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15.1  Introduction

Nanomaterials have been widely studied by the researchers for their application in 
the area of nanomedicine for the diagnosis, monitoring, treatment, and prevention 
of disease. Change in the properties of nanomaterials compared to bulk materials 
occurs mainly because of large surface-area-to-volume ratio and dominance of 
quantum effects at nanoscale. These two effects enhance the properties such as reac-
tivity, strength, electrical characteristics, optical characteristics, and magnetic char-
acteristics and also in  vivo behavior of nanomaterials. Moreover, in the field of 
chemistry, biotechnology, and biomedicine, nanomaterials have been used actively. 
Furthermore, biosensing, gene/drug delivery, bioimaging, multiplexed detection, 
and cancer chemotherapy have also been influenced from nanomaterial (Biju 2014). 
Recently, inorganic nanoparticles have attracted attention in the fields of imaging 
owing to their electronic, optical, magnetic properties and their inertness. The vari-
ous abilities of nanomaterials allow one to use these for the detection of the struc-
tures and functioning of subcellular organelles and biomolecules. Moreover, they 
provide an emerging alternative for image-guided therapies in disease diagnosis and 
treatment of various diseases.

According to the perception of most people, ‘imaging’ is a kind of photogra-
phy. But in scientific domain, it is far beyond this. Bioimaging is the visualization 
of biological processes in real time with less interference in life process and also 
gave output in the form of 3D (three-dimensional) images of any part of the body 
from outside. Various bioimaging techniques are available by which one can observe 
cells in tissues up to whole organism by using different sources of light, such as 
ultrasound, fluorescence, X-ray, electrons, magnetic resonance, and positrons. On 
the basis of the above source used, there are different bioimaging techniques such 
as magnetic resonance imaging (MRI), computed tomography (CT), positron emis-
sion tomography (PET), ultrasound, and fluorescence imaging that have been 
obliged to for disease diagnosis in clinical studies (Fig. 15.1). Out of the above said 
imaging techniques, MRI with the use of nanomaterials as contrast agents for 
in vivo imaging is the largest field of application (Li et al. 2015). Contrast agents are 
generally used in these bioimaging techniques in order to diagnose the organ or tis-
sue of interest as well as identify healthy tissue from diseased tissue. The accurate 
diagnosis at the early stage of diseases is the need of hour that require a sensitive, 
specific, and high-quality imaging probes which can be possible with the following 
prerequisite qualities of the contrast agent:

• Stability of the agent in physiological environment with varying ionic strengths, 
pH, or temperature)

• Maintenance of colloidal solution with proper dispersion
• High retention time in bloodstream
• Proper imaging time and image contrast
• Longtime circulation in bloodstream after intravenous administration
• More biocompatibility of the agent
• Less cytotoxicity with systemic clearance
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Nanomaterial can be categorized into organic and inorganic nanomaterials that 
can be employed for imaging application. Due to ease in the synthesis and modifica-
tion of inorganic nanomaterials, these novel designs and formulations are impacting 
conventional ones and show perspective employment in bioimaging (Cherukula 
et al. 2016). Among nanomaterials, gold nanoparticles, silica nanoparticles, mag-
netic nanoparticles, quantum dots, carbon nanotubes, fullerenes, and graphene have 
been used for imaging applications.

15.2  Nanomaterials for Bioimaging

15.2.1  Gold Nanoparticles

Gold nanoparticles (GNPs) are the most commonly used nanocarriers owing to their 
brilliant coloring, size, shape, and tunable surface plasmon properties which make 
them attractive for various applications such as sensing, diagnosis, catalysis, drug 
delivery, and bioimaging (Saha et al. 2012; Shi et al. 2012; Liang et al. 2015). The 
importance of colloidal gold was realized when monodispersed GNPs were prepared 
by the citrate reduction of gold ions. Schiffrin–Brust, in 1994, gave the most popular 

Fig. 15.1 Schematic representation of various imaging applications including magnetic resonance 
imaging (MRI), computed tomography (CT), positron emission tomography (PET), ultrasound 
imaging (USI), fluorescence imaging (FI), and photoacoustic imaging (PAI) with reference to 
different nanomaterials
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synthetic method for GNPs with a biphasic approach by using a simple method and 
common reagents. In this method, gold ions were reduced by NaBH4 in an aqueous 
phase; then, these were transferred to an organic phase with alkane thiol supplemented 
for the synthesis of thiol-protected gold nanoparticles (Brust et al. 1994). Afterward, 
Murphy et al. (2008) and Dreaden et al. (2012) gave GNP preparation method using 
seed-mediated growth having different kinds of size and shapes such as nanocubes, 
nanocages, and nanorods with satisfactory reproducibility. Templeton et al. (2000) syn-
thesized GNPs with water dispersion characteristic by performing various ligand 
exchange reactions for the functionalization of terminal moiety on alkane thiol-pro-
tected GNPs. Their simple formulation and reactive surface allow for a variety of mol-
ecules to be attached which include drugs, targeting peptides or proteins, contrast 
agents, or other moieties. Different types of shapes like spheres, hollow shells, star 
shapes, rods, clusters, and cubes and size of particles ranging from 1  nm to over 
100 nm have important effect on the optical properties of GNPs and their application 
(Mahan and Doiron 2018). For the first time, GNPs were investigated as an X-ray 
contrast agent by Hainfeld, who imaged the organs and vasculature of mice by inject-
ing bare GNPs intravenously (Hainfeld et al. 2004, 2006). Nanomaterials shape also 
plays an important role in the application part like nanospheres, and nanorods of gold 
provide excellent contrasts in the dark-field optical and photothermal imaging of 
cells and tissues, whereas the nanoshells, nanospheres, nanorods, and nanocages are 
ideal for optical coherence tomography and photoacoustic imaging of deep tissues, 
circulatory systems, and lymph nodes (Biju 2014).

15.2.2  Silica Nanoparticles

Silica nanoparticles (SNPs) are another important group of inorganic delivery sys-
tem. They are ideal candidates for bioapplications such as bioimaging/delivery 
applications owing to the straightforward, size-controllable morphologies, hydro-
philic surface with biocompatibility, and ease of functionalization. Silica is accepted 
by FDA (US Food and Drug Administration) and has been widely used in cosmetics 
(Contado et  al. 2013). Furthermore, Ow et  al. (2005) reported that Cornell dots 
(commercial name) of SNPs encapsulating fluorescent dyes have also been evalu-
ated as cancer-targeted imaging probes for stage I human clinical trial. The basis of 
silica nanoparticle preparation is based on the controlled hydrolysis of silyl ethers 
into silanols in the presence of ammonia in a mixture of water and alcohol followed 
by the condensation of silanols which results in the formation of 50–2000 nm silica 
particles. By varying the concentrations of silyl ether and alcohol, or the normal or 
reverse, one can control the size of SNPs (Trewyn et al. 2007). Mesoporous SNPs 
are prepared by the sol–gel process, involved in situ polymerization of silyl ethers 
and further more stabilized by surfactants in amphiphilic templates. Aggregation of 
SNPs can be avoided by optimizing the concentration of silyl ether or by the addi-
tion of various nonionic surfactants, polymers, triethanolamine, or propanetriol. 
Size can also be controlled by varying parameters like changing the pH of the 
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solution, solvent composition, and introduction of certain swelling agents. 
Thereafter, the amphiphilic templates can be removed by using different processes 
like solvent extraction, thermal decomposition, dialysis, or oxidation. Reactive 
functional groups can be added onto the SNP surface either at the time of prepara-
tion or after preparation (Wu et al. 2013). Modification of SNPs with surface func-
tional groups such as primary or secondary amino, carboxyl, hydroxyl, alkyl 
halogen, or azide group is necessary for the conjugation of various biomolecules, 
contrast agents, and drug molecules to the surface as well as inside the pores of NPs. 
Moreover, hydrophilic nature of SNPs makes them one of the friendliest nanomate-
rials for biomedical applications such as drug and gene delivery, bioimaging, and 
therapy.

15.2.3  Magnetic Nanoparticles

Magnetic nanoparticles (MNPs) are made up of maghemite (Fe2O3) or magnetite 
(Fe3O4). Iron oxide materials are biodegradable, biocompatible, less toxic, and 
approved by FDA. MNPs possess superparamagnetism, as they are present in nano-
metric scale and smaller than the single domain limit. Moreover, in the absence of 
an external magnetic field, they have Hc (coercive field-minimum energy reverse the 
material net magnetization zero) and MR (residual magnetization with no applied 
field) equal to zero, which make it a superparamagnetic and ideal candidate for 
bioapplications. MNPs have been widely used in various applications like multi-
modal imaging, targeted drug and gene delivery, hyperthermia for cancer treatment, 
biomedical separation, and tissue repair particularly owing to their unique super-
paramagnetic properties, tunable size as well as their conjugation with many bio-
logical and drug molecules (Liang et al. 2015). In general, there are several chemical 
methods for the synthesis of MNPs such as sol–gel, microemulsion, thermal decom-
position, solvothermal hydrothermal protocols, electrochemical approaches, etc. 
(Laurent et  al. 2008; Reddy et  al. 2012). For targeted/therapeutic application of 
MNPs, one has to modify the organic shell surrounding the magnetic core, further 
giving rise to a water-soluble biocompatible product which can be further function-
alized with chemically reactive groups. After modification of the organic shell for 
MNP attachment, NP surface can also be modified with the targeting moiety for 
targeted delivery. MRI, based on computer-assisted imaging within the human 
internal organs excited by radiofrequency waves under a gradient magnetic field, 
has become a useful diagnostic tool in medical science. MRI suffers from less sen-
sitivity as well as inadequate spatial or temporal resolution. Therefore, MRI is com-
bined with imaging techniques (MRI/PET, MRI/CT) for reducing their disadvantages. 
Lee et al. (2012) synthesized biocompatible Fe3O4–TaOx core–shell NPs to achieve 
the benefits of two imaging techniques CT and MRI for imaging newly formed 
blood vessels in the tumors and tumor microenvironment, respectively.

15 Nanomaterials and Their Applications in Bioimaging
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15.2.4  Quantum Dots

Semiconductor quantum dots (QDs) are one of the most important QDs, whose size 
and shape can be accurately controlled by optimizing the time duration, tempera-
ture, and ligand molecules used in the synthesis. QDs are mainly composed of 
groups II–VI or III–V elements, such as CdTe, CdS, ZnSe, InP, or InAs, with a size 
range between 1 and 10 nm, which give rise to quantum confinement effect with 
narrow emission bands and broad absorbance bands. QDs are also reported to have 
extended photostability over molecular fluorophores for long-time imaging and pre-
vent photobleaching, high quantum efficacy, the capacity of simultaneous multi-
color imaging through single-light source excitation, and ease of modification (Li 
et al. 2015). Therefore, due to various appealing features of these nanomaterials, the 
use of QDs in imaging applications has been quickly evolved with comparison to 
conventional fluorescence dyes (Hildebrandt 2011). For the first time, Murray et al. 
(1993) reported the synthesis of CdX quantum dots at a high temperature from 
dimethyl cadmium and trioctylphosphine chalcogenides or hexamethyl disilathiane 
as base. The synthesized CdX quantum dots were found to be highly hydrophobic 
and incompatible in the aqueous phase. Thereafter, biocompatible QDs were syn-
thesized from cadmium perchlorate in aqueous phase (Vossmeyer et al. 1994). The 
problem related to quantum efficiency and size distribution of QDs was further 
overcome by Peng and Peng (2001) by introducing greener methods for the synthe-
sis of QDs from Cd(CO3)2, CdO, and Cd(acetate)2. The best-quality quantum dots 
are synthesized in the organic phase and are capped with highly hydrophobic ali-
phatic ligands. The ligand exchange reactions and surface modifications are found 
to be necessary for biological applications of QDs. The most important things that 
have to be kept in mind during the surface modification of QDs are that the vital 
properties of QDs should be remained unaffected and uniformly dispersed and the 
conjugated molecules should also be biocompatible for biological applications. 
QDs capped with small organic molecules such as thioglycolic acid, dihydrolipoic 
acid, or mercaptopropionic acid may help in the direct interaction with cells and 
translocation into the cytosol. QDs conjugated with peptides such as nucleus local-
ization signal or mitochondrial localization signal help in targeted intracellular 
labeling and imaging of nucleus or mitochondria, respectively. However, nontar-
geted QDs modified with surface molecules such as polymers, gelatin, carboxylic 
acids, and polyarginine are also explored for imaging various targeting sites such as 
blood vessels, lymph nodes, tumors, etc. Moreover, quantum dot–D-lactose conju-
gates have also been used for targeted labeling and imaging of leukocytes in in vivo 
applications (Vlasceanu et al. 2017; Martynenko et al. 2017).

R. Rani et al.



435

15.2.5  Carbon Nanotubes

Carbon nanotubes (CNTs) are one of the most commonly used nanomaterials in the 
field of healthcare (Kumar et al. 2017). CNTs are constructed as hollow cylindrical 
tubes consisting of carbon (graphite) with a high aspect ratio and sp2 hybridization. 
Depending on the number of graphite layers, CNTs can be classified as single- 
walled nanotubes (SWNTs), double-walled nanotubes (DWNTs), and multiwalled 
nanotubes (MWNTs). Carbon nanotubes can be synthesized by various methods 
including arc discharge, laser ablation, and chemical vapor deposition (CVD). Arc 
discharge and laser ablation techniques developed earlier generally require high 
temperature (˃1700  ̊C) during synthesis, and CVD and their modified CVD methods 
have replaced these methods as they can be conducted at lower temperatures 
(˂800 °C). Synthesized CNTs were found to be in the form of aggregate or bundle 
due to hydrophobic nature, while its uniform suspensions in aqueous buffers have to 
be used for bioimaging, drug delivery, photothermal therapy, and also in other appli-
cations. Dispersion of CNTs in the aqueous phase can be done by controlled sonica-
tion of an aqueous suspension of CNTs with amphiphilic molecules or surfactants. 
Moreover, functionalizations (covalent and noncovalent) are the most effective 
method for the stable dispersion of CNTs in the organic as well as in the aqueous 
phase. Fundamental properties responsible for bioimaging are the broad absorption 
band, outstanding photoacoustic response, NIR photoluminescence, and unique 
Raman/surface-enhanced Raman scattering effect (Kostarelos et al. 2009). Graphite 
mode (G-band) of CNT provides the most prevailing fingerprint Raman band for 
bioimaging. Moreover, its NIR excitation for Raman imaging is helpful in the mini-
mization of autofluorescence of biological specimen and photobleaching of CNTs 
(Kostarelos et al. 2009). Additionally, photoacoustic imaging property of CNT pro-
vides another auspicious technique for bioimaging. CNTs offered excellent photo- 
to- acoustic conversion efficiency and photothermal–acoustic response, which make 
these materials one of the most auspicious contrast agents in photoacoustic imaging 
of tumors (discussed later). Also, conjugated CNTs with radionuclides, fluorescent 
dyes, other nanoparticles, or inorganic complexes act as contrast agent for various 
bioimaging techniques such as MRI, CT, PET, SPECT (single-photon emission 
computed tomography), etc.

15.2.6  Fullerenes

Fullerenes are the zero-dimensional form of graphitic carbon in the form of a hol-
low sphere, ellipsoid or tube. Spherical fullerenes are also referred to as buckyballs. 
An important property of C60 molecule is its high symmetry, containing 20 hexa-
gons and 12 pentagons. For the first time, it was prepared by the laser vaporization 
of graphite on a preparative scale; thereafter, Kratschmer–Huffman (1990) intro-
duced its macroscopic-scale synthesis, where a vacuum arc discharge was used for 
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the synthesis of C60 from graphite rods. For enhancement of C60 applications, func-
tionalization is very important, and one has to start from its suspension in an organic 
solvent. Various free-radical reactions like cyclopropanation or cycloaddition reac-
tions can be used for covalent conjugation of C60 with molecules.

Partha and Conyers (2009) reported multiple iodine-functionalized C60 as a 
promising X-ray contrast agent, with prolonged retention in the blood and excep-
tional in vivo biocompatibility when compared with other commercially available 
X-ray contrast agents such as iopamidol and iohexol. The most interesting proper-
ties of C60 include absorption light in the UV–vis region, photothermal effect, the 
ability to accommodate multiple electrons and endohedral metal atoms, long-living 
triplet state, and singlet oxygen production which added the application of fuller-
enes in radioimaging, gene/drug delivery, oxidative stress reduction, and cancer 
therapy.

15.2.7  Graphene

Graphene is an allotrope of carbon in the sp2-hybridized state with 2D honeycomb 
lattice, which is the raw material for the synthesis of other types of carbons like 
fullerene and CNTs. Naturally, graphene is an aromatic structure having many 
unsaturated carbon–carbon bonds in the plane, which offer free π electrons and 
reactive sites for surface functionalizations. Graphene has attracted the interest of 
researchers due to their unique physicochemical properties such as strong mechani-
cal strength, acceptable biocompatibility, ease of production, and ease of modifica-
tion owing to their versatile surface functionalization and ultrahigh surface area 
characteristics (Lin et al. 2018). Along with graphene, its other derivatives, such as 
graphene oxide, reduced graphene oxide, and graphene quantum dots, are also 
explored in various biomedical fields. For the first time, it was isolated by the exfo-
liation of graphite using an adhesive tape (Geim and Novoselov 2007). Chemical 
vapor decomposition on metal substrates or thermal decomposition of carbon-based 
wafer such as silicon carbide wafer in the presence of ultrahigh vacuum conditions, 
mechanical exfoliation of highly oriented pyrolytic graphite, and chemical and ther-
mal reduction of graphene oxide are some well-known methods for large-scale pro-
duction of graphene (Bhuyan et al. 2016). Graphene has poor dispersion in liquids 
which can be overcome by functionalization. Just like CNTs, graphenes have some 
fundamental properties like visible and NIR photoluminescence, characteristic 
Raman bands, and photoacoustic and photothermal responses for bioimaging (Choi 
et al. 2010).
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15.3  Applications of Nanoparticles in Different Bioimaging 
Modalities

15.3.1  Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is an imaging technique that is used to study the 
structure and function of tissues in medical field (Weissleder 2006; Jun et al. 2008; 
Waters and Wickline 2008). The basis of MRI depends on the behavior, alignment, 
and interaction of protons which allow for tissue imaging with an enhanced resolu-
tion in both space and time in the presence of an applied magnetic field. By applying 
a strong magnetic field, protons in the tissues are perturbed from the relaxed state 
and converted into an image. The weakness of the magnetic signal and the low 
detector sensitivity are usually overcome by introducing contrast agents (CAs) and 
amplification. Contrast agents are used to alter/shorten the relaxation parameters, 
i.e., longitudinal (T1) or transverse (T2), which further enhances the contrast 
between tissues. MRI contrast agents can help clarify images and allow better inter-
pretation. Efficiency of contrast agent is calculated by its reflexivity over a range of 
concentrations. The radiation dose is being rid off in MRI and thus offers higher 
spatial resolution when compared to radionuclide-based imaging (Weissleder 2006; 
Jun et  al. 2008; Weissleder and Imhof 2007). Studies of exploration of various 
nanoparticles to improve contrast in MRI imaging are further explained.

Magnetic nanoparticles are of considerable importance because of their promis-
ing use in magnetic, optical, and electronic devices (Thorek et al. 2008; Shi et al. 
2008; Asl 2017; Abd-Elsalam et al. 2019). Magnetic nanoparticles have been used 
in clinics with great success (Sun et al. 2008; Neumaier et al. 2008; Jun et al. 2008) 
for more than two decades. Highly superparamagnetic iron oxide is generally used 
as the core material with dextran (biocompatible polymers) as a coating material 
(Schulze et al. 1995). Advantages of using iron oxide nanoparticles are their bio-
compatibility, faster detection rate at moderate concentrations, high saturation mag-
netization, and relatively less toxicity than optical imaging agents. Paramagnetic 
substances, such as gadolinium (Gd), are positive contrast agents (T1 CA). Due to 
Gd limitations,  certain degree of toxicity, and decreased efficiency at higher mag-
netic fields, the research focus has shifted to negative CA such as superparamag-
netic iron oxide nanoparticles (SPIONs), a T2 CA in MRI (Veiseh et al. 2010). For 
active targeting, peptides, antibodies, proteins, and small molecules have been con-
jugated to SPIONs as contrast agent in MRI, due to their tunable properties and their 
low toxicity compared with gadolinium (Wunderbaldinger et  al. 2002a, b). 
Wunderbaldinger et al. (2002a) have used dextran–SPION to examine the lymph 
node metastasis in an experimental murine model using contrast-enhanced MRI. In 
order to visualize tumors better, Montet et al. (2006) have used magnetofluorescent 
nanoparticle conjugates targeting normal tissues. Bombesin-labeled magnetofluo-
rescent nanoparticles targeting bombesin receptors present on normal acinar cells of 
the pancreas leads to a decrease in the T2 signal of normal pancreas tissue, thus 
enhancing the ability to visualize tumors by MRI. Huh and co-workers (2005) pro-
duced iron oxide nanoparticles conjugated with Herceptin to detect breast cancers 
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by MRI.  Mn-doped iron oxide nanoparticles have been used for ultrasensitive 
molecular imaging (Lee et  al. 2007). Engineered nanoparticles possessing high 
magnetism offer improved sensitivity and lower dosing when compared with non-
engineered iron oxide contrast agents.

Another type of nanoparticles that have been used in MRI is Fe–Pt nanoparticles. 
Yang et  al. (2010) explored Fe–Pt nanoparticles as possible contrast agents for 
MRI. Amphiphilic Fe–Pt nanoparticles, which contain both hydrophilic and lipo-
philic properties, were prepared by high-temperature pyrolysis in a tetraethylene 
glycol (TEG) medium with oleic acid (OA) as a surfactant. Cell viability studies 
were carried out on cervical cancer (HeLa) cell lines by taking Fe–Pt nanoparticles 
to determine the toxic effects. Magnetic properties such as saturation magnetization 
(Ms) and transverse relaxation time (T2) were also investigated. The MTT assay 
and transmission electron microscopy (TEM) results depicted that the amphiphilic 
Fe–Pt nanoparticles were found biocompatible with almost no cytotoxic effect. 
Magnetic resonance (MR) signal enhancement studies showed clear contrast from 
the background. It was observed that amphiphilic Fe–Pt nanoparticles could be 
promisingly used as a T2 contrast agent for MRI. Martins et al. (2014) and Carvaldo 
et  al. (2014) reported magnetoliposomes coated with polyethylene glycol (PEG) 
and loaded with PEGylated SPION as a contrast agent and found PEGylated magn-
etoliposomes as negative CA for MRI than others. Martínez-González et al. (2016) 
reported liposomes loaded with hydrophobic iron oxide nanoparticles (SPIONs), 
i.e., magnetoliposomes as suitable candidates as CAs, especially as a liver 
CA. Boretti and Castelletto (2016) introduced a nanometric resolution MRI method 
for noninvasive mapping of functional activity in neuronal networks. Therefore, in 
the new approach, instead of using SPIONs alone, they can also be encapsulated/
embedded in the nanocarrier (liposomes) with a double-function approach in 
theranostics- like imaging/diagnostics as well as therapy (Carvalho et  al. 2017). 
Recently, chitosan-based SPIONs have been introduced intravenously in orthotopic 
C6 gliomas in rats which further accumulated in the tumor site, and this retention of 
nanoparticles resulted in a significant contrast enhancement of the tumor image 
(Shevtsov et al. 2018).

15.3.2  Computed Tomography

X-ray computed tomography (CT) having optimal cost and broad availability is a 
commonly used diagnostic imaging tool. X-ray CT helps in visualizing the differ-
ences in tissue density and provides image contrast between soft tissues and 
electron- dense bones. It is often desired to enhance the contrast of the diseased tis-
sue with the use of X-ray contrast agents which increase the contrast between the 
normal and diseased tissues (Yu and Watson 1999). Commonly used CT contrast 
enhancers are water-soluble small organic iodinated molecules. The limitations of 
using these molecules are short imaging times owing to rapid renal clearance and 
nonspecific vascular permeation (Blaszkiewicz 1994; Yu and Watson 1999; Galperin 
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et al. 2007; Kim et al. 2007). In order to overcome the problems associated with the 
use of small organic molecules, nanoparticle contrast agents for CT were developed 
as early as the 1980s, and after that various nanoparticles have been explored in 
X-ray CT (Cormode et al. 2014; Mahan and Doiron 2018).

CT was earlier not considered to be a molecular imaging technique like various 
other techniques, viz., magnetic resonance imaging (MRI), nuclear medicine imag-
ing modalities (SPECT, PET), etc. Cai et al. (2007) used colloidal GNPs as a blood- 
pool contrast agent for X-ray computed tomography in mice. Furthermore, 
Popovtzer et al. (2008) reported GNPs conjugated with a targeted moiety for the 
detection of head and neck cancer with a standard clinical CT.  Instead of using 
spherical gold nanoparticles, they used gold nanorods. It is a prerequisite that in CT 
imaging, the amount of the gold content per unit volume is important regardless of 
the particle shape and size. Gold nanorods (synthesized by the method of Nikoobakht 
and El-Sayed 2003), conjugated with UM-A9 antibodies, have been used to target 
squamous cell carcinoma (SCC). By this study, it was found that the A9-antibody- 
coated gold nanorods targeted the SCC cells and showed an increased attenuation 
coefficient (ΔHU; 168–170) when compared to the nontargeted nanorods, non- 
cancerous cells (normal fibroblast cells), and other cancerous cells (melanoma) 
(ΔHU; 28–32). The increased X-ray attenuation in targeted SCC cells compared 
with normal cells confirms to consider molecular X-ray CT imaging as a molecular 
imaging technique (Popovtzer et  al. 2008). Another study which explored gold 
nanoparticles (1.9 nm) as an X-ray CT contrast agent was explained by Hainfeld 
et  al. (2006) to diagnose tumors in mice. The injected gold nanoparticles were 
unable to be present in the blood after 24 h, but instead accumulation in the kidney, 
tumor, liver, and muscle occurs after just 15  min. The gold nanoparticles are 
removed from the kidneys by means of renal excretion, and no concentrate was 
found in the liver or spleen, presumably because of the small size of the nanoparti-
cles. Kattumuri et al. (2007) had made use of gum Arabic stabilized gold nanopar-
ticles as a potential biocompatible X-ray CT contrast agent. Besides GNPs, Fe–Pt 
nanoparticles are also being used as contrast agents for both computed tomography 
(CT) and MRI as studied by Chou et al. (2010). The research group also reported 
that NPs were biocompatible with no cytotoxic effect and no significant hemolysis. 
Moreover, these NPs were binded to a specific site as well as enhanced the contrast 
by shortening of T2 relaxation.

Van Schooneveld et al. (2010) synthesized PEGylated gold/silica nanoparticles 
with paramagnetic and fluorescent lipid coating and applied as trimodal contrast 
agents to allow for nanoparticle-enhanced imaging of macrophage cells in vitro via 
MRI, CT, and FI and mice livers in vivo via MRI and CT. Cormode et al. (2010) 
injected a gold high-density lipoprotein nanoparticle as CA for the characterization 
of macrophage burden, calcification, and stenosis of atherosclerotic plaques and 
concluded that the used CA gave multicolor CT images with valuable information 
about atherosclerotic plaques. Moreover, along with X-ray imaging, chemo- 
photothermal therapy was also performed by using core–shell-structured docetaxel- 
loaded PLGA–GNPs, showing significant imaging as well as theranostic approach 
(Hao et al. 2015). Thereafter, researchers used different types of nanoparticles as 
CAs for the betterment of CT application along with other imaging modalities 
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(Pan et al. 2012; Xue et al. 2014; Cole et al. 2015; Chhour et al. 2016; Cheheltani 
et al. 2016; Si-Mohamed et al. 2017).

15.3.3  Positron Emission Tomography

Positron emission tomography (PET) is an imaging technique which depicts three- 
dimensional images of biological processes in real time. Three-dimensional images 
of tracers can be obtained by detecting pairs of gamma rays which are emitted by a 
tracer (represented by a positron-emitting radionuclide) when conjugated to bio-
logically active molecules. PET becomes one of the most promising techniques for 
the diagnosis of diseases in a noninvasive manner because of having excellent sen-
sitivity and low background noise. PET is a powerful tool for in vivo imaging of 
human brain function in neurological disorders such as Parkinson’s disease, 
Huntington’s disease, multiple sclerosis, and dementias (Meltzer et  al. 2003; 
Herholz et al. 2007; Politis and Piccini 2012; Assimakopoulos et al. 2014; Niccolini 
et al. 2015; Kato et al. 2016). Carbon-based nanoparticles have been used for PET 
imaging. Positron-emitting radionuclides can be conjugated to CNTs or even 
inserted into CNTs for PET imaging. McDevitt et  al. (2007) have produced 
yttrium-86 (86Y)-CNTs covalently attached to multiple copies of DOTA chelates for 
the solubilization of functionalized CNTs, and the whole-body PET images depicted 
that 86Y-CNTs have been cleared from the blood within 3 h and distributed majorly 
to the kidneys, liver, spleen, and bone in mice. In another study, Ruggiero et  al. 
(2010) constructed SWCNTs covalently attached with radio metal–ion chelates 
(DOPA) and tumor-targeting antibody and used for rapid imaging. Dynamic and 
longitudinal PET imaging of LS174T tumor-bearing mice demonstrated rapid blood 
clearance (<1  h) and specific tumor accumulation of the specific construct. 
PEGylated GO nanoparticles have been used in PET and have shown minimal tox-
icity when administrated in mice (Yang et al. 2011). Though CNTs are found to be 
a potential nanomaterial for diagnostic applications, due to their nonbiodegradability 
nature, CNTs are still not preferred to be used in PET.

Next comes the use of gold nanoparticles in PET imaging. Xie et al. (2010) reported 
the use radiolabeled gold nanoshells (NSs) with tumor xenografts to produce in vivo 
PET images. GNPs coated with the radionuclide, (64)Cu and three types of materials, 
(64)Cu-NS and the controls ((64)Cu-DOTA and (64)Cu-DOTA- PEG2K) were 
observed for biodistribution and PET imaging. PET images of the rats showed accu-
mulation of (64)Cu-NSs in the tumors and other organs with significant difference 
from the controls. In another study by Karmani et al. (2013), 89Zr-labeled antibody-
targeted GNPs have proved to be a potential probe for cancer imaging and therapy. 
The use of metal oxide nanoparticles in the application of PET imaging has also been 
investigated. Perez–Campana and co-workers (2012) reported the activation of 
18O-enriched aluminum oxide (Al2O3) NPs by irradiation with protons to yield 
18F-labeled NPs. Biodistribution studies were carried out in male rats using 18F-labeled 
NPs which helps in determining the biodistribution pattern in rodents up to 8  h. 
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Another research was done by the same group in 2013 to activate aluminum oxide 
(Al2O3) NPs by directly irradiating with protons via the 16O(p,α)13N nuclear reaction. 
For biodistribution studies, the accumulation of 13N-labeled NPs with different sizes 
in different organs was recorded during the first 68  min after administration and 
showed the uptake of NPs in the brain was very low regardless of the particle size, and 
low accumulation of NPs (<2%) was observed in the lung for smaller NPs as com-
pared to NPs with larger sizes. Some reports are also available for the use of 
18F-fluorodeoxyglucose–PET scans for imaging pancreatic cancer and gastric cancer 
and also for estimation of perimenopause and emergence of an Alzheimer’s in the 
brain (Ma et al. 2013; Crippa et al. 2014; Grimmer et al. 2016; Mosconi et al. 2017). 
Radiolabeled iron oxide, another class of NPs, is applied for PET imaging. The iron 
oxide NPs (IONPs) are differentiated into various classes based on their sizes, viz., 
standard superparamagnetic iron oxide (SPIO) at 60–150 nm, ultrasmall superpara-
magnetic iron oxide (USPIO) of approximately 5–40 nm, and monocrystalline iron 
oxide nanocompounds (MION), a subset of USPIO, ranging from 10 to 30  nm 
(Xing et al. 2014). Among all, SPIONPs have been selected due to exclusive proper-
ties of biocompatibility and intrinsic ability to facilitate surface modification, mak-
ing them attractive as multifunctional imaging agents. Recent applications of 
radiolabeled iron oxide nanoparticles for PET imaging and multimodality imaging 
have been summarized in different comprehensive reviews (Bouziotis et al. 2012; 
Thomas et al. 2013). Combining PET imaging with the other imaging modalities 
like X-ray CT or MRI provides the synergistic combination of information (Wang 
et al. 2014; Riola-Parada et al. 2016; Szyszko and Cook 2017).

15.3.4  Ultrasound Imaging

Ultrasound imaging (USI) is a clinical diagnostic technique that is frequently used 
because of its distinguished properties, namely, its real-time monitoring capability, 
low cost, high safety, convenience, and portability (Liu et  al. 2011). Ultrasound 
contrast agents (UCAs) in the form of nanoparticles have been developed for 
improvement in visualization in US imaging. Mattrey et al. (1982) studied the use 
of PFOB (perfluoroctylbromide) NPs in US imaging. PFOB NPs have considerably 
increased the echogenicity of the liver as compared to that of the kidney after 48 h 
of intravenous infusion and produced an echogenic rim around VX2 carcinoma, 
which helps in tumor diagnosis. By this study, the authors have considered PFOB 
NPs to be a promising US contrast material. Lanza et al. (1996) found liquid PFC- 
filled NPs to be used as new UCAs because of having long circulation half-life and 
high stability. These NPs present a low intensity of US reflection and require higher 
concentrations or more binding events, which form the physical basis of the ability 
of PFOB NPs to serve as UCAs and to produce comparatively high backscatter 
signal (Marsh et al. 2002; Wickline et al. 2002). Horie et al. (2011) studied the anti-
tumor effects of tumor necrosis factor (TNF-α) by transfection of TNF-α plasmid 
DNA into solid mouse tumors using the nanobubbles (NBs) and ultrasound gene 
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delivery system. The contrast of the image was enhanced using Sonazoid and a 
high-frequency US imaging system (40 MHz) to check the difference in tumor size 
before and after the treatment and found significant reduction in the tumor size. 
Finally, they concluded the effectiveness of NBs and US for TNF-α gene delivery 
into tumor cells. Another investigation was done by using halloysite clay nanotubes 
(HNTs) as promising contrast agents for ultrasound-targeted imaging at a conven-
tional diagnostic frequency of 10 MHz (Conversano et al. 2016). HNTs in the radio-
frequency backscatter signals have been used to generate tailored color maps. These 
were then allowed to superimpose on conventional B-mode echographic images for 
automated HNT detection having sensitivity up to 60% and specificity above 95% 
by using HNT concentration of 1.5 mg/mL. HNTs have been found to result in sig-
nificant diagnostic improvements, enabling nonionizing identification of pathologi-
cal tissues at cellular level.

15.3.5  Fluorescence Imaging

Fluorescence imaging (FI) has emerged as an evolutionary field that has many 
significant advancements. This technique has the accumulative availability of 
fluorescent proteins, dyes, and probes, as well as the development of optical imag-
ing technologies (Ntziachristos 2006). Fluorescence imaging has several advan-
tages like good sensitivity, noninvasive nature, read availability, and comparatively 
low cost. Because it is an optical technique, it has limitations in terms of tissue 
penetration depth.

A large number of studies have proved the potential of QDs in the application of 
fluorescence imaging. Akerman et al. (2002) have used CdSe/Zns QDs coated with 
PEG for targeting peptides in the lungs of mice. Multifunctional nanoparticle probes 
based on QDs were formed for in vivo imaging of human prostate cancer in mice, as 
described by Gao et al. (2004). This new type of coated QDs is based on the encap-
sulation of PEGylated QDs using an ABC triblock copolymer as a secondary coating 
layer, further functionalized with a tumor-targeting antibody to prostate- specific 
membrane antigen. Cai et al. (2006) have conjugated QDs with peptides for targeted 
in vivo imaging of tumors. As observed from NIR fluorescence images, they showed 
that QDs labeled with arginine–glycine–aspartic acid (RGD) peptide had selectively 
target the αvβ3-positive tumor vasculature in a murine xenograft model. Though 
significant accumulation in the liver, bone marrow and lymph nodes were found, 
after 6 h of injection of QDs, then also high tumor contrast was there. Distribution of 
four QDs with different surface coatings was studied by Ballou et al. (2004), and it 
was observed that the QDs were fluorescent for at least 4 months in vivo. Tada et al. 
(2007) has chased single QDs coated with monoclonal anti- HER2 antibody using a 
high-speed confocal microscope in the tumors of living mice in the dorsal skinfold 
chamber. QD-based contrast agent for brain imaging has been developed by Gao 
et al. (2008). Surface modification of QDs using poly(ethylene glycol)–poly(lactic 
acid) was carried out which was then functionalized with wheat germ agglutinin. The 
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agent was delivered to the brain by means of intranasal administration, and accumu-
lation in the brain remained for >4 h and was cleared after 8 h of administration. 
Deliberate addition of different components like gadolinium and manganese in QDs 
leads to the formation of multimodal imaging agents (Yong 2009).

Jin et al. (2008) have produced hybrid QDs with the careful incorporation of Gd3+ 
in QDs to achieve dual-mode (fluorescence/magnetic resonance) imaging. In the same 
way, Yong (2009) have produced manganese-doped QDs as multimodal targeted 
probes for pancreatic cancer imaging. To determine the location of anti- claudin, anti-
mesothelin, or anti-PSCA-coated QDs to pancreatic cancer cells, confocal spectros-
copy was used. The use of Fe–Pt nanoparticles for fluorescence imaging and MRI 
was studied by Lai et al. (2012). Fe–Pt nanoparticles were formed by a method using 
high-temperature chemical reduction. The nanoparticles were then coated with silica 
using a microemulsion method to improve biocompatibility and bioconjugation. 
This made it easier to incorporate fluorescent dye fluorescein isothiocyanate (FITC) 
into the silica shell. The cytotoxicity of Fe–Pt and Fe–Pt/SiO2/FITC nanoparticles 
was determined by MTT assay using a human cervical cancer cell line (HeLa) and 
was found nontoxic. Confocal laser microscopy was used to examine the intracellu-
lar localization of Fe–Pt/SiO2/FITC nanoparticles in HeLa cells after staining with a 
red fluorescent dye, and the fluorescence was observed after 12 h of incubation. 
These results showed the potential use of Fe–Pt/SiO2/FITC nanoparticles for dual 
fluorescence and MR imaging. In another study carried out by Zhang et al. (2016), 
fluorescent SNPs were developed for application in both in vitro and in vivo fluores-
cence bioimaging. They are easy to handle, biocompatible in nature, less toxic, and 
highly hydrophilic and exhibit good optical transparency. Due to these properties, 
SNPs are considered to be suitable substrates for the fabrication of fluorescent probes 
and thus can be used in the imaging of living cells.

15.3.6  Photoacoustic Imaging (PAI)

PAI is a new method that has taken the advantages of the same optical properties as 
that of fluorescence imaging. Tissues are firstly irradiated with visible or near- infrared 
light, resulting in adiabatic expansion, and thus pressure waves are produced, 
which in turn are measured and used to construct an image. In cases where depth of 
penetration is found lower and there is a lack of natural contrast between tissues, 
contrast agents in the form of various nanoparticles are used (Wu et al. 2014). Zerda 
et al. (2008) first took photoacoustic images in a tumor mouse model, using SWNTs 
as the contrast agent. Yang et al. (2010) studied four different types of nanoparticles 
that can be used as photoacoustic contrast agents in photoacoustic imaging. They 
focused mainly on gold nanoshells, gold nanorods, gold nanocages, and indocya-
nine green (ICG)-doped nanoparticles. Their studies found that among the four 
kinds of nanoparticles employed in PAI so far, nanorods were appropriate optical 
absorbers. Au nanocages also have similar optical absorption as Au nanorods. In 
addition, nanocages were found capable of encapsulating drugs and ICG-based 
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nanoparticles, which depends on the fact that ICG is the FDA-approved dye for 
routine clinical use. Kim et al. (2009) reported the growth of GNPs on the surface 
of CNTs and utilized this conjugate as a photoacoustic contrast agent for in vivo 
imaging and for killing cancer cells via a photothermal effect. Chanda et al. (2011) 
explored the use of cinnamon phytochemicals as an AuNP capping agent to 
increase uptake of particles to cancer cells. The results showed linear photoacous-
tic response from untreated cells, while treated cells showed a time-variant signal, 
which indicates the particle uptake and particle contrast ability. In another study, 
Jing et al. (2014) used the fluorescent dye Prussian blue as a coating to enhance the 
photoacoustic signal. Testing of particles was carried out in agar gels as well as 
mice using a 765 nm laser. In the absence of tissue, high resolution was found, 
while an increasing loss of clarity was evident up to ∼4.3 cm. Cheheltani et al. 
(2016) has encapsulated AuNP into polydi (carboxylatophenoxy) phosphazene 
(PCPP) nanospheres and found that the formulated particles exhibited high CT 
contrast, while the absorbable wavelengths can be adjusted changing the size or 
amount of AuNP. Photoacoustic imaging is an emerging field, and researchers use 
this as a guided technology for photodynamic therapy and photothermal therapy 
using different PA agents conjugated with different types of nanomaterials (Wang 
et al. 2016; Xie et al. 2016; Gao et al. 2017; Wu et al. 2017). Photoacoustic imag-
ing is still a new modality imaging technique, further work on the use of different 
nanoparticles is being carried out to completely understand the parameters of pho-
toacoustic imaging.

15.4  Conclusion

Nanomaterial drastically inflates the proficiencies of conventional methods of imag-
ing owing to their high surface area, controllable size, and ease in surface function-
alization. Different types of molecules including small organic dyes, radioisotopes, 
metal ions, inorganic nanoparticles, and even the source of microbubbles can be eas-
ily conjugated to allow an enhanced imaging performance with high stability of 
imaging agents before delivery to the target cells or organs. In the past few years, lots 
of studies have been done on the use of nanomaterial for bioimaging applications. 
However, most of studies are in their infancy stage within finite prospects, and only 
few have got clinical successes. For in vivo applications, the issues like biocompati-
bility, systemic toxicity, and unwanted accumulation in the body have to be consid-
ered. Imaging efficiencies are also an important factor for bioimaging, which can be 
improved by the conjugation of targeting ligands such as antibody and peptides, to 
secure high colloidal stability in the bloodstream. Thus, more efforts are still needed 
to be done in the near future for the promotion of nanomaterial advances in bioimag-
ing applications.
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