Chapter 9 ®

Check for
updates

The fractional heat equation
using quaternionic techniques

The development of the spectral theory of the Nabla operator opens the way to a
large class of fractional diffusion problems, and some of them will be treated in the
next chapter. Indeed, the main aim of this chapter is to show how our theory, for
the case of the Nabla operator, reproduces known results. Since it is very general,
it allows us to manipulate a very large class of new fractional diffusion processes.
The results presented in this chapter were originally proved in [53,54]. Precisely,
if v(z,t) is the temperature at the point € R® and the time ¢ > 0 and & is the
thermal diffusivity of the considered material, then the heat equation

Opv(z,t) — kAv(z,t) =0, (9.1)

where A = 23:1 02, with @ = (x1,22,23)", describes the evolution of the tem-
perature distribution in space and time. (For mathematical treatment, one usually
sets £ = 1 and we will emulate this.) This model has, however, several unphys-
ical properties, so scientists have tried to modify it. One approach has been the
introduction of the fractional heat equation. In order to modify the properties of
the equation, researchers replaced the negative Laplacian in (9.1) by its fractional
powers of exponent « and considered the evolution equation

%U(xﬂf) + (—A)%(z,t) = 0. (9.2)
There are different approaches for defining the fractional Laplace operator, but
each approach leads to a global integral operator, which, in contrast to the local
differential operator A, is able to take long distance effects into account.

We want to develop a similar approach for defining fractional evolution equa-
tions with the generalized gradient. What we show here is that, if we replace the
gradient in Fourier’s law of conductivity by its fractional power instead of directly
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replacing the negative Laplacian by its fractional power in (9.1), we get the same
equation. Indeed, this would lead to the equation

gv(x,t) — div(V®(x,t)) =0,

ot

with suitable interpretation of the symbol V. Our initial task is to understand
the definition of the fractional powers V* according to our theory developed in the
previous chapters where we identified the gradient with the quaternionic Nabla
operator.

Additionally in this chapter, we develop the spectral theory of the quater-
nionic Nabla operator on L?(R?, H). We find that the previously developed theory
is not directly applicable because the Nabla operator does not belong to the class
of sectorial operators. We therefore present a slightly modified approach and show
that this allows us to reproduce the fractional heat equation (9.2) using quater-
nionic techniques. Finally, we give an example for a more general operator with
non-constant coefficients that can be treated with our methods.

9.1 Spectral properties of the Nabla operator

The gradient of a function v : R* — R is the vector-valued function

Oz, v(x)
Vo(z) = | Opyv(z) |, for x = (21,22, 23).

0240 ()

If we identify R with the set of real quaternions and R? with the set of purely
imaginary quaternions, this corresponds to the quaternionic Nabla operator

V =0y, €1 + Op,e9 + Oy, e3.

In the following, we shall often denote the standard basis of the quaternions by
| :=e1,J := ey and K := e3 = IJ = —JI. This suggests a relation with the complex
theory, which we shall use excessively. With this notation, we have

V = 0y, 1 + 04,0 + 0, K.

We study the properties of a quaternionic Nabla operator on the space
L?(R3,H) of all square-integrable quaternion-valued functions on R3, which is
a quaternionic right Hilbert space when endowed with the scalar product

(w,v) = /R3 w(z)v(z) dz.

On this space, the Nabla operator is closed and has dense domain. This follows
immediately from its representation (9.4) in the Fourier space that we derive in
the proof of Theorem 9.1.1.
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Let v € L?*(R3 H) and write v(z) = vi(z) + v2(z)d with two Cj-valued

functions v; and vo. As |v(2)|? = |v1(2)|? + |va(2)|?, we have

HU||2L2(R3,H) = HU1||2L2(R3,(C|) + HU2||2L2(R,3,C|)7 (9.3)

where L?(R?,H) denotes the complex Hilbert space over C) of all square-integrable
Cy-valued functions on R3. Hence, v € L*(R3, H) if and only if vy, ve € L2(H, C)).

Theorem 9.1.1. The S-spectrum of V as an operator on L*(R3,H) is
0'5(V) =R.

Proof. Let us consider L?(R3, H) as a Hilbert space over C; by restricting the right
scalar multiplication to C, and setting

(w,v)y := {<w7v>L2(R3,H)}I~

Here {-}; denotes the Cj-part of a quaternion: if a = a; + asd = a1 + Jaz with
ai,ay € Cy, then {a}y := a;. If we write v,w € L?(R? H) as v = v; + Jvy and
w = wy + Jws with vy, ve, wy, ws € L?(R3,C)), then

(w,v) L2 (g8 |y = /RS (w1(z) + Jwz(x))(vi(z) + Jvz(2)) dz
= /RS wy (x)v1(x) de + /]R3 wa(x)(=d)vi(x) dx
+ /RS wy (z)dva(z) do + /}RS wy(2)(—I%) vy (2) da:
= /R3 wy (z)v1(x) de + /]Ra wa(z)va () d

+J (— /]R3 wa(x)v1(z) do + /]R3 wi (x)ve(x) dw) :

Therefore, we have
(w,v)1 == (w1, v1) L2w3,c)) + <w2,02>L2(R3,C.)

and hence L?(R3® H) considered as a Cj-complex Hilbert space with the scalar
product (-,-); equals L?(R3,C)) & L?(R3,C,). Moreover, because of (9.3), the
quaternionic scalar product (-,-) and the Cj-complex scalar product (-,-); induce
the same norm on L?(R? H). Applying the Nabla operator to v = vy + Jva, we
find

Vo(x) = (105, + 0y, + KOy, ) (vi(x) + Jua(x))
=10, v1(x) + 0,01 (x) + KOpav1 ()
+ 10y, Jva(z) + IOy, Jva(x) + KDy, Jua(2)
= 10,4, v1(x) — Opyv2(x) — 105,v2(x)
+ J (=104, v2(x) + Opyv1(x) — 104,01 (T)) -
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Writing this in terms of the components L?(R3 H) = L?(R3,C)) & L3(R3,C)), we

obtain
v (o) = (it St ).

If we apply the Fourier transform on L?(R3,C,) componentwise, this turns into

S (1) =& 1+ 6 (01(6)
VI < = Py . 9.4
(vz(x)> (152 e o ) \a@© (54)
Hence, in the Fourier space, the Nabla operator corresponds to the multiplication
operator Mg : 0+ Gv on X := L*(R?,Cy) @ L?(R3,C)) that is generated by the

matrix valued function
L =& —1& + &3
Ce) = (Iéz +&3 & ) ‘ (9:5)

For s € Cy, we find

16, —
sTg — G = <_‘|9£J2FE1£3 §2_ gfg) .

For s € Gy, the inverse of sZ ¢ — Mg is hence given by the multiplication operator
Msz—q) 1+ determined by the matrix-valued function

o 1 1 s—& 1 +&
(Tx =GO - g (s sha)

This operator is bounded if and only if the function & +— (sZ —G(£))~! is bounded
on R3, that is if and only s ¢ R. Hence, o(Mg) = R.

The componentwise Fourier transform ¥ is a unitary Cj-linear operator from
the space L*(R3, H) = L?(R3, C,)® L?(R?,Cy) to X under which V corresponds to
Mg, that is V = W1 MgW. The spectrum oc,(V) of V considered as a Cj-linear
operator on L?(R3, H), therefore, equals o¢, (V) = o(Mg) = R. By Theorem 3.1.8,
we however have o¢, (V) = 05(V) N Cj and so 05(V) =R. O

The above result shows that the gradient does not belong to the class of
sectorial operators as (—o0,0) ¢ ps(T), so the theory developed in Chapter 8 is not
directly applicable. Even worse, we cannot find any other slice hyperholomorphic
functional calculus that allows us to define fractional powers V¢ of V because the
scalar function s® is not slice hyperholomorphic on (—o0, 0] and hence not slice
hyperholomorphic on og(V).

However, we shall now show another characterization of the S-spectrum of
the Nabla operator on the quaternionic right Hilbert space L?(R3 H) that makes
use of the relation V2 = —A and will be fundamental later on.

If j,i € S with i L j, then any v € L?(R3,H) can be written as v = vy + vqi
with components vy, ve in L?(R?, C;), i.e., L*(R? H) = L*(R3,C;) & L*(R?, C,)i.
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Contrary to the decomposition v = vy + 4v1, which we used in the proof of The-
orem 9.1.1 with 7 = | and ¢ = J, this decomposition is not compatible with
the C;-right vector space structure of L?(R3,H) as va = via + voai for any
a € C;. However, this identification has a different advantage: any closed Cj;-
linear operator A : D(A) C L*(R?,C)) — L?(R3,C)) extends to a closed H-
linear operator on L?(R3, H) with domain D(A) & D(A)i, namely to the operator
A(v1 + vai) := A(v1) + A(va)i. Moreover, if A is bounded, then its extension to
L?*(R3,H) has the same norm as A. We shall denote an operator on L?(R3,C;)
and its extension to L?(R3, H) = L?(R3,C;) & L*(R3,C;)i via componentwise ap-
plication by the same symbol. This will not cause any confusion as it will be clear
from the context to which we refer.

Theorem 9.1.2. Let A be the Laplace operator on L*(H,C;) and let R,(—A) be
the resolvent of —A at z € C;. We have

os(V)P={s*e€H: seos(T)}=0(-A) (9.6)

and
Q.s(V)™' = Rp2(—A), VscC;\R. (9.7)
Proof. Since the components of V commute and e e, = —ege, for 1 < k, £ < 3

with k # ¢, we have

3
V2 = Z 03,05, €€y,

lk=1

3
= Z _8;3@ + Z (02,0z,, — Oz, 0x,) €14
=1

1<e<r<3
3

_ 2

= E —0;, = —A.
(=1

As Vo =0, we have V = —V and in turn
Q.4(V) = 5T — 25V + VV = 5’7 — V? = 5T — (-A)
Hence, Q. (V) is invertible if and only if s2Z — (—A) is invertible. In this case

Qes(V) = (s"T = (-A)) 7" = R (=4). .

9.2 A relation with the fractional heat equation

As one can easily verify, the Nabla operator is self-adjoint on L?(R3 H). From
the spectral theorem for unbounded normal quaternionic linear operators (see the
paper [14] or the book [57]), we hence deduce the existence of a unique spectral
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measure E on 0g(V) = R, the values of which are orthogonal quaternionic linear
projections on L?(R? H), such that

V= /deE(s).

Using the measurable functional calculus for intrinsic slice functions (see [14] or
the book [57]), it is now possible to define Py (s) = 5%X[0,100)(5) of T" as

P,(V) :/Rsax[o,_‘_oo)(s) dE(s),

where X[0,+o0) denotes the characteristic function of the set [0, +0c0). This cor-
responds to defining V®, at least on the subspace associated with the spectral
values [0, +00), on which s® is defined. (We stress that, even with the measurable
functional calculus, the operator V¢ cannot be defined because s is not defined
on (—00,0).)

We shall now give an integral representation for this operator via an ap-
proach similar to the one of the slice hyperholomorphic H°-functional calculus.
Surprisingly, this yields a possibility to obtain the fractional heat equation via
quaternionic operator techniques applied to the Nabla operator. For a € (0, 1), we

define
1

P,(V)v:= —
2w —jR

S (s, V)ds; s* 7'V, Yu e D(V). (9.8)

Intuitively, this corresponds to Balakrishnan’s formula for V®, where only spectral
values on the positive real axis, i.e., points where s* is actually defined, are taken
into account, because the path of integration surrounds only the positive real axis.

Theorem 9.2.1. The integral (9.8) converges for any v € D(V) and hence defines
a quaternionic linear operator on L?(R3 H).

Proof. Tf we write the integral (9.8) explicitly, we have

1 e _ o
Pa(V)v = o S (=3t V) (=5)* (—=jt)* "'V
I T TR [ A
= o o L Jts J v
1 e -1/ \a—1
- — ST, V)(§t)* Vo dt (9.9)
27 0
1 Foo 1, . a1 _jle D
=—5- ; Sy (=gt, V)t* e T Vudt
| ARy a—1 jle br
~ 5 ; STt V)tY e T2 Vodt,

where P, (V)v is defined if and only if the last two integrals converge in L?(R?, H).
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Let us consider L?(R® H) as a Hilbert space over C; as in the proof of
Theorem 9.1.1. If we write v € L*(R3,H) as v = vy + ive with v1,vs € L2(R,C;)
and apply the Fourier transform componentwise, we obtain an isometric C;-linear
isomorphism W : v +— (01, 02)7 between L?(R3 H) and

X := L*(R®,C;) @ L*(R®,C;).

For any quaternionic linear operator 7' on L?(R3,H), the composition ¥7T¥~1
a Cj-linear operator on X with D(¥TW~1) = ¥ D(T).

Applying V to v € D(V) C L?*(R?,H), corresponds to applying the multi-
plication operator M¢ associated with the matrix-valued function G(¢) defined in
(9.5) to v(¢) = (01(£),02(£))T. Hence, V = U~ MgV and

UD(V) = D(Mg) = {a e X :Ge)(e) € )?}
R R (9.10)
= {65 X - [efo(e) e X} .

The last identity holds, for (&) = (01(€), 72(€))T € X, as straightforward compu-
tations show that

GO = ’( 0161 £)(0) ’

(j2 + & +&102(8) (9.11)
= (@ +E+E) (0P +R(9)F) = [EPPE)P
Because of (9.9), we have
1 [t
Po(V)v =~ (qus; (—jt, V)tolemi T gy )\Ilvdt
0
(9.12)
1 [t
—vo- | (\If—ls; (jt, V)t~ led 2 v g )\Ilvdt.

Since jv = j(v1 + iv2) = v1j —i(vej) and ¥ is C,-linear, we find
WO (G, 0)T = (015, 6(=5)",

i.e., multiplication with j on L?(R3,H) from the left corresponds to the multipli-
cation with the matrix E := diag(j, —j) on X. As

QW) = (V) =(—A+*)7!
is a scalar operator and hence commutes with any quaternion, we have

S H=it, V) = Q (V) ljt =VQ (V)™ = (jt = V)Q (V) 7,
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and in turn

(o D

L O A A
— U (jtQ ;4 (V) " = VQ_ (V) ) el T T T v
= (tMEQ—jt(MG)il - MGQ—jt(MG)il) tailM (7((1 21)WE)MGv.

exp

(o D
2

The operator Q;;(Mg)™! is
th(MG)_l = (M% +t2I)_1 = M(G2+t21) 1= M(tz_’_‘f“z) 17
with [£]? = &7 + €3 + €2 and the operator in the first integral of (9.12) therefore

equals

(a D=

L O VA I A R A vA
= Mip( i) 1-Gurig) 117 Mo ns gy Ma.

exp
It is hence the multiplication operator My, (s,¢) determined by the matrix-valued
function

A8 = Gz 1B - @ (-5 T 6
to 1
. ( e IFa(t-je)+id T (G+8)  (dTFate T (@) (6 +j§3>>

(Je " Far+F (—t+6) G+ &) &F (—t+ )6 —je 1T (& +63)

Similarly, the operator in the second integral of (9.12) is

(o Dm

LSt Vit el T vt

= M_ip@21ig2) 1—c2+le2) 1M, (Lo 21>"E)MG'

exp
It is hence the multiplication operator M4, (;¢) determined by the matrix-valued
function

ta
Az(t, ) = 2P

o 1
TP g+g
STt +je) —je 7T (G+€) (T (mjt+e)+e T Fa) (&H&,))
' ((ej“ffwe It 6) (@ - &) —e T+ +iF (G+8) )

(=17

(-t - (&) exp £) o)

Hence, we have
P (V)v = ' P,(Mg)Pv
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with

I A I .

o MAl(t7§)U dt — — MAQ(t,g)U dt, (9.13)
0

27
for ¥ = v € ¥D(V). We show now that these integrals converge for any ¥ €
U D(V). As U is isometric, this is equivalent to (9.8) converging for any v € D(V).
Since all norms on a finite-dimensional vector space are equivalent, there exists a
constant C' > 0 such that

Pa(MG)i}\ = -

M| <C max |my|, VM= (mm m1,2> € CP. (9.14)

l,ke{1,2} ma1 M22

The modulus of the (1, 1)-entry of A;(¢,£) with ¢t >0 is

ta—l o
Ererarel et et (G|
to— 1 a—1
T P+g+g+8 (extl +16F) < e €2 (1t -+ 1) -

Similarly, one sees that the (2,2)-entry of A;(¢,€) satisfies this estimate. For the
(1, 2)-entry we have on the other hand

ta—l

P+E+E+E

a—1

<
TR+ E+E+E

2t — 1 9
sﬂ+mAM%wm

Similar computations show that the (2,1)-entry also satisfies this estimate and
hence we deduce from (9.14) that

(e 7 &1+ &7 (—t+ &) (€2 + &)

(2[&1]162 + &3] + t|€a + j€3])

ocfl

+ ¢

Analogous arguments show that this estimate is also satisfied by ||A2(¢,&)]|. For
the integrals in (9.13) we hence obtain

+00 Foo
/0 ||MA1(t,§)v||)?dt+/O 1M a,1,6)0| 5 dt

142t )| < 2C g (€]t + 1€1%)

“+o0 a—1
<2 [ 20| G e sy RO
o &t £)?
<4C/ o | PO+ g o
o 2 tle|
+4c/ t2+|5|2|a(>| e T
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Now observe that

t2 €17 tl¢] 1
—_— , ———— <1, < - <1
1 e A 1Y

Because of (9.10), the relation v € ¥ D(V) implies that [0(£)| and ||£]v(€)| both
belong to L?(R?) and hence we finally find

+oo o0
/0 ”MAl(t’f)ﬁ”)?dt*/o 1M ay2.6)0ll 5 dit
1 +00
§8OHU(5)||L2<R3)/O t“’ldHSCII@(ﬁ)IILz(R%/1 192 dt,

which is finite as o € (0,1). Hence, (9.13) converges for any v € U D(V) and (9.8)
converges in turn for any v € D(V g

)-
Theorem 9.2.2. The operator P,(V) can be extended to a closed operator on
L?(R3, H). For v € D(V?) =D(-A), it is moreover given by

P, (Vv =(-A)2~! {2

~(=A)2 + ;V} Vo. (9.15)

Proof. Let v € D(V?) = D(—A). Because of (3.29), we have that

1o “1, Nae
Pa(V)o =5 [ (T 4 9) Qe (V) (3 (ti) W
1 [t
=5 (=t + V) Qe (V) 1o temile"VEgydt  (9.16)
0
I

Cor (T + V) Qe e (V) 1t ted (D E vy dt.
T

Due to (9.7), we have moreover

Qejt(V) ' = (=2 +A)"" =Q. (V)"

and hence
Pa(V)y = —— e, (V)Y (ei(@*)% - e—ﬂa—l)%) Vo dt
[} o 0 c,Jt
1 [T , -
“5r ) QW) (7005 4 eI DT ) Tuat
™
(9.17)
s 400
= Sm((a)2)/ to‘Qc’jt(V)AVvdt
m 0
o — 1)z +o0
_o (7(0‘77 )2)/ VQ. (V) Vudt.
0
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For the first integral, we obtain

sin ((Oé - 1)%) /+OO tan jt(v)flvv dt
™ 0 ’

= ASin ((a - 1)%) /+OO ta(_tQ + A)_1VU dt
0

T ) (9.18)
i -1z 4
:Sm((o‘)z)/ T (=1 + A)"'Wodr
m 0
- 1( ATV
—5 — V.

The last identity follows from the integral representation of the fractional power A°
with Re(5) € (0, 1) of a complex linear sectorial operator A given in Corollary 3.1.4
of [165], namely

sin(mf)

™

“+oo
APy = / ™ (1T + 14_1)71 vdr, v € D(A). (9.19)
0

As —A is an injective sectorial operator on L?(R3, C;), its closed inverse (—A) ™! is

1 «a
also a sectorial operator. Its fractional power ((—A)™!)) 2 is, because of (9.19),
given by the last integral in (9.18). Since

we obtain the last equality. Observe that the expression %(—A)QTIVU is meaning-
ful as we chose v € D(V?). Indeed, if we consider the operators in the Fourier space
X asin the proof of Theorem 9.2.1, then —A corresponds to the multiplication op-
erator M|¢2 generated by the scalar function [£|. The operator (—A)OT1 is then
the multiplication operator M¢« 1 generated by the function (|§\2)aTl = [¢]o L.

Hence,
D(-A)"T = {ve L*(R*H): 7€ D(Mgu 1)}
- {v c LX(R3,H): [¢]*5(¢) € X’} .
If G(&) is as in (9.5), then
Vo(€) = Mad(€) = GE)D(E) € X

and because of (9.11) we have |G()v(§)| = |¢][0(¢)| € L*(R). As a € (0,1), we
therefore find that

€1~ MG (€)] = [€]°[D(€)]
belongs to L?(R?) and so we have Vo € D(M¢j» 1). This is equivalent to Vv €

a 1

D((-a)").
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As v € D(V?) = D(—A), we obtain similarly that the second integral in
(9.17) equals

. s —+o0
_eosl@=DE) [T og vyt a

T 0
3 — 92\ +o0
_ e 2s) (0 =2)5) V(2T + A)~ 't Vo dt
g 0+ (9.20)
in((@—2)%) [+ o 2
_amiemay) (o = 2)3) / (—7Z+A) 112 Vudr
27T 0
1 o
= 5(—A)5_1V211.

Again this expression is meaningful as we assumed v € D(V?). This is equivalent
to [¢]?0(¢) € X because V2v(§) = [£*D(€). Since o € (0,1) and 0 € D(M¢2),
the function [£[*D(¢) belongs to the domain of the multiplication operator M¢ja =
because

Miga 2[€[25(€) = |€]°0(€) € X.

Since (—A)2 ! corresponds to Mg« 2 on the Fourier space X, we find V20 in
D ((—A)2 ). Altogether, we find

P, (Vv =(-A)z7! [1(—A)5 + ;V} Vv, Yo € D(V?). (9.21)

Finally, we show that P, (V) can be extended to a closed operator. We need
to show that for any sequence v, € D(P,(V)) = D(V) that converges to 0 and for
which also the sequence P, (V)v,, converges, we have z := lim,_, 4 o0 Pa(V)v, = 0.
In order to do this, we write as in (9.17)

sin ((a — l)g)
~ cos (a=1)%F) [*e°

™ 0

+oo
P, (V)v = / t* (2T + A) "'V dt
0

V(T + A)~ 'tV dt.

If we choose an arbitrary, but fixed r > 0, then the operator (rZ+A)~! commutes
with (#2Z + A)~! and V and we deduce from the above integral representation
that

(rZ 4+ A) 'Py (Vv = Po(V)(rT + A)tv, Vo € D(V).

We show now that the mapping v +— P, (V)(rZ + A)~!v is a bounded linear
operator on L?(R3 H). Since (rZ + A)~! maps L*(R? H) to D(A) = D(V?),
the composition V2(rZ + A)~! of the bounded operator (rZ + A)~! and the
closed operator V2 is bounded itself. As we have seen above, V2 and also the
bounded operator V2(rZ + A)~! map L*(R3 H) into the domain of the closed
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operator (—A) % ~!. Hence, their composition (—A)~% ~1V2(rZ+A)~! is therefore
bounded. Similarly, V(r + A)~! is a bounded operator that maps L?(R? H) to

a 1

D((—A)“7") as we have seen above, and so the composition (—A)“7 V(rZ+A)~!
is also bounded. Because of (9.21), the operator

_1_1 a 1

P.(V)(rZ + A) 2(—A) T VT + A+ %(—A)%_lvz(TI—i—A)_l

is the linear combination of bounded operators and hence bounded itself.
If a sequence v, € D(P,(V)) converges to 0 and z = lim,, 1o Pa(V)v,
exists in L?(R3 H), then

(r+A)'z2= lim (r+A) 'Py(V)v, = lim P, (V)(r+A)tv, =0.

n—-+oo n—-+oo

But as (r +A)~! is the inverse of a closed operator, its kernel is trivial and so z =
lim, 4 o0 Po(V)v, =0 . Hence, P, (V) can be extended to a closed operator. [

Remark 9.2.1. The identity (9.15) might seem surprising at first glance, but it is
actually rather intuitive. By the spectral theorem, there exist two spectral mea-
sures F(_a) and Ey on [0,+00) (resp. R) such that —A = f[o +00) tdE_a(t) and

V = [prdEy(r). As V2 = —A, the spectral measure E(_a) is furthermore the
push-forward measure of Fy under the mapping ¢ — t2 such that

[ swaEcao= [ 1) e

[0,400) R

for any measurable function f. Hence, we have for v € D(V?) that
Pa(¥) = [ X0k () B (1)

1
:/t“_27(|t\+t)tdEv(t)v
R 2

:/]Rta—2 dEv(t)% (/RﬂdEv(t)—k/thEv(t)) /thEv(t)v
1

= t2 Y dE_a)(t)=
/[0,+oo) & 2

. (/[O’W) |t|2dE(A)(t)+/thEv(t)> /thEv(t)y

o 1 11
=(=A)" 27 | Z(=A)z 4+ =
= (-A) {2( A) +2V} Vo.
The vector part of P, (V) is, because of (9.15), given by
1 a 1
Vec P, (V)v = =(=A) = Vo
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If we apply the divergence to this equation with sufficiently regular v, we find

We can thus reformulate the fractional heat equation (9.2) with « € (1/2,1) as

%v —2div (Vec fg(V)v) =0, f=2a-1.

9.3 An example with non-constant coefficients

As pointed out before, the advantage of the above procedure is that is does not
only apply to the gradient to reproduce the fractional Laplacian. Rather it applies
to a large class of vector operators, in particular generalized gradients with non-
constant coefficients. As a first example, we consider the operator

L

6 er +&-—e2+ 53@63

=6 96

on the space L*(R%,H, du) of H-valued functions on

R} ={£=(61,6,&)" €R®: & >0}
that are square integrable with respect to

1
§16283
1

where \ denotes the Lebesgue measure on R?. In order to determine Q,(7")~! we
observe that the operator given by the change of variables J : f — f o with
t(z) = (e®1,e"2 e*3)T is an isometric isomorphism between L2(R?, H, d\(z)) and
L*(R3,H, du(€)). Moreover, T = J~'VJ such that

du(§) =

Qs(T) = ($*T+TT) = J Y (s*’T+ A)J

and in turn
Q1) = (T —-TT) ' = J T+ A)

We therefore have for sufficiently regular v with calculations analogue to those in
(9.16) and (9.17) that

Py = 2o = Dm) / T
m 0
. cos((a — 1)m)

™

“+o0
/ t* (2T 4+ TT) ' Tw dt.
0
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Clearly, the vector part of this operator is again given by the first integral such
that

. _ +00 .
Vee Py (T = S2Ua = D) / t(—2T + TT) v dt
m 0

: _ +oo
_ M/ 0T (2T + A) " I Tw dt
0

™

. _ +o00
:J*M/ t*(—t*T + A)"tdt JTw
T 0
1 o 1
= §J_1(—A)TJTU,

where the last equation follows from computations as in (9.21). Choosing 8 =
2ac + 1, we thus find for sufficiently regular v that

Vec fg(T)v(§)
— %J*l(—A)aJTU(ﬁhfz,&))

eTlug, (e™, €72, e"3)
= —JH=A)* | e20g, (e, %2, e%2)
eTsug, (e™1,e"2, e™3)

etug, (e¥1, e, e™s)
—ly?*e Ve Y | e2ug, (e o ,e¥2 e®) | dxdy
)
e

R3 wSUE ( T1 eév2 %3

2

e’ v ,6 5
_ 1 / / —\y|2“ei 3 Ekyk o —iTY ezgvzlg Ty T2 6133 dx dy.
2(27’1’)‘3 R3 JR3 : ’ ’

e$3v£3 (611 ,e"2, e$3)

The above computations are elementary and illustrate that more compli-
cated operators than the Nabla operator can be considered with the introduced
techniques. In particular, one can define and study new types of fractional evo-
lution equations derived from generalized gradient operators with non-constant
coefficients of the form

0 0 0
T=a(rx)=—e +a —ex+a —e 9.22
1(w)g—e1 + ax(a) 52 + aa(e) 5 —ea (922)
The version of the S-functional calculus for operators with commuting compo-
nents, which we applied in order to study the Nabla operator, simplifies the com-
putations considerably. In the next chapter, we will investigate a more involved
example that shows the power of our theory.



	Chapter 9 The fractional heat equation using quaternionic techniques
	9.1 Spectral properties of the Nabla operator
	9.2 A relation with the fractional heat equation
	9.3 An example with non-constant coefficients




