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Preface to the second edition

The second edition of the book differs from the first edition in several ways.
Most important is the inclusion of a new chapter. This new chapter considers the
CR geometry of the unit sphere. It is primarily based on recent joint work of the
author and Ming Xiao, and the author thanks Ming for his contribution to this
research. This work concerns groups associated with holomorphic mappings; some
material along these lines appeared in Chapter 4 of the first edition, and that mate-
rial remains in Chapter 4, little changed. Other material from Chapter 4 has been
rewritten, and some of it has been moved to the new Chapter 5. This chapter devel-
ops some ideas from CR geometry and, by including the work on groups associated
with sphere maps, heads in a new direction. As usual in mathematics, new results
open more doors than they close. For example, we use these groups to provide a
criterion for a holomorphic mapping to be a polynomial. Chapter 5 concludes with
a test when a formal power series in several variables is a rational function.

The author has added a section at the end of Chapter 4 called Unifying remarks.
This section makes a modest effort toward showing how some of the topics in the
book fit together. The author wishes to thank an anonymous reviewer for pointing
out that some of the exercises, scattered throughout the book, are in fact intimately
connected. The reviewer also suggested that making these connections would enable
more to be said about the proof of a higher-dimensional analogue of the Riesz-Fejer
theorem used in Chapter 5. Following these suggestions has improved the book.
Several small improvements in Chapers 2 and 3 also help unify topics.

A third difference is that typos and other small errors have been corrected. Of
these, the author wishes to note one error that has been fixed. Chapter 4 included
two proofs of Wirtinger’s inequality; the second proof was sketched and contained
a subtle mistake. We correct that error in this edition. In several places, we have
improved the way formulas look on the page and we rewrote a few sentences for
clarity. We have also included some material from basic differential geometry, such
as a discussion of pushforwards and pullbacks. The material on differential forms
remains intuitive rather than formal, but perhaps has been improved. Several
references have been added to the bibliography. Many new exercises appear.

A few words about prerequisites are appropriate. The first three chapters
assume that the reader has taken three semesters of calculus, is comfortable with
linear algebra, is acquainted with complex numbers and ODE, and knows some basic
real analysis. Chapters 4 and 5 require more. The author hopes that the first three
chapters, some elementary complex analysis, and some elementary abstract algebra
(what a group is) will provide the necessary background. Much of the material in
the last two chapters is oriented toward current research, but understanding the
results and their proofs does not require much jargon. Perhaps, the lack of jargon
explains why this material appeals so much to the author. The question “what
are the rational mappings sending the unit sphere in Cn to the unit sphere in CN

for some N” is easy to state. It is possible to write an entire book answering this
question. Chapters 4 and 5 begin to do so. The author therefore hopes researchers
in several complex variables and CR geometry find these chapters to be useful.

The author modestly hopes that the changes made justify the second edition.
He wishes to add Ming Xiao, Dusty Grundmeier, Fritz Haslinger, Martino Fassina,
Xiaolong Han, Bernhard Lamel, and several anonymous reviewers to the list of
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people acknowledged in the original preface. The author spent a wonderful week
at the Erwin Schrödinger Institute (ESI) in December 2018. Although this edition
was nearly completed by then, both preparing a talk and having discussions with
other participants helped the author polish some aspects of the book. He therefore
wishes to acknowledge support from ESI for that week. In addition, he wishes to
acknowledge support from the American Institute of Mathematics (AIM) for several
earlier meetings. Finally, he acknowledges support from NSF Grant DMS 13-61001.

Preface to the first edition

This book aims both to synthesize much of undergraduate mathematics and
to introduce research topics in geometric aspects of complex analysis in several
variables. The topics all relate to orthogonality, real analysis, elementary complex
variables, and linear algebra. I call the blend Hermitian analysis. The book devel-
oped from my teaching experiences over the years and specifically from Math 428,
a capstone Honors course taught in Spring 2013 at the University of Illinois. Many
of the students in Math 428 had taken honors courses in analysis, linear algebra,
and beginning abstract algebra. They knew differential forms and Stokes’ theo-
rem. Other students were strong in engineering, with less rigorous mathematical
training, but with a strong sense of how these ideas get used in applications.

Rather than repeating and reorganizing various parts of mathematics, the
course began with Fourier series, a new topic for many of the students. Developing
some of this remarkable subject and related parts of analysis allows the synthesis
of calculus, elementary real and complex analysis, and algebra. Proper mappings,
unitary groups, complex vector fields, and differential forms eventually join this
motley crew. Orthogonality and Hermitian analysis unify these topics. In the pro-
cess, ideas arising on the unit circle in C evolve into more subtle ideas on the unit
sphere in complex Euclidean space Cn.

The book includes numerous examples and more than two-hundred seventy
exercises. These exercises sometimes appear, with a purpose, in the middle of a
section. The reader should stop reading and start computing. Theorems, lemmas,
propositions, etc. are numbered by chapter. Thus Lemma 2.4 means the fourth
lemma in Chapter 2. The only slight exception concerns figures. Figure 8 means
the eighth figure in whatever chapter it appears.

Chapter 1 begins by considering the conditionally convergent series
P1

n¼1
sinðnxÞ

n .
We verify its convergence using summation by parts, which we discuss in some de-
tail. We then review constant coefficient ordinary differential equations, the expo-
nentiation of matrices, and the wave equation for a vibrating string. These topics
motivate our development of Fourier series. We prove the Riesz-Fejer theorem
characterizing non-negative trigonometric polynomials. We develop topics such as
approximate identities and summability methods, enabling us to conclude the discussion
on the series

P1
n¼1

sinðnxÞ
n . The chapter closes with two proofs of Hilbert’s inequality.

Chapter 2 discusses the basics of Hilbert space theory, motivated by orthonor-
mal expansions, and includes the spectral theorem for compact Hermitian opera-
tors. We return to Fourier series after these Hilbert space techniques have become
available. We also consider Sturm-Liouville theory in order to provide additional
examples of orthonormal systems. The exercises include problems on Legendre
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polynomials, Hermite polynomials, and several other collections of special func-
tions. The chapter ends with a section on spherical harmonics, whose purpose is
to indicate one possible direction for Fourier analysis in higher dimensions. As a
whole, this chapter links classical and modern analysis. It considerably expands the
material on Hilbert spaces from my Carus monograph Inequalities From Complex
Analysis. Various items here help the reader to think in a magical Hermitian way.
Here are two specific examples:

• There exist linear transformations A;B on a real vector space satisfying
the relationship A�1 þB�1 ¼ ðAþBÞ�1 if and only if the vector space
admits a complex structure.

• It is well known that a linear map on a complex space preserves inner
products if and only it preserves norms. This fact epitomizes the polar-
ization technique which regards a complex variable or vector z and its
conjugate �z as independent objects.

Chapter 3 considers the Fourier transform on the real line, partly to glimpse
higher mountains and partly to give a precise meaning to distributions. We also
briefly discuss Sobolev spaces and pseudo-differential operators. This chapter in-
cludes several standard inequalities (Young, Hölder, Minkowski) from real analysis
and Heisenberg’s inequality from physics. Extending these ideas to higher dimen-
sions would be natural, but since many books treat this material well, we head in
a different direction. This chapter is therefore shorter than the other chapters and
it contains fewer interruptions.

Chapter 4, the heart of the book, considers geometric issues revolving around
the unit sphere in complex Euclidean space. We begin with Hurwitz’s proof (us-
ing Fourier series) of the isoperimetric inequality for smooth curves. We prove
Wirtinger’s inequality in two ways. We continue with an inequality on the areas of
complex analytic images of the unit disk, which we also prove in two ways. One of
these involves differential forms. This chapter therefore includes several sections on
vector fields and differential forms, including the complex case. Other geometric
considerations in higher dimensions include topics from my own research: finite
unitary groups, group-invariant mappings, and proper mappings between balls.
We use the notion of orthogonal homogenization to prove a sharp inequality on the
volume of the images of the unit ball under certain polynomial mappings. This ma-
terial naturally leads to the Cauchy-Riemann (CR) Geometry of the unit sphere.
The chapter closes with a brief discussion of positivity conditions for Hermitian
polynomials, connecting the work on proper mappings to an analogue of the Riesz-
Fejer theorem in higher dimensions. Considerations of orthogonality and Hermitian
geometry weave all these topics into a coherent whole.

The prerequisites for reading the book include three semesters of calculus, linear
algebra, and basic real analysis. The reader needs some acquaintance with complex
numbers but does not require all of the material in the standard course. The
appendix summarizes the prerequisites. We occasionally employ the notation of
Lebesgue integration, but knowing measure theory is not a prerequisite for reading
this book. The large number of exercises, many developed specifically for this book,
should be regarded as crucial. They link the abstract and the concrete.
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Books in the Cornerstone series are aimed at aspiring young mathematicians
ranging from advanced undergraduates to second-year graduate students. This
audience will find the first three chapters accessible. The many examples, exercises,
and motivational discussions make these chapters also accessible to students in
Physics and Engineering. While Chapter 4 is more difficult, the mathematics there
flows naturally from the earlier material. These topics require the synthesis of
diverse parts of mathematics. The unity and beauty of the mathematics rewards
the reader while leading directly to current research. The author hopes someday to
write a definitive account describing where in complex analysis and CR Geometry
these ideas lead.

I thank the Department of Mathematics at Illinois for allowing me to teach
various Honors courses and in particular the one for which I used these notes. I
acknowledge various people for their insights into some of the mathematics here,
provided in conversations, published writing, or e-mail correspondences. Such peo-
ple include Phil Baldwin, Steve Bradlow, David Catlin, Geir Dullerud, Ed Dunne,
Charlie Epstein, Burak Erdogan, Jerry Folland, Jen Halfpap, Zhenghui Huo, Robert
Kaufman, Rick Laugesen, Jeff McNeal, Tom Nevins, Mike Stone, Emil Straube,
Jeremy Tyson, Bob Vanderbei, and others, including several unnamed reviewers.

I also thank Charlie Epstein and Steve Krantz for encouraging me to write a
book for the Birkhäuser Cornerstone Series. I much appreciate the efforts of Kate
Ghezzi, Associate Editor of Birkhäuser Science, who guided the evolution of my
first draft into this book. I thank Carol Baxter of the Mathematical Association of
America for granting me permission to incorporate some of the material from Chap-
ter 2 of my Carus monograph Inequalities From Complex Analysis. I acknowledge
Jimmy Shan for helping prepare pictures and solving many of the exercises.

I thank my wife Annette and our four children for their love.
I acknowledge support from NSF grant DMS-1066177 and from the Kenneth

D. Schmidt Professorial Scholar award from the University of Illinois.
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CHAPTER 1

Introduction to Fourier series

1. Introduction

We start the book by considering the series
∑∞

n=1
sin(nx)

n , a nice example of a
Fourier series. This series converges for all real numbers x, but the issue of conver-
gence is delicate. We introduce summation by parts as a tool for handling some
conditionally convergent series of this sort. After verifying convergence, but before
finding the limit, we pause to introduce and discuss several elementary differential
equations. This material also leads to Fourier series. We include the exponenti-
ation of matrices here. The reader will observe these diverse topics begin being
woven into a coherent whole.

After these motivational matters, we introduce the fundamental issues con-
cerning the Fourier series of Riemann integrable functions. We define trigonometric
polynomials, Fourier series, approximate identities, Cesàro and Abel summability,
and related topics enabling us to get some understanding of the convergence of
Fourier series. We show how to use Fourier series to establish some interesting
inequalities.

In Chapter 2 we develop the theory of Hilbert spaces, which greatly clarifies
the subject of Fourier series. We prove additional results about Fourier series there,
after we know enough about Hilbert spaces. The manner in which concrete and
abstract mathematics inform each other is truly inspiring.

2. A famous series

Consider the infinite series
∑∞

n=1
sin(nx)

n . This sum provides an example of a
Fourier series, a term we will define precisely a bit later. Our first agenda item is
to show that this series converges for all real x. After developing a bit more theory,
we determine the sum for each x; the result defines the famous sawtooth function.

Let {an} be a sequence of (real or) complex numbers. We say that
∑∞

n=1 an

converges to L if

lim
NÑ∞

N∑

n=1

an = L.

We say that
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| converges. In case
∑

an

converges, but does not converge absolutely, we say that
∑

an converges con-
ditionally or is conditionally convergent. Note that absolute convergence implies
convergence, but that the converse fails. See for example Corollary 1.3. See the
exercises for subtleties arising when considering conditionally convergent series.

The expression AN =
∑N

n=1 an is called the N -th partial sum. In this section
we will consider two sequences {an} and {bn}. We write their partial sums, using
capital letters, as AN and BN . We regard the sequence of partial sums as an
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2 1. INTRODUCTION TO FOURIER SERIES

analogue of the integral of the sequence of terms. Note that we can recover the
terms from the partial sums because an = An −An−1, and we regard the sequence
{an} of terms as an analogue of the derivative of the sequence of partial sums. The
next result is extremely useful in analyzing conditionally convergent series. One
can remember it by analogy with the integration by parts formula

∫

aB′ = aB −
∫

a′B. (1)

Proposition 1.1 (Summation by parts). For 1 ≤ j ≤ N consider complex
numbers aj and bj. Then

N∑

j=1

ajbj = aNBN −
N−1∑

j=1

(aj+1 − aj)Bj . (2)

Proof. We prove the formula by induction on N . When N = 1 the result is
clear, because a1b1 = a1B1 and the sum on the right-hand side of (2) is empty.

Assume the result for some N . Then we have

N+1∑

j=1

ajbj = aN+1bN+1 +
N∑

j=1

ajbj = aN+1bN+1 + aNBN −
N−1∑

j=1

(aj+1 − aj)Bj

= aN+1bN+1 + aNBN −
N∑

j=1

(aj+1 − aj)Bj + (aN+1 − aN )BN

= aN+1bN+1 + aN+1BN −
N∑

j=1

(aj+1 − aj)Bj = aN+1BN+1 −
N∑

j=1

(aj+1 − aj)Bj .

The induction is complete. �

Corollary 1.1. Suppose an Ñ 0 and that
∑ |an+1 − an| converges. Assume

also that the sequence {BN} of partial sums is bounded. Then
∑∞

j=1 ajbj converges.

Proof. We must show that the limit, as N tends to infinity, of the left-hand
side of (2) exists. The limit of the first term on the right-hand side of (2) exists
and is 0. The limit of the right-hand side of (2) is the infinite series

−
∞∑

j=1

(aj+1 − aj)Bj . (3)

We claim that the series (3) is absolutely convergent. By hypothesis, there is a
constant C with |Bj | ≤ C for all j. Hence, for each j we have

|(aj+1 − aj)Bj | ≤ C|aj+1 − aj |. (4)

The series
∑ |aj+1 − aj | converges. By (4) and the comparison test (Proposition

6.1 from the Appendix),
∑∞

j=1 |(aj+1 − aj)Bj | converges as well. Thus the claim
holds and the conclusion follows by letting N tend to ∞ in (2). �

Corollary 1.2. Suppose an decreases monotonically to 0. Then
∑

(−1)nan

converges.
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Proof. Put bn = (−1)n. Then |BN | ≤ 1 for all N . Since an+1 ≤ an for all n,
N∑

j=1

|aj+1 − aj | =
N∑

j=1

(aj − aj+1) = a1 − aN+1.

Since aN+1 tends to 0, we have a convergent telescoping series. Thus Corollary 1.1
applies. �

Corollary 1.3.
∑∞

n=1
(−1)n

n converges.

Proof. Put an = 1
n and bn = (−1)n. Corollary 1.2 applies. �

Proposition 1.2.
∑∞

n=1
sin(nx)

n converges for all real x.

Proof. Let an= 1
n and let bn = sin(nx). First suppose x is an integer multiple

of π. Then bn = 0 for all n and the series converges to 0. Otherwise, suppose x is
not a multiple of π; hence eix �= 1. We then claim that BN is bounded. In the next
section, for complex z we define sin(z) by eiz−e−iz

2i and we justify this definition.
Using it we have

bn = sin(nx) =
einx − e−inx

2i
.

Since we are assuming eix �= 1, the sum
∑N

n=1 einx is a finite geometric series
which we can compute explicitly. We get

N∑

n=1

einx = eix 1 − eiNx

1 − eix
. (5)

The right-hand side of (5) has absolute value at most 2
|1−eix| and hence the left-

hand side of (5) is bounded independently of N . The same holds for
∑N

n=1 e−inx.
Thus BN is bounded. The proposition now follows by Corollary 1.1. �

Remark 1.1. The partial sums BN depend on x. We will see later why the
limit function fails to be continuous in x.

Remark 1.2. The definition of convergence of a series involves the partial sums.
Other summability methods will arise soon. For now we note that conditionally
convergent series are quite subtle. In Exercise 1.1 you are asked to verify Riemann’s
remark that the sum of a conditionally convergent series depends in a striking way
on the order in which the terms are added. Such a reordered series is called a
rearrangement of the given series.

Exercise 1.1. (Subtle) (Riemann’s remark on rearrangement). Let
∑

an be
a conditionally convergent series of real numbers. Given any real number L (or
∞), prove that there is a rearrangement of

∑
an that converges to L (or diverges).

(Harder) Determine and prove a corresponding statement if the an are allowed to
be complex. (Hint: For some choices of complex numbers an, not all complex L
are possible as limits of rearranged sums. If, for example, all the an are purely
imaginary, then the rearranged sum must be purely imaginary. Figure out all
possible alternatives.)

Exercise 1.2. Show that
∑∞

n=2
sin(nx)
log(n) and, (for α > 0),

∑∞
n=1

sin(nx)
nα con-

verge.
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Exercise 1.3. Suppose that
∑

cj converges and that limn ncn = 0. Determine
∞∑

n=1

n(cn+1 − cn).

Exercise 1.4. Find a sequence of complex numbers such that
∑

an converges
but

∑
(an)3 diverges.

Exercise 1.5. This exercise has two parts.

(1) Assume that Cauchy sequences (see Section 1 of the Appendix) of real
numbers converge. Prove the following statement: if {an} is a sequence
of complex numbers and

∑∞
n=1 |an| converges, then

∑∞
n=1 an converges.

(2) Next, do not assume that Cauchy sequences of real numbers converge;
instead assume that whenever

∑∞
n=1 |an| converges, then

∑∞
n=1 an con-

verges. Prove that Cauchy sequences of real (or complex) numbers con-
verge.

Exercise 1.6. (Difficult) For 0 < x < 2π, show that
∑∞

n=0
cos(nx)
log(n+2) converges

to a non-negative function. Suggestion: Sum by parts twice and find an explicit
formula for

∑N
n=1

∑n
k=1 cos(kx). If needed, look ahead to formula (49).

Exercise 1.7. Consider the sequence defined by aN = (
∑N

j=1
1
j )−log N . Show

that this sequence is decreasing and bounded below, and therefore converges. The
limit is called Euler’s constant and equals approximately .5772.

Exercise 1.8. Verify that
∑∞

n=1
(−1)n+1

n converges to log(2).

Exercise 1.9. a. Consider the series (1 + 1
3 − 1

2 ) + (1
5 + 1

7 − 1
4 ) + ... Show

that this series, a rearrangement of the series in the previous exercise, converges
to 3

2 log(2) = log(
√

8). Suggestion: Write the partial sums in terms of the partial
sums of the harmonic series

∑
1
n and use Exercise 1.7.

b. Use the method in part a. to show that
∞∑

k=1

(
1

6k − 5
+

1
6k − 3

+
1

6k − 1
− 1

2k

)

= log(6) − 1
2

log(3) = log(
√

12).

3. Trigonometric polynomials

We let S1 denote the unit circle in C. Our study of Fourier series involves
functions defined on the unit circle, although we sometimes work with functions
defined on R, on the interval [−π, π], or on the interval [0, 2π]. In order that such
functions be defined on the unit circle, we must assume that they are periodic with
period 2π, that is, f(x+2π) = f(x). The most obvious such functions are sine and
cosine. We will often work instead with complex exponentials.

We therefore begin by defining, for z ∈ C,

ez =
∞∑

n=0

zn

n!
= lim

NÑ∞

N∑

n=0

zn

n!
. (6)

Using the ratio test, we see that the series in (6) converges absolutely for each
z ∈ C. It converges uniformly on each closed ball in C. Hence the series defines
a complex analytic function of z whose derivative (which is also ez) is found by
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differentiating term-by-term. See the appendix for the definition of holomorphic or
complex analytic function.

Note that e0 = 1. Also it follows from (6) that, for all complex numbers z and
w, ez+w = ezew. (See Exercise 1.17.) From these facts we can also see for λ ∈ C
that d

dz eλz = λeλz. Since complex conjugation is continuous, we also have ez = ez

for all z. (Continuity is used in passing from the partial sum in (6) to the infinite
series.) Hence when t is real we see that e−it is the conjugate of eit. Therefore

|eit|2 = eite−it = e0 = 1

and hence eit lies on the unit circle. All trigonometric identities follow from the
definition of the exponential function. The link to trigonometry (trig) comes from
the definitions of sine and cosine for a complex variable z:

cos(z) =
eiz + e−iz

2
(7)

sin(z) =
eiz − e−iz

2i
. (8)

We obtain eiz = cos(z) + isin(z) for all z. In particular, when t is real, cos(t) is
the real part of eit and sin(t) is the imaginary part of eit. Consider the bijection
from [0, 2π) to the unit circle given by t �→ eit. We can define the radian measure
of an angle as follows. Given the point eit on the unit circle, we form two line
segments: the segment from 0 to 1, and the segment from 0 to eit. Then t is the
angle between these segments, measured in radians. Hence cos(t) and sin(t) have
their usual meanings when t is real.

Although we started the book with the series
∑ sin(nx)

n , we prefer using complex
exponentials instead of cosines and sines to express our ideas and formulas.

Definition 1.1. A complex-valued function on the circle is called a trigono-
metric polynomial or trig polynomial if there are complex constants cj such that

f(θ) =
N∑

j=−N

cje
ijθ.

It is of degree N if cN �= 0 or c−N �= 0. The complex numbers cj are called the
(Fourier) coefficients of f .

Lemma 1.1. A trig polynomial f is the zero function if and only if all its
coefficients vanish.

Proof. If all the coefficients vanish, then f is the zero function. The converse
is less trivial. We can recover the coefficients cj of a trig polynomial by integration:

cj =
1
2π

∫ 2π

0

f(θ)e−ijθdθ. (9)

If f(θ) = 0 for all θ, then each of these integrals vanishes and the converse assertion
follows. �

See Theorem 1.12 for an important generalization. Lemma 1.1 has a geometric
interpretation, which we will develop and generalize in Chapter 2. The functions
x Ñ einx for −N ≤ n ≤ N form an orthonormal basis for the (2N +1)-dimensional
vector space of trig polynomials of degree at most N . The lemma states that f is
the zero vector if and only if all its components with respect to this basis are 0.
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We need the following result about real-valued trig polynomials. See Lemma
1.7 for a generalization.

Lemma 1.2. A trig polynomial is real-valued if and only if cj = c−j for all j.

Proof. The trig polynomial is real valued if and only if f = f , which becomes

N∑

j=−N

cje
ijθ =

N∑

j=−N

cje
−ijθ. (10)

Replacing j by −j in the second sum in (10) shows that f is real-valued if and only
if

N∑

j=−N

cje
ijθ =

N∑

j=−N

cje
−ijθ =

−N∑

j=N

c−je
ijθ =

N∑

j=−N

c−je
ijθ. (11)

The difference of the two far sides of (11) is the zero function; hence the conclusion
follows from Lemma 1.1. �

We sometimes call this condition on the coefficients the palindrome property; it
characterizes real-valued trig polynomials. Our next result, which is considerably
more difficult, characterizes non-negative trig polynomials.

Theorem 1.1 (Riesz-Fejer 1916). Let f be a trig polynomial with f(θ) ≥ 0 for
all θ. Then there is a complex polynomial p(z) such that f(θ) = |p(eiθ)|2.

Proof. Assume f is of degree d and write

f(θ) =
d∑

j=−d

cje
ijθ,

where c−j = cj since f is real-valued. Note also that c−d �= 0. Define a polynomial
q in one complex variable by

q(z) = zd
d∑

j=−d

cjz
j . (12)

Let ξ1, ..., ξ2d be the roots of q, repeated if necessary. We claim that the reality
of f , or equivalently the palindrome property, implies that if ξ is a root of q, then
(ξ)−1 also is a root of q. This point is called the reflection of ξ in the circle. See
Figure 1. Because 0 is not a root, the claim follows from the formula

q(z) = z2d q((z)−1). (13)

To check (13), we use (12) and the palindrome property. Also, we replace −j by j
in the sum to get

z2d q((z)−1) = zd
∑

cj(
1
z
)j = zd

∑
cjz

−j = zd
∑

c−jz
j = zd

∑
cjz

j = q(z).

Thus (13) holds. It also follows that each root on the circle must occur with even
multiplicity. Thus the roots of q occur in pairs, symmetric with respect to the unit
circle.
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By the Fundamental Theorem of Algebra, we may factor the polynomial q into
linear factors. For z on the circle we can replace the factor z − (ξ)−1 with

1
z
− 1

ξ
=

ξ − z

zξ
.

Let p(z) = C
∏d

j=1(z − ξj). Here we use all the roots in the unit disk and half
of those where |ξj | = 1. Note that |q| = |p|2 on the circle. Since f ≥ 0 on the
circle, we obtain

f(θ) = |f(θ)| = |q(eiθ)| = |p(eiθ)|2.
�

Figure 1. Reflection in the circle

Exercise 1.10. Put f(θ) = 1+a cos(θ). Note that f ≥ 0 if and only if |a| ≤ 1.
In this case find p such that |p(eiθ)|2 = f(θ) on the circle.

Exercise 1.11. Put f(θ) = 1 + a cos(θ) + b cos(2θ). Find the condition on
a, b for f ≥ 0. Carefully graph the set of (a, b) for which f ≥ 0. Find p such that
f = |p|2 on the circle. Suggestion: To determine the condition on a, b, rewrite f as
a polynomial in x on the interval [−1, 1].

Exercise 1.12. Find a polynomial p such that |p(eiθ)|2 = 4 − 4sin2(θ). (The
roots of p lie on the unit circle, illustrating part of the proof of Theorem 1.1.)

In anticipation of later work, we introduce Hermitian symmetry and rephrase
the Riesz-Fejer theorem in this language.

Definition 1.2. Let R(z, w) be a polynomial in the two complex variables z

and w. R is called Hermitian symmetric if R(z, w) = R(w, z) for all z and w.

The next lemma characterizes Hermitian symmetric polynomials.

Lemma 1.3. The following statements about a polynomial in two complex vari-
ables are equivalent:

(1) R is Hermitian symmetric.
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(2) For all z, R(z, z) is real.
(3) R(z, w) =

∑
a,b cabz

awb where cab = cba for all a, b.

Proof. Left to the reader. �

The next result, together with various generalizations, justifies considering z
and its conjugate z to be independent variables. When a polynomial identity in z
and z holds for all z, it holds when we vary z and z separately.

Lemma 1.4 (Polarization). Let R be a Hermitian symmetric polynomial. If
R(z, z) = 0 for all z, then R(z, w) = 0 for all z and w.

Proof. Write z = |z|eiθ. Plugging into the third item from Lemma 1.3, we
are given ∑

a,b

cab|z|a+bei(a−b)θ = 0

for all |z| and for all θ. Put k = a − b, which can be positive, negative, or 0. By
Lemma 1.1, the coefficient of each eikθ is 0. Thus, for all k and z,

|z|k
∑

b

c(b+k)b|z|2b = 0. (14)

After dividing by |z|k, for each k (14) defines a polynomial in |z|2 that is identically
0. Hence each coefficient c(b+k)b vanishes and R is the zero polynomial. �

Example 1.1. Note that |z + i|2 = |z|2 − iz + iz +1. Polarization implies that
(z + i)(w − i) = zw − iz + iw + 1 for all z and w. We could also replace w with w.

Remark 1.3. We can restate the Riesz-Fejer Theorem in terms of Hermitian
symmetric polynomials: If r is Hermitian symmetric and non-negative on the cir-
cle, then r(z, z) = |p(z)|2 there. (Note that there are many Hermitian symmetric
polynomials agreeing with a given trig polynomial on the circle.) The higher dimen-
sional analogue of the Riesz-Fejer theorem uses Hermitian symmetric polynomials.
See Theorem 4.13 and [D1].

Exercise 1.13. Prove Lemma 1.3.

Exercise 1.14. Verify the second sentence of Remark 1.3.

Exercise 1.15. Explain why the factor z2d appears in (13).

Exercise 1.16. Assume a ∈ R, b ∈ C, and c > 0. Find the minimum of the
Hermitian polynomial R:

R(t, t) = a + bt + bt + c|t|2.
Compare with the proof of the Cauchy-Schwarz inequality, Theorem 2.1.

Exercise 1.17. Prove that ez+w = ezew.

Exercise 1.18. Simplify the expression
∑k

j=1 sin((2j − 1)x).

Exercise 1.19. Prove the following statement from plane geometry. Let ξ be
a point in the complex plane other than the origin, and let w lie on the unit circle.
Then every circle, perpendicular to the unit circle, and containing both ξ and w,
also contains (ξ)−1.
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Figure 2. Reflection and perpendicularity

4. Constant coefficient differential equations

Our work thus far has begun to prepare us for the study of Fourier series.
Fourier series also arise in solving both ordinary and partial differential equations.
In order to develop this connection, we recall some things from that realm, thereby
providing us with additional motivation.

The differential equation y′ = λy has the obvious solution y(t) = y(0)eλt, for
λ a real or complex constant, and t a real variable. How do we know that this
solution is the only one? In fact we have a simple lemma.

Lemma 1.5. Suppose y is a differentiable function of one real variable t and
y′ = λy. Then y(t) = y(0)eλt.

Proof. Let y be differentiable with y′ = λy. Put f(t) = e−λty(t). The
product rule for derivatives gives f ′(t) = e−λt(−λy(t)+y′(t)) = 0. The mean-value
theorem from calculus guarantees that the only solution to f ′ = 0 is a constant c.
Hence e−λty(t) is a constant c, which must be y(0), and y(t) = y(0)eλt. �

This result generalizes to constant coefficient equations of higher order; see
Theorem 1.2. Such equations reduce to first order systems. Here is the simple
idea. Given a k-times differentiable function y of one variable, we form the vector-
valued function Y : R Ñ Rk+1 as follows:

Y (t) =

⎛

⎜
⎜
⎝

y(t)
y′(t)
...

y(k)(t)

⎞

⎟
⎟
⎠ . (15)

The initial vector Y (0) in (15) tells us the values for y(0), y′(0), . . . , y(k)(0).
Consider the differential equation y(m) = c0y + c1y

′ + ...+ cm−1y
(m−1). Here y

is assumed to be an m-times differentiable function of one variable t, and each cj

is a constant. Put k = m − 1 in (15). Define an m-by-m matrix A as follows:

A =

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 ... 0
0 0 1 ... 0
... ... ... 1 0
0 0 ... 0 1
c0 c1 c2 ... cm−1

⎞

⎟
⎟
⎟
⎟
⎠

(16)

Consider the matrix product AY and the equation Y ′ = AY . The matrix A
has been constructed such that the first m − 1 rows of this equation tell us that
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d
dty

(j) = y(j+1), and the last row tells us that y(m) =
∑

cjy
(j). The equation

y(m) = c0y + c1y
′ + ... + cm−1y

(m−1)

is therefore equivalent to the first-order matrix equation Y ′ = AY . In analogy with
Lemma 1.5 we solve this system by exponentiating the matrix A.

Let Mν denote a sequence of matrices of complex numbers. We say that Mν

converges to M if each entry of Mν converges to the corresponding entry of M .
Let M be a square matrix, say n-by-n, of real or complex numbers. We define

eM , the exponential of M , by the series

eM =
∞∑

k=0

Mk

k!
= lim

NÑ∞

N∑

k=0

Mk

k!
. (17)

It is not difficult to show that this series converges and also, when MK = KM , that
eM+K = eMeK . Note also that eO = I, where I denotes the identity matrix. As a
consequence of these facts, for each M the matrix eM is invertible and e−M is its
inverse. It is also easy to show that MeM = eMM , that is, M and its exponential
eM commute. We also note that eAt is differentiable and d

dte
At = AeAt.

Exercise 1.20. Prove that the series in (17) converges for each square matrix
of complex numbers. Suggestion. Use the Weierstrass M -test to show that each
entry converges.

Exercise 1.21. If B is invertible, prove for each positive integer k that

(BMB−1)k = BMkB−1.

Exercise 1.22. If B is invertible, prove that BeMB−1 = eBMB−1
.

Exercise 1.23. Find a simple expression for det(eM ) in terms of a trace.

A simple generalization of Lemma 1.5 enables us to solve constant coefficient
ordinary differential equations (ODE)s of higher order m. As mentioned above,
the initial vector Y (0) provides m pieces of information.

Theorem 1.2. Suppose y : R Ñ R is m times differentiable and there are
constants cj such that

y(m) =
m−1∑

j=0

cjy
(j). (18)

Define Y as in (15) and A as in (16) above. Then Y (t) = eAtY (0), and y(t) is the
first component of eAtY (0).

Proof. Suppose Y is a solution. Differentiating e−AtY (t) gives

d

dt

(
e−AtY (t)

)
= e−At(Y ′(t) − AY (t)). (19)

Since y satisfies (18), the expression in (19) is the zero element of Rm. Hence
e−AtY (t) is a constant element of Rm and the result follows.

�

In order to apply this result we need a good way to exponentiate matrices
(linear mappings). Let A : Cn Ñ Cn be a linear transformation. Recall that λ
is called an eigenvalue for A if there is a non-zero vector v such that Av = λv.
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The vector v is called an eigenvector corresponding to λ. One sometimes finds
eigenvalues by finding the roots of the polynomial det(A − λI). We note that the
roots of this equation can be complex even if A is real and we consider A to be an
operator on Rn.

In order to study the exponentiation of A, we first assume that A has n distinct
eigenvalues. By linear algebra, shown below, there is an invertible matrix P and a
diagonal matrix D such that A = PDP−1. Since (PDP−1)k = PDkP−1 for each
k, it follows that

eA = ePDP−1
= PeDP−1. (20)

It is easy to find eD; it is the diagonal matrix whose eigenvalues (the diagonal
elements in this case) are the exponentials of the eigenvalues of D.

We recall how to find P . Given A with distinct eigenvalues, for each eigenvalue
λj we find an eigenvector vj . Thus vj is a non-zero vector and A(vj) = λjvj . Then
we may take P to be the matrix whose columns are these eigenvectors. We include
the simple proof. First, the eigenvectors form a basis of Cn because the eigenvalues
are distinct.

Let ej be the j-th standard basis element of Rn. Let D be the diagonal matrix
with D(ej) = λjej . By definition, P (ej) = vj . Therefore

PDP−1(vj) = PD(ej) = P (λjej) = λjP (ej) = λjvj = A(vj). (21)

By (21), A and PDP−1 agree on a basis, and hence they define the same linear
mapping. Thus A = PDP−1.

We apply this reasoning to solve the general second order constant coefficient
homogeneous differential equation y′′ = b1y

′ + b0y. Let λ1 and λ2 be the roots of
the polynomial λ2 − b1λ − b0 = 0.

Corollary 1.4. Assume y : R Ñ C is twice differentiable, and

y′′ − (λ1 + λ2)y′ + λ1λ2y = 0 (22)

for complex numbers λ1 and λ2. If λ1 �= λ2, then there are complex constants c1

and c2 such that
y(t) = c1e

λ1t + c2e
λ2t. (23)

In case λ1 = λ2, the answer is given by

y(t) = eλty(0) + teλt(y′(0) − λy(0)).

Proof. Here the matrix A is given by
(

0 1
−λ1λ2 λ1 + λ2

)

. (24)

Its eigenvalues are λ1 and λ2. When λ1 �= λ2, we obtain eAt by the formula

eAt = PeDtP−1,

where D is the diagonal matrix with eigenvalues λ1 and λ2, and P is the change
of basis matrix. Here eDt is diagonal with eigenvalues eλ1t and eλ2t:

eAt =
1

λ2 − λ1

(
1 1
λ1 λ2

) (
eλ1t 0
0 eλ2t

)(
λ2 −1
−λ1 1

)
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The factor 1
λ2−λ1

on the outside arises in finding P−1. Performing the indicated
matrix multiplications, introducing the values of y and y′ at 0, and doing some
tedious work gives

y(t) =
(λ2e

λ1t − λ1e
λ2t)y(0) + (eλ2t − eλ1t)y′(0)

λ2 − λ1
. (25)

Formula (23) is a relabeling of (25). An ancillary advantage of writing the answer
in the form (25) is that we can take the limit as λ2 tends to λ1 and obtain the
solution in case these numbers are equal; write λ = λ1 = λ2 in this case. The result
(See Exercise 1.24) is

y(t) = eλty(0) + teλt(y′(0) − λy(0)). (26)
�

A special case of this corollary arises often. For c real but not 0, the solutions
to the differential equation y′′ = cy are (complex) exponentials. The behavior of
the solutions depends in a significant way on the sign of c. When c = k2 > 0, the
solutions are linear combinations of e±kt. Such exponentials either decay or grow
at infinity. When c = −k2, however, the solutions are linear combinations of e±ikt,
which we express instead in terms of sines and cosines. In this case the solutions
oscillate.

Exercise 1.24. Show that (25) implies (26).

The assumption that A has distinct eigenvalues is used only to find eAt easily.
Even when A has repeated eigenvalues and the eigenvectors do not span the space,
the general solution to Y ′ = AY remains Y (t) = eAtY (0). The Jordan normal form
allows us to write A = P (D + N)P−1, where D is diagonal and N is nilpotent of a
particular form. If the eigenvectors do not span, then N is not 0. It is often easier
in practice to exponentiate A by using the ideas of differential equations rather
than by using linear algebra. The proof from Exercise 1.24 that (25) implies (26)
nicely illustrates the general idea. See also Exercises 1.25 and 1.28.

Exercise 1.25. Find eAt if

A =
(

λ 1
0 λ

)

.

If you know the Jordan normal form, then describe how to find eAt when the
eigenvectors of A do not span the full space. Suppose first that A is a Jordan block
of the form λI +N , where N is nilpotent (as in the normal form) but not 0. What
is eAt?

Exercise 1.26. Give an example of two-by-two matrices A and B such that
eAeB �= eA+B .

4.1. Inhomogeneous linear differential equations. We also wish to solve
inhomogeneous differential equations. To do so, we introduce natural notation.
Let p(z) = zm − ∑m−1

j=0 cjz
j be a monic polynomial of degree m. Let D represent

the operation of differentiation with respect to x. We define the operator p(D) by
formally substituting Dj for zj .

In Theorem 1.2, we solved the equation p(D)y = 0. In applications, however,
one often needs to solve the equation p(D)y = f for a given forcing function f . For



4. CONSTANT COEFFICIENT DIFFERENTIAL EQUATIONS 13

example, one might turn on a switch at a given time x0, in which case f could be
the function that is 0 for x < x0 and is 1 for x ≥ x0.

Since the operator p(D) is linear, the general solution to p(D)y = f can be
written y = y0 + y∗, where y0 is a solution to the equation p(D)y = 0 and y∗ is
any particular solution to p(D)y∗ = f . We already know how to find all solutions
to p(D)(y0) = 0. Thus we need only to find one particular solution. To do so,
we proceed as follows. Using the fundamental theorem of algebra, we factor the
polynomial p:

p(z) =
m∏

k=1

(z − λk),

where the λk can be repeated if necessary.
When m = 1 we can solve the equation (D − λ1)g1 = f by the following

method. We suppose that g1(x) = c(x)eλ1x for some differentiable function c.
Applying D − λ1 to g1 we get

(D − λ1)g1 = (c′(x) + c(x)λ1)eλ1x − λ1c(x)eλ1x = c′(x)eλ1x = f(x).

For an arbitrary real number a (often it is useful to take a = ±∞), we obtain

c(x) =
∫ x

a

f(t)e−λ1tdt.

This formula yields the particular solution g1 defined by

g1(x) = eλ1x

∫ x

a

e−λ1tf(t)dt,

and amounts to finding the inverse of the operator D − λ1.
The case m > 1 follows easily from the special case. We solve the equation

(D − λ1)(D − λ2) . . . (D − λm)(y) = f

by solving (D − λ1)g1 = f , and then for j > 1 solving (D − λj)gj = gj−1. The
function y = gm then solves the equation p(D)y = f .

Remark 1.4. Why do we start with the term on the far left? The reason is
that the inverse of the composition BA of operators is the composition A−1B−1 of
the inverses in the reverse order. To take off our socks, we must first take off our
shoes. The composition product (D − λ1)(D − λ2) . . . (D − λn) is independent of
the ordering of the factors, and in this situation we could invert in any order.

Example 1.2. We solve (D − 5)(D − 3)y = ex. First we solve (D − 5)g = ex,
obtaining

g(x) = e5x

∫ x

∞
ete−5tdt =

−1
4

ex.

Then we solve (D − 3)h = −1
4 ex to get

h(x) = e3x

∫ x

∞

−1
4

ete−3tdt =
1
8
ex.

The general solution to the equation is c1e
5x + c2e

3x + 1
8ex, where c1 and c2 are

constants. We put a = ∞ because e−λt vanishes at ∞ if λ > 0.

Exercise 1.27. Find all solutions to (D2 + m2)y = ex.

Exercise 1.28. Solve (D−λ)y = eλx. Use the result to solve (D−λ)2(y) = 0.
Compare the method with the result from Corollary 1.4, when λ1 = λ2.
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Exercise 1.29. Find a particular solution to (D − 5)y = 1 − 75x2.

Exercise 1.30. We wish to find a particular solution to (D − λ)y = g, when
g is a polynomial of degree m. Identify the coefficients of g as a vector in Cm+1.
Assuming λ �= 0, show that there is a unique particular solution y that is a poly-
nomial of degree m. Write explicitly the matrix of the linear transformation that
sends y to g and note that it is invertible. Explain precisely what happens when
λ = 0.

Exercise 1.31. Consider the equation (D − λ)my = 0. Prove by induction
that xjeλx for 0 ≤ j ≤ m − 1 form a linearly independent set of solutions.

We conclude this section with some elementary remarks about solving systems
of linear equations in finitely many variables; these remarks inform to a large
degree the methods used throughout this book. The logical development enabling
the passage from linear algebra to solving linear differential equations was one of
the great achievements of 19-th century mathematics.

Consider a system of k linear equations in n real variables. We regard this
system as a linear equation Ly = w, where L : Rn Ñ Rk. Things work out better
(as we shall see) in terms of complex variables; thus we consider the linear equation
Lz = w, where now L : Cn Ñ Ck. Let 〈z, ζ〉 denote the usual Hermitian Euclidean
inner product on both the domain and target spaces. Let L∗ denote the adjoint of
L. The matrix representation of L∗ is the conjugate transpose of L. Then Lz = w
implies (for all ζ)

〈w, ζ〉 = 〈Lz, ζ〉 = 〈z, L∗ζ〉.
In order that the equation Lz = w have a solution at all, the right-hand side w
must be orthogonal to the nullspace of L∗.

Consider the case where the number of equations equals the number of vari-
ables. Using eigenvalues and orthonormal expansion (to be developed in Chapter 2
for Hilbert spaces), we can attempt to solve the equation Lz = w as follows. Under
the assumption that L = L∗, there is an orthonormal basis of Cn consisting of
eigenvectors φj with corresponding real eigenvalues λj . We can then write both z
and w in terms of this basis, obtaining

w =
∑

〈w, φj〉φj

z =
∑

〈z, φj〉φj .

Equating Lz to w, we get
∑

〈z, φj〉λjφj =
∑

〈w, φj〉φj .

Now equating coefficients yields

〈z, φj〉λj = 〈w, φj〉. (27)

If λj = 0, then w must be orthogonal to φj . If w satisfies this condition for all
appropriate j, then we can solve Lz = w by division. On each eigenspace with
λj �= 0, we divide by λj to find 〈z, φj〉 and hence we find a solution z. The solution
is not unique in general; we can add to z any solution ζ to Lζ = 0. These ideas
recur throughout this book, both in the Fourier series setting and in differential
equations.
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5. The wave equation for a vibrating string

The wave equation discussed in this section governs the motion of a vibrating
string. The solution of this equation naturally leads to Fourier series.

We are given a twice differentiable function u of two variables, x and t, with x
representing position and t representing time. Using subscripts for partial deriva-
tives, the wave equation is

uxx =
1
c2

utt. (28)

Here c is a constant which equals the speed of propagation of the wave.
Recall that a function is continuously differentiable if it is differentiable and its

derivative is continuous. It is twice continuously differentiable if it is twice differen-
tiable and the second derivative is continuous. We have the following result about
the partial differential equation (28). After the proof we discuss the appropriate
initial conditions.

Theorem 1.3. Let u : R × R Ñ R be twice continuously differentiable and
satisfy (28). Then there are twice continuously differentiable functions F and G
(of one variable) such that

u(x, t) = F (x + ct) + G(x − ct).

Proof. Motivated by writing α = x+ ct and β = x− ct, we define a function
φ by

φ(α, β) = u(
α + β

2
,
α − β

2c
).

We compute second derivatives by the chain rule, obtaining

φαβ =
d

dβ
φα =

d

dβ
(
ux

2
+

ut

2c
) =

uxx

4
− uxt

4c
+

utx

4c
− utt

4c2
= 0. (29)

Note that we have used the equality of the mixed second partial derivatives uxt

and utx. It follows that φα is independent of β, hence a function h of α alone. Inte-
grating again, we see that φ is the integral F of this function h plus an integration
constant, say G, which will depend on β. We obtain

u(x, t) = φ(α, β) = F (α) + G(β) = F (x + ct) + G(x − ct). (30)

�

This problem becomes more realistic if x lies in a fixed interval and u satisfies
initial conditions. For convenience we let this interval be [0, π]. We can also
choose units for time to make c = 1. The conditions u(0, t) = u(π, t) = 0 state
that the string is fixed at the points 0 and π. The initial conditions for time are
u(x, 0) = f(x), and ut(x, 0) = g(x). The requirement u(x, 0) = f(x) means that
the initial displacement curve of the string is defined by the equation y = f(x).
The requirement on ut means that the string is given the initial velocity g(x).

Note that f and g are not the same functions as F and G from Theorem 1.3
above. We can, however, easily express F and G in terms of f and g.

First we derive d’Alembert’s solution, Theorem 1.4. Then we attempt to solve
the wave equation by way of separation of variables. That method leads to a Fourier
series. In the next section we obtain the d’Alembert solution by regarding the wave
equation as a constant coefficient ODE, and treating the second derivative operator
D2 as a number.
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Theorem 1.4. Let u be twice continuously differentiable and satisfy uxx = utt,
together with the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x). Then

u(x, t) =
f(x + t) + f(x − t)

2
+

1
2

∫ x+t

x−t

g(a)da. (31)

Proof. Using the F and G from Theorem 1.3, and assuming c = 1, we are
given F + G = f and F ′ − G′ = g. Differentiating, we obtain the system

(
1 1
1 −1

)(
F ′

G′

)

=
(

f ′

g

)

. (32)

Solving (32) by linear algebra expresses F ′ and G′ in terms of f and g: we obtain
F ′ = f ′+g

2 and G′ = f ′−g
2 . Integrating and using (30) with c = 1 yields (31). �

We next attempt to solve the wave equation by separation of variables. The
standard idea seeks a solution of the form u(x, t) = A(x)B(t). Differentiating
and using the equation uxx = utt leads to A′′(x)B(t) = A(x)B′′(t), and therefore
A′′(x)
A(x) = B′′(t)

B(t) . Since one side depends on x and the other on t, each must be
constant. Thus we have A′′(x) = ξA(x) and B′′(t) = ξB(t) which we solve as in
Corollary 1.4. For each ξ we obtain solutions. If we insist that the solution is a
wave, then we must have ξ < 0 (as the roots are then purely imaginary). Thus

A(x) = a1sin(
√

|ξ|x) + a2cos(
√
|ξ|x)

for constants a1, a2. If the solution satisfies the condition A(0) = 0, then a2 = 0. If
the solution also satisfies the condition A(π) = 0, then

√|ξ| is an integer. Putting
this information together, we obtain a collection of solutions um indexed by the
integers:

um(x, t) = (dm1cos(mt) + dm2sin(mt)) sin(mx),

for constants dm1 and dm2 . Adding these solutions (the superposition of these
waves) we are led to a candidate for the solution:

u(x, t) =
∞∑

m=0

(dm1cos(mt) + dm2sin(mt)) sin(mx).

Given u(x, 0) = f(x), we now wish to solve the equation (where dm = dm1)

f(x) =
∑

m

dmsin(mx). (33)

Again we encounter a series involving the terms sin(mx). At this stage, the basic
question becomes, given a function f with f(0) = f(π) = 0, whether there are
constants such that (33) holds. We are thus asking whether a given function can
be represented as the superposition of (perhaps infinitely many) sine waves. This
sort of question arises throughout applied mathematics.

Exercise 1.32. Give an example of a function on the real line that is differ-
entiable (at all points) but not continuously differentiable.

Exercise 1.33. Suppose a given function f can be written in the form (33),
where the sum is either finite or converges uniformly. How can we determine the
constants dm? (We will solve this problem in Section 9 of this chapter.)
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We conclude this section with a few remarks about the inhomogeneous wave
equation. Suppose that an external force acts on the vibrating string. The wave
equation (28) then becomes

uxx − 1
c2

utt = h(x, t) (*)

for some function h determined by this force. Without loss of generality, we again
assume that c = 1. We still have the initial conditions u(0, t) = u(π, t) = 0 as well
as u(x, 0) = f(x) and ut(x, 0) = g(x). We can approach this situation also by using
sine series. We presume that both u and h are given by sine series:

u(x, t) =
∑

dm(t)sin(mx)

h(x, t) =
∑

km(t)sin(mx).

Plugging into (∗), we then obtain a family of second order constant coefficient ODE
relating dm to km:

d′′m(t) + m2dm(t) = −km(t).
We can then solve these ODEs by the method described just before Remark 1.4.
This discussion indicates the usefulness of expanding functions in series such as
(33) or, more generally, as series of the form

∑
n dneinx.

6. Solving the wave equation via exponentiation

This section is not intended to be rigorous. Its purposes are to illuminate
Theorem 1.4 and to glimpse some deeper ideas.

Consider the partial differential equation (PDE) on R×R given by uxx = utt

with initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x). We regard it formally as
a second order ordinary differential equation as follows:

(
u
u′

)′
=

(
u′

u′′

)

=
(

0 1
D2 0

)(
u
u′

)

. (34)

Here D2 is the operator of differentiating twice with respect to x, but we treat it
formally as a number. Using the method of Corollary 1.4, we see formally that the
answer is given by

(
u(x, t)
ut(x, t)

)

= e

⎛
⎝ 0 1

D2 0

⎞
⎠t (

f(x)
g(x)

)

(35)

The eigenvalues of
(

0 1
D2 0

)

are ±D and the change of basis matrix is given by

P =
(

1 −1
D D

)

.

Proceeding formally as if D were a nonzero number, we obtain by this method

u(x, t) =
eDt + e−Dt

2
f(x) +

eDt − e−Dt

2
(D−1g)(x). (36)

We need to interpret the expressions e±Dt and D−1 in order for (36) to be
useful. It is natural for D−1 to mean integration. We claim that eDtf(x) = f(x+t).
We do not attempt to prove the claim, as a rigorous discussion would take us far
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from our aims, but we ask the reader to give a heuristic explanation in Exercise
1.34. The claim and (36) yield d’Alembert’s solution, the same answer we obtained
in Theorem 1.4.

u(x, t) =
f(x + t) + f(x − t)

2
+

1
2

∫ x+t

x−t

g(u)du. (37)

Exercise 1.34. Give a suggestive argument why eDtf(x) = f(x + t).

7. Integrals

We are now almost prepared to begin our study of Fourier series. In this section
we introduce some notation and say a few things about integration.

When we say that f is integrable on the circle, we mean that f is Riemann inte-
grable on [0, 2π] there and that f(0) = f(2π). By definition, a Riemann integrable
function must be bounded. Each continuous function is Riemann integrable, but
there exist Riemann integrable functions that are discontinuous at an infinite (but
small, in the right sense) set of points.

Some readers may have seen the more general Lebesgue integral and measure
theory. We sometimes use notation and ideas usually introduced in that context.
For example, we can define measure zero without defining measure. A subset S of
R has measure zero, if for every ε > 0, we can find a sequence {In} of intervals
such that S is contained in the union of the In and the sum of the lengths of the
In is less than ε. A basic theorem we will neither prove nor use is that a bounded
function on a closed interval on R is Riemann integrable if and only if the set of
its discontinuities has measure zero.

In the theory of Lebesgue integration, we say that two functions are equivalent
if they agree except on a set of measure zero. We also say that f and g agree almost
everywhere. Then L1 denotes the collection of (equivalence classes of measurable)
functions f on R such that ||f ||L1 =

∫ |f | < ∞. For 1 ≤ p < ∞, Lp denotes the
collection of (equivalence classes of measurable) functions f such that ||f ||pLp =∫ |f |p < ∞. We are primarily interested in the case where p = 2. Finally, L∞

denotes the collection of (equivalence classes of measurable) functions that agree
almost everywhere with a bounded function. For f continuous, ||f ||L∞ = sup |f |.
We write L1(S), L2(S), and so on, when the domain of the function is some given
set S. We do not define measurability here, but we note that being measurable is
a weak condition on a function, satisfied by all functions encountered in this book.
See [F1] for detailed discussion of these topics.

Perhaps the fundamental result distinguishing Lebesgue integration from Rie-
mann integration is that the Lp spaces are complete in the Lebesgue theory. In
other words, Cauchy sequences converge. We do not wish to make Measure Theory
a prerequisite for what follows. We therefore define L1(S) to be the completion of
the space of continuous functions on S in the topology defined by the L1 norm.
We do the same for L2(S). In this approach, we do not ask what objects lie in the
completion. Doing so is analogous to defining R to be the (metric space) comple-
tion of Q, but never showing that a real number can be identified by an infinite
decimal expansion.

We mention a remarkable subtlety about integration theory. There exist se-
quences {fn} of functions on an interval such that each fn is (Riemann or Lebesgue)
integrable,

∫
fn converges to 0, yet {fn(x)} diverges for every x in the interval.
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Example 1.3. For each positive integer n, we can find unique non-negative
integers h and k such that n = 2h + k < 2h+1. Let fn be the function on [0, 1] that
is 1 on the half-open interval In defined by

In = [
k

2h
,
k + 1
2h

)

and 0 off this interval. Then the integral of fn is the length of In, hence 1
2h . As n

tends to infinity, so does h, and thus
∫

fn also tends to 0. On the other hand, for
each x, the terms of the sequence {fn(x)} equal both 0 and 1 infinitely often, and
hence the sequence diverges.

Figure 3. Example 1.3

In Example 1.3 there is a subsequence of the fn converging almost everywhere
to the 0 function, illustrating a basic result in integration theory.

We will use the following lemma about Riemann integrable functions. Since f
is Riemann integrable, it is bounded, and hence we may use the notation ||f ||L∞ .

Lemma 1.6. Suppose f is Riemann integrable on the circle. Then there exists
a sequence {fn} of continuous functions such that both hold:

(1) For all k, sup(|fk(x)|) ≤ sup |f(x)|. That is, ||fk||L∞ ≤ ||f ||L∞ .
(2) lim

∫ |fk(x) − f(x)|dx = 0. That is, fk Ñ f in L1.

We end this section by indicating why it is unreasonable to make the collection
of Riemann integrable functions into a complete metric space. We first note that it is
difficult to define a meaningful distance between two Riemann integrable functions.
The natural distance might seem to be d(f, g) =

∫ |f−g|, but this definition violates
one of the axioms for a distance. If f and g agree except on a (non-empty) set of
measure zero, then

∫ |f − g| = 0, but f and g are not equal. Suppose instead we
define f and g to be equivalent if they agree except on a set of Lebesgue measure
zero. We then consider the space of equivalence classes of Riemann integrable
functions. We define the distance between two equivalence classes F and G by
choosing representatives f and g and putting δ(F,G) =

∫ |f − g|. Then complete-
ness fails. The next example shows, with this notion of distance, that the limit
of a Cauchy sequence of Riemann integrable functions need not be itself Riemann
integrable.
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Example 1.4. Define a sequence of functions {fn} on [0, 1] as follows: fn(x) =
0 for 0 ≤ x ≤ 1

n and fn(x) = −log(x) otherwise. Each fn is obviously Riemann
integrable, and fn converges pointwise to a limit f . Since f is unbounded, it is not
Riemann integrable. This sequence is Cauchy in both the L1 and the L2 norms.
To show that it is Cauchy in the L1 norm, we must show that ||fn − fm||L1 tends
to 0 as m,n tend to infinity. But, for n ≥ m,

∫ 1

0

|fn(x) − fm(x)|dx =
∫ 1

m

1
n

|log(x)|dx.

The reader can easily show using calculus that the limit as n,m tend to infinity of
this integral is 0. A similar but slightly harder calculus problem shows that {fn}
is also Cauchy in the L2 norm.

In this book we will use the language and notation from Lebesgue integration,
but most of the time we work with Riemann integrable functions.

Exercise 1.35. Verify the statements in Example 1.4.

Exercise 1.36. Prove Lemma 1.6.

Exercise 1.37. Prove that each n ∈ N has a unique representation n = 2h +k
where 0 ≤ k < 2h.

8. Approximate identities

In his work on quantum mechanics, Paul Dirac introduced a mathematical
object often called the Dirac delta function. This function δ : R Ñ R was supposed
to have two properties: δ(x) = 0 for x �= 0, and

∫ ∞
−∞ δ(x)f(x)dx = f(0) for all

continuous functions f defined on the real line. No such function can exist, but it
is possible to make things precise by defining δ to be a linear functional. That is,
δ is the function δ : V Ñ C defined by δ(f) = f(0), for V an appropriate space of
functions. Note that

δ(f + g) = (f + g)(0) = f(0) + g(0) = δ(f) + δ(g)

δ(cf) = (cf)(0) = cf(0) = cδ(f),
and hence δ is linear. We discuss linear functionals in Chapter 2. We provide a
rigorous framework (known as distribution theory) in Chapter 3, for working with
the Dirac delta function.

In this section we discuss approximate identities, often called Dirac sequences,
which we use to approximate the behavior of the delta function.

Definition 1.3. Let W denote either the natural numbers or an interval on
the real line, and let S1 denote the unit circle. An approximate identity on S1 is
a collection, for t ∈ W , of continuous functions Kt : S1 Ñ R with the following
properties:

(1) For all t, 1
2π

∫ π

−π
Kt(x)dx = 1

(2) There is a constant C such that, for all t, 1
2π

∫ π

−π
|Kt(x)|dx ≤ C.

(3) For all ε > 0, we have

lim
tÑT

∫

ε≤|x|≤π

|Kt(x)|dx = 0.

Here T = ∞ when W is the natural numbers, and T = sup(W ) otherwise.
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Often our approximate identity will be a sequence of functions Kn and we let
n tend to infinity. In another fundamental example, called the Poisson kernel, our
approximate identity will be a collection of functions Pr defined for 0 ≤ r < 1. In
this case we let r increase to 1. In the subsequent discussion we will write Kn for
an approximate identity indexed by the natural numbers and Pr for the Poisson
kernel, indexed by r with 0 ≤ r < 1.

We note the following simple point. If Kt ≥ 0, then the second property follows
from the first property. We also note that the graphs of these functions Kt spike
at 0. See Figures 4, 5, and 6. In some vague sense, Dirac’s delta function is the
limit of Kt. The crucial point, however, is not to consider the Kt on their own,
but rather the operation of convolution with Kt.

We first state the definition of convolution and then prove a result clarifying
why the sequence {Kn} is called an approximate identity. In the next section we
will observe another way in which convolution arises.

Definition 1.4. Suppose f, g are integrable on the circle. Define f ∗ g, the
convolution of f and g, by

(f ∗ g)(x) =
1
2π

∫ π

−π

f(y)g(x − y)dy.

Note the normalizing factor of 1
2π . One consequence, where 1 denotes the con-

stant function equal to 1, is that 1∗1 = 1. The primary reason for the normalizing
factor is the connection with probability. A non-negative function that integrates
to 1 can be regarded as a probability density. The density of the sum of two random
variables is the convolution of the given densities. See [HPS].

Theorem 1.5. Let {Kn} be an approximate identity, and let f be Riemann
integrable on the circle. If f is continuous at x, then

lim
nÑ∞(f ∗ Kn)(x) = f(x).

If f is continuous on the circle, then f ∗ Kn converges uniformly to f . Also,

f(0) = lim
nÑ∞

1
2π

∫ π

−π

f(−y)Kn(y)dy = lim
nÑ∞

1
2π

∫ π

−π

f(y)Kn(−y)dy.

Proof. The proof uses a simple idea, which is quite common in proofs in
analysis. We estimate by treating f(x) as a constant and integrating with respect
to another variable y. Then |(f ∗Kn)(x)−f(x)| is the absolute value of an integral,
which is at most the integral of the absolute value of the integrand. We then break
this integral into two pieces, where y is close to 0 and where y is far from 0. The
first term can be made small because f is continuous at x. The second term is
made small by choosing n large.

Here are the details. Since {Kn} is an approximate identity, the integrals of
|Kn| are bounded by some number M . Assume that f is continuous at x. Given
ε > 0, we first find δ such that |y| < δ implies

|f(x − y) − f(x)| <
ε

2M
.

If f is continuous on the circle, then f is uniformly continuous, and we can choose
δ independent of x to make the same estimate hold. We next write

|(f ∗ Kn)(x) − f(x)| =
∣
∣
∣
∣

∫

Kn(y)(f(x − y) − f(x))dy

∣
∣
∣
∣
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≤
∫

|Kn(y)(f(x − y) − f(x))|dy = I1 + I2 (38)

Here I1 denotes the integral over the set where y is close to 0. We have

I1 =
∫ δ

−δ

|Kn(y)(f(x − y) − f(x))|dy ≤ M
ε

2M
=

ε

2
. (39)

Next, we estimate I2, the integral over the set where |y| ≥ δ. Since f is integrable,
it is bounded. For some constant C, I2 is then bounded by

C

∫

|y|≥δ

|Kn(y)|dy. (40)

The third defining property of an approximate identity enables us to choose N0

sufficiently large such that, for n ≥ N0, we can bound (40) by ε
2 as well. Both

conclusions follow. �

Each of the next three examples of approximate identities will arise in this
book. The third example is defined on the real line rather than on the circle, but
there is no essential difference.

Example 1.5 (Fejer kernel). Let DN (x) =
∑N

−N eikx; this sequence is some-
times called the Dirichlet kernel. Although the integral of each DN over the circle
equals 1, the integral of the absolute value of DN is not bounded independent of
N . Hence the sequence {DN} does not form an approximate identity. Instead we
average these functions; define FN by

FN (x) =
1
N

N−1∑

n=0

Dn(x).

The sequence {FN} defines an approximate identity called the Fejer kernel. See
Figure 4. See Theorem 1.8 both for the verification that {FN} defines an approxi-
mate identity and for a decisive consequence.

3 2 1 1 2 3

1

2

3

4

5

6

Figure 4. Fejer kernel
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Example 1.6 (Poisson kernel). For 0 ≤ r < 1, define Pr(θ) as follows. Put
z = reiθ and put Pr(θ) = 1−|z|2

|1−z|2 . Then, as shown in Exercise 1.38, we have

Pr(θ) =
∑

n∈Z

r|n|einθ. (41)

It follows from (41) that the first property of an approximate identity holds. (The
only term not integrating to 0 is the term when n = 0.) The second property is
immediate, as Pr(θ) ≥ 0. The third property is also easy to check. Fix ε > 0. If
|θ| ≥ ε and z = reiθ, then |1 − z|2 ≥ cε > 0. Hence Pr(θ) ≤ 1−r2

cε
. Thus the limit

as r increases to 1 of Pr(θ) is 0. Hence the Poisson kernel defines an approximate
identity on the circle. Figure 5 shows the Poisson kernel for the values r = 1

3 , r = 1
2 ,

and r = 2
3 .

−3 −2 −1 1 2 3

1

2

3

4

5

Pr ( )

Figure 5. Poisson kernel

Example 1.7 (Gaussian). For 0 < t < ∞, put Gt(x) =
√

t
π e−tx2

. Then Gt

defines an approximate identity on R. Since Gt(x) > 0, we need only to show that∫ ∞
−∞ Gt(x)dx = 1 and, that for δ > 0,

lim
tÑ∞

∫

|x|≥δ

Gt(x)dx = 0.

See Exercise 1.39. Figure 6 shows the Gaussian for three different values of t.

A Gaussian is any function of the form

G(x) =
1

σ
√

2π
e

−(x−μ)2

2σ2 .

Here σ > 0 and μ is an arbitrary real number. Gaussians are of crucial importance
in probability and statistics. The function G represents the density function for a
normal probability distribution with mean μ and variance σ2. In Example 1.7, we
are setting μ = 0 and σ2 = 1

2t . When we let t tend to infinity, we are making the
variance tend to zero and clustering the probability around the mean, thus giving



24 1. INTRODUCTION TO FOURIER SERIES

an intuitive understanding of why Gt is an approximate identity. By contrast, when
we let t tend to 0, the variance tends to infinity and the probability distribution
spreads out. We will revisit this situation in Chapter 3.

−6 −4 −2 2 4 6

0.1

0.2

0.3

0.4

Figure 6. Gaussian kernel

Exercise 1.38. Verify (41). (Hint: Sum two geometric series.)

Exercise 1.39. Verify the statements in Example 1.7.

9. Definition of Fourier series

An infinite series of the form
∑n=∞

n=−∞ cneinθ is called a trigonometric series.
Such a series need not converge.

Let f be an integrable function on the circle. For n ∈ Z we define its Fourier
coefficients by

f̂(n) =
1
2π

∫ 2π

0

f(x)e−inxdx.

Note by (9) that the coefficient cj of a trig polynomial f is precisely the Fourier
coefficient f̂(j). Sometimes we write F(f)(n) = f̂(n). One reason is that this
notation helps us think of F as an operator on functions. If f is integrable on
the circle, then F(f) is a function on the integers, called the Fourier transform of
f . Later we will consider Fourier transforms for functions defined on the real line.
Another reason for the notation is that typographical considerations suggest it.

Definition 1.5. The Fourier series of an integrable function f on the circle is
the trigonometric series ∑

n∈Z

f̂(n)einx.

When considering convergence of a trigonometric series, we generally consider
limits of the symmetric partial sums defined by

SN (x) =
N∑

n=−N

aneinx.
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Considering the parts for n positive and n negative separately makes things more
complicated. See [SS].

The Fourier series of an integrable function need not converge. Much of the
subject of Fourier analysis arose from asking various questions about convergence.
For example, under what conditions does the Fourier series of f converge pointwise
to f , or when is the series summable to f using some more complicated summability
method? We discuss some of these summability methods in the next section.

Lemma 1.7 (properties of Fourier coefficients). The following Fourier transform
formulas hold:

(1) F(f + g) = F(f) + F(g)
(2) F(cf) = cF(f)
(3) For all n, F(f)(n) = f̂(n) = f̂(−n) = F(f)(−n).
(4) For all n, |F(f)(n)| ≤ ||f ||L1 . Equivalently, ||F(f)||L∞ ≤ ||f ||L1 .

Proof. See Exercise 1.40. �

The first two properties express the linearity of the integral. The third property
generalizes the palindrome property of real trig polynomials. We will use the fourth
property many times in the sequel.

We also note the relationship between anti-derivatives and Fourier coefficients.

Lemma 1.8. Let f be Riemann integrable (hence bounded). Assume that f̂(0) =
1
2π

∫
f(u)du = 0. Put F (x) =

∫ x

0
f(u)du. Then F is periodic and continuous; also,

for n �= 0,

F̂ (n) =
f̂(n)
in

. (42)

Proof. The following inequality implies the continuity of F :

|F (x) − F (y)| =
∣
∣
∣
∣

∫ x

y

f(u)du

∣
∣
∣
∣ ≤ |x − y| ||f ||L∞ .

Since f̂(0) = 0, we see that 0 = F (2π) = F (0). Finally, formula (42) follows either
by integration by parts (Exercise 1.40) or by interchanging the order of integration:

F̂ (n) =
1
2π

∫ 2π

0

(∫ x

0

f(u)du

)

e−inxdx =
1
2π

∫ 2π

0

(∫ 2π

u

e−inxdx

)

f(u)du

=
1
2π

∫ 2π

0

1
−in

(1 − e−inu)f(u)du =
f̂(n)
in

,

since
∫

f(u)du = 0. �

See Exercise 1.43 for a generalization of this Lemma. The more times f is
differentiable, the faster the Fourier coefficients must decay at infinity.

Exercise 1.40. Prove Lemma 1.7. Prove Lemma 1.8 using integration by
parts. (Assume f is continuous almost everywhere.)

Exercise 1.41. Find the Fourier series for cos2N (θ). (Hint: Don’t do any
integrals!)

Exercise 1.42. Assume f is real-valued. Under what additional condition can
we conclude that its Fourier coefficients are real? Under what condition are the
coefficients purely imaginary?
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Exercise 1.43. Assume that f is k times continuously differentiable. Show
that there is a constant C such that

∣
∣
∣f̂(n)

∣
∣
∣ ≤ C

nk
.

Exercise 1.44. Assume that f(x) = −1 for −π < x < 0 and f(x) = 1 for
0 < x < π. Compute the Fourier series for f .

Exercise 1.45. Put f(x) = eax for 0 < x < 2π. Compute the Fourier series
for f .

Exercise 1.46. Put f(x) = sinh(x) for −π < x < π. Compute the Fourier
series for f . Here sinh is the hyperbolic sine defined by sinh(x) = ex−e−x

2 .

−5 5

–5

5

Sinh (x)

Figure 7. Periodic extension of hyperbolic sine

We next establish the fundamental relationship between Fourier series and con-
volution.

Theorem 1.6. If f and g are integrable, then f ∗g is continuous and F(f ∗g) =
F(f)F(g). In other words, for all n we have

F(f ∗ g)(n) = (f ∗ g)̂ (n) = f̂(n)ĝ(n) = F(f)(n)F(g)(n). (43)

Proof. The proof is computational when f and g are continuous. We compute
the left-hand side of (43) as a double integral, and then interchange the order of
integration. The general case then follows using the approximation Lemma 1.6.

Here are the details. Suppose first that f and g are continuous. Then

F(f ∗ g)(n) =
1
2π

∫ 2π

0

(
1
2π

∫ 2π

0

f(y)g(x − y)dy

)

e−inxdx.

By continuity, we may interchange the order of integration, obtaining

F(f ∗ g)(n) = (
1
2π

)2
∫ 2π

0

f(y)
(∫ 2π

0

g(x − y)e−inxdx

)

dy.

Change variables by putting x − y = t. Then use e−in(y+t) = e−inye−int, and the
result follows.

Next, assume f and g are Riemann integrable, hence bounded. By Lemma
1.6 we can find sequences of continuous functions fk and gk such that ||fk||L∞ ≤
||f ||L∞ , also ||f − fk||L1 Ñ 0, and similarly for gk. By the usual adding and
subtracting trick,

f ∗ g − fk ∗ gk = ((f − fk) ∗ g) + (fk ∗ (g − gk)) . (44)
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Since g and each fk is bounded, both terms on the right-hand side of (44) tend to
0 uniformly. Therefore fk ∗ gk tends to f ∗ g uniformly. Since the uniform limit of
continuous functions is continuous, f ∗ g is itself continuous. Since fk tends to f
in L1 and (by property (4) from Lemma 1.7)

|f̂k(n) − f̂(n)| ≤ 1
2π

∫ 2π

0

|fk − f |, (45)

it follows that |f̂k(n) − f̂(n)| converges to 0 for all n. Similarly |ĝk(n) − ĝ(n)|
converges to 0 for all n. Hence, for each n, f̂k(n)ĝk(n) converges to f̂(n)ĝ(n).
Since (43) holds for fk and gk, it holds for f and g. �

By the previous result, the function f ∗ g is continuous when f and g are
assumed only to be integrable. Convolutions are often used to regularize a function.
For example, if f is integrable and g is infinitely differentiable, then f ∗g is infinitely
differentiable. In Chapter 3 we will use this idea when gn defines an approximate
identity consisting of smooth (infinitely differentiable) functions.

10. Summability methods

We introduce two notions of summability, Cesàro summability and Abel summa-
bility, which arise in studying the convergence of Fourier series.

First we make an elementary remark. Let {An} be a sequence of complex
numbers. Let σN denote the average of the first N terms:

σN =
A1 + A2 + ... + AN

N
.

If AN Ñ L, then σN Ñ L as well. We will prove this fact below. It applies
in particular when AN is the N -th partial sum of a sequence {an}. There exist
examples where AN does not converge but σN does converge. See Theorem 1.7. We
therefore obtain a more general notion of summation for the infinite series

∑
an.

Suppose next that
∑

an converges to L. For 0 ≤ r < 1, put f(r) =
∑

anrn.
We show in Corollary 1.5 that limrÑ1 f(r) = L. (Here we are taking the limit as
r increases to 1.) There exist series

∑
an such that

∑
an diverges but this limit

of f(r) exists. A simple example is given by an = (−1)n+1. A more interesting
example is given by an = n(−1)n+1.

Definition 1.6. Let {an} be a sequence of complex numbers. Let AN =
∑N

j=1 aj . Let σN = 1
N

∑N
j=1 Aj . For 0 ≤ r < 1 we put FN (r) =

∑N
j=1 ajr

j .

(1)
∑∞

1 aj converges to L if limNÑ∞ AN = L.
(2)

∑∞
1 aj is Cesàro summable to L if limNÑ∞ σN = L.

(3)
∑∞

1 aj is Abel summable to L if limrÑ1 limNÑ∞ FN (r) = L.

Theorem 1.7. Let {an} be a sequence of complex numbers.

(1) If
∑

an converges to L, then
∑

an is Cesàro summable to L. The converse
fails.

(2) If
∑

an is Cesàro summable to L, then
∑

an is Abel summable to L. The
converse fails.

Proof. We start by showing that the converse assertions are false. First put
an = (−1)n+1. The series

∑
an certainly diverges, because the terms do not tend

to 0. On the other hand, the partial sum AN equals 0 if N is even and equals 1 if
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N is odd. Hence σ2N = 1
2 and σ2N+1 = N+1

2N+1 Ñ 1
2 . Thus limNÑ∞ σN = 1

2 . Thus
∑

an is Cesàro summable but not convergent.
Next put an = n(−1)n+1. Computation shows that A2N = −N and A2N+1 =

N + 1. It follows that σ2N = 0 and that σ2N+1 = N+1
2N+1 . These expressions have

different limits and hence limN σN does not exist. On the other hand, for |r| < 1,

∞∑

n=1

n(−1)n+1rn = r

∞∑

1

n(−r)n−1 =
r

(1 + r)2
.

Letting r tend upwards to 1 gives the limiting value of 1
4 . Hence

∑
an is Abel

summable to 1
4 but not Cesàro summable.

Proof of (1): Suppose that
∑

an = L. Replace a1 with a1 −L and keep all the
other terms the same. The new series sums to 0. Furthermore, each partial sum
AN is decreased by L. Hence the Cesàro means σN get decreased by L as well. It
therefore suffices to consider the case where

∑
an = 0. Fix ε > 0. Since AN tends

to 0, we can find an N0 such that N ≥ N0 implies |AN | < ε
2 .

We have for N ≥ N0,

σN =
1
N

N0−1∑

j=1

Aj +
1
N

N∑

j=N0

Aj . (46)

Since N0 is fixed, the first term tends to 0 as N tends to infinity, and hence its
absolute value is bounded by ε

2 for large enough N . The absolute value of the
second term is bounded by ε

2
N−N0+1

N and hence by ε
2 because N ≥ N0 ≥ 1. The

conclusion follows.
Proof of (2): This proof is a bit elaborate and uses summation by parts. Sup-

pose first that σN Ñ 0. For 0 ≤ r < 1 we claim that

(1 − r)2
∞∑

n=1

nσnrn =
∞∑

n=1

anrn. (47)

We wish to show that the limit as r tends to 1 of the right-hand side of (47) exists
and equals 0. Given the claim, consider ε > 0. We can find N0 such that n ≥ N0

implies |σn| < ε
2 . We break up the sum on the left-hand side of (47) into terms

where n ≤ N0 − 1 and the rest. The absolute value of the first part is a finite sum
times (1 − r)2 and hence can be made at most ε

2 by choosing r close enough to 1.
Note that

∑∞
n=1 nrn−1 = 1

(1−r)2 . The second term T can then be estimated by

|T | ≤ (1 − r)2
ε

2

∞∑

N0

nrn ≤ (1 − r)2
ε

2

∞∑

1

nrn = r
ε

2
.

Hence, given the claim, by choosing r close enough to 1 we can make the absolute
value of (47) as small as we wish. Thus

∑
an is Abel summable to 0. As above,

the case where σN tends to L reduces to the case where it tends to 0.
It remains to prove (47), which involves summation by parts twice.

N∑

1

anrn = ANrN −
N−1∑

1

An(rn+1 − rn) = ANrN + (1 − r)
N−1∑

1

Anrn.
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Next we use summation by parts on
∑N−1

1 Anrn:
N−1∑

1

Anrn = (N − 1)σN−1r
N−1 −

N−2∑

1

nσn(rn+1 − rn)

= (N − 1)σN−1r
N−1 + (1 − r)

N−2∑

1

nσnrn.

Note that AN = NσN − (N − 1)σN−1. Hence we obtain

N∑

1

anrn =

(NσN − (N − 1)σN−1)rN + (1 − r)rN−1(N − 1)σN−1 + (1 − r)2
N−2∑

1

nσnrn. (48)

Since |r| < 1, lim(NrN ) = 0. Since also σN is bounded, each of the terms in (48)
other than the sum converges to 0. Thus

∑N
1 anrn converges to (1−r)2

∑∞
1 nσnrn,

as desired. �

We will recall the notion of radius of convergence of a power series in Theorem
1.10 below. Here we note that Abel summability provides information about the
behavior of a series on the circle of convergence.

Corollary 1.5 (Abel’s theorem). Suppose
∑∞

n=0 anxn has radius of conver-
gence 1, and assume

∑∞
n=0 an converges to L. Then the function f , defined on

(−1, 1) by this series and by f(1) = L, is continuous at x = 1. (The limit is taken
as x Ñ 1 from the left.)

Proof. Combining the two conclusions of Theorem 1.7 shows that the series
is Abel summable to L. But Abel summability is simply another way to state the
conclusion of the corollary: limxÑ1 f(x) = f(1). �

Corollary 1.6. π
4 =

∑∞
n=0

(−1)n

2n+1 .

Proof. By integrating the series for 1
1+x2 term by term on (−1, 1), we obtain

the power series for inverse tangent there:

tan−1(x) =
∞∑

n=0

(−1)n x2n+1

2n + 1
.

The series converges at x = 1 by Corollary 1.2. By Corollary 1.5, it converges to
tan−1(1) = π

4 . �

The series in Corollary 1.6 converges rather slowly, and hence it does not yield
a good method for approximating π.

The reader should note the similarities in the proofs of Theorem 1.5 and The-
orem 1.7. The same ideas appear also in one of the standard proofs of the Funda-
mental Theorem of Calculus.

Cesàro summability will be important in our analysis of the series
∑∞

n=1
sin(nx)

n .
We will prove a general result about convergence to f(x) of the Cesàro means of
the Fourier series of the integrable function f at points x where f is continuous.
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Then we will compute the Fourier series for the function x on the interval [0, 2π].
It then follows for 0 < x < 2π that

∞∑

n=1

sin(nx)
n

=
π − x

2
.

Note that equality fails at 0 and 2π. Figure 8 shows two partial sums of the series.
See also Remark 1.5.

−6 −4 −2 2 4 6

−1.5

−1.0

−0.5

0.5

1.0

1.5

Figure 8. Approximations to the sawtooth function

Recall that SN (x) =
∑N

−N f̂(n)einx denotes the symmetric partial sums of the
Fourier series of f .

Theorem 1.8. Suppose f is integrable on [−π, π] and f is continuous at x.
The Fourier series for f at x is Cesàro summable to f(x).

Proof. Put DK(x) =
∑K

−K einx. Define FN by

FN (x) =
D0(x) + D1(x) + ... + DN−1(x)

N
.

Note that σN (f)(x) = (f ∗ FN )(x). We claim that {FN} defines an approximate
identity.

Since each DK integrates to 1, each FN integrates to 1. The first property of
an approximate identity therefore holds. A computation (Exercise 1.47) shows that

FN (x) =
1
N

sin2(Nx
2 )

sin2(x
2 )

. (49)

Since FN ≥ 0, the second property of an approximate identity is automatic. The
third is easy to prove. It suffices to show for each ε with 0 < ε < π that

lim
NÑ∞

∫ π

ε

FN (x)dx = 0.

But, for x in the interval [ε, π], the term 1
sin2( x

2 )
is bounded above by a constant and

the term sin2(Nx
2 ) is bounded above by 1. Hence FN ≤ c

N and the claim follows.
The conclusion of the Theorem now follows by Theorem 1.5. �
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Corollary 1.7. For 0 < x < 2π, we have
∞∑

n=1

sin(nx)
n

=
π − x

2
.

Proof. Put f(x) = x on [0, 2π]. Compute the Fourier coefficients of x. We
have f̂(0) = π and f̂(n) = −i

n . Hence the Fourier series for f is given by

π +
∞∑

1

e−inx−i

n
+

∞∑

1

einx i

n
.

This series converges in the Cesàro sense to f(x) at each x where f is continuous,
namely everywhere except 0 and 2π. By Proposition 1.2 it converges for all x, and
by Theorem 1.7, to f(x) when f is continuous. For 0 < x < 2π we get

x = π +
∞∑

1

e−inx−i

n
+

∞∑

1

einx i

n
= π − 2

∞∑

1

sin(nx)
n

,

from which the conclusion follows. �

Remark 1.5. The sine series in Corollary 1.7 converges for all x. The limit
function is continuous everywhere except at integer multiples of 2π. The value 0 at
the jump discontinuities is the average of the limiting values obtained by approach-
ing from the right and the left. This phenomenon holds rather generally. Figure 8
illustrates the situation in this case, and also displays the Gibbs phenomenon; the
Fourier series overshoots (or undershoots) the value by a fixed percentage near a
jump discontinuity. See [SS], [F2], and their references for more information.

Corollary 1.8. Let f be continuous on the circle. Then there is a sequence
of trig polynomials converging uniformly to f .

Proof. Each partial sum SN is a trig polynomial, and hence each Cesàro
mean also is. Therefore we need only to strengthen the theorem to show, when
f is continuous, that f ∗ FN converges uniformly to f . The strengthened version
follows from the proof. �

Thus trig polynomials are dense in the space of continuous functions on the
circle with the norm ||f ||L∞ . Ordinary polynomials are dense in the space of
continuous functions on a closed interval as well. This result, called the Weierstrass
approximation theorem, has many proofs. In particular it can be derived from
Corollary 1.8.

Exercise 1.47. Prove (49). Here is one possible approach. We have

FN (x) =
1
N

N−1∑

0

Dk(x) =
1
N

N−1∑

0

k∑

−k

eijx =
1
N

N−1∑

0

k∑

−k

wj ,

where w = eix. Hence w−1 = w. After factoring out wk, rewrite the inner sum as a
sum from 0 to 2k. Sum the finite geometric series. Each of the two terms becomes
itself a geometric series. Sum these, and simplify, canceling the common factor of
1 − w, until you get

FN (x) =
1

N |1 − w|2 (2 − wN − wN ) =
1
N

2 − 2cos(Nx)
2 − 2cos(x)

.
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We finally obtain (49) after using the identity

sin2(
α

2
) =

1 − cos(α)
2

.

Exercise 1.48. Verify the previous trig identity using complex exponentials.

Exercise 1.49. Put f(x) = 1
log(x) . Show that f is convex and decreasing.

Conclude that f(x + 2) + f(x) ≥ 2f(x + 1).

Exercise 1.50. Find the following limit:

lim
xÑ∞x

(
1

log(x + 2)
+

1
log(x)

− 2
log(x + 1)

)

.

Exercise 1.51. Use (49) and Exercise 1.49 to solve Exercise 1.6. (Again sum
by parts twice.) Exercise 1.3 might also be useful.

Remark 1.6. In solving Exercise 1.51, one must include the first term.

Exercise 1.52. Derive the Weierstrass approximation theorem from Corollary
1.8. Suggestion. First show that the Taylor polynomials of eix uniformly approx-
imate it on any closed and bounded interval. Thus any trig polynomial can be
uniformly approximated by ordinary polynomials.

Exercise 1.53. If {sn} is a monotone sequence of real numbers, show that
the averages σN = 1

N

∑N
j=1 sj also define a monotone sequence. Give an example

where the converse assertion is false.

11. The Laplace equation

In this section we connect ideas from Abel summability to the Dirichlet problem
for the Laplace equation.

We have defined Abel summability of a series
∑∞

n=0 zn of complex numbers.
For Fourier series, we make a small change and consider Abel summability of the
series

∑∞
−∞ aneinθ. Thus we consider

∑

n∈Z

anr|n|einθ, (50)

and we let r increase to 1. The series in (50) has a simple expression; it is the
convolution of the Poisson kernel with the function h, whose Fourier series is the
given series. Since the Poisson kernel is an approximate identity, our next result
will follow easily.

Theorem 1.9. Suppose h is integrable on the circle. Then the Fourier series
of h is Abel summable to h at each point of continuity of h. If h is continuous on
the circle, then the Abel means of its Fourier series converge uniformly to h.

Proof. Recall that Pr(θ) = 1−|z|2
|1−z|2 when z = reiθ. We have noted that Pr is

an approximate identity and that

Pr(θ) =
∑

n∈Z

r|n|einθ.

The Abel means of the Fourier series for h are then
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∑

n∈Z

ĥ(n)r|n|einθ = (Pr ∗ h)(θ).

By Theorem 1.5 the Abel means converge to h(θ) at each point where h is contin-
uous. Also by Theorem 1.5, the convergence is uniform if h is continuous. �

We recall that a twice differentiable function u of two real variables is called
harmonic if Δ(u) = 0; that is,

Δ(u) = uxx + uyy = 0.

The Dirichlet problem is perhaps the most fundamental boundary-value problem
in applied mathematics. We are given a continuous function h on the boundary of
an open set Ω, and we wish to find a harmonic function u on Ω such that u = h
on the boundary.

For us, Ω will be the unit disk in C; its boundary is the unit circle. Suppose
h is given by a Fourier series,

h(θ) =
∑

n∈Z

aneinθ.

Then the solution u to the Dirichlet problem is uniquely determined and satisfies

u(z) = u(reiθ) =
∑

n∈Z

r|n|aneinθ. (51)

Before proving this result (Theorem 1.11), we recall one of the basic ideas from
complex variable theory, the notion of radius of convergence of a power series.

Theorem 1.10. Given a power series
∑∞

n=1 anzn, there is a non-negative real
number R, or the value infinity, such that the series converges for |z| < R and
diverges for |z| > R. The number R can be computed by Hadamard’s formula

R = sup{r : |an|rn is a bounded sequence}. (52)

If R = 0, then the series converges only if z = 0. If 0 ≤ r < R, the the series
converges absolutely and uniformly for |z| ≤ r.

Proof. Define R by (52). If |z| > R, then the terms of the series are
unbounded, and hence the series diverges. Next assume that 0 ≤ ρ < r < R.
Assume that |an|rn ≤ M . We claim that

∑
anzn converges absolutely and uni-

formly in {|z| ≤ ρ}. The claim follows by the comparison test and the convergence
of a geometric series with ratio t = ρ

r :
∑

|anzn| ≤
∑

|an|ρn =
∑

|an|rn(
ρ

r
)n ≤ M

∑
tn.

Each assertion follows. �

Remark 1.7. We also can compute R by the root test. See Exercise 1.57.

The Laplacian Δ has a convenient expression using complex partial derivatives:

Δ(u) = 4uzz = 4
∂2u

∂z∂z
.

Here the complex partial derivatives are defined by

∂

∂z
=

1
2
(

∂

∂x
− i

∂

∂y
)
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∂

∂z
=

1
2
(

∂

∂x
+ i

∂

∂y
).

Exercise 1.54. Verify the formula Δ(u) = 4uzz.

Exercise 1.55. Show that the Laplacian in polar coordinates is given as fol-
lows:

Δ(u) = urr +
1
r
ur +

1
r2

uθθ.

Exercise 1.56. Use the previous exercise to show that the real and imaginary
parts of zn are harmonic for n a positive integer.

Exercise 1.57. Given the series
∑

anzn, put L = lim sup(|an| 1
n ). Show that

the radius of convergence R satisfies R = 1
L .

Exercise 1.58. Give three examples of power series with radius of convergence
1 with the following true. The first series converges at no points of the unit circle,
the second series converges at some but not all points of the unit circle, and the
third series converges at all points of the unit circle.

Exercise 1.59. Let p be a polynomial. Show that the series
∑

(−1)np(n) is
Abel summable. More generally, for |z| < 1, show that

∑∞
0 p(n)zn is a polynomial

in 1
1−z with no constant term. Hence the limit, as we approach the unit circle from

within, exists at every point except 1.

By analogy with the wave equation, the formula for the Laplacian in complex
notation suggests that a function u = u(x, y) is harmonic if and only if it can be
written u(x, y) = f(z) + g(z), for functions f and g of the indicated one complex
variable. In particular, it suggests that a real-valued function is harmonic if and
only if it is the real part of a complex analytic function.

We use these considerations to revisit the Dirichlet problem. Let h be contin-
uous on the circle.

Theorem 1.11. Suppose h is continuous on the unit circle. Put

u(reiθ) = (Pr ∗ h)(θ).

Then u is infinitely differentiable on the unit disk, u is harmonic, and u = h on
the circle.

Proof. Since h is continuous, the Fourier coefficients ĥ(n) are bounded.
Hence for each r < 1 the series in (51) converges absolutely. Put z = reiθ and
write u(reiθ) = (Pr ∗ h)(θ). We have

u(reiθ) =
∞∑

n=0

ĥ(n)rneinθ +
∞∑

n=1

ĥ(−n)rne−inθ =
∞∑

n=0

ĥ(n)zn +
∞∑

n=1

ĥ(−n)zn

= f(z) + g(z).

Each zn or zn is harmonic. The power series for f and g each converge absolutely
and uniformly on compact subsets of the unit disk. Hence they represent infinitely
differentiable functions. We can therefore differentiate term by term to conclude
that u is harmonic. Since h is continuous, h(θ) = limrÑ1 u(reiθ). �
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The Dirichlet problem for domains (open and connected sets) more general than
the unit disk is of fundamental importance in applied mathematics. Amazingly
enough, the solution for the unit disk extends to much more general situations.
By the Riemann mapping theorem, each simply connected domain other than C
is conformally equivalent to the unit disk. Hence one can transfer the problem to
the disk and solve it there. See [A] or [D2] for additional discussion. Exercise 1.62
provides an important formula.

We make some additional remarks about the Cauchy-Riemann equations. Sup-
pose f is complex analytic in an open set, and we write f = u + iv there. Then u
and v are harmonic and satisfy the system of PDE ux = vy and uy = −vx. These
two equations are equivalent to the simpler statement fz = 0 (which yields fz = 0
as well). Since u = f+f

2 (and v has a similar formula), it follows from the formula
Δ = 4 ∂2

∂z∂z that u and v are harmonic. Furthermore, the Cauchy-Riemann equa-
tions guarantee that the level curves of u and v intersect orthogonally. This geo-
metric fact partially explains why complex analytic functions are useful in applied
subjects such as fluid flow.

The next exercise approaches the Laplace equation by way of polar coordinates
and separation of variables. It presages spherical harmonics, discussed in Section
13 of Chapter 2, where the circle gets replaced with the sphere.

Exercise 1.60. Use Exercise 1.55 and separation of variables to find solutions
of the Laplace equation Δ(f) = 0. Your answers should be in the form rneinθ.
Compare with Exercise 1.56.

Exercise 1.61. Graph some level sets of the real and imaginary parts of f ,
when f(z) = z2, when f(z) = ez, and when f(z) = log(z), for some branch of the
logarithm.

Exercise 1.62. Assume that f is complex analytic and that h is twice differ-
entiable in a neighborhood of the image of f . Compute the Laplacian of h ◦ f .
Suggestion: Use the formula from Exercise 1.54.

Exercise 1.63. Discuss the validity of the formula

log(x + iy) =
1
2
log(x2 + y2) + i tan−1(

y

x
).

Exercise 1.64. Assume 0 ≤ r < 1. Find formulas for
∞∑

n=1

rncos(nθ)
n

and
∞∑

n=1

rnsin(nθ)
n

.

Suggestion: Start with the geometric series
∞∑

n=0

zn =
1

1 − z
,

valid for |z| < 1. Integrate to obtain a series for −log(1 − z). Replace z with reiθ,
equate real and imaginary parts of the result, and use Exercise 1.63.

Fourier’s original work considered the heat equation ut = Δ(u). The Laplace
equation can be regarded as the steady-state solution of the heat equation.

We pause to consider the heat equation by way of separation of variables. Put
u(x, y, t) = A(x, y)B(t). The heat equation becomes ΔA(x, y)B(t) = A(x, y)B′(t),
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and hence ΔA
A = B′

B = λ for some constant λ, and B(t) = eλt. To guarantee that B
tends to zero at ∞, the constant λ must be negative. We also obtain the eigenvalue
problem ΔA = λA. We then introduce polar coordinates and use the formula in
Exercise 1.55. Doing so leads to the equation

r2Arr + rAr + Aθθ = λr2A.

We can attack this equation using separation of variables as well. Let us write
A(r, θ) = g(r)h(θ). We obtain two equations as usual. The equation for h has
solutions h(θ) = e±ikθ; we assume that k is an integer to ensure periodicity in θ.
The equation for g becomes

r2g′′(r) + rg′(r) − (λr2 − k2)g(r) = 0.

The change of variables x =
√|λ|r yields the Bessel differential equation

x2f ′′(x) + xf ′(x) + (x2 − ν2)f(x) = 0. (Bessel)

Here ν is the integer k, but the Bessel equation is meaningful for all real values of
ν. We make only two related remarks about solutions to the Bessel equation. If
we divide by x2, and then think of |x| as large, the equation tends to f ′′ + f = 0.
Hence we might expect, for large |x|, that the solutions resemble cosine and sine. In
fact, they more closely resemble (linear combinations of) cos(x)√

x
and sin(x)√

x
. These

statements can be made precise, and they are important in applications. The
second remark is that a notion of Fourier-Bessel series exists, in which one expands
functions in terms of scaled solutions to the Bessel equation. See [G], [GS], and [F2]
for considerable information on Bessel functions and additional references. We note
here only that Wilhelm Bessel (1784–1846) was an astronomer who encountered
Bessel functions while studying planetary motion.

12. Uniqueness of Fourier coefficients for continuous functions

Suppose two functions have the same Fourier coefficients. Must the two func-
tions be equal? We next show that the answer is yes when the given functions are
continuous. This conclusion follows from Theorem 1.5, but we give a somewhat
different proof here in order to illustrate the power of approximate identities. The
answer is certainly no when the given functions fail to be continuous; if a function
is zero except at a finite set of points, for example, then all its Fourier coefficients
vanish, but it is not the zero function. Thus continuity is a natural hypothesis
in the following theorem and its corollaries. See Remarks 1.8 and 1.9 below for
additional information.

Theorem 1.12. Suppose f is integrable on the circle and f̂(n) = 0 for all n.
If f is continuous at p, then f(p) = 0. In particular, if f is continuous on the
circle, and f̂(n) = 0 for all n, then f is the zero function.

Proof. Assume first that f is real-valued. Represent the circle as [−π, π] and
suppose without loss of generality that p = 0. Assuming that f is continuous at
0 and that f(p) > 0, we will show that some Fourier coefficients must be nonzero,
thereby proving the contrapositive statement.

In the proof we consider the integrals
∫ π

−π

(c + cos(θ))kf(θ)dθ.
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Here c is a suitable positive constant and k is chosen sufficiently large that this
integral is positive. Let χk(x) = (c + cos(x))k. Since χk is a trig polynomial, the
positivity of this integral guarantees that f̂(n) �= 0 for some n. Note that, as k
tends to infinity, the functions χk concentrate at 0, and hence the idea of the proof
is one we have seen several times.

We divide the interval [−π, π] into several parts. See Figure 9. These parts
will be given by |θ| ≤ η, by η ≤ |θ| ≤ δ, and by δ ≤ |θ| ≤ π. Since we are assuming
f(0) > 0, there is a δ with 0 < δ < π

2 such that f(θ) ≥ f(0)
2 for |θ| ≤ δ. Once

δ is chosen, we find a small positive c such that cos(θ) ≤ 1 − 3c
2 when |θ| ≥ δ.

Doing so is possible because cos(θ) is bounded away from 1 there. The inequality
|c + cos(θ)| ≤ 1 − c

2 for |θ| ≥ δ follows.
We want χk(θ) big near 0. We next find η with 0 < η < δ such that c+cos(θ) ≥

c
2 + 1 for |θ| ≤ η. Doing so is possible because 1 − cos(θ) is small near 0.

On the part where θ is close to 0,
∫

χkf ≥ C(1 + ( c
2 ))k. On the part where

η ≤ |θ| ≤ δ,
∫

χkf ≥ 0. On the part where |θ| ≥ δ,
∣
∣
∣
∣

∫

χk f

∣
∣
∣
∣ ≤ C(1 − c

2
)k. (53)

We gather this information. The integral
∫

|θ|≤η

χk(x)f(x)dx

actually tends to infinity with k. The integral over the set where η ≤ |θ| ≤ δ yields
a positive number. By (53), the integral over the remaining part is bounded as k
tends to infinity. Thus the sum of the three pieces tends to infinity and hence

∫ π

−π

χk(x)f(x)dx > 0

for large k. Hence some Fourier coefficient of f must be nonzero.
The case when f is complex-valued follows by applying the above reasoning to

its real and imaginary parts. Note that the real part of f is f+f
2 and the imaginary

part of f is f−f
2i . By Lemma 1.7 we know that

f̂(n) = f̂(−n).

Hence all the Fourier coefficients of f vanish if and only if all the Fourier coefficients
of its real and imaginary parts vanish. �

Corollary 1.9. If both f and g are continuous on the circle, and f̂(n) = ĝ(n)
for all n, then f = g.

Proof. The function f−g is continuous and all its Fourier coefficients vanish.
Hence f − g = 0 and thus f = g. �

Corollary 1.10. Suppose
∑ |f̂(n)| converges and f is continuous. Then SN

converges uniformly to f .

Proof. Recall that SN (f)(x) =
∑N

−N einxf̂(n). Each SN (f) is continuous,
and the hypothesis guarantees that SN (f) converges uniformly. Hence it has a
continuous limit g. But g and f have the same Fourier coefficients. By Corollary
1.9, f = g. �
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Figure 9. Proof of Theorem 1.12

Assuming the continuity of f is not adequate to ensure that the Fourier series
of f converges absolutely. If f is twice differentiable, however, then a simple com-
putation shows that |f̂(n)| ≤ C

n2 and hence the Fourier series for f does converge
absolutely, as

∑
1

n2 converges. Since
∑

1
np converges for p > 1, we see that an

inequality of the form

|f̂(n)| ≤ C

np
(54)

for p > 1 also guarantees absolute convergence. In Chapter 2 we prove a related
but more difficult result involving Hölder continuous functions.

Remark 1.8. The following fact follows immediately from Theorem 1.12. If all
the Fourier coefficients of a Riemann integrable function f vanish, then f(x) = 0 at
all points x at which f is continuous. In the theory of integration, one establishes
also that the set of points at which a Riemann integrable function fails to be
continuous has measure zero. Thus we can conclude, when f̂(n) = 0 for all n, that
f is zero almost everywhere.

Remark 1.9. There exist continuous functions whose Fourier series do not
converge at all points. Constructing such a function is a bit difficult. See [K] or
pages 83–87 in [SS].

13. Inequalities

The primary purpose of this section is to use Fourier series to establish some
inequalities. Before doing so, we briefly mention versions of the Cauchy-Schwarz
inequality. This famous inequality is discussed in detail in Chapter 2. The more
abstract formulation there is easier to understand than the following specific special
cases. See Chapter 2 for the proof.

Proposition 1.3 (Cauchy-Schwarz inequalities). Several versions.

• Let a1, ..., an and b1, ..., bn be complex numbers. Then
∣
∣
∣
∣
∣
∣

n∑

j=1

ajbj

∣
∣
∣
∣
∣
∣

2

≤
n∑

j=1

|aj |2
n∑

j=1

|bj |2.
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• Let {aj} and {bj} be sequences of complex numbers such that
∑∞

j=1 |aj |2
and

∑∞
j=1 |bj |2 converge. Then

∑∞
j=1 ajbj converges and

∣
∣
∣
∣
∣
∣

∞∑

j=1

ajbj

∣
∣
∣
∣
∣
∣

2

≤
∞∑

j=1

|aj |2
∞∑

j=1

|bj |2.

• Suppose that f, g : [a, b] Ñ C are such that
∫ b

a
|f |2 and

∫ b

a
|g|2 are finite.

Then ∣
∣
∣
∣
∣

∫ b

a

fg

∣
∣
∣
∣
∣

2

≤
∫ b

a

|f |2
∫ b

a

|g|2.

We now wish to use Fourier series to establish inequalities. The first example is
a famous inequality of Hilbert. Rather than proving it directly, we derive it from a
general result. There is a vast literature on generalizations of Hilbert’s inequality.
See [HLP], [B], [S] and their references.

Theorem 1.13 (Hilbert’s inequality). Let {zn} (for n ≥ 0) be a sequence of
complex numbers with

∑ |zn|2 finite. Then
∣
∣
∣
∣
∣
∣

∞∑

j,k=0

zjzk

1 + j + k

∣
∣
∣
∣
∣
∣
≤ π

∞∑

k=0

|zk|2. (55)

Furthermore the constant π is the smallest possible.

Hilbert’s inequality follows by choosing g(t) = i(π − t)e−it in Theorem 1.14
below. With this choice of g we have ĝ(n) = 1

n+1 and hence the j, k entry of the
infinite matrix C is 1

1+j+k . Furthermore |g| is bounded by π.
The inequality can be stated in equivalent ways. For example, by choosing

g(t) = i(π − t) we have ĝ(n) = 1
n and we obtain the following:

∣
∣
∣
∣
∣
∣

∞∑

j,k=1

zjzk

j + k

∣
∣
∣
∣
∣
∣
≤ π

∞∑

k=1

|zk|2.

Polarization yields, in case both sequences {zk} and {wk} are square-summable,
∣
∣
∣
∣
∣
∣

∞∑

j,k=1

zjwk

j + k

∣
∣
∣
∣
∣
∣
≤ π

( ∞∑

k=1

|zk|2
) 1

2
( ∞∑

k=1

|wk|2
) 1

2

. (56)

We omit the proof that π is the smallest possible constant. [HLP] has several
proofs. We do remark however that equality holds in (55) only if z is the zero
sequence. In other words, unless z is the zero sequence, one can replace ≤ with <
in (55).

We can also write (55) or (56) in terms of integrals rather than sums:
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy ≤ π||f ||L2 ||g||L2 , (57.1)

where the L2 norm is taken over [0,∞). See Exercise 1.67. This formulation
suggests a generalization due to Hardy. Let 1

p + 1
q = 1. Then p, q are called

conjugate exponents. For 1 < p < ∞, Hardy’s result gives the following inequality:
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∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy ≤ π

sin(π
p )

||f ||Lp ||g||Lq . (57.2)

Again the constant is the smallest possible, and again strict inequality holds unless
f or g is zero almost everywhere. We will verify (57.2) in Chapter 3 after we prove
Hölder’s inequality.

Theorem 1.14. Let g be integrable on [0, 2π] with sup(|g|) = M and Fourier
coefficients ĝ(k). Let C denote an infinite matrix whose entries cjk for 0 ≤ j, k
satisfy

cjk = ĝ(j + k).

Let {zk} and {wk} be square-summable sequences. The following inequalities hold:

|
∞∑

j,k=0

cjkzjzk| ≤ M
∞∑

j=0

|zj |2. (58.1)

|
∞∑

j,k=0

cjkzjwk| ≤ M

⎛

⎝
∞∑

j=0

|zj |2
⎞

⎠

1
2

⎛

⎝
∞∑

j=0

|wj |2
⎞

⎠

1
2

. (58.2)

Proof. Since (58.1) is the special case of (58.2) when the sequences are equal,
it suffices to prove (58.2). Put uN =

∑N
j=0 zje

−ijt and vN =
∑N

k=0 wke−ikt. For
each N we have

N∑

j,k=0

cjkzjwk =
1
2π

∫ 2π

0

N∑

j,k=0

zjwke−i(j+k)tg(t)dt

=
1
2π

∫ 2π

0

N∑

j=0

zje
−ijt

N∑

k=0

wke−iktg(t)dt =
1
2π

∫ 2π

0

uN (t)vN (t) g(t)dt. (59)

Since |g| ≤ M we obtain
∣
∣
∣
∣
∣
∣

N∑

j,k=0

cjkzjwk

∣
∣
∣
∣
∣
∣
≤ M

2π

∫ 2π

0

|uN (t)| |vN (t)|dt (60)

The Cauchy-Schwarz inequality for integrals (see Proposition above or Chapter 2)
implies that

∫

|uN | |vN | ≤
(∫

|uN |2
) 1

2
(∫

|vN |2
) 1

2

.

By the orthogonality of the functions t Ñ eint, we also see that

1
2π

∫

|uN |2 =
N∑

j=0

|zj |2 ≤
∞∑

j=0

|zj |2 = ||z||22, (61.1)

1
2π

∫

|vN |2 =
N∑

k=0

|wk|2 ≤
∞∑

k=0

|wk|2 = ||w||22. (61.2)

We can therefore continue estimating (60) to get
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|
N∑

j,k=0

cjkzjwk| ≤ M

⎛

⎝
N∑

j=0

|zj |2
⎞

⎠

1
2

⎛

⎝
N∑

j=0

|wj |2
⎞

⎠

1
2

.

The desired inequality (58.2) follows by letting N tend to infinity. �

The computation in the proof of this theorem differs when the coefficients of
the matrix C are instead given by ĝ(j − k). Suppose the sequences z and w are
equal. Then we obtain

∞∑

j,k=0

cjkzjzk =
1
2π

∫ 2π

0

∞∑

j,k=0

zjzke−i(j−k)tg(t)dt =
1
2π

∫ 2π

0

|
∞∑

j=0

zje
−ijt|2g(t)dt.

To this point no inequality is used. We obtain information from both upper and
lower bounds for g. When g is non-negative, we conclude that the infinite matrix
ĝ(j − k) is non-negative definite. This result is the easy direction of Herglotz’s
theorem: The matrix whose entries satisfy Cjk = cj−k is non-negative definite if
and only if there is a positive measure μ such that cj = μ̂(j). In our case the
measure is simply gdt

2π . See [K] for a proof of Herglotz’s theorem.
We sketch another proof of Hilbert’s inequality. We change notation slightly;

the coefficients an play the role of the sequence {zn} in (55).

Proof. Consider a power series f(z) =
∑∞

n=0 anzn that converges in a region
containing the closed unit disk. Squaring f yields the series

(f(z))2 =
∞∑

m=0

∞∑

n=0

anamzm+n.

To obtain the expression in Hilbert’s inequality, we integrate from 0 to 1:
∫ 1

0

(f(z))2dz =
∞∑

m,n=0

anam

1 + m + n
. (62)

By the Cauchy integral theorem, Theorem 6.8 of the appendix, the integral
of a complex analytic function around a closed loop vanishes. Hence the integral∫ 1

−1
(f(z))2dz along the real axis equals the integral − ∫

γ
(f(z))2dz, where γ denotes

the semi-circle (of radius 1) from 1 to −1. We perform this “deformation of contour”
in order to involve polar coordinates. When the coefficients are non-negative and
at least one is positive, the integral from −1 to 1 exceeds the integral from 0 to 1.

Assume that all coefficients are non-negative and that f is not identically 0.
Using (62) and the orthogonality of the einθ we obtain

∞∑

m,n=0

anam

1 + m + n
=

∫ 1

0

(f(z))2dz <

∫ 1

−1

(f(z))2dz

= −
∫

γ

(f(z))2dz ≤ 1
2

∫ π

−π

|f(eiθ)|2dθ = π
∑

|an|2. (63)

Assuming the series converges in a region containing the closed unit disk is a bit
too strong. It we follow the same proof for f a polynomial of degree N , and then
let N tend to infinity, we obtain Hilbert’s inequality, but with the strict < replaced
by ≤ in (63). The computation in the last step in (63) recurs throughout this book.

�
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Figure 10. Contour used in second proof of Hilbert’s inequality

Exercise 1.65. Give an example of a sequence {an} such that the radius of
convergence of

∑
anzn equals 1 but

∑ |an|2 diverges. Give another example where∑ |an|2 converges.

Exercise 1.66. Verify for n �= −1 that ĝ(n) = 1
n+1 when g(t) = i(π − t)e−it.

Exercise 1.67. Show that (57.1) is equivalent to (55). Suggestion: Given
sequences (x0, x1, . . . ) and (y0, y1, . . . ) in l2, define f(x) by f(x) = x0 on [0, 1), by
x1 on [1, 2) and so on, and give a similar definition of g.

Exercise 1.68. The trig polynomial p(θ) = 1+acos(θ) is non-negative on the
circle if and only if |a| ≤ 1. By Herglotz’s theorem (see the discussion preceding
the second proof of Hilbert’s inequality) a certain infinite matrix is therefore non-
negative definite if and only if |a| ≤ 1. Find this matrix, and verify directly that it
is non-negative definite if and only if |a| ≤ 1. Suggestion: Find an explicit formula
for the determinant of the N -th principal minor, and then let N tend to infinity.

Exercise 1.69. (Difficult) Generalize Exercise 1.68 to the polynomial consid-
ered in Exercise 1.8.

Exercise 1.70. Use the Cauchy-Schwarz inequality to show the following:
∣
∣
∣
∣
∣
∣

n∑

j=1

aj

∣
∣
∣
∣
∣
∣

2

≤ n

n∑

j=1

|aj |2

∣
∣
∣
∣
∣
∣

n∑

j=1

jaj

∣
∣
∣
∣
∣
∣

2

≤
(

n3

3
+

n2

2
+

n

6

) n∑

j=1

|aj |2



CHAPTER 2

Hilbert spaces

1. Introduction

Fourier series played a significant role in the development of Hilbert spaces and
other aspects of abstract analysis. The theory of Hilbert spaces returns the favor
by illuminating much of the information about Fourier series. We first develop
enough information about Hilbert spaces to allow us to regard Fourier series as
orthonormal expansions. We prove that (the symmetric partial sums of) the Fourier
series of a square integrable function converges in L2. From this basic result we
obtain corollaries such as Parseval’s formula and the Riemann-Lebesgue lemma. We
prove Bernstein’s theorem: the Fourier series of a Hölder continuous function (with
exponent greater than 1

2 ) converges absolutely. We prove the spectral theorem
for compact Hermitian operators. We include Sturm-Liouville theory to illustrate
orthonormal expansion. We close by discussing spherical harmonics, indicating one
way to pass from the circle to the sphere. These results leave one in awe at the
strength of 19-th century mathematicians.

The ideas of real and complex geometry combine to make Hilbert spaces a
beautiful and intuitive topic. A Hilbert space is a complex vector space with a
Hermitian inner product and corresponding norm making it into a complete metric
space. Completeness enables a deep connection between analytic and geometric
ideas. Polarization also plays a significant role. Several of the results in Section 6
apply only to complex inner product spaces.

2. Norms and inner products

Let V be a vector space over the complex numbers. In order to discuss con-
vergence in V , it is natural to use norms to compute the lengths of vectors in V .
In Chapter 3 we will see the more general concept of a semi-norm.

Definition 2.1 (norm). A norm on a (real or) complex vector space V is a
function v �→ ||v|| satisfying the following three properties:

(1) ||v|| > 0 for all nonzero v.
(2) ||cv|| = |c| ||v|| for all c ∈ C and all v ∈ V .
(3) (The triangle inequality) ||v + w|| ≤ ||v|| + ||w|| for all v, w ∈ V .

Given a norm || ||, we define its corresponding distance function by

d(u, v) = ||u − v||. (1)

The function d is symmetric in its arguments u and v, its values are non-negative,
and its values are positive when u �= v. The triangle inequality

||u − ζ|| ≤ ||u − v|| + ||v − ζ||
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follows immediately from the triangle inequality for the norm. Therefore d defines
a distance function in the metric space sense (defined in the appendix) and (V, d)
is a metric space.

Definition 2.2. A sequence {zn} in a normed vector space V converges to z
if ||zn − z|| converges to 0. A series

∑
zk converges to w if the sequence {∑n

k=1 zk}
of partial sums converges to w.

Many of the proofs from elementary real analysis extend to the setting of metric
spaces and even more of them extend to normed vector spaces. The norm in the
Hilbert space setting arises from an inner product. The norm is a much more
general concept. Before we give the definition of Hermitian inner product, we recall
the basic example of complex Euclidean space.

Example 2.1. Let Cn denote complex Euclidean space of dimension n. As a
set, Cn consists of all n-tuples of complex numbers; we write z = (z1, . . . , zn) for a
point in Cn. This set has the structure of a complex vector space with the usual
operations of vector addition and scalar multiplication. The notation Cn includes
the vector space structure, the Hermitian inner product defined by (2.1), and the
squared norm defined by (2.2). The Euclidean inner product is given by

〈z, w〉 =
n∑

j=1

zjwj (2.1)

and the Euclidean squared norm is given by

||z||2 = 〈z, z〉. (2.2)

Properties (1) and (2) of a norm are evident. We establish property (3) below.

The Euclidean norm on Cn determines by (1) the usual Euclidean distance
function. A sequence of vectors in Cn converges if and only if each component
sequence converges; hence Cn is a complete metric space. See Exercise 2.6.

Definition 2.3 (Hermitian inner product). Let V be a complex vector space.
A Hermitian inner product on V is a function 〈 , 〉 from V ×V to C satisfying the
following four properties. For all u, v, w ∈ V , and for all c ∈ C:

(1) 〈u + v, w〉 = 〈u,w〉 + 〈v, w〉.
(2) 〈cu, v〉 = c〈u, v〉.
(3) 〈u, v〉 = 〈v, u〉. (Hermitian symmetry)
(4) 〈u, u〉 > 0 for u �= 0. (Positive definiteness)

Three additional properties are consequences:

• 〈u, v + w〉 = 〈u, v〉 + 〈u,w〉.
• 〈u, cv〉 = c〈u, v〉.
• 〈0, w〉 = 0 for all w ∈ V . In particular 〈0, 0〉 = 0.

Positive definiteness provides a technique for verifying that a given z equals 0.
We see from the above that z = 0 if and only if 〈z, w〉 = 0 for all w in V .

Definition 2.4. The norm || || corresponding to the Hermitian inner product
〈 , 〉 is defined by

||v|| =
√
〈v, v〉.
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A Hermitian inner product determines a norm, but most norms do not come
from inner products. See Exercise 2.5.

Exercise 2.1. Verify the three additional properties of the inner product.

Figure 1. Proof of the Cauchy-Schwarz inequality

Figure 2. Triangle inequality

Theorem 2.1 (The Cauchy-Schwarz and triangle inequalities). Let V be a
complex vector space, let 〈 , 〉 be a Hermitian inner product on V , and let ||v|| =√〈v, v〉. The function || || defines a norm on V and the following inequalities hold
for all z, w ∈ V :

|〈z, w〉| ≤ ||z|| ||w|| (3)

||z + w|| ≤ ||z|| + ||w||. (4)

Proof. The first two properties of a norm are evident. The first follows from
the positive definiteness of the inner product. To prove the second, it suffices to
show that |c|2||v||2 = ||cv||2. This conclusion follows from

||cv||2 = 〈cv, cv〉 = c〈v, cv〉 = |c|2〈v, v〉 = |c|2 ||v||2.
Note that we have used the linearity in the first slot and the conjugate linearity in
the second slot. The third property of a norm is the triangle inequality (4).

We first prove the Cauchy-Schwarz inequality (3). For all t ∈ C, and for all z
and w in V ,
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0 ≤ ||z + tw||2 = ||z||2 + 2Re〈z, tw〉 + |t|2||w||2. (5)
Think of z and w as fixed, and let φ be the quadratic Hermitian polynomial in t and
t defined by the right-hand side of (5). The values of φ are non-negative; we seek
its minimum value by setting its differential equal to 0. (Compare with Exercise
1.13) We use subscripts to denote the derivatives with respect to t and t. Since φ
is real-valued, we have φt = 0 if and only if φt = 0. From (5) we find

φt = 〈z, w〉 + t||w||2.
When w = 0 we get no useful information, but inequality (3) is true when

w = 0. To prove (3) when w �= 0, we may set

t =
−〈z, w〉
||w||2

in (5) and conclude that

0 ≤ ||z||2 − 2
|〈z, w〉|2
||w||2 +

|〈z, w〉|2
||w||2 = ||z||2 − |〈z, w〉|2

||w||2 . (6)

Inequality (6) yields

|〈z, w〉|2 ≤ ||z||2||w||2,
from which (3) follows by taking square roots.

To establish the triangle inequality (4), we begin by squaring its left-hand side:

||z + w||2 = ||z||2 + 2Re〈z, w〉 + ||w||2. (7)
Since Re〈z, w〉 ≤ |〈z, w〉|, the Cauchy-Schwarz inequality yields

||z + w||2 = ||z||2 + 2Re〈z, w〉+ ||w||2 ≤ ||z||2 + 2||z|| ||w||+ ||w||2 = (||z||+ ||w||)2.
Taking the square root of each side gives the triangle inequality and completes the
proof that

√〈v, v〉 defines a norm on V . �

In the proof we noted the identity (7). This (essentially trivial) identity has
two significant corollaries.

Theorem 2.2. Let V be a complex inner product space. The following hold:
Pythagorean theorem: 〈z, w〉 = 0 implies ||z + w||2 = ||z||2 + ||w||2.
Parallelogram law: ||z + w||2 + ||z − w||2 = 2(||z||2 + ||w||2).
Proof. The Pythagorean theorem is immediate from (7), because 〈z, w〉 = 0

implies that Re(〈z, w〉) = 0. The parallelogram law follows from (7) by adding the
result in (7) to the result of replacing w by −w in (7). �

The two inequalities from Theorem 2.1 have many consequences. We use them
here to show that the inner product and norm on V are (sequentially) continuous
functions.

Proposition 2.1. (Continuity of the inner product and the norm) Let V be a
complex vector space with Hermitian inner product and corresponding norm. Let
{zn} be a sequence that converges to z in V . Then, for all w ∈ V , the sequence of
inner products 〈zn, w〉 converges to 〈z, w〉. Furthermore ||zn|| converges to ||z||.
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Proof. By the linearity of the inner product and the Cauchy-Schwarz inequal-
ity, we have

|〈zn, w〉 − 〈z, w〉| = |〈zn − z, w〉| ≤ ||zn − z|| ||w||. (8)
Thus, when zn converges to z, the right-hand side of (8) converges to 0, and there-
fore so does the left-hand side. Thus the inner product (with w) is continuous.

The proof of the second statement uses the triangle inequality. From it we
obtain the inequality ||z|| ≤ ||z − zn|| + ||zn|| and hence

||z|| − ||zn|| ≤ ||z − zn||.
Interchanging the roles of zn and z gives the same inequality with a negative sign
on the left-hand side. Combining these inequalities yields

| ||z|| − ||zn|| | ≤ ||z − zn||,
from which the second statement follows. �

Suppose that
∑

vn converges in V . For all w ∈ V , we have

〈
∑

n

vn, w〉 =
∑

n

〈vn, w〉.

This conclusion follows by applying Proposition 2.1 to the partial sums of the series.
We will often apply this result when working with orthonormal expansions.

Finite-dimensional complex Euclidean spaces are complete in the sense that
Cauchy sequences have limits. Infinite-dimensional complex vector spaces with
Hermitian inner products need not be complete. By definition, Hilbert spaces are
complete.

Definition 2.5. A Hilbert space H is a complex vector space, together with
a Hermitian inner product whose corresponding distance function makes H into a
complete metric space.

Exercise 2.2. Prove the Cauchy-Schwarz inequality in Rn by writing
||x||2||y||2 − |〈x, y〉|2 as a sum of squares. Give the analogous proof in Cn.

Exercise 2.3. Prove the Cauchy-Schwarz inequality in Rn using Lagrange
multipliers.

Exercise 2.4. Let H be an inner product space. We showed, for all z and w
in H, that (9) holds:

||z + w||2 + ||z − w||2 = 2||z||2 + 2||w||2. (9)

Why is this identity called the parallelogram law?

Exercise 2.5. (Difficult) Let V be a real or complex vector space with a norm.
Show that this norm comes from an inner product if and only if the norm satisfies
the parallelogram law (9). Comment: Given the norm, one has to define the inner
product somehow, and then prove that the inner product satisfies all the necessary
properties. Use a polarization identity such as (19) to get started.

We give several examples of Hilbert spaces. We cannot verify completeness in
the last example without developing the Lebesgue integral. We do, however, make
the following remark. Suppose we are given a metric space that is not complete. We
may form its completion by considering equivalence classes of Cauchy sequences in
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a manner similar to defining the real numbers R as the completion of the rational
numbers Q. Given an inner product space, we may complete it into a Hilbert space.
The problem is that we wish to have a concrete realization of the limiting objects.

Example 2.2. (Hilbert Spaces)

(1) Complex Euclidean space Cn is a complete metric space with the distance
function given by d(z, w) = ||z − w||, and hence it is a Hilbert space.

(2) l2. Let a = {aν} denote a sequence of complex numbers. We say that a is
square-summable, and we write a ∈ l2, if ||a||22 =

∑
ν |aν |2 is finite. When

a, b ∈ l2 we write

〈a, b〉2 =
∑

ν

aνbν

for their Hermitian inner product. Exercise 2.6 requests a proof that l2

is a complete metric space; here d(a, b) = ||a − b||2.
(3) A2(B1). This space consists of all complex analytic functions f on the

unit disk B1 in C such that
∫

B1
|f |2dxdy is finite. The inner product is

given by

〈f, g〉 =
∫

B1

fgdxdy.

(4) L2(Ω). Let Ω be an open subset of Rn. Let dV denote Lebesgue measure
in Rn. We write L2(Ω) for the complex vector space of (equivalence classes
of) measurable functions f : Ω Ñ C for which

∫
Ω
|f(x)|2dV (x) is finite.

When f and g are elements of L2(Ω), we define their inner product by

〈f, g〉 =
∫

Ω

f(x)g(x)dV (x).

The corresponding norm and distance function make L2(Ω) into a
complete metric space, so L2(Ω) is a Hilbert space. See [F1] for a proof
of completeness.

Exercise 2.6. Verify that Cn and l2 are complete.

Exercise 2.7. Let V be a normed vector space. Show that V is complete if
and only if, whenever

∑
n ||vn|| converges, then

∑
n vn converges. Compare with

Exercise 1.5.

3. Subspaces and linear maps

A subspace of a vector space is a subset that is itself a vector space under
the same operations of addition and scalar multiplication. A finite-dimensional
subspace of a Hilbert space is necessarily closed (in the metric space sense) whereas
infinite-dimensional subspaces need not be closed. A closed linear subspace of a
Hilbert space is complete and therefore also a Hilbert space. Let B be a bounded
domain in Cn. Then A2(B) is a closed subspace of L2(B), and thus a Hilbert
space. See Theorem 4.12 and Remark 4.20 from Chapter 4.

Next we define bounded linear transformations or operators. These mappings
are the continuous functions between Hilbert spaces that preserve the vector space
structure.
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Definition 2.6. Let H and H′ be Hilbert spaces. A function L : H Ñ H′ is
called linear if it satisfies properties (1) and (2). Also, L is called a bounded linear
transformation from H to H′ if L satisfies all three of the following properties:

(1) L(z1 + z2) = L(z1) + L(z2) for all z1 and z2 in H.
(2) L(cz) = cL(z) for all z ∈ H and all c ∈ C.
(3) There is a constant C such that ||L(z)|| ≤ C||z|| for all z ∈ H.

We write L(H,H′) for the collection of bounded linear transformations from H
to H′, and L(H) in the important special case when H = H′. In this case I denotes
the identity linear transformation, given by I(z) = z. Elements of L(H) are often
called bounded operators on H. The collection of bounded operators is an algebra,
where composition plays the role of multiplication.

Properties (1) and (2) define the linearity of L. Property (3) guarantees the
continuity of L; see Lemma 2.1 below. The infimum of the set of constants C that
work in (3) provides a measurement of the size of the transformation L; it is called
the norm of L, and is written ||L||. Exercise 2.9 justifies the terminology. An
equivalent way to define ||L|| is the formula

||L|| = sup
{z �=0}

||L(z)||
||z|| .

The set L(H,H′) becomes a complete normed vector space. See Exercise 2.9.
We next discuss the relationship between boundedness and continuity for linear

transformations.

Lemma 2.1. Assume L : H Ñ H′ is linear. The following three statements are
equivalent:

(1) There is a constant C > 0 such that, for all z,

||Lz|| ≤ C||z||.
(2) L is continuous at the origin.
(3) L is continuous at every point.

Proof. It follows from the ε-δ definition of continuity at a point and the
linearity of L that statements (1) and (2) are equivalent. Statement (3) implies
statement (2). Statement (1) and the linearity of L imply statement (3) because

||Lz − Lw|| = ||L(z − w)|| ≤ C||z − w||.
�

We associate two natural subspaces with a linear mapping.

Definition 2.7. For L ∈ L(H,H′), the nullspace N (L) is the set of v ∈ H for
which L(v) = 0. The range R(L) is the set of w ∈ H′ for which there is a v ∈ H
with L(v) = w.

Definition 2.8. An operator P ∈ L(H) is a projection if P 2 = P .

Observe (see Exercise 2.11) that P 2 = P if and only if (I −P )2 = I −P . Thus
I − P is also a projection if P is. Furthermore, in this case R(P ) = N (I − P ) and
H = R(P ) + N (P ).
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Bounded linear functionals, that is, elements of L(H,C), are especially impor-
tant. The vector space of bounded linear functionals on H is called the dual space
of H. We characterize this space in Theorem 2.4 below.

Definition 2.9. A bounded linear functional on a Hilbert space H is a bounded
linear transformation from H to C.

One of the major results in pure and applied analysis is the Riesz lemma,
Theorem 2.4 below. A bounded linear functional on a Hilbert space is always given
by an inner product. In order to prove this basic result we develop material on
orthogonality that also particularly illuminates our work on Fourier series.

Exercise 2.8. For L ∈ L(H,H′), verify that N (L) is a subspace of H and
R(L) is a subspace of H′.

Exercise 2.9. With ||L|| defined as above, show that L(H) is a complete
normed vector space.

Exercise 2.10. Show by using a basis that a linear functional on Cn is given
by an inner product.

Exercise 2.11. Let P be a projection. Verify that I −P is a projection, that
R(P ) = N (I − P ), and that H = R(P ) + N (P ).

4. Orthogonality

Let H be a Hilbert space, and suppose z, w ∈ H. We say that z and w are
orthogonal if 〈z, w〉 = 0. The Pythagorean theorem indicates that orthogonality
generalizes perpendicularity and provides geometric insight in the general Hilbert
space setting. The term “orthogonal” applies also for subspaces. Subspaces V and
W of H are orthogonal if 〈v, w〉 = 0 for all v ∈ V and w ∈ W . We say that z is
orthogonal to V if 〈z, v〉 = 0 for all v in V , or equivalently, if the one-dimensional
subspace generated by z is orthogonal to V .

Let V and W be orthogonal closed subspaces of a Hilbert space; V ⊕W denotes
their orthogonal sum. It is the subspace of H consisting of those z that can be
written z = v+w, where v ∈ V and w ∈ W . We sometimes write z = v⊕w in order
to emphasize orthogonality. By the Pythagorean theorem, ||v⊕w||2 = ||v||2+||w||2.
Thus v ⊕ w = 0 if and only if both v = 0 and w = 0.

We now study the geometric notion of orthogonal projection onto a closed
subspace. The next theorem guarantees that we can project a vector w in a Hilbert
space onto a closed subspace. This existence and uniqueness theorem has diverse
corollaries.

Theorem 2.3. Let V be a closed subspace of a Hilbert space H. For each w
in H there is a unique z ∈ V that minimizes ||z − w||. This z is the orthogonal
projection of w onto V .

Proof. Fix w. If w ∈ V then the conclusion holds with z = w. In general
let d = infz∈V ||z − w||. Choose a sequence {zn} such that zn ∈ V for all n and
||zn − w|| tends to d. We will show that {zn} is a Cauchy sequence, and hence
it converges to some z. Since V is closed, z is in V . By continuity of the norm
(Proposition 2.1), ||z − w|| = d.

By the parallelogram law, we express ||zn − zm||2 as follows:
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Figure 3. Orthogonal projection

||zn−zm||2 = ||(zn−w)+(w−zm)||2 = 2||zn−w||2+2||w−zm||2−||(zn−w)−(w−zm)||2.

The last term on the right-hand side is

4||zn + zm

2
− w||2.

Since V is a subspace, the midpoint zn+zm

2 lies in V as well. Therefore this term
is at least 4d2, and we obtain

0 ≤ ||zn − zm||2 ≤ 2||zn − w||2 + 2||w − zm||2 − 4d2. (10)

As m and n tend to infinity the right-hand side of (10) tends to 2d2+2d2−4d2 = 0.
Thus {zn} is a Cauchy sequence in H and hence converges to some z in V .

It remains only to show uniqueness. Given a pair of minimizers z and ζ, let
d2

m denote the squared distance from their midpoint to w. By the parallelogram
law, we may write

2d2 = ||z − w||2 + ||ζ − w||2 = 2||z + ζ

2
− w||2 + 2||z − ζ

2
||2 = 2d2

m + 2||z − ζ

2
||2.

Thus d2 ≥ d2
m. But d is minimal. Hence dm = d and thus ζ = z. �

Corollary 2.1. Let V be a closed subspace of a Hilbert space H. For each
w ∈ H, there is a unique way to write w = v + ζ = v ⊕ ζ, where v ∈ V and ζ is
orthogonal to V .

Proof. Let v be the projection of w onto V guaranteed by Theorem 2.3.
Since w = v + (w − v), the existence result follows if we can show that w − v
is orthogonal to V . To see the orthogonality choose u ∈ V . Then consider the
function f of one complex variable defined by

f(λ) = ||v + λu − w||2.
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By Theorem 2.3, f achieves its minimum at λ = 0. Therefore for all λ

0 ≤ f(λ) − f(0) = 2Re〈v − w, λu〉 + |λ|2||u||2. (11)

We claim that (11) forces 〈v − w, u〉 = 0. Granted the claim, we note that u is an
arbitrary element of V . Therefore v − w is orthogonal to V , as required.

To prove the claim, thereby completing the proof of existence, we note that
〈v−w, u〉 is the (partial) derivative of f with respect to λ at 0, and hence vanishes
at a minimum of f .

The uniqueness assertion is easy; we use the notation for orthogonal sum. Sup-
pose w = v ⊕ ζ = v′ ⊕ ζ ′, as in the statement of the Corollary. Then

0 = w − w = (v − v′) ⊕ (ζ − ζ ′)

from which we obtain v = v′ and ζ = ζ ′. �

Corollary 2.2. Let V be a closed subspace of a Hilbert space H. For each
w ∈ H, let Pw denote the unique z ∈ V guaranteed by Theorem 2.3; Pw is also the
v guaranteed by Corollary 2.1. Then the mapping w Ñ P (w) is a bounded linear
transformation satisfying P 2 = P . Thus P is a projection.

Proof. Both the existence and uniqueness assertions in Corollary 2.1 matter
in this proof. Given w1 and w2 in H, by existence we may write w1 = Pw1 ⊕ ζ1

and w2 = Pw2 ⊕ ζ2. Adding gives

w1 + w2 = (Pw1 ⊕ ζ1) + (Pw2 ⊕ ζ2) = (Pw1 + Pw2) ⊕ (ζ1 + ζ2). (12)

The uniqueness assertion and (12) show that Pw1 + Pw2 is the unique ele-
ment of V corresponding to w1 + w2 guaranteed by Corollary 2.1; by definition
this element is P (w1 + w2). By uniqueness Pw1 + Pw2 = P (w1 + w2), and P is
additive. In a similar fashion we write w = Pw ⊕ ζ and hence

cw = c(Pw) ⊕ cζ.

Again by uniqueness, c(Pw) must be the unique element corresponding to cw guar-
anteed by Corollary 2.1; by definition this element is P (cw). Hence cP (w) = P (cw).
We have now shown that P is linear.

To show that P is bounded, we note from the Pythagorean theorem that
||w||2 = ||Pw||2 + ||ζ||2, and hence ||Pw|| ≤ ||w||.

Finally we show that P 2 = P . For z = v⊕ ζ, we have P (z) = v = v⊕0. Hence

P 2(z) = P (P (z)) = P (v ⊕ 0) = v = P (z).

�

Theorem 2.3 and its consequences are among the most powerful results in the
book. The theorem guarantees that we can solve a minimization problem in diverse
infinite-dimensional settings, and it implies the Riesz representation lemma.

Fix w ∈ H, and consider the function from H to C defined by Lz = 〈z, w〉.
Then L is a bounded linear functional. The linearity is evident. The boundedness
follows from the Cauchy-Schwarz inequality; setting C = ||w|| yields |L(z)| ≤ C||z||
for all z ∈ H.
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The following fundamental result of F. Riesz characterizes bounded linear func-
tionals on a Hilbert space; a bounded linear functional must be given by an inner
product. The proof relies on projection onto a closed subspace.

Theorem 2.4 (Riesz Lemma). Let H be a Hilbert space. Assume L ∈ L(H,C).
Then there is a unique w ∈ H such that

L(z) = 〈z, w〉
for all z ∈ H. The norm ||L|| of the linear transformation L equals ||w||.

Proof. Since L is bounded, its nullspace N (L) is closed. If N (L) = H, we
take w = 0 and the result is true.

Suppose that N (L) is not H. Theorem 2.3 implies that there is a nonzero
element w0 orthogonal to N (L). To find such a w0, choose any nonzero element
not in N (L) and subtract its orthogonal projection onto N (L).

Let z be an arbitrary element of H. For a complex number α we can write

z = (z − αw0) + αw0.

Note that L(z − αw0) = 0 if and only if α = L(z)
L(w0)

. For each z we therefore let

αz = L(z)
L(w0)

.
Since w0 is orthogonal to N (L), computing the inner product with w0 yields

〈z, w0〉 = αz||w0||2 =
L(z)
L(w0)

||w0||2. (13)

From (13) we see that

L(z) = 〈z,
w0

||w0||2 L(w0)〉
and the existence result is proved. An explicit formula for w holds:

w =
w0

||w0||2 L(w0).

The uniqueness for w is immediate from the test we mentioned earlier. If
〈ζ, w − w′〉 vanishes for all ζ, then w − w′ = 0.

It remains to show that ||L|| = ||w||. The Cauchy-Schwarz inequality yields

||L|| = sup
||z||=1

|〈z, w〉| ≤ ||w||.

Choosing w
||w|| for z yields

||L|| ≥ |L(
w

||w|| )| =
〈w,w〉
||w|| = ||w||.

Combining the two inequalities shows that ||L|| = ||w||. �

Exercise 2.12. Fix w with w �= 0. Define P (v) by

P (v) =
〈v, w〉
||w||2 w.

Verify that P 2 = P .
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Exercise 2.13. Let H = L2[−1, 1]. Recall that f is even if f(−x) = f(x) and
f is odd if f(−x) = −f(x). Let Ve be the subspace of even functions, and Vo the
subspace of odd functions. Show that Ve is orthogonal to Vo.

Exercise 2.14. A hyperplane in H is a level set of a non-trivial linear func-
tional. Assume that w �= 0. Find the distance between the parallel hyperplanes
given by 〈z, w〉 = c1 and 〈z, w〉 = c2.

Exercise 2.15. Let b = {bj} be a sequence of complex numbers, and suppose
there is a positive number C such that

∣
∣
∣
∣
∣
∣

∞∑

j=1

ajbj

∣
∣
∣
∣
∣
∣
≤ C(

∞∑

j=1

|aj |2) 1
2

for all a ∈ l2. Show that b ∈ l2 and that
∑ |bj |2 ≤ C2. Suggestion: Consider the

map that sends a to
∑

ajbj .

5. Orthonormal expansion

We continue our general discussion of Hilbert spaces by studying orthonormal
expansions. The simplest example comes from basic physics. Let v = (a, b, c) be a
point or vector in R3. Physicists write v = ai + bj + ck, where i, j,k are mutually
perpendicular vectors of unit length. Mathematicians write the same equation as
v = ae1 + be2 + ce3; here e1 = (1, 0, 0) = i, e2 = (0, 1, 0) = j, and e3 = (0, 0, 1) = k.
This equation expresses v in terms of an orthonormal expansion:

ae1 + be2 + ce3 = (a, b, c) = v = 〈v, e1〉e1 + 〈v, e2〉e2 + 〈v, e3〉e3.

Orthonormal expansion in a Hilbert space abstracts this idea. Fourier series
provide the basic example, where the functions x Ñ einx are analogous to mutually
perpendicular unit vectors.

We assume here that a Hilbert space is separable. This term means that the
Hilbert space has a countable dense set; separability implies that the orthonormal
systems we are about to define are either finite or countably infinite sets. All the
specific Hilbert spaces mentioned or used in this book are separable. Some of the
proofs given tacitly use separability even when the result holds more generally.

Definition 2.10. Let S = {zn} be a finite or countably infinite collection of
elements in a Hilbert space H. We say that S is an orthonormal system in H if, for
each n we have ||zn||2 = 1, and for each n,m with n �= m, we have 〈zn, zm〉 = 0.
We say that S is a complete orthonormal system if, in addition, 〈z, zn〉 = 0 for all
n implies z = 0.

Proposition 2.2 (Bessel’s inequality). Let S = {zn} be a countably infinite
orthonormal system in H. For each z ∈ H we have

∞∑

n=1

|〈z, zn〉|2 ≤ ||z||2. (14)

Proof. Choose z ∈ H. By orthonormality, for each positive integer N we have

0 ≤ ||z −
N∑

n=1

〈z, zn〉zn||2 = ||z||2 −
N∑

n=1

|〈z, zn〉|2. (15)
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Define a sequence of real numbers rN = rN (z) by

rN =
N∑

n=1

|〈z, zn〉|2.

By (15), rN is bounded above by ||z||2 and nondecreasing. Therefore it has a limit
r = r(z). Bessel’s inequality follows. �

Proposition 2.3 (Best approximation lemma). Let S = {zn} be an orthonor-
mal system (finite or countable) in H. Let V be the span of S. Then, for each z ∈ H
and each w ∈ V ,

||z −
∑

〈z, zn〉zn|| ≤ ||z − w||.

Proof. The expression
∑〈z, zn〉zn equals the orthogonal projection of z onto

V . Hence the result follows from Theorem 2.3. �

The limit r(z) of the sequence in the proof of Bessel’s inequality equals ||z||2
for each z if and only if the orthonormal system S is complete. This statement is
the content of the following fundamental theorem. In general r(z) is the squared
norm of the projection of z onto the span of the zj .

Theorem 2.5 (Orthonormal Expansion). An orthonormal system S = {zn}
is complete if and only if, for each z ∈ H, we have

z =
∑

n

〈z, zn〉zn. (16)

Proof. The cases where S is a finite set or where H is finite-dimensional are
evident. Assume then that H is infinite-dimensional and S is a countably infinite
set. We first verify that the series in (16) converges. Fix z ∈ H, and put

TN =
N∑

n=1

〈z, zn〉zn.

Define rN as in the proof of Bessel’s inequality. For N > M , observe that

||TN − TM ||2 = ||
N∑

n=M+1

〈z, zn〉zn||2 =
N∑

n=M+1

|〈z, zn〉|2 = rN − rM . (17)

Since {rN} converges, it is a Cauchy sequence of real numbers. By (17), {TN} is
a Cauchy sequence in H. Since H is complete, TN converges to some element w of
H, and w =

∑〈z, zn〉zn, the right-hand side of (16). Note that 〈w, zn〉 = 〈z, zn〉
for each n, so z − w is orthogonal to each zn.

We can now establish both implications. Suppose first that S is a complete
system. Since z −w is orthogonal to each zn, we have z −w = 0. Thus (16) holds.
Conversely, suppose that (16) holds. To show that S is a complete system, we
assume that 〈z, zn〉 = 0 for all n, and hope to show that z = 0. This conclusion
follows immediately from (16). �

Exercise 2.16. Verify (15).
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Exercise 2.17. Let H = L2([0, 1]) with the usual inner product. Let V be
the span of 1 and x. Find the orthogonal projection of x2 onto V . Do the same
problem if H = L2([−1, 1]).

Exercise 2.18. Let H = L2([−1, 1]) with the usual inner product. Apply the
Gram-Schmidt process (see [G]) to orthonormalize the polynomials 1, x, x2, x3.

Exercise 2.19. A sequence {fn} in a Hilbert space H converges weakly to f
if, for each g ∈ H, the sequence {〈fn, g〉} converges to 〈f, g〉. Put H = L2([0, 2π]).
Put fn(x) = sin(nx). Show that {fn} converges weakly to 0, but does not converge
to 0.

Exercise 2.20. Assume H is infinite-dimensional. Show that a sequence of
orthonormal vectors does not converge, but does converge weakly to 0.

6. Polarization

In a Hilbert space we can recover the Hermitian inner product from the squared
norm. In addition, for each linear operator L we can recover 〈Lz,w〉 for all z, w
from knowing 〈Lz, z〉 for all z. See Theorem 2.6. The corresponding result for real
vector spaces with inner products fails. See Exercise 2.21.

To introduce these ideas, let m be an integer with m ≥ 2. Recall, for a complex
number a �= 1, the sum of the finite geometric series:

1 + a + a2 + · · · + am−1 =
1 − am

1 − a
.

When a is an m-th root of unity, the sum is zero. A primitive m-th root of unity
is a complex number ω such that ωm = 1, but no smaller positive power equals 1.
The set of powers ωj for j = 0, 1, . . . , m − 1 forms a cyclic group Γ of order m.

Let z, ζ be elements of a Hilbert space H. Let ω be a primitive m-th root of
unity and consider averaging the m complex numbers γ||z + γζ||2 as γ varies over
Γ. Since each group element is a power of ω, this average equals

1
m

m−1∑

j=0

ωj ||z + ωjζ||2.

The next proposition gives a simple expression for the average.

Proposition 2.4 (Polarization identities). Let ω be a primitive m-th root of
unity. For m ≥ 3 we have

〈z, ζ〉 =
1
m

m−1∑

j=0

ωj ||z + ωjζ||2. (18)

For m = 2 the right-hand side of (18) equals 2Re〈z, ζ〉.
Proof. We prove (18) below when m = 4, leaving the general case to the

reader. �

For m ≥ 3, each identity in (18) expresses the inner product in terms of squared
norms. It is both beautiful and useful to recover the inner product from the squared
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norm. The special case of (18) where m = 4, and thus ω = i, arises often. We
state it explicitly and prove it.

4〈z, ζ〉 = ||z + ζ||2 + i||z + iζ||2 − ||z − ζ||2 − i||z − iζ||2. (19)

To verify (19), observe that expanding the squared norms gives both equations:

4Re〈z, ζ〉 = ||z + ζ||2 − ||z − ζ||2

4Re〈z, iζ〉 = ||z + iζ||2 − ||z − iζ||2.
Observe for a ∈ C that Re(−ia) = Im(a). Thus multiplying the second equation
by i, using i(−i) = 1, and then adding the two equations, gives (19).

In addition to polarizing the inner product, we often polarize expressions in-
volving linear transformations.

Theorem 2.6 (Polarization identities for operators). Let L ∈ L(H). Let ω be
a primitive m-th root of unity.

(1) For m ≥ 3 we have

〈Lz, ζ〉 =
1
m

m−1∑

j=0

ωj〈L(z + ωjζ), z + ωjζ〉. (20)

(2) For m = 2 we have

〈Lz, ζ〉 + 〈Lζ, z〉 =
1
2
(〈L(z + ζ), z + ζ〉 − 〈L(z − ζ), z − ζ〉). (21)

(3) Suppose in addition that 〈Lv, v〉 is real for all v ∈ H. Then, for all z and ζ,

〈Lz, ζ〉 = 〈Lζ, z〉.
(4) Suppose 〈Lz, z〉 = 0 for all z. Then L = 0.

Proof. To prove (20) and (21), expand each 〈L(z + ωjζ), z + ωjζ〉 using
the linearity of L and the defining properties of the inner product. Collect similar
terms, and use the above comment about roots of unity. For m ≥ 3, all terms inside
the sum cancel except for m copies of 〈Lz, ζ〉. The result gives (20). For m = 2,
the coefficient of 〈Lζ, z〉 does not vanish, and we obtain (21). Thus statements (1)
and (2) hold.

To prove the third statement, we apply the first for some m with m ≥ 3 and
ωm = 1; the result is

〈Lz, ζ〉 =
1
m

m−1∑

j=0

ωj〈L(z + ωjζ), z + ωjζ〉 =
1
m

m−1∑

j=0

ωj〈L(ωm−jz + ζ), ωm−jz + ζ〉.

(22)
Change the index of summation by setting l = m − j. Also observe that

ω−1 = ω. Combining gives the first equality in (23) below. Finally, because 〈Lv, v〉
is real, and ω0 = ωm we obtain the second equality in (23):

〈Lz, ζ〉 =
1
m

m∑

l=1

ωl〈L(ζ + ωlz), ζ + ωlz〉 = 〈Lζ, z〉. (23)

We have now proved the third statement.
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The fourth statement follows from (20); each term in the sum on the right-hand
side of (20) vanishes if 〈Lw,w〉 = 0 for all w. Thus 〈Lz, ζ〉 = 0 for all ζ. Hence
Lz = 0 for all z, and thus L = 0. �

The reader should compare these results about polarization with our earlier
results about Hermitian symmetric polynomials.

Exercise 2.21. Give an example of a linear map of R2 such that 〈Lu, u〉 = 0
for all u but L is not 0.

7. Adjoints and unitary operators

Let I denote the identity linear transformation on a Hilbert space H. Let
L ∈ L(H). Then L is called invertible if there is a bounded linear mapping T such
that LT = TL = I. If such a T exists, then T is unique, and written L−1. We
warn the reader (see the exercises) that, in infinite dimensions, LT = I does not
imply that L is invertible. When L is bounded, injective, and surjective, the usual
set-theoretic inverse is also linear and bounded.

Given a bounded linear mapping L, the adjoint of L is written L∗. It is defined
as follows. Fix v ∈ H. Consider the map u Ñ 〈Lu, v〉 = φv(u). It is obviously a
linear functional. It is also continuous because

|φv(u)| = |〈Lu, v〉| ≤ ||Lu|| ||v|| ≤ ||u|| ||L|| ||v|| = c||u||, (24)

where the constant c is independent of u. By Theorem 2.4, there is a unique wv ∈ H
for which φv(u) = 〈u,wv〉. We denote wv by L∗v. It is easy to prove that L∗ is
itself a bounded linear mapping on H, called the adjoint of L.

The following properties of adjoints are left as exercises.

Proposition 2.5. Let L, T ∈ L(H). The following hold:

(1) L∗ : H Ñ H is linear.
(2) L∗ is bounded. (In fact ||L∗|| = ||L||.)
(3) (L∗)∗ = L.
(4) 〈Lu, v〉 = 〈u,L∗v〉 for all u, v.
(5) (LT )∗ = T ∗L∗.

Proof. See Exercise 2.22. �

Exercise 2.22. Prove Proposition 2.5.

Definition 2.11. A bounded linear transformation L on a Hilbert space H is
called Hermitian or self adjoint if L = L∗. It is called unitary if it is invertible and
L∗ = L−1.

The following simple but beautiful result characterizes unitary transformations.

Proposition 2.6. The following are equivalent for L ∈ L(H).

(1) L is surjective and preserves norms: ||Lu||2 = ||u||2 for all u.
(2) L is surjective and preserves inner products: 〈Lu,Lv〉 = 〈u, v〉 for all u, v.
(3) L is unitary: L∗ = L−1.
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Proof. If L∈L(H), then 〈Lu,Lv〉=〈u, v〉 for all u, v if and only if 〈u,L∗Lv〉 =
〈u, v〉 for all u, v and thus if and only if 〈u, (L∗L − I)v〉 = 0 for all u, v. This last
statement holds if and only if (L∗L − I)v = 0 for all v. Thus L∗L = I. If L is
also surjective, then L∗ = L−1, and therefore the second and third statements are
equivalent.

The second statement obviously implies the first. It remains to prove the subtle
point that the first statement implies the second or third statement. We are given
〈L∗Lz, z〉 = 〈z, z〉 for all z. Hence 〈(L∗L − I)z, z〉 = 0. By part 4 of Theorem 2.6,
L∗L − I = 0, and the second statement holds. If L is also surjective, then L is
invertible and hence unitary. �

The equivalence of the first two statements does not require L to be surjec-
tive. See the exercises for examples where L preserves inner products but L is not
surjective and hence not unitary.

Proposition 2.7. Let L ∈ L(H). Then

N (L) = R(L∗)⊥

N (L∗) = R(L)⊥.

Proof. Note that L∗(z) = 0 if and only if 〈L∗z, w〉 = 0 for all w, if and only
if 〈z, Lw〉 = 0 for all w, if and only if z ⊥ R(L). Thus the second statement holds.
When L ∈ L(H), it is easy to check that (L∗)∗ = L. See Exercise 2.22. The first
statement then follows from the second statement by replacing L with L∗. �

Exercise 2.23. If L : Cn Ñ Cn and L = L∗, what can we conclude about the
matrix of L with respect to the usual basis (1, 0, . . . , 0), ..., (0, 0, . . . , 1)?

Exercise 2.24. Suppose U is unitary and Uz = λz for z �= 0. Prove that
|λ| = 1. Suppose L is Hermitian and Lz = λz for z �= 0. Prove that λ is real.

Exercise 2.25. Let L : l2 Ñ l2 be defined by

L(z1, z2, . . . ) = (0, z1, z2, . . . ).

Show that ||Lz||2 = ||z||2 for all z but that L is not unitary.

Exercise 2.26. Give an example of a bounded linear L : H Ñ H that is
injective but not surjective, and an example that is surjective but not injective.

Exercise 2.27. Let V be the vector space of all polynomials in one variable.
Let D denote differentiation, and J denote integration (with integration constant
0). Show that DJ = I but that JD �= I. Explain.

Exercise 2.28. Give an example of an operator L for which ||L2|| �= ||L||2.
Suppose L = L∗; show that ||L2|| = ||L||2.

We close this section with an interesting difference between real and complex
vector spaces, related to inverses, polarization, and Exercise 2.21. The formula (∗)
below interests the author partly because, although no real numbers satisfy the
equation, teachers often see it on exams.

Definition 2.12. A real vector space V admits a complex structure if there is
a linear map J : V Ñ V such that J2 = −I.
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It is easy to show (Exercise 2.30) that a finite-dimensional real vector space
admits a complex structure if and only if its dimension is even. The linear trans-
formation J : R2 Ñ R2 corresponding to the complex structure is given by the
matrix

J =
(

0 −1
1 0

)

.

Proposition 2.8. Let V be a vector space over R. Then there are invertible
linear transformations A,B on V satisfying

(A + B)−1 = A−1 + B−1 (∗)
if and only if V admits a complex structure.

Proof. Invertible A,B satisfying (∗) exist if and only if

I = (A + B)(A−1 + B−1) = I + BA−1 + I + AB−1.

Put C = BA−1. The condition (∗) is therefore equivalent to finding C such that
0 = I + C + C−1, which is equivalent to 0 = I + C + C2. Suppose such C exists.
Put J = 1√

3
(I + 2C). Then we have

J2 =
1
3
(I + 2C)2 =

1
3
(I + 4C + 4C2) =

1
3
(−3I + 4(I + C + C2)) = −I.

Hence V admits a complex structure. Conversely, if V admits a complex structure,
then J exists with J2 = −I. Put C = −I+

√
3J

2 ; then I + C + C2 = 0. �

Corollary 2.3. There exist n by n matrices satisfying (∗) if and only if n is
even.

Exercise 2.29. Explain the proof of Proposition 2.8 in terms of cube roots of
unity.

Exercise 2.30. Prove that a finite-dimensional real vector space with a com-
plex structure must have even dimension. Hint: Consider the determinant of J .

8. A return to Fourier series

The specific topic of Fourier series motivated many of the abstract results about
Hilbert spaces and it provides one of the best examples of the general theory. In
return, the general theory clarifies the subject of Fourier series.

Let h be (Riemann) integrable on the circle and consider its Fourier series
∑

ĥ(n)einx. Recall that its symmetric partial sums SN are given by

SN (h)(x) =
N∑

n=−N

ĥ(n)einx.

When h is sufficiently smooth, SN (h) converges to h. See for example Theorem 2.8.
We show next that SN (h) converges to h in L2. Rather than attempting to prove
convergence at each point, this result considers an integrated form of convergence.

Theorem 2.7. Suppose f is integrable on the circle. Then ||SN (f)−f ||L2 Ñ 0.
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Proof. Given ε > 0 and an integrable f , we first approximate f to within
ε
2 in the L2 norm by a continuous function g. Then we approximate g by a trig
polynomial p to within ε

2 . See below for details. These approximations yield

||f − p||L2 ≤ ||f − g||L2 + ||g − p||L2 <
ε

2
+

ε

2
= ε. (25)

Once we have found this p, we use orthogonality as in Theorem 2.3. Let N be
at least as large as the degree of p. Let VN denote the (2N +1)-dimensional (hence
closed) subspace spanned by the functions einx for |n| ≤ N . By Theorem 2.3, there
is a unique element w of VN minimizing ||f − w||L2 . That w is the partial sum
SN (f), namely the orthogonal projection of f onto VN .

By Proposition 2.3, we have

||f − SN (f)||L2 ≤ ||f − p||L2 (26)

for all elements p of VN . Take p to be the polynomial in (25) and take N at least
the degree of p. Combining (26) and (25) then gives

||f − SN (f)||L2 ≤ ||f − p||L2 ≤ ||f − g||L2 + ||g − p||L2 < ε. (27)

It therefore suffices to verify that the two above approximations are valid.
Given f integrable, by Lemma 1.6 we can find a continuous g such that sup(|g|) ≤
sup(|f |) = M and such that ||f − g||L1 is as small as we wish. Since

||f−g||2L2 =
1
2π

∫ 2π

0

|f−g|2dx ≤ sup(|f − g|)
2π

∫ 2π

0

|f−g|dx ≤ 2M ||f−g||L1 , (28)

we may choose g to bound the expression in (28) by ε
2 .

Now g is given and continuous on the circle. By Corollary 1.8, there is a trig
polynomial p such that ||g − p||L∞ < ε

2 . Therefore

||g − p||2L2 =
1
2π

∫ 2π

0

|g(x) − p(x)|2dx ≤ ||g − p||2L∞ .

Hence ||g − p||L2 < ε
2 as well. We have established both approximations used in

(25), and hence the conclusion of the theorem. �

Corollary 2.4 (Parseval’s formula). If f is integrable on the circle, then
∞∑

−∞
|f̂(n)|2 = ||f ||2L2 . (29)

Proof. By the orthonormality properties of the functions x Ñ einx, f−SN (f)
is orthogonal to VN . By the Pythagorean theorem, we have

||f ||2L2 = ||f − SN (f)||2L2 + ||SN (f)||2L2 = ||f − SN (f)||2L2 +
N∑

−N

|f̂(n)|2. (30)

Letting N tend to infinity in (30) and using Theorem 2.7 gives (29). �

Corollary 2.5 (Riemann-Lebesgue lemma). If f is integrable on the circle,
then lim|n|Ñ∞ f̂(n) = 0.

Proof. The series in (29) converges; hence its terms tend to 0. �
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Polarization has several applications to Fourier series. By (29), if f and g are
integrable on the circle S1, then

∑ |f̂ |2 = ||f ||2L2 and similarly for g. It follows by
polarization that

〈f̂ , ĝ〉2 =
∞∑

−∞
f̂(n)ĝ(n) =

1
2π

∫ 2π

0

f(x)g(x)dx = 〈f, g〉L2 . (31)

Corollary 2.6. If f and g are integrable on the circle, then (31) holds.

Corollary 2.7. The map f Ñ F(f) from L2(S1) to l2 satisfies the relation

〈Ff,Fg〉2 = 〈f, g〉L2 .

The analogue of this corollary holds for Fourier transforms on R, Rn, or in
even more abstract settings. Such results, called Plancherel theorems, play a crucial
role in extending the definition of Fourier transform to objects (called distributions)
more general than functions. See Chapter 3.

Theorem 2.8. Suppose f is continuously differentiable on the circle. Then its
Fourier series converges absolutely to f .

Proof. By Lemma 1.8, we have f̂(n) = f̂ ′(n)
in for n �= 0. We first apply the

Parseval identity to the Fourier series for f ′, getting

1
2π

∫

|f ′(x)|2dx =
∑

|f̂ ′(n)|2 =
∑

n2|f̂(n)|2. (32)

Then we use the Cauchy-Schwarz inequality on
∑ |f̂(n)| to get

∑
|f̂(n)| = |f̂(0)| +

∑ 1
n

n|f̂(n)| ≤ |f̂(0)| + (
∑ 1

n2
)

1
2 (

∑
n2|f̂(n)|2) 1

2 . (33)

By (32), the second sum on the right-hand side of (33) converges. The sum
∑

n�=0
1

n2

also converges and can be determined exactly using Fourier series. See Exercise 2.31.
Since each partial sum is continuous and the partial sums converge uniformly,

the limit is continuous. By Corollary 1.10, the Fourier series converges absolutely
to f . �

Exercise 2.31. Compute the Fourier series for the function f defined by
f(x) = (π − x)2 on (0, 2π). Use this series to show that

∑∞
n=1

1
n2 = π2

6 .

Exercise 2.32. Find
∑∞

n=1
(−1)n

n2 . Suggestion. Find the Fourier series for x2

on (−π, π).

9. Bernstein’s theorem

We continue by proving a fairly difficult result. We include it to illustrate
circumstances more general than Theorem 2.8 in which Fourier series converge
absolutely and uniformly.

Definition 2.13. Let f : S1 Ñ C be a function and suppose α > 0. We say
that f satisfies a Hölder condition of order α if there is a constant C such that

|f(x) − f(y)| ≤ C|x − y|α (34)

for all x, y. Sometimes we say f is Hölder continuous of order α.
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By the mean-value theorem from calculus, a differentiable function satisfies the
inequality

|f(x) − f(y)| ≤ sup |f ′(t)| |x − y|.
Hence, if f ′ is bounded, f satisfies a Hölder condition with α = 1. Note also that
a function satisfying (34) must be uniformly continuous.

Theorem 2.9. Suppose f is Hölder continuous on the circle of order α, and
α > 1

2 . Then the Fourier series for f converges absolutely and uniformly.

Proof. The Hölder condition means that there is a constant C such that
inequality (34) holds. We must somehow use this condition to study

∑

n∈Z

|f̂(n)|.

The remarkable idea here is to break up this sum into dyadic parts, and esti-
mate differently in different parts. For p a natural number let Rp denote the set of
n ∈ Z for which 2p−1 ≤ |n| < 2p. Note that there are 2p integers in Rp. We have

∑

n∈Z

|f̂(n)| = |f̂(0)| +
∑

p

∑

n∈Rp

|f̂(n)|. (35)

In each Rp we can use the Cauchy-Schwarz inequality to write

∑

n∈Rp

|f̂(n)| ≤
⎛

⎝
∑

n∈Rp

|f̂(n)|2
⎞

⎠

1
2

(2p)
1
2 . (36)

At first glance the factor 2
p
2 looks troublesome, but we will nonetheless verify

convergence of the Fourier series.
Let gh be defined by gh(x) = f(x + h)− f(x− h). The Hölder condition gives

|gh(x)|2 ≤ C2|2h|2α = C ′|h|2α,

and integrating we obtain

||gh||2L2 ≤ C ′|h|2α.

By the Parseval-Plancherel theorem (Corollary 2.7), for any h we have
∑

n∈Z

|ĝh(n)|2 = ||gh||2L2 ≤ C ′|h|2α. (37)

Now we compute the Fourier coefficients of gh, relating them to f . Using the
definition directly, we get

ĝh(n) =
1
2π

∫ 2π

0

(f(x + h) − f(x − h)) e−inxdx.

Changing variables in each term and recollecting gives

ĝh(n) =
1
2π

∫ 2π

0

f(y)e−inyeinhdy − 1
2π

∫ 2π

0

f(y)e−inye−inhdy = 2isin(nh)f̂(n).

Hence we have

|ĝh(n)|2 = 4sin2(nh)|f̂(n)|2.
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Putting things together we obtain, with a new constant c,

sin2(nh)|f̂(n)|2 =
1
4
|ĝh(n)|2 ≤ 1

4

∑

n

|ĝh(n)|2 ≤ c|h|2α. (38)

Also we have
∑

n∈Rp

|f̂(n)|2 =
∑

n∈Rp

|f̂(n)|2sin2(nh)
1

sin2(nh)
=

∑

n∈Rp

|ĝh(n)|2 1
4sin2(nh)

. (39)

Put h = π
2p+1 . Then π

4 ≤ |n|h ≤ π
2 and hence 1

2 ≤ sin2(nh) ≤ 1. Using sin2(nh)≥ 1
2

in (39), we get

∑

n∈Rp

|f̂(n)|2 ≤ 1
2

∑

n∈Rp

|ĝh(n)|2. (40)

For h = π
2p+1 , we have

|ĝh(n)|2 ≤ C1| π

2p+1
|2α ≤ C22−2αp. (41)

Combining (40), (41), and (36) (note the exponent 1
2 there) gives

∑

n∈Z

|f̂(n)| = |f̂(0)| +
∑

p

∑

n∈Rp

|f̂(n)| ≤ |f̂(0)| + C2

∑

p

2−αp2
p
2 . (42)

The series on the right-hand side of (42) is of the form
∑

xp where x = 2
1−2α

2 .
If α > 1

2 , then |x| < 1 and this series converges. �

The conclusion of the theorem fails if f satisfies a Hölder condition of order 1
2 .

See [K].

10. Compact Hermitian operators

Fourier series give but one of many examples of orthonormal expansions. In this
section we establish the spectral theorem for compact Hermitian operators. Such
operators determine complete orthonormal systems consisting of eigenvectors. In
the next section we apply this result to Sturm-Liouville equations. These second
order ordinary differential equations with homogeneous boundary conditions played
a major role in the historical development of operator theory and remain significant
in current applied mathematics, engineering, and physics.

An operator on a Hilbert space is compact if it can be approximated (in norm)
arbitrarily well by operators with finite-dimensional range. We mention this char-
acterization for the intuition it provides. The precise definition, which also applies
in the context of complete normed vector spaces, involves subsequences. In older
literature, compact operators are called completely continuous.

Definition 2.14. Suppose L ∈ L(H). Then L is compact if, whenever {zn} is
a bounded sequence in H, then {L(zn)} has a convergent subsequence.

By the Bolzano-Weierstrass theorem (see Theorem 6.2), each bounded sequence
in Cd has a convergent subsequence. Hence an operator with finite-dimensional
range must be compact. A constant multiple of a compact operator is compact.
The sum of two compact operators is compact. We check in Proposition 2.10 that
the composition (on either side) of a compact operator with a bounded operator
is compact. On the other hand, the identity operator is compact only when the
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Hilbert space is finite-dimensional. Proposition 2.13 gives one of many possible
proofs of this last statement.

We will use the following simple characterization of compact operators. See
[D1] for many uses of the method. The two statements in the proof are equivalent,
with different values of ε. In the statement we write f for an element of H, to
remind us that we are typically working on function spaces.

Proposition 2.9. Suppose L ∈ L(H). Then L is compact if and only if, for
each ε > 0, there are compact operators Kε and Tε such that either of the following
(equivalent) statements holds:

||Lf || ≤ ε||f || + ||Kεf || (∗1)

||Lf ||2 ≤ ε||f ||2 + ||Tεf ||2. (∗2)

Proof. When L is compact both (∗1) and (∗2) are obvious; we take Kε and
Tε equal to L. The issue is to use either inequality to establish compactness.

Assuming the inequality (∗1), we prove that L is compact. The proof assuming
the inequality (∗2) is similar. Let {fn} be a bounded sequence; we may assume
that ||fn|| ≤ 1. We wish to extract a Cauchy subsequence of L(fn). For each
positive integer m, we set ε = 1

2m in (∗1). We obtain a sequence {Lm} of compact
operators. Thus, for fixed m, each sequence {Lm(fn)} has a convergent (hence
Cauchy) subsequence. Hence we can find a subsequence, still labeled {fn}, such
that (for n, k large)

||L(fn) − L(fk)||= ||L(fn − fk)|| ≤ 1
2m

+ ||Lm(fn − fk)|| ≤ 1
2m

+
1

2m
=

1
m

. (∗)
Let {f0

n} denote the original sequence. Using (∗), we choose a subsequence
{f1

n} of {f0
n}, and inductively for each j a subsequence {f j+1

n } of {f j
n}, such that

the following holds. For any pair of elements f, g in the sequence {f j
n} we have

||L(f) − L(g)|| ≤ 1
j
.

Using the Cantor diagonalization trick, we extract the diagonal subsequence {f j
j }.

This sequence is a subsequence of the original sequence {f0
n} and its image under

L is Cauchy. Since H is complete, {L(f j
j )} converges, and thus L is compact. �

As noted in the proof, when L is compact, we may choose Kε or Tε equal to L.
The point of Proposition 2.9 is the converse. It enables us to establish compactness
by proving an inequality, instead of dealing with subsequences. We illustrate with
several examples, which can of course also be proved using subsequences.

Proposition 2.10. Suppose L ∈ L(H) and L is compact. If M,T ∈ L(H),
then ML and LT are compact.

Proof. That LT is compact follows directly from the definition of compact-
ness. If {zn} is a bounded sequence, then {Tzn} also is, and hence {L(Tzn)} has
a convergent subsequence. Similarly, ML is compact.

That ML is compact can also be proved using Proposition 2.9 as follows. Given
ε > 0, put ε′ = ε

1+||M || . Put K = ||M || L; then K is compact. We have

||MLz|| ≤ ||M || ||Lz|| ≤ ||M ||(ε′||z|| + ||Lz||) ≤ ε||z|| + ||Kz||.
By Proposition 2.9, ML is also compact. �
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Proposition 2.11. Let {Ln} be a sequence of operators with limn ||Ln−L||=0.
If each Ln is compact, then L is also compact.

Proof. Given ε > 0, we can find an n such that ||L−Ln|| < ε. Then we write

||Lf || ≤ ||(L − Ln)f || + ||Ln(f)|| ≤ ε||f || + ||Ln(f)||.
The result therefore follows from Proposition 2.9. �

A converse of Proposition 2.11 also holds; each compact operator is the limit
in norm of a sequence of operators with finite-dimensional ranges. We can also use
Proposition 2.9 to prove the following result.

Theorem 2.10. Assume L ∈ L(H). If L is compact, then L∗ is compact.
Furthermore, L is compact if and only if L∗L is compact.

Proof. See Exercise 2.35. �

Exercise 2.33 (Small constant large constant trick). Given ε > 0, prove that
there is a Cε > 0 such that

|〈x, y〉| ≤ ε||x||2 + Cε||y||2.
Exercise 2.34. Prove that the second inequality in Proposition 2.9 implies

compactness.

Exercise 2.35. Prove Theorem 2.10. Use Proposition 2.9 and Exercise 2.33
to verify the if part of the implication.

Before turning to the spectral theorem for compact Hermitian operators, we
give one of the classical types of examples. The function K in this example is called
the integral kernel of the operator T . Such integral operators arise in the solutions
of differential equations such as the Sturm-Liouville equation.

Proposition 2.12. Let H = L2([a, b]). Assume that (x, t) Ñ K(x, t) is con-
tinuous on [a, b] × [a, b]. Define an operator T on H by

Tf(x) =
∫ b

a

K(x, t)f(t)dt.

Then T is compact. (The conclusion holds under weaker assumptions on K.)

Proof. Let {fn} be a bounded sequence in L2([a, b]). The following estimate
follows from the Cauchy-Schwarz inequality:

|T (fn)(x) − T (fn)(y)|2 ≤ sup |K(x, t) − K(y, t)|2||fn||2L2 .

Since K is continuous on the compact set [a, b] × [a, b], it is uniformly continuous.
It follows that the sequence {T (fn)} is equi-continuous and uniformly bounded.
By the Arzela-Ascoli theorem, there is a subsequence of {T (fn)} that converges
uniformly. In particular, this subsequence converges in L2. Hence, {T (fn)} has a
convergent subsequence, and thus T is compact. �

Exercise 2.36. Suppose that the integral kernel in Proposition 2.12 satisfies
∫ b

a
|K(x, t)|dt ≤ C and

∫ b

a
|K(x, t)|dx ≤ C. Show that T ∈ L(H) and that ||T ||≤C.

A compact operator need not have any eigenvalues or eigenvectors.
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Example 2.3. Let L : l2 Ñ l2 be defined by

L(z1, z2, . . . ) = (0, z1,
z2

2
,
z3

3
, . . . ).

Think of L as given by an infinite matrix with sub-diagonal entries 1, 1
2 , 1

3 , . . . .
Then L is compact but has no eigenvalues.

For a second example, consider the integral operator T on continuous functions
in L2([0, 1]) defined by

Tf(x) =
∫ x

0

f(t)dt.

Then T is compact but it has no eigenvalues. It is obvious that 0 is not an eigen-
value. For λ �= 0, the relation Tf = λf forces f to be a constant times an exponen-
tial but also f(0) must be 0. Hence f must be 0. We will see this operator again
in Theorem 4.2 of Chapter 4.

Exercise 2.37. Verify the conclusions of Example 2.3.

Compact Hermitian operators, however, have many eigenvectors. In fact, by
the spectral theorem, there is a complete orthonormal system of eigenvectors.
Before proving the spectral theorem, we note two easy results about eigenvectors
and eigenvalues.

Proposition 2.13. An eigenspace of a compact operator corresponding to a
non-zero eigenvalue must be finite-dimensional.

Proof. Assume that L is compact and L(zj) = λzj for a sequence of orthogo-
nal unit vectors zj . Since L is compact, L(zj) = λzj has a convergent subsequence.
If λ �= 0, then zj has a convergent subsequence. But no sequence of orthogonal
unit vectors can converge. Thus λ = 0. �

Proposition 2.14. The eigenvalues of a Hermitian operator are real and the
eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Assume Lf = λf and f �= 0. We then have

λ||f ||2 = 〈Lf, f〉 = 〈f, L∗f〉 = 〈f, Lf〉 = 〈f, λf〉 = λ||f ||2.
Since ||f ||2 �= 0, we conclude that λ = λ.

The proof of the second statement amounts to polarizing the first. Thus we
suppose Lf = λf and Lg = μg where λ �= μ. We have, as μ is real,

λ〈f, g〉 = 〈Lf, g〉 = 〈f, Lg〉 = μ〈f, g〉.
Hence 0 = (λ − μ)〈f, g〉 and the second conclusion follows. �

Proposition 2.15. Suppose L ∈ L(H) is Hermitian. Then

||L|| = sup
||z||=1

|〈Lz, z〉|. (43)

Proof. Let α equal the right-hand side of (43). We prove both inequalities:
α ≤ ||L|| and ||L|| ≤ α. Since |〈Lz, z〉| ≤ ||Lz|| ||z||, we see that

α = sup
||z||=1

|〈Lz, z〉| ≤ sup
||z||=1

||Lz|| = ||L||.
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The opposite inequality is harder. It uses the polarization identity (21) and the
parallelogram law (9). We first note, by Theorem 2.6, that α = 0 implies L = 0.
Hence we may assume α �= 0. Since L is Hermitian, it follows that

〈Lz,w〉 = 〈z, Lw〉 = 〈Lw, z〉.
Applying this equality in (21), we obtain, for all z, w,

4Re〈Lz,w〉 = 〈L(z + w), z + w〉 − 〈L(z − w), z − w〉.
Using 〈Lζ, ζ〉 ≤ α||ζ||2 and the parallelogram law, we obtain

4Re〈Lz,w〉 ≤ α(||z + w||2 + ||z − w||2) = 2α(||z||2 + ||w||2). (44)

Set w = Lz
α in (44) to get

4||Lz||2
α

≤ 2α(||z||2 +
||Lz||2

α2
).

Simplifying shows that this inequality is equivalent to 2 ||Lz||2
α ≤ 2α||z||2, which

implies ||Lz||2 ≤ α2||z||2. Hence ||L|| ≤ α. �

Theorem 2.11 (Spectral Theorem). Suppose L ∈ L(H) is compact and Her-
mitian. Then there is a complete orthonormal system consisting of eigenvectors of
L. Each eigenspace corresponding to a non-zero eigenvalue is finite-dimensional.

Proof. The conclusion holds if L is the zero operator; we therefore ignore
this case and assume ||L|| > 0.

The first fact needed is that there is an eigenvalue λ with |λ| = ||L||. Note
also, since L is Hermitian, that in this case λ is real and thus λ = ±||L||. In the
proof we write α for ±||L||; in general only one of the two values works.

Because L is Hermitian, the subtle formula (43) for the norm of L holds. We
let {zν} be a sequence on the unit sphere such that |〈Lzν , zν〉| converges to ||L||.
Since L is compact, we can find a subsequence (still labeled {zν}) such that L(zν)
converges to some w.

We will show that ||w|| = ||L|| and also that αzν converges to w. It follows
that zν converges to z = w

α . Then we have a unit vector z for which Lz = w = αz,
and hence the first required fact will hold.

To see that ||w|| = ||L||, we prove both inequalities. Since the norm is contin-
uous and ||zν || = 1, we obtain

||w|| = lim
ν

||Lzν || ≤ ||L||.

To see the other inequality, note that |〈Lzν , zν〉| converges to ||L|| and L(zν) con-
verges to w. Hence |〈w, zν〉| converges to ||L|| as well. We then have

||L|| = lim
ν

|〈w, zν〉| ≤ ||w||.

Thus ||w|| = ||L||.
Next we show that αzν converges to w. Consider the squared norm

||L(zν) − αzν ||2 = ||L(zν)||2 − α2Re〈Lzν , zν〉 + ||L||2.
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The right-hand side converges to ||w||2 − 2||L||2 + ||L||2 = 0. Therefore the left-
hand side converges to 0 as well, and hence w = lim(αzν). Thus zν itself converges
to z = w

α . Finally
L(z) = lim(L(zν)) = w = αz.

We have found an eigenvector z with eigenvalue α = ±||L||. By Proposition 2.13,
the eigenspace Eα corresponding to α is finite-dimensional and thus a closed sub-
space of H.

Once we have found one eigenvalue λ1, we consider the orthogonal complement
E⊥

λ1
of the eigenspace Eλ1 . Then E⊥

λ1
is invariant under L, and the restriction of

L to this subspace remains compact and Hermitian. We repeat the procedure,
obtaining an eigenvalue λ2. The eigenspaces Eλ1 and Eλ2 are orthogonal. Con-
tinuing in this fashion, we obtain a non-increasing sequence of (absolute values of)
eigenvalues and corresponding eigenvectors. Each eigenspace is finite-dimensional
and the eigenspaces are orthogonal. We normalize the eigenvectors to have norm 1;
hence there is a bounded sequence {zj} of eigenvectors. By compactness {L(zj)}
has a convergent subsequence. Since L(zj) = λjzj , also {λjzj} has a convergent
subsequence. A sequence of orthonormal vectors cannot converge; the subsequence
cannot be eventually constant because each eigenspace is of finite dimension. The
only possibilities are that there are only finitely many nonzero eigenvalues, or that
the eigenvalues λj tend to 0.

Finally we establish completeness. Let M denote a maximal collection of
orthonormal eigenvectors, including those with eigenvalue 0. Since we are assum-
ing H is separable, we may assume the eigenvectors are indexed by the positive
integers. Let Pn denote the projection onto the span of the first n eigenvectors.
We obtain

Pn(ζ) =
n∑

j=1

〈ζ, zj〉zj .

Therefore
||L(Pn(ζ)) − L(ζ)|| ≤ max(j≥n+1)|λj | ||ζ||. (45)

Since the eigenvalues tend to zero, (45) shows that L(Pn(ζ)) converges to L(ζ).
Hence we obtain the orthonormal expansion for w in the range R(L) of L:

w = L(ζ) =
∞∑

j=1

〈ζ, zj〉λjzj . (46)

The nullspace N (L) is the eigenspace corresponding to eigenvalue 0, and hence
any element of N (L) has an expansion in terms of vectors in M . Finally, for any
bounded linear map L, Proposition 2.7 guarantees that N (L)⊕R(L∗) = H. If also
L = L∗, then N (L) ⊕R(L) = H. Therefore 0 is the only vector orthogonal to M ,
and M is complete. �

Exercise 2.38. Try to give a different proof of (43). (In finite dimensions one
can use Lagrange multipliers.)

Exercise 2.39. Show that L∗L is compact and Hermitian if L is compact.

Remark 2.1. The next several exercises concern commutators of operators.
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Definition 2.15. Let A,B be bounded operators. Their commutator [A,B]
is defined by AB − BA.

Exercise 2.40. Let A,B,C be bounded operators, and assume that [C,A]
and [C,B] are compact. Prove that [C,AB] is also compact. Suggestion: Do some
easy algebra and then use Proposition 2.10.

Exercise 2.41. For a positive integer n, express [A,Bn] as a sum of n terms
involving [A,B]. What is the result when [A,B] = I?

Exercise 2.42. Use the previous exercise to show that there are no bounded
operators satisfying [A,B] = I. Suggestion: Compute the norm of [A,Bn] in two
ways and let n tend to infinity.

Exercise 2.43. Suppose that 〈Lz, z〉 ≥ 0 for all z and that ||L|| ≤ 1. Show
that ||I − L|| ≤ 1.

Exercise 2.44. Assume L ∈ L(H). Show that L is a linear combination of
two Hermitian operators.

Exercise 2.45. Fill in the following outline to show that a Hermitian operator
A is a linear combination of two unitary operators. Without loss of generality, we
may assume ||A|| ≤ 1. If −1 ≤ a ≤ 1, put b =

√
1 − a2. Then a = 1

2 ((a + ib) +
(a − ib)) is the average of two points on the unit circle. We can analogously write
the operator A as the average of unitary operators A + iB and A − iB, if we can
find a square root of I − A2. Put L = I − A2. We can find a square root of L as
follows. We consider the power series expansion for

√
1 − z, and replace z by A2.

In other words,
√

I − C makes sense if ||C|| ≤ 1. You will need to know the sign of
the coefficients in the expansion to verify convergence. Hence

√
L =

√
I − (I − L)

makes sense.

We close this section with a few words about unbounded operators. This term
refers to linear mappings, defined on dense subsets of a Hilbert space, but not
continuous.

Suppose D is a dense subset of a Hilbert space H and L is defined and linear
on D. If L were continuous, then L would extend to a linear mapping on H. Many
important operators are not continuous. Differentiation d

dx is defined and linear on
a dense set in L2([0, 2π]), but it is certainly not continuous. For example, { einx

in }
converges to 0 in L2, but d

dx ( einx

in ) = einx, whose L2 norm equals 1 for each n. To
apply Hilbert space methods to differential operators, we must be careful.

Let L : D(L) ⊆ H Ñ H be an unbounded operator. The domain D(L∗) of
the adjoint of L is the set of v ∈ H such that the mapping u Ñ 〈Lu, v〉 is a
continuous linear functional. By the Riesz Lemma, there is then a unique w such
that 〈Lu, v〉 = 〈u,w〉. We then put L∗(v) = w. It can happen that the domain of
L∗ is not dense in H.

We say that an unbounded (but densely defined) operator L is Hermitian if

〈Lz,w〉 = 〈z, Lw〉
for all z and w in the domain of L. We say that L is self-adjoint if D(L) = D(L∗)
and the two maps agree there. Thus L is Hermitian if Lz = L∗z when both are
defined, and self-adjoint if also D(L) = D(L∗). It often happens, with a given
definition of D(L), that L∗ agrees with L on D(L), but L is not self-adjoint. One



11. STURM-LIOUVILLE THEORY 71

must increase the domain of L, thereby decreasing the domain of L∗, until these
domains are equal, before one can use without qualification the term self-adjoint.

Exercise 2.46. (Subtle) Put L = i d
dx on the subspace of differentiable func-

tions f in L2([0, 1]) for which f(0) = f(1) = 0. Show that 〈Lf, g〉 = 〈f, Lg〉,
but that L is not self-adjoint. Can you state precisely a domain for L making it
self-adjoint? Comment: Look up the term absolutely continuous and weaken the
boundary condition.

11. Sturm-Liouville theory

Fourier series provide the most famous example of orthonormal expansion, but
many other orthonormal systems arise in applied mathematics and engineering. We
illustrate by considering certain differential equations known as Sturm-Liouville
equations. Mathematicians from the 19-th century were well-aware that many
properties of the functions sine and cosine have analogues when these functions
are replaced by linearly independent solutions of a second-order linear ordinary
differential equation. In addition to orthonormal expansions, certain oscillation
issues generalize as well. We prove the Sturm separation theorem, an easy result,
to illustrate this sort of generalization, before we turn to the more difficult matter
of orthonormal expansion.

Consider a second order linear ordinary differential equation y′′ + qy′ + ry = 0.
Here q and r are continuous functions of x. What can we say about the zeroes
of solutions? Figure 4 illustrates the situation for cosine and sine. Theorem 2.12
provides a general result.

Figure 4. Sturm Separation

Theorem 2.12 (Sturm separation theorem). Let y1 and y2 be linearly inde-
pendent (twice differentiable) solutions of y′′ + qy′ + ry = 0. Suppose that α < β
and α, β are consecutive zeroes of y1. Then there is a unique x in the interval
(α, β) with y2(x) = 0. Hence the zeroes of y1 and y2 alternate.
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Proof. Consider the expression W (x) = y1(x)y′
2(x) − y2(x)y′

1(x), called the
Wronskian. We claim that it does not vanish. Assuming the claim, W has only one
sign. We evaluate W at α and β, obtaining −y2(α)y′

1(α) and −y2(β)y′
1(β); these

expressions must have the same sign. In particular, y′
1 does not vanish at these

points. Also, the values y′
1(α) and y′

1(β) must have opposite signs because α and
β are consecutive zeroes of y1. Hence the values of y2(α) and y2(β) have opposite
signs. By the intermediate value theorem, there is an x in between α and β with
y2(x) = 0. This x must be unique, because otherwise the same reasoning would
find a zero of y1 in between the two zeroes of y2. Since α and β are consecutive
zeroes of y1, we would get a contradiction.

It remains to show that W is of one sign. We show more in Lemma 2.2. �

Lemma 2.2. Suppose y1 and y2 both solve L(y) = y′′ + qy′ + ry = 0. Then y1

and y2 are linearly dependent if and only if W vanishes identically. Also y1 and y2

are linearly independent if and only if W vanishes nowhere.

Proof. Suppose first that W (x0) = 0. Since W (x0) is the determinant of the
matrix of coefficients, the system of equations

(
y1(x0) y2(x0)
y′
1(x0) y′

2(x0)

)(
c1

c2

)

=
(

0
0

)

has a non-trivial solution (c1, c2). Since L is linear, the function y = c1y1 + c2y2

also satisfies L(y) = 0. Since y(x0) = y′(x0) = 0, this solution y is identically 0.
(See the paragraph after the proof.) Therefore the matrix equation holds at all x,
the functions y1 and y2 are linearly dependent, and W is identically 0.

Suppose next that W is never zero. Consider a linear combination c1y1 + c2y2

that vanishes identically. Then also c1y
′
1 + c2y

′
2 vanishes identically, and hence

(
y1 y2

y′
1 y′

2

) (
c1

c2

)

=
(

0
0

)

.

Since W is the determinant of the matrix here and W (x) �= 0 for all x, the only
solution is c1 = c2 = 0. Therefore y1 and y2 are linearly independent. �

In the proof of Lemma 2.2, we used the following standard fact. The second
order linear equation Ly = 0, together with initial conditions y(x0) and y′(x0), has
a unique solution. This result can be proved by reducing the second order equation
to a first order system. Uniqueness for the first order system can be proved using
the contraction mapping principle in metric spaces. See [Ro].

We now turn to the more sophisticated Sturm-Liouville theory. Consider the
following second-order differential equation on a real interval [a, b]. Here y is the
unknown function; p, q, w are fixed real-valued functions, and the αj and βj are
real constants. These constants are subject only to the constraint that both (SL.1)
and (SL.2) are non-trivial. In other words, neither α2

1 + α2
2 nor β2

1 + β2
2 is 0. This

condition makes the equation into a boundary-value problem. Both endpoints of
the interval [a, b] matter. The functions p′, q, w are assumed to be continuous and
the functions p and w are assumed positive.

(py′)′ + qy + λwy = 0 (SL)

α1y(a) + α2y
′(a) = 0 (SL.1)

β1y(b) + β2y
′(b) = 0. (SL.2)
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Remark 2.2. It is natural to ask how general the Sturm-Liouville equation is
among second order linear equations. Consider any second order ODE of the form
Py′′ + Qy′ + Ry = 0, where P �= 0. We can always put it into the Sturm-Liouville
form by the following typical trick from ODE, called an integrating factor. We
multiply the equation by an unknown function u, and figure out what u must be
to put the equation in Sturm-Liouville form:

0 = uPy′′ + uQy′ + uRy = (py′)′ + ry.

To make this equation hold, we need uP = p and uQ = p′. Hence we require
p′

p = Q
P , which yields p = e

∫ Q
P . Hence, if we choose u = 1

P e
∫ Q

P , we succeed in
putting the equation in the form (SL).

The following lemma involving the Wronskian gets used in an important inte-
gration by parts below, and it also implies that each eigenspace is one-dimensional.
Note that the conclusion also holds if we replace g by g, because all the parameters
in (SL), (SL.1), and (SL.2) are real.

Lemma 2.3. If f and g both satisfy (SL.1) and (SL.2), then

f(a)g′(a) − f ′(a)g(a) = f(b)g′(b) − f ′(b)g(b) = 0. (47)

Proof. Assume both f and g satisfy the conditions in (SL). We then can write
(

f(b) f ′(b)
g(b) g′(b)

) (
β1

β2

)

=
(

0
0

)

, (48)

and similarly for the values at a and the αj . Equations (SL.1) and (SL.2) are non-
trivial; hence (48) and its analogue for a have non-trivial solutions, and each of the
matrices (

f(a) f ′(a)
g(a) g′(a)

)

(
f(b) f ′(b)
g(b) g′(b)

)

has a non-trivial nullspace. Hence each determinant vanishes. �

Corollary 2.8. Suppose f and g both solve the same (SL) equation. Then f
and g are linearly dependent.

Proof. By Lemma 2.3, the two expressions in (47) vanish. But these expres-
sions are Wronskian determinants. By Lemma 2.2, the two solutions are linearly
independent if and only if their Wronskian determinant is (everywhere) non-zero. �

Later we use one more fact about the Wronskian.

Lemma 2.4. Assume u, v both solve the Sturm-Liouville equation (py′)′+qy=0.
Let W = uv′ − u′v. Then pW is constant. If u, v are linearly independent, then
this constant is non-zero.

Proof. We want to show that (p(uv′−u′v))′ = 0. Computing the expression,
without any assumptions on u, v, gives

p(uv′′ − u′′v) + p′(uv′ − u′v).

Since u and v satisfy the equation we also have

pu′′ + p′u′ + qu = 0
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pv′′ + p′v′ + qv = 0.

Multiply the first equation by v, the second by u and then subtract. We get

p(u′′v − uv′′) + p′(u′v − uv′) = 0,

which is what we need. The last statement follows immediately from Lemma 2.2.
�

Each λ for which (SL) admits a non-zero solution is called an eigenvalue of the
problem, and each non-zero solution is called an eigenfunction corresponding to this
eigenvalue. The terminology is consistent with the standard notions of eigenvalue
and eigenvector, as noted in Lemma 2.5 below. In general, when the elements of
a vector space are functions, one often says eigenfunction instead of eigenvector.
Corollary 2.8 thus says that the eigenspace corresponding to each eigenvalue is
one-dimensional.

To connect the Sturm-Liouville setting with Fourier series, take p = 1, q = 0,
and w = 1. We get the familiar equation

y′′ + λy = 0,

whose solutions are sines and cosines. For example, if the interval is [0, π], and we
assume that (SL.1) and (SL.2) give y(0) = y(π) = 0, then the eigenvalues are m2

for positive integers m. The solutions are ym(x) = sin(mx).
Sturm-Liouville theory uses the Hilbert space H = (L2([a, b]), w), consisting of

(equivalence classes of) square-integrable measurable functions with respect to the
weight function w. The inner product is defined by

〈f, g〉w =
∫ b

a

f(x)g(x)w(x)dx.

Although the Sturm-Liouville situation is much more general than the equation
y′′ + λy = 0, the conclusions in the following theorem are remarkably similar to
the results we have proved about Fourier series.

Theorem 2.13. Consider the Sturm-Liouville equation (SL) with boundary
conditions (SL.1) and (SL.2). There is a countable collection of real eigenvalues λj

tending to ∞ with λ1 < λ2 < . . . . For each eigenvalue the corresponding eigenspace
is one-dimensional. The corresponding eigenfunctions φj are orthogonal. After di-
viding each φj by a constant, we assume that these eigenfunctions are orthonormal.
These eigenfunctions form a complete orthonormal system for H. If f is continu-
ously differentiable on [a, b], then the series

∞∑

j=1

〈f, φj〉wφj(x) (49)

converges to f(x) at each point of (a, b).

Proving this theorem is not easy, but we will give a fairly complete proof. We
begin by rephrasing everything in terms of an unbounded operator L on H. On an
appropriate domain, L is defined by

L =
−1
w

(
d

dx

(

p
d

dx

)

+ q

)

. (50)
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The domain D(L) contains all twice continuously differentiable functions satisfy-
ing the (SL) boundary conditions. Eigenvalues of the Sturm-Liouville problem
correspond to eigenvalues of this operator L.

Lemma 2.5. Equation (SL) is equivalent to Ly = λy.

Proof. Left to the reader. �

Proposition 2.16. The operator L is Hermitian. In other words, if f and
g are twice continuously differentiable functions on [a, b] and satisfy (SL.1) and
(SL.2), then

〈Lf, g〉w = 〈f, Lg〉w. (51)

Proof. The proof amounts to integrating by parts twice and using the bound-
ary conditions. One integration by parts gives

〈Lf, g〉w =
∫ b

a

−1
w(x)

(
d

dx
(p(x)f ′(x)) + q(x)f(x)

)

g(x)w(x)dx

= −
∫ b

a

(
d

dx
(p(x)f ′(x)) + q(x)f(x)

)

g(x)dx

= −p(x)f ′(x)g(x)
∣
∣b
a

+
∫ b

a

(p(x)f ′(x))g′(x)dx −
∫ b

a

q(x)f(x)g(x)dx. (52)

We integrate the middle term by parts, and stop writing the variable x, to obtain

〈Lf, g〉w = −p f ′g
∣
∣b
a

+ p fg′
∣
∣b
a
−

∫ b

a

f
d

dx
(pg′) dx −

∫ b

a

qfg dx. (53)

After multiplying and dividing by w, the integrals in (53) become

∫ b

a

(−f

w
(

d

dx
(pg′) + qg)

)

w dx = 〈f, Lg〉w. (54)

The boundary terms in (53) become

p(x)
(
f(x)g′(x) − f ′(x)g(x)

) ∣
∣b
a
. (55)

Since both f and g satisfy the homogeneous boundary conditions, the term in (55)
vanishes by Lemma 2.3 (using g instead of g). Hence 〈Lf, g〉w = 〈f, Lg〉w. �

In order to proceed with Sturm-Liouville theory, we must introduce some stan-
dard ideas in operator theory. These ideas are needed because differential operators
such as L are defined on only a dense subspace of the Hilbert space, and they cannot
be extended continuously to the whole space.

Let H be a Hilbert space and let L : D(L) ⊆ H Ñ H be a densely defined
linear operator. For each complex number z consider the operator L − zI.

Definition 2.16. The complex number z is said to be in the spectrum of L if
(L − zI)−1 does not exist as a bounded linear operator. Otherwise z is said to be
in the resolvent set of L, and (L − zI)−1 is called the resolvent of L at z.
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Thus, when z is in the resolvent set, (L − zI)−1 exists and is bounded. The
equation (L− zI)−1f = μf is then equivalent to f = (L− zI)(μf), and hence also
to Lf = (z + 1

μ )f . Thus to find the eigenvalues of L we can study the resolvent
(L−zI)−1. If L is Hermitian and we choose a real k in the resolvent set for L, then
(L − kI)−1 is Hermitian. For L as in the Sturm-Liouville set-up, the resolvent is
a compact operator. In general, an unbounded operator L on a Hilbert space has
compact resolvent if there is a z for which (L− zI)−1 is compact. A generalization
of Theorem 2.13 holds when L is self-adjoint and has compact resolvent.

In order to prove Theorem 2.13, we need to know that the resolvent (L−kI)−1

is compact. We will use Green’s functions.

11.1. The Green’s function. In this subsection we construct the Green’s
function G in a fashion often used in Physics and Engineering. It will follow that
a complete orthonormal system exists in the Sturm-Liouville setting. Let L be the
operator defined in (50).

First we find a solution u to Lu = 0 that satisfies the boundary condition at a.
Then we find a solution v to Lv = 0 that satisfies the boundary condition at b. We
put

c = p(x)W (x) = p(x)(u(x)v′(x) − u′(x)v(x)). (56)
By Lemma 2.4, when u and v are linearly independent, c is a non-zero constant.

We then define the Green’s function as follows. Put G(x, t) = 1
cu(t)v(x) for

t < x and G(x, t) = 1
cu(x)v(t) for t > x. Then G extends to be continuous when

x = t. Thus Lu = 0 and Lv = 0. The following important theorem and its proof
illustrate the importance of the Green’s function.

Theorem 2.14. Consider the Sturm-Liouville equation (SL). Let L be the Her-
mitian operator defined by (50). Let u be a solution to Lu = 0 satisfying boundary
condition (SL.1) and v a solution to Lv = 0 with boundary condition (SL.2). As-
sume u and v are linearly independent, and define c by (56). Given f continuous,
define y by

y(x) =
1
c

∫ x

a

u(x)(vfw)(t)dt +
1
c

∫ b

x

v(x)(ufw)(t)dt =
∫ b

a

G(x, t)f(t) dt. (57)

Then y is twice differentiable and Ly = f .

Proof. We start with (57) and the formula (58) for L:

Ly =
−p

w
y′′ − p′

w
y′ − q

w
y. (58)

We apply L to (57) using the fundamental theorem of calculus and compute. The
collection of terms obtained where we differentiate past the integral must vanish
because u, v satisfy Lu = Lv = 0. The remaining terms arise because of the
fundamental theorem of calculus. The first time we differentiate we get

1
c
(uvp)(x) − 1

c
(uvp)(x) = 0.

The minus sign arises because the second integral goes from x to b, rather than
from b to x.

The next time we differentiate we obtain the term
p

c
(uxv − uvx)fw,
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with all terms evaluated at x. The term in parentheses is minus the Wronskian.
By Lemma 2.4, the entire expression simplifies to −(fw)(x). When we multiply by
−1
w , from formula (58) of L, this expression becomes f(x). We conclude, as desired,

that Ly = f . Since u, v are twice differentiable, p is continuously differentiable,
and w, f are continuous, it follows that y is twice differentiable. �

Things break down when we cannot find linearly independent u and v, and the
Green’s function need not exist. In that case we must replace L by L − kI for a
suitable constant k. The following example illustrates several crucial points.

Example 2.4. Consider the equation Ly = y′′ = 0 with y′(0) = y′(1) = 0.
The only solutions to Lu = 0 are constants, and hence linearly dependent. If c
satisfies (56), then c = 0. We cannot solve Ly = f for general f . Suppose that
y′(0) = y′(1) = 0, and that y′′ = f . Integrating twice we then must have

y(x) = y(0) +
∫ x

0

∫ t

0

f(s)dsdt.

By the fundamental theorem of calculus, y′(0) = 0 and y′(1) =
∫ 1

0
f(s)ds. If

∫ 1

0
f is

not 0, then we cannot solve the equation Ly = f . In this case, 0 is an eigenvalue for
L and hence L−1 does not exist. The condition

∫ 1

0
f = 0 means that the function

f must be orthogonal to the constants.

To finish the proof of the Sturm-Liouville theorem, we need to show that there
is a real k such that (L − kI)−1 exists as a bounded operator. This statement
holds for all k sufficiently negative, but we omit the proof. Assuming this point,
we can find linearly independent u and v satisfying the equation, with u satisfying
the boundary condition at a and v satisfying it at b. We construct the Green’s
function for L−kI as above. We write (L−kI)−1f(x) =

∫ b

a
f(t)G(x, t)dt. Since G

is continuous on the rectangle [a, b]× [a, b], (L− kI)−1 is compact, by Proposition
2.12. Theorem 2.11 then yields the desired conclusions.

We can express things in terms of orthonormal expansion. Let L be the opera-
tor defined in (50). Given f , we wish to solve the equation Lg = f . Let {φj} be the
complete orthonormal system of eigenfunctions for (L− kI)−1. This system exists
because (L − kI)−1 is compact and Hermitian. We expand g in an orthonormal
series as in (49), obtaining

g(x) =
∞∑

j=1

∫ b

a

g(t)φj(t)w(t)dt φj(x).

Differentiating term by term yields

(Lg)(x) = f(x) =
∞∑

j=1

(∫ b

a

g(t)φj(t)w(t)dt

)

λjφj(x).

The function f also has an orthonormal expansion:

f(x) =
∞∑

j=1

(∫ b

a

f(t)φj(t)w(t)dt

)

φj(x).

We equate coefficients to obtain
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g(x) =
∫ b

a

∞∑

j=1

φj(x)φj(t)
λj

w(t)f(t) dt =
∫ b

a

G(x, t)f(t)w(t) dt. (59)

We summarize the story. Assume that (L − kI)−1 has a continuous Green’s
function. Then (L−kI)−1 is compact and Hermitian, and a complete orthonormal
system of eigenfunctions exists. Decompose the Hilbert space into eigenspaces Eλj

.
If h ∈ Eλj

we have (L− kI)h = λjh. Note that no λj equals 0. Thus, restricted to
Eλj

, we can invert L − kI by

(L − kI)−1(h) =
1
λj

h.

We invert in general by inverting on each eigenspace and adding up the results.
Things are essentially the same as in Section 4 of Chapter 1, where we solved a
linear system when there was an orthonormal basis of eigenvectors. In this setting
we see that the Green’s function is given by

G(x, t) =
∞∑

j=1

φj(x)φj(t)
λj

.

We consider the simple special case where Ly = −y′′ on the interval [0, 1] with
boundary conditions y(0) = y(1) = 0. For each positive integer m, there is an
eigenvalue π2m2, corresponding to the normalized eigenfunction

√
2sin(mπx). In

this case G(x, t) has the following expression:

G(x, t) =
{

x(1 − t) x < t
t(1 − x) x > t

}

. (60)

We can check this formula directly by differentiating twice the relation

y(x) = (1 − x)
∫ x

0

tf(t) dt + x

∫ 1

x

(1 − t)f(t) dt.

Of course, we discovered this formula by the prescription from Theorem 2.14. The
function x is the solution vanishing at 0. The function 1−x is the solution vanishing
at 1. See Figure 5. Using orthonormal expansion, we have another expression for
G(x, t):

G(x, t) = 2
∞∑

m=1

sin(mπx) sin(mπt)
π2m2

.

See [F2] and [G] for many computational exercises involving Green’s func-
tions for Sturm-Liouville equations and generalizations. See also [GS] for excellent
intuitive discussion concerning the construction of the Green’s function and its
connections with the Dirac delta function.

Exercise 2.47. Assume 0 ≤ x < 1
2 . Put L = −( d

dx )2 on [0, 1] with boundary
conditions y(0) = y(1) = 0. Equate the two expressions for the Green’s function
to establish the identity

x =
4
π2

∞∑

r=0

(−1)rsin((2r + 1)πx)
(2r + 1)2

.

Prove that this identity remains true at x = 1
2 .
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Figure 5. Green’s function for the second derivative

Exercise 2.48. Consider the equation y′′ + λy = 0 with boundary conditions
y(0) − y(1) = 0 and y′(0) + y′(1) = 0. Show that every λ is an eigenvalue. Why
doesn’t this example contradict Theorem 2.13? Hint: Look carefully at (SL.1) and
(SL.2).

Exercise 2.49. Suppose L ∈ L(H) is Hermitian. Find limnÑ∞ ||Ln|| 1
n . Sug-

gestion: If L = L∗, then ||L2|| = ||L||2.
Exercise 2.50. Put the Bessel equation x2y′′ + xy′ + (λ2x2 − ν2)y = 0 into

Sturm-Liouville form.

Exercise 2.51. Find the Green’s function for the equation Ly = x2y′′−2xy′+
2y = f on the interval [1, 2] with y(1) = y(2) = 0. (First put the equation in Sturm-
Liouville form.) How does the answer change if the boundary condition is replaced
by y′(1) = y′(2) = 0?

11.2. Exercises on Legendre polynomials. The next several exercises
involve the Legendre polynomials. These polynomials arise throughout pure and
applied mathematics. We will return to them in Section 13.

We first remind the reader of a method for finding solutions to linear ordinary
differential equations, called reduction of order. Consider a linear differential oper-
ator L of order m. Suppose we know one solution f to Ly = g. We then seek a
solution of the form y = uf for some unknown function u. The function u′ will
then satisfy a homogeneous linear differential equation of order m − 1. We used a
similar idea in Subsection 4.1 of Chapter 1, where we replaced a constant c with
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a function c(x) when solving an inhomogeneous equation. We note, when m = 2,
that the method of reduction of order yields a first order equation for u′ which can
often be solved explicitly.

Exercise 2.52. Verify that the method of reduction of order works as described
above.

Exercise 2.53. The Legendre equation (in Sturm-Liouville form) is

((1 − x2)y′)′ + n(n + 1)y = 0. (61)

Find all solutions to (61) when n = 0 and when n = 1. Comment: When n = 1,
finding one solution is easy. The method of reduction of order can be used to find
an independent solution.

Exercise 2.54. Let n be a non-negative integer. Show that there is a poly-
nomial solution Pn to (61) of degree n. Normalize to make Pn(1) = 1. This Pn is
called the n-th Legendre polynomial. Show that an alternative definition of Pn is
given for |x| ≤ 1 and |t| < 1 by the generating function

1√
1 − 2xt + t2

=
∞∑

n=0

Pn(x)tn.

Show that the collection of these polynomials forms a complete orthogonal system
for L2([−1, 1], dx). Show that ||Pn||2 = 2

2n+1 . If needed, look ahead to the next
section for one method to compute these norms.

Exercise 2.55. Obtain the first few Legendre polynomials by applying the
Gram-Schmidt process to the monomials 1, x, x2, x3, x4.

Example 2.5. The first few Legendre polynomials:
• P0(x) = 1.
• P1(x) = x.
• P2(x) = 3x2−1

2

• P3(x) = 5x3−3x
2 .

• P4(x) = 35x4−30x2+3
8 .

Exercise 2.56. Let Pn be the n-th Legendre polynomial. Show that

(n + 1)Pn+1(x) − (2n + 1)xPn(x) + nPn−1(x) = 0.

Use the method of difference equations to find constants ak such that

Pn(x) =
n∑

k=0

ak(1 + x)k(1 − x)n−k.

Exercise 2.57. Here is an alternative proof that the Legendre polynomials are
orthogonal. First show that Pn = cn( d

dx )n(x2 − 1)n. Then integrate by parts to
show that

〈Pn, f〉 = cn(−1)n〈(x2 − 1)n, (
d

dx
)nf〉.

In other words, f is orthogonal to Pn if f is a polynomial of degree less than n.

Exercise 2.58. Let Pl denote a Legendre polynomial. Define the associated
Legendre functions with parameters l and m by

Pm
l (x) = (1 − x2)

m
2 (

d

dx
)mPl(x).
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• Show when m is even that Pm
l is a polynomial.

• Obtain a differential equation satisfied by Pm
l by differentiating m-times

the Sturm-Liouville equation (61) defining Pl.
• Show that Pm

l (x) is a constant times a power of (1−x2) times a derivative
of a power of (1 − x2).

The associated Legendre functions arise in Section 13 on spherical harmonics.

Figure 6. Legendre polynomials

12. Generating functions and orthonormal systems

Many of the complete orthonormal systems used in physics and engineering
are defined via the Gram-Schmidt process. Consider an interval I in R and the
Hilbert space L2(I, w(x)dx) of square integrable functions with respect to some
weight function w. Starting with a nice class of functions, such as the monomials,
and then orthonormalizing them, one obtains various special functions. The Gram-
Schmidt process often leads to tedious computation.

Following the method of Exercise 2.54, we use generating functions to investi-
gate orthonormal systems. In addition to the Legendre polynomials, we give two
examples of importance in physics, the Laguerre polynomials and the Hermite poly-
nomials. We return to the Hermite polynomials in Chapter 3, where we relate them
to eigenfunctions of the Fourier transform.

We will use a simple proposition relating orthonormal systems and generating
functions. We then show how the technique works for the Laguerre and Hermite
polynomials.

Before stating and proving this proposition, we discuss vector-valued convergent
power series. Let B denote the open unit disk in C. Let H be a Hilbert space; it
is often useful to consider complex analytic functions f : B Ñ H.
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Consider a power series A(z) =
∑

Anzn, where the coefficients An lie in H.
This series converges at the complex number z if its partial sums there form a
Cauchy sequence in H. We define a function A : B Ñ H to be complex analytic if
there is a sequence {An} in H such that the series

∞∑

n=0

Anzn

converges to A(z) for all z in B. On compact subsets of B, the series converges in
norm, and we may therefore rearrange the order of summation at will.

Proposition 2.17. Let H be a Hilbert space, and suppose A : B Ñ H is
complex analytic with A(t) =

∑∞
n=0 Antn. Then the collection of vectors {An}

forms an orthonormal system in H if and only if, for all t ∈ B,

||A(t)||2 =
1

1 − |t|2 .

Proof. Using the absolute convergence on compact subsets to order the sum-
mation as we wish, we obtain

||A(t)||2 =
∞∑

m,n=0

〈An, Am〉tnt
m

. (62)

Comparison with the geometric series yields the result: the right-hand side of (62)
equals 1

1−|t|2 if and only if 〈An, Am〉 equals 0 for n �= m and equals 1 for n = m. �

Definition 2.17. The formal series

∞∑

n=0

Lntn

is the ordinary generating function for the sequence {Ln}. The formal series

∞∑

n=0

Ln
tn

n!

is the exponential generating function for the sequence {Ln}.
Explicit formulas for these generating functions often provide powerful insight

as well as simple proofs of orthogonality relations.

Example 2.6 (Laguerre polynomials). Let H = L2 ([0,∞), e−xdx) be the
Hilbert space of square integrable functions on [0,∞) with respect to the measure
e−xdx. Consider functions Ln defined via their generating function by

A(x, t) =
∞∑

n=0

Ln(x)tn = (1 − t)−1 exp
( −xt

1 − t

)

.

Note that x ≥ 0 and |t| < 1. In order to study the inner products 〈Ln, Lm〉,
we compute ||A(x, t)||2. We will find an explicit formula for this squared norm;
Proposition 2.17 implies that the Ln form an orthonormal system.
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We have

|A(x, t)|2 = (1 − t)−1 exp
( −xt

1 − t

)

(1 − t)−1 exp
( −xt

1 − t

)

.

Multiplying by the weight function e−x and integrating we obtain

||A(x, t)||2 = (1 − t)−1(1 − t)−1

∫ ∞

0

exp
(

−x(1 +
t

1 − t
+

t

1 − t
)
)

dx.

Computing the integral on the right-hand side and simplifying shows that

||A(x, t)||2 =
1

(1 − t)(1 − t)
1

1 + t
1−t + t

1−t

=
1

1 − |t|2 .

From Proposition 2.17 we see that {Ln} forms an orthonormal system in H.
The series defining the generating function converges for |t| < 1, and each Ln

is real-valued. In Exercise 2.60 we ask the reader to show that the functions Ln

satisfy the Rodrigues formula

Ln(x) =
ex

n!

(
d

dx

)n

(xne−x) (63)

and hence are polynomials of degree n. They are called the Laguerre polynomials,
and they form a complete orthonormal system for L2([0,∞), e−xdx). Laguerre
polynomials arise in solving the Schrödinger equation for a hydrogen atom.

A similar technique works for the Hermite polynomials, which arise in many
problems in physics, such as the quantum harmonic oscillator. See pages 120–122
in [GS]. We discuss these polynomials at the end of Chapter 3. One way to define
the Hermite polynomials is via the exponential generating function

exp(2xt − t2) =
∑

Hn(x)
tn

n!
. (64)

The functions Hn are polynomials and form an orthogonal set for H=L2(R, e−x2
dx).

With this normalization the norms are not equal to unity. In Exercise 2.62 the
reader is asked to study the Hermite polynomials by mimicking the computations
for the Laguerre polynomials. Other normalizations of these polynomials are also
common. Sometimes the weight function used is e

−x2
2 . The advantage of our

normalization is Theorem 3.9.
The technique of generating functions can also be used to find normalizing

coefficients. Suppose, such as in the Sturm-Liouville setting, that the collection
{fn} for n ≥ 0 forms a complete orthogonal system. We wish to find ||fn||L2 .
Assume that we have found the generating function

B(x, t) =
∞∑

n=0

fn(x)tn

explicitly. We may assume t is real. Taking L2 norms (in x) we discover that ||fn||2
must be the coefficient of t2n in the series expansion of ||B(x, t)||2L2 .
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Figure 7. Laguerre polynomials

We illustrate this result by solving part of Exercise 2.54. The generating func-
tion for the Legendre polynomials is known to be

B(x, t) =
1√

1 − 2xt + t2
.

By elementary calculus, its L2 norm on [−1, 1] is found to satisfy

||B(x, t)||2L2 =
1
t

(log(1 + t) − log(1 − t)) .

Expanding log(1 ± t) in a Taylor series shows that

||B(x, t)||2L2 = 2
∞∑

n=0

t2n

2n + 1
.

Hence ||Pn||2L2 = 2
2n+1 .

Exercise 2.59. Fill in the details from the previous paragraph.

Exercise 2.60. (1) With Ln as in Example 2.6, verify the Rodrigues formula
(63). Suggestion: Write the power series of the exponential on the right-hand side
of (63) and interchange the order of summation.

(2) Show that each Ln is a polynomial in x. Hint: The easiest way is to use (1).
(3) Prove that {Ln} forms a complete system in L2 ([0,∞) , e−xdx).

Exercise 2.61. For x > 0 verify that
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∞∑

n=0

Ln(x)
n + 1

=
∫ ∞

0

e−xt

t + 1
dt.

Suggestion: Integrate the relation

∞∑

n=0

Ln(x)sn = (1 − s)−1 exp(
−xs

1 − s
)

over the interval [0, 1] and then change variables in the integral.

Exercise 2.62 (Hermite polynomials). Here Hn is defined by (64).
(1) Use (64) to find a simple expression for

∞∑

n=0

Hn(x)tn
∞∑

m=0

Hm(x)sm.

(2) Integrate the result in (1) over R with respect to the measure e−x2
dx.

(3) Use (2) to show that the Hermite polynomials form an orthogonal system
with

||Hn||2 = 2nn!
√

π.

(4) Prove that the system of Hermite polynomials is complete in L2(R, e−x2
dx).

Comment: Sometimes the functions defined by Hn(x)e
−x2
2 are called Hermite

functions. Thus the Hermite functions form a complete orthogonal system for
L2(R). Look ahead to Theorem 3.9 to see a remarkable property of these functions.

Exercise 2.63. Replace the generating function used for the Legendre poly-
nomials by (1 − 2xt + t2)−λ for λ > − 1

2 and carry out the same steps. The
resulting polynomials are the ultraspherical or Gegenbauer polynomials. Note that
the Legendre polynomials are the special case when λ = 1

2 . See how many proper-
ties of the Legendre polynomials you can generalize.

13. Spherical harmonics

We close this chapter by discussing spherical harmonics. This topic provides
one method to generalize Fourier series on the unit circle to orthonormal expansions
on the unit sphere. One approach to spherical harmonics follows a thread of history,
based on the work of Legendre. This approach relates the exercises from Section 11
on Legendre polynomials to elementary physics, and relies on spherical coordinates
from calculus. Perhaps the most elegant approach, given in Theorems 2.15 and
2.16, uses spaces of homogeneous polynomials. We discuss both approaches.

Let S2 denote the unit sphere in real Euclidean space R3. Let Δ denote the
Laplace operator

∑3
j=1

∂2

∂x2
j
. We would like to find a complete orthonormal system

for L2(S2) whose properties are analogous to those of the exponentials einx on the
unit circle. Doing so is not simple.

Recall that Newton’s law of gravitation and Coulomb’s law of electric charge
both begin with a potential function. Imagine a mass or charge placed at a single
point p in real Euclidean space R3. The potential at x due to this mass or charge
is then a constant times the reciprocal of the distance from x to p. Let us suppose
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that the mass or charge is located at the point (0, 0, 1). The potential at the point
x = (x1, x2, x3) is then

c

||x− p|| =
c

√
(x2

1 + x2
2 + (x3 − 1)2)

. (65)

Figure 8. The co-latitude φ

We wish to express (65) in spherical coordinates. We write

x = (x1, x2, x3) = (ρcos(θ)sin(φ), ρsin(θ)sin(φ), ρcos(φ))

where ρ is the distance to the origin, θ is the usual polar coordinate angle in the
(x1, x2) plane measuring longitude, and φ is the co-latitude. Thus 0 ≤ θ ≤ 2π
whereas 0 ≤ φ ≤ π. These conventions are common in calculus books, but the
physics literature often interchanges θ and φ. Also, sometimes r is used instead of
ρ. In many sources, however, r is reserved for its role in cylindrical coordinates,
and thus r2 = x2 + y2.

Writing (65) in spherical coordinates we obtain
c

||x− p|| =
c

√
1 + ρ2 − 2ρcos(φ)

. (66)

The denominator in (66) is the same expression as in the generating function for the
Legendre polynomials Pn from Exercise 2.54, with t replaced by ρ and x replaced
by cos(φ). Therefore we can rewrite (66) as follows:

c

||x− p|| = c
∞∑

n=0

Pn(cos(φ))||x||n. (67)

The potential function from (65) is harmonic away from p. We leave the com-
putation to Exercise 2.64. We write the Laplace operator in spherical coordinates:

Δ(f) =
1
ρ2

∂

∂ρ
(ρ2fρ) +

1
ρ2sin(φ)

∂

∂φ
(sin(φ)fφ) +

1
ρ2sin2(φ)

fθθ. (68)

We attempt to solve the Laplace equation Δ(f) = 0 using separation of vari-
ables, generalizing Exercise 1.60. Thus we assume that

f(ρ, θ, φ) = A(ρ)B(φ)C(θ). (69)

Plugging (69) into the Laplace equation yields the equation

0 = (ρ2A′BC)ρ +
1

sin(φ)
(sin(φ)AB′C)φ +

1
sin2(φ)

ABC ′′. (70)
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After dividing by ABC, we obtain

0 = (
ρ2A′′ + 2ρA′

A
) +

B′′

B
+ cot(φ)

B′

B
+

1
sin2(φ)

C ′′

C
. (71)

The first fraction in (71) depends on ρ; the other terms do not. Hence there is a
constant λ such that

ρ2A′′ + 2ρA′ = λA. (72)
Furthermore we also have

(
B′′

B
+ cot(φ)

B′

B

)

sin2(φ) +
C ′′

C
= −λsin2(φ). (73)

The only solutions to the equation (72) for A that are continuous at zero are
A(ρ) = cρl for non-negative integers l. It follows that λ = l(l + 1).

Now we look at equation (73). Again by grouping the θ and φ terms separately
we obtain two equations:

C ′′

C
= −μ (74)

sin2(φ)
(

B′′

B
+ cot(φ)

B′

B
+ λ

)

= μ. (75)

Now (74) must be periodic in θ. Hence μ is the square of an integer k. We see
that C(θ) = ceikθ. Also (75) becomes

sin2(φ)
(

B′′

B
+ cot(φ)

B′

B
+ λ

)

= k2. (76)

Simplifying (76) leads to the equation

B′′ + cot(φ)B′ + (l(l + 1) − k2

sin2(φ)
)B = 0. (77)

Equation (77) evokes the differential equation defining the Legendre polynomials.
In fact, if we make the substitution x = cos(φ), then (77) is precisely equivalent
(See Exercise 2.66) to the equation

(1 − x2)Bxx − 2xBx +
(

l(l + 1) − k2

(1 − x2)

)

B = 0. (78)

The solutions P k
l to (78) are the associated Legendre functions from Exercise

2.58 when k ≥ 0, and related expressions when k < 0. The function eikθP k
l (cos(φ))

is the spherical harmonic Y k
l (θ, φ). The integer parameter k varies from −l to l,

yielding 2l+1 independent functions. The functions ρleikθP k
l (cos(φ)) are harmonic.

The functions Y k
l are not themselves harmonic in general; on the sphere each Y k

l

is an eigenfunction of the Laplacian with eigenvalue −l(l + 1).
A Wikipedia page called Table of spherical harmonics lists these Y k

l , including
the normalizing constants, for 0 ≤ l ≤ 10 and all corresponding k . The functions
Y k

l and Y a
b are orthogonal, on L2(S2), unless k = a and l = b. These functions

form a complete orthogonal system for L2(S2). Remarkable additional properties
whose discussion is beyond the scope of this book hold as well.

We next approach spherical harmonics via homogeneous polynomials. Things
are simpler this way, but perhaps less useful in applied mathematics.

We will work in Rn, although we will write some formulas explicitly when
n = 3. Let x = (x1, ..., xn) denote the variables. A polynomial p(x) is homogeneous
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of degree k if p(tx) = tkp(x). Homogeneous polynomials are therefore determined
by their values on the unit sphere. It is often useful to identify a homogeneous
polynomial p(x) with the function

P (x) =
p(x)
||x||k ,

which is defined in the complement of the origin, agrees with p on the sphere, and
is homogeneous of degree 0. See Proposition 2.18. For each m, we write Hm for
the vector space of homogeneous harmonic polynomials of degree m. In Theorem
2.16, we will compute the dimension of Hm. When n = 3, its dimension turns out
be 2m + 1. We obtain spherical harmonics by restricting harmonic homogeneous
polynomials to the unit sphere.

Example 2.7. Put n = 3. When m = 1, the harmonic polynomials x, y, z
form a basis for H1. For m = 2, the following five polynomials form a basis for H2:

• xy
• xz
• yz
• x2 + y2 − 2z2

• x2 − 2y2 + z2.

Note that the harmonic polynomial −2x2 + y2 + z2 is linearly dependent on the
last two items in the list.

It will be as easy to work in Rn as it is in R3. We write v · w for the usual
inner product of v, w in Rn. We assume n ≥ 2.

Let Vm denote the vector space of homogeneous polynomials of degree m in
the variable x in Rn. We regard Hm as a subspace of Vm. The dimension of Vm

is the binomial coefficient
(
m+n−1

n−1

)
. We have a map M : Vm Ñ Vm+2 given by

multiplication by ||x||2. The Laplace operator Δ maps the other direction. These
operators turn out to be adjoints. See Theorem 2.16.

We begin with a remarkable formula involving the Laplacian on harmonic,
homogeneous polynomials on Rn. The function P in Proposition 2.18 below is
homogeneous of degree 0, and hence its Laplacian is homogeneous of degree −2.
This observation explains why we must divide by ||x||2 in (79).

Proposition 2.18. Let p be a harmonic, homogeneous polynomial of degree l
on Rn. Outside the origin, consider the function P defined by

P (x) =
p(x)
||x||l .

Then we have

Δ(P ) = −l(l + n − 2)
P (x)
||x||2 . (79)

Restricted to the sphere, P defines an eigenfunction of the Laplacian with eigenvalue
−l(l + n − 2). When n = 3, P is therefore a linear combination of the spherical
harmonics Y k

l with −l ≤ k ≤ l.

Proof. See Exercise 2.72 for the computation yielding (79). The second state-
ment follows from (79) by putting ||x||2 equal to 1. The last statement follows from
the discussion just after (78). �
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Consider the Hilbert space L2(Sn−1), where Sn−1 is the unit sphere in n-
dimensions, and n ≥ 2. In order to integrate over the unit sphere, we use n-
dimensional spherical coordinates. We put x = ρv, where ρ = ||x|| and v lies on
the unit sphere. We then can write the volume form dV on Rn as

dV (x) = ρn−1dρ dσ(v).

Let f be a function on Rn. Away from 0, we define a function F by

F (x) = f(
x

||x|| ) = f(v).

The function F satisfies F (tx) = F (x) when t > 0. Such a function is called
positive homogeneous of degree 0. We note a special case of Euler’s formula for
such functions, when F is differentiable. See Exercise 2.71 for a more general
statement.

Proposition 2.19. Assume F is differentiable and F (tx) = F (x) for t > 0
and all x. Then dF (x) · x = 0.

Proof. Apply d
dt to the equation F (tx) = F (x) and set t = 1. �

Let χ be a smooth function on R with the following properties:

(1) χ(0) = 0.
(2) χ(t) tends to 0 as t tends to infinity.
(3)

∫ ∞
0

χ(t2)tn−1dt = 1. (Here n is the dimension.)

Given a smooth function w, we wish to compute
∫

Sn−1 wdσ. Because of prop-
erty (3) of χ, the integration formula (80) holds. It allows us to express integrals
over the sphere as integrals over Euclidean space:
∫

Rn

χ(||x||2)w(
x

||x|| )dV =
∫

Sn−1

∫ ∞

0

χ(ρ2)ρn−1dρ w(v)dσ(v) =
∫

Sn−1
wdσ. (80)

The other two properties of χ will be useful in an integration by parts.

Theorem 2.15. For k �=l, the subspaces Hk and Hl are orthogonal in L2(Sn−1).

Proof. Given harmonic homogeneous polynomials f of degree k and g of de-
gree l, let F and G be the corresponding homogeneous functions of degree 0 defined
above. By Proposition 2.18, these functions are eigenfunctions of the Laplacian on
the sphere, with distinct eigenvalues. We claim that the Laplacian is Hermitian:

∫

Sn−1
ΔF G dσ =

∫

Sn−1
F ΔG dσ. (81)

Given the claim, eigenfunctions corresponding to distinct eigenvalues are orthogo-
nal. Thus harmonic, homogeneous polynomials of different degrees are orthogonal
on the unit sphere.

It remains to prove (81). We may assume that G is real. Let

W = ΔF G − F ΔG =
n∑

j=1

(
∂

dxj
)(Fxj

G − FGxj
).

We integrate by parts in (80), moving each ∂
∂xj

. Note that ∂
∂xj

(||x||2) = 2xj .
∫

Sn−1
W dσ =

∫

Rn

χ(||x||2)W (
x

||x|| ) dV
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= −
∫

Rn

n∑

j=1

(Fxj
G − FGxj

)χ′(||x||2)2xj dV. (82)

The last term in (82) is zero by Proposition 2.19, because F and G are positive
homogeneous of degree 0. Thus Δ is Hermitian. �

It is convenient to define particular inner products on the spaces Vm, which
differ from the usual inner product given by integration. By linearity, to define
the inner product on Vm it suffices to define the inner product of monomials. We
illustrate for n = 3. Put

〈xaybzc, xAyBzC〉Vm
= 0 (83)

unless a = A, b = B, and c = C. In this case, we put ||xaybzc||2Vm
= a!b!c!. The

generalization to other dimensions is evident:

||
n∏

j=1

x
aj

j ||2Vm
=

n∏

j=1

aj !.

Thus distinct monomials are decreed to be orthogonal.

Theorem 2.16. The mapping M : Vm Ñ Vm+2 is the adjoint of the mapping
Δ : Vm+2 Ñ Vm. In other words,

〈Mf, g〉Vm+2 = 〈f,Δg〉Vm
. (84)

Hence the image of M is orthogonal to the harmonic space Hm+2 and

Vm+2 = M(Vm) ⊕Hm+2.

Furthermore, Hm is of dimension
(
m+n−1

n−1

)−(
m+n−3

n−1

)
. When n = 3, this dimension

is 2m + 1.

Proof. To be concrete, we write out the proof when n = 3. By linearity, it
suffices to check (84) on monomials f = xaybzc and g = xAyBzC , where it follows
by computing both sides of (84) in terms of factorials. There are three possible
circumstances in which the inner product is not zero:

• (a, b, c) = (A − 2, B,C)
• (a, b, c) = (A,B − 2, C)
• (a, b, c) = (A,B,C − 2).

In the first case, we must check that (a + 2)!b!c! = A(A − 1)(A − 2)!B!C!, which
holds. The other two cases are similarly easy, and hence (84) holds.

Next, suppose that h is in the image of M and that g is in the nullspace of Δ.
Then (84) gives

〈h, g〉Vm+2 = 〈Mf, g〉Vm+2 = 〈f,Δg〉Vm
= 0.

The desired orthogonality thus holds and the direct sum decomposition follows.
Finally, the dimension of Vm is

(
m+n−1

n−1

)
. Since M is injective, the dimension of

the image of M is the dimension of Vm. The dimension of Hm+2 is therefore
(

m + n + 1
n − 1

)

−
(

m + n − 1
n − 1

)

.

When n = 3, the dimension of Hm+2 therefore is
(m + 4)(m + 3)

2
− (m + 2)(m + 1)

2
= 2m + 5,

and hence the dimension of Hm is 2m + 1. �



13. SPHERICAL HARMONICS 91

Remark 2.3. The formula in Theorem 2.16 for the dimension of Hm defines
a polynomial of degree n − 2 in m. See Exercise 2.75.

Corollary 2.9. On the sphere we have Vm = Hm ⊕Hm−2 ⊕ . . . .

Proof. The formula follows by iterating the equality Vm = M(Vm−2) ⊕Hm

and noting that ||x||2 = 1 on the sphere. �

Corollary 2.10. Suppose f is continuous on the unit sphere. Then there is
a sequence of harmonic polynomials converging uniformly to f .

Proof. This proof assumes the Stone-Weierstrass theorem to the effect that
a continuous function on a compact subset S of Rn is the uniform limit on S of
a sequence of polynomials. We proved this result in Corollary 1.8 when S is the
circle. Given this theorem, the result follows from Corollary 2.9, because each
polynomial can be decomposed on the sphere in terms of harmonic polynomials. �

Corollary 2.11. The spherical harmonics form a complete orthogonal system
for L2(S2).

We illustrate Corollary 2.11 for m = 0 and m = 1, when n = 3. Of course V0

is the span of the constant 1. Its image under M is the span of x2 + y2 + z2. The
space H2 is spanned by the five functions xy, xz, yz, x2 + y2 − 2z2, x2 − 2y2 + z2.
Each of these is orthogonal to x2 +y2+z2, which spans the orthogonal complement
of H2. Next, V1 is spanned by x, y, z. Its image under M is the span of x(x2 +
y2 + z2), y(x2 + y2 + z2), z(x2 + y2 + z2). The space V3 has dimension ten. The
seven-dimensional space H3 is the orthogonal complement of the span of M(V1).

Exercise 2.64. Show that (65) defines a harmonic function away from (0, 0, 1).
Use both Euclidean coordinates and spherical coordinates.

Exercise 2.65. Verify formula (68).

Exercise 2.66. Use the chain rule (and some computation) to show that (77)
and (78) are equivalent. Suggestion: First show that

Bφφ = Bxxx2
φ + Bxxφφ.

Exercise 2.67. For n = 3, express the harmonic polynomials of degree two
using spherical coordinates.

Exercise 2.68. For n = 3, find seven linearly independent harmonic polyno-
mials of degree three.

Exercise 2.69. (Difficult) Analyze (78) fully in terms of Legendre polynomials.

Exercise 2.70. Verify (79) if p(x, y, z) = x2 − y2.

Exercise 2.71. Verify Euler’s identity: if f is differentiable and homogeneous
of degree k on Rn, then

df(x) · x = kf(x).

Proposition 2.19 was the case k = 0. What is the geometric interpretation of the
result in this case?

Exercise 2.72. Verify (79). Euler’s identity is useful.
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Exercise 2.73. Take n = 2, and identify R2 with C. Consider the harmonic
polynomial Re(z2m). Give a much simpler proof of the analogue of formula (79)
using the formula Δ(u) = 4uzz from Section 11 of Chapter 1.

Exercise 2.74. Again identify R2 with C. Write down a basis for the homo-
geneous harmonic polynomials of degree m in terms of z and z. Comment: The
answer is obvious!

Exercise 2.75. For n ≥ 2, simplify the formula in Theorem 2.16 to show that
dim(Hm) is a polynomial of degree n − 2 in m.



CHAPTER 3

Fourier transform on R

1. Introduction

We define and study the Fourier transform in this chapter. Rather than working
with functions defined on the circle, we consider functions defined on the real line R.
Among many books, the reader can consult [E], [G], and [GS] for applications
of Fourier transforms to applied mathematics, physics, and engineering. See [F1]
for an advanced mathematical treatment.

When |f | is integrable on R, we will define the Fourier transform of f by

F(f)(ξ) = f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x)e−ixξdx. (1)

In (1), the variable ξ is real. Thus f̂ will be another function defined on the real
line. We will then extend the definition of the Fourier transform by using methods
of functional analysis.

Along the way we will develop a deeper understanding of approximate identities
and the Dirac delta function. We will define distributions or generalized functions
and thereby place the Dirac function on firm theoretical ground. For nice functions
f we have the Fourier inversion formula

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ)eixξdξ. (2)

Our abstract approach leads to a definition of f̂ for f ∈ L2(R) or even when it
is a distribution. We prove the fundamental result (Plancherel theorem) that the
Fourier transform is unitary on L2(R) and hence

||f ||2L2 = ||f̂ ||2L2 . (3)

We combine the Plancherel theorem and the Cauchy-Schwarz inequality to
establish the famous inequality which yields the Heisenberg uncertainty principle
from quantum mechanics. We include a brief introduction to pseudo-differential
operators which includes the Sobolev lemma in one dimension. We close this chapter
with a section on inequalities.

For functions defined on the circle, we observed that the more differentiable
the function, the faster its Fourier coefficients decay at infinity. An analogous
phenomenon happens for functions on R. It therefore makes sense to begin our
study of the Fourier transform by restricting to smooth functions of rapid decay at
infinity.
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2. The Fourier transform on the Schwartz space

The Schwartz space S consists of the smooth functions of rapid decay at infin-
ity. This space is named for Laurent Schwartz, a different person from Hermann
Schwarz, whose name is associated with the Cauchy-Schwarz inequality. Here is
the precise definition:

Definition 3.1. The Schwartz space S consists of those infinitely differentiable
complex-valued functions f on R such that, for all non-negative integers a, b,

lim
|x|→∞

|x|a(
d

dx
)bf(x) = 0.

Functions in the Schwartz space decay so rapidly at infinity that, even after dif-
ferentiating or multiplying by x an arbitrary (finite) number of times, the resulting
functions still decay at infinity. For any ε > 0, the Gaussian e−εx2

is in S. Smooth
functions of compact support provide additional examples. For convenience we
recall the existence of such functions.

Example 3.1. First we define a function h on R by h(t) = 0 for t ≤ 0 and by
h(t) = exp(−1

t ) for t > 0. This function is infinitely differentiable on all of R, and
all of its derivatives vanish at 0. Put g(t) = h(t)h(1 − t). Then g is also infinitely
differentiable. Furthermore, g(t) > 0 for 0 < t < 1 and g(t) = 0 otherwise. Thus g
is a smooth function with compact support.

The technique from Example 3.1 can be extended to prove the stronger result
stated in Theorem 3.1. Exercise 3.19 suggests the standard proof using convolution
integrals.

Theorem 3.1. Let I denote any closed bounded interval on R and let J denote
any open interval containing I. Then there is an infinitely differentiable function
χ : R → [0, 1] such that χ = 1 on I and χ = 0 off J .

I J

1

Figure 1. Cutoff Function

Proposition 3.1. The Schwartz space S is a complex vector space. It is closed
under differentiation and under multiplication by x.

Proof. Left to the reader. �

Definition 3.2. We define the Fourier transform for f ∈ S as an integral:

F(f)(ξ) = f̂(ξ) =
1√
2π

∫ ∞

−∞
f(x)e−ixξdx. (4)
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Sometimes the Fourier transform is defined without the factor 1√
2π

, and some-
times it is defined with a factor of 2π in the exponent. The Wolfram Mathematica
9 web page on the Fourier transform allows the user to set two parameters, thereby
obtaining whichever convention the user wishes to employ.

The definition of S regards differentiation and multiplication on an equal foot-
ing. Let D = d

dx denote differentiation and let M = Miξ denote multiplication
by iξ. Working on S is convenient for several reasons; in particular, the Fourier
transform exchanges these operations. Furthermore, as we will show in Theorem
3.2, the Fourier transform maps S to itself bijectively. We can interpret the last
two items of the following Proposition as saying that F diagonalizes differentiation.

Proposition 3.2. The following elementary properties hold for Fourier trans-
forms defined on S.

(1) F is linear.
(2) ||f̂ ||L∞ ≤ 1√

2π
||f ||L1 .

(3) f̂(ξ) = f̂(−ξ).
(4) Put fh(x) = f(x + h). Then f̂h(ξ) = eihξ f̂(ξ).
(5) d

dξ f̂(ξ) = −iF(Mxf). That is, DiξF = FMx.

(6) f̂ ′(ξ) = iξf̂(ξ). That is, FDx = MiξF .
(7) D = F−1MF and M = FDF−1.

Proof. The first six items are left to the reader. The last item follows from
the penultimate item and Theorem 3.2 below. �

The reader should compare Proposition 3.2 with Lemma 1.7.

Proposition 3.3. The Fourier transform maps S to itself.

Proof. Differentiating equation (4) from Definition 3.2 under the integral sign,
justified by the rapid decay of f at infinity, shows that f̂ is infinitely differentiable.
Since FD = MF it follows for each positive integer k and integration by parts that

FDk = Mk
iξF .

All boundary terms vanish since we are working in S. It follows that f decays
rapidly if and only if f̂ does. Hence F : S → S. �

Proposition 3.4. Let Gσ denote the Gaussian: Gσ(x) = 1
σ
√
2π

e
−x2

2σ2 . Then:

(1)
∫ ∞
−∞ Gσ(x)dx = 1 for σ > 0. Thus Gσ is a probability density.

(2) The Fourier transform (up to a factor of 1
σ ) is another Gaussian:

F(Gσ)(ξ) =
1√
2π

e
−σ2ξ2

2 =
1
σ

G 1
σ
(ξ).

Proof. We will give two proofs of (2). First we prove (1). We must evaluate

I =
∫ ∞

−∞
e

−x2
2 dx.

The computation, a standard example in two-variable calculus, illustrates the power
of polar coordinates. Consider I2. We have

I2 =
∫ ∞

−∞

∫ ∞

−∞
e

−x2
2 e

−y2

2 dxdy =
∫ 2π

0

∫ ∞

0

e
−r2
2 rdrdθ = 2π.
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Thus I =
√

2π. To prove (1), we have∫ ∞

−∞
Gσ(x)dx =

1
σ
√

2π

∫ ∞

−∞
e

−x2

2σ2 dx.

Changing variables by putting x = σu gives∫ ∞

−∞
Gσ(x)dx =

1
σ
√

2π
σI = 1.

The first method used in proving (2) is completing the square in the exponential.

After changing variables with x = tσ, we must compute 1√
2π

∫ ∞
−∞ e

−t2
2 e−itσξdt. By

completing the square, we see that

e
−t2
2 e−itσξ = e−

1
2 (t+iσξ)2e

−σ2ξ2

2 .

The second factor is independent of t, and we are integrating with respect to t.

By Exercise 3.3, for x, y real,
∫ ∞
−∞ e

−(x+iy)2

2 dx is independent of y. A careful
proof requires some knowledge of complex analytic function theory. Using this
equality, we obtain the result.

To avoid this use of complex analysis, we provide a second proof of (2). Let
φ(ξ) denote the Fourier transform of Gσ. Because of the rapid decay of e−x2

, it is
valid to differentiate under the integral sign to find a formula for φ′(ξ). Doing so

introduces a factor of −ix in the integrand, which we group with e
−x2

2σ2 in order to
integrate by parts. The boundary term vanishes and we obtain

φ′(ξ) = −ξσ2φ(ξ).

Solving this first order differential equation shows, for a positive constant k, that

φ(ξ) = ke
−σ2ξ2

2 .

Thus φ is a multiple of a Gaussian with σ replaced by its reciprocal. Since k = φ(0),
which in turn equals 1√

2π
, we set ξ = 0 and obtain (2). �

One cannot show that
∫ ∞
−∞ e

−(x+iy)2

2 dx is independent of y by the naive change
of variables u = x + iy. This change of variables alters the path of integration; the
integral remains the same because of the Cauchy theorem applied to the complex
analytic function z → e

−z2
2 . See Exercise 3.3.

We next prove several lemmas which get used in establishing the fundamental
properties of the Fourier transform. The proofs of Lemma 3.2 and Theorem 1.5 use
the same basic idea. When the function g in Lemma 3.2 is non-negative, it is the
density function of a random variable with finite expectation. First we establish a
fundamental symmetry property of the Fourier transform, leading to Theorem 3.5.

Lemma 3.1. For f, g ∈ S we have∫ ∞

−∞
f(x)ĝ(x)dx =

∫ ∞

−∞
f̂(ξ)g(ξ)dξ (5)

Proof. Because of the rapid decay of f and g, we can write either side of (5)
as a double integral, and integrate in either order. Then each side of (5) equals the
double integral

1√
2π

∫ ∞

−∞

∫ ∞

−∞
f(x)g(ξ)e−ixξdxdξ. �
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Lemma 3.2. Assume f is differentiable on R and that f ′ is bounded. Let g
satisfy the following:

• ∫ ∞
−∞ g(y)dy = 1

• ∫ ∞
−∞ |y| |g(y)|dy < ∞

Then

lim
ε→0

∫ ∞

−∞
f(x + εy)g(y) dy = f(x). (6.1)

Proof. Since f is differentiable and f ′ is bounded, the mean-value theorem
of calculus implies the following inequality:

|f(b) − f(a)| ≤ sup
t

|f ′(t)| |b − a| = M |b − a|. (mvt)

Since g integrates to 1, we can write f(x) =
∫ ∞
−∞ f(x)g(y)dy. Using (mvt) we get

∣∣∣∣
∫ ∞

−∞
f(x + εy)g(y) dy − f(x)

∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞
(f(x + εy) − f(x)) g(y) dy

∣∣∣∣
≤ M

∫ ∞

−∞
|εy||g(y)|dy. (6.2)

Since |yg(y)| is integrable, the expression in (6.2) is bounded by a constant times
ε. The desired conclusion (6.1) then follows by the definition of a limit. �

Lemma 3.3. Suppose h ∈ S. Then

lim
ε→0

∫ ∞

−∞
h(t)e

−ε2t2
2 dt =

∫ ∞

−∞
h(t)dt

Proof. Given ε′ > 0 we must show that∣∣∣∣
∫ ∞

−∞
h(t)(1 − e

−ε2t2
2 )dt

∣∣∣∣ < ε′

for sufficiently small ε. Since h decays rapidly at ∞, there is an R such that∣∣∣∣∣
∫
|t| ≥R

h(t)(1 − e
−ε2t2

2 )dt

∣∣∣∣∣ ≤
∫
|t| ≥R

|h(t)|dt <
ε′

2
.

Once this R is determined, we can choose ε sufficiently small such that∣∣∣∣∣
∫ R

−R

h(t)(1 − e
−ε2t2

2 )dt

∣∣∣∣∣ ≤ 2R sup(|h|)(1 − e
−ε2R2

2 ) <
ε′

2
.

The needed inequality follows. �

Remark 3.1. It is tempting to plug ε = 0 into the left-hand side of (6.1) or
into the limit in Lemma 3.3. Doing so is not valid without some assumptions;
the limit of an integral is not necessarily the integral of the limit. The reason is
that an integral is itself a limit, and one cannot in general interchange the order of
limits. See Exercise 3.8. This simple issue recurs throughout analysis; one needs
appropriate hypotheses before one can interchange the order when taking limits.

Remark 3.2. Even if a continuous (or smooth) function is integrable on R, it
need not vanish at infinity. See Exercise 3.10.
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Exercise 3.1. Prove that e−x2 ∈ S.

Exercise 3.2. Prove Propositions 3.1 and 3.2.

Exercise 3.3. Fill in the details of the computations in Proposition 3.4. In

particular, prove that
∫ ∞
−∞ e

−(x+iy)2

2 dx is independent of y. Use the Cauchy integral
theorem on a rectangle with vertices at ±R, ±R + iy; then let R tend to infinity.
Verify also the details in the second proof given for part (2).

Exercise 3.4. Compute the Fourier transform of e−a(x−μ)2 for a > 0 and
μ ∈ R. Comment: This result is of fundamental importance in probability theory.
We use it in the proofs of Theorem 3.2 and Theorem 3.9.

Exercise 3.5. Compute the Fourier transform of 1
1+x2 using residues. Note

that the residue calculation depends on the sign of ξ.

Exercise 3.6. Verify the assertions in Example 3.1.

Exercise 3.7. Put g(η) = 1√
2π

e
−η2

2 for η ∈ R. Show that g satisfies the
hypotheses of Lemma 3.2.

Exercise 3.8. Put f(x, y) = |x||y| for (x, y) �= (0, 0). Show that

lim
x→0

lim
y→0

f(x, y) �= lim
y→0

lim
x→0

f(x, y).

Exercise 3.9. It is not necessary that h be in S for the proof of Lemma 3.3
to work. Give a weaker condition on h for which Lemma 3.3 remains valid.

Exercise 3.10. Show that there is continuous, nonnegative function f on R
such that f(n) = n for all positive integers n and

∫
R

f(x)dx = 1. One can even
make f infinitely differentiable.

We have now understood the Schwartz space and developed some computa-
tional facility with Fourier transforms. We are therefore in a position to prove the
Fourier inversion formula; this theorem is one of the most important results in pure
and applied analysis. Nearly all the rest of this chapter depends upon the inversion
formula.

Theorem 3.2. F is a bijective map of S to itself. Furthermore, for f ∈ S, we
have the Fourier inversion formula

f(x) =
1√
2π

∫ ∞

−∞
f̂(ξ)eixξdξ. (7)

Proof. We use the Gaussian (with σ = 1) as an approximate identity and
apply Lemma 3.2. Put

g(η) =
1√
2π

e
−η2

2 .

By Exercise 3.7, g satisfies the hypotheses of Lemma 3.2, and we obtain

f(x) = lim
ε→0

∫ ∞

−∞
f(x + εy)g(y)dy = lim

ε→0

1√
2π

∫ ∞

−∞
f(x + εy)e

−y2

2 dy. (8)

By Proposition 2.4, the Gaussian is its own Fourier transform. We exploit this fact
in (8) to obtain

f(x) = lim
ε→0

∫ ∞

−∞

1√
2π

f(x + εy)
1√
2π

∫ ∞

−∞
e

−η2

2 e−iyηdη dy. (9.1)
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In (9.1) we make the change of variables t = x + εy, obtaining

f(x) = lim
ε→0

∫ ∞

−∞

∫ ∞

−∞

1√
2π

f(t)e
−η2

2 e−i(t−x) η
ε

1
ε
√

2π
dη dt. (9.2)

Now we change variables by putting η = εξ; doing so introduces the factor e
−ε2ξ2

2

and enables us to interchange the order of integration. The result gives

f(x) = lim
ε→0

∫ ∞

−∞

∫ ∞

−∞

1√
2π

f(t)e−itξdt e
−ε2η2

2 eixξ dξ√
2π

. (9.3)

The inner integral is simply f̂(ξ). Hence we obtain

f(x) = lim
ε→0

1√
2π

∫ ∞

−∞
f̂(ξ)eixξe

−ε2ξ2

2 dξ. (10)

To finally obtain the inversion formula, we use Lemma 3.3 to interchange the limit
and integral in (10). �

The reader should note the extent to which the proof of Theorem 3.2 resembles
the proofs of results such as Theorem 1.5.

The inversion formula has the following consequence: For f ∈ S, we have
(F2f)(x) = f(−x). Hence F4 is the identity operator.

Exercise 3.11. Compute the Fourier transform of χ, if χ(x) = 1 for |x| ≤ 1
and χ(x) = 0 otherwise. (Note that χ is not smooth, but that it is integrable.)

The next exercise is a bit akin to opening Pandora’s box. Taking functions of
operations such as differentiation is natural (see for example Section 6 of Chapter 1)
but somewhat hard to justify. Doing so without great care can lead to delicate
logical issues.

Exercise 3.12. Use the property D = F−1MF to give a plausible definition of
the α-th derivative of a nice function, where 0 < α < 1. Check that Dα+β = DαDβ .
More generally, try to define g(D) for various functions g. What technical difficulties
arise?

3. The dual space

The Schwartz space S is not a normed space, but we nonetheless require a
notion of convergence. This notion is achieved via semi-norms. We define mea-
surements of a function f in S as follows:

Definition 3.3. Let a, b be non-negative integers. We define ||f ||a,b by

||f ||a,b = sup
(
|x|a

∣∣∣∣( d

dx
)bf(x)

∣∣∣∣
)

.

These measurements are not norms because ||f ||a,b can be zero without f being
0. If ||f ||a,0 vanishes for some a, however, then f is the zero function. Note that we
could replace supremum by maximum in the definition of the semi-norm, because
functions in S are continuous and decay rapidly at infinity. The number of semi-
norms is countable, and hence we can make S into a metric space. The distance
between two functions is given by the formula



100 3. FOURIER TRANSFORM ON R

dist(f, g) =
∑
a,b

cab
||f − g||a,b

1 + ||f − g||a,b
,

where cab > 0 and is chosen to make the sum converge. For example, cab = 2−a−b is
often used. With this distance function, S is a complete metric space. See Exercise
3.16. It is adequate to state the notion of convergence in terms of the semi-norms,
rather than in an equivalent manner using this distance function.

Definition 3.4. A sequence {fn} converges to f in S if, for all a, b,

||fn − f ||a,b → 0.

Since S is a vector space, it would have sufficed to give the notion of convergence
to 0. To say that a sequence {fn} converges to 0 means that, any derivative of any
polynomial multiple of fn tends to 0 uniformly.

Definition 3.5. Let L : S → C be a linear functional. Then L is called
continuous if, whenever fn converges to f in S, then L(fn) converges to L(f) in C.

Definition 3.6. The dual space S ′ is the vector space consisting of all contin-
uous linear functionals on S. Elements of S ′ are called tempered distributions.

It is often convenient to write the action of a linear functional using inner
product notation:

φ(f) = 〈f, φ〉.
There is no complex conjugate used here.

Each element g of S can be regarded as a distribution by the formula

g(f) = 〈f, g〉 =
∫ ∞

−∞
f(x)g(x)dx. (11)

The integral in (11) defines a distribution more generally. For example, when g
is bounded and continuous, (11) makes sense and defines g as an element of S ′.
When g is any function such that (11) makes sense for all f ∈ S, we regard g as
the element of S ′ defined by (11). Distributions are more general than functions.

Example 3.2 (Distributions). The most famous example of a distribution is
the Dirac delta function, henceforth called the Dirac delta distribution. We define
δ ∈ S ′ by

δ(f) = 〈f, δ〉 = f(0).

Another example is given by its derivative:

δ′(f) = 〈f, δ′〉 = 〈−f ′, δ〉 = −f ′(0).

More generally, if φ is a tempered distribution, we define its k-th derivative φ(k) by

φ(k)(f) = 〈f, φ(k)〉 = (−1)k〈f (k), φ〉. (12)

By Exercise 3.13, (12) defines a continuous linear functional on S, and hence
φ(k) ∈ S ′. Formula (12) is the natural definition of distribution derivative. If φ
were itself k times differentiable, then (12) would hold; we integrate by parts k
times and all boundary terms vanish.
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Let us clarify these definitions. Let V be a topological vector space with dual
space V ′. As above, we use the notation 〈f, φ〉 for the action of φ ∈ V ′ on f ∈ V .
When L : V → V is linear, we define its transpose Lt, mapping V ′ to V ′, by

〈φ,Lf〉 = 〈Ltφ, f〉.
It is consistent with standard practice not to introduce a complex conjugation when
using the inner product notation for the action of a distribution on a function.

Let D denote differentiation. By integration by parts, and because all boundary
terms vanish when we are working on the Schwartz space, (D)t = −D. We extend
differentiation to the dual space by preserving this property. It follows that (Dk)t,
the transpose of differentiating k times, is (−1)kDk.

By Lemma 3.1, the transpose of the Fourier transform, when acting on func-
tions in S, is itself. In Definition 3.7, we will define the Fourier transform of a
distribution by setting F t = F .

Let us give another example of a distribution and its derivative. Define a
function u by u(x) = x for x ≥ 0 and u(x) = 0 for x < 0. This function is
sometimes called the ramp function. Then u′, which is not defined at 0 as a function,
nonetheless defines a distribution. We have

u′(f) = −u(f ′) = −
∫ ∞

0

x f ′(x) dx =
∫ ∞

0

f(x) dx. (13)

In (13) the first equality is the definition of distribution derivative, the next equality
holds because u is a function, and the last equality holds via integration by parts.
We also can compute the second derivative of u:

u′′(g) = −u′(g′) = −
∫ ∞

0

g′(t) dt = g(0).

Thus u′′ = δ. The Dirac delta distribution is thus the second distribution derivative
of the ramp function u. The distribution H = u′ is known as the Heaviside function.
It is named after Oliver Heaviside, rather than for the following reason. Note that
H = 1 on the positive axis and H = 0 on the negative axis. Thus H is “heavy” on
the right side. See [H] for a fascinating discussion of Heaviside’s life.

Exercise 3.13. Verify that δ ∈ S ′. If φ ∈ S ′, show that φ′, as defined by (12),
also is in S ′.

If f is a continuous function, and φ is a distribution, then we naturally define
f · φ by (f · φ)(g) = φ(fg). It is not possible to define the product of distributions
in general. See [SR] and its references for discussion of this issue.

Exercise 3.14. Let f be continuous and let δ be the Dirac delta distribution.
Find the distribution derivative (f ·δ)′. Assuming f is differentiable, find f ′ ·δ+f ·δ′.

Definition 3.7 (The generalized Fourier transform). Let φ ∈ S ′. We define
its Fourier transform F(φ) by duality as follows. For each f ∈ S we decree that

〈F(φ), f〉 = 〈φ,F(f)〉.
Definition 3.7 is justified by Lemma 3.1. In our current notation, this Lemma

states that 〈F(f), g〉 = 〈f,F(g)〉 for functions f, g in S.
The Fourier transform F(φ) is itself a distribution. It is obviously linear. We

verify continuity. If fn converges to 0 in S, then f̂n also converges to 0 in S. Hence
〈φ,F(fn)〉 converges to 0 in C.
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Example 3.3. What is the Fourier transform of the Dirac delta? We have

〈δ̂, f〉 = 〈δ, f̂〉 = f̂(0) =
1√
2π

∫ ∞

−∞
f(x)dx = 〈 1√

2π
, f〉.

Thus δ̂ is the constant function 1√
2π

.

Exercise 3.15. Compute the Fourier transforms Ĥ and û.

Exercise 3.16. Fill in the discussion between Definitions 3.3 and 3.4 as follows.
Verify that the given alleged distance function is in fact a distance function. Then
use the Arzela-Ascoli theorem to show that S is a complete metric space.

Exercise 3.17. Let φ be a linear functional on S. Show that φ ∈ S ′ if and
only if there is a constant M and an integer N such that

|φ(f)| ≤ M max{||f ||a,b : a + b ≤ N}.
4. Convolutions

We have already observed the power of convolution in understanding Fourier
series. We extend the notion of convolution to R and obtain similarly powerful
results.

Definition 3.8. Suppose f and g are integrable functions on R. We define
f ∗ g by

(f ∗ g)(x) =
∫ ∞

−∞
f(x − y)g(y)dy =

∫ ∞

−∞
f(y)g(x − y)dy. (14)

The equality of the two integrals follows by change of variables and also implies
that f ∗ g = g ∗ f . We also can easily check that if f ∈ L1 and g ∈ L2, then
f ∗ g ∈ L2.

Theorem 3.3. If f and g are in L1, then (f ∗ g)̂ =
√

2πf̂ ĝ.

Proof. We write out (f ∗g)̂(ξ) as a double integral and interchange the order
of integration, obtaining

√
2πf̂ ĝ. �

We wish to extend our work on approximate identities to this setting. First let
χ denote any integrable smooth function such that

∫ ∞
−∞ χ(x)dx = 1. For ε > 0 we

then define χε by

χε(x) =
χ(x

ε )
ε

. (15)

Then, by change of variables,
∫ ∞
−∞ χε(x)dx = 1 also.

Definition 3.9. For χε as in (15), put Jε(f) = χε ∗ f . We call Jε a mollifier.

Theorem 3.4. If f ∈ L1, then Jεf converges to f in L1 as ε tends to 0. If
f ∈ L2, then Jεf converges to f in L2 as ε tends to 0. If f is uniformly continuous
near x, then Jεf converges uniformly to f near x. If f is integrable and χ is
infinitely differentiable, then Jεf is infinitely differentiable.

Proof. We refer the reader to Chapter 8 of [F2]. �

Exercise 3.18. Show that the function f defined by f(x) = e
−1
x for x > 0 and

by f(x) = 0 otherwise is infinitely differentiable. Sketch the graph of the function
x → f(x)f(1 − x).
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Exercise 3.19. Prove Theorem 3.1. Suggestion: First find a continuous func-
tion that is 1 on I and 0 off J . Mollify it, using a function χ as constructed in the
previous exercise.

Exercise 3.20. The support of a function f is the smallest closed set outside
of which f is identically zero. Suppose f is supported in [a, b] and g is supported
in [c, d]. What can you say about the support of f ∗ g?

5. Plancherel theorem

The Parseval formula equates the l2-norm of the Fourier coefficients of a func-
tion with the L2 norm of the function. Its polarized form, Corollary 2.7, states
that

〈f̂ , ĝ〉2 = 〈f, g〉L2 .

The Plancherel theorem (which holds both in higher dimensions and in more
abstract settings) extends the Parseval result by establishing that the Fourier trans-
form is a unitary operator on L2(R).

Recall that the Fourier transform is defined on L2 in a subtle manner; the
integral in (1) need not converge for f ∈ L2. We define F on the Schwartz space
via integration as in (1), and then we extend F to S ′ by duality. We then regard
an element of L2 as an element of S ′. It would also be possible to define F on
L1 ∩ L2 by the integral (1) and proceed by limiting arguments.

Theorem 3.5. The Fourier transform F : L2(R) → L2(R) is unitary.

Proof. By Proposition 2.6, it suffices to check that ||Ff ||2L2 = ||f ||2L2 for all
f in L2. The norm is continuous, and hence it suffices to check this equality on
the dense set S. Put ĝ = f in Lemma 3.1. Then g = f̂ and Lemma 3.1 gives
||f ||2L2 = ||f̂ ||2L2 . �

Exercise 3.21. Note that F4 = I. Use this fact and Proposition 3.4 to find
all eigenvalues of F . Harder: Find all eigenfunctions. Suggestion: Apply d

dx −x to

e
−x2
2 and use formula (64) from Chapter 2. Or, look ahead to Theorem 3.9.

Exercise 3.22. Put χ(x) = 1 for |x| ≤ 1 and χ(x) = 0 otherwise. Find χ̂.

Exercise 3.23. Use Exercise 3.22 and the Plancherel Theorem to find∫ ∞
−∞

sin2(x)
x2 dx. Also use contour integration to check your answer.

Exercise 3.24. Assume b ≥ 0. Compute the integrals:∫ ∞

0

e−u(1+x2)du.

∫ ∞

−∞

e−ibx

1 + x2
dx.

∫ ∞

0

e−t

√
t
e

−b2
4t dt.

Suggestion: Use the first, the second, and the Fourier transform of a Gaussian to
compute the third. The answer to the third is

√
π exp(−b).

Exercise 3.25. Put f(x) = e−xxa−1 for x ≥ 0 and f(x) = 0 otherwise. Find
the condition on a for which f ∈ L1(R). Under this condition, find f̂ . Comment:
One can use contour integrals from complex analysis here.
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6. Heisenberg uncertainty principle

The famous Heisenberg uncertainty principle from quantum mechanics states
something to the effect that it is not possible to determine precisely both the posi-
tion and momentum of a moving particle. This principle can be formulated as an
inequality involving the Fourier transform. After giving an intuitive explanation,
we state and prove this inequality.

Let |f |2 denote the probability density on R determined by the position of a
moving particle. By definition, the probability that this particle is found in the
interval [a, b] is the integral

∫ b

a
|f(x)|2dx and of course

∫ ∞
−∞ |f(x)|2dx = 1 (the

particle is somewhere).
The mean (expected value) of position is by definition the integral

μ =
∫ ∞

−∞
x|f(x)|2dx,

when this integral converges (which we assume in this section). After a translation
we may assume without loss of generality that μ = 0.

The picture for momentum looks the same, except that we use |f̂ |2 to define
the density for momentum. By the Plancherel theorem, |f̂ |2 also defines a density.
Again, without loss of generality, we may assume (after multiplying f by a function
eiax of modulus 1) that the mean of momentum is 0. See Exercise 3.26.

The variance of the position of a particle of mean 0 equals∫ ∞

−∞
x2|f(x)|2dx = ||xf(x)||2L2 ,

and the variance of its momentum is∫ ∞

−∞
ξ2|f̂(ξ)|2dξ = ||ξf̂(ξ)||2L2 .

Again we assume these integrals converge.
The following famous inequality gives a positive lower bound on the product

of the two variances.

Theorem 3.6 (Heisenberg’s inequality). Assume both f and f ′ are square-
integrable on R. Then

||xf(x)||2L2 ||ξf̂(ξ)||2L2 ≥ 1
4
||f ||4L2 . (16)

Proof. We assume that f ∈ S. The general case follows because S is dense
in L2. Consider the integral

I =
∫ ∞

−∞
x

(
f(x)f

′
(x) + f ′(x)f(x)

)
dx.

Using integration by parts, we obtain

I = x|f(x)|2∣∣∞−∞ −
∫ ∞

−∞
|f(x)|2dx = −

∫ ∞

−∞
|f(x)|2dx,

because the boundary terms are zero. By the Cauchy-Schwarz inequality and the
Plancherel theorem, we also have

|I| ≤ 2||xf(x)||L2 ||f ′||L2 = 2||xf(x)||L2 ||ξf̂(ξ)||L2 . (17)
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Putting the two formulas together gives
1
2
||f ||2L2 ≤ ||xf(x)||L2 ||ξf̂(ξ)||L2 , (18)

which yields (16) upon squaring both sides. �

Corollary 3.1. The following inequality holds:

||f ||2L2 ≤ ||xf(x)||2L2 + ||ξf̂(ξ)||2L2 = ||xf(x)||2L2 + ||f ′(x)||2L2 .

Proof. For non-negative real numbers s, t we always have st ≤ s2+t2

2 . (The
arithmetic-geometric mean inequality, or the Cauchy-Schwarz inequality!). Apply-
ing this simple fact to the product on the right-hand side of (18) yields the
inequality. The equality follows by Proposition 3.2. �

Exercise 3.26. What is the effect on the mean of position if we replace f(x)
by eixhf(x)? What is the effect on the mean of momentum in doing so?

Exercise 3.27. When does equality hold in (16)?

A less precise form of the Heisenberg uncertainty formula says the following.
Unless f is identically 0, then f and f̂ cannot both vanish outside of a bounded
set. We prove this result next.

Theorem 3.7. Suppose f is integrable on [−r, r] and f(x) = 0 for |x| > r. If
there is an R such that f̂(ξ) = 0 for |ξ| > R, then f is identically 0.

Proof. We start with

f̂(ξ) =
1√
2π

∫ r

−r

f(x)e−ixξdx. (19)

In (19), we let ξ be a complex variable. Since we may differentiate under the integral
as often as we wish (introducing factors of −ix) and the integral still converges,
ξ → f̂(ξ) is an entire complex analytic function. If an R exists as in the theorem,
then this complex analytic function vanishes on an interval in R. By basic complex
variable theory, a complex analytic function vanishing on an interval of the real
axis must be identically 0. Thus both f̂ and f vanish identically.

One can also prove the theorem as follows. Expand e−ixξ in a Taylor series
about any point and interchange the order of integration and summation. We see
that f̂ is an entire analytic function with a zero of infinite order, and hence it is
identically 0. �

7. Differential equations

The Fourier transform plays a major role in partial differential equations.
Although most of this material is beyond the scope of this book, we can glimpse some
of the ideas in simple settings. The key point is that the Fourier transformation
diagonalizes differentiation. When we have diagonalized an operation, we can take
functions of the operation.

We first consider diagonalization is a simple but interesting context. Consider
an affine function z → mz + w = f(z) on C. We write f∗n for the iteration of f a
total of n times. Thus f∗1 = f and f∗(n+1) = f ◦ f∗n. Using diagonalization, we
can compute f∗n easily.
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There are two cases. When f(z) = z + w (thus f is a translation), we obtain
f∗n(z) = z + nw. When f(z) = mz + w for m �= 1, we can write

f(z) = mz + w = m(z + ζ) − ζ,

where mζ − ζ = w. We see that f = T−1MT , where T is translation by ζ and M
is multiplication by m. Thus f∗n = T−1MnT , or

f∗n(z) = mn(z + ζ) − ζ.

The simplicity of these formulas is evident. Furthermore, the formulas make
sense when n is replaced by an arbitrary real number α as long as we are careful
in our definition of the multi-valued function m → mα. The crucial point is that
we can take functions of operators. Often we simply want to find f−1, but we can
do more, such as composing f with itself α times, where α is not necessarily an
integer.

This technique of diagonalization applies to differential equations via the Fourier
transform. The starting point is the inversion formula (3). When differentiating
underneath the integral sign is valid, we obtain

f (k)(x) =
1√
2π

∫ ∞

−∞
(iξ)kf̂(ξ)eixξdξ.

Thus the process of differentiating k times can be expressed as follows: first take
the Fourier transform. Then multiply by (iξ)k. Then take the inverse Fourier
transform. The reader should compare this process with the discussion in Section 4
of Chapter 1 as well as with the above paragraphs.

Let p be a monic polynomial of degree k. Consider a linear differential equation
of the form

p(D)y = y(k) −
k−1∑
j=1

cjy
(j) = f. (20)

Taking Fourier transforms of both sides, we obtain a relation

(iξ)kŷ(ξ) −
k−1∑
j=1

cj(iξ)j ŷ(ξ) = p(iξ)ŷ(ξ) = f̂(ξ), (21)

which is an algebraic equation for ŷ. Thus ŷ(ξ) = f̂(ξ)
p(iξ) for the polynomial p which

defines the differential equation. To solve (20), we take the Fourier transform of f ,
divide by this polynomial in iξ, and recover y by finally taking the inverse Fourier
transform. The problem of integrating a differential equation gets replaced by the
problem of dividing by a polynomial and taking the inverse Fourier transform of
the result.

Example 3.4. Consider y′′−y = f . We obtain ŷ(ξ) = −f̂(ξ)
1+ξ2 . Using the Fourier

inversion formula, we get

y(x) =
−1
2π

∫ ∫
f(t)

eiξ(x−t)

1 + ξ2
dt dξ.

For nice f we can invert the order of integration and obtain a formula y(x) =∫
G(x, t)f(t)dt.
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Example 3.5. We return to the wave equation uxx = utt. Assume u(x, 0) =
f(x) and ut(x, 0) = g(x). We apply the Fourier transform in x, regarding t as
a parameter. The wave equation becomes a second order ODE with two initial
conditions:

ûtt(ξ, t) = −ξ2û(ξ, t)

û(ξ, 0) = f̂(ξ)

ût(ξ, 0) = ĝ(ξ).

Solving this second order ODE is easy, as it has constant coefficients when t is
regarded as the variable. We get

û(ξ, t) = f̂(ξ)cos(|ξ|t) + ĝ(ξ)
sin(|ξ|t)

|ξ| . (22)

Exercise 3.29 asks for the simple details. Now we can find u by applying the Fourier
inversion formula, obtaining the same result as in Theorem 1.4.

Exercise 3.28. Suppose the f in Example 3.4 lies in the Schwartz space. Find
G(x, t). Be careful about the sign of x − t.

Exercise 3.29. Fill in the details in Example 3.5, including the use of the
inversion formula.

Exercise 3.30. Let V be a complex vector space. Put f(z) = Mz + b, for
M ∈ L(V, V ). Under what condition does f = T−1MT for some translation T?

8. Pseudo-differential operators

This section indicates how the Fourier transform has been used in modern
analysis. Let us repeat the idea from the previous section, by differentiating the
Fourier inversion formula for a Schwartz function u:

(
d

dx
)ku(x) =

1√
2π

∫ ∞

−∞
eixξ(iξ)kû(ξ)dξ. (23)

Let pk(x) be a smooth function of x and let (Lu)(x) =
∑m

k=0 pk(x)u(k)(x) denote
a differential operator of order m. By (23) we have

Lu(x) =
m∑

k=0

pk(x)u(k)(x) =
1√
2π

∫ ∞

−∞
eixξ

m∑
k=0

(iξ)kpk(x)û(ξ)dξ.

As before, Lu is computed by a three-step process. We find û; we multiply
by a polynomial in ξ with coefficients in x, namely

∑
k pk(x)(iξ)k; finally we take

the inverse Fourier transform. To invert L we proceed in a similar fashion, with
multiplication replaced by division.

A pseudo-differential operator P is a linear operator, defined on a space of
functions or distributions, obtained in the following fashion. Given u, we compute
Pu as follows. We find û(ξ); we multiply by a smooth function p(x, ξ) satisfying
appropriate smoothness conditions in (x, ξ) and growth restrictions in ξ; finally we
take the inverse Fourier transform. The function p(x, ξ) is called the symbol of P .

One of the most useful pseudo-differential operators is written Λs. Its symbol
is (1+ξ2)

s
2 . The operator Λ2 is the same as 1− ( d

dx )2. Note that Λ−2 is its inverse.
Hence we can solve the differential equation (1−( d

dx )2)u = f by writing f = Λ−2u.
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The operator Λ−2 is certainly not a differential operator, although it is the inverse
of one.

Pseudo-differential operators extend this idea to both ordinary and partial
linear differential equations. The key idea is to perform algebraic operations (multi-
plication and division) on the symbols, rather than to differentiate and integrate.

What functions are allowed as symbols? Perhaps the most basic class of sym-
bols, but not the only one, is defined as follows. For m ∈ R, we let Sm denote the
space of infinitely differentiable functions u in (x, ξ) such that, for all a, b there is
a constant Cab such that

∣∣( d

dx
)a(

d

dξ
)bu(x, ξ)

∣∣ ≤ Cab(1 + ξ2)
m−b

2 . (24)

Elements of Sm are called symbols of order m. A pseudo-differential operator has
order m if its symbol has order m. In particular, a differential operator gives an
example of a pseudo-differential operator of the same order. For each real number
s, the operator Λs has order s.

We obviously have Sl ⊆ Sm if l ≤ m. We therefore naturally define S∞ = ∪Sm

and S−∞ = ∩Sm. The reader might wonder what an operator of order −∞ might
be. Mollifiers as we defined earlier provide nice examples. These operators smooth
things out, as we indicate below.

These ideas are part of a sophisticated theory including Sobolev spaces. See
[SR]. For us the key point to mention extends our earlier remark to the effect that
the smoothness of a function on the circle is related to the rate of decay of its
Fourier coefficients at ∞. Sobolev spaces measure the rate of decay at ∞ of the
Fourier transform of a function. We give the following definition of the Sobolev
space W s(R). Henceforth we drop the R from the notation.

Definition 3.10. Assume u ∈ S ′. Then u ∈ W s if and only if Λsu ∈ L2(R).

This definition is equivalent to demanding that û be a function for which

||u||2W s =
∫ ∞

−∞
(1 + ξ2)s|û(ξ)|2dξ < ∞. (24)

Note that W s ⊆ W t if s ≥ t. We naturally put W−∞ = ∪sW
s and W∞ =

∩sW
s. We then have the obvious additional containments, each of which is strict:

S ⊆ W∞ ⊆ W−∞ ⊆ S ′.

Exercise 3.31. Show that 1
1+x2 is in W∞ but not in S.

Lemma 3.4. Suppose |g| is integrable on R. Then both the Fourier transform
of g and the inverse Fourier transform of g are continuous.

Proof. See Exercise 3.32. �

The significance of Lemma 3.4 arises from the following crucial idea. To prove
that a function or distribution u has k continuous derivatives, we take Fourier
transforms and prove that ξkû(ξ) is integrable. This method clarifies the relation-
ship between smoothness of a function and the behavior of its Fourier transform at
infinity.
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Exercise 3.32. Prove that the Fourier transform of an L1 function is contin-
uous. Be careful in your proof, as the real line is not compact.

Theorem 3.8. Assume u ∈ L2(R) and let k be a nonnegative integer. Then:
• u ∈ W k if and only if u(k) ∈ L2(R).
• (Sobolev lemma, special case) If u ∈ W s for s > k + 1

2 , then u has k
continuous derivatives.

Hence u ∈ W∞ if and only if all derivatives of u are in L2(R).

Proof. First we note two obvious estimates.

|ξ|2k ≤ (1 + |ξ|2)k ≤ 2k if |ξ| ≤ 1 (25.1)

|ξ|2k ≤ (1 + |ξ|2)k ≤ 2k|ξ|2k if 1 ≤ |ξ|. (25.2)

The inequalities in (25.1) and (25.2) show that u ∈ W k is equivalent to u(k) being
square-integrable, and the first statement holds. To prove the second statement,
we estimate using the Cauchy-Schwarz inequality:

∫
|ξ|k|û(ξ)| =

∫ |ξ|k
(1 + |ξ|2) s

2
|û(ξ)|(1 + |ξ|2) s

2 ≤ ||u||W s

(∫ |ξ|2k

(1 + |ξ|2)s

) 1
2

. (26)

The integral on the far right in (26) is convergent if and only if 2k − 2s < −1.
Hence, if u ∈ W s and s > k + 1

2 , then the expression |ξ|kû(ξ) is integrable. Since
we recover the k-th derivative of u by taking the inverse Fourier transform, the
second statement now follows from Lemma 3.4. �

Corollary 3.2. Suppose u ∈ S ′ and u(k) ∈ L2 for all k. Then u agrees with
an infinitely differentiable function almost everywhere.

Exercise 3.33. For what s is the Dirac delta distribution in W s?

Exercise 3.34. Consider the analogue of the integral in (26) in n dimensions:
∫
Rn

||ξ||2k

(1 + ||ξ||2)s
dV.

What is the condition on k, s, n such that this integral converges?

9. Hermite polynomials

We saw in Chapter 2 that the Hermite polynomials Hn(x) have the exponential
generating function exp(2xt − t2). In other words,

exp(2xt − t2) =
∞∑

n=0

Hn(x)
tn

n!
. (27)

These polynomials are closely related to the Fourier transform. As mentioned in
Chapter 2, the functions in Theorem 3.9 are sometimes called the Hermite functions.
See the comment after Exercise 2.62.

Theorem 3.9. For each non-negative integer n, the function e
−x2
2 Hn(x) is an

eigenfunction of the Fourier transform with eigenvalue (−i)n.
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Proof. We start with (27) and multiply both sides by e
−x2
2 . We then take

Fourier transforms. Doing so yields

F
(

exp(−x2

2
+ 2xt − t2)

)
(ξ) =

∑
n

F
(
e

−x2
2 Hn(x)

)
(ξ)

tn

n!
. (28)

We will simplify the left-hand side of (28) and use (27) again to obtain the result.
Note that

exp(
−x2

2
+ 2xt − t2) = exp(

−1
2

(x − 2t)2) exp(t2). (29)

Plugging (29) into (28) replaces the left-hand side with

exp(t2)F
(

exp(
−1
2

(x − 2t)2)
)

(ξ). (30)

The second factor in (30) is the Fourier transform of a Gaussian with mean 2t and
variance 1. By Exercise 3.4, the Fourier transform of the Gaussian with mean μ
and variance 1 is exp(−iμξ) times itself. The expression in (30) therefore becomes

exp(t2 − 2iξt) exp(
−ξ2

2
). (31)

The first factor in (31) is the left-hand side of (27) with t replaced by (−it) and x
replaced by ξ. Using the generating function expansion from (27) with t replaced
by −it, and equating coefficients of tn, yields the conclusion:

F
(

exp(
−x2

2
)Hn(x)

)
(ξ) = (−i)n exp(

−ξ2

2
)Hn(ξ).

�

Example 3.6. The first few Hermite polynomials:

• H0(x) = 1
• H1(x) = 2x
• H2(x) = −2 + 4x2

• H3(x) = −12x + 8x3

• H4(x) = 12 − 48x2 + 16x4

• H5(x) = 120x − 160x3 + 32x5

• H6(x) = −120 + 720x2 − 480x4 + 64x6

• H7(x) = −1680x + 3360x3 − 1344x5 + 128x7.

Figure 2 shows the polynomials Hn(x)/2n for 0 ≤ n ≤ 5. We divide by 2n to
make the leading coefficient equal to 1, and the graphs become nicer.

Exercise 3.35. Write simple code to get Mathematica or something similar to
print out the first twenty Hermite polynomials. Observe some patterns and then
prove them.

Exercise 3.36. For each n find (x − d
dx )n exp (−x2

2 ).

Exercise 3.37. Prove that H ′
n(x) = 2xHn(x) − Hn+1(x).

Exercise 3.38. Prove for each n that Hn(x) has integer coefficients.

Exercise 3.39. Let M denote multiplication by exp(−x2

2 ) and let T denote
x − d

dx . Express M−1TnM in terms of Hermite polynomials.
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Exercise 3.40. We saw in Chapter 2 that the Hermite polynomials form a
complete orthogonal system forH = L2(R, exp(−x2)). Show that ||Hn||2 = 2nn!

√
π.

Exercise 3.41. Find a combinatorial interpretation of the sequence of (abso-
lute values of) coefficients 0, 0, 0, 2, 12, 48, 160, 480, . . . of the second highest power
of x in Hn(x).

−1.0

−1.0

−0.5

−0.5

0.5

0.5

1.0

1.0

Figure 2. Scaled Hermite polynomials

10. More on Sobolev spaces

We begin by proving the following theorem. Its proof is quite similar to several
proofs from Chapter 1. The analogues in higher dimensions of this result and the
subsequent proposition are important tools in partial differential equations. See
[F1] and [Ra].

Theorem 3.10. Assume s < t. Let {fn} be a sequence of functions such that:

• There is a constant C such that ||fn||W t ≤ C for all n.
• f̂n(ξ) converges uniformly to 0 on compact subsets of R.

Then ||fn||W s converges to 0.

Proof. We start with

||fn||2W s =
∫

(1 + |ξ|2)s|f̂n(ξ)|2 dξ. (32)
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As in many proofs in this book, we estimate the integral by breaking it into two
parts. First consider the set where |ξ| > R. On this set, and remembering that
s < t, we have

(1 + |ξ|2)s = (1 + |ξ|2)s−t(1 + |ξ|2)t ≤ (1 + R2)s−t(1 + |ξ|2)t. (33)

Using (33) in (32) we obtain

||fn||2W s ≤
∫
|ξ|≤R

(1 + |ξ|2)s|f̂n(ξ)|2 dξ + (1 + R2)s−t||fn||2W t . (34)

Suppose ε > 0 is given. Since the terms ||fn||2W t are bounded, and s < t, we may
choose R large enough to guarantee that the second term on the right-hand side of
(34) is at most ε

2 . Fix this R. Now consider the first term on the right-hand side
of (34). It is bounded by a constant (independent of n) times sup |f̂n(ξ)|2. Since
the set where |ξ| ≤ R is compact, the assumption of uniform convergence allows us
to bound this term by ε

2 , by choosing n large enough. �

Proposition 3.5. Suppose s < t < u and ε > 0. Then there is a constant Cε

such that

||f ||2W t ≤ ε||f ||2W u + Cε||f ||2W s . (35)

Proof. For any positive x we have 1 ≤ xu−t + xs−t since one of x and 1
x is

already at least 1. Plug in (1 + |ξ|2)ε 1
u−t for x. We get

1 ≤ ε(1 + |ξ|2)u−t + ε
s−t
u−t (1 + |ξ|2)u−t.

Then multiply this inequality by (1+ |ξ)|2)t|f̂(ξ)|2 and integrate. The result is that

||f ||2W t ≤ ε||f ||2W u + Cε||f ||2W s ,

where Cε = ε
s−t
u−t . Note that Cε is a negative power of ε. �

One can also write this proof using the operators Λr where r = u − t and
r = s− t. Equivalently, put g = Λtf in (35). We obtain an estimate of the L2 norm
of g in terms of a small constant times a Sobolev norm with a positive index
and a large constant times a Sobolev norm with negative index.

These results are closely related to the Rellich Lemma. See [F1]. Often one
considers Sobolev spaces W s(Ω) on a bounded domain or compact manifold Ω.
The Rellich Lemma then states that the inclusion map of W t(Ω) into W s(Ω) is a
compact operator when s < t. If we work with Sobolev spaces on R, we may state
the Rellich Lemma as follows:

Theorem 3.11 (Rellich lemma). Assume that {gn} is a bounded sequence in
W t and each gn vanishes outside a fixed compact set K. Then, whenever s < t,
there is a subsequence {gnk

} converging in W s.

The proof is similar to that of Theorem 3.10. Under the hypotheses of the
Rellich lemma, and using the Arzela-Ascoli theorem, one can find a subsequence
{ĝnk

} which converges uniformly on compact sets. Then one applies Theorem 3.10
to show that gnk

is Cauchy in W s.
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11. Inequalities

We close this chapter with several standard inequalities for functions defined
on subsets of the real line. These inequalities hold more generally. Again see [F1].
We begin with a result from elementary calculus.

Lemma 3.5. Let f be continuous and increasing on [0, a], with f(0) = 0. Then

af(a) =
∫ a

0

f(x)dx +
∫ f(a)

0

f−1(y)dy. (36)

Suppose 0 < b < f(a). Then

ab ≤
∫ a

0

f(x)dx +
∫ b

0

f−1(y)dy. (37)

Proof. Both sides of (36) represent the area of the rectangle with vertices at
(0, 0), (a, 0), (a, f(a)), (0, f(a)), and hence (36) holds. If 0 < b < f(a), then the
right-hand side of (37) represents the area of a set strictly containing the rectangle
with vertices (0, 0), (a, 0), (a, b), (0, b). See Figure 3. �

Remark 3.3. Lemma 3.5 has an amusing corollary. Assume f is a monotone,
elementary function whose indefinite integral is also an elementary function. Then
the indefinite integral of f−1 is also an elementary function. Changing variables
by putting y = f(x) in the right-hand integral in (36) shows that one can find the
indefinite integral of f−1 by using integration by parts and Lemma 3.5.

a

f (a)

b

Figure 3. Lemma 3.5

Proposition 3.6 (Young’s inequality). For 1 < p, set q = p
p−1 . For positive

numbers a, b we then have

ab ≤ ap

p
+

bq

q
. (38)

Proof Take f(x) = xp−1 in Lemma 3.5. We obtain

ab ≤
∫ a

0

xp−1dx +
∫ b

0

y
1

p−1 dy =
ap

p
+

b
p

p−1

p
p−1

=
ap

p
+

bq

q
. �
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The condition that q = p
p−1 is often written 1

p + 1
q = 1. These numbers are

called conjugate exponents. Proposition 3.6 still holds when p = 1, if we set q = ∞.
See Exercise 3.42.

Remark 3.4. Inequality (37), used to prove Proposition 3.6, is sometimes also
known as Young’s inequality.

To state and prove several additional inequalities, we use the notation of
Lebesgue integration. Let S be a (measurable) subset of R. Assume |f | is inte-
grable on S. For 1 ≤ p < ∞ we write (not including S in the notation)

||f ||pLp =
∫

S

|f(x)|pdx.

In order to regard Lp(S) as a normed vector space, we must first remember that
elements of Lp are equivalence classes of functions. The set of these equivalence
classes forms a vector space. The zero vector is the equivalence class consisting of
all functions that vanish except on a set of measure 0. We add equivalence classes
by selecting representatives and adding as usual, and we multiply an equivalence
class by a scalar by selecting a representative and multiplying it by the scalar. As
usual, one needs to verify the trivial assertions that the results are independent of
the representatives chosen. We omit this pedantic point.

We must also verify that || · ||Lp defines a norm. Property (2) from Definition
2.1 is clear; property (1) of a norm is clear once we realize we are working with
equivalence classes. Property (3), the triangle inequality, is Theorem 3.12 below.
It is known as Minkowski’s inequality and is a subtle point. In order to prove it, we
first prove Hölder’s inequality. See [S] both for additional versions of this inequality
and for some interesting historical discussion.

Proposition 3.7 (Hölder’s inequality). Again assume 1 < p and q = p
p−1 .

Assume |f |p is integrable on S and |g|q is integrable on S. Then |fg| is integrable
on S and

||fg||L1 ≤ ||f ||Lp ||g||Lq . (39)

Proof. The result is obvious if either ||f ||Lp or ||g||Lq is zero. Otherwise, after
dividing f by ||f ||Lp and g by ||g||Lq , we may assume in (39) that each of these
norms equals 1. For each x ∈ S, Young’s inequality implies

|f(x)g(x)| ≤ |f(x)|p
p

+
|g(x)|q

q
. (40)

Integrating (40) shows that

||fg||L1 ≤ ||f ||pLp

p
+

||g||qLq

q
=

1
p

+
1
q

= 1.

�

Hölder’s inequality remains true when p = 1, in which case it is obvious.
(Exercise 3.42).

Exercise 3.42. Verify Young’s inequality and Hölder’s inequality when p = 1.

Exercise 3.43. Verify the statements from Remark 3.3.

Exercise 3.44. Suppose q = p
p−1 . Show that ||hp−1||Lq = ||h||p−1

Lp .
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Theorem 3.12 (Minkowski). Assume 1 ≤ p < ∞. The triangle inequality holds
in Lp. In other words, if |f |p and |g|p are integrable, then |f + g|p is integrable and

||f + g||Lp ≤ ||f ||Lp + ||g||Lp . (41)

Proof. First we note that the statement is immediate if f + g = 0 and is
easy when p = 1. We thus assume p > 1 and that f + g is not the zero function
(equivalence class). The following string of statements is elementary:

||f + g||pLp ≤
∫

(|f | + |g|) |f + g|p−1 =
∫

|f | |f + g|p−1 +
∫

|g||f + g|p−1. (42)

Now use Hölder’s inequality in (42) to get

||f + g||pLp ≤ (||f ||Lp + ||g||Lp) || |f + g|p−1||Lq . (43)

Since q = p
p−1 , the last term in (43) becomes || |f + g| ||p−1

Lp . (See Exercise 3.44)
Dividing both sides by this term gives the triangle inequality (41). �

Remark 3.5. The Lp spaces are complete; the proof requires results from the
theory of the Lebesgue integral.

By Theorem 3.12, the Lp norm of a sum is at most the sum of the Lp norms.
That result suggests that the Lp norm of an integral should be at most the integral
of the Lp norms. Such a result holds; it is often called Minkowski’s inequality for
integrals. See [F1].

Next we use Hölder’s inequality to establish the integral versions of Hilbert’s
inequality and Hardy’s inequality, formulas (57.1) and (57.2) of Chapter 1. Note
that (44) is obvious when p = 1, as the right-hand side is infinite.

Theorem 3.13 (Hilbert’s inequality revisited). Let p, q be conjugate exponents
with p > 1. Assume that f ∈ Lp([0,∞)) and that g ∈ Lq([0,∞)). Then

∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy ≤ π

sin(π
p )

||f ||Lp ||g||Lq . (44)

Proof. Change variables in the integral in (44) by replacing x by yt. We get

I =
∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy =
∫ ∞

0

∫ ∞

0

f(yt)g(y)
1 + t

dtdy. (45)

Let Ft denote the function given by Ft(y) = f(yt). Interchange the order of inte-
gration in (45). Then apply Hölder’s inequality to the inner integral, obtaining

I ≤
∫ ∞

0

||Ft||Lp

dt

1 + t
||g||Lq .

By changing variables, note that ||Ft||Lp = ||f ||Lp

t
1
p

. Plugging in this result gives

I ≤
∫ ∞

0

dt

(1 + t)t
1
p

||f ||Lp ||g||Lq . (46)

The integral on the right-hand side of (46) equals π
sin(π

p ) , which gives (44). We
discuss the evaluation of the integral after the proof. �
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For p > 1, put Cp =
∫ ∞
0

dt

(t+1)t
1
p
. This integral can be evaluated by using

contour integrals and complex analysis. See page 133 in [D2] or pages 157–8 in [A].
The contour used is pictured in Figure 4, where the positive real axis is a branch
cut.

One can also reduce the computation of Cp (Exercise 3.45) to the Euler Beta
function discussed in Exercise 4.63, and the formula (Exercise 4.67)

Γ(z)Γ(1 − z) =
π

sin(πz)
. (47)

The best way to establish (47), however, uses contour integrals to evaluate Cp.

Exercise 3.45. For p > 1, put Cp =
∫ ∞
0

dt

(t+1)t
1
p
. Verify that

Cp =
∫ 1

0

s
1
p−1(1 − s)

−1
p ds. (48)

If you are familiar with the Gamma and Beta functions (See Chapter 4), show that

Cp = Γ(
1
p
)Γ(1 − 1

p
) =

π

sin(π
p )

.

Figure 4. Contour used to evaluate Cp

The next exercise provides another generalization of Hilbert’s inequality. For
simplicity we work in L2. To solve it, mimic the proof of Theorem 3.13.

Exercise 3.46. Consider a continuous function K : (0,∞) × (0,∞) → [0,∞)
such that K(λx, λy) = K(x,y)

λ . Show that∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y)dxdy ≤ C||f ||L2 ||g||L2 ,

where C satisfies

C =
∫ ∞

0

K(1, y)√
y

dy.

The following beautiful exercise also fits into this general discussion, providing
a bound from the other direction.
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Exercise 3.47. Let {xj} be a sequence of distinct positive numbers. Consider
the infinite matrix A whose entries are 1

xj+xk
. Prove that

0 ≤
∑
j,k

zjzk

xj + xk

for all sequences {zj}, and equality holds only if z is the zero sequence. Thus A is
non-negative definite. Suggestion: Write

1
xj + xk

=
∫ ∞

0

e−(xj+xk)tdt.

Exercise 3.48. Suppose f = ĝ, where g ≥ 0. Show that the matrix with
entries f(xj − xk) is non-negative definite. Comment: The converse assertion is a
special case of a general result in harmonic analysis known as Bochner’s theorem.
On the real line, Bochner’s theorem states that a continuous function f satisfies
this matrix non-negativity condition if and only if it is the Fourier transform of
a positive measure. The one-dimensional result can be derived from Herglotz’s
theorem, mentioned in Section 13 of Chapter 1. See [K].

Exercise 3.49. The Laplace transform of a function f is defined by

(Lf)(x) =
∫ ∞

0

e−xtf(t)dt,

whenever the improper integral converges. Show that

(L2f)(x) =
∫ ∞

0

f(t)
x + t

dt.



CHAPTER 4

Geometric considerations

The purpose of this chapter is to discuss various geometric problems which are
informed by orthogonality and related considerations. We begin with Hurwitz’s
proof of the isoperimetric inequality using Fourier series. We prove Wirtinger’s
inequality, both by Fourier series and by compact operators. We continue with a
theorem comparing areas of the images of the unit disk under complex analytic
mappings. We again give two proofs, one using power series and one using Green’s
(Stokes’) theorem. The maps z �→ zd from the circle to itself play a prominent
part in our story. We naturally seek the higher dimensional versions of some of
these results. It turns out, not surprisingly, that one can develop the ideas in many
directions. We limit ourselves here to a small number of possible paths, focusing
on the unit sphere in Cn, and we travel only a small distance along each of them.

Complex analytic mappings sending the unit sphere in Cn to the unit sphere
in some CN play a major role in this chapter. For example, we study polynomial
mappings that are also invariant under finite subgroups of the unitary group, and
we discover a surprising connection to Chebyshev polynomials. We also compute
many explicit integrals. The author’s technique of orthogonal homogenization is
introduced and is used to prove a sharp inequality about volumes (with multiplicity
accounted for) of complex analytic images of the unit ball. To prove this inequality
we develop needed information about differential forms and complex vector fields.

We do not consider the Fourier transform in higher dimensions. Many books
on partial differential equations and harmonic analysis tell that story well.

1. The isoperimetric inequality

Geometric inequalities range from easy observations to deep assertions. One of
the easiest such inequalities is that the rectangle of a given perimeter with maximum
area is a square. The proof follows from (x+y)(x−y) = x2−y2 ≤ x2, with equality
when y = 0. One of the most famous inequalities solves the isoperimetric problem;
given a closed curve in the plane of length L, the area A enclosed satisfies A ≤ L2

4π .
Equality happens only if the curve is a circle. We use Fourier series to prove this
isoperimetric inequality, assuming that the curve is smooth.

Recall from calculus that a smooth planar curve is a smooth function γ : [a, b] →
R2 for which γ′(t) does not vanish. Officially speaking, the curve is the function,
but it is natural to think also of the curve as the image of the function, traced out
in some order. The curve is called closed if γ(a) = γ(b) and simple if γ(t1) �= γ(t2)
for t1 �= t2 unless t1 = a, t2 = b or t1 = b, t2 = a. This complicated sounding
condition is clear in geometric terms; if one thinks of the curve as its image, then
the curve is simple if it neither crosses itself nor covers itself multiple times. Note,
for example, that the curve γ : [0, 2π] → C given by γ(t) = e2it is closed but not
simple, because it covers the circle twice.
© Springer Nature Switzerland AG 2019
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The length of γ is the integral
∫

γ
ds, where ds is the arc length form. In terms of

the function t �→ γ(t), we have the equivalent formula L =
∫ b

a
||γ′(t)||dt; this value

is unchanged if we reparametrize the curve. It is often convenient to parametrize
using arc length; in this case ||γ′(s)|| = ||γ′(s)||2 = 1.

We can integrate 1-forms along nice curves γ. We give a precise definition of
1-form in Section 5. For now we assume the reader knows the meaning of the line
integral

∫
γ

Pdx + Qdy, assuming P and Q are continuous functions on γ. This
integral measures the work done in moving along γ against a force given by (P,Q).
We also assume Green’s theorem from calculus. In Green’s theorem, the curve γ is
assumed to be positively oriented. Intuitively, this condition means the (image of
the) curve is traversed counter-clockwise as the parameter t increases from a to b.

Proposition 4.1 (Green’s theorem). Let γ be a piecewise smooth, positively
oriented, simple closed curve in R2, bounding a region Ω. Assume that P and Q
are continuously differentiable on Ω and continuous on Ω ∪ γ. Then

∫

γ

Pdx + Qdy =
∫

Ω

(
∂Q

∂x
− ∂P

∂y

)

dxdy.

The area A enclosed by γ is of course given by a double integral. Assume that
γ is positively oriented. Using Green’s theorem, we see that A is also given by a
line integral:

A =
∫

Ω

dxdy =
1
2

∫

γ

xdy − ydx =
1
2

∫ b

a

(x(t)y′(t) − x′(t)y(t)) dt. (1)

Notice the appearance of the Wronskian.

Exercise 4.1. Graph the set of points where x3+y3 = 3xy. Use a line integral
to find the area enclosed by the loop. Solve the same problem when the defining
equation is x2k+1 + y2k+1 = (2k + 1)xkyk. Comment: Set y = tx to parametrize
the curve. Then xdy − ydx = x(tdx + xdt) − txdx = x2dt.

Exercise 4.2. Verify Green’s theorem when Ω is a rectangle. Explain how to
extend Green’s theorem to a region whose boundary consists of finitely many sides,
each parallel to one of the coordinate axes.

Theorem 4.1 (Isoperimetric inequality, smooth version). Let γ be a smooth
simple closed curve in R2 of length L and enclosing a region of area A. Then
A ≤ L2

4π and equality holds only when γ defines a circle.

Proof. This proof goes back to Hurwitz in 1901. After a change of scale
we may assume that the length L of γ is 2π. After mapping [a, b] to [0, 2π] we
parametrize by arc length s and thus assume γ : [0, 2π] → R2 and ||γ′(s)|| = 1.

Since the curve is closed, γ may be thought of as periodic of period 2π. In
terms of Fourier series we may therefore write:

γ(s) = (x(s), y(s)) =

( ∞∑

−∞
aneins,

∞∑

−∞
bneins

)

(2)

γ′(s) = (x′(s), y′(s)) =

( ∞∑

−∞
inaneins,

∞∑

−∞
inbneins

)

. (3)
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Since (x′(s), y′(s)) is a unit vector, we have 2π =
∫ 2π

0
(x′(s))2 + (y′(s))2ds. The

only term that matters in computing the integral of a trigonometric series is the
constant term. Constant terms in x′(s)2 and y′(s)2 arise precisely when the term
with index n is multiplied by the term with index −n. It therefore follows that

∞∑

−∞
n2(|an|2 + |bn|2) = 1. (4)

We do a similar computation of xy′ − yx′ to find the area A. We have

A =
1
2

∣
∣
∫ 2π

0

(x(s)y′(s) − x′(s)y(s)) ds
∣
∣ =

1
2
2π

∣
∣
∑

in(anbn − bnan)
∣
∣

= π|
∑

in(anbn − bnan)| ≤ 2π
∑

n|an||bn|. (5)

Next we use |n| ≤ n2 and

|anbn| ≤ 1
2
(|an|2 + |bn|2) (6)

in the last term in (5). These inequalities and (4) yield

A ≤ π
∑

n2(|an|2 + |bn|2) = π =
L2

4π
,

where we have also used the value L = 2π.
We check when equality holds in the inequality. It must be that the only non-

zero terms are those with |n| = n2, that is n = 0,±1. We must also have equality
in (6), and hence |an| = |bn|. By (4) we then must have |a1| = |b1| = 1

2 . Put
a1 = 1

2eiμ and b1 = 1
2eiν . Since x(s) and y(s) are real, a−1 = a1 and b−1 = b1. In

other words we must have

(x(s), y(s)) =
(
a0 + a1e

is + a1e
−is, b0 + b1e

is + b1e
−is

)
.

Under these conditions we get (x − a0, y − b0) = (cos(s + μ), cos(s + ν)). Finally,
remembering that (x′)2 + (y′)2 = 1, we conclude that cos(s + ν) = ±sin(s + μ).
Hence γ defines a circle of radius 1. �

Exercise 4.3. Given an ellipse E, create a family Et of ellipses such that the
following all hold:

(1) E = E0.
(2) Each Et has the same perimeter.
(3) The area enclosed by Et is nondecreasing as a function of t.
(4) E1 is a circle.

Exercise 4.4. A region Ω in the plane is convex if, whenever p, q ∈ Ω, the line
segment connecting p and q also lies in Ω. Assume that Ω is bounded, has a nice
boundary, but is not convex. Find, by a simple geometric construction, a region Ω′

with the same perimeter as Ω but with a larger area. (Reflect a dent across a line
segment. See Figure 1.)

Remark 4.1. The isoperimetric inequality holds in higher dimensions. For
example, of all simple closed surfaces in R3 with a given surface area, the sphere
encloses the maximum volume.
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Figure 1. Convexity and the isoperimetric inequality

2. Elementary L2 inequalities

In this section we prove several inequalities relating L2 norms of functions and
their derivatives. The setting for the first example is an interval on the real line,
whereas the setting for the second example is the unit disk in C.

We begin with the Wirtinger inequality, an easy one-dimensional version of
various higher dimensional inequalities relating functions and their derivatives. We
give two proofs to help unify topics in this book.

Theorem 4.2 (Wirtinger inequality). Assume f is continuously differentiable
on [0, 1] and f(0) = f(1) = 0. The following inequality holds and is sharp:

||f ||2L2 ≤ 1
π2

||f ′||2L2 .

Proof. First we show that there is a function for which equality occurs. Put
f(x) = sin(πx). Then ||f ′||2L2 = π2||f ||2L2 because

||f ||2L2 =
∫ 1

0

sin2(πx)dx =
1
2

||f ′||2L2 =
∫ 1

0

π2cos2(πx)dx =
π2

2
.

Next we use Fourier series to prove the inequality. By putting f(−x) = −f(x),
we extend f to be an odd function (still called f) on the interval [−1, 1]. The
extended f is still continuously differentiable, even at 0. Then f equals its Fourier
series, which involves only the functions sin(nπx). Put f(x) =

∑
cnsin(nπx). Since

f is odd, c0 = f̂(0) = 0. Let L2 continue to denote L2([0, 1]). By either the Parseval
formula or by orthonormality we get

||f ||2L2 =
1
2

∞∑

−∞
|cn|2 =

∞∑

n=1

|cn|2

||f ′||2L2 =
∞∑

n=1

n2π2|cn|2 = π2
∞∑

n=1

n2|cn|2.

Since 1 ≤ n2 for all n ≥ 1 we obtain

π2||f ||2L2 ≤ ||f ′||2L2 .

The proof also tells us when equality occurs! Put cn = 0 unless n = 1; that is, put
f(x) = sin(πx). �
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Figure 2. Wirtinger inequality

Proof. We sketch a different proof using compact operators, noting that this
sketch had an error in the first edition. Define a linear operator T on the continuous
functions in L2([0, 1]) by Tf(x) =

∫ x

0
f(t)dt. Computation (see Exercise 4.5) shows

that T ∗f(x) =
∫ 1

x
f(u)du. The operator T ∗T is compact and self-adjoint. It is

easy to check that each eigenvalue of T ∗T is non-negative. By the first part of
the proof of the Spectral theorem, the maximal eigenvalue λM of T ∗T satisfies
λM = ||T ∗T || = ||T ||2. We find all eigenvalues.

Set T ∗Tf = λf to get
∫ 1

x

∫ t

0

f(u)dudt = λf(x).

Differentiating once, using the fundamental theorem of calculus, and evaluating at
0 gives f ′(0) = 0. Differentiating again gives

−f(x) = λf ′′(x).

Since f ′(0) = f(1) = 0, we conclude that f(x) = c cos( (2n+1)πx
2 ). Here

λ =
4

(2n + 1)2π2
.

The maximum happens when n = 0. Thus the norm of T is 2
π . To arrange things

such that f(0) = 0, we change variables by setting x = 2t−1. This step is analogous
to the extension to [−1, 1] in the first proof. Then

cos
(

π(2t − 1)
2

)

= sin(πt).

This function vanishes at both 0 and 1. It follows by symmetry that the norm of the
operator whose domain consists of functions g with these boundary conditions is 1

π .
Hence ||Tg||L2 ≤ 1

π ||g||L2 for all g. Setting g = f ′ gives the desired conclusion. �
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Corollary 4.1. Assume f is continuously differentiable with f(a) = f(b) = 0.
Then

∫ b

a

|f(x)|2dx ≤
(

b − a

π

)2 ∫ b

a

|f ′(x)|2dx.

Proof. The result follows from changing variables (Exercise 4.6). �

Exercise 4.5. Put Tf(x) =
∫ b

a
K(x, y)f(y)dy. Express T ∗ as an integral oper-

ator. Check your answer when T is as in the second proof of Theorem 4.2.

Exercise 4.6. Prove Corollary 4.1.

Higher dimensional analogues of the Wirtinger inequality are called Poincaré
inequalities. Given a region Ω in Rn, a Poincaré inequality is an estimate of the
form (for some constant C)

||u||2L2 ≤ C2

(∣
∣
∣
∣

∫

Ω

u

∣
∣
∣
∣

2

+ ||∇u||2L2

)

. (P)

Let A denote the volume of Ω and let u0 = 1
A

∫
Ω

u denote the average value of u
on Ω. Since u0 is a constant, applying (P) to u − u0 gives

||u − u0||2L2 ≤ C2||∇u||2L2 . (P.1)

By expanding the squared norm on the left-hand side of (P.1) and doing some
simple manipulations, the left-hand-side of (P.1) becomes ||u||2L2 −A|u0|2. We can
therefore also rewrite (P) in the form

||u||2L2 ≤ 1
A

∣
∣
∣
∣

∫
u

∣
∣
∣
∣

2

+ C2||∇u||2L2 . (P.2)

The technique of subtracting the average value and expanding the squared norm
appears, in various guises, many times in this book. This reasoning is standard
in elementary probability, as used in Proposition 6.4 from the appendix. Observe
also, for f, f0 in a Hilbert space, that

||f − f0||2 = ||f ||2 − ||f0||2

whenever (f − f0) ⊥ f0. This version of the Pythagorean theorem was used in the
proof of Bessel’s inequality, where f0 was the orthogonal projection of f onto the
subspace spanned by a finite orthonormal system.

Poincaré estimates do not hold for all domains. When such an inequality does
hold, the smallest value of C that works is called the Poincaré constant for the
domain.

We make one additional observation. In our proof of the Wirtinger inequality,
we assumed that f vanished at both endpoints. We could have assumed that f
vanished at only one endpoint, or instead that the average value of f was 0, and in
each case proved similar results. The condition that the average value of f vanishes
means that f is orthogonal to the one-dimensional subspace of constant functions.
The condition that f vanish at the endpoints means that f lies in a subspace of
codimension two.

Exercise 4.7. Find the Poincaré constant for the interval [−A,A]. (The func-
tion sin( πx

2A ) achieves the bound. The answer is 2A
π .)
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Remark 4.2. The Wirtinger inequality provides a bound on the L2 norm of a
function in terms of the L2 norm of its derivative. Various inequalities that bound
the maximum of the derivative p′ of a polynomial in terms of the maximum of p
(thus going in the other direction) and its degree are called Bernstein inequalities
and Markov inequalities. We do not consider such results in this book.

We next prove a simple geometric inequality in one complex dimension. It
motivates a more difficult higher dimensional analogue which we prove in Section
9. The orthogonality of the functions einθ again features prominently.

Let f be a complex analytic function on the unit disk B1. Let Af denote the
area of the image, with multiplicity counted. For example, if f(z) = zm, then f
covers the disk m times and Af = mπ. The formula for Af involves the L2 norm
of the derivative. We make the concept of counting multiplicity precise by defining
Af as follows:

Definition 4.1. Let Ω be open in C. Assume f : Ω → C is complex analytic.
The area, written Af (Ω) or Af , of the image of f , with multiplicity counted, is
defined by

Af = ||f ′||2L2(Ω). (7)

We next note that this concept agrees with what we expect when f is injective.

Lemma 4.1. Let f : Ω → C be complex analytic and injective. Then the area
of f(Ω) equals ||f ′||2L2(Ω).

Proof. Let A(f) denote the area of the image of f . Write f =u+iv and define
F (x, y) = (u(x, y), v(x, y)). The Cauchy-Riemann equations and the definition of
f ′ imply det(F ′) = uxvy − uyvx = u2

x + u2
y = |f ′|2. Since F is injective, the change

of variables formula for double integrals applies and gives

A(f) =
∫

F (Ω)

dudv =
∫

Ω

|det(F ′)|dxdy =
∫

Ω

|f ′(z)|2dxdy = ||f ′||2L2 . �

Versions of the change of variables formula hold more generally. Suppose that
f is m-to-one for some fixed m. The change of variables formula gives

m

∫

F (Ω)

dudv =
∫

Ω

|det(F ′)|dxdy =
∫

Ω

|f ′(z)|2dxdy = ||f ′||2L2 .

In general, the multiplicity varies from point to point. For complex analytic func-
tions, things are nonetheless quite nice. See [A] for the following result. Suppose
that f is complex analytic near z0 and the function z �→ f(z) − f(z0) has a zero of
order m. Then, for w sufficiently close to f(z0), there is a (deleted) neighborhood
of z0 on which the equation f(z) = w has precisely m solutions. By breaking Ω
into sets on which f has constant multiplicity, we justify the definition of Af .

We return to the unit disk. The natural Hilbert space here is the set A2 of
square-integrable complex analytic functions f on the unit disk. The inner product
on A2 is given by

〈f, g〉 =
∫

B1

f(z)g(z)dxdy.

The subspace A2 is closed in L2 and hence is itself a Hilbert space. See, for example,
pages 70–71 in [D1] for a proof. The main point of the proof is that, on any compact
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subset K of the disk, we can estimate (the L∞ norm) supK |f | by a constant times
(the L2 norm) ||f ||. Hence, if {fn} is Cauchy in L2, then {fn} converges uniformly
on compact subsets. By a standard fact in complex analysis (see [A]), the limit
function is also complex analytic.

We are also concerned with the subspace of A2 consisting of those f for which
f ′ is square integrable.

Lemma 4.2. The functions zn for n = 0, 1, 2, ... form a complete orthogonal
system for A2.

Proof. Using polar coordinates we have

〈zn, zm〉 =
∫ 1

0

∫ 2π

0

rn+m+1ei(n−m)θdθdr. (8)

By (8), the inner product vanishes unless m = n. To check completeness, we observe
that a complex analytic function in the unit disk has a power series based at 0 that
converges in the open unit disk. If f is orthogonal to each monomial, then each
Taylor coefficient of f vanishes and f is identically 0. �

Lemma 4.2 illustrates a beautiful aspect of Hilbert spaces of complex analytic
functions. Let f be complex analytic in the unit disk, with power series

∑
anzn.

By basic analysis, the partial sums SN of this series converge uniformly to f on
compact subsets of the unit disk. By Lemma 4.2, the partial sum SN can also be
interpreted as the orthogonal projection of f onto the subspace of polynomials of
degree at most N . Hence the partial sums also converge to f in the Hilbert space
sense.

In Proposition 4.2 we relate ||f ||2L2 to the l2 norm of the Taylor coefficients
of f . By (9) below we can identify elements of A2 with sequences {bn} such that
∑ |bn|2

n+1 converges.
Consider the effect on the area of the image if we multiply f by z. Since |z| < 1,

the inequality |zf(z)| ≤ |f(z)| is immediate. But the area of the image under zf
exceeds the area of the image under f , unless f is identically 0. In fact we can
explain and determine precisely how the area grows.

Proposition 4.2. Let f(z) =
∑∞

n=0 bnzn be a complex analytic function on
the unit disk B1. We assume that both f and f ′ are in L2(B1). Then

||f ||2L2 = π

∞∑

n=0

|bn|2
n + 1

(9)

||f ′||2L2 = π

∞∑

n=0

(n + 1)|bn+1|2 (10)

||(zf)′||2L2 = ||f ′||2L2 + π
∞∑

n=0

|bn|2. (11.1)

Thus Azf ≥ Af and equality occurs only when f vanishes identically.

Proof. The proof of (9) is an easy calculation in polar coordinates, using the
orthogonality of einθ. Namely, we have
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||f ||2L2 =
∫

B1

|
∑

bnzn|2dxdy =
∫ 1

0

∫ 2π

0

∑
bnbmrm+neiθ(m−n)rdrdθ.

The only terms that matter are those for which m = n and we see that

||f ||2L2 = 2π
∑

|bn|2
∫ 1

0

r2n+1dr = π
∞∑

n=0

|bn|2
n + 1

.

Formula (10) follows immediately from (9). To prove (11.1) observe that (zf)′(z) =∑∞
n=0(n + 1)bnzn. By (10) we have

||(zf)′||2L2 = π

∞∑

n=0

(n + 1)|bn|2 = π

∞∑

n=0

n|bn|2 + π

∞∑

n=0

|bn|2

= ||f ′||2L2 + π

∞∑

n=0

|bn|2.

�

We express (11.1) in operator-theoretic language. Let D = d
dz with domain

{f ∈ A2 : f ′ ∈ A2}. Then D is an unbounded linear operator. Let M denote
the bounded operator of multiplication by z. When f extends continuously to the
circle, we write Sf for its restriction to the circle, that is, its boundary values. Thus
||Sf ||2 = 1

2π

∫ 2π

0
|f |2. The excess area has a simple geometric interpretation:

Corollary 4.2. Suppose Mf is in the domain of D. Then Sf is square-
integrable on the circle and

||DMf ||2L2 − ||Df ||2L2 =
1
2

∫ 2π

0

|f(eiθ)|2dθ = π||Sf ||2. (11.2)

Proof. The result is immediate from (11.1). �

Corollary 4.2 suggests an alternate way to view (11.1) and (11.2). We can
use Green’s theorem to relate the integral over the unit disk to the integral over
the circle. The computation uses the notation of differential forms. We discuss
differential forms in detail in Sections 5 and 6. For now we need to know less.
In particular dz = dx + idy and dz = dx − idy. We can differentiate in these
directions. See Section 5.1 for detailed discussion. For any differentiable function
f , we write ∂f for ∂f

∂z dz and ∂f for ∂f
∂z dz. If f is complex analytic, then ∂f = 0

(the Cauchy-Riemann equations), and we have

df = (∂ + ∂)f = ∂f = f ′(z)dz.

The area form in the plane becomes

dx ∧ dy =
−1
2i

dz ∧ dz =
i

2
dz ∧ dz.

Finally, we use Green’s theorem, expressed in complex notation, in formula (12) of
the geometric proof below. We generalize this proof in Section 9.

Exercise 4.8. Express Green’s theorem in complex notation: express the line
integral of Adz + Bdz around γ as an area integral over the region bounded by γ.
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Exercise 4.9. Use Exercise 4.8 to show that
∫

γ
f(z)dz = 0 when f is complex

analytic and γ is a closed curve as in Green’s theorem. (This result is an easy form
of the Cauchy integral theorem.)

Here is a beautiful geometric proof of (11.2), assuming f ′ extends continuously
to the circle:

Proof. For any complex analytic f we have

Af = ||f ′||2L2 =
i

2

∫

B1

∂f ∧ ∂f =
i

2

∫

B1

d(f∂f).

We apply this formula also to (zf)′. The difference in areas satisfies

Azf − Af = ||(zf)′||2L2 − ||f ′||2L2 =
i

2

∫

B1

d
(
zf∂(zf) − f∂f

)
.

Assuming f ′ extends continuously to the circle, we may use Green’s theorem to
rewrite this integral as an integral over the circle:

Azf − Af =
i

2

∫

S1
zf∂(zf) − (f∂f). (12)

By the product rule, ∂(zf) = fdz + z∂f . We plug this formula into (12) and
simplify, getting

Azf − Af =
i

2

∫

S1
(|z|2 − 1)f∂f +

i

2

∫

S1
z|f(z)|2dz.

The first integral vanishes because |z|2 = 1 on the circle. We rewrite the second
integral by putting z = eiθ to obtain
i

2

∫

S1
eiθ|f(eiθ)|2(−i)e−iθdθ =

1
2

∫

S1
|f(eiθ)|2dθ = π

1
2π

∫

S1
|f(eiθ)|2dθ = π||Sf ||2.

�
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Figure 3. Injective image of unit disk

In the next several exercises, the operators D and M are defined as in the
paragraph preceding Corollary 4.2. In particular, the Hilbert space is A2, the
square-integrable complex analytic functions on the unit disk.
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Figure 4. Overlapping image of unit disk

Exercise 4.10. Show that Corollary 4.2 can be stated as M∗D∗DM−D∗D =
πS∗S.

Exercise 4.11. What are the eigenfunctions and eigenvalues of DM and of
MD? Show that the commutator [D,M ] = DM − MD is the identity. This
example arises in quantum mechanics. See Section 12 for more information.

Exercise 4.12. Find a closed formula for
∑∞

j=0
|z|2j

cj
, where cj = ||zj ||2 is the

squared norm in A2. The answer is the Bergman kernel function of the unit disk.

Exercise 4.13. For 0 ≤ a ≤ 1 and for |z| < 1, put fa(z) =
√

1 − a2z + az2.
Find ||f ′

a||2L2 in terms of a. For several values of a, graph the image of the unit disk
under f . For what values of a is f injective? See Figures 3 and 4.

Exercise 4.14. Put f(z) = z + z2 + z3. Describe or graph the image of the
set |z| = r under f for several values of r. Suggestion: Use polar coordinates.

3. Unitary groups

We now begin studying geometric problems in several complex variables. Recall
that 〈z, w〉 denotes the Hermitian inner product of points in complex Euclidean
space Cn. The unitary group U(n) consists of the linear transformations T which
preserve the inner product; 〈Tz, Tw〉 = 〈z, w〉. Setting z = w shows that such
transformations also preserve norms. The converse is also true: if ||Tz||2 = ||z||2
for all z, then 〈Tz, Tw〉 = 〈z, w〉 for all z and w, by Proposition 2.6.

The group law in U(n) is composition. Let U, V be unitary transformations on
CN . Then the composition UV is also unitary, because

(UV )∗ = V ∗U∗ = V −1U−1 = (UV )−1.

It follows that the collection U(N) of unitary transformations on CN is a subgroup
of the group of invertible linear transformations.

We will often deal with complex Euclidean spaces of different dimensions. It
is convenient to omit the dimension in the notation for the inner products and
norms. When doing so, we must be careful. Suppose L : Cn → Cn+1 is given by
L(z) = (z, 0). Then L is linear and ||L(z)|| = ||z||, but L is not unitary. Distance
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preserving maps are called isometries. In this setting, when N > n, we often
identify Cn with the subspace Cn ⊕ 0 ⊆ CN .

Our first result (which holds much more generally than we state here) provides
a polarization technique and gets used several times in the sequel. We use it several
times in the special case when f and g are polynomial mappings.

Theorem 4.3. Let B be a ball centered at 0 in Cn. Suppose f : B → CN1

and g : B → CN2 are complex analytic mappings and ||f(z)||2 = ||g(z)||2 for all
z ∈ B. Assume that the image of g lies in no lower dimensional subspace, and that
N1 ≥ N2. Then there is an isometry U : CN2 → CN1 such that f(z) = Ug(z) for
all z. When f and g are as above and also N2 = N1, then U is unitary.

Proof. We expand f and g as convergent power series about 0, writing f(z) =∑
α Aαzα and g(z) =

∑
α Bαzα; the coefficients Aα lie in CN1 and the Bα lie in

CN2 . Equating the Taylor coefficients in ||f(z)||2 = ||g(z)||2 leads, for each pair α
and β of multi-indices, to

〈Aα, Aβ〉 = 〈Bα, Bβ〉. (13)

It follows from (13) that Aα1 , . . . , AαK
is a linearly independent set if and only if

Bα1 , . . . , BαK
is a linearly independent set. We then define U by U(Bα) = Aα for a

maximal linearly independent set of the Bα. If Bμ is a linear combination of some
Bα, then we define U(Bμ) as the same linear combination of the Aα. The relations
(13) guarantee that U is well-defined. Furthermore, these relationships imply that
U preserves inner products. Hence U is an isometry on the span of the Bα. When
N1 = N2, an isometry U must be unitary. �

Example 4.1. The parallelogram law provides an example of Theorem 4.3.
Suppose g(z1, z2) = (

√
2z1,

√
2z2) and f(z1, z2) = (z1 + z2, z1 − z2). Then

||g(z)||2 = 2|z1|2 + 2|z2|2 = |z1 + z2|2 + |z1 − z2|2 = ||f(z)||2.
In this case f = Ug, where U is given by

U =

(
1√
2

1√
2

1√
2

−1√
2

)

.

Our next example illustrates the situation when N1 > N2 in Theorem 4.3.

Example 4.2. Put f(z) = (z2
1 , z1z2, z1z2, z

2
2) and g(z) = (z2

1 ,
√

2z1z2, z
2
2). Here

f : C2 → C4 and g : C2 → C3. Also,

||f(z)||2 = |z1|4 + 2|z1|2 |z2|2 + |z2|4 = (|z1|2 + |z2|2)2 = ||g(z)||2.
The map U : C3 → C4 for which f = Ug is given by the matrix (with respect to
the usual bases)

U =

⎛

⎜
⎜
⎝

1 0 0
0 1√

2
0

0 1√
2

0
0 0 1

⎞

⎟
⎟
⎠ .

If ζ = (ζ1, ζ2, ζ3), then ||Uζ||2 = |ζ1|2 + |ζ2|2 + |ζ3|2 = ||ζ||2. Thus U is an isometry,
but U is not unitary.
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Observe that the maps f and g from Example 4.2 each send the unit sphere in
the domain to the unit sphere in the target. We will now consider such mappings
in detail.

We begin with some examples of symmetries of the unit sphere. If eiθ lies on
the unit circle S1, and z lies on the unit sphere S2n−1, the scalar multiple eiθz lies
on S2n−1 as well. Thus S1 acts on S2n−1. We can replace S1 with the n-torus
S1 × ... × S1. In this case we map z = (z1, z2, ..., zn) to (eiθ1z1, e

iθ2z2, ..., e
iθnzn).

Furthermore, for z ∈ S2n−1 and U ∈ U(n), we have of course that Uz ∈ S2n−1.
The next example of a symmetry is a bit more complicated. Choose a point a

in the open unit ball Bn. First define a linear mapping L : Cn → Cn by

L(z) = sz +
1

s + 1
〈z, a〉a,

where s =
√

1 − ||a||2. Then define φa by

φa(z) =
a − La(z)
1 − 〈z, a〉 .

The mapping φa is a complex analytic automorphism of the unit ball, and it maps
the unit sphere to itself. See Exercise 4.15, Exercise 4.16, and the discussion in
Section 4 for more information.

Exercise 4.15. Verify the following properties of the mapping φa.
• φa(0) = a.
• φa(a) = 0.
• φa : S2n−1 → S2n−1.
• φa ◦ φa is the identity.

Exercise 4.16. Carefully compute φb ◦ φa. The result is not of the form φc

for any c with ||c|| < 1. Show, however, that the result can be written Uφc for some
unitary U . Suggestion: first do the computation when n = 1.

Remark 4.3. In complex analysis or harmonic analysis, it is natural to consider
the group of all complex analytic automorphisms preserving the sphere. Each
element of this group can be written U ◦ φa for some unitary U and some φa. We
will consider the full group in the next chapter; for now we focus on the unitary
group U(n) and its finite subgroups. Various interesting combinatorial and number-
theoretic issues arise in this setting.

We start in one dimension with an elementary identity (Lemma 4.3) involving
roots of unity. The proof given reveals the power of geometric reasoning; one can
also prove this identity by factoring 1 − tm over the complex numbers.

Definition 4.2. A complex number ω is called a primitive m-th root of unity
if ωm = 1 and m is the smallest such positive integer.

The imaginary unit i is a primitive fourth root of unity. Given a primitive m-th
root of unity ω, the powers ωj for j = 0, 1, ...,m− 1 are equally spaced on the unit
circle S1. These m points define a cyclic subgroup of S1 of order m. Note that the
inverse of ω is ωm−1, which also equals ω. Note also that S1 = U(1).

Lemma 4.3. Let ω be a primitive m-th root of unity. Then

1 −
m−1∏

j=0

(1 − ωjt) = tm. (14)



132 4. GEOMETRIC CONSIDERATIONS

Proof. The expression on the left-hand side is a polynomial in t of degree m.
It is invariant under the map t �→ ωt. The only invariant monomials of degree at
most m are constants and constants times tm. Hence this expression must be of
the form α + βtm. Setting t = 0 shows that α = 0 and setting t = 1 shows that
β = 1. �

This proof relies on the cyclic subgroup Γm of the unit circle, or of U(1), gen-
erated by ω. We will generalize this lemma and related ideas to higher dimensions,
where things become more interesting.

We extend the notion of Hermitian symmetry (Definition 1.2) to higher dimen-
sions in the natural way. A polynomial R(z, ζ) on Cn×Cn is Hermitian symmetric
if R(z, ζ) = R(ζ, z). The higher dimensional version of Lemma 1.3 holds; it is useful
in the solution of Exercise 4.19.

Let Γ be a finite subgroup of U(n). The analogue of the left-hand side of (14)
is the following Hermitian polynomial:

ΦΓ(z, ζ) = 1 −
∏

γ∈Γ

(1 − 〈γz, ζ〉). (15)

One can show (we do not use the result, and hence we omit the proof) that ΦΓ is
uniquely determined by the following properties:

(1) ΦΓ is Hermitian symmetric.
(2) ΦΓ(0, 0) = 0.
(3) ΦΓ is Γ-invariant.
(4) ΦΓ(z, z) is of degree in z at most the order of Γ.
(5) ΦΓ(z, z) = 1 for z on the unit sphere.

In the special case when Γ is the group generated by a primitive m-th root of
unity times the identity operator, (14) generalizes to the identity (16):

1 −
m−1∏

j=0

(

1 − ωj
n∑

k=1

tk

)

=

(
n∑

k=1

tk

)m

=
∑

|α|=m

(
m

α

)

tα. (16)

In this case the multinomial coefficients
(
m
α

)
make an appearance:

(
m

α

)

=
m!

α1! . . . αn!
.

See Sections 4 and 8 for more information about multi-index notation and the
multinomial theorem, which is the far right equality in (16).

Interesting generalizations of (16) result from more complicated representations
of cyclic groups. The product in (17) gives one collection of non-trivial examples:

1 −
m−1∏

j=0

(

1 −
n∑

k=1

ωkjtk

)

. (17)

The coefficients of the expansion are integers with many interesting properties.

Exercise 4.17. Prove Lemma 4.3 by factoring 1 − tm.

Exercise 4.18. Prove that ΦΓ(z, w) is Hermitian symmetric.
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Exercise 4.19. Let R(z, z) =
∑

α,β cα,βzαzβ be a Hermitian symmetric poly-
nomial. Prove that there are linearly independent polynomials Aj(z) and Bk(z)
such that

R(z, z) =
∑

j

|Aj(z)|2 −
∑

k

|Bk(z)|2 = ||A(z)||2 − ||B(z)||2.

Exercise 4.20. Write ΦΓ = ||A||2 − ||B||2 as in the previous exercise. Show
that we may choose A and B to be Γ-invariant.

In the rest of this section we consider several cyclic subgroups of U(2). Write
(z, w) for a point in C2. Let η be a primitive p-th root of unity. We next study the
mapping ΦΓ when Γ = Γ(p, q) is the cyclic group of U(2) of order p generated by
the matrix

(
η 0
0 ηq

)

.

Remark 4.4. The quotient space S3/Γ(p, q) is called a lens space. These
spaces are important in topology.

The definition of ΦΓ(p,q) yields

ΦΓ(p,q) = 1 −
p−1∏

j=0

(1 − ηj |z|2 − ηqj |w|2).

This expression depends only upon the expressions |z|2 and |w|2; we simplify nota-
tion by defining the polynomial fp,q(x, y) by

fp,q(x, y) = 1 −
p−1∏

j=0

(1 − ηjx − ηqjy). (18)

By taking j = 0 in the product, it follows that fp,q(x, y) = 1 on the line x + y = 1.

Lemma 4.4. fp,1(x, y) = (x + y)p.

Proof. The result follows by replacing t by x + y in Lemma 4.3. �

The (binomial) coefficients of fp,1 are integers which satisfy an astonishing
number of identities and properties. More is true. For each q, the coefficients of
fp,q are also integers, and they satisfy many interesting combinatorial and number-
theoretic properties as well. We mention one of the properties now. Most people
know the so-called freshman’s dream, that (x + y)p ≡ xp + yp modulo p if and only
if p is prime. The same result holds for each fp,q, although we omit the proof here.

The polynomials fp,2 are more complicated than fp,1 = (x + y)p. When p is
odd, all the coefficients of fp,2 are non-negative. Here are the first few fp,2:

f1,2(x, y) = x + y

f2,2(x, y) = x2 + 2y − y2

f3,2(x, y) = x3 + 3xy + y3

f4,2(x, y) = x4 + 4x2y + 2y2 − y4

f5,2(x, y) = x5 + 5x3y + 5xy2 + y5. (19)

We can find all these polynomials by solving a single difference equation. We
offer two proofs of the following explicit formula for fp,2. The key idea in the first
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proof is to interchange the order in a double product. See [D5] and its references
for general results about group-invariant polynomials, proved by similar methods.

Proposition 4.3. For all non-negative integers p we have

fp,2(x, y) = (
x +

√
x2 + 4y

2
)p + (

x −
√

x2 + 4y

2
)p − (−y)p. (20)

Proof. Set q = 2 in (18). Each factor in the product is a quadratic in ηj ,
which we also factor. We obtain:

1 − f(x, y) =
p−1∏

j=0

(1 − ηjx − η2jy) =
p−1∏

j=0

(1 − c1(x, y)ηj)(1 − c2(x, y)ηj)

=
p−1∏

j=0

(1 − c1(x, y)ηj)
p−1∏

j=0

(1 − c2(x, y)ηj).

Here c1 and c2 are the reciprocals of the roots of the quadratic 1− xη − yη2. Each
of the two products is familiar from Lemma 4.3. Using that result we obtain

1 − f(x, y) = (1 − c1(x, y)p)(1 − c2(x, y)p).

It follows that f has the following expression in terms of the cj :

f(x, y) = c1(x, y)p + c2(x, y)p − (c1(x, y)c2(x, y))p.

The product c1(x, y)c2(x, y) equals −y. The sum c1(x, y)+c2(x, y) equals x. Solving
this system for c1 and c2 using the quadratic formula determines the expressions
arising in (20). �

We sketch a second proof based on recurrence relations.

Proof. (Sketch). It follows by setting x = 0 in formula (18) that the term
−(−y)p appears in fp,2. Let gp(x, y) denote the other terms. The recurrence
relation gp+2(x, y) = xgp+1(x, y) + ygp(x, y) also follows from (18). To solve this
recurrence, we use the standard method. The characteristic equation is λ2−xλ−y =

0. Its roots are x±
√

x2+4y

2 . Using the initial conditions that g1(x, y) = x and
g2(x, y) = x2+2y we determine gp(x, y). Adding in the term −(−y)p yields (20). �

These polynomials are related to some classical mathematics.

Definition 4.3. The n-th Chebyshev polynomial Tn is defined by

Tn(x) = cos(n cos−1(x)).

Although it is not instantly obvious, the n-th Chebyshev polynomial is a poly-
nomial of degree n. Hence these polynomials are linearly independent.

Example 4.3. The first few Chebyshev polynomials:
• T0(x) = 1
• T1(x) = x
• T2(x) = 2x2 − 1
• T3(x) = 4x3 − 3x
• T4(x) = 8x4 − 8x2 + 1
• T5(x) = 16x5 − 20x3 + 5x.
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Exercise 4.21. Verify that Tn(x) is a polynomial. (See Exercise 4.23 for one
approach.) Verify the formulas for Tj(x) for j = 1, 2, 3, 4, 5.

Remark 4.5. The polynomials Tn(x) are eigenfunctions of a Sturm-Liouville
problem. The differential equation, (SL) from Chapter 2, is (1−x2)y′′−xy′+λy = 0.
The Tn are orthogonal on the interval [−1, 1] with respect to the weight function
w(x) = 1√

1−x2 . By Theorem 2.13, they form a complete orthogonal system for
L2([−1, 1], w).

Exercise 4.22. Verify that Tn is an eigenfunction as described in the remark;
what is the corresponding eigenvalue λ?

Proposition 4.4. The fp,2 have the following relationship to the Chebyshev
polynomials Tp(x):

fp,2

(

x,
−1
4

)

+
(

1
4

)p

= 21−p
(
cos(p cos−1(x))

)
= 21−pTp(x).

Proof. See Exercise 4.23. �

Remark 4.6. Evaluating the fp,2 at other points also leads to interesting
things. For example, let φ denote the golden ratio. Then

fp,2(1, 1) =

(
1 +

√
5

2

)p

+

(
1 −√

5
2

)p

+ (−1)p+1 = φp + (1 − φ)p + (−1)p+1.

The first two terms give the p-th Lucas number, and hence fp,2(1, 1) differs from the
p-th Lucas number by ±1. The p-th Fibonacci number Fp has a similar formula:

Fp =
1√
5

(

(
1 +

√
5

2
)p − (

1 −√
5

2
)p

)

=
1√
5

((φ)p − (1 − φ)p) .

It is remarkable that our considerations of group-invariant mappings connect
so closely with classical mathematics. The polynomials fp,2 arise for additional
reasons in several complex variables. When p is odd, all the coefficients of fp,2 are
non-negative. Put x = |z|2 and y = |w|2 and write p = 2r + 1. Then

f2r+1,2(|z|2, |w|2) =
∑

b

cb|z|2(2r+1−2b)|w|2b = ||g(z, w)||2.

Since f2r+1,2(x, y) = 1 on x + y = 1 we see that ||g(z, w)||2 = 1 on the unit sphere.
Hence g(z, w) maps the unit sphere S3 to the unit sphere S2N−1, where N = r+2.
Thus g provides a far from obvious example of a group-invariant mapping between
spheres.

The functions fp,2 satisfy an extremal property. If a polynomial f of degree d
in x, y has N terms, all non-negative coefficients, and f(x, y) = 1 on x+y = 1, then
the inequality d ≤ 2N − 3 holds and is sharp. We omit the proof of this difficult
result. Equality holds for the f2r+1,2.

Exercise 4.23. Prove Proposition 4.4. Suggestion. First find a formula for
cos−1(s) using cos(t) = eit+e−it

2 = s and solving a quadratic equation for eit.

Exercise 4.24. Show that Tnm(x) = Tn(Tm(x)).



136 4. GEOMETRIC CONSIDERATIONS

Exercise 4.25. Find a formula for the generating function
∑∞

n=0 Tn(x)tn. Do
the same for

∑∞
n=0 fn,2(x, y)tn.

The next exercise is intentionally a bit vague. See [D3] and the references there
for considerably more information.

Exercise 4.26. Use Mathematica or something similar to find fp,3 and fp,4

for 1 ≤ p ≤ 11. See what you can discover about these polynomials.

4. Proper mappings

Consider the group-invariant polynomial (15) above when ζ = z. The factor
1 − 〈γz, z〉 vanishes on the sphere when γ is the identity of the group. Hence
ΦΓ(z, z) = 1 when z is on the sphere. By Exercises 4.19 and 4.20, we may write

ΦΓ(z, z) =
∑

j

|Aj(z)|2 −
∑

k

|Bk(z)|2 = ||A(z)||2 − ||B(z)||2

where the polynomials Aj and Bk are invariant. If B = 0, (thus ΦΓ is a squared
norm), then ΦΓ will be an invariant polynomial mapping between spheres. If B �= 0,
then the target is a hyperquadric.

The group-invariant situation, where the target is a sphere, is completely under-
stood and beautiful. It is too restrictive for our current aims. In this section we
therefore consider polynomial mappings between spheres, without the assumption
of group-invariance.

In one dimension, the functions z �→ zm have played an important part in our
story. On the circle, of course, zm = eimθ. The function z �→ zm is complex analytic
and maps the unit circle S1 to itself. One of many generalizations of these functions
to higher dimensions results from considering complex analytic functions sending
the unit sphere S2n−1 into some unit sphere, perhaps in a different dimension. We
discuss these ideas here and relate them to the combinatorial considerations from
the previous section.

Definition 4.4. Let Ω and Ω′ be open, connected subsets of complex Euclidean
spaces. Suppose f : Ω → Ω′ is continuous. Then f is called proper if, whenever
K ⊆ Ω′ is compact, then f−1(K) is compact in Ω.

Lemma 4.5. A continuous map f : Ω → Ω′ between bounded domains is proper
if and only if the following holds: whenever {zν} is a sequence tending to the bound-
ary bΩ, then {f(zν)} tends to bΩ′.

Proof. We prove both statements by proving their contrapositives. First let
{zν} tend to bΩ. If {f(zν)} does not tend to bΩ′, then it has a subsequence which
stays in a compact subset K of Ω′. But then f−1(K) is not compact, and f is not
proper. Thus properness implies the sequence condition. Now suppose f is not
proper. Find a compact set K such that f−1(K) is not compact in Ω. Then there
is a sequence {zν} in f−1(K) tending to bΩ, but the image sequence stays within
a compact subset K. �

Lemma 4.5 states informally that f is proper if, whenever z is close to bΩ, then
f(z) is close to bΩ′. Hence it has an ε−δ version which we state and use only when
Ω and Ω′ are open unit balls.

Corollary 4.3. A continuous map f : Bn → BN is proper if and only if, for
all ε > 0 there is a δ > 0 such that 1 − δ < ||z|| < 1 implies 1 − ε < ||f(z)|| < 1.
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Our main interest is complex analytic mappings, especially such polynomial
mappings, sending the unit sphere in Cn to the unit sphere in some CN . Consider
mappings that are complex analytic on the open ball and continuous on the closed
ball. The maximum principle implies that if such a mapping sends the unit sphere
in the domain to some unit sphere, then it must actually be a proper mapping from
ball to ball. On the other hand, a (complex analytic) polynomial mapping between
balls is also defined on the boundary sphere, and Lemma 4.5 implies that such
mappings send the boundary to the boundary. It would thus be possible never to
mention the term proper map and we could still do everything we are going to do.
We continue to work with proper mappings because of the intuition they provide.

Remark 4.7. Proper complex analytic mappings must be finite-to-one, al-
though not all points in the image must have the same number of inverse images.
By definition of proper, the inverse image of a point must be a compact set. Be-
cause of complex analyticity, the inverse image of a point must also be a complex
variety. Together these facts show that no point in the target can have more than
a finite number of inverse images.

Exercise 4.27. Which of the following maps are proper from R2 → R?
(1) f(x, y) = x2 + y2

(2) g(x, y) = x2 − y2

(3) h(x, y) = x.

Exercise 4.28. Under what circumstances is a linear map L : Cn → CN

proper?

Our primary concern will be complex analytic proper mappings between balls.
We start with the unit disk B1 contained in C. Let us recall a simple version of the
maximum principle. Suppose f is complex analytic in the open unit disk B1, and
|f(z)| ≤ M on the boundary of a closed subset K. Then the same estimate holds
in the interior of K.

Proposition 4.5. Suppose f : B1 → B1 is complex analytic and proper. Then
f is a finite Blaschke product: there are points a1, ..., ad in the unit disk, possibly
repeated, and a point eiθ on the circle, such that

f(z) = eiθ
d∏

j=1

aj − z

1 − ajz
.

If also either f−1(0) = 0 or f is a polynomial, then f(z) = eiθzm for some positive
integer m.

Proof. Because f is proper, the set f−1(0) is compact. We first show that
it is not empty. If it were empty, then both f and 1

f would be complex analytic
on the unit disk, and the values of 1

|f(z)| would tend to 1 as z tends to the circle.
The maximum principle would then force | 1

f(z) | ≤ 1 on the disk, which contradicts
|f(z)| < 1 there.

Thus the compact set f−1(0) is not empty. Because f is complex analytic, this
set must be discrete. Therefore it is finite, say a1, ..., ad (with multiplicity allowed).
Let B(z) denote the product

∏ aj−z
1−ajz . We show that z �→ f(z)

B(z) is a constant map
of modulus one. Then f = eiθB.
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By Corollary 4.3, applied to both f and B, for each ε > 0 we can find a δ > 0
such that 1 − ε < |f(z)| ≤ 1 and 1 − ε < |B(z)| ≤ 1 for |z| > 1 − δ. It follows
by the maximum principle that these estimates hold for all z with |z| ≤ 1 − δ as
well. The function g = f

B is complex analytic in the disk, as the zeros of B and
of f correspond and thus cancel in g. By the maximum principle applied to g, we
have for all z that 1 − ε < |g(z)| < 1

1−ε . Since ε is arbitrary, we may let ε tend to
0 and conclude that |g(z)| = 1. It follows (by either Theorem 4.3 or the maximum
principle) that g is a constant eiθ of modulus one. Thus f(z) = eiθB(z). �

Exercise 4.29. Suppose f : B1 → B1 is complex analytic and proper. Find
another proof that there is a z with f(z) = 0. One possible proof composes f with
an automorphism of the disk, preserving properness while creating a zero.

Consider next the proper complex analytic self-mappings of the unit ball Bn in
Cn for n ≥ 2. We do not prove the following well-known result in several complex
variables: the only proper complex analytic maps from the unit ball Bn to itself
(when n ≥ 2) are automorphisms. These mappings are analogues of the individual
factors in Proposition 4.5. They have the form

f(z) = U
z − La(z)
1 − 〈z, a〉 .

Here U is unitary, and La is a linear transformation depending on a, for a an ar-
bitrary point in Bn. These rational maps were mentioned in Section 3; see the
discussion near Exercises 4.15 and 4.16. They will play a major part in the next
chapter. The only polynomial proper self-mappings of a ball are the unitary map-
pings f(z) = Uz. In order to obtain analogues of z �→ zd, we must increase the
target dimension.

The analogue of z �→ zd in one dimension will be the tensor product z �→ z⊗d.
We will make things concrete, but completely rigorous, by first identifying CM⊗CN

with CNM . The reader may simply regard the symbol ⊗ as notation.

Definition 4.5. Let f = (f1, ..., fM ) and g = (g1, ..., gN ) be mappings taking
values in CM and CN . Their tensor product f ⊗ g is the mapping taking values in
CMN defined by (f1g1, ..., fjgk, ..., fMgN ).

In Definition 4.5 we did not precisely indicate the order in which the terms
fjgk are listed. The reason is that we do not care; nearly everything we do in this
section does not distinguish between h and Lh when ||Lh|| = ||h||. The following
formula suggests why the tensor product is relevant to proper mappings between
balls:

||f ⊗ g||2 = ||f ||2||g||2. (21)

To verify (21), simply note that

||f ||2 ||g||2 =
∑

j

|fj |2
∑

k

|gk|2 =
∑

j,k

|fjgk|2.

Let m be a positive integer. We write z⊗m for the tensor product of the identity
map with itself m times. We show momentarily that ||z⊗m||2=||z||2m; in particular
the polynomial map z �→ z⊗m takes the unit sphere in its domain to the unit sphere
in its target. It exhibits many of the properties satisfied by the mapping z �→ zm

in one dimension. The main difference is that the target dimension is much larger
than the domain dimension when n ≥ 2 and m �= 1.
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In much of what we do, the mapping z �→ f(z) is less important than the real-
valued function z �→ ||f(z)||2. It is therefore sometimes worthwhile to introduce
the concept of norm equivalence. Consider two maps f, g with the same domain,
but with possibly different dimensional complex Euclidean spaces as targets. We
say that f and g are norm-equivalent if the functions ||f ||2 and ||g||2 are identical.

We are particularly interested in the norm equivalence class of the mapping
z �→ z⊗m. One member of this equivalence class is the monomial mapping described
in (22), and henceforth we define z⊗m by the formula in (22). The target dimension
is

(
n+m−1

m

)
, and the components are the monomials of degree m in n variables. Thus

we put
Hm(z) = z⊗m = (..., cαzα, ...). (22)

In (22), zα is multi-index notation for
∏n

j=1(zj)αj ; each α = (α1, . . . , αn) is an
n-tuple of non-negative integers which sum to m, and all such α appear. There are(
n+m−1

m

)
such multi-indices; see Exercise 4.30. For each α, cα is the positive square

root of the multinomial coefficient
(
m
α

)
. We write |z|2α as an abbreviation for the

product ∏

j

|zj |2αj .

See Section 10 for more information about multi-index notation and for additional
properties of this mapping.

By the multinomial expansion we see that

||z⊗m||2 =
∑

α

|cα|2|z|2α =
∑

α

(
m

α

)

|z|2α = (
∑

j

|zj |2)m = ||z||2m.

The crucial formula ||z⊗m||2 = ||z||2m explains why cα was defined as above. Fur-
thermore, by Theorem 4.4 below,

(
n+m−1

m

)
is the smallest possible dimension k for

which there is a polynomial mapping f : Cn → Ck such that ||f(z)||2 = ||z||2m. In
other words, if f is norm-equivalent to z⊗m, then the target dimension must be at
least

(
n+m−1

m

)
.

Example 4.4. Put n = 2 and m = 3. We identify the map z⊗m with the map
H3 defined by

(z1, z2) → H3(z1, z2) = (z3
1 ,
√

3z2
1z2,

√
3z1z

2
2 , z3

2).

Note that ||H3(z1, z2)||2 = (|z1|2 + |z2|2)3.
Definition 4.6. Let p : Cn → CN be a polynomial mapping. Then p is called

homogeneous of degree m if, for all t ∈ C, p(tz) = tmp(z).

Homogeneity is useful for many reasons. For example, a homogeneous polyno-
mial is determined by its values on the unit sphere. Unless the degree of homo-
geneity is zero, in which case p is a constant, we have p(0) = 0. For z �= 0 we
have

p(z) = p

(

||z|| z

||z||
)

= ||z||mp

(
z

||z||
)

.

This simple fact leads to the next lemma, which we use in proving Theorem 4.6.

Lemma 4.6. Let pj and pk denote homogeneous polynomial mappings, of the
indicated degrees, from Cn to CN . Assume that 〈pj(z), pk(z)〉 = 0 for all z on the
unit sphere. Then this inner product vanishes for all z ∈ Cn.
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Proof. The statement is trivial if j = k = 0, as p0 is a constant. Otherwise
the inner product vanishes at z = 0. For z �= 0, put w = z

||z|| . Homogeneity yields

〈pj(z), pk(z)〉 = ||z||j+k〈pj(w), pk(w)〉,
which vanishes by our assumption, because w is on the sphere. �

Exercise 4.30. Show that the dimension of the vector space of homogeneous
(complex-valued) polynomials of degree m in n variables equals

(
n+m−1

m

)
.

Exercise 4.31. Give an example of a polynomial r(z, z) that vanishes on the
sphere, also vanishes at 0, but does not vanish everywhere.

Recall formula (22) defining the mapping z⊗m. Thus z⊗m : Cn → CN , where
N is the binomial coefficient N =

(
n+m−1

m

)
, the number of linearly independent

monomials of degree m in n variables. This integer is the minimum possible di-
mension for any map f for which ||f(z)||2 = ||z||2m.

Theorem 4.4. Let hm : Cn → CN be a homogeneous polynomial mapping of
degree m which maps S2n−1 to S2N−1. Then z⊗m and hm are norm-equivalent.
Assume in addition that the components of hm are linearly independent. Then
N =

(
n+m−1

m

)
and there is a unitary transformation U such that

hm(z) = Uz⊗m.

Proof. By linear independence of the components of hm, the target dimen-
sion N of hm is at most

(
n+m−1

m

)
. We claim that N =

(
n+m−1

m

)
. We are given that

||hm(z)|| = ||z|| = 1 on the sphere. Hence ||hm(z)||2 = ||z||2m = ||z⊗m||2 on the
sphere as well. By homogeneity, this equality holds everywhere, and the maps are
norm-equivalent. Theorem 4.3 then implies the existence of an isometry V such
that z⊗m = V hm(z). Since z⊗m includes all the monomials of degree m, so does
hm. Hence the dimensions are equal, and V is unitary. Put U = V −1. �

A variant of the tensor product operation allows us to construct more examples
of polynomial mappings between spheres. By also allowing an inverse operation we
will find all polynomial mappings between spheres.

Let A be a subspace of CN , and let πA be orthogonal projection onto A. Then
we have ||f ||2 = ||πAf ||2 + ||(1− πA)f ||2 by the Pythagorean theorem. Combining
this fact with (21) leads to the following:

Proposition 4.6. Suppose f : Cn → CM and g : Cn → CN satisfy ||f ||2 =
||g||2 = 1 on some set S. Then, for any subspace A of CM , the map EA,gf =
(1 − πA)f ⊕ (πAf ⊗ g) satisfies ||EA,gf ||2 = 1 on S.

Proof. By definition of orthogonal sum and (21) we have

||EA,gf ||2 = ||(1 − πA)f ⊕ (πAf ⊗ g)||2 = ||(1 − πA)f ||2 + ||πAf ||2||g||2. (23)

If ||g||2 = 1 on S, then formula (23) becomes ||(1 − πA)f ||2 + ||πAf ||2 = ||f ||2 = 1
on S. �

When g(z) = z, we can write the computation in (23) as follows:

||EA(f)||2 = ||f ||2 + (||z||2 − 1)||πA(f)||2.
This tensor operation evokes our discussion of spherical harmonics, where we multi-
plied polynomials by the squared norm in Rn. The operation EA is more subtle for
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several reasons; first of all, our map f is vector-valued. Second of all, we perform
the multiplication (now a tensor product) on a proper subspace A of the target.

We will begin studying non-constant (complex-analytic) polynomial mappings
taking S2n−1 to S2N−1. By Proposition 4.5, when n = N = 1 the only possibilities
are z �→ eiθzm. When n = N ≥ 2, the only non-constant examples are unitary
maps. When N < n, the only polynomial maps are constants. The proofs of
these facts use several standard ideas in the theory of analytic functions of several
complex variables, but we omit them here to maintain our focus and because we
do not use them to prove any of our results. We therefore summarize these facts
without proof. We also include a simple consequence of Proposition 4.5 in this
collection of statements about polynomial mappings between spheres.

Theorem 4.5. Assume that p : Cn → CN is a polynomial mapping with
p(S2n−1) ⊆ S2N−1. If N = n = 1, then p(z) = eiθzm for some m. If N < n, then
p is a constant. If n ≤ N ≤ 2n − 2, then p is either a constant or an isometry.

When N is much larger than n, there are many maps. We can understand
them via a process of orthogonal homogenization.

Let p : Cn → CN be a polynomial mapping. Let || || denote the Euclidean norm
in either the domain or target. We expand p in terms of homogeneous parts. Thus
p =

∑d
k=0 pk, where each pk : Cn → CN and pk is homogeneous of degree k. That

is, pk(tz) = tkpk(z) for all t ∈ C. Suppose in addition that p : S2n−1 → S2N−1.
Then, if ||z||2 = 1, we have

||p(z)||2 = ||
∑

pk(z)||2 =
∑

k,j

〈pk(z), pj(z)〉 = 1.

Replacing z by eiθz and using the homogeneity yields

1 =
∑

k,j

eiθ(k−j)〈pk(z), pj(z)〉. (24)

But the right-hand side of (24) is a trig polynomial; hence all its coefficients vanish
except for the constant term. We conclude that p must satisfy certain identities
when ||z|| = 1:

∑
||pk||2 = 1, (25.1)

∑

k

〈pk, pk+l〉 = 0. (l �= 0) (25.2)

Let d be the degree of p. When l = d in (25.2) the only term in the sum is
when k = 0, and we conclude that p0 and pd are orthogonal. Let πA denote the
projection of CN onto the span A of p0. We can write

p = (1 − πA)p ⊕ πAp. (26)

Consider a new map g, defined by

g = EA(p) = (1 − πA)p ⊕ (πAp ⊗ z).

By Proposition 4.6, EA(p) also takes the sphere to the sphere in a larger target
dimension. The map g = EA(p) has no constant term and is of degree d. Thus
g0 = 0. Now we apply (25.2) to g, obtaining the following conclusion. Either g
is homogeneous of degree 1, or its first order part g1 is orthogonal to its highest
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order part gd. We apply the same reasoning to g, letting πB denote the orthogonal
projection onto the span of the homogeneous part g1. We obtain a map EB(EA(p)),
still of degree d, whose homogeneous expansion now has no terms of order 0 or 1.

Proceeding in this fashion, we increase the order of vanishing without increasing
the degree, stopping when the result is homogeneous. Thus we obtain a sequence
of subspaces A0, . . . , Ad−1 such that composing these tensor product operations
yields something homogeneous of degree d. As the last step, we compose with a
linear map to guarantee that the components are linearly independent. Applying
Theorem 4.3 we obtain the following result about orthogonal homogenization.

Theorem 4.6. Let p be a polynomial mapping such that p(S2n−1) ⊆ S2N−1

and p is of degree d. Then there is a linear L and a finite sequence of subspaces
and tensor products such that

z⊗d = L(EAd−1(. . . (EA0(p)) . . . )). (27)

Here L = qU where U is unitary and q is a projection.

Proof. We repeat the previous discussion in more concise language. If p
is homogeneous, then the conclusion follows from Theorem 4.4. Otherwise, let
ν denote the order of vanishing of p. Thus ν < d and p =

∑d
j=ν pj , where pj

is homogeneous of degree j. By (25.2), pν is orthogonal to pd on the sphere. By
Lemma 4.6, they are orthogonal everywhere. Let A denote the span of the coefficient
vectors in pν . By Proposition 4.2, the polynomial mapping EA(p) sends the unit
sphere in its domain Cn to the unit sphere in its target. This mapping is also of
degree d, but its order of vanishing exceeds ν. After finitely many steps of this sort
we reach a homogeneous mapping of degree d. We then apply Theorem 4.4. �

In the next section we will use this result to prove a geometric inequality con-
cerning the maximum volume (with multiplicity counted) of the image of the ball
under a proper polynomial map, given its degree.

Next we illustrate Theorem 4.6 by way of a polynomial mapping S3 to S7.

Example 4.5. Put z = (w, ζ) and p(w, ζ) = (w3, w2ζ, wζ, ζ). Then A0 = 0.
Also A1 is the span of (0, 0, 0, 1), and EA1(p) = (w3, w2ζ, wζ, wζ, ζ2). Now A2 is
the span of the three standard basis vectors e3, e4 and e5 in C5. Tensoring on the
subspace A2 yields

f = E2(E1(p)) = (w3, w2ζ, w2ζ, wζ2, w2ζ, wζ2, wζ2, ζ3).

The image of f is contained in a 4-dimensional subspace of C8. We can apply a
unitary map U to f to get

Uf = (w3,
√

3w2ζ,
√

3wζ2, ζ3, 0, 0, 0, 0).

Finally we project onto C4 and identify the result with the map z⊗3. In the notation
(27), L = qU is the composition of the unitary map U and the projection q.

5. The derivative as a linear map

Our second proof of Corollary 4.2 used the differential 1-forms dz and dz in one
complex dimension. In order to extend the result to higher dimensions, we must
discuss complex vector fields and complex differential forms. We begin by reviewing
the real case. See [Wa] for a definitive treatment of differential forms. See [Dar] for
an alternative discussion of the basics and also for interesting applications.
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In order to prepare for subsequent developments, we recall some multi-variable
calculus. In doing so, we will clarify one of the most subtle points in elementary
calculus. What do we mean by the differential dx in the first place? High school
teachers often say that dx means an infinitesimal change in the x direction, but
these words are too vague to have any meaning.

Let Ω be an open set in Rn and suppose that f : Ω → Rk is a function. Then
f is differentiable at a point p ∈ Ω if it is approximately linear there. The easiest
way to make this notion precise is to write

f(p + h) = f(p) + L(h) + e(p, h),

where L is a linear map from Rn to Rk and e(p, h) is an error term, defined by the
equation. Then f is differentiable at p if there is a linear map L for which

lim
h→0

||f(p + h) − f(p) − L(h)||
||h|| = lim

h→0

||e(p, h)||
||h|| = 0. (28)

If such an L exists, then it is unique, and it is written df(p) or Df(p).
In the rest of this book we work almost exclusively with infinitely differentiable

functions. As usual we call a function smooth on an open set if its partial derivatives
of all orders exist and are continuous there.

Exercise 4.32. Put n = k = 1 in (28). Show that (28) agrees with the usual
notion of the derivative from calculus.

Exercise 4.33. Put n = k = 1 and f(x) = xm for m a positive integer. Use
(28) to show that df(x) = mxm−1.

Exercise 4.34. Suppose that α > 1 and that ||f(x)|| ≤ C||x||α for some
constant C. Prove that f is differentiable at 0.

Exercise 4.35. Prove the chain rule: If f is differentiable at p and g is differ-
entiable at f(p), then g ◦ f is differentiable at p and d(g ◦ f)(p) = dg(f(p)) ◦ df(p).
Suggestion: estimate the error term for the composition.

This discussion becomes more interesting when we allow the point p to vary.
Doing so leads to vector fields and differential forms. We begin by associating a copy
of Rn, written Tp(Rn), to each point p ∈ Ω. Similarly we associate a copy of Rk,
written Tf(p)(Rk), to each point f(p) in the image of f . We think of the derivative
as pushing forward the vector h ∈ Tp(Rn) to the vector df(p)h ∈ Tf(p)(Rk). Some
authors write df(p) as f∗ and call f∗ the pushforward of f . The dual notion,
called the pullback, will be crucial when we compute volumes of images of sets.

When the target dimension k equals 1, the derivative df(p) assigns the scalar
df(p)h to the vector h. Since df(p) is a linear map, it is an element of the dual space
to Tp(Rn). As is customary, we write T ∗

p (Rn) for the dual space. Then the map
p �→ df(p) is itself a map from Ω to T ∗

p (Rn). Such an object is called a differential
1-form. We can think of df as a machine that inputs first a point p, then a tangent
vector v based at p, and outputs the directional derivative:

df(p)(v) =
∂f

∂v
(p) = lim

t→0

f(p + tv) − f(p)
t

. (29)

We can also regard v as an operator; it is a machine which first inputs a point
p, then a function f , and outputs df(p)v. Sometimes we write vp[f ] = df(v)p when
we wish to emphasize this perspective.
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A vector field on Rn is simply a function V : Rn → Rn. A vector field is
called smooth if each component vj is a smooth function. We think geometrically
of placing the vector V (x) at the point x. We make a conceptual leap by regarding
the two copies of Rn as different spaces. (Doing so is analogous to regarding the
x and y axes as different copies of the real line.) For j = 1, . . . , n, we let ej denote
the j-th standard basis element of the first copy of Rn. We write ∂

∂xj
for the

indicated partial differential operator; ∂
∂xj

will be the j-th standard basis vector of
the second copy of Rn. The subsequent development will help clarify the sense in
which a tangent vector behaves like a differential operator.

At each point x = (x1, . . . , xn) of Rn, we call the real vector space Tx(Rn) the
tangent space at x. The vector space Tx(Rn) is also n-dimensional; the operators

∂
∂xj

for 1 ≤ j ≤ n will form a basis for the tangent space. As is common, we don’t
include the base point x in the notation. Here is the precise definition of ∂

∂xj
:

∂

∂xj
(f)(x) =

∂f

∂xj
(x) = lim

t→0

f(x + tej) − f(x)
t

. (30)

The ∂
∂xj

, for j = 1, . . . , n, form a basis for Tx(Rn). Thus an element of Tx(Rn) is
a vector of the form

∑n
j=1 cj

∂
∂xj

.
Partial derivatives are special cases of directional derivatives. We could there-

fore avoid (30) and instead start with (31), the definition of the directional derivative
of f in the direction v = (v1, . . . , vn):

∂f

∂v
(x) = lim

t→0

f(x + tv) − f(x)
t

=
n∑

j=1

vj
∂f

∂xj
(x) = V [f ](x). (31)

In this definition (31) of directional derivative, we do not assume that v is a
unit vector. For us a vector field V is a function whose domain is a subset of Rn

but whose value at p is an element of Tp(Rn). We therefore write V =
∑

vj
∂

∂xj
.

Then V can be applied to a differentiable function f and V [f ] means the directional
derivative of f in the direction v, as suggested by the notation. Thus Tx(Rn) is the
set of directions in which we can take a directional derivative at x.

Remark 4.8. The viewpoint expressed by the previous sentence is useful when
we replace Rn by a smooth submanifold M . The tangent space Tx(M) is then
precisely the set of such directions. See [Dar] and [Wa].

Remark 4.9. The expression ∂
∂xj

is defined such that ∂
∂xj

(f) equals the direc-
tional derivative of f in the j-th coordinate direction. Warning! The expression

∂
∂xj

depends on the full choice of basis. We cannot define ∂
∂x1

until we have chosen
all n coordinate directions. See Exercise 4.37.

We pause to restate the definition of vector field in modern language. Let
T (Rn), called the tangent bundle, denote the disjoint union over x of all the spaces
Tx(Rn). (To be precise, the definition of T (Rn) includes additional information,
but we can safely ignore this point here.) A point in T (Rn) is a pair (x, vx),
where x is the base point and vx is a (tangent) vector at x. A vector field is
a map V : Rn → T (Rn) such that V (x) ∈ Tx(Rn) for all x. In other words,
V (x) = (x, vx). In modern language, a vector field is a section of the tangent bundle



5. THE DERIVATIVE AS A LINEAR MAP 145

T (Rn). At each x, we regard V (x) as a direction in which we can differentiate
functions defined near x.

What is a differential 1-form? We begin by defining df for a smooth function
f . Here smooth means infinitely differentiable.

Let f : Rn → R be a smooth function. Let V be a vector field; v = V (x) is a
vector based at x; thus V (x) ∈ Tx(Rn). We define df as follows:

df(x)[v] = (df(x), v) =
∂f

∂v
(x) = lim

t→0

f(x + tv) − f(x)
t

. (32)

The formula on the far right-hand side of (32) is the definition. The other expres-
sions are different notations for the same quantity. In the first formula, df(x) is
a function, seeking a vector v as the input, and producing a real number as the
output. In the second formula, df(x) and v appear on equal footing. The third
formula means the rate of change of f in the direction v at x. In coordinates, we
have V (x) =

∑
vj

∂
∂xj

, where v = (v1, . . . , vn), and

df(x)[v] =
n∑

j=1

vj(x)
∂f

∂xj
(x). (33)

Formula (32) gives a precise, invariant definition of df for any smooth function
f . In particular we can finally say what dxk means. Let f = xk be the function
that assigns to a point x in Rn its k-th coordinate, and consider df . The equation
dxk = df gives a precise meaning to dxk. (Confusion can arise because xk denotes
both the k-th coordinate and the function whose value is the k-th coordinate.)

The expression df is called the exterior derivative or total differential of f . We
discuss the exterior derivative in detail in the next section. We can regard df as a
function. Its domain consists of pairs (x, v), where x ∈ Rn and v ∈ Tx(Rn). By
(32), df(x)[v] is the directional derivative of f in the direction v at x. Since taking
directional derivatives depends linearly on the direction, the object df(x) is a linear
functional on Tx(Rn). It is natural to call the space T ∗

x (Rn) of linear functionals
on Tx(Rn) the cotangent space at x. The cotangent space also has dimension n, but
it is distinct both from the domain Rn and from the tangent space. The disjoint
union of all the cotangent spaces is called the cotangent bundle and written T ∗(Rn).
A point in T ∗(Rn) is a pair (x, ξx), where x is the base point and ξx is a co-vector
at x. A differential 1-form is a section of the cotangent bundle. Not all 1-forms
can be written in the form df for some function f . See the discussion after Stokes’
theorem.

Remark 4.10. Suppose f : Rn → Rk is differentiable at p. We then regard
df(p) as a linear map from the tangent space at p to the tangent space at f(p).
When f is differentiable on an open set Ω, we can think of df as a map whose value
at p is a linear transformation from Tp(Rn) to Tf(p)(Rk).

We summarize the discussion, expressing things in an efficient order. For each
x ∈ Rn we presume the existence of a vector space Tx(Rn), also of dimension
n. The union T (Rn) over x of the spaces Tx(Rn) is called the tangent bundle. A
vector field is a section of the tangent bundle. For each smooth real-valued function
f , defined near x, we define df by (32). In particular, when f is the coordinate
function xj , we obtain a definition of dxj . For each smooth f and each x, df(x) is
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an element of the dual space T ∗
x (Rn). The union of these spaces is the cotangent

bundle. A 1-form is a section of the cotangent bundle.
We define the operators ∂

∂xj
by duality. Thus the differentials dxj precede the

operators ∂
∂xj

in the logical development. A 1-form is a combination
∑

bj(x)dxj

and a vector field is a combination
∑

aj(x) ∂
∂xj

.

6. Complex differential forms and vector fields

Our work requires complex vector fields and complex differential forms. In
terms of real coordinates, a complex vector field onRm can be written

∑m
j=1 gj(x) ∂

∂xj

where the functions gj are smooth and complex-valued. Similarly, a complex 1-
form on Rm can be written

∑m
j=1 hj(x)dxj where the functions hj are smooth

and complex-valued. Terminology such as vector field with complex coefficients or
complex-valued differential form is sometimes used for clarity or emphasis.

We can identify complex Euclidean space Cn with R2n. Write z = (z1, . . . , zn),
and put zj = xj + iyj (where i is the imaginary unit). We can express vector fields
in terms of the ∂

∂xj
and ∂

∂yj
, and differential forms in terms of the dxj and dyj .

Complex geometry is magic; things simplify by working with complex (note the
double entendre) objects. Everything follows easily from one obvious definition.

Definition 4.7. Suppose Ω is an open set in Cn, and f : Ω → C is smooth.
Write f = u + iv where u and v are real-valued. We define df by df = du + idv.

Corollary 4.4. Let zj = xj + iyj denote the j-th coordinate function on Cn.
Then dzj = dxj + idyj and dzj = dxj − idyj.

We define complex differentiation by duality as follows in Definition 4.8. We
could also use the formulas in Corollary 4.5 as definitions.

Definition 4.8. For j = 1, . . . n, let { ∂
∂zj

, ∂
∂zj

} denote the dual basis to the
basis {dzj , dzj}. Thus ∂

∂zj
is defined by dzk[ ∂

∂zj
] = 0 if j �= k and by dzk[ ∂

∂zk
] = 1.

Also, ∂
∂zj

is defined by dzk[ ∂
∂zj

] = 0 for all j, k and dzk[ ∂
∂zj

] = 0 for j �= k, but
dzk[ ∂

∂zk
] = 1.

Differentiable functions g1, . . . , gm form a coordinate system on an open set Ω
in Rm if their differentials are linearly independent on Ω and the mapping g =
(g1, . . . , gm) is injective there. This concept makes sense when these functions
are either real or complex-valued. For example, the functions z and z define a
coordinate system on R2, because dx + idy and dx − idy are linearly independent
and the map (x, y) �→ (x + iy, x − iy), embedding R2 into C2, is injective.

We can regard the 2n functions z1, . . . , zn, z1, . . . , zn as complex-valued coor-
dinates on R2n. The exterior derivative df is invariantly defined, independent of
coordinate system, by (32) and Definition 4.7. Hence the following equality holds:

df =
n∑

j=1

∂f

∂xj
dxj +

n∑

j=1

∂f

∂yj
dyj =

n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂zj
dzj . (34)

The following formulas then follow by equating coefficients. See Exercise 4.36.

Corollary 4.5.

∂

∂zj
=

1
2

(
∂

∂xj
− i

∂

∂yj

)

(35.1)



7. DIFFERENTIAL FORMS OF HIGHER DEGREE 147

∂

∂zj
=

1
2

(
∂

∂xj
+ i

∂

∂yj

)

. (35.2)

Suppose f is differentiable on an open set in Cn. By (34), we can decompose
its exterior derivative df into two parts:

df = ∂f + ∂f =
n∑

j=1

∂f

∂zj
dzj +

n∑

j=1

∂f

∂zj
dzj . (36)

Formula (36) defines the splitting of the 1-form df into the sum of a (1, 0)-form and
a (0, 1)-form. We next give the definition of complex analyticity in this language.
The terms complex analytic and holomorphic are synonymous.

Definition 4.9. Let Ω be an open subset of Cn. Assume that f : Ω → C and
f is continuously differentiable. Then f is complex analytic if and only if ∂f = 0.
Equivalently, if and only if ∂f

∂zj
= 0 for all j.

The differential equations in Definition 4.9 are called the Cauchy-Riemann
equations. Thus complex analytic functions are the solutions to a first-order
system of partial differential equations. As in one variable, complex analytic func-
tions are given locally by convergent power series. In Theorem 4.3 we used the
power series expansion of a complex analytic mapping in a ball. For most of what
we do, the crucial point is that the Cauchy-Riemann equations have the simple
expression ∂f = 0. By (36), ∂f = 0 means that f is independent of each zj . Part
of the magic of complex analysis stems from regarding z and its conjugate z as
independent variables. In the rest of this chapter most of the complex analytic
functions we will encounter are polynomials in the variables z1, ..., zn. They will
be independent of the complex conjugate variables. We emphasize the intuitive
statement: f is complex analytic if and only if f is independent of the conjugate
variable z = (z1, . . . , zn).

Corollary 4.6. A continuously differentiable function, defined on an open set
in Cn, is complex analytic if and only if df = ∂f .

Exercise 4.36. Use (34) to verify (35.1) and (35.2).

Exercise 4.37. This exercise asks you to explain Remark 4.9. Consider the
functions x and y as coordinates on R2. Then by definition, ∂y

∂x = 0. Suppose
instead we choose u = x and v = x + y as coordinates. Then we would have
∂v
∂u = 0. But ∂(x+y)

∂x = 1. Explain!

7. Differential forms of higher degree

The reader is surely familiar with the determinant. We can think of an n-by-n
matrix as an n-tuple of row vectors r1, ..., rn. The determinant is a multi-linear
function of these rows. In other words, for each j, the function rj → det(r1, ..., rn)
is a linear functional. Here the other rows are held fixed. In addition, this func-
tion is alternating; its value gets multiplied by −1 when we interchange two rows.
Differential forms have similar properties and are closely related.

Our work in higher dimensions relies on differential forms of higher degree. This
discussion presumes that the reader has had some exposure to the wedge product of
differential forms, and therefore knows intuitively what we mean by a k-form. We
also use the modern Stokes’ theorem, which in our setting expresses an integral of a
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2n-form over the unit ball as an integral of a (2n−1)-form over the unit sphere. We
develop enough of this material to enable us to do various volume computations.

Definition 4.10. Let V be a (real or) complex vector space of finite dimension.
A function F : V × · · · × V → C (with k factors) is called a multi-linear form if F
is linear in each variable when the other variables are held fixed. We often say F
is k-linear. It is called alternating if F (v1, . . . , vk) = 0 whenever vi = vj for some
i, j with i �= j.

Example 4.6. Consider a k-by-k matrix M of (real or) complex numbers.
Think of the rows (or columns) of M as elements of Ck. The determinant function
is an alternating k-linear form on Ck × · · · × Ck.

Example 4.7. Given vectors a = (a1, a2, a3) and b = (b1, b2, b3) in R3, define
F (a, b) = a1b3 − a3b1. Then F is an alternating 2-linear form.

Lemma 4.7. A multi-linear form F (over Rn or Cn) is alternating if and
only if the following holds. For each pair i, j of distinct indices, the value of F is
multiplied by −1 if we interchange the i-th and j-th slots:

F (v1, . . . , vi, . . . , vj , . . . vk) = −F (v1, . . . , vj , . . . vi, . . . , vk). (37)

Proof. It suffices to ignore all but two of the slots and then verify the result
when F is 2-linear. By multi-linearity we have

F (v + w, v + w) = F (v, v) + F (v, w) + F (w, v) + F (w,w). (38)

If F is alternating, then all terms in (38) vanish except F (v, w) + F (w, v). Hence
this term must vanish as well. Conversely, if this term always vanishes, then (38)
gives F (v + w, v + w) = F (v, v) + F (w,w). Put w = −v. We get

0 = F (0, 0) = F (v, v) + F (−v,−v) = F (v, v) + (−1)2F (v, v) = 2F (v, v).

Hence F (v, v) = 0 for all v. �

Remark 4.11. The reader might wonder why we chose the definition of al-
ternating to be the vanishing condition rather than the change of sign condition.
The reason is suggested by the proof. Over R or C, the conditions are the same.
If we were working over more general fields, however, we could not rule out the
possibility that 1 + 1 = 0. In this case the two conditions are not equivalent.

We note that 0 is the only alternating k-linear form on V if k exceeds the
dimension of V . When k equals the dimension of V , the only alternating k-linear
form is a multiple of the determinant.

Exercise 4.38. Verify the statements in the previous paragraph.

We can now introduce differential forms of higher degree.

Definition 4.11. Let V be a (real or) complex vector space of finite dimension
n with dual space V ∗. The collection Λk(V ∗) of all k-linear alternating forms on V
is itself a vector space of dimension

(
n
k

)
. It is called the k-th exterior power of V ∗.

Note that Λ1(V ∗) consists of all 1-linear forms on V ; thus it is the dual space
of V and Λ1(V ∗) = V ∗. By convention, Λ0(V ∗) equals the ground field R or C.
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Definition 4.12. Let Ω be an open subset of Rn. A differential form of degree
k on Ω (or a differential k-form) is a (smooth) section of the k-th exterior power
Λk(T ∗(Rn) of the cotangent bundle T ∗(Rn).

At each point x ∈ Ω, we have the vector space Tx(Rn) and its dual space
T ∗

x (Rn). A differential k-form assigns to each x an element of Λk(T ∗
x (Rn)). The

value of the k-form at x is an alternating k-linear form.
By convention, a 0-form is a function. A 1-form assigns to each x a linear

functional on Tx(Rn), as we have seen already. The value of a 2-form at x is
a machine which seeks two vectors at x as inputs, and returns a number. If we
switch the order of the two inputs, we multiply the output by −1.

Forms of all degrees can be generated from 1-forms using the wedge product.
Before giving the definition of the wedge product, we express the idea informally
using bases. Suppose e1, . . . , en form a basis for the 1-forms at a point x. For each
k with 1 ≤ k ≤ n, and each increasing sequence of indices i1 < i2 < · · · < ik, we
define a formal expression eI , written

eI = ei1 ∧ ei2 ∧ · · · ∧ eik
. (39)

Note that there are exactly
(
n
k

)
such expressions. We decree that the collection of

these objects form a basis for the space of k-forms. Thus the space of k-forms on
an n-dimensional space has dimension

(
n
k

)
.

We can regard eI as an alternating k-linear form. As written, the index I
satisfies i1 < · · · < ik. We extend the notation by demanding the alternating
property. For example, when k = 2 and l,m are either 1 or 2, we put

(el ∧ em)(v, w) = el(v)em(w) − el(w)em(v).

Then e2 ∧ e1 = −e1 ∧ e2. More generally we put

(e1 ∧ · · · ∧ ek)(v1, . . . , vk) = det(ei(vj)). (40)

Example 4.8. Consider R3 with basis e1, e2, e3. The zero forms are spanned
by the constant 1. The 1-forms are spanned by e1, e2, e3. The 2-forms are spanned
by e1 ∧ e2, e1 ∧ e3, and e2 ∧ e3. The 3-forms are spanned by e1 ∧ e2 ∧ e3.

Exercise 4.39. For 0 ≤ k ≤ 4, list bases for the k-forms on a 4-dimensional
space.

A relationship between wedge products and determinants is evident. It is there-
fore no surprise that we define the wedge product in a manner similar to the Laplace
expansion of a determinant.

Let us first recall the algebraic definition of the determinant. The motivation is
geometric; det(v1, . . . , vn) measures the oriented volume of the n-dimensional box
spanned by these vectors. We normalize by assuming that the volume of the unit
n-cube is 1.

Definition 4.13. Let V be either Rn or Cn. The determinant, written det, is
the unique alternating n-linear form whose value on e1, . . . , en is 1.

The Laplace expansion of the determinant follows from the definition. Suppose
vj =

∑
cjkek. We compute det(v1, . . . , vn) by the definition. Multi-linearity yields:
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det(v1, . . . , vn) =
n∑

k1=1

n∑

k2=1

· · ·
n∑

kn=1

n∏

j=1

cjkj
det(ek1 , . . . , ekn

).

Next we apply the alternating property to rewrite the determinant of each
(ek1 , . . . ekn

). If indices are repeated we get 0. Otherwise we get ±1, depending
on the signum of the permutation of the indices. We obtain the standard Laplace
expansion of the determinant

det(cjk) =
∑

τ

sgn(τ)
n∏

j=1

cj τ(j). (41)

A permutation τ on n objects is a bijection on the set of these objects. The
expression sgn(τ) is either 1 or −1; it equals 1 when τ is an even permutation and
−1 when τ is an odd permutation. Thus sgn(τ) is the parity of the number of
interchanges (of pairs of indices) required to put the indices in the order 1, 2, . . . , n.

Exercise 4.40. Show that sgn(τ) =
∏

1≤i<j≤n
τ(i)−τ(j)

i−j .

Exercise 4.41. Show that sgn(τ1 ◦ τ2) = sgn(τ1)sgn(τ2). Suggestion: Use the
previous exercise.

The wedge product is defined in a similar fashion:

Definition 4.14. The wedge product of a k-form α and an l-form β is the
(k + l)-form α ∧ β defined by

(α ∧ β)(v1, . . . , vk+l) =
∑

τ

sgn(τ)α(vτ(1), ..., vτ(k))β(vτ(k+1), ..., vτ(k+l)). (42)

The sum in (42) is taken over all permutations τ on k + l objects.

Proposition 4.7 (Properties of the wedge product). Let α, β, β1, β2 be differ-
ential forms. Then:

(1) α ∧ (β1 + β2) = (α ∧ β1) + (α ∧ β2).
(2) α ∧ (β1 ∧ β2) = (α ∧ β1) ∧ β2.
(3) α ∧ β = (−1)klβ ∧ α if α is a k-form and β is an l-form.

Proof. Left to the reader as Exercise 4.47. �

The exterior derivative d is one of the most important and elegant operations
in mathematics. When η is a k-form, dη is a (k +1)-form. When η is a function (a
0-form), dη agrees with our definition from (32). We can extend d to forms of all
degrees by proceeding inductively on the degree of the form. After stating Theorem
4.7, we mention a more elegant approach.

If f is a function, then df is defined as in (32) by df [v] = ∂f
∂v . In coordinates,

df =
∑ ∂f

∂xj
dxj . When g =

∑
j gjdxj is an arbitrary 1-form, we define dg by

dg =
∑

j

dgj ∧ dxj =
∑

j

∑

k

∂gj

∂xk
dxk ∧ dxj =

∑

k<j

(
∂gj

∂xk
− ∂gk

∂xj
)dxk ∧ dxj . (43)
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On the far right-hand side of (43), we have rewritten dg using dxk∧dxj = −dxj∧dxk

to make the indices increase. The terms dxj ∧ dxj drop out. For example,

d(Pdx + Qdy) =
∂P

∂y
dy ∧ dx +

∂Q

∂x
dx ∧ dy = (

∂Q

∂x
− ∂P

∂y
)dx ∧ dy. (44)

Suppose in (44) that Pdx + Qdy = df for some smooth function f . Then
the equality of mixed second partial derivatives and (44) show that d(df) = 0.
This statement in the language of differential forms is equivalent to the classical
statement “the curl of a gradient is 0.” In fact d2 = 0 in general; see Theorem 4.7
and Exercise 4.42.

Let η be a k-form. We wish to define dη in coordinates. To simplify the
notation, write

dxJ = dxj1 ∧ dxj2 ∧ · · · ∧ dxjk
.

Then we can write η =
∑

J ηJdxJ where the ηJ are functions and each J is a
k-tuple of indices. We proceed as we did for 1-forms and put

dη =
∑

J

dηJ ∧ dxJ =
∑

J

∑

k

∂ηJ

∂xk
dxk ∧ dxJ .

Thus dη =
∑

gLdxL, where now L is a (k + 1)-tuple of indices.
The following standard result, which applies in the setting of smooth manifolds,

characterizes d. We omit the simple proof, which can be summarized as follows.
Choose coordinates, use the properties to check the result in that coordinate system,
and then use the chain rule to see that d is defined invariantly.

Theorem 4.7. There is a unique operator d mapping smooth k-forms to smooth
(k + 1)-forms satisfying the following properties.

(1) If f is a function, then df is defined by (32).
(2) d(α + β) = dα + dβ.
(3) d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ if α is a p-form.
(4) d2 = 0.

It is possible to define d without resorting to a coordinate system. The definition
on 0-forms is as in (32). We give the definition only for 1-forms. Let η be a 1-form;
the 2-form dη requires two vector fields as inputs; it must be alternating and multi-
linear. Thus we will define dη(v, w) for vector fields v and w.

We regard v and w as differential operators by recalling that v(f) = df(v) for
smooth functions f . Earlier we wrote df [v], but henceforth we will use the symbol
[, ] in another manner. We therefore use parentheses for the application of a 1-form
on a vector field and for the action of a vector field on a function. We wish to define
the expression dη(v, w).

Definition 4.15. Let v and w be vector fields. Their Lie bracket , or commu-
tator, is the vector field [v, w] defined by [v, w](f) = v(w(f)) − w(v(f)). Here f is
a smooth function and we regard a vector field as a differential operator. (Exercise
4.43 asks you to check that the commutator is a vector field.)

We can now define dη. Given vector fields v and w, we put

dη(v, w) = v(η(w)) − w(η(v)) − η([v, w]).

The notation v(η(w)) here means the derivative of the function η(w) in the direction
v. The full expression is alternating in v and w. The term involving commutators
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is required to make certain that dη is linear over the functions. See Exercise 4.44.
This formula (and its generalization to forms of all degrees) is known as the Cartan
formula for the exterior derivative.

Exercise 4.42. Show that d2 = 0. Recall, for smooth functions f , we have

∂2f

∂xj∂xk
=

∂2f

∂xk∂xj
.

Exercise 4.43. Verify that the commutator of two vector fields is a vector
field. Suggestion: Use coordinates.

Exercise 4.44. Suppose we tried to define a 2-form ζ by

ζ(v, w) = v(η(w)) − w(η(v)).

Show that ζ(fv, w) �= fζ(v, w) in general, and thus linearity fails. Then show that
the commutator term in the definition of dη enables linearity to hold.

Equation (44) fits nicely with Green’s theorem. The line integral of the
1-form η = Pdx + Qdy around a simple closed curve equals the double integral
of dη over the curve’s interior. The generalization of this result to forms of all
degrees is known as the modern Stokes’ theorem. This theorem subsumes many
results, including the fundamental theorem of calculus, Green’s theorem, Gauss’s
divergence theorem, the classical Stokes’ theorem, etc., and it illuminates results
such as Maxwell’s equations from the theory of electricity and magnetism. We
state it only for domains in RN , but it holds much more generally. We will apply
Stokes’ theorem only when the surface in question is the unit sphere, which is ori-
ented by the outward normal vector. In the next section we discuss pullbacks and
indicate how line and surface integrals are defined. For now, we state one of the
great achievements of modern mathematics in the setting we require. See [Wa], for
example, for a complete treatment.

Theorem 4.8 (Stokes’ theorem). Let S = bΩ be a piecewise-smooth oriented
(N−1)-dimensional surface bounding an open subset Ω of RN . Let η be an (N−1)-
form that is smooth on Ω and continuous on Ω ∪ bΩ. Then

∫

bΩ

η =
∫

Ω

dη.

Corollary 4.7. If dη = 0, then
∫

bΩ
η = 0.

Theorem 4.8 holds whether or not bΩ is connected, as long as one is careful
with orientation. If Ω is the region between concentric spheres, for example, then
the spheres must be oppositely oriented.

Each 1-form η on an open subset of RN can be written η =
∑N

j=1 gjdxj , where
the gj are smooth functions. A 1-form η is called exact if there is a smooth function
f such that η = df ; thus gj= ∂f

∂xj
. Readers who are familiar with using line integrals

to compute work will recognize that exact 1-forms correspond to conservative force
fields. More generally, a k-form η is exact if there is a (k − 1)-form α with dα = η.
A necessary condition for being exact arises from the equality of mixed partial
derivatives. A form η is called closed if dη = 0. That exact implies closed follows
directly from d2 = 0.

If a form is closed on an open set, it need not be exact there. The standard
examples are of course
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η =
−ydx + xdy

x2 + y2
(45)

η =
x dy ∧ dz + y dz ∧ dx + z dx ∧ dy

(x2 + y2 + z2)
3
2

. (46)

These are defined on the complement of the origin in R2 and R3, respectively.
The form in (46) provides essentially the same information as the electrical or
gravitational field due to a charge or mass at the origin.

Such forms lead to the subject of deRham cohomology. One relates the exis-
tence and number of holes in a space to whether closed forms are exact.

8. Pullbacks and integrals

Let g be a smooth map from an open set in Rm to Rn and let ω be a k-form
on the image of g in Rn. We wish to pull ω back to a form in Rm; the motivation
arises from the definitions of line and surface integrals.

Definition 4.16. Let g : Ω ⊆ Rm → Rn be smooth. Let ω be a k-form on an
open set in Rn containing the image g(Ω). Consider a k-tuple of vectors in Tp(Rn).
We define the pullback g∗w by

g∗ω(v1, ..., vk) = ω(g∗v1, ..., g∗vk).

Here g∗ is the pushforward dg(p) at each point p ∈ Ω. When k = 0, that is, ω is a
function f , we define the pullback g∗f to be f ◦ g.

Example 4.9. Define g in two dimensions by g(u1, u2) = (u3
1, u

3
2). Define ω by

ω = x dy. Then g∗(ω) = u3
13u2

2du2.

Before doing a harder example we state without proof some simple formal
properties of pullbacks.

Proposition 4.8. Let g be as in the definition of pullback; let u denote the
coordinates in Rm. Let ω and η differential forms in Rn. Then

• g∗(ω + η) = g∗(ω) + g∗(η)
• g∗(ω ∧ η) = g∗(ω) ∧ g∗(η)
• g∗(dxa) = d(g∗(xa)) = dga =

∑m
j=1

∂ga

∂uj
duj.

• g∗(dω) = d(g∗(ω)).

Pulling back amounts to careful substitution. In computing pullbacks we must
also remember that the 1-forms {dxk} form a basis dual to the vector fields { ∂

∂xj
}.

Example 4.10. Put g(r, θ) = (r cos(θ), r sin(θ)) and put ω = −y dx + x dy.
Here {dr, dθ} is the dual basis to { ∂

∂r , ∂
∂θ}. Hence, for example, dr( ∂

∂r ) = 1 and so
on. We compute the pullback g∗ω in two ways to illustrate the idea.

First we use substitution. The derivative matrix of dg is given by
(

cos(θ) r sin(θ)
sin(θ) r cos(θ)

)

.

We compute and simplify, obtaining

g∗ω = −y(cos(θ)dr − r sin(θ)dθ) + x(sin(θ)dr + r cos(θ)dθ) = r2 dθ.
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Thus

g∗ω
(

∂

∂r

)

= 0

g∗ω
(

∂

∂θ

)

= r2.

Next we use directly the definition involving g∗:

g∗ω
(

∂

∂r

)

= ω

(

g∗

(
∂

∂r

))

= (x dy − y dx)
(

cos(θ)
∂

∂x
+ sin(θ)

∂

∂y

)

= 0 (47.1)

g∗ω
(

∂

∂θ

)

= ω

(

g∗
∂

∂r

)

=(x dy−y dx)
(

−r sin(θ)
∂

∂x
+r cos(θ)

∂

∂y

)

=r2. (47.2)

Combining (47.1) and (47.2) verifies that g∗ω = r2 dθ.

The next example of pullbacks is surely the most often used. It illustrates the
change of variables formula for multiple integrals. It also makes the method for
changing variables in multiple integrals seem the same as in one variable.

Example 4.11. Suppose g : Rn → Rn and ω = fdx1 ∧ ... ∧ dxn. Then

g∗(ω) = f ◦ g det(dg) du1 ∧ ... ∧ dun.

Example 4.11 allows us to state the change of variables formula for multiple
integrals as

∫

g(Ω)

f(x) dV (x) =
∫

Ω

g∗(f dV ) =
∫

Ω

f(g(u)) det(dg)(u) dV (u). (48)

Remark 4.12. In (48) one often replaces det(dg) with its absolute value; ori-
entation is a subtle point which we ignore for now.

Example 4.11 also motivates the definitions of line and surface integrals via
pulling back. We give a simple but important complex variable example.

Example 4.12. Consider the line integral of z dz over the unit circle, traversed
counterclockwise. We consider the circle as the image of [0, 2π] under the map
t �→ γ(t) = eit. Then

∫

γ

z dz =
∫ 2π

0

γ∗(z dz) =
∫ 2π

0

e−itieitdt = 2πi.

We conclude this section with some comments about the exterior derivative in
the complex setting. We can write d = ∂ + ∂, where the operator ∂ differentiates
only in the zj directions and the operator ∂ differentiates only in the zj directions.
We easily see that ∂2 = 0 and ∂

2
= 0. A function f defined on an open subset

of Cn is complex analytic if and only ∂f = 0. Various simple identities follow
from these considerations. For example, suppose that f is complex analytic. Then
df = ∂f and hence 0 = d2f = d(∂f). Furthermore suppose that f1, ..., fn are
complex analytic. Then the differential form

η = ∂f1 ∧ ∂f1 ∧ ... ∧ ∂fn ∧ ∂fn

is exact. For example, by Exercise 4.52, it satisfies

d(f1 ∧ ∂f1 ∧ ... ∧ ∂fn ∧ ∂fn) = η. (49)

Exercise 4.45. Verify the last step of the computations in (47.1) and (47.2).
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Exercise 4.46. Prove that d(g∗ω) = g∗(dw). Suggestion. Use induction on
the degree of the form. By linearity it suffices to prove it when ω = fdxJ , where
dxJ = dxj1 ∧ ... ∧ dxjk

is a k form.

Exercise 4.47. Prove Proposition 4.7.

Exercise 4.48. For 0 < r < ∞ and 0 ≤ θ < 2π, put (x, y)=(r cos(θ), r sin(θ)).
Show that dx ∧ dy = rdr ∧ dθ.

Exercise 4.49. For 0 < ρ < ∞, for 0 ≤ θ < 2π, and for 0 ≤ φ < π, put

(x, y, z) = (ρ cos(θ) sin(φ), ρ sin(θ) sin(φ), ρ cos(φ)).

Compute dx ∧ dy ∧ dz in terms of ρ, θ, φ, dρ, dθ, dφ.

Exercise 4.50. Express the complex 1-form dz
z in terms of x, y, dx, dy. Express

the form in (45) in terms of dz and dz.

Exercise 4.51. Show that dz ∧ dz = −2idx ∧ dy. Put z = reiθ. Compute
dz ∧ dz.

Exercise 4.52. Prove formula (49).

Exercise 4.53. Put η = dx1 ∧ dx2 + dx3 ∧ dx4. Find η ∧ η. The answer is not
0. Explain.

Exercise 4.54. Verify that the forms in (45) and (46) are closed but not exact.
(To show they are not exact, use Stokes’ theorem on concentric circles or concentric
spheres.) For n ≥ 3, what is the analogue of (46) for the complement of the origin
in Rn?

Exercise 4.55. Use wedge products to give a test for deciding whether a
collection of 1-forms is linearly independent.

Exercise 4.56. For n ≥ k ≥ 2, let r1, . . . rk be smooth real-valued functions
on Cn. Show that it is possible for dr1, . . . , drk to be linearly independent while
∂r1, . . . , ∂rk are linearly dependent. Here ∂r =

∑
∂r
∂zj

dzj . This problem is even
easier if we drop the assumption that the rj are real-valued. Why?

9. Volumes of parametrized sets

Our next geometric inequality extends the ideas of Proposition 4.2 to higher
dimensions. Things are more complicated for several reasons, but we obtain a sharp
inequality on volumes of images of proper polynomial mappings between balls. We
will also perform some computations from multi-variable calculus which are useful
in many contexts.

We begin with a quick review of higher dimensional volume. Let Ω be an open
subset of Rk. Let u1, . . . , uk be coordinates on Rk. The ordering of the uj , or
equivalently the duj , defines the orientation on Rk. We write

dV = dVk = dVk(u) = du1 ∧ · · · ∧ duk

for the Euclidean volume form. When u = F (x) is a change of variables, preserving
the orientation, we obtain

dV (u) = det(DF (x))dV (x).

Suppose F : Ω → RN is continuously differentiable and injective, except per-
haps on a small set. Let us also assume that the derivative map DF : Rk → RN is
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injective, again except perhaps on a small set. At each x, DF (x) is a linear map
from Tx(Rk) → TF (x)(RN ). Let (DF )(x)∗ denote the transpose of DF (x). Then
(DF )(x)∗ : TF (x)(RN ) → Tx(Rk). The composition (DF )∗(x)DF (x) is then a lin-
ear mapping from the space Tx(Rk) to itself, and hence its determinant is defined.
The k-dimensional volume of the set F (Ω) is then given by an integral:

Vol(F (Ω)) =
∫

Ω

√
det((DF )∗DF )dVk. (50)

Example 4.13. Let Ω denote the unit disk in R2. Define Fα : Ω → R4 by

Fα(x, y) = (cos(α)x, cos(α)y, sin(α)(x2 − y2), sin(α)2xy).

Computation shows that

DFα =

⎛

⎜
⎜
⎝

cos(α) 0
0 cos(α)

2xsin(α) −2ysin(α)
2ysin(α) 2xsin(α)

⎞

⎟
⎟
⎠ .

Matrix multiplication shows that DF ∗
α(x, y)DFα(x, y) is the matrix in (51):

(
cos2(α) + 4(x2 + y2)sin2(α) 0

0 cos2(α) + 4(x2 + y2)sin2(α)

)

. (51)

Hence
√

det(DF ∗
αDFα) = cos2(α) + 4(x2 + y2)sin2(α). Thus the area of the image

of the unit disk B1 under Fα is the integral:
∫

B1

(cos2(α) + 4(x2 + y2)sin2(α))dxdy = π(1 + sin2(α)). (52)

Example 4.14. To anticipate a later development, we find the 3-dimensional
volume of S3. Let Ω denote the open subset of R3 defined by the inequalities:
0 < r < 1, 0 < θ < 2π, 0 < φ < 2π. We parametrize (most of) S3 by

(r, θ, φ) �→ F (r, θ, φ) = (r cos(θ), r sin(θ), s cos(φ), s sin(φ)).

Here s =
√

1 − r2. Note that both θ and φ range from 0 to 2π; they are not the
usual spherical coordinates on S2. Computing DF and DF ∗ gives

(DF )∗ =

⎛

⎝
cos(θ) sin(θ) −r

s2 cos(φ) −r
s2 sin(φ)

−r sin(θ) r cos(θ) 0 0
0 0 −s sin(φ) s cos(φ).

⎞

⎠

Multiplying (DF )∗ by DF and computing determinants yields the 3-dimensional
volume form rdrdθdφ on the sphere. Thus

Vol(S3) =
∫ 2π

0

∫ 2π

0

∫ 1

0

rdrdθdφ = (2π)2
1
2

= 2π2.

We are interested in images of sets in Cn under complex analytic mappings.
When f is a complex-analytic and equi-dimensional mapping, we write f ′ for its
derivative and Jf for its Jacobian determinant. Thus

Jf = det
(

∂fj

∂zk

)

.

Volume computations simplify in the complex-analytic case, even when f is not
equi-dimensional. We could express Example 4.13 using the complex analytic map
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fα defined by fα(z) = (cos(α)z, sin(α)z2) and we easily obtain (51). The following
result in the equi-dimensional case explains why:

Lemma 4.8. Suppose f : Ω ⊆ Cn→Cn is complex analytic. Define F : R2n →
R2n by F (x, y) = (Re(f(x + iy)), Im(f(x + iy))). Then det(DF ) = |det(f ′)|2 =
|Jf |2. In particular, F preserves orientation.

Proof. When u = F (x) is a change of variables on Rk, then dV (u) =
±det((DF )(x))dV (x). The proof amounts to rewriting this equality using complex
variables and their conjugates, and using the relationship between wedge products
and determinants.

Put w = f(z), where both z and w are in Cn. Put w = u + iv and z = x + iy.
In real variables we have

dV2n(u, v) = du1 ∧ dv1 ∧ · · · ∧ dun ∧ dvn = det(DF )dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. (53)

We will write the volume forms in the z, z variables in the domain and the w,w
variables in the target. Note that

dwj =
∑ ∂fj

∂zk
dzk.

Hence dw1 ∧ · · · ∧ dwn = det( ∂fj

∂zk
) dz1 ∧ · · · ∧ dzn = (Jf) dz1 ∧ · · · ∧ dzn.

Recall from Exercise 4.51 that dzj ∧dzj = (−2i)dxj ∧dyj and similarly for the
w variables. Putting everything together we get

dV2n(u, v) = du1 ∧ dv1 ∧ · · · ∧ dun ∧ dvn = (
i

2
)ndw1 ∧ dw1 ∧ · · · ∧ dwn ∧ dwn

= |det(f ′(z))|2( i

2
)ndz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn

= |det(f ′(z))|2dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn = |det(f ′(z))|2dV2n(x, y). (54)

Comparing (53) and (54) finishes the proof. �

Exercise 4.57. Prove (54) using the real form of the Cauchy-Riemann equa-
tions. The computation is somewhat punishing; do it only in two complex variables
where you will deal with four-by-four matrices.

We continue discussing higher dimensional volumes of complex analytic images.
Let Ψ denote the differential form on CN defined by

Ψ =
i

2

N∑

j=1

dζj ∧ dζj .

The factor i
2 arises because dz ∧ dz = −2idx ∧ dy in one dimension. See Exercise

4.45. The form Ψk, where we wedge Ψ with itself k times, is used to define 2k-
dimensional volume. As before we take multiplicity into account.

Definition 4.17. (2k-dimensional volume) Let Ω be an open subset in Ck,
and suppose that f : Ω → CN is complex analytic. We define V2k(f,Ω), the
(2k)-dimensional volume with multiplicity counted, by (55):

V2k(f,Ω) =
∫

Ω

(f∗Ψ)k

k!
=

1
k!

(
i

2
)k

∫

Ω

(
N∑

j=1

∂fj ∧ ∂fj)k. (55)
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Remark 4.13. Equation (55) is the natural definition based on our L2 per-
spective. When f is not injective, the formula takes multiplicity into account. For
w ∈ CN , let #(f, w) denote the number of points in Ω ∩ f−1(w). Then we could
define V2k(f,Ω) by

V2k(f,Ω) =
∫

CN

#(f, w)dh2k(w).

Here dh2k(w) is the 2k-dimensional Hausdorff measure. The so-called area formula
from Geometric Measure Theory shows under rather general hypotheses, met in
our context, that this computation agrees with (55).

We are primarily interested in the case when Ω is the unit ball Bk; in this case
we abbreviate V2k(f,Ω) by Vf . In (55) the upper star notation denotes pullback,
and the k! arises because there are k! ways to permute the indices from 1 to k.
The form (f∗Ψ)k

k! is rdV , where dV = dV2k is the Euclidean volume form in k
complex dimensions, for some function r depending on f . The next section provides
techniques for evaluating the resulting integrals.

Remark 4.14. Caution! In the complex 2-dimensional case, the volume form
is h dV4, where h = EG − |F |2, and

E = ||∂f

∂z
||2,

G = || ∂f

∂w
||2,

F = 〈∂f

∂z
,
∂f

∂w
〉.

No square root appears here. By contrast, in the real case, the classical formula for
the surface area form is

√
EG − F 2, where E,G,F have analogous definitions.

Example 4.15. We consider several maps from B2 to C3. Using (55) and the
methods of the next section we obtain the following values:

(1) Put g(z, w) = (z, 0, w). Then Vg = π2

2 .

(2) For 0 ≤ λ ≤ √
2, put f(z, w) = (z2, λzw,w2). Then Vf = 2(λ2+1)

3 π2.

The first map is injective, and Vf gives the volume of the image. For λ �= 0, the
second map is generically two-to-one. If (a, b, c) is in the image of f , and (a, b, c) is
not the origin, then f−1(a, b, c) has precisely two points. When λ2 = 2, we obtain 4
times the volume of the unit ball. This volume is computed in Corollary 4.8. When
λ = 0, the answer is 4

3 times the volume of the unit ball.

Example 4.16. Define h : C2 → C3 by h(z, w) = (z, zw,w2). This map and
its generalization to higher dimensions will play an important role in our work,
because h maps the unit sphere in C2 into the unit sphere in C3. Here it illustrates
the subtleties involved in computing multiplicities. Let p = (a, b, c) be a point in
C3. Suppose first that a �= 0. Then h−1(p) is empty unless b2 = ca2, in which
case h−1(p) is a single point. When a = 0, things change. If b �= 0, then h−1(p)
is empty. If a = b = 0, then h−1(p) consists of two points for c �= 0 and one point
with multiplicity two if c = 0.

We will use the expanded version of the far right-hand side of (56) to compute
volumes. Let Ω be an open set in Ck, and assume that f : Ω → CN is complex
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analytic. Here we allow the target dimension to differ from the domain dimension.
We define the pointwise squared Jacobian ||Jf ||2 by

||Jf ||2 =
∑

|J(fi1 , ..., fik
)|2 =

∑
|J(fI)|2. (56)

The sum in (56) is taken over all increasing k-tuples. Equivalently, we form all
possible Jacobian determinants of k of the component functions, and sum their
squared moduli. Recall, in the equi-dimensional case, that

Jg = det
(

∂gj

∂zk

)

.

Exercise 4.58. Let α =
∑3

j=1 ∂fj ∧ ∂fj . Find α ∧ α ∧ α by expanding and
compare with (56).

The next lemma provides another method for finding Vf . Let r be a twice
differentiable function of several complex variables. The complex Hessian of r is
the matrix (rjk) =

(
∂2r

∂zj∂zk

)
. Lemma 4.9 relates the determinant of the Hessian

of ||f ||2 to the Jacobian Jf , when f is a complex analytic mapping. This lemma
allows us to compute one determinant, rather than many, even when N > n.

Lemma 4.9. If f : Ck → CN is complex analytic, then ||Jf ||2=det
(
(||f ||2)jk

)
.

Proof. See Exercise 4.59. �

To find the volume (with multiplicity accounted for) of the image of a complex
analytic mapping f : Ω ⊆ Ck → CN , we must either integrate the determinant of
the Hessian of ||f ||2, or sum the L2 norms of each Jacobian J(fj1 , ..., fjk

) formed
from the components of f :

V2k(f,Ω) =
∫

Ω

||Jf ||2dV2k =
∫

Ω

det
(
(||f ||2)jk

)
dV2k. (57)

Exercise 4.59. Put r(z, z) =
∑N

j=1 |fj(z)|2 = ||f(z)||2. Use differential forms
to prove Lemma 4.9.

10. Volume computations

Our next goal is to compute the 2n-dimensional volume of the image of the
unit ball in Cn under the mapping z �→ z⊗m. As a warm-up, suppose n = 1. Then
the map z �→ zm covers the ball m times, and hence the area of the image with
multiplicity counted is πm. We get the same answer using integrals:

A =
∫

B1

|mzm−1|2dV = m2

∫ 2π

0

∫ 1

0

r2m−1drdθ = m2 2π

2m
= πm. (58)

In order to help us do computations and to simplify the notation, we recall and
extend our discussion of multi-index notation from Section 4. A multi-index α is an
n-tuple α = (α1, . . . , αn) of non-negative numbers, not necessarily integers. When
the αj are integers, we write |α| =

∑n
j=1 αj and α! =

∏n
j=1 αj !. In case d = |α|, we

write multinomial coefficients using multi-indices:
(

d

α

)

=
d!
α!

=
d!

α1! . . . αn!
.
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Multi-indices are especially useful for writing polynomials and power series. If
z ∈ Cn, we write

zα =
n∏

j=1

(zj)αj

|z|2α =
n∏

j=1

|zj |2αj .

The multinomial theorem gives the following result from Section 4:

||z||2d = (
n∑

j=1

|zj |2)d =
∑

|α|=d

(
d

α

)

|z|2α.

In order to help us find volumes in higher dimensions we introduce the
Γ-function. For x > 0, we let Γ(x) denote the Gamma function:

Γ(x) =
∫ ∞

0

e−ttx−1dt.

The integral is improper at t = 0 for x < 1, but it converges there for x > 0. When
n is an integer and n ≥ 0, then Γ(n + 1) = n!. More generally, Γ(x + 1) = xΓ(x).
This property enables one to extend the definition of the Γ-function. The integral
defining Γ(x) converges when x is complex and Re(x) > 0. The formula Γ(x+1) =
xΓ(x) provides a definition when −1 < Re(x) < 0, and by induction, a definition
whenever Re(x) is not a negative integer or zero.

1 2 3−3 2 −1

−10

−5

5

10

Figure 5. The Gamma function

It is useful to know that Γ(1
2 ) =

√
π. Exercise 4.61 asks for a proof; the result

is equivalent to the evaluation of the Gaussian integral from Proposition 3.4. One
squares the integral and changes variables appropriately.

Let K+ denote the part of the unit ball in Rn lying in the first orthant; that
is, K+ = {x :

∑
x2

j ≤ 1 and xj ≥ 0 for all j}. Let α be an n-tuple of positive real
numbers. We define an n-dimensional analogue of the Euler Beta function by

B(α) =
∏

Γ(αj)
Γ(|α|) . (59)

The expression (59) is the value of a certain integral:
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B(α) = 2n|α|
∫

K+

r2α−1dV (r). (60)

Note the use of multi-index notation in (60); 2α − 1 means the multi-index whose
j-th entry is 2αj − 1. Thus r2α−1 means

n∏

j=1

r2αj−1
j .

The notation r = (r1, . . . , rn) has a specific purpose. Certain integrals over balls in
Cn (See Lemma 4.10) reduce to integrals such as (60) when we use polar coordinates
in each variable separately; that is, zj = rje

iθj .

Corollary 4.8. The volume of the unit ball in Rn is Γ( 1
2 )n

Γ( n
2 +1) .

Proof. Put α = (1
2 , 1

2 , ..., 1
2 ) in (60) and use (59). �

Exercise 4.60. Verify that Γ(x + 1) = xΓ(x) and Γ(n + 1) = n!.

Exercise 4.61. Show that Γ(1
2 ) =

√
π.

Exercise 4.62. Express the formula for the volume of the unit ball in Rn in
the form cnπn. (Use the previous two exercises.)

Exercise 4.63. Put β(a, b) =
∫ 1

0
ta−1(1− t)b−1dt for a, b > 0. This integral is

the classical Euler Beta function. By first computing Γ(a)Γ(b), evaluate it in terms
of the Γ-function. Explain the relationship with (60).

Exercise 4.64. Prove that (59) and (60) are equivalent.

Remark 4.15. Integrals of the form
∫ 2π

0
cosk(θ)sinl(θ)dθ (for integer expo-

nents) are easily evaluated by using the complex form of the exponential. Integrals
of the form

∫ π
2

0
cosk(θ)sinl(θ)dθ are harder. Such integrals reduce to Beta functions:

β(a, b) =
∫ 1

0

ta−1(1 − t)b−1dt = 2
∫ π

2

0

sin2a−1(θ)cos2b−1(θ)dθ,

even when a and b are not integers.

Exercise 4.65. Use the Euler Beta function to verify the following duplication
formula for the Γ function.

Γ(x)
Γ(2x)

= 21−2x Γ( 1
2 )

Γ(x + 1
2 )

. (61)

Suggestion. First multiply both sides by Γ(x). The left-hand side of the result is
then β(x, x). Write it as a single integral over [0, 1] as in Exercise 4.63. Rewrite by
symmetry as twice the integral over [0, 1

2 ]. Then change variables by 2t = 1 −√
s.

You will obtain 21−2xβ(x, 1
2 ) and (61) follows.

Exercise 4.66. Put φ(x, y) = Γ(x)Γ(x+y)
Γ(2x)Γ(y) . Find φ(x, 1

2 ) and φ(x, 3
2 ). Show that

φ(x,
5
2
) = 21−2x (1 + 2x)(3 + 2x)

3
.
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Exercise 4.67. (Difficult) Verify the following formula for Γ(z)Γ(1 − z):

Γ(z)Γ(1 − z) =
π

sin(πz)
.

Suggestion: First write the left-hand side as a Beta function integral over [0, 1].
Convert it to an integral over [0,∞) by setting t = s

s+1 . Then use contour integra-
tion. The computation is valid for all complex numbers except the integers. See
also Exercise 3.45.

The Γ function also arises naturally in the following exercise.

Exercise 4.68. (For those who know probability). Let X be a Gaussian ran-
dom variable with mean 0 and variance σ2. Use the fundamental theorem of
calculus to find the density of the random variable X2. The answer is called the
Γ-density with parameters 1

2 and 1
2σ2 . Use this method to show that Γ(1

2 ) =
√

π.

We will evaluate several integrals using the n-dimensional Beta function. Recall
the notation |z|2α =

∏ |zj |2αj used in (60).

Lemma 4.10. Let d be a non-negative integer, and let α be a multi-index of
non-negative real numbers. Let Bn denote the unit ball in Cn. Then

∫

Bn

||z||2ddV =
πn

(n − 1)!(n + d)
. (62.1)

∫

Bn

|z|2αdV =
πn

(n + |α|)B(α + 1). (62.2)

Proof. We use polar coordinates in each variable separately; to evaluate (62.1)
we have

I =
∫

Bn

||z||2ddV2n = (2π)n

∫

K+

||r||2d
∏

rjdVn.

We then expand ||r||2d using the multinomial theorem to obtain (63):

I = πn2n
∑

|γ|=d

(
d

γ

)∫

K+

r2γ+1dVn. (63)

Using formulas (59) and (60) for the Beta function in (63) we obtain

I = πn
∑

|γ|=d

(
d

γ

)B(γ + 1)
|γ + 1| = πn

∑

|γ|=d

d!
∏

γj

∏
γj

(d + n)Γ(d + n)
= πn d!

(d + n)!

∑

|γ|=d

1.

By Exercise 4.30, the number of independent homogeneous monomials of degree
d in n variables is

(
n+d−1

d

)
. We replace the sum in the last term with this number

to obtain the desired result:

I = πn d!
(d + n)!

(n + d − 1)!
(n − 1)!d!

=
πn

(n − 1)!(n + d)
. (64)

The calculation of (62.2) is similar but easier as there is no summation to compute:
∫

Bn

|z|2αdV2n = (2π)n

∫

K+

r2α+1dVn = πnB(α + 1)
|α| + n

.
�
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For convenience we write (62.2) when n = 2 and a, b are integers:
∫

B2

|z|2a|w|2bdV4 =
π2a!b!

(a + b + 2)!
.

We return to the homogeneous mapping Hm(z). We consider Hm : Bk → CN ,
where N =

(
k+m−1

k−1

)
, the dimension of the space of homogeneous polynomials of

degree m in k variables. We use the following lemma to find (Theorem 4.9) an
explicit formula for the 2k-dimensional volume (with multiplicity counted) of the
image of the unit ball under Hm.

Lemma 4.11. The pullback k-th power (H∗
m(Ψ))k satisfies the following:

(H∗
m(Ψ))k = mk+1k!||z||2k(m−1)dV2k. (65)

Proof. Note first that (H∗
m(Ψ))k is a smooth (2k)-form, and hence a multiple

τ of dV2k. Note next that Hm is invariant under unitary transformations, and
therefore τ must be a function of ||z||2. Since Hm is homogeneous of degree m,
each first derivative is homogeneous of degree m − 1. The (1, 1) form H∗

m(Ψ)
must then have coefficients that are bihomogeneous of degree (m− 1,m− 1). The
coefficient τ of its k-th power must be homogeneous of degree 2k(m−1). Combining
the homogeneity with the dependence on ||z||2 gives the desired expression, except
for evaluating the constant mk+1k!.

For simplicity we write |dzj |2 for dzj ∧ dzj . To evaluate the constant it suffices
to compute the coefficient of |z1|2k(m−1). To do so, we compute dHm, and then
work modulo z2, ..., zn. Thus, in the formula for (H∗

m(Ψ))k we set all variables equal
to zero except the first. Doing so yields

H∗
m(Ψ) = m2|z1|2m−2|dz1|2 + m|z1|2m−2

k∑

j=2

|dzj |2. (66)

From (66) it suffices to compute

(m2|dz1|2 + m

k∑

j=2

|dzj |2)k. (67)

Expanding (67) yields

k!mk+1dz1 ∧ dz1 ∧ ... ∧ dzk ∧ dzk,

and (65) follows by putting the factor |z1|(2m−2)k from (66) back in. �

Theorem 4.9. Let f : Bn → BK be a proper complex analytic homogeneous
polynomial mapping of degree m. The 2n-dimensional volume Vf (with multiplicity
counted) is given by

Vf = mnπn 1
n!

. (68)

Proof. Consider the function ||f ||2. Since

||f(z)||2 = 1 = ||z||2m = ||Hm(z)||2
on the unit sphere, and both f and Hm are homogeneous, this equality holds
everywhere. Hence ||f ||2 = ||Hm||2 and these two functions have the same complex
Hessian determinant. By Lemma 4.9 they determine the same volume form:
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∑

I

|J(fI)|2 =
∑

I

|J((Hm)I))|2,

and hence by Lemma 4.11

Vf =
∫

Bn

(H∗
m(Ψ))n

n!
=

∫

Bn

mn+1||z||2n(m−1)dV2n.

Lemma 4.10 yields

Vf = mn+1 πn

(n(m − 1) + n)
1

(n − 1)!
=

mnπn

n!
.

As a check we observe, when m = 1, that Vf = πn

n! , which is the volume of the unit
ball. When n = 1, we obtain Vf = πm, also the correct result, as noted in (58). �

The factor of mn in (68) arises because the image of the unit sphere in Cn

covers m times a subset of the unit sphere in the target. Compare with item (2) of
Example 4.11.

11. Inequalities

We are now ready to state a sharp inequality in Theorem 4.10. The proof
of this volume comparison result combines Theorems 4.6, 4.9, and Theorem 4.11
(proved below). Theorem 4.11 generalizes Proposition 4.2 to higher dimensions.
Our proof here uses differential forms; the result can also be proved by elaborate
computation. See [D4] for the computational proof.

Theorem 4.10. Let p : Cn → CN be a polynomial mapping of degree m.
Assume that p(S2n−1) ⊆ S2N−1. Then Vp ≤ mnπn

n! . Equality happens if and only
if p is homogeneous of degree m.

Proof. If p is a constant mapping, then m = 0 and the conclusion holds.
When p is homogeneous of degree m, the result is Theorem 4.9. When p is not ho-
mogeneous, we apply the process from Theorem 4.6 until we obtain a homogeneous
mapping. The key point is that the operation of tensoring with z on a subspace A
increases the volume of the image, in analogy with Proposition 4.2. Since tensoring
on a k-dimensional subspace gives the same result as tensoring k times on one-
dimensional subspaces, we need only show that the volume of the image increases
if we tensor on a one-dimensional space.

We must therefore establish the following statement, which we state and prove
as Theorem 4.11 below. Put f = (f1, . . . , fN ). Put

g = (z1f1, . . . , znf1, f2, . . . , fN ). (69)

Then Vf ≤ Vg, with equality only if f1 = 0.
Each tensor operation from Theorem 4.6 then increases the volume. We stop

when we reach a homogeneous map. Theorem 4.9 then gives the volume mnπn

n! , the
stated upper bound. �

With g as in (69), we need to verify that Vf ≤ Vg. We proved this result
(Corollary 4.2) when n = N = 1, in two ways. As noted above, one can prove the
general result in both fashions. We give the proof involving a boundary integral.
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Let us first recall what we mean by the volume form on the unit sphere in RN .
It is convenient to introduce the notion of interior multiplication. Assume η is a
k-form, and write

η = dxj ∧ τ + μ,

where μ does not contain dxj . The contraction in the j-th direction, or interior
product with ∂

∂xj
, is the (k − 1)-form Ij(η), defined by Ij(η) = τ . Informally

speaking, we are eliminating dxj from η. More precisely, we define Ij(η) by its
action on vectors v2, . . . , vk:

Ij(η)(v2, . . . , vk) = η(
∂

∂xj
, v2, . . . , vk).

We use this notation to write a standard expression from calculus. The Euclidean
(N − 1)-dimensional volume form on the sphere is given by:

σN−1 =
N∑

j=1

xj(−1)j+1Ij(dx1 ∧ · · · ∧ dxN ).

For example, when N = 2 (and x, y are the variables), we have σ1 = xdy − ydx.
When N = 3 (and x, y, z are the variables), we have

σ2 = x dy ∧ dz − y dx ∧ dz + z dx ∧ dy.

Note that dσN−1 = N dVN , where dVN is the volume form on Euclidean space. It
follows immediately from Stokes’ theorem that the (N − 1)-dimensional volume of
the unit sphere is N times the N -dimensional volume of the unit ball.

Remark 4.16. In the previous paragraph, σN−1 is a differential form, and
dσN−1 is its exterior derivative. Calculus books often write dσ or dS for the surface
area form (and ds for the arc-length form), even though these objects are not
differential forms. The symbol d is simply irresistible.

Exercise 4.69. Verify the following formulas for the (N − 1)-dimensional vol-
ume WN of the unit sphere in RN :

• W1 = 2
• W2 = 2π
• W3 = 4π
• W4 = 2π2

• W5 = 8
3π2.

Put ρ(z) = ||z||2. The unit sphere S2n−1 is the set of points where ρ = 1. The
differential form dρ is orthogonal to the sphere at each point, and the cotangent
space to the sphere is the orthogonal complement to dρ. The decomposition dρ =
∂ρ + ∂ρ will be crucial to our proof. Since dρ is orthogonal to the sphere, we may
use the relation ∂ρ = −∂ρ when doing integrals over the sphere.

We can express the form σ2n−1 in terms of complex variables. Let Wjj denote
the (2n− 2)-form defined by eliminating dzj ∧ dzj from dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn.
For 1 ≤ j ≤ n, put zj = xj + iyj . Write xj = zj+zj

2 and yj = zj−zj

2i . Substituting
in the form σ2n−1 and collecting terms, we obtain

σ2n−1 = (
i

2
)n

n∑

j=1

(zjdzj − zjdzj) ∧ Wjj . (70)
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As a check, we note when n = 1 that this expression equals i
2 (zdz − zdz). Putting

z = eiθ then yields dθ, as expected. As a second check, we compute d of the
right-hand side of (70), using dzj ∧ dzj = −2i dxj ∧ dyj , obtaining

(
i

2
)n(2n)(−2i)ndV2n = 2n dV2n,

as expected (since we are in 2n real dimensions).
With these preparations we can finally show that the tensor product operation

increases volumes; in other words, VEf > Vf (unless f1 = 0).

Theorem 4.11. Assume that f = (f1, ..., fN ) is complex analytic on the unit
ball Bn in Cn. Define the partial tensor product Ef by

Ef = (z1f1, z2f1, . . . , znf1, f2, . . . , fN ).

Then VEf > Vf unless f1 = 0.

Proof. We prove the result assuming f has a continuously differentiable ex-
tension to the boundary sphere. [D4] has a proof without this assumption.

Recall that Vf =
∫
Bn

||Jf ||2dV . Here, as in (53), Jf denotes all possible
Jacobians formed by selecting n of the components of f . In case f is an equi-
dimensional mapping, we also have

Vf = cn

∫

Bn

∂f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (71)

In general Vf is a sum of integrals, as in (71), over all choices of n components.
The constant cn equals ( i

2 )n; see the discussion near Definition 4.16.
We want to compute VEf =

∫ ||J(Ef)||2. Many terms arise. We partition
these terms into three types. Type I terms are those for which the n functions
selected among the components of Ef include none of the functions zjf1 for 1 ≤
j ≤ n. These terms also arise when computing Vf . Hence terms of type I drop
out when computing the difference VEf − Vf , and we may ignore them. Type
II terms are those for which we select at least two of the functions zjf1. These
terms arise in the computation of VEf , but not in the computation of Vf . All
of these terms thus contribute non-negatively. The type III terms remain. They
are of the form (zjf1, fi2 , . . . , fin

). We will show, for each choice (fi2 , . . . , fin
) of

n − 1 of the functions f2, ..., fN , that the sum on j of the volumes of the images
of (zjf1, fi2 , . . . , fin

) is at least as large as the volume of the image of the map
(f1, fi2 , . . . , fin

). Combining these conclusions shows that VEf ≥ Vf .
For simplicity of notation, let us write the (n − 1)-tuple as (f2, . . . , fn). By

the above paragraph, it suffices to prove the result when f = (f1, . . . , fn) is an
equi-dimensional mapping. In the rest of the proof we let f denote this n-tuple.

Since f1 is complex analytic, df1 = ∂f1. By the closing paragraph of Section 6,
we can write the form in (71) as an exact form. We then apply Stokes’ theorem to
get

Vf = cn

∫

Bn

d(f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn)

= cn

∫

S2n−1
f1 ∧ ∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (72)
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For 1 ≤ j ≤ n we replace f1 in (72) with zjf1 and sum, obtaining

VEf ≥ cn

n∑

j=1

∫

S2n−1
zjf1 ∧ ∂(zjf1) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (73)

Note that ∂(zjf1) = f1dzj + zjdf1 by the product rule. Using this formula in
(73) and then subtracting (72) from (73) shows that the excess is at least

VEf − Vf ≥ cn

∫

S2n−1
(

n∑

j=1

|zj |2 − 1)f1∂f1 ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn

+cn

∫

S2n−1
|f1|2(

n∑

j=1

zjdzj) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn. (74)

Since
∑ |zj |2 = 1 on the sphere, the expression in the top line of (74) vanishes. We

claim that the other term is non-negative. We will show that the form

cn|f1|2(
n∑

j=1

zjdzj) ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn

arising in (74) is a non-negative multiple of the real (2n − 1)-dimensional volume
form on the sphere, and hence its integral is non-negative.

It suffices to prove that the form

η = cn∂ρ ∧ ∂f2 ∧ ∂f2 ∧ · · · ∧ ∂fn ∧ ∂fn (75)

is a non-negative multiple of the volume form on the sphere.
Note that ∂fj = dfj , because fj is complex analytic. We wish to write dfj in

terms a particular basis of 1-forms. We would like to find independent differential 1-
forms ω1, ..., ωn−1, with the following properties. Each of these forms involves only
the dzj (not the dzj). Each ωj is in the cotangent space to the sphere. Finally,
these forms, their conjugates, and the additional forms ∂ρ and ∂ρ are linearly
independent at each point. Doing so is not generally possible, but we can always
find ω1, . . . , ωn−1 such that linear independence holds except on a small set. After
the proof (Remark 4.17), we explain how to do so.

Given these forms, we work on the set U where linear independence holds. We
compute the exterior derivatives of the fj for 2 ≤ j ≤ n in terms of this basis:

dfj = ∂fj =
n−1∑

k=1

Bjkωk + Bj∂ρ.

On the intersection of U and the sphere, we obtain

dfj = ∂fj =
n−1∑

k=1

Bjkωk + Bj∂ρ =
n−1∑

k=1

Bjkωk − Bj∂ρ.

∂fj =
n−1∑

k=1

Bjkωk + Bj∂ρ.

In these formulas, Bjk denotes the coefficient function; Bjk can be written Lk(fj)
for complex vector fields Lk dual to the ωk.
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These formulas allow us compute the wedge product in (75) very easily. We
can ignore all the functions Bj , because the wedge product of ∂ρ with itself is 0.
We obtain

η = cn|det(Bjk)|2∂ρ ∧ ω1 ∧ ω1 ∧ · · · ∧ ωn−1 ∧ ωn−1. (76)

In (76), the index k runs from 1 to n− 1, and the index j runs from 2 to n. Hence
it makes sense to take the determinant of the square matrix Bjk of functions. Since
the ωk and their conjugates are orthogonal to the normal direction dρ, the form in
(76) is a nonnegative multiple of σ2n−1.

We have verified that VEf − Vf ≥ 0. �

Remark 4.17. Let f and Ef be as in Theorem 4.11. Assume f1 is not iden-
tically 0. For all z in the ball, ||(Ef)(z)||2 ≤ ||f(z)||2, with strict inequality except
where f1(z) = 0. There is no pointwise inequality relating det

(
(||Ef ||2)jk

)
and

det
(
(||f ||2)jk

)
. But, Theorem 4.11 and Lemma 4.9 yield

∫
det

(
(||Ef ||2)jk

)
dV >

∫
det

(
(||f ||2)jk

)
dV.

Thus ||Ef ||2 is (pointwise) smaller than ||f ||2, there is no pointwise inequality
between their Hessian determinants, but the average value (integral) of the Hessian
determinant of ||Ef ||2 is larger than the average value of the Hessian determinant
of ||f ||2.

Remark 4.18. We show how to construct the 1-forms used in the proof. First
consider S3 ⊆ C2. We can put ω1 = z dw − w dz. Then, except at the origin,
the four 1-forms ω1, ω1, ∂ρ, ∂ρ do the job. The three 1-forms ω1, ω1, ∂ρ − ∂ρ form
a basis for the cotangent space at each point of the unit sphere.

In the higher dimensional case, we work on the set U where zn �= 0. The
complement of U in the sphere is a lower dimensional sphere, and hence a small set
as far as integration is concerned. For 1 ≤ j ≤ n − 1, we define ωj by

ωj =
zn dzj − zj dzn

|zj |2 + |zn|2
The forms ωj are linearly independent on U , and each is orthogonal to dρ. See the
next Chapter and Exercise 5.1 for their role in CR geometry.

We now discuss in more detail why η is a non-negative multiple of the (2n−1)-
dimensional volume form on the sphere. One way to verify this fact is to introduce
polar coordinates in each variable separately and compute. Thus zj = rje

iθj , where
each rj is non-negative. On the unit sphere we have the relation

∑
r2

j = 1; it follows
that

∑
rjdrj = 0 on the sphere. We therefore use all the θj as coordinates, but we

use only r1, . . . , rn−1. The (2n − 1)-dimensional volume form on the sphere turns
out to be (where the product is a wedge product)

⎛

⎝
n−1∏

j=1

rjdrj ∧ dθj

⎞

⎠ ∧ dθn.

We continue this geometric approach by noting the following simple Lemma,
expressing the Cauchy-Riemann equations in polar coordinates.
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Lemma 4.12. Assume h is complex analytic in one variable. Use polar coordi-
nates z = reiθ. Then ∂h

∂θ = ri∂h
∂r .

Proof. We will use subscripts to denote partial derivatives in this proof. Since
h is complex analytic, hz = ∂h

∂z = 0. It follows that

hr =
∂h

∂r
=

∂h

∂z

∂z

∂r
= hze

iθ.

Similarly,

hθ =
∂h

∂θ
=

∂h

∂z

∂z

∂θ
= hzrie

iθ = rihr.

�

Remark 4.19. One can also prove Lemma 4.12 by observing that it suffices to
check it for h(z) = zk, for each k.

Exercise 4.70. Prove Lemma 4.12 as suggested in the Remark.

A continuously differentiable function of several complex variables is complex
analytic if and only if it is complex analytic in each variable separately. (The
same conclusion holds without the hypothesis of continuous differentiability, but
this result, which we do not need, is much harder to prove.) The geometry of the
sphere suggests, and the easier implication justifies, working in polar coordinates
in each variable separately.

Put zj = rje
iθj for 1 ≤ j ≤ n. Computation yields

dzj = eiθj drj + irje
iθj dθj .

Note that
∑n

1 rjdrj = 0 on the sphere. We compute ∂ρ =
∑n

1 zjdzj as follows:

∂ρ =
n∑

j=1

zjdzj =
n∑

j=1

rjdrj − i
n∑

j=1

r2
jdθj = −i(

n∑

j=1

r2
jdθj).

We can express the form η from (75) in terms of these new variables. We
provide the details only when n = 2. For ease of notation, we write z = reiθ and
w = seiφ. We obtain

zdz + wdw = −i(r2dθ + s2dφ). (77)

We compute ∂g∧∂g, where g = f2 in (75). Now that we do not have subscripts
on the functions, we can use subscripts to denote partial derivatives. Since g is
complex analytic, we have

∂g = dg = grdr + gθdθ + gsds + gφdφ.

The Cauchy-Riemann equations in polar coordinates give gθ = rigr and gφ = sigs.
From these equations we find

∂g = gr(dr + irdθ) + gs(ds + isdφ). (78)

We need to compute ∂g ∧ ∂g. We obtain

∂g ∧ ∂g = |gr|2(−2irdr ∧ dθ) + |gs|2(−2isds ∧ dφ)

+grgs(−isdr ∧ dφ + irdθds + rsdθ ∧ dφ)

+gsgr(−isdr ∧ dφ + irdθds − rsdθ ∧ dφ). (79)
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We wedge (77) with (79) and collect terms in the order drdθdφ. The result is

(zdz + wdw) ∧ ∂g ∧ ∂g = −2r|sgr − rgs|2drdθdφ. (80)

The form η in question is ( i
2 )2 times the expression in (80). Hence we see that

η = |sgr − rgs|2 r

2
drdθdφ, (81)

which is a non-negative multiple of the volume form rdrdθdφ for the sphere.
We gain considerable insight by expressing sgr − rgs in terms of gz and gw.

Using the chain rule and some manipulation we get

|sgr − rgs|2 = |sgzzr − rgwws|2 = |seiθgz − reiφgw|2 = |wgz − zgw|2. (82)

We can interpret (82) geometrically. Define a complex vector field L by

L = w
∂

∂z
− z

∂

∂w
. (83)

Then L is tangent to the unit sphere, and (81) and (82) yield η = 1
2 |L(g)|2 σ3. In

the next section we will interpret L in the context of CR geometry.

Exercise 4.71. Use polar coordinates to compute the form η from (75) in 3
complex dimensions.

Exercise 4.72. Show that {zα}, as α ranges over all non-negative integer
multi-indices, is a complete orthogonal system for A2. Here A2 denotes the complex
analytic functions in L2(Bn).

Exercise 4.73. Let cα = ||zα||2L2 for the unit ball Bn. Find a simple formula
for the Bergman kernel B(z, z) for the ball, defined by

B(z, z) =
∑

α

|z|2α

cα
.

Exercise 4.74. Compute Vf if f(z, w) = (za, wb). Also compute Vg if g(z) =
(za, zwb, wb+1).

Exercise 4.75. Express the (2n − 1)-dimensional volume of the unit sphere
S2n−1 in terms of the 2n-dimensional volume of Bn. Suggestion: Use (71) and (72)
when f(z) = z.

Exercise 4.76. Consider the Hilbert space H consisting of complex analytic
functions on Cn that are square integrable with respect to the Gaussian weight
function exp(−||z||2). Show that the monomials form a complete orthogonal system
for H. Compute cα = ||zα||2L2 . Finally, analogously to Exercise 4.73, compute

∑

α

|z|2α

cα
.

12. Unifying remarks

Section 2 made considerable use of the Hilbert space of complex analytic func-
tions in the unit disk. The paragraph after Lemma 4.2 indicated to a small extent
why Hilbert spaces whose elements are complex analytic (holomorphic) functions
have such nice properties. In this section we expand the basic idea hoping both to
unify many topics already discussed and to anticipate Theorems 5.1 and 5.2 from
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the next chapter. These ideas also play a significant role in mathematical physics,
but we say very little in this direction.

We begin by considering two different Hilbert spaces.

Definition 4.18. Let A2(Bn) denote the collection of holomorphic functions
f : Bn → C for which

∫

Bn

|f(z)|2dV (z) < ∞. (84.1)

Let A2(Cn, G) denote the space of holomorphic maps f : Cn → C for which
∫

Cn

|f(z)|2e−|z|2dV (z) < ∞. (84.2)

In (84.2) the expression e−|z|2 denotes (up to a constant) a Gaussian:

e−|z|2 = e−(
∑n

j=1 |zj |2).

Definition 4.19. The inner product on A2(Bn) is given by

〈f, g〉 =
∫

Bn

f(z) g(z)dV (z). (85.1)

The inner product on A2(Cn, G) is given by

〈f, g〉 =
∫

Cn

f(z) g(z)e−|z|2dV (z). (85.2)

We write |z|2 rather than ||z||2 in (84.2) and (85.2) for the Euclidean squared
norm in order to avoid confusion with the squared norms on these Hilbert spaces.
In Chapter 5 we return to using ||z||2 for the Euclidean squared norm. We also
note that the letter G is used to suggest the Gaussian factor.

In the literature from mathematical physics, the space A2(Cn, G) is also known
as the Segal-Bargmann space, the Bargmann space, and the Bargmann Fock space.
We refer to [F3] for more information. The Wikipedia page on the Segal-Bargmann
space is also reliable.

We leave it to the reader to complete the sketch of the following crucial fact.

Theorem 4.12. Both A2(Bn) and A2(Cn, G) are Hilbert spaces.

Proof. That these sets are vector spaces is obvious. That formulas (85.1)
and (85.2) define inner products is also obvious. The main issue is completeness.
The crucial point in each case is that these spaces are closed subspaces of the
corresponding L2 spaces.

First consider A2(Bn). Using the mean-value property for holomorphic func-
tions and the Cauchy-Schwarz inequality, one can prove for each compact subset K
of the ball that there is a constant C for which

sup
z∈K

|f(z)| ≤ C||f ||L2 . (86)

It follows that a Cauchy sequence of holomorphic functions converges uniformly
on compact subsets. It is a standard fact in complex analysis (in one or several
variables) that the uniform limit on compact subsets of a sequence of holomorphic
functions is itself holomorphic. Hence A2(Bn) is a closed subspace of L2(Bn) and
hence a Hilbert space.

The discussion for A2(Cn, G) is similar. �
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Remark 4.20. The proof that A2(Bn) is a Hilbert space works when the ball
is replaced by an arbitrary bounded domain. The ball, however, is particularly nice
because the monomials form an orthogonal system and hence the Taylor expansion
of a function is also an orthonormal expansion.

We also note the following crucial properties:

Lemma 4.13. In each case, the evaluation map δp defined by δp(f) = f(p) is
a continuous linear functional. Hence, by Theorem 2.4 (Riesz lemma), there is an
element Kp of the space for which

f(p) = δp(f) = 〈f,Kp〉.
Proof. First consider A2(Bn). Since a point is a compact subset, (86) yields

the desired result for the ball. Again the proof for A2(Cn, G) is similar. �

Lemma 4.14. In both cases, the monomials form a complete orthogonal system
for the Hilbert space.

Proof. Lemma 4.2 proves the result for A2(B1). The proof for general n is
virtually the same. Simply use polar coordinates in each variable separately to
check orthogonality. To check completeness one needs to know that a function
holomorphic in the unit ball has a power series expansion that converges uniformly
on compact subsets of the ball.

The proof for A2(Cn, G), requested above in Exercise 4.76, is similar. �

Lemma 4.14 has several useful consequences. For example, in either setting a
holomorphic function has a power series representation whose individual terms are
orthogonal. By the lemma, the decomposition into homogeneous parts is therefore
an orthogonal sum. The reader might revisit Theorems 2.15 and 2.16 from Chapter
2 to gain additional insight into those results. Note also that the function z �→Kp(z)
from Lemma 4.13 can then be computed by summing an explicit orthonormal series.
Such functions are known as reproducing kernels. See Exercise 4.12 from Section 2,
Exercise 4.73, Exercise 4.76, and Exercise 4.86 below.

Next we make a connection to quantum mechanics. Consider H = A2(Cn, G).
For each j we may consider the unbounded linear operator aj = ∂

∂zj
on H. This

operator aj is called an annihilation operator. The operator Mk of multiplication
by zk is called a creation operator. The following facts are simple to verify:

Lemma 4.15. The adjoint a∗
j of ∂

∂zj
is Mj. The identities [aj ,Mk] = δjk hold.

Here [a,M ] is the commutator aM − Ma.

Proof. The commutator identities are immediate. See Exercise 4.78 for the
proof finding a∗

j . �

Remark 4.21. In quantum mechanics, one defines position by Aj = aj+Mj

2

and momentum by Bj = aj−Mj

2i .

These operators are defined on H = A2(Cn, G). We have seen something
similar. Versions of D and M on A2(B1) were used in Section 2 to compute
volumes of holomorphic images. When f is injective, the squared L2 norm ||f ′||2
equals the volume of the image of f . Proposition 4.2 and Corollary 4.2 give a
geometric interpretation of the operator M∗D∗DM − D∗D. In this case, where
the domain is the ball, D and M are not adjoints.
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Exercise 4.77. Fill in the details of the proofs of Theorem 4.12, Lemma 4.13,
and Lemma 4.14.

Exercise 4.78. Suppose f(z) =
∑

cαzα is entire. Give the necessary and
sufficient condition on the cα for f ∈ A2(Cn, G). Do the same for a first derivative
of f . Use this information to prove the first part of Lemma 4.15.

Exercise 4.79. Show that there are no finite-dimensional linear maps A,B
with [A,B] = I. Harder: Show that there are no bounded operators on a Hilbert
space satisfying [A,B] = I. A hint is given in Exercise 2.42 of Chapter 2.

Exercise 4.80. Generalize Exercises 4.12 and 4.73 to A2(Cn, G).

Exercise 4.81. Consider A2(C, G). Find f in this space for which f ′ is not
in the space. Find g in this space for which zg(z) is not in this space.

We conclude this section by sketching a proof of Theorem 5.1 from the next
chapter. The starting point is a bihomogeneous polynomial r(z, w). Here each of
z, w lies in Cn and r is homogeneous of degree m in each of these variables. We
suppose that r(z, z) is real-valued; see section 4 for additional discussion about such
Hermitian symmetric polynomials. We write

r(z, z) =
∑

|a|=|b|=m

cabz
azb, (87)

where the matrix (cab) of coefficients is Hermitian. We call this matrix the under-
lying matrix of coefficients.

We wish to analyze several possible positivity conditions for r. If the matrix
(cab) is positive semi-definite, then there is a holomorphic polynomial map g, taking
values in CN and homogeneous of degree m, such that

r(z, z) = ||g(z)||2 =
N∑

j=1

|gj(z)|2. (88)

When (88) holds we say that r is a Hermitian squared norm. In this case, r(z, z) ≥ 0
for all z. We say r is non-negative as a function. Exercise 4.82 asks for the easy
proof of (88).

If r is non-negative as a function, however, the underlying matrix of coefficients
need not be positive semi-definite. The simplest example is given by

r(z, z) = |z1|4 + λ|z1z2|2 + |z2|4.
It is routine to check that r(z, z) ≥ 0 for all z if and only if λ ≥ −2. Hence, for
−2 ≤ λ < 0, we have a non-negative function whose matrix of coefficients has a
negative eigenvalue. For −2 < λ, the function r is strictly positive away from the
origin and yet there is still a negative eigenvalue.

Theorem 5.1 from the next chapter, stated here as Theorem 4.13, clarifies the
relationship between the two notions of positivity. The theorem considers bihomo-
geneous polynomials that are strictly positive away from the origin. The conclusion
need not hold for bihomogeneous polynomials that are non-negative away from the
origin. See Example 5.4 from the next chapter. We also remark that one cannot
choose the integer d in terms of the dimension n and the degree of homogeneity
alone. This integer depends on the actual values of r(z, z). See [D1] for considerable
additional information about this matter.
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Theorem 4.13. Let r(z, z) be a bihomogeneous polynomial such that r(z, z)>0
for z �= 0. Then there are a positive integer d and a holomorphic polynomial map
h such that

||z||2dr(z, z) =
∑

Eμνzμzν = ||h(z)||2. (89)

Furthermore, the matrix (Eμν) is strictly positive definite.

If (89) holds for some d0, then it holds whenever d ≥ d0. The reason is that

||z||2k ||h(z)||2 = ||z⊗k ⊗ h(z)||2.
As we have done all chapter, we do not indicate the dimension of the space in the
notation for the squared norm.

Theorem 4.13 was first proved by Quillen [Q] and later reproved by Catlin-
D’Angelo as one step in the general set of ideas from Chapter 5. The proof from
[Q] uses the space A2(Cn, G). The proof from [CD] uses A2(Bn). See [D1] for a
detailed exposition of a slightly simplified version of the proof from [CD]. To help
unify ideas in this book, we sketch the proof.

We first note, by linear algebra, that a bihomogeneous polynomial is a Hermit-
ian squared norm if and only if the underlying matrix of coefficients is non-negative
definite. This statement holds if and only if a certain integral operator is non-
negative definite. Namely, given a bihomogeneous polynomial r, we define a linear
operator Kr on A2(Bn) by

Krf(z) =
∫

Bn

r(z, w)f(w) dV (w).

Since r is bihomogeneous and monomials of different degrees are orthogonal, this
operator is 0 except on the subspace of homogeneous polynomials of degree m. On
this space, however, we have 〈Krf, f〉 ≥ c||f ||2 for all f and c > 0 if and only if the
matrix of coefficients of r is positive definite. We say that Kr corresponds to r.

We see that our goal is to prove that there is a d0 with the following property.
For each d ≥ d0, the integral operator corresponding to ||z||2dr(z, z) is positive
definite on the space of homogeneous polynomials of degree m+d. We consider all
these operators at the same time by introducing the Bergman kernel function. The
Bergman kernel function for the ball, computed in Exercise 4.73, is given by

B(z, w) =
n!
πn

(1 − 〈z, w〉)−n−1
. (90)

Two things about B matter. First, B is the integral kernel of orthogonal projection
P : L2(Bn) → A2(Bn). Thus, for f ∈ L2(Bn),

Pf(z) =
∫

Bn

B(z, w)f(w) dV (w).

Second, B serves as a generating function for powers of the inner product:

B(z, w) =
∞∑

j=0

cj 〈z, w〉j .

Here all the coefficients cj are positive. We also recall from Lemma 4.14 that A2(Bn)
is the orthogonal sum of the spaces of homogeneous polynomials.
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Choose a smooth non-negative function χ that is 1 near the origin and has
compact support in the ball. We write, using the powerful technique of adding and
subtracting,

r(z, w)B(z, w) = (r(z, w)− r(z, z))B(z, w) + (r(z, z) + χ(z))B(z, w)− χ(z)B(z, w).

We think of this expression on the operator level as
Pr = [P, r] + (r + χ)P − χP = T1 + T2 + T3. (91)

We are now close to where we wish to be. The operator T3 is compact on
L2(Bn), because χ is smooth and compactly supported. (See Proposition 2.12 from
Chapter 2.) The operator T2 is positive definite on A2(Bn) by Exercise 4.84. If
we knew that T1 were a compact operator, then Pr would be a compact operator
plus an operator that is positive definite on A2(Bn). Because of compactness, there
would be a finite-dimensional subspace away from which the operator Pr is positive
definite. See Exercise 4.85. In other words, for d0 sufficiently large, the operator
corresponding to ∑

j≥d0

r(z, w)cj〈z, w〉j

is positive definite. Recall that polynomials of different degrees are orthogonal.
Since cj > 0 for all j, we conclude (when T1 is compact) that the operator corre-
sponding to r(z, w)〈z, w〉d is positive definite on the space of homogeneous polyno-
mials of degree m + d, when m + d ≥ d0.

Thus the remaining issue is the compactness of the commutator [P, r] of the
Bergman projection and multiplication by r. See [D1] for the details of a long but
elementary proof. The statement also follows from general facts in operator theory.
See for example [SZ] and [Ha]. See also [CeS] for recent related work. The operator
[P, r] is called a Hankel operator.

Corollary 4.9. Let r be a bihomogeneous polynomial of degree 2m. The
following are equivalent:

• There is a positive constant c such that r(z, z) ≥ c||z||2m.
• There is an integer d and a holomorphic homogeneous polynomial mapping

h such that the set of common zeroes of the components of h is {0} and

||z||2d r(z, z) = ||h(z)||2.
• For a possibly larger d, the operator K corresponding to ||z||2dr(z, z) is

positive definite on the space of holomorphic polynomials of degree m+d.

Example 4.17. Consider the polynomial r(z, z) = |z1|6 + |z2|6. It is already a
Hermitian squared norm, but its matrix of coefficients is only positive semi-definite.
If we multiply by ||z||4, then we obtain a Hermitian squared norm whose underlying
matrix is positive-definite.

Example 4.18. Put r(z, z) = |z1|4 + |z1z2|2. Then r is a Hermitian squared
norm, and hence non-negative, but r has a large zero-set. The strict positivity
condition of Corollary 4.9 does not hold. For every d, the underlying matrix for the
function ||z||2dr(z, z), although positive semi-definite, is not positive definite.

See also Examples 5.4 and 5.6 from the next chapter for more insight into how
the zero set of r matters.

Exercise 4.82. Use elementary linear algebra to prove (88).
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Exercise 4.83. In formula (91), it is stated that [P, r] is the operator T1

corresponding to (r(z, w) − r(z, z)) B(z, w). Prove this claim. Note the distinc-
tion between the w and the z. The integration takes place with respect to dV (w).

Exercise 4.84. Prove that the operator (r+χ)P is positive definite on A2(Bn).
(Note that we multiply by r + χ after we project.)

Exercise 4.85. Let T be a compact operator on a Hilbert space. Let P be a
positive definite operator. Prove that there is a finite-dimensional subspace away
from which P + T is positive definite.

Exercise 4.86. Suppose that φj is a complete orthonormal system for a Hilbert
space H of holomorphic functions. For f ∈ H, find the value of

〈f(w),
∑

j

φj(w)φj(z)〉.

Here the inner product is taken with respect to the w variable. Compare with
Lemma 4.13 and the remarks after Lemma 4.14.

Exercise 4.87. Put r(z, z) = |z1|4+λ|z1z2|2+|z2|4. For each λ > −2, Theorem
4.13 guarantees that there is a minimum d = dλ such that (|z1|2 + |z2|2)dr(z, z) is
a Hermitian squared norm. Prove that dλ tends to infinity as λ tends to −2.



CHAPTER 5

The unit sphere and CR geometry

CR geometry considers the interplay between real and complex spaces. The
name itself has an interesting history, which we do not discuss here, other than to
say that CR stands both for Cauchy-Riemann and for Complex-Real. See [DT] for
a survey of CR Geometry and its connections with other branches of mathematics.
See [J] for a good exposition of the theory of CR structures, and see [BER] for a
definitive treatment of CR mappings.

In this chapter we consider simple aspects of the CR geometry of the unit sphere
in Cn and relate them to the holomorphic automorphism group of the unit ball.
The unit sphere S2n−1 in R2n becomes an object in CR Geometry after we identify
R2n with Cn. Given this identification, we discover that the tangent directions
to the sphere do not all behave the same way from the point of view of complex
analysis. This issue lies at the foundation of CR Geometry and we will develop it
in Section 1.

Much of the action from Chapter 4 involved the unit sphere. Chapter 5 goes
further. We include a generalization of the Riesz-Fejer theorem on non-negative
trigonometric polynomials to a result on Hermitian polynomials that are positive
on the unit sphere. We apply this result to the study of proper mappings between
balls. We then study groups associated with holomorphic and CR mappings. This
chapter thus provides many ways to extend results from the unit circle to higher
dimensions, all informed by orthogonality and Hermitian analysis.

The theorems, examples, and geometric considerations in this chapter illustrate
the following theme. When passing from analysis on the unit circle to analysis in
higher dimensions, the mathematics becomes both more complicated and more
beautiful. Ideas revolving around Hermitian symmetry appear throughout. This
perspective leads naturally to CR geometry. We refer again to [DT] for an intro-
duction to CR geometry, and to its references for viewing the many directions in
which Hermitian analysis is developing.

1. Geometry of the unit sphere

Let S2n−1 denote the unit sphere in R2n. Consider a point p in S2n−1. If
we regard p as a unit vector v (from 0 to p) in R2n, then v is orthogonal to the
sphere at p. Hence any vector w orthogonal to v is tangent to the sphere. Put
r(x) =

∑2n
j=1 x2

j − 1. Then the unit sphere is the zero-set of r, and furthermore
dr(x) �= 0 for x on the sphere. We call such a function a defining function for the
sphere. The 1-form dr annihilates the tangent space Tp(S2n−1) at each point. It
defines the co-normal direction to the sphere.

In this Chapter we write 〈η, L〉 for the contraction of a 1-form η with a vector
field L. Previously we have been writing η(L). A vector field L =

∑2n
j=1 aj

∂
∂xj

on
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R2n is tangent to S2n−1 if and only if

0 = 〈dr, L〉 = dr(L) = L(r) =
2n∑

j=1

aj
∂r

∂xj

on the sphere.
Given the focus of this book, we regard R2n as Cn and express these geometric

ideas using complex vector fields. A new phenomenon arises. Not all directions in
the tangent space behave the same way, from the complex variable point of view.

Let X be a complex vector field on Cn. We can write

X =
n∑

j=1

aj
∂

∂zj
+

n∑

j=1

bj
∂

∂zj

where the coefficient functions aj , bj are smooth and complex-valued. Each complex
vector field is the sum of two vector fields, one of which involves differentiations in
only the unbarred directions, the other involves differentiations in only the barred
directions. Let T 1,0(Cn) denote the bundle whose sections are vector fields of the
first kind and T 0,1(Cn) the bundle whose sections are of the second kind. The only
vector field of both kinds is the 0 vector field. We therefore write

T (Cn) ⊗C = T 1,0(Cn) ⊕ T 0,1(Cn). (1)

The tensor product on the left-hand side of (1) arises because we are considering
complex (rather than real) vector fields. The left-hand side of (1) means the bun-
dle whose sections are the complex vector fields on Cn. We next study how the
decomposition in (1) applies to vector fields tangent to S2n−1.

Let T 1,0(S2n−1) denote the bundle whose sections are complex vector fields of
type (1, 0) and tangent to S2n−1. Then T 0,1(S2n−1) denotes the complex conjugate
bundle. For p on the sphere, each of the vector spaces T 1,0

p (S2n−1) and T 0,1
p (S2n−1)

has complex dimension n−1. But Tp(S2n−1)⊗C has dimension 2n−1. Hence there
is a missing direction. How can we describe and interpret this missing direction?

Observe first that the commutator [L,K] of vector fields L,K, each of type
(1, 0) and tangent to S2n−1, also satisfies these properties. That [L,K] is of type
(1, 0) follows easily from the formula [L,K] = LK − KL. That [L,K] is tangent
follows by applying this formula to a defining function r:

[L,K](r) = L(K(r)) − K(L(r)) = 0 − 0 = 0.

Since K is tangent, K(r) = 0 on the sphere. Since L is tangent, L(K(r)) = 0 there.
By symmetry, K(L(r)) = 0 as well. Note Remark 5.1. By symmetry considerations,
the commutator of two (0, 1) tangent vector fields is also of type (0, 1) and tangent.
On the sphere, however, the commutator of each non-zero (1, 0) vector field L with
its conjugate L has a non-vanishing component in the missing direction.

Remark 5.1. Warning! Is the derivative of a constant zero? The function
R(x, y) = x2 + y2 − 1 equals 0 everywhere on the unit circle, but ∂R

∂x = 2x and
hence is NOT zero at most points. The problem is that the differentiation with
respect to x is not tangent to the unit circle.

We can abstract the geometry of the sphere as follows:

Definition 5.1. The CR structure on S2n−1 is given by V = T 1,0(S2n−1), a
subbundle of T (S2n−1) ⊗C with the following properties:
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(1) V ∩ V = {0}.
(2) The set of smooth sections of V is closed under the Lie bracket.
(3) V ⊕ V has codimension one in T (S2n−1) ⊗C.

A bundle whose set of sections is closed under the Lie bracket is called inte-
grable or involutive. The famous Frobenius theorem, which we do not use in
this book, states that a (real) sub-bundle of the tangent bundle of a real manifold
is the tangent bundle of a submanifold if and only if it is integrable. See for example
[Wa]. There is also a complex Frobenius theorem. See for example [HT].

Definition 5.2. A CR manifold of hypersurface type is a real manifold M for
which there is a subbundle V ⊆ T (M) ⊗ C satisfying the three properties from
Definition 5.1. Thus V is integrable, V ∩ V = 0, and V ⊕ V has codimension one
in T (M) ⊗C.

Any real hypersurface M in Cn is a CR manifold of hypersurface type. Since
V ⊕V has codimension one in T (M)⊗C, there is a non-vanishing 1-form η, defined
up to a multiple, annihilating V ⊕ V . By convention, we assume that this form is
purely imaginary. Exercise 5.4 and Remark 5.2 partially explain this convention.
Thus 〈η, L〉 = 0 whenever L is a vector field of type (1, 0), and similarly for vector
fields of type (0, 1).

Definition 5.3. Let M be a CR manifold of hypersurface type. The Levi
form λ is the Hermitian form on sections of T 1,0(M) defined by

λ(L,K) = 〈η, [L,K]〉.
Let us return to the unit sphere. Near a point where zn �= 0, for 1 ≤ j ≤ n−1,

we define n − 1 vector fields of type (1, 0) by

Lj = zn
∂

∂zj
− zj

∂

∂zn
. (2)

A simple check shows that each Lj is tangent to the sphere. Similarly the complex
conjugate vector fields Lj are tangent. These vector fields are linearly independent
(as long as we are working where zn �= 0). There are 2n − 2 of them. The missing
direction requires both unbarred and barred derivatives. We can fill out the complex
tangent space by setting

T = zn
∂

∂zn
− zn

∂

∂zn
. (3)

Then L1, . . . , Ln−1, L1, . . . , Ln−1,T span the complex tangent space to S2n−1 at
each point where zn �= 0.

Exercise 5.1. Verify that the Lj from (2) and T from (3) are tangent to the
sphere. Let ωj be as in Remark 4.18 from Chapter 4. Verify that 〈Lj , ωj〉 = 1.

Exercise 5.2. Find a purely imaginary 1-form annihilating T 1,0 ⊕T 0,1 on the
sphere.

Exercise 5.3. Compute the commutator [Lj , Lk].

Exercise 5.4. Use the previous two exercises to show that the Levi form on
the sphere is positive definite.
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Exercise 5.5. Show that translating the sphere leads to the defining function

r(ζ, ζ) =
n−1∑

j=1

|ζj |2 + |ζn|2 + 2Re(ζn). (4.1)

Show that a more elaborate holomorphic change of variables and multiplication by
a non-vanishing factor lead to the defining function:

r(w,w) =
n−1∑

j=1

|wj |2 + 2Re(wn). (4.2)

Suggestion: When n = 1, (4.1) defines a disk and (4.2) defines a half-plane. First
do this case.

Exercise 5.6. Show that λ(L,K) = λ(K,L).

Exercise 5.7. Let r be a smooth real-valued function on Cn. Assume that dr
does not vanish on M , the zero-set of r. Then M is a real hypersurface, and hence
a CR manifold. Compute the Levi form λ on M in terms of derivatives of r. The
answer, in terms of the basis {Lj} given below in (5.2) for sections of T 1,0(M), is
the following formula:

λjk = rjk|rn|2 − rjnrnrk − rnkrjrn + rnnrjrk. (5.1)

Suggestion: Work near a point where rzn
�= 0. For 1 ≤ j ≤ n − 1, define Lj by

Lj =
∂

∂zj
− rzj

rzn

∂

∂zn
(5.2)

and define Lk in a similar manner. Find the 1-form η, and compute [Lj , Lk].

Remark 5.2. The Levi form plays a crucial role in complex analysis and CR
geometry. A smooth real hypersurface is called pseudoconvex at a point p when
all the eigenvalues of the Levi form there have the same sign (allowing 0). It is
strongly pseudoconvex when it is pseudoconvex and there are no zero eigenvalues.
A strongly pseudoconvex hypersurface is locally biholomorphically equivalent to a
strongly convex hypersurface. Readers familiar with the differential geometry of
convex surfaces in real Euclidean spaces should compare formula (5.1) with its real
variable analogue. This formula exhibits the Levi form as the restriction of the
complex Hessian of r to the space T 1,0(M).

Exercise 5.8. Find the Levi form on the hyperplane defined by Re(zn) = 0.

Exercise 5.9. Consider the hypersurface defined by

r(z) = 2 Re(zn) +
K∑

j=1

|fj(z′)|2.

Here z′ = (z1, ..., zn−1) and the functions fj are holomorphic. Find the determinant
of the Levi form on the hypersurface defined by r = 0. The same computation
appears, in a different context, in Chapter 4.

The zero-set of the function r from formula (4.2) in Exercise 5.5, a biholo-
morphic image of the sphere, is an unbounded object H, commonly known as the
Heisenberg group. Put n = 2 and define A by

A =
∂

∂w1
− w1

∂

∂w2
.
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Then A, A, and [A,A] form a basis for the sections of T (H)⊗C at each point. See
[DT] and its references for considerable information about the role of the Heisenberg
group in complex analysis, geometry, and PDE.

We next use the CR geometry of the unit sphere to briefly study harmonic
polynomials. For simplicity we work on S3, where a single vector field L defines the
CR structure. Recall that (z, w) denotes the variable in C2. Put L = w ∂

∂z − z ∂
∂w .

We also recall from Section 11 of Chapter 1 that a smooth function is harmonic if
its Laplacian is 0. We can express the Laplace operator in terms of complex partial
derivatives; a (possibly complex-valued) smooth function u is harmonic on C2 if
and only if

uzz + uww = 0.

As in Section 13 from Chapter 2, it is natural to consider harmonic homoge-
neous polynomials. Here we allow our harmonic functions to be complex-valued.
The complex vector space Vd, consisting of homogeneous polynomials of degree d
(with complex coefficients) in the underlying 2n real variables, decomposes into a
sum of spaces Vp,q. Here p + q = d and the elements of Vp,q are homogeneous of
degree p in z and of degree q in z. We obtain a decomposition Hd =

∑
Hp,q of the

space of harmonic homogeneous polynomials.

Example 5.1. Put n = 2 and d = 2. By our work in Chapter 2, the space H2

is 9-dimensional. We have the following:

• H2,0 is spanned by z2, zw,w2.
• H1,1 is spanned by zw, zw, |z|2 − |w|2.
• H0,2 is spanned by z2, zw,w2.

As in Chapter 2, the sum of these three spaces is the orthogonal complement of the
(span of the) function |z|2 + |w|2 in the space of polynomials of degree 2.

Let us briefly consider eigenvalues and the CR vector fields. For each pair a, b
of non-negative integers, observe that the monomials zawb and zawb are harmonic.
Elementary calculus yields:

L(zawb) = aza−1wb+1

L(zawb) = −bza+1wb−1.

Combining these results shows that

LL(zawb) = −b(a + 1)zawb.

LL(zawb) = −a(b + 1)zawb

Thus the harmonic monomials zawb are eigenfunctions of the differential opera-
tors LL and LL, with eigenvalues −b(a + 1) and −a(b + 1). Hence they are also
eigenfunctions of the commutator T = [L,L], with eigenvalue a − b.

2. Positivity conditions for Hermitian polynomials

This section applies Theorem 4.13 from Chapter 4 (an analogue of the Riesz-
Fejer theorem) to the study of proper mappings between balls. We restate Theorem
4.13 as Theorem 5.1 here, and then extend it in Theorem 5.2 to polynomials that
are not necessarily bihomogeneous.

The Riesz-Fejer theorem (Theorem 1.1) characterizes non-negative trig polyno-
mials; each such polynomial agrees on the circle with the squared absolute value of
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a single polynomial in the complex variable z. We naturally seek to extend this re-
sult from the unit circle to the unit sphere in Cn. Things become more complicated
but also more interesting.

We start with a Hermitian symmetric polynomial r(z, z) =
∑

α,β cαβzαzβ of
degree m in z ∈ Cn. Because of Hermitian symmetry, the matrix (cαβ) of coeffi-
cients is Hermitian symmetric. In particular, r is also of degree m in z. The total
degree of r can range from m to 2m. We can always bihomogenize r by adding a
variable as follows. We put rH(0, 0) = 0. For z �= 0 we put

rH(z, t, z, t) = |t|2mr

(
z

t
,
z

t

)

.

Then rH is homogeneous of degree m in the variables z, t and also homogeneous of
degree m in their conjugates. The polynomial rH is thus determined by its values on
the unit sphere in Cn+1. Conversely we can dehomogenize a bihomogeneous poly-
nomial in two or more variables by setting one of its variables (and its conjugate!)
equal to the number 1.

Example 5.2. Put n = 1 and put r(z, z) = z2 + z2. We compute rH :

rH(z, t, z, t) = |t|4
(

(z

t

)2

+
(

z

t

)2
)

= t
2
z2 + z2t2.

Example 5.3. Put r = (|zw|2 − 1)2 + |z|2. Then r is positive everywhere, but
rH , while nonnegative, has many zeroes. Here

rH(z, w, t, z, w, t) = (|zw|2 − |t|4)2 + |zt3|2.
Because of the bihomogenization, there is no loss in generality in our discussion

if we restrict our attention to the bihomogeneous case. Let R be a bihomogeneous
polynomial in n variables and their conjugates. Assume R(z, z) ≥ 0 on the unit
sphere. As a generalization of the Riesz-Fejer theorem, we naturally ask if there
exist homogeneous polynomials f1(z), ..., fK(z) such that

R(z, z) = ||f(z)||2 =
K∑

j=1

|fj(z)|2.

We call such an R a Hermitian sum of squares or Hermitian squared norm. Of
course we cannot expect K to be any smaller than the dimension. For example,
the polynomial

∑n
j=1 |zj |4 is positive on the sphere, but cannot be written as a

Hermitian squared norm with fewer terms. Furthermore, not every non-negative R
is a Hermitian squared norm. Even restricted to the unit sphere, such a result fails
in general, and hence the analogue of the Riesz-Fejer theorem is more subtle.

Example 5.4. Put R(z, z) = (|z1|2 − |z2|2)2. Then R is bihomogeneous and
non-negative. Its underlying matrix Cαβ of coefficients is diagonal with eigenvalues
1,−2, 1. Suppose for some f that R(z, z) = ||f(z)||2. Then f would vanish on the
subset of the unit sphere defined by |z1|2 = |z2|2 = 1

2 (a torus), because R does.
A complex analytic function vanishing there would also vanish for |z1|2 ≤ 1

2 and
|z2|2 ≤ 1

2 by the maximum principle. Hence f would have to be identically zero.
Thus R does not agree with a squared norm of any complex analytic mapping. The
zero-set of R does not satisfy appropriate necessary conditions here.
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The following elaboration of Example 5.4 clarifies the matter. Consider the
family of polynomials Rε defined by

Rε(z, z) = (|z1|2 − |z2|2)2 + ε|z1|2|z2|2.
For each ε > 0, we have Rε(z, z) > 0 on the sphere. By Theorem 5.2 below there
is a polynomial mapping fε such that Rε = ||fε||2 on the sphere. Both the degree
and the number of components of fε must tend to infinity as ε tends to 0. See [D1]
for a lengthy discussion of this sort of issue.

From Example 5.4 we discover that non-negativity is too weak of a condition
to imply that R agrees with a Hermitian squared norm. See also Example 5.6. On
the other hand, when R(z, z) > 0 on the sphere, the conclusion does hold. See [D1]
for detailed proofs of Theorem 5.1 and Theorem 5.2 below. The proof of Theorem
5.1 there, sketched at the end of Chapter 4 in this book, uses the theory of compact
operators. The proof in [Q] does not mention compactness, but it shares some of
the same ideas.

Theorem 5.1. Let r be a Hermitian symmetric bihomogeneous polynomial in
n variables and their conjugates. Suppose r(z, z) > 0 on S2n−1. Then there are
positive integers d and K, and a polynomial mapping g : Cn → CK , such that

||z||2dr(z, z) = ||g(z)||2.
We can remove the assumption of bihomogeneity if we want equality to hold

only on the unit sphere.

Theorem 5.2. Let r be a Hermitian symmetric polynomial in n variables and
their conjugates. Assume that r(z, z) > 0 on S2n−1. Then there are an integer N
and a polynomial mapping h : Cn → CN such that, for z ∈ S2n−1,

r(z, z) = ||h(z)||2.
Proof. We sketch the derivation of Theorem 5.2 from Theorem 5.1. First we

bihomogenize r to get rH(z, t, z, t), bihomogeneous of degree m in the z, t variables.
We may assume m is even. The polynomial rH could have negative values on the
sphere ||z||2 + |t|2 = 1. To correct for this possibility, we define a bihomogeneous
polynomial FC by

FC(z, z, t, t) = rH(z, t, z, t) + C(||z||2 − |t|2)m.

It is easy to show that we can choose C large enough to make FC strictly positive
away from the origin. By Theorem 5.1, we can find an integer d such that

(||z||2 + |t|2)dFC(z, z, t, t) = ||g(z, t)||2.
Setting t = 1 and then ||z||2 = 1 shows, for z ∈ S2n−1, that

2dr(z, z) = ||g(z, 1)||2.
�

Remark 5.3. Suppose n ≥ 2 and f : Bn → BN is a proper holomorphic
mapping. If f has a continuously differentiable extension to the unit sphere, then
the restriction to the unit sphere defines a CR mapping between spheres. Thus the
CR geometry of the unit sphere is closely related to properties of proper mappings
between balls.
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The following Corollary of Theorem 5.2 connects this Theorem with proper
complex analytic mappings between balls.

Corollary 5.1. Let f = p
q : Cn → CN be a rational mapping. Assume that

the image of the closed unit ball under f lies in the open unit ball in CN . Then
there are an integer K and a polynomial mapping g : Cn → CK such that p⊕g

q

maps the unit sphere S2n−1 to the unit sphere S2(N+K)−1.

Proof. The hypothesis implies that |q|2 − ||p||2 is strictly positive on the
sphere. By Theorem 5.2 there is a polynomial map g such that |q|2 − ||p||2 = ||g||2
on the sphere. Then p⊕g

q does the job. �

This corollary implies that there are many rational mappings taking the unit
sphere in the domain into the unit sphere in some target. We choose the first several
components to be anything we want, as long as the closed ball gets mapped to the
open ball. Then we can find additional components, using the same denominator,
such that the resulting map takes the sphere to the sphere. The following simple
example already indicates the depth of these ideas.

Example 5.5. Consider the maps pλ : C2 → C given by pλ(z, w) = λzw.
Then pλ maps the closed ball in C2 inside the unit disk if |λ|2 < 4. If this condition
is met, then we can include additional components to make pλ into a component
of a polynomial mapping sending S3 to some unit sphere. In case λ =

√
3, we

obtain the map (
√

3zw, z3, w3), which is one of the group-invariant examples from
Chapter 4. If

√
3 < λ < 2, then we must map into a dimension higher than 3. As

λ approaches 2, the minimum possible target dimension approaches infinity.

The following surprising example combines ideas from many parts of this book.

Example 5.6 ([D1]). There exists a bihomogeneous polynomial r(z, z), in
three variables, with the following properties:

• r(z, z) ≥ 0 for all z.
• The zero set of r is a copy of C (a one-dimensional subspace of C3).
• 0 is the only polynomial s for which rs is a Hermitian squared norm.

We put r(z, z) = (|z1z2|2 − |z3|4)2 + |z1|8. The non-negativity is evident. The
zero-set of r is the set of z of the form (0, z2, 0), and hence a copy of C. Assume
that rs is a Hermitian squared norm ||A||2. Consider the map from C to C3 given
by t �→ (t2, 1 + t, t) = z(t). Pulling back yields the equation

z∗(rs) = r(z(t), z(t)) s(z(t), z(t)) = ||cmtm + · · · ||2,
where · · · denotes higher order terms. Hence the product of the lowest order terms
in the pullback of s with the lowest order terms in the pullback of r is ||cm||2|t|2m.
A simple computation shows that the lowest order terms in the pullback of r are

t4t
6 + 2|t|10 + t6t

4 = 2|t|10(1 + cos(2θ)). (6)

There is no trig polynomial p other than 0 for which multiplying the right-hand
side of (6) by an expression of the form |t|2kp(θ) yields a result independent of θ.

No such example is possible in one dimension, because the only bihomogeneous
polynomials are of the form c|t|2m. It is easy to find a non-negative polynomial
g(t, t) that doesn’t divide any Hermitian squared norm (other than 0); for example,

2|t|2 + t2 + t
2 = 2|t|2(1 + cos(2θ))
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does the job. Example 5.6 is surprising because r is bihomogeneous.

3. Groups associated with holomorphic mappings

We return to the study of proper holomorphic mappings between balls. We
pay particular attention to groups associated with such mappings, following [DX1]
and [DX2]. Many of the ideas hold more generally, so we begin with a general
framework.

Let Ω be a set and let Aut(Ω) denote the group of its automorphisms. In this
Chapter, Ω will be a domain in complex Euclidiean space Cn and we will consider
only holomorphic automorphisms. A mapping f : Ω → Ω is a holomorphic automor
phism if f : Ω → Ω is holomorphic, injective, surjective, and the inverse function
is also holomorphic. We note that holomorphicity of the inverse is automatic. By
contrast, however, things differ for smooth functions. The mapping x �→ x3 on the
real line is of class C∞, injective, and surjective, but the inverse function is not
smooth at 0. For holomorphic maps, this kind of example does not arise.

Consider a pair of domains Ω1 and Ω2, not necessarily in the same dimension.
We start with the group Aut(Ω1)×Aut(Ω2). We will associate various groups with
a holomorphic mapping f : Ω1 → Ω2.

Definition 5.4. (Five groups). Let f : Ω1 → Ω2 be a holomorphic map.
• Let Af = {(γ, ψ) : f ◦ γ = ψ ◦ f}; here γ ∈ Aut(Ω1) and ψ ∈ Aut(Ω2).

Thus Af is a subgroup of Aut(Ω1) × Aut(Ω2).
• Let Γf denote the projection of Af onto its first factor.
• Let Tf denote the projection of Af onto its second factor.
• Let Gf = {γ ∈ Aut(Ω1) : f ◦ γ = f}.
• Let Hf = {ψ ∈ Aut(Ω2) : ψ ◦ f = f}.

Note that an automorphism γ is in Γf if and only if there exists an automor-
phism ψ of the target for which f ◦ γ = ψ ◦ f .

Definition 5.5. Let f and g be maps from Ω1 to Ω2. We say that f and g
are equivalent if there are automorphisms ψ and ϕ for which

ψ ◦ f = g ◦ ϕ.

When Ω1 and Ω2 are unit balls (in possibly different dimensions), and f and g are
equivalent, we say that f and g are spherically equivalent.

Lemma 5.1. Assume that f and g are equivalent; that is, there are automor-
phisms for which

ψ ◦ f = g ◦ ϕ.

Let (γ, ζ) ∈ Af . Then
(ϕ ◦ γ ◦ ϕ−1, ψ ◦ ζ ◦ ψ−1) ∈ Ag.

In particular, Γf and Γg are conjugate by ϕ:

Γg = ϕ ◦ Γf ◦ ϕ−1.

Also Tf and Tg are conjugate by ψ.

Proof. The proof is a formal computation. We are given that g = ψ◦f ◦ϕ−1.
Assuming f ◦ γ = ζ ◦ f we must show that

g ◦ (ϕ ◦ γ ◦ ϕ−1) = (ψ ◦ ζ ◦ ψ−1) ◦ g. (7)
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Starting with f ◦ γ = ζ ◦ f we obtain
ψ ◦ f ◦ γ ◦ ϕ−1 = ψ ◦ ζ ◦ f ◦ ϕ−1.

Inserting ϕ−1 ◦ ϕ and ψ−1 ◦ ψ in the right places gives
(ψ ◦ f ◦ ϕ−1) ◦ (ϕ ◦ γ ◦ ϕ−1) = (ψ ◦ ζ ◦ ψ−1) ◦ (ψ ◦ f ◦ ϕ−1). (8)

Since g = ψ ◦ f ◦ ϕ−1, equation (8) implies equation (7). �

We start with some easy general examples. Later we will focus on these groups
for holomorphic mappings between balls.

Example 5.7. Let f : Ω → Ω be the identity function. Then Af is isomorphic
to Aut(Ω), expressed as the diagonal of Aut(Ω) × Aut(Ω).

Example 5.8. Let Ω1 = Ω2 = C. The automorphism group consists of affine
maps z �→ az + b with a �= 0. We find Γf and Tf for three explicit functions f .

• Put f(z) = zk, for k ≥ 2. Then Γf = C∗, the multiplicative group of non-
zero complex numbers. To see this fact, given the automorphism az + b
we need to find c, d such that

(az + b)k = czk + d.

For k > 1, finding such c, d is possible only when b = 0. Since a is an
arbitrary element of C∗ we conclude that Γf = C∗. Also, b = 0 implies
d = 0, and hence c = ak is an arbitrary non-zero complex number. Thus
Tf = C∗ as well.

• Put f(z) = ez, then Γf consists of translations and is isomorphic to C.
The reason is that the equation

eaz+b = cez + d

forces a = 1 and d = 0, but allows b to be arbitrary. Here c = eb, and
hence Tf = C∗.

• Put f(z) = z + ez. To determine Γf , we consider the equation
(az + b) + eaz+b = c(z + ez) + d. (9)

Differentiating (9) twice shows that a = 1 and eb = c. Putting a = 1 in
(9) gives c = 1 and hence b = 0. We conclude that Γf is the trivial group.
It follows that Tf is trivial as well.

Remark 5.4. Things are much more complicated when Ω = Cn for n ≥ 2.
The group Aut(Cn) is very large. We illustrate when n = 2, using z and w for the
variables. For any entire function p in one variable, the map (z, w) �→ (z, w + p(z))
is an automorphism. Such maps are called shears. We can of course interchange
the roles of z and w. A finite composition of such maps is also an automorphism.
Andersen and Lempert introduced a collection of automorphisms called overshears;
such maps have the form

(z, w) �→ (z, weh(z) + g(z))
(z, w) �→ (zeh(w) + g(w), w).

There are analogous definitions in higher dimensions. The Andersen-Lempert [AL]
theorems for n ≥ 2 provide the following information. First, there are auto-
morphisms that are not finite compositions of overshears. Second, the subgroup
generated by overshears is dense in Aut(Cn) in the topology of uniform limits on
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compact subsets. Finally, an analogue of this second result holds for the group of
diffeomorphisms of real Euclidean space.

We next provide additional easy examples of the groups.

Example 5.9. Suppose that Ω is the unit disk, and f(z) = zm, where m is an
integer at least two. Then Gf is the cyclic group generated by a primitive m-th
root of unity.

Example 5.10. As in Example 5.8, let Ω = C and f(z) = zm for m ≥ 2.
Then Γf = C∗. As noted there, Tf is also C∗. There is a group homomorphism
Φ : Γf → Tf given by Φ(a) = am. The kernel of Φ is the set of m-th roots of unity,
a cyclic group of order m. The kernel is thus the group Gf . This relationship holds
rather generally. See Example 5.11 and [DX2]. See also Example 5.17 and Exercise
5.15 for another case where Gf is interesting.

Example 5.11. Let f : Ω1 → Ω2 be holomorphic. The following result holds.
The group Hf is trivial if and only if, for each γ ∈ Γf , there is a unique ψ ∈ Tf for
which f ◦ γ = ψ ◦ f . Here is the proof: Assume first that Hf is trivial. If

f ◦ γ = ψ1 ◦ f = ψ2 ◦ f

then ψ−1
2 ◦ ψ1 ◦ f = f and hence ψ−1

2 ◦ ψ1 ∈ Hf . Therefore ψ2 = ψ1. Conversely,
suppose that uniqueness holds. Let I2 denote the identity in the target and I1 the
identity in the source. Assume ψ ∈ Hf . Then

ψ ◦ f = f = f ◦ I1 = I2 ◦ f.

By uniqueness, ψ = I2 and Hf is trivial. In this setting the map Φ that assigns ψ
to γ is a group homomorphism. See Exercise 5.14. For holomorphic maps between
balls, these conditions are equivalent to a geometric condition; namely, the target
dimension of f is minimal. In other words, the image of the map f lies in no affine
subspace of lower dimension. See [DX2].

Example 5.12. Let Ω1 be the unit disk and let Ω2 be the unit ball in C2. Put
f(z) = 1

2 (z + z2, z2 − z3). Then f : B1 → B2 is a proper holomorphic mapping and
Γf is the trivial group. We will prove this fact and more in Theorem 5.8.

Example 5.13. For m ≥ 2, put f(z) = z⊗m. Then f : Bn → BN is a proper
mapping between balls. The group Γf is the unitary group U(n).

Exercise 5.10. Show that Af is a subgroup of Aut(Ω1) × Aut(Ω2).

Exercise 5.11. Put f(z) = ez as a map from C to itself. Compute Tf and
Gf . Find the group homomorphism Φ : Γf → Tf whose kernel is Gf . Compare
with Example 5.10. Do the same problem when f(z) = ez2

+ z2.

Exercise 5.12. Put f(ζ) = (ζ3
1 , ζ1ζ2, ζ

3
2 ). For ζ real, show that f is injective.

For ζ complex, show that f fails to be injective. Determine the maximum number
of inverse images of a point. With ζ real, show that the image of a neighborhood
of 0 under f is not a smooth manifold.

Exercise 5.13. Define f : C → C by f(z) = z2 + z4. Find Γf . Then find a
map g for which Γg is cyclic of order m.

Exercise 5.14. Assume the uniqueness property from Example 5.11. Show
that the map γ → ψ = Φ(γ) is a group homomorphism.
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4. Maps between balls

In this section we assume that Ω1 is the unit ball Bn in some Cn and that Ω2

is the unit ball in CN . Recall from Chapter 4 the structure of the automorphism
group Aut(Bn). Each automorphism γ can be written γ = Uφa, where U is unitary
and φa is the linear fractional transformation

φa(z) =
a − Laz

1 − 〈z, a〉 . (10)

In (10), we have ||a|| < 1. Put s =
√

1 − ||a||2. We have

La(z) =
〈z, a〉a
s + 1

+ sz.

Remark 5.5. The following facts are often used in the sequel.
• La(a) = a.
• 〈Laz, a〉 = 〈z, a〉.
• φa ◦ φa is the identity map.
• ||a − Laz||2 − |1 − 〈z, a〉|2 = (||z||2 − 1)(1 − ||a||2).

We will often use homogeneous expansion. When g : Cn → CN is a vector-
valued polynomial, we write g =

∑d
j=0 gj to denote the expansion of g into ho-

mogeneous parts. Homogeneity nicely interacts with subgroups of Aut(Bn). First
consider the unit circle, which we can regard as a subgroup of Aut(Bn) via the
diagonal unitary map z �→ eiθz. By homogeneity we have

g(eiθz) =
d∑

j=0

eijθgj(z). (11)

Equation (11) is especially useful when p
q is a rational proper mapping between

balls. In this setting we will always assume that p
q is reduced to lowest terms.

Then q has no zeroes on the open ball, and by a result of Cima-Suffridge [CS], no
zeroes on the closed ball as well. In particular q(0) �= 0 and we will assume without
loss of generality that q(0) = 1.

Proposition 5.1. Let f = p
q : Bn → BN be a rational proper map. Then

• The degree of q is less than or equal to the degree of p.
• If p(0) = 0, then the degree of q is less than the degree of p.

Proof. Let d be the maximum of the two degrees. We write p =
∑d

j=0 pj and

q =
∑d

j=0 qj . For z on the sphere we have ||f(z)||2 = 1 and hence

||p(z)||2 =
∑

j,k

〈pj(z), pk(z)〉 =
∑

j,k

qj(z)qk(z) = |q(z)|2. (12)

Replace z by eiθ and equate Fourier coefficients. We obtain various identities, the
easiest of which is

〈pd, p0〉 = qdq0 = qd. (13)

If qd �= 0, then pd �= 0 as well, and the first statement holds. If p(0) = 0, then
qd = 0 and the second statement holds. �
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Later on we will use the other identities arising from (12). We mention the
other extreme case:

d∑

j=0

||pj(z)||2 =
d∑

j=0

|qj(z)|2. (14)

Let f : Bn → BN be a rational proper holomorphic mapping. There is a com-
putational method from [DX1] to decide whether an automorphism γ ∈ Aut(Bn)
lies in Γf . This result depends upon the following approach in which one associates
a Hermitian form to such a map.

Definition 5.6. Let f = p
q be a rational function with no singularities on the

closed unit ball. Assume the fraction is reduced to lowest terms and q(0) = 1. Put

H(f) = ||p||2 − |q|2.
Example 5.14. For the identity map f , we have H(f) = ||z||2 − 1. Put

f(z) = φa(z) = a−Laz
1−〈z,a〉 . The formulas in Remark 5.5 yield

H(f) = (1 − ||a||2)(||z||2 − 1).

In particular, the Hermitian norm gets multiplied by a constant.

Example 5.14 suggests the following crucial result. Because of this result, we
call Γf the Hermitian invariant group of f .

Theorem 5.3. Let f = p
q be a proper rational map from Bn to some BN . Let

Γf � Aut(Bn) be the Hermitian invariant group of f . Then γ ∈ Γf if and only if
there is a constant cγ such that

H(f ◦ γ) = cγH(f). (15)

Proof. First assume (15) holds. Write f = p
q and f ◦ γ = P

Q . We assume
q(0) = Q(0) = 1 and that the fractions are in lowest terms. After composing with
automorphisms of the target we may also assume p(0) = 0 and P (0) = 0. Equation
(15) yields

||P ||2 − |Q|2 = Cγ(||p||2 − |q|2), (16)
and thus the constant Cγ must equal 1. Write Q = 1 + A and q = 1 + a and plug
in (16). Equating pure terms yields

2Re(A) = 2Re(a).

Since A, a are polynomials vanishing at 0 we obtain A = a. Equating mixed terms
then gives

||P ||2 − ||A||2 = ||p||2 − |a|2,
and hence ||P ||2 = ||p||2. By Theorem 4.3 of Chapter 4, there is a U ∈ U(N) such
that P = Up. Thus f ◦ γ = gγ ◦ f for some automorphism gγ .

The converse is easy. We are given an automorphism γ of the source ball for
which there is an automorphism ψγ of the target ball with f ◦γ = ψγ ◦ f . We need
to prove (15). Consider an arbitrary automorphism ϕ of the target ball. We write
ϕ = U ◦ φa. We may assume f(0) = 0. Hence

H(ϕ ◦ f) = (1 − ||a||2)H(f). (17)
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The equality f ◦ γ = ψγ ◦ f and (17) guarantee that

H(f ◦ γ) = H(ψγ ◦ f) = cγH(f)

for a non-zero constant cγ . Hence (15) holds. �

Remark 5.6. Let us briefly reconsider the distinction between Γf and Gf .
Suppose that f is a polynomial and f(0) = 0. To be in Gf , a unitary map γ must
satisfy f ◦ γ = f . To be in Γf , it must satisfy ||f ◦ γ||2 = ||f ||2. This last equation
is equivalent to the existence of a unitary V such that f ◦ γ = V ◦ f . The equality
of squared norms is equivalent to γ being in Γf .

Proposition 5.2. Suppose f is a monomial proper map between balls. Then
Γf contains an n-torus, namely the diagonal unitary mappings.

Proof. Put f(z) = (..., cαzα, ...). Let γ be a diagonal unitary matrix with
eigenvalues eiθj . Then, in multi-index notation,

(f ◦ γ)(z) = (..., cαeiαθzα, ...).

Therefore ||f ◦ γ||2 = ||f ||2 and thus H(f ◦ γ) = H(f) = ||f(z)||2 − 1. By Theorem
5.3, γ ∈ Γf . �

Remark 5.7. For a monomial map f , the group Γf can be larger than the
torus. For the identity map, Γf is the full automorphism group. For the tensor
product map z �→ z⊗m for m ≥ 2, the group Γf is the unitary group. Example 5.17
gives a proper monomial maps whose group is generated by the torus and the map
that interchanges the variables. For a generic monomial map, however, Γf is the
n-torus. When f is spherically equivalent to a monomial map, then (by Lemma
5.1) Γf contains a conjugate to the torus.

Corollary 5.2. Suppose f is a rational proper map of degree 2. Then Γf

contains a conjugate of the torus. In particular Γf is infinite.

Proof. By a theorem of Lebl [Le], a rational proper mapping of degree 2 is
spherically equivalent to a monomial mapping. �

Let f be a proper map between balls. Whether or not f is rational, it can be
shown (see [DX2]) that Γf is non-compact if and only if Tf is noncompact. We
will consider here the case when f is a rational proper map between balls. We
next ask when is the group Γf noncompact. The answer is striking; f must be a
linear fractional transformation, and hence spherically equivalent to the injection
z �→ (z, 0). For this map the group Γf is of course Aut(Bn). Therefore groups
intermediate between the unitary group and the full automorphism group do not
arise as Γf for any rational proper mapping f .

We will use an n-dimensional generalization of Schwarz’s lemma. First we recall
the classical result; we refer to [A] and [Kr] for geometric reinterpretations.

Proposition 5.3. (Schwarz lemma) Let f : B1 → C be holomorphic. Suppose
f(0) = 0 and |f(z)| ≤ 1. Then the stronger inequality |f(z)| ≤ |z| holds on B1.

Proof. Since f(0) = 0, the function g defined by g(z) = f(z)
z is also holomor-

phic. For any r < 1, its maximum absolute value on the disk |z| ≤ r is achieved on
the circle |z| = r. Therefore

|g(z)| ≤ max
|z|≤r

( |f(z)|
r

)

≤ 1
r
. (18)
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Letting r tend to 1 in (18) shows that |g(z)| ≤ 1 and hence |f(z)| ≤ |z|. �

Corollary 5.3. Let f : Bn → BN be holomorphic and f(0) = 0. Then
||f(z)|| ≤ ||z|| holds for z ∈ Bn.

Proof. Choose a nonzero z ∈ Bn. Let l be a linear functional on CN with
l(f(z)) = ||f(z)|| ≤ 1 and ||l|| ≤ 1. Define the linear map L : C → CN by ζ �→ ζz

||z|| .
Then ||L|| = 1 as well. Put g = l◦f ◦L. Then g satisfies the hypotheses of Schwarz’s
lemma in one dimension and therefore |g(ζ)| ≤ |ζ|. Put ζ = ||z||. We get

||f(z)|| = ||l(f(z))|| = ||l(f((Lζ))|| = ||g(ζ)|| ≤ |ζ| = ||z||. �

Theorem 5.4. Let f : Bn → BN be a rational proper map. Then Γf is non-
compact if and only if f is a linear fractional transformation. If Γf is compact,
then Γf lies in a maximal compact subgroup, that is, a conjugate of U(n).

In order to prove Theorem 5.4, we first prove the following auxiliary result.

Theorem 5.5. Let f : Bn → BN be a rational proper map of degree d. Put
f = p

q and assume that f(0) = 0. If Γf contains an automorphism γ = Uφa that
moves the origin, then

(||p(a)||2 − |q(a)|2)(||p(Ua)||2 − |q(Ua)|2) = (1 − ||a||2)2d. (19)

Proof. Since p(0) = 0, Proposition 5.1 implies that the degree of the denom-
inator q is at most d − 1. We write

p(z) =
d∑

|α|=1

Aαzα

q(z) =
d−1∑

|β|=0

bβzβ .

Without loss of generality we assume b0 = 1. Assuming that γ = Uφa exists as
hypothesized, we will compute the coefficient cγ in two ways. By definition we have

cγ

(||p||2 − |q|2) = cγH(f) = H(f ◦ (Uφa)).

Putting f ◦ (Uφa) = P
Q , we have

H(f ◦ (Uφa)) = ||P ||2 − |Q|2.
We have the following formulas for P and Q:

||P (z)||2 =
1

|q(a)|2

⎛

⎝||
d∑

|α|=1

Aα(U(a − La(z))α(1 − 〈z, a〉)d−|α|||2
⎞

⎠

|Q(z)|2 =
1

|q(a)|2

⎛

⎝
∣
∣

d−1∑

|β|=0

bβ(U(a − La(z))β(1 − 〈z, a〉)d−|β|∣∣2
⎞

⎠ .

The factor of 1
|q(a)|2 arises in order to make Q(0) = 1. We evaluate at 0 to get

||P (0)||2 − |Q(0)|2 =
1

|q(a)|2 (||p(Ua)||2 − |q(Ua)|2).
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Then we evaluate at a, using La(a) = a, to get

||P (a)||2 − |Q(a)|2 =
1

|q(a)|2 (−(1 − ||a||2)2d).

Evaluating H(f) at 0 and a, and using cγ H(f) = H(f ◦ γ), yields both formulas

cγ (||p(0)||2 − 1) = −cγ =
1

|q(a)|2
(||p(Ua)||2 − |q(Ua)|2)

cγ(||p(a)||2 − |q(a)|2) = − 1
|q(a)|2 (1 − ||a||2)2d.

Formula (19) follows. �

Proof. We can now prove Theorem 5.4. Let f = p
q be of degree d. After

composition with an automorphism of the target, we may assume f(0) = 0. Assume
Uφa ∈ Γf . In this case, Schwarz’s lemma yields ||p(z)||2 ≤ |q(z)|2 ||z||2 for z in the
ball. Therefore

|q(z)|2 − ||p(z)||2 ≥ |q(z)|2(1 − ||z||2).
Since ||Ua||2 = ||a||2, we plug this inequality into (19) to get

(1 − ||a||2)2d ≥ (1 − ||a||2)2|q(a)|2|q(Ua)|2

and therefore
(1 − ||a||2)2d−2 ≥ |q(a)|2|q(Ua)|2. (20)

If Γf is not compact, then we can find a sequence of automorphisms Ukφak
∈ Γf

where ||ak|| tends to 1. Assume d ≥ 2. By (20), a subsequence of q(ak) or of
q(Ukak) tends to 0. But the denominator q cannot vanish on the closed ball. This
contradiction therefore implies d = 1. The degree of q is smaller than the degree
of p. Thus, if the degree of p is 1, then q is constant. Hence f is a linear fractional
transformation.

Suppose that f is not a linear fractional transformation. Since Γf is closed in
Aut(Bn), it is compact. By standard Lie group theory, Γf is contained in a maximal
compact subgroup which must be a conjugate of U(n). �

Corollary 5.4. Let p be a proper polynomial map between balls with p(0) = 0.
Unless p is of degree 1, we have Γp ⊆ U(n).

Proof. When q = 1, formula (20) forces a = 0 or d = 1. Thus, unless d = 1,
there is no automorphism in Γp that moves the origin. �

Corollary 5.4 gets used several times in this chapter. For polynomial maps f
of degree at least 2 with f(0) = 0, only subgroups of U(n) are candidates for Γf .

Exercise 5.15. Verify the formula in Example 5.14 for the Hermitian norm.

5. Examples of unitary invariance

We pause to consider some examples of unitary invariance. These examples
help illustrate the distinction between invariance for a map f and invariance for
the map ||f ||2.
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Example 5.15. Define a map f : C2 → C by f(z, w) = (1+ z)(1+w). Notice
that f is invariant under the group of two elements arising from permuting the
variables. We ask whether there is a linear map L and an affine map T such that
f ◦L = T ◦f . Supposing L(z, w) = (az+bw, cz+dw) and T (ζ) = αζ +β, we obtain

(1 + az + bw)(1 + cz + dw) = α(1 + z)(1 + w) + β.

Expanding and equating coefficients yields six equations:

ac = bd = 0

ad + bc = a + c = b + d = 1 − β = α.

Note that α �= 0. The only solutions have α = 1 and hence β = 0. We get a = d = 1
and b = c = 0 or a = d = 0 and b = c = 1. The set of such L is a permutation
group of order 2.

Example 5.16. Put n = 3 and consider the map f defined by

f(z) = (z2z3, z1z3, z1z2).

Then f is not invariant under a non-trivial permutation of the coordinates. The
Hermitian norm ||f(z)||2−1 is invariant under Lσ, whenever L is a diagonal unitary
matrix and σ is an arbitrary permutation of the coordinates. In fact the following
result holds. See [DX1] for detailed discussion.

Proposition 5.4. For n ≥ 2, define a quadratic monomial map f by

f(z) = (..., zjzk, ...) (21)

for all pairs j, k with 1 ≤ j < k ≤ n. Assume that U is unitary and ||f ◦ U ||2 =
||f ||2. Then there are a diagonal L and a permutation σ such that U = Lσ.

Proof. Let the entries of U be denoted by ujk. Computing both sides of
||f ◦ U ||2 = ||f ||2 and equating coefficients leads to the system

∑

1≤j<k≤n

|ujlukl|2 = 0.

Hence, for each column of U , the product of any pair of distinct entries vanishes.
Thus there can be at most one non-zero element in each column. Since U is invert-
ible, each column contains exactly one non-zero element. Since U is unitary, each
of these entries has modulus 1. Let L be the diagonal matrix with these non-zero
entries and let σ denote the appropriate permutation. The result follows. �

Corollary 5.5. Let f : B2 → C be defined by f(z) = z1z2. Thus f is the map
in (21) when n = 2. Then Γf is generated by the matrices A and σ, where

A =
(

eiθ 0
0 eiφ

)

σ =
(

0 1
1 0

)

.

We can use the proposition and corollary to construct proper maps f between
balls for which Γf is the symmetric group. For example, to obtain a group of order
2, we need a way to avoid the matrix A as in Corollary 5.5. The first part of the
following result is a special case of Corollary 5.1. We give a direct proof enabling
us to prove the second conclusion.
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Theorem 5.6. Let f : Cn → CN be a polynomial map. Then there is ε > 0,
an integer K, and a polynomial map g : Cn → CK such that εf ⊕ g is a proper
map between balls. Furthermore we may choose g such that

ε2||f(z)||2 + ||g(z)||2 =
∑

j

|λj |2||z||2mj (22)

for numbers λj satisfying
∑ |λj |2 = 1 and (distinct) positive integers mj.

Proof. Set mj = j for 0 ≤ j ≤ deg(f). Choose λj with
∑ |λj |2 = 1. When

each λj �= 0, the right-hand side of (22) defines a positive definite Hermitian form
r(z, z) on a vector space of polynomials. Hence, for sufficiently small positive ε, the
form r(z, z)− ε2||f(z)||2 is also positive definite. Hence there exists a vector-valued
polynomial g(z) such that

r(z, z) − ε2||f(z)||2 = ||g(z)||2.
Since r(z, z) = 1 on the unit sphere, εf ⊕ g does the job. �

Remark 5.8. Consider a polynomial map p with p(0) = 0 such that

||p(z)||2 =
∑

j

|λj |2||z||2mj

and
∑

j |λj |2 = 1. Assume mj ≥ 1 for each j. Then p is a proper polynomial map
between balls and, by Corollary 5.4, Γp is a subgroup of U(n).

We next discuss one way we will use Theorem 5.6. Let G be a finite subgroup
G of the unitary group U(n). We wish to find a polynomial proper map f for which
Γf = G. It is easy to find a polynomial map h (not necessarily proper) for which
h ◦ γ = h for all γ ∈ G, but doing so only shows that G is a subgroup of Γh. In
other words, it is easier for ||h||2 to be invariant than it is for h to be invariant. We
need a way to change h that makes the group smaller, and the result must map
the sphere to a sphere. We illustrate the first idea with an example. Theorem 5.9
solves the problem by combining the two ideas.

Example 5.17. The map z → f(z) = (z3
1 ,
√

3z1z2, z
3
2) is invariant under a

cyclic group of order 3, as noted in Chapter 4, and Gf is cyclic of order 3. The
squared norm ||f(z)||2 is invariant under both U(1) ⊕ U(1) and the group of order
two obtained by interchanging the variables. In fact, Γf is generated by the diagonal

unitary matrices and the matrix
(

0 1
1 0

)

. This group is the semi-direct product of

the torus U(1) × U(1) and the group of two elements. One can also find Tf . It is
generated by the three-by-three unitary matrices with eigenvalues e3iθ, ei(θ+φ), e3iφ

and the permutation matrix that interchanges the first and third variables.

Exercise 5.16. Prove the statements in Example 5.17. Hint: To find Tf , for
example, consider a V ∈ U(3) for which there is a U ∈ U(2) with f ◦ U = V ◦ f .
Equate coefficients of the corresponding monomials in this equation and thereby
determine the restrictions on V . Find the group homomorphism Φ : Γf → Tf

whose kernel is Gf .

Exercise 5.17. Put f as in Example 5.17. Define F by

F (z) = 1 + f(z) = (1 + z3
1 , 1 +

√
3z1z2, 1 + z3

2).
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Expanding the squared norm of F introduces the terms z3
1 , z1z2, z

3
2 . Verify their

invariance under the cyclic subgroup of U(2) generated by the map (z1, z2) �→
(ηz1, η

2z2); here η is a primitive cube root of 1.

Exercise 5.18. Put f(z, w) = (z2k+1, zw,w2k+1). Find all U ∈U(2) for which
there is a linear map V with f ◦ U = V ◦ f . Determine the group Gf .

Exercise 5.19. Formula (19) from Chapter 4 defines a polynomial f5,2 for
which f5,2(|z|2, |w|2) is the squared norm of a proper map p between balls. Find
this map and determine the groups Γp and Gp.

6. Behavior of Γf under various constructions

The collection of proper holomorphic mappings between balls has considerable
structure. For example, if f : Bn → BN and g : Bn → BK are proper holomorphic
mappings, then the tensor product f ⊗ g also is, where the target ball can be
regarded as BL with L = NK. Another way to create a new map from f and g is
juxtaposition, in which case the target dimensions add. These constructions strongly
suggest that the question “Fix n,N . What are the proper holomorphic maps from
Bn to BN” should be replaced by “Fix n. What are the proper holomorphic maps
from Bn to BN for some N .”

We quickly recall these constructions (See [D1] for example) and then study
how Hermitian invariant groups behave under them.

Definition 5.7. Let f, g be holomorphic maps from Bn to possibly different
dimensional complex Euclidean spaces. For 0 ≤ θ ≤ π

2 we consider the family of
maps Jθ defined by

Jθ(f, g) (z) = (cos(θ)f(z), sin(θ)g(z)) = cos(θ)f ⊕ sin(θ)g.

We can iterate the juxtaposition operation. Given λ = (λ1, ..., λK) ∈ S2K−1

and maps f1, ..., fK with the same source, we also consider the map F defined by

F = λ1f1 ⊕ λ2f2 ⊕ ... ⊕ λKfK .

We refer to F as a juxtaposition of the fj . When each fj is a proper map between
balls, so is F .

Definition 5.8. Let f, g be holomorphic maps from Bn to possibly different
dimensional complex Euclidean spaces of dimensions N and K. We define a map
f ⊗ g with source Bn and target CNK by

f ⊗ g = (f1g1, f1g2, ..., f1gK , f2g1, ..., f2gK , ..., fNgK) .

The constructions in Definitions 5.7 and 5.8 are particularly important when
f, g are proper mappings between balls. Note that ||f⊗g||2 = ||f ||2||g||2. Therefore,
if both f and g map the unit sphere to a unit sphere, then so does f ⊗g. Similarly,
Jθ(f, g) also does. Note also that the map in Theorem 5.6 and Remark 5.8 is a
juxtaposition of tensor powers.

Theorem 5.7. Let f, g be proper polynomial maps between balls with the same
source. Let ν(g) denote the order of vanishing of g and deg(f) the degree of f .
Assume that 2 ≤ deg(f) < ν(g). For 0 < θ < 2π, put J = Jθ = Jθ(f, g). Then

ΓJ = Γf ∩ Γg.
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Corollary 5.6. Let f, g be proper polynomial maps between balls with the
same source. Let m be larger than the degree of f . For 0 < θ < 2π, put

j(f, g) = Jθ(f, g ⊗ z⊗m).

Then

Γj(f,g) ∩U(n) = Γf ∩ Γg ∩U(n).

Corollary 5.7. Suppose in Theorem 5.7 that f is a polynomial of degree at
least 2 with f(0) = 0. Then Γj(f,g) = Γf ∩ Γg.

Proof. Corollary 5.7 follows from Corollaries 5.4 and 5.6 because the hypoth-
esis on f guarantees that the groups involved are subsets of U(n). Corollary 5.6
follows from Theorem 5.7 because the order of vanishing of g ⊗ z⊗m is at least m.

We now prove the theorem. First let c = cos(θ) and s = sin(θ). Then

H(J) = c2||f ||2 + s2||g||2 − 1 (23.1)

H(J ◦ γ) = c2||f ◦ γ||2 + s2||g ◦ γ||2 − 1. (23.2)

The hypotheses imply that Γf and Γg are subgroups of the unitary group. If γ lies
in both these groups, then the right-hand sides of (23.1) and (23.2) are equal, and
hence the left-hand sides are also equal. Thus Γf ∩Γg ⊆ ΓJ . To prove the opposite
inclusion, suppose that the left-hand sides are equal. Since γ is unitary (and hence
linear), it preserves degrees. The hypotheses therefore prevent any interaction
between the terms ||f ◦ γ||2 and ||g ◦ γ||2. We conclude that ||f ◦ γ||2 = ||f ||2 and
||g ◦ γ||2 = ||g||2. �

Next consider the mappings z �→ z⊗m, for m a positive integer. When m = 1,
the map f is the identity map, and therefore its group Γf is the full automorphism
group. For m ≥ 2, the group Γf is the unitary group. The reason is clear; the
Hermitian norm ||z||2m − 1 is obviously invariant under the unitary group, and it
is not invariant under any automorphism that moves the origin. Corollary 5.7 has
therefore the following additional corollary.

Corollary 5.8. Assume that K ≥ 2, that
∑K

j=1 |λj |2 = 1, and that m1, ...,mK

are distinct positive integers. Define F , a juxtaposition of tensor powers, by

F (z) = λ1z
⊗m1 ⊕ ... ⊕ λKz⊗mK .

Then ΓF = U(n).

If we take partial tensor products as in Chapter 4, then we might make the
group smaller. For example, if we begin with the identity map (z, w) the group is
the full automorphism group. Put f(z, w) = (z2, zw,w), a partial tensor product of
the identity map. Then Γf is a torus. But, when we take a partial tensor product
of f , the group gets larger. See Exercise 5.20.

Next we want to show how to find maps whose Hermitian group is a given
finite group. We start with a simple result in one dimension.

Theorem 5.8. Let m be a positive integer. Let fm : C → C2 be defined by
fm(z) = 1

2 (zm+z2m, z2m−z3m). Then fm is a proper mapping from the disk to the
ball. Furthermore, Γfm

is the cyclic subgroup of the unit circle generated by e
2πi
m .

In particular, when m = 1, the Hermitian invariant group Γf1 is the trivial group.
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Proof. A simple computation shows that ||f(z)||2 < 1 on the disk and that
||f(z)||2 = 1 on the circle. Therefore f is a proper mapping from B1 to B2. Corollary
5.4 implies that Γf is a subgroup of the unitary group U(1), which is the unit circle.
We apply Theorem 5.3. Suppose 0 ≤ θ < 2π and eiθ ∈ Γfm

. Assume that

||fm(eiθz)||2 − 1 = c (||fm(z)||2 − 1). (24)

Putting z = 0 shows that c = 1 and hence

||fm(eiθz)||2 = ||fm(z)||2.
Using the formula for fm yields

|zm + z2m|2 + |z2m − z3m|2 = |zmeimθ + z2me2imθ|2 + |z2me2imθ − z3me3imθ|2.
Hence, for every z and each such θ we have

2Re(zmz2m − z2mz3m) = 2Re(eimθ(zmz2m − z2mz3m)).

Equating coefficients of the zmz2m term gives eimθ = 1, and the other coefficients
are then equal as well. Hence mθ = 2π and the result follows. �

We have the following decisive general result from [DX1].

Theorem 5.9. Let G be a finite subgroup of the unitary group U(n). Then
there is an N and a proper polynomial map f : Bn → BN with Γf = G.

Proof. Given a finite subgroup G of the unitary group, one can find a finite
collection of holomorphic polynomials h(z) = (h0(z), ..., hK(z)) that generate the
algebra of polynomials invariant under G. We may assume that h0 is the constant
map 1, and that hj(0) = 0 for j ≥ 1. We then consider the map

H(z) =
(
(1 + h1(z)) ⊗ z⊗m1 , ..., (1 + hK(z)) ⊗ z⊗mK

)
.

We choose the integers mj in such a way that none of the components have
any terms of the same degree as those of any other component. Theorem 5.6
guarantees that we can find a map g such that, for ε small enough, εH ⊕ g maps
the unit sphere to some unit sphere. If we replace g by g ⊗ z⊗m for some large m,
then v = εH ⊕ (g ⊗ z⊗m) also maps the sphere to a sphere, and (25) holds. If we
choose m large, then the order of vanishing of g ⊗ z⊗m exceeds the degree of H. If
each mj ≥ 1, then Γv is a subgroup of U(n).

We show both containments G ⊆ Γv and Γv ⊆ G. Note that

ε2||H||2 + ||g ⊗ z⊗m||2 = ||v||2 =
∑

|λj |2||z||2kj . (25)

Suppose first that L ∈ G. Then hj ◦L = hj for each j. Since also ||z ◦L||2 = ||z||2,
we obtain ||H ◦L||2 = ||H||2. Since L is unitary, the right-hand side of (25) shows
that ||v ◦ L||2 = ||v||2. Since the terms in H and g ⊗ z⊗m are of different degrees,
both ||H ◦ L||2 = ||H||2 and ||g ◦ L||2 = ||g||2. Hence L ∈ Γv and G ⊆ Γv.

Next suppose L ∈ Γv. Again because the terms of H and those of g⊗z⊗m do not
interact, we must have ||H ◦L||2 = ||H||2. Furthermore the terms |1 + hj |2||z||2mj

are of different degrees, and hence each is invariant under composition with L.
Since ||z ◦ L||2 = ||z||2, we conclude for each j that

|1 + hj |2 = |1 + hj ◦ L|2.
Expanding the squared norm then shows that hj ◦ L = hj for each j. But the hj

are precisely G invariant. Thus L ∈ G. Hence Γv ⊆ G. �
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Remark 5.9. One crucial point in the proof is worth elaborating. Let t be a
holomorphic polynomial with t(0) = 0. The equation |t ◦ L|2 = |t|2 tells us much
less than the equation |1 + t ◦L|2 = |1 + t|2. The second equation implies the first
but also implies t ◦ L = t.

Exercise 5.20. For the map f given by f(z, w) = (z2, zw,w) show directly
that Γf is S1 ×S1. Let g(z, w) = (z2, zw, zw,w2). Show that g is obtained from f
by a partial tensor product operation. Show that Γg is the unitary group U(2).

Exercise 5.21. Consider the cyclic group G of order 3 from Example 5.17.
Find a proper polynomial map f for which Γf = G.

Exercise 5.22. Put n = 2 and write (z, w) for the variables. Let η be a
primitive odd p-th root of unity with p ≥ 5. Consider the cyclic subgroup G of
the unitary group generated by the map (z, w) �→ (ηz, η2w). Find a basis for the
algebra of polynomials invariant under G. When G has order 5, construct a proper
polynomial map f for which Γf = G.

Exercise 5.23. Consider the dihedral group D4 with 8 elements. Represent it
as a subgroup of the unitary group U(2). Suggestion: you can do so with matrices
whose entries are 0, 1,−1. If you are ambitious, find a proper polynomial map f for
which Γf = D4. (The author does not know the smallest possible degree of such a
map.)

We end this section with a short summary of some of the main results about
the group Γf . Assume that f : Bn → BN is a rational proper map.

• Γf = Aut(Bn) if and only if f is a linear fractional transformation.
• Γf is noncompact if and only if Γf = Aut(Bn). Otherwise Γf is contained

in a conjugate of U(n).
• Γf is a conjugate of U(n) if and only if f is spherically equivalent to a

juxtaposition of tensor powers.
• Γf = U(n) if and only if f is a juxtaposition of tensor powers.
• Γf contains an n-torus if and only if f is spherically equivalent to a mono-

mial map.
• Put f(z, w) = (z3,

√
3zw,w3). Then Γf is generated by the diagonal

unitary matrices and the unitary matrix that permutes the two variables.
This group is the semi-direct product of the torus (diagonal unitaries) and
the group of two elements. In particular, it is non-Abelian.

• Let G be an arbitrary finite subgroup of Aut(Bn). Then there is an N
and a proper rational map f : Bn → BN such that Γf = G.

• Let G be an arbitrary finite subgroup of U(n). Then there is an N and a
proper polynomial map f : Bn → BN such that Γf = G.

7. A criterion for a power series being a polynomial

In this section we use circular symmetries to give a criterion for when a power
series must be a polynomial.

Before doing so we recall a basic standard fact about Lie groups and their Lie
algebras. See [Wa] for a nice account of the basics. A Lie group G is a smooth
manifold that is also a group, and the group operations (composition and taking
inverses) are smooth functions. As a manifold, G has a tangent space at each point.
The Lie algebra of G, usually written g, consists of the left-invariant vector fields
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on G. The Lie algebra can be identified with the tangent space at the identity. We
illustrate with a simple example we need.

Example 5.18. Consider the Lie group U(n). Its defining equation is U∗U = I.
Imagine that U depends smoothly on a real parameter t and assume that U(0) = I.
Differentiating the defining relation and using U(0) = I give

0 = (U∗)′U + U∗U ′ = (U∗)′(0) + U ′(0).

Therefore the Lie algebra of U(n) consists of skew-Hermitian matrics. Conversely,
the exponential of a skew-Hermitian matrix is unitary.

In this section we work with diagonal unitary matrices. In Definition 5.9 below,
we regard the torus U(1) ⊕...⊕U(1) as a subgroup of U(n).

Definition 5.9. Let C = C(n) denote the collection of continuously differen-
tiable maps γ : (−π, π) → U(1) ⊕...⊕U(1) such that γ(0) = In.

For γ ∈ C, Example 5.18 shows that γ′(0) = iL, where i2 = −1 and L = L∗ is
real and diagonal. The eigenvalues of L are real. When they all have the same sign,
we obtain a criterion guaranteeing that a holomorphic map is in fact a polynomial.

Proposition 5.5. Let Ω be a ball about 0 in Cn and suppose f : Ω → CN is
holomorphic. For some γ ∈ C, assume that ||f ◦γ||2=||f ||2. Put L = −iγ′(0). If all
the eigenvalues of L have the same sign, then f is a polynomial. More generally, if
L has k eigenvalues of the same sign, then there is a k-dimensional vector subspace
V such that the restriction of f to V is a polynomial.

Proof. Put θ(t) = (θ1(t), ..., θn(t)), where γ(t) is diagonal with eigenvalues
eiθj(t). We expand f in a (vector-valued) power series convergent in Ω:

f(z) =
∑

α

cαzα.

We are given that ||f(z)||2 = ||f(γ(t)z)||2 for all t ∈ (−π, π) and all z ∈ Ω. Equating
Taylor coefficients yields, for each pair α, β of multi-indices, that

〈cα, cβ〉 = eiθ(t)·(α−β)〈cα, cβ〉
and hence we have

0 = 〈cα, cβ〉
(
1 − eiθ(t)·(α−β)

)
. (26)

Write m = (m1, ...,mn), where the mj are the eigenvalues of L. Differentiate (26)
and evaluate at t = 0 to obtain

0 = 〈cα, cβ〉 (m · (α − β)) . (27)

When all the mj have the same sign we will show that cα = 0 for all but finitely
many α.

Assume that the eigenvalues are L have the same sign. After replacing t by −t
we may assume they are all positive. Let K1 = min(mj) and K2 = max(mj). Thus
K2 ≥ K1 > 0. Let α and β be multi-indices for which m · (α − β) = 0; then

K1|α| = K1

∑
αj ≤

∑
mjαj =

∑
mjβj ≤ K2

∑
βj = K2|β|. (28)

Let W be the (finite-dimensional) span of the coefficients cα. Choose α1, ..., αν

such that the cαj
span W . Choose a multi-index η with |η| > K2

K1
|αj | for 1 ≤ j ≤ ν.

By (28), m · (η − αj) �= 0 for all j. Since (27) holds for all α, β, we conclude that
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〈cη, cαj
〉 = 0 for all j. Therefore cη = 0 and hence there are only finitely many

non-vanishing coefficient vectors. Thus f is a polynomial.
Next suppose that L has k eigenvalues of the same sign. After renumbering

the coordinates and replacing t by −t if necessary, we may assume that these
eigenvalues are positive and correspond to the first k coordinates. Setting the rest
of the variables equal to 0 puts us in the situation above. The conclusion follows. �

Remark 5.10. One can draw stronger conclusions. For example, when n = 1,
equation (27) implies that the vectors cα are mutually orthogonal and hence that
f is an orthogonal sum of monomials. Therefore, if f maps to a one-dimensional
space, and ||f ◦ γ||2 = ||f ||2 for a non-trivial γ, then f must be a monomial!

8. A criterion for a formal power series to be a rational function

How does one decide whether a formal power series represents a rational func-
tion? The question evokes something from elementary mathematics. How does
one decide when a decimal expansion defines a rational number? The well-known
answer of course is that the expansion is eventually periodic. An analogous result
holds for formal power series. We begin with a one-variable result dating back
to Kronecker. We formulate it in a way allowing for a generalization to higher
dimensions.

Consider a formal power series in one complex variable z:
∞∑

n=0

anzn.

We denote it by f(z). We let jkf(z) =
∑k

n=0 anzn. Thus jkf is a polynomial of
degree k; if f were smooth, then jkf would be the k-th order Taylor polynomial
of f at 0. We use the letter j because such Taylor polynomials are called jets.
We write Rk(z) for the formal remainder term. Note that Rk is divisible by zk+1.
Thus, by definition, for each k there is a formal series gk(z) such that

f(z) = jkf(z) + Rk(z) = jkf(z) + zk+1gk(z). (29)

Theorem 5.10. Let f(z) =
∑∞

n=0 anzn be a formal power series in one variable
z. Consider the infinite collection of formal series gk defined in (29). The following
statements are equivalent:

• f is the series of a rational function.
• There are an integer d and constants q0, ..., qm (not all 0) such that, for

l > d,
m∑

k=0

al−kqk = 0.

• There is an integer K such that gK is a linear combination of the gj for
0 ≤ j < K.

Proof. First suppose gK is such a linear combination. Then there are con-
stants cn such that

f(z) − jKf(z)
zK+1

= gK =
K−1∑

n=0

cngn =
K−1∑

n=0

cn
f(z) − jnf(z)

zn+1
. (30)
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Clearing denominators in (30) yields an equation for the unknown series f(z):

f(z) − jKf(z) =
K−1∑

n=0

cn

(
zK−n(f(z) − jnf(z)

)
. (31)

Equation (31) is an affine equation for f . Gathering terms in f yields

f(z)

(

1 −
K−1∑

n=0

cnzK−n

)

= jKf(z) −
K−1∑

n=0

cnjnf(z)zK−n. (32)

Equation (32) gives polynomials p and q such that qf = p and shows that f is
rational. More explicitly,

f(z) =
p(z)
q(z)

=
jKf(z) − ∑K−1

n=0 cnjnf(z)zK−n

1 − ∑K−1
n=0 cnzK−n

. (33)

Note that q is of degree at most K, and has degree K precisely when c0 �= 0. The
numerator in (33) is also of degree at most K.

Next suppose that f = p
q is a rational function where the degree of q is m and

the degree of p is d. Put q(z) =
∑m

k=0 qkzk. Then fq = p is a polynomial of degree
d. We have

f(z)q(z) =
∞∑

n=0

anzn
m∑

k=0

qkzk =
∞∑

n=0

m∑

k=0

anqkzk+n =
d∑

l=0

plz
l = p(z). (34.1)

Since p is of degree d, the coefficient of zk+n is 0 when k + n > d. Equation (34.1)
thus implies

0 =
m∑

k=0

al−kqk =
m+l∑

n=l

anql−n, (34.2)

and the second statement holds.
Finally the second statement implies the third. The second statement implies

that there is a non-zero column vector with entries qm, ...q0 in the null space of the
(m + 1) by (m + 1) matrix A formed from the coefficients aj as follows:

⎛

⎜
⎜
⎝

aK aK+1 ... aK+m

aK+1 aK+2 ... aK+m+1

...
aK+m aK+m+1 ... aK+2m

⎞

⎟
⎟
⎠ . (34.3)

The second statement holds for all large enough l. Hence the equations repeat,
and this vector is in the null space of a matrix with m + 1 columns and infinitely
many rows. The column entries are of the form

(
at+1 at+2 ...

)
,

and each precisely corresponds to the formal series gt. Since the same non-zero
vector qm, ..., q0 is annihilated by each of these columns, we conclude that a non-
trivial linear combination of these columns vanishes. In other words, there is a K
such that gK is a linear combination of m previous gn. �
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We provide some intuition for the proof that f rational implies the third state-
ment. Suppose first that f is a polynomial of degree d. Then we have gd = 0.
Hence gd =

∑d−1
l=0 clgl, where each coefficient cl equals 0. Thus (30) holds with

K = d. Furthermore, for each positive n, we also have

gd+n = 0 =
d−1∑

l=0

clgl.

Next suppose that f is the reciprocal of a polynomial of degree m and f(0) = 1.
Then, using the geometric series, we can write

f(z) =
1

q(z)
=

1
1 − ∑m

l=1 blzl
=

1
1 − r(z)

=
∞∑

n=0

r(z)n. (35)

Thus fq =
∑∞

n=0 rn and hence

gm =
m∑

l=1

blgm−l =
m−1∑

k=0

bm−kgk.

Again (30) holds.
Now suppose that f(z) = p(z)

q(z) = p(z)
1−r(z) , where p has degree d and r(z) is as in

(35). We claim that

gd+m =
d+m∑

l=1

clgd+m−l. (36)

Here we have set cl = bl for 1 ≤ l ≤ m and cl = 0 for m + 1 ≤ l ≤ m + d. Using
(36) yields the needed linear combination:

gd+m =
d+m−1∑

l=0

cd+m−lgl.

Hence (30) holds with K = d + m. It remains to prove the claim. By definition,
gk = f−jkf

zk+1 . By (32), the claim is equivalent to

f(z)

(

1 −
m∑

l=1

blz
l

)

= jm+df(z) −
m+d∑

l=1

blz
ljm+d−lf(z).

The left-hand side is f(z)q(z) and one can show that the right side is p(z).

Example 5.19. Put f(z) = p(z)
1−cz for a polynomial p of degree m. When m = 0

we see that

f(z) = f(0)

( ∞∑

n=0

cnzn

)

.

Hence g1 = cg0 and in fact gk = ckg0. Consider next zm

1−cz . This time we obtain
gm+1 = cgm and in fact gm+k = ckgm. Thus we need to take the first several
constants equal to 0. The idea is analogous to the decimal expansion of a rational
number; the expansion eventually repeats but it need not repeat from the outset.

Example 5.20. Put q(z) = 1 − (z + z2 + z3). Then 1
q(z) has expansion

∞∑

n=0

(z + z2 + z3)n.
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We take K = 3 and we obtain the relation g3 = g0 + g1 + g2. If we consider p(z)
q(z)

where the degree of p is large, then we obtain an analogous third-order recurrence
only after setting enough coefficients equal to 0.

Exercise 5.24. Verify (36).

Exercise 5.25. Suppose that f is a formal power series whose coefficients
repeat the pattern 1, 2, 3. Find an explicit formula for f .

Exercise 5.26. Suppose that f(z) =
∑∞

n=0 nzn. Find the lowest order recur-
rence satisfied by the gk in the proof of Theorem 5.10. Use the proof of the theorem
to find f explicitly.

Exercise 5.27. Suppose that f(z) =
∑∞

n=0 n2zn. Find the lowest order recur-
rence satisfied by the gk in the proof of Theorem 5.10. Use the proof of the theorem
to find f explicitly.

Exercise 5.28. Let p(n) be a polynomial of degree d. Show, by any valid
method, that

∑∞
n=0 p(n)zn is a polynomial in the expression 1

1−z of degree d + 1.

We now extend Theorem 5.10 to higher dimensions. Let z ∈ Ct for t ≥ 1. We
begin by writing a formal power series f(z) in terms of its homogeneous parts,

f(z) =
∞∑

k=0

fk(z), (37)

where fk is homogeneous of degree k. We again let jKf denote the K-jet of f .
We then have

f(z) − jKf(z) =
∞∑

n=K+1

fn(z).

Theorem 5.11. The formal power series in (37) represents a rational function
if and only if there is an integer K with the following property. For each l with
1 ≤ l ≤ K, there is a polynomial bl, either 0 or homogeneous of degree l, such that

f − jKf =
K∑

l=1

bl(f − jK−lf). (38)

Proof. First suppose (38) holds. This formula corresponds to (31) from the
one variable case, which was obtained by clearing denominators. It is an affine
equation in the unknown f , and we solve it as before to obtain

f =
jKf − ∑K

l=1 bljK−lf

1 − ∑K
l=1 bl

. (39)

Thus f = p
q , where each of p, q is of degree at most K.

Consider the converse. As in the one variable case, we require the analogues
of (34.1), (34.2), and (34.3). We note when f is a polynomial of degree d that (38)
holds for K > d by setting all the bl equal to 0. Assume f = p

q is rational. In terms
of homogeneous parts we have

p(z) =
m∑

i=0

qi

∞∑

k=0

fk =
∞∑

n=0

n+m∑

k=n

qn−kfk.
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For n greater than the degree of p, we obtain the analogue of (34.2):
n+m∑

k=n

qn−kfk = 0.

As before this system of equations shows that the analogue of the null space (34.3)
holds. The rows of this matrix correspond to the formal series f − jKf .

We note the following. When f is the reciprocal of the polynomial 1−∑K
l=1 ql,

then (38) holds by setting bn = qn. When p is of degree d and q = 1−∑N
l=1 ql, then

(38) holds by choosing K=d+N and then setting bl=0 for N+1 ≤ l ≤ N+d. �

Formula (38) follows from knowing q and the degree of p. We put K = d + N .
Then we set bl = ql for 1 ≤ l ≤ N and bl = 0 when N + 1 ≤ l ≤ N + d. The
coefficients of p do not matter. In formula (33), the expression cnzK−n corresponds
to the homogeneous polynomial bK−n in formula (39).

We close with two simple comments. First we note an analogy with showing
that an eventually periodic decimal expansion represents a rational number. The
first few terms in the expansion do not matter; they correspond to the numerator
of f . The proof in the periodic case is analogous to the proof of (38) when f = 1

q .
Second we mention that (38) is a statement about infinitely many terms in the
series. It is obvious that no finite jet of f can answer whether f is rational. The
expressions f −jkf depend on all the terms of order more than k. Nonetheless (38)
is an elegant formula. If one wishes, after putting b0 = −1, one can rewrite (38) as

0 =
K∑

l=0

bl(f − jK−lf). (40)

Formula (40) is a linear dependence condition, where the coefficients are homoge-
neous polynomials rather than constants.



CHAPTER 6

Appendix

1. The real and complex number systems

In this appendix we organize some of the mathematical prerequisites for reading
this book. The reader must be thoroughly informed about basic real analysis (see
[Ro] and [F1]) and should know a bit of complex variable theory (see [A] and [D2]).

The real number system R is characterized by being a complete ordered field.
The field axioms enable the usual operations of addition, subtraction, multiplica-
tion, and division (except by 0). These operations satisfy familiar laws. The order
axioms allow us to manipulate inequalities as usual. The completeness axiom is
more subtle; this crucial property distinguishes R from the rational number system
Q. One standard way to state the completeness axiom uses the least upper bound
property:

Definition 6.1. If S is a non-empty subset of R and S is bounded above,
then S has a least upper bound α, written sup(S), and called the supremum of S.

Recall that a sequence of real numbers is a function n �→ xn from the natural
numbers to R. (Sometimes we also allow the indexing to begin with 0.) The
sequence {xn} converges to the real number L if, for all ε > 0, there is an integer
Nε such that n ≥ Nε implies |xn − L| < ε.

The least upper bound property enables us to prove that a bounded monotone
nondecreasing sequence {xn} of real numbers converges to the supremum of the
values of the sequence. It also enables a proof of the fundamental result of basic
real analysis: a sequence of real numbers converges if and only if it is a Cauchy
sequence. Recall that a sequence is Cauchy if, for every ε > 0, there is an Nε such
that n,m ≥ Nε implies |xn − xm| < ε. Thus a sequence has a limit L if the terms
are eventually as close to L as we wish, and a sequence is Cauchy if the terms are
eventually all as close to each other as we wish. The equivalence of the concepts
suggests that the real number system has no gaps.

For clarity we highlight these fundamental results as a theorem. The ability to
prove Theorem 6.1 should be regarded as a prerequisite for reading this book.

Theorem 6.1. If a sequence {xn} of real numbers is bounded and monotone,
then {xn} converges. A sequence {xn} converges to a real number L if and only if
{xn} is Cauchy.

Corollary 6.1. A monotone sequence converges if and only if it is bounded.

Remark 6.1. The first statement in Theorem 6.1 is considerably easier than
the second. It is possible to prove the difficult (if) part of the second statement
by extracting a monotone subsequence and using the first part. It is also possible
to prove the second statement by using the Bolzano-Weierstrass property from
Theorem 6.2 below.
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The complex number system C is a field, but it has no ordering. As a set C is
simply the Euclidean plane R2. We make this set into a field by defining addition
and multiplication:

(x, y) + (a, b) = (x + a, y + b)
(x, y) ∗ (a, b) = (xa − yb, xb + ya).

The additive identity 0 is then the ordered pair (0, 0) and the multiplicative identity
1 is the pair (1, 0). Note that (0, 1)∗ (0, 1) = (−1, 0) = −(1, 0). As usual we denote
(0, 1) by i and then write x + iy instead of (x, y). We then drop the ∗ from the
notation for multiplication, and the law becomes obvious. Namely, we expand
(x+ iy)(a+ ib) by the distributive law and set i2 = −1. These operations make R2

into a field called C.
Given z = x + iy we write z = x − iy and call z the complex conjugate of z.

We define |z| to be the Euclidean distance of z to 0; thus |z| =
√

x2 + y2 and
|z|2 = zz.

The non-negative real number |z − w| equals the Euclidean distance between
complex numbers z and w. The following properties of distance make C into a
complete metric space. (See the next section.)

• |z − w| = 0 if and only if z = w.
• |z − w| ≥ 0 for all z and w.
• |z − w| = |w − z| for all z and w.
• |z − w| ≤ |z − ζ| + |ζ − w| for all z, w, ζ. (the triangle inequality)

Once we know that |z − w| defines a distance, we can repeat the definition of
convergence.

Definition 6.2. Let {zn} be a sequence of complex numbers, and suppose
L ∈ C. We say that zn converges to L if, for all ε > 0, there is an Nε such that
n ≥ Nε implies |zn − L| < ε.

Let {an} be a sequence of complex numbers. We say that
∑∞

n=1 an converges
to L, if

lim
NÑ∞

N∑

n=1

an = L.

We say that
∑∞

n=1 an converges absolutely if
∑∞

n=1 |an| converges. It is often easy
to establish absolute convergence; a series of non-negative numbers converges if
and only if the sequence of partial sums is bounded. The reason is simple: if the
terms of a series are non-negative, then the partial sums form a monotone sequence,
and hence the sequence of partial sums converges if and only if it is bounded. See
Corollary 6.1 above. We also use the following standard comparison test; we include
the proof because it beautifully illustrates the Cauchy convergence criterion.

Proposition 6.1. Let {zn} be a sequence of complex numbers. Assume for all
n that |zn| ≤ cn, and that

∑∞
n=1 cn converges. Then

∑∞
n=1 zn converges.

Proof. Let SN denote the N -th partial sum of the series
∑

zn, and let TN

denote the N -th partial sum of the series
∑

cn. For M > N we have

|SM − SN | = |
M∑

N+1

zn| ≤
M∑

N+1

|zn| ≤
M∑

N+1

cn = TM − TN . (1)
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Since
∑

cn is convergent, {TN} is a Cauchy sequence of real numbers. By (1),
{SN} is also Cauchy, and hence

∑∞
n=1 zn converges by Theorem 6.1. �

We pause to recall and discuss the notion of equivalence class, which we pre-
sume is familiar to the reader. Let S be a set. An equivalence relation on S is a
relation ∼ such that, for all a, b, c ∈ S,

Reflexive property: a ∼ a
Symmetric property: a ∼ b if and only if b ∼ a
Transitive property: a ∼ b and b ∼ c implies a ∼ c.

Given an equivalence relation on a set S, we can form a new set, sometimes
written S/ ∼, as follows. We say that a and b are equivalent, or lie in the same
equivalence class, if a ∼ b holds. The elements of S/ ∼ are the equivalence classes;
the set S/ ∼ is called the quotient space.

We mention three examples. The first is trivial, the second is easy but funda-
mental, and the third is profound.

Example 6.1. Let S be the set of ordered pairs (a, b) of integers. We say that
(a, b) ∼ (c, d) if 100a + b = 100c + d. If we regard the first element of the ordered
pair as the number of dollars, and the second element as the number of cents, then
two pairs are equivalent if they represent the same amount of money. (Note that
we allow negative money here.)

Example 6.2. Let S be the set of ordered pairs (a, b) of integers, with b 	= 0.
We say that (a, b) ∼ (A,B) if aB = Ab. The equivalence relation restates, without
mentioning division, the condition that a

b and A
B define the same rational number.

Then S/ ∼ is the set of rational numbers. It becomes the system Q after we
define addition and multiplication of equivalence classes and verify the required
properties.

Example 6.3. The real number system R is sometimes defined to be the com-
pletion of the rational number system Q. In this definition, a real number is
an equivalence class of Cauchy sequences of rational numbers. Here we define a
sequence of rational numbers {qn} to be Cauchy if, for each positive integer K, we
can find a positive integer N such that m,n ≥ N implies |qm − qn| < 1

K . (The
number 1

K plays the role of ε; we cannot use ε because real numbers have not yet
been defined!) Two Cauchy sequences are equivalent if their difference converges
to 0. Thus Cauchy sequences {pn} and {qn} of rational numbers are equivalent if,
for every M ∈ N, there is an N ∈ N such that |pn − qn| < 1

M whenever n ≥ N .
Intuitively, we can regard a real number to be the collection of all sequences of
rational numbers which appear to have the same limit. We use the language of the
next section; as a set, R is the metric space completion of Q. As in Example 6.2,
we need to define addition, multiplication, and order and establish their properties
before we get the real number system R.

We are also interested in convergence issues in higher dimensions. Let Rn

denote real Euclidean space of dimension n and Cn denote complex Euclidean
space of dimension n. In the next paragraph, we let F denote either R or C.

As a set, Fn consists of all n-tuples of elements of the field F. We write
z = (z1, . . . , zn) for a point in Fn. This set has the structure of a real or complex
vector space with the usual operations of vector addition and scalar multiplication:

(z1, z2, . . . , zn) + (w1, w2, . . . , wn) = (z1 + w1, z2 + w2, . . . , zn + wn).
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c(z1, z2, . . . , zn) = (cz1, cz2, . . . , czn)

Definition 6.3 (norm). A norm on a real or complex vector space V is a
function v �→ ||v|| satisfying the following three properties:

(1) ||v|| > 0 for all nonzero v.
(2) ||cv|| = |c| ||v|| for all c ∈ C and all v ∈ V .
(3) (The triangle inequality) ||v + w|| ≤ ||v|| + ||w|| for all v, w ∈ V .

We naturally say normed vector space for a vector space equipped with a norm.
We can make a normed vector space into a metric space by defining d(u, v) =
||u − v||.

For us the notations Rn and Cn include the vector space structure and the
Euclidean squared norm defined by (2):

||z||2 = 〈z, z〉. (2)

These norms come from the Euclidean inner product. In the real case we have

〈x, y〉 =
n∑

j=1

xjyj (3.1)

and in the complex case we have

〈z, w〉 =
n∑

j=1

zjwj . (3.2)

In both cases ||z||2 = 〈z, z〉.

2. Metric spaces

The definitions of convergent sequence in various settings are so similar that
it is natural to put these settings into one abstract framework. One such setting is
metric spaces.

We assume that the reader is somewhat familiar with metric spaces. We recall
the definition and some basic facts. Let R+ denote the non-negative real numbers.

Definition 6.4. Let X be a set. A distance function on X is a function
d : X × X Ñ R+ satisfying the following properties:

(1) d(x, y) = 0 if and only if x = y.
(2) d(x, y) = d(y, x) for all x, y.
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z.

If d is a distance function on X, then the pair (X, d) is called a metric space and
d is called the metric.

The real numbers, the complex numbers, real Euclidean space, and complex
Euclidean space are all metric spaces under the usual Euclidean distance function.
One can define other metrics, with very different properties, on these sets. For
example, on any set X, the function d : X × X Ñ R+, defined by d(x, y) = 1 if
x 	= y and d(x, x) = 0, is a metric. In general sets admit many different useful
distance functions. When the metric is understood, one often says “Let X be a
metric space”. This statement is convenient but a bit imprecise.

Metric spaces provide a nice conceptual framework for convergence.
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Definition 6.5. Let {xn} be a sequence in a metric space (X, d). We say
that xn converges to x if, for all ε > 0, there is an N such that n ≥ N implies
d(xn, x) < ε. We say that {xn} is Cauchy if, for all ε > 0, there is an N such that
m,n ≥ N implies d(xm, xn) < ε.

Definition 6.6. A metric space (M,d) is complete if every Cauchy sequence
converges.

If a metric space (M,d) is not complete, then we can form a new metric space
called its completion. The idea precisely parallels the construction of R given Q.
The completion consists of equivalence classes of Cauchy sequences of elements of
(M,d). The distance function extends to the larger set by taking limits.

Here are several additional examples of metric spaces. We omit the needed
verifications of the properties of the distance function, but we mention that in
some instances proving the triangle inequality requires effort.

Example 6.4. Let X be the space of continuous functions on [0, 1]. Define
d(f, g) =

∫ 1

0
|f(x) − g(x)|dx. Then (X, d) is a metric space. More generally, for

1 ≤ p < ∞, we define dp(f, g) by

dp(f, g) =
(∫ 1

0

|f(x) − g(x)|pdx

) 1
p

.

We define d∞(f, g) by d∞(f, g) = sup |f − g|.
Of these examples, only (X, d∞) is complete. Completeness in this case follows

because the uniform limit of a sequence of continuous functions is itself continuous.
A subset Ω of a metric space is called open if, whenever p ∈ Ω, there is a positive

ε such that x ∈ Ω whenever d(p, x) < ε. In particular the empty set is open and
the whole space X is open. A subset K is called closed if its complement is open.

Proposition 6.2. Let (X, d) be a metric space. Let K ⊆ X. Then K is
closed if and only if, whenever {xn} is a sequence in K, and xn converges to x,
then x ∈ K.

Proof. Left to the reader. �

Let (M,d) and (M ′, d′) be metric spaces. The natural collection of maps
between them is the set of continuous functions.

Definition 6.7 (Continuity). f : (M,d) Ñ (M ′, d′) is continuous if, whenever
U is open in M ′, then f−1(U) is open in M .

Proposition 6.3. Suppose f : (M,d) Ñ (M ′, d′) is a map between metric
spaces. The following are equivalent:

(1) f is continuous
(2) Whenever xn converges to x in M , then f(xn) converges to f(x) in M ′.
(3) For all ε > 0, there is a δ > 0 such that

d(x, y) < δ =⇒ d′(f(x), f(y)) < ε.

Exercise 6.1. Prove Propositions 6.1 and 6.2.

We next mention several standard and intuitive geometric terms. The interior
of a set S in a metric space is the union of all open sets contained in S. The closure
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of a set S is the intersection of all closed sets containing S. Thus a set is open if and
only if it equals its interior, and a set is closed if and only if it equals its closure.
The boundary bΩ of a set Ω consists of all points in the closure of Ω but not in the
interior of Ω. Another way to define boundary is to note that x ∈ bΩ if and only
if, for every ε > 0, the ball of radius ε about x has a non-empty intersection with
both Ω and its complement.

Continuity often gets used together with the notion of a dense subset of a metric
space M . A subset S is dense if each x ∈ M is the limit of a sequence of points in
S. In other words, M is the closure of S. For example, the rational numbers are
dense in the real numbers. If f is continuous on M , then f(x) = limn f(xn), and
hence f is determined by its values on a dense set.

One of the most important examples of a metric space is the collection C(M)
of continuous complex-valued functions on a metric space M . Several times in
the book we use compactness properties in C(M). We define compactness in the
standard open cover fashion, called the Heine-Borel property. What matters most
for us is the Bolzano-Weierstrass property.

We quickly review some of the most beautiful results in basic analysis.

Definition 6.8. Let M be a metric space and let K ⊆ M . K is compact
if, whenever K is contained in an arbitrary union ∪Aα of open sets, then K is
contained in a finite union ∪N

k=1Aαk
of these open sets. This condition is often

called the Heine-Borel property.

This definition of compact is often stated informally “every open cover has a
finite subcover”, but these words are a bit imprecise.

Definition 6.9. Let (M,d) be a metric space. A subset K ⊆ M satisfies the
Bolzano-Weierstrass property if, whenever {xn} is a sequence in K, then there is a
subsequence {xnk

} converging to a limit in K.

Theorem 6.2. Let (M,d) be a metric space and let K ⊆ M . Then K is
compact if and only if K satisfies the Bolzano-Weierstrass property.

Theorem 6.3. A subset of Euclidean space is compact if and only if it is closed
and bounded.

Exercise 6.2. Prove Theorems 6.2 and 6.3.

Definition 6.10 (Equicontinuity). A collection K of complex-valued functions
on a metric space (M,d) is called equicontinuous if, for all x and for all ε > 0, there
is a δ > 0 such that

d(x, y) < δ =⇒ |f(x) − f(y)| < ε

for all f ∈ K.

Definition 6.11 (Uniformly bounded). A collection K of complex-valued
functions on a metric space (M,d) is called uniformly bounded if there is a C
such that |f(x)| ≤ C for all x ∈ M and for all f ∈ K.

We refer to [F1] for a proof of the following major result in analysis. The
statement and proof in [F1] apply in the more general context of locally compact
Hausdorff topological spaces. In this book we use Theorem 6.4 to show that certain
integral operators are compact. See Sections 10 and 11 of Chapter 2.



3. INTEGRALS 211

Theorem 6.4 (Arzela-Ascoli theorem). Let M be a compact metric space. Let
C(M) denote the continuous functions on M with d(f, g) = supM |f(x) − g(x)|.
Let K be a subset of C(M). Then K is compact if and only if the following three
items are true:

(1) K is equicontinuous.
(2) K is uniformly bounded.
(3) K is closed.

Corollary 6.2. Let K be a closed, uniformly bounded, and equicontinuous
subset of C(M). Let {fn} be a sequence in K. Then {fn} has a convergent subse-
quence. That is, {fnk

} converges uniformly to an element of K.

Proof. By the theoremK is compact; the result then follows from the Bolzano-
Weierstrass characterization of compactness. �

Exercise 6.3. Let M be a compact subset of Euclidean space. Fix α > 0. Let
Hα denote the subset of C(M) satisfying the following properties:

(1) ||f ||∞ ≤ 1.
(2) ||f ||Hα

≤ 1. Here

||f ||Hα
= sup

x�=y

|f(x) − f(y)|
|x − y|α .

Show that Hα is compact.

A function f for which ||f ||Hα
is finite is said to satisfy a Hölder condition of

order α. See Definition 2.13.

3. Integrals

This book presumes that the reader knows the basic theory of the Riemann-
Darboux integral, which we summarize. See [Ro] among many possible texts.

Let [a, b] be a closed bounded interval on R, and suppose f : [a, b] Ñ R is a
bounded function. We define

∫ b

a
f(t)dt by a standard but somewhat complicated

procedure. A partition P of [a, b] is a finite collection of points pj such that a =
p0 < · · · < pj < · · · < pN = b. Given f and a partition P , we define the lower and
upper sums corresponding to the partition:

L(f, P ) =
N∑

j=1

(pj − pj−1) inf
[pj−1,pj ]

(f(x))

U(f, P ) =
N∑

j=1

(pj − pj−1) sup
[pj−1,pj ]

(f(x)).

Definition 6.12. A bounded function f : [a, b] Ñ R is Riemann integrable if
supP L(f, P ) = infP U(f, P ). If so, we denote the common value by

∫ b

a
f(t)dt or

simply by
∫ b

a
f .

An equivalent way to state Definition 6.12 is that f is integrable if, for each
ε > 0, there is a partition Pε such that U(f, Pε) − L(f, Pε) < ε.
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In case f is complex-valued, we define it to be integrable if its real and imagi-
nary parts are integrable, and we put

∫ b

a

f =
∫ b

a

u + iv =
∫ b

a

u + i

∫ b

a

v.

The integral satisfies the usual properties:

(1) If f, g are Riemann integrable on [a, b], and c is a constant, then f + g
and cf are Riemann integrable and

∫ b

a

f + g =
∫ b

a

f +
∫ b

a

g,

∫ b

a

cf = c

∫ b

a

f.

(2) If f is Riemann integrable and f(x) ≥ 0 for x ∈ [a, b], then
∫ b

a
f ≥ 0.

(3) If f is continuous on [a, b], then f is Riemann integrable.
(4) If f is monotone on [a, b], then f is Riemann integrable.

We assume various other basic results, such as the change of variables formula,
without further mention.

The collection of complex-valued integrable functions on [a, b] is a complex vec-
tor space. We would like to define the distance δ(f, g) between integrable functions
f and g by

δ(f, g) = ||f − g||L1 =
∫ b

a

|f(x) − g(x)|dx,

but a slight problem arises. If f and g agree for example everywhere except at a
single point, and each is integrable, then δ(f, g) = 0 but f and g are not the same
function. This point is resolved by working with equivalence classes of functions.
Two functions are called equivalent if they agree except on what is called a set of
measure zero. See Section 7 of Chapter 1. Even after working with equivalence
classes, this vector space is not complete (in the metric space sense). One needs to
use the Lebesgue integral to identify its completion.

Often one requires so-called improper integrals. Two possible situations arise;
one is when f is unbounded on [a, b], the other is when the interval is unbounded.
Both situations can happen in the same example. The definitions are clear, and we
state them informally. If f is unbounded at a, for example, but Riemann integrable
on [a + ε, b] for all positive ε, then we define

∫ b

a

f = lim
εÑ0

∫ b

a+ε

f

if the limit exists. If f is Riemann integrable on [a, b] for all b, then we put
∫ ∞

a

f = lim
bÑ∞

∫ b

a

f.

The other possibilities are handled in a similar fashion. Here are two simple exam-
ples of improper integrals:

(1)
∫ 1

0
xαdx = 1

α+1 if α > −1.
(2)

∫ ∞
0

e−xdx = 1.
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At several points in this book, whether an improper integral converges will be
significant. We mention specifically Section 8 of Chapter 3, where one shows that
a function has k continuous derivatives by showing that an improper integral is
convergent.

The following theorem is fundamental to all that we do in this book.

Theorem 6.5 (Fundamental theorem of calculus). Assume f is continuous on
[a, b]. For x ∈ (a, b) put F (x) =

∫ x

a
f(t)dt. Then F is differentiable and F ′(x) =

f(x).

The final theorem in this section is somewhat more advanced. We state this
result in Section 7 of Chapter 1, but we never use it. It is important partly because
its statement is so definitive, and partly because it suggests connections between
the Riemann and Lebesgue theories of integration.

Theorem 6.6. A function on a closed interval [a, b] is Riemann integrable if
and only if the set of its discontinuities has measure zero.

Exercise 6.4. Establish the above properties of the Riemann integral.

Exercise 6.5. Verify that
∫ b

a
cf = c

∫ b

a
f when c is complex and f is complex-

valued. Check that Re(
∫ b

a
f) =

∫ b

a
Re(f) and similarly with the imaginary part.

Exercise 6.6. Verify the improper integrals above.

The next three exercises involve finding sums. Doing so is generally much
harder than finding integrals.

Exercise 6.7. Show that
∑n

j=0

(
j
k

)
=

(
n+1
k+1

)
. Suggestion. Count the same

thing in two ways.

Exercise 6.8. For p a nonnegative integer, consider
∑n

j=1 jp as a function of

n. Show that it is a polynomial in n of degree p + 1 with leading term np+1

p+1 . If
you want to work harder, show that the next term is np

2 . Comment: The previous
exercise is useful in both cases.

Exercise 6.9. For p a positive integer, prove that
∫ 1

0
tpdt = 1

p+1 by using
the definition of the Riemann integral. (Find upper and lower sums and use the
previous exercise.)

Exercise 6.10. Prove the fundamental theorem of calculus. The idea of its
proof recurs throughout this book.

Exercise 6.11. Put f(0) = 0 and f(x) = x sgn(sin( 1
x )). Here sgn(t) = t

|t| for
t 	= 0 and sgn(0) = 0.

• Sketch the graph of f .
• Determine the points where f fails to be continuous.
• Show that f is Riemann integrable on [−1, 1].

4. Exponentials and trig functions

The unit circle is the set of complex numbers of unit Euclidean distance from
0, that is, the set of z with |z| = 1.

The complex exponential function is defined by
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ez =
∞∑

n=0

zn

n!
.

The series converges absolutely for all complex z. Furthermore the resulting
function satisfies e0 = 1 and ez+w = ezew for all z and w.

We define the complex trig functions by

cos(z) =
eiz + e−iz

2

sin(z) =
eiz − e−iz

2i
.

When z is real these functions agree with the usual trig functions. The reader who
needs convincing can express both sides as power series.

Note, by continuity of complex conjugation, we have ez = ez. Combining this
property with the addition law gives (assuming t is real)

1 = e0 = eite−it = |eit|2.

Thus z = eit lies on the unit circle. Its real part x is given by x = z+z
2 and its

imaginary part y is given by y = z−z
2i . Comparing with our definitions of cosine and

sine, we obtain the famous Euler identity (which holds even when t is complex):

eit = cos(t) + isin(t).

Complex logarithms are quite subtle. For a positive real number t we define
log(t), sometimes written ln(t), by the usual formula

log(t) =
∫ t

1

du

u
.

For a nonzero complex number z, written in the form z = |z|eiθ, we provisionally
define its logarithm by

log(z) = log(|z|) + iθ. (4)

The problem with this formula is that θ is defined only up to multiples of 2π.
We must therefore restrict θ to an interval of length 2π. In order to define the
logarithm precisely, we must choose a branch cut. Thus we first choose an open
interval of length 2π, and then we define the logarithm only for θ in that open
interval. Doing so yields a branch of the logarithm. For example, we often write
(4) for 0 	= z = |z|eiθ and −π < θ < π. Combining the identity eα+β = eαeβ with
(4), we obtain elog(z) = |z|eiθ = z. For a second example, suppose our branch cut
is the non-negative real axis; then 0 < θ < 2π. Then log(−1) = iπ, but logs of
positive real numbers are not defined! To correct this difficulty, we could assume
0 ≤ θ < 2π and obtain the usual logarithm of a positive number. The logarithm,
as a function on the complement of the origin in C, is then discontinuous at points
on the positive real axis.
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5. Complex analytic functions

The geometric series arises throughout mathematics. Suppose that z is a com-
plex number not equal to 1. Then we have the finite geometric series

n−1∑

j=0

zj =
1 − zn

1 − z
.

When |z| < 1, we let n Ñ ∞ and obtain the geometric series
∞∑

j=0

zj =
1

1 − z
.

The geometric series and the exponential series lie at the foundation of complex
analysis. We have seen how the exponential function informs trigonometry. The
geometric series enables the proof of Theorem 6.7 below; the famous Cauchy integral
formula (Theorem 6.8) combines with the geometric series to show that an arbitrary
complex analytic function has a local power series expansion.

A subset Ω of C is called open if, for all p ∈ Ω, there is an open ball about p
contained in Ω. In other words, there is a positive ε such that |z − p| < ε implies
z ∈ Ω. Suppose that Ω is open and f : Ω Ñ C is a function. We say that f is
complex analytic on Ω if, for each z ∈ Ω, f is complex differentiable at z. (in other
words, if the limit in (5) exists).

lim
hÑ0

f(z + h) − f(z)
h

= f ′(z) (5)

A continuously differentiable function f : Ω Ñ C satisfies the Cauchy-Riemann
equations if ∂f

∂z = 0 at all points of Ω. The complex partial derivative is defined by

∂

∂z
=

1
2
(

∂

∂x
+ i

∂

∂y
).

In most elementary books on complex variables, one writes f = u + iv in terms
of its real and imaginary parts, and writes the Cauchy-Riemann equations as the
pair of equations

∂u

∂x
=

∂v

∂y

∂u

∂y
= −∂v

∂x
.

Perhaps the most fundamental theorem in basic complex analysis relates com-
plex analytic functions, convergent power series, and the Cauchy-Riemann equa-
tions. Here is the precise statement:

Theorem 6.7. Assume that Ω is open and f : Ω Ñ C is a function. The
following are equivalent:

(1) f is complex analytic on Ω.
(2) For all p in Ω, there is a ball about p on which f is given by a convergent

power series:

f(z) =
∞∑

n=0

an(z − p)n.

(3) f is continuously differentiable and ∂f
∂z = 0 on Ω.
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The key step used in establishing Theorem 6.7 is the Cauchy integral formula.
Readers unfamiliar with complex line integrals should consult [A] or [D2], and
should read about Green’s theorem in Section 1 of Chapter 4 in this book. We
mention that, in the research literature on several complex variables, the word
holomorphic is commonly used instead of complex analytic.

Theorem 6.8 (Cauchy integral theorem and Cauchy integral formula). Let f
be complex analytic on and inside a positively oriented, simple closed curve γ. Then

∫

γ

f(z)dz = 0.

For z in the interior of γ, we have

f(z) =
1

2πi

∫

γ

f(ζ)
ζ − z

dζ.

We close this review of complex variable theory by recalling the Fundamental
Theorem of Algebra. Many proofs are known, but all of them require the methods
of analysis. No purely algebraic proof can exist, because the completeness axiom
for the real numbers must be used in the proof.

Theorem 6.9 (Fundamental theorem of algebra). Let p(z) be a non-constant
polynomial with complex coefficients and of degree d. Then p factors into a product
of d linear factors:

p(z) = c

d∏

j=1

(z − zj),

where the zj need not be distinct.

6. Probability

Many of the ideas in this book are closely connected with probability theory.
We barely glimpse these connections.

We begin by briefly discussing probability densities, and we restrict our consid-
eration to continuous densities. See a good text such as [HPS] for more information
and the relationship with Fourier transforms.

Let J be a closed interval on R; we allow the possibility of infinite endpoints.
Assume that f : J Ñ [0,∞) is continuous. Then f is called a continuous probability
density on J if

∫
J

f = 1. Let a denote the left-hand endpoint of J . We define the
cumulative distribution function F by

F (x) =
∫ x

a

f(t)dt.

For y < x, we interpret F (x) − F (y) =
∫ x

y
f(t)dt as the probability that a random

variable lies in the interval [x, y].
We do not attempt to say precisely what the phrase “Let X be a random

variable” means. In our setting, we are given the continuous density function f ,
and we say “X is a random variable with continuous density f” to indicate the
situation we have described. The intuition for the term random variable X is the
following. Suppose X is a real-valued function defined on some set, and for each
x ∈ R, the probability that X takes on a value at most x is well-defined. We



6. PROBABILITY 217

write F (x) for this probability. Thus F (x) − F (y) denotes the probability that
F takes on a value in the interval (y, x]. In the case of continuous densities, the
probability that X takes on any specific value is 0. This property is sometimes
taken as the definition of continuous random variable. Hence F (x)−F (y) denotes
the probability that X takes on a value in the interval [y, x].

Let X denote a random variable on an interval J , with continuous density f .
We say that X has finite expectation if

∫

J

|t|f(t)dt < ∞.

We say that X has finite variance if
∫

J

(t − μ)2f(t)dt < ∞.

When these integrals are finite, we define the mean μ and variance σ2 of X by

μ =
∫

J

tf(t)dt

σ2 =
∫

J

(t − μ)2f(t)dt.

The mean is also known as the expected value. More generally, if g is any
function we call

∫
J

g(t)f(t)dt the expected value of g. Thus the variance is the
expected value of (t − μ)2 and hence measures the deviation from the mean.

Proposition 6.4. The variance satisfies σ2 =
∫

J
t2f(t)dt − μ2.

Proof. Expanding the square in the definition of the variance gives:
∫

J

(t − μ)2f(t)dt =
∫

J

t2f(t)dt − 2μ

∫

J

tf(t)dt + μ2

∫

J

f(t)dt.

Since μ =
∫

J
tf(t)dt and 1 =

∫
J

f(t)dt, the last two terms combine to give −μ2. �

The computation in Proposition 6.4 arises in many contexts. It appears, for
example, in the proof of the parallel axis theorem for moments of inertia. The same
idea occurs in verifying the equivalence of two ways of stating Poincaré inequalities
in Chapter 4. Compare also with the proof of Bessel’s inequality, Proposition 2.2.

Example 6.5 (The normal, or Gaussian, random variable). For 0 < σ2 < ∞
and x ∈ R, put g(x) = 1√

2πσ
e

−x2

2σ2 . See Example 1.7. Then the mean of the random
variable with density g is 0 and the variance is σ2.

Example 6.6 (The uniform random variable). Let f(x) = 1
b−a for a ≤ x ≤ b.

Then f is a probability density. Its cumulative distribution function F is given on
R by F (x) = 0 if x < a, by F (x) = 1 if x > b, and by F (x) = x−a

b−a for x ∈ [a, b].

Exercise 6.12. Show that the mean of the uniform random variable on [a, b]
is a+b

2 . Compute its variance.

Let X be a random variable with continuous density function f . The probability
that X ≤ x is by definition the integral

∫ x

−∞ f(t)dt. We write:

Prob(X ≤ x) =
∫ x

−∞
f(t)dt.
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Let φ be a strictly monotone differentiable function of one real variable. We can use
the fundamental theorem of calculus to compute the density of φ(X). Assuming
that φ is increasing, we have

Prob(φ(X) ≤ x) = Prob(X ≤ φ−1(x)) =
∫ φ−1(x)

−∞
f(t)dt.

Differentiating and using the fundamental theorem of calculus, we see that the
density of φ(X) is given by f ◦φ−1(φ−1)′. An example of this situation gets briefly
mentioned in Exercise 4.68, where X is the Gaussian and φ(x) = x2 for x ≥ 0. In
case φ is decreasing a similar calculation gives the answer −f ◦ φ−1(φ−1)′. Hence
the answer in general is f ◦ φ−1|(φ−1)′|.

We end this appendix by glimpsing the connection between the Fourier trans-
form and probability. Given a continuous random variable on R with density
f , we defined above the expected value of a function g by

∫ ∞
−∞ g(t)f(t)dt. Take

g(t) = 1√
2π

e−itξ. Then the expected value of g is the Fourier transform of f . The
terminology used in probability theory often differs from that in other branches
of mathematics; for example, the expected value of eitX , where X is a random
variable, equals

∫ ∞
−∞ eitxf(x)dx. This function is called the characteristic function

of the random variable X rather than (a constant times the inverse of) the Fourier
transform of f .

The central limit theorem is one of the major results in probability theory and
statistics. Most readers should have heard of the result, at least in an imprecise
fashion (“everything is asymptotically normal”), and we do not state it here. See
[F1] or [HPS] for precise statements of the central limit theorem. Its proof relies
on several things discussed in this book: the Fourier transform is injective on an
appropriate space, the Fourier transform of a Gaussian of mean zero and variance
one is itself, and the Gaussian defines an approximate identity as the variance tends
to 0.

Exercise 6.13. Show that there is a continuous probability density f on R,
with finite expectation, such that f(n) = n for all positive integers n.



Notation used in this book

Nearly all of the notation used in this book is standard. Occasionally a symbol
can be used to denote different things; we mention some of these ambiguities below.
In all cases the context should make the meaning clear. This summary is organized
roughly by topic.

Basic notation

R is the real number system, C is the complex number system, and i denotes
the imaginary unit with i2 = −1. Usually x, y denote real variables, and z, w, ζ
denote complex variables. z denotes the complex conjugate of z, and Re(z) denotes
the real part of z.

{an} denotes a sequence; the objects could be real numbers, complex numbers,
elements in a Hilbert space, etc.

When
∑∞

n=1 an is an infinite series, we let AN denote the N -th partial sum.
(The small letter denotes the terms and the capital letter denotes the partial sums,
analogous to f denoting a function and F denoting its integral.)

Rn denotes n-dimensional real Euclidean space, and Cn denotes n-dimensional
complex Euclidean space. H denotes a Hilbert space.

||v|| denotes the norm of a vector v in any of these spaces. We also use ||L|| to
denote the operator norm of a bounded linear mapping L.

We write ||f ||Lp to denote the Lp norm of a function, and ||f ||L∞ to denote the
sup norm. We write ||z||2 to denote the l2 norm of a sequence {zn}.

L2([a, b]) denotes the space (of equivalence classes of) square-integrable func-
tions on [a, b].

〈z, w〉 denotes the Hermitian inner product of elements z, w in a Hilbert space.
In Chapter 3, Section 3, the same notation denotes the pairing of a distribution
and a function. In Chapter 4, Section 10 it denotes the pairing of a vector field
and a 1-form. In these pairings, there is no complex conjugation involved.

If u is a differentiable function of several variables, we sometimes denote the
partial derivative ∂u

∂xj
by uxj

or uj .
The letter δ sometimes denotes the Dirac delta distribution, defined by δ(f) =

f(0). Sometimes it denotes a positive real number.
S1 denotes the unit circle and Sk−1 the unit sphere in Rk. Very often we use

S2n−1 for the unit sphere in Cn.
Bn denotes the unit ball in Cn. Ω denotes an open, connected set in Cn. A2(Ω)

denotes the Hilbert space of square-integrable holomorphic functions on Ω.
ω often denotes an m-th root of unity. Sometimes ω or ωk is a differential form.
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Δ denotes the Laplacian, or Laplace operator. On Rn,

Δ(f) =
n∑

j=1

∂2f

∂x2
j

=
n∑

j=1

fjj .

Several times the Laplacian is expressed in terms of complex derivatives. See Section
11 of Chapter 1 and Section 10 of Chapter 4.(

n
k

)
denotes the binomial coefficient n!

k!(n−k)! .(
m
α

)
denotes the multinomial coefficient m!

α1!...αn!
. See below for more informa-

tion on multi-indices.

Notations with similar or several uses

The letter d often means the exterior derivative. We use it in other ways that
arise in calculus; for example, ds represents the arc-length element along a curve,
dV denotes the volume form, etc. In the appendix, d(x, y) denotes the distance
between points x and y in a metric space.

The letter D typically denotes some kind of derivative. It often means the
linear operator sending f to its derivative Df .

In Chapter 2, Hm denotes the space of harmonic homogeneous polynomials of
degree m on Rn.

In Chapter 2, Section 12 and in Chapter 3, Section 9, Hn(x) denotes the n-th
Hermite polynomial.

In Chapter 4, Hm is used often to denote a certain polynomial mapping from
Cn → CN , defined and discussed in detail in Section 4 of Chapter 4.

In Chapter 1, σN denotes Cesàro means. In Chapter 4, σN−1 denotes the
volume form on SN−1. Also note that σ2 denotes variance.

The symbol α also has many uses; it can be a real number, a complex number,
a multi-index, or a differential form.

In Chapter 3, Λs denotes the standard pseudo-differential operator of order s.
In Chapter 4, Section 6, Λk(V ∗) denotes the space of k-linear alternating forms

on a vector space V .
The letter Γ is used to denote the Gamma function. Thus Γ(x) denotes its value

at x. We also write Γ for certain groups; in particular, Γf denotes the Hermitian-
invariant group of a proper holomorphic map. See Chapter 5.

The letter γ has several uses. In Chapter 5 it often denotes an automorphism
of the unit ball. In earlier chapters it sometimes denotes a curve.

Fourier series and Fourier transforms

f ∗g denotes the convolution of f and g, either on the circle or on the real line.
f̂(n) denotes the n-th Fourier coefficient of a function on the circle; f̂(ξ) denotes

the Fourier transform of a function on R. Sometimes we write F(f) instead of f̂ .
SN (f) denotes the symmetric partial sums

∑N
−N f̂(n)einx of a Fourier series.

Approximate identities:

• FN denotes the Fejer kernel.
• Pr denotes the Poisson kernel.
• In Chapter 1, Gt denotes the Gaussian kernel.
• We later use Gσ to denote the Gaussian with mean 0 and variance σ2.
• The relationship between the parameter t in Gt and σ is given by t = 1

2σ2 .
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σN denotes the N -th Cesaro mean of a sequence {AM}. Often AM will itself
denote the M -th partial sum of

∑
an.

S denotes the Schwartz space of smooth functions of rapid decrease and S ′

denotes its dual space.
Sm denotes the collection of symbols of order m.
W s denotes the L2 Sobolev space of index s.

Hilbert spaces and linear algebra

L(H) denotes the bounded linear transformations on H, and L(H,H′) the
bounded linear transformations from H to H′.

I usually denotes the identity transformation.
L∗ denotes the adjoint of L.
N (L) denotes the nullspace of L and R(L) denotes the range of L.
V ⊥ denotes the orthogonal complement of a subspace V .
V ⊕W denotes the orthogonal sum of the subspaces V and W ; if v and w are

orthogonal vectors, the notation v ⊕ w denotes their sum v + w, but emphasizes
the orthogonality.

det denotes the determinant.
λ usually means an eigenvalue.

Functions of several variables

Tx(Rn) denotes the tangent space of Rn at x. T ∗
x (Rn) denotes the cotangent

space.
⊗ denotes the tensor product; we often write z⊗m with a particular meaning.

See Section 4 of Chapter 4.
U(n) denotes the group of unitary transformations on Cn; often we write Γ for

a finite subgroup of U(n).
Multi-index notation:

• A multi-index α is an n-tuple α = (α1, . . . , αn) of non-negative integers.
• zα is multi-index notation for

∏n
j=1(zj)αj .

• When
∑

αj = m, we write
(
m
α

)
for the multinomial coefficient m!

α1! ... αn!
.

• We write |z|2α for the product
∏

j

|zj |2αj .

• β(α) is the Beta function (of n indices) defined in Section 8 of Chapter 4.

Some special functions:

• Pn(x) is the n-th Legendre polynomial.
• Tn(x) is the n-th Chebyshev polynomial.
• Ln(x) is the n-th Laguerre polynomial.
• Hn(x) is the n-th Hermite polynomial. (Chapters 2 and 3)
• Hm(z) denotes the polynomial map z �→ z⊗m. (Chapter 4)
• Γ(x) denotes the Gamma function of x.

As noted above, we also use Γ to denote a finite subgroup of U(n) and we use Γf

to denote the Hermitian-invariant group of a proper holomorphic mapping.
fp,q denotes a certain group-invariant polynomial, defined in formula (18) from

Chapter 4.
If η is a differential form, then dη denotes its exterior derivative.
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α ∧ β denotes the wedge product of differential forms α and β.
Ψ denotes the differential form

∑
dzj ∧ dzj or

∑
dζj ∧ dζj .

∂
∂zj

denotes the complex partial derivative defined in Section 4.6. The notations

∂ and ∂ are also defined there. The one-dimensional versions are defined in Section
11 of Chapter 1.

[L,K] denotes the commutator LK − KL of operators L and K (their Lie
bracket when they are vector fields).
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Let us comment on the references.
Both [SS] and [Y] are intended for advanced undergraduate audiences and

each has considerable overlap with this book. I feel that [SS] is a tremendous book;
when I first began planning the course that led to this book, I imagined simply
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enough additional material (primarily parts of Chapter 2 and all of Chapter 4) to
justify writing my own text. Chapter 4 in this book is primarily motivated by my
own research, and hence does not appear in other texts.
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with probability densities at a level similar to this book.
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