
Chapter 5

Perturbations of the generator
of a group

In the applications, it is in general not trivial to verify the conditions of the
Hille–Phillips–Yosida theorem. So an other aspect that we will investigate is the
generation by perturbation. Precisely, given a closed operator T that generates the
evolution operator UT (t), we are interested in finding under which conditions a
closed operator P is such that T +P generates the evolution operator UT+P (t). In
the sequel, we will consider only right linear quaternionic operators even though
the theory can be developed for left linear quaternionic operators following similar
lines.

5.1 A series expansion of the S-resolvent operator

For right linear operators, we are also in need of the notion of left resolvent set
and of left spectrum.

Definition 5.1.1. Let X be a two-sided quaternionic Banach space and let T be a
right linear closed quaternionic operator.

We define the left resolvent set of T and denote it by ρL(T ) as

ρL(T ) = {λ ∈ H : (λI − T )−1 ∈ B(X)},

where the notation λI in B(X) means that (λI)(v) = λv.
The operator (λI − T )−1 is called the left resolvent operator.
We define the left spectrum of T as

σL(T ) = H \ ρL(T ).

Since the operator T is assumed to be right linear, then the left resolvent
operator (λI − T )−1 in Definition 5.1.1 is right linear. The S-spectrum and the
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left spectrum are not, in general, related and we point out that there is no notion
of holomorphicity over the quaternions such that (λI−T )−1 turns out to be hyper-
holomorphic on the resolvent set ρL(T ). In the sequel, we will need the following
expansion of the S-resolvent operator.

Proposition 5.1.2 (Expansion of the S-resolvent operator). Let X be a two-sided
quaternionic Banach space. Let T : D(T ) ⊂ X → X and P : D(P ) ⊂ X → X be
right linear closed quaternionic operators and assume that

(a) λ ∈ ρS(T ),

(b) D(T ) ⊂ D(P ),

(c) BλQ−1
λ (T ) : X 7→ X, for all λ ∈ ρS(T ),

(d) ‖BλQ−1
λ (T )‖ < 1, for some λ ∈ ρS(T ),

where

Q−1
λ (T ) := (T 2 − 2λ0T + |λ|2)−1

and

Bλ := 2λ0P − P 2 − TP − PT. (5.1)

Then λ ∈ ρS(T + P ) and

Q−1
λ (T + P ) =

∞∑
m=0

Q−1
λ (T )(BλQ−1

λ (T ))m; (5.2)

moreover, S−1
R (λ, T + P ) is given by

S−1
R (λ, T + P )v = (λI − T − P )

∞∑
m=0

Q−1
λ (T )(BλQ−1

λ (T ))mv, v ∈ X. (5.3)

Proof. Let λ ∈ ρS(T ), so we have

Q−1
λ (T + P ) = [(T + P )2 − 2λ0(T + P ) + |λ|2]−1

= [T 2 − 2λ0T + |λ|2 − (2λ0P − P 2 − TP − PT )]−1

=

∞∑
m=0

(Q−1
λ (T )(2λ0P − P 2 − TP − PT ))mQ−1

λ (T )

=
∞∑
m=0

Q−1
λ (T )((2λ0P − P 2 − TP − PT )Q−1

λ (T ))m.

Recalling (5.1), this concludes the proof. Finally (5.3) follows from the definition
of S−1

R (λ, T + P ) and from (5.2). �
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Remark 5.1.1. In the case the operators T and P anti-commute, then the operator
Bλ depends only on P , in fact it is

Bλ = 2λ0P − P 2.

In this case, the operator Bλ depends just on the perturbation P .

Proposition 5.1.3. If λ ∈ ρL(T ) and Re(λ) > ω0, where

ω0 := lim
t→+∞

1

t
ln ‖UT (t)‖, (5.4)

then we have

Q−1
λ (T )v = (λI − T )−1

∫ ∞
0

e−tλ UT (t) v dt, v ∈ X. (5.5)

Proof. Since λ ∈ ρL(T ), then (λI − T )−1 is a bounded linear operator. From
Theorem 4.2.2, we can write S−1

R (λ, T ) as the Laplace transform of the evolution
operator, since (λI − T )Qλ(T )v = S−1

R (λ, T )v, for v ∈ X. �

5.2 The class of operators A(T ) and some properties

We now introduce a class of closed operators which will be useful in the sequel.

Definition 5.2.1 (The class A(T )). Let X be a two-sided quaternionic Banach
space and let UT (t) be the strongly continuous quaternionic semigroup generated
by T where T : D(T ) ⊂ X → X is a right linear closed quaternionic operator.
We denote by A(T ) the class of closed right linear quaternionic operators A that
satisfy the conditions

(1) D(A) ⊇ D(T ).

(2) For every t > 0 there exists a positive constant C(t) such that

‖Ae−λtUT (t)v‖ ≤ C(t)‖v‖

for v ∈ D(T ) and for Re(λ) > ω0, where ω0 is defined in (5.4).

(3) The constant C(t) can be chosen such that
∫ 1

0
C(t)dt exists and is finite.

Lemma 5.2.2. Let X be a two-sided quaternionic Banach space and let UT (t) be
the strongly continuous quaternionic semigroup generated by T where T : D(T ) ⊂
X → X is a right linear closed quaternionic operator. Assume

(1) λ ∈ ρL(T + P ), and Re(λ) > ω0, where ω0 is defined in (5.4),

(2) Bλ : D(T 2)→ X, and

(3) Bλ(λI − T − P )−1 ∈ A(T ),



136 Chapter 5. Perturbations of the generator of a group

where Bλ is defined in (5.1). Then we have

(a) D(Bλ(λI − T − P )−1e−tλ) ⊇
⋃
t>0 UT (t)X.

(b) The map v 7→ Bλ(λI − T − P )−1e−tλUT (t)v for v ∈ D(T ) has a unique
extension to a bounded quaternionic operator defined on all X. (We will
denote the extension with the same symbol.)

(c) Bλ(λI − T − P )−1e−tλUT (t)v is continuous in t for t > 0 and for every
v ∈ X. Moreover, if ω0 is defined in (5.4), then

lim
t→∞

sup
ln ‖Bλ(λI − T − P )−1e−tλUT (t)‖

t
≤ ω0,

for Re(λ) > 0.

(d) Since Re(λ) > ω0, then

BλQ−1
λ (T )v =

∫ ∞
0

Bλ(λI − T − P )−1 e−tλ UT (t) v dt, v ∈ X.

Proof. To prove (a) let v0 ∈ X such that v0 = limn→∞ vn, where vn ∈ D(T )
we can make this choice since D(T ) is dense in X thanks to Lemma 4.1.9. Then
UT (t)vn → UT (t)v0 and

Bλ(λI − T − P )−1e−tλUT (t)vn → Bλ(λI − T − P )−1e−tλUT (t)v0.

Since Bλ(λI − T − P )−1 is closed because it belongs to A(T ), we have

e−tλUT (t)v0 ∈ D(Bλ(λI − T − P )−1)

for t ≥ 0, Re(λ) > 0 and

Bλ(λI − T − P )−1e−tλ (UT (t)v0) =
(
Bλ(λI − T − P )−1e−tλ(UT (t)

)
v0.

Point (b) follows from condition (2) in Definition 5.2.1 and the Principle of
extension by continuity (see Theorem 12.0.10 below).

To prove Point (c) let 0 < δ < t. The continuity follows from the semigroup
properties since

Bλ(λI − T − P )−1e−tλUT (t)v = Bλ(λI − T − P )−1e−tλUT (δ)UT (t− δ)v.

The second part follows from

ln ‖Bλ(λI − T − P )−1e−tλUT (t)‖ ≤ ln ‖Bλ(λI − T − P )−1e−tλUT (δ)‖
+ ln ‖UT (t− δ)‖



5.2. The class of operators A(T ) and some properties 137

so

lim
t→∞

sup
ln ‖Bλ(λI − T − P )−1e−tλUT (t)‖

t

≤ lim
t→∞

ln ‖Bλ(λI − T − P )−1e−tλUT (δ)‖
t

+ lim
t→∞

ln ‖UT (t− δ)‖
t

= ω0,

where we have used the fact that

lim
t→∞

ln ‖Bλ(λI − T − P )−1e−tλUT (δ)‖
t

= 0

since Re(λ) > ω0. Statement (d) follows from Theorem 12.0.18. �

Lemma 5.2.3. Let X be a two-sided quaternionic Banach space and let UT (t) be
the strongly continuous quaternionic semigroup generated by T where T : D(T ) ⊂
X → X is a right linear closed quaternionic operator. Let us assume that

(1) h ∈ C((0,∞), X) ∩ L1((0,∞), X) and

(2) P : D(P ) ⊂ X → X is a right linear closed quaternionic operator such that
Bλ(λI − T − P )−1, for λ ∈ ρL(T + P ) and Re(λ) > ω0, belongs to the class
A(T ), where Bλ is defined in (5.1).

If we define

g(t) :=

∫ t

0

e−λ(t−s)UT (t− s)h(s)ds, t ≥ 0, Re(λ) > 0, (5.6)

then g ∈ D(Bλ(λI − T − P )−1) and we have

Bλ(λI − T − P )−1g(t) =

∫ t

0

Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)h(s)ds. (5.7)

Moreover, g and Bλ(λI − T − P )−1g(t) are continuous functions of t for t > 0.

Proof. The integral that defines g exists for every t ≥ 0 since ‖UT (t)‖ is bounded
in every finite interval by Proposition 4.1.4. For all s < t, the function

s 7→ e−λ(t−s)UT (t− s)h(s)

belongs to D(Bλ(λI − T − P )−1) by point (a) in Lemma 5.2.2.

Thus by Theorem 12.0.18, we will show that
∫ t

0
e−λ(t−s)UT (t− s)h(s)ds be-

longs to D(Bλ(λI − T − P )−1) and it will also prove the formula (5.7) when we
show that the function

s 7→ Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)h(s)
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is integrable over the interval [0, t]. Moreover, observe that by definition for λ ∈
ρL(T + P ) the operator (λI − T − P )−1 is continuous. From the Principle of
Uniform Boundedness, see Theorem 12.0.9, and from Lemma 5.2.2 (b) it follows
that ‖Bλ(λI − T − P )−1e−λtUT (t)‖ is bounded on every interval that does not
contain the origin. Let 0 < t1 < t so that the function

s 7→ ‖Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)‖

is bounded and ‖h(·)‖ is integrable on the interval 0 ≤ s ≤ t1 while ‖h(·)‖ is
bounded and

s 7→ ‖Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)‖

is integrable on the interval t1 ≤ s ≤ t by Proposition 4.1.4 and Definition 5.2.1
(3).

To see that Bλ(λI−T −P )−1g(t) is continuous for t > 0, assume 0 < 2δ < t0
and set

M1 = sup
t0−2δ≤s≤t0+δ

‖Bλ(λI − T − P )−1e−λsUT (s)‖.

Then
‖Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)h(s)‖ ≤M1‖h(s)‖,

if |t− t0| ≤ δ. Consequently from Lebesgue dominated convergence theorem (see,
for example, [110]),

lim
t→t0

∫ δ

0

Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)h(s)ds

=

∫ δ

0

Bλ(λI − T − P )−1e−λ(t0−s)UT (t0 − s)h(s)ds.

We can write∫ t

δ

Bλ(λI − T − P )−1e−λ(t−s)UT (t− s)h(s)ds

=

∫ t0

0

Bλ(λI − T − P )−1e−λsUT (s)h(t− s)χ[0,t−δ](s)ds

where χ[0,t−δ] is the characteristic function of the interval [0, t− δ] and if we set

M2 := sup
δ≤s≤t0+δ

‖h(s)‖,

we obtain that the norm of the integral on the right satisfies the estimate

‖
∫ t0

0

Bλ(λI − T − P )−1e−λsUT (s)h(t− s)χ[0,t−δ](s)ds‖

≤M2‖Bλ(λI − T − P )−1e−λsUT (s)‖.
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Thus,

lim
t→t0

∫ t

δ

Bλ(λI − T − P )−1UT (t− s)e−λ(t−s)h(s)ds

=

∫ t0

δ

Bλ(λI − T − P )−1UT (t0 − s)e−λ(t0−s)h(s)ds.

Combining this result with the limit above, we see that Bλ(λI − T − P )−1g(t) is
continuous at the arbitrary point t0 > 0. The result just proved, if applied to the
case when Bλ(λI − T −P )−1 is replaced by the identity operator I, shows that g
is continuous. �

5.3 Perturbation of the generator

We define some operators that will be useful in the sequel.

Definition 5.3.1. For λ ∈ ρL(T + P ) let us define the operator

W0(t) := (λI − T − P )−1e−λtUT (t)

and the convolution

(W0 ∗BλW0)(t) :=

∫ t

0

W0(t− s)BλW0(s) ds,

where Bλ is defined in (5.1).

Theorem 5.3.2. Let X be a two-sided quaternionic Banach space and let T :
D(T ) ⊂ X → X be the generator of the strongly continuous semigroup {UT (t)}t≥0.
Let P : D(P ) ⊂ X → X be a quaternionic closed operator and let Bλ be the oper-
ator defined in (5.1). We assume that

(1) λ ∈ ρL(T + P ), and Re(λ) > ω0, where ω0 is defined in (5.4),

(2) D(P ) ⊇ D(T ),

(3) Bλ : D(T 2)→ X,

(4) Bλ(λI − T − P )−1 ∈ A(T ),

(5) there exists a positive function Kλ such that ‖(λI − T − P )−1‖ ≤ Kλ, for
Re(λ) > ω0, and

(6) ‖BλQ−1
λ (T )‖ < 1, for some λ ∈ ρS(T ), where Q−1

λ (T ) is the pseudo-resolvent
operator.

Then T +P , defined on D(T ), is closed and it is the infinitesimal generator of the
semigroup UT+P (t). Moreover, we have the following representation

UT+P (t)v = eλt(λI − T − P )W (t)v, v ∈ X, (5.8)
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where

W (t)v =
∞∑
m=0

Wm(t)v, v ∈ X, (5.9)

W0(t)v = (λI − T − P )−1e−λtUT (t)v, v ∈ X, (5.10)

Wm(t)v := W0 ∗BλWm−1(t)v, m ∈ N, v ∈ X. (5.11)

Proof. We break the proof into several steps.

Consider the inductive construction (5.10)–(5.11) and write (5.11) explicitly
as

Wm(t)v =

∫ t

0

W0(t− τ)BλWm−1(τ)vdτ, v ∈ X. (5.12)

We define the functions

χ(t) := ‖(λI − T − P )−1e−λtUT (t)‖ (5.13)

and
ψ(t) := ‖Bλ(λI − T − P )−1e−λtUT (t)‖. (5.14)

By Proposition 4.1.4 the function χ(t) is measurable and ψ(t) is measurable thanks
to conditions (2) and (3) in Definition 5.2.1 and by Proposition 4.1.4. Thanks to
Proposition 4.1.6, if ω > ω0, where ω0 is defined in (5.4), there exists an Mω <∞
such that

‖UT (t)‖ ≤Mωe
ωt.

By assumption (5), we get

χ(t) = ‖(λI − T − P )−1e−λtUT (t)‖ ≤ ‖(λI − T − P )−1‖ |e−λt| ‖UT (t)‖
≤ Kλe−Re(λt)Mωe

ωt.

By Proposition 4.1.4 and Definition 5.2.1 (3) we have that∫ β

0

ψ(t)dt <∞

for every β > 0.
Now put inductively

ψ(1)(t) = ψ(t), ψ(n)(t) = (ψ(n−1) ∗ ψ)(t).

By Lemma 12.0.17 (c) we see inductively that all the functions ψ(n)(t) are Lebesgue
integrable over every finite interval of the real positive axis. Set

χ(0)(t) = χ(t), χ(n)(t) = (χ ∗ ψ(n))(t).

By Lemma 12.0.17 (c) the functions χ(n)(t) are Lebesgue integrable over every
finite interval contained in the real positive axis.

Step 1. We show that the inductive construction (5.10)-(5.11) is well defined
in terms of function spaces. Indeed, for every m ∈ N and v ∈ X, we show that
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(I) Wm(t)v ∈ D(Bλ),

(II) Wm(t)v is continuous in t for t > 0,

(III) ‖Wm(t)‖ ≤ χ(m)(t),

(IV) BλWm(t)v is continuous in t for t > 0, and

(V) ‖BλWm(t)‖ ≤ ψ(m+1)(t).

For m = 0 conditions (I)–(V) follow from Lemmas 5.2.2 and 5.2.3. We now suppose
that they hold for m = k. Then from (I), (IV) and (V), we have that the integral
in (5.12) exists for all t ∈ (0,∞) and can be used to define Wk+1(t). The properties
(I), (II) and (IV), when m = k+ 1, follow from Lemma 5.2.3. We observe that we
have the estimates

‖Wk+1(t)v‖ = ‖
∫ t

0

W0(t− τ)BλWk(τ)vdτ‖

≤ ‖v‖
∫ t

0

χ(t− τ)ψ(k+1)(τ)dτ

= ‖v‖χ(k+1)(t)

and by Lemma 5.2.3 we also have

‖BλWk+1(t)v‖ = ‖
∫ t

0

BλW0(t− τ)BλWk(τ)vdτ‖

≤ ‖v‖
∫ t

0

ψ(t− τ)ψ(k+1)(τ)dτ

= ‖v‖ψ(k+2)(t)

which proves (III) and (V) for the case m = k+1. Consequently, the five conditions
(I)–(V) are proved inductively for all m.

Step 2. We estimate the series
∑∞
m=0 ‖Wm(t)‖.

Because of (III) we have

∞∑
m=0

‖Wm(t)‖ ≤
∞∑
m=0

χ(m)(t).

By Lemma 5.2.2 (c) for every ω > ω0, where ω0 is defined in (5.4), there exists a
constant Mω <∞ such that

ψ(t) = ‖Bλ(λI − T − P )−1e−λtUT (t)‖ < Mωe
ωt

for t sufficiently large. On the other hand, the function ψ(t) is integrable over
every finite interval of R+ (see Proposition 4.1.4). So if we choose ω1 sufficiently
large we have ∫ ∞

0

e−ω1tψ(t)dt <∞.
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From the Lebesgue Dominated Convergence Theorem we get, for p ∈ R+

lim
p→∞

∫ ∞
0

e−ptψ(t)dt = lim
p→∞

∫ ∞
0

e−(p−ω1)te−ω1tψ(t)dt = 0

so that if ω > ω1 is chosen sufficiently large, it is∫ ∞
0

e−ωtψ(t)dt = γ < 1.

Since, using the notation Re(λ) = λ0,

χ(t) = χ(0)(t) ≤ KλMωe
−(λ0−ω)t,

we will now show by induction that

χ(m)(t) ≤Mωe
(ω−λ0)tγm1 , for some γ1 < 1.

For m = 0 and ω sufficiently large so that ω − λ0 > ω1, it is

χ(1)(t) =

∫ t

0

χ(0)(t− τ)ψ(τ)vdτ

≤ KλMωe
−(λ0−ω)t

∫ t

0

e(λ0−ω)τψ(τ)dτ

≤ KλMωe
(ω−λ0)tγ1

for some γ1 < 1. Assume that it holds for a given m, then, by Lemma 12.0.17 we
have

χ(m+1)(t) =

∫ t

0

χ(m)(t− τ)ψ(τ)vdτ

≤ KλMωe
−(λ0−ω)tγm1

∫ t

0

e−(ω−λ0)τψ(τ)dτ

≤ KλMωe
(ω−λ0)tγm+1

1

for t > 0. Since

χ(m)(t) =

∫ t

0

χ(t− τ)ψ(m)(τ)dτ

≤
∫ t

0

KλMωe
−(λ0−ω)(t−τ)ψ(m)(τ)dτ

≤ KλMωe
−(λ0−ω)t

∫ t

0

e(λ0−ω)τψ(m)(τ)dτ,

it is clear that χ(m)(t) → 0 as t → 0 for m ≥ 1. Thus, since ‖Wm(t)‖ ≤ χ(m)(t),
it is also clear that Wm(t) → 0 for m ≥ 1. Recall that in the strong operator
topology, we have limt→0 UT (t) = I. Hence, if we put

W0(0) = (λI − T − P )−1
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and

Wm(0) = 0 for m ≥ 1,

then Wm(t)v will be continuous in t for t ≥ 0 and for every v ∈ X. Moreover, we
will clearly have

‖Wm(t)‖ ≤ KλMωe
−(λ0−ω)tγm1 for t ≥ 0 and m ≥ 0.

So it follows that the series
∑∞
m=0 ‖Wm(t)‖ converges absolutely and uniformly in

each finite interval [a, b], and

∞∑
m=0

‖Wm(t)‖ ≤ (1− γ1)−1KλMωe
(ω−λ0)t.

Since each of the terms of the series (5.9),

W (t)v =
∞∑
m=0

Wm(t)v, for t ≥ 0,

is strongly continuous for t ≥ 0, W (t) is also strongly continuous and, furthermore,
we have the important estimate

‖W (t)‖ ≤ (1− γ1)−1KλMωe
(ω−λ0)t.

Step 3. To conclude the proof, we show that

Q−1
λ (T + P ) =

∫ ∞
0

W (t)dt

because this implies that

S−1
R (λ, T + P )v = (λI − T − P )

∫ ∞
0

W (t)dtv, v ∈ X. (5.15)

Thanks to Proposition 5.1.3 and the fact that (λI − T − P )−1 is continuous for
λ 6∈ σL(T ), it is

Q−1
λ (T )v =

∫ ∞
0

(λI − T − P )−1 e−tλ UT (t) v dt, v ∈ X. (5.16)

Using the expansion of Q−1
λ (T + P ) in Proposition 5.1.2 we get

Q−1
λ (T + P ) =

∞∑
m=0

((Q−1
λ (T )Bλ)mQ−1

λ (T ). (5.17)
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Let us reason on the second term in the expansion (5.17). Using Theorem 5.2.3,
we can take Bλ, under the integral so

Q−1
λ (T )BλQ−1

λ (T ) =

∫ ∞
0

(λI − T − P )−1e−λtUT (t) dt

×
∫ ∞

0

Bλ(λI − T − P )−1e−λsUT (s) ds

and also, for the Fubini theorem, we obtain

Q−1
λ (T )BλQ−1

λ (T ) =

∫ ∞
0

dt

∫ ∞
0

ds(λI − T − P )−1e−λtUT (t)

×Bλ(λI − T − P )−1e−λsUT (s),

so with a change of variable t→ (t− s) we get

Q−1
λ (T )BλQ−1

λ (T ) =

∫ ∞
0

dt

∫ t

0

(λI − T − P )−1e−λ(t−s)(t− s)

×Bλ(λI − T − P )−1e−λsUT (s) ds.

Using the functions introduced in Definition 5.3.1 we have

Q−1
λ (T ) =

∫ ∞
0

W0(t) dt

and

Q−1
λ (T )BλQ−1

λ (T ) =

∫ ∞
0

W0 ∗BλW0(t) dt.

With these notations we get the series

Q−1
λ (T + P )v =

∫ ∞
0

W0(t) dtv

+

∫ ∞
0

W0 ∗BλW0(t) dt

+

∫ ∞
0

W0 ∗ (BλW0) ∗BλW0)(t) dt+ . . . .

We observe that Wm(t), introduced in Step 1, is given by

Wm(t) = (W0 ∗ (BλW0)∗m)(t), m = 1, 2, 3, . . . ,

where the symbol ∗m stands for m times the convolution of BλW0 with itself.
With the position

W (t) =
∞∑
m=0

Wm(t),
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we have

Q−1
λ (T + P ) =

∫ ∞
0

W (t)dt =
∞∑
m=0

∫ ∞
0

Wm(t)dt, (5.18)

where we have used Step 2 for the uniform convergence of the series.

Now we prove (5.15) from (5.18). Take v ∈ X and consider (sI − T −
P )
∫∞

0
W (t)dtv. SinceD(T ) ⊂ D(P ), we haveD(T+P ) = D(T ) and S−1

R (λ, T )X =
D(T ). The relation

((T + P )2 − 2λ0(T + P ) + |λ|2I)(λI − T − P )−1(λI − T − P )

∫ ∞
0

W (t)dtv = v

for λ ∈ ρS(T ) and for v ∈ X, holds true because

((T + P )2 − 2λ0(T + P ) + |λ|2I)

∫ ∞
0

W (t)dtv = v, v ∈ X

is a consequence of (5.18). Now consider v ∈ D(T ) and

(λI − T − P )

∫ ∞
0

W (t)dt ((T + P )2 − 2λ0(T + P ) + |λ|2I)(λI − T − P )−1v = v,

for v ∈ D(T ). Since∫ ∞
0

W (t)dt ((T + P )2 − 2λ0(T + P ) + |λ|2I) = I : D(T 2)→ D(T ),

because we have assumed that λ ∈ ρL(T + P ), we have that

(λI − T − P )(λI − T − P )−1v = v, v ∈ D(T ).

So we have (5.15). �

5.4 Comparison with the complex setting

We recall the complex version of the generation result in order to compare it with
the one in the quaternionic setting. Let X be a complex Banach space and let A be
the (complex) infinitesimal generator of a strongly continuous semigroup UA(t).

Definition 5.4.1. We denote by P(A) the class of closed operators P that satisfies
the conditions

(1) D(P ) ⊇ D(A).

(2) For every t > 0 there exists a positive constant C(t) such that

‖PUA(t)x‖ ≤ C(t)‖x‖, for x ∈ D(A).



146 Chapter 5. Perturbations of the generator of a group

(3) The constant C(t) can be chosen such that
∫ 1

0
C(t)dt exists and is finite.

Theorem 5.3.2 extends the following classical result to the quaternionic set-
ting, see [110, p. 630]:

Theorem 5.4.2. Let A be the infinitesimal generator of a strongly continuous semi-
group UA(t) on X. If P ∈ P(A) then A+ P defined on D(A) is closed and is the
infinitesimal generator of the semigroup UA+P (t). Moreover, an explicit construc-
tion of the semigroup UA+P (t) is given by

UA+P (t) =
∑
n≥0

Rn(t), t ≥ 0 (5.19)

where

R0(t)x = UA(t)x, Rn(t)x = (UA ∗ PRn−1)(t)x, x ∈ X, n = 1, 2, 3, . . . ,

and

(UA ∗ PRn−1)(t)x :=

∫ t

0

UA(t− s)PRn−1(s)x ds.

The series (5.19) converges uniformly for t ∈ [0, τ ] where τ is a positive fixed real
number. The function t → Rn(t)x, for fixed n ∈ N and x ∈ X, is continuous for
t ≥ 0.

For the ensuing comments, it is useful to write the first terms in the expansion
of the semigroups in both the complex and the quaternionic case, which are

UA+P (t) = UA(t) + (UA ∗ PUA)(t) + . . .

and
UT+P (t) = UT (t) + UT (t) ∗Bλ(λI − T − P )−1e−λtUT (t) + . . . ,

respectively.

Remark 5.4.1. Note that, in the complex case, the expansion of UA+P (t) involves
just the semigroup UA(t) and the perturbation operator P . This expansion is based
on the fact that the classical resolvent operator

R(λ,A+ P ) := (λI −A− P )−1

for A+ P , for ‖PR(λ,A)‖ < 1, is given by

R(λ,A+ P ) = R(λ,A)
∞∑
n=0

(PR(λ,A))n (5.20)

and the main point of the matter is that the resolvent operator R(λ,A) is the
Laplace transform of UA(t).
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Remark 5.4.2. In the quaternionic case, the expansion of (5.20) has to be replaced
by the expansion of the pseudo-resolvent operator (5.2), namely

Q−1
λ (T + P ) =

∞∑
m=0

Q−1
λ (T )(BλQ−1

λ (T ))m,

where Bλ := 2λ0P − P 2 − TP − PT and ‖BλQ−1
λ (T )‖ < 1. Thus, the S-resolvent

operator S−1
R (λ, T + P ) can be written as (see (5.3))

S−1
R (λ, T + P )v = (λI − T − P )

∞∑
m=0

Q−1
λ (T )(BλQ−1

λ (T ))mv, v ∈ X.

Note that the relation between S−1
R (λ, T + P ) and the Laplace transform of

the quaternionic evolution operator UT (t), see Remark 5.1.3, involves also the left
resolvent operator, in fact

Q−1
λ (T )v = (λI − T )−1

∫ ∞
0

e−tλ UT (t) v dt, v ∈ X.

Thus, in the quaternionic setting, two spectral problems are involved.

Remark 5.4.3. We point out that one can also use the consistency of quater-
nionic spectral theory with complex spectral theory in order to develop a different
approach to the perturbation theory of generators of strongly continuous semi
groups. If T is the quaternionic infinitesimal generator of the quaternionic semi-
group UT (T ), then we can choose j ∈ S and consider T as a Cj-linear operator.
Then T is the infinitesimal generator of the complex semigroup obtained from
considering UT (t) as a Cj-linear operator for each t ≥ 0.

Now let P be a quaternionic linear operator that satisfies conditions analogue
to those required in the complex case in Definition 5.4.1, that is,

(i) D(T ) ⊂ D(P ).

(ii) For each t > 0, there exists C(t) such that ‖PUT (t)y‖ ≤ C(t)‖y‖ for all
y ∈ D(T ).

(iii) The constants C(t) can be chosen such that
∫ 1

0
C(t) dt exists and is finite.

If we consider P also as a Cj-linear operator, then Theorem 5.4.2 implies that
T +P is the generator of a strongly continuous semigroup UT+P (t) of Cj-complex
linear operators. However, since T and P are quaternionic linear, the operator
T + P is quaternionic linear and UT+P (t) consists of quaternionic linear opera-
tors. (To show this, we can use quaternionic linearity since it survives the Yosida
approxiation procedure.) Therefore T +P generates a strongly continuous quater-
nionic semigroup under the above assumptions, which is furthermore given by the
series (5.19). This approach does not, however, allow to obtain the central result
of this chapter, namely the series expansion (5.9) that contains the quaternionic
parameter λ.
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Remark 5.4.4. We finally observe that when λ is a real number the expansion
(5.8) becomes

UT+P (t) = UT (t) + UT (t) ∗Bλ(λI − T − P )−1UT (t) + . . .

where Bλ is defined in (5.1).

5.5 An application

As an application, we study a quaternionic differential equation in the space of
quaternionic-valued continuous functions. Consider Y : R+ × R → H and the
Cauchy problem

∂

∂t
Y (t, x) =

∂2

∂x2
Y (t, x) + h(x)

∂

∂x
Y (t, x),

lim
t→0+

Y (t, x) = y0(x), uniformly in x ∈ R,

where
y0(x) = y0(x) + y1(x)e1 + y2(x)e2 + y3(x)e3 : R→ H

and
h = h0(x) + h1(x)e1 + h2(x)e2 + h3(x)e3 : R→ H

are given functions. We now need some general facts on the group of translations
that can be obtained in the quaternionic setting by adapting the arguments in [110,
p. 629], with obvious modifications. The group of translations defined by

UA(t)Z(τ) = Z(t+ τ)

is a strongly continuous group on X = C(R,H) where R = [−∞,+∞] and its
infinitesimal generator is A = d

dτ with domain

D(A) = {Z ∈ C(R,H) : Z ′ ∈ C(R,H)}.

To determine the S-resolvent set of A we observe that, for Z ∈ C(R,H), the
quaternionic differential equation

λZ(τ)− Z ′(τ) = X(τ)

must have a unique solution in Z ∈ C(R,H). But λ ∈ H and A commute with λ,
since A does not contain any imaginary units, so the S-resolvent operator reduces
to (λI − A)−1. The linear quaternionic differential equation for Z reduces to a
linear system of differential equations for the components of Z, so it follows that
the S-spectrum is given by

σS(A) = {uj : u ∈ R, j ∈ S}.
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Consider now the operator A2 = ∂2

∂τ2 with domain

D(A2) = {Z ∈ C(R,H) : Z ′, Z ′′ ∈ C(R,H)}.

With similar considerations as in Theorem XII9.7 in [110] we have that operator
A2 is closed and D(A2) is dense in C(R,H). Since

σS(A) = {uj : u ∈ R, for j ∈ S},

by the spectral mapping theorem it follows that

σS(A2) = {u ∈ R : u < 0}.

Since A2 commutes with the quaternion λ, it is

S−1
R (λ,A2)Z(τ) = (λI −A2)−1Z(τ)

=

∫
R

e−|θ|
√
λ

2
√
λ

Z(θ + τ)dθ, τ ∈ R.

With computations similar to those in [110, p. 640], we have an explicit formula
for the evolution operator:

UA2(t)Z(τ) =
1

2
√
πt

∫
R
e−θ

2/4tZ(θ + τ)dθ, t > 0. (5.21)

Let us consider h ∈ C(R,H) and the operator P whose domain is

D(P ) =
{
y ∈ C(R,H) such that y′ is continuous in a neighborhood of

each point τ0 for which h(τ0) 6= 0 and such that hy′ ∈ C(R,H)
}

and it is defined by

(Py)(τ) = h(τ)y′(τ), y ∈ D(P ).

The operator P is closed and with some computations we have the estimate

‖PUA2(t)Z(τ)‖ ≤ ‖h‖‖ ∂
∂τ

1

2
√
πt

∫
R
e−θ

2/4tZ(θ + τ)dθ‖

≤ ‖h‖‖Z‖√
πt

.

The above estimate shows that the conditions (2) and (3) in Definition 5.2.1 are
fulfilled since they are the conditions (2) and (3) in Definition 5.4.1. This is due to
the fact that, in this case, A2 commute with the quaternions. In view of theorem
of generation by perturbation, the solution of the Cauchy problem is

Y (t, x) = UA2+P (t)y0(x).
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We conclude this chapter pointing out that the above result, which has been
obtained by adapting the scalar case in [110], shows that this generation theorem is
useful also in quaternionic quantum mechanics, see [4, p. 38], since the quaternionic
version of Schrödinger equation is of the form

∂

∂t
ψ(t, x) = −H(x)ψ(t, x)

where the Hamiltonian is given by

H(x) = H0(x) + e1H1(x) + e2H2(x) + e3H3(x)

and ψ is the quaternionic wave function. Even if it is nontrivial in concrete appli-
cations of physical interest, one may consider the operator e1H1(x) + e2H2(x) +
e3H3(x) as a perturbation of H0(x).
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