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Foreword

Given the ever-increasing panoply of human and animal drugs, food products, and
environmental chemicals, the need for science-based risk/safety regulation is
greater than ever. From a pharmaceutical perspective, accurate and effective toxicity
evaluation is critical in several areas such as dose–response characteristics including
organ exposure and first-in-human dosages, reproductive and carcinogenicity tox-
icity, exposure assessment, and biological pathway characterization. Food product
assessment requires understanding of gastrointestinal delivery, metabolic break-
down into metabolites, context of use, and dietary exposures. Lastly, environmental
toxicity necessitates system-level approaches considering chemical mixtures and
chemical transport into target organs in multiple species. Despite these extensive
efforts, idiosyncratic toxicities can occur, suggesting the need for personalized
toxicity approaches.

Conventional approaches along with some new methodologies like “organ-
or-a-chip” have been developed to address key questions in this area. Many of these
approaches are limited in cost, time, translational accuracy, and scalability.
Consequently, scientific endeavors in the computational space have inspired new
and powerful tools, ushering in the era of computational toxicology. This exciting
field facilitates the paradigm shift from bench-based toxicology to the computa-
tional assessment and will provide regulators globally with the benefit of fast,
accurate, and low-cost methods to supplement conventional toxicity assessment.
Moreover, integrative predictive approaches may enhance personalized toxicolog-
ical prediction to prevent idiosyncratic events.

To inform not only regulators around the world but also key stakeholders,
industry, and academic trainees, this textbook provides a deep dive into compu-
tational toxicological approaches needed to advance toxicological regulation
through research. It includes sections outlining theory, methods, applications, as
well as tangible examples and covers development through implementation.
Information in this book will apprise the reader with a greater understanding of
computer-based toxicological predictive capabilities. Information in this book will
also enable the reader to develop their own cutting-edge computational strategy to
address a toxicological question of interest. The provided information may also
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foster collaboration by providing inspiration for scientific discourse among readers
with diverse training backgrounds.

Currently, computational toxicology has gained acceptance as an “alternative”
testing method compared to traditional approaches for rapid toxicity assessment.
The toxicology community of scientists and regulators look forward to the vali-
dation of computational methods that may supplement and, in some cases, replace
traditional assays. The contents of this textbook, inspired by new computational
methods and approaches, provides a comprehensive overview of the representative
methodologies in the land of computational toxicology with an emphasis on reg-
ulatory science research.

Jefferson, AR, USA William Slikker Jr. Ph.D.
Director, National Center for Toxicological Research

US Food and Drug Administration
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Preface

In comparison with the field of toxicology which dates back to ancient civilizations,
the field of computer science is just coming of age. After many years of focused
development, computational tools, methods, hardware, and knowledge have
advanced enough to be of utility in other fields. Computational techniques are now
employed in toxicology for regulatory, research, and development purposes. We
compiled this book with the ambition to capture the latest advancements at the
intersection of computer science and toxicology together in one location.

Our motivation in creating this book was twofold. First of all, the number of new
chemical entities being developed by the ever-growing pharmaceutical, biotech-
nology, and food industry is dizzying. Absolutely all of these products must be
screened for safety at various stages of development. Secondly, the ecosystem of
our planet is increasingly bathed in an assortment of molecules, many of which
nature has never experienced before. The surge of new molecules and entities
entering the human body and the environment presents an insurmountable chal-
lenge to traditional toxicology. Impressively, the novel computational toxicology
methods described herein are rising to meet the challenge.

Machine learning, artificial intelligence, quantitative structure–activity relation-
ship (QSAR), bioinformatics, genomics, proteomics, molecular dynamics, and
more are described via examples of applications to toxicology. Both safety eval-
uation and risk assessment are topics of consideration across multiple chapters.
A background introduction followed by details is provided for computational
toxicology methods, as well as applications. Toxicology from the perspective of
medicines, food products, and the environment is described in multiple chapters.

This book is intended as a text for established computer scientists looking to
enter the toxicology field, experienced toxicologists seeking to enable research
through computational methods, or students and trainees curious about stepping
into the field. Thus, this book includes not only introductory sections to help readers
become familiar with new concepts but also detailed actionable methods which can
be deployed by the reader. Each chapter of this book can stand alone to update the
reader on a specific topic of interest. Alternatively, this textbook can be read in
sections as chapters that are roughly organized in topical order. For a graduate
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course on computational toxicology, this book would provide excellent reading
material. Studying the entire book will provide the reader with not only a broad but
also a deep understanding of the field.

While this book does focus on computational toxicology, it does not contain any
learning exercises, quizzes, or snippets of computer code for the reader to advance
and test knowledge. In the case of the classroom setting, these materials would be
left to the course instructor. Moreover, herein we do not review basic toxicology
concepts as they are effectively covered by other established bodies of work. We
would be appreciative of any corrections, feedback, comments, or criticism from
readers on how to improve for a future body of work.

Inspired by how computational toxicology is rising to meet the challenges
currently facing traditional toxicology methods, we put forth this book for the
community as an educational tool. The broad scope and deep depth of this textbook
would not be possible without the herculean efforts of and tremendous cooperation
from the authors, for which we are tremendously appreciative. This book also
would not have been possible without the support and vision of Springer, who we
acknowledge for having a visionary understanding of the importance of the topic at
hand.

This preface reflects the views of the authors and should not be construed to
represent the FDA’s views or policies.

Cambridge, MA, USA Rebecca Kusko, Ph.D.
Senior Vice President and Head of R&D

Immuneering Corporation

Jefferson, AR, USA Huixiao Hong, Ph.D.
Chief, Bioinformatics Branch

Division of Bioinformatics and Biostatistics
National Center for Toxicological Research

US Food and Drug Administration
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Chapter 1
Computational Toxicology Promotes
Regulatory Science

Rebecca Kusko and Huixiao Hong

Abstract New tools have become available to researchers and regulators includ-
ing genomics, transcriptomics, proteomics, machine learning, artificial intelligence,
molecular dynamics, bioinformatics, systems biology, and other advanced tech-
niques. These new advanced approaches originated elsewhere but over time have
perfused into the toxicology field, enabling more efficient risk assessment and safety
evaluation. While traditional toxicological methods remain in full swing, the contin-
uing increase in the number of chemicals introduced into the environment requires
new toxicological methods for regulatory science that can overcome the shortcoming
of traditional toxicological methods. Computational toxicology is a new toxicolog-
ical method which is much faster and cheaper than traditional methods. A variety
of methods have been developed in computational toxicology and some have been
adopted in regulatory science. This book summarizes some methods in computa-
tional toxicology and reviews multiple applications in regulatory science, indicating
that computational toxicology promotes regulatory science.

Keywords Computational toxicology · Regulatory science · Risk assessment ·
Safety evaluation · Chemicals

Abbreviations

3D Three dimensional
AI Artificial intelligence
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CYP Cytochrome P450 enzyme
DA Department of Agriculture
DILI Drug-induced liver injury
EDC Endocrine disrupting chemical
EDSP Endocrine disruptor screening program
EPA Environment Protection Agency
FDA Food and Drug Administration
ML Machine learning
MD Molecular dynamics
MDDT Medical Device Development Tools
MOA Mechanism of Action
MoA Mode of Action
NCATS National Center for Advancing Translational Sciences
NIEHS National Institute of Environmental Health Sciences
NN Neural Networks
POD Point of Departure
QSAR Quantitative structure–activity relationship
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
TsTKB Target-specific Toxicity Knowledgebase
US United States

1.1 Computational Toxicology

Toxicology as a broadfield seeks to predict and eliminate substanceswhichmay cause
a living body harm, including pharmaceuticals, natural products, food products, and
environmental substances. Toxicology has been performed since the ancient Greeks
and Chinese [1]. It is currently a major field of study around the world. The study of
toxicology is of importance not only to governmental regulatory agencies, but also
to the pharmaceutical/biotech industry, the veterinary industry, food manufactur-
ers, and academics. Toxicology also spans many sub-disciplines as it must consider
the entire path of a potential toxicant, including exposure, absorption, distribution,
metabolism, excretion, as well as interactions with cellular machinery throughout
this entire pathway (Fig. 1.1). Pinpointing the exact mechanism or mode of toxicity
as a potential toxicant interacts with a living organism is paramount. Adding to an
already complex system, nearly any known substance can be toxic at a high enough
exposure. Moreover, toxicity is dependent on an array of other factors including
organism size, species, age, sex, genetics, diet, combination with other chemicals,
overall health, and/or environmental context.

Toxicological methods can be classed into experimental and computational [2].
Experimentalmethods consist of two types: in vivo and in vitro experiments indicated
by the blue arrows in Fig. 1.1. Traditional experiments in toxicology are conducted
on non-human animals such and mice and rats [3]. Though in vivo experiments are
generally treated as the gold standard method in toxicological studies and remain as
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Fig. 1.1 Predictive toxicology schematic. A potential route of a toxicant is represented as black
arrows. In vivo and in vitro toxicology as well as connections between components are represented
as blue arrows. Computational toxicology’s key role is represented as red arrows. Arrows are labeled
by actions that achieve the arrow targets

a major approach of estimating human effects of substances, ethical, economic, and
technical concerns on use of animals make toxicologists search for alternative testing
methods [4–6]. Computational toxicology, an emerging component in toxicology,
is an alternative method where computational methods are used to understand and
predict toxicological effects of substances in the environment such as drugs, food, and
environmental chemicals [7–9]. Many computational methods have been developed
for predicting absorption, metabolism of chemicals, estimating in vitro and in vivo
experimental data, and assessing human risk solely based on chemical structures as
illustrated by the red arrows in Fig. 1.1 [10–17].

Given impressive advances recently in computing power as well as developments
in advanced computational algorithms, many toxicologists are now reaching out to
computer science to enable prediction of toxicological effects or outcomes. Thus,
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the intersection of computer science and toxicology is what we here call “Compu-
tational Toxicology.” Computational toxicology integrates both the long-standing
computational methods and the newer approaches including neural networks (NNs)
and artificial intelligence (AI).Rather than individual scientists and researchers trying
to understand multiple complex phenomena via bench experiments, these complex
biological systems can now be modeled and predicted in the computational space.
Issues which may have previously seemed impossible or intractable are increasingly
becoming solvable due to the scalability of computational toxicology.

1.2 Domain of Computational Toxicology

Safe drugs, safe food products, and a safe environment for living organisms are of
concern in all countries around the world. Toxicology leadership usually stems from
governmental regulatory agencies, in the USA including the FDA (Food and Drug
Administration), EPA (Environment Protection Agency), DA (Department of Agri-
culture), NCATS (National Center for Advancing Translational Sciences), NIEHS
(National Institute of Environmental Health Sciences) and others. These regulatory
agencies are responsible for maintaining the health and well-being of a population
and actively seek to prevent any exposures to toxic chemicals. Additionally, the phar-
maceutical and biotechnology industry strive to improve patient lives by bringing
both new and generic medicines to themarket andmust do sowhile minimizing harm
to human life. Safety and toxicity screening is critical throughout the steps of any
drug development program, starting from the preclinical stage, during clinical trials,
and even in post-market surveillance. For the food and agriculture industry, safety
screening is also a key step in establishing safe exposure levels to new additives or
pesticides. Academics, while rarely developing a product for commercial purposes,
do seek to create and test toxicity screens and also assess toxicity mechanism of
action (MOA) or mode of action (MoA). This textbook emphasizes the methods of
computational toxicology and their potential applications in regulatory science, but
the topic is clearly relevant across sectors and around the world.

1.3 Need for Computational Toxicology

The field of computational toxicology has been blooming due to the fundamental lim-
itations of experimental toxicology. While a dizzying array of novel chemical matter
is being created every day, traditional experiments are bottlenecked by throughput
and cost. In other words, the need for fast toxicity screening and prediction is ever
increasing and traditional in vivo and in vitro approaches cannot keep pace. More-
over, there is a global push to avoid the use of animals for experimental testing.
Traditional approaches are also limited in the number of doses, time points, organ
systems, and combinations that can possibly be tested sanely in one experiment or
laboratory.
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When using research to guide toxicology regulation, reproducible and rigorous
analysis are absolutely required. Bench experiments often havemany variableswhich
are difficult to control, including variations in technician, machinery, laboratories,
reagent lots, reagent age, or other protocol subtleties. Advances in computer science
offer not only faster experiments, but also more reproducible ones. For example, a
computational analysis can be exactly repeated by an independent scientist provided
that the raw data is available, code is captured in a publicly available source such as
GitHub and the compute environment is dockerized. The ease of sharing experiments
not only allows computational toxicology to be more rigorous and reproducible, but
fosters collaboration between researchers as protocols are readily shared.

1.4 Methods in Computational Toxicology

Many computational techniques, including the ones originated from other fields
such as computational chemistry and pure computer science, have been developed
and applied in toxicology. To summarize, this book solicited chapters to review some
popular methods in computational toxicology that can be used to assess risk, evaluate
safety, and/or predict toxicology of a drug or other substance.

Chapter 2 introduced the modeling framework of computational toxicology,
defined its scope, listed the major tasks, reviewed the methods, and discussed the
challenges in computational toxicology.

Structural alerts and quantitative structure–activity relationship (QSAR) models
are two of the most popular methods for predicting toxicological activity of chemi-
cals, especially for the simple toxicological endpoints [18, 19]. Chapter 3 reviewed
the applications of structural alerts and QSAR models in computational toxicology
and summarized some lessons learned from some successful models. It also dis-
cussed some challenges such as making negative predictions, moving to quantitative
predictions and weight of evidence approaches.

Emerging technologies such as next-generation sequencing enable fast genera-
tion of huge amounts of data. Computational analysis is challenging and crucial to
extract knowledge from such big data [20]. Machine learning algorithms have been
developed and applied in computational toxicology for prediction of unexpected,
toxic effects of chemicals. Moreover, computer science has enabled computational
prediction to scale to supermassive sizes. For example, the field of machine learning
has birthed matrix and tensor factorization. These two approaches have been used
to analyze >2.5 × 108 data points spanning 1300 compounds. It would be abso-
lutely impossible to analyze such a dataset in a simple traditional program such as
Microsoft Excel!Chapter 4 reviewed the recent progresses inmachine learning-based
computational methods and tools and further detailed matrix and tensor factorization
approaches.

One feature of modern science is diverse data for a specific scientific question
such as specific risk of chemicals to humans and the environment. Thus, integrat-
ing diverse data sources from toxicological research to extract more consistent and



6 R. Kusko and H. Hong

reliable knowledge than that provided by any individual data source for risk assess-
ment of chemicals attracts attention of computational toxicologists [21]. Network
analysis-based algorithms have been developed for analyzing such large, diverse,
and sparse data in computational toxicology [22, 23]. To shed insight into this new
method, Chap. 5 presented a network-based systems pharmacology approach that
integrates the networks of proteins, genes, drug target, and the human protein–pro-
tein interactome for assessing the risk of drug-induced cardiotoxicity in humans.

MoA is the functional or anatomical change caused by chemicals, at the cellular
level or at the molecular level that is often used as mechanism of action [24]. It is
important knowledge for understanding toxicology of chemicals when the molecu-
lar target of chemicals has not yet been determined. It can be used to guide devel-
opment of predictive models in computational toxicology. Chapter 6 introduced a
MoA-guided novel computational toxicology approach that is based on molecular
modeling and is implemented in the target-specific toxicity knowledgebase (TsTKb)
that contains a pre-categorized database ofMoA for chemicals and provides pre-built
and category-specific predictive models.

Predictivemodels in computational toxicology are often developed based onmany
molecular descriptors using differentmachine algorithms [25].One of the key steps in
development is to select important descriptors. Chapter 7 discussed different meth-
ods for removal of redundant and irrelevant molecular descriptors to improve the
performance and interpretability of the model. The strengths and shortcomings of
some feature selection and extraction methods in current computational toxicology
practices were summarized.

Genomics is the study of genomes, including all molecules such asDNAandRNA
and their structures and functions. Adverse effect of a chemical could be caused by
the interactions between the chemical and the target genome such as human genome,
such is the scope of toxicogenomics [26]. Toxicogenomics has been widely applied
in current toxicology practices. A database spanning disciplines of toxicogenomics
is the DrugMatrix, which includes gene expression of some 600 therapeutics at
multiple doses and 96 signatures relating to phenotypes. Chapter 8 gave a com-
prehensive description of a legacy resource of toxicogenomics, DrugMatrix and its
automated toxicogenomics reporting system, the largest molecular toxicology refer-
ence database and informatics systems, which contains thousands of gene expression
datasets generated using different microarray platforms.

Given the increasing prevalence of toxicogenomics resources such as the Drug-
Matrix database, a methodology known as pair ranking was developed to compare
transferability between the systems used for testing. Chapter 9 introduced the pair
ranking (PRank) method that is developed for quantitative evaluation of assay trans-
ferability between the different toxicogenomics platforms.

Several computational toxicology approaches have emerged as a hybridwith com-
putational chemistry. For example, molecular dynamics (MD) simulation was orig-
inally used in chemistry to detail interactions between chemicals and biological
molecules (including DNA and proteins). For computational toxicologists, MD sim-
ulation allows for surveillance of potential fluctuations or conformational changes
that a chemical might induce on a biomolecule [27]. Chapter 10 reviewed available
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software tools for MD simulations and the challenges to apply these software tools
to computational toxicology and summarized key protocols to run MD simulations.

The applicability domain of a prediction model is defined as the structural space
that is covered by the chemicals of the training set. It is expected that the predictions
from themodel for new compoundswithin the structural space aremore accurate than
the predictions of chemicals out of the space. Analysis of applicability domains in
computational toxicology is important for assessing QSAR models [28]. Chapter 11
reviewed different perspectives of the applicability domain and the existing meth-
ods for analysis of applicability domain. It also formalized a holistic approach for
utilization of the applicability domain in computational toxicology.

1.5 Potential Applications of Computational Toxicology
in Regulatory Science

Computational toxicology has been accepted in the regulation of products. One of
the examples is the International Council for Harmonisation M7 (ICH M7) guide-
line that describes the assessment of carcinogenic risk of mutagenic impurities in
drug products [29]. This indicates the state of the art of a computational toxicology
method and is the milestone for regulatory acceptance of computational toxicology
for pharmaceutical products [30, 31]. In the USA, the FDA accepted QSAR model-
ing results for impurities in applications of drug products. The FDA developed the
Medical Device Development Tools (MDDT) program to qualify tools that can be
used in evaluation of medical devices [32]. In the newly released FDA’ predictive
toxicology roadmap, computational toxicology is listed as one of the new technolo-
gies might be able to address some of the needs in regulatory science [33]. The EPA’s
Endocrine Disruptor Screening Program (EDSP) in the twenty-first century is using
computational toxicology, coupling with in vitro methodologies, to prioritize and
identify EDSP Tier 1 information needs for pesticide active ingredients that will be
included in the registration review program [34]. In Europe, read-across, a commonly
used computational toxicologymethod, is adopted for data gap filling in registrations
submitted under the REACH regulation [35]. Computational toxicology is gaining
attention in chemical risk assessment and management in China [36]. This book’s
solicited chapters shed lights on examples of potential applications of computational
toxicology in regulatory science in USA, Europe, and China.

In terms of consumer food safety, toxicokinetics, QSAR modeling, and bioinfor-
matics approaches are currently in use. Over time, certainly many more approaches
will be added to screen for toxic food products. Chapter 12 reviewed quantitative
structure–activity relationships, toxicokinetic modeling and simulation, and bioin-
formatics in the FDA’s Center for Food Safety and Applied Nutrition in-house food
ingredient knowledgebase to show the scientific utility of computational toxicology
for improving regulatory review efficiency.
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In the space of drug development, log regression analysis has predicted drug-
induced liver injury, which has proven challenging for both the pharmaceutical indus-
try and regulators. Chapter 13 briefed the drug-induced liver injury (DILI) research
efforts at the National Center for Toxicological Research (NCTR), FDA, including
drug-label-based-approach to annotate theDILI risk associatedwith individual drugs
including a series of models developed to assess the potential of DILI risk.

Alternative methods including computational toxicology have been considered to
inform regulation of drugs, foods, and environmental chemicals. Spanning all three of
these fields, a collaborative project acrossUSgovernmental agencies known asTox21
screened 10 k chemicals against a large panel of cell-based assays in a quantitative
high-throughput screen [37]. Chapter 14 described the efforts to build in vivo toxicity
prediction models based on the Tox21 in vitro activity profiles of compounds and
discussed the limitations of the current data and strategies for selection of optimal
assays to improve the performance of the developed models. The Tox21 project
served as powerful fuel for computational predictive modeling across many projects
and institutions including predicting point of departure (POD). Chapter 15 reviewed
common data modeling approaches that use gene expression profiles to estimate the
PODs and compared with the PODs determined using Tox21 data.

Froman environmental perspective, endocrine disrupting chemicals (EDCs) are of
grave concern and the MOA has been effectively detailed by target-based molecular
modeling methods. Computational toxicology methods are an essential and pow-
erful tool to elucidate the MOA of endocrine disruptors. Chapter 16 reviewed the
critical processes to perform the molecular modeling of EDCs, including preparation
of three-dimensional (3D) structures of the biomacromolecules and EDCs, genera-
tion and optimization of the structures of EDC–biomacromolecule complexes, and
investigation of the underlying interaction mechanism.

The metabolism of xenobiotics by cytochrome P450 enzymes (CYPs) repre-
sents an important mechanism for in vivo compound processing via environmental
exposure. Density functional theory (DFT) calculations have been used to highlight
the underpinnings of the mechanisms of various environmental toxicants by CYPs
including brominated flame retardants. Chapter 17 reviewed the recent progress in
molecular simulations of xenobiotic metabolism catalyzed by the typical phase I
enzyme CYPs.

Computational toxicology methods including QSAR and read-across are gaining
acceptance in regulatory science in the USA, Europe, and Japan [38]. To facilitate the
applications of computational toxicology in regulatory science, tools for utilization
of QSARmodels and read-across have been developed. Chapter 18 introduced a tool
(VEGA) that was designed to reduce the barriers between the different read-across
and QSAR models for the evaluation of specific chemicals for the assessment of
populations of substances. VEGA provides multiple tools for different purposes.

Rigorous and reproducible in silico workflows are needed for toxicological
databases and analysis to be successful. OpenTox is stepping in to fill this gap. Open-
Tox advocates the establishment of good practice and guidance for tracking compu-
tational toxicology models to enhance reproducibility, a very important parameter
for acceptance of the computational models in regulatory science. Chapter 19 dis-
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cussed the implementations of workflows for assessing trusted reproducible in silico
evidence supported within OpenTox and OpenRiskNet.

1.6 Conclusions

Translating computational approaches into the complex and intricate field of toxicity
is not a simple task. Working together as a community across countries, disciplines,
and organizations, computational toxicology was born and has been taking flight. As
the field advances, open communication must continue across international borders
as well as between regulators and researchers to continually move toward more
efficient and effective toxicology.

Disclaimer This article reflects the views of the authors and should not be construed to represent
the FDA’s views or policies.
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Chapter 2
Background, Tasks, Modeling Methods,
and Challenges for Computational
Toxicology

Zhongyu Wang and Jingwen Chen

Abstract Sound chemicalsmanagement requires scientific risk assessment schemes
capable of predicting physical–chemical properties, environmental behavior, and tox-
icological effects of vast number of chemicals. However, the current experimental
system cannot meet the need for risk assessment of the large and ever-increasing
number of chemicals. Meanwhile, current experimental approaches are not suffi-
cient for toxicology to thrive in the era of information. Thus, an auxiliary yet crit-
ical field for complementing the experimental sector of chemicals risk assessment
has emerged: computational toxicology. Computational toxicology is an interdisci-
plinary field based especially on environmental chemistry, computational chemistry,
chemo-bioinformatics, and systems biology, etc., and it aims at facilitating efficient
simulation and prediction of environmental exposure, hazard, and risk of chemicals
through various in silico models. Computational toxicology has profoundly changed
the way people view and interpret basic concepts of toxicology. Meanwhile, this
field is continuously borrowing ideas from exterior fields, which greatly promotes
innovative development of toxicology. In this chapter, backgrounds and tasks of
computational toxicology are firstly introduced. Then, a variety of in silico models
linking key information of chemicals involved in the continuum of source to adverse
outcome, such as source emission, concentrations in environmental compartments,
exposure concentrations at biological target sites, and adverse efficacy or thresholds
are described and discussed. Finally, challenges in computational toxicology such
as parameterization for the proposed models, representation of complexity of living
systems, and modeling of interlinked chemicals as mixtures are also discussed.
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Abbreviations

3R Replacement, reduction, and refinement
ABMs Agent/individual-based models
AM1 Austin model 1
AMBER Assisted Model Building with Energy Refinement
AO Adverse outcome
AOP Adverse outcome pathway
CAS Chemical abstract service
CC Coupled-cluster
CGenFF CHARMM General Force Field
CHARMM Chemistry at HARvard Molecular Mechanics
CI Configuration interaction
CSBP Computational systems biology pathway
DFT Density functional theory
DNA Deoxyribonucleic acid
EPA Environmental Protection Agency
ESD Emission scenario documents
EU European Union
FF Force field
GAFF General AMBER Force Field
HF Hartree–Fock
HTS High-throughput screening
IVIVE In vitro–in vivo extrapolation
KE Key event
MD Molecular dynamics
MIE Molecular initiating event
MM Molecular mechanics
MNDO Modified neglect of diatomic overlap
MP Many-body perturbation
Nrf2 Nuclear factor erythroid 2-related factor 2
OECD Organization of Economic Cooperation and Development
OSIRIS Optimized Strategies for Risk Assessment of Industrial Chemicals

through Integration of Non-test and Test Information
PBDE Polybrominated diphenyl ester
PBTK Physiologically based toxicokinetics
QM Quantum mechanics
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QSAR Quantitative structure–activity relationship
REACH Registration, evaluation, authorization and restriction of chemicals
RNA Ribonucleic acid
SE Semi-empirical
SEURAT Safety Evaluation Ultimately Replacing Animal Testing
SMILES Simplified molecular-input line-entry system
SOC Semi-volatile organic compound
US United States

2.1 Background for Computational Toxicology

Environmental chemicals (e.g., industrial chemicals, pesticides, pharmaceuticals,
personal care products, flame retardants, etc.) constitute a major risk of affecting
human and ecological health [1, 2]. To solve problems caused by the pollution of
chemicals, it is necessary to assess/predict the exposure, hazard, and risk of chemi-
cals before their entrance into the market, and to restrict the use of chemicals that are
of high concern [3]. Such a preventive perception of risk management has brought
about the most rigorous regulation in the history of humanity—the registration, eval-
uation, authorization, and restriction of chemicals (REACH) by the European Union
(EU) [4], which has profoundly reshaped the global chemicals management sys-
tem.

Chemicals risk assessment itself, however, has encountered a bottleneck. Since
the twentieth century, the core discipline for assessing toxic effects of chemicals,
toxicology, has barely developed. The discipline has relied heavily on in vivo animal
tests for a long time, which may violate the replacement, reduction, and refinement
principles (3R principles) for animal tests. Besides, conventional in vivo tests have
to deal with uncertainties from conservative extrapolations between distinct dose
levels or different species. Based only on traditional in vivo tests, it will definitely
be difficult to accurately predict the toxicological effect of chemicals on human and
ecological health. On the other hand, an unprecedented number of chemicals are
awaiting comprehensive assessment. According to the statistics by REACH, there
are more than 140,000 chemicals registered in the European markets, among which
80% lack the safety data required [5, 6]. It is estimated that around 500–1000 new
chemicals are introduced into themarket per year, which ismuch faster than the speed
of traditional chemicals risk assessment (ca. 2–3 years per chemical). Therefore, if the
assessment is to be merely based on conventional experiments, application of novel
chemicals as well as alternatives of legacy chemicals could be severely impeded due
to the inefficiency of the traditional risk assessment process.

In the recent decade, with the acknowledgement of the above-mentioned chal-
lenges, chemical toxicity test methodology has been going through a radical revolu-
tion [7]. In the report “Toxicity test in 21st century: A vision and strategy” published
in 2007 by the United States (US) National Research Council [8], toxicity path-
way was emphasized and a paradigm shift from traditionally descriptive toxicology
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toward a predictive science that would increasingly rely on in vitro tests based on
human tissues and cells was advocated. in silico/computational models were sug-
gested to characterize the toxicity pathways and to assess the exposure, hazard, and
risk of chemicals, in order to reduce the time and expense spent, and the num-
ber of animals sacrificed and to extend knowledge on the mechanisms of toxic
effects.

Toxicity pathways generally refer to biochemical/cellular signaling pathways that
if improperly perturbed would eventually lead to adverse health effects. Tradition-
ally, descriptive toxicity end points or apical end points such as individual death
or abnormal behavior could be thus reduced or attributed to multiple nodes or key
events anchored along the toxicity pathways or networks. The nodes could then be
examined with specifically designed in vitro tests. Furthermore, efficiency of in vitro
biomacromolecule or cell-based assays has been significantly enhanced by automatic
technology, which resulted in so-called high-throughput screening (HTS) technol-
ogy capable of performing over 1500-well-plate level operations and readouts with
just a single run [9, 10]. HTS technology paved the way for projects such as ToxCast
[11] and Tox21 [12] that aim at screening relatively large libraries of chemicals and
generate the so-called toxicological big data [13].

Novel/alternative experimental methods such as HTS indeed promote the devel-
opment of toxicology. However, they have met their own problems [14, 15]. Histori-
cally, in vivo end points have formed the basis for chemicals risk assessment and are
deemed so-called “golden standards” by some toxicologists and regulators. In fact,
most cell-based in vitro end points cannot be simply mapped onto the traditional
in vivo end points [16]. False positive hits resulting from in vitro tests that are incon-
sistent with available in vivo evidences hence become a nuisance. It is thus necessary
to clearly delineate the relationship between in vitro and in vivo end points, which
emphasizes in vitro–in vivo extrapolation (IVIVE) that aims at applying the in vitro
results for evaluating in vivo effects [17, 18]. Optimistically, adverse outcome path-
ways (AOPs) coined by Ankley et al. [19] appear to be a straightforward conceptual
framework to explain the specifically designed in vitro end points and apical in vivo
end points as molecular initiating events (MIEs)/key events (KEs) and adverse out-
comes (AOs), respectively. However, a quantitative AOP that is applicable to IVIVE
is still far from real practice. Besides, the types of in vitro end points that can be
implemented on an HTS platform are still limited [12]. The implementation of HTS
that relies on specific apparatus cannot be adequately cost-effective. Moreover, the
number of chemicals screened by Tox21 during 2008–2013 is ca. 10,000 [14], which
is de facto much less than the number (>15,000) of newly registered chemicals in a
single day on the chemical abstract service (CAS, www.cas.org) system in 2014. In
conclusion, the current experimental system for toxicology canmeet neither the need
for chemicals risk assessment nor the requirement for development of toxicology.
Thus, an auxiliary yet critical field for complementing the experimental sector of
chemicals risk assessment has emerged: computational toxicology [20].

http://www.cas.org
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2.2 Tasks for Computational Toxicology

Computational toxicology is a typical interdisciplinary field based on environmen-
tal chemistry, computational chemistry, chemo-bioinformatics, and systems biology,
etc., and it aims at facilitating prediction of environmental exposure, hazard, and risk
of chemicals by various in silico models. There are two major tasks for computa-
tional toxicology: to facilitate sound chemicals management and to shape digitized
predictive toxicology.

2.2.1 Facilitating Sound Chemicals Management

One of the urgent needs for sound chemicals management is to build capability to
assess virtually all the existing chemicals in markets, i.e., to build a scientific high-
throughput system for chemicals risk assessment [1]. HTS technology has made a
steady contribution to this envisioned system, but it is still not sufficient.

In 2005, the US Environmental Protection Agency (EPA) founded the National
Center for Computational Toxicology to lead and implement research on computa-
tional toxicology [21]. Meanwhile, the Joint Research Center of the EU along with
many research groups have also carried out projects around core topics of compu-
tational toxicology under the 6th and 7th Framework Programs, such as OSIRIS
(Optimized Strategies for Risk Assessment of Industrial Chemicals through Inte-
gration of Non-test and Test Information) [22] and SEURAT (Safety Evaluation
Ultimately Replacing Animal Testing) [23]. In this sense, computational toxicology
or in silico toxicology serves as one of the tools to meet the requirement of certain
countries, regional organizations [e.g., Organization of Economic Cooperation and
Development (OECD)] and/or regulatory laws (e.g., REACH) for chemicals risk
assessment.

A classic risk assessment scheme includes hazard identification, exposure assess-
ment, effect assessment (dose–response relationships), and risk characterization [24].
Risk characterization is always represented as amathematical function (e.g., risk quo-
tient) of exposure levels and effect thresholds. Nowadays, a framework of in silico
models has emerged, linking key values such as source emission, concentrations
in environmental compartments, exposed concentrations at biological target sites,
and adverse efficacy or thresholds involved in the continuum of source to adverse
outcome of one queried chemical (Fig. 2.1) [20]. The framework needs parameter
modifications to be ready for application to other chemicals. For a large number of
concerning chemicals, the parameters might be virtually generated by quantitative
structure–activity relationship (QSAR) models in a high-throughput manner. Ulti-
mately, the giant gap of safety data required by chemicals risk assessment could be
hopefully filledwith this framework of computational toxicology in a truly pragmatic
sense.
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Fig. 2.1 Framework of in silico models of computational toxicology [20]

2.2.2 Shaping Digitized Predictive Toxicology

As mentioned above, traditionally descriptive toxicology is being transformed into
a predictive discipline, which certainly requires a sound understanding of the mech-
anisms underlying the toxicological phenomena of chemicals [7]. The reductionist
perception of toxicity pathways or AOPs that breaks apical end points or AOs into
MIEs/KEs can feasibly handle complex toxicological phenomena as relatively simple
pieces. However, there are two things that wet experiments can hardly achieve.

First, wet experiments do not endeavor to establish systems where metadata of
chemicals can be stored and processed conveniently by computer or artificial intel-
ligence. Digitization is a necessary trend for toxicology to thrive in this information
era. Obviously, in the very nature of computational toxicology, all simulated objects
respond to reasonably digitized counterparts from the real world. For example, in
typical QSAR studies, chemicals have to be neatly pretreated as machine-readable
formats, such as canonical simplified molecular-input line-entry system (SMILES)
codes [25]. To promote sharing and exchanging toxicological big data, public-domain
web servers and/or databases have been established, which provides valuable experi-
ence for regulators to digitize bioassays in the toxicological field [26, 27].Digitization
of toxicology would significantly decrease laborious work load for toxicologists and
allow much more sophisticated studies on complicated systems.

Second, wet experiments do not have resolution high enough to directly observe
atom-level behavior of chemical molecules. It is the atom-level behavior that forms
the molecular basis for explaining all environmental or toxicological phenomena,
and provides molecular mechanisms that can be taken advantage of to predict behav-
ior of newly designed molecules. Nowadays, only molecular simulation based on
theoretical and computational chemistry can provide almost infinite resolution and
freedom for studying atom-level behavior of chemicals in various situations [28].
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Solid theoretical grounds such as quantum mechanics (QM) and density functional
theory (DFT) [29] also make it reliable to predict behavior or properties of arbitrary
chemical molecules created as in silico objects.

Computational toxicology as an interdisciplinary field has profoundly changed
the way people view and interpret the basic concepts of toxicology, and meanwhile
it is continuously borrowing ideas from exterior fields, which greatly promotes the
innovative development of toxicology.

2.3 Modeling Methods for Computational Toxicology

In practice, computational toxicology creates in silico objects that could properly
characterize their real-world counterparts at diverse spatial levels. First of all, each
chemical substance (maybe a compound that is queried by regulators or toxicologists)
would be digitized as an in silico object. This queried chemical object may interact
with or be changed by different in silico situational objects for various research
purposes. Useful information could be generated by running simulations with these
in silico objects, which results in models with controllable parameters that bear
sound or at least reasonable physical meanings. Or otherwise, merely the attributes
of a series queried chemicals could be studied for an underlying pattern that has
some statistical significance, which would typically result in fast predictive but less
mechanistic QSAR models.

2.3.1 Environmental Multimedia Fate Models

The concentrations of chemicals in environmental compartments are the basis for
exposure assessment of chemicals [24]. Regulatory laws or policies about chemicals
require a standardized documentation of the information on the release of chem-
icals. For example, OECD declares that the emission scenario documents (ESDs,
http://www.oecd.org/env/exposure/esd) which describe source, production, and use
of chemicals should be compiled. ESDs can be used to determine emissions of
chemicals into the environmental compartments, e.g., air, water, and soil etc., which
provide interfaces between human activity and the environmental system.

If the situational objects make a macroscale environmental system and the influ-
ence of the queried chemical object on the situational objects is assumed to be
negligible, then the simulated model shall resemble a fugacity model proposed by
Mackay [30]. The fugacity model in brief can describe behavior/fates of a queried
chemical in an idealized environmental system. Typically, a fugacity model consists
of:

(1) several mathematical equations describing the mass balance of the chemical
among several predefined environmental compartments;

http://www.oecd.org/env/exposure/esd
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(2) parameters that characterize the environmental media and the behavior of the
chemical in certain environmental process. The principles and application of
fugacity models have been described in specialized textbooks [31], and fugac-
ity models have been widely employed for predicting environmental fates of
concerning chemicals [32, 33]. Furthermore, geographical information systems
may improve the fugacity model upon its spatial resolution and visualization
[34, 35].

2.3.2 Physiologically-Based Toxicokinetics Models

Exposure canbe further divided into external exposure and internal exposure, depend-
ing on whether a chemical is located outside or inside of an organism [36]. Concen-
trations in environmental compartments predicted by fugacity models only quantify
the external exposure. The response of different target sites inside the body to the
same chemical would be distinct. For example, liver of mammals could metabolize
xenobiotics, but fat tissue would typically store hydrophobic chemicals. Therefore,
the internal distribution of chemicals actually provides useful information for inter-
preting mechanisms of toxic effects [36].

Analogous to fugacity models, if the situational objects make an individual organ-
ism with a negligible counter-influence of the queried chemical object, then the
simulation model would more or less resemble a physiologically based toxicokinet-
ics (PBTK) model [37], which shares similar schemes of parameters and equations
with those of the fugacity model. In brief, a PBTK model employs in silico objects
representing brain, lung, liver, kidney, fat tissues, venous blood, arterial blood or
generally poorly perfused and richly perfused tissues or organs, typically termed
as boxes/compartments [38]. According to the flow of chemicals along the blood
vessels, ordinary differential equations can be developed to solve the concentrations
as a function of time in various boxes [37]. The concentrations in urine or blood
can be reversely extrapolated to total intake doses [39], enabling a direct comparison
between data from biomonitoring and exposure scenarios derived from ESDs and
fugacity models.

Fugacity models or PBTK models have structures that are straightforward to
understand and parameters that can be tuned in the simulation, which permit spec-
ulation on the mechanism of associated macroscale systems. With the neglected
counter-influence of the queried chemical objects on the situational objects, sim-
ulations of fugacity models or PBTK models are generally fast and always have
deterministic results. Furthermore, with techniques such as Monte Carlo simula-
tion, diagnosis on the sensitivity, and uncertainties are also available making the
macroscale empirical equations-based models more robust [32].

Traditionally, exposure of chemicals is viewed as a linear model from sources of
emission to targets. However, exposure and effects are not mutually independent.
For example, long-term exposure of toxic chemicals would definitely change the
parameters of physiological tissues or organs, which is a topic of toxicodynamics.
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As for individual behavior, when exposed to irritating chemicals, a person would
certainly response to or evade from those harmful stressors. In 2016, a new field
termed “computational exposure science” has been coined to specifically simulate
the exposure of all types of stressors of concern to risk assessment regulators, where
nonlinear relationships between all objects under a context of exposome [40] and
exposure ontology have been emphasized [41]. Further incorporation of this com-
putational exposure science might help computational toxicologists to have a more
realistic framework for modeling the exposure of chemicals.

2.3.3 Systems Toxicology Models

As mentioned above, during the absorption, distribution, metabolism, and excretion,
i.e., toxicokinetics by the organism, xenobiotic chemicalswould also exert their influ-
ence on the organism after they reach certain targets, which results in toxicodynamics
of chemicals. In this sense, the target sites can be regarded as interfaces linking the
xenobiotic chemicals and the physiological functions of life systems.

Homeostasis, proliferation, differentiation, and apoptosis of cells, the basic func-
tional units for life systems, are regulated by cellular signaling pathways/network.
Nowadays, bioinformatic and systems toxicology employ network models to map
the cellular biochemical components such as an upstream DNA sequences and its
downstream mRNA, by analyzing data from molecular biology technologies, espe-
cially genomics, transcriptomics, proteomics, etc. [42]. When xenobiotic chemicals
are tested within these -omics assays and certain toxic effects are focused on, the
xenobiotics could be thus anchored onto the biological network and linked with phe-
notypical in vitro or in vivo end points or diseases [43, 44]. The chemo-bioinformatics
and -omics assays would be an efficient strategy for selecting more relevant tar-
gets/marker interfaces for xenobiotics to exert their influences from a large in vitro
test battery [45, 46].

Qualitative signaling networks delineated by chemo-bioinformatics are indeed
informative. However, they still cannot quantitatively describe the toxicodynamics or
the dose–response curve of tested chemicals. Borrowing concepts from cybernetics,
general networkmotifs, e.g., negative/positive feedback loop, feed-forward loop, etc.,
have been extracted from the biochemical components of cells [47]. Furthermore,
thesemotifs can be composed as functionalmodules, e.g., hypersensitivity, periodical
oscillation, cellular memory, etc., which serve as in silico situational objects for
simulating the dynamics of the cellular signaling networks. These models termed as
computational systems biology pathway (CSBP) models, could give results that can
be compared with those of associated in vitro tests, becoming a promising tool for
chemicals risk assessment [47]. For example, a feed-forward loop can explain the
hormesis-shape dose–response curves of the phase I and phase II metabolism with
relatively low exposed doses of xenobiotic chemicals [48]. A CSBP model was also
applied successfully to describe the anti-oxidative stressors responses regulated by
nuclear factor erythroid 2-related factor 2 (Nrf2) [49].



24 Z. Wang and J. Chen

CSBPmodels are based purely on the topology of signaling networks, not consid-
ering the heterogeneous cellular surroundings. If the crowded space of real cells is
needed, then agent/individual-based models (ABMs) might be considered [50–53].
But generally ABMs would have single cells as their agents, which are typically
used to simulate the cellular or tissue-level behavior/effects such as tumorigenesis
or vasculogenesis [54]. The agents or cells would act according to a predefined set
of rules. Specialized software and platform tools such as CompuCell3D [55] and
NetLogo (http://ccl.northwestern.edu/netlogo/) could be employed to perform these
simulations. With a similar strategy, tissues, and organs such as hepatic lobule can
also be simulated if certain functional and/or survival dose–response curve data is
integrated into a model, which enables one straightforward form of so-called virtual
tissues [56, 57].

In conclusion, the Systems toxicology models introduced in this section are at the
cutting edge of computational toxicology, most of which are explanatory, tentative,
and not ready for prediction. Nonetheless, in the future context of toxicology and
chemicals risk assessment, these models would promisingly serve as better alterna-
tives than the current non-testing systems.

2.3.4 Molecular Models

As suggested by AOPs, toxic effects of chemicals originate fromMIEs, i.e., the inter-
action between chemicalmolecules and biomacromolecules [19, 58]. In a generalized
sense, partition/adsorption and transformation of chemicals in either an inorganic or
biological environment can also originate from molecular behavior/events. As pre-
viously discussed, the experimental sector of toxicology generally cannot observe
atom-level behavior of the molecules. With the advent of theoretical and compu-
tational chemistry, computational toxicologists are now able to establish so-called
molecular models that include the queried chemical molecules and their situational
objects, i.e., their surrounding molecules to be interacted with. In an MIE, the situa-
tional objects are typically functional proteins [58]. Meanwhile, in a simulation for
the gaseous transformation of a chemical, the situational objects might be airborne
reactive species such as hydroxyl radical or chlorine radical.

QMmethods from computational chemistry can be adopted to calculate electronic
structures of molecules and elementary steps along a chemical reaction pathway. Ab
initio QM methods, including Hartree–Fock (HF) [59], configuration interaction
(CI) [60], many-body perturbation (MP) theory, and coupled-cluster (CC) theory
[61], etc., are based only on fundamental assumptions, such as Born–Oppenheimer
approximation which assumes that the motion of atomic nuclei and electrons in a
molecule can be separated. Among ab initio QMmethods, post-HFmethods, e.g., CI,
MP, and CC are proved to be able to give very accurate results that are very consistent
with experimental observations. However, ab initio QMmethods, especially the post-
HF methods require a large amount of computer resources. For larger systems with
up to a hundred atoms, these methods would not be feasible currently.

http://ccl.northwestern.edu/netlogo/
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On the other hand, semi-empirical (SE) methods have been created that adopt
experimental values or empirical parameters as expedient replacement for certain
complicated time-consuming integral items of ab initio QM methods. Therefore,
the SE methods are much faster than the ab initio QM methods, but less accurate
especially when themolecule or system has non-typical conformations (such as those
of transition states). Well-known SE methods include MNDO (modified neglect of
diatomic overlap) [62], AM1 (Austin model 1) [63] etc.

Besides, DFT is a promising method based on slightly different assumptions from
that of QM theories, which can simulate larger systems, with accuracy comparable
to ab initio QM methods. Therefore, DFT has become a widely applied method for
computational toxicology. For example, theDFTmethod has been employed to probe
the hydrolysis pathways of antibiotics [64] and sites of metabolism of brominated
flame retardants by reactive oxo-heme of P450 enzymes [65].

For biomacromolecules such as proteins with thousands of atoms or inorganic
systems with explicit solvent molecules in condensed state, the DFT method is gen-
erally not feasible. For these systems, the theory must be further simplified. An
empirical force field (FF) that describes the interaction between atoms from a clas-
sical mechanics perspective provides a feasible route for the large-scale simulations.
In some widely employed academic force fields such as CHARMM (Chemistry at
HARvard Molecular Mechanics) [66] and AMBER (Assisted Model Building with
Energy Refinement) [67] force fields, potential energy functions are used to describe
bonding lengths, angles, dihedrals, electrostatic/Coulomb interactions, and Van der
Waals interactions. The parameters of FF-basedmethods/software are more complex
than those of QM or DFT methods/software. Therefore, it is also relatively compli-
cated to establish model systems with FF-based methods. CHARMM and AMBER
force fields have provided compatible topologies and high-quality FF parameters for
common biomolecules such as proteins, DNAs, RNAs, lipids, and carbohydrates,
making it very convenient to simulate these biological systems. Besides, CHARMM
and AMBER also provide CGenFF (CHARMM General Force Field) [68] and
GAFF (General AMBER Force Field) [69] for small molecules, which are useful
for toxicological systems involving xenobiotic molecules. FF-based methods typi-
cally include molecular mechanics (MM) that minimize energy of a conformation to
obtain its best geometry, and molecular dynamics (MD) or Monte Carlo simulations
that sample the ensemble space of the simulated systems and generate trajectories
for real-time/post-treatments to obtain useful physical quantities [28].

Unlike QM or DFTmethods, typical FF-based methods do not consider the form-
ing and breaking of covalent bonds. However, it is of interests to toxicologists to
simulate chemical reactions taking place in either an inorganic environment or in an
enzymatic environment [70]. Thus, schemes of interfaces between QM and MM
methods have been developed to simulate these special cases, with the reactive
site handled by QM methods and the rest of the system handled by MM methods.
QM/MM method is now mostly utilized for enzymatic systems and for explanatory
purposes.
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Molecular models are different from the previously introducedmacroscopic mod-
els in many aspects. First of all, when a chemical substance is queried in a macro-
scopic model, it always refers to a population of a huge number of same-type
molecules. In chemistry or physics, Avogadro’s constant is employed to translate
the microscopically huge number of molecules into macroscopic amount of sub-
stances with mole as the unit. Noticeably, even a nanomole of substance corresponds
to 6.02 × 1014 molecules, which is definitely an astronomical figure far beyond the
capacity of molecular simulations. In a molecular simulation, a queried chemical
is typically represented by a single (in some cases a few) molecule(s) of its type.
For example, when a MD simulation is carried out to calculate binding free energy
of a ligand to a receptor, there is typically just one ligand molecule in the simu-
lated system. A macroscopic binding affinity bioassay usually gives an inhibitory
concentration–response curve, from which a half-inhibition concentration (IC50) or
inhibition constant (K i) can be calculated as quantitative features for the binding
affinity. However, molecular simulation, with only one ligand molecule, would only
give the free energy difference between or the probability distribution of the binding
state and the free state of the ligand, which could be later translated into equilibrium
constants such as K i. In conclusion, molecular simulation checks the relative poten-
tial energies of important microstates, and then uses the obtained potential energy
surface to explain the macroscopic phenomena with principles of statistical mechan-
ics or statistical thermodynamics. Currently, molecular simulation mainly aims at
explaining experimental phenomena by revealing molecular mechanisms, and qual-
itatively foreseeing tendencies of some properties for a series of congeners. But, as
computational power is increasing and novel efficient algorithms are being imple-
mented, larger systems with thousands of atoms would ultimately be simulated with
more accurate and sophisticated empirical FF or even ab initio QM/DFT methods,
which should give much better predictions to convincingly fill the data gap required
by chemicals risk assessment.

2.3.5 QSAR Models

With the so-called toxicological big data [13], machine learning algorithms have
also proven their usefulness in predicting parameters required by the macroscale
models or data required by chemicals risk assessment, which typically refer to QSAR
modeling or supervised learning in the field of computational toxicology or machine
learning, respectively. QSARs are based on the linear free energy relationship theory
suggested by Hammett [71], Hansch et al. [72] or even on the chemistry intuition
that “chemicals with similar structures have similar properties.”

Distinct from all previously introduced models, QSARs do not simulate a particu-
lar chemical object in a physical process/event. In a QSAR study, features are firstly
extracted from a series of chemical objects (so-called training and testing sets) or a
series of molecular scenarios where each queried chemical interacts with certain sit-
uational objects, and then these features are employed to predict certain properties
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of the chemicals. It deserves mentioning that it is correlation rather than causality
between the features and targeted properties that QSARs eventually obtain. To learn
more about the history and/or future perspectives of QSAR, some literature reviews
can be consulted [25, 73, 74].

From a mathematical point of view, a QSAR model has three basic elements: the
features (X), the properties to be predicted (Y), and the algorithm adopted to map
the features onto the properties (f ). In brief, a QSARmodel can always be expressed
as Y = f (X). As for X, if features are extracted only from chemical molecules
themselves, then these features are typically called molecular (structural) descrip-
tors. Details about molecular descriptors can be found in Todeschini and Consonni’s
Molecular Descriptor for Chemoinformatics [75]. Besides, the application domain
beyond which QSAR models could not be reliable also depends strongly on the fea-
ture space of chemicals in the training set. As for Y, if the properties have discrete
categories/levels, then it refers to a classification task, resulting in a predictive model
termed as classifier. If the properties have continuous values it refers to a regression
task, resulting in a regressor. The quality of QSARmodels heavily relies on the qual-
ity of the input data sets. Therefore, collection and curation of data need particular
patience and caution. As for f, nowadays, a large number of algorithms for classi-
fication or regression are available, e.g., multivariate linear regression, partial least
regression, support vector machine, decision tree, naïve Bayes, artificial neural net-
work, etc., as well as ensemble algorithms such as random forest [76], among which
computational toxicologists may find some suitable for their specialized cases.

It is also notable that molecular models could inspire novel descriptors that can
better characterize the underlying pattern for certain toxicological phenomena. For
example, simulation of the interaction between halogenated compounds and human
transthyretin protein with QM/MMmethods indicated specific descriptors for QSAR
modeling [77]. Similarly, QSARs can translate the time-consuming computational
chemistry models into empirical rules and mathematics, thus resulting in more effi-
cient predictive models. For example, Rydberg and Olsen et al. performed a series
of QM/DFT simulations on the active sites of P450 enzymes with various types of
small molecules [78–80], based on which a web server named SMARTCyp has been
developed that is capable of rapidly predicting sites of metabolism and associated
reaction energy barriers [81].

Currently, the rapid development of modern machine learning algorithms could
most likely promote a renaissance of the field of QSAR modeling. Previously unno-
ticed details might also be recaptured by innovative feature extraction and well-
established machine learning algorithms, making scientists’ conclusions or predic-
tions less arbitrary and more robust.

2.4 Challenges for Computational Toxicology

Although modeling frameworks seem to have been nicely established, challenges in
computational toxicology still remain for many aspects.
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2.4.1 Nuisance in Parameters for In Silico Models

One vital issue for all computational models is that their simulation can never begin
until the in silico objects of the models are completely and properly parameter-
ized. This issue is especially typical for macroscale models, i.e., the fugacity model,
PBTK model, or systems toxicology models [37]. For example, the fugacity model
requires partition coefficients between each pair of environmental compartments and
rate constants of certain types of transforming reactions. Obtaining values of these
parameters for certain models is not a trivial job. Generally speaking, the macroscale
models based on empirical equations are parameter-intensive models in their very
nature. Although experiments can be performed under the OECD or EPA test guide-
lines to determine a part of the parameters, sometimes wet experiments are time-
consuming and even impossible due to extremely inert reactivity, low solubility, etc.,
of the queried chemicals. It is also not pragmatic to conduct wet experiments for
all the queried chemicals. Hopefully, if adequate experimental data around certain
parameters have been elaborately collected,QSAR tools could be built to quickly pre-
dict those parameters. However, QSAR models still suffer from limited application
domains and weak mechanistic interpretation.

Computational chemistry models can directly simulate the microscopic process
of certain partitions or reactions of chemical substances and calculate the properties
that can be used as parameters for the macroscale models. For example, advanced
quantum chemistry modeling techniques have been proven to be able to calculate the
gaseous reaction rate constants of semi-volatile organic compounds (SOCs) with air-
borne radicals very accurately [82, 83]. Meanwhile, molecular dynamics simulation
with enhanced sampling strategy could re-establish free energy curves of water–air
partition of certain chemicals with properly developed force field parameters [84],
then the hydration free energy can be readily translated into water–air partition coef-
ficients needed for the macroscale models. A warning on these models is that estab-
lishment of the modeling systems is sometimes truly sophisticated and simulation
for the modeling systems requires a huge amount of computational resources and
time. Of note, the parameterization of empirical force fields for xenobiotic small
molecules could be a very serious issue when practicing associated simulations.
Note that even with CGenFF or GAFF, the generated FF parameters for complex
xenobiotic molecules may still bear very high penalties indicating that these gener-
ated FF parameters are not suitable for the simulation. Closer cooperation between
computational toxicologists and theoretical chemists, thus, should be encouraged in
order to overcome this issue. Nevertheless, computational chemistry models based
on relatively rigorous theories could provide us unprecedented details on molecu-
lar mechanisms of atom-level behavior of chemicals, which seems to envision an
ultimate solution for predicting the macroscale parameters.
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2.4.2 In the Face of Complex Living Systems

Although the fugacity models possess simplified structures under the principle of
Ockham’s Razor, they are indeed good at describing the fate of chemicals within
an environmental system if properly parameterized [31]. The same goes for PBTK
models. As mentioned previously, these models neglect the counter-influence of
chemicals on respective situational objects, simulating merely the fate of chemicals
rather than the fate of the whole systems, and thus are relatively straightforward to
build and to simulate.

However, at cellular or subcellular levels, things are significantly different.
Because it is the fates of the biological systems that are focused on in the simu-
lations, the counter-influence of chemicals on the cellular components and function
cannot be ignored any more. To enable the simulation of perturbation on biological
systems from chemicals, mechanisms and functional structures of biological sys-
tems themselves and interfaces between the biological systems and the xenobiotic
chemicals must be firstly known. It is well acknowledged that modern toxicology
studies based on in vitro assays have successfully parsed particular interfaces. How-
ever, decoding the mystery of life is never an easy job. The functional structures of
most biological systems are still not clear. Moreover, there is a lack of knowledge
on relevant gene polymorphisms of human populations. Computational toxicologists
obviously cannot digitize so many objects within these unknown fields. This state
will hopefully be improved with systems biology and “-omics” technologies that are
emphasized to piece the whole picture of life together [46, 47].

Furthermore, the ultimate goal of chemicals risk assessment is to protect not only
human beings, but also the diverse species that inhabit the earth’s ecosystems, which
is also a topic of ecotoxicology [85]. In fact, the sensitivity of different species
to the same chemicals could vary distinctly. However, it is neither pragmatic nor
necessary to evaluate the toxic effects of chemicals on more than a million species
via wet experiments. A key point is to extrapolate toxicities of chemicals cross
different species, which also requires a sound understanding of mechanisms and
functional structures of different concerned species [86]. Computational toxicology
has provided some strategies to address the problem of cross-species extrapolation.
For example, by modifying structures and parameters of PBTK models, internal
distribution or dynamic bioaccumulation of chemicals across different species can
be evaluated [87]. To simulate biomacromolecules from different species, homology
modeling [88] could provide atom-level structures that have not been determined
by X-ray diffraction or nuclear magnetic resonance approaches. However, there is
still very little knowledge of non-human species, except for a very limited number
of model species [89], which can be employed for establishing in silico models.
Therefore, feasible and convincing models for cross-species extrapolation are still
far from real practice.



30 Z. Wang and J. Chen

After all, computational toxicology is only an emerging interdisciplinary field. It
is not in its nature obliged to decode the mystery of life. Therefore, development of
computational toxicology would definitely rely on the advances of exterior fields,
especially on the thrilling breakthrough of life sciences.

2.4.3 The Everlasting List of Interlinked Chemicals
as Mixtures

It should be noted that some chemicals will always be interlinked with certain other
chemicals, such as impurities, plasticizers, cosolvents, etc., particularly in industrial
products or in pharmaceutical or cosmetic formulations. It should also be noticed that
a CAS- or REACH-registered chemical could have multiple reaction products that
could be generated duringmajor environmental processes such as photolysis, hydrol-
ysis, and transformation by reactive oxygen species or by biochemical metabolism.
These latent products are not necessarily registered chemicals, and they could be
more hazardous to human and ecological health than their parent compounds. For
example, polybrominated diphenyl esters (PBDEs) can possibly be transformed into
HO-PBDEs or even notorious dioxins with the help of P450 enzymes [90, 91]. Evi-
dences from in vitro assay have proved that the HO-PBDEs are more efficacious on
disrupting thyroid receptor β than the parent PBDEs [92].

Nomatter how interlinked the chemicals are, they always appear asmixtures in the
real environment. In an inorganic environment, mixtures of chemicals could result in
phenomena such as catalysis, inter-reaction, adsorption, etc. Experimentalists who
study the environmental fate of a queried chemical, usually adopt so-called central
composite design to probe the influence of environmental factors on the chemical
[93, 94]. Note that some of the environmental factors such as anions and dissolved
organic matters are also components of themixture. If the queried chemical is readily
reactive, then spectra of downstream chemicals of associated reactions would also
contribute to the composition of the mixture. Theoretically, these central composite
designs or full-factorial experiments might characterize a response surface or hyper-
surface that quantitatively reflects influences from components of the mixture. In
biological systems, similar experiments could be conducted for mixtures in order
to determine so-called joint toxic effects or combined effects of chemicals [95].
The most vital defect of the response hypersurface obtained via wet experiments
is that it just describes the phenotypic response or apparent phenomena and cannot
reveal underlying mechanisms. Therefore, in its nature, the response hypersurface
can never be used to predict quantitative impact of a chemical that is not among the
original components/factors during the experimental determination of the response
hypersurface. In addition, scale of these joint effect-determining experiments would
grow exponentially as the number of factors increases. It seems that, mechanism-
based models might be the only promising tools to predict the joint toxic effects of
mixtures with arbitrary composition. Nonetheless, the response hypersurface indeed
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provides valuable information as experimental evidences, which could serve as val-
idating benchmarks for in silico models.

Current explanatory or prediction models/schemes for joint toxic effects are
coarse, and predicted toxic thresholds can only be adopted in a conservative man-
ner over a large safety factor [24]. Systems toxicology might shed light on the joint
toxic effects [96]. Except for molecular models, almost all the macroscale mod-
els are designed for just one chemical. If reliance on so-called safety factors is to
be diminished and models based on transparent mechanisms are to be emphasized
in the future toxicology, novel models with associated in silico objects have to be
developed, which shall allow reasonable characterization of the dynamic interaction
network of multiple queried chemicals.

2.5 Conclusions and Perspectives

Currently, except for QSAR models, computational toxicology models are rarely
employed in real practice for chemicals risk assessment. Nevertheless, the modeling
framework of computational toxicology has envisioned an attractive paradigm for
future toxicity testing and toxicological studies. With previously described reality-
mirroring in silico models, general rules that are transferable among similar cases
at the same spatial level can be modeled by well-understood mathematics or logic
rather than obscurely descriptive paragraphs.Although challenges remain for compu-
tational toxicology, the endeavor to overcome these challenges will definitely result
in continuous innovation and prosperous development for the field of both chemicals
risk assessment and toxicology.
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Chapter 3
Modelling Simple Toxicity Endpoints:
Alerts, (Q)SARs and Beyond

Richard Williams, Martyn Chilton, Donna Macmillan, Alex Cayley,
Lilia Fisk and Mukesh Patel

Abstract The correlation of chemical structurewith physicochemical andbiological
data to assess a desired or undesired biological outcome now utilises both qualitative
and quantitative structure–activity relationships ((Q)SARs) and advanced computa-
tional methods. The adoption of in silico methodologies for predicting toxicity, as
decision support tools, is now a common practice in both developmental and regu-
latory contexts for certain toxicity endpoints. The relative success of these tools has
unveiled further challenges relating to interpreting and applying the results of mod-
els. These include the concept of what makes a negative prediction and exploring the
use of test data to make quantitative predictions. Due to several factors, including
the lack of understanding of mechanistic pathways in biological systems, modelling
complex endpoints such as organ toxicity brings new challenges. The use of the
adverse outcome pathway (AOP) framework as a construct to arrange models and
data, to tackle such challenges, is reviewed.

Keywords QSAR · Expert systems · Mutagenicity · Skin sensitisation · Negative
predictions · Defined approach · Hepatotoxicity · AOP · MIE
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EC3 Effective concentration to cause a threefold increase in T-cell proliferation
GHS Globally harmonised system
GPMT Guinea pig maximisation test
h-CLAT Human cell line activation test
IATA Integrated approach to testing and assessment
KE Key event
kNN k-Nearest neighbours
LLNA Local lymph node assay
MIE Molecular initiating event
MW Molecular weight
OATP Organic anion transporting polypeptide
OECD Organisation for Economic Co-operation and Development
PPAR Peroxisome proliferator-activated receptor

3.1 Introduction

Structural alerts and quantitative structure–activity relationships (QSARs) have a
long history of utility for the qualitative prediction of toxicity. One of the earliest
examples is the Ashby–Tennant superstructure, a chemical concatenation of toxi-
cophores associated with (and causal for) mutagenic and carcinogenic activity [1].
Where such toxicophores were found within a chemical, then that chemical could be
predicted to be mutagenic and carcinogenic. The success of that early in papyro/in
cerebro model led to the development of increasingly sophisticated computational
systems for predicting toxicity in silico which have sought to replicate human-like
reasoning [2, 3] or utilise advanced machine-learning techniques [4, 5].

3.2 Lessons Learnt from Successful Models

Retrospectively, it has become clear that predictions of toxicity from in silico models
have often shown the highest levels of acceptance and applicationwhere the endpoints
being modelled are governed by one (or few) molecular initiating events (MIE)
and there are limited absorption, distribution, metabolism, and excretion (ADME)
considerations.AnMIEdescribes the interaction between a chemical and a biological
target and is linked to a toxicity endpoint via an adverse outcome pathway (AOP)
[6]. For endpoints such as skin sensitisation and mutagenicity, toxicity is largely
driven by chemical reactivity, leading to the formation of protein or DNA adducts
which are the respective MIEs. Although metabolic activation and deactivation can
be a precursor to these MIEs, there are relatively few ADME factors to consider.
Thus, in these cases, a model where the activity of a wide range of chemicals can
be assessed (i.e. a global model) can be generated from a single descriptor set (often
chemical fragments) which provides an acceptable simulation of biological reality.
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Additionally, data for training mutagenicity and skin sensitisation models comes
from standardised assays such as the Ames test and murine local lymph node assay
(LLNA) which have OECD test guidelines and thus high levels of reproducibility
[7].

As a result, there has been increasing regulatory acceptance of models for simple
endpoints. Mutagenicity predictions are now accepted in lieu of data from an Ames
test for certain pharmaceutical impurities or plant protection product metabolites [8,
9]. In silico skin sensitisation predictions, especially when used as part of a defined
approach (DA), can now be used in place of traditional in vivo LLNA or Guinea
pig maximisation tests (GPMT) [10–12]. Predictions from such models are also
straightforward to validate, e.g. by running an in vitro assay to confirm or refute the
in silico result. This data can then be supplied to the developers to incrementally
improve model performance [13].

It is now straightforward (and accepted) to produce qualitative models for simple
toxicity endpoints. However, the relative success of these tools has unveiled fur-
ther challenges relating to interpreting and applying the results of models. These
include: how to make negative predictions, moving from qualitative to quantitative
predictions, the necessity for expert review of predictions and how to model complex
endpoints where these methods are not suitable.

3.3 Making Negative Predictions

The first challenge to be addressed is whether the lack of toxicity can be predicted
using structural alerts. These define chemical fragments that are causative of an
adverse outcome.When no alerts are found in a compound, is it reasonable to assume
that the lack of a positive prediction is enough evidence to make an explicit negative
prediction? In this context, two questions need further consideration:

1. Do the existing structural alerts in the appropriate chemical space cover the
known mechanisms of toxicity well?

2. Is the adverse outcome driven by a single MIE?

If the answer to both questions is yes, then it can be expected that an absence of
structural alerts will be indicative of a lack of toxicity. This has been demonstrated
for some endpoints including bacterial in vitro mutagenicity and in vivo skin sensiti-
sation [14]. Both endpoints have been studied for numerous years, resulting in many
structural alerts, and both are largely dependent on a reactivity-drivenMIE.However,
methodologies are also required to assess the reliability of individual predictions, to
identify (and justify) whether these can be treated with a higher or lower level of
confidence.

Two differing methodologies for assessing the reliability of alert-based negative
predictions have previously been investigated for bacterial mutagenicity: an expert
knowledge-based approach considered whether a non-alerting chemical had been
purposely excluded from the scope of a structural alert, and a data-driven approach
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Fig. 3.1 Outline of the negative prediction methodology employed by an expert knowledge-based
system

that involved comparing the fragments present in a non-alerting chemical to a large
dataset of other chemicals with known activities [15].

The first method was based on the expectation that chemicals which have pur-
posely been excluded from a structural alert based on a deactivating feature were
more likely to be inactive than those that simply contain no substructures that match
an alert, as more is known about the former than the latter. In practice, this method
was a poor indicator of the reliability of a negative prediction. The border between
active and inactive compounds was rarely unambiguous due to limitations in both
the quality and quantity of the available data. In contrast, the second method was
successful in highlighting cases where the negative prediction could be treated with
either a higher or lower degree of confidence. This was achieved by answering two
questions of a non-alerting chemical that an expert user might also ask (Fig. 3.1):

1. Is the chemical similar to known active chemicals that the expert system predicts
incorrectly (i.e. false negatives)?

2. Does the chemical contain any fragments that the expert system has not seen
before?

Both questions are answered by comparing the non-alerting chemical to a large,
curated dataset of chemicals with known activity data collected from the public
domain. When a chemical contains a fragment that is found exclusively in false
negative compounds in the dataset, this is flagged to the user as a misclassified
feature. Likewise, where a chemical contains a fragment that is not present at all in
the dataset, it is highlighted as an unclassified feature. The presence of either type of
feature is likely to reduce the confidence a user has in the negative in silico outcome.
Misclassified features are expected to decrease the accuracy of the prediction as the
non-alerting chemical is similar to other active compounds that the expert system
predicts poorly. Unclassified features are expected to increase the uncertainty around
the prediction as the non-alerting chemical resides in an unstudied area of chemical
space.
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These expectations were borne out by the data when the methodology (as imple-
mented in Derek Nexus [16]) was tested against several proprietary datasets, for
both the mutagenicity and skin sensitisation endpoints [15, 17]. The general trend
observed was that misclassified and unclassified features occurred relatively infre-
quently. When misclassified features did occur, they tended to result in a drop in
negative predictivity compared to the entire dataset. This suggests that the identifica-
tion of chemical fragments that were found elsewhere in known false negatives was
a useful similarity metric and worth highlighting. The presence of unclassified fea-
tures, however, did not show the same trend in that the negative predictivity tended
to remain high. However, the observed negative predictivity values across several
proprietary mutagenicity datasets displayed a large interquartile range, indicating
the greater variability in the accuracy of predictions for chemicals containing novel
fragments.

Across the proprietary test sets the negative predictivity for chemicals contain-
ing either misclassified or unclassified features typically remained higher than the
prevalence of inactive chemicals in the datasets, indicating that their presence was
not a definitive flag for activity. Rather, they should be interpreted as weak arguments
against the negative prediction, indicating greater uncertainty in the predictions. It
is possible that additional expert review of the in silico negative predictions could
resolve some of this additional uncertainty. As such, the identification of misclassi-
fied and/or unclassified features serves a secondary purpose, by providing the user
with fragments within the chemical structure to focus on as a starting point for any
further assessment.

The endpoints that have been described so far are driven by a single reactivity-
based MIE, reflecting the fact that to make negative predictions, expert systems have
leveraged the power of fragment-based approaches to model chemical reactivity. The
challenges which are expected when making negative predictions for more complex
endpoints (e.g. carcinogenicity or hepatotoxicity) are: the need to use more relevant
descriptors to model non-reactivity-based MIEs and creation of multiple models for
each individual MIE, to ensure that a chemical is not expected to initiate any of the
multiple pathways that could lead to the adverse outcome in question.

3.4 Moving to Quantitative Predictions and Weight
of Evidence Approaches

Another challenge that structural alerts do not address is the need tomake quantitative
toxicity predictions. However, they can be used to group chemicals into categories
which react through the same toxicity mechanism, which can then provide a starting
point for making quantitative read across predictions within these categories. In
computational terminology these predictions can be described as k-nearest neighbour
(kNN) models, although in practice this is an example of how SARs and read across
can be used together to make interpretable quantitative toxicity predictions.
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Canipa et al. [18] described a kNNmodel which was developed to make quantita-
tive skin sensitisation predictions. Initially, the query chemical fires a skin sensitisa-
tion structural alert, and chemicals in the dataset firing the same alert are considered as
nearest neighbours. These nearest neighbours are then arranged by Tanimoto similar-
ity generated by a radial fingerprinting method. The minimum number of neighbours
required is 3; otherwise, no prediction is given, and the most similar neighbours, up
to tenth place, are considered. The predicted EC3 value is the weighted average of
all the valid neighbours (Eq. 3.1).

Equation 3.1: EC3 prediction equation using weighted average of nearest neigh-
bours as calculated by Tanimoto scoring.

MW

EC3prediction
=

∑(
Tanimoto ∗ MW

EC3Nearest Neighbour

)

∑
Tanimoto

(3.1)

The model was assessed using a public test set of 45 chemicals, as well as a
proprietary test set containing 103 chemicals donated by Lhasa Limited members
(Table 3.1). The model predicts relatively well for both, although the inherent vari-
ability of the LLNA limits the predictive capacity of this model. As more LLNA
data is added to the prediction dataset, the accuracy is expected to improve. When
the prediction is incorrect, it tends towards conservatism, overpredicting rather than
underpredicting which is more protective of human health.

Another key consideration for in silico predictions is how best to combine their
output with data generated from in chemico and in vitro tests, especially for those
endpoints where there has been a considerable drive to use non-animal alternatives
such as skin sensitisation. Although several in chemico and in vitro assays have been
developed to measure individual key events (KEs) in the skin sensitisation AOP and
are accepted by the OECD [19–21], it is generally recognised that a single assay is
not an adequate replacement for the in vivo assays. Instead, it has been suggested that
using multiple information sources (e.g. physicochemical properties, read across, in
silico expert/(Q)SARpredictions, in chemico and in vitro tests, historical in vivo data)
in combination, in either a DA or an integrated approach to testing and assessment
(IATA), is a more reliable way to predict skin sensitisation potential [22].

For example, using structural alerts, combined with negative predictions and
potency predictions, alongside in chemico/ in vitro assays (DPRA, KeratinoSens™,
LuSens, h-CLAT, U-SENS™) a DA was developed, built on previous work [23].
Known limitations and applicability domain knowledge were used to de-prioritise
less applicable assay(s)/in silico outcome(s) and prioritise more appropriate infor-
mation sources. The types of information that are available in an expert system
alongside the simple presence/absence of structural alerts include: the likelihood of
any structural alert-based positive prediction; the uncertainty around any negative
prediction based on the lack of structural alerts; whether the chemical is likely to
require metabolism to show sensitisation potential; how lipophilic the chemical is;
and information on the exact nature of the biological nucleophile that causes theMIE
between the chemical and the human body. All these considerations can help a user
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Table 3.2 Summary of exclusion criteria for the defined approach

Exclusion criteria used in the defined approach Information source applicable for
defined approach?

Derek MIE/KE1KE2 KE3

Derek likelihood Certain, probable,
plausible, doubted,
improbable

✓

Equivocal ✗

Derek negative prediction Non-sensitiser ✓

Non-sensitiser containing
misclassified feature(s)

✗

Non-sensitiser containing
unclassified feature(s)

✗

Metabolic activation Prohapten ✓ ✗ ✓ ✓

Lipophilicity >3.5 ✓ ✓ ✓ ✗

>5 ✓ ✓ ✗ ✗

Lysine-reactivity Exclusive ✓ ✓ ✗ ✓

MIE/KE1 = molecular initiating event/key event 1 (hapten binding). KE2 = key event 2 (ker-
atinocytes activation). KE3 = key event 3 (activation of dendritic cells). ✓ = information source is
prioritised in defined approach. ✗ = information source is de-prioritised in defined approach

Fig. 3.2 Defined approach decision tree uses exclusion criteria to de-prioritise in chemico/in vitro
assays and then uses the Derek outcome to determine which branch of the tree to follow. Between
1 and 3 in chemico/in vitro assays are then run in order of the AOP (MIE → KE2 → KE3)
unless de-prioritised in the previous step and the outcome(s) used to assign a hazard classification
(sensitiser/non-sensitiser) and predict the potency category (Basketter 1-4, 5/6) and GHS classifi-
cation

to prioritise the information sources that are believed to be most informative for the
chemical in question (Table 3.2).

After a chemical has been assessed and any relevant exclusion criteria considered,
the results from prioritised assays were used in a 2 out of 3 approach (run in order of
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KEs in theAOPunless theywere de-prioritised by the exclusion criteria) to predict the
hazard (sensitiser/non-sensitiser). The potency of chemicals assigned as sensitisers
is then predicted using a similar mechanistic read across process within a structural
alert as described previously, except now considering both known human skin and
mouse skin sensitisation data for analogue chemicals (Fig. 3.2).

The DA accurately predicted skin sensitisation hazard when compared against
both LLNAdata and human data (85%DAvs. LLNA; 86%DAvs. human) indicating
that the DA can predict both species equally well. Furthermore, the DA is more
predictive of human skin sensitisation (86% accuracy—DA vs. human) than the
LLNA (81% accuracy—LLNA vs. human) for the dataset analysed (Table 3.3).

TheDAcorrectly predicted theBasketter potency category (5 categories: 1–4, 5/6)
for 59% and the GHS classification (three categories: 1A, 1B, no category) for 73%
of the evaluation dataset when compared to LLNA data. When compared against
human data, the DA correctly predicted the Basketter potency category for 68% and
the GHS classification for 76% of the dataset, respectively (Table 3.4). The DA was
also shown to predict both classification methods for human data more accurately
than the LLNA (DA vs. human, 68% Basketter and 76% GHS; LLNA vs. human,
54% Basketter and 65% GHS).

3.5 Enabling Expert Review

Whilst in silico tools can provide accurate predictions in isolation [24, 25], expert
review adds significant value to the accuracy of the conclusions drawn [26–29].
There has been considerable effort to delineate the types of information that should
be considered when carrying out expert review of in silico predictions, particularly
for the endpoint of mutagenicity [24, 30–33].

Knowledge of inadequacies in the test system being modelled as well as the argu-
ments associated with the data used to generate the prediction should be considered
when carrying out expert review. Analysis of the results presented, bearing in mind
strengths and limitations associated with different modelling techniques, is also an
important factor in the assessment of the predictions generated.

Therefore, it is important that any prediction systems employed in this context
provide enough detailed information about how the prediction was derived so that
they can be probed by the expert user to support the overall decision theymake. Some
general considerations which should be made during the expert review process and
the information that should be provided by the predictive system to allow for this
analysis are:

1. Limitations of the test being modelled
2. Relevance and adequacy of the data used to make a prediction
3. Similarity of the query compound to the compounds used to make the prediction
4. Coverage of any potential toxicophores
5. Causality of any toxicophore identified
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6. Generality of any toxicophore identified
7. Limitations of the software being used.

If a model is being generated based on data coming from an in vitro or in vivo
assay linked to an ultimate toxicity endpoint, the limitations of the assay should
be considered either as part of the model building process or, more likely, during
expert review [32, 34, 35]. For example, there are a minority of compound classes
for which the (in vitro) Ames mutagenicity assay may not reflect the true DNA
reactivity and consequently the hazard may be over- or underestimated. Models
produced from these data will not, therefore, reflect the true (in vivo) carcinogenicity
hazard caused by the compounds. Amberg et al. have highlighted the fact that the
Ames test may over- or underestimate the mutagenicity of compounds containing
the acid halide group depending on the solvent chosen to carry out the test [32, 36].
Water would hydrolyse the acid halide deactivating it to a carboxylic acid, whereas
dimethyl sulphoxide (DMSO) would react directly with the acid halide producing
halodimethyl sulphides which then act as the DNA-reactive species. To get accurate
results for this compound class, the compounds should be tested in an inert solvent
such as acetonitrile.

The in silico prediction should be transparent enough that the user can interrogate
the data on which the prediction is based. It is important that the data supporting
each prediction can be probed to the lowest captured level, to allow for adequate
assessment of theweighting of this evidence.Any inadequacies in the testing protocol
of the data being used to make the prediction should be noted during expert review
[33]. This is particularly important for data points which are pivotal for the prediction
beingmade, and as a consequence the in silico prediction system should identify those
key compounds used to make the prediction and their relative weighting.

Many in silico prediction systems account for the ability of the model to make
accurate predictions based on the similarity of the predicted structure to the training
set chemicals, by employing an applicability domain and/or confidence metrics. In
some cases, these machine-generated boundaries may not be as good as a human
in assessing the relevance of the data used, and the adequacy of the extrapolation
should always be assessed by the expert as part of the review process [33]. Again,
this requires that the data supporting the derivation of the model and the training set
compounds should be provided, with the prediction, for assessment.

Where a potential toxicophore has been identified and a negative prediction has
been made, it is important to determine whether the toxicophore has been assessed
adequately by the model and that the factors negating it are appropriate [30]. If the
toxicophore has been considered and the negating factors are acceptable, then the
prediction can be upheld. However, if the toxicophore was not considered or the
negating factors are not relevant, then the prediction may have to be overturned. As
a consequence, the in silico prediction should provide some information relating to
the chemical space covered and when a potential toxicophore may not be adequately
covered (e.g. themisclassified and unclassified features inDerekNexusmutagenicity
and skin sensitisation predictions, and the overturned hypotheses in Sarah Nexus
[37]). Where structural alerts are being used to make a prediction, it is also useful to
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provide information and a rationale behind any exclusions along with the associated
alert.

There are some common limitations with statistical approaches which should be
considered during expert reviewwhere such a system is being used. These predictions
usually deal with association and do not assess causation. As a result, any positive
prediction made by the system should be checked with a view towards assessing the
likelihood that the feature identified in the query compound is the one likely to be
causing the positive result in the compounds used to make the prediction and that
activity of these compounds cannot be attributed to other features not present in the
predicted structure [24, 30, 33]. The in silico prediction should, therefore, provide
information about the toxicophore identified in the query structure as well as the
training set examples which also possess this feature in order to allow for analysis
of whether the feature attributed to toxicity is likely to be causative.

Many in silico prediction systems employ SARs based on structural alerts. It is
important to note that these alerts can sometimes be very general and, as a result,
specific substitution patterns representing steric or electronic factors which may
negate the hazard caused by the toxicophore may be missed [24]. For example,
structural alerts for mutagenicity based solely on broad toxicophores, such as those
proposed by Ashby and Tennant [1], will fail to take into consideration mitigating
factors that mean many compounds belonging to these structural classes do not show
mutagenic activity [38]. For these types of alerts, expert review should be carried out
to assess steric or electronic factors which may influence the activity of the training
set compounds, and the query compound. The scope of any alert activated should
be provided to allow the user to assess how broad the coverage of the alert is, along
with a rationale for the scope of the alert.

Some consideration should also be given to limitations of the software being used
tomake the predictions. For example, in order that an accurate prediction bemade for
a query compound, it is important that the structure is represented in the same way
as those used to build the model. Standardisation of the structures should, therefore,
be carried out in the same way in both cases to produce accurate predictions. If this
standardisation is not carried out automatically by the system, then it must be done
manually before making the prediction.

3.6 Modelling Complex Endpoints

The prediction of outcomes for complex endpoints, following oral exposure to
a chemical, presents new and different challenges. Additionally, the influence of
ADME factors requires a deeper consideration, which can be illustrated by several
questions, e.g.

1. Is the chemical stable in the gastrointestinal tract?
2. Will the chemical be absorbed?
3. Will first-pass metabolism detoxify the chemical?
4. Will the chemical be metabolised to a reactive species?
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5. Will the chemical (or any metabolite) generate a molecular initiating event?
6. Will the chemical show high levels of protein plasma binding?
7. Will the chemical be ‘quickly’ cleared from the body?

Each of these processes will have a unique structure–activity relationship
(SAR—which may be increasingly granular, e.g. interactions with specific trans-
porters), which is masked by the apical endpoint data. For example, if a chemi-
cal is classified as ‘not hepatotoxic’ based on experimental data—is this because
the chemical does not ‘activate’ an MIE, or because it is not absorbed or quickly
excreted? From this, it becomes obvious that summary data from apical endpoints is
an oversimplified summary of the biological reality. Additionally, factors that pro-
mote activity in some of the component models could curtail activity in another. For
example, the addition of a methyl group to an arene-containing chemical creates a
potential ‘metabolic hook’ which can lead to the generation of reactive metabolites,
whereas the same methyl group attached close to a reactive moiety can deactivate
this by preventing access to a biological nucleophile, such as DNA, through steric
blocking. Moreover, to model all these processes to the fine detail required to make
accurate predictions requires much data. If in silico models of mutagenicity are now
based on greater than 10,000 chemicals, how much data would be required to create
broadly applicable models of more complex apical endpoints to a similar level of
precision? This is without considering the increasing heterogeneity within the data
when moving away from reproducible standardised assays.

Hence, to accurately model multifactorial endpoints such as hepatotoxicity, ide-
ally the multiple SARs that relate to the multiple processes leading to the high-level
outcomes to activity or inactivity need to be accounted for. This would enable per-
suasive arguments to be made; e.g., a chemical is predicted to be hepatotoxic (due to
cholestasis) because it blocks the bile salt export pump (BSEP) channel as well as
being straightforward to validate (e.g. in this case by running a BSEP assay).

Some of the complication inherent in complex global models can be rectified by
using local models. However, local models are designed to only predict the activity of
a narrow series of congeneric chemicals and lack general applicability. A knowledge
base containing a series of structural alerts is, in effect, a collection of local models
which obviates the problem of applicability. Structural alerts can be designed to be
activated by a given chemical class operating through a singleMIE, taking account of
heterogeneity in the training data [39]. Thus, one method which has been employed
to model in vivo endpoints is through extrapolation of alerts from a related in vitro
endpoint that share a common MIE. This has been demonstrated with some success
for the chromosome damage endpoint [40], though the resulting alerts still carry the
complication of additional ADME factors.

With respect to creating SARs for complex endpoints, there are several models
available which use available in vivo data to predict potential liabilities for new
chemicals. Inmany of these cases, the toxicophoreswere identified either statistically
[41] or by an expert [42]. In other cases, automated clustering followed by human
evaluation where the relevance of statistically determined toxicophores was assessed
by an expert and/or by searching public literature for mechanistic evidence has been
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presented [43–45]. Despite the relativity high sensitivity of these models for the
training sets, their performance for independent test sets was often low.

QSARmodels using histopathologydata have beenpublished for liver andnephro-
toxicity [46]. However, the performance of these models (with initially high sensi-
tivity and specificity against external test sets) dropped when subsequently validated
with new data [46]. This and earlier examples indicate that currently global QSAR
models for complex endpoints have limited coverage of relevant chemical space.

As knowledge of different mechanisms leading to organ toxicity increases, it is
increasingly being presented in the form of AOPs [47]. There are several in vitro
assays that measure MIEs or KEs for some endpoints (e.g. BSEP inhibition, mito-
chondrial toxicity, etc.). The output of these assays in the form of activity towards a
specific target can be used as indicators of whether events on anAOP are likely or not.
A battery of the assays describing a selection of the key mechanisms in combination
with daily dose (and covalent binding to proteins) has been shown to be useful in
identification of potential hepatotoxic liabilities of compounds [48]. However, this
approach somewhat lacks comprehensive coverage for an AOP, as it is limited to a
selection of mechanisms. As the array of mechanistically derived tests develops, it
should lead to a wider coverage of MIEs and KEs for each AOP.

Several publications describe approaches for modelling various MIE models,
where the physicochemical properties of chemicals [49] or structural information
in combination with multitarget bioactivity [50] are used. The bioactivity data for
the modelling is obtained from in vitro assays, that can be used to derive SARs or
for machine-learning algorithms. Different approaches for using this data have been
adopted: whilst in some cases all available data was utilised, in other cases only a sub-
set of assays that were assumed to be relevant for the adverse outcome were taken
into consideration. For example, from the available in vitro high-throughput data
generated in the ToxCast project, data from only nine MIE endpoints (peroxisome
proliferator-activated receptor (PPAR) alpha, PPAR beta, PPAR gamma, constitutive
androstane receptor, pregnane X receptor, aryl hydrocarbon receptor, liver X recep-
tor, nuclear factor (erythroid-derived 2)-like 2, farnesoid X receptor) was used to
develop random forest models for MIEs relevant to hepatic steatosis [51]. Similarly,
when creating a liver cholestasis model, the authors utilised existing knowledge and
selected data for the inhibition of hepatic transporters (BSEP, breast cancer resis-
tance protein, P-glycoprotein, organic anion transporting polypeptide(OATP)1B1
and OATP1B3) previously shown to disrupt the bile flow [52]. In other cases, when
data from a high number of in vitro assays was applied, the predictive capacity of
almost all models (regardless of the algorithm) was improved when combined with
structural information about the chemical itself [53]. This was exemplified for the
hepatotoxicity endpoint [54], with a similar outcome for other organ toxicities [55].

Other types of data, such as those from gene expression studies, are also becoming
more accessible and have been used for predicting organ toxicity in a systems biology
approach [56], or to generate machine-learning models [57].

Utilising in vitro assays data for building (Q)SARmodels enables the prediction of
possible liabilities for a newchemical; these globalmodels for individualMIE/KEs or
apical endpoints are likely to ‘catch’ potential intrinsic toxicities of compounds and
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can be used for prioritisation during drug development. It is important, however, to
understand the coverage of the chemical space of eachmodel, to ensure that generated
predictions are reliable. To enable the prediction of idiosyncratic toxic effects, the
variability amongst individual protein/enzyme levels, expression and activity in the
target population should be considered [58].

3.7 Conclusion and Future Directions

Structural alerts provide much more than a simple binary prediction of toxicity haz-
ard. Firstly, they can also be used to form mechanistic chemical categories within
which quantitative read across predictions can be made. Secondly, the additional
expert knowledge housed within an expert system can be used to prioritise in
chemico/ in vitro testing by considering the applicability of each individual infor-
mation source. Thirdly, the generated data can then be combined with all of the in
silico information in a weight of evidence approach to arrive at a final conclusion
about the hazard potential and/or potency of a chemical of interest.

The use of in silico methodologies as decision support tools is now common
practice for certain toxicity endpoints. The relative success of these tools has unveiled
further challenges relating to interpreting and applying the results of models. The key
issues going forward for all these models, with respect to the regulatory context, are
how to guide the appropriate use of these techniques, and to provide an appropriate
level of interpretation for the results they produce to instil familiarity and confidence
in their use. The use of the AOP framework as a construct to arrange models and data
provides one way to tackle such challenges, whilst helping to focus the development
of new tests to support the mechanistic requirements.
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Chapter 4
Matrix and Tensor Factorization
Methods for Toxicogenomic Modeling
and Prediction
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and Pekka Kohonen

Abstract Prediction of unexpected, toxic effects of compounds is a key challenge in
computational toxicology. Machine learning-based toxicogenomic modeling opens
up a systematic means for genomics-driven prediction of toxicity, which has the
potential also to unravel novel mechanistic processes that can help to identify under-
lying links between the molecular makeup of the cells and their toxicological out-
comes. This chapter describes the recent big data and machine learning-driven com-
putational methods and tools that enable one to address these key challenges in com-
putational toxicogenomics, with a particular focus on matrix and tensor factorization
approaches. Here we describe these approaches by using exemplary application of a
data set comprising over 2.5× 108 data points and 1300 compounds, with the aim of
explaining dose-dependent cytotoxic effects by identifying hidden factors/patterns
captured in transcriptomics data with links to structural fingerprints of the com-
pounds. Together transcriptomics and structural data are able to predict pathological
states in liver and drug toxicity.
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Abbreviations

ARD Automatic Relevance Determination
CCLE Cancer Cell Line Encyclopedia
CMap Connectivity Map
CP Canonical decomposition and Parallel factor analysis
DILI Drug-induced liver injury
FA Factor Analysis
FCFP Functional Connectivity Fingerprints
FDA Food and Drug Administration
GFA Group Factor Analysis
GI50 50% Growth Inhibition
IPA Ingenuity Pathway Analysis
LC50 50% Lethal Concentration
LDA Latent Dirichlet Allocation
LINCS Library of Integrated Network-Based Cellular Signatures
MF Matrix Factorization
MoA Mode of action
MTF Multi-tensor Factorization
NCI National Cancer Institute
PCA Principal Component Analysis
PTGS Predictive Toxicogenomics Space
QSAR Quantitative Structure–Activity Relationship
TF Tensor Factorization
TGI Total Growth Inhibition

4.1 Introduction

Cellular responses to drugs and other chemical compounds are increasingly being
measured at multiple levels of detail and resolution. For instance, ex vivo toxicity
measurements summarize the phenotypic responses in human primary cells [1, 2],
while profiling of genome-wide transcriptomic responses opens up a system-level
view to the compounds’ mode-of-action (MoA) mechanisms. The study of relation-
ships between genome-wide genomic or molecular responses of the cells to exposure
to substances and the corresponding toxicological outcomes is referred to as tox-
icogenomics. Understanding these complex relationships can not only identify the
molecular mechanisms behind toxicity but also suggest ways to avoid toxic effects
in medical or other applications [3–7]. Toxicogenomics may be especially pertinent
for analyzing data from cellular assays, and for reducing and eventually replacing
the use of animal experiments for toxicity testing during drug development, also
referred to as 3R approaches [3, 4, 6]. The reductions in the costs of genomics and
transcriptomic assays are enabling factors toward 3R as well [6, 8].
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In vitro toxicological outcomes are often based on large-scale compound response
profiles, which summarize the responses in a particular cell context. For instance,
NCI-60 developmental therapeutics program uses several metrics to quantify dose-
responses to a library of thousands of compounds across a panel of 59 human tumor
cell lines; such summary metrics include: GI50 (50%Growth Inhibition), TGI (Total
Growth Inhibition), and LC50 (50% Lethal Concentration) (https://dtp.cancer.gov/
discovery_development/nci-60/). In such a high-throughput setting, the computa-
tional task is to search for patterns of toxicity outcomes in correlation with genomic
and molecular profiles of the same panel of cell lines. However, cytotoxicity is not
a biologically uniform response. Cells use multiple mechanisms that depend on the
chemical or drug and the dose at which it is applied to respond to and counter the
effects of stressors. Transcriptomic profiling and subsequent analyses using compo-
nent modeling approaches discussed herein can segment these responses into bio-
logically intelligible and explainable sub-responses, while also providing predictive
models.

Therefore, advances in machine learning methodology allow study of toxicoge-
nomic relationships in a more systematic fashion and reveal valuable drug-gene
associations. For instance, community efforts have shown great promise to improve
in silico predictions of drug sensitivity [9]. In another effort [10] carried out a person-
alized quantitative structure–activity relationship QSAR analysis by integrating gene
expression, drug structures, and drug response profiles using a non-linear machine
learning approach. Their study demonstrated the possibility to predict the drug sensi-
tivity outcome for untested drugs even in new cell types. drug-pathway associations
can be identified using advanced machine learning methodologies that model the
complex molecular interactions [11]. Recently, integrative multitask sparse regres-
sion methods have been used to systematically identify biomarker combinations for
predicting drug outcomes [12]. Increasing evidence from recent studies thus poses
the hypothesis that common patterns in the activity profiles of genes and sensitiv-
ity/toxicity profiles of drugs can identify cellular response mechanisms and could be
used even in predicting the tissue type or cell context-specific toxicity outcome of
drug treatment.

This chapter is organized as follows: Sect. 4.2 introduces representative classes of
recent machine learning methods, with a specific emphasis on the matrix and tensor
factorization methods. Section 4.3 demonstrates the application of these methods to
identification of toxicogenomic relationships in example case studies, followed by
a discussion in Sect. 4.4. Section 4.5 concludes the chapter with current limitations
and future directions in these developments.

4.2 Machine Learning Methods

Machine learning algorithms search for patterns in data to extract useful information
[13, 14]. These algorithms learn a representation a.k.a. the model from existing data
samples and then utilize the model in different tasks. When applied to experimental

https://dtp.cancer.gov/discovery_development/nci-60/
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data, themodel formulation and learning processes take into account various forms of
inherent noise and corruptions in the measurements to learn a cleaner representation
of the data. In toxicogenomics, similar to many other real-life applications, data is
expected to be noisy and high dimensional, contains missing values, and may also
include correlated variables, which all make direct analysis complicated [15]. In
such cases, the key feature of machine learning is to identify a low-dimensional,
hidden representation that captures and summarizes the relevant information for the
toxicogenomic modeling task. These summaries can then be used to understand the
compound’s MoA and/or predict the cellular outcomes of the drugs in different cell
contexts.

4.2.1 Matrix Factorization

Inmachine learning,matrix factorization (MF) is awell-established approach to sum-
marize a data set through unobserved features that explain why some parts of the data
are similar. MF has applications in broad range of scientific domains, and it is widely
used in several applications, including prediction of missing values, dimensionality
reduction, as well as data visualization [16, 17]. This wide applicability comes from
the assumption that MF can be seen as a means of describing the underlying pro-
cesses which generated the data. Specifically, MF assumes that measurements have
been produced by a combination of a number of latent processes and aims to identify
the factors (a.k.a. components) that describe these processes. Figure 4.1 shows a
visual illustration of matrix factorization, where a matrixX is factorized into distinct
low-dimensional components. This component decomposition is valuable for many
applications, as the different components can be related to separate mechanisms that
may have contributed to the data. Several matrix factorization methods have been
proposed for various applications, including factor analysis (FA), principal compo-
nent analysis (PCA), and Latent Dirichlet Allocation (LDA, see Sect. 2.2) [18–20].
While FA and PCA are designed for continuous data sets, LDA is formulated for
discrete data sets.

Fig. 4.1 Visual
representation of matrix
factorization. The data
matrix X is factorized into
low-dimensional matrices Z
and W that capture the key
statistical patterns in the data
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4.2.2 Latent Dirichlet Allocation

The Latent Dirichlet Allocation (LDA [20, 21]) is a probabilistic formulation of
factorization for discrete data sets. Formally, it is a three-level hierarchical Bayesian
model thatmodels the probabilities of each input feature to appear in each component.
The Dirichlet distribution is a multivariate probability distribution used in LDA to
mitigate overfitting and to helpLDAto achieve its generalizability beyond the training
data. LDA has demonstrated wide applicability in natural language processing, as
text data sets can directly be encoded as discrete variables [22–24] as well as in
genomic data sets [25–27].

4.2.3 Group Factor Analysis

Group factor analysis (GFA [28, 29]) is a recent machine learning method designed
to capture relationships between multiple data sets. GFA models the relationships as
statistical dependencies by reducing multiple data sets (also known as views) to learn
a joint low-dimensional representation. The joint representation of the data sets is
characterized by components that may be active in one or several of the data views as
shown in Fig. 4.2. An active component captures underlying relationships between
the views inwhich it is active. For example, the active component of all views captures
a common dependency structure between all views, while a component active only in
a single view identifies the variance and features unique to that particular view only.
GFA learns the components and their activity patterns in a truly data-driven fashion,
making it possible to comprehensively capture the interdependencies between all the
data views. An easy to use implementation of GFA has been made freely available
as an R-package [30].

Formally, for a given collection ofM data setsX(m) ∈ RN×Dm wherem = 1…M,
having N paired samples and Dm dimensions, GFA learns a joint low-dimensional
factorization of theM matrices. Themodel is formulated as a product of the Gaussian
latent variable matrix Z ∈ RN×K (containing the K components) and view-specific
projection weights W(m) ∈ RDm×K :

x(m)
n ∼ N

(
W(m)zn,

∑(m)
)

,

zn ∼ N (0, I)

w(m)
d,k ∼ hm,kN

(
0,

(
α

(m)
d,k

)−1
)

+ (
1 − hm,k

)
δ0

hm,k ∼ Bernoulli(πk)

πk ∼ Beta(aπ , bπ )
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Fig. 4.2 Visual representation of group factor analysis. GFA factorizes a set of data matrices X(1),
X(2) … X(m), into their joint low-dimensional factors Z. The factors can be active in one or more
data matrices through the projection matrices W(1), W(2) … W(m). The W’s are learned to hold
a group-wise sparse structure that models the dependency patterns across the data matrices. The
sparsity is illustrated by white color which represents zero weights, while shaded color represents
nonzero values in the figure

α
(m)
d,k ∼ Gamma(aα, bα)

Here,
∑(m) is a diagonal noise covariancematrix. The latent variable zn is common

between all the views and captures the response patterns. The projection matrices
w(m)

:,k are specific to each view and translate the dependency patterns across views.

GFA achieves the joint factorization by assuming that the projections w(m)
:,k are

group-wise sparse. The group sparse projections w(m)
:,k capture both group-specific

variations (activity displayed only in one view) as well as dependencies between
multiple groups (activity in more than one view). The sparsity is implemented in two
layers through a group-wise spike and slab prior formulation using Beta-Bernoulli
distribution [29] and an element-wise normal-Gamma Automatic Relevance Deter-
mination (ARD) [31]. As a result, the project matrices W(m) are both group and
feature-wise sparse, which is compatible with the biological assumptions of targeted
action mechanisms making the results easier to interpret.
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4.2.4 Tensor Factorization

A tensor is a multidimensional arrayX ∈ RI1×I2×...×I j and a generalization of matri-
ces and vectors to higher order spaces. Tensors are therefore useful for representing
data that has more than two dimensions. Such representation allows investigation of
relationships that span multidimensional constructs. Mathematically, a tensor is also
commonly defined as an element of space induced by the tensor product of vector
spaces.

In order to capture the highly structured patterns of a multidimensional data set,
tensor methods employ constrained formulations that help to avoid the overfitting
problem [32]. A key characteristic of these tensor formulations is that they have fewer
parameters than their matrix counterparts. Analogous to matrix factorizations pre-
sented in Sect. 4.2.2, there exist several tensor factorization methods that can be used
to discover underlying dependencies in the data [32]. CANDECOMP/PARAFAC
(CP; [33, 34]) and Tucker family [35] are the most widely used tensor decomposi-
tion methods. The interested reader is referred to [32] for a comprehensive review
of various tensor factorization methods.

Tensor factorizations have obtained significant success in a large number of
domains, including chemometrics, psychometrics, bioinformatics, and have shown
immense promise for advanced applications in toxicology and toxicogenomics. For
example, tensor factorization has been used to explore stimuli-variant gene expres-
sion patterns [36], as well as in integrating phenotypic responses from multiple
studies [37, 38], modeling dependencies between metabolic and gene expression
networks [39], as well as in joint QSAR and toxicogenomic analysis [40, 41].

CP factorization, also known as the canonical decomposition or parallel factor
analysis [33, 34], is the most widely used tensor factorization method. CP is a natural
extension of matrix factorization to arrays of order 3 or more as shown in Fig. 4.3.
The method can be seen as carrying out simultaneous factor analysis on multiple
slabs (matrices) of a tensor such that the factors of each slab differ just by a scale. CP
factorization is defined in a symmetric fashion over all themodes, such that a tensor is
decomposed into a sum of rank-one tensors, where each rank-one tensor is the outer
product of the latent vector in all modes. For a third order tensor X ∈ RN×D×L , a
rank-K CP is represented as:

Fig. 4.3 Visual
representation of CP
factorization of a third order
tensor. The data tensor X is
factorized into
low-dimensional matrices Z,
U, and W that capture the
key statistical patterns in the
data
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X =
K∑

k=1

zk ◦ wk ◦ uk + ε

where Z and U and W are the latent variables corresponding to the three modes.
Several implementations of CP factorization have existed for quite some time now,

for example, the seminal implementation by Andersson and Bro [42]. Recently, CP
and other factorizations have gained substantial interest among the machine learning
community [43, 44], since recent developments addressed several methodological
challenges posed by multi-way data sets. More recently, an easy to use probabilistic
implementation of CP was presented by Khan and Ammad-ud-din [45]. The imple-
mentation automatically handles missing values in the data, hence making it applica-
ble to a wide selection of real-world data sets. It also features automatic component
selection as well as visualization and prediction routines making both exploratory
and predictive analytics easier.

4.2.5 Multi-tensor Factorization

Multi-tensor factorization (MTF [40, 41]) is a newmachine learningmethod designed
to capture relationships between a collection of tensor data sets. MTF jointly factor-
izes multiple tensors to learn a joint low-dimensional representation that models the
statistical dependencies between the tensors. Interestingly, MTF considers matrices
as tensors of order two, thus enabling joint factorization of both matrices and tensors.
This characteristic makes it possible to analyze novel data sets composed of matrices
as well as tensors in a single joint analysis.

MTF is designed to factorize multiple co-occurring data sets, with the objective of
distinguishing the shared and specific components regardless of their matrix or tensor
nature. This is achieved by modeling the entire variation of all data sets through a
common Factor analysis and CP-type factorization having two keys features. First,
the factorization is characterized by latent variables Z that are common between
all the views (tensor and matrices). This allows the factorization to capture cross-
dependencies regardless of the data view. Second, the loadingsW controls which of
the patterns in Z are active in each of the views. Learning these W loadings makes
it possible to identify the dependency patterns in a truly data-driven fashion without
any prior information on dependency patterns.

Formally, for multiple paired tensors X (t) ∈ RN×Dt×L , where t = 1…T, we
specify a joint model of matrices and tensor. An indicator variable β t identifies the
tensors (β t = 1) andmatrices (β t = 2),MTF is formulated using normal distributions
and conjugate priors as:

x(t)
n,dt ,l

∼ N (
zn,k .wdt ,k .ul,k, (τ

(t))−1
)

Z,U(t) ∼ N (0, I)
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w(t)
d,k ∼ ht,kN

(
0,

(
α

(t)
d,k

)−1
)

+ (
1 − ht,k

)
δ0

ht,k ∼ Bernoulli(πk)

πk ∼ Beta(aπ , bπ )

α
(t)
d,k ∼ Gamma(aα, bα)

τ (t) ∼ Gamma(aτ , bτ ).

Here, the latent variables Z and U are common to all the tensors and capture the
underlying patterns, while W(t) translate these patterns for each tensor. The binary
variables ht,k control the view activity through a spike and slab prior and are automat-
ically learned from the data. The model also enforces feature-wise sparsity through α

to learn sparse features that are easier to interpret. Themethod is implemented using a
Gibbs sampler inR programming language andmade available freely (http://research.
ics.aalto.fi/mi/software/MTF). The implementation learns the model parameters in a
Bayesian formulation, while providing default settings for all the hyperparameters.

4.3 Selected Case Studies

4.3.1 Toxicogenomic Data Sets

The toxicogenomic tools described in this chapter are primarily built upon the Con-
nectivity Map (CMap) and NCI60 data sets. CMap, introduced by the US Broad
Institute, is a compendium of gene expression response profiles from 1309 small
molecules comprisingmostlyFDAapproveddrugs ([46]; https://www.broadinstitute.
org/connectivity-map-cmap). The post-treatment measurements originated from
three main cancer cell lines spanning different tissues or cell types, namely, breast
(MCF7), prostate (PC3), and blood (HL60). CMap has been widely used to study
interactions between small molecules, genes, and diseases for various purposes
including understanding the drug MoA, identifying biologically similar compounds
as well as molecular mechanisms of toxicity. The treatment versus control differ-
ential gene expression (log2 readout) was obtained from the CMap data set, such
that positive expression values represent up-regulation and negative represent down-
regulation as a result of treatment [4].

TheNCI60 is a uniquedata repository from theUSNationalCancer Institute (NCI)
that screened thousands of compounds over 59 cancer cell lines to provide mea-
surements of drug responses (Shoemaker 2006; https://dtp.cancer.gov/discovery_
development/nci-60). Drug response metrics include GI50 (50%Growth Inhibition),
total growth inhibition (TGI), andLC50 (50%Lethal Concentration). A large number

http://research.ics.aalto.fi/mi/software/MTF
https://www.broadinstitute.org/connectivity-map-cmap
https://dtp.cancer.gov/discovery_development/nci-60
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of common compounds tested in CMap cell lines were also profiled by the NCI60
program. This presents the unique opportunity to study toxic effects by integrating
these two large-scale data sets (see Sect. 4.3.3). For each CMap drug-cell pair which
was also screened byNCI60, a dose-dependent toxicity scorewas computed such that
positive values indicated that the CMap instance is profiled at a drug concentration
higher than GI50, TGI, or LC50, and therefore suggest a dose-dependent cytotoxic
response.

4.3.2 Multi-view Toxicogenomic Using Group Factor
Analysis

To study the gene–toxicity relationships, we performed an integrated modeling of
the two data sets, CMap and NCI60. The CMap data comprised detailed gene level
differential expression profiles that represent the molecular response space across
11,350 genes, measured after 222 drug treatments across 3 cell lines. These data
were preprocessed as previously described [47]. To focus the analysis, the 1106
highest variance genes were selected to form an expression matrix consisting of 222
drug-cell samples ×1106 genes. The toxicity values described in Sect. 4.3.1 were
used to represent profiles of 222 drug-cell samples ×3 toxicity measures.

Group factor analysis (GFA) is designed to model the relationships between mul-
tiple data sets. Here, GFA was used to identify the toxicogenomic dependencies
between drug-induced gene expression changes and toxicity scores. These depen-
dencies, once identified, can elicit insights into molecular mechanisms of toxicity.
GFA was run with large enough components as specified by Virtanen et al. [28],
identifying 8 shared components that capture cross-expression and toxicity relation-
ships, as shown in Fig. 4.4, whereas a number of components found were specific to
one of the data sets only. The shared components model the dependencies between
the data sets while those specific to gene expression capture patterns that are not
correlated with toxicity and vice versa. The components 1 through 8 had varying
numbers of genes attached to them: 518, 748, 39, 90, 27, 45, 16, and 20. The first
two components included an excess of up-regulated genes (component 1:316) and
down-regulated (component 2:706) genes, respectively.

Functional analysis of the eight components was performed with Ingenuity Path-
wayAnalysis (IPA)which indicated that the first two components captured the largest
number of biological mechanisms. The first component is highlighted here, as up-
regulated genes are most informative for biomarker analysis applications (Fig. 4.5).
Component 1 enriched for many organ toxicity-related gene lists, including hepatic
cholestasis and liver necrosis as well as functional pathways related to oxidative
stress, the p. 53 pathway activation and Nf-kappa B signaling and Toll-like recep-
tor (TLR) activation. RELA, the NF-kappa B regulator, was predicted to be most
clearly effected (p < 10–16 and Z-score 3.5). Others included the TP53 (p < 10–10,
Z > 1), TLR-related ECSIT (p < 10–15, Z > 3.5), and NR3C1 (p < 10–14, Z < −05),
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Fig. 4.4 Toxicogenomic component activity plot. The plot shows the components that are found
by the GFA model as active in the joint gene expression and toxicity data set. The y-axis shows the
component number in ascending order while the x-axis shows the two data sets. The components
colored black are active. The model was run for K = 40 components and a total of 8 components
(bottom black in both gene expression and toxicity) are found as shared between the two data sets.
These components capture statistical patterns that are correlated across the two data sets and hence
can be hypothesized for representing molecular mechanisms of toxicity

supporting the role of NF-kappa B signaling and the Toll-like receptor activation for
component 1. The GFA model identified related drugs across all three cancer types,
hence suggesting a generic response of the drugs.

The second component included many cell cycle-related genes, as could be
expected for a component which mainly contained down-regulated genes. Similar
pathways were found activated among the 14 predictive toxicogenomic space PTGS
components derived using the LDA analysis, and there is an average of almost 40%
overlap between the PTGS genes and the GFA genes [4]. It is interesting to note
that the first two GFA components were much larger than the other six, whereas the
PTGS components had more equal numbers of genes that were significantly asso-
ciated with them. Further studies would be needed to verify the utility of the GFA
components for toxicity-mode-of-action studies, including biomarker discovery and
drug-induced liver injury (DILI) prediction.

4.3.3 Structural Toxicogenomic Using Multi-tensor
Factorization

Toxicogenomic applications can be extended to simultaneously include a quanti-
tative structure activity response (QSAR) analysis, by modeling the dependencies
between cellular responses of drugs and their structural descriptors. The formulation
can, therefore, explore, identify, and predict genomic responses linked to drugs tox-
icity, while simultaneously discovering their cancer specificity and correspondence
to structural properties of the drugs.

Data collection for such analysis can be represented as a set of multiple tensors
and matrices. In this example, we specified two tensors and one matrix. The post-
treatment gene expression data fromCMapwas represented as the first tensor of drugs
times cancers times genes dimensions.Multiple toxicitymeasures such asGI50, TGI,
and LC50 from the NCI60 formed the second tensor of drugs times cancers times
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Fig. 4.5 First shared component found by GFA. The plot shows the gene expression profiles of
the top genes for the top drugs of the component across the three cancer cell lines (MCF7, PC3,
and HL60). Red represents up-regulated expression while blue is down-regulated expression. The
correspondingly active toxicity profiles of the same drugs are shown on the right. Here green
represents high dose-dependent toxicity values

toxicity measures. Finally, the structural properties of the drugs were represented as
a matrix of drugs times descriptors.

The expression and toxicity data sets from CMap and NCI60 were processed as
described in [4]. For drug structures, the modeling could make use of one or more
different types of structures based on the hypothesis being tested; for example [48]
used both 3D descriptors and 2D fingerprints of the drugs for structure response
analysis. In this example, functional connectivity fingerprints FCFP4 were used for
representing the structural properties of the drugs. FCFP4 are advanced 2D circular
topological fingerprints that have been designed for modeling of structure–activity
relationships.

The multi-tensor factorization (MTF) method of Sect. 4.2.3 [41] was used to
explore the structural toxicogenomic relationships. The model identified three key
response components that are shared between gene expression, toxicity, and struc-
tural data sets, revealing findings that are both recently established as biological
insights, as well as new biological discoveries that may have potential impact. The
first component identified a response primarily driven by three heat shock protein
(HSP) inhibitor drugs, geldanamycin, tanespimycin, and alvespimycin, all of which
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are structurally analogous drugs. The drugs demonstrated an HSP response of the
cells as through up-regulation of key HSP genes. This pan-cancer response across all
three cancers is linked to the toxicity outcomes of the drugs. HSP90 is a molecular
chaperone protein that is essential for stabilization of a variety of other proteins [49],
and HSP90 inhibitors bind to the protein, resulting in its loss of function. HSP90
inhibitors have been evaluated for their therapeutic efficacy in multiple cancers [50,
51]. This component, therefore, presents a well-known HSP90 response of cancer
cells. For details on this and other components, see [41].

4.3.4 Predictive Toxicogenomic Space (PTGS)

Predictive toxicogenomics space (PTGS [4]) is a recent “big data compacting and
data fusion” methodology to model various adverse and toxic outcomes on cellular
and organism levels. A machine learning-based data summarization approach was
applied on a large transcriptomics data set. Thismethodology formed a predictive tool
termed PTGS that used as features over 1000 genes distributed over 14 overlapping
cytotoxicity-related gene space components, as described in [4]. Specifically, a LDA
matrix factorization-based method was applied to the gene profiles from the Con-
nectivity Map data set, and the resulting summarized components were fused with
cytotoxicity data from the NCI-60 cancer cell line screens to generate the PTGS.
The PTGS tool was validated for predicting drug-induced liver injury (DILI) and
liver cytopathological changes by calculating PTGS component scores within three
liver-related subsets of the independent TG-GATEs database [52], being the largest
public toxicogenomics database. It was shown to successfully capture all the studied
liver pathological changes in rats, and in conjunction with human therapeutic drug
exposure levels (Cmax), was able to facilitate the use of cell culture-derived toxicoge-
nomics experiments with human and rat hepatocytes to predict DILI with greater
accuracy than other in vitro methods [4].

4.4 Discussion

Recent advances inmachine learningmethodologies havemade it possible to perform
integrated analysis of the gene expression response data and toxicity profiles directly.
Such detailed analysis offers deeper insights by linking the activity patterns of the
genes directlywith the toxicity responses, and hence enriching the factor components
with detailed interactions. As molecular responses of cancer cells are known to
depend on a multitude of factors, including drug MoA, cell type, and cellular states,
simultaneous modeling of these various factors is beginning to attract attention.
Specifically, in cancer, cells are known to be heterogeneous and respond selectively
to targeted drugs, making it valuable to systematically model the various factors and
segregate responses specific to a particular cancer-type from those which are generic.
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A limitation of current methods is the ability to handle missing values particularly
when considering overlap between different data sets. Compared to many other “Big
Data” study areas, biomedical data is less extensive and containsmoremissing values.
The LDA method used with the PTGS had the advantage that the entire CMap data
set could be used to derive the initial components, whereas the GFAmethod required
at least some overlap between all variables, reducing the amount of gene expression
data used. Tensor factorization methods are even less tolerant of missing values.
Therefore unique methodological considerations and trade-offs apply to each study.

A key outcome of this joint analysis is the ability to predict the toxicity outcomes
of compound treatment. The prediction of unexpected toxic effects is a challenging
and important goal in toxicology. The presented first steps in computational toxicoge-
nomic open up a systematic way for genomics-driven prediction of toxic effects. In
addition, these provide novel mechanistic insights into the links between genomic
measurements of cells and toxicological profiles of drugs. Gene expression response
profiles of drugs present a popular systems-level view, while toxicity profiles sum-
marize the drugs’ phenotypic behavior. Large repositories of gene expression and
drug sensitivity profiles such as those emerging from NCI60, CMap, CCLE, Sanger,
and LINCS profile cellular responses at several levels of detail in a cell context-
specific manner. With the emergence of heterogeneous and partially paired data sets,
joint factorizations are gaining popularity to identify novel dependency patterns, as
well as to design powerful predictive applications [48, 53]. These recent advances in
machine learning, and especially the methods described in Sect. 4.2, enable system-
atic analysis of such large data repositories to provide novel toxicogenomic insights
and predictions.

4.5 Conclusion and Future Directions

State-of-the-art machine learning methods have been presented here for modeling
various toxicogenomic relationships. These advanced computational methodologies
enable integration of disparate, high-dimensional data sources, including but not
limited to omics, drug screening, chemical structures, and drug-targets to achieve
novel toxicogenomic analysis in terms of:

(i) providing means for predicting personalized toxicity outcomes,
(ii) identifying toxic modes of action, and
(iii) enabling quantitative structure activity modeling.

The here presented works suggest novel directions for future analysis. From the
application perspective, matrix and tensor factorization methods can serve to stim-
ulate integrative analysis of various toxicological and toxicogenomic data sets to
suggest novel hypotheses. For example, a joint analysis of omics, toxicity, and drug-
target data sets can help to identify disparate target-driven and toxic molecular mech-
anisms. Integrative analysis with drug-side effect repositories can help draw novel
interactions between disease, side effect, and toxicity mechanisms. From a holistic
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angle, a large-scale analysis may even help us understand the different toxic states
of a cell and the molecular drivers of each cellular state.

While there are limitations in the current analysis, future extensions of the analyses
can advance our knowledge in various directions. First, using detailed drug-target
interactions in the models could help classify the on-target and off-target effects
more reliably; however, a key limitation here is to obtain large-scale standardized
drug-target profiles. Very recently works in standardizing the drug-target interactions
have come up on a large-scale [54] and exploring these for an integrated drug-target-
toxicogenomic analysis would be an interesting future direction. Secondly, a large
majority of toxicity analysis is performed on data originating from cell line panels.
It would be valuable to explore if tissue-specific toxicity profiles are available for a
more robust and practically applicable analysis. Third, organism-level toxicity data
is limited to only a few organisms only; it is important to evaluate how comprehen-
sive such modeling is in general and how widely the results can be applied across
organisms.

In terms of future developments in the toxicology practices, studies, and risk
assessment strategies, we hope the presented works could stimulate the integration
of advanced machine learning models. For example, the methods presented here can
be used to identify themarkers of toxic response toward a data and knowledge-driven
approach for risk assessment.
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Chapter 5
Cardio-oncology: Network-Based
Prediction of Cancer Therapy-Induced
Cardiotoxicity

Feixiong Cheng

Abstract The growing awareness of cardiotoxicities associated with cancer treat-
ment has led to the emerging field of cardio-oncology (also known onco-cardiology),
which centers on screening, monitoring, and treating cancer patients with cardiac
dysfunction before, during, or after cancer treatment. The classical approach cen-
tered on the hypothesis of ‘one gene, one drug, one disease’ in the traditional drug
discovery paradigm may have contributed to unanticipated off-target cardiotoxicity.
However, there are no guidelines in terms of how to prevent and efficiently treat
new cardiotoxicities in drug discovery and development. Novel approaches, such
as network-based drug-disease proximity, shed light on the relationship between
drugs and diseases, offering novel tools for risk assessment of drug-induced car-
diotoxicity. In this chapter, we will introduce an integrated, network-based, systems
pharmacology approach that incorporates disease-associated proteins/genes, drug-
target networks, and the human protein-protein interactome, for risk assessment of
drug-induced cardiotoxicity. Specifically, we will introduce available bioinformatics
resources and quantitative network analysis tools. In addition, we will showcase how
to use network proximity for risk assessment of drug-induced cardiotoxicity and
for understanding of their underlying cardiotoxicity-related mechanism-of-action
(e.g., multi-targeted kinase inhibitors). Finally, we will discuss existing challenges
and highlight future directions of network proximity approaches for comprehensive
assessment of oncological drug-induced cardiotoxicity in the early stage of drug
discovery, clinical trials, and post-marketing surveillance.
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ABL1 Abelson murine leukemia viral oncogene homolog 1
AP-MS Affinity purification followed by mass spectrometry
ATC Anatomical therapeutic chemical
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CTD The comparative toxicogenomics database
CV Cardiovascular
CVD Cardiovascular disease
ERBB2 Erb-b2 receptor tyrosine kinase 2
FDA Food and drug administration
FGFR Fibroblast growth factor receptor
GWAS Genome-wide association studies
HER2 Human epidermal growth factor receptor 2
KIT KIT proto-oncogene receptor tyrosine kinase
MeSH Medical Subject Headings
MoA Mechanism-of-action
NCBI National Center for Biotechnology Information
OMIM Online Mendelian Inheritance in Man
PDGFR Platelet-derived growth factor receptor
PDGFRA Platelet-derived growth factor receptor A
PDGFRB Beta-type platelet-derived growth factor receptor
PheWAS Phenome-wide association study
PPI Protein-protein interaction
QSP Quantitative and systems pharmacology
SNP Single-nucleotide polymorphisms
SRC Proto-oncogene tyrosine-protein kinase Src
TTD Therapeutic Target Database
UMLS Unified Medical Language System
VEGFR Vascular endothelial growth factor receptor
Y2H Yeast two-hybrid
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5.1 Introduction

Cardiovascular disease (CVD) is a leading cause of death and the second leading
cause of mortality and morbidity in cancer survivors after recurrent malignancy in
the USA [1, 2]. Comorbidity between cardiovascular disease and cancer suggests
an underlying shared disease etiology, which can be both genetic and environmental
[3–5]. One critical issue regarding environmental factors is that comorbidity between
cardiovascular disease and cancer is typically associated with various anticancer
treatments [6], including cytotoxic chemotherapies [7], radiotherapy [8],molecularly
targeted therapies [9, 10], and immunotherapies [11, 12]. For example, a growing
number of cancer survivors (>5 million) are exposed with an increased lifetime risk
of anthracycline-induced cardiovascular complications [2, 13].

There are several different mechanisms-of-action (Fig. 5.1) for drug-induced car-
diotoxicities, including both on-target [14] and off-target effects [9, 10]. For example,
previous studies in a genetically engineeredmutant mousemodel have suggested that
the loss of ERBB2 (erb-b2 receptor tyrosine kinase 2) in the heart can lead to heart
failure and increased susceptibility to cardiotoxicity of HER2 (human epidermal
growth factor receptor 2) inhibitors (e.g., trastuzumab) [14]. Most kinase inhibitors
often reveal ‘promiscuous’ profiles [15] via inhibitingmany other kinases rather than
cancer-related targets, resulting in a high risk of off-target cardiotoxicities [16–18].
Furthermore, these reports may only represent the tip of the iceberg for cancer ther-
apies [19]. We believe a key factor in the high risk of cancer treatment-related car-
diotoxicities is the continued adherence to the classical ‘one gene (product), one drug,
one disease’ paradigm in the traditional oncological drug development and regula-
tory reviews [20–22]. For instance, imatinib, the first approved molecularly targeted
agent for the treatment of chronic myeloid leukemia, was reported to bind over 40
different human proteins, which associates with multiple cardiac complications [23,
24]. Ponatinib was approved for chronic myeloid leukemia with a fairly broad label
in the USA; however, later studies reported its cardiotoxicity due to its promiscuous
profiles on multiple kinases, including SRC (proto-oncogene tyrosine-protein kinase
Src), PDGFR (platelet-derived growth factor receptor), FGFR (fibroblast growth fac-
tor receptor), and VEGFR (vascular endothelial growth factor receptor), which now
has led to its restricted use in patients with the BCR-ABL1T315I or in whom other
kinase inhibitors are not effective [16–18].

The growing awareness of cancer treatment-related cardiotoxicities has led to the
emerging field of cardio-oncology (also known onco-cardiology), which centers on
screening, monitoring, and treating cancer patients with cardiac dysfunction before,
during, or after cancer treatment [2, 6]. Furthermore, it is also an exciting field
because there are no guidelines and no available US Food and Drug Administration
(FDA)-approved therapeutics for preventing and treating newcardiotoxicity in cancer
survivors. There is an increasing recognition that our current disease categorization
approaches are inadequate to describe the scope and patient heterogeneity of complex
diseases and understand the mechanism-of-action of therapeutics. Quantitative and
systems pharmacology (QSP) refers to amultidisciplinary approach for the emerging
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Fig. 5.1 A biological hypothesis for the network proximity approach. aA proposed network-based
hypothesis of drug cardiotoxicity under the human protein-protein interactome model. Drug targets
representing nodes within cellular networks are often intrinsically coupled in both therapeutic and
adverse effects (e.g., cardiotoxicity). We, therefore, asserted that for a drug with multiple targets to
be on-target effective for a disease or to cause off-target cardiotoxicity, its target proteins should
be within or in the immediate vicinity of the corresponding cardiovascular disease module; b A
diagram illustrating network proximity that quantifies the interplay between disease modules and
drug targets on the carefully curated human protein-protein interactome

development of efficacious therapies from an integrated context using informatics
tools and experimental pharmacology approaches, offering an innovative way to
identify actionable biomarkers to predict and prevent cancer treatment-related car-
diotoxicities. In the past few years, we have demonstrated that systems pharmacology
and network-based approaches offered possibilities for identifying novel therapeutic
targets, disease pathways, and network modules in cancer [25–47], cardiovascular
disease [48], pulmonary fibrosis [49], and infectious disease [50, 51]. However, tra-
ditional gene-overlap approaches and machine learning-based approaches [52] often
have potential limitations in understanding drug mechanism-of-action (MoA) owing
to data incompleteness, literature data bias, and the complexities of human cellular
systems.

Novel network approaches, such as a network-based drug-disease proximity that
sheds light on the relationship between drugs (e.g., drug targets) and diseases (e.g.,
molecular disease determinants in disease modules within the human interactome),
offer powerful tools for efficient screeningof potentially new indications for approved
drugs, or for previously unidentified adverse events [48]. In this chapter,wewill intro-
duce an integrated, network-based, systems pharmacology approach that we recently
developed [48]. Specifically, this network approach incorporates disease-associated
proteins/genes, drug-target networks, and the human protein-protein interactome, for
efficient risk assessment of drug-induced cardiotoxicities. We will showcase how to
use network proximity to identify the underlyingmechanisms-of-action of cardiotox-
icities induced by various oncological drugs (e.g., multi-targeted kinase inhibitors).
Finally, we will discuss several existing challenges and highlight future directions of
network proximity approaches for comprehensive risk assessment of drug-induced
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cardiotoxicities in the early stage of drugdiscovery, clinical trials, and post-marketing
surveillance.

5.2 Method and Materials

5.2.1 Computers

1. Computer requirements, laptop/desktop computers, or high-performance com-
puting clusters with UNIX/LINUX operating systems.

2. Network analysis and visualization tools, Cytoscape (https://cytoscape.org/) or
Gephi (https://gephi.org/).

3. Python, Java, or other environments.

5.2.2 Reconstruction of Drug-Target Interaction Network

The drug-target network can be described as a bipartite graph G(D, T, P), where
the drug set denotes as D = {d1, d2, . . . , dn} , target set as T = {t1, t2, . . . , tm} , and
interaction set as P = {

pi j , di ∈ D, t j ∈ T
}
. An interaction is drawn between di and

t j when drug di binds with target t j with binding affinity (such as IC50, Ki, or Kd)
less than a given threshold value. Mathematically, a drug-target bipartite network
can be presented by an n × m adjacent matrix

{
pi j

}
, where pi j = 1 if the binding

affinity between di and t j is less than 10 µM, otherwise pi j = 0, as described in
Eq. (5.1).

pi j =
{
1 IC50(Ki ) ≤ 10µM
0 IC50(Ki ) > 10µM

(5.1)

In general, we can collect drug-target interaction information from the Drug-
Bank database (v4.3) [53], the Therapeutic Target Database (TTD) [54], and the
PharmGKB database [55]. Specifically, bioactivity data for drug-target pairs can be
collected from ChEMBL (v20) [56], BindingDB [57], and IUPHAR/BPS Guide to
PHARMACOLOGY [58]. Detailed drug-target databases are provided in Table 5.1.
To improve the quality of data, we usually focus on physical drug-target interac-
tions based on the following three criteria: (i) The human target is represented
by a unique UniProt accession number; (ii) the target is marked as ‘reviewed’ in
the UniProt database [59]; and (iii) binding affinities, including Ki, Kd , IC50, or
EC50 each ≤10 µM. In addition, we can also build functional drug-gene association
networks from drug-induced transcriptomics data or proteomics data derived from
human cells (Table 5.1).

https://cytoscape.org/
https://gephi.org/
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Table 5.1 Summary of chemoinformatics and bioinformatics resources for re-constructing drug-
target network

Name of
databases

Description The number of
interactions,
drugs, and targets

Web site References

Section 1. Databases for collecting physical drug-target interactions

ChEMBL Chemical
properties and
biological
activities of
drug-like
molecules

2,036,512
compounds
against 11,224
targets and
14,371,197
bioactivity
records

https://www.ebi.
ac.uk/chembldb

[98]

BindingDB Binding affinities
of proteins with
small drug-like
ligands

565,136
compounds
against 6612
proteins and
1,279,670
binding affinity
data

http://www.
bindingdb.org

[99]

PubChem Repository of
small molecule
biological
activities

More than 230
million
bioactivities
connecting 9.3
million
compounds and
9851 targets

http://puchem.
ncbi.nlm.nih.gov

[100]

DrugBank Detailed drug
data with
comprehensive
target information

8250 drug entries
including 2016
FDA-approved
small molecule
drugs and over
6000
experimental
drugs

http://www.
drugbank.ca/

[53]

TTD Information on
the therapeutic
targets

31,614 drugs and
2589 targets

http://bidd.nus.
edu.sg/group/ttd

[54]

DGIdb The drug-gene
interaction
database

26,298 unique
drug-gene
interactions
connecting 7569
drugs and 7524
unique genes

http://dgidb.
genome.wustl.
edu/

[101]

(continued)

https://www.ebi.ac.uk/chembldb
http://www.bindingdb.org
http://puchem.ncbi.nlm.nih.gov
http://www.drugbank.ca/
http://bidd.nus.edu.sg/group/ttd
http://dgidb.genome.wustl.edu/
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Table 5.1 (continued)

Name of
databases

Description The number of
interactions,
drugs, and targets

Web site References

STITCH Experimental and
predicted
compound-
protein
interactions

1.6 billion
interactions
connecting 0.5
million
compounds and
9.6 million
proteins from
2031 organisms

http://stitch.embl.
de/

[102]

SuperPred Experimental and
predicted
compound-
protein
interactions

341,000
compounds, 1800
targets and
665,000
compound-target
interactions

http://prediction.
charite.de/index.
php

[103]

Section 2. Databases for collecting functional drug-gene interactions

CMap (v 2.0) Gene-expression
signatures to
connect 1309
small molecules
and ~7000 genes
in 4 cancer cell
lines

https://www.
broadinstitute.
org/cmap

[104]

LINCS Library of
integrated
network-based
cellular
signatures
for ~1 million of
gene expression
profiles

http://www.
lincscloud.org/

[105]

open TG-GATEs A large-scale
toxicogenomics
database

http://toxico.
nibio.go.jp/
english/index.
html

[106]

DrugMatrix Molecular
toxicology
reference
database and
informatics
system

http://ntp.niehs.
nih.gov/
drugmatrix/index.
html

[107]

http://stitch.embl.de/
http://prediction.charite.de/index.php
https://www.broadinstitute.org/cmap
http://www.lincscloud.org/
http://toxico.nibio.go.jp/english/index.html
http://ntp.niehs.nih.gov/drugmatrix/index.html
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5.2.3 Reconstruction of the Human Protein-Protein
Interactome

There are several experimental strategies for mapping protein-protein interactions
(PPIs), such as yeast two-hybrid assay (Y2H) that measures direct physical inter-
actions in cells and affinity purification mass spectrometry that measure the com-
position of protein complexes. Specifically, we can reconstruct the human protein-
protein interactome network by assembling various publicly available PPI data: (i)
binary, physical PPIs tested by high-throughput Y2H systems from public avail-
able high-quality Y2H datasets [60, 61]; (ii) High-quality PPIs from the published
protein structure databases, such as Interactome3D [62], Instruct [63], and Inter-
actome INSIDER [64]; (iii) kinase-substrate interactions by literature-derived low-
throughput and high-throughput experiments from KinomeNetworkX [65], Human
Protein Resource Database (HPRD) [66], PhosphoNetworks [67, 68], Phospho-
sitePlus [69], DbPTM 3.0 [70], and Phospho. ELM [71]; (iv) signaling network by
literature-derived low-throughput experiments as annotated in SignaLink2.0 [72]; (v)
protein complexes data identified by a robust affinity purification mass spectrometry
methodology collected from BioPlex V2.0 [73]; and (vi) carefully literature-curated
PPIs identified by affinity purification followed by mass spectrometry (AP-MS) and
by literature-derived low-throughput experiments from BioGRID [74], PINA [75],
HPRD [66],MINT [76], IntAct [77], and InnateDB [78]. The detailed bioinformatics
resources for human protein-protein interactions are provided in Table 5.2.

5.2.4 Collection of Disease-Associated Genes/Proteins

In general, we can integrate disease-gene annotation data from multiple commonly
used bioinformatics resources currently available (Table 5.2).

OMIM, The OMIM database (OnlineMendelian Inheritance inMan, http://www.
omim.org/) [79] is a comprehensive collection covering literature-curated human
disease genes with high-quality experimental validation evidence.

CTD, The Comparative Toxicogenomics Database (http://ctdbase.org/) [80] pro-
vides information about interactions between chemicals and gene products, and their
association with various diseases. Here, only manually curated gene-disease inter-
actions from the literature were used.

ClinVar, ClinVar is a public archive of relationships among sequence variation and
various human phenotypes (https://www.ncbi.nlm.nih.gov/clinvar/) [81]. To improve
the data quality, only clinically significant relationships among variants and disease
traits annotated in ClinVar can be used.

GWAS Catalog, The NHGRI-EBI Catalog of published genome-wide associa-
tion studies (GWAS, https://www.ebi.ac.uk/gwas/) [82] provides unbiased (single-
nucleotide polymorphism) SNP-trait associations with genome-wide significance.
Usually, a SNP-trait with genome-wide significance (p < 5 × 10−8) will be used.

http://www.omim.org/
http://ctdbase.org/
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ebi.ac.uk/gwas/
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Table 5.2 Summary of representative bioinformatics resources and network tools for building
disease modules from the human protein-protein interactome

Name of
databases

Description Webs References

Section 1. Systems biology resources

BioGRID Integrated protein-protein
interaction data

http://thebiogrid.org [74]

HPRD Human protein-protein
interaction data

http://www.hprd.org [108]

Interactome3D Manually curated PPIs with
known three-dimensional
structure information

http://interactome3d.
irbbarcelona.org

[62]

STRING Functional protein
association networks
database

http://string-db.org [109]

MINT Protein-protein interactions
in refereed journals

http://mint.bio.uniroma2.it/
mint

[76]

KinomeNetworkXAn integrative
kinase-substrate database

[65]

PhosphoNetworksA high-resolution
phosphorylation network
connects the specific
phosphorylation sites
present in substrates with
their upstream kinases

http://www.
phosphonetworks.org/

[67, 68]

PhosphositePlus A database and tools for the
study of protein
post-translational
modifications (PTMs)
including phosphorylation,
acetylation, and more

https://www.phosphosite.
org/homeAction.action

[69]

Section 2. Systems biology resources

OMIM A comprehensive collection
covering literature-curated
human disease genes with
experimental evidence

http://www.omim.org/ [79]

CTD A database containing
literature-curated
interactions connecting
chemical, genes, and
diseases

http://ctdbase.org/ [80]

ClinVar A public archive of
relationships among
sequence variation and
various human phenotypes

https://www.ncbi.nlm.nih.
gov/clinvar/

[81]

(continued)

http://thebiogrid.org
http://www.hprd.org
http://interactome3d.irbbarcelona.org
http://string-db.org
http://mint.bio.uniroma2.it/mint
http://www.phosphonetworks.org/
https://www.phosphosite.org/homeAction.action
http://www.omim.org/
http://ctdbase.org/
https://www.ncbi.nlm.nih.gov/clinvar/
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Table 5.2 (continued)

Name of
databases

Description Webs References

GWAS Catalog A database contains
unbiased SNP-trait
associations with
genome-wide significance

https://www.ebi.ac.uk/
gwas/

[82]

GWASdb A data curation and
knowledge database for
SNP-trait associations from
GWAS for PubMed

http://jjwanglab.org/gwasdb [83]

PheWAS
Catalog

A catalog contains
SNP-trait associations
identified by the
phenome-wide association
study (PheWAS)

http://phewas.mc.
vanderbilt.edu

[84]

HuGE
navigator

An integrated disease
candidate gene database
based on the core data from
PubMed abstracts using text
mining algorithms

https://phgkb.cdc.gov/
PHGKB/

[85]

DisGeNET A disease-gene database by
assembling expert-curated
databases and text-mined
data

http://www.disgenet.org/ [86]

Section 3. Network analysis and visualization tools

Cytoscape An open-source software
platform for visualizing
complex networks

https://cytoscape.org/ [110]

Gephi An open graph visualization
platform

https://gephi.org/ [111]

GWASdb, GWASdb includes amore comprehensive data curation and knowledge
integration for SNP-trait associations from GWAS for PubMed and other resources
[83]. For example, the curated moderate SNP-trait associations (p < 1.0 × 10−3)
are annotated in GWASdb. However, this low threshold of SNP-trait associations (p
< 1.0 × 10−3) often causes potential false positive rate.

PheWAS Catalog, The PheWAS Catalog contains SNP-trait associations identi-
fied by the phenome-wide association study (PheWAS) paradigm within electronic
medical records, an unbiased approach to replication and discovery that interrogates
relationships between targeted genotypes and multiple phenotypes [84]. Thus, the
PheWAS Catalog may complement data incompleteness from traditional GWAS.

HuGE Navigator, The HuGE Navigator is an integrated disease candidate gene
database based on the core data from PubMed abstracts using text mining algorithms
[85]. To keep the data quality, the literature-reported disease-gene annotation data
with known PubMed IDs from HuGE Navigator are often used.

https://www.ebi.ac.uk/gwas/
http://jjwanglab.org/gwasdb
http://phewas.mc.vanderbilt.edu
https://phgkb.cdc.gov/PHGKB/
http://www.disgenet.org/
https://cytoscape.org/
https://gephi.org/
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DisGeNET, DisGeNET is a comprehensive database for collecting disease-
associated genes [86]. In October 26, 2018, DisGeNET contains over 561,119 asso-
ciations connecting 17,074 genes and over 20,000 diseases, disorders, and traits by
integrating expert-curated databases and text-mined data.

To improve the data quality during data integration, medical terms of diseases,
disorders, and traits are often annotated by Medical Subject Headings (MeSH) and
UnifiedMedical Language System (UMLS) vocabularies (https://www.nlm.nih.gov/
mesh/MBrowser.html) [87]. In addition, protein-coding genes are further annotated
by gene Entrez ID, chromosome location, and the official gene symbols from the
National Center for Biotechnology Information (NCBI) database [88]. A detailed
description of disease-gene annotation data integration is provided in Table 5.2.

5.2.5 Network Proximity

Given the set of drug targets, X, and the set of disease proteins, Y, we can calcu-
late the network topological distance d(x, y) between nodes x and y in the human
protein-protein interactome. In general, there are four different distance measures
that take into account the path lengths between drug targets (X) and the set of disease
proteins (Y ): (a) the closest measure, representing the average shortest path length
between targets of X and the nearest proteins of Y; (b) the shortest measure, repre-
senting the average shortest path length among all targets of drugs; (c) the kernel
measure, down-weighting longer paths via an exponential penalty; and (d) the cen-
ter measure, representing the shortest path length among all targets of drugs with
the greatest closeness centrality among proteins in X and Y. We define those four
distance measures in Eqs. (5.2–5.6).

Closest, 〈cdXY 〉 = 1

‖X‖ + ‖Y‖

⎛

⎝
∑

x∈X
min
y∈Y d(x, y) +

∑

y∈Y
min
x∈X d(x, y)

⎞

⎠ (5.2)

Shortest, 〈sdXY 〉 = 1

‖X‖ + ‖Y‖
∑

x∈X,y∈Y
d(x, y) (5.3)

Kernel, 〈kdXY 〉 = −1

‖X‖ + ‖Y‖

⎛

⎝
∑

x∈X
ln

∑

y∈Y

e−(d(x,y)+1)

‖Y‖ +
∑

y∈Y
ln

∑

x∈X

e−(d(x,y)+1)

‖X‖

⎞

⎠

(5.4)

Centre,
〈
cd′

XY

〉 = d(centreX , centreY ) (5.5)

where centreY , the topological center of X, is defined as

centreY = argminu∈Y
∑

y∈Y
d(y, u) (5.6)

https://www.nlm.nih.gov/mesh/MBrowser.html
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If the centreX or centreY is not unique, all the nodes in centreX or centreY are used
to define the center, and shortest path lengths between these nodes are averaged. If
the centreY is not unique, all nodes are used to define the center and the shortest path
lengths to these nodes are averaged.

Finally, the significance of the measure is evaluated by comparing to the refer-
ence distance distribution corresponding to the expectednetwork topological distance
between two randomly selected groups of proteins matched to size and degree (con-
nectivity) distribution as the original disease proteins and drug targets in the human
interactome. This procedure was repeated 1000 times. As illustrated in Fig. 5.1a,
for closest distance measure (cd in Eq. 5.2), the mean distance (cd) and standard
deviation (σ cd) of the reference distribution are used to calculate a z-score (z) by
converting an observed closest distance to a normalized distance using Eq. (5.7).

zcd = cd − cd

σcd
(5.7)

A detailed description for z-score calculation can be found in our recent study
[48].

5.2.6 Network Visualization and Statistical Analysis

Networks can be analyzed and visualized by Cytoscape (v3.2.0, http://www.
cytoscape.org/) and Gephi (v0.9.2, https://gephi.org/). Statistical analysis can be per-
formed by the Python (v3.2, http://www.python.org/) or R platforms (v3.01, http://
www.r-project.org/).

5.3 Results/Case Studies

The basis for the proposed network-based methodology in this chapter rests on the
notion that the proteins that associate with and functionally govern a disease pheno-
type are localized in the corresponding disease module or subnetwork (graph) within
the comprehensive human protein-protein interactome network [48]. As shown in
Fig. 5.2, our preliminary network analysis reveals that cardiomyopathy-associated
proteins form a statistically, significantly clustered, distinct module in the human
protein-protein interactome, as we have previously shown for 23 other types of car-
diovascular outcomes as well [48].

To examine drug effects on the cardiovascular system, our previous study [48]
quantifies the interplay between diseases and drug targets on the human protein-
protein interactomeusing a network proximitymeasure (Fig. 5.1b). Figure 5.3 reveals
the globally predicted drug-disease network using z-score (z) <−4.0, which connects
23 CV events and approximately 600 FDA-approved non-CVD drugs grouped by

http://www.cytoscape.org/
https://gephi.org/
http://www.python.org/
http://www.r-project.org/
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Fig. 5.2 Subnetwork of the full protein-protein interaction (PPI) network highlighting the disease
module for cardiomyopathy (CM). CM gene-coding proteins are grouped by targets for known
cardiovascular disease (CVD) drugs (red) or non-CVDdrugs (yellow), and non-drug targets (green),
collected from OMIM data [79] as shown in Table 5.2. The PPIs are labeled by six different types
of experimental evidence, which served as the basis for constructing the PPI. Background light
gray lines represent other edges in the dense PPI unrelated to the CM disease module. Nodes at the
bottom are unconnected to the module, likely owing to the incompleteness of the PPI. Networks
were visualized by the spring-embedded layout algorithm in Cytoscape (Table 5.2)

the first-level anatomical therapeutic chemical (ATC) classification system codes
as described previously [48]. This network of drug effects on the cardiovascular
system offers unexpected opportunities in identifying previously unrecognized asso-
ciations between drugs and cardiovascular outcomes. To be specific, we examined
predicted drug-disease pairs for non-cardiovascular drugs across different drug cate-
gories defined by the first-class ATC codes (Fig. 5.3). We found that FDA-approved
drugs often generated effects on the cardiovascular system, such as drugs that affect
the alimentary tract and metabolism [A], and antineoplastic and immunomodulating
agents [L]. For example, previous studies have suggested that comorbidity between
CVD and cancer is typically associated with various cytotoxic chemotherapies, such
as anthracyclines (e.g., doxorubicin) [89]. Figure 5.4 shows that doxorubicin is pre-
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Fig. 5.3 Network-predicted drug-disease associations. The globally predicted drug-disease asso-
ciation network, connecting 23 types of cardiovascular (CV) events (red circles) and 707 FDA-
approved non-CV drugs (squares) [48]. The edges between drugs and diseases represent the pre-
dicted z-score <−4.0. Drugs are colored by the first-level anatomical therapeutic chemical (ATC)
classification system codes from the DrugBank data (Table 5.1)

dicted to have a significant association with multiple types of cardiovascular events,
such as heart block (z = −5.06), cardiovascular abnormalities (z = −4.04), arrhyth-
mia (z = −3.46), CAD (z = −2.71), and heart failure (z = −2.61). Similar trends
were observed for daunorubicin (Fig. 5.4).

Recent studies have suggested that molecularly targeted cancer therapies (e.g.,
multiple-target kinase inhibitors) often cause cardiotoxicities as well [16–18, 23,
24]. Figure 5.4 shows the significant associations of multiple cardiovascular events
with several multiple-target kinase inhibitors, such as sorafenib (z = −7.51), dasa-
tinib (z = −6.37), sunitinib (z = −6.27), and nilotinib (z = −5.54), and predictions
are consistent with several recent clinical reports [18, 90]. Interestingly, imatinib,
the first approved targeted agent for the treatment of chronic myeloid leukemia,



5 Cardio-oncology: Network-Based Prediction … 89

Fig. 5.4 Network-predicted cardiotoxicities induced by approved oncological drugs. In total,
network-predicted associations (Z-scores showing the color key) between 79 approved anti-cancer
drugs and 27 cardiovascular diseases are shown by a network proximity approach [48]. The lower
negative z-scores show more significant associations

was reported to target over 40 different human proteins (Fig. 5.5), which associates
multiple cardiac side effects [23, 24]. However, imatinib was also reported to have
potentially therapeutic effect on pulmonary hypertension in clinical studies (Clini-
calTrials, NCT00902174 and NCT00477269) [91, 92]. Drug-target network analysis
reveals that inhibition on platelet-derived growth factor (PDGFRA [platelet-derived
growth factor receptor A] and PDGFRB [beta-type platelet-derived growth factor
receptor]) and KIT (KIT proto-oncogene receptor tyrosine kinase) by imatinib may
contribute to its potentially therapeutic effects on pulmonary hypertension [93, 94].
Preliminary drug-target network analysis from the human protein-protein interac-
tome thereby offers potential underlying mechanism-of-action of imatinib on car-
diovascular systems (Fig. 5.5). However, mechanistic pre-clinical and clinical studies
are warranted. Fulvestrant, a recently FDA-approved drug for the treatment of hor-
mone receptor-positive metastatic breast cancer, was predicted to associate signifi-
cantly with multiple cardiovascular events, such as coronary restenosis (z = −7.86),
cardiovascular abnormalities (z = −7.60), cardiac arrest (z = −7.38), arrhythmia
(z = −5.78), and heart failure (z = −4.14), indicating the importance of evalu-
ating potential cardiotoxicities during fulvestrant treatment. Those new significant
associations among CVD and antineoplastic drugs identified by network proximity
analysis offer a useful resource for characterizing the pharmacologic underpinnings
of cardio-oncology [89].
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Fig. 5.5 Proposed mechanistic model of imatinib-induced cardiotoxicity. A highlighted subnet-
work shows the predicted mechanism-of-action for imatinib-induced cardiotoxicity by drug-target
network analysis under the human protein-protein interactome model. Imatinib’s targets were col-
lected from the DrugBank database [53]. The human protein-protein interactions and the known
cardiovascular disease genes were collected from bioinformatics resources as described in Table 5.2

5.4 Conclusion and Future Directions

In this chapter, we introduce a network-based, systems pharmacology approach for
quantifying drug-disease associations under the human protein-protein interactome
network model as developed recently [48]. This network-based approach can be
used for drug repurposing or for risk assessment of drug-induced cardiotoxicity. We
showcased that this network-based, systems pharmacology approach can be used
to identify well-known cardio-toxic chemotherapeutic agents and novel oncological
drug-induced cardiotoxicities.

We acknowledge several potential limitations in the current systems pharmacol-
ogy framework. The total size of the human protein-protein interactome is estimated
to be ~650,000 interactions [95]. Data incompleteness of the human interactome and
known drug-target networks should be of concern. In addition, potential literature
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bias of the human interactome warrants inspection in the future. Second, our current
network-based in silico models cannot separate therapeutic effects from side effects
owing to the lack of detailed functional effects of drug targets and disease proteins.
Drug targets representing nodes within cellular networks are often intrinsically cou-
pled in both therapeutic and adverse profiles. For example, drugs can inhibit or acti-
vate protein functions (including antagonists vs. agonists), while disease alleles from
genetic or genomic studies contain loss-of-function or gain-of-function. An inhibitor
that targets loss-of-function disease proteins often causes adverse effects. In addi-
tion, dose-dependent cardiotoxicity cannot be evaluated by the current network-based
systems pharmacology framework. Finally, translating network-based prediction to
regulatory science during drug discovery and development remains challenging.

There are several new directions to improve network proximity approach further.
Adding genome/proteome-wide drug-induced transcriptome or proteome data such
as theConnectivityMapmay help overcome data incompleteness of known targets on
approved drugs (Table 5.1). In addition, integration of functional genomic assays or
large-scale disease gene expression profiles (upregulation or downregulation), along
with patient data validation and in vitro or in vivo mechanistic studies will improve
network proximity approaches further. Utilizing network proximity approaches to
investigate the metabolic intervention and dietary regulation may offer novel chem-
ical intervention strategies for cancer treatment-related cardiotoxicities. In addition,
implementing dynamics data (e.g., time series drug-protein binding affinity [kon and
koff]) via network control approaches [96, 97] and pharmacokinetics-based math-
ematical modeling into the network-based systems pharmacology framework can
be used to assess dose-dependent cardiotoxicities. Finally, assembling multi-omics
data, including genomics, transcriptomics, and proteomics from individual patients,
under a network proximity framework, may offer novel actionable biomarkers for
characterization of heterogeneities of cancer treatment-induced cardiotoxicities, in
the personalized cardio-oncology era.

Acknowledgements This work was supported by the National Heart, Lung, and Blood Institute
of the National Institutes of Health under Award Number K99HL138272 and R00HL138272.
Competing Interests The author has declared that no conflict of interest exists.

References

1. Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66(1):7–30
2. BrownSA, SandhuN,Herrmann J (2015) Systems biology approaches to adverse drug effects,

the example of cardio-oncology. Nat Rev Clin Oncol 12(12):718–731
3. Cheng F, Loscalzo J (2018) Pulmonary comorbidity in lung cancer. Trends Mol Med

24(3):239–241
4. Cheng F,NussinovR (2018)KRAS activating signaling triggers arteriovenousmalformations.

Trends Biochem Sci 43(7):481–483
5. Pullamsetti SS, Kojonazarov B, Storn S, Gall H, Salazar Y, Wolf J et al (2017) Lung cancer-

associated pulmonary hypertension, Role of microenvironmental inflammation based on
tumor cell-immune cell cross-talk. Sci Transl Med 9(416):eaai9048



92 F. Cheng

6. Lenneman CG, Sawyer DB (2016) Cardio-oncology, an update on cardiotoxicity of cancer-
related treatment. Circ Res 118(6):1008–1020

7. Han X, Zhou Y, Liu W (2017) Precision cardio-oncology, understanding the cardiotoxicity
of cancer therapy. NPJ Precis Oncol 1(1):31

8. Saiki H, Petersen IA, Scott CG, Bailey KR, Dunlay SM, Finley RR et al (2017) Risk of heart
failure with preserved ejection fraction in older women after contemporary radiotherapy for
breast cancer. Circulation 135(15):1388–1396

9. Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M et al (2011) Adjuvant
trastuzumab in HER2-positive breast cancer. N Engl J Med 365(14):1273–1283

10. Sharma A, Burridge PW, McKeithan WL, Serrano R, Shukla P, Sayed N et al (2017) High-
throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripo-
tent stem cells. Sci Transl Med 9(377):eaaf2584

11. Cheng F, Loscalzo J (2017) Autoimmune cardiotoxicity of cancer immunotherapy. Trends
Immunol 38(2):77–78

12. Johnson DB, Balko JM, Compton ML, Chalkias S, Gorham J, Xu Y et al (2016)
Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med
375(18):1749–1755

13. Ranchoux B, Gunther S, Quarck R, Chaumais MC, Dorfmuller P, Antigny F et al (2015)
Chemotherapy-induced pulmonary hypertension, role of alkylating agents. Am J Pathol
185(2):356–371

14. Chien KR (2006) Herceptin and the heart–a molecular modifier of cardiac failure. N Engl J
Med 354(8):789–790

15. Cheng F (2018) In silico oncology drug repositioning and polypharmacology. Methods Mol
Biol 1878:243–261

16. Elkins JM, Fedele V, Szklarz M, Abdul Azeez KR, Salah E, Mikolajczyk J et al (2016) Com-
prehensive characterization of the published kinase inhibitor set. Nat Biotechnol 34(1):95–103

17. Knight ZA, Lin H, Shokat KM (2010) Targeting the cancer kinome through polypharmacol-
ogy. Nat Rev Cancer 10(2):130–137

18. Li W, Croce K, Steensma DP, McDermott DF, Ben-Yehuda O, Moslehi J (2015) Vascular and
metabolic implications of novel targeted cancer therapies, focus on kinase inhibitors. J Am
Coll Cardiol 66(10):1160–1178

19. Mullard A (2017) 2016 FDA drug approvals. Nat Rev Drug Discov 16(2):73–76
20. Loscalzo J, BarabasiAL, SilvermanEK (2017)Networkmedicine, complex systems in human

disease and therapeutics. Publisher, Harvard University Press Publication Date 2/1/2017.
ISBN 9780674436534

21. Antman EM, Loscalzo J (2016) Precision medicine in cardiology. Nat Rev Cardiol
13(10):591–602

22. Greene JA, Loscalzo J (2017) Putting the patient back together—social medicine, network
medicine, and the limits of reductionism. N Engl J Med 377(25):2493–2499

23. Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C et al (2006) Cardiotoxicity of
the cancer therapeutic agent imatinib mesylate. Nat Med 12(8):908–916

24. Distler JH, Distler O (2007) Cardiotoxicity of imatinib mesylate, an extremely rare phe-
nomenon or a major side effect? Ann Rheum Dis 66(6):836

25. Cheng F, Hong H, Yang S, Wei Y (2017) Individualized network-based drug repositioning
infrastructure for precision oncology in the panomics era. Brief Bioinform 18(4):682–697

26. Cheng F, Liu C, Jiang J, Lu W, Li W, Liu G et al (2012) Prediction of drug-target interactions
and drug repositioning via network-based inference. PLoS Comput Biol 8(5):e1002503

27. Cheng F, Liu C, Lin CC, Zhao J, Jia P, Li WH et al (2015) A gene gravity model for the
evolution of cancer genomes, a study of 3000 cancer genomes across 9 cancer types. PLoS
Comput Biol 11(9):e1004497

28. Cheng F, Jia P, Wang Q, Lin CC, Li WH, Zhao Z (2014) Studying tumorigenesis through
network evolution and somatic mutational perturbations in the cancer interactome. Mol Biol
Evol 31(8):2156–2169



5 Cardio-oncology: Network-Based Prediction … 93

29. Cheng F, Liu C, Shen B, Zhao Z (2016) Investigating cellular network heterogeneity and
modularity in cancer, a network entropy and unbalanced motif approach. BMC Syst Biol
10(Suppl 3):65

30. Cheng F, Zhao J, FooksaM, Zhao Z (2016) A network-based drug repositioning infrastructure
for precision cancer medicine through targeting significantly mutated genes in the human
cancer genomes. J Am Med Inform Assoc 23(4):681–691

31. Cheng F, Zhao J, Hanker AB, Brewer MR, Arteaga CL, Zhao Z (2016) Transcriptome-
and proteome-oriented identification of dysregulated eIF4G, STAT3, and Hippo pathways
altered by PIK3CA (H1047R) in HER2/ER-positive breast cancer. Breast Cancer Res Treat
160(3):457–474

32. Fang J,CaiC,WangQ,LinP, ZhaoZ,ChengF (2017) Systems pharmacology-based discovery
of natural products for precision oncology through targeting cancer mutated genes. CPT
Pharmacometrics Syst Pharmacol 6(3):177–187

33. Fang J, Liu C,WangQ, Lin P, Cheng F (2018) In silico polypharmacology of natural products.
Brief Bioinform 19(6):1153–1171

34. Fang J,WuZ,CaiC,WangQ,TangY,ChengF (2017)Quantitative and systemspharmacology.
1. In silico prediction of drug-target interactions of natural products enables new targeted
cancer therapy. J Chem Inf Model 57(11):2657–2671

35. Jiang X, Lu W, Shen X, Wang Q, Lv J, Liu M et al (2018) Repurposing sertraline sensitizes
non-small cell lung cancer cells to erlotinib by inducing autophagy. JCI Insight 3(11):e98921

36. Li J, Lei K, Wu Z, Li W, Liu G, Liu J et al (2016) Network-based identification of
microRNAs as potential pharmacogenomic biomarkers for anticancer drugs. Oncotarget
7(29):45584–45596

37. Lu W, Cheng F, Yan W, Li X, Yao X, Song W et al (2017) Selective targeting p53(WT)
lung cancer cells harboring homozygous p53 Arg72 by an inhibitor of CypA. Oncogene
36(33):4719–4731

38. Shen Q, Cheng F, Song H, Lu W, Zhao J, An X et al (2017) Proteome-scale investigation of
protein allosteric regulation perturbed by somatic mutations in 7000 cancer genomes. Am J
Hum Genet 100(1):5–20

39. Wang J, Hu K, Guo J, Cheng F, Lv J, JiangW et al (2016) Suppression of KRas-mutant cancer
through the combined inhibition of KRAS with PLK1 and ROCK. Nat Commun 7:11363

40. Wu D, Wang W, Chen W, Lian F, Lang L, Huang Y et al (2018) Pharmacologic inhibi-
tion of dihydroorotate dehydrogenase induces apoptosis and differentiation in acute myeloid
leukemia cells. Haematologica 103(9):1472–1483

41. Wu Z, Cheng F, Li J, Li W, Liu G, Tang Y (2017) SDTNBI, an integrated network and
chemoinformatics tool for systematic prediction of drug-target interactions and drug reposi-
tioning. Brief Bioinform 18(2):333–347

42. Wu Z, Lu W, Yu W, Wang T, Li W, Liu G et al (2018) Quantitative and systems pharmacol-
ogy 2. In silico polypharmacology of G protein-coupled receptor ligands via network-based
approaches. Pharmacol Res 129:400–413

43. Wu Z, Lu W, Wu D, Luo A, Bian H, Li J et al (2016) In silico prediction of chemical
mechanism of action via an improved network-based inference method. Br J Pharmacol
173(23):3372–3385

44. Yu W, Lu W, Chen G, Cheng F, Su H, Chen Y et al (2017) Inhibition of histone deacetylases
sensitizes EGF receptor-TK inhibitor-resistant non-small-cell lung cancer cells to erlotinib
in vitro and in vivo. Br J Pharmacol 174(20):3608–3622

45. Zhao J, Cheng F, Wang Y, Arteaga CL, Zhao Z (2016) Systematic prioritization of druggable
mutations in approximately 5000 genomes across 16 cancer types using a structural genomics-
based approach. Mol Cell Proteomics 15(2):642–656

46. Zhao J, Cheng F, Zhao Z (2017) Tissue-specific signaling networks rewired by major
somatic mutations in human cancer revealed by proteome-wide discovery. Cancer Res
77(11):2810–2821

47. Zhao Y, Hu Q, Cheng F, Su N, Wang A, Zou Y et al (2015) SoNar, a highly responsive
NAD+/NADH sensor, allows high-throughput metabolic screening of anti-tumor agents. Cell
Metab 21(5):777–789



94 F. Cheng

48. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabasi AL et al (2018) Network-
based approach to prediction and population-based validation of in silico drug repurposing.
Nat Commun 9(1):2691

49. Lu W, Yao X, Ouyang P, Dong N, Wu D, Jiang X et al (2017) Drug repurposing of his-
tone deacetylase inhibitors that alleviate neutrophilic inflammation in acute lung injury and
idiopathic pulmonary fibrosis via inhibiting leukotriene A4 hydrolase and blocking LTB4
biosynthesis. J Med Chem 60(5):1817–1828

50. Cheng F, Murray JL, Zhao J, Sheng J, Zhao Z, Rubin DH (2016) Systems biology-based
investigation of cellular antiviral drug targets identified by gene-trap insertional mutagenesis.
PLoS Comput Biol 12(9):e1005074

51. Cheng F, Murray JL, Rubin DH (2016) Drug repurposing, new treatments for Zika virus
infection? Trends Mol Med 22(11):919–921

52. CaiC, Fang J,GuoP,WangQ,HongH,Moslehi J et al (2018) In silico pharmacoepidemiologic
evaluation of drug-induced cardiovascular complications using combined classifiers. J Chem
Inf Model 58(5):943–956

53. LawV, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu Y et al (2014) DrugBank 4.0, shedding
new light on drug metabolism. Nucleic Acids Res 42(Database issue):D1091–1097

54. Yang H, Qin C, Li YH, Tao L, Zhou J, Yu CY et al (2016) Therapeutic target database update
2016, enriched resource for bench to clinical drug target and targeted pathway information.
Nucleic Acids Res 44(D1):D1069–D1074

55. Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R, GongM et al (2008)
The pharmacogenetics and pharmacogenomics knowledge base, accentuating the knowledge.
Nucleic Acids Res 36(Database issue):D913–918

56. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A et al (2012) ChEMBL, a
large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(D1):D1100–D1107

57. Liu TQ, Lin YM, Wen X, Jorissen RN, Gilson MK (2007) BindingDB, a web-accessible
database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res
35:D198–D201

58. Pawson AJ, Sharman JL, Benson HE, Faccenda E, Alexander SPH, Buneman OP et al (2014)
The IUPHAR/BPS Guide to PHARMACOLOGY, an expert-driven knowledgebase of drug
targets and their ligands. Nucleic Acids Res 42(D1):D1098–D1106

59. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S et al (2004) UniProt,
the universal protein knowledgebase. Nucleic Acids Res 32:D115–D119

60. Rolland T, Tasan M, Charloteaux B, Pevzner SJ, Zhong Q, Sahni N et al (2014) A proteome-
scale map of the human interactome network. Cell 159(5):1212–1226

61. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al (2005)
Towards a proteome-scale map of the human protein-protein interaction network. Nature
437(7062):1173–1178

62. Mosca R, Ceol A, Aloy P (2013) Interactome3D, adding structural details to protein networks.
Nat Methods 10(1):47–53

63. Meyer MJ, Das J, Wang X, Yu H (2013) INstruct, a database of high-quality 3D structurally
resolved protein interactome networks. Bioinformatics 29(12):1577–1579

64. Meyer MJ, Beltran JF, Liang S, Fragoza R, Rumack A, Liang J et al (2018) Interactome
INSIDER, a structural interactome browser for genomic studies. Nat Methods 15(2):107–114

65. Cheng F, Jia P, Wang Q, Zhao Z (2014) Quantitative network mapping of the human kinome
interactome reveals new clues for rational kinase inhibitor discovery and individualized cancer
therapy. Oncotarget 5(11):3697–3710

66. Peri S, Navarro JD, Kristiansen TZ, Amanchy R, Surendranath V, Muthusamy B et al (2004)
Human protein reference database as a discovery resource for proteomics. Nucleic Acids Res
32(Database issue):D497–501

67. Newman RH, Hu J, Rho HS, Xie Z, Woodard C, Neiswinger J et al (2013) Construction of
human activity-based phosphorylation networks. Mol Syst Biol 9:655

68. Hu J, Rho HS, Newman RH, Zhang J, Zhu H, Qian J (2014) PhosphoNetworks, a database
for human phosphorylation networks. Bioinformatics 30(1):141–142



5 Cardio-oncology: Network-Based Prediction … 95

69. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) Phos-
phoSitePlus, 2014, mutations, PTMs and recalibrations. Nucleic Acids Res 43(Database
issue):D512–520

70. Lu CT, Huang KY, Su MG, Lee TY, Bretana NA, Chang WC et al (2013) DbPTM 3.0, an
informative resource for investigating substrate site specificity and functional association of
protein post-translational modifications. Nucleic Acids Res 41(Database issue):D295–305

71. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ et al (2011) Phos-
pho.ELM, a database of phosphorylation sites–update 2011. Nucleic Acids Res 39(Database
issue):D261–267

72. Fazekas D, KoltaiM, Turei D,Modos D, PalfyM,Dul Z et al (2013) SignaLink 2—a signaling
pathway resource with multi-layered regulatory networks. BMC Syst Biol 7:7

73. Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K et al (2017) Architec-
ture of the human interactome defines protein communities and disease networks. Nature
545(7655):505–509

74. Chatr-Aryamontri A, Breitkreutz BJ, Oughtred R, Boucher L, Heinicke S, Chen D et al
(2015) The BioGRID interaction database, 2015 update. Nucleic Acids Res 43(Database
issue):D470–478

75. Cowley MJ, Pinese M, Kassahn KS, Waddell N, Pearson JV, Grimmond SM et al (2012)
PINA v2.0, mining interactome modules. Nucleic Acids Res 40(Database issue):D862–865

76. Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E et al (2012)
MINT, the molecular interaction database, 2012 update. Nucleic Acids Res 40(Database
issue):D857–861

77. Orchard S, Ammari M, Aranda B, Breuza L, Briganti L, Broackes-Carter F et al (2014)
The MIntAct project–IntAct as a common curation platform for 11 molecular interaction
databases. Nucleic Acids Res 42(Database issue):D358–363

78. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R et al (2013) InnateDB,
systems biology of innate immunity and beyond–recent updates and continuing curation.
Nucleic Acids Res 41(Database issue):D1228–1233

79. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A (2015) OMIM.org, Online
Mendelian Inheritance in Man (OMIM(R)), an online catalog of human genes and genetic
disorders. Nucleic Acids Res 43(Database issue):D789–798

80. Davis AP, Grondin CJ, Lennon-Hopkins K, Saraceni-Richards C, Sciaky D, King BL et al
(2015) The comparative toxicogenomics database’s 10th year anniversary, update 2015.
Nucleic Acids Res 43(Database issue):D914–920

81. Landrum MJ, Lee JM, Riley GR, Jang W, Rubinstein WS, Church DM et al (2014) ClinVar,
public archive of relationships among sequence variation and human phenotype. Nucleic
Acids Res 42(Database issue):D980–985

82. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H et al (2014) The NHGRI
GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids Res 42(Database
issue):D1001–1006

83. Li MJ, Liu Z, Wang P, Wong MP, Nelson MR, Kocher JP et al (2016) GWASdb v2, an update
database for human genetic variants identified by genome-wide association studies. Nucleic
Acids Res 44(D1):D869–D876

84. Denny JC, Bastarache L, Ritchie MD, Carroll RJ, Zink R, Mosley JD et al (2013) Systematic
comparison of phenome-wide association study of electronicmedical record data and genome-
wide association study data. Nat Biotechnol 31(12):1102–1110

85. Yu W, Gwinn M, Clyne M, Yesupriya A, Khoury MJ (2008) A navigator for human genome
epidemiology. Nat Genet 40(2):124–125

86. Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M et al (2015)
DisGeNET, a discovery platform for the dynamical exploration of human diseases and their
genes. Database (Oxford), bav028

87. Bodenreider O (2004) The unified medical language system (UMLS), integrating biomedical
terminology. Nucleic Acids Res 32(Database issue):D267–270



96 F. Cheng

88. Coordinators NR (2016) Database resources of the National Center for Biotechnology Infor-
mation. Nucleic Acids Res 44(D1):D7–D19

89. Moslehi JJ (2016) Cardiovascular toxic effects of targeted cancer therapies. N Engl J Med
375(15):1457–1467

90. Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C et al (2008) Cardiac
toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin
Oncol 26(32):5204–5212

91. GhofraniHA, SeegerW,Grimminger F (2005) Imatinib for the treatment of pulmonary arterial
hypertension. N Engl J Med 353(13):1412–1413

92. Ghofrani HA, Morrell NW, Hoeper MM, Olschewski H, Peacock AJ, Barst RJ et al (2010)
Imatinib in pulmonary arterial hypertension patients with inadequate response to established
therapy. Am J Respir Crit Care Med 182(9):1171–1177

93. Farha S,DweikR,Rahaghi F, BenzaR,Hassoun P, FrantzR et al (2014) Imatinib in pulmonary
arterial hypertension, c-Kit inhibition. Pulm Circ 4(3):452–455

94. Schermuly RT, Dony E, Ghofrani HA, Pullamsetti S, Savai R, RothM et al (2005) Reversal of
experimental pulmonary hypertension by PDGF inhibition. J Clin Invest 115(10):2811–2821

95. Stumpf MP, Thorne T, de Silva E, Stewart R, An HJ, Lappe M et al (2008) Estimating the
size of the human interactome. Proc Natl Acad Sci USA 105(19):6959–6964

96. Gao J, Barzel B, Barabasi AL (2016) Universal resilience patterns in complex networks.
Nature 530(7590):307–312

97. Vinayagam A, Gibson TE, Lee HJ, Yilmazel B, Roesel C, Hu Y et al (2016) Controllability
analysis of the directed human protein interaction network identifies disease genes and drug
targets. Proc Natl Acad Sci USA 113(18):4976–4981

98. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M et al (2014) The ChEMBL
bioactivity database, an update. Nucleic Acids Res 42(Database issue):D1083–1090

99. Gilson MK, Liu T, Baitaluk M, Nicola G, Hwang L, Chong J (2016) BindingDB in 2015, a
public database formedicinal chemistry, computational chemistry and systems pharmacology.
Nucleic Acids Res 44(D1):D1045–D1053

100. Wang Y, Bolton E, Dracheva S, Karapetyan K, Shoemaker BA, Suzek TO et al (2010)
An overview of the PubChem BioAssay resource. Nucleic Acids Res 38(Database
issue):D255–266

101. Wagner AH, Coffman AC, Ainscough BJ, Spies NC, Skidmore ZL, Campbell KM et al
(2016) DGIdb 2.0, mining clinically relevant drug-gene interactions. Nucleic Acids Res
44(D1):D1036–1044

102. Kuhn M, Szklarczyk D, Pletscher-Frankild S, Blicher TH, von Mering C, Jensen LJ et al
(2014) STITCH 4, integration of protein-chemical interactions with user data. Nucleic Acids
Res 42(Database issue):D401–407

103. Nickel J, Gohlke BO, Erehman J, Banerjee P, Rong WW, Goede A et al (2014) Super-
Pred, update on drug classification and target prediction. Nucleic Acids Res 42(Web Server
issue):W26–31

104. Lamb J (2007) The connectivity map, a new tool for biomedical research. Nat Rev Cancer
7(1):54–60

105. DuanQ, FlynnC, NiepelM,HafnerM,Muhlich JL, FernandezNF et al (2014) LINCSCanvas
Browser, interactive web app to query, browse and interrogate LINCS L1000 gene expression
signatures. Nucleic Acids Res 42(Web Server issue):W449–460

106. Igarashi Y, Nakatsu N, Yamashita T, Ono A, Ohno Y, Urushidani T et al (2015)
Open TG-GATEs, a large-scale toxicogenomics database. Nucleic Acids Res 43(Database
issue):D921–927

107. Ganter B, Snyder RD, Halbert DN, Lee MD (2006) Toxicogenomics in drug discovery and
development, mechanistic analysis of compound/class-dependent effects using the DrugMa-
trix database. Pharmacogenomics 7(7):1025–1044

108. Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S et al
(2009) Human protein reference database–2009 update. Nucleic Acids Res 37(Database
issue):D767–772



5 Cardio-oncology: Network-Based Prediction … 97

109. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M et al (2017) The
STRING database in 2017, quality-controlled protein-protein association networks, made
broadly accessible. Nucleic Acids Res 45(D1):D362–D368

110. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003) Cytoscape, a
software environment for integrated models of biomolecular interaction networks. Genome
Res 13(11):2498–2504

111. Bastian M, Heymann S, Jacomy M (2009) Gephi, an open source software for exploring and
manipulating networks. In: International AAAI conference on web and social media, North
America. Available at, https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154

Feixiong Cheng, Ph.D. is a principal investigator with Cleveland Clinic’s Genomic Medicine
Institute. Dr. Cheng is a computational biologist by training, with expertise in analyzing, visu-
alizing, and mining data from real world (e.g., electronic health records, and health care claims)
and experiments that profile the molecular state of human cells and tissues by interactomics, tran-
scriptomics, genomics, proteomics, and metabolomics for drug discovery and precise patient care.
Dr. Cheng is working to develop computational and experimental network medicine technologies
for advancing the characterization of disease heterogeneity, thereby approaching the goal of coor-
dinated, patient-centered strategies to innovative diagnostics and therapeutics development. The
primary goal of Dr. Cheng’s lab is to combine tools from genomics, network medicine, bioin-
formatics, computational biology, chemical biology, and experimental pharmacology and systems
biology assays (e.g., single-cell sequencing), to address the challenging questions toward under-
standing of various human complex diseases (e.g., cardio-oncology, pulmonary vascular diseases,
and cancer), which could have a major impact in identifying novel real-world data-driven diag-
nostic biomarkers and therapeutic targets for precision medicine.

https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154


Chapter 6
Mode-of-Action-Guided, Molecular
Modeling-Based Toxicity Prediction:
A Novel Approach for In Silico Predictive
Toxicology

Ping Gong, Sundar Thangapandian, Yan Li, Gabriel Idakwo,
Joseph Luttrell IV, Minjun Chen, Huixiao Hong and Chaoyang Zhang

Abstract Computational toxicology is a sub-discipline of toxicology concerned
with the development and use of computer-based models and methodology to under-
stand and predict chemical toxicity in a biological system (e.g., cells and organ-
isms). Quantitative structure–activity relationship (QSAR) has been the predomi-
nant approach in computational toxicology. However, classical QSAR methodology
has often suffered from low prediction accuracy, largely owing to the lack or non-
integration of toxicological mechanisms. To address this lingering problem, we have
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developed a novel in silico toxicology approach that is based on molecular modeling
and guided bymode of action (MoA). Our approach is implemented through a target-
specific toxicity knowledgebase (TsTKb), consisting of a pre-categorized database
of chemical MoA (ChemMoA) and a series of pre-built, category-specific classifica-
tion and quantificationmodels. ChemMoA serves as the depository of chemicalswith
known MoAs or molecular initiating events (i.e., known target biomacromolecules)
and quantitative information formeasured toxicity endpoints (if available). Themod-
els allow a user to qualitatively classify an uncharacterized chemical by MoA and
quantitatively predict its toxicity potency. This approach is currently under develop-
ment and will evolve to incorporate physiologically based pharmacokinetic (PBPK)
modeling to address absorption, distribution, metabolism and excretion (ADME)
processes in a biological system. The fully developed approach is believed to sig-
nificantly advance in silico-based predictive toxicology and provide a new powerful
toolbox for regulators, the chemical industry and the relevant academic communities.

Keywords Mode of action (MoA) · Molecular dynamics (MD) simulation ·
Molecular docking · Deep learning · Predictive toxicology · Target-specific
toxicity knowledgebase (TsTKb) · Chemical mode of action database
(ChemMoA) · Qualitative classification · Quantitative prediction · Quantitative
structure–activity relationship (QSAR)

Abbreviations

3D Three-dimensional
3Rs Refine, reduce, and replace
ACToR Aggregated Computational Toxicology Online Resource
ADME Absorption, distribution, metabolism, and excretion
AOP Adverse outcome pathway
BLAST Basic local alignment search tool
BPA Bisphenol A
ChemMoA Chemical MoA
DSSTox Distributed Structure-Searchable Toxicity
dyPLID Dynamic protein–ligand interaction descriptors
EADB Estrogenic Activity Database
EDKB Endocrine Disruptor Knowledge Base
EDSP Endocrine Disruptor Screening Program
EPA Environmental Protection Agency
EU European Union
FDA Food and Drug Administration
iPSC Induced Pluripotent Stem Cell
LTKB Liver Toxicity Knowledge Base
MD Molecular Dynamics
MIE Molecular Initiating Event
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MMDB Molecular Modeling DataBase
MoA Mode of Action
NCBI National Center for Biotechnology Information
NRC National Research Council
OECD Organization for Economic Cooperation and Development
PBPK Physiologically based pharmacokinetic
PDB Protein Data Bank
QSAR Quantitative structure–activity relationship
RC Reference chemical
REACH Registration, Evaluation, Authorization, and Restriction of Chemicals
Risk21 Risk Assessment in the twenty-first century
SEURAT Safety Evaluation Ultimately Replacing Animal Testing
SPLIF Structural protein–ligand interaction fingerprints
T3DB Toxin and Toxin Target Database
Tox21 Toxicology in the twenty-first century
ToxCast Toxicity Forecaster
TsTKb Target-specific toxicity knowledgebase
USDA US Department of Agriculture

6.1 Introduction

All chemical substances are required to be tested for their toxicological and environ-
mental properties before being approved for use by regulatory authorities, such as
the US Environmental Protection Agency (EPA), the US Food and Drug Adminis-
tration (FDA) and the US Department of Agriculture (USDA). Three strategies are
commonly adopted for toxicity testing: in vivo, in vitro, and in silico [1–4]. Driven
by public concerns about animal welfare in research and testing, the European Union
(EU) and most individual countries now have laws, policies, and regulations that aim
to refine, reduce, and replace animal use (commonly referred to as the “3Rs”) [5]. For
instance, the USAnimalWelfare Act requires consideration of alternatives whenever
procedures involve more than slight or momentary pain or distress for warm-blooded
animals in research and testing [6, 7]. The US FDA endorses the effort “to reduce
animal testing [and] to work toward replacement of animal testing” as a basis for reg-
ulatory action [8]. In Europe, Directive 2010/63/EU [9] legislates an end to “the use
of animals in toxicology and biomedical research as soon as scientifically feasible to
do so.” The EC 1907/2006Registration, Evaluation, Authorization andRestriction of
Chemicals (REACH) regulation [10] restricts animal testing only “as a last resort to
satisfy registration information requirements”, and Regulation 1223/2009/EU [11]
introduces a comprehensive ban onmarketing within the EU of any cosmetic product
(or ingredient thereof) that has been tested on animals since March 2013 [8, 12].

Another incentive for modernizing chemical toxicity testing is the combination of
the large number of chemicals found in the environment with no or little toxicity data
and the prohibitively high costs associated with traditional toxicity testing methods.



102 P. Gong et al.

In 2007, the US National Research Council (NRC) published a landmark report enti-
tled “Toxicity Testing in the twenty-first Century: A Vision and a Strategy”, which
envisioned a paradigm shift from in vivo animal-based studies to target-specific,
mechanism-based toxicity pathway perturbations using in vitro and computational
modeling approaches [13]. Implementation of this new vision is believed to be able
to transform toxicology from a largely observational science to a more predictive one
[14]. Since then, the toxicology community hasmade significant progress developing
in vitro assays and computational tools that help achieve the predictive toxicology
goal outlined in the seminal NRC report [8]. Regulatory bodies are also increas-
ingly turning to alternative toxicity testing methods, among which at least 63 have
been approved or endorsed by US federal regulatory agencies and international test
guideline organizations, such as the Organization for Economic Cooperation and
Development (OECD) [15–17].

6.1.1 Highlights of Recent Progress in the Development
of Alternative Testing Methods

Over the past decade, a number of efforts have been initiated toward developing
innovative in vitro and in silico tools and methodology for toxicity testing. The
most prominent ones include use of induced pluripotent stem cell (iPSC)-derived
human cells, development of defined heterotypic cell and three-dimensional (3D)
cell/tissue models, engineered human “organ-on-a-chip” microscale physiological
systems, mathematical modeling of cellular processes and morphogenesis, adverse
outcome pathways (AOPs), amolecular initiating event (MIE) atlas for toxicities, and
next-generation quantitative structure–activity relationship (QSAR) models [8, 12,
18]. These efforts have beenmostly carried out within large-scale research programs,
such as toxicology in the twenty-first Century (Tox21) [19], Toxicity Forecaster (Tox-
Cast) [20], Safety Evaluation Ultimately Replacing Animal Testing (SEURAT)-1
[21], Risk Assessment in the twenty-first Century (Risk21) [22], human-on-a-chip
[23], the Human Toxome Project [24], carcinoGENOMICS [22], the US Endocrine
Disruptor Screening Program (EDSP) [8], and virtual tissues [25] (e.g., virtual brain
[26], embryo, liver and thyroid models; see also www.epa.gov/chemical-research/
virtual-tissue-models-predicting-how-chemicals-impact-development). Looking at
Tox21 as an example, high-throughput in vitro screening assays have been devel-
oped using a highly automated robotics platform to quickly and efficiently assess
whether certain chemical compounds have the potential to disrupt processes in the
human body and possibly lead to negative health effects [19]. All these efforts also
share a common strategic goal—turn the knowledge of toxicological modes of action
(MoAs) and perturbed toxicity pathways or AOPs into in vitro and in silico models
that quantitatively predict points of departure or other end points (e.g., ED50 and
AC50) for chemical toxicity/risk/safety assessment [8, 19–24].

http://www.epa.gov/chemical-research/virtual-tissue-models-predicting-how-chemicals-impact-development
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6.1.2 Mechanism-Based Toxicity Prediction: MIE
and “Critical Target” Concept

Allen et al. recently defined an AOP as a conceptual framework, presented as a log-
ical sequence of events or processes within biological systems, which can be used
to understand adverse effects and refine current risk assessment practices in ecotox-
icology, and an MIE as the initial interaction between a chemical and a biomolecule
that can be causally linked to an outcome via a pathway [27]. According to the AOP
concept, any phenotypic endpoint of toxicity, i.e., an adverse outcome resulting from
a series of biological processes can be eventually linked to a unique MIE [18, 28].
It is now widely accepted that QSAR-based predictive toxicology has more success
when the mechanism of toxicity end point is well understood or can be linked to
a well-defined molecular target [29]. In a recent perspective review on the future
research of predictive toxicology, Daston et al. [30] recommended to focus on the
identification of “critical biological targets” relevant for toxicity and to test their
suitability for being used as anchors for predicting toxicity. Chemicals can inter-
fere with normal biological processes or pathways at the molecular level through
a multitude of different mechanisms that vary from non-selective binding (to intra-
cellular proteins) to selective agonism/antagonism of a particular nuclear or another
receptor [30]. Decades of conventional animal toxicity testing have accumulated a
myriad of information on toxicological mechanisms that may be further explored
for use in in vitro and computational modeling-based predictive toxicology. For
instance, Tox21 researchers have developed high throughput, cell-based or cell-free
in vitro assays that evaluate critical cellular targets or processes involved in toxicity
response [19]. They have also published a prioritized set of 2750 targeted sentinel
genes (referred to as Human S1500+ Gene Set Ver2) whose transcriptional changes
are responsive to exposures to a wide variety of toxic agents [31].

6.1.3 Limitations of Current In Vitro and In Silico
Approaches

While significant progress has been made in developing mechanism-based in vitro
assays and testing platforms (including high-content toxicogenomics platforms), it is
recognized that quantitative in vitro to in vivo extrapolation still faces many technical
barriers, such as the choice of appropriate cell lines and the lack ofmetabolism [8, 19].
Although in silico approaches are rapid and inexpensive compared to experimental
approaches, the growth of in silico-based predictive toxicology tools is unsatisfactory.
Conventional QSAR models often suffer from low prediction accuracy [32] because
they do not consider the structure and flexibility of target biomacromolecules, espe-
cially when applied toward the more elusive goal of predicting potential toxicity
outcomes for in vitro cell cultures or in vivo animal test systems [29]. In these sys-
tems, the toxicity end point (e.g., cytotoxicity, mutagenicity, developmental toxicity
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and cancer) tends to be less well understood and often encompasses multiple mech-
anisms and pathways to adverse outcome. Consequently, the success of system-level
modeling or simulation of dynamic biological processes leading to toxicity is mostly
limited to “fit-for-purpose” [8, 33] due to incomplete knowledge of complex biolog-
ical systems. Hence, for the purpose of accurately predicting chemical toxicity, it
is currently unrealistic and unnecessary to capture and reconstruct all the cascading
processes leading from an MIE to an adverse outcome.

6.1.4 Molecular Docking for Virtual Chemical Screening:
A Green Toxicology Approach

The pharmaceutical and pesticide/herbicide industries have a long history of using
molecular docking as a key tool in computer-assisted virtual chemical design and effi-
cacy screening of candidate compounds. A wide variety of ligand–protein docking
methods have been developed to predict the predominant conformation and orienta-
tion [i.e., pose(s) or binding mode(s)] of a ligand within a targeted binding site of a
biomacromolecule (e.g., a protein) with a known 3D structure [34–36]. These meth-
ods can model the interaction between a small molecule (chemical) and a biomacro-
molecule at the atomic level. This allows us to characterize the behavior of small
molecules in the binding site of target biomacromolecules and elucidate fundamental
biochemical processes [37].

In essence, this virtual screening approach falls within the scope of an emerging
discipline called green toxicology. Similar to the green chemistrymovement, itmoves
the toxicity and risk or safety assessment schemes to the beginning of the production
cycle of a chemical or a product, i.e., to the molecular design [38]. Green toxicol-
ogy uses predictive toxicology tools for the design of less harmful substances, tests
early in the development process to prioritize less dangerous chemicals, and reduces
exposures—thereby “designing out” undesirable human health and environmental
risks, reducing animal testing demands, and increasing the likelihood of launching
a successful, sustainable product [21].

However, molecular docking-based virtual screening has not been applied to
quantitative assessment of long-term chemical toxicity. Its application to qualita-
tive mechanistic studies is also limited, largely due to the historical unavailability of
3D macromolecular structures of many toxicity targets and the extremely high com-
putational expenses associated with allowing conformational flexibility of both the
ligand and the protein. Recently, advances in structural biology (e.g., high-throughput
protein purification, crystallography and nuclear magnetic resonance spectroscopy
techniques [35]), rapid progress in algorithm development, and great advances in
supercomputing resources (e.g., high-performance computing technology) [39] have
paved the way for pursuing this approach and its potential to scale-up for quickly
screening thousands of critical toxicity targets. For instance, the molecular modeling
database (MMDB) [40], which is based on the Protein Data Bank (PDB) [41, 42]
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and maintained by the National Center for Biotechnology Information (NCBI), now
contains 144,042 records of resolved structures (as of September 7, 2018) for chem-
ically bound or unbound proteins, DNAs and RNAs (as well as their complexes).
Consequently, recent years have seen increased applications of molecular docking
in qualitative toxicological MoA studies; for example: (1) screening of endocrine
disrupting environmental compounds through docking to the ligand-binding domain
of estrogen receptor α [43], (2) predicting idiosyncratic drug reactions via examining
the binding modes of drugs in the human leukocyte antigens [44], and (3) evaluating
the endocrine disrupting activity of 45 bisphenol A (BPA) replacement compounds
using molecular dynamics (MD) simulations [45].

6.2 Methodology

6.2.1 Approach Overview

In view of the existing limitations of current approaches briefly reviewed above,
we have developed a novel, state-of-the-art predictive toxicology approach that is
guided by MoA, MIE or other toxicological mechanism information at the molecu-
lar level, as illustrated in Fig. 6.1. This approach is also based on molecular model-
ing that integrates structural biology principles, computational chemistry tools, and
machine learning techniques. Historically, molecular modeling (molecular docking
and MD simulation in particular) has been applied to qualitative studies for elucidat-
ing the mechanism of molecular interactions between a ligand and a target biomacro-
molecule [45, 46] or to high-throughput preliminary screening of drug candidates for
their potency on disease targets [34, 35, 47]. Here we expand its application to quan-
titative toxicity assessment. Meanwhile, machine learning (especially deep learning)
methods that have been widely applied in predictive toxicology are employed to train
and validate toxicity predictionmodels for qualitative categorization and quantitative
estimation of uncharacterized chemicals [48, 49].

6.2.2 Approach Implementation

Our approach is implemented through a target-specific toxicity knowledgebase
(TsTKb) that consists of a pre-categorized database of chemical MoAs (ChemMoA)
and a library of pre-built, category-specific classification and quantification models
(see [50] for more information). ChemMoA serves as the depository of chemicals
with known MoAs or MIEs (i.e., known target biomacromolecules) and quantitative
information for measured toxicity endpoints (Fig. 6.1). The following information is
curated in ChemMoA: chemical data (e.g., IUPAC name, identifier, SMILES struc-
ture, and 1D to 3D molecular descriptors), target data (i.e., the 3D structures of
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Fig. 6.1 Schematic workflow of the mode of action (MoA)/molecular initiating event (MIE)-
guided, molecular modeling-based in silico predictive toxicology approach

biomacromolecular targets retrieved from the PDB [40–42] or built via homology
or de novo modeling), toxicity data, experimental data, and citation data. The model
library is built using data curated in ChemMoA and allows a user to qualitatively
classify an uncharacterized chemical by MoA and quantitatively predict its toxicity
potency. For instance, the TsTKb enables one to in silico screen an uncharacterized
chemical (X) for each potential macromolecular target in ChemMoA, estimate the
interaction activity in terms of a set of molecular descriptor (S) including dynamic
protein–ligand interaction descriptors (dyPLIDs) [51] and scoring function-based
binding scores [34, 52], and identify potential toxicity target(s) (Fig. 6.1). Then, the
toxicity (T) of the chemical of interest (X) can be derived quantitatively as a function
of the binding scores and other variables (e.g., molecular descriptors) that are relative
to the measured toxicity of well-characterized reference chemicals (RCs) that elicit
toxicity through interfering with the same macromolecular target. For quantitative
prediction, a significant correlation must exist between T and S, i.e., T ∝ S. When
scaling up, this workflow can be replicated simultaneously for other uncharacterized
chemicals and many different toxicity targets.

At the current stage of development, we have not yet considered the effect of mod-
ulators in the molecular modeling although they may influence the binding affinity
between a chemical and its target biomacromolecule. Furthermore, the influence of
absorption, distribution, metabolism, and excretion (ADME) processes on chemical
toxicity in vivo [53] remains to be accounted for (Fig. 6.1). These impacts can be
built into a quantitative prediction model: T = f (Starget, Smodulator, Sadme), where Starget
stands for the binding activity of a chemical to a target receptor, Smodulator represents
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the modification of Starget by modulators, and Sadme accounts for the influence of
ADME on chemical bioavailability biomacromolecules.

6.3 Results

As an ongoing project, we divide the development of our novel MoA/MIE-guided,
molecularmodeling-based approach for in silico predictive toxicology into twomajor
phases. In Phase 1, we intend to focus on prediction of in vitro toxicity endpoints.
In Phase 2, we will expand to in vivo toxicity end points by incorporating ADME
processes into prediction modeling (Fig. 6.1). In the following, we provide an update
on the Phase 1 status of the TsTKb development. For more details about the TsTKb,
one may refer to our recent publication [50].

6.3.1 Libraries of Reference Chemicals in ChemMoA

We have curated a library of reference chemicals for each MoA/MIE or toxicity
target according to the following criteria: (1) the availability of toxicity data, (2)
the uniqueness of toxicity target (to avoid chemicals interacting with multiple tar-
gets within a toxicity pathway and eliciting the same toxicity at the organ/system
level), and (3) their reported toxicity spanning a wide potency spectrum. We have
queried more than a dozen publicly accessible databases: Aggregated Computational
Toxicology Online Resource (ACToR) [54] and Distributed Structure-Searchable
Toxicity (DSSTox) [55] databases, both developed by the US EPA; PubChem [56];
ChEMBL [57]; ZINC15 [58, 59]; Estrogenic Activity Database (EADB), Endocrine
Disruptor Knowledge Base (EDKB), and Liver Toxicity Knowledge Base (LTKB),
all of which were developed by researchers at the US FDA [60]; SuperTarget [61];
SuperToxic [62]; Toxin and Toxin Target Database (T3DB) [63, 64]; TG-GATE
[65]; and TOXNET [66, 67]. We retain chemicals that cause a wide variety of toxic
effects (e.g., acetolactate synthase inhibition, GABAA receptor antagonism, hepatic
steatosis, acetylcholinesterase inhibition, androgen receptor antagonism/agonism,
and estrogen receptor antagonism/agonism) through interacting with their respective
toxicity targets. MoA/MIE data for these chemicals are retrieved and categorized,
whereas toxicity data are normalized and harmonized. The AOP knowledgebase,
developed as part of the OECD AOP Development Effort [18, 68] and hosted at the
AOP Wiki Web portal (https://aopwiki.org/) is also consulted with regard to MoA-
based chemical categorization. An example of the curated hepatotoxin library is
provided in Fig. 6.2.

https://aopwiki.org/
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Fig. 6.2 An example of reference chemical library preparation based on toxicological mode of
action (MoA) or molecular initiating event (MIE) in the framework of adverse outcome pathway
(AOP)

6.3.2 Structural Models of Biomacromolecular Targets

The 3D crystal structures of toxicity targets are first searched in RCSB’s PDB [69]
(https://www.rcsb.org/) and NCBI’s MMDB [40] (https://www.ncbi.nlm.nih.gov/
Structure/MMDB/mmdb.shtml). If the 3D structure of a biomarcomolecular target is
not yet resolved, we first retrieve its protein sequence from relevant databases, such
as UniProtKB [70] (https://www.uniprot.org). Then, using BLAST (Basic Local
Alignment Search Tool) [71] to search for homologous proteins with available 3D
structures, we choose the one with the highest similarity to the homologous tem-
plate. Homology-based modeling tools, such as Modeller [72] and Swiss-Model

https://www.rcsb.org/
https://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml
https://www.uniprot.org
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[73], are employed to build homology models for the target biomacromolecule. The
stereochemical quality of the homology models is assessed using PROCHECK [74],
whereas the local and global model quality is estimated using the QMEAN scor-
ing function [75]. If a homologous protein of known 3D structure cannot be found,
the de novo modeling approach QUARK [76] is employed to produce ab initio a
template-free predicted model for the target of interest.

6.3.3 Molecular Docking and MD Simulation for dyPLID
Generation

With the 3D structure of a target biomacromolecule in hand, FINDSITE [77], a
threading algorithm, or POCKET [78], a cavity detection program, is used to identify
putative active binding sites in the target biomacromolecule if the sites are unknown.
Then, AutoDock Vina [79] is utilized to dock a chemical into the binding sites in the
target biomacromolecule. The top-scoring binding pose with a favorable calculated
binding energy is selected and further refined using Amber18 (http://ambermd.org/),
an MD simulation program package [80, 81]. The obtained MD trajectories and the
VMD program [82] are used to calculate the dyPLIDs as the quantitative measure-
ments for possible target-chemical interactions. The binding energy is recalculated
after MD simulations, and the refined binding energy estimate is included in the set
of target-chemical interaction descriptors.

6.3.4 In Vitro Toxicity Prediction Mode Libraries

We are currently developing toxicity classification and quantification models using
machine learning (including classical SVM, random forest, and deep learning algo-
rithms such as deep neural networks [48, 83]) methods. For instance, using the andro-
gen receptor bioassay dataset for more than ten thousand chemicals made available
through the Tox21 data challenge [84] (https://tripod.nih.gov/tox21/challenge/), we
have built a set of models to classify these chemicals into agonists, antagonists,
inactive ligands, and inconclusive compounds (i.e., neither active nor inactive) (G.
Idakwo et al. Manuscript under review) and to quantitatively predict the degree of
agonism or antagonism for 273 active compounds [51].

6.3.5 Web Portal for ChemMoA/TsTKb

It has been our intention tomake the toolkits we developed publicly accessible so that
our research findings and products can be disseminated to the relevant communities

http://ambermd.org/
https://tripod.nih.gov/tox21/challenge/
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Fig. 6.3 Architecture of the relational ChemMoA database (a) and captured screenshots of the
prototype ChemMoA web portal: b Homepage, c Sign-up page, d Sign-in page, e Simple search,
and f Advanced search

in a timely fashion. Hence, we have started to develop a Web portal for ChemMoA.
At this time, a prototype of the relational ChemMoA database has been completed
(see [50] for more details). The architecture and a few screenshots of the ChemMoA
database are provided in Fig. 6.3. We plan to add toxicity target structure models
and toxicity prediction model libraries to ChemMoA and eventually turn it into the
TsTKb with more features and functionalities (e.g., target-specific in vitro toxicity
classification and prediction of uncharacterized chemicals).

6.4 Discussion

The field of in silico predictive toxicology has been dominated by conventional
QSAR-based approaches. For many decades, QSAR modeling techniques have
undergone continuous development and refinement dedicated primarily to enhance
prediction accuracy based on the relationships between physicochemical properties
of chemical substances and their biological activities. For instance, previous efforts
have resulted in the advent of 0D to 3D molecular descriptors for chemical ligands.
A molecular descriptor is the final result of a logical and mathematical procedure
which transforms chemical information encoded within a symbolic representation
of a molecule into a useful number, or the result of some standardized experiment
[85]. 0D descriptors are atom counts and sums, and 1D descriptors are constitutional
parameters, such as molecular weight and the list of substructural fragments and
bonds. 2D descriptors are based on molecular topology and include graph invari-
ants (topological indices) and topographic descriptors, and 3D descriptors expand to
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geometrical parameters covering molecular surfaces and fields as well as parameters
calculated in quantum chemistry.

QSAR approaches have also evolved from 1D to 6D [86, 87] and have the follow-
ing properties: 1D-QSAR correlates biological activity with physiochemical proper-
ties, such as pKa and logP [88]; 2D-QSAR correlates activity with structural patterns,
such as connectivity indices, and 2D-pharmacophores. [89]; 3D-QSAR correlates
activity with non-covalent interaction fields surrounding the ligand (e.g., CoMFA
[90]) or receptor (COMBINE [91]) in an alignment-dependent (CoMFA [90] and
COMBINE [91]) or independent (WHIM [92] and COMPASS [93]) fashion; 4D-
QSAR adds ensemble sampling of conformation, orientation and protonation state as
the fourth dimension [94, 95]; 5D-QSAR allows for a multiple representation of the
topology of the quasi-atomistic receptor surrogate (i.e. the fifth dimension), leading to
less biased induced-fit models [96]; and 6D-QSAR further allows for the simultane-
ous consideration of different solvation models (i.e., the sixth dimension), reflecting
varying solvent accessibility [97]. However, all these QSAR strategies either do not
consider ligand-receptor interaction (1D- and 2D-QSAR), or restrain the flexibility
of the ligand and/or receptor by modeling the binding interaction in a predefined grid
box (3D- to 6D-QSAR). It was not until recently that molecular docking and MD
simulationwere performed to infer optimal conformations withminimal binding free
energy in order to compute structural protein–ligand interaction fingerprints (SPLIF)
[98] and 3D-D Moments/WHIM descriptors [99], respectively.

To the best of our knowledge, QSAR modeling approaches have given little or no
consideration to the dynamic nature in chemical-target biomacromolecule interac-
tions, leading to limited success of QSAR models in toxicity prediction. Our novel
MoA-guided and molecular modeling-based approach is geared to overcome the
aforesaid drawbacks. Despite being an ongoing effort, this approach is believed to
improve the accuracy and efficiency of predictive toxicology, which is supported by
our preliminary results. There are three aspects of novelty in our approach: (1) pre-
categorized reference chemical libraries organized by their documented MoA/MIE
[50], (2) the generation of >5000 dyPLIDs that give full consideration to the flexi-
bility of both ligands (small chemical molecules) and receptors (toxicity biomacro-
molecular targets) [51], and (3) the application of machine learning, especially deep
learning, in the development of prediction models [48, 49].

6.5 Conclusion and Future Directions

The motivation for developing the novel approach presented in this chapter was to
improve in silico toxicity characterization and risk assessment of existing chemicals
as well as prediction of adverse biological effects for emerging or novel chemicals
undergoing development. Ultimately, our work may lead to the following outcomes:
(1) a reduction in animal use for toxicity testing, (2) early detection of toxicological
properties, and (3) an increase in the likelihood of launching a sustainable “green”
product without incurring undesirable human health and environmental risks. Specif-
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ically, our approach addresses several challenges in model development for toxicity
prediction and quantification: (1) what properties and features of the ligand-target
biomacromolecule (e.g., receptor and enzyme protein) interactions should be taken
into consideration; (2) how to capture such dynamic interactions and incorporate
them intoQSARmodeling; (3) how to characterize chemical toxicities beyond binary
classes (toxic/non-toxic) for the purpose of lead optimization, mechanism elucida-
tion and analogue prioritization; (4) how to handle the commonly encountered class
imbalance problem in chemical classification; and (5) how to develop novel machine
learning (e.g., deep learning) approaches that include solid theoretical foundation
and advanced optimization techniques for rapid and accurate quantitative toxicity
prediction. We anticipate finding interdisciplinary solutions for these challenges in
the course of developing the TsTKb. We believe the fully developed TsTKb will sig-
nificantly advance in silico-based predictive toxicology and provide a new powerful
toolbox for regulators, the chemical industry and relevant academic communities.
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Chapter 7
A Review of Feature Reduction Methods
for QSAR-Based Toxicity Prediction
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Abstract Thousands of molecular descriptors (1D to 4D) can be generated and used
as features to model quantitative structure–activity or toxicity relationship (QSAR or
QSTR) for chemical toxicity prediction. This often results in models that suffer from
the “curse of dimensionality”, a problem that can occur in machine learning practice
when too many features are employed to train a model. Here we discuss different
methods of eliminating redundant and irrelevant features to enhance prediction per-
formance, increase interpretability, and reduce computational complexity. Several
feature selection and extraction methods are summarized along with their strengths
and shortcomings. We also highlight some commonly overlooked challenges such
as algorithm instability and selection bias while offering possible solutions.
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Abbreviations

1D One-dimensional
2D Two-dimensional
3D Three-dimensional
4D Four-dimensional
ACO Ant colony optimization
ECFP Extended connectivity fingerprints
GA Genetic algorithm
KPCA Kernel principal component analysis
LASSO Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
LOOCV Leave-one-out cross-validation
MACCS Molecular access system
MDS Multi-dimensional scaling
PCA Principal component analysis
PSO Particle swarm optimization
QSAR Quantitative structure–activity relationship
QSTR Quantitative structure–toxicity relationship
RFE Recursive feature elimination
SA Simulated annealing
SAR Structure–activity relationship
SFFS Sequential floating forward selection
SFS Sequential forward selection
STR Structure–toxicity relationship
SVM Support vector machine
Tox21 Toxicology in the twenty-first century
t-SNE t-Distributed stochastic neighbor embedding

7.1 Introduction

The limitations of in vivo and in vitro approaches for determination of the biological
activity of chemicals have fostered the development of in silico approaches [1]. In
silico predictive toxicology is designed to complement experimental efforts with a
view toward improving the quality of toxicity predictions for safety assessment while
decreasing the associated time, cost, and ethical conflicts (animal testing) [2–4].
Methodology for in silico predictive toxicology has been dominated by (quantita-
tive) structure–activity or toxicity relationship [(Q)SAR or (Q)STR] (hereafter called
SAR). Traditional SAR models describe a relationship between the chemical struc-
ture of molecules (numerically encoded as molecular descriptors) and their activity
against a specific biological target [1]. This is achieved by establishing a trend in the
molecular descriptor space that links to a biological activity. Thus, all SAR models
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are developed on the assumption of a similarity principle. That is, molecules with
similar structures (and descriptors, consequently)will have similar biological activity
[4, 5]. A SAR model to predict toxicity (T ) is given in Eq. (1)

T = g
(
D f

)
(1)

where
(
D f

)
represents the feature space of molecular descriptors as chemical prop-

erties and g is a function that relates T to
(
D f

)
[2]. The accuracy of the model or

function g has been shown to depend on the most representative set of molecular
descriptors that will encode the useful properties of the molecules for prediction.

Molecular descriptors, being numerical features extracted from molecular struc-
tures, are the most common variables used for SAR-based toxicity prediction mod-
eling [6]. The information encoded by descriptors depends on the molecular rep-
resentation or “dimensionality” of the compound as well as the algorithm used to
calculate the descriptors [7]. One-dimensional (1D) descriptors are scalars encoding
physiochemical properties (molecular weight, logP) and constitutional parameters,
such as number of atoms, bond count, atom type, ring count, and fragment counts.
1D descriptors are insensitive to the topology of the molecule and tend to be similar
for distinct compounds. As a result, they are often used in combination with other
descriptors. Two-dimensional (2D) descriptors are more frequently used for chem-
ical space description. 2D descriptors, including topological indices and structural
fragments, are calculated from the connection table (chemical graph) representation
of a molecule. They are not only independent of the conformation of the molecule
but also graph invariant (not sensitive to altering the number of graph nodes). Three-
dimensional (3D) descriptors provide a more complete characterization of molec-
ular structures. 3D descriptors require conformational searching and can discrimi-
nate between isomers; this comes at the price of being computationally expensive.
The ability to discriminate between isomers can translate to less redundant features.
Examples of 3D descriptors include geometric, electrostatic, quantum chemical, and
WHIM&GETAWAY. Four-dimensional (4D) descriptors are much like 3D descrip-
tors that evaluate multiple structural conformations simultaneously. Fingerprints are
another form of molecular descriptors [7–9]. Commonly used fingerprints include
the Molecular ACCess System (MACCS) [10] substructure fingerprints, PubChem
[11], and extended-connectivity fingerprints (ECFP) [12]. These fingerprints and 2D
descriptors were widely used in the Tox21 data challenge [13] where the winning
submissions used over 2500 predefined features covering a wide range of data from
topological and physical properties to fingerprints [14].

As shown above, the chemical structures used in SARmodeling are characterized
by many molecular descriptors. It is common to generate thousands of descriptors
for a single molecule [14]. It is well known that the accuracy of predictive models
is not positively correlated to the dimensionality of the data, as overfitting tends to
become an issue [15–17]. High-dimensional spaces are prone to include irrelevant
and noisy features [18]. SARs developed using such features tend to focus on the
peculiarities of molecules and fail to be generalizable [19]. In the chemical space
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for a given library, each descriptor adds a dimension to the n-dimensional chemical
space. Every molecule in the library is assigned a coordinate depending on its values
for all the descriptors. A reduction in the dimensionality of the chemical space corre-
lates with an increasing similarity between molecules. This is important because the
underlying assumption in SARmodeling posits thatmoleculeswith similar structures
should have similar activity [20, 21]. Thus, one of the most important tasks prior to
modeling is dimension reduction focused on keeping the most important and rele-
vant descriptors with the maximum amount of biologically meaningful information
required for predicting the desired toxicity end point. Shen et al. [13] demonstrated
the usefulness of feature selection for toxicity prediction, particularly for interpreting
the role of the features. By reducing the feature space, they were able to pinpoint
MolRef and AlogP as the most important descriptors for predicting the toxicity of
aromatic compounds.

In simple terms, dimensionality reduction is considered desirable for activity
prediction modeling for the following reasons [22]:

(i) Employing fewer descriptors means that the model can focus on important
information for establishing a relationship, thus improving prediction accuracy
and reducing overfitting (Modelswithmany features enjoymore discriminating
power during training but are often not generalizable).

(ii) As the number of features decreases, interpretability of certain models
increases.

(iii) Computational costs reduce significantly as the complexity of many learning
algorithms is greater than linear [19, 23].

(iv) Elimination of irrelevant descriptors can help remove activity cliffs [7].
(v) Machine learning algorithms are statistical in nature; hence, they suffer from

the “curse of dimensionality”, which is common with optimization problems
as described by Bellman [24].

As the dimensionality increases, the amount of data needed to develop general-
izable models increases exponentially [25, 26]. SAR data rarely have an abundance
of labeled molecules and, as such, the final model and resulting toxicity prediction
will benefit from a reduction in dimension as a smaller dimension means fewer sam-
ples will be required during training. The optimal subset of a feature space is one
which has the least number of dimensions yet offers the best learning accuracy [26].
Two techniques used to alleviate the challenges of high dimension in SAR datasets
include feature selection and feature extraction.

In this review, we discuss different methods for both feature selection and feature
extraction techniques, as well as their applications in SARmodeling. In the next two
sections, we discuss feature selection and feature extraction methods consecutively.
In the last section, we highlight important aspects that must be considered while
attempting feature space reduction, such as the stability andvalidation of themethods.
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7.2 Feature Selection

Feature selection works by selecting a subset of features from the original feature set
and removing irrelevant features without altering the original representation of the
data, on the basis of certain relevance criteria [18, 26–28]. The physical meanings
of the features are retained.

Mathematically, considering a descriptor space X = {xi , i = 1 . . . n} , find a
subset Yk (with k < n) that maximizes an objective function J (X) for the probability
P that a compound is correctly predicted as active or inactive using Eq. (2).

Yk = {
x(1), x(2), . . . , x(k)

} = argmaxYk⊆X J (Yk) (2)

Thus, the ultimate goal of feature selection is to define a subset of Yk relevant
descriptors (obtained from an initial set of X descriptors) which holds the most
useful molecular structure information for learning the underlying pattern present in
the data.

One pronounced benefit of feature selection is that it can be used to avoid overfit-
ting. Models with high dimension offer many degrees of freedom and tend to learn
random patterns and noise instead of important underlying patterns between descrip-
tors and the target end point [29, 30]. Many feature selection algorithms have been
documented. Broadly, these algorithms can be grouped into the following three cat-
egories depending on the availability of class labels for the training set: supervised
[22, 25, 28, 31], semi-supervised [18, 32], and unsupervised [18, 33]. The choice of
an appropriate method is dependent on the learning algorithm to be employed and the
data to be used [34]. The focus of this review is on supervised feature selection meth-
ods. Supervised feature selection requires that the entire training dataset be labeled.
Feature selection is achieved by eliminating descriptors that have a low correlation
with the toxicity end point to be predicted [28]. Feature selection methods applied to
supervised tasks can be classified into filter, wrapper, and embedded methods [28].
We discuss each of these methods and further describe Hybrid [35, 36] and Ensemble
[37–39] methods, which are a blend of the earlier listed methods. These methods are
illustrated in Fig. 7.1.

7.2.1 Filter

Filter methods evaluate the relevance of a feature based on its intrinsic properties and
are completely independent of the learning algorithm [18, 27, 28, 40]. The majority
of filter methods are univariate, where each feature is considered independently of
the feature space. Multivariate methods, such as correlation-based scores and paired
-scores, have also been used to assess the relevance of feature pairs and how well
they synergize to enhance prediction of the desired end point [41]. Filter methods are
computationally efficient and fast in comparison with wrapper methods. Their lack
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Fig. 7.1 An illustration of different feature selection methods: a Filter b Wrapper c Embedded
d Hybrid e Ensemble

of dependence on any learning algorithm means that the features they select can be
used with almost any learning algorithm. However, this independence often results in
varied performance from these different learning algorithms [28]. Statistical methods
make the assumption that the data they are applied on are normally distributed [40].
By not taking the learning algorithm into consideration, filter methods also turn a
blind eye to the heuristics and biases of these algorithms, which may impair their
predictive abilities [25].

Filter methods use feature ranking and filtering techniques as the basis for selec-
tion. Features are first evaluated and ranked based on a criterion. Then, a threshold
is used to select all features above the mark that are considered to be relevant for
predicting the end point [18, 28, 41], as shown in Fig. 7.1a. The elimination of low-
variance and highly correlated descriptors is a common filtering technique applied to
SAR datasets [14, 23, 42]. Several criteria have been employed for filtering descrip-
tors, including variance score [32], correlation coefficient [25, 34], fisher [28, 43],
and information gain [44].

7.2.2 Wrapper

Wrapper methods use learning algorithms to evaluate the relevance of a feature,
where the learning algorithm’s error rate or accuracy is treated as the objective
function/criterion for evaluating a feature. A wrapper method begins by selecting
a subset of the features heuristically or sequentially, and then a learning algorithm



7 A Review of Feature Reduction Methods … 125

of choice is used to evaluate this subset. This process of subset generation and
testing is repeated until the desired objective function is achieved [27, 28] (Fig. 7.1b).
Wrappers tend to perform better than filters in selecting features since they consider
feature dependencies and directly incorporate the specific biases and heuristics of the
learning algorithm into the selection process. However, this implies that the selected
features are unlikely to be optimal for any other classifiers [18].

The size of search space form features isO(2m) [28]. Since evaluating the subsets
of such a search space is considered an NP-hard problem, the computational inef-
ficiency of wrappers becomes evident when using larger datasets. However, search
algorithms have been proposed for selecting optimal subsets of the feature space.
Broadly, we consider two groups of search strategies for wrappers: sequential and
heuristic selection algorithms [25].

7.2.2.1 Sequential Selection Algorithms

Sequential selection can be achieved in two ways: forward selection and backward
elimination. Sequential forward selection (SFS) begins with an empty set of features,
and features are progressively incorporated into larger and larger subsets (one at a
time) until no further improvement is recorded in the evaluation criterion.Abackward
elimination algorithm begins with the full set of features and iteratively eliminates
the least relevant features [28].

The sequential floating forward selection (SFFS) [45, 46] algorithm has been
suggested as an improvement over SFS because it includes flexible backtracking
capabilities. Similar to SFS, SFFS adds one feature at a time as determined by the
objective function. Meanwhile, it backtracks by eliminating one feature at a time
from the initial subset, followed by an evaluation. If an improvement is noticed in
the objective function, it leaves that feature out and moves on to add a new feature.
This process goes on iteratively until the desired goal is met with the fewest number
of features.

7.2.2.2 Heuristic Selection Algorithms

Heuristic search algorithms evaluate different subsets to optimize the objective func-
tion. Subsets can be generated by evaluating a search space or by generating solutions
to the optimization problem, with the learning algorithm’s performance being the
objective function [25]. Simulated annealing (SA) [47] and genetic algorithms (GA)
[48], two widely used heuristic algorithms, find a subset of features for wrappers. A
hybrid of these methods has also been suggested [49]. In GA, the chromosome bits
indicate if a feature should be included or not. SA, a stochastic algorithm, solves
for the global minimum of a function by improving the initial solution repeatedly
using small local perturbations until no such perturbations yield an improvement in
the objective function. This process is randomized such that there are occasional and
intentional deviations from the solution to lessen the probability of becoming stuck
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in local optima. The use of GA to preselect descriptor subsets for SAR modeling
of artificial and real data was shown to be successful in [13] where 2D descrip-
tors were employed to discriminate between active and inactive compounds. Particle
swarm optimization (PSO) [47] and ant colony optimization (ACO) [50] algorithms
may also be employed for heuristic subset search. For instance, it has been shown
that the ACO algorithm is a useful method for selecting descriptors for predicting
cyclooxygenase inhibitors [50].

7.2.3 Embedded

Embedded feature selection methods incorporate feature selection into the model
training process. Embedded feature learning, much like wrapper methods, takes the
potential dependencies among features into consideration while being more compu-
tationally efficient and less prone to overfitting as compared to wrappers [18, 27, 28,
41]. A common embedded feature selection algorithm is random forest. A random
forest is an ensemble of learners with a built-in mechanism for feature selection, such
as ID3 and C4.5 [28, 51]. Base learners, i.e., decision trees, look at each feature in
the feature space individually and assign importance to them based on how well they
contribute to the model attaining an optimal fit. Features with the lowest importance
are discarded, and the forest with the least number of features and highest predic-
tive performance is selected [28] (Fig. 7.1c). Using the top 20 molecular descriptors
from the random forest predictor importance method, Newby et al. [44] obtained
more accurate decision tree classification models in most cases, compared to the use
of filter methods such as information gain, chi-square, and greedy search.

Pruning is another embedded feature selection approach that has been applied to
neural networks as well as classical learning algorithms, specifically support vector
machines (SVMs) [25]. For instance, SVM-recursive feature elimination (SVM-
RFE) begins with all the features and recursively removes features that do not con-
tribute positively to the model’s predictive accuracy. To determine the optimal num-
ber of features for an RFE-based model, cross-validation is used to evaluate and
select the subset with the best performance. Hence, RFE can select the best features
for a specific learning algorithm. RFE is considered to be computationally expensive
as it traverses through all the features one after the other [41]. Weighted Kernels [49]
and regularization methods [52], like Lasso, Ridge and Elastic net, have also gained
prominence.

7.2.4 Hybrid and Ensemble Feature Selection

Hybrid methods for feature selection involve combining at least two different meth-
ods and applying them, usually in succession. Hybrid methods attempt to take advan-
tage of the benefits of the constituent methods while leveraging their strengths. In
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the literature, the most reported is the combination of filter and wrapper methods.
Their use has been widely reported for biomedical data [35]. Hsu et al. [49] sepa-
rately filtered two sets of features using F-score or information gain as the filtering
criterion. The resulting features were combined and further treated with wrappers
(Fig. 7.1d). They reported improved predictions in comparison with using filters
alone and a decreased computational time compared to using wrappers only. Reddy
et al. [53] applied a hybrid GA-based descriptor optimization technique for consis-
tently selecting descriptor subsets that represented the whole initial descriptor space.
The weights of the selected subsets were analyzed to understand the contribution
of each feature to the prediction of HIV protease inhibitors, revealing the role of
hydrophobic interactions. This implies the interpretability of the method.

Ensemble methods represent the application of a feature selection method on
different subsets of features obtained by using subsampling strategies like bootstrap-
ping. The resulting features from each of the subsets are aggregated using mean,
weights, or simple linear aggregation [38, 39] (Fig. 7.1e). This method is often
used to deal with the challenges of perturbation and instability experienced by most
feature selection methods. Seijo-Pardo et al. [39] provided an in-depth discussion
of ensemble methods of feature selection. Dutta et al. [54] proposed an ensemble
descriptor selection that searches for descriptor subsets using a genetic algorithm
whose objective function is a linear combination of the root-mean-square deviation
(RMSE) of all the models in the ensemble. They reported an improvement and found
that the resulting model had good performance on the PDGFR and COX-2 datasets.
A 96% reduction in noise and an improvement in performance was reported by Zhu
et al. [55], using a recursive random forest to rule out a quarter of the least important
descriptors at each iteration. This performed better than the least absolute shrinkage
and selection operator (LASSO). The authors highlighted that the difference between
the prediction performance of random forest and LASSO mainly resulted from the
use of variables selected by different strategies, rather than from differences between
the learning algorithms.

We have summarized the characteristics, strengths, and weaknesses of the five
classes of feature selection methods described above in Table 7.1 in order to assist
a user in choosing the appropriate tool based on user-specific requirements and/or
goals.

7.3 Feature Extraction

The algorithms employed for mathematical representation of molecular descriptors
and fingerprints are independent of the size of molecules, allowing the generation
of a fixed length set of descriptors for every molecule regardless of size [7]. The
generation of fixed length vectors can introduce redundant descriptors for certain
molecules within a library. An optimized feature set achieved by feature extraction
can minimize redundancy, noise, correlation between descriptors, and consequently
generate classifiers with improved prediction accuracy [20].
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A mathematical description of feature extraction is as follows: Considering a
descriptor space, x ∈ Rn , find a mapping y = f (x) to obtain transformed feature
vector y,where y ∈ Rk and k < n. The vector y should preserve the majority of
molecular information in Rn . The goal is to achieve a reduction in dimension without
negatively impacting the prediction performance. An optimal mapping, y = f (x),
is one that minimizes the prediction error.

Feature extraction transforms the initial feature space to a new, lower dimension
feature space by combining the features in the original space. As a result, it is difficult
to associate the new featureswith the old. Further analysis, such as feature importance
explanation, becomes very difficult as there is no physical meaning for the newly
mapped features that are obtained from feature extraction. Here we discuss some
commonly used feature extraction techniques.

7.3.1 Principal Component Analysis

Principal component analysis (PCA) is a multivariate, nonparametric method
employed for dimensionality reduction [56, 57]. It works by performing a linear
combination of the features, also referred to as the principal components, to achieve
the maximum variance. At its core, PCA is centered on determining the eigenvec-
tors of the input data’s covariance matrix. This linear transformation can minimize
redundancy and reduce the number of features, which increases the information in
the resulting features. Each of the resulting features, called principal components,
is a combination of several original features. These principal components are also
highly uncorrelated because the first principal component accounts for as much of
the variability in the data as possible, and each succeeding component accounts
for as much of the remaining variability as possible [26]. A detailed discussion on
the different applications of PCA in SAR modeling was provided in [57]. Klepsch
et al. [58] applied PCA to a curated P-glycoprotein inhibitors data set of 1608 com-
pounds, where the first two principal components were reported to explain 71.7%
of the variance in the dataset. This approach was applied to classification and an
analysis into the effect of the initial descriptors on these two components showed
that hydrophobic information, such as the number of aromatic bonds and the parti-
tion coefficient, was the major contributor to the principal components. According
to [59], 2-aryl-1,3,4-Thiadiazole derivatives were classified into distinct clusters of
active or inactive molecules when PCA was performed instead of using all of the
descriptors calculated.

Considering that principal components are combinations of the original features,
all the original features are still available within the components. This is useful for
interpretation of models because knowing the original features that contribute to a
component can reveal the types of features that are closely related. A key challenge
with PCA is that it is unable to handle data with complicated structures that may not
be represented in a linear subspace [60]. Kernel PCA (KPCA) [61, 62] was designed
to serve as the nonlinear form of PCA. KPCA is based on kernel functions that
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intrinsically perform a nonlinear mapping of the input space to a feature space fol-
lowed by performing linear PCA in this feature space. KPCA generated vectors have
been used to train SVMmodels [59], and it was shown that KPCA is efficient over a
wide range of virtual screening dataset inputs using MACCS and ECFP fingerprints.
It was also observed that the KPCA embedding largely depended on the properties
of the underlying representation as its performance on the ECFP fingerprint varied
with the hashing employed.

7.3.2 Autoencoder

Autoencoders [63, 64] are unsupervised neural networks with an odd number of
hidden layers that can be applied for nonlinear feature extraction. They employ
the backpropagation algorithm to try to create a set of output values which are
equal to the input by minimizing the error between the output and the input layer.
The network architecture can be designed such that the middle layer is smaller,
i.e., has fewer nodes than the input and output layers (Fig. 7.2). In that case, the
network is forced to learn a compact representation (embedding) of the input data
[65]. In an early work, Hinton et al. [17] demonstrated that autoencoders generated
embeddings of images that were used to reconstruct images. A major drawback
of autoencoders is that physical meaning for theoretical insight will be lost. They
are also complex to train because they typically require a large amount of training
data and a search through many possible hyperparameter values. Blaschke et al.
[66] employed generative autoencoders to design new molecules in silico based on

Fig. 7.2 An autoencoder indicating the reduced dimension in the middle layer
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the recreated output layer. Burgoon [67] used autoencoders to screen chemicals for
potential estrogenic activity by projecting the two neurons in the middle layer into a
Cartesian plane. The application of autoencoders for toxicity prediction has not been
widely reported, especially for feature extraction. This provides an opportunity for
a future area of research.

7.3.3 Linear Discriminant Analysis

Like PCA, linear discriminant analysis (LDA) [65, 68] is a linear transformation
technique commonly used for dimensionality reduction.However, LDA is supervised
since the discrimination power of the features is taken into consideration. LDA
computes an optimal transformation (projection) of the input data on to a line such
that classes are separated as clusters. The goal of the projection is to ensuremaximum
class discrimination by minimizing the within-class distance while maximizing the
between-class distance [26]. A weakness of LDA is that if the distribution of a
dataset is significantly non-Gaussian, the LDAprojectionswill not be able to preserve
any complex structure of the data [69]. Thus, the resulting features may not have
good discriminative power. Features extracted with LDA were used by Ren et al.
[70] in a stepwise forward manner from a combined pool of experimental data, and
chemical structure-based descriptors were employed for predicting aquatic toxicity
mode of action. In this work, logistic regression was shown to have a better predictive
performance than LDA using the extracted features, with a 7.3% improvement over
previously reported classification rates.

In addition to the above-mentioned nonlinear dimensionality reduction tech-
niques, there are also spectral and manifold learning methods, such as t-distributed
Stochastic Neighbor Embedding (t-SNE) [71], multi-dimensional scaling (MDS)
[72], spectral embedding [73], and isomap [74]. Manifold learning, a class of unsu-
pervised nonlinear algorithms, assumes that the dimensionality of a datasets is only
artificially high and thus attempts to uncover the intrinsic low dimensionality. Typi-
cally, these algorithms work by computing the similarities between points to find a
nearest-neighbor, and then an eigen problem for embedding high-dimensional points
into a lower dimensional space [75].

7.4 Miscellaneous

7.4.1 Feature Stability

It is common to use the performance of amodel as themetric to evaluate the suitability
of a feature reduction algorithm. Therefore, it is an obvious choice to optimize the
selection process to obtain the best prediction power possible. However, the stability
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or degree of variance of feature selection methods becomes a crucial challenge when
the task at hand goes beyond optimizing prediction accuracy to include improving
interpretability. A simple scenario may be the case for using substructure-based
descriptors for SAR modeling. It is common to consider a substructure that is very
relevant for prediction as amajor contributor to the activity of thatmolecule, implying
a potential research target. However, many feature selection algorithms tend to be
unstable and would yield a different subset if a little perturbation is applied (i.e.,
when new training samples are added or when some training samples are removed).
If every perturbation results in wide variation in the selected subset, then it is difficult
to conclude that a feature may be important to the molecule’s activity.

Kalousis et al. [76] defined the stability of a feature selection algorithm as “the
robustness of the feature subset the algorithm produces in the presence of pertur-
bations in training sets drawn from the same generating distribution.” Essentially,
stability quantifies how different training sets affect the variation in the selected fea-
ture subset. Hence, a similarity measure is often employed to measure the stability of
feature selection algorithms. A reliable algorithm should produce the same or similar
subset for any perturbations in the training data. Alelyani et al. [77] performed exper-
iments to investigate the causes of instability and reported that dimension, sample
size, and the distribution of the training data influenced stability. Larger sample size
translated to improved stability, while larger dimensions caused negative effects.
Thus, researchers should pay attention to the characteristics of a training dataset.
Certain algorithms are also more prone to instability than others. ReliefF-based fea-
ture selection is affected by the order of samples in a training set, while stochastic
search algorithms like GA that use random initialization parameters tend to yield
subsets that are unstable [78, 79]. Various metrics for measuring stability have been
proposed [78]. To overcome the stability challenge, it has been suggested to employ
ensemble selection algorithms based on the technicalities of the selection algorithm
in use [78, 80, 81]. Some of these algorithms include Bootstrap sampling, random
data partitioning, parameter randomization, or the combination of several of these.
Developing algorithms for feature selection that are stable and possess high pre-
dictive power is still an open and challenging area. SAR-based toxicity prediction
stands to gain a lot from such techniques that can improve speed and accuracy of
predictions for regulatory as well as lead optimization purposes.

7.4.2 Validation of Feature Selection

In selecting the optimal feature subset, it is common to evaluate the performance of
a learner based on its prediction error. A very common and overlooked mistake is
to select features using the entire dataset as a preprocessing step. While this appears
to be obviously wrong, it has been reported that many researchers, especially in the
biomedical fields, continue to make this mistake and successfully publish in top-
ranking journals [82, 83]. If a test set is to be used to evaluate the performance of a
feature set, it must not be involved in the feature selection step as that will result in a
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selection bias that will yield overly optimistic performance estimates. This is because
the features used will have an unfair advantage since they were chosen based on all of
the samples. As a result, the model would have gained insight into the features which
are more important in the test set. This challenge is more common with wrapper
methods [83].

In many practical cases of SAR-based toxicity modeling, there are rarely a large
number of compounds across the different end points to be predicted. This makes it
difficult to set aside a reasonable batch of data for evaluation purposes. Methods such
as cross-validation and bootstrap sampling can be used to avoid sampling bias [34,
82, 83]. Cross-validation techniques like leave-one-out cross-validation (LOOCV)
and the k-fold method were suggested. Feature selection is to be done in the inner
loop of the cross-validation procedure; hence, the algorithm takes the following form
for a k-fold technique [82]:

(i) Randomly shuffle the data set.
(ii) Randomly split the dataset into K folds.
(iii) For each fold k = 1, 2,…, K.

a. Perform feature selection to obtain an optimal subset with good univariate
correlation with the desired end point using all the data except the kth fold.

b. Use the selected features and build amultivariate model with all data except
the kth fold.

c. Perform an evaluation using the kth fold.

(iv) Aggregate the performance across all K folds to get an unbiased evaluation.

7.5 Summary

QSAR-based predictive toxicity modeling methods are faced with input spaces of
thousands of features. To improve the ability of a learner to find a generalizable
relationship between molecular descriptors and the toxicity end point of interest, it
is expedient to provide the learning algorithm with the minimum number of descrip-
tors while ensuring that the resulting model is interpretable and computationally
inexpensive to build. The relevance of a descriptor is assessed by its ability to dis-
criminate between classes in qualitative classification or its correlation to a scalar in
quantitative prediction.

In this review, we have discussed different feature selection and extraction meth-
ods applicable to SAR-based toxicity modeling. The strengths and weaknesses of
each method are highlighted. The choice of which to use should largely depend on
the available dataset, and we suggest beginning a new task with a few baseline per-
formance values from a number of methods since no single approach is universally
superior. Where the importance of descriptors is sought, feature selection methods
such as filter, wrapper, embedded or their combinations (hybrid and ensemble) may
apply. Feature extractionmethods transform the features into a lower dimensionwhile
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altering the physical meaning of the features. More analysis may be required to inter-
pret the selected features. The stability of selected features and proper feature subset
validation methods are often overlooked. Feature selection bias can be avoided by
embedding the feature selection process within the inner loop of a cross-validation
process to avoid an overly optimistic performance value. Although dimensional-
ity reduction has been shown to improve model performance, there is still room
for improvement when it comes to evaluating and validating feature selection and
extraction methods and their stability. For the sake of reproducibility, researchers
are encouraged to publish important parameters for feature selection or extraction
methods they employed, such as the threshold for a variance score. Regardless of
the choice of features (molecular descriptors, fingerprints or a combination) used for
modeling, SAR models can benefit from dimensionality reduction techniques.
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Chapter 8
An Overview of National Toxicology
Program’s Toxicogenomic Applications:
DrugMatrix and ToxFX

Daniel L. Svoboda, Trey Saddler and Scott S. Auerbach

Abstract DrugMatrix and its automated toxicogenomics reporting system, ToxFX
are the scientific communities’ largest molecular toxicology reference database and
informatics systems. DrugMatrix consists of the comprehensive results of thousands
of highly controlled and standardized toxicological experiments where rats or pri-
mary rat hepatocytes were systematically treated with more than 600 therapeutic,
industrial, or environmental chemicals at both non-toxic and toxic doses. Follow-
ing administration in vivo, comprehensive studies of the effects of these compounds
were carried out after multiple durations of exposure, and in multiple target organs.
Study types included pharmacology, clinical chemistry, hematology, histology, body
and organ weights, and clinical observations. Additionally, a curation team extracted
all relevant information on the compounds from the literature, the Physicians’ Desk
Reference, package inserts, and other relevant sources. At the heart of the DrugMa-
trix database are thousands of gene expression data sets generated by extracting RNA
from the toxicologically relevant organs and tissues and analyzing these RNAs using
the GE Codelink rat array, and the Affymetrix whole-genome 230 2.0 rat GeneChip
array systems. Additionally, the database contains 148 scorable genomic signatures,
covering 96 distinct phenotypes derive from mining the DrugMatrix gene expres-
sion data. The signatures are informative of organ-specific pathology (e.g., hepatic
steatosis), and mode of toxicological action (e.g., PXR activation in the liver). The
phenotypes cover several common target tissues in toxicity testing (liver, kidney,
heart, bone marrow, spleen, and skeletal muscle). Taken as a whole, DrugMatrix
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enables a toxicologist to formulate a comprehensive picture of toxicity with greater
efficiency than traditional methods.

Keywords ToxFX · DrugMatrix · Signature · Toxicogenomics · Database ·
National Toxicology Program · In vivo · In vitro

Abbreviations

API Application Program Interface
BDE Brominated Diphenyl Ethers
CEBS Chemical Effects in Biological Systems
FDA US Food and Drug Administration
GD Gestation Day
GUI Graphical User Interface
NIEHS National Institute of Environmental Health Sciences
NTP National Toxicology Program
PND Postnatal Day

8.1 Introduction and History

The power of transcriptomics for understanding biology relates to the technology’s
ability to provide a researcher not only the ability to view an entire landscape of
molecular alterations but to perform high-dimensional relational analysis that can
quantify relative similarities of different biological states. Consistent with this idea,
at the inception of the toxicogenomics methodology, it was apparent that in order
to achieve contextualization of the complex findings, anchoring of the studies to
reference data sets of traditional toxicity metrics would be needed. This realization
led to the creation of Iconix Biosciences in the early 2000s [1]. Their mission was
to generate a toxicologist friendly resource that integrated pathology, clinical chem-
istry, and transcriptomics metric all derived from a large set of comprehensive, well-
documented short-term in vivo rat toxicity studies [2]. To further broaden the context
of the information, targeted high throughput screening assays were performed, rat
specific annotated pathways were generated, signatures of pathology were derived
from the data, copious pharmacology curation was performed, and toxicologically
relevant ontologies were built and curated on several hundred chemicals and drugs.
To integrate and provide ease of access to toxicologists, all this information was
organized in a relational database, and a sophisticated java-based web application
was constructed. A web-browser-based GUI provided simple, end-user query access
to the data. It enabled uploading and integration of end-user data, together with
data visualization, to identify deeper patterns in the data. This application named
DrugMatrix. Due to its robustness of design and detailed consideration of the target
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audience, it remains a valuable resource for toxicologists and researchers. It con-
tinues to be a, perhaps unsurpassed, example of the power of data integration for
genomic toxicology.

DrugMatrix is an exceptional tool for data exploration, and it provides a vast
landscape of information that can be challenging to formulate into a single report.
Feedback from end users in relation to this issue led Iconix to create ToxFX. By
combining the highly curated data in DrugMatrix with templated text processing,
ToxFXcarries out rapid and automated interpretation and reporting of toxicogenomic
study results. In less than 5 min, ToxFX transforms normalized differential gene
expression data files, along with simple user-provided data annotations to a detailed
report covering numerous levels of interpretation along with supporting data tables,
histopathology section images, and other visualizations.

The National Toxicology Program (NTP) took ownership of DrugMatrix and
ToxFX and all associated assets in 2010 after it was briefly owned by Entelos. The
goal of the acquisition was to make the resources freely available to the research
community. Since this time the data, in particular the transcriptomics data, has been
extensively reused and broadly circulated. As of this writing, NTP has made the
entire contents of the DrugMatrix Database available in multiple forms and has
made DrugMatrix and ToxFX available via an open-source distribution to enable
users to deploy their own installation of the software.

Throughout this book chapter, different components of DrugMatrix will be
referred to. When referring to the DrugMatrix database, we are indicating the
relational database (PostgreSql) that holds all the DrugMatrix data that may be
downloaded elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
DrugMatrixPostgreSqlDatabase.tar.gz). The DrugMatrix-browser-based GUI that
allows end users to query the database via a server-based application, will be called
the DrugMatrix GUI. These two taken together, along with other associated assets
will be referred to as DrugMatrix.

8.2 DrugMatrix Data

The DrugMatrix Database is a highly integrated rat toxicogenomics database con-
taining one of the largest, systematically created collections of data of interest to
toxicologists. It is built using the results of short-term toxicogenomic studies on
>600 reference drugs/chemicals (433 US Food and Drug Administration (FDA)
approved drugs, 63 drugs approved outside the USA, 54 withdrawn or discontinued
drugs, 15 standard biochemicals, and 72 standard toxicants) in male Sprague Dawley
rats. It is composed of the results of over 5000 Affymetrix 230 2.0 and 12,000 GE
Codelink microarray studies performed on samples from liver, kidney, heart, thigh
muscle, bone marrow, spleen, brain, intestine, and primary hepatocytes. In addition,
127,000 histopathology, and ~100,000 hematology and clinical chemistry measure-
ments were taken to enable cross-referencing gene expression results in established
toxicity metrics. In addition to the data from the animal studies, the database also

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrixPostgreSqlDatabase.tar.gz
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Fig. 8.1 Contents of DrugMatrix. A summary of the contents of the DrugMatrix database is shown.
Gene expression studies involving up to 345 compounds (liver) over numerous tissues in primary
rat hepatocytes were performed in combination with clinical chemistry, histopathology, in vitro
pharmacological assessment, and literature curation. Tissue samples from many of the studies have
been retained and available for further investigation

contains ~8000 chemical structures, ofwhich ~2000 have baseline literature curation.
There are in vitro molecular pharmacology results for 867 compounds in 130 assays,
900 compounds with detailed literature curation (clinical pharmacology, toxicology,
indications, etc), 137 hand-curated signaling pathways, and hundreds of algorithmi-
cally derived gene expression signatures (Fig. 8.1).

Figure 8.2 outlines how studies were carried out, the details of which are available
in the standard operating procedure manual (ftp://anonftp.niehs.nih.gov/ntp-cebs/
datatype/Drug_Matrix/SOP%20v3%208_NTP.pdf; originally formulated by Iconix
Pharmaceuticals). For each in vivo expression study, literature review was under-
taken in order to identify a minimum of 3 chemicals that are associated with a similar
SAR (e.g. HMGCoA Reductase Inhibitor). Dose-levels and target organs were also
identified. A repeated daily dose range finding study was then performed in male
Charles River Sprague Dawley rats, identifying maximum tolerated doses for 5-day
studies. After reviewing the results of the range finding studies, and considering the
literature review, the maximum tolerated dose and fully effective pharmacological
dose level for each chemical was identified. Detailed narratives on dose selection
processes, and considerations for each study can be found in the Expression Study
Domain of DrugMatrix. Using the identified dose levels, an “Array Study” was
performed; tissues were collect for transcriptomics, clinical chemistry/hematology
and histopathology of organ samples. Detailed histopathology, clinical chemistry,
and hematology findings for individual rats can be found in the Chemical Effects
in Biological Systems (CEBS) (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/
Drug_Matrix/DrugMatrix_ClinicalChemistry_Hematology.xlsx and ftp://anonftp.

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/SOP%20v3%208_NTP.pdf
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_ClinicalChemistry_Hematology.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Histopathology.xlsx
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Fig. 8.2 Rat in vivo experimental protocol used for DrugMatrix data generation

niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Histopathology.xlsx).
In order understand the temporal aspects of toxicity, samples were collected with
durations of exposure ranging from 0.25 days to 14 or more days (dose administered
daily). For expression studies in rat hepatocytes, a single dose reflective of 24-h
“toxic concentration 20” (dose where there is a 20% reduction in cell viability) was
dispensed. Hepatocyte gene expressionwasmeasured 16 and 24-h post dose delivery.
NTP has retained a collection of biological samples from the in vivo studies including
snap-frozen liver, heart, kidney, thigh muscle, whole blood and/or plasma that are
available upon request for further investigation. A complete list of the available tissue
and RNA samples can be found elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/
datatype/Drug_Matrix/DrugMatrix_Aliquot%20Information.xlsx and ftp://anonftp.
niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_RNAMicroarray.xlsx).

Initially, GE Codelink microarrays representing approximately 10,000 genes
were used to quantify gene expression. In this first phase, >12,000 arrays were
run. Due to the evolution of array technology platforms, and ubiquitous usage in
the research community, a subset of the RNA samples (>5000) that provided the
most informative data were re-analyzed using Affymetrix 230 2.0 microarrays.
All raw microarray data is available in the Gene Expression Omnibus database
(GEO Data Sets: GSE59913, GSE59923, GSE59894, GSE59895, GSE59905,
GSE59906, GSE59907, GSE59925, GSE59926, GSE57800, GSE57805,
GSE57811, GSE57815, GSE57816). Data from both platforms are systemati-
cally integrated and available through the DrugMatrix Database. All individual
treatment transcriptomic signatures, i.e., single dose/duration) from the database
are available in CEBS (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
Differential%20Gene%20Expression%20Data/).

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Histopathology.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Aliquot%20Information.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_RNAMicroarray.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/Differential%20Gene%20Expression%20Data/
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Chemical and drug structures are the data type of greatest abundance housed in the
DrugMatrix database. Approximately, 8000 chemical structures are curated in the
database (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/Drugmatrix_
Curated_Chemicals_With_SMILES.txt), with ~2000 of these having some degree
of baseline curation and ~800 with full curation. Curation is defined as a collection
of facts (e.g., pharmacokinetics, toxicity, pharmacology) describing each compound,
recorded in the literature. An integral part of the curation process was the creation of
an ontology consistent with terms and logic used in the field of toxicology describ-
ing chemical and biological properties. Chemical mapping to ontology terms can
be found elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
Compound%20Literature%20Annotations/COMPOUND_ANNOTATIONS.txt).

To allow users of DrugMatrix to explore associations between gene expression
and effects of drugs and chemicals, a select set of 130 commercially available phar-
macological targets were screened using competitive binding assays. The results of
these studies can be found elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/
Drug_Matrix/DM_invitro_assay_data.xlsx). These data have also been integrated in
number of public HTS databases including ChEMBL and Pubchem (search “Drug-
Matrix” in these databases to find results).

Distinct species can respond to a chemical challenge in differentways.Most public
resources have focused on pathway curation in human or mouse (most common non-
human model system for academic studies). Hence, to most effectively interpret rat
toxicogenomics data, 137 pathways were curated focusing on a rat biology review
of the literature. Detailed citations are provided for the inclusion of genes/proteins,
and their linkage to other components of the pathways. All the curated pathways are
available for download (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
DrugMatrix%20Pathways.zip).

One of the primary goals of acquiring the assets associated with DrugMatrix was
to make all data freely available to the research community for mining from a variety
of perspectives, using a diversity of computational and bioinformatic approaches. All
data resources noted above in addition to additional DrugMatrix data, resources, and
information can be found elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/
Drug_Matrix/).

8.3 DrugMatrix Database

A highly-integrated relational database holds the algorithmically extracted exper-
imental data described above (Fig. 8.3). A detailed description of the database
can be found in CEBS (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
DrugMatrixDataWarehouse.pdf). The DrugMatrix data warehouse architecture is a
highly denormalized, modified star-schema. The “hubs” of the schema are the six
main information domains, or schema dimensions: GENE,COMPOUND, EXPRES-
SIONEXPERIMENT, EXPRESSIONSTUDY, PATHWAY, andASSAY (Table 8.1).
These hubs represent themain information domains in theDrugMatrix user interface.

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/Drugmatrix_Curated_Chemicals_With_SMILES.txt
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/Compound%20Literature%20Annotations/COMPOUND_ANNOTATIONS.txt
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DM_invitro_assay_data.xlsx
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix%20Pathways.zip
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/
ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrixDataWarehouse.pdf
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Fig. 8.3 A high-level overview of the main information items in the DrugMatrix data warehouse
and user interface. The major information domains used by the DrugMatrix GUI are shown in gold,
green, orange, and blue rectangles. This represents a highly simplified in that it represents only 13
of the 70+ tables in the warehouse

The DrugMatrix relational database is available for download (PostgreSql scripts;
see below) and will be accessible soon through a database client. A Readme will be
available through CEBSwhich will provide details on how to connect to DrugMatrix
PostgreSql Database.

The two primary data domains, GENE and COMPOUND, are connected via
annotation of chemogenomic-based secondary domains: ASSAY activities (a direct
measure of interaction between a compound and a target) and EXPRESSION array
profiles (a measurement of the indirect effects of a compound on the genome). Two
secondary domains, PATHWAY and EXPRESSION STUDY, provide extensions of
these domains. An additional secondary domain, SIGNATURE, provides patterns
of gene expression that can be used to classify compounds, or a set of common
experiments reliably compared to the experiment population, or a defined set of
control experiments.

The DrugMatrix database contains several types of data that require differ-
ent statistical modeling and handling, including normalization, ratio calculation,
and denominator groupings. While some of the data handling will be discussed
herein, a separate document comprehensively covers this topic (ftp://anonftp.niehs.
nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Calculations.pdf). This docu-
ment specifically addresses the key computations currently used for different types
of data modeling. A detailed description of raw data handling, such as removal of
no-data spots, exclusion of outlier data points, and data normalization is provided.
Gene expression changes of treated samples compared to controls, together with the
supporting statistics to determine their significance are summarized in detail. The
rationale for using different denominators for ratio calculation of gene expression,

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Calculations.pdf
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Table 8.1 DrugMatrix GUI data domains

Data domains Contents

Gene Presents all relevant information from the database for a queried gene,
such as annotation, genes that exhibit similar expression patterns,
treatments that induce or repress the gene, molecular pharmacology results
and activities reported in the literature

Compound Presents all relevant information from the database for a queried
compound, such as chemicals with similar structures, genes that are
induced or repressed by the compound, experiments where the chemical
was used, molecular pharmacology results for the compound and literature
annotations

Assay Presents all relevant information from the database for a queried molecular
pharmacology, clinical chemistry or hematology assay, such as which
chemicals were active and details on the assay and its associated gene(s)

Expression Presents all relevant information from the database for a queried
experiment (a single chemical, time point, dose, tissue, species, and array
type) such as experiments with similar expression patterns, genes that were
induced or repressed in an experiment, and the clinical chemistry,
hematology and histopathology results for the experiment

Pathway Provides information on the hand-curated biochemical, metabolic and
signal transduction pathways annotated in DrugMatrix

Expression Study Presents a list of experiments related to the queried study. A study is a
collection of data representing a multi-dose and time point toxicity
assessment. Information about a study such as time course, dose
justification, pathlab report, and dose justification is found in this domain

Motif Presents all relevant information from the database for a queried signature
motif. A Motif is a pathway-centric gene expression signature that
classifies a toxicity endpoint. Information about a motif such as similarity
to other motifs, genes contained in the motif, and experiments that is active

Signature Presents all relevant information from the database for a queried
DrugMatrix signature. Signatures are similar to motifs with the exception
that the signatures are not limited to pathway genes. Information contained
in this domain parallels that for the Motif domain

blood chemistry, and histopathology data is described. The algorithms and compu-
tations that form the basis of the drug signatures are elaborated in detail, as well as
the analytical tools that are utilized to assist data visualization and interpretation in
the DrugMatrix GUI. In addition, compound curation, pathway curation, and gene
annotation processes are described in this document.

8.4 DrugMatrix GUI

The DrugMatrix GUI (Fig. 8.4) consists of: (1) A set of sophisticated querying
tools that enables queries that filter by expression profile, chemical structure, gene
names, compound names, or by the presence of any attribute (e.g., a compound that
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Fig. 8.4 The DrugMatrix GUI. Shown in the figure is an image of the DrugMatrix GUI. Outlined
in the green box is the search and list management tools. The Search and List area of the DrugMatrix
GUI consists of tools for generating simple searches and advanced searches (i.e., layered queries)
of the database as well as a workspace with tools for the management of lists generated by these
searches. The workspace section contains the Toolbox which provides several advanced analysis
and visualization tools. Selection experiment from the list shown in the lower section of search and
list management tools causes the Domain Reports to be populated (dark blue box). Domain reports
are organized into seven domains (gene, compound, assay, expression, pathway, expression study,
and signature). Each Domain Report contains a subset of Chemogenomic Data Reports and Detail
Reports (yellow box). The tabs and structure in the Chemogenomic Data Reports vary depending
on the data being queried as does the details report

induces a specific gene and has a specific bio-activity), (2) Comprehensive report-
ing tools that deliver reports comprising integrated information, including automat-
ically generated links to information from other data domains. For example, the
COMPOUND Domain Report provides, among other things, links to expression
experiments (and the associated array technology) in which the query compound has
been tested, with links to all genes (and related assays) that have been significantly
impacted by the query compound, (3) Data visualizations providing extensive detail
about query items. The DrugMatrix application uses predefined database searches
to extract, and graphically present detailed information relevant to the query item.
A document entitled DrugMatrix Reference Guide detailing the DrugMatrix GUI is
available through the CEBS database (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/
Drug_Matrix/DrugMatrix_Ref_Guide.pdf).

Information, extracted from the database, is organized into seven Domain Reports
in the GUI that represent each of the DrugMatrix data domains (Table 8.1). Each

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Ref_Guide.pdf
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Domain Report contains a subset of Chemogenomic Data Reports andDetail Reports
that present cross-referenced experimental data from the DrugMatrix database, and
curated information from the scientific literature, reference material, and online
databases. As operations are executed within the DrugMatrix framework (for exam-
ple, conduct queries, save lists, or access previously saved lists) Server Status Mes-
sages appear at the bottom right of the User Interface, indicating progress of retrieval
of the requested operation.

The Search and List area of the DrugMatrix GUI consists of tools for generating
Simple Searches and Advanced Searches of the database, as well as a user-owned
Workspace with tools for the management of lists generated by these searches. Lists
that have been generated by database searches, previously saved user lists that have
been retrieved, Data Objects, and Favorite items are all available for use in the
Workspace area.

In addition to the data content that can be accessed through the DrugMatrix GUI,
several analysis tools are contained within the toolbox component of the interface
which enables analysis of uploaded data or data contained in the database (Table 8.2).
The TOOLBOX button, located on the WORKSPACE panel, opens a window con-
taining these tools. A list of these tools can be found in Table 8.2. The analysis tools
are further described in the reference manual and in the materials and methods of
white papers in the help section of DrugMatrix.

A user can perform a wide-ranging number of tasks using the DrugMatrix GUI
such as: Upload your own data for analysis or mine the DrugMatrix data; find
similar expression profiles; determine significantly up- and down-regulated genes;
visualize expression profiles on pathways; construct expression patterns for puta-
tive biomarker sets; perform gene ontology analysis of perturbed genes; score gene
expression signatures; test performance of a biomarker set for detecting phenotypes;
perform hierarchical clustering; find consistently changed genes; identify enriched
literature annotations in groups of expression profiles and mine the literature. A
detailed tutorial with multiple detailed examples on how to use the DrugMatrix
GUI can be found elsewhere (ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_
Matrix/DrugMatrix_Tutorial.pdf).

8.5 ToxFX

ToxFX is an automated toxicogenomics analysis and reporting tool. It employsDrug-
Matrix gene expression data, pathway information, and toxicity signatures to formu-
late detailed reports, and supplementary results files from user-provided gene expres-
sion data sets. Each report contains an executive summary, study description, details
of the quality control metrics, relative impact on transcription, DM signature scores,
relative response of pathways, cytochrome P450 changes, and most consistent gene
expression changes. Less than 5 min is typically required from upload of normalized
data to output of a report.

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrix_Tutorial.pdf
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8.6 Example Analysis of dE-71 Gene Expression Data
Using DrugMatrix and ToxFX

To demonstrate the utility of DrugMatrix, we present here an analysis of a toxi-
cogenomic study of a mixture of low molecular weight-brominated flame retardants
(DE-71) that was demonstrated to be carcinogenic in rat liver [3]. Study results have
been published elsewhere, and the reader has referred this manuscript for a more
detailed account of the results [4]. In short, pregnant female Wistar Han rats were
administered 50 mg/kg DE-71 starting at Gestation Day (GD) 6 of the fetus through
Postnatal Day (PND) 12, and then the pups were directly dosed from PND12 to
PND21. The pups were euthanized on PND22, 24 h after the last dose, and livers
were taken at necropsy of the male pups for microarray studies. Of note is that the
dosing paradigm, and the strain and age of sacrifice of rats were different from exper-
iments recorded in the DrugMatrix reference data set. Further, DE-71 treatments are
not part of the DrugMatrix reference data set. The gene expression data was gener-
ated using Affymetrix whole-genome 230 2.0 microarrays. A total of 10 microarrays
were run (5 vehicle and 5 chemical treated; all samples were independent biological
replicates).

Table 8.2 List of data analysis tools available in DrugMatrix

Tool Functionality

List editing tools Subtract a list (genes, compounds, etc) or group of lists from a
list, combine lists, or generate a list of common items between
lists

Data translation tools Convert one type of list of items to another type of list (e.g., a
list of genes to a list of associated assays)

Pattern creator Allows the user to derive a correlation-based signature from
an experiment list and gene set

Data import/export tools Export or import previously saved lists enabling the user
archive and/or share lists

Hypergeometric analysis Performs chemical ontology enrichment analysis of a list of
experiments

Expression experiment matrix Generates a graphical matrix, with a heat-map-type display, to
compare expression ratios for a specified list of genes in a
specified list of experiments

Bio-activity matrix Creates a graphical matrix, with a heat-map-type display, to
compare the bio-activities from the specified list of assays and
compounds

Pathway impact matrix Examines the impact of compounds, in a specified expression
experiment list, on gene pathways

Blood chemistry matrix Creates a heat map display to examine the perturbation of
blood chemistry assays, in a specified expression experiment
list

(continued)
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Table 8.2 (continued)

Tool Functionality

Compound compare Presents a table of two-dimensional images of the molecular
structures of the compounds in the specified list of compounds

Pathway visualization Enables the user to see the impact of compounds on the genes
in a pathway of interest at various doses and times

GO data query Allows the user to analyze a specified gene list using Gene
Ontology annotations to find significantly over-represented
terms

Significant gene finder Extracts the most significant set of genes for a list of
experiments

Drug signature heat-map Generates a heat-map view of the signature hits for the
experiments

Drug signature histogram Allows the user to generate a view of SVM signatures
displayed as a histogram for the query experiment and the
control list

Pattern assessment Assesses the accuracy of the signature derived from the
“Pattern Creator” tool

The data was first normalized using the Affymetrix Expression Console using the
Plier algorithm. The normalized CHP files were uploaded into DrugMatrix using
the DrugMatrix Study Builder. An initial assessment of the data in the Similarity
tab of Expression domain indicated that DE-71 elicited a gene expression pattern
that was most similar to Phenobarbital-like inducers, such as Phenobarbital and
Dypyrone, consistent with previous observations with other brominated diphenyl
ethers (BDEs). A Hypergeometric Analysis (Chemical/drug annotation enrichment
analysis) of the 25 most similar reference experiments in DrugMatrix indicated an
enrichment of aromatase inhibitors suggesting that DE-71 may be interfering with
steroid metabolism, an observation consistent with other studies [5].

A review of the top induced genes presented on the Induced tab indicated induc-
tion of Cyp2b1 and Cyp1a1. This is consistent with the PB-like induction properties
of the BDEs and the AhR-activating properties of contaminating brominated diox-
ins/furans, respectively [6]. In addition, there was a striking induction of the urinary
protein, Rup2, estrogen sulfotransferase and Sult1e1. A review of the top–down-
regulated genes on the Repressed tab, a down-regulation of Cyp17 which in combi-
nation with the effects on Rup2 and Sult1e1 suggests a perturbation of the sex steroid
signaling cascade and the potential for endocrine disruption which is consistent with
the hypogeometric analysis and published findings [5]. Fgf21, a growth factor with
antidiabetic properties was down-regulated. In combination with observed induction
of Lep this observation suggests the potential for metabolic perturbations associated
with DE-71 exposure [7]. Down-regulation of Lrp10 and Abcg8 suggest a potential
alteration in cholesterol homeostasis which is consistent with the clinical chemistry
results observed in this and other studies [8].
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Fig. 8.5 Pathology Signatures Scoring ofDE-71GeneExpression. Scoring of the liver gene expres-
sion data using the DrugMatrix signatures identified two possible pathological processes following
DE-71 exposure, hepatic lipid accumulation (in black box) and hepatocyte hypertrophy. Follow-up
pathological assessment using Oil Red O staining of the DE-71-treated liver revealed clear lipid
accumulation in the hepatocytes

A signature scoring analysis produced hits for liver hypertrophy and lipid accumu-
lation. Both effects were observed in the published study, and effects on cholesterol
have been documented in an independent assessment of DE-71 toxicity (Fig. 8.5).

A Pathway Impact Matrix analysis (Settings: P < 0.02, both up- and down-
regulated genes, score type: % changed) indicated Cholesterol Biosynthesis was
the most affected pathway. A review of DE-71’s effect on the Cholesterol Biosyn-
thesis pathway using the Pathway Visualization tool indicated most of the genes in
this pathway were down-regulated by DE-71. The finding related to cholesterol is
consistent with other findings this study that are noted above and in independent
investigations [8].

For purposes of illustration and comparison with DrugMatrix, an analysis of the
DE-71 expression data was performed using ToxFX. In short, ToxFX yielded similar
results, suggesting potential effects on liver hypertrophy and steatosis, along with
pathway level perturbations of xenobiotic metabolism, AhR signaling, and Choles-
terol Biosynthesis. Most notable is the complete analysis, report and supplementary
results files were generated in less than five minutes after upload of the normalized
CHP files.
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8.7 Accessing the DrugMatrix Database

NTP no longer hosts DrugMatrix or ToxFX applications for the public, however, the
complete DrugMatrix database can be downloaded (ftp://anonftp.niehs.nih.gov/ntp-
cebs/datatype/Drug_Matrix/DrugMatrixPostgreSqlDatabase.tar.gz) and deployed
into a local PostgreSql installation using a dump of the PostgreSQL database. Note
that the uncompressed database is larger than 10 GB.

8.8 Deploying the DrugMatrix and ToxFX Applications
for Local Use

Source code for the DrugMatrix and ToxFX applications have been posted to
Github (DrugMatrix: https://github.com/NIEHS/DrugMatrix; ToxFX: https://github.
com/NIEHS/ToxFX).

Expertise with Java, Tomcat, and database administration will be required to
deploy the applications to a local system. A detailed description on how to deploy
the application within your organization can be found at the above links.

8.9 DrugMatrix Data Reuse

There have been numerous publications that have employed the DrugMatrix data to
glean insight into toxicological processes. These publications are illustrative of what
is possible with a large, well-annotated data set. The publications can be grouped
into toxicity signature derivation [9–20], mechanism of action studies [21–25], data
mining and biological network creation and analysis [14, 20, 26–30] and technology
evaluation [31]. In addition, various components of the DrugMatrix database have
been incorporated into other databases and resources [32–40].

8.10 Conclusion and Future Directions

Members of the National Toxicology Program and NIEHS view the acquisition,
public-access implementation, and development of the DrugMatrix and ToxFX
resources as a step forward in bringing genomics into the arena of regulatory toxicol-
ogy and furthering the goals of the Tox21 effort to revolutionize toxicology testing.
No doubt further work needs to be done to develop additional tools, and a framework
for the utilization of toxicogenomics data. Having DrugMatrix and ToxFX, together
with their associated background data in the public domain will allow open and crit-

ftp://anonftp.niehs.nih.gov/ntp-cebs/datatype/Drug_Matrix/DrugMatrixPostgreSqlDatabase.tar.gz
https://github.com/NIEHS/DrugMatrix
https://github.com/NIEHS/ToxFX
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ical assessment of these approaches, which is necessary to vet any new approach to
toxicological assessment.

Future plans for DrugMatrix include regular updating of gene, pathway and ontol-
ogy annotations, integration of additional pathways from additional sources, and
broadening of the chemical space of the reference genomic data. Integration of avail-
able public data sets, expansion of the number of data platforms and species that can
be directly loaded into DrugMatrix for analysis and implementation of APIs to allow
for ease of interaction with other popular genomics analysis tools are also on the
horizon. Recommendations from end users will of significant value. Send any rec-
ommendations to Drugmatrix@nih.gov. Where relevant, the data and functionalities
added to DrugMatrix will be implemented in ToxFX.
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Chapter 9
A Pair Ranking (PRank) Method
for Assessing Assay Transferability
Among the Toxicogenomics Testing
Systems

Zhichao Liu, Brian Delavan, Liyuan Zhu, Ruth Robert and Weida Tong

Abstract The use of animal models for risk assessment is not a reliable and satis-
fying paradigm. Accompanying the strategic planned shift by regulatory agencies,
more and more advocating campaigns such as the 3Rs in Europe and Tox21/ToxCast
in the USA were proposed to develop in silico and in vitro approaches to eliminate
animal use. To effectively implement non-animal models in risk assessment, novel
approaches are urgently needed for investigating the concordance between testing
systems to facilitate the selection of the fit-for-purpose assay. In this chapter, we
introduce a Pair Ranking (PRank) method for the quantitative evaluation of assay
transferability among the different toxicogenomics (TGx) testing systems. First, we
will summarize the critical issues of TGx related to its success in risk assessment.
Second, we will elucidate the application of proposed PRank method for address-
ing key questions in TGx. Finally, we will suggest some potential use of the PRank
method for advancing risk assessment.
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Abbreviations

3Rs Refine, Reduce and Replace
ALT Alanine Aminotransferase
AOPs Adverse Outcome Pathways
AST Aspartate Aminotransferase
ATC Anatomical Therapeutic Chemical
CTD Comparative Toxicogenomics Database
DILI Drug-Induced Liver Injury
ECFP Extended-Connectivity Fingerprints
EPA United States Environmental Protection Agency
GLP Good Laboratory Practice
hTERT Human Telomerase Reverse Transcriptase
ICH The International Conference on Harmonisation of Technical Require-

ments for Registration of Pharmaceuticals for Human Use
iPSC Induced Pluripotent Stem Cell
IVIVE In Vitro-to-In Vivo Extrapolation
LDH Lactate Dehydrogenase
LINCS The Library of Integrated Network-Based Cellular Signatures
MAQC Microarray Quality Control
OECD Organisation for Economic Co-operation and Development
POP Percentage of Overlapped Pathways
PRank Pair Ranking
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
ROC Receiver Operating Characteristic
SIDER Side Effect Resources
TG-GATEs Toxicogenomic Project—Genomics Assisted Toxicity Evaluation Sys-

tem
TGx Toxicogenomics

9.1 Introduction

The use of animal models in risk assessment is based on the presumption that the
biological response of animals mimics that of humans [1]. However, the divergence
between the species causes limited extrapolation power from animal to human [2].
Suboptimal transferability between animal and human stimulated rethinking and
reevaluation of innovative preclinical testing systems. Consequently, the strategic
plan in risk assessment has been a shift to develop alternative approaches for test-
ing toxicity. In Europe, the “refine, reduce and replace” (3Rs) has been advocated
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and promoted by REACH legislation [3] and the 7th Amendment of the Cosmetics
Directive [4]. In the USA, the Tox21 program is led by the EPA [5–7] and ToxCast
was initialized by a cross-agency effort [8] to advancing regulatory science [9]. This
program was proposed by the US Food and Drug Administration (FDA) to pro-
mote in vitro and in silico approaches for enhancing risk assessment and eliminating
animal use.

Toxicogenomics (TGx) is a sub-discipline of pharmacology that offers a ground-
breaking addition to conventional toxicology approaches [10]. TGx approaches have
been widely applied in addressing different toxicological questions at the molecular
level [11]. For example, Fielden et al. [12] employed a five-day rat in vivo TGx
model to predict the nongenotoxic carcinogenicity, which generated better predic-
tion performance with a mechanistic assessment of underlying mechanism. In the
following studies, researchers expanded the studies for both size and treatment dura-
tion to achieve a better prediction performance with accuracies in the range 75–80%
[13–16]. Furthermore, some studies utilized cell-based in vitro (HepG2 cells) TGx
assay to uncover different mechanisms between genotoxic and nongenotoxic hepato-
carcinogens [17] and further developed cell-based in vitro TGx prediction mod-
els [18]. Herwig et al. [18] developed human in vitro TGx models in hepatoma-
derived cells and hTERT-immortalized renal proximal tubule epithelial cells to pre-
dict nongenotoxic carcinogens. Huang et al. [19] employed a serum-based TGx assay
to predict drug-induced liver injury, which yielded a 92.1% accuracy with several
important pathways including Toll-like receptor signaling, apoptosis and mitochon-
drial damage-related DILI mechanism enriched. Advances in emerging technologies
such as next-generation sequencing and bioengineering including iPSC cell culture
have also been integrated into TGx field and provide a promising approach for risk
assessment [20, 21].

Unlike decades ago, several large public available TGx data sets such as open
TG-GATEs [22, 23], DrugMatrix [24] and PredTox [25] have been generated and
currently provide tremendous opportunities for formulating hypotheses to advance
toxicology researches. Considering the different assay types, species, and genomics
technologies in the preclinical setting, a comprehensive assessment among different
TGx assay systems in the preclinical setting is urgently needed for selecting the
fit-for-purpose approach.

To fill the gap, we developed a Pair Ranking (PRank) method to assess the trans-
ferability among the different TGx assays and utilized our method to address several
key questions in the TGx field. In this chapter, we will first lay out the key questions
for promoting in vitro TGx systems in risk assessment. Then, we will elaborate on
the PRankmethod with a few case studies. Final, we will summarize the roadmap for
further positioning the proposed PRank method toward potential regulatory applica-
tions.
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9.2 Key Questions in Toxicogenomics

To better apply the TGx assay systems in testing different toxicity endpoints and
deciphering the underlying mechanisms of toxicology, we provided a landscape of
the internal relationship among the preclinical testing systems and human toxicity
(Fig. 9.1).

9.2.1 In Vivo Animal Models

The toxicology community is now questioning the use of animal models in risk
assessment. Despite their widespread utilization, using animal models has many
disadvantages. For chemical toxicology studies, animalmodels can take an average of
two years to perform for each chemical and costmillions of dollar per compound. The
lack of laboratories capable of carrying out animal studies is also a significant issue.
Only about 15 chemicals per year are tested using animal models. The REACH files
in Finland contains over 30,000 chemicals that could be tested using animal models

Fig. 9.1 Interior relationship among the preclinical testing systems and human toxicity
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[26]. TGx methods allow for the screening of drugs, providing accurate results at a
much lower cost than traditional drug development methods. TGx produces results
faster than traditional drug development.However, species differences and the impact
of multiple time/dosage effect still need to be optimized. Here, we summarized the
aims and purpose of an in vitro experiment with different treatment duration to
explain the complexity:

(1) One-day experiment: single dose toxicity studies can be done to establish the
dosage in the clinic and applied to predict diverse toxic response.

(2) Four-day experiment: can demonstrate target-organ toxicity concerns formedic-
inal chemistry efforts under the specific mechanism of action (MoA).

(3) Seven-day experiment: mainly used to establish the dosage range for non-rodent
animal studies.

(4) Fourteen-day experiment: prerequisite stage to pick the dose for a GLP twenty-
eight-day repeated dose study.

(5) Twenty-eight-day experiment: a golden standard GLP study to assess the target
organ toxicities and study single ascending dose (SAD) and multiple ascending
doses (MAD) for seeking for first human dose in a clinical trial.

9.2.2 In Vitro Testing Systems

The in vitro assay systems derived from animal or human tissues provide an oppor-
tunity to complement long-term animal-based testing procedures, which has been
marked as uncertainty and with limited transferability power [27–29]. High through-
put approaches for transcriptional profiling such as in vitro gene expression assays
have been widely applied and intensively explored for its potential capability in both
toxicology and pharmacology fields [30–32]. The evolving nature of genomic tech-
nology providesmultiple choices onTGx experiment designs for addressing different
toxicological questions. Meanwhile, concerns are also raised on the reproducibility
of genomic technologies due to the complex nature and aspects regarding cell types,
genomics platforms, intro/across laboratory, and data analysis methodologies [33].

9.2.3 Human Toxicity

The objective of either in vitro or in vivo testing systems is to truly reflect the biolog-
ical response of humans. To select the right testing assay systems for assessing the
toxicity endpoint in human, we need better understanding the etiology and natural
history of human toxicity. Several knowledge bases have been developed to increase
our understanding of toxicity and provide a “one-stop” solution for prediction model
development and new hypothesis generation. For example, NCTR scientists led the
effort to develop a liver toxicity knowledge base (LTKB) to provide different drug
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Fig. 9.2 Key questions in the toxicogenomics field

properties and host information onDILI [ref].More importantly, a reproducible DILI
classification scheme was developed for facilitating DILI prediction model develop-
ment [34, 35]. Furthermore, Wen et al. [36] developed a drug-induced rhabdomyol-
ysis atlas (DIRA) that mainly provides three folds of drug-induced rhabdomyolysis
related information including a classification scheme for drugs’ potential to rhab-
domyolysis, post-marketing surveillance data of drug-induced rhabdomyolysis and
drug property information.

From a translational toxicology perspective, it is of great importance to compre-
hensively explore assay transferability among the testing systems and provide useful
information for preclinical toxicity screening. Our study looks to use TGx techniques
computationally to answer the following five questions from a translational science
point of view (Fig. 9.2):

1. Can in vitro analysis predict in vivo results?
2. Can short-term assays (as short as one day) replace long-term assays (such as

twenty-eight-day assays)?
3. Is the extrapolation between assay systems endpoint dependent?
4. Is the extrapolation between assay systems adverse outcome pathways (AOPs)

related?
5. Can a TGx system provide extra value to Read-Across?
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Fig. 9.3 Workflow of the Pair Ranking (PRank) method

9.3 Pair Ranking (PRank) Method

We developed a pair ranking (PRank) method to quantitatively assess assay trans-
ferability with a PRank score, which is based on the preservation of the order of
similarity rankings of compound pairs between the testing systems using a receiver
operating characteristic (ROC) curve analysis [37, 38]. The PRankmethod is a frame-
work including the following four steps (Fig. 9.3):

(1) Gene signature generation: The gene signatures of each compound in each
testing system were generated based on ranking fold change values (treatment
group vs. control group). In PRank, we choose top/down number of N genes as
the signature for each compound.

(2) Compound pairwise similarity calculation: In eachTGx testing system, the com-
pound pairwise similarity was calculated by using Dice’s correlation coefficient
with Eq. (9.1)

Dice’s coefficient = 2|SA ∩ SB|
|SA| + |SB| (9.1)

where |SA| and |SB| are the number of significant genes of compound A and B. |SA
∩ SB| is the number of overlapping genes between compound A and B.

(3) Cut-off value determination: In PRank, the transferability between the assay
systems is directional. For example, if youwant to assess the transferability from
assays A and B, the binary values should be assigned based on the distribution
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of ranked compound pairwise similarity list. Here, we used the 0.95 quantile
value as a cut-off to transform the ranked compound pairwise similarity list into
0 and 1.

(4) ROC curve analysis: finally, the PRank score between the two testing assay
platforms can be calculated based on ROC curve analysis. Consequently, the
area under the curve (AOC) value was considered as the PRank score to assess
the assay transferability quantitively.

This proposed PRank method aims to provide a novel framework to assess assay
transferability. Therefore, detailed strategies in each step could be modified and
updated. For example, alternative strategies to generate the compound gene signature
such as the fold change +p value criteria suggested by the MAQC consortium [39]
was also fit for PRank. Furthermore, significant genes could be domain-specific.
For instance, a lot of toxicogenomics annotation resources such as the Comparative
Toxicogenomics Database (CTD) could be employed to further limit the significant
gene list into different adverse related pathways (AOPs) or toxicity-related gene sets
[40]. In the current version, Dice’s correlation coefficient was used to calculate the
compound pairwise similarity. Other similaritymeasures such as Tanimoto similarity
or KL divergence based on topic similarity are also suggested for the future version.
Lastly, we used ROC curve analysis to calculate the PRank score to represent assay
transferability quantitatively. Other strategies for comparing two lists are also worth
testing.

In the conventional approach for querying assay transferability, the compound is
tested in the different assay testing systems. If the gene expression patterns of the
compound are similar in assay system A and B, we consider the compound could
reflect the same biology in both testing systems. However, this approach always
suffers from interior assay difference and batch effect in experimental design, which
fails to provide a global view on the assay transferability. In the PRank, “similar”
compounds have implied similar toxicity profiles in toxicogenomic space. A highly
similar pair of compounds should be observed in both testing TGx assays. In another
word, if the pairwise similarity of the two compounds is consistently ranked on the
top of all the compound pairs under the testing assays, these two compounds can
be a highly likely similar pair. The same concept can be extrapolated to assess the
transferability of any two testing systemswhere if two assays could produce the same
ranking resolution, we consider the two assays interchangeable.

9.4 Toxicogenomics Data and Annotation Resources

9.4.1 Open TG-GATEs

To explore transferability among TGx testing systems using the proposed PRank
method, a large scale of TGx data set from the Open TG-GATEs was employed
[31]. TG-GATEs is an acronym for Toxicogenomic Project—Genomics Assisted
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Table 9.1 Open TG-GATEs data used to investigate assay transferability

Species Human Sprague–dawley rat (6 weeks old)

Experiment In vitro In vitro In vivo

Tissues Liver Liver Liver

#Compounds 170

Treatment 2, 8, 24 h (2 h is
omitted in some
cases)

2, 8, 24 h • 3, 6, 9, and 24 h
after a single
administration

• 24 h after the last
dose of repeated
administration for
3, 7, 14 and 28 days

Dose Low, middle, high
(1:5:25, low is
omitted in some
cases)

Low, middle, high
(1:5:25)

Low, middle, and
high (mainly 1:3:10)

Clinical information Cell viability (LDH
release and DNA
contents)

Cell viability (LDH
release and DNA
contents)

Histopathology: liver
and kidney, body
weight, organ weight
(liver and kidney),
food consumption,
hematology, and
blood biochemistry

Toxicity Evaluation System. The Open TG-GATEs is an open TGx database led by
the Japanese Toxicogenomic Project consortium (TGP), which is accessed at http://
toxico.nibio.go.jp/english/index.html. The Open TG-GATEs database contains four
types of TGx assays including two in vitro assays (i.e., rat and human primary
hepatocytes) and two in vivo assays (i.e., rat liver single dose and repeated dose) that
have been exposed to 170 compounds at different dosages and time points.

Table 9.1 listed the information on the four different TGx assays. More details
about the experimental design of each assay can be found elsewhere [22, 31]. The
microarray data in each TGx assay were preprocessed by using Factor Analysis
for Robust Microarray Summarization (FARMS) [41] with custom chip definition
files (CDFs) from Brainarray [42]. The fold change values for each compound were
calculated by compared treatment group versus the matched controls. More detail
on microarray data preprocessing was described in our previous studies [37, 38]. In
this chapter, we only employed data from high concentration/dosage and the longest
treatment duration for carrying out the assay comparison analysis.

http://toxico.nibio.go.jp/english/index.html
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9.4.2 Drug-Induced Liver Injury (DILI) Annotations

To further investigate whether the extrapolation between assay systems is endpoint
dependent, we used well-established drug-induced liver injury (DILI) annotation
data sets. DILI is a major concern for drug developers and contributes to many drug
attritions [43]. In this chapter, three different ways to classify DILI were utilized:
NCTR DILI classification scheme [34], Xu’s label [44], and Sakatis’ label [45].
The NCTR DILI classification scheme was based on FDA approved drug labeling
information, which classified the drugs into three categories including Most-DILI
concern, Less-DILI concern and No-DILI concern. In this chapter, we used drugs
belonging to Most-DILI concern. Xu’s data set was refined by using images of the
cells to assess toxicity endpoints in human liver cultures. Sakatis’ data adopted in vitro
biological activation to detect DILI potential in over two hundred compounds. Only
the drugs with positive DILI from Xu and Sakatis’ data were mapped to the Open
TG-GATEs list.

Aside from different DILI annotation data sets, we also employed different hep-
atotoxic manifestation data for further investigation of our PRank method. Specifi-
cally, the SIDER database (http://sideeffects.embl.de/), which stands for Side Effect
Resource, is an online database listing reported side effects for both over-the-counter
and prescription drugs. The side effect terms in the SIDER database were standard-
ized with preferred terms (PTs) by using the Medical Dictionary for Regulatory
Activities (MedDRA) ontology. The hepatotoxic-related side effects were extracted
bymapping the PT terms onto the Society of organ (SOC) level. ThePTswith primary
SOC hepatobiliarywere considered as hepatotoxic-related side effects. The extracted
hepatotoxic-related side effects were further classified by the domain experts and
generated the following five categories: liver hepatobiliary abnormality, transami-
nase elevations, histologic findings, liver injury patterns, and the severity of liver
injury [37].

9.4.3 Therapeutic Categories

We also examined concordance among TGx assay systems for different therapeu-
tic categories. The WHO Anatomical Therapeutic Chemical (ATC) Classification
System was used to categorize the compounds in different therapeutic classes. ATC
consists of a five-level ontological structure. The second level representing the ther-
apeutic subgroup was used in this study.

http://sideeffects.embl.de/
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9.4.4 Gene Sets Related to Adverse Outcome Pathways
(AOPs)

To investigate whether the assay transferability is AOP-specific, the gene sets related
to different AOP were extracted from the Comparative Toxicogenomics Database
(CTD) [40]. CTD aims to provide a comprehensive resource for better understanding
the interrelationship among genes, chemicals, and diseases and advancing the public
health. In this chapter, we used the gene-pathway association table in CTD, which
was downloaded from http://ctdbase.org/downloads/. Only the pathways with more
than 200 genes were kept for further analysis.

9.4.5 Code Availability

The source code of PRank, the processed microarray data, and the annotation data
used in this chapter can be downloaded from GitHub at the link https://github.com/
iguana128/Frontier-source-codes.

9.5 Case Studies

9.5.1 In Vitro to in Vivo Extrapolation (IVIVE) in TGx

Efforts have beenmade to develop in vitro systems tailored to address toxicologically
relevant mechanisms and enhance risk assessment. Also, drug failures either in pre-
clinical or clinical development often require pharmaceutical companies to go back
into lead optimization and select new molecules without unwanted properties. In
this context, ICH-M3 (http://www.ich.org/products/guidelines/safety/safety-single/
article/guidance-on-nonclinical-safety-studies-for-the-conduct-of-human-clinical-
trials-and-marketing-author.html) highlights, “additional nonclinical studies to
provide mechanistic understanding can be useful.” In this field, in vitro to in vivo
extrapolation (IVIVE) has emerged as one of the powerful twenty-first-century
methodologies for risk assessment and safety evaluation. IVIVE is defined as, “The
qualitative or quantitative transposition of experimental results or observations made
in vitro to predict phenomena in vivo, on full living organisms.” A comprehensive
assessment of IVIVE potential in TGx assay systems is of great importance for
promoting the 3Rs principle and improving risk assessment power.

The proposed PRank method was employed to investigate the IVIVE potential
based on the Open TG-GATEs data sets. Figure 9.4a illustrates the concordances
among three TGx assays including rat in vitro, human in vitro, and rat in vivo repeated
dosing. The highest PRank score 0.77 was obtained between two in vitro assay
systems, highlighting the testing systems was dominated by the divergence among

http://ctdbase.org/downloads/
https://github.com/iguana128/Frontier-source-codes
http://www.ich.org/products/guidelines/safety/safety-single/article/guidance-on-nonclinical-safety-studies-for-the-conduct-of-human-clinical-trials-and-marketing-author.html
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Fig. 9.4 In vitro to in vivo extrapolation (IVIVE) potential: a PRank method; b the percentage of
overlapping pathways (POPs) based on enriched KEGG pathways with an adjusted p-value less
than 0.05 using Fisher’s exact test

the assay systems. Furthermore, a high IVIVE potential (i.e., PRank score = 0.70)
was observed between rat in vitro and rat in vivo repeated dose, indicating non-
animal approaches could detect the similar biological response derived from animal
models. However, the poor transferability was obtained between human in vitro and
rat in vivo repeated dose with a PRank score of 0.58, suggesting the complexity
of species differences under the different testing systems. Figure 9.4b shows the
concordance among three TGx assay systems in the pathway level. The percentage
of overlapped pathways (POPs) between any two TGx assays was calculated. The
same trend was observed in the pathway level compared to that of gene level, which
further demonstrated the proposed PRank method could generate the reliable results
for assay transferability assessment.

9.5.2 Short-Term Assays Show the Potential to Replace
Long-Term Assays

Long-term rodent assays are still adopted in the preclinical setting for detecting tox-
icity such as carcinogenicity. A fierce debate was ongoing on whether animal testing
could sufficiently provide hard proof for potential carcinogenic risk to humans. Con-
sequently, community efforts have been made to develop a short-term animal study
with minimal treatment time and a single dose design with both a reduced time and
a lower cost of assessment regarding animal resources and workforce to replace the
two-year assay. In our previous study, we conducted a comparative analysis of a pre-
dictive model for nongenotoxic carcinogenicity and suggested a short-term five-day
TGx animal model has a great potential to predict the long-term endpoint [13]. In the
TGx setting, the twenty-eight-day repeated dose assay is considered as a golden stan-
dard assay to establish the target organ toxicity. Here, we used the PRank method
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Fig. 9.5 Transferability among the three rat toxicogenomics assays: a PRank method. b The per-
centage of overlapping pathways (POPs) based on enriched KEGG pathways with an adjusted
p-value less than 0.05 using Fisher’s exact test

to examine whether a short in vivo single TGx assay (1 day) could have a good
correlation with a twenty-eight-day in vivo repeated dose testing.

We conducted an assay comparison among the three preclinical TGx testing assay
systems (i.e., Rat in vitro—InVitro, Rat in vivo single dose—InVivo_S, and Rat
in vivo repeated dose—InVivo_R) using PRank. A very high PRank score, 0.90, was
found for the one-day in vivo single dose and the twenty-eight-day in vivo repeated
dose (Fig. 9.5a). The high PRank score between these two assay systems indicates
a strong probability of using the shorter, less expensive 24-h single dose in place
of the longer, more expensive twenty-eight-day repeated dose without loss of any
predictive power. However, we did not see the good concordance (i.e., PRank score
= 0.56) between rat in vitro and rat in vivo single dose. Similarly, the POP analysis
was implemented to verify further the results derived from PRank (Fig. 9.5b). The
same pattern was observed at pathway level as well with a decreasing order of POP
values 0.875, 0.750, and 0.563 for InVivo_S- InVivo_R, InVitro- InVivo_R, and
InVitro-InVivo-S, respectively.

9.5.3 TGx Assay Transferability Is Endpoint Dependent

In the past decade, DILI prediction models have been developed considerably by
using various machine learning technologies with different complexity of data pro-
files. However, it seems that the prediction performance is still suboptimal [46]. One
key question for preclinical DILI model development is how to choose a “fit-for-
purpose” in vitro assay for assessing different DILI endpoints.

To further investigate whether TGx assay transferability is endpoint dependent,
we carried out PRank analysis by limiting the compounds that belong to different
hepatotoxic-related endpoints and different therapeutic categories. To measure any
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Fig. 9.6 Circos plot of PRank scores across different hepatotoxic-related endpoints (blue color)
and different therapeutic categories based on the Anatomical Therapeutic Chemical Classification
(ATC) System: S—in vivo single dose; L—in vivo repeated dose; R—rat in vitro; and H—human
in vitro

improvement of assay transferability in different hepatotoxic-related endpoints, we
calculated the PRank scores for four groups of compounds (Table 9.2 and blue color
in Fig. 9.6). Two of these groups had an endpoint of “most DILI concern” and
“hepatic failure.” The two other groups used the endpoint of general DILI. Overall,
the PRank score for InVitro_Rat-InVivo_Rat increased by 7% for all four groups
of DILI endpoints studied. When the PRank scores for InVitro_Human-InVivo_Rat
were computed using the four DILI groups, the PRank scores increased in three of
the four DILI endpoints. We wanted to make sure these increases were not the result
of chance. To safeguard the results from chance, we carried out a permutation test by
selecting an equal number of compounds from the universe of compounds from each
of the four DILI endpoints. Each selected compound was analyzed by the PRank
method. The analysis was conducted 100,000 times, removing any potential bias
when the compounds were selected. Similarity, the assay transferability also varied
in different therapeutic categories (green color in Fig. 9.6). For example, compounds
in psychanaleptics have an excellent transferability among the different TGx assay
systems, indicating the in vitro assay could be sufficient for testing the compounds
regarding different toxicities.
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Table 9.2 Assay transferability for different hepatotoxic endpoints

Categories Number of
compounds

InVitro_Rat-
InVivo

InVitro_Human-
InVivo

InVitro_Rat-
InVitro_Human

All the compounds 120 0.71 0.58 0.77

Drug-induced liver injury (DILI)

Most-DILI
concern

46 0.76 0.62 0.74

Xu’s label 47 0.82 0.53 0.73

Sakatis’s label 51 0.77 0.63 0.73

Hepatic failure 24 0.77 0.72 0.82

Other hepatotoxic endpoints

Biochemical parameters

AST increased 13 0.69 0.62 0.78

ALT increased 9 0.81 0.52 0.88

Hepatic enzyme
increased

8 0.71 0.68 0.80

Blood bilirubin
increased

6 0.81 – –

Liver injury patterns

Cholestasis 7 0.95 0.71 0.70

Hepatocellular
injury

16 0.75 0.57 0.89

Hepatobiliary abnormality

Cholelithiasis 6 0.86 – –

Foetor hepaticus 7 0.81 0.62 0.96

Hepatomegaly 5 0.89 0.59 0.50

Jaundice 49 0.69 0.63 0.76

Jaundice
cholestatic

21 0.40 0.61 0.74

Histologic findings

Hyperbilirubinaemia 7 0.84 0.68 0.78

Hepatitis 43 0.70 0.61 0.73

Hepatic cirrhosis 7 0.80 0.44 0.89

Liver disorder 8 0.82 0.68 0.96

Hepatic function
abnormal

33 0.77 0.62 0.71

Steatosis 13 0.67 0.70 0.85

Hepatic necrosis 13 0.64 0.63 0.68

Cytolytic hepatitis 10 – 0.61 0.87

Total (%) of
IVIVE score
increased

78.3 73.9 43.5
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9.5.4 Concordance Among TGx Assays is
Adverse-Outcome-Pathway-(AOP)-Specific

The concept of AOP is well established in risk assessment, which aims to provide
a structured representation of biological events and their causing adverse effects
[47]. An AOP usually includes a molecular initiating event (MIE), key events (KE),
and an adverse outcome (AO). The development of an AOP is very time-consuming
and domain-expert-knowledge-dependent. Some computational methodologies have
been developed to enrich conceptual AOP description to eliminate manual curation
[48, 49]. The AOP concept has been widely used to assess different toxicity end-
points and uncover their underlying mechanism [50, 51]. To understand the assay
transferability in different AOPs is of great importance to further implement the AOP
concept for the preclinical screening purpose.

We further studied the concordance when limiting the analysis to selecting genes
along specific AOPs. The gene-pathway associations from the Comparative Toxi-
cogenomic Database (CTD) were used. The investigation eventually used 106 gene
sets from computational constructed AOPs, from which at least 200 genes for each
AOP existed.When computed, the concordance between the three assay systemswas
similar with the findings at the whole gene/pathway level: the PRank score for the
InVivo_S-InVivo_R was the highest, followed by InVitro-InVivo_R, then last was
InVitro-InVivo_S (Fig. 9.7a). Furthermore, some AOPs such as fatty-acid-related
pathways were with high PRank scores among all the assay comparisons (Fig. 9.7b).

Fig. 9.7 Assay transferability among the three rat toxicogenomics assays for different adverse
outcome pathways (AOPs): a stacked plots of PRank scores for different AOPs in the three TGx
assays; b a venn diagram of the top 15 AOPs ranked by the PRank score in each assay system
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9.5.5 Toward Biological Data-Based Read-Across

Read-across is a data gap filling strategy to assess the toxicity of untested compounds
based on the analog to similar chemicals, for which toxicity data are available. Read-
across approaches have been widely adopted by regulatory programs such as OECD
and REACH [52]. Besides structure and physicochemical properties, the biological
data-based similarity may enhance this process [53].

We compared compound similarity between chemical space and three preclin-
ical TGx assays (Fig. 9.8). We observed low Pearson’s correlation coefficients of
0.30, 0.20, and 0.21 for chemical space versus InVitro, InVivo_S, and InVivo_R,
respectively. The divergence between chemical space and toxicogenomic space indi-
cated that toxicogenomics data might provide extra value to improve chemical-based
Read-across.

Fig. 9.8 Concordance between chemical space and TGx space: the compound pairwise chemical
similaritywas calculated based onECFP-4 fingerprints by using Pipeline Pilot. Pearson’s correlation
coefficients were calculated between chemical space and three TGx assays, respectively
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9.6 Closing Remarks

The critical assumption in using animal models was that the findings of the ani-
mal model would correlate to how the compound would behave in humans. Recent
researchers have shown this correlation to be poor, leading researchers to determine
if in vitro cell-based assays in combination with in silico approaches could enhance
3Rs principles. These researchers generated many novel techniques, and non-animal
testing means to tackle the issue. Toxicogenomics (TGx) is one of these techniques
that shows excellent promise to forecast toxicity in drug compounds while meeting
the 3Rs goal. Toward studying how TGx could be used in replacing animal models,
we developed a computational method called PRank, to address the transferability
among different TGx testing assays and promote the in vitro TGx.

In our study, we used data culled from the TG-GATEs database. TG-GATEs is a
large database for toxicogenomics, but there aremany compounds not in the database.
Other drug transcriptional databases with more compounds were recently generated
and could be utilized to further probe PRank’s potential for assay transferability.
The most promising of these databases is the LINCS database [54]. The LINCS
database, which is publicly available, expands significantly upon the Connectively
Map (CMap). LINCS consists of more than 20 k compounds, and transcriptomic pro-
files were generated across more than 400 different cell lines. The LINCS database
shows how genes, drugs, and diseases are associated with common gene-expression
signatures [55]. Rather than use the entire human genome, the LINCS database
uses 1000 genes as “landmark” genes as representative genes and uses these land-
mark genes to extrapolate to the whole human genome. The LINCS database can be
accessed at https://clue.io. With the LINCS data set, we can further apply our PRank
method to address another question such as repurposing the transcriptomic profiles
from immortalized cell lines for toxicity assessment. Furthermore, the transferabil-
ity between the assays in some novel cell culture such as iPSC and traditional cell
cultures could also be assessed.

The use of the PRank system is not confined to the areas of toxicogenomics. These
studies show that the PRank computational methodology can be successfully applied
to other types of data sets. For example, the PRank can be used to high throughput
screening assays from the Tox21 project or ToxCast. The National Institute of Envi-
ronmental Sciences (NIEHS), part of the National Institute of Health (NIH), has a
multitude of open data sets, such as the Environmental Genome Project, that PRank
can be utilized to explore the strength of relationships.

As animal models begin to fall out of favor among compound safety studies, new
systems must be ready to assess the potential toxicity of new compounds in humans.
Utilizing already existing and open toxicogenomic databases present an opportunity
to develop novel in vitro and in silico strategies to assess this potential toxicity.
The PRank computational tool is a promising approach to bridge the gap between
the available data and to gain insight into how new compounds may present their
toxicity to humans, and thus answer some of the most significant questions in the
toxicology field.

https://clue.io
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Disclaimer This article reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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Chapter 10
Applications of Molecular Dynamics
Simulations in Computational Toxicology

Sugunadevi Sakkiah, Rebecca Kusko, Weida Tong and Huixiao Hong

Abstract Computational toxicology is a discipline seeking to computationally
model and predict toxicity of chemicals including drugs, food additives, and other
environmental chemicals. Risk assessment of chemicals using current in vitro or
in vivo experimental methods is at best time-consuming and expensive. Computa-
tional toxicology seeks to accelerate this process and decrease the cost by predicting
the risk of chemicals to humans and animals. Molecular dynamics (MD) simulation,
an emerging computational toxicology technique, characterizes the interactions of
chemicals with biomolecules such as proteins and nucleic acids. This chapter will
give a brief review both of available software tools for MD simulations and also
how to apply these software tools to computational toxicology challenges. We also
summarize key protocols to run MD simulations.
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Abbreviations

AFP α-fetoprotein
AMBER Assisted Model Building with Energy Refinement
AR Androgen receptor
CHARMM Chemistry at HARvard Macromolecular Mechanics
DPPC Dipalmitoylphosphatidylcholine
EDCs Endocrine disrupting chemicals
GROMACS GROningen MAchine for Chemical Simulations
IFD Induced fit docking
LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator
MD Molecular dynamics
NAMD NAnoscale Molecular Dynamics
NPT Constant number (N), pressure (P), and temperature (T)
NVE Constant number (N), volume (V), and energy (E)
NVT Constant number (N), volume (V), and temperature (T)
nAChRs Neuronal acetylcholine receptor
PDB Protein Data Bank
Pmemd Particle Mesh Ewald Molecular Dynamics
QSAR Quantitative structure–activity relationship
RMSD Root-mean-square deviation
RMSF Root-mean-square fluctuation
SPC Simple point-charge water model
VMD Visual molecular dynamics
WT Wild type

10.1 Introduction

Toxicans are defined as any chemical substance or a mixture of various chemical
substances which completely or partially damages an organism. The toxicity of a
compound or substance is dose-dependent. A toxic chemical entering the human
body is absorbed and interacts with other chemical substances already present in the
body, leading to harm. A driving imperative in the toxicology field is twofold: (1)
Determine the toxic dosage level of compounds, and (2) identify their effects on the
environment and living organisms such as animals, plants, and humans. Both exper-
imental toxicology and computational toxicology predict the toxicity and dosage of
chemicals. Experimental toxicology leverages in vivo and in vitro methods. In vivo
methods are slow to yield compound toxicity predictions (http://alttox.org/mapp/
toxicity-testing-overview Accessed March 19, 2018). The utility of in vitro methods
is constrained by time and cost. Computational toxicology, also known as “in silico
toxicology,” generates predictive models via computation to understand the interac-
tions and adverse health effects of various chemicals present in the air, food, water,

http://alttox.org/mapp/toxicity-testing-overview
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etc. Predictive models can be developed using different computational methods such
as pharmacophore modeling [1–4], molecular docking [5–9], and machine learning
methods [10–22]. These computational methods reduce animal model use, cost, and
timewhile improving safety evaluation and risk assessment of chemicals. The emerg-
ing field of computational toxicology predicts and examines toxicity of chemicals
[23, 24]. The following tools are mainstays of computational toxicology prediction:

(1) Databases to store chemical data including chemical properties and toxicity.
(2) Software tools to generate molecular descriptors for chemicals [25].
(3) Programs to run molecular dynamics (MD) simulations.
(4) Algorithms for molecular modeling.
(5) Statistical packages to generate two-dimensional (2D) and three-dimensional

(3D) quantitative structure–activity relationship (QSAR) models [26–28].
(6) Web servers or standalone applications to predict toxicity of chemicals using

pre-built models.
(7) Software tools to visualize prediction models.

Among various algorithms and tools used in computational toxicology, MD sim-
ulations are increasing in prevalence. MD simulation is a well-known technique in
other fields including drug design, descriptor generation, structural biology, protein
analysis, identification of hot spot residues, and more. In the field of toxicology, MD
simulation can link structural biology with chemical toxicity information. MD sim-
ulation informs physical movement of the atoms or molecules in a molecular system
and the structural changes of the protein in a time-dependent manner. This compu-
tational technique also illuminates conformational changes and protein fluctuations
induced by binding of various compounds or chemicals. Different algorithms exist
for MD simulations, addressing various aspects of computational toxicology. This
chapter reviews MD simulations as applied to computational toxicology.

10.2 History of MD Simulations

MD is a 100-year-old technique, but only gained traction with the scientific com-
munity during the twentieth century [29]. Table 10.1 contains a brief history of MD
simulation. In the mid-50s, Fermi, Pasta, Ulam, and Tsingou successfully developed
the Monte Carlo simulation method [30]. MD simulations build on these statistical
methods. In 1957, Alder and Wainwright studied the interaction of a hard sphere
using MD simulations. The results revealed many key learnings on simple liquid
behavior [31, 32]. The next milestone was achieved by Rahman in 1964, when the
first realistic liquid argon simulation occurred [33].Next, in the late 70s, the technique
ofMD simulations was further improved by simulating several hundreds of atoms up
to biological systems [34, 35], i.e., immersing the whole protein in solution, embed-
ded the protein in a lipid layer, or macromolecular complexes [36, 37]. Rahman and
Stillinger created the first realistic simulation of liquid water in 1974 [38]. In 1977,
McCammon et al. simulated the first bovine pancreatic trypsin protein inhibitor [34].
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Table 10.1 History of MD simulation

Year Authors Techniques

1929 P. M. Morse and J. E. Lennard-Jones Model vibrational excitations: atomic
potentials

1937 London dispersion forces due to
polarization

1946 Molecular Mechanics: use of Newton’s
equations and force fields for the
characterization of molecular
conformations

1953 Metropolis Monte Carlo (MC) by
Metropolis, Rosenbluth, Rosenbluth,
Teller & Teller

Simulation of a dense liquid of 2D spheres

1955 Fermi, Pasta, and Ulam Simulation of anharmonic 1D crystal [30]

1957 Alder and Wainwright MD (MD) simulation of hard spheres [32]

1960 Gibson et al. Simulation of damaged Cu crystal [76]

1964 Rahman MD simulation of liquid Ar [33]

1969 Barker and Watts Monte Carlo simulation of water

1971 Rahman and Stillinger MD simulation of water

1972 I. R. McDonald NPT simulation using Monte Carlo

1976 Woodcock, Angell, Soules First simulations of SiO2 (silica) using a
BMH potential. Achieves tetrahedral
coordination

1980 H. C. Andersen MD method for NPH, NVT, NPT
ensembles

1980 M. Parrinello and A. Rahman Parrinello–Rahman method for study of
crystal structure transformation with
corrections from S. Yashonath

1986 R. Car and M. Parrinello Ab initio (includes electronic degrees of
freedom)

1990s Stillinger-Weber, Vashista, Finney,
Ciccotti

Improvement of interaction potentials

1992 Transfer of the CECAM (Centre
Europeen de Calcul Atomique et
Moleculaire) to Lyon (Fr). Promotion and
tutorial of advanced computational
methods in material sciences

1998 Duan and Kollman 1 ms MD simulations of the folding of the
villin headpiece in explicit solvent

1999 Sugita and Okamoto Replica exchange MD

2000s Improvement and massive diffusion of
CPMD techniques among the community
need of massively parallel computing
(MPI, OpenMPI)
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In the 1980s, MD simulation algorithmic improvements allowed for simulation and
calculation of the free energy of macromolecules and protein complexes [39–41]. In
the 1990s, high-temperatureMD simulations successfully characterized the dynamic
changes of macromolecules and captured the ensemble of structures based on the
time scale [42]. Thanks to improvement in algorithms and computational power, MD
simulationswere additionally employed to study intermolecular interactions. Among
various theoretical techniques, MD simulation is one of the widely used techniques
across various research fields and is thus highly cited [43]. Presently, the number
and scale of simulation techniques have expanded greatly. Using modern tools, a
researcher can run a microsecond-scale simulation of solvated protein and protein
complexes such as protein-nucleic acid, protein–protein, protein–small molecules,
and protein or protein complexes immersed in a lipid layer. These simulations allow
the field to answer questions around binding modes and thermodynamics of a small
molecule, as well as folding and structural changes of a protein.

10.3 Types of MD Simulations

10.3.1 All-Atom Simulations

All-atom stimulations are run with simulation packages including NAMD, GRO-
MACS, and AMBER. These packages determine molecular structure, conforma-
tional analysis, and the dynamic property of proteins, protein complexes, lipid layers,
and polymers. The main drawback or limitation of all-atom simulations is the time
and computational cost. All-atom MD simulations explicitly represent each atom
in solutes and solvents, which drives up the computational cost. To overcome this
limitation, coarse-grained simulation methods were developed.

10.3.2 Coarse-Grained Simulations

A coarse-grained simulation models large-scale protein or protein complex mod-
els and enables longer time-scale simulations by increasing the order of magnitude
comparedwith all-atom simulations. Therefore, coarse-grained simulation is an alter-
native and effective method when compared to all-atom stimulation. Coarse-grained
simulation can be run using a common MD simulation package by applying a spe-
cific coarse-grained force field. In this kind of simulation, a small group of residues
or atoms in the simulated system are treated as a single particle rather than individ-
ual atoms. By leveraging this speed-up of fewer degrees of freedom, coarse-grained
simulations are faster than all-atom simulations. The running time of an MD simula-
tion depends on the frequencies of motion including bond stretching, side chain and
loop motion, and angle bending. Water molecules are not explicitly simulated here.
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Due to the above mentioned reasons, coarse-grained simulation is best employed
for long time-scale simulations. The drawbacks of this approach include: (i) loss
of atomic resolution, (ii) less accurate energetic estimation compared with atom-
istic approaches, (iii) limited availability of force fields, and (iv) need for additional
stimulations to obtain atomistic trajectory details.

10.3.3 Classical MD

Nowadays, classical MD simulations are used to investigate many properties of
molecular systems. Classical MD simulations calculate the movement of particles
from an initial input structure throughout the simulation. Interactions of each particle
in the simulation system with all other particles are calculated by the total force act-
ing on a given particle. The new position of each atom after a specific time interval
is determined by acceleration, previous position, and velocity. Classical MD simu-
lations are best applied to understand protein structure and function or to propose
hypotheses basedon experimental data. The electronic distribution fromclassicalMD
is relatively like the coarse-grained MD method. If the interaction site has assigned
fixed partial charges and an approximate model for polarization effects, the motion
of electrons is not dominated by a time scale. The main limitation of classical MD
simulation is the system size and time scale.

10.4 MD Simulation Software

A panoply of MD simulation packages has been developed over the years. The
most popular packages include GROningen MAchine for Chemical Simulations
(GROMACS) [44], Assisted Model Building with Energy Refinement (AMBER)
[45], NAnoscale Molecular Dynamics (NAMD) [46], TINKER [47], CHARMM
[48], LAMMPS [49], DL_POLY [50], MOLDY [51], and Desmond [52]. Some
MD simulation packages have their own force fields, while others only provide MD
simulation algorithms and require suitable force fields as input. The GROMACS,
CHARMM, NAMD, GROMACS, and AMBER packages predominate biomolecu-
lar simulations. AMBER and CHARMM have their own force fields and provide
various scripts to run and analyze simulations [53, 54]. GROMACS and NAMD
show remarkable efficiency for large-scale biomolecular simulations. GROMACS
[55], AMBER [54], and CHARMM [53] have coarse-grained force fields. NAMD
supports only standard force fields such as AMBER and CHARMM. Desmond is a
newcomer software package from D.E. Shaw Research which supports force fields
including AMBER, CHARMM, and POLS-AA [56]. As examples, Figs. 10.1, 10.2,
10.3 and 10.4 give an MD simulations protocol overview for GROMACS, AMBER,
Desmond, and NAMD.



10 Applications of Molecular Dynamics Simulations … 187

Fig. 10.1 Steps involved in
running the molecular
dynamics simulations using
GROMACS

10.4.1 GROMACS

GROMACS is a free MD simulation package for modeling biomolecules such as
DNA, RNA, and lipids. After initial development at the Department of Biophysical
and Chemistry, University of Groningen, Netherlands, GROMACS, now is main-
tained by various universities and research centers worldwide. GROMACS runs on
graphics processing units (GPUs) and central processing units (CPUs). Steps to run
GROMACS are the following:

1. Protein preparation: Coordinates of a protein 3D structure can be either down-
loaded from the Protein Data Bank (PDB) (www.rcsb.org) or generated from
modeling, such as homology modeling. Visualization tools including VMD,
Chimera, and PyMol can strip out water and other small molecules. To gen-
erate their topology files, the processed protein and ligand are saved as separate
files.

2. Generation of molecular topology files: A topology file is generated for the pro-
tein (and for small molecules/ligands if the simulated system is a protein/ligand
complex). The topology of a molecular system can be generated only when the

http://www.rcsb.org
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Fig. 10.2 Pipeline to run
molecular dynamics
simulations in AMBER

force files are available for all building blocks. There are two steps to generate
the topology file for the protein complex. GROMACS pdb2gmx (GROMACS
command) and external tools generate the topology file for a protein and its lig-
and, respectively. The command pdb2gmx converts a pdb file into a molecular
topology file. The topology file contains a full description of all types of inter-
actions in the protein. Small molecules are not recognized by the force fields
used in the GROMACS. Hence, external tools are used to generate a topology
file for the ligand based on the force field applied to the protein. If force fields
from AMBER, CHARMM, GROMACS, and OPLS are used for the protein,
Antechamber/ACPYPE, CGENFF, PRODRG/ATB, and Topolbuild/TopolGen
can generate the requisite ligand topology files. The ligand topology file is
inserted into the protein topology file (“top file”) by adding a line (#include
ligand.itp) into the protein.top after the position restraint line.
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Fig. 10.3 Steps involved in
molecular dynamics
simulations in NAMD

3. Determination of a solvate box: The commands Editconf and genbox define a
unit cell around a protein or protein complex and to fill said unit cell with water
molecules, respectively. Before energy minimization, the water molecules are
pre-equilibrated to remove water molecule overlap.

4. Energy minimization: A short minimization run removes large forces from struc-
tural distortions due to the addition of hydrogens and the broken hydrogen bond
network in water. The grompp command minimizes a solvated protein for two
reasons: (1) to remove local strains in the protein or protein complex due to
the addition of hydrogen atoms and (2) to remove bad van der Waals interac-
tions. This command collects all parameters to run the minimization, topology,
and coordinate. It writes all results into a single tpr (portable binary run input)
file containing the starting structure, molecular topology, and parameters form
simulations.

5. Addition of ions: The pdb2gmx command also shows the charge of the protein.
The tpr file is an input for the genion command to add positive or negative ions
to neutralize the charged protein in the solvated system. The neutralized system
is subject to energy minimization using grompp command to remove severe
clashes.

6. Equilibration: The solvated system is equilibrated to avoid unnecessary protein
distortions in the simulation. In this step, heavy atoms of the protein are fixed at
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Fig. 10.4 Protocol to run
molecular dynamics
simulations using Desmond

the starting structure and only water molecules are permitted to move or relax
around the protein.

7. Production run: The equilibration and production run differ only subtly. In a
production run, the pressure coupling and position restraints are turned off. A
production run uses a longer simulation and writes coordinates to a trajectory
file.

8. Post-simulation analysis: GROMACS has various commands for analysis of the
resultant trajectory file. Root-mean-square deviation (RMSD) and root-mean-
square fluctuation (RMSF) are calculated using commands g_rms and g_rmsf,
respectively. Commands are available in GROMACS for calculation of gyration
of protein, energy, distance between atoms and hydrogen bonds and for secondary
structure prediction.

10.4.2 AMBER

AMBER was developed in Peter Kollman’s group by combining several force fields
and since has been widely applied to various biomolecules. AMBER includes mul-
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tiple classical molecular force fields for nucleic acids, small molecules, and amino
acids and contains parameters for solvents, lipids, and carbohydrates. AMBER is
not a single source MD simulation program but instead provides a set of programs
that can run together. The atomic coordinates of the simulation system, the molec-
ular topology file, force fields, and a script with all commands are prerequisites to
running.

LEaP, tleap or xleap, is command line programs which generate or modify the
parameter files for a new systemor the existing systems. These programs convertmost
of the chemical structure file types (such as mol2 and pdb) to AMBER parameter file
types (.lib, .prepi, parm.dat, and .frcmod). The energy minimization and dynamics
simulation parameter files contain key information required to run the simulation.
These commands also generate topology (.prmtop, .parm7, or .top) and coordination
(.inpcrd and .crd) files based on the parameter files.

The pdb4AMBER command converts pdb files from different sources like X-ray,
nuclear magnetic resonance, and homology modeling to a format suitable to LEaP.

The parmed command is used to validate and extract parameter information from
the parameter–topology file for the simulation system. This command also makes
minor modifications to parameter–topology file.

The AntechAMBER command uses the general AMBER force field (GAFF) to
generate and modify the parameter files for small molecules and amino acids.

The program sander is used to execute the energy minimization, equilibration,
and production runs. Sander interactively relaxes the system by iteratively moving
the atoms until a suitable low average gradient is reached. The system configuration
files are automatically generated during the production run by integrating Newtonian
equations of motion. The final production run generates a configurational space and
allows the structure to cross over smaller potential energy barriers than the energy
minimization. During dynamics simulations, the configuration of the system is saved
at the regular time interval for later analysis. Thermodynamic integration is used to
calculate system free energy. Sander module is used to study protein conformational
search, protein structure modeling, and structural refinement of proteins.

The program pmemd (Particle Mesh Ewald Molecular Dynamics) is the updated
version of sander with increased speed via parallel scaling during the production run.
The required pmemd input and output files are very similar to sander.

The program mdgx is a dynamics engine written in C and sorts the atoms to sim-
plify the information flow during force calculation. It adopts select features from
pmemd and sander. The most common use of mdgx is redesign of dynamics algo-
rithms or models to support parameters for new models.

The program mdout_analyzer.py is a simple Python script which summarizes the
information from pmemd or sander output files. The program Cpptraj, written in
C++, analyzes trajectory files such as coordinate extractions, RMSD, RMSF, bond
and angle calculations, and hydrogen bond analysis. The Python program pytraj has
flexibility to analyze data from trajectory files.
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10.4.3 NAMD

NAMD is written in Charm++ [57]. It was developed by the Theoretical and Com-
putational Biophysics Group (TCB) and Parallel Programming Laboratory (PPL) at
the University of Illinois at Urbana-Champaign.

The 3D structure of protein atomic coordinates from PDB, protein structure file
(psf), force field parameter file, and configuration files are prerequisites to running a
NAMD simulation. The initial protein 3D structure downloaded from PDB does not
contain hydrogen atoms because X-ray crystallography cannot resolve the hydro-
gen atoms. Hence, the command psfgen generates the pdb file with hydrogen atom
coordinates. The generated pdb file is subject to energy minimization to ensure rea-
sonable atomic coordinates. The minimized protein coordination file is immersed in
a water box to adopt a cellular environment for the target protein. The protein can be
solvated in two ways for energy minimization and equilibration: (i) vacuum, without
periodic boundary conditions, or (ii) water box, with periodic boundary conditions.

The important features of NAMD are given below:

(1) Compatibility with the CHARMM force field to stimulate the systems. This
force field was used by other programs such as CHARMM and X-PLOR, hence
it is easy to migrate from one program to another as well as to analysis the
trajectory files.

(2) Efficiently utilization of the Particle Mesh Ewald algorithm—full electrostatic
interactions to reduce the electrostatic complexity.

(3) Leverages the Verlet integration method—multiple time steps are applied to
compute local interactions at each time step and to reduce the computational
cost for long-range interaction calculations.

(4) Variety of simulation options.
(5) Easy to modify and extend a given run.
(6) Interactive simulations.

10.4.4 Desmond

Desmond was developed by D. E. Shaw Research group using numerical methods
[58] and novel parallel algorithm [59] to run high-speed MD simulations for biolog-
ical systems. It is integrated with the Maestro modeling environment (Schrodinger,
Inc), a commercial software package compatible with VMD and analysis tools.

Proteins directly downloaded from PDB are not suitable for dynamics analysis
because they lack hydrogen atoms and contain poorly defined bond orders and formal
charges. Hence, protein preparation is the initial and a very important step in MD
simulations. The basic steps to run MD simulations using Desmond from Maestro
are given below:

1. Import the protein 3D structure file either from PDB or from a homology mod-
eling method into Maestro.
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2. Prepare the protein structure using the Protein PreparationWizard fromMaestro.
Ions and other small molecules are removed, bond orders are corrected, and the
missing residues, atoms, and hydrogens are added to the system. Lastly, reliable
protonation states of the residues are set.

3. Generate a solvated system using a Solvation tab. This step adds water molecules
around a protein or inserts a protein into a lipid layer. The Solvation tab has the
following options: (a) none—Donot use the solvent (run the system in a vacuum);
(b) predefined—Select one of the solvent models such as SPC, TIP4P, TIP3P, and
TIP4PEW and three organic solvents, methanol, octanol, and dimethyl sulfoxide
(DMSO); (c) custom—Import the solvent system from a file. The Solvation tab
also sets up the periodic boundary box by specifying the shape and size of the
box. To proceed with this step, first select the shape of the box from the three
basic shapes: cubic, orthorhombic, and triclinic. While selecting, the box size
calculation has two options: (i) buffer—Calculate the size using the given buffer
distance between the solute and the box boundary and (ii) absolute size—Specify
the distance between the solute and the simulation box.

4. Insert the protein into a lipid layer with the setup membrane from system builder
panel if the target system is a membrane protein. DPPC, POPC, and POPE are
the three membrane models supported by Desmond.

5. Calculate the charge of the system. Positive (Na+) or negative (Cl−) ions are
added to neutralize the solvated system or to set a desired ionic environment for
the protein.

6. Before MD simulations, relax the whole system into a local energy minimum
either byminimization or by selecting the panel options. In this step, the system is
minimizedby the steepest descentmethod followedby limited-memoryBroyden-
Fletcher-Goldfarb-Shanno (LBFGS) algorithms. Generally, two parameters are
set for the minimization: (i) maximum number of iterations and (ii) convergence
threshold for the gradient.

7. Utilize the desmond panel to set the simulation parameters such as production
run, simulated annealing, or replica exchange for the system. The simulation
section is where the user specifies the simulation time (in nanosecond) and the
recording time interval (in picosecond) for the energy calculation and between
the snapshots in the trajectory file. Additionally, selecting the ensemble type
(such as NVT, NPT, NVE, NPγT, and NPAT) to set the temperature, pressure,
and surface tension occurs in the simulation Section.

8. Finally, run the simulation. The resultant trajectory is analyzed by the simulation
quality analysis or the simulation event analysis panel. The result includes a
summary of the simulation and analysis of total and potential energy, temperature,
pressure, and volume throughout the simulation.

10.5 MD Simulation Protocol

An overview of the MD simulation protocol is depicted in Fig. 10.5.
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Fig. 10.5 Overview of the MD simulation protocol

10.5.1 Initial Coordinates

The first step in an individual MD simulation is to select or obtain the 3D structure
of a protein or a protein complex. X-ray and nuclear magnetic resonance are the
two experimental techniques to determine 3D structures deposited in PDB. If the 3D
protein structure is not available in PDB, homologymodeling can be used to construct
a 3D protein structure. The selection of the atomic representation of a protein is an
important step in MD because it can influence the dynamics simulation results.
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10.5.2 Preparation of the Protein Structure

After the initial 3D structure is obtained, the following steps should be carried out
before the energy minimization.

1. Remove the redundant atoms: The experimentally determined 3D structure of
a protein might be in the dimeric or multimeric form with stabilizing chemical
agents from the structure determination. Here, the monomer of the protein is
extracted from the multimeric form of the protein. The small atoms or chemical
agents which are not paramount to protein function should be removed.

2. Add missing residues and atoms: Some proteins from PDB might lack residues
or atoms in their coordinate files. Hence, it is important to cross-check whether
the selected protein structure has any missing residues or atoms. Once missing
residues or atoms are found, the missing regions should be rebuilt using compu-
tational software. After the missing residues or atoms are rebuilt in the structure,
hydrogen atoms should be added and the protonation states should be assigned
ionizable residues such as arginine, glutamate, lysine, aspartate, and histidine
which play a very important role in most of the protein functions.

3. Replace mutated atoms: During crystallization, some protein–ligand complexes
are not able to form a stable structure. Thus, some residues in a protein complex
were mutated to obtain a stable complex. Such residues should be replaced by
the appropriate native residues.

10.5.3 Generating Topology and Parameter Files

The topological file for a given protein contains all geometric information including
angles, bonds, and interactions. Once the protein is prepared, it is next important
to generate the topology files for the protein and small molecules by applying the
appropriate force field [60–65]. Sometimes, the topology file combines the parameter
files (describing the potential energy of the systems) that are generated by applying
the chosen force field. Various force fields have been developed for proteins, lipids,
nucleic acids, carbohydrates, and small molecules. The force field selection is guided
by the nature of the protein and the purpose of the research. There are various utilities
to generate the topology files for small molecules which are compatible for most MD
simulation programs.

10.5.4 Solvating the System

Explicit and implicit models are two different water models simulating a protein or
a protein complex in an aqueous solution. The implicit solvent model is efficient and
yields a reasonable description of the behavior of the solvent but fails to provide
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details about solute molecule fluctuation in the solvent density. Explicit models such
as SPC and TIP3P are used in most MD simulation programs and detail the solvent
spatial descriptions. Membrane proteins should be inserted into a pre-equilibrated
lipid layer. After system assembly in solute or lipid, new topology files are built to
run energy minimization and reduce van der Waals interactions.

10.5.5 Adding Ions

A molecular system should be solvated in a pre-equilibrated water box. The protein
in the solvated water box might carry a charge. Hence, the system is neutralized by
adding ions including Na+, Cl−, and K+. Positive ions are employed for systems with
negative charge and vice versa.

10.5.6 Minimizing Structure

Energy minimization is a crucial step in MD simulations. This step configures the
protein system to be stable and removes bad clashes between the solute and solvent,
as well as filtering out inappropriate geometry.

10.5.7 Establishing Equilibration Dynamics

A reasonable structure obtained from energyminimization is required to continue the
simulation. Equilibration is an important step preceding the production run. Themain
purpose of equilibration is to reduce non-equilibrium effects and to avoid or reduce
structural distortions. The protein (embedded in the box of explicit system solvents)
is fixed, and water molecules are permitted to move about the protein. Once the water
molecules are equilibrated, the protein constraint is removed and the whole system
is equilibrated together. MD simulation begins in earnest only when the system
equilibrates the ions and solvents around the protein. There are three ensembles in
the equilibration run: (i) NVE, constant number of the particles, volume, and total
energy; (ii) NVT, constant number of particles, volume, and temperature; and (iii)
NPT, constant number of particles, volume, and temperature. In the NVT ensemble,
the thermostat maintains the system temperature to reach a desired value. Next, NPT
stabilizes system pressure. The final production run is executed onlywhen the system
is temperature and pressure stable.
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10.5.8 Establishing Production Dynamics

A well-equilibrated system from the previous step run in the final production MD
simulation.

10.5.9 Analyzing Trajectory

The trajectory file obtained from the production run needed to compute the structural,
thermodynamics, and dynamic nature of the protein or protein complex by calculating
the RMSD, RMSF, radius of gyration, extract a representative structure, and more.
The quality of the representative structure from the trajectory can be verified using
Ramachandran plots. Visualizing trajectory files using various molecular graphics
software packages yields insight into atomic-level protein conformational changes
based on the time interval. In addition, detailed quantitative structural information
such as hydrogen bonds, inter- and intra-molecular interactions, radius of gyration,
bond angles, distance and geometrical quantities is calculated. RMSD and RMSF
show the deviation of the protein structures from the initial structure based on the
time interval and different flexible region of the protein, respectively. The free energy
decomposition can be calculated from the trajectory files using the MM-PB(GB)SA
method [66].

10.6 Applications of MD Simulation

Predicting compound toxicity by leveraging computational methods is an emerging
yet important field [67].MDsimulation has been applied to predict toxicity.Beloware
a few examples of recent MD simulation applications in computational toxicology.

10.6.1 Binding Interactions Between Chemicals and Human
Nicotinic Acetylcholine Receptor α4β2

Tobacco product addiction is a major global health concern. Among various tobacco
constituents, nicotine plays a major role in tobacco addiction by binding to the neu-
ronal nicotinic acetylcholine receptors (nAChRs).Among different types of nAChRs,
α4β2 mediates nicotine addiction. Hence, pinpointing detailed interactions between
nicotine and the human α4β2 receptor will reveal the mechanism of nicotine addic-
tion. In addition, the interaction can inform a predictive model to screen tobacco
constituents. To address these questions, homology modeling, molecular docking,
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and dynamics simulation techniques elucidated binding interactions between the
human α4β2 and tobacco constituents [68].

Initially, the 3D structure of the human α4β2 extracellular domainwas constructed
utilizing the crystal structure of Ct-AChBP and homologymodeling.MD simulations
were used to minimize the constructed human α4β2 3D structure. Eleven compo-
nents which were both crystallized with nAChRs or AChBP and also have binding
data for α4β2 were selected to dock with α4β2 protein. The LigPrep2.0 tool from
Schrodinger optimized the 11 ligands (Fig. 10.6) by applying the OPLS_2015 force
field (downloaded from PDB). The standard precision (SP) tool from Glide docked
the optimized or minimized ligands in the active site of α4β2. The active site of α4β2
consists of residues V96, Y98, S153, W154, Y195, and Y202 from α4 and W57,
V111, F119, L121, and F157 from β2. The best α4β2 active site binding pose for
each ligand was selected based on the Glide scores. Interaction studies revealed that
the hydrophobic and aromatic interactions play a major role in ligand binding in the
active site of α4β2. The hydrophobic part of the ligand bounds to the major surface
α4β2 binding pocket extended region.

The selected best α4β2 complexes (11 total) obtained from molecular docking
was optimized with AMBER. The AMBER ff99SB and general AMBER force field
(GAFF) force field were applied to the α4β2 protein and the ligands, respectively.
Antechamber assigned the AM1-BCC charges for the ligands. Each α4β2 complex
was solvated in a TIP3P water box with 10 Å truncated octahedron box. Added
sodium ions neutralized the systems. The SHAKE and Particle Mesh Ewald (PME)

Fig. 10.6 Two-dimensional chemical structures of 11 compounds obtained from PDB. The three
letters under the structure represent the ligand ID from PDB
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constrained the bonds with hydrogens and applied long-range interactions for the
non-bonded interactions. Two-thousand-step steepest descentminimization followed
by 8000-step conjugated gradientminimizationwas carried out for each entire system
prior to the final production run. Each systemwas subjected to 200 ps of equilibration
to reach the stable states. The equilibrated system was subsequently subjected to a
10 ns production run at 300 K temperature, 1 atm pressure, and 2 fs of time steps.

The resultant trajectory files were used to calculate the RMSD values, demon-
strating that the α4β2 complexes reached stable states. The last snapshot from each
trajectory file was selected to elucidate the interactions between the 11 ligands and
the critical residues in the active site of α4β2 (Table 10.2).

10.6.2 Identification of the Ligand Binding Mode
in α-Fetoprotein

By aid of a transport protein, endocrine disrupting chemicals (EDCs) enter the cell
and cause adverse effects by disrupting endocrine receptors including androgen and
estrogen receptors. α-fetoprotein (AFP) blocks AR and ER mediated responses by
binding with androgens and estrogens to prevent entry into the target cells. Thus,
to understand the endocrine disruptive potential of a chemical, it is important to
elucidate binding to AFP. In 2012, Hong et al. measured the AFP binding affinity
of 125 structurally diverse chemicals and discovered that 53 chemicals are AFP
binders and 72 are non-binders. To assess risk of endocrine disrupting chemicals,
the binding mode of rat AFP–ligand was studied. Initially, homology modeling was
used to constructed a 3D structure of rat AF which was further optimized by an MD
simulation. The resultant trajectory file from the MD simulation informed selection
of one representative AFP protein 3D structure. This chosen structure was used
as a receptor to dock the 13 classes of chemicals in its active site. Finally, the 13
complexes selected from the molecular docking were refined using MD simulations
to understand the binding patterns of these chemicals in the active site of rat AFP
protein [69].

Molecular docking is one of the well-known techniques to predict ligand pose in
the active site of a protein. The major drawback of the rigid molecular docking is its
failure to give flexibility to the protein. AFP is a flexible protein which undergoes
an active site ligand binding-induced conformational change [70]. Hence, the MD
simulation method gave flexibility to the AFP–ligand complex and optimized com-
plexes obtained from molecular docking. The 13 rat AFP–ligand complexes from
molecular docking were subjected to MD simulations to provide insight into the
conformational changes of rat AFP due to the 13 structurally diverse ligands binding
in the active site.

Prior to molecular docking, the 13 diverse ligands were optimized using Gaussian
09with the basis set of 6-31G.The electrostatic potential of the ligandswas calculated
with the mechanical method (B3LYP). For MD simulations, GAFF was applied
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to the optimized 13 AFP-complexes. Before the 60 ns production run, the AFP-
complexes were minimized, equilibrated, and heated. During the simulations, the
atomic coordinates of the AFP-complexes were saved in the trajectory file every
10 ps.

The RMSD plot for the protein and ligand was the basis for system dynamic
stability estimation, and the four representative structures are plotted in Fig. 10.7.
TheAFP complexeswith 2,3,4,5 tetrachloro-4’-biphenylol, DES, and flavanonewere
stabilized at the last 10 ns. Binding of α-zearalanol and weak binders (chalcone and
diethyl phthalate) had considerable fluctuations in last 5 ns.

The diethyl phthalate came out of the binding pocket of AFP at 10 ns, indicating
lowbinding effect. In support of thisMDsimulation result,Hong et al. experimentally
proved that the diethyl phthalate has a weak binding affinity for AFP [71]. RMSD
analysis of the AFP complexes trajectory files revealed multiple rotatable bonds in
the ligands induced a remarkable conformational change on AFP compared to a rigid
ligand. The ligand binding-induced conformational changes inAFP’s active site were
observed in the last frame of the trajectory files, indicating that MD simulations can
capture ligand binding protein structural changes.

10.6.3 Ligand Binding Interactions of Human α7 Nicotinic
Acetylcholine Receptor

Despite the highly publicized adverse health effects caused by tobacco use, the addic-
tion associated with tobacco product nicotine has led to difficulty in quitting among
users. The neuronal nAChRs play a key role in tobacco addiction. The α7 subtype of
nAChRs is a key receptor in addiction mediation. Worryingly, it is unknown whether
other tobacco constituents (>8000 exist) are addictive or not. Experimentally deter-
mining the binding affinity of ~8000 tobacco constituents would be too expensive
and time-consuming to be practical. Instead, in silico methods evaluated the addic-
tion potential of ~8000 tobacco constituents. Due to the absence of an experimental
crystal structure, homology modeling was leveraged to build the 3D structure of the
human α7 nAChR ligand binding domain. The α7 nAChR chimera (PDB ID:3SQ6)
was the template to model human α7 nAChR. When undergoing such modeling, it
is essential to consider the flexibility of the protein in the presence of the ligand
as the target protein can undergo ligand binding driven structural changes which
impact function. Most software packages permit only partial protein flexibility dur-
ing small molecule docking. Here, a competitive docking model (CDM) overcame
this drawback of rigid protein docking and found the poses of compounds when bind-
ing to the homology modeled human α7 nAChR. Compounds experimentally tested
against human α7 nAChRwere used to evaluate the ability of the CDM. The model’s
predictions of compound binding in the active site of the human α7 nAChR were
thus experimentally validated. MD simulation was used to investigate the residues
involved in the critical compound interactions. Building on the elucidated key inter-
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Fig. 10.7 RMSD from the trajectory files of rat AFP complexes. Blue line represents the pro-
tein backbone RMSD, and red line represents the ligand RMSD. a AFP–estrone, b AFP-2,3,4,4-
tetrachloro-4′-biphenylol, c AFP-DL-hexestrol, and d AFP-chalcone
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acting residues from MD simulation, a predictive model was developed to predict
tobacco constituents binding activity. Training and test set compounds from PDB
informed and evaluated the model (Fig. 10.8). The predictive model successfully
differentiated α7 nAChR binders from non-binders. Of 12 experimental test com-
pounds, 11 were predicted correctly as nAChR α7 binders by the predictive model.
Hence, this predictive model might be helpful to screen tobacco constituents which
are responsible for addiction.

10.6.4 Antagonist Binding-Induced AR Structural Changes

Androgen receptor (AR) is as prostate cancer target is gaining traction in the drug
discovery field. AR activity is blocked both by non-steroid and steroid antagonists.
Prolonged use of AR antagonists causes mutations in AR which paradoxically cause
AR antagonists act as AR agonists. Driven by the binding of agonist/antagonist,
AR undergoes a considerable conformational change which impacts DNA and co-
regulatory protein binding. The X-ray crystal structure of antagonist binding in the
ligand binding pocket of wild-type (WT)-AR is required to understand the mecha-
nism. Unfortunately, such a crystal structure does not exist. To address this challenge,
induced fit molecular docking and MD simulations were used to characterize AF2
site structural changes and themechanism of antagonist binding in the ligand binding
pocket of WT AR. Induced fit molecular docking and a long-term MD simulation
were leveraged to construct the WT-AR-antagonist complex and to analyze WT-AR
structural changes, respectively. Three molecular systems (WT-AR bound by agonist
R1881,WT-AR bound by antagonist bicalutamide, andMutant-AR bound by bicalu-
tamide) were utilized to study the agonist binding-induced structural changes in the
WT-AR AF2 site. WT-AR bound to agonist R1881 and mutant-AR bound to bica-
lutamide were selected from PDB. Induced fit docking (IFD) and MD simulations
generated the structure of WT-AR bound to antagonist bicalutamide. Twenty-five
binding poses of bicalutamide in the ligand binding pocket of WT-ARwere obtained
from IFD. Among the 25 poses, the best pose of bicalutamide in the ligand binding
pocket ofWT-ARwas selected based on both the IFD scores and also critical residue
interactions around the active site. The three systems were subject to 1 microsecond
of anMD simulation using AMBER 14 to optimize the three complexes. The RMSD
and RMSF plots revealed that the systems were stable throughout the simulations
(Fig. 10.9a, b). Five residues had shown a deviation of more than 2 Å. As expected,
those residues are present in the loop regions (Fig. 10.9c). The representative structure
from the trajectory files was superimposed on the X-ray crystal structures ofWT-AR
with R1881 and mutant-AR with bicalutamide, which demonstrates the reliability of
the MD simulations (Fig. 10.10). The binding of bicalutamide in the ligand binding
pocket moved residues V716, K720, Q733, M734, Q738, and E897 and changed
the structure of the AF2 site of WT-AR, rendering AF2 unsuitable for co-activator
binding. The electrostatic potential map revealed that residues V716/K720/Q733 or
M734/Q738/E897 played a vital role in the formation of the positive and negative
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Fig. 10.8 Training a and test b compounds for developing and validating the predictive model
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Fig. 10.9 Analysis of 1 μs MD simulation trajectory files. a RMSD, b RMSF, and c WT-AR-
R1881 are drawn in the ribbon model, and the five residues which showed a deviation greater
than 2 Å are shown in stick model. Green: WT-AR-R1881; purple: WT-AR-bicalutamide; blue:
mutant-AR-bicalutamide

charge clump on AF2 site (Fig. 10.11). The charge clumps in AF2 provide a suit-
able place for the co-regulator protein to bind tightly. To summarize, MD simulation
enabled the discovery of the charge clump disruption caused by antagonist binding
in the WT-AR ligand binding pocket.

10.7 Future Perspectives

To date, many chemicals lack toxicity information. Understanding chemical prop-
erties or classifying a chemical as a toxic or non-toxic by experimental methods is
often prohibitively time-consuming and expensive. Seeking to overcome this fun-
damental limitation, computational toxicology is attractive for chemical toxicity
prediction. Computational toxicology integrates data or information from various
sources to develop predictive models based on the mathematical computer calcula-
tion. Recently,MD simulation has emerged as an attractive computational toxicology
technique. Understanding the algorithm behind variousMD simulation methods will
empower researchers to reveal the solution for various problems. Along with MD
simulation algorithms, input data quality and user simulation understanding funda-
mentally make or break toxicity prediction success.

Most MD simulation results are validated using experimental data to confirm
reliability. Protein conformational changes, strong interaction of ligand in the binding
pocket of the protein, and hot spot residues are validated throughMD simulations. X-
ray and nuclear magnetic resolution are experimental methods which pinpoint both
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Fig. 10.10 Superimposition of the X-ray crystal structures against the representative structures
from the 1 microsecond trajectory files. aWT-AR-R1881, bmutant-AR-bicalutamide, and c super-
imposition of bicalutamide from PDB and the representative structure of mutant-AR-bicalutamide.
Red: X-ray crystal structure; green: WT-AR-R1881; cyan: mutant-AR-bicalutamide

protein conformations and interactions between the smallmolecules and the proteins.
Nuclear magnetic resonance provides multiple conformations of a single protein and
is often used to analyze structural changes of proteins including protein recognition
and folding, conformation, and dynamic changes. The MD trajectory files can be
compared with nuclear magnetic resonance data to check the reliability of the MD
simulation result. MD simulations will be applied to understand or study the quality
of homology modeled protein structures, to identify the structural or conformational
changes of proteins, to elucidate important interactions between a protein and small
molecules, and to estimate protein–protein and protein–ligand binding affinity.

A recent advance inMDsimulation algorithms and computer hardwarewill enable
microsecond-scale MD simulations for the macromolecules such as protein or pro-
tein complexes. Nowadays, many researchers and scientists run microsecond and
millisecondMD simulations to characterize protein structures [72–75]. In the future,
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Fig. 10.11 Electrostatic potential map for AF2 site. a WT-AR-R1881, b WT-AR-bicalutamide,
and c mutant-AR-bicalutamide

we expect that long-term MD simulation will be a powerful tool to elucidate or
capture protein structural changes.
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Chapter 11
Applicability Domain: Towards a More
Formal Framework to Express
the Applicability of a Model
and the Confidence in Individual
Predictions

Thierry Hanser, Chris Barber, Sébastien Guesné,
Jean François Marchaland and Stéphane Werner

Abstract A common understanding of the concept of applicability domain (AD) is
that it defines the scope in which a model can make a reliable prediction; in other
words, it is the domain within which we can trust a prediction. However, in reality,
the concept of confidence in a prediction is more complex and multi-faceted; the
applicability of a model is only one aspect amongst others. In this chapter, we will
look at these different perspectives and how existing ADmethods contribute to them.
We will also try to formalise a holistic approach in the context of decision-making.

Keywords Applicability domain · Decision domain · TARDIS · QSAR ·
Machine learning · Confidence modelling
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kNN K-Nearest Neighbours
QSAR Quantitative Structure Activity Relationship
OECD Organization of Economic Co-operation and Development
PCA Principal Component Analysis

11.1 Introduction: Confidence in an Individual Prediction

Quantitative/Qualitative StructureActivity Relationship (QSAR)models can be used
in different contexts ranging from early virtual screening to late safety assessment
in the process of drug development. The ability to gauge the level of confidence
in predictions provided by such models becomes more and more important as the
drug candidates get closer to human exposure. In the early context of screening large
chemical libraries in the quest for active structures, it is acceptable for amodel tomake
a certain number ofmistakes provided that the number of erroneous predictions is not
too big. In such a case, the global accuracy of a model gives us a sufficient estimate of
the confidence in the predictions and we expect a model with a good accuracy to lead
to a useful selection across the whole compound library. The model’s accuracy can
be measured a priori using internal and external validation methods and provides an
intrinsic sense of confidence in the predictions from a statistical standpoint; however,
it does not tell us how much we can trust individual predictions. On the other hand,
when it comes to human safety assessment, we are measuring the risk of adverse
events induced by a specificmolecule. In this case, the global accuracy of themodel is
not helpful, and we need a way to estimate the accuracy of an individual prediction.
Whereas in the context of virtual screening, we use the accuracy of the model,
in the context of human safety assessment, we need the accuracy of a prediction.
Model accuracy and prediction accuracy are two very different concepts. To better
illustrate the distinction, let us assume that we have built a good model providing
an 83% accuracy on a challenging toxicity prediction task. If we use this model in
the context of screening thousands of compounds, we can be relatively confident;
indeed, it feels like going to the casino playing with strongly biased dice; we know
that in the long run, we will achieve substantial gain (Fig. 11.1a). However, in the
context of risk assessment, we focus on one individual prediction with potentially
life-threatening consequences. In this case, the same 83% is a one in six chances of
a lethal outcome (Fig. 11.1b). The two different contexts lead to two distinct ways
to consider confidence in predictions.

When focusing on a specific compound, the question becomes “Can we trust this
specific individual prediction?”which combines elements of assessing the legitimacy
of the model, the reliability of the prediction for a specific compound and the level
of uncertainty that can be tolerated in making a decision. All these aspects make
perceiving the confidence in a prediction difficult to formalise.An attempt to formally
describe the legitimate scope of a model has been introduced as the AD. The role of
the AD is to define the boundaries within which a model can be used and provides
sufficiently accurate predictions. A well-defined AD has become a key feature for
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Fig. 11.1 In the context of virtual screening (a) a global accuracy of 83% provides an acceptable
level of confidence across a large number of structures to select from. On the other hand, in the
context of risk assessment (b), the same 83% corresponds to a one in six chances of observing a
potentially lethal outcome. The confidence is therefore perceived as weaker in this latter case

in silico prediction systems, and the Organization of Economic Co-operation and
Development (OECD) has included AD as part of the requirements for (Q)SAR
models [1], the OECD defines AD as follows:

ApplicabilityDomain is the response and chemical structure space inwhich themodelmakes
predictions with a given reliability.

Thanks to this formalisation effort, most modern in silico prediction systems
feature a way to identify if a compound is part of their AD or not, and thus provide
a confidence estimate at the individual prediction level. Unfortunately, we observe
a strong heterogeneity in the wide spectrum of methods developed for this purpose.
Existing methods are based on variable definitions of the AD and often rely on
different ways to consider the problem at the source. In their well-structured review
[2], M. Mathea et al. compare the main methods available and their contribution in
formalising AD. Despite the important and valuable effort to tackle the AD problem
[3–15], the lack of a standard definition and the variety of existing implementations,
dramatically reduces the ability to assess a prediction or compare predictions from
different systems.

Although theOECDdefinition is an important step forward to express the intended
aim of the AD and formalise its scope, it remains vague about practical aspects and
does not provide implementation guidelines. TheOECDdefinition is based on several
difficult concepts and formalising each of these concepts is a challenging task. For
instance:

• When is it valid to use a model to make a prediction?
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• Are there given structures for which the model should not be used?
• How do we define the boundaries of the chemical space?
• How do we define the reliability of a prediction?
• When is a given prediction reliable enough?
• Is the prediction conclusive, i.e. is the outcome likely?

One of the main sources of confusion is probably a natural desire to compile
all these different questions into one: “Is the query compound inside or outside the
applicability domain?”, in other words, into a closed yes/no question. This compi-
lation has several drawbacks; first, it is very difficult to combine information of a
different nature and express the resulting concept in a single metric, secondly, the
resulting AD implementation is less interpretable since it becomes very challenging,
a posteriori, to disentangle the merged information. Finally, the assessment of the
confidence in a prediction follows a chronology that is not captured in a single closed
question. The importance of such a timeline will be discussed later. Another risk is
to address only a subset of these questions which is unfortunately the case for many
AD methodologies.

11.2 Decision Domain

A more holistic vision of AD becomes apparent when looking from the broader
decision perspective; this approach was introduced by Hanser et al. [16]. Indeed,
QSAR models are most useful if they provide sufficient support to the user to enable
a confident decision to be made. If this is not the case, then the model offers little
value.

From such a perspective, we can identify three well-defined concerns, each
addressing a specific AD aspect along with a clear chronology that leads to a three-
staged approach:

1. Applicability: Can the model be applied to make a prediction for my query?
2. Reliability: Is the resulting prediction reliable enough for the intended use case?
3. Decidability: Is the outcome of the prediction decisive (unequivocal)?

Together, these requirements define the scope for a confident decision based on a
prediction (Fig. 11.2) called the decision domain (DD).

The decision domain can be defined as follows:

The Decision Domain is the scope within which it is possible to make a confident decision
based on a valid, reliable and decisive prediction.

By separating the three key concepts embedded in a prediction and addressing
them individually, we can use the appropriate methodologies for assessing these
aspects. This new perspective results in a more formal framework that supports
the decision-making process. Existing AD methodologies can be mapped onto this
framework, and we will use this structure to introduce these approaches at their
corresponding level.
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Fig. 11.2 A confident decision can be made based on a model prediction, when the prediction
is valid (in the Applicability Domain), reliable (in the Reliability Domain) and decisive (in the
Decidability Domain). If all three criteria are met, the prediction is said to be in the Decision
Domain

11.2.1 Applicability

Prior to achieving any prediction, it is critical to check if it is valid to apply the
model for the compound being predicted; in other words, we check that the model’s
specifications are compliant with the intended use case. These steps can be seen as
a checklist with questions like:

• Is the chemical class of the query compound supported by the model?An example
of such a specification could be “accept organic compounds but exclude polymers,
proteins and inorganic molecules”. There are many possible causes for the limita-
tions of a model. For instance, for some classes of compounds, the model could be
unable to compute some of the required descriptors or the model’s internal chem-
ical representation could be limited to a specific class of compound, e.g. organic
molecules only due to the complex bonds in inorganic molecules, the size of the
proteins structures or the repeated motifs in polymers (Fig. 11.3). Such specifica-
tions are statically attached to the model irrespective of the predicted compound
or the training dataset.

• Are the values of the descriptors of the predicted compound within the range of
values the model has been trained or designed for? Here the descriptor space is
used to restrain the applicability domain of the model to ensure that the query
structure does not exhibit unusual properties for which the model has not been
trained. Different existing AD methods are based on this criteria amongst which
the most popular are:

– Range Box: This naïve approach defines the boundaries of the applicability
domain as the range between the minimum and the maximum values, for each
individual descriptor variable as observed in the training data. If any descriptor of
the predicted compound has a value outside the interval [minimum-maximum]



220 T. Hanser et al.

Fig. 11.3 A model may only accept some classes of query compounds. For instance, polymers,
proteins and organometallic structures may be too complex or too large for the models’ internal
representation and should be excluded from the Applicability Domain

Fig. 11.4 Min-max
descriptor ranges observed in
the training data (blue) define
the acceptable values of the
query structure descriptors in
the form of a hyper-box
(here a rectangle in the case
of two dimensions)

of the corresponding variable in the training data, then the model is not appli-
cable, and this compound is labelled as “Outside the Applicability Domain”
(Fig. 11.4). This approach bears an important drawback as it allows regions
containing very few training examples inside the hyper-box defined by these
ranges. As the number of descriptors (dimension of the descriptor space) use
by the model increases, these regions become rapidly predominant due to the
dimensionality curse [17].

– Convex Hull: This approach is very similar to the range box method with the
difference that instead of a hyper-box defined in the descriptor space, the convex
hull is the minimum surface that wraps the training data, defining a more precise
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Fig. 11.5 Convex hull, is
the minimum surface
containing the descriptor
range hyper-box. The convex
hull surface defines a more
complex and more precise
AD than the range box
approach; it allows the
exclusion of “corners” of the
descriptor space for which
there are no training data
points

AD volume. The convex hull can exclude regions that are in the range of an indi-
vidual descriptor and yet distant from the extreme data points for this descriptor
when looking from another descriptor’s perspective; these regions can be seen
as the “corners” of the hyper-box (Fig. 11.5). The convex hull method suffers
from two main limitations; first finding the convex hull surface becomes com-
putationally expensive as the number of dimensions increases, secondly, as for
the hyper-box, for large numbers of descriptors and wide ranges of values, the
volume contained in the convex hull becomes very large and the data points are
sparsely distributed creating an effect of information “dilution” within the AD.

– Dimension reduction: When the number of descriptors becomes too large, it is
possible to applywell-establisheddimension reduction techniques anddefine the
AD within the resulting low-dimensional space (typically two or three dimen-
sions) rather than in the direct original space. The main benefits of this approach
are that the resulting AD scope focuses on the most important dimensions
as identified by the reduction methodology. The lower dimension space also
reduces the computational cost of AD methods like the convex hull and finally
the density of information provided by the training data is higher owing to the
reduced representation space. Principal Component Analysis (PCA) can be used
as the dimension reduction methodology [18].

• Has the model “seen” all the structural features present in the query com-
pound? Here “seen” means the features have been observed in the training
data with sufficient representation. Such a criterion would not be captured by
a simple descriptor range-based approach and needs to be addressed as well.
Typical structural features can be based on atom-centred circular environment
[19] or predefined patterns [20], alternatively pharmacophoric features can be
used, which are often based on topological and 3D atom pairs/triplets [21–23].
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Fig. 11.6 Structural moieties present in the query compound and unseen in the model’s training
data or knowledge are blind spots and should invalidate the application of the model. For instance,
the boronic acid group in this example is likely to cause mutagenicity. If unaware of this type of
moiety, a mutagenicity in silico model should not be applied for the above query as the query is
outside the applicability domain

The selection of such an approach should consider the relevance of structural
features to the endpoint (ideally from a mechanistic perspective). Although
often neglected, structural feature awareness is an important model applicabil-
ity condition, especially in the context of risk assessment; a novel structural or
pharmacophoric feature present in the query compound could induce toxicity.
Previously unseen features constitute blind spots for the model and such models
are no longer applicable (Fig. 11.6).

We have seen three representative cases in which it is not suitable to use a given
model, however, there are many other possible criteria like mechanistic or metabolic
prerequisites [24]. To be on the safe side, the AD of a model should consider all these
criteria.

Using knowledge of the endpoint and of the model’s methodology and its limi-
tations, the model’s designer is responsible for specifying the set of restrictions that
define the scope in which the model can be applied, and it is the task of the prediction
software to implement and to enforce these criteria.

Importantly, applicability is a model-intrinsic property, it is not dependent on the
use case, and the model is either applicable for a query or it is not. In the latter case,
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the query instance is labelled as “Outside the Applicability Domain”. The AD of a
model is a necessary but not sufficient condition for being confident in a prediction;
it is also important to consider the reliability and the assertiveness of the prediction.

It is worth noting that at this stage we have not yet used the model to perform a
prediction.

11.2.2 Reliability

Once established that the model is applicable, it becomes legitimate and meaningful
to perform an actual prediction; we can call such a prediction a “valid” prediction.
Whether the prediction is reliable or not will depend on the quantity, quality and
relevance of the information available to the model. This supporting information can
be in the form of training examples for statistical models, or a knowledge base in the
case of expert systems. Typically, we would expect that a model based on training
data containing compounds similar to the query compound, will produce a more
reliable prediction than a model for which the query structure is an outlier. Indeed, it
is fair to assume that the quantity and quality of information available to the model
for a given query structure is provided by its nearest neighbours in the descriptor
space. The number of close neighbours and the average distance of these neighbours
capture the information density in the SAR region of the predicted structure. Since
some data points have a degree of redundancy, it is useful to also take into account
their dispersion; for instance, data points close to each other provide similar evidence
and their combination holds less information than two better dispersed data points
(more efficient domain coverage). Finally, the reliability of the data points themselves
may impact the quality of the information; typically, experimental data obtained
following good laboratory practice are likely to bear more information and less
noise. All these elements contribute to the level of evidence supporting a reliable
prediction (Fig. 11.7).

Different AD methods are based on this hypothesis including:

• Distance to model: These methods attempt to measure the distance in terms of
dissimilarity between the query compound and the training dataset. There are
many ways to define this distance; for instance, we could consider only the dis-
tance between the predicted structure and the closest structure in the training set
(Fig. 11.8a). Alternatively, it is possible to consider the distance between the query
structure and the centre of the training data using a virtual centroid point. Different
similarity metrics (Tanimoto, Euclidean, Manathan, etc.) can be used to compute
the actual value of the distance [25].

• Information density: The distance to the model is a coarse expression of the infor-
mation available to the model, it does not consider internal data density variation
since the training data is treated as a whole. Amore fine-grained approach consists
of measuring the average distance to the k closest compounds [26]. This approach
can be extended into a continuous estimation of the information density using a
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Fig. 11.7 Different aspects to take into account when considering the quality and quantity of the
information available to the model to make a prediction. The left configurations of neighbours are
assumed to induce a more reliable prediction

Fig. 11.8 Distance to model (a) and information density (b) can be used to evaluate the reliability
of a prediction based on the amount of supporting evidence for a given query compound

kernel function based on the similarity between the query and the training data
points [27]. The kernel density estimations allow to approximate a data density
map in the descriptor space (Fig. 11.8b).

The role of the reliability is to inform the end user about the strength of the
supporting information; the more supporting evidence available, the more reliable
the prediction, and the more confidence we can have in this prediction. Reliability
is usually expressed as a quantitative value and calibrated between 0 (there was
no relevant information to support the prediction) and 1 (the predicted compound
was known to the model). Values between 0 and 1 give an indication of the level of
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reliability of the prediction and given the use case, the user can set a desired threshold
below which the prediction is deemed unreliable. For instance, in the context of
virtual screening, a low reliability level might be acceptable, whereas in the case
of human safety assessment, the end user might accept only predictions with high
reliability. Reliability is a prediction attribute as opposed to applicability which is a
model property.

Reliability is not dependent on the result of the prediction. To better understand
this decoupling, let us compare the model to a group of people asked a question in
a specific domain and depositing their answer in a shared sealed envelope. If the
people are picked randomly in a public area, before we even look in the envelope, we
would consider the contents of the envelope to be less reliable than if we had chosen
a group of experts in the relevant domain. We can see the outcome of the algorithm
as a closed envelope, where the reliability captures how much we trust the contents
of the envelope prior to opening it.

The actual desired level of reliability is use-case-dependent and can be set by the
end user. The reliability metric must be calibrated and normalised. Methods based
on information density can be used for this purpose. If a prediction’s reliability falls
below the required threshold, the prediction is said to be “Outside the Reliability
Domain”. Whether the result in the envelope points strongly or weakly towards a
given class (classification model) or value (regression model) is not captured by the
reliability; it is expressed through the likelihood assigned to these outcomes.

11.2.3 Decidability

After checking that we can use the model to make a valid prediction and that this pre-
diction is reliable enough for the intended use case, we can finally consider the actual
outcome of the model. Reusing the previous envelope analogy, we can now open this
envelope to see the actual answers and check the consistency across them.Agreement
amongst the supporting evidence is the main driver towards a clear conclusion of the
model. If the supporting data for a given prediction converge, the model can build a
more decisive prediction, whereas if the supporting information is self-contradicting,
the prediction will be equivocal and therefore less decisive (Fig. 11.9).

This result is usually expressed by the model in the form of a probability distribu-
tion across the different classes or values, or in the form of discrete likelihood levels
as in the case of expert systems. For instance:

• Naïve Bayes classifiers directly assign a posterior probability for each class.
• k-nearest neighbours (kNN) models can express a distribution of likelihood based
on the distribution of the labels of the k-nearest neighbours and their distance to
the query within the descriptor space.

• Similarly, a likelihood distribution can be derived fromRandom Forest predictions
based on the relative vote count (at the individual tree level) for each possible class
or value.
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Fig. 11.9 When supporting evidence converge towards the same conclusion, the model can build a
more decisive prediction, whereas if the supporting information is self-contradicting, the prediction
will be equivocal and therefore less decisive. Note that, in both cases, the reliability of the prediction
is the same (same number of data points, same distance and same dispersion), only the decidability
is different

In the case of the Derek Nexus expert system, the assertiveness in the prediction
is expressed by the reasoning engine, using one of the following likelihood levels:
impossible, improbable, doubted, equivocal, plausible, probable or certain [28].

If a class (or a value) is significantly more likely than others, it suggests that
the model is more decisive about the outcome; the user can have more trust in the
prediction and in turn, take a more confident decision based on this prediction. On
the other hand, if all the possible outcomes have similar likelihoods then the model
is not decisive, the prediction is inconclusive and the user is less confident when
making a decision. The decidability level can be observed by the gap between class
likelihoods or, in the case of regression, by the standard deviation of the predicted
value’s likelihood distribution (Fig. 11.10). This principle can be seen from the
distance to the decision boundary perspective; if the query compound lies far from
the decision boundary of the model, then the prediction will be decisive, whereas, if
the query is close to the decision boundary, the prediction is equivocal and therefore
non-decisive.

The level of decidability can be expressed in the form of a real value ranging
from 0 (all outcomes have equal likelihood) and 1 (the model is certain of a spe-
cific outcome). Like for the reliability, depending on the use case, the required level
of decidability may vary. For instance, it is not desirable to take a risk assessment
decision based on an inconclusive prediction and a high decidability threshold may
therefore be set. On the other hand, in the context of virtual screening, it is possible
to prioritize compounds using the relative values of decidability for given desired
properties and a low level of decidability may be sufficient. The decidability level
should be calibrated to actually reflect the accuracy expectation (correlation between
decidability and observed accuracy); conformal predictors provide a mathematical
framework to achieve this calibration and can be applied to any prediction method-
ologies [29, 30].
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Fig. 11.10 Result of a prediction can be expressed in the form of a distribution of likelihood for
each possible class in the case of classification models, or value in the case of regression estimators.
If the likelihood for a given class or value stands out, then the prediction ismore decisive and induces
high confidence (a, c); if all outcomes have similar likelihoods, then the prediction is inconclusive
and induces low confidence (b, d)

11.3 Framework

We saw that the confidence in a prediction is the result of the combination of three
different aspects that can be handled separately in a cascade of assessments. The first
step in this sequence is to ensure that the model is suitable for the intended task and
can therefore be applied (applicability). If the model is applicable, the prediction
will be valid, and a first level of confidence is met. In the second step, the quantity,
quality and relevance of the supporting evidence is assessed in order to estimate how
reliable the prediction is (Reliability). If the prediction is reliable enough for a given
use case, it provides an additional level of confidence. Finally, if the prediction is
both, valid and reliable, then the last level of confidence depends on how decisive
the model is in terms of its results (Decidability). If the model expresses a decisive
outcome, then the confidence in the valid, reliable and conclusive prediction is high
(Fig. 11.11). Note that the chronology of these steps is important. If a model cannot
be applied, it is not legitimate to do a prediction and is therefore meaningless to
estimate the reliability; similarly, if the prediction is valid but not reliable, its result
cannot be trusted regardless of how decisive the outcome is, since this assertiveness
is itself not reliable.

11.4 Tardis

The confidence in a model’s outcome as defined by the decision domain is capturing
the objective and intrinsic components of a prediction. When used in the context
of decision-making and especially in the context of risk assessment, users lever-
age their expertise to validate the QSAR predictions; the latter should therefore be
interpretable and provide information regarding the evidence used by the model to
build a conclusion. For instance, a kNN model may expose the k-nearest neighbours
used to construct the prediction. Understanding the model’s rational and accessing
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Fig. 11.11 Estimating the confidence in an individual QSAR prediction can be achieved stepwise
with a gradual consolidation of the confidence level. The legitimate application of the model, the
reliability of the prediction and finally the assertiveness of the outcome are assessed in a cascading
process following a strict chronology

Fig. 11.12 Combining the decision domain framework alongwith information supporting the deci-
sion (interpretation of the prediction and access to the underlying evidence) provides a comprehen-
sive decision framework and helps the end user take a well-educated decision

the underlying evidence help to extend the assessment of the prediction and grow
the confidence in subsequent decisions. This transparency of the prediction together
with the decision domain form a complete framework that helps the end user make
a well-informed decision (Fig. 11.12).

The different elements of this framework are captured by the TARDIS princi-
ple (Transparency, Applicability, Reliability, Decidability, Interpretability, Support).
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Fig. 11.13 TARDIS principle captures the criteria for comprehensive support to help the end user
make a confident decision. Note TARDIS also refers to a Blue Police Box in a British Sci-Fi TV
show called Dr. Who [31]

When fulfilling all these criteria, a prediction provides an ideal decision-making sup-
port system for the end user (Fig. 11.13).

11.5 Conclusion

Applicability Domain and confidence in predictions are difficult concepts to frame
and formalise. Different aspects are involved such as the legitimacy of using a model
for a given task, the reliability of the resulting prediction and how decisive the out-
come is. All these criteria are important and contribute to the assessment of the
confidence in the prediction. By separating these concerns and applying the appro-
priate validationmethodologies, it is possible to define amore formal framework that
defines the scope in which it is possible tomake a confident decision based on a valid,
reliable and decisive prediction. Today, not many AD methodologies separate these
concepts nor propose a holistic approach; furthermore, current AD methodologies
lack standardisation and the end user may be confused when working with differ-
ent models. It would be beneficial for the QSAR community to converge towards
a formal and comprehensive framework, with a normalised way of expressing the
confidence in a prediction across models and applications.

In the context of decision-making, the confidence in a prediction should also be
completed, when possible, with the interpretation of the outcome and a presentation
of the supporting evidence. Such comprehensive support allows the user to combine
their expertise with the result and the understanding of the in silico prediction to
make a well-informed decision.
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Chapter 12
Application of Computational Methods
for the Safety Assessment of Food
Ingredients
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Abstract At the Office of Food Additive Safety (OFAS) in the Center for Food
Safety and Applied Nutrition at the United States Food and Drug Administration,
scientists review toxicological data submitted by industry or published in scien-
tific journals as a part of premarket safety assessments of food ingredients. OFAS
also reviews relevant safety data during postmarket assessments of food ingredi-
ents as new toxicological data or exposure information become available. OFAS is
committed to maintaining a high standard of science-based safety reviews and to
staying abreast of novel computational approaches used by industry that could add
value to improve safety assessments of food ingredients. In this chapter, we discuss
some computational approaches, including quantitative structure–activity relation-
ships, toxicokinetic modeling and simulation, and bioinformatics, as well as OFAS’s
in-house food ingredient knowledgebase. We describe the scientific utility of these
computational approaches for improving the efficiency of the review process and
reducing uncertainties in decisions about the safe use of food ingredients and high-
light some challenges with their use for food ingredient safety assessments.
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Abbreviations

3D Three dimensional
5:3 acid 5:3 fluorotelomer carboxylic acid
AA Amino acid
AOL AllergenOnline database
AUC Area Under the Curve
BBDR Biologically based dose response
CASRN Chemical Abstract Service Registration Numbers
CERES Chemical Evaluation and Risk Estimation System
CosIng Cosmetic Ingredient
CR Compound Registration
CRS-IDs CERES compound identifiers
CXFSAN Center for Food Safety and Applied Nutrition
DSSTox Distributed Structure-Searchable Toxicity
E-memos Electronic memoranda
FAO Food and Agriculture Organization
FARM Food Application Regulatory Management System
FARRP Food Allergy Research and Resource Program
FCN Food contact notification
FCS Food contact substance
FOIA Freedom of Information Act
FTOH Fluorotelomer alcohol
GSIDs General Substance Identifiers
GRAS Generally recognized as safe
HPT Hypothalamic–pituitary–thyroid
IgE Immunoglobulin E
IUIS International Union of Immunological Societies
IVIVE In vitro to in vivo extrapolation
Km Michaelis–Menten constant
NCBI National Center for Biotechnology Information
OFAS Office of Food Additive Safety
PAFA Priority-Based Assessment of Food Additive
PBTK Physiologically based toxicokinetic
PDF Portable Document Format
PLETHEM Population Lifecourse Exposure-to-Health-Effects Models
PNC Pre-notification consultation
QSAR Quantitative Structure Activity Relationship
RCA Research Collaboration Agreements
SAR Structure–Activity Relationship
SD Structure data
SMILES Simplified molecular-input line-entry system
STARI Scientific Terminology and Regulatory Information
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12.1 Introduction

TheOffice of FoodAdditive Safety (OFAS) in theCenter for FoodSafety andApplied
Nutrition (CFSAN) of the United States Food and Drug Administration (US FDA)
regulates safe use of food ingredients. The term “food ingredients” includes food
additives and color additives used in food, substances classified as food contact sub-
stances (FCS; also known as indirect food additives), and substances classified as
generally recognized as safe (GRAS) as well as substances derived from bioengi-
neering for their intended use in food [1]. OFAS review scientists assess chemical
identity, exposure information [2, 3], and toxicological data [1, 4] included in industry
submissions to support the safety of food ingredients under the intended conditions
of their use. OFAS review scientists also conduct independent literature searches to
find any additional information relevant to the reviews and analyses. Each evaluation
is performed to determine with reasonable certainty that the food ingredient is not
harmful when used as intended. In some instances, a postmarket safety evaluation
may be conducted for a certain food ingredient due to a change in exposure to the
consumer as a result of its intended use or due to the availability of new scientific
data that raises questions regarding its safety under the conditions of use. Under these
circumstances, OFAS review scientists would perform an updated safety assessment
based on contemporary methodology and guidelines.

As computational science advances and new data become available, integrating
predictive toxicology methods into safety assessments has become an agency-wide
priority. An example of this is the FDA’s “Predictive Toxicology Roadmap” [5]. This
roadmap identifies specific toxicological areas that could benefit from improved pre-
dictivity, such as modeling, to support decisionmaking whenever there are data gaps.
This effort shows FDA’s commitment to developing and adopting new technologies,
including computational toxicology. At OFAS, the review scientists are exploring
the scientific utility of computational methods to assist with food ingredient safety
evaluations, particularly when scientific questions may not be directly answered by
experimental study data. In this chapter, we provide an overview of the underlying
concepts and applications of some of these methods for evaluating the safety of food
ingredients. These include:

(a) quantitative structure–activity relationship (QSAR) modeling to support
the safety evaluation of those substances whose exposure is less than
150 µg/person/day and have limited and insufficient toxicity data,

(b) toxicokinetic (TK) modeling and simulation to gain insight into the internal
exposure and modes of action of substances with intermediate to high toxico-
logical potential, and

(c) bioinformatics approaches to evaluate potential allergenic effects from food pro-
teins. Furthermore, we describe OFAS’s in-house food ingredient knowledge-
base, Chemical Evaluation and Risk Estimation System (CERES) that contains
administrative, chemical, and safety data on a diverse set of food ingredients.
Lastly, we discuss current challenges for utilizing these computational methods
to their full potential for evaluating safety of food ingredients.
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12.2 Computational Approaches Currently Used in Food
Ingredient Safety Assessments

In this section, we describe basic principles and applications of some computational
methods that are currently utilized for safety assessment of food ingredients, such as
in silico models and databases. While validation “Standard Operating Procedures”
and similar aspects of “Good Practices” are crucial for scientific accountability in
safety assessments, these aspects are not covered in depth here. It is expected that
practitioners will adhere to quality control and assurance procedures in performing
computational modeling [6].

12.2.1 QSAR Modeling

QSARmodeling represents a subclass of in silicomodels that predicts potential tox-
icity of chemicals using molecular descriptors. Molecular descriptors are computer-
calculated chemical and physicochemical features that describe the chemical struc-
tures and properties, respectively. Examples of descriptors commonly used in QSAR
modeling are summarized in Table 12.1 [7]. Different descriptors have advantages
and disadvantages, and the selection of descriptors should be based on the type of
models that need to be built [8, 9]. Once appropriate descriptors are selected, an
algorithm (such as linear regression or multiple linear regression) can be applied to
generate a QSAR model. In general, chemicals whose activities fit the same QSAR
model are assumed to have similar biological/biochemical functions and are, there-
fore, expected to behave through the same mechanism and exert similar toxicity.
In OFAS, QSAR models have been used to support premarket safety assessments
and provide guidance to industry and other stakeholders during prenotification con-
sultations (PNCs) for future food contact substance notifications (FCNs) [10]. For
example, an FCN must include all data and other information that form the basis
of the determination that the FCS is safe under the intended conditions of use. Data
must include primary toxicological [4] and chemical [2] information. Typically, with
respect to the chemical data this includes information about residual starting mate-
rial, catalysts, adjuvants, production aids, byproducts and breakdown products of the
FCS. FDA encourages petitioners and notifiers to contact the agency before making
a submission to discuss various issues related to a submission. Prior to submitting an
FCN, industry can submit a PNC to discuss regulatory and scientific aspects of their
intended submission, including the data needed to support the FCN. In response to a
PNC, OFAS review scientists routinely use QSARmodels to identify potential safety
questions related to genetic toxicity and carcinogenicity for substances with no or
limited safety data. In some cases, certain toxicological endpoints, such as develop-
mental and reproductive toxicity, may be evaluated using QSARmodels. Thus, upon
review of a PNC, the FDA can recommend the types of toxicity data needed to come
to a safety conclusion based on the results of the QSAR analyses. Review scientists’
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Table 12.1 Examples of commonly used descriptors in QSAR [7]

Descriptors Examples

Physicochemical
descriptors

Partition coefficient (logP), acid dissociation constant, Hammett
constant, and Taft steric constant

Topological descriptors Wiener index, Zagreb group indices, Balaban J index, and
molecular connectivity index

Structural descriptors Chiral centers, molecular weight, rotatable bonds, and hydrogen
bond donor/acceptor

Thermodynamics
descriptors

ALogP, Fh2o, Foct, and Hf

Quantum chemical
descriptors

Mulliken atomic charges and quantum topological molecular
similarity indices

Molecular shape analysis
descriptors

Difference volume (DIFFV), common overlap steric volume
(COSV), and root mean square to shape reference (ShapeRMS)

recommendations to industry may also indicate the need for additional toxicity data
beyond those typically recommended for compounds with exposure within a given
toxicological testing tier associated with the exposure of a substance based on its
intended use [2, 3, 10].

OFAS review scientists are currently exploring QSAR modeling for food ingre-
dient safety assessments. Licenses to commercial software packages are obtained
through Research Collaboration Agreements (RCA), formerly called Cooperative
Research and Development Agreements [11]. Under these agreements, OFAS’s food
ingredient chemical and toxicity data are shared with the participating vendors. The
records sharedwith the collaborators are the sameas canbeobtained througha request
under the Freedom of Information Act (FOIA). The shared data are used to improve
the vendors’ QSAR models that, in turn, get incorporated into their software pack-
ageswhich become available toOFAS review scientists. Software packages under the
RCAs include Leadscope Enterprise and Model Applier [12], DEREK Nexus [13],
and Vitic Nexus [14], MultiCASE’s CaseUltra [15], Prous Scientific [16], ACD/Labs
2012 (Window version) [17], andMN/AMChemTunes [18]. Publicly available tools
and databases, such as ChemIDplus [19], ToxNet [20], and Toxtree [21], are also
used.

12.2.2 TK Modeling and Simulation

Toxicokinetics (TK) is a discipline that evaluates the disposition of a substance
at toxicologic doses, its relationship with occurrence, and a time course of toxic
effects [22]. Over the years, several mathematical approaches or models have been
developed for examining the TK of substances and predicting their biological effects.
These approaches are referred to as methods of TK modeling and simulation as they
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involve developing a model to apply certain TK conditions (i.e., TK modeling) and
computing the results of the applied conditions on the mathematical model (i.e.,
simulation). TK modeling and simulation is based on mass balance and kinetics
of reactions involved in absorption, distribution, metabolism, and elimination of a
substance (or its metabolites). TK modeling and simulation are used to estimate
parameters that define the disposition of a substance (and its metabolites) referred to
as markers of internal exposure. Based on the underlying concepts of mathematical
modeling, TK modeling and simulation can be classified into two types of models:
classical and physiological [23].

12.2.2.1 Classical TK Models

Classical TKmodels assume that the body is a system of one or more compartments,
though the compartments may not exactly correspond with anatomical structures.
Classical TK models are of two types:

Compartment TK models: Compartment TK models, also known as data-based
models, consist of a central compartment and may have multiple peripheral com-
partments. A one-compartment TK model (Fig. 12.1a) assumes that the changes in
concentration over time reflect proportional changes in the tissue (or blood) over the
same amount of time and that the elimination follows a first-order process. In con-
trast, a two-compartment TK model (Fig. 12.1b) assumes that upon administration
into the central compartment, the substance distributes between two compartments;
however, it does not achieve instantaneous distribution or equilibration between the
two compartments [24].

Compartment TK modeling has been commonly used for examining the TK of
many food ingredients for years. For example, several research articles [25–29] were
published in the 1970s and 1980s that examined the TK of styrene, whose polymers
are approved for food contact uses. Some studies have reported increased incidences
in lung tumors following chronic inhalation [30] or oral [31] exposure to styrene
in rodents. Although the human relevance of the reported carcinogenic findings
in rodents has been a subject of debate [32], analysis of TK data across different
exposure routes generated by compartment modeling [25–29] provides important
information on TK profiles of styrene after oral versus non-oral (e.g., inhalation)
exposure. More recently, due to advancements in the field of TK modeling and
simulation that provide opportunities of incorporating physiological parameters or
biological response for predicting effects (described further under “Physiological
TK models”), investigators have been slowly moving away from compartment mod-
eling. However, compartment modeling is still often used for hazard identification,
examination of TK profiles of substances (and their metabolites), and identification
of data gaps necessary for planning and designing future studies needed for further
evaluating the toxicological potential of a substance.

Noncompartment TK models: Noncompartment TK models assume that the esti-
mation of TK parameters does not depend on the number of compartments. Non-
compartment TK modeling is used to estimate markers of internal exposure, such as
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(a)

(b)

Fig. 12.1 Representation of a one-compartment model and a two-compartment model. a A One-
Compartment Model: This model represents administration of the test substance into the central
compartment, and kel (h−1) is the elimination rate constant. b A Two-Compartment Model: This
model represents a central compartment (compartment 1) and a peripheral compartment (com-
partment 2), with rate constants, k12 and k21 representing the rate of transfer between the two
compartments, C1 and C2 representing concentrations in the two compartments at time t, and kel
as the elimination rate constant. In simple compartment models, the rate of elimination as well as
transfer between compartments is assumed to be following first-order rate of kinetics

the area under the curve (AUC) [33]. Using noncompartment TK modeling, AUC
can be estimated by the trapezoidal rule which involves calculation of the area of
the reported concentration versus time plot by numerically integrating areas of small
sections (or trapezoids) of the curve [33].

Kabadi et al. (2018) recently performed a preliminary TK assessment of 6:2
fluorotelomer alcohol (6:2 FTOH) using noncompartment TK modeling following
on a thorough review of reported data from published rat and human TK studies on
the test substance [34]. FTOHs are components of high-molecular-weight polymers
which are subjects of several effective FCNs for use as grease-proofing agents in food
contact paper and paperboard. The results of noncompartment TK modeling of 6:2
FTOH (and its metabolites) indicated that one of the metabolites of 6:2 FTOH, 5:3
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fluorotelomer carboxylic acid (5:3 A), has the potential to accumulate and contribute
to the potential biopersistence of 6:2 FTOH [35]. This analysis identified 5:3 A as
an important biomarker for biomonitoring studies of 6:2 FTOH [35]. Furthermore,
the TK parameters estimated from the noncompartment modeling helped identify
factors to consider in future toxicological studies to determine more conclusively
whether, and towhat extent, 6:2 FTOHbiopersists in humans [35]. Like compartment
modeling, noncompartment modeling not only provides valuable information on the
TK profile of a substance, but also is useful in identifying data gaps necessary for
planning and designing toxicity studies for conclusively determining toxicological
potential.

12.2.2.2 Physiological TK Models

Physiological TK models incorporate known or hypothesized biological processes
into the analysis of TK of a substance (and its metabolites). Unlike classical TKmod-
els, in physiological TK models the rate constants are not defined by data, but by
physiological and anatomical components and biochemistry of a substance that influ-
ence the TK of the substance [23, 36]. Thesemodels are referred to as physiologically
based TK (PBTK) models. PBTK modeling includes mathematical representation
of important physicochemical and biological factors that influence the TK of sub-
stances [36–39]. The whole body is divided into tissue compartments identified as
anatomical structures that are involved in the TK of a substance and defined with
appropriate physiological characteristics, such as blood flow rate (ml/min or l/h),
cardiac output (l/h), alveolar ventilation rate (l/h), and partition coefficients between
total concentration in the tissue and freely diffusible concentration in the blood or
interstitial fluid. A basic structure of a PBTK model is provided in Fig. 12.2. This
model represents inhalation and oral exposure to a substance. The tissue compart-
ments included in the PBTK model (Fig. 12.2) are lungs, fat, liver, rapidly perfused
and slowly perfused tissues and the gastrointestinal tract (GIT). The rapidly perfused
tissue compartment, as the name suggests, consists of tissues that are heavily perfused
with blood, such as heart, kidneys, brain, etc. In contrast, the slowly perfused tissue
compartment represents tissues that are less perfused with blood, such as muscle,
skin, and bone.

PBTKmodeling is commonly used for prediction of tissue dosimetry and internal
exposure of substances and their metabolites. In addition, PBTKmodels can be used
for extrapolation of a TK response from high dose to low dose, between different
exposure routes, and across species, if appropriate physiological andTKdata required
to validate a model are available [36–39]. For example, over the years several PBTK
models have been published on styrene [40–42]. A PBTK model for predicting the
kinetic behavior of inhaled styrene in humans using data from rats was developed by
Ramsey andAndersen (1984) which predicted that styrenemetabolismwas saturated
at inhaled concentration of 200 ppm and higher in rats, mice, and humans [40].
Another PBTKmodel for estimating the body burden of a key metabolite of styrene,
styrene-7,8-oxide (STO), was developed by Csanady et al. (1994) that described the
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Fig. 12.2 Representation of a physiologically based pharmacokinetic (PBPK) model. The PBPK
model above represents inhalation and oral exposure to a substance and consists of the lungs, fat,
liver, rapidly perfused and slowly perfused tissue compartments, and the gastrointestinal tract (GIT).
Certain physiological parameters are represented to describe themodel: QC= cardiac output, CA=
concentration in arterial blood, QF = blood flow through the fat, QR= blood flow through rapidly
perfused tissues, QS = blood flow through slowly perfused tissues, QL = blood flow through the
liver, CVL= concentration in the venous blood from the liver, CVS= concentration in the venous
blood from the slowly perfused tissues, CVR= concentration in the venous blood from the rapidly
perfused tissues, CVF= concentration in the venous blood from the fat, CV= concentration in the
venous blood to the lungs

distribution and metabolism of styrene and STO in rats, mice, and humans following
inhalation, intravenous, oral, and intraperitoneal administration of STO. The model
represented oxidation of styrene into STO, the intracellular first-pass hydrolysis
of STO catalyzed by epoxide hydrolase, and conjugation of STO with glutathione,
described by an ordered sequential ping-pongmechanism between glutathione, STO,
and glutathione S-transferase [41]. A variety of software packages are available,
making PBTKmodeling one of the most commonly used TK approaches in different
sectors. Some commonly used software packages for PBTK modeling are Berkeley
Madonna (developed at the University of California at Berkeley by Robert Macey
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and George Oster), Simcyp (provided by Simcyp Limited based in Sheffield, UK),
and GastroPlus (provided by Simulations Plus based in Lancaster, CA).

More recently, biological response has been incorporated into PBTK modeling,
which is referred to as biologically based dose response (BBDR) modeling. BBDR
modeling assumes that a toxic response is a function of the concentration of the
substance in the target tissue and describes a biological response or any mechanism
related to toxicity. A BBDR model was developed by McLanahan et al. (2008)
for dietary iodide and the hypothalamic–pituitary–thyroid (HPT) axis in adult rats.
The BDDR-HPT model [43] consisted of submodels for dietary iodide, thyroid-
stimulating hormone (TSH), and thyroid hormones T3 and T4. The key biological
processes described in the model included the influence of T4 on TSH production,
stimulation of thyroidal T4 and T3 production by TSH, TSH upregulation of the
thyroid sodium/iodide symporter, and recycling of iodide frommetabolism of thyroid
hormones. Thismodel predicted effects on theHPTaxis caused by insufficient dietary
iodide intake and successfully simulated perturbations in serum T4 when compared
with experimental results. This BDDR-HPT axis model [43] provides a strong basis
for use in conjunction with PBTK models for thyroid-active chemicals to evaluate
and predict dose-dependent HPT alterations based on modes of action [44, 45].

12.2.3 Bioinformatic Approaches for Analysis of Potential
Allergenicity of Proteins

The allergenicity potential is an essential aspect of assessing the safety of food ingre-
dients that have protein components. Since most food allergies are mediated through
immunoglobulinE (IgE)which reactswith specific linear or conformational epitopes,
the degree of amino acid (AA) sequence similarities between the query protein and
known allergens could be used to predict the likelihood of the query protein to induce
a cross-reactivity through IgE binding [46]. OFAS refers to the guideline of Codex
Alimentarius (Codex) [47, 48] that describes the principles of AA sequence-based
bioinformatic analysis as one of the first steps in allergenicity risk assessment. Bioin-
formatic tools for AA sequence alignment and similarity comparisons are commonly
used in OFAS as one of the criteria to predict the potential allergenicity risk of food
ingredientswith protein components, including direct additives such as phycocyanins
in the color additive spirulina extract, microbially derived food processing enzymes,
and food proteins from genetically engineered plants.

12.2.3.1 Allergenic Protein Database

As the first step in their allergenicity risk assessments, the Codex recommends that
the AA sequence of a query protein be compared against all scientifically known
allergens. Thus, the predictivity of the bioinformatic methods relies on the collec-
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tive information provided by the allergen databases used, which can vary by their
content, organization, and accessibility [49]. Currently, the most frequently used
database is the Food Allergy Research and Resource Program (FARRP) allergen
database (also known as the AllergenOnline, database, AOL), maintained at the Uni-
versity of Nebraska-Lincoln (http://www.allergenonline.org). Candidate proteins are
collected into the AOL database from the National Center for Biotechnology Infor-
mation (NCBI) protein database, theWorld Health Organization/International Union
of Immunological Societies (WHO/IUIS) allergen nomenclature database, and peer-
reviewed publications on allergenicity. Each candidate protein is evaluated by an
expert panel in FARRP using a set of transparent predetermined criteria to deter-
mine whether it should be classified as an allergen and then added into the AOL
database [50]. The current version (Version 18B) of the AOL database includes 2089
AA sequences from 831 taxonomic-protein groups that are accepted with evidence
of allergic serum IgE-binding and/or biological activity. In addition to the AOL
database, there are several other online allergen databases available for bioinfor-
matic usage, such as theUniProt (Previously referred to SwissProt) allergen database,
the Structural Database of Allergenic Proteins (SDAP), Allermatch, and Allfam (a
database of allergen families) [51, 52]. However, the peer-review process for each
of these databases has not been sufficiently defined and most of these databases are
not regularly updated, which limits their utility in bioinformatic analyses.

12.2.3.2 Criteria for Bioinformatic Analysis

Bioinformatic tools available online at AllergenOnline.org allow users to submit
the AA sequence of the query protein for overall or local sequence alignments,
searching for “matches” of identical short-sequence segments against the known and
putative allergenic proteins in the AOL database. Regarding the criteria of possible
IgE cross-reactivity, Codex recommends: (1) a threshold of 35% identity in a segment
(sliding window) of 80 or more AAs, corresponding to the typical size of a protein
domain containing IgE epitopes [53] and (2) identical sequence matches of six or
eight contiguous AAs of the query protein with an allergenic protein in the allergen
database. The FAO/WHO [54] recommends searching for a segment of six AAs,
considering six AAs as the minimal length of IgE recognizable sequence. However,
using only six AAs could return many false positives. Therefore, the AOL database
uses the 8-AA identity search criteria. Although Codex recommends full-length
sequence alignment using FASTA or BLASTP algorithms, a threshold degree of
homology that suggests allergenicity between the query protein and a known allergen
has not been clearly defined in the Codex guidelines. However, published analyses
have determined that at least 50–70% homology in proteins would be required to
show cross-reactivity [55].

While the scientific significance and sensitivity of the above-mentioned Codex
criteria have been challenged [53, 56–58], they are widely accepted and used for
allergenicity risk assessment by stakeholders. A negative sequence homology result
indicates that a protein is unlikely to be cross-reactive to a known allergen, whereas

http://www.allergenonline.org
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a positive result suggests that further examinations, such as serum screening studies,
may be needed. It should be noted that the allergenicity assessment uses a weight-of-
evidence framework that not only utilizes the AA sequence homology analysis, but
also considers many other factors such as the source and stability of the new protein,
and serum cross-activity test (if necessary) [58].

12.2.4 OFAS’s Food Ingredient Knowledgebase CERES

In addition to the in silicomethods described above, the development of databases for
storage and organization of data to support the in silico activities and results from the
safety assessment of food ingredients are also important. At OFAS, a food ingredient
knowledgebase called CERES is available in-house to the review scientists to enable
efficient utilization of available chemical and toxicological data while performing
safety assessments of food ingredients. The CERES knowledgebase is comprised of
data from several sources. One of these sources is the chemical and toxicological
data submitted to OFAS in industry submissions, such as food additive petitions and
FCNs, that provide information to support the authorization of new or expanded uses
of food additives. These industry submissions typically contain chemical, toxicologi-
cal, environmental, microbiological, and other data supporting the safety assessment
of a new food additive. From these submissions, the Chemical Abstract Service Reg-
istration Numbers (CASRN), chemical names, submission type, submission number,
chemicals’ use types/functions, etc., are abstracted into CERES, allowing the con-
nection of the chemical and toxicological data in CERES to the original dossiers
submitted to FDA. The toxicity data included in the submissions are also care-
fully reviewed and abstracted into CERES by an internally trained data harvesting
team. The harvested toxicity data includes in vitro assays (e.g., bacterial mutage-
nesis, in vitro chromosome aberration, in vitro micronucleus, in vitro mammalian
mutagenesis, and cytotoxicity) and in vivo assays (e.g., acute, sub-chronic, chronic,
reproductive, developmental, reproductive-developmental, multi-general reproduc-
tive, carcinogenicity, and in vivo chromosome aberration). Themost important infor-
mation stored in the CERES knowledgebase is the institutional knowledge generated
during the safety evaluations of those submissions, which includes the reviewers’
evaluations of and conclusions on the toxicity data submitted regarding the food
substances and its impurities. Lastly, the knowledgebase contains the subsumed data
from the Priority-Based Assessment of Food Additive (PAFA) database. PAFA is
the FDA’s legacy database that contained chemical and detailed toxicological (oral,
acute, and genetic toxicity) data on approximately 1700 direct food additives regu-
lated in the USA since the 1970s [59]. Other information such as the annual usage in
food, estimated daily U.S. dietary intake and the Joint Committee on Food Additives
Allowable Daily Intake Values, and the FDA Redbook structure categories of the
chemicals are also contained within the database. A full list of the PAFA data fields
can be found in Benz et al. 1991 [59]. The PAFA system became inactive in 2010,



12 Application of Computational Methods for the Safety Assessment … 245

and the legacy records were transferred into CERES in 2012 to ensure their access
to OFAS review scientists.

The information contained in CERES is organized in a chemical-centric struc-
ture, where all data are connected to the chemicals through unique CERES com-
pound identifiers (CRS-IDs). CERES users can interact with the system (Fig. 12.3a)
by entering a chemical’s name, identifiers, CASRN, or simplified molecular-input
line-entry system (SMILES) code. Multiple chemical IDs, names, and SMILES can
be batch processed in CERES. Chemical structure (and substructure) sketching is
also allowed. The users can search CERES using either chemical data alone or cou-
pled chemical-toxicity data. Once the search criteria are specified, searches can be

Fig. 12.3 Query page and chemical information display in CERES. a This view shows different
options to query the system: chemical names, identifiers, CASRNs, structure drawing, and SMILES
(red). The chemical search can also be coupled with toxicity data search (blue). A search algorithm
(green) can also be specified accordingly (default is set at “exact” search). b This view displays
styrene’s basic chemical and structural data (blue) on top, followed by expandable sections describ-
ing the compound’s chemical, regulatory/administrative, exposure, and toxicity data in details (red).
The “IDs and Names” section contains a list of identifiers and chemical names/synonyms of styrene
and their sources. The “Compound Annotations” section contains information on the chemical’s
molecular formula, material/composition type, and use types/functions. The “Regulatory Informa-
tion” and “PAFA Chemical Information” sections contain the regulatory submission and PAFA
data, respectively. The “Daily Intake (CEDI/ADI Database)” section contains the internally col-
lected exposure data, cumulative estimated daily intake (CEDI) and acceptable daily intake (ADI)
values. Finally, the “Toxicity Data” section contains a list of the toxicity data
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Fig. 12.4 Styrene’s toxicity data organization. a The information display in this view is divided
into three sections: an overall hierarchal organization of all toxicity data for styrene (b, red box),
study data of a selected study (b, blue box), and the list of test data that support the study data (b,
green box)

performed using exact, partial, or similarity search algorithms. The result page dis-
plays a list of the chemicals that matched the search criteria. A compound can be
selected from the result page to view its chemical detail, regulatory/administrative,
exposure, (e.g., cumulative estimated daily intake values), and toxicity information
(Fig. 12.3b). The toxicity data are displayed in a hierarchal order (Fig. 12.4). The data
are displayed at two levels: the study level and test level. The study level includes
study title, overall study call, data source, study number, reference, study quality,
general comments on the study, and background information, whereas the test-level
information includes species, strain, sex, route of exposure, test duration, dose levels,
and endpoints.

In addition to serving as the OFAS food ingredient knowledgebase, CERES is
designed to support structure–activity relationship (SAR) modeling. It is, therefore,
important for the CERES chemicals to cover as much chemical space as possible
and consist of chemicals and chemical structures from external sources (e.g., Tox21,
Cosmetic Ingredient Database, US EPA’s ToxCast). For these chemicals, their origi-
nal identifiers (e.g., the Distributed Structure-Searchable Toxicity General Substance
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Identifiers (DSSTox GSIDs), Cosmetic Ingredient (CosIng) reference numbers) are
tracked to allow data cross-referencing between CERES and the source databases.
External chemicals and their structures are linked to CERES chemicals through the
CRS-IDs. This setup allows cheminformatics analyses to be performed across all
chemicals in CERES.

Cheminformatics capabilities are built into CERES to perform different informat-
ics tasks usingworkflows. Taking the “Chemical Structure Similarity”workflowas an
example, it calculates the structure similarity scores (basedon theRDKit andMACCS
key fingerprints) of up to five chemical structures and the results are displayed as
a similarity matrix as shown in Fig. 12.5a. Another example of a workflow is data

Fig. 12.5 Similarity Score Matrix and Chemical’s Information Organization in CERES. a The
similarity score matrix of five chemicals in CERES (structures are shown diagonally) is shown. The
scores are calculated using the Tanimoto coefficient equation [85]. The scores in the upper right
region of the structures are calculated using the RDK fingerprint, and the scores in the lower left
region are calculated using the MACCS keys. The scores are ranged from 0 to 1. The closer the
score is to 1, the more similar the compounds are to one another. b In this example, the styrene’s
information in CERES (structure, IDs and Names, Compound Annotation, Regulatory Informa-
tion, PAFA Chemical Information, Daily Intake, and Toxicity Data) is shown and organized under
different tabs. The report generation function allows the information under each of these tabs to be
selected and exported into a PDF
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export. This workflow exports the chemical/toxicity/regulatory data of the selected
CERES chemical in a portable document format (PDF) document (Fig. 12.5b). The
structure data (SD) can also be exported as an SD file that can be processed by exter-
nal cheminformatics tools. Additional informatics workflows such as read-across
and weight-of-evidence calculations are under consideration for development.

12.3 Current Challenges and Future Directions

Although the computational approaches described above exhibit great potential for
improving the efficiency of the safety assessment process and expanding our under-
standing of potential toxicity of food ingredients, these methods have limitations that
need to be recognized and carefully examined.

12.3.1 QSAR Modeling

QSAR modeling has many challenges [60]. One challenge related to QSAR model
development for food ingredient safety evaluation is the limitation of current software
to handle inorganic and metal-containing compounds, salts, and mixtures. An exper-
iment was conducted on CFSAN’s public food ingredient inventories (Table 12.2)
[61–66]. The chemical records from these inventories were screened for inorganic,
organometallic, metal complexes, metals, and polymers. From the 19,265 total
records, 10,884 records had definable structures that were further reviewed by OFAS
scientists. The structures of these 10,884 records were then programmatically pro-
cessed to remove small inorganic fragments for those structures that contained mul-
tiple chemical components, neutralize charged molecules, generate 3D structures,
and flag duplicates. This analysis removed 8609 structures and yielded 2275 final
food ingredients whose structures could be used for QSAR analysis. This workflow
is typically performed to systematically remove chemicals that cannot be efficiently
processed by cheminformatics software. As shown in this example, out of the starting
19,265 food ingredient records, only 2275 (~12%) had structures that could be used in
the analysis. This example indicates the need to explore and identify issues within the
excluded chemical records and structures. At the same time, it illustrates current chal-
lenges in the softwares’ abilities to handle polymers and inorganic/metal-containing
compounds, which also need to be further explored. In the future, as more reliable
data on polymers and inorganic/metal-containing compounds become available, it is
expected that the structure handling capabilities in the software will improve. The
software enhancements, together with the knowledge gained from examining the
excluded chemical records, will enable more of the food ingredients that currently
fall under these categories to be processed and used to improve QSAR models for
the safety assessment of food ingredients.
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Table 12.2 Publicly available U.S. FDA CFSAN food ingredient inventories (with references)

Food ingredient inventories Abbreviation # RECs #Structures

U.S. Substances Added to Food Inventory
(formerly called Everything Added to Food in the
USA, or EAFUS) [62]

– 3968 2443

Food Contact Substances [63] FCS 1155 391

Flavor and Extract Manufacturer’s Association
[61]

FEMA 2758 1742

Generally recognized as safe [64] GRAS 572 40

Indirect Food Additives [65] INDIRECT 3237 1790

Priority-based Assessment of Food Additives [61] PAFA 7202 4341

Select Committee on GRAS Substance [66] SCOGS 373 137

Total 19,265 10,884

Despite the limitations, QSARmodels are useful and can potentially be integrated
with other modeling approaches to enhance their prediction capabilities. For exam-
ple, QSAR can be used to predict a substance’s partition coefficient and metabolic
parameters, such as Vmax which represents the maximum velocity of a metabolic
reaction, and Km which is the Michaelis–Menten constant that represents the con-
centration of a substance when the reaction velocity is half of the maximum velocity
for the reaction [67–69]. The predicted TK parameters can further be used for build-
ing PBTKmodels to simulate a substance’s TK behavior [67–69]. This approach can
be particularly useful for substances whose TK or toxicity data are insufficient or not
available. Some commercial PBTKmodeling software packages, such as GastroPlus
(Simulations Plus), have incorporated this integrated QSAR-PBTK function in their
platforms to predict such TK parameters based on chemical structures. However,
the applications of this approach in the safety assessment of food ingredients are
still limited due to insufficient chemical information on such substances and their
metabolites [68].

12.3.2 TK Modeling and Simulation

Currently, there are insufficient TK datasets available on food ingredients, contam-
inants, or similar environmental chemicals required to validate and apply these
models. This represents a challenge for developing well-validated TK models for
the safety assessment of food ingredients, particularly in sensitive populations that
include infants and children, pregnant and lactating women, the elderly, and peo-
ple with compromised health status. One possibility to overcome this challenge
is to extrapolate data from non-oral exposure studies using PBTK modeling for
performing a safety assessment; however, the TK profile of substances may vary
with the exposure routes. In such cases, these assessments need to be performed
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on a case-by-case basis. Furthermore, the utilization of TK modeling and simula-
tion requires a level of proficiency that is achieved by receiving appropriate train-
ing and access to resources that are necessary for applying these approaches for
safety evaluation of food ingredients. Although there are vast resources available
for developing TK/PBTK models, translating or transferring a model from one plat-
form to another may be challenging due to unique applications of the models and
lack of sufficient familiarity with all available platforms [70]. Several attempts have
been made to develop open-source packages to support TKmodeling and simulation
for high-throughput TK, such as the “R-package” [71] and “Population Lifecourse
Exposure-To-Health-Effects Model” (PLETHEM) [72]. A consistent data exchange
and information sharing process for TK model development and quality control for
safety evaluation can provide opportunities for exporting the TK models from one
platform to another, thereby improving the accessibility of the developed TKmodels
[70].

In recent years, additional in silico approaches based on TK have been developed
by integration with other computational methods to facilitate advancement in the
field of food ingredient safety assessment. One example is the integration of QSAR
with PBTK which has been described in Sect. 12.3.1 of this chapter. Another exam-
ple of such an integration is the use of in vitro to in vivo extrapolation (IVIVE)
for TK modeling that allows utilization of data from in vitro systems for examin-
ing individual processes that could be integrated to determine effects in an intact
organism [73]. If it is assumed that the toxic response of a substance is a func-
tion of its concentration in the target tissue, in vitro systems can be used to estimate
parameters that can be further extrapolated to in vivo systems. Some commonly used
in vitro systems for examining pharmacokinetic processes include isolated perfused
liver, tissue slices, hepatocytes, subcellular fractions (microsomes and cytosol), and
recombinantly expressed enzymes [73]. Over the years, several methods of perform-
ing IVIVE based on the use of different scaling factors have been proposed [73–75].
One of the most common applications of IVIVE for safety assessment is its integra-
tion with PBTKmodeling [76–80]. IVIVE can be used to estimate physiological and
pharmacokinetic parameters, such as metabolic rate parameters (e.g., Vmax and Km
values for Michaelis–Menten kinetics) that can further be included in PBTK model
development for safety assessment [76–78].

12.3.3 Bioinformatic Approaches for Allergenicity
Assessment

A limitation of bioinformatic methods is that they are unable to predict de novo
food sensitization as they rely on existing known allergens, IgE epitopes, or even
sequencemotifs leading to non-IgEmediated food allergy (such as gluten sensitivity).
In addition, theAAsequence alignment only helps to identify linear epitopes but is not
very useful in identifying conformational epitopes. Although efforts have been made
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to improve the predictivity of allergenicity from 3D structures [52], more research
is needed to identify and update the allergenic structural motifs and algorithms need
to be developed to predict structural similarity.

Asmentioned previously, there is no specific guidance to determine the likelihood
of cross-reactivity based on full-length sequence homology. It has been proposed in
some recent publications [81, 82] to use the E-value in FASTA or PLASTP align-
ment, which represents the probability that the alignment might occur by chance,
to determine the degree of sequence homology. The developer of FASTA software
stated that an E-value of less than 10−6 indicated a high certainty of homology [83].
However, because the E-value depends on the size of the database, there is currently
no clear regulatory guideline for using a threshold E-value in allergenicity assess-
ment. Nevertheless, some scientists believe that using the E-value from full-length
sequence homology has a stronger scientific basis compared to the 80 AA sliding
window [53, 84]. Therefore, additional studies are needed to validate and standardize
the application of E-value in assessing protein allergenicity.

12.3.4 CERES Knowledgebase Expansion

A challenge in expanding the CERES knowledgebase is integrating data with those
fromother sources that have different data structures (interoperability). Currently, the
chemical information in CERES, the OFAS’s submission repository system called
Food Application Regulatory management (FARM) system, and the CFSAN’s Sci-
entific Terminology and Regulatory Information (STARI) system is being integrated
to create a centralized chemical information system in CFSAN, as well as to enable
efficient data abstractions fromFARMand STARI into the CERES’s knowledgebase.
This data synchronization task is difficult as the three systems have different data
architectures. A temporary data model has been created to mitigate these challenges
and enforce data standardizations.

Another challenge in the knowledgebase expansion is data quality. At present, the
chemical, toxicity, and administrative data are required to go through external quality
control processes before being parsed into CERES. This mechanism can introduce
errors and misinterpretations as the data are manually transferred from one process
to another. Several data entry tools are being developed to address these issues. These
tools are intended to capture data directly fromOFAS scientists within their standard
workflow process, thus minimizing data transfer errors and enforcing data standard-
izations.Anexample of such a tool is electronicmemoranda (e-memos). E-memos are
Web forms that use the format of the official OFAS chemistry and toxicology memo-
randa that are written by the review scientists to summarize the technical reviews of
food ingredients. A typical chemistry review memorandum contains descriptions of
the chemical identity (chemical names and CASRN), intended use of the substance,
method of manufacture, and dietary intake values for the substance, along with the
chemistry reviewer’s comments/recommendations on the proposed use based on a
review of the chemistry information. A typical toxicology memorandum primarily
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includes a summary of the toxicological data submitted to support the estimated
exposure level of the additive under its intended condition of use and the toxicolo-
gist reviewer’s conclusions/recommendations on the proposed use of the substance
based on a review of the toxicology information. The e-memos allow the chemical,
study-level toxicity data, and administrative data to be automatically captured into
CERES. Other tools that are under development are toxicity data entry (TDE) and
compound registration (CR) tools. The TDE tool is designed to allow the data harvest
team to directly enter the test-level toxicity data from the submissions that support
the study-level data collected from the e-memo. Similarly, the CR tools will allow
OFAS chemical registrars to directly enter and correct the food ingredients’ chemical
information in the knowledgebase.

12.4 Conclusions

OFAS review scientists evaluate available information about food ingredients
included in industry premarket submissions as well as data available in the public
domain or agency files to determine if there is reasonable certainty that the substances
are not harmful under their intended conditions of use. With recent advancements in
toxicological testingmethods and computational science, OFAS review scientists are
expanding the use of in silicomethods (SAR/QSAR, TK/PBTK, and bioinformatics)
as additional tools for evaluating the safety of food substances. In addition, in-house
tools (CERES and others) have been developed not only to organize and store the
institutional data, but also to provide modern computational capabilities that may
allow OFAS scientists to fill data gaps using existing information. Although the in
silicomethods described in this chapter have been well-utilized in the field of clinical
drug development, they are not as routinely used for assessing safety of food ingredi-
ents. Considering that OFAS review scientists evaluate the safety of diverse classes
of food ingredients that cover a different chemical space than drugs, it is important to
understand the limitations of utilizing these computational methods for food ingre-
dient safety assessment. Nevertheless, efforts have been made to overcome some of
the challenges related to different computational approaches used for their safety
assessment. Lastly, it is important to emphasize that there is a need for effective
communication and collaboration among scientists from all sectors: government,
industry, and academia, who are interested in the development and application of
computational methods for supporting an efficient food ingredient safety assessment
process.
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drug’s hepatotoxic potential is a long-term effort of the research community. Robust
predictive models or biomarkers are essential for assessing the risk for DILI in
humans, while an improved DILI annotation is vital and largely affects the accuracy
and utility of the developed predictive models. In this chapter, we will focus on
the DILI research efforts at the National Center for Toxicological Research of the
US Food and Drug Administration. We will first introduce our drug label-based
approach to annotate the DILI risk associated with individual drugs and then upon
these annotations we developed a series of predictive models that could be used
to assess the potential of DILI risk, including the “rule-of-two” model, DILI score
model, and conventional and modified Quantitative structure–activity relationship
(QSAR) models.

Keywords Modeling · Risk management · QSAR · Rule-of-two · DILI score

Abbreviations

DF Decision Forest
DILI Drug-Induced Liver Injury
DILIN Drug-Induced Liver Injury Network
EMA European Medicines Agency
FDA Food and Drug Administration
LTKB Liver Toxicity Knowledge Base
MOA Mode of Action
QSAR Quantitative Structure–Activity Relationship
RM Reactive Metabolites

13.1 Introduction

Drug-induced liver injury (DILI) poses a significant challenge to the medical and
pharmaceutical communities as well as regulatory agencies. Many drugs have failed
during clinical trials, and over 50 drugs were withdrawn from the worldwide market
due to the concern of DILI risk [1]. Because of its significant impact on public health,
a series of guidances were published by regulatory agencies to request that the phar-
maceutical industry better assesses DILI risk during drug development, including the
US Food and Drug Administration (FDA)’s guidance “Drug-Induced Liver Injury:
Premarketing Clinical Evaluation” and the European Medicines Agency (EMA)’s
“Non-clinical guidance on drug-induced hepatotoxicity” [2].

One significant challenge encountered by drug developers and regulators stems
from the lack of sensitive screening methodologies to identify DILI signals at the
early stage of drug development, especially before the first-in-human testing [3].
While animal studies remain the “gold standard” of testing strategies in preventing
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potentially toxic drug candidates from entering clinical trials [4–6], it is not perfect
and sometimes fails to detect hepatotoxic drug candidates; a retrospective analysis
revealed that such tests failed in about 45% of DILI cases found in clinical trials [7].
In one notorious example, five subjects in a phase 2 clinical trial experienced fatal
hepatotoxicity induced by fialuridine, while this investigational nucleoside analogue
showed no liver damage in animal studies [8]. There is unmet need to more reliably
predict risk for DILI in humans and to overcome current limitations.

Many worldwide efforts have been launched to better understand and address
DILI issues. In the USA, the drug-induced liver injury network (DILIN) was funded
by National Institute of Healthy since the year of 1995 and is still today actively
collecting and analyzing cases of severe liver injury caused by prescription drugs,
over-the-counter drugs, and alternative medicines, such as herbal products and sup-
plements. Similar government supported drug-induced liver injury network efforts
were recently established in Europe funded by European cooperation in Science and
Technology (http://www.cost.eu/COST_Actions/ca/CA17112). The US FDA has a
long-term effort to improve drug safety by better assessing pre-marketing and post-
marketing data for identifying signs of toxicity. At the National Center for Toxico-
logical Research, we have developed the Liver Toxicity Knowledge Base (LTKB)
which contains diverse liver-related data such as drug properties, DILI mechanisms,
and drug metabolism. that can be utilized to develop new models for assessing the
risks for DILI in humans [1, 5, 9–21]. In this chapter, we will introduce our con-
tinuing efforts toward the development of computational models for the prediction
of DILI risks in humans. First, we will present the drug label-based approach to
annotate the risk for DILI associated with individual drugs, and then based on these
annotations, we developed a panel of predictive models that could be used to assess
drug candidates for their potential to cause DILI risk before human testing or during
clinical trials.

13.2 Annotation of DILI Risk for Marketed Drugs

Annotation of DILI risk for drugs is challenging. Drugs could cause significantly
different scales of DILI risk even when their chemical structures are similar. For
example, alpidem and zolpidem both are anxiolytic drugs derived from the imida-
zopyridine family used as sleeping medication. These two drugs have similar chem-
ical structures but distinct hepatotoxicity (Fig. 13.1): Alpidem was withdrawn due
to hepatotoxicity while zolpidem is still widely used in clinical practice with rare
hepatotoxicity observed. Drugs withdrawn from market due to hepatotoxicity and
those without hepatotoxicity observed represent two extremes within the spectrum of
the risk for humans. Most drugs are located within the middle of spectrum depending
on the associated DILI risk.

The DILI annotation discussed here refers to the classification of risks of DILI
exposure to the human population associated with the drug treatment for various
diseases. An improved annotation ofDILI is vital and largely affects the accuracy and

http://www.cost.eu/COST_Actions/ca/CA17112
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Fig. 13.1 Distinct hepatotoxicity observed between alpidem and zolpidem even though their chem-
ical structures are similar

utility of a predictivemodel [22].At least three attributes including severity, causality,
and incidence need to be considered when assessing a drug’s potential to cause DILI
[1]. However, annotating a drug’s DILI risk is not trivial in clinical practice [23] due
to several hurdles to be considered, i.e., (1) the uncommon occurrence of DILI, (2)
the various complicated clinical DILI manifestations, (3) the deficiency of accurate
biomarkers for DILI diagnosis, (4) the complications in causality adjudication, (5)
and the severe under-reporting of DILI cases.

There is not a single resource which could provide all the information required
for an accurate DILI annotation [1]. The research community has put great efforts
to address this challenging issue as summarized in some reviews [10]. Overall, the
approaches to annotate DILI risk are either based on case reports or on monograph.
Case reports can be collected by on-going DILI research projects such as US DILI
network and Spain DILI registry, reported in literature [24–26], or retrieved from the
FDA’s adverse event reporting system [27–29]. Monographs are written by experts
based on collection of evidence from a variety of sources, such as the FDA drug
labeling [1], the Physicians’ Desk Reference [30], and the US pharmacopeia. The
information in the monograph documents was authoritative but not updated as fre-
quently as the case reports [31–33]. Given the lack of a “gold standard” that defines
DILI risk, certain drugs could have diverse annotations due to the different definitions
and data sources for annotations [34]. A comparison among different annotationswas
reported [35–37].Overall, the agreements amongannotations are acceptable, andnor-
mally a higher concordance among hepatotoxicity drugs was present as compared to
the non-hepatotoxicity drugs [10, 15, 38].

We selectedFDA-approveddrug labeling as themain supporting evidence to anno-
tate drugs for their DILI risk for humans. Drug labeling is an authoritative document
summarizing drug safety information based on the comprehensive evaluation of data
from preclinical studies, clinical testing, post-marketing surveillance, and publica-
tions in literature. The information within drug labels summarizes the consensus and
serious thoughts from experts at that time with the consideration of all three criteria
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(i.e., severity, causality, and incidence)mentioned above [1].We developed a schema
to gather the information from FDA-approved drug labeling to annotate DILI risk
and created a benchmark dataset which contained 287 drugs that were categorized
into three levels of DILI severity: most-DILI-concern, less-DILI-concern, and no-
DILI-concern [33]. Specifically, the 137 drugs categorized as most-DILI-concern
are those that were suspended, withdrawn, or issued a black box warning due to
hepatotoxicity or had gotten warnings and precautions with moderate or severe DILI
concern. Eighty-five drugs categorized as less-DILI-concern had been issued warn-
ings and precaution with mild DILI concern or only recorded hepatotoxicity in the
Adverse Reactions section of drug labels. Sixty-five drugs listed as no-DILI-concern
are those with no DILI concern mentioned in their drug labels.

The safety data contained in drug labeling are not perfect. Amajor concern of drug
labels was weakness in causality assessment [1], i.e., the definite causal relationship
is not mandatorily required for drug labeling, and the regulators were authorized
by law to issue a warning when a clinically significant hazard is identified for a
drug with reasonable evidence of causality (http://www.accessdata.fda.gov/scripts/
cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=201.57). Additionally, any modification or
updating of the safety information in drug labeling is a stringent and lengthy process
that likely causes a time lag from themost updated clinical findings [39].Meanwhile,
case reports could have better timing and be more sensitive to any potential alert
signals caused by drugs. Therefore, by incorporating the case report information
derived from up-to-date literature and on-going DILI research projects such as the
US DILIN project, the drug labeling-based annotation of DILI risk could be further
improved.

Upon these considerations, we further refined the labeling-based annotation
schema by weighing evidence of case reports together with the information from
FDA-approved drug labeling to improve the accuracy of DILI annotation. More
specifically, the refined annotation schema was built upon a collection of well-vetted
cases (verified via thorough case evaluation by DILI experts) and adjudicated cases
(verified using the standardized clinical causality assessment system, i.e., Roussel
Uclaf Causality AssessmentMethod [40]).With this collected causality information,
the DILI risk of individual drugs was re-evaluated by complementing drug labeling
with available evidence of verified causality. This new schema classified drugs into
four categories as detailed as below:

• Withdrawn drugs and those with a black box warning for severe liver injury were
classified as verified most-DILI-concern (vMost-DILI-concern) drugs because
they are consistently classified as high DILI risk among several published datasets.

• For those drugs which had been warned with severe or moderate DILI occurrence
in their labels (i.e., isoniazid) [1], the verification process of causality is needed for
the assessment in the new schema: The causality verified drugs will be classified
as the vMost-DILI-concern, otherwise will be reassigned as “Ambiguous DILI-
concern.”

http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCFR/CFRSearch.cfm?fr=201.57
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• Similarly, the less-DILI-concern drugs could be reassigned as verified less-DILI-
concern (vLess-DILI-concern) or “Ambiguous DILI-concern,” which will depend
on whether evidence of causality is available.

• The verified no-DILI-concern drug (vNo-DILI-concern) can be confirmed only if
the drug was not verified as a cause of DILI in literature and no DILI mentioned
in its drug label.

The refined schema was applied to 1036 marketed drugs approved by the FDA
before 2010, namely DILIrank dataset, including 192 vMost-DILI-concern drugs,
278 vLess-DILI-concern drugs, 312 vNo-DILI-concern drugs, and 254 Ambiguous
DILI drug. Notably, given that the existing knowledge will advance over time, the
schema we applied in the DILIrank will continuously be updated along with the
newly reported DILI cases.

13.3 Predictive Models Developed at NCTR

Developing a risk management plan to improve prediction of a drug’s hepatotoxic
potential is a long-term effort of the research community [41], and predictive models
or biomarkers are essential for assessing the risk for DILI in humans at early stages
of drug development, even before the first test in humans. The developments of
predictive models for DILI are nicely summarized in several seminal reviews [42].
Here, we briefly introduced some continuing efforts at the FDA’s National Center
for Toxicological Research for the developing models to predict the risk for DILI in
humans, such as the “rule-of-two” model, DILI score model, and conventional and
modified Quantitative structure–activity relationship (QSAR) models.

13.3.1 The “Rule-of-Two” Model [11]

Many drugs withdrawn from the market or issued a black box warning due to hepa-
totoxicity were prescribed at a daily dose of 100 mg or greater [43, 44] while drugs
given at a lower daily dose of <10 mg experienced less severe events, suggesting a
potential relationship between hepatotoxicity risk and daily dose [31, 45]. Conse-
quently, some experts recommended avoiding the development of drugs requiring a
high daily dose to reduce the potential adverse events [42, 46, 47]. Meanwhile, many
drugs given at high daily doses are found with little or no risk of DILI, therefore,
suggesting that daily dose alone is not a reliable approach to guide drug development,
regulatory application, and clinical practice.

Besides daily dose, lipophilicity is an important physicochemical property [48]
and is frequently modulated to improve bioavailability and pharmacological activity.
Lipophilicity could affect hepatocyte uptake and drug ADMET (i.e., absorption,
distribution, metabolism, elimination) behaviors [49], and many lines of evidence
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also implicate lipophilicity to be linked to drug toxicity. Nonetheless, it was unclear
whether the combination of daily dose and lipophilicity related to risk for DILI in
humans.

To better examine the combined effects of daily dose and lipophilicity, a data
repository of 164 drugs labeled for their liver liabilities derived from the LTKB-
benchmark dataset were used, includingN = 116most-DILI-concern drugs andN =
48no-DILI-concern drugs. Lipophilicitywasmeasuredby the octanol-water partition
coefficient (i.e., logP) which was calculated from the atomic-based prediction of
AlogP using Pipeline Pilot (version 8.0, Accelrys Inc, San Diego, CA), and it was
categorized into three groups: <1, 1–3, and ≥3 as recommended by literature (13).
Daily doses were majorly retrieved from the WHO’s ATC database (http://www.
whocc.no/atc_ddd_index) and were divided into the groups of <100 mg, 10–100 mg,
and ≥100 mg per day as suggested by literature [43, 46].

When the 164 drugs of the dataset were put into the scatter plot of daily doses
and logP, the upper right quadrant at a high daily dose and a high logP was majorly
distributed with most-DILI-concern drugs. Few no-DILI-concern drugs appeared in
this region. The relative risk for DILI associated with various doses and logP constel-
lations was further assessed. Specifically, the subgroup of daily doses ≥100 mg and
logP ≥ 3 was associated with a significantly higher proportion of hepatotoxic drugs
as compared to the rest of subgroups altogether (96% vs. 41%, odds ratio: 14.05, P <
0.001). The analysis demonstrated that a statistically significant association between
logP and risk for DILI was observed for the drugs given at daily doses of ≥ 100 mg,
while no statistically significant relationship between logP and hepatotoxicity was
obtained for the drugs given at daily doses of less than 100 mg.

Similar findings were observed from another independent dataset of 179 oral
drugs that 85% of the “rule-of-two” positives are associated with hepatotoxicity as
compared with 59% in the “rule-of-two” negatives (odds ratio: 3.89,P < 0.01). These
evidences together suggest that a drug given at a daily dose of ≥100 mg and with a
high logP ≥ 3, namely as the “rule-of-two,” is associated with a significant high risk
for DILI in humans.

The “rule-of-two” is a simple but effective model to predict the risk for DILI
in humans and has been independently evaluated by the drug safety scientists. In a
study by Paul Leeson from UK [50], the “rule-of-two” was applied to predict the
drugs that failed in drug development due to hepatotoxicity in humans, and 13 of 22
(59%) failed drug candidates were found as “rule-of-two” positives (see Table 13.1).
This practice demonstrated that the “rule-of-two” model can be applied to assess
drug candidates with similar or even better performance than that among marketed
drugs, even though the chemical spaces of drugs candidates in development has
significantly shifted from those marketed drugs approved decades ago. Furthermore,
another study from a Pfizer team found that the “rule-of-two” model performs better
than the three mechanistic endpoints they selected (i.e., cytotoxicity, mitochondrial
impairment, andBSEP inhibition) by single, dual combination or triple combinations
when evaluated by a total of 125 drugs [51]. Moreover, the “rule-of-two” model was
also applied to the direct-acting antiviral for the treatment of chronic hepatitis C and
successfully identified the DILI potential associated with Vieraki Pak [52].

http://www.whocc.no/atc_ddd_index
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Table 13.1 “Rule-of-two
model” for prediction of
drugs that failed in clinical
development due to
hepatotoxicity in humans

Compound Max Daily
Dose, mg

cLogP Rule-of-two
prediction

Darbufelone 10 3.7

Fialuridine 19 0.0 No DILI

Pralnacasan 1200 2.2

Zamifenacin 40 6.0

TAK-875 50 4.7

LY-2409021 90 7.4

MK-0893 120 7.8 Most DILI

Fiduxosin 120 4.9 Most DILI

CP-457920 120 2.2

CP-085958 200 4.6 Most DILI

Falnidamol 200 3.8 Most DILI

Pafuramidine 200 4.8 Most DILI

Sitaxentan 300 3.4 Most DILI

ADX-10059 200 4.1 Most DILI

CP-368296 300 2.4

Telcagepant 560 4.0 Most DILI

CP-724714 500 4.6 Most DILI

CP-422935 500 6.8 Most DILI

Tasosartan 600 2.5

Solithromycin 800 3.7 Most DILI

CP-456773 1200 3.4 Most DILI

Aplaviroc 1600 3.9 Most DILI

Predicted
Most-DILI-
concern

13/22 (59%)

Data were collected from Leeson, 2018 [50]

13.3.2 DILI Score Model [12]

The “rule-of-two” model provides added value for predicting DILI risk in humans
but could not foresee degree of severity [53, 54]. Additionally, besides dose and
lipophilicity, some other mechanistic factors could contribute to the predictive mod-
els, facilitating the development of quantitative metrics [55].

Covalent binding of reactive metabolites (RM) is an important toxicity mechanis-
tic factor that could cause direct cellular toxicity or modulate immune reactions [56].
Numerous drugs were reported to generate RM, although their causative relationship
for human DILI is still controversial and inconclusive [57]. However, some reports
suggest that protein adducts caused by RM seen with drugs are not necessarily asso-
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ciated with liver injury [58–60]. Furthermore, a large-scale retrospective analysis
demonstrated that the level of covalent binding has no correlation with incidence of
liver toxicity observed in vivo in preclinical studies [57]. Even though, considering
the possible toxic implications, industry still strongly recommend to minimize the
potential of RM formation for drug [61–63] with a target threshold of <50 pmol of
RM bound to 1 mg protein [64].

We applied logistic regression analysis to investigate the association between daily
dose, logP, RM formation, andDILI risk by usingN = 192 FDA-approved drugs. The
multivariate regression analysis suggested that daily dose, logP, and RM formation
all contributed independently to predicting DILI risk, and their contributions were
ranked by the order of RM > daily dose/Cmax > logP per the regression coefficients.
Consequently, we developed a DILI score model [12] derived from daily dose, logP,
and RM: 0.608 * loge(daily dose/mg) + 0.227 * logP + 2.833 * (RM formation);
here, RM was assigned as 1 or 0 based on whether a drug could produce reactive
metabolites. As an example, alpidem given at a daily dose of 150 mg/day has a logP
of 5.6 and produces RM which resulted in a DILI score of 0.608 * loge(150) +
0.216 * 5.6 + 2.833 * 1 = 7.15. Meanwhile, zolpidem (a drug with the same mode
of action, similar chemical structure, and preclinical safety profile but with distinct
liver toxicity) has a logP of 1.20 and is given at a daily dose of 10 mg, which resulted
in a DILI score of 4.51.

The developed DILI score model was evaluated by three independently published
datasets assessing its capability to predict the severity of DILI risk in humans. The
first dataset was derived from the LTKB-BD with a total of N = 354 drug annotated
with DILI potential, including 124most-DILI-concern drugs, 162 less-DILI-concern
drugs, and68with no-DILI-concern.The seconddatasetwithN =227drugs retrieved
fromGreene et al. [24] hadN = 130 human hepatotoxicity drugs,N = 44 drugs with
weak evidence, and N = 53 drugs with no evidence. The third dataset comes from
Suzuki et al. [26] and considered the severity of human hepatotoxicity, of which a
total of 182 drugs were obtained consisting of N = 35 withdrawn drugs, N = 61
with reported acute liver failure cases, and N = 86 general DILI drugs. Overall,
an increased DILI score significantly correlates with the severity of liver injury. In
the first dataset, the DILI risk score decreased in the order of most-DILI-concern >
less-DILI-concern > no-DILI-concern [1], and each of the subsequent comparisons
was statistically significant (P < 0.001). In Greene et al. [24] dataset, DILI score
also correctly predicted drugs with evidence for overt human hepatotoxicity having
significantly higher DILI scores than those with weak evidence (P < 0.001) and not
unexpectedly followed those without any evidence for developing DILI (P < 0.001).
For the data from Suzuki et al. [26], the algorithm also correctly predicted severe
DILI cases (P < 0.001).

Furthermore, the DILI score model was applied to N = 165 clinical cases col-
lected from NIH LiverTox database (https://livertox.nih.gov/), and it was demon-
strated that the DILI score correlated with the severity of clinical outcome.
The DILI score model was also applied to successfully distinguish some drug
pairs such as minocycline/doxycycline, trovafloxacin/moxifloxacin, and benzbro-

https://livertox.nih.gov/
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marone/amiodarone, which are defined by their molecular structure (tanimoto simi-
larity > 0.5) and similar mode of action but discordant toxicity [65].

13.3.3 Conventional QSAR [13]

QSARmodels have been extensively applied to predict drug-induced liver injury due
to their ability to produce rapid results without requiring physical drug substance [22,
24, 66, 67]. So far, most of the QSAR-DILI models’ report limited predictive perfor-
mance, with accuracies of approximately 60% or less, especially when the models
are challenged by external validation sets. We implemented an improved strategy to
develop the QSARmodel for predicting DILI in humans using a robust annotation of
DILI risk relying on FDA-approved drug labeling and applying an extensive model-
ing validation strategy to ensure the model performance was sustainable and better
than by chance.

Our conventional QSARwas developed by using a decision forest (DF) algorithm
to correlate the chemical structures with their DILI risk in humans based on a set of
drugs as the training set. The DF algorithm is a supervised machine learning tech-
nique utilizing a modified decision tree model by employing a consensus technique
to combine multiple heterogeneous decision trees to achieve a more accurate pre-
dictive model. The DF algorithm is developed by our laboratory, and the software
is publicly available @ https://www.fda.gov/ScienceResearch/BioinformaticsTools/
DecisionForest/default.htm. Meanwhile, the chemical structures of drugs were codi-
fied into a digital format (i.e., chemical descriptors) as the input for themachine learn-
ing algorithm DF. Here, we utilized the Mold2 molecular descriptors to transform
the 2-dimensional chemical structures into 777 chemical descriptors. Mold2 is also
developed by NCTR and freely available at https://www.fda.gov/ScienceResearch/
BioinformaticsTools/Mold2/default.htm.

The training set to develop the QSAR model included 197 drugs (NCTR training
set), which were annotated by FDA-approved drug labeling as discussed previously.
The drug label-basedDILI annotation proved to be robust and consistent as compared
to other annotations [37], which is critical for the development of an improvedQSAR
model. The developed models were evaluated by internal and external validations.
Internal validation employed a 2000 run of 10-fold cross-validation based on the
NCTR training set. External validation of theQSARmodelswas applied to 3 different
datasets with a total of 438 unique drugs: NCTR validation dataset with N = 190
drugs, Greene et al. dataset with N = 328 drugs, and Xu et al. dataset with N = 241
drugs. The validation results in Table 13.2 show that when using theNCTR annotated
training or validation set, the predictive performance of the QSAR model had an
accuracy of 69.7% for internal cross-validation and 68.9% for external validation.
Meanwhile, the external validation assessed by Greene and Xu et al. datasets was at
accuracies of 61.6 and 63.1%, respectively. The performances evaluated by different
datasets are largely consistent, the occasional variations might reflect the quality of
annotation, and the diverse drugs included in the datasets.

https://www.fda.gov/ScienceResearch/BioinformaticsTools/DecisionForest/default.htm
https://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2/default.htm


13 Predicting the Risks of Drug-Induced Liver Injury … 269

Besides the QSAR model for predicting two classes of DILI risk, we also devel-
oped another model to assess the three classes of DILI risk (i.e., most-DILI, less-
DILI, and no-DILI) [68]. The model was developed by using decision forest (DF)
and Mold2 structural descriptors together with DILIrank dataset with >1000 drugs
evaluated for their likelihood of causing DILI in humans, of which >700 drugs were
classified into three categories used for the model development. Similarly, with two
classes of QSARmodel, the three-class models were evaluated via cross-validations,
bootstrapping validations, and permutation tests for assessing the potential chance
correlation. Moreover, prediction confidence analysis was also conducted to pro-
vide an additional interpretation of prediction results. These results indicated that
the 3-class model showed higher accuracy in differentiating most-DILI drugs from
no-DILI drugs than the 2-class DILI model with a potential to categorize DILI risk
into a higher resolution.

13.3.4 Modified QSAR Models

Besides developing conventional QSAR models based on chemical structure infor-
mation only, we also tried to incorporate other drug information, especially those
related to DILI-relevant biological functions, to improve model performance. For
instance, understanding the mode of action (MOA) of a drug is critical in safety
assessment. Therefore, it is promising to improve the predictive model by consider-
ing MOA of drugs on DILI. To achieve that, we have developed an algorithm named

Table 13.2 Conventional QSAR performance evaluated by cross-validation and independent val-
idation

Cross-validation
(N = 2000 runs)

Independent validation

NCTR training
seta

NCTR
validation set

Greene dataset Xu dataset

Drugs 197 (P/N =
81/116)

190 (P/N =
95/95)

328 (P/N =
214/114)

241 (P/N =
132/109)

Accuracy (%) 69.7 ± 2.9 68.9 61.6 63.1

Sensitivity (%) 57.8 ± 6.2 66.3 58.4 60.6

Specificity (%) 77.9 ± 3.0 71.6 67.5 66.1

PPV (%) 64.6 ± 4.3 70.0 77.2 68.4

NPV (%) 72.6 ± 2.5 68.0 46.4 58.1

Cross-validated results come from the mean values of 2000 runs from 10-fold cross-validations.
Independent validation results are predicted results based on the three validation sets, i.e., NCTR
validation set, Greene et al. dataset, and Xu et al. dataset
amean ± relative standard deviation



270 M. Chen et al.

MOA-DILI [69], integrating the MOA and structural information to enhance DILI
prediction.

Different from a conventional QSARmodel, themodifiedmodel will utilizeMOA
information to categorize drugs, i.e., drugs would be categorized into active or inac-
tive group for each specific MOA. The underlying hypothesis is that MOA-specific
drugs would share similar DILI mechanisms and thus would be predicted by the
same QSAR models. In other words, we will develop one model to distinguish DILI
drugs from all MOA active drugs and another model to separate DILI drugs from all
MOA inactive drugs. Finally, these two QSARmodels, for active and inactive drugs,
respectively, were merged into one assay-specific QSAR model (Fig. 13.2a).

A total of 17 toxicity-relevant MOA assays was curated from the Tox21 dataset
[70], including estrogen receptor (ER), androgen receptor (AR), mitochondrial toxi-
city, p53, PPAR gamma, etc. Therefore, 17 specificMOA-QSARmodels were devel-
oped, and a consensus approach was applied to determine the DILI risk associated
with drugs. Some feature selection strategies (i.e., sequential forward selection) were
used to determine DILI-relevant MOAs (assays) for the final model.

The proposed MOA-DILI model was tested on 333 drugs with both clinical DILI
annotation and Tox21 assay data available.Mold2 software [71] was used to generate
chemical descriptors for the development of QSAR models. Hold-out and cross-
validation were used to evaluate the model performance. For the hold-out approach,
the 333 drugs were randomly split into 2/3 (222 drugs) and 1/3 (111 drugs). The
former (2/3) were used to develop amodel while the latter (1/3) were used to evaluate

Fig. 13.2 a Workflow for MOA-DILI modeling and b modeling performance of the MOA-DILI
model
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the model. The hold-out process was repeated 1000 times to generate training/test
sets pairs. Cross-validation was applied inside the training set to evaluate model
performance. Label permutation testing with the DILI severity annotations randomly
shuffled was applied to check whether the model could generate results better than
random.

The optimized MOA-DILI model employed four assays, i.e., ARE-bla (antioxi-
dant response element), ER-luc-bg1-4e2-antagonist (ERalpha, BG1 cell line), gh3-
tre-antagonist (thyroid receptor), and PPARG-bla-agonist (peroxisome proliferator-
activated receptor gamma). Furthermore, a prediction accuracy of 0.757 in 5-fold
cross-validation and 0.695 in hold-out testing was observed for the optimized MOA-
DILImodel, which is significantly higher than the results obtained from the permuta-
tion test (Fig. 13.2b). Moreover, this optimized model has a significantly higher pre-
dictive performance than the conventional QSAR model only (Table 13.3), demon-
strating the improved predictive power for hepatotoxicity by integrating MOA data
of drugs.

Another modified QSAR model was also developed, namely DILI prediction
systems [72] which aims to translate the post-marketing surveillance information
back to the preclinical stage for improving DILI prediction performance. In DILI
prediction systems model, it is hypothesized that there exists a set of hepato-related
side effects with discriminative power to distinguish between drugs with or without
the risk for DILI. Then, in silicomodels could be developed for those hepato-related
side effects based on drug’s chemical structure with machine learning algorithms.
Based on SIDERdatasets [73], 13 different hepato-related side effectswere identified
and corresponding models were developed by using naïve Bayesian classifier in a
single cohesive prediction system. The DILI prediction systems yielded 60–70%
accuracieswhen evaluated using drugs fromdifferentDILI annotations. Furthermore,
it was found that when a drug was predicted as positive by at least three side effects,
the positive predictive value could be boosted to 91%.

13.4 Conclusion

Reliably predicting the risk for DILI in humans is still an unmet need in the research
community [34]. Accurate annotation of DILI risk is vital for the development of

Table 13.3 Overall
Performance of AOPs-DILI
model in training and test set

Model types 5-fold
cross-validation

Hold-out test

MOA-DILI model 0.757 (0.022) 0.695 (0.043)

Conventional
QSAR model

0.658 (0.031) 0.663 (0.04)

Label permutated
model

0.582 (0.042) 0.500 (0.063)
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robust predictive models for prediction of DILI risk in humans; however, appropriate
annotation is not a trivial task. We utilized the FDA-approved drug labels to annotate
a given drug’s risk for DILI in humans, which was demonstrated to be robust and
consistent across different types of drugs. The schema was further improved by
weighing evidence of case reports and was applied to 1036 FDA-approved drugs
to classified into three verified DILI groups (i.e., vMost-, vLess-, and vNo-DILI-
concern) with an additional group of drugs with DILI concern but without verified
causality (ambiguous annotation).

Besides the improved DILI annotations, we could develop better models by uti-
lizing the relevant contributing factors and advanced modeling technologies. We
have developed a series of computational predictive models that use in silico or
physicochemical methods, including the “rule-of-two” model, DILI score model,
conventional QSAR model for the prediction of two classes and multiple classes
of DILI, and modified QSAR model including MOA-DILI model and DILI predic-
tion systems model. Some models such as “rule-of-two” were independently vali-
dated and successfully identified drugs with significant hepatotoxicity. In the future,
some emerging technologies (e.g., high-throughput screening or high-content assay,
induced Pluripotent Stem Cells (iPSCs), engineered human liver cocultures, and 3D
cell culture) [74–78] could be incorporated into predictive models for a better iden-
tification of DILI risk liability at the early stage of drug development. In addition to
the drug properties we discussed above, host factors and their interactions with drug
properties [79, 80] should be considered and this information should be incorporated
into current drug-based models to improve prediction of DILI.

Disclaimer This article reflects the views of the authors and should not be construed to represent
FDA’s views or policies.
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Chapter 14
Predictive Modeling of Tox21 Data

Ruili Huang

Abstract As an alternative to traditional animal toxicology studies, the
toxicology for the twenty-first century (Tox21) program initiated a large-scale, sys-
tematic screening of chemicals against target-specific, mechanism-oriented in vitro
assays aiming to predict chemical toxicity based on these in vitro assay data. The
Tox21 library of ~10,000 environmental chemicals and drugs, representing a wide
range of structural diversity, has been tested in triplicate against a battery of cell-
based assays in a quantitative high-throughput screening (qHTS) format generating
over 85 million data points that have been made publicly available. This chapter
describes efforts to build in vivo toxicity prediction models based on in vitro activity
profiles of compounds. Limitations of the current data and strategies to select an
optimal set of assays for improved model performance are discussed. To encourage
public participation in developing new methods and models for toxicity prediction,
a “crowd-sourcing” challenge was organized based on the Tox21 assay data with
successful outcomes.

Keywords Computational modeling · Human toxicity · Animal toxicity ·
Adverse drug effect · In vitro assay · High-throughput screening
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CEBS Chemical Effects in Biological Systems
CYP Cytochrome P450
DMSO Dimethylsulfoxide
DTA Drug Target Annotation
EPA Environmental Protection Agency
FN False Negative
FP False Positive
FDA Food and Drug Administration
GPCR G-Protein-Coupled Receptor
HTS High-Throughput Screening
NCATS National Center for Advancing Translational Sciences
NCCT National Center for Computational Toxicology
NIEHS National Institute of Environmental Health Sciences
NTP National Toxicology Program
NR Nuclear Receptor
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qHTS Quantitative High-Throughput Screening
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SR Stress Response
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TN True Negative
TP True Positive
WFS Weighted Feature Significance

14.1 Introduction

Animal-based in vivo models have been traditionally used to assess the toxicologi-
cal effects of chemicals, with results extrapolated to foreshadow potentially harmful
events in humans. More than 80,000 chemicals are currently registered for use in the
United States, for 95%ofwhich no data on human exposure and/or hazard is available
[1]. In addition, about 2000 new chemicals are being introduced into our environment
every year that may pose hazards for human health [1]. Traditional toxicity testing
methods rely heavily on low throughput, expensive, and time-consuming animal
studies, making it impossible to evaluate the in vivo toxicity of the fast growing
number of chemicals in a cost-efficient and timely manner. The reliability of extrap-
olating test results derived from animals to health effects in humans poses another
challenge due to species differences. High-throughput screening (HTS) techniques,
now routinely used in conjunction with computational methods and information
technology to probe how chemicals interact with biological systems, offer a new
alternative to traditional toxicity testing. Through HTS assays, patterns of cellular



14 Predictive Modeling of Tox21 Data 281

response induced by certain chemicals or chemical classes are established, which
might be predictive of adverse health outcomes in humans.

Aiming to identify in vitro chemical signatures that could act as predictive sur-
rogates for in vivo toxicity, the US Tox21 (toxicology in the twenty-first century)
program was established in 2008 with an emphasis on developing new method-
ologies to evaluate the potential risk of thousands of environmental chemicals on
human health [2–5]. The Tox21 program is a collaboration involving the National
Toxicology Program (NTP) at the National Institute of Environmental Health Sci-
ences (NIEHS), the National Center for Computational Toxicology (NCCT) at the
US Environmental Protection Agency (EPA), the intramural research division of the
National Center for Advancing Translational Sciences (NCATS), and the US Food
and Drug Administration (FDA). The goal of the Tox21 program is threefold:

(1) analyze the patterns of compound-induced biological responses in order to iden-
tify toxicity pathways and compound mechanisms of toxicity;

(2) prioritize compounds for further extensive toxicological evaluation; and
(3) develop predictive models for biological response in human beings.

This inter-federal agency partnership established a collection of ~10,000 envi-
ronmental chemicals and drugs (Tox21 10K library) to profile for potential effects
on human health [6, 7]. The Tox21 10K library is screened against a large panel of
cell-based assays in a quantitative high-throughput screening (qHTS) format as 15-pt
titration series in triplicate [8]. qHTS generates a concentration–response curve for
each compound, which greatly reduces the frequency of false positives and negatives.
During phase II (2011–2017), the production phase of the program, the Tox21 10K
library had been screened against a panel of more than 50 assays with an initial focus
on the nuclear receptor (NR) [9–13] and stress response (SR) pathways (Table 14.1)
[14–16] in qHTS format producing over 85 million data points to date [7, 17–19].
The results form a rich set of compound in vitro activity profiles that can serve as
the basis for mechanism of compound toxicity hypotheses generation and predictive
modeling. However, as with any new technology, the reliability and the relevance of
the approach need to be evaluated and validated. Here, we describe a few examples
using this dataset to build in silicomodels to predict in vivo including human toxicity.
The performances of in vitro assay data-based models are compared with those of
chemical structure information, animal toxicity data, and literature annotations on
compound target and mode of action. Strategies are proposed to optimize the biolog-
ical space coverage of in vitro assays in order to establish comprehensive compound
activity profiles for improved toxicity prediction.



282 R. Huang

Table 14.1 Tox21 assay 10K library screens

Assay Assay name PubChem AID Reproducibility score

Stress response pathway assays

ATAD5 ATAD5 651632, 720516,
651634

99.51

DT40 Rad54/Ku70 DNA repair
Rad54/Ku70 deficient
isogenic chicken
DT40 cell viability

70743015 90.61

DT40 Rev3 DNA repair Rev3
deficient isogenic
chicken DT40 cell
viability

743014 83.02

DT40 WT Wild type chicken
DT40 cell viability

743015 79.58

H2AX H2AX 1224845, 1224847 93.71

P53 P53 651631, 720552,
651633

103.02

AP-1-BLA Activator protein-1 1159526, 1159525,
1159528

91.65

ARE Antioxidant
responsive element

743202, 743219,
743203

81.85

HRE-BLA agonist Hypoxia-inducible
factor-1

1224846, 1224844 96.96

HSE-BLA Heat shock factor
response element

743210, 743228,
743209

95.46

NFκB-BLA agonist Nuclear factor kappa
B

1159509, 1159515,
1159518

100.31

ER stress Endoplasmic
reticulum stress

1159516, 1159517,
1159519

92.97

Mitochondria toxicity Mitochondrial
toxicity

720635, 720637,
720634

87.20

Nuclear receptor assays

Aromatase Aromatase 743083, 743139,
743084

93.66

AhR Aryl hydrocarbon
receptor

743085, 743122,
743086

84.05

AR-BLA agonist Androgen receptor,
ligand binding
domain, agonist
mode

743036, 743053 89.55

AR-BLA antagonist Androgen receptor,
ligand binding
domain, antagonist
mode

743035, 743063,
743033

96.44

(continued)
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Table 14.1 (continued)

Assay Assay name PubChem AID Reproducibility score

AR-MDA agonist Androgen receptor,
full length, agonist
mode

743040, 1259381,
1259379, 1259387

99.74

AR-MDA antagonist Androgen receptor,
full length, antagonist
mode

743042, 743054,
743041, 1259243,
1259242, 1259247

92.28

CAR agonist Constitutive
androstane receptor,
agonist mode

1224839, 1224836 99.93

CAR antagonist Constitutive
androstane receptor,
antagonist mode

1224838, 1224837 89.24

ER-BG1 agonist Estrogen receptor
alpha, full length,
agonist mode

743079, 1259383,
1259386, 1259391

91.46

ER-BG1 antagonist Estrogen receptor
alpha, full length,
antagonist mode

743080, 743091,
743081, 1259244,
1259241, 1259248

95.25

ER-BLA agonist Estrogen receptor
alpha, ligand binding
domain, agonist
mode

743075, 743077 95.25

ER-BLA antagonist Estrogen receptor
alpha, ligand binding
domain, antagonist
mode

743069, 743078,
743074

84.90

ER-beta-BLA agonist Estrogen receptor
beta, agonist mode

1259377, 1259380,
1259394

91.76

ER-beta-BLA
antagonist

Estrogen receptor
beta, antagonist mode

1259378, 1259382,
1259396

90.96

ERR Estrogen-related
receptor

1224834, 1224849,
1224848, 1259403,
1259404

95.66

ERR-PGC Estrogen-related
receptor with the
pleiotropic
PPAR-gamma
coactivator (PGC)

1224842, 1224841,
1224840, 1259401,
1259402

93.35

FXR-BLA agonist Farnesoid X receptor,
agonist mode

743220, 743239,
743218

95.09

FXR-BLA antagonist Farnesoid X receptor,
antagonist mode

743217, 743240,
743221

88.48

(continued)
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Table 14.1 (continued)

Assay Assay name PubChem AID Reproducibility score

GR-BLA agonist Glucocorticoid
receptor, agonist
mode

720691, 720719 94.89

GR-BLA antagonist Glucocorticoid
receptor, antagonist
mode

720692, 720725,
720693

77.40

PPAR-delta-BLA
agonist

Peroxisome
proliferator-activated
receptor delta,
agonist mode

743212, 743227,
743211

91.91

PPAR-delta-BLA
antagonist

Peroxisome
proliferator-activated
receptor delta,
antagonist mode

743215, 743226,
743213

90.37

PPAR-gamma
agonist

peroxisome
proliferator-activated
receptor gamma,
agonist mode

743094, 743140 93.81

PPAR-gamma
antagonist

Peroxisome
proliferator-activated
receptor gamma,
antagonist mode

743191, 743199,
743194

85.15

RAR agonist Retinoic acid
receptor, agonist
mode

1159553 89.15

RAR antagonist Retinoic acid
receptor, antagonist
mode

1159552 71.50

ROR antagonist Retinoid-related
orphan receptor
gamma, antagonist
mode

1159521 72.95

RXR-BLA agonist Retinoid X receptor,
agonist mode

1159527, 1159529,
1159531

79.20

TR-beta agonist Thyroid hormone
receptor, agonist
mode

743066 87.84

TR-beta antagonist Thyroid hormone
receptor, antagonist
mode

743065, 743067,
743064

87.82

VDR-BLA agonist Vitamin D receptor,
agonist mode

743222, 743241,
743224

91.79

(continued)
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Table 14.1 (continued)

Assay Assay name PubChem AID Reproducibility score

VDR-BLA
antagonist

Vitamin D receptor,
antagonist mode

743223, 743242,
743225

88.97

Other assays

HDAC Histone deacetylase 1259364, 1259365,
1259388

100.06

TSHR agonist Thyroid stimulating
hormone receptor,
agonist mode

1224843, 1224895 90.49

TSHR antagonist Thyroid stimulating
hormone receptor,
antagonist mode

1259385, 1259395 93.27

TSHR wide type Thyroid stimulating
hormone receptor,
wild type

1259384, 1259393 99.62

Shh-GLI3 agonist Sonic hedgehog
(Shh) signaling,
agonist mode

1259368, 1259366,
1259390

90.36

Shh-GLI3 antagonist Sonic hedgehog
(Shh) signaling,
antagonist mode

1259369, 1259367,
1259392

68.79

Real-time viability
(HepG2)

Real-time cell
viability in HepG2
cells

1224882, 1224876,
1224878, 1224883,
1224879, 1224890,
1224889, 1224885,
1224867, 1224877,
1224870, 1224873

N/A

Real-time viability
(HEK293)

Real-time cell
viability in HEK293
cells

1224869, 1224888,
1224875, 1224881,
1224871, 1224884,
1224880, 1224872,
1224886, 1224868,
1224874, 1224887

N/A

Luciferase
biochemical

Firefly luciferase,
biochemical

1224835 99.97

14.2 Method and Materials

14.2.1 Tox21 Compound Collection and Assay Data

The Tox21 compound library is a collection of over 10,000 environmental chemicals
and drugs (approximately 8947 unique chemical entities) representing a wide range
of structural diversity [6, 7]. Three Tox21 partners—EPA, NTP, and NCATS—each
contributed over 3000 physical compounds to the collection primarily procured
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from commercial sources. The main criteria for selection of the Tox21 compounds
included, but were not limited to, known or perceived environmental hazards or expo-
sure concerns, physicochemical properties (molecular weight, volatility, solubility,
logP) suitability for qHTS, commercial availability, and cost. The types of com-
pounds selected for constructing the library include pesticides, food additives, flame
retardants, industrial chemicals, drinking water disinfection by-products, preserva-
tives, household cleaning agents, and drugs [20]. In addition, a set of 88 diverse
compounds was included as duplicates in every screening plate and designated as
internal controls for assay reproducibility [8]. All of the compounds in the Tox21
10K collection are currently going through analytical quality control (QC) testing
for purity and identity. The structures and annotations of the Tox21 10K library as
well as the QC results are publicly available [6, 7]. The compound library was plated
in 1536-well plates as 15 concentration series with

√
5-fold dilution in dimethylsul-

foxide (DMSO), covering a concentration range up to four orders of magnitude. To
assess the reproducibility of data, three physical copies of the library were prepared
in three different formats, in which the same compound was plated in a different well
location in each copy.

A large amount of data have been generated during the phase II screening of the
Tox21 10K library against a panel of cell-based assays. Counter screens are also
employed to minimize interferences from off-target, assay-specific artifacts, such as
compound auto fluorescence and cytotoxicity. A standardized qHTS data analysis
process has been developed at NCATS to integrate the data and characterize the
activities observed from these assays [21, 22]. This process includes the following:

(1) plate level data normalization and correction;
(2) concentration response curve fitting and classification;
(3) data reproducibility evaluation; and
(4) assignment of activity outcome to compounds.

After further evaluation for quality and utility by all Tox21 partners, the datasets
are released to the public domain in a number of public databases including PubChem
(http://pubchem.ncbi.nlm.nih.gov/), the NCATS Tox21 Browser (https://tripod.nih.
gov/tox21/), the NIEHS Chemical Effects in Biological Systems (CEBS) database
(http://tools.niehs.nih.gov/cebs3/ui/), and EPA’s Aggregated Computational Toxi-
cology Online Resource (ACToR) (http://actor.epa.gov).

To date, over 85 million data points generated from more than 50 assays on the
Tox21 10K collection have been deposited in PubChem (see Table 14.1 for list of
PubChem assay IDs and assay performance scores) [18].

14.2.2 In Vivo Toxicity Modeling

The 10K library was clustered using the self-organizing map (SOM) algorithm [23]
based on either structural similarity or similarity in its members’ activity profiles
across all the in vitro assays. Models were built for animal in vivo toxicity endpoints

http://pubchem.ncbi.nlm.nih.gov/
https://tripod.nih.gov/tox21/
http://tools.niehs.nih.gov/cebs3/ui/
http://actor.epa.gov
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using either the structure (structure-based models) or assay activity (activity-based
models) SOM clusters or both [17]. To build models using both the structure and
activity SOM clusters, each compound was reassigned to a “consensus cluster” such
that only compounds that belong to the same structure cluster and the same activity
cluster were assigned to the same “consensus cluster.” The consensus clusters were
used to build the structure–activity combined models. For each SOM cluster con-
taining the training compounds, the enrichment of toxic compounds was determined
by a Fisher’s exact test. The −log10 p-value from the Fisher’s exact test was used
as a measure of the toxic potential (toxicity score) of the compounds in this cluster,
and evaluated as a predictor of toxicity for test compounds that fall into the same
cluster. More significant p-values (larger−log p-values) indicate a larger probability
of toxicity. If a cluster was deficient of toxic compounds, i.e., the fraction of toxic
compounds in the cluster was smaller than the fraction of toxic compounds in the
whole library, the log10 p-value was used instead. Here we denote the toxicity scores
obtained from the activity SOM as p-activity, those from the structure SOM as p-
structure, and those using both the activity and structure SOMs as p-both. To test
model performance, the corresponding SOMcluster or consensus cluster was located
for each test set compound, and p-activity, p-structure, or p-both obtained from the
training set were retrieved. These statistics were compared with the true toxicity
outcome of the test compound to determine if the test compound should be counted
as a true positive (TP: toxic and score > cutoff), false positive (FP: non-toxic and
score > cutoff), true negative (TN: non-toxic and score ≤ cutoff), or false negative
(FN: toxic and score ≤ cutoff).

Models were built for the human adverse drug effects (ADEs) using assay activity
(activity-basedmodels), compound structure (structure-basedmodels), combinations
of structure and activity data with or without drug target annotations (DTAs), and
animal toxicity endpoints [19]. The Weighted Feature Significance (WFS) method
previously developed at NCATS [24] was applied to construct the models. Briefly,
WFS is a two-step scoring algorithm. In the first step, a Fisher’s exact test is used to
determine the significance of enrichment for each feature in the drugs with a certain
ADE compared to the ones without such ADE reported, and a p-value is calculated
for all the features present in the dataset. For assay activity data, each assay readout
was treated as a feature and the feature value was set to 1 for active compounds and
0 for inactive compounds. For animal in vivo toxicity data, each toxicity endpoint
was treated as a feature, and the feature value was set to 1 for toxic compounds and 0
for non-toxic compounds. For structure data, the feature value was set to 1 for drugs
containing that structural feature and 0 for drugs that do not have that feature. For
DTA data, each DTA was treated as a feature, and the feature value was set to 1 for
drugs that reported to have that DTA and 0 for drugs that not known to have the
DTA (see Table 14.2). If a feature is less frequent in the active compound set than
the non-active compound set, then its p-value is set to 1. These p-values form what
we call a “comprehensive” feature fingerprint, which is then used to score each drug
for its potential to cause a certain ADE according to Eq. (1), where pi is the p-value
for feature i; C is the set of all features present in a drug; M is the set of features
encoded in the “comprehensive” feature fingerprint (i.e., features present in at least
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Table 14.2 Transformation rules of datasets to 1/0 bits for modeling

Dataset

Drug type Bit Assay
activity

In vivo
toxicity

Chemical structure DTA

1 Active Toxic Feature present Target

0 Inactive Non-toxic Feature not present Not target

one drug with that ADE); N is the number of features; and α is the weighting factor,
which is set to 1 in all the models described here. A high WFS score indicates a
strong potential for ADE.

WFS =
∑

log(pi )

min(log(pi )) × (αNC−M + NM∩C)
(1)

For eachmodel, compoundswere randomly split into twogroups of approximately
equal sizes, with one used for training and the other for testing. Randomization was
conducted 100 times to generate 100 different training and test sets to evaluate the
robustness of the models. Model performance was assessed by calculating the area
under the receiver operating characteristic (ROC) curve (AUC-ROC), which is a plot
of sensitivity [TP/(TP+FN)] versus (1-specificity [TN/(TN+FP)]) [25]. A perfect
model would have an AUC-ROC of 1 and an AUC-ROC of 0.5 indicates a random
classifier. The random data split and model training and testing were repeated 100
times, and the average AUC-ROC values were calculated for each model.

14.3 Results/Case Studies

14.3.1 Modeling Tox21 Data for In Vivo Toxicity Prediction

One of the Tox21 goals is to establish in vitro compound activity signatures that are
predictive of in vivo toxicity. To evaluate their utility in realizing this goal, the Tox21
10K data were applied to build predictive models for 72 in vivo toxicity endpoints of
mostly animal and some human origins [17]. Models were built using either the com-
pound structure (structure-based models) or assay activity (activity-based models)
self-organizingmap (SOM) clusters, or both (combinedmodels).Model performance
was measured by the area under the receiver operating characteristic (ROC) curve
(AUC-ROC) [25]. The premise for these models is that compounds sharing similar
in vitro signatures and/or structure features are likely to show similar in vivo effects.
There are five human toxicity endpoints, including standard Draize test for human
skin irritation, multiple dose toxicity data (TDLo) through oral exposure from human
females, human males, and humans (gender not specified), and reproductive toxicity
data (TDLo) through oral exposure from human females. The activity-based models
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Fig. 14.1 Performance
distribution of in vivo
toxicity prediction models
built with different datasets
measured by AUC-ROC

built for the human endpoints performed significantly better than the models of the
animal (mouse/rat/rabbit) toxicity endpoints. The compound structure-based models
showed overall better performance than the activity-based models with an average
AUC-ROC of 0.78 (Fig. 14.1), underlying the ongoing need to further expand the
battery of in vitro assays. However, the performance of the structure-based mod-
els did not show any species difference. Compared to the activity-based models,
the structure-based models performed significantly better for the mouse/rat/rabbit
toxicity endpoints, but not as significantly for the human toxicity endpoints. Com-
bining the compound activity and structure data resulted in significantly bettermodels
(average AUC-ROC of 0.84), than the models built with activity or structure alone
(Fig. 14.1). Similar to the structure-based models, the species difference between the
model performances disappeared.

14.3.2 Expanding Biological Space Coverage Improves
Human Toxicity Prediction

A subset of the Tox21 10K library is composed of approved drugs [20], and human
adverse effect data are publicly available for some of these drugs. To address the
issue of species differences and re-evaluate the utility of the Tox21 in vitro human
cell-based assay data, we collected adverse drug effect (ADE) data, a common man-
ifest of human toxicity, and rebuilt models to predict this type of toxicity [19]. For
comparison purposes, we also conducted the first meta-analysis to evaluate the per-
formance of animal in vivo toxicity data in predicting human adverse outcomes in
parallel with in vitro assay data [19]. Animal toxicity datasets do not seem to have
a clear advantage over human cell-based data in predicting human in vivo effects
based on these modeling results (Fig. 14.2). Models built with in vivo animal toxi-
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Fig. 14.2 Performance
distribution of human
adverse drug effect
prediction models built with
different datasets measured
by AUC-ROC

city endpoints performed moderately (average AUC-ROC = 0.56), similar to those
built with the in vitro assay data (average AUC-ROC= 0.55) for predicting ADEs in
human. This result again confirms that species differences, as well as data sparsity
and lack of consistency, limit the reliability of extrapolating animal in vivo toxicity
data to human in vivo effects.

Similar to the animal toxicity-basedmodels,mostmodels builtwith in vitro human
cell-based assay data did not show good predictive capacity of human ADEs either.
This low performance may be due to the limited biological space covered by the
current panel of Tox21 assays. Since many drugs in the 10K collection have target
and/or mechanism of action annotations available, we collected drug target annota-
tions (DTAs) from the literature (2370 DTAs) and combined themwith in vitro assay
data to build new models. These combined models showed remarkable improve-
ments in predictive performance with average AUC-ROC for human ADE predic-
tion increased from 0.55 to 0.67 (Fig. 14.2) [19]. In addition, we identified a small
subset of 58 DTAs that contributed the most to the prediction. Adding this set of 58
DTAs to in vitro assay data significantly improved the model performance, increas-
ing the average AUC-ROC to 0.63 for human ADE prediction (Fig. 14.2) [19]. This
result shows that data on just a small set of additional DTAs (2% of the entire 2370
DTA set) can expand the biological space coverage sufficiently to produce predictive
models of human toxicity when combined with in vitro assay data. While the entire
DTA set improved the model performance by 22–28% on average, the selected set of
58 DTAs alone improved the model performance, on average, by 15–18%. In other
words, 2% of the DTA information could account for ~70% of the improvement
in the predictive capacity of the models. Most of the 58 selected targets/pathways
are GPCR targets, which are important drug targets non-specific activity on which
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can lead to undesirable side effects and other liabilities [26]. CYP3A4 and CYP2D6
(the two most significant cytochrome P450 (CYP) isozymes among the CYP family
that are essential for drug metabolism) are also found within the set of 58 targets
[27]. This selected set of targets contains several metabolic pathways, a number of
cancer pathways, disease pathways, stress response pathways, and other signaling
pathways. Most of these targets/pathways, including the GPCRs and CYPs, are not
part of the current Tox21 suite of assays. This set of 58 targets can serve as a guide
for assay development in order to generate in vitro data that can better predict human
toxicity.

14.3.3 The Tox21 Data Challenge—New Methods for Data
Modeling

The high-quality concentration response datasets generated by the Tox21 program on
a wide spectrum of pathways and phenotypic toxicity endpoints provide a valuable
resource for predictive toxicity modeling. These data can not only serve as in vitro
signatures that could be used to predict in vivo toxicity endpoints [17, 19, 28–30] and
to prioritize chemicals for more in depth toxicity testing [31] that help to fulfill the
Tox21 goals, but also serve as a knowledge base to correlate chemical structures to
their biological activities for the QSAR (quantitative structure–activity relationship)
modeling community to build more robust models [24, 32]. There is no human
exposure and/or hazard data for 95% of the >80,000 chemicals registered for use in
theUSA to informsociety about their potential toxic effects [33]. In silico approaches,
such asQSARmodels that infer biological activity fromchemical structure similarity,
provide a viable alternative to fill in the experimental data gap [34, 35].

To encourage the mining and usage of the Tox21 data, NCATS launched the
Tox21 Data Challenge 2014 [36], to “crowdsource” data analysis by independent
researchers to obtain new models and methods that can predict the potential toxic-
ity of compounds by disrupting cellular and biochemical pathways using chemical
structure data. The Tox21 10K qHTS data from 12 assays, seven nuclear receptor
and five stress response pathway assays, were selected based on data quality and hit
rate for the challenge. The competition attracted 125 participants representing 18
different countries, with 378 model submissions from 40 teams received for final
evaluation.

The winning models all achieved >80% accuracy (Fig. 14.3). Several models
exceeded 90% accuracy. High-quality winning models serve as a confirmation of the
ability of computational approaches to provide meaningful predictions of toxicity
responses in terms of pathway disruption upon environmental compound exposure,
and also as a validation of the quality of datasets produced from the Tox21 qHTS
assays. Consensus models constructed by combining the individual models from all
participating teams resulted in improved predictive performance, with some outper-
forming the winningmodels, showing the wisdom of the crowd. The winningmodels
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Fig. 14.3 Tox21 Challenge
participant model
performances measured by
AUC-ROC. The winning
model for each subchallenge
assay is labeled with the
team name

as well as methods used by some other challenge participants have been published
in a special issue of the journal Frontiers in Environmental Science as Research
Topic “Tox21 Challenge to build predictive models of Nuclear Receptor and stress
response pathways as mediated by exposure to environmental toxicants and drugs”
[37]. A number of new methods, such as associative neural networks (ASNN) with
stratified bagging [38] and multi-tree ensemble (e.g., Random Forest, Extra Trees)
with assorted feature selection [39], were employed by the winning teams to achieve
high-performance models. In addition to the traditional machine learning methods,
the grand challenge winning team applied novel Deep Learning [40] techniques to
their winning models [41].

All winning models, or better performing consensus models, can be applied in
parallel to establish activity/toxicity profiles for data poor environmental chemicals
to obtain an estimate of their toxicity potential in a matter of hours of computational
time. These computational models could become decision-making tools for gov-
ernment agencies in determining which environmental chemicals and drugs are of
the greatest potential concern to human health. Chemicals estimated to have a high
potential for toxicity, which would be a much smaller number, could be prioritized
for experimental evaluation and validation. Combining these computational models
with existing experimental data [7, 42] will make chemical prioritization more time
and cost-efficient.
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14.4 Discussion/Notes

The Tox21 10K collection has been screened against over 50 assays yielding high-
quality datasets. When applied to predicting in vivo toxicity, models built with the
current set of Tox21 assay activity profiles showed reasonable but less than ideal
performance for most in vivo toxicity endpoints and appeared to be less predictive
than the models built with chemical structures [17]. On the other hand, the assay
data-based models performed markedly better in predicting human toxicity, though
just a few endpoints, than animal toxicity, whereas the structure-based models did
not show this species selectivity. As all of the Tox21 assays screened so far are cell-
based assays constructed from human cells or cell lines, species difference may be a
significant contributing factor to the less than ideal performance of the activity-based
models on predicting animal toxicity endpoints. Newdrugs that passed animal testing
are often known to fail in human clinical trials because of lack of effect or unexpected
toxicity [43]. Other studies also showed that animal data only predicted human
outcomes approximately half of the time [44]. Our analysis revealed that animal
toxicity-based models did not perform significantly better than assay activity-based
models in predicting human adverse drug effects, providing further evidence for this
species-related issue [19]. This exemplifies the need to have in vivo human toxicity
data, i.e., clinical toxicity data presently not readily available to the public, in order
to better assess the predictive value of the human in vitro assay data. Nevertheless,
combining activity data with structure information significantly improved the model
performance for most of the in vivo endpoints, which served as a validation of
the value of the in vitro assay data when applied to in vivo toxicity prediction. The
model performance in addition highlighted the importance of data quality. The Tox21
in vitro qHTS data showed good reproducibility (Table 14.1) [17]. The in vivo data
used in modeling were also evaluated for reproducibility, and a significant positive
correlation was found between the reproducibility of the in vivo endpoint and the
performance of the model built for that endpoint, suggesting that the performance of
in vivo toxicity prediction models could be further improved if better quality in vivo
data were available.

As the current Tox21 assays focused primarily on nuclear receptor signaling and
stress response pathways, all aspects of biology involved in toxic response are not
covered sufficiently, indicating the need to expand the coverage of the biological
space by including assays that target additional pathways relevant for toxicity. As
surrogates of assay data, adding drug target information significantly improved the
performance of Tox21 in vitro assay data-based models in predicting human ADEs
[19]. These DTAs have good coverage of the drug target space known in the literature
and can be considered validated experimental or assay data, and thus produced good
predictivemodels evenwith a small selected subset that provides sufficient expansion
of the biological space. In addition to limited target space coverage, the current
assay data used for modeling is primary HTS data without further validation and
thus undoubtedly confounded with noise and assay artifacts. These results again
highlight the importance of data quality and selecting the right assays. ValidatedDTA
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data seem to be the best choice for ADE or human in vivo toxicity prediction. The
DTA-based models, however, cannot be applied to predict new compounds without
such annotations available. It is therefore important to generate high-quality assay
data with good coverage of the biological space and validation of these datasets.

14.5 Conclusions and Future Directions

The Tox21 program is a multiagency federal collaboration to advance in vitro toxi-
cological testing in the twenty-first century. During phase II, the production phase, a
battery of in vitro assayswith target-specific andmechanism-based readouts has been
developed, validated, and adapted to a quantitative high-throughput screening plat-
form. The Tox21 10K compound collection has been successfully screened against
a panel of over 50 nuclear receptor and stress response pathway assays, generating
over 85 million publicly available data points as a rich resource for toxicology.

These high-quality datasets have proven instrumental in identifying mechanisms
of compound toxicity and developingmodels for predicting in vivo toxicity response.
While in vitro assay data alone showed limited predictive power of adverse human
effects, complementing the biological space coverage with additional targets, in the
continuation of the Tox21 program, showed promise to significantly improve the
performance of the assay data-based models resulting in robust models for human
toxicity prediction. All results provide rich datasets to researchers for further data
mining, generation of new hypotheses, and developing new methods for activity
modeling. The predictive computational models generated from these high-quality
datasets can help shed light on the potential of using in vitro assays as an alternative
approach for assessing chemical toxicity.

References

1. NTP (2014) Current directions and evolving strategies
2. Collins FS, Gray GM, Bucher JR (2008) Toxicology. Transforming environmental health pro-

tection. Science 319(5865):906–907
3. Kavlock RJ, Austin CP, Tice RR (2009) Toxicity testing in the 21st century: implications for

human health risk assessment. Risk Anal 29(4):485–487 (Discussion 492–487)
4. NRC (2007) Toxicity testing in the 21st century: a vision and a strategy. In: Council NR (ed),

The National Academies Press, Washington, DC
5. Tice RR, Austin CP, Kavlock RJ, Bucher JR (2013) Improving the human hazard characteri-

zation of chemicals: a Tox21 update. Environ Health Perspect 121(7):756–765
6. PubChem (2013) Tox21 phase II compound collection [updated 2013; cited 4 Dec 2013].

Available from http://www.ncbi.nlm.nih.gov/pcsubstance/?term=tox21
7. NCATS (2016) Tox21 data browser [cited 2016]. Available from https://tripod.nih.gov/tox21/
8. Attene-Ramos MS, Miller N, Huang R, Michael S, Itkin M, Kavlock RJ, Austin CP, Shinn

P, Simeonov A, Tice RR, Xia M (2013) The Tox21 robotic platform for the assessment of
environmental chemicals—from vision to reality. Drug Discov Today 18(15–16):716–723

http://www.ncbi.nlm.nih.gov/pcsubstance/?term=tox21
https://tripod.nih.gov/tox21/


14 Predictive Modeling of Tox21 Data 295

9. Hsu CW, Zhao J, Huang R, Hsieh JH, Hamm J, Chang X, Houck K, Xia M (2014) Quantitative
high-throughput profiling of environmental chemicals and drugs that modulate farnesoid X
receptor. Sci Rep 4:6437. https://doi.org/10.1038/srep06437

10. Huang R, Sakamuru S, Martin MT, Reif DM, Judson RS, Houck KA, Casey W, Hsieh JH,
Shockley KR, Ceger P, Fostel J, Witt KL, Tong W, Rotroff DM, Zhao T, Shinn P, Simeonov A,
Dix DJ, Austin CP, Kavlock RJ, Tice RR, Xia M (2014) Profiling of the Tox21 10K compound
library for agonists and antagonists of the estrogen receptor alpha signaling pathway. Sci Rep
4:5664. https://doi.org/10.1038/srep05664

11. Huang R, Xia M, Cho MH, Sakamuru S, Shinn P, Houck KA, Dix DJ, Judson RS, Witt
KL, Kavlock RJ, Tice RR, Austin CP (2011) Chemical genomics profiling of environmental
chemical modulation of human nuclear receptors. Environ Health Perspect 119(8):1142–1148

12. Lynch C, Zhao J, Huang R, Kanaya N, Bernal L, Hsieh JH, Auerbach SS, Witt KL, Merrick
BA, Chen S, Teng CT, Xia M (2018) Identification of estrogen-related receptor alpha agonists
in the Tox21 compound library. Endocrinology 159(2):744–753

13. Lynch C, Sakamuru S, Huang R, Stavreva DA, Varticovski L, Hager GL, Judson RS, Houck
KA, Kleinstreuer NC, Casey W, Paules RS, Simeonov A, Xia M (2017) Identifying environ-
mental chemicals as agonists of the androgen receptor by using a quantitative high-throughput
screening platform. Toxicology 385:48–58

14. Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin
CP, Xia M (2015) Profiling of the Tox21 chemical collection for mitochondrial function to
identify compounds that acutely decrease mitochondrial membrane potential. Environ Health
Perspect 123(1):49–56

15. Nishihara K, Huang R, Zhao J, Shahane SA, Witt KL, Smith-Roe SL, Tice RR, Takeda S, Xia
M (2015) Identification of genotoxic compounds using isogenic DNA repair deficient DT40
cell lines on a quantitative high throughput screening platform. Mutagenesis 31(1):69–81

16. Witt KL, Hsieh JH, Smith-Roe SL, Xia M, Huang R, Zhao J, Auerbach SS, Hur J, Tice
RR (2017) Assessment of the DNA damaging potential of environmental chemicals using
a quantitative high-throughput screening approach to measure p53 activation. Environ Mol
Mutagen 58(7):494–507

17. Huang R, Xia M, Sakamuru S, Zhao J, Shahane SA, Attene-Ramos M, Zhao T, Austin CP,
Simeonov A (2016) Modelling the Tox21 10K chemical profiles for in vivo toxicity prediction
and mechanism characterization. Nat Commun 7:10425

18. PubChem (2016) Tox21 phase II data 2016 [cited 16 Nov 2013]. Available from http://www.
ncbi.nlm.nih.gov/pcassay?term=tox21

19. Huang R, Xia M, Sakamuru S, Zhao J, Lynch C, Zhao T, Zhu H, Austin CP, Simeonov A
(2018) Expanding biological space coverage enhances the prediction of drug adverse effects
in human using in vitro activity profiles. Sci Rep 8(1):3783

20. Huang R, Southall N, Wang Y, Yasgar A, Shinn P, Jadhav A, Nguyen DT, Austin CP (2011)
The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs
enabling repurposing and chemical genomics. Sci Transl Med 3(80):80ps16

21. Huang R (2016) A quantitative high-throughput screening data analysis pipeline for activity
profiling. In: Zhu H, Xia M (eds) High-throughput screening assays in toxicology. Methods in
molecular biology, vol 1473. Humana Press

22. Wang Y, Huang R (2016) Correction of microplate data from high throughput screening. In:
Zhu H, Xia M (eds) High-throughput screening assays in toxicology. Methods in molecular
biology, vol 1473. Humana Press

23. Kohonen T (2006) Self-organizing neural projections. Neural Networks Official J Int Neural
Network Soc 19(6–7):723–733

https://doi.org/10.1038/srep06437
https://doi.org/10.1038/srep05664
http://www.ncbi.nlm.nih.gov/pcassay?term=tox21


296 R. Huang

24. Huang R, Southall N, Xia M, Cho MH, Jadhav A, Nguyen DT, Inglese J, Tice RR, Austin
CP (2009) Weighted feature significance: a simple, interpretable model of compound toxicity
based on the statistical enrichment of structural features. Toxicol Sci 112(2):385–393

25. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a fundamental
evaluation tool in clinical medicine. Clin Chem 39(4):561–577

26. Allen JA, Roth BL (2011) Strategies to discover unexpected targets for drugs active at G
protein-coupled receptors. Annu Rev Pharmacol Toxicol 51:117–144

27. Lynch T, Price A (2007) The effect of cytochrome P450 metabolism on drug response, inter-
actions, and adverse effects. Am Fam Physician 76(3):391–396

28. Martin MT, Knudsen TB, Reif DM, Houck KA, Judson RS, Kavlock RJ, Dix DJ (2011)
Predictive model of rat reproductive toxicity from ToxCast high throughput screening. Biol
Reprod 85(2):327–339

29. Sipes NS, Martin MT, Reif DM, Kleinstreuer NC, Judson RS, Singh AV, Chandler KJ, Dix DJ,
Kavlock RJ, Knudsen TB (2011) Predictive models of prenatal developmental toxicity from
ToxCast high-throughput screening data. Toxicol Sci 124(1):109–127

30. SipesNS,Wambaugh JF, PearceR,Auerbach SS,WetmoreBA,Hsieh JH, ShapiroAJ, Svoboda
D, DeVitoMJ, Ferguson SS (2017) An intuitive approach for predicting potential human health
risk with the Tox21 10K library. Environ Sci Technol 51(18):10786–10796

31. Judson RS, Houck KA, Kavlock RJ, Knudsen TB, Martin MT, Mortensen HM, Reif DM,
Rotroff DM, Shah I, Richard AM,Dix DJ (2010) In vitro screening of environmental chemicals
for targeted testing prioritization: theToxCast project. EnvironHealth Perspect 118(4):485–492

32. Sun H, Veith H, Xia M, Austin CP, Tice RR, Huang R (2012) Prediction of cytochrome P450
profiles of environmental chemicals with QSAR models built from drug-like molecules. Mol
Inform 31(11–12):783–792

33. Judson R, RichardA, DixDJ, HouckK,MartinM,Kavlock R, DellarcoV, Henry T, Holderman
T, Sayre P, Tan S, Carpenter T, Smith E (2009) The toxicity data landscape for environmental
chemicals. Environ Health Perspect 117(5):685–695

34. Muster W, Breidenbach A, Fischer H, Kirchner S, Muller L, Pahler A (2008) Computational
toxicology in drug development. Drug Discov Today 13(7–8):303–310

35. Vedani A, Smiesko M (2009) In silico toxicology in drug discovery—concepts based on three-
dimensional models. Altern Lab Anim 37(5):477–496

36. Huang R, Xia M, Nguyen D-T, Zhao T, Sakamuru S, Zhao J, Shahane SA, Rossoshek A,
Simeonov A (2016) Tox21 challenge to build predictive models of nuclear receptor and stress
response pathways as mediated by exposure to environmental chemicals and drugs. Front
Environ Sci 3(85):1–9

37. Huang R, Xia M (2016) Research topic: Tox21 challenge to build predictive models of nuclear
receptor and stress response pathways as mediated by exposure to environmental toxicants and
drugs. Front Environ Sci 2954

38. Abdelaziz A, Spahn-Langguth H, Schramm K-W, Tetko IV (2016) Consensus modeling for
HTS assays using in silico descriptors calculates the best balanced accuracy in Tox21 challenge.
Front Environ Sci 4(2):1–12

39. Barta G (2016) Identifying biological pathway interrupting toxins using multi-tree ensembles.
Front Environ Sci 4:52

40. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444
41. Mayr A, Klambauer G, Unterthiner T, Hochreiter S (2016) DeepTox: toxicity prediction using

deep learning. Front Environ Sci 3(80):1–15
42. USEPA (2017) ToxCast data. Available fromhttp://www2.epa.gov/chemical-research/toxicity-

forecaster-toxcasttm-data
43. FDA (2004) Innovation or stagnation: challenge and opportunity on the critical path to new

medical products
44. Martic-Kehl MI, Schibli R, Schubiger PA (2012) Can animal data predict human out-

come? Problems and pitfalls of translational animal research. Eur J Nucl Med Mol Imaging
39(9):1492–1496

http://www2.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data


14 Predictive Modeling of Tox21 Data 297

Ruili Huang is the informatics group leader on the toxicity profiling team at the NIH National
Center for Advancing Translational Sciences (NCATS). Dr. Huang and her group contribute to
quantitative high-throughput screening (qHTS) data processing and interpretation, and develop-
ment and implementation of software tools and algorithms that facilitate NCATS’ data pipeline.
As part of the Tox21 program, her group focuses on evaluating qHTS assay performance for pri-
oritization, and analyzing compound toxicity profiling data to generate hypotheses on compound
mechanisms of toxicity and to build predictive models for in vivo toxicity. Dr. Huang received her
Ph.D. in chemistry from Iowa State University, trained as a computational biologist at the National
Cancer Institute, and joined NCATS in 2006.



Chapter 15
In Silico Prediction of the Point
of Departure (POD)
with High-Throughput Data

Dong Wang

Abstract Determining the point of departure (POD) is a critical step in chemical risk
assessment. Current approaches based on chronic animal studies are costly and time-
consuming while being insufficient for providing mechanistic information regarding
toxicity. Driven by the desire to incorporate multiple lines of evidence relevant to
human toxicology and to reduce animal use, there has been a heightened interest in
utilizing transcriptional and other high-throughput assay endpoints to infer the POD.
In this review, we outline common data modeling approaches utilizing gene expres-
sion profiles from animal tissues to estimate the POD in comparison with obtaining
PODs based on apical endpoints. Various issues in experiment design, technology
platforms, data analysis methods, and software packages are explained. Potential
choices for each step are discussed. Recent development for models incorporating
in vitro assay endpoints is also examined, including PODs based on in vitro assays
and efforts to predict in vivo PODs with in vitro data. Future directions and potential
research areas are also discussed.

Keywords High-throughput assays · Microarrays · Point of departure · Predictive
modeling · RNAseq · Toxicogenomics · Transcriptional profiling
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BMR Benchmark risk
BRBZ Bromobenzene
Cmax Peak plasma concentration
EPA Environmental Protection Agency
EU European Union
HCI High content imaging
HZBZ Hydrazobenzene
IVIVE In vitro-in vivo extrapolation
KDMM Kernel density mean of M-component
KE Key event
KER Key event relationship
LOAEL Lowest-observed-adverse-effect level
MDMB 4,4′-Methylenebis (N,Ndimethyl) benzenamine
MIE Molecular initiating event
MOA Mode of action
MSigDB Molecular Signature Database
NDPA N-Nitrosodiphenylamine
NOAEL No-observed-adverse-effect-level
POD Point of departure
REACH Registration, evaluation, authorization and restriction of chemical sub-

stances
RMA Robust Multi-array Average normalization method
RPKM Reads per kilobase per million mapped reads
TG-GATEs Toxicogenomics Project-Genomics Assisted Toxicity Evaluation Sys-

tem
TLR Target learning region
TRBZ 1,2,4-Tribromobenzene
TTCP 2,3,4,6-Tetrachlorophenol

15.1 Introduction

The determination of the point of departure (POD) is an essential step for chemical
risk assessment. Currently, the gold standard in POD estimation is chronic animal
dosing studies. Rats ormice are commonly used for this purpose, though other animal
speciesmight also be utilized. Though this approach has been essential for the current
toxicological testing regime, some shortcomings have been noted. One issue is that
high-dose animal testing often poorly predicts human toxicity. Evenwhen it provides
meaningful results, it is difficult to obtain a mechanistic understanding of biological
pathways leading to adverse effects from the organism level toxicological response
as measured by apical endpoints. As a result, there has been a strong interest in
incorporating multiple lines of evidence relevant to human toxicology in order to
generate a more detailed understanding of toxicological properties for chemical risk
assessment. Toxicogenomics and other high-throughput assays as well as in silico
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modeling approaches are expected to play critical roles for this purpose. This vision
was elaborated in several important publications, including two National Research
Council reports—Toxicity Testing in the 21st Century [1] and Using 21st Century
Science to Improve Risk-Related Evaluations [2].

The requirements regarding cost and speed provide another impetus to adopt high-
throughput assays and in silico methods. There is a huge backlog of chemicals to be
evaluatedby regulatory agencies around theworld.Chronic animal experiments alone
are too costly and time-consuming to deal with this problem efficiently. On the other
hand, genomics and high-throughput assays can potentially provide a comprehensive
picture of perturbed pathways, which can then be used to guide targeted testing. The
significant societal interest for reducing animal testing also calls for greater use of
innovative assay methods and in silico modeling approaches [3]. The same principle
has been advocated by the EU program for registration, evaluation, authorization and
restriction of chemical substances (REACH) program and EU Cosmetic Directive
[4].

Right now, it is very common to generate transcriptomic profiles for chemicals
under consideration using either microarrays or next generation sequencing tech-
nology (RNAseq) to provide insights for toxicological mechanisms. An example of
systematic data generation efforts is the Open TG-GATEs (Toxicogenomics Project-
Genomics Assisted Toxicity Evaluation System [5]), through which a large-scale
database consisting of data for gene expression and pathology from both animal-
tissue- and cell-line-based experiments on 170 compounds has been generated. It
provides an excellent source for exploring transcriptomic changes caused by some
important chemicals.

In the area of high-throughput in vitro assays, several large projects are ongoing to
develop high-throughput-cell-based- or cell-free tests for toxicological evaluations
and to establish data repositories with a diverse collection of chemicals. The Tox21
program and EPA’s ToxCast are two important projects in this field. Phase I of the
Tox21 program [6, 7] focused on more than 50 assays regarding cytotoxicity, mito-
chondrial toxicity, cell signaling, DNA damage, nuclear-receptor activation, among
others; with testing on more than 2800 chemicals completed. The ToxCast program
[8, 9] examines high-throughput assays covering a range of cell responses and over
300 signaling pathways [10]. More than 2000 chemicals have been evaluated in Tox-
Cast Phase I and Phase II. Both the Tox21 and ToxCast programs have generated
data in dose response format for chemical-endpoint combinations. Various models
for hazard identification and prioritization for screening have been developed using
these datasets [11–13].

Another important development is the coordinated effort to characterize adverse
outcome pathways (AOPs, [14, 15]). AnAOP links amolecular initiating event (MIE)
to the adverse outcome (AO) via a series of key events (KEs), which is specified by
key event relationships (KERs). Mechanistic information can thus be connected to
apical endpoints in a formalized, quality-controlled, and transparent way. As MIEs
and KEs are often associated with certain genes, proteins, or metabolites; AOPs
provide a valuable framework to describe the biological context for mechanistic
information regarding transcriptomic and in vitro assays. Here, it is also useful to
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mention another concept, mode of action (MOA), which is similar in principle to
AOP but with different emphasis [14]. Most discussions in this review are applicable
to both AOP and MOA, and both terms are used in the literature cited.

Thoughour knowledge aboutmechanistic information for toxicity is far fromcom-
plete, substantial efforts have beenmade to incorporate genomic and high-throughput
assays into risk assessment with some notable successes. In this review, wewill focus
on the problem of obtaining estimates for PODs with genomic and high-throughput
assay endpoints. Compared to hazard identification, determining the POD requires
the characterization of the dose response relationship regarding the chemical under
evaluation. If the dose response experiment has been performed under settings differ-
ent from the targeted POD (e.g., in vitro assays relative to in vivo PODs), then there
is the added question how to translate the concentration between different settings.
For this, using transcriptomic data to infer in vivo POD with the same animal tissue
is the most straightforward. The seminal paper by Thomas et al. [16] pioneered the
strategy of using the most sensitive pathways, which has been further studied by a
number of research groups. In the next section, we will review current methods for
inferring in vivo PODs with transcriptomic data from the same animal tissues. PODs
derived from in vitro assays will be then discussed, followed by a review of recent
work using in vitro assay endpoints to predict in vivo PODs. We will conclude with
some general discussions. Due to the size of the literature in this field, we will not
cover every aspect of in silico modeling of PODs in detail. Rather, a general outline
will be provided regarding the most often used approach in this area. Though the
references cited do not constitute a complete list of relevant literature, readers can
use them as a starting point for further reading.

15.2 Infer In Vivo PODs with Transcriptomic Data
from the Same Tissues

Inferring the in vivo PODs with transcriptomic profiles from the same target tissue
(usually from rats ormice) for apical endpoints is themostmature approach discussed
in this review. Conceptually, a toxic chemical will trigger expression changes that
underpin both direct and indirect toxicity responses. There exists significant literature
comparing transcriptionally derived PODs with PODs based on apical endpoints.
The general finding is that transcriptional PODs are usually consistent with apical-
endpoint-based values. Since the work of Thomas et al. [16], a number of authors
have proposed variations with this approach. To summarize these ideas, we will first
review the approach of Thomas et al. [17] as an example to illustrate various steps
taken in this type of studies. Then, we will discuss in detail important considerations
and possible choices in each step.



15 In Silico Prediction of the Point of Departure (POD) … 303

15.2.1 An Example from Thomas et al. [17]

Thomas et al. [17] discussed the temporal concordance between apical
and transcriptional PODs for several chemicals. The chemicals are 1,2,4-
Tribromobenzene (TRBZ), 2,3,4,6-tetrachlorophenol (TTCP), Bromobenzene
(BRBZ), 4,4′-Methylenebis (N,Ndimethyl) benzenamine (MDMB), Hydrazoben-
zene (HZBZ), and N-Nitrosodiphenylamine (NDPA). A specific strain and sex of
rat as well as route of exposure were chosen for each chemical. Rats were exposed
to each chemical at five dose levels for 5 days and 2, 4, or 13 weeks. Rats were
randomly assigned to each dose groups with ten rats per group. Liver is the target
tissue for TRBZ, BRBZ, TTCP, and HZBZ. Bladder is the target tissue for MDMB
while thyroid is the target tissue for NDPA.

After exposure, the target tissue was harvested for both histological evaluation
and transcriptional profiling. Typically, ten rats were evaluated per concentration per
time point for histological changes. RNAwas isolated from six rats per dose per time
points. After purification, RNA from five rats per concentration per time point with
the best quality was used for microarray analysis using the Affymetrix HT RG-230
PM Array Plate.

Transcriptional POD analysis. The transcriptional POD was determined with
the benchmark dose (BMD) approach. Genewise expression levels were analyzed
using BMDExpress (v. 1.41, [18]), which enables automatic model selection and
integration with biological pathways. Here, it is worthwhile to detail the modeling
parameters used in this study while different potential choices will be discussed in
the next subsection. In this study, the microarray data were log2 transformed and nor-
malized with the Robust Multi-Array Average normalization method (RMA [19]).
The normalized intensity values were then fit into four different dose-response mod-
els with BMDExpress: linear, two-degree polynomial, three-degree polynomial, and
power models. The BMD was calculated as the dose where the estimated response
is 1.349 times the standard deviation of the response at dose zero. A statistical lower
bound estimate of a confidence interval for the BMD (BMDL) was also derived. To
select a single model for POD determination, the likelihood ratio test (for nested
models: linear, 2-degree polynomial, 3-degree polynomial) and the Akaike infor-
mation criterion (AIC) were used. The best fitting model was used to calculate the
BMD and BMDL. To avoid the effect of probe sets with poorly fitting models, it
was further required that the BMD value to be lower than the highest dose and the
goodness-of-fit p-value <0.01.

Once the BMD and BMDL were calculated for each probe set, they were aggre-
gated at the pathway level. Probe sets were mapped to unique genes. Those mapped
to multiple genes were removed from analysis. For genes represented by more than
one probe set, BMDs and BMDLs were averaged to derive values for the gene.
Gene identifiers were matched to pathways using the GeneGo Metacore database.
Pathways with fewer than five genes with BMDs of required quality were removed
from analysis. Median values for BMDs and BMDLs for each pathway were used
as pathway level values.
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Comparison to PODs derived from apical endpoints. As the focus of this review
is on genomic and high-throughput assays, POD analysis using apical endpoints will
not be discussed in detail. For more information, readers can refer to [17] and the
references therein. In general, the transcriptional BMDs based on the most sensitive
pathways are quite consistent with apical BMD values (Fig. 15.1). The difference
is less than twofold on average. The transcriptional BMDs are also relatively stable
over different time points, though the most sensitive pathways are not consistent
across time points.

The results reported in [17] are typical for studies comparing transcriptome-based
PODswith the in vivo counterpart. As the same tissues are used both for RNA extrac-
tion and pathological evaluations, the PODs are directly comparable. A number of
studies have reported good concordance between transcriptional PODs and in vivo

Fig. 15.1 Relationship between BMD values for noncancer apical endpoints and transcriptional
BMD values for the most sensitive signaling pathway in [17] at a 5 days, b 2 weeks, c 4 weeks,
and d 13 weeks of exposure. Data points are colored based on the target tissue. The black line
dissecting the graph indicates equal apical and transcriptional BMD values. The red lines represent
tenfold difference between the BMD values. This figure is adapted from [17] with permission from
Toxicological Sciences, Oxford University Press; courtesy of Society of Toxicology
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PODs using the most sensitive pathway approaches. However, different choices can
be made for both experimental and modeling aspects for obtaining transcriptional
PODs. Researchers should consider carefully how to proceed with these types of
studies based on a number of considerations. In the next subsection, we will sum-
marize some important issues to consider when inferring PODs from transcriptomic
data.

15.2.2 Important Issues for Inferring PODs
from Transcriptomic Data

After theworkofThomas et al. [16], a number of researchers haveproposedvariations
to their approach. Though some systematic comparisons have been carried out and
recommendations are given (e.g., [20]), a consensus has not been reached on all
issues. In this review,we do not try to give comprehensive guidance for every question
that might arise from a study. Rather, we will present a list of important issues and
possible choices for solutions. Fortunately, experience so far in this field suggests
that reasonable results can often be reached via different variations in approaches.

Experiment designs and technology considerations. Principles for designing dose
response experiments aimed at determining PODs are well known. Though multiple
approaches exist for determining PODs [e.g., lowest-observed-adverse-effect lev-
els (LOAELs), no-observed-adverse-effect-levels (NOAELs)], generally the BMD
approach is used for transcriptional PODs. The advantage of the BMD approach is
that it can utilize all data points to obtain more stable results [21]. To accurately
model the BMD, it is ideal to have doses covering the whole range of the dose
response curve. However, since there are thousands of genes, it is impractical to
expect the doses are ideal for modeling all genes. Usually, the doses are chosen
based on knowledge about apical endpoints.

Besides doses, studies reported so far often include samples taken at multiple time
points after the dosing started. This helps shed light on whether the transcriptional
pattern changes with time. Reported studies show that the transcriptional PODs tend
to be relatively stable even if the most sensitive pathways are not in a duration of
several weeks. Considering the high cost associated with long-dosing periods, it is
thus reasonable to focus on short-dosing periods (in a matter of days) when budget
is limited. Due to cost considerations, the number of animals evaluated per dose
per time point for transcription is often small (as low as three). It is suggested that
more emphasis on the number of doses over the sample size at each dose might be
preferable [22] when operating under budget constraints.

Another important factor to consider is technology.Thoughmost studies published
so far have used microarrays (usually from Affymetrix), RNAseq is expected to
become more popular due to decreased cost and the improvement in quality. In the
broad area of transcriptional profiling, RNAseq has been shown to provide higher
precision, a great dynamic range, and the ability to detect novel transcripts. But
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as RNAseq results in read count data rather than fluorescence intensity, different
processing and normalization procedures will be required relative to microarrays.
From studies done so far, RNAseq data can be used to model transcription-based
PODs (e.g., [23]). Though the BMD value can be quite different between whether
it is based on RNAseq or microarrays at the gene and pathway level, the PODs
from most sensitive pathways are usually consistent [24]. As more studies based on
RNAseq become available, we should have deeper appreciation of the strengths and
special characteristics for RNAseq in the context of POD modeling. In this review,
we will focus more on microarray data due to its usage in the majority of studies.
We will mention specific aspects of RNAseq data when needed.

Data processing. As common for high-throughput data analysis, extensive pre-
processing for both microarray and RNAseq data is usually needed before data can
be used for BMD modeling. As mentioned, Affymetrix GeneChip is the platform
of choice for most dose response microarray experiments. It is standard practice to
transform the intensity value for each probe to log2 scale and perform RMA normal-
ization. RMA has been reported to remove nonbiological effects between microar-
rays. Though other normalization methods exist for microarrays, they have not been
extensively applied in the transcriptional modeling of PODs. For RNAseq data, the
choice is not as clear. RNAseq experiments produce data as counts of short reads for
each gene (after alignment and mapping). Commonly used software for differential
expression analysis usingRNAseq oftenmodels the count data directly using Poisson
or negative binomial distributions. Popular software packages include edgeR [25],
DESeq [26], and others. ForBMDmodeling, however, it ismost convenient if the data
can be analyzed by BMDExpress [18], which we will discuss later. As BMDExpress
was originally developed for microarray data, this means transforming the RNASeq
read count to a continuous variable, similar to microarray intensity measurement.
One commonly used approach is to calculate reads per kilobase per million mapped
reads (RPKM) followed by log2 transformation. Other methods like kernel density
mean ofM-component (KDMM) [24] have also been recommended.Withmore dose
response experiments being carried out with the RNAseq technology, we should gain
a better understanding of the appropriate data processing approaches in this setting.
Once the transformation has been performed, the quantities like log-transformed
RPKM are generally treated the same way as microarray intensity readings in dose
response modeling.

ModelingBMDs (BMDLs) at the gene level.For each gene, the normalized expres-
sion level from microarrays or RNAseq can be used to derive a gene-level transcrip-
tional BMD (BMDL) as other continuous endpoints like organ weight. A general
discussion on benchmark calculations for continuous data can be found in [27].
The BMD is defined as the dose where the fitted dose response curve exceeds the
background noise level seen in control samples. As there are usually only a limited
number of doses tested, often several different models can fit the data reasonably
well. Commonly used models are linear, polynomial models of different degrees,
exponential, and Hill models. The preferred model can be selected using statistical
criteria, while some researchers advocate averaging results from multiple models.
Given that there are thousands of genes, performing model fitting and subsequent
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pathway analysis can require significant efforts. Fortunately, this difficulty is allevi-
ated by the availability of BMDExpress [18], which automated much of the work of
gene-level modeling and subsequent analysis.

Since its introduction, BMDExpress has been widely adopted for modeling tran-
scriptional BMDs. With further development by a team led by Scott S Auerbach of
National Toxicology Program, BMDExpress 2.0 has been released with enhance-
ments (https://github.com/auerbachs/BMDExpress-2/wiki). The work of Thomas
et al. [17] described above provides a typical workflow of using BMDExpress. The
user has the option to filter genes according to some criteria of differential expression
(e.g., p-values fromANOVA). If this is to be done, the threshold should be sufficiently
low in order not to exclude genes with real signal. The BMD is usually set as the dose
where response exceeds the baseline level by a value of some constant times the stan-
dard deviation (s.d.) from the control samples. Usually, 1 s.d. or 1.349 s.d. are used,
see [27] for explanation with regard to the relationship with benchmark risk (BMR).
BMDExpress can fit several commonly used dose response models. Especially with
the version 2.0, users can choose from linear, 2–4-degree polynomial, 2–5-parameter
exponential, power, and Hill models. If only nested models are chosen (e.g., linear
and polynomial models), the likelihood ratio test can be used to choose the preferred
model; otherwise, the model with the lowest AIC is preferable. Once the preferred
model is chosen, the probeset-wise BMD (BMDL) can be determined.

As BMDExpress was developed for microarray data, the probeset level results
can be automatically mapped to gene identifiers. For RNAseq data, one will need to
obtain read counts at the gene level and perform normalization as discussed before.
Then, data can be fed into BMDExpress. Though good results have been reported
using this approach (e.g., [23]), Black et al. [24] note different behaviors for genes
with high expression and low expression levels. This is likely due to the well-known
mean–variance relationship of read count data (genes with highmean expression lev-
els tend to have high variance). Going forward, it might be sensible to incorporate the
voom approach (in the limma Bioconductor package, [28]) in dose response mod-
eling by introducing precision weights based on the predicted variance. Of course, a
significant amount of work will be involved to produce a software package for easy
practical use.

BMD modeling at the pathway or gene category level. The expression level for
a single gene is notoriously noisy. Thus, integrating information from a biological
pathway or gene category is more preferable in deriving the PODs with transcrip-
tion data. This obviously leads to the question of how to define pathways or gene
categories. Currently, there are a number of sources providing extensive listings of
biological pathways or gene categories, mostly compiled through literature reviews
to link geneswith biological functions. BMDExpress 2.0 provides analysiswithGene
Ontology (http://www.geneontology.org/), Reactome (http://www.reactome.org/), or
categories defined by the user. In published studies, Ingenuity Pathways (QIAGEN),
the Molecular Signature Database (MSigDB) [29], and other sources have also been
used. Usually, only pathways with a certain number of genes (e.g., >5) with BMDs
meeting quality requirements will be analyzed. Though it is common to use the

https://github.com/auerbachs/BMDExpress-2/wiki
http://www.geneontology.org/
http://www.reactome.org/
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median or mean BMD of genes in the pathway to represent the pathway-wise BMD,
other quantiles or summary statistics can also be used.

Determining the transcriptional PODs. After pathway-wise BMDs have been
calculated, one needs to summarize them into a single value for the POD. The first
question is whether all pathways in the consideration (use themost sensitive pathway
or some other quantiles) or only pathways relevant to an AOP should be used. If there
is solid knowledge linking the chemical under consideration with one or more AOPs,
consideringpathwaysor gene sets associatedwith the relevantAOPswill reducenoise
and anchor the transcriptional PODs with specific biological mechanisms, which
may lead to more accurate estimate. However, for a large number of chemicals, the
existing knowledge is not sufficient to clearly identify relevant AOPs; though it might
be possible to use transcriptomic data to construct biologically relevant pathways and
potential AOPs (see [30–32] and others for more discussion) while estimating PODs.
The alternative is to use an AOP-independent approach (e.g., relying on the most
sensitive pathway), which can give valuable information on PODs without detailed
knowledge of AOPs. This is especially true if the toxicity effects of the chemical are
broad and disturbing many different pathways.

Early efforts using theAOP-independent approach have focused on themost sensi-
tive pathways, i.e., using the lowestBMDorBMDL fromall pathways (after filtering)
as the transcriptomic POD. Though this approach has been shown to be successful
with a number of studies, other alternatives can also be considered. Farmahin et al.
[20] compared 11 different approaches for deriving transcriptomic PODs with dif-
ferent criteria for gene and pathway selection. They concluded that three approaches
have the best performance: (1) using the 20 significantly enriched pathways with the
lowest BMDs, (2) using the 20 genes with the largest fold changes relative to con-
trols, and (3) using the 20 genes that contribute to the greatest number of enriched
pathways. Reassuringly, other approaches, including the most sensitive pathway
approach, usually also give reasonable results. From the author’s experience, the
most sensitive pathway approach is sometimes unstable when the number of time
points and sample size is small, and the tenth percentile of all pathways can give
good results. Thus, trying multiple approaches in determining the POD should be
beneficial.

15.3 PODs Based on In Vitro Assays

Discussions so far have focused on transcriptional profilingwith the same tissues used
to derive apical endpoints. This provides themost direct comparisonof transcriptional
PODs with the apical endpoint based counterpart. On the other hand, a significant
amount of data has become available using in vitro assays. The ToxCast project
(including Tox21 assays) generated data for a diverse array of chemicals using a dose
response format that usually involves a range of doses in triplets. ToxCast provides
a specialized software package (the R package tcpl, [33]) to fit dose response curves
with constant, Hill, or gain-loss models. It is therefore feasible to performBMD-type
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modeling with ToxCast or Tox21 data, see [34] for an example. The POD derived
this way is concerning the dose in an in vitro assay environment. Shah et al. [35]
studied the use of ToxCast data to reconstruct dynamic cell-state trajectories and
estimate the in vitro POD. In this study, the authors evaluated the effects of 967
chemicals in multiple doses on HepG2 cells over a 72-h exposure period using high
content imaging (HCI). For each chemical, HCI endpoints including various protein
readings, mitochondrial properties, cell cycle indicators, and other cell properties
were used to define a cell-state trajectory. It is posited that if the effect of the chemical
is not intolerable, the cells tend to recover to their original states after a period of
perturbation. Tipping points were identified as concentration-dependent transitions
in system recovery, beyond which the potential for recovery will be lost. The authors
argue that the tipping point can serve as a point of departure to provide information
about the effects of new chemicals and about critical concentrations at which cellular
responses fail to recover to the pre-perturbation levels. This is potentially useful for
screening a large number of chemicals for prioritization.

15.4 Predict In Vivo PODs with In Vitro Assays

Though defining in vitro PODs as in [35] has significant potential for prioritization
in screening for a large number of chemicals, it is often of interest to predict in vivo
PODs. If this can be done directly with in vitro assay data, it will greatly advance
the vision of Tox21. To do this, however, one needs to relate the concentration
used in vitro assays to the oral dose in animals or humans. One approach is to use
in vitro-in vivo extrapolation (IVIVE) techniques based on toxicokinetics. Sipes
et al. [36] discussed a strategy in relating the peak plasma concentration (Cmax)
to the half-maximal effective concentration (AC50) from in vitro assays to assess
chemical–biological interactions. The Cmax value can be related to oral dose with
models for toxicokinetics, which is implemented in the R package HTTK [37]. In
principle, a similar approach can be applied with in vitro PODs instead of AC50,
though it has not been attempted.

Wang [34] took a predictive learning approach to this problem, i.e., using a large
number of in vitro assay endpoints to infer the in vivo point of departure. In this paper,
a robust learning approachwas developed to infer the in vivo point of departure (POD)
with in vitro assay endpoints from ToxCast and Tox21 projects. First, the in vitro
dose response data were utilized to derive the in vitro PODs for several hundred
chemicals following the BMD approach. These were combined with in vivo PODs
from ToxRefDB regarding the rat and mouse liver to build a high-dimensional robust
regression model. The advantage of this approach is the separation of chemicals into
a majority, well-predicted set; and a minority, outlier set. Prominent relationships
will then become apparent in the majority set (Fig. 15.2). For both mouse and rat-
liver PODs, over 93% of chemicals have inferred values from in vitro PODs that
are within ±1 of the in vivo PODs on the log10 scale (the target learning region,
or TLR) and with R2 values of 0.80 (rats) and 0.78 (mice) for these chemicals.
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Fig. 15.2 Relationship between rat-liver PODs inferred from in vitro assays and those based on
apical endpoints in [34]. The x-axis is the fitted value with robust learning. The y-axis represents
the in vivo PODs from rat-liver chronic studies. Both axes are on the log10 scale. The solid line at
the diagonal is the identity line. The two dashed lines indicate the region where the prediction is
within ±1 of the in vivo PODs. This figure is adapted from [34] with permission from Archives of
Toxicology, Springer

This is comparable with extrapolation between related species (mouse and rat) with
in vivo PODs, which results in 93% chemicals within the TLR and the R2 being 0.78.
Chemicals in the outlier set tend to also display large discrepancies between mouse
and rat. This demonstrates that predictive modeling can provide a valuable route to
infer in vivo PODs though allowance for a certain portion of outliers has to be made
due to the deficiency in the available data.

15.5 Conclusions

Though apical endpoints based on animal studies are still routinely required for
toxicological evaluations, there has been increased acceptance and demand to use
genomic toxicology to complement traditional approaches regarding POD determi-
nation. It has been confirmed in various studies that transcriptional profiles using
animal tissues after short-term exposure, when combined with suitable mathemati-
cal models, can provide consistent estimates regarding PODs. As discussed in this
review, there is a myriad of issues including experiment design, technology plat-
form, statistical filtering of features, BMD modeling, and pathway integration that
a researcher has to consider. Though the choice is not always clear cut, there are a
number of studies, some discussed in this paper, which provide reasonable guides
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on how to perform this type of study. Usually, multiple approaches will arrive at
PODs within ±1 of the apical-endpoint-based PODs on the log10 scale, which lends
confidence for using transcriptomic data.

A more ambitious and more difficult task is to utilize in vitro assay endpoints
to infer in vivo PODs. As shown in [34], the ToxCast data already provide valuable
information that can be used to build predictivemodels for this purpose.However, due
to the incompleteness in coverage of important toxicity pathways, some chemicals
have to be treated as outliers. Fortunately, more complete data sets may soon be
available. The Tox21 program is working to screen a large collection of chemicals
with a set of toxicologically relevant “sentinel” genes. The S1500+ sentinel gene
list has been created [38], containing 1500 genes designed to comprehensively cover
toxicologically relevant pathways by taking advantage of the co-expression patterns
between genes. Upon sufficient accumulation of data along these lines, there will
be opportunity to develop more powerful models to infer in vivo PODs with high-
throughput assays.
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Chapter 16
Molecular Modeling Method
Applications: Probing the Mechanism
of Endocrine Disruptor Action

Xianhai Yang, Huihui Liu and Rebecca Kusko

Abstract The potential endocrine-related detrimental effects of endocrine-
disrupting chemicals (EDCs) on humans and wildlife are a growing worldwide con-
cern. The mechanism of action (MOA) of EDCs induced endocrine-related diseases
and endocrine dysfunction can be summarized as the interactions between EDCs and
biomacromolecules in endocrine system. Thus, insights into the endocrine-linked
MOA of EDCs with corresponding targets will pave the way for developing screen-
ing methods of EDCs, prioritizing, and constructing endocrine-related adverse out-
come pathways. To date, batteries of laboratory bioassays have been developed and
employed to distinguish whether EDCs activate/inhibit/bind to a target or not. How-
ever, such test methods poorly assess the underlying molecular mechanisms. Molec-
ular modeling methods are an essential and powerful tool in deciphering the mecha-
nism of endocrine disruptor action. In this chapter, several critical processes related
to performing the molecular modeling are described. Topics include preparing 3D
biomacromolecules and EDCs structures, obtaining and refining the EDC–biomacro-
molecule complex, and probing the underlying interaction mechanism. Among these
topics, we have emphasized revealing the underlying mechanism by analyzing bind-
ing patterns and noncovalent interactions and calculating binding energy. Lastly,
future directions in molecular modeling are also proposed.

Keywords Endocrine-disrupting chemicals (EDCs) · Mechanism of endocrine
disruptor action · Molecular modeling · Homology modeling · Molecular
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docking · Molecular dynamics simulation · Binding pattern · Noncovalent
interactions · Binding energy

Abbreviations

4′-HO-BDE 121 4′-HO-2,3′,4,5′,6-pentabrominated diphenyl ether
AOP Adverse outcome pathway
diBBPA Dibromobisphenol A
E Binding energy
Etotal Total binding energy
Eele Electrostatic energy
Evdw Van der Waals interaction energy
EADB Estrogenic Activity Database
ECHA European Chemicals Agency
EDCs Endocrine-disrupting chemicals
EDSP Endocrine Disruptor Screening Program
EDSP21 Endocrine Disruptor Screening Program in the twenty-first cen-

tury
ERα Estrogen receptors alpha
ERβ Estrogen receptors beta
hAR Human androgen receptor
hTTR Human transthyretin
LBD Ligand binding domain
logRBA Median relative binding affinity
MD Molecular dynamics
MIEs Molecular-initiating events
MOA Mechanisms of action
monoBBPA Monobromobisphenol A
NRs Nuclear hormone receptors
OECD Organization for Economic Co-operation and Development
PDB Protein Data Bank
PFHpA Perfluoroheptanoic acid
PFOS Perfluorooctane sulfonic acid
PPARγ Proliferator-activated receptor gamma
QM/MM Quantum mechanics/molecular mechanics
(Q)SAR (Quantitative) structure–activity relationship
RAAF Read-Across Assessment Framework
RMSD Root-mean-square deviation
SHBG Sex hormone-binding globulin
T4 Tetraiodothyronine
TBBPA 3,3′,5,5′-tetrabromobisphenol A
TRβ Thyroid receptor beta
TCBPA Tetrachlorobisphenol A
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triBBPA Tribromobisphenol A
UNEP United Nations Environment Programme
US EPA United States Environmental Protection Agency
WHO World Health Organization

16.1 Introduction

Since the 1990s, the scientific community, regulators, and the public have been
increasingly concerned by the harmful effects of endocrine-disrupting chemicals
(EDCs) on humans and wildlife [1]. The observed adverse effects include sup-
pression of gene expression or enzyme activities, alteration of protein concentra-
tions or hormones homeostasis, disruption of brain or immune system development,
reproductive dysfunction and/or hormone-dependent cancers, feminization effects or
demasculinization problems, and so on [2–6]. In response to this pressing issue, sev-
eral EDCs screening programs and national/international actions have been launched
and implemented in USA [7], European Union [8], China [9], Japan [10], Organi-
zation for Economic Co-operation and Development (OECD) [11], World Health
Organization (WHO) [12], and United Nations Environment Programme (UNEP)
[13, 14] since 1996. Clarification of the endocrine-linked toxic mechanism of action
(MOA) is needed to implement EDC screening programs and actions [15, 16].

To date, there are various mechanisms through which EDCs can exert their effects
on the endocrine system [17–20]: (a) impacting macromolecule regulatory function
in the hypothalamic-pituitary-gonad/thyroid/adrenal axis, (b) inhibiting hormone
synthesis-related enzymes, (c) disrupting hormone transport proteins, (d) activat-
ing/inhibiting hormone receptors, and/or (e) inhibiting hormone metabolism-related
enzymes. Thus, the endocrine-linked MOA of EDCs causing endocrine-related dis-
eases and endocrine dysfunction can be summarized as the interactions between
small molecules (toxicant) and biomacromolecule (target) [21, 22]. Furthermore,
the interaction between EDCs and biological targets was also the critical molecular-
initiating event (MIEs) of the endocrine-specific adverse outcome pathway (AOP)
[23, 24]. Thus, studying the interaction of EDCs with endocrine system targets (hor-
mone receptors, synthesis, and metabolism-related enzymes of hormones, hormone
transport proteins, and so on) will pave the way for developing screening methods,
prioritizing, and elucidating the endocrine-related AOP.

A variety of bioassays have been developed and used to test if a given EDC acti-
vates, inhibits, or binds to a target up to now [11, 18, 25]. However, current experi-
mental methods poorly probe the underlying molecular mechanisms. For example,
it is thought that compounds with common structural features exhibit and elicit
similar toxicological effects as well as share similar interaction mechanisms. As
shown in Fig. 16.1, the 4′-HO-2,3′,4,5′,6-pentabrominated diphenyl ether (4′-HO-
BDE 121) and 3,3′,5,5′-tetrabromobisphenol A (TBBPA) are structurally similar to
tetraiodothyronine (T4). In contrast, the structure of pentabromophenol, perfluoro-
heptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) is greatly different
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Fig. 16.1 Chemical structure of tetraiodothyronine (T4) and some human transthyretin disruptors

from that of T4. As expected, the experimental results documented that the binding
affinity of 4′-HO-BDE 121 and TBBPA to human transthyretin (hTTR) was similar
with that of T4 [26]. However, it was puzzling that the hTTR binding potency of
pentabromophenol was higher than that of T4 [26]. PFHpA and PFOS also exhib-
ited binding affinity to hTTR [27, 28]. Not only T4 mimics were potential hTTR
binders, but other structurally dissimilar binders exist too. Which compounds should
be considered as potential hTTR binders? Answering this question is paramount for
screening potential EDCs or prioritizing. Before answering this question, we need to
first discuss other questions, such as why does pentabromophenol have comparable
hTTR binding potency to T4? What is the underling binding mechanism between
EDCs and hTTR? It was difficult to clarify the underlying molecular mechanism by
employing aforementioned laboratory test methods only.

Computational toxicology methods have been an essential and powerful tool for
querying environmental endocrine-disrupting effects [11, 15, 25, 29, 30]. For exam-
ple, in order to implement the Endocrine Disruptor Screening Program (EDSP) in the
twenty-first century (EDSP21), the United States Environmental Protection Agency
(US EPA) has been moving toward computational models and high-throughput
screening assays to help prioritize and screen chemicals for endocrine activity [31].
When leveraged appropriately, computational toxicology methods can: (1) reveal the
interaction mechanism between EDCs and biomacromolecules, (2) fill the data gap
for EDCs on their endocrine-disrupting activity, (3) set priority and (4) screen. In
practice, the predictive methods used in this field could be crudely divided into two
basic types: toxicant-based (also called ligand-based) and target-based (also called
structure-based) [32].

The toxicant-based methods customarily derive a quantitative or qualitative rela-
tionship among various attributes (e.g., molecular descriptors and/or physicochem-
ical properties) of EDCs and a given biological targets activities (end points). In
this method, only toxicant structures are involved in modeling. To date, there is
extensive literature on endocrine activity modeling, e.g., the (quantitative) struc-
ture–activity relationship ((Q)SAR) models for nuclear receptors (NRs) [33–39],
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Fig. 16.2 Overall flow diagram of molecular modeling method

hormone transport proteins [40–42], steroidogenesis [43], and so on. Some predic-
tive models have even been integrated into existing software such as VEGA (https://
www.vegahub.eu/) and OECD QSAR Toolbox (https://www.qsartoolbox.org/) [44].
In addition, some EDC-related databases including Estrogenic Activity Database
(EADB) [45], EDCs DataBank [46], EDSP21 Dashboard (https://actor.epa.gov/
edsp21/), the potential endocrine disruptors list in Endocrine Disruption Exchange
(https://endocrinedisruption.org/), were also constructed. Different from the
toxicant-based methods, both the 3D structure of the interested biomacromolecule
and toxicant are involved in the modeling process of target-based methods [47, 48].
Figure 16.2 depicts an overall diagram of target-based modeling method.

In this chapter, we zoom in on methods to probe the mechanism of endocrine dis-
ruptor action by employing the target-based molecular modeling methods. Generally
speaking, there are four components. Parts one and two involve obtaining and prepar-
ing the 3D structure of target biomacromolecules and model compounds, respec-
tively. In part three, the biomacromolecule model compound complex is obtained.
During part four, the underlying binding mechanism of action is probed and target-
based virtual screening is performed. Among them, we have been put emphasis
on revealing the underlying mechanism by analyzing binding patterns, noncovalent
interactions, and binding energy.

https://www.vegahub.eu/
https://www.qsartoolbox.org/
https://actor.epa.gov/edsp21/
https://endocrinedisruption.org/
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16.2 Preparation of 3D Biomacromolecule Structures

There are two major sources for researchers to obtain 3D biomacromolecule struc-
tures in the endocrine system, i.e., selecting the crystal structure from various
databases or predicting the 3D structure from corresponding amino acid sequence.
Generally, various databases, e.g., Protein Data Bank (PDB, https://www.rcsb.org/)
[49] are the preferred sources for researchers to obtain their desired target structure.
However, there are many challenges and disadvantages in selecting the crystal struc-
ture of a biomacromolecule frompublic databases. If an inappropriate 3D target struc-
ture was selected during themolecular modeling, the accuracy and trustworthiness of
the modeling results will inevitably be affected. Recently, Yang et al. [50] proposed
six principles to guide appropriate crystal structure selection. The principles included
(1) species differences, (2) theMOA, (3)mutant amino acid residues, (4) protein chain
number, (5) the degree of structural similarity between the ligand in crystal structure
and the model compounds, and (6) others factors, e.g., the experimental pH condi-
tions of the crystal structure determined and resolution [50]. After considering the
aforementioned factors, appropriate 3D structure can be selected more successfully.

As it is difficult and time-consuming to determinate the crystal structures from
experimentalmethods such asX-ray crystallography and nuclearmagnetic resonance
for every target of interest, the available crystal structures of biomacromolecules are
unfortunately still limited. On the contrary, determination of the macromolecule
sequences is easier than structure determination. As of July 2018, the UniParc
database contained more than 221 million protein sequences (http://www.uniprot.
org/uniparc/). In contrast, as of July 2018 there were only 142,379 structures solved
experimentally in PDB. A huge gap between known annotated sequences and avail-
able 3D structures existed [51]. To bridge the gap between the demand for 3D
structures of biomacromolecules and limited experimental structures, computational
methods, e.g., homology modeling, protein threading, and ab initio methods can
be employed to predict the 3D structure of targets from corresponding amino acid
sequence [52–55]. Many tools could be used to perform this task, such as modeler
[56], Swiss-PdbViewer [57], and so on.

Before proceeding, the obtained 3D target structure should undergo treatment as
follows. Generally, the treatment steps include but are not limited to:

(1) Insert missing atoms in incomplete residues;
(2) Remove the ions, water molecules, and other substructures;
(3) Standardize the atom and/or residue names;
(4) Protonate or deprotonate the ionizable residues under given pH conditions;
(5) Find and define the binding sites. It deserves mentioning that some important

water molecules in the structure of targets should be kept. For example, it was
well documented that there were water molecules taking part in forming the
conserved hydrogen bond with Glu 353 and Arg 394 in the ligand-binding
domain (LBD) of estrogen receptors alpha (ERα) [58]. In this case, those water
molecules were recommended to be retained.

https://www.rcsb.org/
http://www.uniprot.org/uniparc/
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16.3 Preparation of the Molecular Structure of EDC
Molecules

The molecular structure of EDCs can be downloaded from various software or
databases such as PubChem (https://pubchem.ncbi.nlm.nih.gov/) and ZINC (http://
blaster.docking.org/zinc). For the compounds not contained in those sources, their
molecular structures must be drawn directly. Then, the possible ionization states can
be generated at normal physiological or experimental pH conditions. Lastly, their
molecular structures can be optimized by various methods.

16.4 Obtaining the EDC—Biomacromolecule Complexes

16.4.1 Performing Molecular Docking

As shown in Fig. 16.2, a key prerequisite for successful application ofmolecularmod-
eling to probe the binding mechanism lies in obtaining the toxicant–target complex.
The complex is a conformation demonstrating where (binding site location) and how
(binding orientation) the small molecule bound within the LBD of a given macro-
molecule. Undoubtedly, the experimental methods like NMR spectroscopy [59, 60]
are the most accurate methods to investigate toxicant–target interactions. The time
and cost limitations of NMR precipitate the need for alternative technologies.

Molecular docking is a powerful alternative technology for predicting the toxi-
cant–target complex [61–64]. Generally speaking, molecular docking places a given
ligand into the binding site of a given target. The molecular docking protocol usually
contains two components: a search algorithm and a scoring function [65]. The search
algorithms determine the precise ligand-binding site location and binding orienta-
tion, which also referred to as a “pose.” The scoring function addresses the question,
“how well does the ligand bind to the protein?” by ranking the pose. In the past
thirty years, many search algorithms and scoring functions were developed. Detailed
discussion about the search algorithms and scoring functions are reviewed elsewhere
[66, 67] and are not considered herein.

To date, more than 60 software and Web servers for docking are available [68],
e.g., Autodock [69] and GOLD [70]. Previous studies document that the predictive
performanceof the docking tools varies greatly between targets [62, 68]. It is therefore
difficult to readily conclude which tool is more appropriate than others for a given
modeling system. Thus, each given docking tools should be validated before use. In
practice, the target/ligand crystal structures are typically utilized for validation. After
extracting the 3D crystal ligand structure, it will be docked back into the binding site
of that target. Lastly, the root-mean-square deviation (RMSD) between the heavy-
atom positions of the crystal ligand and that of the predicted ligand is calculated [71].
If the RMSD value is <2 Å, the selected docking tool is considered reliable [61, 63].

https://pubchem.ncbi.nlm.nih.gov/
http://blaster.docking.org/zinc
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16.4.2 Refining the Complex

The biomacromolecule is conformationally altered during the binding process. For
example, the position of helix 12 in the human ER underwent a large rearrangement
when the ligand changed from an agonist to an antagonist [72]. Not accounting for
such structural changes during dockingmay prevent identification of the true binding
pose. Docking which fully considers target flexibility is very computationally expen-
sive. Instead, semi-flexible docking where the flexibility ligands are taken in account
while the protein is kept rigid is more commonly used to prepare the toxicant–target
complex.

To overcome this problem, molecular dynamics (MD) simulation or hybrid quan-
tum mechanics/molecular mechanics (QM/MM) simulation can further refine the
complex generated from docking [73–75]. MD simulation leverages classical molec-
ular mechanics force fields to predict particle motions as a function of time [76]. In
contrast, QM/MM simulation queries the site of interest (QM region) with quantum
mechanics. The rest of the system (MM region) is studied with classical molecular
mechanics force fields [77]. Those two provide detailed information on the confor-
mational changes and fluctuations of the molecules in the complex, and both are
now routinely employed to refine molecular structures, investigate the dynamics of
a given molecular system, and elucidate atomic-level interactions [78]. Various soft-
ware including AMBER [79], GROMACS [80], NAMD [81], CHARMM [82] could
be employed to refine the complex.

As described so far, the desired toxicant–target complex is prepared on the basis of
molecular docking and/or MD simulation or QM/MM simulation. Next, the types of
intermolecular interactions, bond distances, and binding affinities can be inferred and
used to reveal the underlying interaction mechanism between EDCs and endocrine
system targets.

16.5 Probing the Underlying Binding Mechanism of Action

16.5.1 Analyzing Binding Patterns

As stated above, the binding conformation informs the binding site location and
binding orientation of ligandswithin theLBDof a given target. Thus, by analyzing the
binding pattern, we can determine the dominant orientation and preferential binding
region for the functional groups in EDCs. Then, we would be able to further analyze
the binding conformation similarities and differences between endocrine hormone
and EDCs, and/or among the different EDCs. For example, by analyzing simulated
ligand conformations and hTTR crystal structures, we found that the ionized function
group (e.g. O−, COO−) in the ligand had a dominant orientation and pointed toward
the entry port of the binding site. However, no dominant orientation was observed
for the neutral form of the ionizable group [83, 84].
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Fig. 16.3 Schematic
diagram of hydrogen bond
and halogen bond

16.5.2 Analyzing Noncovalent Interactions

Noncovalent interaction formation is the intrinsic driving force for molecular recog-
nition between EDCs and endocrine system targets [85]. Detailed understanding
of those interactions is of vital importance to reveal the binding mechanism. The
reported noncovalent interactions included hydrophobic interaction, hydrogen bond,
halogen bond, electrostatic interaction or ionic interaction, and π interaction [86]. It
is important to note that not all noncovalent interaction types will be formed in every
system. In this case, a comprehensive noncovalent interaction analysis is required to
identify the dominant interactions for a given system.

(1) Hydrophobic interaction

Hydrophobic interactions arise from the close contact between lipophilic groups in a
ligand and nonpolar amino acid side chains in a target [87]. Hydrophobic interactions
are one of the most basic noncovalent interactions between a small molecule and its
target. In some cases, the hydrophobic interaction is the only dominant noncovalent
interaction [88, 89]. For example, Avvakumov et al. [90] reported that the binding
of non-steroidal ligands with sex hormone-binding globulin (SHBG) was governed
by hydrophobic interactions.

(2) Hydrogen bond

The hydrogen bond is another of themost common noncovalent interactions between
a small molecule and its target [88, 91]. A hydrogen bond is formed between an
electron acceptor (A=O, N, X) in one molecule and a hydrogen atom on an electron
donor (D = O, N, S) (Fig. 16.3a). The criteria for a hydrogen bond are:

(a) The distance between a hydrogen atom and an electron acceptor atom (dA···H)
is < their sum of van der Waals radii;

(b) The D-H···A angle is >135° [92].
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For many targets, there may be conserved hydrogen bonds. For example, three
residues involved in forming hydrogen bonds are particularly important for ligand
binding in ERα LBD, namely, Glu 353, Arg 394, and His 524. While in ERβ LBD,
the three residues were Glu 305, Arg 346, and His 475. Two residues (Gln 725
and Arg 766) formed conserved hydrogen bonds between the ligand and the human
progesterone receptor [93]. Forming the conserved hydrogen bonds network is the
critical factor triggering the subsequent active or inactive conformation transition
[94].

(3) Halogen bond

The halogen bond is a type of noncovalent interaction between a halogen atom (Cl,
Br, I) in one molecule and an electron donor (D = O, N, S) in another molecule
(Fig. 16.3b) [95]. The criteria for a halogen bond are:

(a) The distance between halogen atom and electron donor atom (dX···D) is < their
sum of van der Waals radii;

(b) The C-X···D angle is >140° [96].

It was recognized that halogen bond plays important roles in the molecular recog-
nition processes between organohalogens and target [91, 97, 98]. It has been reported
that many EDCs contained halogen moieties in their structure. For example, among
the 250 tested hTTR disruptors, 198 compounds (79%) were halogenated [99]. This
fact indicates that the hTTR disruptor halogen moieties may drive the interactions
between those compounds and hTTR. Indeed, our results implied that the halogen
moieties in hTTR binders could directly or indirectly affect the binding interactions
[100]. On one hand, the halogen atom could form halogen bonds and halogen–hydro-
gen bonds with the residues in hTTR directly. On the other hand, the halogen atom
could affect binding through inductive effects and hydrophobic effects. Additionally,
the results from Zhuang et al. [101] indicated that the bromine and chlorine atoms
in TBBPA, tribromobisphenol A (triBBPA), and tetrachlorobisphenol A (TCBPA)
could formhalogen bondswith the residues in PPARγ (proliferator-activated receptor
gamma). The bromine atoms in Monobromobisphenol A (monoBBPA) and dibro-
mobisphenol A (diBBPA) could form halogen bonds with the residues in ERα.

(4) Ionic interactions

An ionic interaction is formed between a charged group in the ligand and an oppo-
sitely charged group in the target. In some cases, a hydrogen bond would be super-
imposed onto an ionic interaction, which is called a charge-assisted hydrogen bond
[87]. If there exist stable ionic interactions, the distance between the two oppositely
charged groups is ≤5 Å [102]. For example, we analyzed the possibility of forming
an orientational ionic interaction between the model compounds (phenolic com-
pounds and poly-/perfluorinated chemicals) and hTTR. We calculated the distance
(d) between the anionic groups in the ligands and the −NH3

+ group in Lys 15 based
on the conformations from the simulation and the hTTR crystal structures. Among
the 82 simulated anionic ligands, there were 67 compounds with d ≤ 5 Å. For the 64
crystal complexes with anionic ligands, the d for 49 structures is ≤5 Å. The result
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confirmed that the anionic groups of the ligands formed ionic interactions with the
−NH3

+ group of Lys15 in hTTR [83, 84]. On the basis of the obtained conforma-
tions (200 frames) from MD simulation for each compound, we also found that the
d for >91% conformations was ≤5 Å, indicating that the formed ionic interaction
was stable [84].

(5) π interactions

The π interaction included π–π, cation–π, anion–π, and sigma–π interactions. For
the endocrine system targets, π–π and cation–π interaction have been observed up
to now. For example, Li et al. [103] observed π–π interactions between the phenyl
group of hydroxylated polybrominated diphenyl ethers (HO-PBDEs) and Phe272,
Phe442, and Phe455 of TRβ. Yang et al. [83] observed cation–π interaction between
the phenyl group of phenolic compounds and –NH3

+ group of Lys15 in hTTR.
As a best practice, it is recommended to analyze the binding pattern and non-

covalent interaction of a crystal ligand with the corresponding target before per-
forming molecular modeling in order to validate the reliability of simulation results.
For example, the noncovalent interaction analysis indicated that the bisphenols only
formed hydrogen bonds and hydrophobic interactions with human androgen receptor
(hAR). There were four amino acid residues (Asn 705, Gln 711, Arg 752 and Thr
877) involved in forming hydrogen bonds (Fig. 16.4a). Among them, the Gln 711
andAsn 705were identified as themost important amino acid residues by calculating
the hydrogen bond formation rates. After analyzing the 76 hAR crystal structures,
a similar result was observed (Fig. 16.4b), which confirmed the reliability of the
simulation results [104].

16.5.3 Calculating Binding Energy

Based on the simulated conformation, the binding energy (E) of EDCs with a target
or other scores could be calculated. Theoretically, there was a significant correla-
tion between E or other scores and the biological targets activities, e.g., estrogenic
activity and thyroid hormone activity. A linear correlation of E or other scores with
biological target activities could be derived, which could be further used to screen
potential EDCs or fill the data gap. For example,Ng et al. [78] developed a good linear
relationship between the median relative binding affinity values (logRBA) of estro-
genic activity for bisphenol A replacement compounds and E (logRBA = −7.719 −
0.0860 E (p = 0.007)). Then, the missing estrogenic activity of other bisphenol A
replacement compounds was filled by employing the developed equation.

In addition, lots of software and tools could decompose the total binding energy
(Etotal) into different components, such as electrostatic energy (Eele), van der Waals
interaction energy (Evdw), and so on. After analyzing the energy components, we
could identify the dominant driving force. For example, Lu et al. [106] decomposed
the Etotal into three components using Amber software, and the results indicated that
the Evdw was the major component of the total binding energy. This implied that
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Fig. 16.4 Binding interactions of simulated Bisphenol F (a) and crystal hydroxyflutamide (b,
PDB ID: 4OIU) with human androgen receptor in the ligand-binding site. ( ligand bond,

receptor bond, hydrogen bonding, receptor residues involved in hydrophobic
interactions, Corresponding atoms involved in hydrophobic interactions). This was illustrated
by LigPlot+ program [105]

critical driving force of the binding between the bisphenol S analogues and TRβ was
van der Waals interactions.

So far, we have introduced methods of analyzing binding patterns, noncovalent
interactions, and binding energy.Howdoes onemake use of that information to unveil
the underlying binding mechanism? We will employ the interaction of EDCs with
hTTR as an example for the reader. The experimental results indicated that ionizable
functiongroups, aromatic ring, andhalogen inEDCswere critical structural alerts that
can affect the binding potency between EDCs and hTTR [26, 27, 107, 108]. What is
the role of those structural alerts in thismolecular recognition process?Ourmolecular
modeling results indicated that the aromatic ring could formcation–π interactionwith
the −NH3

+ group of Lys15 in hTTR. The halogen could form halogen bonds and
halogen–hydrogen bonds with the residues in TTR directly. In addition, the halogen
also could affect the binding through inductive effects and hydrophobic effects. For
the ionizable group in EDCs, their anionic form binds more strongly to hTTR than
a corresponding neutral form. Thus, the ionization of the ionizable groups was non-
negligible. The anionic form of the ionizable groups could form ionic interaction and
hydrogen bond interaction with hTTR. Forming those dominant and orientational
noncovalent interactions lead to the anionic form of ionizable functional groups in
EDCs orienting toward the entry port of hTTR (Fig. 16.5) [83, 84, 100].
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Fig. 16.5 Conformations of T4 (a) 4′-HO-2,3′,4,5′,6-pentabrominated diphenyl ether (b) pentabro-
mophenol (c), and perfluoroheptanoic acid (d) adopted in the binding site of human transthyretin
(1ICT). The green line, purple line, and orange line represent hydrogen bonds, halogen bonds, and
π–cation interactions, respectively. The figures were prepared by using Discovery Studio Visualizer
2017 (BIOVIA, http://accelrys.com/)

As a summary, T4 formed hydrophobic interaction, hydrogen bond, halogen bond,
ionic interaction, and cation–π interaction with hTTR. The quantitative contribution
of those five noncovalent interactions in the molecular recognition between EDCs
and hTTR was not completely clear. However, the hydrogen bond, halogen bond,
ionic interaction, and cation–π interaction still could be identified as the critical non-
covalent interactions based on this comparative analysis. If one compound could form
the critical noncovalent interactions with hTTR, it may be considered as a potential
hTTR binder. For example, pentabromophenol was one of the most potent hTTR
binders and could form a hydrophobic interaction, hydrogen bond, ionic interaction,
and cation–π interaction with hTTR. Compared to T4, the ionizable halogenated
aliphatic compounds do not have aromatic rings in their molecular structures. Thus,

http://accelrys.com/
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four types of noncovalent interactions except for cation–π interactionswere observed
between the aliphatic compounds and hTTR. The missing cation–π interaction can
explain why those compounds exhibit moderate hTTR binding potency.

To date, many target-based virtual screening strategies and methods have been
developed [78, 108–112]. In addition, some target-based virtual screening software
has also been developed, including VirtualToxLab™ [113]. We will not attempt here
to cover these advances in detail.

16.6 Conclusions and Future Directions

In this contribution, we have described how to reveal the underlying mechanism of
endocrine disruptor action by employing the molecular modeling methods. Various
aspects were discussed including (1) preparation of the 3D structure of biomacro-
molecules and EDC molecules, (2) obtaining EDC–biomacromolecule complexes,
and (3) probing the mechanism. A variety of examples were included in the presen-
tation.

Some future directions are proposed as below:
Improving the modeling methods. Tremendous progress had been made for the

target-basedmethods. However, the efficiency and accuracy of themodelingmethods
(e.g., the search algorithms and scoring functions) need to be improved in the future.

Nonreceptor-mediated toxicity pathways. It was clear that EDCs could interfere
with multiple steps of hormone regulation, including biosynthesis and metabolism,
plasma binding, receptor activation/inhibition. Thus far, most researches in EDCs
have focused on modeling the disruption effects of nuclear receptors. There is a need
to pursue more efforts in modeling the interaction between EDCs and nonreceptor-
mediated target in the future.

Attention to species diversity. The structure and function of biomacromolecules in
the endocrine systemwere conserved across different species. However, the sequence
similarity showed considerable species variation, which may result in different bind-
ing affinity and interaction mechanisms of EDCs with target from different species.

Molecular modeling protocols or guidelines. Lots of software or tools for target-
based methods were available. In this situation, how to correctly use those tools and
obtain consistent, reproducible results became a priority problem. Chen conducted
a critical survey on whether we should trust the results of docking studies [68]. His
results indicated that questionable docking results could be observed, even in high-
profile journals. How do we increase the accuracy and scientific rigorousness of the
modeling results? Issuing a general molecularmodeling protocol or guidelinemay be
one solution. To date, several official guidelines for toxicant-basedmodelingmethods
have been issued to guide the development and use of ligand-based predictive model.
For example, the OECD has published a guidance document on the validation of
(quantitative) structure–activity relationship ((Q)SAR)models [114] andguidanceon
grouping of chemicals [115]. Meanwhile, the European Chemicals Agency (ECHA)
has issued Read-Across Assessment Framework (RAAF) [116]. However, no official
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molecular modeling protocols or guidelines were available for target-based methods
to date. The lack of such protocols or guidelines may lead to inconsistent use of
such methods [117]. Thus, in order to ensure the molecular modeling processes are
performed and evaluated in a consistent, reproducible, andwell-documentedmanner,
a molecular modeling protocol or guideline should be issued as quickly as possible.

Acknowledgements The study was supported by National Natural Science Foundation of China
(No. 21507038, No. 41671489, No. 21507061) andNatural Science Foundation of Jiangsu Province
(No. BK20150771).

References

1. Kwiatkowski CF, Bolden AL, Liroff RA, Rochester JR, Vandenbergh JG (2016) Twenty-five
years of endocrine disruption science: remembering Theo Colborn. Environ Health Perspect
124(9):A151–A154

2. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller
RT, Gore AC (2009) Endocrine-disrupting chemicals: an endocrine society scientific state-
ment. Endocr Rev 30(4):293–342

3. Soto AM, Sonnenschein C (2010) Environmental causes of cancer: endocrine disruptors as
carcinogens. Nat Rev Endocrinol 6(7):363–370

4. United Nations Environment Programme/World Health Organization (2013) State of the
science of endocrine disrupting chemicals. United Nations Environment Programme/World
Health Organization (UNEP/WHO), Geneva

5. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT
(2015) EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting
chemicals. Endocr Rev 36(6):E1–E150

6. Matthiessen P,Wheeler JR,Weltje L (2018) A review of the evidence for endocrine disrupting
effects of current-use chemicals on wildlife populations. Crit Rev Toxicol 48(3):195–216

7. U.S. Environmental Protection Agency (1998) Addendum endocrine disruptor screening and
testing advisory committee. U.S. Environmental Protection Agency, Washington

8. Commission of the European Communities (1999) Communication from the commission
to the council and the european parliament, community strategy for endocrine disrupters, a
range of substances suspected of interferingwith the hormone systems of humans andwildlife.
Commission of the European Communities, Brussels

9. The State Council of Pepole’s Republic of China (2015) Notice of the state council on issuing
the action plan for prevention and control of water pollution. GF[2015] No. 17. The State
Council of Pepole’s Republic of China, Beijing

10. Ministry of the Environment of Japan (1998) Environment agency’s basic policy on envi-
ronmental endocrine disruptors, strategic programs on environmental endocrine disruptors
SPEED’ 98. Environmental Policy Bureau, Tokyo

11. Organization for Economic Co-Operation and Development (2012) Guidance document on
standardised test guidelines for evaluating chemicals for endocrine disruption. Technical
report for OECD environment, health and safety publications series on testing and assessment
no. 150. OECD, Paris

12. Damstra T, Barlow S, Bergman A, Kavlock R, Van Der Kraak G (2002) Global assessment
of the state-of-the-science of endocrine disruptors. World Healthe Organization, Geneva

13. International Conference onChemicalsManagement Third Session (2012) Report of the inter-
national conference on chemicals management on the work of its third session. International
Conference on Chemicals Management Third Session, Nairobi



330 X. Yang et al.

14. International Conference on Chemicals Management Fourth Session (2015) Emerging policy
issues and other issues of concern (report by the secretariat). International Conference on
Chemicals Management Fourth Session, Geneva

15. Kavlock RJ, Daston GP, DeRosa C, Fenner-Crisp P, Gray LE, Kaattari S, Lucier G, Luster
M, Mac MJ, Maczka C, Miller R, Moore J, Rolland R, Scott G, Sheehan DM, Sinks T, Tilson
HA (1996) Research needs for the risk assessment of health and environmental effects of
endocrine disruptors: a report of the U.S. EPA-sponsored workshop. Environ Health Perspect
104(S4):715–740

16. Schug TT, Johnson AF, Birnbaum LS, Colborn T, Guillette LJ Jr, Crews DP, Collins T, Soto
AM, Vom Saal FS,McLachlan JA, Sonnenschein C, Heindel JJ (2016)Minireview: endocrine
disruptors: past lessons and future directions. Mol Endocrinol 30(8):833–847

17. DayanCM,PanickerV (2009)Novel insights into thyroid hormones from the studyof common
genetic variation. Nat Rev Endocrinol 5(4):211–218

18. Murk ATJ, Rijntjes E, Blaauboer BJ, Clewell R, Crofton KM, Dingemans MM, Furlow JD,
Kavlock R, Köhrle J, Opitz R, Traas T, Visser TJ, XiaM, Gutleb AC (2013)Mechanism-based
testing strategy using in vitro approaches for identification of thyroid hormone disrupting
chemicals. Toxicol Vitro 27(4):1320–1346

19. Gilbert ME, Rovet J, Chen Z, Koibuchi N (2012) Developmental thyroid hormone disruption:
prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxi-
cology 33(4):842–852

20. Li F, Yang XH, Chen JW, Lyakurwa F (2015) QSARs on the thyroid hormone effects of
polybrominated diphenyl ether (PBDE) derivatives (Chapter 17), In: Zeng EY (ed) Persis-
tent organic pollutants (POPs): analytical techniques, environmental processes and biological
effects. Compr Anal Chem 67:547–586

21. Gohlke H, Klebe G (2002) Approaches to the description and prediction of the binding
affinity of small-molecule ligands to macromolecular receptors. Angew Chem Int Ed Engl
41(15):2644–2676

22. Rabinowitz JR, Little SB, Laws SC, GoldsmithMR (2009) Molecular modeling for screening
environmental chemicals for estrogenicity: use of the toxicant-target approach. Chem Res
Toxicol 22(9):1594–1602

23. Allen TE, Goodman JM, Gutsell S, Russell PJ (2014) Defining molecular initiating
events in the adverse outcome pathway framework for risk assessment. Chem Res Toxicol
27(12):2100–2112

24. Ankley GT, Edwards SW (2018) The adverse outcome pathway: a multifaceted framework
supporting 21st century toxicology. Curr Opin Toxicol 9:1–7

25. Willett CE, Bishop PL, Sullivan KM (2011) Application of an integrated testing strategy to
the U.S. EPA endocrine disruptor screening program. Toxicol Sci 123(1):15–25

26. Meerts IA, van Zanden JJ, Luijks EA, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman
A, Brouwer A (2000) Potent competitive interactions of some brominated flame retardants
and related compounds with human transthyretin in vitro. Toxicol Sci 56(1):95–104

27. Weiss JM, Andersson PL, Lamoree MH, Leonards PE, van Leeuwen SP, Hamers T (2009)
Competitive binding of poly- and perfluorinated compounds to the thyroid hormone transport
protein transthyretin. Toxicol Sci 109(2):206–216

28. Ren XM, Qin WP, Cao LY, Zhang J, Yang Y, Wan B, Guo LH (2016) Binding interactions of
perfluoroalkyl substances with thyroid hormone transport proteins and potential toxicological
implications. Toxicology 366–367:32–42

29. Kavlock R, Dix D (2010) Computational toxicology as implemented by the U.S. EPA: pro-
viding high throughput decision support tools for screening and assessing chemical exposure,
hazard and risk. J Toxicol Environ Health B Crit Rev 13:197–217

30. Browne P, Casey WM, Dix DJ (2018) Use of high-throughput and computational approaches
for endocrine pathway screening. In: Garcia-Reyero N, Murphy C (eds) A systems biology
approach to advancing adverse outcome pathways for risk assessment. Springer, Cham

31. U.S. Environmental Protection Agency (2015) Use of high throughput assays and computa-
tional tools; endocrine disruptor screening program; notice of availability and opportunity for
comment federal register, pp 35350–35355



16 Molecular Modeling Method Applications … 331
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Chapter 17
Xenobiotic Metabolism by Cytochrome
P450 Enzymes: Insights Gained
from Molecular Simulations

Zhiqiang Fu and Jingwen Chen

Abstract Accurate chemical risk assessment requires consideration of the
metabolism functioned by the vast majority of enzymes, since neglecting these
metabolic pathways (and toxic metabolites) may lead to inaccurate evaluation of
their adverse effects on human health. Traditional in vivo or in vitro methods toward
this end can be confronted with obstacles, e.g., the huge and ever-increasing number
of chemicals, cost and labor-intensive tests, and lack of chemical standards in analy-
sis. Instead, molecular simulations (in silico) are deemed as a promising alternative,
which has gradually proven to be feasible for gaining insights into toxicological dis-
position of xenobiotic chemicals. In this chapter, we review recent progress inmolec-
ular simulations of xenobiotic metabolism catalyzed by the typical phase I enzyme:
cytochrome P450 enzymes (CYPs). The first section describes the significance of
xenobiotic metabolism in chemical risk assessment. Then, the versatile functionality
of CYPs in xenobiotic metabolism is briefly summarized by introducing some of the
fundamental reactions, e.g., C–H hydroxylation, phenyl oxidation, and heteroatom
(N, P, S) oxidation. The last section presents case studies of molecular simulations
for metabolism of typical environmental contaminants (e.g., brominated flame retar-
dants, chlorinated alkanes, substituted phenolic compounds), with an emphasis on
mechanistic insights gained from quantum chemical density functional theory (DFT)
calculations with the active species of CYPs.
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Abbreviations

ADMET Absorption, distribution, metabolism, excretion and toxicity
AOPs Adverse outcome pathways
ArNH2 Primary aromatic amines
BDEs Bond dissociation energies
Compound I The active species of P450 enzymes
CYPs Cytochrome P450 enzymes
DFT Density functional theory
HAT Hydrogen atom transfer
HO· Hydroxyl radical
(HO–)PBDEs (Hydroxylated) polybrominated diphenyl ethers
IP Ionization potential
KIEs Kinetic isotope effects
MD Molecular dynamics
MIEs Molecular initiating events
NADPH Nicotinamide adenine dinucleotide phosphate
NIH shift National Institute of Health shift
OAR Oxygen addition rearrangement
PAHs Polycyclic aromatic hydrocarbons
PBDDs Polybrominated dibenzo-p-dioxins
PCDD/Fs Polychlorodibenzo-p-dioxins/furans
PCM Polarizable continuum model
PFOS Perfluorooctane sulfonate
QM/MM Quantum mechanics/molecular mechanics
SET Single electron transfer
SOM Site of metabolism
SPCs Substituted phenolic compounds
SSR Spin-selective reactivity
TSR Two-state reactivity
�EST(ππ*) Singlet–triplet excitation energy
�E Activation barriers

17.1 Introduction

17.1.1 Significance of Xenobiotic Metabolism in Chemicals
Risk Assessment

Organisms are increasingly exposed to numerous xenobiotic chemicals (e.g., envi-
ronmental contaminants, drugs) via food intake, inhalation, and dermal contacts. It is
now generally recognized that these xenobiotics have the potential to disrupt physio-
logical homeostasis, thus threatening human health. Within an organism, xenobiotic



17 Xenobiotic Metabolism by Cytochrome P450 … 339

Fig. 17.1 Possible mechanism for P450 bioactivated carcinogenesis of benzo(a)pyrene

chemicals undergo process of “absorption, distribution, metabolism, excretion and
toxicity (ADMET).” In this process, metabolism contributes primarily to the elimi-
nation of xenobiotics from the biota and thus is one of the major determinants for the
biological fate and potential toxicology of xenobiotics. In general, xenobiotics are
metabolized via two fundamental routes: phase I and phase II transformation. Phase
I transformation is commonly referred to as “catabolism” that breaks down large
xenobiotic chemicals into smaller units, comprising reactions of oxidation, reduc-
tion, hydrolysis, etc. Cytochrome P450 enzymes (CYPs) have been recognized as
being dominant among the vast majority of phase I enzymes (peroxidase, hydrolase,
dehydrogenase, amine oxidase, xanthine oxidase, etc.) responsible for the catabolic
processes.

Phase I transformations render pollutant molecules more water soluble by intro-
ducing polar functional groups (e.g., hydroxyl, carboxyl group), thus facilitating
their excretion from the body; otherwise, intermediates or products generated there-
from can be more reactive than their parent compounds. These species are prone
to covalently bind with bio-macromolecules (e.g., proteins, nucleic acid), induc-
ing “toxicity enhancement” effects. One case demonstrating this point is polycyclic
aromatic hydrocarbons (PAHs), which are typical pollutants known for their carcino-
genic, teratogenic, and mutagenic effects. It is reported that the carcinogenicity of
PAHs is mainly attributed to the bioactivation by CYPs [1]. Figure 17.1 depicts one
possible mechanism via which a typical PAH, benzo(a)pyrene, is bioactivated to be
carcinogenic by CYPs. Benzo(a)pyrene is first transformed into phenyl epoxides by
CYPs, which is then hydrolyzed to catechol analogues via a ring-opening process.
Subsequently, these catechol intermediates are subjected to a secondary bioactiva-
tion by CYPs. The resultant dihydrodiol epoxides presumed the ultimate products
that induce carcinogenesis. As another example, the persistent organic pollutants
polybrominated diphenyl ethers (PBDEs) become more potent endocrine disruptors
when transformed into hydroxylated PBDEs (HO-PBDEs) by CYPs [2].

In short, enzymatic transformations serve as a significant determinant for the
distribution, fate, and toxicological effects of xenobiotics. Broadly, enzymatic trans-
formation of xenobiotics pertains to one genre of molecular initiating events (MIEs)
that subsequently lead to toxicological effects or adverse outcome pathways (AOPs).
Therefore, investigation of the metabolic mechanisms is vital for toxicology and
health risk assessment of xenobiotic environmental contaminants.
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17.1.2 Molecular Simulation of Typical Xenobiotics
Metabolism Catalyzed by P450 Enzymes

17.1.2.1 Introduction of P450 Enzymes and Related Metabolic
Reactions

P450 enzymes are commonly found in tissues of humans, wildlife, and microorgan-
isms. In mammals, these enzymes reside mainly in the endoplasmic reticulum and
mitochondrial inner membranes of liver cells. P450 enzymes represent an enzyme
superfamily characterized by a heme-containing active center, which consists of a
protoporphyrin substituted with four methyl, two ethenyl, two ionizable propionate
groups aswell as certain axial/vertical ligands (Fig. 17.2). The catalytic cycle of P450
enzymes starts from a resting (reduction) state, wherein the porphyrin iron binds with
H2O to give a metastable state. When H2O is replaced by CO, the complex displays
maximum absorbance at a wavelength of 450 nm; thus, the enzymes are termed
“P450”. P450 enzymes are known as the nature’s most versatile biological catalyst
[3]. The catalytic capability of P450 s covers a broad range of chemicals, involving
the functional groups –OH, –CHO, –COOH, –NH2, –CN, phenyl, and halogens.
The reactions mediated by P450 enzymes are mostly oxidations (Fig. 17.2), includ-
ing alkane C–H hydroxylation, alkene C=C epoxidation, and heteroatom (N, P, S)
oxidation. In these oxidations, P450 enzymes function as “monooxygenases” that
insert an oxygen atom into substrates. Other reactions may also display the excep-
tional functionality of P450 enzymes, e.g., reductive dehalogenation of halogenated
alkanes and C–C bond coupling [4].

With the completion of the human genome project, it is known that human beings
have 57 P450 enzyme genes. Animals generally have more P450 genes than humans;
for instance, the number of P450 genes for a mouse is 101 and even up to 120 for
a sea urchin. The P450 superfamily is named with a nomenclature that comprises
family, subfamily, and isoforms. Enzymes in the same family require an amino acid
homology >40%, which is marked with Arabic numerals, e.g., the CYP 1 family;
enzymes in the subfamily have >55% gene sequences in common and are labeled
with capital letters, e.g., the “CYP1A subfamily”; the enzyme subfamily constitutes
various isoforms, labeledwithArabic numerals, e.g., “CYP1A2”.Different P450 iso-
forms accommodate their specific substrates; e.g., P4501A2 binds primarily with the
aromatic compounds [5]. Exposure to environmental contaminants can also induce
special P450 isoforms; e.g., the flame retardant PBDEs are metabolized mainly by
CYP2B6 in organisms [6]. Of all the catalytic reactions by P450 enzymes, about
90% is accomplished by isoforms of CYP1A2, CYP2C9, CYP2C19, CYP2D6, and
CYP3A4, with CYP3A4 being dominant [7].

Early studies on P450 enzymes were mainly focused on the metabolism and dis-
position of carcinogens, pharmaceuticals, and steroids. Two schemes are adopted in
these studies, namely (a) in vivo and (b) in vitro experiments. In the in vivo scheme,
enzyme inducers (e.g., phenobarbital) are fed to animals and possible metabolites in
the tissues, urine, and feces from these animals are then studied; the in vitro scheme
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Fig. 17.2 Structure of the active center of P450 enzymes and related catalytic reactions

is mainly based on incubation with liver microsomes, slices, or recombinant P450
enzymes. Although the in vivo scheme is the closest to the metabolic scenario in
mammals and humans, it suffers from several interfering factors, e.g., the adsorption
and entrapment of xenobiotics by other proteins (serum albumin, etc.), the participa-
tion of other metabolizing enzymes, and the deficiency in detecting phase I products.
Another major holdback for in vivo testing is animal ethical concerns, namely the
widely known3Rprinciples of “Replacement, Reduction andRefinement.”Although
microsomal incubations contain minute amount of hydrolytic and phase II enzymes,
it is generally accepted that P450 enzymes are dominant. In vitro experiments require
simple conditions, e.g., constant temperature and pH, and shaking bath, whereas the
detection of metabolites is restricted by a lack of chemical standards. In addition,
reaction mechanisms cannot be unveiled through in vitro testing since the transient
information of the reaction process cannot be captured with the current instruments
(UV–Vis spectra, electronic paramagnetic resonance,Mossbauer spectroscopy, etc.).
In fact, P450 enzymes are species- and isoform-different, which are distinct from
each other in residue numbers, types, and even in secondary and tertiary structures.
These differences lead to distinctive reaction kinetics and product distributions for
oxidation of one single substrate by different species, which further brings about dif-
ficulties in metabolic studies of P450 enzymes. In recent years, the advancement of
quantum chemical theory and molecular simulation techniques has made it possible
to simulate the metabolic mechanisms of xenobiotics catalyzed by P450 enzymes.
These simulation techniques have gradually garnered interest as important research
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alternatives. In fact, the existing knowledge of the catalytic cycle of P450 enzymes
has been complemented or supported by quantum chemical calculations.

17.1.2.2 Catalytic Cycle of P450 Enzymes and Related Common
Reaction Genres

P450 enzymes commonly act as monooxygenases that transform exogenous chemi-
cals (e.g., alkanes, RH) into oxidative products and H2O using an O2 molecule and
nicotinamide adenine dinucleotide phosphate (NADPH). The overall reaction can
be formulated as: RH + O2 + NADPH + H+ → ROH + NADP+ + H2O. Through
more than half a century’s work, much of the mystery in P450 chemistry has been
unveiled, amongwhich the catalytic cycle is themost eye-catching part [4, 8]. As seen
in Fig. 17.3, the catalytic cycle starts from a resting state (1), wherein the heme iron
is hexa-coordinated with H2O and cysteine in the axial direction and four porphyrin
nitrogen atoms in the radial direction. This trivalent iron atom is almost coplanar
with the porphyrin ring, rendering the whole system a low-spin doublet state. The
binding water molecule is then expelled as the substrate enters the active site, giving
a pentacoordinate FeIII complex (2) that transports the iron from the heme plane to
a position below the porphyrin ring. Complex 2 is in a high-spin sextet state that
displays a strong electron-withdrawing capacity. Subsequently, this complex would
receive an electron from NADPH and synchronously bind with one O2 molecule,
leading to singlet species FeIII–O–O− (3).3 is still a good electron receptor and further
reduced to the anion peroxo FeIII–O–O2− species (4) by absorbing a second electron.
4 is a strong Lewis base that readily gets protonated to the FeIII–O–OH− species (5,
Compound 0) by capturing a H+ from the active site. Compound 0 remains a Lewis
base that undergoes a coupling reaction (Coupling-I) via receiving another H+ from
the enzyme, and produces a H2O molecule and high-valent iron-oxo (FeIV=O) com-
plex, which is also called Compound I (6). Compound I is accepted as the terminal
oxidant that transforms substrates to oxidized products (SubO). The release of SubO
from the active site and rebinding of H2O accomplish the catalytic cycle and return
the system back to the resting state. Overall, P450 enzymes require two electrons,
two H+ as well as one O2 to fulfill the catalytic oxidative reactions, with one oxygen
atom incorporated into H2O and the other inserted into the substrate.

It deserves mentioning that the mechanism for protonation of Compound 0 is still
controversial. As shown in Fig. 17.3, when the protonation initiates on the distal O
atom, Compound I is yielded concomitant with O–O bond scission; otherwise, an
iron hydrogen peroxide FeIII (O2H2) complex (8) is produced when the protonation
takes place on the proximal O atom. This FeIII (O2H2) complex is susceptible to an
uncoupling reaction by losing H2O2 and returning back to 2 in the case that H2O2

binds loosely with the iron. In a similar way, the resting state 1 can be reactivated to 8
via a shunt pathway. When H2O2 binds tightly with Fe in complex 8 (e.g., stabilized
by the surrounding residues via hydrogen bonding), the enzyme takes on another
coupling reaction scenario (Coupling-II) wherein one H2O is detached [9] and gives
rise to Compound I.
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Fig. 17.3 Illustration of the catalytic cycle of P450 enzymes (adapted from Wang et al. [41]; the
porphyrin is represented with an ellipse, CysS represents the cysteine residue, Sub is the symbol
for the substrate, and the species in the cycle is labeled with 1, 2, 3, …)

Although several species in the cycle (e.g., 4, 5, 8) have been reported to be
involved, Compound I is currently the most widely accepted active species in P450
catalyzed reactions.Compound I is known to have a highoxidative reactivity and tran-
sient character, which makes it hard to capture by techniques such as electron param-
agnetic resonance (EPR), UV–Vis, and Mössbauer spectroscopy. In 2010, Rittle and
Green [10] successfully isolated and characterized Compound I for the first time in
CYP119 from a thermophilic bacteria, using stopped-flow and rapid freeze–quench
techniques. On the whole, there is a lack of direct experimental knowledge on the
formation and catalytic mechanisms of Compound I. Instead, the electronic structure
and unique reactivity of Compound I are better described with quantum chemical
simulations.
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17.2 Method and Materials

With the fast advancement of quantum chemical theories and high-performance
computing capacities, quantum chemical methods such as density functional the-
ory (DFT) calculations can now accurately reproduce the electronic configuration
and properties of various systems and have demonstrated advantages in predicting
chemical reactivity. However, DFT methods are restricted by the system size, and
converged results obtained on a systemwith >200 atoms are less reliable [11]. There-
fore, common practice is simulating P450 enzymes by adopting a simplified model
of the active center (Cpd I in Fig. 17.4), also known as a cluster model in DFT calcu-
lations. The simplification is done by truncating the adjacent substituents (Fig. 17.2)
to protoporphyrin and replacing the vertical cysteine residue with –SH, –SCH3, or
–SCys. The enzyme environment is then mimicked with implicit solvation mod-
els, e.g., the polarizable continuum model (PCM). The basic idea for probing P450
catalyzed reactions using the cluster model lies in a general fact: Although P450
enzyme structures vary with species and isoforms, they share analogous active cen-
ters that are intrinsically responsible for their metabolic reactions. Thus, simulating
the active center with relatively accurate quantum chemical methods would serve
to effectively answer chemistry-related questions such as reaction conformations,
electronic structures, and reactivity.

As the computing capacity improves, cluster models can better describe more
complex systems by incorporating sufficiently large numbers of atoms. Nevertheless,
small models based on the active site retain their superiority in dealing with reaction
mechanisms at the early stage. Firstly, small models are suitable for quick probing of
various reaction routes because of a low computational cost. Secondly, employment
of simple models avoids artifacts and tends to receive more accurate results. One
general rule in computational biological chemistry is that when a large discrepancy
occurs between large and small model results, results from the smaller models are
more likely to be correct [11]. It remains difficult to obtain computationally correct
results for simulations using large models.

Harris et al. [12] first investigated the electronic structures for the resting state of
P450cam, an isoform which specifically binds with camphor, using combined quan-
tum chemical Hartree–Fock and molecular dynamics (MD) calculations. Consistent
with the electron spin echo envelope modulation (ESEEM) spectroscopic data, a
low-spin doublet state was characterized for the resting state, which is stabilized
by the electrostatic interactions with residues surrounding the active site and the
ligated water molecule. Subsequent work by Shaik et al. [8] further probed the elec-
tronic structures and properties of other intermediates in the P450 catalytic cycle and
unveiled several key factors that determine the catalytic reactivity of P450 enzymes.
One factor concerns the donor ability of the –SH substituent, also termed “push
effects,” since the Fe–S distance in Compound I would affect the electronic con-
figuration and thus its oxidative capability. Secondly, the protonation mechanisms
of Compound 0 would decide the productivity of Compound I, in a way that an
ineffective protonation at the proximal oxygen atom would possibly activate O2 into
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Fig. 17.4 Geometric structure and orbital occupations of Compound I (LS and HS represent,
respectively, the low-spin doublet and high-spin quartet states, Cpd I is the abbreviation of Com-
pound I, and porphine means the porphyrin macrocycle)

H2O2, which failed to oxidize the substrate while consuming an equivalent amount of
reducing agents NADH/NADPH. The accessibility of water molecules to the active
site is also an important determinant as water molecules can facilitate proton delivery
and protonation of the intermediates; otherwise, redundant water molecules would
lead to ineffective protonation in the case when the substrate binds loosely with the
enzyme pocket. For the last two decades, simulations using cluster models have suc-
cessfully uncovered the catalytic mechanisms for P450 enzymes, with contributions
from Shaik and Yoshizawa [13–16] who investigated the C–H hydroxylation mecha-
nisms using dozens of alkane substrates, de Visser and Kamachi [17, 18] who probed
the C=C bond epoxidation, Shaik and Harvey [19] who uncovered the mechanisms
for benzene hydroxylation, and Sharma et al. [20] who elucidated the mechanism
for sulfur oxidation. Therefore, quantum chemical calculations based on DFT and
cluster model for the active site have made a critical difference in unveiling the
mechanisms for P450 catalytic reactions.

In addition, thermodynamics and kinetics of enzymatic reactions would be sus-
ceptible to tertiary structures of proteins [21]. For example, amino acid residues
surrounding the active site would exert influences on the entry and binding mode
of substrates and thus determine the site of metabolism (SOM); weak interactions
between the substrate and the residues/water molecules would serve to stabilize the
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reaction intermediates; the fast release of the products would facilitate the recovery
of the resting state for the next cyclic process [4]. Taking together, the surrounding
enzymatic matrix can influence the computational results in two main aspects: steric
and electrostatic effects. Thus, these effects should not be neglected in studying P450
catalytic reactions, which demands on simulations with multiscalar techniques, such
as the combined quantum mechanics/molecular mechanics (QM/MM) method.

In 2002, Thiel et al. [22] first performed a DFT(B3LYP)/MM study which delved
into properties of intermediates in the catalytic cycle andmechanisms for Compound
0 protonation and C–H bond hydroxylation by P450 enzymes. Thereafter, Guallar
[23, 24] conducted QM/MM investigations with a restricted open-shell DFTmethod,
termed DFT(ROB3LYP)/MM, to probe the H-abstraction mechanism by P450cam.
They found that the electrostatic interactions between the negatively charged propi-
onate of the porphyrin side chain and the positively charged surrounding residues
would facilitate C–H hydroxylation. In the past decade, QM/MM investigations on
P450 enzymes have gradually been increasing, with P450cam being the dominant
isoform. For example, to resolve the controversy of a “second oxidant” in P450cam
catalytic cycle, Shaik et al. [9] employed QM/MM calculations to dissect into the
reactivity of three intermediate species, i.e., Compound I, Compound 0, and the fer-
ric hydrogen peroxide FeIII (O2H2). It was shown that the persistence and oxidative
reactivity of FeIII (O2H2) depend primarily on the interplay of camphor and protein.
The presence of camphor in the active site blocks the release of H2O2 (the uncoupling
pathway in Fig. 17.3), which expedites its homolytic O–O bond cleavage to a HO·
radical and FeIV-OH species. The HO· radical is further adjusted by hydrogen bond-
ing with adjacent amino acid residues to an appropriate position that facilitates the
H-abstraction from FeIV–OH by the HO· radical, leading to Compound I and H2O.
Hence in this case, QM/MM simulations serve to better understand the protonation
of intermediates in the catalytic cycle.

In other cases, QM/MM investigations have adequately unveiled some of the
long-standing puzzles in P450 catalytic cycle and contributed to understanding of
the regio- and stereoselectivity in oxidative reactions. By using MD and QM/MM
techniques, Ramanan et al. [25] simulated the binding of P450-BM3 with fatty acids
and revealed that the substrate’s binding with active site residues (e.g., Arg241 and
Pro242) determines the regio- and enantioselective reactivity for fatty acid hydrox-
ylation. These studies further verify that quantum chemical calculations are capable
of predicting SOM and products based on molecular structures (i.e., ab initio). It is
anticipated that QM/MM and MD calculations, along with future improvements in
computational theory and capability, could pave the way for accurate prediction for
metabolic mechanisms of xenobiotics catalyzed by P450 enzymes.

Through half a century’s endeavors, people have acquired in-depth knowledge of
the reactionmechanisms andmetabolic profile of P450 enzymes. As noted above, the
truncated cluster model, Compound I, contributed greatly in unveiling the reaction
mechanisms. The geometric structure and electronic orbital occupations for Com-
pound I are depicted in Fig. 17.4. The typical structure for Compound I (Fig. 17.4)
comprises a protoporphyrin with a high-valent iron (IV) atom and –SH representing
cysteine, an Fe=O bond of ca. 1.65 Å and Fe–S bond of ca. 2.30 Å.
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Fig. 17.5 Consensus mechanism for C–H hydroxylation by Compound I

Compound I is a cation radical, for which the electron spin states are decided by
three unpaired electrons, i.e., two on the antibonding orbitals π∗

xz and π∗
yz of Fe=O

and one on the delocalized a2u orbital of the porphyrin macrocycle. For a low-spin
doublet state, two spin-up electrons on π∗

xz and π∗
yz orbitals were combined with one

spin-down electron in the a2u orbital to give a count of one single unpaired electron;
otherwise, Compound Iwould be in the high-spin quartet statewith the three unpaired
electrons in the same spin direction. In some cases, the systemwould even get excited
by moving two paired electrons from a bonding orbital of Fe=O to two antibonding
orbitals higher in energy, forming a high-spin sextet state. The doublet and quartet
states are energetically degenerated (equivalent) states for Compound I and equally
considered in the reaction mechanisms described below.

17.3 Results/Case Studies

17.3.1 Common Reaction Genres Mediated by P450 Enzymes
and Related Mechanisms

17.3.1.1 Mechanisms for C–H Bond Hydroxylation

C–H bond hydroxylation pertains to the most thoroughly studied reaction functioned
by P450 enzymes. In 2000, Ogliaro et al. [26, 27] first investigated C–H hydroxy-
lation of methane catalyzed by Compound I with DFT calculations. Subsequently,
numerous studies have probed dozens of alkane substrates and reached a consensus
mechanism for C–H hydroxylation, i.e., the hydrogen atom transfer (HAT) followed
by hydroxyl rebound scenario. First proposed by Groves et al., the C–H hydroxy-
lation scenario (Fig. 17.5) starts from a H-abstraction from the C–H bond by the O
atom of iron-oxo (Fe–O), giving rise to a carbon-centered radical and iron hydroxyl
(Fe–OH) intermediate. After that, Fe–OH reoriented with the O atom pointing to the
carbon radical, which is followed by a final OH rebound to give an alcohol product.

Computational studies [28] have also revealed that C–H bond hydroxylation by
Compound I proceeds via a two-state reactivity (TSR) scenario which involves both
doublet and quartet states in the reaction. The first HAT step has almost equivalent
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activation barriers (with differences≤2 kcal/mol) on both spin states and thus is rate-
determining in the hydroxylation process. However, the second hydroxyl rebound
step on the doublet state is barrierless, in contrast to a slight rebounding barrier
needed for the quartet state reaction.

The rate-determining HAT step in C–H hydroxylation is generally characterized
by large kinetic isotope effects (KIEs). KIEs refer to the change in reaction rates
when one atom (typically the H atom) of the reactant is replaced by one of its iso-
topes (e.g., deuterium) [29]. According to the study by Li et al. [30], KIEs can
serve as a spin-state reactivity probe because the TSR possesses similar KIEs values,
whereas significantly discrepant KIEs for two spin states indicate a spin-selective
reactivity (SSR) scenario in H-abstractions by Compound I. In addition, Shaik et al.
[15] found a linear correlation between the activation barriers of alkane hydroxy-
lation by Compound I with the corresponding bond dissociation energies (BDEs)
of C–H bonds. BDEs are defined as the energy difference between the optimized
substrate molecule (Sub-H) and the optimized substrate radical (Sub·) and H atom,
i.e., BDE(Sub-H) = E(Sub-H) − E(Sub·) − E(H). However, this linear correlation
becomes insignificant for C–H bonds with lower BDEs, e.g., Cα-H bonds adjacent
to strong electron-withdrawing groups.

17.3.1.2 Mechanisms for Heteroatom (N, S, P) Oxidation

Heteroatom (N, S, P) oxidation pertains to another type of important reaction cat-
alyzed byP450 enzymes.N-containing amines can be activated byP450 enzymes into
products thatmay induce genotoxicity and carcinogenicity.Metabolismof secondary
and tertiary amines by P450 enzymes would primarily proceed via N-dealkylation
for which two possible mechanisms (Fig. 17.6) are reported [29]. Analogous to the
HAT scheme for C–H bond hydroxylation, one mechanism suggests an initial Cα–H
abstraction by Compound I with the yield of an alkane radical and PorFeIV–OH inter-
mediate, which is followed by hydroxyl rebound to form alcohol amine products.
The other mechanism hypothesizes that a single electron transfer (SET) from the
amine N atom to Compound I results in a N cation radical, which is then deproto-
nated to the alcohol amine. Bifurcate HAT and SET mechanisms have long been a
controversial issue; only recently, quantum chemical calculations have ascertained
that HAT is generally lower in activation barriers and thus more favorable than SET.

N-dealkylation of secondary and tertiary amines would yield primary amines
as products. Further oxidation of primary aromatic amines (ArNH2) can proceed
via the following four mechanisms as shown in Fig. 17.7, three of which adopt
Compound I as the oxidant, i.e., HAT followed by hydroxyl rebound, oxygen addition
rearrangement (OAR), and SET followed by proton transfer (PT). The other pathway,
however, involves the iron-superoxide species (FeOO2−) in the catalytic cycle as the
active oxidant. Computational studies [31] have revealed that the HAT and HO-
rebound pathways require the lowest energy barrier and hence are the principal
pathways for ArNH2 oxidation by P450 enzymes. Nevertheless, significant energy
barrier increases were observed for the rate-limiting HAT with the enhancement
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Fig. 17.6 Bifurcate mechanisms for N-dealkylation catalyzed by P450 enzymes

Fig. 17.7 Possiblemechanisms forN-hydroxylation of aromatic primary amines by P450 enzymes.
[FeO] is a simplification of Compound I, ArNH2 means primary aromatic amines, and pathways
are labeled with a, b, c, and d

of electron-withdrawing abilities of substituents at the para position, indicating the
inertness of such ArNH2 toward oxidation by P450 enzymes. The mechanism of
oxidation of aliphatic primary amines differs from that of ArNH2 in two aspects:
Firstly,N-oxidation of aliphatic primary amines takes on only two possible pathways
of OAR and HAT; secondly, the oxygen rebound rather than H-abstraction becomes
rate-determining in the feasible HAT pathway that leads to alcohol amine formation,
which is also discrepant from the C–H hydroxylation mechanism.

Oxidation of sulfur-containing compounds (e.g., thiolethers) catalyzed by P450
enzymes produces sulfoxide or sulfone as the main products. S-oxidation involves
an initial O-addition of Compound I to the sulfur atom to form sulfoxide, which
is successively converted to sulfone by the secondary O-addition. The mechanistic
elusiveness for S-oxidation mainly focuses on the possible “second oxidant” that
participates in the reaction. Three reactive species in the catalytic cycle, i.e., Com-
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pound I, Compound 0, and FeOO2−, were previously evaluated for their reactivity
toward S-oxidation. A cluster model study by Li et al. [32] concluded Compound I
as the preponderant oxidant in S-oxidation of dimethyl sulfide. The same reaction
was revisited [33] by QM/MM simulations, which also indicated that Compound 0
is a sluggish oxidant and less competent than Compound I for sulfoxidation.

17.3.1.3 Mechanisms for Phenyl Hydroxylation

Phenyl groups are prevalent in molecules of environmental contaminants, e.g.,
polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs),
polybrominated diphenyl ethers (PBDEs), and polychlorodibenzo-p-dioxins/furans
(PCDD/Fs). When subjected to metabolism by P450 enzymes, the phenyl group
would likely be transformed into epoxides that are reactive electrophilic agents
toward bio-macromolecules, or yield hydroxylated products which are suspected
endocrine disruptors. As a consequence, mechanisms for phenyl hydroxylation by
P450 enzymes have attracted much attention. Owing to the strong electronic π-
conjugation, phenyl C–H bonds possess BDE values larger than those of alkyl C–H
bonds, which renders the disobedience of the phenyl oxidation mechanisms from
alkane C–H hydroxylation.

Using DFT calculations, Shaik et al. first explained the mechanism for benzene
hydroxylation [19] and clarified that the SET (as in N-hydroxylation) and HAT (as
in alkyl hydroxylation) schemes are less viable and the reaction proceeds primarily
on the low-spin doublet state. Three feasible mechanisms are illustrated in Fig. 17.8.
According to previous studies, these mechanisms share a preceding rate-determining
electrophilic π-addition of Compound I to the phenyl carbon, leading to a radical- or
cation-like tetrahedral adduct. The radical-type intermediate is prone to subsequent
epoxidation via addition of the O atom to the adjacent C atom, while the cation tetra-
hedral intermediate is liable to arrange via a National Institute of Health (NIH) shift
that delivers the ipso-H atom to the neighboring C atoms, giving a cyclohexanone
product. Moreover, if the tetrahedral intermediate takes on a “side-on” conformation
wherein the phenyl is perpendicular to the porphyrin macrocycle, a proton shuttle
mechanism can be viable that shifts the H atom first to porphyrin N, followed by H
bounce back to the carbonyl O or neighboring atoms, resulting in phenol or cyclo-
hexanone, respectively. QM/MM calculations [34] have revealed that epoxides and
ketones are the two products most likely to be formed from “face-on” transition state
conformations wherein the phenyl is parallel to the porphyrin, whereas epoxide and
phenol products are favorable for “side-on” conformations.

For halogenated phenyl groups, the π-addition of Compound I to the halogen-
substituted phenyl carbons requires increased activation barriers due to steric hin-
drance. In this case, the π-addition would initiate a NIH shift of the halogen atom,
yielding a cyclohexanone product. Furthermore, when the phenyl is perhalogenated
or the halogen NIH shift is hampered by steric hindrance, the oxidative reaction
would lead to dehalogenated products. For substituted benzenes, DFT studies [35]
have revealed lower activation barriers for π-addition of Compound I to phenyl car-



17 Xenobiotic Metabolism by Cytochrome P450 … 351

Fig. 17.8 Three principal reaction pathways (epoxidation, NIH shift, and proton shuttle) for ben-
zene hydroxylation catalyzed by P450 enzymes

bons with substituents at the para position, which are in linear correlation with the
Hammett parameters (ρ) of the substituents. The π-addition reactions at phenyl car-
bon para to the substituents are generally more facile than those at meta positions.
Shaik et al. [36] uncovered that the π-addition barriers of Compound I with substi-
tuted benzenes were related to the ionization potential (IP) and singlet–triplet exci-
tation energy �EST(ππ*) of substrate molecules. IP refers to the electronic energy
difference of optimized structures between the substrate with one electron removed
and the neutral substrate molecule, i.e., IP = E(Sub+) − E(Sub). �EST(ππ*) is
electronic energy difference between the triplet and the singlet states of substrates,
namely �EST(ππ*) = E(triplet) − E(singlet). According to a recent kinetic study
[37], oxidation of aromatics, especially those with redox potentials lower than Com-
pound I, would first initiate an electron transfer in the solvent cage to yield phenyl
radical cations, coupled with the subsequent C–O bond formation step to give the
tetrahedral adducts. This could intrinsically explain the reason why the π-addition
barriers for Compound I are linearly correlated with the IPs of substrate molecules.
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17.3.2 Case Studies Simulating Xenobiotic Chemical
Metabolism by P450 Enzymes

17.3.2.1 Metabolism of PBDEs by P450 Enzymes: DFT Studies Using
the Active Species of P450s

Existing computational case studies on P450 metabolism focused primarily on con-
ventional chemical substrates (e.g., alkanes, alkenes, and benzene), endogenous hor-
mones, pharmaceuticals, etc. By contrast, the metabolic profile of vast majority of
environmental pollutants catalyzed by P450 enzymes is yet to be detailed. Flame
retardants are typical pollutants that attract worldwide attention, especially poly-
brominated diphenyl ethers (PBDEs), demonstrated to be of environmental persis-
tence (P), bioaccumulation potential (B), and toxicity potential (T) by numerous
studies. As the primary metabolite of PBDEs, HO-PBDEs have been reported to
possess enhanced endocrine disrupting potency and mitochondrial toxicity com-
pared with PBDEs. Recent in vitro studies indicated that apart from HO-PBDEs,
metabolism of PBDEs by P450 enzymes would lead to dihydroxylated and even to
the notorious polybrominated dibenzo-p-dioxins (PBDDs) as products [38, 39], for
which the underlyingmolecular mechanisms are unclear. In this section, DFT studies
predicting the mechanisms for PBDEs metabolism by P450 enzymes are reviewed
[40–42].

Based on the metabolic mechanisms for halogenated benzenes [35], Wang et al.
[40] proposed oxidation of PBDEs by Compound I that would proceed via the path-
ways shown in Fig. 17.9, using 2,2′,4,4′-tetraBDE (BDE-47) as the model com-
pound. The precedingπ-addition of Compound I (a) to the non-Br-substituted phenyl
carbons of BDE-47 leads to tetrahedral adducts that are subjected to further rear-
rangements (b). Otherwise, reaction with the Br-bonded phenyl carbons drives the
NIH shift of Br to cyclohexanones that undergo reduction (d) in the non-enzymatic
medium. For the rearrangements of tetrahedral adducts, three pathways are possi-
ble, which involve the NIH shift to cyclohexanones, ring closure to epoxides, and
proton shuttle to phenol products. The epoxides are then rearranged (c) via proton-
assisted ring-opening, giving rise to multiple products including HO-PBDEs and
bromophenols.

According to the computational study by Wang et al. [40], π-addition of Com-
pound I to Br-substituted phenyl carbons (C2 and C4) was more energy-demanding
than non-substituted carbons (C3, C5, C6), except for the C1 site that possessed an
increased barrier compared with non-substituted carbons due to large steric hin-
drances. The π-addition of Compound I to non-substituted carbons is endothermic
with the resultant tetrahedral intermediate lying higher on the potential energy sur-
face than the reactant. However,π-addition of Compound I to Br-substituted carbons
is strongly exothermic and yields cyclohexanones via NIH shift of the Br atoms,
a reaction analogous to the dehalogenation of hexachlorobenzene. Particularly, π-
addition to the C2 position leads to the expelling of a bromide ion due to the steric
effects. The tetrahedral adducts formed from π-additions at the C1, C3, C5, C6 sites
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Fig. 17.9 Possible pathways for the reaction BDE-47 with Compound I

further rearrange via ring closure to six possible epoxides. As the epoxidation step
generally requires low activation barriers (<5 kcal/mol), the precedent π-addition
is rate-determining in BDE-47 oxidation catalyzed by Compound I. Formation of
cyclohexanones and epoxides manifests the accomplishment of the monooxygena-
tion functionality of Compound I and retrieves the resting state of P450 enzymes.

Since the formed BDE-47 epoxides are weakly bound with the porphyrin iron,
they are easily released out of the active site to the bulk polar environment. These
epoxides are prone to protonation in the non-enzymatic environment, which cleaves
the epoxy bond barrierless to two types of ring-opened hydroxyl-cyclohexadienyl
products, i.e., with –OH attached to Br-substituted and non-substituted phenyl car-
bons, respectively. These hydroxyl-cyclohexadienyl products are subjected to further
rearrangement, with a scheme shown in Fig. 17.10.

When –OH is attached to Br-substituted carbons (#1), the hydroxyl-
cyclohexadienyls rearrange via shifting the Br atom to neighboring carbons, fol-
lowed by a proton loss to yield HO-PBDEs. Hydroxyl-cyclohexadienyls with –OH
attached to non-substituted carbons (#2) would shift the H atom to proximate car-
bons, which subsequently deprotonate to form HO-BDE-47. Computational results
have demonstrated that the NIH shift of Br is more preferable than the H atom, which
leads to an alteration of the brominated pattern in HO-PBDEs. It is noteworthy that
attachment of –OH to the ether carbon (C1) induces homolytic or heterotic fission
of the ether bond (#3), resulting exclusively in bromophenol products. Calculated
activation barriers reveal that heterotic fission of the ether bond is more feasible than
the homolysis reaction. The predicted products, e.g., 4-HO-BDE-42, 4′-HO-BDE-
49, 5-HO-BDE-47, and 2,4-dibromophenol, are in line with the metabolites detected
in in vitro experiment. Thus, DFT calculations are effective tools for elucidating
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Fig. 17.10 Rearrangement scheme of the ring-opened hydroxyl-cyclohexadienyl products

the mechanisms and product distribution for BDE-47 hydroxylation catalyzed by
Compound I.

The incipientπ-addition is rate-determining in hydroxylation ofBDE-47 byCom-
pound I, as the subsequent rearrangement reactions generally have lower activation
barriers. A comparison of the π-addition barriers for three PBDE congeners (BDE-
15, -47, and -153) revealed that a higher degree of bromination decreased the potential
of PBDEs to be oxidized by Compound I [42]. Lupton et al. [43] investigated the
metabolism of three PBDEs (BDE-47, -99, and -153) by human liver microsomal
incubations and also observed that the highly brominated BDE-153wasmore inert to
P450 metabolism relative to lower brominated ones. For one single PBDE congener,
the most accessible reaction sites resided on the non-brominated and non-bridged
carbons. However, this site-selective trend diminished with the increase of Br sub-
stitutions.
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Fig. 17.11 Enzymatic (Compound I catalyzed) and non-enzymatic (keto–enol tautomerism) path-
ways for dihydroxylation of HO-PBDE to di-HO-BDE

17.3.2.2 Mechanisms for Dihydroxylation of PBDEs and Dioxin
Evolution

Apart from HO-PBDEs, in vitro incubations of PBDEs also identified dihydrox-
ylated PBDEs (di-HO-BDEs) and dioxin (PBDDs) as minor products. One incu-
bation experiment utilizing rat liver microsomes revealed that HO-PBDEs are the
precursor compounds for di-HO-BDE formation [44]. Taking 6-HO-BDE-47 as an
example, Fu et al. [42] proposed two possible pathways for the reaction of HO-
PBDEs with Compound I. One pathway concerned the π-addition of Compound I
to phenyl carbons of 6-HO-BDE-47, a process analogous to the hydroxylation of
PBDEs, resulting in tetrahedral adducts that further rearrange to di-HO-BDEs. In
the other pathway, a successive phenolic H-abstraction and hydroxyl rebound sce-
nario converted HO-PBDE to the hydroxyl cyclohexanone intermediate catalyzed by
Compound I. Subsequently, keto–enol tautomerism of the hydroxyl cyclohexanone
leads to the di-HO-BDE product (Fig. 17.11).

DFT calculations [42] revealed that HO-PBDEs acquire much lower π-addition
barriers (15.9 kcal/mol) than those of PBDEs, implying the introduction of –OH
increases electron densities on the phenyl group, thus facilitating the electrophilic π-
addition. For the second pathway (Fig. 17.11), phenolicH-abstraction of 6-HO-BDE-
47 is quite facile with a tiny barrier of 2.0 kcal/mol, while the succedent hydroxyl
rebound had relatively a high barrier of 10.6 kcal/mol and thus was rate-determining
in the whole reaction. Keto–enol rearrangement of the hydroxylated cyclohexanones
to di-HO-BDEs proceeded with the assistance of H2O in the non-enzymatic environ-
ment. Increasing the number of water molecules was shown to significantly decrease
activation barriers of the keto–enol rearrangement. The participation of two water
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molecules greatly expedited the rearrangement reaction in the physiological environ-
ment by lowering the barrier to 5.6 kcal/mol. By comparing the activation barriers
for the rate-limiting steps in the two pathways, it can be concluded that the phenolic
H-abstraction and hydroxyl rebound pathway were responsible for dihydroxylation
of PBDEs catalyzed by Compound I. These results support the absence of epoxide
hydrolase in in vitro observation [45]. For different HO-PBDE congeners (6-HO-
BDE-15, -47, -153), the rate-limiting hydroxyl rebound proceeds preferably on the
phenyl carbons ortho and para to the phenol, leading to the formation of catechol-
or hydroquinone-like di-HO-BDEs, which are in line with the identified structures
in the experiment.

PBDDs can have different sources in the environment, e.g., pyrolysis of PBDEs,
photochemical transformation of HO-PBDEs, free radical oxidation of HO-PBDEs
in the atmosphere, and biochemical oxidative coupling of bromophenols mediated
by marine organisms (e.g., sponge and red algae) [46]. Molecular mechanisms for
several cases, e.g., PBDD evolution from PBDEs pyrolysis and hydroxyl radical
(HO·)-initiated oxidation of HO-PBDEs, have been elucidated based on previous
DFT calculations [47, 48]. Though perceived as feasible, these mechanisms clearly
possess certain prerequisites; e.g., the direct dissociation of an ortho Br or H atom in
PBDEpyrolysis requires a tremendous amount of energy; theHO·-initiated oxidation
of HO-PBDEs involves the participation of multiple HO· species; the photolysis of
HO-PBDEs to yield PBDD is based on the existence of excited triplet states for
the reactants. It is therefore obvious that the inaccessibility of these prerequisites
precludes the viability of the aforementioned mechanisms for PBDD evolution in
P450 enzymatic reactions.

Structurally, only ortho-hydroxylated PBDEs can potentially be transformed into
PBDDs. Using 6-HO-BDE-47 as an example, two conventional pathways were pro-
posed [42], including: (a) phenolic H-abstraction and successive O–C cyclization
of 6-HO-BDE-47 to form PBDD; (b) a secondary hydroxylation of 6-HO-BDE-
47 yields 6,6′-di-HO-BDE-47, which then dehydrates to PBDD. The calculated
results reveal that the O–C cyclization step has a high activation barrier and the
resultant PBDD radical requires multiple assisted water molecules to fulfill the H-
rearrangement, which is tentatively inviable in the enzymatic environment. In path-
way (b), hydroxylation of 6-HO-BDE-47 possesses a barrier approximate to PBDEs
hydroxylation, indicating that the dihydroxylation is viable if the substrate is prop-
erly orientated. However, the dehydration of 6,6′-di-HO-BDE-47 to PBDD is highly
energy-demanding; thus, this pathway can also be ruled out.

As indicated in the previous studies, bromophenols can be photo-transformed
into HO-PBDEs [49], following a scheme of aryl radical coupling. Specifically,
bromophenols are firstly converted to phenoxyl radicals that possess electronically
three resonance structures, i.e., one O-centered phenoxyl radical, two C-centered
radicals ortho and para to the phenoxyl. Coupling of theO-centered phenoxyl radical
with the C-centered radicals leads to the formation of HO-PBDEs products. Inspired
by the radical coupling scheme of the phenoxyl, it is anticipated that only heterocyclic
di-HO-BDEs with –OH substituted on phenyl carbons ortho and meta to the ether
bond can serve as precursors for PBDD.
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Fig. 17.12 Feasible pathway for HO-PBDD evolution from HO-PBDE metabolism catalyzed by
Compound I

DFT studies have elucidated a feasible pathway (Fig. 17.12) for PBDD evolution
using 5′,6-di-HO-BDE as the example substrate. Compound I first oxidizes 5′,6-di-
HO-BDE to a diketone intermediate via two consecutive phenolic H-abstractions.
The diketone is electronically in resonancewith a biradical structure with the radicals
resided on O6 and C6′ . Aryl biradical coupling of the diketone intermediate generates
a PBDD ketone isomer, which undergoes keto–enol tautomerism non-enzymatically
toHO-PBDD. In the initial step, the phenolicH-abstraction is facilitated by hydrogen
bonding between the O atom of Compound I and the hydroxyl H atom of 5′,6-di-
HO-BDE. Calculated barriers indicate that phenolic H-abstractions, cyclization of
the diketone intermediate, and tautomerism of the PBDD isomer are quite facile
(<10 kcal/mol). However, PBDDs are observed as minor products in in vitro incu-
bations of PBDEs, possibly due to a low efficient yield of di-HO-PBDEs or less
substrate accessibility to the active site.

17.3.2.3 Simulation of the Metabolism of Perfluorooctane Sulfonate
Precursors Catalyzed by P450 Enzymes

Perfluorooctane sulfonate (PFOS) pertains to one representative of persistent organic
pollutants, yet its exposure profile in biota remains implicit. As indicated by in vivo
and in vitro experiments, metabolism of PFOS precursors (PreFOS) is an impor-
tant indirect exposure pathway for PFOS, whereas the underlying molecular mech-
anisms are largely unclarified. Fu et al. [50] investigated the metabolism of one
typical PreFOS, N-ethyl perfluorooctane sulfonamide (N-EtPFOSA) catalyzed by
Compound I. As shown in Fig. 17.13a, the metabolism of N-EtPFOSA proceeds
via N-deethylation, which comprises a precedent Cα-H hydroxylation (a) and sub-
sequent ethanolamine decomposition. Initially, the Cα-H abstraction of N-EtPFOSA
catalyzed by Compound I produces a carbon-centered radical species, which com-
bines with the rebounding hydroxyl to an ethanolamine intermediate. Subsequently,
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Fig. 17.13 Mechanisms for metabolism of N-EtPFOSA to PFOS catalyzed by Compound I (a N-
dealkylation of N-EtPFOSA to PFOSA and b deamination of PFOSA to PFOS)

decomposition of the ethanolamine in the non-enzymatic environment leads to
acetaldehyde and PFOSA.

H-abstraction is the rate-limiting step in Cα-H hydroxylation process. Both the
doublet and the quartet spin states acquire similar activation barriers, indicating that
the Cα-H hydroxylation follows the two-state reactivity scenario. The decomposi-
tion of the ethanolamine initiates via shifting the H atom from the alcohol hydroxyl
to the amine N atom, which induces the fission of the Cα-N bond and expels the
ethyl group. Calculated activation barriers for decomposition of the ethanolamine
bound with the porphyrin iron are significantly higher than those for the dissocia-
tive ethanolamine, meaning that the degradation of ethanolamine is more conceiv-
able in the non-enzymatic aqueous medium. Calculations have indicated that water
molecules can act as catalysts in the degradation, which assist the H-transfer through
hydrogen bonding. Therefore, PreFOS substances can be subjected toN-dealkylation
to form PFOSA once exposed in biota.

As corroborated by experimental results, PFOSA is identified as the primary inter-
mediate product in biotransformation of almost all PreFOS, whereas themechanisms
pertinent to PFOS formation from PFOSA remain obscure. DFT calculations have
elucidated a feasible pathway for PFOS evolution from PFOSA metabolism cat-
alyzed by Compound I. H-abstraction from PFOSA was found unlikely due to the
strong electron-withdrawing ability of the perfluorooctyl group, in contrast to the tra-
ditional H-abstraction and hydroxyl rebound scheme reported for amine oxidation.
Metabolism of PFOSA starts from O-addition by Compound I (Fig. 17.13b), giving
a N-oxide intermediate that either rearranges through H-shift to a hydroxylamine
derivative or transforms to an epoxide analogue via O–S bond formation. The epox-
ide analogue rearranges afterward via N–S bond cleavage, followed by hydrolysis to
yield PFOS and hydroxylamine.
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Results revealed that the H-shift pathway leading to the hydroxylamine derivative
has a higher barrier than the one generating the epoxide analogue. Therefore, the
deamination of PFOSA to PFOS proceeds via an epoxidation mechanism, wherein
the initialO-addition (N-oxidation) step is rate-determining. By contrasting the acti-
vation barrier for N-dealkylation of N-EtPFOSA to that for deamination of PFOSA,
it can be concluded that transformation of PFOSA to PFOS is the rate-limiting step
in the whole process of PreFOS biotransformation, which supports the in vitro obser-
vation [51].

17.3.2.4 Metabolism of Halogenated Alkanes and Alkenes Catalyzed
by P450 Active Species

Halogenated alkyl moieties are frequently found in insecticides, pesticides, disin-
fection by-products, etc. By using DFT calculations, Ji et al. [52] investigated the
metabolic scenario of two examples of halogenated alkanes, CHCl3 and CCl4 cat-
alyzed by P450 enzymes. Results revealed two distinct pathways for the reaction of
CHCl3 with Compound I under both aerobic and anaerobic conditions. CHCl3 was
aerobically oxidized through C–H hydroxylation to C(OH)Cl3, which further under-
goes dehydrochlorination with the assistance of water molecules, leading to Cl2O.
Under anaerobic conditions, however, CHCl3 preferably reacted with the divalent
ferroporphyrin via reductive dehalogenation. For the perchlorinated CCl4, aerobic
oxidation via C–Cl abstraction was energetically infeasible, whereas a low O2 con-
centration environment effectively obtained Cl2O and ClO· as products. Aside from
halogenated alkanes, alkeneswith unsaturatedC=Cbonds are increasingly concerned
due to their potential to be transformed into toxic epoxide intermediates. Zhang et al.
[53] computed the activation barriers (�E, in kcal/mol) for epoxidation of 36 alkenes
catalyzed by Compound I by using DFT calculations and found a strong linear corre-
lation between�E and the ionization potential (IP) of these alkenes (Fig. 17.14): For
alkene molecules with dipole moment <2.2 debyes (D), �E = 5.044IP − 31.315,
whereas �E = 2.666IP − 16.066 for those with >2.2 D dipole moments. These cor-
relations can serve as quick prediction tools for the epoxidation reactivity of alkenes
oxidized by Compound I.

17.3.2.5 Metabolism of Substituted Phenolic Compounds Catalyzed
by P450 Enzymes: A Novel Ipso-Substitution Pathway

Substituted phenolic compounds (SPCs), including bisphenol analogues, alkylphe-
nols, and chlorophenols, are ubiquitous environmental contaminants that have drawn
widespread attention due to their potential endocrine disrupting properties. Recent
in vitro studies indicated that P450-catalyzed metabolism significantly enhances the
endocrine disrupting activity of SPCs by arousing an alternative ipso-substitution
pathway that converts them to hydroquinone with elimination of substituents at the
ipso-position, the mechanism of which is far beyond elucidated. Ji et al. [54] investi-
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Fig. 17.14 Prediction of the metabolism of alkenes to epoxides catalyzed by P450 enzymes

Fig. 17.15 Elucidated mechanism for ipso-substitution of substituted phenolic compounds cat-
alyzed by Compound I

gated the P450-catalyzed ipso-substitution pathway by means of DFT calculations.
Results uncovered that the ipso-substitution proceeded via precedent H-abstraction
from SPCs by Compound I, followed by barrierless HO rebound to the ipso-position
giving a quinol (Fig. 17.15), which can be spontaneously protonated and decomposed
to carbocation (R+) and hydroquinone (P1). This carbocation can further evolve into
olefin (P2) and the highly estrogenic hydroxylated (P3) and dimer-type metabolites
(P4). These identified mechanisms are beneficial for metabolite prediction from phe-
nolic endocrine disruptors whose fate is affected by this alternative P450 reactivity,
and thus enable screening of the metabolites for endocrine disrupting activity.

17.4 Conclusion and Future Directions

It remains a vital and difficult task to effectively predict the disposition and potential
toxicology of environmental chemicals in chemical risk assessment. In this chapter,
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molecular simulation studies with cluster models and DFT calculations are shown
to provide a mechanism-based explicit prediction for the metabolism of xenobiotics
catalyzed by P450 enzymes. Modeling the whole enzyme using hybrid quantum
mechanics/molecular mechanics (QM/MM) methodology with accurate force field
parameters and intensive samplings frommolecular dynamic simulationsmay further
resolve the difference of metabolic kinetics and product distribution among various
P450 isoforms or other enzymes that participate in xenobiotic disposition in biota.

From a broader aspect, effective identification of the molecular initiating events
(MIEs) that lead eventually to adverse outcomes requires accurate simulation of
the interactions between xenobiotic chemicals and bio-macromolecules. Molecular
simulations are undeniably applicable for this purpose and could further be adopted
to develop quantitative predictive models for various parameters (binding constants,
partition coefficients, even transformation rate constants, etc.) that determine the fate
and toxicity of xenobiotic chemicals, provided that the computing capacity is greatly
advanced and certain environmental/biological systems are properly treated. With a
combination of these simulation techniques and quantitative models, it is possible
to compile computational toxicology models/software that enable precise prediction
of xenobiotic disposition and toxicology through a simple mouse clicking.
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Chapter 18
Integrating QSAR, Read-Across,
and Screening Tools: The VEGAHUB
Platform as an Example

Emilio Benfenati, Alessandra Roncaglioni, Anna Lombardo
and Alberto Manganaro

Abstract In silicomodels are evolving toward amoremature view, which integrates
several perspectives. This integrationproceeds on the application side toward adeeper
exploitation of the data and information available, coping toward more challenging
tasks. On a theoretical point of view, the QSARmodels are nowadays most typically
general models, at least in their ambition, while read-across is local. There are also
general tools for prioritization. There are common aspects between these approaches,
but also peculiar aspects. On the other side, users are interested in the application of
these tools, for the evaluation of specific chemicals (which may relate to read-across
and QSAR models), or for the assessment of populations of substances, also quite
large (which may relate to QSAR and prioritization tools). In the development of
VEGA, we tried to be as close as possible to the user’s need, reducing the barriers
between the different approaches, and providing a series of tools which may fit
different purposes. We describe below the philosophy of VEGA, and how the user
may take advantage of the complex tools for different purposes.
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Abbreviations

AD Applicability domain
ADI Applicability domain index
BCF Bioconcentration factor
CLP Classification, labeling, and packaging
CMR Carcinogenic, mutagenic, or reprotoxicants
ED Endocrine disruptors
kNN k-nearest neighbor
NTM Non-testing methods
PBT Persistent, bioaccumulative, and toxic
SA Structural alerts
SOM Self-organizing map
WoE Weight-of-evidence

18.1 Introduction

In the last decades, dramatic changes occurred in the field of non-testing methods
(NTM). NTM include QSAR models and read-across. These two areas moved from
quite different perspectives and uses. Indeed, QSAR originally was a model devel-
oped for research purposes, to evaluate the reasons for the effects within specific
chemical categories. The possible relationship between the chemical structure and
the property value, in particular the toxicological and ecotoxicological properties,
has been studied for decades. In the case of the ecotoxicological properties, most
of the studies address certain chemical families and most commonly aquatic acute
toxicity [1]. Generally, for these properties, regression models have been developed.
In the case of toxicological properties, a number of studies addressed categorical
methods to discriminate toxic versus non-toxic compounds. Indeed, many studies
focused on mutagenicity via the Ames test [2].

For both toxicological and ecotoxicological studies, initially the assumption was
that themodel refers to a certain chemical family. In the case of ecotoxicity, themodel
was applicable to the family, and in the same way, for toxicological categorical
models, the effect was associated with the fact that the chemical belongs to the
family. Thus, initially, the attention started from the identification of a certain family
of compounds, and the reasoning affected this local situation.

In a second phase, the studies explored the possibilities to extend the chemical
domain of themodel. One approachwas simply to develop collections of sub-models.
However, the availability of software to calculate a very large number of descrip-
tors, of more sophisticated algorithms, and of more powerful computers at low cost
resulted in a dramatic increase of models able to cover many families of compounds
for many (eco)toxicological properties. At this point, the QSAR model was in prin-
ciple a general model [3].
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On the other hand, read-across has been used to address individual substances,
for practical purposes, mainly related to the assessment of the chemicals subject to
authorization. If data on the target compound were missing, the possibility to relate
to similar compounds with data was explored and applied. This approach is by its
very nature opportunistic because it is strictly applicable to the case where there is
at least one similar chemical with experimental values of interest.

However, authorities request more and more elements to support the fact that
the data on the source compound are sufficient and analyzing if possible reasons
of concern can be excluded. This caused the shift toward a more systematic strat-
egy, addressing theoretical aspects associated with the effect, and thus requiring the
exploration of the factors related to the effect. Furthermore, the preference is for the
use of not only one similar compound, again in order to further support the evidence
[4].

Thus, in a certain way, both in the case of QSAR and read-across, the tendency
has been toward more complex scenarios, able to introduce multiple factors which
play a role in the toxicity phenomenon, or anyhow in the process under study.

This theoretical change occurred in parallel with the change of the application
scenarios of the NTM and in particular of the QSAR models. Indeed, the NTM are
more and more commonly used for regulatory purposes [5–8]. In Europe, in vivo
methods are banned for cosmetics [9], but for industrial chemicals the presence of
alternative to in vivo methods should be explored [10]. The REACH registration
since its very first article promotes the use of alternative methods and addresses
criteria for the use of QSAR and read-across [11]. Specific documents published by
ECHA provide guidance on the use of QSAR and read-across [6, 12]. In addition,
EFSA refers to NTM in its guidance documents on weight-of-evidence (WoE) and
mixtures, for instance.

Similarly, the US EPA introduced several QSAR models to address human toxic-
ity, ecotoxicity, and environmental properties (https://www.epa.gov/tsca-screening-
tools/epi-suitetm-estimation-program-interface). Furthermore, other regulators from
other countries, such as Canada and Japan, are using QSAR models [2].

These cases demonstrate the interest inNTMfor regulatory purposes. This interest
promoted the change in the field of NTM toward a more structured and integrated
approach. This approach is able to cope with requests coming from the regulatory
bodies addressing the safety of the chemical substances and is thus a general target.

In this chapter, we describe the VEGA platform, which has been developed con-
sidering the regulators’ point of view.

https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface
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18.2 Method and Materials

18.2.1 The VEGAHUB Structure

Within the VEGAHUB platform, there are multiple tools, which are dedicated to
the exploration and analysis of the properties of chemical substances. The main
components of VEGAHAB are:

• VEGA
• ToxRead
• ToxWeight
• ToxDelta
• JANUS.

Furthermore, there are links to general tools, which can be used to develop new
models: SARpy [13], VEGA-based tools, SOM (Self-Organizing Map) tool, and
CORAL [14].

18.2.2 The QSAR Models in VEGA

VEGA can be freely downloaded from the website www.vegahub.eu, after registra-
tion. VEGA offers a collection of QSAR models. Indeed, there are tens of QSAR
models available within VEGA, addressing physicochemical, environmental, eco-
toxicological, and toxicological properties. Table 18.1 lists these models. We are
continuing adding models, and thus, this list is changing rapidly.

There may be more than one model for the same endpoint. This increases the
robustness of the overall prediction and the confidence of the final assessment.
The different models usually have different origin, including training sets of com-
pounds, chemical descriptors, and algorithms. The specific information on each
model, including the chemicals in the training and test sets, is available from VEGA.
Figure 18.1 shows where to find this information.

The user can make the prediction for one single chemical, or for a large set of
compounds, and the software allow both methods of entry, for one or few chemicals
(using the SMILES and an interactive page), or a collection of chemicals in a table.

VEGA automatically checks for the consistency of the SMILES and reports if
there are errors. VEGA transforms the SMILES into its specific SMILES format,
in order to have reproducible results. The results of each model are not simply the
predicted value, but in addition, the most similar chemicals and the evaluation of the
reliability of the prediction are shown.

The most similar compounds are identified using a specific program for similarity
(the algorithm is described in [15]), which has been optimized to balance different
approaches.

http://www.vegahub.eu
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Table 18.1 List of the QSAR models within VEGA

Properties

Toxicological Ecotoxicological Environmental Physicochemical

Mutagenicity (Ames test)
CONSENSUS model
(version 1.0.2)

Fish acute (LC50)
toxicity
classification
(SarPy/IRFMN)
(version 1.0.2)

BCF model
(CAESAR)
(version 2.1.14)

LogP model
(Meylan/Kowwin)
(version 1.1.4)

Mutagenicity (Ames test)
model (CAESAR) (version
2.1.13)

Fish acute (LC50)
toxicity model
(KNN/Read-
Across) (version
1.0.0)

BCF model
(Meylan) (version
1.0.3)

LogP model
(MLogP) (version
1.0.0)

Mutagenicity (Ames test)
model (SarPy/IRFMN)
(version 1.0.7)

Fish acute (LC50)
toxicity model
(NIC) (version
1.0.0)

BCF model
(KNN/read-across)
(version 1.1.0)

LogP model
(ALogP) (version
1.0.0)

Mutagenicity (Ames test)
model (ISS) (version 1.0.2)

Fathead minnow
LC50 96h (EPA)
(version 1.0.7)

kM/Half-life model
(Arnot/EpiSuite)
(version 1.0.0)

Mutagenicity (Ames test)
model (KNN/read-across)
(version 1.0.0)

Daphnia magna
LC50 48h (EPA)
(version 1.0.7)

Ready
biodegradability
model (IRFMN)
(version 1.0.9)

Carcinogenicity model
(CAESAR) (version 2.1.9)

Daphnia magna
LC50 48h
(DEMETRA)
(version 1.0.4)

Persistence
(sediment) model
(IRFMN) (version
1.0.0)

Carcinogenicity model
(ISS) (version 1.0.2)

Bee acute toxicity
model
(KNN/IRFMN)
(version 1.0.0)

Persistence (soil)
model (IRFMN)
(version 1.0.0)

Carcinogenicity model
(IRFMN/Antares) (version
1.0.0)

Persistence (water)
model (IRFMN)
(version 1.0.0)

Carcinogenicity model
(IRFMN/ISSCAN-CGX)
(version 1.0.0)

Developmental Toxicity
model (CAESAR) (version
2.1.7)

(continued)
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Table 18.1 (continued)

Properties

Toxicological Ecotoxicological Environmental Physicochemical

Developmental/reproductive
toxicity library (PG)
(version 1.1.0)

Estrogen receptor relative
binding affinity model
(IRFMN) (version 1.0.1)

Estrogen receptor-mediated
effect (IRFMN/CERAPP)
(version 1.0.0)

Skin sensitization model
(CAESAR) (version 2.1.6)

Hepatotoxicity model
(IRFMN) (version 1.0.0)

Fig. 18.1 Screenshot of VEGA. Clicking on the question mark, the user can download the pdf of
the description of each model. A table with the list of the chemicals and their property value within
the training and test set is also available
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Using this similarity measurement, VEGA shows the six most similar compounds
to the target chemical found in the training and test set together with their property
values. Thus, VEGA immediately provides a simple way to make read-across.

The similarity search is also used to evaluate the reliability of themodel prediction.
VEGA applies a separate software for this, different from the QSAR model used
to make the prediction. VEGA performs a sophisticated procedure to evaluate the
reliability of the model, which refers to the applicability domain of the model. This
assessment is quantitative and is provided through the applicability domain index
(ADI). The ADI is a single overall measurement. ADI combined several evaluations
depending on the model, since some models are quantitative (QSAR) and others are
only categorical (SAR). Below we list the components of the overall assessment.

• Similarity of the most similar compounds. This parameter checks how similar are
the most similar compounds.

• Chemometric check of the descriptor space. This verifies if the target compound is
inside the range of the descriptors used within the model. In addition, the software
checks if the molecular weight of the target compound is within the range of the
molecular weights of the chemicals at the basis of the model.

• Check of the descriptor sensitivity. The software artificially modifies of up to
10% the values of the molecular descriptors and verifies if dramatic changes are
recorded, indicating an unstable situation.

• Check for outliers based on specific fragments. For some models, outliers have
been identified, which share a common fragment.

• Identification of the presence of rare fragments. This is done using an atom-
centered fragment tool.

• Accuracy of the prediction. In this case, the software looks for the three most
similar compounds and compares the predicted and experimental values for these
compounds. This provides an evaluation on howwell the model behaves for chem-
icals, which are close to the target compound.

• Concordance with the experimental values of the similar compounds and the pre-
dicted value of the target compound. This checks if there is agreement between
the read-across and the QSAR prediction.

18.2.3 The ToxRead Software

In addition to the use of VEGA for read-across, as described above, there is a specific
program in VEGAHUB, which is devoted to read-across: ToxRead [16]. ToxRead
works by applying the same software for similarity as used in VEGA. Again, the
most similar compounds are shown, as in VEGA. However, in this case the user can
choose the number of the most similar compounds. Furthermore, the library of the
similar compounds within ToxRead is not limited to one single model, but integrates
the different collections of chemicals for the same endpoint. The real novelty of
ToxRead is that, in addition to the most similar compounds, the software provides
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the possible reasons of effects and the factors thatmay be associatedwith the property
values, given as fragments or other parameters. The current version offers only two
models: mutagenicity (Ames test) and bioconcentration factor (BCF).

The mutagenicity model includes a list of about 800 structural alerts (SA) asso-
ciated with mutagenicity. These alerts derive from different collections:

• Benigni–Bossa, as from the ToxTree software (http://toxtree.sourceforge.net/);
• From the SARpy model for mutagenicity [14];
• From the CALEIDOS project, CRS4 tool (http://www.life-caleidos.eu/pages/
project.php);

• From the list of fragments extracted by EB within the CALEIDOS project.

We notice that some fragments are associated with an increase in mutagenicity
(toxic fragments), while other fragments are associated with a decrease in this effect.
There are also fragments that are “neutral,” i.e., their presence is not related to
the effect (in the case of mutagenicity). ToxRead shows which SAs are present in
the target compound. Figure 18.2 shows an example of the graphical output of the
program. As from Fig. 18.2, the program indicates a number (up to the user) of
chemicals similar to the target compound, sharing a certain SA.

Chemicals are represented by circles (red or green, depending if they are muta-
genic or not), and SA are represented by triangles, with the same color code.

Fig. 18.2 Screenshot of ToxRead. The target chemical is in the center of the screen, surrounded
by the most similar compound (circles) and the rules identified for the target chemical (triangles)
with the similar compounds in which it is found. Clicking on both the similar compounds and the
rules, a window with the details appear. Circles and rules are colored depending of the value: red
for mutagenic substances/rules, green for the non-mutagenic ones

http://toxtree.sourceforge.net/
http://www.life-caleidos.eu/pages/project.php
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In the case of the BCFmodel, ToxRead also shows graphs with a plot reporting the
BCFvalues versus the logP (the logarithmof the partition coefficient n-octanol/water)
values of the most similar compounds. In this way, the user may apply a group
approach to derive the BCF value of the target compound.

18.2.4 The ToxWeight Software

VEGAHUB integrates the results of the QSAR models and the read-across assess-
ment, as in ToxRead. This program is called ToxWeight. It works automatically
within the ToxRead model for mutagenicity. In this way, the software provides the
summary of the different QSAR models, which are within VEGA, and in addition,
it integrates the results obtained from the ToxRead read-across for mutagenicity.

Within VEGA, there are four separate QSARmodels, and a fifth model integrates
the results of these four models. The integration is done considering the call of the
four models, mutagenic or not, and the reliability of each model as weight for the
integration. The reliability is assessed through the ADI of each model. In the case of
ToxRead, the prediction is done considering the mutagenicity values of the similar
compounds and the SA.

In the present version, ToxWeight does not make a decision in the case of con-
flicting results coming from ToxRead and VEGA.

18.2.5 The ToxDelta Software

ToxDelta is a separate tool to further explore read-across [17]. ToxDelta identifies
the maximum common substructure between two chemicals, in our case the target
and the source compounds. Then, ToxDelta evaluates the parts in the molecule that
are different in each chemical. These different fragments are compared with libraries
of fragments, for instance mutagenicity.

18.2.6 The JANUS Software

JANUS is a program to prioritize chemical substances considering their environ-
mental, ecotoxicological, and toxicological properties. It is intended to be used to
address chemicals which are persistent, bioaccumulative and toxic (PBT), carcino-
genic, mutagenic or reprotoxicants (CMR), and endocrine disruptors (ED).

Theoutput of the program is anordered tablewith substances including the reasons
for concern. A score is assigned to each substance, ranging from 0 (not of concern)
to 1. Uncertainty is also indicated. If uncertainty is high, the substance moves toward
the 0.5 value. If multiple factors of concern exist, the substance moves toward 1.
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Forty-eight different models run together in order to cover all these endpoints.
As in the case of VEGA, it happens that for one endpoint more models exist. In
this case, the multiple results are integrated into a unique value. The software gener-
ates microbial degradation products, which may occur in the environment, based on
the program developed by the University of Minneapolis, and implemented within
EnviPath (https://envipath.org/). It contains 235 separate degradation processes, iden-
tifying degradation products. JANUS evaluates the PBT, CMR, and ED properties
of the parental compound and of the degradation products automatically.

The PBT and CMR properties refer to the European regulation, and thus, a chem-
ical is considered PBT only if it is persistent, bioaccumulative, and toxic at the same
time, according to the threshold values defined by REACH [11] and the regulation
for the Classification, Labeling, and Packaging (CLP) [18]. Thus, for persistence,
the software looks for persistence in water, sediment, and soil. A chemical is defined
persistent if it is persistent in at least one of these three compartments. The evaluation
for the ecotoxicity refers to aquatic toxicity only. It covers fish, daphnia, and algae,
including both acute and chronic toxicity. A chemical is toxic if it is toxic for at least
one of the three trophic levels. For fish acute toxicity, there are both general and
specie-specific models. For bioaccumulation, the bioconcentration factor in fish is
modeled.

In case of mutagenicity, the system covers the Ames test. For carcinogenicity, the
system uses both regression and classifier models, in order to provide a quantitative
value, related to the slope factor, both for oral and inhalation exposure. Also for
reprotoxicity, there are regression and classifier models.

ED is covered considering general models for ED and specificmodels for estrogen
and androgen receptors.

For each property addressed within the PBT, CMR, and ED, there are workflows
integrating the results ofmultiplemodels, integrating both experimental (retrieved by
themodels) andpredictedvalues.There are furthermodels supporting the assessment.
For instance, theworkflow forBCFalso verifies if the logP value is consistentwith the
BCF value. In case of aquatic toxicity, the water solubility is checked and compared
with the toxicity value. Formutagenicity, themetabolism according to the S9 fraction
is also considered.

The user can provide to the system experimental values, if available. Then, for
P and B only, the workflow first refers to a series of families identified as priority
pollutants. If the target compound belongs to one of these families, the score related
to the family is assigned.

The components to assign the final score for the prioritization list refer to sub-
score related to the individual properties and endpoints assessed. As a general rule,
experimental values have higher reliability than predicted values; multiple concor-
dant values have higher reliability than single values; and the spread of the values in
case of multiple values decreases the reliability.

https://envipath.org/
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18.3 Results

18.3.1 The VEGA Software

VEGA represents a sophisticated system to assist the user in the evaluation of the
properties of chemical substances. VEGA provides three kinds of outputs, which
conceptually are quite different: QSAR models, measurement of the reliability of
the predictions, and read-across.

As the other systems with QSAR models, VEGA provides predictions. We try
to offer models for a series of endpoints and if possible to give more than one
model for the same endpoint. The models have been developed within a series of
projects funded by the European Commission (EC): CAESAR, ANTARES, CALEI-
DOS, PROSIL, ORCHESTRA, ToxBank, EU-ToxRisk, COMBASE, VERMEER,
and EDESIA. Further funds have been received by the GermanUBA and the German
Federal Ministry for the Environment, Nature Conservation, Building and Nuclear
Safety, within the projects PROMETHEUS, JANUS and toDIVINE, and by the Ital-
ian Ministero della Salute.

We also included somewell-knownmodels from other platforms. For instance, we
have models replicated from EPISuite, or ToxTree. Some models have been devel-
oped in collaboration with US EPA, as in the case of the model for developmental
toxicity. The model for reprotoxicity has been implemented based on the software
developed by Procter and Gamble researchers [19], and we already mentioned the
implementation of the EnviPath software within JANUS.

This is to say that we try to offer to the user good models, regardless of the
theoretical assumptions and the sources, but looking at the quality of the model,
in terms of quality of the data at its basis and statistical parameters. The statistical
values of the models have been published in a series of papers [20–25].

VEGA provides an advanced measurement of the applicability domain (AD). It
has been shown that the prediction is more reliable if we take into account the ADI.
In this way, the user has a clear, automatic way to evaluate the reliability of the
prediction, and the use of the ADI increases the confidence of the prediction. The
software at the basis of the ADI is orthogonal compared to the software that makes
the prediction.

Furthermore, VEGA can be used as a simple tool for read-across. Indeed, the
user can even disregard the prediction and make his or her assessment based on the
most similar compounds. This feature is probably not well-recognized by the user,
but it is very simple. Also in this case, if there is more than one model for the same
endpoint, we recommend use all of them. Indeed, the software for the ADI refers to
the chemicals present in the different datasets at the basis of each model, and thus,
each model may show different chemicals. It may also happen that different values
are present in the different sets of chemicals used by the different models. In these
cases, we left the original experimental values as used by the developers.

Behind the list of the most similar compounds with the experimental values, there
is an additional tool for read-acrosswhich is present for themodels that use SA. In this
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case, VEGA, within the ADI program, indicates if there are fragments in common
with the target compound, and/or fragments present only in the source compound.
This is a very useful feature because it helps with reasoning about the real similarity
between the source and target compounds, beyond chemical consideration. Indeed,
the SA is endpoint specific, and if the target and the source compounds share the
same SA, this increases the similarity, but if the source compound has a different SA,
it can be responsible for the difference in the property values between the source and
the target compound.

18.3.2 Other Programs for Read-Across

Above we mentioned all models available within VEGA can be used for read-across,
simply by looking at similar compounds, and possibly at their SA. In addition, some
models within VEGA are based on the k-nearest neighbor (kNN) algorithm. This
approach is a kind of automatic read-across, which makes predictions based on
similar compounds. Also in this case, we recommend looking at the results of the
other models, in particular if there are models indicating SA. This because it may
be that all the most similar compounds to the target chemical contain a SA which is
responsible for the effect, but it is not present in the source compound.

The idea to carefully consider SA is at the basis of ToxRead. In this case, the
software does the evaluation automatically. This increases the reproducibility of
the results offered by the read-across tool. It has been shown that ToxRead is more
reproducible and less affected by the subjectivity of the read-across evaluation, which
is amajor drawback of read-across [26]. This becauseToxRead indicates awide series
of SA and not only those initially identified by the user.

ToxDelta may be used joined with ToxRead. Its basis is different from ToxRead,
since ToxRead refers to the similarity (chemical and toxicological/environmental,
through the SA and the other features it covers), while ToxDelta focuses on the
dissimilarity. ToxRead looks for several similar compounds, while ToxDelta should
be used for the substances to be compared.

18.3.3 The JANUS Software

JANUS further proceeds along the software PROMETHEUS for prioritization. It
includes a high number of models, which will be also made available as individ-
ual tools within VEGA. The novelty of JANUS is that the prioritization covers a
very large set of properties, related to a series of endpoints identified by regulation.
Previous tools for prioritization, including PROMETHEUS, addressed mainly PBT.
PROMETHEUS evaluated the T only through fish toxicity and did not give a numeric
evaluation of each property but only a classification. Other software, like the PBT
index [27], gives a PBT evaluation but not the three properties separately. Again,
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other tools are thought of for the USA’s regulations; therefore, the thresholds used
are different compared to the European ones.

Furthermore, previous models applied one single model for each endpoint, typi-
cally. Within JANUS, 48 models run together and provide the uncertainty of the final
score based on multiple results for the same endpoint.

18.4 Discussion

The VEGAHUB platform represents an example of a mature system, which goes
beyond the predictions, and tries to extract from the individual tools all elements
useful for the evaluation of the chemical substances. Wemoved our perspective from
the point of view of the developers to the point of view of the user. This affected a
number of our choices.

The software is freely downloadable, and this has been done in order to increase
its use. The payment of a fee or a license is a barrier for some users, in particular
public bodies, academia and small industries. Furthermore, industry and regulators
do not like to disclose structures of the substances they are studying, and for this
reason, we developed a tool that can be downloaded and used internally.

We are aware that multiple models exist or may be developed for the same end-
point. This increases the confidence of the user. Consequently, we tried to develop
more than one model for the same endpoint. We also incorporated models from other
systems and established collaborations with a series of developers. Indeed, VEGA
is promoting links with other systems.

A peculiar feature provided by VEGA is the ADI. This is not available within
other popular systems, such as ToxTree and EPISuite. Indeed, the evaluation of the
AD within these systems is not possible, or is prohibitively time-consuming, since
it has to be done manually on a set of parameters.

The ADI within VEGA is composed of several components, which relate to the
three components of anyQSARmodel: chemical, computational, and property.Many
models evaluate the AD considering the chemical component only and evaluate how
similar the target compound is, compared to the population of substances within the
training set of the model. However, this is only one part of the AD. Since at the
basis of any QSAR model there are also aspects related to the algorithm and the
biological/toxicological/environmental property, these aspects may surely affect the
model and thus the AD. For this reason, we developed a sophisticated ADI.

Multiple factors are at the basis of the evaluation of substances, and we progres-
sively integrate tools to assist the users facilitating this evaluation. ToxWeight is a
clear example. The program automatically runs QSAR models, compares the results
of the different models considering their individual reliability, and in parallel eval-
uates SA within a read-across perspective, which is merged with the QSAR results.
This strategy has a clear reference with the Guidance on Weight-of-Evidence pub-
lished by EFSA [8]. The evaluation of the reliability and consistency of the individual
lines of evidence are indeed at the basis of this Guidance.
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Similarly, these criteria (reliability and consistency) are adopted within JANUS.
The tools within VEGAHUB are transparent. The final decision is taken by the

user, while VEGAHUB offers support representing the different lines of evidence.
Thus, the user may opt for a conservative result, or prefer a realistic value.

We notice that different tools relate to different purposes. Users may be interested
in the specific evaluation of a single chemical and apply a range of tools for this
need. Alternatively, the user may be interested in screening, discriminating families
of chemicals of concern from the safe one. In other cases, the user may need prioriti-
zation criteria. While groups of chemicals screened together may be treated together
(PBT or not, CMR or not), for prioritization a list is necessary, because substances
have to be ordered. Indeed, the user may have resources to separately assess a limited
number of compounds, and it is necessary to provide a way to sort this number out of
the group of CMR chemicals, for instance. For this reason, within JANUS we devel-
oped models that provide continuous values for carcinogenicity and reprotoxicity.
For instance, carcinogenic compounds can be ordered according to their potency
value.

18.5 Conclusion and Future Directions

Within VEGAHUB we provide a series of tools with the aim to better evaluate
individual chemicals, or families of substances. The individual tools, QSAR, read-
across, and grouping, are related to the methodological aspects. We tried to move
toward results of the models, which provide details, interpretations, related values,
occurrence of SA, graphics with associations and trend, etc. beyond the technicalities
of the individual models. Within VEGAHUB multiple tools are connected and used
simultaneously in order to assist the user.

We have already planned extensions of VEGAHUB. A major improvement will
be achieved by joining VEGAHUB with MERLIN-Expo (https://merlin-expo.eu/),
within the LIFE VERMEER project (https://www.life-vermeer.eu/) funded by the
EC. In this way, the user will have combined tools for the hazard and for the expo-
sure, and thus, the evaluation of risk assessment will be facilitated. Furthermore,
VERMEER will identify safer substitutes of risky chemicals, and in this, it will be
aligned with the principles of the REACH legislation.

The toDIVINE project funded by the German UBA will further integrate read-
across (based on substances registered for REACH) with QSAR predictions.

The LIFECONCERTREACH project, funded by the EC, will establish a network
between VEGAHUB, the Danish QSAR database, and AMBIT (http://cefic-lri.org/
toolbox/ambit/), to fully exploit data registered within REACH. All endpoints will be
scrutinized, in an effort to develop QSARmodels for the tens of endpoints addressed
within REACH.

The Optitox project, funded by EFSA, will derive QSAR models from the EFSA
OpenFoodTox database by leveraging information about the toxicokinetics.

https://merlin-expo.eu/
https://www.life-vermeer.eu/
http://cefic-lri.org/toolbox/ambit/
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All these initiatives will dramatically improve VEGAHUB and its capability to
provide assistance to the evaluators of chemical substances, moving the field toward
safer chemicals.
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Chapter 19
OpenTox Principles and Best Practices
for Trusted Reproducible In Silico
Methods Supporting Research
and Regulatory Applications
in Toxicological Science

Barry Hardy, Daniel Bachler, Joh Dokler, Thomas Exner, Connor Hardy,
Weida Tong, Daniel Burgwinkel and Richard Bergström

Abstract Our aim in this work and initiative is to establish a practice and guidance
for tracking and reporting modern in silico data analyses in a reproducible manner.
The recommended reproducible principle supports the concept that data analyses,
and more generally, scientific claims and regulatory evidence, are published with
their raw data and software code so that others may verify the findings and build
upon them. We discuss here how we are demonstrating implementations of trusted
reproducible in silico evidenceworkflows and are enhancing their acceptancewith an
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open knowledge community approach supported within OpenTox andOpenRiskNet.
The general principle discussed in this article can be applied in regulatory settings.

Keywords In silico · Toxicology · Regulatory · Reproducibility · Data · Trust
and provenance · Blockchain

Abbreviations

AI Artificial intelligence
AOP Adverse outcome pathway
API Application programming interface
DILI Drug-induced liver injury
EMA European Medicines Agency
FAIR Findable, accessible, interoperable, and reusable
FDA Food and Drug Administration
GDPR General Data Protection Regulation
GPR Global Patient Registration
IATA Integrated Approach to Testing and Assessment
IPFS InterPlanetary File System
IST In Silico toxicology
ITS Integrated testing strategy
IUCLID International Uniform ChemicaL Information Database
NDA New Drug Application
OECD Organisation for Economic Co-operation and Development
OHT OECD Harmonised Template
OS Operating System
QMRF QSAR Model Reporting Format
QSAR Quantitative Structure Activity Relationship
REACH Registration, Evaluation, Authorisation and Restriction of Chemicals
URL Uniform Resource Locator
WoE Weight of Evidence
XML eXtensible Markup Language

19.1 Introduction

Reproducibility in science has raised significant concerns in recent years. For exam-
ple, a recent study of 1500 scientists highlighted key issues with the finding: “More
than 70% of researchers have tried and failed to reproduce another scientist’s exper-
iments, and more than half have failed to reproduce their own experiments.” http://
www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970.

http://www.nature.com/news/1-500-scientists-lift-the-lid-on-reproducibility-1.19970
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In data science and computational modeling, this problem has reached new mag-
nitudes of concern, due to the diversity of approaches, software tools, and hardware
architectures involved.Manymethods are emerging in the research field of alternative
testing methods supporting safety assessment, but industry and regulators are finding
the establishment of reproducible application, evaluation, and guidance challenging,
and current regulatory acceptance is as a result moving slowly.

Our aim in this work and initiative is to establish a practice and guidance for
tracking and reporting modern in silico data analyses in a reproducible manner.
Reproducible research supports the concept that data analyses, and more generally,
scientific claims, are published with their raw data and software code so that others
may verify the findings and build upon them. Reproducibility allows people to focus
on the actual content of a data analysis, rather than on superficial details reported
in a written methods summary. In addition, reproducibility makes an analysis more
useful to others because the data and code used to conduct the analysis are available.
This paper focuses on literate statistical analysis tools which allow one to publish
data analyses in a single repository that allows others to easily execute the same
analysis to obtain the same results. Although many of the principles described here
apply broadly to scientific research and associated data science and principles, we
will focus on the domains of toxicology and risk assessment where data is generated
and used and models are developed primarily for the purpose of ensuring the safe
level of use of a chemical or drug in a human or the environment.

The work proposed here aims to exploit background developments related to the
OpenTox community (http://www.opentox.net/), and its associated current infras-
tructure project OpenRiskNet (https://openrisknet.org/), so that information gener-
ated and processed by in silico methods are more suitable for purpose for industrial
use and regulatory acceptance including:

(a) Establishment of application programming interfaces (APIs) for scientific data
within the context of an open infrastructure providing reliable quality-controlled
access to harmonized scientific data;

(b) Development of best practice in silico workflows, processing the data with the
principle of reproducibility as established by the context of use;

(c) Engagement of the scientific community to develop and contribute best practice
in silico workflows;

(d) Establishment within the OpenTox community of guidance to best practices for
in silico workflows in predictive toxicology.

Our objective is to develop guidance, methods, and best practices supporting
reproducible in silico computational toxicology and safety assessment. Implementa-
tions within OpenTox and OpenRiskNet will be established against use cases involv-
ing model building, validation and integrated testing. The approach will be extended
to include additional contributions from the scientific and regulatory communities for
elaboration and consensus building. This approach should support the independent
verification of resources used in producing results as toxicological evidence.

Currently, basic research and outputs exist, but the approaches for regulatory use
and acceptance are missing from practice.We need to develop reliable access to data,

http://www.opentox.net/
https://openrisknet.org/
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specify the metadata needed, implement interoperability layers and workflows, and
obtain community contributions and acceptance. Achievement of such goals will
increase the reliability of predictions, increase the ability to reproduce a prediction
and determine reasons for deviations, and support the independent verification of
resources used.

19.2 Proposed Principle of Reproducibility for In Silico
Modeling and Workflows and Implementation
in Practice

We state the principle of reproducibility here as:

The Principle of Reproducibility states that close agreement in scientific results can be
obtained when a sufficiently well-described protocol is competently executed. The protocol
can be experimental (in vitro or in vivo) or computational (in silico) or a combination of
such protocols.

The main concern of the current paper addresses the achievement in practice of
reproducible computational (in silico) protocols. Bioinformatics and data science
in general are fraught with challenge that hamper the achievement of the principle
of reproducibility in practice. These include correctly identifying the dataset one
is working with, identifying the transformations and manipulations that may have
been done to it, validating these, as well as similarly recording new transforma-
tions that one applies. The ease of making, modifying, and distributing copies of
digital data leads to the proliferation of multiple versions of datasets, which may
have ambiguous origin and meaning. At the same time, technologies such as formal
ontologies and blockchain provide opportunities to address this problem. At their
core, the blockchain methods build on calculating hashes (checksums) of the data
and the software used for data processing (Sect. 19.6 gives a more in-depth outline
of this approach).

We suggest a solution structured around verification and reproducibility annota-
tions, implemented according to the following practices (see Fig. 19.1):

• Formally identifying datasets, and versions of these, with a suitable hash function;
• Similarly identifying tools (computational steps that produce new or derived ver-
sions of data) and versions of these;

• Generating an “audit trail” that describes all transformations that have been applied
to data that is retrieved, for example, through APIs, by referring to hashes of
specific versions of necessary tools, inputs, and intermediate data. This would at
a minimum be in a way that allows such transformations to be verified and ideally
in a way that allows them to be reproduced. When verification fails, the supporting
tools might suggest how to update or repair the workflow;

• Making it trivially easy to integrate or introduce new transformations (such as
simpleR or Python scripts) into this kind of auditing system, such as to not interfere
with existing work habits;
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Fig. 19.1 Measures to
improve reproducibility of in
silico workflows

• At the same time developing and providing advanced methods for the full inte-
gration and documentation of the workflows with repositories like GitHub and
finally by containerization of data including raw and intermediate data as well as
the software tools for producing a complete snapshot of the knowledge generation
process.

If these practices can be successfully realized (and the success of systems like
the blockchain, GitHub, distributed file systems like IPFS, and containerization
approaches like docker suggests that they can), then these reproducibility annota-
tions may also form the basis for future applications that may, for example, actively
generate and regenerate the latest versions of data, results, and conclusions using
the latest tools and input data sources, according to well-defined recipes and in this
way protocoling the scientific advances. Reproducibility annotations could also be a
cornerstone of significant efficiency improvements in organizations that manipulate
biological data.

19.3 Example 1: QSAR Model Building and Validation

The increasing complexity ofmolecular descriptors andmachine learning algorithms
presents a challenge for the reproducibility of QSAR models. The use of nonlinear
algorithms is increasing, a practice that is assisted by the advancements in fields
like neural networks and support vector machines among others. Not only does
this require the explicit documentation of optimization methods, but also algorithm
parameters, including random number seeds, must be noted down. Furthermore, the
construction of metamodels, such as utilizing a bootstrap aggregation (bagging) and
boosting protocols, adds yet another layer of complexity to the model building and
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documentation making it harder to reproduce. Unless the authors contribute a saved
copy of their model, it is almost impossible to reproduce the QSAR model based
on a text description alone. A standard format (the QSAR model reporting format
(QMRF)) has been suggested to report on the structure of a QSAR model. It takes
the form of a harmonized template for summarizing and reporting key information
on QSAR models, including the results of any validation studies. The information is
structured according to theOECDQSARvalidation principles.At the time ofwriting,
the QMRF database published by the European Commission’s Joint Research Centre
(http://qsardb.jrc.it/qmrf/) includes over one hundred such reports.

Thousands of chemical descriptors have been documented [1]. While many
descriptors are chemically intuitive, for instance “number of hydrogen-bond accep-
tors,” their algorithmic implementation is often not. Many software packages have
different interpretations of the same SMILES representation of a chemical structure
resulting in a different count of what is to be considered “hydrogen-bond acceptor.”
This problemmay often be aggravated by the poor description of the structure clean-
ing steps (such as whether the modelers renormalized aromaticity, re-optimized 3D
structures, or neutralized charges). As a minimum requirement for reproducibility,
the name of the software tool and its version have to be documented. Amore practical
approach is to internally store (and possibly publish) an exact copy of the software
program and the preprocessing workflows that were used to calculate descriptors.
Such a step is more easily attained for open software than proprietary programs due
to the availability of the source code and the inviting license model.

The importance of validating QSAR models for regulatory acceptance cannot
be overstated. A validated model is one that is able to produce consistent results
when tested on external validation set(s) not involved in its training. For external
researchers and regulators to validate a QSARmodel, they must be able to reproduce
it with sufficient accuracy.Many online platforms for QSARmodel building and val-
idation have been developed: OpenTox, OCHEM [2], Chembench [3], and AMBIT
[4], among others. Many of these platforms can be managed through application
programming interfaces (APIs) allowing the scripting control of complicated QSAR
model building workflows by passing the parameters needed for machine learning
algorithms, descriptor packages, variables selection, and preprocessing steps. Mod-
elers can therefore document an entire workflow using such a script, while the online
platforms store the underlying binaries and versions. OCHEM also offers its XML
format for documenting such settings in a reproducible manner.

OpenTox proposed a best practice for building validated in silico QSAR mod-
els accompanied by specifications for APIs and supported by open standards and
ontology (see Fig. 19.2) for harmonized knowledge descriptions and communica-
tions between components for data, algorithms, models, and validation. We propose
to update and upgrade these specifications and best practices through making a pro-
posal with accompanying case study examples to the community to include the goals
of reproducibility, trust, and provenance discussed in this paper. Such a QSAR may
also be deployed in an ITS as described in the example in the next section.

http://qsardb.jrc.it/qmrf/
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Fig. 19.2 OpenTox best practice for building a validated QSAR model

19.4 Example 2: Integrated Testing Strategies

Integrated testing strategies (ITSs) can be described as combinations of test batteries
covering relevant mechanistic steps and organized in a logical, hypothesis-driven
decision scheme, which is required to make efficient use of generated data and to gain
a comprehensive information basis for making decisions regarding hazard or risk
[5, 6]. They can be seen also as an algorithm to combine and establish links between
(different) test result(s) and, potentially, non-test information (existing data, in silico
extrapolations from existing data or modeling) and to come up with a combined test
result. As such, ITS try to overcome the problems associated with the standard test
batteries which are in most cases presented as a sequence of tests without formal
integration of results. Consequently, the use of these standard batteries leads to lack
of guidance on how to perform consistently and lack of transparent inference about
the information target. ITS on the other hand are built upon the following conceptual
requirements: (i) transparency and consistency, to ensure comprehensiveness and
as a result credibility and acceptance; (ii) rationality, to ensure that all relevant
information is fully exploited and optimally used; (iii) flexibility to ensure hypothesis-
driven decisions and the possibility of adjustment of the initial hypothesis whenever
new information is obtained or generated. Furthermore, they bundle different and
possibly contradictory information and the respective uncertainties considered in a
weight of evidence (WoE) approach. Additionally, in case of data gaps, the ITSwould
propose the most appropriate method to acquire the missing information.
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Fig. 19.3 Adverse outcome pathway for skin sensitization involving four key events (KEs)

Fig. 19.4 Skin sensitization integrating testing application for skin sensitization
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Reproducibility of a testing strategy would therefore encompass the reproducibil-
ity of the experimental data as well as the algorithmic or in silico model. Relying
on a documented test protocol to conduct the experiment and keeping track of any
deviations from the original protocol is a key. A knowledge management system
where test protocols are tracked and versioned is a good practice. OECD publishes
harmonized templates that describe the data formats for reporting information that
is used for the risk assessment of chemicals. Its applications involve, not only “stud-
ies done on chemicals to determine their properties or effects on human health and
the environment, but also for storing data on use and exposure.” The harmonized
templates are aimed at developers of database systems, as they prescribe the for-
mats by which information can be entered into and maintained in a database. The
test study summary information can be exchanged between governments, regula-
tors, and industry electronically using these templates. The templates can also be
used to report summary test results for different products. REACH registrants use
the OHTs for submitting their results to the European Chemicals Agency (ECHA)
using IUCLID. On the other hand, the theoretical model behind the ITS can vary
from simple decision trees on the order by which risk assessors should perform their
experiments [7] to more complicated machine learning algorithms [8] or Bayesian
networks [9].

ITS skin sensitization example: The biology of skin sensitization is described
by an adverse outcome pathway (AOP) involving a sequence of key events repre-
senting potential biological activity responses to chemical exposure of the skin (see
Fig. 19.3). Validated assays against the key events may be used in combination with
in silicomethods for an ITS purpose.Within theOECD framework, a guideline exists
for Integrated Approaches to Testing and Assessment (IATAs) which consist of an
ITS where different strategies or algorithms may be used, as described by a “defined
approach.”We have recently developed an ITS application for skin sensitization (see
Fig. 19.4) [10] reproducing the IATA and defined approach developed at Procter
and Gamble and involving Bayesian networks [9]. The use of Bayesian networks
allows tolerating missing information and conveys the probabilistic hypothesis of
skin sensitization based on accumulative evidence from data. In building the ITS,
open-source tools were favoured by Douglas Connect (now renamed Edelweiss Con-
nect (EwC)). A public open-access reference application is made available for the
scientific community to evaluate at https://its.douglasconnect.com.

19.5 Best Practices in Data Management: FAIR Principles,
Data Completeness, Interoperability and Ontology

Comprehensive documentation of the scientific procedures, experimental as well
as computational, is of uttermost importance to achieve reproducibility. Besides
guidelines for running the experiments including good laboratory practice and cell
culture practice guides (which are out of scope of this current paper), detailed test

https://its.douglasconnect.com
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method and protocol description, optimally also in a computer-readable version,
data quality assurance measures and data management are at the heart of creditable
scientific practice. This fact is now generally acknowledged resulting in the FAIR
data principles (findable, accessible, interoperable, and reusable) endorsed by almost
all major funding agencies and many high-impact journals as well as the Guidance
on Good Data and Record Management Practices by the WHO [11]. Well-prepared
data are valuable resources that can be used and reused with high confidence. In this
way, data sharing facilitates new scientific inquiry, avoids duplication of experiments
and data collection, provides rich real-life resources for method validation as well
as education and training and, most importantly for the topic here, allows for the
complete comparison of all steps from raw data to results when trying to reproduce
the study. To allow for data usage without the need to refer to external sources
like publications, final reports, working papers, or laboratory books, all important
information should be included in the data submission. Good data documentation
includes information on:

• author and affiliation contact, relevant dates, reference to testmethod and protocols
as well as publications and reports;

• the context of data collection: project history, aim, objectives, and hypotheses;
• data collection methods, dataset structure of data files, study cases, relationships
between files;

• data validation, checking, cleaning, and quality assurance procedures carried out;
• changes made to data over time since their original creation and identification of
different versions of data files;

• information on access and use conditions or data confidentiality;
• names, labels, and descriptions for variables, records, and their values;
• explanation or definition of codes and classification schemes used;
• codes of, and reasons for, missing values;
• derived data created after collection, with code, algorithm, or command file.

It is clear that data completeness, quality and reproducibility is mainly influenced
by procedures adopted during data collection and documentation of how data are
collected provides evidence of such quality. The digitization and entering of data, the
documentation of data manipulation, the processing, and most importantly complete
in silico approaches like read-across and QSAR need to follow high-quality data
standards. Errors during input and unintentional modification or disruption can be
avoided or at least be minimized by standardized and consistent procedures with
clear instructions. The procedures described below will provide guidance to follow
these standards, provide tools for on-the-fly verification, as well as minimize human
intervention by:

• setting up validation rules for data entry software as well as providing validation
tools to be executed after each data modification;

• using automatic protocoling of data manipulations and software usage including
hardware and software setup, needed data transformation procedures and program-
specific run time parameters;
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• supporting the usage of controlled vocabularies taken from and referencing stan-
dard ontologies, code lists, and choice lists to minimize manual data entry;

• eliminatingmanual file format transformations by data harmonization and enhanc-
ing the interoperability of the integrated analysis software.

19.6 Proposed Technology Solutions for Data Processing

In the domain of software engineering, the intersecting problems of versioning and
collaborationwere solved by the introduction ofDistributedVersionControl Systems
(DVCS), most notably among them git [12]. These systems work by recording all
changes to all source code files of a project over the entire history of the project,
starting with an empty folder and arriving at the latest development version. When a
changeset is created by the user, the DVCS compares the status of all files with the
last recorded changeset and creates a list of differences across all files. This list of
differences is then combined with metadata about the changeset (timestamp, author
information, the hash of the previous changeset, etc.). The resulting data is hashed,
meaning that a unique numeric identifier of fixed length is calculated and added to
the inventory of changesets.

We envision a similar system for data and data transformations, to enable verifica-
tion and reproduction of data and workflows operating on them. This would consist
of a standardized description of metadata about the data and data transformation
steps, linked together as a merkle tree [13] similar to the way git or bitcoin operates.

In a simple case, a downloaded raw data file would be hashed, metadata added
(e.g., the URL the dataset was retrieved from, a timestamp of the retrieval), and the
result recorded as a first step alongside the downloaded data. An analysis that would
then be run on top of this as an R script would similarly be recorded into the system,
but in this case, the metadata would include the path to the R script in a git repository
and the hash of the version used when running the analysis. Crucially, the metadata
of this second step would include the hash of the first step to link these two steps
together.

We acknowledge that risk assessment is an environment where the use of such
systems is not yet widespread, data manipulation is often done offline, and thus,
no full chain of linked processing description steps exist from the final result to
the raw experimental data (though such a full chain would certainly be possible
and desirable). As such, we anticipate a verification system concentrating on the
“tail end” of the analysis initially (e.g., starting with a downloaded dataset about
which nothing more is known than the URL where it was downloaded from and then
doing one or two analysis steps to reach a conclusion). As the usefulness of such an
approach is recognized in the wider community, we hope that data managers either
responsible for public or in-house data would themselves, in collaboration with the
experimental scientists, start to record such information based on the approaches
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developed for the verification system. Summary datasets prepared like this would
contain recordings of all data transformations that were used to derive this data from
the raw experimental data allowing for an in-depth validation and reproduction of
the procedure during the review process of a regulatory submission. The technology
primitives for such systems are well established and are in use in git, bitcoin and other
blockchains, and IPFS (the InterPlanetary File System) and can be used to express
nonlinear relationships between workflow steps. Another often volatile component
of any data-based workflow is the system utilities and libraries installed as part of
the operating system (OS). With the recent development of NixOS Linux [14], even
these parts could be recorded into themerkle tree, becauseNixOS provides capability
to hash all the tools available in an OS at a given point in time and to restore this
exact state at a later point in time.

19.7 Locating the Source of Irreproducibility: Sub-tasks
and Intermediate Datasets

The system we envision would contain the necessary information not just for a
human to audit the data steps and be able to reference the precise files and software
versions to reproduce a data analysis or transformation—it would indeed go further
and describe the necessary execution steps in enough machine readable detail to
reproduce the workflow automatically (probably by extending an existing workflow
tool like NextFlow or similar). In such a scenario, the analysis could be replayed
by the workflow tool one to one. A successful demonstration of such an approach
is the literate programming environment R Markdown, which can regenerate an
entire publication including all data downloads from original URLs, through all
intermediate data cleaning and processing steps until the final generation of the
report pdf. The default way of comparing any intermediate step would be to compare
the hashes—this would allow a user reproducing the workflow to see if there is
at any point a divergence between the original publication or analysis and their
reproduction but would not give them more information. To make the system more
powerful, we want to follow the example of git and make the actual diffing algorithm
interchangeable. In this way, a data format aware diffing could be used to compare
files with a deeper understanding of its content—for example, when two csv files
(the first from the original study submitted with the report and the second from the
validation study) differ, the divergence could be highlighted in the file instead of
giving just a yes/no answer to the question “Are these files binary identical?”. Such
a flexible diffing would allow users that reproduce the data to define a threshold of
similarity, up until which they would still regard the result as being reproduced (e.g.,
if there is a newer original dataset that is used to run the same analysis).
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19.8 Use of Software Containers

Web services are increasingly deployed using software container technologies like
docker; they are already versioned with a cryptographic hash (since this is how
docker containers are layered internally). This information should then be included
in the audit log when a query is performed against such a system. If the container
is publically available, a researcher reproducing a workflow could then recreate an
analysis even if theWeb service itself is no longer runningor a newer version produces
different results. Besides all used data (raw data of experiments specifically generated
for the submission and all public sources), these containers could also become part
of a regulatory submission guaranteeing that the analysis will always be exactly
reproducible. Software needing a license to be run could be offered in a specific
version only allowing this one calculation to be run. Additionally, data produced in
intermediate steps (data snapshots) should also be stored in data containers. This
would have the advantage that data integrity could be validated from snapshot to
snapshot; e.g., copy errors could be identified by comparing the before and after state
of the data, as long as such manual manipulations are still needed due to missing
interoperability of the tools.

19.9 Regulatory Acceptance Practices

The regulatory acceptance for a testmethod is represented by its formal acceptance by
regulatory authorities indicating that the test method can be used to provide informa-
tion to meet a specific regulatory requirement. This includes a formal validation (i.e.,
reliability and relevance assessment of the method considering its reproducibility,
transferability, predictive capacity, applicability domain, and performance standards)
[15] and adoption by the International Organizations (i.e., OECD and EC) before
implementation into specific regulations and related guidelines [16, 17]. Similarly,
for the in silico methods, as they are playing an increasing role in predicting prop-
erties for hazard and risk assessment, the acceptance of computational approaches
should be based on standards and criteria of reliability and relevance prior to be
applied within a specific regulatory context. As an example, EU REACH Regulation
explicitly includes the need to use QSARmodels to reduce the extent of experimental
testing, emphasizing the principle that information generated byQSARsmay be used
to indicate the presence or absence of a certain dangerous property instead of exper-
imental data, provided that the following conditions are met: The results are derived
from a QSAR model whose scientific validity has been established, the substance
falls within the applicability domain of the QSARmodel, the results are adequate for
the purpose of classification and labelling and/or risk assessment, and adequate and
reliable documentation of the applied method is provided [18]. Moreover, in order
to facilitate the consideration of a QSAR model for regulatory purposes, it should
be associated with the following information: a defined endpoint, an unambiguous
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algorithm, a defined domain of applicability, appropriate measures of goodness-of-
fit, robustness and predictivity and a mechanistic interpretation [19].

Another strategy for including the in silico methods into decision making and
accelerating the regulatory acceptance for toxicity testing is represented by the Inte-
gratedApproaches to Testing andAssessment (IATAs), which are currently proposed
as practical solutions to integrate such alternative methods, with ITS being an exam-
ple of such an approach. IATAs provide ameans for combining the data fromdifferent
methods, considering all available relevant information about a substance in aweight-
of-evidence assessment, to inform regulatory hazard or risk decisions or the need for
additional tests and rely on non-animal approaches to determine chemical hazard
or risk [20]. In parallel, the development of the adverse outcome pathway (AOP)
framework, which provides information on the adverse outcome of regulatory con-
cern, offers the biological context to facilitate development of IATAs for regulatory
decision making [21]. For example, in silico models like QSAR that are designed to
predict key events in different pathways should be useful sources of information in
IATA, whereas QSARs that are directly predictive of the adverse effect may be useful
for increasing confidence in weight-of-evidence arguments [16]. However, a critical
question for the risk assessor when applying a non-testing method for regulatory
purposes is regarding the reproducibility of the model, thus on the reliability of the
prediction.

We have selected OpenTox which is the leading global open knowledge com-
munity in new in silico toxicology methods as the ideal location for discussion of
case studies and the above best practices of potential to benefit emerging regulatory
frameworks. We aim to demonstrate with a broad community input on how new
technologies are essential for regulatory science, more specifically by highlighting
reproducible in silico practice viaOpenTox,with a focus theme on the issues of repro-
ducibility, predictive modeling, and other related enabling topics such as semantic
interoperability of contributing resources. The process is not only about building
predictive models, but also about placing observations on how predictive uses are
constantly changing within a community evaluation context. In addition to build-
ing an application with a set of principles, other concerns shared by developers and
practitioners are the implementation of best practices based on quality, reliability,
robustness, interoperability, reproducibility, harmonization, completeness, openness,
and confidence. These principles and their associated practices require both a dia-
logue and a consensus such as best practice protocols, context of use and fit for
purpose issues. Another current related initiative is the in silico toxicology (IST)
protocol consortium, organized by Glenn Myatt, Founder of Leadscope. This inter-
national consortium includes regulators, government agencies, industry, academics,
model developers, and consultants across many different sectors, formed initially
with the intention of creating the overall strategy for an in silico protocol devel-
opment. Working subgroups will develop individual in silico toxicology protocols
for major toxicological endpoints, including genetic toxicity, carcinogenicity, acute
toxicity, reproductive toxicity, and developmental toxicity, and we plan to interact
with this important initiative.
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19.10 Enhancing Workflow Solutions Including Trust
and Data Provenance Using Blockchain Technology
Applied to Healthcare Applications

In addition to the above best practices in reproducible workflows, we are currently
exploring the use of blockchain technology to add an independent verification of trust
and data provenance. We are comparing the use of the major blockchain platforms
in their utility for trust and provenance goals. In particular, we have commenced a
collaboration with Guardtime where the technology has already been successfully
used to secure electronic health records in Estonia. The goal is to take the above
QSAR and ITS models and workflows and run them on the enterprise blockchain to
provide signatures of execution history so as to secure the evidence that would be
generated and submitted to a regulator. The case of preclinical evidence provides a
suitable starting case study framework for healthcare applications, which we plan to
subsequently extend to clinical data.

The vision of our work is to establish a trusted healthcare blockchain ecosys-
tem supporting transparent and reliable data exchange, as well as provenance and
completeness of data sharing, between all stakeholders so as to maximize patient
benefits and outcomes. Our case study work draws upon the above preclinical flows
executed by the Edelweiss Connect team in collaboration with the fully functioning
Estonian Ministry of Health data sharing platform from Guardtime which harnesses
blockchain to allow patients full, secure control of their data assets; the Guardtime
technical team has built these systems for the Estonian Health Ministry. The prove-
nance of data and management of consent is critically important. To deliver trust
in the results (of machine learning and AI), there must be trust in the underlying
data (authenticity and integrity). We see Blockchain as a trust layer to take us to the
next level of knowledge about human biology. Blockchain can also serve as a trust
layer in the sense of providing assurance of “how things are done.” For example,
did the supplier of an active substance produce it according to the set standards,
or did the distributors handle the product (e.g., with temperature sensitivity) with
sufficient care? Clinical trials may be sped up if source data verification can be done
automatically.

In addition to providing a trusted interoperability layer for data sharing, we also
believe this framework will additionally enable applications supporting goals such as
regulatory acceptance of new methods and evidence, outcome-based contracts and
moving toward patient-centric value-based healthcare.

In the healthcare and pharma sectors, regulatory oversight and patient privacy
issues provide strong regulatory and legal requirements on the use of newBlockchain
technology and related operation models such as decentralized networks that have to
be fulfilled 100%. The implementation of GDPR in Europe has raised the awareness
of data privacy, but operators are struggling to find workable models for “the right
to be forgotten” and dynamic consent (where it is not only yes/no and when pref-
erences may change over time). As healthcare regulation, including Global Patient
Registration (GPR), implementation is often a national or even regional competency,
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and our approach to legal review and framework will embrace the need for align-
ment with multiple legal contexts. We plan to interact closely with projects running
under the Innovative Medicines Initiative’s Big Data for Better Outcomes program,
which aims to facilitate the use of diverse data sources to deliver results that reflect
health outcomes of treatments that are meaningful for patients, clinicians, regulators,
researchers, and healthcare decision makers.

19.11 Preclinical Case: Regulatory Acceptance
of Workflows for Heterogeneous Knowledge
Integration

Our initial case study work builds on preliminary work led by Edelweiss Connect
in collaboration with the FDA and Guardtime to create best practices for trusted
reproducible scientific workflows creating evidence to be used in future regulatory
evaluation of new methods supporting drug, diagnostics, and medical development
(see Figs. 19.5 and 19.6). Increasingly, regulators are considering the use of new
scientific evidence generated by a broad toolset of new in silico and in vitro methods
as providing value to the evaluation process of newmedicines.Weplan to engagewith
experts and regulatory groups from both EMA and the FDA in workshop activities
on workflow evaluation with blockchains providing metadata management solutions
linked to workflow sub-task processing of datasets ensuring desired properties for

Fig. 19.5 Running the skin sensitization integrating testing application on the Guardtime
blockchain
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Fig. 19.6 Providing data integrity and provenance on the Guardtime blockchain

privacy, access, provenance, integrity, and completeness. We propose to initially
consider the following three cases:

(a) Building and validation of a predictive machine learning model (for property
evaluation purposes, e.g., in the qualification of a characterization method of a
new nanomedicine under consideration for an NDA);

(b) Evaluation of an integrated testing and assessment definedmethod for evaluating
a safety assessment endpoint, e.g., DILI liability management for an anti-cancer
drug;

(c) Use of processed data frombioassays and personalized omics analysis combined
with other healthcare data supporting stratification and outcome enhancement
in clinical trials (will interact with clinical trial cases).

19.12 Approach to Community Assessment of Best Practice
Developments

We will share our experience within the OpenTox community for developing trusted
reproducible safety assessment solutions including databases, algorithms, modeling,
protocol management, ontology, APIs, Web services, and integrating infrastructure.
Following the philosophy of an open knowledge community and sustainability we
have pioneered within OpenTox, we will make reference solutions, practices, and
guidance created by us available to all the community in open-accessmode according
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to creative commons licenses, enabling maximum use and update of developments.
BothQSAR and ITS applications will bemade available providing cases and practice
examples for review and discussion both online and during the OpenTox conferences
and workshops planned for Europe, USA, and Asian regions. The proposed practices
will include:

• Principle of reproducibility—review propositional principle;
• Practices and specifications for application interoperability layers for data—pro-
viding APIs to important public databases in predictive toxicology and supporting
the principle of reproducibility;

• Reproducible Q(SAR) demonstration and evaluation—reproducible workflow for
Q(SAR) model building and applied to published reference predictive models;

• Reproducible integrated testing strategy (ITS) demonstration—reproducible
workflow for ITS and risk assessment of skin sensitization.

Based on the results of the discussions and exercises at the OpenTox conferences
and workshop, we will draft an OpenTox guidance to provide draft best practice
guidance for implementation of the Reproducibility Principles.

The need for reproducibility is increasing dramatically as data analyses becomes
more complex, involving larger datasets and more sophisticated computations. By
building case studies for in silico reproducibility, we aim to encourage scientists
to follow demonstrated examples and publishers to adopt the developed guidelines
as recommendations for future publications. Within OpenTox and related initiatives
such as OpenRiskNet and NanoCommons, we propose to establish propositional
“practices for reproducible in silico computational science” and specific recommen-
dations on applying them to computational toxicology.Wewill also establish a guide-
line for data collection (by performing systematic literature review), data curation
(both experimental and structural data and involving outlier detection techniques),
data management (including long-term storage and publication), tracking (workflow
documentation and version control), and licensing of computational tools (giving
preference for open and/or free tools). The two areas initially addressed will be: (a)
the field of (Quantitative) structure activity relationships, aiming to establish repro-
ducibility, complementing existing OECD guidelines on best practices for QSAR
modeling; (b) integrating testing strategies (ITSs) involving a Bayesian approach to
weight of evidence from a combination of in silicomodels and in vitro testing results.

In both cases (QSAR and ITS), we are implementing demonstration implementa-
tions as workflows which are presented online to the OpenTox community for eval-
uation within a community challenge proposed to enhance and enrich best practices
while simultaneously reproducing published studies. We will identify key studies
published in the last decade; our selection criteria includes: the publications’ impact,
number of citations and its influence in shaping the field of new alternative methods
in safety assessment (voted by a panel of domain experts) as well as the availability
and support of the original authors to collaborate, if possible. We will evaluate and
select case studies for the community challenge, where we will work with com-
munity members and the study authors to rehabilitate their published outcomes for
reproducible in silico computations, which will be discussed at an international sci-
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entific conference. Finally, we will distill the learnings from the above activities into
updated principles, best practice guidance, and improved implementations shared
with the community.

Disclaimer The views presented in this article do not necessarily reflect current or future opinion
or policy of the US Food and Drug Administration or National Institutes of Health. Any mention
of commercial products is for clarification and not intended as endorsement.
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