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Abstract. Signcryption with non-interactive non-repudiation is a pub-
lic key primitive which aims at combining the functionalities of encryp-
tion and signature schemes, while offering to a judge the ability to
settle a repudiation dispute without engaging in a costly multi-round
protocol. We propose a new RSA based identification scheme together
with a strongly unforgeable signature scheme. We derive a practical and
efficient signcryption scheme with non-interactive non-repudiation we
show to be insider secure, under the RSA assumption and the Random
Oracle model. The communication overhead of our signcryption scheme,
compared to the corresponding signature scheme is one group element.
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1 Introduction

Signcryption is a public key primitive introduced by Zheng [23], with the aim of
combining the functionalities of encryption and signature schemes. Since Zheng’s
seminal work, many security models and constructions have been proposed [3].
In a recent work, Badertscher et al. [2] consider, from an application-centric
perspective, the security goals a signcryption scheme should achieve depending
on the secret keys the attacker knows. They conclude, in opposition to [3, p. 29],
that insider security should be considered as the standard security goal.

An important attribute which is not considered in the “standard” insider
security model is non-interactive non-repudiation. As discussed in [2], the nat-
ural usage of signcrytion is to achieve a confidential and authenticated chan-
nel between two parties over an insecure network. The same can be achieved
using non-interactive or one pass-key exchange protocols, which often outper-
form signcryption schemes. So, a major benefit of signcryption schemes compared
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to non-interactive and one-pass key exchange is non-interactive non-repudiation
(NINR), i.e. a non-repudiation attribute wherein a judge does not have to engage
in a costly multi-round interactive protocol to settle a repudiation dispute.

A first attempt to achieve NINR in a signcryption design was proposed by
Bao and Deng [6]. Unfortunately their scheme fails in providing both NINR
and confidentiality [17,22]. In [17], Malone–Lee propose a design with NINR.
However, he analyses his design, under the Gap Diffie–Hellman Assumption [19]
and the Random Oracle (RO) model [8], in a security definition which is closer
to the outsider model than to the insider one [3, Chap. 2–4]. Fan et al. [11]
propose a strengthening of Malone–Lee’s security model which considers, not
only confidentiality and unforgeability in the insider model, but also soundness
and unforgeability of non-repudiation evidence. They propose a design they show
to be insider secure under the Decisional Bilinear Diffie–Hellman assumption,
without resorting to the RO model.

In this paper, we propose a new identification scheme, inspired from the
FXCR [20,21] and Guillou–Quisquater (GQ) [13] schemes, over the group of
signed quadratic residues [14].

We derive a signature scheme which is strongly unforgeable against chosen
message attacks. A significant advantage of our signature scheme, compared to
the FXCR or GQ schemes is that it is defined over a group wherein the strong
Diffie–Hellman assumption is known to hold under the factoring assumption [14].
Then, using a variant of Cash et al.’s trapdoor test technique [10], we derive a
signcryption scheme with non-interactive non-repudiation (SCNINR) we show
to be insider secure, under the RSA assumption and the RO model, in a variant
of Fan et al.’s security definition [11].

This paper is organized as follows. In Sect. 2, we present some preliminaries.
In Sect. 3, we propose the identification scheme, discuss its attributes, and derive
the signature scheme. We present the new SCNINR scheme and its security
arguments in Sect. 4.

2 Preliminaries

Notations. If n is an integer, |n| denotes its bit-length and [n] denotes the set
{0, · · · , n}. For a real l, �l� denotes the smallest integer which is greater than or
equal to l. We refer to the length of a list L by |L|, and to the cardinality of a set
S by |S|. If P is a probabilistic algorithm which takes as parameters u1, · · · , un

and outputs a result V which belongs to a set V, we write V ←R P (u1, · · · , un).
We denote by {P (u1, · · · , un)} the set {v ∈ V : Pr(V = v) �= 0}. If S is a
set, the notation a←R S means that a is chosen uniformly at random from S.
Exp(ZN , t, l) denotes the computational effort required to perform t exponenti-
ations with l bit exponents in ZN ; Exp(ZN , l) stands for Exp(ZN , 1, l). Jcb(ZN )
denotes the effort required to compute a Jacobi symbol in ZN . For two bit
strings m1 and m2, m1||m2 denotes their concatenation; ε denotes the empty
string. If x1, x2, · · · , xk are objects belonging to different structures (group, bit-
string, etc.) (x1, x2, · · · , xk) denotes a representation of the tuple such that each
component can be unequivocally parsed.
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RSA Public Key Generator. Let k be a security parameter, n(k) be a function
of k and 0 � δ < 1/2 be a constant. An algorithm RSAGen (which may be
distributed) is said to be a (n(k), δ) RSA public key generator if on input 1k,
it outputs a n(k) bit Blum integer N = pq together with a public exponent e
such that all the prime factors of φ(N)/4 are: (i) pairwise distinct, and (ii) at
least δn bit integers, and (iii) e is a (k + 1) bit prime.

RSA and Factoring Assumptions. Let A be an algorithm. We define the quantity

AdvRSA
A,RSAGen(k) = Pr

[
(N, e)←R RSAGen(1k);x←R ZN ;
y ← xe mod N ; x̂ ←R A(N, e, y) : x̂ = x

]
.

The RSA assumption for an (n(k), δ) RSA public key generator is said to hold
if for all efficient adversary A, AdvRSA

A,RSAGen(k) is negligible. For an instance
(N, e)←R RSAGen(1k) and an efficiently sampleable and recognizable subset J of
ZN , we say that the RSA problem is (t(k), ε(k)) hard in J, if for all A running
in time at most t, Pr [x←R J; y ← xe mod N ; x̂ ←R A(N, e, y) : x̂ = x] � ε.

Let A be a factoring algorithm and

AdvfacA,RSAGen(k) = Pr
[

(N, e)←R RSAGen(k);
p ←R A(N, e) : p | n and p /∈ {±N,±1}

]
.

The factoring assumption for an (n, δ) RSA public key generator is said to hold
if for all efficient adversary A, AdvfacA,RSAGen(k) is negligible.

Diffie–Hellman Assumptions. Let G = 〈G〉 be a cyclic group, which order is a
function of the security parameter k and is not necessarily known. For X ∈ G,
logG X denotes the smallest non-negative integer x such that Gx = X. For,
X,Y ∈ G, we denote G(logG X)(logG Y ) by CDH(X,Y ). The computational Diffie–
Hellman (CDH) Assumption is said to hold in G if for all efficient algorithm A,

AdvCDH
A (G) = Pr [X ←R G;Y ←R G;Z ←R A(G,X, Y ) : Z = CDH(X,Y )]

is negligible in k. The strong Diffie–Hellman (sCDH) assumption is said to hold
in G if the CDH assumption holds even if A is endowed with a decisional Diffie–
Hellman oracle ODDH,X(·, ·) for a some fixed X, which on input U, V ∈ G out-
puts 1 if V = CDH(X,U) and 0 otherwise.

Signed Quadratic Residues. For an odd integer N , we consider {−(N −1)/2, · · · ,
(N −1)/2} as a set of representatives of the residue classes modulo N . We denote
by JN the subgroup of elements of Z∗

N with Jacobi symbol 1, and consider the
quotient group JN/{−1, 1}. We define J

+
N = JN ∩ {1, · · · , (N − 1)/2}, and the

binary operation ◦ over J
+
N by X ◦ Y = |X · Y mod N |. For X ∈ J

+
N and

t ∈ N, we write Xt for
t times︷ ︸︸ ︷

X ◦ · · · ◦ X = |Xt mod N | ∈ J
+
N . Then (J+N , ◦) is a

group, termed group of signed quadratic residues. Moreover the mapping which
associates {−X,X} ∈ JN/{−1, 1} to |X| ∈ J

+
N is an isomorphism. We identify

the quotient group JN/{−1, 1} with J
+
N . From [14], we have the following Lemma.
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Lemma 1. If N is a Blum integer then (a) (J+N , ◦) is a subgroup of Z∗
N of order

φ(N)/4; (b) J
+
N is efficiently recognizable given only N ; and (c) if JN is cyclic

then so is J
+
N .

Canonical Identification Schemes

Definition 1. A canonical identification scheme I = (Gen,P,V,ChSet) is a
triple of algorithms together with a challenge set, such that:

– Gen is a probabilistic algorithm which takes as input a domain parameters dp
and returns a key pair (sk, pk).

– P = (P1,P2) is a pair of algorithms such that: (i) P1 takes as input a secret
key sk and outputs a commitment X together with a state st; and (ii) P2

takes as inputs a private key sk, a commitment X, a challenge c ∈ ChSet,
and a state st and outputs a response s ∈ {0, 1}∗.

– V is a deterministic verification algorithm which takes as inputs a public key
pk, a commitment X, a challenge c, and a response s and outputs d ∈ {0, 1}.

– And, for all (sk, pk) ∈ {Gen(dp)}, all (X, st) ∈ {P1(sk)}, all c ∈ ChSet, and
all s ∈ {P2(sk,X, c, st)}, V(pk,X, c, s) = 1.

A transcript (X, c, s) is said to be accepting with respect to pk if
V(pk,X, c, s) = 1.

An identification scheme is said to be unique if for all (sk, pk) ∈ {Gen(dp)},
all (X, st) ∈ {P1(sk)}, and all c ∈ ChSet, there is at most one s ∈ {0, 1}∗

such that V(pk,X, c, s) = 1. It is said to have α-bits of min entropy if for all
(sk, pk) ∈ {Gen(dp)}, the commitments generated through P1(sk) are chosen
from a distribution with min entropy at least α; i.e., for all commitment X0, if
(X, st)←R P1(sk) was honestly generated then Pr(X = X0) � 2−α.

Definition 2. Let I = (Gen, P,V,ChSet) be a canonical identification scheme.

(a) I is said to provide special soundness (SpS) if there exists an efficient deter-
ministic algorithm Ext (an extractor) such that for all accepting conversa-
tions with respect to a public key pk, (X, c, s) and (X, c′, s′), if c �= c′ then
sk∗ ← Ext(pk,X, c, s, c′, s′) is such that (sk∗, pk) ∈ {Gen(dp)}.

(b) It is said to be honest verifier zero knowledge (HVZK) if there exists an
efficient probabilistic algorithm sim (a simulator) such that for all (sk, pk) ∈
{Gen(dp)}, the output distribution of sim on input pk is identical to that of
a real transcript between P(sk) and V(pk).

(c) It is said to be random self reducible (RSR) if there is a probabilistic algo-
rithm Rerand together with two deterministic algorithms Tran and Derand
such that for all (sk, pk) ∈ {Gen(dp)}:
– if (τ, pk1)←R Rerand(pk) and (sk2, pk2)←R Gen(dp) then pk1 and pk2

have the same distribution;
– for all (sk1, pk1) ∈ {Gen(dp)}, for all τ such that (τ, pk1) ∈ {Rerand(pk)},

if sk∗ ← Derand(pk, pk1, sk1, τ) then (sk∗, pk) ∈ {Gen(dp)};



A Practical and Insider Secure Signcryption 413

– for all (sk1, pk1) ∈ {Gen(dp)} and all (X, c, s1) such that
V(pk1,X, c, s1) = 1, if (X, c, s) ← Tran(pk, pk1, τ, (X, c, s1)) then
V(pk,X, c, s) = 1.

Definition 3. A canonical identification scheme I = (Gen,P,V,ChSet) is said
to be (t, ε)-secure against Key Recovery against Key Only Attacks (KR-KOA),
if for all adversary A running in time at most t

Pr [(sk, pk)←R Gen(dp); sk∗ ←R A(pk) : (sk∗, pk) ∈ {Gen(dp)}] � ε.

Symmetric Encryption, Digital Signature

Definition 4. A symmetric encryption scheme E = (E,D,K(k),M(k),C(k))
is a pair of efficient algorithms (E,D) together with a triple of sets
(K(k),M(k),C(k)) such that for all τ ∈ K and all m ∈ M, E(τ,m) ∈ C,
m = D(τ,E(τ,m)).

Definition 5. Let A be an adversary against an encryption scheme E; its
semantic security advantage is

AdvssA,E(k) =
∣∣∣∣Pr

[
(m0,m1)←R A(1k); τ ←R K; b ←R {0, 1};
c ← E(τ,mb); b̂ ←R A(1k, c)

: b̂ = b

]
− 1

2

∣∣∣∣ ,

where m0,m1 ∈ M are distinct equal length messages. The scheme E is said to be
(t, ε)-semantically secure if for all adversary A running in time t AdvssA,E(k) � ε.

Definition 6. A signature scheme S = (Gen,Sign,Vrfy) is a triple of efficient
algorithms together with a message space M, such that:

– Gen is probabilistic algorithm which takes as input a domain parameter dp
and returns a key pair (sk, pk);

– Sign is a probabilistic algorithm which takes as inputs a secret key sk and a
message m ∈ M and outputs a signature σ;

– Vrfy is a deterministic algorithm which takes as inputs a public key pk, a mes-
sage m, and a signature σ and outputs d ∈ {0, 1}; and

– for all (sk, pk) ∈ {Gen(dp)}, all m ∈ M, Pr [Vrfy(pk,m,Sign(sk,m)) = 1] = 1.

Game 1. MU-SUF-CMA security game

1) For i ∈ [U ], (ski, pki) ←R Gen(dp);
2) (i0, m0, σ0) ←R AOH(·),OSign(·,·)(pk1, · · · , pkU ), wherein OH(·) is a hashing oracle and

OSign(·, ·) a signing oracle which takes as inputs an index j ∈ [U ] together with a
message m and outputs σ ←R Sign(skj , m).

3) A succeeds if : (a) i0 ∈ [U ] and Vrfy(pki0 , m0, σ0) = 1, and (b) σ0 was not received
from the oracle OSign(·, ·) on a query on (i0, m0).

Definition 7. Let S = (Gen,Sign,Vrfy) be a signature scheme such that the
execution of Sign involves the computation of one digest value, at least. S is said
to be (t, U,QSign, QH, ε) multi-user strongly unforgeable against chosen message
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attacks (MU-SUF-CMA) in the RO model, if for all adversary A playing Game 1
(wherein we consider U and dp as implicit parameters), if A runs in time at
most t, issues at most QSign and QH queries to the signing and hashing oracles
respectively, the probability it succeeds is at most ε.

Signcryption Schemes

Definition 8. A signcryption scheme is a quintuple of algorithms SC = (Setup,
GenS ,GenR,Sc,Usc) wherein:

(a) Setup is a probabilistic algorithm which takes a security parameter 1k as
input, and outputs a domain parameter dp.

(b) GenS is a probabilistic algorithm which takes as input a domain parameter
dp and outputs a sender key pair (skS , pkS) wherein skS is the signing key.

(c) GenR is a probabilistic algorithm which takes dp as input and outputs a
receiver key pair (skR, pkR).

(d) Sc is a probabilistic algorithm which takes as inputs dp, a sender private key
skS and a receiver public key pkR, and outputs a signcrypted text C. We
consider dp as an implicit parameter and write C ←R Sc(skS , pkR,m).

(e) Usc is a deterministic algorithm which takes as input dp, a sender public key
pkS, a receiver secret key skR and outputs either a message m ∈ M or an
error symbol ⊥ /∈ M.

The above algorithms are such that for all dp ∈ {Setup(1k)}, all m ∈ M, all
(skS , pkS) ∈ {GenS(dp)}, and all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS ,
Sc(skS , pkR,m)). The scheme is said to provide NINR if there is a non-
repudiation evidence generation algorithm N together with a pubic verification
algorithm PV such that:

– N takes as inputs a receiver secret key skR, a sender public key pkS, and a
signcrypted text C, and outputs a non-repudiation evidence nr or a failure
symbol ⊥; we write nr ← N(skR, pkS , C).

– PV takes as inputs a signcryptext C a message m, a non-repudiation evidence
nr, and two public keys pkS and pkR and outputs, a decision d ∈ {0, 1}; we
write d ← PV(C,m, nr, pkS , pkR).

– And, for all dp ∈ {Setup(1k)}, all C ∈ {0, 1}∗, all (skS , pkS) ∈ {GenS(dp)},
and all (skR, pkR) ∈ {GenR(dp)}, if ⊥ �= m ← Usc(skR, pkS , C) and nr ←
N(skR, pkS , C) then 1 = d ← PV(C,m, nr, pkS , pkR).

Confidentiality. We propose in Game 2 an extension of the Secret Key Igno-
rant Multi-User (SKI-MU) insider confidentiality in the Flexible Signcryp-
tion/Unsigncryption Oracle (FSO/FUO) model [4,5] geared to SCNINR.
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Game 2. SKI–MU Insider Confidentiality in the FSO/FUO–IND–CCA2 sense

A = (A1, A2) is a two–stage adversary against SC; dp is the domain parameter.
1) The challenger computes (skR, pkR) ←R GenR(dp);
2) A1 is provided with dp and pkR together with two oracles: (a) OUsc(·, ·), which

takes as inputs a public key pk and a signcrypted text C and outputs m ←
Usc(skR, pk, C); (b) ON(·,·) which takes as inputs a public key pk and a signcrypted
text C and outputs nr ← N(skR, pk, C).

3) A1 outputs a four–tuple (m0, m1, st, pkS) ←R AOUsc(·,·),ON(·,·)
1 (pkR) wherein

m0, m1 ∈ M are distinct equal length messages, st is a state, and pkS is the attacked
sender public key.

4) The challenger chooses b ←R {0, 1}, computes C∗ ←R Sc(skS , pkR, mb).

5) A2 outputs b′ ←R AOSc(·,·),OUsc(·,·),ON(·,·)
2 (C∗, st), where OUsc(·, ·) and ON(·, ·) are as

in step 2, and OSc(·, ·) takes as inputs pk ∈ {GenR(dp)} and m ∈ M and outputs
C ←R Sc(skS , pk, m).

6) A wins the game if: (a) A2 never issued OUsc(pkS , C∗) or ON(pkS , C∗), and
(b) b = b′.

We denote by Succcca2A the event “conditions (6a) and (6b) are satisfied”, and define

A’s advantage by Advcca2A,SC(1k) =| Pr(Succcca2A ) − 1/2 |.

Definition 9. A SCNINR SC is said to be (t, qSc, qUsc, qN, ε)-secure in the SKI-
MU insider confidentiality in the FSO/FUO-IND-CCA2 sense if for all adver-
sary A playing Game 2, if A runs in time t, and issues respectively qSc, qUsc,
and qN queries to the signcryption, unsigncryption, and non-repudiation evidence
generation oracles then Advcca2A,SC(1k) � ε.

Unforgeability. We recall here the multi-user insider unforgeability in the
FSO/FUO-sUF-CMA sense for SCNINR.

Game 3. Multi–User insider Unforgeability in the FSO/FUO–sUF–CMA sense

A is a forger against SC, dp is the domain parameter.
1) The challenger computes (skS , pkS) ←R GenS(dp).
2) A takes pkS as input and is given access to a FSO OSc(·, ·), as in step 5 of Game 2.
3) A outputs ((skR, pkR), C∗) ←R AOSc(·,·)(pkS). He wins the game if: (a) ⊥ �= m ←

Usc(skR, pkS , C∗), and (b) A never received C∗ from the oracle OSc(·, ·) on a query
on (pkR, m).

AdvsufA,SC(1k) = Pr(SuccsufA ) denotes the probability that A wins the game.

Definition 10. A SCNINR is said to be (t, qSc, ε) multi-user insider unforgeable
in the FSO/FUO-sUF-CMA sense if for all attacker A playing Game 3, if A runs
in time t and issues qSc signcryption queries then AdvsufA,SC(1k) � ε.

Soundness of Non-repudiation. This attribute ensures that public verification
always yields a correct result.
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Game 4. Soundness of non–repudiation

A = (A1, A2) is an attacker against SC, dp is the domain parameter.
1) A1 executes with parameter dp and outputs (st, pkS) ←R A1(dp), wherein st is a

state and pkS a sender public key.
2) A2 executes with inputs st and pkS and is given access to a FSO. It outputs

(skR, pkR, C∗, m′, nr) ←R AOSc(·,·)
2 (st, pkS).

3) A wins the game if: (a) C∗ is valid, i. e. ⊥ �= m ← Usc(skR, pkS , C∗), and (b) m �=
m′ and 1 = d ← PV(C∗, m′, nr, pkS , pkR).

We denote by AdvsnrA,SC(1k) the probability that A wins the game.

Definition 11. A signcryption scheme SC is said to achieve (t, qSc, ε) compu-
tational soundness of non-repudiation if for all adversary A playing Game 4, if
A runs in time t and issues qSc signcryption queries then AdvsnrA,SC(1k) � ε.

Unforgeability of Non-repudiation (NR) Evidence. Contrary to Malone–Lee [17],
Fan et al. [11] consider unforgeability of non-repudiation evidence. However, their
definition seems too restrictive. Indeed, they consider the capability of both the
sender and receiver of a signcrypted text to generate a non-repudiation evidence
as a security weakness. As a motivating example, they consider a malicious
patient who receives a signcrypted medical report from his doctor, generates a
non-repudiation evidence, and exposes the signcryted text together with the NR
evidence. The patient can then claim that the doctor has exposed his report. In
such a situation a judge cannot decide who, among the patient and the doctor,
exposed the report.

As for us, non-repudiation ensures that a message sender (the doctor in the
example) cannot deny that the message in the signcryted text (the medical
record) is from him. The question considered in the example is not about the
non-repudiation of the signcrypted message (the report), but about the non-
repudiation of the (non-repudiation) evidence. Moreover in many settings, a
non-repudiation evidence may be used both for credit (the ability of the sender
to later claim being the sender of the message) and responsibility (the ability of
the receiver to hold the sender accountable for the message contents) [9, Chap. 3].
It seems then important that NR evidences can be generated by both the sender
(at signcrypted text generation) and the receiver of a signcrypted text.

Game 5. Unforgeability of non–repudiation evidence

A is an attacker against SC, dp is the domain parameter.
1) The challenger computes (skS , pkS) ←R GenS(dp); (skR, pkR) ←R GenR(dp);
2) A runs with inputs pkS and pkR, and is given access to the ora-

cles OSc(·, ·), OUsc(·, ·), and ON(·, ·) as in step 5 of Game 2. It outputs
(C∗, m∗, nr∗) ←R AOSc(·,·),OUsc(·,·),ON(·,·)(pkS , pkR).

3) A wins the game if: (a) C∗ was generated through OSc(·, ·) and (b) 1 = d ←
PV(C∗, m∗, nr∗, pkS , pkR), and nr∗ was not generated by the oracle ON(·, ·) on a
query on (pkS , C∗).

We denote by AdvunrA,SC(1k) the probability that A wins the game.
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Definition 12. A SCNINR is said to achieve (t, qSc, qUsc, qN, ε) unforgeability of
non-repudiation evidence if for all adversary A playing Game 5, if A runs in time
t and issues respectively qSc, qUsc, and qN queries to the signcryption, unsigncryp-
tion, and non-repudiation evidence generation oracles then AdvunrA,SC(1k) � ε.

3 New Identification and Signature Schemes

A domain parameter is given by dp = (N,G,R, e, k) wherein

– N = pq is an RSA modulus, p = 2p′ + 1 and q = 2q′ + 1 being safe primes.
– e is a (k + 1) bit prime. To improve the scheme’s efficiency, it can be chosen

to be a sparse prime. It is used as an RSA public exponent.
– R is a generator of J+N , and G = Re.
– k is a security parameter, n(k) = |N | is chosen such that the best known

algorithm for factoring N runs in time ≈2k.

For domain parameter generation, if there is a party which is trusted by all
the users, he can generate the domain parameter. Alternatively, an perhaps
preferably, the domain parameter may be generated by a set of parties such that
each user of the scheme trusts at least one of them. In this case, the parties
generating the domain parameter may perform as follows:

(1) They run the distributed shared RSA modulus generation following the pro-
tocol given in [1], to get product of two safe primes N , while each party has
a share of the primes.

(2) They choose a (k + 1) bit prime e and R ←R J
+
N , and compute G = Re (R is

a generator of J+N , with all but negligible probability).
(3) The domain parameter is dp = (N,G,R, e, k).

Description of the Scheme. Let dp = (N,G,R, e, k) be a domain parameter,
and l = �N/4�. We derive the scheme ISSN = (Gen,P,V,ChSet) wherein Gen,
P = (P1,P2), and V are as described hereunder; we denote [2k − 1] by ChSet.

Gen(dp): a←R [l]; (sk, pk) ← (Ra, Ga); Return (sk, pk).
P1(sk): x←R [l]; (X, st) ← (Gx, Rx); Return (X, st).
P2(sk,X, c, st): Y ← st; s ← Y ◦ skc; Return s.
V(pk,X, c, s): If se = X ◦ pkc then Return 1, Else return 0.

For all (sk, pk) ∈ {Gen(dp)}, if (X, c, s) is a transcript generated through P then
1 = V(pk,X, c, s), as se = (Rx+ca)e = (Re)x+ca = Gx+ca = Gx◦(Ga)c = X◦pkc.

Uniqueness and Min Entropy. As the function Expe : J
+
N → J

+
N which

maps Y to Y e is bijective, for all X, pk ∈ J
+
N , all c ∈ ChSet, there

is one and only one s ∈ J
+
N such that se = X ◦ pkc. Let δ0 denote

max(1/p′, 1/q′). If x1 ←R

[|J+N |] and x2 ←R [l] the statistical distance between
x1 and x2 is Δ(x1, x2) � N/4−φ(N)/4

N/4 � δ0. So, if X1 ← Gx1 and X2 ← Gx2 ,
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then Δ(X1,X2) � δ0. Then, if X is generated through P1(·), the statistical dis-
tance between the distribution of X and the uniform distribution over J+N is not
greater than δ0. And then for all X0 ∈ J

+
N , if X is generated through P1(·),

| Pr(X = X0) − 1/|J+N || � δ0; the identification scheme has α ≈ − log2(δ0) bits
of min-entropy.

Special Soundness. If (X, c, s) and (X, c′, s′) are two accepting transcripts with
respect to a public key pk such that c �= c′ then s ◦ s′−1 = skc−c′

, and then(
s ◦ s′−1

)e

= pkc−c′
. Now, as c, c′ ∈ ChSet = [2k − 1], and e > 2k is prime, it

follows that gcd(e, c − c′) = 1. Let α, β ∈ Z be such that eα + (c − c′)β = 1

and sk∗ = pkα ◦
(
s ◦ s′−1

)β

, then (sk∗)e =
(

pkα ◦
(
s ◦ s′−1

)β
)e

= pkeα ◦
(
s ◦ s′−1

)eβ

= pkeα+(c−c′)β = pk.

Honest Verifier Zero Knowledge. For all public key pk ∈ J
+
N , the following sim-

ulator yields transcripts with the same distribution as real transcripts.

sim(pk): c←R ChSet; z ←R [l]; s ← Rz; X ← se ◦ pk−c; Return (X, c, s).

Random Self Reducibility. The Rerand, Tran and Derand algorithms are:

Rerand(pk): z ←R [l]; τ ← Rz; pk1 ← τe ◦ pk; Return (τ, pk1);
Derand(pk, pk1, sk1, τ): sk∗ ← sk1 ◦ τ−1; Return sk∗;
Tran(pk, pk1, τ, (X, c, s1)): Z ← τ−c; s ← Z ◦ s1; Return (X, c, s).

The Rerand algorithm outputs a public key pk1 which has the same distribution
as the keys generated through Gen(dp). The Derand algorithm provides the static
private key corresponding to pk. The Tran algorithm produces a valid transcript
with respect to the public key pk.

KR-KOA Security. For sk, pk ∈ J
+
N , if ske = pk then (±sk)e = pk. Then under

the RSA assumption over J
+
N , ISSN is secure against KR-KOA.

Lemma 2. If the RSA problem is (t, ε)-hard over J
+
N then the identification

scheme ISSN is (t, ε)-KR-KOA-secure.

The Signature Scheme. As the identification scheme is commitment recover-
able, using the (alternative) Fiat–Shamir transform [12], we derive the signature
scheme SSSN = (Gen,Sign,Vrfy) we describe hereunder. H1 : {0, 1}∗ → ChSet is
a hash function.

Gen(dp): a←R [l]; (sk, pk) ← (Ra, Ga); Return (sk, pk).
Sign(sk,m): x←R [l]; X ← Gx; h ← H1(X,m) s ← Rx ◦ skh; Return (h, s).
Vrfy(pk,m, σ): Parse σ as (h, s) ∈ ChSet×ZN ; X ← se◦pk−h; h′ = H1(X,m).
If pk, s ∈ J

+
N and h = h′ then Return 1; Else Return 0.



A Practical and Insider Secure Signcryption 419

Security and Efficiency of the Signature Scheme. We have the following theorem;
its proof follows straightly from the SpS, HVZN, RSR, min-entropy, and KR-
KOA security attributes of the identification scheme and Theorem 3.1 from [15].

Theorem 1. If the RSA problem is (t, ε) hard on (N, e), then the scheme SSSN

is (t′, ε′, U,Qs, Qh)-MU-SUF-CMA secure in the random oracle model, where
ε′/t′ � 24(Qh + 1) · ε/t + Qs/2α + 1/2k.

Although efficient, the signature scheme is slightly less efficient than the
GQ scheme [13]. A key pair generation requires Exp(ZN , 2, l) operations for
our scheme while it requires Exp(ZN , k) operations for the GQ scheme.
We stress that, using simultaneous exponentiation techniques [18, Sect. 14.6],
Exp(ZN , 2, l) ≈ 1.17 ·Exp(ZN , l). A SSSN signature generation can be performed
in 1.17 · Exp(ZN , l) +Exp(ZN , k) operations, while it requires 2·Exp(ZN , k) oper-
ations for the GQ scheme. In both schemes, only Exp(ZN , k) operations need to
be performed online, all the other operations can be performed offline. A sig-
nature verification requires 2 · Jcb(N) + Exp(ZN , 2, k) operations for SSSN and
Exp(ZN , 2, k) operations for the GQ scheme.

4 The Signcryption Scheme

From the SSSN scheme, which has the advantage of being defined over a
group wherein the strong DH assumption is known to hold under the factor-
ing assumption [14], we derive SCSSN = (Setup,GenS ,GenR,Sc, Usc,N,PV).
The Setup algorithm generates a domain parameter dp′ as in Sect. 3, together
with an encryption scheme E and two hash functions H1 : {0, 1}∗ → ChSet and
H2 : {0, 1}∗ → K. We consider dp = (dp′,H1,H2, E) as an implicit parameter.

GenS(dp): a←R [l]; (skS , pkS) ← (Ra, Ga); Return (skS , pkS);
GenR(dp): b ←R [l]; (skR, pkR) ← (b,Gb); Return (skR, pkR);
Sc(skS , pkR,m): x1, x2 ←R [l];X1 ← Gx1 ;Z1 ← pkR

x1 ;X2 ← Gx2 ;Z2 ← pkR
x2 ;

τ1 ← H2(X1,X2, Z1, Z2, pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1, pkS , pkR);
h ← H1(X1,X2,m, τ1); c ← E(τ2,m); s ← Rx1 ◦ skS

h; Return (h,X2, s, c);
Usc(skR, pkS , C): Parse C as (h,X2, s, c). If X2, pkS �∈ J

+
N then Return ⊥;

X1 ← se ◦ pkS
−h; Z1 ← X1

skR ; Z2 ← X2
skR ; τ1 ← H2(X1,X2, Z1, Z2,

pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1, pkS , pkR); m ← D(τ2, c);
If h = h′ ← H1(X1,X2,m, τ1) then Return m; Else return ⊥;

N(skR, pkS , C): Parse C as (h,X2, s, c). If X2, pkS �∈ J
+
N then Return ⊥;

X1 ← se ◦ pkS
−h; Z1 ← X1

skR ;
Z2 ← X2

skR ; τ1 ← H2(X1,X2, Z1, Z2, pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1,
pkS , pkR); m ← D(τ2, c);
If h = h′ ← H1(X1,X2,m, τ1) then Return (τ1, τ2); Else return ⊥;

PV(C,m, nr, pkS , pkR): Parse C as (h,X2, s, c) and nr as (τ1, τ2); m′ ← D(τ2, c);
If m′ �= m then Return 0; X1 ← se ◦ pkS

−h;
If h = h′ ←R H1(X1,X2,m, τ1) then Return 1; Else return 0;
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For the consistency of the scheme, one can observe that for all dp ∈ {Setup(1k)},
all m ∈ M, all (skS , pkS) ∈ {GenS(dp)}, and all (skR, pkR) ∈ {GenR(dp)}, m =
Usc(skR, pkS ,Sc(skS , pkR,m)). Moreover, if nr ← N(skR, pkS ,Sc(skS , pkR,m))
then 1 = d ← PV(C,m, nr, pkS , pkR).

Efficiency of the Scheme. Since Malone–Lee’s scheme [17] is defined over any
Diffie–Hellman group, and Fan et al.’s [11] design makes use of bilinear pairings,
it is rather difficult to compare the efficiency of these schemes with our (we
use an RSA instance), without considering concrete instances. Nonetheless, our
design is a practical and efficient one; it uses the RSA primitive, which remains
probably the most widely deployed public key primitive [16]. A sender key pair
generation requires Exp(Zn, 2, l) operations (the exponentiations use the same
exponent); a receiver key pair generation requires Exp(Zn, l) operations. A sign-
cryption generation requires Exp(Zn, 6, l) operations (we neglect the cost of the
three digest operations together with the symmetric encryption). Five of the six
exponentiations can be performed off-line. Moreover, three of the five off-line
exponentiations share the same exponent, and the remaining two exponenti-
ations have also the same exponent. An unsigncryption or a non-repudiation
evidence generation requires four exponentiations; we recall that e can be cho-
sen to be a sparse prime so that exponentiations involving e can be performed
using few multiplications. A public verification requires Exp(Zn, 2, l) operations.
Assuming that |c| = |m|, the communication overhead compared to a signature
is one group element.

4.1 Confidentiality of the SCSSN Signcryption Scheme

We need the following result, its proof is given in the full version of this paper.

Theorem 2. If X1, r, s be mutually independent random variables, such r and
s are uniformly distributed over [N/4]. Let X2 be defined by X2 ← Gs ◦ X

−r
1 ,

and suppose that Y,Z1, and Z2 are random variables taking values in J
+
N , and

are defined as some functions of X1 and X2, then: (a) the statistical distance
between X2 and the uniform distribution over J

+
N is not greater than 2δ0;(b) If

X1 = Gx1 and X2 = Gx2 , then the probability that the truth value of

Z
r
1Z2 = Gs (1)

does not agree with
Z1 = Y x1 and Z2 = Y x2 (2)

is at most 5δ0; and if (2) holds then so does (1).

Theorem 3. Under the RO model, if the factorization of N is (t(k), εfac(k))-
hard and the encryption scheme E is (t(k), εss(k))-semantically secure, then
SCSSN is (t(k), qSc, qUsc, qN, ε′(k))-secure in the SKI-MU insider confidentiality
in the FSO/FUO-IND-CCA2 sense, wherein

ε′(k) = εss(k) + εfac(k) + (1 + 1/2 · qSc(qSc − 1)) (p′q′)−2|K|−1 + (5qSc + 2)δ0.
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Proof. We call the steps (1) and (2), (3) and (4), and (5) and (6) of Game 2 the
pre-challenge, challenge, and post-challenge phases respectively. We provide a
simulator which answers to A’s queries in all phases. The Initialization procedure
is executed at the beginning of the game. When the variable abort is set to 1, the
whole simulation fails. If the simulation does not fail, the Finalization procedure
is executed at the end of the game. The oracle DDHY0(·, ·) takes U, V ∈ J

+
N as

inputs and outputs 1 if CDH(Y0, U) = V and 0 otherwise. For a list L and an
element X, Apd(L,X) adds X to L.

Simulation for the SKI MU insider confidentiality game

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), and X0, Y0 ←R J
+
N .

External Oracles: DDHY0(·, ·);
1 Initialization: pkR ← Y0; SH1 ← (); Sk ← (); Sk&r ← (); SH2 ← (); abort ← 0;

Pre–Challenge Phase
2 OH1(s):
3 if ∃ h : (s, h) ∈ SH1 then return h; else h ←R ChSet;Apd(SH1 , (s, h)); return h;
4 OH2(s):
5 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

6 else if s has format (X1, X2, Z1, Z2, pk, pk′ = pkR) ∈ (
J
+
N

)6
then

7 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
8 if DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, τ)); return τ ;

9 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

10 OUsc(pk, C): ON(pk, C) :

11 if pk �∈ J
+
N then return ⊥;

12 Parse C as (h, X2, s, c) ∈ ChSet × J
+
N × J

+
N × C; � ⊥ is returned if the parsing fails

13 X1 ← se ◦ pk−h;
14 if ∃ Z1, Z2 ∈ J

+
N , τ ∈ K : ((X1, X2, Z1, Z2, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then
τ1 ← τ ; � H2(X1, X2, Z1, Z2, pk, pkR) was issued

15 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
16 τ1 ← τ ; � Usc(pk, C′) or N(pk, C′) such that C′ parses as (h, X2, s, c′) was issued

17 else τ1 ←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));

18 if ∃ Z2, Z1 ∈ J
+
N , τ ∈ K : ((X2, X1, Z2, Z1, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then τ2 ← τ ; � the same treatment as for τ1

19 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then τ2 ← τ ;
20 else τ2 ←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

21 m ← D(τ2, c); h′ ← OH1(X1, X2, m, τ1);

22 if h = h′ then return m
OUsc

return (τ1, τ2)

ON

else return ⊥;

Challenge Phase

23 (m0, m1, st, pkS) ←R AOUsc(·,·),ON(·,·),OH1 (·),OH2 (·)
1 (pkR);

24 ĥ ←R ChSet; ẑ ←R [l]; ŝ ← Rẑ; X̂1 ← ŝe ◦ pk
−ĥ

S ; X̂2 ← X0;
25 b ←R {0, 1}; τ̂1 ←R K; τ̂2 ←R K; ĉ ← E(τ̂2, mb);
26 if ∃ h′, m′ : ((X̂1, X̂2, m

′, τ̂1), h′) ∈ SH1 then abort ← 1;
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27 Apd(SH1 , ((X̂1, X̂2, mb, τ̂1), ĥ)); Apd(Sk, ((X̂1, X̂2, pkS , pkR), τ̂1));
28 Apd(Sk, ((X̂2, X̂1, pkS , pkR), τ̂2)); C∗ ← (ĥ, X̂2, ŝ, ĉ);

Post–Challenge Phase
A2 is run with input (C∗, st). It has access to the oracles OSc(·, ·), OUsc(·, ·), ON(·, ·),
OH1(·), and OH2(·). Only changes compared to the pre–challenge phase are drawn.

29 OSc(pk, m):

30 h ←R ChSet; z ←R [l]; s1 ← Rz; X1 ← s1
e ◦ pkS

−h;
31 r ←R [l]; s2 ←R [l]; X2 ← Gs2 ◦ X1

−r; τ1 ←R K; τ2 ←R K;
32 if ∃ h′, m′ : ((X1, X2, m

′, τ1), h′) ∈ SH1 then abort ← 1;

33 Apd (SH1 , ((X1, X2, m, τ1), h));
34 if pk = pkR then Apd(Sk, ((X1, X2, pkS , pkR), τ1));

Apd(Sk, ((X2, X1, pkS , pkR), τ2));
35 else Apd (Sk&r, ((X1, X2, pkS , pk), (r, s2, τ1, τ2)));

36 c ← E(τ2, m); C ← (h, X2, s1, c); return C;

37 OH2(s):
38 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

39 else if s has format (X1, X2, Z1, Z2, pk, pkR) ∈ (
J
+
N

)6
then

40 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
41 if DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, k)); return τ ;

42 else if s has format (X1, X2, Z1, Z2, pkS , pk) ∈ (
J
+
N

)6
then

43 if ∃ r, s, τ1, τ2 : ((X1, X2, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
44 if Z

r
1 ◦ Z2 = pks then return τ1; � 2DH(X1, X2, pk) = (Z1, Z2) with all but

negligible probability.

45 if ∃ r, s, τ1, τ2 : ((X2, X1, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
46 if Z

r
2 ◦ Z1 = pks then return τ2;

47 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

48 Finalization:
49 if ∃ Ẑ1, Ẑ2 ∈ J

+
N :

(
((X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR), τ̂1) ∈ SH2 or ((X̂2, X̂1, Ẑ2, Ẑ1, pkS ,

pkR), τ̂2) ∈ SH2

)
and DDHY0(X̂1, Ẑ1) = DDHY0(X̂2, Ẑ2) = 1 then return Ẑ2;

50 else return ⊥;

In the pre-challenge phase, the simulator answers to OH1(·), OH2(·), OUsc(·, ·),
and ON(·, ·) queries. The lines 10–22 describe both OUsc(·, ·) and ON(·, ·). When
executing OUsc(·, ·) (resp. ON(·, ·)), the instruction return (τ1, τ2) (resp. returnm)
at line 22 is omitted. Digest queries are answered using input-output tables.
The OH2(·) digest values of strings with format (X1,X2, Z1, Z2, pk, pkR) are not
only assigned by the OH2(·) oracle, but also through executions of OUsc(·, ·) and
ON(·, ·); in the latter two cases Z1 = CDH(X1, pkR) and Z2 = CDH(X2, pkR)
are unknown. So, for consistency, in addition to SH2 , we use a list Sk to store the
values of OH2(X1,X2, Z1, Z2, pk, pkR) which was assigned while Z1 and Z2 are
unknown (see at lines 14–20). Doing so, the simulator consistently answers to
all digest queries with the help of the DDHY0=pkR

(·, ·) oracle (see at lines 6–8).
In the challenge phase, we essentially simulate a signature generation (at

line 24), then X2 is set to X0 (the simulator takes X0 and Y0 = pkR as input).
The secret keys, τ1 and τ2 are chosen uniformly at random from K, and savings
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are performed for OH2(·) digests consistency (lines 27–28). In the post-challenge
phase, the changes, compared to the pre-challenge phase, are the (re)definitions
of the OSc(·, ·) and OH2(·) oracles. When computing OSc(pk,m), the simulator
ignores both skS and the secret key corresponding to pk. For consistency, we
simulate a signature generations (see at line 30), choose r and s2, and generate
X2 (see at line 31) such that: (i) the statistical distance between the distribution
of the X2 we generate in this way and the distribution of X2 we obtain through
a real execution of Sc(·, ·, ·) is not greater than 2δ0 = 2max(1/p′, 1/q′); (ii)
if Z1 and Z2 are such that Z

r
1Z2 = Gs, then Z1 = CDH(X1, pk) and Z2 =

CDH(X2, pk) with overwhelming probability (see Theorem 2). Doing so, we have
a way to assign values to τ1 and τ2, while keeping the outputs of OH2(·) consistent
(see at lines 31–35 and 43–46). Let bad be the event: “(a) the simulator aborts
(see at lines 26 and 32) or (b) in some execution of OH2(·), Z1 and Z2 are such
that Z

r
1 ◦ Z2 = pks while CDH(X1, pk) �= Z1 or CDH(X2, pk) �= Z2 (see at

lines 43–46).” Then, from Theorem 2

Pr(bad) � (p′q′)−2|K|−1 + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (3)

Let Succcca2A,sim denote the event “A succeeds in the simulated environment”.
Under the RO model, if ¬bad then, A’s views in the real and simulated environ-
ments are the same; so, Pr(Succcca2A ∧ ¬bad) = Pr(Succcca2A,sim ∧ ¬bad). Then

Advcca2A (1k) = | Pr(Succcca2A )−1/2| � | Pr(Succcca2A ∧¬bad)−1/2|+Pr(bad). (4)

Let CDHfound be the event the “Finalization procedure outputs Ẑ2 �= ⊥”. By the
definition of CDHfound, Pr(Succcca2A,sim∧¬bad∧CDHfound) � AdvsCDH

B1
(J+N ), where

B1 is obtained from A and the simulator. Using [14, Theorem 2], we obtain

Pr(Succcca2A,sim ∧ ¬bad ∧ CDHfound) � AdvfacB1,RSAGen(k) + 1/p′ + 1/q′. (5)

Now, if Succcca2A,sim ∧ ¬bad ∧ ¬CDHfound, then A is essentially playing a semantic
security game against E , so using A and the simulator we build an adversary B2

against E such that

| Pr(Succcca2A,sim ∧ ¬bad ∧ ¬CDHfound) − 1/2| = AdvssB2,E(k). (6)

The result follows from (3)–(6). ��

4.2 Unforgeability of the SCSSN Scheme

Theorem 4. Under the RO model, if the RSA problem is (t(k), ε0(k))-hard
over J

+
N , then SCSSN is (t, qSc, ε′)-MU insider unforgeable in the FSO/FUO-

sUF-CMA sense, with ε′ � √
qε0+(q+1)|ChSet|−1+qSc(qSc−1)

(
2(p′q′)2|K|)−1+

5qScδ0, with q = qH1 +qSc wherein qH1 is an upper bound on the number of OH1(·)
queries the adversary issues.
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Proof. Let qH1 and qSc be upper bounds on the number of queries A issues to
the OH1(·) and OSc(·, ·) oracles respectively, and q = qH1 + qSc. In addition to
the domain parameter and Y0 ←R J

+
N , the simulator takes as an additional input

LH1 = (h1, · · · , hq) such that for all i, hi ←R ChSet.

Simulation for the MU insider Unforgeability in the FSO/FUO–sUF–CMA sense

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), Y0 ←R J
+
N , LH1 = (h1, h2, · · · , hq).

100 Initialization: pkS ← Y0; SH1 ← (); cnt ← 0; Sk&r ← (); SH2 ← (); abort ← 0;
101 OH1(s):
102 if ∃ h : (s, h) ∈ SH1 then return h;
103 else cnt ← cnt + 1; h ← LH1 [cnt];Apd(SH1 , (s, h, cnt)); return h;

104 OH2(s):
105 if ∃ τ : (s, τ) ∈ SH2 then return τ

106 else if s has format (X1, X2, Z1, Z2, pkS , pk) ∈ (
J
+
N

)6
then

107 if ∃ r, s, τ1, τ2 : ((X1, X2, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
108 if Z

r
1 ◦ Z2 = pks then return τ1;

109 if ∃ r, s, τ1, τ2 : ((X2, X1, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
110 if Z

r
2 ◦ Z1 = pks then return τ2;

111 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

112 OSc(pk, m):

113 cnt ← cnt + 1; h ← LH1 [cnt]; z ←R [l]; s1 ← Rz; X1 ← s1
e ◦ pkS

−h;
114 r ←R [l]; s2 ←R [l]; X2 ← Gs2 ◦ X1

−r; τ1 ←R K; τ2 ←R K;
115 if ∃ h′, m′, j : ((X1, X2, m

′, τ1), h′, j) ∈ SH1 then abort ← 1;

116 Apd (SH1 , ((X1, X2, m, τ1), h, cnt)); Apd (Sk&r, ((X1, X2, pkS , pk), (r, s2, τ1, τ2)));
117 c ← E(τ2, m); C ← (h, X2, s1, c); return C;
118 Finalization:
119 if A outputs (skR, pkR, C∗) such that ⊥ �= m̂ ← OUsc(skR, C∗) and OSign(pkR, m̂)

was never issued then
120 Parse C∗ as (ĥ, X̂2, ŝ, ĉ);

121 X̂1 ← ŝe◦pkS
−ĥ; Ẑ1 ← X̂

skR

1 ; Ẑ2 ← X̂
skR

2 ; τ̂1 ← OH2(X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR);
122 if ∃j0 : (X̂1, X̂2, m̂, τ̂1), ĥ, j0) ∈ SH1 then return (j0, X̂1, ŝ);

123 return (0, ε, ε);

As in the previous analysis, bad denotes the event: “(a) abort is set to 1 (see
at line 115) or (b) in the execution of OH2(·), Z1 and Z2 are such that (see at
lines 108 and 110) Z

r
1 ◦Z2 = pks and CDH(X1, pk) �= Z1 or CDH(X2, pk) �= Z2.”

Then
Pr(bad) � qSc(qSc − 1)

(
2(p′q′)2|K|)−1

+ 5qScδ0, (7)

and then

AdvsufA,SC(1k) � Pr(SuccsufA ∧ ¬bad) + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (8)

Let fail be the event “the Finalization procedure outputs (0, ε, ε)”. If the event
SuccsufA ∧ ¬bad ∧ fail occurs then the oracle OH1(·) was never queried with value
(X̂1, X̂2, m̂, τ̂1). Which means that A successfully guessed OH1(X̂1, X̂2, m̂, τ̂1).
Under the RO model,

Pr(SuccsufA ∧ ¬bad ∧ fail) � |ChSet|−1
. (9)
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Using A and the simulator, we obtain a machine B which takes (dp, E , Y0, LH1 =

(h1, · · · , hq)) as input and outputs (j0, X̂1, ŝ) such that ŝe = X1Y
hj0

0 with prob-
ability ε1 = Pr(SuccsufA ∧¬bad∧¬fail). Let FB be the forking algorithm [7, Sect. 3]
associated to B. By the General Forking Lemma [7, Lemma 1], from FB ’s output,

we have (hj0 , h
′
j0

,X1, ŝ, ŝ′) such that hj0 �= h′
j0

, ŝe = X1Y
hj0

0 , and ŝ′e = X1Y
h′
j0

0

with probability ε0 � ε1(ε1/q − 1/|ChSet|). Then, using FB and Shamir’s trick
(we use on page 9 when proving that ISSN provides special soundness), we
obtain a machine B2 which, on input Y0, outputs X0 such that X

e
0 = Y0 with

probability ε0. Again, from the General Forking Lemma [7, Lemma 1],

ε1 � q|ChSet|−1 +
√

qε0. (10)

The result follows from (8)–(10).

4.3 Soundness of Non-repudiation

Theorem 5. Under the RO model, SCSSN achieves (t, qSc, ε)-computational
soundness of non-repudiation, with ε � 1/2 · q(q − 1)|ChSet|−1 + 1/2 · qSc(qSc −
1)(p′q′)−2|K|−1 + 5qScδ0, where q = qH1 + qSc, wherein qH1 is an upper bound on
the number of OH1(·) queries A issues.

Proof. First, we provide a simulation for Game 4. The simulator takes dp =
(N,G,R, e, k) and E = (E,D,K,M,C) as inputs. The initialization simply sets
SH1 ← (); Sk ← (); Sk&r ← (); SH2 ← (). The OH1(·) oracle is as described in
lines 2–3 in the simulation for the confidentiality game. The OH2(·) and OSc(·, ·)
oracles are as in lines 104–111 and 112–117 in the simulation for the unforge-
ability game, except that the lines 113 and 115 are replaced respectively with
the lines 200 and 201, hereunder:
200 h ←R ChSet;
201 if ∃ h′, m′ : ((X1, X2, m

′, τ1), h′) ∈ SH1 then abort ← 1.

Defining bad as in the proof of Theorem 4, the inequality (7) still holds. Then

AdvsnrA,SC(1k) � Pr(SuccsnrA ∧ ¬bad) + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (11)

If A succeeds and ¬bad, A outputs (skR, pkR, C∗,m′, nr) such that m′ �= m ←
Usc(skR, pkS , C∗) and 1 = d ← PV(C∗,m′, nr, pkS , pkR). Let C∗ = (ĥ, X̂2, ŝ, ĉ),
nr = (τ1, τ2), n̂r = (τ̂1, τ̂2) ← N(skR, pkS , C∗), and X̂1 ← se ◦ pk

−h

S . As m �= m′

and 1 = d ← PV(C∗,m′, nr, pkS , pkR) = d′ ← PV(C∗,m, n̂r, pkS , pkR). A have
found (m, τ̂1) and (m′, τ1) such that ĥ = h1 ← OH1(X̂1, X̂2,m, τ̂1) = h2 ←
OH1(X̂1, X̂2,m

′, τ1). Then

Pr(SuccsnrA ∧ ¬bad) � q(q − 1)(2 · |ChSet|)−1
. (12)

The Theorem follows from (11) and (12). ��
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4.4 Unforgeability of Non-repudiation Evidence

Theorem 6. Under the RO model, if the factoring problem is (t(k), ε(k))
hard, then the SCSSN scheme achieves (t, qSc, qUsc, qN, ε′) unforgeability of non-
repudiation evidence with ε′ � ε+ |K|−1+qSc(qSc−1)

(
2(p′q′)2

)−1+(5qSc+2)δ0.

Proof. We consider the following simulation.

Simulation for Unforgeability of non–repudiation evidence

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), X0, Y0 ←R J
+
N , LH1 = (h1, h2, · · · , hq).

External Oracles: DDHY0(·, ·)

300 Initialization: a ← [l]; (skS , pkS) ← (Ra, Ga); pkR ← Y0; SH1 ← (); cnt ← 0;
Sk ← (); Sk&r ← (); SH2 ← ();

301 OH1(s): is defined as in the simulation for the confidentiality game, at lines 2–3.
302 OH2(s):
303 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

304 else if s has format (X1, X2, Z1, Z2, pk, pk′ = pkR) ∈ (
J
+
N

)6
then

305 if pk = pkS and ∃τ, x : ((X1, X2, Z1, ε, pkS , pkR), τ, x)) ∈ Sk&r and
DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, τ)); return τ ;

306 if pk = pkS and ∃τ, x : ((X1, X2, ε, Z2, pkS , pkR), τ, x)) ∈ Sk&r and
DDHY0(X1, Z1) = 1 then Apd(SH2 , (s, τ)); return τ ;

307 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk and DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1
then Apd(SH2 , (s, τ)); return τ ;

308 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

309 OSc(pk, m):
310 x1 ←R [l]; X1 ← Gx1 ; Z1 = pkR

x1 ; x2 ←R [l];
311 if pk �= pkR then
312 X2 ← Gx2 ; Z2 = pkR

x2 ;
313 τ1 ← OH2(X1, X2, Z1, Z2, pkS , pk); τ2 ← OH2(X2, X1, Z2, Z1, pkS , pk);
314 else
315 X2 ← X0 ◦ Gx2 ; τ1 ←R K; τ2 ←R K; � The simulator takes X0, Y0 as inputs

316 Apd(Sk&r, ((X1, X2, Z1, ε, pkS , pkR), τ1, x2)); � pk = pkR;

317 Apd(Sk&r, ((X2, X1, ε, Z1, pkS , pkR), τ2, x2));

318 h ← OH1(X1, X2, m, τ1); c ← E(τ2, m); s ← Rx1 ◦ skS
h; return (h, X2, s, c);

319 OUsc(pk, C): ON(pk, C) :

320 if pk �∈ J
+
N then return ⊥;

321 Parse C as (h, X2, s, c) ∈ ChSet × J
+
N × J

+
N × C; X1 ← se ◦ pk−h;

322 if ∃ Z1, Z2 ∈ J
+
N , τ ∈ K : ((X1, X2, Z1, Z2, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then
τ1 ← τ ; � H2(X1, X2, Z1, Z2, pk, pkR) was issued

323 else if pk = pkR and ∃ τ, x : ((X1, X2, Z1, ε, pkS , pkR), τ, x) ∈ Sk&r then
324 τ1 ← τ � OSc(·, ·) returned (h, X2, s, c′) for some c′

325 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
326 τ1 ← τ ; � Usc(pk, C′) or N(pk, C′) such that C′ parses as (h, X2, s, c′) was issued

327 else τ1 ←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));
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328 if ∃ Z2, Z1 ∈ J
+
N , τ ∈ K : ((X2, X1, Z2, Z1, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then τ2 ← τ ; � the same treatment as for τ1

329 else if pk = pkR and ∃ τ, x : ((X2, X1, ε, Z2, pkS , pkR), τ, x) ∈ Sk&r then τ2 ← τ
330 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then τ2 ← τ ;
331 else τ2 ←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

332 m ← D(τ2, c); h′ ← OH1(X1, X2, m, τ1);

333 if h = h′ then return m
OUsc

return (τ1, τ2)

ON

else return ⊥;

334 Finalization:
335 if A outputs (C∗, m∗, nr∗) such that C∗ was generated through OSc(·, ·), 1 = d ←

PV(C∗, m∗, nr∗, pkS , pkR) and nr∗ was not generated by the oracle ON(·, ·) on a
query on (pkS , C∗) then

336 Parse C∗ as (ĥ, X̂2, ŝ, ĉ) and nr∗ as (τ̂1, τ̂2);

X̂1 ← ŝe ◦ pkS
−ĥ;

337 Recover ((X̂1, X̂2, Ẑ1, ε, pkS , pkR), τ̂ , x) from Sk&r � As C∗ was output by OSc(·, ·)
there are some Ẑ1, τ̂ , x : ((X̂1, X̂2, Ẑ1, ε, pkS , pkR), τ̂ , x)) ∈ Sk&r (see at line 316)

338 if ∃ Ẑ1, Ẑ2 ∈ J
+
N : ((X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR), τ̂1) ∈ SH2 and DDHY0(X̂2, Ẑ2) = 1

then
U0 ← Z2 ◦ pkR

−x; return U0;

339 return ε;

Let bad denote the event “the same couple (X1,X2) is generated in two execu-
tions of OSign(·, ·)”. Then, under the RO model,

Pr(bad) � 1
2
qSc(qSc − 1)(p′q′)−2 + 5qScδ0. (13)

Let fail be the event “the Finalization procedure outputs ε”. If SuccunrA ∧¬bad∧fail

occurs, A never query the OH2 oracle on (X̂1, X̂2,CDH(pkR, X̂1), CDH(pkR, X̂2),
pkS , pkR); then A successfully guessed the corresponding digest value. It follows

Pr(SuccunrA ∧ ¬bad ∧ fail) � |K|−1
. (14)

If SuccunrA ∧ ¬bad∧ ¬fail occurs, as X̂2 = X0 ◦ Gx and Ẑ2 = CDH(X2, pkR = Y0)

U0 = CDH(X0, Y0) = Z2 ◦ pk
−x

R . (15)

Using A and the simulator, we have a machine which takes X0, Y0 as input and
outputs CDH(X0, Y0) with probability Pr(SuccunrA ∧ ¬bad ∧ ¬fail). The result
follows from (13), (14), and [14, Theorem 2]. ��

5 Concluding Remarks

We have proposed a new identification scheme over the group of signed quadratic
residues, wherein the strong Diffie–Hellman assumption holds under the factoring
assumption. Using the identification scheme, we derived a new signature scheme
we have shown to be strongly unforgeable against chosen message attacks, under
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the RSA assumption and the Random Oracle model. We proposed an efficient
signcryption scheme with non-interactive non-repudiation, we have shown to be
insider secure, under the RSA assumption and the RO model, in a variant of
Fan et al.’s security model. The communication overhead of the signcryption
scheme, compared to the corresponding signature scheme is one group element.

Compared to Fan et al.’s design which uses bilinear maps, our scheme is RSA
based and can be easily deployed in most of the existing platforms.

In a forthcoming stage, we will be interested in the conditions under which our
design can be generalized to generic Diffie–Hellman groups. We will investigate
also signcryption designs with a tight security reduction.
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