
Chapter 7

The H∞-Functional Calculus

The H∞-functional calculus was originally introduced in [170] by Alan McIntosh.
His approach was generalized to quaternionic sectorial operators that are injective
and have dense range in [30]. Moreover, under the above assumptions, in [30], it is
also treated the case of n-tuples of noncommuting operators. The H∞-functional
calculus stands out among all holomorphic (resp. slice hyperholomorphic) func-
tional calculi because it allows to define functions f of an operator T such that
f(T ) is unbounded.

This chapter is based on our paper [54], where we defined the H∞-functional
calculus for arbitrary sectorial operators following the strategy of [165]. This pro-
vides also the techniques to introduce fractional powers of quaternionic linear
operators. The approach in [54] requires neither the injectivity of T nor that T
has dense range. Several proofs do not need much additional work and the strate-
gies of the complex setting can be applied in a quite straightforward way. We shall
therefore, in particular, focus on the proof of the chain rule and of the the spectral
mapping theorem, since more severe technical difficulties arise in these proofs.

7.1 The S-functional calculus for sectorial operators

In order to define the notion of a sectorial operator, we introduce the sector Σϕ
for ϕ ∈ (0, π] as

Σϕ := {s ∈ H : arg(s) < ϕ}.
Definition 7.1.1 (Sectorial operator). Let ω ∈ [0, π). An operator T ∈ K(X) is
called sectorial of angle ω if

(i) we have σS(T ) ⊂ Σω and

(ii) for every ϕ ∈ (ω, π) there exists a constant C > 0 such that for s /∈ Σϕ∥∥S−1
L (s, T )

∥∥ ≤ C

|s|
and

∥∥S−1
R (s, T )

∥∥ ≤ C

|s|
. (7.1)
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We denote the infimum of all these constants by Cϕ and additionally by Cϕ,T
if we also want to stress its dependence on T .

Next we introduce the following notations:

(a) We denote the set of all operators in K(X) that are sectorial of angle ω by
Sect(ω). Furthermore, if T is a sectorial operator, we call

ωT = min{ω : T ∈ Sect(ω)}

the spectral angle of T .

(b) A family of operators {T`}`∈Λ is called uniformly sectorial of angle ω if T` ∈
Sect(ω) for all ` ∈ Λ and sup`∈Λ Cϕ,T` < +∞ for all ϕ ∈ (ω, π).

The class of slice hyperholomorphic functions that will be considered in order
to define the H∞-functional calculus is specified in the next definitions.

Definition 7.1.2. Let f be a slice hyperholomorphic function.

(i) We say that f has polynomial limit c ∈ H in Σϕ at 0 if there exists α > 0
such that f(p) − c = O (|p|α) as p → 0 in Σϕ and that it has polynomial
limit ∞ in Σϕ at 0 if f−∗L (resp. f−∗R) has polynomial limit 0 at 0 in Σϕ.
(By (2.26) this is equivalent to 1/|f(p)| ∈ O(|p|α) for some α > 0 as p → 0
in Σϕ.)

(ii) Similarly, we say that f has polynomial limit c ∈ H∞ at ∞ in Σϕ if p 7→
f(p−1) has polynomial limit c at 0.

(iii) If a function has polynomial limit 0 at 0 or∞, we say that it decays regularly
at 0 (resp. ∞).

Observe that the mapping p 7→ p−1 leaves Σϕ invariant such that the above
relation between polynomial limits at 0 and ∞ makes sense.

Definition 7.1.3. Let ϕ ∈ (0, π].

(i) We define SH∞L,0(Σϕ) as the set of all bounded functions in SHL(Σϕ) that
decay regularly at 0 and ∞.

(ii) Similarly, we define SH∞R,0(Σϕ) and SH∞0 (Σϕ) as the set of all bounded
functions in SHR(Σϕ) (resp. N (Σϕ)) that decay regularly at 0 and ∞.

The following Lemma is an immediate consequence of Theorem 2.1.3.

Lemma 7.1.4. Let ϕ ∈ (0, π].

(i) If f, g ∈ SH∞L,0(Σϕ) and a ∈ H, then fa + g ∈ SH∞L,0(Σϕ). If in addition
f ∈ SH∞0 (Σϕ), then fg ∈ SH∞0 (Σϕ).

(ii) If f, g ∈ SH∞R,0(Σϕ) and a ∈ H, then af + g ∈ SH∞R,0(Σϕ). If in addition
g ∈ SH∞0 (Σϕ), then fg ∈ SH∞0 (Σϕ).
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(iii) The space SH∞0 (Σϕ) is a real algebra.

Definition 7.1.5 (S-functional calculus for sectorial operators). Let T ∈ Sect(ω).
For f ∈ SH∞L,0(Σϕ) with ω < ϕ < π, we choose ϕ′ with ω < ϕ′ < ϕ and j ∈ S and
define

f(T ) :=
1

2π

∫
∂(Σϕ′∩Cj)

S−1
L (s, T ) dsj f(s). (7.2)

Similarly, for f ∈ SH∞R,0(Σϕ) with ω < ϕ < π, we choose ϕ′ with ω < ϕ′ < ϕ and
j ∈ S and define

f(T ) :=
1

2π

∫
∂(Σϕ′∩Cj)

f(s) dsj S
−1
R (s, T ). (7.3)

Remark 7.1.1. Since T is sectorial of angle ω, the estimates in (7.1) assure the
convergence of the above integrals. A standard argument using the slice hyper-
holomorphic version of Cauchy’s integral theorem shows that the integrals are
independent of the choice of the angle ϕ′, and standard slice hyperholomorphic
techniques, based on the representation formula, show that they are independent
of the choice of the imaginary unit j ∈ S. Finally, computations as in the proof of
Theorem 3.4.6 show that (7.2) and (7.3) yield the same operator if f is intrinsic.

If T ∈ Sect(ω), then f(T ) in Definition 7.1.5 can be defined for any function
that belongs to SH∞L,0(Σϕ) for some ϕ ∈ (ω, π]. We thus introduce a notation for
the space of all such functions.

Definition 7.1.6. Let ω ∈ (0, π). We define

SH∞L,0[Σω] =
⋃

ω<ϕ≤π

SH∞L,0(Σϕ),

SH∞R,0[Σω] =
⋃

ω<ϕ≤π

SH∞R,0(Σϕ),

SH∞0 [Σω] =
⋃

ω<ϕ≤π

SH∞0 (Σϕ).

The following properties of the S-functional calculus for sectorial operators
can be proved by standard slice-hyperholomorphic techniques, see Theorem 3.5.1
or see also [30, Theorem 4.12].

Lemma 7.1.7. If T ∈ Sect(ω), then the following statements hold true.

(i) If f ∈ SH∞L,0[Σω] or f ∈ SH∞R,0[Σω], then the operator f(T ) is bounded.

(ii) If f, g ∈ SH∞L,0[Σω] and a ∈ H, then (fa+ g)(T ) = f(T )a+ g(T ). Similarly,
if f, g ∈ SH∞R,0[Σω] and a ∈ H, then (af + g)(T ) = af(T ) + g(T ).

(iii) If f ∈ SH∞0 [Σω] and g ∈ SH∞L,0[Σω], then (fg)(T ) = f(T )g(T ). Similarly, if
f ∈ SH∞R,0[Σω] and g ∈ SH∞0 [Σω], then also (fg)(T ) = f(T )g(T ).
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We recall that a closed operator A ∈ K(X) is said to commute with B ∈
B(X), if BA ⊂ AB.

Lemma 7.1.8. Let T ∈ Sect(ω) and A ∈ K(X) commute with Qs(T )−1 and
TQs(T )−1 for any s ∈ ρS(T ). Then A commutes with f(T ) for any f ∈ SH∞0 [Σω].
In particular, f(T ) commutes with T for any f ∈ SH∞0 [Σω].

Proof. If f ∈ SH∞0 [Σω], then for suitable ϕ ∈ (ω, π) and j ∈ S, we have

f(T ) =
1

2π

∫
∂(Σϕ∩Cj)

f(s) dsjS
−1
R (s, T )

=
1

2π

∫ 0

−∞
f
(
−tejϕ

) (
−ejϕ

)
(−j)

(
−te−jϕ − T

)
Q−tejϕ(T )−1 dt

+
1

2π

∫ +∞

0

f
(
te−jϕ

) (
e−jϕ

)
(−j)

(
tejϕ − T

)
Qte−jϕ(T )−1 dt.

After changing t 7→ −t in the first integral, we find

f(T ) =
1

2π

∫ +∞

0

f
(
tejϕ

) (
ejϕj

) (
te−jϕ − T

)
Qtejϕ(T )−1 dt

+
1

2π

∫ +∞

0

f
(
te−jϕ

) (
−e−jϕj

) (
tejϕ − T

)
Qte−jϕ(T )−1 dt

=
1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jt
]
Qtejϕ(T )−1 dt

− 1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jejϕ

]
TQtejϕ(T )−1 dt,

where the last identity holds because f(s) = f(s) as f is intrinsic and

Qtejϕ(T )−1 = Qte−jϕ(T )−1.

If now y∈D(A), then the fact that A commutes with Qs(T )−1 and TQs(T )−1

and any real scalar implies

f(T )Ay =
1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jt
]
Qtejϕ(T )−1Ay dt

− 1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jejϕ

]
TQtejϕ(T )−1Ay dt

= A
1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jt
]
Qtejϕ(T )−1y dt

−A 1

2π

∫ +∞

0

2Re
[
f
(
tejϕ

)
jejϕ

]
TQtejϕ(T )−1y dt = Af(T )y.

We thus find y ∈ D(Af(T )) with f(T )Ay = Af(T )y and in turn f(T )A ⊂ Af(T ).
�
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Lemma 7.1.9. Let T ∈ Sect(ω). If λ ∈ (−∞, 0) and f ∈ SH∞L,0[Σω], then

s 7→ (λ− s)−1f(s) ∈ SH∞L,0[Σω]

and (
(λ− s)−1f(s)

)
(T ) = (λ− T )−1f(T ) = S−1

L (λ, T )f(T ).

Similarly, if λ ∈ (−∞, 0) and f ∈ SH∞R,0[Σω], then

s 7→ f(s)(λ− s)−1 ∈ SH∞R,0[Σω]

and (
f(s)(λ− s)−1

)
(T ) = f(T )(λ− T )−1 = f(T )S−1

R (λ, T ).

Proof. Let λ ∈ (−∞, 0) and observe that, since λ is real, the S-resolvent equation
turns into

(λ− T )−1S−1
L (s, T ) = S−1

R (λ, T )S−1
L (s, T )

=
(
S−1
R (λ, T )− S−1

L (s, T )
)

(s− λ)−1.

If now f ∈ SH∞L,0[Σω], then for suitable ϕ ∈ (ω, π) and j ∈ S, we have

(λI − T )−1f(T ) =
1

2π

∫
∂(Σϕ∩Cj)

(λI − T )−1S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(Σϕ∩Cj)

(
S−1
R (λ, T )− S−1

L (s, T )
)

(s− λ)−1 dsj f(s)

= S−1
R (λ, T )

1

2π

∫
∂(Σϕ∩Cj)

dsj (s− λ)−1f(s)

+
1

2π

∫
∂(Σϕ∩Cj)

S−1
L (s, T ) dsj (λ− s)−1f(s)

=
(
(λ− s)−1f(s)

)
(T ),

where the last equality holds because 1
2π

∫
∂(Σϕ∩Cj) dsj (s − λ)−1f(s) = 0 by

Cauchy’s integral theorem. �

Similar to [165], we can extend the class of functions that are admissible for
this functional calculus to the analogue of the extended Riesz class.

Definition 7.1.10. For 0 < ϕ < π, we define

EL(Σϕ) =
{
f(p) = f̃(p) + (1 + p)−1a+ b : f̃ ∈ SH∞L,0(Σϕ), a, b ∈ H

}
and similarly

ER(Σϕ) =
{
f(p) = f̃(p) + a(1 + p)−1 + b : f̃ ∈ SH∞R,0(Σϕ), a, b ∈ H

}
.

Finally, we define E(Σϕ) as the set of all intrinsic functions in EL(Σϕ), i.e.,

E(Σϕ) =
{
f(p) = f̃(p) + (1 + p)−1a+ b : f̃ ∈ SH∞0 (Σϕ), a, b ∈ R

}
.
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Keeping in mind the product rule of slice-hyperholomorphic functions, simple
calculations as in the classical case show the following two corollaries, cf. [165,
Lemma 2.2.3].

Corollary 7.1.11. Let 0 < ϕ < π.

(i) The set EL(Σϕ) is a quaternionic right vector space and it is closed under
multiplication with functions in E(Σϕ) from the left.

(ii) The set ER(Σϕ) is a quaternionic left vector space and it is closed under
multiplication with functions in E(Σϕ) from the right.

(iii) The set E(Σϕ) is a real algebra.

Corollary 7.1.12. Let 0 < ϕ < π. A function f ∈ SHL(Σϕ) (or f ∈ SHR(Σϕ)
or f ∈ N (Σϕ)) belongs to EL(Σϕ) (resp. ER(Σϕ) or E(Σϕ)) if and only if it is
bounded and has finite polynomial limits at 0 and infinity.

Definition 7.1.13. For ω ∈ (0, π), we denote

EL[Σω] =
⋃

ω<ϕ<π

EL(Σϕ),

ER[Σω] =
⋃

ω<ϕ<π

ER(Σϕ),

E [Σω] =
⋃

ω<ϕ<π

E(Σϕ).

Definition 7.1.14. Let T ∈ Sect(ω). We define for any function f ∈ EL[Σω] with
f(s) = f̃(s) + (1 + s)−1a+ b the bounded operator

f(T ) := f̃(T ) + (1 + T )−1a+ Ib

and for any function f ∈ ER[Σω] with f(s) = f̃(s) + a(1 + s)−1 + b the bounded
operator

f(T ) := f̃(T ) + a(1 + T )−1 + bI,
where f̃(T ) is intended in the sense of Definition 7.1.5.

Lemma 7.1.15. Let T ∈ Sect(ω) and let f ∈ EL[Σω]. If f is left slice hyperholo-
morphic at 0 and decays regularly at infinity, then

f(T ) =
1

2π

∫
∂(U(r)∩Cj)

S−1
L (s, T ) dsj f(s), (7.4)

with j ∈ S arbitrary and U(r) = Σϕ ∪ Br(0), where ϕ ∈ (ω, π) is such that

f ∈ EL(Σϕ) and r > 0 is such that f is left slice hyperholomorphic on Br(0).
Moreover, if f is left slice hyperholomorphic both at 0 and at infinity, then

f(T ) = f(∞)I +
1

2π

∫
∂(U(r,R)∩Cj)

S−1
L (s, T ) dsj f(s), (7.5)
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with j ∈ S arbitrary and U(r,R) = U(r) ∪ (H \ BR(0)), where ϕ ∈ (ω, π) is such
that f ∈ EL(Σϕ), r > 0 is such that f is left slice hyperholomorphic on Br(0) and
R > r is such that f is left slice-hyperholmorphic on H \BR(0).

Similarly, if f ∈ ER[Σω], is right slice hyperholomorphic at 0 and decays
regularly at infinity, then

f(T ) =
1

2π

∫
∂(U(r)∩Cj)

f(s) dsj S
−1
R (s, T ),

with j ∈ S arbitrary and U(r) chosen as above. Moreover, if f ∈ ER[Σω] is right
slice hyperholomorphic both at 0 and at infinity, then

f(T ) = f(∞)I +
1

2π

∫
∂(U(r,R)∩Cj)

f(s) dsj S
−1
R (s, T ),

with j ∈ S arbitrary and U(r,R) is chosen as above.

Proof. Let us first assume that f ∈ EL[Σω] is left slice hyperholomorphic at 0 and
regularly decaying at infinity. Then f(s) = f̃(s)+(1+s)−1a, where f̃ ∈ SH∞L,0(Σϕ′)

with ω < ϕ < ϕ′, and the function f̃ is, moreover, left slice hyperholomorphic at
0. For j ∈ S and ω < ϕ < ϕ′, we therefore have

1

2π

∫
∂(U(r)∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(U(r)∩Cj)

S−1
L (s, T ) dsj f̃(s) +

1

2π

∫
∂(U(r)∩Cj)

S−1
L (s, T ) dsj (1 + s)−1a.

If r′ > r > 0 is sufficiently small such that f̃ is left slice hyperholomorphic at
Br′(0), then Cauchy’s integral theorem implies that the value of the first integral
remains constant as r varies. Letting r tend to 0, we find that this integral equals
f̃(T ) in the sense of Definition 7.1.5. For the second integral we find that

1

2π

∫
∂(U(r)∩Cj)

S−1
L (s, T ) dsj (1 + s)−1a

= lim
R→+∞

1

2π

∫
∂(U(r,R)∩Cj)

S−1
L (s, T ) dsj (1 + s)−1a = (1 + T )−1a,

where the last identity can be deduced either from the compatibility of the S-
functional calculus for closed operators with intrinsic polynomials in Lemma 3.5.3
and Theorem 3.5.1 or as in the complex case in [165, Lemma 2.3.2] from the residue
theorem. In either way, we obtain (7.4).

If f ∈ EL[ω] is left slice hyperholomorphic both at 0 and at infinity, then
f(s) = f̃(s) + (1 + s)−1a + b where f̃ ∈ SH∞L,0(Σϕ′) with ω < ϕ′ < π is left slice
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hyperholomorphic both at 0 and infinity and a, b ∈ H. We therefore have

f(∞)I +
1

2π

∫
∂(U(r,R)∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(U(r,R)∩Cj)

S−1
L (s, T ) dsj f̃(s)

+ f(∞)I +
1

2π

∫
∂(U(r,R)∩Cj)

S−1
L (s, T ) dsj

(
(1 + s)−1a+ b

)
.

As before, because of the left slice hyperholomorphicity of f̃ at 0 and infinity,
Cauchy’s integral theorem allows us to vary the values of r and R for sufficiently
small r and sufficiently large R without changing the value of the first integral.
Letting r tend to 0 and R tend to ∞, we find that this integral equals f̃(T ) in
the sense of Definition 7.1.5. Since f(∞) = b, the remaining terms, however, equal
(1 + T )−1a+ Ib, which can again either be deduced by a standard application of
the the residue theorem and Cauchy’s integral theorem as in [165, Corollary 2.3.5]
or from the properties of the S-functional calculus for closed operators since the
function s 7→ (1 + s)−1a + b is left slice hyperholomorphic on the spectrum of T
and at infinity. Altogether, we find that (7.5) holds true.

The right slice hyperholomorphic case follows by analogous arguments. �

Corollary 7.1.16. The S-functional calculus for closed operators and the S-func-
tional calculus for sectorial operators are compatible.

Proof. Let T ∈ Sect(ω). If f ∈ EL[Σω] is admissible for the S-functional calculus
for closed operators, then it is left slice hyperholomorphic at infinity such that
(7.5) holds true. The set U(r,R) in this representation is however a slice Cauchy
domain and therefore admissible as a domain of integration in the S-functional
calculus for closed operators. Hence, both approaches yield the same operator. �

Definition 7.1.14 is compatible with the algebraic structures of the underlying
function classes.

Lemma 7.1.17. If T ∈ Sect(ω), then the following statements hold true.

(i) If f, g ∈ EL[Σω] and a ∈ H, then (fa+g)(T ) = f(T )a+g(T ). If f, g ∈ ER[Σω]
and a ∈ H, then (af + g)(T ) = af(T ) + g(T ).

(ii) If f ∈ E [Σω] and g ∈ EL[Σω], then (fg)(T ) = f(T )g(T ). If f ∈ ER[Σω] and
g ∈ E [Σω], then also (fg)(T ) = f(T )g(T ).

Proof. The compatibility with the respective vector space structure is trivial. In
order to show the product rule, consider f ∈ E [Σω] and g ∈ EL[Σω] with f(s) =
f̃(s)+(1+s)−1a+b with f̃ ∈ SH∞0 [Σω] and a, b ∈ R and g(s) = g̃(s)+(1+s)−1c+d
with g̃ ∈ SH∞L,0[Σω] and c, d ∈ H. By Lemma 7.1.7, Lemma 7.1.9 and the identity

(I + T )−2 = (I + T )−1 − T (I + T )−2,
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we then have

f(T )g(T ) = f̃(T )g̃(T ) + f̃(T )(I + T )−1c+ f̃(T )d+ (I + T )−1g̃(T )a

+ (I + T )−2ac+ (I + T )−1ad+ g̃(T )b+ (I + T )−1bc+ bdI

=
(
f̃ g̃ + f̃(1 + s)−1c+ f̃d+ (1 + s)−1g̃a+ g̃b

)
(T )

− T (I + T )−2ac+ (I + T )−1(ad+ ac+ bc) + bdI.

Since −s(1 + s)−2 ∈ EL[Σω] is left slice hyperholomorphic at zero and infinity,
Corollary 7.1.16 and the properties of the S-functional calculus imply

(−s(1 + s)2)(T ) = −T (I + T )−2

such that

f(T )g(T ) =
[
f̃ g̃ + f̃(1 + s)−1c+ f̃d+ (1 + s)−1g̃a+ g̃b− s(1 + s)−2ac

]
(T )

+ (I + T )−1(ad+ ac+ bc) + bdI = (fg)(T )

since

(fg)(s) = f̃(s)g̃(s) + f̃(s)(1 + s)−1c+ f̃(s)d+ (1 + s)−1g̃(s)a

+ g̃(s)b− s(1 + s)−2ac+ (1 + s)−1(ad+ ac+ bc) + bd.

The product rule in the right slice hyperholomorphic case can be shown with
analogous arguments. �

Lemma 7.1.18. If T ∈ Sect(ω), then the following statements hold true.

(i) We have (s(1 + s)−1)(T ) = T (I + T )−1.

(ii) If A is closed and commutes with Qs(T )−1 and TQs(T )−1 for all s ∈ ρS(T ),
then A commutes with f(T ) for any f ∈ E [Σω]. In particular, T commutes
with f(T ) for any f ∈ E [Σω].

(iii) If y ∈ ker(T ) and f ∈ ER[Σω], then f(A)y = f(0)y. In particular, this holds
true if f ∈ E [Σω].

Proof. The first statement holds as(
s(1 + s)−1

)
(T ) = (1− (1 + s)−1)(T ) = I − (I + T )−1 = T (I + T )−1

and the second one follows from Lemma 7.1.8. Finally, if y ∈ ker(T ), then

Qs(T )y =
(
T 2 − 2s0T + |s|2I

)
y = |s|2y

and hence
S−1
R (s, T )y = (sI − T )Qs(T )−1y = s|s|−2y = s−1y.
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For f̃ ∈ SH∞R,0[Σϕ], we hence have

f̃(T )y =
1

2π

∫
∂(Σϕ∩Cj)

f̃(s) dsj S
−1
R (s, T )y

=
1

2π

∫
∂(Σϕ∩Cj)

f̃(s) dsj s
−1y = 0

by Cauchy’s integral theorem such that for

f(s) = f̃(s) + a(1 + s)−1 + b

and y ∈ ker(T )

f(T )y = f̃(T )y + a(I + T )−1y + bIy = ay + by = f(0)y. �

Remark 7.1.2. If f ∈ EL(Σω), then we cannot expect (iii) in Lemma 7.1.18 to hold
true. In this case

f̃(T )y =
1

2π

∫
∂(Σϕ∩Cj)

S−1
L (s, T ) dsj f(s)y,

but y and dsj f(s) do not commute. So we cannot exploit the fact that y ∈ ker(T )
to simplify S−1

L (s, T )y = s−1y. Indeed, this identity does not necessarily hold true
as

S−1
L (s, T ) = Qs(T )−1(s− T )y = Qs(T )−1sy

for y ∈ ker(T ). But the kernel of T is in general not a left linear subspace of T and
hence we cannot assume sy ∈ ker(T ). The simplification Qs(T )−1sy = |s|2sy =
s−1y is not possible.

7.2 The H∞-functional calculus

The H∞-functional calculus for complex linear sectorial operators in [165] applies
to meromorphic functions that are regularizable. Properly defining the orders of
zeros poles of slice-hyperholomorphic functions is not our goal and goes beyond the
scope of this book. Hence we use the following simple definition, which is sufficient
for our purposes.

Definition 7.2.1. Let s ∈ H and let f be left slice hyperholomorphic on an axially
symmetric neighborhood [Br(s)] \ [s] of [s] with

[Br(s)] = {q ∈ H : dist([s], q) < r}

and assume that f does not have a left slice hyperholomorphic continuation to all
of [Br(s)]. We say that f has a pole at the sphere [s] if there exists n ∈ N such
that

q 7→ Qs(q)nf(q)
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has a left slice hyperholomorphic continuation to [Br(s)] if s /∈ R (resp. if there
exists n ∈ N such that q 7→ (q − s)−nf(q) has a left slice hyperholomorphic
continuation to [Br(s)] if s ∈ R).

Remark 7.2.1. If [s] is a pole of f and qn is a sequence with limn→+∞ dist(qn, [s]) =
0, then not necessarily limn→+∞ |f(qn)| = +∞. One can see this easily if f is
restricted to one of the complex planes Cj . If j, i ∈ S with i ⊥ j, then the function
fj := f |[Br(s)]∩Cj a meromorphic function with values in the complex (left) vector
space H ∼= Cj +Cji over Cj . It must have a pole at sj = s0 + js1 or sj = s0− js1.
Otherwise, we could extend fj to a holomorphic function on Br(s) ∩ Cj . The
representation formula would allow us then to define a slice hyperholomorphic
extension of f to Br(s). However, sj and sj are not necessarily both poles of fj .
Consider for instance the function

f(q) = S−1
L (s, q) = (q2 − 2s0q + |s|2)−1(s− q),

which is defined on U = H \ [s]. If we choose j = js, then f |U∩Cj = (s − q)−1,
which obviously does not have a pole at s. Hence, if qn ∈ Cj tends to s, then
|f(qn)| remains bounded.

However, the representation formula implies that there exists at most one
complex plane Cj such that only one of the points sj and sj is a pole of fj .
Otherwise we could use it again to find a slice hyperholomorphic extension of f
to Br(0). For intrinsic functions both points sj and sj always need to be poles of

fj as in this case fj(q) = fj(q). In general we therefore do not have

lim
dist(q,[s])→0

|f(q)| = +∞,

but at least for the limit superior, the equality

lim sup
dist(q,[s])→0

|f(q)| = +∞

holds. If f is intrinsic, then even limdist(q,[s])→0 |f(q)| = +∞ holds true.

Definition 7.2.2. Let U ⊂ H be axially symmetric. A function f is said to be left
meromorphic on U if there exist isolated spheres [qn] ⊂ U for n ∈ Θ, where Θ is
a subset of N, such that f |Ũ ∈ SHL(Ũ) with

Ũ = U \
⋃
n∈Θ

[qn]

and such that each sphere [qn] is a pole of f . We denote the set of all such functions
by ML(U) and the set of all such functions that are intrinsic by M(U).

For U = Σω with 0 < ω < π, we furthermore denote

ML[Σω] =
⋃

ω<ϕ<π

ML(Σϕ) and M[Σω] =
⋃

ω<ϕ<π

M(Σϕ).
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Definition 7.2.3. Let T ∈ Sect(ω).

(i) A left slice hyperholomorphic function f is said to be regularisable if f ∈
ML(Σϕ) for some ω < ϕ < π and there exists e ∈ E(Σϕ) such that e(T )
defined in the sense of Definition 7.1.14 is injective and ef ∈ EL(Σϕ). In this
case we call e a regulariser for f .

(ii) We denote the set of all regularisable functions by ML[Σω]T . Furthermore,
we denote the subset of intrinsic functions in ML[Σω]T by M[Σω]T .

Lemma 7.2.4. Let T ∈ Sect(ω).

(i) If f, g ∈ ML[Σω]T and a ∈ H, then fa + g ∈ ML[Σω]T . If furthermore
f ∈M[Σω]T , then also fg ∈ML[Σω]T .

(ii) The space M[Σω]T is a real algebra.

Proof. If e1 is a regulariser for f and e2 is a regulariser for g, then e = e1e2

is a regulariser for fa + g and also for fg if f is intrinsic. Hence the statement
follows. �

Definition 7.2.5 (H∞-functional calculus). Let T ∈ Sect(ω). For f ∈ ML[Σω]T ,
we define

f(T ) := e(T )−1(ef)(T ),

where e(T )−1 is the closed inverse of e(T ) and (ef)(T ) is intended in the sense of
Definition 7.1.14.

Theorem 7.2.6. The operator f(T ) := e(T )−1(ef)(T ) is independent of the regu-
lariser e and hence well-defined.

Proof. If ẽ is a different regulariser, then e and ẽ commute because they both
belong to E [Σω]. Hence,

ẽ(T )e(T ) = (ẽe)(T ) = (eẽ)(T ) = e(T )ẽ(T )

by Lemma 7.1.17. Inverting this equality yields e(T )−1ẽ(T )−1 = ẽ(T )−1e(T ) so

e(T )−1(ef)(T ) = e(T )−1ẽ(T )−1ẽ(T )(ef)(T )

= e(T )−1ẽ(T )−1(ẽef)(T )

= ẽ(T )−1e(T )−1(eẽf)(T )

= ẽ(T )−1e(T )−1e(T )(ẽf)(T ) = ẽ(T )−1(ẽf)(T ).

If f ∈ EL[Σω], then we can use the constant function 1 with 1(T ) = I as a
regulariser in order to see that Definition 7.2.5 is consistent with Definition 7.1.14.

�
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Remark 7.2.2. Since we are considering right linear operators, Definition 7.2.5
is not possible for right slice hyperholomorphic functions. Right slice hyperholo-
morphic functions maintain slice hyperholomorphicity under multiplication with
intrinsic functions from the right. A regulariser of a function f would hence be a
function e such that e(T ) is injective and fe ∈ ER(Σϕ). The operator f(T ) would
then be defined as (fe)(T )e(T )−1, but this operator is only defined on ran e(T )
and can hence not be independent of the choice of e. If we consider left linear
operators, the situation is of course vice versa, which is a common phenomenon
in quaternionic operator theory, cf. Remark 7.1.2.

The next lemma shows that the function f needs to have a proper limit
behaviour at 0 if T is not injective.

Lemma 7.2.7. Let T ∈ Sect(ω) and f ∈ ML[Σω]T . If T is not injective, then f
has finite polynomial limit f(0) ∈ H in Σω at 0. If furthermore f is intrinsic, then
f(T )y = f(0)y for any y ∈ ker(T ).

Proof. Assume that T is not injective and let e be a regulariser for f . Since e(T )y =
e(0)y for all y ∈ ker(T ) because of (iii) in Lemma 7.1.18, we have e(0) 6= 0 as e(T )
is injective. The limit

e(0)f(0) := lim
p→0

e(p)f(p)

of e(p)f(p) as p tends to 0 in Σω exists and is finite because ef ∈ EL(Σω). Hence,
the respective limit of f(p) = e(p)−1(e(p)f(p)) exists too and is finite. Indeed, it
is

f(0) = lim
p→0

f(p) = e(0)−1(e(0)f(0)).

We find that

f(p)− f(0) = e(p)−1 [(e(p)f(p)− e(0)f(0))− (e(p)− e(0)) f(0)] = O(|p|α)

as p tends to 0 in Σω because both ef and e have polynomial limit at 0. Hence, f
has polynomial limit f(0) at 0 in Σω.

If f is intrinsic, then ef is intrinsic too and e(0), (ef)(0) and f(0) are all
real. Hence, for any y ∈ ker(T ), we have (ef)(0)y = y(ef)(0) ∈ ker(T ). As ker(T )
is a right linear subspace of X, we conclude that also (ef)(0)y ∈ ker(T ) and so
(iii) in Lemma 7.1.18 yields

f(T )y = e(T )−1(ef)(T )y = e(T )−1(ef)(0)y = e(0)−1(ef)(0)y = f(0)y. �

Remark 7.2.3. If T is injective, then f does not need to have finite polynomial limit

at 0 in Σω. Indeed, the function p 7→ p(1 + p)−2 or the function p 7→ p
(
1 + p2

)−1

and their powers can then serve as regularisers that may compensate a singularity
at 0. Choosing the latter as a specific regulariser yields exactly the approach chosen
in [30], where the H∞-functional calculus was first introduced for quaternionic
linear operators.
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The proof of the following lemma is analogous to the complex proofs of
Proposition 1.2.2 and Corollary 1.2.4 in [165], and does not employ any specific
quaternionic techniques. For the convenience of the reader, we nevertheless give
the detailed proof as this result turns out to be crucial for what follows.

Lemma 7.2.8. Let T ∈ Sect(ω).

(i) If A ∈ B(X) commutes with T , then A commutes with f(T ) for any func-
tion f ∈ M[Σω]T . Moreover, if f ∈ M[Σω]T and f(T ) ∈ B(X), then f(T )
commutes with T .

(ii) If f, g ∈ML[Σω]T , then

f(T ) + g(T ) ⊂ (f + g)(T ).

If furthermore f ∈M[Σω]T , then

f(T )g(T ) ⊂ (fg)(T )

with D(f(T )g(T )) = D((fg)(T ))∩D(g(T )). In particular, the above inclusion
turns into an equality if g(T ) ∈ B(X).

(iii) Let f ∈ M[Σω]T and g ∈ M[Σω] be such that fg ≡ 1. Then g ∈ M[Σω]T if
and only if f(T ) is injective. In this case f(T ) = g(T )−1.

Proof. If A ∈ B(X) commutes with T , then it commutes with Qs(T )−1 and
TQs(T )−1 for any s ∈ ρS(T ). Hence, it also commutes with e(T ) for any e ∈ E [Σω]
by Lemma 7.1.18. If f ∈M[Σϕ]T and e is a regulariser for f , we thus have

Af(T ) = Ae(T )−1(ef)(T )

⊂ e(T )−1A(ef)(T )

= e(T )−1(ef)(T )A = f(T )A

such that the first assertion in (i) holds true. Because of (i) in Lemma 7.1.18, the
function (1 + p)−1 regularizes the identity function p 7→ p and we have p(T ) = T .
Once we have shown (ii), we can hence obtain the second assertion in (i) from

f(T )T ⊂ (f(p)p)(T ) = (pf(p))(T ) = Tf(T ).

In order to show (ii) assume that f, g ∈ML[Σω]T and let e1 be a regulariser
for f and e2 be a regulariser for g. Then e = e1e2 regularises both f and g and
hence also f + g such that

f(T ) + g(T ) = e(T )−1(ef)(T ) + e(T )−1(eg)(T )

⊂ e(T )−1 [(ef)(T ) + (eg)(T )]

= e(T )−1(e(f + g))(T ) = (f + g)(T ).
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Applying this relation to the functions f + g and −g, we find that

(f + g)(T )− g(T ) ⊂ f(T )

and so

(f + g)(T ) = f(T ) + g(T )

if g(T ) is bounded. If even f ∈ E [Σω]T , then f and e2 are both intrinsic and hence
commute. Thus

e(fg) = (e1f)(e2g) ∈ EL[Σω|T

by Corollary 7.1.11 and so e regularises fg. Because of (ii) in Lemma 7.1.18, the
operator (e1f)(T ) commutes with e2(T ) and hence also with the inverse e2(T )−1.
Because of Lemma 7.1.17, we thus find that

f(T )g(T ) = e1(T )−1(e1f)(T )e2(T )−1(e2g)(T )

⊂ e1(T )−1e2(T )−1(e1f)(T )(e2g)(T )

= [e2(T )e1(T )]
−1

(e1fe2g)(T )

= e(T )−1(efg)(T ) = (fg)(T ).

In order to prove the statement about the domains, we consider

y ∈ D((fg)(T )) ∩ D(g(T )).

Then w := (e2g)(T )y ∈ D
(
e2(T )−1

)
. Since (e1f)(T ) commutes with e2(T )−1, we

conclude that also (e1f)(T )w ∈ D
(
e2(T )−1

)
. Since y ∈ D((fg)(T )) and

(fg)(T )y = e(T )−1(efg)(T )y,

we further have (efg)(T )y ∈ D(e(T )−1). As

e(T )−1 = e1(T )−1e2(T )−1

this implies

e2(T )−1(efg)(T )y ∈ D(e1(T )−1).

From the identity

(e1f)(T )g(T )y = (e1f)(T )e2(T )−1w

= e2(T )−1(e1f)(T )w = e2(T )−1(efg)(T )y

we conclude that (e1f)(T )g(T )y ∈ D
(
e1(T )−1

)
. Thus, g(T )y ∈ D(f(T )) and in

turn y ∈ D(f(T )g(T )). Therefore,

D(f(T )g(T )) ⊃ D((fg)(T )) ∩ D(g(T )).
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The other inclusion is trivial such that altogether we find equality. If g(T ) is
bounded, then D(g(T )) = X and we find

D(f(T )g(T )) = D((fg)(T ))

such that both operators agree.
We show now the statement (iii) and assume that f, g ∈M[Σω] with fg ≡ 1

and that f is regularisable. If g is regularisable too, then (iii) implies g(T )f(T ) ⊂
(gf)(T ) = 1(T ) = I with

D(g(T )f(T )) = D(I) ∩ D(f(T )) = D(f(T )).

Hence, f(T ) is injective, and interchanging the role of f and g shows that
f(T )g(T ) = I on D(g(T )) such that actually f(T ) = g(T )−1. Conversely, if f(T )
is injective and e is a regulariser for f , then

(fe)g = e(fg) = e ∈ E [Σω]T .

Moreover, (fe)(T ) is injective as f(T ) and e(T ) are both injective and (fe)(T ) =
f(T )e(T ) by (ii). Thus, fe is a regulariser for g, i.e., g ∈M[Σω]T . �

Intrinsic polynomials of an operator T are defined as P [T ] =
∑n
k=0 T

kak with
D (P [T ]) = D (Tn) for any polynomial P (q) =

∑n
k=0 q

kak. We use the squared
brackets to indicate that the operator P [T ] is defined via this functional calculus
and not via the H∞-functional calculus. However, as the next lemma shows, both
approaches are consistent.

Lemma 7.2.9. The H∞-functional calculus is compatible with intrinsic rational
functions. More precisely, if r(p) = P (p)Q(p)−1 is an intrinsic rational function
with intrinsic polynomials P and Q such that the zeros of Q lie in ρS(T ), then
r ∈M[Σω]T and the operator r(T ) is given by r(T ) = P [T ]Q[T ]−1.

Proof. We first prove compatibility with intrinsic polynomials. For intrinsic poly-
nomials of degree 1 this follows from the linearity of the H∞-functional calculus
and from (i) in Lemma 7.1.18, which shows that (1 + p)−1 regularises the identity
function p 7→ p and that

p(T ) =
(
(1 + p)−1(T )

)−1
(p(1 + p)−1)(T ) = (I + T )T (I + T )−1 = T.

Let us now generalize the statement by induction and let us assume that it
holds for intrinsic polynomials of degree n. If P is a polynomial of degree n+1, let
us write P (q) = Q(q)q + a with a ∈ R and an intrinsic polynomial Q of degree n.
The induction hypothesis implies that Q ∈M[Σω]T , that Q(T ) = Q[T ], and that
D(Q(T )) = D(Tn). Since M[Σω]T is a real algebra, we find that P also belongs
to M[Σω]T and we deduce from (iii) in Lemma 7.2.8 that

P (T ) ⊃ Q(T )T + aI = Q[T ]T + aI = P [T ]
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with
D(P [T ]) = D

(
Tn+1

)
= D(Q(T )T ) = D(P (T )) ∩ D(T ).

Hence, if we show that D(T ) ⊃ D(P (T )), the induction is complete. In order to do
this, we consider y ∈ D(P (T )). Then (I+T )−1y also belongs to D(P (T )) because

(I + T )−1P (T ) ⊂ P (T )(I + T )−1

by (i) in Lemma 7.2.8. But obviously also (I + T )−1y ∈ D(T ) and hence

(I + T )−1y ∈ D(P (T )) ∩ D(T ) = D
(
Tn+1

)
,

which implies y ∈ D(Tn) ⊂ D(T ). We conclude D(T ) ⊃ D(P (T )).
Let us now turn to arbitrary intrinsic rational functions. If s ∈ ρS(T ) is

not real, then Qs(T ) is injective because Qs(T )−1 ∈ B(X) and hence Qs(p)−1 ∈
M[Σω]T by (iii) in Lemma 7.2.8. Similarly, if s ∈ ρS(T ) is real, then

q 7→ (s− q)−1 ∈M[Σω]T

because (s − q)(T ) = (sI − T ) is injective as (sI − T )−1 = S−1
L (s, T ) ∈ B(X). If

now r(q) = P (q)Q(q)−1 is an intrinsic rational function with poles in ρS(T ), then
we can write Q(q) as the product of such factors, namely

Q(q) =
N∏
`=1

(λ` − q)n`
M∏
κ=1

Qsκ(q)mκ ,

where λ1, . . . , λN ∈ ρS(T ) are the real zeros of Q and [s1], . . . , [sM ] ⊂ ρS(T ) are
the spherical zeros of Q and n` and mκ are the orders of λ` (resp [sκ]). Since
M[Σω]T is a real algebra, we conclude that Q ∈ M[Σω]T and because of (iii) we
find

Q−1(T ) = Q(T )−1 = Q[T ]−1.

Moreover, (ii) in Lemma 7.2.8 implies

Q−1(T ) =
N∏
`=1

(λ`I − T )−n`
M∏
κ=1

Qsκ(T )−mκ ∈ B(X)

because each of the factors in this product is bounded. Finally, we deduce from
the boundedness of Q−1(T ) and (ii) in Lemma 7.2.8 that

r(T ) =
(
PQ−1

)
(T ) = P (T )Q−1(T ) = P [T ]Q[T ]−1 = r[T ]. �

7.3 The composition rule

Let us now turn our attention to the composition rule, which will occur at several
occasions when we consider fractional powers of sectorial operators. As always in
the quaternionic setting, we can only expect such a rule to hold true if the inner
function is intrinsic since the composition of two slice hyperholomorphic functions
is slice hyperholomorphic only if the inner function is intrinsic.
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Theorem 7.3.1 (The Composition Rule). Let T ∈ Sect(ω) and g ∈M[Σω]T be such
that g(T ) ∈ Sect(ω′). Furthermore, assume that for any ϕ′ ∈ (ω′, π), there exists
some ϕ ∈ (ω, π) such that g ∈ M(Σϕ) and g(Σϕ) ⊂ Σϕ′ . Then f ◦ g ∈ M[Σω]T
for any f ∈ML[Σω′ ]g(T ) and

(f ◦ g)(T ) = f(g(T )).

Proof. Let us first assume that g ≡ c is constant. In this case g(T ) = cI. Since g
is intrinsic, we have c = g(s) = g(s) = c and so c ∈ R. Since g maps Σϕ into Σϕ′
for suitable ϕ ∈ (ω, π) and ϕ′ ∈ (ω′, π), we further find

c ∈ Σϕ′ ∩ R = [0,+∞).

If c 6= 0, then (f ◦ g)(p) ≡ f(c) and we deduce easily, for instance from Corol-
lary 7.1.16, that

(f ◦ g)(T ) = f(c)I = f(g(T )).

If on the other hand c = 0, then Lemma 7.2.7 implies that f(0) := limp→0 f(p) as
p tends to 0 in Σω exists. Hence f ◦ g is well defined. It is the constant function
f ◦ g ≡ f(0) and so (f ◦ g)(T ) = f(0)I. If f is intrinsic, then Lemma 7.2.7 implies

f(g(T )) = f(0)I = (f ◦ g)(T ).

If f is not intrinsic, then f = f0 +
∑3
`=1 f`e` with intrinsic components f`. Since

ker g(T ) = ker(0I) = X, for any vector y, also the vectors e`y, ` = 1, 2, 3, belong
to ker g(T ), then we conclude, again from Lemma 7.2.7, that

f(g(T ))y = f0(g(T ))y +
3∑
`=1

f`(g(T ))e`y

= f0(0)y +

3∑
`=1

f`(0)e`y

=

(
f0(0) +

3∑
`=1

f`(0)e`

)
y

= f(0)y = (f ◦ g)(T )y.

In the following, we shall thus assume that g is not constant.
Let ϕ′ and ϕ be a couple of angles as in the assumptions of the theorem.

Since g is intrinsic, g|Cj∩Σϕ is a non-constant holomorphic function on Cj ∩ Σϕ.
Hence, it maps the open set g(Σϕ ∩ Cj) to an open set. The set

g(Σϕ) = [g(Σϕ ∩ Cj)]

is therefore also open and so actually contained in Σϕ′ , not only in Σϕ′ . In par-
ticular, we find that f ◦ g is defined and slice hyperholomorphic on Σϕ.
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We assume for the moment that f ∈ EL(Σϕ′) with ϕ′ ∈ (ω′, π) and we choose
ϕ ∈ (ω, π) such that g ∈ M(Σϕ) and g(Σϕ) ⊂ Σϕ′ . Since f is bounded on Σϕ′ ,
the function f ◦ g is a bounded function in SHL(Σϕ). If T is injective, then

e(q) = q(1 + q)−2 ∈ E(Σϕ)

such that e(T )T (I + T )−2 is injective. Moreover, the function q 7→ e(q)(f ◦ g)(q)
decays regularly at 0 and infinity in Σϕ and hence belongs to EL(Σϕ). In other
words, e is a regulariser for f ◦ g and hence

f ◦ g ∈ML[Σω]T .

If T is not injective, then g has polynomial limit g(0) at 0 by Lemma 7.2.7. Since g
is intrinsic, it only takes real values on the real line and so g(0) ∈ R. It furthermore
maps Σϕ to Σϕ′ and so

g(0) ∈ Σϕ′ ∩ R = [0,+∞).

Therefore f has polynomial limit at g(0): if g(0) = 0 this follows from Corol-
lary 7.1.12, otherwise it follows from the Taylor expansion of f at g(0) ∈ (0,∞),
cf. Theorem 2.1.12. As a consequence, f ◦ g has polynomial limit at 0. Therefore
the function

q 7→ (1 + q)−1(f ◦ g)(q)

belongs to EL(Σϕ). Since (I + T )−1 is injective because −1 ∈ ρS(T ), we find that
(1 + q)−1 is a regularizer for f ◦ g and hence f ◦ g ∈ML[Σω]T .

We have
f(q) = f̃(q) + (1 + q)−1a+ b

with f̃ ∈ SH∞L,0(Σϕ′) and a, b ∈ H. Because of the additivity of the functional
calculus, we can treat each of these pieces separately. The case that f ≡ b has
already been considered above. For f(q) = (1 + q)−1a, the identity

(f ◦ g)(T ) = (I + g(T ))−1

follows from (iii) in Lemma 7.2.8 because p 7→ 1 + g(p) and

p 7→ (f ◦ g)(p) = (1 + g(p))−1

do both belong to ML[Σω]T . Hence, let us assume that

f = f̃ ∈ SH∞L,0(Σϕ′)

with ϕ′ ∈ (ω′, π).
We choose θ′ ∈ (ω′, ϕ′) and j ∈ S and set

Γp = ∂(Σθ′ ∩ Cj).
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We furthermore choose ρ′ ∈ (ω′, θ′) and by our assumptions on g, we can find
ϕ ∈ (ω, π) such that g(Σϕ) ⊂ Σρ′ ( Σθ′ . We choose θ ∈ (ω, ϕ) and set Γs =
∂(Σθ∩Cj). The subscripts s and p in Γs and Γp refer to the corresponding variable
of integration in the following computations. For any p ∈ Γp, the functions

s 7→ Qp(g(s))−1 = (g(s)2 − 2p0g(s) + |p|2)−1

and

s 7→ S−1
L (p, g(s))

do then belong to EL(Σϕ) and we have[
Qp(g(·))−1

]
(T ) = Qp(g(T ))−1

and [
S−1
L (p, g(·))

]
(T ) = S−1

L (p, g(T )).

Indeed, by (ii) in Lemma 7.2.8, we have

[Qp(g(·))] (T ) = (g2 − 2p0g + |p|2)(T )

⊃ g(T )2 − 2p0g(T ) + |p|2I = Qp(g(T )).
(7.6)

Taking the closed inverses of these operators, we deduce from (iii) in Lemma 7.2.8
that [

Qp(g(·))−1
]

(T ) = [Qp(g(·))] (T )−1 ⊃ Qp(g(T ))−1. (7.7)

Since p ∈ ρS(T ), the operator Qp(g(T ))−1 is bounded and so already defined on
all of X. Hence, the inclusion ⊃ in (7.7) and (7.6) is actually an equality and we
find [

Qp(g(·))−1
]

(T ) = Qp(g(T ))−1.

From (ii) we further conclude that also[
S−1
L (p, g(·))

]
(T ) =

[
Qp(g(·))−1p− g(·)Qp(g(·))−1

]
(T )

= Qp(g(T ))−1p− g(T )Qp(g(T ))−1 = S−1
L (p, g(T )).

We hence have

f(g(T )) =
1

2π

∫
Γp

S−1
L (p, g(T )) dpj f(p) =

1

2π

∫
Γp

[
S−1
L (p, g(·))

]
(T ) dpj f(p).

Let us first assume that T is injective. Since f and in turn also f ◦ g are
bounded, we can use e(q) = q(I + q)−2 as a regulariser for f ◦ g. As e decays
regularly at 0 and infinity, also the functions s 7→ e(s)S−1

L (p, g(s)) decays regularly
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at 0 and infinity for any p ∈ Γp. Hence it belongs to SH∞L,0(Σϕ) and so

f(g(T )) = e(T )−1e(T )f(g(T ))

= e(T )−1 1

2π

∫
Γp

e(T )S−1
L (p, g(T )) dpj f(p)

= e(T )−1 1

2π

∫
Γp

[
e(·)S−1

L (p, g(·))
]

(T ) dpjf(p)

= e(T )−1 1

(2π)2

∫
Γp

(∫
Γs

S−1
L (s, T ) dsj s(1 + s)−2S−1

L (p, g(s))

)
dpjf(p).

(7.8)

We can now apply Fubini’s theorem in order to exchange the order of in-
tegration: estimating the resolvent using (7.1), we find that the integrand in the
above integral is bounded by the function

F (s, p) := Cθ
∣∣pS−1

L (p, g(s))
∣∣ 1

|1 + s|2
|f(p)|
|p|

. (7.9)

Since p, s and g(s) belong to the same complex plane as g is intrinsic, we have
due to (2.26) that

∣∣pS−1
L (p, g(s))

∣∣ ≤ max
s̃∈[s]

|p|
|p− g(s̃)|

= max

{
1

|1− p−1g(s)|
,

1

|1− p−1g(s)|

}
. (7.10)

Since g(Γs) ⊂ Σρ′ ∩ Cj ( Σθ′ ∩ Cj and Γp = ∂(Σθ′ ∩ Cj), these expressions are
bounded by a constant depending on θ′ and ρ′ but neither on p nor on s. Hence,∣∣pS−1

L (p, g(s))
∣∣ is uniformly bounded on Γs × Γp and F (s, p) is in turn integrable

on Γp × Γs because f has polynomial limit 0 both at 0 and infinity.

After exchanging the order of integration in (7.8), we deduce from Cauchy’s
integral formula that

f(g(T )) = e(T )−1 1

(2π)2

∫
Γs

S−1
L (s, T ) dsj s(1 + s)−2

(∫
Γp

S−1
L (p, g(s)) dpjf(p)

)

= e(T )−1 1

2π

∫
Γs

S−1
L (s, T ) dsj e(s)f(g(s))

= e(T )−1e(T )(f ◦ g)(T ) = (f ◦ g)(T ).

Let us now consider the case that T is not injective. By Lemma 7.2.7, the
function g has then finite polynomial limit g(0) ∈ R in Σϕ and hence the function
g̃(p) = g(p)−g(0) ∈M(Σϕ)T has finite polynomial limit 0 in at 0. Let us choose a
regulariser e for g̃ with polynomial limit 0 at infinity. (This is always possible: if ẽ is
an arbitrary regulariser for g̃, we can choose for instance e(s) = (1+s)−1ẽ(s).) We
have then eg̃ ∈ SH∞L,0(Σϕ). Since g(0) is real, we have S−1

L (p, g(0)) = (p−g(0))−1.
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Moreover g(s) and Qp(g(s))−1 commute for any s ∈ Γs. For p /∈ Σρ′ we find thus

e(s)S−1
L (p, g(s))− e(s)S−1

L (p, g(0))

= e(s)Qp(g(s))−1 [(p− g(s))(p− g(0))−Qp(g(s))] (p− g(0))−1

= e(s)Qp(g(s))−1
[
(p− g(s))p− g(0)(p− g(s))

+ g(s)(p− g(s))− (p− g(s))p
]
(p− g(0))−1

= e(s)(g(s)− g(0))S−1
L (p, g(s))(p− g(0))−1

= e(s)g̃(s)S−1
L (p, g(s))S−1

L (p, g(0)).

(7.11)

Hence, e regularises also the function s 7→ S−1
L (p, g(s)) − S−1

L (p, g(0)) and the
function e(·)

(
S−1
L (p, g(·))− S−1

L (p, g(0))
)

does even belong to SH∞L,0(Σϕ). We thus
have

f(g(T )) = e(T )−1e(T )f(g(T ))

= e(T )−1 1

2π

∫
Γp

e(T )S−1
L (p, g(T )) dpj f(p)

= e(T )−1 1

2π

∫
Γp

[
e(·)S−1

L (p, g(·))
]

(T ) dpj f(p)

= e(T )−1 1

2π

∫
Γp

[
e(·)g̃(·)S−1

L (p, g(·))S−1
L (p, g(0))

]
(T ) dpjf(p)

+ e(T )−1 1

2π

∫
Γp

e(T )S−1
L (p, g(0)) dpjf(p).

For the second integral, Cauchy’s integral formula yields

e(T )−1 1

2π

∫
Γp

e(T )S−1
L (p, g(0)) dpjf(p)

= e(T )−1e(T )f(g(0)) = f(g(0))I,

as f decays regularly at infinity in Σθ. For the first integral, we have

e(T )−1 1

2π

∫
Γp

[
e(·)g̃(·)S−1

L (p, g(·))S−1
L (p, g(0))

]
(T ) dpjf(p)

= e(T )−1 1

(2π)2

∫
Γp

(∫
Γs

S−1
L (s, T ) dsj e(s)g̃(s)

· S−1
L (p, g(s))S−1

L (p, g(0))

)
dpjf(p)
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(A)
= e(T )−1 1

(2π)2

∫
Γs

S−1
L (s, T ) dsj

·

(∫
Γp

e(s)g̃(s)S−1
L (p, g(s))S−1

L (p, g(0)) dpjf(p)

)
(B)
= e(T )−1 1

(2π)2

∫
Γs

S−1
L (s, T ) dsj e(s)

·

(∫
Γp

S−1
L (p, g(s))− S−1

L (p, g(0)) dpjf(p)

)
(C)
= e(T )−1 1

2π

∫
Γs

S−1
L (s, T ) dsj (e(s)f(g(s))− f(g(0)))

= e(T )−1(e(T )f ◦ g(T )− e(T )f(g(0))I) = f ◦ g(T )− f(g(0))I, (7.12)

where the identity (A) follows from Fubini’s theorem, the identity (B) follows
from (7.11) and the identity (C) finally follows from Cauchy’s integral formula.
Altogether, we have

f(g(T )) = f ◦ g(T )− f(g(0))I + f(g(0))I = f ◦ g(T ).

In order to justify the application of Fubini’s theorem in (A), we observe that the
integrand is bounded by the function

F (s, p) = Cθ
∣∣pS−1

L (p, g(s))
∣∣ |e(s)g̃(s)|

|s|
|f(p)|
|p|

1

|p− g(0)|
,

where we used (7.1) in order to estimate the S-resolvent S−1
L (s, T ).

If g(0) 6= 0, then |p − g(0)|−1 is uniformly bounded in p. Just as before,∣∣pS−1
L (p, g(s))

∣∣ is uniformly bounded on Γs × Γp. Since g̃ decays regularly at 0,
since e decays regularly at infinity and since f decays regularly both at 0 and
infinity, the function F is hence integrable on Γs × Γp and we can apply Fubini’s
theorem.

If on the other hand g(0) = 0, then g = g̃ and we can write

F (s, p) = Cθ
∣∣S−1
L (p, g(s))

∣∣ |e(s)g̃(s)|
|s|

|f(p)|
|p|

= Cθ
∣∣pαS−1

L (p, g(s))g(s)1−α∣∣ |e(s)g(s)α|
|s|

|f(p)|
|p|1+α

, (7.13)

with α ∈ (0, 1) such that |f(p)|/|p|1+α is integrable. This is possible because f
decays regularly at 0. Just as in (7.10), we can estimate the first factor in (7.13)
by ∣∣pαS−1

L (p, g(s))g(s)1−α∣∣
≤ max

{
|g(s)|1−α

|p|1−α
1

|1− p−1g(s)|
,
|g(s)|1−α

|p|1−α
1

|1− p−1g(s)|

}
,
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where we applied |g(s)| =
∣∣∣g(s)

∣∣∣ = |g(s)| because g is intrinsic. As before, this

expression is uniformly bounded on Γs × Γp because g(Γs) ⊂ Σρ′ ∩ Cj . Hence, F
is again integrable and it is actually possible to apply Fubini’s theorem.

Altogether, we have shown that f(g(T )) = (f ◦ g)(T ) for any f ∈ EL[Σω′ ].
Finally, we consider a general function f ∈ML[Σω′ ]g(T ) that does not necessarily
belong to EL[Σω′ ]. If e is a regulariser for f , then e and ef both belong to EL[ω′].
By what we have just shown, we have eg := e◦g ∈M[Σω]T and (ef)g := (ef)◦g ∈
ML[Σω]T with eg(T ) = e(g(T )) and (ef)g(T ) = (ef)(g(T )).

Let τ1 and τ2 be regularizers for eg and (ef)g. Then τ = τ1τ2 regularizes
both of them and hence

eg(T ) = τ−1(T )(τeg)(T ).

Since eg(T ) = (e ◦ g)(T ) = e(g(T )) is injective because e is a regulariser for f , the
operator (τeg)(T ) is injective too. Moreover, for fg := f ◦ g, we find (τeg)fg =
τ(egfg) = τ(ef)g ∈ EL[ω] because τ was chosen to regularize both eg and (ef)g.
Therefore, τeg is a regulariser for fg and hence fg ∈ML[Σω]T . Finally, we deduce
from Lemma 7.2.8 that

f(g(T )) = e(g(T ))−1(ef)(g(T )) = (eg)(T )−1((ef)g)(T )

= (eg)(T )−1τ(T )−1τ(T )((ef)g)(T )

= (τeg)(T )−1((τe)gfg)(T ) = fg(T ) = (f ◦ g)(T ). �

Corollary 7.3.2. Let T ∈ Sect(ω) be injective and let f ∈ ML[Σω]. Then we have
f ∈ML[Σω]T if and only if p 7→ f(p−1) ∈ML[Σω]T−1 and in this case

f(T ) = f(p−1)(T−1).

Proof. Since T is injective, the function p−1 belongs toM[Σω]T and the statement
follows from Theorem 7.3.1. �

7.4 Extensions according to spectral conditions

As in the complex case, cf. [165, Section 2.5], one can extend the H∞-functional
calculus for sectorial operators to a larger class of functions if the operator satisfies
additional spectral conditions. We shall mention the following three cases, which
are relevant in the proof of the spectral mapping theorem in Section 7.5. In order
to explain them, we introduce the notation

Σϕ,r,R = (Σϕ ∩BR(0)) \Br(0)

for 0 ≤ r < R ≤ ∞. (We set B∞(0) = H for R =∞.)
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(i) If the operator T ∈ Sect(ω) has a bounded inverse, then Bε(0) ⊂ ρS(T ) for
sufficiently small ε > 0. We can thus define the class

EL∞(Σϕ) = {f= f̃ + a∈SHL(Σϕ) : a ∈ H, f̃ ∈SHL(Σϕ) dec. reg. at ∞},

and E∞(Σϕ) as the set of all intrinsic functions in EL∞(Σϕ), where dec. reg.
is short for decays regularly. For any function f ∈ EL∞(Σϕ) with ϕ > 0, we
can define f(T ) as

f(T ) =
1

2π

∫
∂(Σϕ,r,∞∩Cj)

S−1
L (s, T ) dsj f(s) + aI,

with 0 < r < ε arbitrary. It follows as in Lemma 7.1.15 from Cauchy’s
integral theorem that this approach is consistent with the usual one if f ∈
EL(Σϕ), but the class of admissible functions EL∞(Σϕ) is now larger. We can
further extend this functional calculus by calling a function e ∈ EL∞(Σϕ) a
regulariser for a function f ∈ML(Σϕ), if e(T ) is injective and ef ∈ EL∞(Σϕ).
In this case, we define

f(T ) = e(T )−1(ef)(T ).

Clearly, all the results shown so far still hold for this extended functional
calculus since the respective proofs can be carried out in this setting with
marginal and obvious modifications. Only in the case of the composition rule
we have to consider several conditions, just as in the complex case, namely
the combinations

a) T is sectorial and g(T ) is invertible and sectorial,

b) T is invertible and sectorial and g(T ) is sectorial,

c) T and g(T ) are both invertible and sectorial.

In a) and c), one needs the additional assumption 0 /∈ g(Σω) on the function
g.

(ii) If the operator T ∈ Sect(ω) is bounded, then H\Bρ(0) ⊂ ρS(T ) for sufficiently
large ρ > 0. We can thus define the class

EL0(Σϕ) = {f = f̃ + a ∈ SHL(Σϕ) : a ∈ H, f̃ ∈ SHL(Σϕ) dec. reg. at 0}

and E0(Σϕ) as the set of all intrinsic functions in EL0(Σϕ). For any function
f ∈ EL0(Σϕ) with ϕ > 0, we can define f(T ) as

f(T ) =
1

2π

∫
∂(Σϕ,0,R∩Cj)

S−1
L (s, T ) dsj f(s) + aI,

with 0 < ρ < R arbitrary. As before, this approach is consistent with the
usual one if f ∈ EL(Σϕ), but the class of admissible functions EL0(Σϕ) is
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again larger than EL(Σϕ). We can further extend this functional calculus by
calling e ∈ EL0(Σϕ) a regulariser for f ∈ ML(Σϕ), if e(T ) is injective and
ef ∈ EL0(Σϕ) and define again f(T ) = e(T )−1(ef)(T ) for such f .

As before, all results shown so far hold for this extended functional
calculus because the respective proofs can be carried out in this setting with
marginal and obvious modifications. For the composition rule, we have to
consider again several cases and distinguish the following situations:

a) T is sectorial and g(T ) is bounded and sectorial,

b) T is invertible and sectorial and g(T ) is bounded and sectorial,

c) T and g(T ) are both bounded and sectorial,

d) T is bounded and sectorial and g(T ) is sectorial,

e) T is bounded and sectorial and g(T ) is invertible and sectorial.

In the cases a), b) and c), one needs the additional assumption∞ /∈ g(Σω)H∞

and in the case e) one needs the additional assumption 0 /∈ g(Σω) on the
function g.

(iii) If finally T ∈ Sect(ω) is bounded and has a bounded inverse, then we can set
EL0,∞(Σϕ) = SHL(Σϕ) and E0,∞(Σϕ) and define for such functions

f(T ) =
1

2π

∫
∂(Σϕ,r,R∩Cj)

S−1
L (s, T ) dsj f(s)

for sufficiently small r and sufficiently large R. Choosing regularizers in
E0,∞(Σϕ) gives again an extension of the H∞-functional calculus and of
the two extended functional calculi presented in (i) and (ii). All the results
presented so far still hold for this extended functional calculus, where the
composition rule can be shown again under suitable conditions on the func-
tion g.

7.5 The spectral mapping theorem

Let us now show the spectral mapping theorem for the H∞-functional calculus.
We point out that a substantial technical difficulty appears here that does not
occur in the classical situation: the proof of the spectral mapping theorem in the
complex setting makes use of the fact that f (T |Xσ ) = f(T )|Xσ if σ is a spectral set
and Xσ is the invariant subspace associated with σ. However, subspaces that are
invariant under right linear operators are in general only right linear subspaces,
but not necessarily left linear subspaces. Hence, they are not two-sided Banach
spaces and we cannot define f (T |Xσ ) with the techniques presented in this book
because the S-functional calculus as defined in Chapter 3 requires the operator to
act on a two-sided Banach space. The S-resolvents can otherwise not be defined.
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Instead of using the properties of the S-functional calculus for T |Xσ , we thus have
to find a workaround and prove several steps directly, which is essentially done in
Lemma 7.5.5.

We start with two technical lemmas that are necessary in order to show the
spectral inclusion theorem.

Lemma 7.5.1. Let T ∈ Sect(ω) and let s ∈ H. If Qs(T ) is injective and there exist
e ∈M[Σω]T and c ∈ H, c 6= 0 such that

f(q) := Qc(e(q))Qs(q)−1 ∈M[Σω]T

and such that e(T ) and f(T ) are bounded, then e(T )Qs(T )−1 = Qs(T )−1e(T ).

Proof. By assumption, the operator Qs(T ) is injective and hence (iii) in Lemma
7.2.8 implies that Q−1

s ∈M[ω]T . Since e(T ) is bounded, it commutes with T and
so also with Qs(T )−1. We thus have

e(T )Qs(T )−1 ⊂ Qs(T )−1e(T ).

In order to show that this relation is actually an equality, it is sufficient to show
that y ∈ D

(
Qs(T )−1

)
for any y ∈ X with e(T )y ∈ D(Qs(T )−1). This is indeed

the case: if e(T )y belongs to D(Qs(T )−1), then there exists x ∈ D(Qs(T )) with
e(T )y = Qs(T )x. Hence,

Qc(e(T ))y = e(T )2y − 2c0e(T )y + |c|2y
= e(T )Qs(T )x− 2c0Qs(T )x+ |c|2y
= Qs(T )(e(T )x− 2c0x) + |c|2y,

(7.14)

where the last identity follows again from (i) in Lemma 7.2.8 because e(T ) is
bounded and commutes with T and in turn also with Qs(T ). Since f(T ) ∈ B(X),
we conclude on the other hand from (ii) of Lemma 7.2.8 that

Qc(e(T )) = Qs(T )
[
Qc(e(·))Qs(·)−1

]
(T ) = Qs(T )f(T ).

Due to (7.14), we then find

y =
1

|c|2
(Qc(e(T ))y −Qs(T )(e(T )x− 2c0x))

= Qs(T )
1

|c|2
(f(T )y − e(T )x+ 2c0x)) .

Hence, y belongs to D(Qs(T )−1) and the statement follows. �

Lemma 7.5.2. Let T ∈ Sect(ω) and let f ∈ML[Σω]T . For any s ∈ Σω \ {0} there
exists a regulariser e for f with e(s) 6= 0.
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Proof. Let ẽ be an arbitrary regulariser of f such that ẽ ∈ E [Σω], ẽf ∈ EL[Σω] and
ẽ(T ) is injective. If ẽ(s) 6= 0, then we can set e = ẽ and we are done. Otherwise,
recall that [s] is a spherical zero of ẽ and that its order is a finite number n ∈ N
since e 6≡ 0 as e(T ) is injective. We define now e(q) := Q−ns (q)e(q) with Qs(q) =
q2 − 2s0q + |s|2. Then e ∈ E [Σω] with e(s) 6= 0 and ef = Q−ns ẽf ∈ EL[Σω].
Furthermore, by (ii) in Lemma 7.2.8, we have ẽ(T ) = Qs(T )e(T ). Since ẽ(T ) is
injective, we deduce that also e(T ) is injective. Hence, e is a regulariser for f with
e(s) 6= 0. �

Lemma 7.5.3. Let T ∈ Sect(ω) and let s ∈ Σω with s 6= 0. If f(T ) has a bounded
inverse for some f ∈M[Σω]T with f(s) = 0, then s ∈ ρS(T ).

Proof. Let f be as above and let us first show that Qs(T ) = T 2 − 2s0T + |s|2I is
injective and hence invertible as a closed operator. By Lemma 7.5.2, there exists a
regulariser e for f with c := e(s) 6= 0. We have ef ∈ E [Σω] with (ef)(s) = 0. Since
all zeros of intrinsic functions are spherical zeros, we find that also h = efQ−1

s =
Q−1
s ef ∈ E [Σω]. The product rule (ii) in Lemma 7.2.8 implies therefore

h(T )Qs(T ) ⊂ (hQs)(T ) = (ef)(T ) = (fe)(T ) = f(T )e(T ),

where ef = fe because both functions are intrinsic. Since e(T ) and f(T ) are both
injective, we find thatQs(T ) is injective. Moreover, e is also a regulariser forQ−1

s f .
Now observe that the function

g(q) := Qc(e(q))Qs(q)−1 = (e(q)2 − 2c0e(q) + |c|2)(q2 − 2s0q + |s|2)−1

belongs to E [Σω]. Indeed, by Corollary 7.1.11, the space E [Σω] is a real algebra
such Qc(e(q)) = e(q)2−2c0e(q)+|c|2 belongs to it as e does. The function Qc(e(q))
however has a spherical zero at s because e(s) = c such that g(q) = Qc(e(q))Q−1

s (q)
is bounded and hence belongs to E [Σω] by Corollary 7.1.12. In particular, this
implies that g(T ) is bounded.

We deduce from Lemma 7.5.1 that e(T )Qs(T )−1 = Qs(T )−1e(T ) and invert-
ing both sides of this equation yields Qs(T )e(T )−1 = e(T )−1Qs(T ). The product
rule in (ii) of Lemma 7.2.8, the boundedness of h(T ) = (eQ−1

s f)(T ) and the fact
that Q−1

s and e commute because both are intrinsic functions imply

f(T ) = e(T )−1(ef)(T )

= e(T )−1
(
QseQ−1

s f
)

(T )

= e(T )−1Qs(T )
(
eQ−1

s f
)

(T )

= Qs(T )e(T )−1(eQ−1
s f)(T )

= Qs(T )(Q−1
s f)(T ).

Since f(T ) is surjective, we find that Qs(T ) is surjective too. Hence, Qs(T )−1

is an everywhere defined closed operator and thus bounded by the closed graph
theorem. Consequently s ∈ ρS(T ). �
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Proposition 7.5.4. If T ∈ Sect(ω) and f ∈M[Σω]T , then

f(σS(T ) \ {0}) ⊂ σSX(f(T )).

Proof. Let s ∈ σS(T ) \ {0} and set c := f(s). If c 6=∞, then Lemma 7.5.3 implies
that

Qc(f(T ))2 = f(T )2 − 2c0f(T ) + |c|2I

does not have a bounded inverse because g = f2− 2c0f + |c|2 belongs toM[Σω]T
and satisfies g(c) = 0. Hence, c = f(s) belongs to σS(f(T )) for s ∈ σS(T ) \ {0}
with f(s) 6=∞.

If on the other hand c =∞, then suppose that c /∈ σSX(f(T )), i.e., that f(T )
is bounded. In this case there exists p ∈ H such that Qp(f(T )) has a bounded
inverse. By (iii) in Lemma 7.2.8, this implies g(q) = Qp(f(q))−1 ∈ M[Σω]T .
The operator g(T ) is invertible as g(T )−1 = Qp(f(T )) belongs to B(X) because
f(T ) is bounded. Moreover, since g(s) = 0 as f(s) = ∞, another application of
Lemma 7.5.3 yields s ∈ ρS(T ). But this contradicts our assumption s ∈ σS(T )\{0}.
Hence, we must have c ∈ σSX(f(T )). �

We have so far shown the spectral inclusion theorem for spectral values not
equal to 0 nor ∞. These two values need a special treatment. They also need
additional assumptions on the function f for a spectral inclusion theorem to hold
as we shall see in the following. (The assumptions presented here might, however,
not be the most general ones that are possible, cf. [165].)

First, we have to show a technical lemma. We recall that if σ ⊂ σSX(T ) is a
spectral set, then Eσ := χσ(T ) is by Theorem 3.7.8 a projection that commutes
with T , i.e., it is a projection onto a right-linear subspace of X that is invariant
under T . If ∞ /∈ σ, then we can choose a bounded slice Cauchy domain Uσ ⊂ H
such that σ ⊂ Uσ and such that (σS(T ) \ σ) ∩ Uσ = ∅. The projection Eσ is then
given by

Eσ =
1

2π

∫
∂(Uσ∩Cj)

dsj S
−1
R (s, T ) =

1

2π

∫
∂(Uσ∩Cj)

S−1
L (p, T ) dpj . (7.15)

If on the other hand ∞ ∈ σ, then we can choose an unbounded slice Cauchy
domain Uσ ⊂ H such that σ ⊂ Uσ and such that (σS(T ) \ σ) ∩ Uσ = ∅. The
projection Eσ is then given by

Eσ = I +
1

2π

∫
∂(Uσ∩Cj)

dsj S
−1
R (s, T ) = I +

1

2π

∫
∂(Uσ∩Cj)

S−1
L (p, T ) dpj .

Lemma 7.5.5. Let T ∈ Sect(ω) be unbounded and assume that σS(T ) is bounded.
Furthermore, let E∞ be the spectral projection onto the invariant subspace associ-
ated with ∞. If f ∈M[Σω]T has polynomial limit 0 at infinity, then

{f(T )}∞ := f(T )E∞
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is a bounded operator that is given by the slice hyperholomorphic Cauchy integral

{f(T )}∞ =

∫
∂(Σϕ\Br(0))∩Cj

f(s) dsj S
−1
R (s, T ), (7.16)

where Br(0) is the ball centered at 0 with r > 0 sufficiently large such that it
contains σS(T ) and any singularity of f . Moreover, for two such functions, we
have

{f(T )}∞{g(T )}∞ = {(fg)(T )}∞. (7.17)

Proof. Let us first assume that f ∈ E [Σω], i.e., f ∈ E(Σϕ) with ω < ϕ < π. Since

f decays regularly at infinity, it is of the form f(s) = f̃(s) +a(1 + s)−1 with a ∈ R
and f ∈ SH∞0 (Σϕ). The operator f̃(T ) is given by the slice hyperholomorphic
Cauchy integral

f̃(T ) =
1

2π

∫
∂(Σϕ′∩Cj)

f̃(s) dsj S
−1
R (s, T ) (7.18)

with j ∈ S and ϕ′ ∈ (ω, ϕ). Let now r1 < r2 be such that σS(T ) ⊂ Br(0). Cauchy’s
integral theorem allows us to replace the path of integration in (7.18) by the union
of Γs,1 = ∂(Σϕ′ ∩Br1(0)) ∩ Cj and Γs,2 = ∂(Σϕ′ \Br2(0)) ∩ Cj such that

f̃(T ) =
1

2π

∫
Γs,1

f̃(s) dsj S
−1
R (s, T ) +

1

2π

∫
Γs,2

f̃(s) dsj S
−1
R (s, T ). (7.19)

Let us choose R ∈ (r1, r2). Since σSX(T ) = σS(T )∪{∞}, we have E∞ = I −
EσS(T ) and the spectral projection EσS(T ) is given by the slice hyperholomorphic
Cauchy integral (7.15) along Γp = ∂(BR(0) ∩Cj). The subscripts s and p in Γs,1,
Γs,2 and Γp are chosen in order to indicate the corresponding variable of integration
in the following computation.

If we write the operators f̃(T ) and EσS(T ) in terms of the slice hyperholo-
morphic Cauchy integrals defined above, we find that

f̃(T )Eσs(T ) =
1

2π

∫
Γs,1

f̃(s) dsj S
−1
R (s, T )

1

2π

∫
Γp

S−1
L (p, T ) dpj

+
1

2π

∫
Γs,2

f̃(s) dsj S
−1
R (s, T )

1

2π

∫
Γp

S−1
L (p, T ) dpj .

(7.20)

If we apply the S-resolvent equation in the first integral, which we denote by Ψ1
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for neatness, we find

Ψ1 =
1

(2π)2

∫
Γs,1

f̃(s) dsj S
−1
R (s, T )

∫
Γp

p
(
p2 − 2s0p+ |s|2

)−1
dpj

− 1

(2π)2

∫
Γs,1

f̃(s) dsj sS
−1
R (s, T )

∫
Γp

(
p2 − 2s0p+ |s|2

)−1
dpj

− 1

(2π)2

∫
Γp

(∫
Γs,1

f̃(s) dsj (S−1
L (p, T )p

− sS−1
L (p, T ))

(
p2 − 2s0p+ |s|2

)−1

)
dpj .

(7.21)

For s ∈ Γs, the functions

p 7→
(
p2 − 2s0p+ |s|2

)−1
and p 7→ p

(
p2 − 2s0p+ |s|2

)−1

are rational functions on Cj that have two singularities, namely s = s0 + js1 and
s = s0− js1. Since we chose r1 < R, these singularities lie inside of BR(0) for any
s ∈ Γs. As Γp = ∂(BR(0) ∩ Cj), the residue theorem yields

1

2π

∫
Γp

p
(
p2 − 2s0p+ |s|2

)−1
dpj

= lim
Cj3p→s

p(p− s)−1 + lim
Cj3p→s

p(p− s)−1 = 1

and

1

2π

∫
Γp

(
p2 − 2s0p+ |s|2

)−1
dpj

= lim
Cj3p→s

(p− s)−1 + lim
Cj3p→s

(p− s)−1 = 0,

where limCj3p→s f̃(p) denotes the limit of f̃(p) as p tends to s in Cj . If we apply

the identity (2.49) with B = S−1
L (p, T ) in the third integral in (7.21), it turns into

1

(2π)2

∫
Γp

(∫
Γs,1

f̃(s) dsj
(
s2 − 2p0s+ |p|2

)−1
sS−1

L (p, T )

)
dpj

− 1

(2π)2

∫
Γp

(∫
Γs,1

f̃(s) dsj
(
s2 − 2p0s+ |p|2

)−1
S−1
L (p, T )p

)
dpj = 0.

The last identity follows from Cauchy’s integral theorem because f̃(s) is right
slice hyperholomorphic and the functions s 7→ (s2 − 2p0s + |p|2)−1S−1

L (p, T ) and
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s 7→ s(s2−2p0s+ |p|2)−1S−1
L (p, T ) are left slice hyperholomorphic on Σϕ′ ∩Br1(0)

for any p ∈ Γp as we chose R > r1. Hence, we find

Ψ1 =
1

2π

∫
Γs,1

f̃(s) dsj S
−1
R (p, T ).

The second integral in (7.20), which we denote by Ψ2 for neatness, turns after an
application of the S-resolvent equation into

Ψ2 =
1

(2π)2

∫
Γs,2

f̃(s) dsj S
−1
R (s, T )

∫
Γp

p
(
p2 − 2s0p+ |s|2

)−1
dpj

− 1

(2π)2

∫
Γs,2

f̃(s) dsj sS
−1
R (s, T )

∫
Γp

(
p2 − 2s0p+ |s|2

)−1
dpj

− 1

(2π)2

∫
Γs,2

(∫
Γp

f̃(s) dsj (S−1
L (p, T )p−

− sS−1
L (p, T ))

(
p2 − 2s0p+ |s|2

)−1
)
dpj .

(7.22)

Since we chose R < r2, the singularities of p 7→
(
p2 − 2s0p+ |s|2

)−1
and p 7→

p
(
p2 − 2s0p+ |s|2

)−1
lie outside of BR(0) for any s ∈ Γs,2. Hence, these func-

tions are right slice hyperholomorphic on BR(0) and so Cauchy’s integral theorem
implies that the first two integrals in (7.22) vanish. Since f̃ decays regularly at
infinity, since (7.1) holds true and since Γp is a path of finite length, we can apply
Fubini’s theorem and exchange the order of integration in the third integral of
(7.22). After applying the identity (2.49), we find

Ψ2 =
1

(2π)2

∫
Γp

(∫
Γs,2

f̃(s)dsj
(
s2 − 2p0s+ |p|2

)−1

·
(
sS−1

L (p, T )− S−1
L (p, T )p

))
dpj .

However, this integral also vanishes: as f decays regularly at infinity, the integrand
decays sufficiently fast so that we can use Cauchy’s integral theorem to transform
the path of integration and write∫

Γs,2

f̃(s)dsj
(
s2 − 2p0s+ |p|2

)−1 (
sS−1

L (p, T )− S−1
L (p, T )p

)
= lim
ρ→+∞

∫
∂(Uρ∩Cj)

f̃(s) dsj
(
s2 − 2p0s+ |p|2

)−1 (
sS−1

L (p, T )− S−1
L (p, T )p

)
= 0

where Uρ = (Σϕ \ Br2(0)) ∩ Bρ(0) for ρ > r2. The last identity follows again
from Cauchy’s integral theorem because the singularities p and p of the functions
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s 7→ (s2 − 2p0s+ |p|2)−1 and s 7→ (s2 − 2p0s+ |p|2)−1s lie outside of Uρ because
we chose R < r2.

Putting these pieces together, we find that

f̃(T )EσS(T ) =
1

2π

∫
Γs,1

f̃(p) dpj S
−1
R (p, T ). (7.23)

We therefore deduce from (7.19) and E∞ = I − EσS(T ) that

f̃(T )E∞ = f̃(T )− f̃(T )EσS(T ) =
1

2π

∫
Γs,2

f̃(p) dpj S
−1
R (p, T ). (7.24)

Let us now consider the operator a(I + T )−1. Since it is slice hyperholomor-
phic on σS(T ) and at infinity, it is admissible for the S-fuctional calculus. If we
set χ{∞}(s) := χH\UR(0)—that is χ{∞}(s) = 1 if s /∈ UR(0) and χ{∞}(s) = 0 if

s ∈ UR(0)—then χ{∞}(T ) = E∞ via the S-functional calculus. The product rule of
the S-functional calculus yields a(I+T )−1E∞ = g(T ) with g(s) = a(1+s)χ{∞}(s).
If we set

Uρ,1 := (Σϕ \Br2(0)) ∪ (H \Bρ(0)) and Uρ,2 = (Σϕ ∩Br1(0)) ∪Bε(0)

with 0 < ε < 1 sufficiently small, then Uρ = Uρ,1 ∪ Uρ,2 is an unbounded slice
Cauchy domain that contains σS(T ) and such that g is slice hyperholomorphic on
Uρ . Hence,

a(I + T )−1E∞ = g(∞)I +
1

2π

∫
∂(Uρ∩Cj)

dpj S
−1
R (p, T )

=
1

2π

∫
∂(Uρ,1∩Cj)

a(1 + s) dpj S
−1
R (p, T )

and letting ρ tend to infinity, we finally find

a(I + T )−1E∞ =
1

2π

∫
Γs,2

a(1 + s) dpj S
−1
R (p, T ). (7.25)

Adding (7.24) and (7.25), we find that (7.16) holds true for f ∈ E [Σω].
Now let f be an arbitrary function inM[Σω]T that decays regularly at infinity

and let e be a regulariser for f . We can assume that e decays regularly at infinity;
otherwise, we can replace e by s 7→ (1 + s)−1e(s), which is a regulariser for f with
this property. We expect that

f(T )E∞ = e−1(T )(ef)(T )E∞

= e−1(T ){(ef)(T )}∞
(∗)
= e−1(T ){e(T )}∞{f(T )}∞
= e−1(T )e(T )E∞{f(T )}∞

= E∞{f(T )}∞
(∗∗)
= {f(T )}∞

(7.26)
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such that (7.16) holds true. Then, the boundedness of f(T )E∞ also follows from
the boundedness of the integral {f(T )}∞. The second and the fourth of the above
equalities follow from the above arguments since ef and e both belong to E [Σϕ]
and decay regularly at infinity. The equalities marked with (∗) and (∗∗) however
remain to be shown.

Let ω < ϕ2 < ϕ1 < ϕ be such that e, f ∈ E(Σϕ) and let r1 < r2 be such that
Br1(0) contains σS(T ) and any singularity of f . We set Us = Σϕ1

\Br1(0) and Up =
Σϕ2 \ Br2(0), where the subscripts s and p indicate again the respective variable
of integration in the following computation. An application of the S-resolvent
equation shows then that, using the notation Qs(p)−1 = (p2 − 2s0p+ |s|2)−1,

{e(T )}∞{f(T )}∞

=
1

2π

∫
∂(Us∩Cj)

e(s) dsj S
−1
R (s, T )

1

2π

∫
∂(Up∩Cj)

S−1
L (p, T ) dpj f(p)

=
1

(2π)2

∫
∂(Us∩Cj)

e(s) dsjS
−1
R (s, T )

∫
∂(Up∩Cj)

pQs(p)−1 dpjf(p)

+
1

(2π)2

∫
∂(Us∩Cj)

e(s) dsjS
−1
R (s, T )

∫
∂(Up∩Cj)

Qs(p)−1 dpjf(p)

+
1

(2π)2

∫
∂(Us∩Cj)

e(s) dsj
(
sS−1

L (p, T )− S−1
L (p, T )p

)
·
∫
∂(Up∩Cj)

Qs(p)−1 dpjf(p).

Because of our choice of Us and Up, the singularities of p 7→ (p2 − s0p + |s|2)−1

lie outside Up for any s ∈ ∂(Us ∩ Cj) such that p 7→ (p2 − 2s0p + |s|)−1 and
p 7→ p(p2 − 2s0p + |s|)−1 are right slice hyperholomorphic on Up for any such s.
Since f also decays regularly in Up at infinity, Cauchy’s integral theorem implies
that the first two of the above integrals equal zero. The fact that e and f decay
polynomially at infinity allows us to exchange the order of integration in the third
integral, such that

{e(T )}∞{f(T )}∞ =
1

(2π)2

∫
∂(Up∩Cj)

[ ∫
∂(Us∩Cj)

e(s) dsj

·
(
sS−1

L (p, T )− S−1
L (p, T )p

)
Qs(p)−1

]
dpjf(p).

If p ∈ ∂(Up ∩ Cj), then p lies for sufficiently large ρ in the bounded axially sym-
metric Cauchy domain Us,ρ = Us ∩Bρ(0). Since f is an intrinsic function on Us,ρ ,
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Lemma 2.2.24 implies

1

2π

∫
∂(Us∩Cj)

e(s) dsj
(
sS−1

L (p, T )− S−1
L (p, T )p

)
Qs(p)−1

= lim
ρ→∞

1

2π

∫
∂(Us∩Bρ(0)∩Cj)

e(s) dsj
(
sS−1

L (p, T )− S−1
L (p, T )p

)
Qs(p)−1

= S−1
L (p, T )e(p).

Recalling the equivalence of right and left slice hyperholomorphic Cauchy integrals
for intrinsic functions, cf. Remark 3.4.2, we finally find that

{e(T )}∞{f(T )}∞ =
1

2π

∫
∂(Up∩Cj)

S−1
L (p, T ) dpje(p)f(p) = {(ef)(T )}∞.

Hence, the identity (∗) in (7.26) is true.
Similar arguments show that also (∗∗) holds true. We choose 0 < R < r such

that BR(0) contains σS(T ) and all singularities of f(T ) and we choose ω < ϕ′ < ϕ
such that f ∈ E(Σϕ′) and set Up := Σϕ′ \Br(0). An application of the S-resolvent
equation shows that

Eσs(T ){f(T )}∞

=
1

2π

∫
∂(BR(0)∩Cj)

dsj S
−1
R (s, T )

1

2π

∫
∂(Up∩Cj)

S−1
L (p, T ) dpj f(p)

=
1

(2π)2

∫
∂(BR(0)∩Cj)

dsj S
−1
R (s, T )

∫
∂(Up∩Cj)

pQs(p)−1 dpj f(p)

− 1

(2π)2

∫
∂(BR(0)∩Cj)

dsj sS
−1
R (s, T )

∫
∂(Up∩Cj)

Qs(p)−1 dpj f(p)

+
1

(2π)2

∫
∂(BR(0)∩Cj)

[ ∫
∂(Up∩Cj)

dsj

·
(
sS−1

L (p, T )− S−1
L (p, T )p

)
Qs(p)−1

]
dpj f(p).

Again, the first two integrals vanish as a consequence of Cauchy’s integral theorem
because the poles of the function p 7→ (p2 − 2s0p + |s|2)−1 lie outside of Up for
any s ∈ ∂(BR(0)∩Cj) and f decays regularly at infinity. Because of (7.1) and the
regular decay of f at infinity, we can, however, apply Fubini’s theorem to exchange
the order of integration in the third integral and find

EσS(T ){f(T )}∞ =
1

(2π)2

∫
∂(Up∩Cj)

[ ∫
∂(BR(0)∩Cj)

dsj

Qs(p)−1
(
sS−1

L (p, T )− S−1
L (p, T )p

) ]
dpj f(p).
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As the functions s 7→ (s2 − 2p0s+ |p|2)−1 and s 7→ (s2 − 2p0s+ |p|2)−1s are right
slice hyperholomorphic on BR(0) for any p ∈ ∂(Up∩Cj), this integral also vanishes
due to Cauchy’s integral theorem. Consequently, the identity (∗∗) in (7.26) holds
also true as

E∞{f(T )}∞ = {f(T )}∞ − Eσ{f(T )}∞ = {f(T )}∞.

Finally, we point out that the above computations, which proved that

{(ef)(T )}∞ = {e(T )}∞{f(T )}∞,

did not require that e ∈ E [Σω]. They also work if e belongs toM[Σω]T and decays
regularly at infinity. Hence the same calculations show that (7.17) holds true. �

Theorem 7.5.6. Let T ∈ Sect(ω) and s ∈ {0,∞}. If f ∈ M[Σω]T has polynomial
limit c at s and s ∈ σSX(T ), then c ∈ σSX(f(T )).

Proof. If c 6= ∞, then c ∈ R because, as an intrinsic function, f takes only real
values on the real line. We can hence consider the function f − c instead of f
because

σSX(f(T )) = σSX(f(T )− cI) + c

so that it is sufficient to consider the cases c = 0 or c =∞.
Let us start with the case c = 0 and s =∞. If ∞ ∈ σS(T ) \ {0}

H∞
, then

0 ∈ f(σS(T ) \ {0})
H∞ ⊂ σSX(f(T ))

because f(σS(T )\{0}) ⊂ σSX(f(T )) by Proposition 7.5.4 and the latter is a closed
subset of H∞. In case ∞ /∈ σS(T )H∞ , we show that 0 /∈ σSX(f(T )) implies that
T is bounded so that even ∞ /∈ σSX(T ). Let us hence assume that ∞ /∈ σS(T )H∞

and that 0 /∈ σSX(f(T )). In this case, there exists R > 0 such that σS(T ) is
contained in the open ball BR(0) of radius R centered at zero. The integral

EσS(T ) :=
1

2π

∫
∂(BR(0)∩Cj)

dsj S
−1
R (s, T )

defines then a bounded projection that commutes with T , namely the spectral
projection associated with the spectral set σS(T ) ⊂ σSX(T ) that is obtained
from the S-functional calculus. The compatibility of the S-functional calculus
with polynomials in T moreover implies

TEσS(T ) = (sχσS(T ))(T ) =
1

2π

∫
∂(BR(0)∩Cj)

s dsj S
−1
R (s, T ) ∈ B(X),

where χσS(T )(s) denotes the characteristic function of an arbitrary axially sym-

metric bounded set that contains BR(0).
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Set E∞ := I − EσS(T ) and let X∞ := E∞X be the range of E∞. Since T
commutes with E∞, the operator T∞ := T |X∞ is a closed operator on X∞ with
domain D(T∞) = D(T ) ∩X∞. Moreover, we conclude from the properties of the
projections that

σSX(T∞) = σSX(T ) \ σS(T ) ⊂ {∞}

and so in particular
σS(T∞) = σSX(T∞) \ {∞} = ∅. (7.27)

Now observe that f(T ) commutes with E∞ because of (i) in Lemma 7.2.8.
Hence, f(T ) leaves X∞ invariant and f(T )∞ := f(T )|X∞ defines a closed operator
on X∞ with domain D(f(T )∞) = D(f(T )) ∩ X∞. (Note that f(T )∞ intuitively
corresponds to f(T∞). The S-functional calculus as introduced in this book is,
however, only defined on two-sided Banach spaces. As X∞ is only a right-linear
subspace of X and hence not a two-sided Banach space, we can not define the
operator f(T∞), cf. the remark at the beginning of Section 7.5.) Since f(T ) is
invertible because we assumed 0 /∈ σSXf(T ), the operator f(T )∞ is invertible too
and its inverse is f(T )−1|X∞ ∈ B(X∞).

Our goal is now to show that T∞ is bounded. Since any bounded operator
on a nontrivial Banach space has non-empty S-spectrum, we can conclude from
(7.27) that X∞ = {0}. Since f decays regularly at infinity, there exists n ∈ N such
that sfn(s) ∈ M[ω]T decays regularly at infinity too. Because of Lemma 7.2.8,
the operators Tfn(T ) and (sfn)(T ) both commute with E∞. Hence, they leave
X∞ invariant and we find, again because of Lemma 7.2.8, that

Tfn(T )|X∞ ⊂ (sfn)(T )|X∞ ∈ B(X∞)

with

D (Tfn(T )|X∞) = D (Tfn(T )) ∩X∞
= D ((sfn)(T )) ∩ D (fn(T )) ∩X∞
= D ((sfn)(T )|X∞) ∩ D (fn(T )|X∞) .

But since sfn and fn both decay regularly at infinity in Σϕ, Lemma 7.5.5 implies
that fn(T )|X∞ and (sfn)(T )|X∞ are both bounded linear operators onX∞. Hence,
their domain is the entire space X∞ and we find that

Tfn(T )|X∞ = (sfn)(T )|X∞ ∈ B(X∞).

Finally, observe that Lemma 7.5.5 also implies that fn(T )|X∞ = (f(T )|X∞)n.
As f(T )|X∞ has a bounded inverse on X∞, namely f(T )−1|X∞ , we find that
T∞ ∈ B(X∞) too. As pointed out above, this implies X∞ = {0}.

Altogether we find that X = XσS(T ) := EσS(T )X such that T = T |XσS(T )

belongs to B(XσS(T )) = B(X) and in turn

∞ /∈ σSX(T ) if 0 = f(∞) /∈ σSX(f(T )).
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Now let us consider the case that s = 0 and c = 0, that is f(0) = 0. If 0 does
not belong to σSX(f(T )), then f(T ) has a bounded inverse. Let e be a regulariser
for f such that ef ∈ E [Σω]. Since f(T ) = e(T )−1(ef)(T ) is injective, the operator
(ef)(T ) must be injective too. As the function ef has polynomial limit 0 at 0, we
conclude from Lemma 7.2.7 that even T is injective. If we define f̃(q) := f(q−1),
then f̃ has polynomial limit 0 at ∞ and f̃(T−1) is invertible as f̃(T−1) = f(T )
by Corollary 7.3.2. Hence, 0 = f̃(∞) /∈ σSX(f̃(T−1)) and arguments as the ones
above show that ∞ /∈ σSX(T−1) such that T−1 ∈ B(X). Thus, T has a bounded
inverse and in turn 0 /∈ σSX(T ) if 0 = f(0) /∈ σSX(f(T )).

Finally, let us consider the case c = f(s) = ∞ with s = 0 or s = ∞ and let
us assume that ∞ /∈ σSX(f(T )), that is that f(T ) is bounded. If we choose a ∈ R
with |a| > ‖f(T )‖, then a ∈ ρS(f(T )) and hence aI−f(T ) has a bounded inverse.
By (iii) in Lemma 7.2.8, the function g(q) := (a − f(q))−1 belongs to M[Σω]T .
Moreover, g(T ) is invertible and g(T ) has polynomial limit 0 at s. As we have
shown above, this implies s /∈ σSX(T ), which concludes the proof. �

Combining Proposition 7.5.4 and Theorem 7.5.6, we arrive at the following
theorem.

Theorem 7.5.7. Let T ∈ Sect(ω). If f ∈ M[Σω]T and f has polynomial limits at
σSX(T ) ∩ {0,∞}, then

f(σSX(T )) ⊂ σSX(f(T )).

Let us now consider the inverse inclusion. We start with the following auxil-
iary lemma.

Lemma 7.5.8. Let T ∈ Sect(ω) and let f ∈ M[Σω]T have finite polynomial limits
at {0,∞}∩σSX(T ) in Σϕ for some ϕ ∈ (ω, π). Furthermore, assume that all poles
of f are contained in ρS(T ).

(i) If {0,∞} ⊂ σSX(T ), then f(T ) is defined by the H∞-functional calculus for
sectorial operators.

(ii) If 0 ∈ σSX(T ) but ∞ /∈ σSX(T ), then f(T ) is defined by the extended H∞-
functional calculus for bounded sectorial operators.

(iii) If ∞ ∈ σSX(T ) but 0 /∈ σSX(T ), then f(T ) is defined by the extended H∞-
functional calculus for invertible sectorial operators.

(iv) If 0,∞ /∈ σSX(T ), then f(T ) is defined by the H∞-functional calculus for
bounded and invertible sectorial operators.

In all of these cases f(T ) ∈ B(X).

Proof. Let us first consider the case (i), i.e., we assume that {0,∞} ⊂ σSX(T ).
Since f has polynomial limits at 0 and ∞ in Σω, the function f has only finitely
many poles [s1], . . . , [sn] in Σω . Moreover, for suitably large m1 ∈ N, the function
f1(q) = (1+q)−2m1Qs1(q)m1f(q) has also polynomial limits at 0 and∞ and poles
at [s2], . . . , [sn] but it does not have a pole at [s1]. Moreover, if we set r1(q) =
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(1+q)−2m1Qs1(q)m1 , then r1(T ) is bounded and injective because [s1] ⊂ [ρS(T ))].
We can now repeat this argument and find inductively m2, . . . ,mn such that,
after setting r`(q) = (1 + q)−2m`Qs`(q)m` for ` = 2, . . . , n and r := rn · · · r1, the
function f̃ = rf belongs to M[Σω]T , has polynomial limits at 0 and ∞ and does
not have any poles in Σω . Hence, it belongs to E [Σω]. Moreover, r belongs to E [Σω]
too and since r(T ) = rn(T ) · · · r1(T ) is the product of invertible operators, it is
invertible itself. Hence, r regularises f such that f(T ) is defined in terms of the
H∞-functional calculus. Moreover, f(T ) = r(T )−1f̃(T ) is bounded as it is the
product of two bounded operators.

Similar arguments show the other cases: in (ii), for example, the function f
has polynomial limit at 0 but not at ∞, such that the poles of f may accumulate
at ∞. However, we integrate along the boundary of Σω,0,R = Σω ∩ BR(0) in Cj
for sufficiently large R when we define the H∞-functional calculus for bounded
sectorial operators. Hence, only finitely many poles are contained in Σω,0,R and
therefore relevant. Thus, we can apply the above strategy again in order to show
that f is regularised by a rational intrinsic function and that f(T ) is defined and
a bounded operator. Similar, we can argue for (iii) and (iv), where the poles of
f may accumulate at 0 (resp. at 0 and ∞), but only finitely many of them are
relevant. �

Proposition 7.5.9. Let T ∈ Sect(ω). If f ∈ M[Σω]T has polynomial limits at any
point in σS(T ) ∩ {0,∞}, then

f(σSX(T )) ⊃ σSX(f(T )).

Proof. Let s ∈ H with s /∈ f(σSX(T )). The function q 7→ Qs(f(q))−1 belongs then
toM[Σω]T and has finite polynomial limits at σSX(T )∩{0,∞}. Moreover, the set
of poles of Qs(f(·)) as an element ofM[Σω] consists of those spheres [q] in Σω \{0}
for which f([q]) = [f(q)] = [s] and it is contained in the S-resolvent set of T as we
chose s /∈ f(σSX(T )). From Lemma 7.5.8 we therefore deduce that Qs(f(T ))−1

is defined and belongs to B(X). Hence, Qs(f(T )) has a bounded inverse and so
s ∈ σSX(f(T )).

If finally s = ∞ /∈ f(σSX(T )), then the poles of f are contained in the S-
resolvent set of T . Hence, Lemma 7.5.8 implies that f(T ) is a bounded operator
and in turn s =∞ /∈ σSX(f(T )). �

Combining Theorem 7.5.7 and Proposition 7.5.9, we obtain the following
spectral mapping theorem

Theorem 7.5.10 (Spectral Mapping Theorem). Let T ∈ Sect(ω) and let f ∈
M[Σω]T have polynomial limits at {0,∞} ∩ σSX(T ). Then

f(σSX(T )) = σSX(f(T )).
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