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 Introduction

Life concentrates biologically limiting resources. Primary producers harness rela-
tively diffuse solar energy and earth elements to produce tissues that feed the vast 
array of herbivores globally. Herbivore tissue in turn, as a resource, increases in 
nutritional value and feeds a diversity of predators across multiple trophic levels. In 
death, animal tissues are consumed or re-enter the cycle via decomposition. In this 
way, death disperses biologically limiting resources. This simplification of global 
resource cycling via biological pathways highlights the fundamental importance of 
dead animal matter (carrion; e.g. vertebrate carcasses) in maintaining biodiversity 
and ecological processes, especially in terrestrial ecosystems. Carrion occurs in all 
biomes and can be conceptualized as a bottleneck in the vital flow of energy and 
limiting nutrients with profound ecological and evolutionary consequences. Until 
mortality, consumers temporarily concentrate and sequester energy, nutrients, and 
moisture in their standing biomass. As a result, carrion constitutes a critical resource 
for a variety of communities and it strongly affects scavenger guilds, the mainte-
nance of biodiversity, and life-sustaining ecological processes (Barton et al. 2013a).

Carrion decomposition is a fundamental ecological process involving the break-
down of dead animals and the recycling of their embodied nutrients and energy 
through other organisms and their environment. The decomposition process involves 
a combination of physical and biological degradation and breakdown of a carcass 
into smaller fragments and its constituent biochemical components. This occurs 
through the combined action of intrinsic (e.g. enzymatic and internal microbial pro-
cesses), and extrinsic processes (e.g. fragmentation and consumption by organ-
isms). All of these processes are strongly moderated by a wide variety of abiotic 
(e.g. temperature, moisture), and biotic factors such as vegetation and inter-specific 
competition among scavengers. In this chapter, we have taken a broad perspective 
of carrion decomposition to include all biotic and abiotic processes that affect the 
breakdown of an animal carcass. Subsequent chapters give greater detail on the 
specific taxa (see chapter “Invertebrate Scavenging Communities”) and processes 
(see chapter “Ecological Functions of Vertebrate Scavenging”). We outline the 
decomposition process, the role of different groups of organisms, and key moderat-
ing abiotic and environmental factors. We conclude with a discussion of some future 
research directions that highlight how different technologies and interdisciplinary 
collaboration can yield greater understanding of this important process.

 Carrion Decomposition

 Animal Carrion as a Distinct Resource

Carrion is a distinctive form of detritus in ecosystems when compared with other 
forms of detritus, such as animal dung, fruiting fungal bodies, or the many kinds of 
plant detritus, like litter, dead wood, or fruit (Barton et al. 2013a; Finn 2001). It is 
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important to highlight three key attributes of carrion that affects its decomposition. 
First, the remains of animals are generally rare and comprise only a fraction of the 
organic biomass in ecosystems (Barton et  al. 2013a; Parmenter and MacMahon 
2009). In contrast, plant litter is ubiquitous in many ecosystems, from terrestrial 
grasslands to marine kelp forests. Although the occurrence of different forms of 
plant detritus can vary (e.g. leaves vs. branches), the availability of plant detritus is 
generally not as limited as carrion. Second, carrion is very rich in nutrients, whereas 
plant litter is comparatively nutrient-poor with low concentrations of key macronu-
trients such as nitrogen and phosphorus (Moore et al. 2004; Swift et al. 1979). The 
nitrogen content of carrion can be up to five times higher, and moisture up to 10 
times higher, than several kinds of plant litter (Carter et al. 2007). Third, carrion 
decomposes orders of magnitude faster than plant litter (Parmenter and MacMahon 
2009), and is only available as a resource to other organisms for a brief window of 
time. These factors combine to make carrion spatially patchy in occurrence, very 
nutrient rich, and ephemeral. These distinctive features of carrion not only make it 
a unique resource in ecosystems, but also strongly affects how it decomposes.

 The Decomposition Process

The processes responsible for the decomposition of an individual carcass have been 
described as creating a ‘cadaver decomposition island’ (sensu Carter et al. 2007). 
This decomposition island is a very localized and intense ‘hot spot’ and ‘hot 
moment’ of chemical and biological activity that ultimately leads to the breakdown 
and recycling of the energy and nutrients in a dead animal through other organisms 
and the wider environment. This occurs through both chemical and biological pro-
cesses. The intrinsic chemical processes, such as autolysis and putrefaction, are not 
covered in detail in this chapter. Briefly, after death of the animal, cells no longer 
receive oxygen or nutrients, and they are unable to maintain normal functioning. 
This leads to uncontrolled enzymatic and biochemical activity, which leads to cell 
death, autolysis and the breakdown and leakage of cell membranes. A more in-depth 
coverage of this aspect of decomposition can be found elsewhere (e.g. Carter et al. 
2007; Dent et al. 2004; Forbes and Carter 2015). The extrinsic biological drivers of 
decomposition are largely due to other organisms, and is initiated by the rapid pro-
liferation of bacteria present in the digestive tract and on the epidermal surface. 
These microbes release their own enzymes that further break down the animal’s 
cells. Together with the intrinsic chemical activity, the early stages of decomposi-
tion are characterized by the release of gases, which act as cues that attract early 
insect colonizers of carrion that specialize on carrion as a food resource (see chapter 
“Invertebrate Scavenging Communities”), and in turn begins the physical break 
down of the animal carcass through consumption of internal fluids and tissues. 
Further physical decomposition of carrion is facilitated by vertebrate scavengers 
that disarticulate carcasses and consume large portions of tissue (see chapter 
“Vertebrate Scavenging Communities”). This results in fragmentation of the carcass 
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into smaller parts as pieces are physically moved apart and scattered by animals. 
The net product of these chemical, biological and physical processes leads to the 
decomposition and disintegration of a carcass.

 Temporal Progression of Carrion Decay

A key aspect of carrion decomposition is its temporal component, involving the 
progressive breakdown of tissues through time. In their detailed review, Michaud 
et al. (2015) noted that carrion decomposition is often viewed as a series of steps 
or stages by many researchers, and this step-wise description is pervasive in both 
the entomological and forensic literature. This view, of course, serves as a useful 
way to differentiate between assemblages of species or qualitative features of a 
carcass at different points in time. This approach is further perpetuated by sam-
pling and observation methods, which are often necessarily restricted to points in 
time, thus leading to clear distinctions when making comparisons among samples 
and observations. Nevertheless, it is important to reiterate (with the above-men-
tioned methodological constraints in mind) that little evidence exists of substantive 
step- changes in decomposition, and that the process (mostly) occurs gradually 
through time. The description of decay ‘stages’ should therefore be considered as 
phases of decomposition through which a typical carcass passes gradually and not 
abruptly, and care should be taken in focusing on discrete stages where there is a 
continuum of change.

A typical classification scheme of temporal decay stage includes fresh, bloat, 
active, advance, and dry decay. A fresh carcass lasts for only a few minutes to 
hours after death, depending on temperature, before it enters a bloat stage whereby 
internal bacteria proliferate inside the gut, and leak into the lymphatic system and 
other tissues. The bloating is caused by the gases released by the bacteria and 
decaying tissues, and include methane, hydrogen sulfide, and carbon dioxide 
(Forbes and Carter 2015). The release of gases during the bloat stage is often the 
trigger for colonisation by carrion insects, such as blowflies, with gases acting as 
an important cue for species to search and locate the carcass (see chapter 
“Invertebrate Scavenging Communities”). Active decay of an animal carcass is 
characterized by the putrefaction and liquefaction of carcass tissues, and the 
release of a complex array of volatile organic compounds (Forbes and Carter 
2015). A rapid loss of carcass mass occurs due to the consumption of tissues by 
scavenger organisms, both vertebrate and invertebrate (see chapters “Invertebrate 
Scavenging Communities” and “Vertebrate Scavenging Communities”). Moisture 
is also lost from the carcass into the environment via evaporation and leakage of 
fluids into the soil. Vertebrate scavengers can play a role in disarticulating and 
moving larger carcasses, and local weather conditions such as wind and rain, may 
play a role in spreading the components of a carcass such as bones, skin fragments 
and fur/feathers. Progression into advanced decay involves the final breakdown of 
soft tissues and the appearance of the skeleton. Dry decay occurs over a much 
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longer time frame, and depending on the environment, the recalcitrant parts of a 
carcass, particularly the ligaments, nails, hair, and skeleton, may persist for many 
months and years.

 The Contribution of Organisms to the Decomposition Process

A diverse range of taxa are involved with the decomposition process, with several 
being critical to the rate and/or completeness of decay through either the direct 
consumption of carrion, or preying on other organisms that do. Experimental exclu-
sion or removal of different components of the necrobiome have also demonstrated 
their importance in accelerating mass loss from a carcass (Lauber et al. 2014; Pechal 
et  al. 2014a). Below we outline the role of three broad groups of organisms—
microbes, invertebrates and vertebrates—in the decomposition process. We focus 
only on the most important taxa, with further and more comprehensive details on 
succession and species-specific roles of invertebrates and vertebrates given in other 
chapters.

 Microbial Decomposers

Microbial decomposers (bacteria, archaea, fungi, protists) have a critical role in the 
decomposition of carrion (Carter et al. 2008; Crippen et al. 2015; Lauber et al. 2014; 
Metcalf et al. 2015). The diversity of the microbial community found at carrion is 
impressive, with many thousands of taxa found both in and on carcasses (Crippen 
et al. 2015; Pechal et al. 2013, 2014b). The primary mode of action of both bacterial 
and fungal decomposers is the secretion of enzymes to breakdown complex organic 
molecules into smaller ones that are then metabolized for their growth and rapid 
proliferation. Microbes, primarily bacteria, are present in great numbers both in the 
gut of animals and on the surface of the skin. Gut bacteria have a particularly impor-
tant role in the decomposition of animals, and can influence the rate of decay 
(Lauber et al. 2014), as well as the appearance and odour of carcasses. The main 
aerobic bacteria include several taxa from the Firmicutes and Bacteroidetes phyla, 
and anaerobic bacteria include the commonly known Lactobacillus, Streptococcus, 
and Staphylococcus that play a role in the fermentation of various organic com-
pounds in carrion (Forbes and Carter 2015). Fungi may become more abundant on 
older carcasses as conditions become drier and more hostile for bacteria (Carter and 
Tibbett 2003). Importantly, microbial communities play a critical role in accelerat-
ing decomposition rates, and can drive the decomposition process in the absence of 
all other eukaryotic organisms. It has been established through experimental work, 
for example, that decomposition rates of mice carcasses occurred at twice the rate 
in soil with intact microbial communities compared with sterile soil (Lauber et al. 
2014). The importance of microbes to decomposition lies in their ability to produce 
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a broad array of degradative enzymes, and their ability to colonise and use a broad 
range of carrion substrates, including all internal tissues and organs, as well as kera-
tinous hair and skin, and even bone.

 Arthropods

Arthropods comprise both primary and secondary consumer trophic roles at car-
casses, and their presence at a carcass can accelerate the decomposition process 
through consumption of the different components of a carcass. Surprisingly few 
experimental tests have been performed to directly assess the role of arthropods, but 
these few studies have identified important contributions (Farwig et al. 2014; Payne 
1965; Pechal et al. 2014a). A detailed overview of the different arthropod taxa pres-
ent at carrion is given in chapter “Invertebrate Scavenging Communities”, and here 
we focus on their functional roles.

Braack (1987) provided a useful classification scheme of the functional role of 
different arthropod groups by synthesizing his research on the arthropod fauna at 
carcasses in Africa. Not all functional groups may be present at a carcass in other 
parts of the world, or indeed at different carcasses in the same biome. For example, 
the rumen contents and large horns of an antelope attract a different set of fauna than 
a small carnivore carcass where these elements are absent. The relationship between 
the taxa that make up these functional groups (Fig. 1) shows that some taxa may 
feed on more than one carcass component, and therefore perform more than one 
functional role. This also applies to adults and larvae of the same species, which 
may each specialize on a different component. Such variation highlights varying 
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Fig. 1 A food web of the main arthropod taxa associated with an impala carcass in southern Africa 
(re-drawn from Braack 1987). Different carrion-associated taxa specialize on different compo-
nents of the carcass (shaded grey), but there can be overlap between components of the carcass. 
Credits: the chapter authors
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degrees of functional redundancy and complementarity among species at different 
carcasses in different biomes. The sarcophagous component feeds on carcass soft 
tissues, including muscle and body fluids, and is dominated by various fly taxa (e.g. 
Calliphoridae, Muscidae). Several taxa have a minor role, including Diptera: 
Piophilidae, Chloropidae, Coleoptera: Silphidae, Cleridae, Scarabaeidae, or 
Hymenoptera: Formicidae. The coprophagous component are most relevant to her-
bivore carcasses and are attracted to and feed on the gut contents. Typically domi-
nated by the Scarabaeidae, but other taxa typically found at dung pads will also be 
found at carcasses. The dermatophagous component feed on the skin, and is domi-
nated by the beetle taxa Dermestidae and Trogidae. The keratophagous component 
is a highly specialized fauna that feed on horns, nails, hair and hooves, and include 
the Tineidae and Trogidae. The detritivore component is a more generalized fauna 
that feed on various organic material, but is distinct from the Sarcophagous compo-
nent by being opportunistic rather than specialists. The detritivore component 
includes many taxa, including those species that specialize on other components, 
such as the Formicidae, Dermestidae and Trogidae. The predator component is a 
large and diverse group of taxa that feed predominantly on the abundant fly larvae 
and eggs, but may also feed opportunistically on other arthropods. The predator 
component includes the Formicidae, the beetle taxa Histeridae, Silphidae, Cleridae, 
Staphylinidae, and the mite taxa Macrochelidae and Parasitidae. Spiders will also 
opportunistically prey upon arthropods on carcass. The parasitic component 
includes several wasp species that are parasitoids of fly larvae. Many mites at car-
casses disperse via phoresy, but are technically not parasites of their fly or beetle 
hosts. The predator and parasitic functional groups may play a role in decomposi-
tion by moderating the abundance or activity of other consumer groups.

 Vertebrates

Vertebrates involved with decomposition are typically termed ‘scavengers’ (see chap-
ter “Vertebrate Scavenging Communities”). They play a key role in the consumption 
and fragmentation of large carcasses, and can be responsible for consuming the major-
ity of carrion in some ecosystems (DeVault et al. 2003; Wilson and Wolkovich 2011). 
Small carcasses can be entirely consumed by scavengers, but larger carcasses may 
only be partially consumed, resulting in disarticulation and dispersal of carcass mate-
rial through the landscape. The importance of vertebrates in carrion removal varies 
among ecosystems, but it is clear that vertebrates generally accelerate carrion decom-
position rates where they occur (DeVault et al. 2003; Ogada et al. 2012; Parmenter and 
MacMahon 2009). This may depend, in part, on the size and composition of the scav-
enger guild (Sebastián-González et al. 2016; Moleón et al. 2015). Some scavenger 
guilds are more diverse than others, with some guilds dominated by only a few large 
facultative scavenger vertebrates, such as dingos and raptors in arid Australia (Read 
and Wilson 2004), whereas other ecosystems have a relatively large and diverse guild 
with both facultative and obligate scavengers, such as lions, hyenas, jackals and 
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several vulture species in the Serengeti of Africa (Hunter et al. 2007). Importantly, 
many vertebrate predators will opportunistically scavenge on animal remains, and so 
also fill an important role in carrion consumption and carcass removal (Mateo-Tomás 
et al. 2015; Moleón et al. 2014; Moreno-Opo and Margalida 2013).

 Factors Affecting Decomposition

 Temperature and Moisture

Temperature and moisture are the two most important abiotic factors affecting the rate 
of decomposition of carrion. Temperature is critical in determining rates of chemical 
reactions driving autolysis and putrefaction, the metabolic activity of microbes, and 
development rates of fly larvae. Moisture is also critical in providing a substrate for 
effective enzymatic activity and bacterial proliferation, as well as preventing desiccation 
of carrion tissues and larvae of flies. The temperature- dependence of many processes in 
the natural world has led to the development of the ‘accumulated degree days’ (ADD) 
principle. This principle uses variation in daily temperature and the total time taken for 
a process to occur (Simmons et al. 2010). ADD has been examined widely in the foren-
sic sciences (Megyesi et al. 2005; Michaud and Moreau 2009) to generate predictions 
for post-mortem interval. This is often based on the developmental rates of key insect 
taxa such as flies. The development of fly larvae (and other holometabolous insects) 
through their instar stages requires a minimum threshold temperature. Above this thresh-
old (and if sufficient food resources are available), higher temperatures will result in 
faster development and faster progression through instar stages until an upper threshold 
is reached and survival is reduced. By summing daily minimum and maximum tempera-
tures at a carcass, and relating this to larval instar stage, it is possible to accurately deter-
mine the time the larvae were first deposited at the carcass, and therefore the age (or time 
of death) of the carcass. Temperature and moisture are closely linked, with very low 
temperatures preserving carcasses for extended periods by reducing moisture availabil-
ity. For example Musk ox (Ovibos moschatus) carcasses in the arctic circle have been 
shown to have extended effects on the localized environment, perhaps for over 10 years 
and due in part to lower temperatures (Danell et al. 2002). Conversely, extreme high 
temperatures can also reduce moisture availability, and can increased likelihood of 
mummification of carrion tissues, thus slowing decomposition.

 Vegetation and Habitat

Vegetation can affect decomposition by moderating the abiotic environment (i.e. 
through provision of shade), as well as by providing habitat to different species 
involved with decomposition. Many studies have compared arthropod communities 
from different habitats and found important differences. For example, differences in 
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carrion arthropods between grassland or forest habitats (de Almeida and Louzada 
2009), and urban, farmland and forest habitats (Kavazos and Wallman 2012) have 
been reported. These differences in species occurrence have the capacity to alter 
decomposition rates.

Vegetation structure can also impede access by large vertebrate scavengers. For 
example, consider that carrion initially attracts scavengers from a relatively local 
area. If the amount of carrion is small it will be consumed by competitively domi-
nant scavengers that arrive first. However, if the amount of carrion is greater than is 
swiftly consumed locally, then it is reasonable to expect scavengers to continue to 
recruit from increasingly distant areas. Some scavengers, especially avian species, 
are more capable of recruiting to or discovering carrion more rapidly than others 
(Wilmers et al. 2003). However, the increased feeding radii of avian scavengers is 
dependent upon the visibility of carrion. If carrion is sufficient obscured from visual 
detection by vegetative or other habitat characteristics then it is reasonable to expect 
that differences in decomposition can occur due to varying degrees of carrion use 
and disarticulation.

 Burial and Soil

Burial can alter decomposition by moderating temperature and moisture, limiting 
the external microbial fauna that comes into contact with the carcass, and prevent-
ing access by carrion-feeding arthropods and vertebrates (Carter and Tibbett 
2008; Payne et  al. 1968; VanLaerhoven and Anderson 1999). Burial therefore 
typically slows decomposition. Large carcasses may also produce an adipocere—
a fatty layer that forms around a carcass following biochemical decomposition 
and hydrolysis of tissues. This can act as a barrier to nutrient and microbial move-
ment away from the carcass and may prolong the decomposition process (Dent 
et al. 2004; Forbes et al. 2005).

 Submersion

The decomposition of carrion in aquatic and marine environments is fundamentally 
different from that in terrestrial systems (Beasley et  al. 2012; Parmenter and 
Lamarra 1991; Wallace 2015). The vast majority of research on carrion decomposi-
tion has been conducted in terrestrial environments rather than aquatic environ-
ments (freshwater or marine), and this has influenced much of our understanding of 
the process. Some key points of difference between decomposition in terrestrial and 
aquatic environments were synthesized by Beasley et al. (2012). These include the 
overarching effect of water acting as a medium through which organisms and nutri-
ents must move through to go towards or away from the decomposing carcass. This 
can have an effect on which animals are attracted to a carcass via movement of 
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chemical cues downstream or with currents. Another critical effect of water is the 
moderation of temperature, which is a major determinant of decomposition rate. 
Carrion in shallow water can experience fluctuations in temperature extremes, 
whereas in deep water temperature is more constant. In marine systems, ocean 
depth can determine the composition of the scavenger community and the decom-
position process. Deep sea abyssal biomes (Smith and Baco 2003), for example, 
have very different scavenger assemblages than shallow marine environments 
(Moore and Howarth 1996), and oxygen concentrations may have a role in which 
species are able to colonize carcasses (Anderson and Bell 2014). The decomposi-
tion of carcasses in marine and freshwater environments is also affected by faunal 
colonization and succession (see chapter “Invertebrate Scavenging Communities”). 
Key points of difference between freshwater and marine systems is the absence of 
insects in the marine environment (replaced largely by crustacean arthropods), and 
the comparative lack of carrion specialists in freshwater environments. Whether a 
carcass is completely submerged, floating at the surface, or in contact with the bed/
floor of the water column, can affect what taxa is able to colonize and how rapidly 
the carcass may be consumed.

 Carcass Size

The size of a carcass has important implications for how it decomposes, including 
its rate of decomposition and what organisms might use the carcass as a food 
resource. The size of a carcass affects how it moderates internal and ambient tem-
peratures, which is critical to decomposition rate. Large carcasses can contain more 
than 210,000 fly larvae (Braack 1987), and this generates heat that increases internal 
temperatures. This can accelerate microbial and intrinsic decay processes relative to 
smaller carcasses that cannot accommodate such large maggot masses. For exam-
ple, Hewadikaram and Goff (1991) showed that 15  kg pig carcasses had higher 
internal temperature relative to 8 kg carcasses. Further, they showed that the internal 
temperature of small pig carcasses more closely matched that of ambient 
temperatures.

The ecological study of carrion has been conducted on many kinds of carcasses 
(Barton et al. 2013a), including bison (Towne 2000), pigs (Mądra et al. 2015), kan-
garoos (Macdonald et al. 2014), rabbits (De Jong and Chadwick 1999), rats (Carter 
et al. 2008), and even slugs (Woodcock et al. 2002) to name but a few. This has 
resulted in a wide range of separate studies involving different carcasses. Due to the 
requirements of proper scientific method, samples are typically replicated across the 
same kind of animal carcass. This has meant that few studies have explicitly com-
pared decomposition among different carcass types to see how this attracts different 
sets of organisms (but see Moleón et al. 2015; Parmenter and MacMahon 2009). 
One way to understand the effect of carcass size is to view each carcass as a food 
particle (Moleón et al. 2015). When viewed this way, the size of a carcass will deter-
mine what organisms will use it as a food resource, and therefore the fate of the 
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carcass and its nutrients. To illustrate this point, carcasses of very small animals (i.e. 
insects, small rodents) are typically consumed whole by scavenging animals such as 
birds or other small vertebrates (DeVault and Rhodes 2002). Very large carcasses 
(e.g. ungulates) can often be larger than any of their predators or potential scaven-
gers. In these instances, each carcass may support multiple species of scavenger 
organism (Selva et al. 2005), and this introduces new factors such as species interac-
tions that may affect decomposition. A study by Moleón et al. (2015) found that 
scavenger assemblages were more species rich at larger carcasses, and that this was 
largely due to the presence of facultative scavengers (i.e. mammal carnivores) rather 
than obligate scavengers (i.e. vultures). A consequence of this size-driven assem-
blage difference was that decomposition rate, expressed as percentage biomass con-
sumed, was negatively associated with carcass size, indicating that rate of decay 
was slower for bigger carcasses.

 Ecological Theory Underpinning Carrion Decomposition

The study of carrion decomposition has been informed by several important theo-
ries relating to populations and communities of carrion-associated organisms. Most 
work on carrion decomposition has been dedicated to case studies and detailed field 
observations, with less emphasis on hypothesis testing and development of theory 
(Michaud et  al. 2015). The ecological attributes of carrion are well known, and 
include its (relatively) predictable decay pattern (Payne 1965; Schoenly and Reid 
1987) and its unpredictable patchiness and ephemeral occurrence (Barton et  al. 
2013a; Braack 1987; Doube 1987; Finn 2001). These ideas capture much of the 
theory describing faunal communities involved with carrion decomposition, includ-
ing succession, competition, and coexistence and aggregation. Other processes link 
carrion to ecosystems at larger scales, including carrion-based subsidies of com-
munities and resource pulse dynamics (Oro et al. 2013; Polis and Hurd 1996; Yang 
2006), as well as predators decoupling carrion distribution from live-prey distribu-
tion (Bump et al. 2009a).

 Succession

The succession (i.e. the sequenced arrival and departure) of different organisms at a 
carcass through the decomposition process is very well documented (Bornemissza 
1957; Matuszewski et al. 2011; Mégnin 1894; Payne et al. 1968; Schoenly and Reid 
1987). Succession theory is one of the most widely used theories relating to carrion 
decomposition, especially with regard to the study of the diversity and structure of 
arthropod communities (Barton et al. 2014; Benbow et al. 2013; Hobischak et al. 
2006; Richards and Goff 1997), and its application to the estimation of postmortem 
interval for forensic purposes (Archer 2014; Pechal et al. 2014b; Schoenly 1992; 
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Schoenly et al. 1992). Indeed, there is evidence that the concept of succession was 
first formalized by forensic entomologists working with human cadavers in the late 
1800s (Mégnin 1894), which contrasts with the history of succession theory usually 
attributed to plant ecologists in the early 1900s (Michaud et al. 2015). Succession 
theory as it relates to carrion, however, differs somewhat from how it is applied to 
other ecological phenomena such as plant colonization and community develop-
ment following disturbance (Turner et al. 1997). This is because carrion decomposi-
tion does not lead towards a ‘climax’ community where species and resources reach 
equilibrium. Rather, carrion is a finite resource that rapidly reduces in quality and 
quantity until depleted.

The processes driving succession relate to the change in carrion quality through 
time, including changes in the moisture and nutrient content, as well as the mix of 
volatile organic compounds released from the carcass. A fresh carcass is fundamen-
tally different to dry remains in this regard, and this determines which specialists, 
generalist scavengers, and higher predators, will be attracted to a carcass at different 
points in time. Indeed, the temporal change in the ‘signature’ of chemicals released 
from a carcass may be an important mechanism driving insect succession, although 
his has not been explicitly tested (Michaud et al. 2015). Another key mechanism 
behind succession is facilitation (Connell and Slatyer 1977). It occurs when species 
present at a carcass have a role in modifying the resource after its arrival, thus pre-
paring the carcass for colonization by another species. Although suggested by some 
(Schoenly and Reid 1987; Smith and Baco 2003), it has not been explicitly tested 
(Michaud et al. 2015).

 Competition

The rare occurrence of carrion, and its high nutrient content, produces intense 
competition among species for the limited resources available at carcasses 
(Braack 1987; Kneidel 1984). This has led to the selection of key traits of spe-
cies to enable them to rapidly disperse, locate, colonize, and feed on the carrion 
for growth and development of offspring (Tomberlin et al. 2011). Any species 
that can perform these tasks faster or more efficiently than others can potentially 
monopolize the resource and have a competitive advantage. Direct competition, 
however, should lead to the evolved specialization of species to reduce overlap 
in their resource requirements. It is evident that niche specialization exists 
among scavenger communities, especially for diverse arthropod assemblages 
(Bessa et al. 2014; Braack 1987) and obligate vertebrate guilds (DeVault et al. 
2003). However, there are other mechanisms that also underpin competitive 
dynamics, such as resource partitioning, population aggregation, and chemically 
mediated interactions.

Partitioning of carrion resources among species can occur within and among 
individual carcasses. Different combinations of species of arthropods and verte-
brates have been shown to utilize different kinds and sizes of carcasses (Hewadikaram 
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and Goff 1991; Moleón et al. 2015; Sebastián-González et al. 2016) and this repre-
sents a kind of resource partitioning among different carcasses. Nestedness in 
species- rich vertebrate scavenger assemblages has been reported from carcasses in 
Spain (Sebastián-González et al. 2016) and in Poland (Selva and Fortuna 2007), 
and is thought to be a consequence of competition among species-rich assemblages. 
This non-random occurrence of species among carcasses is evidence of partitioning 
among carcasses. However, partitioning is best known within carcasses where dif-
ferent species utilize different parts of a carcass (e.g., Fig. 1). For some species, 
competition may have resulted in niche differentiation, such as among flies com-
peting for moist tissues and fluids (e.g. Calliphoridae, Muscidae; (Hanski 1987b). 
For other species, partitioning may represent an adaptation to an available niche 
where there is low competition. The tough, keratinous horns and hooves of some 
animals, for example, is exploited by tineid moths or trogid beetles and few other 
arthropods (Braack 1987), likely due to low competition for this challenging 
substrate.

Interactions between competitively superior and inferior species can affect levels 
of coexistence among species seemingly sharing the same patchy resource. The 
‘aggregation model of coexistence’ for a community of species sharing a single 
resource proposes that if the distribution of a competitively superior species is spa-
tially aggregated, i.e. clumped at patches, then this frees other patches of resource 
to be colonized by competitively inferior species (Atkinson 1985). This model has 
been examined in detail for communities of carrion flies (Hanski 1987a; Ives 1991), 
and has shown a general tendency for increasing aggregation to lead to increasing 
levels of coexistence among species competing for the same carrion resource. 
Factors such as carcass size and habitat quality have also been shown to affect spe-
cies aggregation and levels of species coexistence (Woodcock et al. 2002). Another 
consequence of competition among species for a patchy resource is the evolved 
capacity for rapid location, colonization, and exploitation of the resource patches 
(Barton et al. 2013b; Ruxton and Houston 2004). The early arrival of a species prior 
to a competitor, may confer a competitive advantage by providing a window of 
opportunity to consume the resource unencumbered by other species. Such ‘priority 
effects’ are another potential mechanism underpinning patterns of succession and 
coexistence among species competing for the same resource (Alford and Wilbur 
1985; Brundage et al. 2014).

Competitive interactions among decomposers and scavengers can be mediated 
by chemicals. For example, the interactions between microbial decomposers and 
vertebrate carrion consumers has been known for some time (DeVault et al. 2003; 
Janzen 1977). However, it is only more recently that examples have been docu-
mented for the competitive exclusion of arthropods by bacteria (Burkepile et  al. 
2006; Tomberlin et al. 2012) and bacteria by arthropods (Hoback et al. 2004; Rozen 
et al. 2008). This competitive dynamic might have significant implications for rates 
of carrion decomposition if rapid consumption by flies, for example, is prevented. 
Further implications for ecosystems may include diversion of nutrients into the soil 
decomposer system where they are metabolized in the soil by bacteria and fungi at 
the site of a carcass.
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 Top-Down Versus Bottom-Up Effects on Carrion Communities

The study of foodwebs often focuses on a plant-herbivore-predator perspective of 
trophic interactions and community structure, but this overlooks the importance of 
detritus (both plant and animal) as an alternative resource base (Barton 2015; Moore 
et al. 2004). The role of carrion resources in structuring scavenger communities is 
poorly understood, although this is growing for some vertebrates (DeVault et  al. 
2003; Wilson and Wolkovich 2011). Further details on vertebrate scavenger com-
munities is given in chapter “Vertebrate Scavenging Communities”. Theory sug-
gests that carrion resources may underpin a larger amount of energy and nutrient 
flow than consumption of live prey (Wilson and Wolkovich 2011).

Carrion can have an important role in structuring food-webs via top-down (i.e. 
predator-based) regulation of lower trophic levels and bottom-up (i.e. resource- 
based) regulation of higher trophic levels (DeVault et al. 2003; Dyer and Letourneau 
2003; Mateo-Tomás et al. 2015). Although the top-down vs. bottom-up dichotomy 
is a useful way to conceptualize trophic interactions, recent evidence has shown that 
predators often have multiple links to other components in a foodweb. For example, 
many predators (arthropods and vertebrates) will consume carrion when the oppor-
tunity arises (Moleón et  al. 2014; von Berg et  al. 2012; Wilson and Wolkovich 
2011). This suggests that a compartmentalized view of trophic levels is simplistic, 
and that the role of predators in structuring carrion-centered food webs are more 
complicated and warrant further study.

There are several examples of bottom-up control of scavenger communities, par-
ticularly in island or cave ecosystems (Polis and Hurd 1996; Schneider et al. 2011). 
Such systems often lack primary production, and may be entirely dependent on 
external detrital resources, including carrion, as a source of energy and nutrients. 
For example, work by Polis and Hurd (1995) examined the role of carrion on oce-
anic islands. They revealed a causal relationship between marine-derived carrion 
and terrestrial foodweb dynamics of islands. Another example involves work by 
Schneider et al. (2011) and the manipulation of amounts of carrion in a series of 
caves. They showed that carrion-associated arthropod communities in these caves 
were profoundly affected by carrion addition and removal, thus revealing the extent 
to which these cave biota are dependent upon outside carrion subsidies (Schneider 
et al. 2011).

 Decomposition Linkages Between Ecosystems

The movement of carrion within and across ecosystems can underpin the function-
ing of some food webs and ecosystems by subsidizing detritus resources (Polis et al. 
1997). For example, many small or young islands have very limited autochthonous 
biomass production due to limited soils or unfavorable growing conditions. In these 
environments, carrion from nesting birds, or fish, bird and seal carcasses washed in 
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from the sea, can supplement the resource base for the island food web. This has 
been demonstrated by Polis and Hurd (1995) on islands in the Gulf of California, 
where they measured invertebrate densities on a range of islands of different size. 
Carrion inputs were shown to be critical to these ecosystems, and supported high 
abundances of scavenger invertebrates and their spider predators.

The movement of carrion across ecosystems can also occur through the migra-
tion of live animals. A good example of this is the migration of anadromous salmon 
(e.g. Salmo spp. and Oncorhynchus spp.) up streams from the ocean as part of their 
annual spawning runs (Hocking and Reynolds 2011). This migration from marine to 
freshwater ecosystems, and the subsequent die-off of thousands of individuals 
results in the mass transfer of substantial quantities of salmon biomass, with bene-
fits for many scavenger invertebrates (Hocking et al. 2009). A similar phenomenon 
has been documented for the mass emergence of aquatic insects and their dispersal 
to nearby riparian and terrestrial habitat (Dreyer et al. 2012, 2015). Although insect 
carcasses are small, this is made up for by their sheer quantity and high densities. 
Such carcass-mediated transfers of carbon and nitrogen can be substantial across 
ecosystem boundaries, and has the potential to affect ecological processes and nutri-
ent cycling.

 Patch Dynamics and Landscape Heterogeneity

The spatial and temporal patchiness of animal carcasses in the environment has 
been repeatedly found to influence the dynamics of species populations and assem-
blages at carrion (Barton et al. 2013a). Much of this work, however, has been at 
small scales with a focus on individual carcasses. This has helped to consolidate the 
dominant paradigm of the ‘ephemeral resource patch’, which provides an effective 
general framework for how resource patchiness can affect the spatio-temporal 
dynamics of species populations or communities (Finn 2001). It also draws concep-
tual parallels between carrion resources and other spatially discrete and temporary 
resources, such as dung pads (Doube 1987), fungal fruiting bodies (Heard 1998) 
and plant fruits (Sevenster and VanAlphen 1996). By contrast, scaling up this work 
to understand the role of carrion in landscapes and ecosystems has been rare (Bump 
et al. 2009a). Further, an outward perspective that questions the larger-scale role of 
carrion in nutrient cycling and landscape heterogeneity is lacking, despite there 
being some high-profile evidence of the large-scale impact of carrion (Hocking and 
Reynolds 2011; Yang 2004).

The patchiness of carrion can affect landscape heterogeneity in terms of biodi-
versity and ecological processes. For example, two carcasses at different decay 
stages will support a greater range of species than two carcasses at the same decay 
stage, and this has consequences for supporting overall biodiversity within land-
scapes (Barton et al. 2013a). Carcasses can also drive soil nutrient heterogeneity 
(Bump et  al. 2009a), and can provide establishment opportunities for grasses 
(Barton et al. 2013b) and for trees (Barton et al. 2013b; Bump et al. 2009b). When 
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in sufficient quantities, and multiplied across space and over time, the geographic 
location and turnover of carcasses can have significant effects on whole ecosystems 
(Bump et al. 2009a).

It was previously thought that well-consumed carrion did not contribute to eco-
logical heterogeneity. We have learned, however, that in some cases even well con-
sumed carrion can cause significant physical disturbances and nutrient pulses that 
alter mosaics of biogeochemical complexity, nutrient availability, microbial bio-
mass, activity, and composition, and soil biodiversity. Consumptive activities dis-
perse carrion resources beyond a discrete area. Carcass sites also concentrate other 
materials resulting from the activity of consumers. Initially, carcass sites receive 
resource inputs from predators and scavengers, including feces and urine. Enhanced 
plant quality and growth at carcass sites can attract herbivores and their predators, 
which also results in excretory inputs (Danell et  al. 2002, 2006; Towne 2000). 
Insects and birds may also contribute significant inputs of chitin and keratin, respec-
tively. Cumulatively, these inputs can extend the duration and quantity of energy 
and nutrient exchange at carcass sites, thereby producing positive feedbacks that 
prolong elevated levels of heterotrophic activity and ecological heterogeneity. These 
changes affect above ground biomass, community composition, foliar nutrient lev-
els, and tree seedling establishment and sapling growth (Bump et  al. 2009a, b; 
Towne 2000). The ability of carrion to alter steady-state edaphic and ecological 
properties represents a strong, reciprocal feedback between above and belowground 
communities. This occurs via mortality of above ground organisms, which leads to 
multiple effects on belowground communities that then alter aboveground ecologi-
cal properties (Bardgett and Wardle 2010; Dreyer et al. 2015; Schmitz et al. 2010). 
As a consequence, this work is highly cross-disciplinary, spanning multiple scales 
of ecological inquiry.

 Conclusions and Future Perspectives

Knowledge of carrion decomposition will continue to inform many aspects of ecol-
ogy, biodiversity conservation, natural resource management, as well as the forensic 
medical sciences. The decomposition of carrion results from a complex series of 
chemical, biological, and physical processes that ultimately recycles the energy and 
nutrients embodied in an animal through other organisms and its environment. 
Understanding of carrion decomposition has been developed by specialists in chem-
istry, medical pathology, microbiology, soil science, entomology, and ecology, and 
the future of decomposition research will need to foster deeper interdisciplinary 
collaboration among these specialists.

Key emerging areas of carrion decomposition research will stem from advances 
in technology and the rapid reduction in costs of various forms of molecular analy-
sis. Further advances will also come from multi-disciplinary research that integrates 
molecular and ecological perspectives. Emerging areas and advances in carrion 
decomposition will also benefit from increased spatial variance sampling that will 
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allow researchers to determine under what circumstances carrion decompositions 
contributes to or diminishes environmental heterogeneity at multiple scales. At the 
macro scale, continued comparative investigation of controls (e.g. weather, disease, 
predation) of carrion distribution in space and time are necessary to predict how 
climate change will likely affect carrion availability and decomposition in 
ecosystems.

 Molecular Tools and the Microbial Frontier

Rapid developments in technology, including improved instrumentation and com-
putational power, is generating ever increasing amounts of biomolecular data. This 
is true for all aspects of the life sciences, and there is clear potential to apply this to 
understanding carrion decomposition. One example of this is the emergence of 
ecogenomics and the rapid assessment of diversity, composition and function of 
hyperdiverse microbial communities (Metcalf et  al. 2015; Pechal and Benbow 
2016; Pechal et al. 2014b). A particularly exciting area of research is the role of the 
microbiome in decomposition, and how this is influenced by other carrion-feeding 
organisms such as blowflies (Pechal et al. 2013). Although each carcass has its own 
community of microbes in its gut and on its skin, the effect of colonizing insects in 
bringing new bacteria to a carcass, and potentially altering decomposition patterns, 
remains poorly understood. The diversity and composition of the microbiome is 
likely to have important effects on carrion decomposition, and the rapid and accu-
rate assessment of microbial diversity using molecular tools will be critical to this 
future research area (Crippen et al. 2015; Metcalf et al. 2015; Pechal et al. 2014b). 
Further, there is the unknown possibility of carrion gut microbiota ‘seeding’ soils, 
potentially increasing localised soil microbial diversity and broader spatial micro-
bial heterogeneity.

 Community Interactions

There is a renewed focus on understanding the dynamics and interactions among 
species associated with carrion, and which combine to form the ‘necrobiome’ 
(sensu Benbow et al. 2013). This includes all the microbial, arthropod, and verte-
brate taxa that are part of the carrion foodweb and are responsible for the decompo-
sition of carrion. An exciting and emerging area is the interaction between microbes 
and insects. As noted above, the microbiome of a carcass has a hugely important 
role in its decomposition (Metcalf et al. 2015), yet interactions among insect species 
and among insects and bacteria also have important implications for decomposition 
(Pechal et al. 2013; Tomberlin et al. 2012). Research into the complex interactions 
among species, within and among carcasses, and at multiple spatial scales, is emerg-
ing as critical to understanding the decomposition process (Benbow et al. 2015), 
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and its role in driving biodiversity dynamics, nutrient cycling, and ecosystem func-
tioning more broadly (Barton et al. 2013a).

Particular recent interest in vertebrate scavengers (e.g. Moleón et  al. 2014; 
Wilson and Wolkovich 2011) stems from the decline of apex predators in many 
ecosystems worldwide (Estes et al. 2011) and subsequent functional replacement 
by a range of other predators. Apex predators, such as lions or wolves, generate 
carrion by leaving the un-consumed remains of kills (Bump et al. 2009a), which 
is used by other smaller predators and scavengers. However, many predator spe-
cies increase their scavenging of carrion during times of low prey availability 
(Wilson and Wolkovich 2011). This can result in changed structure of food webs, 
and altered pathways of nutrient and energy flow through ecosystems. A research 
priority is therefore understanding how changes to carrion food webs, and their 
species interactions, might translate to changes in ecosystem functioning (Barton 
et al. 2013a; Tomberlin et al. 2011; Wilson and Wolkovich 2011). A significant 
barrier to this work, however, is the lack of studies that have compared communi-
ties of multiple taxa such as microbes, arthropods, birds and carnivores (but see 
Parmenter and MacMahon 2009; Read and Wilson 2004; Selva and Fortuna 2007; 
Tomberlin et al. 2012).

Despite the recent recognition of the ecological importance of carrion, the spatial 
and temporal dynamics of carrion distribution via large vertebrate carcasses is com-
paratively unexamined. Yet, it is of fundamental ecological importance because 
large vertebrate carcasses can facilitate niche provisioning and specialization, and 
alter resource competition dynamics for other species. For example, carcass-derived 
nutrients can shift competitive relationships among primary producers (Barton et al. 
2013b; Bugalho et al. 2011; Towne 2000), serve as a disturbance mechanism (Danell 
et al. 2006), and carcass sites constitute specialized, critical habitat for obligate car-
rion feeders and reproducers (Selva and Fortuna 2007).

 Decomposition and Global Change

Many aspects of global change have the potential to alter carrion dynamics and the 
decomposition process. This includes changes to land use and the habitat that sup-
ports carrion scavenger and decomposer communities (DeVault et al. 2011; Klein 
1989), and the transmission of disease and the timing and magnitude of animal mass 
mortality events (Fey et al. 2015). The drivers of land use change include agricul-
tural expansion and intensification, as well as urbanization. When changes to land 
use occur, some consumers of carrion may be lost, or their spatial or temporal dis-
tribution changed, with potential implications for decomposition processes and 
rates (Kavazos and Wallman 2012; Klein 1989). For example, loss of species may 
result in reduced functional complementarity and redundancy among carrion con-
sumers. It is already known that many vertebrates will opportunistically scavenge 
on carrion (see chapter “Vertebrate Scavenging Communities”), and there is evi-
dence that some intra-guild compensation occurs when dominant scavengers are 
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removed or lost due to land use changes (Olson et al. 2012). Similarly, several spe-
cies of blow fly (Diptera: Calliphoridae) typically co-occur at carcasses, but recent 
evidence suggests that urbanization affects fly community composition (Kavazos 
and Wallman 2012), and this is likely to change levels of inter-specific competition, 
and perhaps even carrion decomposition rates.

Far less is known about the potential impacts of global climate change on carrion 
decomposition. The strong temperature dependence of the decomposition would 
suggest this important process is highly vulnerable to temperature changes, with 
higher temperatures likely accelerating rates of decay. However, the impact of cli-
mate change on species of microbe or insect critical to decomposition, or their inter-
actions, is unknown. An expected effect includes range shifts due to changes in 
optimal developmental envelopes (Chen et al. 2011; Walther et al. 2002), and this is 
likely to move species into new areas, and out of existing ones. This has implica-
tions for both the ecology of carrion decomposition and its application to forensic 
problems that depend on knowledge of species presence and development rates.
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