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Abstract. We obtain concrete upper bounds on the algebraic immu-
nity of a class of highly nonlinear plateaued functions without linear
structures than the one was given recently in 2017, Cusick. Moreover,
we extend Cusick’s class to a much bigger explicit class and we show
that our class has better algebraic immunity by an explicit example. We
also give a new notion of linear translator, which includes the Frobenius
linear translator given in 2018, Cepak, Pasalic and Muratović-Ribić as
a special case. We find some applications of our new notion of linear
translator to the construction of permutation polynomials. Furthermore,
we give explicit classes of permutation polynomials over Fqn using some
properties of Fq and some conditions of 2011, Akbary, Ghioca and Wang.
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1 Introduction

Plateaued functions are important not only for cryptography but also for some
related areas including coding theory and communication. There have been many
results in recent years regarding their construction, existence and applications.
We refer for example to [2–6,10,14,16–19] and the references therein.

Recently Cusick [9] gave an explicit construction of highly nonlinear
plateaued functions without linear structure. In Sect. 3 we obtain a much larger
class of explicit functions having all these good properties and including Cusick’s
class of functions as a very small subclass. Moreover, we prove that Cusick’s class
have quite low algebraic immunity by concrete upper bounds. We also give an
explicit example in our class having better algebraic immunity than the functions
in Cusick’s class.
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For construction of non-trivial mathematical structures it has been shown
that linear structures (and linear translators) are useful. There are important
connections between linear translators and permutation polynomials over finite
fields (see, for example [11]). Recently the authors in [8] gave a generalization of
linear translators, which they call the Frobenius linear translator. They also give
applications of their generalization to the construction of permutation polyno-
mials. In Sect. 6 we obtain a further and natural generalization of linear transla-
tors using additive polynomials. Our generalization also has applications to the
construction of permutation polynomials using our generalization different from
Frobenius linear translators (see, for example Theorems 5 and 6 and Example 2
below).

Akbary, Ghioca and Wang [1] established a very interesting method in order
to construct permutation polynomials over “big” finite fields. If an explicit class
of permutation polynomials that satisfies certain criteria is found over a subfield,
Fq it can be used to construct an explicit class of permutation polynomials over
an extension field Fqn . For example, the authors in [7] obtained such explicit
permutation polynomial classes over Fq2 using certain properties of Fq. By a
similar motivation we obtain further explicit permutation polynomial classes
over Fq2 via Fq and also over Fqn via Fq with n ≥ 3 in Sects. 4 and 5, respectively.

We give details of our corresponding contributions and motivations in the
beginnings of Sects. 3, 4, 5 and 6 below. We give some background in the next
section.

2 Preliminaries

Let q be a power of a prime number and Fqn be the finite field of order qn where
n ≥ 1. The extension field Fqn can be viewed as an n-dimensional vector space
over Fq. The trace function Trn from Fqn to Fq is defined as

Trn : Fqn → Fq

α �→ α + αq + αq2
+ · · · + αqn−1

.

A Boolean function f of n-variables is a function from F
n
2 to F2.

Definition 1. Let f : Fn
2 → F2 be a Boolean function. Then the Walsh trans-

form f̂ of f is defined as

f̂ : Fn
2 → Z

w �→
∑

x∈F
n
2

(−1)f(x)+w·x

where w = (w1, w2, . . . , wn), x = (x1, x2, . . . , xn) and w ·x = w1x1 + · · ·+wnxn.

Definition 2. Let f : Fn
2 → F2 be a Boolean function. Then f has linear struc-

ture at a ∈ F
n
2 if and only if either f(x + a) + f(x) = 0 for any x ∈ F

n
2 (a is

called a 0-linear structure) or f(x + a) + f(x) = 1 for any x ∈ F
n
2 (a is called a

1-linear structure).
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Definition 3. Let f : F
n
2 → F2 be a Boolean function. Then f is called an

s-plateaued function where 0 ≤ s ≤ n if |f̂(w)|2 ∈ {0, 2n+s} for any w ∈ F
n
2 .

Definition 4 (See, for example [3]). Let f : Fn
2 → F2 be a Boolean function.

The algebraic normal form of f is

f(x) =
⊕

I∈P(N)

aI

⎛

⎝
∏

I∈P(N)

xI

⎞

⎠ ,

where P(N) denotes the power set of N = {1, . . . , n}. The degree of the algebraic
normal form of f is equal to

max{|I| : aI �= 0}
where |I| denotes the size of I.

Definition 5 (See, for example [3]). Let f : Fn
2 → F be a Boolean function.

The algebraic immunity AI(f) of f is defined to be the minimal degree of a
nonzero function g from F

n
2 to F2 for which f · g = 0 or (f + 1) · g = 0, i.e

AI(f) := min{deg g : g ∈ Ann(f) ∪ Ann(f + 1)}
where Ann(f) is the set of annihilators of f. A function g is an annihilator of f
if f · g = 0.

Remark 1. It is well-known that for any Boolean function f of n-variables,
AI(f) ≤ 	n

2 
.
For integer n ≥ 1 and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ F

n
2 , the inner

product x · y ∈ F2 is the usual inner product defined as

x · y = x1y1 + x2y2 + · · · + xnyn.

3 Cusick’s Highly Nonlinear Plateaued Functions
and Their Modifications

For integers d ≥ 3 and k ≥ 1, Cusick introduced an explicit class of Boolean
functions of degree d in n = 2dk − 1 variables given by

fk(x1, x2, . . . , xn) =
k−1∑

j=0

xdj+1 . . . xdj+d +
m−1∑

j=1

xjxj+m. (1)

where m = dk. He proved that these are 1-plateaued, have no linear structure and
have nonlinearity 2n−1−2

n−1
2 . They become balanced by adding a concrete linear

function. Note that adding a linear function does not change plateauedness,
nonlinearity or the set of linear structures. He also states that “... a high algebraic
immunity is not to be expected” in [9, page 80, the last paragraph].
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In this section we show that indeed algebraic immunity of the functions in
(1) is low. Note that the largest degree of the class for a fixed odd integer n ≥ 3
occurs when k = 1. Moreover, if m = n−1

2 is a prime, then k may only taken to
be 1 in (1). The following result shows in particular that this class has very low
algebraic immunity when k is small.

Proposition 1. For integers d ≥ 3 and k ≥ 1, let n = 2dk−1 and fk : Fn
2 → F2

be the Boolean function defined in (1). We have:

(i) AI(f1) ≤ 3.
(ii) For k ≥ 2, AI(fk) ≤ min{k + 2, n+1

2k }.
Proof. We first prove item (i). Put x = (x1, x2, . . . , xm−1) and y =
(y1, . . . , ym−1) = (xm+1, . . . , x2m−1) where m = dk. Let

h(x) = x1x2 . . . xm−1 and g(x, y) = x1y1 + x2y2 + · · · + xm−1ym−1.

Then it is easy to observe that

f1(x1, . . . , xn) = h(x)xm + g(x, y).

It is enough to prove that

f1(x1, . . . , xn) (g(x, y) + 1) (xm + 1) = 0

for all x, y ∈ F
m−1
2 and xm ∈ F2. Indeed, deg (g(x, y) + 1) (xm + 1) = 2 + 1 = 3.

Moreover,

f1(x1, . . . , xn) (g(x, y) + 1) (xm + 1) = (h(x)xm + g(x, y)) (g(x, y) + 1) (xm + 1)
= (h(x)xmg(x, y) + h(x)xm + g(x, y) + g(x, y)) (xm + 1)
= (h(x)xm (g(x, y) + 1)) (xm + 1)
= h(x) (g(x, y) + 1) (xm(xm + 1)) = 0,

as (xm(xm + 1)) = 0. This completes the proof of item (i).
Next, we consider the proof of item (ii). Note that

fk(x1, . . . , xn) = x1 . . . xd + xd+1 . . . x2d + · · · + x(k−1)(d+1) . . . xm−1xm + g(x, y).

Here

fk(x1, . . . , xn)
(
(x1 + 1)(xd + 1) . . . (x(k−1)(d+1) + 1

)
(g(x, y) + 1))

= x1(x1 + 1)r1(x1, . . . , xn) + xd+1(xd+1 + 1)r2(x1, . . . , xn) + . . .

+ x(k−1)(d+1)(x(k−1)(d+1) + 1)rk(x1, . . . , xn)
+ g(x, y) (g(x, y) + 1) rk+1(x1, . . . , xn)

for some polynomials r1(x1, . . . , xn), . . . , rk+1(x1, . . . , xn) in algebraic normal
form. As

x1(x1 + 1) = xd+1(xd+1 + 1) = · · · = x(k−1)(d+1)(x(k−1)(d+1) + 1) = 0
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and g(x, y) (g(x, y) + 1) = 0 as Boolean functions and

deg
(
(x1 + 1)(xd+1 + 1) . . . (x(k−1)(d+1) + 1) (g(x, y) + 1)

)
= k + 2,

we have AI(fk) ≤ k + 2. Also

fk(x1, . . . , xn) (fk(x1, . . . , xn) + 1) = 0.

And deg (fk(x1, . . . , xn) + 1) = d = n+1
2k . Hence AI(fk) ≤ min{k + 2, n+1

2k }. ��
Next, we define a much larger explicit class of Boolean functions containing

Cusick’s class as defined in (1) as a small subclass. The functions of this class
are 1-plateaued, having nonlinearity 2n−1 −2

n−1
2 and balanced up to addition of

a concrete linear function as in Cusick’s class. Moreover, we also have a charac-
terization whether a function in our class has a linear structure. This condition
is easy to apply. Moreover, we give an explicit example demonstrating that the
algebraic immunity of a function in our class is much better compared to the
class defined in (1).

We first note that if h : Fm−1
2 → F2 is an arbitrary map, then we have

|{(αm, β) ∈ F2 × F
m−1
2 : h(β) + αm = 0}| = 2m−1.

Now we are ready to give our much larger class of Boolean functions consist-
ing of 1-plateaued, highly nonlinear functions without linear structure. It is easy
to make them balanced by adding a linear term as explained in the theorem as
well.

Theorem 1. Let n ≥ 3 be odd and n = 2m − 1. Let π : Fm−1
2 → F

m−1
2 be a

permutation map. Let g0, g1 : Fm−1
2 → F2 be Boolean maps. Let f : Fn

2 → F2 be
the Boolean map defined as

f : Fm−1
2 × F2 × F

m−1
2 → F2

(x, xm, y) �→ g0(x) + xmg1(x) + π(x) · y.

Then we have:

(i) f is a 1-plateaued function.
(ii) f has no nonzero linear structure if and only if the subset

S = {(αm, β) ∈ F2 × F
m−1
2 : g1(π−1(β)) + αm = 0} ⊆ F2 × F

m−1
2

is not an affine or linear subset (of dimension m-1).
(iii) The nonlinearity of f is 2n−1 − 2(n−1)/2.
(iv) For (u, μ, v) ∈ F

m−1
2 × F2 × F

m−1
2 , the function

fu,μ,v(x, xm, y) := f(x, xm, y) + u · x + μ · xm + v · y

is balanced if and only if g1(π−1(v)) + μ = 1.
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Proof. Let w = (α, αm, β) ∈ F
m−1
2 × F2 × F

m−1
2 . We have

f̂(w) =
∑

x∈F
m−1
2

∑

xm∈F2

∑

y∈F
m−1
2

(−1)g0(x)+xmg1(x)+π(x)·y+α·x+αmxm+β·y

=
∑

x∈F
m−1
2

∑

xm∈F2

(−1)g0(x)+xmg1(x)+α·x+αmxm

∑

y∈F
m−1
2

(−1)(π(x)+β)·y

= 2m−1(−1)g0(π
−1(β))+α·π−1(β)

∑

xm∈F2

(−1)(g1(π
−1(β))+αm)xm .

Hence

f̂(w) =

{
2m(−1)g0(π

−1(β))+α·π−1(β) if g1(π−1(β)) = αm,

0 otherwise.

This completes the proof of the item (i).
It is well-known that the nonlinearity of an arbitrary Boolean function

f : Fn
2 → F2 is 2n−1 − 1

2 max
w∈F

n
2

|f̂(w)|. Hence in our case the nonlinearity of our

function f is

2n−1 − 1
2

max
w∈F

n
2

|f̂(w)| = 2n−1 − 1
2
2m = 2n−1 − 2

n−1
2 .

This completes the proof of item (iii).
It is also well-known that the Walsh value f̂u,μ,v(0, 0, 0) of f̂u,μ,v(x, xm, y) is

f̂(u, μ, v). Hence

f̂u,μ,v(0, 0, 0) = 0 ⇐⇒ g1(π−1(v)) + μ = 1.

Note that fu,μ,v(x, xm, y) is balanced if and only if f̂u,μ,v(0, 0, 0) = 0. This
completes the proof of item (iv).

It only remains to prove the item (ii). Let Sf denote the support of the
Walsh spectrum of f , that is Sf = {w ∈ F

m−1
2 × F2 × F

m−1
2 : f̂(w) �= 0}. Let

S ⊆ F2 × F
m−1
2 be the subset defined as

S = {(αm, β) ∈ F2 × F
m−1
2 : g1(π−1(β)) + αm = 0}. (2)

It follows from the proof of item (i) above that Sf = F
m−1
2 × S. For ν ∈ F

n
2 , let

Δf (ν) be the sum
Δf (ν) =

∑

x∈F
n
2

(−1)f(x+ν)+f(x).

It is clear that ν is a linear structure of f if and only if Δf (ν) = ±2n. Moreover,
it is not difficult to observe that

∑

w∈F
n
2

f̂(w)2(−1)ν·w = 2nΔf (ν),
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which holds for an arbitrary Boolean map f : Fn
2 → F2. In our case f is

1-plateaued and hence
∑

w∈F
n
2

f̂(w)2(−1)ν·w =
∑

w∈Sf

|f̂(w)|2(−1)ν·w = 2n+1
∑

w∈Sf

(−1)ν·w,

where we use our proof of item (i) above. These implies that if ν ∈ F
n
2 , then we

have
Δf (ν) = 2

∑

w∈Sf

(−1)ν·w.

As |Sf | = 2n−1, we conclude that ν ∈ F
n
2 is a linear structure of f if and

only if (ν · w = 0 for all w ∈ Sf ) or (ν · w = 1 for all w ∈ Sf ). Assume that
v = (a, am, b) ∈ F

m−1
2 × F2 × F

m−1
2 is a nonzero linear structure of f . Recall

that Sf = F
m−1
2 × S where S is defined in (2). First we show that a = 0. Indeed

otherwise there exist α, α′ ∈ F
m−1
2 such that a ·α �= a ·α′. For fixed (αm, β) ∈ S,

both (α, αm, β) and (α′, αm, β) are elements of Sf . Then it is impossible that
(a, am, b) · (α, αm, b) = (a, am, b) · (α′, αm, b) which is a contradiction.

Next, assume that ν · w = 0 for all w ∈ Sf . Then ν = (0, am, b) and 0 =
(am, b) · (αm, β) for all (αm, β) ∈ S. As ν �= 0, there exist (c, d) ∈ F2 × F

m−1
2

such that (am, b) · (c, d) �= 0. We choose such (c, d) ∈ F2 × F
m−1
2 . As S is not

a linear space and its cardinality is 2m−1, the F2-span of S is the whole vector
space F2 × F

m−1
2 . In particular, there exist a subset T ⊆ S such that

(c, d) =
∑

(αm,β)∈T

(αm, β).

Multiplying both sides by (am, b) (as inner product) we get

(am, b) · (c, d) =
∑

(αm,β)∈T

(am, b) · (c, d) =
∑

(αm,β)∈T

0 = 0.

However, this is a contradiction as (am, b)·(c, d) �= 0 by definition. This completes
the proof of item (ii) under the assumption about ν · w = 0 for all w ∈ Sf .

Assume finally that ν · w = 1 for all w ∈ S. We choose (α(0)
m , β(0)) ∈ S and

we define
SL = {(αm + α(0)

m , β + β(0)) : (αm, β) ∈ S}.

Note that S is affine if and only if SL is linear. Moreover, ν = (0, am, b) is a
nonzero linear structure of f if and only if (am, b)·(αL

m, βL) = 0 for all (αL
m, βL) ∈

SL. The same argument we used in the assumption ν · w = 0 for all w ∈ Sf

applied to SL completes the proof. ��
Example 1. Let n = 2m − 1 = 11. Choose the permutation map

π : F5
2 → F

5
2

x = (x0, x1, x2, x3, x4) �→ (π1(x), π2(x), π3(x), π4(x), π5(x))
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where

π1(x) = x0x1x2 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3 + x0 + x1x2x3x4 + x1x2x4

+ x1x2 + x2x3 + x2x4 + x3x4,

π2(x) = x0x1x2 + x0x1 + x0x2x3x4 + x0x2x3 + x0x3x4 + x0x3 + x0x4 + x1x2x3

+ x1x3x4 + x1x4 + x1 + x2x3 + x3x4,

π3(x) = x0x1x3x4 + x0x1x3 + x0x1x4 + x0x2x4 + x0x2 + x0x3x4 + x1x2x3 + x1x2

+ x1x3x4 + x1x4 + x2x3x4 + x2 + x3x4,

π4(x) = x0x1x2x4 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1 + x0x2x4 + x0x2 + x0x3

+ x0 + x1x2x4 + x1x3 + x2x3x4 + x2x3 + x3,

π5(x) = x0x1x2x3 + x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x3x4 + x0x3 + x0x4

+ x1x2x3 + x1x2x4 + x1x2 + x1x3 + x1x4 + x1 + x2x4 + x3x4 + x4.

Then take

g0 : F5
2 → F2

(x0, x1, x2, x3, x4) �→ x0 + x2 + x3

and

g1 : F5
2 → F2

(x0, x1, x2, x3, x4) �→ x1x2x3 + 1.

An application of our construction in Theorem1 gives the map

f : F5
2 × F2 × F

5
2 → F2

(x, x5, y) �→ g0(x) + x5g1(x) + π(x)y

(x0, x1, x2, x3, x4, x5, y0, y1, y2, y3, y4) �→ x0 + x2 + x3 + (x1x2x3 + 1)x5 + y0π1(x)

+ y1π2(x) + y2π3(x) + y3π4(x) + y4π5(x)

where πi(x) is defined as before for i = 1, . . . , 5. The map is balanced, has no
linear structure, has nonlinearity 992 = 210 − 25 and has algebraic immunity 4.

In Example 1, π : F5
2 → F

5
2 corresponds to the permutation map x �→ x30.

Note that as m = 5 is a prime, there is only one function in Cusick’s class,
which is f1 in (1). Moreover, AI(f1) ≤ 3. Example 1 gives a concrete example in
our class of Theorem 1 improving the algebraic immunity while keeping all the
good properties of the maps of Cusick’s class: high nonlinearity, 1-plateauedness,
absence of having nonzero linear structures, and balancedness. Moreover, using
different permutations π : F5

2 → F
5
2 and other suitable maps g0(x), g1(x) we get

a lot of different Boolean functions with algebraic immunity 4 easily satisfying
the conditions: 1-plateauedness, absence of having nonzero linear structures, and
balancedness.
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4 Constructing Permutation Polynomials over Fq2 via Fq

Akbay, Ghioca and Wang [1] recently established a very interesting construction
in order to construct polynomials over “big” finite fields using a commutative
diagram relating the big field to some smaller subsets and the corresponding
conditions on the maps of the commutative diagram. In fact, this construction
gives different methods using different commutative diagrams leading to different
conditions on different maps and subsets (see, for example [1, Proposition 5.9]
and [1, Proposition 5.6]).

They generalized many earlier results and constructed many new permu-
tation polynomial families. They also motivated many research directions in
constructing explicit classes of permutation polynomials in “big” finite fields
in the following sense: If a class of objects satisfying certain properties can be
constructed which are guaranteed to satisfy a full set of conditions of Akbay,
Ghioca and Wang in a small set (see, for example [1, Proposition 5.9] or [1,
Proposition 5.6]), then it is possible to obtain an explicit class of permutation
polynomials in the big finite field.

Recently Cepak, Charpin and Pasalic, among other results, gave such explicit
classes in [7]. Namely, in [7, Section 6], they obtain permutation polynomials over
Fq2 using certain polynomials over Fq. We refer to Propositions 6, 8, 9 and the
corresponding corollaries in [7].

Motivated by these results, we give explicit large class of permutation polyno-
mials over Fq2 starting from polynomials over Fq. We first introduce the notion
of b-permutation.

Definition 6. Let m(x) ∈ Fq[x] and b ∈ Fq be given. We call m(x) a b-
permutation over Fq if the evaluation mapping x �→ m(x) + bx defines a per-
mutation over Fq.

Remark 2. Note that it is not difficult to construct a b-permutation polynomial
starting from a permutation polynomial. Indeed if x �→ h(x) is a permutation
polynomial, then x �→ h(x) − bx is a b-permutation over Fq.

First we present our results in characteristic 2. The following proposition
indicates that it is easy to construct the corresponding large families of per-
mutation polynomials over Fq2 as the component g0(x) ∈ Fq[x] may be chosen
arbitrarily.

Proposition 2. Let q = 2k for some integer k. Let θ ∈ Fq2/Fq satisfy θq +θ = 1
and g0(x) ∈ Fq[x] be arbitrary. Then we have:

– F (x) = x + g0(xq + x) + θ(x2iq + x2i + xq + x) is a permutation over Fq2 for
any i ≥ 1.

– If q �≡ 1 mod 3, then

F (x) = x + g0(xq + x) + θ(x3q + x2q+1 + xq+2 + x3 + xq + x)

is a permutation over Fq2 .
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– If q �≡ 1 mod 5, then

F (x) = x + g0(xq + x) + θ(x5q + x4q+1 + xq+4 + x5 + xq + x)

is a permutation over Fq2 .
– If r ≥ 1 is an integer such that gcd(r, q − 1) = 1, then

F (x) = x + g0(xq + x) + θ ((xq + x)r + (xq + x))

is a permutation over Fq2 .

In fact, Proposition 2 is just a special subcase of the next theorem. We prefer
to state Proposition 2 independently as it shows that the conditions of the next
theorem are very easy to satisfy. We do not prove it as it follows from the proof
of the next theorem.

Theorem 2. Let q = 2k for some integer k. Let θ ∈ Fq2/Fq satisfying θq+θ = 1.
Let g0(x) ∈ Fq[x] be arbitrary and g1(x) ∈ Fq[x] be a 1-permutation over Fq.
Then

F (x) = x + g0(xq + x) + θ(g1(xq + x))

is a permutation over Fq2 .

Proof. The proof comes from [1, Proposition 5.9], by taking g(x) of the form
g(x) = g0(x) + θg1(x) ∈ Fq2 [x], h(x) as a constant function equal to 1 and
ϕ(x) = x. Observe that S = {yq + y|y ∈ Fq2} = Fq since char(Fq) = 2. Then

h(x)ϕ(x) + g(x)q + g(x) = x + g0(x)q + θqg1(x)q + g0(x) + θg1(x).

If x ∈ Fq, the equality implies

h(x)ϕ(x) + g(x)q + g(x) = x + g1(x).

Since g1(x) is a 1-permutation over Fq, the function

F (x) = x + g0(xq + x) + θ(g1(xq + x))

is a permutation over Fq2 . ��
Next, we present our results in odd characteristic. Again, we first state a

special subcase in the next proposition.

Proposition 3. Let q = pk, where p is any odd prime number. Let β ∈ Fq2/Fq

and γ = βq − β. Let g0(x) ∈ Fq[x] be arbitrary. Then we have:

– If q �≡ 1 mod 3, then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ β

[
x3q

γ3q
− 3

x2q+1

γ2q+1
+ 3

xq+2

γq+2
− x3

γ3
− xq

γq
+

x

γ

]

is a permutation over Fq2 .
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– If q �≡ 1 mod 5, then

F (x) = x + g0

(
xq

γq
− x

γ

)

+ β

[
x5q

γ5q
− 5

x4q+1

γ4q+1
+ 10

x3q+2

γ3q+2
− 10

x2q+3

γ2q+3
+ 5

xq+4

γq+4
− x5

γ5
− xq

γq
+

x

γ

]

is a permutation over Fq2 .
– If r ≥ 1 is an integer such that gcd(r, q − 1) = 1, then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ β

[(
xq

γq
− x

γ

)r

−
(

xq

γq
− x

γ

)]

is a permutation over Fq2 .

We do not prove Proposition 3 as its proof follows from the next theorem.

Theorem 3. Let q = pk, where p is any odd prime number. Let β ∈ Fq2/Fq and
γ = βq − β. Let g0(x) ∈ Fq[x] be arbitrary and g1(x) ∈ Fq[x] be a 1-permutation
over Fq. Then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ βg1

(
xq

γq
− x

γ

)

is a permutation over Fq2 .

Proof. The proof comes from [1, Proposition 5.9], by taking g(x) of the form
g(x) = g0

(
x
γ

)
+ βg1

(
x
γ

)
∈ Fq2 [x], h(x) as a constant function equal to 1 and

ϕ(x) = x. Observe that S = {yq − y|y ∈ Fq2} = γFq. Now consider the map

γy �→ γy + g(γy)q − g(γy).

Then

γy + g(γy)q − g(γy) = γy + g0(y)q + βqg1(y)q − g0(y) − βg1(y)
= γy + (βq − β)g1(y)
= γ[y + g1(y)].

Since g1(y) is a 1-permutation over Fq, the function

F (x) = x + g0

(
xq

γq
− x

γ

)
+ βg1

(
xq

γq
− x

γ

)

is a permutation over Fq2 . ��
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5 Constructing Permutation Polynomials over Fqn via Fq

with n ≥ 3

In Sect. 4 we give explicit classes of permutation polynomials over Fq2 using
polynomials over Fq.

In this section we give explicit classes of permutation polynomials over Fqn

using polynomials over Fq with n ≥ 3. In fact, it is not easy to give such classes
using the conditions of Akbary, Ghioca and Wang [1, Proposition 5.9] since we
need to consider the subset S = {yqn −y|y ∈ Fqn}. This subset is easy to handle
if n = 2, which we applied in Sect. 4. Hence in this section we use a different
method of Akbary, Ghioca and Wang, namely [1, Proposition 5.6].

First we present our result for n = 3. The next proposition indicates the
corresponding permutation polynomial class is large as the chosen components
g1, g2 ∈ Fq[x] are arbitrary and g0 ∈ Fq[x] has to satisfy a certain condition.

Proposition 4. Let {θ0, θ1, θ2} be a basis of Fq3 over Fq. We assume that
Tr3(θ0) �= 0 without loss of generality. We choose a0, a1, a2 ∈ Fq satisfying

(a0 − a2)2 + (a2 − a0)(a1 − a2) + (a1 − a2)2 �= 0. (3)

Let g0, g1, g2 ∈ Fq[x] be such that g0(x)Tr3(θ0) + g1(x)Tr3(θ1) + g2(x)Tr3(θ2) is
an (a0 + a1 + a2)-permutation of Fq. Then

F (x) = a0x + a0x
q + a2x

q2
+ θ0g0(Tr3(x)) + θ1g1(Tr3(x)) + θ2g2(Tr3(x))

is a permutation over Fq3 .

Proof. We use [1, Proposition 5.6], by taking g(x) of the form

g(x) = θ0g0(x) + θ1g1(x) + θ2g2(x)

and h(x) as a constant function equal to 1. Let ϕ(x) = a0x+a1x
q +a2x

q2 ∈ Fq[x]
with a0, a1, a2 satisfying (3). For x ∈ Fq we have

ϕ(x) + Tr3(g(x)) = a0x + a1x
q + a2x

q2
+ Tr3(θ0g0(x) + θ1g1(x) + θ2g2(x))

= (a0 + a1 + a2)x + g0(x)Tr3(θ0) + g1(x)Tr3(θ1) + g2(x)Tr3(θ2).

Since g0(x)Tr3(θ0)+g1(x)Tr3(θ1)+g2(x)Tr3(θ2) is an (a0+a1+a2)-permutation
of Fq, the condition (ii) of [1, Proposition 5.6] is satisfied.

It remains to prove that ker ϕ ∩ ker Tr3 = {0}. As Tr3(x) = x + xq + xq2

and ϕ(x) = a0x + a1x
q + a2x

q2 ∈ Fq[x] considering their q-associates (see, for
example, [13, Definition 3.58]) it is enough to prove that

gcd(1 + t + t2, a0 + a1t + a2t
2) = 1. (4)

Indeed, if follows from [13, Theorem 3.62] that kerϕ ∩ ker Tr3 = {0} if and only
if (4) holds. By a simple computation we observe that (3) is equivalent to the
condition

gcd(1 + t + t2, a0 + a1t + a2t
2) = 1.

��



On Plateaued Functions, Linear Structures and Permutation Polynomials 229

For n ≥ 3 in general, the condition

(a0 − a2)2 + (a2 − a0)(a1 − a2) + (a1 − a2)2 �= 0

corresponds to the resultant condition, which is well-known in algebraic geome-
try. We recall its definition (see, for example, [13, Definition 1.93]).

Definition 7. Let f(x) = a0x
n + a1x

n−1 + · · · + an ∈ Fq[x] be a polynomial
of degree n and g(x) = b0x

m + b1x
m−1 + · · · + bm ∈ Fq[x] be a polynomial of

degree m with n,m ∈ N
+. Then the resultant Res(f, g) of the two polynomials

is defined by the determinant

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an 0 . . . 0
0 a0 a1 . . . an 0 . . . 0
...

...
0 . . . 0 a0 a1 . . . an

b0 b1 . . . bm 0 . . . 0
0 b0 b1 . . . bm . . . 0
...

...
0 . . . 0 b0 b1 . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
m rows

⎫
⎪⎪⎬

⎪⎪⎭
n rows

of order m + n.

Now we are ready to generalize Proposition 4 in the next theorem.

Theorem 4. Let {θ0, θ1, . . . , θn−1} be a basis of Fqn over Fq. We assume that
Trn(θ0) �= 0 without loss of generality. Let ϕ(x) = a0x + a1x

q · · · + an−1x
qn−1

be an Fq-linear polynomial over Fq satisfying the resultant

Res(a0 + a1t + · · · + an−1t
n−1, 1 + t + · · · + tn−1) �= 0. (5)

Let g0, g1 . . . , gn−1 ∈ Fq[x] be such that g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)
is an (a0 + · · · + an−1)-permutation of Fq. Then

F (x) = ϕ(x) + θ0g0(Trn(x)) + · · · + θn−1gn−1(Trn(x))

is a permutation over Fqn .

Proof. We use a similar method as in the proof of Proposition 4. Take g(x) of
the form

g(x) = g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)

and h(x) as the constant function equal to 1. Let

ϕ(x) = a0x + a1x
q · · · + an−1x

qn−1 ∈ Fq[x]

with a0, . . . , an−1 satisfying (5). For x ∈ Fq we have

ϕ(x)+Trn(g(x)) = (a0 + · · ·+an−1)x+g0(x)Trn(θ0)+ · · ·+gn−1(x)Trn(θn−1).
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This is a permutation polynomial over Fq since

g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)

is an (a0 + · · · + an−1)-permutation of Fq. So condition 2 of [1, Proposition 5.6]
holds.

The proof of kerϕ ∩ ker Trn = {0} comes from an important property of the
resultant [13, page 36] (see also, [12, Corollary 8.4, page 203]). It indicates that
the polynomials 1 + t + · · · + tn−1 and a0 + a1t + · · · + an−1t

n−1 do not have
common root if and only if (5) holds. Note that we also use q-associates before
this argument. ��

6 A Further Generalization of Linear Translators

For an arbitrary Fq and a map f : Fqn → Fq with n ≥ 2, the concept of
linear structure in Definition 2 corresponds to the notion of linear structure: Let
γ ∈ Fqn , b ∈ Fq. Then γ is called b-linear translator of f : Fqn → Fq if

f(x + γu) = f(x) + bu for all x ∈ Fqn and y ∈ Fq.

Note that if q = 2, then b is either 0 or 1 and we have either 0-linear translator
or 1-linear translator coinciding with 0-linear structure or 1-linear structure.

Recently Cepak, Pasalic and Muratović-Ribić generalized the notion of linear
translators and gave an application for constructing permutation polynomials
(see [8]).

In this section we obtain a further and very natural generalization of the
notion of linear translators. We also give two different applications of our more
general version to permutation polynomials. Theorem5 is an easy but rather
unexpected application. It gives a class of permutation polynomials over Fqn

using a surjective map f : Fqn → S ⊆ Fq and our notion of generalized linear
translator.

The proof uses a trick that was used earlier in [15]. Moreover, this method
gives the inverse permutation explicitly.

The second application is Theorem 6 below and it shows that under certain
conditions one can get permutation polynomials on Fqn again using f : Fqn →
S ⊆ Fq and the corresponding generalized linear translator. Finally, we give
an explicit example illustrating that there exist generalized linear translators
satisfying the conditions of Theorem 6 and not being Frobenius linear translators,
which is the notion expressed in [8].

We start with our generalization of the notion.

Definition 8. Let S ⊆ Fq and let γ, b ∈ Fqn . Let A : Fqn → Fqn be an additive
map. We say that γ is a (b, A)-linear translator with respect to S for the mapping
f : Fqn → S, if

f(x + γu) = f(x) + bA(u)

for all x ∈ Fqn and for all u ∈ S.
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Now we are ready to present a first application of the notion in Definition 8.

Theorem 5. Let S ⊆ Fqn and f : Fqn → S be a surjective map. Let γ ∈ Fq be
a (b, A)-linear translator with respect to S for the map f where A is an additive
map and γ, b ∈ Fqn . Then for any g ∈ Fqn [x] which maps S into S, we have that
F (x) = x+γg(f(x)) is a permutation over Fqn if and only if ψ(z) = z+bA(g(z))
is a permutation on S.

Moreover, if F is a permutation over Fqn , then its inverse function F−1 is
given explicitly as

F−1(z) = z − γg(ψ−1(f(z))).

Proof. Let x be any element of Fqn . Then we have F (x) = x + γg(f(x)) by
definition. By applying f to the both sides of the equality we obtain

f(F (x)) = f(x + γg(f(x)))
= f(x) + bA(g(f(x))) since f is (b, A) -linear translator
= ψ(f(x)) by definition of the mapψ.

(6)

Therefore we have ψ(f(x)) = f(F (x)).
Assume first that ψ is a permutation over S. Let F (x1) = F (x2) for some

x1,x2 ∈ Fqn . Then applying f to both sides of the equality we have f(F (x1)) =
f(F (x2)). By using (6), we obtain

ψ(f(x1)) = f(F (x1)) = f(F (x2)) = ψ(f(x2)).

Since ψ is a permutation over S, we get f(x1) = f(x2). As F (x1) = F (x2) we
also have

x1 + γg(f(x1)) = x2 + γg(f(x2)).

These imply that x1 = x2. Therefore F is injective and indeed F is bijective.
Conversely, assume that F is a permutation over Fqn . Let s be any element of

S. Since f is a surjective map, there exists α ∈ Fqn satisfying f(α) = s. Because
F is permutation over Fqn , there is x ∈ Fqn such that F (x) = α. By using (6),
we have

ψ(f(x)) = f(F (x)) = f(α) = s.

Therefore ψ is surjective and in fact, ψ is bijective. Then F (x) = x + γg(f(x))
is a permutation over Fqn if and only if ψ(z) = z + bA(g(z)) is a permutation
over S.

Next, we compute F−1 explicitly. Let y = F (x) = x + γg(f(x)). Then we
have

f(y) = f(x + γg(f(x)))
= f(x + γu), where u = g(f(x)) ∈ S

= f(x) + bA(u), since γ is a (b, A)-linear translator
= f(x) + bA(g(f(x))), recall u = g(f(x))
= z + bA(g(z)), where f(x) = z

= ψ(z).
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As ψ is a permutation on S we have that for each y there exists x = y −
γg(ψ−1(f(y))) satisfying F (x) = y. Therefore, F (x) is surjective and the desired
result follows. The converse of the statement is proved similarly.

Moreover, F−1(z) = z − γg(ψ−1(f(z))) since f−1(z) = x. ��
Next, we give another application of Definition 8.

Theorem 6. Let f be a function from Fqn onto Fq, γ ∈ F
∗
qn . Let γ be a (b, A)-

linear translator of f where b ∈ Fq and A(x) ∈ Fqn [x] is an additive map satis-
fying the following conditions:

1. A is Fq-linear.
2. A(γ) �= 0.
3. A(γa) = A(γ)A(a) for all a ∈ Fq.
4. For any x ∈ Fqn : If A(γx) ∈ A(γ)Fq, then x ∈ Fq.
5. A|Fq

is onto.

For any map h : Fq → Fq consider the map

G : Fqn → Fqn

x �→ A(x) + A(γ)h(f(x)).

Then G is a permutation over Fqn if and only if the following derived map
depending on h and b

g : Fq → Fq

u �→ u + bh(u)

is a permutation over Fq.

Proof. We use a method similar to the ones in [11] or [8]. Let x, α ∈ Fqn satisfy
G(x) = G(x + γα). Then

G(x) = A(x) + A(γ)h(f(x)),
G(x + γα) = A(x + γα) + A(γ)h(f(x + γα))

= A(x) + A(γα) + A(γ)h(f(x + γα)) by condition 1,

and hence
A(γ)h(f(x)) = A(γα) + A(γ)h(f(x + γα)). (7)

Divide both sides of Eq. (7) by A(γ), since A(γ) �= 0 by condition 2. Then we
have

h(f(x)) =
A(γα)
A(γ)

+ h(f(x + γα)).

As f(x), f(x + γα) ∈ Fq[x], h ∈ Fq[x] and A(γα)
A(γ) ∈ Fq, by condition 4 we get

α ∈ Fq. Taking a = α ∈ Fq, we have

h(f(x)) =
A(γa)
A(γ)

+ h(f(x + γa)).
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Note that A(γa) = A(γ)A(a) by condition 3, so we get

h(f(x)) = A(a) + h(f(x + γa))

and hence by using that γ is a (b, A)-linear translator for f , we get

h(f(x)) = A(a) + h(f(x) + bA(a)).

Then substituting u = f(x) ∈ Fq[x], we have

h(u) = A(a) + h(u + bA(a)). (8)

Consider

g(u) = u + bh(u)
g(u + bA(a)) = u + bA(a) + b(h(u + bA(a)))

= u + b (A(a) + h(u + bA(a))
= u + bh(u)
= g(u).

Here as x runs through Fqn , u = f(x) runs through Fq as f is onto. Then we get

g(u) = g(u + bA(a)). (9)

Thus the mapping G is a permutation over Fqn if and only if the only a satisfying
Eq. (9) is a = 0. If b = 0, then we obtain that A(a) = 0 as g is permutation. As
A|Fq

is one-to-one, we get a = 0. If b = 0, then from Eq. (8) we have

h(u) = A(a) + h(u + bA(a)) = A(a) + h(u).

Hence A(a) = 0. Therefore, a = 0. ��
The next example illustrates a simple situation when the conditions of

Theorem 6 hold. Note that the polynomial A(x) in the next example is not in
the form of a Frobenius linear translator. Moreover, the next example illustrates
that the conditions of Theorem 5 hold easily as its conditions are weaker.

Example 2. Let q = 2 and n = 4. Take A(x) = α2x+α7x2+α3x4+α5x8 ∈ F24 [x]
where α4 = 1+α and γ = α3 ∈ F

∗
24 . Then A(x) satisfies the following conditions:

1. A is F2-linear since A is additive.
2. A(γ) �= 0 since A(γ) = A(α3) = α4 �= 0.
3. A(γa) = A(γ)A(a) for all a ∈ F2 since

A(a) = α2a + α7a2 + α3a4 + α5a8 = a(α2 + α7 + α3 + α5) = a

and

A(γa) = α2(α3a) + α7(α3a)2 + α3(α3a)4 + α5(α3a)8 = aA(γ) = A(a)A(γ).
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4. For any x ∈ Fqn : If A(γx) ∈ A(γ)Fq, then x ∈ Fq. Consider θ = αi ∈ F24/F2

for 1 ≤ i ≤ 14, then we have

A(γθ) = A(γαi) �∈ A(γ)F2 where A(γ) = α4 for 1 ≤ i ≤ 14.

Indeed, we have {A(γαi) : 1 ≤ i ≤ 14} = F16 \ {0, α4}. For example,
A(γα) = α8 and A(γα11) = α.

5. A|F2 is onto.

Let f : F24 → F2 be the map x �→ Tr4(x). Then α3 is a (1, A)-linear translator
of f since we have

f(x + γu) = f(x + α3u) = Tr4(x + α3u) = Tr4(x) + uTr4(α3)
= Tr4(x) + u = f(x) + u

for all x ∈ F24 and for all u ∈ F2.

7 Conclusion

We define a new class of Boolean functions which includes Cusick’s class of func-
tions [9] as a small subclass. We obtain explicit permutation polynomial classes
over Fq2 via Fq and also over Fqn via Fq with n ≥ 3. We give a natural general-
ization of the notion of linear translators which is called (b,A)-linear translator.
By using the connection between linear translators and permutation polynomi-
als over finite fields, we obtain a class of permutation polynomials over Fqn .
For applications our class of Boolean functions would be preferable compared to
Cusick’s class of functions mentioned above as our class is much larger having
cryptographic properties as good as (or even better than) the class of Cusick’s
functions. Using our methods and new notion of (b,A)-linear translator it would
be possible to construct further interesting algebraic structures like permutation
polynomials or special functions.
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17. Riera, C., Solé, P., Stănică, P.: A complete characterization of plateaued boolean
functions in terms of their cayley graphs. In: Joux, A., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 3–10. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89339-6 1

18. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three
weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–
1176 (2016)

19. Tokareva, N.: Bent Functions: Results and Applications to Cryptography. Aca-
demic Press, San Diego (2015)

https://doi.org/10.1007/978-3-319-18681-8_5
https://doi.org/10.1007/978-3-319-55589-8_22
https://arxiv.org/abs/1801.08460
https://arxiv.org/abs/1801.08460
https://doi.org/10.1007/978-3-319-55589-8_19
https://doi.org/10.1007/978-3-319-55589-8_19
https://doi.org/10.1007/s10623-018-0556-4
https://doi.org/10.1007/978-3-319-89339-6_1

	On Plateaued Functions, Linear Structures and Permutation Polynomials
	1 Introduction
	2 Preliminaries
	3 Cusick's Highly Nonlinear Plateaued Functions and Their Modifications
	4 Constructing Permutation Polynomials over  Fq2  via  Fq 
	5 Constructing Permutation Polynomials over Fqn via Fq with n 3
	6 A Further Generalization of Linear Translators
	7 Conclusion
	References




