
Chapter 1

Introduction

In this chapter we summarize the theoretical aspects of the quaternionic spectral
theory that will be developed later in this book and we also show some of the
possible applications of this theory to fractional diffusion processes.

We denote the skew-field of quaternions by H. An element s of H is of the
form s = s0 + s1e1 + s2e2 + s3e3, s` ∈ R, ` = 0, 1, 2, 3, where e1, e2 and e3 are
the generating imaginary units of H, which satisfy e2

` = −1 and e`eκ = −eκe`
for `, κ = 1, 2, 3 and ` 6= κ. The real part s0 of the quaternion s is also denoted
by Re(s), while its imaginary part is defined as Im(s) := s1e1 + s2e2 + s3e3. We
indicate by S the unit sphere of purely imaginary quaternions, i.e.,

S = {s = s1e1 + s1e2 + s3e3 : s2
1 + s2

2 + s2
3 = 1}.

Notice that if j ∈ S, then j2 = −1. For this reason the elements of S are also
called imaginary units. The set S is a 2-dimensional sphere in R4 ∼= H. Given
a nonreal quaternion s = Re(s) + Im(s), we have s = u + jsv with u = Re(s),
js = Im(s)/|Im(s)| ∈ S and v = |Im(s)|. We can associate to s the 2-dimensional
sphere

[s] = {s0 + j|Im(s)| : j ∈ S} = {u+ jv : j ∈ S}. (1.1)

Before we describe the contents of this book, we recall the problem with the defi-
nition of the spectrum of a linear vector operator or, more generally, of a quater-
nionic linear operator. For more details and for the history of quaternionic spectral
theory we refer to the book [57], where we have previously written about the his-
torical development of quaternionic spectral theory and of the related function
theories, which can be found in the introduction and in several notes at the end
of each chapter. We, however, point out that the main difficulties in developing a
mathematically rigorous spectral theory for quaternionic operators was the lack of
correct definitions of spectrum and resolvent for such operators. In fact, consider
for example, a right linear bounded quaternionic operator T : X → X acting on a
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two-sided quaternionic Banach space X, that is,

T (xα+ yβ) = T (x)α+ T (y)β,

for all α, β ∈ H and x, y ∈ X. The symbol B(X) denotes the Banach space of all
bounded right linear operators endowed with the natural norm, and we denote by
I the identity operator. The spectrum of an operator should, in an appropriate
way, generalize the set of its eigenvalues. But since the quaternionic multiplication
is not commutative, even the notion of eigenvalue in this setting is ambiguous.
Indeed, one can either consider left or right eigenvalues, which are determined by
the equations

Tx = sx and Tx = xs,

respectively. In the classical setting, the spectrum σ(A) of a complex linear oper-
ator A is defined as the set of all λ ∈ C such that the operator of the eigenvalue
equation λI − A does not have a bounded inverse. If we try to proceed similarly
for the left eigenvalue equation, we obtain the left spectrum σL(T ) of T , which is
defined as

σL(T ) := {s ∈ H : sI − T is not invertible in B(X)}, (1.2)

where the notation sI in B(X) means that (sI)(x) = sx. It is associated with the
left resolvent operator (sI − T )−1, which is defined on the complement of σL(T ).
However, the operator-valued function s 7→ (sI − T )−1 is not hyperholomorphic
in H \σL(T ) with respect to any known notion of generalized holomorphicity over
the quaternions, which limited its usefulness for developing quaternionic spectral
theory. Furthermore, the left eigenvalues of an operator (or even a matrix) did not
seem to be have any meaningful applications neither in physical applications nor
in the mathematical theory.

The notion of right eigenvalues on the other hand seemed to be the more nat-
ural notion of eigenvalues, since the considered operators were right linear. Even
more, the notion of right eigenvalues had an interpretation in quaternionic quan-
tum mechanics [4] and the spectral theorem for quaternionic matrices is based on
the right eigenvalues [114]. The right eigenvalue equation is, however, not quater-
nionic linear. Indeed, if Tx = xs for some x 6= 0 and a ∈ H with as 6= sa, then

T (xa) = T (x)a = (xs)a = x(sa) = (xa)(a−1sa) 6= (xa)s. (1.3)

Hence, the operator of the right eigenvalue equation x 7→ Tx − xs is not linear
and its inverse can consequently not be used to define a meaningful notion of
quaternionic resolvent. We define the right spectrum σR(T ) of T therefore as the
set of right eigenvalues

σR(T ) := {s ∈ H : Tx = xs, for some x ∈ X \ {0}}.

Even though the set of right eigenvalues was meaningful both in applications and
in the mathematical theory on finite dimensional spaces, it was not clear how to
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generalize it to a proper notion of spectrum of a right linear operator nor with
which resolvent operator this spectrum should be associated. Furthermore, right
eigenvalues have two problematic properties that are immediately understood from
(1.3). First of all, the set of eigenvectors associated with an individual eigenvalue
does not constitute a quaternionic linear space. If x is a right eigenvector of T
associated with s, then xa is a right eigenvector of T associated with a−1sa instead
of s. The second problem is that right eigenvalues do not appear individually but
in terms of equivalence classes of the form

[s] = {a−1sa : a ∈ H \ {0}}. (1.4)

This set agrees with the symmetry class of s defined in (1.1). Hence, the right
spectrum σR(T ) of T is axially symmetric.

The solution of these problems came in 2006, when I. Sabadini and one of the
authors, introduced the S-spectrum and the S-functional calculus for quaternionic
linear operators starting from considerations on slice hyperholomorphic functions,
see the introduction of the book [57]. This notion is not intuitive because the
S-spectrum of T is defined for those quaternions s such that the second order
operator T 2 − 2Re(s)T + |s|2I is not invertible, where Re(s) is the real part of
the quaternion s and |s|2 is its squared norm. There exists also a commutative
version of the S-spectrum and it is very useful in applications. We will denote
by BC(X) the subclass of B(X) that consists of those quaternionic operators T
that can be written as T = T0 + e1T1 + e2T2 + e3T3 where the operators T`,
` = 0, 1, 2, 3, commute mutually, and we set T = T0 − e1T1 − e2T2 − e3T3. In
this case the S-spectrum has an equivalent definition that takes into account the
commutativity of T`, for ` = 0, 1, 2, 3. In the literature the commutative definition
of the S-spectrum is often called the F -spectrum because it is used for the F -
functional calculus, see [57]. Let T ∈ BC(X), we define the commutative version of
the S-spectrum (or F-spectrum σF (T )) of T as those s ∈ H such that the operator
s2I − s(T + T ) + TT is not invertible. The S-resolvent set ρS(T ) is defined as
ρS(T ) = H \ σS(T ).

Since this book is the natural continuation of [57] where the quaternionic
spectral theory based on the S-spectrum is systematically studied, we summarize
in two sections the theoretical aspects and the applications that we develop in this
book.

1.1 Theoretical aspects

The notion of S-spectrum turned out to be the correct notion of spectrum for
a quaternionic linear operator T , see also the books [57, 93], and it was discov-
ered from considerations on slice hyperholomorphic functions. Moreover, the right
eigenvalues σR(T ) are equal to the S-eigenvalues of T . We limit the discussion to
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the case of quaternionic operators but the following definition of S-spectrum can
be adapted to the case of n-tuples of non commuting operators. We define

Qs(T ) := T 2 − 2Re(s)T + |s|2I.

If T is a linear quaternionic operator then the S-resolvent set is defined as

ρS(T ) = {s ∈ H : Qs(T )−1 ∈ B(X)},

where Qs(T )−1 is called the pseudo-resolvent operator of T at s, while the S-
spectrum is defined as:

σS(T ) := H \ ρS(T ).

Due to the non commutativity of the quaternions, there are two resolvent operators
associated with a quaternionic linear operator T : when T is bounded, the left S-
resolvent operator is defined as

S−1
L (s, T ) := −Qs(T )−1(T − sI), s ∈ ρS(T ) (1.5)

and the right S-resolvent operator is

S−1
R (s, T ) := −(T − sI)Qs(T )−1, s ∈ ρS(T ). (1.6)

The first main difference with respect to complex operator theory is the fact that
the S-resolvent equation involves both the S-resolvent operators

S−1
R (s, T )S−1

L (p, T ) = [[S−1
R (s, T )− S−1

L (p, T )]p

− s[S−1
R (s, T )− S−1

L (p, T )]](p2 − 2s0p+ |s|2)−1,

for s, p ∈ ρS(T ) with s 6∈ [p]. A second major difference is the fact that the
operator that defines the S-spectrum is the pseudo-resolvent operator and not
the S-resolvent operator, but that the pseudo-resolvent operator Qs(T )−1 is not
slice hyperholomorphic. Only the S-resolvent operators are operator-valued slice
hyperholomorphic functions.

The S-functional calculus (also called quaternionic functional calculus) is the
quaternionic version of the Riesz-Dunford functional calculus. It is based on the
S-spectrum and on the Cauchy formula of slice hyperholomorphic functions. In
the next chapter we therefore summarize the main facts on slice hyperholomorphic
functions. For more details see [57,93].

If the operator T is bounded, then its S-spectrum σS(T ) is a non-empty
compact subset of H that is bounded by the norm of T . We denote by SHL(σS(T ))
the set of left slice hyperholomorphic functions f : U → H where U is a suitable
bounded open set that contains σS(T ). Analogously we define SHR(σS(T )) for
right slice hyperholomorphic functions. The two formulations of the quaternionic
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functional calculus for left- and right slice hyperholomorphic functions are then
given by

f(T ) =
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), f ∈ SHL(σS(T )), (1.7)

and

f(T ) =
1

2π

∫
∂(U∩Cj)

f(s) dsj S
−1
R (s, T ), f ∈ SHR(σS(T )), (1.8)

where dsj = −dsj, for j ∈ S. The S-functional calculus is well defined since
the integrals depend neither on the open set U with σS(T ) ⊂ U nor on the
imaginary unit j ∈ S. It is important to note that the definition of the quaternionic
functional calculus does not require the linear operator T to be written in terms
of components T = T0 +

∑3
`=1 T`e` with bounded linear operators T`, ` = 0, . . . , 3,

on a real Banach space. Nor does it require that the components T` commute
mutually as it was the case in earlier developed functional calculi for quaternionic
linear operators that were based on other function theories. If the components T`
of the operator T = T0 +

∑3
`=1 T`e` commute mutually, we set for s ∈ H

Qc,s(T ) := s2I − 2sT0 + TT

and we find that the operator Qc,s(T ) is invertible if and only if Qs(T ) is invertible
and so the S-resolvent set of T can also be characterized as

ρS(T ) =
{
s ∈ H : Qc,s(T )−1 ∈ B(X)

}
. (1.9)

The operator Qc,s(T )−1 is in this case called the commutative pseudo-resolvent
operator. Moreover, for s ∈ ρS(T ), the commutative S-resolvent operators are

S−1
L (s, T ) = (sI − T )Qc,s(T )−1 (1.10)

S−1
R (s, T ) = Qc,s(T )−1(sI − T ). (1.11)

The main topics treated in the next chapters are the possible extensions and gen-
eralizations of the S-functional calculus to unbounded operators while particular
attention is dedicated to sectorial operators.

Direct approach to the S-functional calculus. We develop the S-functional calcu-
lus for closed quaternionic linear operators. The S-functional calculus for closed
operators has already been considered in the books [57,93], where the unbounded
operator and the function were suitably transformed so that the S-functional cal-
culus for bounded operators could be applied. This strategy is standard in the
complex case, but in the quaternionic case it has the disadvantage that it requires
that ρS(T )∩R 6= ∅. Already the most important quaternionic linear operator, the
gradient operator, does not satisfy this condition.

We therefore define the S-functional calculus for closed operators in Chap-
ter 3 directly via a slice hyperholomorphic Cauchy integral formula. If T is a closed
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operator with nonempty S-resolvent set and f is a function that is left slice hyper-
holomorphic on a suitable set U with σS(T ) ⊂ U that contains a neighbourhood
of ∞, then we can use the Cauchy formula

f(x) = f(∞) +
1

2π

∫
∂(U∩Cj)

S−1
L (s, x) dsj f(s), x ⊂ U.

Formally replacing x by T we define

f(T ) := f(∞)I +
1

2π

∫
∂(U∩Cj)

S−1
L (s, T ) dsj f(s), σS(T ) ⊂ U.

This functional calculus is well-defined and its properties agree with those
of the Riesz-Dunford-functional calculus for closed complex linear operators. We
investigate these properties in detail. In particular, we discuss the product rule
and show that this functional calculus is compatible with intrinsic polynomials of
T although these polynomials do not belong to the class of admissible functions
because they are not slice hyperholomorphic at infinity. Furthermore, we discuss
the relation between the S-functional calculus for left and the S-functional calculus
for right slice hyperholomorphic functions, we prove the spectral mapping theorem
and we show that the functional calculus is capable of generating Riesz-projectors
onto invariant subspaces.

Generation of groups and semigroups and the Phillips functional calculus. If T
is a bounded right linear operator on a quaternionic Banach space X then, for
s0 sufficiently large, the left S-resolvent operator can be written as the Laplace
transform of et T ,

S−1
L (s, T ) =

∫ ∞
0

et T e−ts dt,

while the right S-resolvent operator can be written as:

S−1
R (s, T ) =

∫ ∞
0

e−tset T dt.

The above relations hold true also for a class of unbounded linear operators. We
investigate the generation of groups and of semigroups. Moreover, we consider the
following perturbation problem. Suppose that the closed right linear quaternionic
operator T is the infinitesimal generator of the semigroup UT (t). Determine a class
of closed right linear quaternionic operators P such that T +P is the generator of
a quaternionic semigroup UT+P (t).

In the case the operator T is the generator of a strongly continuous group
of quaternionic linear operators, then one can define a slice hyperholomorphic
functional calculus via the quaternionic Laplace–Stieltjes transform. The so-called
Phillips functional calculus applies to a larger class of functions with respect to the
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S-functional calculus because it does not require slice hyperholomorphicity at in-
finity. If T is the infinitesimal generator of a strongly continuous group {UT (t)}t∈R
with growth bound ω > 0, that is,

σS(T ) ⊂ {s ∈ H : −ω ≤ Re(s) ≤ ω} (1.12)

and
‖UT (t)‖ ≤Me−|t|ω, (1.13)

for some constant M > 0, then we consider the subset S(T ) of all quaternion-
valued measures on R given by

S(T ) :=

{
µ ∈M(R,H) :

∫
R
e−|t|(ω+ε) d|µ|(t) < +∞

}
, (1.14)

where ε > 0 might depend on the measure µ. The quaternionic Laplace–Stieltjes
transform

f(q) :=

∫
R
dµ(t) e−tq, −(ω + ε) < Re(q) < ω + ε

is then a right slice hyperholomorphic function and we can define

f(T ) :=

∫
R
dµ(t)UT (−t).

We discuss the quaternionic Laplace–Stieltjes transform and show that this func-
tional calculus is well-defined. We study its algebraic properties and show its com-
patibility with the S-functional calculus defined in Chapter 3. Finally, we conclude
by showing how to invert the operator f(T ) for intrinsic f using an inverting se-
quence of polynomials.

The general version of the H∞-functional calculus. This is the natural functional
calculus for sectorial quaternionic operators and in this book we introduce it in
its full generality. Any quaternion can be written as s = |s|ejs arg(s) with a unique
angle arg(s) ∈ [0, π]. A quaternionic right linear operator is called sectorial if its
S-spectrum is contained in the closure of a symmetric sector around the positive
real axis of the form

Σω = {s ∈ H : arg(s) ∈ [0, ω)}

with ω ∈ (0, π) and for any ϕ ∈ (ω, π) there exists a constant C > 0 such that∥∥S−1
L (s, T )

∥∥ ≤ C

|s|
and

∥∥S−1
R (s, T )

∥∥ ≤ C

|s|
,

for all s ∈ H \ Σϕ. If f is left slice hyperholomorphic on a sector Σϕ for some
ϕ ∈ (ω, π) and has polynomial limit 0 both at 0 and at infinity, then we can
choose ϕ′ ∈ (ω, ϕ) and define f(T ) by a Cauchy integral as

f(T ) :=
1

2π

∫
∂(Σϕ′∩Cj)

S−1
L (s, T ) dsj f(s). (1.15)
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If f is left slice hyperholomorphic on Σϕ and has finite polynomial limits at 0 and
infinity, then it is of the form

f(q) = f̃(q) + a+ (1 + q)−1b (1.16)

with a, b ∈ H and f̃ admissible for (1.15). Since −1 ∈ ρS(T ), the operator

−S−1
L (s, T ) = (I + T )−1

exists, and we can define for such functions

f(T ) := f̃(T ) + Ia+ (I + T )−1b, (1.17)

where f̃(T ) is intended in the sense of (1.15). We denote the class of functions of
the form (1.16) by EL(Σϕ) and the class of intrinsic functions of the form (1.16)
by E(Σϕ). Finally, the class of admissible functions can be extended even further,
which yields the H∞-functional calculus. A regulariser for a left slice meromorphic
function f on Σϕ is a function e ∈ E(Σϕ) such that ef ∈ EL(Σϕ) and such that
e(T ) is injective. If such a regulariser exists for f , then we define

f(T ) := e(T )−1(ef)(T ),

where e(T ) and (ef)(T ) are intended in the sense of (1.17). This operator is not
necessarily bounded, because e(T )−1 can be unbounded.

We define this functional calculus precisely and discuss its properties. We
focus in particular on the composition rule and the spectral mapping theorem. As
we will see there are several technical difficulties that have to be overcome when
generalising them from the complex to the quaternionic setting.

Fractional powers of quaternionic linear operators. We first define fractional pow-
ers of sectorial operators with bounded inverse directly by the slice hyperholomor-
phic Cauchy integral formula

T−α :=
1

2π

∫
Γ

s−α dsj S
−1
R (s, T ),

where Γ is a path that goes from −∞ejθ to∞e−jθ in the set Cj \ (Σϕ∪Bε(0)) for
sufficiently small ε > 0, sufficiently large θ ∈ (0, π) and arbitrary j ∈ S and avoids
the negative real axis. We then discuss the properties of these fractional powers. In
particular, we prove several integral representations and the semigroup property.
We point out that in the quaternionic setting there exist integral representations
that do not exist in the complex setting, for example when σS(T ) ⊂ {s ∈ H :
Re(s) > 0} for α ∈ (0, 1), we have

T−α =
1

π

∫ +∞

0

τ−α
(

cos
(απ

2

)
T + sin

(απ
2

)
τI
)

(T 2 + τ2I)−1 dτ.
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The inverse of the quadratic operator T 2 +τ2I, that appears in the above formula,
comes from the S-resolvent operator and it has no analogue in the complex set-
ting because of noncommutativity. As a second approach, we define the fractional
powers of positive exponent via the H∞-functional calculus. In a third approach
we introduce the fractional powers indirectly using an approach of Kato. We first
define for α ∈ (0, 1) the operator-valued function

Fα(p, T ) :=
sin(απ)

π

∫ +∞

0

tα
(
p2 − 2ptα cos(απ) + t2α

)−1
S−1
R (−t, T ) dt,

which corresponds to an integral representation of S−1
R (p, Tα) of the form (1.15),

in which we let ϕ′ tend to π. Then we show that there actually exists a unique
closed operator Bα such that Fα(p, T ) = S−1

R (s,Bα) and we define Tα := Bα.

1.2 Applications to fractional diffusion processes

One of the most important facts about quaternionic spectral theory is that it
contains, as a particular case, the spectral theory of vector operators like the
gradient operator and its generalizations with non constant coefficients. We explain
in the following the ideas behind the definition of new fractional diffusion operators
that generalize the Fourier law to non-local diffusion processes.

Our strategy for fractional diffusion problems does not apply only to the
Fourier law with constant coefficients, but it works for general non constant co-
efficients Fourier law and it generates the associated non local diffusion operator.
Moreover, we can apply our techniques for bounded domains as well as for un-
bounded domains.

To explain our approach we consider the case of fractional evolution on R3.
We denote by v : R3 × [0,∞) → R the temperature and by q the heat flow. We
set the thermal diffusivity equal to 1 and set x = (x1, x2, x3). The heat equation
is then deduced from the two laws

q(x, t) = −∇v(x, t) (Fourier’s law), (1.18)

∂tv(x, t) + div q(x, t) = 0 (Conservation of Energy). (1.19)

Replacing the heat flow in the law of conservation of energy using Fourier’s law,
we get the classical heat equation:

∂tv(x, t)−∆v(x, t) = 0, (x, t) ∈ R3 × (0,∞). (1.20)

The fractional heat equation is an alternative model, that takes non-local interac-
tions into account. It is obtained by replacing the negative Laplacian in the heat
equation by its fractional power so that one obtains the equation

∂tv(x, t) + (−∆)αv(x, t) = 0, (x, t) ∈ R3 × (0,∞), α ∈ (0, 1), (1.21)
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where the fractional Laplacian is given by

(−∆)αv(x) = c(α)P.V.

∫
R3

v(x)− v(y)

|x− y|3+2α
dy,

and the integral is defined in the sense of the principal value, c(α) is a known
constant, and v : R3 → R must belong to a suitable function space.

The fractional powers of the gradient operator. The new approach to fractional
diffusion presented in this book consists in replacing the gradient in (1.18) by its
fractional power before combining it with (1.19) instead of replacing the negative
Laplacian in (1.20) by its fractional power. This is done by interpreting the gradient
as a quaternionic linear operator, which allows us to define its fractional powers
using the techniques presented in this book.

The following two observations are of crucial importance for defining the new
procedure for fractional diffusion processes.

(I) The S-spectrum of the gradient operator∇ on L2(R3,H) is σS(∇) = R. Since
the map s 7→ sα with α ∈ (0, 1) is not defined on (−∞, 0), we have to consider
the projections of the fractional power ∇α to the subspace associated with
the subset [0,+∞) of the S-spectrum of ∇. Only for these spectral values, the
function s 7→ sα is well defined and slice hyperholomorphic. We denote these
projections by Pα(∇). Precisely, what we call the fractional power Pα(∇)
of the gradient, is given by the quaternionic Balakrishnan formula (deduced
from the H∞-functional calculus)

Pα(∇)v =
1

2π

∫
−jR

S−1
L (s,∇) dsj s

α−1∇v,

for v : R3 → R in D(∇). The path of integration is chosen to take into
account just the part of the S-spectrum with Re(σS(∇)) ≥ 0.

(II) The above procedure gives a quaternionic operator

Pα(∇) = Z0 + e1Z1 + e2Z2 + e3Z3,

where Z`, ` = 0, 1, 2, 3, are real operators obtained by the functional calculus.
Finally, we take the vector part Pα(∇)

Vect(Pα(∇)) = e1Z1 + e2Z2 + e3Z3

of the quaternionic operator Pα(∇) so that we can apply the divergence
operator.

With the above definitions and the surprising expression for the left S-resolvent
operator

S−1
L (−jt,∇) = (−jt+∇) (−t2 + ∆)−1︸ ︷︷ ︸

=R−t2 (−∆)

,
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the fractional powers Pα(∇) become

Pα(∇)v =
1

2
(−∆)

α
2−1∇2v︸ ︷︷ ︸

:=ScalPα(∇)v

+
1

2
(−∆)

α−1
2 ∇v︸ ︷︷ ︸

:=VecPα(∇)v

.

Now we observe that

divVecPα(∇)v = −1

2
(−∆)

α
2 +1v.

The fractional heat equation for α ∈ (1/2, 1)

∂tv(t, x) + (−∆)αv(t, x) = 0

can hence be written as

∂tv(t, x)− 2div (VecPβ(∇)v) = 0, β = 2α− 1,

so this approach coincided with the classical one for the gradient operator.

The S-spectrum approach to fractional diffusion processes. We say that T repre-
sents a Fourier law with commuting components, when T is a vector operator of
the form

T = e1 a1(x1)∂x1
+ e2 a2(x2)∂x2

+ e3 a3(x3)∂x3
,

where a1, a2, a3 : Ω → R are suitable real-valued functions that depend on the
space variables x1, x2, x3, respectively, where (x1, x2, x3) ∈ Ω and Ω ⊆ R3. In
this case the real operators a`(x`)∂x` , for ` = 1, 2, 3, commute among themselves.
Then the S-spectrum of T can also be determined using the commutative pseudo-
resolvent operator

Qc,s(T ) := s2I − 2sT0 + TT = a2
1(x1)∂2

x1
+ a2

2(x2)∂2
x2

+ a2
3(x3)∂2

x3
+ s2I

because Qc,s(T ) is invertible if and only if Qs(T ) is invertible. The operator
Qc,s(T ) is a scalar operator if s2 is a real number. Since T is a vector operator,
we have T0 = 0 and TT does not contain the imaginary units of the quaternions.
Using the non commutative expression of the pseudo-resolvent operator Qs(T ),
we obtain

Qs(T ) = −(a1(x1)∂x1)2 − (a2(x2)∂x2)2 − (a3(x3)∂x3)2

− 2s0(e1 a1(x1)∂x1
+ e2 a2(x2)∂x2

+ e3 a3(x3)∂x3
) + |s|2I.

We observe that, according to what we need to show in the commutative case, we
have two possibilities to determine the S-spectrum: Qc,s(T ) and Qs(T ).

Now we explicitly describe the procedure of the S-spectrum approach to
fractional diffusion processes. Suppose that Ω ⊆ R3 is a suitable bounded or
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unbounded domain and let X be a two-sided Banach space. We consider the initial-
boundary value problem for non-homogeneous materials. We denote by T the
heat flow q(x, ∂x) and we restrict ourselves to the case of homogeneous boundary
conditions (for τ > 0):

T (x) = a1(x1)∂x1
e1 + a2(x2)∂x2

e2 + a3(x3)∂x3
e3, x = (x1, x2, x3) ∈ Ω,

∂tv(x, t) + div T (x)v(x, t) = 0, (x, t) ∈ Ω× (0, τ ],

v(x, 0) = f(x), x ∈ Ω,

v(x, t) = 0, x ∈ ∂Ω, t ∈ [0, τ ].

Our general procedure consists of the following steps:

(S1) We study the invertibility of the operator

Qc,s(T ) := s2I − 2sT0 + TT = a2
1(x1)∂2

x1
+ a2

2(x2)∂2
x2

+ a2
3(x3)∂2

x3
+ s2I,

where T = −T , to get the S-resolvent operator. Precisely, let F : Ω→ H be
a given function with a suitable regularity and denote by X : Ω → H the
unknown function of the boundary value problem:(

a2
1(x1)∂2

x1
+ a2

2(x2)∂2
x2

+ a2
3(x3)∂2

x3
+ s2I

)
X(x) = F (x), x ∈ Ω,

X(x) = 0, x ∈ ∂Ω.

We study under which conditions on the coefficients a1, a2, a3 : R3 → R
the above equation has a unique solution. We can similarly use the non
commutative version of the pseudo-resolvent operator Qs(T ). In the case we
deal with an operator T with non-commuting components, then we have to
consider Qs(T ), only.

(S2) From (S1) we get that s ∈ H \ {0} with Re(s) = 0 belongs to ρS(T ), so
we obtain the unique pesudo-resolvent operator Qc,s(T )−1 and we define the
S-resolvent operator

S−1
L (s, T ) = (sI − T )Qc,s(T )−1.

Then we prove that, for every s ∈ H \ {0} with Re(s) = 0, the S-resolvent
operators satisfy the estimates∥∥S−1

L (s, T )
∥∥ ≤ Θ

|s|
and

∥∥S−1
R (s, T )

∥∥ ≤ Θ

|s|
(1.22)

with a constant Θ > 0 that does not depend on s.

(S3) Using the Balakrishnan, formula we define Pα(T ) as:

Pα(T )v =
1

2π

∫
−jR

sα−1 dsj S
−1
R (s, T )Tv, for α ∈ (0, 1),

and v ∈ D(T ). Analogously, one can use the definition of Pα(T ) related to
the left S-resolvent operator.
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(S4) After we define the fractional powers Pα(T ) of the vector operator T , we
consider its vector part Vec(Pα(T )) and we obtain the fractional evolution
equation:

∂tv(t, x)− div(Vec(Pα(T )v)(t, x) = 0.

As an application of our theory we get Theorems 10.3.1 and 10.3.2 that we sum-
marize in the following result.

Let Ω be a bounded domain in R3 with sufficiently smooth boundary. Let T =
e1 a1(x1)∂x1

+ e2 a2(x2)∂x2
+ e3 a3(x3)∂x3

and assume that the coefficients a` :
Ω → R, for ` = 1, 2, 3, belong to C1(Ω,R) and a`(x`) ≥ m in Ω for some m > 0.
Moreover, assume that

inf
x∈Ω

∣∣a`(x`)2
∣∣− √CΩ

2

∥∥∂x`a`(x`)2
∥∥
∞ > 0, ` = 1, 2, 3,

and
1

2
− 1

2
‖Φ‖2∞C2

ΩC
2
a > 0,

where CΩ is the Poincaré constant of Ω and

Φ(x) :=
3∑
`=1

e`∂x`a`(x`) and Ca := sup
x∈Ω
`=1,2,3

1

|a`(x`)|
=

1

inf x∈Ω
`=1,2,3

|a`(x`)|
.

Then any s ∈ H\{0} with Re(s) = 0 belongs to ρS(T ) and the S-resolvents satisfy
the estimate∥∥S−1

L (s, T )
∥∥ ≤ Θ

|s|
and

∥∥S−1
R (s, T )

∥∥ ≤ Θ

|s|
, if Re(s) = 0, (1.23)

with a constant Θ > 0 that does not depend on s. Moreover, for α ∈ (0, 1), and
for any v ∈ D(T ), the integral

Pα(T )v :=
1

2π

∫
−jR

sα−1 dsj S
−1
R (s, T )Tv

converges absolutely in L2(Ω,H).

The above result in particular holds for v real-valued.
This approach has several advantages:

(I) It modifies the Fourier law but keeps the law of conservation of energy.

(II) It is applicable to a large class of operators that includes the gradient but
also operators with non-constant coefficients.

(III) Fractional powers of the operator T provide a more realistic model for non-
homogeneous materials.

(IV) The fact that we keep the evolution equation in divergence form allows an
immediate definition of the weak solution of the fractional evolution problem.
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1.3 On quaternionic spectral theories

For the convenience of the reader, we recall in this section some considerations
that were already discussed in [57] in order to put the spectral theory on the
S-spectrum into perspective. The quaternionic spectral theories arise from the
Fueter–Sce–Qian mapping theorem that has been widely treated in [57].

In classical complex operator theory, the Cauchy formula of holomorphic
functions is a fundamental tool for defining functions of operators. Moreover, the
Cauchy–Riemann operator factorizes the Laplace operator, so holomorphic func-
tions also play a crucial role in harmonic analysis and in boundary value prob-
lems. In higher dimensions, for quaternion-valued functions or more in general
for Clifford-algebra-valued functions, there appear two different notions of hyper-
holomorphicity. The first one is called slice hyperholomorphicity and the second
one is known under different names, depending on the dimension of the algebra and
the range of the functions: Cauchy–Fueter regularity for quaternion-valued func-
tions and monogenicity for Clifford algebra-valued functions. The Fueter–Sce–Qian
mapping theorem reveals a fundamental relation between the different notions of
hyperholomorphicity and it can be illustrated by the following two maps

F1 : Hol(Ω) 7→ N (U) and F2 : N (U) 7→ AM(U).

The map F1 transforms holomorphic functions in Hol(Ω), where Ω is a suitable
open set Ω in C, into intrinsic slice hyperholomorphic functions inN (U) defined on
the open set U in H. Applying the second transformation F2 to intrinsic slice hy-
perholomorphic functions, we get axially Fueter regular (resp. axially monogenic)
functions. Roughly speaking the map F1 is defined as follows:

1. We consider a holomorphic function f(z) that depends on a complex variable
z = u + ιv in an open set of the upper complex halfplane. (In order to
distinguish the imaginary unit of C from the quaternionic imaginary units,
we denote it by ι). We write

f(z) = f0(u, v) + ιf1(u, v),

where f0 and f1 are R-valued functions that satisfy the Cauchy–Riemann
system.

2. For suitable quaternions q, we replace the complex imaginary unit ι in f(z) =

f0(u, v) + ιf1(u, v) by the quaternionic imaginary unit Im(q)
|Im(q)| and we set

u = Re(q) = q0 and v = |Im(q)|. We then define

f(q) = f0(q0, |Im(q)|) +
Im(q)

|Im(q)|
f1(q0, |Im(q)|).

The function f(q) turns out to be slice hyperholomorphic by construction.
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When considering quaternion-valued functions, the map F2 is the Laplace oper-
ator, i.e., F2 = ∆. When we work with Clifford algebra-valued functions, then

F2 = ∆
(n−1)/2
n+1 , where n is the number of generating units of the Clifford algebra

and ∆n+1 is the Laplace operator in dimension n+ 1. The Fueter–Sce–Qian map-
ping theorem can be adapted to the more general case in whichN (U) is replaced by
slice hyperholomorphic functions and the axially regular (or axially monogenic)
functions AM(U) are replaced by monogenic functions. The generalization of
holomorphicity to quaternion- or Clifford algebra-valued functions produces two
different notions of hyper-holomorphicity that are useful for different purposes.
Precisely, we have that:

(I) The Cauchy formula of slice hyperholomorphic functions leads to the defini-
tion of the S-spectrum and the S-functional calculus for quaternionic linear
operators. Moreover, the spectral theorem for quaternionic linear operators
is based on the S-spectrum. The aim of this book and of the monograph [57]
is to give a systematic treatment of this theory and of its applications.

(II) The Cauchy formula associated with Cauchy–Fueter regularity (resp. mono-
genicity) leads to the notion of monogenic spectrum and produces the
Cauchy–Fueter functional calculus for quaternion-valued functions and the
monogenic functional calculus for Clifford algebra-valued functions. This the-
ory has applications in harmonic analysis in higher dimensions and in bound-
ary value problems. For an overview on the monogenic functional calculus and
its applications see [171] and for applications to boundary values problems
see [163] and the references contained in those books.

In this book and in the monograph [57] we treat the quaternionic spectral
theory on the S-spectrum so, very often, we will refer to it as quaternionic spectral
theory because no confusion arises with respect to the monogenic spectral theory.
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