
From Quadratic Functions
to Polynomials: Generic Functional

Encryption from Standard Assumptions

Linru Zhang1, Yuechen Chen1, Jun Zhang2, Meiqi He1, and Siu-Ming Yiu1(B)

1 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong SAR, China

{lrzhang,ycchen,mqhe,smyiu}@cs.hku.hk
2 Educational Technology Department, Shenzhen University,

Shenzhen, Guangdong, China
zhjun@connect.hku.hk

Abstract. The “all-or-nothing” notion of traditional public-key encryp-
tions is found to be insufficient for many emerging applications in which
users are only allowed to obtain a functional value of the ciphertext with-
out any other information about the ciphertext. Functional encryption
was proposed to address this issue. However, existing functional encryp-
tion schemes for generic circuits either have bounded collusions or rely
on not well studied assumptions. Recently, Abdalla et al. started a new
line of work that focuses on specific functions and well-known standard
assumptions. Several efficient schemes were proposed for inner-product
and quadratic functions. There are still a lot of unsolved problems in
this direction, in particular, whether a generic FE scheme can be con-
structed for quadratic functions and even higher degree polynomials. In
this paper, we provide affirmative answers to these questions. First, we
show an IND-secure generic functional encryption scheme against adap-
tive adversary for quadratic functions from standard assumptions. Sec-
ond, we show how to build a functional encryption scheme for cubic func-
tions (the first in the literature in public-key setting) from a functional
encryption scheme for quadratic functions. Finally, we give a generalized
method that transforms an IND-secure functional encryption scheme for
degree-m polynomials to an IND-secure functional encryption scheme for
degree-(m + 1) polynomials.

1 Introduction

Background. Traditional public-key encryption (PKE) allows a user who owns
a secret key sk to decrypt a ciphertext CT encrypted with a public key pk. The
decryption result is the plaintext of CT if sk matches pk, or nothing otherwise.
For many emerging applications, for example, a owner may store her encrypted
data in cloud and allow different users to query different functional values of the
plaintext without revealing the plaintext, this all-or-nothing concept is insuf-
ficient. Functional encryption (FE) was proposed to address this issue, which
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 142–167, 2019.
https://doi.org/10.1007/978-3-030-16458-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_10

Generic Functional Encryption for Polynomials 143

enables users to obtain a functional value of a plaintext without any other infor-
mation about the plaintext. In general, consider a functional encryption scheme
for a functionality F (k, x), where k ∈ K (the key space) and x ∈ X (the plain-
text space). The authority with the master key can generate secret keys skk for
values k. Given a ciphertext of x, the key holder of skk can only learn F (k, x)
and nothing else except possibly the length of x.

Before FE was formally defined in [11,26], there were a lot of schemes pro-
posed to overcome the “all-or-nothing” barrier of the traditional public-key
encryption. These schemes, including identity-based encryption (IBE) [8,9,28],
attribute-based encryption (ABE) [27], searchable encryption [1], and predicate
encryption [12,23], are considered as special cases of FE1.

While there are many exciting results in these special cases, designing FE
schemes seems to be more difficult. Existing FE schemes that work for arbitrary
circuits either have bounded collusions [21,22], or have to rely on powerful, but
impractical and not well understood assumptions (indistinguishable obfuscation
(IO) and its variants, or polynomial hardness of simple assumptions on multi-
linear maps) [13,19,20,31]. Attacks were identified for some constructions that
are based on IO and multi-linear map [5,14,15,17].

A Remark on Security Definition. Unlike traditional PKE, [26] showed
that simulation-based security (SIM-security) is not always achievable for FE.
Indistinguishability-based security (IND-security) is widely used in FE research.
We also focus on IND-secure FE schemes. Roughly speaking, IND-security states
that the adversary who has the secret keys for functions f1, . . . , fn cannot dis-
tinguish which of the challenge messages m0 or m1 has been encrypted, under
the condition that fi(m0) = fi(m1), i ∈ [1..n].

Functional Encryption from Standard Assumptions. Recently, instead
of focusing on generic functions, researchers started to design efficient schemes
for specific functions using well studied standard assumptions. Abdalla et al. [2]
started this line of work by proposing an IND-secure (against selective adversary)
functional encryption for inner product (IPFE) based on the decisional Diffie-
Hellman assumption. Precisely, given an encrypted vector x in the message space
X and a key sky based on vector y in the key space K, the decryption algorithm
will output the inner product 〈x,y〉 without revealing any other information
about x except the length of it. [4] improved the framework of [2] to achieve
IND-security against adaptive adversary, also from standard assumptions. A
generic (i.e., one that can instantiate from any PKE scheme) construction of
IPFE is given in [3]. The scheme is IND-secure against adaptive adversary.

1 Some classify FE schemes into public index schemes and private index schemes
based on the definition of predicate encryption, in which, the message x consists
of two parts (I, m), where I is an index (e.g. a set of attributes) and m is the
actual message. If I is publicly revealed by the ciphertext and only m is hidden,
the corresponding scheme is referred as public index FE, which is commonly known
as attributed-based encryption. The scheme is called private index scheme if both I
and m are hidden.

144 L. Zhang et al.

The next step from linear functionality (inner product) is to consider
quadratic functions. Note that if one does not care the size of a ciphertext, it is
easy to have a generic FE scheme for quadratic function using an inner product
scheme as illustrated by the following example. Let f(x) = 2x1

2 + 3x2
2. We can

encrypt every pair of xi, xj to obtain x = (x1
2, x1x2, x2x1, x2

2). With the vector
y = (2, 0, 0, 3), we can easily compute f as the inner product 〈x,y〉. However,
the size of the ciphertext will be O(n2). Earlier this year, two FE schemes with
linear size of ciphertext were proposed in [6]. One is IND-secure against selective
adversary based on standard assumptions and the other is IND-secure against
adaptive adversary in the generic group model. However, both schemes are not
generic and cannot instantiate from any PKE scheme. The question whether it
is possible to design a generic FE scheme for quadratic functions with linear size
ciphertext is still open. And the same question applies to higher finite-degree
polynomials2. Besides theoretical interest, there are real applications for func-
tion encryption for polynomials. For example, cubic functions can be used to
calculate volumes; the distance d between two points x,y in Lp space is defined
as a p-degree polynomial: dp = |x1 − y1|p + |x2 − y2|p + . . . + |xn − yn|p with
applications in data mining for high-dimensional data points; and in statistics,
measures of central tendency and statistical dispersion, such as mean, median,
and standard deviation, are also defined in terms of Lp metrics.

1.1 Our Contributions

In this paper, we provide affirmative answers to the above questions. We focus
on the polynomial functionality over Zp. We list our contributions as follows.

(1) We propose the first generic FE scheme for quadratic functions LQFE =
(Setup,Encrypt,KeyGen,Decrypt) with linear-size ciphertexts in the
public-key setting. LQFE is proved to be IND-secure against adaptive
adversary. Generic functional encryption (proposed in [3]) means that such
FE scheme can be instantiated from any PKE scheme with some properties.

(2) We derive a generalized method that transforms an IND-secure degree-m
polynomial FE scheme to an IND-secure against selective adversary degree-
(m + 1) polynomial FE scheme. We illustrate our method based on our
quadratic FE scheme to derive the first FE scheme for cubic functions,
CFE = (Setup,Encrypt,KeyGen,Decrypt), in the public-key setting hav-
ing linear size ciphertext under standard assumptions. Actually, any FE
scheme for quadratic functions can be used to build a FE scheme for cubic
functions in our construction. For example, [6] can be used in CFE, but
then the resulting cubic FE scheme is not generic.

2 Very recently (in June, 2018), [16] provides a polynomial functional encryption
scheme with linear ciphertext size. Their scheme is in private-key setting while our
scheme is in public-key setting.

Generic Functional Encryption for Polynomials 145

1.2 Overview of Our Techniques

In this section, we highlight some of the core ideas underlying our schemes. The
details of our schemes will be given in later sections.

Our FE Scheme for Quadratic Functions over Zp. Our construction is a generic
construction, i.e., any public-key encryption scheme that has some structural
and homomorphic properties can be used to instantiate it. These properties are
similar to the requirements in [3]. Our scheme is efficient in communication
and storage size: public keys and ciphertexts are both linear in the size of the
encrypted vectors.

To simplify the notation, we may omit the security parameter k in the expres-
sion, i.e., instead of writing f(k, x), we may just write f(x) if it is clear from
its context. A quadratic function f(x) can be represented3 as f(x) = xT Fx,
where F ∈ Z

(n+1)×(n+1)
p is a matrix with elements fi,j , x is a column vector

(x0, . . . , xn) ∈ Zn+1
p and x0 = 1. For our previous example, f(x) = 2x1

2 + 3x2
2,

we can have a column vector x = (1, x1, x2) and F =

⎛
⎝

0 0 0
0 2 0
0 0 3

⎞
⎠. The input to

our scheme is a ciphertext of a vector x, and decryption allows one to obtain
xT Fx with the given matrix F .

Our construction works over symmetric bilinear groups G1, G2 and GT and
two bilinear maps e1(g1, g1) = gT : G1 × G1 → GT , e2(g2, g2) = gT : G2 × G2 →
GT , where g1, g2 and gT are generators of G1, G2 and GT . The order of G1, G2

and GT is a prime p. The prime order ensures the existence of g2 (g1 can be
any generator of G1). The initial idea of the construction is to encrypt each
xi, i ∈ {0, 1, . . . , n} (denoted by [n] in the rest of the paper) by using the selected
PKE scheme ε under certain public key PKi in group G1. Then, we can get
ε.Enc(fi,jxixj) with public key PK ′

ij in group GT which depends on PKi and
PKj by computing e(ctx,i, ctx,j)fi,j , where ctx,i denotes the encrypted xi. After
summing them up and decrypting, we can obtain f(x) =

∑n
i,j=0 fi,jxixj =

xT Fx.
However, the result of e(ctx,i, ctx,j)fi,j includes not only ε.Enc(fi,jxixj) in

GT , but also some noisy terms in GT . The challenge is to carefully design the
secret keys and ciphertexts to eliminate these noisy terms while guaranteeing
the security.

Notice that the bilinear maps e1(·, ·) and e2(·, ·) are public. If the adversary
takes the ciphertexts generated by g1 (or g2) as input of e1(·, ·) (or e2(·, ·)), it
can get new ciphertexts in GT which are generated by gT (denote as ct∗). If
some parts of ciphertexts in the encryption algorithm are also generated by gT ,
then combining such parts of ciphertexts and ct∗ would leak information. To
avoid this attack, we use the trick that when we need to encrypt something in
group GT , instead of using gT based public key, we use the public key that is

3 Note that [6] uses a slightly more general representation with two vectors: f(x,y) =
xT Fy.

146 L. Zhang et al.

based on gq
T and q is kept secret. And when encrypting vectors in group G1 (or

G2), we still use g1 (or g2) based public key. Therefore, without knowing q, the
adversary cannot convert these ciphertexts in G1 and G2 to the new ciphertexts
which are generated by gq

T based public key. And the bilinear maps e1(·, ·) and
e2(·, ·) cannot help the adversary any more.

The details of this construction can be found in Sect. 3.

Our FE Scheme for Cubic Functions over Zp and Its Generalization. Our cubic
FE scheme is based on any FE scheme for quadratic functions. When building
from our generic scheme for quadratic functions, the cubic FE scheme is also
generic. The scheme is also efficient: public keys and ciphertexts are both linear
in the size of the encrypted vectors.

Similarly, a cubic functionality can be represented as f(x) =

∑
i,j,k∈[n] fi,j,kxixjxk = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠, where A0, . . . , An ∈ Z

(n+1)×(n+1)
p ,

x = (x0, . . . , xn) ∈ Zn+1
p and x0 = 1. After encrypting a vector x, the decryption

of our scheme is expected to output
∑

i,j,k∈[n] fi,j,kxixjxk =
∑

i∈[n](xix
T Aix)

with the given coefficients {fi,j,k}i,j,k∈[n]. Note that there is a requirement for
this representation to work and this requirement is easy to satisfy, see Sect. 4.1
for more details.

The initial idea of the construction is to divide the ciphertexts into two parts.
The first part will look like (ri, t

−1
i xi)W−1 and the second part will look like

W (ai, QFE.Enc(xi))T , where W =
(

w11 w12

w21 w22

)
∈ Z2×2

p , w12 = u2
1, w22 = u2

2 is

an invertible matrix and r,a are random vectors in Zn+1
p . The second part

can be further divided into two parts, one is w11ai, w21ai, and the other is
QFE.Enc(u1x), QFE.Enc(u2x). For decryption, we call QFE.Dec(sktiAi

, ct)
to get w12tix

T Aix and w22tix
T Aix. The second part becomes W (ai, tix

T Aix).
We can multiply both parts of ciphertexts and get airi + xix

T Aix. At last, we
sum these up and minus

∑n
i=0 airi to get the final value f(x). If we have a FE

scheme for degree-m polynomial and use degree-m polynomial f0(x), . . . , fn(x)
instead of matrices in this construction, then we can get a new degree-(m + 1)
polynomial FE scheme, i.e., this construction can be generalized.

The details of this construction can be found in Sects. 4 and 5.

2 Preliminaries

In this section, we recall some basic definitions that we will use in the remaining
sections.

2.1 Bilinear Map

Here we review some facts related to bilinear groups with efficiently computable
bilinear maps in [30].

Generic Functional Encryption for Polynomials 147

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be
a generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e
has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map e is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Functional Encryption

Following Boneh et al. [11], we first define the notion of functionality and then
the functional encryption scheme FE for functionality F .

Definition 1 (Functionality). A functionality F defined over (K × M) is a
function F : K × M → Σ ∩ {⊥}, where K is the key space, M is the message
space and Σ is the output space and ⊥ is a special string not contained in Σ.
Notice that the functionality is undefined when the key is not in the key space or
the message is not in the message space.

Definition 2 (Functional encryption scheme). For a functionality F , a
functional encryption scheme FE for F is a tuple FE = (Setup,KeyGen,
Encrypt,Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public key and master secret keys (mpk,msk) for security
parameter λ.

2. KeyGen(msk, k), on input a master secret key msk and key k ∈ K outputs
secret key skk.

3. Encrypt(mpk,m), on input public key mpk and message m ∈ M outputs
ciphertext Ct.

4. Decrypt(mpk,Ct, skk) outputs y ∈ Σ × {⊥}

The correctness requirement is ensured: for all (mpk,msk) ← Setup(1λ), all
k ∈ K and m ∈ M , for skk ← KeyGen(msk, k) and Ct ← Encrypt(mpk,m),
we have Decrypt(mpk,Ct, skk) = F (k,m) whenever F (k,m) �=⊥, except with
negligible probability.

Now, we give the IND-FE-CPA and s-IND-FE-CPA security for functional
encryption schemes.

Definition 3 (Indistinguishable-based security). For a functional encryp-
tion scheme FE = (Setup,KeyGen,Encrypt,Decrypt) for functionality F ,
defined over (K,M), we define security against chosen-plaintext attacks (IND-
FE-CPA security) via the security game depicted on Table 1. Firstly, the chal-
lenger performs proc Initialize and returns mpk to the adversary. The adver-
sary can submit function queries f to the challenger, and the challenger returns
the output of proc KeyGen to the adversary. The adversary can also submit

148 L. Zhang et al.

two message m∗
0,m

∗
1 to the challenger, and in response, the challenger returns

the output of proc LR to the adversary. Finally, the adversary outputs b′ and
the challenger runs proc Finalize to test whether b = b′.

We say that FE is secure against chosen-plaintext attacks if

|Pr[Expind−fe−cpa−0
FE,λ] − Pr[Expind−fe−cpa−1

FE,λ]| = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-FE-
CPA security) when the challenge message m∗

0 and m∗
1 have to be chosen before

the start of the game (see Table 2).

Table 1. Game Expind−cpa−b
FE,λ define IND-FE-CPA security of FE

proc Initialize(λ) proc LR(m∗
0, m

∗
1)

(mpk, msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk, m∗
b)

F ← ∅ Return Ct∗
Return mpk

proc KeyGen(k) proc Finalize(b′)
F ← F ∪ {k} If ∃k ∈ F s.t. f(k, m∗

0) �= f(k, m∗
1)

skk ← KeyGen(msk, k) then return false
Return skk Return (b’=b)

Table 2. Game Exps−ind−cpa−b
FE,λ define s-IND-FE-CPA security of FE

proc Initialize(λ, m∗
0, m

∗
1) proc LR()

(mpk, msk) ←R Setup(1λ) Ct∗ ←R Encrypt(mpk, m∗
b)

F ← ∅ Return Ct∗
Return mpk

proc KeyGen(k) proc Finalize(b′)
F ← F ∪ {k} If ∃k ∈ F s.t. f(k, m∗

0) �= f(k, m∗
1)

skk ← KeyGen(msk, k) then return false
Return skk Return (b’=b)

3 A Generic Functional Encryption Scheme for Quadratic
Functions

Now, we present a generic functional encryption scheme for any quadratic func-
tionality over Zp LQFE = (Setup,KeyGen,Encrypt,Decrypt) based on any
public-key encryption scheme ε = (Setup,Encrypt,Decrypt) that has the some
structural and homomorphic properties. These properties are similar to the
requirement in [3] and are shown in Supporting Material A. We prove that
LQFE is IND-secure against adaptive adversary. Before showing the construc-
tion, we give the definitions of quadratic functionality over Zp.

Generic Functional Encryption for Polynomials 149

Quadratic Functionality over Zp. For any quadratic function,

f(m) = t0 +
n∑

i=1

timi +
n∑

i,j=1

ti,jmimj ,mi ∈ Zn
p ,

it can be transformed as f(x) = xT Fx by setting x = (1,m) ∈ Zn+1
p and the

upper triangular matrix F = (fi,j) ∈ Z
(n+1)×(n+1)
p where: f1,1 = t0, f1,i = ti−1

for all i ∈ [2, n+1], fi,j = 0 for all i > j, and fi,j = ti−1,j−1 for all i ∈ [2, n+1] and
i ≤ j. So we define the quadratic functionality over Zp that F(F,x) = xT Fx.

3.1 Our FE Scheme for Quadratic Functions over Zp

Before describing the scheme in full details, we give an informal description of
our key ideas. We break the process that get ε.Enc(xT Fx) (which can be used
to get the final result xT Fx by calling ε.Decrypt) into following parts:

Firstly, we get ε.Enc(fi,jxixj) by computing e1(ctx,i, ctx,j), where e1(·, ·)
is a symmetric bilinear map. Secondly, we get ε.Enc(

∑
i,j fi,jxixj) by using

the homomorphic properties of ε to sum them up. Then, we eliminate these
noisy items by designing secret keys and other ciphertexts. Finally, we set a
secret number q to prevent the new attack that the adversary can convert some
ciphertexts from one group to another group with the help of bilinear maps
e1(·, ·) and e2(·, ·).

Now, here comes the formal description of our construction. Let’s consider a
PKE scheme ε = (Setup,Encrypt,Decrypt) with the properties defined above.
We define our functional encryption scheme for quadratic functions over Zp

LQFE = (Setup,KeyGen,Encrypt,Decrypt) as follows.

Setup(1λ) : G1, G2, GT ← ε.Setup(1λ), the order of G1, G2, GT is a prime
p. e1(g1, g1) = gT ← G1λ

is a bilinear map G1 × G1 → GT , where g1, gT

are generators of G1, GT . Similarly, e2(g2, g2) = gT ← G1λ

is a bilinear map
G2 × G2 → GT , where g2, gT are generators of G2, GT . Call ε’s key genera-
tion algorithm to generate n + 1 independent secret keys pairs s1, ..., sn, sk
sharing the same public parameters params and t = (t1, ...tn) ∈ Zn

p .
Let ski = si + tisk, i ∈ [n]. Choose q ←R Z∗

p , then the algorithm sets
g′

T = gq
T , PK = PKGen(g1, qsk), PKi = PKGen(g1, qski). Return mpk :=

(params, PK, {PKi}i∈[n], g1, g2, gT , g′
T , e(·, ·)) and msk := (sk, s, t, q).

KeyGen(msk, {ui,j}i,j∈[n]) : on input master secret key msk and the coef-
ficients of quadratic function f(x), the algorithm first outputs a random
matrix F ∈ Z

(n+1)×(n+1)
p , where fi,j + fj,i = ui.j . Then, the algorithm com-

putes skF,1 = q2
∑

i,j∈[n] fi,j(si + tisk)(sj + tjsk). For i ∈ [n], computes

skF,2,i = g
q

∑
j∈[n] fi,jskj

2 and ŝkF,2,i = g
q

∑
j∈[n] fi,jskj

1 . For j ∈ [n], computes

skF,3,j = g
q

∑
i∈[n] fi,jski

2 and ŝkF,3,j = g
q

∑
i∈[n] fi,jski

1 .
Return skF = (skF,1, {skF,2,i, ŝkF,2,i}i∈[n], {skF,3,j , ŝkF,3,j}j∈[n])

150 L. Zhang et al.

Encrypt(x,mpk) : on input master public key mpk and message x =
(x0, ..., xn) ∈ Z

(n+1)
p , chooses shared randomness r and a = (a0, ..., an) in

Z
∗(n+1)
p , and computes ct0 = ε.C(r2, gT), ctx,i = ε.E(pki.xi, r). For i ∈ [n],

sets cta,x,i = ε.E(pk(g2, 1)xi , ai, r) and cta,i = ε.E(pk(g1, 0), ai, r)
Return ctx = (ct0, {ctx,i, cta,i, cta,x,i}i∈[n])

Decrypt(ctx, skF ,mpk): on input master public key mpk, ciphertext ctx =
(ct0, {ctx,i, cta,i, cta,x,i}i∈[n]) and secret key skF for matrix F ∈ Z

(n+1)×(n+1)
p ,

returns the output of

ε.Decrypt(skF,1, ct0,

(
∏

i,j∈[n] e1(ctx,i, ctx,j)fi,j)(
∏

i∈[n] e1(cta,i, ŝkF,2,i))(
∏

j∈[n] e1(cta,j , ŝkF,3,j))

(
∏

i∈[n] e2(cta,x,i, skF,2,i))(
∏

j∈[n] e2(cta,x,j , skF,3,j))
)

Correctness of Our Scheme: We divide the decryption algorithm into the
following parts:

I =
∏

i,j∈[n]

e1(ctx,i, ctx,j)fi,j

=
∏

i,j∈[n]

[ε.E(pk(gT , q2skiskj), xixj , r
2)ε.E(pk(gT , qski)xj ,

0, r)ε.E(pk(gT , qskj)xi , 0, r)]fi,j

= ε.E(pk(gT , q2
∑

i,j∈[n]

(fi,jskiskj)),

∑
i,j∈[n]

fi,jxixj , r
2)ε.E(pk(gT , q

∑
i,j∈[n]

fi,j(xjski + xiskj)), 0, r).

II = (
∏

i∈[n]

e2(cta,x,i, skF,2,i))(
∏

j∈[n]

e2(cta,x,j , skF,3,j))

= ε.E(pk(gT , q
∑

i,j∈[n]

xifi,jskj), q
∑

i,j∈[n]

aifi,jskj , r)ε.E(pk(gT ,

q
∑

i,j∈[n]

xjfi,jski), q
∑

i,j∈[n]

ajfi,jski, r)

= ε.E(pk(gT , q
∑

i,j∈[n]

(xifi,jskj + xjfi.jski)), q
∑

i,j∈[n]

fi,j(aiskj + ajski), r)

III = (
∏

i∈[n]

e1(cta,i, ŝkF,2,i))(
∏

j∈[n]

e1(cta,j , ŝkF,3,j))

=
∏

i∈[n]

ε.E(pk(gT , 0), aiq
∑
j∈[n]

fi,jskj , r)
∏

j∈[n]

ε.E(pk(gT , 0), ajq
∑
i∈[n]

fi,jski, r)

= ε.E(pk(gT , 0), q
∑

i,j∈[n]

(aifi,jskj + ajfi,jski), r)

Generic Functional Encryption for Polynomials 151

So, we can get

LQFE.Decrypt(ctx, skF ,mpk) = ε.Decrypt(skF,1, ct0,
I · III
II

)

= ε.Decrypt(skF,1, ct0, ε.E(pk(gT , skF,1),xT Fx, r2))

= xT Fx

Theorem 1. If the underlying PKE ε has message space, ciphertext space and
secret key space of the same order p, if it is IND-CPA and satisfies the properties
defined in Sect. 3.1, then LQFE is IND-FE-CP against adaptive adversary.

The proof of Theorem 1 can be found in Supporting Material B.

4 From Quadratic FE to Cubic FE over Zp

In this section, we show how to transform our generic FE scheme for quadratic
functionality to a generic FE scheme for cubic functionality over Zp. The method
in this section can be generalized to realize a degree-(m+1) polynomial FE from
a degree-m polynomial FE, which will be discussed in Sect. 5.

Let CFE = (Setup,KeyGen,Encrypt,Decrypt) be a FE for cubic function-
ality based on a FE scheme for quadratic functionality QFE = (Setup,KeyGen,
Encrypt,Decrypt) which is s-IND-FE-CPA secure. Firstly, we give the definition
of cubic functionality over Zp that is used in our scheme.

4.1 Cubic Functionality over Zp

For any cubic function f(x) =
∑n

i,j,k=0 fi,j,kxixjxk, where x0 = 1, we can find

a set of matrices A0, . . . , An, s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠. Actually, there exists

more than one set {Ai}i∈[n] that can satisfy this equation.
For security reasons, we define the cubic functionality over Zp F in our

functional encryption scheme as follows, where M ∈ Zn+1
p is the message space:

Definition 4 (cubic functionality). For any fi,j,k ∈ Zp, let F
({fi,j,k}i,j,k∈[n],x) =

∑n
i,j,k=0 fi,j,kxixjxk}. For ∀f(x) ∈ F ,x0,x1 ∈ M

and f(x0) = f(x1), there exists an algorithm ALG(f) which could find a

set of matrices A0, . . . , An ∈ Z
(n+1)×(n+1)
p , s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠ and

∀i ∈ [n],x0Aix0 = x1Aix1.

152 L. Zhang et al.

This requirement is due to the fact that in any quadratic FE, only if f(x0) =
f(x1), any probabilistic poly(n)-time (PPT) adversary cannot distinguish the
ciphertexts of x0 and x1 by IND-security definition of FE.

The message space is decided by how many cubic functions we want to include
in the function space. If we just want to use a few fractions of all cubic functions,
then the message space could be larger. In the other side, brute-force FE scheme
cannot ensure linear-size ciphertext, which is important when constructing FE
scheme for higher degree polynomials.

The following theorem shows a special case that if we only have two messages,
y0,y1, such that f(y0) = f(y1), all cubic functions meet this requirement4.

Theorem 2. Given y0,y1 ∈ Zn+1
p , f(x) =

∑n
i≥j≥k=0 fi,j,kxixjxk and f(y0) =

f(y1). There exists A0, . . . , An ∈ Z
(n+1)×(n+1)
p , s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠ and

∀i ∈ [n],y0Aiy0 = y1Aiy1.

The proof of Theorem 2 can be found in Supporting Material C.
For a given message space M, a natural approach to test whether a cubic

function f(x) is in F is that: (1) Find all vector pairs (a, b) s.t. f(a) = f(b)
and sets V = {(a, b)|f(a) = f(b)}. (2) For each pairs (a, b) ∈ V, find the
system of linear equations and get the solutions Si = {(A0, A1, . . . , An)}, where
i = 1, . . . , |V|. (3) Check whether S1 ∩ S2 ∩ . . . ∩ Sn = ∅.

4.2 Our FE Scheme for Cubic Functions over Zp

Before describing the scheme in full detail, we give an informal exposition of
our key ideas. We use a random invertible matrix W ∈ Z2×2

p and some random
vectors a, r to construct our ciphertexts, which consist of two major parts.

The first part of the ciphertexts seems like (ri, t
−1
i xi)W−1. The second part of

the ciphertext seems like W (ai, QFE.Enc(xi))T , where QFE is a FE scheme for
quadratic functions. Notice that the second part of ciphertexts are not generated
directly. The outputs of algorithm ALG is randomized and not unique, so the
matrices Ai are not known by the adversary. When doing decryption, firstly, we
get W (ai, tix

T Aix) by calling QFE.Decrypt. Then, we get
∑

i airi + xix
T Aix

by multiply two parts of ciphertexts and sum them up. Finally, we get the final
result f(x) =

∑
i,j,k fi,j,kxixjxk =

∑
i xix

T Aix by substraction
∑

i airi.
Now, here comes the formal description of our construction. Let’s con-

sider a quadratic FE scheme QFE = (Setup,KeyGen,Encrypt,Decrypt).

4 A more detailed analysis needs to be carried out to see how practical this requirement
is although the requirement and our construction method represent a step towards
constructing secure FE schemes for polynomials.

Generic Functional Encryption for Polynomials 153

For cubic functions F , we define our functional encryption scheme CFE =
(Setup, KeyGen,Encrypt,Decrypt) as follows:

Setup(1λ, 1n): (mpk1,msk1) ← QFE.Setup(1λ, 1n), Randomly choose t =
(t0, . . . , tn) ←R Zn+1

p . Return mpk := (mpk1, t) and msk := (msk1).
KeyGen(mpk,msk, f = {fi,j,k}i,j,k∈[n]): Call ALG(f) as defined above to
obtain the set of matrices A0, . . . , An ←R ALG(f). Then computes skAi

=
QFE.KeyGen (mpk1,msk1, tiAi). Return skF := {skAi

}i∈[n].

Encrypt(x,mpk): Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p ,

where w12 = u2
1, w22 = u2

2 and WW−1 = I. Randomly choose
r = (r0, . . . , rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x =
QFE.Encrypt(mpk1, u1x), Ctu2x = QFE.Encrypt(mpk1, u2x). And sets
Ctw,x,i = (ri, t

−1
i xi)W−1 = (riw

−1
11 + t−1

i w−1
21 xi, riw

−1
12 + t−1

i w−1
22 xi),

Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi. Return Ctx =
(Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).
Decrypt(Ctx, skF ,mpk): Return:

[
n∑

i=0

Ctw,x,i ·
(

Cta,1,i + QFE.Decrypt(skAi
, Ctu1x,mpk)

Cta,2,i + QFE.Decrypt(skAi
, Ctu2x,mpk)

)]
− Cta,r

Correctness of Our Scheme:

Decrypt(Ctx, skF ,mpk)

=
n∑

i=0

(riw
−1
11 + t−1

i xiw
−1
21 , riw

−1
12 + t−1

i xiw
−1
22)

(
w11ai + w12tix

T Aix
w21ai + w22tix

T Aix

)
−

n∑
i=0

airi

=
n∑

i=0

(ri, t
−1
i xi)W−1W

(
ai

tix
T Aix

)
−

n∑
i=0

airi

=
n∑

i=0

(airi + xi · xT Aix) −
n∑

i=0

airi

=xT

⎛
⎜⎝
xT A0x

...
xT Anx

⎞
⎟⎠

Theorem 3. If the underlying functional encryption scheme for quadratic func-
tions QFE has message space and secret key space of the same order p, if it is
s-IND-CPA secure, then CFE is s-IND-CPA secure.

The proof of Theorem 3 can be found in Supporting Material C.

5 Generalization: From Degree-m Polynomial FE to
Degree-(m + 1) Polynomial FE

Let f(x) =
∑n

q1,...,qm+1=0(fq1,...,qm+1Π
m+1
i=1 xqi

), where x0 = 1, be a degree-(m +
1) polynomial function, we can find more than one such sets {f0(x), . . . , fn(x)}

154 L. Zhang et al.

such that, f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠, where f0(x), . . . , fn(x) are degree-m polynomial

functions.
So our transformation scheme in the above section can be generalized to a

degree-(m + 1) polynomial FE scheme from any degree-m polynomial FE. For
security, the restriction in cubic functionality is also needed in our degree-(m+1)
polynomial functionality. Let M ∈ Zn+1

p be the message space, then our degree-
(m + 1) polynomial functionality Fm+1 is defined as follows:

Definition 5 (degree-(m + 1) polynomial functionality). For any fq1,...,qm+1 ∈
Zp, let F({fq1,...,qm+1}q1,...,qm+1∈[n],x) =

∑n
q1,...,qm+1=0(fq1,...,qm+1Π

m+1
i=1 xqi

)}.
∀f(x) ∈ Fm+1, x0,x1 ∈ M and f(x0) = f(x1), there exists as algorithm
ALG(f) which could find a set of degree-m polynomial functions f0(x), . . . , fn(x),

s.t. f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ and ∀i ∈ [n], fi(x0) = fi(x1).

Similar to our cubic functionality definition, two restrictions on the set of
degree-m polynomials f0, . . . , fn are implied by the degree-(m+1) functionality
definition. One is that the degree-(m + 1) polynomial f(x) can be written as
f(x) =

∑n
i=0(xifi(x)). The other is that for any two vectors x0,x1 ∈ M, if

f(x0) = f(x1), then the outputs of each degree-m polynomials fi, i ∈ [n] on
inputs x0,x1 are also the same. In the following theorem, we also show that
when the message space M is very small, Fm+1 contains all degree-(m + 1)
polynomials.

Theorem 4. Given y0,y1 ∈ Zn+1
p , f(x) =

∑n
q1,...,qm+1=0(fq1,...,qm+1Π

m+1
i=1 xqi

)
and f(y0) = f(y1). There exists a set of degree-m polynomials f0(x), f1(x), . . . ,

fn(x), s.t., f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ and ∀i ∈ [n], fi(y0) = fi(y1).

Proof. The proof is similar with the proof of Theorem 3.
Intuitively, when m increasing, the number of sets {f0(x), . . . , fn(x)} where

f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ is increased. Then, the number of equations which are

generated by the second restriction ∀i ∈ [n], fi(y0) = fi(y1) are not change
(this system of equations always consists of n+1 equations). When m > 2, after
putting these two restrictions together, it is easier to find a feasible solution than
the system of linear equations (3) in the proof of Theorem 3.

Generic Functional Encryption for Polynomials 155

Therefore, one can choose a smaller message space M to achieve larger func-
tionality space Fm+1. Or choose smaller functionality space Fm+1 to get larger
message space M.

5.1 Our FE Scheme for Degree-(m + 1) Polynomial over Zp

Let us consider a degree-m polynomial FE scheme mFE = (Setup,KeyGen,
Encrypt,Decrypt). We define our functional encryption scheme for a degree-
(m + 1) polynomial Fm+1 (m + 1)FE = (Setup,KeyGen,Encrypt,Decrypt) as
follows:

Setup(1λ, 1n): (mpk1,msk1) ← mFE.Setup(1λ, 1n), Randomly choose t =
(t0, . . . , tn) ←R Zn+1

p . Return mpk := (mpk1, t) and msk := (msk1).
KeyGen(mpk,msk, f = {fq1,...qm+1}q1,...,qm+1∈[n]): Call ALG(f) as defined
above to obtain the set of m degree polynomial f0(x), . . . , fn(x) ←R ALG(f).
Then computes skfi

= mFE.KeyGen(mpk1,msk1, tifi). Return skF :=
{skfi

}i∈[n].

Encrypt(x,mpk): Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p , where

w12 = um
1 , w22 = um

2 and WW−1 = I. Randomly choose r = (r0, . . . ,
rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x = mFE.
Encrypt(mpk1, u1x), Ctu2x = mFE.Encrypt(mpk1, u2x). And sets
Ctw,x,i = (ri, t

−1
i xi)W−1 = (riw

−1
11 + t−1

i w−1
21 xi, riw

−1
12 + t−1

i w−1
22 xi),

Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi. Return Ctx =
(Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).
Decrypt(Ctx, skF ,mpk): Return:

[
n∑

i=0

Ctw,x,i ·
(

Cta,1,i + mFE.Decrypt(skAi
, Ctu1x,mpk)

Cta,2,i + mFE.Decrypt(skAi
, Ctu2x,mpk)

)]
− Cta,r

The correctness can be easily extended from the proof in our cubic FE
scheme.

Theorem 5. If the underlying functional encryption scheme for a degree-m
polynomials, mFE, has message space and secret key space of the same order
p, if it is s-IND-CPA secure, then (m+1)FE is s-IND-CPA secure.

The proof of this theorem can be easily extended from the proof of Theorem 4.

Efficiency Analysis. Notice that in this scheme, the size of secret keys in a
degree-(m + 1) polynomial FE will become n times the size of secret keys in the
degree-m polynomial FE, m ≥ 2. However, we show that it would not induce
more cost in practice. In a cloud application scenario, the data owner stores
the encrypted data in a server, and the user has a m + 1-degree polynomial
f and wants to ask the function value f(x). So the user sends all coefficients
of monomial in f to the Key Generator, and the Key Generator will return a
corresponding secret key skf . Then the user sends skf to the server, and the

156 L. Zhang et al.

server does decryption and returns f(x). The size of coefficients is O(nm+1). In
almost existing public key FE schemes from standard assumptions [2–4,6], the
coefficients are used in the Decryption algorithm. So the size of message that the
user sends to the server is also O(nm+1) in their schemes (the message includes
two parts: the coefficients and skf). The expansion of the secret key in our
transformation scheme is a factor n, but the expansion of the size of coefficients
is also a factor n (from degree-m to degree-(m+1)). So under the condition that
the coefficients are used in the Decryption algorithm, the expansion of secret
key can be bounded by the expansion of the size of coefficients. Therefore, our
transformation scheme does not lose any efficiency.

6 Conclusions and Discussion

In this paper, we show that constructing generic FE schemes for quadratic func-
tions, cubic functions and finite degree polynomials are achievable. In summary,
our generic FE scheme for quadratic functions is IND-secure against adaptive
adversary with a linear size ciphertext. This generic scheme can be instantiated
from any PKE schemes that satisfy a few structural and homomorphic proper-
ties. Our generic FE scheme for cubic functions from our quadratic FE scheme
is the first effective scheme for cubic functions. The transformation can be gen-
eralized to higher degree polynomials. In particular, we show how to transform
an IND-secure degree-m polynomial FE scheme to an IND-secure degree-(m+1)
polynomial FE scheme.

There are still quite a number of open questions in this topic. When we use an
IND-secure degree-m polynomial FE mFE to build a degree-(m+1) polynomial
FE scheme, a natural restriction, i.e., the cubic functionality, on such a degree-
(m + 1) polynomial appears. It seems that the question of building generic FE
scheme for any finite-degree polynomials without this restriction is not feasible.
Another question is about function privacy (also known as function hiding, stud-
ied in [10,18,24,29]). Intuitively, function privacy requires that decryption keys
reveal essentially nothing on their corresponding function. However, in almost
existing FE constructions from standard assumptions, the functions are actually
a part of their secret keys, i.e., the coefficients are directly used in decryption
algorithms without any protection. The question of building functional hiding
FE scheme for polynomials from standard assumptions still remains open.

Finally, we conclude the paper by giving a remark on “Indistinguishable
obfuscation from Functional encryption.” Very recently, some papers [7,25] show
that it is possible to construct indistinguishability obfuscation (IO) from FE.
They showed that IO can be obtained from constant degree graded encoding
schemes or subexponentially-secure weakly-succinct FE for functions in NC1. In
fact, our transformation meets the weakly-succinct condition and may provide a
new direction on constructing IO from standard assumptions, although FE for
polynomials (i.e., arithmetic circuits) seems not strong enough to get IO yet.

Acknowledgement. This project is partially supported by the Collaborative
Research Fund (CRF) of RGC of Hong Kong (Project No. CityU C1008-16G).

Generic Functional Encryption for Polynomials 157

Supporting Material

A Requirements of PKE

Our framework constructs functional encryption scheme for quadratic func-
tions QFE = (Setup,KeyGen,Encrypt,Decrypt) from a public-key encryption
scheme ε = (Setup,Encrypt,Decrypt). In order to prove the correctness and
security of the new scheme, we need some structural and homomorphic proper-
ties on ε as defined below.

Structure. ε’s secret keys and public keys are elements of a group G (with
generator g1), and the message space is Mx ⊂ Z. We require the ciphertexts to
consist of two parts c0 = C(g1, r) and ct1 = E(pk, x, r), where pk(g1, sk) is the
public key in G corresponding to the secret key sk. The first part c0 corresponds
to some commitment C(g1, r) of the randomness r used for the encryption. The
second part ct1 is the encryption of x with randomness r. Computing a from
E(pk(g, 0), a, r) can be reduced to some difficult problems.

We also split the Setup algorithm for convenience in the following two algo-
rithms to sample secret keys, and to sample corresponding public keys:

SKGen(1λ) takes in input the security parameter and sample a secret key sk
from the secret key space according to the same distribution induced by Setup.
PKGen(sk, τ) takes in input a secret key sk and parameters τ , and generates
a public key pk corresponding to sk according to the distribution induced by τ .
We will omit τ when it is clear from the context.

Linear Key Homomorphism. We say that a PKE has linear key homomorphism
if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈ Zp, the linear combination
formed by y1sk1 + y2sk2 can be computed efficiently only using public param-
eters, the secret keys and the coefficients. And this combination y1sk1 + y2sk2
also functions as a secret key to a public key that can be computed as pky1

1 ·pky2
2 ,

where pk1 (resp. pk2) is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism Under Shared Randomness. We say that a
PKE has linear ciphertext homomorphism under shared randomness if it holds
that E(pk1, x, r) · E(pk2, y, r) = E(pk1pk2, x + y, r) and E(pk(gq, sk), x, r) =
E(pk(g, sk), x, r)q = E(pk(g, qsk), qx, r).

Computation Properties in Bilinear Map. Assume that e(ga
1 , gb

1) = gab
T is a bilin-

ear map G × G → GT , where gT is a generator of GT and e(g1, g1) = gT . We
require that

e(E(pk(g1,sk1), x, a), E(pk(g1,sk2), y, b))
= E(pk(gT ,sk1sk2), xy, ab)E(pk(gT ,sk1), 0, a)yE(pk(gT ,sk2), 0, b)x

And for security, we define two properties via security game. More details
can be referred to [3].

158 L. Zhang et al.

l-Public-Key-Reproducibility. For a public-key encryption scheme ε, we define
l-public-key-reproducibility via the following security game:

Game Expl−ct−rep−b
ε,λ (A)

proc Initialize(λ, M)

(sk, (αi, ski)i∈[l]) ←R D(1λ)
If b = 0 then (pki = ε.PKGen(αisk + ski, τ))i∈[l]

else pk ← ε.PKGen(sk, τ ′); (pki = pkαi · ε.PKGen(ski.τi))i∈[l]

Return (pki, ski)i∈[l]

proc Finalize(b′)
Return (b′ = b)

with D samples tuples of the form (sk, (αi, ski)i∈[l]) where sk and the ski’s are
sampled from SKGen, and the αi’s are in T .

Then, we say that ε has l−public−key−reproducibility if there exists
τ, τ ′(τi)i∈[l] such that

|Pr[Expl−pk−rep−0
ε,λ (A = 1)]| − |Pr[Expl−pk−rep−1

ε,λ (A) = 1]| = negl(λ)

l-Ciphertext-Reproducibility. For a public-key encryption scheme ε, we define
l-ciphertext-reproducibility via the following security game:

Game Expl−ct−rep−b
ε,λ (A)

proc Initialize(λ, M)

(a, (αi, xi, ski)i∈[l]) ←R D(1λ)

sk ← ε.SKGen(1λ); pk ← ε.PKGen(sk, τ ′); (pki ← ε.PKGen(ski, τi))i∈[l]

ct0 = ε.C(r); ct = ε.E(pk, a, r)
If b = 0 then cti = ctαi · ε.E(pki, xi, r)
else cti = ctαi · ε.E′(ski, xi, ct0, τi)
Return (pk, (αi, pki, ski)i∈[l], ct0, (cti)i∈[l])
proc Finalize(b′)
Return (b′ = b)

where (1) D samples tuples of the form (a, (αi, xi, ski)i∈[l]), where ski’s are
sampled from SKGen, αi’s are in T and a and the xi’s are in Mx. (2) E′ is an
algorithm that takes in input a secret key in H, a message in Zp, a first part
ciphertext C(r) for some r in the randomness space, and the parameters needed
to generate public keys, and output a second part ciphertext.

Then, we say that ε has l−ciphertext−reproducibility if there exists τ ′, τi’s
and algorithm E′ such that

|Pr[Expl−ct−rep−0
ε,λ (A = 1)]| − |Pr[Expl−ct−rep−1

ε,λ (A) = 1]| = negl(λ)

.

Generic Functional Encryption for Polynomials 159

B Proofs in Our FE Scheme for Quadratic Functions

B.1 Proof of Theorem 1

Proof. We proof the security via a sequence of hybrid experiments, and then we
show they are indistinguishable.

Hybrid H1: This is the IND-FE-CPA game:

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Hybrid H2: This is like H1 except that the master public key is generated by
invoking the algorithm H2.Setup defined as follows:
H2.Setup(1λ, 1n): The algorithm samples sk ← ε.SKGen(1λ), for i ∈ [n],
PKE secret key si ← ε.Setup(1λ) and uniformly random scalar ti ←R

ZP , q ←R Z∗
p and a bilinear map e(g1, g1) = gT , where g1, gT are generators

of G1, GT . Similarly, e2(g2, g2) = gT ← G1λ

is a bilinear map G2 × G2 →
GT , where g2, gT are generators of G2, GT . Then the algorithm sets: PK =
ε.PKGen(g1, qsk, τ), ski = si + tisk, g′

T = gq
T . PKsi

= ε.PKGen(g1, qsi, τi)
PKi = PKti · PKsi

, where τ is the same as used in the Setup algorithm, and τi

is such that PKti · PKsi
is close to ε.PKGen(g1, qski).

The algorithm returns mpk := (params, PK, {PKi}i∈[n], g1, g2, gT , g′
T , e(·, ·))

and msk := (s, t, sk, q). Under the l−public−key−reproducibility of ε, H1 and
H2 are indistinguishable.

Hybrid H3: This is like H2 except that the challenge ciphertext is generated
by invoking the algorithm H3.Encrypt defined as follows:
H3.Encrypt(msk,mpk,x): Choose shared randomness r and a = (a1, ..., an) in
Zp, and computes
ct0 = ε.C(r2, g1), ct1 = ε.E(PK, 0, r), cta,i = ε.E(pk(g1, 0), ai, r)
For i ∈ [n], ctx,i = ctti

1 · ε.E(PKsi
, xi, r), cta,x,i = ε.E(pk(g2, 1)xi , ai, r)

By linear ciphertext-homomorphism of ε, H2 = H3.

Hybrid H4: This is like H3 except that the challenge ciphertext is generated
by invoking the algorithm H4.Encrypt defined as follows:
H4.Encrypt(msk,mpk,Ct,x): Let Ct = (Ct0, Ct1). Then the algorithm com-
putes the ciphertext for x in the following way:
ct0 = ε.C(r2, g1), cta,i = ε.E(pk(g1, 0), ai, r). For i ∈ [n], ctx,i = ctti

1 ·
ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi , ai, r), where ε.E′ is the alternative
encryption algorithm defined in the l−ciphertext−reproducibility game. r̃ is
some randomness shared among all the invocation of ε.E′.

160 L. Zhang et al.

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct = ε.E(PK, 0)
F ← ∅ Ct∗ ←R H4.Encrypt(msk,mpk,Ct,xb)
Return mpk Return Ct∗
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the l−ciphertext−reproducibility of ε, H3 and H4 are indistinguishable.

Hybrid H5: This is like H4 except that the challenge ciphertext is generated by
invoking the algorithm H5.Encrypt defined as follows and Ct encrypts a random
value in Zp.
H5.Encrypt(msk,mpk,Ct,x): Let Ct = (Ct0, Ct1). Then the algorithm com-
putes the ciphertext for x in the following way:
ct0 = ε.C(r2, g1), cta,i = ε.E(pk(g1, 0), ai, r).
For i ∈ [n], ctx,i = ctti

1 · ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi+ti , ai, r)

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct = ε.E(PK, 1)
F ← ∅ Ct∗ ←R H5.Encrypt(msk,mpk,Ct,xb)
Return mpk Return Ct∗
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the s-IND-CPA security of ε, ε.E(PK, 0) and ε.E(pk, 1) are
indistinguishable. Now, we need to show that ε.E(pk(g2, 1)xi+ti , ai, r) and
ε.E(pk(g2, 1)xi , ai, r) are indistinguishable.

If ∃w(ti) ∈ Zp, s.t. ε.E(pk(g2, ti), 0, r) = ε.E(pk(g2, 0), w(ti), r), then

ε.E(pk(g2, 1)xi+ti , ai, r) = ε.E(pk(g2, xi), ai, r)ε.E(pk(g2, ti), 0, r)
= ε.E(pk(g2, xi), ai, r)ε.E(pk(g2, 0), w(ti), r)
= ε.E(pk(g2, xi), ai + w(ti), r)

and ε.E(pk(g2, 1)xi , ai, r) = ε.E(pk(g2, xi), ai, r). We can refer to ε.E(pk(g2,
1)xi+ti , ai, r) as encryption of a random number, so the ciphertext is a random
‘fake’ ciphertext. According to the security of PKE ε and the equivalent between
IND-security and semantic security of PKE, ε.E(pk(g2, 1)xi , ai, r) should be
indistinguishable from a random number. Therefore ε.E(pk(g2, 1)xi , ai, r) and
ε.E(pk(g2, 1)xi+ti , ai, r) are indistinguishable.

Generic Functional Encryption for Polynomials 161

Else, ∀b ∈ Zp, ε.E(pk(g2, 0), b, r) �= ε.E(pk(g2, ti), 0, r). If ∃c, d ∈ Zp,
ε.E(pk(g2, 0), c, r) = ε.E(pk(g2, 0), d, r), then

c = ε.Decrypt(sk, ε.C(g2, r), ε.E(pk(g2, 0), c, r))
= ε.Decrypt(sk, ε.C(g2, r), ε.E(pk(g2, 0), d, r))
= d

Since GT = p, we have that GT = {ε.E(pk(g2, 0), b, r)}b∈Zp
. So

{ε.E(pk(g2, 0), b, r)}b∈Zp
∩ ε.E(pk(g2, ti), 0, r) = GT ∩ ε.E(pk(g2, ti), 0, r) �= ∅

By contradiction, ∀ti ∈ Zp,∃b ∈ Zp, s.t. ε.E(pk(g2, 0), b, r) = ε.E(pk(g2, ti), 0, r)
Therefore, H4 and H5 are indistinguishable.

Hybrid H6: This is like H5 except that the challenge ciphertext is generated
by invoking the algorithm H6.Encrypt defined as follows:
H6.Encrypt(msk,mpk,x): The algorithm computes the ciphertext for x in the
following way:
ct0 = ε.C(r2, g1), ct1 = ε.E(PK, 1, r), cta,i = ε.E(pk(g1, 0), ai, r).
For i ∈ [n], ctx,i = ctti

1 · ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi+ti , ai, r)

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct∗ ←R H6.Encrypt(msk,mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the l−ciphertext−reproducibility of ε, H5 and H6 are indistinguishable.

Hybrid H7: This is like H8 except that the challenge ciphertext is generated
by invoking the algorithm ε.Encrypt

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct∗ ←R ε.E(mpk,xb + t)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

By linear ciphertext homomorphism of ε, H6 = H7.

Hybrid H8: This is like H7 except that the master public key is generated by
invoking the algorithm Setup.

162 L. Zhang et al.

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R ε.E(mpk,xb + t)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′ =b)

Under the l−public−key−reproducibility of ε, H7 and H8 are indistinguishable.

Advantage of Any PPT Adversary in H8: Notice that t+xb −x1−b ∈ Zn
p .

Let t′ = t + xb − x1−b , s
′
i = si + (x1−b − xb)isk. Then (s′, t′) equally likely as

(s, t) that gives exactly the same view by replacing xb by x1−b .
Moreover, when analyzing skF ← FE.KeyGen(F,msk), since s′

i + t′isk = si +
x1,b,isk −xb,isk +(ti +xb,i −x1−b,i)sk = si + tisk, so the skF are same for (s, t)
and (s′, t′). Therefore, the advantage of the adversary in this game is 0.

C Proofs in Our FE Scheme for Cubic Functions

C.1 Proof of Theorem 2

Proof. Let ai = fi,j,k, i = j = k �= 0, bi,k = fi,j,k, i = j �= k, i, k �= 0, ci,j,k =
fi,j,k, i �= j �= k, i, j, k �= 0, di = fi,j,k, i = j �= 0, k = 0, ei,j = fi,j,k, i �=
j �= 0, k = 0, fi = fi,j,k, i �= 0j = k = 0, g = fi,j,k, i = j = k = 0 and

A0 =

⎛
⎜⎜⎜⎝

a0
00, . . . , a

0
0n

a0
10, . . . , a

0
1n

...
. . .

...
a0

n0, . . . , a
0
nn

⎞
⎟⎟⎟⎠ , . . . , A0 =

⎛
⎜⎜⎜⎝

an
00, . . . , a

n
0n

an
10, . . . , a

n
1n

...
. . .

...
an

n0, . . . , a
n
nn

⎞
⎟⎟⎟⎠.

Since f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠, we can get the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0
00 = g

ai
ii = ai, i > 0

a0
ii + (ai

0i + ai
i0) = di, i > 0

(a0
i0 + a0

0i) + ai
00 = fi, i > 0

(a0
ij + a0

ji) + (aj
0i + aj

i0) + (ai
j0 + ai

0j) = ei,j , i > j > 0

(ai
ik + ai

ki) + ak
ii = bi,k, i > k > 0

(ai
jk + ai

kj) + (aj
ik + aj

ki) + (ak
ij + ak

ji) = ci,j,k, i > j > k > 0

(1)

Generic Functional Encryption for Polynomials 163

Since ∀i ∈ [n],y0Aiy0 = y1Aiy1, where yu = (yu0, yu1, . . . , yun), u = 1, 2 we
can get the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

(a
0
i0 + a

0
0i)(y0i − y1i) +

n∑

i=1

a
0
ii(y

2
0i − y

2
1i) +

n∑

i>j=1

(a
0
ij + a

0
ji)(y0iy0j − y1iy1j) = 0

.

.

.

n∑

i=1

(a
n
i0 + a

n
0i)(y0i − y1i) +

n∑

i=1

a
n
ii(y

2
0i − y

2
1i) +

n∑

i>j=1

(a
n
ij + a

n
ji)(y0iy0j − y1iy1j) = 0

(2)

Putting Eqs. (1) and (2) together, we can get that:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0
00 = g

ai
ii = ai, i > 0
n∑

i=1

(fi − ai
00)(y0i − y1i) +

n∑
i=1

(di − (ai
0i + ai

i0))(y
2
0i − y2

1i)+

n∑
i>j=1

(ei,j − (aj
0i + aj

i0) − (ai
j0 + ai

0j))(y0iy0j − y1iy1j) = 0, i > j > 0

n∑
i=1

(a1
i0 + a1

0i)(y0i − y1i) +
n∑

i=1

(bi,1 − (ai
i1 + ai

1i))(y
2
0i − y2

1i)+

n∑
i>j=1

(ci,j,1 − (ai
j1 + ai

1j + aj
i1 + aj

1i))(y0iy0j − y1iy1j) = 0, i > j > 0

...
n∑

i=1

(an
i0 + an

0i)(y0i − y1i) +
n∑

i=1

(bi,n − (ai
in + ai

ni))(y
2
0i − y2

1i)+

n∑
i>j=1

(ci,j,n − (ai
jn + ai

nj + aj
in + aj

ni))(y0iy0j − y1iy1j) = 0, i > j > 0

(3)

Now, we will show that the system of linear Eq. (3) is solvable, i.e., its coefficient
matrix is full rank.

Notice that a0
00 only occurs in the first equation of (3), each ai

ii only occurs
in one equation of {ai

ii = ai, i > 0}, each ai
00 only occurs in one equation of

{
∑n

i=1(fi − ai
00)(y0i − y1i) +

∑n
i=1(di − (ai

0i + ai
i0))(y

2
0i − y2

1i) +
∑n

i>j=1(ei,j −
(aj

0i + aj
i0) − (ai

j0 + ai
0j))(y0iy0j − y1iy1j) = 0, i > j > 0}, each (aj

it + aj
ti) only

occurs in one equation of {
∑n

i=1(a
t
i0+at

0i)(y0i−y1i)+
∑n

i=1(bi,n−(ai
it+ai

ti))(y
2
0i−

y2
1i) +

∑n
i>j=1(ci,j,n − (ai

jt + ai
tj + aj

it + aj
ti))(y0iy0j − y1iy1j) = 0, i > j > 0}. So

the coefficient matrix is full rank.

C.2 Proof of Theorem 3

Proof. We proof security via a sequence of hybrid experiments, and then we
show they are indistinguishable.

164 L. Zhang et al.

Hybrid H1: This is the s-IND-CPA game:

proc Initialize(λ,x0,x1) proc LR()
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Hybrid H2: This is like H1 except that the master public key is generated by
invoking the algorithm H2.Setup defined as follows:
H2.Setup(1λ, 1n,x0,x1): The algorithm samples (mpk1,msk1) ← QFE.Setup
(1λ, 1n). Randomly choose t = (t0, . . . , tn) ←R Zn+1

p . Then sets t0i = (x1i

x0i
t−1
i)−1

and t1i = (x0i

x1i
t−1
i)−1. Return mpk := (mpk1, tb) and msk := (msk1).

Zp is a field, so t0i and t1i are uniformly distributed in Zp. Therefore, H2 and
H1 are indistinguishable.

Hybrid H3: This is like H2 except that the challenge ciphertext is generated
by invoking the algorithm H3.Encrypt(mpk,xb) defined as follows:

H3.Encrypt(mpk,xb) : Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p ,

where w12 = u2
1, w22 = u2

2 and WW−1 = I. Randomly choose r = (r0, . . . ,
rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x = QFE.
Encrypt(mpk1, u1x1−b , Ctu2x = QFE.Encrypt(mpk1, u2x1−b). Sets Ctw,x,i =
(ri, (tbi)

−1xbi)W−1, and Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi.
Return Ctx = (Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).

Firstly, we show that Ct′u1x = QFE.Encrypt(mpk1, u1xb) and Ctu1x =
QFE.Encrypt(mpk1, u1x1−b) are indistinguishable. For any f ∈ F , exists a set
of matrices {Ai}i∈[n], s.t. f(x) =

∑n
i=0 xix

T Aix and x0
T Aix0 = x1

T Aix1, i ∈
[n]. So,

(x1−b)T Ai(x1−b) = xb
T Aixb , i ∈ [n]

By the s-IND-CPA of the QFE scheme, these two should be indistin-
guishable. Similarly, Ct′u2x = QFE.Encrypt(mpk1, u2xb) and Ctu2x =
QFE.Encrypt(mpk1,u2x1−b) are also indistinguishable.

Then, we show that Ct′w,x,i = (ri, t
−1
i xbi)W−1 and Ctw,x,i = (ri,

(tbi)
−1xbi)W−1 are indistinguishable. ti and tbi are hidden by the matrix W ,

i.e. without knowing about W , the adversary cannot determine whether ti or
tbi is used in the encryption. So the only thing we should prove is that the
adversary cannot recover W . When considering the ciphertexts Cta,1,i = w11ai

and Cta,2,i = w21ai, we find that there exists α ∈ Zp, s.t. w11 = αw21. So
Cta,1,i = w11ai = αw21ai = αCta,2,i. Actually, there are n + 1 unknown values
(a1, ..., an, w11) but only n effective equations, so w11 are not achievable. It is
easy to see that w11 in other parts of ciphertext is also hidden by some random
values.

Generic Functional Encryption for Polynomials 165

Therefore, H3 and H2 are indistinguishable.

Hybrid H4: This is like H3 except that the challenge ciphertext is generated
by invoking the algorithm CFE.Encrypt as follows:

proc Initialize(λ,x0,x1) proc LR()
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,x1−b)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

In H3.Encrypt, Ct′w,x,i = (ri, (tbi)
−1xbi)W−1 = (ri,

x1−b,i

xbi
t−1
i xbi)W−1 = (ri,

x1−b,it
−1
i)W−1. In CFE.Encrypt, Ct′w,x,i = (ri, x1−b,it

−1
i)W−1. So H4 = H3.

Advantage of Any PPT Adversary in H4: In H4, the challenge ciphertext
is a valid ciphertext for the message x1−b . So it gives the same view by replacing
xb by x1−b . Therefore, the advantage of any adversary in this game is 0.
Notice that we only consider the situation that x0i �= 0, x1i �= 0, i ∈ [n]. And the
proof can be extended when considering 0. We need to modify the construction
of tb and H3.Encrypt as follows:

1. If x0i = x1i = 0, then t0i = t1i = ti, and Ctw,x.i = (ri, (tbi)
−1xbi)W−1.

2. If xbi = 0, x1−b,i �= 0, then tbi = x1−b,it
−1
i − xbi, and Ctw,x,i = (ri, t

b
i +

xbi)W−1.
3. If xbi �= 0, x1−b,i = 0, then tbi = −xbit

−1
i , and Ctw,x,i = (ri, t

b
i + t−1

i xbi)W−1.

The remaining proof can be easily extended from our proof.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, rela-
tion to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 13

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. IACR Cryptology ePrint Archive, Report
2016/11 (2016)

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

166 L. Zhang et al.

5. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Pro-
ceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

6. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

7. Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 1

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

10. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 26

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

14. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

16. Cheon, J.H., Hong, S., Lee, C., Son, Y.: Polynomial functional encryption scheme
with linear ciphertext size. IACR Cryptology ePrint Archive, Report 2018/585
(2018)

17. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 7

https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-49384-7_7

Generic Functional Encryption for Polynomials 167

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014)

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC 2013, Palo Alto, California, USA, 1–4
June 2013, pp. 555–564. ACM (2013)

22. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

24. Kim, S., Lewi, K., Mandal, A., Montgomery, H.W., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. Cryptology ePrint Archive, Report
2016/440

25. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Proceedings of the IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
Brunswick, New Jersey, USA, 9–11 October 2016, pp. 11–20. IEEE (2016)

26. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

29. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

30. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

31. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 33

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

	From Quadratic Functions to Polynomials: Generic Functional Encryption from Standard Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques

	2 Preliminaries
	2.1 Bilinear Map
	2.2 Functional Encryption

	3 A Generic Functional Encryption Scheme for Quadratic Functions
	3.1 Our FE Scheme for Quadratic Functions over Zp

	4 From Quadratic FE to Cubic FE over Zp
	4.1 Cubic Functionality over Zp
	4.2 Our FE Scheme for Cubic Functions over Zp

	5 Generalization: From Degree-m Polynomial FE to Degree-(m+1) Polynomial FE
	5.1 Our FE Scheme for Degree-(m+1) Polynomial over Zp

	6 Conclusions and Discussion
	A Requirements of PKE
	B Proofs in Our FE Scheme for Quadratic Functions
	B.1 Proof of Theorem 1

	C Proofs in Our FE Scheme for Cubic Functions
	C.1 Proof of Theorem 2
	C.2 Proof of Theorem 3

	References

