the expected value of a function g by

∫ ∞
−∞ g(t)f(t)dt. Take

g(t) = 1√
2π

e−itξ. Then the expected value of g is the Fourier transform of f . The
terminology used in probability theory often differs from that in other branches
of mathematics; for example, the expected value of eitX , where X is a random
variable, equals

∫ ∞
−∞ eitxf(x)dx. This function is called the characteristic function

of the random variable X rather than (a constant times the inverse of) the Fourier
transform of f .

The central limit theorem is one of the major results in probability theory and
statistics. Most readers should have heard of the result, at least in an imprecise
fashion (“everything is asymptotically normal”), and we do not state it here. See
[F1] or [HPS] for precise statements of the central limit theorem. Its proof relies
on several things discussed in this book: the Fourier transform is injective on an
appropriate space, the Fourier transform of a Gaussian of mean zero and variance
one is itself, and the Gaussian defines an approximate identity as the variance tends
to 0.

Exercise 6.13. Show that there is a continuous probability density f on R,
with finite expectation, such that f(n) = n for all positive integers n.
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