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Abstract. We propose a generalized secret sharing scheme based on
NMDS codes. The proposed scheme is efficient and the computational
complexity for setup and reconstruction phase is only O(n3), where n
is the number of participants. The scheme admits an access structure
based on two mutually exclusive sets of participant combinations of sizes
t and t − 1 respectively. The parameter t for the access structure is
independent of the field size. The proposed scheme is ideal and perfect
and has desirable security features of cheating detection and cheater
identification. We also provide a cryptanalysis of the (t + 1, n) threshold
secret sharing scheme based on NMDS codes proposed in [12]. We show
that their scheme is insecure and that there always exists a set of m
participants, where m < t + 1, which can reconstruct the secret.
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1 Introduction

Secret sharing schemes were independently proposed by Blakley [2] and
Shamir [11] in 1979. The scheme by Shamir is based on linear algebra and the
standard Lagrange’s interpolation while the scheme given by Blakley is built
upon the idea of finite geometries, particularly on the concept of intersection of
hyperplanes. These were the first threshold secret sharing schemes which allowed
a secret s to be split into n shares which could be distributed among n partic-
ipants (or users), P = {P1, . . . , Pn}, in such a way that for some threshold t,
1 ≤ t ≤ n, any group of t or more participants could pool in their shares to
reconstruct the secret but if the number of participants in a group is less than
the threshold t, then that group does not get any extra information about the
secret.

Note that a threshold secret sharing scheme makes the authorized sets rigid.
Consider a hypothetical situation of a firm, where we have three levels of the
workforce, namely, directors, managers and employees. To access the key for a
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certain new product launched, the firm does not want every employee to open
up the locker. So naturally more power has to be given to the directors and
managers than the employees. This in turn means, maybe less directors can
pool their shares to find the secret. Comparatively more managers and even
more employees should be required to find the secret. This type of flexibility is
not directly possible with a threshold access structure.

To overcome the problems arising in the scenario above, Ito et al. [7] intro-
duced the concept of a generalized access structure which contains all the possible
sets of participants who can reconstruct the secret. They proposed a secret shar-
ing scheme which admitted a generalized access structure irrespective of the size
of each set. Every participant is assigned several shadows of a (t, n)-threshold
secret sharing scheme by the dealer. For integers t, m and q satisfying t ≤ m < q,
q being a prime power, the dealer

– samples α1, . . . , αt−2 from GF(q) and αt−1 from GF(q) − {0} and constructs
f(x) = s + α1x + α2x

2 + · · · + αt−1x
t−1, where the secret is f(0) = s.

– samples x1, . . . , xm from GF(q) − {0} and computes sj = f(xj) (1 ≤ j ≤ m).
– chooses Si ⊂ {(x1, s1), . . . , (xm, sm)} and assigns Si to each participant Pi

(1 ≤ i ≤ |P|).

In this scheme, the access structure Λ can be defined as the sets in which
the union of all the shares of the participants has cardinality greater than t. In
case the minimal subsets are big, this scheme turns out to be ineffective. At the
same time, for this access structure, Shamir’s Scheme gives each party a share
equal to the size of the secret.

Later, Benaloh and Leichter [1] proposed a simpler and relatively efficient
secret sharing scheme exploiting the monotonicity property of access structures
in secret sharing schemes. The proposed scheme begins with multiple schemes
for simple access structures and creates a scheme for composition of those access
structures. Thus, the scheme by Benaloh and Leichter efficiently realizes every
access structure that can be described by small monotone formula. Even though
this construction is more efficient and generalizes the scheme proposed by Ito
et al. [7], the length of shares become exponential in the number of parties.

All the above schemes were linear secret sharing schemes which can be mod-
elled using monotone span programs [8]. These are essentially matrices describing
a linear mapping of a linear scheme. These variations are very efficient to imple-
ment. Around the same time, the following advantages of using linear codes,
instead of arbitrary matrices, for designing secret sharing schemes were observed.

– Easier to detect errors and easy transmission.
– Can be defined using a single generator matrix.
– Schemes were still efficient although features for verification and cheating

detection and identification were included.

Some of such constructions are based on Maximum Distance Separable
(MDS) matrices [10] where the dealer chooses an MDS matrix A of dimension
k×n and a vector v of dimension 1×k, and computes the codeword v · A whose
first element is the desired secret.
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These schemes have been extensively used as they are easier to implement. It
has been observed that NMDS matrices have better computational performance
than MDS matrices. NMDS matrices require less storage than MDS matrices,
do not require additional clock cycles and have sub-optimal branch numbers [9].
Some lightweight block ciphers have already been using NMDS matrices for
their diffusion layer which includes ciphers like PRINCE, FIDES, PRIDE and
MANTIS due to its benefits of low power, low energy and low latency in imple-
mentations. Due to all these, it will be useful to implement a secret sharing
scheme using NMDS codes as well. The advantages of using NMDS codes for
making a secret sharing scheme are as follows,

– Easy to implement and less space consuming
– Does not require additional clock cycles
– Difficult to identify the generator matrix of the code for an adversary
– Richer access structure than MDS secret sharing
– Has the property of cheating detection and identification like MDS secret

sharing

Considering Shamir’s secret sharing scheme, one can observe that a dishonest
participant cannot find the secret by giving a wrong share but can misguide the
honest participants by getting a wrong key which ultimately results in failure
for the authorized set of participants to obtain the correct secret. Numerous
solutions have been suggested in literature to solve this issue and retrieve the
accurate secret. Some propose error correcting codes where a tampered share is
treated as an error and is corrected using the error correcting property of code.
While, some other propose to use a protocol where dealer validates individual
shares in an authorized set to detect and rectify any tampering of shares. One
plausible way is to use check vectors that dealer uses as certification for each
participant. Some such schemes have been reviewed in Sect. 3.

Most of the initial secret sharing schemes had issues with trusted third par-
ties (dealers and combiners) as well as cheating detection and identification. One
of the modifications of Shamir’s scheme for cheating detection and correction is
proposed by Lein et al. in [5]. It is assumed that m > t number of partici-
pants have to come up with their shares, where t is the threshold, giving the
participants

(
m
t

)
ways to pool their shares. For each way we get a degree t − 1

polynomial by interpolation which can be checked with the original polynomial.
Participants who are present in the majority of groups and couldn’t recover the
same polynomial are grouped as possible cheaters and shares are corrected recur-
sively unless there is no cheater left in the group of participants. They provide
the algorithm for cheating detection and cheating correction by trading off the
time and space-complexities for computing the secret to prevent cheating.

1.1 Organization

In this paper, we have introduced some essential definitions, problems and
assumptions related to the scheme in Sect. 2. Further we have discussed in Sect. 3
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some of the previous work done on secret sharing schemes formed using MDS
(Maximum Distance Separable) and NMDS (Near-Maximum Distance Separa-
ble) codes. In Sect. 4, we have analyzed and discussed the shortcomings of the
scheme proposed by Zhou et al. [12]. The proposed secret sharing scheme is
presented in Sect. 5 and its security analyzed in Sect. 6. Finally, we provide a
concrete instantiation of the proposed scheme in the Appendix A.

2 Preliminaries

The assignment operator is denoted by “←”. In particular, the operation of
running a randomized or deterministic algorithm A with input x and storing the
result to the variable y is denoted by y ← A(x). The operation of choosing an
element x of a set X randomly at uniform from X is denoted by x

$← X and the
operation of choosing an element x of X according to a distribution μ on a set X
is denoted by x

µ← X. For a given function f : N → [0, 1] is said to be negligible
in n if f(n) < 1/p(n) for a polynomial p and having sufficiently large n.

2.1 Coding Theory

Definition 1 (Block Codes). Let An be the set of all strings of length n over
A, where A = {a0, . . . aq−1}. Any nonempty subset C of A

n is called a q-ary
block code of length n and each string in C is called a codeword.

Definition 2 (Hamming Distance). If c and d are two codewords of length
n, the hamming distance d(c,d) is the number of positions at which c and d
differ. The hamming weight d(c) of a codeword c ∈ C is defined to the number
of its non-zero coordinate positions.

Definition 3 (Minimum Distance). The minimum distance of a code C is
defined as

d(C) = min
c,d∈C

d(c,d) .

Definition 4 (Linear Code). A linear code, L, of length n is a linear subspace
of Fn

q where Fq = GF(q) is the Galois Field of order q = pm for some prime p
and power m ≥ 1. If L has a dimension k, we say it is an [n, k] code. Further,
if its minimum distance is d, we say L is an [n, k, d]-code.

Definition 5 (Generator Matrix). A generator matrix, of a linear [n, k, d]
code, L, is a m × n matrix, m ≥ k, whose rows span L. That is, every codeword
c ∈ L is a linear combination of the rows of the generator matrix, G, and for
every v ∈ F

m
q , v · G is a codeword in L.

Remark 1. For the purposes of this paper, we will assume that the number of
rows in generator matrices is equal to the dimension of the code. That is, if G
is a generator matrix of a linear [n, k, d] code, L, then G is a k × n matrix and
its rows form a basis of L.
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Definition 6 (Standard Form of a Generator Matrix). A generator
matrix, G, of a linear [n, k, d] code, L, is said to be in the standard form if
G = [Ik | A], where Ik is the identity matrix of size k × k and A is a k × (n − k)
matrix. For such G, the code L is said to systematic in its first k coordinate
positions.

Remark 2. Any k×(n−k) matrix, A, defines a linear [n, k, d] code, L, completely
by defining the standard form of a generator matrix, G = [Ik | A], for L.

Definition 7 (Support of a Code). Let C be a code over Fq. The support,
Supp(c), of a codeword c ∈ C is defined to be the set of its non-zero coordinate
positions. The support, Supp(C), of the code C is defined to be

Supp(C) = ∪c∈CSupp(c) .

Definition 8 (Generalized Hamming Distance). The minimum cardinality
of the supports of the [n, r]-subcodes of C, for 1 ≤ r ≤ k, is called the rth
generalized hamming distance drC. That is,

drC = min{|SuppD| : D is [n, r]q subcode of C} .

Remark 3. Note that d1(C) = d(C) is the Hamming Distance of C.

Proposition 1 (Hierarchy of Hamming Weights). For every linear [n, k]q
code C,

0 < d1(C) < d2(C) < · · · < dk(C) ≤ n .

Definition 9 (The Singleton Bound). The singleton bound states that any
[n, k, d]-code must satisfy

qk ≤ qn−d+1 .

In particular, d ≤ n + 1 − k.

Definition 10 (The Generalized Singleton Bound). The rth generalized
singleton bound is given by dr(C)

dr(C) ≤ n − k + r where r = 1, 2, . . . , k .

Definition 11 (Maximum Distance Separable Codes). A linear [n, k, n+
1 − k]-code, that is, an [n, k]-code with largest possible minimum distance, is
called a maximum distance separable (MDS) code.

Proposition 2 (Properties of MDS Matrices). Given an [n, k, d] MDS
code, L, over Fq, the accompanying explanations are proportionate.

1. If G = [Ik | A] is a generator matrix of L in standard form, then every square
submatrix of A is non-singular.

2. Any k columns of a generator matrix for L are linearly independent.
3. Any n − k columns of a parity check matrix for L are linearly independent.
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Definition 12 Almost-MDS Codes). The class of codes with d1(C) = n − k
are called almost-MDS (AMDS) codes.

Definition 13 (Near-MDS Codes). The class of codes with d1(C) = n − k
and di(C) = n − k + i, for i = 2, 3, . . . , k, are called Near-MDS (NMDS) codes.
Equivalently, a code is NMDS if and only if d1(C) = n − k and d1(C⊥) = k.

Proposition 3 (Properties of Near-MDS Matrices). A linear [n, k] code
is Near-MDS if and only if its generator matrix satisfies the following conditions

1. Any k − 1 columns of the generator matrix are linearly independent.
2. Any k + 1 columns of the generator matrix are of rank k.
3. There exists a set of k linearly dependent columns in the generator matrix.

2.2 Secret Sharing

A secret sharing scheme is a shared control scheme in which a dealer D splits a
secret s into n shares s1, . . . , sn and distributes these to a set P = {P1, . . . , Pn} of
n participants (or users) such that while certain groups of participants (subsets
of P) can reconstruct the secret from their shares (possibly by submitting their
shares to a combiner C), others cannot.

Definition 14 (Access Structure). An access structure Λ on a set of partic-
ipants P is a subset of 2P such that sets in Λ can reconstruct the secret but sets
not in Λ cannot. Elements of Λ are termed to be authorized sets while the sets
not in Λ are called unauthorized sets.

Definition 15 (Monotone Property). A collection Λ ⊆ 2P is called mono-
tone if for all A ⊆ B ⊆ P, if A ∈ Λ then B ∈ Λ. In other words, if A is in the
access structure Λ and B is a superset of A then B is also present in Λ.

Definition 16 (Distribution Scheme). A distribution scheme, ΠP,S,R,μ, with
a domain of secrets S, a set of strings R and a probability distribution μ on R, is
a system which on input a secret s ∈ S, chooses a random string r

µ← R sampled
in agreement with μ, and computes a vector of shares ΠP,S,R,μ(s) = (s1, . . . , sn),
and communicates each share sj to Pj via a secure channel.

Definition 17 (Secret Sharing Scheme). A secret sharing scheme,
ΓP,S,R,μ,Λ, is a distribution scheme ΠP,S,R,μ along with a reconstruction func-
tion, RECON, realizing the access structure Λ.

Remark 4. When any of P, S, R, μ and Λ are clear from the context, we may
not specify the respective subscripts in ΠP,S,R,μ and ΓP,S,R,μ,Λ.

Definition 18 (Threshold Secret Sharing Scheme). If the access structure
Λ ⊆ 2P is defined by

A ∈ Λ ⇐⇒ |A| ≥ t ,

for some t ∈ {1, 2, . . . , n}, then we call the secret sharing scheme a (t, n) thresh-
old secret sharing scheme. That is, in a (t, n)-threshold secret sharing scheme,
any set of at least t participants should be able to retrieve the secret but any set
of t − 1 or less participants must not be able to find the secret.
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Definition 19 (Generalized Secret Sharing Scheme). If the access struc-
ture Λ ⊆ 2P does not have restrictions such as in the case of threshold secret
sharing schemes, then we call the secret sharing scheme a generalized secret
sharing scheme.

Definition 20 (Correctness). A secret sharing scheme ΓP,S,R,μ,Λ is said to
be correct if the secret can be reconstructed by any authorized set of parties by
pooling in their shares. That is, for the access structure Λ, for any set A ∈ Λ,
and for any key s ∈ S, Pr[RECON(A) = s] = 1.

Definition 21 (Perfect Secret Sharing). A secret sharing scheme is said to
be perfect if, in information theoretic sense, an unauthorized set is unable to
learn anything about the secret from their pool of shares. Formally, for every
possible pair of secrets a, b ∈ S, for any set A �∈ Λ and a vector of shares
〈sj〉Pj∈A,

Pr[Π(a, r)A = 〈sj〉Pj∈A] = Pr[Π(b, r)A = 〈sj〉Pj∈A]

That is, the probability of finding a secret by an unauthorized set is equivalent
to the probability of finding the secret randomly from the set of secrets S.

Definition 22 (Information Rate). The information rate, ρ, of a secret shar-
ing scheme is the ratio between the length of the secret to that of the shares which
will be allocated to the participants. That is, if S is the set of all possible secrets
and T is the set of all possible shares, then

ρ =
log |S|
log |T | .

Definition 23 (Ideal Secret Sharing Scheme). A secret sharing scheme is
said to be ideal if the key space and the share space are same. More specifically,
a scheme is considered to be ideal if information rate is equal to one, that is, the
maximum possible value of ρ.

Definition 24 (Linear Secret Sharing Scheme). A secret sharing scheme Γ
is called linear over GF(q), if there exists a matrix G ∈ GF(q)k×n and a vector
v = (v0, v1, . . . , vk−1) ∈ GF(q)k, such that v · G = (s0, s1, . . . , sn−1) gives the
vector of shares.

Definition 25 (Cheating Detection). In the secret reconstruction phase of
the scheme, when a participant or group of participants, Ac, give wrong share(s),
an authorized set might fail to retrieve the secret, or an unauthorized set might
be able to find the secret. The security against such kind of attacks is known as
cheating detection.

Definition 26 (Cheater Identification). If any participant Pi produces an
incorrect share s′

i �= si during the reconstruction phase of the secret, then with
the error probability of ε, Pi will be identified as a cheater and will be put in the
set of cheaters Ac. This is known as cheater identification. Cheater identification
claims that the error probability ε is negligible.
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3 Related Work

In this section, we review the secret sharing scheme proposed by Zhou et al. [12]
which is based on NMDS (Near-Maximum Distance Separable) codes. To the
best of our knowledge, this is the first scheme based on NMDS codes. The scheme
claims to be perfect and have an access structure such that at least k participants
must come together to construct the secret. Unfortunately, the claims are not
correct as we show in Sect. 4.

3.1 Share Construction

In this scheme, the dealer constructs the shares for each participant by selecting
a generator matrix G of an [n+1, k, n+1−k] NMDS code and a random vector
v = (v0, v1, . . . , vk−1) of length k. Using the vector, the dealer calculates the
codeword (s0, s1, . . . , sn) by multiplying v and G. That is,

(s0, s1, . . . , sn) = (v0, v1, . . . , vk−1) · G .

Here s0 is considered as the secret and si’s are the shares of participants Pi’s,
where 1 ≤ i ≤ n.

3.2 Secret Reconstruction

The reconstruction of the secret is based on the property of NMDS matrices that
in a generator matrix of a NMDS code any k + 1 columns have rank k.

Let Pj0 , Pj1 , . . . , Pjm−1 , m > k, be the participants who come together to
find the secret. They pool their shares forming the codeword (sj0 , sj1 , . . . , sjm−1)
and construct the corresponding submatrix

G′ = (gj0 ,gj1 , . . . ,gjm−1)

where gji is the (ji + 1)th column of the matrix G.
Since G is an NMDS matrix and m ≥ k +1, the submatrix G′ is of full rank,

the system of linear equations

(sj0 , sj2 , . . . , sjm−1) = (v0, v1, . . . , vk−1) · G′

can be uniquely solved for (v0, v1, . . . , vk−1).
Then the secret s0 can be calculated as s[0] where

s = (v0, v1, . . . , vk−1) · g0G

where g0G is the first column of G.
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Algorithm 1. Secret Reconstruction for the Secret Sharing Scheme in [12]
Input: Generator matrix G, number of participants m, collected set of shares

1: if (m < k + 1) then return “The secret cannot be recovered!” end if
2: G′ ← [columns of G corresponding to first k + 1 shares available]
3: G′ ← [first k linearly independent column vectors of G′]
4: (sj0 , sj1 , . . . , sjk−1) ← [shares corresponding to the columns of G′]
5: (v0, v1, . . . , vk−1) ← (sj0 , sj1 , . . . , sjk−1) · (G′)−1

6: s ← (v0, v1, . . . , vk−1) · G′

7: secret ← s[0]

Output: Secret secret

4 Attack on the Scheme in [12]

It has been stated in [12] that the scheme is ideal and perfect. This scheme is
also claimed to have security characterization of cheating detection and cheating
verification. However, we show that the scheme is not perfect and will show
that there exist unauthorized sets of participants, that is, sets with k or less
number of participants who are able to reconstruct the secret. Since the rank
of the submatrix formed using any k + 1 columns in an [n + 1, k, n + 1 − k]
NMDS matrix is k, there will also exist k participants among the given k + 1
participants, who can generate the secret independently. In fact, we show that
there may exist sets of only k − 1 participants who can generate the secret.

As an illustration of the flaw, we give an instantiation of the scheme formed
using the [12, 6, 6] NMDS matrix G in F5, given in [4].

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 4 2 0 3 1 2
0 0 1 0 0 0 1 3 1 0 2 2
0 0 0 1 0 0 2 4 4 3 3 2
0 0 0 0 1 0 4 1 2 1 3 2
0 0 0 0 0 1 0 1 4 2 4 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

According to the given scheme, the minimum number of participants in an
authorized set is 7 since k +1 = 7. The secret corresponds to the first column. If
we denote the (i+1)th row by ri, then a codeword formed from a [n+1, k, n+1−k]
NMDS matrix is of the form α0r0 + α1r1 + · · · + αk−1rk−1 where the secret is
α0. Therefore, the codeword s formed from the matrix G is

s = (α0, α1, α2, α3, α4, α5,

α0 + 4α1 + α2 + 2α3 + 4α4,

α0 + 2α1 + 3α2 + 4α3 + α4 + α5,

α0 + α2 + 4α3 + 2α4 + 4α5,

α0 + 3α1 + 3α3 + α4 + 2α5,

α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5,

α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5) .
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Share Reconstruction with only 6 Participants: {P1, P2, P3, P4, P5, P7}.
The row reduced form of the columns corresponding to these participants is

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3
0 1 0 0 0 0 2
0 0 1 0 0 0 1
0 0 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the last column corresponds to the secret, that is the first column of G.
Note that, if gi denotes the (i + 1)th column of G′, then g0 = 3g1 + 2g2 +

g3 + 4g4 + 4g5 + g7. Therefore the shares corresponding to these columns also
satisfy the same equation, that is, α0 = 3α1 + 2α2 + α3 + 4α4 + 4α5 + α7 where
α7 = α0 + 2α1 + 3α2 + 4α3 + α4 + α5. Therefore, the secret α0 can be recovered
by the given set of 6 participants.

Share Reconstruction with only 5 Participants: {P1, P2, P3, P4, P6}.
The row reduced form of the columns corresponding to these participants is

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 4
0 0 1 0 0 3
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where the last column corresponds to the secret, that is the first column of G.
Note that, here g0 = g1 + 4g2 + 3g3 + g4 + g6. Therefore the shares cor-

responding to these columns also satisfy the same equation, that is, α0 =
α1 + 4α2 + 3α3 + α4 + α6 where α6 = α0 + 4α1 + α2 + 2α3 + 4α4. Therefore, the
secret α0 can be recovered by the given set of 5 participants.

Finally, we observe that, for any secret sharing scheme constructed as in [12],
the secret can also be constructed with k or, sometimes even, k −1 participants.
Thus the mentioned scheme cannot be a perfect secret sharing scheme.

5 Proposed Secret Sharing Scheme

5.1 Motivation for the Scheme

It is observed that according to [12], the minimum number of participants
required to find the secret is k + 1. But in most of the cases, the secret can
also be found with either k participants or with k − 1 participants. This moti-
vates us to make a more generalized access structure for secret sharing scheme
based on the properties of Near-MDS matrices which is vaster and has a rich
access structure.
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5.2 Access Structure

The formation of the access structure is based on the design and properties of
the near-MDS matrix [3,4] and is on similar lines as proposed in [12]. Let

G =
[

G[0] G[1] . . . G[k − 1] G[k] . . . G[n]
]

be a generator matrix of an [n + 1, k, n + 1 − k] NMDS code over Fq such that
giG := gi := G[i] ∈ F

k
q , 0 ≤ i ≤ n, is the ith column of G. We assume that G is

in the standard form, that is, G =
[
Ik | Ak×(n+1−k)

]
.

As noted in [3], since G[0], G[1], . . . , G[k − 1] are linearly independent, for all
i, 0 ≤ i ≤ n − k, there exist aj ∈ Fq, such that

G[k + i] =
k−1∑

j=0

ajG[j] .

The access structure for the scheme has the monotonicity property and can
be defined with the help of two mutually exclusive sets, namely Group I and
Group II. If G is the generator matrix for the scheme, with the first column of G
corresponding to the secret and rest of the columns corresponding to the shares
of the participants, then the groups can be defined as follows:

Group I consists of all k−1-tuples of participants whose corresponding columns
in G, along with the first column, form k-linearly dependent columns.

Group II consists of all k-tuples of participants which aren’t a superset of a
k − 1-tuple in Group I , and their corresponding columns in G are linearly
independent.

Let us denote this access structure with Λ0. Note that due to its monotonicity
property, any k participants whose corresponding columns in G are linearly
independent as well as any k + 1 or more participants are authorized to recover
the secret. Moreover, Λ0 has two special groups, namely, Group I which needs
just k − 1 participants to generate the secret and Group II which need just k
participants to generate the secret and no more. This scheme is not a threshold
secret sharing scheme but has a more generalized access structure.

5.3 Share Construction

The codeword (s0, s1, . . . , sn) is formed by multiplying G by a chosen vector
(α0, α1, . . . , αk−1) of length k.

(s0, s1, . . . , sn) = (α0, α1, . . . , αk−1) · G .

Here, s0 forms the secret and rest of the si’s corresponds to the shares of the
participants. Let us denote this distribution algorithm by Π.
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Algorithm 2. Pseudocode for Π

Input: Standard Near-MDS Generator matrix G, Secret s0, Random field element
generator R
1: α[0] ← s0
2: for (i ← 1; i < k; i ← i + 1) do
3: α[i] ← R
4: end for
5: s ← α · G

Output: Vector s containing the secret s0 and the shares s1, . . . , sn.

5.4 Secret Reconstruction

The reconstruction of the secret is similar to the way proposed in [12]. Given
a set of m participants A = {Pj0 , Pj1 , . . . , Pjm−1} ∈ Λ0 and their pooled shares
forming the pooled codeword pcw = (sj0 , sj1 , . . . , sjm−1), the secret can be recon-
structed as follows:

1. Find the submatrix G′ corresponding to the shares of the participants, such
that G′ = (gj0 ,gj1 , . . . ,gjm−1 ,g0G), where g0G is the first and gji is the
(ji + 1)th column of the matrix G.

2. Reduce G′ using elementary row operations to make its k (or m, whichever is
minimum) rows and columns, an identity matrix and get the modified column
g′
0G corresponding to the secret.

3. If m = k−1, multiply the pooled codeword pcw = (sj0 , sj1 , . . . , sjm−1 , 0). Else,
multiply its sub-codeword (sj0 , sj1 , . . . , sjk−1) to g′

0G to obtain the secret.
Here, gi’s corresponds to the k columns forming an identity matrix.

Algorithm 3. Pseudocode for RECON
Input: The pooled set of m shares from A
1: if (m < k − 1) then return “Unauthorized set!” end if
2: GA ← [ columns of G corresponding to the available shares ]
3: G′ ← [ GA | G[0] ] (where G[0] denotes the first column of G)
4: G′ ← reduced row echelon form of G′

5: if (m = k − 1) then
6: if (rank(G′) = k) then return “Unauthorized set!”
7: else pcw ← [ shares related to k − 1 columns of G′ | 0 ] end if
8: else if (m = k and rank(G) = k − 1) then return “Unauthorized set!”
9: else pcw ← [ shares corresponding to k columns of G′ forming identity matrix ]

10: end if
11: s ← pcw · G′[m − 1]
12: secret ← s[0]

Output: Secret secret
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6 Analysis of the Proposed Scheme

Lemma 1. Given k linearly dependent columns in an [n+1, k, n+1−k] NMDS
matrix, each of the remaining n + 1 − k columns will be linearly independent of
them.

Proof. From Property 3 of NMDS matrices, we know that any k + 1 columns
have rank k. Since the given k columns are linearly dependent, we can write

gj =
k−1∑

i=0,i �=j

aigi, not all ai = 0 and 0 ≤ j ≤ k − 1 .

Now, for a column gl of the matrix, let’s consider gl along with given the
k columns, g0,g1, . . . ,gk−1. Assuming that gl is linearly dependent on given k
columns, that is,

gl =
k−1∑

i=0

bigi, not all bi = 0 .

Substituting the value of gj , we get

gl =
k−1∑

i=0,i �=j

(ai + bi)gi, not all ai = 0, not all bi = 0 and 0 ≤ j ≤ k − 1 .

Note that, the above equation makes gl a linear combination of k−1 columns.
Since both gj and gl can be expressed as a linear combination of rest of the k−1
columns, it makes the rank of these k + 1 columns equal to k − 1. But, since the
rank of these k + 1 columns formed needs to be k, our assumption is wrong and
gj is linearly independent from the given k columns.

Lemma 2. In the secret sharing scheme Γ0 on the access structure Λ0, if a k-
participant tuple A is a superset of a Group I tuple, then columns corresponding
to A will have rank k.

Proof. Note that, the k − 1 columns corresponding to a Group I tuple along
with the secret’s column form k linearly dependent columns. Now, because of
Lemma 1, any other column of the matrix will be linearly independent of these
k columns and thus, linearly independent of the k − 1 columns corresponding to
rest k−1 participants in A. Therefore, columns corresponding to the participants
in A will have rank k.

Contrapositive: If a set of columns corresponding to k participant tuple A
does not have rank k, then it cannot be a superset of any Group I tuple.

Proposition 4. There exists an unauthorized tuple of k − 1 participants.
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Proof. Let us take a tuple A = {Pj1 , . . . , Pjk−1} ∈ Group I. By definition, the
column corresponding to the secret g0 is linearly dependent on the k−1 columns
{gj1 ,gj2 , . . . ,gjk−1} corresponding to the participants.

Now we will replace one of the participants Pjx in A with the participant Pjy

from rest of the participants. As a result, from Lemma 1, the column gjy is lin-
early independent from the columns {g0,gj1 , . . . ,gjx−1 ,gjx+1 , . . .gjk−1} as well,
therefore the secret’s column g0 will also be linearly independent of the new k−1
columns, that is, {gj1 , . . . ,gjx−1 ,gjx+1 ,gjk−1 ,gjy}. Thus, we have constructed an
unauthorized set A′ = {Pj1 , . . . , Pjx−1 , Pjx+1 , . . . Pjk−1 , Pjy} consisting of k − 1
participants.

Proposition 5. There exists an unauthorized tuple of k participants.

Proof. From Lemma 1, we know that taking any k linearly dependent columns
{gj1 ,gj2 , . . . ,gjk}, the secret’s column g0 will be linearly independent from them.
Thus, the k participants {Pj1 , . . . , Pjk} form an unauthorized set.

Theorem 1. The secret sharing scheme Γ0 on the access structure Λ0 is a linear
secret sharing scheme.

Proof. We know that the multiplication by a matrix is a linear operation. From
the definition of linearity and construction of the scheme we can conclude that
the proposed scheme is linear secret sharing scheme.

Theorem 2. The secret sharing scheme Γ0 on the access structure Λ0 is correct,
that is, every authorized set A in Λ0 can correctly generate the secret.

Proof. Let s1, . . . , sm be the shares of the participants in A, and s0 be the secret.

Case 1: A is from Group I : Note that, the column in G corresponding to the
secret s0 is linearly dependent to the columns corresponding to the partici-
pants in A. Therefore, the algorithm of RECON can row reduce the columns
to find the coefficients ai’s such that s0 = a1s1 +a2s2 + . . . ak−1sk−1 and find
the secret s0.

Case 2: A is from Group II : Since participants in A have linearly independent
k columns in G, every other column including the secret’s column will be
linearly dependent on these k columns. Thus, RECON can row reduce the
columns to recover the secret s0.

Case 3: A forms a superset of a tuple in Group I or Group I : Note that if A is
a superset of a tuple from Group I, then from Lemma 2, the participants in
A have k linearly independent columns in G. Otherwise, if A is a superset of
a tuple from Group II, then since the number of participants is greater than
or equal to k +1, from Property 3 there exist k linearly independent columns
in G corresponding to the participants. Therefore, in both the instances the
algorithm RECON will row reduce the columns in a similar way as Case 2
and find the secret s0. Hence, if A is an authorized set, then Pr[RECON(A) =
s0] = 1 and from Definition 20, the secret sharing scheme Gamma0 is correct.
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Proposition 6. The complexity of the scheme for setup and secret reconstruc-
tion phase is of O(n3).

Proof. Note that the algorithm of RECON requires the matrix to be reduced in
a reduced row echelon form. This operation is the most complex section of the
RECON. Since the number of participants is less than n, the algorithm requires
row reduction of an (k × n) matrix. We know that reduced row echelon form of
an (k × n) matrix requires O(k2n) operations. Since k ≤ n, the complexity of
the reconstruction algorithm RECON is O(n3).

Theorem 3. The secret sharing scheme Γ0 on the access structure Λ0 is ideal.

Proof. Note that both the secret and the shares belong to GF(q). Therefore, the
information rate ρ is

ρ =
log |GF(q)|
log |GF(q)| = 1

Hence, from Definition 22 of the ideal secret sharing scheme, Γ0 is ideal.

Theorem 4. The secret sharing scheme Γ0 on the access structure Λ0 is a per-
fect secret sharing scheme.

Proof. Let an unauthorized set A of m participants come together to construct
the secret. Note that, since the secret s0 ∈ GF(q), the probability of anyone
randomly finding the secret is 1/q.

Case 1: m ≤ k−2: Note that columns in G corresponding to these m participants
along with the secret’s column form less than k+1 columns which are linearly
independent because of Property 1. Therefore they cannot form the secret s0
on their own, that is, RECON(A) �= s0. Thus they will need at least one more
share to form an authorized set. If they forge one share, the probability of
them finding the secret is equal to the probability of them forging a correct
secret which is again 1/q since the shares also belong to GF(q). This makes
the probability of A finding the secret greater than or equal to 1/q.

Case 2: m = k−1: Note that since A is unauthorized, from Lemma 2 we can say
that A does not belong to Group I. This implies that the secret’s column is
linearly independent from the corresponding columns in A and therefore the
participants cannot form the secret s0 with no additional information. They
will need to either forge at least one more share or replace one pooled share
with a forged share to form an authorized set. Therefore, the probability of
A finding the secret follows from Case 1 and is at least 1/q.

Case 3: m = k: Since A is an unauthorized tuple and thus not in Group II or a
superset of a tuple in Group I, from the contrapositive of Lemma 2 we know
that columns corresponding to the participants in A are linearly dependent
and the secret’s column is linearly independent of these columns. Therefore,
in a similar way as Case 2, they also need to either forge one more share
or replace one share of their own participant with a forged share to form an
authorized set, and the probability of A finding the secret follows.
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Note that, when giving a set of shares as an input to RECON, the probability
of RECON generating some other secret s0 from the set of secrets S is 1/q. That is
so because as mentioned in [9], NMDS matrices have a high diffusion property.
Therefore, whenever a vector v ∈ GF(q)k is multiplied to its submatrix, the
output generated is uniformly distributed. Therefore,

Pr[RECON(A) = s0] = Pr[RECON(A) = s0] .

Hence, from Definition 21, no unauthorized set can learn anything about the
secret, and the secret sharing scheme Γ0 is a perfect secret sharing scheme.

6.1 Cheating Detection and Cheating Identification

The proofs for the safety features of cheating detection and cheater identification
for the secret sharing scheme Γ0 are adopted from [12].

We require the following property of linear codes [6] in this work.

Lemma 3. Let C be an [n, k, d] linear code over Fq. For any i, 1 ≤ i ≤ n, let
C� be the code formed by removing the ith coordinate from all codewords of C.

– If d > 1, C� is an [n − 1, k, d�] code where d� = d − 1 if C has a minimum
weight codeword with a nonzero ith coordinate and d� = d otherwise.

– If d = 1, C� is an [n − 1, k, 1] code if C has no codeword of weight 1 whose
nonzero entry is in coordinate i.

– Otherwise, if k > 1, C� is an [n − 1, k − 1, d�] code with d� ≥ 1.

Remark 5. Note that, the minimum distance between two codewords in C� is
at least d − 1.

Lemma 4. Given an [n + 1, k, n + 1 − k] NMDS code with generator matrix G,
if

s = (s0, s1, . . . , sn) = (α0, α1, . . . , αk−1) · G

and s′ = (s′
0, s

′
1, . . . , s

′
n) = (α′

0, α
′
1, . . . , α

′
k−1) · G

such that (α0, α1, . . . , αk−1) �= (α′
0, α

′
1, . . . , α

′
k−1), then

d((s0, s1, . . . , sn), (s′
0, s

′
1, . . . , s

′
n)) ≥ n + 1 − k .

Proof. Since (α0, α1, . . . , αk−1) and (α′
0, α

′
1, . . . , α

′
k−1) form different codewords

of the NMDS code, the hamming distance between s and s′ would be greater
than or equal to the minimum distance of the code, that is, n + 1 − k.

We prove the following results for the secret sharing scheme Γ0 by applying
the same method as in [10].

Theorem 5. The secret sharing scheme Γ0 on the access structure Λ0 has the
security characterization of cheating detection when the cheaters are less than
m − k where m is the number of active participants.
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Proof. Assume that Pj1 , . . . , Pjm submit their modified shares s�
ji

= sji + δi,
δi ∈ GF(q), 1 ≤ i ≤ m to the recovery algorithm. Note that Pji is honest if and
only if δi = 0, otherwise he is a cheater. Now consider the k × m submatrix G′

consisting m columns of G, indexed by j1, j2, . . . jm and let

D = {(s1, . . . , sm) | (s1, . . . , sm) = (α0, α1, . . . , αk−1) · G′, αi ∈ GF(q)} .

Let s = (sj1 , . . . , sjm), d = (δ1, . . . , δm) and s� = s+ d. From Lemma 3, any
two distinct shares in D have a Hamming distance of at least m − k. Hence, if
d(d) = d(s, s�) < m − k, then s� ∈ D if and only if s� = s, that is, when d = 0.
Therefore cheating can be detected if the cheaters are less than m − k.

Theorem 6. In the secret sharing scheme Γ0 on the access structure Λ0 cheaters
can be identified when their number is less than �m−k

2 �.

Proof. Using the same notations as in the previous proof let s = (sj1 , . . . , sjm),
d = (δ1, . . . , δm) and s� = s + d. Now, if d(d) < �m−k

2 �, then for s′ ∈ D, we
have the following relation when s′ �= s

d(s�, s′) ≥ d(s�, s) + d(s, s′) ≥ (m − k) −
⌊

m − k

2

⌋
=

⌈
m − k

2

⌉
.

Since d(s�, s) = �m−k
2 �, we get d(s�, s) = min{d(s�, s′) | s′ ∈ D}. By decoding

s� to s using error decoding algorithms of linear codes and deriving d = s� − s,
we can say that the participant Pji is a cheater if δi �= 0. Therefore when the
number of cheaters is less than �m−k

2 �, the secret can be recovered successfully,
and the cheaters can be identified.
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A An Instantiation of the Proposed Scheme

Consider the following NMDS matrix G having elements over F5, as mentioned
in [4].

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 4 2 0 3 1 2
0 0 1 0 0 0 1 3 1 0 2 2
0 0 0 1 0 0 2 4 4 3 3 2
0 0 0 0 1 0 4 1 2 1 3 2
0 0 0 0 0 1 0 1 4 2 4 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.



212 S. Mehta et al.

If we denote the i-th row by ri−1, and the chosen vector by (α0, α1, . . . , αk−1),
then the codeword formed is of the form α0r0+α1r1+ · · ·+αk−1rk−1. Therefore,
the codeword c formed from the matrix G is

c = (α0, α1, α2, α3, α4, α5,

(α0 + 4α1 + α2 + 2α3 + 4α4),
(α0 + 2α1 + 3α2 + 4α3 + α4 + α5),
(α0 + α2 + 4α3 + 2α4 + 4α5),
(α0 + 3α1 + 3α3 + α4 + 2α5),
(α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5),
(α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5)) .

Hence, the first element of the codeword, that is, α0 forms the secret while
the rest of the elements become the shares for the participants.

A.1 Secret Reconstruction

Now any 5 participants from Group I or any 6 participants from Group II or
more can find the secret.

1. 5 participants: P1, P2, P3, P4 and P6.
The pooled codeword pcw is (α1, α2, α3, α4, α0 + 4α1 + α2 + 2α3 + 4α4) and
the corresponding submatrix G′ is:

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 1
1 0 0 0 4 0
0 1 0 0 1 0
0 0 1 0 2 0
0 0 0 1 4 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After elementary row operations,

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 4
0 0 1 0 0 3
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4
3
1
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = α1 + 4α2 + 3α3 + α4 + (α0 + 4α1 + α2 + 2α3 + 4α4)
= α0 + 5α1 + 5α2 + 5α3 + 5α4

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.
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2. 6 participants: P1, P2, P3, P4, P5 and P7.
The pooled codeword pcw is (α1, α2, α3, α4, α5, α0+2α1+3α2+4α3+α4+α5)
and the corresponding submatrix G′ is:

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1 1
1 0 0 0 0 2 0
0 1 0 0 0 3 0
0 0 1 0 0 4 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After elementary row operations:

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3
0 1 0 0 0 0 2
0 0 1 0 0 0 1
0 0 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
2
1
4
4
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = 3α1 + 2α2 + α3 + 4α4 + 4α5 + α0 + (2α1 + 3α2 + 4α3 + α4 + α5)

= α0 + 5α1 + 5α2 + 5α3 + 5α4 + 5α5

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.
3. 7 or more participants: P4, P5, P6, P7, P8, P9, P10 and P11.

The pooled codeword is

pcw = (α4, α5,

α0 + 4α1 + α2 + 2α3 + 4α4,

α0 + 2α1 + 3α2 + 4α3 + α4 + α5,

α0 + α2 + 4α3 + 2α4 + 4α5,

α0 + 3α1 + 3α3 + α4 + 2α5,

α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5,

α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5)

and the corresponding submatrix G′ is:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1 1 1 1
0 0 4 2 0 3 1 2 0
0 0 1 3 1 0 2 2 0
0 0 2 4 4 3 3 2 0
1 0 4 1 2 1 3 2 0
0 1 0 1 4 2 4 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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After elementary row operations:

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3 1 1
0 1 0 0 0 0 2 0 1
0 0 1 0 0 0 1 3 0
0 0 0 1 0 0 0 1 4
0 0 0 0 1 0 1 1 3
0 0 0 0 0 1 4 1 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
4
3
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = (α4) + (α5) + (4α0 + 3α1 + 2α2 + α3 + 4α4 + 4α5)

+ (3α0 + 3α2 + 2α3 + α4 + 2α5) + (4α0 + 2α1 + 2α3 + 4α4 + 3α5)

= 11α0 + 5α1 + 5α2 + 5α3 + 10α4 + 10α5

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.

Hence in every case, the secret s0 is recovered correctly.
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