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Abstract. The existing secure nominative signature schemes are all
based on bilinear pairings and are secure only on classical machines.
In this paper, we present the first lattice based nominative signature
scheme. The security of our scheme relies on the hardness of short inte-
ger solution (SIS) and learning with error (LWE) problems for which no
polynomial time quantum algorithms exist till now. Consequently, our
scheme is the first nominative signature scheme that withstand quantum
attacks. Furthermore, we propose stronger security models for unforge-
ability and invisibility and prove our construction achieve these enhanced
security. Besides, our scheme exhibits impersonation and non-repudiation
following standard security model. We emphasis that the security anal-
ysis against all the security attributes for our scheme are in standard
model except the security against malicious nominator which uses ran-
dom oracle.

Keywords: Lattice based cryptography · Nominative signature ·
Unforgeability · Invisibility · Non-repudiation

1 Introduction

A nominative signature scheme, introduced by Kim et al. [6], is an important
cryptographic primitive which enables a nominator to select a nominee and pro-
duce a nominative signature corresponding to the nominee. Moreover, only the
nominee can prove (convince) the validity of a nominative signature to a ver-
ifier. A nominative signature should satisfy the following security attributes −
unforgeability, invisibility, non-impersonation and non-repudiation. Unforgeabil-
ity ensures that a nominator or a nominee cannot produce a valid nominative
signature alone while invisibility features that the verification of a nominative
signature can be performed by nominee only. Non-impersonation guarantees that
only the nominee can prove (convince) the validity of a nominative signature to
a verifier. Non-repudiation holds certain control on the nominee. It ensures that
inspite of having the ability of verification and checking validity of a nominative
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signature, the nominee cannot deceive a verifier by proving the validity of an
invalid nominative signature or invalidity of a valid nominative signature.

Nominative signature has several practical applications in user identification
system, banking, insurance, mobile communication etc. For instance, suppose
a government body (nominator) certifies and issues signature on passport of a
countryman (nominee) who requests for it. Nominative signature scheme can be
an ideal cryptographic primitive to handle this situation by producing a mutual
agreement (nominative signature) between the government body and the coun-
tryman. The government body cannot make false claims on the countryman
and vice versa if the scheme is unforgeable. The invisibility property of the
scheme permits only the countryman to verify whether the issued passport con-
tains all the correct details or not. Impersonation allows only the countryman
to prove (convince) to the airport authority (verifier) that the passport belongs
to him/her. Moreover, if the countryman has a fake (or an original) passport
then he should not be able to mislead the airport authority by proving the fake
passport to be an original (or an original passport to be a fake) passport. This
feature is ensured by non-repudiation.

Related Work: Nominative signature was introduced by Kim et al. [6] in 1996
based on Schnorr’s signature and claimed to be secure under the hardness of
discrete logarithm problem. However, the scheme is found flawed by Huang and
Wang [5] in 2004. The concept of convertible nominative signature was intro-
duced in [5]. They also proposed a construction for convertible nominative sig-
nature which is proven to be insecure in [15].

The formal definition and security model for a nominative signature was
introduced by Liu et al. [10] in 2007 along with a nominative signature scheme.
This construction is based on Chaum’s undeniable signature and is secure under
the hardness of computational Diffie-Hellman problem, decisional Diffie-Hellman
problem and discrete logarithm problem. The scheme requires multi-round of
communication between a nominator and a nominee for the signature generation.
A more efficient design for nominative signature was proposed by Liu et al. [9]
using ring signature with one round of communication between a nominator
and a nominee. This construction is proven to be secure under the discrete
logarithm assumption and computational Diffie-Hellman assumption. However,
the schemes [9,10] exhibit the weak invisibility in the sense that the nominator
does not take part in generating of some valid signatures.

Huang et al. [4] proposed a stronger security model by introducing stronger
invisibility with an extra feature of considering nominator as an adversary. They
designed a one-round nominative signature scheme which achieves security in
this stronger security model. They proposed a security model stronger that of [4]
by proposing a stronger unforgeability where adversary generates the challenge
public nominee key. Together with the model of stronger unforgeability they
have constructed a nominative signature scheme which is proven to be secure in
this stronger security model.

The works of [4,14] are the only secure nominative signature schemes so far on
the classical machine. Both these schemes use bilinear pairing. The scheme in [4]
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uses witness indistinguishable and is proven secure in the random oracle model
under the hardness of weak discrete logarithm problem, weak Diffie-Hellman
problem, bilinear Diffie-Hellman exponent problem, weak computational Diffie-
Hellman (WCDH)-I problem and WCDH-II problem. It is an efficient scheme as
it requires only one-round of communication between a nominator and a nominee
to generate a nominative signature. The number of bilinear pairings used in the
generation of the nominative signature is 3. The nominator’s public-secret keys,
nominee’s public-secret keys all have size |G|, nominative signature is of size
4|G|, communication cost is |G|. On the other hand, the scheme in [14] uses
zero knowledge proof of knowledge and is proven secure in the standard model
under the hardness of discrete logarithm problem and discrete linear problem.
It also requires only one-round of communication between a nominator and a
nominee to generate a nominative signature and it uses 3 bilinear pairings in
the generation of the nominative signature. The nominator’s public-secret keys,
nominee’s public-secret keys are of size (n+3)|G|, |G|, (n+6)|G| and (n+3)|G|
respectively, nominative signature is of size 4|G|, communication cost is 2|G|
where |G| is the bit size of an element of the group G.

As there is a threat on the reality of quantum machine, a modern pub-
lic key cryptosystem is required to withstand quantum attacks. Cryptosystems
based on hash functions, lattices, codes, multivariate polynomials, isogenies etc
are secure on the quantum machine. Lattice based cryptography is one of the
most promising tools for the post quantum era as it offers security under worst-
case intractability assumptions, efficient parallel computations and homomor-
phic computation in addition to the apparent resistance to quantum attacks.
Although a number of cryptographic primitives have been designed using lat-
tice, till now there are no lattice-based construction for nominative signature.

Our Contribution: In this paper, we propose a security model for the nomi-
native signature scheme which is stronger than the models proposed in [4,14].
Further, we construct the first lattice based nominative signature scheme which
achieves security in this stronger security model under the hardness of short inte-
ger solution (SIS) problem [1] and learning with error (LWE) problem [13]. More
precisely, we note the following:

– At a high level, we design a nominative signature by employing the decompo-
sition extension technique of Ling et al. [8] and integrate the non-interactive
zero knowledge argument system of Libert et al. [7]. In our construction, the
public key of a nominator or a nominee is a matrix S ∈ Z

n×m
q and the secret

key TS ∈ Z
m×m is a short basis of the lattice Λ⊥

q (S) = {x : Sx = 0 mod q}
where q, n, m are integers and m = poly(n). The nominator can choose a
nominee. The nominee, in turn, proves its identity to the nominator by issu-
ing a signature Sig to the nominator which contains a non-interactive zero
knowledge proof Π. The proof Π proves to the nominator that the nominee
has the knowledge of a vector y ∈ Z

m
q satisfying an equation of the form

Py = v mod q. Here P ∈ Z
n×m
q and v ∈ Z

n
q are suitably formed using the

decomposition-extension technique and are publicly computable. After suit-
ably verifying Sig, the nominator issues the nominative signature nsig which
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consists of a short solution x of an equation of the form Ax = b mod q where
A, b are publicly available. The nominative signature nsig can be verified by
the nominee and the validity (or invalidity) can be proven to the verifier only
by the nominee using the confirmation protocol (or disavowal protocol).

– We propose a security model which is stronger than the security of [4,14]
by exhibiting stronger unforgeability against malicious nominee, stronger
unforgeability against malicious nominator together with stronger invisibility.
Similar to [14], the security against impersonation in our model is included in
the unforgeability against malicious nominator while non-repudiation follows
the model of [4]. The unforgeability in our model is stronger in the following
sense.
(i) The forger is allowed to query for the signature on the forged tuple

(M∗, NE, NR) only ones. Here M∗ is the message on which the forged
nominative signature nsig∗ is produced, NE is the malicious (or uncor-
rupted) nominee and NR is the uncorrupted (or malicious) nominator
corresponding to nsig∗ for unforgeability against malicious nominee (or
against malicious nominator). This query is not permitted in the security
model of [4,14].

(ii) Besides, the forger is provided the flexibility to choose the honest nomi-
nator NR (or the honest nominee NE) from all the uncorrupted nomina-
tors (or nominees) to achieve unforgeability against malicious nominees
(or malicious nominators). In [4,14], honest nominee or honest nomina-
tor are chosen by the challenger.

(iii) Additionally, the forger can corrupt nominator and nominees by query-
ing their secret keys which is not permitted in the security model of
[14].

(iv) Furthermore, similar to [14], the forger is allowed to query for a proof
for the validity or invalidity of the signature Sig (or nsig) issued by a
honest nominee (or a honest nominator).

– Like [4,14] our scheme also offers non-transferability which ensures that the
verifier cannot convince (or disavow) a third party that the verifier received
a valid (or invalid) signature on a given message from the nominee. It follows
from the combination of invisibility and zero knowledge argument system.

– We also achieve a stronger invisibility as our model gives the choice to the
adversary to choose the honest nominee for the challenge query which is not
permitted in [4,14].

– Our scheme is proven to be secure in this stronger security model. We achieve
unforgeability against malicious nominee under the hardness of SIS search
problem. The invisibility is obtained under the hardness of SIS decision prob-
lem and LWE problem. Non-repudiation follows from the completeness and
soundness properties of the non-interactive zero knowledge argument system
of [7]. Our security analysis is in the standard model without using any ran-
dom oracles. However, we attain unforgeability against malicious nominator
in the random oracle model under the hardness of SIS search problem. As
mentioned earlier, we cover non-impersonation in the unforgeability against
malicious nominator.
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– In our scheme, the public key of a user (nominator or nominee) is a matrix
S ∈ Z

n×m
q and the secret key TS ∈ Z

m×m is a short basis of the lattice
Λ⊥

q (S) = {x : Sx = 0 mod q} where q, n, m are integers and m = poly(n).
Consequently, the size of user’s public key and secret key is ˜O(n2) each. On
the other hand, the nominative signature in our scheme is nsigNR = (z,y1)
where z ∈ Z

m
q and y1 ∈ Z

n
q . Therefore the size of the nominative signa-

ture is ˜O(n). The Sig issued by the nominee to prove his identity to the
nominator is Sig= (Π, y1) where Π = ({COM}s

γ=1,Ch, {RSP}s
γ=1) is the

proof of knowledge of a vector y ∈ Z
m
q satisfying an equation of the form

Py = v mod q. This implies that the communication cost for the non-
interactive zero knowledge proof is s · |COM| + s · |RSP| + s. Here COM is the
commitment function used by the nominee to produce a commitment about
the knowledge of y to the nominator and RSP is the response on this commit-
ment COM depending on the challenge Ch and |RSP| = O(L), L = 6(m+1)p,
p = �log2 β� + 1, β = 2σ

√
m and σ is the standard deviation of the discrete

Gaussian distribution.

2 Preliminaries

Notations. Here we define some basic terminology for our work. Through-
out this paper, a vector a ∈ S

n denotes a column vector of dimension n × 1
with entries from the set S. For u = (u1, u2, . . . , un) ∈ R

n, ||u||∞ = max
i

|ui|
denotes the maximum norm and ||u|| =

√

u2
1 + u2

2 + . . . + u2
n stands for the

Euclidean norm. Let A = (a1,a2, . . . ,am) be a matrix with m columns in R
n

then ||A|| = max
1≤i≤m

||ai||. The notation A ←↩ Δ implies A is a matrix following

the distribution Δ and At represents the transpose of the matrix A. We refer ||
for the concatenation of matrices and also for the concatenation of vectors. We
say that a function f is negligible in λ if f = λ−ω(1).

Definition 1 (Lattice). For any m ≥ n, let B = {b1, b2, · · · , bm} be any linearly
independent set of vectors in R

n. A lattice generated by the set B is defined as
Λ(B) = { ∑

bi∈B

cibi : ci ∈ Z} with basis B.

For q ∈ N, matrix A ∈ Z
n×m
q and vector u ∈ Z

n
q , we define the following three

q-ary lattices generated by A: Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 mod q}, Λu
q (A) =

{x ∈ Z
m : Ax = u mod q}, Λq(A) = {x ∈ Z

m : Ats = x mod q, for some s ∈
Z

n
q }, where m,n are integers with m ≥ n ≥ 1 and 0 is a zero vector of size n×1.

Definition 2 (Gaussian distribution over a lattice). For a lattice Λ and a real
number σ > 0, discrete Gaussian distribution over Λ centered at 0, denoted
by DΛ,σ, is defined as: ∀y ∈ Λ, DΛ,σ[y] ∼ exp(−π||y||2/σ2), i.e. DΛ,σ[y] is
proportional to exp(−π||y||2/σ2) where DΛ,σ[y] means the vector y ←↩ DΛ,σ.
We say that DΛ,σ is a distribution with standard deviation σ.
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Lemma 1. For any n-dimensional lattice Λ and for any real number σ > 0, we
have the following results and probabilistic polynomial time (PPT) algorithms:

(i) Prb←↩DΛ,σ
[||b|| ≤ σ

√
n] ≥ 1 − 2−Ω(n), i.e. if b ←↩ DΛ,σ then ||b|| ≤ σ

√
n

with overwhelming probability.
(ii) TrapGen(n,m, q) −→ (A,TA) [2]. This randomized algorithm outputs a

matrix A ∈ Z
n×m
q and a short basis TA ∈ Z

m×m of Λ⊥
q (A) such that A is

within the statistical distance 2−Ω(n) to U(Zn×m
q ) and ||˜TA|| ≤ O(

√
n log q).

Here U(Zn×m
q ) is the uniform distribution of integer matrices over Zq of

order n × m and ˜TA is the Gram-Schmidt orthogonalization of TA.
(iii) SampleD(TA, A, u, σ) −→ (x) [12]. Given a matrix A ∈ Z

n×m
q whose

columns span Z
n
q , a basis TA ∈ Z

m×m of Λu
q (A), a vector u ∈ Z

n
q and a

real number σ, this randomized algorithm returns a vector x ∈ Z
m from the

distribution DZm,σ (i.e., ||x|| ≤ σ
√

m by (i)) satisfying A · x = u mod q.

2.1 Computational and Decisional Problems

Definition 3 (Inhomogeneous short integer solution (ISIS) search problem) [1].
Given an integer q, a real number β, a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q ,

the ISIS problem is to find an integer vector e ∈ Z
m such that Ae = u mod q

with ||e|| ≤ β with non-negligible probability. If u = 0 ∈ Z
n
q , then it is known as

short integer solution (SIS) problem.

Definition 4 (Short integer solution (SIS) decision problem) [11]. Let χ be a dis-
tribution over Zq having samples of the form (A,As) ∈ Z

n×m
q × Z

n×1
q with

standard deviation σ where A ∈ Z
n×m
q is a matrix and s ∈ Z

m×1
q is a vector

with ||s|| ≤ σ
√

m. The decisional SIS is to decide whether (A,As) follows χ dis-
tribution or uniform distribution U(Zn×m

q × Z
n
q ) with non-negligible probability.

Definition 5 (Learning with errors (LWE) problem) [13]. Let n ≥ 1 be any inte-
ger, p ≥ 2 be any prime and χ be a distribution on Z. For any fixed vector
s ∈ Z

n
p , given arbitrarily many samples of the form (a, 〈a, s〉 + e) with a uni-

form in Z
n
p and e sampled from χ, the problem of finding s is called the search

LWE and the problem of distinguishing the distribution of (a, 〈a, s〉+ e) from the
uniform distribution U(Zn

p ×Zp) is called the decisional LWE. Here 〈a, s〉 = ats.

2.2 Zero Knowledge Argument System [7]

This section deals with the zero knowledge argument system when the prover
wants to prove the knowledge of the witness x satisfying the relation Px = v
without giving x to the verifier. Here P is any matrix and v is a vector (or
matrix), both publicly available and x is prover’s secret vector (or matrix) with
some conditions to be proven in zero knowledge to the verifier.

Let q ≥ 2 be any integer and D,L be two positive integers. We consider a
set VALID ⊆ {−1, 0, 1}L. Similar to Libert et al. [7], let S be any finite set of
permutations such that for any π ∈ S, one can associate a permutation Tπ of L
elements satisfying
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(i) x ∈ VALID ⇔ Tπ(x) ∈ VALID.
(ii) If x ∈ VALID and π is uniform in S then Tπ(x) is uniform in VALID.

A zero knowledge argument of knowledge (ZKAoK) for the relation R = {(P,
v) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID : Px = v mod q} written as ((P, v), x)∈ R

is a 3-round protocol ZKAoK= (Commitment, Challenge, Response,Verification)
between a prover and a verifier, both having access to P and v where
ZKAoK.Commitment, ZKAoK.Challenge, ZKAoK.Response are PPT algorithms
and ZKAoK.Verification is a deterministic algorithm with the following require-
ments:

1. ZKAoK.Commitment(P, v, x) −→ (COM= (C1, C2, C3)). The prover does
the following:
(a) It samples randomness ρ1, ρ2, ρ3 for generating commitments and selects

r ←↩ U(ZL
q ), π ←↩ U(S) where S is a finite set of permutation.

(b) It computes the commitment COM = (C1, C2, C3) where C1 = CMT1(π,
Pr; ρ1), C2 = CMT2(Tπ(r); ρ2), C3 = CMT3(Tπ(x + r); ρ3) are gener-
ated using randomness ρ1, ρ2, ρ3 respectively and the permutation Tπ

corresponding to π. Here CMTi, i = 1, 2, 3, is statistically hiding and
computationally binding commitment scheme such that the hiding prop-
erty holds even against all-powerful receivers while the binding property
holds only for polynomially bounded senders.

(c) Finally, the prover sends the commitment COM to the verifier.
2. ZKAoK.Challenge(P, v) −→ (Ch ←↩ U({1, 2, 3})). The verifier sends a chal-

lenge Ch ←↩ U({1, 2, 3}) to the prover.
3. ZKAoK.Response(Ch, ρ1, ρ2, ρ3, π, r, x) −→ (RSP). The prover sends a

response RSP computed as follows:
(a) If Ch= 1 then the prover sets tx =Tπ(x), tr = Tπ(r) and RSP= (tx, tr,

ρ2, ρ3) using Tπ associated with π.
(b) If Ch= 2 then the prover sets π2 = π, y = x + r and RSP= (π2, y, ρ1,

ρ3).
(c) If Ch= 3 then the prover sets π3 = π, r3 = r and RSP= (π3, r3, ρ1, ρ2).

4. ZKAoK.Verification(P, v, RSP, Ch, COM) −→ (VRF). On receiving the
response RSP from the prover, the verifier uses the commitment scheme CMTi,
i = 1, 2, 3 and proceeds as follows:
(a) If Ch= 1 then the verifier checks whether tx ∈ VALID and C2 =CMT2(tr;

ρ2), C3 = CMT3(tx + tr; ρ3) using RSP= (tx, tr, ρ2, ρ3) and extracting
C2, C3 from COM.

(b) If Ch= 2 then the verifier checks whether C1 =CMT1(π2, Py-v; ρ1)
and C3 = CMT3(Tπ2(y); ρ3) extracting C1, C3 from COM and using
RSP= (π2, y, ρ1, ρ3) together with the permutation Tπ2 associated
with π2.

(c) If Ch= 3 then the verifier checks whether C1 = CMT1(π3, Pr3; ρ1), C2 =
CMT2(Tπ3(r3); ρ2) using C1, C2 obtained from COM, RSP= (π3, r3, ρ1,
ρ3) and permutation Tπ3 corresponding to π3.

In each case, the verifier outputs VRF = 1 if the verification succeeds; other-
wise VRF = 0.
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The above zero knowledge argument protocol satisfies the following three
properties [7]:

Let VRF ← ZKAoK.Verification (P, v, RSP, COM), RSP ← ZKAoK.Response
(Ch, ρ1, ρ2, ρ3, π, r, x), COM ← ZKAoK.Commitment (P, v, x) and Ch ←
ZKAoK.Challenge (P, v) where ρ1, ρ2, ρ3, r, π are as selected in algorithm
ZKAoK.Commitment(P, v, x) by the prover.

Correctness: If ((P, v), x)∈ R then Pr[VRF = 1] = 1.

Soundness: If ((P, v), x) /∈ R then Pr[VRF = 1] ≤ negl(λ) where negl(λ) is a
negligible function in λ.

Zero Knowledge: If the statement proven by the prover is true then the cheat-
ing verifier learns only the fact that the statement is true.

Remark 1. The above protocol is repeated s = ω(log n) times to achieve neg-
ligible soundness error and can be made non-interactive using Fiat-Shamir
heuristic [3] as a triple Π = ({COMγ}s

γ=1,Ch, {RSPγ}s
γ=1) where Ch = H(M ,

{COMγ}s
γ=1, aux) ∈ {1, 2, 3}s, M is a message, aux is some auxiliary informa-

tion and H : {0, 1}∗ → {1, 2, 3}s is a cryptographically secure hash function.
The prover sends s commitments COMγ , γ = 1, 2, . . . , s to the verifier who in
turn sends the challenge Ch = H(M , {COMγ}s

γ=1, aux) ∈ {1, 2, 3}s to the prover
treating the hash function H as a random oracle. At the end, the prover out-
puts response RSPγ generated by executing ZKAoK.Response(Ch[γ], ρ

(γ)
1 , ρ

(γ)
2 ,

ρ
(γ)
3 , π(γ), r(γ), x) where Ch[γ] is the γ-th digit of Ch ∈ {1, 2, 3}s and ρ

(γ)
1 ,

ρ
(γ)
2 , ρ

(γ)
3 , r(γ), π(γ) are as selected by the prover in the γ-th run of the algo-

rithm ZKAoK.Commitment(P, v, x) for γ = 1, 2, . . . , s. For the verification, the
response RSPγ corresponding to the γ-th digit of Ch ∈ {1, 2, 3}s is verified follow-
ing the algorithm ZKAoK.Verification(P, v, RSPγ , Ch[γ], COMγ) that generates
VRFγ . If VRFγ = 1 for all γ = 1, 2, . . . , s then this treats Π as a confirma-
tion proof of the above zero knowledge argument system. On the other hand,
VRFγ = 0 for atleast one γ = 1, 2, . . . , s considers Π as a disavowal proof for the
above zero knowledge argument system.

Theorem 1 [7]. The protocol described above is a statistical ZKAoK for the
relation R with soundness error 2/3 and perfect completeness having the com-
munication cost O(L log q).

3 Our Nominative Signature Scheme

Communication Model: Informally speaking, our scheme involves a trusted
authority together with nominees and nominators. The trusted authority gener-
ates the system parameters, public-secret key pairs of nominees and nominators.
System parameters and public keys are made public and secret keys are sent
secretly to the concerned parties by the trusted authority.

A nominee issues a signature Sig to the nominator. To generate Sig, the nom-
inee firstly transforms the system of equations involving two equations into an
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equation of the form D0x0+D1x1 = v mod q. Then by using the decomposition-
extension technique, the equation D0x0 + D1x1 = v mod q is transformed into
an equation Px = v mod q. The decomposition-extension technique helps in
converting [x0||x1] to x such that x ∈ VALID. Further, the nominee proves
to the nominator in zero-knowledge the possession of x ∈ VALID satisfying
Px = v mod q.

After receiving the Sig from the nominee, the nominator verifies the validity
of Sig and issues the nominative signature nsig. The verification of nsig can be
done only by the nominee. Our scheme also involves a confirmation or disavowal
protocol in which the nominee proves to the verifier in zero-knowledge the valid-
ity or the invalidity of the nominative signature nsig issued by the nominator.

Formally, our nominative signature NS= {Setup, KeygenNR, KeygenNE,
SignNE, SignNR, Verify, ConfOrDisav= (TMnominee, TMverifer)} works as
follows:

NS.Setup(λ) → param. Given a security parameter λ > 0, the key generation
center (KGC) generates an integer n of size O(λ), a prime modulus q of size
O(n3) and an integer m such that m = 2n+8n�log q� > n�log q�. The KGC also
chooses a real number σ of size Ω(

√
l log q log n), an error bound β = 2σ

√
m and

two cryptographically secure hash functions H1 : {0, 1}∗ → Z
n
q , H : {0, 1}∗ →

{1, 2, 3}s where s is of size ω(log n). Observe that the size of β is σω(log m). The
KGC publishes the system parameters param = (n, q,m, σ, β,H,H1). We use σ
for the standard deviation of the discrete Gaussian distribution.

NS.KeygenNR(param, u) → (PKu, SKu). To generate the public-secret key pair
of a nominator u, the KGC invokes TrapGen(n, m, q) → (Au, TAu

) described in
Lemma 1 in Sect. 2 and sets the public and secret key

PKu = Au, SKu = TAu

for u where Au ∈ Z
n×m
q and TAu ∈ Z

m×m. The public key PKu is made public
while the secret key SKu is sent secretly by the KGC to u.

NS.KeygenNE(param, v) → (pkv, skv). The KGC runs TrapGen(n, m, q) → (Bv,
TBv

) (see Lemma 1 in Sect. 2) to produce the public-secret key pair of a nominee
v. It sets the public key and secret key

pkv = Bv, skv = TBv

for v where Bv ∈ Z
n×m
q and TBv

∈ Z
m×m. The KGC makes pkv publicly available

and sends skv secretly to v.

NS.SignNE(param, skNE, pkNE, PKNR, M) → (SigM,NE,NR = (Π, y1)). Let M
be a message to be signed. A nominee NE performs the following steps using
param= (n, q, m, σ, β, H, H1), skNE =TBNE

, pkNE =BNE and PKNR =ANR to
generate the signature SigM,NE,NR = (Π,y1) on M .

(i) The nominee NE computes y = H1(M ||ANR||BNE) ∈ Z
n
q and generates a

short vector v ∈ Z
m
q satisfying BNE · v = y mod q with ||v|| ≤ σ

√
m by
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running the algorithm SampleD(TBNE
, BNE, y, σ) → (v) using the short

basis skNE = TBNE
given in Lemma 1 in Sect. 2. Note that ||v||∞ ≤ ||v|| ≤

σ
√

m ≤ β as β = 2σ
√

m.
(ii) The nominee chooses a random number r1 ∈ [−β, β] and sets

y1 = Bt
NE · (r1y) + v mod q (1)

where Bt
NE is the transpose of the matrix BNE. Note that, given the values

of (y1, BNE, y) then the problem to find (r1, v) from Eq. 1 is not feasible
under the hardness of LWE.

(iii) The nominee rewrites the system of the equations

BNE · v = y mod q,

y1 = Bt
NE · (r1y) + v mod q

into a single equation

D0 · x0 + D1 · x1 = b mod q (2)

with

D0 =
[

(BNE)n×m 0n×1

0m×m 0m×1

]

,D1 =
[

0n×1 0n×m

(Bt
NE · y)m×1 Im×m

]

,

x0 =
[

vm×1

01×1

]

,x1 =
[

(r1)1×1

vm×1

]

,b =
[

yn×1

(y1)m×1

]

where Im×m is an identity matrix of size m.
(iv) Let p = �log2 β� + 1. We define the sets B3

mp, S3mp as:
B3

mp = {x ∈ {−1, 0, 1}3mp : x has exactly mp co-ordinates equal to j
for j = −1, 0, 1},

S3mp = {π : π is a permutation on 3mp length vectors}.
Then ŵ ∈ B3

mp ⇔ π(ŵ) ∈ B3
mp for any permutation π ∈ S3mp.

(v) The Eq. 2 is then converted by the nominee into an equation of the form
Px = b mod q as follows using the algorithm Dec-Extm,p described in
Fig. 1 which is the decomposition-extension technique of Ling et al. [8].
Note that x0,x1 ∈ [−β, β]m+1. The nominee NE generates
x̂0 ∈ B3

(m+1)p ← Dec-Ext(x0), x̂1 ∈ B3
(m+1)p ← Dec-Ext(x1) and sets

̂D0 = D0 · ̂K(m+1),β mod q ∈ Z
(n+m)×3(m+1)p
q ,

̂D1 = D1 · ̂K(m+1),β mod q ∈ Z
(n+m)×3(m+1)p
q

where ̂Km+1,β = [Km+1,β ||0m+1×2(m+1)p] ∈ Z
(m+1)×3(m+1)p,

Km+1,β = I(m+1)×(m+1) ⊗ [β1, β2, . . . , βp] and x̂i ∈ B3
(m+1)p satisfies

̂K(m+1),β · x̂i = xi (3)

for i = 0, 1 (see line 6 in Fig. 1). Next, the nominee sets P = [̂D0||̂D1] ∈
Z

D×L
q , x = [x̂0||x̂1]t ∈ Z

L
q where L = 6(m + 1)p and D = n + m.
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Input: w = (w1, w2, . . . , wm) ∈ [−β, β]m

Output: ŵ ∈ B3
mp where p = �log2 β� + 1

1. Define a super-decreasing sequence {β}p
j=1 of integers by setting β1 = �β

2 � and

βj = �β−(β1+β2+···+βj−1)
2 � for 2 ≤ j ≤ p.

2. for(wi ∈ [−β, β] and i ≤ m) do

Compute w
(1)
i , w

(2)
i , . . . , w

(p)
i ∈ {−1, 0, 1} such that

p∑
j=1

βjw
(j)
i = wi.

end do
3. Set w′ = (w(1)

1 , . . . , w
(p)
1 , w

(1)
2 , . . . , w

(p)
2 , . . . , w

(1)
m , . . . , w

(p)
m ) ∈ {−1, 0, 1}mp. Then

w′ satisfies Km,β · w′ = w where

Km,β = Im×m ⊗ (β1, β2, ..., βp) =

⎡
⎣β1 β2 . . . βp

β1 β2 . . . βp

. . .
β1 β2 . . . βp

⎤
⎦.

4. Set K̂m,β = [Km,β ||0m×2mp] ∈ Z
m×3mp.

5. Select a random vector w̃ ∈ {−1, 0, 1}2mp having exactly (mp − λ0) many 0’s,
(mp − λ1) many 1’s and (λ0 + λ1) many −1’s where λ0, λ1 are respectively the
number of 0’s and 1’s in w′.

6. Set ŵ = (w′||˜
˜

w) ∈ B3
mp. Then K̂m,β · ŵ = Km,β ·w′ = w and ŵ ∈ B3

mp ⇔ π(ŵ) ∈
B3

mp for any permutation π on 3mp length vectors.
7. return w = (w′||w).

Fig. 1. Algorithm Dec-Extm,p(w) where p = �log2 β� + 1 and w ∈ [−β, β]m.

As x̂0, x̂1 ∈ Z
L
2
q , ̂D0, ̂D1 ∈ Z

D× L
2

q , we have

Px = ̂D0 · x̂0 + ̂D1 · x̂1 = D0 · ̂K(m+1),β · x̂0 + D1 · ̂K(m+1),β · x̂1

= D0 · x0 + D1 · x1 (by Eq. 3)
= b mod q (by Eq. 2)

(vi) Let VALID = {u ∈ {−1, 0, 1}L : u = [u0||u1]t for some u0,u1 ∈ B3
(m+1)p}

and S = S3(m+1)p × S3(m+1)p. Then x = [x̂0||x̂1]t ∈ VALID as x̂0 ∈
B3

(m+1)p, x̂1 ∈ B3
(m+1)p. Also for any randomly selected permutation

π = (π0, π1) ∈ S and vector x = [x̂0||x̂1]t ∈ VALID, the vector
Tπ(x) = (π0(x̂0), π1(x̂1)) ∈ VALID and Tπ(x) is uniform in VALID when-
ever x = [x̂0||x̂1]t is uniform in VALID.

(vii) The nominee NE invokes the algorithm ZKAoK described in Sect. 2.2 for the
relation R = {(P,b) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID : Px = b mod q} to prove

the knowledge of the witness x in statistical zero knowledge argument of
knowledge and generates a proof

Π = ({COMγ}s
γ=1, Ch, {RSPγ}s

γ=1)
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where COMγ ←ZKAoK.Commitment(P, b, x), Ch = H(M, {COMγ}s
γ=1,

y1) ∈ {1, 2, 3}s, RSPγ ←ZKAoK.Response(Ch[γ], ρ
(γ)
1 , ρ

(γ)
2 , ρ

(γ)
3 , π(γ), r(γ),

x) where Ch[γ] is the γ-th digit of Ch ∈ {1, 2, 3}s, s = ω(log n) and ρ
(γ)
1 ,

ρ
(γ)
2 , ρ

(γ)
3 , π(γ), r(γ) are as selected by the nominee NE in the γ-th run of

the algorithm ZKAoK.Commitment(P, b, x) for γ = 1, 2, . . . , s.
(viii) Finally, the nominee NE sends the signature SigM,NE,NR = (Π, y1) to the

nominator NR over a public channel and stores (r1, v, M , NR, y1) in its
current state stateNE where y1 works as the session identity which is session
specific.

NS.SignNR(param, SKNR, PKNR, pkNE, M , SigM,NE,NR) → (nsigM,NE,NR = (z,
y1)). On receiving the signature SigM,NE,NR = (Π, y1) from the nominee NE,
the nominator NR executes the following steps and issues a nominative signa-
ture nsigM,NE,NR = (z, y1) using SKNR =TANR

, PKNR =ANR and pkNE = BNE.

(i) The NR computes y = H1(M ||ANR||BNE) and verifies the zero knowledge
proof Π = ({COMγ}s

γ=1, Ch, {RSPγ}s
γ=1) for the equation Px = b mod

q by computing VRFγ ← ZKAoK.Verification(P, b, RSPγ , Ch[γ], COMγ)
and verifying whether VRFγ = 1 for all γ = 1, 2, . . . , s where RSPγ , Ch[γ],
COMγ are as defined in step (vi) of the algorithm NS.SignNE(param, skNE,
pkNE, PKNR, M). Note that P = [̂D0||̂D1] and b = [y||y1]t are publicly
computable, y1 is extracted from SigM,NE,NR and pkNE = BNE where ̂D0 =
D0 · ̂K(m+1),β and ̂D1 = D1 · ̂K(m+1),β . The witness x = [x̂0||x̂1]t is known
only to the nominee NE.

(ii) If the verification fails, the nominator NR aborts; otherwise the nominator
NR finds a short vector

z ∈ Z
m
q satisfying ANR · z = y1 mod q with ||z|| ≤ σ

√
m

using the short basis SKNR =TANR
following the algorithm SampleD(TANR

,
ANR, y1, σ)→ z as in Lemma 1 in Sect. 2 and issues the nominative signature
nsigM,NE,NR = (z, y1).

NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) ∈ {valid, invalid}. This
algorithm is executed by the nominee NE with its current internal state stateNE
who on receiving nsigM,NE,NR = (z, y1) uses PKNR = ANR and pkNE = BNE to
compute y = H1(M ||ANR||BNE) and verify whether

y1 = Bt
NE · (r1y) + v mod q, ANR · z = y1 mod q and ||z|| ≤ σ

√
m

where the nominee NE extracts v, r1 from its internal secret state stateNE which
contains (r1, v, M , NR, y1). If the verification succeeds, it outputs valid; other-
wise it returns invalid.
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NS.ConfOrDisav= (TMnominee, TMverifier). This protocol satisfies the follow-
ing requirements:

(i) TMnominee(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) → (μ,ΠconfORdisav).
The nominee NE generates a proof

ΠconfORdisav = ({COMγ}s
γ=1,Ch, {RSPγ}s

γ=1)

for the relations BNE ·v = y mod q, Bt
NE ·(r1y)+v = y1 mod q by converting

this system of equations into an equation of the form D0x0+D1x1 = b mod
q which in turn is reduced to an equation of the form Px = b as explained
in steps (iii) and (iv) respectively of the algorithm NS.SignNE, and then
invoking the algorithm ZKAoK for the relation R = {(P,b) ∈ Z

D×L
q ×

Z
D
q ,x ∈ VALID : Px = b mod q} as in step (vi) of the algorithm NS.SignNE.

Note that P = [̂D0||̂D1] and b = [y||y1]t are publicly computable from
param, nsigM,NE,NR = (z, y1) and pkNE = BNE. The witness x = [x0||x1]t is
known only to the nominee NE which is stored in its current internal state
stateNE. It runs NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR). If
the output is valid then it returns (μ = 1,ΠconfORdisav) to the verifier VR.
Otherwise, it sends (μ = 0,ΠconfORdisav) to the verifier VR.

(ii) TMverifier(param, pkNE, PKNR, M , nsigM,NE,NR, μ, ΠconfORdisav) → β. On
receiving a pair (μ,ΠconfORdisav) from the nominee NE, the verifier VR checks
the bit μ.

– If μ = 1, then it verifies the following.
(a) VRFγ = 1 for all γ where VRFγ ←ZKAoK.Verification(P, b, RSPγ ,

Ch[γ], COMγ). Here P, b are computed by the verifier using param,
nsigM,NE,NR = (z, y1) and PKNE = BNE. Note that the witness x is known
only to the nominee NE.

(b) ANR · z = y1 by extracting z, y1 from nsig and using PKNR = ANR.
If the verification succeeds, it outputs β = 1 indicating that the verifier
VR agrees with the confirmation proof ΠconfORdisav and convinces in zero
knowledge that the nominator is not a cheater. Otherwise it disagrees
with the confirmation proof by returning β = 0. This means that the
verifier VR is not satisfied with the confirmation proof ΠconfORdisav.

– If the bit μ = 0 then the verifier VR verifies whether any of the above men-
tioned conditions (a), (b) are violated, thereby agrees with the disavowal
proof ΠconfORdisav and convinces in zero knowledge that the nominator NR is
a cheater. Otherwise it disagrees with the disavowal proof and returns β = 0
indicating that the verifier VR is not convinced with the proof.

Correctness:

– ((n, q,m, σ, β,H,H1) = param) ← NS.Setup(λ),
– (PKNR = ANR,SKNR = TANR

) ← NS.KeygenNR(Y,NR),
– (pkNE = BNR, skNE = TBNE

) ← NS.KeygenNE(Y,NE),
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– (SigM,NE,NR = (Π,y1)) ← NS.SignNE(param, skNE, pkNE, PKNR, M) where
y1 = Bt

NE · (r1y) + v mod q, r1 ∈ [−β, β], v ∈ Z
m
q is a short vector satisfying

BNE · v = y mod q with ||v|| ≤ σ
√

m,
– (nsigM,NE,NR = z) ←NS.SignNR(param, SKNR, PKNR, pkNE, M , SigM,NE,NR)

where z satisfies the equation ANR · z = y1 mod q,
– (μ,ΠconfORdisav) ← TMnominee(param, stateNE, pkNE,PKNR,M, nsigM,NE,NR)

where μ ∈ {0, 1} and ΠconfORdisav ← NS.ConfOrDisav.TMnominee is a zero
knowledge proof for the relation R = {(P,b) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID :

Px = b mod q}.

If the nominee NE, the nominator NR and the verifier VR are honest then we
have the following.

(i) NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) → valid as ANR · z =
y1 mod q.

(ii) NS.ConfOrDisav.TMverifier(param, pkNE, PKNR, M , nsigM,NE,NR, μ,
ΠconfORdisav) → (β = 1)

4 Security

Threat Model. Security attributes of a nominative signature can be broadly
classified into four categories –
(Unforgeability against malicious nominee) The nominee NE alone cannot pro-
duce a valid nominative signature where the nominee NE and the message M
both are chosen by the nominator NR.
(Unforgeability against malicious nominator) The nominator NR alone cannot
produce a valid nominative signature and cannot convince a verifier about the
validity or invalidity of a nominative signature.
(Security against invisibility) Only the nominee NE can verify the nominative
signature nsig.
(Security against repudiation) If the nominative signature nsig is valid then the
nominee NE cannot mislead a verifier VR and cannot prove the invalidity of nsig
to the verifier VR and vice versa.

4.1 Oracles for Adversaries

An adversary A invokes the following oracles accessible in the attack games and
interacts with a stateful interface I who runs NS.Setup to generate param and
maintains seven private lists: LcreateNR, LcreateNE, LcorruptNR, LcorruptNE,
LsignNR, LsignNE, LconfORdisav.

– CreateNR Query: When A invokes this oracle on a nominator u, the interface
I returns PKu to A by running NS.KeygenNR(param, u) → (PKu, SKu). The
interface I stores (PKu, SKu) in the list LcreateNR.

– CreateNE Query: In response to this query for a nominee v from A, the inter-
face I runs NS.KeygenNE(param, v)→ (pkv, skv) and passes pkv to A. The
interface stores the pair (pkv, skv) in the list LcreateNE.
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– CorruptNR Query: On receiving this query on a nominator u from A, the
interface I checks whether (PKu,SKu) ∈ LcreateNR. If not, it returns ⊥.
Otherwise, I sends SKu to A and stores PKu in the list LcorruptNR.

– CorruptNE Query: In response to this query on a nominee v from A, the inter-
face I checks whether (pkv, skv) ∈ LcreateNE. If not, it returns ⊥. Otherwise,
I returns (skv, statev) to A and stores pkv in the list LcorruptNE. Here statev

is the current internal secret state of the nominee v which is initially empty.
– SignNE Query: On querying this oracle on a tuple (v, u, M) by A where v is a

nominee, u is a nominator and M is a message, the interface I checks whether
(pkv, skv) ∈ LcreateNE and (PKu, SKu) ∈ LcreateNR. If not, I returns ⊥.
Otherwise, I outputs the signature SigM,v,u ← NS.SignNE(param, skv, pkv,
PKu, M) of the nominee v on M and stores (SigM,v,u, statev) in the list
LsignNE where statev is the current internal secret state of the nominee v.

– SignNR Query: In response to this query on SigM,v,u from A, the interface
I verifies whether (SigM,v,u, statev) ∈ LSignNE. If so, the interface I returns
the nominative signature nsigM,v,u ← NS.SignNR(param, SKu, PKu, pkv, M ,
SigM,v,u) to A and stores (SigM,v,u, nsigM,v,u) in the list LsignNR. Otherwise,
I returns ⊥.

– ConfOrDisav Query: The interface I responses on receiving this query on
nsigM,v,u from A by checking if (SigM,v,u, nsigM,v,u) ∈ LsignNR. If not, I
aborts. Otherwise, I extracts statev from (SigM,v,u, statev) ∈ LSignNE and
returns (μ,ΠconfORdisav) ← NS.ConfOrDisav.TMnominee(param, statev, pkv,
PKu, M , nsigM,v,u) to A. The interface I stores (nsigM,v,u, μ, ΠconfORdisav)
in the list LconfORdisav.

4.2 Security Model for Unforgeability Against Malicious Nominee

This is a security game ExpunforgF explained in Fig. 2 played between a forger F
and a simulator S.

Definition 6 (Unforgeability against malicious nominee). We say that a nom-
inative signature is secure under unforgeability against malicious nominee if

AdvunforgF (λ) = Prob[ExpunforgF (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment ExpunforgF (λ) defined in Fig. 2 where
negl(λ) is a negligible function in λ i.e., negl(λ)=λ−ω(1).

4.3 Security Model Under Unforgeability Against Malicious
Nominator

Let F be a forger and S be a simulator. This security is modeled by the game
ExpunforgNR

F (λ) between F and S as provided in Fig. 3.

Definition 7 (Unforgeability against malicious nominator). We say that a nom-
inative signature is secure against malicious nominator if

AdvunforgNR
F (λ) = Prob[ExpunforgNR

F (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment ExpunforgNR
F (λ) defined in Fig. 3

and negl(λ) is a negligible function of λ.
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5 Security Model Against Invisibility

Let D be a distinguisher and C be the challenger. The invisibility game
ExpinvisD (λ, b) is described in Fig. 4.

Definition 8 (security against invisibility). A nominative signature scheme is
secure under invisibility

AdvinvisD (λ) = |Prob[ExpinvisD (λ, 0)] − Prob[ExpinvisD (λ, 1)]| ≤ negl(λ)

1. The simulator S generates system parameters param←NS.Setup(λ) and sends it to
the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles
CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav, thereby
has the knowledge of VIEW where

VIEW =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

param, {PKu | (PKu, SKu) ∈ LcreateNR}, {pkv | (pkv, skv) ∈ LcreateNE},

{SKu | PKu ∈ LcorruptNR}, {skv | pkv ∈ LcorruptNE},

LsignNE = {(SigM,v,u, statev) | SigM,v,u ← NS.SignNE(param, skv, pkv,PKu, M)},

LsignNR =
{
(SigM,v,u, nsigM,v,u) | (SigM,v,u, statev) ∈ LsignNE and

nsigM,v,u ← NS.SignNR(param, SKu,PKu, pkv, M, SigM,v,u)
}

,

LconfORdisav =
{
(nsigM,v,u, μ, ΠconfORdisav) | (SigM,v,u, nsigM,v,u) ∈ LsignNR

and (μ, ΠconfORdisav) ← NS.ConfOrDisav.TMnominee(param,

statev, pkv,PKu, M, nsigM,v,u)
}

where each of |LcreateNR|, |LcreateNE|, |LcorruptNR|, |LcorruptNE|,
|LsignNE|, |LsignNR|, |LconfORdisav| ≤ α.

3. Finally, F outputs a forgery (M∗, nsig∗
M∗,NE,NR) on a corrupted nominee NE and

an uncorrupted nominator NR such that (PKNR, SKNR) ∈ LcreateNR and pkNE ∈
LcorruptNE.

4. The simulator S returns 1 if the following conditions hold:
(a) NS.Verify(param, stateNE, pkNE, PKNR, M∗, nsig∗

M∗,NE,NR)→ valid i.e.,
nsig∗

M∗,NE,NR is a valid signature,
(b) PKNR /∈ LcorruptNR i.e., nominator NR is not corrupted,
(c) (Sig′

M∗,NE,NR, nsig
∗
M∗,NE,NR) /∈ LsignNR where (Sig′

M∗,NE,NR, stateNE) ∈ LsignNE
i.e., nsig′

M∗,NE,NR �= nsig∗
M∗,NE,NR for the pair (Sig′

M∗,NE,NR, nsig′
M∗,NE,NR) ∈

LsignNR, and SignNR query is made only ones on Sig′
M∗,NE,NR.

(d) (nsig∗
M∗,NE,NR, μ, ΠconfORdisav)/∈ LconfORdisav i.e., nsig∗

M∗,NE,NR has not been
queried to the protocol NS.ConfOrDisav for the conformation or disavowal proof
of the validity of the nominative signature nsig∗

M∗,NE,NR.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Fig. 2. Small Security game ExpunforgF (λ) under unforgeability against malicious
nominee.
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for every PPT adversary in the experiment ExpinvisD (λ, b) defined in Fig. 4 where
b ∈ {0, 1} and negl(λ) is a negligible function in λ.

Remark 2. In the above security game (Fig. 2) if SignNR query is made more than
ones on Sig′

M∗,NE,NR then the adversary can compute a nominator’s signature as
follows:

Suppose an adversary queried SignNR on Sig′
M∗,NE,NR two or more times then

the adversary has ANR · z1 = y1 mod q and ANR · z2 = y1 mod q. That gives to
the adversary ANR · (z1 + z2)/2 = y1 mod q. As q is a prime, 2 is invertible in
Zq. Thus the adversary has another signature nsigM∗,NE,NR = (z1 + z2)/2.

1. The simulator S generates system parameters param←NS.Setup(λ) and sends it to
the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles
CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav and has
the same VIEW as given in Figure 2.

3. Finally, the forger F outputs a forgery (M∗, Sig∗
M∗,NE,NR, nsig

∗
M∗,NE,NR) on a cor-

rupted nominator NR and an uncorrupted nominee NE such that PKNR ∈ Lcor-
ruptNR, (pkNE, skNE)∈ LcreateNE.

4. The simulator S returns 1 if the following holds:
(a) NS.Verify(param, stateNE, pkNE, PKNR, M∗, nsig∗

M∗,NE,NR)→ valid.
(b) pkNE /∈ LcorruptNE.
(c) Sig∗

M∗,NE,NR /∈ LsignNE and (M∗, NE, NR) query is made only ones to the
SignNE oracle.

(d) VRFγ = 1 for all γ = 1, 2, . . . , s by computing VRFγ ← ZKAoK.Verification(P,
b, RSPγ , Ch[γ], COMγ) where RSPγ , Ch[γ], COMγ are as defined in step (vi)
of the algorithm NS.SignNE.

(e) (nsig∗
M∗,NE,NR, μ, Π∗

M∗,NE,NR)/∈ LcreateORdisav.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Fig. 3. Security game ExpunforgNRF (λ) under security against malicious nominator

5.1 Security Model for Non-repudiation

Let A be a cheating nominee and C be the challenger. Its security game ExprepA (λ)
is explained in Fig. 5.

Definition 9 (Non-repudiation). A nominative signature scheme is secure
against non-repudiation if

AdvrepA (λ) = |prob[ExprepA (λ) = 1]| ≤ negl(λ)

for every PPT adversary in the experiment ExprepA (λ) defined in Fig. 5 and negl(λ)
is a negligible function of λ.
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1. The challenger C generates system parameters param← NS.Setup(λ) and sends it
to the distinguisher D.

2. Next the distinguisher D makes polynomially many, say α queries to S for each
of the oracles CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, Con-
fOrDisav to get the knowledge of VIEW where VIEW is same as in Figure 2.

3. At any point of the game, D submits a tuple (M∗, NE, NR) where M∗ is a message
to be signed with NE as the nominee and NR as the nominator such that pkNE,
PKNR ∈ VIEW but skNE /∈ VIEW i.e., the nominee NE is not corrupted.

4. The challenger chooses a random bit b ∈ {0, 1}. If b = 1, the challenger C gen-
erates SigM∗,NE,NR ←NS.SignNE(param, skNE, pkNE, PKNR, M∗), nsigM∗,NE,NR ←
NS.SignNR(param, SKNR, PKNR, pkNE, M∗, SigM∗,NE,NR) and sets Kb = nsigM∗,NE,NR.
Else, Kb is generated uniformly.

5. The distinguisher D observes Kb, outputs a guess b′ and wins the game if
(i) b′ = b
(ii) D does not corrupt skNE i.e., pkNE /∈ LcorruptNE

Fig. 4. Security game ExpinvisD (λ, b) against invisibility

1. The challenger C generates param← NS.Setup(λ) and sends it to the adversary A.
2. The adversary A may make polynomially many, say α, queries to oracles CreateNR,

CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav. The adversary A
has the same VIEW as in Figure 2.

3. The adversary A prepares a tuple (M∗, nsigM∗,NE,NR, μ) where NE is any nominee
with pkNE ∈ LcorruptNE, NR is a nominator such that (PKNR, SKNR)∈ LcreateNR,
nsigM∗,NE,NR is a signature on M∗ and μ is a bit. If NS.Verify(param, stateM∗,NE,NR,
pkNE, PKNR, M∗,nsigM∗,NE,NR)→ valid then μ = 1. Else μ = 0. Note that pkNE ∈
LcorruptNE means A has the knowledge of (skNE, stateM,NE,NR).

4. To mislead, the adversary A runs the disavowal proof ΠconfORdisav if μ = 1.
Otherwise, A computes the confirmation proof ΠconfORdisav. challenger C runs
NS.ConfOrDisav.TMverifier(param, pkNE, PKNR, M∗, nsigM∗,NE,NR, μ, ΠconfORdisav)→
β and returns β.
The adversary A wins the game if β = 1.

Fig. 5. Security game ExprepA (λ) under non-repudiation

Theorem 2. Assuming the hardness of SIS search problem, the construction of
our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,
SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure under the unforgeability against malicious nominee as per the Definition 6
for the security game given in Fig. 2.

Theorem 3. Assuming the hardness of SIS search problem, the construction of
our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,
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SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure in the random oracle model under the unforgeability against malicious
nominator as per the Definition 7 for the security game given in Fig. 3.

Theorem 4. Assuming the hardness of decisional SIS and LWE, the construction
of our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,
SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure under invisibility as per the Definition 8 for the security game given in
Fig. 4.

Theorem 5. Our nominative signature scheme is secure against repudiation
by nominee if no PPT cheating nominee has a non negligible advantage in the
security game given in Fig. 5.

Proof. By the soundness property of a proof system, the verifier will accept a
language x /∈ VALID with probability atmost ε ∈ [0, 1/2) while for any language
x ∈ VALID, the verifier will reject with probability ε ∈ [0, 1/2).

Proofs of all the above Theorems 2, 3 and 4 will be given in the full version of
the paper.
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