
Chapter 7
A Review of Feature Reduction Methods
for QSAR-Based Toxicity Prediction
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Abstract Thousands of molecular descriptors (1D to 4D) can be generated and used
as features to model quantitative structure–activity or toxicity relationship (QSAR or
QSTR) for chemical toxicity prediction. This often results in models that suffer from
the “curse of dimensionality”, a problem that can occur in machine learning practice
when too many features are employed to train a model. Here we discuss different
methods of eliminating redundant and irrelevant features to enhance prediction per-
formance, increase interpretability, and reduce computational complexity. Several
feature selection and extraction methods are summarized along with their strengths
and shortcomings. We also highlight some commonly overlooked challenges such
as algorithm instability and selection bias while offering possible solutions.
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Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
4D Four-dimensional
ACO Ant colony optimization
ECFP Extended connectivity fingerprints
GA Genetic algorithm
KPCA Kernel principal component analysis
LASSO Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
LOOCV Leave-one-out cross-validation
MACCS Molecular access system
MDS Multi-dimensional scaling
PCA Principal component analysis
PSO Particle swarm optimization
QSAR Quantitative structure–activity relationship
QSTR Quantitative structure–toxicity relationship
RFE Recursive feature elimination
SA Simulated annealing
SAR Structure–activity relationship
SFFS Sequential floating forward selection
SFS Sequential forward selection
STR Structure–toxicity relationship
SVM Support vector machine
Tox21 Toxicology in the twenty-first century
t-SNE t-Distributed stochastic neighbor embedding

7.1 Introduction

The limitations of in vivo and in vitro approaches for determination of the biological
activity of chemicals have fostered the development of in silico approaches [1]. In
silico predictive toxicology is designed to complement experimental efforts with a
view toward improving the quality of toxicity predictions for safety assessment while
decreasing the associated time, cost, and ethical conflicts (animal testing) [2–4].
Methodology for in silico predictive toxicology has been dominated by (quantita-
tive) structure–activity or toxicity relationship [(Q)SAR or (Q)STR] (hereafter called
SAR). Traditional SAR models describe a relationship between the chemical struc-
ture of molecules (numerically encoded as molecular descriptors) and their activity
against a specific biological target [1]. This is achieved by establishing a trend in the
molecular descriptor space that links to a biological activity. Thus, all SAR models
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are developed on the assumption of a similarity principle. That is, molecules with
similar structures (and descriptors, consequently)will have similar biological activity
[4, 5]. A SAR model to predict toxicity (T ) is given in Eq. (1)

T = g
(
D f

)
(1)

where
(
D f

)
represents the feature space of molecular descriptors as chemical prop-

erties and g is a function that relates T to
(
D f

)
[2]. The accuracy of the model or

function g has been shown to depend on the most representative set of molecular
descriptors that will encode the useful properties of the molecules for prediction.

Molecular descriptors, being numerical features extracted from molecular struc-
tures, are the most common variables used for SAR-based toxicity prediction mod-
eling [6]. The information encoded by descriptors depends on the molecular rep-
resentation or “dimensionality” of the compound as well as the algorithm used to
calculate the descriptors [7]. One-dimensional (1D) descriptors are scalars encoding
physiochemical properties (molecular weight, logP) and constitutional parameters,
such as number of atoms, bond count, atom type, ring count, and fragment counts.
1D descriptors are insensitive to the topology of the molecule and tend to be similar
for distinct compounds. As a result, they are often used in combination with other
descriptors. Two-dimensional (2D) descriptors are more frequently used for chem-
ical space description. 2D descriptors, including topological indices and structural
fragments, are calculated from the connection table (chemical graph) representation
of a molecule. They are not only independent of the conformation of the molecule
but also graph invariant (not sensitive to altering the number of graph nodes). Three-
dimensional (3D) descriptors provide a more complete characterization of molec-
ular structures. 3D descriptors require conformational searching and can discrimi-
nate between isomers; this comes at the price of being computationally expensive.
The ability to discriminate between isomers can translate to less redundant features.
Examples of 3D descriptors include geometric, electrostatic, quantum chemical, and
WHIM&GETAWAY. Four-dimensional (4D) descriptors are much like 3D descrip-
tors that evaluate multiple structural conformations simultaneously. Fingerprints are
another form of molecular descriptors [7–9]. Commonly used fingerprints include
the Molecular ACCess System (MACCS) [10] substructure fingerprints, PubChem
[11], and extended-connectivity fingerprints (ECFP) [12]. These fingerprints and 2D
descriptors were widely used in the Tox21 data challenge [13] where the winning
submissions used over 2500 predefined features covering a wide range of data from
topological and physical properties to fingerprints [14].

As shown above, the chemical structures used in SARmodeling are characterized
by many molecular descriptors. It is common to generate thousands of descriptors
for a single molecule [14]. It is well known that the accuracy of predictive models
is not positively correlated to the dimensionality of the data, as overfitting tends to
become an issue [15–17]. High-dimensional spaces are prone to include irrelevant
and noisy features [18]. SARs developed using such features tend to focus on the
peculiarities of molecules and fail to be generalizable [19]. In the chemical space
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for a given library, each descriptor adds a dimension to the n-dimensional chemical
space. Every molecule in the library is assigned a coordinate depending on its values
for all the descriptors. A reduction in the dimensionality of the chemical space corre-
lates with an increasing similarity between molecules. This is important because the
underlying assumption in SARmodeling posits thatmoleculeswith similar structures
should have similar activity [20, 21]. Thus, one of the most important tasks prior to
modeling is dimension reduction focused on keeping the most important and rele-
vant descriptors with the maximum amount of biologically meaningful information
required for predicting the desired toxicity end point. Shen et al. [13] demonstrated
the usefulness of feature selection for toxicity prediction, particularly for interpreting
the role of the features. By reducing the feature space, they were able to pinpoint
MolRef and AlogP as the most important descriptors for predicting the toxicity of
aromatic compounds.

In simple terms, dimensionality reduction is considered desirable for activity
prediction modeling for the following reasons [22]:

(i) Employing fewer descriptors means that the model can focus on important
information for establishing a relationship, thus improving prediction accuracy
and reducing overfitting (Modelswithmany features enjoymore discriminating
power during training but are often not generalizable).

(ii) As the number of features decreases, interpretability of certain models
increases.

(iii) Computational costs reduce significantly as the complexity of many learning
algorithms is greater than linear [19, 23].

(iv) Elimination of irrelevant descriptors can help remove activity cliffs [7].
(v) Machine learning algorithms are statistical in nature; hence, they suffer from

the “curse of dimensionality”, which is common with optimization problems
as described by Bellman [24].

As the dimensionality increases, the amount of data needed to develop general-
izable models increases exponentially [25, 26]. SAR data rarely have an abundance
of labeled molecules and, as such, the final model and resulting toxicity prediction
will benefit from a reduction in dimension as a smaller dimension means fewer sam-
ples will be required during training. The optimal subset of a feature space is one
which has the least number of dimensions yet offers the best learning accuracy [26].
Two techniques used to alleviate the challenges of high dimension in SAR datasets
include feature selection and feature extraction.

In this review, we discuss different methods for both feature selection and feature
extraction techniques, as well as their applications in SARmodeling. In the next two
sections, we discuss feature selection and feature extraction methods consecutively.
In the last section, we highlight important aspects that must be considered while
attempting feature space reduction, such as the stability andvalidation of themethods.
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7.2 Feature Selection

Feature selection works by selecting a subset of features from the original feature set
and removing irrelevant features without altering the original representation of the
data, on the basis of certain relevance criteria [18, 26–28]. The physical meanings
of the features are retained.

Mathematically, considering a descriptor space X = {xi , i = 1 . . . n} , find a
subset Yk (with k < n) that maximizes an objective function J (X) for the probability
P that a compound is correctly predicted as active or inactive using Eq. (2).

Yk = {
x(1), x(2), . . . , x(k)

} = argmaxYk⊆X J (Yk) (2)

Thus, the ultimate goal of feature selection is to define a subset of Yk relevant
descriptors (obtained from an initial set of X descriptors) which holds the most
useful molecular structure information for learning the underlying pattern present in
the data.

One pronounced benefit of feature selection is that it can be used to avoid overfit-
ting. Models with high dimension offer many degrees of freedom and tend to learn
random patterns and noise instead of important underlying patterns between descrip-
tors and the target end point [29, 30]. Many feature selection algorithms have been
documented. Broadly, these algorithms can be grouped into the following three cat-
egories depending on the availability of class labels for the training set: supervised
[22, 25, 28, 31], semi-supervised [18, 32], and unsupervised [18, 33]. The choice of
an appropriate method is dependent on the learning algorithm to be employed and the
data to be used [34]. The focus of this review is on supervised feature selection meth-
ods. Supervised feature selection requires that the entire training dataset be labeled.
Feature selection is achieved by eliminating descriptors that have a low correlation
with the toxicity end point to be predicted [28]. Feature selection methods applied to
supervised tasks can be classified into filter, wrapper, and embedded methods [28].
We discuss each of these methods and further describe Hybrid [35, 36] and Ensemble
[37–39] methods, which are a blend of the earlier listed methods. These methods are
illustrated in Fig. 7.1.

7.2.1 Filter

Filter methods evaluate the relevance of a feature based on its intrinsic properties and
are completely independent of the learning algorithm [18, 27, 28, 40]. The majority
of filter methods are univariate, where each feature is considered independently of
the feature space. Multivariate methods, such as correlation-based scores and paired
-scores, have also been used to assess the relevance of feature pairs and how well
they synergize to enhance prediction of the desired end point [41]. Filter methods are
computationally efficient and fast in comparison with wrapper methods. Their lack
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Fig. 7.1 An illustration of different feature selection methods: a Filter b Wrapper c Embedded
d Hybrid e Ensemble

of dependence on any learning algorithm means that the features they select can be
used with almost any learning algorithm. However, this independence often results in
varied performance from these different learning algorithms [28]. Statistical methods
make the assumption that the data they are applied on are normally distributed [40].
By not taking the learning algorithm into consideration, filter methods also turn a
blind eye to the heuristics and biases of these algorithms, which may impair their
predictive abilities [25].

Filter methods use feature ranking and filtering techniques as the basis for selec-
tion. Features are first evaluated and ranked based on a criterion. Then, a threshold
is used to select all features above the mark that are considered to be relevant for
predicting the end point [18, 28, 41], as shown in Fig. 7.1a. The elimination of low-
variance and highly correlated descriptors is a common filtering technique applied to
SAR datasets [14, 23, 42]. Several criteria have been employed for filtering descrip-
tors, including variance score [32], correlation coefficient [25, 34], fisher [28, 43],
and information gain [44].

7.2.2 Wrapper

Wrapper methods use learning algorithms to evaluate the relevance of a feature,
where the learning algorithm’s error rate or accuracy is treated as the objective
function/criterion for evaluating a feature. A wrapper method begins by selecting
a subset of the features heuristically or sequentially, and then a learning algorithm
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of choice is used to evaluate this subset. This process of subset generation and
testing is repeated until the desired objective function is achieved [27, 28] (Fig. 7.1b).
Wrappers tend to perform better than filters in selecting features since they consider
feature dependencies and directly incorporate the specific biases and heuristics of the
learning algorithm into the selection process. However, this implies that the selected
features are unlikely to be optimal for any other classifiers [18].

The size of search space form features isO(2m) [28]. Since evaluating the subsets
of such a search space is considered an NP-hard problem, the computational inef-
ficiency of wrappers becomes evident when using larger datasets. However, search
algorithms have been proposed for selecting optimal subsets of the feature space.
Broadly, we consider two groups of search strategies for wrappers: sequential and
heuristic selection algorithms [25].

7.2.2.1 Sequential Selection Algorithms

Sequential selection can be achieved in two ways: forward selection and backward
elimination. Sequential forward selection (SFS) begins with an empty set of features,
and features are progressively incorporated into larger and larger subsets (one at a
time) until no further improvement is recorded in the evaluation criterion.Abackward
elimination algorithm begins with the full set of features and iteratively eliminates
the least relevant features [28].

The sequential floating forward selection (SFFS) [45, 46] algorithm has been
suggested as an improvement over SFS because it includes flexible backtracking
capabilities. Similar to SFS, SFFS adds one feature at a time as determined by the
objective function. Meanwhile, it backtracks by eliminating one feature at a time
from the initial subset, followed by an evaluation. If an improvement is noticed in
the objective function, it leaves that feature out and moves on to add a new feature.
This process goes on iteratively until the desired goal is met with the fewest number
of features.

7.2.2.2 Heuristic Selection Algorithms

Heuristic search algorithms evaluate different subsets to optimize the objective func-
tion. Subsets can be generated by evaluating a search space or by generating solutions
to the optimization problem, with the learning algorithm’s performance being the
objective function [25]. Simulated annealing (SA) [47] and genetic algorithms (GA)
[48], two widely used heuristic algorithms, find a subset of features for wrappers. A
hybrid of these methods has also been suggested [49]. In GA, the chromosome bits
indicate if a feature should be included or not. SA, a stochastic algorithm, solves
for the global minimum of a function by improving the initial solution repeatedly
using small local perturbations until no such perturbations yield an improvement in
the objective function. This process is randomized such that there are occasional and
intentional deviations from the solution to lessen the probability of becoming stuck
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in local optima. The use of GA to preselect descriptor subsets for SAR modeling
of artificial and real data was shown to be successful in [13] where 2D descrip-
tors were employed to discriminate between active and inactive compounds. Particle
swarm optimization (PSO) [47] and ant colony optimization (ACO) [50] algorithms
may also be employed for heuristic subset search. For instance, it has been shown
that the ACO algorithm is a useful method for selecting descriptors for predicting
cyclooxygenase inhibitors [50].

7.2.3 Embedded

Embedded feature selection methods incorporate feature selection into the model
training process. Embedded feature learning, much like wrapper methods, takes the
potential dependencies among features into consideration while being more compu-
tationally efficient and less prone to overfitting as compared to wrappers [18, 27, 28,
41]. A common embedded feature selection algorithm is random forest. A random
forest is an ensemble of learners with a built-in mechanism for feature selection, such
as ID3 and C4.5 [28, 51]. Base learners, i.e., decision trees, look at each feature in
the feature space individually and assign importance to them based on how well they
contribute to the model attaining an optimal fit. Features with the lowest importance
are discarded, and the forest with the least number of features and highest predic-
tive performance is selected [28] (Fig. 7.1c). Using the top 20 molecular descriptors
from the random forest predictor importance method, Newby et al. [44] obtained
more accurate decision tree classification models in most cases, compared to the use
of filter methods such as information gain, chi-square, and greedy search.

Pruning is another embedded feature selection approach that has been applied to
neural networks as well as classical learning algorithms, specifically support vector
machines (SVMs) [25]. For instance, SVM-recursive feature elimination (SVM-
RFE) begins with all the features and recursively removes features that do not con-
tribute positively to the model’s predictive accuracy. To determine the optimal num-
ber of features for an RFE-based model, cross-validation is used to evaluate and
select the subset with the best performance. Hence, RFE can select the best features
for a specific learning algorithm. RFE is considered to be computationally expensive
as it traverses through all the features one after the other [41]. Weighted Kernels [49]
and regularization methods [52], like Lasso, Ridge and Elastic net, have also gained
prominence.

7.2.4 Hybrid and Ensemble Feature Selection

Hybrid methods for feature selection involve combining at least two different meth-
ods and applying them, usually in succession. Hybrid methods attempt to take advan-
tage of the benefits of the constituent methods while leveraging their strengths. In
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the literature, the most reported is the combination of filter and wrapper methods.
Their use has been widely reported for biomedical data [35]. Hsu et al. [49] sepa-
rately filtered two sets of features using F-score or information gain as the filtering
criterion. The resulting features were combined and further treated with wrappers
(Fig. 7.1d). They reported improved predictions in comparison with using filters
alone and a decreased computational time compared to using wrappers only. Reddy
et al. [53] applied a hybrid GA-based descriptor optimization technique for consis-
tently selecting descriptor subsets that represented the whole initial descriptor space.
The weights of the selected subsets were analyzed to understand the contribution
of each feature to the prediction of HIV protease inhibitors, revealing the role of
hydrophobic interactions. This implies the interpretability of the method.

Ensemble methods represent the application of a feature selection method on
different subsets of features obtained by using subsampling strategies like bootstrap-
ping. The resulting features from each of the subsets are aggregated using mean,
weights, or simple linear aggregation [38, 39] (Fig. 7.1e). This method is often
used to deal with the challenges of perturbation and instability experienced by most
feature selection methods. Seijo-Pardo et al. [39] provided an in-depth discussion
of ensemble methods of feature selection. Dutta et al. [54] proposed an ensemble
descriptor selection that searches for descriptor subsets using a genetic algorithm
whose objective function is a linear combination of the root-mean-square deviation
(RMSE) of all the models in the ensemble. They reported an improvement and found
that the resulting model had good performance on the PDGFR and COX-2 datasets.
A 96% reduction in noise and an improvement in performance was reported by Zhu
et al. [55], using a recursive random forest to rule out a quarter of the least important
descriptors at each iteration. This performed better than the least absolute shrinkage
and selection operator (LASSO). The authors highlighted that the difference between
the prediction performance of random forest and LASSO mainly resulted from the
use of variables selected by different strategies, rather than from differences between
the learning algorithms.

We have summarized the characteristics, strengths, and weaknesses of the five
classes of feature selection methods described above in Table 7.1 in order to assist
a user in choosing the appropriate tool based on user-specific requirements and/or
goals.

7.3 Feature Extraction

The algorithms employed for mathematical representation of molecular descriptors
and fingerprints are independent of the size of molecules, allowing the generation
of a fixed length set of descriptors for every molecule regardless of size [7]. The
generation of fixed length vectors can introduce redundant descriptors for certain
molecules within a library. An optimized feature set achieved by feature extraction
can minimize redundancy, noise, correlation between descriptors, and consequently
generate classifiers with improved prediction accuracy [20].
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A mathematical description of feature extraction is as follows: Considering a
descriptor space, x ∈ Rn , find a mapping y = f (x) to obtain transformed feature
vector y,where y ∈ Rk and k < n. The vector y should preserve the majority of
molecular information in Rn . The goal is to achieve a reduction in dimension without
negatively impacting the prediction performance. An optimal mapping, y = f (x),
is one that minimizes the prediction error.

Feature extraction transforms the initial feature space to a new, lower dimension
feature space by combining the features in the original space. As a result, it is difficult
to associate the new featureswith the old. Further analysis, such as feature importance
explanation, becomes very difficult as there is no physical meaning for the newly
mapped features that are obtained from feature extraction. Here we discuss some
commonly used feature extraction techniques.

7.3.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate, nonparametric method
employed for dimensionality reduction [56, 57]. It works by performing a linear
combination of the features, also referred to as the principal components, to achieve
the maximum variance. At its core, PCA is centered on determining the eigenvec-
tors of the input data’s covariance matrix. This linear transformation can minimize
redundancy and reduce the number of features, which increases the information in
the resulting features. Each of the resulting features, called principal components,
is a combination of several original features. These principal components are also
highly uncorrelated because the first principal component accounts for as much of
the variability in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible [26]. A detailed discussion on
the different applications of PCA in SAR modeling was provided in [57]. Klepsch
et al. [58] applied PCA to a curated P-glycoprotein inhibitors data set of 1608 com-
pounds, where the first two principal components were reported to explain 71.7%
of the variance in the dataset. This approach was applied to classification and an
analysis into the effect of the initial descriptors on these two components showed
that hydrophobic information, such as the number of aromatic bonds and the parti-
tion coefficient, was the major contributor to the principal components. According
to [59], 2-aryl-1,3,4-Thiadiazole derivatives were classified into distinct clusters of
active or inactive molecules when PCA was performed instead of using all of the
descriptors calculated.

Considering that principal components are combinations of the original features,
all the original features are still available within the components. This is useful for
interpretation of models because knowing the original features that contribute to a
component can reveal the types of features that are closely related. A key challenge
with PCA is that it is unable to handle data with complicated structures that may not
be represented in a linear subspace [60]. Kernel PCA (KPCA) [61, 62] was designed
to serve as the nonlinear form of PCA. KPCA is based on kernel functions that
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intrinsically perform a nonlinear mapping of the input space to a feature space fol-
lowed by performing linear PCA in this feature space. KPCA generated vectors have
been used to train SVMmodels [59], and it was shown that KPCA is efficient over a
wide range of virtual screening dataset inputs using MACCS and ECFP fingerprints.
It was also observed that the KPCA embedding largely depended on the properties
of the underlying representation as its performance on the ECFP fingerprint varied
with the hashing employed.

7.3.2 Autoencoder

Autoencoders [63, 64] are unsupervised neural networks with an odd number of
hidden layers that can be applied for nonlinear feature extraction. They employ
the backpropagation algorithm to try to create a set of output values which are
equal to the input by minimizing the error between the output and the input layer.
The network architecture can be designed such that the middle layer is smaller,
i.e., has fewer nodes than the input and output layers (Fig. 7.2). In that case, the
network is forced to learn a compact representation (embedding) of the input data
[65]. In an early work, Hinton et al. [17] demonstrated that autoencoders generated
embeddings of images that were used to reconstruct images. A major drawback
of autoencoders is that physical meaning for theoretical insight will be lost. They
are also complex to train because they typically require a large amount of training
data and a search through many possible hyperparameter values. Blaschke et al.
[66] employed generative autoencoders to design new molecules in silico based on

Fig. 7.2 An autoencoder indicating the reduced dimension in the middle layer
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the recreated output layer. Burgoon [67] used autoencoders to screen chemicals for
potential estrogenic activity by projecting the two neurons in the middle layer into a
Cartesian plane. The application of autoencoders for toxicity prediction has not been
widely reported, especially for feature extraction. This provides an opportunity for
a future area of research.

7.3.3 Linear Discriminant Analysis

Like PCA, linear discriminant analysis (LDA) [65, 68] is a linear transformation
technique commonly used for dimensionality reduction.However, LDA is supervised
since the discrimination power of the features is taken into consideration. LDA
computes an optimal transformation (projection) of the input data on to a line such
that classes are separated as clusters. The goal of the projection is to ensuremaximum
class discrimination by minimizing the within-class distance while maximizing the
between-class distance [26]. A weakness of LDA is that if the distribution of a
dataset is significantly non-Gaussian, the LDAprojectionswill not be able to preserve
any complex structure of the data [69]. Thus, the resulting features may not have
good discriminative power. Features extracted with LDA were used by Ren et al.
[70] in a stepwise forward manner from a combined pool of experimental data, and
chemical structure-based descriptors were employed for predicting aquatic toxicity
mode of action. In this work, logistic regression was shown to have a better predictive
performance than LDA using the extracted features, with a 7.3% improvement over
previously reported classification rates.

In addition to the above-mentioned nonlinear dimensionality reduction tech-
niques, there are also spectral and manifold learning methods, such as t-distributed
Stochastic Neighbor Embedding (t-SNE) [71], multi-dimensional scaling (MDS)
[72], spectral embedding [73], and isomap [74]. Manifold learning, a class of unsu-
pervised nonlinear algorithms, assumes that the dimensionality of a datasets is only
artificially high and thus attempts to uncover the intrinsic low dimensionality. Typi-
cally, these algorithms work by computing the similarities between points to find a
nearest-neighbor, and then an eigen problem for embedding high-dimensional points
into a lower dimensional space [75].

7.4 Miscellaneous

7.4.1 Feature Stability

It is common to use the performance of amodel as themetric to evaluate the suitability
of a feature reduction algorithm. Therefore, it is an obvious choice to optimize the
selection process to obtain the best prediction power possible. However, the stability



132 G. Idakwo et al.

or degree of variance of feature selection methods becomes a crucial challenge when
the task at hand goes beyond optimizing prediction accuracy to include improving
interpretability. A simple scenario may be the case for using substructure-based
descriptors for SAR modeling. It is common to consider a substructure that is very
relevant for prediction as amajor contributor to the activity of thatmolecule, implying
a potential research target. However, many feature selection algorithms tend to be
unstable and would yield a different subset if a little perturbation is applied (i.e.,
when new training samples are added or when some training samples are removed).
If every perturbation results in wide variation in the selected subset, then it is difficult
to conclude that a feature may be important to the molecule’s activity.

Kalousis et al. [76] defined the stability of a feature selection algorithm as “the
robustness of the feature subset the algorithm produces in the presence of pertur-
bations in training sets drawn from the same generating distribution.” Essentially,
stability quantifies how different training sets affect the variation in the selected fea-
ture subset. Hence, a similarity measure is often employed to measure the stability of
feature selection algorithms. A reliable algorithm should produce the same or similar
subset for any perturbations in the training data. Alelyani et al. [77] performed exper-
iments to investigate the causes of instability and reported that dimension, sample
size, and the distribution of the training data influenced stability. Larger sample size
translated to improved stability, while larger dimensions caused negative effects.
Thus, researchers should pay attention to the characteristics of a training dataset.
Certain algorithms are also more prone to instability than others. ReliefF-based fea-
ture selection is affected by the order of samples in a training set, while stochastic
search algorithms like GA that use random initialization parameters tend to yield
subsets that are unstable [78, 79]. Various metrics for measuring stability have been
proposed [78]. To overcome the stability challenge, it has been suggested to employ
ensemble selection algorithms based on the technicalities of the selection algorithm
in use [78, 80, 81]. Some of these algorithms include Bootstrap sampling, random
data partitioning, parameter randomization, or the combination of several of these.
Developing algorithms for feature selection that are stable and possess high pre-
dictive power is still an open and challenging area. SAR-based toxicity prediction
stands to gain a lot from such techniques that can improve speed and accuracy of
predictions for regulatory as well as lead optimization purposes.

7.4.2 Validation of Feature Selection

In selecting the optimal feature subset, it is common to evaluate the performance of
a learner based on its prediction error. A very common and overlooked mistake is
to select features using the entire dataset as a preprocessing step. While this appears
to be obviously wrong, it has been reported that many researchers, especially in the
biomedical fields, continue to make this mistake and successfully publish in top-
ranking journals [82, 83]. If a test set is to be used to evaluate the performance of a
feature set, it must not be involved in the feature selection step as that will result in a
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selection bias that will yield overly optimistic performance estimates. This is because
the features used will have an unfair advantage since they were chosen based on all of
the samples. As a result, the model would have gained insight into the features which
are more important in the test set. This challenge is more common with wrapper
methods [83].

In many practical cases of SAR-based toxicity modeling, there are rarely a large
number of compounds across the different end points to be predicted. This makes it
difficult to set aside a reasonable batch of data for evaluation purposes. Methods such
as cross-validation and bootstrap sampling can be used to avoid sampling bias [34,
82, 83]. Cross-validation techniques like leave-one-out cross-validation (LOOCV)
and the k-fold method were suggested. Feature selection is to be done in the inner
loop of the cross-validation procedure; hence, the algorithm takes the following form
for a k-fold technique [82]:

(i) Randomly shuffle the data set.
(ii) Randomly split the dataset into K folds.
(iii) For each fold k = 1, 2,…, K.

a. Perform feature selection to obtain an optimal subset with good univariate
correlation with the desired end point using all the data except the kth fold.

b. Use the selected features and build amultivariate model with all data except
the kth fold.

c. Perform an evaluation using the kth fold.

(iv) Aggregate the performance across all K folds to get an unbiased evaluation.

7.5 Summary

QSAR-based predictive toxicity modeling methods are faced with input spaces of
thousands of features. To improve the ability of a learner to find a generalizable
relationship between molecular descriptors and the toxicity end point of interest, it
is expedient to provide the learning algorithm with the minimum number of descrip-
tors while ensuring that the resulting model is interpretable and computationally
inexpensive to build. The relevance of a descriptor is assessed by its ability to dis-
criminate between classes in qualitative classification or its correlation to a scalar in
quantitative prediction.

In this review, we have discussed different feature selection and extraction meth-
ods applicable to SAR-based toxicity modeling. The strengths and weaknesses of
each method are highlighted. The choice of which to use should largely depend on
the available dataset, and we suggest beginning a new task with a few baseline per-
formance values from a number of methods since no single approach is universally
superior. Where the importance of descriptors is sought, feature selection methods
such as filter, wrapper, embedded or their combinations (hybrid and ensemble) may
apply. Feature extractionmethods transform the features into a lower dimensionwhile
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altering the physical meaning of the features. More analysis may be required to inter-
pret the selected features. The stability of selected features and proper feature subset
validation methods are often overlooked. Feature selection bias can be avoided by
embedding the feature selection process within the inner loop of a cross-validation
process to avoid an overly optimistic performance value. Although dimensional-
ity reduction has been shown to improve model performance, there is still room
for improvement when it comes to evaluating and validating feature selection and
extraction methods and their stability. For the sake of reproducibility, researchers
are encouraged to publish important parameters for feature selection or extraction
methods they employed, such as the threshold for a variance score. Regardless of
the choice of features (molecular descriptors, fingerprints or a combination) used for
modeling, SAR models can benefit from dimensionality reduction techniques.
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