
Chapter 9

The fractional heat equation
using quaternionic techniques

The development of the spectral theory of the Nabla operator opens the way to a
large class of fractional diffusion problems, and some of them will be treated in the
next chapter. Indeed, the main aim of this chapter is to show how our theory, for
the case of the Nabla operator, reproduces known results. Since it is very general,
it allows us to manipulate a very large class of new fractional diffusion processes.
The results presented in this chapter were originally proved in [53, 54]. Precisely,
if v(x, t) is the temperature at the point x ∈ R3 and the time t > 0 and κ is the
thermal diffusivity of the considered material, then the heat equation

∂tv(x, t)− κ∆v(x, t) = 0, (9.1)

where ∆ =
∑3
`=1 ∂

2
x`

with x = (x1, x2, x3)T , describes the evolution of the tem-
perature distribution in space and time. (For mathematical treatment, one usually
sets κ = 1 and we will emulate this.) This model has, however, several unphys-
ical properties, so scientists have tried to modify it. One approach has been the
introduction of the fractional heat equation. In order to modify the properties of
the equation, researchers replaced the negative Laplacian in (9.1) by its fractional
powers of exponent α and considered the evolution equation

∂

∂t
v(x, t) + (−∆)αv(x, t) = 0. (9.2)

There are different approaches for defining the fractional Laplace operator, but
each approach leads to a global integral operator, which, in contrast to the local
differential operator ∆, is able to take long distance effects into account.

We want to develop a similar approach for defining fractional evolution equa-
tions with the generalized gradient. What we show here is that, if we replace the
gradient in Fourier’s law of conductivity by its fractional power instead of directly
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replacing the negative Laplacian by its fractional power in (9.1), we get the same
equation. Indeed, this would lead to the equation

∂

∂t
v(x, t)− div(∇αv(x, t)) = 0,

with suitable interpretation of the symbol ∇α. Our initial task is to understand
the definition of the fractional powers ∇α according to our theory developed in the
previous chapters where we identified the gradient with the quaternionic Nabla
operator.

Additionally in this chapter, we develop the spectral theory of the quater-
nionic Nabla operator on L2(R3,H). We find that the previously developed theory
is not directly applicable because the Nabla operator does not belong to the class
of sectorial operators. We therefore present a slightly modified approach and show
that this allows us to reproduce the fractional heat equation (9.2) using quater-
nionic techniques. Finally, we give an example for a more general operator with
non-constant coefficients that can be treated with our methods.

9.1 Spectral properties of the Nabla operator

The gradient of a function v : R3 → R is the vector-valued function

∇v(x) =

∂x1v(x)
∂x2

v(x)
∂x3

v(x)

 , for x = (x1, x2, x3).

If we identify R with the set of real quaternions and R3 with the set of purely
imaginary quaternions, this corresponds to the quaternionic Nabla operator

∇ = ∂x1e1 + ∂x2e2 + ∂x3e3.

In the following, we shall often denote the standard basis of the quaternions by
I := e1, J := e2 and K := e3 = IJ = −JI. This suggests a relation with the complex
theory, which we shall use excessively. With this notation, we have

∇ = ∂x1 I + ∂x2J + ∂x3K.

We study the properties of a quaternionic Nabla operator on the space
L2(R3,H) of all square-integrable quaternion-valued functions on R3, which is
a quaternionic right Hilbert space when endowed with the scalar product

〈w, v〉 =

∫
R3

w(x)v(x) dx.

On this space, the Nabla operator is closed and has dense domain. This follows
immediately from its representation (9.4) in the Fourier space that we derive in
the proof of Theorem 9.1.1.
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Let v ∈ L2(R3,H) and write v(x) = v1(x) + v2(x)J with two CI-valued
functions v1 and v2. As |v(x)|2 = |v1(x)|2 + |v2(x)|2, we have

‖v‖2L2(R3,H) = ‖v1‖2L2(R3,CI)
+ ‖v2‖2L2(R,3,CI)

, (9.3)

where L2(R3,H) denotes the complex Hilbert space over CI of all square-integrable
CI-valued functions on R3. Hence, v ∈ L2(R3,H) if and only if v1, v2 ∈ L2(H,CI).

Theorem 9.1.1. The S-spectrum of ∇ as an operator on L2(R3,H) is

σS(∇) = R.

Proof. Let us consider L2(R3,H) as a Hilbert space over CI by restricting the right
scalar multiplication to CI and setting

〈w, v〉I := {〈w, v〉L2(R3,H)}I.

Here {·}I denotes the CI-part of a quaternion: if a = a1 + a2J = a1 + Ja2 with
a1, a2 ∈ CI, then {a}I := a1. If we write v, w ∈ L2(R3,H) as v = v1 + Jv2 and
w = w1 + Jw2 with v1, v2, w1, w2 ∈ L2(R3,CI), then

〈w, v〉L2(R3,H) =

∫
R3

(w1(x) + Jw2(x))(v1(x) + Jv2(x)) dx

=

∫
R3

w1(x)v1(x) dx+

∫
R3

w2(x)(−J)v1(x) dx

+

∫
R3

w1(x)Jv2(x) dx+

∫
R3

w2(x)(−J2)v2(x) dx

=

∫
R3

w1(x)v1(x) dx+

∫
R3

w2(x)v2(x) dx

+ J

(
−
∫
R3

w2(x)v1(x) dx+

∫
R3

w1(x)v2(x) dx

)
.

Therefore, we have

〈w, v〉I := 〈w1, v1〉L2(R3,CI) + 〈w2, v2〉L2(R3,CI)

and hence L2(R3,H) considered as a CI-complex Hilbert space with the scalar
product 〈·, ·〉I equals L2(R3,CI) ⊕ L2(R3,CI). Moreover, because of (9.3), the
quaternionic scalar product 〈·, ·〉 and the CI-complex scalar product 〈·, ·〉I induce
the same norm on L2(R3,H). Applying the Nabla operator to v = v1 + Jv2, we
find

∇v(x) = (I∂x1 + J∂x2 + K∂x3)(v1(x) + Jv2(x))

= I∂x1v1(x) + J∂x2v1(x) + K∂x3v1(x)

+ I∂x1Jv2(x) + J∂x2Jv2(x) + K∂x3Jv2(x)

= I∂x1v1(x)− ∂x2v2(x)− I∂x3v2(x)

+ J (−I∂x1v2(x) + ∂x2v1(x)− I∂x3v1(x)) .
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Writing this in terms of the components L2(R3,H) ∼= L2(R3,CI)⊕ L2(R3,CI), we
obtain

∇
(
v1(x)
v2(x)

)
=

(
I∂x1

v1(x)− ∂x2
v2(x)− I∂x3

v2(x)
−I∂x1

v2(x) + ∂x2
v1(x)− I∂x3

v1(x)

)
.

If we apply the Fourier transform on L2(R3,CI) componentwise, this turns into

∇̂
(
v̂1(x)
v̂2(x)

)
=

(
−ξ1 −Iξ2 + ξ3

Iξ2 + ξ3 ξ1

)(
v̂1(ξ)
v̂2(ξ)

)
. (9.4)

Hence, in the Fourier space, the Nabla operator corresponds to the multiplication
operator MG : v̂ 7→ Gv̂ on X̂ := L2(R3,CI)⊕ L2(R3,CI) that is generated by the
matrix valued function

G(ξ) :=

(
−ξ1 −Iξ2 + ξ3

Iξ2 + ξ3 ξ1

)
. (9.5)

For s ∈ CI, we find

sIX̂ −G(ξ) =

(
s+ ξ1 Iξ2 − ξ3
−Iξ2 − ξ3 s− ξ1

)
.

For s ∈ CI, the inverse of sIX̂ −MG is hence given by the multiplication operator
M(sI−G) 1 determined by the matrix-valued function

(sIX̂ −G(ξ))−1 =
1

s2 − ξ2
1 − ξ2

2 − ξ2
3

(
s− ξ1 −Iξ2 + ξ3
Iξ2 + ξ3 s+ ξ1

)
.

This operator is bounded if and only if the function ξ 7→ (sI−G(ξ))−1 is bounded
on R3, that is if and only s /∈ R. Hence, σ(MG) = R.

The componentwise Fourier transform Ψ is a unitary CI-linear operator from
the space L2(R3,H) ∼= L2(R3,CI)⊕L2(R2,CI) to X̂ under which ∇ corresponds to
MG, that is ∇ = Ψ−1MGΨ. The spectrum σCI(∇) of ∇ considered as a CI-linear
operator on L2(R3,H), therefore, equals σCI(∇) = σ(MG) = R. By Theorem 3.1.8,
we however have σCI(∇) = σS(∇) ∩ CI and so σS(∇) = R. �

The above result shows that the gradient does not belong to the class of
sectorial operators as (−∞, 0) 6⊂ ρS(T ), so the theory developed in Chapter 8 is not
directly applicable. Even worse, we cannot find any other slice hyperholomorphic
functional calculus that allows us to define fractional powers ∇α of ∇ because the
scalar function sα is not slice hyperholomorphic on (−∞, 0] and hence not slice
hyperholomorphic on σS(∇).

However, we shall now show another characterization of the S-spectrum of
the Nabla operator on the quaternionic right Hilbert space L2(R3,H) that makes
use of the relation ∇2 = −∆ and will be fundamental later on.

If j, i ∈ S with i ⊥ j, then any v ∈ L2(R3,H) can be written as v = v1 + v2i
with components v1, v2 in L2(R3,Cj), i.e., L2(R3,H) = L2(R3,Cj)⊕ L2(R3,Cj)i.



9.2. A relation with the fractional heat equation 255

Contrary to the decomposition v = v1 + iv1, which we used in the proof of The-
orem 9.1.1 with j = I and i = J, this decomposition is not compatible with
the Cj-right vector space structure of L2(R3,H) as va = v1a + v2ai for any
a ∈ Cj . However, this identification has a different advantage: any closed Cj-
linear operator A : D(A) ⊂ L2(R3,CI) → L2(R3,CI) extends to a closed H-
linear operator on L2(R3,H) with domain D(A)⊕D(A)i, namely to the operator
A(v1 + v2i) := A(v1) + A(v2)i. Moreover, if A is bounded, then its extension to
L2(R3,H) has the same norm as A. We shall denote an operator on L2(R3,Cj)
and its extension to L2(R3,H) = L2(R3,Cj)⊕L2(R3,Cj)i via componentwise ap-
plication by the same symbol. This will not cause any confusion as it will be clear
from the context to which we refer.

Theorem 9.1.2. Let ∆ be the Laplace operator on L2(H,Cj) and let Rz(−∆) be
the resolvent of −∆ at z ∈ Cj. We have

σS(∇)2 =
{
s2 ∈ H : s ∈ σS(T )

}
= σ(−∆) (9.6)

and
Qc,s(∇)−1 = Rs2(−∆), ∀s ∈ Cj \ R. (9.7)

Proof. Since the components of ∇ commute and eκe` = −e`eκ for 1 ≤ κ, ` ≤ 3
with κ 6= `, we have

∇2 =
3∑

`,κ=1

∂x`∂xκe`eκ

=
3∑
`=1

−∂2
x`

+
∑

1≤`<κ≤3

(∂x`∂xκ − ∂xκ∂x`) e`eκ

=

3∑
`=1

−∂2
x`

= −∆.

As ∇0 = 0, we have ∇ = −∇ and in turn

Qc,s(∇) = s2I − 2s∇0 +∇∇ = s2I −∇2 = s2I − (−∆)

Hence, Qc,s(∇) is invertible if and only if s2I − (−∆) is invertible. In this case

Qc,s(∇) = (s2I − (−∆))−1 = Rs2(−∆). �

9.2 A relation with the fractional heat equation

As one can easily verify, the Nabla operator is self-adjoint on L2(R3,H). From
the spectral theorem for unbounded normal quaternionic linear operators (see the
paper [14] or the book [57]), we hence deduce the existence of a unique spectral
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measure E on σS(∇) = R, the values of which are orthogonal quaternionic linear
projections on L2(R3,H), such that

∇ =

∫
R
s dE(s).

Using the measurable functional calculus for intrinsic slice functions (see [14] or
the book [57]), it is now possible to define Pα(s) = sαχ[0,+∞)(s) of T as

Pα(∇) =

∫
R
sαχ[0,+∞)(s) dE(s),

where χ[0,+∞) denotes the characteristic function of the set [0,+∞). This cor-
responds to defining ∇α, at least on the subspace associated with the spectral
values [0,+∞), on which sα is defined. (We stress that, even with the measurable
functional calculus, the operator ∇α cannot be defined because sα is not defined
on (−∞, 0).)

We shall now give an integral representation for this operator via an ap-
proach similar to the one of the slice hyperholomorphic H∞-functional calculus.
Surprisingly, this yields a possibility to obtain the fractional heat equation via
quaternionic operator techniques applied to the Nabla operator. For α ∈ (0, 1), we
define

Pα(∇)v :=
1

2π

∫
−jR

S−1
L (s,∇) dsj s

α−1∇v, ∀v ∈ D(∇). (9.8)

Intuitively, this corresponds to Balakrishnan’s formula for ∇α, where only spectral
values on the positive real axis, i.e., points where sα is actually defined, are taken
into account, because the path of integration surrounds only the positive real axis.

Theorem 9.2.1. The integral (9.8) converges for any v ∈ D(∇) and hence defines
a quaternionic linear operator on L2(R3,H).

Proof. If we write the integral (9.8) explicitly, we have

Pα(∇)v =
1

2π

∫ +∞

−∞
S−1
L (−jt,∇) (−j)2 (−jt)α−1∇v

= − 1

2π

∫ +∞

0

S−1
L (−jt,∇)(−jt)α−1∇v dt

− 1

2π

∫ +∞

0

S−1
L (jt,∇)(jt)α−1∇v dt

= − 1

2π

∫ +∞

0

S−1
L (−jt,∇)tα−1e−j

(α 1)π
2 ∇v dt

− 1

2π

∫ +∞

0

S−1
L (jt,∇)tα−1ej

(α 1)π
2 ∇v dt,

(9.9)

where Pα(∇)v is defined if and only if the last two integrals converge in L2(R3,H).
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Let us consider L2(R3,H) as a Hilbert space over Cj as in the proof of
Theorem 9.1.1. If we write v ∈ L2(R3,H) as v = v1 + iv2 with v1, v2 ∈ L2(R,Cj)
and apply the Fourier transform componentwise, we obtain an isometric Cj-linear
isomorphism Ψ : v 7→ (v̂1, v̂2)T between L2(R3,H) and

X̂ := L2(R3,Cj)⊕ L2(R3,Cj).

For any quaternionic linear operator T on L2(R3,H), the composition ΨTΨ−1 is

a Cj-linear operator on X̂ with D(ΨTΨ−1) = ΨD(T ).

Applying ∇ to v ∈ D(∇) ⊂ L2(R3,H), corresponds to applying the multi-
plication operator MG associated with the matrix-valued function G(ξ) defined in
(9.5) to v̂(ξ) = (v̂1(ξ), v̂2(ξ))T . Hence, ∇ = Ψ−1MGΨ and

ΨD(∇) = D(MG) =
{
v̂ ∈ X̂ : G(ξ)v̂(ξ) ∈ X̂

}
=
{
v̂ ∈ X̂ : |ξ|v̂(ξ) ∈ X̂

}
.

(9.10)

The last identity holds, for v̂(ξ) = (v̂1(ξ), v̂2(ξ))T ∈ X̂, as straightforward compu-
tations show that

|G(ξ)v̂(ξ)|2 =

∣∣∣∣(−ξ1v̂1(ξ) + (−jξ2 + ξ3)v̂2(ξ)
(jξ2 + ξ3)v̂1(ξ) + ξ1v̂2(ξ)

)∣∣∣∣2
= (ξ2

1 + ξ2
2 + ξ2

3)(|v̂1(ξ)|2 + |v̂2(ξ)|2) = |ξ|2|v̂(ξ)|2.
(9.11)

Because of (9.9), we have

Pα(∇)v = −Ψ
1

2π

∫ +∞

0

(
Ψ−1S−1

L (−jt,∇)tα−1e−j
(α 1)π

2 ∇Ψ−1
)

Ψv dt

−Ψ
1

2π

∫ +∞

0

(
Ψ−1S−1

L (jt,∇)tα−1ej
(α 1)π

2 ∇Ψ−1
)

Ψv dt.

(9.12)

Since jv = j(v1 + iv2) = v1j − i(v2j) and Ψ is Cj-linear, we find

ΨjΨ−1(v̂1, v̂2)T = (v̂1j, v̂2(−j))T ,

i.e., multiplication with j on L2(R3,H) from the left corresponds to the multipli-

cation with the matrix E := diag(j,−j) on X̂. As

Q−jt(∇)−1 = (∇2 + t2)−1 = (−∆ + t2)−1

is a scalar operator and hence commutes with any quaternion, we have

S−1
L (−jt,∇) = Q−jt(∇)−1jt−∇Q−jt(∇)−1 = (jt−∇)Q−jt(∇)−1,
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and in turn

Ψ−1S−1
L (−jt,∇)tα−1e−j

(α 1)π
2 ∇Ψ−1

= Ψ−1
(
jtQ−jt(∇)−1 −∇Q−jt(∇)−1

)
tα−1e−j

(α 1)π
2 ∇Ψ−1

=
(
tMEQ−jt(MG)−1 −MGQ−jt(MG)−1

)
tα−1M

exp(− (α 1)π
2 E)MG.

The operator Qjt(MG)−1 is

Qjt(MG)−1 = (M2
G + t2I)−1 = M(G2+t2I) 1 = M(t2+|ξ|2) 1I

with |ξ|2 = ξ2
1 + ξ2

2 + ξ2
3 and the operator in the first integral of (9.12) therefore

equals

Ψ−1S−1
L (−jt,∇)tα−1e−j

(α 1)π
2 ∇Ψ−1

= MtE(t2+|ξ|2) 1−G(t2+|ξ|2) 1tα−1M
exp(− (α 1)π

2 E)MG.

It is hence the multiplication operator MA1(t,ξ) determined by the matrix-valued
function

A1(t, ξ) =
tα 1

t2 + |ξ|2 (tE −G(ξ)) exp

(
− (α− 1)π

2
E

)
G(ξ)

=
tα 1

t2 + ξ21 + ξ22 + ξ23

·

 e j απ
2 ξ1(t− jξ1) + jej

απ
2
(
ξ22 + ξ23

) (
ej
απ
2 ξ1 + e j απ

2 (ξ1 + jt)
)
(ξ2 + jξ3)(

je j απ
2 ξ1 + ej

απ
2 (−t+ jξ1)

)
(jξ2 + ξ3) ej

απ
2 (−t+ jξ1)ξ1 − je j απ

2
(
ξ22 + ξ23

)
 .

Similarly, the operator in the second integral of (9.12) is

Ψ−1S−1
L (jt,∇)tα−1ej

(α 1)π
2 ∇Ψ−1

= M−tE(t2+|ξ|2) 1−G(t2+|ξ|2) 1tα−1M
exp( (α 1)π

2 E)MG.

It is hence the multiplication operator MA2(t,ξ) determined by the matrix-valued
function

A2(t, ξ) =
tα

t2 + |ξ|2 (−tE −G(ξ)) exp

(
(α− 1)π

2
E

)
G(ξ)

=
tα 1

t2 + ξ21 + ξ22 + ξ23

·

 ej
απ
2 ξ1(t+ jξ1)− je j απ

2
(
ξ22 + ξ23

)
−
(
ej
απ
2 (−jt+ ξ1) + e j απ

2 ξ1
)
(ξ2 + jξ3)(

ej
απ
2 ξ1 + e j απ

2 (−jt+ ξ1)
)
(ξ2 − jξ3) −e j απ

2 (t+ jξ1)ξ1 + jej
απ
2
(
ξ22 + ξ23

)
.

Hence, we have
Pα(∇)v = Ψ−1Pα(MG)Ψv
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with

Pα(MG)v̂ :=− 1

2π

∫ +∞

0

MA1(t,ξ)v̂ dt−
1

2π

∫ +∞

0

MA2(t,ξ)v̂ dt, (9.13)

for v̂ = Ψv ∈ ΨD(∇). We show now that these integrals converge for any v̂ ∈
ΨD(∇). As Ψ is isometric, this is equivalent to (9.8) converging for any v ∈ D(∇).
Since all norms on a finite-dimensional vector space are equivalent, there exists a
constant C > 0 such that

‖M‖ ≤ C max
`,κ∈{1,2}

|m`,κ|, ∀M =

(
m1,1 m1,2

m2,1 m2,2

)
∈ C2×2

j . (9.14)

The modulus of the (1, 1)-entry of A1(t, ξ) with t ≥ 0 is

tα−1

t2 + ξ2
1 + ξ2

2 + ξ2
3

∣∣e−j απ2 ξ1(t− jξ1) + jej
απ
2

(
ξ2
2 + ξ2

3

)∣∣
=

tα−1

t2 + ξ2
1 + ξ2

2 + ξ2
3

(
|ξ1t|+ |ξ|2

)
≤ tα−1

t2 + |ξ|2
(
|ξ|t+ |ξ|2

)
.

Similarly, one sees that the (2, 2)-entry of A1(t, ξ) satisfies this estimate. For the
(1, 2)-entry we have on the other hand

tα−1

t2 + ξ2
1 + ξ2

2 + ξ2
3

∣∣(je−j απ2 ξ1 + ej
απ
2 (−t+ jξ1)

)
(jξ2 + ξ3)

∣∣
≤ tα−1

t2 + ξ2
1 + ξ2

2 + ξ2
3

(2|ξ1||ξ2 + jξ3|+ t|ξ2 + jξ3|)

≤ 2tα−1

t2 + |ξ|2
(
|ξ|2 + t|ξ|

)
.

Similar computations show that the (2, 1)-entry also satisfies this estimate and
hence we deduce from (9.14) that

‖A1(t, ξ)‖ ≤ 2C
tα−1

t2 + |ξ|2
(
|ξ|t+ |ξ|2

)
.

Analogous arguments show that this estimate is also satisfied by ‖A2(t, ξ)‖. For
the integrals in (9.13) we hence obtain∫ +∞

0

‖MA1(t,ξ)v̂‖X̂dt+

∫ +∞

0

‖MA2(t,ξ)v̂‖X̂ dt

≤ 2

∫ +∞

0

2C

∥∥∥∥ tα−1

t2 + |ξ|2
(
|ξ|t+ |ξ|2

)
|v̂(ξ)|

∥∥∥∥
L2(R3)

dt

≤ 4C

∫ 1

0

tα−1

∥∥∥∥ |ξ|t
t2 + |ξ|2

|v̂(ξ)|+ |ξ|2

t2 + |ξ|2
|v̂(ξ)|

∥∥∥∥
L2(R3)

dt

+ 4C

∫ +∞

1

tα−2

∥∥∥∥ t2

t2 + |ξ|2
|ξv̂(ξ)|+ t|ξ|

t2 + |ξ|2
|ξv̂(ξ)|

∥∥∥∥
L2(R3)

dt.
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Now observe that

t2

t2 + |ξ|2
≤ 1,

|ξ|2

t2 + |ξ|2
≤ 1,

t|ξ|
t2 + |ξ|2

≤ 1

2
< 1.

Because of (9.10), the relation v̂ ∈ ΨD(∇) implies that |v̂(ξ)| and ||ξ|v̂(ξ)| both
belong to L2(R3) and hence we finally find∫ +∞

0

‖MA1(t,ξ)v̂‖X̂dt+

∫ +∞

0

‖MA2(t,ξ)v̂‖X̂ dt

≤ 8C‖v(ξ)‖L2(R3)

∫ 1

0

tα−1 dt+ 8C‖ξv̂(ξ)‖L2(R3)

∫ +∞

1

tα−2 dt,

which is finite as α ∈ (0, 1). Hence, (9.13) converges for any v̂ ∈ ΨD(∇) and (9.8)
converges in turn for any v ∈ D(∇). �

Theorem 9.2.2. The operator Pα(∇) can be extended to a closed operator on
L2(R3,H). For v ∈ D(∇2) = D(−∆), it is moreover given by

Pα(∇)v = (−∆)
α
2−1

[
1

2
(−∆)

1
2 +

1

2
∇
]
∇v. (9.15)

Proof. Let v ∈ D(∇2) = D(−∆). Because of (3.29), we have that

Pα(∇)v =
1

2π

∫ +∞

−∞
(−jtI +∇)Qc,−jt(∇)−1(−j)2(−tj)α−1∇v dt

= − 1

2π

∫ +∞

0

(−jtI +∇)Qc,−jt(∇)−1tα−1e−j(α−1)π2∇v dt

− 1

2π

∫ +∞

0

(jtI +∇)Qc,jt(∇)−1tα−1ej(α−1)π2∇v dt.

(9.16)

Due to (9.7), we have moreover

Qc,jt(∇)−1 = (−t2 + ∆)−1 = Qc,−jt(∇)−1

and hence

Pα(∇)v = − 1

2π

∫ +∞

0

tαQc,jt(∇)−1j
(
ej(α−1)π2 − e−j(α−1)π2

)
∇v dt

− 1

2π

∫ +∞

0

∇Qc,jt(∇)−1tα−1
(
ej(α−1)π2 + e−j(α−1)π2

)
∇v dt

=
sin
(
(α− 1)π2

)
π

∫ +∞

0

tαQc,jt(∇)−1∇v dt

−
cos
(
(α− 1)π2

)
π

∫ +∞

0

∇Qc,jt(∇)−1tα−1∇v dt.

(9.17)
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For the first integral, we obtain

sin
(
(α− 1)π2

)
π

∫ +∞

0

tαQc,jt(∇)−1∇v dt

=
sin
(
(α− 1)π2

)
π

∫ +∞

0

tα(−t2 + ∆)−1∇v dt

=
sin
(
(α− 1)π2

)
π

∫ +∞

0

τ
α 1
2 (−τ + ∆)−1∇v dτ

=
1

2
(−∆)

α 1
2 ∇v.

(9.18)

The last identity follows from the integral representation of the fractional power Aβ

with Re(β) ∈ (0, 1) of a complex linear sectorial operator A given in Corollary 3.1.4
of [165], namely

Aβv =
sin(πβ)

π

∫ +∞

0

τβ
(
τI +A−1

)−1
v dτ, v ∈ D(A). (9.19)

As −∆ is an injective sectorial operator on L2(R3,Cj), its closed inverse (−∆)−1 is

also a sectorial operator. Its fractional power
(
(−∆)−1)

) 1 α
2 is, because of (9.19),

given by the last integral in (9.18). Since

(−∆)
α 1
2 =

(
(−∆)−1

) 1 α
2 ,

we obtain the last equality. Observe that the expression 1
2 (−∆)

α 1
2 ∇v is meaning-

ful as we chose v ∈ D(∇2). Indeed, if we consider the operators in the Fourier space

X̂ as in the proof of Theorem 9.2.1, then −∆ corresponds to the multiplication op-

erator M|ξ|2 generated by the scalar function |ξ|2. The operator (−∆)
α 1
2 is then

the multiplication operator M|ξ|α 1 generated by the function (|ξ|2)
α 1
2 = |ξ|α−1.

Hence,

D(−∆)−
α 1
2 =

{
v ∈ L2(R3,H) : v̂ ∈ D(M|ξ|α 1)

}
=
{
v ∈ L2(R3,H) : |ξ|α−1v̂(ξ) ∈ X̂

}
.

If G(ξ) is as in (9.5), then

∇̂v(ξ) = MGv̂(ξ) = G(ξ)v̂(ξ) ∈ X̂

and because of (9.11) we have |G(ξ)v̂(ξ)| = |ξ||v̂(ξ)| ∈ L2(R). As α ∈ (0, 1), we
therefore find that

|ξ|α−1|MGv̂(ξ)| = |ξ|α|v̂(ξ)|

belongs to L2(R3) and so we have ∇̂v ∈ D(M|ξ|α 1). This is equivalent to ∇v ∈
D
(

(−∆)
α 1
2

)
.
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As v ∈ D(∇2) = D(−∆), we obtain similarly that the second integral in
(9.17) equals

−
cos
(
(α− 1)π2

)
π

∫ +∞

0

∇Qc,jt(∇)−1tα−1∇v dt

=
sin
(
(α− 2)π2

)
π

∫ +∞

0

∇(−t2I + ∆)−1tα−1∇v dt

=
sin
(
(α− 2)π2

)
2π

∫ +∞

0

(−τI + ∆)−1τ
α 2
2 ∇2v dτ

=
1

2
(−∆)

α
2−1∇2v.

(9.20)

Again this expression is meaningful as we assumed v ∈ D(∇2). This is equivalent

to |ξ|2v̂(ξ) ∈ X̂ because ∇̂2v(ξ) = |ξ|2v̂(ξ). Since α ∈ (0, 1) and v̂ ∈ D(M|ξ|2),
the function |ξ|2v̂(ξ) belongs to the domain of the multiplication operator M|ξ|α 2

because
M|ξ|α 2 |ξ|2v̂(ξ) = |ξ|αv̂(ξ) ∈ X̂.

Since (−∆)
α
2−1 corresponds to M|ξ|α 2 on the Fourier space X̂, we find ∇2v in

D
(
(−∆)

α
2−1

)
. Altogether, we find

Pα(∇)v = (−∆)
α
2−1

[
1

2
(−∆)

1
2 +

1

2
∇
]
∇v, ∀v ∈ D(∇2). (9.21)

Finally, we show that Pα(∇) can be extended to a closed operator. We need
to show that for any sequence vn ∈ D(Pα(∇)) = D(∇) that converges to 0 and for
which also the sequence Pα(∇)vn converges, we have z := limn→+∞ Pα(∇)vn = 0.
In order to do this, we write as in (9.17)

Pα(∇)v =
sin
(
(α− 1)π2

)
π

∫ +∞

0

tα(t2I + ∆)−1∇v dt

−
cos
(
(α− 1)π2

)
π

∫ +∞

0

∇(t2I + ∆)−1tα−1∇v dt.

If we choose an arbitrary, but fixed r > 0, then the operator (rI+∆)−1 commutes
with (t2I + ∆)−1 and ∇ and we deduce from the above integral representation
that

(rI + ∆)−1Pα(∇)v = Pα(∇)(rI + ∆)−1v, ∀v ∈ D(∇).

We show now that the mapping v 7→ Pα(∇)(rI + ∆)−1v is a bounded linear
operator on L2(R3,H). Since (rI + ∆)−1 maps L2(R3,H) to D(∆) = D(∇2),
the composition ∇2(rI + ∆)−1 of the bounded operator (rI + ∆)−1 and the
closed operator ∇2 is bounded itself. As we have seen above, ∇2 and also the
bounded operator ∇2(rI + ∆)−1 map L2(R3,H) into the domain of the closed
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operator (−∆)
α
2−1. Hence, their composition (−∆)−

α
2−1∇2(rI+∆)−1 is therefore

bounded. Similarly, ∇(r + ∆)−1 is a bounded operator that maps L2(R3,H) to

D(
(
−∆)

α 1
2

)
as we have seen above, and so the composition (−∆)

α 1
2 ∇(rI+∆)−1

is also bounded. Because of (9.21), the operator

Pα(∇)(rI + ∆)−1 =
1

2
(−∆)

α 1
2 ∇(rI + ∆)−1 +

1

2
(−∆)

α
2−1∇2(rI + ∆)−1

is the linear combination of bounded operators and hence bounded itself.
If a sequence vn ∈ D(Pα(∇)) converges to 0 and z = limn→+∞ Pα(∇)vn

exists in L2(R3,H), then

(r + ∆)−1z = lim
n→+∞

(r + ∆)−1Pα(∇)vn = lim
n→+∞

Pα(∇)(r + ∆)−1vn = 0.

But as (r+ ∆)−1 is the inverse of a closed operator, its kernel is trivial and so z =
limn→+∞ Pα(∇)vn = 0 . Hence, Pα(∇) can be extended to a closed operator. �

Remark 9.2.1. The identity (9.15) might seem surprising at first glance, but it is
actually rather intuitive. By the spectral theorem, there exist two spectral mea-
sures E(−∆) and E∇ on [0,+∞) (resp. R) such that −∆ =

∫
[0,+∞)

t dE−∆(t) and

∇ =
∫
R r dE∇(r). As ∇2 = −∆, the spectral measure E(−∆) is furthermore the

push-forward measure of E∇ under the mapping t 7→ t2 such that∫
[0,+∞)

f(t) dE(−∆)(t) =

∫
R
f
(
t2
)
dE∇(t)

for any measurable function f . Hence, we have for v ∈ D(∇2) that

Pα(∇) =

∫
R
tαχ[0,+∞)(t) dE∇(t)v

=

∫
R
tα−2 1

2
(|t|+ t)t dE∇(t)v

=

∫
R
tα−2 dE∇(t)

1

2

(∫
R
|t| dE∇(t) +

∫
R
t dE∇(t)

)∫
R
t dE∇(t)v

=

∫
[0,+∞)

t
α
2−1 dE(−∆)(t)

1

2

·

(∫
[0,+∞)

|t| 12 dE(−∆)(t) +

∫
R
t dE∇(t)

)∫
R
t dE∇(t)v

= (−∆)−
α
2−1

[
1

2
(−∆)

1
2 +

1

2
∇
]
∇v.

The vector part of Pα(∇) is, because of (9.15), given by

VecPα(∇)v =
1

2
(−∆)

α 1
2 ∇v.
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If we apply the divergence to this equation with sufficiently regular v, we find

div (VecPα(∇)v) =
1

2
(−∆)

α 1
2 ∆v = −1

2
(−∆)

α+1
2 .

We can thus reformulate the fractional heat equation (9.2) with α ∈ (1/2, 1) as

∂

∂t
v − 2 div (Vec fβ(∇)v) = 0, β = 2α− 1.

9.3 An example with non-constant coefficients

As pointed out before, the advantage of the above procedure is that is does not
only apply to the gradient to reproduce the fractional Laplacian. Rather it applies
to a large class of vector operators, in particular generalized gradients with non-
constant coefficients. As a first example, we consider the operator

T := ξ1
∂

∂ξ1
e1 + ξ2

∂

∂ξ2
e2 + ξ3

∂

∂ξ3
e3

on the space L2(R3
+,H, dµ) of H-valued functions on

R3
+ = {ξ = (ξ1, ξ2, ξ3)T ∈ R3 : ξ` > 0}

that are square integrable with respect to

dµ(ξ) =
1

ξ1ξ2ξ3
dλ(ξ),

where λ denotes the Lebesgue measure on R3. In order to determine Qs(T )−1 we
observe that the operator given by the change of variables J : f 7→ f ◦ ι with
ι(x) = (ex1 , ex2 , ex3)T is an isometric isomorphism between L2(R3,H, dλ(x)) and
L2(R3

+,H, dµ(ξ)). Moreover, T = J−1∇J such that

Qs(T ) = (s2I + TT ) = J−1(s2I + ∆)J

and in turn
Qs(T )−1 := (s2I − TT )−1 = J−1(s2I + ∆)−1J.

We therefore have for sufficiently regular v with calculations analogue to those in
(9.16) and (9.17) that

Pα(T )v =
sin((α− 1)π)

π

∫ +∞

0

tα(−t2I + TT )−1T dt

+
cos((α− 1)π)

π

∫ +∞

0

tα−1T (−t2I + TT )−1Tv dt.
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Clearly, the vector part of this operator is again given by the first integral such
that

VecPα(T )v =
sin((α− 1)π)

π

∫ +∞

0

tα(−t2I + TT )−1Tv dt

=
sin((α− 1)π)

π

∫ +∞

0

tαJ−1(−t2I + ∆)−1JTv dt

= J−1 sin((α− 1)π)

π

∫ +∞

0

tα(−t2I + ∆)−1 dt JTv

=
1

2
J−1(−∆)

α 1
2 JTv,

where the last equation follows from computations as in (9.21). Choosing β =
2α+ 1, we thus find for sufficiently regular v that

Vec fβ(T )v(ξ)

=
1

2
J−1(−∆)αJTv(ξ1, ξ2, ξ3)

=
1

2
J−1(−∆)α

ex1vξ1(ex1 , ex2 , ex3)
ex2vξ2(ex1 , ex2 , ex3)
ex3vξ3(ex1 , ex2 , ex3)


=

1

2
J−1 1

(2π)3

∫
R3

∫
R3

−|y|2αeiz·ye−x·y
ex1vξ1(ex1 , ex2 , ex3)
ex2vξ2(ex1 , ex2 , ex3)
ex3vξ3(ex1 , ex2 , ex3)

 dx dy

=
1

2(2π)3

∫
R3

∫
R3

−|y|2αei
∑3
k=1 ξkyke−ix·y

ex1vξ1(ex1 , ex2 , ex3)
ex2vξ2(ex1 , ex2 , ex3)
ex3vξ3(ex1 , ex2 , ex3)

 dx dy.

The above computations are elementary and illustrate that more compli-
cated operators than the Nabla operator can be considered with the introduced
techniques. In particular, one can define and study new types of fractional evo-
lution equations derived from generalized gradient operators with non-constant
coefficients of the form

T = a1(x)
∂

∂x1
e1 + a2(x)

∂

∂x2
e2 + a3(x)

∂

∂x3
e3. (9.22)

The version of the S-functional calculus for operators with commuting compo-
nents, which we applied in order to study the Nabla operator, simplifies the com-
putations considerably. In the next chapter, we will investigate a more involved
example that shows the power of our theory.
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