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Bioanalysis and Stability 
of Polymyxins

Robert W. Milne

Abstract
Clinical use of the polymyxin antibiotics 
began approximately 10 years after their dis-
covery in the late 1940s. Their concentrations 
in biological fluids were measured using 
microbiological methods. These methods 
were reasonably accurate for measuring the 
active polymyxin base, such as polymyxin B 
and colistin (polymyxin E), but were used 
inappropriately for measuring the concentra-
tions of “colistin” in humans or animals fol-
lowing the administration of colistimethate, 
also known as colistin methanesulphonate 
(CMS). The use of polymyxins for systemic 
infections waned in the 1970s because of their 
toxicity and the preference for other antibiot-
ics, but their value for treating infections 
caused by several important Gram-negative 
pathogens becoming resistant to other antibi-
otics was realized in the mid-1990s. The lack 
of adequate pharmacokinetic and pharmaco-
dynamic knowledge spurred the development 
of methods more specific for measuring poly-
myxin B and colistin after their administra-
tions as sulphate salts, and of colistin and 
CMS after the administration of CMS sodium. 
These methods have been based on high-
performance liquid chromatography, detec-

tion and quantification of fluorescent 
derivatives of the polymyxin bases, or of the 
bases themselves with detection and quantifi-
cation by mass spectrometry.
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6.1	 �Introduction

The two polymyxins used in clinical practice are 
colistin (polymyxin E) and polymyxin B. Their 
historical use, chemistry and antimicrobial activ-
ity have been reviewed in Chap. 3. Briefly, the 
two polymyxin bases are used as a mixture pri-
marily of colistin A and B (or polymyxin E1 and 
E2) or as a mixture primarily of polymyxin B1 
and B2. The two polymyxin forms denoted as 1 
and 2 differ only in their alkanoic acid moiety by 
a methylene group. Colistin and polymyxin B 
differ by only one amino acid in the cyclic pep-
tide; colistin contains D-Leu while polymyxin B 
contains D-Phe.

Colistin for parenteral use has been adminis-
tered most commonly as its methanesulphonate 
derivative. This is formed by derivatizing the five 
available amino groups of the L-diaminobutyric 
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acid moieties with methanesulphonic acid. 
Therapeutic use commenced in the mid-1950s as 
the sulphate salts of the bases, and as the sodium 
salt of the methanesulphonate of colistin (CMS 
or colistin methanesulphonate; also known as 
colistimethate) for systemic administration in the 
United States in the 1960s. When administered, 
CMS may not be fully derivatized with methane-
sulphonate; it may be present in a dosage form as 
a mix of full and partial derivatives. Likewise, as 
will become apparent from the chapters covering 
pharmacokinetics and pharmacodynamics, there 
will be a complex mix of full and partial deriva-
tives in samples of biological fluids or other 
aqueous media from experiments evaluating the 
fate or antimicrobial effectiveness of CMS in 
vivo or in vitro. This is because of a gradual loss 
of the methanesulphonate groups over time. 
Measuring the individual derivatives in such flu-
ids or media has not been achieved. Doing so 
would be extremely complex, and of question-
able value, given that colistin alone is deemed to 
possess antimicrobial activity [1]. Therefore, a 
more recent approach has been to perform two 
measurements on a sample [2, 3]. Firstly, the 
concentration of “total colistin” is measured, it 
being the sum of all methanesulphonate deriva-
tives converted to colistin during processing of a 
sample plus pre-existing colistin in the sample; 
and, secondly, a measure of the concentration of 
colistin. When measuring the latter, one should 
be mindful of the instability of the methanesul-
phonate derivatives, ensuring appropriate storage 
and processing of samples under conditions 
which minimize conversion of any derivatives to 
colistin [1, 4]. Therefore, researchers should 
assure themselves that there is no conversion of 
methanesulphonate derivatives to colistin once a 
sample has been collected; for example, while 
separating plasma from a sample of blood, while 
stored pending analysis, after thawing, during 
repeated thawing and freezing, during processing 
and while awaiting chromatographic analysis. 
The difference between the two concentrations 
represents the concentration of all methanesul-
phonate derivatives (designated as CMS) in the 
sample. In addition, polymyxins are highly sur-
face active, and their adsorption from aqueous 

solutions onto the surfaces of apparatus used dur-
ing collection and processing of samples may 
have an impact on recovery and sensitivity. 
Generally, this has been minimized by including 
a cosolvent in stock solutions and either a cosol-
vent, protein (such as drug-free human plasma) 
or surfactant is added during the processing of 
samples of urine or bacterial broth [4–6].

This chapter will review the range of methods 
that have been used for measuring the concentra-
tions of polymyxins in different biological fluids, 
and will do so in a chronological order that 
reflects the gradual advances in techniques that 
have enabled improvements in sensitivity and, 
more importantly, in specificity and the ease with 
which they are performed. It will describe meth-
ods used for pretreatment of samples, including 
the important issues raised above regarding sta-
bility and adsorption to surfaces, along with the 
methods for quantifying the concentration of 
polymyxin in the sample.

6.2	 �Microbiological Methods

The first method reported for measuring poly-
myxins in biological fluids appears to have 
been a microbiological assay for polymyxin 
(identified later as polymyxin D; [7]) in blood 
and urine based on its activity towards Brucella 
bronchiseptica. There was no apparent inter-
ference from other components of blood from 
the mouse, dog and human, and the lowest con-
centration on the calibration curve using 
0.02  mL of blood was 0.25  mg/L [8, 9]. The 
author described measurement of the concen-
trations of polymyxin in pooled samples of 
blood after a single dose of polymyxin hydro-
chloride to mice (1  mg/kg, s.c.) and a dog 
(5 mg/kg, i.v.). Replicate analyses of a sample 
from the dog [8] produced coefficients of vari-
ation ranging from 7% to 12% (no concentra-
tion was provided). While the method 
potentially lacks specificity in the presence of 
other antimicrobial agents co-administered 
during in vivo studies, be they in animals or 
humans, it is a measure of antimicrobially-
active polymyxin in a biological fluid such as 
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blood to a level of sensitivity comparable to 
that achieved with HPLC of fluorescent deriva-
tives of colistin (vide infra).

The limitations of nephro- and neuro-toxicity 
during clinical use in the early 1970s and prior 
led to an investigation of the binding of polymyx-
ins to tissues following the systemic administra-
tion of polymyxin B and CMS to rabbits [10]. 
Concentrations were measured via their inhibi-
tion of B. bronchiseptica using the respective 
compounds as calibration standards. While the 
measurements for polymyxin B are likely to be 
reasonable estimates of its concentrations, those 
for “CMS” will be complicated by the issues of 
instability mentioned above and discussed subse-
quently in this chapter.

Later work described use of the same bacterial 
test organism to measure polymyxin B in bovine 
fluids and tissues [11, 12] following parenteral 
administration of polymyxin B sulphate. Two 
years previous, this group published values for 
the concentrations of polymyxin B, colistin and 
CMS in serum from calves administered daily 
doses of polymyxin B sulphate, colistin sulphate, 
or CMS, respectively, via the intramuscular route 
for three successive days [13]. The microbiologi-
cal assay used by this group reported similar val-
ues of maximal serum concentration (Cmax) and 
terminal half-life for polymyxin and colistin. 
However, greater and lesser values, respectively, 
were obtained for “CMS” after the administra-
tion of CMS.  As will become apparent from 
Chap. 7 describing the pharmacokinetics of colis-
tin in rats administered colistin sulphate and of 
colistin and CMS after dosing with CMS, the val-
ues for “CMS” after administration of CMS are 
likely to be composites derived from measuring a 
mix of colistin and CMS in ratios that change 
over time from the dose; an observation possible 
only when concentrations in plasma are mea-
sured more specifically by chromatographic 
methods (vide infra).

Even more recently, a microbiological method 
was described for measuring CMS in serum (and 
urine) from humans, seemingly with the inten-
tion of correlating levels of CMS in blood with 
toxicity; the method was advocated because it 
avoided more complex and instrumentally-

demanding methods based on liquid chromatog-
raphy [14]. This method, along with the other 
microbiological methods discussed above for 
measuring “CMS”, measures antimicrobial activ-
ity that can only be attributed to colistin (assum-
ing there are no other antimicrobially-active 
interferences). However, there are important 
issues that should be appreciated: (1) activity was 
relative to calibration standards prepared using 
CMS, which has minimal if any inherent antimi-
crobial activity [15]; (2) it is likely that CMS 
would degrade during the assay to antimicrobially-
active colistin via partially sulphomethylated 
intermediates [15, 16], and the relative propor-
tions of sulphomethylated colistin to colistin in 
the calibration standards exposed to the test 
organism during the assay may be quite different 
from those in the biological samples. Another 
report described the pharmacokinetics of “colis-
tin” in a patient using concentrations measured in 
serum against Acinetobacter baumannii [17]. 
Further reports have appeared describing micro-
biological methods for measuring “colistin” fol-
lowing the administration of CMS to a patient 
[18] and in a study of the pharmacokinetics and 
dynamics of CMS in a pneumonia model with 
mice [19]; the same limitations apply to these 
reports. An extensive pharmacokinetic/pharma-
codynamic study in mice used a microbiological 
method to measure “colistin” in plasma from 
neutropenic mice administered “colistin”, but it 
was not clear whether the sulphate salt or CMS 
was administered and measured [20].

Nevertheless, microbiological assays for poly-
myxins are legitimate for any analysis of expo-
sure when the polymyxin itself (as a salt of the 
base) rather than any prodrug (such as CMS) is 
being administered and the polymyxin is being 
used as a reference for the preparation of calibra-
tion standards and quality controls. Published 
examples since 2000 include assessment of the 
exposure to colistin after administration of colis-
tin sulphate to piglets [21], and to polymyxin B 
following its intravenous administration (pre-
sumably as the sulphate) to a young male [22]. 
The former reported a “detection” range from 
0.005 to 3 mg/L [21] and, while the lower value 
in this range compares favourably with limits of 
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quantification achieved using chromatographic 
methods (vide infra), no validation was provided 
for a limit of quantification. Also, no details were 
provided by the latter report [22]. The majority of 
methods beyond 2000 have employed chromato-
graphic separation and quantification of fluores-
cent derivatives or chromatography with 
quantification by mass spectrometry.

The clinical use of colistin, as CMS, began to 
increase in the mid-1990s in response to an 
increasing incidence of infections in patients 
with cystic fibrosis caused by bacteria resistant to 
the usually available antibiotics. The authors of 
one important study at this time concluded that 
intravenous colistin (as CMS) may be valuable 
therapy for acute respiratory exacerbations and 
that the risks of renal toxicity could be minimized 
with careful monitoring [23]. This group mea-
sured the concentrations of “colistin” in blood at 
steady-state by microbiological assay. The 
increased use of CMS in response to this and 
other reports of its use occurred at a time when it 
was recognized that previous systemic doses may 
have been excessive. However, the increase was 
at a time when there was very little information 
available on its pharmacokinetics and pharmaco-
dynamics that might guide the selection of appro-
priate doses [24].

6.3	 �Chromatographic Methods

Given the limitations of microbiological methods 
for measuring “CMS” and “colistin” in plasma 
after the administration of CMS, reports began to 
appear of chromatographic methods being devel-
oped that were selective for colistin and CMS 
(the latter including partially sulphomethylated 
forms of colistin), with detection appropriate for 
the required levels of quantification of both these 
and polymyxin B. These methods have now been 
established as the most suitable for measuring the 
concentrations of polymyxin B and colistin in 
biological fluids following administration of their 
sulphate salts to animals or humans, or of colistin 
and CMS after administration of the sodium salt 
of CMS. The required levels of sensitivity have 

been achieved by detecting and quantifying fluo-
rescent derivatives of the polymyxin base or by 
using mass spectrometry; fluorescent derivatives 
because of a lack of native ultraviolet absorbance 
sufficient for quantifying clinically relevant con-
centrations. The concentration of CMS in a sam-
ple is determined after hydrolysis of CMS to 
colistin and quantification of the latter as “total 
colistin” (from CMS and pre-existing colistin) 
and, after accounting for differences in molecular 
weight, subtracting values for the concentration 
of colistin measured separately from the “total”. 
When measuring the colistin alone, one must be 
careful to minimize hydrolysis of CMS.

Le Brun was one of the first to report a liquid 
chromatographic method for measuring “colis-
tin” in biological fluids from humans; serum, 
urine and sputum [25]. They adapted a method 
described 3 years previously for measuring resid-
ual colistin in bovine tissues [26]. The latter 
researchers formed a fluorescent derivative (λEx 
340  nm, λEm 440  nm) from reaction of the pri-
mary amines of colistin with o-phthalaldehyde. 
They were measuring colistin in farmed animals 
most likely exposed to colistin salts, using colis-
tin sulphate and the summed responses from 
colistin A and B as a reference. However, Le 
Brun et al. used the method to measure “colistin” 
in patients who had inhaled CMS, seemingly 
using CMS as a calibration reference. This group 
mixed serum or sputum with methanol/trichloro-
acetic acid to precipitate protein, followed by 
reaction with o-phthalaldehyde and chromato-
graphic analysis. They did not assess whether 
processing of samples with such an acidic mix 
may have facilitated partial or complete conver-
sion of CMS to colistin, but later work (vide 
infra) indicated that complete conversion is 
unlikely [3]. The risk of conversion in vitro of 
methanesulphonate derivatives to colistin during 
processing of samples containing CMS and colis-
tin will apply to any method [27] that purports to 
measure the concentrations of “colistin” in sam-
ples from humans or animals administered 
CMS. There is no problem when the biological 
samples being measured are from subjects (be 
they animals or humans) administered colistin 
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sulphate or polymyxin B sulphate and calibration 
standards are prepared using those same sub-
stances as reference standards. For example, the 
formation of a derivative with o-phthalaldehyde 
was used to measure colistin in plasma (0.5 mL) 
and in the gastrointestinal contents (1.0  g sam-
ples extending from the duodenum to ileum) of 
pigs following the oral administration of colistin 
sulphate [28]. Samples were treated with trichlo-
roacetic acid to precipitate protein prior to solid-
phase extraction and formation of the derivative. 
The limit of quantification was 0.25  mg/L and 
0.50 mg/kg, respectively.

The formation of other fluorescent derivatives 
for the chromatographic quantification of colistin 
in biological fluids has been published. Colistin 
A (polymyxin E1) was extracted from plasma of 
the rat and dog using a 96-well C8 disk extraction 
plate prior to reacting it with dansyl chloride. The 
product was described as a penta-dansyl deriva-
tive (λEx 344  nm, λEm 518  nm) that was “con-
firmed” with mass spectrometry [29], but the 
conditions for formation of the confirmed prod-
uct were not identical to those for its formation 
during preparation of the biological samples for 
chromatography. The investigators intended 
using the method as part of the development of a 
single component of colistin (colistin A) as a 
potential therapeutic agent, and used colistin A to 

prepare calibration standards. The limit of quan-
tification (in 0.2 mL plasma) was 0.05 mg/L.

In seeking to gain a better understanding of the 
pharmacokinetics and pharmacodynamics of 
colistin and CMS, separate and more specific 
methods were developed for measuring colistin in 
plasma from rats after the administration of colis-
tin sulphate, and for measuring colistin and CMS 
after the administration of CMS [2, 3]. The meth-
ods relied on forming a fluorescent derivative 
from reaction of the amine of the L-diaminobutyric 
acid residues of colistin with 9-fluorenylmethyl 
chloroformate (FMOC). After adding trichloro-
acetic acid/methanol to samples of plasma, colis-
tin in the supernatant was retained under basic 
conditions on a C18 solid-phase extraction car-
tridge. Extraneous substances were eluted and the 
reaction initiated by adding a small volume of a 
concentrated solution of FMOC into the cartridge. 
The derivatives of colistins A and B were eluted, 
chromatographed on a C18 analytical column, and 
detected and quantified from their fluorescence at 
315 nm following excitation at 260 nm (Fig. 6.1).

Concentrations were calculated from a cali-
bration curve of the ratio of the summed areas of 
the two chromatographic peaks for colistins A 
and B to an internal standard against the concen-
tration of colistin sulphate. In samples spiked 
freshly with a “high” concentration of CMS 
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Fig. 6.1  Typical chromatograms obtained from fluores-
cence detection for drug-free human plasma (left) and 
drug-free plasma spiked with colistin  sulphate (1 mg/L) 

(right). The fluorescent derivative of colistin A was eluted 
at about 26.5 min, of colistin B at about 22 min and of 
netilmicin, the internal standard, at about 18.5 min. [2]
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(10 mg/L), there was no quantifiable conversion 
of CMS to colistin when measured for colistin 
only [3]. A separate sample was treated with sul-
phuric acid to convert CMS and partial methane-
sulphonate derivatives formed in vivo to colistin, 
and then added to a cartridge for derivatizing 
with FMOC.  The limit of quantification for 
colistin in plasma was 0.10  mg/L (from a 
0.25 mL volume of sample) and for CMS it was 
0.20  mg/L (0.15  mL) [30]. The two methods 
were developed for measuring both substances 
after administering CMS to rats (Fig. 6.2) [31] 
and to patients with cystic fibrosis [30]. Since 
then, they have been adapted/modified over the 
subsequent decade for measuring both sub-
stances in a more recent study of patients with 
cystic fibrosis [32], and after administering CMS 
to patients receiving continuous ambulatory 
peritoneal dialysis [33], and to critically-ill 
patients [34]; for studies with mice [35]; for 
measuring colistin and CMS in bronchoalveolar 
lavage fluid from rats after intratracheal admin-
istration of CMS [36], and for measuring both 
substances after administering four different 
brands of CMS to rats [37]. The method for 
colistin alone has been used also for measuring 
colistin in broth culture after adding colistin sul-
phate [38]; colistin in mouse brain after adminis-
tration of colistin sulphate [39, 40]; and, for 
measuring colistin in plasma, urine and kidney 

tissue from rats administered colistin sulphate 
[41, 42]. Minor modifications to the volume of 
sample used, and the chromatographic mobile 
phase, and a change from trichloroacetic acid/
methanol to acetonitrile for precipitating protein, 
have been made since initial publication of the 
two methods. Concentrations of CMS in plasma 
after administration of CMS in vivo (or in other 
media during experiments conducted, for exam-
ple, with CMS in vitro) were calculated from the 
difference between “total colistin” (i.e. colistin 
plus methanesulphonate derivatives converted to 
colistin during incubation with sulphuric acid 
[3]), and colistin measured separately [2].

Later, the method for colistin [2] was applied 
to measuring the concentrations of polymyxin B 
in plasma from humans administered polymyxin 
B sulphate [43] and of a congener of polymyxin 
B, NAB 7061 (one of the amino acids in poly-
myxin B replaced with another) in plasma and 
urine of rats [44]. The limit of quantification was 
0.125 mg/L with 0.10 mL of plasma; identical to 
the original method [2]. The method was applied 
subsequently for measuring polymyxin B in criti-
cally ill patients administered intravenous poly-
myxin B sulphate [45–47], some of whom were 
receiving continuous renal replacement or 
intermittent haemodialysis.

Subsequent reports from other research groups 
have applied the two methods [2, 3], with or 
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without slight modifications, for measuring colis-
tin in serum after the intravenous administration 
of CMS to critically ill patients [48]; colistin in 
serum and cerebrospinal fluid after the adminis-
tration of CMS [49, 50]; colistin in plasma and 
bronchoalveolar lavage fluid from humans after 
administration of CMS [51, 52]; colistin in 
plasma and tissues (liver, muscle and kidney) 
from ducks administered colistin sulphate intra-
muscularly or in their feed [53]; and, colistin in 
plasma from pigs administered colistin sulphate 
[54].

A subsequent pharmacokinetic study applied 
the method above [2] to examine the pharmaco-
kinetics of “colistin” in humans after inhalation 
of CMS [55]. These investigators claimed to have 
measured colistin A (polymyxin E1) but it was 
not clear which substance had indeed been used 
for preparation of the calibration standards: colis-
tin A, colistin sulphate, or CMS. From chromato-
graphic analysis of the calibration standards, only 
the peak for colistin A was used to construct a 
calibration curve. The sulphate salts of colistins 
A and B account for more than 85% of colistin 
sulphate and the ratios of the two can differ con-
siderably between batches of the raw material 
[26] and, hence, between batches of CMS manu-
factured from colistin. It is important to include 
the peak responses for colistins A and B when 
constructing a calibration curve, plus the 
responses from the two species in biological flu-
ids following administration of CMS. The ratios 
of the two components can be established by 
direct chromatographic analysis of the raw mate-
rial, and quantified by either UV absorption [2] 
or mass spectrometry [4]. The validity of these 
two methods for assessing relative content of the 
components has been confirmed by their quantifi-
cation in chromatographic eluate using evapora-
tive light scattering [56].

Greater access to mass spectrometry for detec-
tion and quantification has produced a number of 
reports of well-described methods for measuring 
CMS and colistin after a dose of CMS, of colistin 
after colistin sulphate, and of polymyxin B after 
dosing with polymyxin B sulphate.

A method developed for measuring colistin in 
perfusate and urine collected from experiments 
examining the fate of colistin in the isolated per-
fused rat kidney also described measuring the 
substance in human plasma and urine [57]. Protein 
precipitation was achieved by mixing the samples 
(0.2 mL) with trichloroacetic acid/methanol fol-
lowed by further clean-up using solid-phase 
extraction, with a portion of the eluate subjected 
to LC-MS/MS. Extraction was deemed necessary 
to maintain sufficient and consistent sensitivity. 
Summed intensities of the product ions from the 
two transitions each for colistin A and colistin B 
relative to an internal standard, polymyxin B1, 
were used to construct calibration curves. Prior to 
this, the proportions of colistin A and B in the ref-
erence material were established. Limits of quan-
tification were 0.028–0.056  mg/L for colistin A 
and 0.016–0.032 for colistin B, depending on the 
biological fluid. Interestingly, this level of sensi-
tivity was not able to be achieved when similar 
methods were used for preparing samples of 
bovine milk and tissue [58] for chromatography, 
despite the larger sample sizes and a more sensi-
tive model of mass spectrometer. It is likely that 
the lower limits claimed by Ma et al. [57] could be 
extended with a more sensitive mass spectrome-
ter. The method [57] is suitable for measuring 
colistin after the administration of colistin sul-
phate and could also be adapted for measuring 
polymyxin after polymyxin sulphate. However, 
the authors did not establish its suitability for 
measuring colistin in the presence of CMS.

A well-described method for measuring colis-
tin A and B plus the concentrations of their 
respective methanesulphonate prodrugs in human 
plasma (0.10 mL) used only one step, precipita-
tion of protein with 0.1% trifluoroacetic acid in 
acetonitrile, prior to chromatography connected 
to tandem mass spectrometry [5]. It described 
chilling of collected blood, separating plasma 
from red blood cells soon afterwards, thawing of 
previously frozen and stored samples of plasma 
in an ice bath, rapid processing of them in small 
batches, and storage of the supernatant at 4  °C 
prior to chromatography. The limits of quantifi-
cation for colistin A and B were 0.019 and 
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0.010 mg/L, respectively.. The concentrations of 
CMS were calculated by difference [2, 3]. 
Unfortunately, the authors did not present data 
that validated their method for measuring CMS 
[5]. The method has been used by these Swedish 
and Greek collaborators for measuring colistin 
and CMS in a number of studies with intensive 
care patients administered CMS [59–61]. The 
precautions they describe in the preparation of 
samples, or variations of them, are not exclusive 
to these reports, but are necessary to minimize 
conversion of methanesulphonate derivatives to 
colistin when measuring colistin alone (see fur-
ther discussion on stability below). In some 
instances, while the procedures described would 
appear to minimize conversion, it has not always 
been proven unequivocally [62].

Likewise, three subsequent methods based on 
liquid chromatography-mass spectrometry 
achieved comparable limits of quantification 
with the same (0.1  mL) [56, 63] or double the 
volume of plasma [64], but they also lack data 
validating the methods for measuring CMS in 
spiked samples of plasma. Data were provided 
with respect to the stability of colistin in plasma 
kept at room temperature for up to 12 h [63], but 
none could be identified that demonstrated lack 
of conversion of CMS to colistin during process-
ing of samples. The first and third methods [56, 
64] improved efficiency and accuracy by auto-
mated processing; samples of plasma thawed to 
4 °C for measuring colistin were added directly 
into 96-well solid-phase extraction plates. With 
this procedure, it is quite likely that there was 
minimal conversion of CMS to colistin during 
processing of the samples, but no data in either 
publication [56, 64] could be identified to con-
firm this.

A method for measuring polymyxin B1 and 
B2 and colistin A and B (as well as vancomycin) 
in 0.5  mL of plasma from humans claimed an 
advantage of not requiring “a long and expensive 
procedure of SPE” (solid-phase extraction). 
However, while the authors [65] used polymyxin 
B sulphate as a reference for preparing calibra-
tion standards of polymyxin B1 and B2, they 
appear to have used colistin methanesulphonate 
(incorrectly) as reference standards for poly-

myxin E1 and E2. In contrast, another method 
published in the same year is comprehensive [4]. 
It describes limits of quantification similar to 
those described previously for colistin A and B 
[5], albeit using 2.5-times the volume of plasma, 
but also provides validated limits for CMS A 
(0.029  mg/L) and B (0.01  mg/L). The method 
described the processing of calibration standards 
and quality controls containing CMS in plasma 
by solid-phase extraction after conversion of the 
prodrug to colistin with sulphuric acid [3]. For 
measuring colistin alone in samples from patients 
administered CMS, conversion of CMS to colis-
tin was minimized by processing previously fro-
zen samples within 1  h of being thawed and 
simply diluting them with water prior to solid-
phase extraction, rather than adding acetonitrile/
acid to precipitate protein prior to extraction [5]. 
Figure  6.3 demonstrates application of the 
method for measuring concentrations of CMS 
and colistin in a subject administered CMS [4].

The method was also applied to measuring 
colistin and CMS in human urine; 0.2  mL of 
urine was mixed with half its volume of drug-free 
plasma “to avoid the loss of colistin by adsorp-
tion” to the 5 mL polypropylene tubes used [4]. 
This procedure was also found necessary by oth-
ers for urine [64] and haemodiafiltrate [62], 
although one other group overcame the loss of 
polymyxin B by adding 0.5% of 
3-[(3-cholamidopropyl)dimethylammonio]-
1-propanesulphonate (CHAPS; a surfactant) to 
the sample after collection [6]. A shorter chro-
matographic time than described in a previous 
method [5] allowed the processing of larger batch 
sizes of samples for storage at 4 °C in an autos-
ampler prior to analysis by liquid chromatography-
mass spectrometry [4].

In 2015, a further improvement on this method 
was achieved with the same solid-phase extrac-
tion material but with a 96-well system and, more 
importantly, a chromatographic column contain-
ing an ethylene-bridged hybrid material with 
bound amide functional groups [66]. It is appar-
ent from a visual comparison of chromatograms 
[4, 66] that the improved chromatographic 
efficiency provided a greater sensitivity and 
slightly lower limits of quantification; meanwhile 
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using a slightly lesser volume of sample than the 
earlier method (plasma of 0.18  mL [66] rather 
than 0.25  mL [4]). However, the method also 
lacks data validating the measurement of CMS in 
plasma.

This was followed a year later by a method for 
measuring polymyxins B1, B2 and B1–1 (an iso-
mer of B1) in human plasma and urine (described 
for measuring this group of polymyxins in the 
latter medium for the first time) [6]. The poly-
myxins were extracted in an automated manner 
from plasma using reversed-phase C8 HLB sor-
bent and from urine (to which surfactant had 
been added, vide supra) with a reversed-phase/
weak cation-exchange sorbent (both Oasis®, 
from Waters). These authors achieved limits for 
the quantification of all three polymyxins in 
plasma (0.1  mL) and urine (0.2  mL) of 
0.005 mg/L. They are superior to values reported 
by Thomas et al. [67] of 0.1 mg/L for polymyxins 
B1 and B2 using 0.25 mL of plasma although, as 
the authors rightly state, inspection of their chro-
matograms would suggest an order of magnitude 
lower could be achievable. Interestingly, the for-
mer authors’ measurements of the three poly-

myxins in plasma and urine, albeit in only one 
subject, suggests differences in renal clearance 
between them [6].

Other methods based on liquid chromatogra-
phy – mass spectrometry suffer from descriptions 
that are not clear or are incomplete. It is difficult 
sometimes to ascertain limits of quantification, 
volumes of sample used, and whether conversion 
of CMS to colistin in samples has been mini-
mized and/or evaluated after collection of the 
samples and during their processing for quantify-
ing colistin in studies where CMS has been 
administered.

For example, an appreciation of the sensitivity 
of the method for polymyxin B is difficult to 
ascertain because the volume of sample, detail of 
the method and quantifiable limits were not pro-
vided [68]; a limit of 0.25 mg/L can be construed 
from data for intra-/inter-day variations (CVs) of 
less than 8% for concentrations spanning the cal-
ibration range of 0.25–10.0  mg/L.  Members of 
the same group subsequently described use of the 
same method for examining the pharmacokinet-
ics of polymyxin B1, isoleucine-polymyxin B1 
and summed polymyxins B2 and B3 (the two 

Fig. 6.3  Concentrations 
of colistins A and B (as 
the free base) and CMSs 
A and B (as CMS 
without the sodium ion) 
in plasma versus time 
from a human volunteer 
administered a single 
intravenous infusion of 
80 mg CMS (Colimycin 
for injection, Sanofi-
Aventis). From Gobin 
et al. [4]

6  Bioanalysis and Stability of Polymyxins



82

were not resolved chromatographically and the 
concentrations of B3 considered negligible in 
most samples) and their concentrations in renal 
tissue and urine after a single intravenous dose of 
polymyxin B sulphate to rats [69]. This was fol-
lowed by another report of a study examining the 
pharmacokinetics and efficacy of polymyxin B 
sulphate after it had been encapsulated into a 
liposomal delivery system and administered 
intravenously to mice [70]. The concentrations of 
the four components of polymyxin B in 0.20 mL 
of serum and epithelial lining fluid were deter-
mined using UPLC-MS/MS. Trichloroacetic acid 
in an organic solvent was added to precipitate 
proteins, and the dried extract from the superna-
tant following centrifugation reconstituted in 
mobile phase (formic acid, acetonitrile and water) 
for chromatography. The authors had separated 
and purified the four components previously 
using preparative liquid chromatography [71], 
and confirmed their identity with mass spectrom-
etry. It is assumed, therefore, that calibration 
curves for calculating their individual concentra-
tions in the two fluids [72] were prepared using 
the purified components. The initial work from 
data on reproducibility for the calibration stan-
dards suggests a limit of quantification of 
0.25 mg/L from an unknown volume of sample 
[68]; the final publication reports a limit of 
0.006 mg/L for all four polymyxin B compounds 
(B1, isoleu-B1, B2 and B3) with 0.2 mL of serum 
or epithelial fluid [70].

6.4	 �Stability of CMS and Colistin

As noted previously, CMS is converted to colistin 
in vivo after the administration of CMS. The con-
version occurs also in vitro in biological samples 
collected from studies where CMS has been 
administered (e.g. a pharmacokinetic study) and 
in studies assessing antimicrobial activity with 
CMS. Apparent from Fig. 6.2 are the consider-
ably higher concentrations of CMS compared to 
colistin in plasma from a pharmacokinetic study 
in rats after an intravenous dose of CMS [31], 

and the higher concentrations also in humans [4, 
30, 34, 59, 61], especially during the first 4 h after 
a dose of CMS (Fig. 6.3). Therefore, it is critical 
for ensuring accurate measurement of the con-
centrations of colistin in such studies that there is 
minimal conversion of CMS to colistin in the 
time between collection of the sample and mea-
suring colistin.

The method for measuring colistin in plasma 
[2] was used for an extensive assessment of its 
stability when stored in a range of aqueous media 
(water, plasma and isotonic phosphate buffer, 
0.067  mol/L, pH  7.4) and its formation from 
CMS stored separately in identical media plus 
Meuller-Hinton broth. The presence of CMS 
remaining in water was also examined qualita-
tively using strong anion exchange chromatogra-
phy [16]. The levels of colistin A and B in water 
remained unchanged after storage at 4  °C for 
60 days and at 37 °C for 120 h. When stored in 
the buffer (approximately 1.5 pH units higher 
than the solution of colistin sulphate in water) 
and human plasma at 37  °C, its stability was 
reduced markedly; more so in plasma than in the 
buffer. After incubation of CMS in water for 12 h 
at this temperature, there were clear qualitative 
changes in the chromatogram for CMS, suggest-
ing partial conversion to products derivatized to a 
lesser degree with methanesulphonate. Between 
10% and 15% of CMS in buffer and plasma had 
degraded to colistin within 2 h, irrespective of the 
source of CMS raw material. Interestingly, later 
work found that the stability of CMS was greater 
at a higher concentration in plasma (30 mg/L vs 
2  mg/L); an observation made also in aqueous 
solutions of CMS for administration to patients 
[73]. It was attributed to the formation of micelles 
by CMS, which protected the prodrug from con-
version to colistin [74].

Colistin was reported to be stable in plasma 
stored at −20 °C and −80 °C for up to 2 months 
[4]. No data was provided but, from the limits of 
quantification for CMS and data for the storage 
of plasma spiked with CMS under the same con-
ditions and period, it can be estimated that there 
was no more than 1% conversion to colistin. This 
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supports previous data [1]: CMS and colistin in 
plasma stored at −80 °C were stable for 4 months 
and 6–8  months, respectively. The “loss by 
adsorption”, alluded to above and previously [5], 
was reported later [75] to be significant when 
dilutions of stock solutions of colistin were made 
using test-tubes made of soda lime glass, polysty-
rene and polypropylene. The least degree of loss 
was from low protein-binding microtubes. 
Although no quantitative data could be located in 
support, the usual procedure for minimizing 
adsorption is to add human plasma to those sam-
ples lacking protein prior to processing them for 
chromatographic analysis [4, 5]. Alternatively, it 
is evident from a more recent publication that the 
addition of a surfactant to urine after collection 
achieves almost 100% recovery of polymyxins 
B1, B1–1 and B2 [6].

These observations highlight the need for 
careful handling of biological samples collected 
from, for example, studies examining the phar-
macokinetics of CMS and colistin after the 
administration of CMS.  It is proposed that any 
method to be used for such studies should have 
conducted experiments to validate the handling 
of samples after collection, their storage, and 
their handling during processing of samples prior 
to forming a fluorescent derivative for chroma-
tography or during processing prior to direct 
chromatographic analysis with mass spectromet-
ric detection.

6.5	 �Conclusions

In summary, there have been three predominant 
approaches for measuring the concentrations of 
colistin and polymyxin B, and the prodrug of 
colistin (CMS), in biological fluids: microbio-
logical assay, liquid chromatography with detec-
tion and quantification of fluorescent derivatives, 
and liquid chromatography with detection and 
quantification by mass spectrometry. The second 
and third approaches have facilitated rapid 
advances in understanding the preclinical and 

clinical pharmacology of polymyxins (and their 
relevant prodrugs) over the last 15  years. They 
are capable of achieving the sensitivity required 
to measure concentrations in samples from clini-
cal and pharmacokinetic studies in humans, and 
pharmacokinetic and pharmacodynamic studies 
in animals, and some of the methods using these 
approaches have been well validated. Of the 
three, the most appropriate and convenient for the 
majority of research laboratories would be liquid 
chromatography in combination with triple quad-
rupole mass spectrometry; even a single quadru-
pole may be sufficient [76] and could be adapted 
for clinical samples. The processing of samples is 
generally relatively simple, but one must ensure 
that there is insignificant conversion of CMS to 
colistin when quantifying the latter in samples 
where CMS is present also. The only limitation is 
access to a mass spectrometer. The formation of 
fluorescent derivatives has sufficient sensitivity 
but does require the additional step of forming 
the derivative during processing of the samples. 
These two approaches are designed to quantify 
the polymyxin base. If samples are from subjects 
or animals administered CMS, the concentrations 
of the base are determined before and after forced 
conversion of the prodrug to the base. From these 
separate determinations, the concentration of 
prodrug in biological fluid can be calculated. 
Microbiological methods have, in general, suf-
fered from insufficient validation. Potentially, 
such methods possess sufficient sensitivity for 
measuring the concentrations of polymyxin B 
after therapeutic doses (and of colistin after 
administering colistin sulphate; available in 
China), but they are time-consuming. Often, they 
are described as being used to measure “colistin” 
in studies where CMS is investigated without 
taking any account of the presence of its prodrug, 
the lack of antimicrobial activity of that prodrug, 
and its potential conversion to colistin in both the 
samples and calibration standards to differing 
degrees during incubation. Some 
chromatography-based methods also suffer from 
this shortcoming.
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