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Preface

Water is the most precious gifts of the nature to mankind; it is difficult even to
imagine a form of life that might exist without water. However, due to the rapid pace
of industrialization and tremendous increase in the population, the contamination of
water resources has occurred globally. Recently, several health organisation reports
described various water-related diseases can easily kill more than millions of people
every year including children.

In this scenario, this book is described in the detailed account of different green
methods for wastewater treatment. The applications of various types of materials like
mesoporous materials, TiO2-based nanocomposites and magnetic nanoparticles for
wastewater treatment are discussed in this book. The role of catalysts along with
their chemical reactions, challenges, past developments and direction for further
research of wastewater treatment methods has been also discussed in this book.
Furthermore, various treatment methods like photo-Fenton, photocatalysis, electro-
chemical approach and adsorption were defined in more depth. Moreover, the
bacterial infection and antibacterial solution have been also included in detail. I
believe this book will be helpful for chemical engineers, environmental scientists,
analytical chemist, materials scientists and all researchers who are working in the
field of wastewater treatment.

Riyadh, Saudi Arabia Mu. Naushad
Arica, Chile Saravanan Rajendran
Aix-en-Provence, France Eric Lichtfouse
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Abstract Persistent organic pollutants (POPs) such as polychlorinated biphenyls
and polycyclic aromatic hydrocarbons consist of a group of synthetic compounds
that are characterized by their resistance to degradation, important long-range
transportation, and harmful effects to the ecosystems and human well-being. Cer-
tainly, we cannot think about progress in human civilization without industrializa-
tion. However, the rapid evolution in chemical, agrochemical, and petrochemical
industries and the population exponential growth in the last century have given rise
to an important number of toxic, bioaccumulative, and persistent organic chemicals
in the environment. Effective removal of persistent organic pollutants (POPs) from
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wastewater represents one key approach that could limit their potential environmen-
tal impacts. Among a variety of techniques reported for the treatment of organic
compound-contaminated wastewater, heterogeneous photocatalytic method using
visible-light-responsive semiconductors has been articulated as an efficient technol-
ogy that holds good potential for the removal of POPs. This chapter gives an
overview of the latest development in the design and synthesis of unique semi-
conductors with visible-light-driven catalytic degradation of POPs. Contextual
information on the basic principles of heterogeneous photocatalysis, paths of
visible-light response, and photocatalytic performance of innovative semiconductor
materials are presented.

Keywords Persistent organic pollutants · Heterogeneous photocatalysis · Visible-
light response

Abbreviations

POPs Persistent organic pollutants
BPA Bisphenol A
DDT Dichlorodiphenyl trichloroethane
PFOA Perfluorooctanoic acid
HCB Hexachlorobenzene
PFOS Perfluorooctane sulfonate
PCBs Polychlorinated biphenyls
TNF-α Tumor necrosis factor α
PCDFs Polychlorinated dibenzofurans
HepG2 Human hepatoblastoma cell line
PCDDs Polychlorinated dibenzodioxins
AOPs Advanced oxidation processes
PBBs Polybrominated biphenyls
CB Conduction band
PFOS Perfluorooctane sulfonate
VB Valence band
PFOSF Perfluorooctane sulfonyl fluoride
TTIP Titanium tetraisopropoxide
BDE209 Decabromodiphenyl ether
GO Graphene oxide
PAHs Polycyclic aromatic hydrocarbons
UV Ultraviolet
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1.1 Background

Water is worldwide regarded as the most vital of natural resources for the sustain-
ability of life, yet freshwater systems are directly threatened by human activities.
Rapid industrialization has led to the generation of a massive amount of synthetic
chemicals, mostly of organic nature and beneficial in crop production and pest and
disease control (Naushad 2014). However, the occurrence of some of these com-
pounds into the natural environment has also been found to cause solemn damage to
wildlife, aquatic life, and human well-being through food web or drinking water
resources (Verhaert et al. 2017; Carlsson et al. 2016; Net et al. 2015). These organic
compounds are fat-soluble and susceptible to bio-magnification and trans-boundary
transportation. Recognized as persistent organic pollutants (POPs), their fate and
activities have engrossed extensive scientific and political interest, principally when
the local discharges have proceeded in dispersed contamination far away from the
origin place of release (Nadal et al. 2015). The inappropriate treatment of effluent
from industries manufacturing or making use of POPs and overflows from fields and
atmospheric depositions are some of the main reasons of POPs ubiquitous nature
(Fig. 1.1). For example, although no homegrown source for POPs contamination
was identified around Bear Island (Bjørnøya), a medium-term air sampling survey of
this Arctic island within the period 1999–2003 revealed a total of 50 toxic organic
compounds (Kallenborn et al. 2007). These consisted of manmade chemicals used as
pesticides and compounds employed in several industrial applications. The presence
of these organic pollutants was utterly ascribed to atmospheric long-range transpor-
tation. Another example is the elaborated data on the bio-magnification of POPs in
subtropical aquatic ecosystems. The Olifants River basin, a tributary of the Limpopo
River in the northeast of South Africa, was recently identified as a life-threatening

Fig. 1.1 Flow chart of POPs into the environment
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river in the Southern African region, owing to the trophic magnification of the
detected POPs (Verhaert et al. 2017). The Olifants River basin locality is
South Africa’s powerhouse with petrochemicals and mine companies. There is
enough evidence suggesting that water quality in the Olifants River is impaired by
the expansive coal mining in the area, agricultural return flows, and industrial
wastewater releases downstream (Water Research Commission 2001). However,
this catchment represents one of the main water resources for the residing
populations of the Kruger National Park. It is also known for its substantial contri-
bution to the national and regional economies.

1.2 Classifications of POPs

The worldwide concern about organic contaminant residues in the natural environ-
ment was initially addressed through a joined action of the global community under
the Stockholm Convention in May 2001 (Haffner and Schecter 2014). The key
provision, negotiated under the supports of the United Nations Environment
Programme (UNEP) and ratified by 90 states and numerous regional economic
integration organizations, was to decrease or even eliminate the production of a set
of 12 POPs. These environmentally hazardous chemicals were grouped in three
families according to their usage:

• Pesticides: dichloro-diphenyl-trichloroethane (DDT), hexachlorobenzene (HCB),
aldrin, endrin, chlordane, toxaphene, dieldrin, heptachlor, and mirex

• Industrial substances: polychlorinated biphenyls (PCBs)
PCBs were produced to serve as dielectric fluids for capacitors and trans-

formers (Erickson and Kaley 2011). Owing to their propensity to enhance the
stability and elasticity of polymers, PCBs were also employed as additives in
products such as plastics, paints, and coatings.

• Industrial by-products: polychlorinated dibenzofurans and dibenzodioxins
(PCDF/DDs)

Both PCDFs and PCDDs formation are associated to a range of incineration
reactions in the presence of chlorine source and the production of a variety of
chemical products (Altarawneh et al. 2009).

Since 2001, the number of these restricted organic chemicals has been increased
considerably. At the fourth meeting of the POPs Review Committee in 2008 in
Geneva, Switzerland, for example, amendment to the Stockholm Convention
resulted in the addition of a new series of pesticides, including α-, β-, and
ɣ-hexachlorocyclohexane, pentachlorobenzene, and chlordecone. Flame retardants
such as polybrominated biphenyls (PBBs) and their ether derivatives as well as stain
repelling surfactants perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonyl
fluoride (PFOSF) were equally listed by this subsidiary body (Wang et al. 2009).
Later, the sixth meeting of the Review Committee, held in 2010, saw the inclusion of
chemicals such as flame retardant hexabromocyclododecane and acaricide

4 H. K. Paumo et al.



endosulfan. Recently in 2016, apprehension on the benign nature of
decabromodiphenyl ether (BDE) was reviewed by the conference attendees during
the twelveth meeting of the POPs Review Committee. This flame retardant was also
itemized as POPs.

Polycyclic aromatic hydrocarbons (PAHs) are another important group of
chemicals branded as POPs. These widespread environmental pollutants mainly
occur from the incomplete combustion of vegetation and fossil fuels (Ruge et al.
2015). Accidental spillage during oil shipment has as well been viewed as significant
anthropogenic source of PAHs into the environment (Fu et al. 2011). Generally, POPs
structures are characterized by at least one aromatic or aliphatic ring, the presence of
halogen substituents, and a lack of polar functionalities in some cases (Fig. 1.2).
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Strangely, several reports on the evaluation of POPs chemical substitutes, based
on internationally established scientific norms, have revealed that some of the
proposed alternatives are equally very toxic and therefore not sustainable
(Neumeister 2001).

Bisphenol A (BPA), on the other hand, an additive in various consumer and
industrial products, although not yet listed by the POPs Review Committee, has
frequently been labeled in several research articles as a persistent organic contam-
inant. In 2011, BPA was among the most produced chemicals in the world, with an
estimation of over 5.5 million tons (Son et al. 2018). This synthetic organic com-
pound is used as a monomer for the production of epoxy resins and polycarbonate
plastics (Kahtani et al. 2019). The former are employed as tooth-filling materials and
coatings for beverage cans, reusable bottles, and water pipes, while the latter are used
in automotive components, digital optical discs, medical devices, and electronic
equipment. BPA occurrence in the environment is attributed to leaching from the
BPA-containing products (Klečka et al. 2009; Schecter et al. 2010; Gaw et al. 2014;
Im and Löffler 2016).

The hefty production of antibiotics around the world, and subsequently their
incidence in the freshwater systems, has raised concerns over the last decade (Liu
et al. 2017a). Antibiotics are essentially employed in human medicine and animal
husbandry. In China, for instance, more than 210 thousand tons of antibiotics are
being manufactured every year (Luo et al. 2010). However, it has been reported that
approximately 75% of the administered antibiotics are discharged in the environment
as parent derivatives in urine, manure, and feces (Wang et al. 2014; Qiang et al. 2006).

1.3 Toxicity of POPs

The health effects of POPs are diverse. Exposure to residue of the insecticide DDT
and its metabolites, for example, has been stated as hazardous to various mammals.
Singh and co-workers reviewed the toxicological characteristics of organo-
chlorinated compounds (Singh et al. 2016). Severe damage has been observed in
the kidney, liver, and testicle of rats exposed to DDT. De Joode et al. (2001), on the
other hand, reported a permanent deflation in the neurobehavioral operative and an
upsurge of the psychiatric and neuropsychological symptoms in human exposed to
DDT for more than 2 years. Similarly, a correlation has been established between
long-term exposure to PCBs and the development of the type II diabetes by
occupationally exposed employees (Silverstone et al. 2012). PCBs are also well-
reported for their impact on human neurotransmitter (Gaum et al. 2014; Gaum et al.
2017), thyroid gland (Benson et al. 2018), and telomerase enzyme (Senthilkumar
et al. 2012). On the other hand, the prenatal transfer of BDE has been found to cause
a significant disruption of the thyroid endocrine system as well as the developmental
abnormalities in zebrafish offspring (Han et al. 2017). So as to identify the mecha-
nism of polybrominated diphenyl ethers (PBDEs) toxicity, Pereira and co-workers
(2017) investigated their detrimental effects in human hepatoblastoma cell line
(HepG2). The authors finding exposed an activation of the autophagic process.
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Previously, Costa et al. (2015) also described caspase-dependent apoptosis in mouse
cerebellar granule neurons, following PBDEs exposure. Perfluorooctanoic acid
(PFOA) and perfluorooctane sulfonate (PFOS) have been found to inhibit the
secretion of tumor necrosis factor α (TNF-α), following lipopolysaccharide stimu-
lation, in cultured human leukocytes (Corsini et al. 2011). TNF-α is a cell signaling
protein involved in systemic inflammation. Research findings also revealed that
these perfluorinated compounds exhibit immunotoxic potential in vivo, as evidenced
by the alteration of the hepatic immune system in mice exposed to PFOA-/PFOS-
contaminated chow for 10 days (Qazi et al. 2010). PAHs, on the other hand, have
been reported as substances with typical cancer-causing and DNA-damaging poten-
tial (Rengarajan et al. 2015; Singh and Agarwal 2018). For example, Ramesh’s
group (2010) reported an interaction between benzo[a]pyrene and the reproductive
tissues of female Fischer 344 rats exposed to this environmental toxicant.

BPA is well-documented to act as an endocrine disruptor by mimicking naturally
occurring hormones (Canle et al. 2017). The endocrine system is a key regulator of
the body’s metabolism, sexual development, and growth. Even at very low concen-
tration, BPA has been found to competitively cohere to the estrogen receptor or
membrane-bound estrogen receptor in cellular nucleus and promptly influence
cellular function (Son et al. 2018). Environmental pollution triggered by the prev-
alence of antibiotics in the aquatic systems, on the other hand, has raised anxieties
regarding their disposition to select for resistant bacteria and enable the establish-
ment and intensification of pathogenic pools that could endanger public health (Luo
et al. 2011; Pruden et al. 2006). To address the issues linked with all these anthro-
pogenic organic pollutants, the development of effective technologies for the treat-
ment of industrial and domestic wastewater containing POPs is of great interest
within the industrial and scientific communities (Kumar et al. 2017).

1.4 Traditional Water Treatment Processes
for the Removal of POPs

Several processes, including bioremediation, coagulation/flocculation, membrane
filtration, activated carbon adsorption, ozonation, and advanced oxidation, have
been reported for POPs removal from diverse contaminated milieu (Pi et al. 2018;
Ji et al. 2014; Durán and Esposito 2000). However, some of these technologies have
noteworthy limitations.

Bioremediation is often well-described as the most promising approach for POPs
removal, owing to the metabolic potential of microorganisms and their aptitude to
interact with organic contaminants even in extreme conditions (Gaur et al. 2018).
Although highly valued for its cost-effectiveness, this process is also associated with
disadvantages such as reduced bioavailability of pollutants on temporal and spatial
scales and scarcity of bench-mark values for efficiency evaluation (Pariatamby and
Kee 2016). Another effectve approach for the removal of organic pollutants is the
coagulation-flocculation technique. This process involves the use of coagulants that
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neutralize by mutual collision with counter ions and agglomerate the charged particles
in colloidal suspension. However, this approach usually leads to the production of
undesired high volume of sludge (Pariatamby and Kee 2016). Likewise, the use of
membrane filtration and activated carbon adsorption also generate membrane retentate
and spent activated carbon which must be disposed properly. Nevertheless, activated
carbon adsorption and ozonation or UV-based oxidation procedures are the most
frequently used methods in effluent treatment plants.

Ozonation makes use of unstable gas ozone (O3) as a strong oxidant for organic
pollutants degradation (Quero-Pastor et al. 2014). Ozone molecules are obtained via
dissociation of oxygen molecules by powerful electric discharge, followed by binding
collision of the obtained oxygen atoms with other available oxygen molecules.
Subsequent to their formation, ozone molecules promptly undergo decomposition
to generate highly reactive radicals such as hydroxyl (OH•), superoxide (O2•

�), and
peroxyl (OOH•) in aqueous medium (Eqs. 1.1, 1.2, and 1.3) (Von Gunten 2003;
Gardoni et al. 2012). Due to their strong oxidation potential, these species are able to
instantaneously react with organic contaminants (Litter and Quici 2010).

O3 þ OH� ! HO�
2 þ O2 ð1:1Þ

O3 þ HO�
2 ! OH � þO2�� þ O2 ð1:2Þ

O3 þ OH� ! OOH � þO2 ð1:3Þ

Ozone can also be combined with UV-light irradiation, hydrogen peroxide
(H2O2), and catalysts, with the purpose of improving the interaction process with
organic contaminants. This combination of oxidation procedures is known as
advanced oxidation processes (AOPs). The method is capable of complete decom-
position of organic contaminants into less toxic products or their mineralization into
CO2 and water. However the foremost drawback associated with AOPs has always
been the relatively higher cost of reagents like ozone or UV light. Therefore, the use
of visible-light irradiation as a source of energy is being considered as a model
approach to reduce the costs (Dong et al. 2015; Cates 2017). Lately, the development
of visible-light-sensitive catalysts for organic contaminants remediation in water has
gained tremendous popularity.

Among AOPs, photocatalytic procedure appears as the most promising for the
removal of POPs. This technology makes use of photons from a specific light source
and a catalyst to generate reactive species. In water treatment, the catalyst can either
be soluble (homogeneous photocatalysis) or in solid state (heterogeneous
photocatalysis). However, in homogeneous catalysis and green chemical procedures,
the catalyst removal or its retrieval from the reaction medium for the reusability
purpose is a key concern (Feng et al. 2018; Qin et al. 2017; Gnanasekaran et al.
2016; Romero Sáez et al. 2017; Saravanan et al. 2011, 2018). For the fact that this
shortcoming could be alleviate in heterogeneous photocatalysis, this approach can be
applied for the sustainable treatment of effluent containing recalcitrant organic
compounds like POPs, following the principles of green chemistry.
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Heterogeneous photocatalysis takes place in five different stages, namely, (1) dif-
fusion of the organic pollutant from the bulk of the aqueous solution to the surface of
the catalyst (semiconductor), (2) adsorption on to the catalyst surface, (3) semicon-
ductor catalyst surface irradiation-induced chemical reaction, (4) desorption of the
product from the surface, and (5) removal from the boundary section to the bulk of
the solution (Canle et al. 2017). The third stage entails the formation of reactive
species, which may either react directly at the semiconductor surface with adsorbed
molecules of the organic pollutants or lead to the generation of other reactive species
such as oxygen radicals. Although it is always reported that there are numerous
reactive species involved during the degradation of organic pollutants in
photocatalytic systems, the most active species in most cases appears to be OH•.
Hence this radical must be generated in situ unceasingly for the degradation proce-
dure to accomplish the complete destruction of the pollutants. The fundamental
attribute of semiconductors in photocatalysis is easily apprehended using the con-
cept of energy band structure (Yan et al. 2013).

1.5 Fundamental of Heterogeneous Photocatalysis

Within a semiconductor, the electronic energy organization involves two distinct
regimes, that is, the conduction band (CB) and the valence band (VB). The differ-
ence between these two bands is referred as the band gap of the semiconductor.
Irradiation of a semiconductor surface with photons carrying sufficient energy to
overcome its band gap (Eg) initiates the excitation of VB electrons (e�) to the CB,
leaving behind an equal number of positively charged holes (h+), as illustrated in
Fig. 1.3.

As a result of light irradiation, the photo-oxidizing ability of semiconductors is
based upon the potential of photogenerated e�/h+ pairs to engender the activated
radicals that are responsible for organic pollutants degradation. While the reaction of
an adsorbed hydroxyl ion (OH�) and/or a water molecule with h+ generates a
hydroxyl radical (Eqs. 1.5 and 1.6), adsorbed oxygen molecule (O2) produces a
superoxide radical by interacting with an excited-state electron (Eq. 1.7). In general,
the sequence of chain oxidative/reductive reactions that arise at the photon-induced
activated surface of a semiconductor photocatalyst has been proposed as follows
(Dong et al. 2015):

Semiconductor photocatalyst !h v�Eg
hþ þ e� ð1:4Þ

hþ þ H2O ! OH � þHþ ð1:5Þ
hþ þ OH� ! OH� ð1:6Þ
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e� þ O2 ! O2�� ð1:7Þ
O2�� þ Hþ ! OOH� ð1:8Þ
2OOH� ! H2O2 þ O2 ð1:9Þ

H2O2 þ O2�� ! OH� þ OH � þO2 ð1:10Þ
POPþ hþ;OH�;O2��;OOH � OrH2O2ð Þ ! Degraded Products ð1:11Þ

Alongside the importance of energy band gap in photocatalytic process, the
semiconductor morphology, crystallinity, and surface properties also play remark-
able roles. For example, the morphology and surface properties can dictate the
adsorption phase. Furthermore, the recombination ratio of photogenerated e�/h+

pairs can be subjected to the semiconductor photocatalyst crystallinity.
The key reaction parameters that are equally reported to influence the heteroge-

neous photocatalysis of POPs include the temperature, light intensity, semiconductor
load, O2 availability, organic pollutants concentration, and solution pH.

An increase in temperature significantly reduces the solubility of molecular
oxygen in the bulk solution, thereby promoting the recombination of electron-hole
and dropping the photocatalyst performance (Spasiano et al. 2015). The solution pH,
on the other hand, directly impacts the surface charge of the photocatalyst and the
position of CB and VB (Ahmad et al. 2016). A decrease in pH renders the CB
positively charged holes more operative, owing to the lower amount of hydroxyl
ions in the reaction milieu. Under basic or neutral conditions, an increased number of
these hydroxyl ions are expected to generate more OH• radicals as foremost species
for POPs degradation. Furthermore, the choice of an ideal light intensity is always
required to accomplish a high performance in photocatalytic response (Tseng et al.
2010). Semiconductor implicates in photocatalysis do not absorb all the irradiated
photons, as a result of light scattering and refraction phenomena. Hence, an upsurge
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Photoexcitation
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Degraded Products

Degraded Products
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–

POPs
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≥

Fig. 1.3 Basic principle of heterogeneous photocatalysis
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in light intensity usually increases the rate of reaction up until the mass transfer
limitation is attained. Moreover, owing to the fact that heterogeneous photocatalysis
is a surface interaction, an increase of the specific surface area of the semiconductor
can serve as valuable tool that may lead to improved catalytic process.

With regard to the chemical kinetics that bring about the experimental estimation
and analysis of the amount of residual contaminant as a function of time, it is always
assumed that POPs adsorption proceeds at quasi-equilibrium, modeled by the
Langmuir isotherm. Hence, the Langmuir–Hinshelwood model is usually exploited
to describe the reaction progression. The photocatalytic rate of degradation “r” is
expressed by the following equation (Spasiano et al. 2015):

r ¼ Kr � θx ¼ Kr � K � POPs½ �
1þ K � POPs½ � ð1:12Þ

where Kr, [POPs], and K denote the reaction rate constant, the concentration of
POPs, and the Langmuir adsorption constant, respectively. However, if the initial
[POPs] is low, as it is in most degradation studies, the equation can be simplified to
an apparent first-order as represented below (Spasiano et al. 2015):

r ¼ Kapp � POPs½ � ¼ � d POPs½ �
dt

ð1:13Þ

By bringing together concentration terms, the following equation is obtained:

� d POPs½ �
POPs½ � ¼ Kappdt ð1:14Þ

Integration of Eq. 1.11 results in:

ln
POPs½ �o
POPs½ �t

� �
¼ Kappt ð1:15Þ

The value of Kapp, the apparent pseudo-first-order rate constant, can therefore be
estimated from the slope of a plot of ln([POPs]o/[POPs]t against time t.

1.6 Overview of Visible-Light-Responsive Photocatalysts

In visible-light-responsive photocatalysis, the semiconductor should be able to
absorb more profuse visible light (400 nm < λ < 800 nm), and its band gap should
be sufficiently narrow (Eg < 3.0 eV) to allow excitation of electrons by the irradiated
photons. Furthermore, the high crystallinity of the designed visible-light-driven
photocatalyst can encourage mobility of the charge carriers to the surface and
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suppress the recombination ratio for an improved activity (Joo et al. 2012). However,
lower crystallinity in some cases has also been reported as a plausible motive for the
enhanced photocatalytic, owing to the manifestation of surface defects that increases
light absorption (Cen et al. 2014). The surface character of visible-light-responsive
photocatalysts is known to significantly influence the oxidative/reductive reactions
that are set to take place during the degradation process.

1.6.1 TiO2-Based Photocatalysts for Visible-Light-Assisted
Degradation of POPs

Among numerous oxides used for the photocatalytic degradation of POPs, titanium
dioxide (TiO2) is the most extensively investigated semiconductor, owing to its
unique properties (Tian et al. 2014; Zheng et al. 2018). These include nontoxicity,
strong oxidizing potency, and relatively high physicochemical stability. Moreover,
defect chemistry of TiO2 demonstrates its nonstoichiometric nature (Bak et al. 2006).
The oxygen vacancies are the principal defects at near-atmospheric oxygen pressure,
and their presence results in excess electrons as charge carriers and the description of
an n-type semiconductor (Morgan and Watson 2010). Hitherto, the n-type TiO2

direct application in photocatalytic degradation of organic contaminants has been
consistently labeled as substandard for a number of reasons. TiO2 with a wide band
gap of 3.2 eV can only be activated under more expensive and hazardous UV-light
irradiation which contributes very less (5%) to the natural solar spectrum (Zhang
et al. 2015; Pelaez et al. 2012; Meng et al. 2012). Furthermore, fast recombination
proportion of photoexcited e� and h+ has also been reported to significantly reduce
its photocatalytic efficiency. To overcome these drawbacks, semiconductor TiO2

coupling and/or doping have been proposed. Representative TiO2-containing
photocatalysts with distinguished activity toward POPs under visible-light irradia-
tion are presented below.

Coupling

Performing suitable band engineering by coupling TiO2 nanostructures with mate-
rials of good visible-light-harvesting potential are of great benefit for the develop-
ment of visible-light-responsive photocatalysts. For example, Nguyen and Doong
described the binary p-n semiconducting ZnFe2O4/TiO2 nanocomposite (ZnFe2O4

weight ratio 1%), obtained by the solvothermal process, as excellent photocatalyst
for BPA degradation in aqueous environment under visible-light illumination at
465 nm (Nguyen and Doong 2017). ZnFe2O4 is a p-type semiconductor with
magnetic properties and a comparatively narrow band gap (1.9 eV). In p-type
semiconductor, positively charged holes are mainstream charge carriers. The use
of 1.0 g/L ZnFe2O4/TiO2 heterojunction afforded complete destruction of toxic BPA
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(10 mg/L at pH 7) in 20 mL solution after 20 min. The radical trapping investigation
revealed that photogenerated h+ and both OH•/O2•

� radicals were the reactive
species (Fig. 1.4). In addition, the reusability examination indicated that ZnFe2O4/
TiO2 material could be reapplied for not less than ten recurrent cycles of reaction.

Fabrication of p-n junction is well-reported as an efficient strategy to achieve
improved photocatalytic activity, owing to an induced inner electric field which
extends the e- and h+ lifetime (Chen et al. 2011; Wei et al. 2011). The build-in
electric field allows the movement of e- and h+ in opposite directions in the space-
charge region to accomplish their separation.

Shao et al. (2017) took advantage of the photosensitivity of silver halides and
reported the synthesis of spherical-like AgI-deposited TiO2 with visible-light
(λ > 420 nm) photodegradation activity toward BDE209. The ideal TiO2/AgI
catalyst (AgI mass ratio 30%) exhibited a pseudo-first-order kinetic constant of
about 0.29 h�1. The debromination of BDE209 occurred as a result of the movement
of photoexcited electrons from AgI to BDE209 via TiO2 conduction band. Likewise,
TiO2/Ag2O sheet loaded on natural polymer chitosan stabilized onto polypropylene
matrix was described as photocatalytic film with impressive visible-light absorption
at 545 nm and catalytic activity against antibiotics under irradiation with a 150 W
tungsten/halogen lamp (Zhao et al. 2017). The complete decomposition of ampicillin
(20 mg/L) in 40 mL solution took place within 180 min. The prepared multilayer
photocatalyst with 2.4 eV energy band gap was found to owe its activity to the
formation of p-n-type Ag2O-TiO2 heterojunctions and transfer of electrons from
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TiO2 under visible-light irradiation
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TiO2 to Ag2O when their Fermi levels matches. The Fermi level represents the
highest energy level occupied by valence band electrons.

Coupling TiO2 with carbonaceous materials, exhibiting wide visible-light absorp-
tion, has also been reported as a tool for the improvement of quantum efficiency in
TiO2 photocatalytic systems (Liang et al. 2014; Li et al. 2015a). Graphene-
containing semiconductors have been extensively investigated in the development
of photocatalysts with visible-light response ability toward recalcitrant organic
contaminants (Xie et al. 2015). When combine to semiconductor such as TiO2,
graphene can act as a sink that capture and shuttle electrons, thereby diminishing the
charge recombination phenomenon (Sher Shah et al. 2012). Furthermore, grapheme
has also been reported to decrease the energy band gap of grapheme-fused semi-
conductors through atomic d-π orbital hybridization and formation of additional
band states (Zhang et al. 2008; Zhang et al. 2010; Li et al. 2013). For example, the
solvothermal procedure involving the use of P123 nonionic surfactant, TiCl4/tita-
nium tetraisopropoxide (TTIP) solution, and graphene oxide (GO) yielded the
nanocrystalline graphene/TiO2 composite with high catalytic activity
(k¼ 0.25min�1) against aldicarb under visible-light irradiation (λ > 400 nm) (Li et al.
2013). N-methyl carbamate aldicarb is a chemical substitute to the restricted pesti-
cides aldrin and heptachlor (Neumeister 2001). Fu et al. (2018) also described the
graphite oxide-TiO2-Sr(OH)2/SrCO3 nanocomposite as a novel catalyst with strong
photodegradation activity toward PAH phenanthrene, under simulated sunlight
irradiation (light intensity 100 mW/cm2). The reported activity of this
multicomponent material was attributed to a synergetic action of the three constit-
uents within the composite during photocatalytic process. A redshift of the optical
absorption as well as a divergent drive of the photogenerated e� and h+ was induced
via hybridization of Sr(OH)2/SrCO3 and TiO2. Graphite oxide repressed the charge
recombination as outlined in the literature precedent (Li et al. 2013).

Tungsten trioxide (WO3), unveiling a relatively smaller band gap of 2.8 eV, has
also been coupled with TiO2 for POPs photodegradation in water medium. For
example, TiO2/WO3/GO nanoparticles, prepared via the hydrothermal procedure
using Degussa P25, graphene oxide, and ammonium metatungstate, were reported as
composited material with excellent BPA photodegradation in aqueous solution at pH
7 under visible-light illumination (λ > 400 nm) (Hao et al. 2017). As outlined by the
authors, WO3 effected an improved visible-light absorption, followed by the gener-
ation of e�/h+. The GO surface acted as photogenerated electrons acceptor and
restrained the pair charge carriers recombination.

Doping

Doping plays an essential role in amending the optical properties of semiconductor
photocatalysts and allows for the use of sunlight energy. For example, cobalt-loaded
titanate nanotubes, fabricated through the hydrothermal treatment of cobalt
(II) chloride hexahydrate (CoCl2�6H2O) and TiO2 nanoparticles followed by calci-
nation of the resultant precipitate, displayed ten times more catalytic activity than
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P25 TiO2 for the degradation of phenanthrene in water under simulated sunlight
irradiation (light intensity 85 � 0.5 mW/cm2) at 25 �C (Zhao et al. 2016). The
percentage of phenanthrene (200 μg/L) removal by this Co-modified titanate
nanomaterial (Co mass ratio 2.26%) was estimated around 98.6% after 12 h of
contact time using 1 g/L dose. Interestingly, cobalt(II) oxide (CoO), generated as a
result of the existence of cobalt(II) ions in titanate nanotubes during the calcination
procedure, was proven to perform as photoexcited electrons transfer mediator,
thereby hindering the e�/h+ recombination.

Cu-N-codoped TiO2/titanate nanotubes, fabricated via the microwave-assisted
hydrothermal treatment of ST-01 TiO2 nanoparticles and calcination in the presence
of copper(II) ions under N2/NH3 atmosphere, were evaluated as photocatalyst for the
removal of BPA in water medium (Doong and Liao 2017a). Relative to P25, nano-
sized Cu-N-TiO2/titanate exhibited remarkable activity under visible-light illumina-
tion (λ ¼ 420 � 20 nm) with complete degradation of BPA after 120 min. The high
efficiency of Cu0-deposited, N-TiO2/titanate nanotubes (Cu mass ratio 6%) was
ascribed to their ability to extend the production of radical OH• for more than
5 min. As shown in Fig. 1.5, the deposited Cu0 enhanced trapping of electrons that
reacted with adsorbed oxygen to produce superoxide and subsequently peroxyl
radicals. Metallic copper ability to remove high-energy electron from TiO2 results
from its higher work function value 4.7 eV (Doong and Liao 2017b). TiO2 work
function was estimated to be 4.2 eV. The nitrogen doping, on the other hand, resulted
in reduced energy band gap of TiO2 (3.18 eV).

It has been established that doping TiO2 with nonmetallic elements, including N,
C, and F, could serve as an efficient strategy to manipulate its band structure and
enhance its photo-response ability into the visible region (Livraghi et al. 2006; Li
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et al. 2005). With regard to nitrogen doping, for example, the electron paramagnetic
resonance (EPR) spectra analysis and density functional theory (DFT) calculations
of N-doped TiO2 have established that the presence of localized N 2p states (neutral
paramagnetic and charged diamagnetic) just above TiO2 VB plays a critical role in
the absorption of visible light, ease promotion of electrons to CB, and increased
production of superoxide radicals (Fig. 1.6).

The visible-light photocatalytic evaluation of N,F-codoped TiO2 nanoparticles
toward BPA exposed a threefold more potential in contrast to pristine TiO2

nanoparticles (He et al. 2016). These nonmetal-doped TiO2 nanoparticles of
10.6 nm average size, 136 m2/g estimated specific surface area, and 2.87 eV band
gap were fabricated through the sol-gel procedure using EDTA and Zonyl® FS-300
fluorosurfactant as the nitrogen and fluorine sources, respectively. The pronounced
activity of this engineered TiO2 photocatalyst was ascribed to high specific surface
area-to-volume ratio, enhanced visible-light absorption due to N-doping, and more
surface acidity owing to F-doping. An increase in the photocatalyst surface acidity
was found to increase BPA adsorption. Moreover, the displacement of oxygen atom
of TiO2 with fluorine bearing one extra electron could levitate the Fermi level, thus
narrowing the band gap for a superior conversion of visible light (Wen et al. 2017;
Fang et al. 2014).

Fe(III)-doped TiO2 spheres at the polysulfone ultrafiltration membranes, obtained
via the hydrothermal and phase inversion procedure, have also been reported to
exhibit a relatively improved visible-light photocatalytic degradation of BPA,
complemented with a self-cleaning capability (Wang et al. 2017). The use of
0.20 g of the optimized catalyst (Fe-TiO2 mass ratio 20%) achieved 90.8% of
BPA (10 mg/L in 250 mL) removal within 180 min under illumination with a
500 W xenon lamp. This effective BPA removal was ascribed to the electrostatic
adsorption of the contaminant at the surface of the polymer support and its decom-
position by Fe(III)-TiO2 nanocatalyst. A recent study on the Fe(III)-doped TiO2

visible-light response mechanism revealed that its activity relates with a narrow band
gap (Jaihindh et al. 2018). This can be attributed to the d–d transition of Fe(III) due
to 3d-orbital splitting and the charge transfer transitions between interacting Fe(III)
ions to create Fe(II) and Fe(VI) electronic states across the band gap of TiO2 (Khan
and Swati 2016). During the photocatalytic process, these cations [Fe(III), Fe(II),

Fig. 1.6 Derivation of
improved photocatalytic
activity of N-doped TiO2 in
visible light
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and Fe(VI)] are anticipated to also act as the e� and h+ trapping sites and therefore
facilitate the charge carriers separation. Figure 1.7 illustrates a proposed mechanism
for the superior photocatalytic activity of Fe (III)-doped TiO2 under visible-light
illumination.

Ag-doped TiO2 (25 mg), fabricated by Hlekelele et al. (2018) using a deposition-
precipitation method, exhibited 91% photodegradation activity toward BPA
(60 ppm) in 50 ml aqueous solution irradiated with visible light (λ > 420 nm). As
compared to pristine TiO2 and TiO2/zeolite composite prepared during the same
investigation, the Ag-TiO2 increased photocatalytic behavior was attributed to the
noble metal Ag nanoparticles ability to absorb visible light by means of surface
plasmon resonance (SPR). SPR is known as the resonance coherent oscillations of
electrons in the conduction band of a metal particle, stimulated by the electromag-
netic field of an incident light as shown in Fig. 1.8 (Zhou et al. 2012). With regard to
Ag and Au nanoparticles, this resonance falls within the visible region.

1.6.2 Alternative Photocatalysts for Visible-Light-Assisted
Degradation of POPs

Multicomponent metal oxyhalides have also been found to demonstrate outstanding
catalytic activity against organic pollutants in water medium under visible-light
treatment (Zhu et al. 2017; Liu et al. 2017b; Yuan et al. 2016). For example, Yin
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Fig. 1.7 Schematic diagram for the enhanced photocatalytic activity of Fe-doped TiO2 under
visible-light irradiation
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and his group (2017) reported the synthesis and visible-light-driven catalytic activity
of microsphere-like PbBiO2Cl with 49.56 m2

/g specific surface area and 2.18 eV
band gap for the degradation of antibiotics. This perovskite-like multicomponent
photocatalyst was obtained by the solvothermal process using ionic liquid
1-hexadecyl-3-methylimidazolium chlorine and a specific amount (0.15 g) of poly
(N-vinyl-2-pyrrolidone) (PVP) complex system. As a photocatalyst, the PbBiO2Cl
microspheres could achieve up to 89% decomposition of ciprofloxacin (10 mg/L) in
aqueous solution, under visible-light illumination (300 W xenon lamp, λ¼ 400 nm).
The apparent pseudo-first-order rate constant was evaluated to be 0.036 min�1.
Furthermore, the use of data obtained with the free radical scavengers (isopropanol
for OH•, benzoquinone for O2•

�, and EDTA-2Na for h+) revealed a high interaction
of photoengendered h+ and O2•

� species with the representative persistent organic
pollutant.

The p-type bismuth oxybromide (BiOBr) microspheres of diameters 1–3 μm,
absorption discontinuity wavelength of 446 nm, and 2.64 eV estimated band gap
were also synthesized using the solvothermal approach and assessed for their
potential to act as photocatalyst for the removal of POPs in wastewater (Tian et al.
2012). 0.5 g/L of this ternary compound semiconductor, in 5 mL solution of BPA
(20 mg/L) under virtual sunlight irradiation (800 W xenon lamp), achieved complete
degradation of the contaminant after 90 min. Remarkably, only 50% degradation
was accomplished with Degussa P25 under similar reaction conditions. The
as-prepared BiOBr high activity was ascribed to the sandwich-like structure that
facilitates the separation of charge carriers. On the other hand, aiming at improving
BiOBr photocatalytic activity through the Fenton-like progression, Zhou et al.
(2018) developed a series of pH-dependent CoxFeyO4-BiOBr hybrid photocatalysts
for the degradation of BPA under visible-light illumination. 50 mg of the optimized
semiconductor, fabricated at pH 3, exhibited 78% degradation of BPA (10 mg/L) in
100 mL aqueous solution. According to the authors’ findings, this hybrid material
demonstrated a 3.4 times higher rate constant than pristine BiOBr prepared under the
same reaction conditions. The catalytic activity was postulated to progress via in situ
production of H2O2, induced by BiOBr, and then Fenton-like sequences to generate
the hydroxyl and oxygen radicals (OH• and O2•

�) (Fig. 1.9).

Fig. 1.8 Schematic representation of SPR in Ag nanoparticle interacting with the electromagnetic
field of an incident light
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In a separate study, the grafting of Fe3O4 nanoparticles with 10 nm diameters onto
mixed valent bismuth oxide Bi2O4 nanorods with average diameters of 120 nm, at
the molar ratio 1:2.5 (Bi2O4:Fe3O4), afforded a nanocomposite with an impressive
photocatalytic degradation toward anti-inflammatory medication ibuprofen in aque-
ous solution under 15 W fluorescent lamp illumination (light intensity: 326.0 μW.
cm�2) (Xia and Lo 2016). This nanocomposite was obtained by a two-step method
involving the hydrothermal treatment of sodium bismuthate powder (NaBiO3) to
generate Bi2O4 and the in situ growth of superparamagnetic Fe3O4 particles using
Fe2+/Fe3+ salts mixtures. The incorporation of nano-sized Fe3O4 facilitates the
isolation of the spent photocatalyst from the aqueous milieu by simple application
of an external magnet. Additionally, during the ibuprofen degradation at the mag-
netic Bi2O4/Fe3O4 photocatalyst, the use of scavengers such as sodium oxalate (h+),
isopropanol (OH•), 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (O2•

�), Fe(II)-
EDTA (H2O2), and Cr(VI) (e-), to identify the important role of the reactive radicals,
revealed that h+, O2•

�, and H2O2 were the most energetic species. A schematic
representation for this process was proposed as shown in Fig. 1.10.

When coupled with other light-sensitive semiconductors, n-type bismuth tung-
state has also been described as an attractive material with visible-light-driven
properties for the photodegradation of refractory organic pollutants (Phuruangrat
et al. 2018; Jonjana et al. 2018; Gao et al. 2018). For instance, Xia et al. (2014)
reported the synthesis of the spherical-like Bi2WO6/BiOBr composite and its
improved activity, relative to the bare constituents, in visible-light photocatalytic
degradation of BPA. This heterojunction material was fabricated via the
solvothermal method using sodium tungstate dihydrate (Na2WO4.2H2O), bismuth
nitrate pentahydrate (Bi(NO3)3.5H2O), and ionic liquid 1-hexadecyl-3-
methylimidazolium bromide ([C16mim]Br) as solvent, reactant, and template. The
photoluminescence spectra analysis indicated that as compared to BiOBr and
Bi2WO6, a coupling of both materials eased the charge carrier separation, leading
to increased catalytic activity.

Fig. 1.9 Schematic diagram for the improved photoactivity of CoxFeyO4-BiOBr through the
formation of H2O2 and Fenton-like cycles

1 Visible-Light-Responsive Nanostructured Materials for Photocatalytic. . . 19



Alongside the capability of graphitic carbon nitride (g-C3N4) to initiate water
splitting for the hydrogen gas (H2) production when composited with semiconduc-
tors such as TiO2 (Liu and Lu 2018) and SnO2 (Seza et al. 2018), this material has
also been reported as support for the synthesis of hybrids with commendable
photodegradation performance toward POPs. For example, Fe3O4-g-C3N4 (Fe3O4

mass ratio 4%), obtained by in situ growth of Fe3O4 nanoparticles at the surface of
pre-synthesized C3N4 sheet, revealed a pseudo-first-order kinetic constant of
1.33 h�1 for BDE209 debromination under visible-light illumination (λ > 420 nm)
(Shao et al. 2018). The dehalogenation process was proposed to evolve through the
transfer of g-C3N4 photoexcited electrons to BDE209 via the conduction band of
Fe3O4. In addition, the magnetization curve of Fe3O4-g-C3N4 hybrid exposed the
distinctive superparamagnetic properties, and this photocatalyst could easily be
isolated and reused four times without a significant loss of efficiency. To also
achieve a material that could be easily removed from the reaction milieu after
usage in photocatalytic system, Li et al. (2015b) reported the fabrication of hollow
spherical Fe2O3/ZnO printed onto a filter paper. The bimetal oxide were obtained
through the solvothermal method using the iron(III) chloride (FeCl3) and zinc acetate
(Zn(Ac)2) precursors. Subsequently, their dispersion on a paper was effected with a
household sprayer. The as-developed material was described as an outstanding
photocatalyst for the removal of 2,4,6-trichlorophenol (rate constant of
0.014 min�1) in aqueous solution in simulated sunlight irradiation (200 W xenon
lamp) at 25 �C. In addition, the Fe2O3/ZnO-embedded filter paper was found to
preserve its high efficiency after ten repeated photodegradation experiments.

Fig. 1.10 Schematic diagram for the photodegradation of ibuprofen using Bi2O4/Fe3O4 under
visible-light irradiations
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Following previous reports on the ability of the metal hexacyanoferrate com-
plexes to act as adsorbents and heterogeneous photocatalysts for the removal of
organic pollutants (Shanker et al. 2016; Jassal et al. 2015), Shanker and co-workers
(2017) described potassium zinc hexacyanoferrate nanocubes as efficient material
for the removal of a variety of PAHs at neutral pH under natural sunlight irradiation
(light intensity: 10.04 kW/m2). This coordination complex was prepared following a
green approach using zinc nitrate, potassium ferrocyanide K4[Fe(CN)6], and an
aqueous extract of plant Sapindus mukorossi as a bio-surfactant. The use of potas-
sium zinc hexacyanoferrate nanocubes (25 mg) effected 70–93% degradation of
phenanthrene, benzo[a]pyrene, fluorene, chrysene, and anthracene (50 mg/L) in
aqueous media within 48 h (Fig. 1.11).

1.7 Conclusion

The fast growth in industries during the last century has resulted in the release of a
huge number of POPs into the environment. Owing to their demonstrated potential
for long-range transport, persistency, and bioaccumulation, POPs have proven to be
highly toxic. There are enough data to conclude that adverse effects have occurred in
wildlife and human well-being exposed to POPs. These potential human health
effects and their consequences in developing and developed countries are of global
concern. To remediate this situation, a comprehensive approach that takes into
consideration the technical and economic point of view consists of treating the
wastewaters before their discharge into the natural environment. At that point,
relatively small volumes of POPs-contaminated water are to be attended, while the
decontamination of polluted natural water streams would be very problematic or
even unreasonable. For this purpose several technologies have been proposed. In this
chapter, we have exposed that heterogeneous photocatalytic process represents a
very proficient procedure for the nearly complete removal of refractory POPs in

Fluorene

Anthracene Chrysene

Benzo[a]pyrene

Fig. 1.11 Chemical
structures of selected PAHs

1 Visible-Light-Responsive Nanostructured Materials for Photocatalytic. . . 21



aqueous medium. Moreover the development of visible-light-responsive heteroge-
neous photocatalysts is gaining momentum globally owing to the fact that these
semiconductors are considered to be able to convert natural solar energy to chemical
energy. Henceforth, visible-light-driven heterogeneous photocatalysis could be
described as eco-friendly and relatively low-cost technique for efficient degradation
of POPs in wastewater. However, to promote the practicability of this remarkable
technology at industrial scale, the design of effective reactor for the full exploitation
of natural solar radiation and optimization of the process have to be addressed.
Furthermore, the design of an applicable photocatalyst immobilization technique to
provide a productive solid-liquid separation still remains a challenge.
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Abstract Magnetic materials have received much attention due to their use in
various applications such as biomedical, waste water treatment, photocatalytic, and
electrocatalytic applications. Among the magnetic materials, Fe3O4 magnetic
nanoparticles (MNPs) are the finest choice, due to their easy preparation process
and flexible magnetic characteristics with adjustable morphology and size. Surface
modifications of Fe3O4 MNPs with suitable surface modifier are necessary to utilize
the hybrid materials for any specific required applications. The selection of surface
modifier is important, as it is having a major role for the specific applications. The
MNPs with higher saturation magnetization are essential for any magnetic field-
assisted applications even with the surface modifier. In this chapter, the progresses
on the surface modifications of Fe3O4 for the potential use in the heavy metal ion and
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radioactive toxin ion removal from water solutions are discussed. The possibility for
the development of highly magnetic surface-modified MNPs of Fe–Fe3O4–Prussian
blue system as a recoverable adsorbent is proposed.

Keywords Magnetic nanoparticles · Fe3O4 · Core–shell · Chemical synthesis ·
Surface modification · Adsorption · Detoxification · Saturation magnetization

2.1 Introduction

2.1.1 Magnetic Materials

Materials can exhibit ferromagnetic, diamagnetic, paramagnetic, ferrimagnetic, and
antiferromagnetic behavior according to their magnetic nature. Soft and hard mag-
netic materials are the two types of classification based on the coercivity exhibited by
them. To consider ferromagnetic materials for practical applications, coercivity is
one of the most sensitive properties, which is extrinsic in nature. The materials with
high magnetocrystalline anisotropy are hard magnetic materials which also have
high coercivity, and the materials with low magnetocrystalline anisotropy are known
as soft magnetic material. The coercivity is a function of particle size, which reaches
a maximum value, when they are in the critical single domain (Ds) size. The
coercivity reaches zero when the particle size reduces much below the single domain
size due to superparamagnetism (Bean and Livingston 1959). Superparamagnetism
is an outcome of the dominance of thermal energy over anisotropy energy. The
anisotropy energy density is given as E ¼ KV sin2θ, where K is the anisotropy
constant and V is the particle volume, for an assembly of uniaxial and single domain
particles. The energy barrier required for the separation of two energy minima at
θ ¼ 0 and θ ¼ π, which are corresponding to the parallel or antiparallel magnetiza-
tion, respectively, to the easy axis, is ΔEB ¼ KV. The particle freely fluctuates with
the limit of kBT > > KV, where kB is Boltzmann’s constant and T is temperature. This
limit is called as isotropic superparamagnetic limit (Bean and Livingston 1959). The
particle size will have a sizable influence on the magnetization dynamics with
decreasing temperature. The energy limit reaches kBT � KV and then finally to
kBT < KV, and this state is called as blocked state.

In the blocked state, the direction of magnetization would swing among the two
energy minima with a frequency, f, or a representative relaxation time, given by the
Neel–Brown expression (Sorensen 2001), τ ¼ τ0 exp (KV/kBT), where τ0 � 10�10 s
is the relaxation time constant. From the above equation, it is obvious that the
particle size plays an important role in determining the relaxation time. Figure 2.1
shows the relationship between coercivity (Hc) and particle size in a ferro-/
ferrimagnetic material. The coercivity is lowest at the superparamagnetic (SPM)
regime, reaches the highest at a critical size with a single domain, and decreases with
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the size of particle in the multidomain (MD) regime as shown in Fig. 2.1. From
Fig. 2.1, it is also illustrated that the ferro-/ferrimagnetic (FM) particles become
unstable when they become superparamagnetic particles. The unstable nature of
superparamagnetic nanoparticles makes them unsuitable for recording application.
Crossing the superparamagnetic limit by creating magnetic exchange coupling
between ferromagnetic and antiferromagnetic surface (Skumryev et al. 2003) is
one way of utilizing magnetic nanoparticles (MNPs) for high-density data storage.
Developing synthetic routes for the synthesis of ferromagnetic nanoparticles with
high anisotropy constants is another way to overcome the thermal fluctuations for the
use in ultrahigh-density storage media (Weller and Moser 1999) and permanent
magnets (Zeng et al. 2002). On the other hand, superparamagnetic nanoparticles
with high saturation magnetization in low applied field and negligible remanent
magnetization are used for biomedical applications (Pankhurst et al. 2003) such as
targeted drug delivery (Lubbe et al. 1996; Gu et al. 2007; Mohapatra et al. 2014),
localized heating of cancerous cells (hyperthermia) (Hergt et al. 2004), magnetic
resonance imaging (MRI) contrast enhancement (Bjørnerud and Johansson, 2004),
and medical diagnosis and therapy (Mornet et al. 2004).

The development of size-controlled and chemically stable MNPs has become
one of the most essential and crucial factors for biomedical applications. Espe-
cially the MNPs with high saturation magnetization are important for applications
such as targeted drug delivery and other magnetic field-assisted applications such
as waste water purification including heavy metal ions and radioactive toxin
removal or any other magnetic separation process which used magnetic nanopar-
ticle and magnetic field.

Fig. 2.1 Schematic diagram showing the relationship between coercivity (Hc) and particle size
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2.1.2 Magnetite

Among the magnetic materials, Fe3O4 is found to be a common choice for surface
modification due to easy process of size tuning and the attachment of surface
modifier. Fe3O4 belongs to the class of ferrimagnetic materials with the spinel
structure, and it is important because of the spontaneous magnetization like ferro-
magnetic materials. The spontaneous magnetization will be destroyed above the
Curie temperature, which is 850 K for Fe3O4. The magnetic properties of the ferrites
are dependent on the net magnetic moment of the ions present in the spinel structure.
The maximum saturation magnetization of bulk Fe3O4 is 92 emu/g (Cullity 2009)
and the saturation magnetization gets reduced with a reduction in particle size which
is due to the surface spin effects even with a larger applied magnetic field. The
surface spin effect on the particle is leading to spontaneously magnetized core and
the misaligned surface spin forming the magnetic dead layer as shown in Fig. 2.2.

2.1.3 Surface Modification

Surface modification is important to improve the characteristics of nanoparticles
such as dispersion of nanoparticles, improving the biocompatibility and obtaining
other physicochemical properties. With the help of surface modification, we could be
able to adjust the physical, chemical, and biological characteristics of the
nanomaterials which can be used for industrial and biological applications. Although
few properties could be improved with the surface modification, some of the core
magnetic particle properties such as saturation magnetization might get suppressed
due to surface modification with nonmagnetic surface modifier, and this is the major
problem in the surface modification of MNPs. Preparing highly MNPs for the

Fig. 2.2 Schematic diagram showing a particle exhibiting surface spin effects
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surface modification would be the solution to have magnetic characteristics after the
surface modification. Highly magnetic nanomaterials only could be able to response
with surface modification even with lower applied magnetic field. The MNPs were
surface modified with PVA, PEG, PVP, SiO2, TiO2, and various noble metals (Shan
et al. 2003;Gupta and wells 2004; D’Souza et al. 2004; Ma et al. 2006; Chen and
Chen 2005; Xuan et al. 2009; Mandal et al. 2005; Lu et al. 2007; Wu et al. 2008;
Wilson et al. 2012; Laurent et al. 2008) for various applications including drug
delivery, photocatalytic, and sensing. However, there are many potential uses of
surface-modified MNPs in applications such as magnetic separation (reusable adsor-
bent in waste water purification or toxic ion removal) and magnetic field-assisted
drug delivery which requires specific MNPs with higher saturation magnetization.

2.1.4 Water Purification

Water purification is one of the essential processes to avoid water scarcity for
human use. The treatment processes for the purification of water are demonstrated
by various stages of purification process, and the technologies are in the developing
stage to meet the water standard proposed by the governing agencies (Alqadami
et al. 2016a, b). New water treatment processes are being developed by various
research groups throughout the world by introducing various nanomaterials into the
water purification process (Naushad et al. 2016). Even though few water treatment
methods are established, the efficiency of the nanomaterials in the water purification
could be improved by developing novel filtration membrane, high surface area
adsorbents, and other processes. Various processes were identified for the devel-
opment of water purification technologies including several separation processes,
coagulation, sedimentation, filtration, chemical purification, ion exchange, reverse
osmosis, etc. (Daneshvar et al. 2017). The objective of all these processes is the
removal of contaminants from water and to provide clean water. Numerous
nanomaterials have been attempted to validate the removal efficiency and to reduce
the cost of the overall process. Even though the commercially available
nanomaterial has been utilized for water purification process, several research
groups are in the process of synthesizing or developing various nanomaterial
systems to improve the efficiency by obtaining various morphologies and different
hybrid system. The use of magnetic nanomaterials is advantageous over other
nanomaterials due to the easy way of collection and reuse of the nanomaterial.
The water treatment by using nanomaterials as an adsorbent is shown schematically
in Fig. 2.3. The adsorption process could happen through physical, chemical, or
biological process. The adsorption capacity during the adsorption process may vary
with different parameters such as pH, amount of adsorbent used, coexisting ions,
temperature, and the interaction time of adsorbent with the polluted water.

2 Surface Modification of Highly Magnetic Nanoparticles for Water. . . 35



2.2 Fe3O4 for Heavy Metal Ion Removal

Fe3O4 was found as one of the best adsorbents for the removal of various heavy
metals due to the easy preparation and tuning of the magnetic properties of the
nanomaterials. For further improvement in the adsorption capacity, Fe3O4 MNPs
were surface modified with several surface modifiers and found the significant
improvement. Table 2.1 shows the use of Fe3O4 for the removal of heavy metal
ions from waste water solutions. Fe3O4 MNPs were surface modified with various
surface modifiers such as SiO2, Al2O3, polypyrrole, humic acid, hematite, chitosan,
EDTA, graphene, and graphene oxide, various functional materials, and their com-
binations. Even though bare Fe3O4 has the tendency to adsorb heavy metal ions, the
adsorption capacity was observed as less for heavy metal ions. The surface-modified
Fe3O4 MNPs showed good adsorption and removal efficiency toward the removal of
copper, nickel, chromium, zinc, manganese, silver, cadmium, lead, arsenic, and
mercury. From the available reports, it is understood that the adsorption capacity
is increasing significantly due to the selection of suitable surface modifier for surface
modifications.

2.3 Fe3O4 for Radioactive Toxic Ion Removal

As the Fe3O4 has the tendency to attract various heavy metal ions, it gave the
opportunity to use it for the radioactive toxic ion removal. In the case of radioactive
toxic metal ion removal, the utilization of bare Fe3O4 nanoparticle was very limited

Fig. 2.3 Flow chart of nanoparticles for the toxic ion removal process
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Table 2.1 Bare and surface-modified Fe3O4 for removal of toxic ions

Magnetic material

Saturation
magnetization
(emu/g)

Type of
metal
removed

Efficiency or
adsorption
capacity References

Fe3O4 40 As (V) 16.56 mg/g Liyun Feng et al.
(2012)As(III) 46.06 mg/g

Fe3O4 nanoparticles – Ni(II) 95.6% Y.F. Shena et al.
(2009)Cu(II) 99.9%

Cd(II) 94.5%

Cr(VI) 97.3%

Mesoporous Fe3O4 spheres 77.5 Cr(VI) 9 mg/g Madhu Kumari et
al. (2015)Pb(II) 19 mg/g

Fe3O4 nanocrystals – As(III) 99.2% Cafer T. Yavuz et
al. (2006)As(V) 98.4

Fe3O4@TAS 41.4 Cd(II), Cr
(III), and
Co(II)

286, 370, and
270

Alqadami et al.
(2017a)

Fe3O4@TSC 55.4 Cr(III)
and Co
(II)

– Alqadami et al.
(2016a, b)

Fe3O4@silica 18.29 Hg(II) 0.588 mgL-1 Haibo Hu et al.
(2010)

Polypyrrole/Fe3O4 – Cr(IV) 209.89 mg/g Madhumita
Bhaumik et al.
(2013)

Humic acid (HA)-coated
Fe3O4

68.1 Hg(II) 99.9% Jing-Fu Liu et al.
(2008)Pb(II) 99.5%

Hematite–Fe3O4 27 Sb(III) 36.7 mg/g Chao Shan et al.
(2014)

Hematite-coated Fe3O4

particles
36 As(III),

As(V)
1.0 ug/mg K. Simeonidisa et

al. (2011)2.1 ug/mg

Chitosan–Fe3O4

nanoparticles
– Cu(II) 21.5 mg/g Yang-Chuang

Chang and
D.H. Chen (2005)

Fe3O4@EDTA – Ag(I), Hg
(II)

112 mg/g for
removal of all

Ensieh Ghasemi
and
A.H.M. Sillanpää
(2017)

Fe3O4–RGO–MnO2 48.57 As (III) 14.04 mg/g Xubiao Luo et al.
(2012)As (V) 12.22 mg/g

Fe3O4–3-aminopropyl
triethoxysilane (APTES)–
glutaraldehyde (GA)

48.4 Cu (II) 61.07 mg/g Mustafa Ozmen et
al. (2010)

Fe3O4@SiO2–NH2 34 Cu(II) 0.69 mmol/g Jiahong Wang et
al. (2010)Pb(II) 0.54 mmol/g

Cd(II) 0.33 mmol/g

(continued)
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Table 2.1 (continued)

Magnetic material

Saturation
magnetization
(emu/g)

Type of
metal
removed

Efficiency or
adsorption
capacity References

EDTA-functionalized Fe3O4 81.45 Cu(II) 46.27 mg/g Yan Liu et al.
(2013)

Fe3O4@Al(OH)3 15.8 Fluoride 68 mg/g Xiaoli Zhao et al.
(2010)

Amine-functionalized
mesoporous Fe3O4

nanoparticles

75 Cd(II) 446.4 mg/g Xiaodong Xin et
al. (2012)Pb(II) 369.0 mg/g

Fe3O4–graphene 0.88 As (V) 240 mg/g Liangqia Guo et
al. (2015)

Fe3O4–graphene oxide – As (IV) 42.9 mg/g Yeojoon Yoon et
al. (2016)As(V) 18.8 mg/g

Fe3O4-reduced graphene
oxide

29.8 mg/g

8.42 mg/g

Fe3O4–thiol-functionalized
mesoporous silica material

38.8 Hg 260 metal/g Guoliang Li et al.
(2011)Pb 91.5 metal/g

Fe3O4–3-
aminopropyltriethoxysilane
(APS) and copolymers of
acrylic acid (AA) and
crotonic acid (CA)

52 Cd2+ 29.6 mg/g Fei Ge et al.
(2012)Pb2+ 166.1 mg/g

Cu2+ 126.9 mg/g

Poly(1-vinylimidazole)-
grafted Fe3O4@SiO2

44.7 Cd (II) 42.1 mg/g Chao Shan et al.
(2015a, b)

Fe3O4-reduced graphene
oxides aerogels

39.771 As (III) 11.3 mg/g Yong Li et al.
(2016)

EDTA-modified chitosan/
SiO2/Fe3O4

18.2 Cu(II) 44.4 mg/g Yong Ren et al.
(2013)Pb(II) 63.3 mg/g

Cd(II) 123 mg/g

Fe3O4@SiO2–EDTA 34.49 Pb(II), Cd
(II)

114.94 mg/g Yu Liu et al.
(2016)50.25 mg/g

PANI/Fe3O4/PES
(polyethersulfone)

– Cu(II) 75% Parisa Daraei et al.
(2012)

Poly(1-vinylimidazole)-
grafted Fe3O4@SiO2

44.7 Hg(II) 346 mg/g Chao Shan et al
(2015a, b)

Fe3O4–chitosan–glycidyl
methacrylate macromolecu-
lar hybrid material

19.1 Hg(II) 2.02 mmol/g Khalid
Z. Elwakeel and
E. Guibal (2015)

Sulfate-doped Fe3O4/Al2O3 16 Fluoride 70.4 mg/g Liyuan Chai et al.
(2013)

Fe3O4@glycine–polypyrrole 2.2 Cr(VI) 238 mg/g N. Ballav et al.
(2014)

Thiol-modified
Fe3O4@SiO2

20.47 Hg 148.8 mg/g Shengxiao Zhang
et al. (2013)

38 A. Thirumurugan et al.



due to the less adsorption capacity toward the radioactive toxic metal ion. But with
the help of surface modification, radioactive toxic metal ion removal was succeeded
using hybrid materials of Fe3O4 with various surface modifiers such as graphene,
graphene oxide, TiO2, WO3, alginate, fungus, SiO2, EDTA, Prussian blue, and other
functional groups. These surface-modified Fe3O4 showed good adsorption capacity
toward the removal of uranium, strontium, thorium, and cesium. Table 2.2 shows the
efficiency of surface-modified Fe3O4 toward the radioactive toxic ion removal in the
recent reports.

As we have seen from Tables 2.1 and 2.2, the saturation magnetization of Fe3O4

MNPs was varying with size, morphology, and surface modifier. Even though the
adsorption capacity or efficiency of the surface-modified Fe3O4 is high, the satura-
tion magnetizations of the final hybrid materials are less due to the nonmagnetic
surface modifier. The saturation magnetization of any MNPs is important for the
magnetic field-assisted application in a large scale. From the available literature, it is
understood that achieving the saturation magnetization more than 82 emu/g for
surface-modified Fe3O4 will be difficult. It is important to have a hybrid magnetic
nanoparticle with higher saturation magnetization to show good response for the
magnetic separation even after surface modification. To achieve this, there are two
options: the first one is to have a highly magnetic core phase that can provide higher
saturation magnetization after the surface modification with nonmagnetic surface
modifier and the second option is to choose another magnetic material as a surface
modifier to get a combined saturation magnetization from the core and shell or
surface modifier. However, the choice of surface modifier also has important role for
the water purification, and it should have a tendency to attract toxic ions from the
water solutions. Further we will discuss about the possibility of utilizing Prussian
blue as a surface modifier for the potential application in the cesium ion removal
from the water solutions.

2.4 Prussian Blue and Its Use for Cs Ion Removal

Prussian blue is a blue pigment used as paint in drawings. Prussian blue was
considered as the first synthetic coordination compound which was synthesized in
Berlin around the year 1706. Prussian blue is an inorganic compound with the
formula of Fe7(CN)18, which also contains variable quantity of water molecules
within the crystal structure. With water molecule, the chemical stoichiometry of
Prussian blue is written as Fe7(CN)18(H2O)x, (14 � x � 16). To determine the
crystal structure of Prussian blue, various experiments were done, and the crystal
structure of Prussian blue was demonstrated similar to coordination compounds
such as Mn3[Co(CN)6]2 and also Co3[Co(CN)6]2. Prussian blue contains Fe(II)-
CN-Fe(III) connections, with a distance of 1.92 Å for Fe(II)-C, 2.03 Å for Fe(III)-N,
and 5.1 Å for Fe (II)-Fe (III). The crystal structure of Prussian blue having eight
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channels is named as A site with a diameter of 0.32 nm. Figure 2.4 shows the crystal
structure of Prussian blue. The composition may vary with the water molecules
within the crystal structure.

The variation in the composition of Prussian blue is attributed to the low
solubility of Prussian blue which leads to quick precipitation without attaining the
equilibrium state between solid and liquid. Prussian blue is classified as soluble and
insoluble, based on the colloidal forming tendency. The soluble Prussian blue has a
chemical formula of KFeFe(CN)6, and the insoluble Prussian blue has chemical
formula of Fe4[Fe(CN)6]3. Between these two forms, insoluble Prussian blue is in
demand due to its unusual characteristics of charge transfer within, electro-chromic
behavior, and the tendency of absorbing radioactive cesium ions. Even though the
Prussian blue has the cyanide group within the crystal structure, the cyanide group is
not easily breakable, which makes the Prussian blue nontoxic.

Radioactive cesium isotopes might be released from the nuclear reactor due to
various reasons and can be easily enter to the food cycle via water source and plants.
Among the cesium isotopes, 137Cs and 134Cs are having longer half-life period (Emery
et al. 1972). The physical half-life period of 137Cs is 30.2 years with 2 months of
biological half-life. The 137Cs used in radiation sources is regularly in the form of
cesium chloride, and the cesium chloride is effortlessly dispersed in the environment.
Cesium chloride and other cesium compounds are easily soluble in water or other
solvents and immediately absorbed from the lungs and gastrointestinal tract and also
through wounds. The high solubility and long half-life time make the 137Cs to spread

Fig. 2.4 Crystal structure of Prussian blue
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evenly throughout the biological body and cause health issues like cancer. It is proved
that the Prussian blue is the effective drug for the 137Cs poisoning of human beings by
the US Food and Drug Administration (FDA). The effective dosage of Prussian blue is
showed as 10 g/day for the radioactive 137Cs absorption (Thompson and Church 2001;
Lawrence and Kirk 2007; Hong et al. 2012). It is also noted that the Prussian blue is
not much effective for the detoxification of any other radioactive metal ions.

As like other metal ion adsorbing mechanism, the adsorption of cesium ion with
the Prussian blue also happens by combinations of various attachment mechanisms.
Barton et al. demonstrated that the attachment of cesium ion with Prussian blue
through physical adsorption of cesium ions into the crystal lattice due to the
electrostatic interaction (Barton et al. 1958). Recently, the absorption of Cs ion
with the Prussian blue is explained by the ion trapping by chemical adsorption
through the hydrophilic lattice defect locations with proton elimination from the
coordination water (Ishizaki et al. 2013). The open structure of Prussian blue results
in high rate of adsorption capability. Hydrated ions easily move through the channels
between the A sites. The basic principle for the ion exchange is that the ions in the
solution are electronically charged and the charged ions could be attracted to the
available locations on a solid material which is having an opposite charge. The solid
material is named as sorbent, and the locations are named as binding sites. The
physiochemical characteristics of Prussian blue would be the main reason for the
adsorption of cesium ions which are ion exchange, ion trapping, and physical
adsorption processes as illustrated in Fig. 2.5.

2.5 Fe3O4–Prussian Blue for Cesium Removal

The adsorption capacity of Cs by Prussian blue is found to be good and explained in
detail by various mechanisms. But, the nonmagnetic nature of the material makes the
Prussian blue unsuitable for magnetic field-assisted applications. Considering the
absorption of Cs through the guts and their deposition in the lumens, it has to be

Fig. 2.5 Possible
mechanisms for the
attachment of Cs with
Prussian blue
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eliminated effectively in detoxification applications. One of the best options is to
develop the Prussian blue-modified MNPs for detoxification of radioactive ion
removal. Prussian blue–Fe3O4–PDDA composite was developed by Namiki et al.
(Namiki et al. 2012) which was utilized for the removal of cesium ions and reached the
maximum removal of 35%. Several reports are mainly focused on the attachment of Cs
using Prussian blue (Prout et al. 1985; Lilga et al. 1997; Rassat et al. 1999; Lilga et al.
2001; Lin et al. 2001; Chen et al. 2007; Chang et al. 2008; Sangvanich et al. 2010;
Parab and Sudersanan 2011; Arisaka and Nankawa 2012; Delchet et al. 2012; Namiki
et al. 2012). The removal of cesium-attached adsorbent from the water solutions is still
progressing. The removal of Prussian blue-attached Fe3O4 from waste water solutions
are need to establish with different size and morphology as the size and morphology of
the adsorbent also influence the adsorption efficiency and also the variation in the
saturation magnetization. To establish the effect of MNP size on the adsorption
capacity of cesium, we have developed Prussian blue-modified Fe3O4 with different
sizes. Fe3O4 nanoparticles were prepared by using modified chemical oxidation
method with optimized experimental conditions. Fe3O4 nanoparticle size was tuned
between 10 and 100 nm by introducing the ferric ions, during the chemical reactions.
The saturation magnetization of Fe3O4 was tuned from 62 to 90 emu/g by varying the
particle size. The prepared Fe3O4 nanoparticles were used for the surface modification
with Prussian blue, and the surface modification was achieved with optimized exper-
imental conditions. The saturation magnetization of Fe3O4 with Prussian blue modi-
fication was 21–80 emu/g for various particle sizes. Figure 2.6 shows the MNP
attraction toward a permanent magnet for (a) Fe3O4, (b) Prussian blue–Fe3O4 within
few seconds, (c) Prussian blue–Fe3O4 after few seconds, and (d) Prussian blue.

We have used the Prussian blue-modified Fe3O4 nanoparticles for the cesium
removal and found that the efficiency in terms of adsorption capacity is 22 mg/g. It is
noted that the maximum value of adsorption capacity from the commercially
available Prussian blue was observed as 29.3 mg/g (Torad et al. 2012). The adsorp-
tion capacity value of Prussian blue-modified Fe3O4 suggests that it could be used
for the Cesium ion removal and also it can be used for magnetic field-assisted
application as it has the Fe3O4 nanoparticles with higher saturation magnetization.

Fig. 2.6 MNP attraction toward a permanent magnet for (a) Fe3O4, (b) Prussian blue–Fe3O4 within
few seconds, (c) Prussian blue–Fe3O4 after few seconds, and (d) Prussian blue
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2.6 Fe–Fe3O4–Prussian Blue for Cesium Removal

Highly MNP systems are required for the water purification in a larger scale. Further
our interest is to improve the magnetic characteristics of the nanoparticle within the
hybrid system. Achieving higher saturation magnetization is possible by utilizing Fe
MNPs in the hybrid systems. Synthesis of pure Fe magnetic nanoparticle is difficult
as the pure Fe nanoparticles are easily get oxidized which will have the advantageous
for the preparation of Fe–Fe3O4. Fe nanoparticles are not stable in many environ-
ments. Fe by itself reacts with air and water and forms various oxides such as Fe3O4,
α- Fe2O3, γ-Fe2O3, and Fe(OH)2. Fe nanoparticles exhibit interesting and useful
magnetic properties, which is due to the high saturation magnetization of 218 emu/g.
The crystal structure of Fe is body-centered cubic (bcc) below 1185 K, and above
this temperature, it transforms to face-centered cubic (fcc) structure (Bramfitt and
Benscoter 2002). The Curie temperature of Fe is 1044 K which is below the bcc–fcc
phase transition temperature. The preparation of Fe nanoparticle with Fe3O4 shell
would be the best possible way to achieve the highly magnetic nanoparticle with
Fe3O4 surface characteristics. The surface-modified Fe nanoparticles with Prussian
blue or any other surface modifier could give us a higher saturation magnetization,
when compared to pure Fe3O4 with the same size. The occurrence of iron oxide layer
on the surface of Fe is providing advantage for the surface modification and also for
numerous applications. As the attachment of Prussian blue on the surface of Fe3O4

with suitable experimental procedure was successful, now we are able to use the
highly magnetic Fe nanoparticles with a shell of Fe3O4 for the surface modification.
To achieve this hybrid system, first we need to develop Fe–Fe3O4 system with high
saturation magnetization and then surface modification with Prussian blue with
optimized experimental conditions. Fe nanoparticles could be prepared by polyol
process, and the oxide shell could be achieved by mild heating of Fe nanoparticles.
Another way of getting iron oxide layer on the surface of Fe nanoparticles is to use
higher amount of nucleating agent which will be used for the size reduction in lower
concentration. Fe nanoparticles were prepared by using polyol process with
FeCl2.4H2O and NaOH at 170 �C. Platinum solutions were utilized as a nucleating
agent to evaluate the size reduction. The lesser Pt concentration results in the size
reduction of Fe nanoparticle, and higher concentration results in the reduction in
particle size as well as the formation of oxide layer on the Fe nanoparticles.
Figure 2.7 shows the TEM micrograph of Fe nanoparticles prepared by polyol
process with and without Pt nucleating agent. With increasing Pt concentration,
the size of Fe nanoparticle is reducing, and the oxide layer thickness on Fe nano-
particle is increasing. With this experimental procedure, we could be able to prepare
various sizes of Fe nanoparticle with variable thickness of iron oxide shell.

Recently, the attachment of Prussian blue on the iron oxide surface was demon-
strated based on the surface charge mechanism (Arun et al. 2013). The surface
charge from the Fe3O4 could be due to the presence of ferrous and ferric ions on
the surface of Fe3O4. It is also demonstrated that the Prussian blue easily gets
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attached to the surface of Fe3O4 irrespective of surface charge on the Fe3O4, even in
the hydrous or anhydrous environment. The possible way of Prussian blue attach-
ment on Fe3O4 is shown in Fig. 2.8.

The attachment of Prussian blue can be easily adjusted by varying the HCl concen-
tration. The saturation magnetization of smaller-sized Fe–Fe3O4 was observed as
168 emu/g. Fe–Fe3O4 nanoparticles were surface modified with Prussian blue, and
the saturation magnetization was observed as 110 emu/g. The saturation magnetization
of Fe–Fe3O4–Prussian blue was higher than that of bare Fe3O4. The Prussian blue
fraction also could be adjusted by varying the HCl concentration. The advantageous
over adjusting the fraction of Prussian blue and tuning of Fe3O4 shell thickness on the
Fe nanoparticles providing opportunity to have a Fe- Fe3O4-Prussian blue system with
adjustable saturation magnetization. Fe- Fe3O4-Prussian blue system with higher satu-
ration magnetization could be the better candidate for any magnetic field assisted
applications especially for the removal of cesium ions from water solutions. The
development of Fe–Fe3O4–Prussian blue is shown in a schematic way as shown in
Fig. 2.9. The system could be the suitable candidate for the water purification as it can
be collected easily with the help of magnetic field and could be used again with a
number of times.

Fig. 2.7 Fe and Fe–Fe3O4 core–shell MNPs with different shell thickness
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Fig. 2.8 Prussian blue attachment mechanism on Fe3O4 surface

Fig. 2.9 Schematic diagram for the preparation of Fe–Fe3O4–Prussian blue
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2.7 Summary

In this chapter, the progress on surface-modified Fe3O4 for the heavy metal ion and
radio-toxic metal ion removal was discussed. The use of Prussian blue-modified
Fe3O4 on the radio-toxic metal ion removal was shown by developing Fe3O4–

Prussian blue nanoparticle hybrid system. The importance of Fe within Fe3O4

nanoparticles has been discussed in terms of saturation magnetization for the mag-
netic field-assisted applications. The new hybrid system of Fe–Fe3O4–Prussian blue
is proposed for the better choice for cesium ion removal from waste water solutions
and any magnetic field-assisted applications.
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Abstract Water pollution is expanding at regular pace and the entire world is in grip
of cancer-causing contaminants. Thus, there is urgent demand to develop an alter-
nate technology for water treatment; herewith, photocatalysis has emerged as an
efficient removal process. This chapter concentrates on the emerging area of utili-
zation of pyrite nanostructures for photodegradation of wide variety of water pol-
lutants and discusses the mechanism of photocatalysis process. This chapter can
serve as a useful reference for those new to this field of research. The
functionalization of FeS2 material can be achieved with particular components
such as catalytically active species, specific binding sites, or with supplementary
functional groups. The insight of modification of pyrite to enhance the photocatalytic
properties of pyrite is also elaborated in this chapter. Lastly, the chapter explains the
photocatalytic activity in different reaction parameters and provides an overview of
the environmental applications of pyrite nanostructures.
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3.1 Background

Iron disulfide (FeS2) has been developing as one of the most prospective semi-
conductors which has been used in various applications involving photocatalysis and
photovoltaics (Talapin et al. 2010; Tian et al. 2015). Due to nontoxic nature,
inexpensive FeS2 has been progressively researched in the recent years. Metal
sulfides (SnS2, CdS, FeS2) can absorb light in visible region which makes them a
perfect candidate for visible light-driven photocatalysis. FeS2 has been immensely
studied among the transition metal sulfides due to its easy production and
environment-friendly nature. FeS2 exists in various polymorphs such as pyrite and
marcasite. Pyrite (fool’s gold) has cubic structure similar to sodium chloride struc-
ture with Fe2+ and S2� ions in octahedral coordination. Pyrite FeS2 is a semicon-
ductor with direct bandgap of ~ 0.95 eV and high absorption coefficient of 6�10�5

cm�1 for energies greater than 1.1 eV which makes it mainly promising
photocatalyst. The parameters needed to be addressed during synthesis are bandgap
tuning, mobility of charge carriers, and band positions in order to improve
photocatalytic activity.

FeS2 nanostructures have been synthesized with number of different composition
and phases. Most of the research has been focused onto the synthesis of these
nanomaterials in the last decade. Several publications have described the efficient
synthesis routes for controlling shape, size, morphology, as well as stability. Many
prevalent methods including hydrothermal (Allen et al. 1912; Darr et al. 2017), hot
injection (Guo et al. 2015), solvothermal (E’jazi and Aghaziarati 2012), and
sulfidation (Shi et al. 2015) have been used for preparation of superior quality
FeS2 nanomaterial.

Organic contaminants, responsible for polluting aquatic environments, pose a
serious threat to humanity and aquatic species (Gnanasekaran et al. 2018; Albadarin
et al. 2017). Various removal techniques have been developed to manage the
negative effects of these pollutants (Kumar et al. 2017). Pyrite has property of
oxidizing easily and acidic conditions that are advantageous for removal of contam-
inants. The primary lacks in water treatment techniques are summed up as higher
concentration of pollutants, lower degradation efficiency, and less recovery of
photocatalyst from water that bring hurdles in progress of commercialization.
Regardless of all the disadvantages, research and evolution are progressing rapidly.
This chapter presents role of pyrite and its composites in the field of photocatalysis.
The role of modification for enhancing the photocatalytic property is elucidated
briefly in chapter.
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3.2 Mechanism for Dye Degradation Followed by Pyrite

FeS2 material can absorb visible light using mechanism described in Fig. 3.1. FeS2
generate electron and hole pairs by absorbing visible light hν (Eq. 3.1). The
production of OH˙ radical was due to reaction of holes with the electron donor
such as water (Eq. 3.2) (Khataee et al. 2016).

The thermodynamic stability of pyrite in aqueous environment was not good
enough and leads to the oxidation of pyrite and generation of OH˙ and H2O2

(Eqs. 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16)
(Choi et al. 2014a). Thus, the generated OH˙ radicals result in the decomposition of
organic pollutants and dyes. The OH˙radical acts as very powerful oxidizing agent
and attacks the organic pollutants represented by the equations below.

FeS2 þ hv ! e� þ hþ ð3:1Þ

hþ þ H2O ! Hþ þ OH • ð3:2Þ
O2 þ e� ! O� •

2 ð3:3Þ

Fig. 3.1 Schematic representation of dye degradation mechanism of FeS2 material. (Reprinted with
permission from Ref. (Kaur et al. 2016). Copyright 2016 Royal Society of Chemistry)
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2FeS2 þ 7O2 þ 2H2O ! 2Fe2þ þ 4SO2�
4 þ 4Hþ ð3:4Þ

FeS2 þ 14Fe3þ þ 8H2O ! 15Fe2þ þ SO2�
4 þ 16Hþ ð3:5Þ

2Fe2þaq þ 1
2
O2 þ 2Hþ ! 2Fe3þaq þ 2SO2�

4 þ H2O ð3:6Þ

Fe3þ þ e�cb ! Fe2þ ð3:7Þ
Fe2þaq þ O2 ! Fe3þaq þ O� •

2 ð3:8Þ
Fe2þaq þ O2 þ 2Hþ ! Fe3þaq þ H2O2 ð3:9Þ

Fe2þpyrite þ H2O2 ! Fe3þpyrite þ OH� þ OH • ð3:10Þ
Fe2þpyrite þ O2 ! Fe3þpyrite þ O� •

2 ð3:11Þ
Fe2þpyrite þ O� •

2 ! Fe3þpyrite þ H2O2 ð3:12Þ
Fe3þpyrite þ H2O ! Fe2þpyrite þ OH • þ 2Hþ ð3:13Þ

2O� •
2 þ 2Hþ ! O2 þ H2O2 ð3:14Þ

H2O2 þ e�cb ! OH •þ þ OH� ð3:15Þ
H2O2 þ hν ! 2OH • ð3:16Þ

The release of iron species such as Fe2+ and Fe3+ can be occurred due to readily
oxidation of FeS2 (pyrite) under ambient air conditions (Diao et al. 2015). Oxygen
help in generation of reactive oxygen species such as superoxide radicals, hydrogen
peroxide, and hydroxyl radicals via accepting an electron from ferrous ions (Zhang
et al. 2015). The more reactive oxygen species can be produced by inducing the FeS2
pyrite catalyst using the visible light irradiation. The hydroxyl radicals result from
the transformation of products, i.e., hydrogen peroxide (H2O2) and superoxide
radical. The reactive oxygen species OH˙ induced the attack on dye molecule
(Diao et al. 2013, 2015). Consequently, decomposition of dye molecules results in
a series of intermediates with smaller molecular sizes. Lastly, the mineralization of
these intermediates results in formation of carbon dioxide (CO2) and water (H2O).
Thus, degradation of dye was achieved via Fenton-like process, and sequences of
degradation procedure can be described in the above reactions (Eqs. 3.1, 3.2, 3.3,
3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15 and 3.16).

Fe2+ ions were formed by inducing FeS2 pyrite with help of water (H2O) and H+

(Tian et al. 2015). Further, Fe2+ species transformed into Fe3+ ions on the surface of
pyrite. Concludingly, the as-formed Fe3+ species could react with water H2O to form
OH˙ (Eq. 3.13). Thus, dye was degraded by forming OH˙ radical (Eq. 3.17).
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Dyeþ OH • ! degradation ð3:17Þ

Fenton process is an advanced oxidation process which utilizes ferrous ions and
hydrogen peroxide to produce the second most powerful oxidant, i.e., hydroxyl
radical (OH˙) in aqueous solution (Balcioglu et al. 2001; Sharma et al. 2017).

3.3 Photodegradation of Contaminants

Water contamination is noteworthy issue in worldwide context. It has been
recommended that it is the main reason for end of lives and diseases and that it
represents the deaths of more than 14,000 persons every day. Contaminants may
involve organic and inorganic wastes. Some of the hazardous water pollutants are
herbicides or pesticides that involve various organohalide compounds, textile indus-
try waste water, polyaromatic hydrocarbons, heavy metals, medical wastes, etc.
(Fig. 3.2). These pollutants are noxious to aquatic life or environment by affecting
the life span of environment-friendly microorganisms. In perspective of the previ-
ously mentioned issues, consideration has been focused around the improvement of
more efficient, inexpensive, strong techniques for wastewater treatment.

3.3.1 Organohalide Compounds

Organohalide compounds, one of the most common pollutants, are used in industries
as solvents and refrigerant precursors (Jiao et al. 2009), (Choi and Lee 2009). These
contaminants polluted water streams, posing a serious danger to environment due to
their carcinogenic and stable nature. Tetrachloroethylene, trichloroethylene, dichlo-
roethane, and carbon tetrachloride are well-known pollutants of organochlorine

Fig. 3.2 Pie chart shows the release of various contaminants in water globally every year
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solvents. The degradation of organochlorine compounds has been achieved using
Fenton process as it involves the prevailing oxidizing ability and environment-
friendly reagents (Duesterberg and Waite 2006; Li et al. 2005).

The premature end of degradation reaction, due to quick precipitation of iron
hydroxide at neutral pH, is limitation of Fenton process (Pignatello et al. 2006). This
limitation can be overcome by modifying the classical Fenton system with use of
chelating ligands such as chitosan with glutaraldehyde and
ethylenediaminetetraacetic acid to form stable complexes (Kang and Hua 2005),
(Lipczynska-Kochany and Kochany 2008), (Furman et al. 2009). Che et al. (Che and
Lee 2011) investigated that pyrite can particularly degrade organochlorine com-
pounds through oxidative and reductive degradation mechanisms. With contrast to
Fe (III), Fe (II) source played a significant role in removal of carbon tetrachloride.
The high pH was proved to be more competent in reductive degradation, while acidic
pH was required in case of oxidative degradation of organochlorine compounds.
Alachlor (2-chloro-20, 60-diethyl-N-(methoxymethyl) acetanilide), generally used
chloroacetanilide herbicide, was successfully degraded by pyrite/H2O2 system.
The activation of molecular oxygen was brought by ferrous ions present on surface
that enabled enhanced oxidation of alachlor. Therefore, the generation of superoxide
radical was favored in order to quicken the Fe2+/Fe3+ cycle on its surface for alachlor
removal (Liu et al. 2015a).

3.3.2 Pharmaceuticals

Due to noteworthy upsurge in use of pharmaceuticals (ibuprofen, diclofenac,
acetylsalicylic acid, and naproxen), traces are present in environment and waste
water (Ternes 1998; Buser et al. 1999; Heberer 2002). Diclofenac
(2-[2,6-dicholrophenyl) amino]phenylacetic acid) is one of the most common used
pharmaceuticals (Buser et al. 1999). Only a very less amount of pharmaceutical are
removed and hence polluted the groundwater through sewage treatment plants
(Suarez et al. 2008). Bae and Kim (2013) demonstrated the complete removal of
diclofenac with pyrite catalyzed Fenton reaction in just 120 s without further
generation of toxic secondary products. The appropriate pH conditions as well as
aqueous Fe (II) were responsible for 100% removal of diclofenac. The HO• radical
helps to degrade the aromatic intermediates such as 2-chloroaniline, 2-chlorophenol,
and 2,6-dichlorophenol and finally mineralized to HCl and CO2.

Ciprofloxacin (CIP), an antibiotic drug, was degraded up to 100% using 1.25 g/L
FeS2/SiO2 catalyst loading in 60-min irradiation under UV light at 3-pH value and
0.10 mM ciprofloxacin concentration (Fig. 3.3). As the H2O2 concentration was
increased from 3 mM to 60 mM, 100% of ciprofloxacin (0.15 mM) was removed in
just 30 min with a less amount of catalyst loading (1.0 g/L). FeS2/SiO2 microspheres
could facilitate the persistent release of ferrous ion, resulting in the reaction of
ferrous ion and H2O2 (Diao et al. 2017).
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3.3.3 Dyes

Dyes are major pollutant from industries such as textile, leather, etc. AHPS
(4-Amino-3-hydroxy-2-p-tolylazo-naphthalene-1-sulfonic acid; C17H15O4N3S) azo
dye was removed up to 90% using electro-pyrite Fenton system. The rapid regen-
eration of ferrous ion facilitated the fast removal of AHPS synthetic dye (Labiadh
et al. 2015). Anthraquinone dye reactive blue 69 (RB69) was degraded with hetero-
geneous sono-Fenton method using pyrite nanorods. The appropriate conditions for
removal of RB69 were found to be ~ 5 pH, H2O2 concentration (1 mM), plasma-
modified pyrite concentration (0.6 g/L), dye concentration (20 mg/L), and ultrasonic
power (300 W) in 40 min (Khataee et al. 2016).

Liu et al. investigated photocatalytic activity of FeS2 on some organic dyes such
as methylene blue (MB), safranine T, methyl orange (MO), rhodamine B (Rh B), and
pyronine B. The adsorption ability had resulted in provoking as well as hindering
effects on photocatalytic degradation efficiency. The energy band of semiconductor
and oxidation reduction potential of adsorbate also could affect the photocatalytic
degradation rate of catalyst. This would be reason behind the lower degradation rates
of different dyes (methyl orange, rhodamine B, and pyronine B), while their
adsorption rates were better for photocatalysis. 1 g/L FeS2 catalyst was dispersed
in different dye solutions (each dye having same concentration of 1 � 10�5 mol/L)
and irradiated under 40 W UV light for given time duration (Liu et al. 2013). A
noticeable photocatalytic activity on decomposition of Rose Bengal dye under
100 W tungsten lamp was demonstrated for FeS2 film. FeS2 film deposited using
single source precursor displayed high degradation rate (84%) in 300 min exposure

Fig. 3.3 Degradation of CIP by various systems. Reaction conditions: [CIP]0 ¼ 0.10 mM,
[H2O2]0 ¼ 3 mM, [catalyst]0 ¼ 1.25 g/L, pH ¼ 3.0. (Reprinted with permission from Ref.(Diao
et al. 2017). Copyright 2017 Elsevier)
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of light (Bhar et al. 2013). Kirkeminde et al. prepared pyrite nanocrystals to control
shape and morphology through thermodynamic parameters such as reaction temper-
ature and chemical precursors. The metal-terminated facet (100) is less sensitive to
photodegradation and photooxidation in water than (111) plane. As the pyrite plates
did not show any oxidation process and their reactive nature which favored its use in
photocatalytic cells while (111) nanospheres and even the (100) cubes proved to be
beneficial for photovoltaics because of sulfur defects (Kirkeminde and Ren 2013).

Starch/AlOOH/FeS2 mesoporous nanocomposite has been considered as pro-
spective adsorbent for efficient removal of Congo red dye. The adsorption data
was fitted well to pseudo first-order reaction. The solution pH, contact time, con-
centration, and temperature affected the adsorption process, i.e., spontaneous and
endothermic in nature (Kumar et al. 2014). Cobalt-doped FeS2 could degrade
methylene blue as cobalt doping affected the lattice constants and might result in
defects in FeS2. The particle size decreased, and surface area increased when FeS2
doped with cobalt, therefore leading to enhance the photocatalytic activity (Long
et al. 2015).

The nanorod arrays (Fig. 3.4) showed enhanced photocatalytic activity, and
almost 95% of methylene blue was degraded within 60-min illumination under
UV light source 10 W LED lamp. The degradation reaction followed pseudo first-
order kinetic with high correlation coefficient (R2 > 0.99). The photogenerated
electrons and holes contributed in oxidation–reduction reactions, which result in
reactive hydroxyl radical (OH•), could efficiently decompose all organic dyes into
simple products (Morales-Gallardo et al. 2016). Preferentially grown iron pyrite
(111) with different catalyst dose showed high photocatalytic activity toward meth-
ylene blue and a textile dye Synazol yellow K-HL. The degradation mechanism was
based on Fenton-like process to generate reactive oxygen species. FeS2 catalyst
(1gL�1) degraded the methylene blue dye with efficacy of 95.90% (Fig. 3.5) and
synazol yellow with efficacy of 99.29% in just 120 min under visible light irradiation
(Kaur et al. 2016). FeS2 is found to be preferential grown along (111) plane with
least packing density and present more active sites in comparison to other planes. As
the number of grains of preferred orientations in a specific plane is more as compared
to other planes, it leads to high surface area of FeS2 with large number of active sites,
resulting in increased production of OH˙ radicals and therefore increased

Fig. 3.4 SEM images of
FeS2 nanoparticles.
(Reprinted with permission
from Ref. (Morales-
Gallardo et al. 2016).
Copyright 2016 Elsevier)
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degradation of dyes during photo catalysis (Kaur et al. 2016). Thus, preferential
growth plays a significant contribution toward the enhanced photocatalytic behavior.

Iron disulfide nanostructures successfully degraded methyl orange (93.09% in
120 min) as well as textile industry used dye Novacron yellow (98.15% in 80 min) in
very less period of time (Kaur et al. 2017b). The degradation of very fast color textile
NRH dye (1 mg/L) with Au@FeS2 (1 g/L) loading catalyst was observed to be
approximately 96.02% under visible light irradiation in just 60 min as compared to
pure FeS2 (95.63% in 120 min). Au@FeS2 (1.00 g/L) was found to remove NRH dye
(1 mg/L) in very less period of time as compared to FeS2. The dye degradation
process followed first-order kinetics. It was indicated from recyclability experiment
Au@FeS2 was found to be extremely active and suitable recyclable photocatalyst.

The functionalization of iron pyrite with gold showed excellent photocatalyst
for degradation of a fast color textile dye Novacron red due to its synergistic
effect. As due to large surface area and surface plasmon resonance, gold could act
as receptor of electrons. The modification of FeS2 with gold helps to create
separation centers for electron/hole pairs as well as active sites (Fig. 3.6). The
electrochemical performance also sustained the boosted photocatalytic activity
(Fig. 3.7) (Kaur et al. 2017a). Au helps to trap electrons which leads to preven-
tion of electrons and holes recombination. Along with Au, concentrated iron
species scavenge the reactive oxygen species which lead to reduction in amount
of hydroxyl radical and cause the degradation efficiency to decrease. It also
suggests that Au can enhance the photocatalytic activity of FeS2. Fusion of Au
into a photocatalyst conveys extreme boost in photocatalytic activity due to its

Fig. 3.5 Photocatalytic degradation efficiency of different concentrations of FeS2 catalyst loading
to methylene blue (1 mg/L) dye solution. (Reprinted with permission from Ref. (Kaur et al. 2016).
Copyright 2016 Royal Society of Chemistry)
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localized SPR effect, proficient photogenerated charge separation, and reduced
electron–hole pair diffusion length (Kaur et al. 2017a).

Fan et al. (2017) degraded organic dyes MB, MO, and Rh B and factory waste
water through direct electrolysis on anode using graphene supported Fe1-xCoxS2

Fig. 3.6 Schematic representation of proposed mechanism of Au@FeS2. (Reprinted with permis-
sion from Ref. (Kaur et al. 2017a). Copyright 2017 Royal Society of Chemistry)

Fig. 3.7 Degradation efficiency comparison of different concentrations of Au@FeS2 catalyst for
Novacron red huntsman dye (1 mg/L). (Reprinted with permission from Ref. (Kaur et al. 2017a).
Copyright 2017 Royal Society of Chemistry)
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system. The acidic ions could act as cathodic resource to produce H2, while organic
dyes act as anodic loss to balance the reaction that provide a dual benefit to energy
and environment demand. The incorporation of reduced graphene oxide as the
promoter of electron transfer was done in order to enhance the conductivity of
cobalt-doped FeS2. A number of reports about the use of iron disulfide pyrite in
photocatalysis are summarized in Table 3.1. FeS2/TiO2 nanocomposite was proved
as efficient photocatalyst, as it makes available effective separation of electron and
holes to prevent recombination of charge carriers (Rashid et al. 2018). FeS2 pos-
sessed the highest catalytic activity for indigo carmine dye degradation (88%)

Table 3.1 FeS2 nanostructures for removal of dye pollutants by photocatalysis method

Pollutant Material used Removal efficiency (%) References

Rose Bengal dye FeS2 average pore
diameter 40.33 Å and
fairly high surface area
of 49.53 m2/g

80% degradation achieved in
300 min under 100 W clear
glass tungsten lamp

Bhar et al.
(2013)

Methyl orange dye FeS2 with (100) plane 50% in 80 min under Xenon
light source

Kirkeminde
and Ren
(2013)

Methylene blue,
safranine T, methyl
orange, rhodamine B,
and pyronine B

FeS2 99.2% of MB degraded in
24 h irradiated under 40 W
UV light

Liu et al.
(2013)

Malachite green
(MG), Cr(VI)

FeS2 75% MG at low pH values
(acidic conditions) in
120 min under UV light irra-
diation, 96.7% MG degraded
in the presence of 10 mg/L of
Cr(VI).

Sun and
Cheng
(2015)

Methylene blue Cobalt-doped FeS2
(Co0.333Fe0.666S2)

48.9% in 210 min Long et al.
(2015)

Methylene blue,
Synazol Yellow

FeS2 of different cata-
lyst dose

95.90%, 99.29%, respec-
tively, in 120 min under visi-
ble light

Kaur et al.
(2016)

Methylene blue FeS2 with nanorods
morphology

95% in 60 min irradiation in
10 W LED lamp

Morales-
Gallardo
et al. (2016)

Methyl orange,
Novacron yellow

FeS2 of different cata-
lyst dose

methyl orange (93.09% in
120 min), Novacron yellow
(98.15% in 80 min) under
visible light

Kaur et al.
(2017b)

Novacron red Au@FeS2 96.02% in just 60 min under
visible light

Kaur et al.
(2017a)

Methylene blue FeS2/TiO2 100% degradation in 150 min
under sunlight

Rashid et al.
(2018)

Methylene blue,
methyl orange, and
rhodamine B

Fe2GeS4 99.4%MB in 10 min (0.3 g/L
Fe2GeS4, H2O2 of 50 mmol/L
and pH of 7)

Shi et al.
(2018)
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among CuS and NiS2 (Huerta-Flores et al. 2018). Ternary sulfur iron compound
such as Fe2GeS4 nanoparticles could excellently degrade different organic dyes such
as MB, MO, and Rh B on the basis of heterogeneous Fenton system (Shi et al. 2018).

These reported works undoubtedly reveal that pyrite has a potential application in
remediation of environment polluted by organic and industrial dyes.

3.3.4 Heavy Metals

Heavy metals are well-known pollutants with high toxicity. Diao et al. (2013)
demonstrated the simultaneous removal of malachite green (MG) dye as well as
heavy metal Cr (VI) under UV light irradiation. While studying the role of dissolved
oxygen supply in photocatalytic system, it was observed that presence of dissolved
oxygen could increase the degradation ratio from 29.5% to 96.2%. The presence of
oxygen proved as a favorable condition for generation of reactive species results in
improved degradation rate. The photo Fenton-like process results in generation of
reactive oxygen species, which helps in simultaneous degradation of MG and
conversion of Cr (VI) to Cr (III). The reaction pathway followed by pyrite for
degradation of heavy metal as well as dye is shown in Fig. 3.8.

The arsenic (arsenite As (III) and arsenate As (V)) from water was removed
successfully using pyrite. The As (V) was more rapidly removed as compared to As
(III) and explained on basis of Langmuir adsorption model. As pH increased in the
range 7–10, arsenite removal process was found to be also increased. The effect of
contact time and pH value on sorption and desorption of arsenic were studied in
detailed manner in an anaerobic chamber (95%N2/5%H2) for removal of As (V) and

Fig. 3.8 Reaction pathway of MG degradation and Cr(VI) reduction in pyrite-based photocatalytic
systems. (Reprinted with permission from Ref (Diao et al. 2015). Copyright 2015 Elsevier)

66 G. Kaur et al.



As (III) at specified time intervals. Sorption experiment for As (III) reveals that
removal was increased with pH and exhibited moderate irreversibility as pH was
titrated backward. For As (V) removal, removals increased as pH decreases, and
moderate to high levels of irreversibility were found as pH elevated to its initial
values. The arsenic could easily be removed from water with pyrite as arsenic was
found to be strongly bonded with pyrite that led to formation of strong inner-sphere
complexes (Dong Suk Han et al. 2013).

3.3.5 Other Organic Compounds

Phenolic compounds are major outcome of olive oil mills and consume dissolved
oxygen level in aquatic bodies. Other organic compounds such as pectins, poly-
phenols, and polyalcohols also pollute the environment due to their organic nature as
well as toxicity (Justino et al. 2012). Polycyclic aromatic hydrocarbons and aromatic
contaminants are mutagenic and persistent nature. Pyrene and cetylpyridinium
chloride (CPC) were removed effectively using pyrite Fenton system (Choi et al.
2014b). Pyrite could degrade 80% of nitrobenzene in 5 h on the basis of Fenton
system. The continued formation of •OH creates hindrance for quenching reaction in
pyrite system. The acidic pH environment was a suitable condition for pyrite Fenton
system (Zhang et al. 2014). Tyrosol (4-hydroxyphenylethanol) is one of these
phenolic compounds released from olive oil mills waste water. Its toxic nature
toward aquatic life poses a danger to the environment. Ammara et al. (2015) reported
the effective degradation of tyrosol using pyrite Fenton catalyst due to self-
management of iron concentration. There is no requirement of acidic conditions in
this system relative to classic Fenton system and therefore proved to be a cleaner
method. The effect of current on mineralization was also investigated as the upsurge
in current led to rapid decline in mineralization current efficiency. Tyrosol of
0.30 mM was mineralized up to 76% in 6 h at 50 mA. The degradation kinetics
for removal of tyrosol followed first-order reaction with rate constant value
3.57�109 M�1 s�1. The aromatic products as well as carboxylic acids (generated
while oxidation of tyrosol) were removed completely. The photodegradation of
terephthalic acid using electrochemically prepared FeS2 films was accomplished
up to 95% removal in 170 min (Jana et al. 2015). 4-chlorophenol was effectively
degraded using FeS2@GO. One hundred percent of 4-clorophenol was degraded in
60 min with 0.8 g/L FeS2@GO in acidic to alkaline conditions (pH ~ 7.0) (Liu et al.
2015b). Bisphenol-A could be degraded efficiently using FeS2@SiO2 under UV
radiation with persulfate system. SO� •

4 , a predominant reactive oxygen species,
played a significant role in degradation of bisphenol-A (Diao et al. 2018).
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3.4 Conclusion and Outlook

Thorough and considerable studies on pyrite in photocatalysis in recent years have
shown their significance to water treatment methods and their limitations. The
literature survey shows that the higher recombination rate between photogenerated
holes and electrons is the major limitation for photocatalytic efficiency. The
enhancement in photocatalytic activity of FeS2 is significant subject of interest in
the field of photocatalysis. Modification with photocatalytic active material is driven
its endeavor or effort to achieve the increase in photocatalytic efficiency due to its
synergistic effect. Besides, pyrite displayed a high capacity of photocatalytic oxida-
tion and reduction due to great synergistic impact of simultaneous degradation of
organic contaminants. These findings revealed that pyrite has a potential application
in environmental remediation which could lead to new way for developing an
efficient photocatalytic material.
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Abstract With the unprecedented progresses of nanotechnology, metallic
nanoparticles (MNPs) synthesized by green approaches have received global atten-
tion due to their low toxicity for the mankind. The advent in nanomaterial studies
and their applications provoked issue of their toxicity and biocompatibility with
respect to ecosystem and human health. This chapter provides glimpse to green
synthesis and functionalization of nanoparticles used for the environmental
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remediation as well as highlights the “state of the art” in exploring various environ-
ment-friendly synthesis approaches. However, the field of nanoscience has
blossomed over the last two decades to unfold to unleash its power on our day-to-
day lives of various nanotechnological production processes. Also new strategies
have been applied for synthesis and industrial preparation. In particular, this chapter
discusses green nanotechnology-based production of biocompatible Ag and Au
nanoparticles and their biomedical applications and also enlightens the platform
for innovative antibacterial efficacy and its cytotoxicity.

Keywords Nanotechnology · Metallic nanoparticles · Green synthesis ·
Antibacterial · Biocompatible · Cytotoxicity

4.1 Introduction

The amalgamation of science, engineering, and technology at nanoscale level gave
birth to the field of nanotechnology. The term nano is obtained from the Greek word
“nanos” which implies small and refers to particles above subatomic measurements
nearly 1 billionth of a meter. It’s a science which involves the study of extremely
small things and further engineering them to have potential utility in various other
scientific fields (Mazhar et al. 2017). Nanotechnology has been a developing area
since a decade or two and finding extensive applications due to its enhanced
properties of being lightweight as well as showing a greater chemical reactivity
than their larger-scale counterparts (Naushad et al. 2017). Chemical synthesis of
nanoparticles makes them toxic and renders them unsuitable for applications in
medical fields (Prabu 2015). When nanoparticles are manufactured by synthetic
routes using organic solvents and in harsh chemical conditions, it leads to accumu-
lation of toxic residues which subsequently pose a threat to the environment (Molnár
et al. 2018). To resolve the issues associated with chemical synthesis routes, green
methods of synthesis came into role. Green nanobiotechnology refers to an eco-
friendly route of synthesis of nanomaterials utilizing plants, microorganisms, and
even their by-products like lipids and proteins (Patra and Baek 2014). The diagram
below lists out the different methods of nanoparticles synthesis Fig. 4.1.

At present, due to the nontoxic effects, nonexpensive, and eco-friendly nature,
researchers are more interested in introducing new approaches in the field of biology.

4.2 Scopes for Green Synthesis of Metal Nanoparticles

Various routes of biosynthesized green nanoparticles include algae, microbes (dia-
toms), plants, some biocompatible agents, and heterotrophic human cell lines which
are known as green nanofactories and especially exploited for the production of
inorganic nanoparticles (Narayanan and Sakthivel 2011; Prabu 2015; Shirsat et al.
2016). Thus the approach for biosynthesized nanoparticles follows the principles of

74 P. Paul et al.



green chemistry. However, plants and plant resources are advantageous as sources of
nanomaterials synthesis over prokaryotic microbes which further need downstream
processing (Narayanan and Sakthivel 2011).

The principles of green chemistry have proved to be a promising alternate to
produce biocompatible and steady nanoparticles having the added advantages of
being nontoxic and environment-friendly (Parveen et al. 2016). With the advance-
ment of green methods of nanoparticles synthesis, the scope of developments in
other scientific fields like medicine has also increased multifold (Patra and Baek
2014). This chapter focusses on the strong cross-link between nanotechnology and
its significant contribution to therapeutics especially in treating bacterial infections.

Recent years have shown immense increase in the production of gold
nanoparticles, and their applications in biomedical spheres have also increased
(Keighron and Keating 2010). Biogenic method of synthesis of silver and gold
nanoparticles is seeking more attention owing to their intense antibacterial action
as well as for their property of getting reduced to salts easily (Wang and Hu 2017).
Biogenic Ag and Au nanoparticles act as good conduction centers and thereby
facilitate transfer of electrons. The colloidal route of synthesis of silver and gold is
predicted to create ion channels in between the prosthetic groups and to help the
protein to acquire a favorable orientation.

The applications of nanoparticles in the area of medical science are known to be
expanding due to their high stability both chemically and biologically and can be
administered through almost all routes unlike other drugs which have certain
limitations (Bao 2004). Introduction of nanoparticles into the cell generates a lot
of structural modifications which often can lead to non-specific interactions between

Fig. 4.1 Different routes for synthesis of nanoparticles
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the shell of the nanoparticles and proteins circulating in the bloodstream. Therefore
an ideal nanoparticle used for therapeutics should be nontoxic, stable, non-immu-
nogenic, biocompatible, noninflammatory, and biodegradable to ensure its potency
and efficacy (Farkhani et al. 2014).

4.3 Biological Effect of Metal Nanoparticles

Following Table 4.1 listed below shows biosynthesis of nanoparticles from different
bacteria. The extensive use of metallic oxide nanoparticles has shown remarkable
applications in various areas such as antibacterial, antifungal, drug delivery, tissue
engineering, wound healing, etc. (Martin-Ortigosa et al. 2014). In view of concern
related to biocompatibility, green synthesized nanoparticles have been used
(Vadlapudi et al. 2014). As far as beneficial effects are concerned, green synthesized
metal nanoparticles have been studied for their antibacterial activities against path-
ogenic as well as nonpathogenic strains. The approach of green synthesis has been
taken in prior to enhance the antibacterial activity of a metal nanoparticles like
AgNPs, AuNPs, etc. However, their toxic effects can be ignored upon high usage
and accumulation. Moreover, the toxic effect advances toward the environmental
aspects and spread to other biotic factors of the ecosystem.

Table 4.1 Biosynthesis of nanoparticles from bacteria

Bacterial strains Metal nanoparticles Size References

Pseudomonas stutzeri AgNPs 100–200 nm 11

Lactobacillus sp. AgNPs 15–30 nm 12

Morganella sp. AgNPs 20–21 nm 13

Bacillus subtilis AgNPs 5–50 nm 14

Bacillus indicus AgNPs 2.5–13.3 nm 15

Pseudomonas antarctica AgNPs 3–33 nm 15

Pseudomonas fluorescens AgNPs 80–85 nm 16

Salmonella typhimurium AgNPs 85–110 nm 17

Bacillus thuringiensis AgNPs 20–30 nm 18

S. aureus AgNPs 30–40 nm 18

S. typhimurium AgNPs 40–50 nm 18

Bacillus subtilis AuNPs 5–25 nm 19

Lactobacillus sp. AuNPs 20–50 nm 20

Pseudomonas aeruginosa AuNPs 15–30 nm 21

Escherichia coli AuNPs 20–25 nm 22

Klebsiella pneumoniae AuNPs 35–65 nm 23

Salmonella Typhimurium AuNPs 20–40 nm 17
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4.3.1 Antibacterial Effects of Green Synthesized Metal
Nanoparticles (AgNPs and AuNPs)

Recently, successful biosynthesis of silver and gold nanoparticles was carried out by
researchers via green route of methodology varying with morphology and desired
size through natural reducing, capping, and stabilizing agents. These biosynthesized
processes are widely favored due to their nontoxic, low-cost, naturally derived, eco-
elegant features (Feng et al. 2000; Taylor et al. 2010) Fig. 4.2. The extracts such as
amino acids, polysaccharides, enzymes/proteins, and vitamins from various organ-
isms are found to be bioreduce with metallic ions in combinations with several
biomolecules which are environmentally sustainable. However, several research
groups reported green synthesis of Ag and Au metallic nanoparticles using bacteria,
biological routes, and extraction of plant products. The biosynthesis of Au and Ag
metallic nanoparticles is properly channelized through the organic compounds
present in plant extracts for lower concentration of nanoparticles. The underlying
molecular mechanism that permits inhibitory properties of biosynthesized Au and
Ag nanoparticles cause reduction of ionic form of gold to its atomic state and ionic
form of silver to its atomic state. This bioreduction occurs by absence of hydrogen
due to OH groups present in the polyphenol molecules. The biosynthesis of such
silver and gold nanoparticles can be achieved through different routes.

Successful synthesis of biogenic silver nanoparticles (AgNPs) was carried out by
a group of researchers in an eco-friendly manner. For example, the root extract of
plant named Zingiber officinale were used in presence of metallic ion. The change in
change indicated the formation of biosynthesized silver nanoparticles (AgNPs)

Fig. 4.2 Process outline for the synthesis of AgNPs and AuNPs along with its characterization
techniques and antimicrobial activity
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(Velmurugan et al. 2014). Another method of synthesis of AgNPs was done out by
Ahmed group using plant extracts of Azadirachta indica (Ahmed et al. 2015). This
plant extract functions as capping as well as reducing agent. For this method, leaves
of plant extract were first cleaned by distilled water and air dried at room tempera-
ture. The leaves were boiled later in distilled water for 30 min, and the extract was
stored in the refrigerator before use. This group also proposed a new, basic, one-step,
easier, and quicker method for synthesizing of biogenic AgNPs by using plant
extracts of Crotalaria retusa as well as Terminalia arjuna as reducing and stabiliz-
ing agents (Ahmed and Ikram 2015; Ahmed et al. 2016b). The biogenic silver
nanoparticles (AgNPs) exhibited greater catalytic activity as well as excellent
antibacterial premises against both Gram-negative and Gram-positive
microorganisms.

Biosynthesis of gold nanoparticles (AuNPs) was also carried out by using
environment-friendly material such as the plant extracts. For example, the plant
extract of Sphaeranthus indicus was first washed, then transferred into conical of
purified boiling water, and kept for 10 min. The plant extract was then filtered for
further process. To it 1 mM of HAuCl4 solution along with S. indicus plant extract
was added and mixed well for 30 min; the change in color from light yellow to wine
red indicated synthesis of Au NPs (pH 5.4) (Balalakshmi et al. 2017). Another set of
synthesis of AuNPs were performed by different research group where they col-
lected leaf, bark, stem, root, etc. These plant parts were properly cleaned with water,
cut into small parts, and then allowed to boil in distilled water to obtain extract.
Further, the purified extract is mixed with the metallic HAuCl4 salt solution at room
temperature to obtain Au NPs in a one-pot reaction (Ahmed et al. 2016a).

4.3.2 Cytotoxicity of Green Synthesized Metal Nanoparticles
(AgNPs and AuNPs)

Cytotoxicity of a nanoparticle is defined as the alteration in cellular morphology
leading to toxic effect of nanoparticle. Cytotoxicity has been considered as an
important modality for proposing any nanomaterial for clinical applications. Now-
adays both in vitro and in vivo biological models are being used to evaluate the
cytotoxicity effect of engineered nanoparticles. In vitro evaluation has been
described as the determination of cytotoxicity or in negative termed called as
biocompatibility using mammalian cell lines as model, while in vivo evaluation
describes the cytotoxicity determination in live models like mouse, rat, and
zebrafish. Metallic nanoparticles such as silver and gold have been reported to
exhibit cytotoxicity apart from their antibacterial efficacy. A number of studies
have reported the cytotoxic effects of Ag NPs on neuronal cell, rat liver (Hussain
2005; Hussain et al. 2006), murine stem cells (Braydich-Stolle et al. 2005), and
human lung epithelial cell (Lam et al. 2004; Asharani et al. 2009). The basic
mechanism of AgNP toxicity has been understood since long time, yet detail
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explanation is still lacking. Ag NPs that get internalized inside cell through perme-
ation of cell membrane create greater level of intracellular Ag+, leading toward
genotoxic and cytotoxic effects carried out through the interruption of cell transport
(Choi and Hu 2008). Smaller AgNP penetrates cell walls and membranes, while
larger AgNP gets internalized through endosomal pathway (Xia et al. 2006).
Through these basic mechanisms, the whole processes have been defined by many
researchers. The mechanisms have been described in terms of three major cellular
phenomena happening during their exposure: (1) generation of reactive oxygen
species (ROS), (2) DNA damage, and (3) modulation of immunological factors
like cytokine production. Uptake of AgNP can induce the generation of ROS at
higher level which results toward oxidative stress and genotoxic effects. Induction of
ROS proceeds toward disruption of flux of ions and electrons across the mitochon-
drial membrane leading to either apoptosis or necrosis (Asharani et al. 2009; Arora et
al. 2008). The ROS induction, however, varies according to the physiochemical
properties of the AgNPs Fig. 4.3.

As far as genotoxicity induced by AgNP is concerned, the toxic effects are
induced by DNA damage as shown in case of human lung fibroblast, IMR90, and
human glioblastoma cells, U251, by increasing ROS production or by diminishing
energy production due to depleted ATP generation (Hsin et al. 2008). Apart from
this, the mechanism of AgNP cytotoxicity has also been reported due to change in
immunological responses. AgNP has been reported to elicit both stimulatory and
suppressive effects on the production of cytokines associated with the inflammatory
response and is found to be dependent on physiological parameters like size, dose,
and cell types. Studies showed enhanced production of proinflammatory response
mediators (TNF-α, MIP-2, and IL-1β) and an increase in IL-1β, IL-6, IL-8, and
TNF-α in human epidermal cells (Carlson et al. 2008; Greulich et al. 2009).

Fig. 4.3 Antibacterial mechanism of metal nanoparticles
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Though the in vitro studies have provided detail information, in vivo studies have
verified the toxicity of AgNP with regard to their exposure and organism basis. At
gene level, the genes responsible for apoptosis and inflammation pathways have also
been found to be in elicited regulation on AgNP exposure [24]. The toxicity of AgNP
has also been reported in embryonic zebrafish model. Moreover, changes in mor-
phology like abnormal organ formation, pericardial edema, and slow development
have also been reported (Verma et al. 2017a, b). In brief, the mechanism of toxicity
of AgNP has been defined with respect of both in vitro and in vivo model; however,
the detailed understanding has come mostly from in vitro studies. In vivo studies
have enlightened the detail but need to be excavated in more intensive and molecular
way.

Similar to AgNP, the cytotoxic effects of AuNP have also been the matter of
discussion with regard to their extensive studies. The toxicity of AuNPs has been
discussed in frame of both in vitro and in vivo studies. Knowledge about toxicity in
in vitro models have been done on a large scale on each and every types of cell lines.
A group of researchers showed the in vitro biocompatibility of AuNPs obtained from
tea flavonoids in PC-3 prostate cancer cells and MCF-7 breast cancer cells that
marked up increase level of gold concentrations (Nune et al. 2009). Another group of
researchers showed use of soybean phytochemical mediated AuNP biocompatibility
toward fibroblast cell lines. For clinical purpose of AuNPs, it is necessary to unravel
the mechanism of in vivo toxicity and biodistribution. Furthermore, this group also
showed that mice injected with AuNPs synthesized from plant extract of Lantana
montevidensis (LM) did not reveal in vivo toxicity as compared with untreated mice
(Nune et al. 2009). Both serum histopathological evaluation and biochemical
parameters were normal and without any symptoms of toxicity. All these in vivo
results thus generated infer that AuNPs were nontoxic in animal models and can be
recommended for biomedical applications. A group of researchers showed cinna-
mon phytochemical-derived AuNP biocompatibility toward animal models. They
also demonstrated the in vivo biocompatibility of AuNPs after intraperitoneal
injection (i.p.) in male Wistar rats (Ahmed et al. 2016a) where the major accumu-
lation of these nanoparticles was observed in liver and spleen followed by kidneys
and lungs. So far all the published articles gave evidence that AuNPs may serve as
promising and secure to increase level of in vivo concentrations and potential in the
field of pharmaceuticals and biomedical applications.

4.3.3 Biomedical Application of AgNP and AuNP

In the field of biology, metallic nanoparticles (MNPs) have drawn several promising
applications owing to their catalytic properties, biocompatibility, optical nature,
conductivity, surface volume, and density (Li and Li 2014; Boote et al. 2014). As
compared to route of colloidal metallic nanoparticles (MNPs), biosynthesized NPs
are superior to colloidal stability and their proficiency to conjugate with organic
molecules. Metallic nanoparticles (MNPs) have been used in various applications
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such as drug delivery, enzyme immobilization, gene delivery, chemotherapy, and
antimicrobial activity (Fig. 4.4).

Drug Delivery

This method includes targeted drug delivery and traditional mechanisms. Targeted
drug delivery are preferred more than traditional drug delivery mechanisms since the
drugs are chosen at a distinct affected area and doses are administrated locally
without any undesirable effects. Several groups of work have been carried forward
by scientists following these traditional drug delivery mechanisms (Li and Li 2014;
Anandhakumar et al. 2012). The importance of metallic nanoparticles (MNPs) for
efficient drug delivery mechanisms implies because of their distinct biophysical and
biochemical properties with strong binding attraction for carboxylic acid aptamers,
proteins, thiols, and disulfides. Therefore, they have been recommended for antican-
cer therapy. The toxicity of MNP depends on the surface coating, route of synthesis,
size, shape, charge, and functionalized molecules, but its cytotoxicity relies at a
minimal acceptable level of nanoparticles. The flexibility of MNPs involves their
monolayers to provide an efficient system (Ajnai et al. 2014).

Enzyme Immobilization

The process of enzyme immobilization has been applied on solvent media for
intensifying enzyme activity and stability (Iyer and Ananthanarayan 2008). In the
field of biotechnology, the immobilization of enzyme seeks attention for their
minimal expenses in industrial-based operational stability and ease of separation of
products for long period (Mateo et al. 2007). Enormous scale of immobilization
techniques can be used for covalent and adsorption on solid supports (Alonso et al.
2005). This method can be achieved by selecting matrix support and designing the

Fig. 4.4 Biomedical applications of AgNPs and AuNPs
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carrier. To be utilized as host matrices, MNPs such as gold and silver are used due to
their surface stability and good electronic properties. Both these MNPs serve as good
conduction centers to facilitate transfer of electrons (Chi et al. 2008). The enzyme
immobilization of biogenic nanoparticle depends on solid supports either as isolated
cells or whole cell enzymes, such as lysozyme (Vertegel et al. 2004), aminopepti-
dase, as well as alcohol dehydrogenase (Keighron and Keating 2010) and glucose
oxidase (Li and Xu 2014).

Gene Delivery

The mechanism of gene delivery technique implies on gene of interest to specify its
encoded protein into an appropriate host cell (Li and Xu 2014). Several types of gene
delivery techniques are transfection, electroporation, and use of vectors such as
retroviruses and adenoviruses (Farkhani et al. 2014). The gene delivery machinery
in viral vectors occurs by introduction of nucleic acid sequences into the desired host
genome of interest excluding any side effects. Therefore, these methods are secure in
biomedical applications based on improvements in their efficiency (Martin-Ortigosa
et al. 2014). In basic science, several nanoparticles have been applied, particularly to
in vitro cells for stimulating the transfection efficiency. As a consequence, composite
nanoparticles and nucleic acid are first supplied into in vitro cell medium and toward
the surface of the cell followed by the magnetic force. Conditions due to the presence
of higher toxicity of these nanoparticle biomedical applications are limited toward in
vivo and in vitro conditions (Syu et al. 2014). Therefore, nanoparticles are encrusted
with molecules, such as proteins and carbohydrates, synthetic organic polyethylene
glycol, polyvinyl alcohol, poly-L-lactic acid, and silica to minimize toxic effect (Bao
2004). The process of developing new nonviral methods facilitates rate of transfec-
tion efficiency. At present, biosynthesized NPs hold an alternative approach for gene
transfection (Seisenbaeva et al. 2017; Cai et al. 2008).

Chemotherapy

Chemotherapy is drug therapy for anticancer treatment of varied types. The main
obstacles in cancer treatment are its toxic effect on healthy proliferating cells
acquired by multidrug resistance (Gottesman et al. 2002). Therefore it is required
for appropriate concentrations of anticancer drugs to be administered for reducing
the toxic side effects (Maeda 2001). In these days, nanotechnology field has
achieved the only alternative approach to overcome such problems by the applica-
tion of nanotherapeutics, particularly for delivering drug to gene, siRNA, and
antitumor therapy, biosensing, and bioimaging. Apart from MNPs, AuNPs also
play an important role in drug delivery applications because of their size, shapes,
surface-dependent properties, and minimal cytotoxic effects (Ghosh et al. 2008; Han
et al. 2007). Therefore, nanoparticles can be recommended for efficient therapy
toward drug delivery of targeted cancer cells.
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Antimicrobial Activities

Due to the presence of high antimicrobial properties, metallic nanoparticles (MNPs)
are used against various microorganisms. At present in the field of medical and
pharmaceutical industries, inert nanomaterials serve as antimicrobial drugs. Com-
pared to several metallic nanoparticles (MNPs), AgNPs showed effective bacteri-
cidal activity toward Gram-ve and Gram+ve bacteria including those antimicrobial-
resistant strains (Li and Li 2014). AgNPs and its corresponding ions have drawn
attention owing to their antibacterial nature either bacteriocidal or bacteriostatic and
are also considered “oligo dynamic.” Based on observation ionic form of Ag (silver)
inactivates the interaction with thiol groups of essential proteins/enzymes. It is
therefore known that ionic form of silver interaction with bacteria permits depolar-
ization in the cell membrane, thereby inhibiting DNA replication machinery
(Elechiguerra et al. 2005).

4.4 Conclusion and Future Outlook

This chapter primely focusses on eco-friendly biosynthesis of silver and gold
nanoparticles as an alternative approach with relevant biomedical implications.
These biogenic NPs have been used in the photocatalytic degradation of dyes.
Therefore, metal/metal oxide hybrid nanocomposites might be use as a photocatalyst
with enhanced antimicrobial activity. These nanoparticles have explored the therapy
of nanomedicine which can be perceived from advancements of several AgNP- and
AuNP-based nanomedicines. Green synthesized nanoparticles have been proved as
beneficial in respect of high antibacterial efficacy with a biocompatibility at same
platform. Furthermore, for the stability of in vitro and in vivo biodistribution, both
AgNPs and AuNPs were used. This chapter highlights a novel opportunity with
scope in advancement of designing convenient techniques to fabricate silver and
gold nanoparticles with appropriate features to ensemble antibacterial activities,
anticancer treatment, and therapeutic applications. Therefore, the potent role of
these NPs should deliberate as cost worthy for therapeutic applications in the field
of bioscience and biomedicine in the near future.
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Abstract The presence of industrial contaminants in water bodies leads unfit for
domestic and irrigation process. The contaminated water treatment becomes even
more problematical if the process encompasses high volumes of effluents. Advanced
oxidation process (AOP) is a favorable technique for the wastewater treatment
owing to its eco-friendly processing. This chapter gives a detailed discussion
about the classical Fenton process; its progress/modifications such as photo-Fenton,
microbially driven Fenton, electro-Fenton, and sono-Fenton and their combinations;
and different nanocomposite materials used for this process.
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5.1 Introduction

Water management is a universal question nowadays with the growing demand of
freshwater caused by increasing population, domestic usage, and emerging industrial
needs (Awual et al. 2015). The discharged wastewater is the foremost environmental
issue caused by the industry (Wang et al. 2018). Generally owing to the low
elimination of contaminants by the conservative wastewater systems, the chemical
contaminants end up in soil and water bodies (Matamoros et al. 2012; Veloutsou
et al. 2014). The incomplete mineralization of the toxic chemicals may cause the
generation of supplementary hazardous chemicals (Escher et al. 2006). Industrial
wastewater requires posttreatment after biological digestion due to its high recalci-
trant chemical oxygen demand (COD). Various physical-chemical-biological pro-
cess have been used for the wastewater treatment such as absorption, ion exchange,
membrane filtration, coagulation and flocculation, reverse osmosis, oxidation, elec-
trochemical treatment, chemical precipitation, aerobic and anaerobic process, etc.
(Naushad and Alothman 2015; Ghasemi et al. 2014a, b). Among them advanced
oxidation process (AOP) is the most favorable alternate which overcomes the
disadvantages of other methods. It is beneficial for cleaning lethal and
nondegradable organic materials in contaminated water (Oppenlander 2003).
Advanced oxidation process takes place with the in situ formation of hydroxyl
(OH ̇) radicals which have a robust oxidation capability of 2.80 V versus standard
hydrogen electrode (Oturan and Aaron 2014; Wang and Xu 2012). Under this
process, the hydroxide radical oxidizes the organic contaminant either by small
organic or complete mineralization into water (H2O) and carbon dioxide (CO2)
(Kaviya and Prasad 2016).

AOP is a Fenton process which is commonly used due to non-toxic, great
production, simple operation at room temperature and pressure. Moreover, it is
used for the demolition of large quantities of toxic pollutants (Gogate and Pandit
2004). The Fenton process has effectively and efficiently removed the drugs to
concentration below the detection limit (Velasquez et al. 2014; Mackulak et al.
2015). Besides, it has been used as a pre-management to increase the biodegrad-
ability of pollutants, specifically in the handling of concentrated wastewaters com-
prising recalcitrant compounds. Fenton reagent contains Fe2+ and H2O2 where Fe

2+

is used as a catalyst and H2O2 used as an oxidant. The mechanism of the reaction
(Eq. 5.1) is given below:

Fe2þ þ H2O2 ! Fe3 þ OH� þ OH� ð5:1Þ

Fenton reaction-produced ̇OH radical have been utilized to treat an extensive range
of harmful organic compounds, comprising landfill leachates (7), groundwater
contaminated with chlorinated aliphatics and aromatics (8, 9), dry cleaning solvents
(10, 11), PCB congeners (12), nitroaromatic compounds (13, 14), azo dyes (15), and
PCP (16). The Fenton reaction is autocatalytic under acidic condition (Halliwell and
Gutteridge 1986). In ˙OH reaction working at pH > 5, the constant adding of Fe
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(II) also consequences in the formation of huge amount of particulate Fe(III), which
subsidizes to slurry discarding difficulties (Kim and Vogelpohl 1998).

5.2 Classification of Fenton Process

In order to increase the efficacy of classical Fenton, it is combined with other
techniques such as electrochemical, photocatalytic, and ultrasonic waves. Figure 5.1
depicts the classification of Fenton process, and Table 5.1 gives an idea about
various types of Fenton process for the degradation/removal of pollutant. The
detailed discussion is discussed below.

5.2.1 Homogeneous Fenton Process

Tabai et al. (2017) studied the homogeneous Fenton reaction toward the deprivation
of Acid Orange 7 (AO7) dye in aqueous solution using hydrogen peroxide by
HFe2.5P2W18O62 23.H2O as a catalyst. They have examined the factors like pH,
H2O2 concentration, the catalyst mass, and the concentration of the dye on the
degradation. The operational pH range of the Fe(III)/H2O2 system was extended
up to pH 8.5 using phosphotungstate PW12O3�

40

� �
for the deprivation of organic

compounds by homogeneous Fenton process (Lee and Sedlak 2009). It should be

Fig. 5.1 Graphical illustration of classification of Fenton process
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noted that the homogeneous Fenton method has a substantial drawback: the reac-
tions require up to 50–80 ppm of Fe ions in solution, which is higher the European
Union instructions that permit only 2 ppm of Fe ions in processed water to be
discarded into the surroundings (Sabhi and Kiwi 2001). The treatment has to be done
at acidic pH conditions especially between 2.5 and 3.5. There is a possibility of
unwanted side reaction and the disintegration of H2O2 to water and oxygen
(Hartmann et al. 2010). The exclusion/management of the sludge-comprising Fe
ions at the end of the contaminated water management is costly and necessities huge
quantity of chemicals and manpower. Moreover, catalyst recycling is challenging.

5.2.2 Heterogeneous Fenton Process

To overcome the drawbacks of homogeneous Fenton reaction, the heterogeneous
Fenton reaction has been developed. Different types of heterogeneous catalyst are
used in Fenton reaction such as ferrihydrite, hematite, pyrite ash, goethite, electric
arc furnace dust, magnetite, clay, pyrite, etc. Some attempts have been made by
combining Fe ions or Fe oxides into inert support or the porous materials such as
clay (Hassan and Hameed 2011), carbon material (Ramirez et al. 2007), mesoporous
silica (Pham et al. 2009), alumina (Lim et al. 2006), zeolite (Arimi 2017), etc. so that
the catalyst ions are slowly released from the support to the reaction sites. The
heterogeneous catalysts are simply detached from the waste and slurry for recycle.
The catalyst works over a wide range of pH. For example, carbon materials were
utilized as a support for the deprivation of azo dye Orange II where activated carbon
which is prepared from olive stone and carbon aerogel (Ramirez et al. 2007). The
results revealed that carbon aerogel have shown good catalytic performance and
mineralization effect than activated carbon. The technical complication and high
budget production limits the large scale application of the catalyst. So as to increase
the catalytic performance and economic value, Fe3O4 magnetic nanoparticles have
been incorporated with activated carbon resulting from the recycled rice straw for the
treatment of real coal gasification wastewater (Zhuang et al. 2016). The size and
shape, crystallization, surface area, active site of the catalyst, reaction temperature,
pH, and concentration of the contaminant are the main factors to determine the
reaction rate (Kaviya and Prasad 2015; Arimi 2017; Hassani et al. 2018c). Hetero-
geneous Fenton catalyst was developed using pellets of natural zeolite which is
modified by pre-treatment before inserting on them on Fe2+ ion (Arimi 2017). The
catalyst is used for the exclusion of colored recalcitrant in molasses distillery
wastewater (MDW). The effect of pH and temperature on the reaction also exam-
ined. The catalysts have shown 90% decolorization and 60% total organic carbon
(TOC) elimination at 150 g/L catalyst dosage, 2 g/L H2O2 at 25 �C. Moreover, it is
improved in the biodegradability of anaerobic effluent. Different shapes of the
catalyst also used for the better performance. Ultra-small α-FeOOH nanorod have
been utilized for the degradation of an azo dye, methyl orange and observed 98% of
the degradation (Liu et al. 2018) which is relatively higher than the large sized
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α-FeOOH nanorods (Fig. 5.2a, b). The effect of ball milling time on the performance
of magnetite (Fe3O4) nanoparticle toward the removal of ciprofloxacin (CIP) was
studied by Hassani et al. (2018c). Furthermore, they have discovered that the
incorporation of organic and inorganic scavengers significantly decreased the CIP
removal efficacy (Fig. 5.2c, d).

The critical issue in the heterogeneous catalyst is leaching of ion from the support.
Interestingly, the catalyst with higher catalytic performance, stability at a realistic
cost. In order to enhance the pollutant degradation efficacy, exterior energy in the
form of UV, sunlight, electricity and ultrasound are combined with the classical
Fenton process.

5.2.3 Microbially Driven Fenton Reaction

Microbially focused Fenton reactions established on fabrication of H2O2 through
microbial O2 respiration and Fe(II) by microbial Fe(III) reduction which excludes
the addition of H2O2 and UV radiation to recreate Fe(II) (Kim et al. 2006; Stefan and
Bolton 1998). Figure 5.3 represents the overall strategy in the microbially focused
Fenton Reaction. H2O2 basically generated by aerobically respiring bacteria through

Fig. 5.2 Transmission electron microscopic image of (a) small α-FeOOH nanorod (b) large
α-FeOOH nanorods, the effect of (c) inorganic and (d) organic scavengers on the removal of
ciprofloxacin by heterogeneous Fenton process. (Liu et al. 2018; Hassani et al. 2018c)
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O2 stimulation pathway (Eqs. 5.2 and 5.3) and also by Fe(II) autoxidation pathway
under aerobic condition (Eqs. 5.4 and 5.5) (Stumm andMorgan 1996) which is given
below. A. M. Mckinzi and T. J.

DiChristina examined the oxidative degradation of pentachlorophenol using
Shewanella putrefaciens strain 200 under neutral pH condition. The microbe is
acted as a catalyst for Fe(III) reduction and H2O2 fabrication by flashing amid
anaerobic and aerobic situations in batch cultures accompanied with Fe(III). The
scheme was established on a free radical-producing Fenton reaction among bacteri-
ally manufactured Fe(II) and H2O2 (Mckinzi and DiChristina 1999). In another
work, Sekar and T. J. DiChristina scrutinized the generation of OH radical by
S. oneidensis focussed Fenton reaction for the degradation of 1,4-dioxane. Here,
Fe(II) formed through anaerobic phases interacts chemically by the Fenton reaction
with H2O2 formed in aerobic phases to yield OH radicals that oxidatively degrade
1,4-dioxane (Sekar and DiChristina 2014). Gu and his research group studied the
degradation of Tetrabromobisphenol using biogenic Fenton process by Pseudomo-
nas sp. Fz through extracellular H2O2 and Fe(II) (Gu et al. 2016). Research have
performed microbial degradation of organic contaminant in anaerobic circum-
stances, and the deprivation rates in nitrate-, iron-, and sulfate-reducing situations
are remarkably slow (Steffan 2007). Moreover, studies revelled that the direct
application of the reagent to microbes leads their cell death by the attack of radicals
(Miller et al.1996).

O2 þ e� ! O��
2 ð5:2Þ

O2 þ O��
2 ! H2O2 ð5:3Þ

Fe IIð Þ þ O2 ! Fe IIIð Þ þ O��
2 ð5:4Þ

Fe IIð Þ þ O��
2 þ 2Hþ ! H2O2 þ Fe IIIð Þ ð5:5Þ

Fig. 5.3 Overall scheme for
the microbially driven
Fenton reaction

98 S. Kaviya



5.2.4 Photo-Fenton Process

Heterogeneous Fenton process having the limitations such as decrease in the con-
centration of iron ion and the formation of hydroxide radical rely on Fe3+ and H2O2

reaction (Zhao et al. 2010).
The process of coupling light energy (UV or visible or sunlight) with classical

Fenton process is called photo-Fenton process (Senn et al. 2014) (Fig. 5.4). It,
overcoming the limitations from classical Fenton process by irradiation of light
energy, increases the efficacy of Fenton reaction owing to renewal of the consumed
Fe2+ ions and direct H2O2 photolysis (Ruppert et al. 1993). Figure 5.5 depicts the
photochemical renewal of Fe2+ ions by photoreduction of Fe3+ ions under UV
radiation (Faust and Hoigne 1990). In photo-Fenton process, Fe ions, Fe oxides,
and Fe clusters may act as active sites, whereas in Fenton process, Fe ions are
deliberated as principal active sites.

Iron and Iron oxide NPs have been utilized as a catalyst for heterogeneous photo-
Fenton reaction for the degradation of various organic dyes (Zhao et al. 2013;
Pradhan et al. 2013). The activity of the catalyst was enhanced by loading
nanoparticles (Fe and Iron oxide) into mesoporous materials. Studies have been
performed with Fe3O4@SiO2 (Tan et al. 2015), Fe3O4@-rGO@TiO2 (Yang et al.
2015), FePO4 (Gao et al. 2015), α-Fe2O3-TiO2 (Shao et al. 2015), Fe/MCM-41 (Lam
and Hu 2007), Fe/Al2O3-MCM-41 (Pradhan and Parida 2012), etc. Fe-like metals
such as mono- (Mn, Co, Fe) and bimetallic (Mn-Fe, Mn-Co, Co-Fe) nanoparticles
are added into the mesoporous system for the degradation of dyes and mixture of
dyes. Pradhan et al. examined the catalytic performance of Co-Fe/Al2O3-MCM-41
nanocomposite for the degradation of Methylene blue + Congo red at pH 10 under
visible light irradiation. The catalyst has shown 100% of degradation efficacy in
60 min (Pradhan et al. 2016). Bimetallic iron-copper catalyst also attracted much
attention. The mixture of iron with copper displays an enhanced catalytic activity
synergic effects of two metal-redox pairs (Qin et al. 2018). In photo-Fenton process,

Fig. 5.4 Classification of photo-Fenton process

Fig. 5.5 Photo-Fenton
reaction
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the presence of suspended matter affects the penetration of light radiation and there
by decrease the removal efficiency. The viability of photo-Fenton reaction depends
on the intensity, wavelength of radiation, distribution of light inside the
photoreactor, and catalyst.

UV Photo-Fenton Process

The recovery of Fe2+ via classical Fenton process is tremendously low (Minella et al.
2014). The regeneration of Fe2+ and more number of OH radical formation are
possible only under UV light irradiation (Ramirez et al. 2010). UV radiation is
commonly utilized in the water treatment and for the removal of contaminant from
the wastewater. UV-Fenton and modified UV-Fenton process was examined in the
real drilling wastewater at pH 3 and neutral pH, respectively, by Chen et al. (2016).
In this study, they have utilized carboxymethyl β-cyclodextrin (CMCD) as a biode-
gradable complexing agent instead of commonly used ethylenediaminetetraacetic
acid (EDTA) which could cause the secondary environmental risk. The results
revealed that the UV-Fenton process with CMCD was measured more appropriate
for biological oxidation process, owing to the lower intake of H2O2. UV radiation is
categorized as vacuum UV (100–200 nm), UV-C (200–280 nm), UV-B
(280–315 nm), and UV-A (315–400 nm). Light-emitting diode (LED)-based artifi-
cial illumination of UVA radiation was also used for the exclusion of micropollutant
from wastewater which eliminates the influence of environmental conditions and
annual solar light (Davididou et al. 2017). Obra et al. (2017) utilized UVA light from
LED for the removal of micropollutant from urban contaminated water. They have
studied with three different wavelengths (365, 385, and 400 nm), two different liquid
depths (5 and 15 cm), and two iron concentrations (5 and 11 mg L�1) for two
different liquid depths (5 and 15 cm). Similarly, the effect of reaction circumstances
like pH, H2O2 concentration, and [H2O2]/[Fe

2+] ratio was examined for the degra-
dation of dyes using UVC radiation (Manu and Mahamood 2011). The UV-based
AOP reactions are based on the external chemicals which are considered as a
limiting actor for their applications. Utilization of vacuum ultraviolet (VUV) radia-
tion is a less chemical process, and radicals are formed from the photolysis of water
(Eqs. 5.6 and 5.7) (Gonzalez and Braun 1995). Additionally, VUV light generates
ozone by the photolysis of molecular oxygen which would enhance the removal of
pollutant (Eqs. 5.8 and 5.9) (Moussavi et al. 2014).

H2O !
hν¼185 nm

�OHþ H� ð5:6Þ

H2O !
hν¼185 nm

�OHþ Hþ þ e�eq ð5:7Þ

O2 !
hν¼185 nm

2O� ð5:8Þ

O� þ O2 ! O3 ð5:9Þ
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The performance of VUV-based photo-Fenton process was examined toward vari-
ous natural and organic contaminants. Comparative study also performed to analyze
the efficiency of VUV and UVC radiation toward the degradation and mineralization
of amoxicillin (AMX) which is an antibiotic (Pourakbar et al. 2016) (Fig. 5.6). The
results have shown that the deprivation of AMX has happened in 3 min or VUV
process when compared to UVC. Moreover, the removal efficacy depends on the pH,
and higher rate was accomplished at higher pH.

Visible Photo-Fenton Process

Unluckily, only 4–5% of sunlight contains UV light, and 45% is visible light energy
(Hou et al. 2013). Adaptation of visible light is cheap when using light source to
generate UV radiation. Hence, visible light energy-mediated photo-Fenton process is
contemplated for the degradation of contaminant in the wastewater (Lv et al. 2010).
Zinc ferrite (ZnFe2O4) is projected as a potential catalyst for the deprivation of
contaminant because it is inexpensive and has a narrow band gap (1.9 eV) and
peroxidase-resembling activity. Cai et al. investigated the heterogeneous photo-
Fenton reaction using ZnFe2O4 catalyst for the deprivation of Orange II in water
and visible light irradiation (Cai et al. 2016). Moreover, they have investigated the
influence of pH, concentration of H2O2, dosage of the catalyst, and power of the light
source on the deprivation of the dye. In order to enhance the performance of the
catalyst under visible light, plasmonic material was incorporated with the photo-
Fenton catalyst due to its surface plasmon resonance (Kaviya and Prasad 2015a, b).
Liu and his research group investigated the performance of Ag/AgCl-Fe-sepiolite for
the degradation of bisphenol A using visible light radiation (Liu et al. 2017).
Ag/AgX nanomaterials lead the loss of photocatalytic efficiency owing to the charge
recombination (Xu et al. 2016). Here, Ag/AgCl stimulate the charge transfer
between Fe(III)/Fe(II) by encouraging photogenerated electrons and promoting the
catalytic performance under visible irradiation. The catalyst has shown better cata-
lytic activity than Ag/AgCl and Fe-sepiolite due to the synergistic effect and also the
formation of active species such as ̇OH radical and holes.

Fig. 5.6 Effect of amoxicillin initial concentration on its deprivation in (a) UVC and VUV (b)
processes as a function of reaction time (pH7). (Pourakbar et al. 2016)
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Cu doped LaFeO3 was used for the complete decolorization of methyl orange,
methylene blue, and rhodamine B solutions in visible light (Phan et al. 2018)
(Fig. 5.7a). The perovskite oxide LaFeO3 (XYO3 structure) is extensively studied
because of its nontoxicity, firmness, and small band gap energy. In order to improve
the catalytic activity, replacing the element X and Y in the XYO3 structure. Doping
of metal into the perovskite oxide is not only reducing the band gap but also leads
oxygen vacancy which prevent the recombination of charge carriers (Kaviya and
Prasad 2015a). Fe2O3 is an n-type semiconductor with the band gap of 2.2 eV
(Barroso et al. 2011). Fullerene [60] (C60) is a three-dimensional structure with
delocalized electrons which allows a high electron mobility and absorbs weekly in
the visible region. Moreover, it induces the charge separation and slows down the
charge recombination (Li et al. 2013). The composite of C60-Fe2O3 was used for the
deprivation of methylene blue (MB), rhodamine B (RhB), methyl orange (MO), and
phenol in the existence of H2O2 under visible light radiation over a wide range of pH
(Zou et al. 2018). Furthermore, they have done the mineralization, leaching, and
recycling experiments and achieved excellent catalytic performance due to the
formation of ̇OH radical in the whole process (Fig. 5.7b). The main problem
associated with the metal doping on the support are leaching of metal from the

Fig. 5.7 (a) Photocatalytic degradation of methyl orange as a function of illumination time by
using LaFeO3 and Cu doped LaFeO3; (b) schematic visible light-mediated photo-Fenton reaction
mechanism of C60-Fe2O3 catalyst; (c) Feox/D3 catalyst reusability for phenol disappearance at pH
4 (recycled it for eight times). (Phan et al. 2018; Zou et al. 2018; Espinosa et al. 2018)
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support, poor stability under strong oxidation conditions and using of carbon
materials as a support leads lower efficiency (Dhakshinamoorthy et al. 2012).
Hence, developing a stable support which anchor and immobilize the dopant without
decreasing the performance is a deal. Research have been performed by doping of
Cu NP on diamond (D3) support as a heterogeneous photo-Fenton catalyst in visible
irradiation (Espinosa et al. 2016). Though, the catalyst is deactivated upon recycle
owing to the oxidation of the active reduced copper species to inactive Cu(II).
Espinosa and co-worker have studied the immobilization of iron oxide NPs on the
hydroxylated exterior of improved diamond nanoparticles (Espinosa et al. 2018).
The catalyst has shown superior activity than iron oxide/TiO2 and carbon materials
such as activated carbon and graphite. Moreover, it exhibits comparable perfor-
mance to Ag/D3 and higher stability and reusability than Cu/D3 (Fig. 5.7c).

Solar Photo-Fenton Process

Solar disinfection method is one of the processes in water treatment (Giannakis et al.
2016). Solar photo-Fenton process has been used for the removal of bacteria and
micropollutants in contaminated water (Lonfat et al. 2016; Lasso et al. 2012). This
technique is performed at neutral pH because acidic pH is toxic to the environs and
the microorganism. Guzman et al. examined the removal of Escherichia coli and
other micropollutants from municipal wastewater (Guzman et al. 2017). For this
purpose, they have used mineral ions in place of iron salt and with natural organic
acids such as citric, tartaric, ascorbic, and caffeic. Lime and orange juice are used as
additives. Lime-based additives have produced photoactive compounds with more
activity and led to the inactivation of bacteria after 48 h (Fig. 5.8a). The effect of
solution pH and the catalyst, for example, Fe-citrate, was studied toward the
inactivation of Escherichia coli (Lonfat et al. 2016). The bacterial inactivation rate
i.e., the formation of OH radical is higher in the case of homogeneous photo-Fenton
reaction when compared to heterogeneous photo-Fenton reaction using Fe-citrate
complex at near neutral pH condition. Studies were investigated with stimulated
solar light rather than natural sunlight where TiO2 have used as a photocatalyst and
resorcinol, hydroquinone were used as a natural organic matter for the degradation
(Lasso et al. 2012). The reaction was carried out in the presence and absence of
bacteria such as Escherichia coli, Shigella sonnei, and Salmonella typhimurium. The
results revealed that the bacterial inactivation is less effected when organic maters
are present in the medium. The parameters such as temperature, dosage of the
reagent (iron, H2O2), pH, light irradiation, types of microorganism, and organic
and inorganic materials present in the water determine the photocatalytic activity and
inactivation of microorganism by the reaction. Experiment was performed to dis-
cover the effect of the above factors such as pH, concentration of the reagent,
mechanical stress, and types of irradiation like UVA light in addition to the com-
bined effects of UVA-Fe, solar-UVA, and UVA-H2O2 for the treatment of waste-
water containing Escherichia coli and total coliforms (Gomez et al. 2014)
(Fig. 5.8b). The complete disinfection was achieved by solar-UVA with H2O2.
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Similarly, gram-positive bacteria, viruses, spores, protozoa, and fungi are incapac-
itated by photo-Fenton reaction (Ibanez et al. 2003; Lasso et al. 2008; Byrne et al.
2011). Moreover, this technique has been used for the degradation of dyes. For
example, the deprivation of methylene blue was explored under visible and solar
photo-Fenton process using Fe-Ni/SiO2 catalyst (Ahmed et al. 2016). The results
have shown that the degradation and total organic carbon (TOC) removal efficiency
were greater in the case of sunlight irradiation compared to visible light.

5.2.5 Electro-Fenton Process

Electrooxidation/electrochemical oxidation is a favorable method for wastewater
treatment owing to the simple operation, adaptability, and biocompatibility (Goyes
et al. 2015). When compared to the classical Fenton process, it has the advantage of
in-site incessant electrogeneration of H2O2, short reaction time, rapid degradation
rate, and continuous Fe2+ renewal over cathodic reduction. In this method, organic
molecules are oxidized by either direct oxidation, i.e., anodic oxidation on anodic
surface, or indirect oxidation, i.e., electro-Fenton (EF). In direct oxidation method,
̇OH radicals are produced via water oxidation on a high O2 over voltage anode
(Eq. 5.10). In the case of electro-Fenton process, ̇OH radicals are produced by
Fenton reagent.

H2O ! �OHþ Hþ þ e� ð5:10Þ

The electro-Fenton process comprises the addition of Fenton reagent to
electrooxidation reaction (Altin 2008). Hence, the electrogenerated hydrogen

Fig. 5.8 (a) E. coli inactivation using solar photo-Fenton by a natural material of iron (M-Fe) and
natural products (lime juice (LJ) and aqueous extraction (LEX); orange juice (OJ) and aqueous
extraction (OEX)); (b) total coliforms inactivation by photo-Fenton replicas with secondary efflu-
ents of a municipal wastewater treatment plant attained on five different days over 1 year. (Guzman
et al. 2017; Gomez et al. 2014)
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peroxide reacts with Fe2+ and leads the generation of ̇OH radices. Electro-Fenton
process is utilized for the removal of Acid Red 18 azo dye which is examined by
Malakootian and Moridi (2017). They have examined the effects of various factors
on the dye removal efficacy and achieved 99% and 90% removal efficacy for the
synthetic and real sample, respectively (contaminated water from the Asia wool
knitting factory). The comparative studies of Fenton process and electro-Fenton
reaction were analyzed toward the phenol degradation (Gumus and Akbal 2016).
They observed that the degradation and mineralization proficiency improved with an
intensification in H2O2 concentration and current density and declined with an
upturn in initial phenol concentration and pH. The outcomes directed that the
classical Fenton process produces 59% mineralization, whereas electro-Fenton
yields 93%. Additionally, the study showed that electro-Fenton reaction is additional
reasonable for the treatment of phenol in contaminated water. EF process also
utilized for the treatment of insecticide in water. For example, magnetic chitosan
bead was used for the elimination of chlordimeform insecticide (Rezgui et al. 2018).

The effect of air pressure on the EF process was estimated by two organic
substances such as malic acid and Acid Orange 7 (Perez et al. 2018). One set of
the experiment was conducted by a conventional carbon felt as a cathode (Fig. 5.9a).
They have observed a slow removal of malic acid along with the formation of formic
acid. On the other hand, the exclusion of maleic acid was intensely accelerated, and
the formation of formic acid was not sensed under pressurized air. They have
achieved a rapid and almost greater than 95% elimination of TOC using the
deposition of carbon black + polytetrafluoroethylene mixture and in the presence
of pressurized air. In another work, graphene@graphite-based gas diffusion elec-
trode (G-GDE) with good conductivity and an excellent electrocatalytic activity was
made for the degradation of rhodamine B by EF process (Zhang et al. 2018). Further,
they have compared the activity with graphite-based gas diffusion cathode (GDE)
and graphite sheet cathode (GE) (Fig. 5.9b). The result demonstrated that, G-GDE
electrode have shown excellent removal of the dye and low energy consumption due

Fig. 5.9 (a) Graphical depiction of the pressurized reactor; (b) rhodamine B removal by G-GDE,
GDE, and GE. (Perez et al. 2018; Zhang et al. 2018)
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to its higher conductivity, porous nature and corrosion resistance when compared to
other electrodes.

The efficacy of electro-Fenton process is increased by coupling with ultrasound
and light energy. (Fig. 5.10).

Photoelectro-Fenton Process

The drawback of electro-Fenton process is the generation of Fe(III)-carboxylate
complex which is difficult to rescind by ̇OH radicals. It can be solved by irradiating
the solution. This process is called as photoelectro-Fenton process. It leads to the
enrichment of Fe2+ renewal and OH radicals generation via photoreduction of Fe
(OH)2+ and the photodecarboxylation of Fe(III)-carboxylate (Eqs. 5.11 and 5.12)
(Huitle and Brillas 2015; Khataee et al. 2013).

Fe OHð Þ2þ þ hν ! Fe2þ þ �OH ð5:11Þ
Fe OOCRð Þ2þ þ hν ! Fe2þCO2 þ R� ð5:12Þ

Metal-organic frameworks (MOF) and modified MOF have been used for the
effluent purification (Hasan and Jhung 2015) and electrocatalytic studies, for exam-
ple, oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) (Wang
et al. 2014). In order to advance the ORR activity, numerous carbon materials such
as activated carbon, graphite, carbon sponge, carbon aerogel, and gas diffusion
electrodes are incorporated with MOF. Among them, carbon aerogel is a unique
porous electrode which contains a three-dimensional network, high-surface area, and
excellent electrical conductivity. Moreover, the addition of metal and organic linkers
to MOF increases the absorption of solar light and enhances the photocatalytic
performance (Zhang et al. 2015). By considering the above facts, Zhao and his
research group (2017) worked on the photoelectro-catalytic performance of bifunc-
tional MOF(2Fe/Co)/carbon aerogel as a cathode in acidic condition toward the
degradation of rhodamine B and dimethyl phthalate (Fig. 5.11a). They observed that
the addition of MOF increases the formation of H2O2, and the catalyst is independent
of pH with excellent catalytic performance. Boron-doped diamond is used as an
anode for the solar light-driven photo-Fenton (SPEF) reaction which is performed in

Fig. 5.10 Classification of electro-Fenton process
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a batch cell rector (GilPavas et al. 2018) where titanium electrode is a cathode in
nonpolar configuration (Fig. 5.11b). The utilization of boron-doped diamond as an
anode having the features such as corrosion resistance, thermal stability, inert
surface, hardness, low adsorption, electrical conductivity, and wide potential in
aqueous and nonaqueous electrolytes (Montilla et al. 2002). The process yielded
total decolorization, 83% of chemical oxygen demand (COD) reduction, 70% of
total organic carbon (TOC) mineralization (in 15 min), and an extremely oxidized
and biocompatible effluent. The operational cost is 1.56 USD/m3 which is a cost-
effective and proficient alternative for processing of industrial wastewater.

Campos et al. (2018) studied the performance of air diffusion mesoporous carbon
electrode (ADE-MC) as cathode in electro-Fenton and photoelectro-Fenton process
toward the deprivation of amoxicillin. The outcomes showed that the catalyst is
good for in-situ electrogeneration of hydrogen peroxide. It gives the whole depri-
vation and mineralization percentages of 55% and 85% with electro-Fenton and
solar electro photo-Fenton processes, respectively.

5.2.6 Sono-Fenton Process

Water molecules are produced ̇OH radical through cavitation phenomenon during
sonication (Eq. 5.13) (Yang 2015). When we transmit the ultrasonic (US) waves into
the solution, it produces microbubbles with high localized temperature and pressure
(hot spot approach) (Weng et al. 2013). The volatile organic molecules are deprived
by pyrolysis where the interior of the cavitation bubble is deprived at high temper-
ature and the bubble liquid boundary by oxidation with ̇OH radicals. However,
non-volatile compounds are ruined by oxidation with ̇OH radicals at the bulk liquid
(Dukkanci 2018). Moreover, the catalyst surface is cleaned because of sonication.
The sonication process has been used for the treatment of dyes and drugs (Kruger

Fig. 5.11 (a) Graphical representation of solar-photoelectro-Fenton mechanism with MOF
(2Fe/Co)/carbon aerogel cathode; (b) percentage of residual TOC by AO-BDD, EF, and SPEF
toward the degradation of amoxicillin. (Zhao et al. 2017; Campos et al. 2018)
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et al. 1999). Conversely, it requires high energy due to its low deprivation rate and
mineralization. Hence, it should be combined with Fenton process for the better
performance (Zhang et al. 2009).

H2O !
���

�OHþ H� ð5:13Þ

The plasma-modified clinoptilolite (PMC) nanorods were used for the treatment of
phenazopyridine (PhP) (Khataee et al. 2016) by sono-Fenton method (Fig. 5.12a).
Clinoptilolite is a zeolite which is extensively used in the AOP process due to cheap,
nontoxic nature and low surface area which disturbs the mass transfer during the
process (Chauhan et al. 2012). Moreover, they have examine the catalytic perfor-
mance of PMC with natural clinoptilolite and found the greater activity with PMC.
Magnetic nanoparticles were used for the treatment of contaminant by sono-Fenton
process owing to the ease in the separation of catalyst from the system (Wang et al.
2015). The treatment of basic violet 10 (BV10) was employing by nano-sized
magnetite (Fe3O4) using sono-Fenton process (Hassani et al. 2018a). The nano-
sized magnetite (Fe3O4) particle was synthesized by milling of magnetite mineral by
a high-energy planetary ball milling procedure. The results revealed that the catalyst
has shown an excellent removal of BV10 due to ̇OH radicals which are the main
oxidative species and also with the presence of O��

2 =HO�
2 radicals. In another work,

monodispersed magnetic cobalt ferrite (CoFe2O4) nanoparticle-reduced graphene
oxide composite (Fig. 5.12b) was used for the elimination of organic dyes such as
AO7, AR17, BR46, and BY28 from an aqueous solution by ultrasonic radiation
(Hassani et al. 2018b). They have studied the effect of parameters, for example, pH,
catalyst dosage, H2O2 concentration, concentration of the dye, ultrasonic power, and
reaction time on the exclusion of dyes. The trapping experiments exhibited that O��

2
radical is the main reactive oxygen species in the exclusion of dyes. Li et al. (2018)
investigated the decolorization of rhodamine B ultrasound with Fenton process.

Fig. 5.12 (a) Impact of ultrasonic power on the removal efficiency of phenazopyridine; (b) TEM
images of CoFe2O4-rGO nanocomposite. (Khataee et al. 2016; Hassani et al. 2018b)
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Here, they have used iron forms which having a porous structure. Conversely, the
thermodynamic instability of iron in the company of H2O and/or O2 causes the
oxidation and precipitation of iron on the surface (Kanel et al. 2006). Several reports
suggest that the formation of passive layer is retarded in the presence of organic acids
(Riverohuguet and Marshall 2009). Hence, they have executed a reaction with oxalic
acid and iron foam which is anticipated to dissolve the oxides on the Fe0 exterior
and, subsequently, progresses its performance. The results show that O2 ̇ and H2O2

served a major role in the removal of rhodamine B. In order to develop the
performance, sono-Fenton is further classified into sono-photo-Fenton process and
sono-electro-Fenton process (Fig. 5.13).

Sono-electro-Fenton Process

The coupling among ultrasonic waves and in situ electro formation of Fenton reagent
is called sono-electro-Fenton process. Enhancement in the sono-electro Fenton
(SEF) method is owing to (i) enhanced mass transmission rate of both reactants
(Fe3+ and O2) at the cathode for the electrochemical formation of Fenton’s reagent
(Fe2+ + H2O2) and its transmission into the solution which further improve the
reaction kinetics by growing the OH fabrication rate and speed up the demolition
method, (ii) the extra formation of OH by sonolysis, (iii) pyrolysis of organics
because of the cavitation produced by ultrasound waves (Oturan et al. 2008). Studied
the sono-electrochemical supported Fenton reaction for the treatment of organic
compounds such as herbicides 2,4-dichlorophenoxyacetic acid (2,4-D), 4,6-dinitro-
o-cresol (DNOC), and azobenzene (AB). They have used an electrolytic cell with a
Pt anode and a 3D carbon-felt cathode for an electro-Fenton (EF) process at constant
current, which leads to the formation of excessive amounts of ̇OH radicals. Low-
and high-frequency ultrasound waves were used for the process. The results dem-
onstrated that the herbicides 4,6-dinitro-o-cresol (DNOC) and
2,4-dichlorophenoxyacetic acid (2,4-D) are considerably accelerated, whereas no
enhancement is detected for the deprivation of the dye azobenzene (AB). The
decomposition of reactive black (RB 5), removal of chemical oxygen demand
(COD) (Sahinkaya 2013) and cationic red X-GRL (Li et al. 2010) from synthetic
textile was conducted under various functioning settings by SEF process.

Fig. 5.13 Classification of sono-Fenton process
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Decomposition of dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) in contam-
inated water is conducted by Chen and Huang (2014). Further, they have compared
the performance by sono-electrochemical and sono-electro-Fenton reaction
(Fig. 5.14). Also, examined was the impact of various parameters on the sono-
electrolytic activity, such as electrode potential, Fe2+ dosage, sono-electrolytic
temperature, acidity of wastewater, and O2 dosage. They have observed the consid-
erable improved mass transfer rate of oxygen to the cathode by ultrasonic waves
which resulted in the excellent yield of H2O2. Hence, the sono-electro-Fenton
reaction has shown better activity than the sono-electrochemical process.

Sono-photo-Fenton Process

The synergetic effect of sono-photocatalysis (US/UV) and sono-Fenton reaction
(US/Fe2+) has been effectively improved the degradation process by Fenton,
photocatalyst and ultrasound by producing ore ̇OH radical (Torres et al. 2007).
Iron-loaded mesoporous silica (Fe2O3/SBA-15) was used as a heterogeneous cata-
lyst for the decolorization of C.I Acid Orange 7 (AO7) by sono-photo-Fenton
process (Zhong et al. 2011). They have investigated the effect of pH, US power,

Fig. 5.14 Removal efficacy of total organic carbon by means of sonolysis, electro-Fenton, and
sono-electro-Fenton processes. (Chen and Huang 2014)
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Fe2O3/SBA-15 loading, and H2O2 concentration on the decolorization of the dye
molecule. The results revealed that the efficacy of decolorization is amplified with
the intensification of H2O2 concentration, US power, and the catalyst loading. In
contrary, it reduced with rise of pH and the dye concentration. The performance of
sono-photo-Fenton reaction was investigated toward the degradation of di-n-butyl
phthalate (Xu et al. 2014). The study was performed with ultrasound at 400 kHz, UV
radiation at 254 nm, and without using the external hydrogen peroxide.

They have found that US/Fe2+ process is improved the degradation of di-n-butyl
phthalate and more proficient in utilizing Fe2+ related to the classical Fenton
reaction. The degradation of high molecular weight sodium alginate was done by
Zhou and his co-workers (2017) using TiO2 nanoparticles (Fig. 5.15). Furthermore,
they have compared the performance of the catalyst through sono-Fenton, sono-
photo-Fenton, and photo-Fenton process. The results conclude that sono-photo-
Fenton reaction provides an effective way for the degradation of sodium alginate
into low molecular weight. Dukkanci (2018) has studied the sono-photo-Fenton
reaction under visible light irradiation using LaFeO3 as a catalyst for the oxidation of
bisphenol A. The perovskite catalyst is with lower band gap than semiconductor
photocatalyst. Hence, it could absorb the radiation in the visible region. The energy
analysis shows that the energy consumption is high in this proses related to sono-
Fenton and photo-Fenton reaction.
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Fig. 5.15 Effect of different assist systems on sodium alginate deprivation during Fenton process.
(Zhou et al. 2017)
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5.3 Conclusion

The performance of classical-Fenton and various hybrid Fenton processes on the
degradation of contaminant in the wastewater was discussed, and their performance
was compared. Compared to classical-Fenton process, hybrid methods have shown
an excellent removal efficacy toward the contaminants. The experimental parameters
such as initial pH, concentration of the dye, catalyst dosage, ultrasonic power,
scavengers, H2O2 concentration, anode, cathode, and nature of light irradiation
have shown an impact on the progress of the reaction. Conversely, a wide range of
assessment is required because it can afford powerful economic and environmental
assistance for the improvement of pilot-/industrial-scale Fenton processes.
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Abstract Water has been an inevitable part of human life and its civilization, and
water contamination is caused by pollution from industrial wastes such as effluents,
dyes, and heavy metals and sewage water due to human activities. Therefore, cost-
effective treatment of wastewater has to be carried out without giving any
by-products. This chapter is aimed at explaining the different ways of electrochem-
ically treating the wastewater and degrading the contaminants. Electrochemical
treatment is advantageous over other methods as it is inexpensive and is a green
technique. The mechanism of degradation through anodic oxidation has been
explained in details. The incorporation of microorganisms toward water treatment
and using them for different kinds of sensors to detect the contaminants opens a new
window to address this issue. Along with microorganisms, nanomaterials and ionic
liquids are also used in sensing the pollutants and in removing and converting them
into energy as well.

Keywords Water contamination · Pollution · Industrial waste · Dyes · Heavy
metals · Electrochemical

6.1 Introduction

Water has been the backbone of human civilization, and it is part and parcel of our
day today life. With increasing global population, better living standard and scarcity
of water sources make water a rare commodity. In addition to the above, the vast
industrial establishments and the pollution caused eventually draw the attention of
researchers around the world as the availability of freshwater and access to portable
water are becoming a serious issue of the present day (Alothman et al. 2012).
Inorganic chemicals and microorganisms are the crucial parameters to monitor the
quality of water as they do influence on plants/organisms present in the aqua system
and human body (Mao et al. 2015). The industrial effluents and sewage from
townships and human activities give out heavy metals, pesticides, detergents, and
dyes which all contaminate the water reservoirs like lakes, river, canal, and ground-
water (Tiwari 2016; Kaur et al. 2017; Naushad et al. 2015). The wastage often leave
harmful carcinogenic dyes particularly azo dyes in aquatic ecosystems and cause
different kinds of health hazards, as dyes make the water anoxic for aquatic inhab-
itants by bringing down the dissolved oxygen concentration (Habibi et al. 2005;
Dakiky and Nemcova 2000). There are different types of methods such as physical
and chemical separation and biological methods which incorporate several tech-
niques like adsorption, oxidation, filtration, coagulation, and flocculation by which
the water contaminants can be addressed (Shahat et al. 2015). The essential prereq-
uisite for an effective treatment is that it should be environmentally friendly and cost-
effective and should not yield any harmful by-products. The main advantage of
electrochemical photocatalysis in detoxifying the pollutants, over the above-stated
methods, is that it leads to complete mineralization and degradation of the effluents
(Kaur et al. 2017).
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Azo dyes are a multifaceted group of colored organic compounds, employed
extensively for industrial applications like gasoline, paper, leathers, cosmetics,
additives, and foodstuffs and in analytical chemistry. In addition, phenolic com-
pounds from oil refinery, drug manufacturing industries, and phenol-formaldehyde
resin are often biologically nondegradable which should undergo prior treatment
before discharging into the environment. The chemical pollutants from the industrial
wastewater comprise of phenol and phenolic compounds, which come from the
effluents of oil refineries, polymeric resins, pharmaceuticals, coal conversion plants,
coal tar distillation, petrochemicals, etc. (Rajkumar and Palanivelu 2004). Phenolic
compounds not only curtail the microbial activities but also negatively influence
biological treatment process. Besides being highly toxic, they also cause sweating
and cyanosis and finally result in death due to respiratory problem (Woodworth et al.
1998). Phenolic wastes are treated using physical, chemical, biological, and electro-
chemical processes; however, biological processes are ineffective for higher con-
centrations of phenols in the wastewater (Suidan et al. 1983; Fedorak and Hrudey
1986; Blum et al. 1986). Pollutants like bacteria, anions, and heavy metals are to be
rapidly detected as it is important in maintaining the quality and control that
necessitate an outstanding detection of contaminant in water as the present technol-
ogies suffer from certain limitations (Mao et al. 2015). Table 6.1 gives an account of
different types of nanomaterials used in sensing water pollutants.

6.2 Advantages of Electrochemical Methods

In addressing environmental issues, electrochemical methods stand superior over
other methods in recycling harmful chemicals. These methods are widely employed
for sterilization, disinfection, deodorization, and microbiological application of
similar type. Since electron is the reagent without additional reagents used in the
electrochemical methods, it stands out to be a clean and green method (Rajeshwar
and Ibanez 1997). Besides that, electrochemical methods are operated at temperature
lower than other non-electrochemical methods and without forming harmful
by-products. The water pollutants are treated by electrochemical method via oxida-
tion process which is subdivided into two ways: (1) direct oxidation and (2) indirect
oxidation. In the direct oxidation process, the treatment of pollutants occurs on the
anode via oxidation as initially the pollutants are adsorbed on the electrode’s surface
(anode) whereby the pollutants are neutralized via anodic electron transfer. On the
other hand in the indirect oxidation method, the pollutants are treated via oxidation
in the bulk solution by the oxidants generated using strong accidents like hydrogen
peroxide, ozone, and hypochlorite/chlorine which are generated electrochemically
(Rajeshwar et al. 1994). The present water quality monitoring mostly takes place
either at the point of water supply or in water treatment plant which is more essential
and relevant rather than along the distribution line of water and at the usage point is
very much essential. Therefore, continuous monitoring with accurate and accessible
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detection technologies is required. This necessitates the implementation of sensors
that monitor water rapidly and continuously sense contaminants to give warning in
advance (Mao et al. 2015).

The electrochemical treatment of wastewater involves both recycling/
decomposing and sensing aspects, and it is a custom-made method where cells and
electrodes are designed to minimize the loss in power because of poor current
distribution with controlled potential avoiding side reaction (Rajeshwar et al.
1994). The basic criteria for electrochemical methods are sensitivity and selectivity
which can avoid production of unwanted side-products. Production of high concen-
tration of electroactive species is necessary for zero-effluent technology that hinges
on the electrolytic cell’s design.

Several advantages of nanomaterials as electrode materials have been attested for
the analysis of diversified chemicals of cancer investigation, food quality, clinical,
pharmaceutical, clinical and environmental interest. Nanomaterials possess many
advantages that make them suitable for the analysis of various chemicals of food
quality, clinical and pharmaceutical applications, cancer investigation, and environ-
mental importance (Gupta et al. 2013). The elimination of most environmental
pollutants is carried out by converting them into nontoxic materials by different
processes. The successful elimination and immediate conversion of several environ-
mental pollutants can be achieved by one or more processes including electrochem-
ical oxidation and reduction, advanced electrochemical process, electrocoagulation/
flotation, and electrodialysis (Feng et al. 2016).

6.3 Electrochemical Oxidation

Electrochemical oxidation is an efficient method to break up highly resistant organic
compounds into small nontoxic fragments and anodic oxidation and is one of the
oxidation methods for treating organic compounds by direct and indirect oxidation.
Based on the nature of the pollutants, the treatment is executed using primary,
secondary, and tertiary methods. The possibility of electrochemical treatment of
organic substrates in wastewater and several studies are made by Dabrowski in the
1970s; Kirk, Stucki, Kotz, Chettiar, and Watkinson in the 1980s; and Comninellis in
the early 1990s till this date (Martinez-Huitle and Ferro 2006).

Though electrochemical oxidation is carried out similar to chemical method using
strong oxidants, the in situ electrogeneration occurring in electrochemical oxidation
makes it advantageous over the chemical method yielding better results in the
absence of organic substrates. To elaborate further, it is the nature of the electrode
material used in the electrochemical oxidation that determines the efficiency, and
Comninellis brought out a mechanism in this regard, taking into account different
stabilizations applied by the electrode material over the electrosorbed hydroxyl
radical which justifies the results obtained (Martinez-Huitle et al. 2004). Depending
on the electrode properties, the electrodes have been divided into active and
non-active electrodes the oxidation process as direct oxidation and indirect
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oxidation, and nevertheless based on the strong activity of strong oxidizing species
like Cl., S2O8

., and CeIV., they are also addressed as mediated electrochemical
oxidation (Juttner et al. 2000; Marselli et al. 2003; Galla et al. 2000). Both direct
and indirect anodic oxidation have been applied to treat organic contaminants.

6.4 Mechanism of Degradation

Comninellis proposed a suitable mechanism for the degradation of organic com-
pound on metal oxide anode (Comninellis 1994). This process takes place in two
steps. In the first step, H2O is discharged at the surface of the anode yielding
adsorbed hydroxyl radicals followed by a metal oxide layer as explained by
Eqs. (6.1) and (6.2). The formation of passivation layer is inhibited by the oxide
layer on the electrode (Gattrell and Kirk 1993).

MOx þ H2O ! MOx OH:ð Þ þ Hþ þ e� ð6:1Þ
MOx OH:ð Þ ! MOxþ1 þ Hþ þ e� ð6:2Þ

Oxygen is produced when any oxidizable organics are absent as presented in the
Eqs. (6.3) and (6.4):

MOx OH:ð Þ ! MOx þ ½ O2 þ Hþ þ e� ð6:3Þ
MOxþ1 ! MOx þ½ O2 ð6:4Þ

Combine reactions (6.1), (6.2), (6.3), and (6.4) to get the overall Eq. (6.5):

2H2O ! 4Hþ þ O2 þ 4e� ð6:5Þ

When the oxidizable organic compound R is present, the reaction occurring will
be as follows:

RþMOx OH:ð Þn ! CO2 þ nHþ þ ne� þMOx ð6:6Þ
RþMOxþ1 ! MOx þ RO ð6:7Þ

And a detailed schematic representation of the electrochemical degradation
pathways of organic compounds on Pt electrodes is presented in Fig. 6.1.

The degradation route for organic compounds depends on the anode materials
and specific interaction of the anode material with the compounds in solution (Torres
et al. 2003).
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6.4.1 Direct Anodic Oxidation

In this method, the treatment and destruction of pollutants are carried out solely
using electrons whereby the pollutants are adsorbed on the anode’s surface without
incorporating any other elements. Theoretically speaking, the negative potential
required for this process is much more than that required for water spitting and
oxygen evolution. The requirement for more negative potential results in catalytic
poisoning of the electrode as a layer of polymer covers its surface, which eventually
brings down the overall performance of treating the pollutants (Rodrigo et al. 2001;
Chatzisymeon et al. 2009). This catalytic poisoning is very much evident when
platinum electrode has been used to treat phenol, where phenol gets adsorbed on to
the surface of the platinum electrode in voltammetry and chronoamperometry and
subsequently arresting the catalytic activity as the adsorption of phenol is irreversible
(Feng et al. 2016; Gattrell and Kirk 1993). James D. et al. investigated the mecha-
nism of anode poisoning by chlorinated phenols, compared the structure vs reactivity
for phenols varying in the degree of chlorination, and studied its influence to regulate
oxidation to oxidation mechanism made with different electrodes (Rodgers et al.
1999).

6.4.2 Indirect Anodic Oxidation

This method proceeds via oxygen evolution as intermediate which is advantageous
over the direct method, avoiding the need for an oxidizing agent, without any
by-products. In this technique, both physically adsorbed “active oxygen” (adsorbed
hydroxyl radicals ˙OH) and chemisorbed “active oxygen” (oxygen in the lattice of a
metal oxide (MO) anode) play very vital role to electrochemically destruct the
species at the anode either partically or completely. The hydroxyl radical OH stands
next to fluorine in terms of its ability to oxidize, possessing a very high potential of
E0 ¼ 2.80 V vs SHE. Therefore when the complete destruction of organic com-
pounds occurs the chemisorbed “active oxygen” involves the formation of certain
oxidation products (Johnson et al. 1999; Chang and Johnson 1990). The efficiency
of the process and the selectivity of the electrode depends solely on the nature of the

Fig. 6.1 Electrochemical
degradation pathways of
phenols, RH, by Pt
electrodes.
(Reproduced from (Torres
et al. 2003) with permission
from Elsevier.)

6 Electrochemical Aspects for Wastewater Treatment 129



anode material. The active anode materials such as RuO2, IrO2, and Pt make
selective and partial oxidation feasible with low oxygen evolution over potential.
On the other hand, non-active anode materials like SnO2, PbO2, and boron-doped
diamond (BDD) make complete combustion possible with very high oxygen evolu-
tion over potential as shown in Fig. 6.2 (Feng and Li 2003; Comninellis 1994).

6.5 Platinum (Pt) Electrodes

Platinum is a well-known metal known for its electrocatalytic properties because of
appreciable conductivity and chemical stability. Therefore it is used for several
applications, including as counter electrode for solar cells and oxidation of organic
compounds (pollutants) on the platinum anodes. Platinum has been used for treat-
ment of water pollutant and presented in several reports. CH. Comninellis et al. have
used Pt electrodes at constant pH of 12 or 2.5, for the oxidation of phenol which is an
effluent from refineries, coke plants, plastic, and chemical plants. The reaction
proceeds via two parallel pathways: electrogenerated hydroxyl radical-assisted
chemical oxidation and direct combustion of adsorbed phenol and/or conversion
of its aromatic intermediates to CO2 (Comninellis and Pulgarin 1991).
1-Aminonaphthalene-3,6-disulphonic acid is produced while synthesizing H-acid is
used for the synthesis of different dyes. A. Socha et al. used Pt electrode to treat
1-aminonaphthalene-3,6-disulphonic acid varying temperature and pH (Socha et al.
2005). A modification of Pt electrode was carried out by making Pt support on
titanium electrodes of Pt/Ti composition and used for the degradation of Novacron
Yellow C-RG by both direct and indirect oxidation. The electrochemical degradation

Fig. 6.2 Schematic illustration of the electrochemical oxidation of organic compounds on (a)
“active” and (b) “non-active” anodes. (Reproduced from (Feng et al. 2016) with permission
from The Royal Society of Chemistry)
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of the above compound by Pt/Ti electrode was compared with that of boron-doped
diamond (BDD), and it was found that BDD performs better than Pt/Ti; however the
latter does the color removal better than the former by fragmenting the azo dyes
(Rocha et al. 2014).

6.6 Microbial Electrochemistry for Water Treatment

Microbial electrochemistry is a branch of electrochemistry that incorporates micro-
organisms into electrochemical reactions. Microbial electrochemical technology
(MET) is an environmentally friendly process which can contribute potentially.
The microbial fuel cell (MFC) is one of the best examples for resource recovery
from water. The organic compounds are oxidized by microorganisms to generate
electrical current at the anode, while oxygen is reduced at the cathode giving rise to
flow of electricity (Logan et al. 2006). Microbial electrochemical technologies
(MET) make use of electroactive bacteria in the solid-state electrodes for the
metabolic activity to oxidize different types of compounds leading to the synthesis
of chemicals, bioremediation of polluted matrices, degradation of contaminants, and
conversion to different types of energy forms to make it more productive (Ramirez-
Vargas et al. 2018). Bioelectrochemical system (BES) is used for the generation of
electricity, synthesis of other by-products, and environmental services including soil
bioremediation, desalination, and treatment of wastewater (Arends and Verstraete
2012; Sharma et al. 2014). The microbial electrochemistry is based on the interaction
of bacteria with the insoluble electron donors or acceptors which rely on the
exchange of metabolic electrons either removed from an electron donor or donated
to an electron acceptor via an electroconductive material (Rabaey et al. 2007;
Rosenbaum and Franks 2014). Either through capacitive interaction or Faraday
interactions, the living microbial cells interact with electrodes, whereby the lipid
layer of a microorganism enters in contact and replaces the ions and water molecules,
because of the change in the double-layer capacity of electrodes. Figure 6.3 presents
a schematic illustration of different branches of the biochemistry field and the
interrelations with bioelectrochemical systems and their applications as microbial
electrochemical technologies.

6.7 The Challenges Faced by Microbial Electrochemical
Technologies (MET)

1. METs demand heavy investments over conventional reactors for water treatment
due to the requirement of electrodes, current collectors, and wiring and mem-
branes. When an MET is to substitute an activated sludge system either partially
or completely, the value resulting from the product and the savings from reduced
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aeration requirements should be sufficient to permit a reasonable payback time of
the initial investment in the system (Escapa et al. 2012; Modin and Gustavsson
2014).

2. The real wastewater treatment bears low performance, and, on the other hand,
when the reactors are operated with synthetic nutrient media containing acetate,
the current density is high, yielding better energy efficiencies (Fan et al. 2012). In
the domestic water, the conductivity is usually low resulting in large potential
losses and eventually lower performance. In addition to the above, the microbial
activity can be restricted with a decline in pH due to low alkalinity. The issue of
clogging pipes and poisoning of separators is caused by the excess microbial
growth and particles (Liu and Cheng 2014). The additional factors that decide the
current generation are that of the competitive interaction between microorgan-
isms. When glucose is used in MFC, the conversion of glucose to acetate takes
place in the first step by fermentation that serves as substrates for electroactive
bacteria-assisted current generation, and similar process takes place when ethanol
is fed. A negative consequence in current generation occurs due to the competi-
tion between electroactive bacteria and methanogens. Hydrogen-utilizing
methanogens stand out to be a strong competitor to electroactive bacteria, and
their activities can bring down the coulombic efficiencies of biological anodes.
Methanogens make use of hydrogen and acetate as substrates (Freguia et al. 2008;
Parameswaran et al. 2009).

3. Inadequate effluent quality. The wastewater treatment is aimed at meeting certain
effluent limits, which is more preferred than energy efficiency when considering
the treatment plant operation. The effluent coming out from MET has to be

Fig. 6.3 Diagram illustrating the disciplines of the biochemistry field, the interrelations with
bioelectrochemical systems, and their applications as microbial electrochemical technologies.
(Adopted from Ramirez-Vargas et al. 2018)
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subjected to post-treatment to meet the limits for biochemical oxygen demand
(BOD), nitrogen, and phosphorous (He et al. 2016).

4. Competition from existing processes. The sole purpose of MET is to increase the
energy recovery from wastewater which is carried out by a mature process called
anaerobic digestion, operating at higher COD removal rates. Moreover, produc-
tion of renewable energy in large scale is achieved by different types of technol-
ogies like wind turbines, photovoltaics, and water and wave power.
The large-scale energy conversion from wastewater using microbial electrochem-
istry has several other potential applications such as nutrient removal, desalina-
tion, chemical production, and degradation of recalcitrant pollutants. Figure 6.4
gives the account of the number of papers published on biosystem-based waste-
water treatment coupled with energy harvesting.

6.8 Microbiology-Based Electrochemical Sensors

MET has been considered as a suitable sensor because it is easy to record the
electrical current and potential over a range of parameters. It has been researched
as sensor for BOD, volatile fatty acids (VFA), microbial cell numbers, corrosion,
toxicity extraterrestrial life, activity, and individual chemical compounds and for
detection of electronegative microorganisms. The most relevant parameters in water
sectors are BOD and VFA (Abrevaya et al. 2015; Yang et al. 2015: Modin and
Aulenta 2017).

6.8.1 BOD Sensors

BOD sensors based on MFC were developed as early as in the 1970s and
MFC-based sensors with biological anodes exhibited long-term stability beyond

Fig. 6.4 The graph drawn
between year and the
numbers of papers
published.
(Reproduced from (Modin
and Aulenta 2017) with
permission from The Royal
Society of Chemistry)
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5 years (Kim et al. 2003). The measure of the concentration of biodegradable organic
compound water is called BOD. Online sensors with high reliability are more
preferred and it is easy to use. Although these sensors have several advantages,
they do have certain drawbacks. The sensors based on immobilized cells on oxygen
suffer from operational instability that makes it handicapped of longtime operation
due to the growth in the immobilized layer (Jouanneau et al. 2014; Liu and
Mattiasson 2002). Those employed based on pH shifts and luminescence have the
limitation to be used in real wastewater with complex composition or organic
compounds (Murakami et al. 1998; Sakaguchi et al. 2003). Although bioreactor-
type sensors seem to be most powerful and commercially available, however their
large size and several components make them less preferred (Jouanneau et al. 2014).

The BOD sensors developed in the initial days had a very low response time
although they had better stability, and this forced the researchers to make efforts to
improve the sensors with fast response time and simple design. In order to achieve
the above said goals, continuous feeding up was done in MFC where the measure of
the current corresponding to BOD concentration was developed instead of feeding in
batches followed by measuring the electric charge (Chang et al. 2004). MET-based
BOD sensors do have some drawbacks: They are (i) BODs cannot replace conven-
tional BODs but they can be used to infer some data from the wastewater plant that
limits its usages; (ii) the incomplete conversion of organic compounds from waste-
water into electricity because there is a competition between methanogens and
electroactive microorganisms for substrate (Ahn and Logan 2010; Kaur et al.
2014); and (iii) in MFCs, the aerobic oxidation of the substrate arising from the
oxygen, passing from cathode to anode and the non-electroactive electrodes’ con-
sumption of organic compounds which all will reflect in reduced output (Modin and
Aulenta 2017).

When designing sensors, the following aspects have to be kept in mind:

(i) They should be operated in such a way that the activities of electroactive
microorganisms are to be promoted over other functional groups.

(ii) Using anodes with high surface area to volume ratio.
(iii) Anode potential-controlled operation.
(iv) Using a gel matrix where electroactive microorganisms are embedded that

might also improve the storage of bioelectrodes (Arends 2017).

6.8.2 VFA Sensors

In anaerobic digesters, accumulation of VFAs will result in reaction failure because
of a drop in pH, and therefore VFAs are to be monitored. Both offline techniques like
high-pressure liquid chromatography and gas chromatography and online techniques
like pH titration are used to the total measure of VFAs and get its total concentration,
respectively (Feitkenhauer et al. 2002), and the individual VFAs can be detected
using headspace chromatography (Boe et al. 2006). Acetate has been widely used as
the substrate in most sensors using microbial electrochemical systems (Freguia et al.
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2010; Liu et al. 2005a). The ratio between acetate and propionate concentration is the
key factor, sensors can also be designed to make them specific to acetate or
propionate, altering this ratio would affect anaerobic digester, and maintaining
electroactive microbial communities that are specifically active toward acetate or
propionate is not so easy (Modin and Aulenta 2017).

6.8.3 Toxic Sensors

Detection and biological treatment of toxic substances found in wastewater are a
must as they can be a serious threat to aquatic system which affects people and
animals that depend on it. Mostly MFC-based sensors have been employed for the
detection of the toxicity in natural and synthetic water (Kim et al. 2007). The
interaction of organophosphate insecticide, polychlorinated biphenyl, and heavy
metals such as Pb and Hg with MFC brings a drop in the current generation (Stein
et al. 2012) that itself is an indication of toxicity apart from polarization curves fitted
to kinetic curve; however electroactive biofilms do not respond at concentrations
equal or higher than the typical levels in wastewater (Patil et al. 2010).

6.9 Electronic Sensors Based on Nanomaterials

Electronic sensors are made by incorporating nanomaterials such as MoS2, carbon
nanotubes (CNT), and layered materials like graphene and MoSe2 in their single-
layer form after exfoliation into single layer. Nanomaterial-based electronic FET
sensors show very high sensitivity and quick response towards water pollutants
owing to their high carrier mobility and high sensitivity to electronic perturbations,
outdoing the present technologies. When the contaminant comes in contact with the
semiconducting materials in the channel of the transistors, the contaminants are
detected based on the change in the semiconducting material’s conductivity. The
concentration of the contaminants corresponds to the extent of the amplitude of
conductivity (Mao et al. 2015). These FET sensors made up of nanomaterials have
three terminals, namely, source terminal, the drain terminal, and the gate terminal,
and the semiconducting nanomaterial forms the sensing channel that connects the
source and drain terminals. The position of the gates can be made either on top or
back position depending on the composition of the sensors. The sensitivity of the 1D
and 2D semiconducting nanomaterials to the chemical contaminants makes them to
be incorporated in chemical and biosensors. When water contaminants such as heavy
metals and bacteria come into contact with FET-based sensors, it stimulates a change
in the electrical characteristics, and the difference in the electrical behavior is used to
detect both the presence and the extent of contamination. The age-old techniques to
detect heavy metal ions such as Hg2+ and Cd2+ found from food industries to
environmental science are spectroscopy and fluorescence which are not only
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expensive but also hardly portable. Therefore, the alternative device that can detect
Hg2+ and Cd2+ reliably and rapidly is using a FET device where 1D SiNW is
synthesized using bottom-up approach employed as channel (Cui et al. 2001; Luo
et al. 2009).

6.10 Bioelectrochemical Systems (BESs)

Bioelectrochemical systems (BESs) are based on the interaction of bacteria with
electrodes making use of electrons that are either supplied or removed through an
external electrical circuit. Microbial fuel cells (MFC) are a very productive form of
generating power from electron donors present in the water as contaminants through
extracellular electron transfer by bacteria, with respect to metals like iron and
manganese. The role of bacteria and its interaction with electron and its due
mechanisms are explored to understand the process of energy conversion process
and building a green environment although several aspects are yet to be discovered.

The interaction of bacteria with insoluble terminal electron and acceptor donors is
very similar to chemical system. In MFC bacteria oxidize the electron donors where
anodic electrode is an electron acceptor with the electron flow takes place from the
anode through the external circuit. The electron flow is directed toward a high-redox
electron acceptor such as oxygen at the electrode, and the cations equate the charge
balance by diffusing from anode to cathode via a charge-selective separator (Rabaey
and Verstraete 2005). At the surface of the electrode, bacteria consume electrons
accompanied with the electrochemical reduction of electron acceptor like nitrate,
perchlorate, or metals (Gregory et al. 2004; Gregory and Lovley 2005; Clauwaert
et al. 2007).

In every anodic and cathodic case, the utmost driving force is extracellular
electron transfer that is required as and when the entry of an electron acceptor or
donor into the cell is restricted and its extracellular electrons are transferred to
insoluble Fe (III) or Mn(IV) oxides or to humic substances which are too large to
enter into the cells (Lovley et al. 1987; Myers and Nealson 1988).

The bacterial cell yield is determined by the energy accessible to bacteria which
corresponds to the potential difference between the electron donor and acceptor
(Heijnen et al. 1999). The Nernst equation is used to determine the difference in
potential between donor and acceptor which is related to the extent of the availability
of oxidized and reduced compound (Rabaey and Verstraete 2005).

In BES anodes, the anodic potential defines the potential of the electron acceptor
and in the cathode the cathodic potential is defined by electron donor potential. The
yield by the bacteria is determined by many factors including the resistance of the
electrolyte. Here a closer interaction between bacteria and the electrode is inevitable
to minimise the activation losses that lead to imperfect oxidation and reduction.
Butler–Volmer equation describes the activation loss at the electrode, either toward
or away from an insoluble acceptor or donor, and the parameters of the equation can
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be determined via linearization, followed by calculating the gain for bacteria
depending on an electron flux.

6.11 Zinc-Based Electrochemical Sensors

Zinc oxide of different morphologies is employed in electrochemical sensors espe-
cially in the detection of p-nitroaniline (pNA), that is, the derivate of aniline used in
dye, polymer, rubber, painting, gasoline, and pharmaceutical industries (Ahmad
et al. 2017). When the pNA discharge is excess in the environment, it leads to the
catastrophic effect to both human being and environment. ZnO nano rod assembly
grown on FTO (electrode) with seed layer assisted has been used both with and
without binder by Rafiq Ahmad et.al was used for the detection of pNA). They
reported that the nanorods grown directly on the electrode without binder seem to
bear better surface with enhanced electrocatalytic activity. In phosphate buffer saline
solution (PBS), the dissolved oxygen gets adsorbed onto the surface of ZnO
nanorod, ionic species (O�

2 , OH
�, etc.) are generated on the surface, and the ionic

species generated absorb electrons from the conduction band and migrate to the
surface of the ZnO NR. The chemisorbed ionic species (OH�) combine with pNA
and yield CO2 and H2O by oxidation while forming several intermediate reactions
(Ahmad et al. 2016, 2017; Sun et al. 2007). Gupta et al. synthesized ZnO
nanoparticles and used modified electrode of the following composition: ZnO/NP
sonic liquid–carbon paste electrode (ZnO/NPs/IL/CPE) toward the detection of
droxidopa in pharmaceutical and urine samples (Gupta et al. 2013).

6.12 Ionic Liquids in Electrochemical Sensing

Ionic liquids have been employed in electrochemical sensing because of their
unusual physicochemical properties such as low volatility, high intrinsic conductiv-
ity, high thermal stability, wide electrochemical windows, and appreciable solvabil-
ity. The kinds of sensing ionic liquids that have been used include the sensing of
biomolecules, such as nucleic acids, enzymes and proteins, sensing gas, and various
important ions, among other chemo-sensing platforms, and they are most widely
used for electrochemical sensing of CO2 which has become an inevitable part of
human life (Behera et al. 2015). Ionic liquids are, in liquid state, comprised of salts of
their weekly coordinated ions at temperatures below 100C. They mostly consist of a
bulky organic cation (e.g., alkyl-substituted ammonium, imidazolium,
pyrrolidinium, etc.) paired with an inorganic or organic anion (e.g., acetate,
hexafluorophosphate, halide ions, tetrafluoroborate, etc.). They possess two asym-
metrical ions with opposite charges which are loosely fit together (Wei and Ivaska
2008). They possess many archetypal properties, like low volatility, high chemical
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and thermal stability, wide electrochemical window, wide liquid range, good elec-
trical conductivity, high polarity, and appreciable ability to dissolve in several
compounds, and therefore they remain stable when used under conditions, while
the organic solvents fail. They work well on wide electrochemical windows as 4.5 V
compared with 1.2 V in most aqueous electrolytes can be used for several com-
pounds which would otherwise be inaccessible (Fuller et al. 1997; Hapiot and
Lagrost 2008; Quinn et al. 2002; Wei and Ivaska 2008). The physical and chemical
properties of the ionic liquids can be tuned by tuning the structure of the cation
and/or anion and selecting appropriate cation or anion to suit a specific requirement
(Behera et al. 2015; Greaves and Drummond 2008; Kyo et al. 2005; Plechkova and
Seddon 2008; Seddon 2003; Wasserscheid 2006; Welton 1999). These ionic liquids
are environmentally friendly and play a dual role of acting as solvent and electro-
lyte as well and in addition they are used as alternative electrolyte material for
several electrochemical devices like solar cells; fuel cells; batteries; supercapacitors;
sensing biomolecules like proteins, enzymes, and nucleic acids; and several gases
including O2, CO, CO2, SO2, NO2, H2S, and Cl2 (Behera et al. 2015). Ionic liquids
can be divided into two groups based on their solubility in water, namely, hydro-
philic and hydrophobic. The immiscible hydrophobic ionic liquids have been coated
on glassy carbon electrode which in turn can be used for electrochemical sensing.
The hydrophobic ionic liquids make nonpolarizable interfaces when in contact with
water which has the advantage of being easily prepared in aqueous solution. In some
cases, dry ionic liquids have been used without moisture, depending on the require-
ment, and hydrophilic (water-miscible) ionic liquids had been sidelined for a long
time, owing to its stability issue in aqueous solution. In the recent days, hydrophilic
ionic liquids are also made as film on glassy carbon electrodes to be used in aqueous
media for electrochemical sensing (Yu et al. 2005). The anions present on the ILs
determine the miscibility of ILs (Seddon et al. 2000; Anthony et al. 2001). The
anions that make the ILs miscible in water are Cl�, Br�, I�, NO�

3 , CH3COO
�, and

CF3COO
�, and those ILs having Tf�2 and PF6 groups on the contrary make them

immiscible, while the ILs with BF�4 and CF3SO3 depend on the structure of the
cations though they have miscibility in water to some extent. The miscibility of ILs
in water is indirectly proportional to length of the cation chain. The shorter the chain
length, the greater is the miscibility, and the longer the chain length, lesser the
miscibility as the length of the cation chain corresponds to the surface tension
(Fitchett et al. 2005). IL-based electrochemical analysis is applied for two types of
sensors as far as water treatment is concerned:

(a) Ion-selective or potentiometric sensors: Potentiometric or ion-selective sensors
make use of solid-state planar reference electrodes based on ILs and Ag/AgCl
planar microelectrodes embedded with PVC membranes. This method is fast,
accurate, and cost-effective. IL-based sensors, with PEDOT-based electrode,
exhibit linear anionic potentiometric response in KCL solution, and such elec-
trodes show high selectivity to anions such as sulfate (Wei and Ivaska 2008).

(b) Voltammetric sensors are a complementary class of sensors to potentiometric
sensors which use ILS to detect ions voltammetrically. Techniques such as linear
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sweep, square wave, and cathodic stripping voltammetry are used to determine
trace amount of chloride (Wei and Ivaska 2008; Villagran et al. 2004). In
voltammetric sensors IL-type carbon paste electrode (Liu et al. 2005b) and
imidazolium salt-functionalized polyelectrolyte were utilized (Shen et al.
2007). The configuration is set up with working electrode, reference electrode,
and counter electrode which were all kept in close proximity to one another and
covered with a thin film of IL insoluble in water. From the carrier stream, the
electroactive components to be detected and determined need to diffuse into the
ionic liquid first and then into the surface of the working electrode (Yu et al.
2005).

6.13 Metal Removal

From the wastewater, the metal contaminants contaminate drinking water, and
therefore there is a need to prevent contamination and recover valuable metals
from it. The different metal contaminants such as cadmium, mercury, lead, copper,
lithium, indium, cobalt, platinum- group metals, aluminum, and steel were sent out
from different kinds of industries manufacturing various articles (Modin and Aulenta
2017; Nabi et al. 2009). The different sources releasing metal-containing wastewater
are petroleum refining; photographic operations which releases several metals,
inorganic pigment, and dye manufacturing; wood processing; treatment process;
and printed circuit board manufacturing (Barakat 2011). In addition to the above
listed processes, metal wastes from mining industries and metal-containing leachates
also give out wastewater containing metal contaminants (Akcil and Koldas 2006;
Van der Bruggen et al. 1998). The different techniques used for the removal of
metals from wastewater are, ion exchange, membrane separation, electrodialysis,
chemical precipitation, photocatalysis, and adsorption. In order to recover metals
from highly concentrated wastewater sources, electrochemical processes are
employed, and to recover specific metals in their elemental form, electrochemical
recovery by reduction of metal ions on cathode is adopted and used. For these pro-
cesses to be efficient and economical, the metal concentration has to be very high
(Modin and Aulenta 2017).

6.14 Microbial Electro Chemical Metal Recovery

For the recovery of metal particles, different kinds of microbial electrochemical
reactors are being used, and the organic compounds/sulfides are oxidized on the
microbial anode, the reduction of the metal ions takes place at the abiotic cathode,
and they are reduced as solid metal. The schematic representation is given in
Fig. 6.5.
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This type of system has dual advantage of combining the treatment of organic
wastewater at the anode and the recovery of metal at the cathode. The operating
potential of the anodes is usually from -0.2 to 0 V whereas the reduction potential of
Cu2+/Cu is 0.34 V vs. the standard hydrogen electrode SHE, which is higher than the
former and therefore the system could be used with MFC to recover Cu along with
the generation of electricity. The recovery of Cu by the above system has a highest
efficiency of >99.88%, and such removal techniques are used to recover Au, Ag, Ni,
Pb, Cd, and Zn using biological anodes and abiotic cathodes (Heijne et al. 2010; Tao
et al. 2011; An et al. 2014; Cheng et al. 2013; Wu et al. 2016; Choi and Hu 2013;
Choi and Cui 2012; Qin et al. 2012). In order to recover the metals with low
reduction potentials such as Ni, Pb, Cd, and Zn, MFCs use the electrical energy as
the input. In a mixed solution containing metals like Cu, Pb, Cd, and Zn, the metals
are extracted using applied potentials ranging between 0 V and 1.7 V (Modin and
Aulenta 2017). The metals are obtained whether as soluble ions or as precipices by
reduction reaction occurring at the cathode, and in the case of lithium batteries the
Co2+ ions from lithium cobalt oxides from the used lithium batteries are discharged
using MFC (Huang et al. 2013), which was also used to convert VOþ

2 to VO2+ of
reduced toxicity by precipitation (Zhang et al. 2009). In exceptional cases interme-
diates are generated at the cathode which interact with metals and in the case of
reduction of Cr(IV) to Cr(III) by the intermediate H2O2 formed by the reduction of
O2 on a cathode in MFC (Liu et al. 2011). For the precipitation of Co(OH)2, it was
also carried out by hydroxide ion generated by the reduction of O2 in a MFC (Huang
et al. 2015). For the reduction of metals, microorganisms can also be employed as
catalysts in few cases, and the microorganisms influence the thermodynamics of the
reaction (Modin and Aulenta 2017; Varia et al. 2014).

Fig. 6.5 Schematic
diagram illustrating of a
microbial electrochemical
reactor with a microbial
anode oxidizing organics
and an abiotic cathode
reducing metal ions.
(Reproduced from (Modin
and Aulenta 2017) with
permission from The Royal
Society of Chemistry)
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6.15 Conclusion

Over the past several decades, researchers have discovered and developed a number
of technologies, to investigate sense and detect and treat the pollutants. These
conventional detection techniques lack rapid and in situ sensing, and these were
made possible by using nanomaterials in sensors which offer several advantages like
very high sensitivity, quick response, easy detection, small size, and cost-
effectiveness. Adopting electrochemistry for the treatment of wastewater is an
environmentally friendly method and cost-effective. It is most effective because of
adopting different strategies of oxidation and technologies to mineralize the
non-biodegradable organic matter. In anodic oxidation, indirect oxidation is more
beneficial than direct oxidation since indirect oxidation proceeding via intermediates
of oxygen production will not be subjected to catalytic poisoning or corrosion,
subsequently influencing the selectivity and efficiency positively which depend on
the nature of the electrode. The extracellular electron transfer by microorganism can
be understood through BES, and it can open new ways for biogeochemical cycles to
facilitate clean and green environment. BES can be an efficient tool for the removal
of nitrate, perchlorate, sulfur, and other compounds. The removal of organic com-
pounds and pollutants from water effluents can be innovatively treated using micro-
bial electrochemical technologies which generate power besides degrading the
pollutants. Electrochemical treatment of wastewater that offers a better platform to
build a clean environment can be improved by restructuring the technique to treat a
large quantity of wastewater for the cost-effective and productive degradation of the
contaminants.
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Abstract The semiconductor metal oxide consisting of TiO2 nanoparticles has been
applied for the environmental remediation of toxic substances from environmental
samples. TiO2 nanoparticles have been used as a photocatalyst for the degradation of
organic pollutants in wastewater samples and have demonstrated potential as an
effective photocatalyst. This includes applications for the decontamination of com-
pounds from contaminated samples under both UV and visible light irradiation.
Although these nanoparticles have been easily utilized for this application, the
electron–hole recombination rate and bandgap energy level could be very high.
There are therefore numerous reports on TiO2 nanoparticles coated onto biopoly-
mers of chitosan, alginate, and carboxymethyl cellulose and conducting polymers of
polypyrrole, polythiophene, and polyaniline to give polymer TiO2 nanocomposites
as the photocatalyst. Such studies have been implemented for the photocatalytic

E. Prabakaran · S. Sambaza · K. Pillay (*)
Department of Applied Chemistry, University of Johannesburg, Johannesburg, South Africa
e-mail: kriveshinip@uj.ac.za

© Springer Nature Switzerland AG 2020
M. Naushad et al. (eds.), Green Methods for Wastewater Treatment, Environmental
Chemistry for a Sustainable World 35, https://doi.org/10.1007/978-3-030-16427-0_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16427-0_7&domain=pdf
mailto:kriveshinip@uj.ac.za


degradation of organic dyes under UV and visible light irradiation in an attempt to
improve the photocatalytic activity by lowering the electron–hole recombination rate
and the bandgap energy. Moreover adsorptive photocatalytic degradation is favored
since this provides a surface onto which the pollutants are adsorbed first and
thereafter undergo photocatalytic degradation. This chapter therefore provides an
overview of TiO2 as a photocatalyst with respect to its advantages and disadvan-
tages. In a critical review in the recent trends on supporting TiO2, other support
materials are discussed, and future research perspectives are also critically evaluated.

Keywords Biopolymers · Conduction polymers · TiO2 nanocomposite ·
Photocatalyst · Organic dyes

7.1 Introduction

Environmental pollution has been identified as a global hazard because of growing
industries and increases in population (Peirce et al. 1998; Sharma et al. 2017). Large
amounts of organic pollutants like dyes are discharged into the surroundings via
fabric and effluent industries. The organic dyes which are discharged from industrial
effluent are classified as cationic, anionic, or neutral (Ming-Twang et al. 2017). The
huge quantity of dyes which enter the environment from industrial wastewater per
year enters surface waters, thereby leading to contaminated groundwater (Chaukura
et al. 2017; Sharma et al. 2018). The degraded quality of groundwater has an effect
on humans, animals, and environmental systems (Zhang et al. 2014). Due to this
fact, environmental protection has become of prime importance to ensure the safety
and security of all living organisms. Researchers are therefore placing an emphasis
on environmental safety and remediation from poisonous pollution (Andreozzi et al.
1999; Pathania et al. 2016).

Many methods of environmental remediation with respect to the removal of
pollutants from contaminated water have thus been developed by researchers
(Pathania et al. 2015). The primary focus is on converting hazardous wastewater
into safe potable drinking water. Among the various methods developed, the
advanced oxidation method (AOM) is the most suitable for wastewater treatment.
AOM is carried out for wastewater remediation in numerous industries by using
chemical treatment processes. It has been used in the degradation of organic pollut-
ants from the environmental wastewater samples because it produces efficient
reactive and active oxidants from the ozone, photocatalyst, and H2O2 under UV
light irradiation. The generation of more radicals results in the conversion of toxic
organic matter to nontoxic matter (Yao 2013). AOM is an eco-friendly chemical
process for the removal of wastewater treatment. It also has some advantages
including fast degradation reaction rates and nonselective oxidation of organic
pollutants and degrades the multiple toxic pollutants simultaneously in wastewater
treatment. This method is primarily based on the Fenton reaction, ultrasound reac-
tion, ozonation, and photocatalysts (Bremner et al. 2009). This advanced oxidation
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process produces oxidizing agents which include hydroxyl radicals (HO.), superox-
ide radical (O2

�), and hydrogen peroxide (H2O2), and these degrade the natural
pollutants by oxidizing them (Chong et al. 2010).

In order to enhance the rate of the oxidation process, several photocatalysts have
been employed. Among them, heterogeneous photocatalysts are a green technique
for the photocatalytic degradation of poisonous pollutants (Khan et al. 2013).
Nowadays, semiconductor substances have been used as photocatalysts for the
wastewater remediation because of their low cost, fast degradation of organic
pollutants, and eco-friendly nature (Cho et al. 2015; Ibhadon and Fitzpatrick
2013). Titanium dioxide in particular has demonstrated superior photocatalytic
activity for the degradation of the poisonous organic pollutants and wastewater
treatment because of its low cost, long-term stability, optical properties, biocompat-
ibility, electricity storage potential, and nontoxicity (Khan et al. 2014a, b, c, d;
Kalathil et al. 2013; Tatsuma et al. 2001; Sajan et al. 2016; Tong et al. 2012; Anpo
and Tackeuchi 2003; Al-harbi et al. 2011). However, the TiO2 nanocatalyst does not
absorb light energy well in the UV and visible regions due to massive bandgap
energy (3.2 eV) which has resulted in poor photocatalytic activity (Malato et al.
2009).

Nowadays, different approaches aimed at improving the photocatalytic behavior
of TiO2 nanoparticles have been adopted. These include surface change, doping,
coupling, and creation of oxygen emptiness (Gua et al. 2014; Venieri et al. 2015;
Wang et al. 2012; Gnanasekaran et al. 2016; Li et al. 2016; Saravanan et al. 2018a,
b). The surface change on TiO2 nanoparticles is vital for photocatalytic utility,
wherein polymers blended into a TiO2 nanocomposite have exhibited remarkable
and unique activities as both sensors and photocatalysts (Camara et al. 2014; Li et al.
2012; Romero-Sáez et al. 2017; Shankar et al. 2011a, b).

In this book chapter, an emphasis is placed on biopolymers (chitosan,
carboxymethyl cellulose, and sodium alginate) and conducting polymers
(polyaniline, polythiophene, polypyrrole) coated on TiO2 nanocomposites for the
photocatalytic degradation of dyes. These polymers are coordinated with TiO2 to
present polymer TiO2 nanocomposites. Polymer TiO2 nanocomposites have the
distinct advantages of ease of separation, decreased electron–hole recombination
rate, and decreased bandgap energy leading to accelerated photocatalytic activity
underneath both UV and visible light irradiation.

7.1.1 General View of Photocatalyst

The photocatalyst is defined as a catalyst which increases the rate of the chemical
reaction under the light energy absorption without undergoing any structural
changes (Serpone and Pelizzetti 1989; Khan et al. 2015). Titanium dioxides (TiO2)
are n-type semiconductor materials which have been extensively used as
photocatalysts. These popular photocatalysts have demonstrated different properties
along with different structures, low cost, less harm to the environment, easy material
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preparation at room temperature, photostability, and narrow bandgap energy of
3.2 eV (Yu et al. 2005). Commonly, the development of TiO2 photocatalysts
involves the photocatalytic degradation response of environmental pollutants
under UV light and visible light irradiation.

The mechanism of the photocatalytic reactions is dependent upon the excited
state of the catalyst and ground state of the substrate (Ohama and Van Gemert 2011).
Photocatalysts of the photochemical reaction include both homogenous and hetero-
geneous catalysts. However, the heterogeneous photocatalyst which is used as a
solid state along with different phases of reactants is more commonly used and
includes the TiO2 semiconductor catalyst (Nursam et al. 2015). In this case the
heterogeneous photocatalyst is used as a stable state along with distinct phases of
reactants and TiO2 semiconductor catalysts (Nursam et al. 2015). TiO2 semiconduc-
tor material contains a valence band and a conduction band corresponding to holes
and electrons occupied on it, respectively (Sahoo et al. 2015). The bandgap energy is
calculated as the difference in energy barrier between the valence band (VB) and the
conduction band (CB). This bandgap energy may be important for photocatalytic
reactions under both UV and visible light irradiation and also provides an indicator
of the quality of photocatalytic activity. TiO2 nanoparticles are produced in the
electron donor region of the conductance band and electron acceptor region of the
valence band while absorbing light energy. Both bands of TiO2 nanoparticles are
involved in the redox reaction which degrades organic pollutants in the environment
(Kharisov et al. 2016). The bandgap energy is either higher or lower than the original
bandgap energy, while light energy is absorbed on TiO2 semiconductor materials. A
positive charge is formed at VB, and a negative charge of electrons is created at CB,
when the electron moves from the VB to CB after energy absorbing (Evans et al.
2013). This kind of TiO2 semiconductor catalyst is involved in the redox reaction
with environmental pollutants (Qamar et al. 2015). This oxidation and reduction
reaction for the degradation of pollutants results in a creation of positive charges
(holes) on VB and negative charges (electrons) on CB (Sakar et al. 2016).

The oxidation reaction is driven by hydroxyl radicals (•OH) from water, and the
reduction reaction proceeds via superoxide radicals (O2

•�) from oxygen molecules
by using the TiO2 catalyst. Both radicals enhance the oxidation power for the
photocatalytic degradation of organic pollutants (Djokic et al. 2012). The recombi-
nation of electrons–holes occurs between VB and CB due to the production of heat
energy and the loss of electron and holes. Sometimes, electron and holes result in
opposite reactions which are carried out on the TiO2 semiconductor material (Panda
2009). The recombination of electrons–holes involves two processes within the
photochemical reaction such as non-radiative recombination and radiative recombi-
nation processes which are obeyed through the photochemical application. Light
energy is produced by the radiative recombination method, and heat energy is
generated by non-radiation recombination processes (Fulay 2016). The semiconduc-
tor of TiO2 nanoparticles has been employed as a photocatalyst for the photochem-
ical degradation of organic pollutants. However, it has attracted less interest due to a
high electron–hole recombination charge (Ibhadon and Fitzpatrick 2013).
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Fluorescence spectroscopy is an instrumental technique which is used for the
determination of electron–hole recombination rate, electron–hole transfer, and trap-
ping and migration of the TiO2 photocatalyst. Pure TiO2 nanoparticles have
exhibited good photocatalytic abilities for the degradation of organic pollutants
due to reduced luminescence and low electron–hole recombination charge rate
(Ohtani 2013; Ma et al. 2011). The electron–hole recombination rate is based totally
on the synthesis of the TiO2 nanoparticle catalyst and different types of
photodegradation of organic pollutants (Zhang and Yates 2012). The excitation of
electrons which move from VB to CB and the holes created at VB depends on the
extent of absorption of light energy by the TiO2 nanoparticles and also results in
either an equal or higher energy than the original bandgap energy. The electron–hole
recombination rate is dependent on the extraordinary trapping states of the TiO2

nanoparticles because of the excitation of electrons–holes.
The TiO2 semiconductor catalyst exists in two types of trapping states which

include the shallow and deep states, and these states are generated from defects and
impurities. These types of states of TiO2 nanoparticles have demonstrated good
photocatalytic activity because of electron–hole charge carriers on the catalyst (Hall
1952; Shockley and Read 1952). The non-radiative recombination rate produces
heat energy from light energy, and this is shown by time-resolved photoacoustic
spectroscopy (TRPAS) (Schneider et al. 2014). The heat energy is formed within the
agglomerated TiO2 semiconductor nanoparticles. However these nanoparticles still
display superior properties which include large surface area, better adsorption
properties, and increased photocatalytic degradation rate of organic pollutants
(Mendive et al. (2011).

The electron–hole recombination rate is determined by time-resolved absorption
spectroscopy (TAS). The improvement of photocatalytic activity depends on the
electron–hole recombination rate that is combined with a different property such as
electron–hole trapping, interfacial charge transfer, and temperature (Skinner et al.
1995; Colombo and Bowman 1996; Katoh and Furube 2011). The detailed mech-
anism of photocatalytic degradation reaction is shown in Fig. 7.1.

7.1.2 Bandgap Energy Levels with Metal Oxide
Semiconductors

Nowadays, the photocatalytic degradation of organic pollutants is accomplished
with metal oxide semiconductor nanoparticles, which have a low bandgap energy
(Mamba and Mishra 2016). Different metal oxides possess different bandgap ener-
gies, where TiO2 has been extensively used as a photocatalyst for the degradation of
environmental pollutants because of photostability, nontoxicity, low cost,
eco-friendly nature, and thermal stability (Khan et al. 2014a, b, c, d; Sellappan
2013). Although TiO2 nanoparticles have some inherent disadvantages such as fast
electron–hole recombination rate and less quantum efficiency, these metal oxide

7 TiO2-Based Nanocomposites for Photodegradation of Organic Dyes 155



nanoparticles are used under different types of light irradiation such as UV light,
visible light, and infrared light irradiation (Chen et al. 2016a, b). It has been mostly
used in the photocatalytic degradation of organic dyes under UV light irradiation
because of its large bandgap energy (3.2 eV) (Daghrir et al. 2013). Researchers have
developed modified TiO2 nanoparticles with reducing the bandgap energy and
electron–hole recombination rate for efficient catalytic degradation of organic dyes
under UV and visible light irradiation (Wang et al. 2015). Thus different modified
materials have been used for improving the photocatalytic activity of TiO2

nanoparticles, and these include modifications with metals, nonmetals, noble metals,
various semiconductors, and polymers. The different bandgap energies of various
semiconductors are shown in Fig. 7.2.

7.1.3 Advantages of TiO2 Photocatalyst Semiconductor

The semiconductor substances of TiO2 nanoparticles have been used in adsorption,
reverse osmosis, ion exchange, renewable power applications, and wastewater
treatment (Nakata and Fujishima 2012; Konstantinou and Albanis 2004; Fujishima
et al. 2000; Rajeshwar et al. 2008; Rehman et al. 2009). It is also used in hydrogen
generation from environmental samples. The various applications are shown in
Fig. 7.3. So, the applications of TiO2 nanoparticles are by no means limited to
photocatalytic applications.

Fig. 7.1 Mechanism of photocatalytic degradation of organic dyes
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7.1.4 Doping of Photocatalyst

The distinctive metal oxide nanoparticles which have been used as photocatalysts for
environmental water remediation are ZnO, SnO2, CeO2, ZrO2, TiO2, and CuO.
Among them, TiO2 nanoparticles have shown superior abilities as photocatalysts,
with respect to good photostability and higher bandgap energy. Although it has a few
drawbacks like higher electron–hole recombination rate (Rothenberger et al. 1985),

Fig. 7.3 Schematic
diagram of TiO2

photocatalyst applications

Fig. 7.2 Bandgap energy levels of different metal oxide nanoparticles
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UV light energy absorption, and less photocatalytic activity (Serpone et al. 1994),
these problems have been overcome by a few surface amendments that are needed
for the TiO2 nanoparticles. The surface modifications include modifications with
metals, metal oxides, nitrogen (N), sulfur (S), carbon (C), fluorine, and polymers
which increase the photocatalytic activity under the visible light irradiation, reduce
the bandgap energy, and minimize electron–hole recombination rate. The metal
oxide doping on TiO2 nanoparticles reduced the bandgap energy and enhanced the
photocatalytic activity in the visible region (Saravanan et al. 2011). The combined
structures of Au/TiO2, ZnO/SnO2, and CeO2/Au had been shown the splendid
photocatalytic activity (Khan et al. 2014a, b, c, d; Cun et al. 2002; Khan et al.
2014a, b, c, d). The polymer-based TiO2 nanocomposites are PANI/TiO2, PPy/TIO2,
and PT/TiO2 (Salem et al. 2009; Zhang et al. 2014). These types of nanocomposite
have decreased the drawbacks of pure metal oxide TiO2 nanocomposite and resulted
in high photostability, high visible light energy absorption, and high electron–hole
transfer and reduced the electron–hole recombination rate. The schematic diagram of
doping photocatalyst mechanism is shown in Fig. 7.4.

7.2 Polymer Nanocomposites for Photocatalytic
Applications

The semiconductor TiO2 nanoparticles have been used for the photocatalytic degra-
dation of toxic pollutants in the solid phase, and these have shown less
photocatalytic activity with low surface area (Vaez et al. 2012). Modified TiO2

nanoparticles in the form of nanocomposite materials with carbon materials, silica
particles, cellulose materials, and polymers have therefore been prepared and used in

Fig. 7.4 Mechanism of doped photocatalyst for the degradation of organic dyes
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photocatalytic applications. These polymer nanocomposites have performed better
at the photocatalytic degradation of organic pollutants (Matos et al. 2007; Mansilla
et al. 2006; Shironita et al. 2008; Jin et al. 2007, Sriwong et al. 2008). TiO2

nanocomposites have improved surface areas, high degradation rate constants, and
excesses of hydroxides radicals and thus have resulted in an increase in percentage of
degradation efficiency (Shan et al. 2010). Among them, polymer-capped TiO2

nanocomposites have demonstrated excellent photocatalytic degradation of organic
dyes because of increased photocatalytic activity, low-cost materials, high abun-
dance, photostability, inert materials, and good oxidation capability (Han and Bai
2009; Magalhães et al. 2011).

Biopolymer-capped TiO2 nanocomposites have displayed great photocatalytic
activities because of lower bandgap energy. These produce positive charge holes
(h+) within VB and the negative charge of the electron (e�) in the CB when light
energy is absorbed. Since biopolymers are used to reduce the bandgap energy and
electron–hole recombination rate of TiO2 nanoparticles, electrons are reacted with
O2 to form O2

�.radicals in the CB band, whereas VB produce the more positive
charge of holes, and it is producing the excellent oxidation of H2O to .OH radicals.
Both radicals of O2

� and .OH are excellent oxidizing agents for the degradation of
organic dyes under sunlight irradiation and also result in complete mineralization
into carbon dioxide and water (Afzal et al. 2016). Therefore, biopolymer-capped
TiO2 nanocomposites have shown excellent photocatalytic degradation of organic
dyes under visible light irradiation as shown in Fig. 7.5.

The conducting polymer TiO2 nanocomposites have been used as photocatalysts
for the degradation of organic dyes under visible light irradiation. The conducting
polymers are p-type semiconductors, and TiO2 is an n-type semiconductor. P-type
semiconductor polymers are absorbed under light energy and have created the hole
in highest occupied molecular orbital (HOMO), and the electron in the lowest

Fig. 7.5 Mechanism of photocatalytic degradation of organic dyes with biopolymer-capped TiO2

nanocomposites as photocatalyst
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unoccupied molecular orbital (LUMO) has very energetic electrons, and it effort-
lessly transferred into the conduction band (CB) of n-type TiO2 semiconductor
nanoparticles. This results in the photoreduction of oxygen to superoxide anion.
Whereas HOMO of hole collected electrons from the valence band (VB) of TiO2 to
create the recombination processes. As a result of a hole is produced in the VB of
TiO2 drives the photooxidation process (Liu et al. 2015). The number of electrons is
added into the CB of TiO2 nanoparticles, and more holes are created at the VB of
TiO2 nanoparticles. It becomes more oxidizing radicals on TiO2 nanoparticles to
increase the degradation of organic dyes under the visible light irradiation
(Rasoulifard et al. 2017). The conducting polymer-capped TiO2 nanocomposites
exhibited the good photocatalyst under sunlight irradiation. Hence, these
nanocomposites increased the photocatalytic activity under the sunlight irradiation
because of conducting polymers, and biopolymers decreased the electron–hole
recombination in the TiO2 nanoparticles to enhance degradation of organic dyes
(Lee et al. 2012; Abdelwahab and Helaly 2017). The schematic diagram of the
photocatalytic mechanism of conducting polymer TiO2 nanocomposites is shown in
Fig. 7.6.

Fig. 7.6 Mechanism of photocatalytic degradation of organic dyes with conducting polymer-
capped TiO2 nanocomposites as photocatalyst
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7.3 Biopolymers Based on TiO2 Nanocomposites
as Photocatalyst

Biopolymers are capping agents for TiO2 nanoparticles, and these have been pro-
duced for reducing toxic organic dye concentrations from environmental samples.
The TiO2 nanoparticles have been capped with chitosan, carboxymethyl cellulose
acetate, and sodium alginate, and these nanocomposites have shown superior
photocatalytic activity when compared with pure TiO2 semiconductor nanoparticles.
Such biopolymers are also easily available; contain various functional groups of OH,
NH2, and COOH; are biocompatible and nontoxic; and have good coordination with
TiO2 nanoparticles. These nanocomposites have thus demonstrated the excellent
photocatalytic activity for the degradation of dyes (Guibal 2005).

7.3.1 Chitosan Coated on TiO2 Nanocomposite
as Photocatalyst

These nanocomposites of TiO2 nanoparticles have been utilized for the degradation
of organic dyes and have also demonstrated superior characteristics such as lower
energy of absorption, good resistance, and good photocatalytic activity and are
prepared at room temperature (Ohtani et al. 1997). Although this has the important
drawback of TiO2 nanoparticles being not easily recovered and recycled after
applied photocatalytic degradation of organic dyes, chitosan-capped TiO2

nanocomposites easily solved the abovementioned problem due to easy recovery
and reusability and also rendered a more efficient photocatalytic degradation of
organic dyes. Such a material also demonstrated easily controlled size and improved
the surface area and good adsorption capacities (Wan Ngah et al. 2011; Xiang et al.
2015). TiO2 nanoparticles can exist in both rutile and anatase forms, and of these two
forms, anatase exhibited the better photocatalytic activity under visible light irradi-
ation when compared to the rutile structure. These anatase TiO2 nanoparticles can
without difficulty be modified to enhance photocatalytic efficiency and increase
surface area and are easily size controlled (Bickley et al. 1991). Chitosan/TiO2

nanocomposites confirmed that better adsorption and good photocatalytic degrada-
tion of organic dyes of methylene blue and benzopurpurin can be achieved due to the
basic nature of the dyes that is bound and cationic nature of chitosan in the TiO2

nanocomposite under UV light irradiation. This nanocomposite has delivered the
excellent degradation of the basic organic dyes due to the reduced size of TiO2

nanoparticles with acetate groups of chitosan easily coordinating with the TiO2

nanoparticles (Haldorai and Shim 2014).
Chitosan/TiO2 nanocomposite is mostly prepared by the chemical precipitation

method, which has shown longer thermal stability and good crystalline nature. It has
shown fast degradation of methylene blue under UV light irradiation within 3 h, and
it showed a high percentage of degradation efficiency of about 90%, reusability, and
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photostability, and it is easily recoverable (Zubieta et al. 2007). The photocatalytic
studies of the degradation of methyl orange with chitosan/TiO2 nanocomposites and
TiO2 nanoparticles under UV light irradiation were compared. Here it is noted that
the chitosan/TiO2 nanocomposite performed better at the photocatalytic degradation
of methyl orange under UV light irradiation than pure TiO2 nanoparticles because of
the controlled size of the TiO2 nanoparticles, the large surface area of TiO2

nanoparticles, and the higher energy of absorption by using chitosan polymer as
the surface. The above properties are also used to increase the photocatalytic
degradation of methyl orange dyes under UV and visible light irradiation (Saravanan
et al. 2018a, b). This nanocomposite had increased the surface area and feasible
photocatalytic activity due to chitosan biopolymer as a surface support for TiO2

nanoparticles. Chitosan/TiO2 nanocomposite showed a decrease in photocatalytic
activity with corresponding increase in the negative charge of methyl orange dye
because of the negatively charged surface of chitosan/TiO2 nanocomposite which
increased the electrostatic repulsion between them (Fajriati et al. 2014). Chitosan/
TiO2 nanocomposite is also prepared as the multilayered coating on glass slides. The
multilayered coating of the nanocomposite preparation processes is made with glass
slides coated onto chitosan/TiO2 solution. The multilayered coating of chitosan/TiO2

nanocomposite on glass slides exhibited spherical shapes and a well-defined crys-
talline nature of metal oxide which was confirmed by X-ray diffraction. This material
also exhibited improved photocatalytic activities for the degradation of methyl
orange dye. This catalytic efficiency of methyl orange dye is dependent upon the
thickness of chitosan/TiO2 nanocomposite coated on the glass slides. The
photocatalytic degradation rate decreased with increased coating layer thickness. It
was also noted that the adsorption of properties of methyl orange increased and the
photocatalytic activity reduced under UV light irradiation. Methyl orange is readily
degraded by chitosan/TiO2 nanocomposite under UV light irradiation due to its
cationic nature and the negative charge of the chitosan/TiO2 nanocomposite which
promotes electrostatic interactions (Xiao et al. 2015).

Chitosan-supported TiO2 nanocomposite is prepared by immobilization pro-
cesses, wherein chitosan is an immobilization agent for the formation of the
chitosan/TiO2 nanocomposite. This nanocomposite acts as the photocatalyst for
degradation of organic dyes and the effect of parameters such as the dosage of
catalyst, and the pH of the solution of the dye have been investigated. This
nanocomposite can be recovered and reused after photodegradation of dyes solution
to a greater extent than pristine TiO2 nanoparticles (Dhanya and Aparna 2016). This
photocatalyst is therefore an effective tool for clean environments and purification of
water. Toxic dyes of reactive red, methylene blue, and rhodamine B were converted
from harmful to harmless forms by using the chitosan/TiO2 nanocomposite catalyst
under UV light irradiation (Essawy et al. 2017). Chitosan/TiO2 nanocomposite has
shown great photocatalytic activity with organic dyes under UV light irradiation due
to the synergetic interaction between the biopolymer of chitosan and metal oxide of
TiO2 nanoparticles (Škoric et al. 2016). The photocatalytic activity of chitosan-
capped TiO2 nanocomposite has also been investigated with the different parameters
such as catalyst dosage, pH variation, and initial concentration of dye. This
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nanocomposite exhibited excellent percentage of degradation of dyes in the presence
of H2O2, where H2O2 produces a lot of hydroxide radicals, and it also increases the
photocatalytic activity. Additionally, chitosan/TiO2 nanocomposite also shows good
adsorption properties (Hasmath Farzan and Sankaran Meenakshi 2014).

Chitosan/TiO2 nanocomposites with three-dimensional macroporous structures
are prepared by using the template method. The three-dimensional macroporous
structure is obtained with varying concentrations of the solutes chitosan and TiO2

and varying freezing rate of chitosan/TiO2 nanocomposite. Another scaffold
macroporous morphology of chitosan/TiO2 nanocomposite is prepared by the mono-
lith method with a sol solution of anatase of TiO2 nanoparticles and
glycidoxypropyltrimethoxysilane (GPTMS) cross-linked. Potassium-titanate
(K-TiO2) and degussa P25 titanium dioxide (P25 TiO2) are immobilized on the
chitosan scaffold structure of polymer. These nanoparticles are incorporated onto the
channel walls of the chitosan scaffold compound as a result of increases in the
mechanical properties and increased photocatalytic activity. The chitosan/TiO2

microstructure is prepared by monolith processes and increases the mechanical
stability in chitosan/TiO2 nanocomposite when compared to both potassium-titanate
(K-TiO2) and degussa P25 titanium dioxide (P25 TiO2). This scaffold morphology
of the chitosan/TiO2 nanocomposite resulted in excellent photocatalytic activity for
the degradation of methylene blue when compared to pure anatase TiO2

nanoparticles (Suwanchawalit et al. 2009; Zhao et al. 2017).

7.3.2 Alginate Coated on TiO2 Nanocomposite
as Photocatalyst

TiO2 nanoparticles were embedded onto the polyacrylamide/calcium alginate
(PAM/CA) to give PAM/CA/TiO2 nanocomposite for the degradation of the organic
dye of methyl orange under visible light. This nanocomposite has special properties
such as easy recovery from the degraded dye solution and increase in percentage of
degradation efficiency (80.8%) in presence of sodium chloride concentration (Wei
et al. 2016). TiO2/calcium alginate (T/CA) nanocomposite is synthesized by using a
cross-linker agent in aqueous solution. T/CA nanocomposite has good thermal
stability and biocompatibility due to calcium alginate capped on TiO2 nanoparticles
and also proved to be an excellent photocatalyst for the degradation of the organic
dye of methyl orange under UV light irradiation. For the photodegradation study,
low catalyst dosage was needed for the degradation of the organic dye methyl orange
dye. This nanocomposite was effortlessly recovered from the dyes after
photocatalytic treatment and was also applied in wastewater treatment because of
its low cost and very easy preparation method (Zhao et al. 2014). Alginate-supported
TiO2 nanocomposite (Alg/TiO2) beads are characterized by their physicochemical
stability when compared to pure alginate (Alg) under UV light irradiation in the
aqueous medium. The diameter and mass of both beads of pure alginate and alginate/
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TiO2 nanocomposite are evaluated under UV light irradiation. The beads created the
cavity for exposure to UV light irradiation. From the analysis pure alginate is easily
broken from the glycosidic bond in biopolymer chain, but alginate/TiO2

nanocomposite is not broken because of alginate’s strong bond with TiO2 metal
oxide nanoparticles under UV light irradiation. Although TiO2 nanoparticles can be
easily separated from the beads by using an external environmental, it has shown
excellent photocatalytic activity when compared to pure alginate. It is also used for
the degradation of organic dyes from environmental samples. TiO2 nanoparticles are
incorporated with alginate beads, and it is applied in photocatalytic applications of
the dye. Alg/TiO2 nanocomposite has demonstrated good physicochemical stability
and better photocatalytic degradation of the cationic dye solution under UV light
irradiation. This nanocomposite has shown better photocatalytic under UV light
irradiation when compared to TiO2 nanoparticles (Lam et al. 2017).

Barium ion immobilization on the alginate/carboxymethyl cellulose (CMC) poly-
mer composite is encapsulated on TiO2 nanoparticles to give a (Ba/Alg/CMC/TiO2)
nanocomposite by using the dissipative convective method followed by the freeze-
drying procedure. Ba/Alg/CMC/TiO2 hydrogel nanocomposite has shown better
photocatalytic activity for the degradation Congo red dye under sunlight irradiation
(Thomas et al. 2017). This photocatalyst hydrogel nanocomposite is easily reused
and recovered from the photocatalytic degradation of Congo red dye solution due to
TiO2 immobilization on barium/alginate/carboxymethylcellulose gels to perfect the
crystalline material. Ba/Alg/CMC/TiO2 nanocomposite hydrogel was used to
degrade Congo red to harmless products, and it is also a low-cost material and
eco-friendly material (Thomas et al. 2016). The photocatalyst paper sheet is prepared
by using various ratios of TiO2/sodium in the alginate nanocomposite. The modified
photocatalyst paper with TiO2/sodium alginate nanocomposite was tested for the
chemical oxygen demand of wastewater treatment. It is also proved to be an efficient
photocatalyst for the removal of chemical oxygen demand in wastewater treatment.
The use of sodium alginate as a biopolymer increased the adhesion of nanoparticles
to paper fibers and reduced the harmful effect of the photocatalyst on them. The
obtained results confirmed the possible utilization of the modified paper in both
hygienic and food packaging applications (Abdel Rehim et al. 2016).

7.3.3 Carboxymethyl Cellulose Based on TiO2

Nanocomposite as Photocatalyst

TiO2/carbon/cellulose fiber is prepared by the papermaking method. TiO2

nanoparticles are coated on carbon fibers of cellulose fibers as raw materials, and
also Na2SiO3 and Al2(SO4)3 are used as adhesives to distribute the small carbon
fiber. The TiO2/carbon fiber paper catalyst enhanced the photocatalytic degradation
of methyl orange in presence of adhesive sodium silicates than aluminum sulfate as
adhesive. The TiO2/carbon fiber nanocomposite paper catalyst demonstrated
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excellent photocatalytic activity for the degradation of methyl orange dye when
compared to poly(amidoamine-epichlorohydrin) (PAE) paper catalyst. TiO2/carbon/
cellulose fiber catalyst has exhibited good photocatalytic activity under UV light
irradiation and can be used repeatedly. This simple procedure is promising for the
manufacture of paper with high photocatalytic activity (Zhang et al. 2013). The
photocatalytic activity of TiO2 nanoparticles is exploited for the production of self-
cleaning textiles. Cotton-based fabrics are functionalized with TiO2 nanoparticle sols
with differing surface properties, and their photocatalytic efficiency was tested in
various experimental setups. The different types of TiO2 nanoparticles surface were
used for the photocatalytic degradation of dye and textile dyes under UV light
irradiation. TiO2 coated on a cellulose-based catalyst was more efficient for the
photodegradation of both rhodamine B and textile dyes when compared to pure TiO2

nanoparticles. The TiO2-coated cellulose material has exhibited better reaction and
good adsorption of the •OH for enhancement of the catalytic reduction of RhB
(Ortelli et al. 2014).

7.4 Conducting Polymers Based on TiO2 Nanocomposites
as Photocatalysts

The conducting polymers have demonstrated different properties which include
flexibility, electrical, optical properties, corrosion resistance, morphology, and tun-
able conductivity over their existing inorganic counterparts (Huang et al. 1986;
McCullough et al. 1993). The conducting polymers are incorporated onto TiO2

nanoparticles to give a nanocomposite which has the properties of electrical con-
ductivity, optical and mechanical (Shirakawa 2001). The conducting polymers are
joined with the inorganic substance of TiO2 nanoparticles to offer nanocomposites,
and these result in a large surface area of TiO2 nanoparticles and good dispersion and
increased the better performance for the photocatalytic degradation organic dyes
under the UV and visible light irradiation. Here, the conducting polymers of
polypyrrole, polythiophene, and polyaniline are combined with TiO2

nanocomposites for photocatalytic degradation of organic dyes under UV light and
visible light irradiation.

7.4.1 Polypyrrole Coated on TiO2 Nanocomposite
as Photocatalyst

Polypyrrole capped TiO2 nanocomposite is prepared with the resource of an in situ
polymerization technique with various ratios of PPy:TiO2. It has been used as a
photocatalyst for the photodegradation of the organic dye of methyl orange under
visible light irradiation. This nanocomposite exhibited fabulous photodegradation of
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methyl orange because of the synergetic impact of the polymer of PPy and TiO2

nanoparticles (Wang et al. 2008). Polypyrrole–TiO2 (PPy–TiO2) nanocomposite is
synthesized by oxidation polymerization method. Polypyrrole–TiO2 nanocomposite
has also been used for the photocatalytic degradation of methylene blue and methyl
orange dyes under UV light irradiation. This nanocomposite is likewise evaluated
with different catalyst dosage, the different initial concentrations of dye solution and
pH of dye solution. The PPy–TiO2 nanocomposite has shown efficient degradation
of methylene blue and acid oranges dyes (Sangareswari and Meenakshi Sundaram
2015). PPy–TiO2 nanocomposite was also used for the degradation of methylene
blue under solar light irradiation. Enhanced photocatalytic degradation of methylene
blue was observed under sunlight irradiation, and the PPy–TiO2 nanocomposite was
prepared through the chemical oxidation approach. This nanocomposite showed
better photocatalytic activity of methylene blue under sunlight irradiation when
compared to the other pure TiO2 nanocomposite. The repeatability of photocatalytic
activity was also examined. A possible mechanism was proposed and mentioned in
the principle of experimental outcomes. The methylene blue dye therefore becomes
successfully degraded by PPy–TiO2 nanocomposite under the sunlight irradiation.
The percentage of dye degradation was reported as 93% for PPy–TiO2

nanocomposite (Sangareswari and Meenakshi Sundaram 2017).
PPy/TiO2 nanocomposites are successfully prepared through the surface molec-

ular imprinting method. The MIP/PPy/TiO2 nanocomposites have shown better
adsorption potential and selectivity that PPy/TiO2 nanocomposites and the
photocatalytic activity of MIP/PPy/TiO2 are higher than that of PPy/TiO2 due to
the advent of the imprinted cavities at the surface of MIP/PPy/TiO2 nanocomposites.
The size and shape of MIP/PPY/TiO2 nanocomposites and PPy/TiO2

nanocomposites were confirmed with the aid of SEM and XRD, and also
MIP/PPy/TiO2 nanocomposite is in the anatase crystalline shape. UV–Vis diffuse
reflectance spectra showed that the MIP/PPy/TiO2 photocatalyst absorbed extra
photons under visible light irradiation (Deng et al. 2012). TiO2 nanoparticles
included thin films of polypyrrole (ppy) on the air–water interface. Aqueous TiO2

nanoparticles while treated with H2O2 and left in a chamber of pyrrole vapor resulted
in the formation of a film at the interface and further to the bulk precipitate. The TiO2

containing PPy composite while transferred onto glass substrates had already com-
pleted the photocatalyzed decomposition of aqueous organic dyes like methyl
orange and methylene blue. The PPy–TiO2 nanocomposite films catalyzed the
reactions more efficiently than a suspension of TiO2 nanoparticles (Chowdhury
et al. 2005; He et al. 2014).

The solid nature of TiO2/polypyrrole nanocomposites is synthesized through a
simple one-step hydrothermal method. The nanocomposites are able to perform
efficiently under visible light. The photocatalysis is driven via their morphology
that makes use of an excessive amount of 4.5 nm TiO2 nanoparticles electronically
coupled to 200–300 nm polypyrrole granules. Polypyrrole acts because of the visible
light photosensitizer, and the photoactivity of the nanocomposite arises from the
electron transfer from the excited polypyrrole to TiO2 nanoparticles and further
through all the nanocomposite interfaces. The visible light photocatalysis was
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verified by means of methylene blue degradation (Dimitrijevic et al. 2013). One pot
synthesis of the polymer of polypyrrole and inorganic materials of TiO2

nanoparticles are combined together to give PPy–TiO2 nanocomposite with the
chemical oxidation method. PPy–TiO2 nanocomposite has displayed excellent
photocatalytic activity for the degradation of methyl orange under visible light
irradiation and additionally delivers a 100% degradation of methyl orange within
60 min which was higher than that of the pure TiO2 nanoparticles (55%). This
nanocomposite has also brought better photovoltaic performance than the pure TiO2

nanoparticles. By comparing the physical mixture of the PPy–TiO2 nanocomposite
and TiO2 nanoparticles, the improved activity of the PPy–TiO2 nanocomposite may
be attributed to the decreased charge transfer resistance, great electric conductance of
the PPy, and nano-sized structure of TiO2 and their synergetic impact (Baig et al.
2017). Titanium dioxide (TiO2) was modified by a silane coupling agent to improve
the dispersity before the polymerization. UV–visible analysis shows that the
PPy/TiO2 nanocomposites have a higher photocatalytic activity under natural light
than virgin TiO2 (Sun et al. 2013; Gao et al. 2016). The schematic diagram of the
photocatalytic mechanism of PPy/TiO2 nanocomposite is shown in Fig. 7.7.

7.4.2 Polythiophene Coated on TiO2 Nanocomposite
as Photocatalyst

The electron–hole recombination rate may be very high for pure TiO2 nanoparticles
and, additionally, less photocatalytic efficiency for the degraded organic dyes under
UV light irradiation (Wu et al. 1998; Zhang et al. 2008). It has some disadvantages
such as less adsorption of dyes, less binding with dyes, and poor stability (Wang
et al. 2003). Polythiophene conducting polymer is easily bound with the metal oxide

Fig. 7.7 Mechanism of photocatalytic degradation of organic dyes with PPy/TiO2 nanocomposite
as photocatalyst
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of TiO2 nanoparticles to give polythiophene/TiO2 nanocomposite as a photocatalyst
for degradation of organic dyes under the UV and visible light irradiation (Zhu and
Dan 2010). The polymerization of thiophene is conducted by using in situ polymer-
ization processes with TiO2 nanoparticles to form a polythiophene/TiO2

nanocomposite. This nanocomposite shows remarkable electron transfer at the
same time as the absorption light energy and better photocatalysts for the degrada-
tion of the organic pollutants of methyl orange dye under UV light irradiation (Zhu
et al. 2008). It has additionally brought the absorption peak at 400 nm, as a result of
good photocatalytic degradation of methyl orange dye under solar light irradiation.
Further, polythiophene/TiO2 nanocomposite easily adsorbs the dye molecules
because of the large surface area of TiO2 nanoparticles, which is dependent on the
conducting polymer of polythiophene activity. The concentration of polythiophene/
TiO2 nanocomposite increases with increasing photocatalytic efficiency and adsorp-
tion activity, and these types of activities are determined by the surface morphology
of the polythiophene/TiO2 nanocomposite. The photocatalytic efficiency study was
investigated with the pure conducting polymer of polythiophene, pure TiO2

nanoparticles, and polythiophene/TiO2 nanocomposite, wherein polythiophene/
TiO2 nanocomposite gave the highest photocatalytic efficiency (56.6%) when com-
pared to both pure polythiophene and pure TiO2 nanoparticles. The
photodegradation ability is due to the active site of TiO2 nanoparticles, not
polythiophene polymer. A large amount of polythiophene polymer on TiO2

nanoparticles has reduced the photodegradation of the organic dye of methyl orange
due to the fact active site TiO2 nanoparticles blocking. Based on this observation, the
large active sites are available in TiO2 nanoparticles, and also photocatalytic degra-
dation rate of methyl orange dye increased. Polythiophene/TiO2 nanocomposite is
mainly concentrated onto the surface property, which is associated with the amount
of polythiophene and TiO2 nanoparticles. The photocatalytic degradation observed
is primarily based on the quantity of polythiophene polymer and accelerates the
photocatalytic degradation of methyl orange dye (Li et al. 2008). The charge of
polythiophene/TiO2 nanocomposite and pure TiO2 was determined by zeta potential
measurements. The TiO2 nanoparticles become positively charged after modifica-
tion. These characterization methods are used to determine the ability of
photocatalytic degradation of methyl orange dye, the adsorption properties, and
low electron–hole recombination rate (Xu et al. 2010). Hence polythiophene/TiO2

nanocomposite has exhibited the better adsorption activity and also good
photocatalytic performance of methyl orange (Zhu et al. 2010). Polythiophene/
TiO2 nanocomposite was also tested for the photocatalytic degradation of methyl
orange dye under visible light irradiation. Here, TiO2 nanoparticles are mostly used
in the photocatalytic application under UV light irradiation. However,
polythiophene/TiO2 nanocomposite was used for the photocatalytic degradation of
methyl orange under visible light because of polythiophene acting as sensitizer and
fast electron transfer to the CB band of TiO2 nanoparticles. The CB band electron
interacts with O2 adsorbed on the TiO2 nanoparticles to give a superoxide radical,
which acts as a highly oxidizing agent to degrade the organic dye of methyl orange
dye. The polymerization of polythiophene has been conducted using different
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methods such as microemulsion and photoinduced polymerization of polythiophene,
and those methods have resulted in extraordinary morphology (Wang and Zhang
2013).

Polythiophene–TiO2 nanocomposite was prepared by the microemulsion method,
wherein TiO2 nanoparticles were used as coalescence. Polythiophene–TiO2

nanocomposite was applied to the photocatalytic degradation of textile dyes of
orange II and methyl orange under UV light irradiation. It showed better
photocatalytic degradation of textile dyes of orange II and methyl orange due to
low bandgap energy levels. The comparison of the photocatalytic ability was
determined with polythiophene–TiO2 nanocomposite and pure polythiophene poly-
mer alone. Polythiophene–TiO2 nanocomposite exhibited the highest
photodegradation of efficiency of textile dyes of orange II and methyl orange
because of the large surface area of the polythiophene–TiO2 nanocomposite. The
degradation rate of the polythiophene–TiO2 nanocomposite was higher than the pure
TiO2 nanoparticles because of bandgap energy level 2.0 eV for polythiophene–TiO2

nanocomposite and 3.2 eV for TiO2 nanoparticles (Cheng et al. 2012).
Polythiophene was coated on TiO2 nanoparticles to give polythiophene–TiO2

nanocomposite by the photoinduced polymerization method. But, the normal inter-
face method of the polythiophene–TiO2 nanocomposite is not stable for
photocatalytic applications, so it depends on light energy to create charge separation.
The photoinduced method has produced the polymer of polythiophene by using free
radical polymerization and also preparation of the polymer–TiO2 nanocomposite.
This method is suitable for the preparation of polythiophene–TiO2 nanocomposite
because of the charge carrier between the TiO2 and thiophene of monomer interface
(Strandwitz et al. 2010; Weng and Ni 2008). The sulfur contents of thiophene
monomer are the backbone for the synthesis of the polymer of polythiophene, and
the TiO2 nanoparticle is also used to prepare polythiophene–TiO2 nanocomposite
with the photoinduced polymerization method. The polythiophene–TiO2

nanocomposite has exhibited the excellent photocatalytic activity of RhB under
the UV and visible light irradiation (Xu et al. 2011).

Poly(3,4-propylenedioxy-2,20:50,200-terthiophene)/TiO2 nanocomposite and poly
(3,4-(2,2-dimethylenepropylenedioxy)-2,20:50,200-terthiophene)/TiO2

nanocomposite have been synthesized by using the solid-state method. Moreover,
the poly(3, 4-propylenedioxy thiophene)/TiO2 and poly(3,4-2,2-
dimethylenepropylenedioxythiophene)/TiO2 nanocomposites have been synthesized
under the abovesaid condition. The photocatalytic activities of the nanocomposites
were tested for the degradation methylene blue under the UV and visible irradiation.
FT-IR and UV-visible spectra confirmed that the composites showed the stable
country approach. The poly(3,4-propylenedioxy-2,20:50,200-terthiophene)/TiO2

nanocomposite and poly(3,4-(2,2-dimethylenepropylenedioxy)-2,20:50,2-
00-terthiophene)/TiO2 nanocomposite had a better oxidation degree and conjugation
length than others. This additionally indicated that the TiO2 nanoparticles had no
impact on the crystallinity of the composites. However these were properly embed-
ded inside the polymer matrix. Moreover, the very best degradation efficiency of
90.5% occurred in the case of the poly(3,4-propylenedioxy-2,20,50,200-terthiophene)/
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TiO2 nanocomposite (Jamal et al. 2014). The schematic diagram of the
photocatalytic mechanism of PTh/TiO2 nanocomposite is shown in Fig. 7.8.

7.4.3 Polyaniline Coated on TiO2 Nanocomposite
as Photocatalyst

PANI–TiO2 nanocomposites have been organized by the template-free method with
different contents of TiO2 nanoparticles. This nanocomposite showed outstanding
photocatalytic degradation of rhodamine B under visible light irradiation. Here 10%
of TiO2 coated on PANI nanocomposite exhibited higher photocatalytic degradation
than pure TiO2 nanoparticles and also lowered the recombination rate for electron–
hole separation. Additionally, nanorods and nanotubes of TiO2 coated on PANI
nanocomposite increased the photocatalytic activity and adsorption activity due to

Fig. 7.8 Mechanism of photocatalytic degradation of organic dyes with PTh/TiO2 nanocomposite
as photocatalyst
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extending the surface of TiO2. The photocatalyst of PANI–TiO2 nanocomposite was
prepared by a sol–gel method at room temperature because of the controlled size of
TiO2 nanoparticles (Olad et al. 2012; Jumat et al. 2017). PANI–TiO2 polymer
nanocomposite showed good photocatalytic degradation of methylene blue under
UV light irradiation within 60 min and also excellent optimum degradation (87%) at
pH 3. This PANI–TIO2 nanocomposite was also used for the photodegradation of
methylene blue with the different dosage, different concentrations of methylene
blue, and various pH. Adsorption characteristics on the PANIi-TiO2 surface and
the aqueous solubility of the dyes also play an important role in the photodegradation
of dye. The catalyst is involved in photocatalyst processes with two types of
reactions for degrading the organic pollutants first for adsorption of dyes on the
outer layer of catalyst, and the observed photodegradation of methylene blue was
21.5% with a ratio of PANI:TiO2 of 65.5%. Hydroxyl groups are important for the
photodegradation of methylene blue, in which they act as an oxidizing agent and
behave as reaction intermediates. PANI–TiO2 nanocomposite has demonstrated fast
photocatalytic degradation of methylene blue and high percentage degradation
efficiency. Photoreactivity of PANI–TiO2 nanocomposite was studied as a function
of pH of solution methylene blue solution, the dosage of catalyst, and concentration
of dye. The reaction rate constant (r) and equilibrium binding constant (K) values are
incredibly significant when compared to another catalyst (Ahmad and Mondal
2012).

The synthesis of PANI@TiO2 nanocomposite powder is synthesized by in situ
polymerization methods in which ammonium persulfate (APS) acts as an oxidizing
agent and TiO2 anatase powder as a precursor for nanoparticles under ice bath
conditions. The stable-state photocatalytic degradation of PANI@TiO2

nanocomposites was investigated under the ambient air for the development of a
photodegradable polymer. The PANI@TiO2 nanocomposite powders confirmed
particularly superior photodegradation and also decreased the ratio PANI:TiO2

nanocomposite. The ratio of PANI@TiO2 (1:3) led to a weight loss of 6.8% under
ambient conditions, but 0.3% weight loss after irradiation for 60 min was observed
under ambient conditions (Zhang et al. 2016). The PANI@TiO2 nanocomposites are
the combination of various ratios of inorganic/organic compounds with the in situ
polymerization method, and it was also applied for photocatalytic degradation under
UV light irradiation. The present observation shows that the photocatalytic method
can be effective for stable-segment PANI degradation and the PANI@TiO2

nanocomposite has the capability for use as a photodegradable product.
Photocatalytic degradation in the strong polymer matrix proceeded much quicker
than the direct photolytic degradation under air. The photocatalytic experiment
indicates that PANI@TiO2 nanocomposite resulted in an enhanced absorption and
photocatalytic performance compared with pure TiO2 or PANI, due to the decreased
recombination of the electron–hole pairs, efficient charge transport, and enhanced
charge separation efficiency. It was suggested that the PANI@TiO2 nanocomposites
are able to act as good photocatalysts in environmental purification (Chen et al.
2016a, b; Gilja et al. 2017).
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PANI/TiO2 nanocomposite was also used for the photocatalytic degradation of
rhodamine B, in which PANI/TiO2–50 nanocomposites demonstrated that the excel-
lent catalytic activity was achieved for the degradation of rhodamine B (RB) with a
degradation efficiency of (92%). This nanocomposite was used for the photocatalytic
degradation of organic pollutants like methylene blue. PANI is an important part of
the nanocomposite which involves the synthesis of different structures of TiO2

nanoparticles with carbonization processes. Pure TiO2 has a rutile structure with
99% during the carbonization reaction. In the case, PANI/TiO2 nanocomposite also
adopts the rutile structure during the carbonization method. This finding suggests
that the carbonization process leads to a PANI layer on the surface of the TiO2

nanoparticles which have a good impact on their crystalline structure. The initial
[TiO2]/[PANI] mole ratio has a significant effect on the anatase to rutile crystalline
ratio in carbonized PANI/TiO2 nanocomposites. The carbonized PANI layer is
observed on the surface of TiO2 nanocrystals. The carbonization process induced a
significant increase in the photocatalytic efficiencies of the nanocomposites. The
50:50 initial concentrations of the PANI/TiO2 nanocomposite exhibited notable
photocatalytic activity under UV light irradiation at 60 min, and it resulted in 99%
degradation efficiency of methylene blue when compared to the non-carbonization
of PANI/TiO2 nanocomposite under 6 h degradation of dye of the methylene blue
(57%) and pure TiO2 nanoparticles. PANI/TiO2 nanocomposite was also used for
the photocatalytic degradation of rhodamine B, in which PANI/TiO2–50
nanocomposites demonstrated that the excellent catalytic activity for the degradation
of rhodamine B (RB) with a degradation efficiency of (92%) when compared to the
non-carbonization with took 6 h for degradation irradiation time with 50% degra-
dation. It has been shown that an increase of the preliminary [TiO2]/[PANI] molar
ratio (sample TPC-80) induced a maximum efficiency in the degradation process of
methylene blue within 1 h. The obtained results revealed that the carbonized PANI/
TiO2 nanocomposites have a great potential for application in photocatalytic degra-
dation of organic pollutants. Also, there is large space for enhancement of their
photocatalytic activity through modifications in synthetic conditions (pH, acid
dopant, etc.) of non-carbonized precursors and optimization of the carbonization
process that would lead to a better dispersion of nanocomposites. These
nanocomposites were used for the degradation processes of other types of synthetic
dyes (acid, direct, and reactive) taking into account the enormous problem of
nondegraded textile dyes in effluents and consequently in water resources (Kalikeri
et al. 2018; Sarmah and Kumar 2011).

PANI/TiO2 nanocomposite is prepared with in situ oxidation polymerization
methods, and it has emerged in the degradation of methylene blue for photocatalytic
activity based on a prepared pattern. PANI/TiO2 nanocomposite is likewise more
desirable in the photocatalytic activity with exceptional pH variant, dosage variation,
and different initial dyes. PANI/TiO2 nanocomposite has attracted two kinds of
interests consisting of photosensitization and synergetic effects among TiO2 and
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PANI. This nanocomposite has the great photocatalytic activity and additionally
implemented the industrial waste water treatment (Yang et al. 2017). The black
anatase shape of TiO2 nanoparticles is prepared by using hydrothermal techniques,
and it has shown higher light absorption capacity and anticorrosivity activity toward
light irradiation. The black anatase of TiO2 nanoparticles integrated into polyaniline
to give PANI/TiO2 nanocomposite, and it confirmed the good photocatalytic degra-
dation of methyl orange under visible light irradiation. It also established the
enhancement of the electron switch compared to pure TiO2 nanoparticles. The
electron–hole recombination rate is reduced and additionally improved the
photocatalytic activity and showed the efficient dye sensitizer solar cells (Kavil
et al. 2017). The azo dye degradation was completed by nanofibers substances of
PANI/TIO2/PANI nanocomposite under visible light irradiation. These nanofibers
are synthesized by the electrospinning technique and additionally exhibited the
extremely good photodegradation efficiency (87%) after ten instances reused.
PANI/TiO2/PANI nanofibers showed higher degradation ability than the TiO2/
PANI nanofibers. These nanofibers also showed greater photocatalytic degradation
of organic pollutants under visible light irradiation without lack of activity (Sedghi
et al. 2017; Kumar et al. 2016; Lin et al. 2012). The schematic diagram of the
photocatalytic mechanism of PTh/TiO2 nanocomposite is shown in Fig. 7.9. The
brief detail of different biopolymers and conducting polymer-based TiO2

nanocomposites has been suggested for the photocatalytic degradation of organic
dyes as shown in Table 7.1.

Fig. 7.9 Mechanism of photocatalytic degradation of organic dyes with PANI/TiO2

nanocomposite as photocatalyst
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7.5 Conclusions

This chapter has reviewed the photocatalytic activity of composites of biopolymers
and conducting polymers with semiconductor TiO2 nanoparticles to polymer TiO2

nanocomposites. Polymer TiO2 nanocomposites are important photocatalysts for the
effective elimination of toxic organic dyes from environmental samples. The devel-
opments of the photocatalytic activity of polymer TiO2 nanocomposites have led to
enhanced photocatalytic degradation of organic dyes under the UV and visible light
irradiation. These polymer TiO2 nanocomposites are recollected and reused after
photocatalytic degradation approaches. These nanocomposites have been noted for
photocatalytic performance, reusability, and photostability. Those polymer
nanocomposites must now be applied for real industrial applications which warrant
the need for further studies on a scale-up applications.
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Abstract Photolysis or light activation of electrons to an energy excited state to aid
a release of energy could be utilized in many applications like industries and semi-
conductors as well as for antimicrobial action. This electron transfer mechanism is
widely being incorporated to metals and metal oxides or sometimes with
nanoparticles (NPs) to increase its reactivity. However, three forms of NP formula-
tions are used for antibacterial action like nanocomposites, doped NPs, and metal
oxide NPs. The preparation, synthesis, and antimicrobial application of the metal
oxide NPs are explained coherently in this chapter. Moreover, the future prospects of
these NP-assisted light-activated antimicrobial actions are also dealt in detail.

Keywords Photolysis · Nanocomposites · Doped nanoparticles · Metal oxides ·
Metal oxides NP synthesis · Antimicrobial action

8.1 Introduction

The photocatalysis process gained attention in the scientific world, since Fujishima
and Honda (1972) initially stated the use of TiO2 as a catalyst for water splitting
through solar energy conversion. Ever since, these suspended semiconductors
have been used widely as an agent of pollutant degradation, water purification,
indoor self-cleaning surfaces, as well antimicrobials (Kumar et al. 2018). In a
natural purification system, photocatalysis is initiated by sunlight (the ultraviolet
[UV] rays) by the breakdown of organic molecules. However, the antimicrobial
effect of this system is restricted. Thus, to promote specific redox reactions on
semiconductor surfaces through the employment of semiconductors and the incor-
poration of catalysts was introduced (Miller 1971). Since then, an enhancement in
the purification process and antibacterial action could be achieved to the expected
levels.

The photocatalytic reaction proceeds over a semiconductor powder through
several steps (Fig. 8.1) in accordance with band theory (electron transfer theory)
escorted by the interaction of photo-generated electrons and holes with the reactants
which potentially occurs at low temperatures. The bandwidth of the reaction cate-
gorizes the desirable light energy, reducing ability and oxidizability of the products.
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This even contributes to the lifetime of the generated catalyst (Tetsuya et al. 2011;
Saravanan et al. 2018a). Thus the activated electrons are highly reactive and could
produce reactive oxygen species, causing oxidative stress to the cell membranes and
thus the killing of bacteria. This may even happen through the interaction of such
electrons to the functional enzymes or proteins of the bacterial cells and hence pose a
threat to the progression of the microbes in their habitat (Tetsuya et al. 2011; Thakur
et al. 2017). This can even be achieved by altering the hydrogen adsorption prop-
erties of metals. A recent study has demonstrated that silver (Ag)-decorated TiO2

nanomaterials altered the hydrogen absorption and thereby the photocatalytic ability
(Saravanan et al. 2018b). Moreover, the metal nanoparticle (NP)-assisted
photocatalysts can be found in various industrial, medical, personal, and military
applications (Jiang et al. 2009). However, this chapter deals with the antimicrobial
action of the light-activated metal particles.

8.2 Nanoformulations for Antibacterial Action

It should be noted at this juncture that the properties of the NPs like composition, size,
properties, and doping effect add on to the applications of the NP-assisted
photocatalysis and its related antibacterial effect. The major three forms of NPs
used for antibacterial action are nanocomposites, doped NPs, and metal oxides. The
publications for various nanoformulation over past five yearrs are depicted in Fig. 8.2.

8.2.1 Nanocomposites

Nanocomposites are amalgams possessing dimensions in the nanometer range
(1 nm ¼ 10–9 m) and have emerged as suitable alternatives to incredulous

Fig. 8.1 Model of reaction,
charge separation, and
recombination over
photocatalyst. (Tetsuya et al.
2011; open access)
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restrictions of microcomposites and monolithic, due to their fundamental stoichiom-
etry composition at microphase (Roy et al. 2010; Rajendran et al. 2018), looking to
enter to the cell membranes of microorganisms and causing the desired effect. Since
the twenty-first century, researchers have reported that design distinctiveness and
proper combinations than conventional composites offer better applications in
industrial and health-care clinics (Schmidt et al. 2002). Even though the first
extrapolation of them was testified as early as 1992 (Gleiter), nowadays,
nanocomposites deal innovative technology (Choa et al. 2003). As in the case of
microcomposites, according to their matrix materials, nanocomposite materials can
be categorized in three dissimilar classes as shown in Table 8.1, namely, ceramic
matrix nanocomposites (CMNC), metal matrix nanocomposites (MMNC), and
polymer matrix nanocomposites (PMNC) with examples. The report of Saravanan
et al. (2016) has emphasized that an enhanced photocatalytic degradation and
electrochemical detection competence were observed in a ZnO/CeO2 (90:10)
nanoformulation.

Fig. 8.2 Number of publications on Google Scholar on light-activated nanoparticles for
antibacterial studies over the period 2013–2018 recovered from sources as a part of literature survey

Table 8.1 Different types of nanocomposites (Pedro et al. 2009; open access)

Class Examples

Ceramic Al2O3/SiO2, SiO2/Ni, Al2O3/TiO2, Al2O3/SiC, Al2O3/CNT

Metal Fe-Cr/Al2O3, Ni/Al2O3, Co/Cr, Fe/MgO, Al/CNT, Mg/CNT

Polymer Thermoplastic/thermoset polymer/layered silicates, polyester/TiO2, polymer/CNT,
polymer/layered double hydroxides

188 K. M. Varier et al.



8.2.2 Doped Metal Oxide NPs

Various attempts were done to shift metal oxide NP absorption into a visible light
region, which chiefly focus on the doping with transition metal ions (Choi et al.
1994; Nalage et al. 2015). Nonetheless, the limitations of doped metal oxide NPs,
such as the inclination to form charged carrier recombination centers, thermal
instability (Choi et al. 1994), and the exclusive accommodations for ion implanta-
tion, make metal-doped metal oxides unrealistic for its applications (Wang et al.
1999). During the last decade, anion doping of metal oxides was positively achieved
using anions of nitrogen (Asahi et al. 2001), carbon (Sakthivel and Kisch 2003),
sulfur (Umebayashi et al. 2002), phosphorus (Lin et al. 2005), and fluoride (Ho et al.
2006). Among these anion dopants, nitrogen appears to be the most operational
because of its metastable AX center formation, similarity in size to oxygen, and
lesser ionization energy (Park et al. 2002). The major long wavelength region
(>700 nm) in N-doped TiO2 and ZrO2 of absorption spectra is the significantly
improved absorption at which it offers better photocatalytic light activities at visible
range (Qiu et al. 2007). The active, visible wavelength of TiO2- and ZrO2-doped
complexes promises a varied array of antibacterial applications under visible light-
ening (Asahi et al. 2001).

8.2.3 Metal Oxide NPs

Due to the amplified reactivity and comfort of handling into useful electrode formats,
NP metal oxide photocatalysts are striking. However, their preparation is quite
tedious. The prompt bulk synthesis of photocatalytic NPs with consistent shape
and size via the cathodic corrosion method is used for the nifty research through
several composite metal oxides (Matthew et al. 2017).

Synthesis of Metal Oxide NPs

The method by which the metal oxide particles were synthesized is précised in Fig.
8.3. For the synthesis of H2WO4 particles, a tungsten wire is flooded with a KHSO4
solution (1 M). A voltage of 0 V to �10 V in the range square wave was applied
between a W wire (working electrode) and a tall surface area Pt foil (counter
electrode) occasioning in the instant materialization of the NPs. While submerged
in a 10 M NaOH solution, TiO2 nanowires were arranged with a titanium wire that
was exposed to an AC square wave in the range of 0 V to�10 V with a frequency of
100 Hz. Similarly, the BiVO4 NPs were produced by means of a vanadium wire
occupied in 10 mL of a mixture (1:1 by volume) of the saturated CaCl2 solution and
MilliQ water, to which saturated Bi2O3 solution was supplemented successively, by
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applying a �8 V to 2 V. Once synthesized, the resulting suspensions of NPs were
centrifuged at and elucidated in a UV-Vis spectrophotometer (Matthew et al. 2017).

8.3 Factors Affecting the Antimicrobial Action of NP Metal
Oxides

Many factors affect the antimicrobial action of the synthesized metal oxide NPs
which are light activated. The photocatalytic efficiency also varies according to the
temperatures used for synthesis of nanocomposites, the nature of the doping mate-
rials, as well as methods used for synthesis of nanocomposites (Saravanan et al.
2013a, b, c). Some of the aspects are listed below.

8.3.1 Size

The smaller size of NPs synthesized in a photocatalytic manner encountered anti-
microbial operations through fighting intracellular bacteria (Ranghar 2012). The
drugs of ordinary size pose limited impact on intracellular microbes (Andrade et
al. 2013). Because of antibiotics’ condensed membrane transport, an improved
treatment method using metal oxide NPs is developed to combat microorganisms,
which could excite its electrons upon photoactivation posing an ROS threat to the
microbes (Qi et al. 2013).

Fig. 8.3 Schematic depicting how cathodic corrosion was used to prepare H2WO4, TiO2, and
BiVO4 photocatalysts. (Matthew et al. 2017; copyright received)
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8.3.2 Protection

NP carriers like metal oxides (ZnO, CuO, etc.) could prevent the drug being resistant
to targeted bacteria. The presence of metal oxides very often shelters the NPs from
serious chemical reactions which are harmful for the potency of the assisted NPs for
its action against microbial population. Moreover, healthier efflux and condensed
endorsement of antibiotics in the bacterial cells (such as in E. coli, P. aeruginosa,
etc.) are the normal and significant explanations for bacterial resistance than tradi-
tional antibiotics. Nevertheless, investigators have demonstrated that abundant NPs
can incredulous this type of mechanisms (Muhling et al. 2009), preventing drug
resistance. For example, Roy et al. (2010) estimated the influence of TiO2

nanoparticles with different antibiotics against methicillin-resistant Staphylococcus
aureus (MRSA). However, TiO2 nanoparticles enhanced the antimicrobial effect of
cephalosporins, beta-lactams, glycopeptides, aminoglycosides, macrolides, tetracy-
cline, and lincosamides against MRSA.

8.3.3 Precision and Security

NP metal oxides can curtail side effects and precede antibiotics to the infection site.
When we use a beneficial carrier, we can moderate the side effects (including drug
toxicity) and can boost absorption at an anticipated site. The focused NP-based drug
delivery demands either active targeting or passive targeting (Xiong et al. 2012).

8.3.4 Controllability

Well-regulated constant discharge of drugs can be achieved passively. With the
appropriate NP drug release method, like metal oxide photocatalysts (Liu et al.
2016), they are operative even by dissimilar kinds of stimulatory factors (such as a
light, heat, and pH) (Lim et al. 2018).

8.3.5 Shape

The shape of NPs accounts for antimicrobial activity by interacting with periplasmic
enzymes causing gradations of bacterial cell damage, according to the shape of NPs
(Cha et al. 2015). A comparison of pyramid-, plate-, and sphere-shaped ZnO NPs
which exposed the β-galactosidase (GAL) rearrangement produced differential
photocatalytic activity (Prasannakumar et al. 2015). Pseudomonas desmolyticum
and Staphylococcus aureus were greatly affected with Y2O3 NP prismatic-shaped
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owing to the straight interaction among the NPs and the bacterial cell membrane
surface (Hong et al. 2016). Moreover, cube-shaped Ag NPs display tougher
antibacterial activity than the sphere-shaped and wire-shaped Ag NPs with similar
diameters, due to the specific facet reactivity and surface area (Actis et al. 2015)
consuming a smaller effect on microbiota susceptibility (Talebian et al. 2014). In
several studies, experimenters concluded that the nanostructures and its morpholog-
ical variations primarily account for its photocatalytic properties (Thangaraj et al.
2017; Qin et al. 2017).

8.3.6 Roughness

Roughness is another key factor acting in NP-assisted antibacterial action. As the
roughness of NPs rises, the size and the surface area-to-mass ratio upholding the
adsorption of bacterial proteins, followed by a reduction in bacterial adhesion, occur
(Sukhorukova et al. 2015).

8.3.7 Zeta Potential

Several researchers have authenticated the zeta potential of NPs has long-term
influence on bacterial adhesion. For example, the electrostatic magnetism between
the negatively charged cell membrane of bacteria and positively charged NPs has a
positive charge on its surface which are disposed to get adsorbed to microbial surface
(Pan et al. 2013) and enhances vascular permeability (Maeda 2010), through ion
exchange by limiting attachment of the bacteria (Fang et al. 2015). When the
negatively charged and neutral NPs are compared to its positively charged equiva-
lents, it is proved that the positively charged metal oxide NPs enhance the ROS
production, which primes to influential relations among the metal oxide NPs and the
bacterial surfaces (Arakha et al. 2015)

8.3.8 Doping Modification

Doping modification is another effective strategy to regularize the interaction of
bacteria with the desired type of NPs. The NPs used in clinics are now altered to
disperse in hydrophilic or aqueous environment aggregations using doping modifi-
cation techniques. For instance, the ZnO NPs doped with Au (Gold) to form ZnO/Au
co-doped nanocomposites were directed to progress photocatalytic activity by
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increasing ROS production. These effects are due to an altered metal oxide band-
width, improved light absorption for gold’s surface plasmon resonance wavelength,
and photoinduced charge carrier reactivity causing amplified electron-carrying effi-
ciency and its charge separation (He et al. 2014). The ZnO NPs have “O” content at
the surface that regulates antimicrobial activity against both Gram-positive and
Gram-negative bacteria (Mehmood et al. 2015).

8.3.9 Environmental Conditions

The environmental conditions in which the NPs should exhibit its action also affect
its antimicrobial function. One such condition is the temperature, which could
potentially alter the activity with respect to its effect on potential ROS production.
When ZnO NPs are stimulated by temperature variations, electrons are captivated at
its active site, which interact with oxygen molecules (O2), thereby advancing the
antimicrobial efficacy of the metal oxide NPs. Another factor is the decrease in the
pH, which potentates the rate of dissolute ZnO NPs production by elevating the
antimicrobial properties (Saliani et al. 2015). Certain results projected the proton-
ation of the imidazole molecules under acidic conditions which at times leads to
surface charge switching. At lower pH, the surfaces of the NPs were positively
charged being beneficial to the contact with the bacterial cell barrier stimulating
strong electrostatic multivalent regulation. Moreover, Li and his coworkers (2012)
proved that antibacterial tests in five types of media due to free Zn ions and zinc
complexes are mainly through ZnO NPs (Khan et al. 2016).

8.4 Mechanisms Through Which Metal NP Oxides Express
Antimicrobial Action

NPs attain its contact with the bacterial cells, the foremost step to achieve
antibacterial action through van der Waals forces (Armentano et al. 2014), electro-
static attractions, 86 and receptor-ligand hydrogen bond formations (Gao et al.
2014), and hydrophobic interactions (Luan et al. 2016), ensuring its entry to the
metabolic pathway and impelling the function and shape of its cell membranes. In
tail with it, NPs communicate with the bacterial cell’s basic components, such as
enzymes, lysosomal organelles, as well as DNA, causing oxidative insults, cell
membrane permeability alternations, heterogeneous changes, electrolyte balance
loss, protein deactivation, enzyme inhibition, and even alterations in gene expression
(Xu et al. 2016). However, the most frequently proposed mechanisms in the current
NP research focus on oxidative stress (Gurunathan et al. 2012), metal ion release
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(Zakharova et al. 2015), and non-oxidative mechanisms (Leung et al. 2014) about
which is explained in detail in the following sections.

8.4.1 Oxidative Stress and ROS Generation

Oxidative stress, generated by ROS (reactive oxygen species), is an efficient reason
for the antiseptic action of the synthesized metal oxide NPs. There are mainly four
types of ROS produced like the superoxide radical (O2

�), hydrogen peroxide
(H2O2), the hydroxyl radical (�OH), and singlet oxygen (O2) which reveal different
levels of activity and crescendos. For example, CaO and MgO NPs can generate
O2

�, whereas ZnO NPs can generate H2O2 and OH but not O2
�. In the meantime,

CuO NPs can yield the four mentioned types of reactive oxygen species. Studies
have indicated that O2

� and H2O2 reason minute stress reactions which are acute and
could be counteracted by the endogenous antioxidants, like superoxide and catalase
enzymes, although ROS could aggravate the microbial death. The principal cause of
ROS attacks is restructuring of cell membranes, defective sites, and oxygen vacan-
cies in their crystal forms, owing to sites of electron replacements (Malka et al.
2013). In a normal cell, the assembly and disassembly of ROS are poised. In
dissimilarity, with excessive ROS assembly, the situation gets unbalanced and cell
ultimately favors oxidation, which damages the organelles of microbes (Li et al.
2012; Peng et al. 2013).

8.4.2 Dissolved Metal Ions

Metal ions of the metal oxide NPs were gradually loosened over time after adhering
to the cell wall, monitored by uninterrupted interface with the functional groups of
biomolecules, such as amino (–NH), mercapto (–SH), and carboxyl (–COOH)
groups, enzyme inactivation, cell structure demolishment, and altering normal
physiological processes, eventually constraining the microbial progression. How-
ever, the influence of metal ions on the pH of lipid vesicles is insignificant as far as
the antibacterial course of metal oxide suspension is concerned. Thus, dissolved
metal ions are not the foremost reason for the antimicrobial machinery of metal oxide
NPs (Yu et al. 2014). By the same token, a study revealed that superparamagnetic
iron oxide counteracts with microbial cells by unswervingly penetrating the mem-
brane of the cell by interfering with the transmembrane electron transfer. Further-
more, heavy metal ions could incidentally perform as transporters of many
antimicrobial substances (Hussein et al. 2014).
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8.4.3 Non-oxidative Mechanisms

The pioneer study of Leung et al. (2014) revealed that antibacterial machineries of
NPs are unconnected to the membrane lipid peroxidation followed by oxidative
stress, based on the many observations, chiefly:

1. In the absence of intact cell membrane of microbes and surface pores are
distinctly visible, metal oxide (MgO) NPs that are not detected in the cell.
Moreover, the lack of presence of unwarranted Mg ions was invisible in
energy-dependent X-ray spectroscopy studies, thus proving the inhibitory effect
of metal oxides to disrupt the cell membrane.

2. The phosphatidylethanolamine (PE) and lipopolysaccharide (LPS) of the cell wall
were unchanged due to MgO NP treatment, indicating that MgO failed to
stimulate lipid peroxidation. Furthermore, the quantity of ROS-aggravated pro-
teins in the cell remained constant.

However, many perilous cellular metabolic developments related to proteins,
including amino acid metabolism, energy metabolism, carbohydrate metabolism,
as well as nucleotide metabolism, are significantly abridged (Leung et al. 2014). This
paved a way for biologists to think about alternative non-oxidative mechanisms
causing microbial cell death by the NPs treatment. Some of such proposed mecha-
nisms are described below.

The Interaction of the Cell Barriers

Cell walls and membranes are the physical and biological barriers to self-defense
from the external environment, particularly providing a natural shape to organisms.
The components of the cell membrane (for Gram-positive and Gram-negative
bacteria are different) result in dissimilar adsorption pathways for NPs (Lesniak et
al. 2013). LPS categorizes the structural uniqueness of the cell walls of Gram-
negative bacteria which have a negatively charged constituency that appeals to
NPs. In disparity, expression of teichoic acid in the Gram-positive bacteria’s cell
wall assists the NPs distribution beside the molecular phosphate chain opposing its
aggregation (Sarwar et al. 2015). In one study, a nanocomposite of hydroxyapatite
whisker and nano-zinc oxide (HAPw/n-ZnO) exhibited a durable antimicrobial
effect on Staphylococcus mutans, S. aureus, and Candida albicans than to that on
E. coli which is causing bacterial death as a dependent factor of components and
structure, cell membrane, and NP interaction. Moreover, some elements specific to
Gram-negative species, like LPS, can inhibit the linkage of ZnO NPs to the cell and
may even normalize the stream of ions in and out of the membrane. However, the
depth of the microbial cell wall in Gram-negative bacteria often hinders the
antibacterial function of NPs (Yu et al. 2014). In another study, Wehling et al.
(2014) considered the antibacterial activity of nano-diamonds in countless bacterial
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surface structures with varied reactive groups by establishing covalent bonds with
adjacent proteins and molecules on cell walls.

Inhibition of Bacterial Proteins as well as DNA Synthesis

The intervention of NPs with bacterial protein synthesis machinery progressively
fascinated the microbiologists in the near future. The effect of CuO NPs on denitri-
fication of bacterial enzymes was analyzed by Su et al. (2015) which could modify
the manifestation of key proteins. When these NPs enter the cell, it resulted in the
regulation of proteins tangled in electron transfer, nitrogen metabolism, or substance
transport. Similarly, TiO2 NPs enhance bacterial DNA degeneration, compression,
and fragmentation resulting in the reduced physiological activities of the microbial
genes (Zhukova 2015). Moreover the molecular docking studies betweenTiO2 NPs
have predicted the potential NPs to inhibit GC-rich regions of bacterial DNA (Iram
et al. 2015). In addition, it may even lead to bacterial cell apoptosis, which is proved
in E. coli model (Su et al. 2015). The study even revealed that around ten mutant
genes are responsible for the gene expression and the molecular structure and
functions, leading to ribosomal composition and RNA modification and protein
expression. Furthermore, the gold-superparamagnetic iron oxide NPs inhibit some
proteins in bacteria over a solid affinity formed by disulfide bonds affecting the
metabolism and redox systems of the cells (Niemirowicz et al. 2014).

NPs Regulate the Expression of Metabolic Genes

Bacterial metabolic pathways are not secluded but reasonably are joined with the
complex activity of living cells. For illustration, the metabolism of glucose in S.
mutans is a significant mechanism that bases, various metabolic genes. Moreover,
Fusobacterium nucleatum could use the amino acid metabolites, like butyric acid,
which could enhance the advancement of periodontal disease. Thus, decisive vari-
ations in the metabolic rate of bacteria are used to control bacterial cell pathology by
diverse mechanisms (Padmavathy and Vijayaraghavan 2011; Yu et al. 2014). Liquid
hue spectrum of magnesium oxide nanoparticles (MgO NPs) altered the metabolic
protein expressions, by upregulating action of weak thiamine ester-binding proteins
as well as riboflavin metabolic protein. The downregulation of the protein charted to
a critical signaling of cell metabolism also added its mechanism resulting in a
decrease in metabolic cellular activity, suggesting NP’s regulation in the processes
of bacteria on target proteins (Leung et al. 2014). However, copper oxide NPs (CuO
NPs) downregulated the protein expression of nitrate and nitrite reductases causing
bacterial death (Su et al. 2015). Moreover, considerable evidences are there which
proves the adhesive efficiency of titanium dioxide to the bacterial biofilms (Rogusha
2015) and disrupt its metabolite levels (Pan et al. 2015). For instance, d-alanine
metabolism is indispensable for the formation and growth of S. mutans biofilm.
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Thus, NPs can attack through multiple mechanisms on bacteria cells, a diagrammatic
representation of which is provided in Fig. 8.4.

8.5 Different Metal Oxides Exhibiting Antimicrobial Action

8.5.1 TiO2 Metal Oxides

The photocatalytic disinfection has gained great research attraction in the last
century. It was first reported with the NPs of TiO2 by UV procedure which
successfully inactivated many microorganisms, like bacteria and fungi such as
Micrococcus luteus, Escherichia coli, Bacillus subtilis (cells and spores),

Fig. 8.4 Mechanisms of NP action in bacteria cells. Notes: NPs can attack bacteria cell through
multiple mechanisms: the formation of ROS leading to membrane, protein, and DNA damage;
direct interaction occurs with cell membrane because some metal-based NPs can generate metal ion
via dissolving, for example, inhibition of electron transport chain; and the regulation of bacterial
metabolic processes. Abbreviations: NPs, nanoparticles; ROS, reactive oxygen species. (Wang et
al. 2017; open access)
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Streptococcus faecalis (Melian et al. 2000), Staphylococcus aureus (Kuhn et al.
2003), Candida albicans (Kuhn et al. 2003), Lactobacillus acidophilus (Saito et al.
1992), and others. Moreover, the activation of TiO2 with UV was found to be
effective against parasites such asGiardia intestinalis and Acanthamoeba castellanii
cysts (Sokemen et al. 2008).

The crystal structure, shape, and size of TiO2 are connected with the antimicrobial
activity (Haghighi et al. 2013). Sometimes, this may be due to the oxidative stress
exerted by TiO2 nanoparticles (anatase forms), causing specific DNA damage (Cioffi
and Rai 2012; Roy et al. (2010) with dissimilar antibiotics assessed the antimicrobial
effect of TiO2 nanoparticles against methicillin-resistant Staphylococcus aureus
(MRSA). They reported that TiO2 NPs improved the antimicrobial effect of
aminoglycosides, beta-lactams, glycopeptides, cephalosporins, lincosamides,
macrolides, and tetracycline against MRSA.

TiO2 nanoparticles possess photocatalytic properties which enhance the effi-
ciency of them to eradicate the bacteria. Carré et al. (2014) measured the
photocatalytic antibacterial activity that was accompanied by lipid peroxidation
that grounds for membrane fluidity and cell integrity (Carre et al. 2014). However,
doping them with metal oxide ions improves the antibacterial and photocatalytic
properties of TiO2 nanoparticles (Allahverdiyev et al. 2011; Zaleska 2008) by
shifting TiO2 NPs’ light absorption to visible range so that UV light irradiation
can be avoided. Conjugation of nontoxic polymers with TiO2 nanoparticles is an
alternative method to tackle toxicity issues. For instance, Aeromonas hydrophila-
mediated TiO2 were synthesized by Jayaseelan et al. (2013) which showed better
zone of inhibition when compared to that of tetracycline treatment (Fig. 8.5 and
Table 8.2).

8.5.2 ZnO Metal Oxides

ZnO nanoparticles projected many bactericidal effects on Gram-positive and Gram-
negative bacterial strains which are at times even resistant to high temperature and
pressure (Azam et al. 2012). The improved antibacterial activity of ZnO
nanoparticles was attained due to the improved surface area (Xie et al. 2011),
varying particle sizes (Padmavathy and Vijayaraghavan 2011), as well as interrup-
tion of transmembrane electron transportation. Moreover, studies have suggested
that the antibacterial mechanism of ZnO nanoparticles in C. jejuni might be a result
of the cell membrane disruption and ROS stress (Xie et al. 2011). The outcomes
indicated that ZnO nanoparticles triggered considerable membrane leakage, mor-
phological alterations, and upregulation (up to 52-fold) in oxidative stress-related
gene expression in C. jejuni. In addition, the antimicrobial activity of the ZnO
nanoglobules prepared using 0.05 M TWEEN80 was demonstrated by Rajendar et
al. in 2017 (Fig. 8.6) which showed considerable antibacterial effects on four major
microorganisms.
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Even though ZnO moderates the viability of many human pathogenic bacteria,
the precise machinery is not established till date. One such possibility was the cohort
of hydrogen peroxide which act for ROS insult and thus antibacterial activity. The
electrostatic force attraction between the metal oxides and the cell membrane could
also be a reason (Zhang et al. 2008). Besides these two, other factors like membrane
dysfunction due to nanoparticles internalization through zinc ion release also add to

Table 8.2 Zone of inhibition (mm) and MIC (lg ml1) of A. hydrophila-synthesized TiO2

nanoparticles against various microorganisms (Jayaseelan et al. 2013; copyright received)

Microorganisms

A. hydrophila-synthesized TiO2

nanoparticles Tetracycline

Zone of inhibition
(mm)

MIC
(lg ml1)

Zone of inhibition
(mm)

MIC
(lg ml1)

A. hydrophila 23 25 14 20

E. coli 26 20 14 20

P. aeruginosa 25 30 12 25

S. pyogenes 31 10 15 15

S. aureus 33 10 15 10

E. faecalis 29 15 16 15

Fig. 8.5 Well diffusion assay for TiO2 nanoparticles against A. hydrophila (a), E. coli (b), P.
aeruginosa (c), S. aureus (d), S. pyogenes (e), and E. faecalis (f). (Jayaseelan et al. 2013; copyright
received)
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a probable explanation of the cell damage (Rao et al. 2013). Moreover, the
antibacterial activity of ZnO nanoparticles is contingent on the concentration and
surface area. The metal oxide NPs in its higher concentrations and larger surface area
demonstrated superior antibacterial action (Buzea et al. 2007). According to
Hosseinkhani et al., as a result of particle size reduction, a considerable decrease
in the bacteria number was observed against Shigella dysenteriae (Hosseinkhani et
al. 2011). Emami-Karvani and Chehrazi (2011) evaluated that higher concentration
and lesser particle size enhanced the antibacterial activity of ZnO nanoparticles.

8.5.3 Ag2O Metal Oxides

Nowadays, Ag2O nanoparticles have been considered as an innovative substitute to
the marketed antibiotics (Sathyanarayanan et al. 2013). Sondi and Salopek-Sondi

Fig. 8.6 Antimicrobial activity of the ZnO nanoglobules prepared using 0.05 M TWEEN80. (a)
Positive and negative control for measuring the zone of inhibition, (b) antimicrobial activity of ZnO
nanoglobules at various concentrations, (c) diameter of the zone of inhibition for different concen-
trations of ZnO nanoglobules. (Rajendar et al. 2017; copyright received)
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(2004) demonstrated that when E. coli was exposed to Ag2O NPs, genetic replica-
tion ability was lost and the cell cycle stopped at the G2/M phase. Further ROS insult
occurred, followed by apoptosis. Furthermore, Ag had reported to be less toxic than
many other disinfectants. In 2016, Qin et al. proved that the photocatalytic activity
and stability gets enhanced when the rich Ag++ ion of Ag3PO4 formulates the
surface plasmon resonance (SPR) of Ag NPs. Marambio-Jones and Hoek (2010)
had reviewed the antibacterial machineries of the Ag NPs and its potential insinu-
ations for the environment. Similarly, the antimicrobial activity of Ag NPs synthe-
sized from Linum usitatissimum L. whole plant extract (WPE) and thidiazuron-
induced callus extract (CE) is tested against many pathogenic microorganisms,
which is depicted in Fig. 8.7 (Anjum and Abbasi 2016). Moreover, the supplemen-
tary investigation could be achieved to develop Ag-related compounds, composites,
and metal co-dopants with maximum antimicrobial effect and minimum toxicity.

8.5.4 CuO Metal Oxides

The CuO nanoparticles were tested against various microbes like Klebsiella
pneumoniae, Salmonella paratyphi, P. aeruginosa, and Shigella strains for its
antibacterial activity (Mahapatra et al. 2008). As per their investigations, these
nanoparticles specified appropriate antibacterial activity against all the selected
microbes which were achieved through the microbial cell membrane passage by
decomposing the vital bacterial enzymes which were crucial for triggering cell death.
Moreover, a recent study by Pulicherla et al. (2017) reported that the bioinspired
green synthesis of CuO NPs from the stem bark extract of S. alternifolium has potent
antimicrobial effects (Figs. 8.8 and 8.9).

The size-dependent antibacterial activity of CuO nanoparticles was done by
Azam et al. (2012). Their study with S. aureus and B. subtilis, Pseudomonas
aeruginosa, and E. coli projected the bactericidal activity of CuO NPs influenced
by their stability, size, as well as the concentration of the metal nanoparticles, which
restricted the growth via transistors over nanometric pores on the bacterial cellular
membranes. However, Ahamed et al.’s (2014) studies revealed that CuO
nanoparticles (23 nm) had substantial antimicrobial activity in bacterial strains like
E. coli, K. pneumoniae, P. aeruginosa, Shigella flexneri, Enterococcus faecalis, S.
typhimurium, S. aureus, and Proteus vulgaris. But the nanoformulations were much
more resistant to K. pneumoniae, while E. coli and E. faecalis disclosed the
maximum sensitivity (Ahamed et al. 2014).

8.5.5 MgO Metal Oxides

Several scientists have proved the strong antimicrobial action of MgO nanoparticles
through either cell membrane damage or oxidative stress (Jin and He 2011). Hewitt
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et al. (2001) stated that MgO introduced the changes in sensitivity against E. coli
encouraged by active oxygen. However, Leung et al. declared the mechanism of
MgO antimicrobial activity due to the damage of cell membranes (Leung et al.
2014). In recent studies, the MgO nanoparticles presented the bactericidal activity in
contradicting both Gram-positive and Gram-negative bacteria (Vidic et al. 2013).

Fig. 8.7 Antibacterial assay of Ag NPs. Notes: zone of inhibition of WPE (10 mg mL-1), CE
(10 mg mL-1), Ab (10 mg disk-1), WPE-mediated Ag NPs (10 mg mL-1), and CE-mediated Ag
NPs (10 mg mL-1) against multiple drug-resistant bacterial strains was measured in mm. Abbre-
viations: Ag NPs, silver nanoparticles; WPE, whole plant extract; CE, callus extract; Ab, antibiotic;
E. coli, Escherichia coli; K. pneumoniae, Klebsiella pneumoniae; S. aureus, Staphylococcus
aureus; SNS, silver nitrate solution. (Anjum and Abbasi 2016; open access)
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Fig. 8.8 Antimicrobial activity of synthesized CuO NPs. (a) B. subtilis, (b) S. aureus, (c) E. coli,
(d) K. pneumoniae, (e) P. vulgaris, (f) P. aeruginosa, (g) S. typhimurium, (h) A. solani, (i) A. flavus,
(j) A. niger, (k) P. chrysogenum, (l) T. harzianum; (1) plant extract, (2) CuSO4_5H2O, (3) CuO
NPs, (4) streptomycin/fluconazole. (Pulicherla et al. 2017; Open access)

Fig. 8.9 Antimicrobial activity of bioinspired green synthesis of CuO NPs from stem bark extract
of Syzygium alternifolium (Wt.) against various pathogens. (Pulicherla et al. 2017; Open access)
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Sawai et al. (2000) examined the antibacterial activity of MgO against E. coli or S.
aureus. They recommended that the manifestation of active oxygen, like superox-
ides, on the MgO NPs’ surface as the primary aspect that marks the antibacterial
activity (Fig. 8.10).

8.5.6 Cerium Oxide Nanoparticles (CeO2 NPs)

The cerium oxide (CeO2) is a nonstoichiometric compound having three and four
oxidation states (Ce4+, Ce3+). Many reports in the literature state that the concen-
tration of Ce3+ proliferations is more as compared to Ce4+ as the size of the particles
decreases, the bioactivity also increases up to 6 nm of zone of inhibition. The
oxidation states of these two CeO2 NPs develop many oxygen vacancies which
accompanies the Ce4+ form to Ce3+ reduction resulting in the oxygen molecule
loss. These CeO2 nanoparticles have a moral antimicrobial activity, as they can act as
scavenger radicals and ROS production to eliminate bacteria (Dos Santos et al.
2014).

8.5.7 Yttrium Oxide Nanoparticles (Y2O3 NPs)

Yttrium oxide (Y2O3) has a cubic structural composition having the highest free
energy value which is unconstrained from the oxide form, from the elemental form

Fig. 8.10 Antibacterial
studies of MgO (1) and
MgO (2) nanoparticles.
(From http://shodhganga.
inflibnet.ac.in/bitstream/
10603/56541/15/15_chapter
%209.pdf; open access)
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(Kosfstad 1972) due to excessive oxidative stress (Atou et al. 1990) and its structure,
size variations are able to cause death induced by stress in a way that seems to be
dependent. The antibacterial behavior of synthesized Y2O3 NPs using Acalypha
indica leaves extract was also demonstrated (Becker et al. 2002).

8.5.8 Aluminum Oxide (Al2O3)

Alumina forms temperature-resistant, stable NPs, having a hexagonal structure,
containing oxygen and Al3+ ions filling around 60% of total octahedral sites of
the structural network (Ganguly and Poole 2003). Alumina NPs possess an antiox-
idant activity and wedge the release of ROS, ramblingly by stalling apoptosis, before
finalizing cellular death (Sadiq et al. 2009). The antibacterial activities of Al2O3 NPs
against E. coli, Proteus vulgaris, Staphylococcus aureus, and Streptococcus mutans
are demonstrated in Fig. 8.11 and Table 8.3.

Moreover, in a report of 2009, the authors stated that the pathogen inhibition of E.
coli by alumina NPs in 10–1000 g/ml range acts as antimicrobials by paying the
ROS generation, by disrupting bacterial cell wall. Moreover, Al2O3 NPs’ radical
scavenging possessions block ROS generation leding to bacterial death (Sadiq et al.
2009).

Fig. 8.11 Antibacterial
activities of aluminum oxide
nanoparticles against
bacteria using the agar well
diffusion method; the fig.
showed (1) E. coli, (2)
Proteus vulgaris, (3)
Staphylococcus aureus, (4)
Streptococcus mutans.
(Manyasree et al. 2018;
open access)
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8.5.9 CaO and CacO3 Nanoparticles

Under alkaline conditions, the CaO NPs confirmed a sturdy antimicrobial activity
due to ROS by the NPs’ hydration with water. The CaO NPs presented antimicrobial
activity against both Gram-negative and Gram-positive bacteria like E. coli and S.
aureus causing damage to cell membrane and leading to intracellular content leakage
and cell death (Sawai 2003). Moreover, Jeong et al. (2007) inspected the antimicro-
bial efficacy of CaCO3 NPs. As per their results, CaCO3 often gets converted to CaO
owing to temperature rise. The produced CaO nanoparticles designated a durable
bactericidal activity against E. coli, S. aureus, S. typhimurium, and B. subtilis (Zhou
et al. 2015).

8.5.10 Bimetallic Oxide Nanoparticles

Bimetallic oxides containing twofold active metal oxide NPs (Fe, Mg, Ni, Ag and
Zn) have gathered special attention in the modern era owing to its extraordinary
activity against Gram-negative and Gram-positive bacteria. For instance, Zn-MgO
NPs are a unique bimetallic oxide NPs that displayed antimicrobial activity in E. coli
and B. subtilis microbes. Moreover, Fe-Ag NPs had high antimicrobial activity
against E. coli. The mechanics behind for both were explained as the ROS insult
and cell wall damage. Thus, the combination therapy has enhanced the antimicrobial
activity (Niemirowicz et al. 2014).

The formulation of metal ion-doped NPs could improve antimicrobial properties
of metal NPs synthesized by the Ti-doped ZnO powders which resulted in an
enhanced antibacterial accomplishment against S. aureus as well as E. coli. related
to the particle size decrease and crystallinity. The antibacterial activity of CaCO3/
MgO nanocomposites allowed superior antibacterial action against S. aureus than E.
coli (Yamamoto et al. 2010). In addition, V2O5 when coupled with ZnO, these
nanocomposites enhanced its photocatalytic activity (Saravanan et al. 2014). More-
over, Vidic et al. (2013) reported antimicrobial activity of co-doped nanostructure of
ZnO-MgO against the same microbes suggesting a safe novel therapeutics for
bacterial infections. Many results designated that MgO and CaO NPs blended with

Table 8.3 Inhibition zones at different concentrations against two Gram-positive and two Gram-
negative organisms (Manyasree et al. 2018; open access)

Name of the organism

Mean zones of inhibition [mm] � SD [n ¼ 2]

10 mg/ml 20 mg/ml 30 mg/ml 40 mg/ml 50 mg/ml

Escherichia coli 9 � 0.20 18 � 0.25 27 � 0.25 31 � 0.10 39 � 0.35

Proteus vulgaris 5 � 0.30 10 � 0.40 15 � 0.45 20 � 0.20 26 � 0.45

Staphylococcus aureus 6 � 0.15 12 � 0.10 18 � 0.35 23 � 0.25 29 � 0.40

Streptococcus mutans 8 � 0.35 14 � 0.35 19 � 0.30 25 � 0.10 30 � 0.30
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supplementary disinfectants illustrated exceptional antibacterial effect (Leung et al.
2014). In addition, the ZnO-CuO nanocomposite (3: 1 M) formed zone of inhibition
around each disc with loads test samples (Fig. 8.12). However, the presence of a
third metal in bimetallic nanocomposite can also enhance the catalytic action. For
instance, Mn2+ ion was able to increase photocatalysis of Mn-ZnS composite (Joicy
et al. 2014).

8.6 Limitations and Future Prospects

The recombination between photo-generated electrons and holes in a photocatalyst
is crucial for a successful reaction, as the lifetime of the charge separation decides the
photocatalytic action. Consequently, a huge quantity of revisions is linked to the
regulation of band structure and the charge separation. On the other hand, diminutive
evidence regarding the adsorbed species and the intermediates in photocatalytic
reactions is obtainable. Photocatalytic reactions may occur on the photocatalyst’s
surface or in the ordinary catalysts. The difference between the both is the driving
force to stimulate the adsorbed reactants being photo-energy and thermal energy,
respectively. Therefore, the kinetic clarification of surface structure, surface species,
and surface property during the photoreaction is obligatory to comprehend the
photocatalysis. Commonly a catalytic reaction contains many elementary steps like
absorption of light in a photocatalytic reaction. Hence, there is identification of
thermodynamic constraint in the photocatalysis than with the ordinary process.
However, further clarification of the reaction mechanism is needed to get beneficial
information on the additional development of the photocatalysis and novel insight on
photocatalytic chemistry.

Fig. 8.12 (Color online) The photographic image of an inhibition zone produced by ZnO-CuO
nanocomposite (3: 1 M) for (a) Pseudomonas aeruginosa, (b) Proteus mirabilis, (c) E.coli, and (d)
Staphylococcus aureus. (e) Bar graph representing the size of the zone of inhibition formed around
each disc, loaded with test samples, indicating the antibacterial activity toward the same for ZnO-
CuO nanocomposite 3:1 M. (Saravanakkumar et al. 2018; open access)
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Many of the factors add to the future prospects of the photocatalysts. Countless
NPs stabilize at least any one of the common resistance mechanisms. These posses-
sions are due to specific physicochemical properties and bactericidal means of NPs
(Chen et al. 2014). The uniquely small size helps NPs to interact with cells due to a
larger surface area-to-mass ratio with the handy and manageable application, in
disparity to traditional antibiotics. Besides the interruption of bacterial membranes,
difficulty of biofilm formation is another significant mechanism, as they portray a
major measure in the progress of bacterial resistance (Peulen and Wilkinson 2011).
The distinctive structure and arrangement of bacterial biofilms deliver protection to
the implanted microorganisms, assisting them to escape from most antibiotics.
Moreover, bacterial biofilms act for regular resistance mutations and the interchange
or variation of mutations among diverse bacterial cells (Khameneh et al. 2016).
Studies have discovered that countless NPs can overcome biofilm formation, com-
prising Au-based NPs (Yu et al. 2016), NPs, CuO NPs (Miao et al. 2016), Ag-based
NPs (Markowska et al. 2013), Mg-based NPs (Lellouche et al. 2012), NO NPs
(Hetrick et al. 2009; Slomberg et al. 2013), and YF NPs (Lellouche et al. 2012). The
best prevention of biofilms is attained by a lesser size and larger surface area-to-mass
ratio, as well as the shape of NPs with an extraordinary outcome on biofilm
obliteration (e.g., NPs with rodlike shape are more operative than NPs with spherical
shape).

8.7 Conclusion

The usage of metal oxide NPs pooled with visible light irradiation unlocks innova-
tive opportunities for surface decontamination. As described, it is promising to
encompass the absorption constituency of the NPs to the red/NIR by doping with
the transition metal ions or organic molecules. In cases where NPs might be toxic, it
is promising to coat them with a massive selection of surfaces. This property is thus
exploited as a solicitation by encountering many pathogenic microbes.
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Abstract A metals accretion of solids, liquids, and gaseous toxic waste has upshot
from a lack of improvement in toxic waste management. This has necessitated the
design of an assortment of novel research works in water and wastewater treatment,
industrialized dissipate management, ground water, and soil pollution subsistence.
Simultaneously, increasing concerns about water sources are becoming a consider-
able matter, as a paucity of water has been seen all over the earth. A number of
expanding technologies have the know-how to modernize our world of commercial-
ization. Advanced Treatment Techniques for Industrial Wastewater is an innovative
collection of research that covers the different aspects of environmental engineering
in running water and wastewater treatment processes with the different techniques
and systems for pollution management. A number of them are presently within the
scope of improvement but there is lingering frustration to firmly implement them in
civilization, and all are propitious solutions to some very authentic challenges facing
the planet. The term “Green Technology” is relatively new and has been slowly
adopted over the most recent decades; emerald is the present day system for a
healthy life. This chapter illustrates different green technology challenges and their
chance to enhance wastewater treatment technologies and trends toward progress.

Keywords Jade (Green) chemistry · Green technology · Wastewater treatment ·
Advantages and disadvantages of green technologies
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9.1 Introduction

Water is one of the most precious resources on earth. All living organisms require
water for survival. Without the presence of water, life would not exist on the globe.
Water covers nearly 71% of the Earth’s surface, but only 2.5% of it exists as
freshwater. A huge volume of wastewater is released from the areas of urbanization
and industrialization, and it was utilized more by irrigation resources in semi-urban
and urban agriculture areas (Shahat et al. 2015). Economic activities drive countless
lives, including for poor farmers, and this has dramatically changed the quality of
water bodies (Marshall et al. 2007). Current awareness on the contaminant risk
posed to natural water bodies has to expand so that efficient studies toward improved
industrial development can be assessed. Because of increased industrial wastewater,
the massive features of contaminants in organic and inorganic complex mixtures
have increased, so there is a need to treat the concentration of pollutants in the
wastewater and the environment by using a treatment process (Woisetschlager et al.
2013; Sires et al. 2014). It has become a crucial necessity for today’s atmosphere to
stop water from becoming polluted or expand the cost effectual curative scheme
used for its defense (Awual et al. 2015). Owing to the hasty growth of the inhabitants
in emerging countries, the offered predictable treatment for wastewater plants are
being overloaded, and there will be no space obtainable for growth of the existing
treatment plants. Reprocessing and reuse of air, water soil pollutants, and waste have
been emerging topics throughout the 2010s, to shield innate resources and the
atmosphere (Corder et al. 2015; Colling et al. 2016).

One of the foremost sources of wastewater is farming effluent that contains
pollutants and contaminants, including chemicals, microorganisms, nutrients and
other toxin, municipal runoff, and squall water. Sewage as wastewater includes
water from cleaners, bathing, laundry, toilets, bathroom fittings, and sinks. Influent
is the wastewater that flows into a treatment plant, reservoir, or basin. As this
wastewater is inappropriately released into the river bodies, these pollutants can
cause an ecological issue leading to health tribulations in humans and animals
(Wongburi and Park 2018; Jhansi and Mishra 2013). Yet, wastewater also contains
reusable wherewithal, such as carbon, nutrients, and water, that could be recovered
or reused. For that reason, wastewater ought to be fittingly treated for elimination of
pollutants to meet the effluent regulatory values. Moreover, the process should focus
on resource recovery to lessen the carbon footprint and to be self-sustainable
(Metcalf and Eddy 1991).

Some form of wastewater treatment has been used since antiquity; however, a
variety of conventional methods used to treat the water have not been economical
(Pawar Avinash Shivajirao 2012). Therefore, innovative green technology methods
are being introduced to defeat the predictable methods of wastewater treatment
(Zhou and Smith 2002; Turovskiy 2014).

Currently, the management of waste and superiority of water are significant
concerns for human life. The accretion of technology in urbanization and
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industrialization explains the increase in the percentage accumulation of waste all
around the world and the discharge of heavy metals in water streams. The release of
inadequately treated industrial waste containing heavy metals affects waterways and
turns into a stern ecological problem in need of solution development (New
Technologies in Wastewater Treatment 2014). The use of heavy metal polluted
wastewater to irrigate poses a risk to civic health (Siddique et al. 2014). These
destructive metals are produced from a variety of activities, such as waste disposal,
industrial, agricultural, and others. Increasing the heavy metals content in wastewa-
ter streams has negative effects on human bodies, including death. Technology used
in the handling of wastewater includes chemical precipitation, absorption, ion-
exchange, coagulation flocculation, and membrane filtration; flotation and electro-
chemical and the added advanced oxidation process involve enormous outfitting and
regulation overheads (Nabi et al. 2011; Gutha et al. 2015; Cheng et al. 2012;
Javadian et al. 2014). Consequently, an outlay of effectual green skill toward the
removal of these heavy metals as well as progress in the effluent standards is desired.

Energetic industrialization has resulted in a huge extent of wastewater from
industrial zones, for instance paper, crop fruit, sugar, pulp, distilleries, cuisine
processing, slaughterhouses, sago/starch, poultry farms, tanneries, dairies, etc.
Regardless of the requirements for toxic waste manage events, this wastewater is
usually dumped on territory or used to irrigate, devoid of enough treatment, and it
consequently becomes a gigantic resource of ecological toxic waste and physical
condition hazards. The wastewater organization in India has grown to be an
extremely necessary regional hub owing to escalating health concerns and inhabi-
tant’s pressure. In spite of the wastewater sector witnessing major augmentation in
the past decade due to escalating government support and private involvement, the
scale of the problem remains vast. It is estimated that less than 20% of domestic and
60% of industrial wastewater is treated. Metros and big cities (more than 100,000
inhabitants) treat merely about 29.2% of their wastewater, whereas smaller cities
treat only 3.7% of their wastewater. Manufacturing wastewater includes industrial
effluents (with or without pre-treatment) and sometimes also cooling water from
energy construction and mining water. The trivial enrichment in wastewater quantity
is chiefly based on reduction in the production process and sometimes because of
upgrading or edifice of effective treatment conveniences (Martin-Lara et al. 2014).

Within the present developing world, the term green technology has played a
considerable function during the course of a nation’s fiscal growth toward sustain-
ability and provided an alternative socioeconomic model that will enable the current
and upcoming generations to live in a hygienic as well as hale and hearty atmo-
sphere, in accord with nature. Clean technology, furthermore identified as green
technology, refers to the development and extension of the processes, practices, and
applications to improve or replace the existing technology and facilitate society to
meet their own requirements and at the same time substantially decrease the impact
of humans on the globe amid ecological risks and environmental scarcity. The theory
of green technology, if allowed to pervade the lives of all societies, will ease the aim
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of the millennium improvement goals of keeping the environment intact and devel-
oping it for the long-term survival of civilization. Green Technologies and Environ-
mental Sustainability are focused toward the goals of green technologies, which
progressively give more importance to ensuring sustainability. This chapter shows
altered perspectives of green technology in different zones, including energy, agri-
culture, waste management, and economics and contains current advancements
ready for sustainable increases in the field of bio energy, green chemistry, nanotech-
nology, degraded land reclamation, and bioremediation.

Additionally, advanced manufacturing industries along with the emergent are
allied by the superior treatment process, resulting in considerable development
toward the versatility and the outlay of this process at the industrialized scale. By
means of lifecycle investigation, for instance, (Wiesner et al. 1994) concluded that
the outlay of new pressure-driven membrane filtration plants are predicted to be
analogous with or smooth less than that of folks by means of a predictable treatment
process with a capacity of 20,000 m3/day.

To resolve the innovative challenge as well as enhance inexpensive wherewithal,
a variety of advanced treatment technologies can be wished-for, tested, and applied
to gather both modern and expected treatment needs. Amid them, membrane filtra-
tion, UV radiation, and advanced oxidation processes have been traditional for
victorious deletion of an extensive range of taxing contaminants in irrigation and
treatment of wastewater. This chapter focuses on the superior treatment of green
technologies with an emphasis on their main applications, fundamentals, advan-
tages, and disadvantages. The recent boundaries and future research desires related
to this technology are discussed in this chapter (Fig. 9.1).

Waste reducing 
technologies

Waste-reusing 
technologies

Green 
technologies

Design for 
recycling

Fig. 9.1 Designing of green technologies
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9.1.1 Characteristics and Treatment Technology of
Wastewater

The features of wastewater containing heavy metals, such as the treatment level and
pollution loading rate, are report to be intimately allied to industrialized character-
istics. The industrial characteristics include geographical location, (Yu et al. 2003a,
b, c; Yu et al. 2003a, b, c) departments in government, industrial sectors, grade of
registration, and endeavor extent (large, medium, and small). The feature of water
and extent of heavy metal content in wastewater is assorted to a great extent among
different industrial sectors. For the most considerable large-scale and national-
owned mineral endeavor, the irrigation utilization coefficients are usually elevated,
whereas for the diminutive scale, rural community ownership, municipality, private
and communal enterprise, the levels of treatment are very low (Yu et al. 2003a, b, c).
The treatment level appears to be inferior and have a dwindling endeavor of extent
with the geographical transition from east to west (Yu et al. 2003a, b, c). The
pollutant concentrations are middling from the nonferrous industry and assorted
greatly. The wastewater discharged from village and small town enterprises contains
high concentrations of heavy metals; as a result they could not regularly congregate
the expulsion (Sharma et al. 2015). Even though the summary metal emission
quantity was low, wastewater without treatment from some diminutive civic and
village enterprises resulted in astonishing metal toxic waste in a confined area, which
ought to be proscribed.

9.1.2 Waste Management

The term ‘solid waste’ habitually relates to materials fashioned by human activity,
and action is commonly undertaken to minimize theireffect on health, the atmo-
sphere or aesthetics. Waste management is the utilization, purification, recycling,
discarding, and treatment of solid waste that is looked after by the government or the
verdict body of a city/town. There are diverse methods and fields of proficiency for
each waste management involving solid, liquid, gaseous or radioactive substances.
In some instances, green waste management is also carried out to recuperate assets.

Green waste management practices diverge for emergent nations, residential, and
industrial producers, and they are also designed for urban and rural areas. The
management for nonhazardous residential and institutional waste in metropolitan
areas is habitually the liability of local government powers that be, while manage-
ment for nonhazardous commercial and industrial waste is habitually the
responsibility of the generator.

The waste management industry has been taking a leisurely pace toward new
technology, such as radio frequency identification (RFID) tags, integrated software
packages, and GPS, which enable a superior eminence data to be composed without
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the use of assessment or manual data entry. Technology like RFID tags are currently
being used to accumulate data on presentation rates for curb-side pick-ups, which is
constructive when exploring the usage of recycle bins or similar. Benefits of GPS
tracking is particularly apparent in view of the efficiency of ad hoc pick-ups where
the anthology is finished on a customer request basis. Integrated software packages
are constructive in aggregate with this data for use in optimization of waste collec-
tion operations.

Integrated waste administration with a life cycle study attempts to propose the
best option for green waste management. The quantity of broad studies signify
source severance, waste administration, and collection followed by reuse and
recycling of the nonorganic portion, energy, and compost/fertilizer production of
the organic waste partition via anaerobic digestion to be the chosen waste manage-
ment decisions. Nonmetallic waste properties are not damaged by means of burning
and are able to be reprocessed/recycled in a future source exhausted culture.

9.2 Green Chemistry

The term ‘Green Chemistry’ was coined by Anastas (Anastas and Kirchhoff 2002)
from the US Environmental Protection Agency (EPA). It is the “design of chemical
products and processes to reduce or eliminate the use and production of harmful
substances” (Anastas and Warner 1998; Anastas 2007; Anastas and Williamson
1996). In 1993 the name ‘US Green Chemistry Program’ was formally adopted,
which has served as a crucial point on behalf of performance around the United
States, for instance, the Green Chemistry Challenge. This does not signify that
research on green chemistry did not subsist earlier than the 1990s; simply that it
did not have the forename. During the 1990s, both Italy and the United Kingdom
launched a major initiative in green chemistry, and, more recently, Japan initiated the
Green and Sustainable Chemistry Network. The initial version of the academic
journal Green Chemistry was guaranteed by the Royal Society of Chemistry,
which appeared in 1999. The essential feature of the term is the supposition of
design. It includes systematic conception, planning, and novelty.

9.2.1 Need of Wastewater Treatment

As India hurtles in the direction of a new urbanized economy, a worsening status of
our atmosphere has been observed. Unfortunately, swift industrialization has
increased the amount of toxins in our surroundings. Administration of waste at
wastewater treatment plants in India has become crucial for our cities today.
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9.2.2 Benefits

Beneficial water treatment methods do not merely manufacture hygienic reusable
irrigation water but also have the possibility to bring into being assorted further
benefits. They have the possibility to condense a country’s waste production, to
harvest methane, and to fabricate natural manure, and for the waste collected through
the method, the benefits are waste reduction, fertilizer production, and energy
production.

9.2.3 Information About Waste Management

The technique of wastewater management was initially developed in reaction to the
adverse conditions sourced by the liberation of wastewater into the surroundings and
the distress caused to civic wellbeing. In addition, as cities became larger, restricted
land exists for wastewater treatment as well as discarding, predominantly by irriga-
tion and sporadic filtration. Besides, when a population grows, the scope of waste-
water spawn rises rapidly, and the deteriorating quality of this gigantic quantity of
wastewater surpasses the self purification capacity of the stream and waterway
bodies. Consequently, additional methods of treatment are developed to step up
the forces of the natural world beyond conditions in treatment amenities of relatively
smaller size. Even though clear out is obligatory to avert further expulsion of
contaminated wastes into the atmosphere, development of an outlay effect technol-
ogy is desired for diligent use. Conventionally, the method employed for wastewater
remediation consists of the abolition of metals by flocculation, ion exchange resins,
filtration, and activated charcoal (Karthikeyan et al. 2005; Vijayaraghavan et al.
2007; Wang and Chen 2009).

Generally, since 1900 to untimely the 1970s, treatment objectives included: (i)
the deletion of hovering and floatable matter from wastewater, (ii) elimination of
disease-causing pathogenic micro-organisms, and (iii) the treatment of biodegrad-
able organics (BOD). The deletion treatments focused on aesthetic and ecological
disquiet. The former errands of diminution and deletion of BOD, hovering solids,
and pathogenic microorganism have continued, but at larger levels. The deletion of
nutrients, such as nitrogen and phosphorus, has also begun to be addressed, partic-
ularly in some of the streams and lakes. Major initiatives have been undertaken
around the globe to accomplish more effectual and prevalent treatment of wastewater
to maintain the excellence of the surface waters. The endeavor is owing to (i) a
comprehension of the adverse long-term effects caused via the discharge of some of
the specific constituents established in wastewater and (ii) an increase in the under-
standing of the environmental effects caused by the wastewater discharges. Since the
1990s, as a time of enlarged scientific awareness and an extended information base,
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wastewater treatments have begun to focus on the health concerns associated with
tainted and potentially noxious chemicals that are unconfined into the milieu. The
waterway feature improved the objectives of the 1970s and has continued, but the
emphasis has shifted to the definition as well as deletion of noxious and trace
compounds that could feasibly be the origin of long-term health effects and adverse
ecological impacts. As a result, though the past treatment objectives remain valid
today, the imperative grade of treatment has increased drastically, with the addition
of supplementary treatment objectives and goals.

The characteristics of Dewat’s system consists of primary, secondary treatments
and discarding (or utilization) of solids and treated water. The primary treatment
might be as trouble-free as a septic tank, to eliminate settleable solids, and endow
among restricted anaerobic treatment which canister should be used in the vicinity of
poor soil and high groundwater. Modification of the over system enables aerobic
treatment of the effluent and thwarts perched solids from inflowing to the secondary
treatment. Because they are economical, and as a result have little continuance, they
are prone to failure and even when in effective service may tranquilly secrete a
pathogen rich waste stream. Secondary treatment options, based on sand filters,
provide effectual deletion of pathogens in areas with deep permeable soils, but are
ineffective in other locales with highly porous soil types. A noteworthy quantity of
attention has been given to the use of organic systems meant for deletion of radio
nuclides and heavy metals from solutions, and (Massoud et al. 2009; Parkinson and
Tayler 2003) made a wide-ranging chapter on the existing treatment methods. A
variety of predictable methods for wastewater treatment exist from primeval times,
(Narmadha and Selvam Kavitha 2012; Pawar Avinash Shivajirao 2012; Turovskiy
2000); however, they are extremely pricey and thus not economical. The exceed-
ingly developed newfangled green technology methods are being introduced to
prevail over the conformist methods of wastewater treatment (Dangelico and Pujari
2010). The study chapter is allied to new green technological methods, which prove
to be more advanced than the predictable methods.

9.2.4 Wastewater and the Necessity for Wastewater
Management

Contaminated water is released from various industries. The sources of irrigation
pollution are from sewage and industrialized waste. By means of these sources from
the inhabitants of India, and the phenomenal swiftness of the escalation of its
industrialized landscape, the volume of wastewater is also rising at an alarming
rate. Adding to this the attenuation of freshwater sources, for instance, river,
groundwater, and well water, so as to have an alarming circumstance. Very soon
irrigation water may become a premium commodity.
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The growing levels of wastewater have become of great consequence. Not only is
it unfit for utilization but it also can mix with other sources and pollute them as well
(Albadarin et al. 2017). For instance, the tainted water pollutes the river, and when
this watercourse run downstream and it joins other water sources, such as other
rivers, the contamination further spreads. Wastes also seep into the earth and
contaminate the underground water source. Thus, now-a-days almost each source
of water is heavily tainted, from the rivers to the coastal areas.

Water is essential and intended for all; therefore, the treatment of water is of the
uttermost seriousness. Consumption of irrigation water is meant for all creatures.
Irrigation water is essential to farming, the food industry, and livestock. To a minute
degree, nature can react with reasonably fashioned noxious waste akin to human
being and mammal waste. On the other hand, the enormous quantity of wastewater
today cannot be managed by nature alone.

Several effects of rising levels of wastewater are summarized:

• Lack of drinking water
• Adverse effect on groundwater
• Harmful effect on river and marine life
• Soil pollution
• Superfluity of hazardous chemicals, some of which are unremitting
• Rise of pollution in coastal areas
• Increase in unremitting health circumstances associated with lethal chemicals,

such as mercury and lead, in all creatures.

The investigative upshoot in the field of health related to water safeguards and a
change in civilization environmental consciousness (type of weather and assets
defense) obliged a new perspective concerning wastewater treatment. The plant
designed for treating wastewater will become the source overhaul provider for
human beings and water bodies (Millennium Ecosystem Assessment [MEA],
2005), vigor overhaul provider, and manufacturer of stipulated tilting products,
including water fertilizers. Sustainable wastewater treatment consists of the subse-
quent safeguards (Schaum 2016; Schaum and Cornel 2016).

Health safeguard: Defense of sanitized necessities, including antibiotic resistant microor-
ganisms acquiescence with features standards for daily handling in water bodies con-
tributing hygienically harmless water for water reprocessing.

Water safeguard: The diminution of eutrophication via nutrient abolition (phosphorus and
nitrogen) to the utmost feasible scope, abolition of nanoparticles, microplastics, and
micropollutant for the safeguard of marine fauna and from the viewpoint of precaution-
ary health care.

Resource safeguard: The diminution of source utilization for wastewater treatment, for
instance, in service materials and vigor, reduction of ecological impact; source resur-
gence by consuming resources contained in wastewater, predominantly energy, nutri-
ents, and water. To make all of this doable, it is crucial to coalesce skill and operation
optimization; therefore, identifying synergy needs to be exploited.
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9.2.5 The Physico-Chemical Treatment

Noxious wastes are habitually classified according to diverse techniques and size,
where bigger particles are estranged during filtration, floatation, and gravity and
smaller particles are much more complicated to detach. That is why this treatment is
predominantly useful.

Chemicals known as coagulants and flocculants are used to detach them. This is a
frequently used technique to treat industrialized waste. It is ideal for the deletion of
hovering matter, such as grease, oil, metals, and liquefied material as well as non-
living material.

9.2.6 Natal Treatment

In this method, a membrane based system is used for recycling the wastewater. A
membrane bioreactor combines the use of the unproblematic science of ultra filtra-
tion with a bioreactor to treat wastewater. In short, the method coalesces the
corporeal process with the natal method. This is a frequently used method in
industrial and metropolitan wastewater management. Treated water is recycled for
assorted intentions, such as irrigation.

9.2.7 Zilch Fluid Liberation Scheme

Several inhabitants analyze this as a periphery skill in wastewater management. It
confiscates all liquefied solids from the wastewater, leaving purified water. A
technique like RO is used to decontaminate the water. There is a large area where
the necessity for wastewater management is great. Some of the areas of operation for
wastewater treatment plants in India are:

• Metropolitan water management for urban and municipality
• Large building societies or colonies
• Desalination
• Designed for use in rural regions, such as irrigation
• Industrialized segment

Some of the challenges still faced in India are:

• Apathy by some governments
• Lack of civic confidential partnership on wastewater management
• Lack of awareness
• Disproportion in the quantity of wastewater and handling plants
• Lack of a cohesive nationwide campaign
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In India, the treatment plants have become an imperative component of the
countryside crucial for sustaining the health of our public and the earth. Green
technology has brought new technology to the treatment of wastewater.

9.3 Green Technology (GT)

GT is an ecological curative technology that diminishes the ecological damage
resulting from the products and technology for citizen’s conveniences. Currently,
advancement in corporations have lead to further thought toward GT, helping to
enhance green capabilities (Hekkert and Negro 2009; Pujari 2009; Berrone et al.
2013). Green technology can improve material along with waste consumption,
energy efficiency, and recycling.

In support of these benefits, GT not only enhances ecological features but also
encourages the potency of a nation’s financial system (Shrivastava 1995; Aithal
2015a, b, c). It is supposed that GT promises to develop farm effectiveness while
simultaneously minimizing ecological degradation and conserving innate assets. GT
is a sustainable technology that will not generate a footprint, and it is used for an
assortment of processes. GT maintains the use of innate macrobiotic resources and
stays away from the manufacture of emerald gas. GT also uses fewer sources and
does not support enlarging the entropy of the earth. GT supports the mechanization
of each process and hence avoids human interference.

The foremost technologies used in present day, including space technology,
internet technology, atomic, nuclear technology, automobile technology, computer
technology, aircraft technology, renewable energy technology, biotechnology, nano-
technology, telecommunication technology, etc., can be made green using the
principles of green technology (Sridhar Acharya and Aithal 2015; Han and Liu
2009; Guoliang 2011; Aithal and Aithal 2015a, b). Such GT might enable solving
both basic and superior problems. At the moment, industrial and technological
progress in emergent countries is budding swiftly, and ecological problems as well
as others must be considered. As a result, novel green technology research promotes
ecological and monetary development (Hasper 2009). Inside this section, our aim is
to present effectual green technology for treatment of waste.

9.3.1 Class of Green Technology

Jade technologies cover an extensive province of fabrication and utilization tech-
nologies. The espousal and use of green technologies entails making use of ecolog-
ical technologies to observe and assess toxic waste deterrence, manage, remediation,
and renovation. Thus, the monitoring and appraisal technologies are used to resolve
and follow the circumstances of the environs, over and above, the expulsion of
innate or anthropogenic supplies of a detrimental nature. Avoidance technology
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evades the manufacture of environmentally perilous materials or alters traditions so
as to lessen harm to the milieu; it encompasses product swap or the redesign of an
intact creation development sooner than by means of the original portion. Risk
management technology deals with things that are undisruptive earlier and then
penetrate the surroundings. Remediation and reinstatement technologies exemplify
the method proposed to advance the stipulation of ecosystems besmirched by
unsurprisingly induced or anthropogenic things (2003 United Nations environment
programme environmentally sound technologies for sustainable).

9.3.2 Sectors of Green Technology

1. Water and waste management: Solid waste management, Sewage treatment,
Recycling technology, and Water purification.

2. Agriculture: Organic agriculture.
3. Building: Building performance technology and Sustainable building material.
4. Transportation: Electric vehicle and Rail transport.
5. Energy: Efficiency technology and Renewable energy technology.

9.3.3 Advantages of Green Technologies (AGTs) Toward
Wastewater Management

This refers to the process of removing the contaminants and undesirable components
in domestic, industrial, and polluted waters to safely return it to the environment for
drinking, irrigation, industrial, and other uses. Today, the increase in ecological
awareness and enhanced government regulation has made some conventional waste-
water treatment systems questionable. To fill the gap left by less than adequate
conventional technologies, AGTs are tested, vetted, and implemented as clean
alternatives for wastewater treatment purposes.

Several steps are basically employed during any wastewater treatment process.
The first consists of separating the solids from the liquid water. This is achieved
through gravity as solids are heavier than the liquid water. Other solid components,
such as oils and woods, which are less dense than liquid water, could be removed
from the water surface through separation. Afterward, the liquid wastewater is
subjected to filtration processes to dispose of any colloidal suspensions of fine
solids, chemicals particulates, and impurities. The resulting filtered water is finally
exposed to oxidation on the way to trim down or eradicate the toxicity of any
remaining noxious waste and disinfect the wastewater before releasing it to the
environment. Currently, a number of AGTs methods are tested and used for
wastewater treatment either alone or in combination with other conventional
methods.
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9.3.4 Objectives of Advanced Green Technologies (OAGTs)

Advanced green technologies (AGTs) refer to a group of practical methodologies
and materials based, among others, on nontoxic chemical processes, clean energies,
and environmental monitoring to slow down or correct the negative impact induced
by human activities. Advanced green technologies are aimed to provide better
sustainability through securing our societal needs without further damaging or
depleting the remaining natural resources. This could be achieved through:

• Setting up economical models to implement and commercialize related innova-
tions by encouraging the creation of jobs and novel careers in the field.

• The recycling of manufactured goods and products.
• Development of clean alternative technologies and energies to replace those

proven to negatively impact health and pollute the environment.
• Decreasing the pollution caused by the waste release as well as contamination

through improving the behavior of human manufacturing and expenditures.

9.3.5 Green Technology Four Pillars Policy

Social: Get better quality of life for all (Luken and Van Rompaey 2008) through the
use of technology.

Milieu: Marmalade and lessen the impact on the atmosphere.
Financial system: Augment the nationalized fiscal enhancement.
Vigor: Inquire about the route for arriving at vigor independently and encourage

efficient exploitation.

9.3.6 Benefits of Green Technology

1. Does not produce hazardous wastes into the atmosphere.
2. Renewable; will never expire.
3. Be able to fetch monetary benefits to assured area.
4. Requires less upholding, so you do not need scores of capital to operate it.
5. Slow global warming by plummeting CO2 emission.

9.3.7 Drawbacks of Adopting Green Technology

1. Lack of human resources and skills.
2. No known alternative process technology.
3. Lack of information.
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4. High implementation costs.
5. Uncertainty about performance impacts.
6. No renowned unconventional chemical or unrefined fabric inputs.

9.4 Jade Industry Initiative

An association through the ‘jade economy’ and sustainable advancement concept,
akin to the ‘jade economy’ and ‘jade industry’, is seen as a main and realistic
alleyway toward accomplishing sustainable improvement. The influence of the
‘jade economy’ is to achieve enhanced human being welfare as well as public
fairness, while simultaneously diminishing ecological jeopardy and protecting envi-
ronmental scarcity. The ‘jade industry’ transforms a developed and associated
diligence sector via introducing further efficient, source prolific, and dependable
utilization of untreated resources. Consequently, they furnish extra efficiency toward
sustainable industrialized enhancement.

The jade industry is the zone strategy intended to recognize the jade economy as
well as jade augmentation, and eventually, toward a sustainable progress improve-
ment opportunity. Presently, there are numerous benefits for pursuing a jade industry
approach. The jade industry offers a sensible alleyway in the direction of long-term
fiscal improvement and sustainable improvement, thereby unbolting enterprise pro-
gress to their source production as well as ecological presentation and ascertaining a
pioneering operation so as to deliver ecological cargo and armed forces (create green
industry). This is indispensable from social, monetary, and ecological perspectives,
particularly as Green diligence ropes:

9.4.1 Revenue and Employment Formation

Superior dissipate executives, projects, renewable liveliness, resurgence services,
stipulation of other ecological possessions, and services create jobs and provide a
resource of revenue, including for underprivileged communities with inferior formal
proficiency levels.

9.4.2 Gung Ho and Sustainable Trade

Condensed outfitted outlay owing to the abridged consumption of supplies, vigor,
and stream, as well as of minimization of dissipate and secretion generation, while
assuring a link of trade in illumination of tapering consumer necessities meant for
ecological and social revelation and recital.
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9.4.3 Innate Resource Precautions

Condensed exploitation of irrigation, supplies and stimulates alleviation of the stress
lying on the now scant resources, which are all anticipated to become scarcer in days
to come if current inhabitant, urbanization, and improvement tendencies persist in
the future.

9.4.4 Ecological Executive

Condensed generation of dissipates and emissions lessen the contamination
encumberment on the innate ambiance and biodiversity.

9.4.5 Industrial and Chemical Protection

Enhance operation, sustain, and deal with flora that make use of chemicals maturely
to pose less jeopardy to recruits and community.

9.4.6 Visual Aid the Lane

Jade industry canister is achieved by a quantity of concerted proceedings:

9.5 A. Greening of Diligence

Allows and props up the entire diligence despite their region, magnitude or location,
to jade their operations, methods, and products to:

9.5.1 Exploit Resources Powerfully

Elevate the productive utilization of resources, water, and vigor in industrialized
invention, by such approaches as: dematerialization of products with worthy man-
acles; utilization of resources by means of longer overhaul of natural life; surrogate
of virgin resources with cast-off supplies; recycling, reclaiming, and revitalization of
materials; use of supplies, water and vigor as sustainably administered and/or low
impact sources.
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9.5.2 Lessen the Generation of Waste and Emission

Lessen and wherever possible eradicate the formation of waste and emissions inside
factory, by such approaches as: enhancement in the method of maintenance, mon-
itoring, and operation; dissipate minimization; application of superior process tech-
nology with superior effectiveness as well as specificity; recycling, recuperation, and
reclaiming of process rivulet.

9.5.3 Lessen Peril Allied with Chemical and (Perilous) Waste

Lessen peril allied with fabrication, make use of and dispose of chemicals, by such
approaches as: sound executive of chemical; phasing out of venomous and other
environmentally detrimental substances; relevance of the most excellent ecological
practice and most excellent accessible modus operandi to prevent unintended for-
mation and emissions of pop and further perilous poisons; proxy of chemical
processes by non-chemical processes (biological, physical, etc); and substitution
with safer, extra specific, and/or more effectual unconventional chemicals.

9.6 B. Construction of Jade Industries Ascertains and
Enlarges (Innovative) Jade Industries That Furnish
Ecological Freight and Services To

9.6.1 Diminish, Recycle, and Reprocess Waste Materials

Shore up industry to develop and deliver superior incorporated waste executives,
reprocess and resource revival technology, services and systems, for saleable, civic,
edifice, demolition, industrialized and other definite waste streams, and generate
trustworthy materials of recycled supplies and products.

9.6.2 Improve Industrial Vigor Efficiency and Create Use
of Renewable Vigor

Shore up industries to management systems, products, equipment, deliver technol-
ogy, recognize services that augment industrialized vigor efficiency and the use of
renewable vigor (bio and solar, etc.) or extra low carbon vigor sources (in fastidious
waste warmth).
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9.6.3 Accumulate, Cope, and Arrange (Perilous) Waste
and/or Emissions Within Environmentally Compatible
Traditions

Prop up industry on the way to develop and deliver technology, equipment, execu-
tive systems, products, be acquainted with how services accumulate, cope and
arrange, devoid of threats to the atmosphere, (perilous) waste and/or emissions,
counting for exemplar chemical electronic waste, curative waste, etc.

9.7 New Technologies

9.7.1 Why We Need Advanced Treatment

The utilization of conservative irrigation water and wastewater treatment processes has
become even more challenging through recognition of increasing noxious waste, fast
augmentation of inhabitants, and industrialized tricks along with declining ease of use of
the stream resources because the waste matter of unusual secondary treatment shows
tranquil restraint of 20–40 mg/L BOD, which might be abhorrent to several streams.
Hovering solids, which accumulate and contribute to biochemical oxygen demand
(BOD), might perchance reconcile on the torrent bed and inhibit the aquatic existence.
The BOD of discharge in a tributary by a low stream is able to cause harm to aquatic
existence by tumbling the dissolved oxygen content. In addition, the secondary effluent
contains a considerable amount of dissolved solids and plant nutrients. If the dissipate
water is of industrialized derivation, it might also retain traces of unrefined chemicals,
heavy metals, and additional contaminants. Diverse methods are used within advanced
dissipate treatments to gratify any of the numerous specific goals, which comprise the
erasure of (1) venomous substances, (2) BOD, (3) hovering solids, (4) dissolve solids,
and (5) plant nutrients. These technologies make the option available for better civic
health and the milieu. The emphasis is positioned on their basic ideology, focal
relevance, and narrative improvement. Advantages and drawbacks of this technology
are compared to emphasize their modern confines and future research requests. It can be
considered that, along with the emergent familiarity and the advances in industrialized
diligence, the relevance of these technologies will be increased at an unprecedented
scale. These treatment technologies may be introduced at any juncture of the treatment
process, such as in the casing of industrialized watercourse or might be used for the
entire deletion of contaminants subsequent to secondary treatment.

9.7.2 Automated Chemostat Treatment (ACT)

Automated Chemostat treatment is a description scheme in the handling of slush.
This skill is flexible and simple to integrate; it is totally computerized, controllable,
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and significantly more efficient than the existing practice. The systematic concept of
automated chemostat treatment is the use of a suitable bacterial cocktail in support of
a known category of tainted irrigation water to get a novel chemostat. The process is
maintained within an affirmed balance of bacterial escalation and natural composite
degradation. Because of the low concentration of bacterial cells, no aggregate is
fashioned and each bacterium acts when a single cell boosts the surface vacant for
the method and enables the biodegradation at a much superior effectiveness. The
domino effect is an almost slush gratis output of water that can be returned straight to
the milieu or advanced to the next process. Automated chemostat reduces COD,
hydrocarbons, suspended solids, and TOC from oily waters and slippery, parting fine
effluents below industry regulation levels. On the basis of a water sample from the
refinery, ACT determines the most efficient solution to treat the specific refinery
issue. The hydraulic age and the bacterial age become equal, requiring a lower
density of single cell bacteria. This ACT operates as an unremitting flow reactor
devoid of activated sludge. The bioreactor can thus be relevant on site, where using
accessible infrastructure with high suppleness for intonation for the method saves
considerably in effectual and continuation outlay.

Advantages

The advantages of this simplify the scheme by plummeting chemical treatment and
bio sludge as well as reducing black sludge formation. Its litheness and modularity
permit it to embrace low and high capacity contamination, be used for fresh and salt
water, be simply modified, and have augment capability. Production is nearly sludge
free, gathering the strictest disposal values. This trailblazing “green” process is
effortless to change and can be used in diverse sites, including oil refineries, oil
storage farms, contaminated reservoirs, drilling sites, marine ports, and storage
tanks.

Full Control from Any Point for Every Point

The completely automated system comprises an assortment of online sensors that
feed the management unit information on different parameters for instance:
dissolved oxygen, TOC, nitrogen, TPH, and temperature. The regulators ensure
the finest process balance is upheld among the additives, organic compounds,
degradation flow rate, and bacterial growth.

Application

1. These technologies directly address the three focal disadvantages of predict-
able water treatments in refineries: initially, there is no necessity to reactivate
bio slush.
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2. ACT eliminates the requirement of the DAF process and saves time.
3. Productivity, which is practically sludge free, can be dumped directly in nature by

tumbling bio slush sources and the creation of black slush, as well as adequately
eradicating nitrogen. Its output meets the strictest discarding values, necessitating
no further handling.

4. ACT offers a vastly effectual treatment of side torrent, which is regularly the
origin of tragedy in conservative treatment processes. Side torrents impact the
most, originate traffic jams, and further stern procedures.

5. It can be executed devoid of an inclusive extra treatment scheme.
6. Permits severance of heavily polluted rivulet and amplifies overall output.
7. Provides an efficient manner to rupture loss and PAH, eliminates oil, other

organics, and phenols.
8. The patented process exploits inimitable bioremediation technology to trim down

COD, hydrocarbons, TOC, and suspended solids from oily waters and slippery
departure effluent of high quality reunion stringent industry values.

9. The bioreactor can be functional on-site (using the available infrastructure) owing
to its elevated litheness in process intonation. This spectacularly lessens the
equipment and maintenance outlay (Fig. 9.2).

9.7.3 Membrane Bio Reactor (MBR)

Membrane Bio Reactor (MBR) technology is based on the array of predictable
activated mire handling together with a course of action filtration by a membrane
with a pore volume between 10 nm and 0.4 microns (micro/ultra filtration), which

Fig. 9.2 Diagram for automated continuous flow system
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allows mire division. The membrane is a hurdle that retains all particles, colloids,
bacteria, and viruses of treated irrigation water. Also, it can operate at upper concen-
trations of mire (up to 12 g/l as an alternative of the standard 4 g/l in predictable
systems), which significantly reduces the volume of the reactors and mire formation.
Although there are currently two leading procedure configurations of biomass rebuff
MBRs, side stream (SMBR) and underwater or engrossed (IMBR), the engrossed
configuration is the most extensively used in community wastewater solutions owing
to the inferior related outlay of operation. Here, the component is located directly in the
process reservoir and is therefore less energy intensive, while as an end result, it is only
compulsory to generate a trivial vacuum within the membrane component, considered
as trans membrane pressure (TMP) for filtration.

In support of the absorbed configuration, mostly two types of profitable mem-
brane modules are obtainable: flat sheets (FS) and hollow fibers (HF). Hollow fibers
permit a higher packing density due to thinner spaces among membranes compared
to flat sheets. Nonetheless, these make it further vulnerable to membrane congestion
and/or sludging, and it can also make crackdown extra tricky. The membrane
materials used for an IMBR are fluorinated and sulfonated polymers
(polyethersulfone, polyvinylidene, difluoride in fastidious), which dominate in sale-
able membrane MBR products. It is indispensable to cram the mechanism and
factors that contribute to membrane fouling in MBR. Normally, these factors have
been classified in four discrete groups: nature of the sludge, operating parameters,
membrane/module characteristics, and feed wastewater.

9.7.4 Membrane Filtration

It involves the running of water containing impurities across a membrane. Running
water pervades all the way through the membrane into a divided conduit for
improvement. Because of the cross-flow collection of water and the overwhelming
ingredients, resources at the back do not move up to the membrane surface but are
passed out of the system for adjusted recovery or elimination. The watercourse
transitory in the membrane is called pervade, although the water with more concen-
trated materials is called the concentrate or retentate (Fig. 9.3).

Membranes are constructed of roughage or other polymer matter, by means of a
highest pore size put down during the industrialized process. It is necessary that the
membranes elude passage of particles the size of microorganisms, or about 1 micron
(0.001 millimeters), and therefore that they remain in the process. This means that
the MBR system is fine for eradication of solid materials, but the deduction of a
liquefied wastewater apparatus must done and facilitated by means of the accompa-
nying management steps.

Membranes can be configured in a number of ways. For membrane application,
two configurations are primarily frequently used for hollow fiber groups in bundles,
as revealed in Fig. 9.4. The hollow fiber bundles are connected by manifolds in the
unit so as to be calculated for easy alteration and service. This type of membrane

9 Green Technologies for Wastewater Treatment 237



existence can be achieved, or even improved on, for 10 years. On the subject of
permeability, a correlation of permeability loss and operation time was established
from research, demonstrating that the membrane permeability reaches a
nonoperative value after 7 years of operation (Sebastian et al. 2011).

9.7.5 Wet Air Oxidation (WAO)

In the aqueous industrial treatment, the misuse of effluents is a considerable and
necessary procedure, with several techniques employed. WAO is one of the

Fig. 9.3 Diagram for
membrane filtration process

Fig. 9.4 Diagram for hollow-fiber membrane system
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available technologies for the management of aqueous wastewaters. In wet air
oxidation, aqueous waste is oxidized in the liquid phase at high temperatures
(400–573 K) and pressures (0.5–20 MPa) in the presence of an oxygen containing
gas (usually air). This technology consists of techniques to heat transfer and the use
of both homogeneous and heterogeneous catalysts to enhance reaction rate. WAO is
a hydrothermal process suitable for the oxidation of organic and inorganic compo-
nents or pollutants in aqueous misuse streams. High hotness and eminent pressure
are requisite, commonly operated inside the superheated water range (<300 �C,
<20 MPa). Usually, the higher the hotness, the higher the level of oxidation
achieved, and the connected requirement of pressure is essential to maintain the
fluid state. Oxygen limited pressure and residence time is also crucial to the degree of
oxidation. Residence times can variety from seconds to hours depending upon the
nature of the material to be oxidized, and obviously limited to the most difficult
components to corrode when bearing in mind complex mixtures, such as industrial
and municipal misuse streams.

Wet Air Oxidation of Wastewater Slush

In misuse water treatment, the primary use of alum (or alternatively ferric salts) is as
a coagulant or as a phosphate precipitant, via formation of insoluble aluminum
phosphate. Alum and phosphates may therefore be alienated from the fluid aqueous
watercourse by WAO as a considerable economic benefit to this procedure. The
organic module of the mire is significant in terms of proportion and overall quantity,
and amongst other criteria it is essential to be detached from the aqueous water-
course. The analysis of COD provides a suitable measure of the organic matter. A
primary benefit of this method is a considerable reduction in COD of the fluid output
(Paul et al. 2012).

WAO Process

We recognize that wet air oxidation is the oxidation of soluble or perched gears in
water using oxygen as the oxidizing agent (Fig. 9.5).

Features & Benefits

1. Pretreatment of high force wastewater to create eco-friendly residual organics.
2. Low operating costs and minimal air toxic waste discharges.
3. Destruction of specific compounds.
4. Removal of toxicity or reactivity.
5. Procedure fluid treatment for recycling/recovery.
6. Gross reduction of chemical oxygen demand (COD).
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Disadvantages

1. Elevated capital costs.
2. Safety implication connected with a scheme in action by such rigorous in service

circumstances.
3. In the design of the procedure, equilibrium has to be reached connecting the

improvement of the reaction rates with hotness and pressure adjacent to their
consequences on capital cost and operational difficulties, such as deterioration
and scaling of apparatus.

Application

1. Treatment of towering strength wastewater, comprises tired caustic streams create
by ethylene off rockers and refineries.

2. In method, for treatment and recycling/recovery of procedure fluid streams.
3. Biological mire conditioning and demolition.

9.8 Technology Classification

Membrane separation is currently exploited as a support or surrogate planned for
habitual watercourse and wastewater treatment technology, such as biological filtra-
tion or corporeal and chemical solutions. They are rapidly gaining acceptance all
over the planet, and for the most part the victorious and reasonably priced water

Typical Process Flow Diagram
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Fig. 9.5 A typical flow diagram of wet air oxidation process
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treatment schemes are easy to get to (Pall Corporation 2015). At first membrane
separation was used for grounding of procedure water, though its services have
expanded owing to its merit within wastewater solutions and intake water decon-
tamination practices by means of the plan to retain microorganisms in desalination
and irrigation water softening. Membrane separation is based on discerning filtration
by pores of different sizes and consists of four leading membrane types: reverse
osmosis, ultrafiltration, nanofiltration, and microfiltration. Every part of these types
are disparate particles from the nourished watercourse. Ultra- and microfiltration is
deployed generally for particle removal, while reverse osmosis along with
nanofiltration is used for desalination and softening. Membranes for water filtration
differ within stipulations of aperture size. The smaller the aperture, the greater the
applied pressure disparity must be to squash the water course through the membrane.
Relatively bulky particles can be alienated through ultra- and microfiltration. How-
ever, particularly in the cases of desalination andsoftening, there are minor particles
which require exclusion. During such situations, the most appropriate solution is to
deploy reverse osmosis or nanofiltration. These membranes are not permeable
resources with defined pore size; however, the homogeneous polymer layer retains
assured substances owing to their particular formation. The technology taxonomy of
membrane-based water filtration is summarized in Table 9.1

9.8.1 Membrane-Based Technology

9.8.2 Membrane Filtration Systems

Membrane systems are crucial to the enlargement of superior water retrieval
systems, and the progress of innovative and enhanced systems is predicted to
continue. Engrossed micro- and ultrafiltration membranes afford an admirable
pretreatment for RO, which can eliminate an extensive array of liquefied ingredi-
ents. Besides, the growth of membrane filtration systems have lead to the

Table 9.1 Taxonomy of membrane-based water filtration

Membrane
type Configuration Material

Membrane Microfiltration
(MF)

Pipe-shaped membranes: capillary, hollow fiber
or tubular plate-shaped membranes: flat plate or
spiral

Organic
(Polymeric)

Ultrafiltration
(UF)

Plate-and-frame, spiral-wound, and tubular Inorganic
(Mineral)

Applications Water Treatment (incl. Desalination) and Wastewater Treatment

End users Industries, Municipalities and communal applications, Desalination plants

Copy right © 2013 (Source: Frost and Sullivan 2013: CEO 360 Degree Perspective on the Global
Membrane-based Water and Wastewater Treatment, Mountain View)
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improvement of both highly developed water treatment technologies and MBRs,
which are swiftly attracting the diligent workhorse of water repossession.

Among MBRs, residence times of natal solids are augmented, making probable
extra biological treatment and the upholding of pathogens; treatment by means of
MBR produces an extremely elucidated effluent that can be merely sterile. Conse-
quently, treatment with MBR is ideal for turning out non drinkable water. In favor of
the retrieval of filtered water, MBR has to be followed by UV and RO treatments
(Tao et al. 2005, 2006).

9.8.3 Ultra Filtration

Ultrafiltration is a contemporary water and wastewater filtration tool that has a low
pressure-driven membrane, which is tremendously effectual with the supplementary
benefit of low energy utilization (Van der Vegt and Iliev 2012). It is a membrane that
allows particles smaller than 20 nm to go through it and the aperture sizes vary
between 20 nm and 0.1 microns. The function of this membrane system is escalating
in the water and wastewater treatment sector and in industrial process severance. A
few of the key applications for these membrane systems are in desalination,
pretreatment processes, ingestion water treatments, and membrane bioreactors. In
the industrialized sector, some definite preferences exist, for instance, as an emphasis
on admirable pH and temperature resistance. A stipulation for low foul propensity of
filter is also an imperative, even though it is not specifically insisted on in industrial
processes. The key applications for these membrane systems are in the victuals and
beverage quarter (including a strong stipulation in the dairy industry on behalf of
such products), the attention of macromolecules in biotech, the fabrication of
ultrapure water for microelectronics, in general industrial wastewater treatment,
and oil emulsion waste (Synder Filtration 2015). These membranes are fashioned
via assorted suppliers among precise configurations that depend on the contour and
material of the membrane. These configurations have a specific use and that is
accompanied by advantages and disadvantages. The most crucial influence of the
configuration is the mechanical stability on the system and requisite hydrodynamic
and fiscal constraint. These membrane module approaches are in capillary or hollow
fiber configurations (pipe-shaped membranes), tubular, frame or spiral wound con-
figurations (plate-shaped membranes), and plate. For a spiral wound, towering purity
water and capillary configurations would typically be used (Lenntech 2015). The
optimization of the system depends mostly on the power consumption, flow velocity,
membrane fouling, pressure drop, and module cost (Dhawan 2014). In addition,
there are several set ups for the identification of specific membrane configurations.
The most frequently used methods incorporate dead end and cross flow filtration
setups. The permutation of both dead end and cross surge also represents an
achievable type for the filtration process. The forth probable set up is the filtration
chamber with suffused membrane filter. This method was initially urbanized for both
ultra- and microfiltration through wastewater treatments where the membrane, in
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combination with the chamber/reservoir, is fashioned as a membrane bioreactor
(MBR). The current most accessible assortment of MBR systems use suffused
membranes (Rippenger 2009).

9.8.4 Nanotechnology

Additional staged enhancements are viable in the near future (Tchobanoglous 1981).
The notion is humans probed for advancement of the theater membranes through less
polluted characteristics, enhanced hydraulic conductivity, and more discriminating
denial/transport characteristics. Progress in RO technology includes enhanced mem-
branes with configurations, extra efficient pumping and vigor revival systems, and
the progress of process technology, such as membrane distillation (Shannon et al.
2008). Nanofiltration provides a better filtration than ultrafiltration; however, it is as
a rule referred to as free reverse osmosis (RO) because of its membrane pore
structure. The structure of the membrane is comparatively large when compared to
RO membranes, and unlike them, it allows the passage of salts (Rippenger 2009).
Nanofiltration membranes have pores with a measurement of around 1–5 nm and the
molecular weight cut off for a typical membrane mendacity between 150 and 500
Dalton. Nanofiltration applications are frequently used to tackle organic contami-
nants and some inorganic salts as they can keep ions and low molecular weight
organics. The membranes have more radically advanced water permeability than that
of reverse osmosis (RO), which operates at much lower pressures. Owing to its lower
energy use and higher flux rates, nanofiltration might replace RO in numerous
applications (Shon et al. 2013).

To tackle macrobiotic contaminants in freshwaters, nanofiltration membrane
systems are also used for the concentration of dyes, sugars, and other substances.
There are a number of developed applications using nanofiltration because it is
moderately frequent in the textiles, dairy and food sectors, and in chemical
processing; although, the principal applications continue to be in the treatment of
wastewaters, fresh processes, and desalination pretreatments (Sutherland 2009).
Analogous to ultrafiltration, there are also different shapes of nanofiltration mem-
branes, such as tubular, spiral or flat.

9.8.5 Mechanical Variable Filtration Technology

This technology affirms the treatment used and intended for wastewater handling in
which a growing gush of influent is cleaned by a downward gush of sieve media.
Throughout the treatment procedure itself, the sieve media is cleaned by the filtered
influent; hence, there is no necessity for any bonus sieve media cleaning or fresh
water. The automatic variable filtration method consists of double sets of sieve
media that can be operated in string or analogous. The two juncture string
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configuration is used to turn out incredibly excellent filtrate. This style is ideal for
distillation of secondary wastewater for reuse. The automatic variable filtration
procedure is operational with actuated valves, sensors, and programmable sense
organizers to mechanically change from a serial manner to analogous mode through-
out soggy weather circumstances or other preset working situations.

The input benefits of the scheme are:

• Incessantly clean media bed.
• Higher solids capacity.
• Even gush allocation.
• Outlay effectual to inaugurate, low operating and prolongation costs.
• Average reject of 5–15%.
• Easy operation & maintenance.
• Elimination of ancillary equipment.
• Extremely low power consumption.

9.8.6 Reverse Osmosis (RO)

Reverse osmosis is a type of membrane division that uses pressure to compel a
solution through a membrane so as to retain the solute and allow the clean solvent to
pass to the other side. In general, this membrane deliberately allows water to pass
through even as the solutes (for example salt ions) are being separated. It is proficient
at sorting out viruses, dissolved solids, bacteria, and other elected dissolved sub-
stances and is chiefly used for the desalination of seawater (Bakalar et al. 2009; Frost
and Sullivan 2013). The reverse osmosis (RO) membrane is in essence nonporous,
and it preferentially passes liquid and retains the majority of the solutes, including
ions (Shon et al. 2013). Reverse osmosis and electro dialysis emerged collectively as
new technologies in the second half of the twentieth century; they became
alternatives to the commonly used techniques of evaporation and distillation.
Since then, there have been a number of advancements in most important
technologies, including membrane distillation, low temperature distillation, pressure
retarded osmosis, graphene membranes, and bio mimetic (International desalination
Association 2013).

9.8.7 Microbial Fuel Cells

For microbial stimulate cells, a prospective advanced technology, electrical vigor
naturally occurs in the dissipate stream by means of electron transfer to detain the
vigor produced by microbes designed for metabolic processes (Kim et al. 2008;
Logan et al. 2006). Initially, microbes are matured as a bio film lying on an electrode;
the electron contributor is alienated from the electron acceptor by proton barter
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membranes, which ascertain an electrical current. Electrical energy is subsequently
generated by the corrosion of organic matter. This technology is stable in the stage of
improvement and noteworthily advanced in practice. The efficacy and economics are
indispensable; it has the potential to create electrical energy directly from organic
themes in the waste rivulet.

9.8.8 Innovative Municipal Hygiene Technology

The new municipal hygiene technology intends wastewater treatment by reuse of
vigor and mineral deposits with an amalgamation of electroflocculation and anaer-
obic digestion technology. Electroflocculation treatment is based on severance of the
organic contamination from population wastewater through electrocoagulation. The
organic slush of the electrocoagulation reactor is made up of sediments in a globular
sedimentation store; the slush is subsequently fed to an anaerobic reactor to get
renewed biogas, which can be rehabilitated into vigor for captive exploitation.
Anaerobic fermentation technology produces optimum biogas owing to two
detached processes of hydrolysis, where the long carbon chain complex is wrecked
into smaller complexes, for instance, fatty acids and methanogenesis, and the fatty
acids get transformed into biogas.

9.9 Innate Treatment Schemes (ITSs)

The foremost basic consideration and depiction of the process of innate treatment
schemes (ITSs) is also humanizing and enables us to use the innate process and to
develop water excellence (Kadlec and Knight 1996). ITSs use a range of biological,
physical, and chemical processes concomitantly to confiscate a wide array of
noxious wastes. For instance, this scheme is increasingly being used to detain,
maintain, and treat tornado water, thereby converting this “nuisance” attached to a
precious source of water. These innate views have the benefit of being capable of
eradicating a wide assortment of micro pathogens, constituents, counting nutrients,
and noxious wastes. They have long proven to be effectually designed for the
treatment of potable water; ITSs are increasingly being used for water retrieval.

9.9.1 Analytical Dissipate

Analytical processes vary in the quantity of dissipate created. The greenest methods
produce no dissipate or create merely a diminutive volume of dissipate (Keith et al.
2007). Commonly, the more steps in an analytical scheme, the more reagents
consumed, and the higher the volumes of analytical dissipate. Therefore, diminution
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in the use of reagents by the techniques discussed above contributes to lessen the
manufacture of dissipate. An additional imperative issue is ensuring the appropriate
treatments of analytical dissipate. The toxicity of dissipate may be condensed during
recycling, degradation, and passivation of dissipate, preferably executed on the line
(Garrigues et al. 2010).

9.9.2 Coke Oven (CO) by Product Wastewater Treatment

In India, steel producing plants use this treatment method to convalesce ammonia
from coke ovens. Water contamination trouble would subsist if ammonia is not
recovered, which is the main contaminate amongst all dissipates from production. In
the CO effluent, the majority of the contaminants are liquefied. Additional contam-
inants are subjected to biological treatment along with residues of phenol and
ammonia. The two main processes frequently used for the treatment of coke oven
effluents are dribble filter and the activated slush process.

9.9.3 Urine Unraveling Method

Urine is a division of familial wastewater which contains 50% phosphorus and 90%
nitrogen. The upgrading of urine unraveling toilets and technology for treating it
create compost products that are key for managing nutrients with minimal necessi-
ties for exterior assets, for example, additional energy. To produce the identical
quantity of fuel based on nitrogen rich fertilizer takes a huge quantity of vigor and
nonrenewable resources. Urine unscrambling toilets have already been developed,
and advanced research is also going on to further refine and utilize them for
wastewater management and creating resources.

9.9.4 Root Zone Treatment

1. Handling of familial wastewater, especially for petite towns, hotels, resorts, rural
community, hostels, etc., is effortlessly probable and affordable because it
engrosses maintenance cost, low capital, and operation.

2. Root zone treatment canisters also treat eco-friendly built-up effluents, especially
effluents from agro based industries, such as those seen at Kids Leather (Tannery
effluent), the Chennai CPCB project at Mother Dairy, and the Delhi and Industrial
effluent of Proctor and Gamble at Bhopal.

3. Root zone treatment can be applied in Urban Watershed Management by treating
the exposed nullah in a decentralized manner and in receipt of the treated
dissipates either for dilution purposes or irrigation.
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9.9.5 Water Hyacinth Eco-Technology

This technology provides outlaying effectual solutions to dissipate water issues in
many precise areas (Trivedy 1998). This is based on waste treatment and was
endeavored in Singapore, Malaysia, the US, India, and Japan. India initially
designed some for 2–5 years with most studies coming from the United States.
Victorious pilot projects are familiar (Mandi 1994; Brix and Schierup 1989). The
treatment of wastewater by water hyacinth has been effectively executed by the
conurbation of San Diego, USA, to generate an indulgence waste matter quality
standard that would be estimated from advanced secondary treatment methods.
Current research efforts have exposed that this technology exploits wastewater
treatment in universal dispersion. Conventionally, it was used merely for sewage
treatment and a few industrial diverse types of dissipate and chemical species are
employed for treatment by means of water hyacinth. This technology has shown
promise in elimination of venomous organic dissipate, including almost all metals
and radioactive dissipate. It has emerged that the plant has a notable capacity to
confiscate an exceptionally wide range of substances and a large number of them are
yet to be tested.

It is being used in amalgamation with other flora to obtain enhanced recital.
Aquatic fish culture is being increasingly used in hyacinth treated water; algal
control in water after secondary treatment is furthermore accomplished by water
hyacinth. In tremendously underprivileged countries, where water course paucity is
acute and hygiene is appallingly low, particularly in rural areas, water hyacinth can
be used to make clean water points depleted of waste available. It is also proposed
not merely as a water sterilizer but also to generate income for the rustic poor
(Trivedy and Thomas 2005).

Biomass operation ought to be a crucial part of the hyacinth based method. It is
imperative to recognize economical methods for the discarding and/or exploitation
of the large quantity of solids that can be spawned by the water hyacinth treatment
process. The microbial environmentalism of hyacinth-based systems, in particular
the role of poised and attached escalation, needs to be investigated in detail.

The design parameters developed require validation in miscellaneous situations
for diverse kinds of dissipates. Superior effectiveness during microbial growth/
higher augmentation of the plant or through additional processes ought to be attained
to trim down desired areas. The water hyacinth-based system has shown great
promise as a low-cost and efficient water purifier, and its relevance is mounting
worldwide.

Initially, it was only used for sewage treatment and now is used in treatment of a
broad range of chemical substances. Nowadays, it is a great contributor to the
solution of numerous desires akin to raw material for various industries, especially
for the rustic poor, milieu protection energy, water furnishing, and fertilizer. The full
potential of this plant is yet to be tapped.
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9.10 New Technology in Water Handling

According to the most recent third world Academy of Sciences report, of the six
billion inhabitants on the globe, in excess of one billion (one in six) do not have
access to safe drinking water, and 2.5 billion (more than one in three) do not have
access to satisfactory sanitation sources. Today, 31 countries representing 2.8 billion
inhabitants, including India, Nigeria, China, Ethiopia, Peru, and Kenya, confront
unremitting water problems. Within a generation, the population of the earth will be
close to eight billion people, yet the amount of water will be the same. Therefore, we
have to discover newer, better ways to treat, recycle, and save the water.

New Approaches

1. Shielding accessible water resources and inventing effectual ways to trim down
water utilization for different human uses.

2. New affordable reverse osmosis for desalination.
3. Recycle akin to the gray water that can be used to recharge groundwater to assist

in curtailing the salinity levels and to improve the health of swampland.
4. Effective water harvesting.

Method Forward
The new treatment processes for resource revival along with the toting up of
metropolitan water and waste management methods will help develop the sustain-
ability of our water resources. The new technologies can significantly lessen water
abstraction from our resource constrained world. Retrieving water must be managed
suitably to sustain the integrity of the overall treatment system. The vigor utilization
in treatment plants also requires active administration to make the complete process
efficient and effective. Technologies to meet this challenge before now subsist and
work is going on to transform and incorporate them into superior performing, more
sustainable systems. The challenges are choosing the appropriate one from the
obtainable options and emergent institutional planning for executing them in the
most efficient ways.

9.11 Conclusion

Presently, financial crunch in numerous urbanized and developing nations is forcing
the execution of low-cost natural and green technological treatment systems for
domestic and industrial wastewater solutions. When the technical treatment ameni-
ties are installed in many developing countries, the force input is complicated to
supply in view of the worldwide energy emergency and its affordability is question-
able due to very high outfitting costs. These factors are spurring the employment of
environmental engineering ethics for not only misuse solutions but also for conserv-
ing biological communities in deprived nations of the globe.
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Over the past two decades, ecological regulations have become more stringent,
requiring an enhanced quality of manufacturing wastewater effluent. The great
number of studies reviewed here is indicative of the extensive and intense investi-
gation that has been done in the field of manufacturing wastewater solutions. These
studies cover a broad range of manufacturing pollutants, a broad range of solution
technologies, and model solutions with entity substances in genuine effluents
containing a combination of diverse importunate substances.

The selection of the most appropriate treatment for industrial wastewater depends
primarily on its characteristics and on numerous other parameters, such as ease of
use and testing of the technology, pollution control, environmental impact, the
overall recital, plant simplicity, experience technologies, and economic parameters,
including the capital investment and operational costs. Although a systematic modus
operandi exists consisting of model substances prior to stuffing the authentic waste-
water, and appraises toxicity and biodegradability throughout and after the degra-
dation process, more pilot-plant scale trials with real industrial wastewater must be
executed on a larger scale.

The innovative incorporated technologies entail appraising the absolute waste-
water treatment in sequence to be reused in the industry itself. Auspiciously, a lot of
technology to meet these demands already exists, and effort is being done to sanitize
and incorporate them into the higher theater of further sustainable systems. These are
all vicinities in which engineers excel. The companion challenge will be choosing
amongst the accessible options and developing institutional planning for putting
them into operation in the most effective ways.

This is where we will require aid from other vocations. Permutations and inter-
gradations of a technology were able to treat a broad assortment of high potency and
noxious industrials. Such intergradations of treatment technologies can shift the
exemplar of wastewater management from treatment and discarding to beneficial
consumption and lucrative endeavors.
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Abstract The properties needed for photocatalytic applications, such as large
specific surface area, controllable pore size and morphology, and high interparticle
connectivity, are among that owed by mesoporous materials. These attributes have
been attracted researcher to engineer for further enhancement of the surface and to
provide diffusion, charge, or light transfer or reactant access into the cavities. The
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synthesis, structural properties, and catalytic performances of mesoporous materials
for degradation of textile dyes will be discussed in this chapter. The development of
photocatalytic materials, particularly of porous material including metal-
incorporated zeolites, metal–organic frameworks, and porous semiconductor
photocatalysts, will be described in the beginning of the chapter and followed by
the mechanism of the photocatalytic process. Finally, the issue of future challenge
will conclude the discussion.

Keywords Mesoporous photocatalyst · Metal oxide · Mesoporous TiO2 ·
Mesoporous ZnO · Mesoporous SnO2 · Supported photocatalyst · Template
photocatalyst

10.1 Introduction

Photocatalyst is a material that has a catalytic ability enable after electromagnetic
radiation absorption. The range of electromagnetic radiation is commonly in the UV
to near-IR range (Shan et al. 2010). It has been widely investigated due to its variety
of potential applications for human life, such as degradation of harmful dyes
(Mahmoodi et al. 2018; Akpan and Hameed 2009), dye-sensitized solar cells
(DSSC) (Chou et al. 2004), and gas sensors (Yamazoe and Miua 1992). To date,
many efforts have been made to improve its potential activities such as decreasing
the band gap, improving light sensitization, preventing electron–hole recombination,
and increasing active surface area by creating porous structure (Yu et al. 2002). The
porous structure and size are very important to influence the effectiveness of
photocatalytic process (Garforth et al. 1997).

According to IUPAC (International Union of Pure and Applied Chemistry), the
materials are classified into three groups based on their pore size: (1) microporous,
materials with diameter less than 2 nm; (2) mesoporous, materials with diameter
from 2 to 20 nm; and (3) microporous, materials that possess pore size more than
50 nm (Corma 1997). In order to have an efficient photocatalytic process, the most
important factors to be considered in engineering materials are pore structure and
size. The presence of porous structure in/on the catalyst provides a high surface area
for the premier contact of an adsorbate molecule and catalyst. Moreover, it also
facilitates the molecule diffusion and charge or light transfer that support the
catalytic process (Anpo et al. 1987; Corma 1997). In the case of textile dyes,
mesoporous photocatalyst has showed enhancement of the photocatalytic perfor-
mance (Ali et al. 2012; Chakma and Moholkar 2015; Areerob et al. 2018; Silva et al.
2018).

To date, various methods have been demonstrated to prepare the mesoporous
photocatalyst including by using the support material or template agent. In this
subchapter, various synthetize techniques to prepare the mesoporous metal oxide
photocatalyst are discussed with highlight on the supported photocatalyst and
template photocatalyst.
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10.2 Mesoporous Metal Oxide Photocatalysts

10.2.1 Mesoporous TiO2 for Degradation of Textile Dyes

Along with the rapid progress of research in the studies of semiconductor
photocatalyst, TiO2 is widely known as one of the most promising photocatalysts
due to its potential properties (Mondal and Sharma 2014; Saravanan et al. 2018) and
applications (Xu et al. 2011; Feng et al. 2005; Mishra et al. 2009; Kawahara et al.
2002). The serious problem of environmental wastes could be solved by the under-
standing of the photocatalytic activity of this material (Dhiman et al. 2017; Chen and
Mao 2007). Many reports on the preparation and modification of TiO2 by creating
porous structure have been published recently to enhance the photocatalytic activity
of TiO2. Hossain et al. (2015) reported the fabrication of ordered mesoporous TiO2

with superior photocatalytic activities. At the same time, Cheng et al. (2015) also
introduced the excellent photocatalytic properties of ordered mesoporous TiO2 by
addition of various kinds of metal dopants. Most of all these various preparations,
modifications, and characterizations of mesoporous TiO2 for photocatalysis appli-
cation have been reviewed by Ismail and Bahnemann (Ismail and Bahnemann 2011).
It has also been reported that the presence of porous structure can increase the
density of active sites, which lead to the improvement of the intrinsic properties
(Li et al. 2013).

Synthesis Method and Reaction
There are various synthesis methods that have been reported on the preparation of
mesoporous TiO2 such as sol–gel, sonochemistry, hydrothermal microwave, and
electrodeposition (Bagheri et al. 2015).

Sol–Gel
Sol–gel process consists of two main steps. There are hydrolysis and condensation of
precursors. For mesoporous material, the surfactant as a template is dissolved into
homogeneous solution of TiO2 precursor. The slower condensation of the TiO2

precursor leads to the formation of mesoporous structure, with better accessibility
for photocatalysis (Ismail and Bahnemann 2011). The general reaction that involved
in the sol–gel process can be schematically represented as follows (Moussaoui et al.
2018):

Hydrolysis

M OEtð Þ4 þ xH2O $ M OEtð Þ4�x OHð Þx þ xEtOH ð10:1Þ

Condensation

M OEtð Þ4 þ xH2O $ M OEtð Þ4�x OHð Þx þ xEtOH ð10:2Þ
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Hydrothermal

In the hydrothermal method, the process is normally conducted in pressure vessel
steel called autoclaves coated with Teflon liners under controlled temperature and/or
pressure with the reaction occurring in aqueous solutions. The temperature can be
elevated above the boiling point of water, reaching the saturation vapor pressure
(SVP). Both temperature and the amount of solution, especially Ti precursor and the
surfactant, determine the generated internal pressure. The example of the
mesoporous TiO2 prepared by using hydrothermal method can be illustrated in
Fig. 10.1 (Ismail and Bahnemann 2011).

Microwave Method
Microwave radiation has been applied to prepare various mesoporous TiO2

nanoparticles in the presence of surfactant. The frequency of microwave heating
that is usually used is in between 900 and 2450 MHz. This resulted energy can
accelerate the formation of crystalline mesoporous TiO2 nanopowders with a high
surface area and excellent photocatalytic effects for photodegradation of textile dyes
(Ismail and Bahnemann 2011).

Sonochemical Method
Ultrasound is a useful method for the synthesis of mesoporous TiO2 active
photocatalyst. This method applies the precursor of TiO2 under the powerful ultra-
sound irradiation (20 kHz–10 MHz), without any template. This procedure was
claimed to give a good dispersion of the nanoparticles, a marginally large surface
area, a good thermal stability, and phase purity (Ismail and Bahnemann 2011).

Experimental Studies of Various Mesoporous TiO2-based photocatalysys Along
with Their Design, with Specific Attention to Various Chemical Reactions
Involved
Table 10.1 summarizes the reported experimental studies of various mesoporous
TiO2-based photocatalysts with specific attention to various chemical reactions
involved.

Application for Degradation: Mechanism and Some Important Things
Generally, the photocatalysis mechanism can be described by the following equa-
tions (Veselý et al. 2005; Wellia 2012):

Fig. 10.1 Schematic diagram of preparation of ordered mesoporous TiO2 via hydrothermal method
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1. Hydroxyl radical generation

TiO2 !hv TiO2 e�cb; h
þ
vbð Þ ! recombination ð10:3Þ

TiO2 hþvbð Þ þ H2Oads ! TiO2 þ HO •
ads þ Hþ ð10:4Þ

TiO2 hþvbð Þ þ HO�
ads ! TiO2 þ HO •

ads ð10:5Þ
TiO2ðe�cbÞ þ O2ads þ Hþ ! TiO2 þ HO2

∙⇄O2
∙ � þ Hþ ð10:6Þ

TiO2 e�cbð Þ þ HO2
• þ Hþ ! TiO2 þ H2O2 ð10:7Þ

TiO2 e�cbð Þ þ H2O2 ! TiO2 þ HO • þ HO� ð10:8Þ
2 HO2

• ! H2O2 þ O2 ð10:9Þ
O2

•� þ H2O2 ! HO • þ O2 þ HO� ð10:10Þ

H2O2 !hv 2 HO • ð10:11Þ

2. Oxidation of electron donor (D, organic molecule) or reduction of electron
acceptor (A, metal ion) reaction

TiO2 hþvbð Þ þ Dads ! TiO2 þ Dþ
ads ð10:12Þ

HO • þ Dads ! Doxid ð10:13Þ
TiO2 e�cbð Þ þ Aads ! TiO2 þ A�

ads ð10:14Þ

The photocatalytic activity mainly depends on electron transfer process. There are
several factors affecting the efficiency of electron transfer that have been discussed
and reported such as the size of photocatalyst, surface composition, and morphology.
Creating the porous structure is one of the effective ways to modify the surface
morphology that can enhance the photocatalyst performance in degradation process
(Mohamed and Bahnemann 2012).

10.2.2 Mesoporous ZnO for Degradation of Textile Dyes

Synthesis Method and Reaction
Nowadays, much attention has been devoted to the preparation of mesoporous
photocatalyst to improve its photoactivity and intrinsic structural features. Besides
titania, zinc oxide (ZnO) is also one of the promising semiconductor materials for
photocatalyst. ZnO has outstanding characteristics such as wide band gap (3.37 eV),
nontoxicity, chemical stability, high oxidative capacity, and unique optical and
electronic properties (Wang et al. 2014b; Bouzid et al. 2015; Collard et al. 2014).
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Researches show that the porosity of ZnO nanostructure has direct effect on its
photocatalytic properties as well as the crystallinity and morphology (Reyes et al.
2015). It is possible due to the large surface area, high porosity, and low density of
porous structure. In the mesoporous structure, the photocatalyst activity could be
enhanced through the channels of semiconductor which act as a light-transfer path
for the introduction of incident photons onto the inner surface of the photocatalyst
(Ren et al. 2016). Additionally, in degradation process of organic dyes, a
mesoporous zinc oxide has adsorption ability because of an increase in the proba-
bility of a surface reaction with pollutant molecules (Yin and Liu 2015).

Those exciting mesoporous structures of zinc oxide have been prepared by
various techniques such as thermal decomposition (Bijanzad et al. 2015), hydro-
thermal (Kowsari and Abdpour 2017; Chen et al. 2018), solvothermal (Srinivasan
et al. 2015; Wang et al. 2016b), electrospinning (Ren et al. 2016; Ren et al. 2015),
and sol–gel process (Abarna et al. 2016). Mostly, the precursors used for synthesiz-
ing mesoporous zinc oxide are zinc acetate dihydrate (Zn(CH3COO)2� 2H2O) and
zinc(II) hexahydrate (Zn(NO3)2. 6H2O). Some of these methods use template to
improve the morphology of zinc oxide, whether natural or synthetic template agent.

In solvothermal method, Srinivasan et al. (2015) synthesized mesoporous zinc
oxide using ethylene glycol (EG) and polyethylene glycol (PEG) as solvent and also
as structure-directing agent which formed bipyramidal morphology. On the other
hand, Wang et al. (2014b) synthesized mesoporous zinc oxide without the addition
of template agent and obtained a three-dimensional network of ZnO nanosheet.

Both Kowsari and Abdpour (2017) and Chen et al. (2018) reported hydrothermal
method to synthesize mesoporous zinc oxide in the presence of templating agent.
FIL (functional ionic liquid) was used as template and formed hexagonal structure
(Kowsari and Abdpour 2017). Chen et al. (2018) used amino acid (N-acetyl-D-
proline) as template agent and formed multispherical microstructure.

Experimental Studies of Various Materials Along with Their Design,
with Specific Attention to Various Chemical Reactions Involved
Experimental studies of various mesoporous ZnO-based photocatalysts are summa-
rized and presented in Table 10.2. Zinc acetate is one of the favorable raw materials
to synthesize mesoporous zinc oxide. It easily reacts with ethylene glycol to form
5-membered chelate octahedral complex. Moreover through the thermal process, it
grows into one dimension as shown in Fig. 10.2.

The commonly applied structure-directing agents are ethylene glycol (EG) and
polyethylene glycols (PEG) with various molecular weights. The synthesis using
EG and PEG (200 or 400) leads to the formation of square bipyramidal and spherical
morphology, respectively. In the case of PEG-200, the nanocrystalline ZnO spheres
displayed radially oriented nanorod features on the surface (Srinivasan et al. 2015).

Application for Degradation: Mechanism and Some Important Things
Due to more surface active sites and the ease of charge carrier transport, mesoporous
structures of ZnO have been reported for its excellent photocatalytic activity perfor-
mance (Wang et al. 2016a). The mechanism involved in the photocatalytic degra-
dation of organic dyes by ZnO can be clearly illustrated below (Tripathy et al. 2016):
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ZnOþ hυ ! e�CB þ hþVB ð10:15Þ
e�CB þ O2 ! O2

•� ð10:16Þ
H2Oþ O2

•� ! HOO • þ OH� ð10:17Þ
2OOH ̀O O2 þ H2O2 ð10:18Þ

O2
•� þ dye ! dye� OO • ð10:19Þ

OOH • þ H2Oþ e�CB ! H2O2 þ OH� ð10:20Þ
H2O2 þ e�CB ! OH • þ OH� ð10:21Þ

H2O2 þ O2
•� ! OH • þ OH� þ O2 ð10:22Þ

Dyeþ OH • =O2
•� þ ZnO ! Degraded dye ð10:23Þ

10.2.3 Mesoporous SnO2 for Degradation of Textile Dyes

Tin oxide (SnO2) has been reported as an alternative semiconductor oxides for
photodegradation of organic compounds especially for degradation of textile dyes
(He and Zhou 2013). However, SnO2 shows low photocatalytic efficiency because it
has wide band gap (~ 3.6 eV) and high recombination rates of photogenerated
electron–hole pairs (He and Zhou 2013). This deficiency makes SnO2 photocatalyst
difficult to apply in the environmental application widely and practically (He and
Zhou 2013). The fabrication of mesoporous structures of the SnO2 photocatalyst can
be an effective way to overcome the problem (Jing et al. 2014).

Experimental Studies of Various Materials Along with Their Design,
with Specific Attention to Various Chemical Reactions Involved
Experimental studies of various mesoporous SnO2-based photocatalysts are sum-
marized and presented in Table 10.3.

Fig. 10.2 Formation reaction of zinc oxide by solvothermal process
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Application for Degradation: Mechanism and Other Important Factors
Generally, photocatalytic mechanism of mesoporous SnO2 is shown in Fig. 10.3
(Hu et al. 2017), and the relevant reaction equations are detailed as follows
(Al-Hamdi et al. 2017):

SnO2 þ hυ ! SnO2 e� þ hþð Þ ð10:24Þ
SnO2 hþVBð Þ þ H2Oads ! SnO2 þ HO •

ads þ Hþ ð10:25Þ
SnO2 hþvbð Þ þ HO�

ads ! SnO2 þ HO�
ads ð10:26Þ

SnO2 e�cbð Þ þ O2ads ! SnO2 þ O2
� • ð10:27Þ

O2
•� þ Hþ ! HO2

• ð10:28Þ
O2

•� þ H2O ! HO2
• þ OH� ð10:29Þ

Dyeþ OH • or O2
•�or HO2

• ! CO2 þ H2O ð10:30Þ

10.3 Supported Mesoporous Photocatalysts

Previous section has discussed about the development of metal oxide materials in the
photocatalyst. It has shown that metal oxide semiconductor, especially titanium
dioxide, is the most wanted material for this purpose. However, many researchers
then revealed that technically it is needed to support the metal oxide with certain
material. The purposes of this support are:

Fig. 10.3 Illustration of photocatalytic mechanism of mesoporous SnO2
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1. Increasing the adsorption capability of metal oxide. It is noted that TiO2 has a
poor adsorption capability; such commercial TiO2 has surface area lower than
50 m2/g existed as a polar surface (Gu et al. 2010). On the contrary, most of the
organic molecule that is wanted to be degraded or converted has a polar structure.

2. Facilitating the removal of catalyst after the treatment process.
3. Preventing the coagulation of metal oxide with certain molecule that causes the

UV radiation absorption of the photocatalyst to decrease.

The supporting materials need to meet some requirements in order to enhance the
performance of photocatalyst. Based on previous records, the important require-
ments are mentioned as follows (Shan et al. 2010; Singh et al. 2013; Gu et al. 2010;
Srikanth et al. 2017; Li Puma et al. 2008):

1. High surface area to provide as much as possible the adsorption of photocatalyst
inside. To meet this requirement, the porous material is preferred. The
mesoporous or microporous materials can be considered based on the molecule
that is converted or degraded.

2. Good bonding between photocatalyst, either physically or chemically, to provide
the stability of supporting photocatalytic. In the case of pollutant degradation, it is
desired that the supporting materials also have a good affinity with the pollutant to
enhance the removal activity.

3. Transparent to the UV light or other sources of photocatalytic radiation, so they
will not interfere the photocatalytic process.

4. Chemically stable. The chemical conversion-supporting material will bring diffi-
culties, for instance, problems of their removal or chance to form coagulated
species.

5. Simple regeneration photocatalytic process.

Some materials that meet those criteria have been developed as supporting
materials for photocatalytic activity. In this section, three supporting materials that
have been used frequently, i.e., silica, zeolite, and carbon, are discussed. The
photocatalyst that is frequently combined with these materials is TiO2.

10.3.1 Silica-Supported Photocatalyst

Silica or silicon dioxide has a chemical formula of SiO2. The term of silica also
revers to SiO2.xH2O that include water molecules on the hydrated silica. Silica exists
in the crystalline or noncrystalline form. The commonly found natural crystalline
silica structure is quartz. Silica is also found in other forms, such as tridymite,
cristobalite, stishovite, and coesite. In the room temperature, common stable struc-
ture silica is found either as quartz, tridymite, or cristobalite, which all have a
tetrahedral coordination. Stishovite and coesite can only be formed in the high
pressure and temperature. Stishovite formed at 10 GPa and > 1200 �C, and coesite
formed at 2–3 GPa and > 700 �C (Lagaly 1980; Léger et al. 1996; Luo et al. 2007).
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The amorphous phase of silica has an irregular structure. The three common forms of
amorphous silica are opal, infusorial earth, and diatomaceous earth (Lagaly 1980).
Opal is hydrated silica that has structure similar to cristobalite and tridymite (Smith
2013). Infusorial silica is a deposit of silica on the calcareous shell of mollusks,
whereas diatomaceous earth is a sedimentary rock formed by accumulation of dead
diatom cell walls that contain opal.

The silica surface is composed of hydroxyl group as illustrated in Fig. 10.4. Water
heating will remove hydroxyl group from the surface and then will form the siloxane
groups. The silica that is composed by siloxane groups is less polar compare to one
by hydroxyl groups (Lagaly 1980). These functional groups play role as an active
site for adsorption process. Moreover, they have a large surface area, typically about
500–1000 m2/g (More et al. 2016; Polshettiwar et al. 2010; Brinker et al. 1990).
Bearing these properties, silica meets the criteria as support for chemical reaction
process, including photocatalytic one.

The application of silica for supporting material in photocatalytic process has
been started during the 1960s. Silica-supported TiO2 photocatalyst is the most

Fig. 10.4 Illustration of surface silica structure with (a) hydroxyl group (b) siloxane group
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applied material for various photocatalytic processes (Pal et al. 2016; Pang et al.
2015; Kamegawa et al. 2015; Tang et al. 2018). Both types of silica structures,
crystalline and amorphous, have been studied for photocatalytic-supporting mate-
rials (Jung and Park 1999; Sun et al. 2013b). Other forms of silica such as dispersion
form of silica gel (Li et al. 2015a; Liu et al. 2017; Wakimoto et al. 2015) and aerogels
(Hu et al. 2016; Lázár et al. 2015; Li et al. 2016; Zu et al. 2015) have also been
investigated for its potential in supporting photocatalysis. Recently, mesoporous
form of silica has been studied intensively for photocatalyst support, such as SBA-15
(Karimi et al. 2009; Wang et al. 2005), MCM-41 (Das et al. 2010; Dong et al. 2015)
or KCC-1 (Polshettiwar et al. 2010). These mesoporous forms are attractive because
of the large surface area, arranged pore structure, and tailored pore size (Wang et al.
2014a). They also have interesting textural properties to provide the metal species
dispersion (Bacariza et al. 2018).

SBA-15 mesoporous silica is the most common silica form that is used as a
support, not only for photocatalyst but for the others. It has a hexagonal array of
uniform tubular channel. Its pore diameter ranges from 5 to 30 nm, while the pore
thickness ranges from 3 to 6 nm. Both the diameter and the thickness of pores are
controllable through their synthesis or preparation, thus making them tunable for
various applications (Karimi et al. 2009). TiO2 is loaded into SBA-15 matrix to
enhance the photocatalytic performance of indigo carmine removal. This TiO2/SBA-
15 composite has been developed with high surface area. The TiO2/SBA-15 surface
area reached 674.8 m2/g, and to extend the UV-Vis absorption range, the TiO2/
SBA15 surface was sensitized by organic molecule, 2,9-dichloroquinacridone. Sol–
gel method was applied to prepare this material, with tetraethoxy titanium that was
used as a precursor of TiO2 (Ding et al. 2005; Wang et al. 2005). Sol–gel preparation
method is considered as a versatile method with the easiness of controlling the
process parameters to obtain the desired properties. Researchers have developed the
sol-gel method to load TiO2 into SBA-15 matrix with titanium isopropoxide as the
precursor (Lachheb et al. 2011). The preparation was assisted by sonication tech-
nique. As-synthesized composite was applied to degrade methylene blue, and the
best photocatalytic activity was observed on the composite with Ti/S ratio about
8 (Lachheb et al. 2011). Acosta-Silva et al. (2011) also studied the sol–gel-prepared
TiO2-SBA-15 to decompose methylene blue. It was observed that the drawbacks of
incorporating TiO2 onto SBA-15 are decreasing the surface area of SBA-15 and
hence decreasing the TiO2 photocatalytic activity. Wei et al. (2018) investigated that
the addition of moderate amount of NiFe2O4 could increase the MB adsorption
performance of NiFe2O4/SBA-15. Moreover, it was also observed that the addition
of 20 mg TiO2 into TiO2/SBA-15 could enhance the MB photodegradation, with
almost 85% of MB degraded after 150 min using TiO2/SBA-15 whereas only 73% as
the result of using sole TiO2 (Wei et al. 2018). Another study showed that incorpo-
ration of titanium into SBA-15 also increased surface area. Das et al. (2010) prepared
Ti-SBA15 which has specific surface area 924 m2 g�1, whereas TiO2-SBA15 only
ranges about 400 m2 g�1. This value was also higher than SBA-15 surface area
which was about 611 m2 g�1 (Das et al. 2010).
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MCM-41 is the other mesoporous silica in addition to SBA-15, which has been
manifested as a photocatalyst support. Various metals or metal oxides from Ti, V,
Fe, Cu, Nb, Mo, or Zr have been considered to be incorporated into MCM-41 matrix
through the hydrothermal method, sol–gel method, impregnation method, or chem-
ical vapor deposition method (Dash et al. 2015). Most of them have been showing a
promising photocatalytic activity result to degrade organic pollutant in water
(Sharma et al. 2017). Zeolite was commonly used as template matrix for TiO2.
Dong et al. (2015) have prepared TiO2/MCM-41 through sol–gel method and tested
to degrade Acid Red B. The effect of calcination temperature to the photocatalytic
performance was primarily studied, and the best photocatalytic activity was
observed on the sample which was calcined at 600 �C for 2 h. All of Acid Red
with the initial concentration 100 mg/L was successfully degraded after 2 h using
2 .0g/L TiO2/MCM-41 (Dong et al. 2015). Chen et al. (2016) prepared Ti/MCM-41
photocatalyst to degrade oxytetracycline and found that the removal efficiency was
87% under acidic environmental operation condition (pH ¼ 3).

10.3.2 Zeolite-Supported Photocatalyst

Zeolite is an aluminosilicate porous crystal, commonly found as a mesoporous solid.
Ions of Al, Si, and O are the main component which build a tetrahedral structure with
oxygen as a connection (Koohsaryan and Anbia 2016; Nada and Larsen 2017;
Zhang and Ostraat 2016). Zeolite is considered as a photocatalyst support material
due to its unique layered porous structure and abundant availability (Ali et al. 2012).
Moreover, they own good ion exchange capability, hydrophilicity, high thermal
stability, pollutant adsorption ability, and producibility of a large amount of
hydroxyl and peroxide that are beneficial for the photocatalytic process (Kanakaraju
et al. 2015; Mahalakshmi et al. 2009; Wang et al. 2011). Natural zeolite is abun-
dantly found in volcanic sedimentary rock (Reháková et al. 2004). Aside from
natural zeolite, researchers also attempt to produce synthetic material which has
zeolite-like properties. The synthetic zeolite usually possesses three-dimensional
networks. The most familiar mesoporous structures are HSM-5, ZSM-5, 13X, 4A,
β, HY, Hβ, USY, or Y zeolite (Huang et al. 2008).

The application of zeolite material for enhancing photocatalytic capacity of TiO2

has showed promising results. Ilinoiu et al. (2013) used natural zeolite to support
N-doped TiO2 processed by microwave-assisted hydrothermal method. The com-
posite showed a photocatalytic activity toward reactive yellow 125 (RY125) dye. It
was suggested that the electric field which exists in the zeolite framework provokes
the separation between photogenerated electron and holes which is beneficial for
photocatalytic process. The optimum photocatalytic process occurred at pH 3. On
the contrary, the photocatalytic process became ineffective at the basic condition.
Since the attached sulfonate group caused the dyes to have a negative charge at this
condition. Meanwhile at the same condition, the photocatalyst also has negative
charge. The charge similarity led to a repulsion that decreases the adsorption (Ilinoiu
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et al. 2013). The other research applied other form of natural zeolite, mordenite, as
supporting material. The TiO2 loading into mordenite framework enhanced the
photodegradation capability of methyl orange. It is worth noting that the optimum
photocatalytic activity occurred at acidic condition (pH 4). The reason is at the acidic
condition methyl orange exists as ionic quinone form. This ionic form is easier to be
adsorbed by zeolite compared to the neutral one (Li et al. 2008). In other research,
zeolite made by metakaolin and rice husk was used for supporting material of TiO2

(Setthaya et al. 2017). Synthetic zeolites were also applied as a support for TiO2-
based photocatalyst to replace natural one, TiO2/zeolite Y (Mohamed et al. 2005)
and multilamellar mesoporous TiO2/ZSM-5 (Znad et al. 2018), which both showed
photocatalytic activity to degrade methyl orange.

10.3.3 Carbon-Supported Photocatalyst

Carbon materials exist in nature as several allotropes including amorphous carbon,
graphene, carbon nanotube(s), graphite, fullerene, and diamond. Few of them, such
as activated carbon, graphene, and carbon nanotube(s), meet the criteria as a
supporting material because they have a large surface area.

Application of activated carbon/nano-ZnO composite as supporting photocatalyst
has been studied by Raizada et al. (2014). The activated carbon/nano-ZnO compos-
ite was prepared by coprecipitation method with zinc nitrate as a source of ZnO. The
prepared composite has shown a higher photocatalytic activity toward malachite
green and Congo red compared to ZnO due to increasing adsorption capability
(Raizada et al. 2014). The activated carbon in the fiber (activated carbon fiber,
ACF) also has been applied as supporting material for photocatalyst. The loading
of Fe2O3 into ACF with impregnation method has shown the photocatalytic activity
to degrade Acid Red B (Lan et al. 2015). Carbon nanosphere also has been applied as
supporting material for photocatalyst. Raza et al. (2015) studied that La- and
Mo-doped TiO2 supported on carbon nanosphere have a photocatalytic activity for
degrading three kinds of chromophoric dyes, i.e., azo dye represented by Acid
Yellow 29, triphenylmethane dye represented by G250, and anthraquinone dye
represented by Coomassie Brilliant Blue G250.

The feasibility of graphene as supporting material for photocatalyst was also
studied. Pt–TiO2/graphene photocatalyst prepared through hydrothermal reaction
was observed its photocatalytic ability toward acid orange 7 (Hsieh et al. 2015),
whereas ZnO nanorod/graphene photocatalyst prepared through a simple one-pot
chemical method was observed toward methylene blue and methyl orange (Nipane
et al. 2015). The role of graphene is not only to provide a large surface area but also
to enhance light harvesting of solar radiation, to inhibit charge recombination, and to
provide an electron acceptor site which can induce the peroxide (Nipane et al. 2015).
The other examples of photocatalyst supported on graphene material are gold/
graphene, Ag3PO4/graphene, and CdS (Chen et al. 2013; Ye et al. 2012). CdS
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also recorded photocatalytic activity for degradation of carbon nanotubes (Ye et al.
2012).

10.4 Templated Mesoporous Photocatalysts

Mesoporous materials with well-controlled morphology have been widely fabricated
through sacrificial template-based syntheses (Liu et al. 2013). Basically, the synthe-
sis process includes the growth of desired materials on hard templates such as
polymer (Diguna et al. 2006, 2007a, b) and silica (Lee et al. 2003; Taguchi et al.
2003; Smått et al. 2003) or soft templates such as micelles (Kresge et al. 1992;
Bradshaw et al. 2014) and bubbles (Peng et al. 2003; Lou et al. 2008). Figure 10.5
shows representative illustration for synthesis of mesoporous materials by using
(a) hard template of colloidal crystal and (b) soft template of surfactants. In hard
template, rigid materials are typically used and restricted the crystalline growth into
the void space, leading to subsequent replication.

The method of template removal depends on the template materials, such as
thermal decomposition (calcination) or solvent extraction (dissolution in toluene) for
the most commonly used polymer template of polystyrene latex spheres, chemical
etching in HF for the silica template, and solvent evaporation for the emulsion
template (Wu et al. 2013b). On the other hand, synthesis via soft template does
not require prior fabrication steps of templates, and the self-assembly is induced by
amphiphilic block copolymers or surfactants. The method associates with the inter-
actions between surfactants and chemical species comprising the mesoporous sys-
tem. Through these synthesis techniques, the hierarchical structures of macropores
with micro-/mesoporous walls can be achieved with a high degree of control over the
resulting materials.

Three dimensionally (3D) ordered macroporous structure can be fabricated by
using 3D ordered arrays of polymer or silica spheres (colloidal crystals or synthetic
opals) as template. After the desired materials are filled in the interstitial volume, the
original spheres can be removed, leaving an inverse replica of opal structure, known
as an inverse opal or 3D ordered macroporous structure. Inverse opal TiO2 replicated
from polymer template of polystyrene latex spheres has been shown to have higher
photocatalytic activity on methylene blue degradation under visible light, particu-
larly for TiO2 inverse opal reduced by H2 at 500 �C, compared to the P25 TiO2 (Xin
and Liu 2015). This structure has also been reported to be beneficial for
photocatalytic activity in viscous solution, whereas carbon-deposited TiO2 inverse
opal has enhanced visible-light photocatalytic activity on the degradation of meth-
ylene blue in viscous polyacrylamide solution (Lee et al. 2013). Moreover, the high
photocatalytic performance has been demonstrated by utilizing slow photon effect to
enhance the light absorption at the red edge of the photonic band gap, such as in ZnO
(Meng et al. 2013; Liu et al. 2014b) and TiO2 (Wu et al. 2013a) inverse opals in dye
molecule degradation of likes rhodamine B (RhB). On the other side, the multiple
scattering effect of the macroporous structure has also been reported to facilitate
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Fig. 10.5 Representative illustrations for synthesis of mesoporous materials based on (a) hard-
templating and (b) soft-templating methods. (a) from Yang et al. (2017) and (b) from Xia et al.
(2016)
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visible-light photocatalysis of methylene blue dyes in nonperiodic macroporous N–
F-codoped TiO2 replicated from silica colloidal crystal with mixed sphere sizes
(Xu et al. 2010). In case of ternary metal oxides, the photocatalytic activity of
Bi2WO6 inverse opal on the photodecomposition of methylene blue and salicylic
acid under visible-light irradiation has been improved by the factors of 2.2 and 2.4,
respectively, in comparison to the Bi2WO6 nanofilm prepared with the same method
but without the opal template (Zhang et al. 2011). The angle-dependent
photodegradation of methylene blue showed the observation of slow photon effect
in this Bi2WO6 inverse opal. Different mesoporous structures have been further
reported by using different template materials such as biosynthesized materials. By
using natural rubber latex, mesoporous titania exhibited more significant
photodegradation of phenol and rhodamine B compared with Degussa P25 TiO2

under solar light irradiation (Li et al. 2015b). This higher photocatalytic activity
along with the observed red shift of titania absorption edge confirmed that carbon
transferred from natural rubber latex has acted as a photosensitizer. Similar effect
was also reported for carbon/ZnO nanocomposites prepared using a low-temperature
precipitation process and TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)-oxidized
cellulose as a reactive template, in which it is not only a template but also a carbon
provider (Xiao et al. 2018). After calcination, the ZnO structure changed from
nanosheets to nanorods with the increase of carbonyl of TEMPO-oxidized cellulose,
and the resulted nanocomposites had higher surface area and pore volume and
smaller band gap due to more carbon compounded into the ZnO nanocrystals,
compared to that prepared without the template. Thus it exhibited a significant
photodegradation on methyl orange with 96.11% within 120 min and good
reusability.

Various photocatalyst materials have been synthesized using appropriate hard
silicate template. The replicated mesoporous CdxZn1-xS semiconductors have
exhibited excellent photocatalytic performances for the degradation of methylene
blue and rhodamine B, whereas the photocatalytic efficiency increased with a
decrease in the Cd contents from 1.0 to 0.7 and reduced with the further decrease
of Cd composition from 0.7 to 0.0 (Lee et al. 2017). Furthermore, mesoporous
SrTiO3 with interconnected pores of ca. 10 nm and surface areas as high as
240 m2 g�1 has been formed via polycondensation of interpenetrating organic and
inorganic polymers, followed by calcination of the organic phase and removal of the
silica network via NaOH etching (Kayaalp et al. 2016). The mesoporous SrTiO3

demonstrated the increased photocatalytic degradation of methylene blue up to
seven times than for the corresponding nonporous system, as a result of the com-
bined increase of porosity and decrease of crystallite size. For metal-free
photocatalysts, mesoporous polymeric graphitic carbon nitride (g-C3N4) nanorods
have been synthesized via nanocasting approach, i.e., cyanamide condensation
within the pores of one-dimensional hexagonal mesostructure of the porous silica
nanorods and then followed by the removal of silica by chemical etching (Li et al.
2012). The replicated g-C3N4 nanorods demonstrated a high photocatalytic activity
for hydrogen generation from water in the presence of triethanolamine as a sacrificial
electron donor and Pt nanoparticles as a co-catalyst compared to that obtained with a
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conventional g-C3N4, and the As-formed H2 could be further used to reduce
4-nitrophenol to 4-aminophenol. Uniform g-C3N4 nanorods have been also proposed
for photoenzymatic catalysis in photocatalytic regeneration of NADþ to NADH, the
biological form of hydrogen (Liu et al. 2014a). Moreover, g-C3N4 nanospheres,
comprised of interconnected 2D nanosheets, were also prepared by employing high
area silica nanospheres as sacrificial templates (Zhang et al. 2014). This
nanospherical g-C3N4 structure with sharp edges drastically improved H2 evolution
with an apparent quantum yield of 9.6% at 420 nm with 3 wt% Pt, favoring both
charge separation and mass transport in photocatalysis. Instead of high surface area,
the enhanced photocatalytic activity of mesoporous silica-templated g-C3N4 has
been reported due to the presence of more delocalized electrons and the increased
photogenerated electron–hole pair separation lifetimes (Li et al. 2015a, b, c).

Another synthesis strategy of mesoporous materials is via soft-templating
method, which relies on the ability of structure-directing agents such as nonionic
surfactants, amphiphilic block copolymers, and some ionic surfactants to readily
self-assemble via non-covalent interactions such as hydrogen bonds or electrostatic
bonds into ordered mesoscale arrays. Templating involves co-assembly of structure-
directing agents and appropriate precursor molecules of desired photocatalyst mate-
rials. Subsequent cross-linking of the precursors at the interface causes phase
separation to occur, which effectively forms a continuous ordered replica of the
organic mesoscale template. The posttreatment is conducted to remove the structure-
directing agent from the photocatalyst materials. With such complex physicochem-
ical phenomena, formation of reliable self-assembly template structures; suscepti-
bility of solution pH and ionic constituents; stability of micelle structure against the
growth direction of desired materials, morphologically even crystal–crystal phase
transition during thermal treatment; and complete removal of template by
posttreatment are very critical and challenging problems in this method (Gu and
Schüth 2014). Different hierarchical ZnO mesoporous structures have been formed
from variation in molecular geometry, hydrophobic/hydrophilic properties of amino
acid-based surfactants used, and different solvents to change packing parameters and
micellization behaviors of surfactants (Kim et al. 2012). Metal oxide compounds of
Fe2O3–Ga2O3 nanostructures have been successfully synthesized using glycoluril
template, and it showed Fe2O3 content-dependent photocatalytic degradation of azo
dye (Bagheri and Mahjoub 2016). Under UV light, 3% content of Fe2O3 had the
highest dye removal efficiency of 99.8% after 15 min irradiation in comparison with
reference P25 showing 54% removal after 120 min irradiation. Synthesis of
mesoporous g-C3N4 has been conducted through self-polymerization of
dicyandiamide by using various soft templates, such as nonionic surfactants, amphi-
philic block copolymers, and some ionic surfactants (Wang et al. 2010b). The
resulting g-C3N4 possessed high surface area particularly when Pluronic P123
amphiphilic block copolymer is used as structure-directing agent. However, the
inefficient process of removing the template residue during the synthesis led to
side reactions, resulting in high carbon content in the carbon nitride samples due
to the strong hydrogen bonds between PEO blocks in Pluronic P123 and
dicyandiamide. By using the same Pluronic P123 as soft template, mesoporous
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g-C3N4 was then synthesized from melamine precursors regarding its less reactivity
than dicyandiamide (Yan 2012). The prepared g-C3N4 showed not only high surface
area but also redshifts its absorbance edge up to 800 nm and shows photocatalytic
activity even when the irradiation light k is more than 700 nm. Mesoporous carbon
nitrides with high surface area, high porosity, and low C/N ratio were further
synthesized using water as the solvent, taking advantage of both supramolecular
assembly of melamine cyanurate hydrogen-bonded complex through hydrogen
bonding and different structure-directing agents of nonionic surfactants including
Pluronic P123 (Peer et al. 2017). The synthesized high surface area carbon nitrides
showed the improved light absorption and enhanced photocatalytic activity in a
rhodamine B dye degradation reaction under visible-light irradiation compared to
bulk melamine-derived carbon nitride. Unique yolk–shell nanostructured
photocatalyst consisting of TiO2 nanoparticles core and porous silica shell with
controllable pore size was fabricated through a facile single-step dual-templating
approach utilizing oil-in-water microemulsions and amphiphilic protein molecules
(Fujiwara et al. 2017). The addition of optimum amount of protein as a sacrificial
template improved photocatalytic activity of yolk–shell structured photocatalyst on
the degradation of 2-propanol owing to the extended porosity of the silica shell.

Bubble template approach has been proposed for synthesis of mesoporous
photocatalysts due to the unnecessary posttreatments of removing chemical species
derived from soft template agents. Through acidic hydrothermal condition, hierar-
chical hollow spheres of rutile-phase TiO2 have been fabricated using potassium
titanium oxalate as the precursor and O2 bubbles as soft template originated from
H2O2 decomposition (Li et al. 2006). Under UV irradiation, hollow TiO2 spheres
showed faster degradation of rhodamine B compared to the rutile-phase TiO2

nanorods. Bismuth vanadate (BiVO4) hollow spheres were synthesized by using
urea as surfactant as well as provider of NH3 bubble template (Sun et al. 2013a). The
synthesized samples showed efficient photocatalytic activity on degradation of
rhodamine B and 2-propanol with high stability and durability after several cycling
runs of degradation. Hollow spheres of Sn2Nb2O7 have been successfully formed
using soft template of CO2 and NH3 bubbles generated in situ from the decompo-
sition of urea as soft templates under hydrothermal routes (Zhou et al. 2013). The
As-obtained hollow spheres have a large specific surface area of 58.3 m2 g�1 and
show improved photocatalytic H2 production in lactic acid aqueous solutions, about
four times higher than that of the bulk, under visible-light irradiation. Nih-CdTe
quantum dot (QD) hollow nanospheres were synthesized from CdTe QDs as the
building blocks, nickel salts (Ni2+), and ascorbic acid (H2A). The visible light
worked as a catalyst to generate in situ H2 gas bubbles which acted as templates,
thus leading to the formation of hollow structure (Li et al. 2014). The average
diameter and shell thickness of the obtained hollow nanospheres ranged from
10–20 nm and 3–6 nm, respectively. The nanospheres exhibited excellent
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photocatalytic activity and stability for H2 generation with a rate constant of
21 μmol h�1 mg�1. Here, the QDs serve as antenna chromophores to harvest light,
and Ni2+-centered complexes formed in situ with dangling bonds (Te2�) on the
surface of the QDs serve as reaction centers to capture the photoexcited electrons of
the QDs for H2 generation. Porous polymeric g-C3N4 synthesized by using sulfur–
bubble template showed high-efficient visible-light performance for H2 evolution of
50.1 μmol h�1 relatively to pure g-C3N4 of 8.4 μmol h�1 (He et al. 2015). The sulfur-
mediated g-C3N4 also showed 92% degradation of RhB after 50 min under visible-
light irradiation, while the pure g-C3N4 degraded 48% at the same conditions.

Other interesting mesoporous structures with the unique surface characteristics
and the relevant photocatalytic properties can be further explored to take the
advantages of template-based routes. Although many significant improvements
have been achieved in the template-mesoporous photocatalyst, further efforts are
required to solve some issues, such as small-scale, low-yield production of
mesoporous materials, the unclear interaction mechanisms between building com-
ponents, and the low solar light utilization. In the future, the green, cost-effective,
and industry-scale synthesis of mesoporous photocatalysts would be highly
desirable.

Especially for porous material, like mesoporous TiO2, it could be synthesized
with or without using organic surfactant templates (Ismail and Bahnemann 2011).
Generally, there are two main arrays used to construct ordered mesoporous TiO2,
i.e., by using soft-templating methods and by using hard-templating methods as
illustrated in Fig. 10.6 (Li et al. 2014). However, template-free methods can also
produce mesoporous TiO2 with disordered mesostructures, which derived from the
irregular packing of building blocks (Li et al. 2014). The development of
mesoporous TiO2 in order to increase the photocatalytic properties has also been
done by adding single or multi-dopants (i.e., transition metal, noble metal, or
nonmetal) (Wei et al. 2018). Various synthesis route, surfactant types, and tech-
niques (i.e., dopant types) which have been applied in the modification of
mesoporous TiO2 are illustrated in Fig. 10.6.

Fig. 10.6 The simplified scheme of template-assisted for the preparation of ordered mesoporous
TiO2 (Bonelli et al. 2017)
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10.5 Challenges for Catalysis

In photocatalytic application, pursuing the strategy to achieve efficient
photogenerated charge separation and transport in nanoscale semiconductor particles
is the most critical challenge faced over the decades. In fact, several approaches have
been conducted to improve the interfacial charge transfer efficiency such as doping
with metal or nonmetal impurities, surface modification, and coupling with other
semiconductors having narrow band gap. Innovative strategy needs to be formulated
in order to boost efficiency. Factors affecting the electron transfer ability have to be
clearly understood, and the mechanism through which these factors influence the
activity should be obviously verified. Correlation of the interfacial transfer of
electrons and the kinetics of charge recombination with the photocatalytic activities
is the key challenge that still exists and needs to be examined in semiconductor-
based photocatalysis. This correlation provides the fundamentals behind the
photocatalysis and subsequently the real industrial application of photocatalytic
reactions as well as the photocatalytic system design. Therefore, some insights and
directions that should be thoroughly addressed are as follows (Mohamed and
Bahnemann 2012):

1. More detailed knowledge on the kinetics and mechanisms of electron transfer is
required under different parameters such as crystal size, crystalline structure,
surface area, and morphology.

2. Investigation of electron transfer characteristics on well-defined semiconductor
single crystals is conducted, and then the information obtained is correlated with
those in polycrystalline nanoparticles.

3. The experimental observations and the corresponding theoretical model of inter-
facial electron transfer kinetics need to be correlated in the photocatalytic system.

4. Temperature effects on the kinetics of electron transfer still need to be evaluated
in details for several photocatalytic systems.

Various kinetic and mechanistic studies on photoinduced electron transfer have
been widely carried out for the thermodynamically favorable reactions such as the
photocatalytic reduction of organic halides and metal ions. However, the kinetic and
mechanistic details of the energetically unfavorable reactions are still lacking such as
those for H2O or CO2 photocatalytic reduction.

10.6 Challenges with Past Developments and Direction
for Further Research of Photocatalyst

In photocatalytic application, the small number of studies conducted on ordered
mesoporous titania is likely related to the difficulties faced in designing it as a
material with the ordered porous structure. Ever since the synthesis of mesoporous
TiO2 in 1995 (Antonelli and Ying 1995), many efforts have been made to control the
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crystallization and to increase its crystallinity while maintaining its mesoscale order
(Ismail and Bahnemann 2011). In case of the traditional mesoporous ZnO materials,
the relatively low photocatalytic activity and efficiency are due to the low inherent
porosity and instability (Wang et al. 2016b). Therefore, a simple and economical
approach is necessary to easily synthesize 1D mesoporous ZnO materials having
desired high porosity and satisfactory pore sizes (Wang et al. 2016b). In comparison
to the common synthesis method used for ZnO nanostructures, the precursor route is
green, low-cost, and facile synthesis with good reproducibility. Hence, this method
is a promising candidate for the practical application of ZnO as a photocatalyst (Xiao
et al. 2015). Various ZnO morphologies can be fabricated through solution-based
chemical processing depending on the used solvents, surfactants as structure-
directing agents, synthesis conditions, the precursors, etc. (Srinivasan et al. 2015).
Despite great progress made in the field of ZnO synthesis, control over shape,
morphology, and structure, there still remains a remarkable challenge (Collard
et al. 2014).

The future direction of development should be made in the understanding of the
process and improvement of the degradation efficiency for a number of different
compounds. Even though many progresses have been made, some challenges from
the past development still need attention. One of those is the role of defects in the
photocatalytic processes, while the losses of recombination have been detrimental
for photocatalytic efficiency, yet defects could also improve the separation of
electron hole and could also act as photocatalyst active surface centers. Another
interesting challenge is how to enhance the photocatalytic activity under solar and/or
visible irradiation particularly. Although this study has been developed through
various approaches such as doping, lattice defects, and others, detailed explanations
and further work are still needed. Furthermore, the separation system and the toxicity
of photocatalyst have been receiving less attention. Due to these challenges, obser-
vation of the unpredictable effects of photocatalyst materials in the environment is
fully needed (Djurisic et al. 2014).
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