Chapter 3 ®

Check for
updates

The direct approach to the
S-functional calculus

The S-functional calculus can also be defined for unbounded operators T : D(T') C
X — X, where X is a two-sided quaternionic Banach space X. In the papers
[69,101] this calculus was defined using suitable transformations in order to reduce
the problem to the case of bounded operators. The direct approach has been
studied in the more recent paper [130] and it turned out that the two approaches,
contrary to the complex setting, are not totally equivalent. In fact, in using the
direct approach one can remove the assumption that the S-resolvent set contains
a real point.

Definition 3.0.1. Let X be a two-sided quaternionic Banach space. A right linear
operator T : D(T) C X — X defined on a right-linear subspace D(T') of X is
called closed if its graph is closed in X & X. We denote the set of closed right
linear operators T': D(T) C X — X by K(X).

Remark 3.0.1. The notion of a closed right linear operator can also be considered
on a right Banach space and does not necessarily require the existence of a left
multiplication on X. However, for the reasons explained in Remark 2.2.7, one
usually works on two-sided Banach spaces.

When we deal with closed operators, we have to pay attention to the domains
on which they are defined. The powers of T are defined inductively as T° = T
with D(T%) = D(Z) = X and T v = T(T™) for v € D(T") := {v € D(T) :
T™ € D(T)}. Polynomials of T with real coefficients are then defined as usual:
if P(s) = Y,_,aes® with a; € R, then P(T)v = >,_,a/T* for v € D(T™).
However, if the coefficients are not real, then we have to distinguish two cases: for
a right slice hyperholomorphic polynomial P(s) = >_,_ ass® with a, € H, we can
again set P(T)v = Y_;_,a;T*v for v € D(T™). For a left slice hyperholomorphic
polynomial P(s) = > ,_, stay with ay € H it is, however, not always possible
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to set P(T)v = > y_oT™agv for v € D(T™). Indeed, since T is right linear, the
domain of D(T*) is a right-linear but not necessarily a left-linear subspace of X.
Hence, it might happen that a,v ¢ D(T*) even though v € D(T™), so setting
P(T)v =3",_,T"asv is not meaningful.

3.1 Properties of the S-spectrum of a closed operator

For T € K(X), we define
Q,(T) :=T? — 2Re(s)T + |s|*Z, for s € H,
and the operator Q4(T) is defined on D(T?).
Definition 3.1.1. Let T € K(X). We define the S-resolvent set of T as

ps(T):={seH: Q. T) " eB(X)}
and the S-spectrum of T as
os(T) = H\ ps(T).

For s € pg(T), the operator Q(T)~! is called the pseudo-resolvent of T' at s.
Furthermore, we define the extended S-spectrum ogx(T") as

os(T) if T is bounded,

T):=
osx(T) {US(T) U{oo} if T is unbounded.

Before we study the properties of the S-spectrum of a closed operator, we
need to investigate the differentiability properties of its pseudo-resolvent in detail.
The correct tool for studying these properties is a series expansion of Q4 (7)1,
which was found in [52]. An heuristic approach for finding this expansion consists
in considering the equation

Qu(T) ™ = Qu(T) ™! = Qu(T)™H(Qy(T) — Qs(1))Qy(T) " (3.1)
and writing it as
Qu(T) ™ = Qu(T) ™1 + Qu(T)7H(Qy(T) — Qs(1)Qqe(T) ™.

Recursive application of this equation then yields the series expansion proved in the
following, where we consider closed axially symmetric neighbourhoods, described
by the function ds(s, ¢) = max {2[so — qol, ||¢|> — |s|?|}, which naturally rise from
the series expansion of the pseudo-resolvent operator.

Theorem 3.1.2. Let T € K(X) and q € ps(T) and let s € H. If the series

+o00
T(5) = > (Qq(T) — Qu(T))" Qq(T)~ "+ (3.2)

n=0
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converges absolutely in B(X), then s € ps(T) and it equals the pseudo-resolvent
Q. (T)"t of T at s.

The series converges in particular uniformly on any of the closed azially
symmetric neighbourhoods

C.(q)={seH: ds(s,q) <e}

of q with
ds (s, q) = max {2[so — qol, [|a* — |s*[}

and
1

ST, + QD)1

Proof. Let us first consider the question of the convergence of the series. The sets
C.(q) are obviously axially symmetric: if s; belongs to the sphere [s] associated
to s, then sop = Re(s) = Re(s;) and |[s|> = |s;|%. Thus, ds(sj,q) = ds(s,¢) and in
turn s € C.(q) if and only if s; € C.(q). Moreover, since the map s — dg(s,q)
is continuous, the sets U.(q) := {s € H : ds(s,q) < €} are open in H. Since
U-(¢q) C C.(q), the sets C. are actually neighbourhoods of ¢. In order to simplify
the notation, we set

Mg, 8) == Qq(T) — Qu(T) = 2(so — q0)T + (laI* — [s[*)T.

Since Q,(T)~! maps X to D(T?) and A(g, s) commutes with Q,(7)~! on D(T?),
we have for any s € C.(q),

> At rymy-e)|
n=0
- f |8t 9)241))" @)

<Z||Aq, $)Qa(1) " | Qa(T) 7| -

We further have

|A(g, 5)Qq(T) || < 2Is0 — a0l | TQu(T) || + [lal® — Is1?] || Qa(T) 7!
<ds(s,q) (||TQq(T) M| + || (1))
S e (|7Qy(T) | + [|Qq(D)7H|) =t o

If now £ < 1/ (|| TQq(T) | + || Qq(T) |

5 A e @] < o, 3 g7 < o0
n=0 n=0

)7 then 0 < p < 1 and thus,
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and the series converges uniformly in B(X) on C.(q).
Now assume that the series (3.2) converges and observe that Qs(T'), Q4(T)
and Q,(T)~! commute on D(T?). Hence, we have for y € D(T?) that

+oo
T)y = Z Alg,s)" Qqg(T)~ "D Q(T)y
- Z A Q7 ~(n+1) [_A(Q7 S) + Qq(T)} Yy

:_ZA% n+1Q ) n+1)

+ Z Ag,8)"Qq(T) "y = y.
n=0

On the other hand,

N
YN = Z A(g,8)" Qqg(T) "y = Qu(T)™ > Mg, )" Qq(T) ™"y
n=0
belongs to D(T?) for any y € X and we have
QS(T)yN = (_A( + Qq ZA (L (n—i—l)y

n=0

N
Z n+IQ ) (n+1)y+ ZA(q,s)”Qq(T)*”y
—A(q,

)N+1Q( ) (n+1)y+y.

Now observe that
A(g.5) = 2(s0 — qo)T + (|laf* — |s]*)Z

is defined on D(T') and maps D(T?) to D(T). Hence, A(q, s)2Qq(T)~! belongs to
B(X) and for N >1

|-G,y 40y

= ||-Ag, )N Qu(T) "V A(q, 5)?Qq(T yH

— — N 00
< Al )Y @T) | Mg, @1 o] 50

because the series (3.2) converges in the norm of B(X) by assumption. Thus,
Qs(Tyn — y and Yy — Yoo := J(s)y as N — oo. Since Q4(T) is closed, we
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obtain that
J(s)y € D(Qs(T)) =D(T?) and Qy(T)IT(s)y =y-
Hence, J(s) = Qs(T)~! and in turn s € pg(T). O

Lemma 3.1.3. Let T € K(X). The functions s — Qs(T)™! and s — TQs(T)~!
which are defined on ps(T) and take values in B(X), are continuous.

Proof. Let q € ps(T). Then Q,(T)~! can be represented by the series (3.2), which
converges uniformly on a neighborhood of ¢q. Hence, we have

i (T Zlﬂ“ (s0 = q)T + (laf* = |s*) )" Qq(7) ="

:Qq( ) ’

because each term in the sum is a polynomial in sg and s; (since s = sg + js; for
J € S) with coefficients in B(X) and thus, continuous. Indeed

((s0 = a0)T + (Jaf? = 1s*) )" Qu(T) ="+

Z( ) (50 — q0)* (laf> — |s[2)" ™  T*Qy(T)~ ™+

k=0

and the coefficients T%Q,(T)~ (™1 belong to B(X) because Q,(T)~ "+ maps
X to D(T?*™*V) and k < 2(n + 1). The function s — TQ,(T)™! is continuous
because the identity (3.1) implies

lim ([ TQu (7)™ = TQ,(T) |
= lim || TQu1 (T) H(Qu(T) = Quin(T) QD).

The operator Q4(7T)~! maps X to D(T?) and so
(Qs(T) = Qu4n(T))Qs(T) ™" = (2hoT + (s> — |s + AI*)T) Qs (T) ™

maps Xto D(T). Since T and Q1 (T)~! commute on D(T) we thus have

lim HTQs-‘rh(T)_l - TQS(T)_lH

h—0

= lim \|Qs+h<T)*1 (2hoT? + (|5 — s + h*) T) Qu(T) 7|

: -1 2 -1
<ty | Quen (1) i 200 [T20.(1) |

+}1ig}JHQs+h 1y| (e \s+h|)HTQS(T)_1H:O. O
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Lemma 3.1.4. Let T € K(X) and s € ps(T). The pseudo-resolvent Q(T)~" is
continuously real differentiable with

0

@QS(T)*1 = (2T — 2501)Qs(T)™* and iQs(T)f1 = —251Q,(T) "
0

881
Proof. Let us first compute the partial derivative of Q4(T)~! with respect to the
real part sg. Applying equation (3.1), we have

0

1
—_— -1 = 1 —
Dsg Q.(T) lim

R>h—0 h

(QS+}L(T)71 - QS(T)il)

- Réi}{go %Qs+h(T)_l (Qs(T) = Qs (T)) Qs(T)

o 1 B B 1
- RélfLHi)O Qs+h (T) (2T 250 h/I) Qs (T) )

where limgsy, 0 f(h) denotes the limit of a function f as h tends to 0 in R. Since
the composition and the multiplication with scalars are continuous operations on
B(X), we further have

o) _ : 1 _ _
6)—SOQS(T) = Rélhrgo Quin(T) 1R$1}{g0 ((2T — 2507)Qs(T) ™" — hQ(T) ™)
= Q,(T) 12T — 250T)Qs(T)~*

= (2T — 2801) Qs (T)iza

where the last equation holds true because Q4(T)~! maps X to D(T?) C D(T) and
T and Q(T)~! commute on D(T). Observe that B%OQS (T)~! is even continuous
because it is the sum and product of continuous functions by Lemma 3.1.3.

If we write s = sg + jss1, then we can argue in a similar way to show that
the derivative of Q,(T)~! with respect to s; is

0 -1 _ 1 1 ) -1 _ -1
8781QS (1)~ = R%l}go n (Q5+h]s (T) Qs(T) )
. 1 _ _
= Jim = Qi (1)1 (Qu(T) = Qugny. (T)) Qu(T) ™!
= pdim Qoinj, (1)~ (=251 — h) Qu(T) "
= dim Qi (1)) lim (~2510,(1)"" ~ hQ,(T) ")
= —25Q,(T)2.

Again this derivative is continuous as it is the product of two continuous functions
by Lemma 3.1.3.

Finally, we easily obtain that Q,(T") ! is continuously real differentiable from
the fact that Q,(T)~! is continuously differentiable in the variables sy and s;. If we
write s in terms of its four real coordinates as s = &y + Z?:l &rep, then the partial
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derivative with respect to &y corresponds to the partial derivative with respect to
sp and thus, exists and is continuous. The partial derivative with respect to &, for
1 < /¢ < 3 on the other hand exists and is continuous for s; # 0 because Q; (T)_1
can be considered as the composition of the continuously differentiable functions

s> 851 =&+ &+ and 51 — Qgyjs, (T) 7! with fixed j € S. We find

0

7QS<T)_1 = _251 QS(T)_2ESO = _2§€QS(T)_2'
0&

&

For s; = 0 (that is for s € R), we can simply choose j = e; and then the partial
derivative with respect to &, agrees with the partial derivative with respect to s;.
In particular, we see that also the partial derivatives with respect to the real
coordinates &, ..., &3 are continuous. 0

Lemma 3.1.5. Let T € K(X) and s € ps(T). The function s — TQ(T)™! is
continuously real differentiable with

aiTQs(T)—1 = (2T% — 250T)Q.(T) 2
S0
and 9
a—TQS(T)*1 = —25TQ,(T) 2.
S1

Proof. If limgsp—0 f(h) denotes again the limit of a function f as h tends to 0 in
R, then we obtain from (3.1) that

A TOUT) T =l 3 (TQun(T) ™ = TQU(T) )
= lim 2T (1) (Qy(T) ~ Quen(T)) Qu(T)
= lim %TQerh(T)_l (2hT — 2hsoT — h*T) Q4 (T) "
= Réiﬁo Quin(T)™1 (2% — 25T — hT) Q4(T) ",

because (2hT — 2hsoZ — h*T) Q,(T)~' maps X to D(T) and T and Q44 (T) ™"
commute on D(T'). Since the composition and the multiplication with scalars are
continuous operations on the space B(X) and since the pseudo-resolvent is con-
tinuous by Lemma 3.1.3, we get

) _ _ 1 _ _
8—50TQS(T) 1— Glim Qoin(T) 1R%1hrgo((2T2 —250T) Qy(T) ™" — KT Q,(T) ™)

— Q.(T)" (2% — 250T) Q4 (T) "
= (20T — 2T2)Q.(T) ™.

This function is continuous because we can write it as the product of functions
that are continuous by Lemma 3.1.3.
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The derivative with respect to s; can be computed using similar arguments

via
A TQUT) ™ = lim & (TQ, (1) —TQL(T))
=l 2T (1) (Qu(T) ~ Qe (7)) Qu(T)
=l STQ, 1, (1) (~2hsy — %) Qu(T)

_ 1 ) -1 1. B 1 .
= _lim Qs (T) plm (—25:TQ,(T) hTQ,(T)™ 1)

= —25TQ,(T) 2.

Also this derivative is continuous because

%TQS(T)’l =251 (TQ(T)™") Qu(T) "

is the product of functions that are continuous by Lemma 3.1.3.

Finally, we see as in the proof of Lemma 3.1.4 that TQ,(T) ! is continuously
differentiable in the four real coordinates by considering it as the composition of
the two continuously real differentiable functions s — (sg,s1) and (sg,s1) —
TQstjs, (T)~* choosing js appropriately if s € R. |

Let us return now to studying the S-spectrum of 7'. As we show in the next
theorem, it has properties that are analogue to the properties of the usual spectrum
of a complex linear operator.

Theorem 3.1.6. Let T € K(X).

(i) The S-spectrum o5(T) of T is axially symmetric. It contains the set of right
eigenvalues or(T) of T and if X has finite dimension, then it equals og(T).

(ii) The S-spectrum og(T) is a closed subset of H and the extended S-spectrum
osx(T) is a closed and compact subset of Hy := H U {o0}.

(iil) If T is bounded, then og(T) is nonempty and bounded by the norm of T.
Proof. We have ¢ € [s] if and only if Re(q) = Re(s) and |g| = |s|. In this case

Q(T) = T? — 2Re(s)T + [s|*Z = T? — 2Re(q) + |¢|*Z = Q,(T)

and s € pg(T) if and only if g € ps(T). Hence, ps(T) and o5(T') are both axially
symmetric. Furthermore,

Q:(T)v =T(Tv —vs) — (Tv — vs)s. (3.3)

If s € or(T), then there exists a right eigenvector v € X \ {0} associated with s,
that is Tv — vs = 0, and hence Q4(T)v = 0 because of (3.3). Therefore Q,(T)v is
not invertible and so s € og(T).
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If furthermore X is finite-dimensional, then Q4(T') is invertible if and only
if ker Q4(T) # {0}. Hence, if s € og(T), then there exists v € X \ {0} with
Qs(T)v = 0. If Tv = vs, then we already see that s € or(T"). Otherwise, we see
from (3.3) that v := Tv — vs # 0 is a right eigenvector of T associated with 3. If
s =u+ jv with j € S, we can choose ¢ € S with ¢ L j. Then ji = —ij and in turn
si = i5 so that

T(wi) = T(#)i = (35)i = (vi)s.
Hence, ¥ is a right eigenvector of T associated with s and so s € og(T"). Thus, (i)
holds true.

If s € ps(T), then Theorem 3.1.2 shows that there exists an axially symmetric
neighborhood of s that also belongs to ps(T'). Hence, ps(T') is an open subset of
H and os(T) =H\ ps(T) is in turn a closed subset of H. If o5(T) is bounded in
H, then it is also closed in H,.. Hence, if T" is bounded, then osx (T') = o5(T) is
closed in Hy,. Similarly, if T' is unbounded and og(T) is bounded, then ogx (T) =
0s(T) U {0} is the union of two closed subsets of H, and hence bounded itself.
Finally, if 0g(7T) is unbounded, then 7" must be unbounded and we find that
osx(T) is closed as

0sx(T) = 0s(T)U {0} = GS(T)H‘X’.

Hence, (ii) holds true. Finally, (iii) is part of the statement of Theorem 2.2.11. O
Definition 3.1.7. Let T € K(X).
(i) We call s € R an S-eigenvalue of T' if (T’ — sZ)x = 0 for some = € X \ {0}.

(ii) Let s € H\ R. We call [s] an eigensphere of T if Q4 (T)z = 0 for some
x € X\ {0}.

In both cases, the respective vector x is called an S-eigenvector associated with
the S-eigenvalue s (resp. the eigensphere [s]).

The next theorem clarifies the relation between the S-spectrum and the clas-
sical spectrum known from the theory of complex linear operators. The quater-
nionic Banach space X also carries, for any j € S, the structure of a Banach space
over the complex field C;. We only have to restrict the multiplication of vectors
with quaternionic scalars from the right to the complex plane C; and obtain a
complex Banach space over C;. We denote this C;-complex Banach space by X;.
(Observe that C;-complex multiples of the identity Zx, on X act as (AZx;)y = yA
for A € C; and y € X;.) Any quaternionic right linear operator T on X is then
also a Cj-linear operator on X ;. We denote the resolvent set and the spectrum of
T as a complex linear operator on X; by pc,(T") and oc, (T').

Theorem 3.1.8. Let T' € K(X) and choose j € S. The spectrum oc,(T) of T

considered as a closed complex linear operator on X; equals o5(T) N C;, i.e.,

oc (T) = os(T)NC. (3.4)

J
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For any X in the resolvent set pc,(T) of T as a complex linear operator on Xj,

the C;-linear resolvent of T is given by R\(T) = (A x, —T) Qx(T)7', i.e.,

Ra(T)y := Q\(T) 'yA = TQA(T) " 'y. (3.5)

For any i € S with j L i, we, moreover, have

Ry(T)y = —[RA(T)(yi)]i- (3.6)
Finally, if s =u+1v € pg(T), we can set s; = u+ jv and find
QuT) = Ry, (T)Res(T). (37)

Proof. Let X € ps(T)NC;. The resolvent (AZx, —T')~! of T as a C;-linear operator
on X is then given by (3.5). Indeed, since T" and Q(T)~! commute, we have for
y € D(T) that

RA(T)(Mx, —T)y
= (\Ix, - T)Qx\(T) " (yA — Ty)
= (\Ix )(QA( )" ryA = TONT) " 1y)

(T ) "WAX = TOANT) 'YX = TOANT) 'yA + T?Q5(T) 1y
(IAPZx, — 20T + T?)OA(T) 'y = v.

Similarly, for y € X, we have

(AZx, —T)RA(T)y

= (\Ix, = T) (QA(T)"'yA = TN(T) " y)

= Q\(T) 'y = TOAT) " 'yA = TONT) 'y + T?QA(T) 'y

= (IMPZx, —2MT + T2)Q5(T) 'y = v.
Since Qx(T)~! maps X; to D(T?) C D(T), we find that the operator Ry(T) =
(MZx, —T)Qa(T)~" is bounded and so A belongs to the resolvent set pc, () of
T considered as a Cj-linear operator on X;. Hence, ps(T) N C; C pc,(T) and in

turn oc, (T') C 05(T) N C;. Together with the axial symmetry of the S-spectrum,
this further implies

oc,(T)Uoc,(T) C (os(T)NC;j) U (os(T)NC;j) = os(T) NCy, (3.8)

where A ={z:z € A}.
If X and A both belong to pc, (T), then [A\] C ps(T') because
(/\IXj — T)(XIX — )y
= WA = (Ty)A = T(yA) + T?y
= (T? = 20T + M)y
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and hence Qx(T)™" = R\(T)Rx(T) € B(X). Thus, ps(T) NC; D pc,(T) N pc, (T)
and in turn
Us(T) ﬂ(Cj C U(Cj(T)UJCj(T). (3.9)

The two relations (3.8) and (3.9) yield together

os(T) N C; = oc,(T) Uoc, (T). (3.10)

What remains to show is that pc,(T') and oc,(T') are symmetric with respect to
the real axis, which then implies

os(T)NC; = oc,(T)Uoc,(T) = oc,(T). (3.11)
Let A € pc,(T') and choose i € S with j L i. We show that Ry(T") equals the
mapping Ay := — [Rx(T)(yi)]i. As X\i = i) and i\ = Xi, we have for y € D(T)
that
()\IX — =A (y)\ Ty)

T)y
— [RA(T) ((yA)i — (Ty)i)] é
— [BA(T)((yi)A — T(yl))]
— [RA(T)(A\Ix, — T)(yi)] i = —yii = y.

Similarly, for arbitrary y € X; = X, we have
(Xx, —T) Ay = (Ay) X — T (4y)

— [RA(T)(yi)] i + T ([RA(T) (yi)] )
— [RA(T)(yi)A — T(R)\( )(yi))] i
=~ [(\Zx, = T)BA(T)(yi)] i = —yii = y.
Hence, if A € pc,(T), then Ry(T) = — [RA\(T)(yi)] 4 such that in particular A €
pc,; (T). Consequently pc; (T) and in turn also oc, (7') are symmetric with respect
to the real axis such that (3.11) holds true. O

Remark 3.1.1. The relations (3.10) and (3.7) had been observed in [159]. Also
the relation Ry(T)Rx(T) = Qx(T)~*, which is a consequence of (3.5), was un-
derstood in that paper. The complete statement, in particular the fact that for a
quaternionic linear operator 7" always oc,(T) = oc,(T') due to (3.6), was finally
established in [131]. For unitary operators, this symmetry was already understood
in [196], but the correct notion of spectrum for quaternionic operators had not yet
been developed so it was impossible to see the full picture.

3.2 The S-resolvent of a closed operator

For closed operators, the definition of the S-resolvent operators needs a little
modification. If we define the left S-resolvent operator as in the case of bounded
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operators, we obtain
S (s, T)w := —Qy(T) (T — 3T)a, (3.12)

which is only defined for € D(T') and not on all of X. However, for x € D(T),
we have Q4(T) Tz = TQ,(T) 'z and so we can commute T and Q4(T)~ ! in
order to obtain an operator that is defined on all of X.

Definition 3.2.1 (The S-resolvent operators of a closed operator). Let T' € K(X).
For s € ps(T'), we define the left S-resolvent operator of T' at s as

S;N(s, T)x = Qy(T) 52 — TQ4(T)'w, forallz € X, (3.13)
and the right S-resolvent operator of T" at s as
Spl(s,T)x := —(T —I5)Qs(T) 'x, forallz € X. (3.14)

Remark 3.2.1. For s € ps(T), the operator Q4(T)~! maps X to D(T?). Hence,
TQ4(T)~ " is a bounded operator and so S} ' (s, T) and Sy' (s, T') are bounded, too.
The converse, however, is not necessarily true. As the next example shows, there
might exist points s € H that belong to o5(T') even though S;*(s,T) or S5'(s,T)
are bounded operators. In order to determine the S-spectrum of an operator 1" one
therefore always has to work with the operator Q4(7T)~! even though, as we will
see later on, the S-resolvent S} '(s,T) and Sy (s,T) and not the pseudo-resolvent
Q.(T)~! appear in the S-functional calculus.

If a sphere [s] = u + Sv belongs to og(T), then the S-resolvents can be
bounded at most at one point in [s]. We will prove in the following that the right
S-resolvent is left slice hyperholomorphic in s. If Sgl(sk, T) with s, = u+ kv and
Sp'(si,T) with s; = u+4v are bounded, then (2.11) in Corollary 2.1.8 implies for
any s; = u+ jv with j € S\ {7, k} that

1Sz (5. D) < [G—k)"hi+ 5k — )7 [|Sg" (s, T
+ (k=) e+ 5k — ) ||SR (s, T)| < +oo.

Hence, if Sy* (s, T) is bounded at two points in [s], then it is bounded at any s € [s].
The estimates that we will show in Lemma 3.2.8 imply then that [s] C ps(T). For
the left S-resolvent, we can argue similarly.

Example 3.2.2. Let ¢*(H) be the quaternionic Hilbert space of all square-summable
sequences in H and let ¢ € S. On this space, we consider the operator

(H) —  2(H)

T N n—1 -
(an)nen (Tm")neN'

This operator is obviously bounded with ||T|| = 1 and if e,, = (dp,m)m,en, Where
On,m = lif m=nand d, n, =0if m # n, then Te,, = en"T_li. Hence, we conclude
from Theorem 3.1.6 that

os(T) > U“;lsZSuU”_ls (3.15)

n
neN neN
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Straightforward computations show, that we even have equality in (3.15) since
Q4(T)~" is bounded for any s ¢ SUJ,,cy 1S,
Let us now consider the point —j, which obviously belongs to og(T"). The

pseudo-resolvent of T' at —j applied to (a,)nen € ¢2(H) is

n?
Qi) a)uen = (P41 Masduen = (o)

2

As expected, this is an unbounded operator on ¢?(H), because — 400. The

left S-resolvent at —¢ on the other hand is

n
2n—1

87 (=8T) @) = Q) T = T)anen = 5 ginn)

and this is a bounded operator because
i

157 (=, T)|| = sup
neN

< +o00.

2n —1

Hence, S;'(—i,T) is bounded even though —i ¢ pg(T).

A second difference between the left and the right S-resolvent operators is
that the right S-resolvent equation only holds true on D(T).

Theorem 3.2.3 (The S-resolvent equations). Let T € K(X). For s € pg(T), the
left S-resolvent operator satisfies the identity

S;N(s, T)sx —TS; (s, T)x =, forallz € X. (3.16)

Moreover, the right S-resolvent operator satisfies the identity
sSp (s, T)x — Sz (s, T)Tx ==, for all x € D(T). (3.17)

Proof. We have for x € D(T) that

3SR (s, T)x — Si' (s, T)Tx

= —s(T —TI3)Q,(T) o + (T — 73)Q.(T) ‘Tz

= (=8T +|5]*7)Q.(T) *x + (T? —3T7)Q.(T) 'z

= (T? = 2Re(s)T + |s[*T) Q4(T) 'a = .
Similar computations show (3.16). O

Remark 3.2.2. We can extend (3.17) to an equation that holds on the entire space
X, similarly to how we could extend (3.12) to a bounded operator on the entire
space X. This equation is

Ssél(s’T)I +(T? —=3T)Q4(T) 'z ==, forall z € X.



58 Chapter 3. The direct approach to the S-functional calculus

Theorem 3.2.4 (S-resolvent equation). Let T € K(X). If s,q € ps(T) with s ¢ [q],
then
Sr'(s,T)S; (¢, T) = [[Sk' (5,T) = S; (¢, T)lg
587 (s,T) = S7 (0, T)]] (4% — 2Re(s)q + [s2) L. (3.18)
Proof. As in the case of bounded operators, the S-resolvent equation is deduced
from the left and the right S-resolvent equation. However, we have to pay attention
to being consistent with the domains of definition of every operator that appears
in the following. We show that, for every x € X, one has
Sr'(s,T)S; (¢, T)(¢* — 2s0q + |s|*)z
= [S5M(5,T) = S7 M@ Dlaw — 555 (5, T) = S; @ Dl (3.19)
We then obtain (3.18) by replacing by (¢* — 2s0q + |s|?) ~'x. For w € X, the left
S-resolvent equation (3.16) implies
Spl(s,T)S; (¢, T)qw = S (s, T)T'S; (¢, T)w + Si* (s, T)w.

The pseudo-resolvent Qs(T') ™! maps X onto D(T?). Therefore the left S-resolvent
operator S; (s, T) = Q4(T)~'5—TQ,(T)~* maps X to D(T) and so S; ' (¢, T)w €
D(T). The right S-resolvent equation (3.17) yields

Si'(s,T)S; (g, T)qu
=8z (5,7)8; (¢, T)w — Sp ' (¢, T)w + Sg' (s, T)w.
If we apply this identity with w = qz we get
Szt (s,T)S (4, T)(q* = 2s0q + |s*)z
= Sgl(s, 7)S; (¢, T)¢*x — 25051;1(5, 7)S; (g, T)qx
+1s°Sz (s, T)S; (g, T
=S5 (s,T)S; (¢, gz — S; (a0, T)gz + Sp* (s, T)qz
— 25085 (5,T)S7 (4, T)gz + [s*Sg" (5, T)S (¢, T)a.
Applying identity (3.20) again with w = x gives
Si' (5, T)S; (a0, T)(¢* = 2s0q + |s[*)x
= s*Sp'(5,7)S; " (¢, T)x — sS; (¢, T)x + sSg" (s, T)x
- S; (g, T)gz + Si' (s, T)qx
— 250885 (5, T7)S; (g, T)x + 2505, ' (¢, T)x — 28055 (5, T
T 152851 (5, T)ST (0, T)e
= (s* — 2505+ |s|*) Sz (5,7)S; (¢, T)x
— (280 — 8)[SR' (s, )z — S; (¢, T)a]
TS5 (s.T) - 87 (0, Tlaz.

(3.20)
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The identity 2sg = s + 3 implies s% — 2595 + |5/ = 0 and 259 — s = 5 and hence
we obtain the desired equation (3.19). O

We want to show now the slice hyperholomorphicity of the S-resolvent opera-
tors of a closed quaternionic operator. The fact that they are differentiable follows
from the series expansion of the pseudo-resolvent that was found in Theorem 3.1.2.

Lemma 3.2.5. Let T € K(X) and s € pg(T). The left and the right S-resolvents of
T are continuously real differentiable.

Proof. The S-resolvents are sums of functions that are continuously real differen-
tiable by Lemma 3.1.4 and Lemma 3.1.5 and hence continuously real differentiable
themselves. ]

Theorem 3.2.6. Let T € K(X). The left S-resolvent Sy ' (s,T) is right slice hyper-
holomorphic and the right S-resolvent Sgl(s,T) is left slice hyperholomorphic in
the variable s.

Proof. We consider only the case of the left S-resolvent, the other one works with
analogous arguments. We have

S; (s, T) = a(s0,81) + sB(s0, 51)
with
a(so, $1) = QS(T)*lsO —TQ.(T) and B(sp,s1)= fQS(T)*lsl.

Obviously a and § satisfy the compatibility condition (2.4) and hence SL_l(s,T)
is a right slice function in s.
Applying Lemma 3.1.4 and Lemma 3.1.5, we have

0 4.0 4
By (D)5 = 5T Qu(T)

= (2T — 250Z)Qs(T) 5+ Qs(T) " — (217 — 250T) Q4(T) 2
= (2T — 2507) Qs (T) *5 + (—T% + |s|’T) Q4(T) 2.

a —1 o
87305[’ (S,T) =

Since sg and |s|? are real, they commute with Q4(7T")~2. If we apply the identities
259 = s+ 5 and |s|? = 53, we obtain

%S;l(s, T)=-T?Q,(T) % +2TQ,(T) %5 — Q,(T) 5%
0

For the partial derivative with respect to s, we obtain

O orpmy 0o D .
—15L (s,T) = a—&QS(T) 3 851TQS(T)
= _281 QS(T)_QE_ QS(T)_ljs + 251TQ5(T)_2

= —2519,(T) %5 — (T? — 250T + |5|*T) Qs(T) " 2j, + 251 TQ,(T) 2.
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We can again commute 2sg, 251 and |s|? with Q.(T)~! because they are real. By
exploiting the identities 2s9 = s +3, —2s; = (s —3)js and |s|?> = s3, we obtain the
formula

a% S; (s, T) = (~T2Qu(T) 2 + 20°0,(T) %5 — Q.(T) (1)) j..

So the function s +— Sgl(s, T) is right slice hyperholomorphic as

1/ 0

9]
— —_g~1 _— g71 ] =
5 (8SOSL (s,T)+ Do ST (S,T)]s> 0. O

In Section 8.3 we will need the fact that the S-resolvent set is the maximal
domain of slice hyperholomorphicity of the S-resolvent operators such that they
do not have a slice hyperholomorphic continuation. In the complex case this is
guaranteed by the well-known estimate

| R(z, A) (3.21)

|2 St oa)y

where R(z, A) denotes the resolvent operator and o(A) the spectrum of the com-
plex linear operator A. This estimate assures that ||R(z,A)|| — +oc as z ap-
proaches o(A4) and in turn that the resolvent does not have any holomorphic
continuation to a larger domain, see [177,191].

In the quaternionic setting, an estimate similar to (3.21) cannot hold true.
We can for example consider the operator 7' = AZ on a two-sided Banach space
X for some A = Ag + jaA; with Ay > 0. Its S-spectrum og(7T) coincides with the
sphere [\] associated with A and its left S-resolvent is

S (s, T) = (A2 — 250X\ + [s]*) 71 (5 — M)T.
If s € C;,, then A and s commute so that the left S-resolvent reduces to
S s, T) = (s—N)"'T

with ||S;1(5,T)|| = 1/|s — A|. If 5 tends to X in C
because A € og(T'). But at the same time

then dist(s,05(T)) — 0

a0

IS (5, D)l = 1/Ix = X[ = 1/(2\1) < +o0.

Nevertheless, although (3.21) does not have a pointwise counterpart in the
quaternionic setting, we can show that the norms of the S-resolvents explode near
the S-spectrum. As it happens often in quaternionic operator theory, this requires
that we work with spectral spheres of associated quaternions instead of single
spectral values.
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Lemma 3.2.7. Let T € K(X) and s € ps(T). Then

1

1Qs(T) M + ITQs(T) | = Is(s.05(T)

(3.22)

where

ds(s,05(T)) = inf ds(s,q)
qcos(T)

and dg(s,x) is defined as in Lemma 3.1.2.

Proof. Set Cy := ||Qs(T) "+ |ITQs(T) Y. If ds(s,q) < 1/Cs, then z € ps(T) by
Lemma 3.1.2. Thus, dsg(s, q) > 1/C; for any q € og(T). If we take the infimum over
all ¢ € og(T), this inequality still holds true and we obtain dg(s,os(T)) > 1/Cs,
which is equivalent to (3.22). O

Lemma 3.2.8. Let T € K(X) and s € ps(T). Then

V2[Q:(T) 1 < ||SL (s, )| + |55 1 (5, 7))

and in turn

1Qs(T)~1 < V2 sup ||S (s, T)]|-

s;€[s]
Analogous estimates hold for the right S-resolvent operator.

Proof. Observe that Q4(T)~! = Qz(T)~! for s € ps(T). Because of 25y = s + 3,
we have
Sp'(s,T)Sp (5, T) + Sp ' (5, T)S. ' (5,T)
= (QT) 15 = TQT) ™) (Qs(T) 15 = TQ(T) ")
+ (D)5 = TQ(T) ™) (Qs(T)'s ~ TQ(T) ™)
= (Qs(T) "5 =TQs(T) ") 2(s0Z — T) Qs(T) ™"

and similarly
S YE, TS (s, T) + S5, T)S. (5, 7)
= (Qs(T)'s —=TQ(T) ") 2(s0Z — T) Qs(T) ™.
Therefore
S (s, T)S; (s, T) + S; M (s, T)S; (5, T)
+ S5 TS, (s, T) + S (5. T)S, (5, T)

= (Qs(I) "5 =TQu(T) ") 2(s0Z — T) Qs(T)~*
+(Qs(T) s —TQu(T) 1) 2 (50T — T) Qs(T) "
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=2(s0L —T) Qs(T) 12 (s0Z — T) Qu(T) ™"
= 4(T? — 250T + s37)Qs(T) 2 = 4Q4(T) ! — 457Q,(T) 2,
which can be rewritten as

49,(T) 1t = S; (s, 1)S; (s, T) + S; (s, T)S; M (5,T)
+SME, TS (s, T) + S M6, T)SL (5, T) + 4s3Q4(T) 2

Thus, we can estimate

4]l Q.(m) |
=[S s D[S . D)+ |1S. (s D 1S . D]
+SED IS s D + (1S G D IS G D)
+4[s1Q.(T) 77
= (157 D + 1S5 D)) + (251 Qo (1) 1251 Q0(T) Y| . (3:23)

Finally observe that
2Q,(T) ts1js = TQs(T) ™ — Qu(T) (50 — Js51)
— (TQs(T) ™" = Qu(T) (0 + jss1)) = S (s, T) = S ' (5.T)
and hence
[251Q0 (T) M| = [[2Q(T) " suis|| < [|527 (5. T + IS 5, )| -
Combining this estimate with (3.23), we finally obtain
2@ < (|52 s D[ + |52 G D)’

and hence the statement for the left S-resolvent operator. The estimates for the
right S-resolvent operator can be shown with similar computations. |

From the above results we get:

Lemma 3.2.9. Let T € K(X). If ($n)nen is a bounded sequence in ps(T) with

lim dist(s,,os(T)) =0,

n—o0

then

lim SUP S (s, T)|| = +00 and  lim sup Sz (s,T)|| = +oc.

n—)oose n—00 s€
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Proof. First of all observe that dist(s,,os(T")) — 0 if and only if ds(sp,05(T)) —
0 because og(T) is axially symmetric. Indeed, for any n € N, there exits x,, €
05(T) such that

|$n — n| < dist(sn,05(T)) + 1/n.

If dist(sp,05(T)) — 0, then |s,, — x,| — 0 and hence |s,, 0 — Zp,0| — 0. Since the
sequence s,, is bounded, the sequence z,, is bounded too and we also have

“Sn|2 - |xn|2| < snllsn — Tal + [sn — 0 ||Zn] — 0
and in turn

0 < ds(sn,05(T)) < ds(sp,xn) = max{|sn70 — Tnol, ||3n|2 - |xn\2|} — 0.

If on the other hand dg(s,,os(T)) tends to zero, then there exists a sequence
(Zn)nen in 0g(T) such that

ds(Sp,xy) < dg(sn,05(T)) +1/n

and in turn dg(sy,,z,) — 0. Since og(T) is axially symmetric and d(sp, zp, ;) =
d(sp,xy) for any z,, ; € [z,], we can, moreover, assume that j,, = js,. Then

0 S |3n70 - xn,0| S dS(S'ruxn) — 0.

Since s, and in turn also x,, are bounded, this implies [s2 , — 22 )| — 0, from
which we deduce that also |s? ; — 22 ;| — 0 because

0< ’3721,0 - fgz,o + 5%,1 - 5U1211| = ||3n‘2 - |$n|2| <ds(sn,xn) = 0.

Since s,,1 > 0 and x,,; > 0, we conclude that s, 1 — z,1 — 0 and, since js = j,,
also

0 < dist (s, 05(T)) < lsn — Zal = /(5.0 — 20.0)2 + (501 — 201)2 = 0.

Now assume that s, € ps(T') with dist(s,,os(T)) — 0. By the above con-
siderations and (3.22), we have

1Qs,, (1) M| + 1 TQs, (1) = +o0. (3.24)

We show now that every subsequence (sy, )ren has a subsequence (snkj )jen such
that '

lim  sup ||S; (s, T)| = +oo, (3.25)
Jj—+oo SE[Snkj]
which implies limy, o Sup¢js, | 1S; (s, T)|| = +oo. We consider an arbitrary

subsequence (Sy, )ken Of (Sn)nen- If this subsequence has a subsequence (snk]_ )jen
such that [|Qs, (7| — +oo, then Lemma 3.2.8 implies (3.25). Otherwise,
J

1Q., (D)7 <C
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for some constant C' > 0 and we deduce from (3.24) that |T'Q,, (7)Y — +oc.
Observe that

1 1 .4, _
TQS"IC (T)_l = _§SL1(8nk7T) - §SL1(5nk7T) + Snk’OQs”k (T) 17

from which we obtain the estimate

700, 07 = sup 187 o DI+ bswwol [, ()7

S€[sn,,

< sup IS (sn, 7| + CM

5€[sn, ]

with M = sup,,¢ |sn| < +00. Since the left-hand side tends to infinity as k — 400,
we obtain that also
sup ||Szl(snk,T)H — 400
s€ S"k]
and thus, the statement holds true. The case of the right S-resolvent can be shown
with analogous arguments. |

Definition 3.2.10 (Slice hyperholomorphic continuation). Let f be a left (or right)
slice hyperholomorphic function defined on an axially symmetric open set U. A
left (or right) slice hyperholomorphic function g defined on an axially symmetric
open set U’ with U C U’ is called a slice hyperholomorphic continuation of f if
f(s) =g(s) for all s € U. It is called nontrivial if V"= U’ \ U cannot be separated
from U, i.e. if U’ # U UV for some open set V with VNU = ().

Theorem 3.2.11. Let T € K(X). There does not exist any nontrivial slice hyper-
holomorphic continuation of the left or of the right S-resolvent operators.

Proof. Assume that there exists a nontrivial continuation f of S;'(s,T) to an
axially symmetric open set U with pg(T) C U. Then there exists a point s €
UNo(ps(T)) and a sequence s, € ps(T) with lim,,_, » s, = s such that

tim (|57 s T = T [17(s0)ll = ()] < +o0.

n—-+oo

Moreover, 5, — S as n — +oo and in turn

tim |55 s D) = tim_[fG0)l = 17G)] < +oo.

n—-+oo
From the representation formula (2.1.7) we then deduce

lim sup ||SL_1(5,T)H < lim ||SL_1(sn,T)H + ||SL_1(§,T)H < +00.

n—-+oo se[s"] n—-+oo
On the other hand the sequence s,, is bounded and

dist(sp, 05(T)) < |sp — s| = 0.
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Lemma 3.2.9 therefore implies

lim sup HS S T)H = 400,

n—-+oo 6

which is a contradiction. Thus, the analytic continuation (f,U) cannot exist. For
the right S-resolvent, we argue analogously. O

One could suspect that it might be possible to improve the above results by
finding an estimate of the form (3.21) for the pseudo-resolvent Q,(T)~! instead
of the S-resolvents. This is, however, not possible as the following example shows.

Example 3.2.12. We consider for p € [1,+00) the space ¢P(N) of p-summable
sequences with quaternionic entries. Any sequence (A, )nen with A, € H obviously
defines a right linear, densely defined and closed operator on ¢?(N) via T(y) =
(AnVn)nen for y = (v )nen € £P(N). If (An ) nen is unbounded, then T is unbounded.
Otherwise, we have

[T = sup [An| = [|(An)nenlloo-
neN
Indeed,
1Ty = Z [Anvnl? < [[(An)nenlloo Z [on [P = [|(An)nenlloo [Ullp
neN neN
such that ||T|| < [[(A)nenlloo- On the other hand, with e, = (d,n)nen Where

Om,n is the Kronecker delta,

|Am| = Z [Andm,nll? = [|T(em)|| < T[],
neN

for any m € N such that also ||(A\n)nenlloo < ||T||- The S-spectrum of T is

os(T) = (J 2] (3.26)

as one can see easily: any A, is a right eigenvalue of T since T'(e,,) = e, A\, and
hence the relation D in (3.26) holds true by Theorem 3.1.6. If on the other hand
s does not belong to the right hand side of (3.26), then

és lllf dl t 37 A1’7, lllf S A1’7, 0)
neN S ( ) N| Ixn | >
WlleIe S-j/\n = S0 +J/\ S1. AS

QS(T)y = (()"ﬂ - ijn )()"ﬂ - %)vn)nEN

and in turn

Qs(T)ily = (()‘n - ijn)il(/\n - K)ilv")nel\l’
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we have ||Qs(T)7 Y| < 1/62 < +oo such that s € pg(T). Thus, the relation C in
(3.26) also holds true.

Now choose a sequence (A\,)nen such that \,1 — 400 as n — +oo and
consider the respective operator T' on ¢P(N). For simplicity, consider for instance
An = jn with j € S. By the above considerations, the sequence sy = j(IN + 1/N)
with N = 2,3,... does then satisfy dist(sy,0s(T)) — 0 as N — +oo and

1
s Til =
19, (070 = 8 ==

1 1

A —snlAv —sN] 0 24 5

(3.27)

Indeed, if n < N, then some simple computations show that the inequality

1 1 1
[An = sn||An — 5N] 7N—|—%—nn+N+%
1 1
< — = —
2+ 5z A —sn|[Ax — 5N

is equivalent to 0 < N2 —n?, which is obviously true. Similarly, in the case n > N,
the inequality

1 B 1 1
A —snl[An =358 n-N-2En+N++
1 1
< = —
2+ w2 |[Av —snl|Av — 3N

is equivalent to 4 + 1/N? < n? — N2, which holds true since 2 < N < n.
From (3.27), we see that ||Q, (T)~!|| < 2 although dist(sy,os(T)) — 0.
Consequently, the pseudo-resolvent cannot satisfy an estimate analogue to (3.21).

Also controlling the norm of TQ(T)~! by the norm of Q,(7)~! in order to
improve (3.22) is not possible: if we consider the operator TQg, (T)~! in the above
example, then

n 1
TO, (T) ly = n
s, (T) "y (n—N—ijO”H-N—i—i,)v) .

and
L 1 N2
TQ,, (I || > ITQs, (T)~ =5onv .1 7 TX®
17Qs, (T) | 2 |1 TQs,, (T) " (en)]| NI +

shows that ||TQs, (T')~!|| tends to infinity although ||Qs, (T')~!| stays bounded.
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3.3 Closed operators with commuting components

Closed right linear operators cannot always be decomposed into components as it
is the case for bounded operators, cf. (2.38).

However, this is possible if D(T) is a two-sided subspace of X, that is if it is
of the form D(T) = Xy ® H for some subspace Xy of Xg.

If on the other hand Ty, ..., T3 are operators on X, then we can define the
operator

T= To + ZT@&@ with D (m D Tg >
=1

Definition 3.3.1. Let X be a two-sided quaternionic Banach space. We define
KC(X) as the set of all operators T' € K(X) that admit a decomposition of the
form T =Ty + 23:1 Tyep with closed operators Ty € K(Xg) such that

() D(T?) = (Voo DITAT) = Moo D(TF),

(ii) D(TyT,) = D(T.Ty), for £,k € {0,...,3},
(iii) 1Ty = T, Try, for all y € D(T?) for ¢,k € {0,...,3}.

Furthermore, we call a closed operator T' a scalar operator if it is of the form
T =Ty, that is if T} = To, = T3 = 0 or equivalently if T is the extension of a closed
operator on Xg to X.

Remark 3.3.1. A scalar operator T € K(X) commutes with any a € H.

The S-spectrum og(T) of any operator T' € KC(X) can be characterized
in a different way that takes the commutativity of the components into account.
The corresponding characterization for bounded operators has been presented in
Section 2.3.

Definition 3.3.2. Let X be a two-sided quaternionic Banach space. For a closed
operator 1" = Ty + 22:1 Tyer € KC(X) with commuting components, we define

T=T-%_ Tre, with D (T) = n}_, D(Ty) = D(T).

McIntosh and Pryde showed in [179, Theorem 3.3] that an operator T' € B(X)

with commuting components is invertible if and only if TT = TT = Ze 0T k;
is invertible. This holds true also for an unbounded operator with commuting
components as the next lemma shows.

Lemma 3.3.3. Let T € KC(X). Then the following statements are equivalent.
(i) The operator T has a bounded inverse.
(ii) The operator T has a bounded inverse.

(iii) The operator TT has a bounded inverse.
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Proof. First of all, we observe that, due to D(T) = D (T), we have
D(TT)={ye X :TyeD(T)} =D (T?).

Since D (T?) = ﬂzﬁzo D(T,T,) = ﬂ?:o D(T}) and

3 3 3 3
TTy = TOQy + Z e/ ToTyy — Z e/ Ty Toy — Z eve . TyTy = ZTZZy
=1 ¢=1 £,r=1 £=0
because eje,, = —eie, and e% = —1for 1 < /¢ k < 3 with £ # k, we thus have

T = 22:0 Tf. In particular, 7T is a scalar operator and hence commutes with
any quaternion.

If TT is invertible, then (TT)_1 = (Z?:o Tez)fl commutes with each of
the components 7; and it also commutes with the imaginary units e,. Hence, it
commutes with T and so the inverse T~ ! is given by T =T (TT)_1 because

(T@T) )1y =TT (TT) 'y, vyeD(T)

and
T(T(1T) ")y = (IT) (IT) 'y=y, WyeX.

Consequently, the invertibility of 77T implies the invertibility of T
If on the other hand 7T is invertible and T-! = Sy + Zi:1 Sken € B(X),
then

3 3
Ilpry =T7'T = (50 + Z SKG,e) (To + ZTzee>
k=1

{=1

3
= SoTyH — Z STy + (SQT3 — 53T2)61
/=1
+ (53T1 — 51T3)62 + (SlTQ — SQTl)(fg7

from which we conclude that

3
Ty = SoTo— Y STy and ST, — STy =0, 1<(<k<3.
=1

Therefore

3 3
ST = (SO - Z SgGg) <T0 - ZT@B@)
—1 —1
3
= SoTo — Z S¢Ty + (S2T3 — S3T3)eq
—1

+ (Sng — Sng)EQ =+ (SlTQ — S2T1)€3 = I|D(T)~
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Similarly, we see that T'S = T also implies TS = Z. Hence, the invertibility of
T implies the invertibility of T and T ' =71 Thus, if T is invertible, we have
(TT)_1 =T 'Tle B(X). Altogether, we find that T is invertible if and only if
TT =TT is invertible. O

Theorem 3.3.4. Let T =T, + Z:Z:l Tyer € KC(X) with dense domain. If we set
Q.s(T) =T — 25Ty + TT,
then
ps(T)={seH: Q. ,(T)"eB(X)} (3.28)
and
Sp'(5,T) = (T = T)Qe.s(T)

3 3.29
Sél( ) Q(‘e ZTKQ('G €. ( )
(=

Proof. Since T' and T commute, we have Q4(T) = Qs(T) and Q. +(T) = Q.5(T).
For y € D(T*) = D (Q..s(T)Q.5(T)), we thus find
Qc,s(T)Qe,s(T)y = (s°T — 25Ty + TT)(5°L — 25Ty + TT)y
= |s|* Ty — 2s|s|*Toy + s*TTy
— 2|s*Tosy + 4|s|* T3y — 2sToTTy
+52TTy — 25TyTTy + (TT)%y
= |s|*Ty — 20|52 Ty — 2s0|s|*Ty + 2Re(s?)TTy
+ 4822y — 250T* Ty — 250T72y + T2T2y,
where we used in the last identity that 2so = s + 5, that |s|> = s5, and that
2Toy =Ty +Ty. As
2Re(s?)TTy = 2s2TTy — 252TTy
and
AsP T3y = | (T +T)%y = |sP T + 2537Ty + 17Ty + 5Ty,
we further find
Qc,s(T)Qc,s(T)y = |5|2(|5|2I — 25T + TQ)Z/
—250T(|s|*T — 250T + T?)y
72 [
+ T (|s]’T — 2s0T + T?)y = Q(T) Qs(T)y.
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By the above arguments, we hence have

Q1) € B(X) (QC,S(T)QC,S(T))_1 € B(X)

= (Q)Q.M) € BX) = 0.(1) " € BX)
and hence (3.28) holds true.
If y € D(T?) = D(Q.+(T)) with Q. s(T) € D(T), we have

(5T~ T) Qe x(T)y

=(Z—T)(s*T - 25Ty +TT)y

= |s|?sTy — Ts*y — 2|s|*Toy + 2T Tosy + 5T Ty — T°Ty

= |s|?sTy — Ts*y — |s|*Ty — |s|*Ty + T?sy + TTsy +3TTy — T*Ty
= |s|? (sI—T)y—ZSOT(sI—T)y—i-TQ (sI—T)y

= (T% = 2807 +|s’Z) (sT - T)y = Qs(T) (sT —T)y.

For any x € D(T), we can set y = Q. ,(T)"'x € D(T?). If we apply the operator
Q4(T)~* to the above identity from the right, we then obtain

S (s, Tz = Qu(T) M(sT —T)x = (sT —T) Qes(T) '

and a density argument shows that (3.29) holds true for the left S-resolvent oper-
ator. Similar computations show also the identity for the right S-resolvent equa-
tion. O

3.4 The S-functional calculus and its properties

We want to define the S-functional calculus for an arbitrary operator in K(X)
with nonempty S-resolvent set via the slice hyperholomorphic Cauchy integral.
The domain of integration is thereby the boundary of a suitable slice Cauchy
domain U in one of the complex planes C;, for j € S. In order for the S-functional
calculus to be well-defined, we have to show that these integrals are independent
of the choice of the slice Cauchy domain U and of the complex plane C;. We follow
the strategy known from the bounded case.

Theorem 3.4.1. Let T' € K(X) with ps(T) # 0. If f € SHL(os(T) U {oc}), then
there exists an unbounded slice Cauchy domain U with og(T) C U and U C D(f).
The integral

1

— S; (s, T)ds; f(s) (3.30)
271 Jownce;)

defines an operator in B(X) and this operator is the same for any choice of the
imaginary unit j € S and for any choice of the slice Cauchy domain U that satisfies

the above conditions.
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Similarly, if f € SHr(os(T) U {o0}), then there exists an unbounded slice
Cauchy domain U such that os(T) C U and U C D(f). Again, the integral

1

— f(s)ds; Sz (s, T
o e, 198576

defines an operator in B(X) and this operator is the same for any choice of the
imaginary unit j € S and for any choice of the slice Cauchy domain U that satisfies
the above conditions.

Proof. Let f € SHy(0s(T) U {oc}) and ¢ € ps(T). Since ps(T) is open, there
exists a closed ball B.(q) C ps(T) and since pg(T) is axially symmetric we have

{BE(Q)} ={s=so+jss1 €H: (so—q)°+ (s1—q1)* <e} Cps(T).

The existence of the slice Cauchy domain U follows from Theorem 2.1.31 applied

with C' = og(T) and O = D(f) N (]HI \ Bs(q)).

The boundary of U in C; consists of a finite set of closed piecewise dif-
ferentiable Jordan curves and so it is compact. Hence, (3.30) is the integral of a
bounded integrand over a compact domain. Thus, it converges in B(X) and defines
an operator in B(X).

We now show the independence of the slice Cauchy domain. Consider first
the case of another unbounded slice Cauchy domain U’ such that og(T) C U’ and
U’ C D(f). Let us for the moment furthermore assume that U’ C U. Then the
set W = U \ U’ is a bounded slice Cauchy domain and

AW NC;) =l NC;) U (— AU’ N cj)),
where —0(U’ N C;) denotes the inversely orientated boundary of U’ in C;. More-

over, the function s »ngl(s,T) is right and the function s — f(s) is left slice
hyperholomorphic on W. Thus, Theorem 2.1.20 implies

1
=5 S (s, T)ds; f(s)
T Jo(wncy)
1 1
= — St S,T)d&fs)——/ S(s, T)ds; f(s).
27 a(UNC;,) L ( ! ( 2 o(U’'NCy) t ( ) ’ )

If U’ is not contained in U, then UNU’ is an axially symmetric open set that
contains og(T) such that 9(U N U’) is nonempty and bounded. Theorem 2.1.31
implies the existence of a third slice Cauchy domain W such that og(7") C W and
W C UnNU'. By the above arguments, the choice of any of them yields the same
operator in (3.30).

Finally, we consider another imaginary unit ¢ € S and choose another un-
bounded slice Cauchy domain W with o5(T) C W and W C U. By the above
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arguments and the Cauchy formulae, we have

1 1
o S7V(s, T)ds; f(s) = — S (s T ds.
27 Jowne,) L (s,T)ds;j f(s) o /8(Wmccj) L (s, T)ds; f(s)
1
= S ,T)ds; g-1 5) da;
(27r)2 /3(Wn<cj) L (5 ) Sj (f(OO)J’_/{)(Un(Ci) I (q 8) q f(q))

_ ﬁ /{Wﬂc )s;l(s,T) ds; f(o0)

P / / (s,T)ds; Sy (g, 8) dai f(q).
) awnc;) Jawenc, )

where Fubini’s theorem allows us to exchange the order of integration in the last
equation because we integrate a bounded function over a finite domain. The set
W€ is a bounded slice Cauchy domain and the left S-resolvent is right slice hyper-
holomorphic in s on W¢. Theorem 2.1.20 implies

C;iyz/QUVHC/)SL1<s¢r>dstXoo>
1

_WWAwmff@ﬂMﬂM_a

Since any ¢ € (U N C;) belongs to W€ by our choices of U and W and since
S;l(q, s) = —S}gl(s, q), we deduce from the Cauchy formulae

1
S; (s, T)dsj f
o a(Une;) ( ) J (s)
1 —
a(UNC;) <2 /a(ch v (5T ds; SRl(qu)> dq; f(q)
1 q, dg; 0
T o a(UmC) T) F(a).

Definition 3.4.2. Let T' € K(X) with pg(T) # 0. For any f € SHi(os(T)U{o0}),

we define
F(T) = floo)T + — ST\ (s,T) ds; f(s), (3.31)

27 Jawnc;)

and for f € SHr(os(T) U {o0}), we define

F(T) = f(o ﬂ+gamwﬁﬂ%ﬁ s, T), (3.32)

where j € S is arbitrary and U is any slice Cauchy domain as in Theorem 3.4.1.
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Remark 3.4.1. If ps(T)NR # (), then our approach is consistent with the approach
that defines the S-functional calculus of an unbounded operator by suitably trans-
forming both the function and the operator and then applying the S-functional
calculus for bounded operators. Precisely, one chooses o € ps(T) N R and sets
®,(s) = (s —a)”!. Then A := (T — aZ)™' = S;'(a,T) is a bounded oper-
ator and formally corresponds to @, (7). Furthermore, a function f belongs to
SH(0s(T) U {oo}) or SHR(os(T) U {x}) if and only if f o ®_! belongs to
SHi(os(A)) (resp. SHr(0s(A))). One then defines

F(T) = fo@ l(A).

This approach was presented in [57,93]. In the complex setting, it is equivalent
to the direct approach via a Cauchy integral, which was developed above. In the
quaternionic setting it, however, requires that ps(T) NR # @, which is not always
true.

The S-functional calculus for closed operators is furthermore consistent with
the S-functional calculus for bounded operators. Since we do not require connect-
edness of D(f) in Definition 3.4.2, we might extend f € SH(cs(T)) for bounded
T to a function in SHy (05(T)U{o0}), for instance by setting f(s) = ¢ with ¢ € H
on HN\ B,.(0). We can then use the unbounded slice Cauchy domain (H\ B, (0))UU in
(3.31). Since the left S-resolvent is then right slice hyperholomorphic on H\ B, (0)
and f(s) is left slice hyperholomorphic on this set, we obtain

1

£@) = sz + 5 [ £(s)ds; S74(5.T)
T J—-8(B,(0)NC;)

1
+ — f(s)ds; SL_l(s,T)
2m Jownce;)

! f(s)ds; Sg*(s,T)

21 Jawney)

because Theorem 2.1.20 implies that the sum of f(c0)Z and the integral over the
boundary of B,(0) vanishes.

Example 3.4.3. Let T € K(X) with pg(T') # 0. Consider the left slice hyperholo-
morphic function f(s) = a for some a € H and choose an arbitrary unbounded
slice Cauchy domain U with o0g(T") C U and an imaginary unit j € S. Then

F(T) = f(o0)T + i/ S; (s, T)ds; f(s) = aZ, (3.33)
21 Jownc;)

because f(oo) = a and the integral vanishes by Theorem 2.1.20 as the left S-

resolvent is right slice hyperholomorphic in s on a superset of H \ U and vanishes

at infinity. An analogue argument shows that also f(T) = Za if f is considered

right slice hyperholomorphic.
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The following algebraic properties of the S-functional calculus follow imme-
diately from the left and right linearity of the integral.

Corollary 3.4.4. Let T € K(X) with ps(T) # 0.
(i) If f,9g € SH(0s(T) U {oc}) and a € H, then

(f+9)(T) = f(T)+9(T) and (fa)(T) = f(T)a.
(i) If f,g € SHRr(os(T) U {oo}) and a € H, then
(f+9)(T) = f(T)+9(T) and (af)(T) = af(T).

Theorem 3.4.1 ensures that the S-functional calculus for left slice hyperholo-
morphic functions and the S-functional calculus for right slice hyperholomorphic
functions are well-defined in the sense that they are independent of the choices
of the imaginary unit j € S and the slice Cauchy domain U. Another important
question is whether they are consistent. We show now that this is the case, if the
function f is intrinsic.

Lemma 3.4.5. Let T € K(X) with ps(T) # 0 and let f € N(os(T) U {oo}).
Furthermore, consider a slice Cauchy domain U such that og(T) C U and U C

D(f) and some imaginary unit j € S. If v1,...,yn is the part of O(U N C;) that
lies in Cj as in Definition 2.1.34, then

/ f(s) ds; Sg*(s,T)
a(UNC;)

N o1

:;/0 2Re (f(w(t))(—j)’vé(t)w(t)) Q. (T) L dt a0
-
[Z_;/o QRe(f(W(t))(fj) ())TQw(t)( )y ldt

Proof. We have

/ f(s) ds; S5 (s,T)
a(Umc)

Z sy Sp (5. 1)+ 30 [ F)dsy S5, T)

N 1
- / FOrO))34(t) (360 = T) @y, (1)

+Z/ Ye( 1*15 ]'Ye(l —t)(ve(1—t) — T)Qw(l t)(T)il dt.
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Since f(3) = f(s) as f is intrinsic and Q5(T)™ = Q4(T)~! for s € ps(T), we get,
after a change of variables in the integrals of the second sum,

/ f(s) ds; S5 (s,T)
a(UNC;)

—Z/fw I (0 = T) Qo (1)

+ Z/ FOre) (=) (ve(t) = T)Qy ) (T) ™ dit

Theorem 3.4.6. Let T' € K(X) with ps(T) # 0. If f € N(os(T) U {o0}), then

! S (s, T)ds; f(s) = i/ f(s)ds; Sx'(s,T),
aUNcy)

21 Jawne,) 2m

for any 7 € S and any slice Cauchy domain as in Theorem 3.4.1.

Proof. Fix U and j € S, let 1, ...yn be the part of (U NC;) that lies in C; and
write the integral involving the right S-resolvent as an integral over these paths as
n (3.34). Any operator commutes with real numbers and f(y¢(t)), v,(t) and ~e(t)
commute mutually since they all belong to the same complex plane C;. Hence,

[ s S T)
o(UNCy)

N 1 -
- ; /0 Q. 1)(T) "2Re (’Ye(t)’yé(t)(fj) f(w(t))) dt

N 1
=3 [ T () BRSO o)
N 1 L
=3 [ (900" = Qoo 50 -G a

+ Z / (T ()™ — Qs (1) e(t) ) D) F e
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N

= Z/ S (s, T)ds; f(s) + Z/ S (s, T)ds; f(s)

=1 =177
:/ Sy (s, T)ds; f(s). O
a(Uncy)

Since f(00) = lims,00 f(s) € Ras f(s) € R for s € R if f is intrinsic, we can
rephrase the above result as,

Corollary 3.4.7. Let T € K(X) with ps(T) # 0. The S-functional calculus for
left slice hyperholomorphic functions and the S-functional calculus for right slice
hyperholomorphic functions agree for intrinsic functions: if f € N(ogs(T)U{oo}),
then (3.31) and (3.32) give the same operator.

Remark 3.4.2. For intrinsic functions, slice hyperholomorphic Cauchy integrals of
the form (3.31) and (3.32) are always equivalent. We have shown this only for the
S-functional calculus, but with the same technique one can show this equivalence
also for the H°°-functional calculus or for fractional powers of quaternionic linear
operators. Since the technique for showing this equivalence is the same in any
situation, we will use it without proving it explicitly at every occurrence.

We have shown that the two versions of the S-functional calculus are consis-
tent for intrinsic functions. However, there exist functions that are both left and
right slice hyperholomorphic, but not intrinsic. We want to clarify the relation
between the versions of the S-functional calculus for such functions and we start
by characterising functions of this type.

Recall that a function f on U is called locally constant if every point ¢ € U
has a neighborhood B, C U such that f is constant on U. A locally constant
function f is constant on every connected subset of its domain. Thus, since every
sphere [q] is connected, the function f is constant on every sphere if its domain U
is axially symmetric, i.e., it is of the form f(q) = ¢(u,v) for ¢ = u+ jv, where ¢ is
locally constant on an appropriate subset of R2. Therefore, f can be considered a
left and a right slice function and it is even left and right slice hyperholomorphic
because the partial derivatives of a locally constant function vanish.

Lemma 3.4.8. A function f is both left and right slice hyperholomorphic if and
only if f = c+ f, where c is a locally constant slice function and f is intrinsic
slice hyperholomorphic.

Proof. Obviously any function that admits a decomposition of this type is both
left and right slice hyperholomorphic. Assume on the other hand that f is left and
right slice hyperholomorphic such that for ¢ = u + jov

f(@) = folu,v) +jfi(u,v)
and

f(Q) = fO(u7v) + fl(uvv)j'
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The compatibility condition (2.4) implies

folu,v) = 5 (f(@) + f(@) = fol(u,v),

l\D\H

from which we deduce jf1(u,v) = f(g;) — fo(u,v) = fi(u,v)j with ¢; = u+ jv for
any j € S. Hence, we have

ifi(u, )i = fi(u,v).

If we choose j such that fi(u,v) € C;, then j and fi(u,v) commute and we obtain

fi(u,v) = fl(u,v). We further conclude that f;(u,v) commutes with every j € S
because

jfl(u,'U) = f1(u,1])j = f1(u,1})j.

This implies that fi(u,v) is real.

Since fi takes real values, its partial derivatives - 9 £ (u,v) and 8 ~ f1(u, )
are real-valued too. Thus, since fy and f; satisfy the Cauchy—Riemann equatlons
(2.5), the partial derivatives of fy also take real-values.

Now define fo(u,v) = Re(fo(u, v)) and fi(u,v) = fi(u,v) and set f(q) =
fo(u, V) +]f1(u v) and ¢(q) = f(q) — f(q) = Im(fo(u,v)) for ¢ = u + jv. Obvi-
ously, fo and fi satisfy the compatibility condition (2.4). Moreover, the partial
derivatives of fo and f; coincide with the partial derivatives of f; (resp. f1). For
f1 = fi1 this is obvious and for fy this follows from

oot e) = - Re(fo(u0) = Re (5 folw) ) = 52 fo(u,0)

for v € {u,v} since Z fo(u, v) is real-valued by the above arguments. We conclude
that fo and f; satisfy the Cauchy-Riemann equations (2.5) because fy and f;
satisfy them. Therefore, f is a left slice hyperholomorphic function with real-
valued components, thus intrinsic.

It remains to show that ¢ is locally constant. Since ¢(q) = c(u + jv) =
Im(fo(u,v)) depends only on u and v but not on the imaginary unit j, it is con-
stant on every sphere [g] C U. Moreover, as the sum of two left slice hyperholo-
morphic functions, it is left slice hyperholomorphic and thus, its restriction c; to
any complex plane C; is a H-valued left holomorphic function. But

)= ey =2 p - 2 F
Cj(q) - aqocj(q) - aqof(q) aqo

(@) =0, ¢qeUnNC;

and hence c is locally constant on UNC;. If ¢ = u+jv € U, we can therefore find a
neighborhood B; of ¢ in U NC; such that ¢; is constant on B;. Since c is constant
on every sphere, it is even constant on the axially symmetric hull B = [B;] of B;,
which is a neighborhood of ¢ in U. O
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Corollary 3.4.9. Let T € K(X) with ps(T) # 0 and let f be both left and right
slice hyperholomorphic on og(T) and at infinity. If D(f) is connected, then (3.31)
and (3.32) give the same operator.

Proof. By applying Lemma 3.4.8 we obtain a decomposition f = ¢ + f of f into
the sum of a locally constant function ¢ and an intrinsic function f. Since D(f)
is connected, ¢ is a constant function. Thus, Corollary 3.4.7 and Example 3.4.3

imply

Jo)T + / f(s) ds; S72(s,T)

1
=c I—i——/ ds; Sp'(s,T)
2 Jawnc;)

+ f(oo)I+ ;ﬁ/@(mc) f(s) ds; sél(s,T)

where U and j € S are chosen as in Definition 3.4.2. O

Remark 3.4.3. As we have shown, the two versions of the S-functional calculus are
consistent for intrinsic slice hyperholomorphic functions and for functions defined
on connected sets. However, in general, this is not true. If D(f) is not connected,
then ¢ is only locally constant, i.e., it is of the form ¢(s) = >, xa,(s)c, with
¢¢ € H, where the A, are disjoint axially symmetric sets. The function xa,(s) is
the characteristic function of Ay, which is obviously intrinsic. The functional calculi
for left and right slice hyperholomorphic functions yield then ¢(T') = >, xa,(T)cs
and ¢(T) = >, cexa,(T), respectively. These two operators coincide only if the
operators xa,(T) commute with the scalars ¢,. As we will see in Section 3.7, the
operators xa,(7") are projections onto invariant subspaces of the operator T'. Since
the operator T is right linear, its invariant subspaces are right subspaces of X.
But if a projection xa,(T") commutes with any scalar, then

ay = axa,(T)y = xa(T)ay € xa,(T)X,

for any y € xa,(T)X and any a € H. Thus, xa,(T)X is also a left-sided and
therefore, even a two-sided subspace of X. In general, this is not true: the in-
variant subspaces obtained from spectral projections are only right-sided. Hence,
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the projections xa,(T) do not necessarily commute with any scalar and it might
happen that

> xa(Tee # Y exa, (1),
¢ 7

i.e., the two functional calculi give different operators for the same function. An
explicit example for this situation is given in Example 3.7.9.

Finally, we show that the S-functional calculus admits, for intrinsic functions,
a representation that only depends on the right linear structure of the space. In
particular, this representation also shows the compatibility of the S-functional
calculus and its classical counterpart form the theory of complex linear operators,
the Riesz—Dunford functional calculus for holomorphic functions.

Definition 3.4.10. Let T € K(X). We define the X-valued function
Ro(T5y) = Qu(T) 'y —TQT) 'y Yy e X, s € ps(T).

Remark 3.4.4. By Theorem 3.1.8, the mapping y — Rs(T;y) coincides with the
resolvent of 1" at s applied to y if T" is considered a C;_-linear operator on X; = X.

Theorem 3.4.11. Let T € K(X) be a closed operator on a two-sided quaternionic
Banach space X with ps(T) # 0 and let f € N(osx(T))). For any j €S and any
unbounded slice Cauchy domain U with o5(T) C U and U C D(F), the operator
f(T) obtained via the S-functional calculus satisfies

(=i + [ R wex.  (339)

a(UNC;)

Proof. Let U be a slice Cauchy domain such that og(T) C U and U C D(f). We
then have for any j € S and any y € X that

F = Focly+ o [ f)ds; S5 (s, (3.36)

If v : [0,1] — (Cj, ¢ =1,...N, is the part of (U N C;) that lies in (Cj as in
Definition 2.1.34, then we have by Lemma 3.4.5 that

/ f(s) ds; S5 (s, Ty
a(UNC;)

N 1
-y / 2Re (f(e®) (=) 7y) QD) 'ydt  (3.37)
¢=1"0

N 1
- / 2Re(f(3e(0) (=374 TQsy 0 (T) 'y .
=1
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Since Q,,1)(T) 'y and TQ.,()(T) 'y commute with real numbers, we further-
more have

/ f(s)ds; Sg'(s,T)y
a(UNC;)
N -
— ;/0 Q'yz(t) (T)*ly 2Re (f(’ye(t))(fj)')/é(t)’)/g(t)) dt
N o 1
_;/0 TQ,w)(T)~ y2Re(f(W(t))(—J)W(t)> dt

N o
=2 / (210 (1) 7 97968) = T (1)) F((t))o(8) dt(—)
=1

N

- Z/O (Do) (D) y7e(t) = TQy, 0y (T)™1y) F (e (B) g (8) d(—).
(=1

Recalling that f(Z) = f(z) because f is intrinsic, that Qz(T)™! = Q(T)~! for
any s € ps(T) and that (—77)(t) = —v,(1 —t), we thus find

/ £(s)ds; S5 (5, T)y

o(UNC;)
N

=3 [ (D) tyz - TQu(T) ) 1) ()
=1 "¢

Y /7 (Q.(T)"1yz — TQ(T)"Yy) £(2) dt(—3)
¢=1Y "
_ / (Q-(T)"yz — TQ(T)Yy) f(2) dz(—J)
a(UNC;)

_ / R.(T;y) f(2) d2(—j).
a(UNCy)

Finally, observe that f(oco) = lims_, f(s) € R because, as an intrinsic function,
f takes only real values on the real line. Since any vector commutes with real
numbers, we can hence rewrite (3.36) as

Oy =vieo+ [ Rl 0

a(UNC;y) n
Remark 3.4.5. We point out that (3.35) contains neither the multiplication of vec-
tors with non-real scalars from the left nor the multiplication of any operator with
a non-real scalar. Hence, this expression is independent from the left multiplica-
tion defined on the X, cf. Remark 2.2.7. Instead, it shows that the operator f(T')
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can be expressed in terms of only the right linear structure on the space X if f is
intrinsic.

Remark 3.4.6. Theorem 3.4.11 shows that complex and quaternionic operator the-
ory are consistent. Indeed, we can also obtain f(7') by the following procedure: we
choose j € S and consider the complex numbers as embedded into the quaternions
by identifying them with the plane C; determined by j. The quaternionic Banach
space X is then also a complex Banach space over C; and we denote the space X
considered as a complex Banach space over C; by X;. Any operator T € K(X)
is then also a complex linear operator on X;. We have oc,(T') = 05(T) N C; and
Rs(T;y) is for s € pc, = ps(T) N C; exactly the resolvent of 7" as a complex
linear operator on Xj, cf. Theorem 3.1.8. If f € N(0s(T)), then f; = fc, is a
holomorphic function on oc,(T") and the right-hand side of (3.35) is hence the
formula that determines f;(T") in terms of the Riesz-Dunford functional calculus
for T'on X;. (A similar relation also holds for other functional calculi such as the
Phillips functional calculus or the continuous functional calculus.) The converse
is however not true: if f; is an arbitrary holomorphic function on a neighborhood
of oc,(T) in Cj, then f;(T) obtained by the Riesz-Dunford functional calculus
does not coincide with the operator f(7') obtained by applying the S-functional
calculus to f = extz(f;). This is only true if f is an intrinsic function. Indeed,
f;(T') is otherwise only C;-linear, but not necessarily quaternionic linear.

3.5 The product rule and polynomials in 7'

One of the most important properties of the S-functional calculus is the product
rule.

Theorem 3.5.1 (Product Rule). Let T € K(X) with ps(T) # 0. If f € N(os(T)U
{0}) and g € SHL(os(T) U{o0}), then

(fo)(T) = F(T)g(T). (3.38)

Similarly, if f € SHr(os(T)U{oo}) and g € N(os(T) U {cc}), then the product
rule (3.38) also holds true.

Proof. Let f € N(og(og(T)U{o0}) and let g € SHL(c5(T) U {oo}). By The-
orem 3.4.1, there exist unbounded slice Cauchy domains U, and U, such that
os(T) C U, and U, C Uy and Uy C D(f) ND(g). The subscripts s and p indicate
the respective variable of integration in the following computation. Moreover, we
use the notation [00]; := 9(O N C;) for an axially symmetric set O in order to
obtain compacter formulas.

Recall that the operator f(7T') can, by Theorem 3.4.6, also be represented
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using the right S-resolvent operator and hence

F(M)g(T) = (f( T+ f(s)ds; Sg' (s, T))

27 Jiou,);

(( )I—|—27r/[ o

For the product of the integrals, the S-resolvent equation gives us that

/ £(s)ds; Si(s,T) / 7 (p, T) dp; g(p)
[0U.];

[aUp]j

/ / s)ds; Sy =1(s, T)S; (p,T)dpjg(p)
oU]; J[oU,

P]]

S (p,T) dp; 9(19)) :

pli

= Lo L S5 7 6 T 2500+ 1) )
U] /10Up];
- / $)dsy 8, (0. T)p(0? = 2sop + 15P) ™ oy )
oU,] U]
/ / 5)ds;5Sg" (s, T)(p” — 2s0p + |s*) " dp; g(p)
oU,] U]

o S ESE0 TI0 2sum  ) dsg(p)
oU,l,; J1oU,;

For the sake of readability, let us denote these last four integrals by I, ... I4.
If » > 0 is large enough, then H \ Uy is entirely contained in B,.(0). In
particular, W := B, (0)NU, is then a bounded slice Cauchy domain with boundary

(W NC;) = d(U,NC;)Ud(B,(0)NCTy).

From Lemma 2.2.24, we deduce

= [ g6 ST [ b2l d o)

[aUp]j
= / f(s)ds; Sg' (s, T)/ p(p® — 2s0p + |s|*) " dp; g(p)
[0Us]; [OW];
[ s ST [ = 2 |5 d g(o)
UL 0B, (0)];
= f/ f(s)ds; Sg' (s, T)/ p(p* — 2s0p + |s|°) " dp; g(p),
[oU.]; 0B, (0)];

where the last equality follows from the Cauchy integral theorem since, by our
choice of U, and Uy, the function p — p(p® — 2sop + |s|*) 7! is left slice hyperholo-
morphic and the function p — g¢(p) is right slice hyperholomorphic on W. If we
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let r tend to 400 and apply Lebesgue’s theorem in order to exchange limit and
integration, the inner integral tends to 2mwg(co) and hence

J— </[3US],- F(s) ds; S (s, T)) g(00).

We also have

f12+I4*/ / s)ds; (387 (p,T) = pS;* (0, T))
U ]J [6UP]J

- (p* — 2s0p + |s|*) " dp; g(p)

and applying Fubini’s theorem allows us to change the order of integration. If we
now set W = B,.(0) N U, with r sufficiently large, we obtain, as before, a bounded
slice Cauchy domain with 8(W NC,) = 0(Us N C;) U I(B,(0) N C;). Applying
Lemma 2.2.24 with B = S;*(p, T), we find

—12+I4:/ / s)ds; (55, (p,T) —pS; ' (p, T)) -
[8U,]; J oW,

P]]

“Ju

p]j

- (p® = 2sop + |s|*) " dp; g(p)
/ £(s)ds; (357 (p.T) — pS; (p. T)) -
[0B,-(0)];
~(p* — 2s0p + |s|*) "t dp; g(p)
=27 / St (p,T)f(p) dp;j 9(p)
[BUP]J

[ s ST — 2s0p +15P) by ()
[0U,]; 7 [0Br(0)];

s

P]J

/{aB oy TS O TIO ~2e0p + 5F) ds o0)

Observe that the third integral tends to zero as r — 4o00. For the second one, by
applying Lebesgue’s theorem, we obtain

/ / $)ds; 557 (0, T) (0 — 2s0p + |s12) " dp; g(p)

oU,); J 9B, ( o)

_ / ( f(re >rzs;1<p,T><p22rcos<¢>p+r2>1d¢) dp; 9(p)
[6UP]J

s [ SE 0T gl

[8Up]j
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Since f is intrinsic, f(p) commutes with dp;, and hence

—L+1,=2r /[8 St (p,T) dp; f(p)g(p)

p]j

— 27 f(0) SN (p,T) dp; g(p).
[aUp]j

Finally, we consider the integral Is. If we set again W = B,.(0) N U, with r
sufficiently large, then

py = / / 5)ds; 355 (5, T) (1 — 250p + |sI°) " dp; g(p)
[0U.]; J1owl;
/ / s)ds; 3SR (s, T)(p* — 2s0p + |s|*) " dp; g(p).
[aU OB,.(

By our choice of Uy and U,, the functions p — (p? —2sop+|s|?)~! and p — g(p) are
left (resp. right) slice hyperholomorphic on W. Hence, Cauchy’s integral theorem
implies that the first integral equals zero. Letting r tend to infinity, we can apply
Lebesgue’s theorem in order to exchange limit and integration and we see that

b= [ [ () dsy S TG 2500+ (5P d glp) 0.
ou.; J10B.(0));
Altogether, we obtain

1 B |
G Joy, [ ST 6T [ ST 0T gt

[8Up]j

2

f(s)ds; Sg'(s, T)) g(oo )+1/[ ]Sil(p,T)dpjf(p)g(p)

- f(OO)i/ S.Hp,T) dp; g(p).
GLA

1

SO0 = Fod T+ 105 [ 57 0T db, )

f(s)ds; Sp (ST)> g(o0)

1 B |
+ 2 /[aUs]j f(s)ds; Sy (8 T)/ S (p, T)dpj g(p)

[aUp]j

= f(o0)g(00)T + o S; (v, T) dp; f(p)g(p) = (fg)(T). O
i [8Up]j
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If the operator 1" is bounded, then slice hyperholomorphic polynomials of T’
belong to the class of functions that are admissible within S-functional calculus.
In the unbounded case, this is not true, but the S-functional calculus is in some
sense still compatible, at least with intrinsic polynomials. For such polynomial
P(s) = Yp_,axs® with a; € R, the operator P(T) is as usual defined as the
operator

P(T)y:=Y axT*y, yeDT").
k=0

Lemma 3.5.2. Let T € K(X) with ps(T) # 0, let f € N(og(T) U {o0}) and let P
be an intrinsic polynomial of degree n € Ny. If y € D(T™), then f(T)y € D(T")
and

F(MP(T)y = P(T)f(T)y.

Proof. We consider first the special case P(s) = s. Let U be an unbounded slice
Cauchy domain with og(T) C U, let j € S and let {v1,...,7,} be the part of
o(UNC;j) in (C;r as in Definition 2.1.34. We apply Lemma 3.4.5 and write

[ s S T)

8(UQCJ)
N 1

=37 [ 2Re (F ) HOD) Q0 ()
(=1

N .1
_;/0 2Re(f(’YZ(t))(_ﬁ'Yé(t))TQW(t)(T)_1dt.

Observe that Q. ) (T) Ty = TQ,,)(T) 'y for y € D(T) and that T also
commutes with real numbers. By applying Hille’s theorem for the Bochner integral,
Theorem 20 in [110, Chapter I11.6], we can move T in front of the integral and
find

1

27 Jawncy)

=575 [ 2R (F) 0107 0) Qo (D)
(=1

f(s)ds; Sg*(s, T)Ty

n 1
- ;Tzlﬂ / 2Re(f(36(0) (=376 ) TQu (0 (T) 'y

1 _
=T f(s)ds; Sz (. T)y.
T Jawncy)

where the last equation follows again from Lemma 3.4.5. Finally, observe that
f(o0) = lims_,o f(s) is real since f(s) € R for any s € R because f is intrinsic.
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Hence, we find

F(T)Ty = f(oo)Ty + % e f(s)ds; Sz*(s,T)Ty
= Tf(oo)y + T e S5 S5 5 Ty =TTy

In particular, this implies f(T)y € D(T).

We show the general statement by induction with respect to the degree n
of the polynomial. If n = 0 then the statement follows immediately from Exam-
ple 3.4.3. Now assume that it is true for n — 1 and consider P(s) = a;s™ + P,,—1(s),
where a,, € R and P,,_1(s) is an intrinsic polynomial of degree lower or equal to
n — 1. For y € D(T™) the above argumentation implies then f(T)T" 'y € D(T)
and

HT)P(T)y = f(T)anT"y + f(T)Pu1(T)y
= a, Tf(T)T" 'y + f(T)P,_1(T)y.

From the induction hypothesis, we further deduce f(T)T" 'y = T" 1 f(T)y and
f()P,—1(T)y = P—1(T) f(T)y and hence

FMPT)y =anT"f(T)y + Prr(T) f(T)y = P(T) f(T)y.

In particular, we see that f(T)y belongs to D(T™) and we obtain that the state-
ment is true. U

Remark 3.5.1. We only considered intrinsic polynomials in Lemma 3.5.2 because
only multiplying with such functions yields again a slice hyperholomorphic func-
tion. However, even the definition of P(T') is not straightforward if P does not have
real coefficients. Indeed, if 7" is unbounded and P(s) = Y, _, s*a), with a;, ¢ R,
then setting P(T)v = Y}, T*axv might not be meaningful for all v € D(T™).
Unless D(T™) is a two-sided subspace of X, it is not clear that azv € D(T*) even
if v € D(T).

As in the complex case, we say that f has a zero of order n at oo if the first
n — 1 coefficients in the Taylor series expansion of s — f(s71) at 0 vanish and the
n-th coefficient does not. Equivalently, f has a zero of order n if lims_, o f($)s™ is
bounded and nonzero. We say that f has a zero of infinite order at infinity, if it
vanishes on a neighborhood of co.

Lemma 3.5.3. Let T € K(X) with ps(T) # 0 and assume that f € N (cs(T)U{cc})
has a zero of order n € No U {400} at infinity.

(i) For any intrinsic polynomial P of degree lower than or equal to n, we have
P(M)F(T) = (PF)(T).
(ii) Ify € D(T™) for some m € Ng U {oo}, then f(T)y € D(T™*™).
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Proof. Assume first that f has a zero of order greater than or equal to one at
infinity and consider P(s) = s. Then Pf € N(og(T) U {o0}) and for y € X

1

(PH(T)y = Jim siey+ 5o [ S7(s.D)ds; sf (o)
T JaUnc;)

with an appropriate slice Cauchy domain U and any imaginary unit j € S. Since
s and ds; commute, we deduce from the left S-resolvent equation that

1 _
S AR LY
NG,
1 1
= — TS (s, T ds»fsy—k—/ ds; f(s)y
2w Jowne,)  * sy Fls)y + o owne,) (

Any sufficiently large Ball B,(0) contains OU. The function f(s)y is then right
slice hyperholomorphic on B,.(0) N U and Cauchy’s integral theorem implies

1 1
— ds; f(s)y = lim ——/ ds; f(s)y
2 Jowne,) rotoo 21 Joe oney)
1 27 . .
— T je i - 1
m — o /O re!?f(re’?)yde = — lim sf(s)y.

Thus, after applying Hille’s theorem for the Bochner integral, Theorem 20 in [110,
Chapter I11.6], in order to write the operator T in front of the integral, we obtain

1

(PI(T)y =T
T Jo(uncy)

Sp'(s,T) ds; f(s)y = P(T)f(T)y.

In particular, we see that f(T)y € D(T).

We show (i) for monomials by induction and assume that it is true for P(s) =
s"~1if f has a zero of order greater than or equal to n — 1 at infinity. If the order
of f at infinity is even greater than or equal to n, then g(s) = s" ! f(s) has a zero
of order at least 1 at infinity and, from the above argumentation and the induction
hypothesis, we conclude for P(s) = s™

(Pf)(T)y =Tg(T)y =TT" ' f(T)y =T"f(T)y,

which implies also f(T)y € D(T™). For arbitrary intrinsic polynomials the state-
ment finally follows from the linearity of the S-functional calculus.

In order to show (ii) assume first y € D(T™) for m € N. If f has a zero of
order n € N at infinity, then (i) with P(s) = s™ and Lemma 3.5.2 imply

(PA(T)T™y =T" f(T)T™y =T"T™ f(T)y = T™ " f(T)y

and hence f(T)y € D(T™*"). Finally, if m = +oo then y € D(T*) and hence
f(T)y € D(T**") for any k € N. Thus, y € D(T). O
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Corollary 3.5.4. Let T € K(X) with ps(T) # (. For any intrinsic polynomial P,
the operator P(T') is closed.

Proof. We choose s € ps(T) and n € N such that m < 2n, where m is the degree
of P. Then f(p) = P(p)Qs(p)~™ belongs to N(os(T) U {oc}) and has a zero of
order 2n — m at infinity. Applying Lemma 3.5.3, we see that

P(T)y = P(T)Qs(T)"Qs(T) "y = Qs(T)"P(T)Qu(T) "y = Qs(T)" f(T)y

for y € D(T™). Since its inverse is bounded, the operator Qs(T")" is closed and in
turn P(T) is closed as it is the composition of a closed and a bounded operator. [

Corollary 3.5.5. Let T € K(X) with ps(T) # 0. If f € N(os(T) U {o0}) does not
have any zeros on os(T) and a zero of even order n at infinity, then ran(f(T)) =
D(T™) and f(T) is invertible in the sense of closed operators. If ps(T) NR # 0,
this holds true for any order n € N.

Proof. Let p € ps(T) and set k = n/2. The function h(s) = f(s)Qp(s)* with
Q,(s) = s —2pys+|p|? belongs to N (0g(T)U{oc}) and does not have any zeros in
05(T). Furthermore, h(co) = lims_, o h(s) is finite and nonzero. Hence, the func-
tion s — h(s)~! belongs to N (og(T) U{oc}) and we deduce from Theorem 3.5.1
that h(T) is invertible in B(X) with h(T)~! = h=}(T). Theorem 3.5.1 moreover
implies f(T) = Q,(T)*h(T). Now observe that h(T) maps X bijectively onto X
and that Q,(7T)~* maps X onto D(T?) = D(T"). Thus ran(f(T)) = D(T™).

Finally, f(T)~! := h™3(T)Q,(T)* is a closed operator because h is bi-
jective and continuous and Q,(T)* is closed by Corollary 3.5.4. So it satisfies
(D) Lf(T)y =y for y € X and f(T)f(T) 'y =y for y € D(T™). Thus, it is the
inverse of f(T).

In the case there exists a point a € pgs(T) N R, similar arguments hold with
P(s) = (s—a)" instead of Q,(s)*. In particular, this allows us to include functions
with a zero of odd order at infinity too. O

We conclude this section by determining the slice derivatives of the left and
right S-resolvents of T as an application of the above theorems.

Definition 3.5.6. Let T € B(X) and let s € pg(T). For n > 0, we define
S;"(s, T) = Z(_l)k (Z)TkQS(T)_”s”_k
k=0

and, similarly, we define

Remark 3.5.2. Since the function Qs(¢)~™ is intrinsic, the above definitions are
due to the product rule compatibility with the S-functional calculus, that is,

[S."(s,9)] (T) = S;™(s,T) and [SR"(s,-)] (T) = SE"(s,T).
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Proposition 3.5.7. Let T € B(X) and let s € ps(T). Then
mg—1 (1 \My @~ (m+1)
9s™S; (s, T) = (—1)"m! S, (s,T) (3.39)

and
9™ S (5, T) = (—1)™m! Sz " (s, T), (3.40)

for any m > 0.

Proof. Recall that the slice derivative coincides with the partial derivative with
respect to the real part of s. We show only (3.39), since (3.40) follows by analogous
computations.

We prove the statement by induction. For m = 0, the identity (3.39) is
obvious. We assume that 9s™ 157 (s, T) = (—1)™ " (m — 1)1 S;™(s,T) and we
compute 9s™S; (s, T). We represent S; (s, T) using the S-functional calculus. If
we choose the path of integration (U NC;) in the complex plane C; that contains
s, then S;™(s,p) = (s —p)~™ for any p € (U N C;) so that

2
1
T or a(UNC;)
1
T aUNC;)
= —m S, " (s, 1),

—m 1 — —m
9sS;™(5,T) = D5 / ;M (p.T) dp; S;™ (5, p)
(‘)(UQCJ‘)

—m

_ B
SLl(p,T)dpjaTo(s—p)

S (p, T)dpj (s —p)~ ™

and in turn,

9s™S; (s, T) = 9s (9s™ ' S; (s, T))
= (=)™ Y(m — )10sS;™(s,T) = (-1)™m! 57"V (s, 7). O

3.6 The spectral mapping theorem

We recall that the extended S-spectrum ogx (T") equals o5(T) if T' is bounded and
it equals og(T") U {oo} if T is unbounded.

Theorem 3.6.1 (Spectral Mapping Theorem). Let T € K(X) with ps(T) # 0. For
any function f € N(os(T) U {oo}), we have os(f(T)) = f(osx(T)).

Proof. Let us first show the relation os(f(T)) D f(osx(T)). For p € 05(T) con-
sider the function

9(s) == (f(s)” = 2Re(f(p)).f(5) — |f (0)|*)(s* — 2Re(p)s + [p[*) ",
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which is defined on D(f) \ [p]. If we set p;, = po + jsp1, then p;, and s commute.
Since f is intrinsic, it maps C; into C; and hence f(p;,) and f(s) commute, too.
Thus
(f(s) = f(.))(f(s) = f(ps.))

(s = pj.)(s = D5.)

and we can extend g to all of D(f) by setting

g(s) =

(3.41)

g(s) = dsf(s)(fp)p~t), selplifp¢R,
(9sf(s))?, s=p, if p € R.

Now observe that

(s* = 2Re(p)s + [p[*)g(s) = f(s)* + 2Re(f(p)) f(s) + | (p)?

and that g has a zero of order greater or equal to 2 at infinity. Hence, we can
apply the S-functional calculus to deduce from Lemma 3.5.3, Theorem 3.5.1 and
Example 3.4.3 that

(T? = 2Re(p)T + |pI’T)g(T)y = (f(T)* + 2Re(f (p)) F(T) + | f(p)|T)y.

for any y € X and

g(T)(T? = 2Re(p)T + [p[*T)y = (f(T)* + 2Re(f (p)) f(T) + | (p)| D)y,

for y € D(T?). If f(p) € ps(T), then

Qs (F(T)) = F(T)* = 2Re(f(0)) f(T) + | f(p)IZ

is invertible and

Qs (f(1)) 1 g(T) = g(T) Qs (F(T)) ™

is the inverse of the operator Q,(T) = T? — 2Re(p)T + |p|*Z. Hence, f(p) ¢
os(f(T)) implies p ¢ os(T) and as a consequence p € og(T) implies f(p) € o5(T),
that is f(os(T)) C os(f(T)).

Finally, observe that f(oco) = lim, .o f(p) is real because f is intrinsic and
thus takes real values on the real line. If T" is unbounded and f(c0) # f(p) for any
point p € og(T) (otherwise we already have f(o0) € f(os(T)) C os(f(T))), then
the function h(s) = (f(s) — f(c0))? belongs to N'(og(T) U {cc}) and has a zero
of even order n at infinity but no zero in og(7"). By Corollary 3.5.5, the range of
h(T) = Qf(oe)(f(T)) is D(T™). Thus, it does not admit a bounded inverse and we
obtain f(o0) € ag(f(T)). Altogether, we have f(osx(T)) C os(f(T)).

In order to show the relation og(f(T)) C f(osx(T)), we first consider a
point ¢ € og(f(T)) such that ¢ # f(c0). We want to show ¢ € f(og(T)) and
assume the converse, i.e., f(s) — ¢ has no zeros on og(7).
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If ¢ is real, then the function h(s) = f(s) — ¢ is intrinsic, has no zeros on
os(T) and limg_, h(s) = f(00) — ¢ # 0. Hence, h=1(s) = (f(s) — ¢)~! belongs
to N(og(T) U {oo}). Applying the S-functional calculus, we deduce from The-
orem 3.5.1 that h=1(T) is the inverse of f(T) — ¢Z and hence Q.(f(T))~! =
(h=Y(T))?, which is a contradiction as ¢ € og(f(T)). Thus, ¢ = f(p) for some
p€os(T).

If on the other hand ¢ = ¢y + ic; is not real, then f —c; # 0 for any
¢; = co+jer € [c]. Indeed, f(p) = folu, v)+kfi(u,v) = co+jei for p = u+kv would
imply k = j and fo(u,v) = ¢p and f1(u,v) = c1 as fo and f; are real-valued because
f is intrinsic. This would in turn imply f(p;) = f(u+iv) = fo(u,v)+ifi(u,v) =c¢
for p = u + v, which would contradict our assumption. Therefore, the function

h(s) = (f()* = 2Re(c)f(s) + |c[*) = (f(s) — ¢;.)(£(s) — )

with ¢, = ¢y + jeo for s = u + jv does not have any zeros on og(7T'). Moreover,
since f(o0) is real, we have

h(c0) = (f(00) = ¢)(f(00) =) = [f(00) —c* #0

and hence h=1(s) = (f(s)? — 2Re(c)f(s) + |¢|*)~! belongs to N (os(T) U {o0}).
Applying the S-functional calculus, we deduce again from Theorem 3.5.1 that the
operator h=1(T) is the inverse of Q.(T), which contradicts ¢ € o5(f(T)). Hence,
there must exist some p € og(T") such that ¢ = f(p).

Altogether, we obtain og(f(T)) \ {f(c0)} is contained in f(os(T)).

Finally, let us consider the case that the point ¢ = f(00) belongs to os(f(T)).
If T is unbounded, then co € osx(T") and hence ¢ € f(ogx(T)). If on the other
hand 7' is bounded, then there exists a function g € N (og(T)U{cc}) that coincides
on an axially symmetric neighborhood og(T) with f but satisfies ¢ # g(o0). In this
case f(T) = g(T), as pointed out in Remark 3.4.1, and we can apply the above
argumentation with g instead of f to see that ¢ € g(os(T)) = f(os(T)). O

Theorem 3.6.2. If T € K(X) with o5(T) # 0, then P(os(T)) = os(P(T)) for any
intrinsic polynomial P.

Proof. The arguments are similar to those in the proof of Theorem 3.6.1: in order
to show P(os(T)) C os(P(T)), we consider the polynomial Qp(,)(P(s)), which
is given by Qp(,)(P(s)) = P(s)* — 2Re(P(p))P(s) + |P(p)|? for any p € o5(T).
As p and p are both zeros of Qp(,)(P(s)) (resp. as p is a zero of even order of
Qpp)(P(s)) = (P(s) — P(p))? if p is real), there exists an intrinsic polynomial
R(s) such that

() (P(s)) = Qp(s)R(s)-

)=
If P(p) ¢ os(P(T)), then Qp y(P(T)) is invertible and Lemma 3.5.3 and Ex-
ample 3.4.3 imply that Qp(, ( ( )~ 1R( ) is the inverse of Q,(T'), which is a
contradiction because we assumed p € o5(T). Therefore P(p) € os5(P(T)).



92 Chapter 3. The direct approach to the S-functional calculus

Conversely assume that p ¢ P(og(T')). Then the function
Qy(P(s)) = P(s)* — 2Re(p) P(s) + |p/*

does not take any zero on og(T) and we conclude from Corollary 3.5.5 that
Q,(P(T)) has a bounded inverse. Thus p ¢ og(P(T)) and in turn og(P(T)) C
P(og(T)). O

Theorem 3.6.3 (Composition rule). Let T € K(X) with ps(T) # 0. If f €
N(os(T)U{oo}) and g € SHL(f(osx(T)) or g € SHr(f(osx(T)), then

(g0 F)(T) = g(f(T)).

Proof. Because of Remark 3.4.1, we can assume that f(oo) belongs to f(osx(T)).
We apply Theorem 2.1.31 in order to choose an unbounded slice Cauchy domain U,
such that os(f(T)) = f(osx(T)) C U, and U, C D(g) and a second unbounded
slice Cauchy domain U, such that og(T) C Us and Us C f~Y(U,) N D(f). The
subscripts are chosen in order to indicate the respective variable of integration in
the following computation.

After choosing an imaginary unit j € S, we deduce from Cauchy’s integral
formula, that

(go f)(T) = (go f)(o0)I
_ QL S; (s, T)ds; (g o f)(s)
T JaU.nc;)

1 1
- S~1(s,T) ds, 7/ S 0o, £(s)) dpr o(p) | .
21 Jow.ne,) (5, T) ds, <27r ow.ne;) - (p, f(s)) dp; 9(p)

Changing the order of integration by applying Fubini’s theorem, we obtain
(go f)(T) = (go f)(oo)T
1 1 -1 -1
St (s,T)ds; S (p, f(s)) | dpj 9(p)
a(UsNCy)

2m Jow,ncy) \ 27

1 _
=5 Sy p, £(T)) dp; 9(p)
B(Upﬁ((:j)

- S5 (. F(0)) dp; g(p)T
T Jo(U,nCy)
=g(f(T)) — g(f(c0))T

and hence (go f)(T) = g(f(T)). O
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3.7 Spectral sets and projections onto invariant
subspaces

As in the complex case, the S-functional calculus allows to associate subspaces of
X that are invariant under T' to certain subsets of og(T).

Definition 3.7.1 (Spectral set). A subset o of ogx(T) is called a spectral set if it
is open and closed in ogx (7).

Just as 0g(T) and ogx(T'), every spectral set is axially symmetric: if s € o
then the entire sphere [s] is contained in o. Indeed, the set o N [s] is then a
nonempty, open and closed subset of ogx (T") N[s] = [s]. Since [s] is connected this
implies o N [s] = [s]. Moreover, if o is a spectral set, then ¢/ = ogx(T) \ o is a
spectral set, too.

If o is a spectral set of T, then o and ¢’ can be separated in H,, by axially
symmetric open sets and hence Theorem 2.1.31 implies the existence of two slice
Cauchy domains U, and U, containing o and o', respectively, such that one of
them is unbounded and U N U, = §. We define

(2) 1 ifzeU,,
() =
X 0 ifzel,.

The function x,(z) obviously belongs to N (og(T) U {oc}).

Definition 3.7.2 (Spectral projection). Let T € K(X) with ps(T) # 0 and let
o C og(T) be a spectral set of T. The spectral projection associated with o
is the operator E, := x,(T) obtained by applying the S-functional calculus to
the function y,. Furthermore, we define X, := E,X and T, = T\D(Tg) with
D(T,)=D(T)N X,.

Explicit formulas for the operator E, are for bounded o are given by

1

1
o= oo S;H(s, T)ds; = — ds; Sg'(s,T)
T Ja(U,NC;,)

21 Jow,nc;)

and for unbounded o
1 1
E, =T+ — S N(s,T)ds; =T + — ds; Sg'(s,T),
21 Jaw,nc;) 27 Jaw,nc;)

where the imaginary unit j € S can be chosen arbitrarily.

Corollary 3.7.3. Let T € K(X) such that ps(T) # 0 and let o be a spectral set of
T.

(i) The operator E, is a projection, i.e., E2 = E,.

(ii) Set o' =os5x(T)\ 0. Then E; + E,» =T and E,E, = E,E, = 0.
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Proof. This follows immediately from the algebraic properties of the S-functional
calculus shown in Corollary 3.4.4 and Theorem 3.5.1 as X2 = X, and Xo + Xor = 1
and XoXo' = Xo'Xo = 0. 0

The following Lemma 3.7.4 is a special case of [47, Chapter IT §1.9, Propo-
sition 14] and Lemma 3.7.5 is an immediate consequence of the fact that any
projection with closed range is continuous.

Lemma 3.7.4. Let A, B, M and N be right linear subspaces of a quaternionic right
vector space X such that AC M and BC M. If A& B=M® N, then A=M
and B= N.

Lemma 3.7.5. Let A, B, M and N be right linear subspaces of a quaternionic
Banach vector space Xgr such that A C M, B C N and such that M, N and
M & N are closed. Then A® B is dense in M & N if and only if A is dense in M
and B is dense in N.

Definition 3.7.6. Let T : D(T) — X. We split the S-spectrum into the three
disjoint sets:

(P) The point S-spectrum of T":

osp(T) = {s € H: ker(Qu(T)) # {0}}.
(R) The residual S-spectrum of T*
o5 (T) = {s € H: ker(Qy(T)) = {0}, 1an(Q,(T)) # X } .
(C) The continuous S-spectrum of T
o5e(T) = {s € H:  ker(Qu(T)) = {0}, ran(Qu(T)) = X, Qu(T)™" ¢ B(X)}.

There are different possible ways to split the S-spectrum. We refer to Section
9.2 in [57] for more details and comments.

Theorem 3.7.7. Let T € K(X) with ps(T) # 0 and let Eq1,Ey € B(X) be projec-
tions such that E1 + E; =T (and hence E1Ey = E3FE1 = 0). Denote Xy := E¢(X)
and D(Ty) := E¢(D(T)) and assume that T(D(Ty)) C X¢ such that Ty := T'|p(r,)
s a closed operator on the right Banach space X, for £ = 1,2. Then

(i) E/Ty =TEpy fory e D(T),

(ii) D(I7) = E(D(T?)) for £ =1,2,

(iii) ran(Qs(T)) = ran(Qs(T1)) ® ran(Qs(T5)), for any s € H,
)

(iv) 05(T) = 0s(Th) Uog(Te) and
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(v) 05p(T) = 05p(T1) U 05p(T3)-
If moreover o5(T1) Nos(Tz) =0, then
(vi) 05c(T) = 05.(T1) Uoge(Te) and
(vii) 05 (T) = 05:(T1) Uogr(T2).

Proof. The assertions (i) to (iii) are obvious. Now assume that s € pg(T). Then
ran(Q, (7)) = X and from (iii) we deduce

X106 Xy =X =ran(Q4(T)) = ran(Q4(T1)) @ ran(Q4(T3)).

As ran(Q4(Ty)) C Xy, Lemma 3.7.4 implies ran(Q,(7y)) = X, and hence
Qu(Ty)™t = Qu(T)Yx, as Qs(Ty) = QS(T)|D(T22). Indeed, we have

Qu(T) ' Qu(Ty)y = Qs(T) ' Qu(T)y =y for y € D(TY)
and, since Q4(T) "1y € D(T}) for y € Xy, also
QS(TZ)QS(T)_ly = Qs(T>Qs(T)_1y =Y for RS X€~

Thus, s € ps(T1) N ps(Tz). Conversely, if s € pg(T1) N ps(Tz), then the operator
Q4(T1)"LE; + Q4(Ty) 1 E;y is the inverse of Q4(T) and hence s € pg(T). Alto-
gether, ps(T) = ps(T1) N ps(Ts), which is equivalent to og(T) = 05(T1) Uos(Ts)
and hence (iv) holds true.

Obviously, os,(T¢) C osp(T) as any S-eigenvector of Ty is also an S-eigen-
vector of T associated with the same eigensphere. Conversely, if y # 0 is an S-
eigenvector of T' associated with the eigensphere [s] = sg + Ss1, then set y, = Epy
and we observe that

0= 9Ty = Qs(Th)y1 + Qs(T2)y2.

As Q4(Ty)ye € X and X; N Xy = {0}, this implies Qs(Ty)ye = 0 for £ =1,2. As
y # 0, at least one of the vectors g, is nonzero and therefore an S-eigenvalue of
Ty associated with the eigensphere [s]. Thus [s] C 0g,(T1) U osp(T2) and in turn
osp(T) = 05p(T1) U ogp(T2) so that (v) holds true.

We assume now that og(Ty) N og(T2) = @. Then assertions (iv) and (v)
imply that s € og.(T)Uos,(T) if and only if s € og.(T¢) Uos,(T¢) for either £ =1
or £ = 2. We assume without loss of generality s € og.(T1) U os(T1) and thus
s € ps(Ts). As ran(Qs(T)) = X, we deduce from (iii) and Lemma 3.7.5 that
ran(Q,(T)) is dense in X = X; @ X» if and only if ran(Q,(71)) is dense in X. In
other words, s € 0g.(T") if and only if s € 0g.(71) and in turn s € og,.(T) if and
only if s € gg,(T1). |

Theorem 3.7.8. Let T € K(X) with ps(T) # 0 and let 0 C o5(T') be a spectral set
of T. Then

(i) Es(D(T)) € D(T),
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(Vi) o Nos(T) = o5r(T5).

If the spectral set o is bounded, then we further have:
(vit) X, C D(T°) and
(viti) T, is a bounded operator on X,.

Proof. Assertion (i) follows from the definition of E, and Lemma 3.5.2. In order
to prove (ii), we observe that if y € D(T) N X, then E,y = y. Hence, we deduce
from Lemma 3.5.2 that E,Ty = TE,y = Ty, which implies Ty € X, .

If o is bounded, then we can choose U, bounded and hence x, has a zero of
infinite order at infinity. We conclude from Lemma 3.5.3 that y = E,y = x.(T)y €
D(T) for any y € X, and hence (vii) holds true. In particular, X, C D(T).
Therefore, T, is a bounded operator on X, as it is closed and everywhere defined.

We show now assertion (iii) and consider first a point s € H\ 0. We show
that s belongs to ps(Ty). For an appropriately chosen slice Cauchy domain Uy,
the function f(s) := Qs(p)'xw, (s) belongs to N (os(T)U{oo}). By Lemma 3.5.3
and Lemma 3.5.2, we have

AT)Qs(T)y = xu, (T)y = Ery, fory e D(T?)NX,

and
QM) f(T)yy =xv, Ty =E,y=y forye X,.

Hence, Q,(T,) = Qu(T)|x,np(r>) has the inverse f(T)|x, € B(Xs). Thus, we
find s € ps(T,) and in turn og(7T,) C o0 NH =: 07. The same arguments applied
to T, with o' = ogx(T) \ o show that 05(T,) C o' NH := 3. But by (iv) in
Theorem 3.7.7, we have

0s(Ty)Uos(Ty) =05(T) =01 U0z

and hence o5(T,) =01 =cNH and 05(Ty) = 02 = ¢/ NH. If ¢ is bounded, then
this is equivalent to (iii) because of (viii). If ¢ is not bounded, then co € ¢ and T
is not bounded on X. However, in this case ¢’ is bounded and hence T, € B(X,).
ButasT =T,E,+T, E,, we conclude that T, is unbounded as T is unbounded.
Hence, oo € o0sx(T,) and (viii) holds true also in this case.

Finally, (iv) to (vi) are direct consequences of (v) to (vii) in Theorem 3.7.7
as we know now that og(7,) and og(T,) are disjoint. O
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Example 3.7.9. We choose a generating basis j, ¢ and k := ji of H and consider the
quaternionic right-linear operator 7' on X = H? that is defined by its action on the
two right linearly independent right eigenvectors y; = (1,)7 and yo = (i, —k)7,

e G) . <8> and (fk) ~ (:ﬁ) - <—Zk> g

Its matrix representation is
1 /-5 1
T=- ).
2 (1 — ])

Since, for operators on finite-dimensional spaces, the S-spectrum coincides with
the set of right-eigenvalues by Theorem 3.1.6, we have 05(T") = or(T) = {0} US.
Indeed, we have

oy =3 (7 ) -s(T L) ey )
(-3 +1sP 450 —so—3i
- ( 30+%j —;+|S|2+Soj>
and hence
Qu(T)™" = |s|"2(—1 + 2jso + |s[2) " (—% +1|§|2+j80 ) 3] +2$0 . )7
—3J = S0 —3 +[sl* +Jso

which is defined for any s ¢ {0} US. For any s € ps(T), the left S-resolvent is
therefore given by

~ 1 o
SLl(S,T):§|S| 2(—]_-|—|S|2-|-2]8()) 1
(152G +25) +5(—1+ 2js0) —|s|2 +3(j + 2s0)
|s|> = 3(j + 2s0) Is|2(j + 25) +5(—1 + 2js0) )~

Since 05(T) N C; = {0,4,—j}, we choose Urgy = By/2(0) and set Us = B2(0) \
By3(0). For s = £e7% € 90Uy, (0) N C;, we have

Sl (s, T) =2e77% (35 + 4Re (ej*"))f1

_ j+el¥ +2cos(p) 2+ jel¥ +2jcosp
—2—jel? +2jcosp  j+el¥ 4+ 2cosp
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and so
_ 1 -1
E{O} = — SL (S,T) de
27 Jo oynCy)
1 27 ) ) 1
= — 2e77%¥ (3]' + 4Re (e”’)) .
27T 0

. j+el?+2cos(p) 2+ jel¥ —2jcosp lejgp.(i.)d
—2—jel¥ +2jcosp  j+el¥+2cosp ) 2 JATI) e

11—
2\ 1)

A similar computation shows that

1 1 1/1 j

Es o /é’(USmcj)SL (s,T)ds; 5 (—j 1).
Straightforward calculations show that these matrices actually define projections
on H? with E{oy+Es = Z. Moreover, we have Froyy1 = y1 and Esy; = 0 as well as
E{oyy2 = 0 and Egys = y2. Thus, the invariant subspace E{gy X associated with
the spectral set {0} is the right linear span of y;, which consist of all eigenvectors
with respect to the real eigenvalue 0 as T'(y1a) = T'(y1)a = 0 for all a € H. The
invariant subspace Eg associated with the spectral set S consists of the right linear
span of yo. For a € H \ {0}, we have T(y2a) = T(y2)a = y2ja = (y2a)(a~tja).
Thus, as a~'ja € S, the subspace Eg consists of all right eigenvectors associ-
ated with eigenvalues in S. (This is true only because the associated subspace is
one-dimensional! Otherwise, the subspace would consist of sums of eigenvectors
associated with possibly different eigenvalues in the sphere S. Such vectors are
in general not right eigenvectors, but they are S-eigenvectors associated with the
eigensphere S.)

Finally, we can construct functions, which are left and right slice hyperholo-
morphic on og(T), but for which the S-functional calculi for left and right slice
hyperholomorphic functions yield different operators: consider the function

f(s) = cixuyy, (8) + caxus(s)

such that ¢; or ¢y does not belong to C;. Choose for instance ¢; =4 and ¢ = 0
for the sake of simplicity. This function is a locally constant slice function on
U = Uyoy U Us and thus left and right slice hyperholomorphic by Lemma 3.4.8.
Then

1 1
— S7Y(s,T)ds;f(s) = —/ SN, T)ds; | i
7 e, SE D) <2W o oy S TV

11 —j\. 1(i -k
a2\ 1)'72\k i)
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but

1 1
- f(s)ds; 71 (s, T) = i 7/ ds; St (s, T
21 Jownc;) (s)ds; Sp-( ) 2 9(B1,2(0)NC;) 15x :

11—\ 1[0 k
'\ 1) T2\ i)

The reason for why we obtain different operators is that the spectral projections Eg
and E{gy cannot commute with arbitrary scalars because the respective invariant
subspaces are not two-sided. Indeed, —iys = (1, ) = y1, which obviously does not
belong to FsX.

3.8 The special roles of intrinsic functions and the left
multiplication

As we saw in this chapter, the role of intrinsic slice hyperholomorphic functions
stands out in quaternionic operator theory. Important results such as the product
rule, the spectral mapping theorem and the composition rule only hold for these
functions. This is not surprising since, on the level of functions, slice hyperholo-
morphicity is only compatible with multiplication and composition of intrinsic
functions, not of arbitrary slice hyperholomorphic functions. There exists, how-
ever, a deeper, more fundamental reason for this special role of intrinsic functions
that we want to explain in the following.

A functional calculus for an operator 7' is a mathematical method that allows
to define an operator f(7T') such that f(T') generalizes the mapping behavior of T
for each f in a certain class of functions on the spectrum of T' (for instance the
class of holomorphic, continuous, measurable or slice hyperholomorphic functions
on the spectrum of 7T"). This is useful for generating new operators, and it is also
useful for understanding the operator T itself. The way f(7T') changes as f varies
in the corresponding class of functions gives information about 7" and allows to
identify, for instance, eigenspaces, invariant subspaces, or, if 7' is a normal operator
on a Hilbert space, even its spectral resolution. This is, however, only possible if
the mapping behavior of T and f(T) are related in a suitable way. Intuitively,
the operator f(T') should be obtained by letting f act on spectral values of T. In
particular, if v € X \ {0} is an eigenvector of T associated with s, i.e.,

Tv = vs, (3.42)
then v should be an eigenvector of f(T) associated with f(s), i.e.,
f(Mv=uvf(s). (3.43)

One of the fundamental peculiarities of operator theory in the quaternionic
setting is the axial symmetry of the set of eigenvalues and the S-spectrum of an
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operator. In particular, if (3.42) holds and h € H\ {0}, then
T(vh) = (Tw)h = vsh = (vh)(h™'sh). (3.44)

Consequently, if (3.42) implies (3.43), then vh is an eigenvector of f(T') associated
with f(h~1sh), that is

f(T)(vh) = (vh)f(h™ sh). (3.45)
On the other hand, (3.43) implies
F(T)(wh) = (f(T)v)h = vf(s)h = (vh) (K~  f(s)h). (3.46)

Combining (3.45) and (3.46), we find that f must satisfy
f(h™tsh) =h~'f(s)h Vh € H\ {0}. (3.47)

Now assume that s = u + jv € H and choose h = j. Since s and j commute, we
conclude from (3.47) that

if(s)=3f(i™ sg) = ji~ f(s)j = f(s)s.

A quaternion commutes with j if and only it belongs to C;. Hence, f(s) € C;
and so f(s) belongs to the same complex plane as s. Let a, € R such that
f(s) =a+jp.1f § = u+iv € [s] with ¢ € S arbitrary, then there exists h € H\ {0}
such that § = h~!sh. Furthermore, we conclude from

ut+iv=58=h"tsh=u+h"tjhv
that i+ = h=!jh. The identity (3.47) then implies
F(utiv) = £(3) = f(h~ sh) = K f(s)h = o+ (hLj)B = a + iB.
Setting fo(u,v) := a € R and f;(u,v) := S € R, we find
flu+iv) = fo(u,v) +ifi(u,v), Vies.

Thus, f is an intrinsic slice function. In the quaternionic setting, any proper
functional calculus must therefore necessarily apply to a class of intrinsic slice
functions—otherwise it does not follow the most fundamental intuition of such
calculus, namely that (3.42) implies (3.43), and the mapping behavior of f(T) is
not related with the mapping behavior of T

This explains why the S-functional calculus shows undesirable properties
when non-intrinsic functions are considered, such as the voidness of the product
rule and the spectral mapping theorem or such as the inconsistencies between the
S-functional calculi for left- and right slice hyperholomorphic functions. (These
phenomena are not restricted to the S-functional calculus but appear, due to the
reasons explained above, in any quaternionic functional calculus, for instance, in
the continuous functional calculus for normal quaternionic operators [57,148].)
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We make another important observation: intrinsic slice hyperholomorphic
functions of an operator can be expressed in terms of only the right linear struc-
ture on the space, cf. Theorem 3.4.11. Hence, they do not depend on the left
multiplication. A right linear operator is, via the linearity condition, only related
with the right multiplication, not with the left multiplication on the space. It
is therefore plausible that, as a general principle, only the right linear structure
should be important for the spectral properties of such operator. Indeed, we as-
sume the existence of a left multiplication on X only because the space B(X) of
right linear operators on X is otherwise only a real, not a quaternionic Banach
space.

We can show the independence of intrinsic slice hyperholomorphic functions
of an operator of the left multiplication with a different argument, which applies
in other situations, too. If f is an intrinsic slice hyperholomorphic function on
osx(T), then f can be approximated uniformly on ogx(T) by intrinsic rational
functions R, due to Runge’s theorem. Intrinsic rational functions are rational
functions with real coefficients. Hence, they are precisely those rational functions
of T that can be defined even if B(X) is considered only as a real Banach space,
that is, if only the right linear structure on X is considered. For any R, the
operator R, (T') therefore does not depend on the left multiplication. Instead,
R, (T) is fully determined by the right linear structure on X. Furthermore, the
operator norm ||T'|| = supj,=; [|[ 70|, and in turn also the topology on B(X), is
independent of whether we consider X as a quaternionic two-sided Banach space
or a quaternionic right Banach space. We have

f=lm R
uniformly on og(T'). As the S-functional calculus is compatible with uniform lim-
its, we find
F(T) = Tim Ru(T).
Since the operators R, (7T") and the topology on B(X) are determined by the right
linear structure on X and do not depend on the left multiplication, this is also
true for the operator f(T).

Similarly, the continuous functional calculus for a bounded normal quater-
nionic operator T is defined by approximating a continuous intrinsic slice function
f on og(T) uniformly by intrinsic polynomials in s and , that is by polynomials
of the form

P,.(s) = Z agyks%k with ag, € R.

0<t,k<n

The operator

Po(T):= > axT" (T,
0<L,k<n

where T™ denotes the adjoint of T, is then again fully determined by the right linear
structure on the space since it contains only real coefficients. Consequently, also
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the operator f(7T) = lim,— 100 P (T) depends only on the right linear structure
and not on any left multiplication [57].

Other important functional calculi such as the H°-functional calculus or
the measurable functional calculus are extensions of these two calculi. Hence, they
inherit the independence from the left linear structure on X (as long as only
intrinsic slice functions are considered).

The fact that functional calculi for quaternionic right linear operators are
determined by the right linear structure on the space brings up the question of
clarifying the role that the left multiplication plays in this theory. In particular,
we have to ask whether it has any influence on the spectral properties of an
operator or not. The spectral properties of a quaternionic operator 7' must be
independent of the concrete model of this operator that is considered a change
of basis for instance, must not effect these properties. More general, let X be a
two-sided quaternionic Banach space and let T' € K(X). If Y is another two-sided
quaternionic Banach space and U : X — Y is a norm-preserving and bijective
right-linear mapping, then

S:=UTU!

is a model for T in Y. The spectral properties of S should correspond to the
spectral properties of T' and, indeed, we have
Q,(8) =9, (UTU ") =UQ,(INU™", VseH.
Hence, we find
ps(T) = ps(S) and os(T) = os(S),

and
Qs(S) ' =UQT) U, Vs e ps(T).

If P(s) =Y p_,ars® with a, € R is an intrinsic polynomial, then

P(S)=> apS* =U> a,T"U~" =UP(T)U".
k=0 k=0

For any intrinsic rational function R(s) = P(s)Q(s)~! with intrinsic polynomials
P and @ such that the zeros of @ (resp. the poles of R) lie in pg(T) = ps(S), we
therefore find that

R(S)=P(S)Q(S) ' =UuP(T)Q(T) U =UR(TU .

If f € N(osx(T)) = N(osx(S)), then Runge’s theorem implies the existence
of a sequence of intrinsic rational functions R,,n € N, the poles of which lie in
ps(T) = ps(S) such that f(s) = limy,_,4co Rp(s) uniformly on ogx (7). Since the
S-functional calculus is compatible with uniform limits on ogx (7"), we obtain that
f(S)= lim R,(S)= lim R,(S)= lim UR,(T)U '=UfT)U "

n—-+o0o n—-+oo n——+oo
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Similarly, it also follows that f(S) = U f(T)U~! for any continuous intrinsic slice
function f on og(T) if T is a normal operator on a quaternionic Hilbert space
and U is a unitary right linear bijection. This correspondence is inherited by
the extensions of these functional calculi such as the H°°-functional calculus or
the measurable functional calculus for normal operators. (For the S-functional
calculus the identity f(S) = Uf(T)U~! can also be deduced directly from the
integral representation (3.35). However, for the intrinsic functional calculus such
integral representation does not exist and one has to follow the strategy described
above.)

Objects and techniques that depend on the left multiplication or that apply
to functions other than intrinsic functions are, on the other hand, not invariant
under the transformation U. Consider for instance the constant function f(s) = a
with ¢ € H \ R. This function is both left and right slice hyperholomorphic on
osx(T) = osx(S), but not intrinsic. If we apply the S-functional calculus, we
find f(S) = aZy and f(T) = aZx. However, unless aU = Ua, we have

f(S)=aZy #U(aZx)U ' =UFf(TU.
Actually, even for the S-resolvents, in general, we have
Sy (s, 8) AUS (s, T)U™ and Sp'(s,S) # USR' (s, T)U .
Indeed, unless Us = 3U, it is

SpH(5,5) = Qs(5) 15— 5Q,(5) ™
=UQ(T) U s -UTQ,(T) U™
AU (Q(T) 5 —TQu(T) YU =US, (s, YU

Due to the symmetry of the path of integration in the S-functional calculus, the
S-resolvents are always simultaneously evaluated at s and s and it is this fact that
ensures the independence of the S-functional calculus for intrinsic functions from
the left multiplication.

One could argue that, since we are working on two-sided quaternionic Banach
spaces, only transformations U that are compatible with the entire structure of
X, that is with both the left and the right multiplication, should be considered
in the arguments above. Hence, one should assume that U is both left and right
linear. Such a transformation would satisfy aU = Ua for all « € H and the
problems described above would not occur. The transformations of this type can
be characterized easily: if

Xp={veX: av=vwva, VacH} and Yrg={veX: av=wva, YacH}

such that
X=Xg®H and Y =Yg ®H,
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then an operator U : X — Y is both left and right linear if and only if it is the
quaternionic right linear extension of an R-linear operator Ug : Xg — Yg. (In the
terminology introduced in Definitions 2.2.6 and 3.3.1, this is equivalent to U being
a scalar operator.)

However, restricting ourselves to such transformations is not feasible. We can
consider for example X = H" with its natural left and right multiplication and
endowed with an arbitrary norm. This yields a two-sided quaternionic Banach
space of dimension n. A right linear operator T' on H" can be represented by
an n X n-matrix with quaternionic entries and an operator is both left and right
linear if it is represented by a matrix with only real coefficients. This matrix can
be put in Jordan normal form, i.e., there exists an invertible matrix U such that
T = USU™L, where S is a block diagonal matrix with the diagonal that consists
of Jordan blocks [190]. The matrix U however does not necessarily only have real
entries. It is in general a matrix with quaternionic entries and hence it represents
an operator that is only right, but not necessarily left linear. If we require that the
spectral properties are only invariant under transformations that are both left and
right linear, this would imply that the spectral properties of T" are not necessarily
invariant under the transformation U. Hence, T' and its model in Jordan normal
form S might have different spectral properties, which is absurd.

Spectral properties of an operator must therefore be invariant under norm-
preserving and bijective right linear transformations. Since the left multiplication
is not invariant under such transformations, the spectral properties of an operator
cannot depend on it. We conclude that right linear quaternionic operators have to
be understood in terms of the right linear structure only. The left multiplication
is a useful auxiliary tool, but spectral properties of the operator cannot depend
on it. However, the left multiplication is necessary in order to consider B(X) as
a quaternionic linear space. Without it, it is not possible to apply quaternionic
techniques to elements of B(X) and to give intuitive integral representations for
the S-functional calculus in B(X). Furthermore, without assuming the existence of
a left multiplication, it would not have been possible to develop the fundamental
concepts of quaternionic operator theory. In particular, the S-spectrum could not
have been found as its definition was understood by finding the closed form of the
Cauchy kernel operator series Y% T"s~("+1) ¢f. Theorem 2.2.9. Giving meaning
to this series requires B(X) to be a quaternionic linear space.

Finally, in certain situations, the left multiplication of X is particularly use-
ful for simplifying computations, since this left multiplication might allow us to
write T in terms of components as T = Ty + 22:1 Tyey, cf. Definition 2.2.6 and
Definition 3.3.1. If there exists a model of the operator T in a space with a left
multiplication, such that T" has commuting components, then this model can be
used to significantly simplify computations for investigating 7', cf. Theorem 3.3.4.
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