
Chapter 3

The direct approach to the
S-functional calculus

The S-functional calculus can also be defined for unbounded operators T : D(T ) ⊂
X → X, where X is a two-sided quaternionic Banach space X. In the papers
[69,101] this calculus was defined using suitable transformations in order to reduce
the problem to the case of bounded operators. The direct approach has been
studied in the more recent paper [130] and it turned out that the two approaches,
contrary to the complex setting, are not totally equivalent. In fact, in using the
direct approach one can remove the assumption that the S-resolvent set contains
a real point.

Definition 3.0.1. Let X be a two-sided quaternionic Banach space. A right linear
operator T : D(T ) ⊂ X → X defined on a right-linear subspace D(T ) of X is
called closed if its graph is closed in X ⊕ X. We denote the set of closed right
linear operators T : D(T ) ⊂ X → X by K(X).

Remark 3.0.1. The notion of a closed right linear operator can also be considered
on a right Banach space and does not necessarily require the existence of a left
multiplication on X. However, for the reasons explained in Remark 2.2.7, one
usually works on two-sided Banach spaces.

When we deal with closed operators, we have to pay attention to the domains
on which they are defined. The powers of T are defined inductively as T 0 = I
with D(T 0) = D(I) = X and Tn+1v = T (Tnv) for v ∈ D(Tn+1) := {v ∈ D(T ) :
Tn ∈ D(T )}. Polynomials of T with real coefficients are then defined as usual:
if P (s) =

∑n
`=0 a`s

` with a` ∈ R, then P (T )v =
∑n
`=0 a`T

`v for v ∈ D(Tn).
However, if the coefficients are not real, then we have to distinguish two cases: for
a right slice hyperholomorphic polynomial P (s) =

∑n
`=0 a`s

` with a` ∈ H, we can
again set P (T )v =

∑n
`=0 a`T

`v for v ∈ D(Tn). For a left slice hyperholomorphic
polynomial P (s) =

∑n
`=0 s

`a` with a` ∈ H it is, however, not always possible
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to set P (T )v =
∑n
`=0 T

na`v for v ∈ D(Tn). Indeed, since T is right linear, the
domain of D(T `) is a right-linear but not necessarily a left-linear subspace of X.
Hence, it might happen that a`v /∈ D(T `) even though v ∈ D(Tn), so setting
P (T )v =

∑n
`=0 T

na`v is not meaningful.

3.1 Properties of the S-spectrum of a closed operator

For T ∈ K(X), we define

Qs(T ) := T 2 − 2Re(s)T + |s|2I, for s ∈ H,

and the operator Qs(T ) is defined on D(T 2).

Definition 3.1.1. Let T ∈ K(X). We define the S-resolvent set of T as

ρS(T ) :=
{
s ∈ H : Qs(T )−1 ∈ B(X)

}
and the S-spectrum of T as

σS(T ) := H \ ρS(T ).

For s ∈ ρS(T ), the operator Qs(T )−1 is called the pseudo-resolvent of T at s.
Furthermore, we define the extended S-spectrum σSX(T ) as

σSX(T ) :=

{
σS(T ) if T is bounded,

σS(T ) ∪ {∞} if T is unbounded.

Before we study the properties of the S-spectrum of a closed operator, we
need to investigate the differentiability properties of its pseudo-resolvent in detail.
The correct tool for studying these properties is a series expansion of Qs(T )−1,
which was found in [52]. An heuristic approach for finding this expansion consists
in considering the equation

Qs(T )−1 −Qq(T )−1 = Qs(T )−1(Qq(T )−Qs(T ))Qq(T )−1 (3.1)

and writing it as

Qs(T )−1 = Qq(T )−1 +Qs(T )−1(Qq(T )−Qs(T ))Qq(T )−1.

Recursive application of this equation then yields the series expansion proved in the
following, where we consider closed axially symmetric neighbourhoods, described
by the function dS(s, q) = max

{
2|s0 − q0|,

∣∣|q|2 − |s|2∣∣}, which naturally rise from
the series expansion of the pseudo-resolvent operator.

Theorem 3.1.2. Let T ∈ K(X) and q ∈ ρS(T ) and let s ∈ H. If the series

J (s) =
+∞∑
n=0

(Qq(T )−Qs(T ))
nQq(T )−(n+1) (3.2)
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converges absolutely in B(X), then s ∈ ρS(T ) and it equals the pseudo-resolvent
Qs(T )−1 of T at s.

The series converges in particular uniformly on any of the closed axially
symmetric neighbourhoods

Cε(q) = {s ∈ H : dS(s, q) ≤ ε}

of q with
dS(s, q) = max

{
2|s0 − q0|,

∣∣|q|2 − |s|2∣∣}
and

ε <
1

‖TQq(T )−1‖+ ‖Qq(T )−1‖
.

Proof. Let us first consider the question of the convergence of the series. The sets
Cε(q) are obviously axially symmetric: if sj belongs to the sphere [s] associated
to s, then s0 = Re(s) = Re(sj) and |s|2 = |sj |2. Thus, dS(sj , q) = dS(s, q) and in
turn s ∈ Cε(q) if and only if sj ∈ Cε(q). Moreover, since the map s 7→ dS(s, q)
is continuous, the sets Uε(q) := {s ∈ H : dS(s, q) < ε} are open in H. Since
Uε(q) ⊂ Cε(q), the sets Cε are actually neighbourhoods of q. In order to simplify
the notation, we set

Λ(q, s) := Qq(T )−Qs(T ) = 2(s0 − q0)T + (|q|2 − |s|2)I.

Since Qq(T )−1 maps X to D(T 2) and Λ(q, s) commutes with Qq(T )−1 on D(T 2),
we have for any s ∈ Cε(q),

+∞∑
n=0

∥∥∥Λ(q, s)nQq(T )−(n+1)
∥∥∥

=

+∞∑
n=0

∥∥∥(Λ(q, s)Qq(T )−1
)nQq(T )−1

∥∥∥
≤

+∞∑
n=0

∥∥Λ(q, s)Qq(T )−1
∥∥n ∥∥Qq(T )−1

∥∥ .
We further have∥∥Λ(q, s)Qq(T )−1

∥∥ ≤ 2|s0 − q0|
∥∥TQq(T )−1

∥∥+
∣∣|q|2 − |s|2∣∣ ∥∥Qq(T )−1

∥∥
≤ dS(s, q)

(∥∥TQq(T )−1
∥∥+

∥∥Qq(T )−1
∥∥)

≤ ε
(∥∥TQq(T )−1

∥∥+
∥∥Qq(T )−1

∥∥) =: %.

If now ε < 1/
(∥∥TQq(T )−1

∥∥+
∥∥Qq(T )−1

∥∥), then 0 < % < 1 and thus,

+∞∑
n=0

∥∥∥Λ(q, s)nQq(T )−(n+1)
∥∥∥ ≤ ∥∥Qq(T )−1

∥∥ +∞∑
n=0

%n < +∞
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and the series converges uniformly in B(X) on Cε(q).
Now assume that the series (3.2) converges and observe that Qs(T ), Qq(T )

and Qq(T )−1 commute on D(T 2). Hence, we have for y ∈ D(T 2) that

J (s)Qs(T )y =

+∞∑
n=0

Λ(q, s)nQq(T )−(n+1)Qs(T )y

=
+∞∑
n=0

Λ(q, s)nQq(T )−(n+1) [−Λ(q, s) +Qq(T )] y

= −
+∞∑
n=0

Λ(q, s)n+1Qq(T )−(n+1)y

+
+∞∑
n=0

Λ(q, s)nQq(T )−ny = y.

On the other hand,

yN :=

N∑
n=0

Λ(q, s)nQq(T )−(n+1)y = Qq(T )−1
N∑
n=0

Λ(q, s)nQq(T )−ny

belongs to D(T 2) for any y ∈ X and we have

Qs(T )yN = (−Λ(q, s) +Qq(T ))
N∑
n=0

Λ(q, s)nQq(T )−(n+1)y

= −
N∑
n=0

Λ(q, s)n+1Qq(T )−(n+1)y +
N∑
n=0

Λ(q, s)nQq(T )−ny

= −Λ(q, s)N+1Qp(T )−(n+1)y + y.

Now observe that
Λ(q, s) = 2(s0 − q0)T + (|q|2 − |s|2)I

is defined on D(T ) and maps D(T 2) to D(T ). Hence, Λ(q, s)2Qq(T )−1 belongs to
B(X) and for N ≥ 1∥∥∥−Λ(q, s)N+1Qp(T )−(n+1)y

∥∥∥
=
∥∥−Λ(q, s)N−1Qp(T )−NΛ(q, s)2Qq(T )−1y

∥∥
≤
∥∥−Λ(q, s)N−1Qp(T )−N

∥∥∥∥Λ(q, s)2Qq(T )−1y
∥∥ N→∞−→ 0

because the series (3.2) converges in the norm of B(X) by assumption. Thus,
Qs(T )yN → y and yN → y∞ := J (s)y as N → ∞. Since Qs(T ) is closed, we
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obtain that

J (s)y ∈ D(Qs(T )) = D(T 2) and Qs(T )J (s)y = y.

Hence, J (s) = Qs(T )−1 and in turn s ∈ ρS(T ). �

Lemma 3.1.3. Let T ∈ K(X). The functions s → Qs(T )−1 and s → TQs(T )−1,
which are defined on ρS(T ) and take values in B(X), are continuous.

Proof. Let q ∈ ρS(T ). Then Qs(T )−1 can be represented by the series (3.2), which
converges uniformly on a neighborhood of q. Hence, we have

lim
s→q
Qs(T )−1 =

+∞∑
n=0

lim
s→q

(
2(s0 − q0)T +

(
|q|2 − |s|2

)
I
)nQq(T )−(n+1)

= Qq(T )−1,

because each term in the sum is a polynomial in s0 and s1 (since s = s0 + js1 for
j ∈ S) with coefficients in B(X) and thus, continuous. Indeed(

(s0 − q0)T +
(
|q|2 − |s|2

)
I
)nQq(T )−(n+1)

=

n∑
k=0

(
n

k

)
(s0 − q0)k

(
|q|2 − |s|2

)n−k
T kQq(T )−(n+1)

and the coefficients T kQq(T )−(n+1) belong to B(X) because Qq(T )−(n+1) maps
X to D(T 2(n+1)) and k < 2(n + 1). The function s 7→ TQs(T )−1 is continuous
because the identity (3.1) implies

lim
h→0

∥∥TQs+h(T )−1 − TQs(T )−1
∥∥

= lim
h→0

∥∥TQs+h(T )−1(Qs(T )−Qs+h(T ))Qs(T )−1
∥∥ .

The operator Qs(T )−1 maps X to D(T 2) and so

(Qs(T )−Qs+h(T ))Qs(T )−1 = (2h0T + (|s|2 − |s+ h|2)I)Qs(T )−1

maps Xto D(T ). Since T and Qs+h(T )−1 commute on D(T ) we thus have

lim
h→0

∥∥TQs+h(T )−1 − TQs(T )−1
∥∥

= lim
h→0

∥∥Qs+h(T )−1
(
2h0T

2 +
(
|s|2 − |s+ h|2

)
T
)
Qs(T )−1

∥∥
≤ lim
h→0

∥∥Qs+h(T )−1
∥∥ lim
h→0

2h0

∥∥T 2Qs(T )−1
∥∥

+ lim
h→0

∥∥Qs+h(T )−1
∥∥ lim
h→0

(
|s|2 − |s+ h|2

) ∥∥TQs(T )−1
∥∥ = 0. �



50 Chapter 3. The direct approach to the S-functional calculus

Lemma 3.1.4. Let T ∈ K(X) and s ∈ ρS(T ). The pseudo-resolvent Qs(T )−1 is
continuously real differentiable with

∂

∂s0
Qs(T )−1 = (2T − 2s0I)Qs(T )−2 and

∂

∂s1
Qs(T )−1 = −2s1Qs(T )−2.

Proof. Let us first compute the partial derivative of Qs(T )−1 with respect to the
real part s0. Applying equation (3.1), we have

∂

∂s0
Qs(T )−1 = lim

R3h→0

1

h

(
Qs+h(T )−1 −Qs(T )−1

)
= lim

R3h→0

1

h
Qs+h(T )−1 (Qs(T )−Qs+h(T ))Qs(T )−1

= lim
R3h→0

Qs+h(T )−1 (2T − 2s0I − hI)Qs(T )−1,

where limR3h→0 f(h) denotes the limit of a function f as h tends to 0 in R. Since
the composition and the multiplication with scalars are continuous operations on
B(X), we further have

∂

∂s0
Qs(T )−1 = lim

R3h→0
Qs+h(T )−1 lim

R3h→0

(
(2T − 2s0I)Qs(T )−1 − hQs(T )−1

)
= Qs(T )−1(2T − 2s0I)Qs(T )−1

= (2T − 2s0I)Qs(T )−2,

where the last equation holds true becauseQs(T )−1 maps X to D(T 2) ⊂ D(T ) and
T and Qs(T )−1 commute on D(T ). Observe that ∂

∂s0
Qs(T )−1 is even continuous

because it is the sum and product of continuous functions by Lemma 3.1.3.
If we write s = s0 + jss1, then we can argue in a similar way to show that

the derivative of Qs(T )−1 with respect to s1 is

∂

∂s1
Qs(T )−1 = lim

R3h→0

1

h

(
Qs+hjs(T )−1 −Qs(T )−1

)
= lim

R3h→0

1

h
Qs+hjs(T )−1 (Qs(T )−Qs+hjs(T ))Qs(T )−1

= lim
R3h→0

Qs+hjs(T )−1 (−2s1 − h)Qs(T )−1

= lim
R3h→0

Qs+hjs(T )−1 lim
R3h→0

(
−2s1Qs(T )−1 − hQs(T )−1

)
= −2s1Qs(T )−2.

Again this derivative is continuous as it is the product of two continuous functions
by Lemma 3.1.3.

Finally, we easily obtain that Qs(T )−1 is continuously real differentiable from
the fact thatQs(T )−1 is continuously differentiable in the variables s0 and s1. If we

write s in terms of its four real coordinates as s = ξ0 +
∑3
`=1 ξ`e`, then the partial



3.1. Properties of the S-spectrum of a closed operator 51

derivative with respect to ξ0 corresponds to the partial derivative with respect to
s0 and thus, exists and is continuous. The partial derivative with respect to ξ` for
1 ≤ ` ≤ 3 on the other hand exists and is continuous for s1 6= 0 because Qs(T )−1

can be considered as the composition of the continuously differentiable functions
s 7→ s1 =

√
ξ2
1 + ξ2

2 + ξ2
3 and s1 → Qs+js1(T )−1 with fixed j ∈ S. We find

∂

∂ξ`
Qs(T )−1 = −2s1Qs(T )−2 ∂

∂ξ`
s0 = −2ξ`Qs(T )−2.

For s1 = 0 (that is for s ∈ R), we can simply choose j = e` and then the partial
derivative with respect to ξ` agrees with the partial derivative with respect to s1.
In particular, we see that also the partial derivatives with respect to the real
coordinates ξ0, . . . , ξ3 are continuous. �

Lemma 3.1.5. Let T ∈ K(X) and s ∈ ρS(T ). The function s 7→ TQs(T )−1 is
continuously real differentiable with

∂

∂s0
TQs(T )−1 = (2T 2 − 2s0T )Qs(T )−2

and
∂

∂s1
TQs(T )−1 = −2s1TQs(T )−2.

Proof. If limR3h→0 f(h) denotes again the limit of a function f as h tends to 0 in
R, then we obtain from (3.1) that

∂

∂s0
TQs(T )−1 = lim

R3h→0

1

h

(
TQs+h(T )−1 − TQs(T )−1

)
= lim

R3h→0

1

h
TQs+h(T )−1 (Qs(T )−Qs+h(T ))Qs(T )−1

= lim
R3h→0

1

h
TQs+h(T )−1

(
2hT − 2hs0I − h2I

)
Qs(T )−1

= lim
R3h→0

Qs+h(T )−1
(
2T 2 − 2s0T − hT

)
Qs(T )−1,

because
(
2hT − 2hs0I − h2I

)
Qs(T )−1 maps X to D(T ) and T and Qs+h(T )−1

commute on D(T ). Since the composition and the multiplication with scalars are
continuous operations on the space B(X) and since the pseudo-resolvent is con-
tinuous by Lemma 3.1.3, we get

∂

∂s0
TQs(T )−1 = lim

R3h→0
Qs+h(T )−1 lim

R3h→0

((
2T 2 − 2s0T

)
Qs(T )−1 − hTQs(T )−1

)
= Qs(T )−1(2T 2 − 2s0T )Qs(T )−1

= (2s0T − 2T 2)Qs(T )−2.

This function is continuous because we can write it as the product of functions
that are continuous by Lemma 3.1.3.
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The derivative with respect to s1 can be computed using similar arguments
via

∂

∂s1
TQs(T )−1 = lim

R3h→0

1

h

(
TQs+hjs(T )−1 − TQs(T )−1

)
= lim

R3h→0

1

h
TQs+hjs(T )−1 (Qs(T )−Qs+hjs(T ))Qs(T )−1

= lim
R3h→0

1

h
TQs+hjs(T )−1

(
−2hs1 − h2

)
Qs(T )−1

= lim
R3h→0

Qs+hjs(T )−1 lim
R3h→0

(
−2s1TQs(T )−1 − hTQs(T )−1

)
= −2s1TQs(T )−2.

Also this derivative is continuous because

∂

∂s1
TQs(T )−1 = −2s1

(
TQs(T )−1

)
Qs(T )−1

is the product of functions that are continuous by Lemma 3.1.3.
Finally, we see as in the proof of Lemma 3.1.4 that TQs(T )−1 is continuously

differentiable in the four real coordinates by considering it as the composition of
the two continuously real differentiable functions s 7→ (s0, s1) and (s0, s1) 7→
TQs+js1(T )−1 choosing js appropriately if s ∈ R. �

Let us return now to studying the S-spectrum of T . As we show in the next
theorem, it has properties that are analogue to the properties of the usual spectrum
of a complex linear operator.

Theorem 3.1.6. Let T ∈ K(X).

(i) The S-spectrum σS(T ) of T is axially symmetric. It contains the set of right
eigenvalues σR(T ) of T and if X has finite dimension, then it equals σR(T ).

(ii) The S-spectrum σS(T ) is a closed subset of H and the extended S-spectrum
σSX(T ) is a closed and compact subset of H∞ := H ∪ {∞}.

(iii) If T is bounded, then σS(T ) is nonempty and bounded by the norm of T .

Proof. We have q ∈ [s] if and only if Re(q) = Re(s) and |q| = |s|. In this case

Qs(T ) = T 2 − 2Re(s)T + |s|2I = T 2 − 2Re(q) + |q|2I = Qq(T )

and s ∈ ρS(T ) if and only if q ∈ ρS(T ). Hence, ρS(T ) and σS(T ) are both axially
symmetric. Furthermore,

Qs(T )v = T (Tv − vs)− (Tv − vs)s. (3.3)

If s ∈ σR(T ), then there exists a right eigenvector v ∈ X \ {0} associated with s,
that is Tv − vs = 0, and hence Qs(T )v = 0 because of (3.3). Therefore Qs(T )v is
not invertible and so s ∈ σS(T ).
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If furthermore X is finite-dimensional, then Qs(T ) is invertible if and only
if kerQs(T ) 6= {0}. Hence, if s ∈ σS(T ), then there exists v ∈ X \ {0} with
Qs(T )v = 0. If Tv = vs, then we already see that s ∈ σR(T ). Otherwise, we see
from (3.3) that ṽ := Tv − vs 6= 0 is a right eigenvector of T associated with s. If
s = u+ jv with j ∈ S, we can choose i ∈ S with i ⊥ j. Then ji = −ij and in turn
si = is so that

T (ṽi) = T (ṽ)i = (ṽs)i = (ṽi)s.

Hence, ṽ is a right eigenvector of T associated with s and so s ∈ σR(T ). Thus, (i)
holds true.

If s ∈ ρS(T ), then Theorem 3.1.2 shows that there exists an axially symmetric
neighborhood of s that also belongs to ρS(T ). Hence, ρS(T ) is an open subset of
H and σS(T ) = H \ ρS(T ) is in turn a closed subset of H. If σS(T ) is bounded in
H, then it is also closed in H∞. Hence, if T is bounded, then σSX(T ) = σS(T ) is
closed in H∞. Similarly, if T is unbounded and σS(T ) is bounded, then σSX(T ) =
σS(T ) ∪ {∞} is the union of two closed subsets of H∞ and hence bounded itself.
Finally, if σS(T ) is unbounded, then T must be unbounded and we find that
σSX(T ) is closed as

σSX(T ) = σS(T ) ∪ {∞} = σS(T )H∞ .

Hence, (ii) holds true. Finally, (iii) is part of the statement of Theorem 2.2.11. �

Definition 3.1.7. Let T ∈ K(X).

(i) We call s ∈ R an S-eigenvalue of T if (T − sI)x = 0 for some x ∈ X \ {0}.

(ii) Let s ∈ H \ R. We call [s] an eigensphere of T if Qs(T )x = 0 for some
x ∈ X \ {0}.

In both cases, the respective vector x is called an S-eigenvector associated with
the S-eigenvalue s (resp. the eigensphere [s]).

The next theorem clarifies the relation between the S-spectrum and the clas-
sical spectrum known from the theory of complex linear operators. The quater-
nionic Banach space X also carries, for any j ∈ S, the structure of a Banach space
over the complex field Cj . We only have to restrict the multiplication of vectors
with quaternionic scalars from the right to the complex plane Cj and obtain a
complex Banach space over Cj . We denote this Cj-complex Banach space by Xj .
(Observe that Cj-complex multiples of the identity IXj on Xj act as (λIXj )y = yλ
for λ ∈ Cj and y ∈ Xj .) Any quaternionic right linear operator T on X is then
also a Cj-linear operator on Xj . We denote the resolvent set and the spectrum of
T as a complex linear operator on Xj by ρCj (T ) and σCj (T ).

Theorem 3.1.8. Let T ∈ K(X) and choose j ∈ S. The spectrum σCj (T ) of T
considered as a closed complex linear operator on Xj equals σS(T ) ∩ Cj, i.e.,

σC
j
(T ) = σS(T ) ∩ Cj . (3.4)
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For any λ in the resolvent set ρCj (T ) of T as a complex linear operator on Xj,

the Cj-linear resolvent of T is given by Rλ(T ) =
(
λIXj − T

)
Qλ(T )−1, i.e.,

Rλ(T )y := Qλ(T )−1yλ− TQλ(T )−1y. (3.5)

For any i ∈ S with j ⊥ i, we, moreover, have

Rλ(T )y = −[Rλ(T )(yi)]i. (3.6)

Finally, if s = u+ iv ∈ ρS(T ), we can set sj = u+ jv and find

Qs(T )−1 = Rsj (T )Rsj (T ). (3.7)

Proof. Let λ ∈ ρS(T )∩Cj . The resolvent (λIXj−T )−1 of T as a Cj-linear operator
on Xj is then given by (3.5). Indeed, since T and Qλ(T )−1 commute, we have for
y ∈ D(T ) that

Rλ(T )(λIXj − T )y

= (λIXj − T )Qλ(T )−1(yλ− Ty)

= (λIXj − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IXj − 2λ0T + T 2)Qλ(T )−1y = y.

Similarly, for y ∈ Xj , we have

(λIXj − T )Rλ(T )y

= (λIXj − T )
(
Qλ(T )−1yλ− TQλ(T )−1y

)
= Qλ(T )−1yλλ− TQλ(T )−1yλ− TQλ(T )−1yλ+ T 2Qλ(T )−1y

= (|λ|2IXj − 2λ0T + T 2)Qλ(T )−1y = y.

Since Qλ(T )−1 maps Xj to D(T 2) ⊂ D(T ), we find that the operator Rλ(T ) =
(λIXj − T )Qλ(T )−1 is bounded and so λ belongs to the resolvent set ρCj (T ) of
T considered as a Cj-linear operator on Xj . Hence, ρS(T ) ∩ Cj ⊂ ρCj (T ) and in
turn σCj (T ) ⊂ σS(T ) ∩Cj . Together with the axial symmetry of the S-spectrum,
this further implies

σCj (T ) ∪ σCj (T ) ⊂ (σS(T ) ∩ Cj) ∪ (σS(T ) ∩ Cj) = σS(T ) ∩ Cj , (3.8)

where A = {z : z ∈ A}.
If λ and λ both belong to ρCj (T ), then [λ] ⊂ ρS(T ) because

(λIXj − T )(λIXj − T )y

= (yλ)λ− (Ty)λ− T (yλ) + T 2y

= (T 2 − 2λ0T + |λ|2)y
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and hence Qλ(T )−1 = Rλ(T )Rλ(T ) ∈ B(X). Thus, ρS(T )∩Cj ⊃ ρCj (T )∩ ρCj (T )
and in turn

σS(T ) ∩ Cj ⊂ σCj (T ) ∪ σCj (T ). (3.9)

The two relations (3.8) and (3.9) yield together

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ). (3.10)

What remains to show is that ρCj (T ) and σCj (T ) are symmetric with respect to
the real axis, which then implies

σS(T ) ∩ Cj = σCj (T ) ∪ σCj (T ) = σCj (T ). (3.11)

Let λ ∈ ρCj (T ) and choose i ∈ S with j ⊥ i. We show that Rλ(T ) equals the

mapping Ay := − [Rλ(T )(yi)] i. As λi = iλ and iλ = λi, we have for y ∈ D(T )
that

A
(
λIXj − T

)
y = A

(
yλ− Ty

)
= −

[
Rλ(T )

(
(yλ)i− (Ty)i

)]
i

= − [Rλ(T )((yi)λ− T (yi))] i

= −
[
Rλ(T )(λIXj − T )(yi)

]
i = −yii = y.

Similarly, for arbitrary y ∈ Xj = X, we have(
λIXj − T

)
Ay = (Ay)λ− T (Ay)

= − [Rλ(T )(yi)] iλ+ T ([Rλ(T )(yi)] i)

= − [Rλ(T )(yi)λ− T (Rλ(T )(yi))] i

= −
[
(λIXj − T )Rλ(T )(yi)

]
i = −yii = y.

Hence, if λ ∈ ρCj (T ), then Rλ(T ) = − [Rλ(T )(yi)] i such that in particular λ ∈
ρCj (T ). Consequently ρCj (T ) and in turn also σCj (T ) are symmetric with respect
to the real axis such that (3.11) holds true. �

Remark 3.1.1. The relations (3.10) and (3.7) had been observed in [159]. Also
the relation Rλ(T )Rλ(T ) = Qλ(T )−1, which is a consequence of (3.5), was un-
derstood in that paper. The complete statement, in particular the fact that for a
quaternionic linear operator T always σCj (T ) = σCj (T ) due to (3.6), was finally
established in [131]. For unitary operators, this symmetry was already understood
in [196], but the correct notion of spectrum for quaternionic operators had not yet
been developed so it was impossible to see the full picture.

3.2 The S-resolvent of a closed operator

For closed operators, the definition of the S-resolvent operators needs a little
modification. If we define the left S-resolvent operator as in the case of bounded
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operators, we obtain

S−1
L (s, T )x := −Qs(T )−1(T − sI)x, (3.12)

which is only defined for x ∈ D(T ) and not on all of X. However, for x ∈ D(T ),
we have Qs(T )−1Tx = TQs(T )−1x and so we can commute T and Qs(T )−1 in
order to obtain an operator that is defined on all of X.

Definition 3.2.1 (The S-resolvent operators of a closed operator). Let T ∈ K(X).
For s ∈ ρS(T ), we define the left S-resolvent operator of T at s as

S−1
L (s, T )x := Qs(T )−1sx− TQs(T )−1x, for all x ∈ X, (3.13)

and the right S-resolvent operator of T at s as

S−1
R (s, T )x := −(T − Is)Qs(T )−1x, for all x ∈ X. (3.14)

Remark 3.2.1. For s ∈ ρS(T ), the operator Qs(T )−1 maps X to D(T 2). Hence,
TQs(T )−1 is a bounded operator and so S−1

L (s, T ) and S−1
R (s, T ) are bounded, too.

The converse, however, is not necessarily true. As the next example shows, there
might exist points s ∈ H that belong to σS(T ) even though S−1

L (s, T ) or S−1
R (s, T )

are bounded operators. In order to determine the S-spectrum of an operator T one
therefore always has to work with the operator Qs(T )−1 even though, as we will
see later on, the S-resolvent S−1

L (s, T ) and S−1
R (s, T ) and not the pseudo-resolvent

Qs(T )−1 appear in the S-functional calculus.
If a sphere [s] = u + Sv belongs to σS(T ), then the S-resolvents can be

bounded at most at one point in [s]. We will prove in the following that the right
S-resolvent is left slice hyperholomorphic in s. If S−1

R (sk, T ) with sk = u+ kv and
S−1
R (si, T ) with si = u+ iv are bounded, then (2.11) in Corollary 2.1.8 implies for

any sj = u+ jv with j ∈ S \ {i, k} that∥∥S−1
R (sj , T )

∥∥ ≤ ∣∣(i− k)−1i+ j(k − i)−1
∣∣ ∥∥S−1

R (si, T )
∥∥

+
∣∣(k − i)−1k + j(k − i)−1

∣∣ ∥∥S−1
R (sk, T )

∥∥ < +∞.

Hence, if S−1
R (s, T ) is bounded at two points in [s], then it is bounded at any s ∈ [s].

The estimates that we will show in Lemma 3.2.8 imply then that [s] ⊂ ρS(T ). For
the left S-resolvent, we can argue similarly.

Example 3.2.2. Let `2(H) be the quaternionic Hilbert space of all square-summable
sequences in H and let i ∈ S. On this space, we consider the operator

T :

{
`2(H) → `2(H)

(an)n∈N 7→
(
n−1
n ian

)
n∈N .

This operator is obviously bounded with ‖T‖ = 1 and if en = (δn,m)m,∈N, where
δn,m = 1 if m = n and δn,m = 0 if m 6= n, then Ten = en

n−1
n i. Hence, we conclude

from Theorem 3.1.6 that

σS(T ) ⊃
⋃
n∈N

n− 1

n
S = S ∪

⋃
n∈N

n− 1

n
S. (3.15)
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Straightforward computations show, that we even have equality in (3.15) since
Qs(T )−1 is bounded for any s /∈ S ∪

⋃
n∈N

n−1
n S.

Let us now consider the point −j, which obviously belongs to σS(T ). The
pseudo-resolvent of T at −j applied to (an)n∈N ∈ `2(H) is

Q−j(T )(an)n∈N = (T 2 + I)−1(an)n∈N =

(
n2

2n− 1
an

)
n∈N

.

As expected, this is an unbounded operator on `2(H), because n2

2n−1 → +∞. The
left S-resolvent at −i on the other hand is

S−1
L (−i, T )(an)n∈N = Q−i(T )−1(−iI − T )(an)n∈N =

(
n

2n− 1
ian

)
n∈N

,

and this is a bounded operator because

‖S−1
L (−i, T )‖ = sup

n∈N

∣∣∣∣ n

2n− 1
i

∣∣∣∣ < +∞.

Hence, S−1
L (−i, T ) is bounded even though −i /∈ ρS(T ).

A second difference between the left and the right S-resolvent operators is
that the right S-resolvent equation only holds true on D(T ).

Theorem 3.2.3 (The S-resolvent equations). Let T ∈ K(X). For s ∈ ρS(T ), the
left S-resolvent operator satisfies the identity

S−1
L (s, T )sx− TS−1

L (s, T )x = x, for all x ∈ X. (3.16)

Moreover, the right S-resolvent operator satisfies the identity

sS−1
R (s, T )x− S−1

R (s, T )Tx = x, for all x ∈ D(T ). (3.17)

Proof. We have for x ∈ D(T ) that

sS−1
R (s, T )x− S−1

R (s, T )Tx

= −s(T − Is)Qs(T )−1x+ (T − Is)Qs(T )−1Tx

= (−sT + |s|2I)Qs(T )−1x+ (T 2 − sT )Qs(T )−1x

= (T 2 − 2Re(s)T + |s|2I)Qs(T )−1x = x.

Similar computations show (3.16). �

Remark 3.2.2. We can extend (3.17) to an equation that holds on the entire space
X, similarly to how we could extend (3.12) to a bounded operator on the entire
space X. This equation is

sS−1
R (s, T )x+ (T 2 − sT )Qs(T )−1x = x, for all x ∈ X.
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Theorem 3.2.4 (S-resolvent equation). Let T ∈ K(X). If s, q ∈ ρS(T ) with s /∈ [q],
then

S−1
R (s, T )S−1

L (q, T ) =
[
[S−1
R (s, T )− S−1

L (q, T )]q

− s[S−1
R (s, T )− S−1

L (q, T )]
]
(q2 − 2Re(s)q + |s|2)−1. (3.18)

Proof. As in the case of bounded operators, the S-resolvent equation is deduced
from the left and the right S-resolvent equation. However, we have to pay attention
to being consistent with the domains of definition of every operator that appears
in the following. We show that, for every x ∈ X, one has

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= [S−1
R (s, T )− S−1

L (q, T )]qx− s[S−1
R (s, T )− S−1

L (q, T )]x. (3.19)

We then obtain (3.18) by replacing x by (q2− 2s0q+ |s|2)−1x. For w ∈ X, the left
S-resolvent equation (3.16) implies

S−1
R (s, T )S−1

L (q, T )qw = S−1
R (s, T )TS−1

L (q, T )w + S−1
R (s, T )w.

The pseudo-resolvent Qs(T )−1 maps X onto D(T 2). Therefore the left S-resolvent
operator S−1

L (s, T ) = Qs(T )−1s−TQs(T )−1 maps X to D(T ) and so S−1
L (q, T )w ∈

D(T ). The right S-resolvent equation (3.17) yields

S−1
R (s, T )S−1

L (q, T )qw

= sS−1
R (s, T )S−1

L (q, T )w − S−1
L (q, T )w + S−1

R (s, T )w.
(3.20)

If we apply this identity with w = qx we get

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= S−1
R (s, T )S−1

L (q, T )q2x− 2s0S
−1
R (s, T )S−1

L (q, T )qx

+ |s|2S−1
R (s, T )S−1

L (q, T )x

= sS−1
R (s, T )S−1

L (q, T )qx− S−1
L (q, T )qx+ S−1

R (s, T )qx

− 2s0S
−1
R (s, T )S−1

L (q, T )qx+ |s|2S−1
R (s, T )S−1

L (q, T )x.

Applying identity (3.20) again with w = x gives

S−1
R (s, T )S−1

L (q, T )(q2 − 2s0q + |s|2)x

= s2S−1
R (s, T )S−1

L (q, T )x− sS−1
L (q, T )x+ sS−1

R (s, T )x

− S−1
L (q, T )qx+ S−1

R (s, T )qx

− 2s0sS
−1
R (s, T )S−1

L (q, T )x+ 2s0S
−1
L (q, T )x− 2s0S

−1
R (s, T )x

+ |s|2S−1
R (s, T )S−1

L (q, T )x

= (s2 − 2s0s+ |s|2)S−1
R (s, T )S−1

L (q, T )x

− (2s0 − s)[S−1
R (s, T )x− S−1

L (q, T )x]

+ [S−1
R (s, T )− S−1

L (q, T )]qx.
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The identity 2s0 = s + s implies s2 − 2s0s + |s|2 = 0 and 2s0 − s = s and hence
we obtain the desired equation (3.19). �

We want to show now the slice hyperholomorphicity of the S-resolvent opera-
tors of a closed quaternionic operator. The fact that they are differentiable follows
from the series expansion of the pseudo-resolvent that was found in Theorem 3.1.2.

Lemma 3.2.5. Let T ∈ K(X) and s ∈ ρS(T ). The left and the right S-resolvents of
T are continuously real differentiable.

Proof. The S-resolvents are sums of functions that are continuously real differen-
tiable by Lemma 3.1.4 and Lemma 3.1.5 and hence continuously real differentiable
themselves. �

Theorem 3.2.6. Let T ∈ K(X). The left S-resolvent S−1
L (s, T ) is right slice hyper-

holomorphic and the right S-resolvent S−1
R (s, T ) is left slice hyperholomorphic in

the variable s.

Proof. We consider only the case of the left S-resolvent, the other one works with
analogous arguments. We have

S−1
L (s, T ) = α(s0, s1) + jsβ(s0, s1)

with

α(s0, s1) = Qs(T )−1s0 − TQs(T ) and β(s0, s1) = −Qs(T )−1s1.

Obviously α and β satisfy the compatibility condition (2.4) and hence S−1
L (s, T )

is a right slice function in s.
Applying Lemma 3.1.4 and Lemma 3.1.5, we have

∂

∂s0
S−1
L (s, T ) =

∂

∂s0
Qs(T )−1s− ∂

∂s0
TQs(T )−1

= (2T − 2s0I)Qs(T )−2s+Qs(T )−1 −
(
2T 2 − 2s0T

)
Qs(T )−2

= (2T − 2s0I)Qs(T )−2s+
(
−T 2 + |s|2I

)
Qs(T )−2.

Since s0 and |s|2 are real, they commute with Qs(T )−2. If we apply the identities
2s0 = s+ s and |s|2 = ss, we obtain

∂

∂s0
S−1
L (s, T ) = −T 2Qs(T )−2 + 2TQs(T )−2s−Qs(T )−2s2.

For the partial derivative with respect to s1, we obtain

∂

∂s1
S−1
L (s, T ) =

∂

∂s1
Qs(T )−1s− ∂

∂s1
TQs(T )−1

= −2s1Qs(T )−2s−Qs(T )−1js + 2s1TQs(T )−2

= −2s1Qs(T )−2s− (T 2 − 2s0T + |s|2I)Qs(T )−2js + 2s1TQs(T )−2.
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We can again commute 2s0, 2s1 and |s|2 with Qs(T )−1 because they are real. By
exploiting the identities 2s0 = s+ s, −2s1 = (s− s)js and |s|2 = ss, we obtain the
formula

∂

∂s1
S−1
L (s, T ) =

(
−T 2Qs(T )−2 + 2TQs(T )−2s−Qs(T )−2(T )s2

)
js.

So the function s 7→ S−1
L (s, T ) is right slice hyperholomorphic as

1

2

(
∂

∂s0
S−1
L (s, T ) +

∂

∂s1
S−1
L (s, T )js

)
= 0. �

In Section 8.3 we will need the fact that the S-resolvent set is the maximal
domain of slice hyperholomorphicity of the S-resolvent operators such that they
do not have a slice hyperholomorphic continuation. In the complex case this is
guaranteed by the well-known estimate

‖R(z,A)‖ ≥ 1

dist(z, σ(A))
, (3.21)

where R(z,A) denotes the resolvent operator and σ(A) the spectrum of the com-
plex linear operator A. This estimate assures that ‖R(z,A)‖ → +∞ as z ap-
proaches σ(A) and in turn that the resolvent does not have any holomorphic
continuation to a larger domain, see [177,191].

In the quaternionic setting, an estimate similar to (3.21) cannot hold true.
We can for example consider the operator T = λI on a two-sided Banach space
X for some λ = λ0 + jλλ1 with λ1 > 0. Its S-spectrum σS(T ) coincides with the
sphere [λ] associated with λ and its left S-resolvent is

S−1
L (s, T ) = (λ2 − 2s0λ+ |s|2)−1(s− λ)I.

If s ∈ Cjλ , then λ and s commute so that the left S-resolvent reduces to

S−1
L (s, T ) = (s− λ)−1I

with ‖S−1
L (s, T )‖ = 1/|s − λ|. If s tends to λ in Cjλ , then dist(s, σS(T )) → 0

because λ ∈ σS(T ). But at the same time

‖S−1
L (s, T )‖ → 1/|λ− λ| = 1/(2λ1) < +∞.

Nevertheless, although (3.21) does not have a pointwise counterpart in the
quaternionic setting, we can show that the norms of the S-resolvents explode near
the S-spectrum. As it happens often in quaternionic operator theory, this requires
that we work with spectral spheres of associated quaternions instead of single
spectral values.
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Lemma 3.2.7. Let T ∈ K(X) and s ∈ ρS(T ). Then

‖Qs(T )−1‖+ ‖TQs(T )−1‖ ≥ 1

dS(s, σS(T ))
, (3.22)

where

dS(s, σS(T )) = inf
q∈σS(T )

dS(s, q)

and dS(s, x) is defined as in Lemma 3.1.2.

Proof. Set Cs := ‖Qs(T )−1‖+‖TQs(T )−1‖. If dS(s, q) < 1/Cs, then x ∈ ρS(T ) by
Lemma 3.1.2. Thus, dS(s, q) ≥ 1/Cs for any q ∈ σS(T ). If we take the infimum over
all q ∈ σS(T ), this inequality still holds true and we obtain dS(s, σS(T )) ≥ 1/Cs,
which is equivalent to (3.22). �

Lemma 3.2.8. Let T ∈ K(X) and s ∈ ρS(T ). Then√
2 ‖Qs(T )−1‖ ≤

∥∥S−1
L (s, T )

∥∥+
∥∥S−1

L (s, T )
∥∥

and in turn √
‖Qs(T )−1‖ ≤

√
2 sup
sj∈[s]

∥∥S−1
L (sj , T )

∥∥ .
Analogous estimates hold for the right S-resolvent operator.

Proof. Observe that Qs(T )−1 = Qs(T )−1 for s ∈ ρS(T ). Because of 2s0 = s + s,
we have

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )−1s− TQs(T )−1

) (
Qs(T )−1s− TQs(T )−1

)
+
(
Qs(T )−1s− TQs(T )−1

) (
Qs(T )−1s− TQs(T )−1

)
=
(
Qs(T )−1s− TQs(T )−1

)
2 (s0I − T )Qs(T )−1

and similarly

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )−1s− TQs(T )−1

)
2 (s0I − T )Qs(T )−1.

Therefore

S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

+ S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

=
(
Qs(T )−1s− TQs(T )−1

)
2 (s0I − T )Qs(T )−1

+
(
Qs(T )−1s− TQs(T )−1

)
2 (s0I − T )Qs(T )−1
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= 2 (s0I − T )Qs(T )−12 (s0I − T )Qs(T )−1

= 4(T 2 − 2s0T + s2
0I)Qs(T )−2 = 4Qs(T )−1 − 4s2

1Qs(T )−2,

which can be rewritten as

4Qs(T )−1 = S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T )

+ S−1
L (s, T )S−1

L (s, T ) + S−1
L (s, T )S−1

L (s, T ) + 4s2
1Qs(T )−2.

Thus, we can estimate

4
∥∥Qs(T )−1

∥∥
=
∥∥S−1

L (s, T )
∥∥∥∥S−1

L (s, T )
∥∥+

∥∥S−1
L (s, T )

∥∥∥∥S−1
L (s, T )

∥∥
+
∥∥S−1

L (s, T )
∥∥∥∥S−1

L (s, T )
∥∥+

∥∥S−1
L (s, T )

∥∥∥∥S−1
L (s, T )

∥∥
+ 4

∥∥s2
1Qs(T )−2

∥∥
=
(∥∥S−1

L (s, T )
∥∥+

∥∥S−1
L (s, T )

∥∥)2 +
∥∥2s1Qs(T )−1

∥∥∥∥2s1Qs(T )−1
∥∥ . (3.23)

Finally observe that

2Qs(T )−1s1js = TQs(T )−1 −Qs(T )−1(s0 − jss1)

−
(
TQs(T )−1 −Qs(T )−1(s0 + jss1)

)
= S−1

L (s, T )− S−1
L (s, T )

and hence∥∥2s1Qs(T )−1
∥∥ =

∥∥2Qs(T )−1s1js
∥∥ ≤ ∥∥S−1

L (s, T )
∥∥+

∥∥S−1
L (s, T )

∥∥ .
Combining this estimate with (3.23), we finally obtain

2
∥∥Qs(T )−1

∥∥ ≤ (∥∥S−1
L (s, T )

∥∥+
∥∥S−1

L (s, T )
∥∥)2

and hence the statement for the left S-resolvent operator. The estimates for the
right S-resolvent operator can be shown with similar computations. �

From the above results we get:

Lemma 3.2.9. Let T ∈ K(X). If (sn)n∈N is a bounded sequence in ρS(T ) with

lim
n→∞

dist(sn, σS(T )) = 0,

then

lim
n→∞

sup
s∈[sn]

∥∥S−1
L (s, T )

∥∥ = +∞ and lim
n→∞

sup
s∈[sn]

∥∥S−1
R (s, T )

∥∥ = +∞.
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Proof. First of all observe that dist(sn, σS(T ))→ 0 if and only if dS(sn, σS(T ))→
0 because σS(T ) is axially symmetric. Indeed, for any n ∈ N, there exits xn ∈
σS(T ) such that

|sn − xn| < dist(sn, σS(T )) + 1/n.

If dist(sn, σS(T ))→ 0, then |sn − xn| → 0 and hence |sn,0 − xn,0| → 0. Since the
sequence sn is bounded, the sequence xn is bounded too and we also have∣∣|sn|2 − |xn|2∣∣ ≤ |sn||sn − xn|+ |sn − xn||xn| → 0

and in turn

0 < dS(sn, σS(T )) ≤ dS(sn, xn) = max
{
|sn,0 − xn,0|,

∣∣|sn|2 − |xn|2∣∣} −→ 0.

If on the other hand dS(sn, σS(T )) tends to zero, then there exists a sequence
(xn)n∈N in σS(T ) such that

dS(sn, xn) < dS(sn, σS(T )) + 1/n

and in turn dS(sn, xn) → 0. Since σS(T ) is axially symmetric and d(sn, xn,j) =
d(sn, xn) for any xn,j ∈ [xn], we can, moreover, assume that jxn = jsn . Then

0 ≤ |sn,0 − xn,0| ≤ dS(sn, xn)→ 0.

Since sn and in turn also xn are bounded, this implies |s2
n,0 − x2

n,0| → 0, from
which we deduce that also |s2

n,1 − x2
n,1| → 0 because

0 ≤
∣∣s2
n,0 − x2

n,0 + s2
n,1 − x2

n,1

∣∣ =
∣∣|sn|2 − |xn|2∣∣ ≤ dS(sn, xn)→ 0.

Since sn,1 ≥ 0 and xn,1 ≥ 0, we conclude that sn,1 − xn,1 → 0 and, since js = jx,
also

0 < dist(sn, σS(T )) ≤ |sn − xn| =
√

(sn,0 − xn,0)2 + (sn,1 − xn,1)2 → 0.

Now assume that sn ∈ ρS(T ) with dist(sn, σS(T )) → 0. By the above con-
siderations and (3.22), we have

‖Qsn(T )−1‖+ ‖TQsn(T )−1‖ → +∞. (3.24)

We show now that every subsequence (snk)k∈N has a subsequence (snkj )j∈N such

that
lim

j→+∞
sup

s∈[snkj
]

‖S−1
L (s, T )‖ = +∞, (3.25)

which implies limn→+∞ sups∈[sn] ‖S−1
L (s, T )‖ = +∞. We consider an arbitrary

subsequence (snk)k∈N of (sn)n∈N. If this subsequence has a subsequence (snkj )j∈N
such that ‖Qsnkj (T )‖ → +∞, then Lemma 3.2.8 implies (3.25). Otherwise,

‖Qsnk (T )−1‖ ≤ C
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for some constant C > 0 and we deduce from (3.24) that ‖TQsnk (T )−1‖ → +∞.
Observe that

TQsnk (T )−1 = −1

2
S−1
L (snk , T )− 1

2
S−1
L (snk , T ) + snk,0Qsnk (T )−1,

from which we obtain the estimate∥∥∥TQsnk (T )−1
∥∥∥ ≤ sup

s∈[snk ]

∥∥S−1
L (snk , T )

∥∥+ |snk,0|
∥∥∥Qsnk (T )−1

∥∥∥
≤ sup
s∈[snk ]

∥∥S−1
L (snk , T )

∥∥+ CM

withM = supn∈N |sn| < +∞. Since the left-hand side tends to infinity as k → +∞,
we obtain that also

sup
s∈[snk ]

∥∥S−1
L (snk , T )

∥∥→ +∞

and thus, the statement holds true. The case of the right S-resolvent can be shown
with analogous arguments. �

Definition 3.2.10 (Slice hyperholomorphic continuation). Let f be a left (or right)
slice hyperholomorphic function defined on an axially symmetric open set U . A
left (or right) slice hyperholomorphic function g defined on an axially symmetric
open set U ′ with U ( U ′ is called a slice hyperholomorphic continuation of f if
f(s) = g(s) for all s ∈ U . It is called nontrivial if V = U ′ \U cannot be separated
from U , i.e. if U ′ 6= U ∪ V for some open set V with V ∩ U = ∅.

Theorem 3.2.11. Let T ∈ K(X). There does not exist any nontrivial slice hyper-
holomorphic continuation of the left or of the right S-resolvent operators.

Proof. Assume that there exists a nontrivial continuation f of S−1
L (s, T ) to an

axially symmetric open set U with ρS(T ) ( U . Then there exists a point s ∈
U ∩ ∂(ρS(T )) and a sequence sn ∈ ρS(T ) with limn→+∞ sn = s such that

lim
n→+∞

∥∥S−1
L (sn, T )

∥∥ = lim
n→+∞

‖f(sn)‖ = ‖f(s)‖ < +∞.

Moreover, sn → s as n→ +∞ and in turn

lim
n→+∞

∥∥S−1
L (sn, T )

∥∥ = lim
n→+∞

‖f(sn)‖ = ‖f(s)‖ < +∞.

From the representation formula (2.1.7) we then deduce

lim
n→+∞

sup
s∈[sn]

∥∥S−1
L (s, T )

∥∥ ≤ lim
n→+∞

∥∥S−1
L (sn, T )

∥∥+
∥∥S−1

L (sn, T )
∥∥ < +∞.

On the other hand the sequence sn is bounded and

dist(sn, σS(T )) ≤ |sn − s| → 0.
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Lemma 3.2.9 therefore implies

lim
n→+∞

sup
s∈[sn]

∥∥S−1
L (s, T )

∥∥ = +∞,

which is a contradiction. Thus, the analytic continuation (f, U) cannot exist. For
the right S-resolvent, we argue analogously. �

One could suspect that it might be possible to improve the above results by
finding an estimate of the form (3.21) for the pseudo-resolvent Qs(T )−1 instead
of the S-resolvents. This is, however, not possible as the following example shows.

Example 3.2.12. We consider for p ∈ [1,+∞) the space `p(N) of p-summable
sequences with quaternionic entries. Any sequence (λn)n∈N with λn ∈ H obviously
defines a right linear, densely defined and closed operator on `p(N) via T (y) =
(λnvn)n∈N for y = (vn)n∈N ∈ `p(N). If (λn)n∈N is unbounded, then T is unbounded.
Otherwise, we have

‖T‖ = sup
n∈N
|λn| = ‖(λn)n∈N‖∞.

Indeed,

‖T (y)‖p = p

√∑
n∈N
|λnvn|p ≤ ‖(λn)n∈N‖∞ p

√∑
n∈N
|vn|p = ‖(λn)n∈N‖∞‖y‖p

such that ‖T‖ ≤ ‖(λn)n∈N‖∞. On the other hand, with em = (δm,n)n∈N where
δm,n is the Kronecker delta,

|λm| = p

√∑
n∈N
|λnδm,n‖p = ‖T (em)‖ ≤ ‖T‖,

for any m ∈ N such that also ‖(λn)n∈N‖∞ ≤ ‖T‖. The S-spectrum of T is

σS(T ) =
⋃
n∈N

[λn] (3.26)

as one can see easily: any λn is a right eigenvalue of T since T (en) = enλn and
hence the relation ⊃ in (3.26) holds true by Theorem 3.1.6. If on the other hand
s does not belong to the right hand side of (3.26), then

δs = inf
n∈N

dist(s, [λn]) = inf
n∈N
|sjλn − λn| > 0,

where sjλn = s0 + jλns1. As

Qs(T )y =
(
(λn − sjλn )(λn − sjλn )vn

)
n∈N

and in turn

Qs(T )−1y =
(
(λn − sjλn )−1(λn − sjλn )−1vn

)
n∈N ,
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we have ‖Qs(T )−1‖ ≤ 1/δ2
s < +∞ such that s ∈ ρS(T ). Thus, the relation ⊂ in

(3.26) also holds true.

Now choose a sequence (λn)n∈N such that λn,1 → +∞ as n → +∞ and
consider the respective operator T on `p(N). For simplicity, consider for instance
λn = jn with j ∈ S. By the above considerations, the sequence sN = j(N + 1/N)
with N = 2, 3, . . . does then satisfy dist(sN , σS(T ))→ 0 as N → +∞ and

∥∥Qsn(T )−1
∥∥ = sup

n∈N

1

|λn − sN ||λn − sN |

=
1

|λN − sN ||λN − sN |
=

1

2 + 1
N2

.
(3.27)

Indeed, if n < N , then some simple computations show that the inequality

1

|λn − sN ||λn − sN |
=

1

N + 1
N − n

1

n+N + 1
N

<
1

2 + 1
N2

=
1

|λN − sN ||λN − sN |

is equivalent to 0 < N2−n2, which is obviously true. Similarly, in the case n > N ,
the inequality

1

|λn − sN ||λn − sN |
=

1

n−N − 1
N

1

n+N + 1
N

<
1

2 + 1
N2

=
1

|λN − sN ||λN − sN |

is equivalent to 4 + 1/N2 < n2 −N2, which holds true since 2 ≤ N < n.

From (3.27), we see that ‖Qsn(T )−1‖ ≤ 2 although dist(sN , σS(T )) → 0.
Consequently, the pseudo-resolvent cannot satisfy an estimate analogue to (3.21).

Also controlling the norm of TQs(T )−1 by the norm of Qs(T )−1 in order to
improve (3.22) is not possible: if we consider the operator TQsn(T )−1 in the above
example, then

TQsn(T )−1y =

(
n

n−N − 1
N

1

j
(
n+N + 1

N

)vn)
n∈N

and

‖TQsn(T )−1‖ ≥ ‖TQsn(T )−1(eN )‖ =
N2

2N + 1
N

→ +∞

shows that ‖TQsn(T )−1‖ tends to infinity although ‖Qsn(T )−1‖ stays bounded.



3.3. Closed operators with commuting components 67

3.3 Closed operators with commuting components

Closed right linear operators cannot always be decomposed into components as it
is the case for bounded operators, cf. (2.38).

However, this is possible if D(T ) is a two-sided subspace of X, that is if it is
of the form D(T ) = X0 ⊗H for some subspace X0 of XR.

If on the other hand T0, . . . , T3 are operators on XR, then we can define the
operator

T = T0 +
3∑
`=1

T`e` with D(T ) =

(
4⋂
`=0

D(T`)

)
⊗H.

Definition 3.3.1. Let X be a two-sided quaternionic Banach space. We define
KC(X) as the set of all operators T ∈ K(X) that admit a decomposition of the

form T = T0 +
∑3
`=1 T`e` with closed operators T` ∈ K(XR) such that

(i) D(T 2) =
⋂3
`,κ=0D(T`Tκ) =

⋂3
`=0D(T 2

` ),

(ii) D(T`Tκ) = D(TκT`), for `, κ ∈ {0, . . . , 3},

(iii) T`Tκy = TκT`y, for all y ∈ D(T 2) for `, κ ∈ {0, . . . , 3}.

Furthermore, we call a closed operator T a scalar operator if it is of the form
T = T0, that is if T1 = T2 = T3 = 0 or equivalently if T is the extension of a closed
operator on XR to X.

Remark 3.3.1. A scalar operator T ∈ K(X) commutes with any a ∈ H.

The S-spectrum σS(T ) of any operator T ∈ KC(X) can be characterized
in a different way that takes the commutativity of the components into account.
The corresponding characterization for bounded operators has been presented in
Section 2.3.

Definition 3.3.2. Let X be a two-sided quaternionic Banach space. For a closed
operator T = T0 +

∑3
`=1 T`e` ∈ KC(X) with commuting components, we define

T = T −
∑3
`=1 T`e` with D

(
T
)

= ∩3
`=0D(T`) = D(T ).

McIntosh and Pryde showed in [179, Theorem 3.3] that an operator T ∈ B(X)

with commuting components is invertible if and only if TT = TT =
∑3
`=0 T

2
`

is invertible. This holds true also for an unbounded operator with commuting
components as the next lemma shows.

Lemma 3.3.3. Let T ∈ KC(X). Then the following statements are equivalent.

(i) The operator T has a bounded inverse.

(ii) The operator T has a bounded inverse.

(iii) The operator TT has a bounded inverse.
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Proof. First of all, we observe that, due to D(T ) = D
(
T
)
, we have

D
(
TT
)

= {y ∈ X : Ty ∈ D(T )} = D
(
T 2
)
.

Since D
(
T 2
)

=
⋂3
`,κ=0D (T`Tκ) =

⋂3
`=0D(T 2

` ) and

TTy = T 2
0 y +

3∑
`=1

e`T0T`y −
3∑
`=1

e`T`T0y −
3∑

`,κ=1

e`eκT`Tκy =

3∑
`=0

T 2
` y

because e`eκ = −eκe` and e2
` = −1 for 1 ≤ `, κ ≤ 3 with ` 6= κ, we thus have

TT =
∑3
`=0 T

2
` . In particular, TT is a scalar operator and hence commutes with

any quaternion.

If TT is invertible, then
(
TT
)−1

=
(∑3

`=0 T
2
`

)−1
commutes with each of

the components T` and it also commutes with the imaginary units e`. Hence, it

commutes with T and so the inverse T−1 is given by T−1 = T
(
TT
)−1

because(
T
(
TT
)−1
)
Ty = TT

(
TT
)−1

y, ∀y ∈ D(T )

and
T
(
T
(
TT
)−1
)
y =

(
TT
) (
TT
)−1

y = y, ∀y ∈ X.

Consequently, the invertibility of TT implies the invertibility of T .
If on the other hand T is invertible and T−1 = S0 +

∑3
κ=1 Sκeκ ∈ B(X),

then

I|D(T ) = T−1T =

(
S0 +

3∑
κ=1

Sκeκ

)(
T0 +

3∑
`=1

T`e`

)

= S0T0 −
3∑
`=1

S`T` + (S2T3 − S3T2)e1

+ (S3T1 − S1T3)e2 + (S1T2 − S2T1)e3,

from which we conclude that

I|D(T ) = S0T0 −
3∑
`=1

S`T` and S`Tκ − SκT` = 0, 1 ≤ ` < κ ≤ 3.

Therefore

S T =

(
S0 −

3∑
`=1

S`e`

)(
T0 −

3∑
`=1

T`e`

)

= S0T0 −
3∑
`=1

S`T` + (S2T3 − S3T2)e1

+ (S3T1 − S1T3)e2 + (S1T2 − S2T1)e3 = I|D(T ).
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Similarly, we see that TS = I also implies T S = I. Hence, the invertibility of

T implies the invertibility of T and T
−1

= T−1. Thus, if T is invertible, we have(
TT
)−1

= T
−1
T−1 ∈ B(X). Altogether, we find that T is invertible if and only if

TT = TT is invertible. �

Theorem 3.3.4. Let T = T0 +
∑3
`=1 T`e` ∈ KC(X) with dense domain. If we set

Qc,s(T ) = s2I − 2sT0 + TT ,

then
ρS(T ) =

{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
(3.28)

and

S−1
L (s, T ) = (sI − T )Qc,s(T )

S−1
R (s, T ) = Qc,s(T )−1s−

3∑
`=0

T`Qc,s(T )−1e`.
(3.29)

Proof. Since T and T commute, we have Qs(T ) = Qs(T ) and Qc,s(T ) = Qc,s(T ).
For y ∈ D(T 4) = D (Qc,s(T )Qc,s(T )), we thus find

Qc,s(T )Qc,s(T )y = (s2I − 2sT0 + TT )(s2I − 2sT0 + TT )y

= |s|4Iy − 2s|s|2T0y + s2TTy

− 2|s|2T0sy + 4|s|2T 2
0 y − 2sT0TTy

+ s2TTy − 2sT0TTy + (TT )2y

= |s|4Iy − 2s0|s|2Ty − 2s0|s|2Ty + 2Re(s2)TTy

+ 4|s|2T 2
0 y − 2s0T

2Ty − 2s0TT
2
y + T 2T

2
y,

where we used in the last identity that 2s0 = s + s, that |s|2 = ss, and that
2T0y = Ty + Ty. As

2Re(s2)TTy = 2s2
0TTy − 2s2

1TTy

and

4|s|2T 2
0 y = |s|2(T + T )2y = |s|2T 2y + 2s2

0TTy + s2
1TTy + |s|2T 2

y,

we further find

Qc,s(T )Qc,s(T )y = |s|2(|s|2I − 2s0T + T 2)y

− 2s0T (|s|2I − 2s0T + T 2)y

+ T
2
(|s|2I − 2s0T + T 2)y = Qs(T )Qs(T )y.
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By the above arguments, we hence have

Qc,s(T )−1 ∈ B(X)⇐⇒
(
Qc,s(T )Qc,s(T )

)−1

∈ B(X)

⇐⇒
(
Qs(T )Qs(T )

)−1

∈ B(X)⇐⇒ Qs(T )−1 ∈ B(X)

and hence (3.28) holds true.
If y ∈ D(T 2) = D(Qc,s(T )) with Qc,s(T ) ∈ D(T ), we have

(sI − T )Qc,s(T )y

= (sI − T )
(
s2I − 2sT0 + TT

)
y

= |s|2sIy − Ts2y − 2|s|2T0y + 2TT0sy + sTTy − T 2Ty

= |s|2sIy − Ts2y − |s|2Ty − |s|2Ty + T 2sy + TTsy + sTTy − T 2Ty

= |s|2
(
sI − T

)
y − 2s0T

(
sI − T

)
y + T 2

(
sI − T

)
y

=
(
T 2 − 2s0T + |s|2I

) (
sI − T

)
y = Qs(T )

(
sI − T

)
y.

For any x ∈ D(T ), we can set y = Qc,s(T )−1x ∈ D(T 2). If we apply the operator
Qs(T )−1 to the above identity from the right, we then obtain

S−1
L (s, T )x = Qs(T )−1(sI − T )x =

(
sI − T

)
Qc,s(T )−1x

and a density argument shows that (3.29) holds true for the left S-resolvent oper-
ator. Similar computations show also the identity for the right S-resolvent equa-
tion. �

3.4 The S-functional calculus and its properties

We want to define the S-functional calculus for an arbitrary operator in K(X)
with nonempty S-resolvent set via the slice hyperholomorphic Cauchy integral.
The domain of integration is thereby the boundary of a suitable slice Cauchy
domain U in one of the complex planes Cj , for j ∈ S. In order for the S-functional
calculus to be well-defined, we have to show that these integrals are independent
of the choice of the slice Cauchy domain U and of the complex plane Cj . We follow
the strategy known from the bounded case.

Theorem 3.4.1. Let T ∈ K(X) with ρS(T ) 6= ∅. If f ∈ SHL(σS(T ) ∪ {∞}), then
there exists an unbounded slice Cauchy domain U with σS(T ) ⊂ U and U ⊂ D(f).
The integral

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) (3.30)

defines an operator in B(X) and this operator is the same for any choice of the
imaginary unit j ∈ S and for any choice of the slice Cauchy domain U that satisfies
the above conditions.
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Similarly, if f ∈ SHR(σS(T ) ∪ {∞}), then there exists an unbounded slice
Cauchy domain U such that σS(T ) ⊂ U and U ⊂ D(f). Again, the integral

1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

defines an operator in B(X) and this operator is the same for any choice of the
imaginary unit j ∈ S and for any choice of the slice Cauchy domain U that satisfies
the above conditions.

Proof. Let f ∈ SHL(σS(T ) ∪ {∞}) and q ∈ ρS(T ). Since ρS(T ) is open, there
exists a closed ball Bε(q) ⊂ ρS(T ) and since ρS(T ) is axially symmetric we have[

Bε(q)
]

= {s = s0 + jss1 ∈ H : (s0 − q0)2 + (s1 − q1)2 ≤ ε} ⊂ ρS(T ).

The existence of the slice Cauchy domain U follows from Theorem 2.1.31 applied

with C = σS(T ) and O = D(f) ∩
(
H \Bε(q)

)
.

The boundary of U in Cj consists of a finite set of closed piecewise dif-
ferentiable Jordan curves and so it is compact. Hence, (3.30) is the integral of a
bounded integrand over a compact domain. Thus, it converges in B(X) and defines
an operator in B(X).

We now show the independence of the slice Cauchy domain. Consider first
the case of another unbounded slice Cauchy domain U ′ such that σS(T ) ⊂ U ′ and
U ′ ⊂ D(f). Let us for the moment furthermore assume that U ′ ⊂ U . Then the
set W = U \ U ′ is a bounded slice Cauchy domain and

∂(W ∩ Cj) = ∂(U ∩ Cj) ∪
(
− ∂(U ′ ∩ Cj)

)
,

where −∂(U ′ ∩ Cj) denotes the inversely orientated boundary of U ′ in Cj . More-
over, the function s 7→ S−1

L (s, T ) is right and the function s 7→ f(s) is left slice
hyperholomorphic on W . Thus, Theorem 2.1.20 implies

0 =
1

2π

∫
∂(W∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)− 1

2π

∫
∂(U ′∩Cj)

S−1
L (s, T ) dsj f(s).

If U ′ is not contained in U , then U ∩U ′ is an axially symmetric open set that
contains σS(T ) such that ∂(U ∩ U ′) is nonempty and bounded. Theorem 2.1.31
implies the existence of a third slice Cauchy domain W such that σS(T ) ⊂W and
W ⊂ U ∩ U ′. By the above arguments, the choice of any of them yields the same
operator in (3.30).

Finally, we consider another imaginary unit i ∈ S and choose another un-
bounded slice Cauchy domain W with σS(T ) ⊂ W and W ⊂ U . By the above
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arguments and the Cauchy formulae, we have

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) =

1

2π

∫
∂(W∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

(2π)2

∫
∂(W∩Cj)

S−1
L (s, T ) dsj

(
f(∞) +

∫
∂(U∩Ci)

S−1
L (q, s) dqi f(q)

)

=
1

(2π)2

∫
∂(W∩Cj)

S−1
L (s, T ) dsj f(∞)

− 1

(2π)2

∫
∂(U∩Ci)

∫
∂(W c∩Cj)

S−1
L (s, T ) dsj S

−1
L (q, s) dqi f(q),

where Fubini’s theorem allows us to exchange the order of integration in the last
equation because we integrate a bounded function over a finite domain. The set
W c is a bounded slice Cauchy domain and the left S-resolvent is right slice hyper-
holomorphic in s on W c . Theorem 2.1.20 implies

1

(2π)2

∫
∂(W∩Cj)

S−1
L (s, T ) dsj f(∞)

= − 1

(2π)2

∫
∂(W c∩Cj)

S−1
L (s, T ) dsj f(∞) = 0.

Since any q ∈ ∂(U ∩ Cj) belongs to W c by our choices of U and W and since
S−1
L (q, s) = −S−1

R (s, q), we deduce from the Cauchy formulae

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)

=
1

2π

∫
∂(U∩Ci)

(
1

2π

∫
∂(W c∩Cj)

S−1
L (s, T ) dsj S

−1
R (s, q)

)
dqi f(q)

=
1

2π

∫
∂(U∩Ci)

S−1
L (q, T ) dqi f(q). �

Definition 3.4.2. Let T ∈ K(X) with ρS(T ) 6= ∅. For any f ∈ SHL(σS(T )∪{∞}),
we define

f(T ) := f(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), (3.31)

and for f ∈ SHR(σS(T ) ∪ {∞}), we define

f(T ) := f(∞)I +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), (3.32)

where j ∈ S is arbitrary and U is any slice Cauchy domain as in Theorem 3.4.1.
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Remark 3.4.1. If ρS(T )∩R 6= ∅, then our approach is consistent with the approach
that defines the S-functional calculus of an unbounded operator by suitably trans-
forming both the function and the operator and then applying the S-functional
calculus for bounded operators. Precisely, one chooses α ∈ ρS(T ) ∩ R and sets
Φα(s) = (s − α)−1. Then A := (T − αI)−1 = S−1

R (α, T ) is a bounded oper-
ator and formally corresponds to Φα(T ). Furthermore, a function f belongs to
SHL(σS(T ) ∪ {∞}) or SHR(σS(T ) ∪ {∞}) if and only if f ◦ Φ−1

α belongs to
SHL(σS(A)) (resp. SHR(σS(A))). One then defines

f(T ) := f ◦ Φ−1
α (A).

This approach was presented in [57, 93]. In the complex setting, it is equivalent
to the direct approach via a Cauchy integral, which was developed above. In the
quaternionic setting it, however, requires that ρS(T )∩R 6= ∅, which is not always
true.

The S-functional calculus for closed operators is furthermore consistent with
the S-functional calculus for bounded operators. Since we do not require connect-
edness of D(f) in Definition 3.4.2, we might extend f ∈ SHL(σS(T )) for bounded
T to a function in SHL(σS(T )∪{∞}), for instance by setting f(s) = c with c ∈ H
on H\Br(0). We can then use the unbounded slice Cauchy domain (H\Br(0))∪U in
(3.31). Since the left S-resolvent is then right slice hyperholomorphic on H\Br(0)
and f(s) is left slice hyperholomorphic on this set, we obtain

f(T ) = f(∞)I +
1

2π

∫
−∂(Br(0)∩Cj)

f(s) dsj S
−1
L (s, T )

+
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
L (s, T )

=
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
L (s, T )

because Theorem 2.1.20 implies that the sum of f(∞)I and the integral over the
boundary of Br(0) vanishes.

Example 3.4.3. Let T ∈ K(X) with ρS(T ) 6= ∅. Consider the left slice hyperholo-
morphic function f(s) = a for some a ∈ H and choose an arbitrary unbounded
slice Cauchy domain U with σS(T ) ⊂ U and an imaginary unit j ∈ S. Then

f(T ) = f(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) = aI, (3.33)

because f(∞) = a and the integral vanishes by Theorem 2.1.20 as the left S-
resolvent is right slice hyperholomorphic in s on a superset of H \ U and vanishes
at infinity. An analogue argument shows that also f(T ) = Ia if f is considered
right slice hyperholomorphic.
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The following algebraic properties of the S-functional calculus follow imme-
diately from the left and right linearity of the integral.

Corollary 3.4.4. Let T ∈ K(X) with ρS(T ) 6= ∅.

(i) If f, g ∈ SHL(σS(T ) ∪ {∞}) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (fa)(T ) = f(T )a.

(ii) If f, g ∈ SHR(σS(T ) ∪ {∞}) and a ∈ H, then

(f + g)(T ) = f(T ) + g(T ) and (af)(T ) = af(T ).

Theorem 3.4.1 ensures that the S-functional calculus for left slice hyperholo-
morphic functions and the S-functional calculus for right slice hyperholomorphic
functions are well-defined in the sense that they are independent of the choices
of the imaginary unit j ∈ S and the slice Cauchy domain U . Another important
question is whether they are consistent. We show now that this is the case, if the
function f is intrinsic.

Lemma 3.4.5. Let T ∈ K(X) with ρS(T ) 6= ∅ and let f ∈ N (σS(T ) ∪ {∞}).
Furthermore, consider a slice Cauchy domain U such that σS(T ) ⊂ U and U ⊂
D(f) and some imaginary unit j ∈ S. If γ1, . . . , γN is the part of ∂(U ∩ Cj) that
lies in C+

j as in Definition 2.1.34, then∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

=
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)

)
Qγ`(t)(T )−1 dt

−
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)

)
TQγ`(t)(T )−1 dt.

(3.34)

Proof. We have∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

=
N∑
`=1

∫
γ`

f(s) dsj S
−1
R (s, T ) +

N∑
`=1

∫
−γ`

f(s) dsj S
−1
R (s, T )

=
N∑
`=1

∫ 1

0

f(γ`(t))(−j)γ′`(t)
(
γ`(t)− T

)
Qγ`(t)(T )−1 dt

+
N∑
`=1

∫ 1

0

f
(
γ`(1− t)

)
jγ′`(1− t)(γ`(1− t)− T )Q

γ`(1−t)(T )−1 dt.
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Since f(s) = f(s) as f is intrinsic and Qs(T )−1 = Qs(T )−1 for s ∈ ρS(T ), we get,
after a change of variables in the integrals of the second sum,∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T )

=

N∑
`=1

∫ 1

0

f(γ`(t))(−j)γ′`(t)
(
γ`(t)− T

)
Qγ`(t)(T )−1 dt

+
N∑
`=1

∫ 1

0

f(γ`(t))(−j)γ′`(t)(γ`(t)− T )Qγ(t)(T )−1 dt

=
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)

)
Qγ`(t)(T )−1 dt

−
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)

)
TQγ`(t)(T )−1 dt. �

Theorem 3.4.6. Let T ∈ K(X) with ρS(T ) 6= ∅. If f ∈ N (σS(T ) ∪ {∞}), then

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s) =

1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ),

for any j ∈ S and any slice Cauchy domain as in Theorem 3.4.1.

Proof. Fix U and j ∈ S, let γ1, . . . γN be the part of ∂(U ∩Cj) that lies in C+
j and

write the integral involving the right S-resolvent as an integral over these paths as
in (3.34). Any operator commutes with real numbers and f(γ`(t)), γ

′
`(t) and γ`(t)

commute mutually since they all belong to the same complex plane Cj . Hence,∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

=
N∑
`=1

∫ 1

0

Qγ(t)(T )−12Re
(
γ`(t)γ

′
`(t)(−j)f(γ`(t))

)
dt

−
N∑
`=1

∫ 1

0

TQγ`(t)(T )−12Re
(
γ′`(t)(−j)f(γ`(t))

)
dt

=
N∑
`=1

∫ 1

0

(
TQγ`(t)(T )−1 −Qγ`(t)(T )−1γ`(t)

)
γ′`(t)(−j)f(γ`(t)) dt

+
N∑
`=1

∫ 1

0

(
TQ

γ`(t)
(T )−1 −Q

γ`(t)
(T )−1γ`(t)

)
γ′`(t)jf(γ`(t)) dt
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=
N∑
`=1

∫
γ`

S−1
L (s, T ) dsj f(s) +

N∑
`=1

∫
−γ`

S−1
L (s, T ) dsj f(s)

=

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s). �

Since f(∞) = lims→∞ f(s) ∈ R as f(s) ∈ R for s ∈ R if f is intrinsic, we can
rephrase the above result as,

Corollary 3.4.7. Let T ∈ K(X) with ρS(T ) 6= ∅. The S-functional calculus for
left slice hyperholomorphic functions and the S-functional calculus for right slice
hyperholomorphic functions agree for intrinsic functions: if f ∈ N (σS(T )∪{∞}),
then (3.31) and (3.32) give the same operator.

Remark 3.4.2. For intrinsic functions, slice hyperholomorphic Cauchy integrals of
the form (3.31) and (3.32) are always equivalent. We have shown this only for the
S-functional calculus, but with the same technique one can show this equivalence
also for the H∞-functional calculus or for fractional powers of quaternionic linear
operators. Since the technique for showing this equivalence is the same in any
situation, we will use it without proving it explicitly at every occurrence.

We have shown that the two versions of the S-functional calculus are consis-
tent for intrinsic functions. However, there exist functions that are both left and
right slice hyperholomorphic, but not intrinsic. We want to clarify the relation
between the versions of the S-functional calculus for such functions and we start
by characterising functions of this type.

Recall that a function f on U is called locally constant if every point q ∈ U
has a neighborhood Bq ⊂ U such that f is constant on U . A locally constant
function f is constant on every connected subset of its domain. Thus, since every
sphere [q] is connected, the function f is constant on every sphere if its domain U
is axially symmetric, i.e., it is of the form f(q) = c(u, v) for q = u+ jv, where c is
locally constant on an appropriate subset of R2. Therefore, f can be considered a
left and a right slice function and it is even left and right slice hyperholomorphic
because the partial derivatives of a locally constant function vanish.

Lemma 3.4.8. A function f is both left and right slice hyperholomorphic if and
only if f = c + f̃ , where c is a locally constant slice function and f̃ is intrinsic
slice hyperholomorphic.

Proof. Obviously any function that admits a decomposition of this type is both
left and right slice hyperholomorphic. Assume on the other hand that f is left and
right slice hyperholomorphic such that for q = u+ jv

f(q) = f0(u, v) + jf1(u, v)

and

f(q) = f̂0(u, v) + f̂1(u, v)j.
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The compatibility condition (2.4) implies

f0(u, v) =
1

2
(f(q) + f(q)) = f̂0(u, v),

from which we deduce jf1(u, v) = f(qj)− f0(u, v) = f̂1(u, v)j with qj = u+ jv for
any j ∈ S. Hence, we have

jf1(u, v)j−1 = f̂1(u, v).

If we choose j such that f1(u, v) ∈ Cj , then j and f1(u, v) commute and we obtain

f1(u, v) = f̂1(u, v). We further conclude that f1(u, v) commutes with every j ∈ S
because

jf1(u, v) = f̂1(u, v)j = f1(u, v)j.

This implies that f1(u, v) is real.
Since f1 takes real values, its partial derivatives ∂

∂uf1(u, v) and ∂
∂vf1(u, v)

are real-valued too. Thus, since f0 and f1 satisfy the Cauchy–Riemann equations
(2.5), the partial derivatives of f0 also take real-values.

Now define f̃0(u, v) = Re(f0(u, v)) and f̃1(u, v) = f1(u, v) and set f̃(q) =
f̃0(u, v) + jf̃1(u, v) and c(q) = f(q) − f̃(q) = Im(f0(u, v)) for q = u + jv. Obvi-
ously, f̃0 and f̃1 satisfy the compatibility condition (2.4). Moreover, the partial
derivatives of f̃0 and f̃1 coincide with the partial derivatives of f0 (resp. f1). For
f1 = f̃1 this is obvious and for f̃0 this follows from

∂

∂ν
f̃0(u, v) =

∂

∂ν
Re(f0(u, v)) = Re

(
∂

∂ν
f0(u, v)

)
=

∂

∂ν
f0(u, v)

for ν ∈ {u, v} since ∂
∂ν f0(u, v) is real-valued by the above arguments. We conclude

that f̃0 and f̃1 satisfy the Cauchy–Riemann equations (2.5) because f0 and f1

satisfy them. Therefore, f̃ is a left slice hyperholomorphic function with real-
valued components, thus intrinsic.

It remains to show that c is locally constant. Since c(q) = c(u + jv) =
Im(f0(u, v)) depends only on u and v but not on the imaginary unit j, it is con-
stant on every sphere [q] ⊂ U . Moreover, as the sum of two left slice hyperholo-
morphic functions, it is left slice hyperholomorphic and thus, its restriction cj to
any complex plane Cj is a H-valued left holomorphic function. But

c′j(q) =
∂

∂q0
cj(q) =

∂

∂q0
f(q)− ∂

∂q0
f̃(q) = 0, q ∈ U ∩ Cj

and hence c is locally constant on U∩Cj . If q = u+jv ∈ U , we can therefore find a
neighborhood Bj of q in U ∩Cj such that cj is constant on Bj . Since c is constant
on every sphere, it is even constant on the axially symmetric hull B = [Bj ] of Bj ,
which is a neighborhood of q in U . �
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Corollary 3.4.9. Let T ∈ K(X) with ρS(T ) 6= ∅ and let f be both left and right
slice hyperholomorphic on σS(T ) and at infinity. If D(f) is connected, then (3.31)
and (3.32) give the same operator.

Proof. By applying Lemma 3.4.8 we obtain a decomposition f = c + f̃ of f into
the sum of a locally constant function c and an intrinsic function f̃ . Since D(f)
is connected, c is a constant function. Thus, Corollary 3.4.7 and Example 3.4.3
imply

f(∞)I +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

= c

(
I +

1

2π

∫
∂(U∩Cj)

dsj S
−1
R (s, T )

)

+ f̃(∞)I +
1

2π

∫
∂(U∩Cj)

f̃(s) dsj S
−1
R (s, T )

= cI + f̃(T ) = Ic+ f̃(T )

=

(
I +

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj

)
c

+ f̃(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f̃(s)

= f(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s),

where U and j ∈ S are chosen as in Definition 3.4.2. �

Remark 3.4.3. As we have shown, the two versions of the S-functional calculus are
consistent for intrinsic slice hyperholomorphic functions and for functions defined
on connected sets. However, in general, this is not true. If D(f) is not connected,
then c is only locally constant, i.e., it is of the form c(s) =

∑
` χ∆`

(s)c` with
c` ∈ H, where the ∆` are disjoint axially symmetric sets. The function χ∆`

(s) is
the characteristic function of ∆`, which is obviously intrinsic. The functional calculi
for left and right slice hyperholomorphic functions yield then c(T ) =

∑
` χ∆`

(T )c`
and c(T ) =

∑
` c`χ∆`

(T ), respectively. These two operators coincide only if the
operators χ∆`

(T ) commute with the scalars c`. As we will see in Section 3.7, the
operators χ∆`

(T ) are projections onto invariant subspaces of the operator T . Since
the operator T is right linear, its invariant subspaces are right subspaces of X.
But if a projection χ∆`

(T ) commutes with any scalar, then

ay = aχ∆`
(T )y = χ∆(T )ay ∈ χ∆`

(T )X,

for any y ∈ χ∆`
(T )X and any a ∈ H. Thus, χ∆`

(T )X is also a left-sided and
therefore, even a two-sided subspace of X. In general, this is not true: the in-
variant subspaces obtained from spectral projections are only right-sided. Hence,
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the projections χ∆`
(T ) do not necessarily commute with any scalar and it might

happen that ∑
`

χ∆`
(T )c` 6=

∑
`

c`χ∆`
(T ),

i.e., the two functional calculi give different operators for the same function. An
explicit example for this situation is given in Example 3.7.9.

Finally, we show that the S-functional calculus admits, for intrinsic functions,
a representation that only depends on the right linear structure of the space. In
particular, this representation also shows the compatibility of the S-functional
calculus and its classical counterpart form the theory of complex linear operators,
the Riesz–Dunford functional calculus for holomorphic functions.

Definition 3.4.10. Let T ∈ K(X). We define the X-valued function

Rs(T ; y) = Qs(T )−1ys− TQs(T )−1y ∀y ∈ X, s ∈ ρS(T ).

Remark 3.4.4. By Theorem 3.1.8, the mapping y 7→ Rs(T ; y) coincides with the
resolvent of T at s applied to y if T is considered a Cjs-linear operator on Xjs = X.

Theorem 3.4.11. Let T ∈ K(X) be a closed operator on a two-sided quaternionic
Banach space X with ρS(T ) 6= ∅ and let f ∈ N (σSX(T ))). For any j ∈ S and any
unbounded slice Cauchy domain U with σS(T ) ⊂ U and U ⊂ D(F ), the operator
f(T ) obtained via the S-functional calculus satisfies

f(T )y = yf(∞) +

∫
∂(U∩Cj)

Rz(T ; y)f(z) dz
−j
2π

∀y ∈ X. (3.35)

Proof. Let U be a slice Cauchy domain such that σS(T ) ⊂ U and U ⊂ D(f). We
then have for any j ∈ S and any y ∈ X that

f(T )y = f(∞)y +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )y. (3.36)

If γ` : [0, 1] → C+
j , ` = 1, . . . N , is the part of ∂(U ∩ Cj) that lies in C+

j as in
Definition 2.1.34, then we have by Lemma 3.4.5 that∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T )y

=
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)y

)
Qγ`(t)(T )−1y dt

−
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)

)
TQγ`(t)(T )−1y dt.

(3.37)
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Since Qγ`(t)(T )−1y and TQγ`(t)(T )−1y commute with real numbers, we further-
more have∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T )y

=
N∑
`=1

∫ 1

0

Qγ`(t)(T )−1y 2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)

)
dt

−
N∑
`=1

∫ 1

0

TQγ`(t)(T )−1y 2Re
(
f(γ`(t))(−j)γ′`(t)

)
dt

=
N∑
`=1

∫ 1

0

(
Qγ`(t)(T )−1yγ`(t)− TQγ`(t)(T )−1y

)
f(γ`(t))γ

′
`(t) dt(−j)

−
N∑
`=1

∫ 1

0

(
Qγ`(t)(T )−1yγ`(t)− TQγ`(t)(T )−1y

)
f(γ`(t))γ′`(t) dt(−j).

Recalling that f(x) = f(x) because f is intrinsic, that Qs(T )−1 = Qs(T )−1 for
any s ∈ ρS(T ) and that (−γ`)(t) = −γ′`(1− t), we thus find∫

∂(U∩Cj)
f(s) dsj S

−1
R (s, T )y

=
N∑
`=1

∫
γ`

(
Qz(T )−1yz − TQz(T )−1y

)
f(z) dz(−j)

+
N∑
`=1

∫
−γ`

(
Qz(T )−1yz − TQz(T )−1y

)
f(z) dt(−j)

=

∫
∂(U∩Cj)

(
Qz(T )−1yz − TQz(T )−1y

)
f(z) dz(−j)

=

∫
∂(U∩Cj)

Rz(T ; y)f(z) dz(−j).

Finally, observe that f(∞) = lims→∞ f(s) ∈ R because, as an intrinsic function,
f takes only real values on the real line. Since any vector commutes with real
numbers, we can hence rewrite (3.36) as

f(T )y = yf(∞) +

∫
∂(U∩Cj)

Rz(T ; y)f(z) dz
(−j)
2π

. �

Remark 3.4.5. We point out that (3.35) contains neither the multiplication of vec-
tors with non-real scalars from the left nor the multiplication of any operator with
a non-real scalar. Hence, this expression is independent from the left multiplica-
tion defined on the X, cf. Remark 2.2.7. Instead, it shows that the operator f(T )
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can be expressed in terms of only the right linear structure on the space X if f is
intrinsic.

Remark 3.4.6. Theorem 3.4.11 shows that complex and quaternionic operator the-
ory are consistent. Indeed, we can also obtain f(T ) by the following procedure: we
choose j ∈ S and consider the complex numbers as embedded into the quaternions
by identifying them with the plane Cj determined by j. The quaternionic Banach
space X is then also a complex Banach space over Cj and we denote the space X
considered as a complex Banach space over Cj by Xj . Any operator T ∈ K(X)
is then also a complex linear operator on Xj . We have σCj (T ) = σS(T ) ∩ Cj and
Rs(T ; y) is for s ∈ ρCj = ρS(T ) ∩ Cj exactly the resolvent of T as a complex
linear operator on Xj , cf. Theorem 3.1.8. If f ∈ N (σS(T )), then fj = f |Cj is a
holomorphic function on σCj (T ) and the right-hand side of (3.35) is hence the
formula that determines fj(T ) in terms of the Riesz-Dunford functional calculus
for T on Xj . (A similar relation also holds for other functional calculi such as the
Phillips functional calculus or the continuous functional calculus.) The converse
is however not true: if fj is an arbitrary holomorphic function on a neighborhood
of σCj (T ) in Cj , then fj(T ) obtained by the Riesz–Dunford functional calculus
does not coincide with the operator f(T ) obtained by applying the S-functional
calculus to f = extL(fj). This is only true if f is an intrinsic function. Indeed,
fj(T ) is otherwise only Cj-linear, but not necessarily quaternionic linear.

3.5 The product rule and polynomials in T

One of the most important properties of the S-functional calculus is the product
rule.

Theorem 3.5.1 (Product Rule). Let T ∈ K(X) with ρS(T ) 6= ∅. If f ∈ N (σS(T )∪
{∞}) and g ∈ SHL(σS(T ) ∪ {∞}), then

(fg)(T ) = f(T )g(T ). (3.38)

Similarly, if f ∈ SHR(σS(T ) ∪ {∞}) and g ∈ N (σS(T ) ∪ {∞}), then the product
rule (3.38) also holds true.

Proof. Let f ∈ N (σS(σS(T ) ∪ {∞}) and let g ∈ SHL(σS(T ) ∪ {∞}). By The-
orem 3.4.1, there exist unbounded slice Cauchy domains Up and Us such that
σS(T ) ⊂ Up and Up ⊂ Us and Us ⊂ D(f) ∩D(g). The subscripts s and p indicate
the respective variable of integration in the following computation. Moreover, we
use the notation [∂O]j := ∂(O ∩ Cj) for an axially symmetric set O in order to
obtain compacter formulas.

Recall that the operator f(T ) can, by Theorem 3.4.6, also be represented
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using the right S-resolvent operator and hence

f(T )g(T ) =

(
f(∞)I +

1

2π

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

)

·

(
g(∞)I +

1

2π

∫
[∂Up]j

S−1
L (p, T ) dpj g(p)

)
.

For the product of the integrals, the S-resolvent equation gives us that∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Up]j

S−1
L (p, T ) dpj g(p)

=

∫
[∂Us]j

∫
[∂Up]j

f(s) dsj S
−1
R (s, T )S−1

L (p, T ) dpj g(p)

=

∫
[∂Us]j

∫
[∂Up]j

f(s) dsj S
−1
R (s, T )p(p2 − 2s0p+ |s|2)−1 dpj g(p)

−
∫

[∂Us]j

∫
[∂Up]j

f(s) dsj S
−1
L (p, T )p(p2 − 2s0p+ |s|2)−1 dpj g(p)

−
∫

[∂Us]j

∫
[∂Up]j

f(s) dsj sS
−1
R (s, T )(p2 − 2s0p+ |s|2)−1 dpj g(p)

+

∫
[∂Us]j

∫
[∂Up]j

f(s) dsj sS
−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpj g(p).

For the sake of readability, let us denote these last four integrals by I1, . . . I4.
If r > 0 is large enough, then H \ Us is entirely contained in Br(0). In

particular, W := Br(0)∩Up is then a bounded slice Cauchy domain with boundary

∂(W ∩ Cj) = ∂(Up ∩ Cj) ∪ ∂(Br(0) ∩ Cj).

From Lemma 2.2.24, we deduce

I1 =

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Up]j

p(p2 − 2s0p+ |s|2)−1 dpj g(p)

=

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂W ]j

p(p2 − 2s0p+ |s|2)−1 dpj g(p)

−
∫

[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Br(0)]j

p(p2 − 2s0p+ |s|2)−1 dpj g(p)

= −
∫

[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Br(0)]j

p(p2 − 2s0p+ |s|2)−1 dpj g(p),

where the last equality follows from the Cauchy integral theorem since, by our
choice of Us and Up, the function p 7→ p(p2− 2s0p+ |s|2)−1 is left slice hyperholo-
morphic and the function p 7→ g(p) is right slice hyperholomorphic on W . If we
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let r tend to +∞ and apply Lebesgue’s theorem in order to exchange limit and
integration, the inner integral tends to 2πg(∞) and hence

I1 = −2π

(∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

)
g(∞).

We also have

−I2 + I4 =

∫
[∂Us]j

∫
[∂Up]j

f(s) dsj
(
sS−1

L (p, T )− pS−1
L (p, T )

)
· (p2 − 2s0p+ |s|2)−1 dpj g(p)

and applying Fubini’s theorem allows us to change the order of integration. If we
now set W = Br(0)∩Us with r sufficiently large, we obtain, as before, a bounded
slice Cauchy domain with ∂(W ∩ Cj) = ∂(Us ∩ Cj) ∪ ∂(Br(0) ∩ Cj). Applying
Lemma 2.2.24 with B = S−1

L (p, T ), we find

−I2 + I4 =

∫
[∂Up]j

∫
[∂W ]j

f(s) dsj
(
sS−1

L (p, T )− pS−1
L (p, T )

)
·

· (p2 − 2s0p+ |s|2)−1 dpj g(p)

−
∫

[∂Up]j

∫
[∂Br(0)]j

f(s) dsj
(
sS−1

L (p, T )− pS−1
L (p, T )

)
·

· (p2 − 2s0p+ |s|2)−1 dpj g(p)

= 2π

∫
[∂Up]j

S−1
L (p, T )f(p) dpj g(p)

−
∫

[∂Up]j

∫
[∂Br(0)]j

f(s) dsj sS
−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpj g(p)

−
∫

[∂Up]j

∫
[∂Br(0)]j

f(s) dsj pS
−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpj g(p).

Observe that the third integral tends to zero as r → +∞. For the second one, by
applying Lebesgue’s theorem, we obtain∫

[∂Up]j

∫
[∂Br(0)]j

f(s) dsj sS
−1
L (p, T )(p2 − 2s0p+ |s|2)−1 dpj g(p)

=

∫
[∂Up]j

(∫ 2π

0

f(reiφ)r2S−1
L (p, T )(p2 − 2r cos(φ)p+ r2)−1 dφ

)
dpj g(p)

r→+∞−→ 2πf(∞)

∫
[∂Up]j

S−1
L (p, T ) dpj g(p).
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Since f is intrinsic, f(p) commutes with dpj , and hence

−I2 + I4 = 2π

∫
[∂Up]j

S−1
L (p, T ) dpj f(p)g(p)

− 2πf(∞)

∫
[∂Up]j

S−1
L (p, T ) dpj g(p).

Finally, we consider the integral I3. If we set again W = Br(0) ∩ Up with r
sufficiently large, then

−I3 = −
∫

[∂Us]j

∫
[∂W ]j

f(s) dsj sS
−1
R (s, T )(p2 − 2s0p+ |s|2)−1 dpj g(p)

+

∫
[∂Us]j

∫
[∂Br(0)]j

f(s) dsj sS
−1
R (s, T )(p2 − 2s0p+ |s|2)−1 dpj g(p).

By our choice of Us and Up, the functions p 7→ (p2−2s0p+|s|2)−1 and p 7→ g(p) are
left (resp. right) slice hyperholomorphic on W . Hence, Cauchy’s integral theorem
implies that the first integral equals zero. Letting r tend to infinity, we can apply
Lebesgue’s theorem in order to exchange limit and integration and we see that

−I3 =

∫
[∂Us]j

∫
[∂Br(0)]j

f(s) dsj sS
−1
R (s, T )(p2 − 2s0p+ |s|2)−1 dpj g(p)→ 0.

Altogether, we obtain

1

(2π)2

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Up]j

S−1
L (p, T ) dpj g(p)

= − 1

2π

(∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

)
g(∞) +

1

2π

∫
[∂Up]j

S−1
L (p, T ) dpj f(p)g(p)

− f(∞)
1

2π

∫
[∂Up]j

S−1
L (p, T ) dpj g(p).

We thus have

f(T )g(T ) = f(∞)g(∞)I + f(∞)
1

2π

∫
[∂Up]j

S−1
L (p, T ) dpj g(p)

+

(
1

2π

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

)
g(∞)

+
1

(2π)2

∫
[∂Us]j

f(s) dsj S
−1
R (s, T )

∫
[∂Up]j

S−1
L (p, T ) dpj g(p)

= f(∞)g(∞)I +
1

2π

∫
[∂Up]j

S−1
L (p, T ) dpj f(p)g(p) = (fg)(T ). �
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If the operator T is bounded, then slice hyperholomorphic polynomials of T
belong to the class of functions that are admissible within S-functional calculus.
In the unbounded case, this is not true, but the S-functional calculus is in some
sense still compatible, at least with intrinsic polynomials. For such polynomial
P (s) =

∑n
k=0 aks

k with ak ∈ R, the operator P (T ) is as usual defined as the
operator

P (T )y :=
n∑
k=0

akT
ky, y ∈ D(Tn).

Lemma 3.5.2. Let T ∈ K(X) with ρS(T ) 6= ∅, let f ∈ N (σS(T ) ∪ {∞}) and let P
be an intrinsic polynomial of degree n ∈ N0. If y ∈ D(Tn), then f(T )y ∈ D(Tn)
and

f(T )P (T )y = P (T )f(T )y.

Proof. We consider first the special case P (s) = s. Let U be an unbounded slice
Cauchy domain with σS(T ) ⊂ U , let j ∈ S and let {γ1, . . . , γn} be the part of
∂(U ∩ Cj) in C+

j as in Definition 2.1.34. We apply Lemma 3.4.5 and write∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )

=
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)

)
Qγ`(t)(T )−1 dt

−
N∑
`=1

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)

)
TQγ`(t)(T )−1 dt.

Observe that Qγ`(t)(T )−1Ty = TQγ`(t)(T )−1y for y ∈ D(T ) and that T also
commutes with real numbers. By applying Hille’s theorem for the Bochner integral,
Theorem 20 in [110, Chapter III.6], we can move T in front of the integral and
find

1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )Ty

=
n∑
`=1

T
1

2π

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)γ`(t)

)
Qγ`(t)(T )−1y

−
n∑
`=1

T
1

2π

∫ 1

0

2Re
(
f(γ`(t))(−j)γ′`(t)

)
TQγ`(t)(T )−1y

= T
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )y,

where the last equation follows again from Lemma 3.4.5. Finally, observe that
f(∞) = lims→∞ f(s) is real since f(s) ∈ R for any s ∈ R because f is intrinsic.
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Hence, we find

f(T )Ty = f(∞)Ty +
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )Ty

= Tf(∞)y + T
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T )y = Tf(T )y.

In particular, this implies f(T )y ∈ D(T ).
We show the general statement by induction with respect to the degree n

of the polynomial. If n = 0 then the statement follows immediately from Exam-
ple 3.4.3. Now assume that it is true for n−1 and consider P (s) = aks

n+Pn−1(s),
where an ∈ R and Pn−1(s) is an intrinsic polynomial of degree lower or equal to
n − 1. For y ∈ D(Tn) the above argumentation implies then f(T )Tn−1y ∈ D(T )
and

f(T )P (T )y = f(T )anT
ny + f(T )Pn−1(T )y

= anTf(T )Tn−1y + f(T )Pn−1(T )y.

From the induction hypothesis, we further deduce f(T )Tn−1y = Tn−1f(T )y and
f(T )Pn−1(T )y = Pn−1(T )f(T )y and hence

f(T )P (T )y = anT
nf(T )y + Pn−1(T )f(T )y = P (T )f(T )y.

In particular, we see that f(T )y belongs to D(Tn) and we obtain that the state-
ment is true. �

Remark 3.5.1. We only considered intrinsic polynomials in Lemma 3.5.2 because
only multiplying with such functions yields again a slice hyperholomorphic func-
tion. However, even the definition of P (T ) is not straightforward if P does not have
real coefficients. Indeed, if T is unbounded and P (s) =

∑n
k=0 s

kak with ak /∈ R,
then setting P (T )v =

∑n
k=0 T

kakv might not be meaningful for all v ∈ D(Tn).
Unless D(Tn) is a two-sided subspace of X, it is not clear that akv ∈ D(T k) even
if v ∈ D(T ).

As in the complex case, we say that f has a zero of order n at ∞ if the first
n− 1 coefficients in the Taylor series expansion of s 7→ f(s−1) at 0 vanish and the
n-th coefficient does not. Equivalently, f has a zero of order n if lims→∞ f(s)sn is
bounded and nonzero. We say that f has a zero of infinite order at infinity, if it
vanishes on a neighborhood of ∞.

Lemma 3.5.3. Let T ∈ K(X) with ρS(T ) 6= ∅ and assume that f ∈ N (σS(T )∪{∞})
has a zero of order n ∈ N0 ∪ {+∞} at infinity.

(i) For any intrinsic polynomial P of degree lower than or equal to n, we have
P (T )f(T ) = (Pf)(T ).

(ii) If y ∈ D(Tm) for some m ∈ N0 ∪ {∞}, then f(T )y ∈ D(Tm+n).
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Proof. Assume first that f has a zero of order greater than or equal to one at
infinity and consider P (s) = s. Then Pf ∈ N (σS(T ) ∪ {∞}) and for y ∈ X

(Pf)(T )y = lim
s→∞

sf(s)y +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj sf(s)y,

with an appropriate slice Cauchy domain U and any imaginary unit j ∈ S. Since
s and dsj commute, we deduce from the left S-resolvent equation that

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj sf(s)y

=
1

2π

∫
∂(U∩Cj)

TS−1
L (s, T ) dsj f(s)y +

1

2π

∫
∂(U∩Cj)

dsj f(s)y

Any sufficiently large Ball Br(0) contains ∂U . The function f(s)y is then right
slice hyperholomorphic on Br(0) ∩ U and Cauchy’s integral theorem implies

1

2π

∫
∂(U∩Cj)

dsj f(s)y = lim
r→+∞

− 1

2π

∫
∂(Br(0)∩Cj)

dsj f(s)y

= lim
r→+∞

− 1

2π

∫ 2π

0

rejϕf(rejϕ)y dϕ = − lim
s→+∞

sf(s)y.

Thus, after applying Hille’s theorem for the Bochner integral, Theorem 20 in [110,
Chapter III.6], in order to write the operator T in front of the integral, we obtain

(Pf)(T )y = T
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s)y = P (T )f(T )y.

In particular, we see that f(T )y ∈ D(T ).
We show (i) for monomials by induction and assume that it is true for P (s) =

sn−1 if f has a zero of order greater than or equal to n− 1 at infinity. If the order
of f at infinity is even greater than or equal to n, then g(s) = sn−1f(s) has a zero
of order at least 1 at infinity and, from the above argumentation and the induction
hypothesis, we conclude for P (s) = sn

(Pf)(T )y = Tg(T )y = TTn−1f(T )y = Tnf(T )y,

which implies also f(T )y ∈ D(Tn). For arbitrary intrinsic polynomials the state-
ment finally follows from the linearity of the S-functional calculus.

In order to show (ii) assume first y ∈ D(Tm) for m ∈ N. If f has a zero of
order n ∈ N at infinity, then (i) with P (s) = sn and Lemma 3.5.2 imply

(Pf)(T )Tmy = Tnf(T )Tmy = TnTmf(T )y = Tm+nf(T )y

and hence f(T )y ∈ D(Tm+n). Finally, if m = +∞ then y ∈ D(T k) and hence
f(T )y ∈ D(T k+n) for any k ∈ N. Thus, y ∈ D(T∞). �
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Corollary 3.5.4. Let T ∈ K(X) with ρS(T ) 6= ∅. For any intrinsic polynomial P ,
the operator P (T ) is closed.

Proof. We choose s ∈ ρS(T ) and n ∈ N such that m ≤ 2n, where m is the degree
of P . Then f(p) = P (p)Qs(p)−n belongs to N (σS(T ) ∪ {∞}) and has a zero of
order 2n−m at infinity. Applying Lemma 3.5.3, we see that

P (T )y = P (T )Qs(T )nQs(T )−ny = Qs(T )nP (T )Qs(T )−ny = Qs(T )nf(T )y

for y ∈ D(Tm). Since its inverse is bounded, the operator Qs(T )n is closed and in
turn P (T ) is closed as it is the composition of a closed and a bounded operator. �

Corollary 3.5.5. Let T ∈ K(X) with ρS(T ) 6= ∅. If f ∈ N (σS(T ) ∪ {∞}) does not
have any zeros on σS(T ) and a zero of even order n at infinity, then ran(f(T )) =
D(Tn) and f(T ) is invertible in the sense of closed operators. If ρS(T ) ∩ R 6= ∅,
this holds true for any order n ∈ N.

Proof. Let p ∈ ρS(T ) and set k = n/2. The function h(s) = f(s)Qp(s)k with
Qp(s) = s2−2p0s+|p|2 belongs to N (σS(T )∪{∞}) and does not have any zeros in
σS(T ). Furthermore, h(∞) = lims→∞ h(s) is finite and nonzero. Hence, the func-
tion s 7→ h(s)−1 belongs to N (σS(T ) ∪ {∞}) and we deduce from Theorem 3.5.1
that h(T ) is invertible in B(X) with h(T )−1 = h−1(T ). Theorem 3.5.1 moreover
implies f(T ) = Qp(T )−kh(T ). Now observe that h(T ) maps X bijectively onto X
and that Qp(T )−k maps X onto D(T 2k) = D(Tn). Thus ran(f(T )) = D(Tn).

Finally, f(T )−1 := h−1(T )Qp(T )k is a closed operator because h is bi-
jective and continuous and Qp(T )k is closed by Corollary 3.5.4. So it satisfies
f(T )−1f(T )y = y for y ∈ X and f(T )f(T )−1y = y for y ∈ D(Tn). Thus, it is the
inverse of f(T ).

In the case there exists a point a ∈ ρS(T ) ∩ R, similar arguments hold with
P (s) = (s−a)n instead of Qp(s)k. In particular, this allows us to include functions
with a zero of odd order at infinity too. �

We conclude this section by determining the slice derivatives of the left and
right S-resolvents of T as an application of the above theorems.

Definition 3.5.6. Let T ∈ B(X) and let s ∈ ρS(T ). For n ≥ 0, we define

S−nL (s, T ) :=

n∑
k=0

(−1)k
(
n

k

)
T kQs(T )−nsn−k

and, similarly, we define

S−nR (s, T ) :=
n∑
k=0

(−1)k
(
n

k

)
sn−kT kQs(T )−n.

Remark 3.5.2. Since the function Qs(q)
−n is intrinsic, the above definitions are

due to the product rule compatibility with the S-functional calculus, that is,[
S−nL (s, ·)

]
(T ) = S−nL (s, T ) and

[
S−nR (s, ·)

]
(T ) = S−nR (s, T ).
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Proposition 3.5.7. Let T ∈ B(X) and let s ∈ ρS(T ). Then

∂S
mS−1

L (s, T ) = (−1)mm!S
−(m+1)
L (s, T ) (3.39)

and

∂S
mS−1

R (s, T ) = (−1)mm!S
−(m+1)
R (s, T ), (3.40)

for any m ≥ 0.

Proof. Recall that the slice derivative coincides with the partial derivative with
respect to the real part of s. We show only (3.39), since (3.40) follows by analogous
computations.

We prove the statement by induction. For m = 0, the identity (3.39) is
obvious. We assume that ∂S

m−1S−1
L (s, T ) = (−1)m−1(m − 1)!S−mL (s, T ) and we

compute ∂S
mS−1

L (s, T ). We represent S−mL (s, T ) using the S-functional calculus. If
we choose the path of integration ∂(U ∩Cj) in the complex plane Cj that contains
s, then S−mL (s, p) = (s− p)−m for any p ∈ ∂(U ∩ Cj) so that

∂SS
−m
L (s, T ) = ∂S

1

2π

∫
∂(U∩Cj)

S−1
L (p, T ) dpj S

−m
L (s, p)

=
1

2π

∫
∂(U∩Cj)

S−1
L (p, T ) dpj

∂

∂s0
(s− p)−m

= −m 1

2π

∫
∂(U∩Cj)

S−1
L (p, T ) dpj (s− p)−(m+1)

= −mS
−(m+1)
L (s, T ),

and in turn,

∂S
mS−1

L (s, T ) = ∂S
(
∂S

m−1S−1
L (s, T )

)
= (−1)m−1(m− 1)!∂SS

−m
L (s, T ) = (−1)mm!S

−(m+1)
L (s, T ). �

3.6 The spectral mapping theorem

We recall that the extended S-spectrum σSX(T ) equals σS(T ) if T is bounded and
it equals σS(T ) ∪ {∞} if T is unbounded.

Theorem 3.6.1 (Spectral Mapping Theorem). Let T ∈ K(X) with ρS(T ) 6= ∅. For
any function f ∈ N (σS(T ) ∪ {∞}), we have σS(f(T )) = f(σSX(T )).

Proof. Let us first show the relation σS(f(T )) ⊃ f(σSX(T )). For p ∈ σS(T ) con-
sider the function

g(s) := (f(s)2 − 2Re(f(p))f(s)− |f(p)|2)(s2 − 2Re(p)s+ |p|2)−1,
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which is defined on D(f) \ [p]. If we set pjs = p0 + jsp1, then pjs and s commute.
Since f is intrinsic, it maps Cj into Cj and hence f(pjs) and f(s) commute, too.
Thus

g(s) =
(f(s)− f(pjs))(f(s)− f(pjs))

(s− pjs)(s− pjs)

and we can extend g to all of D(f) by setting

g(s) =

{
∂Sf(s)

(
f(p) p−1

)
, s ∈ [p] if p /∈ R,

(∂Sf(s))2, s = p, if p ∈ R.
(3.41)

Now observe that

(s2 − 2Re(p)s+ |p|2)g(s) = f(s)2 + 2Re(f(p))f(s) + |f(p)|2

and that g has a zero of order greater or equal to 2 at infinity. Hence, we can
apply the S-functional calculus to deduce from Lemma 3.5.3, Theorem 3.5.1 and
Example 3.4.3 that

(T 2 − 2Re(p)T + |p|2I)g(T )y = (f(T )2 + 2Re(f(p))f(T ) + |f(p)|I)y,

for any y ∈ X and

g(T )(T 2 − 2Re(p)T + |p|2I)y = (f(T )2 + 2Re(f(p))f(T ) + |f(p)|I)y,

for y ∈ D(T 2). If f(p) ∈ ρS(T ), then

Qf(p)(f(T )) = f(T )2 − 2Re(f(p))f(T ) + |f(p)|I

is invertible and

Qf(p)(f(T ))−1g(T ) = g(T )Qf(p)(f(T ))−1

is the inverse of the operator Qp(T ) = T 2 − 2Re(p)T + |p|2I. Hence, f(p) /∈
σS(f(T )) implies p /∈ σS(T ) and as a consequence p ∈ σS(T ) implies f(p) ∈ σS(T ),
that is f(σS(T )) ⊂ σS(f(T )).

Finally, observe that f(∞) = limp→∞ f(p) is real because f is intrinsic and
thus takes real values on the real line. If T is unbounded and f(∞) 6= f(p) for any
point p ∈ σS(T ) (otherwise we already have f(∞) ∈ f(σS(T )) ⊂ σS(f(T ))), then
the function h(s) = (f(s) − f(∞))2 belongs to N (σS(T ) ∪ {∞}) and has a zero
of even order n at infinity but no zero in σS(T ). By Corollary 3.5.5, the range of
h(T ) = Qf(∞)(f(T )) is D(Tn). Thus, it does not admit a bounded inverse and we
obtain f(∞) ∈ σS(f(T )). Altogether, we have f(σSX(T )) ⊂ σS(f(T )).

In order to show the relation σS(f(T )) ⊂ f(σSX(T )), we first consider a
point c ∈ σS(f(T )) such that c 6= f(∞). We want to show c ∈ f(σS(T )) and
assume the converse, i.e., f(s)− c has no zeros on σS(T ).
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If c is real, then the function h(s) = f(s) − c is intrinsic, has no zeros on
σS(T ) and lims→∞ h(s) = f(∞) − c 6= 0. Hence, h−1(s) = (f(s) − c)−1 belongs
to N (σS(T ) ∪ {∞}). Applying the S-functional calculus, we deduce from The-
orem 3.5.1 that h−1(T ) is the inverse of f(T ) − cI and hence Qc(f(T ))−1 =
(h−1(T ))2, which is a contradiction as c ∈ σS(f(T )). Thus, c = f(p) for some
p ∈ σS(T ).

If on the other hand c = c0 + ic1 is not real, then f − cj 6= 0 for any
cj = c0+jc1 ∈ [c]. Indeed, f(p) = f0(u, v)+kf1(u, v) = c0+jc1 for p = u+kv would
imply k = j and f0(u, v) = c0 and f1(u, v) = c1 as f0 and f1 are real-valued because
f is intrinsic. This would in turn imply f(pi) = f(u+ iv) = f0(u, v)+ if1(u, v) = c
for p = u+ iv, which would contradict our assumption. Therefore, the function

h(s) = (f(s)2 − 2Re(c)f(s) + |c|2) = (f(s)− cjs)(f(s)− cjs)

with cjs = c0 + jc2 for s = u + jv does not have any zeros on σS(T ). Moreover,
since f(∞) is real, we have

h(∞) = (f(∞)− c)(f(∞)− c) = |f(∞)− c|2 6= 0

and hence h−1(s) = (f(s)2 − 2Re(c)f(s) + |c|2)−1 belongs to N (σS(T ) ∪ {∞}).
Applying the S-functional calculus, we deduce again from Theorem 3.5.1 that the
operator h−1(T ) is the inverse of Qc(T ), which contradicts c ∈ σS(f(T )). Hence,
there must exist some p ∈ σS(T ) such that c = f(p).

Altogether, we obtain σS(f(T )) \ {f(∞)} is contained in f(σS(T )).

Finally, let us consider the case that the point c = f(∞) belongs to σS(f(T )).
If T is unbounded, then ∞ ∈ σSX(T ) and hence c ∈ f(σSX(T )). If on the other
hand T is bounded, then there exists a function g ∈ N (σS(T )∪{∞}) that coincides
on an axially symmetric neighborhood σS(T ) with f but satisfies c 6= g(∞). In this
case f(T ) = g(T ), as pointed out in Remark 3.4.1, and we can apply the above
argumentation with g instead of f to see that c ∈ g(σS(T )) = f(σS(T )). �

Theorem 3.6.2. If T ∈ K(X) with σS(T ) 6= ∅, then P (σS(T )) = σS(P (T )) for any
intrinsic polynomial P .

Proof. The arguments are similar to those in the proof of Theorem 3.6.1: in order
to show P (σS(T )) ⊂ σS(P (T )), we consider the polynomial QP (p)(P (s)), which
is given by QP (p)(P (s)) = P (s)2 − 2Re(P (p))P (s) + |P (p)|2 for any p ∈ σS(T ).
As p and p are both zeros of QP (p)(P (s)) (resp. as p is a zero of even order of
QP (p)(P (s)) = (P (s) − P (p))2 if p is real), there exists an intrinsic polynomial
R(s) such that

QP (p)(P (s)) = Qp(s)R(s).

If P (p) /∈ σS(P (T )), then QP (p)(P (T )) is invertible and Lemma 3.5.3 and Ex-
ample 3.4.3 imply that QP (p)(P (T ))−1R(T ) is the inverse of Qp(T ), which is a
contradiction because we assumed p ∈ σS(T ). Therefore P (p) ∈ σS(P (T )).
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Conversely assume that p /∈ P (σS(T )). Then the function

Qp(P (s)) = P (s)2 − 2Re(p)P (s) + |p|2

does not take any zero on σS(T ) and we conclude from Corollary 3.5.5 that
Qp(P (T )) has a bounded inverse. Thus p /∈ σS(P (T )) and in turn σS(P (T )) ⊂
P (σS(T )). �

Theorem 3.6.3 (Composition rule). Let T ∈ K(X) with ρS(T ) 6= ∅. If f ∈
N (σS(T ) ∪ {∞}) and g ∈ SHL(f(σSX(T )) or g ∈ SHR(f(σSX(T )), then

(g ◦ f)(T ) = g(f(T )).

Proof. Because of Remark 3.4.1, we can assume that f(∞) belongs to f(σSX(T )).
We apply Theorem 2.1.31 in order to choose an unbounded slice Cauchy domain Up
such that σS(f(T )) = f(σSX(T )) ⊂ Up and Up ⊂ D(g) and a second unbounded
slice Cauchy domain Us such that σS(T ) ⊂ Us and Us ⊂ f−1(Up) ∩ D(f). The
subscripts are chosen in order to indicate the respective variable of integration in
the following computation.

After choosing an imaginary unit j ∈ S, we deduce from Cauchy’s integral
formula, that

(g ◦ f)(T )− (g ◦ f)(∞)I

=
1

2π

∫
∂(Us∩Cj)

S−1
L (s, T ) dsj (g ◦ f)(s)

=
1

2π

∫
∂(Us∩Cj)

S−1
L (s, T ) dsj

(
1

2π

∫
∂(Up∩Cj)

S−1
L (p, f(s)) dpj g(p)

)
.

Changing the order of integration by applying Fubini’s theorem, we obtain

(g ◦ f)(T )− (g ◦ f)(∞)I

=
1

2π

∫
∂(Up∩Cj)

(
1

2π

∫
∂(Us∩Cj)

S−1
L (s, T ) dsj S

−1
L (p, f(s))

)
dpj g(p)

=
1

2π

∫
∂(Up∩Cj)

S−1
L (p, f(T )) dpj g(p)

− 1

2π

∫
∂(Up∩Cj)

S−1
L (p, f(∞)) dpj g(p)I

= g(f(T ))− g(f(∞))I

and hence (g ◦ f)(T ) = g(f(T )). �
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3.7 Spectral sets and projections onto invariant

subspaces

As in the complex case, the S-functional calculus allows to associate subspaces of
X that are invariant under T to certain subsets of σS(T ).

Definition 3.7.1 (Spectral set). A subset σ of σSX(T ) is called a spectral set if it
is open and closed in σSX(T ).

Just as σS(T ) and σSX(T ), every spectral set is axially symmetric: if s ∈ σ
then the entire sphere [s] is contained in σ. Indeed, the set σ ∩ [s] is then a
nonempty, open and closed subset of σSX(T )∩ [s] = [s]. Since [s] is connected this
implies σ ∩ [s] = [s]. Moreover, if σ is a spectral set, then σ′ = σSX(T ) \ σ is a
spectral set, too.

If σ is a spectral set of T , then σ and σ′ can be separated in H∞ by axially
symmetric open sets and hence Theorem 2.1.31 implies the existence of two slice
Cauchy domains Uσ and Uσ′ containing σ and σ′, respectively, such that one of
them is unbounded and U ∩ Uσ′ = ∅. We define

χσ(x) :=

{
1 if x ∈ Uσ,
0 if x ∈ Uσ′ .

The function χσ(x) obviously belongs to N (σS(T ) ∪ {∞}).

Definition 3.7.2 (Spectral projection). Let T ∈ K(X) with ρS(T ) 6= ∅ and let
σ ⊂ σS(T ) be a spectral set of T . The spectral projection associated with σ
is the operator Eσ := χσ(T ) obtained by applying the S-functional calculus to
the function χσ. Furthermore, we define Xσ := EσX and Tσ = T |D(Tσ) with
D(Tσ) = D(T ) ∩Xσ.

Explicit formulas for the operator Eσ are for bounded σ are given by

Eσ =
1

2π

∫
∂(Uσ∩Cj)

S−1
L (s, T ) dsj =

1

2π

∫
∂(Uσ∩Cj)

dsj S
−1
R (s, T )

and for unbounded σ

Eσ = I +
1

2π

∫
∂(Uσ∩Cj)

S−1
L (s, T ) dsj = I +

1

2π

∫
∂(Uσ∩Cj)

dsj S
−1
R (s, T ),

where the imaginary unit j ∈ S can be chosen arbitrarily.

Corollary 3.7.3. Let T ∈ K(X) such that ρS(T ) 6= ∅ and let σ be a spectral set of
T .

(i) The operator Eσ is a projection, i.e., E2
σ = Eσ.

(ii) Set σ′ = σSX(T ) \ σ. Then Eσ + Eσ′ = I and EσEσ′ = Eσ′Eσ = 0.
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Proof. This follows immediately from the algebraic properties of the S-functional
calculus shown in Corollary 3.4.4 and Theorem 3.5.1 as χ2

σ = χσ and χσ +χσ′ = 1
and χσχσ′ = χσ′χσ = 0. �

The following Lemma 3.7.4 is a special case of [47, Chapter II §1.9, Propo-
sition 14] and Lemma 3.7.5 is an immediate consequence of the fact that any
projection with closed range is continuous.

Lemma 3.7.4. Let A, B, M and N be right linear subspaces of a quaternionic right
vector space XR such that A ⊂M and B ⊂M . If A⊕B = M ⊕N , then A = M
and B = N .

Lemma 3.7.5. Let A, B, M and N be right linear subspaces of a quaternionic
Banach vector space XR such that A ⊂ M , B ⊂ N and such that M , N and
M ⊕N are closed. Then A⊕B is dense in M ⊕N if and only if A is dense in M
and B is dense in N .

Definition 3.7.6. Let T : D(T ) → X. We split the S-spectrum into the three
disjoint sets:

(P) The point S-spectrum of T :

σSp(T ) = {s ∈ H : ker(Qs(T )) 6= {0}}.

(R) The residual S-spectrum of T :

σSr(T ) =
{
s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) 6= X

}
.

(C) The continuous S-spectrum of T :

σSc(T ) =
{
s ∈ H : ker(Qs(T )) = {0}, ran(Qs(T )) = X, Qs(T )−1 6∈ B(X)

}
.

There are different possible ways to split the S-spectrum. We refer to Section
9.2 in [57] for more details and comments.

Theorem 3.7.7. Let T ∈ K(X) with ρS(T ) 6= ∅ and let E1, E2 ∈ B(X) be projec-
tions such that E1 +E2 = I (and hence E1E2 = E2E1 = 0). Denote X` := E`(X)
and D(T`) := E`(D(T )) and assume that T (D(T`)) ⊂ X` such that T` := T |D(T`)

is a closed operator on the right Banach space X` for ` = 1, 2. Then

(i) E`Ty = TE`y for y ∈ D(T ),

(ii) D(T 2
` ) = E`(D(T 2)) for ` = 1, 2,

(iii) ran(Qs(T )) = ran(Qs(T1))⊕ ran(Qs(T2)), for any s ∈ H,

(iv) σS(T ) = σS(T1) ∪ σS(T2) and
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(v) σSp(T ) = σSp(T1) ∪ σSp(T2).

If moreover σS(T1) ∩ σS(T2) = ∅, then

(vi) σSc(T ) = σSc(T1) ∪ σSc(T2) and

(vii) σSr(T ) = σSr(T1) ∪ σSr(T2).

Proof. The assertions (i) to (iii) are obvious. Now assume that s ∈ ρS(T ). Then
ran(Qs(T )) = X and from (iii) we deduce

X1 ⊕X2 = X = ran(Qs(T )) = ran(Qs(T1))⊕ ran(Qs(T2)).

As ran(Qs(T`)) ⊂ X`, Lemma 3.7.4 implies ran(Qs(T`)) = X` and hence
Qs(T`)−1 = Qs(T )−1|X` as Qs(T`) = Qs(T )|D(T 2

` ). Indeed, we have

Qs(T )−1Qs(T`)y = Qs(T )−1Qs(T )y = y for y ∈ D(T 2
` )

and, since Qs(T )−1y ∈ D(T 2
` ) for y ∈ X`, also

Qs(T`)Qs(T )−1y = Qs(T )Qs(T )−1y = y for y ∈ X`.

Thus, s ∈ ρS(T1) ∩ ρS(T2). Conversely, if s ∈ ρS(T1) ∩ ρS(T2), then the operator
Qs(T1)−1E1 + Qs(T2)−1E2 is the inverse of Qs(T ) and hence s ∈ ρS(T ). Alto-
gether, ρS(T ) = ρS(T1)∩ ρS(T2), which is equivalent to σS(T ) = σS(T1)∪ σS(T2)
and hence (iv) holds true.

Obviously, σSp(T`) ⊂ σSp(T ) as any S-eigenvector of T` is also an S-eigen-
vector of T associated with the same eigensphere. Conversely, if y 6= 0 is an S-
eigenvector of T associated with the eigensphere [s] = s0 + Ss1, then set y` = E`y
and we observe that

0 = Qs(T )y = Qs(T1)y1 +Qs(T2)y2.

As Qs(T`)y` ∈ X` and X1 ∩X2 = {0}, this implies Qs(T`)y` = 0 for ` = 1, 2. As
y 6= 0, at least one of the vectors y` is nonzero and therefore an S-eigenvalue of
T` associated with the eigensphere [s]. Thus [s] ⊂ σSp(T1) ∪ σSp(T2) and in turn
σSp(T ) = σSp(T1) ∪ σSp(T2) so that (v) holds true.

We assume now that σS(T1) ∩ σS(T2) = ∅. Then assertions (iv) and (v)
imply that s ∈ σSc(T )∪σSr(T ) if and only if s ∈ σSc(T`)∪σSr(T`) for either ` = 1
or ` = 2. We assume without loss of generality s ∈ σSc(T1) ∪ σSr(T1) and thus
s ∈ ρS(T2). As ran(Qs(T2)) = X2, we deduce from (iii) and Lemma 3.7.5 that
ran(Qs(T )) is dense in X = X1 ⊕X2 if and only if ran(Qs(T1)) is dense in X. In
other words, s ∈ σSc(T ) if and only if s ∈ σSc(T1) and in turn s ∈ σSr(T ) if and
only if s ∈ σSr(T1). �

Theorem 3.7.8. Let T ∈ K(X) with ρS(T ) 6= ∅ and let σ ⊂ σS(T ) be a spectral set
of T . Then

(i) Eσ(D(T )) ⊂ D(T ),
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(ii) T (D(T ) ∩Xσ) ⊂ Xσ,

(iii) σ = σSX(Tσ),

(iv) σ ∩ σSp(T ) = σSp(Tσ),

(v) σ ∩ σSc(T ) = σSc(Tσ),

(vi) σ ∩ σSr(T ) = σSr(Tσ).

If the spectral set σ is bounded, then we further have:

(vii) Xσ ⊂ D(T∞) and

(viii) Tσ is a bounded operator on Xσ.

Proof. Assertion (i) follows from the definition of Eσ and Lemma 3.5.2. In order
to prove (ii), we observe that if y ∈ D(T ) ∩Xσ, then Eσy = y. Hence, we deduce
from Lemma 3.5.2 that EσTy = TEσy = Ty, which implies Ty ∈ Xσ.

If σ is bounded, then we can choose Uσ bounded and hence χσ has a zero of
infinite order at infinity. We conclude from Lemma 3.5.3 that y = Eσy = χσ(T )y ∈
D(T∞) for any y ∈ Xσ and hence (vii) holds true. In particular, Xσ ⊂ D(T ).
Therefore, Tσ is a bounded operator on Xσ as it is closed and everywhere defined.

We show now assertion (iii) and consider first a point s ∈ H \ σ. We show
that s belongs to ρS(Tσ). For an appropriately chosen slice Cauchy domain Uσ,
the function f(s) := Qs(p)−1χUσ (s) belongs to N (σS(T )∪{∞}). By Lemma 3.5.3
and Lemma 3.5.2, we have

f(T )Qs(T )y = χUσ (T )y = Eσy, for y ∈ D(T 2) ∩Xσ

and

Qs(T )f(T )y = χUσ (T )y = Eσy = y for y ∈ Xσ.

Hence, Qs(Tσ) = Qs(T )|Xσ∩D(T 2) has the inverse f(T )|Xσ ∈ B(Xσ). Thus, we
find s ∈ ρS(Tσ) and in turn σS(Tσ) ⊂ σ ∩ H =: σ1. The same arguments applied
to Tσ′ with σ′ = σSX(T ) \ σ show that σS(Tσ′) ⊂ σ′ ∩ H := σ2. But by (iv) in
Theorem 3.7.7, we have

σS(Tσ) ∪ σS(Tσ) = σS(T ) = σ1 ∪ σ2

and hence σS(Tσ) = σ1 = σ ∩H and σS(Tσ′) = σ2 = σ′ ∩H. If σ is bounded, then
this is equivalent to (iii) because of (viii). If σ is not bounded, then ∞ ∈ σ and T
is not bounded on X. However, in this case σ′ is bounded and hence Tσ ∈ B(Xσ).
But as T = TσEσ +Tσ′Eσ′ , we conclude that Tσ is unbounded as T is unbounded.
Hence, ∞ ∈ σSX(Tσ) and (viii) holds true also in this case.

Finally, (iv) to (vi) are direct consequences of (v) to (vii) in Theorem 3.7.7
as we know now that σS(Tσ) and σS(Tσ′) are disjoint. �
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Example 3.7.9. We choose a generating basis j, i and k := ji of H and consider the
quaternionic right-linear operator T on X = H2 that is defined by its action on the
two right linearly independent right eigenvectors y1 = (1, j)T and y2 = (i,−k)T ,
namely (

1
j

)
7→
(

0
0

)
and

(
i
−k

)
7→
(
−k
−i

)
=

(
i
−k

)
j.

Its matrix representation is

T =
1

2

(
−j 1
−1 −j

)
.

Since, for operators on finite-dimensional spaces, the S-spectrum coincides with
the set of right-eigenvalues by Theorem 3.1.6, we have σS(T ) = σR(T ) = {0} ∪ S.
Indeed, we have

Qs(T ) =
1

2

(
−1 −j
j −1

)
− s0

(
−j 1
−1 −j

)
+ |s|2

(
1 0
0 1

)
=

(
− 1

2 + |s|2 + s0j −s0 − 1
2j

s0 + 1
2j − 1

2 + |s|2 + s0j

)
and hence

Qs(T )−1 = |s|−2(−1 + 2js0 + |s|2)−1

(
− 1

2 + |s|2 + js0
1
2j + s0

− 1
2j − s0 − 1

2 + |s|2 + js0

)
,

which is defined for any s /∈ {0} ∪ S. For any s ∈ ρS(T ), the left S-resolvent is
therefore given by

S−1
L (s, T ) =

1

2
|s|−2(−1 + |s|2 + 2js0)−1

·
(
|s|2(j + 2s) + s(−1 + 2js0) −|s|2 + s(j + 2s0)

|s|2 − s(j + 2s0) |s|2(j + 2s) + s(−1 + 2js0)

)
.

Since σS(T ) ∩ Cj = {0, j,−j}, we choose U{0} = B1/2(0) and set US = B2(0) \
B2/3(0). For s = 1

2e
jϕ ∈ ∂U{0}(0) ∩ Cj , we have

S−1
L (s, T ) = 2e−jϕ

(
3j + 4Re

(
ejϕ
))−1

·
(

j + ejϕ + 2 cos(ϕ) 2 + jejϕ + 2j cosϕ
−2− jejϕ + 2j cosϕ j + ejϕ + 2 cosϕ

)
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and so

E{0} =
1

2π

∫
∂(U{0}∩Cj)

S−1
L (s, T ) dsj

=
1

2π

∫ 2π

0

2e−jϕ
(
3j + 4Re

(
ejϕ
))−1 ·

·
(

j + ejϕ + 2 cos(ϕ) 2 + jejϕ − 2j cosϕ
−2− jejϕ + 2j cosϕ j + ejϕ + 2 cosϕ

)
1

2
ejϕj(−j) dϕ

=
1

2

(
1 −j
j 1

)
.

A similar computation shows that

ES =
1

2π

∫
∂(US∩Cj)

S−1
L (s, T ) dsj =

1

2

(
1 j
−j 1

)
.

Straightforward calculations show that these matrices actually define projections
on H2 with E{0}+ES = I. Moreover, we have E{0}y1 = y1 and ESy1 = 0 as well as
E{0}y2 = 0 and ESy2 = y2. Thus, the invariant subspace E{0}X associated with
the spectral set {0} is the right linear span of y1, which consist of all eigenvectors
with respect to the real eigenvalue 0 as T (y1a) = T (y1)a = 0 for all a ∈ H. The
invariant subspace ES associated with the spectral set S consists of the right linear
span of y2. For a ∈ H \ {0}, we have T (y2a) = T (y2)a = y2ja = (y2a)(a−1ja).
Thus, as a−1ja ∈ S, the subspace ES consists of all right eigenvectors associ-
ated with eigenvalues in S. (This is true only because the associated subspace is
one-dimensional! Otherwise, the subspace would consist of sums of eigenvectors
associated with possibly different eigenvalues in the sphere S. Such vectors are
in general not right eigenvectors, but they are S-eigenvectors associated with the
eigensphere S.)

Finally, we can construct functions, which are left and right slice hyperholo-
morphic on σS(T ), but for which the S-functional calculi for left and right slice
hyperholomorphic functions yield different operators: consider the function

f(s) = c1χU{0}(s) + c2χUS(s)

such that c1 or c2 does not belong to Cj . Choose for instance c1 = i and c2 = 0
for the sake of simplicity. This function is a locally constant slice function on
U = U{0} ∪ US and thus left and right slice hyperholomorphic by Lemma 3.4.8.
Then

1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsjf(s) =

(
1

2π

∫
∂(B1/2(0)∩Cj)

S−1
L (s, T ) dsj

)
i

=
1

2

(
1 −j
j 1

)
i =

1

2

(
i −k
k i

)
,
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but

1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ) = i

(
1

2π

∫
∂(B1/2(0)∩Cj)

dsj S
−1
R (s, T )

)

=
1

2
i

(
1 −j
j 1

)
=

1

2

(
i k
−k i

)
.

The reason for why we obtain different operators is that the spectral projections ES
and E{0} cannot commute with arbitrary scalars because the respective invariant
subspaces are not two-sided. Indeed, −iy2 = (1, j) = y1, which obviously does not
belong to ESX.

3.8 The special roles of intrinsic functions and the left

multiplication

As we saw in this chapter, the role of intrinsic slice hyperholomorphic functions
stands out in quaternionic operator theory. Important results such as the product
rule, the spectral mapping theorem and the composition rule only hold for these
functions. This is not surprising since, on the level of functions, slice hyperholo-
morphicity is only compatible with multiplication and composition of intrinsic
functions, not of arbitrary slice hyperholomorphic functions. There exists, how-
ever, a deeper, more fundamental reason for this special role of intrinsic functions
that we want to explain in the following.

A functional calculus for an operator T is a mathematical method that allows
to define an operator f(T ) such that f(T ) generalizes the mapping behavior of T
for each f in a certain class of functions on the spectrum of T (for instance the
class of holomorphic, continuous, measurable or slice hyperholomorphic functions
on the spectrum of T ). This is useful for generating new operators, and it is also
useful for understanding the operator T itself. The way f(T ) changes as f varies
in the corresponding class of functions gives information about T and allows to
identify, for instance, eigenspaces, invariant subspaces, or, if T is a normal operator
on a Hilbert space, even its spectral resolution. This is, however, only possible if
the mapping behavior of T and f(T ) are related in a suitable way. Intuitively,
the operator f(T ) should be obtained by letting f act on spectral values of T . In
particular, if v ∈ X \ {0} is an eigenvector of T associated with s, i.e.,

Tv = vs, (3.42)

then v should be an eigenvector of f(T ) associated with f(s), i.e.,

f(T )v = vf(s). (3.43)

One of the fundamental peculiarities of operator theory in the quaternionic
setting is the axial symmetry of the set of eigenvalues and the S-spectrum of an
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operator. In particular, if (3.42) holds and h ∈ H \ {0}, then

T (vh) = (Tv)h = vsh = (vh)(h−1sh). (3.44)

Consequently, if (3.42) implies (3.43), then vh is an eigenvector of f(T ) associated
with f(h−1sh), that is

f(T )(vh) = (vh)f(h−1sh). (3.45)

On the other hand, (3.43) implies

f(T )(vh) = (f(T )v)h = vf(s)h = (vh)(h−1f(s)h). (3.46)

Combining (3.45) and (3.46), we find that f must satisfy

f(h−1sh) = h−1f(s)h ∀h ∈ H \ {0}. (3.47)

Now assume that s = u + jv ∈ H and choose h = j. Since s and j commute, we
conclude from (3.47) that

jf(s) = jf(j−1sj) = jj−1f(s)j = f(s)j.

A quaternion commutes with j if and only it belongs to Cj . Hence, f(s) ∈ Cj
and so f(s) belongs to the same complex plane as s. Let α, β ∈ R such that
f(s) = α+jβ. If s̃ = u+ iv ∈ [s] with i ∈ S arbitrary, then there exists h ∈ H\{0}
such that s̃ = h−1sh. Furthermore, we conclude from

u+ iv = s̃ = h−1sh = u+ h−1jhv

that i = h−1jh. The identity (3.47) then implies

f(u+ iv) = f(s̃) = f(h−1sh) = h−1f(s)h = α+ (h−1jh)β = α+ iβ.

Setting f0(u, v) := α ∈ R and f1(u, v) := β ∈ R, we find

f(u+ iv) = f0(u, v) + if1(u, v), ∀i ∈ S.

Thus, f is an intrinsic slice function. In the quaternionic setting, any proper
functional calculus must therefore necessarily apply to a class of intrinsic slice
functions—otherwise it does not follow the most fundamental intuition of such
calculus, namely that (3.42) implies (3.43), and the mapping behavior of f(T ) is
not related with the mapping behavior of T .

This explains why the S-functional calculus shows undesirable properties
when non-intrinsic functions are considered, such as the voidness of the product
rule and the spectral mapping theorem or such as the inconsistencies between the
S-functional calculi for left- and right slice hyperholomorphic functions. (These
phenomena are not restricted to the S-functional calculus but appear, due to the
reasons explained above, in any quaternionic functional calculus, for instance, in
the continuous functional calculus for normal quaternionic operators [57,148].)
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We make another important observation: intrinsic slice hyperholomorphic
functions of an operator can be expressed in terms of only the right linear struc-
ture on the space, cf. Theorem 3.4.11. Hence, they do not depend on the left
multiplication. A right linear operator is, via the linearity condition, only related
with the right multiplication, not with the left multiplication on the space. It
is therefore plausible that, as a general principle, only the right linear structure
should be important for the spectral properties of such operator. Indeed, we as-
sume the existence of a left multiplication on X only because the space B(X) of
right linear operators on X is otherwise only a real, not a quaternionic Banach
space.

We can show the independence of intrinsic slice hyperholomorphic functions
of an operator of the left multiplication with a different argument, which applies
in other situations, too. If f is an intrinsic slice hyperholomorphic function on
σSX(T ), then f can be approximated uniformly on σSX(T ) by intrinsic rational
functions Rn due to Runge’s theorem. Intrinsic rational functions are rational
functions with real coefficients. Hence, they are precisely those rational functions
of T that can be defined even if B(X) is considered only as a real Banach space,
that is, if only the right linear structure on X is considered. For any Rn, the
operator Rn(T ) therefore does not depend on the left multiplication. Instead,
Rn(T ) is fully determined by the right linear structure on X. Furthermore, the
operator norm ‖T‖ = sup‖v‖=1 ‖Tv‖, and in turn also the topology on B(X), is
independent of whether we consider X as a quaternionic two-sided Banach space
or a quaternionic right Banach space. We have

f = lim
n→+∞

Rn

uniformly on σS(T ). As the S-functional calculus is compatible with uniform lim-
its, we find

f(T ) = lim
n→+∞

Rn(T ).

Since the operators Rn(T ) and the topology on B(X) are determined by the right
linear structure on X and do not depend on the left multiplication, this is also
true for the operator f(T ).

Similarly, the continuous functional calculus for a bounded normal quater-
nionic operator T is defined by approximating a continuous intrinsic slice function
f on σS(T ) uniformly by intrinsic polynomials in s and s, that is by polynomials
of the form

Pn(s) =
∑

0≤`,k≤n

a`,ks
`sk with a`,k ∈ R.

The operator

Pn(T ) :=
∑

0≤`,k≤n

a`,kT
`(T ∗)k,

where T ∗ denotes the adjoint of T , is then again fully determined by the right linear
structure on the space since it contains only real coefficients. Consequently, also
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the operator f(T ) = limn→+∞ Pn(T ) depends only on the right linear structure
and not on any left multiplication [57].

Other important functional calculi such as the H∞-functional calculus or
the measurable functional calculus are extensions of these two calculi. Hence, they
inherit the independence from the left linear structure on X (as long as only
intrinsic slice functions are considered).

The fact that functional calculi for quaternionic right linear operators are
determined by the right linear structure on the space brings up the question of
clarifying the role that the left multiplication plays in this theory. In particular,
we have to ask whether it has any influence on the spectral properties of an
operator or not. The spectral properties of a quaternionic operator T must be
independent of the concrete model of this operator that is considered a change
of basis for instance, must not effect these properties. More general, let X be a
two-sided quaternionic Banach space and let T ∈ K(X). If Y is another two-sided
quaternionic Banach space and U : X → Y is a norm-preserving and bijective
right-linear mapping, then

S := UTU−1

is a model for T in Y . The spectral properties of S should correspond to the
spectral properties of T and, indeed, we have

Qs(S) = Qs
(
UTU−1

)
= UQs(T )U−1, ∀s ∈ H.

Hence, we find
ρS(T ) = ρS(S) and σS(T ) = σS(S),

and
Qs(S)−1 = UQs(T )−1U−1, ∀s ∈ ρS(T ).

If P (s) =
∑n
k=0 aks

k with an ∈ R is an intrinsic polynomial, then

P (S) =
n∑
k=0

akS
k = U

n∑
k=0

akT
kU−1 = UP (T )U−1.

For any intrinsic rational function R(s) = P (s)Q(s)−1 with intrinsic polynomials
P and Q such that the zeros of Q (resp. the poles of R) lie in ρS(T ) = ρS(S), we
therefore find that

R(S) = P (S)Q(S)−1 = UP (T )Q(T )−1U−1 = UR(T )U−1.

If f ∈ N (σSX(T )) = N (σSX(S)), then Runge’s theorem implies the existence
of a sequence of intrinsic rational functions Rn, n ∈ N, the poles of which lie in
ρS(T ) = ρS(S) such that f(s) = limn→+∞Rn(s) uniformly on σSX(T ). Since the
S-functional calculus is compatible with uniform limits on σSX(T ), we obtain that

f(S) = lim
n→+∞

Rn(S) = lim
n→+∞

Rn(S) = lim
n→+∞

URn(T )U−1 = Uf(T )U−1.
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Similarly, it also follows that f(S) = Uf(T )U−1 for any continuous intrinsic slice
function f on σS(T ) if T is a normal operator on a quaternionic Hilbert space
and U is a unitary right linear bijection. This correspondence is inherited by
the extensions of these functional calculi such as the H∞-functional calculus or
the measurable functional calculus for normal operators. (For the S-functional
calculus the identity f(S) = Uf(T )U−1 can also be deduced directly from the
integral representation (3.35). However, for the intrinsic functional calculus such
integral representation does not exist and one has to follow the strategy described
above.)

Objects and techniques that depend on the left multiplication or that apply
to functions other than intrinsic functions are, on the other hand, not invariant
under the transformation U . Consider for instance the constant function f(s) = a
with a ∈ H \ R. This function is both left and right slice hyperholomorphic on
σSX(T ) = σSX(S), but not intrinsic. If we apply the S-functional calculus, we
find f(S) = aIY and f(T ) = aIX . However, unless aU = Ua, we have

f(S) = aIY 6= U(aIX)U−1 = Uf(T )U−1.

Actually, even for the S-resolvents, in general, we have

S−1
L (s, S) 6= US−1

L (s, T )U−1 and S−1
R (s, S) 6= US−1

R (s, T )U−1.

Indeed, unless Us = sU , it is

S−1
L (s, S) = Qs(S)−1s− SQs(S)−1

= UQs(T )−1U−1s− UTQs(T )−1U−1

6= U
(
Qs(T )−1s− TQs(T )−1

)
U−1 = US−1

L (s, T )U−1.

Due to the symmetry of the path of integration in the S-functional calculus, the
S-resolvents are always simultaneously evaluated at s and s and it is this fact that
ensures the independence of the S-functional calculus for intrinsic functions from
the left multiplication.

One could argue that, since we are working on two-sided quaternionic Banach
spaces, only transformations U that are compatible with the entire structure of
X, that is with both the left and the right multiplication, should be considered
in the arguments above. Hence, one should assume that U is both left and right
linear. Such a transformation would satisfy aU = Ua for all a ∈ H and the
problems described above would not occur. The transformations of this type can
be characterized easily: if

XR = {v ∈ X : av = va, ∀a ∈ H} and YR = {v ∈ X : av = va, ∀a ∈ H}

such that

X = XR ⊗H and Y = YR ⊗H,



104 Chapter 3. The direct approach to the S-functional calculus

then an operator U : X → Y is both left and right linear if and only if it is the
quaternionic right linear extension of an R-linear operator UR : XR → YR. (In the
terminology introduced in Definitions 2.2.6 and 3.3.1, this is equivalent to U being
a scalar operator.)

However, restricting ourselves to such transformations is not feasible. We can
consider for example X = Hn with its natural left and right multiplication and
endowed with an arbitrary norm. This yields a two-sided quaternionic Banach
space of dimension n. A right linear operator T on Hn can be represented by
an n × n-matrix with quaternionic entries and an operator is both left and right
linear if it is represented by a matrix with only real coefficients. This matrix can
be put in Jordan normal form, i.e., there exists an invertible matrix U such that
T = USU−1, where S is a block diagonal matrix with the diagonal that consists
of Jordan blocks [190]. The matrix U however does not necessarily only have real
entries. It is in general a matrix with quaternionic entries and hence it represents
an operator that is only right, but not necessarily left linear. If we require that the
spectral properties are only invariant under transformations that are both left and
right linear, this would imply that the spectral properties of T are not necessarily
invariant under the transformation U . Hence, T and its model in Jordan normal
form S might have different spectral properties, which is absurd.

Spectral properties of an operator must therefore be invariant under norm-
preserving and bijective right linear transformations. Since the left multiplication
is not invariant under such transformations, the spectral properties of an operator
cannot depend on it. We conclude that right linear quaternionic operators have to
be understood in terms of the right linear structure only. The left multiplication
is a useful auxiliary tool, but spectral properties of the operator cannot depend
on it. However, the left multiplication is necessary in order to consider B(X) as
a quaternionic linear space. Without it, it is not possible to apply quaternionic
techniques to elements of B(X) and to give intuitive integral representations for
the S-functional calculus in B(X). Furthermore, without assuming the existence of
a left multiplication, it would not have been possible to develop the fundamental
concepts of quaternionic operator theory. In particular, the S-spectrum could not
have been found as its definition was understood by finding the closed form of the
Cauchy kernel operator series

∑+∞
n=0 T

ns−(n+1), cf. Theorem 2.2.9. Giving meaning
to this series requires B(X) to be a quaternionic linear space.

Finally, in certain situations, the left multiplication of X is particularly use-
ful for simplifying computations, since this left multiplication might allow us to
write T in terms of components as T = T0 +

∑3
`=1 T`e`, cf. Definition 2.2.6 and

Definition 3.3.1. If there exists a model of the operator T in a space with a left
multiplication, such that T has commuting components, then this model can be
used to significantly simplify computations for investigating T , cf. Theorem 3.3.4.
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