
Claude Carlet
Sylvain Guilley
Abderrahmane Nitaj
El Mamoun Souidi (Eds.)

 123

LN
CS

 1
14

45

Third International Conference, C2SI 2019
Rabat, Morocco, April 22–24, 2019, Proceedings
In Honor of Said El Hajji

Codes, Cryptology
and Information Security

Lecture Notes in Computer Science 11445

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board Members

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Claude Carlet • Sylvain Guilley •

Abderrahmane Nitaj • El Mamoun Souidi (Eds.)

Codes, Cryptology
and Information Security
Third International Conference, C2SI 2019
Rabat, Morocco, April 22–24, 2019, Proceedings
In Honor of Said El Hajji

123

Editors
Claude Carlet
Université Paris 8
Saint-Denis, France

Sylvain Guilley
Institut MINES-TELECOM
Paris, France

Abderrahmane Nitaj
Université de Caen
Caen, France

El Mamoun Souidi
Mohammed V University
Rabat, Morocco

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-16457-7 ISBN 978-3-030-16458-4 (eBook)
https://doi.org/10.1007/978-3-030-16458-4

Library of Congress Control Number: 2019935476

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5044-3534
https://doi.org/10.1007/978-3-030-16458-4

Preface

The Third International Conference on the Theory and Applications of Cryptographic
Techniques, Coding Theory, and Information Security was held at the Faculty of
Sciences at the University of Mohammed V in Rabat, Morocco during April 22–24,
2019. This volume contains the papers accepted for presentation at C2SI-El Hajji 2019,
in honor of Professor Said El Hajji, from this university.

One aim of C2SI-El Hajji 2019 was to pay homage to Professor Said El Hajji for his
valuable contribution to research, teaching, and disseminating knowledge in numerical
analysis, modeling, and information security in Morocco, Africa, and worldwide. We
are deeply grateful to him for his great services in contributing to the establishment of a
successful research group in coding theory, cryptography, and information security at
Mohammed V University in Rabat, organizing a master’s course in this field and many
other academic activities.

The other aim of the conference is to provide an international forum for researchers
from academia and practitioners from industry from all over the world to discuss all
forms of cryptology, coding theory, and information security.

The organization of C2SI-El Hajji 2019 was initiated by the Moroccan Laboratory
of Mathematics, Computing Sciences, Applications, and Information Security
(LabMIA-SI), and performed by an active team of researchers from Morocco and
France. The conference was organized in cooperation with the International Associa-
tion for Cryptologic Research (IACR), and the proceedings are published in Springer’s
Lecture Notes in Computer Science series.

C2SI-El Hajji 2019 was the third of the C2SI series. The first conference of the C2SI
series was held at the University Mohammed V in Rabat during May 26–28, 2015, in
honor of Professor Thierry Berger from Limoges University, and the second conference
of the series was held at the same university during April 10–12, 2017, in honor of
Professor Claude Carlet, from Paris 8 University. The proceedings of both conferences
were published in Springer’s Lecture Notes in Computer Science.

The C2SI-El Hajji 2019 Program Committee consisted of 46 members. There were
90 papers submitted to the conference. Each paper was assigned to three members
of the Program Committee on average and reviewed anonymously. The review process
was challenging and the Program Committee, aided by reports from 38 external
reviewers, produced a total of 240 reviews in all. After this period, 19 papers were
accepted on January 20, 2019. Authors then had the opportunity to update their papers
until February 15, 2019. The present proceedings include all the revised papers. We are
indebted to the members of the Program Committee and the external reviewers for their
diligent work.

The conference was honored by the presence of the invited speakers Abdelmalek
Azizi from Mohammed First University in Oujda, Morocco, Thomas Johansson from
Lund University, Sweden, Grigory Kabatiansky from Skolkovo Institute of Science
and Technology (Skoltech), Sihem Mesnager from University of Paris 8, France, and

Amr Youssef from Concordia University, Canada. They gave talks on various topics in
cryptography, coding theory, and information security and contributed to the success
of the conference, and will contribute to the success of these proceedings. We are
grateful to them.

The conference hosted a co-located one-day Workshop on Side-Channel Analysis
(SCA). This workshop was held on April 21, 2019. It introduced the audience to the
non-invasive test methodology compliant with international standard ISO/IEC 17825,
through practice exercises on vulnerability analysis of hardware and software AES
implementation, software RSA implementation, and classic and post-quantum cryp-
tography implementation. Then, it featured three talks on recent research issues con-
cerning the field of side-channel analysis SCA, namely, Boolean-level SCA,
cache-timing attacks on a software cryptographic library, and side-channel attack on
multiplications. The three papers related to the workshop are printed in the
“Side-Channel Analysis” part of the proceedings. Please note that these papers went
through a separate selection process.

We had the privilege to chair the Program Committee. We would like to thank all
committee members for their work on the submissions, as well as all external reviewers
for their support. We thank the authors of all submissions and all the speakers as well as
the participants. They all contributed to the success of the conference.

We also would like to thank Professor Said Amzazi, Minister of National Education,
Vocational Training, Higher Education and Scientific Research, for his support in
teaching and research in the field of cryptology and information security when he was
professor, and Dean of Faculty of Sciences, and president of Mohammed V University
in Rabat. Similarly, we would like to thank Professor Mohamed El Ghachi, President of
Mohammed V University in Rabat for his unwavering support to research and teaching
in the areas of cryptography, coding theory, and information security. We also want to
thank Professor Mourad El Belkacemi, Dean of the Faculty of Sciences in Rabat.

Along with these individuals, we wish to thank all our local colleagues and students
who contributed greatly to the organization and success of the conference.

Finally, we heartily thank all the local Organizing Committee members, all the
sponsors, and everyone who contributed to the success of this conference. We are also
thankful to the staff at Springer for their help with producing the proceedings and to the
staff of EasyChair for the use of their conference management system.

April 2019 Claude Carlet
Sylvain Guilley

Abderrahmane Nitaj
El Mamoun Souidi

vi Preface

Organization

C2SI-El Hajji 2019 was organized by the Moroccan Laboratory of Mathematics,
Computing Sciences, Applications, and Information Security (LabMIA-SI) at the
Faculty of Sciences of the Mohammed V University in Rabat.

Honorary Chair

Said El Hajji University Mohammed V, Rabat, Morocco

General Chair

El Mamoun Souidi Mohammed V University in Rabat, Morocco

Program Chairs

Claude Carlet LAGA, University of Paris 8, France and University
of Bergen, Norway

Sylvain Guilley Secure-IC and Télécom-ParisTech, Paris, France
Abderrahmane Nitaj University of Caen Normandie, France
El Mamoun Souidi Mohammed V University in Rabat, Morocco

Invited Speakers

Abdelmalek Azizi University Mohammed the First, Oujda, Morocco
Said El Hajji Mohammed V University in Rabat, Morocco
Thomas Johansson Lund University, Sweden
Grigory Kabatiansky Skolkovo Institute of Science and Technology,

Russia
Sihem Mesnager University of Paris 8, France
Amr Youssef Concordia University, Canada

Organizing Committee

El Mamoun Souidi (Chair) Mohammed V University in Rabat, Morocco
Ghizlane Orhanou (Co-chair) Mohammed V University in Rabat, Morocco
Souad El Bernoussi (Co-chair) Mohammed V University in Rabat, Morocco
Abderrahim Benazzouz ENS, LabMIA-SI, Rabat, Morocco
Hafida Benazza FSR, LabMIA-SI, Rabat, Morocco
Hicham Bensaid INPT, Morocco
Youssef Bentaleb ENSA, Kenitra, Morocco
Mohammed Boulmalf UIR, Rabat, Morocco

Azzouz Cherrabi FSR, LabMIA-SI, Rabat, Morocco
Sidi Mohamed Douiri FSR, LabMIA-SI, Rabat, Morocco
Abderrahim El Abdllaoui FSR, LabMIA-SI, Rabat, Morocco
Said El Hajji FSR, LabMIA-SI, Rabat, Morocco
Mustapha Esghir FSR, LabMIA-SI, Rabat, Morocco
Hassan Essanouni FSR, LabMIA-SI, Rabat, Morocco
Touria Ghemires FSR, LabMIA-SI, Rabat, Morocco
Ahmed Hajji FSR, LabMIA-SI, Rabat, Morocco
Samir Hakam FSR, LabMIA-SI, Rabat, Morocco
Aiz Hilali INPT, Morocco
El Mostafa Jabbouri FSR, LabMIA-SI, Rabat, Morocco
Abderrahim Messaoudi ENS, Rabat, LabMIA-SI, Rabat, Morocco
Hassan Mharzi ENSA de Kenitra (CMRPI), Morocco
Jilali Mikram FSR, LabMIA-SI, Rabat, Morocco
Mounia Mikram ESI, Rabat, Morocco
Ali Ouadfel FSR, LabMIA-SI, Rabat, Morocco
Bouchta Rhanizar ENS, Rabat, LabMIA-SI, Rabat, Morocco
Rachid Sadaka ENS, Rabat, LabMIA-SI, Rabat, Morocco
Aoutif Sayah FSR, LabMIA-SI, Rabat, Morocco
Fouad Zinoun FSR, LabMIA-SI, Rabat, Morocco
Karim Zkik UIR, Rabat, Morocco

Program Committee

Elena Andreeva Katholieke Universiteit Leuven, Belgium
François Arnault University of Limoges, France
Emanuele Bellini Darkmatter LLC, Abu Dhabi, UAE
Thierry Berger XLIM, University of Limoges, France
Lilya Budaghyan University of Bergen, Norway
Claude Carlet University of Paris 8, France
Miguel Carriegos RIASC, Spain
Chen-Mou Cheng Osaka University, Japan
Alain Couvreur LIX, Ecole Polytechnique, France
Pierre Dusart XLIM UMRS 7252, University of Limoges, France
Said El Hajji Mohammed V University in Rabat, Morocco
Nadia El Mrabet SAS, CGCP, EMSE, Saint-Etienne, France
Caroline Fontaine CNRS, France
Maria Isabel Garcia Planas Universitat Politecnica de Catalunya, Spain
Sanaa Ghouzali King Saud University, Saudi Arabia
Kenza Guenda UVIC/USTHB, Algiers, Algeria
Cheikh Thiecoumba Gueye Universite Cheikh Anta Diop, Dakar, Senegal
Sylvain Guilley Secure-IC S.A.S. and Télécom-ParisTech,

Paris, France
Abdelkrim Haqiq FST, Hassan 1st University, Settat, Morocco
Tor Helleseth University of Bergen, Norway
Shoichi Hirose University of Fukui, Japan

viii Organization

Tetsu Iwata Nagoya University, Japan
Thomas Johansson Lund University, Sweden
Grigory Kabatyansky Skolkovo Institute of Science and Technology

(Skoltech) Moscow, Russia
Muhammad Rezal Kamel

Ariffin
Institute for Mathematical Research, UPM,

Malaysia
Ahmed Khoumsi University of Sherbrooke, Canada
Juliane Krämer TU Darmstadt, Germany
Jalal Laassiri Ibn Tofail University, Morocco
Jean-Louis Lanet Inria-RBA, France
Juan Lopez-Ramos University of Almeria, Spain
Sihem Mesnager University of Paris 8 and LAGA, France
Marine Minier University of Nancy, France
Tarik Moataz Brown University, USA
Abderrahmane Nitaj LMNO, University of Caen, France
Ghizlane Orhanou Mohammed V University in Rabat, Morocco
Emmanuel Prouff ANSSI, France
Palash Sarkar Indian Statistical Institute, India
El Mamoun Souidi Mohammed V University in Rabat, Morocco
Pantelimon Stanica Naval Postgraduate School, Monterey, USA
Noah Stephens-Davidowitz New York University, USA
Joseph Tonien University of Wollongong, Australia
Alev Topuzoglu Sabanci University, Istanbul, Turkey
Amr Youssef Concordia University, Montreal, Canada
Yongjun Zhao The Chinese University of Hong Kong, SAR China

Additional Reviewers

Maryem Ait El Hadj
Nurdagül Anbar
Meryeme Ayache
Sébastien Bardin
Nina Bindel
Olivier Blazy
Delphine Boucher
Pierre-Louis Cayrel
Ayca Cesmelioglu
Ilaria Chillotti
Abderrahman Daif
Ahmed El Kiram
Thomas Fuhr

Hisham Galal
Aurore Guillevic
Cem Güneiri
Vincent Herbert
Hind Idrissi
Nikolay Kaleyski
Karim Khalfallah
Jean Belo Klamti
Adrien Koutsos
Chunlei Li
Nian Li
Pierrick Méaux
Wilfried Meidl

Baslam Mohamed
Lina Mortajine
Ousmane Ndiaye
Ferruh Özbudak
Buket Ozkaya
Enes Pasalic
Simon Pontié
Olivier Potin
Olivier Ruatta
Essaid Sabir
Patrick Struck
Karim Zkik

Organization ix

Sponsoring Institutions

Ministère de l’Education Nationale, de la Formation Professionnelle, de l’Enseigne-
ment Supérieur et de la Recherche Scientifique, Kingdom of Morocco
Ministère de l’Industrie, du Commerce de l’Investissement, et de l’Economie
Numérique, Kingdom of Morocco
Université Mohammed V de Rabat, Morocco
Faculté des Sciences de Rabat, Morocco
L’Académie Hassan II des Sciences et Techniques, Morocco
Islamic Educational, Scientific and Cultural Organization – ISESCO
Centre National pour la Recherche Scientifique et Technique – CNRST, Morocco
Le Centre Marocain de Recherches Polytechniques et d’Innovation (CMRPI), Morocco
Le Groupement d’Assurance des enseignants du Supérieur – GASUP, Morocco
Centre de Mathématique de Rabat, Morocco

Origin of Submissions

Algeria
Belgium
Cameroon
Canada
China
Colombia
Finland
France
Germany
Honduras
Hong Kong
India
Italy
Japan
Lebanon
Luxembourg
Mexico

Morocco
Poland
Qatar
Romania
Russia
Senegal
Singapore
Slovenia
South Africa
Spain
Sweden
Tunisia
Turkey
United Arab Emirates
USA
Venezuela

x Organization

Biography of Said El Hajji

Professor Said El Hajji graduated from Pierre and Marie Curie University (Paris VI,
France) and received his PhD from Laval University in Quebec (Canada). He
subsequently became senior lecturer (Maître Assistant) at “Ecole Normale Supérieure”
of Rabat and then associate professor (Maître de Conférences) at the same institute.
Until 2018, he was professor at the Faculty of Sciences, Mohammed V University in
Rabat, Morocco.

His research interests include modeling and numerical simulation, numerical
analysis, operating systems and network security, information security, management of
information security.

He has (co-)written more than 100 papers in scientific journals and proceedings and
has been chapter (co-)author or (co-)editor of seven books. He has also been a member
of more than 20 Program Committees (seven as (co-)chair).

Professor Said El Hajji has been at the Faculty of Sciences in Rabat the head of the
Research and Teaching Unit (UFR) DESA CS&ANO, of “DESA Analyse Numérique
et Optimisation,” of “DESA Mathématiques, Informatique et Applications,” of the
master’s course “Codes, Cryptographie et Sécurité de l’Information,” and finally, from
2015 to 2018, the head of the master’s course “Cryptographie et Sécurité de
l’Information.”

He was also the head of “Groupe d’Analyse Numérique et Optimisation” and finally
the head of the “Laboratoire de Mathématiques, Informatique et Applications—
Sécurité de l’Information”, (LabMiA-SI), formerly called LabMiA, from 2005 to 2018.

Professor Said El Hajji has supervised more than 21 theses and is currently
supervising five others. He has been plenary invited speaker in four international
conferences and invited speaker in ten other conferences and workshops. He has
organised four Summer Schools and seven international conferences in relation with
his research and teaching interests and he was the initiator and one of the organizers
of the C2SI conference series.

Invited Papers and Talks

Abdelmalek Azizi Arabic Cryptography and Steganography
in Morocco

Said El Hajji Analysis of Neural Network Training and Cost
Functions Impact on the Accuracy of IDS
and SIEM Systems

Thomas Johansson An AEAD Variant of the Grain Stream Cipher
Grigory Kabatyansky On the Tracing Traitors Math, Dedicated to the

Memory of Bob Blakley—Pioneer of Digital
Fingerprinting and Inventor of Secret Sharing

Sihem Mesnager On Good Polynomials Over Finite Fields for
Optimal Locally Recoverable Codes

Amr Youssef Privacy Preserving Auctions on Top of Ethereum

Privacy Preserving Auctions
on Top of Ethereum

(Abstract for Invited Talk)

Amr M. Youssef

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, QC, Canada

Abstract. Blockchain is an evolving technology with the potential to reshape a
variety of industries by allowing mutually distrusting parties to interact with
each other without relying on a trusted centralized party. Informally, a block-
chain is an immutable append-only distributed ledger that records transactions in
a way that greatly increases reliability and removes the need for trust. Never-
theless, many organizations are reluctant to fully adopt this technology owing to
several issues such as scalability and privacy. The current transaction throughput
in blockchains pales in comparison to the throughput needed to run mainstream
payment systems or financial markets. Furthermore, organizations and users are
particularly not keen on having all of their transaction information published on
a public ledger that can be arbitrarily read without any restrictions by anyone.

In this talk, my focus will be on the privacy issue in blockchains particularly
on Ethereum. There are various cryptographic techniques that can realize
privacy-preserving applications on top of blockchains. As part of my work, I
will show how the privacy requirements of building sealed-bid auctions on top
of Ethereum can be addressed. Specifically, I will present three different con-
structions [1–3] that utilize cryptographic protocols and primitives including
zero-knowledge proofs, commitment schemes, and trusted hardware environ-
ments such as Intel SGX. Finally, I will show the pros and cons of each con-
struction and draw out conclusions based on the presented schemes.

References

1. Galal, H.S., Youssef, A.M.: Succinctly verifiable sealed-bid auction smart contract. In: Data
Privacy Management, Cryptocurrencies and Blockchain Technology - ESORICS 2018
International Workshops, DPM 2018 and CBT 2018, Barcelona, Spain, 6–7 September 2018,
Proceedings, pp. 3–19 (2018)

2. Galal, H.S., Youssef, A.M.: Verifiable Sealed-Bid Auction on the Ethereum Blockchain. In:
Zohar, A. et al. (eds.) Financial Cryptography and Data Security. FC 2018. LNCS, vol. 10958.
Springer, Heidelberg (2019)

3. Galal, H.S., Youssef, A.M.: Trustee: full privacy preserving vickrey auction on top of
ethereum. In: International Conference on Financial Cryptography and Data Security, Trusted
Smart Contracts Workshop. Springer (2019)

Contents

Side-Channel Analysis

Virtual Security Evaluation: An Operational Methodology for Side-Channel
Leakage Detection at Source-Code Level . 3

Youssef Souissi, Adrien Facon, and Sylvain Guilley

Cache-Timing Attacks Still Threaten IoT Devices . 13
Sofiane Takarabt, Alexander Schaub, Adrien Facon, Sylvain Guilley,
Laurent Sauvage, Youssef Souissi, and Yves Mathieu

Speed-up of SCA Attacks on 32-bit Multiplications. 31
Robert Nguyen, Adrien Facon, Sylvain Guilley, Guillaume Gautier,
and Safwan El Assad

Cryptography

Arabic Cryptography and Steganography in Morocco 43
Abdelmalek Azizi

An AEAD Variant of the Grain Stream Cipher . 55
Martin Hell, Thomas Johansson, Willi Meier, Jonathan Sönnerup,
and Hirotaka Yoshida

Construction for a Nominative Signature Scheme from Lattice
with Enhanced Security . 72

Meenakshi Kansal, Ratna Dutta, and Sourav Mukhopadhyay

Reinterpreting and Improving the Cryptanalysis of the Flash
Player PRNG . 92

George Teşeleanu

A Key Exchange Based on the Short Integer Solution Problem
and the Learning with Errors Problem . 105

Jintai Ding, Kevin Schmitt, and Zheng Zhang

Non-interactive Zero Knowledge Proofs in the Random Oracle Model. 118
Vincenzo Iovino and Ivan Visconti

From Quadratic Functions to Polynomials: Generic Functional Encryption
from Standard Assumptions . 142

Linru Zhang, Yuechen Chen, Jun Zhang, Meiqi He, and Siu-Ming Yiu

Secret Sharing

Efficient Proactive Secret Sharing for Large Data via Concise
Vector Commitments . 171

Matthias Geihs, Lucas Schabhüser, and Johannes Buchmann

Secret Sharing Using Near-MDS Codes . 195
Sanyam Mehta, Vishal Saraswat, and Smith Sen

Mathematics for Cryptography

On Plateaued Functions, Linear Structures and Permutation Polynomials 217
Sihem Mesnager, Kübra Kaytancı, and Ferruh Özbudak

Faster Scalar Multiplication on the x-Line: Three-Dimensional GLV
Method with Three-Dimensional Differential Addition Chains 236

Hairong Yi, Guiwen Luo, and Dongdai Lin

Codes and Their Applications

On Good Polynomials over Finite Fields for Optimal Locally
Recoverable Codes . 257

Sihem Mesnager

A New Gabidulin-Like Code and Its Application in Cryptography 269
Terry Shue Chien Lau and Chik How Tan

Perfect, Hamming and Simplex Linear Error-Block Codes
with Minimum p-distance 3 . 288

Soukaina Belabssir, Edoukou Berenger Ayebie, and El Mamoun Souidi

Quasi-Dyadic Girault Identification Scheme . 307
Brice Odilon Boidje, Cheikh Thiecoumba Gueye,
Gilbert Ndollane Dione, and Jean Belo Klamti

Homomorphic Encryption

Securely Aggregating Testimonies with Threshold Multi-key FHE 325
Gerald Gavin and Stephane Bonnevay

Improved Efficiency of a Linearly Homomorphic Cryptosystem 349
Parthasarathi Das, Michael J. Jacobson Jr., and Renate Scheidler

xviii Contents

Applied Cryptography

On the Tracing Traitors Math: Dedicated to the Memory
of Bob Blakley - Pioneer of Digital Fingerprinting and Inventor
of Secret Sharing . 371

Grigory Kabatiansky

Reusable Garbled Turing Machines Without FHE . 381
Yongge Wang and Qutaibah M. Malluhi

An Extension of Formal Analysis Method with Reasoning: A Case Study
of Flaw Detection for Non-repudiation and Fairness 399

Jingchen Yan, Yating Wang, Yuichi Goto, and Jingde Cheng

A Practical and Insider Secure Signcryption
with Non-interactive Non-repudiation . 409

Augustin P. Sarr, Papa B. Seye, and Togdé Ngarenon

Security

Analysis of Neural Network Training and Cost Functions Impact
on the Accuracy of IDS and SIEM Systems . 433

Said El Hajji, Nabil Moukafih, and Ghizlane Orhanou

Managing Your Kleptographic Subscription Plan . 452
George Teşeleanu

Model Checking Speculation-Dependent Security Properties:
Abstracting and Reducing Processor Models for Sound
and Complete Verification . 462

Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro,
and Danilo Vendraminetto

Author Index . 481

Contents xix

Side-Channel Analysis

Virtual Security Evaluation

An Operational Methodology for Side-Channel Leakage
Detection at Source-Code Level

Youssef Souissi1, Adrien Facon1,2, and Sylvain Guilley1,2,3(B)

1 Secure-IC S.A.S., 15 Rue Claude Chappe, Bât. B, 35 510 Cesson-Sévigné, France
sylvain.guilley@secure-ic.com

2 École Normale Supérieure, Département d’informatique, 75 005 Paris, France
3 LTCI, Télécom ParisTech, Institut Polytechnique de Paris, 75 013 Paris, France

Abstract. “An ounce of prevention is worth a pound of cure”. This
paper presents a methodology to detect side-channel leakage at source-
code level. It leverages simple tests performed on noise-less traces of
execution, and returns to the developer accurate information about the
security issues. The feedback is in terms of location (where in code, when
in time), in terms of security severity (amount and duration of leakage),
and most importantly, in terms of possible reason for the leakage. After
the source code (and subsequently the compiled code) has been sanitized,
attack attempts complement the methodology to test the implementation
against realistic exploitations. This last steps allows to validate whether
the tolerated leakages during the sanitizing stage are indeed benign.

Keywords: Virtual evaluation methodology · Pre-silicon analysis ·
Source code vulnerability · Exploitability checking

1 Introduction

It is known since more than twenty years (recall the seminal paper of Kocher
about timing attacks [12] in 1996) that some non-functional aspects of com-
putation can be exploited to extract information from sensitive computations.
Such key recovery attacks are referred to as side-channel analyses. They are very
popular since they have allowed to break many real-world products in the past.
Their threat was so scaring that side-channel analyses have been formalized in
evaluation and test methodology, such as Common Criteria (ISO/IEC 15408),
FIPS 140 and its international extension (ISO/IEC 19790), etc.

Today, side-channel analyses are well understood. It is clear how their suc-
cess probability is related to the cipher architecture (e.g., through confusion
coefficients [8]) and to the measurement conditions (e.g., the signal-to-noise
ratio [16, Sect. 4.3.2, p. 73]). Countermeasures, such as hiding [16, Chap. 7],
masking [16, Chap. 9], shuffling [23], resilience [13], etc. have been proposed and
widely studied.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 3–12, 2019.
https://doi.org/10.1007/978-3-030-16458-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_1

4 Y. Souissi et al.

Alongside with side-channel analysis becoming more mature, the validation
of protections on real (i.e., complex) systems has emerged as a new topic of
interest [11]. The first step has been to set up some evaluation frameworks [19,20,
24]. They were complemented by tests to assess for leakage presence: this practice
is called leakage detection. The leakage is characterized by differences [10], T-
tests [9], or variance tests [2]. Such tests allow to detect vulnerabilities, but still,
they apply only on the final product.

Checking whether attacks would be successful on source code is already a
known technique [21]. In this paper, we highlight a novel methodology to detect
leakages directly on the source code. The motivation is to allow for a fast feedback
to the developer about vulnerabilities present in the source code. It is known
that curing security issues in advance allows very quickly to converge to a side-
channel-clean design, whereas chasing leakages late in the product development
phase is costly and slow.

The rest of this paper consists in a explanation of the methodology (Sect. 2).
The key messages are then gathered in a conclusion (Sect. 3), which also opens
some perspectives for still better high-level detection techniques.

2 The Presented Methodology

We illustrate a situation where the design to be evaluated is a cryptographic
application, which has the requirement to keep the secret key confidential. More-
over, we focus on a hardware implementation, since the security of hardware (in
comparison with that of software) is the less easy to control. In particular, hard-
ware consists in sequential ressources (which are clocked and are responsible to
keep the state of the design) and in combinational ressources (which evaluate as
soon as inputs change). The difference between the two ressources is illustrated
in Fig. 1. The workflow to have the design be validated as correctly protecting the
key is depicted in Fig. 2. It presents the methodology implemented in Secure-IC
VirtualyzrTM tool.

This figure shows that the path to obtain a secure design is iterative. First
of all, the developer writes source code of its security application. Second, he
provides a testbench. It can be written specifically for the application, or gener-
ated by the automated maintenance system. For instance, the testbench can be
reused from a functional verification tool for security validation. The source code
together with the testbench enable a simulator tool (e.g., Secure-IC VirtualyzrTM

supports Cadence ncsimTM, Synopsys vcsTM, Mentor Graphics modelsimTM or
veloceTM, etc.) to generate traces. As a next step, traces are analyzed with
respect to leakage. For this purpose, the Virtualyzr shall be aware of the name
of the assets to protect. Hence the indication of secrets as a user input in Fig. 2.
Security analysis will reveal multiple information:

– for every bit in the system, at each clock cycle,
– how much and when is there a non-negligible dependency?

Virtual Security Evaluation 5

glitch

sequential
combinational

clock

logic gates

DFF

Fig. 1. Illustration of hardware as a Moore state machine, where sequential ressources
sample at clock rising edge whereas combinational ressources evaluate each time an
input changes, hence glitches at their output. Exemplar chronograms are displayed in
the grey boxes

At bit level and without noise, all statistical tools to analyse dependency col-
lapse to the same distinguisher, namely the Pearson correlation. Notice that this
analysis is exhaustive. However, it is feasible since estimation of dependency can
be achieved with little amount of traces. For example, for an accuracy of 1%,
only (1/0.01)2 = 10, 000 traces are needed. The outcome of the analysis is a
table containing those pieces of information:

– list of events (i.e., signal-time pairs),
– amount of correlation,
– duration of leakage. For sequential signals (registers), the duration is irrele-

vant, since those signals vary only exactly once per clock period. However, for
combinational signals (output of Boolean or arithmetic gates), the duration is
important when the code is not simulated at Register Transfer Level (RTL).
Indeed, at RTL, combinational gates are evaluated without delay. But at later
stages of refinement (RTL synthesized to logic gates), the combinational sig-
nals feature delays. The duration of correlation therefore indicates how tran-
sient the vulnerability is showing up. In particular, it is relevant to make a
difference between steady versus glitching leakage [15]. A steady leakage basi-
cally means that some gates take on a value which can be exploited. This
situation is more critical than glitch leakage where the leakage is transient:
the dependency does not last until the end of the clock cycle, but shows up
surreptitiously only at the favor of input signals uncoordinated arrival times.

In theory, all vulnerabilities should be fixed, which is the purpose of the feed-
back loop to the original design (cf. Fig. 2). The tool must be fast and automated
to make this iterative sanitation process as smooth as possible. Now, in practice,
some vulnerabilities might be identified as tolerable. This is the intent of the
security policy. Examples are as follows:

6 Y. Souissi et al.

Se
cu
ri
ty

po
lic
y

O
K

K
O

V
T
Z

E
va
lu
at
or

E
xp

lo
it
ab

ili
ty

an
al
ys
is
:

-
H
or
iz
on

ta
l/

ve
rt
ic
al
?

-
T
im

in
g
an

d/
or

ca
ch
e-
ti
m
in
g?

-
M
on

o
/
M
ul
ti
-v
ar
ia
te
?

Is
m
y
d
e
si
g
n

se
cu

re
?

V
ul
ne
ra
bi
lit
y
an

al
ys
is
:

-
R
eg
is
te
rs

/
C
om

bi
-
C
om

bi
va
lu
e
or

gl
it
ch
es
?

-
C
or
re
la
ti
on

co
ef
?

Is
m
y
d
e
si
g
n
cl
e
a
n
?

Se
ns
it
iv
e

va
ri
ab

le
s

D
ev
el
op

er

∗
it
ca
n
be

so
ur
ce

R
T
L
,

th
en

P
S
&

P
R

ne
tl
is
t.

an
al
ys
is

D
ep

en
da

nc
e

Sc
al
ar

tr
ac
es

ge
ne
ra
ti
on

A
tt
ac
ks
:

IS
O
/I
E
C

17
82
5

B
it
w
is
e

tr
ac
es

ge
ne
ra
ti
on

T
es
tb
en
ch

D
es
ig
n

∗

L
ea
ka
ge

at
tr
ib
ut
io
n:

co
de

lin
e,

ti
m
e

F
ig
.
2
.
U

sa
g
e

o
f
V

ir
tu

a
ly

zr
T
M

(V
T

Z
T
M

)
to

o
l
to

va
li
d
a
te

fo
r

er
ro

rs
a
t

so
u
rc

e-
co

d
e

le
v
el

Virtual Security Evaluation 7

– Key scheduling logic is certainly dependent on the key, however, exploitability
requires a template attack [5], since the key cannot (in general) be manipu-
lated by the user (i.e., the attacker);

– Leakage within cryptographic primitives might be computationally hard to
exploit. Refer for example to the exploitation of HMAC: all executions of
the hash primitive depend on the key, however only the head and tail ones
are really affected in a realistic manner by the leakage of the HMAC key;
exploiting others would require for the attacker the ability to inverse hash
functions. If this was feasible, side-channel attacks would not be the easiest
attack paths.

Apart from these exceptions, all vulnerabilities on RTL source are expected to
be fixed, since they make up structural weaknesses. After this step, the design
is refined into a netlist, either post-synthesis (delays are added in the gates) or
post place-and-route (delays are added in the interconnection between the gates
as well). Therefore, more avenues for leakage occur: indeed, the combinational
gates evaluate as soon as one input changes (contrary to sequential gates). In
addition, after synthesis, some restructurations or even optimizations are carried
out. They include:

– gate factorization,
– gates reordering,
– simplification.

Due to these modifications, the architectural structure and the signal names are
altered. Thus one aspect is to keep track of RTL resource names with netlist
resource names. The vulnerability analysis now might evolve. The differences
can be classified in two categories:

1. regressions (such as countermeasure alteration),
2. refinement (such as providing more details for a primitive, which induces more

complex timing behavior).

Regressions must be addressed, because they highlight problems arising from
the use of EDA tools. For instance, the first-order masked AND gate (computing
c = a∧ b, where each Boolean variable x is randomly split in two, as per perfect
masking [3], that is x = x′ ⊕ x′′) represented in Fig. 3(a)) will leak with:

– correlation 1 (because the sensitive signal c appears in the clear) with sim-
plification of Fig. 3(b), and

– correlation 1/2 (because a′ ∧ b′ ⊕ a′ ∧ b′′ = a′ ∧ b, which is equal to b if a′ = 0
and to 0 otherwise, hence a match with clear value b half of the time—a′

is a random mask, i.e., P(a′ = 0) = P(a′ = 1) = 1/2) with simplification of
Fig. 3(c).

Both netlists (b) and (c) are functionally correct. They are even improved in
terms of critical path (for equal gate-count), as compared with (a). Nonetheless,
their rearrangement induced a side-channel leakage. Interestingly, the amount of

8 Y. Souissi et al.

leakage (e.g., correlation 1 versus 1/2) reveals a precious hint to the designer. It
helps him understand if the problem is structural (case of correlation = 1) or
due to some unbalance in the masking scheme (case of correlation = 1/2, refer
for instance to [18]).

The correction can be some actions either on the compilation side (typically
by placing constraints in scripts), or on the design-side (typically by adopting a
robust coding style, which resists optimizations).

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

c′ c′′

(c)

Leakages

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

(a)

a′ b′c′ a′ b′′ a′′ b′ b′′a′′

c′ c′′

(b)

Leakage

c′′c′

No leakage

Fig. 3. Example of simplifications on masked c = a ∧ b which induce side-channel
leakage of sensitive information. In this figure x ∈ {a, b, c} is randomly split as (x′, x′′)
such that x = x′ ⊕ x′′.

Refinements might highlight transient leakages due to glitches [17]. Here, the
security policy decides whether those glitches are tolerable or not. Indeed, it
might be time-consuming to remove all glitches which carry (thence leak) sensi-
tive information. Typically, if the glitch lasts 10 ps and that the attacker makes
use of a sampling device which allows only to measure at a bandwidth of 1 GHz,
then the glitch will be smoothed by the measurement system and its energy will
be spread over 100 time samples, thereby making its exploitability 100 times
more difficult. In these conditions, a decision to live with such glitch can be
made. An exemplar security policy is exposed in Table 1. It makes a difference
between the type of incriminated resource, either seq(uential) or combi(national).

Virtual Security Evaluation 9

As mentioned, leakage of sequential ressources is to be considered more seriously
than combinational ressources, because the leakage is synchronized, hence the
signal-to-noise ratio measured by an attacker is high. Also, sequential elements
(typically flip-flops or memories) consume/radiate much more than combina-
tional gates, and their leakage model is simple (Hamming weight and/or Ham-
ming distance [4, Sect. 2]).

Table 1. Exemplar security policy

Type Duration Correlation Origin Policy

Seq. One clock period =1 Structural Fatal design bug or
simplification upon
synthesis optimization

Seq. One clock period <1 Unbalanced mask,
causing first-order
leakage

Critical
countermeasure issue

Combi. Steady =1 Structural Critical design bug

Combi. Steady <1 Unbalanced mask,
causing first-order
leakage

Serious
countermeasure issue

Combi. Transient <1 Timing race Can be
tolerated—typically
requires 100,000+
traces

Finally, attacks are tested on aggregated traces. The methodology applied to
virtual traces is that of ISO/IEC 17825 [6]. It is a classical approach, where:

– timing and cache-timing analyses are experienced first,
– second single trace leakage is assessed, and
– finally, vertical attacks are tested.

We refer the reader to papers such as [22] for in-depth discussions about the use
of simulation for exploitability analysis.

3 Conclusion and Perspectives

We have presented a fast methodology based on simulation to identify precisely
and with little number of test vectors the presence of leakage. We show that
some basic characterizations allow to narrow down the root cause of the leakage,
which allows to accompany the developer in researching for leakage reduction
or cancelling techniques (based on coding style or compilation options). This
approach is innovative and can be implemented in a tool (we illustrate the case
of Secure-IC Virtualyzr).

As a perspective, we notice that formal methods could complement the pre-
sented methodology. Formal methods ensure 100% coverage and are typically

10 Y. Souissi et al.

faster to yield their conclusions than dynamic methods. It is also to be noticed
that formal methods (as of today, such as [7]) cannot discriminate between seri-
ous and tiny leakages. Moreover, formal methods are more comfortable at high-
level since they need to approximate the design; therefore, they do not allow a
traceability after compilation stages. Still, the synergy between static (i.e., for-
mal) and dynamic leakage evaluation is foreseen as a winning combination for
side-channel eradication from secure designs.

Eventually, we underline that the methodology presented in this paper could
apply as well to software evaluation, where the most threaten leakage arises from
cache-timing problems. A parallel between hardware and software is sketched in
Table 2. Recall that:

– Hardware of secret key applications is computing in constant time, but fea-
tures exploitable vertical leakage [14];

– Software is mostly vulnerable regarding horizontal leakage. Indeed, software
development practices today is at a less advanced stage, security-wise, than
that of dedicated cryptographic hardware.

Table 2. Comparison between security issues in hardware vs software

Programme Cause of information leakage

nature Structural leakage Optimization upon
code generation

Dynamic leakage

Hardware Unmasked or
unbalanced signals

Simplification (recall
Fig. 3)

Glitches

Software Conditional control
flow and/or table
lookups

Seldom, since
unpredictability hurts
performances

Cache hit/miss,
speculation,
out-of-order execution

References

1. 3rd IEEE International Verification and Security Workshop, IVSW 2018, Costa
Brava, Spain, July 2–4, 2018. IEEE (2018)

2. Bhasin, S., Danger, J.L., Guilley, S., Najm, Z.: NICV: normalized inter-class vari-
ance for detection of side-channel leakage. In: IEEE International Symposium
on Electromagnetic Compatibility (EMC 2014/Tokyo), May 12–16 2014. Session
OS09: EM Information Leakage. Hitotsubashi Hall (National Center of Sciences),
Chiyoda, Tokyo, Japan (2014)

3. Blömer, J., Guajardo, J., Krummel, V.: Provably secure masking of AES. In: Hand-
schuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 69–83. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-4 5

4. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

https://doi.org/10.1007/978-3-540-30564-4_5
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/3-540-36400-5_3

Virtual Security Evaluation 11

6. Easter, R.J., Quemard, J.-P., Kondo, J.: Text for ISO/IEC 1st CD 17825 - Informa-
tion technology - Security techniques - Non-invasive attack mitigation test metrics
for cryptographic modules, March 22 2014. Prepared within ISO/IEC JTC 1/SC
27/WG 3 (2014)

7. Facon, A., Guilley, S., Lec’hvien, M., Schaub, A., Souissi, Y.: Detecting cache-
timing vulnerabilities in post-quantum cryptography algorithms. In: 3rd IEEE
International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain,
July 2–4, 2018 [1], pp. 7–12 (2018)

8. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

9. Gilbert Goodwill, B.J., Jaffe, J., Rohatgi, P.: A testing methodology for side-
channel resistance validation, September 2011. In: NIST Non-Invasive Attack
Testing Workshop (2011). http://csrc.nist.gov/news events/non-invasive-attack-
testing-workshop/papers/08 Goodwill.pdf

10. Jaffe, J., Rohatgi, P., Witteman, M.F.: Efficient side-channel testing for public
key algorithms: RSA case study, September 2011. In: NIST Non-Invasive Attack
Testing Workshop (2011). http://csrc.nist.gov/news events/non-invasive-attack-
testing-workshop/papers/09 Jaffe.pdf

11. Kocher, P.: Complexity and the challenges of securing SoCs. In: Stok, L., Dutt,
N.D., Hassoun, S. (eds) Proceedings of the 48th Design Automation Conference,
DAC 2011, San Diego, California, USA, June 5–10, 2011, pp. 328–331. ACM (2011)

12. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

13. Kocher, P.C.: Leak-resistant cryptographic indexed key update, March 25 2003.
United States Patent 6,539,092 filed on July 2nd, 1999 at San Francisco, CA, USA
(2003)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

15. Liu, H., Qian, G., Tsunoo, Y., Goto, S.: The switching glitch power leakage model.
JSW 6(9), 1787–1794 (2011)

16. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, New York (2006). ISBN 0-387-30857-1.
http://www.dpabook.org/

17. Mangard, S., Schramm, K.: Pinpointing the side-channel leakage of masked
AES Hardware implementations. In: Goubin, L., Matsui, M. (eds.) CHES 2006.
LNCS, vol. 4249, pp. 76–90. Springer, Heidelberg (2006). https://doi.org/10.1007/
11894063 7

18. Moradi, A., Guilley, S., Heuser, A.: Detecting hidden leakages. In: Boureanu, I.,
Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 324–342.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5 20

19. Souissi, Y., Danger, J.-L., Guilley, S., Bhasin, S., Nassar, M.: Common frame-
work to evaluate modern embedded systems against side-channel attacks. In: IEEE
International Conference on Technologies for Homeland Security (HST), pp. 86–
91, November 15–17 2011. Westin Hotel, Waltham, MA, USA (2011). https://doi.
org/10.1109/THS.2011.6107852

https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/09_Jaffe.pdf
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
http://www.dpabook.org/
https://doi.org/10.1007/11894063_7
https://doi.org/10.1007/11894063_7
https://doi.org/10.1007/978-3-319-07536-5_20
https://doi.org/10.1109/THS.2011.6107852
https://doi.org/10.1109/THS.2011.6107852

12 Y. Souissi et al.

20. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

21. Takarabt, S., et al.: Pre-silicon embedded system evaluation as new EDA tool for
security verification. In: 3rd IEEE International Verification and Security Work-
shop, IVSW 2018, Costa Brava, Spain, July 2–4, 2018 [1], pp. 74–79 (2018)

22. Veshchikov, N., Guilley, S.: Use of simulators for side-channel analysis. In: 2017
IEEE European Symposium on Security and Privacy, EuroS&P 2017, Paris, France,
April 26–28, 2017, pp. 51–59. IEEE (2017)

23. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

24. Whitnall, C., Oswald, E.: A fair evaluation framework for comparing side-channel
distinguishers. J. Crypt. Eng. 1(2), 145–160 (2011)

https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-34961-4_44

Cache-Timing Attacks Still Threaten
IoT Devices

Sofiane Takarabt1,2, Alexander Schaub2, Adrien Facon1,3,
Sylvain Guilley1,2,3(B), Laurent Sauvage2,1, Youssef Souissi1,

and Yves Mathieu2

1 Secure-IC S.A.S., 15 Rue Claude Chappe, Bât. B, 35 510 Cesson-Sévigné, France
sylvain.guilley@secure-ic.com

2 LTCI, Télécom ParisTech, Institut Polytechnique de Paris, 75 013 Paris, France
3 École Normale Supérieure, Département d’informatique, 75 005 Paris, France

Abstract. Deployed widely and embedding sensitive data, The secu-
rity of IoT devices depend on the reliability of cryptographic libraries to
protect user information. However when implemented on real systems,
cryptographic algorithms are vulnerable to side-channel attacks based
on their execution behavior, which can be revealed by measurements of
physical quantities such as timing or power consumption. Some counter-
measures can be implemented in order to prevent those attacks. However
those countermeasures are generally designed at high level description,
and when implemented, some residual leakage may persist. In this arti-
cle we propose a methodology to assess the robustness of the MbedTLS
library against timing and cache-timing attacks. This comprehensive
study of side-channel security allows us to identify the most frequent
weaknesses in software cryptographic code and how those might be fixed.
This methodology checks the whole source code, from the top level rou-
tines to low level primitives, that are used for the final application. We
retrieve hundreds of lines of code that leak sensitive information.

1 Introduction

Formerly known as PolarSSL, MbedTLS library provides many cryptographic
implementations and primitives that can be easily used by developers to design or
implement new applications for embedded systems. However side-channel attacks
are known to be an efficient way to break many of those applications. They
exploit physical measurements like power consumption, electromagnetic emana-
tion and even timing characteristics to retrieve the secret key. Using different
techniques based on statistical tools, an attacker is able to extract a secret key
using only one (or very few) measure(s) for unprotected implementations. The
timing attack is the first side-channel attack presented by Kocher [14] in order to
retrieve the exponent bits of RSA. More perfected versions of timing attack have
been derived to break more secured implementations like Square-and-Multiply
Always and Montgomery Ladder. Combined with power acquisition, a key can
be extracted with less than one thousand traces [10].
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 13–30, 2019.
https://doi.org/10.1007/978-3-030-16458-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_2

14 S. Takarabt et al.

Securing implementation against some attacks becomes more and more chal-
lenging for designers and developers. They should take care about all attacks that
use timing properties, inputs dependency [6,15,16] and different other parame-
ters. However some developers still use different (already) available libraries to
implement their cryptographic applications. So, even if they design a (secure)
software from the top level description (loop iterating over the scalar, like Mont-
gomery Ladder, Atomic Multiply Always, etc.) based on some primitive func-
tions, they usually do not check whether or not those primitives actually respect
the constant-time coding constraints. In the following we present our results
based on MbedTLS cryptographic library.

2 Previous Works

2.1 Timing Attacks and Cache-Timing Attacks

Timing attacks exploit the timing variations induced by different inputs. For
example, in asymmetric cryptography, operations like modular multiplication
or division can cause timing variations in the execution time, which might
be exploited to retrieve secret keys. We mention also the cache-based timing
attack [7,11,18–20] that exploit difference between the access time of slow main
memory, or RAM, and the much faster processor cache. If the value to be accessed
depends on secret values, the number of cache hits and misses can be correlated
to the secret values. This can eventually lead to a full retrieve. This kind of attack
was first presented by Bernstein in [3], where he targets the OpenSSL tabulated
AES implementation that was supposed to be constant-time. This attack is a
profiled template attack, which exploits the fact that looking up the same data
twice is faster than looking up at two different addresses.

Considering the cache-timing attack, one can distinguish between two kinds
of attacks:

– Passive: Only the inputs can be controlled and no additional process needs
to be run on the targeted device. The timing variations are only caused by
the cache miss and hit of the tabulated computation.

– Active: This attack needs an additional process, that is able to “erase” the
cache contents, which forces the victim process to reload the data (or instruc-
tions) from the main memory (for instance, FLUSH+RELOAD [20] attack).

Many cache-timing attacks have been published in 2018. They all exploit timing
differences in either the control flow or the data access patterns. See a reasoned
presentation of cache-timing attacks (as of December 2018) in Fig. 1. We focus
on such attacks in this paper.

In Algorithm 1 we give the high level description of a naive implementation
of Elliptic Curve Scalar Multiplication (ECSM). The bits of k are scanned from
left to right, and a conditional point addition is performed in order to deal with
bit values at 1. If an attacker is able to probe the cache memory, she can retrieve
the bits of k by measuring the access time of an instruction during the addition

Cache-Timing Attacks Still Threaten IoT Devices 15

Timing
attack

- Ryzenfall
- Masterkey
- Fallout
- Chimera

user
data

Prime & Probe
Evict & Time
Flush & Reload

computer architecture

hyperthread
branch prediction

pipeline ports
TLB (in MMU) TLBleed

Portsmash

CachebleedHW perf. counter
L1 I$ hit/miss

Meltdown

attack
TimingL2$ hit/miss

LLC$ hit/miss
DRAM banks

L1 D$ hit/miss
L2$ hit/miss
LLC$ hit/miss
DRAM banks

Spectre

attacks:

while(s){}
for(i=0;i<s;++i){}
if(s){} or s?{}:{}

flow
control

conditional

conditional
table lookup

y=T[s] or y=*(ptr+s)

conditional behavior:

variable s

sensitive

example in C language:
ta
in
tin
g

tainting

user code

speculation
out-of-order

Fig. 1. Genealogy of cache-timing attacks

Algorithm 1. ECSM fast implementation: Double-and-Add—Prone to
cache-timing attacks
1 // Input :

– P : base point
– k = (k0 . . . kn−1)2: scalar

Output: [k]P

2 Q ← O ; O is the point at infinity
3 i = n − 1
4 while i > −1 do
5 Q ← [2]Q ; Point Doubling
6 if ki = 1 then
7 Q ← Q + P ; Point Addition
8 end
9 i = i − 1

10 end

11 return Q

function which was initially flushed from the cache. If the access is long, then
the victim code has not called the point addition. Otherwise, it has. When the
ECSM is used to perform a signature generation or any other private operation,
the secret key will be recovered.

16 S. Takarabt et al.

Cache vulnerabilities are not only caused by conditional operations. As the
size of the cache memory is limited to few thousand of bytes, the content needs
to be erased and reloaded from the main memory. A concrete example of such
a situation is when the processor deals with relatively big tables. As mentioned
in the Sect. 2.1, the cause of the leakage is that the tables of AES cannot be
fully loaded into the cache. Therefore, when different indexes of the array are
accessed, data needs to be reloaded, which causes non-constant time execution.

Cache timing attacks can be prevented at various levels:

– Source Code: by balancing the control flow, by fetching all values from a
table, etc.

– Compilation Time: by alignment constraints of tables to minimize cache
effect (since cache lines are nowadays quite large); refer for instance
to the following declaration of aligned table T: unsigned char T[256]
attribute ((aligned));

– Assembly Code: with cmov and setcc constant-time operations.

2.2 Existing Tools

Our goal is to identify the lines of code which can produce timing leakages
when executed on a processor. Those leakages can be caused by a conditional
operation, non-constant time operations and also cache accesses.

Some debugger tools were recently used for side-channel analysis, like gdb
and Valgrind [4,5]. Some of the identified vulnerabilities depend on the target
device, but others are actually present in the source code. In the first case, the
code should be fixed at low level (assembly instructions). In the second case, this
can be done at high-level source code (e.g., C).

3 Our Methodology

3.1 Leakage Types

The cache vulnerabilities are exploited by timing measurements. These variations
are caused when the data requested by the processor is present or not in the
cache memory. This data can be simple variables, arrays or even functions. The
last two are the most vulnerable cases. In fact, if the array is relatively large,
accessing different indexes will cause time variation. If those indexes can be
controlled in some way, an attacker can correlate it with the sensitive data. In the
case of functions, the same method can be applied, by guessing which functions
have been executed, and correlating the observed timing measurements with the
sensitive data.

3.2 Principle of the Tool

Evaluation of a source code against timing and cache-timing attacks should track
the sensitive variables over all sub-routines, and check if any time variation can

Cache-Timing Attacks Still Threaten IoT Devices 17

be caused by conditional branching or array access. The static analysis tool is
based on four main steps:

1. Input preparation. To analyze a source code, we need to specify the sensi-
tive variable involved in computation.

2. Dependency and vulnerability.
(a) Dependency analysis. The specified variable will be tracked over all

sub-functions and if any dependency is detected, it will be logged.
(b) Vulnerability identification. All the dependency of the code with the

sensitive data is built and analyzed. The instructions are filtered by keep-
ing only some patterns that cause time variation (conditional branch), or
array access (cache vulnerabilities).

3. Vulnerability analysis. A post-processing is then applied on the reported
leakages to classify them, remove the potential false positives (see Sect. 3.3)
and produce a report readable by the designer.

The global work flow is illustrated in Fig. 2.

Fig. 2. Static analysis tool principle

3.3 False Positives

The tool can report false positives in those cases:

– The incriminated line of code is not called in the execution context.
– The vulnerability leaks too little:

18 S. Takarabt et al.

• either too little times;
• or the leakage is too local, e.g., a table access where the table is so small

it fits in a line of cache;
• At the opposite, the leakages are too frequent in time, thereby making

it challenging, if not impossible, to catch them all and/or to synchronize
with them.

– Leakages sometimes happily disappear at compilation, e.g., when a struc-
ture such as if(s){y=a;}, which is compiled with a conditional move (cmov)
instruction.

– Leakages which occur in exploitable places, e.g., in the middle of a hash
function (which clearly cannot been related simply to the sensitive variable
due to difficulty of preimage finding problem).

4 Evaluating MbedTLS Source Code

In this section we present our results on the main cryptography implementa-
tions: RSA, ECDSA, AES, DES and other block ciphers, from MbedTLS ver-
sion 2.14.1. Our tool, named Catalyzr, analyzes the whole source and detects all
the conditional branches and array accesses (called also pointer dereferencing)
that depend on the specified (sensitive) parameters. The full results with graph
dependency and leakage location are given in Appendix A.

4.1 Analysis of the RSA Implementation

It is known that the naive implementation of RSA is vulnerable against side-
channel attacks [1,2,17]. Similar attacks also exist in the case of ECC [9].
MbedTLS implements countermeasures against some of these attacks, like
Address-Bit DPA [12,13], timing and power analysis, etc. Indeed, those protec-
tions work pretty well, but some sensitive parts of the code can be exploited
by an attacker in order to easily disturb the device, like in the case of
cache-timing attack. As described in the Fig. 2, we take the self test function
(Mbedtls rsa self test) in the library and tag the sensitive variable (namely
the secret exponent) to track (rsa.D). All the conditional branches depending
on the tagged variable are listed by the tool.

The designer should carefully analyze each result in order to determine if
such warning is really exploitable in his use case. The Fig. 3 summarizes the
source of such a dependency. In the case of private operation the (protected)
Mbedtls mpi exp mod function performs modular exponentiation based on slid-
ing window, Montgomery Multiplication and Montgomery Reduction.

The Montgomery Reduction performs fake subtraction to prevent timing
attacks (see Fig. 4), when the result is lesser than the modulus N.

The Fig. 5 shows the vulnerable line code in the mpi sub help function. This
kind of vulnerabilities can be exploited by an attacker by chosen inputs, which
may induce time variation induced by the carry propagation.

Cache-Timing Attacks Still Threaten IoT Devices 19

Fig. 3. Source of vulnerabilities detected on RSA signature

Fig. 4. Extra reduction in the Montgomery Modular Multiplication-bignum.c file

Fig. 5. Carry leakage for ECDSA and RSA

4.2 Analysis of ECDSA Implementation

In the case of ECDSA signature, we have analyzed the Mbedtls ecdsa sign func-
tion. We tagged the scalar r used to sign the message. As in the previous section,
we note that these leakages are found in the primitives that implement the arith-
metic field operation using big integers.

The Fig. 6 shows a vulnerable code line that breaks out of the loop when the
number of limbs has been determined. Such an optimization induces also a time
variation (non-constant time implementation), which is susceptible to a timing
attack.

20 S. Takarabt et al.

Fig. 6. Vulnerable code location for ECDSA and RSA

As we can see, the variable n is then passed to the mpi sub help function
which performs subtraction using only the n first limbs. The loop is therefore
flagged as potential timing vulnerability, as shown in Fig. 7. This function is used
in both RSA and ECDSA signatures, and this vulnerability is common for both.
The more interesting leakage is the manner how we deal with the carry in the
subtraction function.

In fact, we have tested the Mbedtls mpi exp mod function with real data, to
simulate actual algorithm execution times. The first identified leakage (Fig. 6)
may not be significant as the size of inputs remains the same, and no variation is
observed. However the total time to perform the subtraction is different due to
the second vulnerability (Fig. 5). The feasibility of a timing attack depends on
the ability of an attacker to measure the time of a decryption with high accuracy,
which is the case in most of embedded platforms.

Fig. 7. Vulnerable code location and annotation for ECDSA and RSA: subtraction
function

Cache-Timing Attacks Still Threaten IoT Devices 21

4.3 Analysis of AES Implementation

In the MbedTLS AES implementation, the SubBytes operation is performed
using a table of 256 bytes (Sbox). If the size of the cache is large enough, the
whole table Sbox can be fully loaded. Regarding the cache vulnerabilities, no
time variation should occur in this case. However, in the case of active attack,
an attacker can probe the cache contents, and gain knowledge about the lines
and banks accessed during the Sbox computation.

The tool has also listed some vulnerabilities in the key-scheduling step
(mbedtls aes setkey enc), where the Sbox accesses depend directly on the key
value.

Fig. 8. Vulnerable code location and annotation for AES

In Fig. 8, all the lines from 595 to 598 are listed as vulnerable. The exploita-
tion of this vulnerability depends on the ability of an attacker to probe the
cache content [18,20]. More leaking code was found in the encryption and decryp-
tion functions, mbedtls internal aes encrypt and mbedtls internal aes decrypt
respectively, as the cache behaviour depends on a controllable parameter (plain-
text or ciphertext).

The Fig. 9 shows the inter-procedural graph that gives all the leakages. The
bubble-shape gives the function name, and the tables list the leaking code with
the line number (first column). The corresponding file is shown in the arrow
title. At the top figure, we have the mbedtls aes crypt ecb function that calls
either

– mbedtls internal aes encrypt (line 918), or
– mbedtls internal aes decrypt (at line 916)

in the aes.c file. The lowest tables show the leaking lines (first column), that
depend on the input. In this case, the attack is less difficult, because we need
to probe only one Sbox at each encryption, and by repeating at most 256 time
the same (or wisely chosen) message, we can deduce the key value. If Sbox
table cannot be fully loaded into cache memory, time variation can be observed.
With chosen inputs, this variation can be controlled and leads to high correla-
tion between those inputs and encryption time. This is equivalent to the attack
described in [3].

22 S. Takarabt et al.

Fig. 9. AES leakage tracking and code location

4.4 Analysis of DES Implementation

The MbedTLS DES implementation uses eight tables for SubBytes operation,
each has 16 × 4 half-bytes. In order to analyze this algorithm we have tagged
the des3 test keys in the file des.c.

The Fig. 10 shows all the vulnerabilities listed by the tool. In the left side we
have the two encryption functions based on simple DES and triple DES. In this
case we have the DES ROUND macro that perform the SubBytes operation,
which depends on the secret data ctx.sk and SK. In the right side the lines 437
to 440, and 442 to 444 show the vulnerable part in the key-schedule function.
The first leakage is related to the encryption datapath and as explained in the
previous section, it is less difficult to exploit. The second one is present only at
the key schedule step, which make it very difficult to exploit.

4.5 Analysis of Blowfish Implementation

Blowfish is a symmetric algorithm also based on Sbox-tables to perform the
SubBytes operation. Four tables of 256 32-bits word are used to perform this
operation. This leads to 4 kB of data. Loading the whole table in cache memory
may not be possible on constrained devices. This function is called F , and it is

Cache-Timing Attacks Still Threaten IoT Devices 23

Fig. 10. DES graph with leakage dependency: mbedtls des self test function

Fig. 11. Vulnerable code location and annotation for Blowfish

called from the blowfish enc function that encrypts a plaintext x using a secret
key. We tagged the key (ctx.P) as a sensitive variable to track, and the tool has
pointed four vulnerabilities in the F function.

The Fig. 11 shows the first leaking code line, which contains two array
accesses. The tool has pointed two times the line 89, and one time line 90 and 89.
The variables a, b, c, and d, depend on the input x of the function F , which are
actually xored with the secret key in the blowfish enc function. Regarding the
cache-timing attacks, it is difficult to exploit such vulnerabilities. For example,
to identify the value of a (b, c or d), the attacker need to probe cache line to see
which word is loaded, and hence deduce the value of the key if the input (or the
output) is known.

4.6 Analysis of Camellia Implementation

For the Camellia algorithm, we have tagged variable camellia test ecb key that
is used as a secret key. Similar to the previously presented algorithm, Camellia
resorts to a table for the SubBytes operation. Four different tables of size 256
bytes are used for this purpose, which leads to 1 kB memory.

24 S. Takarabt et al.

Fig. 12. Vulnerable code location and annotation for Camellia

The tool has underlined the array access in camellia feistel function as
shown in Fig. 12. Depending on the cache size, the time to access those tables may
differs from one message to another. We note also that, for each byte position, a
different Sbox table is used, which leads to high probability of cache miss events.

5 Discussion

In Sects. 4.1, 4.2, we present some of our results that we hope will be taken into
account in future release of the library. Those vulnerabilities are not necessarily
known by developers, as they implement new applications based on already exist-
ing software for low-level primitives. We designed Catalyzr in order to help such
developers to check their implementations, as an end-to-end workflow integra-
tion check. We see that in most cases, the top level functions are well protected
against the cited attacks. However, leakages are detected at the low level primi-
tives, that are not updated in order to respect the specified constraints. We have
seen that some of those leakages can be exploited by a simple timing analysis.

In the case of symmetric implementations, most leakages are related to array
accesses. In fact, those vulnerabilities are target dependent. They should be
analyzed by considering the cache specification. Since caches might be shared
by different applications, cache vulnerabilities can arise even when the SBoxes
might fit into cache, because less memory is available for each application. This
can lead to the vulnerabilities mentioned in Sects. 4.3, 4.5, 4.6. In all cases,
we have identified all the array accesses that depend on the sensitive parameter.
The most interesting parts are those depending also on the encryption datapath,
like Sbox access, in the encryption functions. The vulnerabilities which depend
only on the key are very difficult to exploit (case of key-schedule), because the
attacker would need to repeat many times the cache probing to have only some
information about the line accessed and then the value that was processed.
Besides, in most of the optimized implementations this step is performed once,
which makes the attack almost impractical.

Cache-Timing Attacks Still Threaten IoT Devices 25

Table 1. Summary of leakage reported

Function # Leakage # Functions # Lines

mbedtls rsa self test 11131 40 147

mbedtls ecdsa sign 12588 34 124

mbedtls aes self test 95 4 59

mbedtls des self test 85 3 16

blowfish enc 4 1 3

mbedtls camellia self test 83 2 13

In Table 1 we summarize the details about the leakages reported for each
function (named in the first column). The second column gives the total number
of reported leakages. Those are all of the possible paths through the control
flow graph (this estimation is optimistic, since not all paths are exercised—more
precisely, the paths can be taken, but may not depend on the inputs). The third
one shows the number of leaking functions (that induce the leakage). And the
last one corresponds to the number of leaking code lines. This information can
be deduced from the inter-procedural graph given in Appendix A.

6 Conclusion and Perspectives

In this paper we have presented some (automated) static analysis on MbedTLS
library. The reported leakages are either related to a non-constant time imple-
mentation (as it was supposed to be), or to a potential cache vulnerability. In the
first case, we have seen that a simple timing attack is possible, not only for the
analyzed algorithms, but also for the future applications that will be based on
the same routines. Exploiting the sensitive parts by a cache-active attack may
be very difficult or impracticable in some cases. This depends on the ability of
an attacker (in terms of speed, regularity, etc.) to probe the cache. However in
some conditions, equivalent time variation could occur and reveal information
about the processed data. This is the case when the cache size is limited, or
when the machine is so loaded that it is shared with other threads.

As a perspective, we intend to attribute each identified leakage to existing
attacks, such as exploitation of “extra-reductions” in RSA/ECC Montgomery
Modular Multiplication [10] or the exploitation of the correlation between the
computation duration and the length of the nonce in ECDSA signature genera-
tion algorithm [8].

26 S. Takarabt et al.

Acknowledgments. The authors are grateful to Matthieu Lec’hvien for having ini-
tiated this work (under the guidance of Alexander Schaub). This work has benefited
from a funding via TeamPlay (https://teamplay-h2020.eu/), a project from European
Union’s Horizon2020 research and innovation programme, under grand agreement No.
779882. Besides, this work has been partly financed by NSFC grant No. 61632020,
and French PIA (Projet d’Investissment d’Avenir) grant P141580, of acronym RISQ
(Regroupement de l’Industrie pour la Sécurité post-Quantique).

A Appendix

Here we give all the inter-procedural graphs that show the dependency and the
leakage location for each algorithm (Figs. 13, 14, 15, 16, 17, and 18).

Fig. 13. Full RSA graph with leakage dependency for mbedtls rsa private function

Fig. 14. Part of ECDSA graph with leakage dependency for mbedtls ecdsa sign
function

https://teamplay-h2020.eu/

Cache-Timing Attacks Still Threaten IoT Devices 27

Fig. 15. Full AES graph with leakage dependency: mbedtls aes self test

Fig. 16. Full DES graph with leakage dependency: mbedtls des self test function

28 S. Takarabt et al.

Fig. 17. Full Blowfish graph with leakage dependency: blowfish enc function

Fig. 18. Full Camellia graph with leakage dependency: mbedtls camellia self test
function

References

1. Arnaud, C., Fouque, P.-A.: Timing attack against protected RSA-CRT implemen-
tation used in PolarSSL. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol. 7779, pp.
18–33. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36095-4 2

2. Bauer, A., Jaulmes, E., Lomné, V., Prouff, E., Roche, T.: Side-channel attack
against RSA key generation algorithms. In: Batina, L., Robshaw, M. (eds.) CHES
2014. LNCS, vol. 8731, pp. 223–241. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44709-3 13

https://doi.org/10.1007/978-3-642-36095-4_2
https://doi.org/10.1007/978-3-662-44709-3_13
https://doi.org/10.1007/978-3-662-44709-3_13

Cache-Timing Attacks Still Threaten IoT Devices 29

3. Bernstein, D.J.: Cache-timing attacks on AES (2005)
4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:

hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

5. Bouvet, A., Bruneau, N., Facon, A., Guilley, S., Marion, D.: Give me your binary,
I’ll tell you if it leaks, pp. 1–4 (2018)

6. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

7. Groot Bruinderink, L., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

8. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23822-2 20

9. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

10. Dugardin, M., Guilley, S., Danger, J.-L., Najm, Z., Rioul, O.: Correlated extra-
reductions defeat blinded regular exponentiation. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 3–22. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 1

11. Facon, A., Guilley, S., Lec’hvien, M., Schaub, A., Souissi, Y.: Detecting cache-
timing vulnerabilities in post-quantum cryptography algorithms. In: 2018 IEEE
3rd International Verification and Security Workshop (IVSW), pp. 7–12. IEEE
(2018)

12. Itoh, K., Izu, T., Takenaka, M.: Address-bit differential power analysis of cryp-
tographic schemes OK-ECDH and OK-ECDSA. In: Kaliski, B.S., Koç, K., Paar,
C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 129–143. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-36400-5 11

13. Itoh, K., Izu, T., Takenaka, M.: A practical countermeasure against address-bit
differential power analysis. In: Walter, C.D., Koç, Ç.K., Paar, C. (eds.) CHES
2003. LNCS, vol. 2779, pp. 382–396. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45238-6 30

14. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

16. Le, T.-H., Canovas, C., Clédiere, J.: An overview of side-channel analysis attacks.
In: Proceedings of the 2008 ACM Symposium on Information, Computer and Com-
munications Security, pp. 33–43. ACM (2008)

17. Nakano, Y., et al.: A pre-processing composition for secret key recovery on android
smartphone. In: Naccache, D., Sauveron, D. (eds.) WISTP 2014. LNCS, vol. 8501,
pp. 76–91. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43826-
8 6

https://doi.org/10.1007/978-3-662-53140-2_11
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-662-53140-2_16
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-662-53140-2_1
https://doi.org/10.1007/3-540-36400-5_11
https://doi.org/10.1007/978-3-540-45238-6_30
https://doi.org/10.1007/978-3-540-45238-6_30
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-43826-8_6
https://doi.org/10.1007/978-3-662-43826-8_6

30 S. Takarabt et al.

18. Osvik, D.A., Shamir, A., Tromer, E.: Cache attacks and countermeasures: the
case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006). https://doi.org/10.1007/11605805 1

19. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA nonces using the
FLUSH+RELOAD cache side-channel attack. In: IACR Cryptology ePrint
Archive, 2014:140 (2014)

20. Yarom, Y., Falkner, K.: FLUSH+RELOAD: a high resolution, low noise, L3 cache
side-channel attack. In: USENIX Security Symposium, pp. 719–732 (2014)

https://doi.org/10.1007/11605805_1

Speed-up of SCA Attacks on 32-bit
Multiplications

Robert Nguyen1, Adrien Facon1,3, Sylvain Guilley1,2,3(B), Guillaume Gautier4,
and Safwan El Assad5

1 Secure-IC S.A.S. - Think Ahead Business Line, 35 510 Cesson-Sévigné, France
{sylvain.guilley,robert.nguyen}@secure-ic.com

2 LTCI, Telecom ParisTech, COMELEC Department, 75 013 Paris, France
3 École Normale Supérieure Département d’Informatique, 75 005 Paris, France

4 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164, 35 000 Rennes, France
5 IETR Laboratory, UMR CNRS 6164; VAADER Team, Nantes, France

safwan.elassad@univ-nantes.fr

Abstract. Many crypto-algorithms, Deep-Learning, DSP compute on
words larger than 8-bit. SCA attacks can easily be done on Boolean oper-
ations like XOR, AND, OR, and substitution operations like s-box, p-box
or q-box, as 8-bit hypothesis or less are enough to forge attacks. How-
ever, attacking larger hypothesis word increases exponentially required
resources: memory and computation power. Considering multiplication,
32-bit operation implies 232 hypotheses. Then a direct SCA attack can-
not be efficiently performed. We propose to perform instead 4 small
8-bit SCA attacks. 32-bit attack complexity is reduced to 8-bit only
complexity.

Keywords: SCA · Arithmetic multiplication · 32-bit ·
Divide and conquer · 8-bit · Reduce partition size · Fault model ·
Neural network · Deep learning · Signal processing · PID ·
Automotive · Avionic · LFSR · PUF ·
Chaotic pseudo-random generator

1 Introduction

Following the low cost of 32-bit microcontrollers that substitute to 8-bit and 16-
bit microcontrollers in embedded product, more and more algorithms use 32-bit
operators. IoT firmware may then embed technical secret values of processing,
meaning then key-knowledge of the product. SCARE approach (SCA+RE) is a
way to retrieve such secret. It uses Side Channel Analysis (SCA) [1] to extract
statistical information from product behavior (consumption and/or EM radia-
tion) to perform Reverse Engineering (RE) and the retrieve secret.

Initial work has been done on a Vernam-like cipher using a PRNG based on
Chaotic cell [2–5]. The purpose of work was to retrieve 15 words of 32-bit from
the secret keys of the PRNG. 12 words are used in a sum of products for a linear
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 31–39, 2019.
https://doi.org/10.1007/978-3-030-16458-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_3

32 R. Nguyen et al.

feedback. This article describes a side-channel attack on 32-bit multiplication,
alone multiply operation or multiply-and-add operation. The attack has been
performed on “ma” instruction of ARM-v2 which computes a multiply-and-add
operation.

This 32-bit multiplication vulnerability can be applied on multiple other
targets and for a large spectrum of applications. One can consider targets using
neuronal network for deep learning [6,7] (see example in Fig. 1). Also coefficients
of FIR-IIR filter for signal processing are sensitive goods (e.g. FIR parameter
used for preprocessing by a SCA attack at [8] could be retrieved by SCA coun-
terattack) (see example in Fig. 2). Also coefficients of PID for control loop in
avionic or automotive actuators [9] are goods for advanced fonctionalities (see
example in Fig. 3). Last examples of applications deal with cryptographic func-
tions in TPM may also include such 32-bit operations for Linear Return Function
(LRF) in LFSR (pseudo-random generator), for HASH function or for PUF [10]
(post-processing of PUF measurements) (see example in Fig. 4).

Fig. 1. Attack on sensitive data in neural network

Speed-up of SCA Attacks on 32-bit Multiplications 33

2 Complexity of Attacking 32-bit Multiplication

The targeted operation to attack is an arithmetic multiplication of two 32-bit
values. The result is truncated at 32 bits, a modulus 232. This 32-bit multi-
plication vulnerability against SCA has been identified on multiple targets. As
the whole 32-bit word is needed for computation, following [11] statistical SCA
attacks with a leakage model should need 232 partitions to discriminate the secret
multiplicand value. This implies a large memory resource to store 4 billion inde-
pendent traces and associated computing power to calculate intermediate results
for CPA or DPA at each new measurement of a multiplication activity.

Fig. 2. Attack on sensitive coefficients of FIR-IIR Filter

Actually, current available computer resource can be enough for such parti-
tion and computation power. But it is still a waste of resources (memories and
computation time). For example, attacking with 1k-points traces, makes 232 =
4G partitions of 1k-points of 4 (or 8) bytes each. This imply to manage 16 TB
of memory to store intermediate differential traces. When 10k-traces are enough
to discriminate 8-bit hypothesis, 40k-traces will be needed at least for 32-bit
hypothesis.

This will imply to manage 16 × 1012 × 40 × 103 = 640 × 1015 Bytes, meaning
more than 1018 operations (31 years of computation on 1 GHz computer).

34 R. Nguyen et al.

3 Split the Attack

Instead of attacking the whole word, we propose a different approach based on
divide and conquer. The single attack with 232 partitions is substituted by 4
small and sequential attacks on 28 partitions.

You can note this strategy to attack 32-bit word can be extended to larger
word, (N× 8) bits word can be attacked through N successive attacks on 8-bit
value.

The proposed approach will split this single attack into 4 small attacks on 8
bits of secret key but computation still use 32-bit multiplication.

Fig. 3. Attack on sensitive coefficients of PID control loop

Fig. 4. Attack on sensitive goods inside a TPM

Speed-up of SCA Attacks on 32-bit Multiplications 35

First of all is to describe the operands and elementary operations of the
multiplication.
Each 32-bit word can be assumed as a vector of four 8-bit bytes:

– Y = [Y 3, Y 2, Y 1, Y 0]: result Y = K × X
– K = [K3,K2,K1,K0]: secret key which is the multiplier constant
– X = [X3,X2,X1,X0]: data to multiply

Note: “�” operator corresponds to a bit-shifter operator, c = a � b sets c
to a value left shifted from b bits. The operation of “left shift from 1 bit” is
equivalent to “multiply by 2”. Using the “�” operator, Y can be rewrite in byte
sub-operation as the following:

Y = (K3.X0) � 24 + (K3.X1) � 32 + (K3.X2) � 40 + (K3.X3) � 48
+ (K2.X0) � 16 + (K2.X1) � 24 + (K2.X2) � 32 + (K2.X3) � 40
+ (K1.X0) � 8 + (K1.X1) � 16 + (K1.X2) � 24 + (K1.X3) � 32
+ (K0.X0) � 0 + (K0.X1) � 8 + (K0.X2) � 16 + (K0.X3) � 24

As result of multiplication is truncated to 32-bit, “Y ” expression can be
simplified as:

Y = (K3.X0) � 24
+ (K2.X0) � 16 + (K2.X1) � 24
+ (K1.X0) � 8 + (K1.X1) � 16 + (K1.X2) � 24
+ (K0.X0) � 0 + (K0.X1) � 8 + (K0.X2) � 16 + (K0.X3) � 24

Amongst 16 initial intermediate multiplications, only 10 multiplications are
really needed. This triangle representation reveals that part of the key can be
selected in operation only by selecting Xi values.

4 Attack Steps

4.1 Step 1 - Retrieve K0

If X0, X1 and X2 can be forced to zero (0), then
Y = ((K0.X3) � 24) & 0xFF000000.
A SCA attack with variation on X3 enables to retrieve K0 with only 256 parti-
tions and up-to 256 traces. The leakage model is (only 8 low weight bits):
L(K0) : HW (Y) = HW ((K0.X3) & 0xFF)
HW (Y) takes value in [0:8]
In case of noisy measurements, multiple traces can be acquired and average for
each X3 value to reduced noise impact.

36 R. Nguyen et al.

4.2 Step 2 - Retrieve K1

The attack strategy is the same but with different Xi forced to zero. If X0, X1
and X3 can be forced to zero (0), then
Y = (K1.X2) � 24 + (K0.X2) � 16.
A SCA attack with variation on X2 enables to retrieve K1 with only 256 parti-
tions and up-to 256 traces. This attack needs to know the value of K0.

The leakage model is:
L(K1) : HW (Y) = HW (((K1.X2) & 0xFF) � 8 + (K0.X2))
L(K1) : HW (Y) = HW (((K1 � 8 + K0).X2) & 0x0000FFFF)
HW (Y) takes value in [0:16]
In case of noisy measurements, multiple traces can be acquired and average for
each X2 value to reduced noise impact.

4.3 Step 3 - Retrieve K2

The attack strategy is the same but with different Xi forced to zero. If X0, X2
and X3 can be forced to zero (0), then
Y = (K2.X1) � 24 + (K1.X1) � 16 + (K0.X1) � 8.
A SCA attack with variation on X1 enables to retrieve K2 with only 256 parti-
tions and up-to 256 traces. This attack needs to know the value of K0 and K1.
The leakage model is:
L(K2) : HW (Y) = HW (((K2.X1) & 0xFF) � 16 + (K1.X1) � 8 + (K0.X1))
L(K2) : HW (Y) = HW (((K2 � 16 + K1 � 8 + K0).X1) & 0x00FFFFFF)

HW (Y) takes value in [0:24]
In case of noisy measurements, multiple traces can be acquired and average for
each X1 value to reduced noise impact.

4.4 Step 4 - Retrieve K3

The attack strategy is the same but with different Xi forced to zero. If X1, X2
and X3 can be forced to zero (0), then
Y = (K3.X0) � 24 + (K2.X0) � 16 + (K1.X0) � 8 + (K0.X0) � 0.
A SCA attack with variation on X0 enables to retrieve K3 with only 256 par-
titions and up-to 256 traces. This attack needs to know the value of K0, K1
and K2.
The leakage model is:
L(K3) : HW (Y) = HW (((K3.X0) & 0xFF) � 24+(K2.X0) � 16+(K1.X0) �
8 + (K0.X0))
L(K3) : HW (Y) = HW (((K3 � 24 + K2 � 16 + K1 � 8 + K0).X0) &
0xFFFFFFFF)
HW (Y) takes value in [0:32]
In case of noisy measurements, multiple traces can be acquired and average for
each X0 value to reduced noise impact.

Speed-up of SCA Attacks on 32-bit Multiplications 37

4.5 Conclusion

The complex attack on K (32-bit) is replaced by 4 small attacks on 8-bit word:
K = [K3,K2,K1,K0]. The order of the sequence of attacks remains as the last
constraint to know few sub-keys Ki before attacking next sub-key Kj .

5 Benchmark

5.1 SCA Attack on 8-bit Multiplication

Each of 8-bit SCA attack presented in the previous chapter is based on the same
attack scenario.

The 8-bit attack, used by the previous attacks, is a classical statistical SCA.
CPA is chosen as distinguisher as it can converge quickly, even in noisy condition.

5.2 Performance on Software Implementation

A single 8-bit attack on 1k-points traces requires 256 × 1024 × 8 = 2 M-bytes of
memory and for computational resources 32 × 1024 × 256 = 8M multiplications
and 256 × 1024 × 256 = 32M additions.

For the whole attack, this corresponds to 2M-bytes of memory, 32M-
multiplications and 128M-Additions.

In comparison, a direct 32-bit attack needs 16 TB (16 Million of MB) of
memory and 1018 operations (1012 × 1M operations).

6 Conclusion

By splitting big-word variables into an array of bytes, the complex attack of a N-
Bytes word multiplication can be substituted by N small attacks on 8-bit words.
The attack complexity O(232) is replaced by 4 × O(28). The gain of memory is
over 10 million and the gain of computation is 1 billion. Then the new method
allows to compute the attack in 1 s on embedded computer (1 GHz mono-core,
4 MB of memory) instead of 31 years with 16 TB of memory.

7 Glossary

Chaotic Cell Compute a value x(n+1) with x(n + 1) = f(x(n)) that
makes a prediction of x(n+p) very complex if p>1.

CPA Correlation Power Analysis.
CEMA Correlation Electro-Magnetic Analysis.
Double an extended floating-point value on 64-bit (8 bytes), IEEE

defined.
EM ElectroMagnetic.

38 R. Nguyen et al.

FIR Finite Impulse Response, a filter defined by:
Y (n) =

∑N
i=1[X(n − i) ∗ a(i)]

Float a floating-point value on 32-bit, IEEE defined.
GB Giga-Bytes = 109 Bytes (Billion).
HASH Data transformation to produce a compressed signature.

This signature is used to test data integrity.
HD Hamming Distance, HW of the transition of a register value

when update: HD(reg(n)) = HW (reg(n)XORreg(n−1)).
HW Hamming Weight, number of ”1” in binary representation

of a number.
IRR Infinite Impulse Response, a filter defined by

Y (n) =
∑N

i=1[X(n− i)∗a(i)]−∑M
j=1[Y (n− j)∗ b(j)]

LFSR Linear-Feedback Shift Register.
LRF Linear Return Function.
MAC Multiply-and-Accumulate, same as Multiply-and-Add.
MB Mega-Bytes = 106 Bytes (Million).
Multiply-and-Add Two operation executed by a single instruction Y = a∗X+b.
Neural Network In Artificial Intelligence (A.I.) context, set neurons orga-

nized and interconnected in layers to process and reduce
number of values.

Neuron Each neuron of a layer computes a value from sum of prod-
uct of its inputs and propagate a post-processed value to
upper layer of neurons.

PID Proportional, Integral and Derivative; definite a three-term
controller in a control loop feedback mechanism.

PRNG Pseudo-RaNdom Generator, produce a predetermined
sequence of value that simulate random, an initial seed give
the beginning of the sequence.

PUF Physical Unclonable Function. Use silicon intrinsic prop-
erty to produce a unique ID, even from the same logical
gate/transistor definition. Post-processing using multipli-
cation can be used to forge better quality PUF.

RE Reverse Engineering.
RNG Random Number Generator, can be a TRNG or a PRNG.
SCARE Side-Channel Analysis for Reverse Engineering.
SCA Side-Channel Analysis.
TB Tera-Bytes = 1012 Bytes (Millions of million).
TPM Trusted Platform Module.
TRNG True Random Number Generator, use physical property to

produce unpredictable random number (Eg. atomic desin-
tegration).

XOR eXclusive OR.

Speed-up of SCA Attacks on 32-bit Multiplications 39

References

1. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

2. Assad El, S., et al.: Chaos-based block ciphers: an overview. In: IEEE 10th Inter-
national Conference on Communications, COMM-2014, pp. 23–26. Romania, May,
Bucharest (2014)

3. El Assad, F.: A new chaos-based image encryption system. Signal Process. Image
Commun. 41, 144–157 (2016)

4. Gautier, G., El Assad, S.: Design and efficient implementations of a chaos-based
stream cipher for securing Internet of Things (2017)

5. Gautier, G., El Assad, S.: A promising chaos-based stream cipher (2018)
6. Batina, L., Bhasin, S., Jap, D., Picek, S.: CSI neural network - using side-channels

to recover your artificial neural network information. arXiv:1810.09076v1 [cs.CR],
22 October 2018

7. Moellic, P.-A.: The dark side of neural networks: an advocacy for security in
machine learning. J1–05. CESAR (2018)

8. Oswald, D., Paar, C.: Improving side-channel analysis with optimal pre-processing,
p. 16. CARDIS (2012)

9. Bansal, H.O., Sharma, R., Shreeraman, P.R.: PID controller tuning techniques - a
review. J. Control Eng. Technol JCET. 2(4), 168–176 (2012). www.vkingpub.com

10. Physically Unclonable Function - PUF, SR2I301. https://perso.telecom-paristech.
fr/danger/SR2I301/PUF.pdf

11. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

https://doi.org/10.1007/3-540-48405-1_25
http://arxiv.org/abs/1810.09076v1
http://www.vkingpub.com
https://perso.telecom-paristech.fr/danger/SR2I301/PUF.pdf
https://perso.telecom-paristech.fr/danger/SR2I301/PUF.pdf
https://doi.org/10.1007/978-3-540-28632-5_2

Cryptography

Arabic Cryptography and Steganography
in Morocco

Abdelmalek Azizi(B)

Department of Mathematics, Faculty of Sciences,
Mohammed Premier University, Oujda, Morocco

abdelmalekazizi@yahoo.fr

Abstract. Moroccans have used Cryptography and Steganography
since very distant times especially during the reign of the different dynas-
ties in Morocco. They have used most of the methods of Arabic cryp-
tography as methods of substitution and transposition. They had also
used Al-Mo’tamid’s method of steganography, which consists of using a
correspondence between a set of letters of the Arabic alphabet and a set
of the bird names, and manipulate the names of birds instead of letters
to encrypt a message hidden in poetry. In addition, before the end of
the 16th century Moroccans had invented methods of cryptography and
steganography as the method of digital cryptography used by King Al
Mansour and which was based on use of the hash function “hissab Al
Jommal calculation” and the factorization of integers. They had used
also a grid filled with verses of poetry in the form of a chess table to
crypt a letter by three digits representing the position of the letter in
the grid. The poetry is thus the secret key that two people choose to
exchange secret messages.

Between the 16th and the 19th century, there was intense use of the
hash function “Hissab al Jommal calculation” to crypt numbers by letters
and to crypt words by numbers as in the case where a number had used
for the digital signature in the 18th century (signature in El-Malhoun
poems). Similarly, Moroccans had used cryptography and Steganography
for the security of financial and legal acts as in inheritance or marriage
certificates.

This is an overview of some ideas used by Moroccans that we devel-
oped using the new computer technologies; however, there are undoubt-
edly many other ideas, to be found, in the old manuscripts.

Keywords: Instance of Moroccan cryptography and steganography ·
Digital signature · Numerical cryptography

1 Introduction

The use of difficult or unconventional notions to establish cryptographic or
steganography algorithms was a tradition among Arab Scholars. They used,
among other things, poetry as transmission means and used, for example, gram-
matical mistakes to indicate the beginning and the end of the encrypted message
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 43–54, 2019.
https://doi.org/10.1007/978-3-030-16458-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_4

44 A. Azizi

hidden in a poem. They also used difficulties when writing some pieces of poetry
verses according to a given model as the basis of cryptographic or steganogra-
phy Algorithms. Thus, Arabic poetry was a means of edition and publication,
transmission, steganography and cryptography.

Al Khalil (718–786) and Al Kindi (801–873) built the pillars of Arab
Steganography and Arab Cryptography. Other Arab scholars had written impor-
tant documents on Cryptography and Steganography, including Ibn Dunainir
(1187–1229), Ibn Adlan (1187–1268), Ibn Ad-Duraihim (1312–1361) and Al-
Qalqashandi (1355–1418), see [3,9].

The Moroccans, following the study of some linguistic, mathematical and
astronomic questions, had developed several cryptographic or steganography
methods for sending secret messages. Most of the methods used in Morocco
were based on some numerical encoding of Arabic letters, the hash function h
“Hissab Al-Jommal” and some arithmetical operations see [4–7].

2 Arab Numerical Coding in Morocco and “Hissab
Al-Jommal”

Arab Numerical Coding in Morocco
The numerical values of the Arab letters (numerical coding) in Morocco are given
in the following table (Table 1).

Table 1. Numerical coding of Arabic letters

Arab Calculus “Hissab Al-Jommal”
The calculus “Hissab Al-Jommal” is an arithmetic function h that associates
each word or sentence with an integer equal to the sum of the numerical values
of the letters constituting the word or the sentence. This function was used to
write certain dates (such as some important events) at the beginning, in the
middle or at the end of some words or sentences. For example, we found that
in the 8th century, a Moroccan scholar, who had invented the writing of Arabic
numbers [9], inserted the sentence

in text that represent by the function h the number 176 (see [11]). The last num-
ber is the year (Hegira calendar) of the invention of Arabic numbers calligraphy
that was inspired by the shape of Arabic letters in Kufi calligraphy.

Arabic Cryptography and Steganography in Morocco 45

3 The Moroccan Cryptographic and Steganography
Methods

In particular, the Moroccan scientist used the following methods:

i. Methods of substitution and transposition: among these, we find the
method which consists of encoding the letters by using names of birds and
after coding the letters, the coded text is put in a poem: Al Moetamid
Steganography. Al Moetamid Ibn Abad was the King of Ichbilia, the city
now called Seville, from 1069 to 1092. He was a poet who had chosen his
ministers among poets, such as the famous poet Ibn Zaydoune and the poet
Ibn Ammare.
Al Moetamid and Ibn zaydoune had the idea of using the names of birds to
send and receive secret messages; they proceeded as follows:
– first of all, Al Moetamid and Ibn zaydoun made a correspondence between

all the letters of the Arabic alphabet and a set of names of birds.
– if one of them wants to send a message to the other, he transforms the

set of the letters of the message into an ordered set of bird names. Then,
he composes a poem where he quotes the names of birds obtained by the
transformation of the message in the same order.

Then he sends this poem to the recipient. The recipient of Al Moetamid was
in particular Ibn Zaidoune, who knew how to perform the various steps of
this method of steganography and thus to secure a secret line with King Al
Moetamid. It is Ibn Zaidoune, who once sent Al Moetamid a secret message
announcing to him that he was ready to attack his enemy and later he sent
him another secret message saying, “Destroy your enemy and get away”.

ii. Using h function, “hissab Al Jommal”, to encrypt short messages.
The original message is transformed by the function h; we obtain a number
that is decomposed into a product of two numbers n and m. Then we look
for sentences P1 and P2 such that h(P1) = n and h(P2) = m and the

multiplication symbol is replaced by its equivalent in Arabic “ ”. We thus
obtain a text that can constitute the encrypted text (Cryptography of gold
invented by Sultan Ahmed El Mansour at the end of the 16th century, see
[6–8] and [16]). The following two verses contain two parts that are ciphered
by two different methods:

the last two words of the first line are encrypted using “hissab Al Jomal”
and the integer factorization in the product of two integers (Table 2)
while the three first words of the second line are encrypted by transposing
Arabic letters in one word.

46 A. Azizi

Table 2. h function transformation of the last words of the first line

In particular, the ciphered text says, “my heart is like a stone to him” where
the clear text is “I swear I’m in love with him” which is contrary to ciphered
text. Moroccans had used the decomposition of an integer into a product of
two integers to encrypt a message, which is practically very difficult espe-
cially if the message contains more than two words. This requires a huge
calculation that could be realized only if our ancestors had a computer of
our time. This explains why this method did not follow. It should be noted
that the RSA method is also based on the difficulty of the factorization of
a large integer that is a part of the RSA key, but not on the factorization
of the digital encoding of the message as in the El Mansour method.

iii. The third method consists in using numerical coding by position.
We insert a text in a grid with n lines and m columns; a letter, which
belongs to case ij, is represented by ijk where k is the rank of the letter in
case ij. Then three digits that represent a position of the letter in the grid
code this letter; we call this Code “Al Ghazal’s Code”. It is thought that
this method was used to encrypt messages in the 18th century. There is no
evidence, but we found poems that had been coded by this method in [2].
The idea of Al Ghazal’s code is close to the idea of Rebecca code (1942)
which is coding by a book used to write secret messages. We have developed
in [6] a cryptosystem with public key based on the code of Al Ghazal. Our
cryptosystem is poly-alphabetical system as Vegner’s ciphering but it can be
used as a private key system and as a public key system. The fact that the
numerical code of a letter can be two different three integers is very useful
because in this case we can encrypt the message with several ways; this can
cause difficulties for a spy to break the cryptosystem. In addition, we don’t
use arithmetic operations which reduce the execution time of algorithms.

iv. The secret Telegram writing. The fourth method is the secret writing
of Moroccan Telegram used in the late 19th century. It consisted in giving
numerical values to the different letters of the alphabet and then trans-
forming the clear (the plain) text by numerically encoding the letters and
separating them by a point. The same numbers with a bar at the top codes
the digits. In addition, numbers (see [10]), has coded some important names,
words or sentences. The Moroccans had used this method at the end of the
19th century to write secret messages by telegram.

v. Use of the function “Hissab Al Jommal” to sign, to leave a digital
imprint or to encode the author’s name. Some poets especially in the
poems of al-Malhoun used it. As an example, we found the Qasida of Al-

Qadi (the poem of the Judge) “ ” which is signed using Hissab
Al-Jommal, by writing the number 254 at the end of the poem. The unique

Arabic Cryptography and Steganography in Morocco 47

possible solution from the names of Moroccan poets living at this time is
“Najjar” which satisfies equality h(Najjar) = 254.

vi. Use of signatures by steganography methods. Steganography methods
was used to hide the letters of the author’s name in a poem as the first letters
of verses of poetry or as the second letters of the words of a verse...The
example of the signature of Al Mahdi Ghazal is exactly the insertion of the
letters that compose his name within a verse of the poem. They were the
second letters of each word composing the verse. The verse is as follows:

There exist other examples using this method in [5].
vii. Use of special coding of numbers (Al Kalam al-Fassi). This coding

was used by the judges and by the notaries for financial safeguarding or
inheritance acts against the possible forgeries (see Fig. 2. Fès Numbers). For
more information on his methods, see [4–7].

4 Encryption Using a Poetry

We use Al Khalil models of the Arabic poetry: there are 16 models; in each
model a verse of poetry is a composition of schemes which can divide the poetry
in 6 or 8 columns as in the next two model examples.

We note that in this step, by the phonetic transcription, some letters are
added () and others are taken off () (see [1]).

Binary Coding of Shemes. We agree to replace the consonants ()
by 1 and the vowels () by 0; so we have (Table 3)

In the model “Attaouil” the first one in the above two examples: each verse
has the next coding form

1010100 10100 1010100 10100
1010100 10100 1010100 10100

The poetry model is determined if the coding form of one verse is found
using the phonetic transcription. Using Al Ghazal coding on a poetry with ten
verses (distributed in grid with ten lines and eight or six column’s); we can
transform every clear message to a sequence of integers (each letter is represented
by its code) which is an encryption of the message. The decryption is the inverse
operation. Precisely, using Al Khalil models, we code every letter by a three digit

48 A. Azizi

Table 3. Binary coding of shemes

numbers ijk. The first digit number i from 0 to 9, is the line’s number in the
grid of the verse of the poem that contains the letter. The second digit number
j, from 1 to 8, is the column’s number in the grid of the scheme in the verse
written in the form of schemes; whereas the third digit number k, from 0 to 6,
is the rank of the letter in the scheme of the verse inserted in the grid’s case ij.
The encryption and the decryption are based on the poetry and the decryption:
the poetry is the key of encryption and the key of the decryption. We construct
a Data Base that contains a large number of poetries with ten verses and having
a form of Al Khalil models; we index the poetries from 1 to p− 1, where p is a
large prime number. We use Diffie-Hellman exchange method of keys based on
the multiplicative group (Z/pZ)∗ so Ali et Bachir can choose their secret key: it
is an integer between 1 and p− 1.

– Ali Encrypt his message using Al Ghazal Coding defined by their secret key,
– Bachir decrypt his message using Al Ghazal Coding defined by their secret

key,
– A letter can be coded with different codes and one can encrypt a message

with different manners, so we cannot broke this cryptosystem using frequency
analysis.

– Diffie-Hellman key-exchange protocol can be implemented with other cyclic
groups in which the Diffie-Hellman protocol is difficult as an elliptic curve
group.

– The complexity of the Diffie-Hellman key-exchange protocol is exponential.
– The drawback of this cryptosystem is that the cipher text is longer than the

plaintext.

Depending on the model, a scheme in the grid’s case ij, is a set of n letters, where
4 < n < 8. If n = 4, then we can’t have ij5, ij6 and ij7. The same think for the
model where we have only six columns in the grid; we cannot have i7k and i8k.
So the model of the poetry that is the key determine the ijk that cannot be a
code of a letter coded using the key and Al Ghazal coding algorithm. Then we
can define a steganography method using this idea:

– We encrypt a message using our method using Al Ghazal Coding with Al
Khalil poetry key,

– We insert a numbers in the form ij5, ij6 and ij7 or i7k and i8k, if this forms
exist,

Arabic Cryptography and Steganography in Morocco 49

– We send the message,
– The recipient, using his key can pick up all the numbers in the form ij5, ij6

and ij7 or i7k and i8k. He can’t doing this if he hasn’t the key,
– After the last stipe, he can then decrypt the message using Al Ghazal Code.

Example
We shose the next poetry as Key with two line only for sinplicity

Then we give the Key rwinten in Al Khalil Models Table 4. The key written
in Al Khalil Model “Attaouil”

Table 4. The key written in Al Khalil Model “Attaouil”

Clair message

Encryption

052123120162065152053124134113150132174134114123063053126120124065032

Steganographical message with the hidden numbers in red

052017123016120236162345065152053575124134113150436132174134236114123
063536053126036120124236065032226

The receiver of the message, using the key, determines the model of the poetry
and thus can remove all the triplets that cannot represent a letter with the
key. Then he determines letters that are represented by the remaining triplets.
The sender could use a permutation before sending the message; in this case
the receiver will have to apply the inverse of the permutation before using the
poetry. In this case, the key is poetry and permutation.

5 Conclusions

Moroccans had used the factorization of an integer in a product of two integers
in cryptography or steganography algorithms; they had used various codes or
different secret key methods. With the advent of the new computing technologies,
these methods can be improved and can resist more attacks.

The method using factorization can take advantage of computers Calculus
and become simpler to use while the method using “Al Ghazal Code” can with-
stand the machinery of quantum computers.

50 A. Azizi

Annex: Examples of Moroccan Manuscripts

See Figs. 1, 3 and 4.

Fig. 1. The Sultan Al Mansour Manuscript: secret writing letters (end of the 16th
century)

Arabic Cryptography and Steganography in Morocco 51

Fig. 2. Fès Numbers Manuscript

52 A. Azizi

Fig. 3. Ahmad Al Ghazal(..-1777) Manuscript: coding using poetry in Morocco

Arabic Cryptography and Steganography in Morocco 53

Fig. 4. Secret writing Manuscript for Telegram (end of the 19 century)

54 A. Azizi

References

1. Azakri, A.: Aerodah Programm determining Al Khalil Models for the Arabic
Poetry. http://azahou45.free.fr/Accueil.htm

2. Al Iraki, A.: Ahmed El-Ghazal literary papers,
Imprimerie Info-Print, Fès Maroc (1999)

3. Al-Kadi, I.A.: Origins of cryptology: the Arab contributions. Cryptologia 16(2),
97–126 (1992)

4. Azizi, A., Azizi, M.: Instance of Arabic cryptography in Morocco. Cryptologia
35(1), 41–51 (2011)

5. Azizi, A., Azizi, M.: Instance of Arabic cryptography in Morocco II. Cryptologia
37(4), 328–337 (2013)

6. Azizi, A.: Java cryptographical application based on Arabic poetry. In: 2012 IEEE
International Conference on Computer Systems and Industrial Informatics, ICCSII
2012, 6454486 (2012)

7. Azizi, A.: Steganographical application based on Al Khalil Models of poetry. In:
2017 IEEE Joint International Conference on Information and Communication
Technologies for Education and Training and International Conference on Com-
puting in Arabic, ICCA-TICET 2017, 8095293 (2017)

8. Kahn, D.: The Codebreakers: The Story of Secret Writing. Macmillan, New York
(1967)

9. Mrayati, M., Alam, M.Y., At-Tayyan, M.H.: Arabic Origins of Cryptology, vol.
1–5. Published by KFCRIS and KACST, Riyadh (2003)

10. Tazi, A.: Les Codes Secrets des correspondances Marocaines à travers l’histoire.
Librairie Almaarif Aljadida, Rabat (1983)

11. Shakiry, A.S.: Arabic Numerals. T.C.P.H. Ltd. Publisher, London (2009). Regis-
tration N 1645411

http://azahou45.free.fr/Accueil.htm

An AEAD Variant of the Grain
Stream Cipher

Martin Hell1, Thomas Johansson1(B), Willi Meier2, Jonathan Sönnerup1,
and Hirotaka Yoshida3

1 Department of Electrical and Information Technology, Lund University,
Lund, Sweden

{martin.hell,thomas.johansson,jonathan.sonnerup}@eit.lth.se
2 FHNW, Windisch, Switzerland

willi.meier@fhnw.ch
3 Cyber Physical Security Research Center (CPSEC),

National Institute of Advanced Industrial Science and Technology (AIST),
Tokyo, Japan

hirotaka.yoshida@aist.go.jp

Abstract. A new Grain stream cipher, denoted Grain-128AEAD is pre-
sented, with support for authenticated encryption with associated data.
The cipher takes a 128-bit key and a 96-bit IV and produces a pseudo
random sequence that is used for encryption and authentication of mes-
sages. The design is based on Grain-128a but introduces a few changes
in order to increase the security and protect against recent cryptanalysis
results. The MAC is 64 bits, as specified by the NIST requirements in
their lightweight security standardization process.

Keywords: Grain · Stream cipher · AEAD · NIST

1 Introduction

Due to widespread usage of Internet of Things (IoT) technology, the need of pro-
tection from security threats on resource-constrained devices has been continu-
ously growing. Since 2003, the cryptography community has already recognized
the importance of this need, and researchers and developers have focused on
cryptography tailored to limited computation resources in hardware and software
implementations. This has resulted in opening up a new subfield of cryptogra-
phy, namely, lightweight cryptography, which led to the launch of the eSTREAM
project. This project running from 2004 to 2008 can be viewed as the most impor-
tant research activity in the area of lightweight stream ciphers. The eSTREAM
portfolio contains four software-oriented ciphers and three hardware-oriented
ciphers.

M. Hell, T. Johansson and J. Sönnerup—This work was in part financially supported
by the Swedish Foundation for Strategic Research, grant RIT17-0032 and grant RIT17-
0005.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 55–71, 2019.
https://doi.org/10.1007/978-3-030-16458-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_5

56 M. Hell et al.

From an industrial point of view, it has been widely recognized that maturity
is important regarding deployment of cryptographic mechanisms. In fact, the
ISO/IEC 18033-1 [32] standard states this property as one criteria for inclusion
of cryptographic mechanisms. The concept behind this it that, if cryptographic
mechanisms are standardized, they should be in the public domain for many
years. In this way, security and performance analysis of them can be performed
by third parties, which would give the users a significant amount of confidence in
security. The above mentioned eSTREAM project activity affected industry: one
of the eSTREAM portfolio cipher, Trivium [14], is standardized in the lightweight
stream cipher standard, ISO/IEC 29192-3 [31] together with Enocoro [48]. Grain-
128a, which is based on the eSTREAM portfolio cipher Grain v1, is standardized
in ISO/IEC 29167-13 [33] for the RFID application standard.

Despite of the above extensive academic and industry efforts, there is still an
important gap to fill. There has been no authenticated encryption with associ-
ated data (AEAD) mechanism that meets very severe performance requirements
in hardware and still offers 128-bit security, accompanied by serious evidence on
cryptanalysis. In 2013, NIST initiated a lightweight cryptography project, fol-
lowed by two workshops on the same subject. In 2017, NIST published a call for
submissions for lightweight cryptographic mechanisms. One remarkable feature
is that NIST requires each submission to implement the AEAD functionality.
In [9], it was shown that lightweight stream ciphers are typically more suitable
than lightweight block ciphers for energy optimization when encrypting longer
messages, in particular when the speed can be increased at the expense of mod-
erate extra hardware. Thus, a lightweight stream cipher seems to be a good
starting point for a lightweight AEAD design.

This paper presents Grain-128AEAD, an authenticated encryption algorithm
with support for associated data. The specification is in line with the require-
ments given by NIST and is based on the Grain stream cipher family. More
specifically, it is closely based on Grain-128a, introduced in 2011, which has,
already for several years, been analyzed in the literature. To benefit from the
maturity of the Grain family, our strategy in the design of Grain-128AEAD is
to have the changes made to Grain-128a as small as possible. Grain-128a is in
turn based on Grain v1 and Grain-128, which have both been extensively ana-
lyzed, providing much insight into the security of the design approach. All Grain
stream ciphers also allow the throughput to be increased by adding additional
copies of the Boolean functions involved.

Industrial relevance of the Grain family can be explained as follows: Grain-
128a receives a lot of attention from industry. ISO/IEC 29167-13:2015 specifying
Grain-128a has been adopted in industrial applications. For instance, the passive
IT70 RFID tag [30] that Honeywell has designed for automotive applications
implements this security standard.

The outline of the paper is as follows. In Sect. 2 the specification of the
new primitive is given. Then the overall design rationale, motivating the design
choices, are given in Sect. 3. A security analysis, focusing on cryptanalysis of

An AEAD Variant of the Grain Stream Cipher 57

Grain-128a is then given in Sect. 4. The hardware implementation is described
in Sect. 5 and the paper is concluded in Sect. 6.

2 Design Details

Grain-128AEAD consists of two main building blocks. The first is a pre-output
generator, which is constructed using a Linear Feedback Shift Register (LFSR),
a Non-linear Feedback Shift Register (NFSR) and a pre-output function, while
the second is an authenticator generator consisting of a shift register and an
accumulator. The design is very similar to Grain-128a, but has been modified to
allow for larger authenticators and to support AEAD. Moreover, the modes of
usage have been updated.

2.1 Building Blocks and Functions

The pre-output generator generates a stream of pseudo-random bits, which are
used for encryption and the authentication tag. It is depicted in Fig. 1. The
content of the 128-bit LFSR is denoted St = [st0, s

t
1, . . . , s

t
127] and the content

of the 128-bit NFSR is similarly denoted Bt = [bt0, b
t
1, . . . , b

t
127]. These two shift

registers represent the 256-bit state of the pre-output generator.

LFSR

Accumulator

Register

NFSR

g f

hh
7 2 7

6524

mi

z'i zi

y384+t

...

Fig. 1. An overview of the building blocks in Grain-128AEAD.

The primitive feedback polynomial of the LFSR, defined over GF(2) and
denoted f(x), is defined as

f(x) = 1 + x32 + x47 + x58 + x90 + x121 + x128.

The corresponding update function of the LFSR is given by

st+1
127 = st0 + st7 + st38 + st70 + st81 + st96

= L(St).

58 M. Hell et al.

The nonlinear feedback polynomial of the NFSR, denoted g(x) and also defined
over GF(2), is defined as

g(x) = 1 + x32 + x37 + x72 + x102 + x128 + x44x60 + x61x125

+ x63x67 + x69x101 + x80x88 + x110x111 + x115x117

+ x46x50x58 + x103x104x106 + x33x35x36x40

and the corresponding update function is given by

bt+1
127 = st0 + bt0 + bt26 + bt56 + bt91 + bt96 + bt3b

t
67 + bt11b

t
13

+ bt17b
t
18 + bt27b

t
59 + bt40b

t
48 + bt61b

t
65 + bt68b

t
84

+ bt22b
t
24b

t
25 + bt70b

t
78b

t
82 + bt88b

t
92b

t
93b

t
95

= st0 + F(Bt).

Nine state variables are taken as input to a Boolean function h(x). Two of
these bits are taken from the NFSR and seven are taken from the LFSR. The
function is defined as

h(x) = x0x1 + x2x3 + x4x5 + x6x7 + x0x4x8,

where the variables x0, . . . , x8 correspond to, respectively, the state variables
bt12, s

t
8, s

t
13, s

t
20, b

t
95, s

t
42, s

t
60, s

t
79 and st94.

The output of the pre-output generator, is then given by the pre-output
function

yt = h(x) + st93 +
∑

j∈A
btj ,

where A = {2, 15, 36, 45, 64, 73, 89}.
The authenticator generator consists of a shift register, holding the most

recent 64 odd bits from the pre-output, and an accumulator. Both are of size
64 bits. We denote the content of the accumulator at instance i as Ai =
[ai0, a

i
1, . . . , a

i
63]. Similarly, the content of the shift register is denoted Ri =

[ri0, r
i
1, . . . , r

i
63].

2.2 Key and IV Initialization

Before the pre-output can be used as keystream and for authentication, the inter-
nal state of the pre-output generator and the authenticator generator registers
are initialized with a key and IV. Denote the key bits as ki, 0 ≤ i ≤ 127 and the
IV bits as IV i, 0 ≤ i ≤ 95. Then the state is initialized as follows. The 128 NFSR
bits are loaded with the bits of the key b0i = ki, 0 ≤ i ≤ 127 and the first 96
LFSR elements are loaded with the IV bits, s0i = IVi, 0 ≤ i ≤ 95. The last 32 bits
of the LFSR are filled with 31 ones and a zero, s0i = 1, 96 ≤ i ≤ 126, s0127 = 0.
Then, the cipher is clocked 256 times, feeding back the pre-output function and
XORing it with the input to both the LFSR and the NFSR, i.e.,

st+1
127 = L(St) + yt, 0 ≤ t ≤ 255,
bt+1
127 = st0 + F(Bt) + yt, 0 ≤ t ≤ 255.

An AEAD Variant of the Grain Stream Cipher 59

Once the pre-output generator has been initialized, the authenticator generator
is initialized by loading the register and the accumulator with the pre-output
keystream as

a0j = y256+j , 0 ≤ j ≤ 63,

r0j = y320+j , 0 ≤ j ≤ 63.

When the register and the accumulator are initialized, the key is simultaneously
shifted into the LFSR,

st+1
127 = L(St) + kt−256, 256 ≤ t ≤ 383,

while the NFSR is updated as

bt+1
127 = st0 + F(Bt), 256 ≤ t ≤ 383.

Thus, when the cipher has been fully initialized the LFSR and the NFSR
states are given by S384 and B384, respectively, and the register and accumulator
are given by R0 and A0, respectively. The initialization procedure is summarized
in Fig. 2.

LFSR

Accumulator

Register

NFSR

t = 0 .. 255

t = 0 .. 255

t = 256 .. 383t = 256 .. 383

g f

hh
7 2 7

6524

yt

ki
...

Fig. 2. An overview of the initialization in Grain-128AEAD. Note that, in hardware,
the accumulator initialization is realized by first loading 64 pre-output bits into the
register, followed by moving them to the accumulator.

2.3 Operating Mode

For a message m of length L, denoted m0,m1, . . . ,mL−1, set mL = 1 as padding
in order to ensure that m and m‖0 have different tags.

60 M. Hell et al.

After initializing the pre-output generator, the pre-output is used to generate
keystream bits zi for encryption and authentication bits z′

i to update the register
in the accumulator generator. The keystream is generated as

zi = y384+2i,

i.e., every even bit (counting from 0) from the pre-output generator is taken as
a keystream bit. The authentication bits are generated as

z′
i = y384+2i+1,

i.e., every odd bit from the pre-output generator is taken as an authentication
bit. The message is encrypted as

ci = mi ⊕ zi, 0 ≤ i < L.

The accumulator is updated as

ai+1
j = aij + mir

i
j , 0 ≤ j ≤ 63, 0 ≤ i ≤ L,

and the shift register is updated as

ri+1
63 = z′

i,

ri+1
j = rij+1, 0 ≤ j ≤ 62.

An AEAD scheme allows for data that is authenticated, but unencrypted.
Grain-128AEAD achieves this simply by explicitly setting y384+2i = 0 for bits
that should not be encrypted, but should still be authenticated. This means that
it is possible to control the associated data on bit level, and this data can appear
anywhere in the message.

3 Design Rationale

This section presents a short overview of the Grain stream ciphers and how
the design has evolved through the different versions. It also enumerates and
discusses the differences between Grain-128a and the proposed Grain-128AEAD.

3.1 A Short History of the Grain Family of Stream Ciphers

The Grain family of stream ciphers are based on the idea behind the nonlinear
filter generator. In a nonlinear filter, an LFSR is used to provide a sequence
with large period, and a nonlinear function, taking parts of the LFSR sequence
as input, is used to add nonlinearity to the keystream sequence. Much work
has been put into analyzing the nonlinear filter generator and it is clear that it
is very difficult to design a secure nonlinear filter generator with a reasonable
hardware footprint [13]. In particular algebraic attacks have been shown to be
very strong against this design, see e.g., [17,41].

An AEAD Variant of the Grain Stream Cipher 61

In order to better withstand algebraic attacks, and to make the relation
between state/key and keystream more complex, Grain adds an NFSR to the
nonlinear combiner. The initial submission to the ECRYPT eSTREAM project
was analyzed in [10,37], showing that the nonlinear functions required higher
resiliency and nonlinearity. The modified design was subsequently published as
Grain v1 [28] and was later selected for the final portfolio in eSTREAM. Grain
v1 uses an 80-bit key, and a 128-bit key variant was proposed in [27]. Based
on previous results on the Grain construction, Grain-128 was more aggressively
designed, making the nonlinear NFSR feedback function of degree 2, but with
high nonlinearity and resiliency. The relatively small functions compensated for
the fact that the shift registers were increased to 128 bits each, which increased
the hardware footprint. The low degree functions were exploited in [3,44] in order
to cryptanalyze a significant number of initializations rounds. These results sug-
gested that the nonlinear functions needed a higher security margin. Grain-128a
was proposed in [50], and in addition to increasing the degree of the nonlin-
ear feedback function, an optional authentication mode was added. Work on
Grain-128 were subsequently improved [19–21,35], emphasizing the need for
more complex Boolean functions, and Grain-128 is considered broken and should
not be used. The design proposed in this paper, Grain-128AEAD, is closely based
on Grain-128a, using the same feedback and output functions. However, slight
modifications have been made in order to add security and make it resistant to
the attack proposed in [46].

3.2 Differences Between Grain-128AEAD and Grain-128a

Grain-128AEAD takes Grain-128a as starting point, but introduces a number
of slight modifications. The modifications are primarily motivated by the NIST
Lightweight Cryptography Standardization Process, but inspiration also comes
from recent results in [25,46].

Larger MACs. The register and the authenticator has been increased to 64
bits (instead of 32 bits) in order to allow for authentication tags (MACs) of size
64 bits.

No Encryption-Only Mode. Grain-128a allowed for an operation mode with
only encryption, where the authentication was removed. This mode resulted in
smaller hardware footprint since the two additional registers, and their associated
logic, could be left out from an implementation. The encryption-only mode was
also more efficient since the initialization process does not include initializing the
register and the accumulator, and every pre-output bit was used as keystream.
The proposed Grain-128AEAD is a pure authenticated encryption algorithm,
and authentication of data is always supported. Thus, there is only one mode of
operation.

62 M. Hell et al.

Initialization Hardening. Based on the ideas in [25] and used in Lizard [26],
Grain-128AEAD re-introduces the key into the internal state during the ini-
tialization clock cycles. More specifically, it is serially shifted into the LFSR in
parallel to the initialization of the register and the accumulator. Several variants
can be considered here, including where and when to add the key. The LFSR is
chosen due to the fact that if the LFSR is recovered (e.g., in a fast correlation
attack as in [46]), it is comparably easy to recover the NFSR state. Moreover,
since the LFSR output is XORed with the NFSR input, the key bits will con-
tinue to affect also the NFSR during pre-output generation. As for when, we
choose to re-introduce it during the last 128 clocks of the initialization. This
provides maximum separation between its first introduction in the key loading
part, where the key is loaded into the NFSR, and when it is re-introduced. Rela-
tions between keys are e.g., more difficult to exploit if the key is properly mixed
into the state before the key is re-introduced.

By introducing the key as the last part of the initialization, we achieve the
attractive effect that a state recovery attack does not immediately imply key
recovery, as was the case for previous versions of Grain. While a state recovery
would still render the cipher to be considered broken, the practical effect to
deployed devices is highly limited. Recovering the state will only compromise
the security of the current message, and not all messages using the same key.

Keystream Limitation. Grain stream ciphers have been designed to allow
for encrypting large chunks of data using the same key/IV pair. Previously, the
Grain ciphers have not had any explicit limitation on the keystream length.
However, to rule out attacks that use very large keystream sequences, Grain-
128AEAD restricts the number of keystream bits for each key/IV to 280. We
believe that this is well above what will be needed in the foreseeable future.
Restricting the number of keystream bits will also make attacks that use linear
approximations more difficult, e.g., [46].

4 Security Analysis

The security of the Grain family of stream ciphers has been investigated by a
large number of third party analysts, publishing various analysis results on the
different variants of Grain. Since its first introduction in 2005, much have been
learned about the construction and the design approach. There have also been
several published ciphers inspired by the design, e.g., Sprout [2] and its successor
Plantlet [42]. Also Fruit [23] and Fruit-80 [1] are based on the same design idea.
These ciphers have in common that they attempt to realize extremely resource
constrained encryption. To minimize the hardware footprint, the key is assumed
to be stored in non-volatile memory (NVM) on a device, and this memory is
made part of the cryptographic algorithm. Since the key needs to be stored
on a device anyway, using the key directly from NVM in the algorithm does
not impose additional hardware to the construction. This is not the case for
Grain, as we allow the key to be updated in the device, and the key storage is

An AEAD Variant of the Grain Stream Cipher 63

not a part of the cipher. Still, the fact that the above mentioned ciphers use the
Grain design idea shows that the design seems to be very suitable for lightweight
cryptography.

4.1 General Security Analysis

A main class of attacks on stream ciphers is the Time/Memory/Data tradeoff
(TMD-TO) attack, an efficient method of finding either the key or the state
of ciphers by balancing between time, memory and keystream data. This can
sometimes be much more efficient and more practically applicable than a simple
exhaustive key search attack. Some stream ciphers are vulnerable to TMD-TO
attacks and their effective key lengths could then be reduced. This typically
happens if the state size is too small. A famous practical TMD-TO attack on
A5/1 was given in [12].

A TMD-TO attack consists of two parts. The first is a preprocessing phase,
during which a table is constructed. The mapping of different keys or internal
states to some keystream segment is computed and stored in the table. It is
sorted on keystream segments and this process is assumed to use time com-
plexity P and memory M . In the second (real-time) phase, the attacker has
intercepted D keystream segments and search for a collision with the table with
time complexity T . A collision will recover the corresponding input. By a trade-
off between parameters P,D,M , and T , attackers can devise attacks according
to available time, memory and data. Examples of tradeoffs are Babbage-Golic
(BG) [4,24] and Biryukov-Shamir (BS) [11] with curves TM = N , P = M with
T ≤ D; and MT 2D2 = N2, P = N/D with T ≥ D2, where N is the input space,
respectively.

For Grain-128AEAD, attackers have no direct way to reconstruct the inter-
nal state, since the cipher has an internal state of size 256 bits (128-bit LFSR +
128-bit NFSR), i.e. N = 2256. The best attack complexity achieved under BG
tradeoff is with T = M = D = N1/2 = 2128, which is not favourable compared to
exhaustive key search. Also the BS tradeoff does not give complexity parameters
of particular interest. Some improvements to TMD-TO attacks can be achieved
through so called BSW sampling [12] and the performance of such an approach
is characterized by the sampling resistance of the stream cipher. Various gener-
alizations of the concept of sampling resistance can be considered, e.g. [34], but
it seems unlikely that this will lead to an attack with better performance than a
standard Hellman-type time-memory tradeoff attack on the keyspace, a generic
attack applicable to any cipher. Also, our limit on the length of keystreams
affects such attacks.

Another class of general attacks are algebraic attacks, where the attacker
derives a system of nonlinear equations in unknown key bits or unknown state
bits and then solves the system. In general, solving a system of nonlinear equa-
tions is not known to be solvable in polynomial time, but there might be special
cases that can be solved efficiently [16]. Due to the NFSR, the degree of the
equations will gradually increase and it does not look promising to try to derive

64 M. Hell et al.

a system of nonlinear equations due to this property as well as the algebraic
degree of the h function.

A general cryptanalytic technique is a guess-and-determine attack, where one
guesses parts of the state and then from the keystream tries to determine other
parts of the state. The goal is to guess as few positions as possible and determine
as many as possible from equations involving the keystream. Again, since the
dependence between a keystream symbol and the state includes many different
positions in the state and some of them in nonlinear expressions, one has to
guess a large portion of state variables in order to use an equation to determine
a single state variable.

Being a binary additive stream cipher, Grain-128AEAD does not allow reuse
of a key/IV pair since this will leak information about the corresponding plain-
texts. Moreover, since Grain-128AEAD closely resembles Grain-128a, a key/IV
pair used in one cipher may also not be reused in the other. Such cross-cipher
key/IV reuse in a related cipher model is outside the security model of Grain-
128AEAD.

In the subsequent subsections, we now describe the attacks that we consider
as the main threat against lightweight stream ciphers in general and Grain-
128AEAD in particular.

4.2 Correlation Attacks

Grain-128a was designed to resist conventional (fast) correlation attacks that
exploit correlations between the state of the LFSR and the corresponding key
stream. There has been devised a fast correlation attack on small state Grain-like
stream ciphers in [49]. Due a much bigger state, this attack does not apply to
Grain-128a. On the other hand, a recent paper [46] reveals that there are multiple
linear approximations in Grain-128a that together with a viewpoint based on a
finite field allow a fast correlation attack on the raw encryption mode of Grain-
128a (and on the other members of the Grain family), where every keystream
bit is assumed to be accessible by an opponent. This attack recovers the state
of Grain-128a with data and time complexity of about 2114. The data needs to
come from the same secret key and the same IV.

It should be noted that this fast correlation attack does not apply to Grain-
128a in authentication mode, as then only every second key stream bit may be
accessible to an opponent. Thus, it does not apply to Grain-128AEAD.

4.3 Chosen IV Attacks

A variety of chosen IV attacks on Grain have been proposed, in both fixed
key scenario as well as in the related key setting, and either for distinguishing
purpose or for key recovery. In a fixed key scenario, chosen IV attacks have
been devised on reduced-round versions using conditional differentials and using
cube attacks, or combinations of both [22,38–40]. On Grain-128, a dynamic cube
attack has been developed that succeeds in finding the secret key for the full 256-
round initialization for a fraction of keys, [19]. Dynamic cube attacks have not

An AEAD Variant of the Grain Stream Cipher 65

been successful on Grain-128a thus far. Most of these results are experimental
in nature, and do work only if the computational effort is practically feasible.

More recently, division property has been developed to improve cube attacks.
Division property is an iterated technique for integral distinguishers introduced
by Todo, in [45] and was applied initially to block ciphers. It turned out that it
also applies to the initialization of stream ciphers, not only for distinguishers but
also for key recovery. As opposed to conventional cube attacks, it can provide
theoretical results. The latest result on Grain-128a in this direction is a key
recovery on 184 initialization rounds, [47]. The data complexity is 295, and the
computational complexity corresponds to about 2110 operations.

An attack that reaches the largest number of initialization rounds of Grain-
128a in a fixed key scenario thus far is a conditional differential distinguishing
attack and reaches 195 initialization rounds, but it works only for a fraction of
all keys, [40].

The relevance of related key cryptanalysis of stream ciphers has been a sub-
ject of debate. A related key attack on Grain-128a in [18] recovers the secret key
with a computational complexity 296, requiring 296 chosen IVs and about 2104

keystream bits. It requires only 2 related keys. Another related key attack in [8]
recovers the secret key using 264 chosen IVs and 232 related keys, where these
figures need to be multiplied by some factor (about 28). Due to the modified
initialization procedure, related key attacks on Grain-128AEAD are expected to
be less efficient than those against Grain-128a.

4.4 Fault Attacks

In the scenario of fault attacks on stream ciphers, the attacker is allowed to
inject faults into the internal state, which means either flipping a binary value
in memory or assigning a value to zero. By analyzing the difference in keystreams
for the faulty and the fault-free case, one attempts to deduce the complete or
some partial information about the internal state or the secret key. Fault attacks
on stream ciphers have recently received some attention, starting with the work
of Hoch and Shamir [29]. The most common methods of injecting faults is by
using laser or through clock glitches. Fault attacks usually rely on assumptions
that is beyond the model of cryptanalysis and for this reason one can often
find rather efficient fault attacks on most ciphers. In some scenarios they are,
however, not unrealistic and the exact complexity and the related requirements
are of interest to study.

Fault attacks on the Grain family of stream ciphers were studied in [15] and
[36]. More recently, there was a number of papers providing improved attacks,
[5–7,43]. In [43] the model is the most realistic one as it considers that the
cipher has to be re-initialized only a few times and faults are injected to any
random location and at any random clock cycle. No further assumptions are
needed over location and timing for injections. In the attack one constructs
algebraic equations based on the description of the cipher by introducing new
variables so that the degrees of the equations do not increase. Following algebraic
cryptanalysis, such equations based on both fault-free and faulty key-stream bits

66 M. Hell et al.

are collected. Then a solving phase using the SAT Solver recovers the state of
any Grain member in minutes, For Grain v1, Grain-128 and Grain-128a, it uses
only 10, 4 and 10 injected faults, respectively.

We stress that we are not claiming resistance against fault attacks for Grain-
128AEAD. Rather, when fault attacks is a realistic threat, one has to implement
protection mechanisms against fault injection.

5 Implementation

Lightweight ciphers are important in constrained devices. A minimal design is
desirable, e.g., minimum area and very low power consumption since they often
must operate for an extended period of time, without a battery change. In some
cases, devices run without its own power supply, something that is often the case
with RFID tags.

Table 1. The gate count for different functions.

Function Gate count

NAND2 1.0

NAND3 1.5

NAND4 2.0

XOR2 2.5

XOR3 6.5

Flip flop 8.0

Grain-128AEAD can be constructed using primitive hardware building
blocks, such as NAND gates, XOR gates and flip flops. In order to get an idea of
the hardware footprint related to an implementation of the cipher, we implement
the stream cipher using 65 nm library from ST Microelectronics, stm065v536.
For synthesis and power simulation, the Synopsys Design Compiler 2013.12 is
used. It can be noted that the result is highly dependent on what kind of gates
are available and how the tool utilizes the standard cells. We define a 2-input
NAND gate to have a gate count of 1 and other gate counts are given in relation
to this NAND gate. An excerpt from the standard-cell library documentation is
given in Table 1.

We synthesize the design and extract the gate count for each building block.
A summary of the gate count for each building block, and for different paral-
lelization levels, is given in Table 2. The control logic and accumulator logic is
extra circuitry and state machines for controlling the stream cipher, i.e., loading
key and IV, multiplexing data, etc.

The gate count remains constant during synthesis, but the physical area,
power and speed changes based on the optimization techniques employed. First,

An AEAD Variant of the Grain Stream Cipher 67

Table 2. Gate count for the different building blocks, for different levels of paralleliza-
tion, s.

Building block Gate count

s = 1 s = 2 s = 32

LFSR 1024 1024 1024

NFSR 1024 1024 1024

f 19 38 608

g 62.5 125 2000

h 41.5 83 1328

Control logic 219.5 475.5 942.5

Accumulator 512 512 512

Register 512 512 512

Accumulator logic 224 224 4160

Total 3638.5 4017.5 12110.5

Table 3. Implementation results running at 100 kHz, for different levels of
parallelization.

Parallelization Area Power Throughput

1 4934µm2 313 nW 50 kbit/s

2 5336µm2 368 nW 100 kbit/s

32 16853µm2 574 nW 1600 kbit/s

we synthesize the design at clock frequency 100 kHz. The design is synthesized
for three levels of parallelization; 1, 2, and 32 times. The result is given in Table 3.

We also synthesize for the maximum possible speed, to achieve maximum
throughput, without constraints on area. The results are given in Table 4.

Table 4. Implementation results running at maximum possible speed, for different
levels of parallelization.

Parallelization Speed Area Power Throughput

1 1.12 GHz 5258µm2 3.6 mW 560 Mbit/s

2 1.18 GHz 5629 µm2 4.3 mW 1.18 Gbit/s

32 662MHz 17632 µm2 4.0 mW 10.59 Gbit/s

6 Conclusions

We have presented Grain-128AEAD, a new cipher in the Grain family. It is
closely based on Grain-128a and takes advantage of the well-analyzed design

68 M. Hell et al.

principle behind the Grain stream ciphers. By making slight modifications to
Grain-128a, the cipher meets the requirements in the NIST lightweight standard-
ization process, providing 64-bit MAC, 128-bit key and 96-bit IV. The hardware
footprint makes the cipher well suited for constrained environments, but the
design is flexible enough to allow for also very high speed requirements at the
expense of additional hardware.

A Test Vectors

Here, we give some test vectors for different keys, IVs, and messages. The test
vectors are given in hexadecimal, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFFFFFF

corresponds to

(k0, ..., k127) = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, ..., 1).

The message stream is given with the padding included. A padding bit of
1 equals a padding byte of 0x80. Note that for an empty message, the message
stream is just the padding.

Key: 0x00000000000000000000000000000000
IV: 0x000000000000000000000000
Keystream: 0xc800a52f948b89b85cee6cfd8571f90f
Message: 0x80
Tag: 0xaab555c073e67664

Key: 0x0123456789abcdef123456789abcdef0
IV: 0x0123456789abcdef12345678
Keystream: 0xc2b918c6baf6dea0865200d46858a37b
Message: 0xFF80
Tag: 0x782f4c4a8907ba7f

References

1. Amin Ghafari, V., Hu, H.: Fruit-80: a secure ultra-lightweight stream cipher for
constrained environments. Entropy 20(3), 180 (2018)

2. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter internal
states. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp. 451–470. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-5 22

3. Aumasson, J.P., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA
implementations of high-dimensional cube testers on the stream cipher Grain-128.
In: SHARCS 2009 Special-purpose Hardware for Attacking Cryptographic Systems,
p. 147 (2009)

4. Babbage, S.: Improved “exhaustive search” attacks on stream ciphers. In: IET
Conference Proceedings, pp. 161–166(5), January 1995

https://doi.org/10.1007/978-3-662-48116-5_22

An AEAD Variant of the Grain Stream Cipher 69

5. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on Grain-128a using
MACs. In: Bogdanov, A., Sanadhya, S. (eds.) SPACE 2012. LNCS, pp. 111–125.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34416-9 8

6. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family
of stream ciphers. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 122–139. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 8

7. Banik, S., Maitra, S., Sarkar, S.: A differential fault attack on the grain family
under reasonable assumptions. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT
2012. LNCS, vol. 7668, pp. 191–208. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34931-7 12

8. Banik, S., Maitra, S., Sarkar, S., Meltem Sönmez, T.: A chosen IV related key
attack on Grain-128a. In: Boyd, C., Simpson, L. (eds.) ACISP 2013. LNCS, vol.
7959, pp. 13–26. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39059-3 2

9. Banik, S., et al.: Towards low energy stream ciphers. IACR Trans. Symmetric
Cryptol. 2018(2), 1–19 (2018)

10. Berbain, C., Gilbert, H., Maximov, A.: Cryptanalysis of grain. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 15–29. Springer, Heidelberg (2006). https://
doi.org/10.1007/11799313 2

11. Biryukov, A., Shamir, A.: Cryptanalytic time/memory/data tradeoffs for stream
ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 1–13.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 1

12. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: Goos, G., Hartmanis, J., van Leeuwen, J., Schneier, B. (eds.) FSE 2000. LNCS,
vol. 1978, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
44706-7 1

13. Braeken, A., Lano, J.: On the (Im)possibility of practical and secure nonlinear
filters and combiners. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897,
pp. 159–174. Springer, Heidelberg (2006). https://doi.org/10.1007/11693383 11

14. Cannière, C.D., Preneel, B.: Trivium. New Stream Cipher Designs - The eSTREAM
Finalists, pp. 244–266 (2008)

15. Castagnos, G., et al.: Fault analysis of GRAIN-128. In: IEEE International Work-
shop on (HST) Hardware-Oriented Security and Trust, pp. 7–14 (2009)

16. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

17. Courtois, N.T.: Fast algebraic attacks on stream ciphers with linear feedback. In:
Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 176–194. Springer, Heidel-
berg (2003). https://doi.org/10.1007/978-3-540-45146-4 11

18. Ding, L., Guan, J.: Related key chosen IV attack on Grain-128a stream cipher.
IEEE Trans. Inf. Forensics Secur. 8(5), 803–809 (2013)

19. Dinur, I., Güneysu, T., Paar, C., Shamir, A., Zimmermann, R.: An experimentally
verified attack on full Grain-128 using dedicated reconfigurable hardware. In: Lee,
D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 327–343. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0 18

20. Dinur, I., Shamir, A.: Breaking Grain-128 with dynamic cube attacks. In: Joux,
A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 167–187. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21702-9 10

https://doi.org/10.1007/978-3-642-34416-9_8
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-33027-8_8
https://doi.org/10.1007/978-3-642-34931-7_12
https://doi.org/10.1007/978-3-642-34931-7_12
https://doi.org/10.1007/978-3-642-39059-3_2
https://doi.org/10.1007/978-3-642-39059-3_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/11799313_2
https://doi.org/10.1007/3-540-44448-3_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/3-540-44706-7_1
https://doi.org/10.1007/11693383_11
https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-540-45146-4_11
https://doi.org/10.1007/978-3-642-25385-0_18
https://doi.org/10.1007/978-3-642-21702-9_10

70 M. Hell et al.

21. Fu, X., Wang, X., Chen, J., Stevens, M.: Determining the nonexistent terms of non-
linear multivariate polynomials: how to break Grain-128 more efficiently. IACR
Cryptol. ePrint Archive 2017, 412 (2017)

22. Ghafari, V.A., Hu, H.: A new chosen IV statistical attack on Grain-128a cipher.
In: 2017 International Conference on Cyber-Enabled Distributed Computing and
Knowledge Discovery (CyberC), pp. 58–62. IEEE (2017)

23. Ghafari, V.A., Hu, H., Xie, C.: Fruit: ultra-lightweight stream cipher with shorter
internal state. eSTREAM, ECRYPT Stream Cipher Project (2016)

24. Golić, J.D.: Cryptanalysis of alleged A5 stream cipher. In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-69053-0 17

25. Hamann, M., Krause, M.: On stream ciphers with provable beyond-the-birthday-
bound security against time-memory-data tradeoff attacks. Cryptogr. Commun.
10(5), 959–1012 (2018)

26. Hamann, M., Krause, M., Meier, W.: Lizard-a lightweight stream cipher for power-
constrained devices. IACR Trans. Symmetric Cryptol. 2017(1), 45–79 (2017)

27. Hell, M., Johansson, T., Maximov, A., Meier, W.: A stream cipher proposal: Grain-
128. In: 2006 IEEE International Symposium on Information Theory, pp. 1614–
1618. IEEE (2006)

28. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. Int. J. Wirel. Mob. Comput. 2(1), 86–93 (2007)

29. Hoch, J.J., Shamir, A.: Fault analysis of stream ciphers. In: Joye, M., Quisquater,
J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 240–253. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-28632-5 18

30. Honeywell: IT70 Secure Passive RFID Tag. Technical Specifications (2017).
https://www.honeywellaidc.com/products/rfid/tags-labels/it70

31. ISO/IEC 29192-3:2012 information technology - security techniques - lightweight
cryptography - part 3: Stream ciphers (2012)

32. ISO/IEC 18033-1:2015 information technology - security techniques - encryption
algorithms - part 1: General (2015)

33. ISO/IEC 29167-13:2015 information technology – automatic identification and
data capture techniques – part 13: Crypto suite Grain-128A security services for
air interface communications (2015)

34. Jiao, L., Zhang, B., Wang, M.: Two generic methods of analyzing stream ciphers.
In: Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 379–396.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 21

35. Karlsson, L., Hell, M., Stankovski, P.: Not so greedy: enhanced subset exploration
for nonrandomness detectors. In: Mori, P., Furnell, S., Camp, O. (eds.) ICISSP
2017. CCIS, vol. 867, pp. 273–294. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93354-2 13

36. Karmakar, S., Roy Chowdhury, D.: Fault analysis of Grain-128 by targeting NFSR.
In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp.
298–315. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-
6 19

37. Khazaei, S., Hasanzadeh, M.M., Kiaei, M.S.: Linear sequential circuit approxima-
tion of Grain and Trivium stream ciphers. IACR Cryptol. ePrint Archive 2006,
141 (2006)

38. Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential cryptanalysis
of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 130–145. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 8

https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/3-540-69053-0_17
https://doi.org/10.1007/978-3-540-28632-5_18
https://www.honeywellaidc.com/products/rfid/tags-labels/it70
https://doi.org/10.1007/978-3-319-23318-5_21
https://doi.org/10.1007/978-3-319-93354-2_13
https://doi.org/10.1007/978-3-319-93354-2_13
https://doi.org/10.1007/978-3-642-21969-6_19
https://doi.org/10.1007/978-3-642-21969-6_19
https://doi.org/10.1007/978-3-642-17373-8_8
https://doi.org/10.1007/978-3-642-17373-8_8

An AEAD Variant of the Grain Stream Cipher 71

39. Lehmann, M., Meier, W.: Conditional differential cryptanalysis of Grain-128a. In:
Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.) CANS 2012. LNCS, vol. 7712, pp.
1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35404-5 1

40. Ma, Z., Tian, T., Qi, W.F.: Conditional differential attacks on Grain-128a stream
cipher. IET Inf. Secur. 11(3), 139–145 (2016)

41. Meier, W., Pasalic, E., Carlet, C.: Algebraic attacks and decomposition of Boolean
functions. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 474–491. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24676-3 28

42. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access the
non-volatile key. IACR Transaction Symmetric Cryptology, pp. 52–79 (2016)

43. Sarkar, S., Banik, S., Maitra, S.: Differential fault attack against Grain family with
very few faults and minimal assumptions. IEEE Trans. Comput. 64(6), 1647–1657
(2015)

44. Stankovski, P.: Greedy distinguishers and nonrandomness detectors. In: Gong, G.,
Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 210–226. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17401-8 16

45. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E.,
Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 12

46. Todo, Y., Isobe, T., Meier, W., Aoki, K., Zhang, B.: Fast correlation attack revis-
ited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp.
129–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0 5

47. Wang, Q., Hao, Y., Todo, Y., Li, C., Isobe, T., Meier, W.: Improved division prop-
erty based cube attacks exploiting algebraic properties of superpoly. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 275–305. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96884-1 10

48. Watanabe, D., Owada, T., Okamoto, K., Igarashi, Y., Kaneko, T.: Update on
Enocoro stream cipher. In: 2010 International Symposium on Information Theory
its Applications, pp. 778–783, October 2010

49. Zhang, B., Gong, X., Meier, W.: Fast correlation attacks on Grain-like small state
stream ciphers. IACR Trans. Symmetric Cryptol. 2017(4), 58–81 (2017)

50. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of Grain-
128 with optional authentication. Int. J. Wirel. Mob. Comput. 5(1), 48–59 (2011)

https://doi.org/10.1007/978-3-642-35404-5_1
https://doi.org/10.1007/978-3-540-24676-3_28
https://doi.org/10.1007/978-3-540-24676-3_28
https://doi.org/10.1007/978-3-642-17401-8_16
https://doi.org/10.1007/978-3-662-46800-5_12
https://doi.org/10.1007/978-3-319-96881-0_5
https://doi.org/10.1007/978-3-319-96884-1_10

Construction for a Nominative
Signature Scheme from Lattice

with Enhanced Security

Meenakshi Kansal(B), Ratna Dutta, and Sourav Mukhopadhyay

Department of Mathematics, Indian Institute of Technology Kharagpur,
Kharagpur, India

{kansal,ratna,sourav}@maths.iitkgp.ernet.in

Abstract. The existing secure nominative signature schemes are all
based on bilinear pairings and are secure only on classical machines.
In this paper, we present the first lattice based nominative signature
scheme. The security of our scheme relies on the hardness of short inte-
ger solution (SIS) and learning with error (LWE) problems for which no
polynomial time quantum algorithms exist till now. Consequently, our
scheme is the first nominative signature scheme that withstand quantum
attacks. Furthermore, we propose stronger security models for unforge-
ability and invisibility and prove our construction achieve these enhanced
security. Besides, our scheme exhibits impersonation and non-repudiation
following standard security model. We emphasis that the security anal-
ysis against all the security attributes for our scheme are in standard
model except the security against malicious nominator which uses ran-
dom oracle.

Keywords: Lattice based cryptography · Nominative signature ·
Unforgeability · Invisibility · Non-repudiation

1 Introduction

A nominative signature scheme, introduced by Kim et al. [6], is an important
cryptographic primitive which enables a nominator to select a nominee and pro-
duce a nominative signature corresponding to the nominee. Moreover, only the
nominee can prove (convince) the validity of a nominative signature to a ver-
ifier. A nominative signature should satisfy the following security attributes −
unforgeability, invisibility, non-impersonation and non-repudiation. Unforgeabil-
ity ensures that a nominator or a nominee cannot produce a valid nominative
signature alone while invisibility features that the verification of a nominative
signature can be performed by nominee only. Non-impersonation guarantees that
only the nominee can prove (convince) the validity of a nominative signature to
a verifier. Non-repudiation holds certain control on the nominee. It ensures that
inspite of having the ability of verification and checking validity of a nominative

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 72–91, 2019.
https://doi.org/10.1007/978-3-030-16458-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_6

Construction for a Nominative Signature Scheme from Lattice 73

signature, the nominee cannot deceive a verifier by proving the validity of an
invalid nominative signature or invalidity of a valid nominative signature.

Nominative signature has several practical applications in user identification
system, banking, insurance, mobile communication etc. For instance, suppose
a government body (nominator) certifies and issues signature on passport of a
countryman (nominee) who requests for it. Nominative signature scheme can be
an ideal cryptographic primitive to handle this situation by producing a mutual
agreement (nominative signature) between the government body and the coun-
tryman. The government body cannot make false claims on the countryman
and vice versa if the scheme is unforgeable. The invisibility property of the
scheme permits only the countryman to verify whether the issued passport con-
tains all the correct details or not. Impersonation allows only the countryman
to prove (convince) to the airport authority (verifier) that the passport belongs
to him/her. Moreover, if the countryman has a fake (or an original) passport
then he should not be able to mislead the airport authority by proving the fake
passport to be an original (or an original passport to be a fake) passport. This
feature is ensured by non-repudiation.

Related Work: Nominative signature was introduced by Kim et al. [6] in 1996
based on Schnorr’s signature and claimed to be secure under the hardness of
discrete logarithm problem. However, the scheme is found flawed by Huang and
Wang [5] in 2004. The concept of convertible nominative signature was intro-
duced in [5]. They also proposed a construction for convertible nominative sig-
nature which is proven to be insecure in [15].

The formal definition and security model for a nominative signature was
introduced by Liu et al. [10] in 2007 along with a nominative signature scheme.
This construction is based on Chaum’s undeniable signature and is secure under
the hardness of computational Diffie-Hellman problem, decisional Diffie-Hellman
problem and discrete logarithm problem. The scheme requires multi-round of
communication between a nominator and a nominee for the signature generation.
A more efficient design for nominative signature was proposed by Liu et al. [9]
using ring signature with one round of communication between a nominator
and a nominee. This construction is proven to be secure under the discrete
logarithm assumption and computational Diffie-Hellman assumption. However,
the schemes [9,10] exhibit the weak invisibility in the sense that the nominator
does not take part in generating of some valid signatures.

Huang et al. [4] proposed a stronger security model by introducing stronger
invisibility with an extra feature of considering nominator as an adversary. They
designed a one-round nominative signature scheme which achieves security in
this stronger security model. They proposed a security model stronger that of [4]
by proposing a stronger unforgeability where adversary generates the challenge
public nominee key. Together with the model of stronger unforgeability they
have constructed a nominative signature scheme which is proven to be secure in
this stronger security model.

The works of [4,14] are the only secure nominative signature schemes so far on
the classical machine. Both these schemes use bilinear pairing. The scheme in [4]

74 M. Kansal et al.

uses witness indistinguishable and is proven secure in the random oracle model
under the hardness of weak discrete logarithm problem, weak Diffie-Hellman
problem, bilinear Diffie-Hellman exponent problem, weak computational Diffie-
Hellman (WCDH)-I problem and WCDH-II problem. It is an efficient scheme as
it requires only one-round of communication between a nominator and a nominee
to generate a nominative signature. The number of bilinear pairings used in the
generation of the nominative signature is 3. The nominator’s public-secret keys,
nominee’s public-secret keys all have size |G|, nominative signature is of size
4|G|, communication cost is |G|. On the other hand, the scheme in [14] uses
zero knowledge proof of knowledge and is proven secure in the standard model
under the hardness of discrete logarithm problem and discrete linear problem.
It also requires only one-round of communication between a nominator and a
nominee to generate a nominative signature and it uses 3 bilinear pairings in
the generation of the nominative signature. The nominator’s public-secret keys,
nominee’s public-secret keys are of size (n+3)|G|, |G|, (n+6)|G| and (n+3)|G|
respectively, nominative signature is of size 4|G|, communication cost is 2|G|
where |G| is the bit size of an element of the group G.

As there is a threat on the reality of quantum machine, a modern pub-
lic key cryptosystem is required to withstand quantum attacks. Cryptosystems
based on hash functions, lattices, codes, multivariate polynomials, isogenies etc
are secure on the quantum machine. Lattice based cryptography is one of the
most promising tools for the post quantum era as it offers security under worst-
case intractability assumptions, efficient parallel computations and homomor-
phic computation in addition to the apparent resistance to quantum attacks.
Although a number of cryptographic primitives have been designed using lat-
tice, till now there are no lattice-based construction for nominative signature.

Our Contribution: In this paper, we propose a security model for the nomi-
native signature scheme which is stronger than the models proposed in [4,14].
Further, we construct the first lattice based nominative signature scheme which
achieves security in this stronger security model under the hardness of short inte-
ger solution (SIS) problem [1] and learning with error (LWE) problem [13]. More
precisely, we note the following:

– At a high level, we design a nominative signature by employing the decompo-
sition extension technique of Ling et al. [8] and integrate the non-interactive
zero knowledge argument system of Libert et al. [7]. In our construction, the
public key of a nominator or a nominee is a matrix S ∈ Z

n×m
q and the secret

key TS ∈ Z
m×m is a short basis of the lattice Λ⊥

q (S) = {x : Sx = 0 mod q}
where q, n, m are integers and m = poly(n). The nominator can choose a
nominee. The nominee, in turn, proves its identity to the nominator by issu-
ing a signature Sig to the nominator which contains a non-interactive zero
knowledge proof Π. The proof Π proves to the nominator that the nominee
has the knowledge of a vector y ∈ Z

m
q satisfying an equation of the form

Py = v mod q. Here P ∈ Z
n×m
q and v ∈ Z

n
q are suitably formed using the

decomposition-extension technique and are publicly computable. After suit-
ably verifying Sig, the nominator issues the nominative signature nsig which

Construction for a Nominative Signature Scheme from Lattice 75

consists of a short solution x of an equation of the form Ax = b mod q where
A, b are publicly available. The nominative signature nsig can be verified by
the nominee and the validity (or invalidity) can be proven to the verifier only
by the nominee using the confirmation protocol (or disavowal protocol).

– We propose a security model which is stronger than the security of [4,14]
by exhibiting stronger unforgeability against malicious nominee, stronger
unforgeability against malicious nominator together with stronger invisibility.
Similar to [14], the security against impersonation in our model is included in
the unforgeability against malicious nominator while non-repudiation follows
the model of [4]. The unforgeability in our model is stronger in the following
sense.
(i) The forger is allowed to query for the signature on the forged tuple

(M∗, NE, NR) only ones. Here M∗ is the message on which the forged
nominative signature nsig∗ is produced, NE is the malicious (or uncor-
rupted) nominee and NR is the uncorrupted (or malicious) nominator
corresponding to nsig∗ for unforgeability against malicious nominee (or
against malicious nominator). This query is not permitted in the security
model of [4,14].

(ii) Besides, the forger is provided the flexibility to choose the honest nomi-
nator NR (or the honest nominee NE) from all the uncorrupted nomina-
tors (or nominees) to achieve unforgeability against malicious nominees
(or malicious nominators). In [4,14], honest nominee or honest nomina-
tor are chosen by the challenger.

(iii) Additionally, the forger can corrupt nominator and nominees by query-
ing their secret keys which is not permitted in the security model of
[14].

(iv) Furthermore, similar to [14], the forger is allowed to query for a proof
for the validity or invalidity of the signature Sig (or nsig) issued by a
honest nominee (or a honest nominator).

– Like [4,14] our scheme also offers non-transferability which ensures that the
verifier cannot convince (or disavow) a third party that the verifier received
a valid (or invalid) signature on a given message from the nominee. It follows
from the combination of invisibility and zero knowledge argument system.

– We also achieve a stronger invisibility as our model gives the choice to the
adversary to choose the honest nominee for the challenge query which is not
permitted in [4,14].

– Our scheme is proven to be secure in this stronger security model. We achieve
unforgeability against malicious nominee under the hardness of SIS search
problem. The invisibility is obtained under the hardness of SIS decision prob-
lem and LWE problem. Non-repudiation follows from the completeness and
soundness properties of the non-interactive zero knowledge argument system
of [7]. Our security analysis is in the standard model without using any ran-
dom oracles. However, we attain unforgeability against malicious nominator
in the random oracle model under the hardness of SIS search problem. As
mentioned earlier, we cover non-impersonation in the unforgeability against
malicious nominator.

76 M. Kansal et al.

– In our scheme, the public key of a user (nominator or nominee) is a matrix
S ∈ Z

n×m
q and the secret key TS ∈ Z

m×m is a short basis of the lattice
Λ⊥

q (S) = {x : Sx = 0 mod q} where q, n, m are integers and m = poly(n).
Consequently, the size of user’s public key and secret key is ˜O(n2) each. On
the other hand, the nominative signature in our scheme is nsigNR = (z,y1)
where z ∈ Z

m
q and y1 ∈ Z

n
q . Therefore the size of the nominative signa-

ture is ˜O(n). The Sig issued by the nominee to prove his identity to the
nominator is Sig= (Π, y1) where Π = ({COM}s

γ=1,Ch, {RSP}s
γ=1) is the

proof of knowledge of a vector y ∈ Z
m
q satisfying an equation of the form

Py = v mod q. This implies that the communication cost for the non-
interactive zero knowledge proof is s · |COM| + s · |RSP| + s. Here COM is the
commitment function used by the nominee to produce a commitment about
the knowledge of y to the nominator and RSP is the response on this commit-
ment COM depending on the challenge Ch and |RSP| = O(L), L = 6(m+1)p,
p = �log2 β� + 1, β = 2σ

√
m and σ is the standard deviation of the discrete

Gaussian distribution.

2 Preliminaries

Notations. Here we define some basic terminology for our work. Through-
out this paper, a vector a ∈ S

n denotes a column vector of dimension n × 1
with entries from the set S. For u = (u1, u2, . . . , un) ∈ R

n, ||u||∞ = max
i

|ui|
denotes the maximum norm and ||u|| =

√

u2
1 + u2

2 + . . . + u2
n stands for the

Euclidean norm. Let A = (a1,a2, . . . ,am) be a matrix with m columns in R
n

then ||A|| = max
1≤i≤m

||ai||. The notation A ←↩ Δ implies A is a matrix following

the distribution Δ and At represents the transpose of the matrix A. We refer ||
for the concatenation of matrices and also for the concatenation of vectors. We
say that a function f is negligible in λ if f = λ−ω(1).

Definition 1 (Lattice). For any m ≥ n, let B = {b1, b2, · · · , bm} be any linearly
independent set of vectors in R

n. A lattice generated by the set B is defined as
Λ(B) = { ∑

bi∈B

cibi : ci ∈ Z} with basis B.

For q ∈ N, matrix A ∈ Z
n×m
q and vector u ∈ Z

n
q , we define the following three

q-ary lattices generated by A: Λ⊥
q (A) = {x ∈ Z

m : Ax = 0 mod q}, Λu
q (A) =

{x ∈ Z
m : Ax = u mod q}, Λq(A) = {x ∈ Z

m : Ats = x mod q, for some s ∈
Z

n
q }, where m,n are integers with m ≥ n ≥ 1 and 0 is a zero vector of size n×1.

Definition 2 (Gaussian distribution over a lattice). For a lattice Λ and a real
number σ > 0, discrete Gaussian distribution over Λ centered at 0, denoted
by DΛ,σ, is defined as: ∀y ∈ Λ, DΛ,σ[y] ∼ exp(−π||y||2/σ2), i.e. DΛ,σ[y] is
proportional to exp(−π||y||2/σ2) where DΛ,σ[y] means the vector y ←↩ DΛ,σ.
We say that DΛ,σ is a distribution with standard deviation σ.

Construction for a Nominative Signature Scheme from Lattice 77

Lemma 1. For any n-dimensional lattice Λ and for any real number σ > 0, we
have the following results and probabilistic polynomial time (PPT) algorithms:

(i) Prb←↩DΛ,σ
[||b|| ≤ σ

√
n] ≥ 1 − 2−Ω(n), i.e. if b ←↩ DΛ,σ then ||b|| ≤ σ

√
n

with overwhelming probability.
(ii) TrapGen(n,m, q) −→ (A,TA) [2]. This randomized algorithm outputs a

matrix A ∈ Z
n×m
q and a short basis TA ∈ Z

m×m of Λ⊥
q (A) such that A is

within the statistical distance 2−Ω(n) to U(Zn×m
q) and ||˜TA|| ≤ O(

√
n log q).

Here U(Zn×m
q) is the uniform distribution of integer matrices over Zq of

order n × m and ˜TA is the Gram-Schmidt orthogonalization of TA.
(iii) SampleD(TA, A, u, σ) −→ (x) [12]. Given a matrix A ∈ Z

n×m
q whose

columns span Z
n
q , a basis TA ∈ Z

m×m of Λu
q (A), a vector u ∈ Z

n
q and a

real number σ, this randomized algorithm returns a vector x ∈ Z
m from the

distribution DZm,σ (i.e., ||x|| ≤ σ
√

m by (i)) satisfying A · x = u mod q.

2.1 Computational and Decisional Problems

Definition 3 (Inhomogeneous short integer solution (ISIS) search problem) [1].
Given an integer q, a real number β, a matrix A ∈ Z

n×m
q and a vector u ∈ Z

n
q ,

the ISIS problem is to find an integer vector e ∈ Z
m such that Ae = u mod q

with ||e|| ≤ β with non-negligible probability. If u = 0 ∈ Z
n
q , then it is known as

short integer solution (SIS) problem.

Definition 4 (Short integer solution (SIS) decision problem) [11]. Let χ be a dis-
tribution over Zq having samples of the form (A,As) ∈ Z

n×m
q × Z

n×1
q with

standard deviation σ where A ∈ Z
n×m
q is a matrix and s ∈ Z

m×1
q is a vector

with ||s|| ≤ σ
√

m. The decisional SIS is to decide whether (A,As) follows χ dis-
tribution or uniform distribution U(Zn×m

q × Z
n
q) with non-negligible probability.

Definition 5 (Learning with errors (LWE) problem) [13]. Let n ≥ 1 be any inte-
ger, p ≥ 2 be any prime and χ be a distribution on Z. For any fixed vector
s ∈ Z

n
p , given arbitrarily many samples of the form (a, 〈a, s〉 + e) with a uni-

form in Z
n
p and e sampled from χ, the problem of finding s is called the search

LWE and the problem of distinguishing the distribution of (a, 〈a, s〉+ e) from the
uniform distribution U(Zn

p ×Zp) is called the decisional LWE. Here 〈a, s〉 = ats.

2.2 Zero Knowledge Argument System [7]

This section deals with the zero knowledge argument system when the prover
wants to prove the knowledge of the witness x satisfying the relation Px = v
without giving x to the verifier. Here P is any matrix and v is a vector (or
matrix), both publicly available and x is prover’s secret vector (or matrix) with
some conditions to be proven in zero knowledge to the verifier.

Let q ≥ 2 be any integer and D,L be two positive integers. We consider a
set VALID ⊆ {−1, 0, 1}L. Similar to Libert et al. [7], let S be any finite set of
permutations such that for any π ∈ S, one can associate a permutation Tπ of L
elements satisfying

78 M. Kansal et al.

(i) x ∈ VALID ⇔ Tπ(x) ∈ VALID.
(ii) If x ∈ VALID and π is uniform in S then Tπ(x) is uniform in VALID.

A zero knowledge argument of knowledge (ZKAoK) for the relation R = {(P,
v) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID : Px = v mod q} written as ((P, v), x)∈ R

is a 3-round protocol ZKAoK= (Commitment, Challenge, Response,Verification)
between a prover and a verifier, both having access to P and v where
ZKAoK.Commitment, ZKAoK.Challenge, ZKAoK.Response are PPT algorithms
and ZKAoK.Verification is a deterministic algorithm with the following require-
ments:

1. ZKAoK.Commitment(P, v, x) −→ (COM= (C1, C2, C3)). The prover does
the following:
(a) It samples randomness ρ1, ρ2, ρ3 for generating commitments and selects

r ←↩ U(ZL
q), π ←↩ U(S) where S is a finite set of permutation.

(b) It computes the commitment COM = (C1, C2, C3) where C1 = CMT1(π,
Pr; ρ1), C2 = CMT2(Tπ(r); ρ2), C3 = CMT3(Tπ(x + r); ρ3) are gener-
ated using randomness ρ1, ρ2, ρ3 respectively and the permutation Tπ

corresponding to π. Here CMTi, i = 1, 2, 3, is statistically hiding and
computationally binding commitment scheme such that the hiding prop-
erty holds even against all-powerful receivers while the binding property
holds only for polynomially bounded senders.

(c) Finally, the prover sends the commitment COM to the verifier.
2. ZKAoK.Challenge(P, v) −→ (Ch ←↩ U({1, 2, 3})). The verifier sends a chal-

lenge Ch ←↩ U({1, 2, 3}) to the prover.
3. ZKAoK.Response(Ch, ρ1, ρ2, ρ3, π, r, x) −→ (RSP). The prover sends a

response RSP computed as follows:
(a) If Ch= 1 then the prover sets tx =Tπ(x), tr = Tπ(r) and RSP= (tx, tr,

ρ2, ρ3) using Tπ associated with π.
(b) If Ch= 2 then the prover sets π2 = π, y = x + r and RSP= (π2, y, ρ1,

ρ3).
(c) If Ch= 3 then the prover sets π3 = π, r3 = r and RSP= (π3, r3, ρ1, ρ2).

4. ZKAoK.Verification(P, v, RSP, Ch, COM) −→ (VRF). On receiving the
response RSP from the prover, the verifier uses the commitment scheme CMTi,
i = 1, 2, 3 and proceeds as follows:
(a) If Ch= 1 then the verifier checks whether tx ∈ VALID and C2 =CMT2(tr;

ρ2), C3 = CMT3(tx + tr; ρ3) using RSP= (tx, tr, ρ2, ρ3) and extracting
C2, C3 from COM.

(b) If Ch= 2 then the verifier checks whether C1 =CMT1(π2, Py-v; ρ1)
and C3 = CMT3(Tπ2(y); ρ3) extracting C1, C3 from COM and using
RSP= (π2, y, ρ1, ρ3) together with the permutation Tπ2 associated
with π2.

(c) If Ch= 3 then the verifier checks whether C1 = CMT1(π3, Pr3; ρ1), C2 =
CMT2(Tπ3(r3); ρ2) using C1, C2 obtained from COM, RSP= (π3, r3, ρ1,
ρ3) and permutation Tπ3 corresponding to π3.

In each case, the verifier outputs VRF = 1 if the verification succeeds; other-
wise VRF = 0.

Construction for a Nominative Signature Scheme from Lattice 79

The above zero knowledge argument protocol satisfies the following three
properties [7]:

Let VRF ← ZKAoK.Verification (P, v, RSP, COM), RSP ← ZKAoK.Response
(Ch, ρ1, ρ2, ρ3, π, r, x), COM ← ZKAoK.Commitment (P, v, x) and Ch ←
ZKAoK.Challenge (P, v) where ρ1, ρ2, ρ3, r, π are as selected in algorithm
ZKAoK.Commitment(P, v, x) by the prover.

Correctness: If ((P, v), x)∈ R then Pr[VRF = 1] = 1.

Soundness: If ((P, v), x) /∈ R then Pr[VRF = 1] ≤ negl(λ) where negl(λ) is a
negligible function in λ.

Zero Knowledge: If the statement proven by the prover is true then the cheat-
ing verifier learns only the fact that the statement is true.

Remark 1. The above protocol is repeated s = ω(log n) times to achieve neg-
ligible soundness error and can be made non-interactive using Fiat-Shamir
heuristic [3] as a triple Π = ({COMγ}s

γ=1,Ch, {RSPγ}s
γ=1) where Ch = H(M ,

{COMγ}s
γ=1, aux) ∈ {1, 2, 3}s, M is a message, aux is some auxiliary informa-

tion and H : {0, 1}∗ → {1, 2, 3}s is a cryptographically secure hash function.
The prover sends s commitments COMγ , γ = 1, 2, . . . , s to the verifier who in
turn sends the challenge Ch = H(M , {COMγ}s

γ=1, aux) ∈ {1, 2, 3}s to the prover
treating the hash function H as a random oracle. At the end, the prover out-
puts response RSPγ generated by executing ZKAoK.Response(Ch[γ], ρ

(γ)
1 , ρ

(γ)
2 ,

ρ
(γ)
3 , π(γ), r(γ), x) where Ch[γ] is the γ-th digit of Ch ∈ {1, 2, 3}s and ρ

(γ)
1 ,

ρ
(γ)
2 , ρ

(γ)
3 , r(γ), π(γ) are as selected by the prover in the γ-th run of the algo-

rithm ZKAoK.Commitment(P, v, x) for γ = 1, 2, . . . , s. For the verification, the
response RSPγ corresponding to the γ-th digit of Ch ∈ {1, 2, 3}s is verified follow-
ing the algorithm ZKAoK.Verification(P, v, RSPγ , Ch[γ], COMγ) that generates
VRFγ . If VRFγ = 1 for all γ = 1, 2, . . . , s then this treats Π as a confirma-
tion proof of the above zero knowledge argument system. On the other hand,
VRFγ = 0 for atleast one γ = 1, 2, . . . , s considers Π as a disavowal proof for the
above zero knowledge argument system.

Theorem 1 [7]. The protocol described above is a statistical ZKAoK for the
relation R with soundness error 2/3 and perfect completeness having the com-
munication cost O(L log q).

3 Our Nominative Signature Scheme

Communication Model: Informally speaking, our scheme involves a trusted
authority together with nominees and nominators. The trusted authority gener-
ates the system parameters, public-secret key pairs of nominees and nominators.
System parameters and public keys are made public and secret keys are sent
secretly to the concerned parties by the trusted authority.

A nominee issues a signature Sig to the nominator. To generate Sig, the nom-
inee firstly transforms the system of equations involving two equations into an

80 M. Kansal et al.

equation of the form D0x0+D1x1 = v mod q. Then by using the decomposition-
extension technique, the equation D0x0 + D1x1 = v mod q is transformed into
an equation Px = v mod q. The decomposition-extension technique helps in
converting [x0||x1] to x such that x ∈ VALID. Further, the nominee proves
to the nominator in zero-knowledge the possession of x ∈ VALID satisfying
Px = v mod q.

After receiving the Sig from the nominee, the nominator verifies the validity
of Sig and issues the nominative signature nsig. The verification of nsig can be
done only by the nominee. Our scheme also involves a confirmation or disavowal
protocol in which the nominee proves to the verifier in zero-knowledge the valid-
ity or the invalidity of the nominative signature nsig issued by the nominator.

Formally, our nominative signature NS= {Setup, KeygenNR, KeygenNE,
SignNE, SignNR, Verify, ConfOrDisav= (TMnominee, TMverifer)} works as
follows:

NS.Setup(λ) → param. Given a security parameter λ > 0, the key generation
center (KGC) generates an integer n of size O(λ), a prime modulus q of size
O(n3) and an integer m such that m = 2n+8n�log q� > n�log q�. The KGC also
chooses a real number σ of size Ω(

√
l log q log n), an error bound β = 2σ

√
m and

two cryptographically secure hash functions H1 : {0, 1}∗ → Z
n
q , H : {0, 1}∗ →

{1, 2, 3}s where s is of size ω(log n). Observe that the size of β is σω(log m). The
KGC publishes the system parameters param = (n, q,m, σ, β,H,H1). We use σ
for the standard deviation of the discrete Gaussian distribution.

NS.KeygenNR(param, u) → (PKu, SKu). To generate the public-secret key pair
of a nominator u, the KGC invokes TrapGen(n, m, q) → (Au, TAu

) described in
Lemma 1 in Sect. 2 and sets the public and secret key

PKu = Au, SKu = TAu

for u where Au ∈ Z
n×m
q and TAu ∈ Z

m×m. The public key PKu is made public
while the secret key SKu is sent secretly by the KGC to u.

NS.KeygenNE(param, v) → (pkv, skv). The KGC runs TrapGen(n, m, q) → (Bv,
TBv

) (see Lemma 1 in Sect. 2) to produce the public-secret key pair of a nominee
v. It sets the public key and secret key

pkv = Bv, skv = TBv

for v where Bv ∈ Z
n×m
q and TBv

∈ Z
m×m. The KGC makes pkv publicly available

and sends skv secretly to v.

NS.SignNE(param, skNE, pkNE, PKNR, M) → (SigM,NE,NR = (Π, y1)). Let M
be a message to be signed. A nominee NE performs the following steps using
param= (n, q, m, σ, β, H, H1), skNE =TBNE

, pkNE =BNE and PKNR =ANR to
generate the signature SigM,NE,NR = (Π,y1) on M .

(i) The nominee NE computes y = H1(M ||ANR||BNE) ∈ Z
n
q and generates a

short vector v ∈ Z
m
q satisfying BNE · v = y mod q with ||v|| ≤ σ

√
m by

Construction for a Nominative Signature Scheme from Lattice 81

running the algorithm SampleD(TBNE
, BNE, y, σ) → (v) using the short

basis skNE = TBNE
given in Lemma 1 in Sect. 2. Note that ||v||∞ ≤ ||v|| ≤

σ
√

m ≤ β as β = 2σ
√

m.
(ii) The nominee chooses a random number r1 ∈ [−β, β] and sets

y1 = Bt
NE · (r1y) + v mod q (1)

where Bt
NE is the transpose of the matrix BNE. Note that, given the values

of (y1, BNE, y) then the problem to find (r1, v) from Eq. 1 is not feasible
under the hardness of LWE.

(iii) The nominee rewrites the system of the equations

BNE · v = y mod q,

y1 = Bt
NE · (r1y) + v mod q

into a single equation

D0 · x0 + D1 · x1 = b mod q (2)

with

D0 =
[

(BNE)n×m 0n×1

0m×m 0m×1

]

,D1 =
[

0n×1 0n×m

(Bt
NE · y)m×1 Im×m

]

,

x0 =
[

vm×1

01×1

]

,x1 =
[

(r1)1×1

vm×1

]

,b =
[

yn×1

(y1)m×1

]

where Im×m is an identity matrix of size m.
(iv) Let p = �log2 β� + 1. We define the sets B3

mp, S3mp as:
B3

mp = {x ∈ {−1, 0, 1}3mp : x has exactly mp co-ordinates equal to j
for j = −1, 0, 1},

S3mp = {π : π is a permutation on 3mp length vectors}.
Then ŵ ∈ B3

mp ⇔ π(ŵ) ∈ B3
mp for any permutation π ∈ S3mp.

(v) The Eq. 2 is then converted by the nominee into an equation of the form
Px = b mod q as follows using the algorithm Dec-Extm,p described in
Fig. 1 which is the decomposition-extension technique of Ling et al. [8].
Note that x0,x1 ∈ [−β, β]m+1. The nominee NE generates
x̂0 ∈ B3

(m+1)p ← Dec-Ext(x0), x̂1 ∈ B3
(m+1)p ← Dec-Ext(x1) and sets

̂D0 = D0 · ̂K(m+1),β mod q ∈ Z
(n+m)×3(m+1)p
q ,

̂D1 = D1 · ̂K(m+1),β mod q ∈ Z
(n+m)×3(m+1)p
q

where ̂Km+1,β = [Km+1,β ||0m+1×2(m+1)p] ∈ Z
(m+1)×3(m+1)p,

Km+1,β = I(m+1)×(m+1) ⊗ [β1, β2, . . . , βp] and x̂i ∈ B3
(m+1)p satisfies

̂K(m+1),β · x̂i = xi (3)

for i = 0, 1 (see line 6 in Fig. 1). Next, the nominee sets P = [̂D0||̂D1] ∈
Z

D×L
q , x = [x̂0||x̂1]t ∈ Z

L
q where L = 6(m + 1)p and D = n + m.

82 M. Kansal et al.

Input: w = (w1, w2, . . . , wm) ∈ [−β, β]m

Output: ŵ ∈ B3
mp where p = �log2 β� + 1

1. Define a super-decreasing sequence {β}p
j=1 of integers by setting β1 = �β

2
� and

βj = �β−(β1+β2+···+βj−1)

2
� for 2 ≤ j ≤ p.

2. for(wi ∈ [−β, β] and i ≤ m) do

Compute w
(1)
i , w

(2)
i , . . . , w

(p)
i ∈ {−1, 0, 1} such that

p∑
j=1

βjw
(j)
i = wi.

end do
3. Set w′ = (w(1)

1 , . . . , w
(p)
1 , w

(1)
2 , . . . , w

(p)
2 , . . . , w

(1)
m , . . . , w

(p)
m) ∈ {−1, 0, 1}mp. Then

w′ satisfies Km,β · w′ = w where

Km,β = Im×m ⊗ (β1, β2, ..., βp) =

⎡
⎣β1 β2 . . . βp

β1 β2 . . . βp

. . .
β1 β2 . . . βp

⎤
⎦.

4. Set K̂m,β = [Km,β ||0m×2mp] ∈ Z
m×3mp.

5. Select a random vector w̃ ∈ {−1, 0, 1}2mp having exactly (mp − λ0) many 0’s,
(mp − λ1) many 1’s and (λ0 + λ1) many −1’s where λ0, λ1 are respectively the
number of 0’s and 1’s in w′.

6. Set ŵ = (w′||˜
˜

w) ∈ B3
mp. Then K̂m,β · ŵ = Km,β ·w′ = w and ŵ ∈ B3

mp ⇔ π(ŵ) ∈
B3

mp for any permutation π on 3mp length vectors.
7. return w = (w′||w).

Fig. 1. Algorithm Dec-Extm,p(w) where p = �log2 β� + 1 and w ∈ [−β, β]m.

As x̂0, x̂1 ∈ Z
L
2
q , ̂D0, ̂D1 ∈ Z

D× L
2

q , we have

Px = ̂D0 · x̂0 + ̂D1 · x̂1 = D0 · ̂K(m+1),β · x̂0 + D1 · ̂K(m+1),β · x̂1

= D0 · x0 + D1 · x1 (by Eq. 3)
= b mod q (by Eq. 2)

(vi) Let VALID = {u ∈ {−1, 0, 1}L : u = [u0||u1]t for some u0,u1 ∈ B3
(m+1)p}

and S = S3(m+1)p × S3(m+1)p. Then x = [x̂0||x̂1]t ∈ VALID as x̂0 ∈
B3

(m+1)p, x̂1 ∈ B3
(m+1)p. Also for any randomly selected permutation

π = (π0, π1) ∈ S and vector x = [x̂0||x̂1]t ∈ VALID, the vector
Tπ(x) = (π0(x̂0), π1(x̂1)) ∈ VALID and Tπ(x) is uniform in VALID when-
ever x = [x̂0||x̂1]t is uniform in VALID.

(vii) The nominee NE invokes the algorithm ZKAoK described in Sect. 2.2 for the
relation R = {(P,b) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID : Px = b mod q} to prove

the knowledge of the witness x in statistical zero knowledge argument of
knowledge and generates a proof

Π = ({COMγ}s
γ=1, Ch, {RSPγ}s

γ=1)

Construction for a Nominative Signature Scheme from Lattice 83

where COMγ ←ZKAoK.Commitment(P, b, x), Ch = H(M, {COMγ}s
γ=1,

y1) ∈ {1, 2, 3}s, RSPγ ←ZKAoK.Response(Ch[γ], ρ
(γ)
1 , ρ

(γ)
2 , ρ

(γ)
3 , π(γ), r(γ),

x) where Ch[γ] is the γ-th digit of Ch ∈ {1, 2, 3}s, s = ω(log n) and ρ
(γ)
1 ,

ρ
(γ)
2 , ρ

(γ)
3 , π(γ), r(γ) are as selected by the nominee NE in the γ-th run of

the algorithm ZKAoK.Commitment(P, b, x) for γ = 1, 2, . . . , s.
(viii) Finally, the nominee NE sends the signature SigM,NE,NR = (Π, y1) to the

nominator NR over a public channel and stores (r1, v, M , NR, y1) in its
current state stateNE where y1 works as the session identity which is session
specific.

NS.SignNR(param, SKNR, PKNR, pkNE, M , SigM,NE,NR) → (nsigM,NE,NR = (z,
y1)). On receiving the signature SigM,NE,NR = (Π, y1) from the nominee NE,
the nominator NR executes the following steps and issues a nominative signa-
ture nsigM,NE,NR = (z, y1) using SKNR =TANR

, PKNR =ANR and pkNE = BNE.

(i) The NR computes y = H1(M ||ANR||BNE) and verifies the zero knowledge
proof Π = ({COMγ}s

γ=1, Ch, {RSPγ}s
γ=1) for the equation Px = b mod

q by computing VRFγ ← ZKAoK.Verification(P, b, RSPγ , Ch[γ], COMγ)
and verifying whether VRFγ = 1 for all γ = 1, 2, . . . , s where RSPγ , Ch[γ],
COMγ are as defined in step (vi) of the algorithm NS.SignNE(param, skNE,
pkNE, PKNR, M). Note that P = [̂D0||̂D1] and b = [y||y1]t are publicly
computable, y1 is extracted from SigM,NE,NR and pkNE = BNE where ̂D0 =
D0 · ̂K(m+1),β and ̂D1 = D1 · ̂K(m+1),β . The witness x = [x̂0||x̂1]t is known
only to the nominee NE.

(ii) If the verification fails, the nominator NR aborts; otherwise the nominator
NR finds a short vector

z ∈ Z
m
q satisfying ANR · z = y1 mod q with ||z|| ≤ σ

√
m

using the short basis SKNR =TANR
following the algorithm SampleD(TANR

,
ANR, y1, σ)→ z as in Lemma 1 in Sect. 2 and issues the nominative signature
nsigM,NE,NR = (z, y1).

NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) ∈ {valid, invalid}. This
algorithm is executed by the nominee NE with its current internal state stateNE
who on receiving nsigM,NE,NR = (z, y1) uses PKNR = ANR and pkNE = BNE to
compute y = H1(M ||ANR||BNE) and verify whether

y1 = Bt
NE · (r1y) + v mod q, ANR · z = y1 mod q and ||z|| ≤ σ

√
m

where the nominee NE extracts v, r1 from its internal secret state stateNE which
contains (r1, v, M , NR, y1). If the verification succeeds, it outputs valid; other-
wise it returns invalid.

84 M. Kansal et al.

NS.ConfOrDisav= (TMnominee, TMverifier). This protocol satisfies the follow-
ing requirements:

(i) TMnominee(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) → (μ,ΠconfORdisav).
The nominee NE generates a proof

ΠconfORdisav = ({COMγ}s
γ=1,Ch, {RSPγ}s

γ=1)

for the relations BNE ·v = y mod q, Bt
NE ·(r1y)+v = y1 mod q by converting

this system of equations into an equation of the form D0x0+D1x1 = b mod
q which in turn is reduced to an equation of the form Px = b as explained
in steps (iii) and (iv) respectively of the algorithm NS.SignNE, and then
invoking the algorithm ZKAoK for the relation R = {(P,b) ∈ Z

D×L
q ×

Z
D
q ,x ∈ VALID : Px = b mod q} as in step (vi) of the algorithm NS.SignNE.

Note that P = [̂D0||̂D1] and b = [y||y1]t are publicly computable from
param, nsigM,NE,NR = (z, y1) and pkNE = BNE. The witness x = [x0||x1]t is
known only to the nominee NE which is stored in its current internal state
stateNE. It runs NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR). If
the output is valid then it returns (μ = 1,ΠconfORdisav) to the verifier VR.
Otherwise, it sends (μ = 0,ΠconfORdisav) to the verifier VR.

(ii) TMverifier(param, pkNE, PKNR, M , nsigM,NE,NR, μ, ΠconfORdisav) → β. On
receiving a pair (μ,ΠconfORdisav) from the nominee NE, the verifier VR checks
the bit μ.

– If μ = 1, then it verifies the following.
(a) VRFγ = 1 for all γ where VRFγ ←ZKAoK.Verification(P, b, RSPγ ,

Ch[γ], COMγ). Here P, b are computed by the verifier using param,
nsigM,NE,NR = (z, y1) and PKNE = BNE. Note that the witness x is known
only to the nominee NE.

(b) ANR · z = y1 by extracting z, y1 from nsig and using PKNR = ANR.
If the verification succeeds, it outputs β = 1 indicating that the verifier
VR agrees with the confirmation proof ΠconfORdisav and convinces in zero
knowledge that the nominator is not a cheater. Otherwise it disagrees
with the confirmation proof by returning β = 0. This means that the
verifier VR is not satisfied with the confirmation proof ΠconfORdisav.

– If the bit μ = 0 then the verifier VR verifies whether any of the above men-
tioned conditions (a), (b) are violated, thereby agrees with the disavowal
proof ΠconfORdisav and convinces in zero knowledge that the nominator NR is
a cheater. Otherwise it disagrees with the disavowal proof and returns β = 0
indicating that the verifier VR is not convinced with the proof.

Correctness:

– ((n, q,m, σ, β,H,H1) = param) ← NS.Setup(λ),
– (PKNR = ANR,SKNR = TANR

) ← NS.KeygenNR(Y,NR),
– (pkNE = BNR, skNE = TBNE

) ← NS.KeygenNE(Y,NE),

Construction for a Nominative Signature Scheme from Lattice 85

– (SigM,NE,NR = (Π,y1)) ← NS.SignNE(param, skNE, pkNE, PKNR, M) where
y1 = Bt

NE · (r1y) + v mod q, r1 ∈ [−β, β], v ∈ Z
m
q is a short vector satisfying

BNE · v = y mod q with ||v|| ≤ σ
√

m,
– (nsigM,NE,NR = z) ←NS.SignNR(param, SKNR, PKNR, pkNE, M , SigM,NE,NR)

where z satisfies the equation ANR · z = y1 mod q,
– (μ,ΠconfORdisav) ← TMnominee(param, stateNE, pkNE,PKNR,M, nsigM,NE,NR)

where μ ∈ {0, 1} and ΠconfORdisav ← NS.ConfOrDisav.TMnominee is a zero
knowledge proof for the relation R = {(P,b) ∈ Z

D×L
q × Z

D
q ,x ∈ VALID :

Px = b mod q}.

If the nominee NE, the nominator NR and the verifier VR are honest then we
have the following.

(i) NS.Verify(param, stateNE, pkNE, PKNR, M , nsigM,NE,NR) → valid as ANR · z =
y1 mod q.

(ii) NS.ConfOrDisav.TMverifier(param, pkNE, PKNR, M , nsigM,NE,NR, μ,
ΠconfORdisav) → (β = 1)

4 Security

Threat Model. Security attributes of a nominative signature can be broadly
classified into four categories –
(Unforgeability against malicious nominee) The nominee NE alone cannot pro-
duce a valid nominative signature where the nominee NE and the message M
both are chosen by the nominator NR.
(Unforgeability against malicious nominator) The nominator NR alone cannot
produce a valid nominative signature and cannot convince a verifier about the
validity or invalidity of a nominative signature.
(Security against invisibility) Only the nominee NE can verify the nominative
signature nsig.
(Security against repudiation) If the nominative signature nsig is valid then the
nominee NE cannot mislead a verifier VR and cannot prove the invalidity of nsig
to the verifier VR and vice versa.

4.1 Oracles for Adversaries

An adversary A invokes the following oracles accessible in the attack games and
interacts with a stateful interface I who runs NS.Setup to generate param and
maintains seven private lists: LcreateNR, LcreateNE, LcorruptNR, LcorruptNE,
LsignNR, LsignNE, LconfORdisav.

– CreateNR Query: When A invokes this oracle on a nominator u, the interface
I returns PKu to A by running NS.KeygenNR(param, u) → (PKu, SKu). The
interface I stores (PKu, SKu) in the list LcreateNR.

– CreateNE Query: In response to this query for a nominee v from A, the inter-
face I runs NS.KeygenNE(param, v)→ (pkv, skv) and passes pkv to A. The
interface stores the pair (pkv, skv) in the list LcreateNE.

86 M. Kansal et al.

– CorruptNR Query: On receiving this query on a nominator u from A, the
interface I checks whether (PKu,SKu) ∈ LcreateNR. If not, it returns ⊥.
Otherwise, I sends SKu to A and stores PKu in the list LcorruptNR.

– CorruptNE Query: In response to this query on a nominee v from A, the inter-
face I checks whether (pkv, skv) ∈ LcreateNE. If not, it returns ⊥. Otherwise,
I returns (skv, statev) to A and stores pkv in the list LcorruptNE. Here statev

is the current internal secret state of the nominee v which is initially empty.
– SignNE Query: On querying this oracle on a tuple (v, u, M) by A where v is a

nominee, u is a nominator and M is a message, the interface I checks whether
(pkv, skv) ∈ LcreateNE and (PKu, SKu) ∈ LcreateNR. If not, I returns ⊥.
Otherwise, I outputs the signature SigM,v,u ← NS.SignNE(param, skv, pkv,
PKu, M) of the nominee v on M and stores (SigM,v,u, statev) in the list
LsignNE where statev is the current internal secret state of the nominee v.

– SignNR Query: In response to this query on SigM,v,u from A, the interface
I verifies whether (SigM,v,u, statev) ∈ LSignNE. If so, the interface I returns
the nominative signature nsigM,v,u ← NS.SignNR(param, SKu, PKu, pkv, M ,
SigM,v,u) to A and stores (SigM,v,u, nsigM,v,u) in the list LsignNR. Otherwise,
I returns ⊥.

– ConfOrDisav Query: The interface I responses on receiving this query on
nsigM,v,u from A by checking if (SigM,v,u, nsigM,v,u) ∈ LsignNR. If not, I
aborts. Otherwise, I extracts statev from (SigM,v,u, statev) ∈ LSignNE and
returns (μ,ΠconfORdisav) ← NS.ConfOrDisav.TMnominee(param, statev, pkv,
PKu, M , nsigM,v,u) to A. The interface I stores (nsigM,v,u, μ, ΠconfORdisav)
in the list LconfORdisav.

4.2 Security Model for Unforgeability Against Malicious Nominee

This is a security game ExpunforgF explained in Fig. 2 played between a forger F
and a simulator S.

Definition 6 (Unforgeability against malicious nominee). We say that a nom-
inative signature is secure under unforgeability against malicious nominee if

AdvunforgF (λ) = Prob[ExpunforgF (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment ExpunforgF (λ) defined in Fig. 2 where
negl(λ) is a negligible function in λ i.e., negl(λ)=λ−ω(1).

4.3 Security Model Under Unforgeability Against Malicious
Nominator

Let F be a forger and S be a simulator. This security is modeled by the game
ExpunforgNR

F (λ) between F and S as provided in Fig. 3.

Definition 7 (Unforgeability against malicious nominator). We say that a nom-
inative signature is secure against malicious nominator if

AdvunforgNR
F (λ) = Prob[ExpunforgNR

F (λ) = 1] ≤ negl(λ)

for every PPT adversary F in the experiment ExpunforgNR
F (λ) defined in Fig. 3

and negl(λ) is a negligible function of λ.

Construction for a Nominative Signature Scheme from Lattice 87

5 Security Model Against Invisibility

Let D be a distinguisher and C be the challenger. The invisibility game
ExpinvisD (λ, b) is described in Fig. 4.

Definition 8 (security against invisibility). A nominative signature scheme is
secure under invisibility

AdvinvisD (λ) = |Prob[ExpinvisD (λ, 0)] − Prob[ExpinvisD (λ, 1)]| ≤ negl(λ)

1. The simulator S generates system parameters param←NS.Setup(λ) and sends it to
the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles
CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav, thereby
has the knowledge of VIEW where

VIEW =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

param, {PKu | (PKu, SKu) ∈ LcreateNR}, {pkv | (pkv, skv) ∈ LcreateNE},

{SKu | PKu ∈ LcorruptNR}, {skv | pkv ∈ LcorruptNE},

LsignNE = {(SigM,v,u, statev) | SigM,v,u ← NS.SignNE(param, skv, pkv,PKu, M)},

LsignNR =
{
(SigM,v,u, nsigM,v,u) | (SigM,v,u, statev) ∈ LsignNE and

nsigM,v,u ← NS.SignNR(param, SKu,PKu, pkv, M, SigM,v,u)
}

,

LconfORdisav =
{
(nsigM,v,u, μ, ΠconfORdisav) | (SigM,v,u, nsigM,v,u) ∈ LsignNR

and (μ, ΠconfORdisav) ← NS.ConfOrDisav.TMnominee(param,

statev, pkv,PKu, M, nsigM,v,u)
}

where each of |LcreateNR|, |LcreateNE|, |LcorruptNR|, |LcorruptNE|,
|LsignNE|, |LsignNR|, |LconfORdisav| ≤ α.

3. Finally, F outputs a forgery (M∗, nsig∗
M∗,NE,NR) on a corrupted nominee NE and

an uncorrupted nominator NR such that (PKNR, SKNR) ∈ LcreateNR and pkNE ∈
LcorruptNE.

4. The simulator S returns 1 if the following conditions hold:
(a) NS.Verify(param, stateNE, pkNE, PKNR, M∗, nsig∗

M∗,NE,NR)→ valid i.e.,
nsig∗

M∗,NE,NR is a valid signature,
(b) PKNR /∈ LcorruptNR i.e., nominator NR is not corrupted,
(c) (Sig′

M∗,NE,NR, nsig
∗
M∗,NE,NR) /∈ LsignNR where (Sig′

M∗,NE,NR, stateNE) ∈ LsignNE
i.e., nsig′

M∗,NE,NR �= nsig∗
M∗,NE,NR for the pair (Sig′

M∗,NE,NR, nsig′
M∗,NE,NR) ∈

LsignNR, and SignNR query is made only ones on Sig′
M∗,NE,NR.

(d) (nsig∗
M∗,NE,NR, μ, ΠconfORdisav)/∈ LconfORdisav i.e., nsig∗

M∗,NE,NR has not been
queried to the protocol NS.ConfOrDisav for the conformation or disavowal proof
of the validity of the nominative signature nsig∗

M∗,NE,NR.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Fig. 2. Small Security game ExpunforgF (λ) under unforgeability against malicious
nominee.

88 M. Kansal et al.

for every PPT adversary in the experiment ExpinvisD (λ, b) defined in Fig. 4 where
b ∈ {0, 1} and negl(λ) is a negligible function in λ.

Remark 2. In the above security game (Fig. 2) if SignNR query is made more than
ones on Sig′

M∗,NE,NR then the adversary can compute a nominator’s signature as
follows:

Suppose an adversary queried SignNR on Sig′
M∗,NE,NR two or more times then

the adversary has ANR · z1 = y1 mod q and ANR · z2 = y1 mod q. That gives to
the adversary ANR · (z1 + z2)/2 = y1 mod q. As q is a prime, 2 is invertible in
Zq. Thus the adversary has another signature nsigM∗,NE,NR = (z1 + z2)/2.

1. The simulator S generates system parameters param←NS.Setup(λ) and sends it to
the forger F .

2. The forger F makes polynomially many, say α, queries to S for each of the oracles
CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav and has
the same VIEW as given in Figure 2.

3. Finally, the forger F outputs a forgery (M∗, Sig∗
M∗,NE,NR, nsig

∗
M∗,NE,NR) on a cor-

rupted nominator NR and an uncorrupted nominee NE such that PKNR ∈ Lcor-
ruptNR, (pkNE, skNE)∈ LcreateNE.

4. The simulator S returns 1 if the following holds:
(a) NS.Verify(param, stateNE, pkNE, PKNR, M∗, nsig∗

M∗,NE,NR)→ valid.
(b) pkNE /∈ LcorruptNE.
(c) Sig∗

M∗,NE,NR /∈ LsignNE and (M∗, NE, NR) query is made only ones to the
SignNE oracle.

(d) VRFγ = 1 for all γ = 1, 2, . . . , s by computing VRFγ ← ZKAoK.Verification(P,
b, RSPγ , Ch[γ], COMγ) where RSPγ , Ch[γ], COMγ are as defined in step (vi)
of the algorithm NS.SignNE.

(e) (nsig∗
M∗,NE,NR, μ, Π∗

M∗,NE,NR)/∈ LcreateORdisav.
Otherwise, S returns 0.

5. The forger F wins the game if S returns 1.

Fig. 3. Security game ExpunforgNRF (λ) under security against malicious nominator

5.1 Security Model for Non-repudiation

Let A be a cheating nominee and C be the challenger. Its security game ExprepA (λ)
is explained in Fig. 5.

Definition 9 (Non-repudiation). A nominative signature scheme is secure
against non-repudiation if

AdvrepA (λ) = |prob[ExprepA (λ) = 1]| ≤ negl(λ)

for every PPT adversary in the experiment ExprepA (λ) defined in Fig. 5 and negl(λ)
is a negligible function of λ.

Construction for a Nominative Signature Scheme from Lattice 89

1. The challenger C generates system parameters param← NS.Setup(λ) and sends it
to the distinguisher D.

2. Next the distinguisher D makes polynomially many, say α queries to S for each
of the oracles CreateNR, CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, Con-
fOrDisav to get the knowledge of VIEW where VIEW is same as in Figure 2.

3. At any point of the game, D submits a tuple (M∗, NE, NR) where M∗ is a message
to be signed with NE as the nominee and NR as the nominator such that pkNE,
PKNR ∈ VIEW but skNE /∈ VIEW i.e., the nominee NE is not corrupted.

4. The challenger chooses a random bit b ∈ {0, 1}. If b = 1, the challenger C gen-
erates SigM∗,NE,NR ←NS.SignNE(param, skNE, pkNE, PKNR, M∗), nsigM∗,NE,NR ←
NS.SignNR(param, SKNR, PKNR, pkNE, M∗, SigM∗,NE,NR) and sets Kb = nsigM∗,NE,NR.
Else, Kb is generated uniformly.

5. The distinguisher D observes Kb, outputs a guess b′ and wins the game if
(i) b′ = b
(ii) D does not corrupt skNE i.e., pkNE /∈ LcorruptNE

Fig. 4. Security game ExpinvisD (λ, b) against invisibility

1. The challenger C generates param← NS.Setup(λ) and sends it to the adversary A.
2. The adversary A may make polynomially many, say α, queries to oracles CreateNR,

CreateNE, CorruptNR, CorruptNE, SignNR, SignNE, ConfOrDisav. The adversary A
has the same VIEW as in Figure 2.

3. The adversary A prepares a tuple (M∗, nsigM∗,NE,NR, μ) where NE is any nominee
with pkNE ∈ LcorruptNE, NR is a nominator such that (PKNR, SKNR)∈ LcreateNR,
nsigM∗,NE,NR is a signature on M∗ and μ is a bit. If NS.Verify(param, stateM∗,NE,NR,
pkNE, PKNR, M∗,nsigM∗,NE,NR)→ valid then μ = 1. Else μ = 0. Note that pkNE ∈
LcorruptNE means A has the knowledge of (skNE, stateM,NE,NR).

4. To mislead, the adversary A runs the disavowal proof ΠconfORdisav if μ = 1.
Otherwise, A computes the confirmation proof ΠconfORdisav. challenger C runs
NS.ConfOrDisav.TMverifier(param, pkNE, PKNR, M∗, nsigM∗,NE,NR, μ, ΠconfORdisav)→
β and returns β.
The adversary A wins the game if β = 1.

Fig. 5. Security game ExprepA (λ) under non-repudiation

Theorem 2. Assuming the hardness of SIS search problem, the construction of
our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,
SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure under the unforgeability against malicious nominee as per the Definition 6
for the security game given in Fig. 2.

Theorem 3. Assuming the hardness of SIS search problem, the construction of
our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,

90 M. Kansal et al.

SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure in the random oracle model under the unforgeability against malicious
nominator as per the Definition 7 for the security game given in Fig. 3.

Theorem 4. Assuming the hardness of decisional SIS and LWE, the construction
of our nominative signature scheme NS= {Setup, KeygenNR, KeygenNE, SignNE,
SignNR, Verify, ConfOrDisav = (TMnominee, TMverifier)} described in Sect. 3 is
secure under invisibility as per the Definition 8 for the security game given in
Fig. 4.

Theorem 5. Our nominative signature scheme is secure against repudiation
by nominee if no PPT cheating nominee has a non negligible advantage in the
security game given in Fig. 5.

Proof. By the soundness property of a proof system, the verifier will accept a
language x /∈ VALID with probability atmost ε ∈ [0, 1/2) while for any language
x ∈ VALID, the verifier will reject with probability ε ∈ [0, 1/2).

Proofs of all the above Theorems 2, 3 and 4 will be given in the full version of
the paper.

References

1. Ajtai, M.: Generating hard instances of lattice problems. In: Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 99–108.
ACM (1996)

2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory
Comput. Syst. 48(3), 535–553 (2011)

3. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

4. Huang, Q., Liu, D.Y., Wong, D.S.: An efficient one-move nominative signature
scheme. Int. J. Appl. Cryptogr. 1(2), 133–143 (2008)

5. Huang, Z., Wang, Y.: Convertible nominative signatures. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 348–357. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27800-9 30

6. Kim, S.J., Park, S.J., Won, D.H.: Nominative signatures. In: ICEIC: International
Conference on Electronics, Informations and Communications, pp. 68–71 (1995)

7. Libert, B., Ling, S., Mouhartem, F., Nguyen, K., Wang, H.: Signature schemes
with efficient protocols and dynamic group signatures from lattice assumptions.
In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 373–
403. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 13

8. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved zero-knowledge proofs of
knowledge for the ISIS problem, and applications. In: Kurosawa, K., Hanaoka,
G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-36362-7 8

9. Liu, D.Y.W., Chang, S., Wong, D.S., Mu, Y.: Nominative signature from ring
signature. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS,
vol. 4752, pp. 396–411. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75651-4 27

https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-540-27800-9_30
https://doi.org/10.1007/978-3-662-53890-6_13
https://doi.org/10.1007/978-3-642-36362-7_8
https://doi.org/10.1007/978-3-540-75651-4_27
https://doi.org/10.1007/978-3-540-75651-4_27

Construction for a Nominative Signature Scheme from Lattice 91

10. Liu, D.Y.W., et al.: Formal definition and construction of nominative signature.
In: Qing, S., Imai, H., Wang, G. (eds.) ICICS 2007. LNCS, vol. 4861, pp. 57–68.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77048-0 5

11. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D.,
Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4 43

12. Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 41

13. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

14. Schuldt, J.C.N., Hanaoka, G.: Non-transferable user certification secure against
authority information leaks and impersonation attacks. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 413–430. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-21554-4 24

15. Susilo, W., Mu, Y.: On the security of nominative signatures. In: Boyd, C.,
González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer,
Heidelberg (2005). https://doi.org/10.1007/11506157 28

https://doi.org/10.1007/978-3-540-77048-0_5
https://doi.org/10.1007/978-3-642-29011-4_43
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-29011-4_41
https://doi.org/10.1007/978-3-642-21554-4_24
https://doi.org/10.1007/11506157_28

Reinterpreting and Improving
the Cryptanalysis of the Flash

Player PRNG

George Teşeleanu1,2(B)

1 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro
2 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro

Abstract. Constant blinding is an efficient countermeasure against just-
in-time (JIT) spraying attacks. Unfortunately, this mitigation mechanism
is not always implemented correctly. One such example is the constant
blinding mechanism found in the Adobe Flash Player. Instead of choos-
ing a strong mainstream pseudo-random number generator (PRNG), the
Flash Player designers chose to implement a proprietary one. This led
to the discovery of a vulnerability that can be exploited to recover the
initial seed used by the PRNG and thus, to bypass the constant blind-
ing mechanism. Using this vulnerability as a starting point, we show
that no matter the parameters used by the previously mentioned PRNG
it still remains a weak construction. A consequence of this study is an
improvement of the seed recovering mechanism from previously known
complexity of O(221) to one of O(211).

1 Introduction

JIT compilers (e.g. JavaScript and ActionScript) translate source code or byte-
code into machine code at runtime for faster execution. Due to the fact that
the purpose of JIT compilers is to produce executable data, they are normally
exempt from data execution prevention (DEP1). Thus, a vulnerability in a JIT
compiler might lead to an exploit undetectable by DEP. One such attack, called
JIT spraying, was proposed in [7]. By coercing the ActionScript JIT engine,
Blazakis shows how to write shellcode into the executable memory and thus,
bypass DEP. The key insight is that the JIT compiler is predictable and must
copy some constants to the executable page. Hence, these constants can encode
small instructions and then control flow to the next constant’s location.

To defend against JIT spraying attacks, Adobe employs a technique called
constant blinding. This method prevents an attacker from loading his instructions

1 The DEP mechanism performs additional checks on memory to help prevent mali-
cious code from running on a system.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 92–104, 2019.
https://doi.org/10.1007/978-3-030-16458-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_7&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-16458-4_7

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 93

into constants and thus, blocks the delivery of his malicious script. The idea
behind constant blinding is to avoid storing constants in memory in their original
form. Instead, they are first XORed with some randomly generated secret cookie
and then stored inside the memory. If the secret cookie is generated by means of
a weak PRNG2, the attacker regains his ability to inject malicious instructions.

Instead of using an already proven secure PRNG, the Flash Player designers
tried to implement their own PRNG. Unfortunately, in [1,9] it is shown that
the design of the generator is flawed. In [1] a brute force attack is implemented,
while in [9] a refined brute force attack is presented. These results have been
reported to Adobe under the code CVE-2017-3000 [5] and the vulnerability has
been patched in version 25.0.0.127.

In this paper, we refine the attack presented in [9] from a time complexity of
O(221) to one of O(211). We also show that no matter the parameters used by
the PRNG, the flaw remains. More precisely we show that for any parameters
the worst brute force attack takes O(221) operations. In [9] the authors do not
present the full algorithm for reversing the PRNG, while in [1] we found the
full algorithm, but it was not optimized. For completeness, in AppendixA we
also present an optimized version of the full algorithm. Note that in this paper
we only focus on the Flash Player PRNG. For more details about JIT spraying
attacks and constant blinding we refer the reader to [6–9].

Structure of the Paper. Notations and definitions are presented in Sect. 2. The
core of the paper consists of Sects. 3 and 4 and contains a series of algorithms
for inverting a generalized version of the hash function used by the Flash Player.
Experimental result are given in Sect. 5. We conclude in Sect. 6. Supplementary
algorithms may be found in AppendixA.

2 Preliminaries

Notations. In this paper we use C language operators (i.e. |/& for bitwise or/and,
� for left shift and == for equality testing) as well as other widely adopted
notations (i.e. ⊕ for the bitwise xor, ← for assignment and �s for the right
shift of a signed integer). Hexadecimal numbers will always contain the prefix
0x, while binary ones the prefix 0b. The subset {0, . . . , q} ∈ N will be referred
to as [0, q].

By 0α1β0γ we will denote an (α+β+γ)-bit word that has α bits of 0, followed
by β bits of 1 and γ trailing zeros.

2.1 Constant Blinding in Flash Player

In this subsection we describe the implementation of the Flash Player PRNG, as
presented in [3]. The generator has four components (described in Listing 1.1): a
seed initialization function (RandomFastInit), a seed update function (Random-
FastInit), a hash function (RandomPureHasher) and a cookie generation function
2 i.e., the seed used to generate the cookie can be recovered in reasonable time.

94 G. Teşeleanu

(GenerateRandomNumber). According to the source code, the hash function is
adapted from [10]. Note that the variable uValue is initialized by a function
found in the Windows API (VMPI getPerformanceCounter).

The role of the hash function is to make attackers unable to retrieve the seed
value (uValue) in reasonable time. Note that the default timeout in Flash Player
is 15 s. Thus, an attacker must succeed in finding the seed, predicate the secret
value into the next round and embed the desired value in the executable heap
in 15 s.

1 #de f i n e c3 15731L
2 #de f i n e c2 789221L
3 #de f i n e c1 1376312589L
4 #de f i n e kRandomPureMax 0 x 7 f f f f f f f L
5

6 void RandomFastInit (pTRandomFast pRandomFast) {
7 i n t 3 2 t n = 31 ;
8 pRandomFast−>uValue = (u in t 32 t) (

VMPI getPerformanceCounter ()) ;
9 pRandomFast−>uSequenceLength = (1L << n) − 1L ;

10 pRandomFast−>uXorMask = 0x14000000L ;
11 }
12 #de f i n e RandomFastNext (pRandomFast) \
13 (\
14 ((pRandomFast)−>uValue & 1L) \
15 ? ((pRandomFast)−>uValue = ((pRandomFast)−>uValue >> 1)

ˆ (pRandomFast)−>uXorMask) \
16 : ((pRandomFast)−>uValue = ((pRandomFast)−>uValue >> 1)

) \
17)
18 i n t 3 2 t RandomPureHasher (i n t 3 2 t iSeed) {
19 i n t 3 2 t iRe su l t ;
20 iSeed = ((iSeed << 13) ˆ iSeed) − (iSeed >> 21) ;
21 iRe su l t = (iSeed ∗(iSeed ∗ iSeed ∗ c3 + c2) + c1) &

kRandomPureMax ;
22 iRe su l t += iSeed ;
23 iRe su l t = ((iRe su l t << 13) ˆ iRe su l t) − (iRe su l t >> 21) ;
24 re turn iRe su l t ;
25 }
26 i n t 3 2 t GenerateRandomNumber (pTRandomFast pRandomFast) {
27 i f (pRandomFast−>uValue == 0) {
28 RandomFastInit (pRandomFast) ;
29 }
30 long aNum = RandomFastNext (pRandomFast) ;
31 aNum = RandomPureHasher (aNum ∗ 71L) ;
32 re turn aNum & kRandomPureMax ;
33 }

Listing 1.1. ActionScript PRNG implementation.

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 95

Algorithm 1. The algorithm for reversing f

Input: The value to reverse v.
Output: The set of possible solutions S.

1 S ← ∅;
2 for low ∈ [0, 0x7ff] do
3 temp ← v & 0x7ff;
4 if temp > low then
5 high = (1 � 11) + low − temp;
6 end
7 else
8 high = low − temp;
9 end

10 for mid ∈ [0, 0x3ff] do
11 s ← (high � 21) | (mid � 11) | low;
12 if f(s) == v then
13 S ← S ∪ s;
14 end

15 end

16 end
17 return S;

2.2 Shifting Signed Integers

According to [2], if we left shift a signed integer (e.g. iSeed) the result is unpre-
dictable and if we right shift a signed negative integer the result is implementa-
tion dependent. Thus, we will make a clear distinction between implementation
independent or dependent attack strategies against the Flash Player PRNG. In
some cases, the attacks devised for a particular implementation are faster than
the corresponding implementation independent strategy (see Sect. 4).

For simplicity, when talking about targeted attacks we consider the behavior
of shifts implemented in Microsoft Visual Studio [2] and GCC [4] on x86 and
x64 architectures. Thus, left shifts are sign independent (e.g. 0b11000000 � 1 =
0b10000000) and right shifts of signed integers use the sign bit to fill vacated
bit positions (e.g. 0b11000000 �s 1 = 0b11100000 and 0b01000000 �s 1 =
0b00100000).

2.3 Previous Cryptanalysis Results

By abstracting the code described in Listing 1.1, we identify the three main
components of the cookie generation function, i.e.:

f(x) = (x � 13) ⊕ x − (x �s 21),

g(x) = (c3 · x3 + c2 · x + c1) & 0x7fffffff + x,

h(x) = 71 · x mod 232.

96 G. Teşeleanu

If these functions are reversed, then the PRNG is broken. In [9], the authors
propose an algorithm for reversing f (Algorithm 1) and a backtracking algo-
rithm for reversing g (the complete description is presented in Algorithm 7). For
completeness, we provide in AppendixA the full algorithm (Algorithm8) for
reversing the PRNG (which includes the inverse of h). Note that Algorithm 1
has a time complexity of O(221) and is implementation independent.

3 Reinterpreting

Let n be the word size in bits. As Algorithm 7 can be used to reverse any generic
polynomial g and the linear function h can be easily reversed, we only focus on
reversing the generic function

f(x) = (x � �) ⊕ x − (x �s r),

where 1 ≤ �, r ≤ n are integers. We further denote by v the output of f(x).

Degenerate Cases. Let ct = 10n−1 �s n. We consider the cases �, r ∈ {0, n} as
degenerate due to different inherent weakness induced by these choices. Thus, in
our study we do not take in consideration degenerate cases. We further present
the weakness associated with the degenerate cases:

– when r = n and 0 < � ≤ n, the function f(x) = x ⊕ (x � �) + ct leaks � bits
of its seed;

– when � = 0 and 0 ≤ r ≤ n, the function f(x) = −(x �s r) leaks n − r bits of
its seed and v has the rest of the bits constant;

– when r = 0 and 0 < � ≤ n, the function f(x) = x ⊕ (x � �) − x always
outputs a v with � trailing zeros;

– when � = n and 0 < r ≤ n, the function f(x) = x − (x �s r) leaks r bits of
its seed.

We further present a series of attacks that are implementation indepen-
dent. In the case n − r ≤ �, n ≤ 2r we generalized a different algorithm than
Algorithm 1, due to a more direct adaptation to an implementation dependent
version.

Lemma 1. Let c24 = �n/r	 + 1. For each (set of) condition(s) presented in
Column 2 of Table 1 there exists an attack whose corresponding time complexity
is presented in Column 3 of Table 1.

Proof. When n−r ≤ �, we can explicitly write the function f as shown in Fig. 1.
Note that the bits used to fill vacated positions are represented as question
marks. As we want a compiler independent attack we consider the ? bits as
unknown and tailor our attacks accordingly.

In the first case, we first recover the most significant n − r bits (high) and
then extract the least significant n − r bits (low) from v + high. For the rest of

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 97

Table 1. Attack parameters for Lemma 1

Conditions Time complexity

1 n − r ≤ � and n ≤ 2r O(2r)

2 n − r ≤ � and n ≥ 2r O(c242
r)

3 n − r ≥ � and n ≤ 2r O(2r)

4 n − r ≥ � and n ≥ 2r O(c242
r)

Fig. 1. Bit representation of f(x)

Algorithm 2. The algorithm for reversing f (Case 1)
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S ← ∅;
2 for high ∈ [0, 1n−r] do
3 temp ← v + high;
4 low ← temp & 1n−r;
5 for mid ∈ [0, 12r−n] do
6 s ← (high � r) | (mid � (n − r)) | low;
7 if f(s) == v then
8 S ← S ∪ s;
9 end

10 end

11 end
12 return S;

2r − n bits (mid) we do an exhaustive search. This leads to a time complexity
of O(2n−r22r−n) = O(2r).

In the second case, we can do better than simply using Algorithm 2. We first
recover the least significant r bits (low) and then use low to gradually recover
the rest of the bits (mid). This leads to the complexity O(2r(q + 1)).

When n − r ≥ �, we can explicitly write the function f as depicted in Fig. 2.
Note that some of the bits resulted from the left shift overlap with some from
the right shift. Thus, in the third case we recover the least significant n − r bits
(low), add the overlapping bits, and then recover the most significant n − r bits
(high) from v. For the rest of 2r − n bits (mid) we do an exhaustive search. So,
similarly to the first case, we obtain a complexity of O(2r).

In the last case, we slightly modify the algorithm used in the second case to
take into account the overlapping bits. Thus, the resulting attack has the same
complexity O(2r(q + 1)).

98 G. Teşeleanu

Algorithm 3. The algorithm for reversing f (Case 2 and 4)
Input: The value to reverse v.
Output: The set of possible solutions S.

1 Function Minus(temp1, temp2, size):
2 if temp2 > temp1 then
3 high = (1 � (size + 1)) + temp1 − temp2;
4 end
5 else
6 high = temp1 − temp2;
7 end

8 return high & 1size;

9 Function ComputeMid(low):
10 q ← 	(n − r)/r
;
11 m ← n − r mod r;
12 mid ← 0;
13 for i ∈ [1, q] do
14 temp1 ← (mid � r) | low;

15 temp1 ← (temp1 ⊕ (temp1 � �)) & 1ir; //only for Case 4

16 temp2 ← v & 1ir;
17 mid ← Minus(temp1, temp2, ir);

18 end
19 if m �= 0 then
20 temp1 ← (mid � r) | low;
21 temp1 ← (temp1 ⊕ (temp1 � �)) & 1n−r; //only for Case 4
22 temp2 ← v & 1n−r;
23 mid ← Minus(temp1, temp2, n − r);

24 end
25 return mid

26 Function Main(v):
27 S ← ∅;
28 for low ∈ [0, 1r] do
29 mid ← ComputeMid(low);
30 s ← (mid � r) | low;
31 if f(s) == v then
32 S ← S ∪ s;
33 end

34 end
35 return S;

Fig. 2. Bit representation of f(x)

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 99

Algorithm 4. The algorithm for reversing f (Case 3)
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S ← ∅;
2 for low ∈ [0, 1n−r] do
3 temp1 ← (low ⊕ (low � �)) & 1n−r;
4 temp2 ← v & 1n−r;
5 high ← Minus(temp1, temp2, n − r);
6 for mid ∈ [0, 12r−n] do
7 s ← (high � r) | (mid � (n − r)) | low;
8 if f(s) == v then
9 S ← S ∪ s;

10 end

11 end

12 end
13 return S;

Corollary 1. There exists an attack on the Flash Player PRNG with time com-
plexity O(221).

4 Improving

In this section we consider implementation dependent attacks. For simplicity
we assume the behavior of the Microsoft Visual Studio and GCC compilers on
×86 and ×64 architectures. Other compilers’ behaviors can be modeled similarly
(Table 2).

Lemma 2. Let c13 = �r/�	 + 1. For each (set of) condition(s) presented in
Column 2 of Table 1 there exists an attack whose corresponding time complexity
is presented in Column 3 of Table 1.

Table 2. Attack parameters for Lemma 2

Conditions Time complexity

1 n − r ≤ � and n ≤ 2r O(c132
n−r)

3 n − r ≥ � and n ≤ 2r O(c132
n−r)

Fig. 3. Bit representation of f(x)

100 G. Teşeleanu

Fig. 4. Bit representation of f(x)

Algorithm 5. The improved algorithm for reversing f (Case 1)
Input: The value to reverse v.
Output: The set of possible solutions S.

1 Function Add(v, high):
2 if high ∈ [0, 1n−r−1] then
3 temp ← v + high;
4 end
5 else
6 temp ← v + high ⊕ 1r0n−r;
7 end
8 return temp;

9 Function SpeedMid(low, temp, size, step):
10 q ← 	size/step
;
11 m ← size mod step;
12 temp1 ← low;
13 for i ∈ [0, q − 1] do
14 offset ← (i + 1) · step;
15 temp2 ← (temp1 ⊕ (temp offset)) & 1n−r;
16 mid ← mid | (temp1 � (i · step);
17 temp1 ← temp2

18 end
19 offset ← (q + 1) · step;
20 temp2 ← (temp1 ⊕ (temp offset)) & 1m;
21 mid ← mid | (temp1 � (q · step);
22 return mid;

23 Function Main(v):
24 S ← ∅;
25 for high ∈ [0, 1n−r] do
26 temp ← Add(v, high);

27 low ← temp & 1�;
28 mid ← SpeedMid(low, temp, r − �, �);
29 s ← (high � r) | (mid � �) | low;
30 if f(s) == v then
31 S ← S ∪ s;
32 end

33 end
34 return S;

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 101

Proof. When n − r ≤ �, we can explicit the function f as shown in Fig. 3. Note
that a1 is the sign bit used to fill the gaps. With this in mind, we use the existing
knowledge (low) to gradually recover the 2r − n bits (mid). Thus, we improve
the exhaustive search of the mid part from Algorithm2. This leads to a time
complexity of O(2r(q + 1)).

When n − r ≥ �, Fig. 2 becomes Fig. 4. In the third case, we adapt the
algorithm used in Case 1 to take into account overlapping bits. Thus, we obtain
the same time complexity.

Corollary 2. There exist an attack on the Flash Player PRNG with time com-
plexity O(211).

Corollary 3. For any choice of � and r there exists an attack whose time com-
plexity is at most O(n2n/2).

Proof. According to Lemma 1, Cases 2 and 4 there exists an attack with com-
plexity O(2r) ≤ O(2n/2). In Cases 1 and 3 we make use of the attacks pre-
sented in Lemma 2. Thus, there exists an attack with complexity O(c132n−r) ≤
O(c132n/2) ≤ O(n2n/2). As a result, in the general case we obtain our statement.

Corollary 4. There exists an attack on the Flash Player PRNG with time com-
plexity at most O(221) independent of � and r.

Algorithm 6. The improved algorithm for reversing f (Case 3)
Input: The value to reverse v.
Output: The set of possible solutions S.

1 S ← ∅; e ← n − r − �;
2 for low ∈ [0, 1n−r] do
3 temp1 ← (low ⊕ (low � �)) & 1n−r;
4 temp2 ← v & 1n−r;
5 high ← Minus(temp1, temp2, n − r);
6 temp ← Add(v, high);
7 mid ← SpeedMid(low, temp, 2r − n + e, �);
8 mid ← mid e;
9 s ← (high � r) | (mid � (n − r)) | low;

10 if f(s) == v then
11 S ← S ∪ s;
12 end

13 end
14 return S;

102 G. Teşeleanu

5 Experimental Results

We implemented Algorithms 2, 3, 4, 5 and 6 and used 32 random seed values
to test if our algorithms succeed in recovering the seed for all 1 ≤ r < 32 and
1 ≤ l < 32. The compilers we worked with are Microsoft Visual Studio 2017
version 15.7.5 with the C++14 extension activated and GCC version 5.4.0 with
the C++11 extensions activated. The tests were a success.

In another experiment we run Algorithms 2, 3, 4, 5, 6 and 8 with 2000 random
seed values and used the function omp get wtime() to compute the running time
necessary to invert the function f and the corresponding PRNG. The programs
were run on a CPU Intel i7-4790 4.00 GHz and compiled with GCC with the O3
flag activated. The results for the 2000 iterations can be found in Tables 3 and
4. Note that the average time for brute forcing one value is 2.88861 s for f and
13.2578 s for PRNG.

Table 3. Running times for reversing the function f and the PRNG (Cases 1 and 2)

Case 1 (l = 13, r = 21) Case 2 (l = 23, r = 11)

Algorithm 1 Algorithm 2 Algorithm 5 Algorithm 3

f(x) 2.16055 s 2.82102 s 0.00717478 s 0.00608366 s

PRNG 10.6442 s 13.8981 s 0.036917 s 0.0334592 s

Table 4. Running times for reversing the function f and the PRNG (Cases 3 and 4)

Case 3 (l = 9, r = 21) Case 4 (l = 19, r = 11)

Algorithm 4 Algorithm 6 Algorithm 3

f(x) 2.77496 s 0.00708749 s 0.00809854 s

PRNG 14.6386 s 0.0432187 s 0.0437757 s

6 Conclusions

In this paper we improved the results from [9] and shown that no matter the
parameters used by the Flash Player PRNG, there exists always a brute force
attack with complexity at most O(n2n/2). As a consequence, we prove that the
secret cookie used for constant blinding can always be recovered due to the
weak design of the PRNG. Note that the results presented in this paper might
be further improved if one uses other cryptanalytic methods, besides brute force.
We leave this research direction as an open problem.

Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG 103

A Additional Algorithms

In [9] the algorithm used to invert g is not presented in full. Based on the
descriptions found in [1,9] we present the full algorithm in Algorithm7. Note
that the algorithm works for any generic polynomial g, not only for the one used
in the Flash Player PRNG. Note that &S means that we pass S by reference.

Algorithm 7. Backtracking algorithm for reversing g

Input: The value to reverse v
Output: The set of possible solutions S

1 Function V erify ith bit(v, i, sol):
2 b1 ← g(sol) & (1 � i);
3 b2 ← v & (1 � i);
4 return bit1 == bit2;

5 Function Add ith bit(v, i, sol, &S, b):
6 sol ← sol | (b � i);
7 if V erify ith bit(v, i, sol) == true then
8 i ← i + 1;
9 Reverse bit(v, i, sol, S);

10 end

11 Function Reverse bit(v, i, sol, &S):
12 if i == n then
13 S ← S ∪ sol;
14 return;

15 end
16 add ith bit(v, i, sol, S, 0);
17 add ith bit(v, i, sol, S, 1);

18 Function Reverse polynomial(v):
19 S ← ∅; //the set of possible solutions
20 i ← 0; //the target bit
21 sol ← 0; //the current solution
22 reverse bit(v, i, sol, S);
23 return S;

The only algorithm we found for reversing the Flash Player PRNG is
described in [1]. We improve their attack in Algorithm8. To reverse the bit
manipulation function f and the polynomial g we use the abstract func-
tions Reverse bit manipulation and Reverse polynomial, respectively. Remark
that Algorithm 8 works for any generic polynomial g and any generic func-
tion h(x) = p · x mod 2n with p odd. In the Flash Player case we have
p−1 ≡ 3811027319 mod 232.

104 G. Teşeleanu

Algorithm 8. The algorithm for reversing the PRNG
Input: The value to reverse v
Output: The set of possible solutions S

1 v′ ← v | (1 � (n − 1));
2 Sbit ← Reverse bit manipulation(v) ∪ Reverse bit manipulation(v′);
3 Spol, Shash, S ← ∅;
4 for sbit ∈ Sbit do
5 Spol ← Spol ∪ Reverse polynomial(sbit);
6 end
7 for spol ∈ Spol do
8 Shash ← Shash ∪ Reverse bit manipulation(spol);
9 end

10 for shash ∈ Shash do
11 s ← shash · p−1 mod 2n;
12 S ← S ∪ s;

13 end
14 return S;

References

1. A Full Exploit of CVE-2017-3000 on Flash Player Constant Blinding PRNG.
https://github.com/dangokyo/CVE-2017-3000/blob/master/Exploiter.as

2. Left Shift and Right Shift Operators. https://docs.microsoft.com/en-us/cpp/cpp/
left-shift-and-right-shift-operators-input-and-output?view=vs-2017

3. Source Code for the Actionscript Virtual Machine. https://github.com/adobe-
flash/avmplus/tree/master/core/MathUtils.cpp

4. Using the GNU Compiler Collection. https://gcc.gnu.org/onlinedocs/gcc/Integers-
implementation.html

5. Vulnerability Details: CVE-2017-3000. https://www.cvedetails.com/cve/CVE-
2017-3000/

6. Athanasakis, M., Athanasopoulos, E., Polychronakis, M., Portokalidis, G.,
Ioannidis, S.: The devil is in the constants: bypassing defences in browser JIT
engines. In: NDSS 2015. The Internet Society (2015)

7. Blazakis, D.: Interpreter exploitation. In: WOOT 2010. USENIX Association
(2010)

8. Reshetova, E., Bonazzi, F., Asokan, N.: Randomization can’t stop BPF JIT spray.
In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.) NSS 2017. LNCS, vol.
10394, pp. 233–247. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64701-2 17

9. Wang, C., Huang, T., Wu, H.: On the weakness of constant blinding PRNG in flash
player. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 107–123.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1 7

10. Ward, G.: A recursive implementation of the perlin noise function. In: Graphics
Gems II, pp. 396–401. Elsevier (1991)

https://github.com/dangokyo/CVE-2017-3000/blob/master/Exploiter.as
https://docs.microsoft.com/en-us/cpp/cpp/left-shift-and-right-shift-operators-input-and-output?view=vs-2017
https://docs.microsoft.com/en-us/cpp/cpp/left-shift-and-right-shift-operators-input-and-output?view=vs-2017
https://github.com/adobe-flash/avmplus/tree/master/core/MathUtils.cpp
https://github.com/adobe-flash/avmplus/tree/master/core/MathUtils.cpp
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
https://gcc.gnu.org/onlinedocs/gcc/Integers-implementation.html
https://www.cvedetails.com/cve/CVE-2017-3000/
https://www.cvedetails.com/cve/CVE-2017-3000/
https://doi.org/10.1007/978-3-319-64701-2_17
https://doi.org/10.1007/978-3-319-64701-2_17
https://doi.org/10.1007/978-3-030-01950-1_7

A Key Exchange Based on the Short
Integer Solution Problem

and the Learning with Errors Problem

Jintai Ding, Kevin Schmitt, and Zheng Zhang(B)

Department of Mathematical Science, University of Cincinnati, Cincinnati, USA
zhang2zh@mail.uc.edu

Abstract. Short integer solution (SIS) and learning with errors (LWE)
are two hard lattice problems. These two problems are believed having
huge potential in application of cryptography. In 2012, Ding et al. [5]
introduced the first provably secure key exchange based on LWE prob-
lem. On the other hand, we believe that it is very difficult to do key
exchange on SIS problem only. In 2014, Wang et al. [6] did an attempt,
but it was not successful. Mao et al. [7] broke the protocol by an attack
based on CBi-SIS problem in 2016. However, their attack is not efficient.
In this paper, we present a extremely straightforward and simple attack
to Wang’s key exchange and then we will construct a key exchange based
on SIS and LWE problems.

Keywords: Key exchange · SIS · LWE · Attack · Lattice

1 Introduction

1.1 Background

Key exchange protocol makes it possible for two parties to exchange keys over
untrusted channels. The first revolutionary key exchange protocol was presented
by Diffie and Hellman [2], which is called Diffie-Hellman key exchange protocol.
The security of Diffie-Hellman key exchange is based on a hard number theory
problem called discrete logarithm problem. However, in 1994, Peter Shor [3]
theoretically proved that these hard number theory problems can hardly resist
the attack from a quantum computer. Therefore, a post-quantum key exchange
is urgently needed. Key exchange based on hard lattice problems is considered
to be one of the candidates of post-quantum key exchanges.

1.2 Key Exchange Based on SIS Problem

A well-know hard lattice problem is the SIS problem introduced by Ajtai [1].
Some efforts have been made to construct a key exchange based on SIS problem.
Although there are other attempts of key exchange on SIS problem, the basic
structure is the following.
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 105–117, 2019.
https://doi.org/10.1007/978-3-030-16458-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_8

106 J. Ding et al.

(1) Assume that Alice and Bob agree to do a key exchange. The system generates
a random matrix M ∈ Z

n×m
q .

(2) Alice chooses a secret key sA ∈ Zm
q with norm ||sA|| ≤ β. She computes

PA = MsA and send PA to Bob.
(3) Bob chooses a secret key sB ∈ Zn

q with norm ||sB || ≤ β. He computes
PB = sT

BM, and sends PB to Alice.
(4) Receiving PB , Alice computes KA = sT

AP
T
B = sT

AM
T sB .

(5) Receiving PA, Bob computes KB = PT
AsB = sT

AM
T sB .

Note that in order to apply the SIS problem to ensure the security of Alice’s
secret key, we need the condition that n � m. On the other hand, we also need
the condition that m � n to apply the SIS problem to guarantee the security
of Bob’s secret key. Therefore both parties have to get much more numbers of
variables than equations, which makes it impossible to do key exchange on SIS
problem.

1.3 Key Exchange Based on LWE Problem

Another building block of lattice-based problem is the LWE problem introduced
by Regev [4]. The LWE problem is attractive due to its security and efficiency.
A lot of attempts have been made to build a key exchange on LWE problem, but
not until 2012, the first provably secure key exchange based on LWE problem
was published by Ding [5]. The scheme is very efficient in computation, and
can be extended to Ring-LWE. A new invention in his protocol is to extract a
shared secret from the two values which are very close by rounding with signal
functions.

1.4 Our Contributions

We first present an attack to Wang’s protocol [6] based on an elementary linear
algebra problem: solving linear equations. We observe that any solution to the
system of linear equations can be used to recover the shared key. Therefore we
claim that SIS problem is irrelevant to Wang’s key exchange and there is no
need for Mao et al. [7] to solve any SIS related problem at all.

Next we present a key exchange based on both SIS problem and LWE prob-
lem. In other words, Alice will use LWE problem to ensure the security on what
she sends to Bob and Bob will use SIS problem to ensure the security on what he
sends to Alice. It is obvious that our system is not symmetric. After the switch,
we can extract a shared key from the two values which are very close by signal
function proposed by Ding [5] in key exchange based on LWE problem.

2 Attack to Wang’s Protocol

2.1 Preliminary

Let us first recall the definition of SIS problem and its derivatives introduced in
Wang et al.’s paper [6].

A Key Exchange Based on the Short Integer Solution Problem 107

Definition 1 (SIS problem). Given a random matrix A ∈ Z
n×m
q , the goal of SIS

problem is to find a nonzero vector z ∈ Z
m that satisfies Az = 0 with ||z|| ≤ β.

Note that a solution to the equation Az = 0 is easy to obtain without the
requirement on the length (||z|| ≤ β) by Gaussian elimination, however it is
hard to find a solution of short length.

Next, Wang et al. extend this problem to Bi-ISIS* Problem.

Definition 2 (Bi-ISIS* Problem). Given integers n, m, q (m > n log q), a real
β as in SIS, and a matrix A ∈ Z

m×m
q with rank n, e1 is linearly independent

with column vectors of A, e2 is linearly independent with row vectors of A, given
vectors b1 ∈ {Az + e1 : z ∈ Z

m, 〈e2, z〉 = 0 mod q}, and bt
2 ∈ {ztA + et

2 : z ∈
Z

m, 〈e1, z〉 = 0 mod q}, the goal is to find a vector x ∈ Z
m and a vector y ∈ Z

m

such that {
Ax + e1 = b1 mod q and ||x|| ≤ β

ytA + et
2 = bt

2 mod q and ||y|| ≤ β
(1)

Finally they define the CBi-ISIS problem.
Given the parameters n, m, q and m > n log q as in ISIS problem, a matrix

A ∈ Z
m×m
q with rank equals to n. For any vectors x ∈ Z with ||x|| ≤ β,

and y ∈ Z with ||y|| ≤ β, there exists two vector sets {v1, ...,vn} which is linear
independent with rows vectors of A, and {u1, ...,un} which is linear independent
with column vectors ofA, such that 〈vi,x〉 = 0 mod q and 〈ui,y〉 = 0 mod q.
The CBi-ISIS problem is defined as follows:

Definition 3 (CBi-ISIS problem). Given Ax+ e1 and ytA+ et
2, the goal is to

compute ytAx mod q, where e1 =
∑

i∈S ui. and et
2 =

∑
i∈S′ vt

i. S and S′ are
random subset of {1, · · · n}.
If there is an algorithm that solves the Bi-ISIS* problem, we can use this algo-
rithm to solve CBi-ISIS problem.

Remark 1. Given any poly-bounded m, β = poly(n), as well as any prime q ≥
β
√

ω(n log n), the SISq,m,β and ISISq,m,β problems in the average case are as
hard as approximating the problems SIVPγ and GapSVPγ in the worst case to
within certain γ = β · Õ(

√
n) factors.

2.2 Notation

We will use the same notation in Wang et al.’s paper [6]: Let Z denote the ring
of integers; Zq is the finite field module q; Zq

m×m is the set of all m×m matrices
with entries in Zq. We define the norm on Z

m to be the l2 norm. We can view
Zq ⊂ Z and use the l2 norm on it. Furthermore, if t is a positive integer with
t ≤ q, we can view Zt ⊂ Zq.

Moreover, the operator ∗ is defined by A∗x = A∗x = Ax+
∑

i∈S ui mod q,
in which S is a random subset of {1, .., n}. and yt ∗A = ytA+

∑
i∈S′ vt

i mod q,
in which S′ is a random subset of {1, .., n}.

108 J. Ding et al.

2.3 Description of the Protocol

We now briefly describe the protocol [6].

1. Alice and Bob agree to use a random matrix A ∈ Zq
m×m with rank n and a

real number β.
2. Alice picks a random x ∈ Z

m such that ||x|| ≤ β, then generates the set
V = {vt

1, . . . ,v
t
n}, which is linear independent with row vectors of A, and

〈vi,x〉 = 0 mod q. Alice keeps x private and publishes V. Now Bob picks a
random vector y ∈ Z

m such that ||y|| ≤ β, then generates U = {u1 . . .un}
which is linear independent with column vectors of A, and 〈ui,y〉 = 0 mod q.
Bob keeps y private and makes U public.

3. Alice uses U to compute a = A ∗ x = Ax+
∑

i∈S ui mod q, in which S is a
random subset of {1, .., n}, and sends a to Bob.

4. Bob uses V to compute bt = yt ∗ A = ytA +
∑

i∈S′ vt
i mod q, in which S′

is a random subset of {1, .., n}, and sends bt to Alice.
5. Alice computes K1 = bt · x = ytAx mod q.
6. Bob computes K2 = yt · a = ytAx mod q.

Therefore the shared secret key is K = K1 = K2 = ytAx mod q.

2.4 Mao’s Attack [7]

Mao et al. assume that the protocol was based on the Bi-ISIS* problem, their
goal is to solve the CBi-ISIS problem. They try to keep the original x and y
during the attack so that they will match the shared key. However, according to
their experiments results [7], the decomposition of the matrix A and solving the
matrix T1 such that T1A = 0 are very slow.

2.5 Our Attack

Our attack to this protocol is based on solving linear equations. An eavesdropper
can obtain the information {a,b}. Since A and U are public, the eavesdropper
has the linear equations{

Ax̄ +
∑

i∈{1,..,n} αiui = a mod q

vt
i · x̄ = 0 mod q, for i ∈ {1, ..n} (2)

The linear independence of U with columns of A does not make any obstacle for
the eavesdropper to solving the linear equations. Since a is of this form, the linear
equations must contain at least one solution. Assume A has entires [aij], in which

A Key Exchange Based on the Short Integer Solution Problem 109

1 ≤ i, j ≤ m, a = (a1, · · · , am)t, ui = (ui1, · · · , uim)t, and vi = (vi1, · · · , vim)t.
The equations have the following matrix form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

...
am

0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1m u11 · · · un1

...
. . .

...
...

. . .
...

am1 · · · amm u1m · · · unm

v11 · · · v1m 0 · · · 0
...

. . .
...

...
. . .

...
vn1 · · · vnm 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄1

...
x̄m

α1

...
αn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The eavesdropper can solve the equations and get solutions x̄ = (x̄1, · · · , x̄m)t ∈
Z

m
q , and αi ∈ Zq. Although x̄ is not necessary equal to the original x and of

course not necessarily short, the eavesdropper can still use it to recover the secret
key. Once the eavesdropper obtains x̄, he computes

bt · x̄ =

(
ytA +

∑
i∈S′

vt
i

)
· x̄ mod q

= ytAx̄ mod q

= yt

⎛
⎝a −

∑
i∈{1,..,n}

αiui

⎞
⎠ mod q

= yt

⎛
⎝Ax +

∑
i∈S

ui −
∑

i∈{1,..,n}
αiui

⎞
⎠ mod q

= ytAx mod q.

Therefore, the eavesdropper successfully recovers the secret key. Similarly, one
can do it on bt = yt ∗ A.

One can see that the process of our attack is very straightforward, which
contains only two steps: (1) solve the linear equations. (2) compute the dot
product bt · x̄.

2.6 Experimental Results

We did the experiments with the same parameters in Mao et al.’s paper [7].

(q,m, n) time1 time2

10007, 3854, 128 3.430 s 27842.89 s

6421, 3240, 80 2.250 s 8201.06 s

4099, 1536, 64 0.29 s 1638.64 s

110 J. Ding et al.

Remark: time1 is the time spent in our attack, and time2 is the time Mao et al.
spent in their attack [7]. We used the software of Magma student version on an
Intel core i7 with CPU 3.2 GHz, 8 GB storage memory. Mao et al.’s plateform
is an Intel Dual-Core2, CPU 2.6 Ghz, Windows 7 operating system with 4 G
storage memory, they use the MATLAB version 7.9.

2.7 Toy Example

We show a toy example of our attack with parameters: (q = 7,m = 5, n = 2, β =
3). We did this example on the software called Magma in our computer lab.

Alice and Bob agree on a random matrix A equal to⎡
⎢⎢⎢⎢⎣

1 3 6 4 1
3 5 1 1 3
6 2 3 1 6
3 4 2 0 3
2 6 5 1 2

⎤
⎥⎥⎥⎥⎦

Alice picks a random vector x = (1, 0, 2, 0, 1)t, then she generates the set Vwhose
elements are:

v1 = (1, 3, 5, 6, 3)t

v2 = (5, 6, 6, 6, 4)t

Each vi is orthogonal to x, and neither of them is in the row space of A. Alice
keeps x as a secret and publishes the set V.

Bob picks a random vector y = (1, 2, 3, 0, 0)t, then he generates the set U
whose elements are:

u1 = (5, 2, 4, 2, 6)
u2 = (1, 1, 6, 6, 3)

Bob keeps y private and makes U public.
Alice now computes a = A ∗ x = Ax + u1 = (6, 1, 0, 2, 0)t.
Bob computes bt = yt ∗ A = ytA + vt

1 + v2 = (3, 4, 2, 1, 1).
Alice computes K1 = bt ·x = 1. Bob computes K2 = yt ·a = 1. Hence the secret
shared key is 1.

Now let Eve be the eavesdropper. He can get {a,b}. He now sets the equation
of (3). In the matrix form:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
1
0
2
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 3 6 4 1 1 5
3 5 1 1 3 3 6
6 2 3 1 6 5 6
3 4 2 0 3 6 6
2 6 5 1 2 3 4
5 2 4 2 6 0 0
1 1 6 6 3 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̄1

x̄2

x̄3

x̄4

x̄5

α1

α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

A Key Exchange Based on the Short Integer Solution Problem 111

By solving the above linear equations, he can get the solution (x̄1, x̄2, x̄3, x̄4,
x̄5, α1, α2,) = (2, 0, 6, 4, 0, 1, 0)t. It follows that x̄ = (2, 0, 6, 4, 0)t. Next he com-
putes that bt · x̄ = (3, 4, 2, 1, 1) · (2, 0, 6, 4, 0)t = 1 mod 7, which is exactly the
secret shared key.

We see that even x̄ is not equal to the private key x that Alice keeps and has
norm larger than β, x̄ still works to break the protocol.

3 Key Exchange on SIS and LWE

3.1 Preliminary

Now let us recall the learning with error (LWE) problem, the short integer
solution problem, and the shortest independent vectors problem. For a finite set
X, let U(X) denote the uniform distribution on X.

Definition 4. A function family is a probability distribution over a set of func-
tions with common domain and range. For a function family F with a finite
range and probability distribution χ over the common domain of F , we say that
(F , χ) is pseudorandom if the distribution obtained from sampling f ← F and
x ← χ and outputting (f, f(x)) and the distribution that samples f ← F and
y ← U(Y) and outputs (f, y) are indistinguishable. See [10] for more details.

Definition 5. The Learning With Errors (LWE) function family is the set of all
functions gA indexed by A ∈ Z

m×n
q with domain Z

n
q ×Z

m
q and range Z

m
q defined

by gA(s, e) = As + e. The LWE function family is endowed with the uniform
distribution over Z

n×m
q to choose gA. For probability distributions χ on Z

n
q and

Ψ on Z
m
q , we denote by LWE(m,n, q, χ,Ψ) the distribution obtained by sampling

a function gA from the LWE function family, s ← χ, e ← Ψ, and outputting
gA(s, e) = As + e.

Definition 6. The Short Integer Solution (SIS) function family is the set of all
functions fA indexed by A ∈ Z

m×n
q with domain Z

n
q and range Z

m
q endowed

with the uniform distribution over Zm×n
q . For a probability distribution χ on Z

n
q ,

we denote by SIS(m,n, q, χ) the distribution obtained by sampling a function fA
from the SIS function family and sampling x ← χ and outputting fA(x) = Ax.

Proposition 1 [8]. For any n,m ≥ n+ω(log n), q, and distribution χ over Zm,
the LWE(m,n, q) function family is one-way (resp. pseudorandom, or uninvert-
ible) with respect to input distribution U(Zn

q)×χ if and only if the SIS(m,m−n, q)
function family is one-way (resp. pseudorandom, or uninvertible) with respect to
the input distribution χ.

Definition 7. For k ∈ N and γ > 0, we denote by SIVP(k, γ) the shortest
independent vectors problem in dimension k with approximation factor γ.

Definition 8. For x ∈ R
n and s > 0, let ρs(x) = exp(−π‖x/s‖2). ρs can

be normalized into a gaussian probability measure on R
n, and is denoted by

Ds(x) = ρs(x)/sn. For a lattice Λ ⊂ R
n, let DΛ,s(x) = ρs(x)/ρs(Λ), where

ρs(Λ) =
∑

y∈Λ ρs(y). Then DΛ,s is a probability distribution on Λ and is called
the discrete Gaussian distribution on Λ.

112 J. Ding et al.

For n,m positive integers and s > 0, we denote by D
Z
m×n
q ,s the distribution

obtained by sampling from DZm,s n times and outputting A mod q ∈ Z
m×n
q .

We denote by DZm
q ,s the distribution D

Z
m×1
q

.

Lemma 2 [10]. For any s ≥ ω(
√

log n), then we have

Px←DZn,s
[||x|| ≥ s

√
n] ≤ 2−n.

Lemma 3 LWE Assumption [4]. It has been shown that as long as αq > 2
√

n,
then LWE(m,n, q, U(Zn

q),DZm
q ,αq) is pseudorandom. It has been shown that the

LWE distribution remains pseudorandom when the input distribution on Z
n
q is

given by DZn
q ,αq, this is called the HNF-LWE assumption.

Lemma 4 U-LWE Assumption [9]. Let n = 8k for some k ∈ N, 0 ≤ a ≤
nO(1), m = 2n+a, t = �(Cm)9/7+(8a)/(7n)� for a large enough universal constant
C ≥ 1, and 16t2 ≤ q ≤ nO(1). Then LWE(m,n, q, U(Zn

q), U(Zm
t−1)) is pseudo-

random under the assumption that SIVP(k, Õ(
√

kq) is hard in the worst case.
When k is assumed to be large enough so that SIVP(k, Õ(

√
kq) is hard we call

this the U-LWE assumption.

Remark 2. For l ∈ N and probability distributions χ over Z
n×l
q and Ψ over

Z
m×l
q , we can define the distribution LWE(m,n, l, q, χ,Ψ) to be given by sampling

A ← U(Zm×n
q), s ← χ, e ← Ψ and outputting As + e ∈ Z

m×l
q . We can also

define SIS(m,n, l, q, χ) similarly. Notice that the LWE, HNF-LWE, and U-LWE
assumptions hold with the added dimension l for these new distributions, i.e. they
are pseudorandom under certain choices of distributions for Z

n×l
q and Z

m×l
q .

Remark 3. Observe that we can also define the transpose function familys
LWET and SIST which outputs sTAT + eT and xTAT respectively. We have
that LWET is pseudorandom, and hence SIST is pseudorandom, under the LWE,
HNF-LWE, or U-LWE assumptions respectively.

Claim 1. For n,m, k, and q positive integers, and matrices A ← U(Zn×m
q)

and B ← U(Zm×k
q) we have that as nm k, and q are fixed, there exists an m

computable in polynomial time such that AB is indistinguishable from uniform.

One can see this claim by fixing q and taking a positive integer n. Then
choosing A,B ← U(Zn×n

q) and verifying that the distribution of AB approaches
the uniform distribution on Z

n×n
q for n = poly(q). From this we can deduce the

claim for non-square matrices.

3.2 Desciption of the Protocol

The diffie-Hellman key exchange is based on the fact that exponential map is
commutative.

gab = (ga)b = (gb)a.

A Key Exchange Based on the Short Integer Solution Problem 113

over some multiplicative group G with large order p. Ding’s key exchange on
LWE [5] uses the associativity of the bilinear form, namely

xTMy =
(
xTM

)
y = xT (My) .

for some vectors x and y in Z
n
q and a matrix M ∈ Zn×n

q . These two key exchange
protocols are both symmetric. In other words, two parties do the same thing in
the process of key exchange because the security that both parties rely on is from
the same difficult problem. However, our key exchange protocol is different. It is
not symmetric since one party will apply SIS and one party will apply LWE.

We give two similar key exchange protocols.

3.2.1 Normal Construction
Two parties Alice and Bob decide to do a key exchange over an open channel.

(1) The system first generates the public parameters q, n,m and α with n � m.
Then generates the matrix M ∈ Z

n×m
q uniformly at random. Let l and k be

positive integers.
(2) Alice choose a secret matrix sA ← U(Zl×n

q) and an error matrix eA ←
D

Z
l×m
q ,αq, then computes PA = sAM + 2eA. She sends PA to Bob.

(3) Upon receiving PA, Bob chooses a secret matrix sB ← D
Z
m×k
q ,αq and com-

putes PB = MsB and sends PB to Alice. Next he computes

KB = PAsB = (sAM + 2eA) sB = sAMsB + 2eAsB .

(4) Upon receiving PB , Alice computes

KA = sAPB = sAMsB .

3.2.2 Uniform Construction
Two parties Alice and Bob decide to do a key exchange over an open channel.

(1) The system first generates the public parameters q, n,m, α, and t. Let r ∈ N

and m = 8r, 0 ≤ a ≤ mO(1), n = 2m + a, and t = �(Cn)9/7+(8a)/(7m)� for a
large enough constant C ([9] Lemma 4). We have the additional constraint on
q that 16t2 ≤ q ≤ mO(1). The system then generates the matrix M ∈ Z

n×m
q

uniformly at random. Let k be a positive integer.
(2) Alice chooses a secret sA ← U(Zn×n

q), then she computes PA = sAM+2eA,
where eA ← DZn×m,αq. She sends PA to Bob.

(3) Receiving PA, Bob chooses a secret matrix sB ← U(Zm×k
t−1). He computes

PB = MsB . Bob sends PB to Alice. Next, he computes

KB = PAsB = (sAM + 2eA) sB = sAMsB + 2eAsB .

(4) Receiving PB , Alice computes

KA = sAPB = sAMsB .

114 J. Ding et al.

3.3 Remove the Approximation

We imitate the way to remove the approximation that Ding [5] presents in his
key exchange on LWE. We need the help of a robust extractor which allows
two parties to extract identical information from two close elements with signal
functions.

3.3.1 Robust Extractor
An algorithm E is a robust extractor on Zq with error tolerance δ with respect
to a hint function S if the following holds:

(1) The deterministic algorithm E takes as input an x ∈ Zq and a signal σ ∈
{0, 1}, outputs k = E(x, σ) ∈ {0, 1}.

(2) The hint algorithm S takes as input a y ∈ Zq and outputs a signal σ ←
S(y) ∈ {0, 1}.

(3) For any x, y ∈ Zq such that x − y is even and |x − y| ≤ δ, then it holds that
E(x, σ) = E(y, σ) where σ ← S(y).

Signal function: For prime q > 2, we define σ0(x), σ1(x) from Zq to {0, 1} as
follows.

σ0 =

{
0 if x ∈

[
−

⌊q

4

⌋
,
⌊q

4

⌋]
1 otherwise

σ1 =

{
0 if x ∈

[
−

⌊q

4

⌋
+ 1,

⌊q

4

⌋
+ 1

]
1 otherwise

In our robust extractor, we define the hint algorithm S as: for any y ∈ Zq,

S(y) = σb(y), where b
$←− {0, 1}. The robust extractor is defined as: E(x, σ) =

(x + σ · q−1
2 mod q) mod 2.

By the construction of the robust extractor, Ding [5] proved that:

Lemma 5 [5]. Let q > 8 be an odd integer, the function E defined above is a
robust extractor with respect to S with error tolerance q

4 − 2.

Since our key exchange is of multiple bits, we need to extract the shared key
from matrices. So we define a robust extractor over the space of matrices.

Definition 9. Now for i = 1, ..., l and j = 1, ..., k, given the robust extractor
E(x, σi,j) on Zq defined above, we define a robust extractor E′ on Z

l×k
q :

E′(A, σ′)=[E(aij , σij)]=

⎡
⎢⎣

a11 + σ11 · q−1
2 · · · a1n + σ1n · q−1

2
...

. . .
...

al1 + σl1 · q−1
2 · · · aln + σl1 · q−1

2

⎤
⎥⎦ mod q mod 2.

where aij are the entires of A and σ′ is a l × k matrix whose entries are σij.

A Key Exchange Based on the Short Integer Solution Problem 115

3.3.2 Extract the Shared Key
Alice has sA, Bob has sB .

Bob computes PB as above and send it to Alice.
Receiving PB , Alice computes KA as above and then she computes σ′ ←

S(KA), then she obtains the shared key SKA = E′(KA, σ′). She also computes
PA as above and sends (PA, σ′) to Bob.

Bob receives (PA, σ′), and Bob computes KB as above and computes SKB =
E′(KB , σ′).

3.4 Correctness

We see that KA − KB = −2eAsB , and the entries of KA − KB are even. We
need to show that if each entry of the approximation |2eAsB | is less than the
error tolerance, then we obtain that E′(KB , σ′) = E′(KA, σ′).

To complete the proof, we imitate a result from Ding’s key exchange on
LWE [5]:

Lemma 6. If the uniform key exchange (Sect. 3.2.2) is run and 2αq(t−1)
√

n ≤
q
4 − 2, then SKA = SKB with overwhelming probability. If the normal key
exchange is run (Sect. 3.2.1) and 2(αq)2

√
lm ≤ q

4 − 2, then SKA = SKB with
overwhelming probability.

Proof. Let kij be an entry of KA −KB , so it can be expressed as kij = −2vT
i uj ,

where vi is the i-th column vector of eT
A, uj is the j-th column vector of sB .

According to Lemma 2, if the Uniform key exchange is run, it is easy to see that

|kij | = |2vT
i uj | ≤ 2αq

√
n|uj | ≤ 2αq(t − 1)

√
n.

with overwhelming probability. According to Lemma2 again, if the normal key
exchange is run, it is easy to see that

|kij | = 2|vT
i uj | ≤ 2α2q2

√
lm.

with overwhelming probability.
With such a choice of the parameters, we will have each entry of |KA −KB|

less than the error tolerance. By Lemma 5 and our definition of E′, we have that

E′ (KA, σ′) = [E (xij , σij)] = [E (yij , σij)] = E′ (KB , σ′) .

where xij is the entry of KA and yij is the entry of KB .
Moreover we show that shared key is E′(KA, σ′) = E′(KB , σ′) = sAMsB +

q−1
2 σ′ mod q mod 2. It is clear that sAMsB + q−1

2 σ′ = KB + q−1
2 σ′(KA) −

2eAsB . Moreover we can observe that each entry of the matrix |KB+ q−1
2 σ′(KA)|

is less than q
4 + 1. It follows that sAMsB + q−1

2 σ′ = KB + q−1
2 σ′(KA) mod q −

2eAsB because each entry of |KB + q−1
2 σ′(KA) mod q − 2eAsB | is less than or

equal to q
4 + 1 + q

4 − 2 ≤ q−1
2 . This implies that SKB = E′(KB , σ′) = sAMsB +

q−1
2 σ′. A similar proof shows that SKA = E′(KA, σ′) = sAMsB + q−1

2 σ′. ��

116 J. Ding et al.

3.5 Security

Theorem 7. If either protocol described above is run honestly by both parties
Alice and Bob and the LWE (and resp. U-LWE) assumption hold, then SKA

and SKB are indistinguishable from uniformly chosen elements of Zl×k
q given

M, PB, and PA. Thus the protocol is secure against passive adverseries.

Proof. We only prove the theorem for protocol Sect. 3.2.1, the proof is similar
for Sect. 3.2.2. Assuming the protocol is run honestly, the distribution of PA is
computationally indistinguishable from the uniform distribution on Z

l×m
q due to

the LWE assumption that

LWET
(
m,n, l, q, U(Zn×l

q

)
,D

Z
m×l
q ,αq) is pseudorandom.

Now by the LWE assumption we have that

LWE(m,n, k, q, U(Zn×k
q),D

Z
m×k
q ,αq) is pseudorandom.

Thus by Proposition 1 we conclude that SIS(n,m, k, q,D
Z
m×k
q ,αq) is pseudoran-

dom. Hence, as PA is indistinguishable from uniform, it follows that KB = PAsB

is computationally indistinguishable from the uniform distribution Z
l×k
q . Since

KB is indistinguishable from uniform, it follows that SKB is indistinguishable
from uniform by [4] (Lemma 3).

Now we focus on SKA. We have that KA = sAMsB , where M and sA are
chosen uniformly at random. We invoke Claim1, that for sufficiently large l and
m, the distribution of sAM is indistinguishable from the uniform distribution
over Z

l×m
q . Again, by the LWE assumption, we have that

LWE(l,m, k, q, U(Zl×k
q),D

Z
m×k
q ,αq) is pseudorandom.

Hence by Proposition 1 we deduce that SIS(l,m, k, q,D
Z
m×k
q ,αq) is pseudoran-

dom. Thus, as sAM is indistinguishable from uniform and sB ← D
Z
m×k
q ,αq, we

conclude that KA = (sAM)sB is indistinguishable from the uniform distribu-
tion on Z

l×k
q . Therefore SKB is indistinguishable from uniform on Z

l×k
q by [4]

(Lemma 3) and the proof is complete. ��

Acknowledgement. This study is partially supported by U.S Air force.

References

1. Ajtai, M.: Generating hard instances of lattice problems. Quaderni di Matematica
13, 1–32 (2004). Preliminary version in STOC (1996)

2. Diffie, W., Hellman, M.: New directions in cryptography. Inf. Theory 22(6), 644–
654 (1976)

3. Shor, P.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Rev. 41(2), 303–332 (1999)

A Key Exchange Based on the Short Integer Solution Problem 117

4. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. In: STOC, pp. 84–93. ACM (2005)

5. Ding, J., Xiang, X., Lin, X.: A simple provably secure key exchange scheme based
on the learning with errors problem. Cryptology ePrint Archive, Report 2012/688
(2012). https://eprint.iacr.org

6. Wang, S., Zhu, Y., Ma, D., Feng, R.: Lattice-based key exchange on small integer
solution problem. Sci. China Inf. Sci. 57(11), 1–12 (2014)

7. Mao, S., Zhang, P., Wang, H.: Cryptanalysis of a lattice based key exchange pro-
tocol. Sci. China Inf. Sci. 60, 028101 (2016)

8. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with small parameters.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 21–39.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4 2

9. Cabarcas, D., Florian, G., Patrick, W.: Provably secure LWE encryption with
smallish uniform noise and secret. Cryptology ePrint Archive, Report 2013/164
(2013). https://eprint.iacr.org

10. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian
measures. SIAM J. Comput. 37(1), 267 (2007)

https://eprint.iacr.org
https://doi.org/10.1007/978-3-642-40041-4_2
https://eprint.iacr.org

Non-interactive Zero Knowledge Proofs
in the Random Oracle Model

Vincenzo Iovino1(B) and Ivan Visconti2

1 University of Luxembourg, Luxembourg City, Luxembourg
vinciovino@gmail.com

2 DIEM, University of Salerno, Fisciano, Italy
visconti@unisa.it

Abstract. The Fiat-Shamir (FS) transform is a well known and widely
used technique to convert any constant-round public-coin honest-verifier
zero-knowledge (HVZK) proof or argument system HVZK = (P, V) in a
non-interactive zero-knowledge (NIZK) argument system

NIZK = (NIZK.Prove,NIZK.Verify). The FS transform is secure in the
random oracle (RO) model and is extremely efficient: it adds an evalua-
tion of the RO for every message played by V.

While a major effort has been done to attack the soundness of the
transform when the RO is instantiated with a “secure” hash function,
here we focus on a different limitation of the FS transform that exists
even when there is a secure instantiation of the random oracle: the sound-
ness of NIZK holds against polynomial-time adversarial provers only.
Therefore even when HVZK is a proof system, NIZK is only an argu-
ment system.

In this paper we propose a new transform from 3-round public-coin
HVZK proof systems for several practical relations to NIZK proof sys-
tems in the RO model. Our transform outperforms the FS transform
protecting the honest verifier from unbounded adversarial provers with
no restriction on the number of RO queries. The protocols our transform
can be applied to are the ones for proving membership to the range of
a one-way group homomorphism as defined by [Maurer - Design, Codes
and Cryptography 2015] except that we additionally require the func-
tion to be endowed with a trapdoor and other natural properties. For
instance, we obtain new efficient instantiations of NIZK proofs for rela-
tions related to quadratic residuosity and the RSA function.

As a byproduct, with our transform we obtain essentially for free
the first efficient non-interactive zap (i.e., 1-round non-interactive wit-
ness indistinguishable proof system) for several practical languages in the
non-programmable RO model and in an ideal-PUF model.

Our approach to NIZK proofs can be seen as an abstraction of the
celebrated work of [Feige, Lapidot and Shamir - FOCS 1990].

Keywords: FS transform · NIZK · Random oracle model

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-16458-4 9) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 118–141, 2019.
https://doi.org/10.1007/978-3-030-16458-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_9
https://doi.org/10.1007/978-3-030-16458-4_9
https://doi.org/10.1007/978-3-030-16458-4_9

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 119

1 Introduction

Non-Interactive Zero-Knowledge (NIZK) proof and argument systems have been
studied for about 30 years [BFM88,FLS90,Gol01]. The concept of proving a
statement in just one round without leaking any information has been intriguing
for theoreticians and extremely useful as building block for designers of cryp-
tographic protocols. The initial constructions for NIZK worked in the common
reference string (CRS) model and because of various limitations (e.g., the need
of NP reductions, the non-reusability of the CRS, the expensive computations)
their impact was mainly in the theoretical foundations of cryptography.

Proofs vs Arguments. The gap between NIZK proof (NIZKP) systems and NIZK
argument (NIZKA) systems consists in a different soundness requirement. The
soundness property aims to prevent an adversarial prover from convincing the
verifier about the veracity of a false statement. The powerful concept of a NIZK
proof requires the soundness guarantee to be unconditional, therefore the adver-
sarial prover can be unbounded. Instead, the notion of a NIZK argument has a
significantly weaker soundness guarantee since it applies to PPT (corresponding
to non-uniform polynomial-time algorithms) adversarial provers only.1.

The difference seems subtle but may be fundamental in real-world applica-
tions. Consider an e-voting system that uses cryptographic proofs to ensure the
election result claimed by the authorities to be authentic. If the system uses
NIZK proofs, then there is a guarantee that the authorities cannot subvert the
result of the election whatever computing power they have. If NIZK arguments
are instead employed, then the guarantee is only conditional (it holds only if the
authorities do not have enough computational power).

The Bridge Between Theory and Practice: the Fiat-Shamir (FS) Transform. The
traditional power of the simulator in a NIZK proof/argument system consists in
programming the common reference string (CRS). A popular alternative to the
CRS model is the Random Oracle (RO) model [BR93]. The RO model assumes
the availability of a perfect random function to all parties. One of the most
successful applications of the RO model in cryptography is the FS transform
that allows to obtain very efficient NIZK arguments [FS87]. The simulator of
such a NIZK argument programs the RO (i.e., the simulator replaces at least in
part the RO in answering to RO queries of the adversary).

In concrete implementations of this transform, prover and verifier replace the
RO by some “secure” hash function.

Even if the RO methodology has been shown to be controversial already
in [CGH98] and further negative results were published next [DNRS99,Bar01,
GK03,BLV03,DRV12,GOSV14,KRR16], NIZK arguments via the FS transform

1 In literature this difference is often overlooked. Despite this subtle difference, for
simplicity we will call proof the string generated by the prover, irrespective of whether
the prover be part of a proof or an argument system. We will however be precise on
using the words “proof system” and“argument system”.

120 V. Iovino and I. Visconti

are widely used in concrete cryptographic protocols (e.g., in e-voting). We remark
that one could also consider an hybrid notion where the adversarial prover can
be unbounded except that it can query the random oracle a polynomial number
of times only. We stress that in this paper we consider a truly unbounded adver-
sarial prover, and as such, a NIZK proof system does not impose any limitation
on the number of RO queries. This difference can be crucial in applications.

1.1 Problem Statement

The FS transform induces a significant soundness loss. Indeed it receives as
input a constant-round public-coin honest-verifier zero-knowledge (HVZK) proof
system and outputs a NIZK argument system. This is a step back compared to
the known NIZK proofs in the CRS model [BFM88,FLS90,GOS06b,GS08].

Of course if one is interested in a NIZK proof system in the RO model there is
a trivial approach: just evaluate the RO on input the instance x to get a random
string that can be used to compute a NIZK proof in the common reference
string model (e.g., [FLS90]). However the trivial approach is very unsatisfying
for the following two reasons: (1) it requires expensive computations (sometimes
including an NP reduction) that make the NIZK proof completely impractical,
and (2) it requires some complexity assumptions (e.g., trapdoor permutations
in [FLS90]) therefore incurring a significant security loss in the zero-knowledge
guarantee.

These limitations of the FS-transform and of the above trivial approach moti-
vate the main question of this work.

Open question: is there an alternative transform that outputs an efficient
NIZK proof system (i.e., soundness is guaranteed also against unbounded adver-
sarial provers) in the RO model for practical languages without introducing any
additional unproven hypothesis?

1.2 The FS Transform Internals

Formal definitions of NIZK proofs and arguments of knowledge in the RO model
through the FS transform have been investigated in several papers [FKMV12,
BPW12,BFW15] and are discussed in Appendix A.3. For simplicity here we
will now discuss the specific case of a 3-round public-coin HVZK proof system
3HVZK = (P,V) where the decision of the verifier is deterministic. However our
discussion can be generalized to any constant-round public-coin HVZK argument
system.

P sends a first message a to V , also called the commitment. Then V sends
back a random challenge c. Finally P outputs the final message z, the answer
to c. The triple (a, c, z) is called the transcript of an execution of 3HVZK for
an instance x and V takes deterministically the decision of accepting or not the
transcript.

The FS transform constructs NIZK = (NIZK.Prove,NIZK.Verify) as follows.
NIZK.Prove computes a precisely as P , but then the challenge c of V is replaced

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 121

by the output of the RO on input the statement x and a, i.e., c = H(x, a).2

Finally NIZK.Prove computes z precisely as P would compute it.
NIZK is only computationally sound (i.e., it is an argument system) in the

random oracle model. Indeed one can easily see that computing with non-
negligible probability an accepting transcript for a false statement when the
adversarial prover runs in polynomial time, implies that the challenge is the out-
put of one out of a polynomially bounded number of evaluations of the RO, and
this can be translated to proving with non-negligible probability a false state-
ment to V . Soundness cannot be claimed when instead the adversarial prover is
unbounded and can therefore make an unbounded number of queries to the RO.

If 3HVZK is also HVZK (see Appendix A.1), then the resulting NIZK argu-
ment system is additionally a computational ZK argument system. Indeed the
ZK simulator can program the queries therefore being able to produce a simu-
lated proof using the HVZK simulator that is computationally indistinguishable
from the a real proof.

If 3HVZK satisfies special soundness (i.e., there is a deterministic efficient
extractor that from 2 different accepting transcripts for the same statement with
the same first message outputs a witness), then the resulting NIZK argument
system additionally enjoys witness extraction but limited to PPT adversarial
provers. Known variations [Pas03,Fis05,FKMV12] of the FS transform produce
NIZK argument systems that suffer of the same limitation of witness extraction
with respect to PPT provers. We also stress that, to our knowledge, all pre-
vious variants of the FS transform (e.g., the ones of Pass [Pas03] and Fischlin
[Fis05]) only achieve computational soundness (i.e., there is no security guaran-
tee against an unbounded adversarial prover that as such can have unlimited
access to the random oracle). In this paper we call NIZK proof of knowledge
(NIZKPoK) a NIZK proof (i.e., soundness unconditional) system that enjoys the
above extraction property (i.e., limited to PPT adversarial provers).

1.3 The Soundness Degradation of the FS Transform

Suppose that the underlying interactive protocol has the following properties.
The space of prover commitments has cardinality ≥ 2b(λ), the verifier’s challenges
have length k(λ), the soundness error is 2−k(λ), with k(λ) ∈ ω(log(λ)), b(λ) ≥
λ + k(λ) where λ is the security parameter. Suppose further that the prover
computes the answer z deterministically based on (a, c) and suppose that for
each x /∈ L and each commitment a, there exists at least one challenge c such
that (a, c, z) is an accepted transcript (a natural Σ-protocol satisfying the above
requirements will be shown soon).

Fix an x /∈ L and consider the following unbounded prover NIZK.Prove�

that aims to compute an accepting proof for x. NIZK.Prove� searches over all
pairs of challenges and commitments (ac, c) such that the above property holds

2 When the challenge c is computed as H(a), the FS transform offers weaker security
guarantees (see [BPW12,CPS+16]). In this work, we will consider the strong FS
transform.

122 V. Iovino and I. Visconti

(i.e., (ac, c, z) is an accepting tuple, where z is the deterministic answer of the
prover to (ac, c)) and RO maps (x, ac) into c; if NIZK.Prove� can find a pair
(ac, c) that verifies such conditions, it outputs (ac, c, z) as its proof, otherwise
outputs some error ⊥.

For each challenge and commitment pair (ac, c) the probability that the RO
maps (x, ac) into c such that (ac, c, z) is an accepted transcript is ≥ 2−k(λ)

(by hypothesis on the soundness error). Thus, since there are 2b(λ) ≥ 2λ+k(λ)

commitments, NIZK.Prove� fails in proving the false statement x with probability
< (1− 1

2k(λ))2
λ+k(λ)

. Therefore, NIZK.Prove� succeeds with probability ≥ 1−(1−
1

2k(λ))2
k(λ)·2λ ≈ 1 − (1e)2

λ

.3

This example shows that an unbounded prover can break the soundness of
the FS transform applied to some particular proof system satisfying the above
requirements. This is not an artificial counter-example as such requirements are
satisfied by very natural proof systems like the ones of [CP93,CDS94].

Example. Consider for instance the protocol of Chaum and Pedersen [CP93] for
proving that a tuple (g, h, u, v) of 4 group elements, in a group of prime order q,
is a Diffie-Hellman (DH, in short) tuple.4

The prover chooses a random r ∈ Zq, where q is the order of the group, and
sends the commitment a = gr, b = hr. The verifier sends a random challenge
c ∈ Zq. The prover sends back deterministically z = r + cw mod q and the
verifier accepts iff gz = auc and hz = bvc.

Let k(λ) = λ with security parameter λ equals to the length of the group
elements. Then, the challenges have length k(λ), the commitments have length
2 ·k(λ) and k(λ) is also the soundness parameter. By using the simulator (of the
special HVZK), it is easy to see that for each false statement x /∈ L and for each
challenge c, there exists (a, z) such that (a, c, z) is an accepted transcript for x.
Thus, the Chaum and Pedersen’s protocol satisfies the above requirements and
the soundness can be broken in time ≈2k(λ).

Ineffectiveness of Parallel Repetition. A natural approach to adjust the FS trans-
form in order to circumventing the above attack would be to execute p instances
of the protocol in parallel and computing each challenge ci, for i = 1, . . . , p, as
RO(x||ai||i). Unluckily, this strategy does not improve the situation. In fact,
while the number of possible challenges increases (each challenge now consists of
k · p bits) the number of possible commitments also increases. A simple analysis
shows that an attack similar to the previous one can be applied to such variant
of the FS transform as well. Observe also that the previous attack can be viewed
as a special case for p(λ) = 1.

3 This follows from the fact that limλ→∞ 2k(λ) = ∞ and thus limλ→∞(1 −
1

2k(λ))
−2k(λ)

= e..
4 Our transform cannot be applied to Chaum and Pedersen’s protocol. However there

are examples of natural 3-round public-coin HVZK protocols that have a big ratio
between space of commitments and space of challenges and can be made non-
interactive through our transform (e.g., quadratic residuosity).

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 123

In fact, consider a false statement x and an unbounded prover NIZK.Prove�

similar to before aiming at computing an accepting proof for x. By the previous
analysis on the protocol without repetitions (that can be seen as a special case for
p(λ) = 1) and since the p(λ) executions are independent, NIZK.Prove� succeeds

with probability
(
1 − (1e)2

λ
)p(λ)

that is overwhelming in λ.
It is fundamental for the previous analysis to hold that the space of commit-

ments is much bigger than the challenge space, as it is indeed the case in general
for natural Σ-protocols for languages where deciding membership is non-trivial.
In fact, if for instance the space of the challenges and commitments were of
the same cardinality, the lower-bound on the winning probability of the previ-
ous prover would be only

(
1 − 1

e

)p(λ) that is a negligible function. As we will
see next, our transform still uses parallel repetitions but in a more careful way
achieving NIZK proof systems for several natural and practical languages.

2 Our Results

In the main result of this work we give a positive answer to the above open ques-
tion: we show a transform that gives NIZK proof systems for practical languages.

We first (see Appendix A.3) provide formal definitions for NIZK
proof/argument systems in the RO model following the lines of Faust et al.
[FKMV12] and Bernhard et al. [BFW15] but taking into account unbounded
adversarial provers, therefore considering statistical soundness. Then we pro-
pose a new transform from a specific class of 3-round public-coin HVZK proof
systems for a given class of relations (see below) to NIZK proof systems in the
RO model for the same class of relations.

The protocols and relations we support are a strengthening of the ones intro-
duced by Maurer [Mau15]. Precisely, Maurer shows that most of the known
practical sigma protocols can be viewed as special case of a sigma protocol for
a group homomorphic one-way function (OWF). Sigma protocols are a special
case of 3-round public-coin HVZK proof systems (see Appendix A.1). Similarly,
our transform can be applied to sigma protocols for proving that an element y is
in the range of a group homomorphic OWF but we also require additional prop-
erties on the function f . Namely, we require the following properties (this is only
a sketch and the complete set of properties will be presented in Definition 11).

1. f is a trapdoor OWF with range ⊆ {0, 1}m(λ) for some polynomial m(·).
The witness for the relation includes the trapdoor, i.e., the prover needs the
trapdoor to compute the proof. The trapdoor also allows to efficiently decide
whether a string y ∈ {0, 1}m(λ) is in the range of f or not.

2. The language of all strings y /∈ Range(f), y ∈ {0, 1}m(λ) is in co-NP and
using the trapdoor for f it is possible to compute a witness for the fact that
y /∈ Range(f). That is, there are: (a) an algorithm Provef that on input a
string y and a trapdoor trap for f computes a proof π; (b) an algorithm
Verify that on input y and a proof π accepts if and only if y /∈ Range(f); (c) a
PPT simulator Simf that, with input the security parameter, outputs a pair

124 V. Iovino and I. Visconti

(a, π) that is distributed identically to (a′, π′) where a′ is selected at random
in the space of strings y ∈ {0, 1}m(λ), y /∈ Range(f) and π′ ← Provef (y, trap).

3. A random element in {0, 1}m(λ) falls outside the range of f with probability
≤ 1

q (up to a negligible factor) for some constant q > 1; this probability affects
the length of the proof.

We call such a function a special one-way group homomorphic function
(SOWGHF). To exemplify the requirements, consider the squaring function mod-
ulo a Blum integer N that acts on the group Z

�
N ; sigma protocols for such f allow

to prove whether a number is a quadratic-residue modulo N . The first condition
requires the existence of a trapdoor that in this case is the factorization of N
and the range of the function is ZN .

The second condition requires the existence of an efficient way for proving
that a number is not a quadratic residue mod N . As N is a Blum integer, −1 is
a quadratic non-residue and thus −y is a quadratic residue mod N if and only
if y is a quadratic non-residue mod N . Thus, there exists a witness for proving
that a number y is not a quadratic residue. The simulator can simply pick a
random number r ← ZN and output (−r2 mod N, r).

The third condition is also satisfied since a random number in Z
�
N is a

quadratic-residue modulo N with probability 1
4 and only a negligible fraction

of the integers in ZN are not in Z
�
N .

The second and third conditions are trivially satisfied when f is a permuta-
tion, e.g., for the RSA permutation. In that case, it makes no sense to prove with
our NIZKP that a string is in the range of the function because for permutations
the soundness is trivially satisfied. Moreover, the knowledge extraction property
is also guaranteed by the FS transform at a lower cost. Nevertheless, one might
consider statements like ∃x1, x2, x3 such that ((y1 = f1(x1)∧y2 = f2(x2))∨y3 =
f3(x3)), where one or more of the functions f1, f2, f3 are permutations and at
least one is not a permutation and all the functions satisfy our requirements.
Following Cramer et al. [CDS94], our transform can be likewise extended to
support such compound statements.

One might be worried that the first condition is very restrictive in that we do
not just require f to be a trapdoor OWF but in addition to feed the trapdoor as
input to the prover. However, notice that for many practical statements this is
the case, e.g., for a proof of correct decryption of a Goldwasser-Micali’s ciphertext
[GM84] we can assume that the prover is endowed with the factorization of N .

We defer the reader to Appendix A.2 for more details on what we call special
one-way group homomorphic functions and special protocols. In Appendix B we
show several examples of SOWGHFs that exemplify the usefulness and practical-
ity of our notion. Combined with our transform, this gives efficient NIZK proof
systems with statistical soundness for disparate relations of wide applicability.

Our transform preserves the same properties of the FS transform (except
some efficiency loss) but maintains the unconditional soundness of the start-
ing protocol (unlike the FS transform). Regarding knowledge extraction, if the
starting protocol satisfies special soundness then NIZK will have the same guar-
antee of extractability (see Appendix E) of the FS transform (i.e., extraction

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 125

is possible against a PPT adversarial prover). Our transform does not add any
computational assumption and thus our NIZK proof will be secure in the RO
model without any unproven hypothesis.

Therefore our work gives the first NIZK proof systems for a variety of useful
languages in the RO model. See Theorems 10 and 12.

As noted and proved by Yung and Zhao [YZ06] (see also Ciampi et al.
[CPSV16]), if the original 3-round public-coin HVZK proof system is witness
indistinguishable (WI), then the FS-transformed argument is still WI, and the
security proof for WI is RO-free. Since the same holds for our transform we
get an efficient non-interactive WI proof system (also called non-interactive zap
in previous work) [GOS06a,GS08,DN00] in the non-programmable RO model.
The result is formally stated in Corollary G. In Sect. 5 we present applications
of this result to hardware-assisted cryptography. In particular we achieve an
unconditional NIWI proof system in an ideal-PUF model.

As shown earlier, if the starting interactive proof system has challenges of
length λ (with λ security parameter) and space of commitments of cardinality
2λ then the soundness guarantee of the FS transform is completely violated by
adversaries running in Θ(2λ) steps. Instead, the soundness of our transform is
preserved with respect to adversaries running in O(2λ) steps, when the instanti-
ation of the random oracle is resilient to adversaries running in time O(2λ) (e.g.,
idealized hash functions, PUFs). We formally state it in Conjecture 1.

3 Overview of Our Transform

We next describe our transform. Given an x /∈ L, we denote by “space of bad
commitments” Sx for x of a 3-round public-coin proof system the set of all com-
mitments a such that there exist e, z such that V(x, a, e, z) is accepted by the
verifier. With a slight abuse of notation, we say that the space of bad commit-
ments S of 3HVZK has cardinality ≤ N if for all x /∈ L, the cardinality of Sx

is ≤ N .
Let 3HVZK be a 3-round public-coin HVZK proof system 3HVZK = (P,V)

with space of bad commitments of cardinality ≤ 2b(λ), challenges of length k(λ)
and soundness error bounded by s(λ). In Lemma 9 we prove that the FS trans-
form applied to a such 3HVZK results into a NIZK proof system with statistical
soundness that degrates “nicely” in relation to s(λ) when the space of the bad
commitments 2b(λ) is not too “big” (see the Lemma and also Theorem 10 for a
more precise statement).

As a consequence, the problem of transforming sigma protocols into NIZK
proofs with statistical soundness can be reduced to the problem of transforming
3-round public-coin HVZK proof systems into ones having arbitrarily small ratio
between soundness error and space of bad commitments. So, we first present a
transform from interactive protocols (that do not use the RO) to interactive
protocols in the RO model with shorter commitment space. Then, applying
the FS transform to the latter protocol will result into a NIZK with statistical
soundness.

126 V. Iovino and I. Visconti

Trapdoor One-Way Group Homomorphism and Special Protocols. Before pre-
senting our transform, we define the class of relations supported by our proto-
cols. As in Maurer [Mau15], the class of relations we consider are associated with
an homomorphic OWF that in our case satisfies some additional requirements.
We first recall the abstraction of Maurer [Mau15] and then we proceed to state
the additional properties we require.

Consider two groups (G, ·), (H, ∗) and a one-way homomorphic function from
G to H, that is a OWF with the property that f(x1 · x2) = f(x1) ∗ f(x2). By
abstracting several known protocols in the literature, Maurer presents a sigma
protocol for proving that an element y ∈ H. In the Maurer’s protocol, the prover
knows x and the verifier knows y = f(x). The prover selects a random element
r in G and sends a = f(k) to the verifier. The verifier sends back a number c
selected at random in a challenge space that is a set of integers. The prover sends
z = k · xc to the verifier that accepts the transcript if and only if f(z) = a ∗ yc.

If a protocol is so defined and if in addition the function f satisfies the three
conditions given in Sect. 2 we say that the protocol is special. We now show
how to transform a special protocol (spec-prot henceforth) into one with shorter
commitment space.

Reducing the Space of Commitments in Special Protocols. We construct a 3-
round public-coin HVZK protocol 3HVZK = (3HVZK.Prove, 3HVZK.Verify) for
proving that y ∈ Range(f) from a spec-prot SpecP = (SpecP.Prove,SpecP.Verify)
for the same relation. We denote by Prove and Verify the efficient algorithms to
prove and verify that a string y /∈ Range(f) guaranteed by a spec-prot for f . We
recall that in a spec-prot (see. Definition 13) the prover SpecP.Prove computes a
commitment as f(r) where r is a string drawn at random in the domain of f .

The idea behind the transform is to make the space of the commitments to
be arbitrarily shorter than the space of the challenges. Specifically, we repeat the
protocol a sufficient number of times p to increase the space of the challenges but
at the same time we have to avoid that the space of the commitment increases
with the same ratio. To that aim, we force the space of the commitment to be
short by computing each commitment via the RO as ai = RO(y||i), i ∈ [p]. In
this way the space of the commitment is limited by 2|y| ·p and thus, e.g, doubling
p just double the space of the commitments while quadrupling the space of the
challenges.

Under one of the assumptions for any spec-prot we can assume that with
noticeable probability ai = f(ri) for some ri. If this is the case the prover, by
means of the trapdoor, can invert ai and get ri. As mentioned above, the value ri

is meant to be the randomness used by SpecP.Prove to compute a commitment.
Thus, using ri 3HVZK.Prove can complete the protocol (i.e., computing the final
answer to send to the verifier). Note that, by hypothesis, the trapdoor can be
also employed to check whether ai ∈ Range(f). On the other hand, if this is
not the case, the prover can still use the trapdoor to show the verifier that
ai /∈ Range(f). As in FS, the verifier has also to check that each commitment ai

received by the prover equals RO(y, i).

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 127

Overall Transform. We define our transform to be the result of applying the
above transform to a spec-prot SpecP to obtain a protocol 3HVZK and then
apply FS transform to 3HVZK to obtain a NIZK argument. It can be seen that
our transform guarantees completeness if SpecP is perfectly complete. It can
be seen that our transform guarantees computational ZK (see Appendix A.3) if
SpecP is HVZK exactly as it is the case for the FS transform. It can be seen that
our transform guarantees computational witness extraction (see Appendix E) if
SpecP satisfies special soundness exactly as it is the case for the FS transform.
More details will be given in Sect. 7.

The most important property of this new transform is that starting from a
3-round public-coin proof system that matches our requirements (i.e., what we
call a spec-prot), our transform gives in output a non-interactive proof system,
assuming a suitable choice of the parameters as we will specify later.

The parameter p(·) in our transform depends on the cardinality of the chal-
lenge space k(·) and the probability q(·) that a random element in the space of
the commitments falls to be in the range of f . A more precise statement will be
given in Sect. 7.

Connection to FLS. The reader may have noticed a connection to the work of
Feige, Lapidot and Shamir (FLS) [FLS90]. A CRS-based NIZK like FLS can
be easily converted to a NIZK in the RO model by setting the CRS to be the
string RO(1λ). In that case, the CRS in the FLS’ NIZK can be seen as the first
message in our protocol and then, by using a trapdoor, the prover in FLS is able
to open the bits to the verifier in a selected way.

As we want to avoid expensive NP-reductions, in our case the trapdoor
depends on the language. Moreover we have to handle the case when f is not a
permutation.

4 Comparison

Comparison. Here we compare in more detail the NIZK proofs obtained through
our transform with other NIZK arguments and proofs discussed before.

In Table 1 we present a comparison of the NIZK proof resulting to other NIZK
proofs and arguments known in the literature (see Sect. 6). The NIZK proof and
argument system in the comparison are very different in that they admit so dif-
ferent and disparate relations or can prove general statements through expensive
NP-reductions. Nevertheless, it makes sense to compare them in terms of prop-
erties achieved. We omit the comparison with the transform of Mittelbach and
Venturi that can be instantiated only for specific classes of interactive protocols
and uses strong computational assumptions.

The 3rd line in the table refers to a NIZK in the RO constructed from a CRS-
based NIZK in the trivial way by replacing the CRS with the string RO(1λ) and
programming the RO in the obvious way. The ZK type is omitted but is implicitly
assumed to be (multi-theorem adaptive) computational in the programmable

128 V. Iovino and I. Visconti

RO model5 for works in which the corresponding entry CRS is set to No and
(multi-theorem adaptive) computational for the CRS model otherwise.

Efficiency: the Case of Quadratic Residuosity. It is difficult to compare differ-
ent NIZK proofs and arguments systems for practical statements when they
can handle different classes of relations. However, it makes sense to compare
FS-transformed NIZK argument to the NIZK proof systems resulting from our
transform when both are for the same relation. As an example, we can com-
pare a FS-transformed NIZK argument system for proving that an integer is a
quadratic residue to a NIZK proof system resulting from our transformation for
the same relation.

The basic sigma protocol for proving quadratic residuosity has soundness
error 1

2 . To make the soundness error, let us say 2−λ, it is necessary to repeat
the protocol λ times and in turn applying the FS transform to the latter protocol
results into just a NIZK argument with computational soundness. Let us now
compare the improvement offered by our transform.

As it will be shown in our transform Transmain of Construction 2, to get
soundness error 2−λ our transform will compute a NIZKP consisting of p(λ)
repetitions of a 3-round protocol with essentially the same efficiency in terms
of communication that the basic sigma protocol for quadratic residuosity, where
p(λ) has to satisfy the equation (cf. Eq. (1) in Construction 2):

22·λ+log(p(λ)) ·
(

1
q

+
(

1 − 1
q

)
· 1
k(λ)

)p(λ)

≤ 2−λ.

As 1
q ≈ 3

4 , the above equation can be simplified to 3 · λ + log(p(λ)) ≤ c · p(λ)

where c
�
= 3 − log2(7) ≈ 0.2.

Then it can be seen that p(λ) ≈ 16 · λ satisfies the equation. Therefore, our
transform allows to upgrade from computational to statistical soundness at a
cost of a moderate factor of inefficiency.

5 Applications

Efficient NIWI Proofs in the NPRO Model. Yung and Zhao [YZ06] (see also
Ciampi et al. [CPSV16]) observed that if the original 3-round public-coin HVZK
proof system is witness indistinguishable (WI), then the FS-transformed argu-
ment is still WI, and the security proof for WI is RO free. Since the same holds
for our transform, we get an efficient non-interactive witness indistinguishable
(NIWI) proof system (also called non-interactive zap in previous work) [GOS06a]
[GS08,DN00] in the non-programmable RO model. Next we show an application
of this primitive.

5 This holds for NIZKAs resulting from the strong FS transform, not for the weak FS
one [BPW12].

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 129

Unconditional NIWI Proofs in the Ideal-PUF Model. In last decade, there has
been a renewed interest about hardware-assisted cryptographic protocols and
physically uncloneable functions (PUFs, in short) [PRTG02,GCvD02,TSS+05,
Kat07,HL08,GKR08,DORS08,AMS+09,GIS+10,BFSK11,OSVW13,RvD13].
We note that our unconditional NIWI proof system in the NPRO can be turned
in an unconditional NIWI proof system in the ideal-PUF model, in which the
PUF acts like a RO.

More specifically, we consider the availability of an ideal-PUF. Note that this
is different from assuming a RO. In the RO model, all parties need to have access
to the same function. In the ideal-PUF model we envision, we just assume that
an hardware token acting as an ideal-PUF can be attached to a proof and sent
from a party to another (specifically, from the prover to the verifier). We observe
that our unconditional NIWI proof system in the NPRO can be turned in an
unconditional NIWI proof system in the ideal-PUF model.

Table 1. Stat denotes statistical and Comp computational. PV denotes public verifia-
bility: a YES refers to standard NIKZP/NIZKA and a NO to designated verifier ones.
CR denotes computational extractability with rewinding extractors and CS denotes
computational extractability with straight-line extractors. The ZK type is omitted
but is implicitly assumed to be (multi-theorem adaptive) computational in the pro-
grammable RO model for works in which the corresponding entry CRS is set to No
and (multi-theorem adaptive) computational for the CRS model otherwise. �: When
referred to the transforms, a No means that the transform does not add any addi-
tional computational assumption (beyond assuming the RO model) beyond the ones
of the underlying starting protocol (that could even be unconditional). ��: Note that
the definition of online extractability of Fischlin implicitly assumes that the adversary
is possibly computationally unbounded but limited to a polynomial number of RO
queries. Thus, according to our terminology, it is still an argument with computational
extractability.

Work Efficiency Soundness? CRS? PV? Uncondititonal?� PoK?

NIZKPoK of [GOS06b] NP-reductions Stat Yes Yes No Stat

NIZKPoK of [GS08] Efficient Stat Yes Yes No Stat

NIZKPoK
of [GS08] with CRS
set to RO(1λ)

NP-reductions Stat No Yes No Stat

Transforms
of [Lin15,CPSV16]

Efficient Comp Yes Yes No No

Transforms of
[DFN06,VV09,CG15]

Efficient Comp Yes No No No

Transforms
of [Pas03,Fis05]

Efficient Comp No Yes Yes CS��

Transform of FS Very efficient Comp No Yes Yes CR

Our transform Efficient Stat No Yes Yes CR

130 V. Iovino and I. Visconti

6 Related Work

CRS-based NIZK proof and argument systems have been intensively studied
in the last 30 years in a sequel of works [BFM88,FLS90,RS92,BY96,Pas03,
BCNP04,Ps05,GOS06b,AF07,GS08,Pas13,BFS16]. One of the initial motiva-
tions for CRS-based NIZK proof was CCA-security [NY90,CS98,Sah99,CS03,
Lin06]. In this setting, the CRS is computed by the receiver, while the NIZK
proofs are computed by the sender of ciphertexts. Thus, for CCA-security the
CRS model does not pose any issue. However, in e-voting the authority cannot
compute the CRS because it must compute proofs that show the correctness of
the tally and thus cannot be the same party that computes the CRS that thus
has to be setup by a trusted party.

An alternative to the CRS model is the RO model that does not solve the
issues of the CRS model but often leads to the design of more efficient protocols.
The RO methodology has been introduced in the groundbreaking work of Bellare
and Rogaway [BR93]. Canetti et al. [CGH98] show that the RO methodology is
unsound in general and several works [DNRS99,Bar01,GK03,BLV03,BDSG+13,
GOSV14,KRR16] study the security of the FS methodology. The first rigorous
analysis of the FS transform (applied to the case of signature schemes) appeared
in Pointcheval and Stern [PS00]. Since the introduction of the FS transform
[FS87], a lot of works have investigated alternative transformations achieving
further properties or mitigating some issues of FS.

Pass [Pas03] and Fischlin [Fis05] introduce new transformations with
straight-line extractors to address some problems that arise when using the NIZK
argument systems resulting from the FS transform in larger protocols [SG02].
The NIZK systems resulting from the Pass’ and Fischlin’s transforms share the
same limitation of FS of being arguments, i.e., sound only against computation-
ally bounded adversaries. Furthermore, as in our case, Fischlin’s transform also
results in a completeness error.

(Note that the definition of online extractability of Fischlin implicitly assumes
that the list of RO queries given to the extractor has polynomial size and thus
only withstands adversaries that are possibly computationally unbounded but
limited to a polynomial number of RO queries; according to our terminology, this
limitation brings to an argument system with computational extractability.6)

Damg̊ard et al. [DFN06] propose a new transformation for the standard
model but it results in NIZK argument systems that are only designated veri-
fier, rests on computational assumptions and has soundness limited to a loga-
rithmic number of theorems. Designated verifier NIZK proofs are sufficient for
some applications (e.g., non-malleable encryption [PsV06]) but not for others like
e-voting in which public verifiability is a wished property. The limitation on the

6 Note that also the FS transform leads to statistically sound proof systems against
computationally unbounded provers constrained to a polynomial number of RO
queries. In this paper, we deem a non-interactive system in the RO a proof sys-
tem only if it enjoys statistical soundness against unbounded adversaries without
any limitation on the number of RO queries.

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 131

soundness of the Damg̊ard’s transformation has been improved in the works of
Ventre and Visconti [VV09] and Chaidos and Groth [CG15].

Lindell [Lin15] (see also the improvement of Ciampi et al. [CPSV16]) puts
forward a new transformation that requires both a non-programmable RO and a
CRS and has computational complexity only slightly higher than FS. The trans-
formations of Lindell and Ciampi et al. are based on computational assumptions
whereas ours does not require any unproven hypothesis.

Mittelbach and Venturi [MV16] investigate alternative classes of interactive
protocols where the FS transform does have standard-model instantiations but
their result yields NIZK argument systems and is based on strong assumptions
like indistinguishability obfuscation [GGH+13], and as such is far from being
practical. Moreover the result of Mittelbach and Venturi seems to apply only to
the weak FS transform in which the statement is not hashed along with the com-
mitment. The weak FS transform is known to be insecure in some applications
[BPW12]. In this work, we only consider the strong FS transform.

The work of Mittelbach and Venturi has been improved by Kalai et al.
[KRR16] that, building on [BLV03,DRV12], have shown how to transform
any public-coin interactive proof system into a two-round argument system
using strong computational assumptions. The latter work does not yield non-
interactive argument systems.

Sigma protocols, on which efficient NIZK arguments (and our NIZK proofs)
in the RO model are based, have been intensively studied [CP93,CDS94,FKI06,
BR08,ABB+10,Mau15,GMO16]. Sigma protocols incorporate properties both
of interactive proof systems and proofs of knowledge systems [GMR89,BG93].
Faust et al. [FKMV12] and Bernhard et al. [BFW15] provide a careful study of
the definitions and security properties of the NIZK argument systems resulting
from the FS transform but they do not investigate the possibility of achieving
statistically sound proofs. Both works, as well as ours, make use of the general
forking lemma of Bellare and Neven [BN06] that extends the forking lemma of
Pointcheval and Stern [PS00]. We note that in our NIWI the RO can be replaced
by an ideal PUF. In the last decade, a lot of works study constructions and
applications of hardware-assisted cryptographic protocols and PUFs [PRTG02,
GCvD02,Kat07,HL08,GKR08,DORS08,AMS+09,BFSK11,OSVW13,RvD13].

Roadmap. In Appendix A we provide the necessary background and formal def-
initions of all the primitives and concepts used in this work, including our new
framework of special one-way group homomorphic functions. Additional defini-
tions regarding extractability will be given in Appendix E. In Sect. 7 we present
our main transform, in Appendix D we analyze its soundness and in Appendices
E-G zero-knowledge, extractability and additional properties. In Appendix B we
present several instantiations of special one-way group homomorphic functions.

132 V. Iovino and I. Visconti

7 Our Transform

7.1 Step I: From spec-prot to 3-Round Public-Coin HVZK in the
ROM

For the sake of exposition, we define our main transform as consisting of two
transforms. The first one transforms a spec-prot into a 3-round public-coin HVZK
protocol in the RO model.

Specifically, Trans(c(·), k(·), q),m(·), f) converts a spec-prot SpecP SpecP =
(SpecP.Prove,SpecP.Verify) with challenges of length k(·) and commitments of
length c(·) for a (m(·), q)-SOWGHF f into a 3-round public-coin HVZK proof
system 3HVZK[c(·), k(·), q,m(·), p(·), f] = (3HVZK[c(·), k(·), q,m(·), p(·), f].
Prove, 3HVZK[c(·), k(·), q,m(·), p(·), f].Verify) with commitments of length c(λ) ·
p(λ), space of bad commitments of cardinality 2λ+log(p(λ)), challenges of length
k(λ) · p(λ). Moreover, 3HVZK is associated with a polynomial polyinp(·).

The algorithms of 3HVZK[c(·), k(·), q,m(·), p(·), f] when run on an input x

with |x| �
= λ need oracle access to a function RO with domain {0, 1}polyinp(λ) and

co-domain {0, 1}c(λ), and guarantee soundness bounded by p(λ). We next define
our transform Trans[c(·), k(·), q,m(·), p(·), f].

Construction 1. Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·)
and q. Our transform Trans(c(·), k(·), q,m(·), p(·), f) is a polynomial-time algo-
rithm that takes as input the description of f (and thus implicitly SpecP),
the description of functions c(·), k(·), q,m(·) and p(·) and outputs a pair
(polyinp(·), 3HVZK[c(·), k(·), q,m(·), p(·), f]) that consists of the description of a
polynomial and the description of a proof system computed as follows.

Compute polyinp(·) = λ+log(p(·)), and set 3HVZK[c(·), k(·), q,m(·), p(·), f] =
(3HVZK[c(·), k(·), q,m(·), p(·), f].Prove, 3HVZK[c(·), k(·), q,m(·), p(·), f].Verify)
according to the description of the following two algorithms that are algorithms
with oracle access to a function RO with domain {0, 1}polyinp(λ) and co-domain
{0, 1}c(λ).

In the following we denote by SpecP.Prove(y, (x, trap), f−1(ai), ei) the output
of SpecP.Prove when executed with theorem z, witness (y, trap), first message
computed with randomness f−1(ai) (where the inverse is computed with trap-
door trap) and after having received as challenge ei from the verifier. Note that
the prover of a spec-prot computes its first message as f(r) where r is the chosen
randomness, thus the first message corresponds to f(f−1(ai)) = ai.

3HVZK.Prove, with inputs x, y and the trapdoor trap and 3HVZK.Verify, with
input y, performs the following three rounds of communication.

– [Round 1] 3HVZK.Prove(y, (x, trap)) → 3HVZK.Verify(y).
For each i ∈ [p(λ)], do

∗ Send ai ← RO(y||i) to 3HVZK.Verify.
• endFor

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 133

– [Round 2] 3HVZK.Verify(y) → 3HVZK.Prove(y, (x, trap)).
For each i ∈ [p(λ)], do

∗ ei ← {0, 1}k(λ)

∗ Send ei to 3HVZK.Prove.
• endFor

– [Round 3] 3HVZK.Prove(y, (x, trap)) → 3HVZK.Verify(y).
For each i ∈ [p(λ)], do

∗ If ai /∈ Range(f) do
· πi ← Prove(y, trap).
· Send zi = (⊥, πi) to 3HVZK.Verify.

∗ endIf
∗ else

· Send zi ← SpecP.Prove(y, (x, trap), f−1(ai), ei) to 3HVZK.Verify.
∗ endElse

• endFor.
– [Acceptance condition] 3HVZK.Verify(y) → {0, 1}.

For each i ∈ [p(λ)], do
∗ If ai �= RO(y, i) then return 0.
∗ If zi = (⊥, πi) do

· If Verify(y, πi) = 1 then return 0.
∗ endIf
∗ else

· If SpecP.Verify(y, ai, ei, zi) = 0 then return 0.
∗ endElse
∗ return 1.

• endFor.

7.2 Step II: Composing with the FS Transform

Trans(c(·), k(·), q,m(·)p(·), f) converts a spec-prot SpecP = (SpecP.Prove,SpecP.
Verify) with space of bad commitments of cardinality ≤ 2b(·), commitments
of length c(·), challenges of length k(·) into a proof system in the RO
model 3HVZK[c(·), k(·), q,m(·), p(·), f] = (3HVZK[c(·), k(·), q,m(·), p(·), f].
Prove, 3HVZK[c(·), k(·), q,m(·), p(·), f].Verify) with commitments of length c(λ) ·
p(λ), space of bad commitments of cardinality 2λ+log(p(λ)) and challenges of
length k(λ) · p(λ). The protocol is associated with a polynomial polyinp(·) that
dictates the domain of the RO.

By appropriately setting the parameter p(·) and applying the FS transform
to 3HVZK we can obtain a NIZK proof system with negligible soundness error
(precisely, p(·) and the soundness error will be related). We now show our main
transform that uses the previous one and the FS transform to achieve our goal.

Construction 2. Let SpecP = (SpecP.Prove,SpecP.Verify) be a spec-prot with
challenges of length k(·) and commitments of length c(·) for a (m(·), q)-SOWGHF
f . Note that according to our formulation, SpecP is induced by f , k(·), m(·) and
q. Our main transform Transmain(c(·), k(·), q,m(·), δ(·), f) is a polynomial-time

134 V. Iovino and I. Visconti

algorithm that takes as input the description of f (and thus implicitly SpecP),
the description of functions c(·), k(·), q,m(·) and a negligible function δ(·) and
outputs a pair (polyinp(·), polyout(·),NIZK[c(·), k(·), q,m(·), δ(·), f]) that consists
of the description of two polynomials (polyinp(·), polyout(·)) and the description
of a NIZKPoK proof system computed as follows.

Firstly, compute a polynomial p(·) satisfying the equation

22·λ+log(p(λ)) ·
(

1
q

+ (1 − 1
q
) · 1

k(λ)

)p(λ)

≤ δ(λ). (1)

We will show in Theorem 10 that it is always possible to find such a
polynomial.7

Then, apply the transform Trans(c(·), k(·), q,m(·)p(·), f) of Construction 1
to obtain a 3-round public-coin HVZK proof system in the RO model
3HVZK[c(·), k(·), q,m(·), p(·), f] and a polynomial poly′

inp(·). Set polyinp(·) (resp.
polyout(·)) to the maximum between poly′

inp(·) and the length of the commit-
ments of 3HVZK (resp. maximum between the length of the commitments and
the length of the challenges of 3HVZK).

(In the following we assume that, e.g., if 3HVZK was expecting an RO with
domain {0, 1}m(λ) and we execute with an RO with domain {0, 1}n(λ), for n(λ) >
m(λ), the protocol 3HVZK is slightly modified to use the truncation of the output
of the RO; similarly for the co-domain. Thus, the previous setting serves to
guarantee that the RO has domain and co-domain enough large to be used
both for the transform Trans (that uses domain {0, 1}λ+log((p(λ)) and co-domain
c(λ)) and the FS transform that uses domain {0, 1}λ+c(λ)·p(λ) and co-domain
{0, 1}c(λ)×p(λ)).

Then it applies the FS transform to 3HVZK to get a NIZKPoK proof sys-
tem NIZK = (NIZK.Prove,NIZK.Verify) that uses an RO with domain (resp.
co-domain) strings of length polyinp(·) (resp. polyout(·)).
Note that our main transform Transmain can be viewed as the composition of
Trans with the FS transform.

Remark 1. By defining Transmain to be the composition of the two transforms
(i.e., Trans and the FS transform), for simplicity we skipped a detail. Namely, the
proof system 3HVZK on which we apply the FS transform is a protocol for the
RO model and thus care has to be taken in avoiding that the added RO queries
are in the set of possible RO queries of the original protocol. This issue can be
sorted out by letting the RO in the original protocol and in the FS-transformed
protocol to query the RO on different prefixes, e.g., 0 and 1; that is, each query
x of 3HVZK (resp. each new query added by the FS transform) will invoke the
RO on input (0||x) (resp. (1||x)).

Next, we define the instantiation of a NIZKPoK resulting from our transform
with a concrete hash function.
7 Specifically, it does not hold for all negligible functions but does hold for functions

like 2−c·λ for some constant c > 0.

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 135

Construction 3 [H-instantiation of our transform]. Let SpecP = (SpecP.
Prove,SpecP.Verify) be a spec-prot with challenges of length k(·) and commit-
ments of length c(·) for a (m(·), q)-SOWGHF f . Note that according to our
formulation, SpecP is induced by f , k(·), m(·) and q.

Let (polyinp(·), polyout(·),NIZK[3HVZK, c(·), k(·), q,m(·), δ(·)]) = Trans
(3HVZK, c(·), k(·), q,m(·), δ(·)) be the NIZKPoK system resulting from the trans-
form of Construction 1. Let H(·) be any function with domain {0, 1}� and co-
domain {0, 1}m for some integer m > 0.

We denote by Trans
H(·),m
main (3HVZK, c(·), k(·), q,m(·), δ(·)) be the NIZKPoK

system resulting from the transform of Construction 1 changed as follows. (In
the following we assume for simplicity that polyout(λ) divides m. It is straight-
forward to remove the constraint.) When the prover (resp. verifier) needs to
access the oracle RO(·) on an input y ∈ {0, 1}polyinp(λ), the function H(·) is
invoked on inputs H(11||0||y), . . . ,H(1polyout(λ)/m||0||y) to get respective outputs
e1, . . . , epolyout(λ)/m and the concatenation of the ei’s as the oracle’s answer is
returned to the prover (resp. verifier).

With a slight abuse of notation, we call the output of TransH(·),m the instantia-
tion of the proof system with function H(·).

References

[AABN02] Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identifica-
tion to signatures via the Fiat-Shamir transform: minimizing assumptions
for security and forward-security. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 418–433. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-46035-7 28

[AABN08] Abdalla, M., An, J.H., Bellare, M., Namprempre, C.: From identification
to signatures via the Fiat-Shamir transform: necessary and sufficient con-
ditions for security and forward-security. IEEE Trans. Inf. Theory 54(8),
3631–3646 (2008)

[ABB+10] Almeida, J.B., Bangerter, E., Barbosa, M., Krenn, S., Sadeghi, A.-R.,
Schneider, T.: A certifying compiler for zero-knowledge proofs of knowl-
edge based on Σ-protocols. In: Gritzalis, D., Preneel, B., Theoharidou, M.
(eds.) ESORICS 2010. LNCS, vol. 6345, pp. 151–167. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15497-3 10

[AF07] Abe, M., Fehr, S.: Perfect NIZK with adaptive soundness. In: Vadhan,
S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 118–136. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-70936-7 7

[AMS+09] Armknecht, F., Maes, R., Sadeghi, A.-R., Sunar, B., Tuyls, P.: Mem-
ory leakage-resilient encryption based on physically unclonable functions.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 685–702.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
7 40

[Bar01] Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd
Annual Symposium on Foundations of Computer Science, pp. 106–115.
IEEE Computer Society Press, October 2001

https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/3-540-46035-7_28
https://doi.org/10.1007/978-3-642-15497-3_10
https://doi.org/10.1007/978-3-540-70936-7_7
https://doi.org/10.1007/978-3-642-10366-7_40
https://doi.org/10.1007/978-3-642-10366-7_40

136 V. Iovino and I. Visconti

[BCNP04] Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable
protocols with relaxed set-up assumptions. In: 45th Annual Symposium on
Foundations of Computer Science, pp. 186–195. IEEE Computer Society
Press, October 2004

[BDSG+13] Bitansky, N., et al.: Why “Fiat-Shamir for proofs” lacks a proof. In: Sahai,
A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 182–201. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36594-2 11

[BFM88] Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its
applications (extended abstract). In: 20th Annual ACM Symposium on
Theory of Computing, pp. 103–112. ACM Press, May 1988

[BFS16] Bellare, M., Fuchsbauer, G., Scafuro, A.: NIZKs with an untrusted CRS:
security in the face of parameter subversion. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 777–804. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6 26

[BFSK11] Brzuska, C., Fischlin, M., Schröder, H., Katzenbeisser, S.: Physically
uncloneable functions in the universal composition framework. In:
Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 51–70. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9 4

[BFW15] Bernhard, D., Fischlin, M., Warinschi, B.: Adaptive proofs of knowledge
in the random oracle model. In: Katz, J. (ed.) PKC 2015. LNCS, vol.
9020, pp. 629–649. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46447-2 28

[BG93] Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 28

[BLV03] Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box
zero knowledge. In: 44th Annual Symposium on Foundations of Computer
Science, pp. 384–393. IEEE Computer Society Press, October 2003

[BM88] Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system,
and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–
276 (1988)

[BN06] Bellare, M., Neven, G.: Multi-signatures in the plain public-key model
and a general forking lemma. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) 13th ACM Conference on Computer and Communi-
cations Security, CCS 2006 pp. 390–399. ACM Press, October/November
2006

[BPW12] Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: pit-
falls of the Fiat-Shamir heuristic and applications to helios. In: Wang,
X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 626–643.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-
4 38

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for
designing efficient protocols. In: Ashby, V. (ed.) 1st ACM Conference on
Computer and Communications Security, CCS 1993, pp. 62–73. ACM
Press, November 1993

[BR08] Bellare, M., Ristov, T.: Hash functions from sigma protocols and improve-
ments to VSH. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350,
pp. 125–142. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89255-7 9

https://doi.org/10.1007/978-3-642-36594-2_11
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-642-22792-9_4
https://doi.org/10.1007/978-3-662-46447-2_28
https://doi.org/10.1007/978-3-662-46447-2_28
https://doi.org/10.1007/3-540-48071-4_28
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.1007/978-3-540-89255-7_9
https://doi.org/10.1007/978-3-540-89255-7_9

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 137

[BY96] Bellare, M., Yung, M.: Certifying permutations: noninteractive zero-
knowledge based on any trapdoor permutation. J. Cryptol. 9(3), 149–166
(1996)

[CDS94] Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge
and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48658-5 19

[CG15] Chaidos, P., Groth, J.: Making sigma-protocols non-interactive without
random oracles. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp.
650–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
46447-2 29

[CGH98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology,
revisited (preliminary version). In: 30th Annual ACM Symposium on The-
ory of Computing, pp. 209–218. ACM Press, May 1998

[CP93] Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell,
E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 89–105. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4 7

[CPS+16] Ciampi, M., Persiano, G., Scafuro, A., Siniscalchi, L., Visconti, I.:
Online/offline OR composition of sigma protocols. In: Fischlin, M., Coron,
J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 63–92. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5 3

[CPSV16] Ciampi, M., Persiano, G., Siniscalchi, L., Visconti, I.: A transform for
NIZK almost as efficient and general as the Fiat-Shamir transform without
programmable random oracles. In: Kushilevitz, E., Malkin, T. (eds.) TCC
2016. LNCS, vol. 9563, pp. 83–111. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-662-49099-0 4

[CS98] Cramer, R., Shoup, V.: A practical public key cryptosystem provably
secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055717

[CS03] Cramer, R., Shoup, V.: Design and analysis of practical public-key encryp-
tion schemes secure against adaptive chosen ciphertext attack. SIAM J.
Comput. 33(1), 167–226 (2003)

[Dam10] Damg̊ard, I.: On Σ-protocol (2010). http://www.cs.au.dk/∼ivan/Sigma.
pdf

[DFN06] Damg̊ard, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from
homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006). https://doi.org/
10.1007/11681878 3

[DG03] Damg̊ard, I., Groth, J.: Non-interactive and reusable non-malleable com-
mitment schemes. In: 35th Annual ACM Symposium on Theory of Com-
puting, pp. 426–437. ACM Press, June 2003

[DN00] Dwork, C., Naor, M.: Zaps and their applications. In: 41st Annual Sympo-
sium on Foundations of Computer Science, pp. 283–293. IEEE Computer
Society Press, November 2000

[DNRS99] Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions.
In: 40th Annual Symposium on Foundations of Computer Science, pp.
523–534. IEEE Computer Society Press, October 1999

[DORS08] Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: How
to generate strong keys from biometrics and other noisy data. SIAM J.
Comput. 38(1), 97–139 (2008)

https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/978-3-662-46447-2_29
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-662-49896-5_3
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/978-3-662-49099-0_4
https://doi.org/10.1007/BFb0055717
http://www.cs.au.dk/~ivan/Sigma.pdf
http://www.cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/11681878_3
https://doi.org/10.1007/11681878_3

138 V. Iovino and I. Visconti

[DRV12] Dodis, Y., Ristenpart, T., Vadhan, S.: Randomness condensers for effi-
ciently samplable, seed-dependent sources. In: Cramer, R. (ed.) TCC
2012. LNCS, vol. 7194, pp. 618–635. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28914-9 35

[Fis05] Fischlin, M.: Communication-efficient non-interactive proofs of knowledge
with online extractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 152–168. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 10

[FKI06] Furukawa, J., Kurosawa, K., Imai, H.: An efficient compiler from Σ-
protocol to 2-move deniable zero-knowledge. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
46–57. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 5

[FKMV12] Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-
malleability of the Fiat-Shamir transform. In: Galbraith, S., Nandi, M.
(eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7 5

[FLS90] Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowl-
edge proofs based on a single random string (extended abstract). In: 31st
Annual Symposium on Foundations of Computer Science, pp. 308–317.
IEEE Computer Society Press, October 1990

[FS87] Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identi-
fication and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986.
LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.
org/10.1007/3-540-47721-7 12

[GCvD02] Gassend, B., Clarke, D.E., van Dijk, M., Devadas, S.: Silicon physical ran-
dom functions. In: Atluri, V. (ed.) 9th ACM Conference on Computer and
Communications Security, CCS 2002, pp. 148–160. ACM Press, November
2002

[GGH+13] Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Can-
didate indistinguishability obfuscation and functional encryption for all
circuits. In: 54th Annual Symposium on Foundations of Computer Sci-
ence, pp. 40–49. IEEE Computer Society Press, October 2013

[GIS+10] Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryp-
tography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-11799-2 19

[GK03] Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir
paradigm. In: 44th Annual Symposium on Foundations of Computer Sci-
ence, pp. 102–115. IEEE Computer Society Press, October 2003

[GKR08] Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: One-time programs. In:
Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 39–56. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5 3

[GM84] Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci.
28(2), 270–299 (1984)

[GMO16] Giacomelli, I., Madsen, J., Orlandi, C.: Zkboo: faster zero-knowledge for
boolean circuits. In: 25th USENIX Security Symposium, USENIX Secu-
rity 16, Austin, TX, USA, 10–12 August 2016, pp. 1069–1083 (2016)

[GMR89] Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of inter-
active proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

[GMY06] Garay, J.A., MacKenzie, P.D., Yang, K.: Strengthening zero-knowledge
protocols using signatures. J. Cryptol. 19(2), 169–209 (2006)

https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/978-3-642-28914-9_35
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11535218_10
https://doi.org/10.1007/11787006_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-642-11799-2_19
https://doi.org/10.1007/978-3-540-85174-5_3

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 139

[Gol01] Goldreich, O.: Foundations of Cryptography: Basic Techniques, vol. 1.
Cambridge University Press, Cambridge (2001)

[GOS06a] Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new tech-
niques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175 6

[GOS06b] Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowl-
edge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol.
4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/
11761679 21

[GOSV14] Goyal, V., Ostrovsky, R., Scafuro, A., Visconti, I.: Black-box non-black-
box zero knowledge. In: Shmoys, D.B. (ed.) 46th Annual ACM Symposium
on Theory of Computing, pp. 515–524. ACM Press, May/June 2014

[GS08] Groth, J., Sahai, A.: Efficient Non-interactive proof systems for bilinear
groups. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp.
415–432. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
78967-3 24

[HL08] Hazay, C., Lindell, Y.: Constructions of truly practical secure protocols
using standardsmartcards. In: Ning, P., Syverson, P.F., Jha, S. (eds.) 15th
ACM Conference on Computer and Communications Security, CCS 2008,
pp. 491–500. ACM Press, October 2008

[Kat07] Katz, J.: Universally composable multi-party computation using tamper-
proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515,
pp. 115–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-72540-4 7

[KRR16] Kalai, Y.T., Rothblum, G.N., Rothblum, R.D.: From obfuscation to the
security of Fiat-Shamir for proofs. IACR Cryptology ePrint Archive
2016:303 (2016)

[Lin06] Lindell, Y.: A simpler construction of CCA2-secure public-key encryption
under general assumptions. J. Cryptol. 19(3), 359–377 (2006)

[Lin15] Lindell, Y.: An efficient transform from sigma protocols to NIZK with
a CRS and Non-programmable random oracle. In: Dodis, Y., Nielsen,
J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 93–109. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46494-6 5

[Mau15] Maurer, U.: Zero-knowledge proofs of knowledge for group homomor-
phisms. Des. Codes Cryptogr. 77(2–3), 663–676 (2015)

[MP03] Micciancio, D., Petrank, E.: Simulatable commitments and efficient con-
current zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 140–159. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-39200-9 9

[MV16] Mittelbach, A., Venturi, D.: Fiat–Shamir for highly sound protocols is
instantiable. In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol.
9841, pp. 198–215. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44618-9 11

[NY90] Naor, M., Yung, M.: Public-key cryptosystems provably secure against
chosen ciphertext attacks. In: 22nd Annual ACM Symposium on Theory
of Computing, pp. 427–437. ACM Press, May 1990

[OPV10] Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transforma-
tions for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.)
TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11799-2 32

https://doi.org/10.1007/11818175_6
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/11761679_21
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-540-72540-4_7
https://doi.org/10.1007/978-3-662-46494-6_5
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/3-540-39200-9_9
https://doi.org/10.1007/978-3-319-44618-9_11
https://doi.org/10.1007/978-3-319-44618-9_11
https://doi.org/10.1007/978-3-642-11799-2_32

140 V. Iovino and I. Visconti

[OSVW13] Ostrovsky, R., Scafuro, A., Visconti, I., Wadia, A.: Universally composable
secure computation with (Malicious) physically uncloneable functions. In:
Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881,
pp. 702–718. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38348-9 41

[Pas03] Pass, R.: On deniability in the common reference string and random
oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp.
316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
45146-4 19

[Pas13] Pass, R.: Unprovable security of perfect NIZK and non-interactive non-
malleable commitments. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785,
pp. 334–354. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36594-2 19

[PRTG02] Pappu, R., Recht, B., Taylor, J., Gershenfeld, N.: Physical one-way func-
tions. Science 297(5589), 2026–2030 (2002)

[PS00] Pointcheval, D., Stern, J.: Security arguments for digital signatures and
blind signatures. J. Cryptol. 13(3), 361–396 (2000)

[Ps05] Pass, R., Shelat, A.: Unconditional characterizations of non-interactive
zero-knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol.
3621, pp. 118–134. Springer, Heidelberg (2005). https://doi.org/10.1007/
11535218 8

[PsV06] Pass, R., Shelat, A., Vaikuntanathan, V.: Construction of a non-malleable
encryption scheme from any semantically secure one. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 271–289. Springer, Heidelberg
(2006). https://doi.org/10.1007/11818175 16

[RS92] Rackoff, C., Simon, D.R.: Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO
1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992). https://
doi.org/10.1007/3-540-46766-1 35

[RSA78] Rivest, R.L., Shamir, A., Adleman, L.M.: A method for obtaining digital
signature and public-key cryptosystems. Commun. Assoc. Comput. Mach.
21(2), 120–126 (1978)

[RvD13] Rührmair, U., van Dijk, M.: PUFs in security protocols: Attack mod-
els and security evaluations. In: 2013 IEEE Symposium on Security and
Privacy, pp. 286–300. IEEE Computer Society Press, May 2013

[Sah99] Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In: 40th Annual Symposium on Foundations of
Computer Science, pp. 543–553. IEEE Computer Society Press, October
1999

[SG02] Shoup, V., Gennaro, R.: Securing threshold cryptosystems against chosen
ciphertext attack. J. Cryptol. 15(2), 75–96 (2002)

[TSS+05] Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A.H.M., Ophey, W.:
Information-theoretic security analysis of physical uncloneable functions.
In: Patrick, A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 141–155.
Springer, Heidelberg (2005). https://doi.org/10.1007/11507840 15

[VV09] Ventre, C., Visconti, I.: Co-sound zero-knowledge with public keys. In:
Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 287–304.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-
2 18

https://doi.org/10.1007/978-3-642-38348-9_41
https://doi.org/10.1007/978-3-642-38348-9_41
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-540-45146-4_19
https://doi.org/10.1007/978-3-642-36594-2_19
https://doi.org/10.1007/978-3-642-36594-2_19
https://doi.org/10.1007/11535218_8
https://doi.org/10.1007/11535218_8
https://doi.org/10.1007/11818175_16
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/3-540-46766-1_35
https://doi.org/10.1007/11507840_15
https://doi.org/10.1007/978-3-642-02384-2_18
https://doi.org/10.1007/978-3-642-02384-2_18

Non-interactive Zero Knowledge Proofs in the Random Oracle Model 141

[YZ06] Yung, M., Zhao, Y.: Interactive zero-knowledge with restricted random
oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp.
21–40. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878 2

[YZ07] Yung, M., Zhao, Y.: Generic and practical resettable zero-knowledge in
the bare public-key model. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS,
vol. 4515, pp. 129–147. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-72540-4 8

https://doi.org/10.1007/11681878_2
https://doi.org/10.1007/978-3-540-72540-4_8
https://doi.org/10.1007/978-3-540-72540-4_8

From Quadratic Functions
to Polynomials: Generic Functional

Encryption from Standard Assumptions

Linru Zhang1, Yuechen Chen1, Jun Zhang2, Meiqi He1, and Siu-Ming Yiu1(B)

1 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong SAR, China

{lrzhang,ycchen,mqhe,smyiu}@cs.hku.hk
2 Educational Technology Department, Shenzhen University,

Shenzhen, Guangdong, China
zhjun@connect.hku.hk

Abstract. The “all-or-nothing” notion of traditional public-key encryp-
tions is found to be insufficient for many emerging applications in which
users are only allowed to obtain a functional value of the ciphertext with-
out any other information about the ciphertext. Functional encryption
was proposed to address this issue. However, existing functional encryp-
tion schemes for generic circuits either have bounded collusions or rely
on not well studied assumptions. Recently, Abdalla et al. started a new
line of work that focuses on specific functions and well-known standard
assumptions. Several efficient schemes were proposed for inner-product
and quadratic functions. There are still a lot of unsolved problems in
this direction, in particular, whether a generic FE scheme can be con-
structed for quadratic functions and even higher degree polynomials. In
this paper, we provide affirmative answers to these questions. First, we
show an IND-secure generic functional encryption scheme against adap-
tive adversary for quadratic functions from standard assumptions. Sec-
ond, we show how to build a functional encryption scheme for cubic func-
tions (the first in the literature in public-key setting) from a functional
encryption scheme for quadratic functions. Finally, we give a generalized
method that transforms an IND-secure functional encryption scheme for
degree-m polynomials to an IND-secure functional encryption scheme for
degree-(m + 1) polynomials.

1 Introduction

Background. Traditional public-key encryption (PKE) allows a user who owns
a secret key sk to decrypt a ciphertext CT encrypted with a public key pk. The
decryption result is the plaintext of CT if sk matches pk, or nothing otherwise.
For many emerging applications, for example, a owner may store her encrypted
data in cloud and allow different users to query different functional values of the
plaintext without revealing the plaintext, this all-or-nothing concept is insuf-
ficient. Functional encryption (FE) was proposed to address this issue, which
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 142–167, 2019.
https://doi.org/10.1007/978-3-030-16458-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_10

Generic Functional Encryption for Polynomials 143

enables users to obtain a functional value of a plaintext without any other infor-
mation about the plaintext. In general, consider a functional encryption scheme
for a functionality F (k, x), where k ∈ K (the key space) and x ∈ X (the plain-
text space). The authority with the master key can generate secret keys skk for
values k. Given a ciphertext of x, the key holder of skk can only learn F (k, x)
and nothing else except possibly the length of x.

Before FE was formally defined in [11,26], there were a lot of schemes pro-
posed to overcome the “all-or-nothing” barrier of the traditional public-key
encryption. These schemes, including identity-based encryption (IBE) [8,9,28],
attribute-based encryption (ABE) [27], searchable encryption [1], and predicate
encryption [12,23], are considered as special cases of FE1.

While there are many exciting results in these special cases, designing FE
schemes seems to be more difficult. Existing FE schemes that work for arbitrary
circuits either have bounded collusions [21,22], or have to rely on powerful, but
impractical and not well understood assumptions (indistinguishable obfuscation
(IO) and its variants, or polynomial hardness of simple assumptions on multi-
linear maps) [13,19,20,31]. Attacks were identified for some constructions that
are based on IO and multi-linear map [5,14,15,17].

A Remark on Security Definition. Unlike traditional PKE, [26] showed
that simulation-based security (SIM-security) is not always achievable for FE.
Indistinguishability-based security (IND-security) is widely used in FE research.
We also focus on IND-secure FE schemes. Roughly speaking, IND-security states
that the adversary who has the secret keys for functions f1, . . . , fn cannot dis-
tinguish which of the challenge messages m0 or m1 has been encrypted, under
the condition that fi(m0) = fi(m1), i ∈ [1..n].

Functional Encryption from Standard Assumptions. Recently, instead
of focusing on generic functions, researchers started to design efficient schemes
for specific functions using well studied standard assumptions. Abdalla et al. [2]
started this line of work by proposing an IND-secure (against selective adversary)
functional encryption for inner product (IPFE) based on the decisional Diffie-
Hellman assumption. Precisely, given an encrypted vector x in the message space
X and a key sky based on vector y in the key space K, the decryption algorithm
will output the inner product 〈x,y〉 without revealing any other information
about x except the length of it. [4] improved the framework of [2] to achieve
IND-security against adaptive adversary, also from standard assumptions. A
generic (i.e., one that can instantiate from any PKE scheme) construction of
IPFE is given in [3]. The scheme is IND-secure against adaptive adversary.

1 Some classify FE schemes into public index schemes and private index schemes
based on the definition of predicate encryption, in which, the message x consists
of two parts (I, m), where I is an index (e.g. a set of attributes) and m is the
actual message. If I is publicly revealed by the ciphertext and only m is hidden,
the corresponding scheme is referred as public index FE, which is commonly known
as attributed-based encryption. The scheme is called private index scheme if both I
and m are hidden.

144 L. Zhang et al.

The next step from linear functionality (inner product) is to consider
quadratic functions. Note that if one does not care the size of a ciphertext, it is
easy to have a generic FE scheme for quadratic function using an inner product
scheme as illustrated by the following example. Let f(x) = 2x1

2 + 3x2
2. We can

encrypt every pair of xi, xj to obtain x = (x1
2, x1x2, x2x1, x2

2). With the vector
y = (2, 0, 0, 3), we can easily compute f as the inner product 〈x,y〉. However,
the size of the ciphertext will be O(n2). Earlier this year, two FE schemes with
linear size of ciphertext were proposed in [6]. One is IND-secure against selective
adversary based on standard assumptions and the other is IND-secure against
adaptive adversary in the generic group model. However, both schemes are not
generic and cannot instantiate from any PKE scheme. The question whether it
is possible to design a generic FE scheme for quadratic functions with linear size
ciphertext is still open. And the same question applies to higher finite-degree
polynomials2. Besides theoretical interest, there are real applications for func-
tion encryption for polynomials. For example, cubic functions can be used to
calculate volumes; the distance d between two points x,y in Lp space is defined
as a p-degree polynomial: dp = |x1 − y1|p + |x2 − y2|p + . . . + |xn − yn|p with
applications in data mining for high-dimensional data points; and in statistics,
measures of central tendency and statistical dispersion, such as mean, median,
and standard deviation, are also defined in terms of Lp metrics.

1.1 Our Contributions

In this paper, we provide affirmative answers to the above questions. We focus
on the polynomial functionality over Zp. We list our contributions as follows.

(1) We propose the first generic FE scheme for quadratic functions LQFE =
(Setup,Encrypt,KeyGen,Decrypt) with linear-size ciphertexts in the
public-key setting. LQFE is proved to be IND-secure against adaptive
adversary. Generic functional encryption (proposed in [3]) means that such
FE scheme can be instantiated from any PKE scheme with some properties.

(2) We derive a generalized method that transforms an IND-secure degree-m
polynomial FE scheme to an IND-secure against selective adversary degree-
(m + 1) polynomial FE scheme. We illustrate our method based on our
quadratic FE scheme to derive the first FE scheme for cubic functions,
CFE = (Setup,Encrypt,KeyGen,Decrypt), in the public-key setting hav-
ing linear size ciphertext under standard assumptions. Actually, any FE
scheme for quadratic functions can be used to build a FE scheme for cubic
functions in our construction. For example, [6] can be used in CFE, but
then the resulting cubic FE scheme is not generic.

2 Very recently (in June, 2018), [16] provides a polynomial functional encryption
scheme with linear ciphertext size. Their scheme is in private-key setting while our
scheme is in public-key setting.

Generic Functional Encryption for Polynomials 145

1.2 Overview of Our Techniques

In this section, we highlight some of the core ideas underlying our schemes. The
details of our schemes will be given in later sections.

Our FE Scheme for Quadratic Functions over Zp. Our construction is a generic
construction, i.e., any public-key encryption scheme that has some structural
and homomorphic properties can be used to instantiate it. These properties are
similar to the requirements in [3]. Our scheme is efficient in communication
and storage size: public keys and ciphertexts are both linear in the size of the
encrypted vectors.

To simplify the notation, we may omit the security parameter k in the expres-
sion, i.e., instead of writing f(k, x), we may just write f(x) if it is clear from
its context. A quadratic function f(x) can be represented3 as f(x) = xT Fx,
where F ∈ Z

(n+1)×(n+1)
p is a matrix with elements fi,j , x is a column vector

(x0, . . . , xn) ∈ Zn+1
p and x0 = 1. For our previous example, f(x) = 2x1

2 + 3x2
2,

we can have a column vector x = (1, x1, x2) and F =

⎛
⎝

0 0 0
0 2 0
0 0 3

⎞
⎠. The input to

our scheme is a ciphertext of a vector x, and decryption allows one to obtain
xT Fx with the given matrix F .

Our construction works over symmetric bilinear groups G1, G2 and GT and
two bilinear maps e1(g1, g1) = gT : G1 × G1 → GT , e2(g2, g2) = gT : G2 × G2 →
GT , where g1, g2 and gT are generators of G1, G2 and GT . The order of G1, G2

and GT is a prime p. The prime order ensures the existence of g2 (g1 can be
any generator of G1). The initial idea of the construction is to encrypt each
xi, i ∈ {0, 1, . . . , n} (denoted by [n] in the rest of the paper) by using the selected
PKE scheme ε under certain public key PKi in group G1. Then, we can get
ε.Enc(fi,jxixj) with public key PK ′

ij in group GT which depends on PKi and
PKj by computing e(ctx,i, ctx,j)fi,j , where ctx,i denotes the encrypted xi. After
summing them up and decrypting, we can obtain f(x) =

∑n
i,j=0 fi,jxixj =

xT Fx.
However, the result of e(ctx,i, ctx,j)fi,j includes not only ε.Enc(fi,jxixj) in

GT , but also some noisy terms in GT . The challenge is to carefully design the
secret keys and ciphertexts to eliminate these noisy terms while guaranteeing
the security.

Notice that the bilinear maps e1(·, ·) and e2(·, ·) are public. If the adversary
takes the ciphertexts generated by g1 (or g2) as input of e1(·, ·) (or e2(·, ·)), it
can get new ciphertexts in GT which are generated by gT (denote as ct∗). If
some parts of ciphertexts in the encryption algorithm are also generated by gT ,
then combining such parts of ciphertexts and ct∗ would leak information. To
avoid this attack, we use the trick that when we need to encrypt something in
group GT , instead of using gT based public key, we use the public key that is

3 Note that [6] uses a slightly more general representation with two vectors: f(x,y) =
xT Fy.

146 L. Zhang et al.

based on gq
T and q is kept secret. And when encrypting vectors in group G1 (or

G2), we still use g1 (or g2) based public key. Therefore, without knowing q, the
adversary cannot convert these ciphertexts in G1 and G2 to the new ciphertexts
which are generated by gq

T based public key. And the bilinear maps e1(·, ·) and
e2(·, ·) cannot help the adversary any more.

The details of this construction can be found in Sect. 3.

Our FE Scheme for Cubic Functions over Zp and Its Generalization. Our cubic
FE scheme is based on any FE scheme for quadratic functions. When building
from our generic scheme for quadratic functions, the cubic FE scheme is also
generic. The scheme is also efficient: public keys and ciphertexts are both linear
in the size of the encrypted vectors.

Similarly, a cubic functionality can be represented as f(x) =

∑
i,j,k∈[n] fi,j,kxixjxk = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠, where A0, . . . , An ∈ Z

(n+1)×(n+1)
p ,

x = (x0, . . . , xn) ∈ Zn+1
p and x0 = 1. After encrypting a vector x, the decryption

of our scheme is expected to output
∑

i,j,k∈[n] fi,j,kxixjxk =
∑

i∈[n](xix
T Aix)

with the given coefficients {fi,j,k}i,j,k∈[n]. Note that there is a requirement for
this representation to work and this requirement is easy to satisfy, see Sect. 4.1
for more details.

The initial idea of the construction is to divide the ciphertexts into two parts.
The first part will look like (ri, t

−1
i xi)W−1 and the second part will look like

W (ai, QFE.Enc(xi))T , where W =
(

w11 w12

w21 w22

)
∈ Z2×2

p , w12 = u2
1, w22 = u2

2 is

an invertible matrix and r,a are random vectors in Zn+1
p . The second part

can be further divided into two parts, one is w11ai, w21ai, and the other is
QFE.Enc(u1x), QFE.Enc(u2x). For decryption, we call QFE.Dec(sktiAi

, ct)
to get w12tix

T Aix and w22tix
T Aix. The second part becomes W (ai, tix

T Aix).
We can multiply both parts of ciphertexts and get airi + xix

T Aix. At last, we
sum these up and minus

∑n
i=0 airi to get the final value f(x). If we have a FE

scheme for degree-m polynomial and use degree-m polynomial f0(x), . . . , fn(x)
instead of matrices in this construction, then we can get a new degree-(m + 1)
polynomial FE scheme, i.e., this construction can be generalized.

The details of this construction can be found in Sects. 4 and 5.

2 Preliminaries

In this section, we recall some basic definitions that we will use in the remaining
sections.

2.1 Bilinear Map

Here we review some facts related to bilinear groups with efficiently computable
bilinear maps in [30].

Generic Functional Encryption for Polynomials 147

Let G and GT be two multiplicative cyclic groups of prime order p. Let g be
a generator of G and e be a bilinear map, e : G × G → GT . The bilinear map e
has the following properties:

1. Bilinearity: for all u, v ∈ G and a, b ∈ Zp, we have e(ua, vb) = e(u, v)ab.
2. Non-degeneracy: e(g, g) �= 1.

We say that G is a bilinear group if the group operation in G and the bilinear
map e : G × G → GT are both efficiently computable. Notice that the map e is
symmetric since e(ga, gb) = e(g, g)ab = e(gb, ga).

2.2 Functional Encryption

Following Boneh et al. [11], we first define the notion of functionality and then
the functional encryption scheme FE for functionality F .

Definition 1 (Functionality). A functionality F defined over (K × M) is a
function F : K × M → Σ ∩ {⊥}, where K is the key space, M is the message
space and Σ is the output space and ⊥ is a special string not contained in Σ.
Notice that the functionality is undefined when the key is not in the key space or
the message is not in the message space.

Definition 2 (Functional encryption scheme). For a functionality F , a
functional encryption scheme FE for F is a tuple FE = (Setup,KeyGen,
Encrypt,Decrypt) of 4 algorithms:

1. Setup(1λ) outputs public key and master secret keys (mpk,msk) for security
parameter λ.

2. KeyGen(msk, k), on input a master secret key msk and key k ∈ K outputs
secret key skk.

3. Encrypt(mpk,m), on input public key mpk and message m ∈ M outputs
ciphertext Ct.

4. Decrypt(mpk,Ct, skk) outputs y ∈ Σ × {⊥}

The correctness requirement is ensured: for all (mpk,msk) ← Setup(1λ), all
k ∈ K and m ∈ M , for skk ← KeyGen(msk, k) and Ct ← Encrypt(mpk,m),
we have Decrypt(mpk,Ct, skk) = F (k,m) whenever F (k,m) �=⊥, except with
negligible probability.

Now, we give the IND-FE-CPA and s-IND-FE-CPA security for functional
encryption schemes.

Definition 3 (Indistinguishable-based security). For a functional encryp-
tion scheme FE = (Setup,KeyGen,Encrypt,Decrypt) for functionality F ,
defined over (K,M), we define security against chosen-plaintext attacks (IND-
FE-CPA security) via the security game depicted on Table 1. Firstly, the chal-
lenger performs proc Initialize and returns mpk to the adversary. The adver-
sary can submit function queries f to the challenger, and the challenger returns
the output of proc KeyGen to the adversary. The adversary can also submit

148 L. Zhang et al.

two message m∗
0,m

∗
1 to the challenger, and in response, the challenger returns

the output of proc LR to the adversary. Finally, the adversary outputs b′ and
the challenger runs proc Finalize to test whether b = b′.

We say that FE is secure against chosen-plaintext attacks if

|Pr[Expind−fe−cpa−0
FE,λ] − Pr[Expind−fe−cpa−1

FE,λ]| = negl(λ).

We also define selective security against chosen-plaintext attacks (s-IND-FE-
CPA security) when the challenge message m∗

0 and m∗
1 have to be chosen before

the start of the game (see Table 2).

Table 1. Game Expind−cpa−b
FE,λ define IND-FE-CPA security of FE

proc Initialize(λ) proc LR(m∗
0, m

∗
1)

(mpk, msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk, m∗
b)

F ← ∅ Return Ct∗
Return mpk

proc KeyGen(k) proc Finalize(b′)
F ← F ∪ {k} If ∃k ∈ F s.t. f(k, m∗

0) �= f(k, m∗
1)

skk ← KeyGen(msk, k) then return false
Return skk Return (b’=b)

Table 2. Game Exps−ind−cpa−b
FE,λ define s-IND-FE-CPA security of FE

proc Initialize(λ, m∗
0, m

∗
1) proc LR()

(mpk, msk) ←R Setup(1λ) Ct∗ ←R Encrypt(mpk, m∗
b)

F ← ∅ Return Ct∗
Return mpk

proc KeyGen(k) proc Finalize(b′)
F ← F ∪ {k} If ∃k ∈ F s.t. f(k, m∗

0) �= f(k, m∗
1)

skk ← KeyGen(msk, k) then return false
Return skk Return (b’=b)

3 A Generic Functional Encryption Scheme for Quadratic
Functions

Now, we present a generic functional encryption scheme for any quadratic func-
tionality over Zp LQFE = (Setup,KeyGen,Encrypt,Decrypt) based on any
public-key encryption scheme ε = (Setup,Encrypt,Decrypt) that has the some
structural and homomorphic properties. These properties are similar to the
requirement in [3] and are shown in Supporting Material A. We prove that
LQFE is IND-secure against adaptive adversary. Before showing the construc-
tion, we give the definitions of quadratic functionality over Zp.

Generic Functional Encryption for Polynomials 149

Quadratic Functionality over Zp. For any quadratic function,

f(m) = t0 +
n∑

i=1

timi +
n∑

i,j=1

ti,jmimj ,mi ∈ Zn
p ,

it can be transformed as f(x) = xT Fx by setting x = (1,m) ∈ Zn+1
p and the

upper triangular matrix F = (fi,j) ∈ Z
(n+1)×(n+1)
p where: f1,1 = t0, f1,i = ti−1

for all i ∈ [2, n+1], fi,j = 0 for all i > j, and fi,j = ti−1,j−1 for all i ∈ [2, n+1] and
i ≤ j. So we define the quadratic functionality over Zp that F(F,x) = xT Fx.

3.1 Our FE Scheme for Quadratic Functions over Zp

Before describing the scheme in full details, we give an informal description of
our key ideas. We break the process that get ε.Enc(xT Fx) (which can be used
to get the final result xT Fx by calling ε.Decrypt) into following parts:

Firstly, we get ε.Enc(fi,jxixj) by computing e1(ctx,i, ctx,j), where e1(·, ·)
is a symmetric bilinear map. Secondly, we get ε.Enc(

∑
i,j fi,jxixj) by using

the homomorphic properties of ε to sum them up. Then, we eliminate these
noisy items by designing secret keys and other ciphertexts. Finally, we set a
secret number q to prevent the new attack that the adversary can convert some
ciphertexts from one group to another group with the help of bilinear maps
e1(·, ·) and e2(·, ·).

Now, here comes the formal description of our construction. Let’s consider a
PKE scheme ε = (Setup,Encrypt,Decrypt) with the properties defined above.
We define our functional encryption scheme for quadratic functions over Zp

LQFE = (Setup,KeyGen,Encrypt,Decrypt) as follows.

Setup(1λ) : G1, G2, GT ← ε.Setup(1λ), the order of G1, G2, GT is a prime
p. e1(g1, g1) = gT ← G1λ

is a bilinear map G1 × G1 → GT , where g1, gT

are generators of G1, GT . Similarly, e2(g2, g2) = gT ← G1λ

is a bilinear map
G2 × G2 → GT , where g2, gT are generators of G2, GT . Call ε’s key genera-
tion algorithm to generate n + 1 independent secret keys pairs s1, ..., sn, sk
sharing the same public parameters params and t = (t1, ...tn) ∈ Zn

p .
Let ski = si + tisk, i ∈ [n]. Choose q ←R Z∗

p , then the algorithm sets
g′

T = gq
T , PK = PKGen(g1, qsk), PKi = PKGen(g1, qski). Return mpk :=

(params, PK, {PKi}i∈[n], g1, g2, gT , g′
T , e(·, ·)) and msk := (sk, s, t, q).

KeyGen(msk, {ui,j}i,j∈[n]) : on input master secret key msk and the coef-
ficients of quadratic function f(x), the algorithm first outputs a random
matrix F ∈ Z

(n+1)×(n+1)
p , where fi,j + fj,i = ui.j . Then, the algorithm com-

putes skF,1 = q2
∑

i,j∈[n] fi,j(si + tisk)(sj + tjsk). For i ∈ [n], computes

skF,2,i = g
q

∑
j∈[n] fi,jskj

2 and ŝkF,2,i = g
q

∑
j∈[n] fi,jskj

1 . For j ∈ [n], computes

skF,3,j = g
q

∑
i∈[n] fi,jski

2 and ŝkF,3,j = g
q

∑
i∈[n] fi,jski

1 .
Return skF = (skF,1, {skF,2,i, ŝkF,2,i}i∈[n], {skF,3,j , ŝkF,3,j}j∈[n])

150 L. Zhang et al.

Encrypt(x,mpk) : on input master public key mpk and message x =
(x0, ..., xn) ∈ Z

(n+1)
p , chooses shared randomness r and a = (a0, ..., an) in

Z
∗(n+1)
p , and computes ct0 = ε.C(r2, gT), ctx,i = ε.E(pki.xi, r). For i ∈ [n],

sets cta,x,i = ε.E(pk(g2, 1)xi , ai, r) and cta,i = ε.E(pk(g1, 0), ai, r)
Return ctx = (ct0, {ctx,i, cta,i, cta,x,i}i∈[n])

Decrypt(ctx, skF ,mpk): on input master public key mpk, ciphertext ctx =
(ct0, {ctx,i, cta,i, cta,x,i}i∈[n]) and secret key skF for matrix F ∈ Z

(n+1)×(n+1)
p ,

returns the output of

ε.Decrypt(skF,1, ct0,

(
∏

i,j∈[n] e1(ctx,i, ctx,j)fi,j)(
∏

i∈[n] e1(cta,i, ŝkF,2,i))(
∏

j∈[n] e1(cta,j , ŝkF,3,j))

(
∏

i∈[n] e2(cta,x,i, skF,2,i))(
∏

j∈[n] e2(cta,x,j , skF,3,j))
)

Correctness of Our Scheme: We divide the decryption algorithm into the
following parts:

I =
∏

i,j∈[n]

e1(ctx,i, ctx,j)fi,j

=
∏

i,j∈[n]

[ε.E(pk(gT , q2skiskj), xixj , r
2)ε.E(pk(gT , qski)xj ,

0, r)ε.E(pk(gT , qskj)xi , 0, r)]fi,j

= ε.E(pk(gT , q2
∑

i,j∈[n]

(fi,jskiskj)),

∑
i,j∈[n]

fi,jxixj , r
2)ε.E(pk(gT , q

∑
i,j∈[n]

fi,j(xjski + xiskj)), 0, r).

II = (
∏

i∈[n]

e2(cta,x,i, skF,2,i))(
∏

j∈[n]

e2(cta,x,j , skF,3,j))

= ε.E(pk(gT , q
∑

i,j∈[n]

xifi,jskj), q
∑

i,j∈[n]

aifi,jskj , r)ε.E(pk(gT ,

q
∑

i,j∈[n]

xjfi,jski), q
∑

i,j∈[n]

ajfi,jski, r)

= ε.E(pk(gT , q
∑

i,j∈[n]

(xifi,jskj + xjfi.jski)), q
∑

i,j∈[n]

fi,j(aiskj + ajski), r)

III = (
∏

i∈[n]

e1(cta,i, ŝkF,2,i))(
∏

j∈[n]

e1(cta,j , ŝkF,3,j))

=
∏

i∈[n]

ε.E(pk(gT , 0), aiq
∑
j∈[n]

fi,jskj , r)
∏

j∈[n]

ε.E(pk(gT , 0), ajq
∑
i∈[n]

fi,jski, r)

= ε.E(pk(gT , 0), q
∑

i,j∈[n]

(aifi,jskj + ajfi,jski), r)

Generic Functional Encryption for Polynomials 151

So, we can get

LQFE.Decrypt(ctx, skF ,mpk) = ε.Decrypt(skF,1, ct0,
I · III
II

)

= ε.Decrypt(skF,1, ct0, ε.E(pk(gT , skF,1),xT Fx, r2))

= xT Fx

Theorem 1. If the underlying PKE ε has message space, ciphertext space and
secret key space of the same order p, if it is IND-CPA and satisfies the properties
defined in Sect. 3.1, then LQFE is IND-FE-CP against adaptive adversary.

The proof of Theorem 1 can be found in Supporting Material B.

4 From Quadratic FE to Cubic FE over Zp

In this section, we show how to transform our generic FE scheme for quadratic
functionality to a generic FE scheme for cubic functionality over Zp. The method
in this section can be generalized to realize a degree-(m+1) polynomial FE from
a degree-m polynomial FE, which will be discussed in Sect. 5.

Let CFE = (Setup,KeyGen,Encrypt,Decrypt) be a FE for cubic function-
ality based on a FE scheme for quadratic functionality QFE = (Setup,KeyGen,
Encrypt,Decrypt) which is s-IND-FE-CPA secure. Firstly, we give the definition
of cubic functionality over Zp that is used in our scheme.

4.1 Cubic Functionality over Zp

For any cubic function f(x) =
∑n

i,j,k=0 fi,j,kxixjxk, where x0 = 1, we can find

a set of matrices A0, . . . , An, s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠. Actually, there exists

more than one set {Ai}i∈[n] that can satisfy this equation.
For security reasons, we define the cubic functionality over Zp F in our

functional encryption scheme as follows, where M ∈ Zn+1
p is the message space:

Definition 4 (cubic functionality). For any fi,j,k ∈ Zp, let F
({fi,j,k}i,j,k∈[n],x) =

∑n
i,j,k=0 fi,j,kxixjxk}. For ∀f(x) ∈ F ,x0,x1 ∈ M

and f(x0) = f(x1), there exists an algorithm ALG(f) which could find a

set of matrices A0, . . . , An ∈ Z
(n+1)×(n+1)
p , s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠ and

∀i ∈ [n],x0Aix0 = x1Aix1.

152 L. Zhang et al.

This requirement is due to the fact that in any quadratic FE, only if f(x0) =
f(x1), any probabilistic poly(n)-time (PPT) adversary cannot distinguish the
ciphertexts of x0 and x1 by IND-security definition of FE.

The message space is decided by how many cubic functions we want to include
in the function space. If we just want to use a few fractions of all cubic functions,
then the message space could be larger. In the other side, brute-force FE scheme
cannot ensure linear-size ciphertext, which is important when constructing FE
scheme for higher degree polynomials.

The following theorem shows a special case that if we only have two messages,
y0,y1, such that f(y0) = f(y1), all cubic functions meet this requirement4.

Theorem 2. Given y0,y1 ∈ Zn+1
p , f(x) =

∑n
i≥j≥k=0 fi,j,kxixjxk and f(y0) =

f(y1). There exists A0, . . . , An ∈ Z
(n+1)×(n+1)
p , s.t. f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠ and

∀i ∈ [n],y0Aiy0 = y1Aiy1.

The proof of Theorem 2 can be found in Supporting Material C.
For a given message space M, a natural approach to test whether a cubic

function f(x) is in F is that: (1) Find all vector pairs (a, b) s.t. f(a) = f(b)
and sets V = {(a, b)|f(a) = f(b)}. (2) For each pairs (a, b) ∈ V, find the
system of linear equations and get the solutions Si = {(A0, A1, . . . , An)}, where
i = 1, . . . , |V|. (3) Check whether S1 ∩ S2 ∩ . . . ∩ Sn = ∅.

4.2 Our FE Scheme for Cubic Functions over Zp

Before describing the scheme in full detail, we give an informal exposition of
our key ideas. We use a random invertible matrix W ∈ Z2×2

p and some random
vectors a, r to construct our ciphertexts, which consist of two major parts.

The first part of the ciphertexts seems like (ri, t
−1
i xi)W−1. The second part of

the ciphertext seems like W (ai, QFE.Enc(xi))T , where QFE is a FE scheme for
quadratic functions. Notice that the second part of ciphertexts are not generated
directly. The outputs of algorithm ALG is randomized and not unique, so the
matrices Ai are not known by the adversary. When doing decryption, firstly, we
get W (ai, tix

T Aix) by calling QFE.Decrypt. Then, we get
∑

i airi + xix
T Aix

by multiply two parts of ciphertexts and sum them up. Finally, we get the final
result f(x) =

∑
i,j,k fi,j,kxixjxk =

∑
i xix

T Aix by substraction
∑

i airi.
Now, here comes the formal description of our construction. Let’s con-

sider a quadratic FE scheme QFE = (Setup,KeyGen,Encrypt,Decrypt).

4 A more detailed analysis needs to be carried out to see how practical this requirement
is although the requirement and our construction method represent a step towards
constructing secure FE schemes for polynomials.

Generic Functional Encryption for Polynomials 153

For cubic functions F , we define our functional encryption scheme CFE =
(Setup, KeyGen,Encrypt,Decrypt) as follows:

Setup(1λ, 1n): (mpk1,msk1) ← QFE.Setup(1λ, 1n), Randomly choose t =
(t0, . . . , tn) ←R Zn+1

p . Return mpk := (mpk1, t) and msk := (msk1).
KeyGen(mpk,msk, f = {fi,j,k}i,j,k∈[n]): Call ALG(f) as defined above to
obtain the set of matrices A0, . . . , An ←R ALG(f). Then computes skAi

=
QFE.KeyGen (mpk1,msk1, tiAi). Return skF := {skAi

}i∈[n].

Encrypt(x,mpk): Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p ,

where w12 = u2
1, w22 = u2

2 and WW−1 = I. Randomly choose
r = (r0, . . . , rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x =
QFE.Encrypt(mpk1, u1x), Ctu2x = QFE.Encrypt(mpk1, u2x). And sets
Ctw,x,i = (ri, t

−1
i xi)W−1 = (riw

−1
11 + t−1

i w−1
21 xi, riw

−1
12 + t−1

i w−1
22 xi),

Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi. Return Ctx =
(Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).
Decrypt(Ctx, skF ,mpk): Return:

[
n∑

i=0

Ctw,x,i ·
(

Cta,1,i + QFE.Decrypt(skAi
, Ctu1x,mpk)

Cta,2,i + QFE.Decrypt(skAi
, Ctu2x,mpk)

)]
− Cta,r

Correctness of Our Scheme:

Decrypt(Ctx, skF ,mpk)

=
n∑

i=0

(riw
−1
11 + t−1

i xiw
−1
21 , riw

−1
12 + t−1

i xiw
−1
22)

(
w11ai + w12tix

T Aix
w21ai + w22tix

T Aix

)
−

n∑
i=0

airi

=
n∑

i=0

(ri, t
−1
i xi)W−1W

(
ai

tix
T Aix

)
−

n∑
i=0

airi

=
n∑

i=0

(airi + xi · xT Aix) −
n∑

i=0

airi

=xT

⎛
⎜⎝
xT A0x

...
xT Anx

⎞
⎟⎠

Theorem 3. If the underlying functional encryption scheme for quadratic func-
tions QFE has message space and secret key space of the same order p, if it is
s-IND-CPA secure, then CFE is s-IND-CPA secure.

The proof of Theorem 3 can be found in Supporting Material C.

5 Generalization: From Degree-m Polynomial FE to
Degree-(m + 1) Polynomial FE

Let f(x) =
∑n

q1,...,qm+1=0(fq1,...,qm+1Π
m+1
i=1 xqi

), where x0 = 1, be a degree-(m +
1) polynomial function, we can find more than one such sets {f0(x), . . . , fn(x)}

154 L. Zhang et al.

such that, f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠, where f0(x), . . . , fn(x) are degree-m polynomial

functions.
So our transformation scheme in the above section can be generalized to a

degree-(m + 1) polynomial FE scheme from any degree-m polynomial FE. For
security, the restriction in cubic functionality is also needed in our degree-(m+1)
polynomial functionality. Let M ∈ Zn+1

p be the message space, then our degree-
(m + 1) polynomial functionality Fm+1 is defined as follows:

Definition 5 (degree-(m + 1) polynomial functionality). For any fq1,...,qm+1 ∈
Zp, let F({fq1,...,qm+1}q1,...,qm+1∈[n],x) =

∑n
q1,...,qm+1=0(fq1,...,qm+1Π

m+1
i=1 xqi

)}.
∀f(x) ∈ Fm+1, x0,x1 ∈ M and f(x0) = f(x1), there exists as algorithm
ALG(f) which could find a set of degree-m polynomial functions f0(x), . . . , fn(x),

s.t. f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ and ∀i ∈ [n], fi(x0) = fi(x1).

Similar to our cubic functionality definition, two restrictions on the set of
degree-m polynomials f0, . . . , fn are implied by the degree-(m+1) functionality
definition. One is that the degree-(m + 1) polynomial f(x) can be written as
f(x) =

∑n
i=0(xifi(x)). The other is that for any two vectors x0,x1 ∈ M, if

f(x0) = f(x1), then the outputs of each degree-m polynomials fi, i ∈ [n] on
inputs x0,x1 are also the same. In the following theorem, we also show that
when the message space M is very small, Fm+1 contains all degree-(m + 1)
polynomials.

Theorem 4. Given y0,y1 ∈ Zn+1
p , f(x) =

∑n
q1,...,qm+1=0(fq1,...,qm+1Π

m+1
i=1 xqi

)
and f(y0) = f(y1). There exists a set of degree-m polynomials f0(x), f1(x), . . . ,

fn(x), s.t., f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ and ∀i ∈ [n], fi(y0) = fi(y1).

Proof. The proof is similar with the proof of Theorem 3.
Intuitively, when m increasing, the number of sets {f0(x), . . . , fn(x)} where

f(x) = xT

⎛
⎜⎜⎜⎝

f0(x)
f1(x)

...
fn(x)

⎞
⎟⎟⎟⎠ is increased. Then, the number of equations which are

generated by the second restriction ∀i ∈ [n], fi(y0) = fi(y1) are not change
(this system of equations always consists of n+1 equations). When m > 2, after
putting these two restrictions together, it is easier to find a feasible solution than
the system of linear equations (3) in the proof of Theorem 3.

Generic Functional Encryption for Polynomials 155

Therefore, one can choose a smaller message space M to achieve larger func-
tionality space Fm+1. Or choose smaller functionality space Fm+1 to get larger
message space M.

5.1 Our FE Scheme for Degree-(m + 1) Polynomial over Zp

Let us consider a degree-m polynomial FE scheme mFE = (Setup,KeyGen,
Encrypt,Decrypt). We define our functional encryption scheme for a degree-
(m + 1) polynomial Fm+1 (m + 1)FE = (Setup,KeyGen,Encrypt,Decrypt) as
follows:

Setup(1λ, 1n): (mpk1,msk1) ← mFE.Setup(1λ, 1n), Randomly choose t =
(t0, . . . , tn) ←R Zn+1

p . Return mpk := (mpk1, t) and msk := (msk1).
KeyGen(mpk,msk, f = {fq1,...qm+1}q1,...,qm+1∈[n]): Call ALG(f) as defined
above to obtain the set of m degree polynomial f0(x), . . . , fn(x) ←R ALG(f).
Then computes skfi

= mFE.KeyGen(mpk1,msk1, tifi). Return skF :=
{skfi

}i∈[n].

Encrypt(x,mpk): Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p , where

w12 = um
1 , w22 = um

2 and WW−1 = I. Randomly choose r = (r0, . . . ,
rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x = mFE.
Encrypt(mpk1, u1x), Ctu2x = mFE.Encrypt(mpk1, u2x). And sets
Ctw,x,i = (ri, t

−1
i xi)W−1 = (riw

−1
11 + t−1

i w−1
21 xi, riw

−1
12 + t−1

i w−1
22 xi),

Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi. Return Ctx =
(Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).
Decrypt(Ctx, skF ,mpk): Return:

[
n∑

i=0

Ctw,x,i ·
(

Cta,1,i + mFE.Decrypt(skAi
, Ctu1x,mpk)

Cta,2,i + mFE.Decrypt(skAi
, Ctu2x,mpk)

)]
− Cta,r

The correctness can be easily extended from the proof in our cubic FE
scheme.

Theorem 5. If the underlying functional encryption scheme for a degree-m
polynomials, mFE, has message space and secret key space of the same order
p, if it is s-IND-CPA secure, then (m+1)FE is s-IND-CPA secure.

The proof of this theorem can be easily extended from the proof of Theorem 4.

Efficiency Analysis. Notice that in this scheme, the size of secret keys in a
degree-(m + 1) polynomial FE will become n times the size of secret keys in the
degree-m polynomial FE, m ≥ 2. However, we show that it would not induce
more cost in practice. In a cloud application scenario, the data owner stores
the encrypted data in a server, and the user has a m + 1-degree polynomial
f and wants to ask the function value f(x). So the user sends all coefficients
of monomial in f to the Key Generator, and the Key Generator will return a
corresponding secret key skf . Then the user sends skf to the server, and the

156 L. Zhang et al.

server does decryption and returns f(x). The size of coefficients is O(nm+1). In
almost existing public key FE schemes from standard assumptions [2–4,6], the
coefficients are used in the Decryption algorithm. So the size of message that the
user sends to the server is also O(nm+1) in their schemes (the message includes
two parts: the coefficients and skf). The expansion of the secret key in our
transformation scheme is a factor n, but the expansion of the size of coefficients
is also a factor n (from degree-m to degree-(m+1)). So under the condition that
the coefficients are used in the Decryption algorithm, the expansion of secret
key can be bounded by the expansion of the size of coefficients. Therefore, our
transformation scheme does not lose any efficiency.

6 Conclusions and Discussion

In this paper, we show that constructing generic FE schemes for quadratic func-
tions, cubic functions and finite degree polynomials are achievable. In summary,
our generic FE scheme for quadratic functions is IND-secure against adaptive
adversary with a linear size ciphertext. This generic scheme can be instantiated
from any PKE schemes that satisfy a few structural and homomorphic proper-
ties. Our generic FE scheme for cubic functions from our quadratic FE scheme
is the first effective scheme for cubic functions. The transformation can be gen-
eralized to higher degree polynomials. In particular, we show how to transform
an IND-secure degree-m polynomial FE scheme to an IND-secure degree-(m+1)
polynomial FE scheme.

There are still quite a number of open questions in this topic. When we use an
IND-secure degree-m polynomial FE mFE to build a degree-(m+1) polynomial
FE scheme, a natural restriction, i.e., the cubic functionality, on such a degree-
(m + 1) polynomial appears. It seems that the question of building generic FE
scheme for any finite-degree polynomials without this restriction is not feasible.
Another question is about function privacy (also known as function hiding, stud-
ied in [10,18,24,29]). Intuitively, function privacy requires that decryption keys
reveal essentially nothing on their corresponding function. However, in almost
existing FE constructions from standard assumptions, the functions are actually
a part of their secret keys, i.e., the coefficients are directly used in decryption
algorithms without any protection. The question of building functional hiding
FE scheme for polynomials from standard assumptions still remains open.

Finally, we conclude the paper by giving a remark on “Indistinguishable
obfuscation from Functional encryption.” Very recently, some papers [7,25] show
that it is possible to construct indistinguishability obfuscation (IO) from FE.
They showed that IO can be obtained from constant degree graded encoding
schemes or subexponentially-secure weakly-succinct FE for functions in NC1. In
fact, our transformation meets the weakly-succinct condition and may provide a
new direction on constructing IO from standard assumptions, although FE for
polynomials (i.e., arithmetic circuits) seems not strong enough to get IO yet.

Acknowledgement. This project is partially supported by the Collaborative
Research Fund (CRF) of RGC of Hong Kong (Project No. CityU C1008-16G).

Generic Functional Encryption for Polynomials 157

Supporting Material

A Requirements of PKE

Our framework constructs functional encryption scheme for quadratic func-
tions QFE = (Setup,KeyGen,Encrypt,Decrypt) from a public-key encryption
scheme ε = (Setup,Encrypt,Decrypt). In order to prove the correctness and
security of the new scheme, we need some structural and homomorphic proper-
ties on ε as defined below.

Structure. ε’s secret keys and public keys are elements of a group G (with
generator g1), and the message space is Mx ⊂ Z. We require the ciphertexts to
consist of two parts c0 = C(g1, r) and ct1 = E(pk, x, r), where pk(g1, sk) is the
public key in G corresponding to the secret key sk. The first part c0 corresponds
to some commitment C(g1, r) of the randomness r used for the encryption. The
second part ct1 is the encryption of x with randomness r. Computing a from
E(pk(g, 0), a, r) can be reduced to some difficult problems.

We also split the Setup algorithm for convenience in the following two algo-
rithms to sample secret keys, and to sample corresponding public keys:

SKGen(1λ) takes in input the security parameter and sample a secret key sk
from the secret key space according to the same distribution induced by Setup.
PKGen(sk, τ) takes in input a secret key sk and parameters τ , and generates
a public key pk corresponding to sk according to the distribution induced by τ .
We will omit τ when it is clear from the context.

Linear Key Homomorphism. We say that a PKE has linear key homomorphism
if for any two secret keys sk1, sk2 ∈ G and any y1, y2 ∈ Zp, the linear combination
formed by y1sk1 + y2sk2 can be computed efficiently only using public param-
eters, the secret keys and the coefficients. And this combination y1sk1 + y2sk2
also functions as a secret key to a public key that can be computed as pky1

1 ·pky2
2 ,

where pk1 (resp. pk2) is a public key corresponding to sk1 (resp. sk2).

Linear Ciphertext Homomorphism Under Shared Randomness. We say that a
PKE has linear ciphertext homomorphism under shared randomness if it holds
that E(pk1, x, r) · E(pk2, y, r) = E(pk1pk2, x + y, r) and E(pk(gq, sk), x, r) =
E(pk(g, sk), x, r)q = E(pk(g, qsk), qx, r).

Computation Properties in Bilinear Map. Assume that e(ga
1 , gb

1) = gab
T is a bilin-

ear map G × G → GT , where gT is a generator of GT and e(g1, g1) = gT . We
require that

e(E(pk(g1,sk1), x, a), E(pk(g1,sk2), y, b))
= E(pk(gT ,sk1sk2), xy, ab)E(pk(gT ,sk1), 0, a)yE(pk(gT ,sk2), 0, b)x

And for security, we define two properties via security game. More details
can be referred to [3].

158 L. Zhang et al.

l-Public-Key-Reproducibility. For a public-key encryption scheme ε, we define
l-public-key-reproducibility via the following security game:

Game Expl−ct−rep−b
ε,λ (A)

proc Initialize(λ, M)

(sk, (αi, ski)i∈[l]) ←R D(1λ)
If b = 0 then (pki = ε.PKGen(αisk + ski, τ))i∈[l]

else pk ← ε.PKGen(sk, τ ′); (pki = pkαi · ε.PKGen(ski.τi))i∈[l]

Return (pki, ski)i∈[l]

proc Finalize(b′)
Return (b′ = b)

with D samples tuples of the form (sk, (αi, ski)i∈[l]) where sk and the ski’s are
sampled from SKGen, and the αi’s are in T .

Then, we say that ε has l−public−key−reproducibility if there exists
τ, τ ′(τi)i∈[l] such that

|Pr[Expl−pk−rep−0
ε,λ (A = 1)]| − |Pr[Expl−pk−rep−1

ε,λ (A) = 1]| = negl(λ)

l-Ciphertext-Reproducibility. For a public-key encryption scheme ε, we define
l-ciphertext-reproducibility via the following security game:

Game Expl−ct−rep−b
ε,λ (A)

proc Initialize(λ, M)

(a, (αi, xi, ski)i∈[l]) ←R D(1λ)

sk ← ε.SKGen(1λ); pk ← ε.PKGen(sk, τ ′); (pki ← ε.PKGen(ski, τi))i∈[l]

ct0 = ε.C(r); ct = ε.E(pk, a, r)
If b = 0 then cti = ctαi · ε.E(pki, xi, r)
else cti = ctαi · ε.E′(ski, xi, ct0, τi)
Return (pk, (αi, pki, ski)i∈[l], ct0, (cti)i∈[l])
proc Finalize(b′)
Return (b′ = b)

where (1) D samples tuples of the form (a, (αi, xi, ski)i∈[l]), where ski’s are
sampled from SKGen, αi’s are in T and a and the xi’s are in Mx. (2) E′ is an
algorithm that takes in input a secret key in H, a message in Zp, a first part
ciphertext C(r) for some r in the randomness space, and the parameters needed
to generate public keys, and output a second part ciphertext.

Then, we say that ε has l−ciphertext−reproducibility if there exists τ ′, τi’s
and algorithm E′ such that

|Pr[Expl−ct−rep−0
ε,λ (A = 1)]| − |Pr[Expl−ct−rep−1

ε,λ (A) = 1]| = negl(λ)

.

Generic Functional Encryption for Polynomials 159

B Proofs in Our FE Scheme for Quadratic Functions

B.1 Proof of Theorem 1

Proof. We proof the security via a sequence of hybrid experiments, and then we
show they are indistinguishable.

Hybrid H1: This is the IND-FE-CPA game:

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Hybrid H2: This is like H1 except that the master public key is generated by
invoking the algorithm H2.Setup defined as follows:
H2.Setup(1λ, 1n): The algorithm samples sk ← ε.SKGen(1λ), for i ∈ [n],
PKE secret key si ← ε.Setup(1λ) and uniformly random scalar ti ←R

ZP , q ←R Z∗
p and a bilinear map e(g1, g1) = gT , where g1, gT are generators

of G1, GT . Similarly, e2(g2, g2) = gT ← G1λ

is a bilinear map G2 × G2 →
GT , where g2, gT are generators of G2, GT . Then the algorithm sets: PK =
ε.PKGen(g1, qsk, τ), ski = si + tisk, g′

T = gq
T . PKsi

= ε.PKGen(g1, qsi, τi)
PKi = PKti · PKsi

, where τ is the same as used in the Setup algorithm, and τi

is such that PKti · PKsi
is close to ε.PKGen(g1, qski).

The algorithm returns mpk := (params, PK, {PKi}i∈[n], g1, g2, gT , g′
T , e(·, ·))

and msk := (s, t, sk, q). Under the l−public−key−reproducibility of ε, H1 and
H2 are indistinguishable.

Hybrid H3: This is like H2 except that the challenge ciphertext is generated
by invoking the algorithm H3.Encrypt defined as follows:
H3.Encrypt(msk,mpk,x): Choose shared randomness r and a = (a1, ..., an) in
Zp, and computes
ct0 = ε.C(r2, g1), ct1 = ε.E(PK, 0, r), cta,i = ε.E(pk(g1, 0), ai, r)
For i ∈ [n], ctx,i = ctti

1 · ε.E(PKsi
, xi, r), cta,x,i = ε.E(pk(g2, 1)xi , ai, r)

By linear ciphertext-homomorphism of ε, H2 = H3.

Hybrid H4: This is like H3 except that the challenge ciphertext is generated
by invoking the algorithm H4.Encrypt defined as follows:
H4.Encrypt(msk,mpk,Ct,x): Let Ct = (Ct0, Ct1). Then the algorithm com-
putes the ciphertext for x in the following way:
ct0 = ε.C(r2, g1), cta,i = ε.E(pk(g1, 0), ai, r). For i ∈ [n], ctx,i = ctti

1 ·
ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi , ai, r), where ε.E′ is the alternative
encryption algorithm defined in the l−ciphertext−reproducibility game. r̃ is
some randomness shared among all the invocation of ε.E′.

160 L. Zhang et al.

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct = ε.E(PK, 0)
F ← ∅ Ct∗ ←R H4.Encrypt(msk,mpk,Ct,xb)
Return mpk Return Ct∗
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the l−ciphertext−reproducibility of ε, H3 and H4 are indistinguishable.

Hybrid H5: This is like H4 except that the challenge ciphertext is generated by
invoking the algorithm H5.Encrypt defined as follows and Ct encrypts a random
value in Zp.
H5.Encrypt(msk,mpk,Ct,x): Let Ct = (Ct0, Ct1). Then the algorithm com-
putes the ciphertext for x in the following way:
ct0 = ε.C(r2, g1), cta,i = ε.E(pk(g1, 0), ai, r).
For i ∈ [n], ctx,i = ctti

1 · ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi+ti , ai, r)

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct = ε.E(PK, 1)
F ← ∅ Ct∗ ←R H5.Encrypt(msk,mpk,Ct,xb)
Return mpk Return Ct∗
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the s-IND-CPA security of ε, ε.E(PK, 0) and ε.E(pk, 1) are
indistinguishable. Now, we need to show that ε.E(pk(g2, 1)xi+ti , ai, r) and
ε.E(pk(g2, 1)xi , ai, r) are indistinguishable.

If ∃w(ti) ∈ Zp, s.t. ε.E(pk(g2, ti), 0, r) = ε.E(pk(g2, 0), w(ti), r), then

ε.E(pk(g2, 1)xi+ti , ai, r) = ε.E(pk(g2, xi), ai, r)ε.E(pk(g2, ti), 0, r)
= ε.E(pk(g2, xi), ai, r)ε.E(pk(g2, 0), w(ti), r)
= ε.E(pk(g2, xi), ai + w(ti), r)

and ε.E(pk(g2, 1)xi , ai, r) = ε.E(pk(g2, xi), ai, r). We can refer to ε.E(pk(g2,
1)xi+ti , ai, r) as encryption of a random number, so the ciphertext is a random
‘fake’ ciphertext. According to the security of PKE ε and the equivalent between
IND-security and semantic security of PKE, ε.E(pk(g2, 1)xi , ai, r) should be
indistinguishable from a random number. Therefore ε.E(pk(g2, 1)xi , ai, r) and
ε.E(pk(g2, 1)xi+ti , ai, r) are indistinguishable.

Generic Functional Encryption for Polynomials 161

Else, ∀b ∈ Zp, ε.E(pk(g2, 0), b, r) �= ε.E(pk(g2, ti), 0, r). If ∃c, d ∈ Zp,
ε.E(pk(g2, 0), c, r) = ε.E(pk(g2, 0), d, r), then

c = ε.Decrypt(sk, ε.C(g2, r), ε.E(pk(g2, 0), c, r))
= ε.Decrypt(sk, ε.C(g2, r), ε.E(pk(g2, 0), d, r))
= d

Since GT = p, we have that GT = {ε.E(pk(g2, 0), b, r)}b∈Zp
. So

{ε.E(pk(g2, 0), b, r)}b∈Zp
∩ ε.E(pk(g2, ti), 0, r) = GT ∩ ε.E(pk(g2, ti), 0, r) �= ∅

By contradiction, ∀ti ∈ Zp,∃b ∈ Zp, s.t. ε.E(pk(g2, 0), b, r) = ε.E(pk(g2, ti), 0, r)
Therefore, H4 and H5 are indistinguishable.

Hybrid H6: This is like H5 except that the challenge ciphertext is generated
by invoking the algorithm H6.Encrypt defined as follows:
H6.Encrypt(msk,mpk,x): The algorithm computes the ciphertext for x in the
following way:
ct0 = ε.C(r2, g1), ct1 = ε.E(PK, 1, r), cta,i = ε.E(pk(g1, 0), ai, r).
For i ∈ [n], ctx,i = ctti

1 · ε.E′(si, xi, Ct0, r̃), cta,x,i = ε.E(pk(g2, 1)xi+ti , ai, r)

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct∗ ←R H6.Encrypt(msk,mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Under the l−ciphertext−reproducibility of ε, H5 and H6 are indistinguishable.

Hybrid H7: This is like H8 except that the challenge ciphertext is generated
by invoking the algorithm ε.Encrypt

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R H2.Setup(1λ, 1n) Ct∗ ←R ε.E(mpk,xb + t)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

By linear ciphertext homomorphism of ε, H6 = H7.

Hybrid H8: This is like H7 except that the master public key is generated by
invoking the algorithm Setup.

162 L. Zhang et al.

proc Initialize(λ) proc LR(x0,x1)
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R ε.E(mpk,xb + t)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′ =b)

Under the l−public−key−reproducibility of ε, H7 and H8 are indistinguishable.

Advantage of Any PPT Adversary in H8: Notice that t+xb −x1−b ∈ Zn
p .

Let t′ = t + xb − x1−b , s
′
i = si + (x1−b − xb)isk. Then (s′, t′) equally likely as

(s, t) that gives exactly the same view by replacing xb by x1−b .
Moreover, when analyzing skF ← FE.KeyGen(F,msk), since s′

i + t′isk = si +
x1,b,isk −xb,isk +(ti +xb,i −x1−b,i)sk = si + tisk, so the skF are same for (s, t)
and (s′, t′). Therefore, the advantage of the adversary in this game is 0.

C Proofs in Our FE Scheme for Cubic Functions

C.1 Proof of Theorem 2

Proof. Let ai = fi,j,k, i = j = k �= 0, bi,k = fi,j,k, i = j �= k, i, k �= 0, ci,j,k =
fi,j,k, i �= j �= k, i, j, k �= 0, di = fi,j,k, i = j �= 0, k = 0, ei,j = fi,j,k, i �=
j �= 0, k = 0, fi = fi,j,k, i �= 0j = k = 0, g = fi,j,k, i = j = k = 0 and

A0 =

⎛
⎜⎜⎜⎝

a0
00, . . . , a

0
0n

a0
10, . . . , a

0
1n

...
. . .

...
a0

n0, . . . , a
0
nn

⎞
⎟⎟⎟⎠ , . . . , A0 =

⎛
⎜⎜⎜⎝

an
00, . . . , a

n
0n

an
10, . . . , a

n
1n

...
. . .

...
an

n0, . . . , a
n
nn

⎞
⎟⎟⎟⎠.

Since f(x) = xT

⎛
⎜⎜⎜⎝

xT A0x
xT A1x

...
xT Anx

⎞
⎟⎟⎟⎠, we can get the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0
00 = g

ai
ii = ai, i > 0

a0
ii + (ai

0i + ai
i0) = di, i > 0

(a0
i0 + a0

0i) + ai
00 = fi, i > 0

(a0
ij + a0

ji) + (aj
0i + aj

i0) + (ai
j0 + ai

0j) = ei,j , i > j > 0

(ai
ik + ai

ki) + ak
ii = bi,k, i > k > 0

(ai
jk + ai

kj) + (aj
ik + aj

ki) + (ak
ij + ak

ji) = ci,j,k, i > j > k > 0

(1)

Generic Functional Encryption for Polynomials 163

Since ∀i ∈ [n],y0Aiy0 = y1Aiy1, where yu = (yu0, yu1, . . . , yun), u = 1, 2 we
can get the following equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∑

i=1

(a
0
i0 + a

0
0i)(y0i − y1i) +

n∑

i=1

a
0
ii(y

2
0i − y

2
1i) +

n∑

i>j=1

(a
0
ij + a

0
ji)(y0iy0j − y1iy1j) = 0

.

.

.

n∑

i=1

(a
n
i0 + a

n
0i)(y0i − y1i) +

n∑

i=1

a
n
ii(y

2
0i − y

2
1i) +

n∑

i>j=1

(a
n
ij + a

n
ji)(y0iy0j − y1iy1j) = 0

(2)

Putting Eqs. (1) and (2) together, we can get that:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a0
00 = g

ai
ii = ai, i > 0
n∑

i=1

(fi − ai
00)(y0i − y1i) +

n∑
i=1

(di − (ai
0i + ai

i0))(y
2
0i − y2

1i)+

n∑
i>j=1

(ei,j − (aj
0i + aj

i0) − (ai
j0 + ai

0j))(y0iy0j − y1iy1j) = 0, i > j > 0

n∑
i=1

(a1
i0 + a1

0i)(y0i − y1i) +
n∑

i=1

(bi,1 − (ai
i1 + ai

1i))(y
2
0i − y2

1i)+

n∑
i>j=1

(ci,j,1 − (ai
j1 + ai

1j + aj
i1 + aj

1i))(y0iy0j − y1iy1j) = 0, i > j > 0

...
n∑

i=1

(an
i0 + an

0i)(y0i − y1i) +
n∑

i=1

(bi,n − (ai
in + ai

ni))(y
2
0i − y2

1i)+

n∑
i>j=1

(ci,j,n − (ai
jn + ai

nj + aj
in + aj

ni))(y0iy0j − y1iy1j) = 0, i > j > 0

(3)

Now, we will show that the system of linear Eq. (3) is solvable, i.e., its coefficient
matrix is full rank.

Notice that a0
00 only occurs in the first equation of (3), each ai

ii only occurs
in one equation of {ai

ii = ai, i > 0}, each ai
00 only occurs in one equation of

{
∑n

i=1(fi − ai
00)(y0i − y1i) +

∑n
i=1(di − (ai

0i + ai
i0))(y

2
0i − y2

1i) +
∑n

i>j=1(ei,j −
(aj

0i + aj
i0) − (ai

j0 + ai
0j))(y0iy0j − y1iy1j) = 0, i > j > 0}, each (aj

it + aj
ti) only

occurs in one equation of {
∑n

i=1(a
t
i0+at

0i)(y0i−y1i)+
∑n

i=1(bi,n−(ai
it+ai

ti))(y
2
0i−

y2
1i) +

∑n
i>j=1(ci,j,n − (ai

jt + ai
tj + aj

it + aj
ti))(y0iy0j − y1iy1j) = 0, i > j > 0}. So

the coefficient matrix is full rank.

C.2 Proof of Theorem 3

Proof. We proof security via a sequence of hybrid experiments, and then we
show they are indistinguishable.

164 L. Zhang et al.

Hybrid H1: This is the s-IND-CPA game:

proc Initialize(λ,x0,x1) proc LR()
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,xb)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

Hybrid H2: This is like H1 except that the master public key is generated by
invoking the algorithm H2.Setup defined as follows:
H2.Setup(1λ, 1n,x0,x1): The algorithm samples (mpk1,msk1) ← QFE.Setup
(1λ, 1n). Randomly choose t = (t0, . . . , tn) ←R Zn+1

p . Then sets t0i = (x1i

x0i
t−1
i)−1

and t1i = (x0i

x1i
t−1
i)−1. Return mpk := (mpk1, tb) and msk := (msk1).

Zp is a field, so t0i and t1i are uniformly distributed in Zp. Therefore, H2 and
H1 are indistinguishable.

Hybrid H3: This is like H2 except that the challenge ciphertext is generated
by invoking the algorithm H3.Encrypt(mpk,xb) defined as follows:

H3.Encrypt(mpk,xb) : Choose a matrix W =
(

w11 w12

w21 w22

)
from Z

∗(2×2)
p ,

where w12 = u2
1, w22 = u2

2 and WW−1 = I. Randomly choose r = (r0, . . . ,
rn),a = (a0, . . . , an) ∈ Zn+1

p . Then computes Ctu1x = QFE.
Encrypt(mpk1, u1x1−b , Ctu2x = QFE.Encrypt(mpk1, u2x1−b). Sets Ctw,x,i =
(ri, (tbi)

−1xbi)W−1, and Cta,1,i = w11ai, Cta,2,i = w21ai, Ctar =
∑n

i=0 airi.
Return Ctx = (Ctu1x, Ctu2x, {Ctw,x,i, Cta,i,1, Cta,2,i}i ∈ [n], Cta,r).

Firstly, we show that Ct′u1x = QFE.Encrypt(mpk1, u1xb) and Ctu1x =
QFE.Encrypt(mpk1, u1x1−b) are indistinguishable. For any f ∈ F , exists a set
of matrices {Ai}i∈[n], s.t. f(x) =

∑n
i=0 xix

T Aix and x0
T Aix0 = x1

T Aix1, i ∈
[n]. So,

(x1−b)T Ai(x1−b) = xb
T Aixb , i ∈ [n]

By the s-IND-CPA of the QFE scheme, these two should be indistin-
guishable. Similarly, Ct′u2x = QFE.Encrypt(mpk1, u2xb) and Ctu2x =
QFE.Encrypt(mpk1,u2x1−b) are also indistinguishable.

Then, we show that Ct′w,x,i = (ri, t
−1
i xbi)W−1 and Ctw,x,i = (ri,

(tbi)
−1xbi)W−1 are indistinguishable. ti and tbi are hidden by the matrix W ,

i.e. without knowing about W , the adversary cannot determine whether ti or
tbi is used in the encryption. So the only thing we should prove is that the
adversary cannot recover W . When considering the ciphertexts Cta,1,i = w11ai

and Cta,2,i = w21ai, we find that there exists α ∈ Zp, s.t. w11 = αw21. So
Cta,1,i = w11ai = αw21ai = αCta,2,i. Actually, there are n + 1 unknown values
(a1, ..., an, w11) but only n effective equations, so w11 are not achievable. It is
easy to see that w11 in other parts of ciphertext is also hidden by some random
values.

Generic Functional Encryption for Polynomials 165

Therefore, H3 and H2 are indistinguishable.

Hybrid H4: This is like H3 except that the challenge ciphertext is generated
by invoking the algorithm CFE.Encrypt as follows:

proc Initialize(λ,x0,x1) proc LR()
(mpk,msk) ←R Setup(1λ, 1n) Ct∗ ←R Encrypt(mpk,x1−b)
F ← ∅ Return Ct∗
Return mpk
proc KeyGen(F) proc Finalize(b′)
F ← F ∪ F If ∃F ∈ F s.t. f(F,x0) �= f(F,x1)
skF ← KeyGen(msk, F) then return false
Return skF Return (b′=b)

In H3.Encrypt, Ct′w,x,i = (ri, (tbi)
−1xbi)W−1 = (ri,

x1−b,i

xbi
t−1
i xbi)W−1 = (ri,

x1−b,it
−1
i)W−1. In CFE.Encrypt, Ct′w,x,i = (ri, x1−b,it

−1
i)W−1. So H4 = H3.

Advantage of Any PPT Adversary in H4: In H4, the challenge ciphertext
is a valid ciphertext for the message x1−b . So it gives the same view by replacing
xb by x1−b . Therefore, the advantage of any adversary in this game is 0.
Notice that we only consider the situation that x0i �= 0, x1i �= 0, i ∈ [n]. And the
proof can be extended when considering 0. We need to modify the construction
of tb and H3.Encrypt as follows:

1. If x0i = x1i = 0, then t0i = t1i = ti, and Ctw,x.i = (ri, (tbi)
−1xbi)W−1.

2. If xbi = 0, x1−b,i �= 0, then tbi = x1−b,it
−1
i − xbi, and Ctw,x,i = (ri, t

b
i +

xbi)W−1.
3. If xbi �= 0, x1−b,i = 0, then tbi = −xbit

−1
i , and Ctw,x,i = (ri, t

b
i + t−1

i xbi)W−1.

The remaining proof can be easily extended from our proof.

References

1. Abdalla, M., et al.: Searchable encryption revisited: consistency properties, rela-
tion to anonymous IBE, and extensions. In: Shoup, V. (ed.) CRYPTO 2005.
LNCS, vol. 3621, pp. 205–222. Springer, Heidelberg (2005). https://doi.org/10.
1007/11535218 13

2. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Simple functional encryption
schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–
751. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 33

3. Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional
encryption for inner product evaluations. IACR Cryptology ePrint Archive, Report
2016/11 (2016)

4. Agrawal, S., Libert, B., Stehlé, D.: Fully secure functional encryption for inner
products, from standard assumptions. In: Robshaw, M., Katz, J. (eds.) CRYPTO
2016. LNCS, vol. 9816, pp. 333–362. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53015-3 12

https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/11535218_13
https://doi.org/10.1007/978-3-662-46447-2_33
https://doi.org/10.1007/978-3-662-53015-3_12
https://doi.org/10.1007/978-3-662-53015-3_12

166 L. Zhang et al.

5. Apon, D., Döttling, N., Garg, S., Mukherjee, P.: Cryptanalysis of indistinguisha-
bility obfuscations of circuits over GGH13. In: LIPIcs-Leibniz International Pro-
ceedings in Informatics, vol. 80. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
(2017)

6. Baltico, C.E.Z., Catalano, D., Fiore, D., Gay, R.: Practical functional encryption
for quadratic functions with applications to predicate encryption. In: Katz, J.,
Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 67–98. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63688-7 3

7. Bitansky, N., Lin, H., Paneth, O.: On removing graded encodings from func-
tional encryption. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS,
vol. 10211, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56614-6 1

8. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

9. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

10. Boneh, D., Raghunathan, A., Segev, G.: Function-private identity-based encryp-
tion: hiding the function in functional encryption. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 461–478. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 26

11. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

12. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

13. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

14. Chen, Y., Gentry, C., Halevi, S.: Cryptanalyses of candidate branching program
obfuscators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol.
10212, pp. 278–307. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
56617-7 10

15. Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear
map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). https://doi.org/10.1007/
978-3-662-46800-5 1

16. Cheon, J.H., Hong, S., Lee, C., Son, Y.: Polynomial functional encryption scheme
with linear ciphertext size. IACR Cryptology ePrint Archive, Report 2018/585
(2018)

17. Coron, J.-S., Lee, M.S., Lepoint, T., Tibouchi, M.: Cryptanalysis of GGH15 multi-
linear maps. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp.
607–628. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 21

18. Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product
with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang,
B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 7

https://doi.org/10.1007/978-3-319-63688-7_3
https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-319-56614-6_1
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-642-40084-1_26
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-319-56617-7_10
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-46800-5_1
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-53008-5_21
https://doi.org/10.1007/978-3-662-49384-7_7

Generic Functional Encryption for Polynomials 167

19. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate
indistinguishability obfuscation and functional encryption for all circuits. SIAM J.
Comput. 45(3), 882–929 (2016)

20. Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryp-
tion from multilinear maps. Cryptology ePrint Archive, Report 2014/622 (2014)

21. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
Reusable garbled circuits and succinct functional encryption. In: Symposium on
Theory of Computing Conference, STOC 2013, Palo Alto, California, USA, 1–4
June 2013, pp. 555–564. ACM (2013)

22. Gorbunov, S., Vaikuntanathan, V., Wee, H.: Functional encryption with bounded
collusions via multi-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 162–179. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 11

23. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

24. Kim, S., Lewi, K., Mandal, A., Montgomery, H.W., Roy, A., Wu, D.J.: Function-
hiding inner product encryption is practical. Cryptology ePrint Archive, Report
2016/440

25. Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In: Proceedings of the IEEE
57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
Brunswick, New Jersey, USA, 9–11 October 2016, pp. 11–20. IEEE (2016)

26. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

27. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

29. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

30. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

31. Waters, B.: A punctured programming approach to adaptively secure functional
encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol.
9216, pp. 678–697. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48000-7 33

https://doi.org/10.1007/978-3-642-32009-5_11
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/978-3-642-00457-5_27
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-662-48000-7_33
https://doi.org/10.1007/978-3-662-48000-7_33

Secret Sharing

Efficient Proactive Secret Sharing
for Large Data via Concise Vector

Commitments

Matthias Geihs(B), Lucas Schabhüser, and Johannes Buchmann

Technische Universität Darmstadt, Darmstadt, Germany
mgeihs@cdc.tu-darmstadt.de

Abstract. Proactive secret sharing has been proposed by Herzberg,
Jarecki, Krawczyk, and Yung (CRYPTO’95) and is a powerful tool for
storing highly confidential data. However, their scheme is not designed
for storing large data and communication and computation costs scale
linearly with the data size. In this paper we propose a variant of their
scheme that uses concise vector commitments. We show that our new
scheme, when instantiated with a variant of the Pedersen commitment
scheme (CRYPTO’92), reduces computation costs by up to 50% and
broadcast communication costs by a factor of L, where L is the length
of the commitment message vectors.

1 Introduction

Threshold secret sharing has been proposed independently by Blakley [5] and
Shamir [18] and allows to store a piece of secret information x at a set of N
shareholders such that any coalition of up to T shareholders obtains no informa-
tion about the secret. Proactive secret sharing was later proposed by Herzberg,
Jarecki, Krawczyk, and Yung [12] and additionally allows the shareholders to
update their data shares such that after the update the new shares are indepen-
dent of the old shares. This property ensures protection against a mobile adver-
sary that gradually obtains data shares over time. Moreover, proactive secret
sharing is robust against up to T < N

2 malicious shareholders which means that
the data owner is guaranteed to retrieve the initially stored data even if up to
T shareholders behave arbitrarily bad.

While proactive secret sharing is a powerful tool for storage of highly confi-
dential data, the performance of existing schemes appears insufficient for large
data items. For example, storing a data item of size 128 kB at N = 3 share-
holders and using a threshold of T = 1, the scheme described in [12] requires
the data owner to broadcast 2 MB of data and to compute more than 16 ∗ 103

modular exponentiations. Moreover, updating the data shares requires 15 MB of
data broadcast and each shareholder must compute more than 40 ∗ 103 modular
exponentiations. However, securely storing highly confidential data such as legal
documents or medical records over long periods of time requires proactive secret

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 171–194, 2019.
https://doi.org/10.1007/978-3-030-16458-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_11

172 M. Geihs et al.

sharing schemes that are capable of efficiently storing data of size several mega
bytes or even giga bytes.

In this paper we present a proactive secret sharing scheme that requires
significantly less computational resources and immensely less communication
than the scheme described in [12] when used for data sizes D that do not fit
into the native message space of that scheme, e.g., D > 32 B. Our scheme can
be instantiated such that in the setting described above, data storage requires
the data owner to broadcast only about 16 kB of data and compute only about
8∗103 modular exponentiations. Similarly, updating the shares requires only 120
kB of data broadcast and each shareholder must compute only about 20 ∗ 103

modular exponentiations.
We achieve these performance improvements by combining the techniques of

[12] with concise vector commitments [10]. While [12] uses cryptographic com-
mitments where a commitment is of the same size as the committed message,
concise vector commitments allow for committing to a vector of messages with a
commitment that is much smaller than the committed message vector. By using
such vector commitment we are able to reduce the broadcast communication
costs by a factor of L, where L is the length of the message vectors. Further-
more, we also save up 50% of the computation costs because computing L single
commitments requires 2 ∗ L modular exponentiations while computing a vector
commitment for message vectors of length L requires only L + 1 modular expo-
nentiations. We remark that we use the same network model assumptions as
[12], i.e., we assume a synchronous authenticated network with broadcast.

1.1 Organization

Our paper is organized as follows. In Sect. 2 we introduce notation and define the
notions of a vector commitment scheme and a proactive secret sharing scheme
as we will use them in this paper. In contrast to [12] we give a more precise
definition of a proactive secret sharing scheme and respective security properties,
which we believe is a contribution in its own. Then, in Sect. 3 we present our
new vector proactive secret sharing scheme and analyze its security. Finally, in
Sect. 4 we show how to instantiate the proposed scheme with a concise vector
commitment scheme and then evaluate the theoretical and practical performance
of the proposed instantiation.

1.2 Related Work

Since the work of [12] several proactive secret sharing schemes with various
properties have been proposed. [11,19] proposed proactive secret sharing schemes
where the number N of shareholders and the threshold value T can be changed
during a share update. [7,20] proposed proactive secret sharing schemes that
work in asynchronous networks where no global clock is available. [17] proposed
a scheme which has both properties. However, all of these schemes have high
communication and computation costs when storing large data items.

Efficient Proactive Secret Sharing for Large Data 173

More recently, Baron, Defrawy, Lampkins, and Ostrovsky in [1,2] proposed
proactive secret sharing schemes with optimal amortized communication com-
plexity. However, while their schemes enjoy optimal communication costs asymp-
totically, they do not work well with a small number of shareholders (e.g., N = 3)
as they require T < N

8 and enabling T < N
2 requires expensive party virtualiza-

tion techniques. This approach uses packed secret sharing where a set of messages
is batched together. The authors propose a batch size of N − 3T which is obvi-
ously infeasible for small parameters like N = 3, T = 1. They also make use of
double sharings. For l messages this would require every shareholder to send at
least 2l shares to every other shareholder. Compared to this our approach based
on generalized Pedersen commitments, requires l + 1 shares and t commitments
to be broadcasted per shareholder. For suitably large l and small t this leads to
significantly less bandwidth consumption.

2 Preliminaries

2.1 Notation

We use the convention that N = {1, 2, . . .} and define N0 = N∪ {0}. For (a, b) ∈
Z
2, a ≤ b, we define [a, b] = {x ∈ Z : a ≤ x ≤ b}. For n ∈ N, we define

[n] = [1, n] and Zn = [0, n − 1]. By MODINV we denote an algorithm that on
input (a,m) ∈ N

2
0 outputs the smallest b ∈ N such that (a ∗ b) mod m = 1, or

⊥ if such b does not exist. For a finite cyclic group G associated with operator
◦, we denote by GEN(G) the set of generators of G. Furthermore, we denote by
EXP an exponentiation algorithm that on input (a, b) ∈ G× N outputs ab such
that a1 = a and ai+1 = ai ◦ a. For a finite set S, we denote by U(S) the uniform
distribution over S. For τ ∈ N, we denote by ProbAlgo(τ) the set of probabilistic
algorithms that for any input halt after at most τ steps. By �(A) we denote the
image of algorithm A.

2.2 Network Model

A probabilistic protocol P defines an input-output behavior for a set of com-
municating parties {P1, . . . ,Pn}. We write P 〈P1(x1) → y1, . . . ,Pn(xn) → yn〉
to denote an execution of protocol P , where party Pi gets input xi and out-
puts yi. Here we assume that each party has a direct communication channel
with each other party. In addition, we assume that there exists a broadcast
channel with the property that if a party Pi receives a broadcast message m
from party Pj , then it is guaranteed that all other parties Pk receive the same
broadcast message m from Pj . When we write that during a protocol execution
P 〈{Pi(x1)→ y1}i∈[N]〉 an adversary A controls T ∈ [0, N] parties, we mean that
there exists I ⊂ [T] such that for i ∈ I, the input-output behavior and com-
munication behavior of party Pi is controlled by A. A majority of the protocol
participants can, however, decide to reboot corrupted parties, in which case the
adversary loses control over them, their state is cleared, and they return to their

174 M. Geihs et al.

specified behavior. We remark that our protocols require the usage of private
authenticated channels, which means that messages are always delivered to the
correct communication partner, that their content and order cannot be modified,
and that no information about the message content can be obtained by tapping
the channel.

2.3 Discrete Logarithm Problem

We state the fixed generator discrete logarithm problem [16].

Definition 1 (Discrete logarithm problem). Let G be a finite cyclic group,
g ∈ GEN(G), and ε : N → R be a function. We say DLOG(G, g) is ε-hard if for
all τ , for all A ∈ ProbAlgo(τ),

Pr
[

EXP(g, x) = y :
U(G)→ y,A(y)→ x

]
≤ ε(τ).

2.4 Vector Commitments

We define vector commitment schemes as we will use them in this paper. We
remark that our vector commitment schemes do not support selective opening
as opposed to those proposed in [8].

Definition 2 (Vector commitment scheme). A vector commitment scheme
is a tuple VC = (L,P,M, C,D,Setup,Commit,Open), where L ∈ N, P, M, C,
and D are sets, Setup and Commit are probabilistic algorithms, and Open is a
deterministic algorithm, with the following properties.

Setup : ∅ → P. This algorithm gets no input and outputs parameters ρ ∈ P.
Commit : P ×ML → C ×D. This algorithm gets as input parameters ρ ∈ P and

message m ∈ ML, and outputs a commitment c ∈ C and a decommitment
d ∈ D.

Open : P × ML × C × D → {0, 1}. This algorithm gets as input parameters
ρ ∈ P, message m ∈ML, commitment c ∈ C, and decommitment d ∈ D, and
outputs b ∈ {0, 1}.

Correct Functionality. We say VC is correct if for all m ∈ML,

Pr
[

Open(ρ,m, c, d) = 1 :
Setup()→ ρ,Commit(ρ,m)→ (c, d)

]
= 1 .

Binding Security. Let ε : N→ R be a function. We say VC is ε-binding if for

all τ ∈ N, A ∈ ProbAlgo(τ),

Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ ≤ ε(τ) .

Efficient Proactive Secret Sharing for Large Data 175

Hiding Security. We say VC is perfectly hiding if for all ρ ∈ P, (m1,m2) ∈
ML×2, c ∈ C,

Pr
[

c = c′ :
Commit(ρ,m1)→ (c′, d′)

]
= Pr

[
c = c′ :

Commit(ρ,m2)→ (c′, d′)

]
.

Homomorphic Operation. For ρ ∈ P, define COMS(ρ) = {(m, c, d) ∈ ML ×
C × D : Open(ρ,m, c, d) = 1}. We say VC is homomorphic if there exist binary
operations +, ∗, and ◦ such that for all ρ ∈ P, (m1, c1, d1) ∈ COMS(ρ), and
(m2, c2, d2) ∈ COMS(ρ),

Open(ρ,m1 + m2, c1 ∗ c2, d1 ◦ d2) = 1 .

2.5 Proactive Secret Sharing

We give a definition of proactive secret sharing which will be useful for analyzing
the security of the scheme proposed later in this work. We remark that while
other authors only sketch syntax and security definitions for proactive secret
sharing (e.g., [12]), our definition captures many subtleties of these schemes
(e.g., it states exactly when the adversary gains control over parties and when
it loses control which is a delicate subject [14]). Such a more precise definition
is a valuable contribution in its own.

Informal Description. We first give an overview of the formal definition and
then present the precise definition later in Definition 3. A proactive secret shar-
ing scheme consists of a set of protocols that are run between a dealer D and
a set of shareholders S1, . . . ,SN . The goal of the dealer is to store some secret
information at the shareholders in a way that none of the shareholders obtains
information about the secret. The information can only be reconstructed if a
sufficient number of shares are combined together. Protocol Setup is used for
initializing the parties. Protocol Share is used for distributing the secret infor-
mation to the shareholders in terms of secret shares. Protocol Reshare refreshes
the secret shares such that the new shares have no correlation with the old shares.
Protocol Reconstruct retrieves the shares, asserts their validity, and reconstructs
the secret information.

We require several properties of a proactive secret sharing scheme. Correct
functionality guarantees that if the scheme is run by honest parties, the original
information will be restored. Secrecy guarantees that a coalition of curious share-
holders up to a threshold number cannot learn any information about the secret.
Robustness guarantees that the scheme tolerates up to a threshold number of
shareholders that act maliciously and do not follow the protocol.

The definitions of Secrecy and Robustness are given in terms of games played
by an adversary that can corrupt a threshold number of parties and tries to
either learn information or destroy the secret information (Figs. 1 and 2). For
the secrecy game (Fig. 1), the adversary can choose to learn the secrets of a

176 M. Geihs et al.

given set of shareholders I after each round (e.g., sharing or resharing), where
the freshly corrupted set of shareholders I ′ and the previously corrupted set I
combined must be of size at most the threshold T . The goal of the adversary
is to learn something about the secret information m in terms of a function
value F (m) for any function F . The secrecy definition requires that F (m) can
be computed equally successful by a simulator B which does not see any of
the additional secret information that the adversary may obtain by corrupting
certain shareholders. This definition of secrecy follows the ideas of Goldwasser
and Micali for defining semantic security [9]. Similarly, for the robustness game
(Fig. 2), the adversary can choose to act on behalf of a given set of shareholders
during the protocol runs of Share, Reshare, or Reconstruct, but the number of new
and old corrupted shareholders must never exceed T . The robustness definition
requires that the reconstructed value after the interference of the adversary still
corresponds to the value that has been initially stored.

Formal Definition. In the definition we use the following notation. We usually
denote the dealer by D and shareholder i by Si. We write Share〈ρ,m〉 → S as
an abbreviation for Share〈D(ρ,m), {Si(ρ) → si}i∈[N]〉, S ← (s1, . . . , sN). For
S = (s1, . . . , sN), we write Reshare〈ρ, S〉 → S′ for Reshare〈{Si(ρ, si)→ s′

i}i∈[N]〉,
S′ ← (s′

1, . . . , s
′
N). The game notation that we use follows the notation described

in [3,4]. At the start of any game G the special algorithm Initialize is executed
and its output is handed to the adversary. Afterwards the adversary can call the
algorithms specified in the game and obtains the corresponding outputs. The
game ends when the adversary calls the special algorithm Finalize. The output
of the game is defined as the output of that algorithm.

Definition 3 (Proactive secret sharing scheme). A proactive secret shar-
ing scheme is a tuple PSS = (N,T,P,M,S,Setup,Share,Reshare,Reconstruct),
where (N,T) ∈ N×N0, N > 1, T < N

2 , P,M, and S are sets, Setup is a proba-
bilistic algorithm, and Share, Reshare, and Reconstruct are probabilistic protocols
with the following properties:

Setup : ∅ → P. This algorithm gets no input and outputs parameters ρ ∈ P.
Share〈D : P ×M → ∅, {Si : P → S}i∈[N]〉. The dealer D gets as input param-

eters ρ ∈ P, and message m ∈ M. For i ∈ [N], shareholder Si get as input
parameters p ∈ P, and outputs a secret share si ∈ S.

Reshare〈{Si : P × S → S}i∈[N]〉. For i ∈ [N], shareholder Si gets as input
parameters ρ ∈ P and secret share si ∈ S, and outputs a secret share s′

i ∈ S.
Reconstruct〈R : P →M∪ {⊥}, {Si : P × S → ∅}i∈[N]〉. The receiver R gets as

input parameters ρ ∈ P. For i ∈ [N], shareholder Si gets as input parameters
ρ ∈ P and secret share si ∈ S. The receiver R outputs a message m ∈M.

Efficient Proactive Secret Sharing for Large Data 177

Correct Functionality. For ρ ∈ P and m ∈M, we define

SHARES(ρ,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s1, . . . , sN) :

∃l ∈ N0 : Pr

⎡
⎢⎢⎢⎢⎣

(sl,1, . . . , sl,n) = (s1, . . . , sN) :
Share〈D(ρ,m), {Si(ρ)→ s0,i}i∈[N]〉,
Reshare〈{Si(ρ, s0,i)→ s1,i}i∈[N]〉,

. . . ,
Reshare〈{Si(ρ, sl−1,i)→ sl,i}i∈[N]〉

⎤
⎥⎥⎥⎥⎦ > 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

as the set of all possible share configurations at which the shareholders can arrive
after sharing and resharing m under parameter ρ. We say PSS is correct if for
all ρ ∈ P, m ∈M, (s1, . . . , sN) ∈ SHARES(ρ,m),

Pr
[

m = m′ :
Reconstruct〈m′ ← D(ρ), {Si(ρ, si)}i∈[N]〉

]
= 1 .

Secrecy. Let ε : N2 → R be a function. We say PSS is ε-secret if for all prob-
ability distributions D over M, functions F : M → {0, 1}∗, τA, τB ∈ N, and
A ∈ ProbAlgo(τA), there exists B ∈ ProbAlgo(τB) such that

Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]
≤ Pr

[
F (m) = y :
D → m,B → y

]
+ ε(τA, τB) ,

where G1(A;m) is defined in Fig. 1.

Game G1(A;m)

Initialize

1 : I ← {}, S ← ⊥
2 : Setup() → ρ

3 : return ρ

Share (I ′)

1 : I ← (I ′ if |I ′| ≤ T else ∅)

2 :
Run Share〈ρ, m〉 → S, where
shareholders I are controlled
by A until reboot

Reshare (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reshare〈ρ, S〉 → S, where
shareholders I are controlled
by A until reboot

Finalize (y)

1 : return y

Fig. 1. The game used in the secrecy definition for proactive secret sharing.

Robustness. Let ε : N → R be a function. We say PSS is ε-robust if for all
m ∈M, τ ∈ N, A ∈ ProbAlgo(τ),

Pr
[

m �= m′ :
G2(A,m)→ m′

]
≤ ε(τ) ,

where G2(A,m) is defined in Fig. 2.

178 M. Geihs et al.

Game G2(A;m)

Initialize

1 : I ← {}, S ← ⊥
2 : Setup() → ρ

3 : return ρ

Share (I ′)

1 : I ← (I ′ if |I ′| ≤ T else ∅)

2 :
Run Share〈ρ, m〉 → S, where
shareholders I are controlled
by A until reboot

Reshare (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reshare〈ρ, S〉 → S, where
shareholders I are controlled
by A until reboot

Finalize (I ′)

1 : I ← (I ′ if |I ∪ I ′| ≤ T else ∅)

2 :
Run Reconstruct〈ρ, S〉 → m′,
where shareholders I are con-
trolled by A until reboot

3 : return m′

Fig. 2. The game used in the robustness definition for proactive secret sharing.

3 Proactive Secret Sharing with Vector Commitments

We now present our construction of a proactive secret sharing scheme that uses
vector commitments for improving efficiency. Our construction is based on the
construction of [12] and enhances it so that in each sharing a vector of messages
can be stored instead of only a single message. We first present the description
of our vector proactive secret sharing scheme in Subsect. 3.1 and then prove its
security in Subsect. 3.2.

3.1 Scheme Description

Overview of the Scheme. Our proactive secret sharing scheme follows the
construction of [12], but uses a homomorphic vector commitment scheme VC
instead of a single message homomorphic commitment scheme. Algorithm Setup
of our scheme simply generates commitment parameters ρ by running the setup
algorithm of the vector commitment scheme.

Protocol Share works as follows. On input a message vector (m1, . . . ,mL),
the dealer first generates secret shares of each mi using Shamir’s Secret Sharing
Scheme [18] by sampling D = N−T−1 secret polynomial coefficients, where N is
the number of shareholders and T is the corruption threshold. Then, it creates a
commitment c0 to the message vector and a commitment ci to each of the secret
coefficient vectors. The corresponding decommitments (d0, . . . , dD) are used to
compute a share of a decommitment ri corresponding to the message vector.
Finally, the dealer broadcasts all the commitments (c0, . . . , cD) and sends share
vector (si,1, . . . , si,L) and the decommitment share ri to shareholder Si.

Protocol Reshare works as follows. At first, the shareholders engage in sub
protocol ShareRecovery in order to detect parties that hold invalid input shares. If

Efficient Proactive Secret Sharing for Large Data 179

such parties are detected, then these will be rebooted and their shares be recov-
ered so that after the execution of sub protocol ShareRecovery the shareholders
hold a consistent share configuration. Now, each of the shareholders creates L
verifiable sharings of the identity of the finite field message space using sub
protocol ShareIdentity. Next, each shareholder asserts that the received shares
of the identity are consistent by verifying the received commitments. If this is
the case, then it combines the commitments, decommitments, and shares of the
identity sharings with the existing secret shares in a way that the new shares
still reconstruct to the original message vector. Here, only commitment c0 is kept
unchanged as an invariant referring to the original message vector. In the other
case, i.e., if an inconsistency after ShareIdentity is detected, the faulty parties
are determined and rebooted, their shares are recovered, and protocol Reshare
is started from the beginning.

Protocol Reconstruct works as follows. The dealer D retrieves all shares, com-
mitments, and decommitment shares from the shareholders. It then determines
a subset G of parties whose shares are qualified for reconstruction, i.e., with
|G| = D + 1 and such that the shares are consistent with the commitments
and decommitments. If such a subset is found, Lagrange Interpolation is used to
reconstruct the message vector. If such a subset is not found, then the protocol
aborts and outputs ⊥. The latter case, however, is guaranteed not to occur if
not more than T parties are corrupted.

Detailed Description. We now present our vector proactive secret sharing
scheme in detail.

Scheme 1 (VPSS). Let (N,T) ∈ N × N0 such that N < p and T < N
2 . Let

VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commit-
ment scheme such thatM is a finite field of prime order p. Let D = N−T−1 and
S =ML×C1+D×D. For a given sharing ((si,1, . . . , si,L, ci,0, . . . , ci,D, ri))i∈[N] ∈
Sn, we define the subset of parties qualified for reconstruction by

QUALI(((si,1, . . . , si,L, ci,0, . . . , ci,D, ri))i∈[N])

=

⎧⎨
⎩

G ⊆ [N] :
|G| = D + 1 ∧ (∀(i, j, k) ∈ G×G× [0,D] : ci,k = cj,k)

∧ ∀i ∈ G : Open(ρ, (si,1, . . . , si,L),©j∈[0,D]EXP(ci,j , ij), ri) = 1

⎫⎬
⎭ .

We define the proactive secret sharing scheme VPSSN,T,VC = (N,T,P,
ML,S,Setup,Share,Reshare,Reconstruct), where Share, Reshare, and
Reconstruct are defined with sub protocols ShareRecovery and ShareIdentity as
follows:

Main protocols:
Share〈D(ρ ∈ P,m ∈ML), {Si(ρ ∈ P)→ si ∈ S}i∈[N]〉:

The dealer D does the following:
1. Let m = (m1, . . . ,mL) ∈ML.
2. For (i, j) ∈ [L]× [D], sample U(M)→ ai,j.

180 M. Geihs et al.

3. For (i, j) ∈ [N]× [L], compute si,j ← mj ©k∈[D] EXP(aj,k, i
k).

4. Compute Commit(ρ, (m1, . . . ,mL)) → (c0, d0), and for i ∈ [D], com-
pute Commit(ρ, (a1,i, . . . , aL,i))→ (ci, di).

5. For i ∈ [N], compute ri ← d0©j∈[D] EXP(dj , ij).
6. Broadcast (c0, . . . , cD) and for i ∈ [N], send ri and (si,1, . . . , si,L) to

shareholder Si.
For i ∈ [N], shareholder Si sets si ← (si,1, . . . , si,L, c0, . . . , cD, ri).

Reshare〈{Si(ρ ∈ P, si ∈ S)→ s′
i ∈ S ∪ {⊥}}i∈[N]〉:

Run protocol ShareRecovery〈{Si(ρ ∈ P, si ∈ S)→ si ∈ S}i∈[N]〉.
For i ∈ [N], shareholder Si does the following.
1. If si = ⊥, set s′

i ← ⊥ and return.
2. Let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
3. Run protocol ShareIdentity〈Si(ρ), {Sj(ρ) → ŝi,j}j∈[N]〉 and let ŝi,j =

(ŝi,j,1, . . . , ŝi,j,L, ĉi,j,1, . . . , ĉi,j,D, r̂i,j).
4. Wait until for all j ∈ [N], ŝj,i has been received or a timeout occurs.

In case of a timeout of party j, set ŝj,i ← ⊥.
5. For j ∈ [N], compute ĉi,j ←©k∈[D]EXP(ĉj,i,k, ik) and bi,j ← Open(ρ,

(ŝi,j,1, . . . , ŝi,j,L), ĉi,j , r̂i,j), and broadcast Bi = (bi,1, . . . , bi,N).
6. Wait until for all j ∈ [N], Bj has been received or a timeout occurs.

In case of a timeout of party j, set Bj ← 0N .
7. If for all j ∈ [N], Bj = 1N , then all shareholders behaved consistently.

In this case, recompute the shares as follows:
(a) For j ∈ [L], compute s′

i,j ← si,j ©k∈[N] ŝk,i,j.
(b) For j ∈ [D], compute c′

i,j ← ci,j ©k∈[N] ĉk,i,j.
(c) Compute r′

i ← ri©j∈[N] r̂j,i.
(d) Set s′

i ← (s′
i,1, . . . , s

′
i,L, ci,0, c

′
i,1, . . . , c

′
i,D, r′

i).
If there exists j ∈ [N] such that 0 ∈ Bj, then the shareholders behaved
inconsistently. In this case, determine the set of faulty sharehold-
ers, reboot them, recover their message and decommitment shares as
described in [12], and restart the resharing protocol.

Reconstruct〈D(ρ ∈ P)→ m ∈ML ∪ {⊥}, {Si(ρ ∈ P, si ∈ S)}i∈[N]〉:
For i ∈ [N], shareholder Si sends si to D.
The receiver D waits until it received si for i ∈ [N] or a timeout occurs.
In case of a timeout of party i, set si ← ⊥. Then, D does the following:
1. For i ∈ [N], let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
2. If QUALI((s1, . . . , sN)) = ∅, set m← ⊥ and return.

Otherwise find G ∈ QUALI((s1, . . . , sN)).
3. For i ∈ G, compute li ←

∏
j∈G\{i} j ∗MODINV(j − i, p).

4. For i ∈ [L], compute mi ←©j∈GEXP(sj,i, lj).
5. Set m← (m1, . . . ,mL).

Sub protocols:
ShareRecovery〈{Si(ρ ∈ P, si ∈ S)→ s′

i ∈ S ∪ {⊥}}i∈[N]〉:
For i ∈ [N], shareholder Si does the following:
1. Let si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri).
2. Broadcast (ci,0, . . . , ci,D).

Efficient Proactive Secret Sharing for Large Data 181

3. Wait until for j ∈ [N], (cj,0, . . . , cj,D) has been received or a timeout
occurs. In case of a timeout of party j, set cj,k ← ⊥ for k ∈ [0,D].

4. Determine a set Gi ⊆ [N] such that:
(a) |Gi| = D + 1
(b) For (j, k) ∈ G2

i , (cj,0, . . . , cj,D) = (ck,0, . . . , ck,D).
If such a set Gi does not exist, set s′

i ← ⊥ and return.
5. Let j ∈ Gi and for k ∈ [0,D], set c′

i,k ← cj,k.
6. Compute ĉi ← ©k∈[0,D]EXP(c′

i,k, i
k), bi ← Open(ρ, si,1, . . . , si,L,

ĉi, ri), and broadcast bi.
7. Wait until for all j ∈ [N], bj has been received or a timeout occurs.

In case of a timeout of party j, set bj ← 0.
8. Let Bi = {j ∈ [N] : bj = 0}. If Bi �= ∅, vote for rebooting shareholders

Bi and recover the message and decommitment shares of the rebooted
shareholders as described in [12].

9. Set s′
i ← (si,1, . . . , si,L, c′

i,0, . . . , c
′
i,D, ri).

ShareIdentity〈D(ρ ∈ P), {Si(ρ ∈ P)→ si ∈ML × CD ×D}i∈[N]〉:
The dealer D does the following:
1. For (i, j) ∈ [L]× [D], sample U(M)→ ai,j.
2. For (i, j) ∈ [N]× [L], compute si,j ←©k∈[D]EXP(aj,k, i

k).
3. For i ∈ [D], compute Commit(ρ, (a1,i, . . . , aL,i))→ (ci, di).
4. For i ∈ [N], compute ri ←©j∈[D]EXP(dj , ij).
5. Broadcast (c1, . . . , cD) and for i ∈ [N], send ri and (si,1, . . . , si,L) to

party Si.
For i ∈ [N], party Si sets si ← (si,1, . . . , si,L, c1, . . . , cD, ri).

3.2 Scheme Analysis

We analyze the security of the vector proactive secret sharing scheme VPSS pro-
posed in Subsect. 3.2. We first prove the correct functionality. Then, we show
that if the used vector commitment schemes is information-theoretically hid-
ing, our vector proactive secret sharing provides information-theoretic secrecy.
Finally, we show that the robustness of our vector commitments scheme can be
reduced the binding security of the used vector commitment scheme.

Theorem 1 (Correctness). Let (N,T) ∈ N×N0 such that N < p and T < N
2 .

Let VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector com-
mitment scheme such thatM is a finite field of prime order. The proactive secret
sharing scheme VPSSN,T,VC is correct.

Proof. Let (N,T) ∈ N × N0 such that N < p and T < N
2 . Let VC =

(L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commitment
scheme such thatM is a finite field of prime order p. Let VPSSN,T,VC = (N,T,P,
ML,S,Setup,Share,Reshare,Reconstruct) and D = N − T − 1.

182 M. Geihs et al.

For ρ ∈ P, m ∈M, and i ∈ N0, define

SHARES(ρ,m, l) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(s1, . . . , sN) :

Pr

⎡
⎢⎢⎢⎢⎣

(sl,1, . . . , sl,n) = (s1, . . . , sN) :
Share〈D(ρ,m), {Si(ρ)→ s0,i}i∈[N]〉,
Reshare〈{Si(ρ, s0,i)→ s1,i}i∈[N]〉,

. . . ,
Reshare〈{Si(ρ, sl−1,i)→ sl,i}i∈[N]〉

⎤
⎥⎥⎥⎥⎦ > 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

Let ρ ∈ P and m = (m1, . . . ,mL) ∈ML. By the definition of protocol Share,
we observe that for (s1, . . . , sN) ∈ SHARES(ρ,m, 0) we have:

∃A ∈ML×D : ∀i ∈ [N] :
si = (si,1, . . . , si,L, c0, . . . , ct, ri) ∈ S
∧ ∀j ∈ [L] : si,j = mj ©k∈[D] EXP(Aj,k, i

k)
∧ (ci,0, di,0) ∈ Commit(ρ, (m1, . . . ,mL))
∧ ∀j ∈ [D] : (ci,j , di,j) ∈ Commit(ρ, (a1,j , . . . , aL,j))

∧ ri =©j∈[0,D]EXP(di,j , ij)

Furthermore, we observe that if the conditions above hold, then G = [D+1] ∈
QUALI((s1, . . . , sn)) and for i ∈ [L], we have mi = ©j∈GEXP(sj,i, lj), where
lj =

∏
k∈G\{j} k ∗MODINV(k − j, p).

Next, we observe that by the definition of Reshare and the homomorphic
properties of the shares and the commitments we have SHARES(ρ,m, 0) =
SHARES(ρ,m, 1). It follows that for all l ∈ N0, SHARES(ρ,m) = SHARES(ρ,m, l).
We obtain that for any ρ ∈ P, (s1, . . . , sN) ∈ SHARES(ρ,m) we have

Pr
[

m = m′ :
Reconstruct〈m′ ← D(ρ), {Si(ρ, si)}i∈[N]〉

]
= 1 .

��
Theorem 2 (Secrecy). Let (N,T) ∈ N×N0 such that N < p and T < N

2 . Let
VC = (L,P,M, C,D,Setup,Commit,Open) be a perfectly hiding homomorphic
vector commitment scheme such that M is a finite field of prime order. Then
there exists α ∈ R such that VPSSN,T,VC is ε-secret with

ε(τA, τB) =

{
0 ifτB ≥ α ∗ τA,

1 ifτB < α ∗ τA.

Proof. Let (N,T) ∈ N × N0 such that N < p and T < N
2 . Let VC =

(L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector commitment
scheme such that M is a finite field of prime order p. Let VPSSN,T,VC =
(N,T,P,M,S,Setup,Share,Reshare,Reconstruct). Let D be a probability distri-
bution overM, F :M→ {0, 1}∗ be a function, τA ∈ N, and A ∈ ProbAlgo(τA).

We construct an algorithm B that simulates G1(A; 0L). First, B runs
Setup() → ρ and sets S ← ⊥ and I ← {}. Then, B runs AO(ρ) and answers
oracle calls by A as follows.

Efficient Proactive Secret Sharing for Large Data 183

Share(I ′): If |I ′| ≤ T and S = ⊥, do the following. Set I ← I ′ and simulate
Share〈ρ, 0L〉 → S while giving the control over shareholders I to A until
reboot.

Reshare(I ′): If |I ∪ I ′| ≤ T and S �= ⊥, do the following. Set I ← I ′ and
simulate Reshare〈ρ, S〉 → S while giving the control over shareholders I to A
until reboot.

Finalize(y): Output y.

By the definition of the secrecy game we observe that A obtains at most T
shares per sharing or resharing. Thus, by the perfect secrecy property of Shamir
Secret Sharing [18], the distribution of the message shares and decommitment
shares observed by A in game G1 is independent of m. Furthermore, by the
perfect hiding security of VC, the distribution of the commitments observed by
A is also independent of the m. It follows that for all m ∈ML, y ∈ �(G1),

Pr[G1(A;m) = y] = Pr[G1(A; 0L) = y] . (1)

Furthermore, by the definition of B, we have

Pr[G1(A; 0L) = y] = Pr[B = y] . (2)

By the law of total probability, (1), and (2), we obtain

Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]

=
∑

m̂∈�(D)

Pr
[

F (m) = y :
D → m,G1(A;m)→ y,m = m̂

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (m̂) = y :
G1(A; m̂)→ y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (0L) = y :
G1(A; 0L)→ y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[
F (0L) = y :
B → y

]
∗ Pr

[
m = m̂ :
D → m

]

=
∑

m̂∈�(D)

Pr
[

F (m) = y :
D → m,B → y,m = m̂

]
∗ Pr

[
m = m̂ :
D → m

]

= Pr
[

F (m) = y :
D → m,B → y

]
.

Finally, we observe that the running time of B is upper-bounded by the
running time of A times an upper bound α on the running time of protocols
Share and Reshare. We obtain that for all τA, A ∈ ProbAlgo(τA), there exists
B ∈ ProbAlgo(τB) such that

184 M. Geihs et al.

Pr
[

F (m) = y :
D → m,G1(A;m)→ y

]
≤ Pr

[
F (m) = y :
D → m,B → y

]
+ ε(τA, τB) ,

for

ε(τA, τB) =

{
0 if τB ≥ α ∗ τA,

1 if τB < α ∗ τA.

��
Theorem 3 (Robustness). Let (N,T) ∈ N×N0 such that N < p and T < N

2 .
Let VC = (L,P,M, C,D,Setup,Commit,Open) be a homomorphic vector com-
mitment scheme such thatM is a finite field of prime order p. If VC is ε-binding,
then the proactive secret sharing scheme VPSSN,T,VC is ε′-robust with

ε′ : N→ R; τ �→ ε(α ∗ τ) .

Proof. Let (N,T) ∈ N × N0 such that N < p and T < N
2 . Let ε : N → R be a

function and VC = (L,P,M, C,D,Setup,Commit,Open) be an ε-binding homo-
morphic vector commitment scheme such thatM is a finite field of prime order
p. Let VPSSN,T,VC = (N,T,P,M,S,Setup,Share,Reshare,Reconstruct), τA ∈ N,
A ∈ ProbAlgo(τA), and m ∈M.

We construct an algorithm B such that

Pr
[

m �= m′ :
G2(A,m)→ m′

]
= Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,B(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ ,

which on input ρ ∈ P, algorithm B simulates game G2(A,m) as follows.
When the game is startet run G2.Initialize and replace the output by ρ.
When A calls Share(I ′), run G2.Share(I ′) in interaction with A, which
controls the corrupted shareholders and denote the output of shareholder i
by si = (si,1, . . . , si,L, ci,0, . . . , ci,D, ri). Then, find G ∈ QUALI((s1, . . . , sN))
and set c = ci,0, for an i ∈ G. For i ∈ G, compute li ←

∏
j∈G\{i} j ∗

MODINV(j − i, p), and compute d←©i∈GEXP(ri, li). When A calls Reshare,
run G2.Reshare in interaction with A. When A calls Finalize, run G2.Finalize
in interaction with A and denote the share sent by shareholder i by s′

i =
(s′

i,1, . . . , s
′
i,L, c′

i,0, . . . , c
′
i,D, r′

i) and the output of G2.Finalize by m′. Deter-
mine a set G′ ∈ QUALI((s′

1, . . . , s
′
N)), for i ∈ G′, compute l′i ←

∏
j∈G′\{i} j ∗

MODINV(j − i, p), and compute d′ ←©i∈G′EXP(r′
i, l

′
i). Output (c,m, d,m′, d′).

We now derive an upper bound on

Pr
[

m �= m′ :
G2(A,m)→ m′

]
.

We observe that by the definition of protocol Share, the properties of the
broadcast channel, and because the majority of the shareholders are honest,
we have for i ∈ [N], ĉi ← ©k∈[0,D]EXP(ci,k, ik), that Open(ρ, (si,1, . . . , si,L),
ĉi, ri) = 1. Furthermore, we observe that for i ∈ [L], mi = ©j∈GEXP(sj,i, lj),

Efficient Proactive Secret Sharing for Large Data 185

we have m = (m1, . . . ,mL), d = ©j∈GEXP(rj , lj), and c = ©i∈GEXP(ĉi, li).
Because VC is homomorphic, it follows that Open(ρ,m, c, d) = 1. Analogously
we obtain that Open(ρ,m′, c′, d′) = 1. Furthermore, we observe that by the
definitions of protocols Reshare and Reconstruct, the properties of the broadcast
channel, and the honest majority, we have that for all i ∈ G′, c = c′. It follows
that

Pr
[

m �= m′ :
G2(A,m)→ m′

]
= Pr

⎡
⎣ b = 1 ∧ b′ = 1 ∧m �= m′ :

Setup()→ ρ,B(ρ)→ (c,m, d,m′, d′),
Open(ρ,m, c, d)→ b,Open(ρ,m, c, d′)→ b′

⎤
⎦ .

We observe that for any A, the running time of BA is upper-bounded by
the running time of A times a constant α. Thus, we obtain that VPSSN,T,VC is
ε′-robust with

ε′ : N→ R; τ �→ ε(α ∗ τ) .

��

4 Instantiation, Implementation, and Evaluation

We first describe in Subsect. 4.1 how we instantiate the vector commitment
scheme that is necessary for our vector proactive secret sharing scheme described
in Sect. 3. Afterwards we describe in Subsect. 4.2 how we implemented our vec-
tor proactive secret sharing scheme instantiated with the described vector com-
mitment scheme. Finally, we evaluate the performance of our scheme and its
implementation in Subsect. 4.3.

4.1 Instantiation

In the following we describe a vector commitment scheme that has the proper-
ties required by our vector proactive secret sharing scheme, i.e., it is perfectly
hiding, computationally binding, and homomorphic. In addition, it is concise,
which means that commitment and decommitment are potentially much shorter
then the committed message vector. The construction is an extension of the
commitment scheme proposed in [15] and is sometimes referred to by general-
ized Pedersen commitment [10]. Here we cast the construction into our definition
of a vector commitment scheme and show that its security can be based on the
fixed generator discrete logarithm problem.

Scheme 2 (DLVC). Let G be a finite cyclic group, p be the order of G, ◦ denote
the operation associated with G, and L ∈ N. We define the vector commitment
scheme DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open) as follows.

Setup()→ (g0, . . . , gL): For i ∈ [0, L], sample U(GEN(G))→ gi.
Commit(ρ,m) → (c, d): Let ρ = (g0, . . . , gL) and m = (m1, . . . ,mL) ∈ Z

L
p .

Sample U(Zp)→ d and compute c← EXP(g0, d)©i∈[L] EXP(gi,mi).

186 M. Geihs et al.

Open(ρ,m, c, d) → b: Let ρ = (g0, . . . , gL) and m = (m1, . . . ,mL). Compute
c′ ← EXP(g0, d)©i∈[L] EXP(gi,mi). If c = c′, set b← 1. If c �= c′, set b← 0.

Theorem 4. Let G be a finite cyclic group and L ∈ N. The vector commitment
scheme DLVCG,L is correct.

Theorem 5. Let G be a finite cyclic group and L ∈ N. The vector commitment
scheme DLVCG,L is perfectly hiding.

Theorem 6. Let G be a finite cyclic group of prime order p, g ∈ GEN(G), and
L ∈ N. If DLOG(G, g) is ε-hard, then there exists α ∈ N such that DLVCG,L is
ε′-binding with

ε′ : N→ R; τ �→ ε(τ + α) +
1
p
.

Theorem 7. Let G be a finite cyclic group and L ∈ N. The commitment scheme
DLVCG,L is homomorphic.

The proofs of the theorems can be found in AppendixA.

4.2 Implementation

We implemented a proactive secret sharing system based on the proactive secret
sharing scheme VPSS (Subsect. 3.1) instantiated with the vector commitment
scheme DLVC (Subsect. 4.1) using the programming language Java 8. In order
to support storage of large byte arrays, we use a data encoding that maps byte
arrays to message vectors of the secret sharing scheme and then run multiple
instances of the scheme per byte array.

System Parameters. Our proactive secret sharing system uses the following
parameters:

Number of shareholders N : This parameter specifies the total number of
shareholders that are involved in the secret sharing protocols.

Corruption threshold T : This parameters specifies the maximum number of
corrupted shareholders that can be tolerated. We require that T < N

2 .
Vector length L: This parameter specifies the length of the message vectors of

the secret sharing scheme and vector commitment scheme.
Message space size M : This parameter represents the size in bytes of an ele-

ment of a message vector for the secret sharing scheme and the vector com-
mitment scheme. The message space size M is determined by the parameters
of the commitment scheme and our implementation supports M ∈ {32, 64}.
We instantiate the commitment space G as the unique p-order subgroup of
Zq for primes p and q with log2(p) > M ∗ 8 ≥ 256, log2(q) ≥ 2048, and
(p− 1) mod q = 0.

Commitment space size C: This parameter represents the size in bytes of
commitments and is determined by C = �log2(q)/8�.

Efficient Proactive Secret Sharing for Large Data 187

Data Encoding. We use the following data encoding to map byte arrays to
the message space of VPSS. LetML be the message space of the secret sharing
scheme. We use the algorithms Encode and Decode for encoding byte arrays of
B = {b ∈ {0, . . . , 255}∗ : |b| ≤ INTMAX} to message matrices of ML×R∗

=
{m ∈ ML×∗ : Cols(m) ≤ �RL �, R = � INTSIZE+INTMAX

M �}, where INTSIZE = 4 and
INTMAX = 231− 1 for Java 8. Our byte array encoding requires two other types
of encodings: (EncodeInteger,BINTSIZE ,DecodeInteger,BINTSIZE) is an encoding from Java
Integers to byte arrays of length INTSIZE, which is supported natively by Java,
and (EncodeBM ,M,DecodeBM ,M) is an encoding from byte arrays of length M to
message space elements of M = Zp, for p ∈ N, which we implement using Java
Big Integers.

Encode(b ∈ B)→ m ∈ML×R∗
:

1. Let length = EncodeInteger,BINTSIZE(|b|) and set b′ ← length‖b.
2. Let b′′ = b′‖0|b′| mod M and b′′ = a1‖ . . . ‖an such that for i ∈ [n], ai is a

byte array of length M .
3. For i ∈ [n], let mi = EncodeBM ,M(ai), where EncodeBM ,M is an algorithm

that encodes elements of BM

4. Reshape the vector (m1, . . . ,mn) ∈Mn into a matrix m ∈ML×� n
L �, that

is, let m = (mi,j)(i,j)∈[L]×[� n
L �], where mi,j = mk for k = i + (j − 1) ∗ L

and mk = 0 if k > n.
Decode(m ∈ �(Encode))→ b ∈ B:

1. Reshape the matrix m = (mi,j) ∈ ML×L′
into vector (m1, . . . ,mn) ∈

ML∗L′
. That is, for i ∈ [L ∗ L′], let mi = mj,k, where j = i mod k and

j = � i
L�.

2. For i ∈ [L ∗ L′], let bi = DecodeBM ,M(mi).
3. Let b′′ = a1‖ . . . ‖aL∗L′ = b1‖ . . . ‖bL∗L′∗S , where bi ∈ B for i ∈ [L∗L′∗M].
4. Let l = DecodeInteger,BINTSIZE(b1‖ . . . ‖bINTSIZE).
5. Let b = bINTSIZE+1‖ . . . ‖bINTSIZE+l.

This encoding fulfills the requirement that for all b ∈ B, Decode(Encode(b)) =
b. In our implementation, we store a byte array b ∈ B with m← Encode(B) and
Cols(m) > 1 by running for each column of m a separate instance of the secret
sharing system.

4.3 Evaluation

In this section we evaluate the theoretical and practical performance of our
proactive secret sharing system based on the proactive secret sharing scheme
VPSS, the vector commitment scheme DLVC, and the data encoding described in
Subsect. 4.2. For the theoretical performance evaluation we distinguish between
broadcast communication and direct point-to-point communication. For our
experimental performance evaluation we focus on measuring the computation
time of the protocols. Practical communication times highly depend on the net-
work infrastructure. Our measurements are for honest executions of the pro-
tocols. Protocol runs with malicious parties may take longer as they require
additional steps for resolving conflicts.

188 M. Geihs et al.

Table 1. Computation and communication complexity of the protocols Share, Reshare,
and Reconstruct of our proactive secret sharing system. COMP denotes the com-
putation complexity measured in the number of modular exponentiations for modulus
p ≈ 28M , BC-OUT denotes the outgoing broadcast traffic, BC-IN denotes the incom-
ing broadcast traffic, DIR-OUT denotes the outgoing directed point-to-point traffic,
and DIR-IN denotes the incoming directed point-to-point traffic, where the traffic is
measured in bytes.

COMP BC-OUT BC-IN DIR-OUT DIR-IN

Share � D
LM �(N − T)

∗(L + 1) for D
� D
LM �(N − T)C

for D
� D
LM �(N − T)C

for Si

� D
LM �N(L+1)M

for D
� D
LM �(L + 1)M

for Si

Reshare � D
LM �(2N −

T)(L + 1) for Si

� D
LM �(2(N −

T) + 1)C for Si

� D
LM �N(2(N −

T) + 1)C for Si

� D
LM �N(L+1)M

for Si

� D
LM �N(L+1)M

for Si

Reconstruct � D
LM �(N −

T)(L + 1) for D
0 0 � D

LM �(L +

1)M + (N − T)C

for Si

� D
LM �N((L +

1)M+(N −T)C)

for D

Theoretical Performance. In Table 1 we present the computation and com-
munication complexity of the protocols Share, Reshare, and Reconstruct of our
proactive secret sharing system. For the computation complexity, we count the
number of modular exponentiations during commitment generation and verifi-
cation because these typically account for more than 90% of the computation
time, as can be seen from the runtime profile of the implementation. For the
communication complexity, we count the number of shares and commitments
that are transmitted and multiply these counts with the respective sizes of these
elements. In Fig. 3 we plot the communication performance as a function of the
vector length L. We observe that especially the broadcast communication per
party can be drastically reduced by increasing the vector length L. The effect
of increasing L on direct communication is noticeable for small L. We observe
that in comparison to standard proactive secret sharing (i.e., L = 1) our vector
proactive secret sharing scheme uses only 1

L the communication, that is, for large
L the communication complexity is comparable with the optimal communication
complexity of standard secret sharing [18].

1 2 4 8 16 32 64 128
0

10

20

Vector Length L

D
at
a
in

M
B BC-OUT (per Si)

BC-IN (per Si)
DIR-OUT (per Si)
DIR-IN (per Si)

Fig. 3. Network communication during protocol Reshare plotted over the vector length
L for N = 3, T = 1, D = 128 kB, M = 32 B, where L = 1 represents [12].

Efficient Proactive Secret Sharing for Large Data 189

Experimental Performance. For the experimental performance evaluation
we focus on measuring the computation time of the protocols, as practical com-
munication times highly depend on the network infrastructure and would require
a more advanced implementation and testbed. In Fig. 4 we show the measured
running times for protocols Share, Reshare, and Reconstruct for M = 32 and
different message vector lengths L. We observe that we reduce the computation
time by up to 50% when we increase the vector length L, as predicted by the
theoretical complexity evaluation. Increasing the message space size M does not
improve performance significantly as modular exponentiations are more expen-
sive for larger M .

1 2 4 8 16 32 64 128
0

20

40

60

Vector Length L

T
im

e
in

se
co
nd

s

Share Reshare Reconstruct

Fig. 4. Measured running times for protocols Share, Reshare, and Reconstruct plotted
over the vector length L for N = 3, T = 1, D = 128 kB, M = 32 B.

5 Conclusions

We presented a vector proactive secret sharing scheme that allows for drastically
reduced communication and computation costs. Concretely, when instantiated
with the vector commitment scheme described in Subsect. 4.1 our scheme reduces
computation costs by 50% and broadcast communication costs by a factor L,
where L is the length of the commitment scheme message vectors, compared to
the scheme of [12].

We see several directions for future work. While our scheme achieves almost
optimal communication performance, the computation times are still a bottle
neck. It would be worthwhile to explore whether there exist suitable vector
commitment schemes that are computationally more efficient. Furthermore, the
vector commitment scheme used by us is based on the discrete logarithm prob-
lem which is susceptible to quantum computer attacks. It would be worthwhile
to explore suitable vector commitment schemes that are secure against quantum
computers. In [13], Kate, Zaverucha, and Goldberg propose polynomial commit-
ments and show how they can be used to reduce the communication complexity
of verifiable secret sharing. However, they do not study the implications for
proactive secret sharing. It would be interesting to see whether their techniques

190 M. Geihs et al.

can be combined with our techniques in order to further reduce the communi-
cation complexity of our vector proactive secret sharing scheme. Besides that, it
would be interesting to extend our scheme to the asynchronous network setting
where a global clock is not available to the participating network parties.

Acknowledgments. This work has been co-funded by the DFG as part of project S6
within the CRC 1119 CROSSING.

A Proofs

Proof (Proof of Theorem 4). Let G be a finite cyclic group, p be the order of
G, and L ∈ N, DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open), and
m = (m1, . . . ,mL) ∈ Z

L
p .

We observe that for Setup() → ρ, we have ρ = (g0, . . . , gL) ∈ GEN(G)L.
Furthermore, we observe that if Commit(ρ,m) → (c, d), then c = EXP(g0, d) ◦
©L

i=1EXP(gi,mi). It follows that Open(ρ,m, c, d) = 1. ��
Proof (Proof of Theorem 5). Let G be a finite cyclic group associated with oper-
ation ◦, L ∈ N, and DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open).
We observe that for all ρ ∈ GEN(G)L, m ∈ Z

L
p , c∗ ∈ G, by the definition of

Commit and because g is a generator, we have

Pr
[

c = c∗ :
Commit(ρ,m)→ (c, d)

]

= Pr
[

c = c∗ :
U(Zp)→ d, c← EXP(g0, d)©L

i=1 EXP(gi,mi)

]

= Pr
[

c = c∗ :
U(G)→ c

]
,

where ρ = (g0, . . . , gL) and m = (m1, . . . ,mL). ��
Proof (Proof of Theorem 6). The following proof is adapted from Section 2.3.2
of [6].

Let G be a finite cyclic group of prime order p, DLVCG,L = (L,GEN(G)L,
Zp,G,Zp,Setup,Commit,Open), g ∈ GEN(G), τ ∈ N, and A ∈ Algo(τ). In the
following, we prove an upper bound on

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]
.

Let B be an algorithm that takes as input y ∈ G and works as follows. Sample
U(Zp) → a0 and for i ∈ [L], U(Z2

p) → (ai, bi). Compute g0 ← EXP(g, a0) and
for i ∈ [L], gi ← EXP(g, ai) ◦ EXP(y, bi). Run A((g0, . . . , gL))→ (c,m, d,m′, d′).
If Open(ρ,m, c, d) = 0 or Open(ρ,m′, c, d′) = 0, output ⊥. Otherwise, proceed
as follows. Let m = (m0, . . . ,mL) ∈ Z

L
p and m′ = (m′

0, . . . ,m
′
L) ∈ Z

L
p . Compute

a← a0(d−d′)+
∑

i∈[L] ai(mi−m′
i) and b←∑

i∈[L] bi(m
′
i−mi). If b = 0, output

⊥. Otherwise, compute x← a
b and output x.

Efficient Proactive Secret Sharing for Large Data 191

We observe that because the ai’s are uniformly distributed and g is a gen-
erator, the gi’s are also uniformly distributed. This means that (g0, . . . , gL) has
the same distribution as ρ generated by Setup(). It follows that

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

U(G)→ y,B(y)→ x

]
.

Using sigma additivity we write

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

U(G)→ y,B(y)→ x

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b = 0 :

U(G)→ y,B(y)→ x

]

+ Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b �= 0 :

U(G)→ y,B(y)→ x

]
.

The first term is upper-bounded by 1
p , as can be seen as follows:

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b = 0 :

U(G)→ y,B(y)→ x

]

≤ Pr
[

m �= m′ ∧ b = 0 :
U(G)→ y,B(y)→ x

]

= Pr
[
m �= m′ ∧∑

j∈[L] bj(m
′
j −mj) = 0 :

U(G)→ y,B(y)→ x

]

≤ Pr

[
∃i ∈ [L],mi �= m′

i ∧ bi =
− ∑

j∈[L]\{i} bj(m
′
j−mj)

(m′
i−mi)

:
U(G)→ y,B(y)→ x

]
=

1
p

.

Next we prove that the second term is upper-bounded by

Pr
[

EXP(g, x) = y :
U(G)→ y,B(y)→ x

]
.

We observe that if b �= 0, then Open(ρ,m, c, d) = 1, Open(ρ,m′, c, d′) = 1,
m �= m′, and

EXP(g0, d) ©i∈[L] EXP(gi,mi) = EXP(g0, d
′) ©i∈[L] EXP(gi,m

′
i)

⇐⇒ EXP(g0, d − d′) ©i∈[L] EXP(gi,mi − m′
i) = eG

⇐⇒ EXP

⎛
⎝g, a0(d − d′) +

∑
i∈[L]

ai(mi − m′
i)

⎞
⎠ ◦ EXP

⎛
⎝y,

∑
i∈[L]

bi(mi − m′
i)

⎞
⎠ = eG

⇐⇒ EXP

⎛
⎝g, a0(d − d′) +

∑
i∈[L]

ai(mi − m′
i)

⎞
⎠ = EXP

⎛
⎝y,

∑
i∈[L]

bi(m
′
i − mi)

⎞
⎠

⇐⇒ EXP
(
g,

a

b

)
= y .

192 M. Geihs et al.

It follows that

Pr
[
EXP(g, a

b) = y ∧ b �= 0 :
U(G)→ y,B(y)→ x

]

= Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ ∧ b �= 0 :

U(G)→ y,B(y)→ x

]
.

By the fact that b = 0 implies x = ⊥ and EXP(g,⊥) �∈ G, we have

Pr
[
EXP(g, x) = y ∧ b �= 0 :
U(G)→ y,B(y)→ x

]
= Pr

[
EXP(g, x) = y :

U(G)→ y,B(y)→ x

]
.

In summary, we obtain

Pr
[
Open(ρ,m, c, d) = 1 ∧ Open(ρ,m′, c, d′) = 1 ∧m �= m′ :

Setup()→ ρ,A(ρ)→ (c,m, d,m′, d′)

]

≤ Pr
[

EXP(g, x) = y :
U(G)→ y,B(y)→ x

]
+

1
p

.

Finally, we observe that the running time of B is upper-bounded by τ + α,
where α is the constant difference between the running time of B and the running
time of A. It follows that if DLOG(G, g) is ε-hard, then DLVCG,L is ε′-binding-
secure with

ε′ : τ �→ ε(τ + α) +
1
p

.

��
Proof (Proof of Theorem 7). Let G be a finite cyclic group, L ∈ N, and
DLVCG,L = (L,GEN(G)L,Zp,G,Zp,Setup,Commit,Open). Let ◦ denote the
operation associated with G, + and ∗ denote addition and multiplication
over Zp, and ⊕ denote addition over Z

L
p . We observe that for any ρ ∈ P,

(m1, c1, d1) ∈ COMS(ρ), and (m2, c2, d2) ∈ COMS(ρ) we have that

(m1, c1, d1) ∈ COMS(ρ) ∧ (m2, c2, d2) ∈ COMS(ρ)

=⇒
(
EXP(g0, d1)©i∈[L] EXP(gi,m1,i)

)
= c1

∧ (
EXP(g0, d2)©i∈[L] EXP(gi,m2,i)

)
= c2

=⇒
(
EXP(g0, d1)©i∈[L] EXP(gi,m1,i)

)
◦ (

EXP(g0, d2)©i∈[L] EXP(gi,m2,i)
)

= c1 ◦ c2

⇐⇒ EXP(g0, d1 + d2)©i∈[L] EXP(gi,m1,i + m2,i) = c1 ◦ c2

⇐⇒ Open(ρ,m1 ⊕m2, c1 ∗ c2, d1 ◦ d2) = 1 .

��

References

1. Baron, J., Defrawy, K.E., Lampkins, J., Ostrovsky, R.: Communication-optimal
proactive secret sharing for dynamic groups. In: Malkin, T., Kolesnikov, V., Lewko,
A.B., Polychronakis, M. (eds.) ACNS 2015. LNCS, vol. 9092, pp. 23–41. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-28166-7 2

https://doi.org/10.1007/978-3-319-28166-7_2

Efficient Proactive Secret Sharing for Large Data 193

2. Baron, J., El Defrawy, K., Lampkins, J., Ostrovsky, R.: How to withstand
mobile virus attacks, revisited. In: Proceedings of the 2014 ACM Sympo-
sium on Principles of Distributed Computing, PODC 2014, pp. 293–302. ACM,
New York (2014). https://doi.org/10.1145/2611462.2611474. http://doi.acm.org/
10.1145/2611462.2611474

3. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of
triple encryption. Cryptology ePrint Archive, Report 2004/331 (2004). https://
eprint.iacr.org/2004/331

4. Bellare, M., Rogaway, P.: The security of triple encryption and a framework
for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 25

5. Blakley, G.R.: Safeguarding cryptographic keys. In: International Workshop on
Managing Requirements Knowledge (AFIPS), December 1979. https://doi.org/10.
1109/AFIPS.1979.98. doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98

6. Brands, S.A.: Rethinking Public Key Infrastructures and Digital Certificates:
Building in Privacy. MIT Press, Cambridge (2000)

7. Cachin, C., Kursawe, K., Lysyanskaya, A., Strobl, R.: Asynchronous verifiable
secret sharing and proactive cryptosystems. In: Proceedings of the 9th ACM Con-
ference on Computer and Communications Security, CCS 2002, pp. 88–97. ACM,
New York (2002). https://doi.org/10.1145/586110.586124. http://doi.acm.org/10.
1145/586110.586124

8. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa,
K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 55–72. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36362-7 5

9. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst.
Sci. 28(2), 270–299 (1984). https://doi.org/10.1016/0022-0000(84)90070-9.
http://www.sciencedirect.com/science/article/pii/0022000084900709

10. Groth, J.: Linear algebra with sub-linear zero-knowledge arguments. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 192–208. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 12

11. Gupta, V.H., Gopinath, K.: g2its VSR: an information theoretical secure verifiable
secret redistribution protocol for long-term archival storage. In: Fourth Interna-
tional IEEE Security in Storage Workshop, pp. 22–33, September 2007. https://
doi.org/10.1109/SISW.2007.11

12. Herzberg, A., Jarecki, S., Krawczyk, H., Yung, M.: Proactive secret sharing or: how
to cope with perpetual leakage. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS,
vol. 963, pp. 339–352. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
44750-4 27

13. Kate, A., Zaverucha, G.M., Goldberg, I.: Constant-size commitments to polyno-
mials and their applications. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol.
6477, pp. 177–194. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17373-8 11

14. Nikov, V., Nikova, S.: On proactive secret sharing schemes. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 308–325. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30564-4 22

15. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1145/2611462.2611474
http://doi.acm.org/10.1145/2611462.2611474
http://doi.acm.org/10.1145/2611462.2611474
https://eprint.iacr.org/2004/331
https://eprint.iacr.org/2004/331
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1109/AFIPS.1979.98
https://doi.org/10.1109/AFIPS.1979.98
http://doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98
https://doi.org/10.1145/586110.586124
http://doi.acm.org/10.1145/586110.586124
http://doi.acm.org/10.1145/586110.586124
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1016/0022-0000(84)90070-9
http://www.sciencedirect.com/science/article/pii/0022000084900709
https://doi.org/10.1007/978-3-642-03356-8_12
https://doi.org/10.1109/SISW.2007.11
https://doi.org/10.1109/SISW.2007.11
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/3-540-44750-4_27
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-540-30564-4_22
https://doi.org/10.1007/3-540-46766-1_9

194 M. Geihs et al.

16. Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: why sub-
tleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 244–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44987-6 16

17. Schultz, D., Liskov, B., Liskov, M.: MPSS: mobile proactive secret sharing. ACM
Trans. Inf. Syst. Secur. 13(4), 341–3432 (2010). https://doi.org/10.1145/1880022.
1880028. http://doi.acm.org/10.1145/1880022.1880028

18. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://
doi.org/10.1145/359168.359176. http://doi.acm.org/10.1145/359168.359176

19. Wong, T.M., Wang, C., Wing, J.M.: Verifiable secret redistribution for archive sys-
tems. In: Proceedings of the First International IEEE Security in Storage Work-
shop, pp. 94–105, December 2002. https://doi.org/10.1109/SISW.2002.1183515

20. Zhou, L., Schneider, F.B., Van Renesse, R.: APSS: proactive secret sharing in
asynchronous systems. ACM Trans. Inf. Syst. Secur. 8(3), 259–286 (2005). https://
doi.org/10.1145/1085126.1085127. http://doi.acm.org/10.1145/1085126.1085127

https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1007/3-540-44987-6_16
https://doi.org/10.1145/1880022.1880028
https://doi.org/10.1145/1880022.1880028
http://doi.acm.org/10.1145/1880022.1880028
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
https://doi.org/10.1109/SISW.2002.1183515
https://doi.org/10.1145/1085126.1085127
https://doi.org/10.1145/1085126.1085127
http://doi.acm.org/10.1145/1085126.1085127

Secret Sharing Using Near-MDS Codes

Sanyam Mehta2, Vishal Saraswat1(B), and Smith Sen2

1 Robert Bosch Engineering and Business Solutions Pvt. Ltd. (RBEI/ESY),
Bangalore, India

vishal.saraswat@gmail.com
2 Birla Institute of Technology and Science, Pilani, K. K. Birla Goa Campus,

Goa, India
{f20140526,f20140896}@goa.bits-pilani.ac.in

Abstract. We propose a generalized secret sharing scheme based on
NMDS codes. The proposed scheme is efficient and the computational
complexity for setup and reconstruction phase is only O(n3), where n
is the number of participants. The scheme admits an access structure
based on two mutually exclusive sets of participant combinations of sizes
t and t − 1 respectively. The parameter t for the access structure is
independent of the field size. The proposed scheme is ideal and perfect
and has desirable security features of cheating detection and cheater
identification. We also provide a cryptanalysis of the (t + 1, n) threshold
secret sharing scheme based on NMDS codes proposed in [12]. We show
that their scheme is insecure and that there always exists a set of m
participants, where m < t + 1, which can reconstruct the secret.

Keywords: Secret sharing · Generalized access structure ·
MDS codes · Near-MDS codes

1 Introduction

Secret sharing schemes were independently proposed by Blakley [2] and
Shamir [11] in 1979. The scheme by Shamir is based on linear algebra and the
standard Lagrange’s interpolation while the scheme given by Blakley is built
upon the idea of finite geometries, particularly on the concept of intersection of
hyperplanes. These were the first threshold secret sharing schemes which allowed
a secret s to be split into n shares which could be distributed among n partic-
ipants (or users), P = {P1, . . . , Pn}, in such a way that for some threshold t,
1 ≤ t ≤ n, any group of t or more participants could pool in their shares to
reconstruct the secret but if the number of participants in a group is less than
the threshold t, then that group does not get any extra information about the
secret.

Note that a threshold secret sharing scheme makes the authorized sets rigid.
Consider a hypothetical situation of a firm, where we have three levels of the
workforce, namely, directors, managers and employees. To access the key for a

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 195–214, 2019.
https://doi.org/10.1007/978-3-030-16458-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_12&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_12

196 S. Mehta et al.

certain new product launched, the firm does not want every employee to open
up the locker. So naturally more power has to be given to the directors and
managers than the employees. This in turn means, maybe less directors can
pool their shares to find the secret. Comparatively more managers and even
more employees should be required to find the secret. This type of flexibility is
not directly possible with a threshold access structure.

To overcome the problems arising in the scenario above, Ito et al. [7] intro-
duced the concept of a generalized access structure which contains all the possible
sets of participants who can reconstruct the secret. They proposed a secret shar-
ing scheme which admitted a generalized access structure irrespective of the size
of each set. Every participant is assigned several shadows of a (t, n)-threshold
secret sharing scheme by the dealer. For integers t, m and q satisfying t ≤ m < q,
q being a prime power, the dealer

– samples α1, . . . , αt−2 from GF(q) and αt−1 from GF(q) − {0} and constructs
f(x) = s + α1x + α2x

2 + · · · + αt−1x
t−1, where the secret is f(0) = s.

– samples x1, . . . , xm from GF(q) − {0} and computes sj = f(xj) (1 ≤ j ≤ m).
– chooses Si ⊂ {(x1, s1), . . . , (xm, sm)} and assigns Si to each participant Pi

(1 ≤ i ≤ |P|).

In this scheme, the access structure Λ can be defined as the sets in which
the union of all the shares of the participants has cardinality greater than t. In
case the minimal subsets are big, this scheme turns out to be ineffective. At the
same time, for this access structure, Shamir’s Scheme gives each party a share
equal to the size of the secret.

Later, Benaloh and Leichter [1] proposed a simpler and relatively efficient
secret sharing scheme exploiting the monotonicity property of access structures
in secret sharing schemes. The proposed scheme begins with multiple schemes
for simple access structures and creates a scheme for composition of those access
structures. Thus, the scheme by Benaloh and Leichter efficiently realizes every
access structure that can be described by small monotone formula. Even though
this construction is more efficient and generalizes the scheme proposed by Ito
et al. [7], the length of shares become exponential in the number of parties.

All the above schemes were linear secret sharing schemes which can be mod-
elled using monotone span programs [8]. These are essentially matrices describing
a linear mapping of a linear scheme. These variations are very efficient to imple-
ment. Around the same time, the following advantages of using linear codes,
instead of arbitrary matrices, for designing secret sharing schemes were observed.

– Easier to detect errors and easy transmission.
– Can be defined using a single generator matrix.
– Schemes were still efficient although features for verification and cheating

detection and identification were included.

Some of such constructions are based on Maximum Distance Separable
(MDS) matrices [10] where the dealer chooses an MDS matrix A of dimension
k×n and a vector v of dimension 1×k, and computes the codeword v · A whose
first element is the desired secret.

Secret Sharing Using Near-MDS Codes 197

These schemes have been extensively used as they are easier to implement. It
has been observed that NMDS matrices have better computational performance
than MDS matrices. NMDS matrices require less storage than MDS matrices,
do not require additional clock cycles and have sub-optimal branch numbers [9].
Some lightweight block ciphers have already been using NMDS matrices for
their diffusion layer which includes ciphers like PRINCE, FIDES, PRIDE and
MANTIS due to its benefits of low power, low energy and low latency in imple-
mentations. Due to all these, it will be useful to implement a secret sharing
scheme using NMDS codes as well. The advantages of using NMDS codes for
making a secret sharing scheme are as follows,

– Easy to implement and less space consuming
– Does not require additional clock cycles
– Difficult to identify the generator matrix of the code for an adversary
– Richer access structure than MDS secret sharing
– Has the property of cheating detection and identification like MDS secret

sharing

Considering Shamir’s secret sharing scheme, one can observe that a dishonest
participant cannot find the secret by giving a wrong share but can misguide the
honest participants by getting a wrong key which ultimately results in failure
for the authorized set of participants to obtain the correct secret. Numerous
solutions have been suggested in literature to solve this issue and retrieve the
accurate secret. Some propose error correcting codes where a tampered share is
treated as an error and is corrected using the error correcting property of code.
While, some other propose to use a protocol where dealer validates individual
shares in an authorized set to detect and rectify any tampering of shares. One
plausible way is to use check vectors that dealer uses as certification for each
participant. Some such schemes have been reviewed in Sect. 3.

Most of the initial secret sharing schemes had issues with trusted third par-
ties (dealers and combiners) as well as cheating detection and identification. One
of the modifications of Shamir’s scheme for cheating detection and correction is
proposed by Lein et al. in [5]. It is assumed that m > t number of partici-
pants have to come up with their shares, where t is the threshold, giving the
participants

(
m
t

)
ways to pool their shares. For each way we get a degree t − 1

polynomial by interpolation which can be checked with the original polynomial.
Participants who are present in the majority of groups and couldn’t recover the
same polynomial are grouped as possible cheaters and shares are corrected recur-
sively unless there is no cheater left in the group of participants. They provide
the algorithm for cheating detection and cheating correction by trading off the
time and space-complexities for computing the secret to prevent cheating.

1.1 Organization

In this paper, we have introduced some essential definitions, problems and
assumptions related to the scheme in Sect. 2. Further we have discussed in Sect. 3

198 S. Mehta et al.

some of the previous work done on secret sharing schemes formed using MDS
(Maximum Distance Separable) and NMDS (Near-Maximum Distance Separa-
ble) codes. In Sect. 4, we have analyzed and discussed the shortcomings of the
scheme proposed by Zhou et al. [12]. The proposed secret sharing scheme is
presented in Sect. 5 and its security analyzed in Sect. 6. Finally, we provide a
concrete instantiation of the proposed scheme in the Appendix A.

2 Preliminaries

The assignment operator is denoted by “←”. In particular, the operation of
running a randomized or deterministic algorithm A with input x and storing the
result to the variable y is denoted by y ← A(x). The operation of choosing an
element x of a set X randomly at uniform from X is denoted by x

$← X and the
operation of choosing an element x of X according to a distribution μ on a set X
is denoted by x

µ← X. For a given function f : N → [0, 1] is said to be negligible
in n if f(n) < 1/p(n) for a polynomial p and having sufficiently large n.

2.1 Coding Theory

Definition 1 (Block Codes). Let An be the set of all strings of length n over
A, where A = {a0, . . . aq−1}. Any nonempty subset C of A

n is called a q-ary
block code of length n and each string in C is called a codeword.

Definition 2 (Hamming Distance). If c and d are two codewords of length
n, the hamming distance d(c,d) is the number of positions at which c and d
differ. The hamming weight d(c) of a codeword c ∈ C is defined to the number
of its non-zero coordinate positions.

Definition 3 (Minimum Distance). The minimum distance of a code C is
defined as

d(C) = min
c,d∈C

d(c,d) .

Definition 4 (Linear Code). A linear code, L, of length n is a linear subspace
of Fn

q where Fq = GF(q) is the Galois Field of order q = pm for some prime p
and power m ≥ 1. If L has a dimension k, we say it is an [n, k] code. Further,
if its minimum distance is d, we say L is an [n, k, d]-code.

Definition 5 (Generator Matrix). A generator matrix, of a linear [n, k, d]
code, L, is a m × n matrix, m ≥ k, whose rows span L. That is, every codeword
c ∈ L is a linear combination of the rows of the generator matrix, G, and for
every v ∈ F

m
q , v · G is a codeword in L.

Remark 1. For the purposes of this paper, we will assume that the number of
rows in generator matrices is equal to the dimension of the code. That is, if G
is a generator matrix of a linear [n, k, d] code, L, then G is a k × n matrix and
its rows form a basis of L.

Secret Sharing Using Near-MDS Codes 199

Definition 6 (Standard Form of a Generator Matrix). A generator
matrix, G, of a linear [n, k, d] code, L, is said to be in the standard form if
G = [Ik | A], where Ik is the identity matrix of size k × k and A is a k × (n − k)
matrix. For such G, the code L is said to systematic in its first k coordinate
positions.

Remark 2. Any k×(n−k) matrix, A, defines a linear [n, k, d] code, L, completely
by defining the standard form of a generator matrix, G = [Ik | A], for L.

Definition 7 (Support of a Code). Let C be a code over Fq. The support,
Supp(c), of a codeword c ∈ C is defined to be the set of its non-zero coordinate
positions. The support, Supp(C), of the code C is defined to be

Supp(C) = ∪c∈CSupp(c) .

Definition 8 (Generalized Hamming Distance). The minimum cardinality
of the supports of the [n, r]-subcodes of C, for 1 ≤ r ≤ k, is called the rth
generalized hamming distance drC. That is,

drC = min{|SuppD| : D is [n, r]q subcode of C} .

Remark 3. Note that d1(C) = d(C) is the Hamming Distance of C.

Proposition 1 (Hierarchy of Hamming Weights). For every linear [n, k]q
code C,

0 < d1(C) < d2(C) < · · · < dk(C) ≤ n .

Definition 9 (The Singleton Bound). The singleton bound states that any
[n, k, d]-code must satisfy

qk ≤ qn−d+1 .

In particular, d ≤ n + 1 − k.

Definition 10 (The Generalized Singleton Bound). The rth generalized
singleton bound is given by dr(C)

dr(C) ≤ n − k + r where r = 1, 2, . . . , k .

Definition 11 (Maximum Distance Separable Codes). A linear [n, k, n+
1 − k]-code, that is, an [n, k]-code with largest possible minimum distance, is
called a maximum distance separable (MDS) code.

Proposition 2 (Properties of MDS Matrices). Given an [n, k, d] MDS
code, L, over Fq, the accompanying explanations are proportionate.

1. If G = [Ik | A] is a generator matrix of L in standard form, then every square
submatrix of A is non-singular.

2. Any k columns of a generator matrix for L are linearly independent.
3. Any n − k columns of a parity check matrix for L are linearly independent.

200 S. Mehta et al.

Definition 12 Almost-MDS Codes). The class of codes with d1(C) = n − k
are called almost-MDS (AMDS) codes.

Definition 13 (Near-MDS Codes). The class of codes with d1(C) = n − k
and di(C) = n − k + i, for i = 2, 3, . . . , k, are called Near-MDS (NMDS) codes.
Equivalently, a code is NMDS if and only if d1(C) = n − k and d1(C⊥) = k.

Proposition 3 (Properties of Near-MDS Matrices). A linear [n, k] code
is Near-MDS if and only if its generator matrix satisfies the following conditions

1. Any k − 1 columns of the generator matrix are linearly independent.
2. Any k + 1 columns of the generator matrix are of rank k.
3. There exists a set of k linearly dependent columns in the generator matrix.

2.2 Secret Sharing

A secret sharing scheme is a shared control scheme in which a dealer D splits a
secret s into n shares s1, . . . , sn and distributes these to a set P = {P1, . . . , Pn} of
n participants (or users) such that while certain groups of participants (subsets
of P) can reconstruct the secret from their shares (possibly by submitting their
shares to a combiner C), others cannot.

Definition 14 (Access Structure). An access structure Λ on a set of partic-
ipants P is a subset of 2P such that sets in Λ can reconstruct the secret but sets
not in Λ cannot. Elements of Λ are termed to be authorized sets while the sets
not in Λ are called unauthorized sets.

Definition 15 (Monotone Property). A collection Λ ⊆ 2P is called mono-
tone if for all A ⊆ B ⊆ P, if A ∈ Λ then B ∈ Λ. In other words, if A is in the
access structure Λ and B is a superset of A then B is also present in Λ.

Definition 16 (Distribution Scheme). A distribution scheme, ΠP,S,R,μ, with
a domain of secrets S, a set of strings R and a probability distribution μ on R, is
a system which on input a secret s ∈ S, chooses a random string r

µ← R sampled
in agreement with μ, and computes a vector of shares ΠP,S,R,μ(s) = (s1, . . . , sn),
and communicates each share sj to Pj via a secure channel.

Definition 17 (Secret Sharing Scheme). A secret sharing scheme,
ΓP,S,R,μ,Λ, is a distribution scheme ΠP,S,R,μ along with a reconstruction func-
tion, RECON, realizing the access structure Λ.

Remark 4. When any of P, S, R, μ and Λ are clear from the context, we may
not specify the respective subscripts in ΠP,S,R,μ and ΓP,S,R,μ,Λ.

Definition 18 (Threshold Secret Sharing Scheme). If the access structure
Λ ⊆ 2P is defined by

A ∈ Λ ⇐⇒ |A| ≥ t ,

for some t ∈ {1, 2, . . . , n}, then we call the secret sharing scheme a (t, n) thresh-
old secret sharing scheme. That is, in a (t, n)-threshold secret sharing scheme,
any set of at least t participants should be able to retrieve the secret but any set
of t − 1 or less participants must not be able to find the secret.

Secret Sharing Using Near-MDS Codes 201

Definition 19 (Generalized Secret Sharing Scheme). If the access struc-
ture Λ ⊆ 2P does not have restrictions such as in the case of threshold secret
sharing schemes, then we call the secret sharing scheme a generalized secret
sharing scheme.

Definition 20 (Correctness). A secret sharing scheme ΓP,S,R,μ,Λ is said to
be correct if the secret can be reconstructed by any authorized set of parties by
pooling in their shares. That is, for the access structure Λ, for any set A ∈ Λ,
and for any key s ∈ S, Pr[RECON(A) = s] = 1.

Definition 21 (Perfect Secret Sharing). A secret sharing scheme is said to
be perfect if, in information theoretic sense, an unauthorized set is unable to
learn anything about the secret from their pool of shares. Formally, for every
possible pair of secrets a, b ∈ S, for any set A �∈ Λ and a vector of shares
〈sj〉Pj∈A,

Pr[Π(a, r)A = 〈sj〉Pj∈A] = Pr[Π(b, r)A = 〈sj〉Pj∈A]

That is, the probability of finding a secret by an unauthorized set is equivalent
to the probability of finding the secret randomly from the set of secrets S.

Definition 22 (Information Rate). The information rate, ρ, of a secret shar-
ing scheme is the ratio between the length of the secret to that of the shares which
will be allocated to the participants. That is, if S is the set of all possible secrets
and T is the set of all possible shares, then

ρ =
log |S|
log |T | .

Definition 23 (Ideal Secret Sharing Scheme). A secret sharing scheme is
said to be ideal if the key space and the share space are same. More specifically,
a scheme is considered to be ideal if information rate is equal to one, that is, the
maximum possible value of ρ.

Definition 24 (Linear Secret Sharing Scheme). A secret sharing scheme Γ
is called linear over GF(q), if there exists a matrix G ∈ GF(q)k×n and a vector
v = (v0, v1, . . . , vk−1) ∈ GF(q)k, such that v · G = (s0, s1, . . . , sn−1) gives the
vector of shares.

Definition 25 (Cheating Detection). In the secret reconstruction phase of
the scheme, when a participant or group of participants, Ac, give wrong share(s),
an authorized set might fail to retrieve the secret, or an unauthorized set might
be able to find the secret. The security against such kind of attacks is known as
cheating detection.

Definition 26 (Cheater Identification). If any participant Pi produces an
incorrect share s′

i �= si during the reconstruction phase of the secret, then with
the error probability of ε, Pi will be identified as a cheater and will be put in the
set of cheaters Ac. This is known as cheater identification. Cheater identification
claims that the error probability ε is negligible.

202 S. Mehta et al.

3 Related Work

In this section, we review the secret sharing scheme proposed by Zhou et al. [12]
which is based on NMDS (Near-Maximum Distance Separable) codes. To the
best of our knowledge, this is the first scheme based on NMDS codes. The scheme
claims to be perfect and have an access structure such that at least k participants
must come together to construct the secret. Unfortunately, the claims are not
correct as we show in Sect. 4.

3.1 Share Construction

In this scheme, the dealer constructs the shares for each participant by selecting
a generator matrix G of an [n+1, k, n+1−k] NMDS code and a random vector
v = (v0, v1, . . . , vk−1) of length k. Using the vector, the dealer calculates the
codeword (s0, s1, . . . , sn) by multiplying v and G. That is,

(s0, s1, . . . , sn) = (v0, v1, . . . , vk−1) · G .

Here s0 is considered as the secret and si’s are the shares of participants Pi’s,
where 1 ≤ i ≤ n.

3.2 Secret Reconstruction

The reconstruction of the secret is based on the property of NMDS matrices that
in a generator matrix of a NMDS code any k + 1 columns have rank k.

Let Pj0 , Pj1 , . . . , Pjm−1 , m > k, be the participants who come together to
find the secret. They pool their shares forming the codeword (sj0 , sj1 , . . . , sjm−1)
and construct the corresponding submatrix

G′ = (gj0 ,gj1 , . . . ,gjm−1)

where gji is the (ji + 1)th column of the matrix G.
Since G is an NMDS matrix and m ≥ k +1, the submatrix G′ is of full rank,

the system of linear equations

(sj0 , sj2 , . . . , sjm−1) = (v0, v1, . . . , vk−1) · G′

can be uniquely solved for (v0, v1, . . . , vk−1).
Then the secret s0 can be calculated as s[0] where

s = (v0, v1, . . . , vk−1) · g0G

where g0G is the first column of G.

Secret Sharing Using Near-MDS Codes 203

Algorithm 1. Secret Reconstruction for the Secret Sharing Scheme in [12]
Input: Generator matrix G, number of participants m, collected set of shares

1: if (m < k + 1) then return “The secret cannot be recovered!” end if
2: G′ ← [columns of G corresponding to first k + 1 shares available]
3: G′ ← [first k linearly independent column vectors of G′]
4: (sj0 , sj1 , . . . , sjk−1) ← [shares corresponding to the columns of G′]
5: (v0, v1, . . . , vk−1) ← (sj0 , sj1 , . . . , sjk−1) · (G′)−1

6: s ← (v0, v1, . . . , vk−1) · G′

7: secret ← s[0]

Output: Secret secret

4 Attack on the Scheme in [12]

It has been stated in [12] that the scheme is ideal and perfect. This scheme is
also claimed to have security characterization of cheating detection and cheating
verification. However, we show that the scheme is not perfect and will show
that there exist unauthorized sets of participants, that is, sets with k or less
number of participants who are able to reconstruct the secret. Since the rank
of the submatrix formed using any k + 1 columns in an [n + 1, k, n + 1 − k]
NMDS matrix is k, there will also exist k participants among the given k + 1
participants, who can generate the secret independently. In fact, we show that
there may exist sets of only k − 1 participants who can generate the secret.

As an illustration of the flaw, we give an instantiation of the scheme formed
using the [12, 6, 6] NMDS matrix G in F5, given in [4].

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 4 2 0 3 1 2
0 0 1 0 0 0 1 3 1 0 2 2
0 0 0 1 0 0 2 4 4 3 3 2
0 0 0 0 1 0 4 1 2 1 3 2
0 0 0 0 0 1 0 1 4 2 4 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

According to the given scheme, the minimum number of participants in an
authorized set is 7 since k +1 = 7. The secret corresponds to the first column. If
we denote the (i+1)th row by ri, then a codeword formed from a [n+1, k, n+1−k]
NMDS matrix is of the form α0r0 + α1r1 + · · · + αk−1rk−1 where the secret is
α0. Therefore, the codeword s formed from the matrix G is

s = (α0, α1, α2, α3, α4, α5,

α0 + 4α1 + α2 + 2α3 + 4α4,

α0 + 2α1 + 3α2 + 4α3 + α4 + α5,

α0 + α2 + 4α3 + 2α4 + 4α5,

α0 + 3α1 + 3α3 + α4 + 2α5,

α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5,

α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5) .

204 S. Mehta et al.

Share Reconstruction with only 6 Participants: {P1, P2, P3, P4, P5, P7}.
The row reduced form of the columns corresponding to these participants is

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3
0 1 0 0 0 0 2
0 0 1 0 0 0 1
0 0 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

where the last column corresponds to the secret, that is the first column of G.
Note that, if gi denotes the (i + 1)th column of G′, then g0 = 3g1 + 2g2 +

g3 + 4g4 + 4g5 + g7. Therefore the shares corresponding to these columns also
satisfy the same equation, that is, α0 = 3α1 + 2α2 + α3 + 4α4 + 4α5 + α7 where
α7 = α0 + 2α1 + 3α2 + 4α3 + α4 + α5. Therefore, the secret α0 can be recovered
by the given set of 6 participants.

Share Reconstruction with only 5 Participants: {P1, P2, P3, P4, P6}.
The row reduced form of the columns corresponding to these participants is

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 4
0 0 1 0 0 3
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

where the last column corresponds to the secret, that is the first column of G.
Note that, here g0 = g1 + 4g2 + 3g3 + g4 + g6. Therefore the shares cor-

responding to these columns also satisfy the same equation, that is, α0 =
α1 + 4α2 + 3α3 + α4 + α6 where α6 = α0 + 4α1 + α2 + 2α3 + 4α4. Therefore, the
secret α0 can be recovered by the given set of 5 participants.

Finally, we observe that, for any secret sharing scheme constructed as in [12],
the secret can also be constructed with k or, sometimes even, k −1 participants.
Thus the mentioned scheme cannot be a perfect secret sharing scheme.

5 Proposed Secret Sharing Scheme

5.1 Motivation for the Scheme

It is observed that according to [12], the minimum number of participants
required to find the secret is k + 1. But in most of the cases, the secret can
also be found with either k participants or with k − 1 participants. This moti-
vates us to make a more generalized access structure for secret sharing scheme
based on the properties of Near-MDS matrices which is vaster and has a rich
access structure.

Secret Sharing Using Near-MDS Codes 205

5.2 Access Structure

The formation of the access structure is based on the design and properties of
the near-MDS matrix [3,4] and is on similar lines as proposed in [12]. Let

G =
[

G[0] G[1] . . . G[k − 1] G[k] . . . G[n]
]

be a generator matrix of an [n + 1, k, n + 1 − k] NMDS code over Fq such that
giG := gi := G[i] ∈ F

k
q , 0 ≤ i ≤ n, is the ith column of G. We assume that G is

in the standard form, that is, G =
[
Ik | Ak×(n+1−k)

]
.

As noted in [3], since G[0], G[1], . . . , G[k − 1] are linearly independent, for all
i, 0 ≤ i ≤ n − k, there exist aj ∈ Fq, such that

G[k + i] =
k−1∑

j=0

ajG[j] .

The access structure for the scheme has the monotonicity property and can
be defined with the help of two mutually exclusive sets, namely Group I and
Group II. If G is the generator matrix for the scheme, with the first column of G
corresponding to the secret and rest of the columns corresponding to the shares
of the participants, then the groups can be defined as follows:

Group I consists of all k−1-tuples of participants whose corresponding columns
in G, along with the first column, form k-linearly dependent columns.

Group II consists of all k-tuples of participants which aren’t a superset of a
k − 1-tuple in Group I , and their corresponding columns in G are linearly
independent.

Let us denote this access structure with Λ0. Note that due to its monotonicity
property, any k participants whose corresponding columns in G are linearly
independent as well as any k + 1 or more participants are authorized to recover
the secret. Moreover, Λ0 has two special groups, namely, Group I which needs
just k − 1 participants to generate the secret and Group II which need just k
participants to generate the secret and no more. This scheme is not a threshold
secret sharing scheme but has a more generalized access structure.

5.3 Share Construction

The codeword (s0, s1, . . . , sn) is formed by multiplying G by a chosen vector
(α0, α1, . . . , αk−1) of length k.

(s0, s1, . . . , sn) = (α0, α1, . . . , αk−1) · G .

Here, s0 forms the secret and rest of the si’s corresponds to the shares of the
participants. Let us denote this distribution algorithm by Π.

206 S. Mehta et al.

Algorithm 2. Pseudocode for Π

Input: Standard Near-MDS Generator matrix G, Secret s0, Random field element
generator R
1: α[0] ← s0
2: for (i ← 1; i < k; i ← i + 1) do
3: α[i] ← R
4: end for
5: s ← α · G

Output: Vector s containing the secret s0 and the shares s1, . . . , sn.

5.4 Secret Reconstruction

The reconstruction of the secret is similar to the way proposed in [12]. Given
a set of m participants A = {Pj0 , Pj1 , . . . , Pjm−1} ∈ Λ0 and their pooled shares
forming the pooled codeword pcw = (sj0 , sj1 , . . . , sjm−1), the secret can be recon-
structed as follows:

1. Find the submatrix G′ corresponding to the shares of the participants, such
that G′ = (gj0 ,gj1 , . . . ,gjm−1 ,g0G), where g0G is the first and gji is the
(ji + 1)th column of the matrix G.

2. Reduce G′ using elementary row operations to make its k (or m, whichever is
minimum) rows and columns, an identity matrix and get the modified column
g′
0G corresponding to the secret.

3. If m = k−1, multiply the pooled codeword pcw = (sj0 , sj1 , . . . , sjm−1 , 0). Else,
multiply its sub-codeword (sj0 , sj1 , . . . , sjk−1) to g′

0G to obtain the secret.
Here, gi’s corresponds to the k columns forming an identity matrix.

Algorithm 3. Pseudocode for RECON
Input: The pooled set of m shares from A
1: if (m < k − 1) then return “Unauthorized set!” end if
2: GA ← [columns of G corresponding to the available shares]
3: G′ ← [GA | G[0]] (where G[0] denotes the first column of G)
4: G′ ← reduced row echelon form of G′

5: if (m = k − 1) then
6: if (rank(G′) = k) then return “Unauthorized set!”
7: else pcw ← [shares related to k − 1 columns of G′ | 0] end if
8: else if (m = k and rank(G) = k − 1) then return “Unauthorized set!”
9: else pcw ← [shares corresponding to k columns of G′ forming identity matrix]

10: end if
11: s ← pcw · G′[m − 1]
12: secret ← s[0]

Output: Secret secret

Secret Sharing Using Near-MDS Codes 207

6 Analysis of the Proposed Scheme

Lemma 1. Given k linearly dependent columns in an [n+1, k, n+1−k] NMDS
matrix, each of the remaining n + 1 − k columns will be linearly independent of
them.

Proof. From Property 3 of NMDS matrices, we know that any k + 1 columns
have rank k. Since the given k columns are linearly dependent, we can write

gj =
k−1∑

i=0,i �=j

aigi, not all ai = 0 and 0 ≤ j ≤ k − 1 .

Now, for a column gl of the matrix, let’s consider gl along with given the
k columns, g0,g1, . . . ,gk−1. Assuming that gl is linearly dependent on given k
columns, that is,

gl =
k−1∑

i=0

bigi, not all bi = 0 .

Substituting the value of gj , we get

gl =
k−1∑

i=0,i �=j

(ai + bi)gi, not all ai = 0, not all bi = 0 and 0 ≤ j ≤ k − 1 .

Note that, the above equation makes gl a linear combination of k−1 columns.
Since both gj and gl can be expressed as a linear combination of rest of the k−1
columns, it makes the rank of these k + 1 columns equal to k − 1. But, since the
rank of these k + 1 columns formed needs to be k, our assumption is wrong and
gj is linearly independent from the given k columns.

Lemma 2. In the secret sharing scheme Γ0 on the access structure Λ0, if a k-
participant tuple A is a superset of a Group I tuple, then columns corresponding
to A will have rank k.

Proof. Note that, the k − 1 columns corresponding to a Group I tuple along
with the secret’s column form k linearly dependent columns. Now, because of
Lemma 1, any other column of the matrix will be linearly independent of these
k columns and thus, linearly independent of the k − 1 columns corresponding to
rest k−1 participants in A. Therefore, columns corresponding to the participants
in A will have rank k.

Contrapositive: If a set of columns corresponding to k participant tuple A
does not have rank k, then it cannot be a superset of any Group I tuple.

Proposition 4. There exists an unauthorized tuple of k − 1 participants.

208 S. Mehta et al.

Proof. Let us take a tuple A = {Pj1 , . . . , Pjk−1} ∈ Group I. By definition, the
column corresponding to the secret g0 is linearly dependent on the k−1 columns
{gj1 ,gj2 , . . . ,gjk−1} corresponding to the participants.

Now we will replace one of the participants Pjx in A with the participant Pjy

from rest of the participants. As a result, from Lemma 1, the column gjy is lin-
early independent from the columns {g0,gj1 , . . . ,gjx−1 ,gjx+1 , . . .gjk−1} as well,
therefore the secret’s column g0 will also be linearly independent of the new k−1
columns, that is, {gj1 , . . . ,gjx−1 ,gjx+1 ,gjk−1 ,gjy}. Thus, we have constructed an
unauthorized set A′ = {Pj1 , . . . , Pjx−1 , Pjx+1 , . . . Pjk−1 , Pjy} consisting of k − 1
participants.

Proposition 5. There exists an unauthorized tuple of k participants.

Proof. From Lemma 1, we know that taking any k linearly dependent columns
{gj1 ,gj2 , . . . ,gjk}, the secret’s column g0 will be linearly independent from them.
Thus, the k participants {Pj1 , . . . , Pjk} form an unauthorized set.

Theorem 1. The secret sharing scheme Γ0 on the access structure Λ0 is a linear
secret sharing scheme.

Proof. We know that the multiplication by a matrix is a linear operation. From
the definition of linearity and construction of the scheme we can conclude that
the proposed scheme is linear secret sharing scheme.

Theorem 2. The secret sharing scheme Γ0 on the access structure Λ0 is correct,
that is, every authorized set A in Λ0 can correctly generate the secret.

Proof. Let s1, . . . , sm be the shares of the participants in A, and s0 be the secret.

Case 1: A is from Group I : Note that, the column in G corresponding to the
secret s0 is linearly dependent to the columns corresponding to the partici-
pants in A. Therefore, the algorithm of RECON can row reduce the columns
to find the coefficients ai’s such that s0 = a1s1 +a2s2 + . . . ak−1sk−1 and find
the secret s0.

Case 2: A is from Group II : Since participants in A have linearly independent
k columns in G, every other column including the secret’s column will be
linearly dependent on these k columns. Thus, RECON can row reduce the
columns to recover the secret s0.

Case 3: A forms a superset of a tuple in Group I or Group I : Note that if A is
a superset of a tuple from Group I, then from Lemma 2, the participants in
A have k linearly independent columns in G. Otherwise, if A is a superset of
a tuple from Group II, then since the number of participants is greater than
or equal to k +1, from Property 3 there exist k linearly independent columns
in G corresponding to the participants. Therefore, in both the instances the
algorithm RECON will row reduce the columns in a similar way as Case 2
and find the secret s0. Hence, if A is an authorized set, then Pr[RECON(A) =
s0] = 1 and from Definition 20, the secret sharing scheme Gamma0 is correct.

Secret Sharing Using Near-MDS Codes 209

Proposition 6. The complexity of the scheme for setup and secret reconstruc-
tion phase is of O(n3).

Proof. Note that the algorithm of RECON requires the matrix to be reduced in
a reduced row echelon form. This operation is the most complex section of the
RECON. Since the number of participants is less than n, the algorithm requires
row reduction of an (k × n) matrix. We know that reduced row echelon form of
an (k × n) matrix requires O(k2n) operations. Since k ≤ n, the complexity of
the reconstruction algorithm RECON is O(n3).

Theorem 3. The secret sharing scheme Γ0 on the access structure Λ0 is ideal.

Proof. Note that both the secret and the shares belong to GF(q). Therefore, the
information rate ρ is

ρ =
log |GF(q)|
log |GF(q)| = 1

Hence, from Definition 22 of the ideal secret sharing scheme, Γ0 is ideal.

Theorem 4. The secret sharing scheme Γ0 on the access structure Λ0 is a per-
fect secret sharing scheme.

Proof. Let an unauthorized set A of m participants come together to construct
the secret. Note that, since the secret s0 ∈ GF(q), the probability of anyone
randomly finding the secret is 1/q.

Case 1: m ≤ k−2: Note that columns in G corresponding to these m participants
along with the secret’s column form less than k+1 columns which are linearly
independent because of Property 1. Therefore they cannot form the secret s0
on their own, that is, RECON(A) �= s0. Thus they will need at least one more
share to form an authorized set. If they forge one share, the probability of
them finding the secret is equal to the probability of them forging a correct
secret which is again 1/q since the shares also belong to GF(q). This makes
the probability of A finding the secret greater than or equal to 1/q.

Case 2: m = k−1: Note that since A is unauthorized, from Lemma 2 we can say
that A does not belong to Group I. This implies that the secret’s column is
linearly independent from the corresponding columns in A and therefore the
participants cannot form the secret s0 with no additional information. They
will need to either forge at least one more share or replace one pooled share
with a forged share to form an authorized set. Therefore, the probability of
A finding the secret follows from Case 1 and is at least 1/q.

Case 3: m = k: Since A is an unauthorized tuple and thus not in Group II or a
superset of a tuple in Group I, from the contrapositive of Lemma 2 we know
that columns corresponding to the participants in A are linearly dependent
and the secret’s column is linearly independent of these columns. Therefore,
in a similar way as Case 2, they also need to either forge one more share
or replace one share of their own participant with a forged share to form an
authorized set, and the probability of A finding the secret follows.

210 S. Mehta et al.

Note that, when giving a set of shares as an input to RECON, the probability
of RECON generating some other secret s0 from the set of secrets S is 1/q. That is
so because as mentioned in [9], NMDS matrices have a high diffusion property.
Therefore, whenever a vector v ∈ GF(q)k is multiplied to its submatrix, the
output generated is uniformly distributed. Therefore,

Pr[RECON(A) = s0] = Pr[RECON(A) = s0] .

Hence, from Definition 21, no unauthorized set can learn anything about the
secret, and the secret sharing scheme Γ0 is a perfect secret sharing scheme.

6.1 Cheating Detection and Cheating Identification

The proofs for the safety features of cheating detection and cheater identification
for the secret sharing scheme Γ0 are adopted from [12].

We require the following property of linear codes [6] in this work.

Lemma 3. Let C be an [n, k, d] linear code over Fq. For any i, 1 ≤ i ≤ n, let
C� be the code formed by removing the ith coordinate from all codewords of C.

– If d > 1, C� is an [n − 1, k, d�] code where d� = d − 1 if C has a minimum
weight codeword with a nonzero ith coordinate and d� = d otherwise.

– If d = 1, C� is an [n − 1, k, 1] code if C has no codeword of weight 1 whose
nonzero entry is in coordinate i.

– Otherwise, if k > 1, C� is an [n − 1, k − 1, d�] code with d� ≥ 1.

Remark 5. Note that, the minimum distance between two codewords in C� is
at least d − 1.

Lemma 4. Given an [n + 1, k, n + 1 − k] NMDS code with generator matrix G,
if

s = (s0, s1, . . . , sn) = (α0, α1, . . . , αk−1) · G

and s′ = (s′
0, s

′
1, . . . , s

′
n) = (α′

0, α
′
1, . . . , α

′
k−1) · G

such that (α0, α1, . . . , αk−1) �= (α′
0, α

′
1, . . . , α

′
k−1), then

d((s0, s1, . . . , sn), (s′
0, s

′
1, . . . , s

′
n)) ≥ n + 1 − k .

Proof. Since (α0, α1, . . . , αk−1) and (α′
0, α

′
1, . . . , α

′
k−1) form different codewords

of the NMDS code, the hamming distance between s and s′ would be greater
than or equal to the minimum distance of the code, that is, n + 1 − k.

We prove the following results for the secret sharing scheme Γ0 by applying
the same method as in [10].

Theorem 5. The secret sharing scheme Γ0 on the access structure Λ0 has the
security characterization of cheating detection when the cheaters are less than
m − k where m is the number of active participants.

Secret Sharing Using Near-MDS Codes 211

Proof. Assume that Pj1 , . . . , Pjm submit their modified shares s�
ji

= sji + δi,
δi ∈ GF(q), 1 ≤ i ≤ m to the recovery algorithm. Note that Pji is honest if and
only if δi = 0, otherwise he is a cheater. Now consider the k × m submatrix G′

consisting m columns of G, indexed by j1, j2, . . . jm and let

D = {(s1, . . . , sm) | (s1, . . . , sm) = (α0, α1, . . . , αk−1) · G′, αi ∈ GF(q)} .

Let s = (sj1 , . . . , sjm), d = (δ1, . . . , δm) and s� = s+ d. From Lemma 3, any
two distinct shares in D have a Hamming distance of at least m − k. Hence, if
d(d) = d(s, s�) < m − k, then s� ∈ D if and only if s� = s, that is, when d = 0.
Therefore cheating can be detected if the cheaters are less than m − k.

Theorem 6. In the secret sharing scheme Γ0 on the access structure Λ0 cheaters
can be identified when their number is less than �m−k

2 �.

Proof. Using the same notations as in the previous proof let s = (sj1 , . . . , sjm),
d = (δ1, . . . , δm) and s� = s + d. Now, if d(d) < �m−k

2 �, then for s′ ∈ D, we
have the following relation when s′ �= s

d(s�, s′) ≥ d(s�, s) + d(s, s′) ≥ (m − k) −
⌊

m − k

2

⌋
=

⌈
m − k

2

⌉
.

Since d(s�, s) = �m−k
2 �, we get d(s�, s) = min{d(s�, s′) | s′ ∈ D}. By decoding

s� to s using error decoding algorithms of linear codes and deriving d = s� − s,
we can say that the participant Pji is a cheater if δi �= 0. Therefore when the
number of cheaters is less than �m−k

2 �, the secret can be recovered successfully,
and the cheaters can be identified.

Acknowledgements. This work has been partially supported by DST-FIST Level-1
Program, Grant No. SR/FST/MSI-092/2013. The authors would like to thank Depart-
ment of Mathematics, BITS Goa, R. C. Bose Centre for Cryptology and Security, ISI
Kolkata, and Indian Institute of Technology, Jammu, for their support.

A An Instantiation of the Proposed Scheme

Consider the following NMDS matrix G having elements over F5, as mentioned
in [4].

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 1 1 1 1 1 1
0 1 0 0 0 0 4 2 0 3 1 2
0 0 1 0 0 0 1 3 1 0 2 2
0 0 0 1 0 0 2 4 4 3 3 2
0 0 0 0 1 0 4 1 2 1 3 2
0 0 0 0 0 1 0 1 4 2 4 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

212 S. Mehta et al.

If we denote the i-th row by ri−1, and the chosen vector by (α0, α1, . . . , αk−1),
then the codeword formed is of the form α0r0+α1r1+ · · ·+αk−1rk−1. Therefore,
the codeword c formed from the matrix G is

c = (α0, α1, α2, α3, α4, α5,

(α0 + 4α1 + α2 + 2α3 + 4α4),
(α0 + 2α1 + 3α2 + 4α3 + α4 + α5),
(α0 + α2 + 4α3 + 2α4 + 4α5),
(α0 + 3α1 + 3α3 + α4 + 2α5),
(α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5),
(α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5)) .

Hence, the first element of the codeword, that is, α0 forms the secret while
the rest of the elements become the shares for the participants.

A.1 Secret Reconstruction

Now any 5 participants from Group I or any 6 participants from Group II or
more can find the secret.

1. 5 participants: P1, P2, P3, P4 and P6.
The pooled codeword pcw is (α1, α2, α3, α4, α0 + 4α1 + α2 + 2α3 + 4α4) and
the corresponding submatrix G′ is:

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 1
1 0 0 0 4 0
0 1 0 0 1 0
0 0 1 0 2 0
0 0 0 1 4 0
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After elementary row operations,

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 1
0 1 0 0 0 4
0 0 1 0 0 3
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4
3
1
1
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = α1 + 4α2 + 3α3 + α4 + (α0 + 4α1 + α2 + 2α3 + 4α4)
= α0 + 5α1 + 5α2 + 5α3 + 5α4

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.

Secret Sharing Using Near-MDS Codes 213

2. 6 participants: P1, P2, P3, P4, P5 and P7.
The pooled codeword pcw is (α1, α2, α3, α4, α5, α0+2α1+3α2+4α3+α4+α5)
and the corresponding submatrix G′ is:

G′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 1 1
1 0 0 0 0 2 0
0 1 0 0 0 3 0
0 0 1 0 0 4 0
0 0 0 1 0 1 0
0 0 0 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

After elementary row operations:

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3
0 1 0 0 0 0 2
0 0 1 0 0 0 1
0 0 0 1 0 0 4
0 0 0 0 1 0 4
0 0 0 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
2
1
4
4
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = 3α1 + 2α2 + α3 + 4α4 + 4α5 + α0 + (2α1 + 3α2 + 4α3 + α4 + α5)

= α0 + 5α1 + 5α2 + 5α3 + 5α4 + 5α5

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.
3. 7 or more participants: P4, P5, P6, P7, P8, P9, P10 and P11.

The pooled codeword is

pcw = (α4, α5,

α0 + 4α1 + α2 + 2α3 + 4α4,

α0 + 2α1 + 3α2 + 4α3 + α4 + α5,

α0 + α2 + 4α3 + 2α4 + 4α5,

α0 + 3α1 + 3α3 + α4 + 2α5,

α0 + α1 + 2α2 + 3α3 + 3α4 + 4α5,

α0 + 2α1 + 2α2 + 2α3 + 2α4 + 2α5)

and the corresponding submatrix G′ is:
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 1 1 1 1 1 1
0 0 4 2 0 3 1 2 0
0 0 1 3 1 0 2 2 0
0 0 2 4 4 3 3 2 0
1 0 4 1 2 1 3 2 0
0 1 0 1 4 2 4 2 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

214 S. Mehta et al.

After elementary row operations:

(G′)′ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 3 1 1
0 1 0 0 0 0 2 0 1
0 0 1 0 0 0 1 3 0
0 0 0 1 0 0 0 1 4
0 0 0 0 1 0 1 1 3
0 0 0 0 0 1 4 1 4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=⇒ g′
0G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
0
4
3
4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then

pcw · g0G = (α4) + (α5) + (4α0 + 3α1 + 2α2 + α3 + 4α4 + 4α5)

+ (3α0 + 3α2 + 2α3 + α4 + 2α5) + (4α0 + 2α1 + 2α3 + 4α4 + 3α5)

= 11α0 + 5α1 + 5α2 + 5α3 + 10α4 + 10α5

= α0 mod 5 .

Hence the secret s0 = α0 is recovered correctly.

Hence in every case, the secret s0 is recovered correctly.

References

1. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In:
Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 27–35. Springer, New
York (1990). https://doi.org/10.1007/0-387-34799-2 3

2. George Robert Blakley: Safeguarding cryptographic keys. In: AFIPS, pp. 313–317
(1979)

3. Dodunekov, S., Landgev, I.: On Near-MDS codes. J. Geom. 54(1), 30–43 (1995)
4. Dodunekov, S.M., Landjev, I.N.: Near-MDS codes over some small fields. Discrete

Math. 213(1–3), 55–65 (2000)
5. Harn, L., Lin, C.: Detection and identification of cheaters in (t, n) secret sharing

scheme. Des. Codes Crypt. 52(1), 15–24 (2009)
6. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge

University Press, New York (2010)
7. Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access

structure. Electron. Commun. Jpn. (Part III: Fundam. Electron. Sci.) 72(9), 56–
64 (1989)

8. Karchmer, M., Wigderson, A.: On span programs. In: Structure in Complexity
Theory Conference, pp. 102–111. IEEE Computer Society (1993)

9. Li, C., Wang, Q.: Design of lightweight linear diffusion layers from Near-MDS
matrices. IACR Trans. Symmetric Cryptol. 2017(1), 129–155 (2017)

10. Pieprzyk, J., Zhang, X.-M.: Ideal threshold schemes from MDS codes. In: Lee, P.J.,
Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 253–263. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36552-4 18

11. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
12. Zhou, Y., Wang, F., Xin, Y., Luo, S., Qing, S., Yang, Y.: A secret sharing scheme

based on Near-MDS codes. In: NIDC, pp. 833–836. IEEE (2009)

https://doi.org/10.1007/0-387-34799-2_3
https://doi.org/10.1007/3-540-36552-4_18

Mathematics for Cryptography

On Plateaued Functions, Linear
Structures and Permutation Polynomials

Sihem Mesnager1 , Kübra Kaytancı2 , and Ferruh Özbudak3(B)

1 LAGA, UMR 7539, CNRS, University Paris XIII - Sorbonne Paris Cité, University
Paris VIII (Department of Mathematics) and Telecom ParisTech, Paris, France

smesnager@univ-paris8.fr
2 Institute of Applied Mathematics, Middle East Technical University,

Ankara, Turkey
kubra.kaytanci@metu.edu.tr

3 Department of Mathematics and Institute of Applied Mathematics,
Middle East Technical University, Ankara, Turkey

ozbudak@metu.edu.tr

Abstract. We obtain concrete upper bounds on the algebraic immu-
nity of a class of highly nonlinear plateaued functions without linear
structures than the one was given recently in 2017, Cusick. Moreover,
we extend Cusick’s class to a much bigger explicit class and we show
that our class has better algebraic immunity by an explicit example. We
also give a new notion of linear translator, which includes the Frobenius
linear translator given in 2018, Cepak, Pasalic and Muratović-Ribić as
a special case. We find some applications of our new notion of linear
translator to the construction of permutation polynomials. Furthermore,
we give explicit classes of permutation polynomials over Fqn using some
properties of Fq and some conditions of 2011, Akbary, Ghioca and Wang.

Keywords: Plateaued functions · Linear structure ·
Permutation polynomials

1 Introduction

Plateaued functions are important not only for cryptography but also for some
related areas including coding theory and communication. There have been many
results in recent years regarding their construction, existence and applications.
We refer for example to [2–6,10,14,16–19] and the references therein.

Recently Cusick [9] gave an explicit construction of highly nonlinear
plateaued functions without linear structure. In Sect. 3 we obtain a much larger
class of explicit functions having all these good properties and including Cusick’s
class of functions as a very small subclass. Moreover, we prove that Cusick’s class
have quite low algebraic immunity by concrete upper bounds. We also give an
explicit example in our class having better algebraic immunity than the functions
in Cusick’s class.
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 217–235, 2019.
https://doi.org/10.1007/978-3-030-16458-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_13&domain=pdf
http://orcid.org/0000-0003-4008-2031
http://orcid.org/0000-0001-9233-4347
http://orcid.org/0000-0002-1694-9283
https://doi.org/10.1007/978-3-030-16458-4_13

218 S. Mesnager et al.

For construction of non-trivial mathematical structures it has been shown
that linear structures (and linear translators) are useful. There are important
connections between linear translators and permutation polynomials over finite
fields (see, for example [11]). Recently the authors in [8] gave a generalization of
linear translators, which they call the Frobenius linear translator. They also give
applications of their generalization to the construction of permutation polyno-
mials. In Sect. 6 we obtain a further and natural generalization of linear transla-
tors using additive polynomials. Our generalization also has applications to the
construction of permutation polynomials using our generalization different from
Frobenius linear translators (see, for example Theorems 5 and 6 and Example 2
below).

Akbary, Ghioca and Wang [1] established a very interesting method in order
to construct permutation polynomials over “big” finite fields. If an explicit class
of permutation polynomials that satisfies certain criteria is found over a subfield,
Fq it can be used to construct an explicit class of permutation polynomials over
an extension field Fqn . For example, the authors in [7] obtained such explicit
permutation polynomial classes over Fq2 using certain properties of Fq. By a
similar motivation we obtain further explicit permutation polynomial classes
over Fq2 via Fq and also over Fqn via Fq with n ≥ 3 in Sects. 4 and 5, respectively.

We give details of our corresponding contributions and motivations in the
beginnings of Sects. 3, 4, 5 and 6 below. We give some background in the next
section.

2 Preliminaries

Let q be a power of a prime number and Fqn be the finite field of order qn where
n ≥ 1. The extension field Fqn can be viewed as an n-dimensional vector space
over Fq. The trace function Trn from Fqn to Fq is defined as

Trn : Fqn → Fq

α �→ α + αq + αq2
+ · · · + αqn−1

.

A Boolean function f of n-variables is a function from F
n
2 to F2.

Definition 1. Let f : Fn
2 → F2 be a Boolean function. Then the Walsh trans-

form f̂ of f is defined as

f̂ : Fn
2 → Z

w �→
∑

x∈F
n
2

(−1)f(x)+w·x

where w = (w1, w2, . . . , wn), x = (x1, x2, . . . , xn) and w ·x = w1x1 + · · ·+wnxn.

Definition 2. Let f : Fn
2 → F2 be a Boolean function. Then f has linear struc-

ture at a ∈ F
n
2 if and only if either f(x + a) + f(x) = 0 for any x ∈ F

n
2 (a is

called a 0-linear structure) or f(x + a) + f(x) = 1 for any x ∈ F
n
2 (a is called a

1-linear structure).

On Plateaued Functions, Linear Structures and Permutation Polynomials 219

Definition 3. Let f : F
n
2 → F2 be a Boolean function. Then f is called an

s-plateaued function where 0 ≤ s ≤ n if |f̂(w)|2 ∈ {0, 2n+s} for any w ∈ F
n
2 .

Definition 4 (See, for example [3]). Let f : Fn
2 → F2 be a Boolean function.

The algebraic normal form of f is

f(x) =
⊕

I∈P(N)

aI

⎛

⎝
∏

I∈P(N)

xI

⎞

⎠ ,

where P(N) denotes the power set of N = {1, . . . , n}. The degree of the algebraic
normal form of f is equal to

max{|I| : aI �= 0}
where |I| denotes the size of I.

Definition 5 (See, for example [3]). Let f : Fn
2 → F be a Boolean function.

The algebraic immunity AI(f) of f is defined to be the minimal degree of a
nonzero function g from F

n
2 to F2 for which f · g = 0 or (f + 1) · g = 0, i.e

AI(f) := min{deg g : g ∈ Ann(f) ∪ Ann(f + 1)}
where Ann(f) is the set of annihilators of f. A function g is an annihilator of f
if f · g = 0.

Remark 1. It is well-known that for any Boolean function f of n-variables,
AI(f) ≤ 	n

2
.
For integer n ≥ 1 and x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ F

n
2 , the inner

product x · y ∈ F2 is the usual inner product defined as

x · y = x1y1 + x2y2 + · · · + xnyn.

3 Cusick’s Highly Nonlinear Plateaued Functions
and Their Modifications

For integers d ≥ 3 and k ≥ 1, Cusick introduced an explicit class of Boolean
functions of degree d in n = 2dk − 1 variables given by

fk(x1, x2, . . . , xn) =
k−1∑

j=0

xdj+1 . . . xdj+d +
m−1∑

j=1

xjxj+m. (1)

where m = dk. He proved that these are 1-plateaued, have no linear structure and
have nonlinearity 2n−1−2

n−1
2 . They become balanced by adding a concrete linear

function. Note that adding a linear function does not change plateauedness,
nonlinearity or the set of linear structures. He also states that “... a high algebraic
immunity is not to be expected” in [9, page 80, the last paragraph].

220 S. Mesnager et al.

In this section we show that indeed algebraic immunity of the functions in
(1) is low. Note that the largest degree of the class for a fixed odd integer n ≥ 3
occurs when k = 1. Moreover, if m = n−1

2 is a prime, then k may only taken to
be 1 in (1). The following result shows in particular that this class has very low
algebraic immunity when k is small.

Proposition 1. For integers d ≥ 3 and k ≥ 1, let n = 2dk−1 and fk : Fn
2 → F2

be the Boolean function defined in (1). We have:

(i) AI(f1) ≤ 3.
(ii) For k ≥ 2, AI(fk) ≤ min{k + 2, n+1

2k }.
Proof. We first prove item (i). Put x = (x1, x2, . . . , xm−1) and y =
(y1, . . . , ym−1) = (xm+1, . . . , x2m−1) where m = dk. Let

h(x) = x1x2 . . . xm−1 and g(x, y) = x1y1 + x2y2 + · · · + xm−1ym−1.

Then it is easy to observe that

f1(x1, . . . , xn) = h(x)xm + g(x, y).

It is enough to prove that

f1(x1, . . . , xn) (g(x, y) + 1) (xm + 1) = 0

for all x, y ∈ F
m−1
2 and xm ∈ F2. Indeed, deg (g(x, y) + 1) (xm + 1) = 2 + 1 = 3.

Moreover,

f1(x1, . . . , xn) (g(x, y) + 1) (xm + 1) = (h(x)xm + g(x, y)) (g(x, y) + 1) (xm + 1)
= (h(x)xmg(x, y) + h(x)xm + g(x, y) + g(x, y)) (xm + 1)
= (h(x)xm (g(x, y) + 1)) (xm + 1)
= h(x) (g(x, y) + 1) (xm(xm + 1)) = 0,

as (xm(xm + 1)) = 0. This completes the proof of item (i).
Next, we consider the proof of item (ii). Note that

fk(x1, . . . , xn) = x1 . . . xd + xd+1 . . . x2d + · · · + x(k−1)(d+1) . . . xm−1xm + g(x, y).

Here

fk(x1, . . . , xn)
(
(x1 + 1)(xd + 1) . . . (x(k−1)(d+1) + 1

)
(g(x, y) + 1))

= x1(x1 + 1)r1(x1, . . . , xn) + xd+1(xd+1 + 1)r2(x1, . . . , xn) + . . .

+ x(k−1)(d+1)(x(k−1)(d+1) + 1)rk(x1, . . . , xn)
+ g(x, y) (g(x, y) + 1) rk+1(x1, . . . , xn)

for some polynomials r1(x1, . . . , xn), . . . , rk+1(x1, . . . , xn) in algebraic normal
form. As

x1(x1 + 1) = xd+1(xd+1 + 1) = · · · = x(k−1)(d+1)(x(k−1)(d+1) + 1) = 0

On Plateaued Functions, Linear Structures and Permutation Polynomials 221

and g(x, y) (g(x, y) + 1) = 0 as Boolean functions and

deg
(
(x1 + 1)(xd+1 + 1) . . . (x(k−1)(d+1) + 1) (g(x, y) + 1)

)
= k + 2,

we have AI(fk) ≤ k + 2. Also

fk(x1, . . . , xn) (fk(x1, . . . , xn) + 1) = 0.

And deg (fk(x1, . . . , xn) + 1) = d = n+1
2k . Hence AI(fk) ≤ min{k + 2, n+1

2k }. ��
Next, we define a much larger explicit class of Boolean functions containing

Cusick’s class as defined in (1) as a small subclass. The functions of this class
are 1-plateaued, having nonlinearity 2n−1 −2

n−1
2 and balanced up to addition of

a concrete linear function as in Cusick’s class. Moreover, we also have a charac-
terization whether a function in our class has a linear structure. This condition
is easy to apply. Moreover, we give an explicit example demonstrating that the
algebraic immunity of a function in our class is much better compared to the
class defined in (1).

We first note that if h : Fm−1
2 → F2 is an arbitrary map, then we have

|{(αm, β) ∈ F2 × F
m−1
2 : h(β) + αm = 0}| = 2m−1.

Now we are ready to give our much larger class of Boolean functions consist-
ing of 1-plateaued, highly nonlinear functions without linear structure. It is easy
to make them balanced by adding a linear term as explained in the theorem as
well.

Theorem 1. Let n ≥ 3 be odd and n = 2m − 1. Let π : Fm−1
2 → F

m−1
2 be a

permutation map. Let g0, g1 : Fm−1
2 → F2 be Boolean maps. Let f : Fn

2 → F2 be
the Boolean map defined as

f : Fm−1
2 × F2 × F

m−1
2 → F2

(x, xm, y) �→ g0(x) + xmg1(x) + π(x) · y.

Then we have:

(i) f is a 1-plateaued function.
(ii) f has no nonzero linear structure if and only if the subset

S = {(αm, β) ∈ F2 × F
m−1
2 : g1(π−1(β)) + αm = 0} ⊆ F2 × F

m−1
2

is not an affine or linear subset (of dimension m-1).
(iii) The nonlinearity of f is 2n−1 − 2(n−1)/2.
(iv) For (u, μ, v) ∈ F

m−1
2 × F2 × F

m−1
2 , the function

fu,μ,v(x, xm, y) := f(x, xm, y) + u · x + μ · xm + v · y

is balanced if and only if g1(π−1(v)) + μ = 1.

222 S. Mesnager et al.

Proof. Let w = (α, αm, β) ∈ F
m−1
2 × F2 × F

m−1
2 . We have

f̂(w) =
∑

x∈F
m−1
2

∑

xm∈F2

∑

y∈F
m−1
2

(−1)g0(x)+xmg1(x)+π(x)·y+α·x+αmxm+β·y

=
∑

x∈F
m−1
2

∑

xm∈F2

(−1)g0(x)+xmg1(x)+α·x+αmxm

∑

y∈F
m−1
2

(−1)(π(x)+β)·y

= 2m−1(−1)g0(π
−1(β))+α·π−1(β)

∑

xm∈F2

(−1)(g1(π
−1(β))+αm)xm .

Hence

f̂(w) =

{
2m(−1)g0(π

−1(β))+α·π−1(β) if g1(π−1(β)) = αm,

0 otherwise.

This completes the proof of the item (i).
It is well-known that the nonlinearity of an arbitrary Boolean function

f : Fn
2 → F2 is 2n−1 − 1

2 max
w∈F

n
2

|f̂(w)|. Hence in our case the nonlinearity of our

function f is

2n−1 − 1
2

max
w∈F

n
2

|f̂(w)| = 2n−1 − 1
2
2m = 2n−1 − 2

n−1
2 .

This completes the proof of item (iii).
It is also well-known that the Walsh value f̂u,μ,v(0, 0, 0) of f̂u,μ,v(x, xm, y) is

f̂(u, μ, v). Hence

f̂u,μ,v(0, 0, 0) = 0 ⇐⇒ g1(π−1(v)) + μ = 1.

Note that fu,μ,v(x, xm, y) is balanced if and only if f̂u,μ,v(0, 0, 0) = 0. This
completes the proof of item (iv).

It only remains to prove the item (ii). Let Sf denote the support of the
Walsh spectrum of f , that is Sf = {w ∈ F

m−1
2 × F2 × F

m−1
2 : f̂(w) �= 0}. Let

S ⊆ F2 × F
m−1
2 be the subset defined as

S = {(αm, β) ∈ F2 × F
m−1
2 : g1(π−1(β)) + αm = 0}. (2)

It follows from the proof of item (i) above that Sf = F
m−1
2 × S. For ν ∈ F

n
2 , let

Δf (ν) be the sum
Δf (ν) =

∑

x∈F
n
2

(−1)f(x+ν)+f(x).

It is clear that ν is a linear structure of f if and only if Δf (ν) = ±2n. Moreover,
it is not difficult to observe that

∑

w∈F
n
2

f̂(w)2(−1)ν·w = 2nΔf (ν),

On Plateaued Functions, Linear Structures and Permutation Polynomials 223

which holds for an arbitrary Boolean map f : Fn
2 → F2. In our case f is

1-plateaued and hence
∑

w∈F
n
2

f̂(w)2(−1)ν·w =
∑

w∈Sf

|f̂(w)|2(−1)ν·w = 2n+1
∑

w∈Sf

(−1)ν·w,

where we use our proof of item (i) above. These implies that if ν ∈ F
n
2 , then we

have
Δf (ν) = 2

∑

w∈Sf

(−1)ν·w.

As |Sf | = 2n−1, we conclude that ν ∈ F
n
2 is a linear structure of f if and

only if (ν · w = 0 for all w ∈ Sf) or (ν · w = 1 for all w ∈ Sf). Assume that
v = (a, am, b) ∈ F

m−1
2 × F2 × F

m−1
2 is a nonzero linear structure of f . Recall

that Sf = F
m−1
2 × S where S is defined in (2). First we show that a = 0. Indeed

otherwise there exist α, α′ ∈ F
m−1
2 such that a ·α �= a ·α′. For fixed (αm, β) ∈ S,

both (α, αm, β) and (α′, αm, β) are elements of Sf . Then it is impossible that
(a, am, b) · (α, αm, b) = (a, am, b) · (α′, αm, b) which is a contradiction.

Next, assume that ν · w = 0 for all w ∈ Sf . Then ν = (0, am, b) and 0 =
(am, b) · (αm, β) for all (αm, β) ∈ S. As ν �= 0, there exist (c, d) ∈ F2 × F

m−1
2

such that (am, b) · (c, d) �= 0. We choose such (c, d) ∈ F2 × F
m−1
2 . As S is not

a linear space and its cardinality is 2m−1, the F2-span of S is the whole vector
space F2 × F

m−1
2 . In particular, there exist a subset T ⊆ S such that

(c, d) =
∑

(αm,β)∈T

(αm, β).

Multiplying both sides by (am, b) (as inner product) we get

(am, b) · (c, d) =
∑

(αm,β)∈T

(am, b) · (c, d) =
∑

(αm,β)∈T

0 = 0.

However, this is a contradiction as (am, b)·(c, d) �= 0 by definition. This completes
the proof of item (ii) under the assumption about ν · w = 0 for all w ∈ Sf .

Assume finally that ν · w = 1 for all w ∈ S. We choose (α(0)
m , β(0)) ∈ S and

we define
SL = {(αm + α(0)

m , β + β(0)) : (αm, β) ∈ S}.

Note that S is affine if and only if SL is linear. Moreover, ν = (0, am, b) is a
nonzero linear structure of f if and only if (am, b)·(αL

m, βL) = 0 for all (αL
m, βL) ∈

SL. The same argument we used in the assumption ν · w = 0 for all w ∈ Sf

applied to SL completes the proof. ��
Example 1. Let n = 2m − 1 = 11. Choose the permutation map

π : F5
2 → F

5
2

x = (x0, x1, x2, x3, x4) �→ (π1(x), π2(x), π3(x), π4(x), π5(x))

224 S. Mesnager et al.

where

π1(x) = x0x1x2 + x0x1x4 + x0x2x3 + x0x2x4 + x0x3 + x0 + x1x2x3x4 + x1x2x4

+ x1x2 + x2x3 + x2x4 + x3x4,

π2(x) = x0x1x2 + x0x1 + x0x2x3x4 + x0x2x3 + x0x3x4 + x0x3 + x0x4 + x1x2x3

+ x1x3x4 + x1x4 + x1 + x2x3 + x3x4,

π3(x) = x0x1x3x4 + x0x1x3 + x0x1x4 + x0x2x4 + x0x2 + x0x3x4 + x1x2x3 + x1x2

+ x1x3x4 + x1x4 + x2x3x4 + x2 + x3x4,

π4(x) = x0x1x2x4 + x0x1x2 + x0x1x3 + x0x1x4 + x0x1 + x0x2x4 + x0x2 + x0x3

+ x0 + x1x2x4 + x1x3 + x2x3x4 + x2x3 + x3,

π5(x) = x0x1x2x3 + x0x1x2 + x0x1x3 + x0x1x4 + x0x2x3 + x0x3x4 + x0x3 + x0x4

+ x1x2x3 + x1x2x4 + x1x2 + x1x3 + x1x4 + x1 + x2x4 + x3x4 + x4.

Then take

g0 : F5
2 → F2

(x0, x1, x2, x3, x4) �→ x0 + x2 + x3

and

g1 : F5
2 → F2

(x0, x1, x2, x3, x4) �→ x1x2x3 + 1.

An application of our construction in Theorem1 gives the map

f : F5
2 × F2 × F

5
2 → F2

(x, x5, y) �→ g0(x) + x5g1(x) + π(x)y

(x0, x1, x2, x3, x4, x5, y0, y1, y2, y3, y4) �→ x0 + x2 + x3 + (x1x2x3 + 1)x5 + y0π1(x)

+ y1π2(x) + y2π3(x) + y3π4(x) + y4π5(x)

where πi(x) is defined as before for i = 1, . . . , 5. The map is balanced, has no
linear structure, has nonlinearity 992 = 210 − 25 and has algebraic immunity 4.

In Example 1, π : F5
2 → F

5
2 corresponds to the permutation map x �→ x30.

Note that as m = 5 is a prime, there is only one function in Cusick’s class,
which is f1 in (1). Moreover, AI(f1) ≤ 3. Example 1 gives a concrete example in
our class of Theorem 1 improving the algebraic immunity while keeping all the
good properties of the maps of Cusick’s class: high nonlinearity, 1-plateauedness,
absence of having nonzero linear structures, and balancedness. Moreover, using
different permutations π : F5

2 → F
5
2 and other suitable maps g0(x), g1(x) we get

a lot of different Boolean functions with algebraic immunity 4 easily satisfying
the conditions: 1-plateauedness, absence of having nonzero linear structures, and
balancedness.

On Plateaued Functions, Linear Structures and Permutation Polynomials 225

4 Constructing Permutation Polynomials over Fq2 via Fq

Akbay, Ghioca and Wang [1] recently established a very interesting construction
in order to construct polynomials over “big” finite fields using a commutative
diagram relating the big field to some smaller subsets and the corresponding
conditions on the maps of the commutative diagram. In fact, this construction
gives different methods using different commutative diagrams leading to different
conditions on different maps and subsets (see, for example [1, Proposition 5.9]
and [1, Proposition 5.6]).

They generalized many earlier results and constructed many new permu-
tation polynomial families. They also motivated many research directions in
constructing explicit classes of permutation polynomials in “big” finite fields
in the following sense: If a class of objects satisfying certain properties can be
constructed which are guaranteed to satisfy a full set of conditions of Akbay,
Ghioca and Wang in a small set (see, for example [1, Proposition 5.9] or [1,
Proposition 5.6]), then it is possible to obtain an explicit class of permutation
polynomials in the big finite field.

Recently Cepak, Charpin and Pasalic, among other results, gave such explicit
classes in [7]. Namely, in [7, Section 6], they obtain permutation polynomials over
Fq2 using certain polynomials over Fq. We refer to Propositions 6, 8, 9 and the
corresponding corollaries in [7].

Motivated by these results, we give explicit large class of permutation polyno-
mials over Fq2 starting from polynomials over Fq. We first introduce the notion
of b-permutation.

Definition 6. Let m(x) ∈ Fq[x] and b ∈ Fq be given. We call m(x) a b-
permutation over Fq if the evaluation mapping x �→ m(x) + bx defines a per-
mutation over Fq.

Remark 2. Note that it is not difficult to construct a b-permutation polynomial
starting from a permutation polynomial. Indeed if x �→ h(x) is a permutation
polynomial, then x �→ h(x) − bx is a b-permutation over Fq.

First we present our results in characteristic 2. The following proposition
indicates that it is easy to construct the corresponding large families of per-
mutation polynomials over Fq2 as the component g0(x) ∈ Fq[x] may be chosen
arbitrarily.

Proposition 2. Let q = 2k for some integer k. Let θ ∈ Fq2/Fq satisfy θq +θ = 1
and g0(x) ∈ Fq[x] be arbitrary. Then we have:

– F (x) = x + g0(xq + x) + θ(x2iq + x2i + xq + x) is a permutation over Fq2 for
any i ≥ 1.

– If q �≡ 1 mod 3, then

F (x) = x + g0(xq + x) + θ(x3q + x2q+1 + xq+2 + x3 + xq + x)

is a permutation over Fq2 .

226 S. Mesnager et al.

– If q �≡ 1 mod 5, then

F (x) = x + g0(xq + x) + θ(x5q + x4q+1 + xq+4 + x5 + xq + x)

is a permutation over Fq2 .
– If r ≥ 1 is an integer such that gcd(r, q − 1) = 1, then

F (x) = x + g0(xq + x) + θ ((xq + x)r + (xq + x))

is a permutation over Fq2 .

In fact, Proposition 2 is just a special subcase of the next theorem. We prefer
to state Proposition 2 independently as it shows that the conditions of the next
theorem are very easy to satisfy. We do not prove it as it follows from the proof
of the next theorem.

Theorem 2. Let q = 2k for some integer k. Let θ ∈ Fq2/Fq satisfying θq+θ = 1.
Let g0(x) ∈ Fq[x] be arbitrary and g1(x) ∈ Fq[x] be a 1-permutation over Fq.
Then

F (x) = x + g0(xq + x) + θ(g1(xq + x))

is a permutation over Fq2 .

Proof. The proof comes from [1, Proposition 5.9], by taking g(x) of the form
g(x) = g0(x) + θg1(x) ∈ Fq2 [x], h(x) as a constant function equal to 1 and
ϕ(x) = x. Observe that S = {yq + y|y ∈ Fq2} = Fq since char(Fq) = 2. Then

h(x)ϕ(x) + g(x)q + g(x) = x + g0(x)q + θqg1(x)q + g0(x) + θg1(x).

If x ∈ Fq, the equality implies

h(x)ϕ(x) + g(x)q + g(x) = x + g1(x).

Since g1(x) is a 1-permutation over Fq, the function

F (x) = x + g0(xq + x) + θ(g1(xq + x))

is a permutation over Fq2 . ��
Next, we present our results in odd characteristic. Again, we first state a

special subcase in the next proposition.

Proposition 3. Let q = pk, where p is any odd prime number. Let β ∈ Fq2/Fq

and γ = βq − β. Let g0(x) ∈ Fq[x] be arbitrary. Then we have:

– If q �≡ 1 mod 3, then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ β

[
x3q

γ3q
− 3

x2q+1

γ2q+1
+ 3

xq+2

γq+2
− x3

γ3
− xq

γq
+

x

γ

]

is a permutation over Fq2 .

On Plateaued Functions, Linear Structures and Permutation Polynomials 227

– If q �≡ 1 mod 5, then

F (x) = x + g0

(
xq

γq
− x

γ

)

+ β

[
x5q

γ5q
− 5

x4q+1

γ4q+1
+ 10

x3q+2

γ3q+2
− 10

x2q+3

γ2q+3
+ 5

xq+4

γq+4
− x5

γ5
− xq

γq
+

x

γ

]

is a permutation over Fq2 .
– If r ≥ 1 is an integer such that gcd(r, q − 1) = 1, then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ β

[(
xq

γq
− x

γ

)r

−
(

xq

γq
− x

γ

)]

is a permutation over Fq2 .

We do not prove Proposition 3 as its proof follows from the next theorem.

Theorem 3. Let q = pk, where p is any odd prime number. Let β ∈ Fq2/Fq and
γ = βq − β. Let g0(x) ∈ Fq[x] be arbitrary and g1(x) ∈ Fq[x] be a 1-permutation
over Fq. Then

F (x) = x + g0

(
xq

γq
− x

γ

)
+ βg1

(
xq

γq
− x

γ

)

is a permutation over Fq2 .

Proof. The proof comes from [1, Proposition 5.9], by taking g(x) of the form
g(x) = g0

(
x
γ

)
+ βg1

(
x
γ

)
∈ Fq2 [x], h(x) as a constant function equal to 1 and

ϕ(x) = x. Observe that S = {yq − y|y ∈ Fq2} = γFq. Now consider the map

γy �→ γy + g(γy)q − g(γy).

Then

γy + g(γy)q − g(γy) = γy + g0(y)q + βqg1(y)q − g0(y) − βg1(y)
= γy + (βq − β)g1(y)
= γ[y + g1(y)].

Since g1(y) is a 1-permutation over Fq, the function

F (x) = x + g0

(
xq

γq
− x

γ

)
+ βg1

(
xq

γq
− x

γ

)

is a permutation over Fq2 . ��

228 S. Mesnager et al.

5 Constructing Permutation Polynomials over Fqn via Fq

with n ≥ 3

In Sect. 4 we give explicit classes of permutation polynomials over Fq2 using
polynomials over Fq.

In this section we give explicit classes of permutation polynomials over Fqn

using polynomials over Fq with n ≥ 3. In fact, it is not easy to give such classes
using the conditions of Akbary, Ghioca and Wang [1, Proposition 5.9] since we
need to consider the subset S = {yqn −y|y ∈ Fqn}. This subset is easy to handle
if n = 2, which we applied in Sect. 4. Hence in this section we use a different
method of Akbary, Ghioca and Wang, namely [1, Proposition 5.6].

First we present our result for n = 3. The next proposition indicates the
corresponding permutation polynomial class is large as the chosen components
g1, g2 ∈ Fq[x] are arbitrary and g0 ∈ Fq[x] has to satisfy a certain condition.

Proposition 4. Let {θ0, θ1, θ2} be a basis of Fq3 over Fq. We assume that
Tr3(θ0) �= 0 without loss of generality. We choose a0, a1, a2 ∈ Fq satisfying

(a0 − a2)2 + (a2 − a0)(a1 − a2) + (a1 − a2)2 �= 0. (3)

Let g0, g1, g2 ∈ Fq[x] be such that g0(x)Tr3(θ0) + g1(x)Tr3(θ1) + g2(x)Tr3(θ2) is
an (a0 + a1 + a2)-permutation of Fq. Then

F (x) = a0x + a0x
q + a2x

q2
+ θ0g0(Tr3(x)) + θ1g1(Tr3(x)) + θ2g2(Tr3(x))

is a permutation over Fq3 .

Proof. We use [1, Proposition 5.6], by taking g(x) of the form

g(x) = θ0g0(x) + θ1g1(x) + θ2g2(x)

and h(x) as a constant function equal to 1. Let ϕ(x) = a0x+a1x
q +a2x

q2 ∈ Fq[x]
with a0, a1, a2 satisfying (3). For x ∈ Fq we have

ϕ(x) + Tr3(g(x)) = a0x + a1x
q + a2x

q2
+ Tr3(θ0g0(x) + θ1g1(x) + θ2g2(x))

= (a0 + a1 + a2)x + g0(x)Tr3(θ0) + g1(x)Tr3(θ1) + g2(x)Tr3(θ2).

Since g0(x)Tr3(θ0)+g1(x)Tr3(θ1)+g2(x)Tr3(θ2) is an (a0+a1+a2)-permutation
of Fq, the condition (ii) of [1, Proposition 5.6] is satisfied.

It remains to prove that ker ϕ ∩ ker Tr3 = {0}. As Tr3(x) = x + xq + xq2

and ϕ(x) = a0x + a1x
q + a2x

q2 ∈ Fq[x] considering their q-associates (see, for
example, [13, Definition 3.58]) it is enough to prove that

gcd(1 + t + t2, a0 + a1t + a2t
2) = 1. (4)

Indeed, if follows from [13, Theorem 3.62] that kerϕ ∩ ker Tr3 = {0} if and only
if (4) holds. By a simple computation we observe that (3) is equivalent to the
condition

gcd(1 + t + t2, a0 + a1t + a2t
2) = 1.

��

On Plateaued Functions, Linear Structures and Permutation Polynomials 229

For n ≥ 3 in general, the condition

(a0 − a2)2 + (a2 − a0)(a1 − a2) + (a1 − a2)2 �= 0

corresponds to the resultant condition, which is well-known in algebraic geome-
try. We recall its definition (see, for example, [13, Definition 1.93]).

Definition 7. Let f(x) = a0x
n + a1x

n−1 + · · · + an ∈ Fq[x] be a polynomial
of degree n and g(x) = b0x

m + b1x
m−1 + · · · + bm ∈ Fq[x] be a polynomial of

degree m with n,m ∈ N
+. Then the resultant Res(f, g) of the two polynomials

is defined by the determinant

R(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 a1 . . . an 0 . . . 0
0 a0 a1 . . . an 0 . . . 0
...

...
0 . . . 0 a0 a1 . . . an

b0 b1 . . . bm 0 . . . 0
0 b0 b1 . . . bm . . . 0
...

...
0 . . . 0 b0 b1 . . . bm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
m rows

⎫
⎪⎪⎬

⎪⎪⎭
n rows

of order m + n.

Now we are ready to generalize Proposition 4 in the next theorem.

Theorem 4. Let {θ0, θ1, . . . , θn−1} be a basis of Fqn over Fq. We assume that
Trn(θ0) �= 0 without loss of generality. Let ϕ(x) = a0x + a1x

q · · · + an−1x
qn−1

be an Fq-linear polynomial over Fq satisfying the resultant

Res(a0 + a1t + · · · + an−1t
n−1, 1 + t + · · · + tn−1) �= 0. (5)

Let g0, g1 . . . , gn−1 ∈ Fq[x] be such that g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)
is an (a0 + · · · + an−1)-permutation of Fq. Then

F (x) = ϕ(x) + θ0g0(Trn(x)) + · · · + θn−1gn−1(Trn(x))

is a permutation over Fqn .

Proof. We use a similar method as in the proof of Proposition 4. Take g(x) of
the form

g(x) = g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)

and h(x) as the constant function equal to 1. Let

ϕ(x) = a0x + a1x
q · · · + an−1x

qn−1 ∈ Fq[x]

with a0, . . . , an−1 satisfying (5). For x ∈ Fq we have

ϕ(x)+Trn(g(x)) = (a0 + · · ·+an−1)x+g0(x)Trn(θ0)+ · · ·+gn−1(x)Trn(θn−1).

230 S. Mesnager et al.

This is a permutation polynomial over Fq since

g0(x)Trn(θ0) + · · · + gn−1(x)Trn(θn−1)

is an (a0 + · · · + an−1)-permutation of Fq. So condition 2 of [1, Proposition 5.6]
holds.

The proof of kerϕ ∩ ker Trn = {0} comes from an important property of the
resultant [13, page 36] (see also, [12, Corollary 8.4, page 203]). It indicates that
the polynomials 1 + t + · · · + tn−1 and a0 + a1t + · · · + an−1t

n−1 do not have
common root if and only if (5) holds. Note that we also use q-associates before
this argument. ��

6 A Further Generalization of Linear Translators

For an arbitrary Fq and a map f : Fqn → Fq with n ≥ 2, the concept of
linear structure in Definition 2 corresponds to the notion of linear structure: Let
γ ∈ Fqn , b ∈ Fq. Then γ is called b-linear translator of f : Fqn → Fq if

f(x + γu) = f(x) + bu for all x ∈ Fqn and y ∈ Fq.

Note that if q = 2, then b is either 0 or 1 and we have either 0-linear translator
or 1-linear translator coinciding with 0-linear structure or 1-linear structure.

Recently Cepak, Pasalic and Muratović-Ribić generalized the notion of linear
translators and gave an application for constructing permutation polynomials
(see [8]).

In this section we obtain a further and very natural generalization of the
notion of linear translators. We also give two different applications of our more
general version to permutation polynomials. Theorem5 is an easy but rather
unexpected application. It gives a class of permutation polynomials over Fqn

using a surjective map f : Fqn → S ⊆ Fq and our notion of generalized linear
translator.

The proof uses a trick that was used earlier in [15]. Moreover, this method
gives the inverse permutation explicitly.

The second application is Theorem 6 below and it shows that under certain
conditions one can get permutation polynomials on Fqn again using f : Fqn →
S ⊆ Fq and the corresponding generalized linear translator. Finally, we give
an explicit example illustrating that there exist generalized linear translators
satisfying the conditions of Theorem 6 and not being Frobenius linear translators,
which is the notion expressed in [8].

We start with our generalization of the notion.

Definition 8. Let S ⊆ Fq and let γ, b ∈ Fqn . Let A : Fqn → Fqn be an additive
map. We say that γ is a (b, A)-linear translator with respect to S for the mapping
f : Fqn → S, if

f(x + γu) = f(x) + bA(u)

for all x ∈ Fqn and for all u ∈ S.

On Plateaued Functions, Linear Structures and Permutation Polynomials 231

Now we are ready to present a first application of the notion in Definition 8.

Theorem 5. Let S ⊆ Fqn and f : Fqn → S be a surjective map. Let γ ∈ Fq be
a (b, A)-linear translator with respect to S for the map f where A is an additive
map and γ, b ∈ Fqn . Then for any g ∈ Fqn [x] which maps S into S, we have that
F (x) = x+γg(f(x)) is a permutation over Fqn if and only if ψ(z) = z+bA(g(z))
is a permutation on S.

Moreover, if F is a permutation over Fqn , then its inverse function F−1 is
given explicitly as

F−1(z) = z − γg(ψ−1(f(z))).

Proof. Let x be any element of Fqn . Then we have F (x) = x + γg(f(x)) by
definition. By applying f to the both sides of the equality we obtain

f(F (x)) = f(x + γg(f(x)))
= f(x) + bA(g(f(x))) since f is (b, A) -linear translator
= ψ(f(x)) by definition of the mapψ.

(6)

Therefore we have ψ(f(x)) = f(F (x)).
Assume first that ψ is a permutation over S. Let F (x1) = F (x2) for some

x1,x2 ∈ Fqn . Then applying f to both sides of the equality we have f(F (x1)) =
f(F (x2)). By using (6), we obtain

ψ(f(x1)) = f(F (x1)) = f(F (x2)) = ψ(f(x2)).

Since ψ is a permutation over S, we get f(x1) = f(x2). As F (x1) = F (x2) we
also have

x1 + γg(f(x1)) = x2 + γg(f(x2)).

These imply that x1 = x2. Therefore F is injective and indeed F is bijective.
Conversely, assume that F is a permutation over Fqn . Let s be any element of

S. Since f is a surjective map, there exists α ∈ Fqn satisfying f(α) = s. Because
F is permutation over Fqn , there is x ∈ Fqn such that F (x) = α. By using (6),
we have

ψ(f(x)) = f(F (x)) = f(α) = s.

Therefore ψ is surjective and in fact, ψ is bijective. Then F (x) = x + γg(f(x))
is a permutation over Fqn if and only if ψ(z) = z + bA(g(z)) is a permutation
over S.

Next, we compute F−1 explicitly. Let y = F (x) = x + γg(f(x)). Then we
have

f(y) = f(x + γg(f(x)))
= f(x + γu), where u = g(f(x)) ∈ S

= f(x) + bA(u), since γ is a (b, A)-linear translator
= f(x) + bA(g(f(x))), recall u = g(f(x))
= z + bA(g(z)), where f(x) = z

= ψ(z).

232 S. Mesnager et al.

As ψ is a permutation on S we have that for each y there exists x = y −
γg(ψ−1(f(y))) satisfying F (x) = y. Therefore, F (x) is surjective and the desired
result follows. The converse of the statement is proved similarly.

Moreover, F−1(z) = z − γg(ψ−1(f(z))) since f−1(z) = x. ��
Next, we give another application of Definition 8.

Theorem 6. Let f be a function from Fqn onto Fq, γ ∈ F
∗
qn . Let γ be a (b, A)-

linear translator of f where b ∈ Fq and A(x) ∈ Fqn [x] is an additive map satis-
fying the following conditions:

1. A is Fq-linear.
2. A(γ) �= 0.
3. A(γa) = A(γ)A(a) for all a ∈ Fq.
4. For any x ∈ Fqn : If A(γx) ∈ A(γ)Fq, then x ∈ Fq.
5. A|Fq

is onto.

For any map h : Fq → Fq consider the map

G : Fqn → Fqn

x �→ A(x) + A(γ)h(f(x)).

Then G is a permutation over Fqn if and only if the following derived map
depending on h and b

g : Fq → Fq

u �→ u + bh(u)

is a permutation over Fq.

Proof. We use a method similar to the ones in [11] or [8]. Let x, α ∈ Fqn satisfy
G(x) = G(x + γα). Then

G(x) = A(x) + A(γ)h(f(x)),
G(x + γα) = A(x + γα) + A(γ)h(f(x + γα))

= A(x) + A(γα) + A(γ)h(f(x + γα)) by condition 1,

and hence
A(γ)h(f(x)) = A(γα) + A(γ)h(f(x + γα)). (7)

Divide both sides of Eq. (7) by A(γ), since A(γ) �= 0 by condition 2. Then we
have

h(f(x)) =
A(γα)
A(γ)

+ h(f(x + γα)).

As f(x), f(x + γα) ∈ Fq[x], h ∈ Fq[x] and A(γα)
A(γ) ∈ Fq, by condition 4 we get

α ∈ Fq. Taking a = α ∈ Fq, we have

h(f(x)) =
A(γa)
A(γ)

+ h(f(x + γa)).

On Plateaued Functions, Linear Structures and Permutation Polynomials 233

Note that A(γa) = A(γ)A(a) by condition 3, so we get

h(f(x)) = A(a) + h(f(x + γa))

and hence by using that γ is a (b, A)-linear translator for f , we get

h(f(x)) = A(a) + h(f(x) + bA(a)).

Then substituting u = f(x) ∈ Fq[x], we have

h(u) = A(a) + h(u + bA(a)). (8)

Consider

g(u) = u + bh(u)
g(u + bA(a)) = u + bA(a) + b(h(u + bA(a)))

= u + b (A(a) + h(u + bA(a))
= u + bh(u)
= g(u).

Here as x runs through Fqn , u = f(x) runs through Fq as f is onto. Then we get

g(u) = g(u + bA(a)). (9)

Thus the mapping G is a permutation over Fqn if and only if the only a satisfying
Eq. (9) is a = 0. If b = 0, then we obtain that A(a) = 0 as g is permutation. As
A|Fq

is one-to-one, we get a = 0. If b = 0, then from Eq. (8) we have

h(u) = A(a) + h(u + bA(a)) = A(a) + h(u).

Hence A(a) = 0. Therefore, a = 0. ��
The next example illustrates a simple situation when the conditions of

Theorem 6 hold. Note that the polynomial A(x) in the next example is not in
the form of a Frobenius linear translator. Moreover, the next example illustrates
that the conditions of Theorem 5 hold easily as its conditions are weaker.

Example 2. Let q = 2 and n = 4. Take A(x) = α2x+α7x2+α3x4+α5x8 ∈ F24 [x]
where α4 = 1+α and γ = α3 ∈ F

∗
24 . Then A(x) satisfies the following conditions:

1. A is F2-linear since A is additive.
2. A(γ) �= 0 since A(γ) = A(α3) = α4 �= 0.
3. A(γa) = A(γ)A(a) for all a ∈ F2 since

A(a) = α2a + α7a2 + α3a4 + α5a8 = a(α2 + α7 + α3 + α5) = a

and

A(γa) = α2(α3a) + α7(α3a)2 + α3(α3a)4 + α5(α3a)8 = aA(γ) = A(a)A(γ).

234 S. Mesnager et al.

4. For any x ∈ Fqn : If A(γx) ∈ A(γ)Fq, then x ∈ Fq. Consider θ = αi ∈ F24/F2

for 1 ≤ i ≤ 14, then we have

A(γθ) = A(γαi) �∈ A(γ)F2 where A(γ) = α4 for 1 ≤ i ≤ 14.

Indeed, we have {A(γαi) : 1 ≤ i ≤ 14} = F16 \ {0, α4}. For example,
A(γα) = α8 and A(γα11) = α.

5. A|F2 is onto.

Let f : F24 → F2 be the map x �→ Tr4(x). Then α3 is a (1, A)-linear translator
of f since we have

f(x + γu) = f(x + α3u) = Tr4(x + α3u) = Tr4(x) + uTr4(α3)
= Tr4(x) + u = f(x) + u

for all x ∈ F24 and for all u ∈ F2.

7 Conclusion

We define a new class of Boolean functions which includes Cusick’s class of func-
tions [9] as a small subclass. We obtain explicit permutation polynomial classes
over Fq2 via Fq and also over Fqn via Fq with n ≥ 3. We give a natural general-
ization of the notion of linear translators which is called (b,A)-linear translator.
By using the connection between linear translators and permutation polynomi-
als over finite fields, we obtain a class of permutation polynomials over Fqn .
For applications our class of Boolean functions would be preferable compared to
Cusick’s class of functions mentioned above as our class is much larger having
cryptographic properties as good as (or even better than) the class of Cusick’s
functions. Using our methods and new notion of (b,A)-linear translator it would
be possible to construct further interesting algebraic structures like permutation
polynomials or special functions.

Acknowledgments. We thank the reviewers for their insightful and fruitful remarks
which greatly improved the presentation of the paper.

The research of the second and third authors has been funded by METU Coordi-
natorship of Scientific Research Projects via grant for projects GAP-101-2018-2782.

References

1. Akbary, A., Ghioca, D., Wang, Q.: On constructing permutations of finite fields.
Finite Fields Appl. 17(1), 51–67 (2011)

2. Boztaş, S., Özbudak, F., Tekin, E.: Explicit full correlation distribution of sequence
families using plateaued functions. IEEE Trans. Inf. Theory 64(4), 2858–2875
(2018)

On Plateaued Functions, Linear Structures and Permutation Polynomials 235

3. Carlet, C.: Boolean functions for cryptography and error correcting codes. In:
Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics,
Computer Science, and Engineering, pp. 257–397. Cambridge University Press,
Cambridge (2010)

4. Carlet, C.: On the properties of vectorial functions with plateaued components
and their consequences on APN functions. In: El Hajji, S., Nitaj, A., Carlet, C.,
Souidi, E.M. (eds.) C2SI 2015. LNCS, vol. 9084, pp. 63–73. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-18681-8 5

5. Carlet, C.: Boolean and vectorial plateaued functions and APN functions. IEEE
Trans. Inf. Theory 61(11), 6272–6289 (2015)

6. Carlet, C., Mesnager, S., Özbudak, F., Sınak, A.: Explicit characterizations for
plateaued-ness of p-ary (Vectorial) functions. In: El Hajji, S., Nitaj, A., Souidi,
E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 328–345. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55589-8 22

7. Cepak, N., Charpin, P., Pasalic, E.: Permutations via linear translators. Finite
Fields Appl. 45, 19–42 (2017)

8. Cepak, N., Pasalic, E., Muratović-Ribić, A.: Frobenius linear translators giving rise
to new infinite classes of permutations and bent functions. arXiv preprint https://
arxiv.org/abs/1801.08460 (2018)

9. Cusick, T.W.: Highly nonlinear plateaued functions. IET Inf. Secur. 11(2), 78–81
(2017)

10. Cusick, T.W., Stănica, P.: Cryptographic Boolean Functions and Applications, 2nd
edn. Academic Press, San Diego (2017). (1st ed., 2009)

11. Kyureghyan, G.M.: Constructing permutations of finite fields via linear translators.
J. Comb. Theory Ser. A 118, 1052–1061 (2011)

12. Lang, S.: Algebra. Graduate Texts in Mathematics, p. 211. Springer-Verlag, New
York (2002)

13. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge University Press, Cambridge
(1983)

14. Mesnager, S.: Bent Functions: Fundamentals and Results. Springer, Cham (2016)
15. Mesnager, S., Ongan, P., Özbudak, F.: New bent functions from permutations and

linear translators. In: El Hajji, S., Nitaj, A., Souidi, E.M. (eds.) C2SI 2017. LNCS,
vol. 10194, pp. 282–297. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-55589-8 19

16. Mesnager, S., Özbudak, F., Snak, A.: Linear codes from weakly regular plateaued
functions and their secret sharing schemes. Des. Codes Crypt. 87(2–3), 463–480
(2018). https://doi.org/10.1007/s10623-018-0556-4

17. Riera, C., Solé, P., Stănică, P.: A complete characterization of plateaued boolean
functions in terms of their cayley graphs. In: Joux, A., Nitaj, A., Rachidi, T.
(eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 3–10. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89339-6 1

18. Tang, C., Li, N., Qi, Y., Zhou, Z., Helleseth, T.: Linear codes with two or three
weights from weakly regular bent functions. IEEE Trans. Inf. Theory 62(3), 1166–
1176 (2016)

19. Tokareva, N.: Bent Functions: Results and Applications to Cryptography. Aca-
demic Press, San Diego (2015)

https://doi.org/10.1007/978-3-319-18681-8_5
https://doi.org/10.1007/978-3-319-55589-8_22
https://arxiv.org/abs/1801.08460
https://arxiv.org/abs/1801.08460
https://doi.org/10.1007/978-3-319-55589-8_19
https://doi.org/10.1007/978-3-319-55589-8_19
https://doi.org/10.1007/s10623-018-0556-4
https://doi.org/10.1007/978-3-319-89339-6_1

Faster Scalar Multiplication on the
x-Line: Three-Dimensional GLV Method

with Three-Dimensional Differential
Addition Chains

Hairong Yi1,2(B), Guiwen Luo1,2, and Dongdai Lin1

1 State Key Laboratory of Information Security,
Institute of Information Engineering, Chinese Academy of Sciences,

Beijing 100093, China
{yihairong,luoguiwen,ddlin}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. On the quadratic twist of a GLV curve, we explore faster scalar
multiplication on its x-coordinate system utilizing three-dimensional GLV
method. We construct and implement two kinds of three-dimensional
differential addition chains, one of which is uniform and the other is
non-uniform but runs faster. Implementations show that at about 254-bit
security level, the triple scalar multiplication using our second differential
addition chains runs about 26% faster than the straightforward comput-
ing using Montgomery ladder, and about 6% faster that the double scalar
multiplication using DJB chains.

Keywords: Scalar multiplication · GLV methods ·
Differential Addition Chains · DJB chains

1 Introduction

Elliptic curve cryptography (ECC) plays an important role in the public key
cryptosystems. Various schemes and numerous techniques about ECC have been
studied to meet the different needs (basically, efficiency and security) in different
settings. In 2014, Costello, Hisil and Smith [6] implemented a very fast elliptic
curve scalar multiplication, optimized for Diffie-Hellman Key Exchange at the
128-bit security level. This very efficient scheme involved two crucial ideas: using
x-coordinate-only systems and the two-dimensional GLV method on the x-line.

The idea for computing scalar multiplication on elliptic curves by only x-
coordinates arose earlier. Montgomery’s explicit formulas [14] for the arithmetic
on x-coordinate of a Montgomery curve together with his eponymous ladder
provided a full solution to its implementation. It is often used as a technique
called point compression, for storing or transmitting fewer bits of information in

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 236–253, 2019.
https://doi.org/10.1007/978-3-030-16458-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_14

Faster Scalar Multiplication on the x-Line 237

some specific situation. The Gallant-Lambert-Vanstone (GLV) method [9] is a
typical and important technique for speeding up scalar multiplication on certain
kinds of elliptic curves. It exploits a fast endomorphism on the curve, replacing a
single large scalar multiplication with two scalar multiplications with only a half
bit lengths. Then this two-dimensional GLV will result in a twofold performance
speedup using parallel computation. Since m-dimensional GLV would proba-
bly lead to m-fold performance acceleration by parallel computation, higher
dimensional GLV method has also been intensively considered [8,10,12]. In 2009,
Galbraith, Lin and Scott [8] proposed the so-called GLS curves and indicated
that on restricted GLS curves with j-invariant 0 or 1728, the four-dimensional
GLV can be implemented. Further in 2012, Longa and Sica [12] combined the
ideas in [9] and [8] and realized the four-dimensional GLV on the quadratic twists
of all previous GLV curves appeared in [9].

In [6], Costello et al. have shown a positive effect of applying the two-
dimensional GLV method to the scalar multiplication on the x-line. Motivated
by the potential acceleration of higher dimensional GLV method, in this paper
we investigate the performance of applying the three-dimensional GLV method to
the x-coordinate-only systems. We choose the elliptic curves using the approach
of [12], which are originally tailored for four-dimensional GLV method but can be
transformed to three-dimensional variants as well. The remaining key issue is the
chosen of higher dimensional differential addition chains (DACs) used in multi-
scalar multiplication, where the “differential” property of the chain is required by
the incomplete (pseudo-) operations on the x-line.

The two-dimensional DACs have all kinds of constructions in literature. For
example, Schoenmakers’ chain in [17], Akishita’s chain in [1]. In [6] another
three different two-dimensional DACs are implemented: PRAC chains [13,17], AK
chains [2] and DJB chains [3]. Each of them offers a different combination of speed,
uniformity and constant-time execution. The research about higher dimensional
DACs are comparatively less. Early in 2006, Brown [4] extended Bernstein’s idea
(i.e. DJB chain) to general d-dimensional DACs, but it has been patented. For
bypassing it, around 2016 SubramanyaRao tried the three-dimensional analogue of
Schoenmakers’ chain in [15] and that of Akishita’s chain in [16]. The first attempt
failed because it was showed to be more expensive than one-dimensional Mont-
gomery ladder. The second one succeeded in competing with Montgomery ladder
by about 22% speedup at the 256-bit security level. However there were no results
of comparing it with the two-dimensional DACs. The latest progress is made in
[11], 2017, by Hutchinson and Karabina. They constructed a d-dimensional DAC
which has some similarities with that of Brown’s [4], and made specific theoretical
comparisons between some known d-point multiplication algorithms showing the
algorithm based on their construction to be superior.

In this paper, we propose two kinds of constructions of three-dimensional
DACs. The first one is a straightforward extension to higher dimension of the
DJB chain, which is totally different from the patented one of Brown’s in [4]. It
inherits the property of uniformity. The second one comes from our direct obser-
vation, which is not a higher dimensional analogue of any two-dimensional DAC.

238 H. Yi et al.

It is not uniform, but runs very fast. And it runs faster than SubramanyaRao’s
second chain described in [16] since it saves one more point operation in each
iteration. Our final comparison experiments on testing scalar multiplication on
the x-coordinate system utilizing different dimensional GLV methods show that
at about 254-bit security level, our uniform three-dimensional DAC runs about
9% faster than Montgomery ladder, and the non-uniform one runs about 26%
faster than Montgomery ladder and about 6% faster than the two-dimensional
DJB chain.

Paper Organization. The rest of the paper is arranged as follows. In Sect. 2, we
begin with a brief introduction to the four-dimensional GLV method proposed in
[12], and see how to deduce a three-dimensional GLV variant directly in the same
settings. In Sect. 3, we describe the basic operations on the x-coordinate system
and deploy higher dimensional GLV method on this system. Then in Sect. 4 we
describe explicitly the construction of our two three-dimensional DACs, and give
some examples. In Sect. 5, from both the theoretic and experimental aspect, we
compare the performance of scalar multiplication on the x-coordinate utilizing
different dimensional GLV methods together with different DACs. Finally in
Sect. 6 we draw our conclusion.

2 Three and Four-Dimensional GLV Method

The 4-dimensional GLV method proposed by Longa and Sica in [12] consists
of the chosen of elliptic curves that are equipped with two efficient endomor-
phisms and 4-dimensional scalar decomposition. They use the quadratic twists
of elliptic curves, of which the idea comes from GLS curves, and propose a spe-
cific twofold Cornacchia-type algorithm for scalar decomposition. Here we give
a brief introduction.

Let Fp be a finite field where p is prime. A GLV curve over Fp is an elliptic
curve E/Fp of whom the group of rational points has an almost prime order
(cofactor ≤ 4), equipped with an efficiently computable Fp-endomorphism φ.
Assume that X2 + rX + s ∈ Z[X] is the characteristic polynomial of φ, and
π is the p-th Frobenius endomorphism of E. Let E′/Fp2 be a quadratic twist
of E(Fp2), via the twisting Fp4 -isomorphism t2 : E → E′. We then obtain two
efficient endomorphisms on E′, Φ = t2φt−1

2 and Ψ = t2πt−1
2 , both defined over

Fp2 . Suppose that 〈P 〉 ⊂ E′(Fp2) is a large subgroup of prime order n. Then we
have Φ2(P)+rΦ(P)+sP = OE′ and Ψ2(P)+P = OE′ , together with Φ(P) = λP
and Ψ(P) = μP where λ, μ ∈ [1, n−1] is a root of X2+rX +s modulo n, X2+1
modulo n respectively.

Define the 4-dimensional GLV reduction map w.r.t. {1, Φ, Ψ, ΦΨ}
f : Z

4 → Z/n

(x1, x2, x3, x4) �→ x1 + x2λ + x3μ + x4λμ (mod n).

Then ker f is a lattice. Applying the twofold Cornacchia-type algorithm [12,
18] to ker f, we can find a short basis {v1, v2, v3, v4} to this lattice with maxi |vi| ≤
3.41(

√
1 + |r| + s)n1/4, where | · | denotes the maximum norm. For any scalar

Faster Scalar Multiplication on the x-Line 239

k ∈ [1, n), express (k, 0, 0, 0) = α1v1 + α2v2 + α3v3 + α4v4 as the Q-linear
combination of the basis {vi}. Then round αi to the nearest integers ai = 	αi
,
and let (k1, k2, k3, k4) = (k, 0, 0, 0) − ∑4

i=1 aivi. Finally we have

kP = k1P + k2Φ(P) + k3Ψ(P) + k4ΦΨ(P)

with
max

i
(|ki|) ≤ 6.82(

√
1 + |r| + s)n1/4.

For our demand in the following, actually we need the 3-dimensional GLV
method. The above way for choosing target curves is exactly what we want. But
we delete the dimension controlled by “ΦΨ” from the 4-dimensional version to
obtain a 3-dimensional representation. As for the 3-dimensional scalar decom-
position, following the same way as above, then we obtain a 3-dimensional GLV
reduction map f̃ w.r.t. {1, Φ, Ψ}. For finding a short basis of the lattice ker f̃, we
can apply LLL algorithm. Then using the way described as above we can obtain

kP = �1P + �2Φ(P) + �3Ψ(P) with �i = O(k1/3).

3 Projection to the x-Line

The projective line P
1 can be viewed as a quotient variety of E by the subgroup

{±1} of the automorphism group Aut(E) of E. Particularly, if {±1} is exactly
the whole group Aut(E) then P

1 is the so-called Kummer variety of E. When E
is given by a Weierstrass equation (or Montgomery form as [6] exploited), then
the quotient map E → P

1 is just the projection to x-coordinate.
Some of the operations of E are well-defined on the x-line, like the scalar

multiplication. Assume that P is a point of E. Given the x-coordinate x(P)
of P and some scalar k, then x(kP) can be computed using the well-known
Montgomery ladder. Based on this property, Diffie-Hellman Key Exchange can
be executed on the pure x-coordinate settings. Furthermore in [6] Costello et al.
require E to be twist-secure, for ensuring the compactness of this system.

However the x-line is not a group. The typical obstruction is that, only given
the x-coordinates x(P), x(Q) of two points P,Q of E, one can not distinguish
x(P ⊕Q) and x(P �Q). But once one of them is known, then the other is clear.

Basic Pseudo-Operations on the x -Line. In our settings, the target elliptic
curve E′/Fp2 as described in Sect. 2 is always defined by a short Weierstrass
equation: y2 = x3+a4x+a6. For reader’s convenience, here we write the explicit
formula (in projective coordinate form) for pseudo-doubling and pseudo-addition
on the x-line, which one may refer to [5].

Let x(Pi) = (Xi : Zi), i = 1, 2 be the x-coordinates of two points P1, P2 on
E′(Fp2). Let x(P1 � P2) = (ΔX : ΔZ). Assume x(P1 ⊕ P2) = (X : Z). Then

X = ΔZ
(− 4a6Z1Z2(X1Z2 + X2Z1) + (X1X2 − a4Z1Z2)2

)
,

Z = ΔX
(
X1Z2 − X2Z1

)2
,

240 H. Yi et al.

and

x(2P1) =
(
(X2

1 − a4Z
2
1)2 − 8a6X1Z

3
1 : 4Z1(X1(X2

1 + a4Z
2
1) + a6Z

3
1)

)
.

Pseudo-Endomorphisms on the x -Line. Every endomorphism of E induces
a pseudo-endomorphism of P

1, since it commutes with the negation map of E. On
our target curve E′/Fp2 , the two endomorphisms Φ and Ψ induce Φx : x �→ Φx(x)
and Ψx : x �→ Ψx(x) on the x-line. And since they are commutative, we have

ΦxΨx = (ΦΨ)x = (ΨΦ)x = ΨxΦx.

Let 〈P 〉 ⊂ E′(Fp2) be the subgroup with large prime order as in Sect. 2. For
any scalar k, we can find (k1, k2, k3, k4) with only a quater of the bit length of
k, such that

kP = k1P + k2Φ(P) + k3Ψ(P) + k4ΦΨ(P);

or we can find (�1, �2, �3) with only one third of the bit length of k, such that

kP = �1P + �2Φ(P) + �3Ψ(P).

Denote by x the x-coordinate of P . Then we would like to compute x(kP) using

(k1 + k2Φ + k3Ψ + k4ΦΨ)x(x) (1)
or (�1 + �2Φ + �3Ψ)x(x). (2)

Actually here we only need to consider Eq. (2). We can expect to acceler-
ate the computation of x(kP) using this multi-scalar multiplication. But since
there are only pseudo-operations on the x-line, addition chains are not feasible.
And it forces us to propose a higher dimensional DAC to this (k1, k2, k3, k4) or
(�1, �2, �3), just as the 2-dimensional case in [6], where computes

(m1 + m2Φ)x(x) or (m1 + m2Ψ)x(x) (3)

utilizing a 2-dimensional DAC.

4 Three-Dimensional Differential Addition Chains

A differential addition chain is an addition chain in which each sum is already
accompanied by a difference, i.e. whenever a new chain element M +N is formed
by adding M and N , the difference M − N was already in the chain. The chain
is called n-dimensional, if every element in this chain has the form of n-tuple.
For example, the well-known “Montgomery ladder” is a typical one-dimensional
DAC.

In this section, we propose two kinds of constructions of 3-dimensional DACs.
One is a higher dimensional analogue of the DJB chain. The other comes
from observation directly, which is not a higher dimensional analogue of any
2-dimensional DAC.

Faster Scalar Multiplication on the x-Line 241

4.1 A Uniform Three-Dimensional Differential Addition Chain

The DJB chain is a 2-dimensional DAC proposed by Bernstein in 2006. It is
uniform, i.e. possesses the same execution pattern: add, double, add in each
iteration, and hence can resist side-channel attacks. For more details one can
refer to [3]. In the following, we generalize it to the 3-dimensional case.

Let S be the following set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}.

As in the 2-dimensional case, in each iteration we compute part of the eight
elements of the set S(a, b, c) = (a, b, c) + S.

We find that computing five of them is enough. For ensuring the property of
uniform, the element of type (even, even, even) should be reserved. For a pair of ele-
ments in S(a, b, c), if every component of them has the opposite parity, then we call
them dual to each other. Among the following three dual pairs {(odd, even, even),
(even, odd, odd)}, {(even, odd, even), (odd, even, odd)}, {(even, even, odd), (odd,
odd, even)}, we omit one of two elements in every pair, and use three parameters
d1, d2, d3 to determine which ones are to be omitted, that is

T1 = (a+ (a+ d1 + 1 mod 2), b+ (b+ d1 mod 2), c+ (c+ d1 mod 2)),
T2 = (a+ (a+ d2 mod 2), b+ (b+ d2 + 1 mod 2), c+ (c+ d2 mod 2)),
T3 = (a+ (a+ d3 mod 2), b+ (b+ d3 mod 2), c+ (c+ d3 + 1 mod 2)).

Next we give a recursive definition of the 3-dimensional differential addition
chain.

Definition 1. For a given 3-tuple of nonnegative integers (A,B,C), and
{D1,D2,D3} where D1,D2,D3 ∈ {0, 1}, we define the set C({Di}3i=1;A,B,C)
recursively, as the set C({di}3i=1; a, b, c) added with the following five elements:

M−1 = (A+ (A+ 1 mod 2), B + (B + 1 mod 2), C + (C + 1 mod 2)),
M0 = (A+ (A mod 2), B + (B mod 2), C + (C mod 2)),
M1 = (A+ (A+D1 mod 2), B + (B +D1 + 1 mod 2), C + (C +D1 + 1 mod 2)),
M2 = (A+ (A+D2 + 1 mod 2), B + (B +D2 mod 2), C + (C +D2 + 1 mod 2)),
M3 = (A+ (A+D3 + 1 mod 2), B + (B +D3 + 1 mod 2), C + (C +D3 mod 2)),

where (a, b, c) = (A/2, 	B/2, 	C/2) and (d1, d2, d3) is taken as

(d1, d2, d3) if (a + A, b + B, c + C) mod 2
(1, 0, 0) (1, 0, 0)
(0, 1, 1) (0, 1, 1)
(0, 1, 0) (0, 1, 0)
(1, 0, 1) (1, 0, 1)
(0, 0, 1) (0, 0, 1)
(1, 1, 0) (1, 1, 0)

(D1,D2,D3) (0, 0, 0)
(1 − D1, 1 − D2, 1 − D3) (1, 1, 1).

242 H. Yi et al.

Specially, for arbitrary D1,D2,D3 let C({Di}; 0, 0, 0) be the union of the sets

S1 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 1,−1),
(1, 1,−1)}

S2 = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1,−1, 1), (−1, 1, 1)}
where S2 can be computed from S1.

Remark 1. The elements in S2 can be computed from S1. For example,
(1, 1, 0) = (1, 0, 0)+ (0, 1, 0) with difference (1,−1, 0), and (1,−1, 1) = (1, 0, 0)+
(0,−1, 1) with difference (1, 1,−1), where (1, 0, 0), (0, 1, 0), (1,−1, 0), (0,−1, 1)
(i.e. (0,1,-1)) and (1, 1,−1) all belong to S1.

Proposition 1. The chain C({Di}3i=1;A,B,C) defined above is a uniform
DAC, starting from the set S1 ∪ S2.

Proof. Firstly, we should note that the chain C({Di};A,B,C) always contains
(1, 1, 1) when (A,B,C) �= (0, 0, 0), since M−1 = (1, 1, 1) is contained in the chain
for any (A,B,C) ∈ {0, 1}3 \ (0, 0, 0). And (1, 1, 1) is the addition of (1, 1, 0) and
(0, 0, 1) whose difference is contained in S1.

M−1 is the element of type (odd, odd, odd), and is equal to (2a+1, 2b+1, 2c+
1) for (a, b, c) = (A/2, 	B/2, 	C/2), which is also equal to the addition of any
dual pair in the set S(a, b, c), e.g. (a, b, c) + (a + 1, b + 1, c + 1). Note that there
are four dual pairs in S(a, b, c), and the definition says at least one complete
dual pair is reserved in C({di}3i=1; a, b, c), whose difference is equal to (1, 1, 1) or
contained in S1 or S2.

M0 is the element of type (even, even, even), and is equal to (2a +
2(A mod 2), 2b + 2(B mod 2), 2c + 2(C mod 2)), which is a double of the ele-
ment (a + (A mod 2), b + (B mod 2), c + (C mod 2)), denoted by V . Note that
V ≡ (a + A, b + B, c + C) mod 2, and in C({di}; a, b, c) the omitted elements
modulo 2 are

T1 ≡ (d1 + 1, d1, d1) mod 2, T2 ≡ (d2, d2 + 1, d2) mod 2, T3 ≡ (d3, d3, d3 + 1) mod 2.

When (a + A, b + B, c + C) mod 2 = (0, 0, 0) or (1, 1, 1), then V is
(even,even,even) or (odd, odd, odd) which must be contained in C({di}; a, b, c)
by definition. Apart from these two cases, we observe that pairs (d1, a + A),
(d2, b + B) and (d3, c + B) have the same parity, which implies that V modulo
2 is not equal to any Ti.

When D1 = 0, M1 = (2a + 2(A mod 2), 2b + 1, 2c + 1), which is equal to

(a + (A mod 2), b, c) + (a + (A mod 2), b + 1, c + 1) (4)

or
(a + (A mod 2), b + 1, c) + (a + (A mod 2), b, c + 1) (5)

Note that their differences are contained in S2 or S1, hence in C({bi}; a, b, c).
Since a + A and d1 + 1 always have the opposite parity, then none of these
four elements is equal to T1. Assume one is equal to T2 (or T3), for example

Faster Scalar Multiplication on the x-Line 243

(a+(A mod 2), b, c). Then b and c have an opposite parity, in other word, (b+1, c)
and (b, c + 1) have the same parity, which implies that none of the two elements
in (5) is equal to T3 (or T2). Therefore they belongs to C({di}; a, b, c).

When D1 = 1, M1 = (2a+1, 2b+2(B mod 2), 2c+2(C mod 2)) which is equal
to the addition of (a, b+(B mod 2), c+(C mod 2)) and (a+1, b+(B mod 2), c+
(C mod 2)). Their difference is (1, 0, 0) contained in S1. In the case that (a +
A, b+B, c+C) mod 2 = (0, 0, 0) or (1, 1, 1), none of these two elements is equal to
T2, T3 or T1, and therefore they are contained in C({bi}; a, b, c). Apart from these
two cases, since pairs (d2 +1, b+B) and (d3 +1, c+C) always have the opposite
parity, then none of them is equal to T2 or T3. If (a, b+(B mod 2), c+(C mod 2))
is equal to T1, then (b+B, c+C) mod 2 = (0, 0) or (1, 1). In the former case, by
definition d1 = 1 and then T1 = (0, 1, 1), which is a contradiction. In the latter
case, d1 = 0 and then T1 = (1, 0, 0) which is also a contradiction.

Similarly, we can show that M2 and M3 are additions of some elements in
C({bi}; a, b, c) whose differences are already in this chain.

Finally, it is obviously uniform since each iteration contains 1 double and 4
additions where M0 is the double and others are additions. ��
Remark 2. Given a 3-tuple (k1, k2, k3), if we want to compute the above 3-
dimensional DAC of (k1, k2, k3), the initial D1,D2,D3 should be taken like this:

if (k1, k2, k3) mod 2 = (1, 0, 0) or (0, 1, 1), D1 ≡ k1 mod 2; arbitrary D2,D3

if (k1, k2, k3) mod 2 = (0, 1, 0) or (1, 0, 1), D2 ≡ k2 mod 2; arbitrary D1,D3

if (k1, k2, k3) mod 2 = (0, 0, 1) or (1, 1, 0), D3 ≡ k3 mod 2; arbitrary D1,D2

if (k1, k2, k3) mod 2 = (0, 0, 0) or (1, 1, 1), arbitrary D1,D2,D3

Example 1. Here is a simple example of computing the above 3-dimensional DAC
of (199, 331, 513), where we set the initial (D1,D2,D3) to be (1, 1, 1).

Stage M−1 M0 M1 M2 M3

1 Pre-computation of S1 and S2

2 (1, 1, 1) (0, 0, 2) (0, 1, 1) (0, 1, 2) (0, 0, 1)
3 (1, 1, 3) (0, 2, 2) (1, 2, 2) (0, 1, 2) (1, 1, 2)
4 (1, 3, 5) (2, 2, 4) (2, 3, 5) (2, 3, 4) (1, 3, 4)
5 (3, 5, 9) (4, 6, 8) (3, 6, 8) (4, 5, 8) (3, 5, 8)
6 (7, 11, 17) (6, 10, 16) (6, 11, 17) (6, 11, 16) (7, 11, 16)
7 (13, 21, 33) (12, 20, 32) (12, 21, 33) (12, 21, 32) (13, 21, 32)
8 (25, 41, 65) (24, 42, 64) (25, 42, 64) (24, 41, 64) (25, 41, 64)
9 (49, 83, 129) (50, 82, 128) (50, 83, 129) (50, 83, 128) (49, 83, 128)
10 (99, 165, 257) (100, 166, 256) (100, 165, 257) (99, 166, 257) (100, 166, 257)
11 (199, 331, 513) (200, 332, 514) (199, 332, 514) (200, 331, 514) (200, 332, 513)

In this chain, for example, the (D1,D2,D3) in Stage 10 is (0, 0, 1), and hence
the omitted elements are {(odd,even,even),(even,odd,even),(odd,odd,even)} =
{(99, 166, 256), (100, 165, 256), (99, 165, 256)}. The five elements in this stage
are additions of the elements in Stage 9, e.g. (99, 165, 257) = (49, 83, 129) +
(50, 82, 128) with difference (−1, 1, 1) belonging to S2, (100, 166, 256) = 2 ·

244 H. Yi et al.

(50, 83, 128) with difference (0, 0, 0) belonging to S1, (100, 165, 257) =
(50, 82, 128) + (50, 83, 129) with difference (0, 1, 1) belonging to S2.

4.2 A Faster Three-Dimensional Differential Addition Chain

Now we introduce a new construction of 3-dimensional DAC, which is not uni-
form but faster than the uniform one described in Sect. 4.1. It only needs four
additions or three additions together with one double in each stage of iteration.

Let S be the set defined in Sect. 4.1. We classify part of the sets of four
elements of S. We call the set

{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}

is of type C0; the set

{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}
or {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}
or {(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1)}

is of type C1; the set

{(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
or {(0, 1, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}
or {(0, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1)}

is of type C2; the set

{(1, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 1)} or {(1, 0, 0), (0, 0, 1), (1, 1, 0), (1, 0, 1)}
or {(1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 1, 1)} or {(0, 1, 0), (0, 0, 1), (1, 1, 0), (0, 1, 1)}
or {(1, 0, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)} or {(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)}

is of type C3; the set

{(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}

is of type C4.
We use a 3-tuple (a, b, c) of non-negative integers to label each stage of our

iteration. In the stage of any given (a, b, c) which is not equal to (0, 0, 0), we
compute four elements in (a, b, c) + S, of which the set is denoted by E(a, b, c).
It has the following form

E(a, b, c) = (a, b, c) + δ,

where δ ⊆ S is of some type Ci for i = 0, 1, 2, 3 or 4.
Assume that (a, b, c) is the former stage of (A,B,C), where a = 	A/2,

b = 	B/2, c = 	C/2. And assume that (a, b, c) �= (0, 0, 0). We show in the
following that in any case, there exists some set δ of type C0, C1, C2, C3 or C4,
such that E(A,B,C) can be computed from (a, b, c) + δ. Then we set it to

Faster Scalar Multiplication on the x-Line 245

be E(a, b, c). In other word, every element of E(A,B,C) is an addition of two
elements of E(a, b, c).

Assume that

E(A,B,C) = (A,B,C) + Δ, where Δ is of type Ci.

We denote by t = (A,B,C) − (2a, 2b, 2c). Then t is an element of S.
If i = 0, i.e. Δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}, and when t ∈ {(0, 0, 0),

(1, 0, 0), (0, 1, 0), (0, 0, 1)}, we can set

δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)},

which is of type C0. We can check, for example, when t = (0, 0, 1), then

E(A,B,C) = (2a, 2b, 2c) + {(0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 0, 2)}
can be computed from E(a, b, c) = (a, b, c) + δ by either additions or double.
When t ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}, we can set

δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {t},

which is of type C1. Also we can check, for example when t = (1, 0, 1), then

E(A,B,C) = (2a, 2b, 2c) + {(1, 0, 1), (2, 0, 1), (1, 1, 1), (1, 0, 2)}
can be computed form E(a, b, c) = (a, b, c) + δ by additions. When t = (1, 1, 1),
we can set

δ = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)},

which is of type C2. In conclusion, we can use the following table to present the
δ’s in all cases.

Δ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)}
t δ Type

(0, 0, 0) Δ C0

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) Δ C0

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) {(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {t} C1

(1, 1, 1) {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)} C2

If i = 1, i.e. Δ is of type C1, assume that Δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), s}
where s ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}. Then we can check

Here s · t is the vector with multiplying components, and s⊥ is the vector
(1, 1, 1)−s, also called the dual vector of s as in Sect. 4.1. Here we only check the
case when t ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} \ {s}. Then E(A,B,C) = (2a, 2b, 2c)+
t + Δ and E(a, b, c) = (a, b, c) + δ. Hence we only need to show that

t + Δ = {t + (1, 0, 0), t + (0, 1, 0), t + (0, 0, 1), t + s}

246 H. Yi et al.

Δ = {(1, 0, 0), (0, 1, 0), (0, 0, 1), s}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) Δ C1

s
(s �=)t ∈
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}

Δ
{s · t, s⊥, s, t}

C1

C3

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

can be computed from δ = {s · t, s⊥, s, t}.Obviously, s · t �= s⊥ and both
belong to {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. The remaining element of {{(1, 0, 0),
(0, 1, 0), (0, 0, 1)} \ {s · t, s⊥} can be expressed as (1, 1, 1) − s · t − s⊥, denoted
by α. Since α · t = (s − s · t) · t = s · t − s · t2 = 0 and only one component of
α is non-zero, it implies that α is dual to t. Then t + α = (1, 1, 1) = s⊥ + s and
hence every element of E(A,B,C) is an addition of two elements of E(a, b, c).

If i = 2, i.e. Δ is of type C2, assume that Δ = {s, (1, 1, 0), (1, 0, 1), (0, 1, 1)}
where s ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Also we can check the following

Δ = {s, (1, 1, 0), (1, 0, 1), (0, 1, 1)}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

s
(s �=)t ∈
{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

Δ
{s, t, s⊥, s + t}

C2

C3

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) Δ C2

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

If i = 3, i.e. Δ is of type C3, we assume that Δ = {s1 · s2, k, s1, s2} where
s1 �= s2 ∈ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} and k = s⊥

1 or s⊥
2 . We can check

Δ = {s1 · s2, k, s1, s2}
t δ Type

(0, 0, 0) {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} C0

s1 · s2 or k
the othera

Δ
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ∪ {k⊥}

C3

C1

s1 or s2
the otherb

Δ
{k} ∪ {(1, 1, 0), (1, 0, 1), (0, 1, 1)}

C3

C2

(1, 1, 1) {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)} C4

aThe remainder in {(1, 0, 0), (0, 1, 0), (0, 0, 1)} that is not equal to s1 · s2 or k.
bThe remainder in {(1, 1, 0), (1, 0, 1), (0, 1, 1)} that is not equal to s1 or s2.

If i = 4, i.e. Δ = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}, we can check

Faster Scalar Multiplication on the x-Line 247

Δ = {(1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)}
t δ Type

(0, 0, 0) {(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)} C1

(1, 0, 0)/(0, 1, 0)/(0, 0, 1) {t} ∪ {(1, 1, 0), (1, 0, 1), (0, 1, 1)} C2

(1, 1, 0)/(1, 0, 1)/(0, 1, 1) Δ C4

(1, 1, 1) Δ C4

In conclusion, we have the following

Proposition 2. In the stage of (0, 0, 0), we take E(0, 0, 0) = S1 ∪ S2 where
S1, S2 are defined in Definition 1. For any given 3-tuple (k1, k2, k3) of non-
negative scalars, let (A,B,C) = (k1, k2, k3) and Δ be the set of four elements
of type C0. Then compute recursively the whole chain, denoted by C(k1, k2, k3),
using the above method. Then C(k1, k2, k3) is a DAC containing (k1, k2, k3).

Proof. First, (k1, k2, k3) ∈ E(A,B,C) ⊆ C(k1, k2, k3). Second, from the above
procedure we see that every element (except the elements in the stage of (0, 0, 0))
in this chain is an addition of two former elements (may be the same) in this
chain, of which the difference belongs to S1 ∪ S2. Therefore, C(k1, k2, k3) is a
DAC. ��
Example 2. Take (k1, k2, k3) = (9, 10, 11). They all have 4 bits. Set
(A4, B4, C4) = (9, 10, 11) and Δ4 = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} of type
C0. Then

E4 = {(9, 10, 11), (10, 10, 11), (9, 11, 11), (9, 10, 12)}.

Set (A3, B3, C3) = (4, 5, 5). In this case t = (1, 0, 1) and by table lookup Δ3 =
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)} is of type C1. Then

E3 = {(5, 5, 5), (4, 6, 5), (4, 5, 6), (5, 5, 6)}.

Set (A2, B2, C2) = (2, 2, 2). In this case t = (0, 1, 1) and by table lookup Δ2 =
{(0, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)} is of type C3. Then

E2 = {(2, 3, 2), (2, 2, 3), (3, 2, 3), (2, 3, 3)}.

Set (A1, B1, C1) = (1, 1, 1). In this case t = (0, 0, 0) and by table lookup Δ1 =
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} is of type C0. Then

E1 = {(1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)}.

Finally (A0, B0, C0) = (0, 0, 0) and t = (1, 1, 1), and then Δ0 = {(1, 0, 0), (1, 1, 0),
(1, 0, 1), (0, 1, 1)}. Then

E0 = {(1, 0, 0), (1, 1, 0), (1, 0, 1), (0, 1, 1)}.

If we denote by Ei[j] the j-th element of Ei, then we have the relations:

E4[1] = E3[1] + E3[3], E3[1] = E2[1] + E2[3], E2[1] = E1[1] + E1[3], E1[1] = E0[1] + E0[4]
E4[2] = E3[1] + E3[4], E3[2] = E2[1] + E2[4], E2[2] = E1[1] + E1[4], E1[1] = E0[2] + E0[3]
E4[3] = E3[2] + E3[4], E3[3] = E2[2] + E2[4], E2[3] = E1[2] + E1[3], E1[1] = E0[2] + E0[4]
E4[4] = E3[3] + E3[4], E3[4] = E2[3] + E2[4], E2[4] = E1[3] + E1[4], E1[1] = E0[3] + E0[4]

.

248 H. Yi et al.

5 Comparison

Recall the settings described in Sects. 2 and 3. To compute x(kP), now we can
apply different dimensional DACs to different models: Eqs. (2) and (3) or x(kP)
directly. In this part, we analyze the performance of scalar multiplication x(kP)
utilizing the following four kinds of DACs: 1-dimensional Montgomery ladder
(Ladder for short), 2-dimensional DJB chains (DJB), the 3-dimensional uniform
differential addition chains (3-Uni.) and the 3-dimensional non-uniform one (3-
Non-uni) described in Sect. 4.

5.1 Theoretic Analysis

For an elliptic curve in short Weiestrass form, using the projective coordinates, a
general addition (write A for short) involves 12 field multiplications (12M) and 2
field squarings (2S), whereas a double (D) involves 7M+5S. If we restrict to the
operations on x-line, then a pseudo-addition (PA) needs 9M+2S and a pseudo-
double (PD) needs 6M+3S [5, Chap. 13]. Assume that the target group is of
256-bit security level, and the scalar k is a 256-bit number. Then the following
table shows the theoretic field operations needed by those five DACs.

Table 1. Theoretical estimate

chain dim. rounds #operations/bit pre-comp. #total operations

Ladder 1 256 1PD + 1PA 0 3840M + 1280S

DJB 2 ∼ 128 1PD + 2PA 1A 3084M + 898S

3-Uni. 3 ∼ 85 1PD + 4PA 4A + 5PA 3663M + 953S

3-Non-uni. 3 ∼ 85 ≤ 4PA 4A + 5PA 3153M + 698S

Here we note two things. First if we take 1S = 0.8M, our 3-dimensional non-
uniform DAC needs 3711.4M, less than 3802.4M of the DJB chain. Second our
3-dimensional non-uniform DAC and the DAC in [11] taking d = 3 need almost
the same number of field operations in each iteration and precomputation.

5.2 Implementation Results

We make the following experiments with computer algebra package MAGMA.
We choose two families of elliptic curves E′

1 and E′
2 that are quadratic twists of

GLV curves chosen from [12]. Let p be a prime. For a non-square element u in
Fp2 , E′

1 and the two efficient Fp2 -endomorphisms on the x-line are given by

E′
1 : y2 = x3 − 3

4
ux2 − 2u2x − u3, Φx(x) =

x2 − u2ζ

ζ2(x − au)
, Ψx(x) = u1−pxp.

Faster Scalar Multiplication on the x-Line 249

Their characteristic polynomials are Φ2 − Φ + 2 = 0, Ψ2 + 1 = 0. Moreover take
p ≡ 1 (mod 3) and γ ∈ Fp to be an element of order 3. Then E′

2 and its efficient
Fp2 -endomorphisms on the x-line are given by

E′
2 : y2 = x3 + bu3, Φx(x) = γx, Ψx(x) = u1−pxp

with Φ2 + Φ + 1 = 0, Ψ2 + 1 = 0. For each i = 1, 2, and each of 64, 128 and
192 bit lengths of primes p, we choose 20 p’s such that each E′

i(Fp2) is almost
prime with the large prime subgroup of order n, and hence we obtain 20 target
elliptic curves. On each curve, we randomly choose 20 pairs (k, P)’s where P is
a rational point of the curve of order n and k is a scalar having the same bit
length as n. We test the above four DACs in the computation of x(kP). And for
each (k, P), we make the following three sets of comparison experiments: 3-Uni
versus Ladder, 3-Non-uni. versus Ladder and 3-non-uni. versus DJB3. We record
their running times and take the average over the 20×20 = 400 data at each bit
length of 64, 128 and 192. Then we compute the ratio of speedup of the former
DAC relative to the latter one. The implementation results are listed in Tables 1
and 2.

Table 2. The ratio of speedup tested in E′
1

p 64-bit 128-bit 192-bit

n 125 ∼ 126-bit 253 ∼ 254-bit 381 ∼ 382-bit

3-Uni. vs Ladder 6.8% 11.2% 11.5%

3-Non-uni. vs Ladder 24.7% 28.7% 29.3%

3-Non-uni. vs DJB 3.9% 8.5% 9.7%

Table 3. The ratio of speedup tested in E′
2

p 64-bit 128-bit 192-bit

n 125 ∼ 126-bit 253 ∼ 254-bit 381 ∼ 382-bit

3-Uni. vs Ladder 4.3% 7.0% 7.4%

3-Non-uni. vs Ladder 22.1% 24.2% 25.3%

3-Non-uni. vs DJB 3.0% 5.7% 6.8%

From the tables, first, we recognise that the performance depends on the
GLV model that we choose. However, compared with straightforward computing
with Ladder, the triple scalar multiplication using our 3-dimensional DACs runs
faster evidently. Moreover, the triple scheme using 3-Non-uni. outperforms the
double one using DJB chains. Second, the ratio of speedup increases when the
3 In the two-dimensional GLV, we always utilize the endomorphism Ψ in the testing.

250 H. Yi et al.

bit length of p grows. The case of 128-bit or equivalently when the security level
is about 254-bit may provide more significant reference. In this case, by taking
an average of the values in two tables, the triple scheme using 3-Uni. runs about
9% faster than straightforward computing; and that using 3-Non-uni. runs about
26% faster than straightforward computing, and about 6% faster than the double
scheme using DJB chains (Table 3).

6 Conclusion and Future Research

We proposed two constructions of 3-dimensional DACs. One is a straightfor-
ward extension of the DJB chain to higher dimensional case, and it inherits the
property of uniformity. The other is not uniform but runs faster than the uni-
form one as saving one more point operation in each iteration. On the quadratic
twists of GLV curves, we implemented scalar multiplication on the x-coordinate
systems, utilizing 1 to 3-dimensional GLV methods with corresponding dimen-
sional DACs. Experiments show that at about 254-bit security level, the triple
scalar multiplication using our uniform DACs runs about 9% faster than straight-
forward computing using Montgomery ladder; and that using our non-uniform
DACs runs about 26% faster than that using Montgomery ladder, and about 6%
faster than the double scalar multiplication using DJB chains.

As it is pointed out that, it would be more meaningful and we will consider
to implement our higher dimensional DACs on the x-coordinate systems of some
more advanced curves, such as the complete twisted Edwards curve described
in [7], together with optimizing formulas for differential point tripling (or qua-
drupling) in various forms of curves. The 4-dimensional DACs deserve to be
studied as well, since triple scalar multiplication on the x-coordinate performs
well and many advanced elliptic curves are originally tailored for 4-dimensional
GLV method. We considered the 4-dimensional extension of the uniform case,
but found it inefficient for its heavy pre-computation and excessive operations
in each iteration, see Appendix A. However, the non-uniform case may provide
more possibilities. We leave these topics for future research.

Acknowledgement. We would like to thank Yuqing Zhu for his kind advice and
selfless help on the first version of this work. And we would like to thank the anonymous
reviewers for their detailed comments and suggestions. This work is supported by
National Natural Science Foundation of China (Grant No. 61872359).

A Four-dimensional Case

If we consider further the straightforward 4-dimensional extension of DJB chains,
we found that in each iteration we should compute 2 + (24 − 2)/2 = 9 elements,
containing 1 double and 8 additions, which is rather expensive and hence has
no practical usage. For completeness, in this part we give its definition and a
simple example. Its complex proof of correctness has been done by authors and
one can also check it by computers.

Faster Scalar Multiplication on the x-Line 251

For brief of notation we let e1 = (1, 0, 0, 0), e2 = (0, 1, 0, 0), e3 = (0, 0, 1, 0),
e4 = (0, 0, 0, 1), e5 = (1, 1, 0, 0), e6 = (1, 0, 1, 0), e7 = (1, 0, 0, 1). Denote by n4

the 4-tuple (n, n, n, n). Then the 7 elements omitted from S(a, b, c, d)4 can be
described as Ti = (a, b, c, d) + (Ui mod 2) where Ui = (a, b, c, d) + f4

i + ei and
fi ∈ {0, 1} for i = 1, · · · , 7.

Definition 2. For a given 4-tuple of nonnegative integers (A,B,C,D) and the
set {F1, · · · , F7} where Fi ∈ {0, 1}, i = 1, · · · , 7, the chain C({Fi}7i=1;A,B,
C,D) is defined recursively, as the set C({fi}7i=1; a, b, c, d) added with the fol-
lowing nine elements:

M−1 = (A,B,C,D) + ((A + 1, B + 1, C + 1, D + 1) mod 2),
M0 = (A,B,C,D) + ((A, B, C, D) mod 2),

and for i = 1, · · · , 7,

Mi = (A, B, C, D) + (Ni mod 2) where Ni = (A, B, C, D) + (Fi + 1)4 + ei.

Here (a, b, c, d) = (A/2, 	B/2, 	C/2, 	D/2) and (f1, · · · , f7) is taken as

(f1, · · · , f7)
if(a + A, b + B,

c + C, d + D) mod 2
(f1, · · · , f7)

if(a + A, b + B,
c + C, d + D) mod 2

(1, 0, 0, 0, 1, 1, 1) (1, 0, 0, 0) (0, 1, 1, 1, 0, 0, 0) (0, 1, 1, 1)
(0, 1, 0, 0, 1, 0, 0) (0, 1, 0, 0) (1, 0, 1, 1, 0, 1, 1) (1, 0, 1, 1)
(0, 0, 1, 0, 0, 1, 0) (0, 0, 1, 0) (1, 1, 0, 1, 1, 0, 1) (1, 1, 0, 1)
(0, 0, 0, 1, 0, 0, 1) (0, 0, 0, 1) (1, 1, 1, 0, 1, 1, 0) (1, 1, 1, 0)
(1, 1, 0, 0, 1, 0, 0) (1, 1, 0, 0) (0, 0, 1, 1, 0, 0, 0) (0, 0, 1, 1)
(1, 0, 1, 0, 0, 1, 0) (1, 0, 1, 0) (0, 1, 0, 1, 0, 0, 0) (0, 1, 0, 1)
(1, 0, 0, 1, 0, 0, 1) (1, 0, 0, 1) (0, 1, 1, 0, 0, 0, 0) (0, 1, 1, 0)

(F1, F2, F3, F4,
F5, F6, F7)

(0, 0, 0, 0)
(1 − F1, 1 − F2, 1 − F3,
1 − F4, 1 − F5, 1 − F6,

1 − F7)
(1, 1, 1, 1).

Specially, for arbitrary F1, · · · , F7, let C({Fi}; 0, 0, 0, 0) be the union of the sets

S1 = {(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
(1,−1, 0, 0), (1, 0,−1, 0), (1, 0, 0,−1), (0, 1,−1, 0), (0, 1, 0,−1), (0, 0, 1,−1),
(1, 1,−1, 0), (1, 1, 0,−1), (1, 0, 1,−1), (0, 1, 1,−1),
(1, 1, 1,−1)}

S2 = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 1, 0), (0, 1, 0, 1), (0, 0, 1, 1),
(1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1),
(1,−1, 1, 0), (1,−1, 0, 1), (1, 0,−1, 1), (0, 1,−1, 1),
(−1, 1, 1, 0), (−1, 1, 0, 1), (−1, 0, 1, 1), (0,−1, 1, 1),
(1, 1,−1, 1), (1,−1, 1, 1), (−1, 1, 1, 1),
(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1)}

where S2 can be computed from S1.

4 As the analogous symbol used in Sect. 4.1, S(a, b, c, d) is the set (a, b, c, d) + {0, 1}4.

252 H. Yi et al.

We find that as the dimension of the chain increases, the pre-computation
part becomes a heavy burden, and it grows exponentially w.r.t. the dimension.
In some situation, this maybe a main disadvantage of computing scalar multi-
plication using higher dimensional DACs.

Example 3. Given a simple 4-tuple (10, 9, 8, 7). The uniform 4-dimensional DAC
of (10, 9, 8, 7) is: S1 ∪ S2 ∪ S3 where S3 =

{(1, 1, 1, 1), (2, 2, 2, 0), (2, 1, 1, 1), (2, 1, 2, 0), (2, 2, 1, 0), (2, 2, 2, 1), (2, 2, 1, 1), (2, 1, 2, 1), (2, 1, 1, 0),
(3, 3, 3, 1), (2, 2, 2, 2), (3, 2, 2, 2), (3, 2, 3, 1), (3, 3, 2, 1), (3, 3, 3, 2), (3, 3, 2, 2), (3, 2, 3, 2), (3, 2, 2, 1),

(5, 5, 5, 3), (6, 4, 4, 4), (5, 4, 4, 4), (6, 5, 4, 4), (5, 5, 4, 3), (5, 5, 5, 4), (5, 5, 4, 4), (5, 4, 5, 4), (5, 4, 4, 3),

(11, 9, 9, 7), (10, 10, 8, 8), (10, 9, 9, 7), (11, 10, 9, 7), (11, 9, 8, 7), (11, 9, 9, 8), (10, 10, 9, 7), (10, 9, 8, 7),

(10.9.9.8)}

References

1. Akishita, T.: Fast simultaneous scalar multiplication on elliptic curve with mont-
gomery form. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 255–267. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45537-
X 20

2. Azarderakhsh, R., Karabina, K.: A new double point multiplication algorithm and
its application to binary elliptic curves with endomorphisms. IEEE Trans. Comput.
63(10), 2614–2619 (2014)

3. Bernstein, D.J.: Differential addition chains. Technical Report (2006). http://cr.
yp.to/ecdh/diffchain-20060219.pdf

4. Brown, D.R.: Multi-dimensional montgomery ladders for elliptic curves. Cryptol-
ogy ePrint Archive, Report 2006/220 (2006). https://eprint.iacr.org/2006/220

5. Cohen, H., et al.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
CRC Press (2005)

6. Costello, C., Hisil, H., Smith, B.: Faster compact diffie–hellman: endomorphisms
on the x -line. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 183–200. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 11

7. Costello, C., Longa, P.: FourQ: four-dimensional decompositions on a Q-curve over
the mersenne prime. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 214–235. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 10

8. Galbraith, S.D., Lin, X., Scott, M.: Endomorphisms for faster elliptic curve cryp-
tography on a large class of curves. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 518–535. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 30

9. Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster point multiplication on elliptic
curves with efficient endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS,
vol. 2139, pp. 190–200. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44647-8 11

10. Zhi, H., Longa, P., Maozhi, X.: Implementing the 4-dimensional GLV method on
GLS elliptic curves with j-invariant 0. Des. Codes Crypt. 63(3), 331–343 (2012)

11. Hutchinson, A., Karabina, K.: Constructing multidimensional differential addition
chains and their applications. J. Cryptographic Eng. 1–19 (2017)

https://doi.org/10.1007/3-540-45537-X_20
https://doi.org/10.1007/3-540-45537-X_20
http://cr.yp.to/ecdh/diffchain-20060219.pdf
http://cr.yp.to/ecdh/diffchain-20060219.pdf
https://eprint.iacr.org/2006/220
https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-642-55220-5_11
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-662-48797-6_10
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/978-3-642-01001-9_30
https://doi.org/10.1007/3-540-44647-8_11
https://doi.org/10.1007/3-540-44647-8_11

Faster Scalar Multiplication on the x-Line 253

12. Longa, P., Sica, F.: Four-dimensional gallant-lambert-vanstone scalar multiplica-
tion. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 718–
739. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 43

13. Montgomery, P.L.: Evaluating recurrences of form Xm+n = f(Xm, Xn, Xm−n) via
lucas chains (1983). ftp.cwi.nl:/pub/pmontgom/lucas.ps.gz

14. Montgomery, P.L.: Speeding the pollard and elliptic curve methods of factorization.
Math. Comput. 48(177), 243–264 (1987)

15. Rao, S.R.S.: A note on Schoenmakers algorithm for multi exponentiation. In:
2015 12th International Joint Conference on e-Business and Telecommunications
(ICETE), vol. 4, pp. 384–391 (2015)

16. Subramanya Rao, S.R.: Three dimensional montgomery ladder, differential point
tripling on montgomery curves and point quintupling on weierstrass’ and edwards
curves. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016.
LNCS, vol. 9646, pp. 84–106. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-31517-1 5

17. Stam, M.: Speeding up subgroup cryptosystems. Technische Universiteit Eindhoven
(2003)

18. Yi, H., Zhu, Y., Lin, D.: Refinement of the four-dimensional GLV method on
elliptic curves. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 23–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9 2

https://doi.org/10.1007/978-3-642-34961-4_43
https://doi.org/10.1007/978-3-319-31517-1_5
https://doi.org/10.1007/978-3-319-31517-1_5
https://doi.org/10.1007/978-3-319-72565-9_2

Codes and Their Applications

On Good Polynomials over Finite Fields
for Optimal Locally Recoverable Codes

Sihem Mesnager(B)

LAGA, Department of Mathematics, University of Paris VIII and Paris XIII,
UMR 7539; CNRS and Telecom ParisTech,

2 rue de la liberté, 93526 Saint-Denis cedex 02, France
smesnager@univ-paris8.fr

Abstract. [This is an extended abstract of the paper [3]] A locally recov-
erable (LRC) code is a code that enables a simple recovery of an erased
symbol by accessing only a small number of other symbols. LRC codes
currently form one of the rapidly developing topics in coding theory
because of their applications in distributed and cloud storage systems.
In 2014, Tamo and Barg have presented in a very remarkable paper a
family of LRC codes that attain the maximum possible (minimum) dis-
tance (given code length, cardinality, and locality). The key ingredient
for constructing such optimal linear LRC codes is the so-called r-good
polynomials, where r is equal to the locality of the LRC code. In this
extended abstract, we review and discuss good polynomials over finite
fields for constructing optimal LRC codes.

Keywords: Finite fields · Good polynomials ·
Locally recoverable codes · Coding theory · Storage

1 Introduction

Locally recoverable codes (LRC codes) have recently been a very attractive sub-
ject in research in coding theory due to their theoretical appeal and applications
in large-scale distributed storage systems, where a single storage node erasure is
considered as a frequent error-event. An LRC code is said to have locality r if
the value at any codeword coordinate can be recovered by accessing at most r
other coordinates. By an (n, k, r) LRC code over finite field Fq, we mean a code
of length n, which has qk codewords and locality r. For LRC codes, if a symbol
is lost due to a node failure, its value can be recovered by accessing the value of
at most r other symbols. A linear (n, k, r) LRC code C is said to be optimal if
its minimum distance d(C) satisfies d(C) = n − k − �k/r� + 2. One of the most
interesting constructions of optimal LRC codes is due to Tamo and Barg [8]
and is realised via constructing polynomials of degree r + 1 which are constant
on subsets of Fq of cardinality r + 1. These polynomials are called good polyno-
mials. Construction of good polynomials are provided in [3,4] and [8]. All the
constructions in [3] and [8] are essentially based on algebraic properties of the
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 257–268, 2019.
https://doi.org/10.1007/978-3-030-16458-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_15

258 S. Mesnager

base field Fq. The constructions provided in [4] explore properties of Dickson
polynomials. Very recently, Micheli [5] has provided a Galois theoretical frame-
work which allows to produce good polynomials and showed that the construc-
tion of good polynomials can be reduced to a Galois theoretical problem over
global function fields. The present paper (which is an extended abstract of the
paper [3]) is devoted to good polynomials for the construction of optimal LRC
codes. The manuscript is structured as follows. In Sect. 2, we introduce the
needed definitions related to LRC codes and good polynomials. In Sect. 3, we
review and discuss the main constructions of good polynomials over finite fields
for building optimal LRC codes.

2 Preliminaries

For a finite set A, #A denotes the cardinality of A and A� = A \ {0}.
Throughout this paper, we always assume that p is a prime. Let Fq be a finite
field of order q and with characteristic p. For positive integers t and s satisfying
t|s, let Trs

t (·) : Fps → Fpt be the trace function defined as

Trs
t (x) = x + xpt

+ xp2t
+ · · · + xps−t

.

In particular, for x ∈ Fps , Trs
1(·) denotes the absolute trace function.

A code C ⊆ Fqn is called locally recoverable (LRC) code if every coordinate
of the codeword c = (c1, . . . , cn) ∈ C can be recovered from a subset of r other
coordinates of c. Such a LRC code is said to have locality r. Mathematically, it
gives the following definition.

Definition 1 (LRC codes). Code C has locality r if for every i ∈ [1, · · · , n]
there exists a subset Ri ⊂ [1, · · · , n] \ {i}, #Ri ≤ r and a function φi such that
for every codeword c ∈ C:

ci = φi({cj , j ∈ Ri}).

An (n, k, r) LRC code C over Fq is of code length n, cardinality qk, and locality r.
The parameters of an (n, k, r) LRC code have been studied.

Theorem 2 ([1,7]). Let C be an (n, k, r) LRC code of cardinality qk over an
alphabet of size q, then the minimum distance of C satisfies

d ≤ n − k − �k/r� + 2.

The rate of C satisfies
k

n
≤ r

r + 1
.

Note that if r = k then the upper bound given in the above theorem coincides
with the well-known Singleton bound (d ≤ n − k + 1).

In view of the above upper bound on the minimal distance, optimal (resp.
almost optimal) LRC codes have been defined as follows.

On Good Polynomials over Finite Fields 259

Definition 3 (Optimal-Almost optimal LRC codes). Codes for which d =
n − k − �k/r� + 2 are called optimal codes. We refer to almost optimal codes
when the minimum distance differs by at most one from the optimal value.

We now recall the concept of r-good polynomials which is the key ingredient
for constructing optimal linear LRC codes.

Definition 4 (Good polynomials) ([8]). A polynomial F over Fps is said to
be an r-good polynomial if and only if

1. the degree of F is r + 1,
2. there exist pairwise disjoint subsets {A1, . . . , Al} of Fps with cardinality

#Ai = r + 1 for i = 1, . . . , l, such that the restriction of F to each subset Ai

is constant. Namely for all i = 1, . . . , l, and any α, β ∈ Ai, F (α) = F (β).

Good polynomials produce optimal LRC codes according to the construction
due to Tamo and Barg [8] given in the next theorem.

Theorem 5 ([8]). For r ≥ 1, let g(x) be an r-good polynomial over Fps . Set
n = (r + 1)l and k = rt, where t ≤ l. For a = (aij , i = 0, . . . , r − 1; j =
0, . . . , t − 1) ∈ (Fps)k, let

fa(x) =
r−1∑

i=0

t−1∑

j=0

aijg(x)jxi.

Set A =
⋃l

i=1 Ai, and define

C =
{

(fa(x), x ∈ A) | a ∈ (Fps)k
}

.

Then, C is an optimal linear (n, k, r) LRC code over Fps .

In the above theorem, the elements of the set A are called localisations and
the elements of the vector fa(x)) are called symbols of the codeword. The local
recovery is accomplished as follows. Suppose that the erased symbol corresponds
to the localisation α ∈ Aj where Aj is one of the sets in the partition A. Let
(cβ , β ∈ Aj \ {α}) denote the remaining r symbols in the localisations of the set
Aj . To find the value cα = fa(α), find the unique polynomial δ(x) of degree less
than r such that δ(β) = cβ for all β ∈ Aj \ {α}, that is,

δ(x) =
∑

β∈Aj\{α}
cβ

∏

β′∈Aj\{α,β}

x − β′

β − β′ (1)

and set cα = δ(α). Hence, to find one erased symbol, we need to perform poly-
nomial interpolation from r known symbols in its recovery set.

Example 6. Parameters of the constructed LRC code: n = 9, k = 4, r = 2,
q = 13.

260 S. Mesnager

Set of points: A = {P1, · · · , P9} ⊂ F13; A = {A1 = (1, 3, 9), A2 = (2, 6, 5), A3 =
(4, 12, 10)};
Code construction: evA : fa
→ (fa(Pi), i = 1, · · · 9).
Set g(x) = x3. We have g(1) = g(3) = g(9) = 1, g(2) = g(6) = g(5) = 8,
g(4) = g(12) = g(10) = 12. Therefore g is constant on A1, A2 and A3.
Let a = (a00, a01, a10, a11) be the information vector of length 4 over F13.
fa(x) = (a00 + a01g(x)) + x(a10 + a11g(x)) = a00 + a10x + a01x

3 + a11x
4.

Let take a = (1111) then

c := evA(fa) = (fa(1), fa(3), fa(9)|fa(2), fa(6), fa(5)|fa(4), fa(2), fa(10))
= (4, 8, 7|1, 11, 2|0, 0, 0).

Suppose fa(1) is erased. By the construction of Tamo and Barg, it can be
recovered by accessing 2 other codeword symbols; namely the symbols at the
localisation corresponding to 3 and 9. Using Formula (1), we find that δ(x) =
2x + 2 and compute δ(1) = 4, which is the required value.

3 Constructions of r-good Polynomials

In this section, we are going to consider r-good polynomials over Fps with r =
mpt − 1, where gcd(m, p) = 1.

3.1 Known Constructions of Good Polynomials

First of all, it is easy to remark that if F is an r-good polynomial over Fps , then
γF and F −α are again r-good polynomials over Fps for every γ ∈ F

∗
ps and every

α ∈ Fps .

Recall that a function from Fq to itself is called q-ary function. A q-ary
function of the form F (x) =

∑n
i=0 aix

pi

with ai ∈ Fq is called linear, where p is
the characteristic of Fq.

The following constructions are known.

1. If t = 0 and ps ≡ 1(mod m), then the ps-ary power function

Gγ(x) = γxm (2)

is an r-good polynomial, where γ ∈ F
∗
ps . Note that F

∗
ps can be split into

pairwise disjoint multiplicative cosets of the form bUm, where b ∈ F
∗
ps and

Um = {x ∈ Fps | xm = 1}. Observe next that, for every x ∈ bUm, Gγ(x) =
Gγ(b) (see [8, Proposition 3.2]).

2. If t > 0 and m = 1, then the ps-ary linear function

Fa(x) =
t∑

i=0

aix
pi

(3)

On Good Polynomials over Finite Fields 261

is an r-good polynomial, where a = (a0, . . . , at) ∈ (Fps)t+1, a0 �= 0, at �= 0.
Note that F2s can be split into pairwise disjoint additive cosets of the form
b + Ea, where b ∈ Fps and Ea = {x ∈ Fps | Fa(x) = 0}. Observe next that,
for every x ∈ b + Ea, Fa(x) = Fa(b) (see [8, Proposition 3.2]).

3. If t > 0, m > 1, ps ≡ 1(mod m), and pt ≡ 1(mod m), then the ps-ary function

F (x) =

⎛

⎝
t/e∑

i=0

aix
pei

⎞

⎠
m

is an r-good polynomial, where e is a divisor of t satisfying pe ≡ 1(mod m),
ai ∈ Fps satisfying

∑t/e
i=0 ai = 0, a0 �= 0, and at/e �= 0 (see [8, Theorem 3.3]).

In fact, the r-good polynomial defined above can be written as

F (x) =
m∏

i=1

∏

h∈H

(x + h + αi)

=
∏

h∈H

(x + h)m =

⎛

⎝
t/e∑

i=0

aix
pei

⎞

⎠
m

,

where H is the set of roots of linearized polynomial
∑t/e

i=0 aix
pei

satisfying∑t/e
i=0 ai = 0, a0 �= 0, at/e �= 0, and α1, . . . , αm are the m-th degree roots of

unity in Fps . Note that H is an additive subgroup of Fps that is closed under
the multiplication by Fpe , and α1, . . . , αm ∈ Fpe ⊆ H (since

∑t/e
i=0 ai = 0

implies 1 ∈ H, then Fpe ⊆ H).

3.2 More Constructions of Good Polynomials

In this subsection, we present more constructions of r-good polynomials by using
function composition. We mainly consider the more general case that m > 1,
ps ≡ 1(mod m), and t does not necessarily satisfy pt ≡ 1(mod m). For more
details, we invite the reader to consult the full paper [3].

Theorem 7 ([3]). Denote by Im(F) = {F (x) | x ∈ Fps} the image set of F . Let
Gγ and Fa be defined as in (2) and (3) respectively. Suppose that Fps contains
all the roots of Fa.

Set H(x) = Fa(Gγ(x)) =
∑t

i=0 aiγ
pi

xmpi

. Then, H is an (mpt − 1)-good
polynomial over Fps if and only if A = {b ∈ Fps \ Ea | b + Ea ⊆ Im(Gγ)} is non
empty, where Ea = {x ∈ Fps | Fa(x) = 0}.

One can rewrite the above result as follows.

Theorem 8 ([3]). Let p be a prime, r = mpt−1, where t ≥ 1 and gcd(m, p) = 1.
Let Fa be defined as in (3), where integer s satisfies ps ≡ 1(mod m). Suppose that
Fps contains all the roots of Fa. Denote by Ea = {0, β1, . . . , βpt−1} ⊆ Fps the set

262 S. Mesnager

of pt roots of Fa. For γ ∈ F
∗
ps , let N be the number of solutions (x1, . . . , xpt) ∈

(
F

∗
ps

)pt

of the equations γxm
i − γxm

1 = βi−1, i = 2, . . . , pt. Then,

H(x) =
t∑

i=0

aiγ
pi

xmpi

(4)

is an r-good polynomial over Fps if and only if N ≥ ptmpt

.

Denote by Um the set of all m-th roots of unity over Fps and by cUm a
multiplicative coset of Um, where c ∈ F

∗
ps . Then, the r-good polynomial H(x) in

Theorem 8 is constant on
⋃pt

i=1 xiUm, where each xi ∈ F
∗
ps , and

{
γxm

1 , . . . , γxm
pt

}

is an additive coset of the form b+Ea. Moreover, it is easy to see that the r-good
polynomial H in (4) is constant on lH = N/ptmpt

pairwise disjoint subsets of
Fps with cardinality r + 1.

One can consider a specific ps-ary linear function Fa(x) = xpt −αpt−1x. Then
one gets:

Corollary 9 ([3]) [Construction-1]. Let p be a prime, r = mpt − 1, where t ≥ 1
and gcd(m, p) = 1. Let s be a multiple of t satisfying ps ≡ 1(mod m), α, γ ∈ F

∗
ps ,

and denote by N the number of solutions (x1, . . . , xpt) ∈ (
F

∗
ps

)pt

of the equations
γxm

i − γxm
1 = αηi−2, i = 2, . . . , pt, where η is a primitive element of Fpt . Then,

H(x) = γpt

xmpt − αpt−1γxm (5)

is an r-good polynomial over Fps if and only if N ≥ ptmpt

.

Now, recall that for c ∈ Fq, the function χc : Fq → C defined by

χc(x) = ζ
Trq

1(cx)
p , where ζp = e2πi/p

is a character of the additive group of Fq. We refer to [6, Chapter 5] for back-
ground on characters of finite abelian group.

The Walsh-Hadamard transform of a q-ary function F is defined as the com-
plex function

WF (v, c) =
∑

x∈Fq

ζ
Trq

1(vF (x))
p χc(x), v ∈ F

∗
q , c ∈ Fq.

where Trq
1 denotes the absolute trace function from Fq (q = ps) to Fp.

Using a classical result on exponential sums (namely, for a finite field Fq,∑
c∈Fq

χc(x) = 0 if x �= 0 and q otherwise) one can express the integer N

involved in the above corollary in terms of exponential sums (or more specifically,
the Walsh transform of a power function) as follows:

N =
1

ps(pt−1)

∑

c∈Fps

γcm �∈αFpt

pt−2∏

i=0

(
ps +

∑

b∈F
∗
ps

χb

(−γcm − αηi
) Wxm (γb, 0)

)
,

On Good Polynomials over Finite Fields 263

which can be rewritten as

N =
∑

c∈Fps

γcm �∈αFpt

pt−2∏

i=0

(
1 +

1
mps

m−1∑

j=0

Wxm

(
γξj , 0

) Wxm

((−γcm − αηi
)
ξj , 0

)
)

,

where η is a primitive element of Fpt , and ξ is a primitive element of Fps .
Combining two results due to Hou [2] dealing with the explicit evaluation

of Walsh-Hadamard transform of binary quadratic functions, one can derive
the following explicit construction of good polynomials valid in the case where
m = 2a + 1 (a ≥ 1).

Corollary 10 ([3]). Let m = 2a + 1, where a ≥ 1. Integer s satisfies 2s ≡
1(mod m) and s ≥ 4a + 2. Then, for any α, γ ∈ F

∗
2s , H(x) = γ2x2m + αγxm

is a (2m − 1)-good polynomial over F2s . More explicitly, H(x) is constant on lH
pairwise disjoint subsets with cardinality 2m, where

lH =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
2s + 2s/2+a(2a − 1) − 3 · 2a − 2

)
/2(2a + 1)2,

if v2(s) = v2(a) + 1 and γ−1α ∈ {xm | x ∈ F
∗
2s};(

2s − (2s/2 + 1)(2a − 1) − 1
)
/2(2a + 1)2,

if v2(s) = v2(a) + 1 and γ−1α �∈ {xm | x ∈ F
∗
2s};(

2s − 2s/2+a(2a − 1) − 3 · 2a − 2
)
/2(2a + 1)2,

if v2(s) > v2(a) + 1 and γ−1α ∈ {xm | x ∈ F
∗
2s};(

2s + (2s/2 − 1)(2a − 1) − 1
)
/2(2a + 1)2,

if v2(s) > v2(a) + 1 and γ−1α �∈ {xm | x ∈ F
∗
2s},

where v2(·) denotes the 2-adic order function, i.e., v2(n) is the highest exponent
e such that 2e divides n.

The good polynomials described in the above corollary are constant on the union
of (disjoint) multiplicative cosets of Um := {x ∈ F2s | xm = 1}. Moreover,
Corollary 10 leads to (n, k, r) LRC codes over F2s , where r = 2m − 1, n =
(r + 1)lH , and k ≤ rlH .

Example 11. From Corollary 10, we get that H(x) = x6 + x3 is a 5-good poly-
nomial over F2s , where s is even and s ≥ 6.

– If s = 6, then lH = 4. Let U3 = {x ∈ F26 | x3 = 1} and ξ be a primitive
element of F26 , then the 26-ary function H(x) = x6 + x3 is constant on the
following 4 pairwise disjoint subsets

{
{ξ3U3, ξ

9U3}, {ξ6U3, ξ
18U3}, {ξ7U3, ξ

14U3},

{ξ12U3, ξ
15U3}

}
⊆ F26 .

264 S. Mesnager

– If s = 8, then lH = 12. Let U3 = {x ∈ F28 | x3 = 1} and ξ be a primitive
element of F28 , then the 28-ary function H(x) = x6 + x3 is constant on the
following 12 pairwise disjoint subsets

{
{ξ3U3, ξ

40U3}, {ξ5U3, ξ
11U3},

{ξ6U3, ξ
80U3}, {ξ10U3, ξ

22U3},

{ξ12U3, ξ
75U3}, {ξ20U3, ξ

44U3},

{ξ24U3, ξ
65U3}, {ξ37U3, ξ

82U3},

{ξ41U3, ξ
61U3}, {ξ45U3, ξ

48U3},

{ξ63U3, ξ
73U3}, {ξ74U3, ξ

79U3}
}

⊆ F28 .

The pairwise disjoint subsets are found by MAGMA.

In Theorem 12, we provide another possible constructions of r-good polyno-
mials by considering the composition G1 ◦ Fa(x) =

(∑t
i=0 aix

pi
)m

.

Theorem 12 ([3]). Denote by Im(F) = {F (x) | x ∈ Fps} the image set of F . Let
Gγ and Fa be defined as in (2) and (3) respectively. Suppose that Fps contains all

the roots of Fa. Set I(x) = G1(Fa(x)) =
(∑t

i=0 aix
pi

)m

. Then, I is an (mpt−1)-
good polynomial over Fps if and only if A′ = {b ∈ F

∗
ps | bUm ⊆ Im(Fa)} is non

empty, where Um = {x ∈ Fps | xm = 1}.
One can rewrite the above theorem as follows.

Theorem 13 ([3]). Let p be a prime, r = mpt −1, where t ≥ 1 and gcd(m, p) =
1. Let Fa be defined as in (3), where integer s satisfies ps ≡ 1(mod m). Suppose
that Fps contains all the roots of Fa. Denote by N the number of integers 0 ≤
i ≤ ps − 2 such that for every j = 0, 1, . . . ,m − 1,

Fa(x) = ξi+j(ps−1)/m

has solutions on Fps , where ξ is a primitive element of Fps . Then,

I(x) =

(
t∑

i=0

aix
pi

)m

(6)

is an r-good polynomial over Fps if and only if N ≥ m.

Note that the r-good polynomial in Theorem 13 is constant on⋃m
i=1 (xi + Ea), where Ea = {x ∈ Fps | Fa(x) = 0}, and

{
Fa(x1), . . . , Fa(xm)

}

is a coset of Um. Moreover, it is not difficult to see that the r-good polynomial I
in (6) is constant on lI = N/m pairwise disjoint subsets of Fps with cardinality
r + 1.

Now, we consider the case of a special ps-ary linear function Fa(x) = xpt −
αpt−1x.

On Good Polynomials over Finite Fields 265

We know that xpt −αpt−1x = ξi+j(ps−1)/m has solutions in Fps if and only if

Trs
t

(
α−pt

ξi+j(ps−1)/m
)

= 0,

where t|s, 0 ≤ i ≤ ps − 2 and 0 ≤ j ≤ m − 1. Note that Ea = {x ∈ Fps |
xpt −αpt−1x = 0} = αFpt , then Fps contains all the roots of xpt −αpt−1x. Then,
the following construction can be obtained from Theorem 13.

Corollary 14 ([3]) [Construction-2]. Let p be a prime, r = mpt−1, where t ≥ 1
and gcd(m, p) = 1. Let s be a multiple of t satisfying ps ≡ 1(mod m), α ∈ F

∗
ps ,

and denote by N the number of integers 0 ≤ i ≤ ps − 2 such that

Trs
t

(
α−pt

ξi+j(ps−1)/m
)

= 0 (7)

holds for every j = 0, 1, . . . , m − 1, where ξ is a primitive element of Fps . Then,

I(x) =
(
xpt − αpt−1x

)m

is an r-good polynomial over Fps if and only if N ≥ m.

The r-good polynomial described in Corollary 14 is constant on⋃m
i=1 (xi + αFpt), where

{
xpt

1 − αpt−1x1, . . . , x
pt

m − αpt−1xm

}
is a coset of Um.

Now, we notice that N = #N ′ where

N ′ :=
{

x ∈ F
∗
ps

∣∣∣ Trs
t

(
xα−pt

ξj(ps−1)/m
)

= 0

for all j = 0, . . . , m − 1
}

.

Then we deduce the following corollary.

Corollary 15 ([3]). Let p be a prime, r = mpt −1, where t ≥ 1 and gcd(m, p) =
1. Let s be a multiple of t satisfying ps ≡ 1(mod m). Then, for any α ∈ F

∗
ps ,

I(x) =
(
xpt − αpt−1x

)m

is an r-good polynomial over Fps if and only if N ′ ≥ m,
where

N ′ =
1

ptm

∑

x∈F
∗
ps

m∏

i=1

⎛

⎝
∑

b∈Fpt

χbα−ptξi(ps−1)/m(x)

⎞

⎠ , (8)

and ξ is a primitive element of Fps .

From corollary 15, we get the more precise following result.

Corollary 16 ([3]). Let p be a prime, r = mpt −1, where t ≥ 1 and gcd(m, p) =
1. Let s be a multiple of t satisfying ps ≡ 1(mod m) and s > t(m−1). Then, for

any α ∈ F
∗
ps , I(x) =

(
xpt − αpt−1x

)m

is an r-good polynomial over Fps . More

explicitly, I(x) is constant on at least �(ps−t(m−1) − 1)/m� pairwise disjoint
subsets with cardinality r + 1.

266 S. Mesnager

Corollary 16 leads to (n, k, r) LRC codes over Fps , where r = mpt − 1,
n = (r + 1)lI , k ≤ rlI , and lI = �(ps−t(m−1) − 1)/m�.
Example 17. Let p = 2, m = 3, and t = 1 (in this case, pt �≡ 1(mod m)). From
Corollary 16, we get that I(x) =

(
x2 + x

)3 is a 5-good polynomial over F2s ,
where s is even and s > 2.
If s = 6, then lI ≥ �(ps−t(m−1) − 1)/m� = 5. Let ξ be a primitive element of
F26 , then the 26-ary function I(x) =

(
x2 + x

)3 is constant on the following 5
pairwise disjoint subsets

{
{ξ + F2, ξ

7 + F2, ξ
9 + F2},

{ξ2 + F2, ξ
14 + F2, ξ

18 + F2},

{ξ4 + F2, ξ
28 + F2, ξ

36 + F2},

{ξ5 + F2, ξ
17 + F2, ξ

20 + F2},

{ξ10 + F2, ξ
15 + F2, ξ

40 + F2}
}

⊆ F26 .

The pairwise disjoint subsets are found by MAGMA. In fact, lI is exactly 5.

In the following, we consider another special function. More precisely, the
ps-ary linear function in the form Fa(x) = Trt+1

1 (αx) (where α ∈ F
∗
ps and s is

a multiple of t + 1). The reader can notice that Fps contains all the roots of
Trt+1

1 (αx). Then, the following construction is obtained from Theorem 13.

Corollary 18 ([3]) [Construction-3]. Let p be a prime, r = mpt−1, where t ≥ 1
and gcd(m, p) = 1. Let s be a multiple of t + 1 satisfying ps ≡ 1(mod m). If
there exist γ ∈ F

∗
ps and integer k < s such that pk ≡ 1(mod m) and γFpk ⊆

Im
(
Trt+1

1 (x)
)
, then for any α ∈ F

∗
ps ,

I(x) =
(
Trt+1

1 (αx)
)m

(9)

is an r-good polynomial over Fps . Moreover, I(x) is constant on at least (pk −
1)/m pairwise disjoint subsets with cardinality r + 1.

For any α ∈ F
∗
ps , I(x) =

(
Trt+1

1 (αx)
)m

is constant on the following pairwise
disjoint subsets with cardinality r + 1,

Ai =
{

x ∈ Fps

∣∣∣ Trt+1
1 (αx) = ξc+i(ps−1)/(pk−1)+j(ps−1)/m,

j = 0, . . . , m − 1
}

,

where i = 0, 1, . . . , (pk − 1)/m − 1.

Example 19. Let p = 2, m = 5, t = 2 (in this case, pt �≡ 1(mod m)), and s = 12.
It can be easily checked that F24 ⊆ Im

(
Tr31(x)

)
. Then, from Corollary 18, for

On Good Polynomials over Finite Fields 267

any α ∈ F
∗
212 , I(x) =

(
Tr31(αx)

)5 is a 19-good polynomial over F212 , which is
constant on at least 3 pairwise disjoint subsets as follows,

Ai =
{

x ∈ F212

∣∣∣ Tr31(αx) = ξ273i+819j , j = 0, . . . , 4
}

,

where i = 0, 1, 2, and ξ is a primitive element of F212 . By using MAGMA, we
find lI = 3.

Corollary 20 ([3]). Let p be a prime, r = mpt − 1, where gcd(m, p) = 1 and
integer t ≥ 1 satisfies pt+1 ≡ 1(mod m). Let s be a multiple of 2(t + 1). Then,
for any α ∈ F

∗
ps ,

I(x) =
(
Trt+1

1 (αx)
)m

is an r-good polynomial over Fps . Moreover, I(x) is constant on at least (pt+1 −
1)/m pairwise disjoint subsets with cardinality r + 1.

Example 21. Due to Corollary 20, we can provide some examples of r-good poly-
nomials in the form (9).

– Let p = 2, m = 5, t = 3 (in this case, pt+1 ≡ 1(mod m)), and s = 8.
It can be easily checked that F24 ⊆ Im

(
Tr41(x)

)
. Then, for any α ∈ F

∗
28 ,

I(x) =
(
Tr41(αx)

)5 is a 39-good polynomial over F28 , which is constant on
the following 3 pairwise disjoint subsets,

Ai =
{

x ∈ F28

∣∣∣ Tr41(αx) = ξ17i+51j , j = 0, . . . , 4
}

,

where i = 0, 1, 2, and ξ is a primitive element of F28 . By using MAGMA, we
find lI = 3.

– Let p = 3, m = 5, t = 3 (in this case, pt+1 ≡ 1(mod m)), and s = 8. It
can be easily checked that ξ41F34 ⊆ Im

(
Tr41(x)

)
. Then, for any α ∈ F

∗
38 ,

I(x) =
(
Tr41(αx)

)5 is a 134-good polynomial over F38 , which is constant on
the following 16 pairwise disjoint subsets,

Ai =
{

x ∈ F38

∣∣∣ Tr41(αx) = ξ41+82i+1312j ,

j = 0, . . . , 4
}

,

where i = 0, 1, . . . , 15, and ξ is a primitive element of F38 . By using MAGMA,
we find lI = 16.

Acknowledgements. The author is very grateful to Jian Liu for her valuable help.
She also thanks the co-chairs program (in particular Claude Carlet for his careful
reading) and the organizers of the conference C2SI 2019 for their nice invitation.

268 S. Mesnager

References

1. Gopalan, P., Huang, C., Simitci, H., Yekhanin, S.: On the locality of codeword
symbols. IEEE Trans. Inf. Theory 58(11), 6925–6934 (2012)

2. Hou, X.-D.: Explicit evaluation of certain exponential sums of binary quadratic
functions. Finite Fields Appl. 13(4), 843–868 (2007)

3. Liu, J., Mesnager, S., Chen, L.: New constructions of optimal locally recoverable
codes via good polynomials. IEEE Trans. Inf. Theory 62(2), 889–899 (2018)

4. Liu, J., Mesnager, S., Tang, D.: Constructions of optimal locally recoverable codes
via Dickson polynomials. In: Workshop WCC 2019: The Eleventh International
Workshop on Coding and Cryptography (2019)

5. Micheli, G.: Constructions of locally recoverable codes which are optimal.
arXiv:1806.11492 [cs.IT] (2018)

6. Lidl, R., Niederreiter, H.: Finite Fields, Encyclopedia of Mathematics and its Appli-
cations, vol. 20. Cambridge University Press, Cambridge (1997)

7. Papailiopoulos, D.S., Dimakis, A.G.: Locally repairable codes. IEEE Trans. Inf.
Theory 60(10), 5843–5855 (2014)

8. Tamo, I., Barg, A.: A family of optimal locally recoverable codes. IEEE Trans. Inf.
Theory 60(8), 4661–4676 (2014)

http://arxiv.org/abs/1806.11492

A New Gabidulin-Like Code
and Its Application in Cryptography

Terry Shue Chien Lau(B) and Chik How Tan

Temasek Laboratories, National University of Singapore,
5A Engineering Drive 1, #09-02, Singapore 117411, Singapore

{tsltlsc,tsltch}@nus.edu.sg

Abstract. We introduce a new rank-metric code, namely λ-Gabidulin
code by multiplying each of the columns of the generator of Gabidulin
codes with entries from λ = (λ1, . . . , λn) ∈ F

n
qm . We discuss the moti-

vation of introducing λ-Gabidulin code and prove some of its proper-
ties. Then, we design a new McEliece type rank metric based encryption
scheme on λ-Gabidulin code, with a scrambler matrix depending on λ.
We show that this new cryptosystem is secure against the existing attacks
on Gabidulin codes based encryption, in particularly how it resists Over-
beck’s structural attack, annulator polynomial attack and the Frobenius
weak attack. Finally, we also propose some parameters for the new cryp-
tosystem and show that our proposal has smaller key size than the Loi17
Encryption [29] using Gabidulin codes proposed in PQCrypto 2017.

Keywords: Post-quantum cryptography · McEliece · Gabidulin code ·
Public-key encryption

1 Introduction

In 1978, McEliece [31] proposed a public-key cryptosystem based on Goppa
codes in the Hamming metric. The idea of McEliece cryptosystem is to hide the
structure of the generator matrix for the decodable codes with random invertible
matrix S and random permutation matrix P , and publish the matrix Gpub =
SGP . Although his design has efficient encryption and decryption, it involves a
significantly large public key size. To tackle this problem, several modifications
of the scheme have been proposed. One of the approaches to overcome the large
public key size for schemes in Hamming metric, is to consider an alternative
metric, namely the rank metric. In 1985 Gabidulin [8] introduced the rank metric
and the Gabidulin codes with efficient decoding algorithm. Gabidulin codes are
usually seen as equivalent of Reed-Solomon codes in the Hamming metric which
both are highly structured. Later on, Gabidulin, Paramanov, and Tretjakov used
the Gabidulin codes and proposed the first rank metric based cryptosystem,
namely GPT [11].

However, due to the well-structuredness of Gabidulin codes, proposals of cryp-
tosystems based on Gabidulin codes have alternately been attacked and modified.
The first structural attack on the initial GPT system was suggested by Gibson
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 269–287, 2019.
https://doi.org/10.1007/978-3-030-16458-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_16

270 T. S. C. Lau and C. H. Tan

[18] through exploiting the structure of Gabidulin codes and the distortion matrix
in GPT. Modifications have been made to produce GPT’s variants to resist Gib-
son’s attack. To counter Gibson’s attack, a modified GPT with right scrambler was
proposed in [10,34]. However, this modified GPT with right scrambler was crypt-
analyzed by Overbeck by extending Gibson’s attacks [36]. A modified cryptosys-
tem, namely generalized GPT (GGPT) was introduced by Overbeck in the same
paper to resist Gibson’s attacks. Yet, as the Gabidulin codes contains huge vector
space invariant under the Frobenius automorphism, Overbeck [37] was successful
in cryptanalyze all the previous Gabidulin codes based cryptosystems. Despite
the efforts of other variants of GGPT proposed in [9,12,28,39] to secure against
Overbeck’s attack, these GGPT variants were shown to be insecure against more
recent structural attacks such as extension of Overbeck’s attack [20], reduction
attack to GGPT [33], and Frobenius weak attack [21].

More recently, there are several encryption schemes based on Gabidulin codes
being proposed. Loidreau [29] considered a McEliece type cryptosystem based
on Gabidulin codes with a scrambler matrix P which its inverse P−1 over
a w-dimensional subspace of Fqm . This cryptosystem is then implemented in
DRANKULA [1]. Also, Lau and Tan [25,26] introduced a new technique to con-
struct McEliece type encryption scheme based on any generic decodable codes.
Apart from these McEliece type cryptosystems based on Gabidulin codes, there
are some other encryption schemes such as [2,13] that do not hide the structure
of the generator matrix and use other techniques to construct the encryption.
Moreover, there are some other encryption schemes that combines the idea of
McEliece and Niederreiter cryptosystem, such as [17,27].

Although there are other techniques in constructing code-based encryption
scheme, the question of the possibility to construct secure McEliece type cryp-
tosystem by considering alternative rank codes is still of interest in the research
community. In 2014, the Low Rank Parity Check codes (LRPC) were proposed
to construct a McEliece type encryption scheme [15]. Later in 2018, Kim et al.
[22] extended the LRPC codes into a new LRPC-Kronecker product codes and
proposed a McEliece type encryption based on this code.

The main task of this paper is to propose a new rank metric code, namely
λ-Gabidulin code which is an extension of Gabidulin code. This λ-Gabidulin
code is analogous to the generalized Reed-Solomon codes in rank metric set-
tings, which is obtained by multiplying the columns of the generator matrix
with some elements in Fqm . We show that λ-Gabidulin code is decodable when
certain conditions are met, and use this property to construct a new code-based
cryptosystem based on λ-Gabidulin code. In this paper, we first review in Sect. 2
some basic facts and definitions in rank metric and Gabidulin codes. We intro-
duce a new rank metric code, namely λ-Gabidulin code in Sect. 3. Based on
λ-Gabidulin code, we propose a new Gabidulin-like code public-key encryption
in Sect. 4. In Sect. 5, its security against existing attacks is discussed. In Sect. 6,
we suggest some parameters for our proposal and shows that the our proposal
has smaller public key size than Loidreau’s proposal in [29] and DRANKULA
in [1]. Finally, we conclude this paper in Sect. 7.

A New Gabidulin-Like Code and Its Application in Cryptography 271

2 Background on Rank Metric and Gabidulin Codes

In this section we recall the definition of rank metric and some related results,
which are the core of rank metric based cryptosystems.

2.1 Rank Metric

Let Fqm be a finite field with qm elements and let {β1, . . . , βm} be a basis of Fqm

over the base field Fq, where q is power of prime.

Definition 1. Let x = (x1, . . . , xn) ∈ F
n
qm . The rank of x in Fq, denoted by

rkq(x) is the rank of the matrix X = [xij] ∈ F
m×n
q where xj =

∑m
i=1 xijβi.

Equivalently, the rank of x is the dimension over Fq of the subspace of Fqm which
is spanned by the coordinates of x. Note that the rank of a vector is a norm and
is independent of the chosen basis.

Definition 2. The rank distance between x,y ∈ Fqm is defined to be

dR(x,y) = rkq(x − y).

If C is a linear code, the minimum rank distance of C, is defined by

dmin
R (C) := min

c∈C
{dR(c,0) | c �= 0}.

The Singleton bound for rank-metric codes is given by the inequality

dmin
R (C) ≤ n − dim(C) + 1.

Definition 3. A rank-metric code satisfying the Singleton bound is called a
maximum rank-distance (MRD) code.

We now state a few results related to the rank metric, in particular the concepts
of Grassmann support which are important for security analysis in Sect. 5.

Lemma 1. Let x ∈ F
n
qm such that rkq(x) = r ≤ n, then there exists x̂ ∈ F

r
qm

with rkq(x̂) = r and U ∈ F
r×n
q with rk(U) = r such that x = x̂U . This

decomposition is unique up to GLr(Fq)-operation between x̂ and U .

Notation. We denote [i] := qi as the ith Frobenius power. Let M = [Ma,b] ∈
F

k×n
qm , we denote M ([i]) :=

[
M

[i]
a,b

]
∈ F

k×n
qm . Also, for any set S ⊂ F

n
qm , we denote

S([l]) := {s([l]) | s ∈ S}. For a matrix U over Fq, we denote 〈U〉Fqm
as the row

span of a matrix U over Fqm . By abuse of notation, for vector u1, . . . ,uj over
Fqm , we denote 〈u1, . . . ,uj 〉Fqm

as Fqm span of the vectors u1, . . . ,uj .

Definition 4. Let x ∈ F
n
qm with rkq(x) = r ≤ n and decomposition x = x̂U

as in Lemma 1. We call U a Grassman support matrix for x and 〈U〉Fqm
the

Grassman support of x.

272 T. S. C. Lau and C. H. Tan

Lemma 2 ([20,21]). Let x ∈ S ⊆ F
n
qm with rkq(x) = r ≤ n, and s be an

integer such that gcd(s,m) = 1. Then

supp(x) =
〈
x,x([s]), . . . ,x([s(r−1)])

〉

Fqm

⊆
r−1∑

i=0

S([si]).

Horlemann-Trautmann et al. [20] efficiently computed the elements of rank one
in an Fqm-linear code C ⊆ F

n
qm with the following lemma:

Lemma 3 ([20]). Let G ∈ F
k×n
qm be a generator matrix for a code C in reduced

row echelon form. Denote Gi as the ith row of G. Then

– All elements of rank one in 〈G〉Fqm
are multiples of the elements in

C∗ := 〈G〉Fqm
∩ F

n
q .

– The elements in C∗ are in one-to-one correspondence to the solution of

k∑

i=1

ai

[
G

([1])
i − Gi

]
= 0, where ai ∈ Fq.

– Computing the solutions of this system requires O(kmn2) operations in Fq.

2.2 Gabidulin Codes

We now give the definition and some properties of Gabidulin codes as they will
be used to construct our new code in Sect. 3.

Definition 5 (Gabidulin Codes, [8]). Let g = (g1, . . . , gn) ∈ F
n
qm be linearly

independent over Fq. The Gabidulin code, Gabn,k(g) over Fqm of dimension k
and generator vector g is the code generated by matrix G of the form

G =

⎡

⎢
⎢
⎢
⎢
⎣

g1 g2 . . . gn

g
[1]
1 g

[1]
2 . . . g

[1]
n

...
...

. . .
...

g
[k−1]
1 g

[k−1]
2 . . . g

[k−1]
n

⎤

⎥
⎥
⎥
⎥
⎦

. (1)

Gabidulin [8] showed that the error-correcting capability of Gabn,k(g) is
r =
n−k

2 �. Moreover, it was also shown that Gabidulin code is an MRD code
if and only if m ≥ n. Gabidulin also provided an efficient decoding algorithms
for Gabidulin codes up to the rank error correcting capability in [8]. The most
updated complexity to decode an [n, k]-Gabidulin code is O

(
n1.69 log2(n)

)
oper-

ations in Fqm [38, Theorem 17].

Definition 6. A linearized polynomial F (z) over Fqm is a polynomial of the
form F (z) =

∑k
i=0 fiz

[i] where fi ∈ Fqm for 0 ≤ i ≤ k. We refer k as the
q-degree of F (z), degq F (z).

A New Gabidulin-Like Code and Its Application in Cryptography 273

With F (z) =
∑k−1

i=0 fiz
[i], we can now rewrite a codeword c = (f0, . . . , fk−1)G ∈

Gabn,k(g) as:

c = (f0, . . . , fk−1)

⎡

⎢
⎣

g1 . . . gn

...
. . .

...
g
[k−1]
1 . . . g

[k−1]
n

⎤

⎥
⎦

=

(
k−1∑

i=0

fig
[i]
1 , . . . ,

k−1∑

i=0

fig
[i]
n

)

= (F (g1), . . . , F (gn)) . (2)

Gabidulin codes contains huge vector space invariant under the Frobenius
automorphism, which subjects the cryptosystem based on Gabidulin codes to
Overbeck’s attack. To be more precise, we now define an Fq-linear operator Λi

on a matrix M as the following:

Definition 7 (Frobenius Map). For any integer i ≥ 0, let Λi : F
k×n
qm → F

ik×n
qm

be the Fq-linear operator that maps any matrix M ∈ F
k×n
qm to Λi(M):

Λi(M) :=

⎡

⎢
⎣

M [0]

...
M [i]

⎤

⎥
⎦ . (3)

As a consequence, the Gabidulin codes contains huge vector space invariant
under the Frobenius automorphism:

Lemma 4. Let G be the generator matrix of Gabn,k(g). For integer i ≥ 0 and
1 ≤ j ≤ m − 1, we have dimFqm

(Λi(G)) = k + i and

dimFqm

(
Gabn,k(g)[j] ∩ Gabn,k(g)[j−1]

)
= k − 1.

Proof. Recall from (3) that

Λi(G) =

⎡

⎢
⎣

G[0]

...
G[i]

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g[0]

...
g[k−1]

...
g[i]

...
g[k+i−1]

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ rk(Λi(G)) = k + i.

274 T. S. C. Lau and C. H. Tan

Also, since Gabn,k(g)[j] =

⎧
⎪⎨

⎪⎩
x

⎡

⎢
⎣

g[j]

...
g[j+k−1]

⎤

⎥
⎦ : x ∈ F

k
qm

⎫
⎪⎬

⎪⎭
, then

Gabn,k(g)[j] ∩ Gabn,k(g)[j−1] =

⎧
⎪⎨

⎪⎩
x

⎡

⎢
⎣

g[j]

...
g[j+k−2]

⎤

⎥
⎦ : x′ ∈ F

k−1
qm

⎫
⎪⎬

⎪⎭

⇒ dimFqm

(
Gabn,k(g)[j] ∩ Gabn,k(g)[j−1]

)
= k − 1.

�

2.3 General Decoding of Rank Metric Codes

In the case of rank metric, the rank syndrome decoding problem is analogous to
the classical syndrome decoding problem with Hamming metric, as described in
the following:

Definition 8. Rank Syndrome Decoding Problem (RSD). Let H be a
full rank (n − k) × n matrix over Fqm , s ∈ F

n−k
qm and w an integer. The Rank

Syndrome Decoding Problem RSD(q,m, n, k, w) needs to determine x ∈ F
n
qm such

that rkq(x) = w and HxT = sT .

Recently, Gaborit and Zémor [16] showed that if there were efficient proba-
bilistic algorithms for solving the RSD problem, then there exist efficient proba-
bilistic algorithm to solve the syndrome decoding problem in Hamming metric.
Therefore, RSD problem is a good candidate for the hard problem which our
cryptosystem is based on.

There are generally two types of generic attacks on the RSD problem, namely
the combinatorial attack and algebraic attack. The combinatorial approach
depends on counting the number of possible supports of size r for a rank code
of length n over Fqm , which corresponds to the number of subspaces of dimen-
sion r in Fqm . For the algebraic approach, the nature of the rank metric favors
algebraic attacks using Gröbner bases, as they are largely independent of the
value q. These attacks became efficient when q increases. There are mainly three
approaches in translating the notion of rank into algebraic setting. The first app-
roach [24] considers directly the RSD problem, but the complexity of solving the
quadratic system from their attack is hard to evaluate, especially when r ≥ 4.
The second approach reduces RSD problem into MinRank problem [7], but such
reduction only works for certain type of MinRank parameters and not for usual
parameters used with rank codes based cryptography. While the third approach
is proposed by Gaborit et al. [14] by considering the linearized q-polynomials
introduced by Ore [32].

We summarize the existing combinatorial and algebraic attacks with their
conditions and complexities in Tables 1 and 2 respectively.

A New Gabidulin-Like Code and Its Application in Cryptography 275

Table 1. Combinatorial attacks on RSD with their corresponding solving complexities

Attacks Complexity

CS [4] O
(
(nr + m)3q(m−r)(r−1)

)

GRS-I [14]

⎧
⎨
⎩

O
(
(n − k)3m3qrmin{k,� km

n �})
if s �= 0,

O
(
(n − k)3m3q(r−1)min{k,� km

n �})
if s = 0.

OJ-I [35] O
(
r3m3q(r−1)(k+1)

)

OJ-II [35] O
(
(k + r)3r3q(m−r)(r−1)

)

GRS-II [14] O

(
(n − k)3m3q

(r−1)min
{
k+1,

(k+1)m
n

})

AGHT [3] O
(
(n − k)3m3qr

(k+1)m
n

−m
)

Table 2. Algebraic attacks on RSD with their corresponding solving complexities

Attacks Conditions Complexity

MinRank–FLP [7] m = n
(n − r)2 = nk

O
(
(log q) n3(n−r)2

)

CG-Kernel [19] O
(
k3m3qr� km

n �)

GRS-Basic [14] n ≥ (r + 1)(k + 1) − 1 O
(
((r + 1)(k + 1) − 1)3

)

GRS-Hybrid [14]
⌈

(r+1)(k+1)−(n+1)
r

⌉
≤ k O

(
r3k3q

r
⌈
(r+1)(k+1)−(n+1)

r

⌉)

Post-quantum Security. Bernstein [5] showed that the exponential term in
the decoding complexity should be square rooted using Grover’s algorithm with
Quantum computer. Therefore, we use this method to evaluate the post-quantum
security of our scheme in Sect. 6.

3 A New Code: λ-Gabidulin Codes

In this section, we discuss the motivation to construct a new rank code, λ-
Gabidulin codes. We also prove some of its properties and propose a decoding
algorithm for λ-Gabidulin codes.

3.1 λ-Gabidulin Codes Construction

Our construction of λ-Gabidulin codes is in a linearized polynomial settings
which is similar to the construction of the generalized Reed-Solomon codes in
polynomial settings. We recall the definition of Reed-Solomon codes and gener-
alized Reed-Solomon codes.

276 T. S. C. Lau and C. H. Tan

Definition 9 (Reed-Solomon (RS). Codes [40] & Generalized RS Codes [30, Ch.
10, Sec. 8]). Let g′ = (g′

1, . . . , g
′
n) ∈ F

n
q where each g′

i are pairwise distinct and
λ = (λ1, . . . , λn) ∈ F

n
q where each of λi �= 0. The Reed-Solomon codes RSn,k(g′)

over Fq of dimension k and generator vector g′ is the code generated by matrix
GRS of the form

GRS =

⎡

⎢
⎢
⎢
⎢
⎣

(g′
1)

0 (g′
2)

0 . . . (g′
n)0

(g′
1)

1 (g′
2)

1 . . . (g′
n)1

...
...

. . .
...

(g′
1)

k−1 (g′
2)

k−1 . . . (g′
n)k−1

⎤

⎥
⎥
⎥
⎥
⎦

. (4)

The generalized Reed-Solomon codes GRSn,k(g′
λ) over Fq of dimension k associ-

ated with g′ and λ is the code generated by matrix GGRS of the form

GGRS =

⎡

⎢
⎢
⎢
⎢
⎣

λ1(g′
1)

0 λ2(g′
2)

0 . . . λn(g′
n)0

λ1(g′
1)

1 λ2(g′
2)

1 . . . λn(g′
n)1

...
...

. . .
...

λ1(g′
1)

k−1 λ2(g′
2)

k−1 . . . λn(g′
n)k−1

⎤

⎥
⎥
⎥
⎥
⎦

. (5)

For all (f ′
0, . . . , f

′
k−1) ∈ F

k
q , we can rewrite a codeword cRS ∈ RSn,k(g′) as

cRS = (f ′
0, . . . , f

′
k−1)GRS = (F ′(g1), . . . , F ′(gn)) (6)

where F ′(z) =
∑k−1

i=0 f ′
iz

i. Using similar notation, cGRS ∈ GRSn,k(g′,v) can be
written as

cGRS = (f ′
0, . . . , f

′
k−1)GGRS = (λ1F

′(g1), . . . , λnF ′(gn)) . (7)

Recall that a codeword c ∈ Gabn,k(g) can be written in the form of (2):

c = (f0, . . . , fk−1)

⎡

⎢
⎣

g1 . . . gn

...
. . .

...
g
[k−1]
1 . . . g

[k−1]
n

⎤

⎥
⎦ = (F (g1), . . . , F (gn))

where F (z) =
∑k−1

i=0 fiz
[i]. Comparing (2) and (6), we notice that the differ-

ence between them is the involvement of linearized polynomial F (z) in (2) and
polynomial F ′(z) in (6).

We can now construct a code which has codewords of the form similar as (7),
except that the polynomial F ′(z) is replaced with linearized polynomial F (z).

A New Gabidulin-Like Code and Its Application in Cryptography 277

Definition 10 (λ-Gabidulin Codes). Let g = (g1, . . . , gn) ∈ F
n
qm be linearly

independent over Fq and λ = (λ1, λ2, . . . , λn) ∈ F
n
qm . The λ-Gabidulin code

Gabn,k(gλ) over Fqm of dimension k associated with vector g and λ is the code
generated by matrix Gλ of the form

Gλ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1g1 λ2g2 . . . λngn

λ1g
[1]
1 λ2g

[1]
2 . . . λng

[1]
n

...
...

. . .
...

λ1g
[k−1]
1 λ2g

[k−1]
2 . . . λng

[k−1]
n

⎤

⎥
⎥
⎥
⎥
⎦

. (8)

Now, we can rewrite a codeword c = (f0, . . . , fk−1)Gλ ∈ Gabn,k(gλ) as

c = (λ1F (g1), . . . , λnF (g2)) (9)

where F (z) =
∑k−1

i=0 fiz
[i]. Notice from (9) that such construction replaces the

polynomial F ′(z) in (7) with linearized polynomial F (z).
Table 3 summarizes the relations between λ-Gabidulin codes, Gabidulin

codes, Reed-Solomon Codes and generalized Reed-Solomon Codes:

Table 3. Relations between Gabn,k(g), Gabn,k(gλ), RSn,k(g), GRSn,k(gλ)

Codewords of the form

(F (g1), . . . , F (gn)) (λ1F (g1), . . . , λnF (gn))

Polynomial F (z) RSn,k(g) GRSn,k(gλ)

g ∈ F
n
q g, λ ∈ F

n
q

Linearized Gabn,k(g) Gabn,k(gλ)

Polynomial F (z) g ∈ F
n
qm g, λ ∈ F

n
qm

3.2 λ-Gabidulin Codes Construction

Our construction of λ-Gabidulin codes in fact does not have similar weakness as
Gabidulin code (Lemma 4), i.e., it does not contain huge vector space invariant
under the Frobenius automorphism as defined in Definition 7.

Consider a generator Gλ for Gabn,k(gλ) and the map Λi on Gλ , we have

Λi(Gλ) =

⎡

⎢
⎢
⎣

G
[0]
λ
...

G
[i]
λ

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

λ1g1 . . . λngn

...
. . .

...
λ1g

[k−1]
1 . . . λng

[k−1]
n

...
. . .

...
λ
[i]
1 g

[i]
1 . . . λ

[i]
n g

[i]
n

...
. . .

...
λ
[i]
1 g

[i+k−1]
1 . . . λ

[i]
n g

[i+k−1]
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

278 T. S. C. Lau and C. H. Tan

It is possible for us to choose some λ ∈ F
n
qm such that

dimFqm

(
Gabn,k(gλ)([j]) ∩ Gabn,k(gλ)([j−1])

)
= 0

for 1 ≤ j ≤ n − 1 and dim (ker (Λi(Gλ))) �= 1 for all i ≤ n. Therefore, the
Overbeck’s attack [37] is not useful against Gabn,k(gλ) with this property.

We now deduce a parity check matrix for Gλ .

Proposition 1. Let H ∈ F
(n−k)×n
qm in the form of

H =

⎡

⎢
⎢
⎢
⎢
⎣

h1 h2 . . . hn

h
[1]
1 h

[1]
2 . . . h

[1]
n

...
...

. . .
...

h
[n−k−1]
1 h

[n−k−1]
2 . . . h

[n−k−1]
n

⎤

⎥
⎥
⎥
⎥
⎦

be a parity check matrix for G (as in (1)) which generates Gabn,k(g). Then

Hλ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ−1
1 h1 λ−1

2 h2 . . . λ−1
n hn

λ−1
1 h

[1]
1 λ−1

2 h
[1]
2 . . . λ−1

n h
[1]
n

...
...

. . .
...

λ−1
1 h

[n−k−1]
1 λ−1

2 h
[n−k−1]
2 . . . λ−1

n h
[n−k−1]
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

is a parity check matrix for Gλ .

Proof. Given H a parity check matrix for G, we have GHT = 0. Rewrite Gλ =

GΔ, Hλ = HΔ−1 where Δ =

⎡

⎢
⎣

λ1 0
. . .

0 λn

⎤

⎥
⎦. Then GλHT

λ = GΔ(HΔ−1)T =

GΔ
(
Δ−1

)T
HT = GHT = 0. �

In fact, there exist λ ∈ F
n
qm such that λ-Gabidulin code is not an MRD code.

Proposition 2. Let α ∈ Fqm and λ = (λ1, . . . , λn) be a vector over Fqm

such that
(
λ−1
1 αd1, . . . , λ

−1
n αdn

) ∈ Gabn,k(g) where (d1, . . . , dn) ∈ F
n
q , then

λ-Gabidulin code is not an MRD code. In particular, dmin
R (Gabn,k(gλ)) = 1.

Proof. Suppose that α ∈ Fqm and λ = (λ1, . . . , λn) is a vector over Fqm such
that

(
λ−1
1 αd1, . . . , λ

−1
n αdn

) ∈ Gabn,k(g) where (d1, . . . , dn) ∈ F
n
q , then there

exists m ∈ F
k
qm such that

(
λ−1
1 αd1, . . . , λ

−1
n αdn

)
= mG =

(
k−1∑

i=0

mig
[i]
1 , . . . ,

k−1∑

i=0

mig
[i]
n

)

.

A New Gabidulin-Like Code and Its Application in Cryptography 279

Consider c = mGλ , a code in Gabn,k (gλ), then

c =
k−1∑

i=0

mi

(
λ1g

[i]
1 , . . . , λng[i]n

)

=

(

λ1

k−1∑

i=0

mig
[i]
1 , . . . , λn

k−1∑

i=0

mig
[i]
n

)

=
(
λ1λ

−1
1 αd1, . . . , λnλ−1

n αdn

)
= α(d1, . . . , dn).

This implies that rkq(c) = 1 < n−k +1. Such λ-Gabidulin code is not an MRD
code. �

Recall from (9) that a codeword c = fGλ ∈ Gabn,k(gλ) can be written as
(λ1F (g1), . . . , λnF (gn)) where F (z) =

∑k−1
i=0 fiz

[i]. Therefore, the decoding of
λ-Gabidulin code is not the same as decoding Gabidulin codes (for examples,
using Berlekamp-Massey algorithm or Euclidean algorithm). We need the fol-
lowing result to decode λ-Gabidulin codes:

Proposition 3. Let λ = (λ1, λ2, . . . , λn) ∈ F
n
qm with rkq(λ) = u and x =

(x1, . . . , xn) ∈ F
n
qm with rkq(x) = w. Then

rkq ((λ1x1, . . . , λnxn)) ≤ uw.

Proof. Let X = span {x1, . . . , xn} = span {y1, . . . , yw} where {y1, . . . , yw}
is linearly independent. Also, let L = span {λ1, . . . , λn} = span {γ1, . . . , γu}
where {γ1, . . . , γu} is linearly independent. For (λ1x1, . . . , λnxn), each entry λixi

is a linear combinations of elements in {yiγj : 1 ≤ i ≤ w, 1 ≤ j ≤ u}, which has
dimension at most uw. �

Our new code Gabn,k(gλ) has a decoding algorithm as described in the following:

Proposition 4. Let g ∈ F
n
qm with rkq(g) = n, λ ∈ F

n
qm with rkq(λ) = u and

r =
⌊

n−k
2

⌋ ≥ u, there exists decoding algorithm for Gabn,k (gλ) with error-
correcting capabilities up to r

u and decoding complexities of O
(
n1.69 log2(n)

)

operations in Fqm .

Proof. There are two parts in the decoding algorithm for Gabn,k(gλ), the first
part is to multiply each coordinates of the received vector y = (y1, . . . , yn)
with λ−1

i . Then we can apply any decoding algorithm for the Gabidulin codes
Gabn,k(g) on (y1λ−1

1 , . . . , ynλ−1
n). To be more precise, let c be a codeword in

Gabn,k (gλ) and e ∈ F
n
qm with rkq(e) ≤ r

u . Then there exists f ∈ F
k
qm such that

c = fGλ . Let F (z) =
∑k−1

i=0 fiz
[i], then the received vector, y can be written as

(y1, . . . , yn) = fGλ + e = (λ1F (g1), . . . , λnF (gn)) + (e1, . . . , en).

Multiplying each entry of y with λ−1
i for i = 1, . . . , n:

ŷ := (λ−1
1 y1, . . . , λ

−1
n yn) = (F (g1), . . . , F (gn)) + (λ−1

1 e1, . . . , λ
−1
n en).

280 T. S. C. Lau and C. H. Tan

Notice that ĉ := (F (g1), . . . , F (gn)) is a codeword in Gabn,k(g). If the vector
ê := (λ−1

1 e1, . . . , λ
−1
n en) has rank less than or equal to r, then we can decode ŷ

and recover ĉ. By Proposition 3, rkq(ê) ≤ rkq(e)×rkq(λ) ≤ r
u ×u = r. Therefore

we can recover ĉ and thus recover c by multiplying each entry with λi.
Since the first part consists of n multiplications in Fqm , the complexity of

the first part is O(n). For the second part, the complexity is O
(
n1.69 log2(n)

)

operations in Fqm by using sub-quadratic decoding of Gabidulin codes in [38].
Therefore, the total complexity to decode λ-Gabidulin codes is O

(
n1.69 log2(n)

)

operations in Fqm . �

4 New Public-Key Encryption on λ-Gabidulin Codes

The λ-Gabidulin code does not contain huge vector space invariant under the
Frobenius automorphism with proper choices of λ, hence we propose a new
Gabidulin-like code encryption, namely LG encryption based on λ-Gabidulin
codes with a scrambler matrix from elements in λ. We first prove a result that
is related to the choice of our scrambler matrix, P :

Proposition 5. Let γ ∈ Fqm \ Fq and λ = (λ1, λ2, . . . , λn) such that for i =
1, . . . , n, λi ∈ {

γ, γ−1
}
. Define P := [P1, . . . , Pn] an n × n invertible matrix

consisting entries of the form cγ or cγ−1 where c ∈ Fq and Δ be a diagonal
matrix with entries Δii = λi for i = 1, . . . , n. Let x = (x1, . . . , xn) ∈ F

n
qm such

that rkq(x) = t. Then rkq

(
xP−1Δ−1

) ≤ 3t.

Proof. Consider the matrix P−1Δ−1, each entries in P−1Δ−1 is a linear combi-
nation of the elements from the set

{
γ × γ, γ × γ−1, γ−1 × γ−1, γ−1 × γ

}
=

{
γ2, 1, γ−2

}
.

Let X = span {x1, . . . , xn} generated by {y1, . . . , yt}, since rkq(x) = t. Then
each entries in xP−1Δ−1 belongs to the span of elements in

{
yiγ

2, yi, yiγ
−2

}
i=1,...,t

which has dimension at most 3t. �

We also need the following properties for our public-key encryption scheme:

Definition 11. An [n, k]-linear code C ⊆ F
n
qm is called an (s, t, l)-intersecting

code if

dimFqm

(
t−1⋃

i=0

C([si])

)

= min {n, tk − l} .

Remark. Note that for 1 ≤ t ≤ n − k − 1, Gabn,k(g) is a (1, t, (t − 1)(k − 1))-
intersecting code, since

dimFqm

(
t−1⋃

i=0

Gabn,k(g)([i])
)

= k + t − 1 = tk − (t − 1)(k − 1) < n.

A New Gabidulin-Like Code and Its Application in Cryptography 281

4.1 Description of the Encryption Scheme

Setup, SPE Generates global parameters m ≥ n > k and parameters r and a

such that k � n− 1, r =
⌊

n−k
2

⌋
, a =

⌊
r
3

⌋
and ak ≥ n. The plaintext space is F

k
qm .

Outputs parameter = (m,n, k, r, a).

Key generation, KPE Generate random S ∈ GLk(Fqm). Form GλP by

i. generate randomly γ ∈ Fqm \ Fq such that γ2 �= 1,
(
γ−1

)2 �= 1 and γ �= γ−1.
Form λ = (λ1, . . . , λn) where each λi is picked randomly from

{
γ, γ−1

}
;

ii. generate randomly g ∈ F
n
qm with rkq(g) = n. Then construct Gλ in the form

of (8) as a generator of length n and dimension k;
iii. generate randomly P an n × n invertible matrix such that its inverse P−1

consisting entries from {cγ, cγ−1 : c ∈ Fq};

such that for all s relatively prime to m, the code generated by GλP is (s, a, 0)-
intersecting. Compute

Gpub := SGλP. (10)
Outputs public key, κpub = (Gpub, r) and secret key κpvt = (S, g,λ, P).

Encryption, EPE(κpub,m) Given the plaintext m ∈ F
k
qm to be encrypted,

choose a random vector e ∈ F
n
qm such that rkq(e) = a. Compute and output

the ciphertext y = mGpub + e.

Decryption, DPE(κpvt,y) Given y the received ciphertext. Let Δ be a diagonal

matrix with entries Δii = λi for i = 1, . . . , n. Compute P−1 and yP−1Δ−1.
Perform decoding on yP−1Δ−1 with respect to Gabn,k(g) to recover mS. We
can then recover m by multiplying S−1.

Correctness. The correctness of our encryption scheme relies on the decoding
capability of the code Gabn,k(g). Let ê := eP−1 = (ê1, . . . , ên) and G be of the
form of (1), then

yP−1Δ−1 = (mGpub + e) P−1Δ−1 = mSGλΔ−1 + eP−1Δ−1

= mSG +
(
λ−1
1 ê1, . . . , λ

−1
n ên

)
.

By Proposition 5, we have rkq

((
λ−1
1 ê1, . . . , λ

−1
n ên

)) ≤ a × 3 ≤ r where r is the
error correcting capability of Gabn,k(g), then we can decode yP−1Δ−1 correctly
to recover mS. Finally, compute m = mSS−1 to recover m.

4.2 A Toy Example of GλP in LG Encryption

Let (m,n, k, r, a) = (29, 25, 13, 6, 2). Let z be the primitive element in Fqm .
Generate random

γ = z27 + z25 + z23 + z22 + z21 + z19

+ z18 + z17 + z13 + z12 + z8 + z6 + z4 + z3

γ−1 = z28 + z27 + z26 + z25 + z18 + z16

+ z15 + z13 + z12 + z11 + z10 + z9 + z7 + z4 + z2.

282 T. S. C. Lau and C. H. Tan

and g = (g1, g
[1]
1 , . . . , g

[24]
1) where rkq(g) = n and

g1 = z27 + z25 + z24 + z20 + z19 + z15 + z12 + z8 + z7 + z2 + z + 1.

Let P be the n × n circulant matrix induced by the vector

p =
[
γ−1 0 0 γ γ γ−1 γ−1 0 0 γ−1 0 0 γ 0 0 γ γ−1 0 0 0 γ 0 γ 0 0

]
.

We can verify that the code generated by matrix GλP is (s, a, 0)-intersecting for
all s relatively prime to m.

5 Security Against Structural Attacks

We now show that the new encryption scheme with public key (10) is able to
resist the structural attacks on the cryptosystems based on Gabidulin codes.

5.1 Overbeck’s Attack

Overbeck’s attack exploits the properties of Gabidulin codes which contains
huge vector space invariant under the Frobenius automorphism. We consider
the Frobenius map Λi on the Gpub:

Λi(Gpub) =

⎡

⎢
⎣

(SGλP)[0]
...

(SGλP)[i]

⎤

⎥
⎦ =

⎡

⎢
⎣

S[0] 0
. . .

0 S[i]

⎤

⎥
⎦

⎡

⎢
⎢
⎣

G
[0]
λ P [0]

...
G

[i]
λ P [i]

⎤

⎥
⎥
⎦

Let G∗∗ =

⎡

⎢
⎢
⎣

G
[0]
λ P [0]

...
G

[i]
λ P [i]

⎤

⎥
⎥
⎦. The code generated by GλP is (1, a, 0)-intersecting.

If (i + 1)k ≥ n, then dim(G∗∗) ≥ n, which implies that dim(G∗∗) = n. If
(i + 1)k < n, then dim(G∗∗) = (i + 1)k. Since k � n − 1, there does not exist
i such that (i + 1)k = n − 1. Hence we know that dim(G∗∗) �= n − 1. Since
dim(G∗∗) �= n − 1 for all i, we have dim(ker(G∗∗)) �= 1. Overbeck’s attack will
then fail.

5.2 Annulator Polynomial Attack

An adversary will consider an annulator polynomial for e ∈ F
n
qm and try to

reconstruct e from f(e). Since rkq(e) = a ≤ ⌊
r
3

⌋
, then there exists a linearized

polynomial with f(x) of degree qa of the form:

f(x) = x[a] +
a−1∑

i=0

fix
[i]

A New Gabidulin-Like Code and Its Application in Cryptography 283

for some fi ∈ Fqm , such that

f(e) = f(y − mG) = 0

(y − mG)[a] +
a−1∑

i=0

fi(y − mG) = 0. (11)

The linear system (11) consists of n equations with k variables of m, a variables
fi and a × k variables of fimj for i = 0, . . . , a − 1, j = 1, . . . , k, giving us a
total of ak + k + a variables to be determined. Since ak ≥ n as in our choices of
the cryptosystem, we have ak + k + n > n, thus the complexity of solving RSD
problem for Gpub is exponential.

5.3 Frobenius Weak Attack

Let C be the code generated by Gpub, y = mGpub + e with rkq(e) = a. Consider
s < m such that gcd(s,m) = 1. First of all, an adversary will try to construct
the matrix

Gpubj =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

G
([s(0)])
pub

y([s(0)])

. . .

G
([s(j−1)])
pub

y([s(j−1)])

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

If j < a, then by Lemma 2, we have
〈
e,e([s]), . . . ,e([s(j−1)])

〉 �= supp(e). There-
fore, the adversary cannot obtain a parity check matrix H for U , where U is the
span of all elements of rank one in Cext :=

∑a−1
i=0 (C + 〈e〉)[si] such that eHT = 0.

Hence, an adversary will consider to construct Gpubj with j = a, so that
〈
e([0]), . . . ,e([s(a−1)])

〉
= supp(e) ⊆ U . The adversary will compute the space U

generated by the elements of rank one in Cext using Lemma 3. Since
⋃a−1

i=0 C([si]) ⊂
Cext and C is a (s, a, 0)-intersecting code, then

dimFqm
(Cext) ≥ dimFqm

(
a−1⋃

i=0

C([si])

)

≥ ak ≥ n.

Therefore we have dimFqm
(Cext) = n. Let Ḡ be the generator matrix for Cext in

reduced row echelon form. We then have

Ḡ =
[

In

0

]

=:

⎡

⎢
⎢
⎢
⎣

Ḡ1

Ḡ2

...
Ḡa(k+1)

⎤

⎥
⎥
⎥
⎦

∈ F
(a(k+1))×n
qm

where Ḡi denotes the ith row of Ḡ. Then for each i, Ḡ
([1])
i − Ḡi = 0. Thus the

adversary is not able to compute the space U using Lemma 3, and not able to
determine its parity check matrix H. The Frobenius weak attack fails.

284 T. S. C. Lau and C. H. Tan

Remark. Since the structure of our λ-Gabidulin codes is similar as Gabidulin
codes, therefore we do not consider other attacks on the cryptosystems based
on LRPC codes, such as attacks from [6,27], as these attacks are not relevant to
our cryptosystem.

6 Proposed Parameters

We performed simulation on Magma by generating 1000 random sets of λ, Gλ,
P and GλP with parameters (q,m, n, k, a) = (2, 83, 79, 31, 8) and conditions in
Key Generation KPE. We found that all of the codes with generator matrix GλP
in the simulation are (s, a, 0)-intersecting, for all s relatively prime to m. This
indicates that such GλP with the required properties is easy to be generated.

Recall that Tables 1 and 2 give the complexity to solve RSD problem using
combinatorial attacks and algebraic attacks. We replace the term r in the formu-
las with a in the calculations. In addition, we square root the exponential term
in evaluating the post-quantum complexity in solving RSD problem. We suggest
two sets of parameters for 2128 and 2256 bits post quantum security respectively
in Table 4. We consider the public key matrix Gpub in systematic form, which
gives us key size of k(n−k)m

8 log2(q) bytes. We denote the achieved post-quantum
security as “PQ.Sec”.

Table 4. Parameters for 2128 and 2256 bits post quantum security

Encryption q m n k a Key size PQ.Sec

LG-I 2 83 79 31 8 15.43 KB 128

LG-II 2 85 83 29 9 16.64 KB 128

LG-III 2 97 89 23 10 18.41 KB 128

LG-IV 2 117 115 49 11 47.30 KB 256

LG-V 2 129 127 36 15 52.83 KB 256

LG-VI 2 133 131 34 16 54.83 KB 256

We consider and compare the Loi17 and DRANKULA encryption with our
encryption scheme as these encryption schemes are structurally similar (McEliece
type), except that the codes used are different. We also include the formula
m32

a−1
2 �(k min(m,n))/n� to evaluate the complexity of attack on RSD in Table 5

(as this formula is used in [29] to evaluate the complexity in Quantum computer).
Our LG Encryption using λ-Gabidulin codes has smaller public key size

(17.85 KB) than public key size of Loidreau’s proposal (Loi17 of 21.50 KB in
[29]), and smaller public key size than public key size of DRANKULA (27.65 KB
in [1]) at similar post quantum security of 2140.

A New Gabidulin-Like Code and Its Application in Cryptography 285

Table 5. Comparison on parameters for LG encryption, Loi17 and DRANKULA

Encryption q m n k a Key size PQ.Sec

LG-VII 2 85 83 35 8 17.85 KB 140

LG-VIII 2 91 89 28 10 19.43 KB 140

Loi17-I 2 128 90 24 11 21.50 KB 140

Loi17-II 2 128 120 80 4 52.83 KB 141

DRANKULA 2 96 96 48 6 27.65 KB 139

7 Conclusion

This paper has proposed a new rank metric code, λ-Gabidulin code and a new
McEliece type cryptosystem based on λ-Gabidulin code as an alternative to the
current rank metric code based cryptosystem. In particular, we consider a public
key matrix with generator matrix of λ-Gabidulin code multiplied with a scrambler
matrix associated to λ. In fact, we can convert our encryption scheme to IND-CCA2
encryption scheme via security conversions proposed in [23]. As such we do not
present security proofs but rather discuss more on the scheme’s structural secu-
rity in resisting the Overbeck’s attack, annulator polynomial attack and Frobe-
nius weak attack. Moreover, our proposal has smaller public key size (17.85 KB)
than Loidreau’s proposal (21.50 KB) in [29], and smaller public key size than
DRANKULA (27.65 KB) in [1] at similar post quantum security of 2140.

References

1. Abdouli, A., et al.: DRANKULA: a McEliece-like rank metric based cryptosystem
implementation. In: The Proceedings of the 15th International Joint Conference on
e-Business and Telecommunications (ICETE) 2018, vol. 2, pp. 64–75. SECRYPT
(2018)

2. Aguilar, C., Blazy, O., Deneuville, J., Gaborit, P., Zémor, G.: Efficient encryption
from random quasi-cyclic codes. IEEE Trans. Inf. Theory 64(5), 3927–3943 (2018)

3. Aragon, N., Gaborit, P., Hauteville, A., Tillich, J.-P.: A new algorithm for solving
the rank syndrome decoding problem. In: The Proceedings of IEEE International
Symposium on Information Theory (ISIT) 2018, pp. 2421–2425 (2018)

4. Chabaud, F., Stern, J.: The cryptographic security of the syndrome decoding prob-
lem for rank distance codes. In: Kim, K., Matsumoto, T. (eds.) ASIACRYPT 1996.
LNCS, vol. 1163, pp. 368–381. Springer, Heidelberg (1996). https://doi.org/10.
1007/BFb0034862

5. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS,
vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-12929-2 6

6. Debris-Alazard, T., Tillich, J.-P.: Two attacks on rank metric code-based schemes:
RankSign and an IBE scheme. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT
2018. LNCS, vol. 11272, pp. 62–92. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-03326-2 3

https://doi.org/10.1007/BFb0034862
https://doi.org/10.1007/BFb0034862
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-642-12929-2_6
https://doi.org/10.1007/978-3-030-03326-2_3
https://doi.org/10.1007/978-3-030-03326-2_3

286 T. S. C. Lau and C. H. Tan

7. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 16

8. Gabidulin, E.M.: Theory of codes with maximum rank distance. Probl. Peredachi
Informatsii 21(1), 3–16 (1985)

9. Gabidulin, E.M.: Attacks and counter-attacks on the GPT public key cryptosys-
tem. Des. Codes Cryptogr. 48(2), 171–177 (2008)

10. Gabidulin, E.M., Ourivski, A.V.: Modified GPT PKC with right scrambler. Elec-
tron. Notes Discret. Math. 6, 168–177 (2001)

11. Gabidulin, E.M., Paramonov, A.V., Tretjakov, O.V.: Ideals over a non-
commutative ring and their application in cryptology. In: Davies, D.W. (ed.)
EUROCRYPT 1991. LNCS, vol. 547, pp. 482–489. Springer, Heidelberg (1991).
https://doi.org/10.1007/3-540-46416-6 41

12. Gabidulin, E.M., Rashwan, H., Honary, B.: On improving security of GPT cryp-
tosystems. In: The Proceedings of IEEE International Symposium on Information
Theory (ISIT) 2009, pp. 1110–1114 (2009)

13. Gaborit, P., Hauteville, A., Phan, D.H., Tillich, J.-P.: Identity-based encryption
from codes with rank metric. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10403, pp. 194–224. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63697-9 7

14. Gaborit, P., Ruatta, O., Schrek, J.: On the complexity of the rank syndrome decod-
ing problem. IEEE Trans. Inf. Theory 62(2), 1006–1019 (2016)

15. Gaborit, P., Ruatta, O., Schrek, J., Zémor, G.: New results for rank-based cryptog-
raphy. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol.
8469, pp. 1–12. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-
6 1

16. Gaborit, P., Zémor, G.: On the hardness of the decoding and the minimum distance
problems for rank codes. IEEE Trans. Inf. Theory 62(12), 7245–7252 (2016)

17. Galvez, L., Kim, J., Kim, M.J., Kim, Y., Lee, N.: McNie: compact McEliece-
Niederreiter Cryptosystem. https://csrc.nist.gov/CSRC/media/Projects/Post-
Quantum-Cryptography/documents/round-1/submissions/McNie.zip

18. Gibson, J.K.: Severely denting the Gabidulin version of the McEliece public-key
cryptosystem. Des. Codes Cryptogr. 6(1), 37–45 (1995)

19. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000). https://doi.org/10.1007/3-540-44448-3 4

20. Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Extension of Overbeck’s
attack for Gabidulin based cryptosystems. Des. Codes Cryptogr. 86(2), 319–340
(2018)

21. Horlemann-Trautmann, A., Marshall, K., Rosenthal, J.: Considerations for rank-
based cryptosystems. In: IEEE International Symposium on Information Theory
(ISIT) 2016, pp. 2544–2548 (2016)

22. Kim, J., Galvez, L., Kim, Y.-S., Lee, N.: A new LRPC-Kronecker product codes
based public-key cryptography. In: The Proceedings of the 5th ACM on Asia
Public-Key Cryptography Workshop (APKC) 2018, pp. 25–33 (2018)

23. Kobara, K., Imai, H.: Semantically secure McEliece public-key cryptosystems -
conversions for McEliece PKC -. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 19–35. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-2 2

24. Levy-dit-Vehel, F., Perret, L.: Algebraic decoding of rank metric codes. In: The
Proceedings of Yet Another Conference on Cryptography (YACC) 2006, pp. 142–
152 (2006)

https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1007/3-540-46416-6_41
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-63697-9_7
https://doi.org/10.1007/978-3-319-06734-6_1
https://doi.org/10.1007/978-3-319-06734-6_1
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/McNie.zip
https://doi.org/10.1007/3-540-44448-3_4
https://doi.org/10.1007/3-540-44586-2_2

A New Gabidulin-Like Code and Its Application in Cryptography 287

25. Lau, T.S.C., Tan, C.H.: A new encryption scheme based on rank metric codes. In:
Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 750–758. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-93638-3 43

26. Lau, T.S.C., Tan, C.H.: A new technique in rank metric code-based encryption.
Cryptography 2(4), 32 (2018)

27. Lau, T.S.C., Tan, C.H.: Key recovery attack on McNie based on low rank parity
check codes and its reparation. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018.
LNCS, vol. 11049, pp. 19–34. Springer, Cham (2018). https://doi.org/10.1007/978-
3-319-97916-8 2

28. Loidreau, P.: Designing a rank metric based McEliece cryptosystem. In: Sendrier,
N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 142–152. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12929-2 11

29. Loidreau, P.: A new rank metric codes based encryption scheme. In: Lange, T.,
Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 3–17. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59879-6 1

30. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. Else-
vier, North-Holland, Amsterdamm (1977)

31. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The
Deep Space Network Progress Report 42-44, Jet Propulsion Laboratory, Pasedena,
pp. 114–116 (1978)

32. Ore, O.: On a special class of polynomials. Trans. Am. Math. Soc. 35(3), 559–584
(1933)

33. Otmani, A., Kalachi, H.T., Ndjeya, S.: Improved cryptanalysis of rank metric
schemes based on Gabidulin codes. Des. Codes Cryptogr. 86(9), 1983–1996 (2018)

34. Ourivski, A.V., Gabidulin, E.M.: Column scrambler for the GPT cryptosystem.
Discret. Appl. Math. 128, 207–221 (2003)

35. Ourivski, A.V., Johansson, T.: New technique for decoding codes in the rank metric
and its cryptography applications. Probl. Inf. Transm. 38(3), 237–246 (2002)

36. Overbeck, R.: Extending Gibson’s attacks on the GPT cryptosystem. In: Ytrehus,
Ø. (ed.) WCC 2005. LNCS, vol. 3969, pp. 178–188. Springer, Heidelberg (2006).
https://doi.org/10.1007/11779360 15

37. Overbeck, R.: Structural attacks for public key cryptosystems based on Gabidulin
codes. J. Cryptol. 21(2), 280–301 (2008)

38. Puchinger, S., Wachter-Zeh, A.: Sub-quadratic decoding of Gabidulin codes. In:
IEEE International Symposium on Information Theory (ISIT) 2016, pp. 2554–
2558 (2016)

39. Rashwan, H., Gabidulin, E.M., Honary, B.: Security of the GPT cryptosystem and
its applications to cryptography. Secur. Commun. Netw. 4(8), 937–946 (2011)

40. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind.
Appl. Math. (SIAM) 8(2), 300–304 (1960)

https://doi.org/10.1007/978-3-319-93638-3_43
https://doi.org/10.1007/978-3-319-97916-8_2
https://doi.org/10.1007/978-3-319-97916-8_2
https://doi.org/10.1007/978-3-642-12929-2_11
https://doi.org/10.1007/978-3-319-59879-6_1
https://doi.org/10.1007/11779360_15

Perfect, Hamming and Simplex Linear
Error-Block Codes with Minimum

π-distance 3

Soukaina Belabssir, Edoukou Berenger Ayebie, and El Mamoun Souidi(B)

Faculty of Sciences, Laboratory of Mathematics, Computer Science,
Applications and Information Security, Mohammed V University in Rabat,

BP 1014 RP, 10 000 Rabat, Morocco
soukainabelabssir@gmail.com, berenger.ayebie@gmail.com, emsouidi@gmail.com

Abstract. Linear error-block codes were introduced in 2006 as a gener-
alization of linear block codes. In this paper we construct two new fam-
ilies of perfect binary linear error-block codes of π-distance 3, namely,
[n1] . . . [nt][2]

s (where t ≥ 1), and [n1][nt][3]
s (where t = 1 or t = 2), we

also introduce the notions of Hamming and Simplex linear error-block
codes, and we give a method to construct Hamming LEB codes from
its parity check matrix. We also prove that Hamming LEB codes are
perfect, and the constructed perfect codes are Hamming.

Keywords: Linear error-block codes · Simplex codes ·
Hamming code · Hamming bound and perfect codes

1 Introduction

Linear error-block codes (or LEB code for abbreviation) were initiated by Feng,
Xu and Hickernell [1] in 2006 as a generalization of linear block codes. They
held that these codes yield mixed-level orthogonal arrays and have applications
in experimental design and high-dimensional numerical integration. Likewise,
these codes may be used in cryptography. Dariti and Souidi [4] showed that
using LEB codes in public key cryptography can allow obtaining small keys
while keeping the same level of security as in the classical case. Also, in [3] they
showed that the use of LEB codes in steganography can help to increase the
embedding capacity of hidden information than the classical codes.

The topic of perfect codes is an interesting topic in the theory of error-
correcting codes. Perfect codes correct every word within the space. The Golay
codes, the Hamming codes and the repetition codes of odd length are shown in
[8,9] to be the unique existing perfect code in the classical case.

In [1], some algebraic aspects and fields of applications of linear error-block
codes are given, and a number of results about bounds, perfects and MDS LEB
codes are treated in [7]. A generalization of some results on the packing and the
covering radii to the error-block case is done, and some bounds on the packing
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 288–306, 2019.
https://doi.org/10.1007/978-3-030-16458-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_17

Perfect Linear Error-Block 289

and the covering radii of these codes are given in [5]. Optimal linear error-block
codes are investigated in [6]. New families of perfect linear error-block codes are
constructed in [2].

In this paper, we construct two new families of perfect binary linear error-
block codes of minimum π-distance 3, of type [n1] . . . [nt][2]s (t ≥ 1), and of type
[n1][nt][3]s (t = 1 or 2). Furthermore, the notions of Hamming and Simplex
linear error-block codes are introduced and a construction method is given of
Hamming LEB codes from its parity check matrix. We also prove that Hamming
LEB codes are perfect.

This paper is organized as follows. In this introduction we continue by intro-
ducing some definitions and known results about LEB codes. In Sect. 2 we con-
struct perfect binary LEB codes of type π = [n1] . . . [nt][2]s (n1 ≥ . . . ≥ nt ≥ 2).
We determine all possible parameters and sufficient conditions for these codes
to be perfect. In Sect. 3 we construct perfect LEB codes of type π = [n1][nt][3]s

for t = 1, 2. In Sect. 4 we extend the definition of Hamming codes to linear error-
block case, then we give some properties of LEB Hamming codes and we show
that these codes are perfect. Section 5 is devoted to Simplex LEB codes. The
conclusion and perspective of this work are discussed in Sect. 6.

Following Feng et al. [1], a partition π of a positive integer n, is a sequence of
nonnegative integers denoted by π = [n1][n2] . . . [ns], where s is an integer ≥ 1,

n = n1 + n2 + . . . + ns (1)

and n1 ≥ n2 ≥ . . . ≥ ns ≥ 1, If n =
∑s

i=1 ni = l1m1 + l2m2 + . . . +
lrmr where m1 > m2 > . . . > mr ≥ 1, then π will be denoted by π =
[m1]l1 [m2]l2 . . . [mr]lr .

Let π = [n1] . . . [ns] (s ≥ 1) be a partition of an integer n, Fq the finite field
of q (q is a prime power) elements, Vi = F

ni
q (1 ≤ i ≤ s), and the direct some

V = V1 ⊕ V2 ⊕ . . . ⊕ Vs � F
n
q . (2)

Each vector in V can be written uniquely as v = (v1, v2, . . . , vs), where vi is in
Vi (for 1 ≤ i ≤ s). For u = (u1, u2, . . . , us) and v = (v1, v2, . . . , vs) in V , the
π-weight wπ(u) and respectively the Hamming π-distance dπ(u, v) are defined
by:

wπ(u) = #{i/1 ≤ i ≤ s, 0 �= ui ∈ Vi}
and

dπ(u, v) = wπ(u − v) = #{i/1 ≤ i ≤ s, ui, vi ∈ Vi and ui �= vi}. (3)

A linear error-block code (LEB code for short) over Fq of type π where π is
a partition of n is an Fq-linear subspace C of V defined by (2). The integer n is
called the length of C, k = dimFq

C is its dimension and

dπ = min{dπ(c, c′)/c, c′ ∈ C, c �= c′} = min{wπ(c)/0 �= c ∈ C}, (4)

is its minimal π-distance. Such an LEB code is denoted by [n, k, dπ]q code.
Linear error-block codes (LEB) are a generalization of classical codes. In fact,

classical linear error-correcting code is a linear error-block code of type π = [1]n.

290 S. Belabssir et al.

Definition 1. A generator matrix of an [n, k] code, regardless of its type, is a
k × n matrix whose rows form a basis of the code.

Before going further, note that there are two possible ways to define the
orthogonality of two vectors in V , as shown in Definition 2.

Definition 2. Let π = [n1] . . . [ns] a partition of a positive integer n and C an
LEB codes of type π and u = (u1, . . . , us) and v = (v1, . . . , vs) in C.

We say that u and v are (strongly)orthogonal if

ui.vi = 0 for all i = 1, . . . , s (5)

We say that u and v are orthogonal if

s∑

i=1

ui.vi = 0 (6)

where ui.vi denotes the classical scalar product in Vi = F
ni
q .

Equation (5) is a strong condition of orthogonality. We use (6) to specify the
orthogonality in V thereafter.

Let C be an [n, k] code of type π = [n1][n2] . . . [ns], whose generator matrix
is G and whose parity-check matrix is H, the dual of C is an [n, n − k] code of
type π = [n1][n2] . . . [ns], whose generator matrix is H and whose parity-check
matrix is G, and is denoted by C⊥ = {u.H/u ∈ V }.

Definition 3. A parity-check matrix of an [n, k] code, regardless of its type, is
an (n − k) × n matrix whose rows are linearly independent and are orthogonal
with the code.

An LEB code is completely defined by a generator matrix or a parity check
matrix. As in the classical case, the minimum π-distance of a linear error-block
code is straightforwardly determined using a parity-check matrix as follows:

Theorem 1 ([1]). Let H = [H1,H2, . . . , Hs] be a parity-check matrix for an
[n, k, dπ] code C over Fq of type π = [n1][n2] . . . [ns]. Then the minimum π-
distance is dπ if and only if the union of columns of any dπ − 1 blocks of H
are Fq-linearly independent and there exist dπ blocks columns of H which are
linearly dependent.

Example 1. Let C be a [7, 2, 2] binary code of type π = [3][2][1]2 defined as
follows:

C = {000|00|0|0, 101|10|1|0, 011|11|0|0, 110|01|1|0}.

Then C is generated by the matrix

G =
(

1 0 1 1 0 1 0
0 1 1 1 1 0 0

)

.

Hereafter we recall the Hamming and Singleton bounds for LEB codes which
are introduced by Feng et al. [1].

Perfect Linear Error-Block 291

Theorem 2. Let C be an [n, k, dπ]q LEB code over Fq of type π = [n1]
[n2] . . . [ns]. Then

qn−k ≥ bπ(l) if dπ = 2l + 1,
qn−k ≥ b′

π(l) if dπ = 2l ≥ 2.
(7)

where

bπ(l) = 1 +
l∑

α=1

∑

1≤i1≤i2≤...≤iα≤s

(qni1 − 1)(qni2 − 1) . . . (qniα − 1),

b′
π(l) = qn1

⎛

⎝1 +
l−1∑

α=1

∑

2≤i1≤i2≤...≤iα≤s

(qni1 − 1)(qni2 − 1) . . . (qniα) − 1

⎞

⎠

and
n − k ≥ n1 + n2 + . . . + ndπ−1. (8)

The inequality (7) is called the Hamming bound and the inequality (8) is called
the Singleton bound.

Definition 4. An [n, k, dπ]q LEB code of type π is said to be perfect if it attains
the Hamming bound (7) and is said to be MDS if it attains the Singleton bound
(8).

According to Eq. (7), an [n, k, dπ]2 binary LEB code of type π = [n1] . . . [ns] is
said to be perfect if it satisfies the Hamming bound that is in this case:

2n−k = bπ(1) = 1 +
s∑

i=1

(2ni − 1) (9)

Proposition 1. [1] Assume that there exists an [n, k, 3]2 code C of type π =
[n1][n2] . . . [ns]. Then there exists an [n + N, k + N, 3]2 code C ′ of type π =
[n1][n2] . . . [ns][1]N , where N = 2n−k − 1 − ∑s

i=1(2
ni − 1) is positive. Moreover,

C ′ is perfect.

Example 2. Let C be a [5, 1, 3]2 code of type π = [2][2][1] with parity-check
matrix

H =

⎛

⎜
⎜
⎝

1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

⎞

⎟
⎟
⎠ .

The code C is not perfect. In fact, using the inequality (7) we have N =
2n−k − ∑3

i=1(2
ni − 1) − 1 = 2 > 0. So according to Proposition 1, the [5 + 2, 1 +

2, 3]2 code of type π̃ = [2][2][1][1]2 and parity-check matrix

292 S. Belabssir et al.

H =

⎛

⎜
⎜
⎝

1 0 1 0 0 0 0 1 0 1
0 1 0 1 0 0 1 0 0 1
0 0 1 0 1 0 1 1 1 0
0 0 0 1 0 1 1 1 1 1

⎞

⎟
⎟
⎠

is perfect.

More constructions of perfect and MDS codes of type π = [n1][n2] . . . [nt][1]N

and π-distance 3 are given in [7], and generalized to a larger class of partitions.

2 Perfect LEB Codes of Type π = [n1] . . . [nt][2]
s, t ≥ 1

with dπ = 3

To provide new technical constructions of LEB codes, we are interested in the
formal characterization of binary codes with π-distance 3. In [2], Dariti et al.
have characterized perfect LEB codes.

Algorithm 1. Generation of parity check matrix H of LEB code π =
[n1] · · · [nt]s

Notations
getCanonicalBasis(r): give a set of columns which make the canonical basis of Fr

2.
NextComb(2r, p): draw the next set of P vectors in F

r
2

Rank(G): give the Rank of G.
Size(A): give the number of blocks of A

Require: A = [n1, · · · , nm], r ≥ n1 + · · · + nm + 2, s �= 0
Ensure: H

H ← []
Basis ← getCanonicalBasis(r)
k ← 0
for all i ∈ [0, m] do

H[i] ← basis[k : k + A[i]]
k ← A[i]

end for
while Size(H) < s + m and NextComb(2r, 2) �= Null do

x ← NextComb(2r, 2)
for all y ∈ H do

if Rank([y, x]) == Size([y, x]) then
i ← i + 1
H[i] ← x

end if
end for

end while

Algorithm 1 takes as input an [n, k, 3] LEB code of type π = [n1] . . . [nt]s

where n = n1 + . . . + nt and outputs its corresponding parity check matrix.

Perfect Linear Error-Block 293

We start by generating the canonical basis of the vector subspace F
r
2 that will

form the first column vectors of our parity check matrix. We generate afterwards
a linear combination of all the blocks of vectors of size n1, n2, . . . , nt until obtain-
ing exactly s blocks of size nt and a block of size ni (1 ≤ i ≤ t) which are all
pairwise linearly independent.

2.1 Construction of Perfect LEB Codes of Type π = [n1][2]s(n1 ≥ 2)
with dπ = 3

According to Definition 4, a code C of type π is said to be perfect if and only if
it reaches the Hamming bound described in Theorem 2. Theorem 3 below, gives
conditions of existence of perfect binary LEB codes of type π = [n1][2]s:

Theorem 3. Let n be a positive integer and π = [n1][2]s where n1 ≥ 2 a parti-
tion of n. An [n, k, 3]2 LEB code of type π exists and is perfect if and only if n1

and r = n − k are even and s = 2r−2n1

3 is an integer.

Proof. 1. According to Definition 2, C is perfect if and only if

2r = 1 + (2n1 − 1) + s(22 − 1)

that is
s =

2r − 2n1

3

and since s is an integer, then 2n1 ≡ 2r[3]. Hence s = 2r−2n1

3 is an integer
and r and n1 have the same parity.

2. Existence of C: let C be an [n, k, 3]2 LEB code of type π1 = [n1] and let
H = [H1] be a parity-check matrix of C. If 2n−k − 1 > 2n1 − 1 then there
exist ui, uj ∈ F

r
q (1 ≤ i �= j ≤ 2s, ui �= uj) such that {ui} ∪ H1 are linearly

independent and {ui} ∪ {uj} are linearly independent. Then we obtain H ′ =
[H1][H2] · · · [Hs+1] where Hk = [ui][uj] (concatenation of two vectors ui and
uj) for all 1 ≤ k ≤ s + 1. The blocks Hk are pairwise linearly independent.

Let C ′ be a linear error-block code with H ′ as a parity-check matrix. Then C ′

is an [N,K, 3]2 code (where N = n+2s and K = N−r = n+2s−(n−k) = k+2s)
of type π = [n1][2]s. Hence C ′ is perfect.
�
Example 3. 1. The binary LEB code C of length n = 10, dimension k = 6, and

type π = [2]5; and whose parity-check matrix is:

H =

⎛

⎜
⎜
⎝

1 0 0 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0

⎞

⎟
⎟
⎠

is perfect and MDS. In fact, The columns of any two block are linearly inde-
pendent and 210−6 = 1 + 5(22 − 1) and n − k = 10 − 6 = 2 + 2 = n1 + n2.

294 S. Belabssir et al.

Proposition 2. There exists no perfect LEB code C of type π = [n1][2]s with
dπ = 3 and n1 odd.

Proof. Assume the existence of an [n, k, 3]2 perfect binary LEB code C over F
n
2

with type π = [n1][2]s (n1 ≥ 2) and dπ = 3 where n1 is odd. The code C is of
length n = n1 + 2s and dimension k ≤ n − n1 = 2(s − 1).
Let X be the set of x ∈ F

n
2 which are of the form:

x = (

one 1 is randomly dispersed in the first block
︷ ︸︸ ︷
0000000 . . . 000010000000 . . . 000000000000, 01, 00, . . . , 00)

Then ωπ(x) = 2 and | X |= n1 − 2 is the number of elements of X.
Since C is perfect, for all x ∈ X there exists a unique c ∈ C such that

dπ(c, x) = 1. We have

1 = dπ(C) − ωπ(x) ≤ ωπ(c) − ωπ(x) ≤ ωπ(c − x) = 1 (10)

i.e. ωπ(c) − ωπ(x) = 1. Then ωπ(c) = ωπ(x) + 1 = 3, this means that c must
have the digit “1” in the block where x has.

Let Y ⊂ C the set of y which are of the form:

y = (

two 1 are randomly dispersed in the first block
︷ ︸︸ ︷
0000000 . . . 000010000000 . . . 0000100 . . . 00000, 01, 11, . . . , 00, . . . , 00)

We have ωπ(y) = 3 and for all x ∈ X there exists a unique y in Y such that
the number of one in x − y equals to 2, then

| {(x, y) ∈ X × Y \ the number of one in x − y equals to 2} |= n1.

However, for each x ∈ X there exist exactly two vectors in X such that the
number of one in x − y equals to 2 indeed 2 | Y |= n1. Absurd since n1 is odd.
In conclusion, there exist no perfect LEB code C of type π = [n1][2]s over F

n
2

with dπ = 3 and n1 odd.
�

2.2 Binary Perfect LEB Codes of Type π = [n1][n2][2]s with dπ = 3

Let C be an [n, k, 3]2 code of type π = [n1][n2][2]s(n1 ≥ n2 ≥ 2). Set r = n − k.
If C is perfect, then its parameters satisfy

2r = 1 + (2n1 − 1) + (2n2 − 1) + s(22 − 1) = 2n1 + 2n2 − 1 + 3s, (11)

which means that s = 2r−2n1−2n2+1
3 . Since s must be an integer, then 2r −2n1 −

2n2 + 1 ≡ 0 [3]. Therefore, the existence of s and C is related to r, n1 and n2 by
the following facts:

– If r is even:
If n1 and n2 are both even then 2r −2n1 −2n2 +1 ≡ 0 [3] and s is an integer.

Therefore, C is perfect.

Perfect Linear Error-Block 295

If n1 and n2 are both odd then 2r − 2n1 − 2n2 + 1 ≡ −2 [3] and s is not an
integer. Therefore, C is not perfect.

If n1 or n2 is odd then 2r − 2n1 − 2n2 + 1 ≡ −1 [3] and so s is not an integer.
Therefore, C is not perfect.

– If r is odd:
If n1 and n2 are both odd then 2r − 2n1 − 2n2 + 1 ≡ −1 [3] and s is not an

integer. Therefore, C is not perfect.
If n1 and n2 are both even then 2r − 2n1 − 2n2 + 1 ≡ 1 [3] and s is not an

integer. Therefore, C is not perfect.
If n1 is even or n2 is odd then 2r − 2n1 − 2n2 + 1 ≡ 0 [3]. Therefore, C is

perfect.

Thus we have proved the following result:

Theorem 4. Let C be an [n, k, 3]2 code of type π = [n1][n2][2]s(n1 ≥ n2 ≥ 2).
Set r = n − k, the code C is perfect if and only if s = 2r−2n1−2n2

3 and [(r, n1

and n2 are even) or (r is odd and n1 or n2 is even)].

We use Algorithm 1 to generate codes of type π = [n1][n2][2]s(n1 ≥ n2 ≥ 2),
with dπ = 3 and for which parameters verify the conditions of Theorem 4. We
have the following result:

Theorem 5. Let n be a positive integer and π = [n1][n2][2]s(n1 ≥ n2 ≥ 2)
be a partition of n where s is a positive integer such that s = 2r−2n1−2n2

3 . Set
r = n − k. An [n, k, 3]2 binary code of type π exists only if r, n1 and n2 are both
even.

Proof. Assume r, n1 are even, and n2 is odd. We proceed as in Proposition 2
except that in this case, the first block of both x ∈ X and y ∈ Y are null and
the remaining blocks are similar to those of x ∈ X and y ∈ Y respectively.
�
Example 4. The binary LEB code C of length n = 36, dimension k = 30, and
type π = [4][2][2]15 whose parity-check matrix is H =

(
H1 H2 H3

)
is perfect

and MDS where

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 1 0 0 1 1 1
0 1 0 0 0 0 0 1 1 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 1 0 1 0
0 0 0 0 0 1 0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 0 0 1 1 1 0 0 1 0
0 0 0 1 1 1 1 0 0 0 0 1
1 0 1 0 1 0 1 0 0 1 0 1
0 1 0 1 0 1 0 1 1 1 1 1
1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and

H3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 0 0 1 0 0 1 1 1
1 1 1 0 0 0 0 1 1 1 1 0
0 1 0 1 1 1 1 1 1 1 1 1
1 1 1 1 1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1 0 1 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

296 S. Belabssir et al.

2.3 Binary Perfect LEB Codes of Type π = [n1] . . . [nt][2]s(t ≥ 2)
and dπ = 3

In this subsection we aim to generalize results about the existence of LEB codes
of type π = [n1] . . . [nt][2]s where n1 ≥ . . . ≥ nt ≥ 2. We have the following
result:

Theorem 6. Let C be an [n, k, 3]2 LEB code of type π = [n1] . . . [nt] where
n1 ≥ n2 ≥ . . . ≥ nt ≥ 2. Let r = n − k. If r and ni are even for i = 1, . . . , t then
s = 2r−∑t

i=1 2ni+t−1

3 is a positive integer and there exists an [n + 2s, k + 2s, 3]2
LEB code C ′ of type π = [n1] . . . [nt][2]s. Moreover, C ′ is perfect.

Proof. 1. Since r and ni are even for i = 1, . . . , t so 2r ≡ 1 [3], we have 2r −∑t
i=1 2ni + t − 1 ≡ 0 [3]. Hence, s is an integer, and s is positive since

2r − 1 ≥ ∑t
i=1(2

ni − 1).
2. Existence of C ′: Let H = [H1] . . . [Ht] be a parity-check matrix of C. If

2r − 1 >
∑t

i=1(2
ni − 1) then there exist ui, uj ∈ F

r
q (1 ≤ i �= j ≤ 2s, ui �= uj)

such that {ui}∪Hl where (1 ≤ l ≤ t) are linearly independent and {ui}∪{uj}
are linearly independent. Then we obtain H ′ = [H1] . . . [Ht][Ht+1] . . . [Ht+s]
where Hk = [ui][uj] (concatenation of two vectors ui and uj) for all t + 1 ≤
k ≤ t + s. The blocks Hk are pairwise linearly independent.

3. Let C ′ be the linear error-block code with H ′ as a parity-check matrix. Then
C ′ is an [N,K, 3]2 (where N = n + 2s and K = k + 2s) code of type π′ =
[n1] . . . [nt][2]s. Hence C ′ is perfect.
�
Using Theorem 6 we can construct binary LEB codes of type π =

[n1] . . . [nt][2]s where simply by taking an LEB code of type π = [n1] . . . [nt]
where n1 ≥ . . . ≥ nt and then adding to 2s matrices H of length (r × 1) such
that the union of the columns of each matrix and the columns of each block of
H are linearly independent. Besides, this family of codes is infinite.

We now construct codes of type π = [n1][nt][3]s(n1 ≥ nt ≥ 3) and minimum
π-distance 3.

3 Perfect LEB Codes of Type π = [n1][nt][3]
s, t = 1 or

t = 2 with dπ = 3

We now construct codes of type π = [n1][nt][3]s(n1 ≥ nt ≥ 3) and minimum
π-distance 3.

3.1 Perfect LEB Codes of Type π = [n1][3]s(n1 ≥ 3) and dπ = 3

The following lemma gives necessary conditions for an LEB code C of type
π = [n1][3]s to be perfect, in other words, conditions when parameters of C
achieve the Hamming bound.

Lemma 1. If C is an [n, k, 3]2 perfect code of type π = [n1][3]s, and r = n − k
then r ≥ n1 + 3, s = 2r−2n1

7 and n1 − r ≡ 0 [3].

Perfect Linear Error-Block 297

Proof. Let C be an [n, k, 3]2 perfect code of type π = [n1][3]s. Set r = n−k then
r ≥ n − 1 + 3 and

2r = 1 + (2n1 − 1) + s(23 − 1) = 2n1 + 7s. (12)

Then, s = 2r−2n1

7 . Since s is an integer, then 2r ≡ 2n1 [7]. Therefore, the existence
of s and that of C is related to r and n1 by the following relationship:

– Since, 23 ≡ 1[7]. Therefore, if n1 − r ≡ 0 [3], then 2r ≡ 2n1 [7] and so s is an
integer. Then, C is perfect.

– If n1 − r �≡ 0 ≡ 3, then 2r �≡ 2n1 [7], and so s is not an integer. Then, C is not
perfect.
�
Using Lemma 1, we can define parameters of [n, k, 3]2 perfect codes of type

π = [n1][3]s. We list here some parameters of [n, k, 3]2 perfect codes of type
π = [n1][3]s (n1 ≥ 3).

Example 5

1. k = 21, n = 27, r = 6, π = [3]9.
2. k = 45, n = 52, r = 7, π = [4][3]16.

Using Algorithm 1, we have been unable to generate the parity check matrices
of the [n, k, 3]2 codes of type π = [n1][3]s where:

1. Length n = 101, dimension k = 93 and type π = [5][3]32;
2. Length n = 198, dimension k = 185 and type π = [6][3]64;
3. Length n = 3463, dimension k = 3450 and type π = [7][3]1152.

Based on computation results, we conjecture the following:

Conjecture 1. 1. There exists no [n, k, dπ]2 perfect code of type π = [n1][3]s if
n1 > 4 (where s = 2r−2n1

7 , r = n − k and n1 − r ≡ 0[3]).
2. There exists a [27, 21, 3]2 perfect LEB code of type π = [3]9 and parity-check

matrix H = (H1|H2) where

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 1 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 0 0 0 1 0 1 0 0 1 1
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 1 0 0 1 1 1 1 1
0 1 1 0 0 1 1 1 0 1 0 0
1 0 1 1 0 0 1 1 1 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3. There exists a [52, 45, 3]2 perfect LEB code of type π = [4][3]16 and parity-
check matrix (H1|H2|H3|H4) where,

H1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0
0 1 0 0 0 0 0 0 1 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 1 0 0 0 1 0 1 1 0
0 0 1 0 1 1 1 1 1 1 0 1
1 0 1 1 0 0 1 0 1 1 0 0
0 1 0 0 1 0 0 1 1 0 1 1
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

298 S. Belabssir et al.

H3 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 1 0 1 1 1 1 1
0 0 1 0 1 1 1 1 1 1 0 1
0 1 0 0 1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,H4 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 1 1 0 1 0 1 1 1 1 1
0 0 0 0 1 0 1 1 0 1 0 0
1 1 1 1 1 0 1 1 1 1 1 0
1 0 1 1 0 1 1 0 0 1 0 0
1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.2 Perfect LEB Codes of Type π = [n1][n2][3]s with dπ = 3

The following lemma gives necessary conditions for an LEB code C of type
π = [n1][n2][3]s to be perfect, in other words, conditions when the parameters
of C achieve the Hamming bound.

Lemma 2. If C is an [n, k, 3]2 perfect code of type π = [n1][3]s, and r = n − k
then r ≥ n1 + 3, s = 2r−2n1−2n2+1

7 and the parameters r and n1 and n2 verify
one of the following conditions:

– r ≡ 1 [3] and [(n1 ≡ 0 [3] and n2 ≡ 1 [3]) or (n1 ≡ 1 [3] and n2 ≡ 0 [3])]
– r ≡ 0 [3] and n1 ≡ 0 [3] and n2 ≡ 0 [3]
– r ≡ 2 [3] and [(n1 ≡ 0 [3] and n2 ≡ 2 [3]) or (n1 ≡ 2 [3] and n2 ≡ 0 [3])]

Proof. Let C be an [n, k, 3]2 perfect code of type π = [n1][n2][3]s. Set r = n − k
then r ≥ n − 1 + 3 and

2r = 1 + (2n1 − 1) + (2n2 − 1) + s(23 − 1) = 2n1 + 2n2 − 1 + 7s. (13)

Hence s = 2r−2n1−2n2+1
7 . Since s is an integer, then 2r + 1 ≡ 2n1 + 2n2 [7].

Therefore, the existence of s and C is related to r, n1 and n2 by the following:

– If r ≡ 0 [3] then 2n1 +2n2 ≡ 2 [3] which means that n1 ≡ 0 [3] and n2 ≡ 0 [3].
– If r ≡ 1 [3] then 2n1 + 2n2 ≡ 3[3] which means that n1 ≡ 0 [3] and n2 ≡ 1 [3]

or n1 ≡ 1 [3] and n2 ≡ 0 [3].
– If r ≡ 2 [3] then 2n1 + 2n2 ≡ 5 [3] which means that n1 ≡ 0 [3] and n2 ≡ 2 [3]

or n1 ≡ 2 [3] and n2 ≡ 0 [3].

In the three cases cited above, s is an integer, with these parameters of C satis-
fying the Hamming bound.
�
Example 6. The [n, k, 3]2 code where k = 13797, n = 13812 and π = [9][6][3]4599

is perfect. In fact, r ≡ 0 [3] and n1 ≡ 0 [3] and n2 ≡ 0 [3].

The question that arises now is the existence of code of type π = [n1][n2][3]s

(n1 ≥ n2 ≥ 3) and with dπ = 3. Using Algorithm 1, and by computation we
have been unable to generate the parity check matrices of some codes like:

– The [n, k, 3]2 code where k = 13797, n = 13812 and π = [9][6][3]4599.
– The [1146, 1134, 3]2 code of type π = [6][6][3]567.

Based on computation results we conjecture the following:

Conjecture 2. There exist no [n, k, dπ]2 perfect code of type π = [n1][n2][3]s

(where s and r and n1 verify the conditions of Lemma 2).

Perfect Linear Error-Block 299

4 Hamming LEB Codes

In this section, we introduce Hamming codes for the error-block case, and we
give some related results.

Lemma 3. Let m and r be two integers where m ≥ 1, and r ≥ 2m. Set s =
qr−1
qm−1 . Then, s is an integer if and only if r = λm where λ ≥ 1.

Proof. – If s is an integer, then qr − 1 ≡ 0 [qm − 1], write r = λm + α where
0 ≤ α < m. Since, qm ≡ 1 [qm − 1]. Then, (qm)λ ≡ 1 [qm − 1], and qλm+α ≡
qα [qm − 1]. Therefore qr − 1 ≡ qα − 1 [qm − 1]. Thus α = 0 which means
r = λm.

– Conversely, if r = λm, then qr ≡ 1 [qm − 1]. i. e. qr − 1 ≡ 0 [qm − 1]. So s is
an integer.

�
Definition 5. Let Fq be the finite field of q elements, and m and λ be integers
where m ≥ 1 and λ ≥ 1. A Hamming LEB code denoted by π-Ham(r,q) over Fq

of length n = m qr−1
qm−1 where r = λm ≥ 2 is the code whose parity check matrix

H is an r×n matrix for which the union of columns of any two blocks is linearly
independent.

Remark 1. In a parity check-matrix of a π − Ham(r, q) code there exists

– no null column.
– no column which is a multiple of an other one.

Remark 2. Let m be an integer ≥ 1.
A classical Hamming code Ham(r, q) over Fq of length n = qr−1

q−1 is a π −
Ham(r, q) code of type π = [1]s where s = n and m = 1.

Theorem 7. Let m be an integer ≥ 1. The π-Ham(r,q) Hamming codes are
perfect LEB codes over Fq with parameters [n = m qr−1

qm−1 , k = m qr−1
qm−1 −r, dπ = 3].

Proof. Let C be a π − Hamm(r, q) code where s = qr−1
qm−1 ∈ N, and let H be a

parity check matrix of C. Therefore n = m qr−1
qm−1 is the length of C.

Since r is the number of rows of H, then by Definition 3, r = n − k = λm.
Thus

dimFq
(C) = k = n − r = m

qr − 1
qm − 1

− r.

By Definition 5 and Proposition 1, the union of columns of any two blocks in H
is linearly independent, then dπ = 3. Since r = n − k = λm, and n = sm.

We have
1 +

∑s
i=1(q

ni − 1) = 1 +
∑s

i=1(q
m − 1)

= 1 + s(qm − 1)
= 1 + qr−1

qm−1 (qm − 1)
= 1 + qr − 1
= qr.

Therefore, the Hamming bound (7) is satisfied and then C is perfect.
�

300 S. Belabssir et al.

Example 7. The binary LEB code C of length n = 10, dimension k = 6, and
type π = [2]5 and whose parity check matrix is

H =

⎛

⎜
⎜
⎝

1 0 0 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0

⎞

⎟
⎟
⎠

is a [2]5 − Ham(4, 2) code, and it is perfect because 24 = 1 + 5(22 − 1).

Definition 6. Let v = (v1, . . . , vl) be a vector in F
l
q. A block extension of v is

an l × l matrix M defined as follows

– The columns of M are linearly independent.
– The sum of all columns of M is equal to vT (transpose of v).

Example 8. A possible block extension of the vector v = (0, 1, 1) ∈ F
3
2 is the

matrix ⎛

⎝
0 1 1
1 0 0
0 1 0

⎞

⎠

Remark 3. If M and M ′ are two blocks extensions of two different vectors v and
v′ in F

m
q , then, the columns of the matrix

(
M M ′

Im Im

)

are linearly independent where Im is the matrix identity of size m.

Theorem 8. Let m be an integer ≥ 1 and π = [m]s where s = qr−1
qm−1 ≥ 2.

Consider a π − Ham(r, q) code C over the field Fq of type π, r = λm and
λ ≥ 2. The matrix Hλ defined recursively as follows:

H2 =
(

Im E1 Eqm−1 0m

0m−1 Im Im Im

)

(14)

and for λ ≥ 3

Hλ =
(

Im A1 Aqm−1 A0

0m(λ−1) Hλ−1 Hλ−1 Hλ−1

)

(15)

where

– E1, . . . , Eqm−1 are the extensions of non-zero vectors in F
m
q .

– For all 1 ≤ i ≤ qm − 1, Ai = (Ei, . . . , Ei︸ ︷︷ ︸
sλ−1 time

) where sλ−1 = q(λ−1)m−1
qm−1 .

– A0 = (0m, . . . , 0m︸ ︷︷ ︸
sλ−1 time

) where 0m is the m × m null matrix.

is a parity check matrix of C.

Perfect Linear Error-Block 301

Proof. Considering

H2 =
(

Im E1 Eqm−1 0m

0m Im Im Im

)

and for λ ≥ 3, define inductively Hλ by:

Hλ =
(

Im A1 Aqm−1 A0

0m(λ−1) Hλ−1 Hλ−1 Hλ−1

)

As a matrix generating a LEB code Sλ.
We state that Sλ is the dual code of a π − Ham(r, q) code of type π = [m]sλ

where sλ = qmλ−1
qm−1 and λ ≥ 2.

To prove that Hλ generates the (π − Ham(r, q))⊥, we will prove that Hλ

has r rows, sλ = qλm−1
qm−1 blocks, and the union of columns of any two blocks are

linearly independent.

– Clearly, Hλ has m more rows than Hλ−1, and H2 has 2m rows, then Hλ has
r = mλ rows.

– It is clear that

s2 = 1 + qm =
q2m − 1
qm − 1

.

We assume that sλ−1 = q(λ−1)m−1
qm−1 . By definition of Hλ we deduce

sλ = qm.sλ−1 + 1

= qm.
q(λ−1)m − 1

qm − 1
+ 1

=
qλm − qm + qm − 1

qm − 1

=
qλm − 1
qm − 1

– The columns of any block of H2 are pairwise distinct, and the columns of
any two blocks of H2 are linearly independent. Clearly by construction, the
columns of any block of Hλ are pairwise distinct, and the columns of any two
blocks of Hλ are linearly independent if the columns of any block of Hλ−1

are pairwise distinct, and the columns of any two blocks of Hλ−1 are linearly
independent. Then by induction, Hλ generates the dual Sλ of a π−Ham(r, q)
code of type π = [m]sλ where sλ = qλm−1

qm−1 and λ ≥ 2. Thus, Hλ is a parity

check matrix of a π − Ham(r, q) code of type π = [m]sλ where sλ = qλm−1
qm−1 .

�

302 S. Belabssir et al.

Example 9. The dual of the π − Ham(6, 2) code of type π = [3]9 is generated
by the matrix G defined by

G =
(
G1 G2

)

where,

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 1 0 0 0 0 1 1 0 1
0 1 0 0 1 0 1 0 1 1 1 1
0 0 1 0 0 1 0 1 0 0 1 1
0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 1 1 0 0 1 1 1 1 1 0 0 0
0 1 1 0 0 1 1 1 0 1 0 0 0 0 0
1 0 1 1 0 0 1 1 1 1 1 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

Theorem 9. Perfect codes of type π = [m]s(m ≥ 1, s ≥ 2) and with minimum
π-distance dπ = 3 over Fq are π-Hamming codes.

Proof. Let m be an integer ≥ 1. Let C be an [n, k, 3]q perfect code of type
π = [m]s where s ≥ 1 over Fq. Set r = n − k. Then by Definition 4, C satisfies
the equation

qr = 1 + s(qm − 1). (16)

Hence,

s =
qr − 1
qm − 1

.

Since s is an integer, then by Lemme 3, r = mλ where λ is an integer ≥ 1. Thus

n = ms = m
qr − 1
qm − 1

,

and
k = n − r = m

qr − 1
qm − 1

− r.

Since dπ = 3 then the union of columns of any two blocks of H the parity
check matrix of C is linearly independent.

Finally, C is a π − Ham(r, q) code of type π = [m]s where s = qr−1
qm−1 and

r = n − k.
�
Corollary 1. Perfect codes of types [n1] . . . [nt][2]s (where t ≥ 1), and [n1]
[nt][3]s (where t = 1 or t = 2) and with minimum π-distance dπ = 3 over
Fq are π-Hamming codes if [ni] = [nj] where 1 ≤ i ≤ t and j = 1, 2.

Proof. This is yielded by direct analogy to the proof of Theorem 9.
�

Perfect Linear Error-Block 303

5 Simplex LEB Codes

Definition 7. A code is said to be simplex if all its non-zero codewords have
the same weight.

Example 10. The binary LEB code C of length n = 10, dimension k = 6, and
type π = [2]5; and whose generator matrix:

G =

⎛

⎜
⎜
⎝

1 0 0 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 0 1
0 0 0 1 0 1 0 1 0 1
0 0 1 0 1 0 1 0 1 0

⎞

⎟
⎟
⎠

is simplex. In fact, all non-zero codewords of C have only one nul block. Then,
the π-weight of any codeword of C is 4.

Theorem 10. Let π-ham(r,q) be a Hamming code of type π = [m]s. The dual
code (π-Ham(r,q))⊥ is a Simplex code and the common π-weight of its non-zero
codewords is wλ = 2r−m = 2(λ−1)m where λ = r

m is an integer ≥ 1.

Proof. Let C ′ be a dual code of a π − Ham(r, q) code C of type π = [m]s. Then
by Theorem 8, C ′ is generated by Hλ, where

H2 =
(

Im E1 Eqm−1 0m

0m Im Im Im

)

For λ ≥ 3

Hλ =
(

Im A1 Aqm−1 A0

0m(λ−1) Hλ−1 Hλ−1 Hλ−1

)

– Set sλ and wλ where r = n − k = mλ and t ≥ 2 respectively the number of
blocks of Hλ and the weight of a codeword c in Sλ.

– The non-zero codewords generated by H2, have the weight w2 = s2 − 1 =
q2m−1
qm−1 − 1 = qm − 1 + 1 = q(2−1)m. In fact, they have one of the following
forms: c = (e | a1 | a2 | . . . | aqm | 0) or c = (0 | e1 | e2 | . . . | eqm) where for
all i = 1, . . . , qm, ai is a codeword generated by Hλ−1, ei is in F

m
q and e is

an element of the canonic basis of Fm
q .

– We assume that the non-zero codewords generated by Hλ−1 have the weight
wλ−1 = qr−2m = qr(λ−2).

– Then, the non-zero codewords of the sub-code generated by the last (r − m)
rows of Hλ have the form c = (0 | a1 | a2 | . . . | aqm) where for all i =
1, . . . , qm, ai is a codeword generated by Hλ−1. Therefore,

wλ = qm.wλ−1 = qm(qr−2m) = qr−m.

304 S. Belabssir et al.

– The remaining non-zero codewords generated by Hλ−1 have the form c = (e |
a1 | a2 | . . . | aqm−1, 0 . . . 0︸ ︷︷ ︸

sλ−1time

)where for all i = 1, . . . , qm, ai �= 0 and e is an

element of the canonic basis of Fm
q . These codewords have the weight

wλ = sλ − sλ−1

=
qmλ − 1
qm − 1

− qm(λ−1) − 1
qm − 1

=
qmλ − qm(λ−1)

qm − 1

= qm(λ−1)(
qm − 1
qm − 1

)

= qm(λ−1) = qr−m

– Thus by induction, all the non-zero codewords of C ′ have the weight

wλ = qr−m = q(λ−1)m.

�
Example 11. The non-zero codewords of the simplex code C ′ of type π = [4]17

generated by the matrix

G = (G1 | G2)

where,

G1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 1

0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 1 0

0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 0 1 0 1 0 1 1 1

0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

G2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 1 1 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 0 1 1 1 0
1 1 1 0 1 0 1 0 0 0 0 1 0 1 0 1 1 1 0 1 1 0 0 1
0 1 0 0 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0
1 1 0 0 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 1 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

have all the weight 28−4 = 16

Perfect Linear Error-Block 305

6 Conclusion and Perspectives

In this work, we aimed to construct perfect binary linear error-block codes with
dπ = 3 and types π = [n1] . . . [nt][2]s where n1 ≥ . . . ≥ nt ≥ 2 and t ≥ 1 and
s ≥ 1 and π = [n1][nt][3]s where n1 ≥ nt ≥ 3, t = 1 or 2 and s ≥ 1 and to define
Hamming and Simplex codes.

Firstly, we showed the conditions for a binary LEB code with π-distance
three and type π = [n1] . . . [nt][2]s where n1 ≥ . . . ≥ nt ≥ 2 and t ≥ 1 and s ≥ 1
(and respectively π = [n1][3]s and π = [n1][n2][3]s) to reaches this bound.

Secondly, we have given conditions of existence of perfect binary LEB codes,
then we have shown that there exists an infinite family of codes of type π =
[n1] . . . [nt][2]s where n1 ≥ . . . ≥ nt ≥ 2, t ≥ 1 and s ≥ 1.

Thirdly, we have constructed large families of Hamming codes of types π =
[m]

qr−1
qm−1 using their parity check matrix. We have showed that LEB Hamming

codes are perfect and have given conditions to the constructed perfect codes to
be Hamming codes.

Finally, we have given conditions of existence of simplex codes. Ten we have
showed that the dual of a Hamming code of type π = [m]

qr−1
qm−1 is a Simplex LEB

code.
We list hereafter some open interesting problems from our point of view.

– Provide a complete classification of perfect LEB codes.
– Show that we can construct an infinite family of perfect binary [n + 2p.s, k +

2p.s, 3] (with p any) codes of type π = [n1] . . . [nt][2p]s where n1 ≥ . . . ≥ nt ≥
2p and t ≥ 1 and s ≥ 1, with specification of necessary conditions to these
codes.

– Construct binary perfect LEB codes with π-distance 4 and 5.
– Determine some particular bounds for LEB codes like the Griesmer bound

and a decoding algorithm for Hamming codes.

References

1. Feng, K., Xu, L., Hickernell, F.J.: Linear error-block codes. Finite Fields Appl. 12,
638–652 (2006)

2. Dariti, R., Souidi, E.M.: New families of perfect linear error-block codes. Int. J. Inf.
Coding Theory 2(2/3), 84–95 (2013)

3. Dariti, R., Souidi, E.M.: An application of linear error-block codes in steganography.
Int. J. Digit. Inf. Wirel. Commun. 1, 426–433 (2012)

4. Dariti, R., Souidi, E.M.: Cyclicity and decoding of linear error-block codes. J. The-
orecal Appl. Inf. Technol. 25, 39–42 (2011)

5. Dariti, R., Souidi, E.M.: Packing and covering radii of linear error-block codes. Int.
J. Math. Sci. 7, 13–17 (2013)

6. Udomkavanich, P., Jitman, S.: Bounds and modifications on linear error-block codes.
Int. Math. Forum 5, 35–50 (2010)

7. Dariti, R.: Linear error-block codes and applications. Thèse de Doctorat, Université
Mohammed V-Agdal, Faculté des Sciences (2012)

306 S. Belabssir et al.

8. Tietäväinen, A.: On the nonexistence of perfect codes over finite fields. SIAM J.
Appl. Math. 24(1), 88–96 (1973)

9. Zinovev, V.A., Leontev, V.K.: Nonexistence of perfect codes over Galois fields. Probl.
Control. Inf. Theory 2(2), 123–132 (1973)

Quasi-Dyadic Girault Identification
Scheme

Brice Odilon Boidje(B), Cheikh Thiecoumba Gueye, Gilbert Ndollane Dione,
and Jean Belo Klamti

Faculté des Sciences et Techniques, DMI, LACGAA, Université Cheikh Anta Diop,
Dakar, Senegal

{briceodilon.boidje,cheikht.gueye,gilbertndollane.dione,
jeanbelo.klamti}@ucad.edu.sn

Abstract. Zero-knowledge identification schemes allow a prover to con-
vince a verifier that a certain fact is true, while not revealing any addi-
tional information.

In this paper, we propose a scheme whose security relies on the hard-
ness of the Quasi-Dyadic Subcode Equivalence and the Quasi-dyadic syn-
drome decoding problems. Our code-based scheme is an improvement of
the code-based identification scheme devised by Girault. Our construc-
tion uses quasi-dyadic subcode with a cheating probability of 1/2. Using
quasi-dyadic subcode allows to reduce matrix size and also the commu-
nication cost by sending lower data.

Keywords: Code-based cryptography · Identification scheme ·
Syndrome decoding problem · Zero-knowledge · Quasi-dyadic subcode

1 Introduction

An identification scheme can be obtained by using a zero-knowledge interactive
protocol, in which a party called prover tries to prove its identity without reveal-
ing anything secret to another party called verifier. In zero-knowledge schemes,
no secret information belonging to the prover should be revealed from the pro-
tocol, except for the fact that the prover knows the secret. The main hardness
assumptions for our identification scheme are the syndrome decoding problem
for quasi-dyadic code and the quasi-dyadic subcode equivalence (QD-ES).

Our Contribution: In this paper, we propose an improvement of the Girault
Identification Scheme by using code with compact matrices. In our proposal,
we use particularly quasi-dyadic subcodes to decrease the communication cost
in each round. Indeed, instead of sending the whole matrix, we just send some
rows consisting of its signatures. We end with a discussion on the security param-
eters of our protocol and we compare its performances with previous Girault
identification protocols variants one.

Organization of the Paper: In Sect. 2 we introduce some background concepts
that we will use for the construction of our identification scheme. In Sect. 3, we
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 307–321, 2019.
https://doi.org/10.1007/978-3-030-16458-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_18

308 B. O. Boidje et al.

discuss the problems on whose our scheme is based. In Sect. 4, we describe the
original code-based identification scheme proposed by Girault. We present our
improved identification scheme in Sect. 5. We follow up in Sect. 6, where we prove
completeness, zero-knowledge and soundness of our scheme. Then, in Sect. 7, we
analyze the performance of our proposal. Finally, we conclude in Sect. 8.

2 Background

2.1 Notation

IFq denotes the finite field with q elements, wH() denotes the Hamming weight.
By QD-ES, we denote Quasi-Dyadic Equivalence Subcode.

2.2 Coding Theory

Definition 1. A [n, k]-linear code on IFq is a subspace of IFn
q of dimension k.

A codeword is an element of the code.

Definition 2. The Hamming weight wH(y) of a word y ∈ IFn
q is the number of

non-zero coordinates of y.

Definition 3. The generator matrix G of a [n, k]-linear code C is a k×n matrix
such that:

C = {mG : m ∈ IFk
q}

Definition 4. The parity check matrix H of a [n, k]-linear code C is a r × n
matrix with r = n − k such that:

C = {c ∈ IFn
q : HcT = 0}

Proposition 1. Let C be a (n, k)-linear code over IFq of minimal distance d.
Then each subcode (vector subspace of dimension k′ ≤ k) C′ of C, verifies:

d′ ≥ d

where d′ is the minimal distance of C′.

Proposition 2. Let C a (n, k)-linear code over IFq of minimal distance d and
with generator matrice G. We can construct an arbitrary subcode C′ with dimen-
sion k′ ≤ k of C as following:
by choosing arbitrary a k′ × k matrix S of rank k′ then the generator matrix G′

of the subcode C′ is given by:
G′ = SG

Let n = 2r be an integer with r ∈ IN. We have the following definitions:

Quasi-Dyadic Girault Identification Scheme 309

Definition 5. The m-dyadic shift, m = 0, 1, · · · , n − 1, of a vector (a0, a1, · · · ,
an−1) is the vector: (a0⊕m, a1⊕m, · · · , a(n−1)⊕m), where the operation ⊕ is the
bitwise XOR.

Definition 6. A linear code of length n = 2r over a finite field IFq is a dyadic
code if the m-dyadic shift on each codeword is a codeword ∀m ∈ {0, · · · , n − 1}.

Definition 7. Given a ring R and a vector h = (h0, · · · , hn−1) ∈ Rn, the dyadic
matrix Δ(h) ∈ Rn×n is the symmetric matrix with components Δij = hi⊕j. The
sequence h is called its signature.

Definition 8. A quasi-dyadic matrix is a (possibly non-dyadic) block matrix
whose component blocks are dyadic sub-matrices.

Definition 9. A dyadic permutation matrix is a dyadic matrix whose signature
admits a single non-zero element and equal to 1.
Therefore, a quasi-dyadic permutation matrix is a square binary block matrix
that has exactly one entry of identity matrix in each row quasi-dyadic block and
each row quasi-dyadic block quasi-dyadic block and null matrix elsewhere.
thus

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
1 0
0 1

][
0 0
0 0

][
0 0
0 0

][
0 0
0 0

]

[
0 0
0 0

][
0 0
0 0

][
1 0
0 1

][
0 0
0 0

]

[
0 0
0 0

][
0 0
0 0

][
0 0
0 0

][
1 0
0 1

]

[
0 0
0 0

][
1 0
0 1

][
0 0
0 0

][
0 0
0 0

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a quasi-dyadic permutation matrix.

Definition 10. A quasi-dyadic code is a linear error-correcting code that admits
a quasi-dyadic parity-check matrix. A quasi-dyadic code of length n = �n0 is
defined by its index n0 ∈ IN∗ and its order � = 2s, with s ≥ 2. n0 is the number
of dyadic blocks and � the size of each dyadic block.

The parameters of quasi dyadic codes are: its length n = �n0 with � = 2s ∈
IN∗, s ∈ IN and its dimension k = (n0 − m0)� with m0 ∈ IN∗ and � > m

2.3 NP-Complete Problem

Definitions

Definition 11. NP-class
The NP-class is the set of all problems that can be solved by Non deterministic
Polynomial time algorithms.

310 B. O. Boidje et al.

Definition 12. NP-problem
A problem in the NP-class is called a NP-problem.
To show that a problem is in the NP-class, it is sufficient to find an algorithm
which verifies if a given solution is valid in polynomial time.

Definition 13. NP-complete
An NP-problem is said to be NP-complete if the existence of a polynomial time
solution for that problem implies that all NP-problems have a polynomial time
solution.
A problem is called NP-complete problem if all problem of the NP-class is poly-
nomially reducible to it.

Polynomial Reduction
To prove that a problem A is NP-complete, we must do a polynomial reduction
of the problem A to an NP-complete problem B. For that it is necessary:

– To assume an algorithm γ is able to solve any instance of A
– To start from an instance U of B
– To convert this instance U to an instance V of A
– To solve A with input V using γ to obtain a solution S
– To convert this solution S to a solution T of B
– The conversions (transformations) must be done in polynomial time.

Therefore if one day, it exists a polynomial time algorithm to solve A it
implies the existence of an algorithm (polynomial) to solve B. That proves that
A is NP-complete.

NP-Complete Problems in Coding Theory

Definition 14 (Syndrome decoding (SD)).
Let (H,w, s) be a triple consisting of a matrix H ∈ IFr×n

q , an integer w < n, and
a vector s ∈ IFr

q.
Does there exist a vector e ∈ IFn

q of Hamming weight wH(e) ≤ w such that
HeT = sT?

Definition 15 (Equivalence Subcode (ES)).
Given two linear codes C and D of length n and respective dimension k′ and k,
k′ ≥ k, over the same finite field IFq, is there a permutation σ of the support
such σ(C) be a subcode of D?

3 Quasi-Dyadic Equivalence Subcode (QD-ES)

In this section, we will state the problems on which the security of our schema
is based.

Quasi-Dyadic Girault Identification Scheme 311

3.1 Statement of Problems

Problem 1 Quasi-Dyadic Syndrome Decoding (QD-SD).

Input: Let IFq be a finite field, and let (H,w, S) be a triple consisting of a quasi-
dyadic matrix H ∈ [Δ(IF�

q)]
r0×n0 , an integer w < �n0, and a vector S ∈ IF�r0

q .
Question: Does there exist a vector e ∈ IF�n0

q of Hamming weight wH(e) ≤ w

such that HeT = ST ?

Problem 2 Quasi-Dyadic Equivalence Subcode (QD-ES).

Input: Let C and D are two random quasi-dyadic linear codes of length n = �n0

and respective dimension k′ = (n0 −r′
0)� and k = (n0 −r0)�, over the same finite

field IFq.
Question: Does it exist a dyadic permutation σ such σ(C) be a subcode quasi-
dyadic of D?

3.2 Some Remarks About These Problems

It is important to emphasize that Problem 1 was demonstrated NP-complete by
Barreto in [16]. He did a reduction of the SD problem on random codes to the
QD-SD problem. Barreto, in his proof, fixes a quasi-dyadic order �, and shows
that the problem SD is NP-complete for � fixed (and n tending towards infinity).
The proof consists of concatenating � occurrences of random code, reordering the
coefficients so as to make the code quasi-dyadic.

The approach used consists of constructing from a r0×n0 parity check matrix
H of a random code C, another �r0 × �n0 parity check matrix H ′ of a quasi-
dyadic random code by replacing each entrie 1 by the identity matrix of size �×�
and each entrie 0 by null matrix of the same size.

The same approach can be used to show the NP-completeness of Problem 2.
We did it in AppendixA. However, instead of setting the order l, if we fix the
index n0, then l increases linearly as a function of n, and the reduction proposed
by Baretto becomes exponential in n. To our knowledge, no fixed-index reduction
has been proposed to prove the NP-completeness of these problems. In the case
where we fix the index n0, we make the following security assumptions:

Assumption 1. The QD-SD Problem is NP-complete.

Assumption 2. The QD-ES problem is NP-complete.

4 The Girault Identification Protocol

In this subsection, after making the history of code-based identification protocols,
we briefly describe Girault’s three-pass identification protocol.

312 B. O. Boidje et al.

4.1 Overview of Code-Based Identification Protocols

Stern, in 1993, was the first one to propose a zero-knowledge identification
scheme based on the hardness of the syndrome decoding problem [12]. His scheme
has a soundness error of 2/3, where the soundness error is the probability that the
verifier accepts an incorrect input. In order to guarantee that an honest prover
is accepted, it is necessary to repeat the scheme a large number of times. In
1996, another code-based identification scheme was designed by Véron based on
the same hard problem [13]. Véron’s scheme improved Stern’s scheme by using
a “dual” construction. Moreover, the scheme has lower communication cost but
has larger key size.

In 2010 Cayrel, Véron and El Yousfi [6] devised a code-based identification
scheme, which is an improvement of Stern’s construction. They were able to
decrease the cheating probability of Véron’s scheme to nearly 1/2.

In 2011 Gaborit et al. [1] proposed a double circulant scheme which reduce
the matrix size and the communication cost.

In [8], Han et al. proposed an identification scheme related to Véron’s one and
based on the general decoding problem. The protocol uses quasi-dyadic matrix,
which consequently decrease the matrix size. The protocol decreases the cheating
probability to about 1

2 and it also has low communication cost by sending fewer
commitments.

Finally, in 2016, Gueye et al. presented a new version of the Girault identifica-
tion scheme [14]. Their protocol is based on the hardness of subcode equivalence
and the syndrome decoding problem.

4.2 Description of Girault Identification Protocol

Key Generation Algorithm. Let H be a parity check matrix (n − k) × n
common to all users. The prover chooses randomly, as his secret key, a vector
e ∈ IFn

q of weight w.
To get his public key, the prover computes s = HeT ; the public is pk = (H, s)

(Figs. 1 and 2).

KEYGEN:
e

$← IFn
q , wHt(e) = w

H parity check matrix (n − k) × n
s ← HeT

sk = e, pk = (H, s)

Fig. 1. Girault key generation scheme

Quasi-Dyadic Girault Identification Scheme 313

Identification Scheme

Prover P(sk, pk refiireV) V(pk)
(sk, pk) = (e, (H, s))

choose P permutation matrix n × n
S an invertible matrix (n − k) × (n − k)
H

′ ← SHP

s
′ ← SsT

H
′
, s

′

−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−− b ∈ {0, 1}

If b = 0
S, P−−−−−−−−−−−−−−→ check H

′ ?= SHP

s
′ ?= SsT

If b = 1 e
′
= P −1e−−−−−−−−−−−−−−→ check wHt(e

′
) ?= w

H
′
e

′T ?= s
′

Fig. 2. Girault identification scheme

5 Version Improved of the Girault Identification Scheme
Using Quasi-Dyadic Subcode

In this subsection we propose the improved Girault identification protocol using
quasi-Dyadic Subcode.

5.1 Key Generation Algorithm

We choose our parameters such that n = �n0; k = �k0, q = 2m, where m ≥
1, � = 2p, with p ≥ 1 and n0 ≥ 2k0.

Let be t = n0 − k0.
Let H ∈ IFr×n

q , r = n − k = �t, be a parity check matrix of a C[n, k] quasi-
dyadic code of order �. H is common to all users (in particular the prover P and
the verifier V).

Let be w an integer, the prover chooses randomly a vector e ∈ IFn
q of weight

at least equal to w as his secret key. His public key consists of pk = (H, s) where
s = HeT .

5.2 Improved Identification Scheme

In Fig. 4, the identification describes the interaction between prover and verifier.
In this protocol, the former tries to prove his identity to the latter (Fig. 3).

In the commitment phase, the prover commits to two values H
′
, s

′
. As the

matrix H
′

is quasi-dyadic, only t′ lines H
′
ip, i = 0 · · · t′ − 1, consisting of the

signatures, need to be sent instead of the whole matrix. Those commitments

314 B. O. Boidje et al.

are sent to the verifier. Upon reception of these values, the verifier makes a
challenge to the prover, picking a value uniformly at random from the set {0, 1}.
The prover responds by revealing some piece of information that allows the
verifier to compute and check the commitments. An honest prover will always
be able to respond to either challenge. Besides checking the correctness of the
commitments, the verifier must also check that the values disclosed by the prover
are well-formed, although in practice this would be solved by defining a suitable
encoding for the data.

KEYGEN:
e

$← IFn
q , wHt(e) ≤ w

H a quasi-dyadic parity check matrix of size r × n
s ← HeT

sk = e, pk = (H, s)

Fig. 3. Key generation algorithm improved girault scheme

Prover P(sk, pk refiireV) V(pk)
(sk, pk) = (e, (H, s, w))

choose randomly
Pσ : a n × n quasi-dyadic permutation matrix
an integer t′ < t for arbitrary �t′ × r
quasi-dyadic matrix S of rank lt′

H
′
= SHPσ and s

′
= SsT

H
′
i�, i = 0 · · · t′ − 1 and s

′

−−−−−−−−−−−−−−−−−−→
b←−−−−−−−−−−−−−−−−−− b ∈ {0, 1}

If b = 0
Si�, i = 0 · · · t′ − 1 and σ−−−−−−−−−−−−−−−−−−→ check H

′ ?= SHPσ

s
′ ?= SsT

If b = 1
e

′
= P −1

σ e−−−−−−−−−−−−−−−−−−→
check wHt(e

′
) ?= w

s
′ ?= H

′
e

′T

Fig. 4. Improved Girault identification scheme

6 Security

In this section, we give our proof for completeness, zero-knowledge and soundness
of the scheme.

Quasi-Dyadic Girault Identification Scheme 315

6.1 Completeness

We have to show that our protocol is complete, i.e. that the prouver will always
be “accepted” by the Verifier if the two partners correctly follow the protocol.
If b = 0, after receiving the values σ and Sil, i = 0 · · · t′ − 1 from the prover, the
verifier first reconstructs the matrices Pσ and S. Then, he can easily check that
H

′
= SHPσ and Ss = s

′

If b = 1, the prover sends e
′
= P−1

σ e, then the verifier is convinced of the equality
H

′
e

′
= s

′
and also that wH(e

′
) = w.

6.2 Soundness

We will show that a dishonest prover has a negligible probability of convincing
a verifier, by showing that a dishonest prover is able to cheat a verifier with a
probability of 1

2 .
Let’s assume that a dishonest prover wants to answer all the challenges where

b = 0. He just picks a quasi-dyadic permutation matrix Pσ and an invertible
quasi-dyadic matrix S and then computes H

′
= SHPσ and s

′
= SsT .

To answer to the challenge b = 1, the cheating prover chooses a vector ê ∈ IFn
q

such that wH(ê) = w.
Now, let’s assume that the cheating prover can prepare H

′
, s

′
so that he

can answer to both challenges b = 0 and b = 1. It means that he found Pσ, S
and ê

′
so that these equalities hold: H

′
= SHPσ; s

′
= SsT ; H

′
ê

′T = s
′

and
wH(ê

′
) = w.

This implies that SHPσ ê = SsT and wH(ê
′
) = w. Let be ẽ = Pσ ê

′
. Since S

is full rank matrix and Pσ is a permutation matrix, Hẽ = s and wH(ẽ) = w.
In other words, the cheating prover has found ẽ such that Hẽ = s with

wH(ẽ) = w. This means that the cheating prover has solved an instance of the
syndrome decoding problem, in other words our assumption according to which
QD-SDP is a NP-complete problem is violated.

6.3 Zero-Knowledge

No private information can be deduced in polynomial time from an execution of
the protocol except the knowledge of the public data, i.e the verifier can know
nothing else except what the prover reveals to him.

Just like in [14], the protocol leaks or not any information about the prover’s
secret key if and only if it’s computationally infeasible to deduce anything about
the permutation Pσ and the matrix S of rank �t′ from H

′
and s

′
. On the one

hand, one cannot retrieve the matrices Pσ and S from H
′

according to one of
the underlined problems (QD-ES).

On the other hand, the knowledge of one of the unknown matrices leads to
the knowledge of the other one. Then knowing S allows to obtain Pσ and then e
via the equality e

′
= P−1

σ eT . But retreiving S from s
′
= SsT consists of resolving

a linear system of �t′ equations and �2tt′ unknowns.

316 B. O. Boidje et al.

7 Performance Analysis of the Scheme

7.1 Parameters

The random permutation σ and the other random elements included in the pro-
tocol are usually generated from random seeds of size �σ. Instead of sending the
whole permutation σ, the prover can send just the seed after agreeing with the
verifier on the common algorithm to generate σ and the other random values [7].
Hence, for a security of 2100, only the 100 bits required for the seed are sent,
instead of the whole permutation σ.

The cheating probability is
1
2
. Then, to achieve a soundness error of 2−16,

the protocol has to be run 16 times.
According to the way we construct the quasi-dyadic permutation matrix,

there are n0! diffrent matrices. So, we choose n0 such that n0! ≈ 2100.
We use the following parameters: n0 = 29, � = 8, k0 = 4, m = 8, t′ = 21.
Hence, n = 232, k = 116; q = 256.

7.2 Communication Cost

At each round, we have:

– Commitments: t′ × n × m + (n − k) × m = m × n × (t′ + 1) − k × m bits
– Challenge: 1 bit
– Answers average: 1

2

[
t × (n − k) × m + �σ + n × m

]
= 1

2

[
n × m × (t′ + 1) +

�σ − t′ × k × m
]

bits

Ti: 3
2 × [n × m × (t′ + 1)] − k × m × (1 + t′

2) + �σ

2 + 1 bits
Let T be the whole communication cost of the protocol. Then we have:

T = Numberof rounds × Ti

The whole communication cost of our scheme is T = 98.88 kB.

– Girault’s scheme communication cost [14]:
t = m × (n − k) ×

[
3n
2 − k

2 + 1
]
+ �σ

2 + m×n
2 + 1

– Sendrier et al. scheme communication cost [11]:
t = m × (n − k) ×

[
3n
2 − k

2 + 1
]
+ �σ

2 + m×n
2 + 1

– Gueye et al. scheme communication cost [3]:
t = m × (n − k − �) ×

[
3n
2 − k

2 + 1
]
+ �σ

2 + m×n
2 + 1

In the binary case: q = 2, with the same parameters we have (Tables 1 and 2):

Quasi-Dyadic Girault Identification Scheme 317

Table 1. Communication cost with parameters: n = 232, k = 116, q = 256 (non
binary case)

Scheme Rounds Total communication cost (Kb)

Girault [14] 16 529.35

Sendrier [11] 16 529.35

Gueye et al. [3] 16 483.88

Ours 16 98.88

Table 2. Communication cost with parameters: n = 232, k = 116, q = 2 (binary
case)

Scheme Rounds Total communication cost (Kb)

Girault [14] 16 66.25

Gueye et al. [3] 16 60.57

Ours 16 12.45

7.3 Performance

As an improvement of Girault’s identification protocol, our scheme is also a
three-pass identification protocol.

The security of our scheme is guaranteed on one hand by the QD-SD problem,
and on the other hand by the QD-ES problem. So breaking our scheme would
lead to either finding a solution for QD-SD or to finding a solution for QD-ES.
Compared to [11,14] and [3], our scheme has lower communication cost and
public key size. The most important improvement is in the commitment and the
response phases when the challenge is equal to 1. Actually, the prover commits to
two values H

′
, s

′
and must send S when the challenge is equal 1. As the matrices

H
′

and S are quasi-dyadic, only 2t lines H
′
i�, S

′
i�, i = 0 · · · t′ − 1, consisting of

the signatures of H
′
and S, need to be sent instead of the whole two matrices.

8 Conclusion

In this paper, we presented an identification scheme whose security is based on
the assumption that the QD-SD and QD-ES problems are NP-complete. This
scheme is an improvement of the code-based identification scheme of Girault [14].
Our construction is based of the quasi-dyadic subcode, which permits to reduce
the size of the public key and the communication cost as well by sending fewer
data. In the future, it will be interesting to study a constructive polynomial
reduction of QD-SD problem and QD-ES problem to a NP-complete one while
fixing the quasi-dyadicity index to prove their NP-complexity.

Acknowledgments. This work is supported by CEA-MITIC/Project CBC and the
government of Senegal’s Ministry of Higher Education and Research for ISPQ project.

318 B. O. Boidje et al.

A Proof of the NP-Completeness of the QD-ES Problem
when We Fix the Order

A.1 Definitions

Four Dimensional Matching Problem (FDMP)

Definition 16.

Input: a subset U ⊆ T × T × T × T where T is a finite set.
Question: Does it exist a set W ⊆ U such that |W | = |T | and every two
vectors of W have different i-th coordinate, i ∈ {1, 2, 3, 4}?

The Kronecker Product
Let A be a k × � matrix, and B be a m × n matrix.

Definition 17. The Kronecker product of A and B (denoted (A ⊗ B) is the
km × �n matrix:

A ⊗ B =

⎛
⎜⎜⎜⎝

a11B a12B · · · a1lB
a21B a22B · · · a2lB

...
...

. . .
...

ak1B ak2B · aklB

⎞
⎟⎟⎟⎠

Note that the Kronecker product of two matrices is another matrix, usually a
much larger one.

A.2 Relation Between ES Problem and FDMP

Through the following illustration, we show the relation between the ES problem
and the FDMP.

Let T = {1, 2, 3, 4} and U = {U1, U2, U3, U4, U5, U6} with U1 = (1, 2, 3, 4);
U2 = (4, 1, 3, 2); U3 = (2, 1, 4, 3); U4 = (3, 4, 1, 2); U5 = (4, 3, 2, 1);
U6 = (4, 4, 3, 4).

A solution for the FDMP is the set W consisting of the elements U1, U3, U4

et U5.
We apply differents transformations T to U in order to obtain an |U | × 4|T |

matrix M :

– For each x = (x1, x2, x3, x4) ∈ U , we give the vector l(x) = (y1, · · · , y4n) such
that yi = 0 for all i except yx1 = yn+x2 = y2n+x3 = y3n+x4 = 1.
For our example, we obtain:

l((1, 2, 3, 4)) = (1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0)
l((4, 1, 3, 2)) = (0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0)
l((2, 1, 4, 3)) = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0)
l((3, 4, 1, 2)) = (0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0)
l((4, 3, 2, 1)) = (0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0)
l((4, 4, 3, 4)) = (0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1)

Quasi-Dyadic Girault Identification Scheme 319

– We construct the matrix M of size |U | × 4|T | by keeping the vectors l(x) of
the ordered elements of U as following:

M =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

With this new representation of U , a valid FDMP solution corresponds to the
existence of |T | rows of M forming a matrix

Msol =

⎛
⎜⎜⎝

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 0
0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0

⎞
⎟⎟⎠

Since Msol contains only one 1 on each of its columns, it is equivalent by per-
mutation to a matrix of the form (I4|I4|I4|I4).

Now, let consider D and C, linear codes over Fq of respective generator matri-
ces GD and GC defined by:

GD = (I6|I6|I6|I6|M)

GC = (I4|04×2|I4|04×2|I4|04×2|I4|04×2|I4|04×2|I4|I4|I4|I4)
where 04×2 is the 4 × 2 null matrix and I4 the 4 × 4 identity matrix.

So, for the same reasons as before, finding a valid FDMP solution is such as to
determine a permutation σ such as σ(GC) is a subcode of GD. This corresponds
to the ES problem.

A.3 Proof

We make a reduction of FDMP to QD-ES.

– Let us assume an algorithm γ is able to solve any instance of the QD-ES
Problem.

– Let U ⊂ T × T × T × T with T , a finite set of cardinality n. (n,U) is the
inputs of FDMP.

– Let U be a set such that:

U = {u1, u2, · · · , ur} with r = |U |.

we apply the transformations T , view in the previous section, to U and obtain
an |U | × 4|T | matrix M . Let G be a r × 4r + 4n matrix defined as follows:

G = (Ir|Ir|Ir|Ir|M)

320 B. O. Boidje et al.

From this matrix G we construct the quasi-dyadic matrix GD of size 2r ×
8r + 8n:

GD = G ⊗ I2

(where I2 the identity matrix of size 2 × 2)
Let D be the [8r + 8n, 2r] linear code over Fq generated by the matrix GD.
D is a quasi-dyadic code.

Lemma 1. The minimum distance of D is exactly 8. In addition, the minimum
codewords are exactly the rows of GD.

Proof. The rows of GD correspond to codewords of weight 8. Since all the rows
of M are distinct, it is the same with rows of M ⊗ I2. Then the weight of the
sum of two rows of GD is at least 10. Finally, the weight of the sum of t distinct
rows is at least 4t, which is greater than 12 for t ≥ 3.

– We transform a solution of the QD-ES into a solution of the FDMP.
Let GC be a 2n × 8r + 8n quasi-dyadic matrix defined by

GC = (In|0n×(r−n)|In|0n×(r−n)|In|0n×(r−n)|In|0n×(r−n)|In|In|In|In) ⊗ I2

A solution to QD-ES Problem, with GD and GC as inputs, is a quasi-dyadic
permutation σ such that σ(C) be a quasi-dyadic subcode of D.
The image of any rowgroups of GC by σ is rowgroups whose rows are code-
words of D of weight exactly 8. From Lemma 1, these elements are rows of
GD. Thus, we obtain n distinct row quasi-dyadic block of D. We choose the
first rows of each row quasi-dyadic block and we get n distinct rows with the
particularity that no two rows agree on any coordinate. This leads directly
to a matching W of U .

References

1. Aguilar, C., Gaborit, P., Schrek, J.: A new zero-knowledge code-based identifica-
tion scheme with reduced communication scheme. In: IEEE Information Theory
Workshop 2011, pp. 648–652 (2011)

2. Berger, T., Gueye, C.-T., Klamti, J.-B.: Generalized subspace subcodes with appli-
cation in cryptology

3. Berger, T.P., Gueye, C.T., Klamti, J.B.: A NP-complete problem in coding theory
with application to code based cryptography. In: El Hajji, S., Nitaj, A., Souidi,
E.M. (eds.) C2SI 2017. LNCS, vol. 10194, pp. 230–237. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-55589-8 15

4. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge iden-
tification with lattices. Tatra Mountains Math. Publ. 53(1), 33–63 (2012)

5. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring
signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010.
LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14712-8 16

https://doi.org/10.1007/978-3-319-55589-8_15
https://doi.org/10.1007/978-3-642-14712-8_16
https://doi.org/10.1007/978-3-642-14712-8_16

Quasi-Dyadic Girault Identification Scheme 321

6. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification
scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 12

7. Dambra, A., Gaborit, P., Roussellet, M., Schrek, J., Tafforeau, N.: Improved secure
implementation of code-based signature schemes on embedded devices’. In: IACR
Cryptology ePrint Archive, p. 163 (2014)

8. Han, M., Feng, X., Ma, S.: An improved zero-knowledge identification scheme based
on quasi-dyadic codes. Int. J. Secur. Appl. 10(10), 181–190 (2016)

9. Cayrel, P.-L., Diagne, M.K., Gueye, C.T.: NP-completeness of the Goppa param-
eterised random binary quasi-dyadic syndrome decoding problem. IJICoT 4(4),
276–288 (2017)

10. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks.
In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78440-1 10

11. Sendrier, N., Simos, D.E.: The hardness of code equivalence over Fq and its appli-
cation to code-based cryptography. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS,
vol. 7932, pp. 203–216. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38616-9 14

12. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48329-2 2

13. Véron, P.: Improved identification schemes based on error-correcting codes. Appl.
Algebra Eng. Commun. Comput. 8(1), 5769 (1996)

14. Girault, M.: A (non-practical) three-pass identification protocol using coding the-
ory. In: Seberry, J., Pieprzyk, J. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp.
265–272. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0030367

15. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of the
McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol.
5580, pp. 77–97. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
02384-2 6

16. Misoczki, R., Barreto, P.S.L.M.: Compact McEliece keys from Goppa codes. In:
Jacobson, M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp.
376–392. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05445-
7 24

https://doi.org/10.1007/978-3-642-19574-7_12
https://doi.org/10.1007/978-3-540-78440-1_10
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/978-3-642-38616-9_14
https://doi.org/10.1007/3-540-48329-2_2
https://doi.org/10.1007/BFb0030367
https://doi.org/10.1007/978-3-642-02384-2_6
https://doi.org/10.1007/978-3-642-02384-2_6
https://doi.org/10.1007/978-3-642-05445-7_24
https://doi.org/10.1007/978-3-642-05445-7_24

Homomorphic Encryption

Securely Aggregating Testimonies
with Threshold Multi-key FHE

Gerald Gavin(B) and Stephane Bonnevay

Laboratory ERIC, University of Lyon, Lyon, France
{gerald.gavin,stephane.bonnevay}@univ-lyon1.fr

Abstract. Many data management applications, such as setting up Web
portals, managing enterprise data, managing community data, and shar-
ing scientific data, require integrating data from multiple sources. Each
of these sources provides a set of values and different sources can often
provide conflicting values. To discover the true values, data integration
systems should resolve conflicts. In this paper, we present a formal prob-
abilistic framework in the expert/authority setting. Each expert has a
partial and maybe imperfect view of a binary target vector b that an
authority wishes recovering. The goal of this paper consists of proposing
a multi-party aggregating function of experts’ views to recover b with an
error rate as small as possible. In addition, it is assumed that some of the
experts are corrupted by an adversary A. This adversary controls and
coordinates the behavior of the corrupted experts and can thus perturb
the aggregating process. In this paper, we present a simple aggregating
function and we provide a formal upper-bound over of the output vector
error expectation in the worst case, i.e. whatever the behavior of the
adversary is. We then propose to securely implement this aggregating
function in order to preserve the privacy of experts’ views. A natural
secure implementation could be achieved with recent powerful crypto-
graphic tools, i.e. Threshold Multi-key Fully Homomorphic Encryptions
schemes (TMFHE). Finally, trade-off between the time complexity and
the number of interaction rounds are proposed.

1 Introduction

Fusion of conflicting data, when for instance several experts have very different
ideas about the same phenomenon, has long been identified as a challenging
task in the data fusion community. The inherent imperfection of data is the
most fundamental challenging problem of data fusion systems, and thus the
bulk of research work has been focused on tackling this issue. In [DN09], the
authors distinguish two kinds of data conflict: (a) uncertainty about the attribute
value, caused by missing information; and (b) contradictions, caused by different
attribute values.

There are a number of mathematical theories [KKKR13] available to rep-
resent data imperfection [She91], such as probability theory [DWH08], fuzzy
set theory [Zad65], possibility theory [NZZ78], rough set theory [Paw92], and
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 325–348, 2019.
https://doi.org/10.1007/978-3-030-16458-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_19

326 G. Gavin and S. Bonnevay

Dempster-Shafer evidence theory (DSET) [Fin77]. Most of these approaches are
capable of representing specific aspect(s) of imperfect data. For example, a prob-
abilistic distribution expresses data uncertainty, fuzzy set theory can represent
vagueness of data, and evidential belief theory can represent uncertain as well
as ambiguous data.

In [DBES09], the authors present a novel approach that considers depen-
dence between data sources in truth discovery. Intuitively, if two data sources
provide a large number of common values and many of these values are rarely
provided by other sources (e.g., particular false values), it is very likely that
one copies from the other. They apply bayesian analysis to decide dependence
between sources and design an algorithm that iteratively detects dependence
and discovers truth from conflicting information. They also extend their model
by considering accuracy of data sources and similarity between values.

In this paper, each source/expert has a partial and maybe imperfect view of a
target binary database b which can be seen as a binary vector. For concreteness,
each expert only knows a subset of components of b with maybe some errors.
In our model, the views of the experts are drawn according to a probability
distribution D. In addition, we consider the existence of an unique entity, called
an adversary, totally controlling a minority of sources/experts: in particular, it
knows each corrupted expert view but not the views of uncorrupted experts
(called honest experts). This adversary can be seen as an active noise generator.
This paper aims to build a way to aggregate expert views in order to recover b
whatever the behavior of the adversary is. As far as we know, it is the first time
that such an assumption is considered in data fusion. The novelty of our approach
makes difficult comparisons with other existing solutions. In our opinion, the
main interest of the paper is that the proposed solution is totally formalized
making clear the assumptions and the results.

We finally propose to securely implement this process in order to preserve
privacy of experts’ views. We propose a natural implementation with recent pow-
erful cryptographic tools, i.e. Threshold Multi-key Fully Homomorphic Encryp-
tions schemes (TMFHE) [LTV13,BHP17,MW15].

2 Problem Statement

Just to illustrate this problem from a police investigation perspective, let us
consider T witnesses which have partially seen a crime scene and have identified
a set N of n suspects. One of these witnesses is assumed to be the police. We
consider the vector b = (b1, ..., bn) ∈ {−1, 1}n by bi = 1 if and only if Suspect i is
guilty. Witness j knows (maybe erroneously) the culpability or non-culpability of
a subset Sj ⊂ N of the suspects, i.e., Witness j knows (bi)i∈Sj

. An adversary A
has corrupted some of the witnesses. The adversary A can change the testimony
of any corrupted witness. Those witnesses which have not been corrupted are
said to be honest. The challenge consists in elaborating a multi-party aggregating
function allowing the police to recover b (or something close).

Let us consider now an other example in the user/server setting. The server
wishes recovering a binary vector b = (b1, . . . , bn) ∈ {−1, 1}n. For instance,

Securely Aggregating Testimonies with Threshold Multi-key FHE 327

the server could be an online encyclopedia. In order to index its pages, some
questions could be asked to the users. For instance, does the ith page contains
pornographic pictures? Each user sends this information for a subset of pages.
One can imagine that some users are corrupted by an adversary A. How can the
server fight against any adversary A to recover the truth about its pages?

Typically, an authority wishes recovering a binary vector b partially and
imperfectly known by a set J of T experts. The knowledge of the jth expert can
be represented by a vector εj ∈ {−1, 0, 1}n where εji = 0 means that Expert
j does not know bi. Moreover, if biεji < 0 means that bi is erroneously known
by Expert j. In this paper, we assume that ε = (ε1, . . . , εT) is randomly drawn
according to a probability distribution D. Each expert j sends its vector εj to
the authority. The objective of the authority is to recover b from the values εji.
At this step, the problem is trivial for some probability distributions D. Indeed,
if the experts do not input too many incorrect values εji (i.e. biεji < 0) then the
majority vote is relevant, i.e. (sign(

∑
j∈J εji))i=1,...n ≈ b.

However, the majority vote strategy could be not relevant anymore if some
experts misbehave by sending malicious values εji. Worse, one can assume the
existence of a coalition of experts aiming to perturb the recovering of b. For con-
creteness, these experts decide to collaborate by elaborating a common malicious
strategy. A simple way to represent this scenario consists of assuming the exis-
tence of an adversary A which has corrupted a minority C ⊂ J of experts. A can
be seen as an external unique entity which totally controls and coordinates the
behavior of the corrupted experts1. In our problem, its power consists in arbi-
trarily modifying the vectors εj sent by the corrupted experts. The challenge
consists in elaborating an aggregating function Aggregate allowing the authority
to recover b (or something close) whatever the behavior of A is.

Clearly, for some probability distributions D, our problem cannot be solved.
Indeed, let us assume that the sets Sj = {i ∈ {1, . . . n}|εji �= 0} do not overlap.
In this case, each component bi is known by at most one expert and it is not
possible to distinguish a corrupted value from an honest one. Consequently,
the adversary A could generate

∑
j∈C |Sj | errors in the recovering of b and

nothing can be done to prevent this (without any other assumption). Thus, only
probability distributions D ensuring overlapping makes our problem relevant.

In the next section we propose a formalization of this problem. In Sect. 4, we
propose a function Aggregate exploiting the redundancy of the knowledge of the
experts. The principle of this function is very simple. The experts which disagree
on too many instances i with too many other experts are eliminated. It follows
that a corrupted expert which inputs too many incorrect values is eliminated.
Consequently, it should behave almost honestly to not be eliminated. In Sect. 5,
we provide an upper-bound for the expectation error of the vector output by
Aggregate in the worst case, i.e., independent of the adversary A. In Sect. 6,
numerical values dealing with simple probability distributions D are given.

1 The definition and the properties of the adversaries considered in this paper are
directly inspired from the Secure Multiparty Computation framework see ([OSA87,
CDN01]).

328 G. Gavin and S. Bonnevay

The analysis of these results shows that Aggregate dramatically outperforms
the naive approach consisting of taking a majority vote.

In Sect. 7, we propose the protocol SAggregate which securely implements
Aggregate. The ideal implementation of SAggregate dealing with a trusted party
T is presented in Fig. 1.

Ideal implementation of SAggregate

Private inputs. Each expert j ∈ J has a secret vector εj ∈ {−1, 0, 1}n

1. Each party j ∈ J sends εj to

2. computes o = Aggregate(ε1, . . . , εT) and sends it to the authority.

3. The authority outputs o

Fig. 1. Ideal implementation of SAggregate assuming the existence of a trusted
party T.

Our function Aggregate can be optimally represented by a boolean circuit. It
follows that fully homomorphic encryptions (FHE) are natural tools to implement
this function. More precisely, Threshold Multi-key FHE (TMFHE) will be consid-
ered in order to minimize the interactions between parties (the experts and the
authority), i.e. two rounds of interactions can be achieved (with some additional
cryptographic assumptions). However, the performance of current FHE are pro-
hibitive for many real applications. We propose ways to reduce time complexity
by accepting to slightly increase the number of communication rounds.

3 Formalization

Let n, T, ϑ be positive integers s.t. ϑ < T/2, let N = {1, . . . , n} and let Δ =
{−1, 0, 1}n×T . The target vector is denoted by b ∈ {−1, 1}n and J = {1, . . . , T}
refers to the set of the T experts. The set of the subsets C ⊂ J s.t. |C| ≤ ϑ is
denoted by Pϑ(J).

3.1 Definition of D⊥

Definition 1. Let V be the set of probability distributions defined over
{−1, 0, 1}n and let D denote the family of probability distributions over Δ
defined by

D⊥ = {D1 × · · · × DT |Di ∈ V}

Securely Aggregating Testimonies with Threshold Multi-key FHE 329

Throughout this paper, we will only consider probability distributions D ∈ D⊥
(defined over Δ). Let (ε1, . . . , εT) ∈ Δ be randomly drawn according to D ∈ D⊥.
By definition of D⊥, it is ensured that the T vectors ε1, . . . , εT are independent.
In the setting of this paper, it means that each expert j has generated its vector εj

independently of the vectors of the other experts. For instance, one can imagine
that the experts are anonymous and do not know each other. It can make sense
in an open network such as the Web. This will be used to simplify the adversary
model by reducing its power. Conversely, one can easily imagine some settings
where this assumption is not relevant and further investigations should be done
to remove or at least to restrict it.

3.2 Overview

Let K ⊆ D⊥ × {−1, 1}n, let (D, b) ∈ K and let ε = (ε1, . . . , εT) ∈ Δ be drawn
according to D. The objective is to elaborate a function Aggregate : Δ →
{−1, 1}n (computing by the authority) inputting ε and outputting a binary
vector o ∈ {−1, 1}n as close as possible to b. More precisely, it is desired to
minimize the error rate er(o) defined as the Hamming distance between b and
o divided by 2n, i.e.,

er(o) =
1
2n

‖o − b‖1
In order to elaborate this function, the authority is not assumed to know D, b
but only K. As suggested in the introduction, we assume the existence of an
adversary A able to corrupt a chosen subset C of experts. The set of uncor-
rupted experts (also called honest) is denoted by H = J \ C. We propose to
overestimate the real-life adversary power by assuming that it knows everything
except the honest vectors εj (input by honest experts). In particular, it can be
assumed that A knows the target vector b, the probability distribution D ∈ K,
the function Aggregate and can replace corrupted expert inputs by arbitrary
values in {−1, 0, 1}. In other words, A can arbitrarily modify at most ϑ vectors
εj . Roughly speaking, A can be seen as an active noise generator. The vector o
outputs by Aggregate should be as close as possible to b regardless of the behav-
ior of A. The authority wishes building a function Aggregate robust against any
adversary A for families K as large as possible.

3.3 The Adversary Model

First, we consider an adversary A which can control at most ϑ < T/2 experts:
we do not see how to fight against adversaries corrupting a majority of experts.
It is a quite restricting assumption for some realistic applications but it seems
difficult to overcome it.

Moreover, in this paper we only consider probability distributions D ∈ D⊥.
The adversary A is assumed to know D, b before to corrupts a subset C ⊂
J of at most θ experts chosen arbitrarily. By definition of D⊥, the vectors
ε1, · · · , εT are independent. It means that the knowledge of the vectors (εj)j∈C

330 G. Gavin and S. Bonnevay

is not informative about the honest vectors (εj)j∈H. This can be used to restrict
the power of the adversary A by assuming that it chooses the vectors2 (ε∗

j)j∈C
a priori, i.e. before to know the vectors (εj)j∈C . In other words, A can be seen
as a pair (C, δ) ∈ Pϑ(J) × Δ where C refers to the set of corrupted experts and
δ contains the malicious values, i.e. for any j ∈ C, Expert j inputs the jth row
δj of δ. It should be noted that the number of adversary is finite.

3.4 The Objective

Consider a target vector b, a probability distribution D ∈ D⊥, a function
Aggregate : Δ → {−1, 1}n and an adversary A = (C, δ). We define

erAggregateA (D, b) def= E(er(o))

as the expectation of er(o) = 1
2n‖o − b‖1 where o is the vector output by the

following protocol:

Protocol 1.

// In this protocol, it is assumed that all the communications are done via secure
channels.

Parameters: n, T, θ

1. A corrupts a subset C ⊂ J of at most θ experts,
2. Let (ε1, . . . , εT) be drawn according to D,
3. Each expert j ∈ J receives3 εj and sends a vector ε∗

j to the authority defined
as follows: {

ε∗
j = εj if j ∈ H

ε∗
j = δj if j ∈ C

4. The authority outputs o = Aggregate(ε∗
1, . . . , ε

∗
T)

The authority is interested in building a function Aggregate minimizing

erAggregate(K) = sup
A∈Pϑ(J)×Δ;(D,b)∈K

erAggregateA (D, b) (1)

for families K as large and realistic as possible4.

2 That it will send to the authority.
3 For instance from real-life.
4 As explained in the introduction, K cannot contain all probability distributions but

only redundant ones.

Securely Aggregating Testimonies with Threshold Multi-key FHE 331

4 A Proposal for Aggregate

4.1 Case of Perfect Honest Experts

We first assume that the experts do not receive incorrect values, i.e. εjibi ≥ 0 for
any (i, j) ∈ N × J . Consequently, honest experts do not input incorrect values.
Because of this assumption, we can define a natural elimination strategy where
the honest experts cannot be eliminated and the corrupted experts cannot input
too many incorrect values without being eliminated. Our solution exploits the
fact that honest experts only input correct values and that the corrupted experts
are in a minority. We say that two experts j and j′ are compatible if they do
not disagree on at least one instance i ∈ N . For any j ∈ J , α(j) refers to the
subset of experts j′ ∈ J which are compatible with j.

α(j) = {j′ ∈ J | ∀i ∈ N ε∗
jiε

∗
j′i ≥ 0}.

Clearly, for each j ∈ H
|α(j)| ≥ |H| ≥ T − ϑ.

The definition of the function Aggregate is based on this fact. It simply consists
of eliminating experts j ∈ J verifying |α(j)| < T − ϑ before estimating b by a
majority vote (See Table 1). In other words, the weight wj of Expert j in the
majority vote is defined by

wj =
{

1 if |α(j)| ≥ T − ϑ
0 otherwise.

According to the previous discussion, honest experts are not eliminated. Intu-
itively, if a corrupted expert inputs many incorrect values, then it becomes
incompatible with almost all honest experts, implying that it is eliminated
because |α(j)| ≈ ϑ < T − ϑ. As a corollary, a corrupted expert should behave
“almost honestly” in order to avoid elimination. This naturally leads to the
following definition of Aggregate.

Aggregate (ε∗
1, . . . , ε

∗
T) =

⎛

⎝sign

⎛

⎝
∑

j∈J
wj ε∗

ji

⎞

⎠

⎞

⎠

i∈N

4.2 General Case

In this section, we extend the previous study by assuming that honest experts
can input incorrect values εji, i.e. εjibi < 0. The function Aggregate should be
adapted to not exclude too many honest experts. To achieve this, it suffices to
strengthen the definition of incompatibility between two experts and to relax
the strategy of elimination. The new function Aggregate is parameterized by two
new positive integers 0 ≤ σ ≤ n and 0 ≤ τ ≤ T − 2ϑ. Two experts j and j′

are compatible if they do not disagree on more than σ instances i ∈ N and an
expert will be eliminated if it is compatible with less than T − ϑ − τ experts.

332 G. Gavin and S. Bonnevay

Table 1. Table illustrating the Majority Vote (MV) and Aggregate (Agg) in the case
n = 5, T = 5, θ = 2. The sets α(j) computed in Aggregate(ε∗

1, . . . , ε
∗
5) are equal to

α(1) = α(2) = α(5) = {1, 2, 5} and α(3) = α(4) = {3, 4}. As |α(3)| = |α(4)| ≤
T − θ = 3, Expert 3 and Expert 4 are eliminated, i.e. w3 = w4 = 0. It follows that
Aggregate(ε∗

1, . . . , ε
∗
5) consists of taking a majority vote over ε∗

1, ε
∗
2 and ε∗

5. We see that
Aggregate outperforms the majority vote in this example.

ε∗
1 ε∗

2 ε∗
3 ε∗

4 ε∗
5 b MV Agg

−1 0 1 1 0 −1 1 −1

0 −1 1 1 0 −1 1 −1

1 1 1 0 0 1 1 1

1 0 1 0 1 1 1 1

1 1 0 0 1 1 1 1

0 1 0 0 1 1 1 1

Aggregateσ,τ (ε∗
1, . . . , ε

∗
T)

1. I(j, j′) := {i ∈ N | ε∗
jiε

∗
j′i < 0}

//I(j, j′) is the set of components of b where the experts j and j′

disagree

2. α(j) := {j′ ∈ J | |I(j, j′)| ≤ σ}
//α(j) is the set of the experts compatible with Expert j

3. wj :=
{

1 if |α(j)| ≥ T − ϑ − τ
0 otherwise.

// wj is the weight of Expert j in the final vote

4. Output
(
sign

(∑
j∈J wj ε∗

ji

))

i∈N

The previous section deals with the case σ = τ = 0. In practice, σ, τ are
chosen as large as possible ensuring that the honest experts are eliminated with
a very small probability. The running-time of Aggregate is

O(nT 2)

5 Analysis

Let K ⊂ D⊥ × {−1, 1}n. In this section, we propose an upper bound of
erAggregateσ,τ (K) which can be efficiently computed for some families of prob-
ability distributions K. Given (D, b) ∈ K and a subset H ⊂ J of honest experts,

Securely Aggregating Testimonies with Threshold Multi-key FHE 333

we consider the two quantities ΓD,b,H(u, v) and ρσ,τ
D,b,H defined as follows (these

quantities are formally defined in Appendix A):

– ΓD,b,H(u, v) is the probability that (strictly) more than u components of b
are (correctly) known5 by (strictly) less than v honest experts.

– ρσ,τ
D,b,H is the probability there is at least one honest expert incompatible

with more than τ other honest experts. Note that ρσ,τ
D,b,H upper-bounds the

probability that at least one honest expert is eliminated.

We then consider the suprema ΓK(u, v), ρσ,τ
K of these quantities over the choices

of (D, b) ∈ K and H ⊂ J s.t. |H| ≥ T − ϑ.

ΓK(u, v) = max
(D,b)∈K;H⊂J :|H|≥T−ϑ

ΓD,b,H(u, v)

ρσ,τ
K = max

(D,b)∈K;H⊂J :|H|≥T−ϑ
ρσ,τ

D,b,H

Moreover, the number of incorrect values ε∗
ji sent to the authority by the

corrupted experts which are not eliminated6 is denoted by Ωσ,τ
A,D,b (see Appendix

A to get a formal definition). The supremum of the expectation of this quantity
is denoted by Ωσ,τ

K , i.e.

Ωσ,τ
K = max

A∈Pϑ(J)×Δ,(D,b)∈K
E(Ωσ,τ

A,D,b)

These three suprema can be used to upper-bound erAggregateσ,τ (K).

Proposition 1. We have,

erAggregateσ,τ (K) ≤ ρσ,τ
K

+ min
0≤u≤n;0≤v≤T

(

ΓK(u, v) +
u

n
+

Ωσ,τ
K
nv

)

Proof (Sketch). See Appendix B for details. Let u, v be integers arbitrarily
chosen. Let us consider the event “E ≡ no honest expert is eliminated and
there are at least u components I = {i1, . . . , it≤u} such that

∑
j∈H εjik

≤ v
for any k = 1, . . . , t”. E is not satisfied with a probability smaller that than
ρσ,τ

K + ΓK(u, v). In this case, we upper-bound the error rate by 1. Assume now
that E is satisfied. In this case, the error can be upper-bounded by u

n + Ω
nv

where Ω is the number of input malicious values: it suffices to assume that the
components bi∈I are erroneously predicted and to notice that at most Ω

v com-
ponents of N \ I can be erroneously predicted. We conclude by using the fact
that E(Ω) ≤ Ωσ,τ

K .

For some families of probability distributions K, there exists σ, τ such that this
upper-bound is small and can be efficiently computed. This is the object of the
next section.
5 We say that a component bi is correctly known by v honest experts if bi

∑
j∈H εji = v.

6 We say that Expert j is eliminated when wj = 0. An eliminated expert does not
participate in the majority vote.

334 G. Gavin and S. Bonnevay

6 Numerical Application

Notation. Bp,m denotes the cdf of the binomial distribution with parameters
p,m. Let X1, . . . , Xm be m independent random variables belonging to {−1, 0, 1}
drawn according to the same probability distribution, i.e. Pr(Xi = k) = pk. The
cdf of the probability distribution of Z = X1 + · · ·+Xm is denoted by Bp−1,p0,m.

Let p, pe ∈ [0, 1] such that pe < p. In this section, we consider a very simple
family Kp,pe

⊂ D⊥ × {−1, 1}n where any (D, b) ∈ Kp,pe
satisfies the following

properties. Each component of b is correctly known by an expert with a proba-
bility larger than p − pe and incorrectly known with a probability smaller than
pe. Roughly speaking, an expert has an opinion over a component of b with a
probability larger than p. We formally define Kp,pe

as follows.

Definition 2. Let D ∈ D⊥, b ∈ {−1, 1}n and (c1, . . . , cT) drawn according to
D. The family Kp,pe

contains all the pairs (D, b) satisfying

– εji and εj′i′ are independent if (i, j) �= (i′, j′).
– Pr(εji �= 0) ≥ p
– Pr(biεji < 0) ≤ pe.

The quantities ΓKp,pe
(u, v), ρσ,τ

Kp,pe
and Ωσ,τ

Kp,pe
can be easily computed or at least

upper-bounded.

Lemma 1. We have,

1. Ωσ,τ
Kp,pe

≤ ϑ · maxi∈U

(
iB1−Bp−pe,i(σ),T−ϑ(ϑ + τ)

)

2. ΓKp,pe
(u, v) = 1 − BBpe,1−p,T −ϑ(v−1),n(u)

3. ρσ,τ
Kp,pe

≤ T ·
(
1 − B1−B2pe(p−pe),n(σ),T−ϑ−1(τ)

)

Proof. See Appendix C
�

By injecting these upper-bounds in the inequality of Proposition 1, we get
an upper-bound UBp,pe,σ,τ of erAggregateσ,τ (Kp,pe

). Evaluating UBp,pe,σ,τ requires
computing a “min” over a finite set. To achieve this, we propose a brute force
computation by considering all the possible cases. For the parameters used in our
experiments, no optimizations are needed7. Let us recall that σ, τ are parameters
of Aggregate and thus they can be arbitrarily chosen. Let σ∗, τ∗ minimizing
UBp,pe,σ,τ , i.e.

(σ∗, τ∗) def= argmin
0≤σ≤n;0≤τ≤T−2ϑ

UBp,pe,σ,τ

Recovering σ∗, τ∗ requires computing a “min” over a finite set. To achieve this,
we propose a brute force computation by considering all the possible cases.

7 In fact, ΓD,H(u, v) converges quickly to 0 when u, v grow. Thus, only “small” values
of u and v need considered.

Securely Aggregating Testimonies with Threshold Multi-key FHE 335

Table 2. Computation of UBp,0,0,0 for several values of n, T, ϑ, p.

(n, T, p) \ ϑ/T 0.10 0.20 0.25 0.30 0.35 0.40

(102, 103, 0.2) 0.0% 1.3% 2.1% 4.8% 9.0% 18.8%

(103, 103, 0.1) 0.2% 1.0% 1.8% 3.5% 6.2% 10.0%

(103, 102, 0.1) 0.8% 3.8% 6.3% 9.7% 15.2% 23.0%

(104, 102, 0.1) 0.1% 0.4% 0.7% 1.2% 2.0% 3.4%

(104, 50, 0.1) 0.9% 1.7% 2.1% 3.0% 3.9% 5.8%

(104, 50, 0.2) 0.0% 0.1% 0.1% 0.3% 0.4% 0.9%

Results. Computations of UBp,0,0,0 are proposed (see Table 2) for several values of
n, T, ϑ, p. For instance when n = 1000, T = 1000, p = 0.1, pe = 0 and ϑ = T/4 =
250, the error rate erAggregate0,0(Kp,0) is less than 2% on average against any
adversary A. These results could be compared to the naive approach consisting
of a simple majority vote. In (almost) all our experiments, ϑ ≥ p(T −ϑ) ensuring
that this naive strategy leads to an error rate larger than 50% in the worst case,
i.e. each corrupted experts sends n incorrect values. Indeed, in this case, the
number of honest inputs is, in mean, smaller than the number of corrupted
inputs making the majority vote fail.

Moreover, for several pairs (n, T), we fixed ϑ = T/5 and we searched8 p
ensuring that UBp,0,0,0 ≈ 1% (see Table 3). We observe that p decreases with
both n and T . For instance, it suffices that each honest expert knows each
component of b with a probability larger than 7.7% to allow the authority to
recover b with an error smaller (in mean) than 1% when the number of experts
is larger than 1600 and the size of b is larger than 1600.

Table 3. Given n, T, ϑ = T/5, we give a value of p ensuring that UBp,0,0,0 = 1 ± 0.1%.
This value was obtained by a dichotomic search.

n\T 200 400 800 1600 3200 6400

200 27.3% 24.1% 24.1% 24.1% 24.1% 24.1%

400 23.0% 17.5% 14.2% 13.4% 13.3% 13.3%

800 18.6% 12.6% 12.0% 10.9% 9.8% 9.3%

1600 14.2% 9.8% 8.5% 7.7% 7.7% 7.1%

3200 12.3% 7.7% 6.3% 5.5% 5.5% 5.2%

6400 9.8% 6.0% 4.9% 4.4% 3.8% 3.8%

12800 6.0% 4.4% 3.8% 3.2% 3.0% 2.8%

Computations of UBp,pe,σ∗,τ∗ for different values of ϑ, p, pe are presented in
Table 4. As expected, we see that σ∗, τ∗ grow with pe and ϑ.
8 With a dichotomic search.

336 G. Gavin and S. Bonnevay

Table 4. Fix n = 2000 and T = 500, we computed UBp,pe,σ∗,τ∗ for different values of
ϑ, p, pe. The optimal parameters τ∗, σ∗ are given in subscript.

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40

(5%, 0.15%) 2.3%100,0 7.0%90,0 18.2%80,0 51.8%50,0

(10%, 0.30%) 1.2%250,0 3.5%80,1 7.9%70,1 19.2%60,1

(15%, 0.45%) 0.8%220,1 2.4%200,1 5.3%90,2 12.3%70,2

(20%, 0.60%) 0.7%240,2 1.9%60,1 4.1%110,3 8.6%200,4

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40

(5%, 0.3%) 3.3%160,0 9.9%140,0 25.2%120,0 65.7%30,1

(10%, 0.6%) 1.9%190,1 5.3%170,1 12.2%70,2 26.7%60,2

(15%, 0.9%) 1.6%260,2 4.0%150,3 8.4%130,3 17.2%60,4

(20%, 1.2%) 1.4%270,4 3.3%170,5 6.6%100,6 13.3%50,7

(p, pe) \ ϑ/T 0.10 0.20 0.30 0.40

(5%, 0.45%) 4.4%200,0 12.9%180,0 32.7%50,1 72%40,1

(10%, 0.9%) 2.7%270,1 7.1%40,1 15.2%120,1 32.7%50,3

(15%, 1.35%) 2.1%190,4 5.4%170,4 11.1%90,5 23.0%80,5

(20%, 1.8%) 1.9%340,5 4.6%180,7 9.1%110,8 17.8%70,9

7 The Protocol SAggregate

Notation. n, T, θ, σ, τ will refer to the parameters of Aggregate as defined in
the previous sections. They might be omitted in notation. The addition and the
multiplication over Z/2Z will be denoted respectively by ⊕ and ⊗.

This section aims at proposing a protocol SAggregate which securely imple-
ments the multi-party functionality Aggregate described in Sect. 4. For concrete-
ness, we wish to implement the ideal model (see Fig. 1) dealing with a truted
party T. In this ideal model, each expert/party j ∈ J sends its private vector εj

to T. Then, T evaluates o := Aggregate(ε1, . . . , εT) and sends it to the authority.
In this section, we propose to remove the trusted party T and to build a protocol
SAggregate between the T + 1 parties (the T parties of J and the authority)
offering the same security guarantees as the ideal model. For instance, SAggre-
gate should ensure that the output vector o is correct and that the input vectors
εj are not revealed to other parties. As done in previous sections, we consider an
adversary A controlling a subset of parties (See Sect. 3.3). This adversary can
control and coordinate the behaviour of corrupted parties. The implementation
of SAggregate is required to be secure against any subset of corrupted parties9

while Aggregate is relevant in the case of an honest majority. Such security
requirements are nevertheless useful. Indeed, this will ensure, for instance, that
the honest input εji remain private even if the adversary controls a majority.

9 At least one party should be honest.

Securely Aggregating Testimonies with Threshold Multi-key FHE 337

7.1 Secure Multi-party Computation

Yao [Yao86] has proved that any multi-party functionality can be securely com-
puted. Several MPC models allowing to securely realize any multi-party function-
ality are proposed in the literature. Some of these models are based on oblivious
transfer protocols, others are based on threshold homomorphic scheme, verifi-
able secret sharing or homomorphic secret sharing. A fundamental theorem says
that any multi-party problem can be securely computed:

– Computational setting: for any number of corruptions and assuming trapdoor
permutations,

– Information theoretic setting: for a 2/3 majority (or regular majority given a
broadcast channel).

Secure MPC protocols complexities are measured in rounds of interaction,
number of communicated bits and computational overhead. Optimizing these
three complexities at the same time is challenging and trade-off are often
required. Many identified applications of SAggregate deal with internet where
stable communications between a large number of parties is not guaranteed. Ide-
ally, it would be suitable to develop a on-the-fly protocol ([LTV13]) in which the
set of parties who contribute inputs to the computation, and even the compu-
tation itself, need not be fixed in advance, and can even be chosen adaptively.
In addition, there is no interaction among the parties: any user whose data
might potentially be used simply uploads her encrypted input to a central server
in advance, and can then go offline. The server then uses the uploaded data to
compute (or continue computing) a desired function, and when finished, outputs
an encrypted output. Finally, the parties whose inputs were used in the compu-
tation and only those parties run an interactive protocol to jointly decrypt the
ciphertext and obtain the output. Minimizing the number of rounds of interac-
tion is clearly crucial to reach this ideal setting (requiring two rounds).

Round Complexity of MPC. We refer the reader to [AJL+12] for a comprehensive
overview of prior work on round complexity of MPC. Brakerski et al. [BHP17]
recently propose a 4-round MPC without setup. However, with a common ran-
dom string (CRS), there is only a simple lower bound of 2-rounds [HLP11].
Asharov et al. [AJL+12] showed how to achieve a 3-round MPC protocol in
the CRS model, by relying on techniques from threshold fully homomorphic
encryption (TFHE). Their construction achieves semi-honest security under the
learning with errors (LWE) assumption, and fully malicious security by assuming
the existence of non-interactive zero knowledge arguments (NIZKs).

In order to reach two rounds, multi-key threshold fully homomorphic encryp-
tions (MTFHE) were recently introduced in order to remove the round of interac-
tions required to generate keys [MW15]. Indeed, a MTFHE scheme allows parties
to independently encrypt their data under different individually chosen keys,
while still allowing homomorphic computations over such ciphertexts.

338 G. Gavin and S. Bonnevay

7.2 Threshold Multi-key Fully Homomorphic Encryption (TMFHE)

TMFHE are natural tools [MW15], [BHP17] for constructing MPC based on fully
homomorphic encryption (FHE). At a high level, this approach is based on the
following simple template:

1. Each party individually chooses its own TMFHE key pair (pki, ski), encrypts
its input xi under pki, and broadcasts the resulting ciphertext(s). At the end
of this round, each party can homomorphically compute the desired function
f on the received ciphertexts and derive common multi-key ciphertexts which
encrypt the output (y1, . . . , yn) = f(x1, . . . , xT).

2. The parties run a secure distributed protocol for threshold decryption using
their secret keys ski to decrypt the multi-key ciphertext and recover the
output y in plaintext.

Secure protocols for threshold decryption can be implemented generically
for any FHE scheme by using general MPC techniques, but this would require
many rounds. Based on the LWE assumption (and auxiliary general crypto-
graphic assumptions detailed later), the above template results in a 2-round
MPC protocol.

High-level Description of TMFHE. Below we call any ciphertext/encryption
which is associated with multiple keys an expanded ciphertext/encryption. Also,
the ciphertexts that are generated by the encryption procedure (and thus corre-
sponds to a single key) are called fresh ciphertexts, and the expanded ciphertexts
that are output by the homomorphic evaluations are called evaluated ciphertexts
or simply evaluations.

Definition 3 (Threshold Multi-key FHE). A threshold multi-key FHE is a
tuple of algorithms/protocols MTFHE = (Setup, Keygen, Encrypt, Expand, Eval,
Decrypt) described as follows:

– params ← Setup(1λ): Setup takes as input the security parameter λ and out-
puts the system parameters params. We assume that all the other algorithms
take params as an input implicitly.

– (sk, pk) ← Keygen(params): Output secret key sk and public key pk.
– c ← Encrypt(pk, x, pk): On input pk and some message x ∈ Z2 output a

ciphertext c.
– ĉ := Expand((pk1, . . . , pkT), i, c): Given a sequence of T public-keys and a

fresh ciphertext c under the ith key pki, it outputs an expanded ciphertext ĉ.
– ĉ := Eval(C, (ĉ1, . . . , ĉm)): Given a boolean circuit C : Z

m
2 → Z

�
2 along

expanded ciphertexts (ĉ1, . . . , ĉm), outputs evaluated ciphertexts (ĉ′
1, . . . , ĉ

′
�).

– x := Decrypt((sk1, . . . , skT), ĉ): On input some ciphertext ĉ and a sequence of
T secret keys output a message x ∈ Z2.

In addition, we will consider the auxiliary protocol PrivateDecrypt (straightfor-
wardly derived from Decrypt).

– x := PrivateDecrypt((sk1, . . . , skT), ĉ, j): On input some ciphertext ĉ and a
sequence of T secret keys, Party j outputs a message x ∈ Z2.

Securely Aggregating Testimonies with Threshold Multi-key FHE 339

Correctness and Security (Informal). We classically say that a public-key
encryption scheme is semantically secure (or equivalently IND-CPA secure) if
there does not exist any p.p.t. algorithm able to distinguish between encryp-
tions of 0 and encryptions of 1, knowing params and the public key pk used to
encrypt.

MTFHE.Expand is correct if the decryption of the output expanded ciphertext
ĉ is equal to the value encrypted by the input fresh ciphertext c.

Finally MTFHE.Eval and MTFHE.Decrypt are correct if the evaluated cipher-
texts (ĉ′

1, . . . , ĉ
′
�) encrypt (x′

1, . . . , x
′
�) = C(x1, . . . , xm), where (x1, . . . , xm) are

the values encrypted by the input expanded ciphertexts (ĉ1, . . . , ĉm)10.

TMFHE in MPC. Let us detail the template presented at the beginning of this
section. Each involved party j locally generates (pkj , skj) with MTFHE.KeyGen,
encrypts its private data xj with pkj and broadcasts it with pkj . Then, each
party applies MTFHE.Expand on all the received ciphertexts and (locally) evalu-
ates C with MTFHE.Eval over the expanded ciphertexts previously built. At this
step each party as the same tuple of evaluated ciphertexts ĉ1, . . . , ĉ�. Finally,
MTFHE.Decrypt is invoked over ĉ1, . . . , ĉ� to recover the expected plaintexts.

Intrinsic limits of TMFHE in MPC. Any boolean function f(x1, . . . , xm)
can be written as a boolean circuit C(x1, . . . , xm). However, some functionalities
f cannot be efficiently represented by arithmetic circuits C. For concreteness,
some functionalities f could be evaluated in polynomial-time while there does
not exit any polynomial-size boolean circuit C representing f . Typically, branch-
ing algorithms are required to implement such functionalities. This represents
a serious restriction of FHE in MPC. Nevertheless, this is not a problem here
because Aggregate can be optimally represented by an arithmetic (or boolean)
circuit.

7.3 LWE-Based (TM)FHE

LWE [Reg05] is a famous cryptographic problem allowing to efficiently implement
many cryptographic primitives such as FHE, signatures, etc. Roughly speaking,
this problem relies on the difficulty to solve noisy linear systems. Typically,
ciphertexts/evaluations of LWE-based FHE are noisy and the noise level grows
with the size of the evaluated circuit C. Decryption becomes incorrect when
noise becomes too large. It follows that noise should be controlled to achieve
unlimited numbers of homomorphic operations. LWE-based FHE are currently
the most efficient [GSW13] and some of them can be adapted in one-round
decryption TMFHE leading to the following result.

Proposition 2 (in [MW15]). Assume LWE is hard, there exist TMFHE leading
to 2-round MPC protocols assuming the CRS model and the existence of NIZKs.

10 Decrypt(params, (sk1, . . . , skT),Eval(params, C, (ĉ1, . . . , ĉm))) = C(Decrypt(params,
(sk1, . . . , skT), ĉ1), . . . ,Decrypt(params, (sk1, . . . , skT), ĉm).

340 G. Gavin and S. Bonnevay

The CRS model is required in the choice of common parameters between the
involved parties (without the CRS model, corrupted parties might get an advan-
tage in this phase). Finally, (NIZKs) are required to ensure fulfilment of the
decryption without any additional round.

7.4 SAggregate

As FHE can locally evaluate any arithmetic circuit or equivalently any boolean
circuit, it suffices to write the output vector o as a boolean circuit defined over
the input vectors ε1, . . . , εT . Let us re-write Aggregate in this sense. As the
plaintext space is Z2, we propose to re-write each input εji ∈ {−1, 0, 1} as a pair
(ε1ji, ε2ji) ∈ Z

2
2 such that

(ε1ji, ε2ji) =

⎧
⎨

⎩

(0, 1), if εji = −1
(1, 1), if εji = 1
(·, 0), if εji = 0

If follows that εjiε
′
ji < 0 if and only if (ε1ji ⊕ ε′

1ji) ⊗ ε2jiε
′
2ji = 1. We then

consider the functions:

– SUM((b0, . . . , br) ∈ {0, 1}r) outputs the binary representation x0, . . . ,
x
log2 r�+1 of b1 + . . . + br (integer sum).

– COMPARE((b0, . . . , br) ∈ {0, 1}r, (b′
0, . . . , b

′
r) ∈ {0, 1}r) outputs 1 if11 (b0, . . . ,

br)2 ≥ (b′
0, . . . , b

′
r)2 and 0 otherwise.

These functions can be optimally evaluated by boolean circuits or equivalently
by (⊕,⊗)-circuits.

Lemma 2. The function SUM can be represented by a size-O(r log r) boolean
circuit and COMPARE by a size-O(r) boolean circuit.

Proof. High school exercise.
�

It then suffices to write Aggregate as a (⊕,⊗)-circuit CAggregate by using these
simple circuits (see Fig. 2). By exploiting the fact that SUM and COMPARE can
be optimally implemented by boolean circuits, Aggregate can be implemented
by a (⊕,⊗)-circuit CAggregate with O(T 2n log n + T 2 log T) gates. This is opti-
mal (neglecting logarithmic factors) in the sense that the running-time of any
algorithm implementing Aggregate is Ω(nT 2). To implement SAggregate with
TMFHE, it then suffices to evaluate CAggregate by following the general template
presented at the beginning of Sect. 7.2 (see Fig. 3).

Proposition 3. SAggregate securely realizes Aggregate assuming IND-CPA
security of TMFHE.

Proof. Aggregate exactly follows MPC constructions based on TMFHE.
�

11 (b1, . . . , br)2 refers to the integer whose binary representation is (b1, . . . , br).

Securely Aggregating Testimonies with Threshold Multi-key FHE 341

CAggregate (ε1ji, ε2ji)(j,i)∈J ×N
)

Notation. The binary representation of an integer x is denoted by (x)2

Parameters: n, T, θ, σ, τ

1. for any (j, j′) ∈ J 2

for any i ∈ N
xijj′ := (ε1ji ⊕ ε′

1ji) ⊗ ε2jiε
′
2ji

zjj′ := SUM(x1jj′ , . . . , xnjj′) // zjj′ is a boolean tuple
yjj′ := COMPARE((σ)2, zjj′) // yjj′ is a boolean tuple

2. for any j ∈ J
pj := SUM(yj1, . . . , yjT)
wj := COMPARE(pj , (T − θ − τ)2)

3. for any i ∈ N
ui := SUM(w1 ⊗ ε11i ⊗ ε21i, . . . , wT ⊗ ε1Ti ⊗ ε2Ti)
vi := SUM(w1 ⊗ (ε11i ⊕ 1) ⊗ ε21i, . . . , wT ⊗ (ε1Ti ⊕ 1) ⊗ ε2Ti)
oi := COMPARE(ui, vi)

Fig. 2. Implementing Aggregate as a (⊕, ⊗)-circuit CAggregate. The running-time of 1, 2
and 3 are respectively O(T 2n log n), O(T 2 log T) and O(nT log T).

Assuming the CRS model and the existence of NIZKs, SAggregate can be
achieved in two rounds according to Proposition 2. Morever, O(nT 2) homomor-
phic additions and multiplications are required. However, the size of ciphertexts
(due to MTFHE.Expand) and thus the cost of homomorphic operations grows
with T for all existing MTFHE. For instance, an expanded ciphertext is a matrix
whose size is proportional to T +1 in the MTFHE based on GSW [MW15] implic-
itly considered. As a homomorphic multiplication is a matrix multiplication (of
ciphertexts), the running-time of SAggregate is

O(nT 2+ω)

with ω < 2.38.

7.5 Running-Time vs Round Complexity

Performance of existing MTFHE are prohibitive to implement SAggregate with
n = T = 100 for instance. In this section, we propose to see how to reduce
running-time by accepting to increase the number of rounds. In this section, J
refers to the set of involved parties (the experts and the authority). To simplify
notation, we will assume that |J | = T (instead of T + 1).

Using TFHE Instead of TMFHE. LWE-based TFHE achieves 3-rounds
[AJL+12] (assuming the CRS model and the existence of NIZKs). Indeed, one

342 G. Gavin and S. Bonnevay

Protocol SAggregate

Notations. CAggregate refers to the optimal circuit evaluating Aggregate

Involved parties. The authority and each expert j ∈ J
Public inputs. n, T, θ, σ, τ

Private inputs. Each expert j ∈ J inputs a private vector (ε1j , ε2j) ∈ ({0, 1} ×
{0, 1})n.

– The authority generates (pk0, sk0) ← TMFHE.KeyGen(1λ) and then broadcasts pk0

– Each expert j ∈ J generates (pkj , skj) ← TMFHE.KeyGen(1λ) and then broadcasts
pkj and (ckji ← TMFHE.Encrypt(pkj , εkji))k∈{1,2};i∈N

– Each party computes ĉkji := TMFHE.Expand(pk0, . . . , pkT , ckji) for any k ∈ {1, 2};
i ∈ N ; j ∈ J and then (ôi)i∈N := TMFHE.Eval(CAggregate, (ĉkji)k∈{1,2};(i,j)∈N×J)

– Authority outputs oi := TMFHE.PrivateDecrypt(sk0, . . . , skT , ôi,Authority) for any
i ∈ N

Fig. 3. Implementing SAggregate with a TMFHE consisting of evaluating CAggregate.

additional round is required to generate keys. However, the size of ciphertexts
and thus the cost of homomorphic operations does not depend anymore on the
number T of involved parties. It follows that the running-time of SAggregate
using such schemes is asymptotically optimal, i.e. O(nT 2). An interesting open
problem is to build a 2-round protocol asymptotically optimal.

Parallelizing Computations+TFHE. The execution of Aggregate can be
highly parallelized. Indeed, each party j can evaluate (get an encryption of)
its weight wj by itself and then broadcast it. Then, each party j ∈ J can obtain
ôi for a subset of Ej ⊂ N . Consequently, by adding one round in the proto-
col, the running-time is divided by T , i.e. the running-time per party is O(nT).
However, this way to proceed is not secure because malicious parties are not
controlled. To palliate this, parallelization should be achieved between subsets
Sk of parties ensuring that each subset contains at least one honest party. By
assuming that the number of corrupted parties θ < T/2, it suffices to choose at
random cardinal-λ subsets to ensure that they contain at least one honest party
with overwhelming probability. The running-time per party becomes O(λnT).

Refreshing Encryptions. While implementing SAggregate with TFHE is
asymptotically optimal, the computational overhead is large making the protocol
impractical for many applications. Indeed, all existing FHE consider a Somewhat
Homomorphic Encryption SWHE which is transformed in a FHE by boostrap-
ping technics (consisting of evaluating the decryption circuit [Gen09]). However,

Securely Aggregating Testimonies with Threshold Multi-key FHE 343

boostrapping is very costly. Some FHE can be obtained without boostrapping
([GSW13,BGV12]). However, the parametrization of such schemes depends on
the circuit C which should be evaluated. In other words, such schemes are just
SWHE which can be parameterized to efficiently evaluate any polynomial-size cir-
cuit C. It follows that the cost of a homomorphic operation is strongly impacted
by the (multiplicative) depth of C. We propose here to build a protocol Refresh
aiming at reducing the noise level of encryptions (similarly to boostrapping pro-
cedure except that our procedure requires a round of communication.). For con-
creteness, Refresh input an encryption c and output an encryption c′ encrypting
the same value whose noise level does not depend on the noise level of c (in our
case, c′ is a fresh ciphertext in the sense that its noise level is identical (neglecting
logarithm factors) to the one of ciphertexts output by Encrypt).

Protocol Refresh

Notation. Sr : Zr
2 → Z2 is a {⊕, ⊗}-circuit such that Sr(x1, . . . , xr) = x1 ⊕ · · · ⊕ xr.

Let ONE ← TFHE.Encryptpk(1) be an arbitrary public fresh encryption of 1.

Require. The parties invokes TFHE.KeyGen to get keys (pk, sk) and each party j ∈ J
publicizes Bj ← TMFHE.Encrypt(bj) where bj is a bit chosen at random by Party j. It
follows that each party receives T encryptions B1, . . . , BT

Public inputs. An evaluation c

1. B := TFHE.Eval(ST , B1, · · · , BT)

2. D := TFHE.Eval(S2, B, c)

3. d := TFHE.Decryptsk(D)

4. Output c′ =

{
B, if d = 0
TMFHE.Eval(S2,ONE, B) if d = 1

Clearly, c and c′ encrypt the same plaintext meaning that Refresh is correct.
We easily show that this protocol is secure assuming the semantic security of
TMFHE. Intuitively, the adversary cannot recover the encrypted value by B
(assuming there is at least one honest party). It follows that d does not reveal
anything over the value encrypted by D. Moreover, the noise level of c′ is equal
to the noise level of B and thus it does not depend on the noise level of c.

How to use Refresh in Aggregate? First, the encryptions B1, . . . , BT of random
bits required by Refresh are generated at the same time that the encryptions
of private data. By choosing to refresh the evaluations of yjj′ and the ones of
wj , we add two rounds of communication (assuming Decrypt requires only one
round of communication). The benefit is that only degree-O(T log T + n log n)
circuits should be evaluated instead of O(n log n×T log T). This could represent a
major improvement in terms of running-time paid by two supplementary rounds
of communication.

344 G. Gavin and S. Bonnevay

8 Conclusion and Future Work

Relevant upper-bounds over erAggregate(K) were proposed in this paper. We pro-
posed a numerical application dealing with simple families Kp,pe

of probability
distributions ensuring that each component of b is (maybe imperfectly) known by
each (honest) expert with a probability larger than p. These families could make
sense for some applications. Other families K could be considered. However, it
could be difficult to give an analytic upper-bound of erAggregate(K). Nevertheless,
approximations can be obtained by sampling worst-case probability distributions
D ∈ K.

Moreover, we are convinced that Aggregate and its analysis (under the specific
conditions of this paper) can be improved. Furthermore, the target vector b is
binary but natural extensions to numerical vectors b ∈ R

n could be provided by
applying threshold γ, i.e. cji and cj′i are said to be equal if |cji − cj′i| < γ. The
new parameter γ should be carefully chosen in order that most of honest experts
input the same values cji within γ. In [DP94], Dubois et al. propose that each
expert sends an interval Ii containing the true value bi. Investigations should be
done to adapt our work to this setting.

While TMFHE are very powerful tools in theory, their induced computational
overhead which could be prohibitive in practice. Moreover, achieving two rounds
of interactions is subject to two cryptographic assumptions (CRS model and
NIZKs). Without these assumptions only four rounds can be expected.

Acknowledgment. The authors would like to thank the BAG members for their
helpful discussions always around a coffee.

A Formal Definition of Quantities Considered in Sect. 5

– Let u, v be positive integers s.t. u ≤ n and v ≤ T . Let Iv = {i ∈
N|bi

∑
j∈H εji < v}. ΓD,b,H(u, v) denotes the probability under D that the

cardinality of Iv is strictly larger than u, i.e.

ΓD,b,H(u, v) = Pr(|Iv| > u)

– Let I(j, j′) := {i ∈ N — ε∗
jiε

∗
j′i < 0} and let αD,b,H(j) = {j′ ∈ H||I(j, j′)| >

σ}.
ρσ,τ

D,b,H = Pr(∃j ∈ H, |αD,b,H(j)| > τ)

– Ωσ,τ
A,D,b =

∑
j∈C wj |{i ∈ N|ε∗

jibi < 0}|

B Proof of Proposition 1

Proof. According to notation of Sect. 3, o denotes the random vector output by
Aggregateσ,τ . For the sake of simplicity, er

Aggregateσ,τ

A (D, b) will be denoted by er.

Securely Aggregating Testimonies with Threshold Multi-key FHE 345

The event G refers to the fact that no honest expert is eliminated12, i.e.
wj = 1 for any j ∈ H. By definition, Pr(G) ≤ ρσ,τ

K .
Let u, v be arbitrary positive integers s.t. u ≤ n and v ≤ T . Let Iv = {i ∈

N|bi

∑
j∈H εji ≤ v}. The event |Iv| ≥ u will be denoted by F . By definition,

Pr(F) = ΓD,b,H(u, v) ≤ ΓK(u, v)

In the following of the proof, er′ denotes the expectation of the error of o assum-
ing that G,F are realized, i.e.,

er′ =
1
2n

E(‖b − o‖1| G,F)

Clearly, er ≤ Pr(G) + Pr(F,G) + Pr(F ,G)er′ implying that

er ≤ ρσ,τ
K + ΓK(u, v) + Pr(F ,G)er′

Let us focus on er′ by assuming that the events G,F are realized. According to
the definition of F , the cardinality of Iv is smaller than u implying that

|{i ∈ Iv|oi �= bi}| ≤ u

By definition, for each i ∈ Iv, bi

∑
j∈H εji ≥ v. It follows that

|{i ∈ Iv|oi �= bi}| ≤ Ωσ,τ
A,D,b

v

Consequently, the error of o is smaller than 1
n (u +

Ωσ,τ
A,D,b

v), implying that

er′ ≤ u

n
+

1
nv

E(Ωσ,τ
A,D,b |G,F)

As Ωσ,τ
A,D,b is a positive random variable,

E(Ωσ,τ
A,D,b |G,F) ≤ E(Ωσ,τ

A,D,b)

Pr(G,F)
≤ Ωσ,τ

K
Pr(G,F)

It follows that

er ≤ ρσ,τ
K + ΓK(u, v) + Pr(G,F)

(
u

n
+

Ωσ,τ
K

nvPr(G,F)

)

≤ ρσ,τ
K + ΓK(u, v) +

u

n
+

Ωσ,τ
K
nv

As u, v were arbitrarily chosen, er ≤ ρσ,τ
K + min

0≤u≤n;0≤v≤T

(
ΓK(u, v)+

u
n + Ωσ,τ

K
nv

)
. This concludes the proof.

12 The fact that G is realized means that all the values input by the honest experts are
considered by Aggregateσ,τ .

346 G. Gavin and S. Bonnevay

C Proof of Lemma 1

To prove this lemma, we consider the worst13 probability distribution D ∈ Kp,pe

defined by Pr(εji �= 0) = p and Pr(biεji < 0) = pe. Moreover, we assume that
the adversary controls exactly ϑ experts.

1 - The set Sj of correct values εji received by each honest expert j ∈ H is
denoted by

Sj∈H = {i ∈ N|biεji > 0}
The set Mj of incorrect values input by a corrupted expert j ∈ C is denoted by

Mj∈C = {i ∈ N|biε
∗
ji < 0}

Let us upper-bound the probability pj that Expert j is not eliminated, i.e. wj =
1. It suffices that |Sk

⋂
Mj | > σ to ensure that an honest Expert k and Expert

j are incompatible. For each i ∈ Mj , the probability that biεki > 0 is equal to
p−pe. Consequently, as εji and εki′ are independent, the probability that Expert
j and Expert k are incompatible is smaller than

ρMj

def= PrD(|Sk

⋂
Mj | > σ) = 1 − Bp−pe,|Mj |(σ)

and as Expert j is eliminated if it is incompatible with more than ϑ + τ honest
experts,

PrD(wj = 1) ≤ Bρ|Mj |,T−ϑ(ϑ + τ)

It follows that the number of incorrect values input by Expert j is upper-
bounded, in mean, by

|Mj |(Bρ|Mj |,T−ϑ(ϑ + τ)) ≤ max
i∈U

(iBρi,T−ϑ(ϑ + τ))

Thus,
Ωσ,τ

A,D ≤ ϑ · max
i∈U

(iBρi,T−ϑ(ϑ + τ))

2 - Let hi = bi

∑
j∈H εji. As εji and εj′i′ are independent,

Pr(hi < v) = Bpe,1−p,T−ϑ(v − 1) = ρv

and the random variables hi are independent. Thus, the probability that the
number of instances i ∈ N satisfying hi < v is strictly larger than u is equal to

ΓD,H(u, v) = 1 − Bρv,n(u)

3 - Let j and j′ be two honest experts and let i ∈ N .

PrD(εjiεj′i < 0) = 2pe(p − pe)

13 It is the probability distribution where the probability that an honest expert inputs
correct values is the smallest and the probability that it inputs incorrect values is
the largest.

Securely Aggregating Testimonies with Threshold Multi-key FHE 347

It follows that the probability that Expert j is incompatible with Expert j′ is
equal to

ρ = 1 − B2pe(p−pe),n(σ)

As the values input by honest experts are independent, the probability that
Expert j is incompatible with more than τ other honest experts is equal to
1 − Bρ,T−ϑ−1(τ) implying that

ρσ,τ
D,H ≤ T · (1 − Bρ,T−ϑ−1(τ))

�

References

[AJL+12] Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V.,
Wichs, D.: Multiparty computation with low communication, computation
and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.)
EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29011-4 29

[BGV12] Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomor-
phic encryption without bootstrapping. In: Innovations in Theoretical
Computer Science 2012, Cambridge, MA, USA, 8–10 January 2012, pp.
309–325 (2012)

[BHP17] Brakerski, Z., Halevi, S., Polychroniadou, A.: Four round secure computa-
tion without setup. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol.
10677, pp. 645–677. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-70500-2 22

[CDN01] Cramer, R., Damg̊ard, I., Nielsen, J.B.: Multiparty computation from
threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT
2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44987-6 18

[DBES09] Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data:
the role of source dependence. Proc. VLDB Endow. 2(1), 550–561 (2009)

[DN09] Dong, X.L., Naumann, F.: Data fusion - resolving data conflicts for inte-
gration. PVLDB 2(2), 1654–1655 (2009)

[DP94] Dubois, D., Prade, H.: Possibility theory and data fusion in poorly informed
environments. Control Eng. Pract. 2(5), 811–823 (1994)

[DWH08] Durrant-Whyte, H., Henderson, T.C.: Multisensor data fusion. In:
Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp.
585–610. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
30301-5 26

[Fin77] Fine, T.L.: Review: Glenn Shafer, a mathematical theory of evidence. Bull.
Am. Math. Soc. 83(4), 667–672 (1977)

[Gen09] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC,
pp. 169–178 (2009)

[GSW13] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, part I. LNCS, vol.
8042, pp. 75–92. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40041-4 5

https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/978-3-319-70500-2_22
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/3-540-44987-6_18
https://doi.org/10.1007/978-3-540-30301-5_26
https://doi.org/10.1007/978-3-540-30301-5_26
https://doi.org/10.1007/978-3-642-40041-4_5
https://doi.org/10.1007/978-3-642-40041-4_5

348 G. Gavin and S. Bonnevay

[HLP11] Halevi, S., Lindell, Y., Pinkas, B.: Secure computation on the web: com-
puting without simultaneous interaction. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 132–150. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22792-9 8

[KKKR13] Khaleghi, B., Khamis, A., Karray, F.O., Razavi, S.N.: Multisensor data
fusion: a review of the state-of-the-art. Inf. Fusion 14(1), 28–44 (2013)

[LTV13] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty com-
putation on the cloud via multikey fully homomorphic encryption. In: IACR
Cryptology ePrint Archive 2013:94 (2013)

[MW15] Mukherjee, P., Wichs, D.: Two round MPC from LWE via multi-key FHE.
In: IACR Cryptology ePrint Archive 2015:345 (2015)

[NZZ78] Negoita, C.V., Zadeh, L.A., Zimmermann, H.J.: Fuzzy sets as a basis for a
theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

[OSA87] Goldreich, O., Michali, S., Wigderson, A.: How to play any mental game
or a completeness theorem for protocols with honest majority. In: STOC,
pp. 218–229 (1987)

[Paw92] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data.
Kluwer Academic Publishers, Norwell (1992)

[Reg05] Regev, O.: On lattices, learning with errors, random linear codes, and cryp-
tography. In: Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, 22–24 May 2005, pp. 84–93 (2005)

[She91] Sheridan, F.K.J.: A survey of techniques for inference under uncertainty.
Artif. Intell. Rev. 5(1–2), 89–119 (1991)

[Yao86] Yao, A.C.-C.: How to generate and exchange secrets (extended abstract).
In: 27th Annual Symposium on Foundations of Computer Science, Toronto,
Canada, 27–29 October 1986, pp. 162–167 (1986)

[Zad65] Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

https://doi.org/10.1007/978-3-642-22792-9_8
https://doi.org/10.1007/978-3-642-22792-9_8

Improved Efficiency of a Linearly
Homomorphic Cryptosystem

Parthasarathi Das1(B), Michael J. Jacobson Jr.1, and Renate Scheidler2

1 Department of Computer Science, University of Calgary,
2500 University Drive NW, Calgary, AB T2N 1N4, Canada

{parthasarathi.das,jacobs}@ucalgary.ca
2 Department of Mathematics and Statistics, University of Calgary,

2500 University Drive NW, Calgary, AB T2N 1N4, Canada
rscheidl@ucalgary.ca

Abstract. We present an extended version of the Castagnos and Laguil-
laumie linearly homomorphic cryptosystem [5] in which the non-maximal
imaginary quadratic order is allowed to have conductor equal to a prod-
uct of prime powers as opposed to a single prime. Numerical results
obtained with an optimized C implementation demonstrate that this
variation improves performance when large messages and exponents are
used. When compared to the cryptosystems of Paillier [11] and Bresson
et al. [3] at the same security levels, the basic version of Castagnos and
Laguillaumie is the fastest at high security levels for small messages.

Keywords: Linearly homomorphic encryption ·
Public key cryptography · Ideal class group · Electronic voting ·
Encryption switching protocol

1 Introduction

A linearly homomorphic cryptosystem is one for which linear combinations of
ciphertexts can be computed in such a way that the result is the encryption of
the same linear combination of the corresponding plaintexts. Such cryptosystems
have a number of applications. For example, when used for electronic voting,
encrypted votes (encrypting 1 for “yes” and 0 for “no”) can be tallied with a
single decryption by homomorphically adding the ciphertexts and decrypting the
result. Two well-known examples of linearly homomorphic encryption systems
are due to Paillier [11] and Bresson et al. [3]. In both cases, the security relies
on the presumed intractability of integer factorization.

In [5], Castagnos and Laguillaumie presented a linearly homomorphic encryp-
tion scheme whose security is based on the hardness of the decision Diffie-
Hellman (DDH) problem in a group that has a subgroup in which the discrete
logarithm (DL) problem can be solved easily; this setting is referred to as a “DDH
group with an easy DL subgroup”. Assuming the existence of such groups, they

The second and third authors’ research is supported by NSERC.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 349–368, 2019.
https://doi.org/10.1007/978-3-030-16458-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_20

350 P. Das et al.

described a linearly homomorphic encryption scheme that is provably one-way
and semantically secure subject to relatively standard hardness assumptions.
They also gave an instantiation of their cryptosystem using the ideal class group
of a non-maximal imaginary quadratic order with prime conductor as the DDH
group with easy DL subgroup. Subsequently, this cryptosystem was used in com-
bination with a variant of ElGamal in an encryption switching protocol [4],
providing an efficient setting for a secure two-party computation protocol.

The cryptosystem of [5] has two main novel features. Firstly, it is the only
purely linearly homomorphic cryptosystem (not counting the fully homomorphic
cryptosystems based on the learning with errors problem) whose security does
not depend on integer factorization—all hardness assumptions are versions of
Diffie-Hellman and discrete logarithm problems. The second feature is that the
size of the message space can be chosen independently of the security parameter.
This is especially attractive in electronic voting applications, as the message
space can be chosen just large enough to handle the required number of votes.
In contrast, [11] and [3] are both defined in terms of RSA moduli, and the
number of messages that can be encrypted is of the same size as the modulus.
When appropriate security levels are used, these allow far more messages than
necessary for typical voting scenarios.

Castagnos and Laguillaumie [5] also presented numerical results using an
implementation of their cryptosystem, which suggested that it has advantages
over Pailler and Bresson et al. at the 112- and 128-bit security levels. However,
the implementation was done using a general-purpose computer algebra system
as opposed to a more specialized and optimized implementation. In addition,
two possible improvements were suggested, designed to allow larger messages
without increasing the security level, and to speed up decryption via the Chinese
Remainder Theorem. These improvements arise from using conductors that are
prime powers and products of distinct primes, respectively, as opposed to primes.
Exploring both these ideas was left as future work.

In this paper, we fully explore the efficiency of the cryptosystem of Castagnos
and Laguillaumie [5]. Our first contribution is a complete description of the cryp-
tosystem using conductors that are products of prime powers, thereby covering
both the suggested improvements in [5]. We present a detailed benchmarking of
the cryptosystem at the 128-, 192-, and 256-bit security levels, and compare its
performance to both the Pailler [11] and the Bresson et al. [3] cryptosystems.
Our implementation makes use of a state-of-the-art C implementation of class
group arithmetic in imaginary quadratic orders due to Sayles [12]. We use both
the original version of [5] where group elements are sampled from the entire
group, as well as standard short exponent versions that also have provable secu-
rity properties but under variations of the intractability assumptions that are
restricted to short exponents, based on the results of Koshiba and Kurosawa [10].
The variations of Castagnos and Laguillaumie considered here offer performance
improvements when using large exponents and large messages. When compared
to the cryptosystems of Paillier [11] and Bresson et al. [3] at the same security
levels, our results show that the basic version of Castagnos and Laguillaumie is
the fastest at high security levels for small messages.

Improved Efficiency of a Linearly Homomorphic Cryptosystem 351

2 The Castagnos and Laguillaumie Cryptosystem

2.1 The Basic System

As mentioned in the previous section, Castagnos and Laguillaumie presented a
linearly homomorphic encryption scheme based on a DL related problem, effec-
tively solving a thirty-year-old open problem. Their scheme [5] is based on the
hardness of the DDH problem in certain groups G that contain a subgroup F
where solving the DL problem is easy. Castagnos and Laguillaumie call such a
setting a DDH group with an easy DL subgroup and instantiate an example of
one such group-subgroup pair as the class group of a non-maximal imaginary
quadratic order with prime conductor [5]. The following is a simplified version
of Definition 1 in [5], with unused parameters omitted.

Definition 1 ([5, Definition 1]). A DDH group with an easy DL subgroup is a pair
of algorithms Gen and Solve. The Gen algorithm takes as input two parameters
λ and μ and outputs a tuple (B, f, g, f,G,F). Here, G is a finite cyclic group
generated by g, F is a subgroup of G of order f generated by f, |G|/f is a λ-bit
integer bounded above by B, and f is a μ-bit integer. The Solve algorithm is an
efficient algorithm for solving the DL problem in F which is assumed to be easy,
while the DDH problem in G is assumed to be hard even with access to the Solve
algorithm.

In addition, random powers gr with 0 ≤ r ≤ Bf − 1 are assumed to be sta-
tistically indistinguishable from the uniform distribution on G, and both images
and pre-images under the canonical surjection G → G/F are assumed to be effi-
ciently computable. In slight abuse of terminology, we will refer to G as a DDH
group and F an easy DL subgroup of G, with an implicit assumption of the
associated Gen and Solve algorithms.

For the scheme of [5], we let f,ΔK ∈ Z where f > 0, ΔK < −4, ΔK is
square-free and ΔK ≡ 1 (mod 4). Then ΔK is a fundamental discriminant that
defines an imaginary quadratic field K. Let C(OΔK

) and C(OΔf
) denote the

class group of the maximal order OΔK
of K of discriminant ΔK and the non-

maximal suborder OΔf
of OΔK

of discriminant Δf = f2ΔK and conductor f ,
respectively. Arithmetic in C(OΔf

) is conducted on reduced ideals, uniquely
represented by a pair (a, b) where a, b are bounded integers and a > 0. There
is an efficiently computable canonical injection ψf : C(OΔK

) → C(OΔf
) and a

corresponding canonical surjection ϕ̄f : C(OΔf
) → C(OΔK

) whose kernel has
order

|ker(ϕ̄f)| = f
∏

p|f

(
1 −

(
ΔK

p

)
1
p

)
,

where the product runs over the prime factors p of f and (ΔK/p) is the Kronecker
symbol. If every prime factor of f divides ΔK , then |ker(ϕ̄f)| = f . If in addition
ker(ϕ̄f) is cyclic, then one can put F = ker(ϕ̄f) and take G to be a suitable large
cyclic subgroup of C(OΔf

).

352 P. Das et al.

Castagnos and Laguillaumie specifically chose ΔK = −pq and f = p, where
p is prime and q is a positive integer not divisible by p such that q > 4p. Then
the ideal class of f = (p2, p) generates F , and the DL in F is easy since for all
m ∈ {1, 2, . . . , p− 1}, the ideal class of fm is given by (p2, L(m)p) where L(m) is
the unique odd inverse of m (mod p) in the interval [−p, p]; see Proposition 1 of
[5]. In Algorithms 1 and 2, we present the Gen algorithm that constructs the DDH
group G with an easy DL subgroup F and the Solve algorithm that solves the DL
problem in F in this setting; see [5, Figure 2]. For security reasons, as explained
in Subsect. 2.2, we assume that q is also prime and that (p/q) = (q/p) = −1. The
map ψ = ψf in Gen is the aforementioned injection from C(OΔK

) into C(OΔf
);

see [5, Lemma 3] and [8, Algorithm 9] for a method to efficiently compute this
map. The call to Red(·) in Algorithm 2 outputs the two-integer representation
of the unique reduced ideal equivalent to the input.

Algorithm 1. Gen
Input: λ, μ with λ ≥ μ + 2.
Output: B, f, g, f, G, F
1. Pick random integers p and q such that p is a μ-bit prime, q is a (2λ−μ)-bit

prime, pq ≡ 3 (mod 4) and (p/q) = (q/p) = −1
2. Set ΔK ← −pq
3. Set f ← p
4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf)
6. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1. Set r to

a prime ideal of OΔK lying above r

7. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf)

8. Set B ← f ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

9. Return (B, f, g, f, G, F)

Algorithm 2. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. Return x̃−1 (mod f)

Algorithm 3. KeyGen
Input: λ
Output: Public key pk, secret key sk

1. (B, f, g, f)
$←− Gen(λ, μ)

2. x
$←− (Z/BfZ) and h ← gx

3. pk ← (B, f, g, h, f) and sk ← x
4. Return (pk, sk)

Algorithms 3–7 present the linearly homomorphic encryption system first
given in [5]. While we use the notation associated with the specific setting of
class groups, this description applies to the generic setting of a DDH group with
an easy DL subgroup of Definition 1. Here, plaintexts are integers modulo f ,
while ciphertexts are pairs of elements in G. Thus, the size of the message space

Improved Efficiency of a Linearly Homomorphic Cryptosystem 353

is completely determined by the size of the easy DL subgroup F ; in the class
group setting, this is precisely the conductor f of the non-maximal order OΔf

.

Algorithm 4. Encrypt
Input: λ, pk, message m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute c1 ← gr

3. Compute c2 ← fmhr

4. Return (c1, c2)

Algorithm 5. Decrypt
Input: λ, pk, sk, (c1, c2)
Output: Message m
1. Compute m ← c2/cx

1

2. m ← Solve(f, f, F ,m)
3. Return m

Algorithm 6. EvalSum
Input: λ, pk,

(c1, c2) = Encrypt(pk, m),
(c′

1, c
′
2) = Encrypt(pk, m′)

Output: (C1, C2) such that
Decrypt(sk, (C1, C2)) = m + m′

1. Compute c′′
1 ← c1c

′
1, c′′

2 ← c2c
′
2

2. Pick r
$←− {0, · · · , Bf − 1}

3. Return (c′′
1g

r, c′′
2h

r)

Algorithm 7. EvalScal
Input: λ, pk, α,

(c1, c2) = Encrypt(pk, m)
Output: (C1, C2) such that

Decrypt(sk, (C1, C2)) = αm
1. Compute c′

1 ← cα
1 , c′

2 ← cα
2

2. Pick r
$←− {0, · · · , Bf − 1}

3. Return (c′
1g

r, c′
2h

r)

2.2 Security

It is easy to see that if one can solve the discrete logarithm problem in G, then
one can recover the secret key sk and totally break the scheme of [5]. Castagnos
and Laguillaumie show that the DL problem in G is at least as hard as the DL
problem in G/F .

Theorem 1 ([5, Theorem 2]). Let G be a DDH group with an easy DL subgroup.
Then the DL problem in G/F reduces to the DL problem in G.

The DDH problem in our context reads as follows.

Definition 2 (Decisional Diffie Hellman Problem). Let G be a DDH group of
order n with an easy DL subgroup F and g a generator of G. Let x, y, z be integers
such that x, y, z

$←− Z/nZ. The Decisional Diffie Hellman Problem consists of
deciding whether gxy = gz, given (g, gx, gy, gz) and access to the Solve algorithm.

Theorem 2 ([5, Theorem 4]). The scheme described in Algorithms 1–7 is
semantically secure under chosen plaintext attacks (ind-cpa) if and only if the
DDH problem is hard in G.

The following problems were introduced by Bresson et al. in [3] and Paillier
in [11] respectively, and were then adapted by Castagnos and Laguillaumie in [5].

354 P. Das et al.

Definition 3 (Lift Diffie-Hellman Problem). Let G be a DDH group of order

n with an easy DL subgroup F and g a generator of G. Let x, y
$←− Z/nZ and let

π : G → G/F be the canonical surjection. The Lift Diffie-Hellman (LDH) prob-
lem consists of computing gxy, given (g, gx, gy, π(gxy)) and access to the Solve
algorithm.

Definition 4 (Partial Discrete Logarithm Problem). Let G be a DDH
group of order n with an easy DL subgroup F and g a generator of G. Let
x

$←− Z/nZ. The Partial Discrete Logarithm (PDL) problem consists of computing
x (mod |F|), given g and gx and access to the Solve algorithm.

Theorem 3 ([5, Theorem 3]). The scheme described in Algorithms 1–7 is one-
way under chosen plaintext attacks (ow-cpa) if and only if the LDH problem
(equivalently, the PDL problem) is hard.

Castagnos and Laguillaumie show that the LDH and PDL problems are equiv-
alent [5, Theorem 1]. They also show that knowledge of the order n of G makes
it possible to solve the PDL problem efficiently [5, Lemma 1].

For security reasons, it is desirable to work in a cyclic subgroup of C(OΔf
)

that is as large as possible. To that end, Hamdy and Möller [7] recommend to
choose a fundamental ΔK for which the 2-Sylow subgroup of the class group
C(OΔK

), and hence the even part of the class number h(ΔK) = |C(OΔK
)|, is

minimal. The construction in [5] achieves this, since for ΔK = −pq, the even
part of the class number is exactly 2 if p, q are primes with (p/q) = (q/p) = −1,
and that value is as small as possible for non-prime discriminants. In addition,
Castagnos and Laguillaumie also require μ > 80 in order to ensure that the
probability of the conductor p dividing the odd part of h(ΔK) is extremely low
according to the Cohen-Lenstra heuristics. A large cyclic subgroup of C(OΔK

) of
order s, where s is a large factor of h(ΔK), thus produces a large cyclic subgroup
G of C(OΔf

) of order ps, and s is the security parameter for the scheme. The
Cohen-Lenstra heuristics in fact predict that the odd part of C(OΔK

) is itself
cyclic with very high probability. Under these assumptions, finding the order |G|
is believed to be intractable.

2.3 A Variant of the Basic System

Castagnos and Laguillaumie proposed a variant that aims to reduce the size of
the first component c1 of a ciphertext (c1, c2) [5, Section 4.2]. They suggested
constructing the generator g of G in C(OΔK

) so that h ∈ C(OΔK
) and hence

c1 ∈ C(OΔK
). The ciphertext c2 can then be generated by lifting h to C(OΔp

)
using the ψ map. Thus, we have the following changes for this variant. Note
that the semantic security of this variant now relies on the intractability of a
different, less standard modification of the DDH problem.

Improved Efficiency of a Linearly Homomorphic Cryptosystem 355

Modification to Algorithm 1
7. Set g ← [r2] in C(OΔK)

Algorithm 8. Encrypt
Input: λ, pk, message m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute c1 ← gr

3. Compute c2 ← fmψ(hr)
4. Return (c1, c2)

Algorithm 9. Decrypt
Input: λ, pk, sk, c1, c2
Output: Message m
1. Compute m ← c2/ψ(cx

1)
2. m ← Solve(B, f, g, f,m)
3. Return m

2.4 Expanding the Message Space

The condition q > 4p implies |ΔK | > 4p2 and hence p2 <
√

Δp/2, which ensures
that Red(f) = (p2, p) is a reduced ideal in OΔf

[9, Theorem 5.6]. This restriction
allows for a polynomial time Solve algorithm, but it also introduces a fixed
upper bound on the size of the message space for a given security level. To see
this more clearly, consider a factorization based linearly homomorphic scheme
such as the Paillier cryptosystem. Its hardness is based on the factorization of the
RSA modulus and thus, the size of the message space is the size of the modulus
which is the security parameter. In the CL schemes described above, the message
space has size p, so the bound q > 4p forces ΔK > 4p2. For example, based on
[1, Table 4], a security level of 128 bits corresponds to factoring a modulus of bit
size 3072 and computing discrete logarithms in a class group corresponding to a
1828-bit discriminant ΔK . In the Paillier scheme, a security level of 3072 bits thus
corresponds to messages of bit length of 3072. Yet, in the Castanos-Laguilliomie
scheme, messages whose length is equal to the corresponding security level of
1828 bits necessitate using a discriminant of size at least 2 · 1828 + 2 = 3658
bits, far larger than what is required at the same security level. Thus, the CL
variants discussed so far lose their advantage over factoring based schemes.

To solve this problem, Castagnos and Laguillaumie proposed a variant of their
scheme that drops the requirement q > 4p and has no restriction on the size of q
in Gen (Algorithm 1). In this case, however, the ideal (p2, p) of OΔp

and its powers
may no longer be reduced. In order to still guarantee a polynomial time Solve
algorithm, one solution is to lift the ideal (p2, p) to the order OΔp2

of discriminant
Δp2 = p4ΔK where the lifted ideal is reduced since p2 <

√|Δp2 |/2 if |ΔK | > 4.
The class f = [(p2, p)] ∈ C(OΔp

) lifts to the ideal class fl ∈ c(OΔp2
) whose

unique reduced representative is again [(p2, p)], where the lift is now effected by
the map ψ : C(OΔp

) → C(OΔp2
).

Castagnos and Laguillaumie show that fl belongs to the cyclic subgroup of
C(Δp2) generated by [(p2, p)] where fl = ψ(f) is the lift of f under the lifting
map ψ that maps elements in OΔp

to elements in OΔp2
[5, Section 4.1]. So we

precompute the discrete logarithm z of fl with respect to [(p2, p)] in Gen using a

356 P. Das et al.

technique analogous to that used in Solve, but computing inside C(Δp2). Our
computations show that z = 1 almost always. We have the following Gen and
Solve algorithms for this variant.

Algorithm 10. Gen
Input: λ, μ with λ ≥ μ + 2.
Output: B, f, z, g, f, G, F
1. Pick random integers p and q such that p is a μ-bit prime, q is a (2λ−μ)-bit

prime, pq ≡ 3 (mod 4) and (p/q) = (q/p) = −1 if q �= 1
2. Set ΔK ← −pq
3. Set f ← p
4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf)

6. Parse Red(ψ(f)) as (f2, z̃f)
7. z ← z̃−1 (mod f)
8. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1. Set r to

be a prime ideal of OΔK lying above r

9. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf)

10. Set B ← f ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

11. Return (B, f, z, g, f, G, F)

Algorithm 11. Solve
Input: z, f, f,m
Output: m such that m = fm

1. Compute m′ ← ψ(m)
2. Parse Red(m′) as (f2, ỹf)
3. Return zỹ−1 (mod f)

In this version, p can be chosen independently of the security level, subject
to the restriction that it is large enough so p does not divide q with very high
probability (e.g. at least 80 bits). We note that this idea can also be applied to
the variant presented in Subsect. 2.3.

3 Extensions

The original probabilistic encryption scheme in [5] and its modifications pre-
sented in Sect. 2 all use a prime conductor p. Castagnos and Laguillaumie also
suggested the use of a composite conductor f , which could potentially improve
the efficiency of their schemes, and to allow the message space to be increased
arbitrarily without increasing the security level (governed by the size of the
fundamental discriminant ΔK). Specifically, they proposed f =

∏N
i=1 pi or

Improved Efficiency of a Linearly Homomorphic Cryptosystem 357

f = pt where N, t ∈ Z≥1 and pi, p are primes. In this section, we describe
modified versions of the algorithms presented Sect. 2 for the more general con-
ductor f =

∏N
i=1 pt

i that includes the two proposed forms as the special cases
t = 1, N > 1 and t > 1, N = 1 and the original scheme as the case N = t = 1.
To ensure that the kernel of the surjection ϕ̄f : C(OΔf

) → C(OΔK
) is f , we

put ΔK = −p1p2 · · · pNq. It is easy to deduce that the ideal (f2, f) is reduced
in OΔf

when q > 4(p1p2 · · · pN)2t−1. If this is not the case, we need to pro-
ceed as in Subsect. 2.4 and lift the class f of (f2, f) to C(OΔf2) via the map
ψ : C(OΔf

) → C(OΔf2). In order to focus entirely on the differences arising
in all our algorithms when replacing a prime conductor f = p by a composite
conductor f =

∏N
i=1 pt

i, we assume that no such lifting is necessary. The Gen algo-
rithm for this extension is as follows. The KeyGen algorithm remains unchanged.
We present modified versions of Encrypt, Decrypt and Solve separately for the
cases t = 1 and t > 1.

Algorithm 12. Gen
Input: λ, μ
Output: B, f, g, f, G, F
1. Pick random primes p1, p2, · · · , pN , q such that p1p2 · · · pN is a μ-bit inte-

ger, q is a (2λ − μ)-bit prime, p1p2 · · · pNq ≡ 3 (mod 4) and (pi/pj) = 1
and (pi/q) = (q/pi) = −1 for 1 ≤ i, j ≤ N

2. Set ΔK ← −p1p2 · · · pNq

3. Pick t
$←− Z>0 and set f ← (p1p2 · · · pN)t

4. Set Δf ← f2ΔK

5. Set f ← [(f2, f)] in C(OΔf)
6. Choose a small prime r such that gcd(r, f) = 1 and (ΔK/r) = 1.

Set r a prime ideal lying above r

7. Pick k
$←− (Z/fZ)� and set g ← [ψ(r2)] · fk in C(OΔf)

8. Set B ← |M| ·
⌈

log(|ΔK |) ·
√

|ΔK |
4π

⌉

9. Return (B, f, g, f, G, F)

3.1 Case t > 1

Note that since ker(ϕ̄f) contains subgroups of order pt
i for all i, one could also

encrypt mi (mod pt
i). The resulting decryption simply needs to solve the simul-

taneous congruences m ≡ mi (mod pt
i) via Chinese remaindering. This yields

the following modifications.

Modification to Algorithm 12
5. Set fi ← [(p2t

i , pt
i)] in C(OΔf) ∀i ∈ {1, · · · , N}

358 P. Das et al.

Algorithm 13. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute ĉi ← f
mi
i hr

5. Return c1, ĉ1, · · · , ĉn

Algorithm 14. Decrypt
Input: λ, pk, sk, c1, ĉ1, · · · , ĉn

Output: Message m
1. Compute mi ← ĉi/cx

1

2. Compute mi ← Solve(pt
i, fi,mi)

3. Solve m ≡ mi (mod pi)
4. Return m

Algorithm 15. Solve
Input: f, f,m
Output: m such that fm = m

1. for i = 1 to N do
2. Compute fi ← ff/pt

i

3. Compute mi ← mf/pt
i

4. Set x0 ← 0

5. Compute γ ← f
pt−1
i

i

6. for k ← 0 to t − 1 do
7. Compute m′

k ← (f
−xk
i mi)

pi
t−1−k

8. Compute dk ← Solve(pi, γ,m′
k)

9. Set xk+1 ← xk + pkdk

10. end for
11. Set mi ← xt

12. end for
13. Solve m ≡ mi (mod pt

i) ∀i ∈ {1, · · · , N} using CRT
14. Return m

3.2 t = 1

If t = 1, we have f = p1p2 · · · pN . If we assume q > 4f as before, i.e., λ ≥ μ+2 in
Gen, then the reduced representative of the ideal class f ∈ C(OΔf

) is (f2, f) and
f generates a cyclic group of order f in C(OΔf

). Thus, our Encrypt, Decrypt
and Solve algorithms remain unchanged from their original versions. However,
since the Solve algorithm is essentially an inversion modulo f (a prime in the
CL schemes) and f is now composite, we can perform computations modulo
the individual prime factors of f and retrieve the message modulo f using the
Chinese Remainder Theorem (CRT). This can be done in three ways:

1. The first CRT modification is straightforward: we simply compute inversions
modulo each prime divisor of f and use CRT to retrieve the message modulo f .
The modified Solve algorithm is as follows:

Improved Efficiency of a Linearly Homomorphic Cryptosystem 359

Algorithm 16. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. Compute mi ← x̃−1 (mod pi)
3. Solve m ≡ mi (mod pi)
4. Return m

2. The second CRT modification utilizes the idea that F contains order pi sub-
groups for each i that are generated by the elements fi = f(f/pi) represented
by the ideals (p2i , pi). Thus, one can compute mi ≡ m (mod pi) and encrypt
m =

∏n
i=1 f

mi
i . Clearly, m is of form (f2, x̃f) i.e., m ∈ 〈f〉 and we have the

following modifications.

Modification to Algorithm 12
5. Set fi ← [(p2

i , pi)] in C(OΔf)

Algorithm 17. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c2)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute c2 ← fm1
1 fm2

2 · · · fmN
N hr

5. Return c1, c2

Algorithm 18. Solve
Input: f, f,m
Output: m such that m = fm

1. Parse Red(m) as (f2, x̃f)
2. mi ← (x̃f/pi)

−1 (mod pi)
3. Solve m ≡ mi (mod pi)
4. Return m

3. The third CRT variant also uses the fact that fi = [(p2i , pi)] is cyclic of order
pi and generates N ciphertexts mi = fmi

i where mi ≡ m (mod pi). The
modification to the Gen algorithm is identical to that of the previous variant,
and the modified Encrypt and Decrypt algorithms take the following form:

Algorithm 19. Encrypt
Input: λ, pk, m
Output: Ciphertext (c1, c̃1, . . . , c̃n)

1. Pick r
$←− {0, · · · , Bf − 1}

2. Compute mi ← m (mod pi)
3. Compute c1 ← gr

4. Compute ĉi ← f
mi
i hr

5. Return c1, ĉ1, · · · , ĉn

Algorithm 20. Decrypt
Input: λ, pk, sk, c1, ĉ1, · · · , ĉn

Output: Message m
1. Compute mi ← ĉi/cx

1

2. Compute mi ← Solve(pi, fi,mi)
3. Solve m ≡ mi (mod pi)
4. Return m

360 P. Das et al.

3.3 Security Considerations for the Extensions

It is easy to verify that the extensions presented in Sect. 3 preserve the linearly
homomorphic properties. Moreover, the security considerations for the original
CL scheme remain unchanged throughout these extensions, with the appropri-
ate conditions on the Legendre symbols (pi/pj), (pi/q) and (q/pi) as stated in
Algorithm 12. As described in Subsect. 2.2, the fundamental discriminants ΔK

should be chosen such that 2-Sylow subgroup of the class group C(OΔK
) is as

small as possible.
If N is the number of prime factors of ΔK , then the 2-rank of C(OΔK

)
is N − 1, and 2N−1 divides h(ΔK). We wish to ensure that this is in fact the
highest power of 2 dividing h(ΔK). For discriminants of the form ΔK = −pq as in
Algorithm 1, we have N = 2, so h(ΔK) is even. The conditions (p/q) = (q/p) =
−1 guarantee that h(ΔK)/2 is odd. Similarly, when ΔK = −p1p2 · · · pNq, we
see that 2N−1 divides h(ΔK). If (pi/pj) = 1 and (pi/pN) = (pN/pi) = −1 for
1 ≤ i, j < N , then no higher power of 2 divides h(ΔK) (see, for example, [2]).

4 Parameter Choices

As described in [5], the main concern with selecting parameters is that it should
be computationally infeasible to compute h(ΔK), the class number of the max-
imal order OΔK

, as knowledge of the class number in this setting enables the
computation of discrete logarithms in C(OΔf

). Biasse et al. in [1] gave estimates
of discriminant sizes to provide various levels of security using the best-known
index calculus algorithms of subexponential complexity. In Table 1, we give these
sizes for the 128-, 192-, and 256-bit security levels, along with the corresponding
RSA modulus sizes required for Paillier [11] and Bresson et al. [3]. Note that
generic group algorithms do not play a role here, as their complexity is worse
than the index calculus algorithms.

Table 1. Parameter sizes (in bits)

Security level RSA modulus ΔK Δf (for n-bit messages)

16 80 256 32768

128 3072 1828 1860 1988 2340 67364

192 7680 3598 3630 3758 4110 69134

256 15360 5972 6004 6132 6484 71508

We also list, in Table 1, the sizes of the non-fundamental discriminants Δf

required to provide the given security level for various message sizes. As men-
tioned earlier, Paillier and Bresson et al. can encrypt messages of up to the same
size as the RSA modulus used, which is determined by the desired security level.
The variants of the Castagnos and Laguillaumie cryptosystem have their security

Improved Efficiency of a Linearly Homomorphic Cryptosystem 361

level fixed primarily by the size of the fundamental discriminant ΔK , and can
work with different message sizes by varying the conductor. We see that smaller
message spaces should be quite favorable for the Castagnos and Laguillaumie
system and its variations, as even the non-maximal discriminans are quite small
compared to the RSA moduli required Paillier and Bresson et al. at the same
security levels. We also see that larger message spaces can be used at a fixed
security level, but note that the extensions involving prime power conductors are
necessary, since all primes dividing the conductor must also divide ΔK . Even
with this extension, the CL cryptosystems would not be very efficient on such
large messages, as the discriminants required are very large.

The two other considerations for security parameter choices are the sizes
of primes dividing the conductor f and the upper bound for selecting random
exponents in the protocol. We now discuss these two considerations.

4.1 Restrictions on Prime Factors of f

Castagnos and Laguillaumie insisted on using a conductor (a prime p) of size at
least 80 bits to ensure gcd(p, h(ΔK)) = 1 with high probability implying that
the odd part of the class number is completely unknown. This is important as
the odd part of h(ΔK) is the security parameter and knowing the size of the
odd part, s, leads to a total break of the scheme as shown in Subsect. 2.2. If a
divisor of s is known, then computing s itself may be easier. Extrapolating this
idea to our extension in which the conductor is a product of prime powers would
then imply that the prime divisors of the conductor be at least 80 bits. This
restriction is detrimental to the performance of both the original and extended
versions of the cryptosystem.

However, we believe that this is an unnecessary restriction when one consid-
ers how a known factor of h(ΔK) could be exploited in practice. The best known
algorithms to compute the class number are subexponential index-calculus algo-
rithms and generic group algorithms. There is no known way to speed up the
index calculus algorithms given a divisor of the class number, as the complexity
depends on the discriminant as opposed to the class number. Thus, the discrim-
inant sizes recommended by Biasse et al. in [1] offer enough protection against
index calculus algorithms even if a divisor of the class number is known.

When considering generic algorithms, on the other hand, a known divisor of
the class number does improve the running time, as one can target the unknown
part directly. We consider the worst case that the entire conductor f divides the
odd part of the class number (note that f itself is odd). Let 2k1 be the even and
s = f · s′ be the odd factors of h(ΔK) where k1 ∈ Z≥0 and s′ is the unknown
part of the odd part s. Since h(ΔK) < 1

π log(|ΔK |)√ΔK (see, for example, [6,
§5.10]), we have,

s′ <
1

2k1 · f · π
log(|ΔK |)

√
|ΔK |. (1)

Generic group algorithms can be used to compute s′ in time O(
√

s′). Ignoring
constants and lower-order terms, in order to provide b bits of security, we require

362 P. Das et al.

that
√

s′ > 2b. Combining this with (1) yields the following upper bound on
log2 f :

log2 f ≤ log2(log(|ΔK |)) +
1
2

log2(|ΔK |) − k1 − 2 − 2b. (2)

For example, following the recommendations in [1], Castagnos and Laguillaumie
chose a discriminant of size 1828 bits at the 128-bit security level to prevent
index calculus attacks in C(OΔK

). Substituting these values in Eq. 2 results in

log2 f ≤ 667 − k1,

meaning that we can tolerate known divisors of the conductor of size over 600
bits before the generic attacks would work in fewer than 2b operations. Note
that using conductors with prime divisors larger than this bound is also highly
unlikely to be an issue, because, as discussed in [5], the probability that primes
of this size divide the class number is negligible—indeed, in [5], using primes
larger than 280 was deemed to be sufficient. Thus, we conclude that based on the
current state of knowledge of possible attacks on the cryptosystem, prime divisors
of any size in the conductor are unlikely to result in any loss of security. This is
because the discriminant sizes required to avoid index calculus attacks result in
class numbers that are sufficiently large to prevent the generic algorithms, which
could exploit a known factor of the class number, from working in fewer than 2b

operations.

4.2 Selection of Random Exponents

The bound B on exponents in Algorithm 1, taken directly from [5], is designed to
ensure that the resulting group elements are selected from the entire class group
uniformly at random, a necessary condition for the security proofs to hold. In [5],
the formula for B has a factor of 280 in order to ensure statistical distance of
2−80 from the uniform distribution; in our exposition above, we instead use the
size of the message space f, thus allowing the resulting statistical distance 1/f
to vary with the size of the message space. In the following section, in which we
benchmark the practical performance of their version as well as our extensions,
we will consider this version of the cryptosystem.

However, it is also known that one can obtain similar security proofs using
much shorter exponents if one is willing to use slightly non-standard versions of
the intractability assumptions, a critical performance optimization. There is no
known way to take advantage of knowledge that discrete logarithms are small
in the index calculus algorithms, so these have no bearing on the exponent
bounds. The only concern is with generic algorithms of square root complexity,
which imply that all exponents should be chosen with at least 2b bits for a b-bit
security level. Koshiba and Kurosawa [10] proved that security proofs relying on
Diffie-Hellman problems also hold assuming that such short exponent versions
of the discrete logarithm problem are intractable. Thus, it is at least plausible
that the security proofs of [5] also hold under similarly modified intractability
assumptions. We will also consider short exponent versions of our cryptosystems,

Improved Efficiency of a Linearly Homomorphic Cryptosystem 363

as is typically done in practice, in the benchmarks presented in the next section,
using exponents of 2b bits.

5 Numerical Results

In this section we present numerical results from benchmarking our extended
version of the cryptosystem of Castagnos and Laguillaumie [5]. Our first set of
experiments were designed to determine which variation and parameter selection
yields the fastest encryption and decryption times for different combinations of
security level and message size. The second set of experiments compares the best
versions against the Paillier [11] and Bresson et al. [3] cryptosystems.

Our experiments were carried out on a standard desktop with 4 Intel Core
i5-2400 CPUs, each CPU with 4 cores, running at 3.10 GHz, and 8 GB RAM,
running Fedora 28. Our programs are written in C/C++ (using gcc version 8.1.1)
with GMP (version 6.1.2) and NTL (version 11.3.2) support for arbitrary pre-
cision arithmetic. We used Maxwell Sayles’s optimized binary quadratic forms
library [12] for ideal arithmetic. Generic single ideal exponentiations were com-
puted using the 8-NAF method while double exponentiations were computed
using the interleaving method with window size 8. However, the exponentiations
of f = [(f2, f)] were performed by simply computing the inverse of the exponent
modulo the order of the ideal class of f and setting fx as [(f2, x−1f)].

5.1 Comparison of Variations of the Castagnos and Laguillaumie
Cryptosystem

The objective of these experiments was to find the fastest CL variation among
different choices of the conductor at each security level. Since the message space
can be chosen independently of the security parameter, we considered message
space sizes of 16, 80 and 256 bits, as well as the same message size of the Pailler
[11] cryptosystem at the same security level. We considered 80 bits as Castagnos
and Laguillaumie promote 80 bits of message space for practical applications in
their paper, and the remaining message sizes were selected to illustrate perfor-
mance with smaller and larger message sizes at fixed security levels. As one can
select short exponents in the CL and BCP schemes, we performed each experi-
ment twice for these cryptosystems, once with full domain exponents and next
with shorter exponents.

We used conductors of the general form f = (p1 · · · pN)t, and varied N and t
to find the optimal (N, t) pair for each security level, message space size, and
variant. We performed some preliminary experiments to find the maximum val-
ues of N and t that one should consider during these experiments. Our obser-
vations showed that the bounds N = 9 and t′ ≤ t < t′ + 5 were sufficient to
find the optimal (N, t) pairs for a message space at a given security level. Here,
t′ = �|M|/ΔK� is the minimum t value required to achieve the message space
size at a security level. The choice of N = 9 and five more values of t were merely
to see the effect of increasing N and t values on the performance. We generated

364 P. Das et al.

10 different parameters (f,ΔK) for each of the 45 combinations of N and t. As
N and t increase, it is difficult to maintain exact conductor sizes as desired and
so we made sure that the conductor has at least the required minimum number
of bits, but at most 3 bits more.

We considered all four variations of the cryptosystem of Castagnos and
Laguillaumie described in Sect. 2 as well as the modifications to the original con-
ductor choice in Sect. 3. We denote the four schemes as Basic, Variant, BasicPlus
and VariantPlus, where “Variant” denotes the version described in Subsect. 2.3
with smaller ciphertexts, and the latter two are the Basic and Variant with the
expansion technique from Subsect. 2.4 applied. We also used all the CRT-based
encryption and decryption variations described in Sect. 3.

In summary, for every combination of security level, message size, conductor
decomposition (N and t), and specific cryptosystem variant, we computed the
average encryption and decryption times in milliseconds taken over the same set
of 1000 messages. Table 2 contains a summary of these experiments. For each
security level and message size pair, we list the average encryption and decryption
times for the fastest variant along with the corresponding N and t values. We
record this for both full domain exponents and short exponents. The variants
are specified using the short-hand notation B, V, BP, and VP, for Basic, Variant,
BasicPlus, and VariantPlus, respectively. ED denotes encryption and decryption,
2ED denotes decryption with CRT2 and its corresponding encryption and 3ED
denotes encryption with CRT3 and its corresponding encryption.

Table 2. Summary of best performances by CL schemes (in ms)

Security Message Short exponents Full exponents

N t Scheme Enc. Dec. N t Scheme Enc. Dec.

128 16 1 1 B-ED 14 9 1 1 B-ED 58 28

80 1 1 B-ED 15 9 1 1 B-ED 63 33

256 1 1 B-ED 18 11 1 1 V-ED 96 50

3072 1 1 B-ED 156 98 6 2 VP-ED 964 794

192 16 1 1 B-ED 47 27 1 1 B-ED 223 115

80 1 1 B-ED 47 27 1 1 B-ED 249 128

256 1 1 B-ED 54 31 1 1 B-ED 320 166

2 1 V-ED 328 160

7680 1 1 B-ED 871 508 6 3 VP-ED 7276 6702

256 16 1 1 B-ED 116 65 1 1 B-ED 672 342

80 1 1 B-ED 118 66 1 1 B-ED 728 370

256 1 1 B-ED 126 70 2 1 B-2ED 865 440

2 1 V-2ED 955 432

15360 5 1 B-ED 4449 2436 6 3 VP-ED 35790 34551

Improved Efficiency of a Linearly Homomorphic Cryptosystem 365

We see that conductors with multiple prime divisors (N > 1) only improve
performance for sufficiently large messages and large exponents. Using prime
powers (t > 1) does not generally improve performance, but is necessary to
handle messages that are larger than the fundamental discriminant. In that case,
the smallest required value of t was optimal. Among the cryptosystem variations,
the basic version was optimal when using short exponents and/or small messages,
while the small ciphertext variation and some of the CRT modifications came
out on top when using full exponents and larger security levels and messages.

5.2 Comparison to Paillier and Bresson et al.

We next compare the best versions of the Castagnos and Laguillaumie cryp-
tosystem to the Paillier [11] and Bresson et al. [3] schemes. Paillier mentioned
two encryption schemes in his paper [11] and presented CRT improvements for
both decryption routines. We implemented the schemes along with their CRT
improvements and observed that Scheme 1 with CRT gives the best encryp-
tion and decryption results with small message sizes and the best decryption
result with large message sizes. Scheme 3 with CRT gives the best encryption
results with large message sizes. Since the BCP scheme is also based on the
DDH problem, we have two versions of the BCP scheme as well, one with full
domain exponents and the other with short exponents. Note that contrary to
BCP, Paillier encryption performs operations with the message as an exponent.
Thus, for a fixed security level, we expect that Pailler encryption times should
vary slightly with different message sizes, whereas the other operations should
remain relatively constant.

We compare below these results with those of the best results from the
Castagnos and Laguillaumie variants in Tables 3, 4 and 5. For the Castagnos
and Laguillaumie timings, we list the best observed encryption and decryption
times amongst all the variants we implemented. Note that for the largest mes-
sage spaces, no single variant results in both optimal encryption and decryption;
in practice, we recommend the version with faster decryption, as the difference
in encryption times relative to the optimal version is much smaller than the
corresponding difference between decryption times.

At the 128-bit security level, Paillier was the fastest when using full exponents
and BCP was the fastest for short exponents, for all message sizes considered.
BCP was fastest for short exponents at the 192-bit level, while the Castagnos and
Laguillaumie variants were superior when using full exponents for 16- and 80-bit
messages; the results were mixed for larger messages. At the 256-bit security
level, Castagnos and Laguillaumie variants are fastest for the three smallest
message sizes when using full and short exponents. Among the Castagnos and
Laguillaumie cryptosystem variations under consideration here, the basic version
from [5] proved to be the best for small messages and exponents, but other
variations and conductor decompositions were advantageous once the messages
and exponents were sufficiently large.

366 P. Das et al.

Table 3. Summary of best performance (in ms)—128-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 37 12

BCP 7 3 147 73

CL 14 9 58 28

80 Pai 38 12

BCP 7 3 147 73

CL 14 9 63 33

256 Pai 40 12

BCP 7 3 147 73

CL 18 11 96 50

3072 Pai 74 12

BCP 7 3 145 72

CL 156 98 964 794

Table 4. Summary of best performance (in ms)—192-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 376 128

BCP 38 18 1508 754

CL 47 27 223 115

80 Pai 381 129

BCP 38 18 1508 754

CL 47 27 249 128

256 Pai 393 129

BCP 38 18 1508 754

CL 54 31 320 166

328 160

7680 Pai 745 254

755 129

BCP 38 18 1487 743

CL 871 508 7276 6702

Improved Efficiency of a Linearly Homomorphic Cryptosystem 367

Table 5. Summary of best performance (in ms)—256-bit security

Message System Short exponents Full exponents

Encryption Decryption Encryption Decryption

16 Pai 2069 753

BCP 146 77 8306 4154

CL 116 65 672 342

80 Pai 2079 752

BCP 146 77 8298 4152

CL 116 65 728 370

256 Pai 2104 751

BCP 146 77 8295 4151

CL 126 70 865 440

955 432

15360 Pai 4072 1475

4125 751

BCP 141 74 8170 4087

CL 4449 2436 35790 34551

6 Further Work

Our results show that, as expected, the Castagnos and Laguillaumie cryptosys-
tem has some performance advantages as compared to Paillier and BCP for small
messages and at high security levels. The variations described in this paper pro-
vide improvements when large exponents and message sizes are used.

One further optimization that could be considered to improve the extended
versions is to take advantage of the fact that sufficiently small prime divisors of
the conductor can be handled without multiprecision. This was not done in our
experiments and could potentially make these versions more competitive.

We remark that the short exponent versions of the cryptosystems, as
expected, are quite efficient. It would be of interest to revise and complete
the security proofs in this context, where the intractability assumptions are all
replaced by their short exponent analogues.

References

1. Biasse, J.-F., Jacobson Jr., M.J., Silvester, A.K.: Security estimates for quadratic
field based cryptosystems. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS,
vol. 6168, pp. 233–247. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14081-5 15

2. Bosma, W., Stevenhagen, P.: On the computation of quadratic 2-class groups.
J. Théor. Nombres Bordeaux 8(2), 283–313 (1996). http://jtnb.cedram.org/item?
id=JTNB 1996 8 2 283 0

https://doi.org/10.1007/978-3-642-14081-5_15
https://doi.org/10.1007/978-3-642-14081-5_15
http://jtnb.cedram.org/item?id=JTNB_1996__8_2_283_0
http://jtnb.cedram.org/item?id=JTNB_1996__8_2_283_0

368 P. Das et al.

3. Bresson, E., Catalano, D., Pointcheval, D.: A simple public-key cryptosystem with
a double trapdoor decryption mechanism and its applications. In: Laih, C.-S.
(ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 37–54. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-40061-5 3

4. Castagnos, G., Imbert, L., Laguillaumie, F.: Encryption switching protocols revis-
ited: switching modulo p. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 255–287. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 9

5. Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from
DDH − DL. In: Topics in Cryptology - CT-RSA 2015, The Cryptographer’s Track
at the RSA Conference 2015, San Francisco, CA, USA, 20–24 April 2015. Proceed-
ings, pp. 487–505 (2015). https://doi.org/10.1007/978-3-319-16715-2 26

6. Cohen, H.: A Course in Computational Algebraic Number Theory. Graduate Texts
in Mathematics, vol. 138. Springer, Berlin (1993). https://doi.org/10.1007/978-3-
662-02945-9

7. Hamdy, S., Möller, B.: Security of cryptosystems based on class groups of imaginary
quadratic orders. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp.
234–247. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 18

8. Hühnlein, D., Jacobson Jr., M.J., Paulus, S., Takagi, T.: A cryptosystem based on
non-maximal imaginary quadratic orders with fast decryption. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 294–307. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0054134

9. Jacobson Jr., M.J., Williams, H.C.: Solving the Pell Equation. CMS Books in
Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2009).
https://doi.org/10.1007/978-0-387-84923-2

10. Koshiba, T., Kurosawa, K.: Short exponent Diffie-Hellman Problems. In: Bao, F.,
Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 173–186. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-24632-9 13

11. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

12. Sayles, M.: Optarith and qform libraries for fast binary quadratic forms arithmetic
(2013). http://github.com/maxwellsayles

https://doi.org/10.1007/978-3-540-40061-5_3
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-319-63688-7_9
https://doi.org/10.1007/978-3-319-16715-2_26
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/978-3-662-02945-9
https://doi.org/10.1007/3-540-44448-3_18
https://doi.org/10.1007/BFb0054134
https://doi.org/10.1007/978-0-387-84923-2
https://doi.org/10.1007/978-3-540-24632-9_13
https://doi.org/10.1007/3-540-48910-X_16
http://github.com/maxwellsayles

Applied Cryptography

On the Tracing Traitors Math

Dedicated to the Memory of Bob Blakley - Pioneer
of Digital Fingerprinting and Inventor of Secret Sharing

Grigory Kabatiansky(B)

Skolkovo Institute of Science and Technology (Skoltech),
Moscow 143025, Russia

g.kabatyansky@skoltech.ru

Abstract. We give an overview of the most important mathemati-
cal results related to different types of tracing traitors schemes, or
schemes with identifiable parent property, especially for the case when
the scheme’s “length” goes to infinity.

1 Introduction

The interest in protecting digital content from unauthorized copying and dis-
tribution can be traced from the mid 80s of the last century, see [1,2]. A well-
developed mathematical approach to this problem firstly appeared in the paper
“Tracing traitors” by [3]. This paper introduced many important notions. Among
them two types of tracing traitors systems capable to trace at least one guity user
(under an attack of unknown) were proposed and considered in [3]: open systems,
with zero-error probability, which later leaded to the notion of IPP (identifiable
parent property) systems [4], and secret systems, which later became a basis of
so-called collusion resistant digital fingerprinting code, see [5].

In this paper we shall review different types of IPP systems and some related
objects. There are two the following mostly explored particular cases of IPP
systems, namely, codes with the identifiable parent property (IPP codes), coined
in [4], and set systems with the identifiable parent property (IPP set systems)
introduced in [7]. These IPP systems are based on perfect secret sharing schemes
(SSS, for short) independently invented in [8] and [9]. Namely, IPP codes are
based on the simplest n-out-of-n threshold perfect SSS, and IPP set systems are
based on general w-out-of-n threshold perfect SSS.

One of tracing traitor systems proposed in [3] is a particular case of IPP
codes with an additional property, called “traceability”, which allow to find (to
trace) a guilty user as the nearest (in the Hamming distance) code vector to
the given unauthorized copy (vector). This property makes “tracing” (decoding)
much feasible than in a general case. We shall discuss such systems as well as
other approaches to constructing IPP systems with feasible decoding.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 371–380, 2019.
https://doi.org/10.1007/978-3-030-16458-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_21

372 G. Kabatiansky

2 IPP Codes and IPP Set Systems - How Do They
Work?

Following [3] we consider a broadcasting scenario when a dealer distributes some
digital content x to M legal users. In order to prevent illegal redistribution the
dealer sends the content x in an encrypted form y = E(x, k) obtained by usage
of some secret key k. The key k serves as a session key and should be changed for
distribution another portion of a digital content. In order to distribute secretly
the key k to users the dealer firstly apply n-out-of-n threshold perfect SSS and
generate the corresponding shares s1, . . . , sn. We assume that the session key
k belongs to the finite field GF (q) of q elements. The corresponding shares
s1, . . . , sn are random uniformly distributed variables with values from GF (q)
such that

s1 + . . . + sn = k (1)

It is well-known (and easy to check) that knowledge of all si allows to anyone
uniquely reveal k from (1) and, on the other hand, it is impossible to recover k
(except of guessing) if not all shares are known.

The dealer encrypts every share sj on q different encryption keys, which form
the set F (j), |F (j)| = q. The corresponding nq encrypted shares

a11, a12, . . . , a1q; a21, a21, . . . , a1q; an1, an2, . . . , anq

are transmitted by the dealer along with the encrypted portion of digital con-
tent (this sequence of nq encrypted shares is called in [3] as enabling block).
During the initialization phase a given i-th user receives from the dealer the
set of decryption keys {d1i, . . . , dni}, where dji is the decryption key for the
encryption key fji ∈ F (j) (this set of decryption keys is called in [3] as user
personal key). Since for every j = 1, 2, . . . , n there are exactly q decryption
keys D(j) = {dj1, . . . , djq} we shall enumerate them and consider the ordered
set of decryption keys (d1i, . . . , dni) assigned to the i-th user as a q-ary vector
di ∈ GF (q)n. The set of all such vectors C ⊂ GF (q)n is called a fingerprinting
code. From now we won’t distinguish between a given user i and assigned to it
codevector di ∈ C.

Let a coalition of malicious users (traitors) U ⊂ C want to create a “device”
(“decoder”) which will be able to decrypt every transmitted encrypted portion
of digital content. It means that the coalition has to create a new sequence
z = (z1, . . . , zn) of decryption keys with the property that zj ∈ D(j) for all
j ∈ {1, 2, . . . , n}. It is very important to note that zj ∈ {dju : u ∈ U}, i.e. that
the coalition can choose keys only from the set of the decryption keys (in digital
fingerprinting it is called marking assumption, see [5,6]). Hence the resulting
problem can be formulated in the language of coding theory as it was first done
in [4].

For any set U ⊂ GF (q)n and any coordinate i define its i-th projection Pi(U)
as

Pi(U) =
⋃

u∈U

ui (2)

On the Tracing Traitors Math 373

Remind that for a fingerprinting code C we shall denote by U a coalition of
malicious users (traitors) as well as the corresponding to them set of codevectors.
Denote by < U > the set of all false fingerprints (also called descendants [4])
that the coalition U can create, namely,

< U > = {z = (z1, . . . , zn) ∈ GF (q)n : ∀i zi ∈ Pi(U)} (3)

Let
Et(C) = ∪U⊂C: |U |≤t < U >

denote the set of all false fingerprints which can be created by all coalitions U
of size at most t.

Definition 1 ([4]). A q-ary code C is called a code with identifiable parent prop-
erty of order t, or C is a t-IPP code for short, if for all z ∈ Et(C)

Ct(z) :=
⋂

U : z∈<ϕ(U)>, |U |≤t

U �= ∅ (4)

Hence, if the dealer uses a t-IPP code then from any false fingerprint z created
by a coalition U , at least one user from U will be identified with probability 1
(without accusing any innocent user).

For a given q-ary code C of length n let us define its rate as R(C) =
n−1 logq |C|. And let us denote Mq(n, t) the maximal possible cardinality of
a q-ary t-IPP code of length n. Then

Rq(n, t) := n−1 logq Mq(n, t) (5)

is the largest possible rate of q−ary t-IPP codes of length n.
As usual in coding theory a family of codes C(i) called good if their rate is

separated from zero, i.e. R(C(i)) ≥ γ > 0. It is easy to see that Mq(n, q) ≤ q
and hence good q−ary t-IPP codes do not exist for q ≤ t.

First construction of good t-IPP codes was proposed in [3] based on the
following simple observation:

Lemma 1. [3] A q-ary code of length n with the minimal code distance

d(C) > n(1 − t−2) (6)

is a t-IPP code.

Moreover codes with the minimal code distance satisfying the inequality (6)
posses the following stronger property called traceability:
for any false fingerprint z created by a coalition U the closest (in the Hamming
metric d(., .)) codevector belongs to U.

Definition 2. A code C is called a t-traceability code if for any coalition U ⊂
C : |U | ≤ t and any vector z ∈< U > the following inequality holds for all
c ∈ C \ U

d(c, z) > min
u∈U

d(u, z) (7)

374 G. Kabatiansky

Hence the complexity of tracing a guilty user in this case has the order M
instead of M t for general t-IPP codes. The following question is open:
what is the minimal alphabet size qt for which there exist family of good t-IPP
codes with traceability?

It follows immediately from Plotkin and GV bounds [11] that the Eq. (6)
guaranties existence of such codes when (and only) q > t2. On the other hand,
we have remarked already that good q-ary t-IPP codes do not exist for q ≤ t.
It is known [12,13] that q2 = 3 and for larger t it was proved in [14] that
qt ≤ t2 −
 t

2� + 1. Hence first unknown value is q3 for which I conjecture that
q3 = 4.

Let us note that the aforementioned results were proved by the probabilistic
method [15], also known in information theory as random coding technique.
And we know even less about feasible (i.e. with polynomial in n complexity)
constructions of good t-IPP codes with traceability. In contrary, there is known
explicit construction of good t-IPP codes with polynomial in n complexity of
encoding and decoding (i.e. tracing) for all q > t. This construction is based on
algebraic-geometry codes and concatenated construction [16].

Another class of schemes with IPP was proposed in [7] based on W -out-of-N
threshold perfect SSS, which were constructed in [8,9]. Namely, the dealer firstly
apply W -out-of-N threshold perfect SSS to the key k and generates N shares
s1, . . . , sN which allow anyone who has W or more shares uniquely recover k and
at the same time having less than W shares provides no a posteriori information
about the key k. The dealer encrypts every share sj on its unique encryption
key fj . The corresponding N encrypted shares α1, α2, . . . , αN are transmitted
by the dealer along with the encrypted portion of digital content. During the
initialization phase the dealer sends to a given i-th user the corresponding set
Xi of W decryption keys. Hence every legal user can recover the key k (and then
to “open” the corresponding digital content).

According to the properties of W -out-of-N threshold perfect SSS, a coalition
U of malicious users in order to create a “device” (“decoder”), which will be
able to decrypt every transmitted encrypted portion of digital content, have to
create a set of decryption keys X(U) ⊂ ∪u∈UXu of the cardinality at least W .
For this model the corresponding marking assumption is that the coalition have
to create a set of decryption keys of size at least W and only keys from the union
of sets of the decryption keys provided to the coalition’s members can be chosen.
Denote by < U >ss all subsets that can be generated by the coalition U under
this marking assumption, namely,

< U >ss = {X ⊂ [N] : |X| ≥ W, X ⊂ ∪u∈UXu} (8)

The goal of the dealer (as always) is, for any given forged ≥ w−subset of the
decryption keys be able to identify at least one user from the malicious coalition.
It leads to the following definition of the t-IPP (W,N)-set system.

Definition 3 [10]. A family X= {X1, ...,XM}of W -subsets of {1, ..., N} is called
a t-IPP (W,N)-set system if for every S ⊆ {1, . . . , N}, |S| ≥ W the intersection

On the Tracing Traitors Math 375

of all coalitions of size ≤ t that can generate S is either non empty, i.e.
⋂

U :|U |≤t,S∈<U>ss

U �= ∅, (9)

or there is no ≤ t-coalition U such that S ∈< U >ss.

There is a natural one-to-one correspondance between (W,N)-set systems
and binary constant-weight code of weight W and length N . Indeed, let us
substitute to a (W,N)-set system X = {X1, ...,XM} the corresponding binary
constant-weight code CX of weight W and length N consisting of characteristic
vectors c1, . . . , cM of sets X1, ...,XM . If a (W,N)-set system is the t-IPP then
we call the corresponding binary code as t-IPP set system code. The rate of the
corresponding binary constant weight code we will also call the rate of t-IPP
(W,N)-set system.

Let us denote M(W,N, t) the maximal possible cardinality of a binary t-IPP
set system code of weight W and length N , and denote by

R(W,N, t) := N−1 log2 M(W,N, t) (10)

is the largest possible rate of a (W,N)-set system. The relationship between t-
IPP (W,N)-set systems and binary constant weight codes was firstly observed
and investigated in [17], but unfortunately main results of [17], concerning t-IPP
(W,N)-set systems, appeared to be incorrect as it was shown in [18]. The correct
application of coding results to t-IPP (W,N)-set systems was done in [19], which
provides some best known rates of t-IPP (W,N)-set systems. We shall compare
IPP-codes and IPP (W,N)-set systems later.

Note that the original paper [7], in which (W,N)-set systems were introduced,
contains the definition with additional property of traceability. On the language
of set systems the traceability property means that for any coalition U : |U | ≤ t
and any set S “generated” by the coalition, i.e. S ⊂ ∪u∈UXu and |S| ≥ W , the
set from the family which has the largest intersection with S belongs to U .

Definition 4 A family X = {X1, ...,XM} of W -subsets of {1, . . . , N} is called
a t-traceability (W,N)-set system if for any coalition U : |U | ≤ t and any set
S ∈< U >ss the following inequality holds for all j �∈ U

|S ∩ Xj | < max
u∈U

|S ∩ Xu| (11)

The following simple lemma is an analog of Lemma 1 for t-traceability
(W,N)-set systems.

Lemma 2 If |Xi ∩ Xj | < W/t2 for any Xi,Xj ∈ X, i �= j, then the family X is
a t-traceability set system.

The binary code corresponding to a t-traceability (W,N)-set system we shall
call a t-traceability constant weight code. We shall say that a binary vector
a = (a1, . . . , aN) covers a binary vector b = (b1, . . . , bN) and denote it a � b

376 G. Kabatiansky

if ai ≥ bi for all i. Equivalently, a � b if a ∨ b = a. For any set U of binary
vectors let us denote U∗ = ∨u∈Uu. Then the Definition 4 and Lemma 2 can be
rewritten in the following way.

Definition 5 A binary constant weight code C of weight W and length N is
a t-traceability code if for any t-subset U ⊂ C and any z : U∗ � z of weight
wt(z) ≥ W the following inequality holds for all c ∈ C \ U

d(c, z) > min
u∈U

d(u, z) (12)

Lemma 3 A binary constant weight code C of weight W is a t-traceability code
if

d(C) > 2W (1 − t−2) (13)

The similarity between (6) and (13) is obvious.

3 Existence of Good t-IPP Codes

In this section we consider asymptotic behavior of rate Rq(n, t) := n−1 logq

Mq(n, t) of the best t-IPP codes when q is fixed and n goes to infinity (it is
traditional for coding theory).

Lemma 1 says that any ordinary error-correcting code C with enough large
normalized minimal code distance δ(C) := n−1d(C) > 1 − t−2 is t-IPP code. It
follows from Singleton bound [11] that rate of such code is upper bounded by
t−2. On the other hand, if we choose q = 2t2 then the rate of codes achieving
GV-bound with δ(C) > 1 − t−2 has order 1/t2. Hence for q ≥ 2t2

Rq(n, t) = Ω(t−2) (14)

For a particular case t = 2 a better lower bound was obtained for all q > 2 in [4]

Rq(n, 2) ≥ 1 − 3−1 logq(4q2 − 6q + 3) + o(1) (15)

from which follows that good family of ternary 2-IPP codes exists. It generates
an intriguing question if it is true for any t which was affirmatively solved in [20]
and later numerically improved in [21]. Unfortunately the rate of codes from
[20,21] (obtained by the random coding technique) for q closer to t appeared to
be exponentially small with t. For instance, for the most interesting case q = t+1
it was proved in [21] that

Rt+1(n, t) ≥ t−t(1+o(1)) (16)

In fact, it is not a defect of the random coding technique but an inevitable
drawback as we shall see it now.

Recall that a q-ary code C called a (t, t)-separating code if for any two nonin-
tersecting subsets U and V of C there is at least one coordinate j which separate
them, i.e. Uj ∩Vj = ∅, see [22–24]. This notion, known in coding theory for half a

On the Tracing Traitors Math 377

century, was rediscovered under the name “secure frame-proof codes”, see [5,25].
Obviously any t-IPP code is at the same time a (t, t)-separating code. Denote
by Rsep

q (t, t;n) the maximal rate of a q-ary (t, t)-separating code of length n.
Recently received in [26] the following upper bound for the rate of separating
codes says that

Rsep
q (t, t;n) ≤ c

2q

22t log2 q
+ o(1), (17)

where c is some constant does not depending on q and t (c < 2.1, see [26]). Hence
for the most interesting case q = t + 1

Rt+1(n, t) ≤ 2c

2t log2 t
+ o(1) = 2−t(1+o(1)) (18)

4 How to Compare Different Systems with IP Property?

How to compare two t-IPP codes but over different alphabet size, or how to
compare a t-IPP code and t-IPP family of sets?

There are the following two main parameters of such systems defined in [3].
Namely, the size of enabling block and the size of personal key.

The size of a personal key is equal to n for IPP code of length n and it
equals W for IPP (W,N)-set system. It plays a secondary role in analysis of
effectiveness of IPP systems.

The size of enabling block plays the key role as an analog of redundancy for
error-correcting codes. Indeed, the dealer should transmit this block, consisting
of encrypted shares, along with each portion of encrypted digital content. Denote
by N the size of enabling block measured in the number of encrypted shares.
Hence, for a q-ary t-IPP code of length n it equals to N = nq, and for a t-IPP
(W,N)-set system it equals to N . For a q-ary t-IPP code C of length n let us
define its effective (or normalized) rate

R∗(C) = N−1 log2 |C| = R(C)q−1 log2 q

And define the best asymptotical effective rate of q-ary t-IPP codes as

R∗
q(t) :=

log2 q

q
lim

n→∞ Rq(n, t) (19)

Note. We cannot prove that the limit in (19) exist and use it just to simplify
notations instead of usage lim sup and lim inf.

Our goal is to construct t-IPP codes with the largest possible effective rate,
i.e., to find q for which R∗

q(t) is the maximal possible. Note that it is inefficient to
choose a very large value of q. Indeed Rq(n, t) ≤ 1 and hence Rq(n, t)q−1 log2 q
tends to zero with growing q. Then define the best effective rate of t-IPP codes
as

R∗(t) = max
q

R∗
q(t)

378 G. Kabatiansky

Consider this notion in the simplest case t = 2. It follows from (15) that for
the minimal possible of q = 3

R∗
3(2) ≥ 9−1 log2 3(2 − log3 7) = 0.04028

The corresponding lower bound from (15) achieves its maximum at q = 7 what
gives R∗(2) ≥ 0.0536

Now let us set q = 2t2. Then it follows immediately from (14) that the best
normalized rate

R∗(t) = Ω(
log t

t4
) (20)

On the other hand,

R∗(t) = O(
log t

t2
) (21)

as it was noticed in [3] since a t-IPP code is a t-superimposed code [27], [28], also
called t-cover-free family [29]. One can see that lower and upper bounds of (20)
and (21) differ very significantly. One of explanations of such a big difference
could be that fact that the lower bound was obtained for t-IPP codes with the
additional property of traceability. For IPP set systems the following remarkable
result was proved in [30]: a t-traceability set system is a t2-superimposed code
(i.e. t2-cover-free family). If this result is valid to IPP-codes also then we will get
the upper bound being very close to the lower bound (20). It is an interesting
open problem.

Finally let us draw your attention to the following abandoned IPP system
which is based on perfect SSS with more complicated access structure than
threshold. It is so-called open two level scheme from [3]. This t-IPP scheme has
effective rate R∗ = (t3 log4(t))−1 what gives roughly rate of order t−3 and it is
much better than we know for t-IPP codes and set systems. So, the main open
problem of IPP systems:
What is the order of maximal possible effective rate for t-IPP systems?

Acknowledgements. I am very grateful to Alexander Barg, Marcel Fernandez and
Elena Egorova for very fruitful collaboration in the area of tracing traitors and around!

References

1. Wagner, N.R.: Fingerprinting. In: Proceedings of the Symposium on Security and
Privacy, Oakland, CA, pp. 18–22, April 1983

2. Blakley, G.R., Meadows, C., Purdy, G.B.: Fingerprinting long forgiving messages.
In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 180–189. Springer,
Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X 15

3. Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO
1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48658-5 25

4. Hollmann, H.D., van Lint, J.H., Linnartz, J.P., Tolhuizen, L.M.: On codes with
the identifiable parent property. J. Comb. Theory Ser. A 82(2), 121–133 (1998)

https://doi.org/10.1007/3-540-39799-X_15
https://doi.org/10.1007/3-540-48658-5_25
https://doi.org/10.1007/3-540-48658-5_25

On the Tracing Traitors Math 379

5. Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Trans.
Inf. Theory 44, 1897–1905 (1998)

6. Barg, A., Blakley, G.R., Kabatiansky, G.: Digital fingerprinting codes: problems
statements, constructions, identification of traitors. IEEE Trans. Inf. Theory 49(4),
852–865 (2003)

7. Stinson, D.R., Wei, R.: Combinatorial properties and constructions of traceability
schemes and frameproof codes. SIAM J. Discrete Math. 11(1), 41–53 (1998)

8. Blakley, G.R.: Safeguarding cryptographic keys. In: Proceedings of the National
Computer Conference, vol. 48, pp. 313–317 (1979)

9. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
10. Collins, M.J.: Upper bounds for parent-identifying set systems. Des. Codes Crypt.

51(2), 167–173 (2009)
11. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, vol. 16,

North-Holland Mathematical Library (1977)
12. Kabatiansky, G.A.: Good ternary 2-traceability codes exist. In: Proceedings of the

IEEE Symposium on Information Theory, Chicago, IL, p. 203 (2004)
13. Kabatiansky, G.A.: Codes for copyright protection: the case of two pirates. Probl.

Inf. Transm. 41, 182–186 (2005)
14. Blackburn, S.R., Etzion, T., Ng, S.-L.: Traceability codes. J. Comb. Theory Ser.

A 117(8), 1049–1057 (2010)
15. Alon, N., Spencer, J.H.: The Probabilistic Method, 4th edn., Wiley Series in Dis-

crete Mathematics and Optimization (2016)
16. Barg, A., Kabatiansky, G.: Class of I.P.P codes with effective tracing algorithm.

J. Complex. 20(2–3), 137–147 (2004)
17. Safavi-Naini, R., Wang, Y.: New results on frame-proof codes and traceability

schemes. IEEE Trans. Inf. Theory 47(7), 3029–3033 (2001)
18. Lofvenberg, J., Larsson, J.-A.: Comments on “new results on frame-proof codes

and traceability schemes”. IEEE Trans. Inf. Theory 56(11), 5888–5889 (2010)
19. Egorova, E., Kabatiansky, G.: Analysis of two tracing traitor schemes via coding

theory. In: Barbero, Á.I., Skachek, V., Ytrehus, Ø. (eds.) ICMCTA 2017. LNCS,
vol. 10495, pp. 84–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66278-7 8

20. Barg, A., Cohen, G., Encheva, S., Kabatiansky, G., Zémor, G.: A hypergraph
approach to the identifying parent property: the case of multiple parents. SIAM J.
Discrete Math. 14(3), 423–431 (2001)

21. Alon, N., Cohen, G., Krivelevich, M., Litsyn, S.: Generalized hashing and parent-
identifying codes. J. Comb. Theory Ser. A 104(1), 207–215 (2003)

22. Friedman, A.D., Graham, R.L., Ullman, J.D.: Universal single transition time asyn-
chronous state assignments. IEEE Trans. Comput. 18(6), 541–547 (1969)

23. Sagalovich, Y.L.: Separating systems. Prob. Inf. Transm. 30(2), 105–123 (1994)
24. Cohen G.D., Schaathun H.G.: Asymptotic overview on separating codes. Techni-

cal report 248, Department of Informatics, University of Bergen, Bergen, Norway
(2003)

25. Staddon, J.N., Stinson, D.R., Wei, R.: Combinatorial properties of frameproof and
traceability codes. IEEE Trans. Inf. Theory 47, 1042–1049 (2001)

26. Vorob’ev, I.V.: Bounds on the rate of separating codes. Prob. Inf. Transm. 53(1),
30–41 (2017)

27. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans.
Inf. Theory 10(4), 363–377 (1964)

28. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Prob.
Inf. Transm. 18(2), 166–171 (1982)

https://doi.org/10.1007/978-3-319-66278-7_8
https://doi.org/10.1007/978-3-319-66278-7_8

380 G. Kabatiansky

29. Furedi, Z., Erdos, P., Frankl, P.: Families of finite sets in which no set is covered
by the union of r others. Israel J. Math. 51(1), 79–89 (1985)

30. Gu, Y., Miao, Y.: Bounds on traceability schemes. IEEE Trans. Inf. Theory 64(5),
3450–3460 (2018)

Reusable Garbled Turing Machines
Without FHE

Yongge Wang1(B) and Qutaibah M. Malluhi2

1 Department of Software and Information Systems, UNC Charlotte,
9201 University City Blvd., Charlotte, NC 28223, USA

yonwang@uncc.edu
2 Department of Computer Science and Engineering, Qatar University, Doha, Qatar

qmalluhi@qu.edu.qa

Abstract. Since Yao introduced the garbled circuit concept in 1980s,
it has been an open problem to design efficient reusable garbled Turing
machines/circuits. Recently, Goldwasser et al. and Garg et al. answered
this question affirmatively by designing reusable garbled circuits and
reusable garbled Turing machines. Both of these reusable garbling
schemes use fully homomorphic encryption (FHE) schemes as required
building components. Here, we use multilinear maps to design a reusable
Turing machine garbling scheme that will not need any FHE schemes.
Though it is not clear whether our multilinear map based garbling app-
roach could be more efficient than FHE based garbling approach, the goal
of this paper is to develop alternative techniques for resuable garbling
schemes to stimulate further research in this direction.

1 Introduction

Yao [24] introduced the garbled circuit concept which allows computing a func-
tion f on an input x without leaking any information about the input x or
the circuit used for the computation of f(x). Since then, garbled circuit based
protocols have been used in numerous places and it has become one of the funda-
mental components of secure multi-party computation protocols. Yao’s garbled
circuits could be used to evaluate the circuit on one input value only.

Since Yao’s work in 1980s, it has been an open problem to design efficient
reusable garbled Turing machines. Traditionally, a Turing machine M is first
converted to a circuit CM which is then converted to a garbled circuit CM using
Yao’s technique. However, using a garbled circuit to evaluate an algorithm on
encrypted data takes the worst-case runtime of the algorithm on all inputs of
the same length since Turing machines are simulated by circuits via unrolling
loops to their worst-case runtime, and via considering all branches of a com-
putation. It is preferred that the runtime of the garbled algorithm on garbled
input x (of x) should be approximately the same as that of the corresponding

The work reported in this paper is supported by Qatar Foundation Grants NPRP8-
2158-1-423 and NPRP X-063-1-014.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 381–398, 2019.
https://doi.org/10.1007/978-3-030-16458-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_22

382 Y. Wang and Q. M. Malluhi

un-garbled algorithm on input x. To be more specific, the open problem is to
design garbled Turing machines that are efficient from following two aspects: (1)
the garbled Turing machine M has smaller size than CM ; (2) For each input x,
the evaluation of M on x takes approximately the same time that M takes on
x. In this paper, we answer this open problem affirmatively by showing that for
each Turing machine M , we can construct a reusable garbled Turing machine M
approximately the same size of M without using fully homomorphic encryption
schemes.

Recently, Goldwasser et al. [17] and Garg et al. [12] constructed reusable gar-
bled circuits by using techniques of computing on encrypted data such as fully
homomorphic encryption (FHE) schemes and attribute-based encryption (ABE)
schemes for arbitrary circuits. Goldwasser et al. [16] also constructed reusable
garbled Turing machines by employing techniques of FHE, witness encryption
(WE) schemes, and the existence of SNARKs (Succinct Non-interactive Argu-
ments of Knowledge). It would be interesting to know whether one can design
reusable garbled Turing machines without using FHE schemes.

Using Garg et al.’s indistinguishability obfuscators for NC1 [12], this paper
designs a Turing machine garbling scheme without using FHE schemes. Though
it is not clear whether multilinear maps based indistinguishability obfuscators
could be more efficient than FHE, the goal of this paper is to develop alternative
techniques for resuable garbling schemes to stimulate further research in this
direction. The techniques that we used to construct garbled Turing machines
could also be used to construct indistinguishability obfuscators for all polynomial
size circuits without FHE schemes. Though it has been shown (see, e.g., [1])
that several proposed cryptographic multilinear map construction techniques
are insecure, there has been a promising trend (see, e.g., Huang [18,19]) of using
Weil descent to design secure trilinear maps. If the security of these Weil descent
based trilinear maps could be verified, they should be sufficient for our garbled
Turing machine design.

Independently of this work, Koppula, Lewko, and Waters [21] recently
designed indistinguishability obfuscation for Turing machines using Garg et
al.’s indistinguishability obfuscators, one-way functions and injective pseudo ran-
dom generators. Some other recent related works on iterated circuit based gar-
bling schemes could be found in Lin and Pass [22], Bitansky, Garg, and Telang
[6], Canetti and Holmgren [10], Garg, Lu, Ostrovsky, and Scafuro [14], and
Cannetti, Holmgren, Jain, and Vaikuntanathan [9]. It should also be noted that
Boyle, Chung, and Pass [7] and Ananth, Boneh, Garg, Sahai, and Zhandry [2]
showed how to transform Garg et al.’s indistinguishability obfuscators into one
that operates on Turing machines with a strong security assumption called dif-
fering input obfuscation.

We conclude this section with the introduction of some notations. A Turing
machine is defined as a 5-tuple M = 〈Q,Γ, δ, q0, qF 〉 with the properties:

– Q is a finite, non-empty set of states.
– Γ is a finite, non-empty set of tape alphabet symbols. Among symbols in Γ,

a special symbol B ∈ Γ is the blank symbol.

Reusable Garbled Turing Machines Without FHE 383

– q0 ∈ Q is the initial state, and qF ∈ Q is the final accepting state.
– δ : (Q \ {qF }) × Γ → Q × Γ × {L,R} is the transition function, where L is

left shift, R is right shift.

A Turing machine M is called oblivious (OTM) if there exists a function
s(t) such that M ’s head is at cell position s(t) at time t regardless of M ’s input
values. Since every T (n)-time bounded Turing Machine can be simulated by
an O(T (n) log(T (n)))-time bounded OTM (see, Pippenger and Fischer [23]) all
along this paper all TMs are oblivious.

For our garbled Turing machine M , it takes approximately the same time
for M to stop on an encrypted input x̄ as that the un-garbled M to stop on the
un-encrypted input x. If the running time of Turing machines on specific inputs
needs to be protected, then one can easily modify Turing machines in such a
way that it takes the same time to stop on all inputs of the same length. The
details are omitted in this paper.

For a string x ∈ Γ∗, we use x[i] to denote the ith element of x. That is,
x = x[0] · · · x[n − 1] where n is the length of x. We use x ∈R Γ to denote that
x is randomly chosen from Γ with the uniform distribution. We use κ to denote
the security parameter, p(·) to denote a function p that takes one input, and
p(·, ·) to denote a function p that takes two inputs. A function f is said to be
negligible in an input parameter κ if for all d > 0, there exists n0 such that
for all κ > n0, f(κ) < κ−d. For convenience, we write f(κ) = negl(κ). Two
ensembles, X = {Xκ}κ∈N and Y = {Yκ}κ∈N , are said to be computationally
indistinguishable if for all probabilistic polynomial-time algorithm D, we have

|Prob[D(Xκ, 1κ) = 1] − Prob[D(Yκ, 1κ) = 1]| = negl(κ).

Throughout the paper, we use probabilistic experiments and denote their out-
puts using random variables. For example, Expreal

E,A(1κ) represents the output
of the real experiment for scheme E with adversary A on security parameter
κ. Throughout the paper, E = (E.KeyGen, E.Enc, E.Dec) denotes a semantically
secure symmetric-key encryption scheme and PK = (PK.KeyGen, PK.Enc, PK.Dec)
denotes a semantically secure public-key encryption scheme.

The structure of this paper is as follows. In Sect. 2, we briefly present the intu-
ition for our construction of reusable garbled Turing machines. Section 3 reviews
the reusable circuit garbling scheme for NC1 circuits. Section 4 presents the con-
struction of reusable garbled Turing machines with ABE2. Section 5 presents the
construction of reusable garbled Turing machines without ABE2.

2 Overview of Our Construction

In this section, we describe the intuition underlying our constructions. Assum-
ing the hardness of multilinear Jigsaw puzzles (that is, in the generic multilinear
encoding model), Garg et al. [12] constructed functional encryption schemes for
NC1 circuits with succinct ciphertexts. Garg et al. then extended their results to
all polynomial size circuits using fully homomorphic encryption (FHE) schemes.

384 Y. Wang and Q. M. Malluhi

As a corollary, for each circuit C ∈ NC1, one can construct a reusable garbled
circuit C without using FHE schemes. After Garg et al.’s [12] work, several other
obfuscators for complexity class NC1 have been proposed. For example, Braker-
ski and Rothblum [8] and Barak et al. [3] designed virtual black-box obfuscators
for NC1 without using FHE.

In the following, we present our idea of constructing reusable Turing machines
garbling schemes without using FHE schemes. This construction can also be
used to design succinct ciphertext functional encryption schemes for all Turing
machines without employing FHE schemes. Based on Pippenger and Fischer’s
results [23], we assume that the given Turing machine M is oblivious. In order
to garble a Turing machine M , the transition function δ of M is converted to a
circuit Cδ.

The circuit Cδ takes three inputs: the current head tape symbol b, the cur-
rent state q of M , and a special session control tape that contains the session
information and seed for pseudorandom generators. This session control tape is
used to provide session information for Cδ to check whether the current head
tape symbol and the current state of M are consistent. There are several rea-
sons for including this additional tape. For example, it could be used to prevent
the adversary from feeding tape symbols and Turing machine states from one
execution of M(x) to another execution of M(y) and to prevent the adversary
from replaying the execution of M(x) on an early or later stage of the tape cell
contents. Given these inputs, Cδ checks whether these inputs are consistent (e.g.,
all of them contain the same random session identification string, the counters
are consistent, and the tape cell is the most recently updated one). If the inputs
are consistent, Cδ finds the matching transition rule and outputs the next head
state q′ and changes the current tape symbol to b′. Since Cδ will be converted
to Garg et al.’s reusable garbled circuit Cδ and Cδ only accepts appropriately
encoded inputs, both q′ and b′ need to be appropriately encoded by Cδ before
output. Using information from the three inputs, Cδ updates the session control
tape and uses the encoding key (that is, the public key of a public key encryption
scheme, this key could either be included as part of the input to the circuit Cδ

or be built-in Cδ itself) for Garg et al.’s NC1 circuit garbling scheme to encode
the session control tape, the tape symbol b′, and the state q′ respectively. The
encoding process consists of encrypting the corresponding values using two pub-
lic keys at the same time and constructing a statistically simulation sound NIZK
proof that the two cipher texts are the encryption of the same plain text1. Fur-
thermore, if the output state is qF , Cδ may output the Turing machine state
qF in clear text without encoding so that the evaluator knows that the Turing
machine M stops. Gentry et al. [15] showed that it is possible to check whether
a memory cell value is the most recently updated one using NC1 circuits, and
Ishai et al. [20] showed that general cryptographic primitives such as encryp-
tions and commitments could be constructed in NC1 assuming the existence of

1 Note that if we use recent virtual black-box obfuscators by Brakerski and Rothblum
[8] and Barak et al. [3], then it is sufficient to encode the input using one public key
and no NIZK proof is needed.

Reusable Garbled Turing Machines Without FHE 385

NC0 pseudorandom generators. Thus Cδ could be easily constructed in NC1

with reasonable assumptions. Indeed, Garg et al.’s construction [12] requires the
existence of an NC1 decryption circuit for a public key encryption scheme. In a
summary, circuit Cδ could be constructed in NC1. Thus Garg et al.’s approach
[12] implies a reusable garbled circuit Cδ for Cδ without FHE.

Depending on the application scenario, the evaluator may or may not need
to decrypt the encrypted final output of the Turing machine execution M(x).
For example, if a client submits the garbled Turing machine to a cloud data
server to carry out computation on his encrypted data at the cloud, the cloud
only needs to return the encrypted output to the client without decryption.
However, in functional encryption schemes or other applications, the evaluator
needs to learn the decrypted output M(x). In this case, the innovative ideas
by Goldwasser et al. [16] can be used to decrypt the output. That is, an ABE2
scheme for Turing machines is used to provide keys for Yao’s one-time garbled
circuit to decrypt the output. The details are presented in Sect. 4.

Attribute-Based Encryption scheme ABE2 for Turing machines are relatively
slow. In order to improve the efficiency, we can design another reusable garbled
circuit to decrypt the encrypted output M(x). For this approach, special cau-
tion needs to be taken. For example, an active adversary may manipulate the
encoded input tape x̄ by swapping/repeating tape cells for x̄ to obtain a valid
encoded tape for x′ �= x. The adversary may then run M on x̄′ to obtain M(x′)
and run the reusable decryption circuit to decrypt M(x′). In order to address
these challenges, we use Chaitin’s universal self-delimiting Turing machines [11].
The input to a self-delimiting Turing machine must be encoded in a prefix-free
domain. Without proper encoded prefix-free input, the self-delimiting Turing
machine would not enter the qF state. secure message authentication tags for
inputs. Furthermore, we also revise the Turing machine in such a way that before
entering the state qF , it selects a random secret key sko and encrypts the output
M(x). That is, the output tape contains encoded sko||E.Enc(sko,M(x)). An NC1

circuit Cd is constructed to decrypt the output tape to sko||E.Enc(sko,M(x))
first and then use sko to decrypt the actual output M(x). Since such kind of
circuits exist in NC1, Garg et al.’s approach [12] can be used to obtain a reusable
garbled circuit Cd. The detailed construction of Cd is presented in Sect. 5.

In a summary, for each evaluation of a Turing machine M on an input x,
Turing machine owner pads each bit x[i] with appropriate session control infor-
mation to x[i]||sessionb||i||0 and uses encoding keys for Garg’s NC1 reusable
garbling scheme to encode it to RGCnc1 .Enc(gsk, x[i]||sessionb||i||0) as the con-
tent of the i-th tape cell. The padded suffix 0 denotes that this cell value is an
input value. When a cell value is modified at Turing machine step j, the value
j is placed in the suffix. The Turing machine owner also encodes the session
control information (e.g., session and random seeds) and provides them in the
session control tape and encodes the Turing machine initial state q0. The eval-
uator uses Cδ to simulate the Turing machine M and uses an ABE2 scheme or
another reusable garbled circuit to decrypt the output.

386 Y. Wang and Q. M. Malluhi

3 Reusable Garbled Circuits for NC1

In this section, we review necessary techniques that are required for our con-
struction. We first present the formal definition of one-time and reusable garbling
schemes for circuits and Turing machines.

Definition 1. Let M = {Mn}n∈N be a family of circuits/Turing machines
such that Mn is a set of functions that take n-bit inputs. A garbling
scheme for M is a tuple of probabilistic polynomial time algorithms GS =
(GS.Garble, GS.Enc, GS.Eval) with the following properties

– (M, gsk) = GS.Garble(1κ,M) outputs a garbled circuit/Turing machine M
and a secret key gsk for M ∈ Mn on the security parameter input κ.

– cx = GS.Enc(gsk, x) outputs an encoding cx for an input x ∈ {0, 1}∗.
– y = GS.Eval(M, cx) outputs a value y which should equal to M(x).

The garbling scheme GS is correct if the probability that GS.Eval(M, cx) �= M(x)
is negligible. The garbling scheme GS is efficient if the size of M is bounded by
a polynomial and the run-time of cx = GS.Enc(gsk, x) is also bounded by a
polynomial.

Throughout this paper, we will use GT = (GT.Garble, GT.Enc, GT.Eval)
and GC = (GC.Garble, GC.Enc, GC.Eval) to denote a garbling scheme for Tur-
ing machines and a garbling scheme for circuits respectively. Similarly, we will
use RGT = (RGT.Garble, RGT.Enc, RGT.Eval) and RGC = (RGC.Garble, RGC.Enc,
RGC.Eval) to denote reusable garbling schemes for Turing machines and circuits
respectively.

The security of garbling schemes is defined in terms of input and circuit
privacy in the literature. The following security definition for one-time garbling
schemes based on Bellare, Hoand, and Rogaway [4] captures the intuition that
for any circuit or input chosen by the adversary, one can simulate the garbled
circuit and the encoding based on the computation result in polynomial time.
In the definition, the variable α represents any state that A may want to give
to D.

Definition 2. (Input and circuit privacy for one-time garbling schemes) A gar-
bling scheme GS for a family of circuits/Turing machine M is said to be input
and circuit private if there exists a probabilistic polynomial time simulator SimGS
such that for all probabilistic polynomial time adversaries A and D and all large
κ, we have
∣
∣
∣Prob[D(α, x,M,M, c) = 1|REAL] − Prob[D(α, x,M, M̃, c̃) = 1|SIM]

∣
∣
∣ = negl(κ)

where REAL and SIM are the following events

REAL :
(x,M,α) ← A(1κ)
(M, gsk) ← GS.Garble(1κ,M)
cx ← GS.Enc(gsk, x)

SIM :
(x,M,α) ← A(1κ)
(M̃, c̃x) ← SimGS(M(x), 1max{κ,|M |,|x|})

Reusable Garbled Turing Machines Without FHE 387

The privacy for reusable garbling schemes is defined also in terms of circuit
and input privacy and the reader is referred to Goldwasser et al. [17] for details.

Definition 3. (Private reusable garbling schemes, adapted from Goldwasser
et al. [17]) Let RGS be a reusable garbling scheme for a family of Turing
machines/circuits M = {Mn}n∈N and M ∈ Mn be a Turing machine/circuit
with n-bits inputs. For a pair of probabilistic polynomial time algorithms A =
(A0, A1) and a probabilistic polynomial time simulator S = (S0, S1), define two
experiments:

ExprealRGS,A(1κ) :
(M, stateA) = A0(1κ)
(sk,M) = RGS.Garble(1κ,M)
α = A

RGS.Enc(sk,·)
1 (M,M, stateA)

ExpidealRGS,A,S(1κ) :
(M, stateA) = A0(1κ)
(M̃, stateS) = S0(1κ,M)
α = A

O(·,M)[[stateS]]
1 (M,M̃, stateA)

In the above experiments, O(·,M)[[stateS]] is an oracle that on input x from
A1, runs S1 with inputs 1|x|, M(x), and the latest state of S; it returns the out-
put of S1 (storing the new simulator state for the next invocation). The garbling
scheme RGS is said to be private with reusability if there exists a probabilistic
polynomial time simulator S such that for all pairs of probabilistic polynomial
time adversaries A = (A0, A1), the following two distributions are computation-
ally indistinguishable:

{

ExprealRGS,A(1κ)
}

κ∈N
≈c

{

ExpidealRGS,A,S(1κ)
}

κ∈N
(1)

The recent virtual black-box obfuscators for NC1 by Brakerski-Rothblum [8]
and Barak et al. [3] require generic multilinear encoding model. Though Garg
et al.’s [12] indistinguishability obfuscator for NC1 is constructed using generic
multilinear encoding also, it does not rule out the possibility of constructing
indistinguishability obfuscators in the plain model with weaker assumptions.
Garg et al. [12] showed the following theorem.

Theorem 1. Assuming the existence of an indistinguishability obfuscator, there
is a garbling scheme RGCnc1 for NC1 circuits that is secure according to the
definition in Goldwasser et al. [17].

Based on witness encryption (WE) schemes by Garg et al. [13] and the exis-
tence of SNARKs (Succinct Non-interactive Arguments of Knowledge) by Bitan-
sky et al. [5], Goldwasser et al. [16] designed attribute-based encryption (ABE)
schemes for Turing machines2. The single-outcome ABE schemes for Turing
machines in [16] could be converted to two-outcome attribute-based encryption
schemes (ABE2) for Turing machines using the techniques from Goldwasser et al.
[17].

Goldwasser et al. [17] introduced the following concept of two-outcome
attribute-based encryption schemes (ABE2) for Turing machines.

2 Note that the correctness definition of Definition 3 for ABE in [16] is messed up.

388 Y. Wang and Q. M. Malluhi

Definition 4. A two-outcome attribute-based encryption scheme ABE2 for a
class of Turing machines M is a tuple of four algorithms (ABE2.Setup, ABE2.Enc,
ABE2.KeyGen, ABE2.Dec):

– (mpk, msk) = ABE2.Setup(1κ): On the security parameter input 1κ, outputs
the master public key mpk and the master secret key msk.

– skM = ABE2.KeyGen(msk,M): On input msk and a Turing machine M , out-
puts a secret key skM corresponding to M . Note that M is public.

– c = ABE2.Enc(mpk, x, b0, b1): On input the master public key mpk, an attribute
x ∈ {0, 1}∗, and two messages b0, b1, outputs a ciphertext c.

– bi = ABE2.Dec(skM , c): On input a secret key skM for the Turing machine M
and a ciphertext c, outputs bi if M(x) = i for i = 0, 1.

Correctness (informal). The correctness of an ABE2 scheme means
ABE2.Dec(skM , c) fails with a negligible probability (for a formal definition, it
is referred to [17]).

The security of an ABE2 scheme means that if one has the secret key skM for
a Turing machine M , then one can decrypt one of the two encrypted messages
based on the value of M(x) where x is the attribute, but learns zero information
about the other message. The formal definition could be found in Goldwasser
et al. [17].

Formally, the security can be defined as follows.

Definition 5. (Goldwasser et al. [17]) Let ABE2 be a two-outcome attribute-
based encryption scheme for a class of Turing machines M. Let A = (A1, A2, A3)
be a tuple of probabilistic polynomial time adversaries. Define the experiment
ExpABE2(1

κ):

1. (mpk, msk) = ABE2.Setup(1κ)
2. (M, state1) = A1(mpk)
3. skM = ABE2.KeyGen(msk,M)
4. (a, a0, a1, x, state2) = A2(state1, skM) where a, a0, a1 are bits
5. Choose a random bit b and let

c =
{
ABE2.Enc(mpk, x, a, ab), if M(x) = 0,
ABE2.Enc(mpk, x, ab, a), otherwise.

6. b′ = A3(state2, c). If b = b′, then output 1, else output 0.

The scheme is said to be a single-key fully-secure two-outcome ABE2 if for all
probabilistic polynomial time adversaries A and for all sufficiently large security
parameters κ, we have

Prob[ExpABE2,A(1κ) = 1] ≤ 1/2 + negl(κ).

The scheme is said to be single-key selectively secure if A needs to provide x
before receiving mpk.

Reusable Garbled Turing Machines Without FHE 389

4 Reusable Garbled Turing Machines with ABE2

The construction of a garbling scheme RGT = (RGT.Garble, RGT.Enc, RGT.Eval)
for Turing machines M proceeds as follows.

(gsk,M) = RGT.Garble(1κ,M):

– sk = E.KeyGen(1κ), (pski, ppki) = PK.KeyGen(1κ) for i = 0, 1.
– Let EM = E.Enc(sk,M) and sk = PK.Enc(ppk0, sk).
– Let UM be an oblivious universal Turing machine and let s(t) be the head

position function for UM . On input x, UM first decrypts sk = PK.Dec(psk0, sk)
and M = E.Dec(sk, EM). UM then runs M on x to output M(x).

– Let δ be the transition function of UM and Cδ ∈ NC1 be the following circuit:

Input: head sate q||sessionq||jq, tape cell b||sessionb||jc||jb, and con-
trol tape ctape = ppk0||ppk1||state||sessions||jq.

1. use information from sessions to extract the current Turing
machine step j1, expected current head position j2 = s(j1), and
the most recent time j3 that the cell jc has been updated.

2. if j1 �= jq + 1 or j2 �= jc or j3 �= jb, go to step 11.
3. if sessions, sessionb, and sessionq are inconsistent, go to step

11.
4. if q = qF , output the state qF in clear and exit.
5. if q = qnoop, go to step 11.
6. compute the next state and tape symbols (q′, b′) = δ(q, b).
7. update ideal cipher E state, public key cipher PK state, and the

values in sessions, sessionb, sessionq, and state.
8. let eq′

i = PK.Enc(ppki, q
′||sessionq||j1) for i = 0, 1, and πq′

be a sta-
tistically simulation sound non-interactive zero knowledge (NIZK)
proof for the following NP statement: eq′

0 and eq′
1 are encryptions of

a same message using public keys ppk0 and ppk1.
9. Similarly, compute (eb′

0 , eb′
1 , πb′

) for tape cell b′||sessionb||jc||j1 and
(ectape0 , e

ctape
1 , πctape) for ctape = ppk0||ppk1||state||sessions||j1

10. write (eb′
0 , eb′

1 , πb′
) to tape cell, output next state (eq′

0 , eq′
1 , πq′

), and
update control tape as (ectape0 , e

ctape
1 , πctape). Exit.

11. let q′ = qnoop, b′ = 0, and go to step 8.

– Let Cδ = RGCnc1 .Garble(1κ, ppk0, ppk1, psk0, Cδ). Here we provide the param-
eters ppk0, ppk1, and psk0 to RGCnc1 .Garble to overwrite the corresponding
internal key generation process within RGCnc1 .Garble.

– Let UM = (s(t), Cδ) be a Turing machine that uses Cδ to simulate the tran-
sition function δ of UM .

– Let ω = ω(κ) be the length of the total garbled outputs in the UM under the
security parameter κ.

– Run ABE2.Setup(1κ) algorithm ω times: (mpki, mski) ← ABE2.Setup(1κ)
for i < ω and let

msk = (msk0, · · · , mskω−1) and mpk = (mpk0, · · · , mpkω−1).

390 Y. Wang and Q. M. Malluhi

– Let U
i

M (·) be the ith bit of the output of running UM on an encoded input.
– Run ABE2.KeyGen(msk, ·) for each of the function U

i

M (·) under the different
master secret keys to construct secret keys:

gMi ← ABE2.KeyGen(mski, U
i

M (·)) for i < ω.

– Output M = (gM0, · · · , gMω−1) and gsk = (ppk0, ppk1, psk0, mpk).

cx = RGT.Enc(gsk, x):

– Generate state uniformly at random for the input string x.
– Update session identification values sessions, sessionb, sessionq.
– For each input tape cell j, let ej

i = PK.Enc(ppki, x[j]||sessionb||j||0) for i =
0, 1, and πj be a statistically simulation sound non-interactive zero knowledge
(NIZK) proof for the following NP statement: ej

0 and ej
1 are encryptions of a

same message using public keys ppk0 and ppk1.
– Similarly, compute (eq0

0 , eq0
1 , πq0) for the initial head state q0||sessionq||0 and

(ectape0 , e
ctape
1 , πctape) for ctape = ppk0||ppk1||state||sessions||0.

– Let c =
{

(eq0
0 , eq0

1 , πq0), (ectape0 , ectape1 , πctape), (ej
0, e

j
1, π

j) : 0 ≤ j ≤ n − 1
}

.

– Let Cd ∈ NC1 be the following circuit:

Input: encoded output tape otape and encoded control tape ctape.

1. decrypt output tape (otape, sessionb) = PK.Dec(psk0, otape) and
current control tape (state, sessions) = PK.Dec(psk0, ctape).

2. if sessions and sessionb are inconsistent, exit.
3. write otape to output tape and exit.

– Run Yao’s one-time garbled circuit generation algorithm to produce a garbled
circuit Λ: {0, 1}ω → {0, 1} together with 2ω labels Lb

i for i < ω and b ∈ {0, 1}.
(

Λ, {L0
i , L

1
i }ω−1

i=0

)

= GC.Garble(1κ, Cd).

– Produce ABE2 ciphertexts c0, · · · , cω−1 as follows:

ci ← ABE2.Enc(mpki, c, L
0
i , L

1
i) for i < ω.

– Output the cipher texts cx = (Λ, c0, · · · , cω−1).

M(x) = RGT.Eval(M, cx):

– Run ABE2 decryption algorithm on ciphertexts c0, · · · , cω−1 to calculate the
labels for Yao’s garbled circuit Λ for di = M

i
(cx):

Ldi
i ← ABE2.Dec(gMi, ci) for i < ω

– Evaluate the garbled circuit Λ with labels Ldi
i to compute the output M(x)

M(x) = GC.Eval(Λ, Ld0
i , · · · , L

dω−1
ω−1)

Reusable Garbled Turing Machines Without FHE 391

Proof of Security
The correctness and efficiency of the reusable Turing machine garbling scheme
RGT in the preceding paragraph is straightforward. In the following, we show
that the scheme RGT is private with reusability according to the definition in
Goldwasser et al. [17].

Assume that a Turing machine M is selected with the security parameter
κ. We need to construct a simulator S = (S0, S1) such that (1) holds for the
reusable garbled Turing machine M = (gM0, · · · , gMω−1), assuming that there are
a simulator Sδ = (Sδ,0, Sδ,1) satisfying the security definition in Goldwasser et al.
[17]. reusable garbled circuits Cδ and a simulator SimGS satisfying Definition 2
for Yao’s one-time garbling scheme.

To generate a simulated garbled Turing machine M̃ = (g̃M0, · · · , g̃Mω−1) for
the Turing machine M , S0 runs the following procedures:

1. Generate fresh mpk and msk as in RGT.Garble process.
2. Run simulators Sδ to generate a reusable garbled circuit C̃δ.
3. Run ABE2.KeyGen(msk, ·) to generate M̃ = (g̃M0, · · · , g̃Mω−1).

During the simulation, S1 receives the latest simulator’s state, 1|x|, C̃δ, and
a Turing machine output M(x) for some input x without seeing the value of x.
S1 needs to output a simulated encoding c̃ = (Λ̃, c̃0, · · · , c̃ω−1) for the RGT.Eval
process without access to Cd. Let SimGS be the simulator from Definition 2 for
Yao’s one-time garbling scheme. Run SimGS to produce a simulated garbled cir-
cuit Λ̃ for the circuit Cd together with the simulated encoding consisting of ω
labels L̃i for i = 0, · · · , ω − 1. That is, we have

(

Λ̃, L̃0, · · · , L̃ω−1

)

= SimGS(1κ,M(x), 1ω).

S1 can invoke the above simulation since it knows M(x) and the size of input
to Cd (that is, the output size of C̃δ). S1 can then produce the simulated ABE2
ciphertexts c̃0, · · · , c̃ω−1 as follows:

c̃i ← ABE2.Enc(mpki, c̃x, L̃i, L̃i) for i < ω.

Note that we used the label L̃i for two times. In a summary, S1 can now output
the simulated encoding (Λ̃, c̃0, · · · , c̃ω−1).

Now it suffices to show that the simulation satisfies the security definition in
Goldwasser et al. [17]. for any adversary A = (A0, A1). Without loss of generality,
we may assume that A1 output α equals to its entire view. That is, all information
that A1 has received during the protocol run. Note that if we could prove that
the real and ideal experiment outputs are computationally indistinguishable with
this kind of output, it will be computationally indistinguishable with any other
kind of outputs since A1 is a probabilistic polynomial time algorithm. That is,
any output should be probabilistic polynomial time computable from this view.
In the following, we define five games first.

392 Y. Wang and Q. M. Malluhi

Game 0: The ideal game ExpidealRGT,A,S(1κ) of the security definition in Goldwasser
et al. [17] with simulator S. The output distribution for this game is:

M, gsk, stateA, ABE2.KeyGen(msk, ·),
{

xi, c̃xi
, SimGarble(1κ,M(xi), 1ω),

{

ABE2.Enc(mpki, c̃xi
, L̃i,j , L̃i,j)

}ω−1

j=0

}t−1

i=0

Game 1: The same as Game 0 except that the Turing machine M is replaced
with the reusable garbled circuit Cδ and the circuit Cd. That is, the output
distribution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),
{

xi, c̃xi
, SimGarble(1κ,M(xi), 1ω),

{

ABE2.Enc(mpki, c̃xi
, L̃i,j , L̃i,j)

}ω−1

j=0

}t−1

i=0

Game 2: The same as Game 1 except that the simulated input encoding c̃xi

is replaced with the actual encoding cxi
of xi by encoding xi using gsk. Note

that we keep c̃xi
unchanged within the ABE2.Enc procedure. That is, the output

distribution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),
{

xi, cxi
, SimGarble(1κ,M(xi), 1ω),

{

ABE2.Enc(mpki, c̃xi
, L̃i,j , L̃i,j)

}ω−1

j=0

}t−1

i=0

Game 3: The same as Game 2 except the simulated garbled circuit Λ̃ is replaced
with the real garbled circuit Λ:

(

Λ, {L0
j , L

1
j}ω−1

j=0

)

= GC.Garble(1κ, Cd). The out-
put distribution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),
{

xi, cxi
, GC.Garble(1κ, Cd),

{

ABE2.Enc(mpki, c̃xi
, L̃i,j , L̃i,j)

}ω−1

j=0

}t−1

i=0

Game 4: The same as Game 3 except that the ABE2.Enc ciphertext is replaced
with the real ABE2 ciphertext. In other words, this is the real experiment
ExprealRGT,A(1κ) of the security definition in Goldwasser et al. [17]. The output
distribution for this game is:

Cδ, Cd, gsk, stateA, ABE2.KeyGen(msk, ·),
{

xi, cxi
, GC.Garble(1κ, Cd),

{

ABE2.Enc(mpki, cxi
, L0

i,j , L
1
i,j)

}ω−1

j=0

}t−1

i=0

We prove that the outputs of each pair of games are computationally indistin-
guishable in the following lemmas. Thus our reusable garbled circuits are circuit
and input private with reusability.

Reusable Garbled Turing Machines Without FHE 393

Lemma 1. Assume that Cδ is a secure reusable garbled circuit for Cδ in the
simulation-based security model. Then the outputs of Game 0 and Game 1 are
computationally indistinguishable.

Proof (sketch). The proof is by contradiction. Assume that the outputs of Game 0
and Game 1 could be distinguished by a probabilistic polynomial time algorithm
D. Then one can use D to construct a probabilistic polynomial time distinguisher
D1 to show that Theorem 1 is not true. Details are omitted here.
�
Lemma 2. Assume that both ciphers E.Enc and PK.Enc are semantically secure.
Then the outputs of Game 1 and Game 2 are computationally indistinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adver-
saries A = (A1, A2) and a probabilistic polynomial time distinguisher D armed
with A that distinguishes outputs of Game 1 and Game 2 with a non-negligible
probability. Then one can use the standard hybrid argument to construct a
probabilistic polynomial time distinguisher D1 to distinguish the cipher texts
cxi

from the simulated cipher text c̃xi
with a non-negligible probability for some

i0 = 0, · · · , t − 1. This is a violation that both ciphers E.Enc and PK.Enc are
semantically secure.
�
Lemma 3. Assume that the one-time garbling scheme is secure in the sense
of Definition 2. Then the outputs of Game 2 and Game 3 are computationally
indistinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adver-
saries A = (A1, A2) and a probabilistic polynomial time distinguisher D armed
with A that distinguishes outputs of Game 2 and Game 3 with a non-negligible
probability. Then one can build a probabilistic polynomial time distinguisher
D1 to distinguish the outputs of the simulator SimGarble and GC.Garble. This
contradicts Definition 2. The details for the construction of D1 are omitted
here.
�
Lemma 4. Assume that the ABE2 scheme is secure in the sense of Goldwasser
et al. [17]. Then the outputs of Game 3 and Game 4 are computationally indis-
tinguishable.

Proof (sketch). Assume that there exist probabilistic polynomial time adver-
saries A = (A1, A2) and a probabilistic polynomial time distinguisher D armed
with A that distinguishes outputs of Game 3 and Game 4 with a non-negligible
probability. Then one can build a probabilistic polynomial time adversary
A = (A1, A2, A3) such that

Prob[ExpABE2,A(1κ) = 1] > 1/2 + negl(κ).

This contradicts the security definition of ABE2. Details for the construction of
A are omitted here.
�

394 Y. Wang and Q. M. Malluhi

Theorem 2. Assume that the one-time garbling scheme is secure, the ABE2
scheme is secure, both ciphers E.Enc and PK.Enc are semantically secure, and
RGCnc1 is secure according to Definition 2. Then the reusable garbling scheme
RGT in Sect. 4 is secure according to the security definition in Goldwasser et al.
[17].

Proof. This follows from Lemmas 1, 2, 3 and 4.
�

5 Reusable Garbled Turing Machines Without ABE2

In Sect. 4, we used Yao’s one-time garbled circuits for Cd and Attribute Based
Encryption (ABE2) schemes for Turing machines to decrypt the garbled Turing
machine output UM (x). ABE2 cipher text is relatively expensive to construct
and the size of Yao’s one-time garbled circuit for Cd is too large to be included
in each garbled input. Thus it is preferred to use a reusable garbled circuit to
decrypt the output of UM (x). As mentioned in early sections, the challenge to
use a garbled version Cd directly is that the adversary may use Cd to calculate
M(x′) for input x′ whose encoding is not provided by the Turing machine owner.
To address these challenges, we use secure message authentication tags.

Let MAC = (MAC.KeyGen, MAC.Enc, MAC.Veri) be a secure message authentica-
tion scheme. The Turing machine M is revised to a new Turing machine Mmac

as follows. The input to Mmac is first authenticated using a MAC scheme key
and then encrypted using the semantically secure ideal cipher. That is, Mmac

takes an input in format of x̄ = E.Enc(skmac, x||tag) where x is the supposed
input to M and tag = MAC.Enc(ask, x). On an input x̄, Mmac uses the built-in
key skmac to decrypt (x, tag) = E.Dec(skmac, x̄) and uses the built-in key ask
to verify that MAC.Veri(ask, x, tag) is true. If the verification fails, Mmac enters
qnoop state and keeps doing nothing until it stops. Otherwise, Mmac computes
the value of M(x), chooses a random key sko = E.KeyGen(1κ) and outputs
Mmac(x̄) = sko||E.Enc(sko,M(x)).

The garbling scheme RGT1 = (RGT1.Garble, RGT1.Enc, RGT1.Eval) for Turing
machines M without ABE2 is then constructed as follows.
(gsk,M) = RGT1.Garble(1κ,M):

– skmac = E.KeyGen(1κ), ask = MAC.KeyGen(1κ), and (pski, ppki) =
PK.KeyGen(1κ) for i = 0, 1.

– Construct Mmac from M .
– Define UMmac

and design the reusable garble garbled circuit Cδ for UMmac
’s

transition function δ as in the process RGT.Garble(1κ, UMmac
) of Sect. 4. Let

UMmac
= (s(t), Cδ) be the resulting Turing machine.

– Let Cd ∈ NC1 be the following circuit:

Input: UMmac
’s decrypted output tape (otape, sessionb) and decrypted

control tape (state, sessions).

1. if sessions and sessionb are inconsistent then exit.
2. let (sko, ȳ) = otape.
3. compute y = E.Dec(sko, ȳ) and output y.

Reusable Garbled Turing Machines Without FHE 395

– Let Cd = RGCnc1 .Garble(1κ, ppk0, ppk1, psk0, Cd). Here we provide the param-
eters ppk0, ppk1, and psk0 to RGCnc1 to overwrite the corresponding internal
key generation process within RGCnc1 .Garble. By overwriting the key genera-
tion process for RGCnc1 , the output of UMmac

is in the correct encoding format
according to RGCnc1 .Enc and is ready for Cd to process.

– Output M = (s(t), Cδ, Cd) and gsk = (ppk0, ppk1, psk0, skmac, ask).

cx = RGT1.Enc(gsk, x):

– Let x̄ = E.Enc(skmac, x||MAC.Enc(ask, x)).
– Let cx be constructed for x̄ as in the process RGT.Enc(gsk, x̄).

M(x) = RGT1.Eval(M, cx):

– Run the Turing machine UMmac
= (s(t), Cδ) on input cx until it stops.

– Run Cd on the output tape and control tape of UMmac
to obtain M(x).

Comments: We have two comments for the construction of RGT1.

– The circuit Cd in RGT1 takes the entire tape as input and decrypts it at the
same time. In practice, it may be more efficient to define Cd in a way that it
only takes one cell and decrypts the cell separately. In order to achieve this,
Turing machine Mmac needs to be revised further so that the output cells are
encrypted separately.

– For the convenience of presenting constructions of RGT and RGT1 in a compat-
ible way, we constructed Cδ and Cd separately. Indeed, for the construction
of RGT1, Cδ and Cd can be defined as one circuit which is then garbled using
Garg et al.’s NC1 garbling scheme.

We can then prove the following theorem in a similar way as that of
Theorem 2. The proof is omitted in this extended abstract.

Theorem 3. Assume that the one-time garbling scheme GC is secure, both
ciphers E.Enc and PK.Enc are semantically secure, the message authentication
scheme MAC is secure, and RGCnc1 is secure according to Definition 2. Then the
reusable garbling scheme RGT1 for Turing machines is secure according to the
security definition in Goldwasser et al. [17].

6 Discussions and Oblivious Turing Machines

In the construction of RGT1, we used a secure message authentication scheme
to protect adversaries from swapping/inserting/deleting/duplicating input tape
cells. Some other techniques could also be used to achieve this same goal. For
example, one may use Chaitin’s universal self-delimiting Turing machines [11].
A universal self-delimiting Turing machine U takes the input px and outputs
U(px) = Mp(x) where p is the encoding of a self-delimiting Turing machine Mp.
For a self-delimiting Turing machine Mp, if Mp(x) is defined, then Mp(y) is not
defined for all strings y with y being a prefix of x or x being a prefix of y. Before

396 Y. Wang and Q. M. Malluhi

Turing machine stops, it needs to mark each cell on the output tape as final
by inserting a special symbol such as FIN to each cell on the output tape. The
circuit Cd would only decrypt cells marked as final.

It should also be noted that the black cell “B” could be encoded in advance
so that for each input, the Turing machine owner does not need to encode the
entire working tape cells. The self-delimiting Turing machines could be used to
defeat the attacks that the adversary copies some input cells to some “B” cells
and potentially runs the garbled Turing machine on inputs that are not provided
by the machine owner.

In our construction of RGT and RGT1, oblivious Turing machines are used
to determine the next cell that the Turing machine needs to process. If Turing
machine head movement pattern does not need to be protected, this requirement
could be dropped since the circuit Cδ could output the head movement symbol
“R” or “L” in plain text.

In Goldwasser et al.’s garbling scheme [16], the owner of a Turing machine M
first converts M to an oblivious Turing machine MO using the Pippenger-Fischer
transformation [23], where an oblivious Turing machine is a Turing machine
whose head movement is independent of the current cell content. From MO, a
new Turing machine MFHE is constructed to perform the FHE evaluation of MO.
The owner of the Turing machine M gives MFHE to the evaluator. Each time when
the Turing machine owner wants the evaluator to calculate M(x), the Turing
machine owner creates a homomorphic encryption scheme public key hpk and
a corresponding private key hsk. Using the newly created public key hpk, the
Turing machine owner calculates the homomorphic encryption cipher texts cx =
(Ehpk(x[0]), · · · , Ehpk(x[n − 1])) for the input x = x[0] · · · x[n − 1] bit by bit and
constructs a Yao’s one-time garbled circuit D for decrypting the homomorphic
encryption scheme by integrating the private key hsk within D. The Turing
machine owner then gives (cx,D, hpk) to the evaluator. The evaluator runs MFHE

on cx homomorphically step by step. During the evaluation, each cell of MO’s
tape corresponds to the FHE ciphertext of MFHE’s cell value and MFHE maintains
the FHE ciphertext statei of MO’s current state. At step i, MFHE takes as input
the encrypted cell b̄ from the input tape that the head currently points at and
the current encrypted state statei. Then MFHE outputs an encrypted new state
statei+1 and a new content b̄′. MFHE updates the current cell with b̄′ and then
moves its head left or right according to the oblivious head movement definition.
Though [16] did not describe how to get the value (statei+1, b̄

′) from (statei, b̄).
We assume that it uses the straightforward circuit simulation of the Turing
machine transition functions. That is, a circuit Πδ with inputs (statei, b) and
outputs (statei+1, b

′) is constructed from MO’s transition function δ and MFHE

homomorphically evaluates Πδ to obtain (statei+1, b̄
′) from (statei, b̄). After

the evaluation, the evaluator obtains the homomorphic encryption ciphertext
Ehpk(M(x)) of M(x). In order for the evaluator to decrypt Ehpk(M(x)), the
circuit owner uses an attribute based encryption scheme for Turing machines
(constructed from the witness encryption scheme) to send corresponding labels
for the garbled circuit D so that the evaluator will be able to decrypt Ehpk(M(x))

Reusable Garbled Turing Machines Without FHE 397

to M(x). In the above scheme, the Turing machine MO’s transition function is
leaked via the circuit Πδ. Though [16] provides no details on how to avoid this
leakage, we assume that the authors used the same approach as in Goldwasser
et al. [17] to protect the privacy of Turing machine M ’s transition function.
That is, MFHE is constructed for a universal oblivious Turing machine UO and
the description of M is encrypted using an ideal cipher scheme E such as AES.
The evaluator only holds the encrypted version E.Enc(sk,M) of M . For each
evaluation of M on x, the Turing machine owner needs to give both Ehpk(x) and
Ehpk(sk) to the evaluator.

7 Conclusion

Using multilinear maps, Garg et al. showed the existence of reusable garbling
schemes for NC1 circuits. By further using FHE schemes, Garg et al. showed
the existence of reusable garbling schemes for all polynomial size circuits. This
paper constructed reusable garbling schemes for Turing machines (that is, for all
polynomial size circuits also) only assuming the existence of secure multilinear
maps. Though it is not clear whether multilinear maps based indistinguishability
obfuscators could be more efficient than FHE, the goal of this paper is to develop
alternative techniques for resuable garbling schemes to stimulate further research
in this direction.

References

1. Albrecht, M., Davidson, A.: Are graded encoding schemes broken yet? https://
malb.io/are-graded-encoding-schemes-broken-yet.html

2. Ananth, P., Boneh, D., Garg, S., Sahai, A., Zhandry, M.: Differing-inputs obfusca-
tion and applications. IACR Cryptology ePrint Archive, 2013:689 (2013)

3. Barak, B., Garg, S., Kalai, Y.T., Paneth, O., Sahai, A.: Protecting obfuscation
against algebraic attacks. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014.
LNCS, vol. 8441, pp. 221–238. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-55220-5 13

4. Bellare, M., Hoang, V., Rogaway, P.: Foundations of garbled circuits. In: Proceed-
ings 2012 ACM CCS, pp. 784–796. ACM (2012)

5. Bitansky, N., Canetti, R., Chiesa, A., Tromer, E.: Recursive composition and boot-
strapping for SNARKs and proof-carrying data. In: Proceedings of 45th ACM
STOC, pp. 111–120. ACM (2013)

6. Bitansky, N., Garg, S., Telang, S.: Succinct randomized encodings and their appli-
cations. Technical report, Cryptology ePrint Archive, Report 2014/771 (2014).
http://eprint.iacr.org

7. Boyle, E., Chung, K.-M., Pass, R.: On extractability obfuscation. In: Lindell, Y.
(ed.) TCC 2014. LNCS, vol. 8349, pp. 52–73. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-642-54242-8 3

8. Brakerski, Z., Rothblum, G.N.: Virtual black-box obfuscation for all circuits via
generic graded encoding. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp.
1–25. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8 1

https://malb.io/are-graded-encoding-schemes-broken-yet.html
https://malb.io/are-graded-encoding-schemes-broken-yet.html
https://doi.org/10.1007/978-3-642-55220-5_13
https://doi.org/10.1007/978-3-642-55220-5_13
http://eprint.iacr.org
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_3
https://doi.org/10.1007/978-3-642-54242-8_1

398 Y. Wang and Q. M. Malluhi

9. Canetti, R., Holmgren, J., Jain, A., Vaikuntanathan, V.: Indistinguishability obfus-
cation of iterated circuits and ram programs. In: Proceedings of STOC 15, New
York, NY, USA. ACM (2015)

10. Canetti, R., Holmgren, J.: Fully succinct garbled ram (2015)
11. Chaitin, G.J.: On the length of programs for computing finite binary sequences. J.

Assoc. Comput. Math. 13, 547–569 (1966)
12. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate

indistinguishability obfuscation and functional encryption for all circuits. In: Pro-
ceedings of IEEE 54th FOCS, pp. 40–49. IEEE (2013)

13. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: Proceedings of 45th ACM STOC, pp. 467–476. ACM (2013)

14. Garg, S., Lu, S., Ostrovsky, R., Scafuro, A.: Garbled RAM from one-way functions.
In: Proceedings of STOC 15, New York, NY, USA. ACM (2015)

15. Gentry, C., Halevi, S., Lu, S., Ostrovsky, R., Raykova, M., Wichs, D.: Garbled
RAM revisited. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS,
vol. 8441, pp. 405–422. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-642-55220-5 23

16. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

17. Goldwasser, S., Kalai, Y., Popa, R., Vaikuntanathan, V., Zeldovich, N.: Reusable
garbled circuits and succinct functional encryption. In: Proceedings of 45th STOC,
pp. 555–564. ACM (2013)

18. Huang, M.-D.A.: Trilinear maps for cryptography. arXiv preprint arXiv:1803.10325
(2018)

19. Huang, M.-D.A.: Trilinear maps for cryptography ii. arXiv preprint
arXiv:1810.03646 (2018)

20. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography with constant
computational overhead. In: Proceedings of 40th ACM STOC, pp. 433–442. ACM
(2008)

21. Koppula, V., Lewko, A., Waters, B.: Indistinguishability obfuscation for turing
machines with unbounded memory. In: Proceedings of STOC 15, New York, NY,
USA. ACM (2015)

22. Lin, H., Pass, R.: Succinct garbling schemes and applications. Technical report,
Cryptology ePrint Archive, Report 2014/766 (2014). http://eprint.iacr.org

23. Pippenger, N., Fischer, M.: Relations among complexity measures. J. ACM 26(2),
361–381 (1979)

24. Yao, A.: How to generate and exchange secrets. In: Proceedings of 27th IEEE
FOCS, pp. 162–167. IEEE (1986)

https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-55220-5_23
https://doi.org/10.1007/978-3-642-40084-1_30
http://arxiv.org/abs/1803.10325
http://arxiv.org/abs/1810.03646
http://eprint.iacr.org

An Extension of Formal Analysis
Method with Reasoning: A Case Study
of Flaw Detection for Non-repudiation

and Fairness

Jingchen Yan, Yating Wang, Yuichi Goto(B), and Jingde Cheng

Department of Information and Computer Sciences,
Saitama University, Saitama 338-8570, Japan

{jingchenyan,wangyating,gotoh,cheng}@aise.ics.saitama-u.ac.jp

Abstract. Formal analysis is used to find out flaws of cryptographic
protocols. A formal analysis method with reasoning for cryptographic
protocols has been proposed. In the method, behaviors of participants
and behaviors of an intruder are used as premises of forward reasoning
to deduce formulas, then analysts check whether the deduced formulas
are related to flaws. However, the method only can detect the flaws
related to confidentiality and authentication but is unable to detect the
flaws related to non-repudiation and fairness. This paper proposes an
extension of the formal analysis method with reasoning, which can deal
with the flaws related to non-repudiation and fairness. This paper also
shows a case study of flaw detection for non-repudiation and fairness
in ISI protocol with the proposed method. The result shows that the
proposed method is effective to find out flaws that related to the two
security properties above.

Keywords: Cryptographic protocol ·
Formal analysis method with reasoning · Non-repudiation · Fairness

1 Introduction

Formal analysis is used to find out flaws of cryptographic protocols [9,18,19].
Model checking and automated theorem proving [2,3,8,21] are proving methods
of formal analysis for cryptographic protocols. In these methods, analysts first
need to strictly, completely and correctly describe the security specifications that
a cryptographic protocol should satisfy as formulas or theorems, and use them as
the targets of verification, and then check the enumerated formulas or theorems
hold or not in the protocol. However, if the security specifications are not listed
completely, or the formulas or theorems are not described completely, some flaws
cannot be found.

To solve the problem of enumerating verification targets, a formal analysis
method with reasoning for cryptographic protocols has been proposed [6,24,25].
c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 399–408, 2019.
https://doi.org/10.1007/978-3-030-16458-4_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_23&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_23

400 J. Yan et al.

In this method, analysts do not need to enumerate the verification targets but use
the formalized participants’ behaviors and an intruder’s behaviors as premises to
perform forward reasoning. By forward reasoning, all possible executed result of
the protocol will be deduced. Analysts check whether the deduced formulas are
related to flaws to determine the security of the protocol. However, this method
only can detect flaws related to confidentiality and authentication but not detect
flaws related to non-repudiation and fairness.

This paper proposes the extension of formal analysis method with reasoning
for cryptographic protocols which can detect flaws related to the security of non-
repudiation and fairness. The paper also shows a case study of flaw detection
for non-repudiation and fairness in ISI protocol. By the result of analyzing ISI
protocol, it can be said that the extended method is valid to detect flaws that
related to the security properties of non-repudiation and fairness.

The rest of the paper is organized as follows. Section 2 explains the basic
notions about non-repudiation and fairness. Section 3 presents the extension of
formal analysis method with reasoning. Section 4 describes the case study in
ISI protocols. Section 5 discuss the problems of the extension of formal analysis
method with reasoning. Finally, concluding remarks are given in Sect. 6.

2 Basic Notions

A cryptographic protocol is a protocol which performs a security-related func-
tion using cryptography [14]. Security-related function means prevention of or
protection against (a) access to information by an unauthorized entity or (b) the
intentional but unauthorized destruction or alteration of that information [4].

Entity is an independent unit which performs one or more operations in a
cryptographic protocol. There are two types of entity, Agent and Sever. Agent
is an independent unit which actively performs each operation. Sever is an
independent system which passively returns an answer to the request.

Participant is an authorized entity who executes the cryptographic
protocols.

Participant is divided into two types. One is an honest participant who sends
or receives data in strict accordance with the steps of a cryptographic protocol.
The other is a dishonest participant who may lie in the execution of a cryp-
tographic protocol or not execute the cryptographic protocol at all, trying to
impersonate or deceive the other participant to achieve various illegal purposes.
In this paper, we assumed that participant A and B may be dishonest partic-
ipants, while CS (currency server) and TTP (trusted third party) are always
honest participants. Intruder is an unauthorized entity who participates in or
interfere with the execution of cryptographic protocols.

The execution of each message of a cryptographic protocol is related to the
security of the environment. If the message is not executed or is not executed
correctly, we consider that the message is interruptible. If a message should be
sent by a dishonest participant, it is interruptible because the dishonest partici-
pant may choose to stop sending a message for his/her own benefit. If a message

An Extension of Formal Analysis Method with Reasoning 401

should be sent by an honest participant, the message is uninterruptible in a sit-
uation of secure environment because an honest participant will always follow
the protocol process. If the environment is not secure, the message sent by the
honest participant may be lost, so that the message is interruptible. This paper
only considers the interruption in a secure environment.

Non-repudiation [12,13,15] and fairness [1,11,15] are the security proper-
ties of cryptographic protocols. Non-repudiation means that the participants
of a cryptographic protocol should be responsible for their actions, the sender
cannot deny the messages they have sent, and the receiver cannot deny any
messages received. In the event of a dispute, a participant can provide the nec-
essary evidence to protect its own interests. Non-repudiation is achieved by the
sender having the receiver’s non-repudiation evidence and the receiver having
the sender’s non-repudiation evidence [22,23]. The sender’s non-repudiation evi-
dence is used to prove that the sender did send the message, and the receiver’s
non-repudiation evidence to prove that the receiver did receive the message.

Fairness means that at any stage of the operation of a cryptographic protocol,
any participant will not have more privilege in the operation. It includes imple-
mentation fairness, acquired fairness and retrospective fairness [1,20]. Implemen-
tation fairness means any participant has the same control over the execution
of the cryptographic protocol. In other words, the participants have the right to
choose whether to continue or give up the execution of the protocol step and to
exercise such rights without affecting the rights of other participants. Acquired
fairness means in the case of normal termination of the cryptographic protocols,
participants can be guaranteed the information they should have obtained. In
the case of abnormal suspension, all participants did not receive anything. Retro-
spective fairness means no participant can escape the responsibilities associated
with the exchange of information. In this paper, we focused on the realization
of acquired fairness, which is also the most important aspect of fairness.

3 An Extension of Formal Analysis Method
with Reasoning

3.1 Formalization of Cryptographic Protocols

Overview of Formalization. In the previous formal analysis method with
reasoning, analysts formalize the “behaviors of participants”, “behaviors of an
intruder”, “common behaviors among participants and an intruder” and “irreg-
ular case” as targets of formalization [25]. In the extended method, to detect
the flaws that caused by dishonest participants, we have added “confirm behav-
iors” and some new tasks in “common behaviors”. Below we only provide a for-
mal description of behaviors to perform flaws detection of non-repudiation and
fairness.

Analysts formalize “behaviors of participants”, “common behaviors” and
“confirm behaviors” as targets of formalization. “behavior of participants” means
a set of rules of participants.” “common behaviors” represents rules except for

402 J. Yan et al.

the behaviors of sending and receiving data by participants. “confirm behaviors”
represents a set of rules that participants judge whether the signatures or keys
are true.

To formalize the behaviors above, we defined following predicates, functions,
and individual constants that represents participants’ behavior or data in cryp-
tographic protocols.

Predicates

– Parti(p): p is a participant of a protocol.
– Eq(x1, x2): x1 and x2 are equal.
– Cof(p1, p2, x): p1 confirms that p2 has responsibility of x.
– Recv(p, x): p receives x.
– Send(p1, p2, x): p1 sends x to p2.
– Start(p1, p2): p1 and p2 start a communication process.

Functions

– data(x1, · · · , xn) (n ∈ N): A data set that consists of sent and received x1, . . . ,
and xn.

– enc(k, x1, · · · , xn): A data set that consists of encrypted x1,· · · , and xn by k.
– id(p): Identifier of p.
– nonce(p): Nonce of p.
– old(x): Old data of x.
– pk(p): Public key of p.
– plus(x): Incremented data of x.
– sig(p, x1, · · · , xn): A data set that consists of x1, · · · , and xn with p’s signa-

ture.
– symk(p1, p2): Symmetric key of p1 and p2.
– tstamp(p): Timestamp of p.

Constants

– a, b (n ∈ N): Persons
– ttp: Trusted third sever.

In addition, there are uniquely defined functions and individual constants
that are assigned to each data in a cryptographic protocol.

Behaviors of Participants. Behaviors of participants are to describe the spec-
ification of a cryptographic protocol. Generally, in specification of cryptographic
protocols, sending and receiving in step M are represented as M.X1 → X2 :
Y1, Y2, · · · , Yz, it means that X1 sends data Y1, Y2, · · · , Yz (z ∈ N) to X2 in
step M .

1. Represent participants’ behaviors in each step of a cryptographic protocol by
formulas. pi and xi are individual variables, n and m are the number of sent
or received data.

An Extension of Formal Analysis Method with Reasoning 403

a. As step 1 of the protocol,

Start(p1, p2) ⇒ Send(p1, p2, data(x1, . . . , xn)) (1)

means “if a cryptographic protocol starts with p1 and p2, p1 sends data
x1, . . . , xn to p2”.

b. As step 2 of the protocol,

Recv(p1, data(x1, . . . , xm)) ⇒ (Parti(p1) ⇒
Send(p1, p2, data(x1, . . . , xn))) (2)

means “if a participant p1 receives data, p1 sends the next data to p2.”
pi, xi are individual variables, and n,m are the number of sent or received
data.

2. Replace individual variables p1 and p2 in formulas (1) and (2) with ttp or
pi respectively in the previous task. For example, if sender of corresponding
step is a third trusted party ttp, individual variable p1 is replaced with the
individual constant ttp.

3. Replace individual variables x1, · · · , xn in formulas (1) and (2) with terms
according to following rules corresponding step of the specification.
a. If sent data Yi is not encrypted, substitute a function f(pi) orf(ttp)

respectively or an individual variable that is uniquely defined.
b. If Yi is incremented data, substitute plus(x′

i). x′
i is replaced as well as

previous task 3-a.
c. If Yi is encrypted data, substitute enc(k, x′

1, · · · , x′
n) and replace k

depending on key types such as public key or symmetric key.
d. If Yi is signed data, substitute sig(pi, x′

1, · · · , x′
n) and replace pi with

p1, p2, . . . , pn or ttp.
4. In part of formulas A1 ⇒ A2 (A1, A2 is formulas), if a variable is included

only in A1 or A2, define an individual constant and replace the variable into
the constant.

5. Add quantifier ∀ corresponded to individual variables k, xi, and pi in those
formulas.

6. Generate a formula Start(p1, p2) with substituting an individual constant of
participants to p1 and p2.

Common Behaviors. Common behaviors mainly describe implicit behaviors
such as encryption or decryption behaviors of participants.

1. Generate ∀p((Recv(p, data1) ∧ · · · ∧ Recv(p, datan) ⇒ Recv(p, data′))) repre-
sents if p receives multiple data, p receives another data.

2. Generate the formula that means if p receives data encrypted by p’s symmetric
key or public key, p gets original data. ∀p1∀p2∀x1 . . . ∀xn(Recv(p1, enc(symk
(p1, p2), x1, · · · , xn)) ⇒ Recv(p1, data(x1, · · · , xn))), and ∀p∀x1 . . . ∀xn(Recv
(p, enc(pk(p), x1, · · · , xn)) ⇒ Recv(p, data(x1, · · · , xn))).

404 J. Yan et al.

3. Generate the formula that means if p receives data encrypted by a
session key that p knows, p gets original data. ∀p1∀x1 . . . ∀xn(Recv(p1,
enc(sesk(p1), x1, · · · , xn)) ⇒ Recv(p1, data(x1, · · · , xn))).

4. ∀p1∀p2(Eq(symk(p1, p2), symk(p2, p1))) represents symk(p1, p2) and
symk(p2, p1) are equal.

5. Parti(α) where α represents a person or the third trusted server.

Confirm Behaviors. Confirm behaviors are the basis for the participants to
judge whether the received message is correct or not.

1. Generate formulas of the public key other participants that each par-
ticipant have confirmed before the cryptographic protocol executing.
∀p1∀p2(Cof(p1, p2, pk(p2))), which means p1 have confirmed that p2 has
responsible for the pk(p2).

2. If participant p1 receives the data {x}sigp2 , and p1 confirms that p2 has
the public key which can decrypt the signature, then p1 can confirm p2 has
responsibility of data x. ∀p1∀p2∀x(Recv(p1, {x}sigp2)∧Cof(p1, p2, pk(p2)) ⇒
Cof(p1, p2, x)).

3. If participant p1 receives the data {x}k, and p1 confirms that k is the key of
p2, p1 can confirm p2 has responsibility of data x. ∀p1∀p2∀x(Recv(p1, {x}k)∧
Cof(p1, p2, k) ⇒ Cof(p1, p2, x)).

4. If participant p1 confirms the data {x}k, and p1 confirms that k is the key of
p2, p1 can confirm p2 has responsibility of data x. ∀p1∀p2∀x(Cof(p1, {x}k) ∧
Cof(p1, p2, k) ⇒ Cof(p1, p2, x)).

5. If participant p1 confirms that p2 has responsibility to data set (x, y, z),
p1 can confirm p2 has responsibility of each data, same if vice versa.
They are represented as ∀p1∀p2∀x1 . . . ∀xn(Cof(p1, p2, {x1 . . . xn}) ⇒
Cof(p1, p2, x1)∧· · ·∧Cof(p1, p2, xn)) and ∀p1∀p2∀x1 . . . ∀xn(Cof(p1, p2, x1)∧
· · · ∧ Cof(p1, p2, xn) ⇒ Cof(p1, p2, {x1 . . . xn})).

6. TTP and CS are always honest participants. If participants p1 and p2
exchange data through TTP or CS, and p1 confirms TTP or CS has
responsibility to data m, p1 can confirm p2 has responsibility to data m.
∀p1∀p2∀x(Cof(p1, ttp, x1) ⇒ Cof(p1, p2, x1)).

3.2 Forward Reasoning

In the method, analysts use FreeEnCal [7] to perform forward reasoning auto-
matically. Strong relevant logic [5,6] is used when forward reasoning. It stip-
ulates conclusions that are not related to the premise are not deduced, thus
greatly reducing the useless deduced data. In the extended method, the number
of forward reasoning executions depends on the number of steps of the cryp-
tographic protocol to be detected. Analysts put generated logical formulas of
“common behaviors”, “confirm behaviors” into FreeEncal, and put the first step
of the “behaviors of participants” into FreeEnCal for the first execution of for-
ward reasoning, and then add the formula that represents the second step of

An Extension of Formal Analysis Method with Reasoning 405

the protocol to the result of first execution of forward reasoning to perform for-
ward reasoning the second time. Add the formula that represents each step of
the protocol in turn. If the added formula is represented as the final step of the
cryptographic protocol, forward reasoning is finished.

3.3 Analysis

Analysts check the deduced formulas in each execution result of forward rea-
soning. If in the final execution result, all participant have confirmed the data
they should receive, the cryptographic protocol has no flaws related to non-
repudiation. Because according to the “confirm behaviors”, if one participant
deceives the other in the protocol, the other participant cannot confirm the data
he/she has received. If in the middle execution results, one participant has con-
firmed the target data but the other has not, it indicates that the cryptographic
protocol has the flaw related to fairness.

4 Case Study in ISI Protocol

To validate the extension of formal analysis method with reasoning is valid of
detecting flaws related to non-repudiation and fairness, we use ISI protocol as a
case to analyze the security. ISI protocol is proposed by Medvinsky and Neuman
[17], the purpose of the protocol is participant A pays participant B, then B gives
the receipt to A.

The specification of the protocol is as follows. In step 1, participant A sends
the symmetric key to ask the public key of B, and then B answers. Then A
sends the electronic money, the service identification number to be obtained and
password to B. By checking the signature of the CS, B can confirm the validity
of the electronic money. In the fourth step, B transmits the electronic money to
CS (currency server). Then CS will pay B in step 5. After receiving the money,
B sends the receipt to A. In this protocol, CS is an honest participant. Here,
coins, id, passward, transaction, new − coins, amount, tid and date are data
that is uniquely defined in the protocol.

Specification

1. A → B : Kab

2. B → A : {Kb}Kab

3. A → B : {{coins}Sigcs , SKa, id, password}Kb

4. B → CS : {{coins}Sigcs , SKb, transaction}Kcs

5. CS → B : {{new − coins}Sigcs}SKb

6. B → A : {{amount, tid, date}Sigb}SKa

This protocol has been pointed out that it does not satisfy the security of
non-repudiation and fairness [16]. In the fifth step, B receives the currency signed
by CS, but at this time A does not receive the receipt. If B stops the crypto-
graphic protocol, A has no way to get the receipt. Therefore, according to the

406 J. Yan et al.

definition of fairness, the cryptographic protocol has a flaw of not satisfying
fairness. In the sixth step of the protocol, A receives the signed receipt, but A
cannot confirm whether this is the signature of B, so according to the definition
of non-repudiation, the protocol has the flaw of not satisfying non-repudiation.

As the result of formal analysis by the extended method, 2435 logical formulas
were deduced. After the fourth step of the protocol is executed, Cof(B,A, new−
coins) was deduced which means that participant B can confirm that A has
responsibility of new−coins, that is, B received the currency. After the last step
of the protocol is executed, formula Recv(A, data(sig(b, amount, tid, date))) was
deduced which means that A only cannot confirm whether the signature is from
B. Therefore, this protocol has the flaw that does not satisfy non-repudiation.
Since A did not get a receipt when the currency was obtained by B on the 18th
path, the protocol has a flaw that does not satisfy fairness.

If we use the previous formal analysis method with reasoning [25] to
analysis the protocol, we can get 2938 logical formulas. In the deduced
formulas, Recv(A, data(enc(seak(a), sig(i, amount′, tid′, date′)))) and Get(A,
data(amount’, tid’, date’)) were deduced, which means participant A gets the
falsified data. Therefore, according to the flaw analysis criteria [26], the ISI pro-
tocol also does not satisfy the security properties of authentication.

The attack process is as follows.

Attack

1. A → I(B) : Kab

2. I(A) → B : Kab

3. B → I(A) : {Kb}Kab

4. I(B) → A : {Ki}Kab

5. A → I(B) : {{coins}Sigcs , SKa, id, password}Ki

6. I(A) → B : {{coins}Sigcs , SKa, id, password}Kb

7. B → CS : {{coins}Sigcs , SKb, transaction}Kcs

8. CS → B : {{new − coins}Sigcs}SKb

9. B → I(A) : {{amount, tid, date}Sigb}SKa

10. I(B) → A : {{amount′, tid′, date′}Sigi}SKa

Based on the two results above, it can be said that the formal analysis method
with reasoning can deal with flaws related to authentication, non-repudiation and
fairness.

5 Discussions

Although we have successfully proved that the extension of formal analysis
method with reasoning can find flaws related to confidentiality, authentication
[25], non-repudiation and fairness, there are still two problems with this method.

The first problem is that only limited types of flaws can be detected. In the
method, we use Dolev-Yao model [10] to describe the intruder’s capabilities and
use the confirm behaviors to restrict participant’s capabilities. But it cannot

An Extension of Formal Analysis Method with Reasoning 407

describe the ability of all honest participants, dishonest participants and intrud-
ers to cross-combine, so the formulas associated with certain flaws may not be
deduced.

Second, a large number of logical formulas have been deduced by using the
extended method, obviously, it is difficult for analysts to analyze them one by
one. In the case study of ISI protocol, the meaning of other logical representations
has not yet been analyzed. Therefore we need to find some ways to exclude the
formulas that considered secure in the generated formulas, narrow the scope of
the analysis.

6 Concluding Remarks

In this paper, we have made an extension of formal analysis method with reason-
ing for cryptographic protocols in order to detect the flaws that related to the
security of non-repudiation and fairness. We also have analyzed the ISI proto-
col by using the proposed method and the known flaw was detected. Therefore,
based on the ability to detect flaws related to confidentiality and authentica-
tion, the extended method can detect flaws related to the security properties of
confidentiality and authentication, non-repudiation and fairness.

In the future, we will analyze more cryptographic protocols to verify the
validity of the extended method. We will also more fully describe the capabilities
of intruders and dishonest participants, and we will find some ways to narrow
the scope of the deduced formulas and analyze the formulas automatically.

References

1. Asokan, N.: Fairness in electronic commerce. Ph.D. thesis, Department of Mathe-
matics, University of Waterloo, Canada (1998)

2. Avalle, M., Alfredo, P., Bogdan, W.: Formal verification of security protocol imple-
mentations: a survey. Formal Aspects Comput. 26(1), 99–123 (2014)

3. Bau, J., Mitchell, J.C.: Security modeling and analysis. IEEE Secur. Priv. 9(3),
18–25 (2011)

4. Butterfield, A., Ngondi, G.: Oxford Dictionary of Computer Science. Oxford Uni-
versity Press, Oxford (2016)

5. Cheng, J.: A strong relevant logic model of epistemic processes in scientific dis-
covery. In: Information Modelling and Knowledge Bases XI, Frontiers in Artificial
Intelligence and Applications, vol. 61, pp. 136–159 (2000)

6. Cheng, J., Miura, J.: Deontic relevant logic as the logical basis for specifying,
verifying, and reasoning about information security and information assurance. In:
1st International Conference on Availability, Reliability and Security, pp. 601–608.
IEEE Computer Society, Vienna, Austria (2006)

7. Cheng, J., Nara, S., Goto, Y.: FreeEnCal: a forward reasoning engine with general-
purpose. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007. LNCS (LNAI),
vol. 4693, pp. 444–452. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74827-4 56

8. Clarke Jr., E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

https://doi.org/10.1007/978-3-540-74827-4_56
https://doi.org/10.1007/978-3-540-74827-4_56

408 J. Yan et al.

9. Cortier, V., Kremer, S., Warinschi, B.: A survey of symbolic methods in computa-
tional analysis of cryptographic systems. J. Autom. Reasoning 46(3–4), 225–259
(2011)

10. Dolev, D., Andrew, C.Y.: On the security of public key protocols. IEEE Trans. Inf.
Theory 29(2), 198–208 (1983)

11. Hauser, R., Steiner, M., Waidner, M.: Micro-payments based on IKP. IBM Zurich
Research Laboratory, IBM Research Division Report RZ279, Zurich, Switzerland
(1996)

12. International Organization for Standardization: ISO/IEC 13888–3: Information
security techniques - non-repudiation - Part: Mechanisms using asymmetric tech-
niques (1997)

13. International Organization for Standardization: ISO/IEC 13888–2: Information
security techniques - non-repudiation - Part: Mechanisms using symmetric tech-
niques (1998)

14. International Organization for Standardization: ISO/IEC 29128: Information tech-
nology - Security techniques - Verification of cryptographic protocols (2011)

15. Kremera, S., Markowitcha, O., Zhoub, J.: An intensive survey of fair non-
repudiation protocols. Comput. Commun. 25(17), 1606–1621 (2002)

16. Liu, Y., Zhang, H.: Stand spaces analysis of electronic commerce protocols. Com-
put. Sci. 35(2), 109–114 (2008)

17. Medvinsky, G., Neuman, C.: NetCash: a design of practical electronic currency on
the internet. In: 1st ACM Conference on Computer and Communications Security,
Fairfax, Virginia, USA, pp. 102–106 (1993)

18. Meadows, C.A., Meadows, C.A.: Formal verification of cryptographic protocols: a
survey. In: Pieprzyk, J., Safavi-Naini, R. (eds.) ASIACRYPT 1994. LNCS, vol. 917,
pp. 133–150. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0000430

19. Meadows, C.: Formal methods for cryptographic protocol analysis: emerging issues
and trends. IEEE J. Sel. Areas Commun. 21(1), 44–54 (2003)

20. Markowitch, O., Gollmann, D., Kremer, S.: On fairness in exchange protocols. In:
Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 451–465. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-36552-4 31

21. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1), 85–128 (1998)

22. Roe, M.: Cryptography and evidence. Ph.D. thesis, Computer Laboratory, Univer-
sity of Cambridge (1997)

23. Zhou, J., Gollmann, D.: Evidence and non-repudiation. J. Network Comput. Appl.
20(30), 267–281 (1997)

24. Wagatsuma, K., Goto, Y., Cheng, J.: A formal analysis method with reasoning for
key exchange protocols. IPSJ J. 56(3), 903–910 (2015). (in Japanese)

25. Yan, J., Wagatsuma, K., Gao, H., Cheng, J.: A formal analysis method with rea-
soning for cryptographic protocols. In: 12th International Conference on Com-
putational Intelligence and Security, pp. 566–570. IEEE Computer Society, Wuxi
(2016)

26. Yan, J., Ishibashi, S., Goto, Y., Cheng, J.: A study on fine-grained security prop-
erties of cryptographic protocols for formal analysis method with reasoning. In:
2018 IEEE SmartWorld, Ubiquitous Intelligence, Computing, Advanced, Trusted
Computing, Scalable Computing, Communications, Cloud, Big Data Computing,
Internet of People and Smart City Innovations, pp. 210–215. IEEE-CS, Guangzhou
(2018)

https://doi.org/10.1007/BFb0000430
https://doi.org/10.1007/3-540-36552-4_31

A Practical and Insider Secure
Signcryption with Non-interactive

Non-repudiation

Augustin P. Sarr(B), Papa B. Seye, and Togdé Ngarenon

Lacca, UFR SAT, Université Gaston Berger de Saint-Louis, Saint-Louis, Senegal
aug.sarr@gmail.com

Abstract. Signcryption with non-interactive non-repudiation is a pub-
lic key primitive which aims at combining the functionalities of encryp-
tion and signature schemes, while offering to a judge the ability to
settle a repudiation dispute without engaging in a costly multi-round
protocol. We propose a new RSA based identification scheme together
with a strongly unforgeable signature scheme. We derive a practical and
efficient signcryption scheme with non-interactive non-repudiation we
show to be insider secure, under the RSA assumption and the Random
Oracle model. The communication overhead of our signcryption scheme,
compared to the corresponding signature scheme is one group element.

Keywords: Identification · Signature · Signcryption ·
Insider security · Non-interactive non-repudiation ·
Signed quadratic residues

1 Introduction

Signcryption is a public key primitive introduced by Zheng [23], with the aim of
combining the functionalities of encryption and signature schemes. Since Zheng’s
seminal work, many security models and constructions have been proposed [3].
In a recent work, Badertscher et al. [2] consider, from an application-centric
perspective, the security goals a signcryption scheme should achieve depending
on the secret keys the attacker knows. They conclude, in opposition to [3, p. 29],
that insider security should be considered as the standard security goal.

An important attribute which is not considered in the “standard” insider
security model is non-interactive non-repudiation. As discussed in [2], the nat-
ural usage of signcrytion is to achieve a confidential and authenticated chan-
nel between two parties over an insecure network. The same can be achieved
using non-interactive or one pass-key exchange protocols, which often outper-
form signcryption schemes. So, a major benefit of signcryption schemes compared

This Research was supported by the African Center of Excellence in Mathematics,
Computer Science and ICT of UGB.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 409–429, 2019.
https://doi.org/10.1007/978-3-030-16458-4_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_24&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_24

410 A. P. Sarr et al.

to non-interactive and one-pass key exchange is non-interactive non-repudiation
(NINR), i.e. a non-repudiation attribute wherein a judge does not have to engage
in a costly multi-round interactive protocol to settle a repudiation dispute.

A first attempt to achieve NINR in a signcryption design was proposed by
Bao and Deng [6]. Unfortunately their scheme fails in providing both NINR
and confidentiality [17,22]. In [17], Malone–Lee propose a design with NINR.
However, he analyses his design, under the Gap Diffie–Hellman Assumption [19]
and the Random Oracle (RO) model [8], in a security definition which is closer
to the outsider model than to the insider one [3, Chap. 2–4]. Fan et al. [11]
propose a strengthening of Malone–Lee’s security model which considers, not
only confidentiality and unforgeability in the insider model, but also soundness
and unforgeability of non-repudiation evidence. They propose a design they show
to be insider secure under the Decisional Bilinear Diffie–Hellman assumption,
without resorting to the RO model.

In this paper, we propose a new identification scheme, inspired from the
FXCR [20,21] and Guillou–Quisquater (GQ) [13] schemes, over the group of
signed quadratic residues [14].

We derive a signature scheme which is strongly unforgeable against chosen
message attacks. A significant advantage of our signature scheme, compared to
the FXCR or GQ schemes is that it is defined over a group wherein the strong
Diffie–Hellman assumption is known to hold under the factoring assumption [14].
Then, using a variant of Cash et al.’s trapdoor test technique [10], we derive a
signcryption scheme with non-interactive non-repudiation (SCNINR) we show
to be insider secure, under the RSA assumption and the RO model, in a variant
of Fan et al.’s security definition [11].

This paper is organized as follows. In Sect. 2, we present some preliminaries.
In Sect. 3, we propose the identification scheme, discuss its attributes, and derive
the signature scheme. We present the new SCNINR scheme and its security
arguments in Sect. 4.

2 Preliminaries

Notations. If n is an integer, |n| denotes its bit-length and [n] denotes the set
{0, · · · , n}. For a real l, �l� denotes the smallest integer which is greater than or
equal to l. We refer to the length of a list L by |L|, and to the cardinality of a set
S by |S|. If P is a probabilistic algorithm which takes as parameters u1, · · · , un

and outputs a result V which belongs to a set V, we write V ←R P (u1, · · · , un).
We denote by {P (u1, · · · , un)} the set {v ∈ V : Pr(V = v) �= 0}. If S is a
set, the notation a←R S means that a is chosen uniformly at random from S.
Exp(ZN , t, l) denotes the computational effort required to perform t exponenti-
ations with l bit exponents in ZN ; Exp(ZN , l) stands for Exp(ZN , 1, l). Jcb(ZN)
denotes the effort required to compute a Jacobi symbol in ZN . For two bit
strings m1 and m2, m1||m2 denotes their concatenation; ε denotes the empty
string. If x1, x2, · · · , xk are objects belonging to different structures (group, bit-
string, etc.) (x1, x2, · · · , xk) denotes a representation of the tuple such that each
component can be unequivocally parsed.

A Practical and Insider Secure Signcryption 411

RSA Public Key Generator. Let k be a security parameter, n(k) be a function
of k and 0 � δ < 1/2 be a constant. An algorithm RSAGen (which may be
distributed) is said to be a (n(k), δ) RSA public key generator if on input 1k,
it outputs a n(k) bit Blum integer N = pq together with a public exponent e
such that all the prime factors of φ(N)/4 are: (i) pairwise distinct, and (ii) at
least δn bit integers, and (iii) e is a (k + 1) bit prime.

RSA and Factoring Assumptions. Let A be an algorithm. We define the quantity

AdvRSA
A,RSAGen(k) = Pr

[
(N, e)←R RSAGen(1k);x←R ZN ;
y ← xe mod N ; x̂ ←R A(N, e, y) : x̂ = x

]
.

The RSA assumption for an (n(k), δ) RSA public key generator is said to hold
if for all efficient adversary A, AdvRSA

A,RSAGen(k) is negligible. For an instance
(N, e)←R RSAGen(1k) and an efficiently sampleable and recognizable subset J of
ZN , we say that the RSA problem is (t(k), ε(k)) hard in J, if for all A running
in time at most t, Pr [x←R J; y ← xe mod N ; x̂ ←R A(N, e, y) : x̂ = x] � ε.

Let A be a factoring algorithm and

AdvfacA,RSAGen(k) = Pr
[

(N, e)←R RSAGen(k);
p ←R A(N, e) : p | n and p /∈ {±N,±1}

]
.

The factoring assumption for an (n, δ) RSA public key generator is said to hold
if for all efficient adversary A, AdvfacA,RSAGen(k) is negligible.

Diffie–Hellman Assumptions. Let G = 〈G〉 be a cyclic group, which order is a
function of the security parameter k and is not necessarily known. For X ∈ G,
logG X denotes the smallest non-negative integer x such that Gx = X. For,
X,Y ∈ G, we denote G(logG X)(logG Y) by CDH(X,Y). The computational Diffie–
Hellman (CDH) Assumption is said to hold in G if for all efficient algorithm A,

AdvCDH
A (G) = Pr [X ←R G;Y ←R G;Z ←R A(G,X, Y) : Z = CDH(X,Y)]

is negligible in k. The strong Diffie–Hellman (sCDH) assumption is said to hold
in G if the CDH assumption holds even if A is endowed with a decisional Diffie–
Hellman oracle ODDH,X(·, ·) for a some fixed X, which on input U, V ∈ G out-
puts 1 if V = CDH(X,U) and 0 otherwise.

Signed Quadratic Residues. For an odd integer N , we consider {−(N −1)/2, · · · ,
(N −1)/2} as a set of representatives of the residue classes modulo N . We denote
by JN the subgroup of elements of Z∗

N with Jacobi symbol 1, and consider the
quotient group JN/{−1, 1}. We define J

+
N = JN ∩ {1, · · · , (N − 1)/2}, and the

binary operation ◦ over J
+
N by X ◦ Y = |X · Y mod N |. For X ∈ J

+
N and

t ∈ N, we write Xt for
t times︷ ︸︸ ︷

X ◦ · · · ◦ X = |Xt mod N | ∈ J
+
N . Then (J+N , ◦) is a

group, termed group of signed quadratic residues. Moreover the mapping which
associates {−X,X} ∈ JN/{−1, 1} to |X| ∈ J

+
N is an isomorphism. We identify

the quotient group JN/{−1, 1} with J
+
N . From [14], we have the following Lemma.

412 A. P. Sarr et al.

Lemma 1. If N is a Blum integer then (a) (J+N , ◦) is a subgroup of Z∗
N of order

φ(N)/4; (b) J
+
N is efficiently recognizable given only N ; and (c) if JN is cyclic

then so is J
+
N .

Canonical Identification Schemes

Definition 1. A canonical identification scheme I = (Gen,P,V,ChSet) is a
triple of algorithms together with a challenge set, such that:

– Gen is a probabilistic algorithm which takes as input a domain parameters dp
and returns a key pair (sk, pk).

– P = (P1,P2) is a pair of algorithms such that: (i) P1 takes as input a secret
key sk and outputs a commitment X together with a state st; and (ii) P2

takes as inputs a private key sk, a commitment X, a challenge c ∈ ChSet,
and a state st and outputs a response s ∈ {0, 1}∗.

– V is a deterministic verification algorithm which takes as inputs a public key
pk, a commitment X, a challenge c, and a response s and outputs d ∈ {0, 1}.

– And, for all (sk, pk) ∈ {Gen(dp)}, all (X, st) ∈ {P1(sk)}, all c ∈ ChSet, and
all s ∈ {P2(sk,X, c, st)}, V(pk,X, c, s) = 1.

A transcript (X, c, s) is said to be accepting with respect to pk if
V(pk,X, c, s) = 1.

An identification scheme is said to be unique if for all (sk, pk) ∈ {Gen(dp)},
all (X, st) ∈ {P1(sk)}, and all c ∈ ChSet, there is at most one s ∈ {0, 1}∗

such that V(pk,X, c, s) = 1. It is said to have α-bits of min entropy if for all
(sk, pk) ∈ {Gen(dp)}, the commitments generated through P1(sk) are chosen
from a distribution with min entropy at least α; i.e., for all commitment X0, if
(X, st)←R P1(sk) was honestly generated then Pr(X = X0) � 2−α.

Definition 2. Let I = (Gen, P,V,ChSet) be a canonical identification scheme.

(a) I is said to provide special soundness (SpS) if there exists an efficient deter-
ministic algorithm Ext (an extractor) such that for all accepting conversa-
tions with respect to a public key pk, (X, c, s) and (X, c′, s′), if c �= c′ then
sk∗ ← Ext(pk,X, c, s, c′, s′) is such that (sk∗, pk) ∈ {Gen(dp)}.

(b) It is said to be honest verifier zero knowledge (HVZK) if there exists an
efficient probabilistic algorithm sim (a simulator) such that for all (sk, pk) ∈
{Gen(dp)}, the output distribution of sim on input pk is identical to that of
a real transcript between P(sk) and V(pk).

(c) It is said to be random self reducible (RSR) if there is a probabilistic algo-
rithm Rerand together with two deterministic algorithms Tran and Derand
such that for all (sk, pk) ∈ {Gen(dp)}:
– if (τ, pk1)←R Rerand(pk) and (sk2, pk2)←R Gen(dp) then pk1 and pk2

have the same distribution;
– for all (sk1, pk1) ∈ {Gen(dp)}, for all τ such that (τ, pk1) ∈ {Rerand(pk)},

if sk∗ ← Derand(pk, pk1, sk1, τ) then (sk∗, pk) ∈ {Gen(dp)};

A Practical and Insider Secure Signcryption 413

– for all (sk1, pk1) ∈ {Gen(dp)} and all (X, c, s1) such that
V(pk1,X, c, s1) = 1, if (X, c, s) ← Tran(pk, pk1, τ, (X, c, s1)) then
V(pk,X, c, s) = 1.

Definition 3. A canonical identification scheme I = (Gen,P,V,ChSet) is said
to be (t, ε)-secure against Key Recovery against Key Only Attacks (KR-KOA),
if for all adversary A running in time at most t

Pr [(sk, pk)←R Gen(dp); sk∗ ←R A(pk) : (sk∗, pk) ∈ {Gen(dp)}] � ε.

Symmetric Encryption, Digital Signature

Definition 4. A symmetric encryption scheme E = (E,D,K(k),M(k),C(k))
is a pair of efficient algorithms (E,D) together with a triple of sets
(K(k),M(k),C(k)) such that for all τ ∈ K and all m ∈ M, E(τ,m) ∈ C,
m = D(τ,E(τ,m)).

Definition 5. Let A be an adversary against an encryption scheme E; its
semantic security advantage is

AdvssA,E(k) =
∣∣∣∣Pr

[
(m0,m1)←R A(1k); τ ←R K; b ←R {0, 1};
c ← E(τ,mb); b̂ ←R A(1k, c)

: b̂ = b

]
− 1

2

∣∣∣∣ ,

where m0,m1 ∈ M are distinct equal length messages. The scheme E is said to be
(t, ε)-semantically secure if for all adversary A running in time t AdvssA,E(k) � ε.

Definition 6. A signature scheme S = (Gen,Sign,Vrfy) is a triple of efficient
algorithms together with a message space M, such that:

– Gen is probabilistic algorithm which takes as input a domain parameter dp
and returns a key pair (sk, pk);

– Sign is a probabilistic algorithm which takes as inputs a secret key sk and a
message m ∈ M and outputs a signature σ;

– Vrfy is a deterministic algorithm which takes as inputs a public key pk, a mes-
sage m, and a signature σ and outputs d ∈ {0, 1}; and

– for all (sk, pk) ∈ {Gen(dp)}, all m ∈ M, Pr [Vrfy(pk,m,Sign(sk,m)) = 1] = 1.

Game 1. MU-SUF-CMA security game

1) For i ∈ [U], (ski, pki) ←R Gen(dp);
2) (i0, m0, σ0) ←R AOH(·),OSign(·,·)(pk1, · · · , pkU), wherein OH(·) is a hashing oracle and

OSign(·, ·) a signing oracle which takes as inputs an index j ∈ [U] together with a
message m and outputs σ ←R Sign(skj , m).

3) A succeeds if : (a) i0 ∈ [U] and Vrfy(pki0 , m0, σ0) = 1, and (b) σ0 was not received
from the oracle OSign(·, ·) on a query on (i0, m0).

Definition 7. Let S = (Gen,Sign,Vrfy) be a signature scheme such that the
execution of Sign involves the computation of one digest value, at least. S is said
to be (t, U,QSign, QH, ε) multi-user strongly unforgeable against chosen message

414 A. P. Sarr et al.

attacks (MU-SUF-CMA) in the RO model, if for all adversary A playing Game 1
(wherein we consider U and dp as implicit parameters), if A runs in time at
most t, issues at most QSign and QH queries to the signing and hashing oracles
respectively, the probability it succeeds is at most ε.

Signcryption Schemes

Definition 8. A signcryption scheme is a quintuple of algorithms SC = (Setup,
GenS ,GenR,Sc,Usc) wherein:

(a) Setup is a probabilistic algorithm which takes a security parameter 1k as
input, and outputs a domain parameter dp.

(b) GenS is a probabilistic algorithm which takes as input a domain parameter
dp and outputs a sender key pair (skS , pkS) wherein skS is the signing key.

(c) GenR is a probabilistic algorithm which takes dp as input and outputs a
receiver key pair (skR, pkR).

(d) Sc is a probabilistic algorithm which takes as inputs dp, a sender private key
skS and a receiver public key pkR, and outputs a signcrypted text C. We
consider dp as an implicit parameter and write C ←R Sc(skS , pkR,m).

(e) Usc is a deterministic algorithm which takes as input dp, a sender public key
pkS, a receiver secret key skR and outputs either a message m ∈ M or an
error symbol ⊥ /∈ M.

The above algorithms are such that for all dp ∈ {Setup(1k)}, all m ∈ M, all
(skS , pkS) ∈ {GenS(dp)}, and all (skR, pkR) ∈ {GenR(dp)}, m = Usc(skR, pkS ,
Sc(skS , pkR,m)). The scheme is said to provide NINR if there is a non-
repudiation evidence generation algorithm N together with a pubic verification
algorithm PV such that:

– N takes as inputs a receiver secret key skR, a sender public key pkS, and a
signcrypted text C, and outputs a non-repudiation evidence nr or a failure
symbol ⊥; we write nr ← N(skR, pkS , C).

– PV takes as inputs a signcryptext C a message m, a non-repudiation evidence
nr, and two public keys pkS and pkR and outputs, a decision d ∈ {0, 1}; we
write d ← PV(C,m, nr, pkS , pkR).

– And, for all dp ∈ {Setup(1k)}, all C ∈ {0, 1}∗, all (skS , pkS) ∈ {GenS(dp)},
and all (skR, pkR) ∈ {GenR(dp)}, if ⊥ �= m ← Usc(skR, pkS , C) and nr ←
N(skR, pkS , C) then 1 = d ← PV(C,m, nr, pkS , pkR).

Confidentiality. We propose in Game 2 an extension of the Secret Key Igno-
rant Multi-User (SKI-MU) insider confidentiality in the Flexible Signcryp-
tion/Unsigncryption Oracle (FSO/FUO) model [4,5] geared to SCNINR.

A Practical and Insider Secure Signcryption 415

Game 2. SKI–MU Insider Confidentiality in the FSO/FUO–IND–CCA2 sense

A = (A1, A2) is a two–stage adversary against SC; dp is the domain parameter.
1) The challenger computes (skR, pkR) ←R GenR(dp);
2) A1 is provided with dp and pkR together with two oracles: (a) OUsc(·, ·), which

takes as inputs a public key pk and a signcrypted text C and outputs m ←
Usc(skR, pk, C); (b) ON(·,·) which takes as inputs a public key pk and a signcrypted
text C and outputs nr ← N(skR, pk, C).

3) A1 outputs a four–tuple (m0, m1, st, pkS) ←R AOUsc(·,·),ON(·,·)
1 (pkR) wherein

m0, m1 ∈ M are distinct equal length messages, st is a state, and pkS is the attacked
sender public key.

4) The challenger chooses b ←R {0, 1}, computes C∗ ←R Sc(skS , pkR, mb).

5) A2 outputs b′ ←R AOSc(·,·),OUsc(·,·),ON(·,·)
2 (C∗, st), where OUsc(·, ·) and ON(·, ·) are as

in step 2, and OSc(·, ·) takes as inputs pk ∈ {GenR(dp)} and m ∈ M and outputs
C ←R Sc(skS , pk, m).

6) A wins the game if: (a) A2 never issued OUsc(pkS , C∗) or ON(pkS , C∗), and
(b) b = b′.

We denote by Succcca2A the event “conditions (6a) and (6b) are satisfied”, and define

A’s advantage by Advcca2A,SC(1k) =| Pr(Succcca2A) − 1/2 |.

Definition 9. A SCNINR SC is said to be (t, qSc, qUsc, qN, ε)-secure in the SKI-
MU insider confidentiality in the FSO/FUO-IND-CCA2 sense if for all adver-
sary A playing Game 2, if A runs in time t, and issues respectively qSc, qUsc,
and qN queries to the signcryption, unsigncryption, and non-repudiation evidence
generation oracles then Advcca2A,SC(1k) � ε.

Unforgeability. We recall here the multi-user insider unforgeability in the
FSO/FUO-sUF-CMA sense for SCNINR.

Game 3. Multi–User insider Unforgeability in the FSO/FUO–sUF–CMA sense

A is a forger against SC, dp is the domain parameter.
1) The challenger computes (skS , pkS) ←R GenS(dp).
2) A takes pkS as input and is given access to a FSO OSc(·, ·), as in step 5 of Game 2.
3) A outputs ((skR, pkR), C∗) ←R AOSc(·,·)(pkS). He wins the game if: (a) ⊥ �= m ←

Usc(skR, pkS , C∗), and (b) A never received C∗ from the oracle OSc(·, ·) on a query
on (pkR, m).

AdvsufA,SC(1k) = Pr(SuccsufA) denotes the probability that A wins the game.

Definition 10. A SCNINR is said to be (t, qSc, ε) multi-user insider unforgeable
in the FSO/FUO-sUF-CMA sense if for all attacker A playing Game 3, if A runs
in time t and issues qSc signcryption queries then AdvsufA,SC(1k) � ε.

Soundness of Non-repudiation. This attribute ensures that public verification
always yields a correct result.

416 A. P. Sarr et al.

Game 4. Soundness of non–repudiation

A = (A1, A2) is an attacker against SC, dp is the domain parameter.
1) A1 executes with parameter dp and outputs (st, pkS) ←R A1(dp), wherein st is a

state and pkS a sender public key.
2) A2 executes with inputs st and pkS and is given access to a FSO. It outputs

(skR, pkR, C∗, m′, nr) ←R AOSc(·,·)
2 (st, pkS).

3) A wins the game if: (a) C∗ is valid, i. e. ⊥ �= m ← Usc(skR, pkS , C∗), and (b) m �=
m′ and 1 = d ← PV(C∗, m′, nr, pkS , pkR).

We denote by AdvsnrA,SC(1k) the probability that A wins the game.

Definition 11. A signcryption scheme SC is said to achieve (t, qSc, ε) compu-
tational soundness of non-repudiation if for all adversary A playing Game 4, if
A runs in time t and issues qSc signcryption queries then AdvsnrA,SC(1k) � ε.

Unforgeability of Non-repudiation (NR) Evidence. Contrary to Malone–Lee [17],
Fan et al. [11] consider unforgeability of non-repudiation evidence. However, their
definition seems too restrictive. Indeed, they consider the capability of both the
sender and receiver of a signcrypted text to generate a non-repudiation evidence
as a security weakness. As a motivating example, they consider a malicious
patient who receives a signcrypted medical report from his doctor, generates a
non-repudiation evidence, and exposes the signcryted text together with the NR
evidence. The patient can then claim that the doctor has exposed his report. In
such a situation a judge cannot decide who, among the patient and the doctor,
exposed the report.

As for us, non-repudiation ensures that a message sender (the doctor in the
example) cannot deny that the message in the signcryted text (the medical
record) is from him. The question considered in the example is not about the
non-repudiation of the signcrypted message (the report), but about the non-
repudiation of the (non-repudiation) evidence. Moreover in many settings, a
non-repudiation evidence may be used both for credit (the ability of the sender
to later claim being the sender of the message) and responsibility (the ability of
the receiver to hold the sender accountable for the message contents) [9, Chap. 3].
It seems then important that NR evidences can be generated by both the sender
(at signcrypted text generation) and the receiver of a signcrypted text.

Game 5. Unforgeability of non–repudiation evidence

A is an attacker against SC, dp is the domain parameter.
1) The challenger computes (skS , pkS) ←R GenS(dp); (skR, pkR) ←R GenR(dp);
2) A runs with inputs pkS and pkR, and is given access to the ora-

cles OSc(·, ·), OUsc(·, ·), and ON(·, ·) as in step 5 of Game 2. It outputs
(C∗, m∗, nr∗) ←R AOSc(·,·),OUsc(·,·),ON(·,·)(pkS , pkR).

3) A wins the game if: (a) C∗ was generated through OSc(·, ·) and (b) 1 = d ←
PV(C∗, m∗, nr∗, pkS , pkR), and nr∗ was not generated by the oracle ON(·, ·) on a
query on (pkS , C∗).

We denote by AdvunrA,SC(1k) the probability that A wins the game.

A Practical and Insider Secure Signcryption 417

Definition 12. A SCNINR is said to achieve (t, qSc, qUsc, qN, ε) unforgeability of
non-repudiation evidence if for all adversary A playing Game 5, if A runs in time
t and issues respectively qSc, qUsc, and qN queries to the signcryption, unsigncryp-
tion, and non-repudiation evidence generation oracles then AdvunrA,SC(1k) � ε.

3 New Identification and Signature Schemes

A domain parameter is given by dp = (N,G,R, e, k) wherein

– N = pq is an RSA modulus, p = 2p′ + 1 and q = 2q′ + 1 being safe primes.
– e is a (k + 1) bit prime. To improve the scheme’s efficiency, it can be chosen

to be a sparse prime. It is used as an RSA public exponent.
– R is a generator of J+N , and G = Re.
– k is a security parameter, n(k) = |N | is chosen such that the best known

algorithm for factoring N runs in time ≈2k.

For domain parameter generation, if there is a party which is trusted by all
the users, he can generate the domain parameter. Alternatively, an perhaps
preferably, the domain parameter may be generated by a set of parties such that
each user of the scheme trusts at least one of them. In this case, the parties
generating the domain parameter may perform as follows:

(1) They run the distributed shared RSA modulus generation following the pro-
tocol given in [1], to get product of two safe primes N , while each party has
a share of the primes.

(2) They choose a (k + 1) bit prime e and R ←R J
+
N , and compute G = Re (R is

a generator of J+N , with all but negligible probability).
(3) The domain parameter is dp = (N,G,R, e, k).

Description of the Scheme. Let dp = (N,G,R, e, k) be a domain parameter,
and l = �N/4�. We derive the scheme ISSN = (Gen,P,V,ChSet) wherein Gen,
P = (P1,P2), and V are as described hereunder; we denote [2k − 1] by ChSet.

Gen(dp): a←R [l]; (sk, pk) ← (Ra, Ga); Return (sk, pk).
P1(sk): x←R [l]; (X, st) ← (Gx, Rx); Return (X, st).
P2(sk,X, c, st): Y ← st; s ← Y ◦ skc; Return s.
V(pk,X, c, s): If se = X ◦ pkc then Return 1, Else return 0.

For all (sk, pk) ∈ {Gen(dp)}, if (X, c, s) is a transcript generated through P then
1 = V(pk,X, c, s), as se = (Rx+ca)e = (Re)x+ca = Gx+ca = Gx◦(Ga)c = X◦pkc.

Uniqueness and Min Entropy. As the function Expe : J
+
N → J

+
N which

maps Y to Y e is bijective, for all X, pk ∈ J
+
N , all c ∈ ChSet, there

is one and only one s ∈ J
+
N such that se = X ◦ pkc. Let δ0 denote

max(1/p′, 1/q′). If x1 ←R

[|J+N |] and x2 ←R [l] the statistical distance between
x1 and x2 is Δ(x1, x2) � N/4−φ(N)/4

N/4 � δ0. So, if X1 ← Gx1 and X2 ← Gx2 ,

418 A. P. Sarr et al.

then Δ(X1,X2) � δ0. Then, if X is generated through P1(·), the statistical dis-
tance between the distribution of X and the uniform distribution over J+N is not
greater than δ0. And then for all X0 ∈ J

+
N , if X is generated through P1(·),

| Pr(X = X0) − 1/|J+N || � δ0; the identification scheme has α ≈ − log2(δ0) bits
of min-entropy.

Special Soundness. If (X, c, s) and (X, c′, s′) are two accepting transcripts with
respect to a public key pk such that c �= c′ then s ◦ s′−1 = skc−c′

, and then(
s ◦ s′−1

)e

= pkc−c′
. Now, as c, c′ ∈ ChSet = [2k − 1], and e > 2k is prime, it

follows that gcd(e, c − c′) = 1. Let α, β ∈ Z be such that eα + (c − c′)β = 1

and sk∗ = pkα ◦
(
s ◦ s′−1

)β

, then (sk∗)e =
(

pkα ◦
(
s ◦ s′−1

)β
)e

= pkeα ◦
(
s ◦ s′−1

)eβ

= pkeα+(c−c′)β = pk.

Honest Verifier Zero Knowledge. For all public key pk ∈ J
+
N , the following sim-

ulator yields transcripts with the same distribution as real transcripts.

sim(pk): c←R ChSet; z ←R [l]; s ← Rz; X ← se ◦ pk−c; Return (X, c, s).

Random Self Reducibility. The Rerand, Tran and Derand algorithms are:

Rerand(pk): z ←R [l]; τ ← Rz; pk1 ← τe ◦ pk; Return (τ, pk1);
Derand(pk, pk1, sk1, τ): sk∗ ← sk1 ◦ τ−1; Return sk∗;
Tran(pk, pk1, τ, (X, c, s1)): Z ← τ−c; s ← Z ◦ s1; Return (X, c, s).

The Rerand algorithm outputs a public key pk1 which has the same distribution
as the keys generated through Gen(dp). The Derand algorithm provides the static
private key corresponding to pk. The Tran algorithm produces a valid transcript
with respect to the public key pk.

KR-KOA Security. For sk, pk ∈ J
+
N , if ske = pk then (±sk)e = pk. Then under

the RSA assumption over J
+
N , ISSN is secure against KR-KOA.

Lemma 2. If the RSA problem is (t, ε)-hard over J
+
N then the identification

scheme ISSN is (t, ε)-KR-KOA-secure.

The Signature Scheme. As the identification scheme is commitment recover-
able, using the (alternative) Fiat–Shamir transform [12], we derive the signature
scheme SSSN = (Gen,Sign,Vrfy) we describe hereunder. H1 : {0, 1}∗ → ChSet is
a hash function.

Gen(dp): a←R [l]; (sk, pk) ← (Ra, Ga); Return (sk, pk).
Sign(sk,m): x←R [l]; X ← Gx; h ← H1(X,m) s ← Rx ◦ skh; Return (h, s).
Vrfy(pk,m, σ): Parse σ as (h, s) ∈ ChSet×ZN ; X ← se◦pk−h; h′ = H1(X,m).
If pk, s ∈ J

+
N and h = h′ then Return 1; Else Return 0.

A Practical and Insider Secure Signcryption 419

Security and Efficiency of the Signature Scheme. We have the following theorem;
its proof follows straightly from the SpS, HVZN, RSR, min-entropy, and KR-
KOA security attributes of the identification scheme and Theorem 3.1 from [15].

Theorem 1. If the RSA problem is (t, ε) hard on (N, e), then the scheme SSSN

is (t′, ε′, U,Qs, Qh)-MU-SUF-CMA secure in the random oracle model, where
ε′/t′ � 24(Qh + 1) · ε/t + Qs/2α + 1/2k.

Although efficient, the signature scheme is slightly less efficient than the
GQ scheme [13]. A key pair generation requires Exp(ZN , 2, l) operations for
our scheme while it requires Exp(ZN , k) operations for the GQ scheme.
We stress that, using simultaneous exponentiation techniques [18, Sect. 14.6],
Exp(ZN , 2, l) ≈ 1.17 ·Exp(ZN , l). A SSSN signature generation can be performed
in 1.17 · Exp(ZN , l) +Exp(ZN , k) operations, while it requires 2·Exp(ZN , k) oper-
ations for the GQ scheme. In both schemes, only Exp(ZN , k) operations need to
be performed online, all the other operations can be performed offline. A sig-
nature verification requires 2 · Jcb(N) + Exp(ZN , 2, k) operations for SSSN and
Exp(ZN , 2, k) operations for the GQ scheme.

4 The Signcryption Scheme

From the SSSN scheme, which has the advantage of being defined over a
group wherein the strong DH assumption is known to hold under the factor-
ing assumption [14], we derive SCSSN = (Setup,GenS ,GenR,Sc, Usc,N,PV).
The Setup algorithm generates a domain parameter dp′ as in Sect. 3, together
with an encryption scheme E and two hash functions H1 : {0, 1}∗ → ChSet and
H2 : {0, 1}∗ → K. We consider dp = (dp′,H1,H2, E) as an implicit parameter.

GenS(dp): a←R [l]; (skS , pkS) ← (Ra, Ga); Return (skS , pkS);
GenR(dp): b ←R [l]; (skR, pkR) ← (b,Gb); Return (skR, pkR);
Sc(skS , pkR,m): x1, x2 ←R [l];X1 ← Gx1 ;Z1 ← pkR

x1 ;X2 ← Gx2 ;Z2 ← pkR
x2 ;

τ1 ← H2(X1,X2, Z1, Z2, pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1, pkS , pkR);
h ← H1(X1,X2,m, τ1); c ← E(τ2,m); s ← Rx1 ◦ skS

h; Return (h,X2, s, c);
Usc(skR, pkS , C): Parse C as (h,X2, s, c). If X2, pkS �∈ J

+
N then Return ⊥;

X1 ← se ◦ pkS
−h; Z1 ← X1

skR ; Z2 ← X2
skR ; τ1 ← H2(X1,X2, Z1, Z2,

pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1, pkS , pkR); m ← D(τ2, c);
If h = h′ ← H1(X1,X2,m, τ1) then Return m; Else return ⊥;

N(skR, pkS , C): Parse C as (h,X2, s, c). If X2, pkS �∈ J
+
N then Return ⊥;

X1 ← se ◦ pkS
−h; Z1 ← X1

skR ;
Z2 ← X2

skR ; τ1 ← H2(X1,X2, Z1, Z2, pkS , pkR); τ2 ← H2(X2,X1, Z2, Z1,
pkS , pkR); m ← D(τ2, c);
If h = h′ ← H1(X1,X2,m, τ1) then Return (τ1, τ2); Else return ⊥;

PV(C,m, nr, pkS , pkR): Parse C as (h,X2, s, c) and nr as (τ1, τ2); m′ ← D(τ2, c);
If m′ �= m then Return 0; X1 ← se ◦ pkS

−h;
If h = h′ ←R H1(X1,X2,m, τ1) then Return 1; Else return 0;

420 A. P. Sarr et al.

For the consistency of the scheme, one can observe that for all dp ∈ {Setup(1k)},
all m ∈ M, all (skS , pkS) ∈ {GenS(dp)}, and all (skR, pkR) ∈ {GenR(dp)}, m =
Usc(skR, pkS ,Sc(skS , pkR,m)). Moreover, if nr ← N(skR, pkS ,Sc(skS , pkR,m))
then 1 = d ← PV(C,m, nr, pkS , pkR).

Efficiency of the Scheme. Since Malone–Lee’s scheme [17] is defined over any
Diffie–Hellman group, and Fan et al.’s [11] design makes use of bilinear pairings,
it is rather difficult to compare the efficiency of these schemes with our (we
use an RSA instance), without considering concrete instances. Nonetheless, our
design is a practical and efficient one; it uses the RSA primitive, which remains
probably the most widely deployed public key primitive [16]. A sender key pair
generation requires Exp(Zn, 2, l) operations (the exponentiations use the same
exponent); a receiver key pair generation requires Exp(Zn, l) operations. A sign-
cryption generation requires Exp(Zn, 6, l) operations (we neglect the cost of the
three digest operations together with the symmetric encryption). Five of the six
exponentiations can be performed off-line. Moreover, three of the five off-line
exponentiations share the same exponent, and the remaining two exponenti-
ations have also the same exponent. An unsigncryption or a non-repudiation
evidence generation requires four exponentiations; we recall that e can be cho-
sen to be a sparse prime so that exponentiations involving e can be performed
using few multiplications. A public verification requires Exp(Zn, 2, l) operations.
Assuming that |c| = |m|, the communication overhead compared to a signature
is one group element.

4.1 Confidentiality of the SCSSN Signcryption Scheme

We need the following result, its proof is given in the full version of this paper.

Theorem 2. If X1, r, s be mutually independent random variables, such r and
s are uniformly distributed over [N/4]. Let X2 be defined by X2 ← Gs ◦ X

−r
1 ,

and suppose that Y,Z1, and Z2 are random variables taking values in J
+
N , and

are defined as some functions of X1 and X2, then: (a) the statistical distance
between X2 and the uniform distribution over J

+
N is not greater than 2δ0;(b) If

X1 = Gx1 and X2 = Gx2 , then the probability that the truth value of

Z
r
1Z2 = Gs (1)

does not agree with
Z1 = Y x1 and Z2 = Y x2 (2)

is at most 5δ0; and if (2) holds then so does (1).

Theorem 3. Under the RO model, if the factorization of N is (t(k), εfac(k))-
hard and the encryption scheme E is (t(k), εss(k))-semantically secure, then
SCSSN is (t(k), qSc, qUsc, qN, ε′(k))-secure in the SKI-MU insider confidentiality
in the FSO/FUO-IND-CCA2 sense, wherein

ε′(k) = εss(k) + εfac(k) + (1 + 1/2 · qSc(qSc − 1)) (p′q′)−2|K|−1 + (5qSc + 2)δ0.

A Practical and Insider Secure Signcryption 421

Proof. We call the steps (1) and (2), (3) and (4), and (5) and (6) of Game 2 the
pre-challenge, challenge, and post-challenge phases respectively. We provide a
simulator which answers to A’s queries in all phases. The Initialization procedure
is executed at the beginning of the game. When the variable abort is set to 1, the
whole simulation fails. If the simulation does not fail, the Finalization procedure
is executed at the end of the game. The oracle DDHY0(·, ·) takes U, V ∈ J

+
N as

inputs and outputs 1 if CDH(Y0, U) = V and 0 otherwise. For a list L and an
element X, Apd(L,X) adds X to L.

Simulation for the SKI MU insider confidentiality game

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), and X0, Y0 ←R J
+
N .

External Oracles: DDHY0(·, ·);
1 Initialization: pkR ← Y0; SH1 ← (); Sk ← (); Sk&r ← (); SH2 ← (); abort ← 0;

Pre–Challenge Phase
2 OH1(s):
3 if ∃ h : (s, h) ∈ SH1 then return h; else h ←R ChSet;Apd(SH1 , (s, h)); return h;
4 OH2(s):
5 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

6 else if s has format (X1, X2, Z1, Z2, pk, pk′ = pkR) ∈ (
J
+
N

)6
then

7 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
8 if DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, τ)); return τ ;

9 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

10 OUsc(pk, C): ON(pk, C) :

11 if pk �∈ J
+
N then return ⊥;

12 Parse C as (h, X2, s, c) ∈ ChSet × J
+
N × J

+
N × C; � ⊥ is returned if the parsing fails

13 X1 ← se ◦ pk−h;
14 if ∃ Z1, Z2 ∈ J

+
N , τ ∈ K : ((X1, X2, Z1, Z2, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then
τ1 ← τ ; � H2(X1, X2, Z1, Z2, pk, pkR) was issued

15 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
16 τ1 ← τ ; � Usc(pk, C′) or N(pk, C′) such that C′ parses as (h, X2, s, c′) was issued

17 else τ1 ←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));

18 if ∃ Z2, Z1 ∈ J
+
N , τ ∈ K : ((X2, X1, Z2, Z1, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then τ2 ← τ ; � the same treatment as for τ1

19 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then τ2 ← τ ;
20 else τ2 ←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

21 m ← D(τ2, c); h′ ← OH1(X1, X2, m, τ1);

22 if h = h′ then return m
OUsc

return (τ1, τ2)

ON

else return ⊥;

Challenge Phase

23 (m0, m1, st, pkS) ←R AOUsc(·,·),ON(·,·),OH1 (·),OH2 (·)
1 (pkR);

24 ĥ ←R ChSet; ẑ ←R [l]; ŝ ← Rẑ; X̂1 ← ŝe ◦ pk
−ĥ

S ; X̂2 ← X0;
25 b ←R {0, 1}; τ̂1 ←R K; τ̂2 ←R K; ĉ ← E(τ̂2, mb);
26 if ∃ h′, m′ : ((X̂1, X̂2, m

′, τ̂1), h′) ∈ SH1 then abort ← 1;

422 A. P. Sarr et al.

27 Apd(SH1 , ((X̂1, X̂2, mb, τ̂1), ĥ)); Apd(Sk, ((X̂1, X̂2, pkS , pkR), τ̂1));
28 Apd(Sk, ((X̂2, X̂1, pkS , pkR), τ̂2)); C∗ ← (ĥ, X̂2, ŝ, ĉ);

Post–Challenge Phase
A2 is run with input (C∗, st). It has access to the oracles OSc(·, ·), OUsc(·, ·), ON(·, ·),
OH1(·), and OH2(·). Only changes compared to the pre–challenge phase are drawn.

29 OSc(pk, m):

30 h ←R ChSet; z ←R [l]; s1 ← Rz; X1 ← s1
e ◦ pkS

−h;
31 r ←R [l]; s2 ←R [l]; X2 ← Gs2 ◦ X1

−r; τ1 ←R K; τ2 ←R K;
32 if ∃ h′, m′ : ((X1, X2, m

′, τ1), h′) ∈ SH1 then abort ← 1;

33 Apd (SH1 , ((X1, X2, m, τ1), h));
34 if pk = pkR then Apd(Sk, ((X1, X2, pkS , pkR), τ1));

Apd(Sk, ((X2, X1, pkS , pkR), τ2));
35 else Apd (Sk&r, ((X1, X2, pkS , pk), (r, s2, τ1, τ2)));

36 c ← E(τ2, m); C ← (h, X2, s1, c); return C;

37 OH2(s):
38 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

39 else if s has format (X1, X2, Z1, Z2, pk, pkR) ∈ (
J
+
N

)6
then

40 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
41 if DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, k)); return τ ;

42 else if s has format (X1, X2, Z1, Z2, pkS , pk) ∈ (
J
+
N

)6
then

43 if ∃ r, s, τ1, τ2 : ((X1, X2, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
44 if Z

r
1 ◦ Z2 = pks then return τ1; � 2DH(X1, X2, pk) = (Z1, Z2) with all but

negligible probability.

45 if ∃ r, s, τ1, τ2 : ((X2, X1, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
46 if Z

r
2 ◦ Z1 = pks then return τ2;

47 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

48 Finalization:
49 if ∃ Ẑ1, Ẑ2 ∈ J

+
N :

(
((X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR), τ̂1) ∈ SH2 or ((X̂2, X̂1, Ẑ2, Ẑ1, pkS ,

pkR), τ̂2) ∈ SH2

)
and DDHY0(X̂1, Ẑ1) = DDHY0(X̂2, Ẑ2) = 1 then return Ẑ2;

50 else return ⊥;

In the pre-challenge phase, the simulator answers to OH1(·), OH2(·), OUsc(·, ·),
and ON(·, ·) queries. The lines 10–22 describe both OUsc(·, ·) and ON(·, ·). When
executing OUsc(·, ·) (resp. ON(·, ·)), the instruction return (τ1, τ2) (resp. returnm)
at line 22 is omitted. Digest queries are answered using input-output tables.
The OH2(·) digest values of strings with format (X1,X2, Z1, Z2, pk, pkR) are not
only assigned by the OH2(·) oracle, but also through executions of OUsc(·, ·) and
ON(·, ·); in the latter two cases Z1 = CDH(X1, pkR) and Z2 = CDH(X2, pkR)
are unknown. So, for consistency, in addition to SH2 , we use a list Sk to store the
values of OH2(X1,X2, Z1, Z2, pk, pkR) which was assigned while Z1 and Z2 are
unknown (see at lines 14–20). Doing so, the simulator consistently answers to
all digest queries with the help of the DDHY0=pkR

(·, ·) oracle (see at lines 6–8).
In the challenge phase, we essentially simulate a signature generation (at

line 24), then X2 is set to X0 (the simulator takes X0 and Y0 = pkR as input).
The secret keys, τ1 and τ2 are chosen uniformly at random from K, and savings

A Practical and Insider Secure Signcryption 423

are performed for OH2(·) digests consistency (lines 27–28). In the post-challenge
phase, the changes, compared to the pre-challenge phase, are the (re)definitions
of the OSc(·, ·) and OH2(·) oracles. When computing OSc(pk,m), the simulator
ignores both skS and the secret key corresponding to pk. For consistency, we
simulate a signature generations (see at line 30), choose r and s2, and generate
X2 (see at line 31) such that: (i) the statistical distance between the distribution
of the X2 we generate in this way and the distribution of X2 we obtain through
a real execution of Sc(·, ·, ·) is not greater than 2δ0 = 2max(1/p′, 1/q′); (ii)
if Z1 and Z2 are such that Z

r
1Z2 = Gs, then Z1 = CDH(X1, pk) and Z2 =

CDH(X2, pk) with overwhelming probability (see Theorem 2). Doing so, we have
a way to assign values to τ1 and τ2, while keeping the outputs of OH2(·) consistent
(see at lines 31–35 and 43–46). Let bad be the event: “(a) the simulator aborts
(see at lines 26 and 32) or (b) in some execution of OH2(·), Z1 and Z2 are such
that Z

r
1 ◦ Z2 = pks while CDH(X1, pk) �= Z1 or CDH(X2, pk) �= Z2 (see at

lines 43–46).” Then, from Theorem 2

Pr(bad) � (p′q′)−2|K|−1 + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (3)

Let Succcca2A,sim denote the event “A succeeds in the simulated environment”.
Under the RO model, if ¬bad then, A’s views in the real and simulated environ-
ments are the same; so, Pr(Succcca2A ∧ ¬bad) = Pr(Succcca2A,sim ∧ ¬bad). Then

Advcca2A (1k) = | Pr(Succcca2A)−1/2| � | Pr(Succcca2A ∧¬bad)−1/2|+Pr(bad). (4)

Let CDHfound be the event the “Finalization procedure outputs Ẑ2 �= ⊥”. By the
definition of CDHfound, Pr(Succcca2A,sim∧¬bad∧CDHfound) � AdvsCDH

B1
(J+N), where

B1 is obtained from A and the simulator. Using [14, Theorem 2], we obtain

Pr(Succcca2A,sim ∧ ¬bad ∧ CDHfound) � AdvfacB1,RSAGen(k) + 1/p′ + 1/q′. (5)

Now, if Succcca2A,sim ∧ ¬bad ∧ ¬CDHfound, then A is essentially playing a semantic
security game against E , so using A and the simulator we build an adversary B2

against E such that

| Pr(Succcca2A,sim ∧ ¬bad ∧ ¬CDHfound) − 1/2| = AdvssB2,E(k). (6)

The result follows from (3)–(6). ��

4.2 Unforgeability of the SCSSN Scheme

Theorem 4. Under the RO model, if the RSA problem is (t(k), ε0(k))-hard
over J

+
N , then SCSSN is (t, qSc, ε′)-MU insider unforgeable in the FSO/FUO-

sUF-CMA sense, with ε′ � √
qε0+(q+1)|ChSet|−1+qSc(qSc−1)

(
2(p′q′)2|K|)−1+

5qScδ0, with q = qH1 +qSc wherein qH1 is an upper bound on the number of OH1(·)
queries the adversary issues.

424 A. P. Sarr et al.

Proof. Let qH1 and qSc be upper bounds on the number of queries A issues to
the OH1(·) and OSc(·, ·) oracles respectively, and q = qH1 + qSc. In addition to
the domain parameter and Y0 ←R J

+
N , the simulator takes as an additional input

LH1 = (h1, · · · , hq) such that for all i, hi ←R ChSet.

Simulation for the MU insider Unforgeability in the FSO/FUO–sUF–CMA sense

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), Y0 ←R J
+
N , LH1 = (h1, h2, · · · , hq).

100 Initialization: pkS ← Y0; SH1 ← (); cnt ← 0; Sk&r ← (); SH2 ← (); abort ← 0;
101 OH1(s):
102 if ∃ h : (s, h) ∈ SH1 then return h;
103 else cnt ← cnt + 1; h ← LH1 [cnt];Apd(SH1 , (s, h, cnt)); return h;

104 OH2(s):
105 if ∃ τ : (s, τ) ∈ SH2 then return τ

106 else if s has format (X1, X2, Z1, Z2, pkS , pk) ∈ (
J
+
N

)6
then

107 if ∃ r, s, τ1, τ2 : ((X1, X2, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
108 if Z

r
1 ◦ Z2 = pks then return τ1;

109 if ∃ r, s, τ1, τ2 : ((X2, X1, pkS , pk), (r, s, τ1, τ2)) ∈ Sk&r then
110 if Z

r
2 ◦ Z1 = pks then return τ2;

111 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

112 OSc(pk, m):

113 cnt ← cnt + 1; h ← LH1 [cnt]; z ←R [l]; s1 ← Rz; X1 ← s1
e ◦ pkS

−h;
114 r ←R [l]; s2 ←R [l]; X2 ← Gs2 ◦ X1

−r; τ1 ←R K; τ2 ←R K;
115 if ∃ h′, m′, j : ((X1, X2, m

′, τ1), h′, j) ∈ SH1 then abort ← 1;

116 Apd (SH1 , ((X1, X2, m, τ1), h, cnt)); Apd (Sk&r, ((X1, X2, pkS , pk), (r, s2, τ1, τ2)));
117 c ← E(τ2, m); C ← (h, X2, s1, c); return C;
118 Finalization:
119 if A outputs (skR, pkR, C∗) such that ⊥ �= m̂ ← OUsc(skR, C∗) and OSign(pkR, m̂)

was never issued then
120 Parse C∗ as (ĥ, X̂2, ŝ, ĉ);

121 X̂1 ← ŝe◦pkS
−ĥ; Ẑ1 ← X̂

skR

1 ; Ẑ2 ← X̂
skR

2 ; τ̂1 ← OH2(X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR);
122 if ∃j0 : (X̂1, X̂2, m̂, τ̂1), ĥ, j0) ∈ SH1 then return (j0, X̂1, ŝ);

123 return (0, ε, ε);

As in the previous analysis, bad denotes the event: “(a) abort is set to 1 (see
at line 115) or (b) in the execution of OH2(·), Z1 and Z2 are such that (see at
lines 108 and 110) Z

r
1 ◦Z2 = pks and CDH(X1, pk) �= Z1 or CDH(X2, pk) �= Z2.”

Then
Pr(bad) � qSc(qSc − 1)

(
2(p′q′)2|K|)−1

+ 5qScδ0, (7)

and then

AdvsufA,SC(1k) � Pr(SuccsufA ∧ ¬bad) + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (8)

Let fail be the event “the Finalization procedure outputs (0, ε, ε)”. If the event
SuccsufA ∧ ¬bad ∧ fail occurs then the oracle OH1(·) was never queried with value
(X̂1, X̂2, m̂, τ̂1). Which means that A successfully guessed OH1(X̂1, X̂2, m̂, τ̂1).
Under the RO model,

Pr(SuccsufA ∧ ¬bad ∧ fail) � |ChSet|−1
. (9)

A Practical and Insider Secure Signcryption 425

Using A and the simulator, we obtain a machine B which takes (dp, E , Y0, LH1 =

(h1, · · · , hq)) as input and outputs (j0, X̂1, ŝ) such that ŝe = X1Y
hj0

0 with prob-
ability ε1 = Pr(SuccsufA ∧¬bad∧¬fail). Let FB be the forking algorithm [7, Sect. 3]
associated to B. By the General Forking Lemma [7, Lemma 1], from FB ’s output,

we have (hj0 , h
′
j0

,X1, ŝ, ŝ′) such that hj0 �= h′
j0

, ŝe = X1Y
hj0

0 , and ŝ′e = X1Y
h′
j0

0

with probability ε0 � ε1(ε1/q − 1/|ChSet|). Then, using FB and Shamir’s trick
(we use on page 9 when proving that ISSN provides special soundness), we
obtain a machine B2 which, on input Y0, outputs X0 such that X

e
0 = Y0 with

probability ε0. Again, from the General Forking Lemma [7, Lemma 1],

ε1 � q|ChSet|−1 +
√

qε0. (10)

The result follows from (8)–(10).

4.3 Soundness of Non-repudiation

Theorem 5. Under the RO model, SCSSN achieves (t, qSc, ε)-computational
soundness of non-repudiation, with ε � 1/2 · q(q − 1)|ChSet|−1 + 1/2 · qSc(qSc −
1)(p′q′)−2|K|−1 + 5qScδ0, where q = qH1 + qSc, wherein qH1 is an upper bound on
the number of OH1(·) queries A issues.

Proof. First, we provide a simulation for Game 4. The simulator takes dp =
(N,G,R, e, k) and E = (E,D,K,M,C) as inputs. The initialization simply sets
SH1 ← (); Sk ← (); Sk&r ← (); SH2 ← (). The OH1(·) oracle is as described in
lines 2–3 in the simulation for the confidentiality game. The OH2(·) and OSc(·, ·)
oracles are as in lines 104–111 and 112–117 in the simulation for the unforge-
ability game, except that the lines 113 and 115 are replaced respectively with
the lines 200 and 201, hereunder:
200 h ←R ChSet;
201 if ∃ h′, m′ : ((X1, X2, m

′, τ1), h′) ∈ SH1 then abort ← 1.

Defining bad as in the proof of Theorem 4, the inequality (7) still holds. Then

AdvsnrA,SC(1k) � Pr(SuccsnrA ∧ ¬bad) + qSc(qSc − 1)
(
2(p′q′)2|K|)−1

+ 5qScδ0. (11)

If A succeeds and ¬bad, A outputs (skR, pkR, C∗,m′, nr) such that m′ �= m ←
Usc(skR, pkS , C∗) and 1 = d ← PV(C∗,m′, nr, pkS , pkR). Let C∗ = (ĥ, X̂2, ŝ, ĉ),
nr = (τ1, τ2), n̂r = (τ̂1, τ̂2) ← N(skR, pkS , C∗), and X̂1 ← se ◦ pk

−h

S . As m �= m′

and 1 = d ← PV(C∗,m′, nr, pkS , pkR) = d′ ← PV(C∗,m, n̂r, pkS , pkR). A have
found (m, τ̂1) and (m′, τ1) such that ĥ = h1 ← OH1(X̂1, X̂2,m, τ̂1) = h2 ←
OH1(X̂1, X̂2,m

′, τ1). Then

Pr(SuccsnrA ∧ ¬bad) � q(q − 1)(2 · |ChSet|)−1
. (12)

The Theorem follows from (11) and (12). ��

426 A. P. Sarr et al.

4.4 Unforgeability of Non-repudiation Evidence

Theorem 6. Under the RO model, if the factoring problem is (t(k), ε(k))
hard, then the SCSSN scheme achieves (t, qSc, qUsc, qN, ε′) unforgeability of non-
repudiation evidence with ε′ � ε+ |K|−1+qSc(qSc−1)

(
2(p′q′)2

)−1+(5qSc+2)δ0.

Proof. We consider the following simulation.

Simulation for Unforgeability of non–repudiation evidence

Input: dp = (N, G, R, e, k), E = (E,D,K,M,C), X0, Y0 ←R J
+
N , LH1 = (h1, h2, · · · , hq).

External Oracles: DDHY0(·, ·)

300 Initialization: a ← [l]; (skS , pkS) ← (Ra, Ga); pkR ← Y0; SH1 ← (); cnt ← 0;
Sk ← (); Sk&r ← (); SH2 ← ();

301 OH1(s): is defined as in the simulation for the confidentiality game, at lines 2–3.
302 OH2(s):
303 if ∃ τ : (s, τ) ∈ SH2 then return τ ;

304 else if s has format (X1, X2, Z1, Z2, pk, pk′ = pkR) ∈ (
J
+
N

)6
then

305 if pk = pkS and ∃τ, x : ((X1, X2, Z1, ε, pkS , pkR), τ, x)) ∈ Sk&r and
DDHY0(X2, Z2) = 1 then Apd(SH2 , (s, τ)); return τ ;

306 if pk = pkS and ∃τ, x : ((X1, X2, ε, Z2, pkS , pkR), τ, x)) ∈ Sk&r and
DDHY0(X1, Z1) = 1 then Apd(SH2 , (s, τ)); return τ ;

307 if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk and DDHY0(X1, Z1) = DDHY0(X2, Z2) = 1
then Apd(SH2 , (s, τ)); return τ ;

308 else τ ←R ChSet; Apd(sH2 , (s, τ)); return τ ;

309 OSc(pk, m):
310 x1 ←R [l]; X1 ← Gx1 ; Z1 = pkR

x1 ; x2 ←R [l];
311 if pk �= pkR then
312 X2 ← Gx2 ; Z2 = pkR

x2 ;
313 τ1 ← OH2(X1, X2, Z1, Z2, pkS , pk); τ2 ← OH2(X2, X1, Z2, Z1, pkS , pk);
314 else
315 X2 ← X0 ◦ Gx2 ; τ1 ←R K; τ2 ←R K; � The simulator takes X0, Y0 as inputs

316 Apd(Sk&r, ((X1, X2, Z1, ε, pkS , pkR), τ1, x2)); � pk = pkR;

317 Apd(Sk&r, ((X2, X1, ε, Z1, pkS , pkR), τ2, x2));

318 h ← OH1(X1, X2, m, τ1); c ← E(τ2, m); s ← Rx1 ◦ skS
h; return (h, X2, s, c);

319 OUsc(pk, C): ON(pk, C) :

320 if pk �∈ J
+
N then return ⊥;

321 Parse C as (h, X2, s, c) ∈ ChSet × J
+
N × J

+
N × C; X1 ← se ◦ pk−h;

322 if ∃ Z1, Z2 ∈ J
+
N , τ ∈ K : ((X1, X2, Z1, Z2, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then
τ1 ← τ ; � H2(X1, X2, Z1, Z2, pk, pkR) was issued

323 else if pk = pkR and ∃ τ, x : ((X1, X2, Z1, ε, pkS , pkR), τ, x) ∈ Sk&r then
324 τ1 ← τ � OSc(·, ·) returned (h, X2, s, c′) for some c′

325 else if ∃ τ : ((X1, X2, pk, pkR), τ) ∈ Sk then
326 τ1 ← τ ; � Usc(pk, C′) or N(pk, C′) such that C′ parses as (h, X2, s, c′) was issued

327 else τ1 ←R K; Apd(Sk, ((X1, X2, pk, pkR), τ1));

A Practical and Insider Secure Signcryption 427

328 if ∃ Z2, Z1 ∈ J
+
N , τ ∈ K : ((X2, X1, Z2, Z1, pk, pkR), τ) ∈ SH2 and DDHY0(X1, Z1) =

DDHY0(X2, Z2) = 1 then τ2 ← τ ; � the same treatment as for τ1

329 else if pk = pkR and ∃ τ, x : ((X2, X1, ε, Z2, pkS , pkR), τ, x) ∈ Sk&r then τ2 ← τ
330 else if ∃ τ : ((X2, X1, pk, pkR), τ) ∈ Sk then τ2 ← τ ;
331 else τ2 ←R K; Apd(Sk, ((X2, X1, pk, pkR), τ2));

332 m ← D(τ2, c); h′ ← OH1(X1, X2, m, τ1);

333 if h = h′ then return m
OUsc

return (τ1, τ2)

ON

else return ⊥;

334 Finalization:
335 if A outputs (C∗, m∗, nr∗) such that C∗ was generated through OSc(·, ·), 1 = d ←

PV(C∗, m∗, nr∗, pkS , pkR) and nr∗ was not generated by the oracle ON(·, ·) on a
query on (pkS , C∗) then

336 Parse C∗ as (ĥ, X̂2, ŝ, ĉ) and nr∗ as (τ̂1, τ̂2);

X̂1 ← ŝe ◦ pkS
−ĥ;

337 Recover ((X̂1, X̂2, Ẑ1, ε, pkS , pkR), τ̂ , x) from Sk&r � As C∗ was output by OSc(·, ·)
there are some Ẑ1, τ̂ , x : ((X̂1, X̂2, Ẑ1, ε, pkS , pkR), τ̂ , x)) ∈ Sk&r (see at line 316)

338 if ∃ Ẑ1, Ẑ2 ∈ J
+
N : ((X̂1, X̂2, Ẑ1, Ẑ2, pkS , pkR), τ̂1) ∈ SH2 and DDHY0(X̂2, Ẑ2) = 1

then
U0 ← Z2 ◦ pkR

−x; return U0;

339 return ε;

Let bad denote the event “the same couple (X1,X2) is generated in two execu-
tions of OSign(·, ·)”. Then, under the RO model,

Pr(bad) � 1
2
qSc(qSc − 1)(p′q′)−2 + 5qScδ0. (13)

Let fail be the event “the Finalization procedure outputs ε”. If SuccunrA ∧¬bad∧fail

occurs, A never query the OH2 oracle on (X̂1, X̂2,CDH(pkR, X̂1), CDH(pkR, X̂2),
pkS , pkR); then A successfully guessed the corresponding digest value. It follows

Pr(SuccunrA ∧ ¬bad ∧ fail) � |K|−1
. (14)

If SuccunrA ∧ ¬bad∧ ¬fail occurs, as X̂2 = X0 ◦ Gx and Ẑ2 = CDH(X2, pkR = Y0)

U0 = CDH(X0, Y0) = Z2 ◦ pk
−x

R . (15)

Using A and the simulator, we have a machine which takes X0, Y0 as input and
outputs CDH(X0, Y0) with probability Pr(SuccunrA ∧ ¬bad ∧ ¬fail). The result
follows from (13), (14), and [14, Theorem 2]. ��

5 Concluding Remarks

We have proposed a new identification scheme over the group of signed quadratic
residues, wherein the strong Diffie–Hellman assumption holds under the factoring
assumption. Using the identification scheme, we derived a new signature scheme
we have shown to be strongly unforgeable against chosen message attacks, under

428 A. P. Sarr et al.

the RSA assumption and the Random Oracle model. We proposed an efficient
signcryption scheme with non-interactive non-repudiation, we have shown to be
insider secure, under the RSA assumption and the RO model, in a variant of
Fan et al.’s security model. The communication overhead of the signcryption
scheme, compared to the corresponding signature scheme is one group element.

Compared to Fan et al.’s design which uses bilinear maps, our scheme is RSA
based and can be easily deployed in most of the existing platforms.

In a forthcoming stage, we will be interested in the conditions under which our
design can be generalized to generic Diffie–Hellman groups. We will investigate
also signcryption designs with a tight security reduction.

References

1. Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared
secret with application to the generation of shared safe-prime products. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45708-9 27

2. Badertscher, C., Banfi, F., Maurer, U.: A constructive perspective on signcryption
security. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp.
102–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0 6

3. Baek, J., Steinfeld, R.: Security for signcryption: the multi-user model. In: Dent,
A., Zheng, Y. (eds.) Practical Signcryption. ISC, pp. 43–53. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-540-89411-7 3

4. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption. In:
Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45664-3 6

5. Baek, J., Steinfeld, R., Zheng, Y.: Formal proofs for the security of signcryption.
J. Cryptol. 20(2), 203–235 (2007)

6. Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by
public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054014

7. Bellare, M., Neven, G.: Multi-signatures in the plain public-key model and a general
forking lemma. In: Proceedings of the 13th ACM Conference on Computer and
Communications Security, pp. 390–399. ACM (2006)

8. Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for designing
efficient protocols. In: ACM-CCS 1993, pp. 62–73. ACM (1993)

9. Boyd, C., Mathuria, A.: Protocols for Authentication and Key Establishment.
Springer Science & Business Media, Heidelberg (2003). https://doi.org/10.1007/
978-3-662-09527-0

10. Cash, D., Kiltz, E., Shoup, V.: The twin Diffie-Hellman problem and applications.
J. Cryptol. 22(4), 470–504 (2009)

11. Fan, J., Zheng, Y., Tang, X.: Signcryption with non-interactive non-repudiation
without random oracles. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.)
Transactions on Computational Science X. LNCS, vol. 6340, pp. 202–230. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17499-5 9

12. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

https://doi.org/10.1007/3-540-45708-9_27
https://doi.org/10.1007/978-3-319-98113-0_6
https://doi.org/10.1007/978-3-540-89411-7_3
https://doi.org/10.1007/3-540-45664-3_6
https://doi.org/10.1007/BFb0054014
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-662-09527-0
https://doi.org/10.1007/978-3-642-17499-5_9
https://doi.org/10.1007/3-540-47721-7_12

A Practical and Insider Secure Signcryption 429

13. Guillou, L.C., Quisquater, J.-J.: A practical zero-knowledge protocol fitted to secu-
rity microprocessor minimizing both transmission and memory. In: Barstow, D.,
Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A.,
Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988). https://doi.org/10.1007/
3-540-45961-8 11

14. Hofheinz, D., Kiltz, E.: The group of signed quadratic residues and applications. In:
Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 637–653. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03356-8 37

15. Kiltz, E., Masny, D., Pan, J.: Optimal security proofs for signatures from identifi-
cation schemes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815,
pp. 33–61. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-
5 2

16. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32009-5 37

17. Malone-Lee, J.: Signcryption with non-interactive non-repudiation. Des. Codes
Crypt. 37(1), 81–109 (2005)

18. Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography.
CRC Press, Boca Raton (1996)

19. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

20. Sarr, A.P., Elbaz–Vincent, P.: On the security of the (F)HMQV protocol. In:
Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol.
9646, pp. 207–224. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31517-1 11

21. Sarr, A.P., Elbaz-Vincent, P., Bajard, J.-C.: A secure and efficient authenticated
Diffie–Hellman protocol. In: Martinelli, F., Preneel, B. (eds.) EuroPKI 2009. LNCS,
vol. 6391, pp. 83–98. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-16441-5 6

22. Shin, J.-B., Lee, K., Shim, K.: New DSA-verifiable signcryption schemes. In: Lee,
P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 35–47. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36552-4 3

23. Zheng, Y.: Digital signcryption or how to achieve cost(signature & encryption)
� cost(signature) + cost(encryption). In: Kaliski, B.S. (ed.) CRYPTO 1997.
LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997). https://doi.org/10.
1007/BFb0052234

https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/3-540-45961-8_11
https://doi.org/10.1007/978-3-642-03356-8_37
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-662-53008-5_2
https://doi.org/10.1007/978-3-642-32009-5_37
https://doi.org/10.1007/978-3-642-32009-5_37
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-3-319-31517-1_11
https://doi.org/10.1007/978-3-319-31517-1_11
https://doi.org/10.1007/978-3-642-16441-5_6
https://doi.org/10.1007/978-3-642-16441-5_6
https://doi.org/10.1007/3-540-36552-4_3
https://doi.org/10.1007/BFb0052234
https://doi.org/10.1007/BFb0052234

Security

Analysis of Neural Network Training and
Cost Functions Impact on the Accuracy

of IDS and SIEM Systems

Said El Hajji(B), Nabil Moukafih, and Ghizlane Orhanou

Laboratory of Mathematics, Computing and Applications - Information Security,
Faculty of Sciences, Mohammed V University in Rabat, BP1014 RP, Rabat, Morocco

elhajji.said@gmail.com, moukafih.nab@gmail.com, orhanou@fsr.ac.ma

Abstract. Nowadays, companies are implementing security tools such
as Intrusion Detection Systems (IDS) and Security Information and
Event Management systems (SIEM) to deal with sophisticated com-
puter attacks. These attacks evolve each year in terms of sophistication
and complexity in order to steal or alter sensitive information. Machine
learning techniques are used in order to provide pattern recognition and
adaptation to IDS and SIEM systems. In this paper, we have proposed
a model based on neural networks and support vector machines to ana-
lyze and identify network intrusions. We studied the impact of some
important parameters in neural networks on the classification accuracy.
We evaluated and compared 37 different feed-forward neural networks
according to these parameters and choose the best training algorithm
for our model using NSL-KDD dataset. Our results suggest that the
choice of the appropriate performance function and training algorithm
may be critical to achieve higher classification accuracy.

Keywords: Neural networks · Classification · Intrustion detection ·
SIEM · SVM

1 Introduction

Nowadays, as attacks against computer networks evolve rapidly in terms of
complexity and sophistication, most companies have realized that the improve-
ment of essential security tools such as SIEM (Security Information and Event
Management) systems and IDS (Intrusion Detection System) systems are crit-
ical to prevent security incidents and detect attacks. The goal is to analyze
security information, detect computer attacks or anomalies and make appropri-
ate decisions, all in real time. Unfortunately, this is quite difficult, especially
when attackers develop every day new specific attacks with new signatures not
recorded in public databases (zero-day attacks) and targeting specific systems
and vulnerabilities. This makes it hard for signature-based systems to prevent
and detect complex attacks that use customized and sophisticated approaches

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 433–451, 2019.
https://doi.org/10.1007/978-3-030-16458-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_25

434 S. El Hajji et al.

in real-time. In this context, the data breach report produced by Verizon showed
that 68% of breaches last year took months or longer to discover [1]. This explains
why companies like ThyssenKrupp [2], Lockheed Martin [3] and RSA [4] were
breached by sophisticated hackers and lost sensitive information, although they
probably implement state-of-the-art security systems.

Researchers therefore are trying to provide adaptation, automatization
and pattern recognition for these systems. For intrusion detection systems,
researchers are more interested in anomaly-based approach IDS than those that
use the misuse-based (also called rule-based) approach, because theoretically, it
is capable of detecting both known and new unseen attacks. Unlike the rule-
based approach that is limited to its knowledge-base and rules to identify rec-
ognized and only previously known attacks [5]. As for SIEM systems, the main
objective is to reduce the high false positive rate generated by different security
elements such as firewalls, anti-virus solutions and even intrusion detection sys-
tems (IDSs). Conceptually, SIEM systems collect and combine network activity
data, logs, security events, and external threat data into a powerful manage-
ment dashboard that intelligently correlates, normalizes, and prioritizes security
incidents. However, this dependency on the configuration of the multiple sensors
deployed over the network, creates a challenge for SIEM to perform advanced
analysis and correlation [6]. So, there is an equal effort to enhance these systems
by proposing techniques for combining data from disparate sources so that the
inferred information and knowledge facilitate the identification of attacks. Most
of them explore data fusion [7], data mining [8] and artificial intelligence (AI),
specifically pattern recognition [9].

In this paper we propose a model that uses neural networks for intrusion
detection. To achieve our goal, we have studied deeply several related works such
as [10–17,19] that applied neural network for intrusion detection in both IDS
and SIEM systems. And we have found that many researches vary the following
parameters to improve the performance and speed for neural networks (IDS or
SIEM model):

• The number of selected features/attributes;
• Normalization of data;
• Architecture of NN, specifically the number of nodes in the hidden layer;
• Activation function;
• Learning rate;
• Momentum term.

Since the choice of the training algorithm and the cost function was arbi-
trary or intuitive in many papers, we propose to study these parameters in this
paper in order to study the influence of the training algorithms and cost func-
tions on intrusion detection models that use neural networks. For this goal, we
have implemented 37 neural network using many training algorithms and cost
functions and tested the performance and accuracy of the neural network on
NSL-KDD dataset. Next, we have added a second layer of classification using
SVM.

Analysis of Neural Network Training and Cost Functions Impact 435

The reminder of this paper is structured as follows: Sect. 2 examines the
related work to the application of neural networks in intrusion detection for SIEM
and IDS systems. Section 3 examines the background of this paper such IDS,
SIEM and Artificial Neural Networks. The next section describes the proposed
approach and an overview of our implementation and the results of the studied
parameters. We finally we conclude in the Sect. 5.

2 Related Work

Generally, machine learning was applied to solve various challenges in computer
security targeting many areas such as vulnerability discovery [10,11], malware
analysis [12,13] and intrusion detection [14].

For intrusion detection, the authors in [15] used back propagation neural
network classier in Anomaly Network Intrusion Detection System (ANIDS), in
which they have studied the most relevant parameters employed to construct
such a classifier. According to the authors, these parameters are: the number of
selected entities, the number of hidden units and layers, the activation function
and the data normalization function. The study was conducted on a KDD dataset
and led to two optimal ANIDS. The authors have used only Gradient Descent
with Momentum for training with default learning rate and momentum values.
Similarly, Sen et al. [16] studied the parameter that determines the number of
hidden units and layers to use in a neural network for intrusion based on anomaly
detection approach. The authors have implemented many neural networks with
different combinations of hidden layers and various neurons in each hidden layer.
The authors have also varied the percentages split of the KDD dataset. The main
limitation of the work is the accuracy of the set of tests (97%) produced by their
best combination, which is not as high as that found by the authors in [17] and
in [18].

In this work [19], the authors have used neural network in SIEM systems for
identifying suspicious user behavior. The primary purpose was to detect suspi-
cious activity of attackers attempting to hide between legitimate user action and
evade detection using valid credentials and standard administrative tools. The
authors were interested in two types of architectures (Feed-forward vs. recur-
rent neural network) and also in the number of epoch that are used during the
training period, since a model requires high computational effort for training, if
it has been trained with a greater number of epochs. Suarez-Tangil and et al.
[20] have used neural networks with genetic programming to improve the cor-
relation engine withing SIEM systems. They have adopted two subsystems: the
first uses a neural network that classifies all the events collected by the SIEM
system and the second subsystem generates new correlation rules according to
the neural network classification. Since the authors were mainly interested in the
performance of the correlation engine, they haven’t provided much information
about the neural network used parameters.

Ryan et al. [21] used a three-layer backpropagation neural network called
NNID (Neural Network Intrusion Detector) to identify user behavior on Unix-
based systems. The model detects anomalies based on what commands the users

436 S. El Hajji et al.

use during the day. NNID was 96% accurate in environment with only 10 users.
The authors concluded that they needed more data to represent more users and
that they should study different architectures because a larger network would
increase the complexity and use more resources.

Other researchers in other fields have focused on the performance of neu-
ral network learning algorithms and their impact on the accuracy of the
trained model. Sharma et al. [22] compared many training algorithms for brain
hematoma classification. Each training algorithm was checked for 10, 20 and
30 number of neurons (H) in the NN’s hidden layer with one cost function. In
this particular study, trainlm and trainscg performed really well in terms of con-
vergence speed and accuracy. In a similar study, Hesam et al. [23] studied the
performance of the same training algorithms to classify heart diseases data, the
authors used a similar environment and measures to evaluate each algorithm.
The study concluded that Quasi-Newton methods are generally considered more
powerful compared to other training algorithms when considering other factors
such as training time, memory need and accuracy. The authors also didn’t study
the impact of the used cost function on the accuracy of the studied model.

Other machine learning techniques were used in intrusion detection. For
instance, the authors in used [24] SVM with fuzzy c-means clustering in intrusion
detection. The model used a hybrid of active learning SVM and Fuzzy C-Means
clustering iteratively trained to create a classifier that predicts attacks in the
NSL-KDD dataset. The binary classifier produced a decent classification rate,
but no comparison with other work was done. SVMs were also used by Al-Yaseen
and et al. [25], the authors proposed a model with multi-level SVMs and modi-
fied K-means to build a high performance intrusion detection system. The model
used modified K-means to reduce the number of training datasets and to build
new training data sets with high-quality instances to train SVMs. The model
gave high classification accuracy in one attack category, but worked moderately
when predicting other instances such as normal events.

In summary, many authors are interested in identifying the most important
parameters for the performance of a neural network used in intrusion detection.
The goal is to use these parameters to construct neural network model that is
suitable for the task that should be solved and to monitor the accuracy of the
model. Most authors have tried to increase the number of hidden layers, change
the activation function, etc., but to our knowledge, no work has been done on
the impact of the different algorithms and the cost functions on the performance
of the neural network. In this paper, we have studied 8 batch training algo-
rithms and 5 cost functions, in which we have built 37 neural network (IDS) and
compared their performances.

3 More About IDS, SIEM and Artificial Neural Networks

In this section we will describe some general related terms such as Intrusion
Detection System, Security Information and Event Management and Artificial
Neural networks.

Analysis of Neural Network Training and Cost Functions Impact 437

3.1 Security Systems

(a) Intrusion Detection Systems
According to NIST, Intrusion detection systems (IDSs) are software or hard-
ware systems that automate the process of monitoring the events occurring in
a computer system or network, analyzing them for signs of security intrusions,
defined as attempts to compromise the integrity, confidentiality, availability, or
to circumvent the security mechanisms of a computer or network [26].

IDS systems attempt to detect malicious behaviors targeting a network and
its resources. They can either detect certain deviations from expected and normal
usage behavior, also known as anomaly-based intrusion detection, that indicate
hostile activities against the protected network, or search for specific recognized
patterns, called signatures, in their input stream as it is the case in misuse-based
intrusion detection systems [27].

• Anomaly-based systems start by building a model of the normal behavior of
the system (sometimes called profile) and then look for anomalous activities.
Any activity that does not conform and correspond to the created system
profile is flagged as possible intrusion attempt. In theory, this type of detection
is capable of detecting previously unknown attacks, but this also means that
these systems are prone to the generation of many false positives.

• Misuse-based systems are equipped with a knowledge base that contains a
number of attack signatures. The audit data collected by the IDS is compared
with the content of the database and, if a match is found, an alert is generated.
Events that do not match any of the attack models are considered part of
legitimate activities, which gives the important advantage of producing very
few false positives. One main issue concerning misuse detection is how to
develop signatures that include all possible attacks to avoid false negatives,
and how to develop signatures that do not match non-intrusive activities to
avoid false positives, which makes this task difficult and resource intensive
task. Second, the stored patterns (knowledge base) need to be continually
updated in order to detect new vulnerabilities and attack techniques, which
would normally involve human expertise.

Information

Sources
Analysis Response

Fig. 1. Process model for intrusion detection

Figure 1 shows the three fundamental functional components in intrusion
detection systems:

• Information Sources: It covers event information from different levels of the
system, with the most common monitoring of the network, host, and appli-
cations. This information is used to determine if an intrusion has occurred.

438 S. El Hajji et al.

• Analysis: After collecting events from different information sources, this part
is responsible for organizing and making sense of these events. The goal is
to decide when these events indicate that intrusions are occurring or have
already occurred. The most common analysis approaches are misuse detection
and anomaly detection.

• Response: Once an intrusion is detected, the system perform a set of actions
that are generally grouped into passive and active measures. Passive measures
involve communicating IDS findings to humans, who are then expected to
take action based on these reports, while active measures involve automated
system intervention.

(b) Security Information and Event Management Systems
SIEM or Security Information and Event Management is a complex set of tech-
nologies brought together to provide a holistic view into a technical infrastruc-
ture. These technologies combine Security Information Management (SIM) and
Security Event Management System (SEM) [28,29].

SIM essentially provides log management and reporting for security-related
events. These are the processes that automate the collection, monitoring, and
analysis of security related data from computer logs. SEM covers the tools which
provide real-time monitoring for security events, real-time threat analysis, visu-
alization, ticketing, incident response, and security operations. These two tech-
nologies work together as illustrated in Fig. 2 in order to provide quicker incident
identification, analysis and recovery of security events.

Log Collection Normalization Correlation Log Storage

Surveillance

Fig. 2. SIEM’s processes

• Collect events and logs by grouping all event logs from their native devices
using two fundamental methods: agent-based collection (using dedicated a
software) and agentless collection (sending logs remotely).

• Normalization which includes translating computerized jargon to readable
data to be processed and displayed often using regular expressions (Regexs).

• Correlation of events and incident response on both internal and external
threats.

Analysis of Neural Network Training and Cost Functions Impact 439

3.2 Artificial Neural Networks

Artificial Neural Networks are a highly connected networks or “neurons” which
exchange messages between each other. They are composed of nodes or units
(Fig. 3) connected by directed links. A link from unit i to unit j serves to
propagate the activation ai from i to j. Each link also has a numeric weight
wi,j associated with it, which determines the strength and sign of the connection
[30].

Fig. 3. A simple mathematical model for a neuron.

There are various architectures in Neural Networks. They vary according to
the way in which the neurons are connected.

– A feed-forward network has connections only in one direction-that is, it
forms a directed acyclic graph. Every node receives input from “upstream”
nodes and delivers output to “downstream” nodes; there are no loops.

– In a recurrent network, we find directed cycles in their connection graph.
They can have complicated dynamics and this can make them very difficult
to train.

The neural network will be given a dataset ((x, y) coordinates), which con-
sists of input (i.e. x) and output data. The output data has the values that we
want the neural network to learn to predict. The actual value of the output will
be represented by y and the predicted value will be represented by ŷ.

Training the model involves adjusting the weights of the variables for all the
different neurons present in the neural network. This is done by minimizing the
Cost Function.

– Cost Functions

The cost function, as the name suggests is the cost of making a prediction
using the neural network. It is a measure of how far off the predicted value, ŷ,
is from the actual or observed value, y. There are many cost functions that are
used in practice. In this paper, we will compare the following cost functions:

440 S. El Hajji et al.

1. Mean absolute error cost function (mae): It measures network performance
as the mean of absolute errors,

2. Mean squared normalized error cost function (mse): This function measures
the performance by calculating the mean of squared errors,

3. Sum absolute error cost function (sae): Another cost function that measure
the performance of the neural work according to the sum of squared errors,

4. Sum squared error cost function (sse): sse is a network cost function. It mea-
sures performance according to the sum of squared errors,

5. Crossentropy cost function (crossentropy): It’s a cost function that measure
the performance of the neural work by penalizing outputs that are extremely
inaccurate with very little penalty for fairly correct predictions. Minimizing
cross-entropy leads to good classifiers.

– Training Algorithms

There are number of batch training algorithms which can be used to train
a neural network. Determining which algorithm to be the fastest for a given
problem can be difficult because it depends on many factors, including the archi-
tecture of the neural network such as the number of weights and biases in the
network, the complexity of the problem and the desired error and so on. In this
problem, we will compare 8 algorithms that can be categorized in three families:
Gradient Descent algorithms (traingd, traingdm, trainrp), Conjugate Gradient
algorithms (trainscg, traincgf, traincgp), Quasi-Newton algorithms (trainbfg and
trainlm) [31].

Gradient Descent Algorithms
Gradient descent is one of the most popular algorithms to perform optimization
and by far the most common way to optimize neural networks. It is a way to
minimize a cost function J(θ) parameterized by a model’s parameters θ ∈ R

d by
updating the parameters in the opposite direction of the gradient of the objective
function ∇θJ(θ) w.r.t. to the parameters.

1. Gradient Descent backpropagation algorithm (traingd) is a gradient descent
local search procedure. It measures the output error, calculates the gradient
of the error by adjusting the weights and bias values in the direction of the
negative gradient of the performance function.

2. Gradient Descent with Momentum (traingdm) algorithm: Sometimes gradient
descent has trouble navigating areas where the surface curves much more
steeply in one dimension than in another. This often happens around a local
optima in which the network gets stuck in to a shallow local minimum. A
momentum is a method that helps accelerate GD in the relevant direction
by increasing for dimension who gradients point in the same directions and
reduces updates for dimensions whose gradients change directions. As a result,
the network gains faster convergence and reduced oscillation [32].

3. Resilient backpropagation (trainrp) algorithm takes into account only the sign
of the partial derivative over all patterns and eliminates the harmful effects of
their magnitudes. These effects come usually from multilayer networks that

Analysis of Neural Network Training and Cost Functions Impact 441

use sigmoid transfer functions in the hidden layers. Since the slope of the
sigmoid functions approaches zero when the input is large, the gradient can
a very small magnitude for such networks using the sigmoid function. As a
result, the network will have small changes in the weights and bias, even if
the weights and bias are far from their optimal values.
trainrp monitors the changes of the sign of the partial derivative and updates
the weights accordingly. For each weight, The update value is decrease by
a factor δ− whenever there was a sign change in partial derivative from the
previous iteration and increases by a factor δ+ whenever the derivative of the
performance function with respect to that weight has the same sign for two
successive iterations. A complete description of the algorithm is given in [33].

Conjugate Gradient Algorithms
The basic gradient descent algorithm takes steps in the direction of the negative
gradient, i.e. the direction in which the performance function decreases most
rapidly. This does not necessarily produce the fastest convergence. Conjugate
Gradient is simply the method of Conjugate Directions where the search direc-
tions are constructed by conjugation of the residual. It improves the steepest
descent by avoiding repetitive steps and taking only orthogonal or more specifi-
cally A-orthogonal steps [34]. Generally, conjugate gradient algorithms produce
faster convergence than basic gradient descent algorithms.

1. Scaled Conjugate Gradient (trainscg): Unlike other conjugate training func-
tions that use a line search technique to approximate the step size. Scaled
gradient conjugate gradient is a fully automated algorithm that does not
includes no critical user-dependent parameters and doesn’t perform a line
search at each iteration. Instead, it uses step size scaling mechanism that
makes the algorithm faster than any other second order algorithms [35].

2. Conjugate Gradient backpropagation with Fletcher-Reeves Updates
(traincgf) is a network function that updates the weights and biases accord-
ing to the backpropagation gradient convergence with the Fletcher-Reeves
update, this update is the ratio of the norm squared of the current gradi-
ent to the norm squared of the previous gradient. A detailed analysis of the
algorithm can be found in [36].

3. Conjugate Gradient backpropagation with Polak-Riebre Updates (traincgp):
This version of was proposed by Polak and Ribiére. This version uses the same
search direction equation as in traincgf. However, it uses the Polak-Ribiére
update to calculate the constant in search direction equation using ratio of
the inner product of the previous change in the gradient with the current
gradient to the norm squared of the previous gradient [36].

Quasi-Newton Algorithms
The Quasi-Newton algorithms are a class of algorithms also used to either find
zeroes or local maxima and minima of functions. They are considered as alter-
natives to Newton’s methods when they’re either too time consuming or diffi-
cult to compute, especially when it comes to computing the Hessian matrix for

442 S. El Hajji et al.

feed forward neural networks. Generally, Newton’s methods converge faster than
conjugate gradient methods but due their complexity, quasi-Newton method are
used instead. Strictly speaking, any method that replaces the exact Jacobian or
Hessian matrix with an approximation is a quasi-Newton method.

1. BFGS (Broyden-Fletcher-Goldfarb-Shanno) (trainbfg) algorithm: One of the
most popular Quasi-Newton methods which estimate the Hessian matrix is
BFGS. This algorithm overcomes some of the limitations of plain gradient
descent by seeking the second derivative (a stationary point) of the cost func-
tion. The gradient should be zero as a necessary condition for optimality. The
algorithm has proven to have good performance even for non-smooth opti-
mizations an efficient training function for smaller neural networks. Compared
to conjugate gradient methods, it requires more storage and computation, but
it converges in fewer iterations.

2. Levenberg-Marquardt backpropagation (trainlm) algorithm: Also known as
the damped least-squares method. It’s an iterative technique that was
designed to work specifically with loss functions which take the form of a sum
of squared errors. Although it can’t be applied to other loss functions such as
the root mean squared error or the cross entropy error, it is considered the
fastest training algorithm for networks of moderate size and measured with
a sum of squared errors [37].

4 SVM and Neural Network Based Intrusion Detector
for IDS and SIEM Systems

In this section we will describe the details of our approach and give our proposed
model of our intrusion detector that can be used in IDS and SIEM systems. This
section is divided into three main parts:

– The first part describes the proposed model based on neural networks and
support vector machines. We also describe the dataset used and the steps
taken to prepare the dataset.

– In the second part, we will study the impact of the performance function
and training function on the accuracy of neural network-based IDS/SIEM
systems.

– In the last part, we add SVMs to our model as a second classification layer
to improve accuracy.

4.1 Studied Model

From the above literature review, we find that the existing training algorithms
were not evaluated in neural networks for security event classification. Therefore
we propose, in this paper, to study some of the most applied training functions
in neural networks, and then use best training algorithm in the overall proposed
attack recognition system as showed in Fig. 4.

Analysis of Neural Network Training and Cost Functions Impact 443

Dataset Preprocessing SVM Decision.
.
.

Fig. 4. The new SVM-neural network detection system

The proposed system uses the NSL-KDD (Network Security Layer-
Knowledge Discovery Database) dataset as an input. This dataset is a refined
version of its predecessor KDD’99 dataset, which is a database that contains
TCP/IP connections extracted from the intrusion detection system evaluation
data set collected from the DARPA’98 intrusion detection system evaluation
program [38].

(a) Dataset
NSL-KDD is a dataset proposed by Tavallaee after criticizing the inherent prob-
lems of KDD’99 in 2009 [39]. Because KDD’99 contains many duplicate records,
it is likely to be learned by high-frequency attacks when learning algorithms
with KDD’99, and it can also affect the evaluation results of test processes. As
a result, NSL-KDD comes with the following improvement:

• It does not include redundant and duplicate records in the train and test sets.
Thus, the classifiers will not be biased towards more frequent records, and the
performance of the learners are not biased by the methods that have better
detection rates on the frequent records.

• The number of records in the train and test sets is reasonable, which allows
for affordable experiments on the complete set without the need to randomly
select a small portion. As a result, the evaluation results of different research
studies will be consistent and comparable. More information on the improve-
ments can be found in [39].

NSL-KDD is a collection of downloadable files available to researchers. They
are listed in the Table 1.

(b) Data Preprocessing
In each record of the NSL-KDD dataset, there are 41 attributes unfolding differ-
ent features of the flow and a label assigned to each either as an attack type or
as normal. Each feature can have a categorical value such as the protocol used
in the connection (Protocol type can have 03 values TCP, UDP or ICMP) or
a numeric value like the length of time duration of the connection.

Because Neural networks work best only on numerical data, it requires the
conversion of any textual data in the data set to a numerical value, which is the
goal of the this phase. Data Preprocessing or “Categorical encoding” refers to the
process of assigning numeric values to nonnumeric features/attributes so as to
make the processing task much simpler. This can be done using two approaches:
one-hot (binary) encoding and integer encoding. While using one-hot encoding

444 S. El Hajji et al.

Table 1. List of NSL-KDD dataset files and their description

File name Description

KDDTrain+.ARFF The full NSL-KDD train set with binary labels in
ARFF format

KDDTrain+.TXT The full NSL-KDD train set including attack-type
labels and difficulty level in CSV format

KDDTrain+ 20Perce nt.ARFF A 20% subset of the KDDTrain+.arff file

KDDTrain+ 20Perce nt.TXT A 20% subset of the KDDTrain+.txt file

KDDTest+.ARFF The full NSL-KDD test set with binary labels in
ARFF format

KDDTest+.TXT The full NSL-KDD test set including attack-type
labels and difficulty level in CSV format

KDDTest-21.ARFF A subset of the KDDTest+.arff file which does not
include records with difficulty level of 21 out of 21

KDDTest-21.TXT A subset of the KDDTest+.txt file which does not
include records with difficulty level of 21 out of 21

certainly takes more space, it also implies an independence assumption among
the data. On the other hand, using integers such as 1, 2 and 3 implies some
kind of a relationship between them. In this context, since the values of our
non-numerical attributes are independent, we used binary coding. For instance,
the Protocol type attribute is transformed into 3 binary variables as shown:
tcp : (1, 0, 0); udp : (0, 1, 0); icmp : (0, 0, 1).

By using this transformation, each connection record in NSL-KDD will be
represented by 122 coordinates instead of 41 according to the above discrete
attributes values transformation [40].

(c) Neural Networks and SVMs
Our proposed model consists of two layers of classification: the first layer uses
neural networks that take the preprocessed data set as input and classify events
as malicious and benign events. The second layer uses support vector machines
as a classifier in order to improve accuracy.

To propose our model, we began by studying the impact of training and per-
formance functions on the accuracy of neural networks. Then we added SVMs
and compared the performance of two kernels in order to choose the best com-
bination.

4.2 Implementation and Discussion

In this study, our feed-forward neural network was composed of an input layer
with 122 inputs, one hidden layers with 25 neurons, and an output with binary
classification. We used KDDTrain+.csv and KDDTest+.csv for training and test-
ing respectively. To avoid possible bias in the presentation order of the sample

Analysis of Neural Network Training and Cost Functions Impact 445

patterns to the ANN, these sample sets were randomized. Sigmoid transfer func-
tion is used for the hidden layer. We also used 20% of the training set as a
validation set. The algorithm was implemented in Matlab using nntool.

Basic system training parameters are max epochs = 1000, show = 5, perfor-
mance goal = 0, time = Inf, min grad = 1e−010, max fail = 6 are fixed for each
training function (We have also matlab’s default parameters for other training
algorithms such learning rate = 0.01). The parameters for comparison are execu-
tion, no of epoch (E) at the end of training, correct classification (C) percentage
for testing set, because the test sets are a good measure of generalization for each
respective network. All these parameters are checked for 37 neural networks. The
algorithm was tested 10 times in total and the average or more consistent values
were added to Table 2.

There are several characteristics that can be deduced from the experiments
described. First, the cost function can have significant impact on the perfor-
mance of the neural network, this is clearly shown in the first algorithm (traingd)
Gradient Descent backpropagation, in which by just varying the cost function,
the classification precision varies accordingly from 54.82% to 72.56%. The per-
formance of traingd is similar to traingdm. Figure 5 shows the performance of
traingd when using mae, mse and crossentropy as cost functions. Here we can see
that the algorithm decreases more rapidly when using mean squared normalized
error cost function.

0 50 100 150 200 250

time(s)

0

0.5

1

1.5

2

2.5

Er
ro
r

Gradient descent backpropagation

mae
mse
crossentropy

Fig. 5. Gradient descent with mae, mse and crossentropy cost functions

For gradient descent algorithms (traingd, traingdm and trainrp), we see each
algorithm converges much faster compared to their execution with other cost
functions, but they give worse performance. Figure 6 shows the performance of

446 S. El Hajji et al.

Table 2. Comparison of training algorithms with different cost functions

Algorithm Training function Cost function Best validation

performance at

epoch

Epoch Classification % Time

Gradient Descent traingd mae 0.21712 at 1000 1000 72.56% 186 s

mse 0.073076 at 1000 1000 70.6% 190 s

sae 1617.9656 at 11 17 70.4% 4 s

sse 7758.32576 at 0 1 54.82% 0 s

crossentropy 0.200356 at 1000 1000 71.92% 248 s

traingdm mae 0.153602 at 1000 1000 74.97% 232 s

mse 0.11395 at 634 640 73.4% 153 s

sae 11439.3072 at 3 1 44.1% 3 s

sse 3254.1949 at 5 8 65.0% 3 s

crossentropy 0.26043 at 289 295 76.9% 68 s

trainrp mae 0.013851 at 116 122 77.7% 27 s

mse 0.011023 at 150 156 79.2% 40 s

sae 425.7931 at 95 101 75.2% 23 s

sse 284.8169 at 128 134 77.8% 34 s

crossentropy 0.022481 at 98 104 78.8% 25 s

Conjugate Descent trainscg mae 0.090774 at 214 221 72.7% 82 s

mse 0.06374 at 118 129 72.7% 59 s

sae 1208.1477 at 440 447 70.7% 166 s

sse 1075.7554 at 268 276 73.7% 109 s

crossentropy 0.12898 at 999 1000 73.3% 357 s

traincgp mae 0.041352 at 261 262 72.8% 259 s

mse 0.032637 at 43 44 72.1% 57 s

sae 1942.6034 at 17 18 70.2% 27 s

sse 1012.5063 at 19 20 71.7% 31 s

crossentropy 0.20251 at 6 7 72.7% 10 s

traincgf mae 0.05335 at 43 44 72.3% 66 s

mse 0.032927 at 39 40 72.1% 65 s

sae 1102.785 at 60 61 71.3% 86 s

sse 1467.7234 at 6 7 73.7% 10 s

crossentropy 0.15559 at 25 26 72.3% 42 s

Quasi Newton trainbfg mae 0.040652 at 254 260 74.6% 29min

mse 0.021129 at 127 133 75.8% 13min

sae 2141.5896 at 227 233 68% 8min

sse 2203.9096 at 188 194 68.2% 8min

crossentropy 0.065099 at 159 165 77.4% 17min

trainlm mae Not supported

mse 0.0051341 at 55 61 74.8% 57min

sae Not supported

sse 67.1328 at 30 31 79.5% 48min

crossentropy Not supported

Analysis of Neural Network Training and Cost Functions Impact 447

traingd when using absolute errors. The figure shows how traingd tries to find
median for the absolute error sae and the mean for sse.

0.2 0.4 0.6 0.8

time(s)

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

Er
ro
r

×10 4

sae

0 100 200 300

time(s)

5.4

5.45

5.5

5.55

5.6

5.65

5.7

Er
ro
r

×10 4

sse

Fig. 6. Gradient descent with sae and sse cost functions

Conjugate gradient algorithms seem to give generally equal performances and
do not seem too influenced by the cost function used. However, the algorithms
are slightly faster when using the crossentropy cost function as it is the case for
traincgp and traincgf.

Quasi Newton algorithm are a lot slower than any other algorithms. Although
trainlm offers a high classification accuracy compared to many other training
algorithms, training requires a lot of time and resources which is an important
issue.

Finally, and by analyzing Fig. 7 which plots gradient descent and conjugate
gradient descent algorithms using mse cost function, we can see that trainrp
is the fastest algorithm for pattern recognition, since it produced an accuracy
of 79.2%, which is already better than the model proposed in [41] that also
used neural networks on the same dataset but with more hidden layers. The
authors in [42] also used a similar architecture with 2 hidden layers and 25
hidden neurons and achieved a slightly higher 81.2% accuracy using trainlm.
But as our comparison indicates, trainlm takes a lot of time and resources to
train, this argument was not mentioned in their paper.

4.3 Classifier Based on NN and SVM

After choosing the best training and performance functions for our neural net-
work classifier, we used SVM as the second classifier layer that takes the neuron

448 S. El Hajji et al.

0 5 10 15 20 25 30 35 40 45 50

time(s)

0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea
n-
sq
ua

re
-e
rr
or

traingd
traingdm
trainrp
trainscg
traincgp
traincgf

Fig. 7. Comparing many training algorithms using mse

Fig. 8. Confusion matrix of the proposed system

network output. The goal of using SVM is to project the output of the neural
network to a higher dimension so that the samples of the two classes (predicted
and actual value) are separable by a linear plane. This projection if often done
using a kernel.

We evaluate a polynomial kernel and a radial basis function (RBF) kernel
separately, and the polynomial kernel performed better in the experiments. The
optimization parameter of the SVM was set to 1 and the kernel parameter was
1.5. Figure 8 shows the confusion matrix of the whole system.

In this study, we found that the best model uses a neural network with
resilient backpropagation as a training function and mean squared normalized
error cost function. For the second layer, the study showed an improvement

Analysis of Neural Network Training and Cost Functions Impact 449

in classification accuracy (81.8%) when using polynomial kernel as opposed to
radial basis function (RBF) kernel.

5 Conclusion

The aim of our research is to build an intrusion detection model that can be used
in IDS and SIEM systems. We have proposed a two layer classification model.
The first model uses neural networks and the second is based on support vector
machine.

For neural networks, we highlighted some of the parameters, studied by other
researchers, and that can have significant impact on the performance of neural
network-based intrusion detectors. Next, we have studied different training algo-
rithms and cost functions in which we have implemented 37 feed-forward neural
networks.

Our results show that these parameters are crucial to achieve a high accuracy.
For instance, we found that the right cost function can improve the accuracy of
traingd algorithm by +17.74%, and for NSL-KDD dataset, the convergence speed
and classification accuracy of trainrp is higher than other training functions. The
accuracy of trainrp was comparable and sometimes even better than that of other
more complex neural networks-based models.

In a future study, we will evaluate the proposed system in a real network.
We also want to investigate other architectures and parameters to improve the
performance of the proposed system.

References

1. Verizonent: 2018 Data Breach Investigations Report (p. 8) (2018). https://www.
verizonenterprise.com

2. Mathews, L.: ThyssenKrupp Attackers Stole Trade Secrets In Massive Hack
(2016). http://www.forbes.com/sites/leemathews/2016/12/08/thyssenkrupp-
attackers-stole-trade-secrets-in-massive-hack/LeeMathews,Lee. Accessed 12 Oct
2016

3. Schwartz, M.J.: Lockheed Martin Suffers Massive Cyberattack (2011). http://
www.darkreading.com/risk-management/lockheed-martin-suffers-massive-
cyberattack/d/d-id/1098013. Accessed 2 Mar 2017

4. Markoff, J.: SecurID Company Suffers a Breach of Data Security (2011). http://
www.nytimes.com/2011/03/18/technology/18secure.html. Accessed 2 Mar 2017

5. Gogoi, P., Bhattacharyya, D.K., Borah, B., Kalita, J.K.: MLH-IDS: a multi-level
hybrid intrusion detection method. Comput. J. 57(4), 602–623 (2013). https://doi.
org/10.1093/comjnl/bxt044

6. Orhanou, G., Lakbabi, A., Moukafih, N., El Hajji, S. (n.d.): Network access control
and collaborative security against APT and AET. In: Security and Privacy in
Smart Sensor Networks, pp. 201–230. IGI Global. https://doi.org/10.4018/978-1-
5225-5736-4.ch010

7. Hall, D.L., Llinas, J.: An introduction to multisensor data fusion. Proc. IEEE
85(1), 6–23 (1997). https://doi.org/10.1109/5.554205

https://www.verizonenterprise.com
https://www.verizonenterprise.com
http://www.forbes.com/sites/leemathews/2016/12/08/thyssenkrupp-attackers-stole-trade-secrets-in-massive-hack/LeeMathews,Lee
http://www.forbes.com/sites/leemathews/2016/12/08/thyssenkrupp-attackers-stole-trade-secrets-in-massive-hack/LeeMathews,Lee
http://www.darkreading.com/risk-management/lockheed-martin-suffers-massive-cyberattack/d/d-id/1098013
http://www.darkreading.com/risk-management/lockheed-martin-suffers-massive-cyberattack/d/d-id/1098013
http://www.darkreading.com/risk-management/lockheed-martin-suffers-massive-cyberattack/d/d-id/1098013
http://www.nytimes.com/2011/03/18/technology/18secure.html
http://www.nytimes.com/2011/03/18/technology/18secure.html
https://doi.org/10.1093/comjnl/bxt044
https://doi.org/10.1093/comjnl/bxt044
https://doi.org/10.4018/978-1-5225-5736-4.ch010
https://doi.org/10.4018/978-1-5225-5736-4.ch010
https://doi.org/10.1109/5.554205

450 S. El Hajji et al.

8. Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Pearson Addi-
son Wesley, Boston (2005)

9. Zhang, C., Jiang, J., Kamel, M.: Intrusion detection using hierarchical neural net-
works. Pattern Recognit. Lett. 26(6), 779–791 (2005). https://doi.org/10.1016/j.
patrec.2004.09.045

10. Yamaguchi, F., Lindner, F., Rieck, K.: Vulnerability extrapolation: assisted discov-
ery of vulnerabilities using machine learning. In: Proceedings of the 5th USENIX
Conference on Offensive Technologies (2011)

11. Livshits, B., Zimmermann, T.: DynaMine. ACM SIGSOFT Softw. Eng. Notes
30(5), 296 (2005). https://doi.org/10.1145/1095430.1081754

12. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. J. Comput. Secur. 19(4), 639–668 (2011)

13. Kotler, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables
in the wild. J. Mach. Learn. Res. 7, 2721–2744 (2006)

14. Anderson, J.P.: Computer security threat monitoring and surveillance, vol. 17.
Technical report, James P. Anderson Company, Fort Washington, Pennsylvania
(1980)

15. Chiba, Z., Abghour, N., Moussaid, K., El Omri, A., Rida, M.: A novel architecture
combined with optimal parameters for back propagation neural networks applied
to anomaly network intrusion detection. Comput. Secur. 75, 36–58 (2018). https://
doi.org/10.1016/j.cose.2018.01.023

16. Sen, R., Chattopadhyay, M., Sen, N.: An efficient approach to develop an intrusion
detection system based on multi layer backpropagation neural network algorithm.
In: Proceedings of the 2015 ACM SIGMIS Conference on Computers and Peo-
ple Research - SIGMIS-CPR 2015. ACM Press (2015). https://doi.org/10.1145/
2751957.2751979

17. Kuang, F., Xu, W., Zhang, S., Wang, Y., Liu, K.: A novel approach of KPCA and
SVM for intrusion detection. J. Comput. Inf. Syst. 8(8), 3237–3244 (2012)

18. Devaraju, S., Ramakrishnan, S.: Performance analysis of intrusion detection sys-
tem using various neural network classifiers. In: 2011 International Conference on
Recent Trends in Information Technology (ICRTIT). IEEE (2011). https://doi.
org/10.1109/icrtit.2011.5972289

19. Ussath, M., Jaeger, D., Cheng, F., Meinel, C.: Identifying suspicious user behav-
ior with neural networks. In: 2017 IEEE 4th International Conference on Cyber
Security and Cloud Computing (CSCloud). IEEE (2017). https://doi.org/10.1109/
cscloud.2017.10

20. Suarez-Tangil, G., Palomar, E., Ribagorda, A., Sanz, I.: Providing SIEM systems
with self-adaptation. Inf. Fusion 21, 145–158 (2015). https://doi.org/10.1016/j.
inffus.2013.04.009

21. Rayan, J., Meng-Jang, L., Risto, M.: Intrusion Detection with Neural Networks.
AAAI Technical Report WS-97-07 (1997)

22. Sharma, B., Venugopalan, K.: Comparison of neural network training functions for
hematoma classification in brain CT images. IOSR J. Comput. Eng. (IOSR-JCE)
16(1), 31–35 (2014)

23. Hesam, K., Sharareh, R.N., Reza, S.: Comparison of neural network training algo-
rithms for classification of heart diseases. IAES Int. J. Artif. Intell. (IJ-AI) 7(4),
185–189 (2018)

24. Kumari, V.V., Varma, P.R.K.: A semi-supervised intrusion detection system using
active learning SVM and fuzzy c-means clustering. In: 2017 International Confer-
ence on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). IEEE
(2017). https://doi.org/10.1109/i-smac.2017.8058397

https://doi.org/10.1016/j.patrec.2004.09.045
https://doi.org/10.1016/j.patrec.2004.09.045
https://doi.org/10.1145/1095430.1081754
https://doi.org/10.1016/j.cose.2018.01.023
https://doi.org/10.1016/j.cose.2018.01.023
https://doi.org/10.1145/2751957.2751979
https://doi.org/10.1145/2751957.2751979
https://doi.org/10.1109/icrtit.2011.5972289
https://doi.org/10.1109/icrtit.2011.5972289
https://doi.org/10.1109/cscloud.2017.10
https://doi.org/10.1109/cscloud.2017.10
https://doi.org/10.1016/j.inffus.2013.04.009
https://doi.org/10.1016/j.inffus.2013.04.009
https://doi.org/10.1109/i-smac.2017.8058397

Analysis of Neural Network Training and Cost Functions Impact 451

25. Al-Yaseen, W.L., Othman, Z.A., Nazri, M.Z.A.: Intrusion detection system based
on modified K-means and multi-level support vector machines. In: Berry, M.W.,
Mohamed, A.H., Wah, Y.B. (eds.) SCDS 2015. CCIS, vol. 545, pp. 265–274.
Springer, Singapore (2015). https://doi.org/10.1007/978-981-287-936-3 25

26. Baceand, R., Mell, P.: NIST Special Publication on Intrusion Detection Systems
(2011). www.dtic.mil/dtic/tr/fulltext/u2/a393326.pdf. Accessed Mar 10 2018

27. Intrusion Detection and Correlation: Advances in Information Security. Kluwer
Academic Publishers (2005). https://doi.org/10.1007/b101493

28. Moukafih, N., Sabir, S., Lakbabi, A., Orhanou, G.: SIEM selection criteria for
an efficient contextual security. In: 2017 International Symposium on Networks,
Computers and Communications (ISNCC). IEEE (2017). https://doi.org/10.1109/
isncc.2017.8072035

29. Miller, D.: Security Information and Event Management (SIEM) Implementation.
McGraw-Hill, New York (2011)

30. Russell, S., Norvig, P., Davis, E.: Artificial Intelligence: A Modern Approach. Pren-
tice Hall, Upper Saddle River (2010)

31. Ali, S., Smith, K.A.: On learning algorithm selection for classification. Appl. Soft
Comput. 6(2), 119–138 (2006). https://doi.org/10.1016/j.asoc.2004.12.002

32. Sutton, R.S.: Two problems with backpropagation and other steepest-descent
learning procedures for networks. In: Proceedings of the Eighth Annual Confer-
ence of the Cognitive Science Society. Erlbaum, Hillsdale, NJ (1986)

33. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In: IEEE International Conference on Neural
Networks. IEEE (1993) https://doi.org/10.1109/icnn.1993.298623

34. Shewchuk, J.R.: An introduction to the conjugate gradient method without the
agonizing pain. School of Computer Science Carnegie Mellon University Pitts-
burgh, PA 15213 (1994)

35. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learn-
ing. Neural Netw. 6(4), 525–533 (1993). https://doi.org/10.1016/s0893-
6080(05)80056-5

36. Fletcher, R.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–
154 (1964). https://doi.org/10.1093/comjnl/7.2.1494

37. Pham, D.T., Sagiroglu, S.: Training multilayered perceptrons for pattern recogni-
tion: a comparative study of four training algorithms. Int. J. Mach. Tools Manuf.
41(3), 419–430 (2001). https://doi.org/10.1016/s0890-6955(00)00073-0

38. KDD CUP 99 dataset. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html. Accessed 23 Oct 2018

39. NSL-KDD dataset available. https://github.com/defcom17/NSL KDD. Accessed
23 Oct 2018

40. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD
CUP 99 data set. In: 2009 IEEE Symposium on Computational Intelligence for
Security and Defense Applications. IEEE (2009). https://doi.org/10.1109/cisda.
2009.5356528

41. Ji, H., Kim, D., Shin, D., Shin, D.: A study on comparison of KDD CUP 99 and
NSL-KDD using artificial neural network. In: Park, J.J., Loia, V., Yi, G., Sung,
Y. (eds.) CUTE/CSA -2017. LNEE, vol. 474, pp. 452–457. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-7605-3 74

42. Ingre, B., Yadav, A.: Performance analysis of NSL-KDD dataset using ANN. In:
2015 International Conference on Signal Processing and Communication Engineer-
ing Systems. IEEE (2015). https://doi.org/10.1109/spaces.2015.7058223

https://doi.org/10.1007/978-981-287-936-3_25
www.dtic.mil/dtic/tr/fulltext/u2/a393326.pdf
https://doi.org/10.1007/b101493
https://doi.org/10.1109/isncc.2017.8072035
https://doi.org/10.1109/isncc.2017.8072035
https://doi.org/10.1016/j.asoc.2004.12.002
https://doi.org/10.1109/icnn.1993.298623
https://doi.org/10.1016/s0893-6080(05)80056-5
https://doi.org/10.1016/s0893-6080(05)80056-5
https://doi.org/10.1093/comjnl/7.2.1494
https://doi.org/10.1016/s0890-6955(00)00073-0
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://github.com/defcom17/NSL_KDD
https://doi.org/10.1109/cisda.2009.5356528
https://doi.org/10.1109/cisda.2009.5356528
https://doi.org/10.1007/978-981-10-7605-3_74
https://doi.org/10.1109/spaces.2015.7058223

Managing Your Kleptographic
Subscription Plan

George Teşeleanu1,2(B)

1 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

george.teseleanu@info.uaic.ro
2 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania

tgeorge@dcti.ro

Abstract. In the classical kleptographic business models, the manufac-
turer of a device D is paid either in advance or in installments by a
malicious entity to backdoor D. Unfortunately, these models have an
inherent high risk for the manufacturer. This translates in high costs for
clients. To address this issue, we introduce a subscription based business
model and tackle some of the technical difficulties that arise.

1 Introduction

Kleptographic attacks have been introduced by Young and Yung [22–26] and are
a combination of subliminal channels with public key cryptography. The scope of
these attacks is to leak either confidential messages or private keys though a sys-
tem’s outputs without the owner’s knowledge. In recent years, this research area
has been revitalized and backdooring methodologies can be found for symmetric
key primitives [7,8,10], hash functions [5,14], pseudo-random number generators
[11,12] or digital signatures [6,21]. Also, a series of countermeasures have been
developed [6,15,18,19].

One of the classical business models for kleptographic attacks is the following:
a client1 C pays up front a manufacturer M , whom will later implement a
certain backdoor in a tamper proof device2 and deliver that device to a victim.
This model puts the manufacturer at an advantage, because he can charge the
customer and not implement the requested backdoor. Since this transaction is
illegal, the customer can not file a complain and legally retrieve his money. Thus,
this might scare off some of the potential clients.

Another classical model is the following: a client pays the manufacturer half
the money up front and the rest after checking the correctness of the backdoor.
If the manufacturer does not take certain precautions, then the client is at an
advantage. For example, C checks the correctness of the backdoor, but fails to

1 By definition a malicious entity.
2 In [8] is noted that complex open-source software (e.g. OpenSSL) is also vulnerable

to these attacks.

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 452–461, 2019.
https://doi.org/10.1007/978-3-030-16458-4_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_26&domain=pdf
http://orcid.org/0000-0003-3953-2744
https://doi.org/10.1007/978-3-030-16458-4_26

Managing Your Kleptographic Subscription Plan 453

pay the second installment. This can be easily avoided if a backdoor deactivation
method is put in place by M3. A possible deactivation strategy is for M to send
D a special input that instructs the device to erase all incriminating evidence.
A similar approach is used in [10,14] to trigger backdoors.

Both classical approaches have an inherent risk for the manufacturer: the
client can easily prove that M backdoored D either by decrypting all the mes-
sages send through that device or by revealing the private keys stored in D. Thus,
to make the risk worth while the manufacturer must charge C a high embedding
fee. This will certainly scare away certain resource constrained clients (e.g. small
businesses that do not have the resources of a large corporation). To address this
issue, we introduce a subscription based model suitable for the ElGamal encryp-
tion algorithm.

Our model draws inspiration from the subscription services offered by com-
panies like Netflix [2], Amazon [3] and HBO [4]. These companies give access
to streaming content in exchange for a monthly pay. In our case, a client pays
for a backdoor that gives him access to a limited number of private messages.
Subsequently, the client has to renew his subscription. This balances the risk and
reward factors for the manufacturer4 and, in consequence, M can lower embed-
ding fees. A risk still remains: no guarantees of output delivery for the clients.
But, this is minimum in a subscription based model because the goal of the man-
ufacturer is to keep clients satisfied, so they further renew their subscription5.

Compared to the classical models, our proposed model has a different issue
that needs to be tackled. Clients want access to their services as soon as they
pay. But, illegal transactions mostly use cryptocurrencies [9] and the average
confirmation time for this type of transactions is large in some cases (e.g. for
Bitcoin, it takes on average an hour per transaction [1]). Thus, to give the
manufacturer sufficient time for deactivating the backdoor6 if the transaction
is not valid, we employ a mechanism similar to time-lock puzzles [17] .

Note that generic kleptographic countermeasures [15,18,19] can protect tam-
per proof device’s users against our proposed mechanisms. Unfortunately, unless
users do not explicitly require the implementation of these defences, a man-
ufacturer is not obliged to deploy them. Thus, M is free to implement any
kleptographic mechanism.

Structure of the Paper. Notations and definitions are presented in Sect. 2. The
core of the paper consists of Sect. 3 and contains a series of kleptographic sub-
scriptions that fit different scenarios. We conclude in Sect. 4.

3 As in the previous model, the transaction is illegal and thus, M can not take legal
action against C.

4 M is exposed only for a limited period of time.
5 Cheating a client will only bring M a small amount of revenue.
6 By means of special triggers.

454 G. Teşeleanu

2 Preliminaries

Notations. Throughout the paper, the subset {1, . . . , n} ∈ N is denoted by [1, n].
The action of selecting a random element x from a sample space X is denoted
by x

$←− X, while x ← y represents the assignment of value y to variable x. The
probability of the event E to happen is denoted by Pr[E]. To ease description,
we use the notation Cn

k to denote binomial coefficients.

2.1 Security Assumptions

Definition 1 (Pseudorandom Function - prf). A function F : G× [1, n] →
S is a prf if:

– Given a key K ∈ G and an input X ∈ [1, n] there is an efficient algorithm to
compute FK(X) = F (X,K).

– Let A be a PPT algorithm with access to an oracle O that returns 1 if O =
FK(·). The prf-advantage of A, defined as

ADV prf
F (A) =

∣
∣
∣Pr[AFK(·) = 1|K $←− G] − Pr[AF (·) = 1|F $←− F]

∣
∣
∣

must be negligible for any PPT algorithm A, where F = {F : [1, n] → S}.
Definition 2 (Pseudorandom Permutation - prp). A prf P : G× [1, n] →
[1, n] is a prp if P is one-to-one and F from Definition 1 is changed into F =
{F : [1, n] → [1, n] | F is one-to-one}. The prp-advantage of A is denoted
ADV prp

P (A).

Definition 3 (Decisional Diffie-Hellman - ddh). Let G be a cyclic group of
order q, g a generator of G. Let A be a PPT algorithm which returns 1 on input
(gx, gy, gz) if gxy = gz. We define the advantage

ADV ddh
G,g (A) = |Pr[A(gx, gy, gz) = 1|x, y

$←− Z
∗
q , z ← xy]

− Pr[A(gx, gy, gz) = 1|x, y, z
$←− Z

∗
q]|.

If ADV ddh
G,g (A) is negligible for any PPT algorithm A, we say that the Deci-

sional Diffie-Hellman problem is hard in G.

2.2 Public Key Encryption

Definition 4 (Public Key Encryption - PKE). A Public Key Encryption
(PKE) scheme consists of four PPT algorithms: ParamGen, KeyGen, Encrypt
and Decrypt. The first one takes as input a security parameter and outputs the
system parameters. Using these parameters, the second algorithm generates the
public key and the matching secret key. The public key together with the Encrypt
algorithm are used to encrypt a message m. Using the secret key, the last algo-
rithm decrypts any ciphertext encrypted using the matching public key.

Remark 1. For simplicity, public parameters will further be implicit when
describing an algorithm.

Managing Your Kleptographic Subscription Plan 455

ElGamal Encryption. The ElGamal encryption scheme was first described in
[13] and later generalized in [16]. It can be proven that the generalized ElGamal
encryption scheme is secure in the standard model under the ddh assumption
[20]. We further describe the generalized version of the scheme and refer to it
simply as the ElGamal encryption scheme (EG).

ParamGen(λ): Generate a large prime number q, such that q ≥ 2λ. Choose a
cyclic group G of order q and let g be a generator of the group. Output the
public parameters pp = (q, g,G).

KeyGen(pp): Choose x
$←− Z

∗
q and compute y ← gx. Output the public key

pk = y. The secret key is sk = x.

Encryption(m, pk): To encrypt a message m ∈ G, first generate a random num-

ber k
$←− Z

∗
q . Then compute the values c ← gk and d ← m · yk. Output the pair

(c, d).

Decryption(c, d, sk): To recover the original message compute m ← d · c−x.

2.3 SETUP Attacks

Definition 5 (Secretly Embedded Trapdoor with Universal Protection
- SETUP). A Secretly Embedded Trapdoor with Universal Protection (SETUP)
is an algorithm that can be inserted in a system such that it leaks encrypted
confidential messages to an attacker through the system’s outputs. Encryption of
the messages is performed using an asymmetric encryption scheme. It is assumed
that the corresponding decryption function is accessible only to the attacker.

Definition 6 (SETUP indistinguishability - ind-setup). Let C0 be a black-
box system that uses a secret key sk. Let AE be the PKE scheme used by a
SETUP mechanism as defined above, in Definition 5. We consider C1 an altered
version of C0 that contains a SETUP mechanism based on AE. Let A be a PPT
algorithm which returns 1 if it detects that C0 is altered. We define the advantage

ADV ind-setup
C0,C1

(A) = |Pr[AC1(·)(λ) = 1] − Pr[AC0(·)(λ) = 1]|.

If ADV ind-setup
AE,C0,C1

(A) is negligible for any PPT algorithm A, we say that C0

and C1 are polynomially indistinguishable.

All kleptographic subscriptions presented from now on are implemented in
a device D. The owner of the device is denoted by V and we assume that
he is in possession of his secret key. Note that V thinks that D contains an
implementation of the ElGamal scheme as described in Sect. 2.2. When one of
the original ElGamal algorithms is not modified by the SETUP attack, the
scheme will be omitted when presenting the respective attack.

456 G. Teşeleanu

Throughout the paper, when presenting kleptographic subscriptions, we make
use of the following additional algorithms:

– Device’s/Manufacturer’s/Customer’s KeyGen − used by the device/manu-
facturer/customer to generate its/his keys;

– Token − used by the customer/manufacturer to extract the access token;
– Extract − used by the customer to recover the messages sent by V .

The previously mentioned algorithms are not implemented in D. For simplicity,
kleptographic parameters will further be implicit when describing a scheme.

3 Kleptographic Subscriptions

3.1 Free Subscription

The first type of subscription (denoted by FS) is an analog of public television
channels. Thus, anyone who is in possession of the transmitted ciphertexts can
decrypt them after a certain amount of traffic has been sent. This protocol will
form the basis for the mechanisms presented in Sects. 3.2 and 3.3.

Although, this kind of subscription does not bring any revenue, it can still be
useful in certain situations. For example, a disgruntled employee can embed it
in the source code of certain products before leaving the company. Then, he can
anonymously point out that the respective company implemented backdoors in
their products. The scope of this scenario is to damage the company’s reputation.

Let n be the maximum number of messages that a client needs to wait before
recovering all of V ’s communications. Also, let F : G × {0, 1}∗ → Z

∗
q . When

searching for the access token, we make use of an auxiliary function Check
that returns true if the decrypted message is correct. We further present the
algorithms for the free subscription SETUP attack.

Device’s KeyGen(pp): Choose xD
$←− Z

∗
q and p

$←− [0, n]. Output the device’s
secret key skD = (xD, p).

Encryption Sessions: The possible encryption sessions performed by D are
described below. Let i �= p.

Encryptioni(mi, pk, skD) : To encrypt a message mi ∈ G, first compute ki ←
F (gxD , i). Then compute the values ci ← gki and di ← mi · yki . Output the pair
(ci, di).

Encryptionp(mp, pk, skD): To encrypt a message mp ∈ G, compute the values
cp ← gxD and dp ← mp ·yxD . Output the pair (cp, dp). Erase p from D’s memory.

Token(c1, d1, . . . , cn, dn, pk): Let i = 1. Compute ki+1 ← F (ci, i mod n + 1),
mi+1 ← di+1 · y−ki+1 and i ← i + 1, until Check(mi) = true. Output the
token p.

The ith Extract(ci, di, p): To recover the ith message compute ki ← F (cp, i) and
mi ← di · y−ki .

Managing Your Kleptographic Subscription Plan 457

Remark 2. It is easy to see that message mp can only be retrieved by the
recipient.

We further state the security margin without proof due to its similarity to
the more involved proof of Theorem 2.

Theorem 1. If F is a prf and i ∈ [1, p − 1] then EG and FS are ind-setup.
Formally, let A be an efficient PPT ind-setup adversary. There exists an effi-
cient algorithm B such that

ADV ind-setup
EG, FS (A) ≤ 2ADV prf

F (B).

3.2 Paid Subscription

In this subsection, we describe a kleptographic analogue of payed television
(denoted by PS). Thus, C pays M for a session’s access token, that only M
can extract from D. Note that these tokens are unique per session. So, a group
of users can pay for only one token and all of them will have access to that
session’s private messages. Although this can be considered cheating, it is also a
reality in other systems (e.g. paying for a Netflix account and sharing the cre-
dentials with one’s friends). We will rectify this problem in the next subsection.

Let t be a security parameter and P : G × [1, n] → [1, n]. After the first
message is transmitted the manufacturer will send the clients a set of t positions
pj needed to compute the access token. Note that M has a window of at least t−1
messages to receive his payments. If one payment is declined, M can deactivate
the backdoor before the t-th message has been issued. A downside of this scheme
is that if one of the clients fails to pay for the token, then he deprives all users
of their access.

We further state one session of the protocol. After a predetermined number
of messages (greater than n) have elapsed, D can generate new keys and start a
new session.

Manufacturer’s KeyGen(pp): Choose xM
$←− Z

∗
q and compute yM ← gxM . Output

the manufacturer’s public key pkM = yM . The secret key is skM = xM . Store
pkM in D’s internal memory.

Device’s KeyGen(pp): Choose k0
$←− Z

∗
q . For each j ∈ [1, t] compute pj ←

P (yk0
M , j) and choose xj

$←− Z
∗
q . Compute xD ← x1 + . . . + xt. Store the device’s

secret key skD = (k0, p1, . . . , pt, x1, . . . , xt, xD).

Encryption Sessions: The possible encryption sessions performed by D are
described below. Let i ∈ [0, n] and i �= pj , for each j ∈ [1, t]. The algorithm
for Encryptioni are identical to the public subscription and thus are omitted.

Encryption0(m0, pk) : To encrypt a message m0 ∈ G compute the values c0 ←
gk0 and d0 ← m0 · yk0 . Output the pair (c0, d0). Erase k0 from D’s memory.

458 G. Teşeleanu

Encryptionpj
(mpj

, pk, skD) : To encrypt a message mpj
∈ G, compute the values

cpj
← gxj and dpj

← mpj
· yxj . Output the pair (cpj

, dpj
). Erase (pj , xj) from

D’s memory.

Token(c0, skM): For each j ∈ [1, t] compute pj ← P (cxM
0 , j). Output the token

p = (p1, · · · , pt).

The ith Extract(ci, di, p): To recover the ith message compute cp ← cp1 · . . . · cpt

and ki ← F (cp, i) and mi ← di · y−ki .

Remark 3. It is easy to see that messages m0,mp1 , . . . ,mpt
can not be retrieved

by the customers.

Theorem 2. If ddh is hard in G, P is a prp, F is a prf and (Ct
n)−1 is

negligible then EG and PS are ind-setup. Formally, let A be an efficient PPT
ind-setup adversary. There exist three efficient algorithms B1, B2 and B3 such
that

ADV ind-setup
EG, PS (A) ≤ 2ADV ddh

G,g (B1) + 2ADV prp
P (B2) + 2ADV prf

F (B3) + (Ct
n)−1.

Proof. Let A be an ind-setup adversary trying to distinguish between EG and
PS. We show that A’s advantage is negligible. We construct the proof as a
sequence of games in which all the required changes are applied to PS. Let Wi

be the event that A wins game i.

Game 0. The first game is identical to the ind-setup game7. Thus, we have

|2Pr[W0] − 1| = ADV ind-setup
EG,PS (A). (1)

Game 1. In this game, instead of using yk0
M as a key to P we use rP

$←− G. More
precisely, for each j ∈ [1, t] we compute pj ← P (rP , j). Since this is the only
change between Game 0 and Game 1, A will not notice the difference assuming
the ddh assumption holds. Formally, this means that there exists an algorithm
B1 such that

|Pr[W0] − Pr[W1]| = ADV ddh
G,g (B1). (2)

Game 2. Since P is a prp then we can choose pj
$←− [1, n], without A detecting

the change. Formally, this means that there exists an algorithm B2 such that

|Pr[W1] − Pr[W2]| = ADV prp
P (B2). (3)

Game 3. In each Encryptionpj
algorithm we make the change cpj

← gkj and

dpj
← mpj

ykj , where kj
$←− Z

∗
q . Since kjs and xjs have the same distribution,

and the bjs are uniformly distributed in [1, n], then A can only detect the change
using a brute-force attack8. Formally, we have

|Pr[W2] − Pr[W3]| = (Ct
n)−1. (4)

7 As in Definiton 6.
8 i.e. by trying each t-combination ctry of cis, until on input ctry the Extract algorithm

outputs a message m such that Check(m) = true.

Managing Your Kleptographic Subscription Plan 459

Game 4. The last change we make is ki
$←− Z

∗
q . Adversary A will not notice the

difference, since F is a prf. Formally, this means that there exists an algorithm
B3 such that

|Pr[W3] − Pr[W4]| = ADV prf
P (B3). (5)

The changes made to PS in Game 1 − Game 4 transformed it into EG.
Thus, we have

Pr[W4] = 1/2. (6)

Finally, the statement is proven by combining the equalities (1)–(6). �	

3.3 Targeted Subscription

As mentioned in the previous subsection, a coalition of clients can pay for only
one token9. To avoid this problem we bind a specific session to a certain client.
We could not find a method that allows multiple bindings per session. We further
present the proposed solution for binding users and sessions (denoted by TS).

Customer’s KeyGen(pp): Choose xC
$←− Z

∗
q and compute yC ← gxC . Output the

customer’s public key pkC = yC . The secret key is skC = xC . Store pkC in D’s
internal memory.

Encryption Sessions: The possible encryption sessions performed by D are
described below. Let i ∈ [0, n] and i �= pj , for each j ∈ [1, t]. The algorithms for
Encryption0 and Encryptionpj

are identical to the paid subscription and thus
are omitted.

Encryptioni(mi, pk, pkC , skD): To encrypt a message mi ∈ G, first compute
ki ← F (yxD

C , i). Then compute the values ci ← gki and di ← mi · yki . Output
the pair (ci, di).

The ith Extract(ci, di, p): To recover the ith message compute cp ← cp1 · . . . · cpt

and ki ← F (cxC
p , i) and mi ← di · y−ki .

Theorem 2 assures us that the client has negligible probability of reading
V ’s messages without M ’s help. We further prove a similar result for any PPT
ind-setup adversaries.

Theorem 3. If ddh is hard in G, P is a prp and F is a prf then EG and
TS are ind-setup. Formally, let A be an efficient PPT ind-setup adversary.
There exist three efficient algorithms B1, B2 and B3 such that

ADV ind-setup
EG, TS (A) ≤ 4ADV ddh

G,g (B1) + 2ADV prp
P (B2) + 2ADV prf

F (B3).

9 Further used by the whole group to access messages.

460 G. Teşeleanu

Proof. Game 0 − Game 2 and Game 4 are identical to the games presented
in the proof of Theorem 2 and thus, are omitted. Since only the customer is in
position of xC , we can not use the strategy presented in Theorem 2, Game 3.
Thus, we present a modified version of Game 3.

Game 3’. In this game, we replace yxD

C by rF
$←− Z

∗
q . Due to the fact that ddh is

hard in G, A will not notice the change. Formally, this means that there exists
an algorithm B′

1 such that

|Pr[W2] − Pr[W3′]| = ADV ddh
G,g (B′

1). (7)

Finally, the statement is proven by combining the equalities (1)–(3)
and (5)–(7). �	

4 Conclusions

In this paper we introduced the concept of subscription based kleptographic
services and tackled the technical challenges associated with this model. The pay-
as-you-go approach leads to better costs for the clients and minimizes exposure
risks for the manufacturer.

Open Problems. A couple of interesting open problems are the extension of
subscription based services to digital signatures and the implementation of multi-
targeted subscriptions for one session.

References

1. Bitcoin: Average Confirmation Time. https://www.blockchain.com/charts/avg-
confirmation-time

2. Frequently Asked Questions About Netflix Billing. https://help.netflix.com/en/
node/41049?ui action=kb-article-popular-categories

3. How to Manage Your Prime Video Channel Subscriptions. https://www.amazon.
com/gp/help/customer/display.html?nodeId=201975160

4. How to Order HBO: Subscriptios & Pricing Options. https://www.hbo.com/ways-
to-get

5. Albertini, A., Aumasson, J.-P., Eichlseder, M., Mendel, F., Schläffer, M.: Malicious
hashing: eve’s variant of SHA-1. In: Joux, A., Youssef, A. (eds.) SAC 2014. LNCS,
vol. 8781, pp. 1–19. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13051-4 1

6. Ateniese, G., Magri, B., Venturi, D.: Subversion-resilient signature schemes. In:
ACM-CCS 2015, pp. 364–375. ACM (2015)

7. Bellare, M., Jaeger, J., Kane, D.: Mass-Surveillance without the state: strongly
undetectable algorithm-substitution attacks. In: ACM-CCS 2015, pp. 1431–1440.
ACM (2015)

8. Bellare, M., Paterson, K.G., Rogaway, P.: Security of symmetric encryption against
mass surveillance. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol.
8616, pp. 1–19. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-
44371-2 1

https://www.blockchain.com/charts/avg-confirmation-time
https://www.blockchain.com/charts/avg-confirmation-time
https://help.netflix.com/en/node/41049?ui_action=kb-article-popular-categories
https://help.netflix.com/en/node/41049?ui_action=kb-article-popular-categories
https://www.amazon.com/gp/help/customer/display.html?nodeId=201975160
https://www.amazon.com/gp/help/customer/display.html?nodeId=201975160
https://www.hbo.com/ways-to-get
https://www.hbo.com/ways-to-get
https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-319-13051-4_1
https://doi.org/10.1007/978-3-662-44371-2_1
https://doi.org/10.1007/978-3-662-44371-2_1

Managing Your Kleptographic Subscription Plan 461

9. Christin, N.: Traveling the silk road: a measurement analysis of a large anonymous
online marketplace. In: WWW 2013, pp. 213–224. ACM (2013)

10. Degabriele, J.P., Farshim, P., Poettering, B.: A more cautious approach to security
against mass surveillance. In: Leander, G. (ed.) FSE 2015. LNCS, vol. 9054, pp.
579–598. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48116-
5 28

11. Degabriele, J.P., Paterson, K.G., Schuldt, J.C.N., Woodage, J.: Backdoors in pseu-
dorandom number generators: possibility and impossibility results. In: Robshaw,
M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 403–432. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4 15

12. Dodis, Y., Ganesh, C., Golovnev, A., Juels, A., Ristenpart, T.: A formal treat-
ment of backdoored pseudorandom generators. In: Oswald, E., Fischlin, M. (eds.)
EUROCRYPT 2015. LNCS, vol. 9056, pp. 101–126. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46800-5 5

13. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

14. Fischlin, M., Janson, C., Mazaheri, S.: Backdoored Hash Functions: Immunizing
HMAC and HKDF. IACR Cryptology ePrint Archive 2018/362 (2018)

15. Hanzlik, L., Kluczniak, K., Kuty�lowski, M.: Controlled randomness – a defense
against backdoors in cryptographic devices. In: Phan, R.C.-W., Yung, M. (eds.)
Mycrypt 2016. LNCS, vol. 10311, pp. 215–232. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-61273-7 11

16. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryp-
tography. CRC Press, London (1996)

17. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Technical report (1996)

18. Russell, A., Tang, Q., Yung, M., Zhou, H.-S.: Cliptography: clipping the power of
kleptographic attacks. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS,
vol. 10032, pp. 34–64. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53890-6 2

19. Russell, A., Tang, Q., Yung, M., Zhou, H.S.: Generic semantic security against a
kleptographic adversary. In: ACM-CCS 2017, pp. 907–922. ACM (2017)

20. Shoup, V.: Sequences of Games: A Tool for Taming Complexity in Security Proofs.
IACR Cryptology ePrint Archive 2004/332 (2004)

21. Teşeleanu, G.: Unifying kleptographic attacks. In: Gruschka, N. (ed.) NordSec 2018.
LNCS, vol. 11252, pp. 73–87. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-03638-6 5

22. Young, A., Yung, M.: The dark side of “black-box” cryptography or: should we
trust capstone? In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 89–103.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 8

23. Young, A., Yung, M.: Kleptography: using cryptography against cryptography.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 62–74. Springer,
Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0 6

24. Young, A., Yung, M.: The prevalence of kleptographic attacks on discrete-log based
cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 264–
276. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052241

25. Young, A., Yung, M.: Malicious Cryptography: Exposing Cryptovirology. John
Wiley & Sons, Hoboken (2004)

26. Young, A., Yung, M.: Malicious cryptography: kleptographic aspects. In: Menezes,
A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 7–18. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 2

https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-48116-5_28
https://doi.org/10.1007/978-3-662-53018-4_15
https://doi.org/10.1007/978-3-662-46800-5_5
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-3-319-61273-7_11
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-662-53890-6_2
https://doi.org/10.1007/978-3-030-03638-6_5
https://doi.org/10.1007/978-3-030-03638-6_5
https://doi.org/10.1007/3-540-68697-5_8
https://doi.org/10.1007/3-540-69053-0_6
https://doi.org/10.1007/BFb0052241
https://doi.org/10.1007/978-3-540-30574-3_2

Model Checking Speculation-Dependent
Security Properties: Abstracting
and Reducing Processor Models

for Sound and Complete Verification

Gianpiero Cabodi, Paolo Camurati, Fabrizio Finocchiaro,
and Danilo Vendraminetto(B)

Dip. di Automatica e Informatica, Politecnico di Torino, Turin, Italy
danilo.vendraminetto@polito.it

Abstract. Though modern microprocessors embed several hardware
security mechanisms, aimed at guaranteeing confidentiality and integrity
of sensible data, recently disclosed attacks such as Spectre and Meltdown
witness weaknesses with potentially great impact on CPU security. Both
vulnerabilities exploit speculative execution of modern high-performance
micro-architectures, allowing the attacker to observe data leaked via a
memory side channel, during speculated and mispredicted instructions.

In this paper we present a methodology to formally verify, by means
of a model checker, speculative vulnerabilities, such as the class of Spec-
tre/Meltdown attacks, in microprocessors based on speculative execu-
tion. In detail, we discuss the problem of formally verifying confidential-
ity violations, since we deem it will help preventing new vulnerabilities
of the same typology.

We describe our methodology on a pipelined CPU inspired by the
DLX RISC processor architecture. Due to scalability issues, and follow-
ing related approaches in formal verification of correctness, our approach
simplifies the model under verification by proper abstraction and reduc-
tion steps. The approach is based on flushing the pipeline, abstracting
data and most of the speculative execution logic, keeping a subset of
control data, plus speculated data state and tainting logic. Illegal prop-
agation (data leakage) is encoded in terms of taint propagation, from a
protected/invalid memory address to the address bus on a subsequent
memory read, affecting the cache.

We introduce the theoretical flow, relying on known theoretical results
combined and exploited to prove soundness and completeness. Finally,
using a state-of-the-art model checking tool, we present preliminary data
on formal verification based on Bounded Model Checking, that to sup-
port our claims and highlight the feasibility of the approach.

Keywords: Model checking · Secure CPU architecture ·
Speculative execution · Taint propagation ·
Abstraction and reduction · Pipeline flushing · Confidentiality ·
Reorder buffer · Spectre · Meltdown

c© Springer Nature Switzerland AG 2019
C. Carlet et al. (Eds.): C2SI 2019, LNCS 11445, pp. 462–479, 2019.
https://doi.org/10.1007/978-3-030-16458-4_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16458-4_27&domain=pdf
https://doi.org/10.1007/978-3-030-16458-4_27

Model Checking Speculation-Dependent Security Properties 463

1 Introduction

In information security, confidentiality and integrity represent a major class of
security requirements, whereas side channel attacks are a relevant and increasing
family of security threats. Confidentiality refers to the property that informa-
tion is not made available or disclosed to unauthorized individuals, entities, or
processes [2], while integrity means maintaining and assuring the accuracy and
completeness of data over their entire life-cycle [4].

Side-channel attacks are a class of security breaches attracting increasing
interest from mid-nineties: they include any attack based on information gained
from the implementation of a device, rather than from weaknesses in the imple-
mented algorithm itself (e.g. software bugs and buffer overflows).

Software running on modern microprocessors utterly depends on hardware
security mechanisms in maintaining confidentiality and integrity of certain mem-
ory regions such as those used by kernels or hypervisors. Although several
side channel attacks have been found in literature, that bypass fundamental
hardware-enforced security mechanisms, none of them had the same impact as
Spectre [20] and Meltdown [21] did.

Those attacks identify and exploit viable hybrid vulnerabilities related to cer-
tain internal processor features in conjunction with state-of-the-art cache-based
side channel attacks. Both vulnerabilities involve processors speculatively exe-
cuting instructions past access check and allowing the attacker to observe the
results via a side channel. Rather than exploiting an incorrect implementation of
the Instruction Set Architecture (ISA), these attacks leverage the undocumented
implementation-specific speculative behaviour of high-performance microarchi-
tectures (MA) to affect the extra-architectural state of the machine (e.g. caches).

Authors in [20,21] developed proof of concepts that were used in breaching
the security of hardware protected areas. The huge extent and breaking conse-
quences of such attacks is not entirely understood even now. The attack mecha-
nisms have been explored and possible defences have already been presented and
deployed, though the software-based ones in conjunction with operating systems,
have a non negligible impact on system performance. There is still a strong need
for long term comprehensive best practices to help addressing this problem in
order to avoid similar vulnerabilities in next generations of microprocessors.

As widely known in the scientific community, the design phase is the most
critical one, where most of the bugs are born. It is also worth noting that although
Meltdown and Spectre were the result of specific designs ignoring the impact of
speculative execution on security, the rapid rise in processor complexity over
time, a key to achieving higher performance, probably made these types of flaws
inevitable or at least neglected. When speculation and out of order instructions
first saw the light, processors were at least 20x slower than they are now. Speed
increased disproportionally once chips reached the capability to contain more
transistors. However, the number of potential states in a logic circuit is expo-
nential in the number of instructions of the ISA.

Because of an underestimated vision of keeping security and performance as
separate design goals, design architects neglect some potentially dangerous states

464 G. Cabodi et al.

in their processors. Microarchitects have to deal with complexity and abstraction.
The flaw began because of a wrong abstraction. Computer architecture decou-
ples implementation (actual machine) and specification (abstract machine). The
fracture between the architectural state (e.g. registers, memory data, pipeline,
interrupts) and extra-architectural state (e.g. cache, branch predictor, physical
register mapping) is the root cause.

Security should become a major design constraint, if not the leading aspect
to any modern IT development. At least, the software development community
has already recognized this, and it is now clear that computer architectures
must have a holistic view on performance and security. However, this requires
revisiting decades of hardware development patterns. This is very important
because the Spectre/Meltdown class of attacks are caused by a deep discrepancy
between MA and ISA [22]. While the processor is completely (up to verification)
correct - hence adherent to the ISA, the actual MA is in a potentially dangerous
state, which could be exploited by well known techniques (side channel attacks
family [14,19,33]) to retrieve confidential information.

Our contribution is a methodology for abstracting and verifying security
properties in a pipelined processor model. This model, inspired by the DLX RISC
processor architecture presented by Hennessy and Patterson [28], has features
like pipelining and speculative (out-of-order) execution.

Our work is intended to address speculation based attacks such as Spectre
and Meltdown, which exploit side channels in order to extract useful data (from
an attacker’s perspective) out of the CPU microarchitecture. The proposed app-
roach is based on model checking alongside taint propagation mechanism.

We pre-process the microprocessor model, by applying property preserving
transformations, before feeding it to a Model Checker. The transformations are
directly inspired to the state-of-the-art in pipelined processor verification, as well
as information flow tracking:

– data abstraction with taint encoding;
– refinement/reduction of pipeline and out-of-order states.

In this work we present the feasibility of our approach: being preliminary,
transformations are performed manually on a case study, though our goal will be
to put in place an automated approach to model transformation and verification.

The main contribution of this paper is a discussion on the problem of for-
mally verifying confidentiality violations in microprocessors based on speculative
execution.

The paper is organized as follows. In Sect. 2 we provide some background
notions used in the rest of the paper, Sect. 3 describes the architecture of pro-
cessor model we used for our activity, while Sect. 5 describes the verification
steps on our processor model. Finally, Sect. 6 presents experimental results to
show the feasibility of our approach, and Sect. 7 concludes the paper, with some
hints of future activities.

Model Checking Speculation-Dependent Security Properties 465

2 Preliminaries and Background

We assume the reader to be familiar with basic concepts of formal verification
and model checking. We address systems modelled by labelled state transition
structures and represented implicitly by Boolean formulas.

From our standpoint, a system M is a triplet M = (S, S0, T), where S is a
finite set of states, S0 ⊆ S is the set of initial states, and T ⊆ S × S is a total
transition relation. Given a system M , we assume that p is a safety property to
be verified over M . In the following, p will correspond to the taint reaching the
memory (address bus) of our microprocessor model.

2.1 Spectre and Meltdown Attacks

Speculative (or out-of-order) execution allows microarchitectures to specula-
tively run computations based on future results of unknown operands or pre-
dicted branches. Instructions remain uncommitted in the reorder buffer (ROB)
while the missing data dependency is still present. When the dependency is
solved, then only the properly predicted instructions will be committed into
memory, cancelling those whose prediction was incorrect.

Today, speculative execution is widely deployed in high-performance CPU
designs because it allows parallel computations in hardware that substantially
improve performance.

Speculative execution is intended to be largely invisible to the architectural
state: mispredicted instructions are cancelled, preventing their architectural out-
comes (register write-backs, memory stores, etc.) from being exposed. Even if
an exception occurs, the pipeline is flushed and no architectural changes that
occurred after the excepting instruction are made visible.

This is the main reason for the Spectre and Meltdown attacks, as a mem-
ory exception is handled just after the instruction generating it is commit-
ted, instead of when it was speculatively executed. The primary exception to
this is through timing: where speculation is substantially accurate, performance
improves, reducing the time it takes to perform operations that would otherwise
be more expensive.

This timing side channel is measurable through a variety of techniques, and
allows software to detect when speculation is being effective. Side effects of spec-
ulation are especially visible in its impact on caches, which will be filled with
memory on the basis not just of architectural execution, but also of specula-
tive execution. Timing side channels therefore allow information to flow in two
directions:

1. instruction execution can guide future predictions, impacting the behaviour
of future speculation;

2. a committed instruction can observe cache timing information in order to
infer prior speculated behaviour.

466 G. Cabodi et al.

Though the presence of timing side channels in the microarchitecture has
long been understood, only with Spectre and Meltdown the profound implica-
tions of those two speculative situations combined together became clear. With
these category of attacks, timing side channels allow malicious unprivileged code
to extract the memory contents of the kernel or another target process by manip-
ulating instruction speculation and triggering a cache-timing side channel back
to the attacker.

2.2 Formal Verification of Microprocessors with Out-of-order
Execution

Formal verification of pipelined microprocessors first, and processors with spec-
ulative execution then, have represented a huge challenge for formal verification,
mostly for scalability reasons. Due to the enormous amount of states in the
actual (extra-architectural) machine, model checking is not directly applicable
to a real processor model.

All practical formal verification approaches share a couple of common ideas:

– reducing (refining) the model (and the verified behaviour) by just considering
a properly timed subset of possible execution traces;

– adopting some form of abstraction on data, based on the assumption that
arithmetic and logic functionalities are verified separately.

Burch et al. [6] first described a technique for verifying the control logic of
pipelined microprocessors. The technique automatically compares a pipelined
implementation to an architectural description using flushing and uninterpreted
functions along with a decision procedure. In this work, correctness of the two
implementations means that the implemented (simplified) model respects all its
specifications, in terms of symbolic function descriptions.

Abstraction based on uninterpreted functions compared to lambda expres-
sions is used in [5], where an efficient decision procedure implementation for
the CLU logic is provided. Theorem proving for microprocessor verification was
explored by Hunt et al. [16,17].

A broader notion of correctness was proposed by Manolios in [23] and [24],
in which it implies that the ISA (Instruction Set Architecture) and MA (Micro-
Architecture) machines have the same observable infinite paths. Manolios et al.
later extended their previous work in [25–27], where they provide support for
liveness properties and overcome the deadlock issue Burch’s work suffered for.

There have also been approaches based on the use of automatic engines that
aim at decomposing correctness proofs into smaller manageable pieces. For exam-
ple, the authors of [29] verify an out-of-order execution unit using incremental
flushing. Their approach needs an implementation of an intermediate machine,
where scheduling logic is abstracted, which is then related to the ISA. Manolios
et al. in [26], on the other hand, deal with any refinement map, they have
a general theory with a complete rule for relating any number of intermedi-
ate machines and they guarantee that all safety and liveness properties are
preserved.

Model Checking Speculation-Dependent Security Properties 467

Jhala and McMillan [18] relate processor models to their instruction set archi-
tecture models using compositional model checking. They apply this approach
to verify an abstract microprocessor model with branch prediction, speculative
execution and out-of-order execution.

2.3 Verifying Cybersecurity by Tainting

An active and effective strategy to encode cybersecurity problems is Information
Flow Tracking, that enables expressing and verifying properties on data flow-
ing between given source/destination pairs. Notable recent works targeting the
hardware/software boundary, are [30,31].

Starting from the notion of taint, as a possible attack, or of a confiden-
tial information to be leaked, specifying correct/undesirable behaviours entails
expressing taint-propagation properties [7,8,30]. Secure Path Verification [15]
has recently been proposed as a valuable industrial alternative to (more stan-
dard) model checking approaches.

Essentially, a path property explicitly allows the user to specify source, desti-
nation, path, as well as environmental constraints for taint-propagation analysis.
The novelty of the approach lies in the fact that the model checker engine pro-
vides a specific internal support for taint propagation.

Due to the nature of taint propagation, it perfectly fits our context in which
we want to prove the confidentiality of the microprocessor architecture, while we
omit to verify also the integrity of the same model, leaving this activity to future
works as we deem the first to be more closely related to the class of speculative
attacks as Spectre/Meltdown.

3 Processor Model

In order to describe our verification methodology, let us now introduce a case
study, based on a pipelined machine with speculative execution, inspired by the
DLX architecture [28], which was originally presented as an academic architec-
ture to teach the basic concepts used in MIPS2000 and other RISC processors
of that generation.

Starting from this academic RISC processor model, we implemented pipelin-
ing and speculative (out-of-order) execution, adding reorder buffer and reserva-
tion stations.

The high level organization, shown in Fig. 1, includes a seven stage pipeline
whose stages are IF1, IF2 (2-cycle fetch), ID (decode), EX (execution), M1, M2
(2-cycle memory access) and WB (write back).

The fetch stages are virtually capable of providing a never-ending supply
of instructions. Instructions pass through the front-end pipeline before being
dispatched into the reorder buffer. The widths of the fetch, pipeline, dispatch,
retire, and maximum issue stages are all abstracted away.

The branch misprediction logic controls the commit or abort of a given
instruction. In case of an abort, the fetching of useful instructions is stopped, and

468 G. Cabodi et al.

the pipeline is flushed. Similarly, in case of instruction cache miss, instruction
fetching is stopped and it resumes only after the instructions can be fetched from
the cache, or memory. The caches and the memory system are just represented
here as a generic memory block, as modelling and verifying the interactions of
the processor pipeline, caches and memory system is out of scope: the processor
outputs the PC (program counter) and, after a non-deterministic delay, receives
the instruction from the memory location addressed by the PC.

After instructions are decoded, they are dispatched to the appropriate func-
tional unit. All functional units are considered to be fully pipelined and are
capable of accepting a new instruction on every cycle. Though in reality differ-
ent instruction types have different execution times, we take here a simplified
view and treat all instructions as having the same execution time.

The reorder buffer and the reservation stations form the hardware support for
Tomasulo’s algorithm [32]. Tomasulo’s algorithm allows executing instructions
out-of-order, in data-flow order, rather than in sequential order. This can increase
the throughput of the unit, by avoiding pipeline stalls.

In the reservation station, instructions are queued up before being issued
to an execution unit. An instruction is ready for issue when all the following
conditions occur:

1. its inputs are available;
2. its destination register is available;
3. an execution unit is available to execute it.

The reorder buffer is a register file maintained as a first-in-first-out queue.
Each entry in the reorder buffer is made up of a tag, the destination register
number, the result and a valid bit. The reorder buffer preserves the program order
and it supports register renaming. The reorder buffer updates the architectural
registers with the computed results from the rename registers and removes entries
associated with executed instructions from its register file in program order.

The model features also ALU exceptions, misprediction exceptions and mem-
ory exceptions. If an exception occurs, the pipeline is flushed and no architectural
changes that occurred after the excepting instruction are made visible. This is
the behaviour exploited by Spectre/Meltdown category of attacks.

4 Attack Description

We focus on the well known Meltdown and Spectre attacks, that are depicted,
respectively, in [21] and in [20]. The core idea is that side-effects of out-of-
order execution can modify the microarchitectural state to leak information.
The adversary targets a secret value that is kept somewhere in physical mem-
ory. Note that the register contents are also stored in memory upon context
switches.

Meltdown enables leaking secrets by bypassing the privileged-mode isola-
tion, giving an attacker full read access to the entire kernel space including any
physical memory mapped.

Model Checking Speculation-Dependent Security Properties 469

Fig. 1. The pipelined processor model.

Spectre attacks, on the other hand, pursue an orthogonal approach, which
tricks speculative executed instructions into leaking information that the victim
process is authorized to access.

Despite the differences, the building blocks of both attacks are the same. The
first building block is to make the CPU execute one or more instructions that
would never occur in the executed path. Using the same naming convention of
Meltdown, we call such an instruction, which is executed out of order, leaving
measurable side effects, a transient instruction.

Furthermore, we call any sequence of instructions containing at least one
transient instruction a transient instruction sequence. In order to leverage tran-
sient instructions for an attack, the transient instruction sequence must use a
secret value that an attacker wants to leak.

The second building block of Meltdown is to transfer the microarchitectural
side effect of the transient instruction sequence to an architectural state to fur-
ther process the leaked secret.

Meltdown consists of 3 steps:

Step 1 The content of an attacker-chosen memory location, which is inaccessible
to the attacker, is loaded into a register.

Step 2 A transient instruction accesses a cache line based on the secret content
of the register.

Step 3 The attacker uses a covert channel to determine the accessed cache line
and hence the secret stored at the chosen memory location.

470 G. Cabodi et al.

1 ; R1 = i n v a l i d address
2 ; R3 = probe array
3 LW R2, 0(R1)
4 ADD R1, R2, R3
5 LW R1, 0(R1)

Listing 1. Attack instruction sequence.

Listing 1 shows the basic implementation of the transient instruction sequence
and the sending part of the covert channel, using DLX assembly instructions.

Step 1. In line 3 of Listing 1, we load the value located at the target kernel
address, stored in the R1 register, into R2. The LW instruction is fetched by
the core, decoded into µOPs1, allocated, and sent to the reorder buffer. There,
architectural registers (e.g., R1, R2 and R3 in Listing 1) are mapped to underlying
physical registers enabling out-of-order execution.

Trying to use the pipeline as much as possible, subsequent instructions
(lines 4–5) are already decoded and allocated as µOPs as well. The µOPs are
further sent to the reservation stations holding the µOPs while they wait to be
executed by the corresponding execution unit.

The execution of a µOP can be delayed if execution units are already used
to their corresponding capacity or operand values have not been calculated yet.
When the kernel address is loaded in line 3, it is likely that the CPU has already
issued the subsequent instructions as part of the out-or-order execution, and
that their corresponding µOPs wait in the reservation station for the content of
the kernel address to arrive.

As soon as the fetched data is observed on the common data bus, the µOPs
can begin their execution. When the µOPs finish their execution, they retire
in-order, and, thus, their results are committed to the architectural state.

During the retirement, any interrupts and exception that occurred during
the execution of the instruction are handled. Thus, if the LW instruction that
loads the kernel address is retired, the exception is registered and the pipeline is
flushed to eliminate all results of subsequent instructions which were executed
out of order. However, there is a race condition between raising this exception
and our attack step 2 which we describe below.

Step 2. The instruction sequence from step 1 which is executed out of order has
to be chosen in a way that it becomes a transient instruction sequence. If this
transient instruction sequence is executed before the LW instruction is retired
(i.e., it raises the exception), and the transient instruction sequence performed
computations based on the secret, it can be used to transmit the secret to the
attacker.

We allocate a probe array in memory and ensure that no part of this array
is cached. To transmit the secret, the transient instruction sequence contains an

1 Although this is true in general, in our case there is no generation of micro-
operations, that is every instruction is one µOP.

Model Checking Speculation-Dependent Security Properties 471

indirect memory access to an address which is calculated based on the secret
(inaccessible) value.

In the original attack the secret value is multiplied by the page size to prevent
the hardware prefetcher from loading adjacent memory locations into the cache.
We skip this multiplication to make our attack as generic as possible. Instead,
we add secret to the base address of the probe array, forming the target address
of the covert channel. This address is read to cache the corresponding cache line.
Consequently, our transient instruction sequence affects the cache state based
on the secret value that was read in step 1.

Step 3. In step 3, the attacker recovers the secret value (step 1) by leveraging
a microarchitectural side-channel attack (i.e., the receiving end of a microar-
chitectural covert channel) that transfers the cache state (step 2) back into an
architectural state.

As mentioned before, Meltdown and Spectre rely on some state-of-the-art
cache side-channel attacks. Their details are out of scope in this work.

5 Proof/Verification

The approach we propose is based on model transformations oriented to scala-
bility. We have two kinds of transformations:

– data abstraction: register values, as well as their handling within reservation
stations, execution units and reorder buffer, are properly abstracted, and they
are augmented/replaced, by tainting information and evaluation/propagation
circuitry;

– model reduction: speculation and parallel execution logic are reduced, follow-
ing the pipeline flushing and reduction by refinement map approaches typical
of state-of-the-art processor verification.

The model we verify is a processor in which no RAM memory is explicitly
considered, and confidential data is implicitly associated to a given protected/in-
valid memory address. No explicit program is provided, so an arbitrary sequence
of instructions is verified.

Though this is obviously a pessimistic view, it is in line with state-of-the-
art processor verification approaches, and it guarantees the completeness of our
approach in covering all possible software behaviours.

In the following, we describe the main ideas of the two transformations.
Though we do not provide a formal proof of correctness, we provide the basic
intuitions that support their applicability.

5.1 Data Abstraction and Tainting

The general idea supporting any abstraction based verification approach is that
data (and consequently model behaviour) can be over-approximated provided
verification is sound, i.e. an abstract counterexample always implies a concrete
one.

472 G. Cabodi et al.

In our case, this means that given a register file value Vi (the content of
register Ri), Vi is replaced by an abstract value V +

i , without affecting security
properties. A typical strategy used for data abstraction is bit width reduction,
which means drastically reducing the range of data values. With respect to stan-
dard formal verification of correctness, we have additional room for abstraction,
as processor functionality (e.g. data evaluation within the ALU) can be consid-
ered correct (already verified).

As we model confidentiality properties in terms of taints, we basically aug-
ment V +

i by coupling it with Ti, a taint value, and we also extend the data
computing logic with taint propagation logic. Taint values are just stored and
propagated through memory and data transfer components.

The ALU is the sole unit able to block/propagate a given taint and/or
combine multiple taints. So whenever the arithmetic/logic operation VK =
OP (Vi, Vj) is computed in the original processor model, we replace it by
V +
K = OP (V +

i , V +
j) and Tk = OPT (V +

i , Ti, V
+
j , Tj), with the requirement that

the transformation is sound. It is worth noticing that data evaluation is inde-
pendent from taints, whereas taint propagation obviously involves data values.

The degree of over-approximation (abstraction) in taint propagation could
be tuned between two extreme cases:

– full data dependence: data values are fully involved in taint computation;
whenever computing Tk, actual operand data values are considered; for
instance, a bitwise OR operation with and all 1 V +

i , or a multiplication with
V +
i = 0, could mask (block) a taint on the other operand (Tj);

– full abstraction from data values: for instance, taint propagation through
a binary ALU operation propagates a taint on any of the operand terms
(Tk = OPT (Ti, Tj) = Ti ∨ Tj).

The choice done obviously impacts on the soundness of the overall approach (see
Sect. 5.3 for a more detailed comment on this issue).

Without loss of generality/correctness, we also abstracted branch mispredic-
tion logic, and replaced it by a non deterministic choice.

As we are targeting memory related data leakages, we focus our effort on taint
propagation through memory access logic, whereas we consider arithmetic/logic
manipulation as pass-through circuitry for taints.

A taint is thus injected at the memory data input, whenever a protected/in-
valid address is used:

MDin = protected(MAddr) ? TAINT : NOTAINT ;

The taint is propagated through the abstract reservation stations, arithmetic/-
logic execution units and reorder buffer. The only circuitry enabled to clear a
taint is related to branch misprediction (instruction not committed and aborted).

The target we observe is the memory address. In terms of information flow,
the property we observe is the presence of a taint in memory address logic

Model Checking Speculation-Dependent Security Properties 473

(MAddr == TAINT). A sequence of instructions typical of Spectre and/or Melt-
down would clearly:

– inject a taint, due to an invalid/protected memory access within a mispre-
dicted instruction;

– propagate the taint as a data (waiting for commitment) into the (abstract)
reorder buffer;

– use the tainted data when computing the address of a subsequent (mispre-
dicted) memory read: the taint thus reaches the target.

The process is described in Fig. 2, that shows the path followed by the taint.
Notice how the taint is generated during the memory read when an invalid
address is into the address bus.

Fig. 2. Taint propagation from source to sink in our abstracted model.

As the pipeline goes on, the taint propagates to the reorder buffer, where
it is fed to reservation stations as new instructions come in. The taint enters
reservations stations because of its bond with the corresponding data, fetched
as operands of newly arrived instructions. Once the operands are available, the
taint is in one of the execution units, then on Common Data Bus and eventually
again into the reorder buffer.

474 G. Cabodi et al.

Table 1. Pipeline evolution of the proposed attack

Clock ↓ IF ID EX MEM WB Taint status
1 A
2 B A
3 C B A
4 B/C S A Taint source
5 C B S A Taint in ROB
6 C S B S Taint in EX
7 C S B Taint sink / property asserted
8 C S
9 C

A LW R2, 0(R1)
B ADD R1, R2, R3
C LW R1, 0(R1)

Table 1 shows the evolution of the pipeline fed with the instruction sequence
provided in the upper right table. The instructions implement a generic simplified
version of Meltdown/Spectre attacks which:

(A) reads from an invalid address;
(B) performs an arithmetic operation involving the secret;
(C) reads from an array with a displacement depending from secret.

Time is represented vertically in terms of clock cycles. Columns IF to WB
represent the pipeline stages. The last column describes the propagation of the
taint. Cells filled with “S” are stalls.

Instructions are fed in the pipeline and go through it without stalls until
clock 3. At clock 4, B and C must wait for their operands to be ready so a stall
is inserted. When A reads from memory at stage MEM, the value is placed into
the Common Data Bus and becomes available to the stalled instructions. At
clock 5, B goes on to the next stage, while C must wait for its operands to be
prepared by B, thus a new stall is inserted. Finally, from clock 7 to 9 the pipeline
proceeds without stalls.

The taint source is at clock 4 inside the MEM stage of A, when the access
from the invalid address is performed. At the WB of A, the taint propagates to
the ROB. The taint goes on to the execution unit at EX of B and in the next
clock is sensed by the taint sink because arrived into the Common Data Bus.

5.2 Model Reduction: Refinement

The processor model is further simplified following standard approaches to for-
mal verification of pipelines and/or speculation units [6,18,26].

In short, our model has already been simplified by turning data into taints.
We now simplify all intermediate states related to complex control of parallel
executions, by properly reducing/refining the behaviour.

Pipeline flushing as well as refinement maps can be applied, with strate-
gies that still guarantee verification completeness, while strongly simplifying the
model under verification.

Model Checking Speculation-Dependent Security Properties 475

A detailed description of the refinement strategy is clearly out of our scope
in this work, as any reduction/refinement is applicable, provided that it guar-
antees completeness. For our case study, we did not feel the need to apply any
compositional simplification [18], as the model was already highly simplified by
tainting based abstraction. So we applied the following simplifications:

– pipeline flushing: an instruction is completed, up to the reorder buffer, before
initiating the next one;

– reorder buffer is simplified to a FIFO queue, that basically just implements a
delay between instruction execution and availability of its result to the register
file; the FIFO strategy keeps the original instruction order, thus guaranteeing
data dependency;

– reservation station removal: this is a direct consequence of pipeline flushing
and reorder buffer reduction to FIFO;

– unification of execution units: no parallelism is now required on data, so we
just need a single instance of each execution unit.

Due to the previously listed simplifications, the full original behaviour,
based on pipelining and out-of-order execution is drastically reduced to a fully
sequenced execution, with FIFO-based delay between instruction execution and
result data availability.

The reduction guarantees completeness, i.e. it doesn’t remove taint propa-
gating sets of instructions, under two conditions:

– straight sequences of instructions include mispredicted instructions, that
mimic concrete sequences produced in the out-of-order real processor; this is
guaranteed by non-deterministically tagging any instruction as mispredicted
(done in the abstraction phase, as already noticed in Sect. 5.1;

– the delay of the FIFO queue replacing the reorder buffer encompasses the
time required by source to sink illegal taint propagations; we guarantee this
by carefully choosing FIFO size and non-deterministically controlling FIFO
“get” operations (moving data from reorder buffer back to the register file).

5.3 Correctness of the Approach

The correctness of our approach is directly related to the soundness and com-
pleteness of the model transformations performed. We now briefly characterize
them in terms of correctness.

Taint Encoding and Manipulation. Strictly speaking, our taint encoding
and manipulation steps are unsound as it they involve abstraction.

We allow abstract execution traces that propagate the taint, whereas no
information leakage would characterize the actual model. This is clearly due to
the chosen taint propagation strategy: our abstraction does not consider that

476 G. Cabodi et al.

a taint could be masked/blocked due to real data (e.g. logic AND with a 0,
arithmetic multiplication by 0, etc.). To this respect, we had two possible choices:

– adopt a finer grained taint abstraction strategy, refining out (based on a more
accurate taint propagation model) all false abstract counterexamples;

– work with an high taint abstraction level, thus accepting false abstract coun-
terexamples. To this respect, let us notice that such counterexamples could be
post-processed, and transformed to actual counterexamples, by just exploiting
them partially (e.g. by removing data and keeping control bits), as constraints
for a further BMC run on the concrete model.

In our view the latter strategy is largely consistent with the overall goal of
finding confidentiality bugs and removing them. The approach is complete as it
just over-approximates the real behaviour.

Model Abstraction and Reduction. As previously stated, we based
our model abstraction and refinement steps on existing formal verification
approaches [6,26], that have been proved sound and complete.

The sole critical issue with our approach is to correctly handle taint encod-
ing and manipulation throughout the abstraction end refinement steps. To this
respect our approach is correct, based on the observation that a taint (modulo
the previous observation on soundness) is essentially an augmented data, whose
propagation is verified under the form of a safety property (safety properties are
supported in [6,26]).

6 Experimental Results

The proposed approach has been tested on the case study of Sect. 3. The proces-
sor was described as a Verilog model, translated to AIGER format [3] and verified
by both Bounded Model Checking and Unbounded Model Checking (interpo-
lation based) algorithms with PdTRAV [13], a state-of-the-art academic tool:
specific emphasis was put on model reductions/transformations [9,12], handling
of multiple properties [11] and interpolants-based engines [1,10].

In particular, taints were represented as binary data, branch prediction/mis-
prediction logic was fully abstracted and replaced by a random binary choice.
Execution units were replaced by taint propagation pass through logic.

The confidentiality property was encoded by taint not reaching the address
output of the microprocessor.

As well known from [18], the original processor model (including data path,
speculation logic and Tomasulo’s module) would be hard to verify: the model
had more than 120 K gates and more than 3 K latches. The model after tainting,
abstraction and reduction, was encoded as an AIGER file of 2724 and gates and
106 latches. We could verify it by Bounded Model Checking, finding a counterex-
ample of 9 clock steps in less than 1 s.

Model Checking Speculation-Dependent Security Properties 477

The counterexample showed data leakage through a sequence of instructions
starting with an invalid memory access (injecting the taint), followed by an
address computation (propagating the taint) and a memory read with tainted
address. The counterexample is an abstract/reduced version of the one described
in Table 1.

The security bug was removed (and verified my model checking, again in less
that 1 s) by patching the model as follows: an instruction with invalid memory
access prevents speculated instructions with data dependencies.

7 Conclusions and Future Work

In this work we present a formal verification methodology to identify confiden-
tiality violations in modern CPU architectures based on speculative execution.

The methodology we propose follows some of the state-of-the-art ideas in
the fields of formal verification and information-flow-tracking, namely, model
abstraction/refinement, and taint injection/propagation. Though our work is
preliminary, our experimental results show its applicability.

Future works will follow the direction of automating the currently manually
driven abstraction/reduction of the model under analysis. Our final goal will be
an (at least partially) automated rewriting procedure.

References

1. Cabodi, G., Palena, M., Pasini, P.: Interpolation with guided refinement: revisiting
incrementality in SAT-based unbounded model checking. In: Formal Methods in
Computer-Aided Design (FMCAD), pp. 43–50. IEEE (2014)

2. Beckers, K., Heisel, M., Hatebur, D.: Pattern and Security Requirements. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16664-3

3. Biere, A., Heljanko, K., Wieringa, S.: Aiger 1.9 and beyond. http://fmv.jku.at/
hwmcc11/beyond1.pdf (2011)

4. Boritz, J.E.: Is practitioners’ views on core concepts of information integrity. Int.
J. Acc. Inf. Syst. 6(4), 260–279 (2005)

5. Bryant, R.E., Lahiri, S.K., Seshia, S.A.: Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 78–92.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 7

6. Burch, J.R., Dill, D.L.: Automatic verification of pipelined microprocessor control.
In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 68–80. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58179-0 44

7. Cabodi, G., Camurati, P., Finocchiaro, S., Loiacono, C., Savarese, F., Ven-
draminetto, D.: Secure embedded architectures: taint properties verification. In:
2016 International Conference on Development and Application Systems (DAS),
pp. 150–157. IEEE (2016)

8. Cabodi, G., Camurati, P., Finocchiaro, S.F., Savarese, F., Vendraminetto, D.:
Embedded systems secure path verification at the hardware/software interface.
IEEE Des. Test 34(5), 38–46 (2017)

https://doi.org/10.1007/978-3-319-16664-3
http://fmv.jku.at/hwmcc11/beyond1.pdf
http://fmv.jku.at/hwmcc11/beyond1.pdf
https://doi.org/10.1007/3-540-45657-0_7
https://doi.org/10.1007/3-540-58179-0_44

478 G. Cabodi et al.

9. Cabodi, G., Camurati, P., Garcia, L., Murciano, M., Nocco, S., Quer, S.: Speeding
up model checking by exploiting explicit and hidden verification constraints. In:
Design, Automation and Test in Europe, DATE 2009, Nice, France, 20–24 April
2009, pp. 1686–1691. IEEE (2009)

10. Cabodi, G., Loiacono, C., Vendraminetto, D.: Optimization techniques for craig
interpolant compaction in unbounded model checking. In: Proceedings of DATE,
pp. 1417–1422. Grenoble, France (Mar 2013)

11. Cabodi, G., Nocco, S.: Optimized model checking of multiple properties. In: Design,
Automation and Test in Europe, DATE 2011, Grenoble, France, March 14-18, 2011.
pp. 543–546. IEEE (2011)

12. Cabodi, G., Nocco, S., Quer, S.: Strengthening model checking techniques with
inductive invariants. IEEE Trans. CAD Integr. Circuits Syst. 28(1), 154–158
(2009)

13. Cabodi, G., Nocco, S., Quer, S.: Benchmarking a model checker for algorithmic
improvements and tuning for performance. Form. Methods Syst. Des. 39(2), 205–
227 (2011)

14. Fan, J., Guo, X., De Mulder, E., Schaumont, P., Preneel, B., Verbauwhede,
I.: State-of-the-art of secure ECC implementations: a survey on known side-
channel attacks and countermeasures. In: 2010 IEEE International Symposium
on Hardware-Oriented Security and Trust (HOST), pp. 76–87. IEEE (2010)

15. Hanna, Z.: Jasper case study on formally verifying secure on-chip datapaths (2013).
http://www.deepchip.com/items/0524-03.html

16. Hunt, W.A.: Microprocessor design verification. J. Autom. Reason. 5(4), 429–460
(1989)

17. Hunt, W.A. (ed.): FM8501: A Verified Microprocessor. LNCS, vol. 795. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-57960-5

18. Jhala, R., McMillan, K.L.: Microarchitecture verification by compositional model
checking. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102,
pp. 396–410. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-
4 40

19. Joy Persial, G., Prabhu, M., Shanmugalakshmi, R.: Side channel attack-survey.
Int. J. Adv. Sci. Res. Rev. 1(4), 54–57 (2011)

20. Kocher, P., et al.: Spectre attacks: exploiting speculative execution. arXiv preprint
arXiv:1801.01203 (2018)

21. Lipp, M., et al.: Meltdown. arXiv preprint arXiv:1801.01207 (2018)
22. Lowe-Power, J., Akella, V., Farrens, M.K., King, S.T., Nitta, C.J.: A case for

exposing extra-architectural state in the ISA: position paper. In: Proceedings of the
7th International Workshop on Hardware and Architectural Support for Security
and Privacy, p. 8. ACM (2018)

23. Manolios, P.: Correctness of pipelined machines. In: Hunt, W.A., Johnson, S.D.
(eds.) FMCAD 2000. LNCS, vol. 1954, pp. 181–198. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-40922-X 11

24. Manolios, P.: Mechanical verification of reactive systems. Ph.D. thesis, The Uni-
versity of Texas at Austin, Department of Computer Sciences, Austin, TX (2001)

25. Manolios, P., Srinivasan, S.K.: Automatic verification of safety and liveness for
xscale-like processor models using web refinements. In: Design, Automation and
Test in Europe Conference and Exhibition, 2004, Proceedings, vol. 1, pp. 168–173.
IEEE (2004)

26. Manolios, P., Srinivasan, S.K.: A complete compositional reasoning framework for
the efficient verification of pipelined machines. In: IEEE/ACM International Con-
ference on Computer-Aided Design, 2005, ICCAD-2005, pp. 863–870. IEEE (2005)

http://www.deepchip.com/items/0524-03.html
https://doi.org/10.1007/3-540-57960-5
https://doi.org/10.1007/3-540-44585-4_40
https://doi.org/10.1007/3-540-44585-4_40
http://arxiv.org/abs/1801.01203
http://arxiv.org/abs/1801.01207
https://doi.org/10.1007/3-540-40922-X_11

Model Checking Speculation-Dependent Security Properties 479

27. Manolios, P., Srinivasan, S.K.: Verification of executable pipelined machines with
bit-level interfaces. In: Proceedings of the 2005 IEEE/ACM International Confer-
ence on Computer-Aided Design. IEEE Computer Society (2005)

28. Patterson, D.A., Hennessy, J.L., Goldberg, D.: Computer Architecture: A Quanti-
tative Approach, vol. 2. Morgan Kaufmann, San Mateo (1990)

29. Skakkebæk, J.U., Jones, R.B., Dill, D.L.: Formal verification of out-of-order exe-
cution using incremental flushing. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 98–109. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0028737

30. Subramanyan, P., Arora, D.: Formal verification of taint-propagation security prop-
erties in a commercial SOC design. In: Proceedings of the Conference on Design,
Automation & Test in Europe, p. 313. European Design and Automation Associ-
ation (2014)

31. Subramanyan, P., Malik, S., Khattri, H., Maiti, A., Fung, J.: Verifying information
flow properties of firmware using symbolic execution. In: Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2016, pp. 337–342. IEEE (2016)

32. Tomasulo, R.M.: An efficient algorithm for exploiting multiple arithmetic units.
IBM J. Res. Dev. 11(1), 25–33 (1967)

33. Zhou, Y., Feng, D.: Side-channel attacks: ten years after its publication and the
impacts on cryptographic module security testing. IACR Cryptol. ePrint Arch.
2005, 388 (2005)

https://doi.org/10.1007/BFb0028737
https://doi.org/10.1007/BFb0028737

Author Index

Ayebie, Edoukou Berenger 288
Azizi, Abdelmalek 43

Belabssir, Soukaina 288
Boidje, Brice Odilon 307
Bonnevay, Stephane 325
Buchmann, Johannes 171

Cabodi, Gianpiero 462
Camurati, Paolo 462
Chen, Yuechen 142
Cheng, Jingde 399

Das, Parthasarathi 349
Ding, Jintai 105
Dione, Gilbert Ndollane 307
Dutta, Ratna 72

El Assad, Safwan 31
El Hajji, Said 433

Facon, Adrien 3, 13, 31
Finocchiaro, Fabrizio 462

Gautier, Guillaume 31
Gavin, Gerald 325
Geihs, Matthias 171
Goto, Yuichi 399
Gueye, Cheikh Thiecoumba 307
Guilley, Sylvain 3, 13, 31

He, Meiqi 142
Hell, Martin 55

Iovino, Vincenzo 118

Jacobson Jr., Michael J. 349
Johansson, Thomas 55

Kabatiansky, Grigory 371
Kansal, Meenakshi 72
Kaytancı, Kübra 217
Klamti, Jean Belo 307

Lau, Terry Shue Chien 269
Lin, Dongdai 236
Luo, Guiwen 236

Malluhi, Qutaibah M. 381
Mathieu, Yves 13
Mehta, Sanyam 195
Meier, Willi 55
Mesnager, Sihem 217, 257
Moukafih, Nabil 433
Mukhopadhyay, Sourav 72

Ngarenon, Togdé 409
Nguyen, Robert 31

Orhanou, Ghizlane 433
Özbudak, Ferruh 217

Saraswat, Vishal 195
Sarr, Augustin P. 409
Sauvage, Laurent 13
Schabhüser, Lucas 171
Schaub, Alexander 13
Scheidler, Renate 349
Schmitt, Kevin 105
Sen, Smith 195
Seye, Papa B. 409
Sönnerup, Jonathan 55
Souidi, El Mamoun 288
Souissi, Youssef 3, 13

Takarabt, Sofiane 13
Tan, Chik How 269
Teşeleanu, George 92, 452

Vendraminetto, Danilo 462
Visconti, Ivan 118

Wang, Yating 399
Wang, Yongge 381

Yan, Jingchen 399
Yi, Hairong 236
Yiu, Siu-Ming 142
Yoshida, Hirotaka 55

Zhang, Jun 142
Zhang, Linru 142
Zhang, Zheng 105

482 Author Index

	Preface
	Organization
	Biography of Said El Hajji
	Invited Papers and Talks
	Privacy Preserving Auctions on Top of Ethereum (Abstract for Invited Talk)
	Contents
	Side-Channel Analysis
	Virtual Security Evaluation
	1 Introduction
	2 The Presented Methodology
	3 Conclusion and Perspectives
	References

	Cache-Timing Attacks Still Threaten IoT Devices
	1 Introduction
	2 Previous Works
	2.1 Timing Attacks and Cache-Timing Attacks
	2.2 Existing Tools

	3 Our Methodology
	3.1 Leakage Types
	3.2 Principle of the Tool
	3.3 False Positives

	4 Evaluating MbedTLS Source Code
	4.1 Analysis of the RSA Implementation
	4.2 Analysis of ECDSA Implementation
	4.3 Analysis of AES Implementation
	4.4 Analysis of DES Implementation
	4.5 Analysis of Blowfish Implementation
	4.6 Analysis of Camellia Implementation

	5 Discussion
	6 Conclusion and Perspectives
	A Appendix
	References

	Speed-up of SCA Attacks on 32-bit Multiplications
	1 Introduction
	2 Complexity of Attacking 32-bit Multiplication
	3 Split the Attack
	4 Attack Steps
	4.1 Step 1 - Retrieve K0
	4.2 Step 2 - Retrieve K1
	4.3 Step 3 - Retrieve K2
	4.4 Step 4 - Retrieve K3
	4.5 Conclusion

	5 Benchmark
	5.1 SCA Attack on 8-bit Multiplication
	5.2 Performance on Software Implementation

	6 Conclusion
	7 Glossary
	References

	Cryptography
	Arabic Cryptography and Steganography in Morocco
	1 Introduction
	2 Arab Numerical Coding in Morocco and ``Hissab Al-Jommal''
	3 The Moroccan Cryptographic and Steganography Methods
	4 Encryption Using a Poetry
	5 Conclusions
	References

	An AEAD Variant of the Grain Stream Cipher
	1 Introduction
	2 Design Details
	2.1 Building Blocks and Functions
	2.2 Key and IV Initialization
	2.3 Operating Mode

	3 Design Rationale
	3.1 A Short History of the Grain Family of Stream Ciphers
	3.2 Differences Between Grain-128AEAD and Grain-128a

	4 Security Analysis
	4.1 General Security Analysis
	4.2 Correlation Attacks
	4.3 Chosen IV Attacks
	4.4 Fault Attacks

	5 Implementation
	6 Conclusions
	A Test Vectors
	References

	Construction for a Nominative Signature Scheme from Lattice with Enhanced Security
	1 Introduction
	2 Preliminaries
	2.1 Computational and Decisional Problems
	2.2 Zero Knowledge Argument System libert2016signature

	3 Our Nominative Signature Scheme
	4 Security
	4.1 Oracles for Adversaries
	4.2 Security Model for Unforgeability Against Malicious Nominee
	4.3 Security Model Under Unforgeability Against Malicious Nominator

	5 Security Model Against Invisibility
	5.1 Security Model for Non-repudiation

	References

	Reinterpreting and Improving the Cryptanalysis of the Flash Player PRNG
	1 Introduction
	2 Preliminaries
	2.1 Constant Blinding in Flash Player
	2.2 Shifting Signed Integers
	2.3 Previous Cryptanalysis Results

	3 Reinterpreting
	4 Improving
	5 Experimental Results
	6 Conclusions
	A Additional Algorithms
	References

	A Key Exchange Based on the Short Integer Solution Problem and the Learning with Errors Problem
	1 Introduction
	1.1 Background
	1.2 Key Exchange Based on SIS Problem
	1.3 Key Exchange Based on LWE Problem
	1.4 Our Contributions

	2 Attack to Wang's Protocol
	2.1 Preliminary
	2.2 Notation
	2.3 Description of the Protocol
	2.4 Mao's Attack ref7
	2.5 Our Attack
	2.6 Experimental Results
	2.7 Toy Example

	3 Key Exchange on SIS and LWE
	3.1 Preliminary
	3.2 Desciption of the Protocol
	3.3 Remove the Approximation
	3.4 Correctness
	3.5 Security

	References

	Non-interactive Zero Knowledge Proofs in the Random Oracle Model
	1 Introduction
	1.1 Problem Statement
	1.2 The FS Transform Internals
	1.3 The Soundness Degradation of the FS Transform

	2 Our Results
	3 Overview of Our Transform
	4 Comparison
	5 Applications
	6 Related Work
	7 Our Transform
	7.1 Step I: From spec-prot to 3-Round Public-Coin HVZK in the ROM
	7.2 Step II: Composing with the FS Transform

	References

	From Quadratic Functions to Polynomials: Generic Functional Encryption from Standard Assumptions
	1 Introduction
	1.1 Our Contributions
	1.2 Overview of Our Techniques

	2 Preliminaries
	2.1 Bilinear Map
	2.2 Functional Encryption

	3 A Generic Functional Encryption Scheme for Quadratic Functions
	3.1 Our FE Scheme for Quadratic Functions over Zp

	4 From Quadratic FE to Cubic FE over Zp
	4.1 Cubic Functionality over Zp
	4.2 Our FE Scheme for Cubic Functions over Zp

	5 Generalization: From Degree-m Polynomial FE to Degree-(m+1) Polynomial FE
	5.1 Our FE Scheme for Degree-(m+1) Polynomial over Zp

	6 Conclusions and Discussion
	A Requirements of PKE
	B Proofs in Our FE Scheme for Quadratic Functions
	B.1 Proof of Theorem 1

	C Proofs in Our FE Scheme for Cubic Functions
	C.1 Proof of Theorem 2
	C.2 Proof of Theorem 3

	References

	Secret Sharing
	Efficient Proactive Secret Sharing for Large Data via Concise Vector Commitments
	1 Introduction
	1.1 Organization
	1.2 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Network Model
	2.3 Discrete Logarithm Problem
	2.4 Vector Commitments
	2.5 Proactive Secret Sharing

	3 Proactive Secret Sharing with Vector Commitments
	3.1 Scheme Description
	3.2 Scheme Analysis

	4 Instantiation, Implementation, and Evaluation
	4.1 Instantiation
	4.2 Implementation
	4.3 Evaluation

	5 Conclusions
	A Proofs
	References

	Secret Sharing Using Near-MDS Codes
	1 Introduction
	1.1 Organization

	2 Preliminaries
	2.1 Coding Theory
	2.2 Secret Sharing

	3 Related Work
	3.1 Share Construction
	3.2 Secret Reconstruction

	4 Attack on the Scheme in zhou2009secret
	5 Proposed Secret Sharing Scheme
	5.1 Motivation for the Scheme
	5.2 Access Structure
	5.3 Share Construction
	5.4 Secret Reconstruction

	6 Analysis of the Proposed Scheme
	6.1 Cheating Detection and Cheating Identification

	A An Instantiation of the Proposed Scheme
	A.1 Secret Reconstruction

	References

	Mathematics for Cryptography
	On Plateaued Functions, Linear Structures and Permutation Polynomials
	1 Introduction
	2 Preliminaries
	3 Cusick's Highly Nonlinear Plateaued Functions and Their Modifications
	4 Constructing Permutation Polynomials over Fq2 via Fq
	5 Constructing Permutation Polynomials over Fqn via Fq with n 3
	6 A Further Generalization of Linear Translators
	7 Conclusion
	References

	Faster Scalar Multiplication on the x-Line: Three-Dimensional GLV Method with Three-Dimensional Differential Addition Chains
	1 Introduction
	2 Three and Four-Dimensional GLV Method
	3 Projection to the x-Line
	4 Three-Dimensional Differential Addition Chains
	4.1 A Uniform Three-Dimensional Differential Addition Chain
	4.2 A Faster Three-Dimensional Differential Addition Chain

	5 Comparison
	5.1 Theoretic Analysis
	5.2 Implementation Results

	6 Conclusion and Future Research
	A Four-dimensional Case
	References

	Codes and Their Applications
	On Good Polynomials over Finite Fields for Optimal Locally Recoverable Codes
	1 Introduction
	2 Preliminaries
	3 Constructions of r-good Polynomials
	3.1 Known Constructions of Good Polynomials
	3.2 More Constructions of Good Polynomials

	References

	A New Gabidulin-Like Code and Its Application in Cryptography
	1 Introduction
	2 Background on Rank Metric and Gabidulin Codes
	2.1 Rank Metric
	2.2 Gabidulin Codes
	2.3 General Decoding of Rank Metric Codes

	3 A New Code: l-Gabidulin Codes
	3.1 l-Gabidulin Codes Construction
	3.2 l-Gabidulin Codes Construction

	4 New Public-Key Encryption on l-Gabidulin Codes
	4.1 Description of the Encryption Scheme
	4.2 A Toy Example of l in LG Encryption

	5 Security Against Structural Attacks
	5.1 Overbeck's Attack
	5.2 Annulator Polynomial Attack
	5.3 Frobenius Weak Attack

	6 Proposed Parameters
	7 Conclusion
	References

	Perfect, Hamming and Simplex Linear Error-Block Codes with Minimum -distance 3
	1 Introduction
	2 Perfect LEB Codes of Type = [n1]…[nt][2]s, t1 with d=3
	2.1 Construction of Perfect LEB Codes of Type =[n1][2]s (n12) with d=3
	2.2 Binary Perfect LEB Codes of Type =[n1][n2][2]s with d =3
	2.3 Binary Perfect LEB Codes of Type =[n1]…[nt][2]s (t2) and d=3

	3 Perfect LEB Codes of Type = [n1][nt][3]s, t=1 or t=2 with d=3
	3.1 Perfect LEB Codes of Type =[n1][3]s (n13) and d=3
	3.2 Perfect LEB Codes of Type =[n1][n2][3]s with d=3

	4 Hamming LEB Codes
	5 Simplex LEB Codes
	6 Conclusion and Perspectives
	References

	Quasi-Dyadic Girault Identification Scheme
	1 Introduction
	2 Background
	2.1 Notation
	2.2 Coding Theory
	2.3 NP-Complete Problem

	3 Quasi-Dyadic Equivalence Subcode (QD-ES)
	3.1 Statement of Problems
	3.2 Some Remarks About These Problems

	4 The Girault Identification Protocol
	4.1 Overview of Code-Based Identification Protocols
	4.2 Description of Girault Identification Protocol

	5 Version Improved of the Girault Identification Scheme Using Quasi-Dyadic Subcode
	5.1 Key Generation Algorithm
	5.2 Improved Identification Scheme

	6 Security
	6.1 Completeness
	6.2 Soundness
	6.3 Zero-Knowledge

	7 Performance Analysis of the Scheme
	7.1 Parameters
	7.2 Communication Cost
	7.3 Performance

	8 Conclusion
	A Proof of the NP-Completeness of the QD-ES Problem when We Fix the Order
	A.1 Definitions
	A.2 Relation Between ES Problem and FDMP
	A.3 Proof

	References

	Homomorphic Encryption
	Securely Aggregating Testimonies with Threshold Multi-key FHE
	1 Introduction
	2 Problem Statement
	3 Formalization
	3.1 Definition of D
	3.2 Overview
	3.3 The Adversary Model
	3.4 The Objective

	4 A Proposal for Aggregate
	4.1 Case of Perfect Honest Experts
	4.2 General Case

	5 Analysis
	6 Numerical Application
	7 The Protocol SAggregate
	7.1 Secure Multi-party Computation
	7.2 Threshold Multi-key Fully Homomorphic Encryption (TMFHE)
	7.3 LWE-Based (TM)FHE
	7.4 SAggregate
	7.5 Running-Time vs Round Complexity

	8 Conclusion and Future Work
	A Formal Definition of Quantities Considered in Sect.5
	B Proof of Proposition 1
	C Proof of Lemma 1
	References

	Improved Efficiency of a Linearly Homomorphic Cryptosystem
	1 Introduction
	2 The Castagnos and Laguillaumie Cryptosystem
	2.1 The Basic System
	2.2 Security
	2.3 A Variant of the Basic System
	2.4 Expanding the Message Space

	3 Extensions
	3.1 Case t>1
	3.2 t=1
	3.3 Security Considerations for the Extensions

	4 Parameter Choices
	4.1 Restrictions on Prime Factors of f
	4.2 Selection of Random Exponents

	5 Numerical Results
	5.1 Comparison of Variations of the Castagnos and Laguillaumie Cryptosystem
	5.2 Comparison to Paillier and Bresson et al.

	6 Further Work
	References

	Applied Cryptography
	On the Tracing Traitors Math
	1 Introduction
	2 IPP Codes and IPP Set Systems - How Do They Work?
	3 Existence of Good t-IPP Codes
	4 How to Compare Different Systems with IP Property?
	References

	Reusable Garbled Turing Machines Without FHE
	1 Introduction
	2 Overview of Our Construction
	3 Reusable Garbled Circuits for NC1
	4 Reusable Garbled Turing Machines with ABE2
	5 Reusable Garbled Turing Machines Without ABE2
	6 Discussions and Oblivious Turing Machines
	7 Conclusion
	References

	An Extension of Formal Analysis Method with Reasoning: A Case Study of Flaw Detection for Non-repudiation and Fairness
	1 Introduction
	2 Basic Notions
	3 An Extension of Formal Analysis Method with Reasoning
	3.1 Formalization of Cryptographic Protocols
	3.2 Forward Reasoning
	3.3 Analysis

	4 Case Study in ISI Protocol
	5 Discussions
	6 Concluding Remarks
	References

	A Practical and Insider Secure Signcryption with Non-interactive Non-repudiation
	1 Introduction
	2 Preliminaries
	3 New Identification and Signature Schemes
	4 The Signcryption Scheme
	4.1 Confidentiality of the SCSSN Signcryption Scheme
	4.2 Unforgeability of the SCSSN Scheme
	4.3 Soundness of Non-repudiation
	4.4 Unforgeability of Non-repudiation Evidence

	5 Concluding Remarks
	References

	Security
	Analysis of Neural Network Training and Cost Functions Impact on the Accuracy of IDS and SIEM Systems
	1 Introduction
	2 Related Work
	3 More About IDS, SIEM and Artificial Neural Networks
	3.1 Security Systems
	3.2 Artificial Neural Networks

	4 SVM and Neural Network Based Intrusion Detector for IDS and SIEM Systems
	4.1 Studied Model
	4.2 Implementation and Discussion
	4.3 Classifier Based on NN and SVM

	5 Conclusion
	References

	Managing Your Kleptographic Subscription Plan
	1 Introduction
	2 Preliminaries
	2.1 Security Assumptions
	2.2 Public Key Encryption
	2.3 SETUP Attacks

	3 Kleptographic Subscriptions
	3.1 Free Subscription
	3.2 Paid Subscription
	3.3 Targeted Subscription

	4 Conclusions
	References

	Model Checking Speculation-Dependent Security Properties: Abstracting and Reducing Processor Models for Sound and Complete Verification
	1 Introduction
	2 Preliminaries and Background
	2.1 Spectre and Meltdown Attacks
	2.2 Formal Verification of Microprocessors with Out-of-order Execution
	2.3 Verifying Cybersecurity by Tainting

	3 Processor Model
	4 Attack Description
	5 Proof/Verification
	5.1 Data Abstraction and Tainting
	5.2 Model Reduction: Refinement
	5.3 Correctness of the Approach

	6 Experimental Results
	7 Conclusions and Future Work
	References

	Author Index

