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Abstract
Polymyxins are naturally occurring cyclic 
lipopeptides that were discovered more than 
60 years ago. They have a narrow antibacterial 
spectrum, which is mainly against Gram- 
negative pathogens. The dry antibiotic pipe-
line, together with the increasing incidence of 
bacterial resistance in the clinic, has been 
dubbed ‘the perfect storm’. This has forced a 
re-evaluation of ‘old’ antibiotics, in particular 
the polymyxins, which retain activity against 
many multidrug-resistant (MDR) Gram- 
negative organisms. As a consequence, poly-
myxin B and colistin (polymyxin E) are now 
used as the last therapeutic option for infec-
tions caused by ‘superbugs’ such as 
Pseudomonas aeruginosa, Acinetobacter bau-

mannii, and Klebsiella pneumoniae. This 
chapter covers the history, chemistry and anti-
bacterial spectrum of these very important 
last-line lipopeptide antibiotics.
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3.1  History

3.1.1  Discovery

The polymyxins are a family of chemically dis-
tinct antibiotics produced by the widely distrib-
uted Gram-positive spore-forming soil bacterium 
Paenibacillus polymyxa (previously known as 
Bacillus polymyxa) (Table 3.1). They were first 
identified in the 1940s simultaneously by three 
different research groups working independently 
in the field of antibiotic discovery [1–3]. Initially, 
Benedict and Langlykke at the Northern Regional 
Research Laboratories in the United States pub-
lished a paper in July of 1947 describing the ant- 
bacterial properties of crude liquid cultures of 
Paenibacillus polymyxa [1]. Later that month 
Stansley, Shepherd and White at the Stamford 
Research Laboratories of the American Cyanamid 
Company in the United States published a paper 
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Table 3.1 The chemical structures of the naturally occurring polymyxins

Polymyxin Fatty-acyl group Pos 3 Pos 6 Pos 7 Pos 10
A1 (S)-6-methyloctanoyl D-Dab D-Leu L-Thr L-Thr
A2 6-methylheptanoyl D-Dab D-Leu L-Thr L-Thr
B1 (S)-6-methyloctanoyl L-Dab D-Phe L-Leu L-Thr
B2 6-methylheptanoyl L-Dab D-Phe L-Leu L-Thr
B3 octanoyl L-Dab D-Phe L-Leu L-Thr
B4 heptanoyl L-Dab D-Phe L-Leu L-Thr
B5 nonanoyl L-Dab D-Phe L-Leu L-Thr
B6 3-hydroxy-6-methyloctanoyla L-Dab D-Phe L-Leu L-Thr
B1-Ile
(Circulin A)

(S)-6-methyloctanoyl L-Dab D-Phe L-Ile L-Thr

B2-Ile
(Circulin A)

6-methylheptanoyl L-Dab D-Phe L-Ile L-Thr

Dab3-B1 (S)-6-methyloctanoyl D-Dab D-Phe L-Leu L-Thr
Dab3-B2 6-methylheptanoyl D-Dab D-Phe L-Leu L-Thr
C1

† 6-methyloctanoylb L/D-Dab D-Phe L-Thr L-Thr
C2

† 6-methylheptanoyl L/D-Dab D-Phe L-Thr L-Thr
D1 (S)-6-methyloctanoyl D-Ser D-Leu L-Thr L-Thr
D2 6-methylheptanoyl D-Ser D-Leu L-Thr L-Thr
E1

(Colistin A)
(S)-6-methyloctanoyl L-Dab D-Leu L-Leu L-Thr

E2

(Colistin B)
6-methylheptanoyl L-Dab D-Leu L-Leu L-Thr

E3 octanoyl L-Dab D-Leu L-Leu L-Thr
E4 heptanoyl L-Dab D-Leu L-Leu L-Thr
E7 7-methyloctanoyl L-Dab D-Leu L-Leu L-Thr
E1-Ile (S)-6-methyloctanoyl L-Dab D-Leu L-Ile L-Thr
E1-Val (S)-6-methyloctanoyl L-Dab D-Leu L-Val L-Thr
E1-Nva (S)-6-methyloctanoyl L-Dab D-Leu L-Nva L-Thr
E2-Ile 6-methylheptanoyl L-Dab D-Leu L-Ile L-Thr
E2-Val 6-methylheptanoyl L-Dab D-Leu L-Val L-Thr
E8-Ile 7-methylnonanoyl L-Dab D-Leu L-Ile L-Thr
F† 6-methyloctanoylb L/D-Dab D-Leu/D-Ile L-Leu/L-Ile/L-Ser L-Leu/L-Ile/L-Ser
F† 6-methylheptanoyl L/D-Dab D-Leu/D-Ile L-Leu/L-Ile/L-Ser L-Leu/L-Ile/L-Ser
F† octanoyl L/D-Dab D-Leu/D-Ile L-Leu/L-Ile/L-Ser L-Leu/L-Ile/L-Ser
M1

(Mattacin)
(S)-6-methyloctanoyl D-Dab D-Leu L-Thr L-Thr

M2

(Mattacin)
6-methylheptanoyl D-Dab D-Leu L-Thr L-Thr

P1 (S)-6-methyloctanoyl D-Dab D-Phe L-Thr L-Thr
P2 6-methylheptanoyl D-Dab D-Phe L-Thr L-Thr
S1 6-methyloctanoylb D-Ser D-Phe L-Thr L-Thr
T1 6-methyloctanoylb L-Dab D-Phe L-Leu L-Leu
T2 6-methylheptanoyl L-Dab D-Phe L-Leu L-Leu

L-Dab = L-2,4-diaminobutyric acid, D-Dab = D-2,4-diaminobutyric acid, D-Phe = D-phenylalanine, L-Leu = L-Leucine, 
L-Ile = L-Isoleucine, L-Val = L-Valine, L-Nva = L-Norvaline, L-Ser = L-Serine, D-Ser = D-Serine, L-Thr = L-Threonine
astereochemistry at C3 and C6 not confirmed, † position of amino acid residues is speculative
bstereochemistry at C6 not confirmed
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describing the isolation and partial purification of 
an antibiotic substance from Paenibacillus poly-
myxa which they designated ‘Polymyxin’ [2].
This organism produced on agar a wide zone of 
inhibition of the Gram-negative pathogen 
Salmonella schottmuelleri. The ‘polymyxin’ 
entity was unique in its remarkable specificity for 
Gram-negative bacteria, which distinguished it 
from all antibiotics previously reported. In 
August of 1947 Brownlee and co-workers at the 
Wellcome Physiological Research laboratory in 
England published their work on the identifica-
tion of an antibiotic substance from an organism 
identified as Bacillus aerosporus, isolated from 
the soil of a market garden in Surry in 1946 [3]. 
They initially called this antibiotic ‘Aerosporin’ 
and like the antibiotic ‘Polymyxin’, Aerosporin 
had selective antimicrobial activity against 
Gram- negative bacteria. Brownlee and Bushby 
went on to further identify the chemotherapeutic 
and pharmacological properties of ‘Aerosporin’ 
showing that the substance they had isolated was 
a basic peptide [4]. Subsequently, researchers at 
both the Stamford and Wellcome labs determined 
that the three groups were working with different 
strains of P. polymyxa and that the antibiotic 
called ‘Polymyxin’ was also a basic peptide that 
was chemically distinct from ‘Aerosporin’ yet 
had a very similar antimicrobial spectrum and 
biological activity. It was concluded that the two 
antibiotics belonged to the same family of antibi-
otic compounds [5–15]. By international agree-
ment the generic name of ‘polymyxin’ was 
adopted for all the antibiotics derived from P. 
polymyxa and a nomenclature was developed that 
described the chemically distinct groups of anti-
biotics, which comprise the polymyxin family 
[16, 17]. With this new nomenclature ‘Aerosporin’ 
became known as polymyxin A, while 
‘Polymyxin’ became known as polymyxin 
D. Three other chemically distinct antibiotics iso-
lated from P. polymyxa strains by researchers at 
the Wellcome labs during this period became 
known as polymyxin B, C and E [11]. Colistin 
(polymyxin E) was first described in 1950 and 
obtained from Bacillus (Aerobacillus) colistinus, 

a new species isolated from a soil sample in Japan 
[18]. Colistin was originally thought to be dis-
tinct from polymyxins, although the striking 
pharmacological and chemical similarities of 
colistin to the entire polymyxin group of antibiot-
ics were recognized from the outset [19–21]. It 
was eventually determined that colistin was 
structurally identical to polymyxin E and that 
they were in fact the same compound [22–24]; 
colistin, however, was the name ultimately 
adopted in the literature. During this period the 
exact chemical structures of the polymyxins 
remained speculative [12–14, 25]. It was known 
that that they were peptides and possibly cyclic in 
nature. Individual amino acid residues had been 
identified and it was also established that they 
contained a fatty acyl group that had been identi-
fied as the S-6-methyloctanoyl acyl group. In 
1954, Hausmann and Craig made the discovery 
that polymyxin B was in fact composed of two 
individual peptide components that differed only 
in the structures of the fatty-acyl groups they con-
tained [26]. These two peptide components were 
labelled polymyxin B1 and B2 (Table 3.1). It was 
soon established that the presence of multiple 
peptide components with variations in their struc-
tures, primarily their fatty-acyl component, was a 
feature common to all of the polymyxin groups. 
In 1963, Suzuki and co-workers at the Osaka 
Univeristy in Japan finally determined the abso-
lute chemical structures for polymyxin B1, poly-
myxin B2 and colistin A (polymyxin E1) followed 
by colistin B (polymyxin E2) in 1964 (Table 3.1) 
[27]. They went on to also confirm the structures 
of polymyxin D1 and D2 (Table 3.1) [28]. These 
polymyxins were all identified as being cyclic 
lipopeptides. Since the initial discovery of the 
polymyxin A, B, C, D and E groups of 
 lipopeptides, five other groups of polymyxins 
containing multiple unique lipopeptide compo-
nents have been identified from P. polymyxa 
strains which include the polymyxin F [29], M 
[30, 31], P [32, 33], S [34, 35] and T [34, 36] 
groups (Table 3.1). The structures and chemistry 
of the polymyxins are discussed in more detail in 
the next section of this chapter.

3 History, Chemistry and Antibacterial Spectrum
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3.1.2  Adoption into Clinical Practice

Although the polymyxin compounds were recog-
nized to exhibit similar antimicrobial activity, 
there were striking differences in their potential 
for eukaryotic cell toxicity [5, 6, 37–39]. For 
example, Brownlee et  al. [37] demonstrated 
severe though reversible renal toxicity in rats 
with polymyxin A, C and D, and likewise with 
polymyxin A in rabbits and dogs (polymyxins C 
and D not tested); polymyxin B and especially 
colistin (polymyxin E), which were tested in all 
species, produced significantly less nephrotoxic-
ity in all cases. Interestingly, in contrast to what 
is now known about the nephrotoxicity of both 
polymyxin B and colistin, the authors in that 
study commented that this “lends support to the 
view that it [i.e. colistin] has little nephrotoxic 
activity”. Early reports such as this indicating 
substantially reduced renal toxicity from colistin 
and polymyxin B are likely the reason that of the 
five polymyxin antibiotic groups initially discov-
ered, only these two were further developed and 
adopted into clinical practice. Nevertheless, 
while the prevailing view at the time was that 
colistin and polymyxin B were generally safe 
compounds the potential for toxicity, especially 
renal toxicity, was well recognized [39, 40]. 
Subsequently, research was undertaken to exam-
ine ways to reduce further their toxicity.

3.1.3  Sulphomethyl Derivatives

The reaction of a primary amine with an alde-
hyde and sodium sulphite to convert a basic sub-
stance to labile alkane sulphonic acids was 
introduced into drug synthesis in the early 1900s 
in a successful attempt to reduce the toxicity of 
phenetidine without loss of antipyretic activity 
[41]. The reaction is equally applicable to basic 
polypeptides such as the polymyxins (the chem-
istry of which is discussed later in this chapter), 
and the treatment of polymyxins with formalde-
hyde and sodium bisulphite was first reported by 
Stansly et al. [2]. These investigators showed that 
a sulphomethyl derivative of ‘Polymyxin’ (later 
shown to be polymyxin D) produced less acute 

toxicity than the parent antibiotic. Subsequent 
studies demonstrated similar results with the sul-
phomethylated derivatives of both colistin and 
polymyxin B [21, 39]. Interestingly, Stansly et al. 
[2] also reported substantially less painful irrita-
tion at subcutaneous or intramuscular injection 
sites with the sulphomethylated derivative than 
with the unsubstituted lipopeptide, a common 
problem with the polymyxins initially considered 
by some to be more significant than the potential 
renal toxicities. This is exemplified by Barnett 
et al. [40] who in 1964 commented that “In the 
literature much value has been attached to the 
reduction in acute intravenous toxicity achieved 
by the sulphomethylation of the polymyxins, but 
with these antibiotics this toxicity is of no thera-
peutic importance because even in the unsubsti-
tuted form they have a satisfactory therapeutic 
index. The use of the polymyxins has, however, 
been much affected by the pain that develops at 
the site of intramuscular injection and by an 
undeserved reputation for nephrotoxicity. The 
painful reactions are undoubtedly avoided by 
using the sulphomethylated derivatives.” Indeed, 
sulphomethylation was applied by Koyama [42] 
in 1957 specifically to overcome this problem 
with colistin. As will be discussed below colistin 
is still administered in the clinic intravenously as 
its sulphomethylated derivative.

3.1.4  Commercial Preparations

The polymyxins colistin and polymyxin B 
became available clinically in the late 1950s and 
early 1960s [43, 44]. Presently, ‘colistin’ is com-
mercially available in two different forms, 
namely colistin sulphate [1264-72-8, CAS 
 registry number], hereafter referred to as colistin, 
and its sulphomethylated derivative, sodium 
colistin methanesulphonate [8068-28-8] (CMS, 
also known as colistimethate sodium, sodium 
colistimethate, penta-sodium colistimethanesul-
phate and sulphomethyl colistin); polymyxin B is 
only available as polymyxin B sulphate [1405-
20-5] [45]. Colistin, which is poorly absorbed 
from the gastrointestinal tract and through skin 
[21, 37, 46], has been formulated as an oral prep-
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aration (indicated for bowel decontamination) 
and topical preparations (indicated for bacterial 
skin, eye and ear infections), but is not used par-
enterally due to its high potential to elicit toxicity 
upon intravenous administration (median lethal 
dose (LD50) = 5.46 mg/kg in mice) [21]. CMS is 
poorly absorbed from the adult gastrointestinal 
tract [47] and its sodium salt, in lyophilized form, 
is the form of ‘colistin’ that is administered par-
enterally, most commonly intravenously [48, 49]. 
However, it may also be administered intramus-
cularly, intrathecally, intraventricularly, and via 
inhalation, the latter a common route of adminis-
tration for patients with cystic fibrosis. Although 
CMS can be administered intramuscularly at the 
same doses as intravenously, intramuscular 
administration is not commonly used in clinical 
practice because of variable absorption and 
severe pain at the injection site [50].

It is important not to use the terms colistin and 
CMS interchangeably, as the chemistry, antibac-
terial activity, toxicity and pharmacokinetics of 
these two entities differ substantially. 
Unfortunately, despite the urging of Goodwin 
[51] who as early as 1969 pointed out the poten-
tial confusion that may arise when the general 
term ‘colistin’ is used in reference to either colis-
tin sulphate or CMS (as was common practice at 
the time; for examples, see Kunin [52], and 
Schwartz et  al. [21]), authors to this day still 
occasionally report and discuss ‘colistin’ in 
generic terms which makes determination of 
even the preparation used (colistin sulphate or 
CMS) difficult. For the purposes of this and all 
remaining discussions, colistin sulphate will 
hereafter be referred to as colistin.

3.1.5  Clinical Use

In terms of their clinical use, the only difference 
between polymyxin B and the two commercially 
available forms of ‘colistin’ (colistin sulphate 
and CMS) is that polymyxin B is not indicated 
for oral use. Otherwise, polymyxin B sulphate 
can be administered via intravenous, intramuscu-
lar, inhalational, intrathecal or topical routes [45]. 
With the introduction of polymyxins to clinical 

practice, colistin was marketed as offering greater 
or equal antibacterial potency as compared with 
polymyxin B and, as the methanesulphonate (i.e. 
CMS), was said to lack serious toxic effect in 
patients [19, 21, 39, 53–57]. It was demonstrated 
that larger doses of CMS were required for effec-
tiveness and thus the rate of nephrotoxicity 
approximated that of polymyxin B [39]; this, 
together with the noted reduction of pain at injec-
tion sites with the sulphomethylated derivatives, 
may explain why the use of CMS was adopted far 
more widely than polymyxin B. Interestingly, in 
1961 the sodium salt of a sulphomethyl deriva-
tive of polymyxin B was administered in large 
doses intramuscularly and intraventricularly in 
five children with secondary meningitis due to 
Pseudomonas pyocyanea (now Pseudomonas 
aeruginosa) [43]. This was done in an attempt to 
reduce the meningeal irritant and nephrotoxic 
properties of polymyxin B. With all five patients 
cured and no toxicity observed, the authors rec-
ommended this derivative of polymyxin B for 
future use in the treatment of such infections. 
However, for reasons, which may never be 
known, the sulphomethylated derivative of poly-
myxin B was never adopted into regular clinical 
practice. At present there is greater worldwide 
use of colistin compared to polymyxin B. Notably, 
a survey across 56 different countries revealed 
formulations of polymyxins used were CMS 
(48.6%), colistin (sulfate) (14.1%), both (1.4%), 
polymyxin B (1.4%), and unknown [58]; respon-
dents from 11 countries had no access to poly-
myxins. Intravenous formulations were used by 
84.2% of respondents, aerosolised or nebulised 
colistin by 44.4%, and oral colistin for selective 
gut decontamination by 12.7% [58].

Despite the early belief that colistin and poly-
myxin B were relatively safe drugs, and the use 
of less toxic CMS as the parenteral form of 
‘colistin’, clinical reports began to emerge which 
suggested a high incidence of nephrotoxicity and 
neurotoxicity following intravenous administra-
tion in a considerably large number of patients 
[59–67]. As a consequence, use of polymyxins 
declined in the 1970s with the arrival of poten-
tially less toxic antimicrobials such as the amino-
glycosides, which possessed the same or broader 

3 History, Chemistry and Antibacterial Spectrum
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antibacterial spectra. However, a resurgence in 
their use began in the late 1980s when colistin 
(the most commonly used polymyxin) was rein-
troduced to manage infection or colonisation by 
P. aeruginosa in patients with cystic fibrosis [68]. 
More recently, with the emergence of multidrug- 
resistant (MDR) Gram-negative ‘superbugs’ 
resistant to almost all other available antibiotics 
[69–72], and a lack of novel antimicrobial agents 
in the drug development pipeline for Gram- 
negative infections [70–76], the place of poly-
myxins in therapy is presently being re-evaluated. 
With no new antibiotics to treat these infections 
to become available in the foreseeable future [71, 
74], ‘old’ polymyxins are often the only available 
therapeutic options. As a consequence the use of 
polymyxins, especially CMS, has increased dra-
matically over the last decade [48, 49, 68, 77–
83]. The growing importance of polymyxins as a 
treatment option for MDR Gram-negative infec-
tions is exemplified by the growing problem of 
New Delhi metallo-β-lactamase (NDM)-
producing Enterobacteriaceae. Since the first 
identification on the Indian subcontinent in 
December 2009 of NDM-1-producing Klebsiella 
pneumoniae [84], NDM-producing 
Enterobacteriaceae (mainly K. pneumoniae and 
E. coli) have spread rapidly to more than 20 coun-
tries in all continents [85–87]. Many of these 
NDM-producing MDR isolates are only suscep-
tible to polymyxins.

3.2  Chemistry

From a chemical perspective, the polymyxins are 
non-ribosomal cyclic lipopeptides and  the gen-
eral structure is illustrated in Table 3.1. They are 
decapeptides containing an intramolecular cyclic 
heptapeptide amide-linked loop between the 
amino group of the side chain of the diaminobu-
tyric acid (Dab) residue at position 4 and the car-
boxyl group of the C-terminal threonine residue. 
They also have several other distinguishing struc-
tural features, which include four or five non- 
proteogenic Dab residues, which are charged at 
physiological pH. Four of these Dab residues are 
always found at positions 1, 5, 8 and 9  in the 

polymyxin scaffold and are always of the 
L-configuration. Position 2 of the polymyxin 
scaffold always contains a conserved hydrophilic 
L-threonine residue. Position 3 sees variation and 
can contain either a D or L-Dab residue or a 
D-serine residue. Position 6 always contains a 
conserved hydrophobic residue that is of the 
D-configuration and varies between phenyala-
nine, leucine. Position 7 sees the greatest varia-
tion and can either contain one of several 
hydrophobic residues including leucine, isoleu-
cine, valine, norvaline or the hydrophilic residue 
threonine. The stereochemistry at position 7 is 
always of the L-configuration. Position 10  in 
most cases has an L-threonine residue but in at 
least one case contains an L-leucine residue. In 
regards to the N-terminal fatty-acyl group, six 
chemically distinct fatty acyl groups that vary in 
length from 7 to 9 carbons have been identified to 
date. These include (S)-6-methyloctanoyl, 
6-methylheptanoyl, octanoyl, heptanoyl, non-
anoyl and 3-hydroxy-6-methyloctanoyl. Like 
many other antimicrobial peptides, this mixture 
of lipophilic and hydrophilic groups makes them 
amphipathic, a chemico-physical property which 
is essential for their activity [88]. This also allows 
them to be readily water soluble (e.g. logP values 
for colistin A and colistin B are −3.15 and −3.68, 
respectively) [89]. The relationship between 
these structural features and the activity of the 
polymxyins is discussed in detail in Chap. 20: 
Discovery of Novel Polymyxin-Like Antibiotics.

Examination of the literature to date reveals 
that 37 unique polymyxin lipopeptides have been 
isolated and structurally identified from the P. 
polymyxa species [27–33, 35, 36, 90–96]. The 
chemical structures of these individual lipopep-
tides are illustrated in Table 3.1. These have been 
classified into 10 different groups (A, B, C, D, E, 
F, M, P, S and T) with each group being structur-
ally defined and loosely classified by the pres-
ence of unique amino acid residue(s) or amino 
acid stereochemistry in their amino acid sequence 
at positions 3, 6, 7 and 10 (Table 3.1). These dis-
tinct groups of polymyxins have each been 
labelled with a letter. Each group can contain sev-
eral individual lipopeptide components which 
differ from one another in the chemical structure 
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of the fatty-acyl group they present at their 
N-terminus and in some cases the residue pre-
sented at position 7. The individual lipopeptide 
components of each ‘polymyxin’ group are 
labelled with a number. This nomenclature is 
demonstrated in Table 3.1. It is important to note 
here that the use of this classification system to 
label newly discovered polymyxins has not 
always been consistent as evident with the label-
ling of the individual components of the poly-
myxin E group (Table  3.1). In the case of the 
polymyxin C and F lipopeptides, the amino acid 
residue and fatty acyl composition of the lipopep-
tides in these two groups have been identified; 
however, the stereochemistry and exact positions 
of the amino acids are yet to be unambiguously 
determined. Therefore, in Table 3.1 the position 
of the amino acid residues for the individual lipo-
peptides in these two groups is speculative and 
based on the structural trends observed in the 
other polymyxin groups. To date no examples 
have been reported in the literature of individual 
polymyxin producing P. polymyxa strains pro-
ducing ‘cross mixtures’ containing lipopeptides 
from the different polymyxin groups. Furthermore 
the polymyxins are always produced as mixtures 
of the individual lipopeptide components of that 
group and never as a single lipopeptide compo-
nent [90, 92–95, 97]. The relative abundance of 
the individual components produced does vary 
from strain to strain and in the commercial manu-
facture of polymyxins from the same strain, 
batch-to-batch variation can be observed [92, 93, 
98, 99]. Of the different ‘polymyxin’ groups 
identified to date, only the lipopeptide compo-
nents of the polymyxin B and E (Colistin) groups 
have undergone extensive structural analysis 
[92–95]. This is a reflection of the fact that only 
‘mixtures’ of individual polymyxin B lipopep-
tides as well as ‘mixtures’ of individual poly-
myxin E lipopeptides are used therapeutically in 
the clinic. The European (Ph. Eur.) and British 
Pharmacopeias (BP) have established limits on 
the minimum amount of certain components 
required in colistin and polymyxin B products 
[100, 101]. For colistin products, colistin A and B 
together with three minor components must con-
stitute ≥ 77% of the total content; for polymyxin 

B products, no less than 80% of total content is to 
consist of polymyxin B1, B2, and two minor 
components. Notably, similar composition limits 
for colistin or polymyxin B are absent from the 
United States Pharmacopoeia (USP) [102]. The 
remaining discussion will focus only on the 
chemical structures of the lipopeptide compo-
nents of these two groups of polymyxins.

3.2.1  Chemistry of the Polymyxin B 
Lipopeptides

Structurally, the lipopeptides of the polymyxin B 
group are generally defined by the presence of a 
D-phenylalanine residue at position 6, an 
L-leucine residue at position 7 and an L-Dab resi-
due at position 3. To date, seven individual poly-
myxin B lipopeptide components have been 
identified (Table 3.1) [92, 95, 96]. Of these seven 
lipopeptides, six contain structurally different 
branched and non-branched N-terminal fatty-acyl 
groups varying in length from 7 to 9 carbons, 
which have been labelled polymyxin B1 to B6. 
The 6-methyloctanoyl fatty-acyl group of poly-
myxin B1 and B1-Ile has a stereo-centre at C6, 
which has been identified as being the (S)-
configuration. Polymyxin B6 is unique in that its 
fatty-acyl group contains a hydroxyl group at C3, 
which is not present in the fatty acyl chains of the 
other polymyxin B lipopeptides. This unique 
fatty acyl group also has two stereo-centres at C3 
and C6, however the absolute stereochemistry of 
these two stereo-centres is yet to be reported. 
Interestingly, polymyxin B1-Ile, the seventh poly-
myxin B lipopeptide is almost identical to poly-
myxin B1 except that it contains an isoleucine 
residue at position 7, but is still considered part of 
the polymyxin B group. Although isoleucine is 
only a structural isomer of leucine it is still a 
structurally distinct residue. In terms of relative 
abundance of individual components found in 
polymyxin B mixtures, polymyxin B1 and B2 are 
always the major lipopeptide components. 
Notably, the proportion of the different lipopep-
tide components in polymyxin B can vary 
between different brands and even between dif-
ferent batches from the same manufacturer [99]. 
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In commercial preparations of polymyxin B, the 
lipopeptide components are always provided as 
their corresponding sulfate salts.

3.2.2  Chemistry of the Polymyxin E 
(Colistin) Lipopeptides

The polymyxin E (colistin) group of lipopeptides 
is generally defined by the presence of a D-leucine 
residue at position 6, an L-leucine residue at 
position 7 and an L-Dab residue at position 3 
(Table 3.1). To date, 11 individual polymyxin E 
lipopeptide components have been identified 
(Table 3.1) [93, 94]. Like the polymyxin B lipo-
peptides the individual lipopeptide components 
of the polymyxin E group (polymyxin E1, E2, E3, 
E4, E7 and E8) contain structurally distinct 
branched and non-branched N-terminal fatty-acyl 
groups, varying in length from 7 to 9 carbons. 
The 6-methyloctanoyl fatty-acyl group of poly-
myxin E1, E1-Val, E1-Ile and E1-Nva contains a 
stereo-centre at C6, which has been identified as 
being the (S)-configuration. The inconsistent 
nature of the nomenclature used for labelling the 
polymyxins can be observed here with several 
polymyxin E lipopeptides (Polymyxin E1-Val, 
E1-Ile, E1-Nva, E2-Val, E2-Ile, E8-Ile) having 
structurally different amino acid residues (valine, 
norvaline and isoleucine) at position 7 (Table 3.1). 
Furthermore, no polymyxin E5, E6 or E8 has been 
reported in the literature. In terms of relative 
abundance of individual components found in 
polymyxin E mixtures, polymyxin E1 (colistin A) 
and E2 (colistin B) are always the major lipopep-
tide components. Similar to commercial prepara-
tions of polymyxin B, the lipopeptide components 
of commercial preparations of polymyxin E are 
always provided as their corresponding sulfate 
salts.

As mentioned previously, polymyxin E (colis-
tin) is administered intravenously as colistin 
methanesulphonate (CMS); CMS is an inactive 
prodrug of colistin [103]. CMS is chemically 
formed via the reaction of the amino groups of the 
Dab residues of polymyxin E with formaldehyde 
and sodium bisulphite to form sulphomethylated 
derivatives of each of the Dab groups (Fig. 3.1) 

[40, 57]. This derivatization of the amino groups 
of the Dab residues neutralizes the positive charge 
at physiological pH and imparts a negative charge 
through the sulphonate group, which is fully 
deprotonated at physiological pH. In vivo the sul-
phomethyl groups are not stable and readily 
undergo hydrolysis resulting in conversion back 
to the free amino groups to give the active form of 
colistin [103–114]. In the preparation of commer-
cial CMS products, this conversion of the Dab 
residues to their corresponding sulphomethyled 
derivatives is not a complete process and as a 
result some of the Dab residues remain unreacted. 
This potentially means that even for a single poly-
myxin E (colistin) lipopeptide component (e.g. 
polymyxin E1 [colistin A]), there can be a large 
number of  unique chemical entities in CMS, 
depending on the location and number (i.e. which 
Dab residue) of methanesulphonate groups 
attached. As a result commercial batches of CMS 
are provided as complex mixtures of fully and 
partially sulphomethylated derivatives [113]. 
Currently, no limits on the minimum or maximum 
amount of each potential sulphomethylated deriv-
ative within a CMS product have been established 
by the Ph. Eur, BP and USP [100–102].

3.2.3  Future Perspective

As we look towards the future the renewed inter-
est in the use of polymyxins as a therapeutic 
option for treating MDR Gram-negative infec-
tions, alongside the constant improvement in the 
analytical techniques available for the identifica-
tion and structural elucidation of natural prod-
ucts, is likely to result in the discovery of new 
polymyxin groups and new lipopeptide compo-
nents within existing polymyxin groups. As such 
a more consistent use of the nomenclature for the 
structural classification of polymyxins is 
required. Therefore, the implementation of a new 
internationally recognised nomenclature system 
for structurally classifying the polymyxins is 
required. On a final note, an important question 
that still remains to be answered: what is the 
physiological/biological significance of all of 
these individual polymyxin lipopeptides?

T. Velkov et al.
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3.3  Antibacterial Spectrum

Given the structural similarities between colistin 
and polymyxin B as outlined above, many aspects 
of their antimicrobial spectrum of activity, clini-
cal uses, toxicity and mechanism of action and 
resistance are shared by both [38, 45]. Both have 
essentially identical in vitro potencies (as mea-
sured by minimum inhibitory concentration 
[MIC]) and spectrum of activity against the com-
monly encountered Gram-negative organisms 
responsible for MDR nosocomial infections, and 
display a near-complete degree of cross- 
resistance [38, 49, 115, 116]. They exhibit a nar-
row antibacterial spectrum, mostly against 
common Gram-negative pathogens. They retain 
excellent bactericidal activity against most com-
mon species of Gram-negative bacilli or cocco-
bacilli including P. aeruginosa [115, 117–128], 
Acinetobacter spp. [115, 117, 119, 120, 124, 125, 
127, 129–131] and Enterobacteriaceae such as 
Klebsiella spp. or E. coli [115, 117, 119, 120, 
124, 127, 132–134], the organisms against which 
they are most commonly used clinically. 
However, resistance in these and other species is 
increasing in some regions [119, 128, 135–147]. 
Interestingly, colistin-resistant isolates of several 
key species have been shown to be more suscep-
tible to other antibiotics than their colistin- 
susceptible parent strain [128, 148, 149]. 
Worryingly, colistin heteroresistance (the pres-
ence of resistant subpopulations within an isolate 
that is susceptible based upon its MIC) has been 
reported in P. aeruginosa [150–152], A. bauman-

nii [152–157], K. pneumoniae [144, 152, 158] 
and Enterobacter cloacae [156].

Either colistin, polymyxin B or both have also 
been shown to be active against Enterobacter 
spp. [117, 119, 159], E. coli [21, 117, 119, 124, 
134, 159], Salmonella spp. [21, 117, 159], 
Shigella spp. [21, 117, 159], Citrobacter spp. 
[117, 159], Haemophilus spp. [160], Bordetella 
pertussis [40], Legionella spp. [161] and most 
Aeromonas species except Ae. jandaei (Ae. 
hydrophila has inducible resistance) [159, 162]. 
Polymyxins have also been reported to be 
 potentially active against several mycobacterial 
species including Mycobacterium xenopi, M. 
intracellulare, M. tuberculosis, M. fortuitum, and 
the rapidly growing, non-pathogenic species M. 
phlei and M. smegmatis [163]. Activity against 
Campylobacter species [164, 165] and 
Stenotrophomonas maltophilia [120, 121, 166, 
167] is variable, while activity against Bartonella 
species is borderline [168, 169]. Polymyxins are 
generally inactive against Vibrio spp. [159, 170], 
Providentia spp. [117, 171], Serratia spp. [21, 
117, 124, 171, 172], Proteus spp. [21, 124, 171], 
Morganella morganii [173], Helicobacter pylori 
[159, 174, 175], Neisseria spp. (meningococci 
and gonococci) [21, 159, 176], Brucella spp. [21, 
159], Edwardsiella tarda [177], Burkholderia 
cepacia complex [120, 178], P. pseudomallei 
[179] and Moraxella catarrhalis [159, 176]. 
Polymyxins have no significant activity against 
most Gram-positive bacteria, anaerobes, para-
sites or fungi [21, 38, 180–182]. The lack of 
activity against Gram-positive bacteria is likely 

Fig. 3.1 Chemical structure of colistin methanesulphonate (CMS)
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due to the binding selectivity of polymyxins to 
lipopolysaccharide, the principal component of 
the outer leaflet of the outer membrane of Gram- 
negative organisms but absent in Gram-positive 
organisms [88].

Table 3.2 contains significant large-scale sur-
veillance studies of antimicrobial susceptibility, 
which have included polymyxins conducted 
since 2001. As can be seen from these studies 
polymyxins generally remain highly active 
against their target Gram-negative pathogens, 
primarily P. aeruginosa, A. baumannii and K. 
pneumoniae. However, while the large SENTRY 
Antimicrobial Surveillance Program conducted 
between 2006 and 2009 and which contained 
40,625 isolates of Gram-negative bacilli showed 
polymyxin-resistance generally remained stable 
across the collection period, a greater trend 
towards resistance in Klebsiella spp. from the 
Asia-Pacific and Latin American regions was 
noted [127]. Also noteworthy is that in the 
SENTRY collection, 12% of the imipenem- 
resistant isolates of K. pneumoniae were also 
resistant to colistin [133].

That sulphomethyl derivatives of polymyxins 
(including CMS) possessed substantially reduced 
antibacterial activity in vitro (as determined by 
MIC measurement) [21, 40, 56] and in vivo [21, 
40] was well known from the earliest times of 
development. While some had speculated that the 
activity of sulphomethylated forms of both colis-
tin and polymyxin B derived from unmasking of 
the five free amino groups present in each of the 
parent antibiotics, it had not been possible to 
determine whether any of the components had 
intrinsic antibacterial activity [40]. Given the sul-
phomethylated form of polymyxin B was never 
adopted into clinical practice, the uncertainty sur-
rounding whether CMS possessed antibacterial 
activity in its own right persisted until recent 
times. Such uncertainty resulted in MIC mea-
surements for ‘colistin’ having been performed 
using colistin [183] or CMS [117], or both [21, 
136, 184]. Additionally, confusion surrounded 
microbiological assays used to measure ‘colistin’ 
concentrations in biological fluids. Study of the 
antibacterial activity of CMS, the parenteral form 
of colistin, had proven complicated due to the in 

vitro and in vivo conversion of CMS to colistin 
and a lack of analytical methods capable of dif-
ferentiating between colistin initially present in a 
sample and colistin subsequently formed from 
CMS; on this latter point, microbiological assays 
are incapable of such differentiation. In 2006 
Bergen et  al. [103] employed previously devel-
oped high-performance liquid chromatography 
(HPLC) assays [185–187] which are capable of 
separately quantifying the concentrations of 
colistin and CMS (the CMS concentration deter-
mined using this approach representing the con-
centration of CMS (i.e. the penta-sulphomethylated 
species) and the numerous partially- 
sulphomethylated species that are intermediates 
in the conversion of CMS to colistin) to show that 
CMS may therefore be regarded as an inactive 
pro-drug of colistin. Additionally, this study 
demonstrated that the use of CMS is inappropri-
ate for MIC measurement.

3.4  Conclusions

The polymyxins are a family of chemically dis-
tinct cyclic lipopeptide antibiotics with high 
specificity for Gram-negative bacteria. The 
chemistry of this diverse group of amphipathic 
compounds is complex, with each group consist-
ing of mixtures of individual lipopeptides. Two 
polymyxins, polymyxin B and colistin, have been 
used clinically for approximately 60  years. 
Commercially, polymyxin B is available as poly-
myxin B sulphate whereas colistin is available as 
colistin sulphate and its sulphomethylated deriva-
tive, sodium colistin methanesulphonate (CMS); 
CMS is the form of ‘colistin’ that is administered 
parenterally. As polymyxins are of biological ori-
gin, the proportion of the different lipopeptide 
components in commercial preparations of poly-
myxin B or colistin vary between different brands 
and even between different batches from the 
same manufacturer. Similarly, commercial 
batches of CMS are provided as complex mix-
tures of fully and partially sulphomethylated 
derivatives.

Worldwide, the clinical use of colistin (pre-
dominantly as CMS) far exceeds that of poly-

T. Velkov et al.
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myxin B.  Relegated to the ‘back shelf’ in the 
1970s due to toxicity concerns, the emergence of 
MDR Gram-negative ‘superbugs’ resistant to 
almost all other available antibiotics has resulted 
in their progressive reintroduced into clinical 
practice over the last two decades. Given they 
retain excellent bactericidal activity against most 
common species of Gram-negative bacilli or coc-
cobacilli, they have become increasingly impor-
tant as salvage therapy for otherwise untreatable 
infections caused by MDR Gram-negative 
organisms.
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