
Efficient Proactive Secret Sharing
for Large Data via Concise Vector

Commitments

Matthias Geihs(B), Lucas Schabhüser, and Johannes Buchmann
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Abstract. Proactive secret sharing has been proposed by Herzberg,
Jarecki, Krawczyk, and Yung (CRYPTO’95) and is a powerful tool for
storing highly confidential data. However, their scheme is not designed
for storing large data and communication and computation costs scale
linearly with the data size. In this paper we propose a variant of their
scheme that uses concise vector commitments. We show that our new
scheme, when instantiated with a variant of the Pedersen commitment
scheme (CRYPTO’92), reduces computation costs by up to 50% and
broadcast communication costs by a factor of L, where L is the length
of the commitment message vectors.

1 Introduction

Threshold secret sharing has been proposed independently by Blakley [5] and
Shamir [18] and allows to store a piece of secret information x at a set of N
shareholders such that any coalition of up to T shareholders obtains no informa-
tion about the secret. Proactive secret sharing was later proposed by Herzberg,
Jarecki, Krawczyk, and Yung [12] and additionally allows the shareholders to
update their data shares such that after the update the new shares are indepen-
dent of the old shares. This property ensures protection against a mobile adver-
sary that gradually obtains data shares over time. Moreover, proactive secret
sharing is robust against up to T < N

2 malicious shareholders which means that
the data owner is guaranteed to retrieve the initially stored data even if up to
T shareholders behave arbitrarily bad.

While proactive secret sharing is a powerful tool for storage of highly confi-
dential data, the performance of existing schemes appears insufficient for large
data items. For example, storing a data item of size 128 kB at N = 3 share-
holders and using a threshold of T = 1, the scheme described in [12] requires
the data owner to broadcast 2 MB of data and to compute more than 16 ∗ 103

modular exponentiations. Moreover, updating the data shares requires 15 MB of
data broadcast and each shareholder must compute more than 40 ∗ 103 modular
exponentiations. However, securely storing highly confidential data such as legal
documents or medical records over long periods of time requires proactive secret
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sharing schemes that are capable of efficiently storing data of size several mega
bytes or even giga bytes.

In this paper we present a proactive secret sharing scheme that requires
significantly less computational resources and immensely less communication
than the scheme described in [12] when used for data sizes D that do not fit
into the native message space of that scheme, e.g., D > 32 B. Our scheme can
be instantiated such that in the setting described above, data storage requires
the data owner to broadcast only about 16 kB of data and compute only about
8∗103 modular exponentiations. Similarly, updating the shares requires only 120
kB of data broadcast and each shareholder must compute only about 20 ∗ 103

modular exponentiations.
We achieve these performance improvements by combining the techniques of

[12] with concise vector commitments [10]. While [12] uses cryptographic com-
mitments where a commitment is of the same size as the committed message,
concise vector commitments allow for committing to a vector of messages with a
commitment that is much smaller than the committed message vector. By using
such vector commitment we are able to reduce the broadcast communication
costs by a factor of L, where L is the length of the message vectors. Further-
more, we also save up 50% of the computation costs because computing L single
commitments requires 2 ∗ L modular exponentiations while computing a vector
commitment for message vectors of length L requires only L + 1 modular expo-
nentiations. We remark that we use the same network model assumptions as
[12], i.e., we assume a synchronous authenticated network with broadcast.

1.1 Organization

Our paper is organized as follows. In Sect. 2 we introduce notation and define the
notions of a vector commitment scheme and a proactive secret sharing scheme
as we will use them in this paper. In contrast to [12] we give a more precise
definition of a proactive secret sharing scheme and respective security properties,
which we believe is a contribution in its own. Then, in Sect. 3 we present our
new vector proactive secret sharing scheme and analyze its security. Finally, in
Sect. 4 we show how to instantiate the proposed scheme with a concise vector
commitment scheme and then evaluate the theoretical and practical performance
of the proposed instantiation.

1.2 Related Work

Since the work of [12] several proactive secret sharing schemes with various
properties have been proposed. [11,19] proposed proactive secret sharing schemes
where the number N of shareholders and the threshold value T can be changed
during a share update. [7,20] proposed proactive secret sharing schemes that
work in asynchronous networks where no global clock is available. [17] proposed
a scheme which has both properties. However, all of these schemes have high
communication and computation costs when storing large data items.
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More recently, Baron, Defrawy, Lampkins, and Ostrovsky in [1,2] proposed
proactive secret sharing schemes with optimal amortized communication com-
plexity. However, while their schemes enjoy optimal communication costs asymp-
totically, they do not work well with a small number of shareholders (e.g., N = 3)
as they require T < N

8 and enabling T < N
2 requires expensive party virtualiza-

tion techniques. This approach uses packed secret sharing where a set of messages
is batched together. The authors propose a batch size of N − 3T which is obvi-
ously infeasible for small parameters like N = 3, T = 1. They also make use of
double sharings. For l messages this would require every shareholder to send at
least 2l shares to every other shareholder. Compared to this our approach based
on generalized Pedersen commitments, requires l + 1 shares and t commitments
to be broadcasted per shareholder. For suitably large l and small t this leads to
significantly less bandwidth consumption.

2 Preliminaries

2.1 Notation

We use the convention that N = {1, 2, . . .} and define N0 = N∪ {0}. For (a, b) ∈
Z
2, a ≤ b, we define [a, b] = {x ∈ Z : a ≤ x ≤ b}. For n ∈ N, we define

[n] = [1, n] and Zn = [0, n − 1]. By MODINV we denote an algorithm that on
input (a,m) ∈ N

2
0 outputs the smallest b ∈ N such that (a ∗ b) mod m = 1, or

⊥ if such b does not exist. For a finite cyclic group G associated with operator
◦, we denote by GEN(G) the set of generators of G. Furthermore, we denote by
EXP an exponentiation algorithm that on input (a, b) ∈ G× N outputs ab such
that a1 = a and ai+1 = ai ◦ a. For a finite set S, we denote by U(S) the uniform
distribution over S. For τ ∈ N, we denote by ProbAlgo(τ) the set of probabilistic
algorithms that for any input halt after at most τ steps. By �(A) we denote the
image of algorithm A.

2.2 Network Model

A probabilistic protocol P defines an input-output behavior for a set of com-
municating parties {P1, . . . ,Pn}. We write P 〈P1(x1) → y1, . . . ,Pn(xn) → yn〉
to denote an execution of protocol P , where party Pi gets input xi and out-
puts yi. Here we assume that each party has a direct communication channel
with each other party. In addition, we assume that there exists a broadcast
channel with the property that if a party Pi receives a broadcast message m
from party Pj , then it is guaranteed that all other parties Pk receive the same
broadcast message m from Pj . When we write that during a protocol execution
P 〈{Pi(x1)→ y1}i∈[N ]〉 an adversary A controls T ∈ [0, N ] parties, we mean that
there exists I ⊂ [T ] such that for i ∈ I, the input-output behavior and com-
munication behavior of party Pi is controlled by A. A majority of the protocol
participants can, however, decide to reboot corrupted parties, in which case the
adversary loses control over them, their state is cleared, and they return to their
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specified behavior. We remark that our protocols require the usage of private
authenticated channels, which means that messages are always delivered to the
correct communication partner, that their content and order cannot be modified,
and that no information about the message content can be obtained by tapping
the channel.

2.3 Discrete Logarithm Problem

We state the fixed generator discrete logarithm problem [16].

Definition 1 (Discrete logarithm problem). Let G be a finite cyclic group,
g ∈ GEN(G), and ε : N → R be a function. We say DLOG(G, g) is ε-hard if for
all τ , for all A ∈ ProbAlgo(τ),

Pr
[

EXP(g, x) = y :
U(G)→ y,A(y)→ x

]
≤ ε(τ).

2.4 Vector Commitments

We define vector commitment schemes as we will use them in this paper. We
remark that our vector commitment schemes do not support selective opening
as opposed to those proposed in [8].

Definition 2 (Vector commitment scheme). A vector commitment scheme
is a tuple VC = (L,P,M, C,D,Setup,Commit,Open), where L ∈ N, P, M, C,
and D are sets, Setup and Commit are probabilistic algorithms, and Open is a
deterministic algorithm, with the following properties.

Setup : ∅ → P. This algorithm gets no input and outputs parameters ρ ∈ P.
Commit : P ×ML → C ×D. This algorithm gets as input parameters ρ ∈ P and

message m ∈ ML, and outputs a commitment c ∈ C and a decommitment
d ∈ D.

Open : P × ML × C × D → {0, 1}. This algorithm gets as input parameters
ρ ∈ P, message m ∈ML, commitment c ∈ C, and decommitment d ∈ D, and
outputs b ∈ {0, 1}.

Correct Functionality. We say VC is correct if for all m ∈ML,

Pr
[

Open(ρ,m, c, d) = 1 :
Setup()→ ρ,Commit(ρ,m)→ (c, d)

]
= 1 .

Binding Security. Let ε : N→ R be a function. We say VC is ε-binding if for

all τ ∈ N, A ∈ ProbAlgo(τ),

Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ ≤ ε(τ) .
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Hiding Security. We say VC is perfectly hiding if for all ρ ∈ P, (m1,m2) ∈
ML×2, c ∈ C,

Pr
[

c = c′ :
Commit(ρ,m1)→ (c′, d′)

]
= Pr

[
c = c′ :

Commit(ρ,m2)→ (c′, d′)

]
.

Homomorphic Operation. For ρ ∈ P, define COMS(ρ) = {(m, c, d) ∈ ML ×
C × D : Open(ρ,m, c, d) = 1}. We say VC is homomorphic if there exist binary
operations +, ∗, and ◦ such that for all ρ ∈ P, (m1, c1, d1) ∈ COMS(ρ), and
(m2, c2, d2) ∈ COMS(ρ),

Open(ρ,m1 + m2, c1 ∗ c2, d1 ◦ d2) = 1 .

2.5 Proactive Secret Sharing

We give a definition of proactive secret sharing which will be useful for analyzing
the security of the scheme proposed later in this work. We remark that while
other authors only sketch syntax and security definitions for proactive secret
sharing (e.g., [12]), our definition captures many subtleties of these schemes
(e.g., it states exactly when the adversary gains control over parties and when
it loses control which is a delicate subject [14]). Such a more precise definition
is a valuable contribution in its own.

Informal Description. We first give an overview of the formal definition and
then present the precise definition later in Definition 3. A proactive secret shar-
ing scheme consists of a set of protocols that are run between a dealer D and
a set of shareholders S1, . . . ,SN . The goal of the dealer is to store some secret
information at the shareholders in a way that none of the shareholders obtains
information about the secret. The information can only be reconstructed if a
sufficient number of shares are combined together. Protocol Setup is used for
initializing the parties. Protocol Share is used for distributing the secret infor-
mation to the shareholders in terms of secret shares. Protocol Reshare refreshes
the secret shares such that the new shares have no correlation with the old shares.
Protocol Reconstruct retrieves the shares, asserts their validity, and reconstructs
the secret information.

We require several properties of a proactive secret sharing scheme. Correct
functionality guarantees that if the scheme is run by honest parties, the original
information will be restored. Secrecy guarantees that a coalition of curious share-
holders up to a threshold number cannot learn any information about the secret.
Robustness guarantees that the scheme tolerates up to a threshold number of
shareholders that act maliciously and do not follow the protocol.

The definitions of Secrecy and Robustness are given in terms of games played
by an adversary that can corrupt a threshold number of parties and tries to
either learn information or destroy the secret information (Figs. 1 and 2). For
the secrecy game (Fig. 1), the adversary can choose to learn the secrets of a
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given set of shareholders I after each round (e.g., sharing or resharing), where
the freshly corrupted set of shareholders I ′ and the previously corrupted set I
combined must be of size at most the threshold T . The goal of the adversary
is to learn something about the secret information m in terms of a function
value F (m) for any function F . The secrecy definition requires that F (m) can
be computed equally successful by a simulator B which does not see any of
the additional secret information that the adversary may obtain by corrupting
certain shareholders. This definition of secrecy follows the ideas of Goldwasser
and Micali for defining semantic security [9]. Similarly, for the robustness game
(Fig. 2), the adversary can choose to act on behalf of a given set of shareholders
during the protocol runs of Share, Reshare, or Reconstruct, but the number of new
and old corrupted shareholders must never exceed T . The robustness definition
requires that the reconstructed value after the interference of the adversary still
corresponds to the value that has been initially stored.

Formal Definition. In the definition we use the following notation. We usually
denote the dealer by D and shareholder i by Si. We write Share〈ρ,m〉 → S as
an abbreviation for Share〈D(ρ,m), {Si(ρ) → si}i∈[N ]〉, S ← (s1, . . . , sN ). For
S = (s1, . . . , sN ), we write Reshare〈ρ, S〉 → S′ for Reshare〈{Si(ρ, si)→ s′

i}i∈[N ]〉,
S′ ← (s′

1, . . . , s
′
N ). The game notation that we use follows the notation described

in [3,4]. At the start of any game G the special algorithm Initialize is executed
and its output is handed to the adversary. Afterwards the adversary can call the
algorithms specified in the game and obtains the corresponding outputs. The
game ends when the adversary calls the special algorithm Finalize. The output
of the game is defined as the output of that algorithm.

Definition 3 (Proactive secret sharing scheme). A proactive secret shar-
ing scheme is a tuple PSS = (N,T,P,M,S,Setup,Share,Reshare,Reconstruct),
where (N,T ) ∈ N×N0, N > 1, T < N

2 , P,M, and S are sets, Setup is a proba-
bilistic algorithm, and Share, Reshare, and Reconstruct are probabilistic protocols
with the following properties:

Setup : ∅ → P. This algorithm gets no input and outputs parameters ρ ∈ P.
Share〈D : P ×M → ∅, {Si : P → S}i∈[N ]〉. The dealer D gets as input param-

eters ρ ∈ P, and message m ∈ M. For i ∈ [N ], shareholder Si get as input
parameters p ∈ P, and outputs a secret share si ∈ S.

Reshare〈{Si : P × S → S}i∈[N ]〉. For i ∈ [N ], shareholder Si gets as input
parameters ρ ∈ P and secret share si ∈ S, and outputs a secret share s′

i ∈ S.
Reconstruct〈R : P →M∪ {⊥}, {Si : P × S → ∅}i∈[N ]〉. The receiver R gets as

input parameters ρ ∈ P. For i ∈ [N ], shareholder Si gets as input parameters
ρ ∈ P and secret share si ∈ S. The receiver R outputs a message m ∈M.
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Correct Functionality. For ρ ∈ P and m ∈M, we define

SHARES(ρ,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s1, . . . , sN ) :

∃l ∈ N0 : Pr

⎡
⎢⎢⎢⎢⎣

(sl,1, . . . , sl,n) = (s1, . . . , sN ) :
Share〈D(ρ,m), {Si(ρ)→ s0,i}i∈[N ]〉,
Reshare〈{Si(ρ, s0,i)→ s1,i}i∈[N ]〉,

. . . ,
Reshare〈{Si(ρ, sl−1,i)→ sl,i}i∈[N ]〉

⎤
⎥⎥⎥⎥⎦ > 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

as the set of all possible share configurations at which the shareholders can arrive
after sharing and resharing m under parameter ρ. We say PSS is correct if for
all ρ ∈ P, m ∈M, (s1, . . . , sN ) ∈ SHARES(ρ,m),

Pr
[

m = m′ :
Reconstruct〈m′ ← D(ρ), {Si(ρ, si)}i∈[N ]〉

]
= 1 .

Secrecy. Let ε : N2 → R be a function. We say PSS is ε-secret if for all prob-
ability distributions D over M, functions F : M → {0, 1}∗, τA, τB ∈ N, and
A ∈ ProbAlgo(τA), there exists B ∈ ProbAlgo(τB) such that

Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]
≤ Pr

[
F (m) = y :
D → m,B → y

]
+ ε(τA, τB) ,

where G1(A;m) is defined in Fig. 1.

Game G1(A;m)

Initialize

1 : I ← {}, S ← ⊥
2 : Setup() → ρ

3 : return ρ

Share (I ′)

1 : I ← (I ′ if |I ′| ≤ T else ∅)

2 :
Run Share〈ρ, m〉 → S, where
shareholders I are controlled
by A until reboot

Reshare (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reshare〈ρ, S〉 → S, where
shareholders I are controlled
by A until reboot

Finalize (y)

1 : return y

Fig. 1. The game used in the secrecy definition for proactive secret sharing.

Robustness. Let ε : N → R be a function. We say PSS is ε-robust if for all
m ∈M, τ ∈ N, A ∈ ProbAlgo(τ),

Pr
[

m �= m′ :
G2(A,m)→ m′

]
≤ ε(τ) ,

where G2(A,m) is defined in Fig. 2.
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Game G2(A;m)

Initialize

1 : I ← {}, S ← ⊥
2 : Setup() → ρ

3 : return ρ

Share (I ′)

1 : I ← (I ′ if |I ′| ≤ T else ∅)

2 :
Run Share〈ρ, m〉 → S, where
shareholders I are controlled
by A until reboot

Reshare (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reshare〈ρ, S〉 → S, where
shareholders I are controlled
by A until reboot

Finalize (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reconstruct〈ρ, S〉 → m′,
where shareholders I are con-
trolled by A until reboot

3 : return m′

Fig. 2. The game used in the robustness definition for proactive secret sharing.

3 Proactive Secret Sharing with Vector Commitments

We now present our construction of a proactive secret sharing scheme that uses
vector commitments for improving efficiency. Our construction is based on the
construction of [12] and enhances it so that in each sharing a vector of messages
can be stored instead of only a single message. We first present the description
of our vector proactive secret sharing scheme in Subsect. 3.1 and then prove its
security in Subsect. 3.2.

3.1 Scheme Description

Overview of the Scheme. Our proactive secret sharing scheme follows the
construction of [12], but uses a homomorphic vector commitment scheme VC
instead of a single message homomorphic commitment scheme. Algorithm Setup
of our scheme simply generates commitment parameters ρ by running the setup
algorithm of the vector commitment scheme.

Protocol Share works as follows. On input a message vector (m1, . . . ,mL),
the dealer first generates secret shares of each mi using Shamir’s Secret Sharing
Scheme [18] by sampling D = N−T−1 secret polynomial coefficients, where N is
the number of shareholders and T is the corruption threshold. Then, it creates a
commitment c0 to the message vector and a commitment ci to each of the secret
coefficient vectors. The corresponding decommitments (d0, . . . , dD) are used to
compute a share of a decommitment ri corresponding to the message vector.
Finally, the dealer broadcasts all the commitments (c0, . . . , cD) and sends share
vector (si,1, . . . , si,L) and the decommitment share ri to shareholder Si.

Protocol Reshare works as follows. At first, the shareholders engage in sub
protocol ShareRecovery in order to detect parties that hold invalid input shares. If
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such parties are detected, then these will be rebooted and their shares be recov-
ered so that after the execution of sub protocol ShareRecovery the shareholders
hold a consistent share configuration. Now, each of the shareholders creates L
verifiable sharings of the identity of the finite field message space using sub
protocol ShareIdentity. Next, each shareholder asserts that the received shares
of the identity are consistent by verifying the received commitments. If this is
the case, then it combines the commitments, decommitments, and shares of the
identity sharings with the existing secret shares in a way that the new shares
still reconstruct to the original message vector. Here, only commitment c0 is kept
unchanged as an invariant referring to the original message vector. In the other
case, i.e., if an inconsistency after ShareIdentity is detected, the faulty parties
are determined and rebooted, their shares are recovered, and protocol Reshare
is started from the beginning.

Protocol Reconstruct works as follows. The dealer D retrieves all shares, com-
mitments, and decommitment shares from the shareholders. It then determines
a subset G of parties whose shares are qualified for reconstruction, i.e., with
|G| = D + 1 and such that the shares are consistent with the commitments
and decommitments. If such a subset is found, Lagrange Interpolation is used to
reconstruct the message vector. If such a subset is not found, then the protocol
aborts and outputs ⊥. The latter case, however, is guaranteed not to occur if
not more than T parties are corrupted.

Detailed Description. We now present our vector proactive secret sharing
scheme in detail.

Scheme 1 (VPSS). Let (N,T ) ∈ N × N0 such that N < p and T < N
2 . Let

VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commit-
ment scheme such thatM is a finite field of prime order p. Let D = N−T−1 and
S =ML×C1+D×D. For a given sharing ((si,1, . . . , si,L, ci,0, . . . , ci,D, ri))i∈[N ] ∈
Sn, we define the subset of parties qualified for reconstruction by

QUALI(((si,1, . . . , si,L, ci,0, . . . , ci,D, ri))i∈[N ])

=

⎧⎨
⎩

G ⊆ [N ] :
|G| = D + 1 ∧ (∀(i, j, k) ∈ G×G× [0,D] : ci,k = cj,k)

∧ ∀i ∈ G : Open(ρ, (si,1, . . . , si,L),©j∈[0,D]EXP(ci,j , ij), ri) = 1

⎫⎬
⎭ .

We define the proactive secret sharing scheme VPSSN,T,VC = (N,T,P,
ML,S,Setup,Share,Reshare,Reconstruct), where Share, Reshare, and
Reconstruct are defined with sub protocols ShareRecovery and ShareIdentity as
follows:

Main protocols:
Share〈D(ρ ∈ P,m ∈ML), {Si(ρ ∈ P)→ si ∈ S}i∈[N ]〉:

The dealer D does the following:
1. Let m = (m1, . . . ,mL) ∈ML.
2. For (i, j) ∈ [L]× [D], sample U(M)→ ai,j.
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3. For (i, j) ∈ [N ]× [L], compute si,j ← mj ©k∈[D] EXP(aj,k, i
k).

4. Compute Commit(ρ, (m1, . . . ,mL)) → (c0, d0), and for i ∈ [D], com-
pute Commit(ρ, (a1,i, . . . , aL,i))→ (ci, di).

5. For i ∈ [N ], compute ri ← d0©j∈[D] EXP(dj , ij).
6. Broadcast (c0, . . . , cD) and for i ∈ [N ], send ri and (si,1, . . . , si,L) to

shareholder Si.
For i ∈ [N ], shareholder Si sets si ← (si,1, . . . , si,L, c0, . . . , cD, ri).

Reshare〈{Si(ρ ∈ P, si ∈ S)→ s′
i ∈ S ∪ {⊥}}i∈[N ]〉:

Run protocol ShareRecovery〈{Si(ρ ∈ P, si ∈ S)→ si ∈ S}i∈[N ]〉.
For i ∈ [N ], shareholder Si does the following.
1. If si = ⊥, set s′

i ← ⊥ and return.
2. Let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
3. Run protocol ShareIdentity〈Si(ρ), {Sj(ρ) → ŝi,j}j∈[N ]〉 and let ŝi,j =

(ŝi,j,1, . . . , ŝi,j,L, ĉi,j,1, . . . , ĉi,j,D, r̂i,j).
4. Wait until for all j ∈ [N ], ŝj,i has been received or a timeout occurs.

In case of a timeout of party j, set ŝj,i ← ⊥.
5. For j ∈ [N ], compute ĉi,j ←©k∈[D]EXP(ĉj,i,k, ik) and bi,j ← Open(ρ,

(ŝi,j,1, . . . , ŝi,j,L), ĉi,j , r̂i,j), and broadcast Bi = (bi,1, . . . , bi,N ).
6. Wait until for all j ∈ [N ], Bj has been received or a timeout occurs.

In case of a timeout of party j, set Bj ← 0N .
7. If for all j ∈ [N ], Bj = 1N , then all shareholders behaved consistently.

In this case, recompute the shares as follows:
(a) For j ∈ [L], compute s′

i,j ← si,j ©k∈[N ] ŝk,i,j.
(b) For j ∈ [D], compute c′

i,j ← ci,j ©k∈[N ] ĉk,i,j.
(c) Compute r′

i ← ri©j∈[N ] r̂j,i.
(d) Set s′

i ← (s′
i,1, . . . , s

′
i,L, ci,0, c

′
i,1, . . . , c

′
i,D, r′

i).
If there exists j ∈ [N ] such that 0 ∈ Bj, then the shareholders behaved
inconsistently. In this case, determine the set of faulty sharehold-
ers, reboot them, recover their message and decommitment shares as
described in [12], and restart the resharing protocol.

Reconstruct〈D(ρ ∈ P)→ m ∈ML ∪ {⊥}, {Si(ρ ∈ P, si ∈ S)}i∈[N ]〉:
For i ∈ [N ], shareholder Si sends si to D.
The receiver D waits until it received si for i ∈ [N ] or a timeout occurs.
In case of a timeout of party i, set si ← ⊥. Then, D does the following:
1. For i ∈ [N ], let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
2. If QUALI((s1, . . . , sN )) = ∅, set m← ⊥ and return.

Otherwise find G ∈ QUALI((s1, . . . , sN )).
3. For i ∈ G, compute li ←

∏
j∈G\{i} j ∗MODINV(j − i, p).

4. For i ∈ [L], compute mi ←©j∈GEXP(sj,i, lj).
5. Set m← (m1, . . . ,mL).

Sub protocols:
ShareRecovery〈{Si(ρ ∈ P, si ∈ S)→ s′

i ∈ S ∪ {⊥}}i∈[N ]〉:
For i ∈ [N ], shareholder Si does the following:
1. Let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
2. Broadcast (ci,0, . . . , ci,D).
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3. Wait until for j ∈ [N ], (cj,0, . . . , cj,D) has been received or a timeout
occurs. In case of a timeout of party j, set cj,k ← ⊥ for k ∈ [0,D].

4. Determine a set Gi ⊆ [N ] such that:
(a) |Gi| = D + 1
(b) For (j, k) ∈ G2

i , (cj,0, . . . , cj,D) = (ck,0, . . . , ck,D).
If such a set Gi does not exist, set s′

i ← ⊥ and return.
5. Let j ∈ Gi and for k ∈ [0,D], set c′

i,k ← cj,k.
6. Compute ĉi ← ©k∈[0,D]EXP(c′

i,k, i
k), bi ← Open(ρ, si,1, . . . , si,L,

ĉi, ri), and broadcast bi.
7. Wait until for all j ∈ [N ], bj has been received or a timeout occurs.

In case of a timeout of party j, set bj ← 0.
8. Let Bi = {j ∈ [N ] : bj = 0}. If Bi �= ∅, vote for rebooting shareholders

Bi and recover the message and decommitment shares of the rebooted
shareholders as described in [12].

9. Set s′
i ← (si,1, . . . , si,L, c′

i,0, . . . , c
′
i,D, ri).

ShareIdentity〈D(ρ ∈ P), {Si(ρ ∈ P)→ si ∈ML × CD ×D}i∈[N ]〉:
The dealer D does the following:
1. For (i, j) ∈ [L]× [D], sample U(M)→ ai,j.
2. For (i, j) ∈ [N ]× [L], compute si,j ←©k∈[D]EXP(aj,k, i

k).
3. For i ∈ [D], compute Commit(ρ, (a1,i, . . . , aL,i))→ (ci, di).
4. For i ∈ [N ], compute ri ←©j∈[D]EXP(dj , ij).
5. Broadcast (c1, . . . , cD) and for i ∈ [N ], send ri and (si,1, . . . , si,L) to

party Si.
For i ∈ [N ], party Si sets si ← (si,1, . . . , si,L, c1, . . . , cD, ri).

3.2 Scheme Analysis

We analyze the security of the vector proactive secret sharing scheme VPSS pro-
posed in Subsect. 3.2. We first prove the correct functionality. Then, we show
that if the used vector commitment schemes is information-theoretically hid-
ing, our vector proactive secret sharing provides information-theoretic secrecy.
Finally, we show that the robustness of our vector commitments scheme can be
reduced the binding security of the used vector commitment scheme.

Theorem 1 (Correctness). Let (N,T ) ∈ N×N0 such that N < p and T < N
2 .

Let VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector com-
mitment scheme such thatM is a finite field of prime order. The proactive secret
sharing scheme VPSSN,T,VC is correct.

Proof. Let (N,T ) ∈ N × N0 such that N < p and T < N
2 . Let VC =

(L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commitment
scheme such thatM is a finite field of prime order p. Let VPSSN,T,VC = (N,T,P,
ML,S,Setup,Share,Reshare,Reconstruct) and D = N − T − 1.
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For ρ ∈ P, m ∈M, and i ∈ N0, define

SHARES(ρ,m, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s1, . . . , sN ) :

Pr

⎡
⎢⎢⎢⎢⎣

(sl,1, . . . , sl,n) = (s1, . . . , sN ) :
Share〈D(ρ,m), {Si(ρ)→ s0,i}i∈[N ]〉,
Reshare〈{Si(ρ, s0,i)→ s1,i}i∈[N ]〉,

. . . ,
Reshare〈{Si(ρ, sl−1,i)→ sl,i}i∈[N ]〉

⎤
⎥⎥⎥⎥⎦ > 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Let ρ ∈ P and m = (m1, . . . ,mL) ∈ML. By the definition of protocol Share,
we observe that for (s1, . . . , sN ) ∈ SHARES(ρ,m, 0) we have:

∃A ∈ML×D : ∀i ∈ [N ] :
si = (si,1, . . . , si,L, c0, . . . , ct, ri) ∈ S
∧ ∀j ∈ [L] : si,j = mj ©k∈[D] EXP(Aj,k, i

k)
∧ (ci,0, di,0) ∈ Commit(ρ, (m1, . . . ,mL))
∧ ∀j ∈ [D] : (ci,j , di,j) ∈ Commit(ρ, (a1,j , . . . , aL,j))

∧ ri =©j∈[0,D]EXP(di,j , ij)

Furthermore, we observe that if the conditions above hold, then G = [D+1] ∈
QUALI((s1, . . . , sn)) and for i ∈ [L], we have mi = ©j∈GEXP(sj,i, lj), where
lj =

∏
k∈G\{j} k ∗MODINV(k − j, p).

Next, we observe that by the definition of Reshare and the homomorphic
properties of the shares and the commitments we have SHARES(ρ,m, 0) =
SHARES(ρ,m, 1). It follows that for all l ∈ N0, SHARES(ρ,m) = SHARES(ρ,m, l).
We obtain that for any ρ ∈ P, (s1, . . . , sN ) ∈ SHARES(ρ,m) we have

Pr
[

m = m′ :
Reconstruct〈m′ ← D(ρ), {Si(ρ, si)}i∈[N ]〉

]
= 1 .

��
Theorem 2 (Secrecy). Let (N,T ) ∈ N×N0 such that N < p and T < N

2 . Let
VC = (L,P,M, C,D,Setup,Commit,Open) be a perfectly hiding homomorphic
vector commitment scheme such that M is a finite field of prime order. Then
there exists α ∈ R such that VPSSN,T,VC is ε-secret with

ε(τA, τB) =

{
0 ifτB ≥ α ∗ τA,

1 ifτB < α ∗ τA.

Proof. Let (N,T ) ∈ N × N0 such that N < p and T < N
2 . Let VC =

(L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commitment
scheme such that M is a finite field of prime order p. Let VPSSN,T,VC =
(N,T,P,M,S,Setup,Share,Reshare,Reconstruct). Let D be a probability distri-
bution overM, F :M→ {0, 1}∗ be a function, τA ∈ N, and A ∈ ProbAlgo(τA).

We construct an algorithm B that simulates G1(A; 0L). First, B runs
Setup() → ρ and sets S ← ⊥ and I ← {}. Then, B runs AO(ρ) and answers
oracle calls by A as follows.
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Share(I ′): If |I ′| ≤ T and S = ⊥, do the following. Set I ← I ′ and simulate
Share〈ρ, 0L〉 → S while giving the control over shareholders I to A until
reboot.

Reshare(I ′): If |I ∪ I ′| ≤ T and S �= ⊥, do the following. Set I ← I ′ and
simulate Reshare〈ρ, S〉 → S while giving the control over shareholders I to A
until reboot.

Finalize(y): Output y.

By the definition of the secrecy game we observe that A obtains at most T
shares per sharing or resharing. Thus, by the perfect secrecy property of Shamir
Secret Sharing [18], the distribution of the message shares and decommitment
shares observed by A in game G1 is independent of m. Furthermore, by the
perfect hiding security of VC, the distribution of the commitments observed by
A is also independent of the m. It follows that for all m ∈ML, y ∈ �(G1),

Pr[G1(A;m) = y] = Pr[G1(A; 0L) = y] . (1)

Furthermore, by the definition of B, we have

Pr[G1(A; 0L) = y] = Pr[B = y] . (2)

By the law of total probability, (1), and (2), we obtain

Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]

=
∑

m̂∈�(D)

Pr
[

F (m) = y :
D → m,G1(A;m)→ y,m = m̂

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (m̂) = y :
G1(A; m̂)→ y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (0L) = y :
G1(A; 0L)→ y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[
F (0L) = y :
B → y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (m) = y :
D → m,B → y,m = m̂

]
∗ Pr

[
m = m̂ :
D → m

]

= Pr
[

F (m) = y :
D → m,B → y

]
.

Finally, we observe that the running time of B is upper-bounded by the
running time of A times an upper bound α on the running time of protocols
Share and Reshare. We obtain that for all τA, A ∈ ProbAlgo(τA), there exists
B ∈ ProbAlgo(τB) such that
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Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]
≤ Pr

[
F (m) = y :
D → m,B → y

]
+ ε(τA, τB) ,

for

ε(τA, τB) =

{
0 if τB ≥ α ∗ τA,

1 if τB < α ∗ τA.

��
Theorem 3 (Robustness). Let (N,T ) ∈ N×N0 such that N < p and T < N

2 .
Let VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector com-
mitment scheme such thatM is a finite field of prime order p. If VC is ε-binding,
then the proactive secret sharing scheme VPSSN,T,VC is ε′-robust with

ε′ : N→ R; τ �→ ε(α ∗ τ) .

Proof. Let (N,T ) ∈ N × N0 such that N < p and T < N
2 . Let ε : N → R be a

function and VC = (L,P,M, C,D,Setup,Commit,Open) be an ε-binding homo-
morphic vector commitment scheme such thatM is a finite field of prime order
p. Let VPSSN,T,VC = (N,T,P,M,S,Setup,Share,Reshare,Reconstruct), τA ∈ N,
A ∈ ProbAlgo(τA), and m ∈M.

We construct an algorithm B such that

Pr
[

m �= m′ :
G2(A,m)→ m′

]
= Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,B(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ ,

which on input ρ ∈ P, algorithm B simulates game G2(A,m) as follows.
When the game is startet run G2.Initialize and replace the output by ρ.
When A calls Share(I ′), run G2.Share(I ′) in interaction with A, which
controls the corrupted shareholders and denote the output of shareholder i
by si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri). Then, find G ∈ QUALI((s1, . . . , sN ))
and set c = ci,0, for an i ∈ G. For i ∈ G, compute li ←

∏
j∈G\{i} j ∗

MODINV(j − i, p), and compute d←©i∈GEXP(ri, li). When A calls Reshare,
run G2.Reshare in interaction with A. When A calls Finalize, run G2.Finalize
in interaction with A and denote the share sent by shareholder i by s′

i =
(s′

i,1, . . . , s
′
i,L, c′

i,0, . . . , c
′
i,D, r′

i) and the output of G2.Finalize by m′. Deter-
mine a set G′ ∈ QUALI((s′

1, . . . , s
′
N )), for i ∈ G′, compute l′i ←

∏
j∈G′\{i} j ∗

MODINV(j − i, p), and compute d′ ←©i∈G′EXP(r′
i, l

′
i). Output (c,m, d,m′, d′).

We now derive an upper bound on

Pr
[

m �= m′ :
G2(A,m)→ m′

]
.

We observe that by the definition of protocol Share, the properties of the
broadcast channel, and because the majority of the shareholders are honest,
we have for i ∈ [N ], ĉi ← ©k∈[0,D]EXP(ci,k, ik), that Open(ρ, (si,1, . . . , si,L),
ĉi, ri) = 1. Furthermore, we observe that for i ∈ [L], mi = ©j∈GEXP(sj,i, lj),
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we have m = (m1, . . . ,mL), d = ©j∈GEXP(rj , lj), and c = ©i∈GEXP(ĉi, li).
Because VC is homomorphic, it follows that Open(ρ,m, c, d) = 1. Analogously
we obtain that Open(ρ,m′, c′, d′) = 1. Furthermore, we observe that by the
definitions of protocols Reshare and Reconstruct, the properties of the broadcast
channel, and the honest majority, we have that for all i ∈ G′, c = c′. It follows
that

Pr
[

m �= m′ :
G2(A,m)→ m′

]
= Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,B(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ .

We observe that for any A, the running time of BA is upper-bounded by
the running time of A times a constant α. Thus, we obtain that VPSSN,T,VC is
ε′-robust with

ε′ : N→ R; τ �→ ε(α ∗ τ) .

��

4 Instantiation, Implementation, and Evaluation

We first describe in Subsect. 4.1 how we instantiate the vector commitment
scheme that is necessary for our vector proactive secret sharing scheme described
in Sect. 3. Afterwards we describe in Subsect. 4.2 how we implemented our vec-
tor proactive secret sharing scheme instantiated with the described vector com-
mitment scheme. Finally, we evaluate the performance of our scheme and its
implementation in Subsect. 4.3.

4.1 Instantiation

In the following we describe a vector commitment scheme that has the proper-
ties required by our vector proactive secret sharing scheme, i.e., it is perfectly
hiding, computationally binding, and homomorphic. In addition, it is concise,
which means that commitment and decommitment are potentially much shorter
then the committed message vector. The construction is an extension of the
commitment scheme proposed in [15] and is sometimes referred to by general-
ized Pedersen commitment [10]. Here we cast the construction into our definition
of a vector commitment scheme and show that its security can be based on the
fixed generator discrete logarithm problem.

Scheme 2 (DLVC). Let G be a finite cyclic group, p be the order of G, ◦ denote
the operation associated with G, and L ∈ N. We define the vector commitment
scheme DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open) as follows.

Setup()→ (g0, . . . , gL): For i ∈ [0, L], sample U(GEN(G))→ gi.
Commit(ρ,m) → (c, d): Let ρ = (g0, . . . , gL) and m = (m1, . . . ,mL) ∈ Z

L
p .

Sample U(Zp)→ d and compute c← EXP(g0, d)©i∈[L] EXP(gi,mi).
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Open(ρ,m, c, d) → b: Let ρ = (g0, . . . , gL) and m = (m1, . . . ,mL). Compute
c′ ← EXP(g0, d)©i∈[L] EXP(gi,mi). If c = c′, set b← 1. If c �= c′, set b← 0.

Theorem 4. Let G be a finite cyclic group and L ∈ N. The vector commitment
scheme DLVCG,L is correct.

Theorem 5. Let G be a finite cyclic group and L ∈ N. The vector commitment
scheme DLVCG,L is perfectly hiding.

Theorem 6. Let G be a finite cyclic group of prime order p, g ∈ GEN(G), and
L ∈ N. If DLOG(G, g) is ε-hard, then there exists α ∈ N such that DLVCG,L is
ε′-binding with

ε′ : N→ R; τ �→ ε(τ + α) +
1
p
.

Theorem 7. Let G be a finite cyclic group and L ∈ N. The commitment scheme
DLVCG,L is homomorphic.

The proofs of the theorems can be found in AppendixA.

4.2 Implementation

We implemented a proactive secret sharing system based on the proactive secret
sharing scheme VPSS (Subsect. 3.1) instantiated with the vector commitment
scheme DLVC (Subsect. 4.1) using the programming language Java 8. In order
to support storage of large byte arrays, we use a data encoding that maps byte
arrays to message vectors of the secret sharing scheme and then run multiple
instances of the scheme per byte array.

System Parameters. Our proactive secret sharing system uses the following
parameters:

Number of shareholders N : This parameter specifies the total number of
shareholders that are involved in the secret sharing protocols.

Corruption threshold T : This parameters specifies the maximum number of
corrupted shareholders that can be tolerated. We require that T < N

2 .
Vector length L: This parameter specifies the length of the message vectors of

the secret sharing scheme and vector commitment scheme.
Message space size M : This parameter represents the size in bytes of an ele-

ment of a message vector for the secret sharing scheme and the vector com-
mitment scheme. The message space size M is determined by the parameters
of the commitment scheme and our implementation supports M ∈ {32, 64}.
We instantiate the commitment space G as the unique p-order subgroup of
Zq for primes p and q with log2(p) > M ∗ 8 ≥ 256, log2(q) ≥ 2048, and
(p− 1) mod q = 0.

Commitment space size C: This parameter represents the size in bytes of
commitments and is determined by C = �log2(q)/8�.
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Data Encoding. We use the following data encoding to map byte arrays to
the message space of VPSS. LetML be the message space of the secret sharing
scheme. We use the algorithms Encode and Decode for encoding byte arrays of
B = {b ∈ {0, . . . , 255}∗ : |b| ≤ INTMAX} to message matrices of ML×R∗

=
{m ∈ ML×∗ : Cols(m) ≤ �RL �, R = � INTSIZE+INTMAX

M �}, where INTSIZE = 4 and
INTMAX = 231− 1 for Java 8. Our byte array encoding requires two other types
of encodings: (EncodeInteger,BINTSIZE ,DecodeInteger,BINTSIZE) is an encoding from Java
Integers to byte arrays of length INTSIZE, which is supported natively by Java,
and (EncodeBM ,M,DecodeBM ,M) is an encoding from byte arrays of length M to
message space elements of M = Zp, for p ∈ N, which we implement using Java
Big Integers.

Encode(b ∈ B)→ m ∈ML×R∗
:

1. Let length = EncodeInteger,BINTSIZE(|b|) and set b′ ← length‖b.
2. Let b′′ = b′‖0|b′| mod M and b′′ = a1‖ . . . ‖an such that for i ∈ [n], ai is a

byte array of length M .
3. For i ∈ [n], let mi = EncodeBM ,M(ai), where EncodeBM ,M is an algorithm

that encodes elements of BM

4. Reshape the vector (m1, . . . ,mn) ∈Mn into a matrix m ∈ML×� n
L �, that

is, let m = (mi,j)(i,j)∈[L]×[� n
L �], where mi,j = mk for k = i + (j − 1) ∗ L

and mk = 0 if k > n.
Decode(m ∈ �(Encode))→ b ∈ B:

1. Reshape the matrix m = (mi,j) ∈ ML×L′
into vector (m1, . . . ,mn) ∈

ML∗L′
. That is, for i ∈ [L ∗ L′], let mi = mj,k, where j = i mod k and

j = � i
L�.

2. For i ∈ [L ∗ L′], let bi = DecodeBM ,M(mi).
3. Let b′′ = a1‖ . . . ‖aL∗L′ = b1‖ . . . ‖bL∗L′∗S , where bi ∈ B for i ∈ [L∗L′∗M ].
4. Let l = DecodeInteger,BINTSIZE(b1‖ . . . ‖bINTSIZE).
5. Let b = bINTSIZE+1‖ . . . ‖bINTSIZE+l.

This encoding fulfills the requirement that for all b ∈ B, Decode(Encode(b)) =
b. In our implementation, we store a byte array b ∈ B with m← Encode(B) and
Cols(m) > 1 by running for each column of m a separate instance of the secret
sharing system.

4.3 Evaluation

In this section we evaluate the theoretical and practical performance of our
proactive secret sharing system based on the proactive secret sharing scheme
VPSS, the vector commitment scheme DLVC, and the data encoding described in
Subsect. 4.2. For the theoretical performance evaluation we distinguish between
broadcast communication and direct point-to-point communication. For our
experimental performance evaluation we focus on measuring the computation
time of the protocols. Practical communication times highly depend on the net-
work infrastructure. Our measurements are for honest executions of the pro-
tocols. Protocol runs with malicious parties may take longer as they require
additional steps for resolving conflicts.
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Table 1. Computation and communication complexity of the protocols Share, Reshare,
and Reconstruct of our proactive secret sharing system. COMP denotes the com-
putation complexity measured in the number of modular exponentiations for modulus
p ≈ 28M , BC-OUT denotes the outgoing broadcast traffic, BC-IN denotes the incom-
ing broadcast traffic, DIR-OUT denotes the outgoing directed point-to-point traffic,
and DIR-IN denotes the incoming directed point-to-point traffic, where the traffic is
measured in bytes.

COMP BC-OUT BC-IN DIR-OUT DIR-IN

Share � D
LM �(N − T )

∗(L + 1) for D
� D
LM �(N − T )C

for D
� D
LM �(N − T )C

for Si

� D
LM �N(L+1)M

for D
� D
LM �(L + 1)M

for Si

Reshare � D
LM �(2N −

T )(L + 1) for Si

� D
LM �(2(N −

T ) + 1)C for Si

� D
LM �N(2(N −

T ) + 1)C for Si

� D
LM �N(L+1)M

for Si

� D
LM �N(L+1)M

for Si

Reconstruct � D
LM �(N −

T )(L + 1) for D
0 0 � D

LM �(L +

1)M + (N − T )C

for Si

� D
LM �N((L +

1)M+(N −T )C)

for D

Theoretical Performance. In Table 1 we present the computation and com-
munication complexity of the protocols Share, Reshare, and Reconstruct of our
proactive secret sharing system. For the computation complexity, we count the
number of modular exponentiations during commitment generation and verifi-
cation because these typically account for more than 90% of the computation
time, as can be seen from the runtime profile of the implementation. For the
communication complexity, we count the number of shares and commitments
that are transmitted and multiply these counts with the respective sizes of these
elements. In Fig. 3 we plot the communication performance as a function of the
vector length L. We observe that especially the broadcast communication per
party can be drastically reduced by increasing the vector length L. The effect
of increasing L on direct communication is noticeable for small L. We observe
that in comparison to standard proactive secret sharing (i.e., L = 1) our vector
proactive secret sharing scheme uses only 1

L the communication, that is, for large
L the communication complexity is comparable with the optimal communication
complexity of standard secret sharing [18].
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B BC-OUT (per Si)

BC-IN (per Si)
DIR-OUT (per Si)
DIR-IN (per Si)

Fig. 3. Network communication during protocol Reshare plotted over the vector length
L for N = 3, T = 1, D = 128 kB, M = 32 B, where L = 1 represents [12].
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Experimental Performance. For the experimental performance evaluation
we focus on measuring the computation time of the protocols, as practical com-
munication times highly depend on the network infrastructure and would require
a more advanced implementation and testbed. In Fig. 4 we show the measured
running times for protocols Share, Reshare, and Reconstruct for M = 32 and
different message vector lengths L. We observe that we reduce the computation
time by up to 50% when we increase the vector length L, as predicted by the
theoretical complexity evaluation. Increasing the message space size M does not
improve performance significantly as modular exponentiations are more expen-
sive for larger M .
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Fig. 4. Measured running times for protocols Share, Reshare, and Reconstruct plotted
over the vector length L for N = 3, T = 1, D = 128 kB, M = 32 B.

5 Conclusions

We presented a vector proactive secret sharing scheme that allows for drastically
reduced communication and computation costs. Concretely, when instantiated
with the vector commitment scheme described in Subsect. 4.1 our scheme reduces
computation costs by 50% and broadcast communication costs by a factor L,
where L is the length of the commitment scheme message vectors, compared to
the scheme of [12].

We see several directions for future work. While our scheme achieves almost
optimal communication performance, the computation times are still a bottle
neck. It would be worthwhile to explore whether there exist suitable vector
commitment schemes that are computationally more efficient. Furthermore, the
vector commitment scheme used by us is based on the discrete logarithm prob-
lem which is susceptible to quantum computer attacks. It would be worthwhile
to explore suitable vector commitment schemes that are secure against quantum
computers. In [13], Kate, Zaverucha, and Goldberg propose polynomial commit-
ments and show how they can be used to reduce the communication complexity
of verifiable secret sharing. However, they do not study the implications for
proactive secret sharing. It would be interesting to see whether their techniques
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can be combined with our techniques in order to further reduce the communi-
cation complexity of our vector proactive secret sharing scheme. Besides that, it
would be interesting to extend our scheme to the asynchronous network setting
where a global clock is not available to the participating network parties.

Acknowledgments. This work has been co-funded by the DFG as part of project S6
within the CRC 1119 CROSSING.

A Proofs

Proof (Proof of Theorem 4). Let G be a finite cyclic group, p be the order of
G, and L ∈ N, DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open), and
m = (m1, . . . ,mL) ∈ Z

L
p .

We observe that for Setup() → ρ, we have ρ = (g0, . . . , gL) ∈ GEN(G)L.
Furthermore, we observe that if Commit(ρ,m) → (c, d), then c = EXP(g0, d) ◦
©L

i=1EXP(gi,mi). It follows that Open(ρ,m, c, d) = 1. ��
Proof (Proof of Theorem 5). Let G be a finite cyclic group associated with oper-
ation ◦, L ∈ N, and DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open).
We observe that for all ρ ∈ GEN(G)L, m ∈ Z

L
p , c∗ ∈ G, by the definition of

Commit and because g is a generator, we have

Pr
[

c = c∗ :
Commit(ρ,m)→ (c, d)

]

= Pr
[

c = c∗ :
U(Zp)→ d, c← EXP(g0, d)©L

i=1 EXP(gi,mi)

]

= Pr
[

c = c∗ :
U(G)→ c

]
,

where ρ = (g0, . . . , gL) and m = (m1, . . . ,mL). ��
Proof (Proof of Theorem 6). The following proof is adapted from Section 2.3.2
of [6].

Let G be a finite cyclic group of prime order p, DLVCG,L = (L,GEN(G)L,
Zp,G,Zp,Setup,Commit,Open), g ∈ GEN(G), τ ∈ N, and A ∈ Algo(τ). In the
following, we prove an upper bound on

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]
.

Let B be an algorithm that takes as input y ∈ G and works as follows. Sample
U(Zp) → a0 and for i ∈ [L], U(Z2

p) → (ai, bi). Compute g0 ← EXP(g, a0) and
for i ∈ [L], gi ← EXP(g, ai) ◦ EXP(y, bi). Run A((g0, . . . , gL))→ (c,m, d,m′, d′).
If Open(ρ,m, c, d) = 0 or Open(ρ,m′, c, d′) = 0, output ⊥. Otherwise, proceed
as follows. Let m = (m0, . . . ,mL) ∈ Z

L
p and m′ = (m′

0, . . . ,m
′
L) ∈ Z

L
p . Compute

a← a0(d−d′)+
∑

i∈[L] ai(mi−m′
i) and b←∑

i∈[L] bi(m
′
i−mi). If b = 0, output

⊥. Otherwise, compute x← a
b and output x.
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We observe that because the ai’s are uniformly distributed and g is a gen-
erator, the gi’s are also uniformly distributed. This means that (g0, . . . , gL) has
the same distribution as ρ generated by Setup(). It follows that

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

U(G)→ y,B(y)→ x

]
.

Using sigma additivity we write

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

U(G)→ y,B(y)→ x

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b = 0 :

U(G)→ y,B(y)→ x

]

+ Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b �= 0 :

U(G)→ y,B(y)→ x

]
.

The first term is upper-bounded by 1
p , as can be seen as follows:

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b = 0 :

U(G)→ y,B(y)→ x

]

≤ Pr
[

m �= m′ ∧ b = 0 :
U(G)→ y,B(y)→ x

]

= Pr
[
m �= m′ ∧∑

j∈[L] bj(m
′
j −mj) = 0 :

U(G)→ y,B(y)→ x

]

≤ Pr

[
∃i ∈ [L],mi �= m′

i ∧ bi =
− ∑

j∈[L]\{i} bj(m
′
j−mj)

(m′
i−mi)

:
U(G)→ y,B(y)→ x

]
=

1
p

.

Next we prove that the second term is upper-bounded by

Pr
[

EXP(g, x) = y :
U(G)→ y,B(y)→ x

]
.

We observe that if b �= 0, then Open(ρ,m, c, d) = 1, Open(ρ,m′, c, d′) = 1,
m �= m′, and

EXP(g0, d) ©i∈[L] EXP(gi,mi) = EXP(g0, d
′) ©i∈[L] EXP(gi,m

′
i)

⇐⇒ EXP(g0, d − d′) ©i∈[L] EXP(gi,mi − m′
i) = eG

⇐⇒ EXP

⎛
⎝g, a0(d − d′) +

∑
i∈[L]

ai(mi − m′
i)

⎞
⎠ ◦ EXP

⎛
⎝y,

∑
i∈[L]

bi(mi − m′
i)

⎞
⎠ = eG

⇐⇒ EXP

⎛
⎝g, a0(d − d′) +

∑
i∈[L]

ai(mi − m′
i)

⎞
⎠ = EXP

⎛
⎝y,

∑
i∈[L]

bi(m
′
i − mi)

⎞
⎠

⇐⇒ EXP
(
g,

a

b

)
= y .
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It follows that

Pr
[
EXP(g, a

b ) = y ∧ b �= 0 :
U(G)→ y,B(y)→ x

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b �= 0 :

U(G)→ y,B(y)→ x

]
.

By the fact that b = 0 implies x = ⊥ and EXP(g,⊥) �∈ G, we have

Pr
[
EXP(g, x) = y ∧ b �= 0 :
U(G)→ y,B(y)→ x

]
= Pr

[
EXP(g, x) = y :

U(G)→ y,B(y)→ x

]
.

In summary, we obtain

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]

≤ Pr
[

EXP(g, x) = y :
U(G)→ y,B(y)→ x

]
+

1
p

.

Finally, we observe that the running time of B is upper-bounded by τ + α,
where α is the constant difference between the running time of B and the running
time of A. It follows that if DLOG(G, g) is ε-hard, then DLVCG,L is ε′-binding-
secure with

ε′ : τ �→ ε(τ + α) +
1
p

.

��
Proof (Proof of Theorem 7). Let G be a finite cyclic group, L ∈ N, and
DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open). Let ◦ denote the
operation associated with G, + and ∗ denote addition and multiplication
over Zp, and ⊕ denote addition over Z

L
p . We observe that for any ρ ∈ P,

(m1, c1, d1) ∈ COMS(ρ), and (m2, c2, d2) ∈ COMS(ρ) we have that

(m1, c1, d1) ∈ COMS(ρ) ∧ (m2, c2, d2) ∈ COMS(ρ)

=⇒
(
EXP(g0, d1)©i∈[L] EXP(gi,m1,i)

)
= c1

∧ (
EXP(g0, d2)©i∈[L] EXP(gi,m2,i)

)
= c2

=⇒
(
EXP(g0, d1)©i∈[L] EXP(gi,m1,i)

)
◦ (

EXP(g0, d2)©i∈[L] EXP(gi,m2,i)
)

= c1 ◦ c2

⇐⇒ EXP(g0, d1 + d2)©i∈[L] EXP(gi,m1,i + m2,i) = c1 ◦ c2

⇐⇒ Open(ρ,m1 ⊕m2, c1 ∗ c2, d1 ◦ d2) = 1 .

��
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