
Chapter 12

Appendix: Principles of
functional Analysis

The principles of functional analysis do not depend on the quaternionic structure,
so with minor changes these can be proved also in quaternionic functional analysis.
For the convenience of the reader, we collect such results in this appendix. Some
of the results were already proved in [110], so we quote those here.

Theorem 12.0.1 (The open mapping theorem). Let X and W be two right quater-
nionic Banach spaces, and let T be a right linear continuous quaternionic operator
from X onto W . Then the image of every open set is open.

Proof. Let X and W be two right quaternionic Banach spaces and let T : X →W
be a right linear continuous map such that TX = W . It is enough to prove the
statement for a neighborhood of 0, more precisely for balls. We denote by BX(r)
the ball in X of radius r > 0 and centered at the origin. We prove that the
closure TBX(r) of the image of any ball BX(r) centered at 0 in X contains a
neighborhood of 0 in W . Moreover, since TBX(r) = rTBX(1), we only need to
show that TBX(r) is a neighborhood of the origin for some positive r.

We will make use of the notation BX(r)−BX(r) to denote the set of elements
of the form u− v where u, v ∈ BX(r).

Observe that the function u − v is continuous in u and v. Also, notice that
there exists an open ball BX(r′), for suitable r′ > 0, such that BX(r′)−BX(r′) ⊆
BX(r).

For every v ∈ X, we have that v/n → 0 as n → ∞ so v ∈ nBX(r′) for a
suitable n ∈ N. So

X =
∞⋃
n=1

nBX(r′) and W = TX =
∞⋃
n=1

nTBX(r′).

By the Baire category theorem, one of the sets nTBX(r′) contains a nonempty
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open set. The map w 7→ nw is a homeomorphism in W and TBX(r′) contains a
nonempty open set denoted by B, so

TBX(r) ⊇ TBX(r′)− TBX(r′) ⊇ TBX(r′)− TBX(r′) ⊇ B − B.

The map w 7→ u − w is a homeomorphism; this implies that the set u − BX(r)
is open. Since the set B − B =

⋃
u∈B(u − B) is the union of open sets, it is open

and it contains the origin and so it is a neighborhood of the origin. Thus, we have
proved that the closure of the image of the neighborhood of the origin contains a
neighborhood of the origin.

For any ε > 0, consider the two spheres BX(ε) and BW (ε) centered at the
origin of X and W , respectively.

Choose an arbitrary positive real number ε0 and let ε` > 0 be a sequence
such that

∑
`∈N ε` < ε0.

Then, according to what we have proved above, there exists a sequence
{θ`}`∈N∪{0} with θ` > 0 and θ` → 0 such that

TBX(ε`) ⊃ BW (θ`), ` ∈ N ∪ {0}. (12.1)

Now take w ∈ BW (θ0). We show that there exists v ∈ BX(2εθ0) such that Tv = w.
From (12.1), for ` = 0 there exists a v0 ∈ BX(ε0) such that

‖w − Tv0‖ < θ1.

Since w − Tv0 ∈ BW (θ1) again from (12.1) with ` = 1, there is v1 ∈ BX(ε1) with

‖w − Tv0 − Tv1‖ < θ2.

So we construct a sequence {vn}n∈∪{0} such that vn ∈ BX(εn) and

‖w − T
n∑
`=0

v`‖ < θn+1, n ∈ N ∪ {0}. (12.2)

Let us denote pm =
∑m
`=0 v`. So for m > n,

‖pm − pn‖ = ‖vn+1 + . . .+ vm‖ < εn+1 + . . .+ εm,

which shows that pm is a Cauchy sequence and that the series
∑∞
`=0 v` converges

at a point v with

‖v‖ ≤
∞∑
`=0

ε` = 2ε0.

Now recall that T is continuous and from (12.2) we have w = Tv.
This means that an arbitrary sphere BX(2ε0), about the origin in X, maps

onto the set TBX(2ε0) which contains the sphere BW (θ0) about the origin in W .
So if X is a neighborhood of the origin in X, then TX contains a neighborhood
of the origin of W . Since T is linear then the above procedure works for every
neighborhood of every point. �
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Theorem 12.0.2 (The Banach continuous inverse theorem). Let X and W be two
right quaternionic Banach spaces and let T be a right linear continuous quater-
nionic operator that is one-to-one from X onto W . Then T has a right linear
continuous inverse.

Proof. Let X and W be two right quaternionic Banach spaces and T be a right
linear continuous and one-to-one operator such that TX = W . By Theorem 12.0.1
T maps open sets onto open sets, so if we write T as (T−1)−1, it is immediate that
T−1 is continuous. Now take w1, w2 ∈ W and v1, v2 ∈ X such that Tv1 = w1,
Tv2 = w2 and p ∈ H. Then,

T (v1 + v1) = Tv1 + Tv2 = w1 + w2, T (v1p) = T (v1)p = w1p

so that
T−1(w1 + w2) = v1 + v2

and
T−1(w1p) = v1p,

so T−1 is right linear quaternionic operator. �

Definition 12.0.3. Let X and W be two right quaternionic Banach spaces. Suppose
that T is a right linear quaternionic operator whose domain D(T ) is a (right) linear
manifold contained in X and whose range belongs to W . The graph of T consists
of all point (v, Tv), with v ∈ D(T ), in the product space X ×W .

Definition 12.0.4. We say that T is a closed operator if its graph is closed in X×W .

Remark 12.0.1. Equivalently, we can say that T is closed if vn ∈ D(T ), vn → v,
and Tvn → y imply that v ∈ D(T ) and Tv = y.

Theorem 12.0.5 (The closed graph theorem). Let X and W be two right quater-
nionic Banach spaces. Let T : X → W be a right linear closed quaternionic oper-
ator. Then T is continuous.

Proof. Since X and W are two right quaternionic Banach spaces, we have that
X×W with the norm ‖(v, w)‖X×W = ‖v‖X+‖w‖W is a right quaternionic Banach
space. The graph of T denoted by

G(T ) = {(v, Tv) : v ∈ D(T )}

is a closed linear manifold in the product space X×W so it is a right quaternionic
Banach space. The projection

PX : G(T ) 7→ X, PX(v, Tv) = v

is one-to-one and onto, linear and continuous, so by Theorem 12.0.2, its inverse
P−1
X is continuous. Now consider the projection

PW : G(T ) 7→W, PW (v, Tv) = Tv,

since T = PWP
−1
X , so we get the statement. �
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Theorem 12.0.6 (The Hahn–Banach theorem). Let X0 be a right subspace of a
right quaternionic Banach space X on H. Suppose that p is a norm on X and let
φ be a linear and continuous functional on X0 such that

|〈φ, v〉| ≤ p(v), ∀v ∈ X0. (12.3)

Then it is possible to extend φ to a linear and continuous functional Φ on X
satisfying the estimate (12.3) for all v ∈ X.

Proof. Note that, for any quaternion q, we have q = q0 + q1i+ q2j+ q3k = z1(q) +
z2(q)j, where z1, z2 ∈ Ci = R+Ri and qj = −z2(q)+z1(q)j, so q = z1(q)−z1(qj)j.
The functional φ can be written as φ = φ0 + φ1i + φ2j + φ3k = ψ1(φ) + ψ2(φ)j,
with ψ1(φ) = φ0 + φ1i and ψ2(φ) = φ2 + φ3i which are complex functionals. It is
immediate that

〈φ, v〉 = 〈ψ1, v〉 − 〈ψ1, vj〉j, ∀v ∈ X0,

where ψ1 is a C–linear functional. So we can apply the complex version of the
Hahn–Banach theorem to deduce the existence of a functional ψ̃1 that extends ψ1

to the whole of X. The functional Ψ, given by

〈Ψ, v〉 = 〈ψ̃1, v〉 − 〈ψ̃1, vj〉j,

is defined on X and it is the extension that satisfies estimate (12.3) for all v ∈
X. �

The following result is an immediate consequence of the quaternionic version
of the Hahn–Banach theorem.

Corollary 12.0.7. Let X be a right quaternionic Banach space and let v ∈ X. If
〈φ, v〉 = 0 for every linear and continuous functional φ in X∗, then v = 0.

We can reformulate this with the following corollary.

Corollary 12.0.8. The dual space of a quaternionic right Banach space separates
points.

In the following paragraphs, we have restated the quaternionic version of the
results that we have previously used in this book. The proofs in the complex case,
found in [110], are very similar.

Theorem 12.0.9 (Uniform boundedness principle). Let X and W be two right
quaternionic Banach spaces and let {Tα}α∈A be bounded linear maps from X to
W . Suppose that

sup
α∈A
‖Tαv‖ <∞, v ∈ X.

Then,
sup
α∈A
‖Tα‖ <∞.

Proof. For the proof see Theorem 11 in [110, p. 52]. �
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Also, the following extension theorem is in [110].

Theorem 12.0.10 (Extension by continuity). Let X and W be two-sided quater-
nionic Banach spaces. Let F : D ⊂ X → W be a uniformly continuous operator
and suppose that D is dense in X. Then F has a unique continuous extension
F̃ : X →W which is uniformly continuous.

Lemma 12.0.11 (Corollary of Ascoli–Arzelá theorem). Let G1 be a compact subset
of a topological group G and let K be a bounded subset of the space of continuous
functions C(G1). Then K is conditionally compact if and only if for every ε > 0
there is a neighborhood U of the identity in G such that |f(t)− f(s)| < ε for every
f ∈ K and every pair s, t in S with t ∈ U .

Proof. It is Corollary 9 [110, p. 267] and its proof can be obtained with the same
arguments. �

Definition 12.0.12. We say that a quaternionic topological vector space X has the
fixed point property if for every continuous mapping T : X → X , there exists
u ∈ X such that u = T (u).

Lemma 12.0.13. Let K be a compact convex subset of a locally convex linear quater-
nionic space X and let T : K → K be continuous. If K contains at least two points,
then there exists a proper closed convex subset K1 ⊂ K such that T (K1) ⊆ K1.

Theorem 12.0.14 (Schauder–Tychonoff). A compact convex subset of a locally con-
vex quaternionic linear space has the fixed point property.

Proof. The proof is based on Zorn lemma and on Lemma 12.0.13, see [110]. �

Definition 12.0.15. Let X0 be a subset of X and let span(X0) be the subspace of
X spanned by X0. We say that X0 is a fundamental set if span(X0) = X.

The above definition is useful to state the following result.

Theorem 12.0.16. Let X be a quaternionic Banach space and let Am be a sequence
of linear bounded quaternionic operators on X to itself. Then the limit Av =
limm→∞Amv exists for every v ∈ X if and only if

(a) the limit Av exists for every fundamental set,

(b) for each v ∈ X we have supm∈N ‖Amv‖ <∞.

When the limit Av exists for each v ∈ X, the operator A is bounded and

‖A‖ ≤ lim inf
m→∞

‖Am‖ ≤ sup
m∈N
‖Am‖ <∞.

Proof. It mimics the proof of Theorem II.3.6 in [110] for complex Banach spaces.
�
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Lemma 12.0.17. Let F and G belong to L1(R,H) with respect to the Lebesgue
measure. Then the convolution

(F ∗G)(t) :=

∫ t

0

F (t− τ)G(τ)dτ

is defined for almost all t, is a function in L1(R,H), thus

‖(F ∗G)‖L1 ≤ ‖F‖L1‖G‖L1 .

(a) If F ∈ L1(R,H) and there exists a positive constant M such that |G(t)| ≤M ,
then

‖(F ∗G)‖L1 ≤M‖F‖L1 .

(b) Let F and G be defined for t ≥ 0 and let them be Lebesgue integrable over
every finite interval. Then (F ∗G)(t) is Lebesgue integrable over every finite
interval.

Proof. It follows the proof of Lemma 24 in [110, p.634]. �

Theorem 12.0.18. Let V and W be quaternionic two-sided Banach spaces and let
T be a closed linear quaternionic operator on a domain D and with range W . Let
(S, µ) be a measure quaternionic space and let F be a µ-integrable function with
values in D. Suppose that TF is a µ-integrable function then we have

(a)
∫
S
F(τ)µ(dτ) ∈ D, and

(b) T
∫
S
F(τ)µ(dτ) =

∫
S
TF(τ)µ(dτ).

Proof. It follows with obvious modifications from the proof of the Theorem 20
in [110, p. 153]. �
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