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Abstract. On the quadratic twist of a GLV curve, we explore faster scalar
multiplication on its x-coordinate system utilizing three-dimensional GLV
method. We construct and implement two kinds of three-dimensional
differential addition chains, one of which is uniform and the other is
non-uniform but runs faster. Implementations show that at about 254-bit
security level, the triple scalar multiplication using our second differential
addition chains runs about 26% faster than the straightforward comput-
ing using Montgomery ladder, and about 6% faster that the double scalar
multiplication using DJB chains.
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1 Introduction

Elliptic curve cryptography (ECC) plays an important role in the public key
cryptosystems. Various schemes and numerous techniques about ECC have been
studied to meet the different needs (basically, efficiency and security) in different
settings. In 2014, Costello, Hisil and Smith [6] implemented a very fast elliptic
curve scalar multiplication, optimized for Diffie-Hellman Key Exchange at the
128-bit security level. This very efficient scheme involved two crucial ideas: using
x-coordinate-only systems and the two-dimensional GLV method on the x-line.

The idea for computing scalar multiplication on elliptic curves by only x-
coordinates arose earlier. Montgomery’s explicit formulas [14] for the arithmetic
on x-coordinate of a Montgomery curve together with his eponymous ladder
provided a full solution to its implementation. It is often used as a technique
called point compression, for storing or transmitting fewer bits of information in
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some specific situation. The Gallant-Lambert-Vanstone (GLV) method [9] is a
typical and important technique for speeding up scalar multiplication on certain
kinds of elliptic curves. It exploits a fast endomorphism on the curve, replacing a
single large scalar multiplication with two scalar multiplications with only a half
bit lengths. Then this two-dimensional GLV will result in a twofold performance
speedup using parallel computation. Since m-dimensional GLV would proba-
bly lead to m-fold performance acceleration by parallel computation, higher
dimensional GLV method has also been intensively considered [8,10,12]. In 2009,
Galbraith, Lin and Scott [8] proposed the so-called GLS curves and indicated
that on restricted GLS curves with j-invariant 0 or 1728, the four-dimensional
GLV can be implemented. Further in 2012, Longa and Sica [12] combined the
ideas in [9] and [8] and realized the four-dimensional GLV on the quadratic twists
of all previous GLV curves appeared in [9].

In [6], Costello et al. have shown a positive effect of applying the two-
dimensional GLV method to the scalar multiplication on the x-line. Motivated
by the potential acceleration of higher dimensional GLV method, in this paper
we investigate the performance of applying the three-dimensional GLV method to
the x-coordinate-only systems. We choose the elliptic curves using the approach
of [12], which are originally tailored for four-dimensional GLV method but can be
transformed to three-dimensional variants as well. The remaining key issue is the
chosen of higher dimensional differential addition chains (DACs) used in multi-
scalar multiplication, where the “differential” property of the chain is required by
the incomplete (pseudo-) operations on the x-line.

The two-dimensional DACs have all kinds of constructions in literature. For
example, Schoenmakers’ chain in [17], Akishita’s chain in [1]. In [6] another
three different two-dimensional DACs are implemented: PRAC chains [13,17], AK
chains [2] and DJB chains [3]. Each of them offers a different combination of speed,
uniformity and constant-time execution. The research about higher dimensional
DACs are comparatively less. Early in 2006, Brown [4] extended Bernstein’s idea
(i.e. DJB chain) to general d-dimensional DACs, but it has been patented. For
bypassing it, around 2016 SubramanyaRao tried the three-dimensional analogue of
Schoenmakers’ chain in [15] and that of Akishita’s chain in [16]. The first attempt
failed because it was showed to be more expensive than one-dimensional Mont-
gomery ladder. The second one succeeded in competing with Montgomery ladder
by about 22% speedup at the 256-bit security level. However there were no results
of comparing it with the two-dimensional DACs. The latest progress is made in
[11], 2017, by Hutchinson and Karabina. They constructed a d-dimensional DAC
which has some similarities with that of Brown’s [4], and made specific theoretical
comparisons between some known d-point multiplication algorithms showing the
algorithm based on their construction to be superior.

In this paper, we propose two kinds of constructions of three-dimensional
DACs. The first one is a straightforward extension to higher dimension of the
DJB chain, which is totally different from the patented one of Brown’s in [4]. It
inherits the property of uniformity. The second one comes from our direct obser-
vation, which is not a higher dimensional analogue of any two-dimensional DAC.
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It is not uniform, but runs very fast. And it runs faster than SubramanyaRao’s
second chain described in [16] since it saves one more point operation in each
iteration. Our final comparison experiments on testing scalar multiplication on
the x-coordinate system utilizing different dimensional GLV methods show that
at about 254-bit security level, our uniform three-dimensional DAC runs about
9% faster than Montgomery ladder, and the non-uniform one runs about 26%
faster than Montgomery ladder and about 6% faster than the two-dimensional
DJB chain.

Paper Organization. The rest of the paper is arranged as follows. In Sect. 2, we
begin with a brief introduction to the four-dimensional GLV method proposed in
[12], and see how to deduce a three-dimensional GLV variant directly in the same
settings. In Sect. 3, we describe the basic operations on the x-coordinate system
and deploy higher dimensional GLV method on this system. Then in Sect. 4 we
describe explicitly the construction of our two three-dimensional DACs, and give
some examples. In Sect. 5, from both the theoretic and experimental aspect, we
compare the performance of scalar multiplication on the x-coordinate utilizing
different dimensional GLV methods together with different DACs. Finally in
Sect. 6 we draw our conclusion.

2 Three and Four-Dimensional GLV Method

The 4-dimensional GLV method proposed by Longa and Sica in [12] consists
of the chosen of elliptic curves that are equipped with two efficient endomor-
phisms and 4-dimensional scalar decomposition. They use the quadratic twists
of elliptic curves, of which the idea comes from GLS curves, and propose a spe-
cific twofold Cornacchia-type algorithm for scalar decomposition. Here we give
a brief introduction.

Let Fp be a finite field where p is prime. A GLV curve over Fp is an elliptic
curve E/Fp of whom the group of rational points has an almost prime order
(cofactor ≤ 4), equipped with an efficiently computable Fp-endomorphism φ.
Assume that X2 + rX + s ∈ Z[X] is the characteristic polynomial of φ, and
π is the p-th Frobenius endomorphism of E. Let E′/Fp2 be a quadratic twist
of E(Fp2), via the twisting Fp4 -isomorphism t2 : E → E′. We then obtain two
efficient endomorphisms on E′, Φ = t2φt−1

2 and Ψ = t2πt−1
2 , both defined over

Fp2 . Suppose that 〈P 〉 ⊂ E′(Fp2) is a large subgroup of prime order n. Then we
have Φ2(P )+rΦ(P )+sP = OE′ and Ψ2(P )+P = OE′ , together with Φ(P ) = λP
and Ψ(P ) = μP where λ, μ ∈ [1, n−1] is a root of X2+rX +s modulo n, X2+1
modulo n respectively.

Define the 4-dimensional GLV reduction map w.r.t. {1, Φ, Ψ, ΦΨ}
f : Z

4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ + x3μ + x4λμ (mod n).

Then ker f is a lattice. Applying the twofold Cornacchia-type algorithm [12,
18] to ker f, we can find a short basis {v1, v2, v3, v4} to this lattice with maxi |vi| ≤
3.41(

√
1 + |r| + s)n1/4, where | · | denotes the maximum norm. For any scalar
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k ∈ [1, n), express (k, 0, 0, 0) = α1v1 + α2v2 + α3v3 + α4v4 as the Q-linear
combination of the basis {vi}. Then round αi to the nearest integers ai = 	αi
,
and let (k1, k2, k3, k4) = (k, 0, 0, 0) − ∑4

i=1 aivi. Finally we have

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΦΨ(P )

with
max

i
(|ki|) ≤ 6.82(

√
1 + |r| + s)n1/4.

For our demand in the following, actually we need the 3-dimensional GLV
method. The above way for choosing target curves is exactly what we want. But
we delete the dimension controlled by “ΦΨ” from the 4-dimensional version to
obtain a 3-dimensional representation. As for the 3-dimensional scalar decom-
position, following the same way as above, then we obtain a 3-dimensional GLV
reduction map f̃ w.r.t. {1, Φ, Ψ}. For finding a short basis of the lattice ker f̃, we
can apply LLL algorithm. Then using the way described as above we can obtain

kP = �1P + �2Φ(P ) + �3Ψ(P ) with �i = O(k1/3).

3 Projection to the x-Line

The projective line P
1 can be viewed as a quotient variety of E by the subgroup

{±1} of the automorphism group Aut(E) of E. Particularly, if {±1} is exactly
the whole group Aut(E) then P

1 is the so-called Kummer variety of E. When E
is given by a Weierstrass equation (or Montgomery form as [6] exploited), then
the quotient map E → P

1 is just the projection to x-coordinate.
Some of the operations of E are well-defined on the x-line, like the scalar

multiplication. Assume that P is a point of E. Given the x-coordinate x(P )
of P and some scalar k, then x(kP ) can be computed using the well-known
Montgomery ladder. Based on this property, Diffie-Hellman Key Exchange can
be executed on the pure x-coordinate settings. Furthermore in [6] Costello et al.
require E to be twist-secure, for ensuring the compactness of this system.

However the x-line is not a group. The typical obstruction is that, only given
the x-coordinates x(P ), x(Q) of two points P,Q of E, one can not distinguish
x(P ⊕Q) and x(P �Q). But once one of them is known, then the other is clear.

Basic Pseudo-Operations on the x -Line. In our settings, the target elliptic
curve E′/Fp2 as described in Sect. 2 is always defined by a short Weierstrass
equation: y2 = x3+a4x+a6. For reader’s convenience, here we write the explicit
formula (in projective coordinate form) for pseudo-doubling and pseudo-addition
on the x-line, which one may refer to [5].

Let x(Pi) = (Xi : Zi), i = 1, 2 be the x-coordinates of two points P1, P2 on
E′(Fp2). Let x(P1 � P2) = (ΔX : ΔZ). Assume x(P1 ⊕ P2) = (X : Z). Then

X = ΔZ
( − 4a6Z1Z2(X1Z2 + X2Z1) + (X1X2 − a4Z1Z2)2

)
,

Z = ΔX
(
X1Z2 − X2Z1

)2
,
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and

x(2P1) =
(
(X2

1 − a4Z
2
1 )2 − 8a6X1Z

3
1 : 4Z1(X1(X2

1 + a4Z
2
1 ) + a6Z

3
1 )

)
.

Pseudo-Endomorphisms on the x -Line. Every endomorphism of E induces
a pseudo-endomorphism of P

1, since it commutes with the negation map of E. On
our target curve E′/Fp2 , the two endomorphisms Φ and Ψ induce Φx : x �→ Φx(x)
and Ψx : x �→ Ψx(x) on the x-line. And since they are commutative, we have

ΦxΨx = (ΦΨ)x = (ΨΦ)x = ΨxΦx.

Let 〈P 〉 ⊂ E′(Fp2) be the subgroup with large prime order as in Sect. 2. For
any scalar k, we can find (k1, k2, k3, k4) with only a quater of the bit length of
k, such that

kP = k1P + k2Φ(P ) + k3Ψ(P ) + k4ΦΨ(P );

or we can find (�1, �2, �3) with only one third of the bit length of k, such that

kP = �1P + �2Φ(P ) + �3Ψ(P ).

Denote by x the x-coordinate of P . Then we would like to compute x(kP ) using

(k1 + k2Φ + k3Ψ + k4ΦΨ)x(x) (1)
or (�1 + �2Φ + �3Ψ)x(x). (2)

Actually here we only need to consider Eq. (2). We can expect to acceler-
ate the computation of x(kP ) using this multi-scalar multiplication. But since
there are only pseudo-operations on the x-line, addition chains are not feasible.
And it forces us to propose a higher dimensional DAC to this (k1, k2, k3, k4) or
(�1, �2, �3), just as the 2-dimensional case in [6], where computes

(m1 + m2Φ)x(x) or (m1 + m2Ψ)x(x) (3)

utilizing a 2-dimensional DAC.

4 Three-Dimensional Differential Addition Chains

A differential addition chain is an addition chain in which each sum is already
accompanied by a difference, i.e. whenever a new chain element M +N is formed
by adding M and N , the difference M − N was already in the chain. The chain
is called n-dimensional, if every element in this chain has the form of n-tuple.
For example, the well-known “Montgomery ladder” is a typical one-dimensional
DAC.

In this section, we propose two kinds of constructions of 3-dimensional DACs.
One is a higher dimensional analogue of the DJB chain. The other comes
from observation directly, which is not a higher dimensional analogue of any
2-dimensional DAC.
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4.1 A Uniform Three-Dimensional Differential Addition Chain

The DJB chain is a 2-dimensional DAC proposed by Bernstein in 2006. It is
uniform, i.e. possesses the same execution pattern: add, double, add in each
iteration, and hence can resist side-channel attacks. For more details one can
refer to [3]. In the following, we generalize it to the 3-dimensional case.

Let S be the following set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

As in the 2-dimensional case, in each iteration we compute part of the eight
elements of the set S(a, b, c) = (a, b, c) + S.

We find that computing five of them is enough. For ensuring the property of
uniform, the element of type (even, even, even) should be reserved. For a pair of ele-
ments in S(a, b, c), if every component of them has the opposite parity, then we call
them dual to each other. Among the following three dual pairs {(odd, even, even),
(even, odd, odd)}, {(even, odd, even), (odd, even, odd)}, {(even, even, odd), (odd,
odd, even)}, we omit one of two elements in every pair, and use three parameters
d1, d2, d3 to determine which ones are to be omitted, that is

T1 = (a+ (a+ d1 + 1 mod 2), b+ (b+ d1 mod 2), c+ (c+ d1 mod 2)),
T2 = (a+ (a+ d2 mod 2), b+ (b+ d2 + 1 mod 2), c+ (c+ d2 mod 2)),
T3 = (a+ (a+ d3 mod 2), b+ (b+ d3 mod 2), c+ (c+ d3 + 1 mod 2)).

Next we give a recursive definition of the 3-dimensional differential addition
chain.

Definition 1. For a given 3-tuple of nonnegative integers (A,B,C), and
{D1,D2,D3} where D1,D2,D3 ∈ {0, 1}, we define the set C({Di}3i=1;A,B,C)
recursively, as the set C({di}3i=1; a, b, c) added with the following five elements:

M−1 = (A+ (A+ 1 mod 2), B + (B + 1 mod 2), C + (C + 1 mod 2)),
M0 = (A+ (A mod 2), B + (B mod 2), C + (C mod 2)),
M1 = (A+ (A+D1 mod 2), B + (B +D1 + 1 mod 2), C + (C +D1 + 1 mod 2)),
M2 = (A+ (A+D2 + 1 mod 2), B + (B +D2 mod 2), C + (C +D2 + 1 mod 2)),
M3 = (A+ (A+D3 + 1 mod 2), B + (B +D3 + 1 mod 2), C + (C +D3 mod 2)),

where (a, b, c) = (	A/2
, 	B/2
, 	C/2
) and (d1, d2, d3) is taken as

(d1, d2, d3) if (a + A, b + B, c + C) mod 2
(1, 0, 0) (1, 0, 0)
(0, 1, 1) (0, 1, 1)
(0, 1, 0) (0, 1, 0)
(1, 0, 1) (1, 0, 1)
(0, 0, 1) (0, 0, 1)
(1, 1, 0) (1, 1, 0)

(D1,D2,D3) (0, 0, 0)
(1 − D1, 1 − D2, 1 − D3) (1, 1, 1).
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Specially, for arbitrary D1,D2,D3 let C({Di}; 0, 0, 0) be the union of the sets

S1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1),
(1, 1,−1)}

S2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1,−1, 1), (−1, 1, 1)}
where S2 can be computed from S1.

Remark 1. The elements in S2 can be computed from S1. For example,
(1, 1, 0) = (1, 0, 0)+ (0, 1, 0) with difference (1,−1, 0), and (1,−1, 1) = (1, 0, 0)+
(0,−1, 1) with difference (1, 1,−1), where (1, 0, 0), (0, 1, 0), (1,−1, 0), (0,−1, 1)
(i.e. (0,1,-1)) and (1, 1,−1) all belong to S1.

Proposition 1. The chain C({Di}3i=1;A,B,C) defined above is a uniform
DAC, starting from the set S1 ∪ S2.

Proof. Firstly, we should note that the chain C({Di};A,B,C) always contains
(1, 1, 1) when (A,B,C) �= (0, 0, 0), since M−1 = (1, 1, 1) is contained in the chain
for any (A,B,C) ∈ {0, 1}3 \ (0, 0, 0). And (1, 1, 1) is the addition of (1, 1, 0) and
(0, 0, 1) whose difference is contained in S1.

M−1 is the element of type (odd, odd, odd), and is equal to (2a+1, 2b+1, 2c+
1) for (a, b, c) = (	A/2
, 	B/2
, 	C/2
), which is also equal to the addition of any
dual pair in the set S(a, b, c), e.g. (a, b, c) + (a + 1, b + 1, c + 1). Note that there
are four dual pairs in S(a, b, c), and the definition says at least one complete
dual pair is reserved in C({di}3i=1; a, b, c), whose difference is equal to (1, 1, 1) or
contained in S1 or S2.

M0 is the element of type (even, even, even), and is equal to (2a +
2(A mod 2), 2b + 2(B mod 2), 2c + 2(C mod 2)), which is a double of the ele-
ment (a + (A mod 2), b + (B mod 2), c + (C mod 2)), denoted by V . Note that
V ≡ (a + A, b + B, c + C) mod 2, and in C({di}; a, b, c) the omitted elements
modulo 2 are

T1 ≡ (d1 + 1, d1, d1) mod 2, T2 ≡ (d2, d2 + 1, d2) mod 2, T3 ≡ (d3, d3, d3 + 1) mod 2.

When (a + A, b + B, c + C) mod 2 = (0, 0, 0) or (1, 1, 1), then V is
(even,even,even) or (odd, odd, odd) which must be contained in C({di}; a, b, c)
by definition. Apart from these two cases, we observe that pairs (d1, a + A),
(d2, b + B) and (d3, c + B) have the same parity, which implies that V modulo
2 is not equal to any Ti.

When D1 = 0, M1 = (2a + 2(A mod 2), 2b + 1, 2c + 1), which is equal to

(a + (A mod 2), b, c) + (a + (A mod 2), b + 1, c + 1) (4)

or
(a + (A mod 2), b + 1, c) + (a + (A mod 2), b, c + 1) (5)

Note that their differences are contained in S2 or S1, hence in C({bi}; a, b, c).
Since a + A and d1 + 1 always have the opposite parity, then none of these
four elements is equal to T1. Assume one is equal to T2 (or T3), for example
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(a+(A mod 2), b, c). Then b and c have an opposite parity, in other word, (b+1, c)
and (b, c + 1) have the same parity, which implies that none of the two elements
in (5) is equal to T3 (or T2). Therefore they belongs to C({di}; a, b, c).

When D1 = 1, M1 = (2a+1, 2b+2(B mod 2), 2c+2(C mod 2)) which is equal
to the addition of (a, b+(B mod 2), c+(C mod 2)) and (a+1, b+(B mod 2), c+
(C mod 2)). Their difference is (1, 0, 0) contained in S1. In the case that (a +
A, b+B, c+C) mod 2 = (0, 0, 0) or (1, 1, 1), none of these two elements is equal to
T2, T3 or T1, and therefore they are contained in C({bi}; a, b, c). Apart from these
two cases, since pairs (d2 +1, b+B) and (d3 +1, c+C) always have the opposite
parity, then none of them is equal to T2 or T3. If (a, b+(B mod 2), c+(C mod 2))
is equal to T1, then (b+B, c+C) mod 2 = (0, 0) or (1, 1). In the former case, by
definition d1 = 1 and then T1 = (0, 1, 1), which is a contradiction. In the latter
case, d1 = 0 and then T1 = (1, 0, 0) which is also a contradiction.

Similarly, we can show that M2 and M3 are additions of some elements in
C({bi}; a, b, c) whose differences are already in this chain.

Finally, it is obviously uniform since each iteration contains 1 double and 4
additions where M0 is the double and others are additions. ��
Remark 2. Given a 3-tuple (k1, k2, k3), if we want to compute the above 3-
dimensional DAC of (k1, k2, k3), the initial D1,D2,D3 should be taken like this:

if (k1, k2, k3) mod 2 = (1, 0, 0) or (0, 1, 1), D1 ≡ k1 mod 2; arbitrary D2,D3

if (k1, k2, k3) mod 2 = (0, 1, 0) or (1, 0, 1), D2 ≡ k2 mod 2; arbitrary D1,D3

if (k1, k2, k3) mod 2 = (0, 0, 1) or (1, 1, 0), D3 ≡ k3 mod 2; arbitrary D1,D2

if (k1, k2, k3) mod 2 = (0, 0, 0) or (1, 1, 1), arbitrary D1,D2,D3

Example 1. Here is a simple example of computing the above 3-dimensional DAC
of (199, 331, 513), where we set the initial (D1,D2,D3) to be (1, 1, 1).

Stage M−1 M0 M1 M2 M3

1 Pre-computation of S1 and S2

2 (1, 1, 1) (0, 0, 2) (0, 1, 1) (0, 1, 2) (0, 0, 1)
3 (1, 1, 3) (0, 2, 2) (1, 2, 2) (0, 1, 2) (1, 1, 2)
4 (1, 3, 5) (2, 2, 4) (2, 3, 5) (2, 3, 4) (1, 3, 4)
5 (3, 5, 9) (4, 6, 8) (3, 6, 8) (4, 5, 8) (3, 5, 8)
6 (7, 11, 17) (6, 10, 16) (6, 11, 17) (6, 11, 16) (7, 11, 16)
7 (13, 21, 33) (12, 20, 32) (12, 21, 33) (12, 21, 32) (13, 21, 32)
8 (25, 41, 65) (24, 42, 64) (25, 42, 64) (24, 41, 64) (25, 41, 64)
9 (49, 83, 129) (50, 82, 128) (50, 83, 129) (50, 83, 128) (49, 83, 128)
10 (99, 165, 257) (100, 166, 256) (100, 165, 257) (99, 166, 257) (100, 166, 257)
11 (199, 331, 513) (200, 332, 514) (199, 332, 514) (200, 331, 514) (200, 332, 513)

In this chain, for example, the (D1,D2,D3) in Stage 10 is (0, 0, 1), and hence
the omitted elements are {(odd,even,even),(even,odd,even),(odd,odd,even)} =
{(99, 166, 256), (100, 165, 256), (99, 165, 256)}. The five elements in this stage
are additions of the elements in Stage 9, e.g. (99, 165, 257) = (49, 83, 129) +
(50, 82, 128) with difference (−1, 1, 1) belonging to S2, (100, 166, 256) = 2 ·
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(50, 83, 128) with difference (0, 0, 0) belonging to S1, (100, 165, 257) =
(50, 82, 128) + (50, 83, 129) with difference (0, 1, 1) belonging to S2.

4.2 A Faster Three-Dimensional Differential Addition Chain

Now we introduce a new construction of 3-dimensional DAC, which is not uni-
form but faster than the uniform one described in Sect. 4.1. It only needs four
additions or three additions together with one double in each stage of iteration.

Let S be the set defined in Sect. 4.1. We classify part of the sets of four
elements of S. We call the set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

is of type C0; the set

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}
or {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}
or {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}

is of type C1; the set

{(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
or {(0, 1, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
or {(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

is of type C2; the set

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1)} or {(1, 0, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)}
or {(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1)} or {(0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)}
or {(1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)} or {(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}

is of type C3; the set

{(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

is of type C4.
We use a 3-tuple (a, b, c) of non-negative integers to label each stage of our

iteration. In the stage of any given (a, b, c) which is not equal to (0, 0, 0), we
compute four elements in (a, b, c) + S, of which the set is denoted by E(a, b, c).
It has the following form

E(a, b, c) = (a, b, c) + δ,

where δ ⊆ S is of some type Ci for i = 0, 1, 2, 3 or 4.
Assume that (a, b, c) is the former stage of (A,B,C), where a = 	A/2
,

b = 	B/2
, c = 	C/2
. And assume that (a, b, c) �= (0, 0, 0). We show in the
following that in any case, there exists some set δ of type C0, C1, C2, C3 or C4,
such that E(A,B,C) can be computed from (a, b, c) + δ. Then we set it to
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be E(a, b, c). In other word, every element of E(A,B,C) is an addition of two
elements of E(a, b, c).

Assume that

E(A,B,C) = (A,B,C) + Δ, where Δ is of type Ci.

We denote by t = (A,B,C) − (2a, 2b, 2c). Then t is an element of S.
If i = 0, i.e. Δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and when t ∈ {(0, 0, 0),

(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we can set

δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)},

which is of type C0. We can check, for example, when t = (0, 0, 1), then

E(A,B,C) = (2a, 2b, 2c) + {(0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)}
can be computed from E(a, b, c) = (a, b, c) + δ by either additions or double.
When t ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, we can set

δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {t},

which is of type C1. Also we can check, for example when t = (1, 0, 1), then

E(A,B,C) = (2a, 2b, 2c) + {(1, 0, 1), (2, 0, 1), (1, 1, 1), (1, 0, 2)}
can be computed form E(a, b, c) = (a, b, c) + δ by additions. When t = (1, 1, 1),
we can set

δ = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)},

which is of type C2. In conclusion, we can use the following table to present the
δ’s in all cases.

Δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
t δ Type

(0, 0, 0) Δ C0

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) Δ C0

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {t} C1

(1, 1, 1) {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} C2

If i = 1, i.e. Δ is of type C1, assume that Δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), s}
where s ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Then we can check

Here s · t is the vector with multiplying components, and s⊥ is the vector
(1, 1, 1)−s, also called the dual vector of s as in Sect. 4.1. Here we only check the
case when t ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} \ {s}. Then E(A,B,C) = (2a, 2b, 2c)+
t + Δ and E(a, b, c) = (a, b, c) + δ. Hence we only need to show that

t + Δ = {t + (1, 0, 0), t + (0, 1, 0), t + (0, 0, 1), t + s}
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Δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), s}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) Δ C1

s
(s �=)t ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}

Δ
{s · t, s⊥, s, t}

C1

C3

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

can be computed from δ = {s · t, s⊥, s, t}.Obviously, s · t �= s⊥ and both
belong to {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The remaining element of {{(1, 0, 0),
(0, 1, 0), (0, 0, 1)} \ {s · t, s⊥} can be expressed as (1, 1, 1) − s · t − s⊥, denoted
by α. Since α · t = (s − s · t) · t = s · t − s · t2 = 0 and only one component of
α is non-zero, it implies that α is dual to t. Then t + α = (1, 1, 1) = s⊥ + s and
hence every element of E(A,B,C) is an addition of two elements of E(a, b, c).

If i = 2, i.e. Δ is of type C2, assume that Δ = {s, (1, 1, 0), (1, 0, 1), (0, 1, 1)}
where s ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Also we can check the following

Δ = {s, (1, 1, 0), (1, 0, 1), (0, 1, 1)}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

s
(s �=)t ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Δ
{s, t, s⊥, s + t}

C2

C3

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) Δ C2

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

If i = 3, i.e. Δ is of type C3, we assume that Δ = {s1 · s2, k, s1, s2} where
s1 �= s2 ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and k = s⊥

1 or s⊥
2 . We can check

Δ = {s1 · s2, k, s1, s2}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

s1 · s2 or k
the othera

Δ
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {k⊥}

C3

C1

s1 or s2
the otherb

Δ
{k} ∪ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

C3

C2

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

aThe remainder in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} that is not equal to s1 · s2 or k.
bThe remainder in {(1, 1, 0), (1, 0, 1), (0, 1, 1)} that is not equal to s1 or s2.

If i = 4, i.e. Δ = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}, we can check
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Δ = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
t δ Type

(0, 0, 0) {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)} C1

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) {t} ∪ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} C2

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) Δ C4

(1, 1, 1) Δ C4

In conclusion, we have the following

Proposition 2. In the stage of (0, 0, 0), we take E(0, 0, 0) = S1 ∪ S2 where
S1, S2 are defined in Definition 1. For any given 3-tuple (k1, k2, k3) of non-
negative scalars, let (A,B,C) = (k1, k2, k3) and Δ be the set of four elements
of type C0. Then compute recursively the whole chain, denoted by C(k1, k2, k3),
using the above method. Then C(k1, k2, k3) is a DAC containing (k1, k2, k3).

Proof. First, (k1, k2, k3) ∈ E(A,B,C) ⊆ C(k1, k2, k3). Second, from the above
procedure we see that every element (except the elements in the stage of (0, 0, 0))
in this chain is an addition of two former elements (may be the same) in this
chain, of which the difference belongs to S1 ∪ S2. Therefore, C(k1, k2, k3) is a
DAC. ��
Example 2. Take (k1, k2, k3) = (9, 10, 11). They all have 4 bits. Set
(A4, B4, C4) = (9, 10, 11) and Δ4 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} of type
C0. Then

E4 = {(9, 10, 11), (10, 10, 11), (9, 11, 11), (9, 10, 12)}.

Set (A3, B3, C3) = (4, 5, 5). In this case t = (1, 0, 1) and by table lookup Δ3 =
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)} is of type C1. Then

E3 = {(5, 5, 5), (4, 6, 5), (4, 5, 6), (5, 5, 6)}.

Set (A2, B2, C2) = (2, 2, 2). In this case t = (0, 1, 1) and by table lookup Δ2 =
{(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)} is of type C3. Then

E2 = {(2, 3, 2), (2, 2, 3), (3, 2, 3), (2, 3, 3)}.

Set (A1, B1, C1) = (1, 1, 1). In this case t = (0, 0, 0) and by table lookup Δ1 =
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} is of type C0. Then

E1 = {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}.

Finally (A0, B0, C0) = (0, 0, 0) and t = (1, 1, 1), and then Δ0 = {(1, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1)}. Then

E0 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

If we denote by Ei[j] the j-th element of Ei, then we have the relations:

E4[1] = E3[1] + E3[3], E3[1] = E2[1] + E2[3], E2[1] = E1[1] + E1[3], E1[1] = E0[1] + E0[4]
E4[2] = E3[1] + E3[4], E3[2] = E2[1] + E2[4], E2[2] = E1[1] + E1[4], E1[1] = E0[2] + E0[3]
E4[3] = E3[2] + E3[4], E3[3] = E2[2] + E2[4], E2[3] = E1[2] + E1[3], E1[1] = E0[2] + E0[4]
E4[4] = E3[3] + E3[4], E3[4] = E2[3] + E2[4], E2[4] = E1[3] + E1[4], E1[1] = E0[3] + E0[4]

.
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5 Comparison

Recall the settings described in Sects. 2 and 3. To compute x(kP ), now we can
apply different dimensional DACs to different models: Eqs. (2) and (3) or x(kP )
directly. In this part, we analyze the performance of scalar multiplication x(kP )
utilizing the following four kinds of DACs: 1-dimensional Montgomery ladder
(Ladder for short), 2-dimensional DJB chains (DJB), the 3-dimensional uniform
differential addition chains (3-Uni.) and the 3-dimensional non-uniform one (3-
Non-uni) described in Sect. 4.

5.1 Theoretic Analysis

For an elliptic curve in short Weiestrass form, using the projective coordinates, a
general addition (write A for short) involves 12 field multiplications (12M) and 2
field squarings (2S), whereas a double (D) involves 7M+5S. If we restrict to the
operations on x-line, then a pseudo-addition (PA) needs 9M+2S and a pseudo-
double (PD) needs 6M+3S [5, Chap. 13]. Assume that the target group is of
256-bit security level, and the scalar k is a 256-bit number. Then the following
table shows the theoretic field operations needed by those five DACs.

Table 1. Theoretical estimate

chain dim. rounds #operations/bit pre-comp. #total operations

Ladder 1 256 1PD + 1PA 0 3840M + 1280S

DJB 2 ∼ 128 1PD + 2PA 1A 3084M + 898S

3-Uni. 3 ∼ 85 1PD + 4PA 4A + 5PA 3663M + 953S

3-Non-uni. 3 ∼ 85 ≤ 4PA 4A + 5PA 3153M + 698S

Here we note two things. First if we take 1S = 0.8M, our 3-dimensional non-
uniform DAC needs 3711.4M, less than 3802.4M of the DJB chain. Second our
3-dimensional non-uniform DAC and the DAC in [11] taking d = 3 need almost
the same number of field operations in each iteration and precomputation.

5.2 Implementation Results

We make the following experiments with computer algebra package MAGMA.
We choose two families of elliptic curves E′

1 and E′
2 that are quadratic twists of

GLV curves chosen from [12]. Let p be a prime. For a non-square element u in
Fp2 , E′

1 and the two efficient Fp2 -endomorphisms on the x-line are given by

E′
1 : y2 = x3 − 3

4
ux2 − 2u2x − u3, Φx(x) =

x2 − u2ζ

ζ2(x − au)
, Ψx(x) = u1−pxp.



Faster Scalar Multiplication on the x-Line 249

Their characteristic polynomials are Φ2 − Φ + 2 = 0, Ψ2 + 1 = 0. Moreover take
p ≡ 1 (mod 3) and γ ∈ Fp to be an element of order 3. Then E′

2 and its efficient
Fp2 -endomorphisms on the x-line are given by

E′
2 : y2 = x3 + bu3, Φx(x) = γx, Ψx(x) = u1−pxp

with Φ2 + Φ + 1 = 0, Ψ2 + 1 = 0. For each i = 1, 2, and each of 64, 128 and
192 bit lengths of primes p, we choose 20 p’s such that each E′

i(Fp2) is almost
prime with the large prime subgroup of order n, and hence we obtain 20 target
elliptic curves. On each curve, we randomly choose 20 pairs (k, P )’s where P is
a rational point of the curve of order n and k is a scalar having the same bit
length as n. We test the above four DACs in the computation of x(kP ). And for
each (k, P ), we make the following three sets of comparison experiments: 3-Uni
versus Ladder, 3-Non-uni. versus Ladder and 3-non-uni. versus DJB3. We record
their running times and take the average over the 20×20 = 400 data at each bit
length of 64, 128 and 192. Then we compute the ratio of speedup of the former
DAC relative to the latter one. The implementation results are listed in Tables 1
and 2.

Table 2. The ratio of speedup tested in E′
1

p 64-bit 128-bit 192-bit

n 125 ∼ 126-bit 253 ∼ 254-bit 381 ∼ 382-bit

3-Uni. vs Ladder 6.8% 11.2% 11.5%

3-Non-uni. vs Ladder 24.7% 28.7% 29.3%

3-Non-uni. vs DJB 3.9% 8.5% 9.7%

Table 3. The ratio of speedup tested in E′
2

p 64-bit 128-bit 192-bit

n 125 ∼ 126-bit 253 ∼ 254-bit 381 ∼ 382-bit

3-Uni. vs Ladder 4.3% 7.0% 7.4%

3-Non-uni. vs Ladder 22.1% 24.2% 25.3%

3-Non-uni. vs DJB 3.0% 5.7% 6.8%

From the tables, first, we recognise that the performance depends on the
GLV model that we choose. However, compared with straightforward computing
with Ladder, the triple scalar multiplication using our 3-dimensional DACs runs
faster evidently. Moreover, the triple scheme using 3-Non-uni. outperforms the
double one using DJB chains. Second, the ratio of speedup increases when the
3 In the two-dimensional GLV, we always utilize the endomorphism Ψ in the testing.
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bit length of p grows. The case of 128-bit or equivalently when the security level
is about 254-bit may provide more significant reference. In this case, by taking
an average of the values in two tables, the triple scheme using 3-Uni. runs about
9% faster than straightforward computing; and that using 3-Non-uni. runs about
26% faster than straightforward computing, and about 6% faster than the double
scheme using DJB chains (Table 3).

6 Conclusion and Future Research

We proposed two constructions of 3-dimensional DACs. One is a straightfor-
ward extension of the DJB chain to higher dimensional case, and it inherits the
property of uniformity. The other is not uniform but runs faster than the uni-
form one as saving one more point operation in each iteration. On the quadratic
twists of GLV curves, we implemented scalar multiplication on the x-coordinate
systems, utilizing 1 to 3-dimensional GLV methods with corresponding dimen-
sional DACs. Experiments show that at about 254-bit security level, the triple
scalar multiplication using our uniform DACs runs about 9% faster than straight-
forward computing using Montgomery ladder; and that using our non-uniform
DACs runs about 26% faster than that using Montgomery ladder, and about 6%
faster than the double scalar multiplication using DJB chains.

As it is pointed out that, it would be more meaningful and we will consider
to implement our higher dimensional DACs on the x-coordinate systems of some
more advanced curves, such as the complete twisted Edwards curve described
in [7], together with optimizing formulas for differential point tripling (or qua-
drupling) in various forms of curves. The 4-dimensional DACs deserve to be
studied as well, since triple scalar multiplication on the x-coordinate performs
well and many advanced elliptic curves are originally tailored for 4-dimensional
GLV method. We considered the 4-dimensional extension of the uniform case,
but found it inefficient for its heavy pre-computation and excessive operations
in each iteration, see Appendix A. However, the non-uniform case may provide
more possibilities. We leave these topics for future research.
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A Four-dimensional Case

If we consider further the straightforward 4-dimensional extension of DJB chains,
we found that in each iteration we should compute 2 + (24 − 2)/2 = 9 elements,
containing 1 double and 8 additions, which is rather expensive and hence has
no practical usage. For completeness, in this part we give its definition and a
simple example. Its complex proof of correctness has been done by authors and
one can also check it by computers.
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For brief of notation we let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0),
e4 = (0, 0, 0, 1), e5 = (1, 1, 0, 0), e6 = (1, 0, 1, 0), e7 = (1, 0, 0, 1). Denote by n4

the 4-tuple (n, n, n, n). Then the 7 elements omitted from S(a, b, c, d)4 can be
described as Ti = (a, b, c, d) + (Ui mod 2) where Ui = (a, b, c, d) + f4

i + ei and
fi ∈ {0, 1} for i = 1, · · · , 7.

Definition 2. For a given 4-tuple of nonnegative integers (A,B,C,D) and the
set {F1, · · · , F7} where Fi ∈ {0, 1}, i = 1, · · · , 7, the chain C({Fi}7i=1;A,B,
C,D) is defined recursively, as the set C({fi}7i=1; a, b, c, d) added with the fol-
lowing nine elements:

M−1 = (A,B,C,D) + ((A + 1, B + 1, C + 1, D + 1) mod 2),
M0 = (A,B,C,D) + ((A, B, C, D) mod 2),

and for i = 1, · · · , 7,

Mi = (A, B, C, D) + (Ni mod 2) where Ni = (A, B, C, D) + (Fi + 1)4 + ei.

Here (a, b, c, d) = (	A/2
, 	B/2
, 	C/2
, 	D/2
) and (f1, · · · , f7) is taken as

(f1, · · · , f7)
if(a + A, b + B,

c + C, d + D) mod 2
(f1, · · · , f7)

if(a + A, b + B,
c + C, d + D) mod 2

(1, 0, 0, 0, 1, 1, 1) (1, 0, 0, 0) (0, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1)
(0, 1, 0, 0, 1, 0, 0) (0, 1, 0, 0) (1, 0, 1, 1, 0, 1, 1) (1, 0, 1, 1)
(0, 0, 1, 0, 0, 1, 0) (0, 0, 1, 0) (1, 1, 0, 1, 1, 0, 1) (1, 1, 0, 1)
(0, 0, 0, 1, 0, 0, 1) (0, 0, 0, 1) (1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 0)
(1, 1, 0, 0, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1)
(1, 0, 1, 0, 0, 1, 0) (1, 0, 1, 0) (0, 1, 0, 1, 0, 0, 0) (0, 1, 0, 1)
(1, 0, 0, 1, 0, 0, 1) (1, 0, 0, 1) (0, 1, 1, 0, 0, 0, 0) (0, 1, 1, 0)

(F1, F2, F3, F4,
F5, F6, F7)

(0, 0, 0, 0)
(1 − F1, 1 − F2, 1 − F3,
1 − F4, 1 − F5, 1 − F6,

1 − F7)
(1, 1, 1, 1).

Specially, for arbitrary F1, · · · , F7, let C({Fi}; 0, 0, 0, 0) be the union of the sets

S1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1), (0, 1,−1, 0), (0, 1, 0,−1), (0, 0, 1,−1),
(1, 1,−1, 0), (1, 1, 0,−1), (1, 0, 1,−1), (0, 1, 1,−1),
(1, 1, 1,−1)}

S2 = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1),
(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1),
(1,−1, 1, 0), (1,−1, 0, 1), (1, 0,−1, 1), (0, 1,−1, 1),
(−1, 1, 1, 0), (−1, 1, 0, 1), (−1, 0, 1, 1), (0,−1, 1, 1),
(1, 1,−1, 1), (1,−1, 1, 1), (−1, 1, 1, 1),
(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}

where S2 can be computed from S1.

4 As the analogous symbol used in Sect. 4.1, S(a, b, c, d) is the set (a, b, c, d) + {0, 1}4.
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We find that as the dimension of the chain increases, the pre-computation
part becomes a heavy burden, and it grows exponentially w.r.t. the dimension.
In some situation, this maybe a main disadvantage of computing scalar multi-
plication using higher dimensional DACs.

Example 3. Given a simple 4-tuple (10, 9, 8, 7). The uniform 4-dimensional DAC
of (10, 9, 8, 7) is: S1 ∪ S2 ∪ S3 where S3 =

{(1, 1, 1, 1), (2, 2, 2, 0), (2, 1, 1, 1), (2, 1, 2, 0), (2, 2, 1, 0), (2, 2, 2, 1), (2, 2, 1, 1), (2, 1, 2, 1), (2, 1, 1, 0),
(3, 3, 3, 1), (2, 2, 2, 2), (3, 2, 2, 2), (3, 2, 3, 1), (3, 3, 2, 1), (3, 3, 3, 2), (3, 3, 2, 2), (3, 2, 3, 2), (3, 2, 2, 1),

(5, 5, 5, 3), (6, 4, 4, 4), (5, 4, 4, 4), (6, 5, 4, 4), (5, 5, 4, 3), (5, 5, 5, 4), (5, 5, 4, 4), (5, 4, 5, 4), (5, 4, 4, 3),

(11, 9, 9, 7), (10, 10, 8, 8), (10, 9, 9, 7), (11, 10, 9, 7), (11, 9, 8, 7), (11, 9, 9, 8), (10, 10, 9, 7), (10, 9, 8, 7),

(10.9.9.8)}
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