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9.1 Background

The advent of next-generation sequencing (NGS) platforms made it possible to
sequence DNA more efficiently and economically than Sanger sequencing. In
addition, the application of NGS in cancer genomics allowed for a deeper under-
standing of the underlying genetics and pathogenesis of cancer. The human body is
composed of trillions of cells that belong to approximately 200 different cell types;
however, individual cells from defined cell types are diverse with unique expression
profiles [1]. Many cell types/subtypes have few reliable markers that can be used for
purification which is in part due to the fact that even cell types with well-established
markers contain diversity [1]. Standard techniques for cancer analysis involve
averaging signals from mixed populations of cells, which may mask or hide
rare/small tumor clones and subclones that contribute to cell diversity [2]. However,
with the use of single-cell genomics, the underlying genetics, expression levels, and
epigenetics of every gene in the genome can now be analyzed across thousands of
individual cells.

The first report of RNA transcriptome sequencing of single-cell mammalian cells
occurred in 2009, and the first report of single human cancer cell DNA genome
sequencing occurred in 2011 [2, 3]. Since that time, studies on single-cell exome
and whole genome sequencing in varying types of cancers including renal,
myeloproliferative, colon, lung, glioblastoma, breast, and prostate have been con-
ducted [4–11]. The original single-cell sequencing method combined flow sorting,
whole genome amplification, and NGS to generate genomewide datasets from
single cancer cells; however, it had only *10% physical coverage of a single cell’s
genome, sufficient for measuring large-scale copy number changes, but insufficient
for resolving mutations at base-pair resolution [2]. Since that time, several other
methods have been developed that can achieve high coverage (>90%) from single
mammalian cells.

The data now available by single-cell sequencing has revolutionized cancer cell
biology. The underlying mechanisms of how tumor and clonal diversity contribute
to cancer biological processes remain largely unknown. Intratumor heterogeneity,
clonal evolution, underlying mechanisms of tissue invasion, metastasis, and
response to cancer-related therapies can potentially be elucidated by investigating
molecular signatures at the single-cell level (Fig. 9.1). Tumor diversity is impacted
by selection pressures, which can impact the underlying genetics of a cancer cell
population. Examples of selection pressures include effects of the immune system,
hypoxia, nutrient deprivation, geographical barriers, pH changes, and chemother-
apy [2]. Understanding the underlying genetics of intratumor heterogeneity at the
single-cell level has the potential to reveal cancer therapy resistance mechanisms
that are lost at the bulk level. Single-cell tumor phylogenic evolutionary trees have
the potential to reveal driver mutations which can be used for targeted cancer
therapies for those small populations of cells that harbor resistant mutations after
treatment [12].
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Identification of cancer therapy resistance mechanisms at the single-cell level may
also reveal novel mutations after induction of therapeutic agents (which generate
clonal and subclonal populations of cells). In fact, NGS studies on single-cell muta-
tions that drive tumorigenesis have revealed that resistancemutations vary from tumor
to tumor [13]. Single-cell sequencing also has the potential to illuminate the mech-
anisms behind metastatic dissemination. For instance, several groups have used cir-
culating tumor cells (CTCs) to study genomic and transcriptomic data frommetastatic
colon cancer, lung adenocarcinoma, and melanoma [2].

Bulk tumor gene expression studies are composites of transcriptional changes of
heterogeneous cell populations; however, analysis of tumor cell expression at the
single-cell level expands average tumor expression profiles of specific cell types,
including non-malignant stromal, immune, and tissue-specific cells. In addition,
single-cell transcriptomics aids in the detection of novel variants after treatments that
may potentially drive drug resistance or serve as biomarkers of therapeutic success
[14]. Furthermore, single-cell sequencing can detect low abundance of expression
and/or novel RNA variants that are not detectable in bulk cell populations.

Intra-tumor Heterogeneity 
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Fig. 9.1 Applications of single-cell sequencing. Mechanisms behind a Intratumor heterogeneity,
where different tumor cells show distinct genotypic and phenotypic variability (represented by
different colored cells), b clonal evolution, or genetic diversification and clonal selection where
different colored cells represent genetic changes, c tissue invasion, where mutant cells invade
adjacent tissues (pink cells) with the potential to d travel to different sites, or metastasis, e crosstalk
between cells with newer technologies, and f response to cancer-related therapies and subsequent
clonal evolution can be elucidated by investigating the molecular signature at the single-cell level
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9.2 Single-Cell Sequencing Modalities

9.2.1 Sample Type and Preparation

Current single-cell technologies assay a single cell’s gene expression, DNA vari-
ation, epigenetic state, and nuclear structure (see Table 9.1). In order to analyze
genomics at the single-cell level, cells need to be isolated from extracellular matrix
and cell–cell adhesion for downstream processes. One of the major limitations of
single-cell sequencing from solid tissues includes unbiased disaggregating of the
tissue into a suspension of single cells [15]. This is important as preferential pro-
cessing or lysis of one cell type over another may skew data generation and thus
analysis of results.

Single cells can be obtained from virtually any tissue, and current research
focuses on circulating blood cancer cells, solid tumors, or circulating tumor cells
(CTCs). Single cells from solid tumors can be obtained either following surgical
removal, sampling/biopsy of the primary tumor or other organs with overt metas-
tasis, or bone marrow aspiration. Solid tumors, especially in the invasive metastatic
stages, are also known to shed cells into systemic circulation. These cells in the
patient’s blood stream are known as circulating tumor cells (CTCs), and those that
disseminate to distant organs are termed disseminated tumor cells (DTCs).

Different methods for isolating single cells of interest from a suspension have
been developed. Early studies used manual methods of cell isolation, using spe-
cialized pipettes or micromanipulation devices to isolate single cells [17]. This
method of single-cell isolation has low throughput but can be used when a small
number of cells are to be analyzed [22]. Other methods include fluorescence-
activated cell sorting (FACS), magnetic-activated cell sorting (MACS), laser capture
microdissection (LCM), and microfluidics, all of which can generally be used for
larger numbers of cells. Microfluidics is a common method of single-cell isolation
and allows for high throughput investigation of complex cellular systems using
nanoliters of material. Microfluidics technologies isolate and encapsulate single cells
in reaction chambers or droplets followed by standardized and automated nanoliter
reactions, including barcoded sequence library prep for RNA and DNA sequencing.
Commercially available microfluidic devices include Fluidigm C1 system, the 10�
Genomics Chromium, and Illumina Biorad SureCell system [23].

9.2.2 Single-Cell DNA Sequencing

Whole genome amplification (WGA) followed by DNA sequencing identifies the
underlying genetics and mutation frequencies of a single cell. Various methods for
DNA whole genome amplification (WGA) at the single-cell level are available
(multiple displacement amplification (MDA), PCR, or combination of both, see
Table 9.1). These methods can now achieve >90% coverage of a single-cell
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genome, and mutations can be detected at a single base-pair resolution [17, 2].
Technical challenges remain, however, including effective isolation and lysis of
single cells, uniform amplification of whole genome, quality assessment of single-
cell amplified genomes, sequencing library preparation, and data analysis [18].

Detection of point mutations or base substitutions in single cells has to be
discriminated from polymerase base infidelities and sequencing errors. Such errors
can occur during the WGA process, including allelic dropout (one allele is not
amplified), transcripts can be over or under amplified, false-positive errors due to
the infidelity of the DNA polymerase, and uneven amplification [2, 12]. By nature
of the amplification process using DNA polymerases, errors that occur in the initial
rounds of amplification are then inherited by all subsequent molecules [17].
Single-cell genomewide DNA sequencing is more challenging than single-cell
transcriptomics due to the fact that there is simply less template available for
single-cell genomics with DNA sequencing. Whereas single cells contain thousands
of copies of each mRNA molecule, there are only two copies of each chromosome
(or gene for that matter), and therefore only two template DNA molecules for WGA
reactions.

9.2.3 Single-Cell RNA Sequencing

Single-cell RNA sequencing essentially reveals the transcriptional status at the
single-cell level. Whole transcriptome sequencing, or RNA seq, where exclusively
messenger RNA is assayed from single cells, is the most widely used method of
single-cell analysis [24, 17, 25, 26]. It measures global gene expression by reverse
transcription of mRNA into cDNA, and downstream sequencing libraries are made
of hundreds to thousands of individual cells (Fig. 9.2). Gene expression is mea-
sured directly by counting the number of reads or the unique molecular index
(UMI) that originate from each gene in a single cell. RNA seq of single cells
achieves greater sequencing resolution than cell populations at the cost of less
coverage [14]. The challenge with single-cell transcriptomics, as with most of the
sequencing methods, is the “noise” generated from such experiments [27, 28, 12].
For example, biological variation is derived from genetic, epigenetic, environ-
mental, and cellular factors. Technical noise can be introduced in the course of
processing from sample handling, cell isolation, reverse transcription, cDNA
amplification, sequencing, and analysis.

New techniques and methods are continuously been developed and reformed to
limit the aforementioned challenges [29]. A crucial step of single-cell RNA seq is
the unbiased amplification of cDNA before sequencing [27, 30, 28]. The use of
unique molecular identifiers (UMIs), which bar codes each molecule, allows a
robust quantification by intercepting amplification. Cell throughput is high, and the
use of unique molecular identifiers to barcode individual transcripts also helps
distinguish heterogeneous gene expression differences [19]. Microfluidics uses a
process of capturing cells within nanofluidic chambers and has considerably
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improved sensitivity for mutation detection by minimizing allelic dropouts [19, 12].
Drawbacks include reduced sensitivity such that only the 10–20% of the most
abundant transcripts can be quantitated. In addition, reliable amplification and
deletion of transcripts expressed at less than 10 copies per cell is a challenge and
can lead to inaccurate quantification of low abundancy transcripts [27, 28, 2].
Doublets, or cells that share the same UMI and bar codes, can also occur during
sample processing; therefore, it is important to validate true single-cell capture
before subsequent analysis.

9.2.4 Single-Cell Epigenetic Analysis

Whereas transcriptomics can be described as tracking “output” signals of a given
genetic locus, such as a protein encoding gene, the analysis of chromatin, and
epigenetic changes may be thought of as tracking the “input” signals of the locus in
question (Wills 2015). With advances in technology, it is now easier to probe
epigenetic phenomenon at the single-cell level including single-cell analysis of
DNA accessibility, methylation status, histone modifications, and chromosome
conformation by bisulfite sequencing, DNAase I hypersensitivity sequencing,
ATAC-seq, and single-cell Hi-C, with the latter methods being the most developed
for single-cell sequencing approaches [21, 31, 32, 33, 34, 35]. Challenges associ-
ated with these techniques are very similar to those of single-cell DNA sequencing.

Whole genome bisulfite sequencing assays identify DNA methylation (CpG
islands). Chromatin immunoprecipitation sequencing (ChIP-seq) has yet to be
adapted for single-cell sequencing; however, a method termed single-cell Hi-C
analyzes active chromatin domains in cell nuclei [35]. This method measures
proximity between sites in the genome in three dimensions, producing a “contact
map” that can be used to identify looping interactions between regulatory elements

Tumor  
Harves ng

Dissocia on, Library 
Preps scRNA-Seq

Surgical resec on from pa ents or 
model organisms.
Prompt transporta on to research 
lab.
Fresh ssue preserved in ice cold 
culture media.
Preserve tumor chunks in:...

LN2 for nuclear preps;
Formalin fixed for IHC;
Prepare protein lysates.

Mechanical & Enzyma c 
breakdown of tumors (~1hr).
Cell Counts, Viability Determina on 
QC of single cell preps.
Load 10X Genomics reagents and 
freshly prepared cell suspension 
(target cell count ~3-4K)
Library Prepara on (1-2 days) 

Sequencing of scRNA-Seq libraries 
on Illumina Pla orms HiSeq, 
NextSeq etc (~16-20 hrs) 
Data Analysis for Cell Type 
Deconvolu on (~1-2 days)
Pathway Analysis on Cell clusters
Target Elucida on

Fig. 9.2 Workflow of the single-cell RNA sequencing process. Starting from harvesting tumors
from patients or model organisms, fresh tissues are rapidly broken down into single cells, which
are the input material for the 10� Genomics pipeline to generate sequencing libraries from single
cells. Finally, the libraries are sequenced and data is analyzed to elucidate the cellular
heterogeneity and biology of individual tumors
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and gene loci [33, 35, 15]. Single cell assays for transposase-accessible chromatin
with sequencing (ATAC-seq) is another method used to identify open chromatin
regions which, in cancer cells, are often associated with oncogene expression and
represent sites with increased vulnerability to mutagenic assault [20].

9.2.5 Other Single-Cell Analysis Techniques

One weakness of current single-cell techniques is that it requires analysis of single
cells in suspension, which does not capture information pertaining to cell-to-cell
interactions [2, 12]. Moreover, tumor clones evolve dynamically in space and time,
and single-cell samples from an individual tumor may reveal mutations that are
clonally dominant but may not be apparent in other regions of the tumor [2]. This
has been partially overcome by spatiotemporal dynamics (discussed further below)
which can be obtained by serial sampling of the same patient and provides infor-
mation about evolution of a tumor through time (this is easier for liquid vs. solid
tumors), multiple anatomically distinct biopsies for intratumor heterogeneity, in situ
sequencing and imaging techniques for spatial resolution, or laser capture
microdissection, which aids with information lost with cell-to-cell interactions [12].

Finally, new methods that integrate different single-cell genomic approaches and
functional assays have recently been developed and include simultaneously mea-
suring two or more modalities, whether it be genome and transcriptome, tran-
scriptome and methylome, or RNA and protein [36, 17]. The ultimate goal of
linking phenotypes of cells and their genotypes includes validation of gene
expression and further development of precision medicine [36]. There are many
different approaches available, some of which include gDNA-mRNA sequencing
(DR-seq), genome and transcriptome sequencing (G&T-seq), single-cell DNA
methylation analysis through bisulfite sequencing (scBS-seq) and reduced repre-
sentation bisulfite sequencing (scRRBS-seq), as well as single-cell methylome and
transcriptome sequencing (scTrio-seq) [37]. When extracting multiple “omic”
datasets from individual cells, there are similar quality compromises as discussed
previously [12].

9.3 Data Analysis

Single-cell measurements preserve crucial information that is lost in bulk assays.
Statistical and computational methods are critical to extract meaningful information
from the data [36]. Single-cell analysis is based on the analysis of a cell modality
(genetic variations, cell expression profile, changes in chromatin conformation,
etc.), compared with some critical threshold. This threshold depends on the vari-
ability that exists in the assay as well as biological variability [15]. Statistical
models can account for this variability.
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Whole genome and whole transcriptome amplification as well as sequencing
data are more difficult to analyze at the single-cell level than in bulk experiments
[38, 39, 40, 1]. Bulk experiments have dozens of samples, and genome measure-
ments cannot distinguish between fluctuations due to changes in gene regulation
versus shifts in the ratio of different cell types. For single-cell genome amplification
experiments, DNA is extracted from millions of cells, with intermixed sequences
from different tumor clones, as well as normal cells [17]. Single-cell expression
measurements can be variable; therefore, separating technical variability from
biological variability is essential. Computational methods can help determine
which mutations are clonal (present in all tumor cells) and which are subclonal.
Point mutations and copy number data can be further analyzed with bioinformatics
algorithms, and phylogenetic trees of different tumor subclones can be inferred.
Analyzing expression levels in properly grouped subpopulations of cells allows a
more accurate measurement of expression among different cell subpopulations
[41, 15].

One of the major tasks of single-cell RNA seq data analysis is the resolution of
cellular heterogeneity (Fig. 9.3). Most pathological samples such as tumor tissues
consist of multiple cell types. Tumor tissues usually contain primary tumor cells,
stromal cells, endothelial cells, and immune cells recruited from the peripheral
blood and lymphatic organs. They are derived from different cellular lineages and
play different roles in the tumor initiation, progression, and metastasis, which
makes a tumor sample very complex and difficult to investigate. Before looking
deeper into the tumor clonal variation, the tumor and its microenvironment should
be resolved first. By identifying signature genes expressed in each cell type, one can
further delineate the states of different cell types.

Fig. 9.3 Single-cell RNA sequencing data analysis. a A representative example of a
three-dimensional tSNE rendering of scRNA seq data for a mouse pancreatic tumor is shown.
Each dot depicts a single cell, and colored clusters represent distinct cell types identified in the
tumor. b Quantification of each individual cell type is shown with five different most commonly
observed cell types identified in this tumor. CAF: cancer-associated fibroblasts; EMT: tumor cells
undergoing epithelial to mesenchymal transition; ENDO: endothelial cells; ETC: epithelial tumor
cells; TAM: tumor-associated macrophages
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Understanding the cellular composition and tumor evolution can facilitate the
evaluation of the tumor state and aid treatment decisions. Given the assumption that
biological variability is larger than the technical variability, it is generally believed
that similar cell types will cluster together by the cell type-specific feature
expressions. The dynamic change of a specific cell type from one state to another
sometimes could also be captured by such metric, though it is very challenging.

The calculation of the similarity between cells is usually based on multiple gene
expression features. The relative position of these cells in a high-dimensional space
is not easy to comprehend. Principal components analysis (PCA) is one of the most
commonly used algorithms for reducing the dimensionality of data. Nonetheless,
for single-cell RNA seq data, the first two to three components of PCA analysis
cover a very small proportion of variance and therefore make the clustering effect
less representative than for those other gene expression datasets [42]. A more
advanced, nonlinear dimensionality reduction algorithm called t-Distributed
Stochastic Neighbor Embedding, or t-SNE [42], has been proposed to explore
high-dimensional single-cell RNA seq data. t-SNE itself does not necessarily define
the similarity metric between cells but makes it visualizable in low-dimensional
space. This algorithm is being widely used in part because it can be adapted to
many visualization tools that are easily understood and interpreted by
non-computational biologists (Fig. 9.3). The relationships across cell types can be
inferred by the high-dimensional calculation and explored by the low-dimensional
visualization.

The single-cell clustering and trajectory method of analysis can be used to define
cell types and stable cell states. For example, clustering of three different cell types
from one tumor by gene expression can group single cells into those of invasive
tumor cells, noninvasive tumor cells, and stromal cells. When clustering, or
grouping cells by gene expression, each cell represents a point in space based on
expression of genes (approximately 30,000 genes). Clustering is based on the
measured distances between points, and cells are grouped based on mutual
proximity.

Besides resolving the cellular composition of heterogeneous tissues, single-cell
studies also aim to characterize genes in such a way so that presumptions can be
made of where a cell is in time and what drives a cell to transition from one state to
another [15]. Using current methods, cells are analyzed at a particular state and
time. The intact sample is destroyed by, for example, cell lysis (in the case of RNA
seq and qRT-PCR) or cell fixation (in the case of FISH). Time series experiments
extrapolate cell transition states through time; however, they misconstrue results by
averaging cell expression as they proceed through a biological process in unsyn-
chronized manner [43, 15]. Any particular sample at a given time-point contains
cells of varying stages of cell growth and transition, reflecting the underlying
dynamics of transitional state relevant genes. Single-cell analysis can define genes
that are differentially expressed during these transitional states. In order to recover
true signal of relevant expression, cells are re-ordered in something called “pseu-
dotime” according to biological progress (for example, percent cells differentiated
instead of time). Two algorithms are currently available based on pseudotime,
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Wanderlust and Monocele, both of which attempt to define those genes responsible
for cell transition [43, 15].

9.4 Application of Single-Cell Analysis in Precision Cancer
Therapy

The translational application of single-cell sequencing in precision cancer therapy
has the potential to improve cancer diagnostics, prognostics, targeted therapy, early
detection, and noninvasive monitoring [2]. It is now technically and economically
feasible to sequence single-cell DNA and RNA. Single-cell sequencing allows
highly sensitive detection of rare mutations and cell-specific gene expression pro-
files. This method can identify rare tumor tissue variants that have the potential to
drive drug resistance or serve as biomarkers of therapeutic success and ultimately
advancing cancer genomics [14].

The importance of single-cell techniques in the clinical setting can be illustrated
in tumor sampling. A single sample from a tumor does not represent the tumor as a
whole. Spatially separate samples from a single tumor (or elsewhere in the body
from metastasis) is composed of varying proportions of cell types and/or diverse
underlying genetic and epigenetic makeup, otherwise known as tumor hetero-
geneity. Greater tumor heterogeneity may predict poorer response to therapy, higher
probability of metastasis, or poor overall survival [2]. Identification of founder
mutations, constructed from tumor phylogenetic trees, may aid in prediction of
response to treatment.

Sequencing at the single-cell level can detect low abundance mutations, facili-
tating the identification of drivers of drug resistance. Drug resistance dynamics have
been previously modeled in metastatic breast cancer cell line using RNA seq
technology [14]. When metastatic breast cancer cells were treated with paclitaxel,
stressed cells arrest and die, whereas those rare drug-tolerant cells resume prolif-
eration and their clones expand. The ability to profile both the genome and tran-
scriptome of the same cells has potential to elucidate heterogeneity at the genome,
epigenome, transcriptome level.

Drug development is a lengthy and expensive endeavor with a high failure rate
[10]. Drug development includes many steps: identification of drug targets, can-
didates, assessing drug resistance, drug toxicity, and pharmacokinetics. Many drugs
emerge from preclinical studies only to fail in clinical trials. NGS has identified new
target candidates for drug development. Single-cell sequencing in drug develop-
ment expands on bulk genomic data by offering a more thorough and compre-
hensive picture on the underlying genetics, epigenetics, and transcriptomics of
responders versus non-responders at an individual cell level. This ultimately allows
for improved efficiency, accuracy, and identification. Applications of single-cell
sequencing in drug development include identification of drug candidates and drug
targets, drug resistance, and drug responses and toxicities [10].
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Single-cell sequencing has shown potential to advance early detection and
noninvasive monitoring. This concept is being elucidated by studies on circulating
tumor cells (CTC), ultimately providing insight on metastatic dissemination (Navin
2015). CTC studies also aid in understanding evolution of the genome in early
stages of cancer by identifying clones (and their underlying genetics, transcrip-
tomics, etc.) that invade surrounding tissue.

Algorithms like Wanderlust and Monocle allows one to reconstruct transcrip-
tional dynamics of development, differentiation, and/or clonal evolution from
single-cell transcriptome data. Given such insight, we look forward to single-cell
sequencing’s ability to identify signature transcriptions of tumor states, which will
strongly facilitate treatment decisions and healthcare strategies for patients.

9.5 Perspectives

Single-cell sequencing will transform cancer research over the coming years as
even initial experiments have revolutionized our current understanding of gene
regulation and disease. Indeed, the data available with single-cell techniques has
never been possible before. Since the initial single-cell sequencing experiments,
there have been many technical and experimental advances and the field continues
to advance at a remarkable speed.

Drawbacks to single-cell sequencing include loss of tumor characteristics
including spatial information, intratumor heterogeneity, and important cell-to-cell
interactions. This issue stems from the fact that single-cell preparation and isolation
capture techniques require intact single cells to be dissociated from fresh tissues.
Most single cells are derived from a biopsy or small piece of tissue; therefore,
single-cell sequencing may not accurately represent the underlying
genome/transcriptome of the original tumor. Even the process of dissociating single
cells from tissues may alter the cells and their underlying gene expression. In
addition, microfluidic devices lose entire cell populations and may have bias for
certain cells sizes, which, along with inherent weaknesses of selective amplification,
can skew results.

With increasing amounts of complex data generated by single-cell sequencing
techniques, there exists the dilemma of accurate interpretation and what to do with
the sheer quantity of data generated. While many tools for analysis have been
developed, there is a need for further analytic improvement in filtering noise and
scalability [43]. Some of the above issues, particularly spatial information, can be
overcome by single-cell analysis techniques, but this highlights the need for skilled
bioinformaticians to accurately analyze the data. In addition, there is currently no
universal analysis technique available, allowing for potentially more bias. Another
challenge that limits the wide application of whole genome single-cell sequencing
in the research and clinical settings is its relatively high cost compared to other bulk
sequencing techniques. For example, a single-cell RNA seq experiment using the
Chromium System from 10� Genomics currently costs at least 10 times higher than
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a typical bulk whole genome RNA seq experiment. However, new and cheaper
techniques are being developed which will greatly improve the accessibility of the
technology so as time goes on.

Emerging new technologies that combine single-cell sequencing with other
techniques acquire even deeper and richer genomic/biological information of cells
and tissues. Spatial transcriptomics, which integrates single-cell RNA seq with the
in situ hybridization (ISH), is one of such new technologies. It analyzes intact tissue
sections on slides and does not require the need for cell isolation from tissue. The
process involves the placement of histological sections on slides that contain
reverse transcription primers with unique positional bar codes and subsequent
placement of millions of oligonucleotides in micrometer subsections. This is fol-
lowed by reverse transcription [23]. This method has the potential to overcome the
loss of spatial information, intratumor heterogeneity, and the potential alteration of
cells during the process of dissociation. Application of such technologies in clinical
samples could potentially revolutionize patient care.
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