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Abstract. “An ounce of prevention is worth a pound of cure”. This
paper presents a methodology to detect side-channel leakage at source-
code level. It leverages simple tests performed on noise-less traces of
execution, and returns to the developer accurate information about the
security issues. The feedback is in terms of location (where in code, when
in time), in terms of security severity (amount and duration of leakage),
and most importantly, in terms of possible reason for the leakage. After
the source code (and subsequently the compiled code) has been sanitized,
attack attempts complement the methodology to test the implementation
against realistic exploitations. This last steps allows to validate whether
the tolerated leakages during the sanitizing stage are indeed benign.

Keywords: Virtual evaluation methodology · Pre-silicon analysis ·
Source code vulnerability · Exploitability checking

1 Introduction

It is known since more than twenty years (recall the seminal paper of Kocher
about timing attacks [12] in 1996) that some non-functional aspects of com-
putation can be exploited to extract information from sensitive computations.
Such key recovery attacks are referred to as side-channel analyses. They are very
popular since they have allowed to break many real-world products in the past.
Their threat was so scaring that side-channel analyses have been formalized in
evaluation and test methodology, such as Common Criteria (ISO/IEC 15408),
FIPS 140 and its international extension (ISO/IEC 19790), etc.

Today, side-channel analyses are well understood. It is clear how their suc-
cess probability is related to the cipher architecture (e.g., through confusion
coefficients [8]) and to the measurement conditions (e.g., the signal-to-noise
ratio [16, Sect. 4.3.2, p. 73]). Countermeasures, such as hiding [16, Chap. 7],
masking [16, Chap. 9], shuffling [23], resilience [13], etc. have been proposed and
widely studied.
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Alongside with side-channel analysis becoming more mature, the validation
of protections on real (i.e., complex) systems has emerged as a new topic of
interest [11]. The first step has been to set up some evaluation frameworks [19,20,
24]. They were complemented by tests to assess for leakage presence: this practice
is called leakage detection. The leakage is characterized by differences [10], T-
tests [9], or variance tests [2]. Such tests allow to detect vulnerabilities, but still,
they apply only on the final product.

Checking whether attacks would be successful on source code is already a
known technique [21]. In this paper, we highlight a novel methodology to detect
leakages directly on the source code. The motivation is to allow for a fast feedback
to the developer about vulnerabilities present in the source code. It is known
that curing security issues in advance allows very quickly to converge to a side-
channel-clean design, whereas chasing leakages late in the product development
phase is costly and slow.

The rest of this paper consists in a explanation of the methodology (Sect. 2).
The key messages are then gathered in a conclusion (Sect. 3), which also opens
some perspectives for still better high-level detection techniques.

2 The Presented Methodology

We illustrate a situation where the design to be evaluated is a cryptographic
application, which has the requirement to keep the secret key confidential. More-
over, we focus on a hardware implementation, since the security of hardware (in
comparison with that of software) is the less easy to control. In particular, hard-
ware consists in sequential ressources (which are clocked and are responsible to
keep the state of the design) and in combinational ressources (which evaluate as
soon as inputs change). The difference between the two ressources is illustrated
in Fig. 1. The workflow to have the design be validated as correctly protecting the
key is depicted in Fig. 2. It presents the methodology implemented in Secure-IC
VirtualyzrTM tool.

This figure shows that the path to obtain a secure design is iterative. First
of all, the developer writes source code of its security application. Second, he
provides a testbench. It can be written specifically for the application, or gener-
ated by the automated maintenance system. For instance, the testbench can be
reused from a functional verification tool for security validation. The source code
together with the testbench enable a simulator tool (e.g., Secure-IC VirtualyzrTM

supports Cadence ncsimTM, Synopsys vcsTM, Mentor Graphics modelsimTM or
veloceTM, etc.) to generate traces. As a next step, traces are analyzed with
respect to leakage. For this purpose, the Virtualyzr shall be aware of the name
of the assets to protect. Hence the indication of secrets as a user input in Fig. 2.
Security analysis will reveal multiple information:

– for every bit in the system, at each clock cycle,
– how much and when is there a non-negligible dependency?
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Fig. 1. Illustration of hardware as a Moore state machine, where sequential ressources
sample at clock rising edge whereas combinational ressources evaluate each time an
input changes, hence glitches at their output. Exemplar chronograms are displayed in
the grey boxes

At bit level and without noise, all statistical tools to analyse dependency col-
lapse to the same distinguisher, namely the Pearson correlation. Notice that this
analysis is exhaustive. However, it is feasible since estimation of dependency can
be achieved with little amount of traces. For example, for an accuracy of 1%,
only (1/0.01)2 = 10, 000 traces are needed. The outcome of the analysis is a
table containing those pieces of information:

– list of events (i.e., signal-time pairs),
– amount of correlation,
– duration of leakage. For sequential signals (registers), the duration is irrele-

vant, since those signals vary only exactly once per clock period. However, for
combinational signals (output of Boolean or arithmetic gates), the duration is
important when the code is not simulated at Register Transfer Level (RTL).
Indeed, at RTL, combinational gates are evaluated without delay. But at later
stages of refinement (RTL synthesized to logic gates), the combinational sig-
nals feature delays. The duration of correlation therefore indicates how tran-
sient the vulnerability is showing up. In particular, it is relevant to make a
difference between steady versus glitching leakage [15]. A steady leakage basi-
cally means that some gates take on a value which can be exploited. This
situation is more critical than glitch leakage where the leakage is transient:
the dependency does not last until the end of the clock cycle, but shows up
surreptitiously only at the favor of input signals uncoordinated arrival times.

In theory, all vulnerabilities should be fixed, which is the purpose of the feed-
back loop to the original design (cf. Fig. 2). The tool must be fast and automated
to make this iterative sanitation process as smooth as possible. Now, in practice,
some vulnerabilities might be identified as tolerable. This is the intent of the
security policy. Examples are as follows:
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– Key scheduling logic is certainly dependent on the key, however, exploitability
requires a template attack [5], since the key cannot (in general) be manipu-
lated by the user (i.e., the attacker);

– Leakage within cryptographic primitives might be computationally hard to
exploit. Refer for example to the exploitation of HMAC: all executions of
the hash primitive depend on the key, however only the head and tail ones
are really affected in a realistic manner by the leakage of the HMAC key;
exploiting others would require for the attacker the ability to inverse hash
functions. If this was feasible, side-channel attacks would not be the easiest
attack paths.

Apart from these exceptions, all vulnerabilities on RTL source are expected to
be fixed, since they make up structural weaknesses. After this step, the design
is refined into a netlist, either post-synthesis (delays are added in the gates) or
post place-and-route (delays are added in the interconnection between the gates
as well). Therefore, more avenues for leakage occur: indeed, the combinational
gates evaluate as soon as one input changes (contrary to sequential gates). In
addition, after synthesis, some restructurations or even optimizations are carried
out. They include:

– gate factorization,
– gates reordering,
– simplification.

Due to these modifications, the architectural structure and the signal names are
altered. Thus one aspect is to keep track of RTL resource names with netlist
resource names. The vulnerability analysis now might evolve. The differences
can be classified in two categories:

1. regressions (such as countermeasure alteration),
2. refinement (such as providing more details for a primitive, which induces more

complex timing behavior).

Regressions must be addressed, because they highlight problems arising from
the use of EDA tools. For instance, the first-order masked AND gate (computing
c = a∧ b, where each Boolean variable x is randomly split in two, as per perfect
masking [3], that is x = x′ ⊕ x′′) represented in Fig. 3(a)) will leak with:

– correlation 1 (because the sensitive signal c appears in the clear) with sim-
plification of Fig. 3(b), and

– correlation 1/2 (because a′ ∧ b′ ⊕ a′ ∧ b′′ = a′ ∧ b, which is equal to b if a′ = 0
and to 0 otherwise, hence a match with clear value b half of the time—a′

is a random mask, i.e., P(a′ = 0) = P(a′ = 1) = 1/2) with simplification of
Fig. 3(c).

Both netlists (b) and (c) are functionally correct. They are even improved in
terms of critical path (for equal gate-count), as compared with (a). Nonetheless,
their rearrangement induced a side-channel leakage. Interestingly, the amount of
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leakage (e.g., correlation 1 versus 1/2) reveals a precious hint to the designer. It
helps him understand if the problem is structural (case of correlation = 1) or
due to some unbalance in the masking scheme (case of correlation = 1/2, refer
for instance to [18]).

The correction can be some actions either on the compilation side (typically
by placing constraints in scripts), or on the design-side (typically by adopting a
robust coding style, which resists optimizations).

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

c′ c′′

(c)

Leakages

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

(a)

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

c′ c′′

(b)

Leakage

c′′c′

No leakage

Fig. 3. Example of simplifications on masked c = a ∧ b which induce side-channel
leakage of sensitive information. In this figure x ∈ {a, b, c} is randomly split as (x′, x′′)
such that x = x′ ⊕ x′′.

Refinements might highlight transient leakages due to glitches [17]. Here, the
security policy decides whether those glitches are tolerable or not. Indeed, it
might be time-consuming to remove all glitches which carry (thence leak) sensi-
tive information. Typically, if the glitch lasts 10 ps and that the attacker makes
use of a sampling device which allows only to measure at a bandwidth of 1 GHz,
then the glitch will be smoothed by the measurement system and its energy will
be spread over 100 time samples, thereby making its exploitability 100 times
more difficult. In these conditions, a decision to live with such glitch can be
made. An exemplar security policy is exposed in Table 1. It makes a difference
between the type of incriminated resource, either seq(uential) or combi(national).
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As mentioned, leakage of sequential ressources is to be considered more seriously
than combinational ressources, because the leakage is synchronized, hence the
signal-to-noise ratio measured by an attacker is high. Also, sequential elements
(typically flip-flops or memories) consume/radiate much more than combina-
tional gates, and their leakage model is simple (Hamming weight and/or Ham-
ming distance [4, Sect. 2]).

Table 1. Exemplar security policy

Type Duration Correlation Origin Policy

Seq. One clock period =1 Structural Fatal design bug or
simplification upon
synthesis optimization

Seq. One clock period <1 Unbalanced mask,
causing first-order
leakage

Critical
countermeasure issue

Combi. Steady =1 Structural Critical design bug

Combi. Steady <1 Unbalanced mask,
causing first-order
leakage

Serious
countermeasure issue

Combi. Transient <1 Timing race Can be
tolerated—typically
requires 100,000+
traces

Finally, attacks are tested on aggregated traces. The methodology applied to
virtual traces is that of ISO/IEC 17825 [6]. It is a classical approach, where:

– timing and cache-timing analyses are experienced first,
– second single trace leakage is assessed, and
– finally, vertical attacks are tested.

We refer the reader to papers such as [22] for in-depth discussions about the use
of simulation for exploitability analysis.

3 Conclusion and Perspectives

We have presented a fast methodology based on simulation to identify precisely
and with little number of test vectors the presence of leakage. We show that
some basic characterizations allow to narrow down the root cause of the leakage,
which allows to accompany the developer in researching for leakage reduction
or cancelling techniques (based on coding style or compilation options). This
approach is innovative and can be implemented in a tool (we illustrate the case
of Secure-IC Virtualyzr).

As a perspective, we notice that formal methods could complement the pre-
sented methodology. Formal methods ensure 100% coverage and are typically
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faster to yield their conclusions than dynamic methods. It is also to be noticed
that formal methods (as of today, such as [7]) cannot discriminate between seri-
ous and tiny leakages. Moreover, formal methods are more comfortable at high-
level since they need to approximate the design; therefore, they do not allow a
traceability after compilation stages. Still, the synergy between static (i.e., for-
mal) and dynamic leakage evaluation is foreseen as a winning combination for
side-channel eradication from secure designs.

Eventually, we underline that the methodology presented in this paper could
apply as well to software evaluation, where the most threaten leakage arises from
cache-timing problems. A parallel between hardware and software is sketched in
Table 2. Recall that:

– Hardware of secret key applications is computing in constant time, but fea-
tures exploitable vertical leakage [14];

– Software is mostly vulnerable regarding horizontal leakage. Indeed, software
development practices today is at a less advanced stage, security-wise, than
that of dedicated cryptographic hardware.

Table 2. Comparison between security issues in hardware vs software

Programme Cause of information leakage

nature Structural leakage Optimization upon
code generation

Dynamic leakage

Hardware Unmasked or
unbalanced signals

Simplification (recall
Fig. 3)

Glitches

Software Conditional control
flow and/or table
lookups

Seldom, since
unpredictability hurts
performances

Cache hit/miss,
speculation,
out-of-order execution
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3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 5

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
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