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Abstract Drug-induced liver injury (DILI) is a significant challenge to clinicians,
drug developers, as well as regulators. There is an unmet need to reliably predict
risk for DILI. Developing a risk management plan to improve the prediction of a
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drug’s hepatotoxic potential is a long-term effort of the research community. Robust
predictive models or biomarkers are essential for assessing the risk for DILI in
humans, while an improved DILI annotation is vital and largely affects the accuracy
and utility of the developed predictive models. In this chapter, we will focus on
the DILI research efforts at the National Center for Toxicological Research of the
US Food and Drug Administration. We will first introduce our drug label-based
approach to annotate the DILI risk associated with individual drugs and then upon
these annotations we developed a series of predictive models that could be used
to assess the potential of DILI risk, including the “rule-of-two” model, DILI score
model, and conventional and modified Quantitative structure—activity relationship
(QSAR) models.
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Abbreviations

DF Decision Forest

DILI  Drug-Induced Liver Injury

DILIN Drug-Induced Liver Injury Network

EMA  European Medicines Agency

FDA  Food and Drug Administration

LTKB Liver Toxicity Knowledge Base

MOA Mode of Action

QSAR Quantitative Structure—Activity Relationship
RM Reactive Metabolites

13.1 Introduction

Drug-induced liver injury (DILI) poses a significant challenge to the medical and
pharmaceutical communities as well as regulatory agencies. Many drugs have failed
during clinical trials, and over 50 drugs were withdrawn from the worldwide market
due to the concern of DILI risk [1]. Because of its significant impact on public health,
a series of guidances were published by regulatory agencies to request that the phar-
maceutical industry better assesses DILI risk during drug development, including the
US Food and Drug Administration (FDA)’s guidance “Drug-Induced Liver Injury:
Premarketing Clinical Evaluation” and the European Medicines Agency (EMA)’s
“Non-clinical guidance on drug-induced hepatotoxicity” [2].

One significant challenge encountered by drug developers and regulators stems
from the lack of sensitive screening methodologies to identify DILI signals at the
early stage of drug development, especially before the first-in-human testing [3].
While animal studies remain the “gold standard” of testing strategies in preventing
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potentially toxic drug candidates from entering clinical trials [4—6], it is not perfect
and sometimes fails to detect hepatotoxic drug candidates; a retrospective analysis
revealed that such tests failed in about 45% of DILI cases found in clinical trials [7].
In one notorious example, five subjects in a phase 2 clinical trial experienced fatal
hepatotoxicity induced by fialuridine, while this investigational nucleoside analogue
showed no liver damage in animal studies [8]. There is unmet need to more reliably
predict risk for DILI in humans and to overcome current limitations.

Many worldwide efforts have been launched to better understand and address
DILI issues. In the USA, the drug-induced liver injury network (DILIN) was funded
by National Institute of Healthy since the year of 1995 and is still today actively
collecting and analyzing cases of severe liver injury caused by prescription drugs,
over-the-counter drugs, and alternative medicines, such as herbal products and sup-
plements. Similar government supported drug-induced liver injury network efforts
were recently established in Europe funded by European cooperation in Science and
Technology (http://www.cost.eu/COST_Actions/ca/CA17112). The US FDA has a
long-term effort to improve drug safety by better assessing pre-marketing and post-
marketing data for identifying signs of toxicity. At the National Center for Toxico-
logical Research, we have developed the Liver Toxicity Knowledge Base (LTKB)
which contains diverse liver-related data such as drug properties, DILI mechanisms,
and drug metabolism. that can be utilized to develop new models for assessing the
risks for DILI in humans [1, 5, 9-21]. In this chapter, we will introduce our con-
tinuing efforts toward the development of computational models for the prediction
of DILI risks in humans. First, we will present the drug label-based approach to
annotate the risk for DILI associated with individual drugs, and then based on these
annotations, we developed a panel of predictive models that could be used to assess
drug candidates for their potential to cause DILI risk before human testing or during
clinical trials.

13.2 Annotation of DILI Risk for Marketed Drugs

Annotation of DILI risk for drugs is challenging. Drugs could cause significantly
different scales of DILI risk even when their chemical structures are similar. For
example, alpidem and zolpidem both are anxiolytic drugs derived from the imida-
zopyridine family used as sleeping medication. These two drugs have similar chem-
ical structures but distinct hepatotoxicity (Fig. 13.1): Alpidem was withdrawn due
to hepatotoxicity while zolpidem is still widely used in clinical practice with rare
hepatotoxicity observed. Drugs withdrawn from market due to hepatotoxicity and
those without hepatotoxicity observed represent two extremes within the spectrum of
the risk for humans. Most drugs are located within the middle of spectrum depending
on the associated DILI risk.

The DILI annotation discussed here refers to the classification of risks of DILI
exposure to the human population associated with the drug treatment for various
diseases. An improved annotation of DILI is vital and largely affects the accuracy and
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Fig. 13.1 Distinct hepatotoxicity observed between alpidem and zolpidem even though their chem-
ical structures are similar

utility of a predictive model [22]. Atleast three attributes including severity, causality,
and incidence need to be considered when assessing a drug’s potential to cause DILI
[1]. However, annotating a drug’s DILI risk is not trivial in clinical practice [23] due
to several hurdles to be considered, i.e., (1) the uncommon occurrence of DILI, (2)
the various complicated clinical DILI manifestations, (3) the deficiency of accurate
biomarkers for DILI diagnosis, (4) the complications in causality adjudication, (5)
and the severe under-reporting of DILI cases.

There is not a single resource which could provide all the information required
for an accurate DILI annotation [1]. The research community has put great efforts
to address this challenging issue as summarized in some reviews [10]. Overall, the
approaches to annotate DILI risk are either based on case reports or on monograph.
Case reports can be collected by on-going DILI research projects such as US DILI
network and Spain DILI registry, reported in literature [24-26], or retrieved from the
FDA'’s adverse event reporting system [27-29]. Monographs are written by experts
based on collection of evidence from a variety of sources, such as the FDA drug
labeling [1], the Physicians’ Desk Reference [30], and the US pharmacopeia. The
information in the monograph documents was authoritative but not updated as fre-
quently as the case reports [31-33]. Given the lack of a “gold standard” that defines
DILIrisk, certain drugs could have diverse annotations due to the different definitions
and data sources for annotations [34]. A comparison among different annotations was
reported [35-37]. Overall, the agreements among annotations are acceptable, and nor-
mally a higher concordance among hepatotoxicity drugs was present as compared to
the non-hepatotoxicity drugs [10, 15, 38].

We selected FDA-approved drug labeling as the main supporting evidence to anno-
tate drugs for their DILI risk for humans. Drug labeling is an authoritative document
summarizing drug safety information based on the comprehensive evaluation of data
from preclinical studies, clinical testing, post-marketing surveillance, and publica-
tions in literature. The information within drug labels summarizes the consensus and
serious thoughts from experts at that time with the consideration of all three criteria
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(i.e., severity, causality, and incidence) mentioned above [1]. We developed a schema
to gather the information from FDA-approved drug labeling to annotate DILI risk
and created a benchmark dataset which contained 287 drugs that were categorized
into three levels of DILI severity: most-DILI-concern, less-DILI-concern, and no-
DILI-concern [33]. Specifically, the 137 drugs categorized as most-DILI-concern
are those that were suspended, withdrawn, or issued a black box warning due to
hepatotoxicity or had gotten warnings and precautions with moderate or severe DILI
concern. Eighty-five drugs categorized as less-DILI-concern had been issued warn-
ings and precaution with mild DILI concern or only recorded hepatotoxicity in the
Adverse Reactions section of drug labels. Sixty-five drugs listed as no-DILI-concern
are those with no DILI concern mentioned in their drug labels.

The safety data contained in drug labeling are not perfect. A major concern of drug
labels was weakness in causality assessment [1], i.e., the definite causal relationship
is not mandatorily required for drug labeling, and the regulators were authorized
by law to issue a warning when a clinically significant hazard is identified for a
drug with reasonable evidence of causality (http://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=201.57). Additionally, any modification or
updating of the safety information in drug labeling is a stringent and lengthy process
that likely causes a time lag from the most updated clinical findings [39]. Meanwhile,
case reports could have better timing and be more sensitive to any potential alert
signals caused by drugs. Therefore, by incorporating the case report information
derived from up-to-date literature and on-going DILI research projects such as the
US DILIN project, the drug labeling-based annotation of DILI risk could be further
improved.

Upon these considerations, we further refined the labeling-based annotation
schema by weighing evidence of case reports together with the information from
FDA-approved drug labeling to improve the accuracy of DILI annotation. More
specifically, the refined annotation schema was built upon a collection of well-vetted
cases (verified via thorough case evaluation by DILI experts) and adjudicated cases
(verified using the standardized clinical causality assessment system, i.e., Roussel
Uclaf Causality Assessment Method [40]). With this collected causality information,
the DILI risk of individual drugs was re-evaluated by complementing drug labeling
with available evidence of verified causality. This new schema classified drugs into
four categories as detailed as below:

e Withdrawn drugs and those with a black box warning for severe liver injury were
classified as verified most-DILI-concern (YMost-DILI-concern) drugs because
they are consistently classified as high DILI risk among several published datasets.

e For those drugs which had been warned with severe or moderate DILI occurrence
in their labels (i.e., isoniazid) [1], the verification process of causality is needed for
the assessment in the new schema: The causality verified drugs will be classified
as the YMost-DILI-concern, otherwise will be reassigned as “Ambiguous DILI-
concern.”
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e Similarly, the less-DILI-concern drugs could be reassigned as verified less-DILI-
concern (YLess-DILI-concern) or “Ambiguous DILI-concern,” which will depend
on whether evidence of causality is available.

e The verified no-DILI-concern drug (YNo-DILI-concern) can be confirmed only if
the drug was not verified as a cause of DILI in literature and no DILI mentioned
in its drug label.

The refined schema was applied to 1036 marketed drugs approved by the FDA
before 2010, namely DILIrank dataset, including 192 YMost-DILI-concern drugs,
278 VLess-DILI-concern drugs, 312 YNo-DILI-concern drugs, and 254 Ambiguous
DILI drug. Notably, given that the existing knowledge will advance over time, the
schema we applied in the DILIrank will continuously be updated along with the
newly reported DILI cases.

13.3 Predictive Models Developed at NCTR

Developing a risk management plan to improve prediction of a drug’s hepatotoxic
potential is a long-term effort of the research community [41], and predictive models
or biomarkers are essential for assessing the risk for DILI in humans at early stages
of drug development, even before the first test in humans. The developments of
predictive models for DILI are nicely summarized in several seminal reviews [42].
Here, we briefly introduced some continuing efforts at the FDA’s National Center
for Toxicological Research for the developing models to predict the risk for DILI in
humans, such as the “rule-of-two” model, DILI score model, and conventional and
modified Quantitative structure—activity relationship (QSAR) models.

13.3.1 The “Rule-of-Two” Model [11]

Many drugs withdrawn from the market or issued a black box warning due to hepa-
totoxicity were prescribed at a daily dose of 100 mg or greater [43, 44] while drugs
given at a lower daily dose of <10 mg experienced less severe events, suggesting a
potential relationship between hepatotoxicity risk and daily dose [31, 45]. Conse-
quently, some experts recommended avoiding the development of drugs requiring a
high daily dose to reduce the potential adverse events [42, 46, 47]. Meanwhile, many
drugs given at high daily doses are found with little or no risk of DILI, therefore,
suggesting that daily dose alone is not a reliable approach to guide drug development,
regulatory application, and clinical practice.

Besides daily dose, lipophilicity is an important physicochemical property [48]
and is frequently modulated to improve bioavailability and pharmacological activity.
Lipophilicity could affect hepatocyte uptake and drug ADMET (i.e., absorption,
distribution, metabolism, elimination) behaviors [49], and many lines of evidence
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also implicate lipophilicity to be linked to drug toxicity. Nonetheless, it was unclear
whether the combination of daily dose and lipophilicity related to risk for DILI in
humans.

To better examine the combined effects of daily dose and lipophilicity, a data
repository of 164 drugs labeled for their liver liabilities derived from the LTKB-
benchmark dataset were used, including N = 116 most-DILI-concern drugs and N =
48 no-DILI-concern drugs. Lipophilicity was measured by the octanol-water partition
coefficient (i.e., logP) which was calculated from the atomic-based prediction of
AlogP using Pipeline Pilot (version 8.0, Accelrys Inc, San Diego, CA), and it was
categorized into three groups: <1, 1-3, and >3 as recommended by literature (13).
Daily doses were majorly retrieved from the WHO’s ATC database (http:/www.
whocc.no/atc_ddd_index) and were divided into the groups of <100 mg, 10-100 mg,
and >100 mg per day as suggested by literature [43, 46].

When the 164 drugs of the dataset were put into the scatter plot of daily doses
and logP, the upper right quadrant at a high daily dose and a high logP was majorly
distributed with most-DILI-concern drugs. Few no-DILI-concern drugs appeared in
this region. The relative risk for DILI associated with various doses and logP constel-
lations was further assessed. Specifically, the subgroup of daily doses >100 mg and
logP > 3 was associated with a significantly higher proportion of hepatotoxic drugs
as compared to the rest of subgroups altogether (96% vs. 41%, odds ratio: 14.05, P <
0.001). The analysis demonstrated that a statistically significant association between
logP and risk for DILI was observed for the drugs given at daily doses of > 100 mg,
while no statistically significant relationship between logP and hepatotoxicity was
obtained for the drugs given at daily doses of less than 100 mg.

Similar findings were observed from another independent dataset of 179 oral
drugs that 85% of the “rule-of-two” positives are associated with hepatotoxicity as
compared with 59% in the “rule-of-two” negatives (odds ratio: 3.89, P < 0.01). These
evidences together suggest that a drug given at a daily dose of >100 mg and with a
high logP > 3, namely as the “rule-of-two,” is associated with a significant high risk
for DILI in humans.

The “rule-of-two” is a simple but effective model to predict the risk for DILI
in humans and has been independently evaluated by the drug safety scientists. In a
study by Paul Leeson from UK [50], the “rule-of-two” was applied to predict the
drugs that failed in drug development due to hepatotoxicity in humans, and 13 of 22
(59%) failed drug candidates were found as “rule-of-two” positives (see Table 13.1).
This practice demonstrated that the “rule-of-two” model can be applied to assess
drug candidates with similar or even better performance than that among marketed
drugs, even though the chemical spaces of drugs candidates in development has
significantly shifted from those marketed drugs approved decades ago. Furthermore,
another study from a Pfizer team found that the “rule-of-two” model performs better
than the three mechanistic endpoints they selected (i.e., cytotoxicity, mitochondrial
impairment, and BSEP inhibition) by single, dual combination or triple combinations
when evaluated by a total of 125 drugs [51]. Moreover, the “rule-of-two” model was
also applied to the direct-acting antiviral for the treatment of chronic hepatitis C and
successfully identified the DILI potential associated with Vieraki Pak [52].
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Table 13.1 “que.—of—two Compound Max Daily cLogP Rule-of-two
model” for p.redu.:tlon. o.f Dose, mg prediction
drugs that failed in clinical
development due to Darbufelone 10 3.7
hepatotoxicity in humans Fialuridine 19 0.0 No DILI
Pralnacasan 1200 2.2
Zamifenacin 40 6.0
TAK-875 50 4.7
LY-2409021 90 7.4
MK-0893 120 7.8 Most DILI
Fiduxosin 120 4.9 Most DILI
CP-457920 120 2.2
CP-085958 200 4.6 Most DILI
Falnidamol 200 3.8 Most DILI
Pafuramidine 200 4.8 Most DILI
Sitaxentan 300 34 Most DILI
ADX-10059 200 4.1 Most DILI
CP-368296 300 24
Telcagepant 560 4.0 Most DILI
CP-724714 500 4.6 Most DILI
CP-422935 500 6.8 Most DILI
Tasosartan 600 2.5
Solithromycin | 800 3.7 Most DILI
CP-456773 1200 34 Most DILI
Aplaviroc 1600 3.9 Most DILI
Predicted 13/22 (59%)
Most-DILI-
concern

Data were collected from Leeson, 2018 [50]

13.3.2 DILI Score Model [12]

The “rule-of-two” model provides added value for predicting DILI risk in humans
but could not foresee degree of severity [53, 54]. Additionally, besides dose and
lipophilicity, some other mechanistic factors could contribute to the predictive mod-
els, facilitating the development of quantitative metrics [55].

Covalent binding of reactive metabolites (RM) is an important toxicity mechanis-
tic factor that could cause direct cellular toxicity or modulate immune reactions [56].
Numerous drugs were reported to generate RM, although their causative relationship
for human DILI is still controversial and inconclusive [57]. However, some reports
suggest that protein adducts caused by RM seen with drugs are not necessarily asso-
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ciated with liver injury [58—60]. Furthermore, a large-scale retrospective analysis
demonstrated that the level of covalent binding has no correlation with incidence of
liver toxicity observed in vivo in preclinical studies [57]. Even though, considering
the possible toxic implications, industry still strongly recommend to minimize the
potential of RM formation for drug [61-63] with a target threshold of <50 pmol of
RM bound to 1 mg protein [64].

We applied logistic regression analysis to investigate the association between daily
dose, logP, RM formation, and DILI risk by using N = 192 FDA-approved drugs. The
multivariate regression analysis suggested that daily dose, logP, and RM formation
all contributed independently to predicting DILI risk, and their contributions were
ranked by the order of RM > daily dose/Cmax > logP per the regression coefficients.
Consequently, we developed a DILI score model [12] derived from daily dose, logP,
and RM: 0.608 * log.(daily dose/mg) + 0.227 * logP + 2.833 * (RM formation);
here, RM was assigned as 1 or 0 based on whether a drug could produce reactive
metabolites. As an example, alpidem given at a daily dose of 150 mg/day has a logP
of 5.6 and produces RM which resulted in a DILI score of 0.608 * log.(150) +
0.216 * 5.6 + 2.833 * 1 = 7.15. Meanwhile, zolpidem (a drug with the same mode
of action, similar chemical structure, and preclinical safety profile but with distinct
liver toxicity) has a logP of 1.20 and is given at a daily dose of 10 mg, which resulted
in a DILI score of 4.51.

The developed DILI score model was evaluated by three independently published
datasets assessing its capability to predict the severity of DILI risk in humans. The
first dataset was derived from the LTKB-BD with a total of N = 354 drug annotated
with DILI potential, including 124 most-DILI-concern drugs, 162 less-DILI-concern
drugs, and 68 with no-DILI-concern. The second dataset with N = 227 drugs retrieved
from Greene et al. [24] had N = 130 human hepatotoxicity drugs, N = 44 drugs with
weak evidence, and N = 53 drugs with no evidence. The third dataset comes from
Suzuki et al. [26] and considered the severity of human hepatotoxicity, of which a
total of 182 drugs were obtained consisting of N = 35 withdrawn drugs, N = 61
with reported acute liver failure cases, and N = 86 general DILI drugs. Overall,
an increased DILI score significantly correlates with the severity of liver injury. In
the first dataset, the DILI risk score decreased in the order of most-DILI-concern >
less-DILI-concern > no-DILI-concern [1], and each of the subsequent comparisons
was statistically significant (P < 0.001). In Greene et al. [24] dataset, DILI score
also correctly predicted drugs with evidence for overt human hepatotoxicity having
significantly higher DILI scores than those with weak evidence (P < 0.001) and not
unexpectedly followed those without any evidence for developing DILI (P < 0.001).
For the data from Suzuki et al. [26], the algorithm also correctly predicted severe
DILI cases (P < 0.001).

Furthermore, the DILI score model was applied to N = 165 clinical cases col-
lected from NIH LiverTox database (https://livertox.nih.gov/), and it was demon-
strated that the DILI score correlated with the severity of clinical outcome.
The DILI score model was also applied to successfully distinguish some drug
pairs such as minocycline/doxycycline, trovafloxacin/moxifloxacin, and benzbro-
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marone/amiodarone, which are defined by their molecular structure (tanimoto simi-
larity > 0.5) and similar mode of action but discordant toxicity [65].

13.3.3 Conventional QSAR [13]

QSAR models have been extensively applied to predict drug-induced liver injury due
to their ability to produce rapid results without requiring physical drug substance [22,
24, 66, 67]. So far, most of the QSAR-DILI models’ report limited predictive perfor-
mance, with accuracies of approximately 60% or less, especially when the models
are challenged by external validation sets. We implemented an improved strategy to
develop the QSAR model for predicting DILI in humans using a robust annotation of
DILI risk relying on FDA-approved drug labeling and applying an extensive model-
ing validation strategy to ensure the model performance was sustainable and better
than by chance.

Our conventional QSAR was developed by using a decision forest (DF) algorithm
to correlate the chemical structures with their DILI risk in humans based on a set of
drugs as the training set. The DF algorithm is a supervised machine learning tech-
nique utilizing a modified decision tree model by employing a consensus technique
to combine multiple heterogeneous decision trees to achieve a more accurate pre-
dictive model. The DF algorithm is developed by our laboratory, and the software
is publicly available @ https://www.fda.gov/ScienceResearch/BioinformaticsTools/
DecisionForest/default.htm. Meanwhile, the chemical structures of drugs were codi-
fied into a digital format (i.e., chemical descriptors) as the input for the machine learn-
ing algorithm DF. Here, we utilized the Mold2 molecular descriptors to transform
the 2-dimensional chemical structures into 777 chemical descriptors. Mold2 is also
developed by NCTR and freely available at https://www.fda.gov/ScienceResearch/
BioinformaticsTools/Mold2/default.htm.

The training set to develop the QSAR model included 197 drugs (NCTR training
set), which were annotated by FDA-approved drug labeling as discussed previously.
The drug label-based DILI annotation proved to be robust and consistent as compared
to other annotations [37], which is critical for the development of an improved QSAR
model. The developed models were evaluated by internal and external validations.
Internal validation employed a 2000 run of 10-fold cross-validation based on the
NCTR training set. External validation of the QSAR models was applied to 3 different
datasets with a total of 438 unique drugs: NCTR validation dataset with N = 190
drugs, Greene et al. dataset with N = 328 drugs, and Xu et al. dataset with N = 241
drugs. The validation results in Table 13.2 show that when using the NCTR annotated
training or validation set, the predictive performance of the QSAR model had an
accuracy of 69.7% for internal cross-validation and 68.9% for external validation.
Meanwhile, the external validation assessed by Greene and Xu et al. datasets was at
accuracies of 61.6 and 63.1%, respectively. The performances evaluated by different
datasets are largely consistent, the occasional variations might reflect the quality of
annotation, and the diverse drugs included in the datasets.
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Besides the QSAR model for predicting two classes of DILI risk, we also devel-
oped another model to assess the three classes of DILI risk (i.e., most-DILI, less-
DILI, and no-DILI) [68]. The model was developed by using decision forest (DF)
and Mold2 structural descriptors together with DILIrank dataset with >1000 drugs
evaluated for their likelihood of causing DILI in humans, of which >700 drugs were
classified into three categories used for the model development. Similarly, with two
classes of QSAR model, the three-class models were evaluated via cross-validations,
bootstrapping validations, and permutation tests for assessing the potential chance
correlation. Moreover, prediction confidence analysis was also conducted to pro-
vide an additional interpretation of prediction results. These results indicated that
the 3-class model showed higher accuracy in differentiating most-DILI drugs from
no-DILI drugs than the 2-class DILI model with a potential to categorize DILI risk
into a higher resolution.

13.3.4 Modified QSAR Models

Besides developing conventional QSAR models based on chemical structure infor-
mation only, we also tried to incorporate other drug information, especially those
related to DILI-relevant biological functions, to improve model performance. For
instance, understanding the mode of action (MOA) of a drug is critical in safety
assessment. Therefore, it is promising to improve the predictive model by consider-
ing MOA of drugs on DILI. To achieve that, we have developed an algorithm named

Table 13.2 Conventional QSAR performance evaluated by cross-validation and independent val-
idation

Cross-validation | Independent validation
(N = 2000 runs)
NCTR training NCTR Greene dataset Xu dataset
set? validation set
Drugs 197 (PIN = 190 (P/N = 328 (PIN = 241 (PIN =
81/116) 95/95) 214/114) 132/109)
Accuracy (%) 69.7 £2.9 68.9 61.6 63.1
Sensitivity (%) |57.8 £6.2 66.3 58.4 60.6
Specificity (%) |77.9£3.0 71.6 67.5 66.1
PPV (%) 64.6 £4.3 70.0 77.2 68.4
NPV (%) 72.6 £2.5 68.0 46.4 58.1

Cross-validated results come from the mean values of 2000 runs from 10-fold cross-validations.
Independent validation results are predicted results based on the three validation sets, i.e., NCTR
validation set, Greene et al. dataset, and Xu et al. dataset

4mean = relative standard deviation
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MOA-DILI [69], integrating the MOA and structural information to enhance DILI
prediction.

Different from a conventional QSAR model, the modified model will utilize MOA
information to categorize drugs, i.e., drugs would be categorized into active or inac-
tive group for each specific MOA. The underlying hypothesis is that MOA-specific
drugs would share similar DILI mechanisms and thus would be predicted by the
same QSAR models. In other words, we will develop one model to distinguish DILI
drugs from all MOA active drugs and another model to separate DILI drugs from all
MOA inactive drugs. Finally, these two QSAR models, for active and inactive drugs,
respectively, were merged into one assay-specific QSAR model (Fig. 13.2a).

A total of 17 toxicity-relevant MOA assays was curated from the Tox21 dataset
[70], including estrogen receptor (ER), androgen receptor (AR), mitochondrial toxi-
city, p53, PPAR gamma, etc. Therefore, 17 specific MOA-QSAR models were devel-
oped, and a consensus approach was applied to determine the DILI risk associated
with drugs. Some feature selection strategies (i.e., sequential forward selection) were
used to determine DILI-relevant MOAs (assays) for the final model.

The proposed MOA-DILI model was tested on 333 drugs with both clinical DILI
annotation and Tox21 assay data available. Mold2 software [71] was used to generate
chemical descriptors for the development of QSAR models. Hold-out and cross-
validation were used to evaluate the model performance. For the hold-out approach,
the 333 drugs were randomly split into 2/3 (222 drugs) and 1/3 (111 drugs). The
former (2/3) were used to develop a model while the latter (1/3) were used to evaluate

(a) @ (b) .

ors r_-__l
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l_ 1/3 2/3 —1 'f:? il
Test set Trainingset £
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; .68
Assay specific
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forward selection Active Inactive
MOA-DILI Ghoni drugs drugs
model P QSAR with Decision
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Fig. 13.2 a Workflow for MOA-DILI modeling and b modeling performance of the MOA-DILI
model

|
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the model. The hold-out process was repeated 1000 times to generate training/test
sets pairs. Cross-validation was applied inside the training set to evaluate model
performance. Label permutation testing with the DILI severity annotations randomly
shuffled was applied to check whether the model could generate results better than
random.

The optimized MOA-DILI model employed four assays, i.e., ARE-bla (antioxi-
dant response element), ER-luc-bg1-4e2-antagonist (ERalpha, BG1 cell line), gh3-
tre-antagonist (thyroid receptor), and PPARG-bla-agonist (peroxisome proliferator-
activated receptor gamma). Furthermore, a prediction accuracy of 0.757 in 5-fold
cross-validation and 0.695 in hold-out testing was observed for the optimized MOA-
DILI model, which is significantly higher than the results obtained from the permuta-
tion test (Fig. 13.2b). Moreover, this optimized model has a significantly higher pre-
dictive performance than the conventional QSAR model only (Table 13.3), demon-
strating the improved predictive power for hepatotoxicity by integrating MOA data
of drugs.

Another modified QSAR model was also developed, namely DILI prediction
systems [72] which aims to translate the post-marketing surveillance information
back to the preclinical stage for improving DILI prediction performance. In DILI
prediction systems model, it is hypothesized that there exists a set of hepato-related
side effects with discriminative power to distinguish between drugs with or without
the risk for DILI. Then, in silico models could be developed for those hepato-related
side effects based on drug’s chemical structure with machine learning algorithms.
Based on SIDER datasets [73], 13 different hepato-related side effects were identified
and corresponding models were developed by using naive Bayesian classifier in a
single cohesive prediction system. The DILI prediction systems yielded 60-70%
accuracies when evaluated using drugs from different DILI annotations. Furthermore,
it was found that when a drug was predicted as positive by at least three side effects,
the positive predictive value could be boosted to 91%.

13.4 Conclusion

Reliably predicting the risk for DILI in humans is still an unmet need in the research
community [34]. Accurate annotation of DILI risk is vital for the development of

Table 13.3 Overall

Model -fol Hold-
Performance of AOPs-DILI odel types >-fold S old-out test
. T cross-validation
model in training and test set
MOA-DILI model | 0.757 (0.022) 0.695 (0.043)
Conventional 0.658 (0.031) 0.663 (0.04)
QSAR model
Label permutated 0.582 (0.042) 0.500 (0.063)
model
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robust predictive models for prediction of DILI risk in humans; however, appropriate
annotation is not a trivial task. We utilized the FDA-approved drug labels to annotate
a given drug’s risk for DILI in humans, which was demonstrated to be robust and
consistent across different types of drugs. The schema was further improved by
weighing evidence of case reports and was applied to 1036 FDA-approved drugs
to classified into three verified DILI groups (i.e., YMost-, 'Less-, and YNo-DILI-
concern) with an additional group of drugs with DILI concern but without verified
causality (ambiguous annotation).

Besides the improved DILI annotations, we could develop better models by uti-
lizing the relevant contributing factors and advanced modeling technologies. We
have developed a series of computational predictive models that use in silico or
physicochemical methods, including the “rule-of-two” model, DILI score model,
conventional QSAR model for the prediction of two classes and multiple classes
of DILI, and modified QSAR model including MOA-DILI model and DILI predic-
tion systems model. Some models such as “rule-of-two” were independently vali-
dated and successfully identified drugs with significant hepatotoxicity. In the future,
some emerging technologies (e.g., high-throughput screening or high-content assay,
induced Pluripotent Stem Cells (iPSCs), engineered human liver cocultures, and 3D
cell culture) [74—78] could be incorporated into predictive models for a better iden-
tification of DILI risk liability at the early stage of drug development. In addition to
the drug properties we discussed above, host factors and their interactions with drug
properties [79, 80] should be considered and this information should be incorporated
into current drug-based models to improve prediction of DILI.

Disclaimer This article reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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