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Abstract
Polymyxin-induced nephrotoxicity is the 
major dose-limiting factor and can occur in up 
to 60% of patients after intravenous adminis-
tration. This chapter reviews the latest litera-
ture on the mechanisms of polymyxin-induced 
nephrotoxicity and its amelioration. After fil-
tration by glomeruli, polymyxins substantially 
accumulate in renal proximal tubules via 
receptor-mediated endocytosis mainly by 
megalin and PEPT2. It is believed that subse-
quently, a cascade of interconnected events 

occur, including the activation of death recep-
tor and mitochondrial apoptotic pathways, 
mitochondrial damage, endoplasmic reticu-
lum stress, oxidative stress and cell cycle 
arrest. The current literature shows that oxida-
tive stress plays a key role in polymyxin- 
induced kidney damage. Use of antioxidants 
have a potential in the attenuation of 
polymyxin- induced nephrotoxicity, thereby 
widening the therapeutic window. Mechanistic 
findings on polymyxin-induced nephrotoxic-
ity are critical for the optimization of their use 
in the clinic and the discovery of safer 
polymyxin- like antibiotics.
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As reviewed in Chap. 17, the incidence of 
polymyxin- associated nephrotoxicity is up to 
60% in patients with the currently recommended 
dosage regimens [1–7]. Recent pharmacological 
studies have indicated that polymyxin-associated 
nephrotoxicity is the major dose-limiting adverse 
effect after parenteral administration [8–16] (also 
Chap. 15). The key features of polymyxin- 
associated nephrotoxicity include acute tubular 
damage, decreased creatinine clearance (CrCL), 
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and increased serum urea and creatinine concen-
trations [9] (also Chap. 17). This chapter focuses 
on the latest progress in understanding the mech-
anisms of polymyxin-associated nephrotoxicity.

18.1  Renal Disposition 
of Polymyxins

18.1.1  Differential Renal Handling 
of Colistin, Polymyxin B 
and CMS

Although both colistin and polymyxin B are 
available for clinical use, they differ in their 
forms for parenteral administration. Polymyxin 
B is available as the sulfate salt, whereas colistin 
is available as the prodrug colistimethate sodium 
(CMS). After intravenous administration of colis-
tin (sulfate) in rats, the urinary recovery of colis-
tin was less than 1% of the administered dose 
[17, 18]. In comparison to its anticipated clear-
ance by glomerular filtration (2.3  mL/min/kg), 
the much lower renal clearance of colistin 
(0.010  ±  0.008  mL/min/kg) indicates extensive 
tubular reabsorption in rats [17]. In contrast, the 
urinary recovery of CMS (as CMS and formed 
colistin in the kidney and urinary tract) after 
intravenous administration was approximately 
60–70% in rats [19–21] and humans [22–24]. 
The greater renal clearance of CMS compared to 
its anticipated clearance by glomerular filtration 
indicates net tubular secretion into the urine [19]. 
As the major structural difference between colis-
tin and CMS is due to the modification of the pri-
mary amines of colistin with negatively charged 
methanesulfonate groups in CMS, the signifi-
cantly different renal handling and urinary recov-
ery of colistin and CMS are due to the different 
charges of the two chemical entities. Similar to 
colistin, very low urinary recovery of polymyxin 
B following intravenous administration also sug-
gests that non-renal elimination predominates in 
both rodents [22–24] and humans [18, 25–27]. 
Indeed, it has been suggested that polymyxin B 
undergoes very extensive tubular reabsorption in 
patients [27, 28].

The very different renal disposition of colis-
tin/polymyxin B and CMS is illustrated in 

Fig. 18.1. The extensive reabsorption of colistin 
and polymyxin B from glomerular filtrate to peri-
tubular capillaries would expose tubular cells to 
high concentrations of these molecules. The net 
tubular secretion [19] of CMS from peritubular 
capillaries into the tubular lumen through the epi-
thelial tubular cells may result in intracellular 
conversion of CMS to colistin [19]. This may 
enhance the exposure of tubular cells to colistin 
[29]. In summary, the difference in renal excre-
tion mechanisms of CMS and formed colistin 
versus polymyxin B is an important factor to 
modulate the exposure of renal tubular cells to 
polymyxins and the degree of nephrotoxicity fol-
lowing intravenous polymyxin treatments.

18.1.2  Significant Accumulation 
of Polymyxins in Renal 
Tubular Cells

Several recent studies have revealed significant 
renal accumulation of polymyxins using immu-
nostaining, mass spectrometry imaging, fluores-
cence microscopy and X-ray fluorescence 
microscopy (XFM) [30–36]. As CMS is not sta-
ble and is a very complex mixture of numerous 
methanesulfonated derivatives [37–40], its dispo-
sition in renal tubular cells has not been exam-
ined and the studies in the literature employed 
colistin, polymyxin B or novel polymyxin ana-
logues. In a mouse study, the distribution of poly-
myxin B in the kidney tissue was examined after 
intravenous administration using immunostain-
ing with a polymyxin-specific monoclonal anti-
body [32]. Predominant accumulation of 
polymyxin B was evident in the renal cortex, in 
particular the renal proximal tubular cells, but 
much less in the distal tubular cells (Fig.  18.2) 
[30, 32, 41]. Furthermore, matrix-assisted laser 
desorption/ionizing mass spectroscopy 
(MALDI-MS) imaging revealed that following 
subcutaneous administration polymyxins largely 
accumulated in the renal cortex (Fig. 18.2), but 
not in the lungs, liver or heart [41].

Abdelraouf et  al. employed a commercial 
product, boron-dipyrromethene (BODIPY)-
polymyxin B to examine the uptake of poly-
myxin B by mammalian renal tubular cells 
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Fig. 18.1 Schematic 
representation of the 
renal disposition of (a) 
CMS and formed 
colistin and (b) colistin/
polymyxin B. Thickness 
of the arrows 
corresponds to the 
magnitude of the 
processes involved in the 
renal deposition. (Figure 
adapted from Zavascki 
et al. [29]. Permission 
obtained from the 
American Society of 
Microbiology [ASM])

Fig. 18.2 (a) Immunostaining demonstrates the distribu-
tion of polymyxin B within mouse kidneys following sub-
cutaneous administration (Insert: 10× magnification of the 
cortex and medulla) [32]. (b) Targeted MALDI-MS imag-

ing for detecting polymyxin B1 and B2 as Na+ adduct in 
the kidneys of mice treated with polymyxin B [41]. 
(Permission obtained from Oxford University Press)

(LLC-PK1) [42]. Saturable uptake of polymyxin 
B into LLC-PK1 cells suggested transporter-
mediated uptake of polymyxin B. However, it is 

important to note that commercially available 
fluorescent polymyxin probes (e.g. dansyl-poly-
myxin B and BODIPY-polymyxin B) are devoid 
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of the pharmacological activities of native poly-
myxins, due to the attachment of relatively large 
BODIPY or dansyl moieties on the amine groups 
of the five Dab residues in the polymyxin struc-
ture [30, 43–45]. The structure-activity relation-
ship (SAR) of polymyxins should be considered 
when using polymyxin probes for pharmacologi-
cal research.

Using synchrotron X-ray fluorescence (XFM), 
fluorescence, and scanning electron microscopy, 
a recent correlative microscopic study discovered 
the extraordinary accumulation of polymyxins in 
rat (NRK-52E) and human (HK-2) kidney proxi-
mal tubular cells [30]. Based upon the polymyxin 
SAR model [45], a novel dual-module fluores-
cent probe, FADDI-096, was designed, consist-
ing of a dansyl group in the N-terminus and an 
iodine fluorophore at position 6 D-Phe of poly-
myxin B (Fig.  18.3). Unlike the commercially 
available fluorescent polymyxin probes BODIPY- 
polymyxin B and dansyl-polymyxin B, 
FADDI- 096 has the structural features required 
for the biological activity of natural polymyxins. 
For example, similar to polymyxin B, FADDI- 096 
displayed antibacterial activity (MIC 8  mg/L 
against P. aeruginosa ATCC 27853) and the abil-
ity to induce oxidative stress in both NRK-52E 

and HK-2 cells [30]. Therefore, it is a valid probe 
to investigate the nephrotoxicity of polymyxins.

Quantitative mapping of polymyxin distribu-
tions in single rat (NRK-52E) and human (HK-2) 
kidney tubular cells revealed that the remarkable 
intracellular accumulation of FADDI-096 was 
both concentration- and time-dependent 
(Fig. 18.4). With the extracellular concentrations 
of 5 and 50 μM, intracellular concentrations of 
FADDI-096 were approximately 1,930- to 4,760- 
fold higher in NRK-52E cells at 1 and 4 h, respec-
tively. Consistent with the XFM imaging results, 
the significant intracellular accumulation of 
FADDI-096 was also observed in the same cells 
using fluorescence microscopy (Fig. 18.4). These 
correlative microscopy results demonstrate the 
overlap of the dansyl and iodine signals from 
FADDI-096 itself. While FADDI-096 concentra-
tions in the bathing solution increased tenfold 
(i.e. 5 vs 50 μM), its intracellular concentrations 
(23.8 ± 6.63 mM vs 110 ± 28.2 mM, respectively) 
only increased approximately 4.62-fold in NRK- 
52E cells. This finding indicated that the signifi-
cant accumulation of polymyxins by NRK-52E 
cells was saturable and likely carrier-mediated 
[46]. In HK-2 cells, the intracellular concentra-
tion of FADDI-096 (31.0  ±  5.69  mM) was 

Fig. 18.3 Structures of (a) polymyxin B1, (b) FADDI-096, and the molecular model of FADDI-096 with Escherichia 
coli Kdo2-Lipid A [30]. (Permission obtained from ACS Publications)
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approximately 3,100-fold higher than the con-
centration in the bathing solution (10  μM for 
4 h). Interestingly, the XFM results also revealed 
a significant increase in the intracellular calcium 
concentration, which is a potential stimulus to 
trigger apoptosis [47]. No correlation was 
observed between the localization of FADDI-096 
and other elements including phosphorus and 
sodium [30].

Collectively, the immunostaining, mass spec-
trometry imaging and XFM results all demon-
strate the very substantial uptake of polymyxins 
by renal tubular cells and the potential involve-
ment of transporters; these results are consistent 
with the pharmacokinetic findings from rats and 
humans [17, 28, 29]. Further investigations are 
required to elucidate the detail mechanisms of 
polymyxin accumulation in renal tubular cells.

18.1.3  Roles of Transporters 
in the Uptake of Polymyxins 
by Kidney Tubular Cells

The significant accumulation of polymyxins in 
renal tubular cells indicates that transporters play 
an important role in the uptake of colistin and 

polymyxin B in kidneys [30, 48, 49]. Different 
transport mechanisms exist in the elimination of 
drugs, toxins, and endogenous compounds by 
kidney tubular cells [50–57]. Megalin is a key 
endocytic receptor for reabsorption of the pro-
teins and small bioactive molecules present in the 
glomerular filtrate [58], and has been demon-
strated to mediate the significant reabsorption of 
polymyxins by renal tubular cells [46, 59, 60]. 
Moreover, colistin displays competitive inhibi-
tion for binding to megalin with cytochrome c (a 
known substrate for megalin) [46]. In megalin- 
shed rats, decreased accumulation of colistin in 
the kidneys and increased excretion in urine sug-
gest that megalin is important for the reabsorp-
tion of colistin by tubular cells [46]. 
Co-administration of colistin with cytochrome c 
or fragment of albumin (FRALB) caused a 
decreased urinary excretion of N-acetyl-β-D-
glucosaminidase (NAG), a marker of tubular 
damage; this suggested the prevention of colistin- 
induced tubular damage by blocking megalin- 
mediated uptake [46]. The key role of megalin in 
the reabsorption of polymyxins is also supported 
by the finding that co-administration of colistin 
with succinylated bovine gelatin polypeptides 
(known competitive inhibitors of the reabsorp-

Fig. 18.4 Single-cell correlative microscopy results 
demonstrate the accumulation of FADDI-096  in NRK- 
52E and HK-2 cells [30]. (a) Fluorescence images of 
NRK-52E cells (i) without treatment, (ii) treated with 
5  μM FADDI-096 for 4  h, (iii) treated with 50  μM 
FADDI- 096 for 1 h, (iv) treated with 50 μM FADDI-096 
for 4 h; and HK-2 cells (v) without treatment, (vi) treated 
with 10 μM FADDI-096 for 4 h. (b) Iodine distribution 
within the same NRK-52E and HK-2 cells as shown in 
panel A; iodine concentrations (μg/cm2) are shown using a 
linear scale from zero to the maximum value; the yellow 

numbers note the maximum iodine concentration in each 
sample. (c) SEM images of the same NRK-52E and HK-2 
cells identified in panel A. (d) Correlation of signals from 
fluorescence microscopy (i: Green), XFM (ii: Blue to 
red), and surface morphology from SEM (iii: Grey); and 
their superposition. (e) Accumulation of FADDI-096  in 
single NRK-52E and HK-2 cells measured via iodine con-
tent using XFM as shown in panel A (mean ± SD; n = 10). 
Scale bar: 10  μm. (Permission obtained from ACS 
Publications)
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tion of peptide and protein substrates of megalin) 
decreased both the accumulation of colistin in 
kidney tissue and also its nephrotoxic effect in a 
murine model [49]. It has been shown in both in 
vitro and in vivo models that inhibition of mega-
lin supressed the colistin-induced damage to 
renal tubular cells [60].

Many antibiotics are organic acids or bases 
and, depending on their pKa values, are present as 
anions or cations in the physiological environ-
ment. Recently, carrier-mediated renal tubular 
reabsorption of colistin has been suggested from 
studies conducted ex vivo [61]. Using isolated 
perfused rat kidney, Ma et al. examined the renal 
disposition and the potential role of kidney trans-
porters in the disposition of colistin [61]. A con-
siderable amount of colistin (administered as 
colistin sulfate) was removed from the perfusate, 
but only a relatively low proportion (<10%) was 
ultimately excreted into the urine, indicating the 
accumulation of colistin in the kidney tissue [61]. 
The extensive reabsorption of colistin was inhib-
ited by tetraethylammonium (TEA, a typical sub-
strate of rat OCTN1 [62]), glycine-glycine 
(Gly-Gly), and hydrochloric acid, suggesting that 
the renal reabsorption of colistin was mediated 
by organic transporters and peptide transporters 
(e.g. OCTN1 and OCTN2) and might be sensi-
tive to the pH of urine [61]. Since colistin is a 
peptide and the di-peptide Gly-Gly is a typical 
substrate/inhibitor for PEPT [63], the isolated 

perfused rat kidney results suggest that colistin 
might undergo reabsorption via polypeptide 
transporters (PEPT1 and PEPT2) in the renal 
tubular cells [61].

A recent study systematically investigated the 
inhibitory effects of colistin and polymyxin B on 
the substrate uptake mediated through 15 essen-
tial solute carrier transporters (SLCs) in over- 
expressing HEK293 cells [64]. Both polymyxins 
had no or only very mild inhibitory effect on the 
transport activity of the SLCs examined, except 
human peptide transporter 2 (PEPT2). The con-
centrations of colistin and polymyxin B required 
to inhibit 50% uptake (IC50) of the specific human 
PEPT2 substrate [3H]glycyl-sarcosine were 
11.4  ±  3.1 and 18.3  ±  4.2  μM, respectively 
(Fig. 18.5). PEPT2 is a key SLC expressed par-
ticularly in the kidneys and brain [64]. It is a low- 
capacity high-affinity proton-coupled 
cotransporter, mainly involved in the renal reab-
sorption of peptides and peptide-like substrates 
(including drugs) to maintain systemic nitrogen 
homeostasis [65]. [3H]Polymyxin B1 and a fluo-
rescent polymyxin probe MIPS-9541 were also 
employed as a complementary approach to exam-
ine the cellular uptake by PEPT2. The results 
revealed a significant inhibition of PEPT2- 
mediated uptake by glycyl-sarcosine, colistin or 
polymyxin B [64]. Collectively, it is very likely 
that PEPT2 also plays a critical role in the renal 
tubular accumulation of polymyxins.

Fig. 18.5 Inhibitory effect of polymyxins on PEPT2- 
mediated uptake of [3H]Gly-Sar [64]. Cellular uptake of 
[3H]Gly-Sar was measured in the absence or presence of 
(a) colistin and (b) polymyxin B. (c) Inhibition of MIPS- 

9541 uptake by Gly-Sar, colistin or polymyxin B in 
PEPT2 transfected HEK293 cells. (Permission obtained 
from the Oxford University Press)
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18.1.4  Localisation of Polymyxins 
in Renal Tubular Cells

There is limited information on the co- localisation 
of polymyxins with different organelles in renal 
tubular cells. By incorporating a single dansyl 
fluorophore in the hydrophobic regions of the 
polymyxin core structure, we designed, synthe-
sised, and evaluated four novel regioselectively 
labeled monodansylated polymyxin B probes 
(MIPS-9541, MIPS-9542, MIPS-9543, and 
MIPS-9544) for intracellular localisation studies 
[31]. We examined their antimicrobial activities, 
cellular uptake, and apoptotic effects on NRK- 
52E cells. It became evident that incorporation of 
a dansyl group at position 6 or 7 (e.g. MIPS-9543 
and MIPS-9544) of polymyxins is appropriate 
for generating fluorescent polymyxin probes for 
intracellular imaging and mechanistic studies. 
Confocal fluorescence imaging experiments con-
ducted with MIPS-9543 and MIPS-9544 reveal 
partial co-localisation of polymyxins with both 
endoplasmic reticulum and mitochondria in 
NRK-52E cells. Super-resolution imaging is 
required to elucidate the intracellular localisation 
of polymyxins in renal tubular cells and the toxic 
effect on subcellular organelles [31].

In summary, the accumulation, intra-cellular 
trafficking and localisation of polymyxins in 
renal tubular cells have not been fully elucidated, 
and the mechanistic findings may lead to novel 
approaches to attenuate polymyxin-induced 
nephrotoxicity.

18.2  Effects of Polymyxins 
on Renal Tubular Cells

The execution of renal tubular cell death is usu-
ally highly orchestrated and interconnected 
between cell cycle, apoptosis, necrosis and 
autophagy [66–68]. Depending on the insult and 
stimulus, tubular cell death can simultaneously 
trigger multiple pathways and lead to the activa-
tion of common downstream cascades [69, 70]. 
The current literature shows that polymyxin 
treatment can cause cell cycle arrest, apoptosis 

and autophagy in renal tubular cells in vitro and 
in vivo.

18.2.1  Polymyxins Induce Cell Cycle 
Arrest

Eadon et al. reported that cell cycle arrest is asso-
ciated with colistin-induced nephrotoxicity in a 
murine model using microarray [71]. C57/BL6 
mice were intraperitoneally administered with 
saline or 16 mg/kg/day colistin (in two divided 
doses), and kidneys were collected after 3 and 
15 days. Gene expression microarray analysis of 
kidney tissues identified 21 differentially 
expressed genes during the colistin treatment. 
Up-regulation of the differentially expressed 
genes from both microarray and RT-PCR results 
suggested that the cellular injury induced by 
colistin was mediated through p53 pathway to 
inhibit cell cycle progression. Up-regulation of 
CCNB1, CDC2 and the indifferent expression of 
CDK2, CCND, CCNE genes following colistin 
treatment indicated G2/M as the point of arrest in 
the cell cycle. Moreover, translocation of cyclin 
B1 to the nucleus is another indicator of cell 
cycle arrest at the G2/M phase induced by colis-
tin [71]. It was also demonstrated that the expres-
sion of galectin-3 was up-regulated, supporting 
the cell cycle arrest through G1/S and G2/M [71]. 
The up-regulation of galectin-3 is potentially an 
early marker of the colistin-induced kidney 
injury. The detection of the proliferating cell 
nuclear antigen following exposure to colistin for 
3  days indicates the emergence of subclinical 
kidney injury through the blockade of DNA rep-
lication at S phase, and subtle pathogenic injury 
was also observed. Cell cycle arrest may repre-
sent a protective mechanism for recovering from 
colistin-induced nephrotoxicity. However, activa-
tion of p53 and galectin-3 can also lead to the 
apoptotic cell death if the cellular damage is non- 
recoverable [72, 73]. We examined polymyxin- 
induced cell death in HK-2 cells and a mouse 
model using biochemical and molecular 
approaches. Interestingly, our results indicate the 
association of DNA damage with polymyxin B 

18 Mechanisms of Polymyxin-Induced Nephrotoxicity



312

induced nephrotoxicity, leading to chromosome 
mis-segregation and genome instability [74, 75]. 
There is still much to be learned on polymyxin- 
induced nephrotoxicity and systems investiga-
tions are required to elucidate the complex 
interplay of major biochemical pathways in 
polymyxin- induced toxicity in renal tubular cells.

18.2.2  Polymyxins Induce Apoptosis 
and Oxidative Stress In Vitro 
and In Vivo

Recent studies revealed that colistin-induced 
renal tubular apoptosis in vitro and in animals 
[48, 76, 77]. After colistin treatment (cumulative 
dose of 20.5 mg/kg over 5 days) in rats, Yousef 
et al., discovered in the kidneys increased TUNEL 
positive nuclei (%) and fragmentation of DNA, a 
biochemical hallmark of apoptosis (Fig.  18.6) 
[48]. Similar results were observed in rat proxi-
mal tubular cells (NRK-52E) treated with colistin 
(0.1 mM for 24 h). Dai et al. revealed the involve-
ment of the death receptor, mitochondrial and 
endoplasmic reticular pathways in colistin- 
induced apoptosis in mouse kidney tissues [78]. 
Colistin was intravenously administered to mice 
(7.5 or 15 mg of colistin/kg/day in two doses) for 
7  days. After 7  days, a significant decrease of 
Bcl-2 and a concomitant increase of Cytc, AIF, 
cleaved caspase-9 and cleaved caspase-3 were 
observed. These findings confirmed that both 
mitochondria-dependent and -independent path-

ways are involved in colistin-induced apoptosis 
in mouse kidneys [78]. Furthermore, significantly 
increased expression of Fas, FasL, and FADD, 
and cleavage of caspase-8 were also revealed in 
the colistin-treated mouse kidneys, demonstrat-
ing the involvement of death receptor mediated 
pathway in colistin-induced apoptosis [78]. 
Interestingly, the increased expression of tBid 
indicated the cross-talk between the death recep-
tor and mitochondria apoptotic pathways. In 
addition, significantly increased concentrations 
of Grp78/Bip, cleaved ATF6, GADD153/CHOP 
and caspase-12 were observed in mice following 
colistin treatment, suggesting that the endoplas-
mic reticulum pathway is also involved in 
colistin- induced apoptosis. To date, it is still 
unknown how each apoptosis pathway is trig-
gered and the interplay among them.

Using cell culture, the activation of caspase-
 3/8/9, DNA damage and translocation of mem-
brane phosphatidylserine following polymyxin B 
treatment has been demonstrated in rat (NRK- 
52E) kidney tubular cells (Fig.  18.7) [79]. In 
NRK-52E cells treated with polymyxin B 
(1.0 mM for 24 h), positive labelling with the cas-
pase substrate Red-VAD-FMK showed the pres-
ence of activated caspase-3, 8 and 9. 
Polymyxin-induced apoptosis in NRK-52E cells 
was also confirmed by positive labelling TUNEL 
assay and annexin V-PI double staining. 
Polymyxin-induced apoptosis was both concen-
tration- and time-dependent in NRK-52E and 
HK-2 cells. Interestingly, HK-2 cells displayed 

Fig. 18.6 TUNEL positive nulcei (black arrows) after 
immunohistochemical staining in kidney sections of rats 
treated for 5 days with (a) saline and (b) colistin (cumula-

tive dose of 20.5 mg/kg). (Figure modified from Yousef 
et al. [48] and permission obtained from Oxford University 
Press)
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higher sensitivity to polymyxin B induced 
 toxicity than NRK-52E cells [79]. Mingeot-
Leclercq et al. and Vaara et al. also demonstrated 
dose- dependent cytotoxic activity of polymyxins 
in porcine renal proximal tubular cells (LLC-PK1) 
and HK-2 cells, respectively [7, 80].

The relative toxic effect of polymyxin B1, 
polymyxin B2, colistin A and colistin B were 
examined in HK-2 cells and mice [81]. 
Comparable nephrotoxicity was observed in 
mice with mild to moderate histological damage; 
however, polymyxin B1 and colistin A showed 
>3-fold higher in vitro apoptotic effect on HK-2 
cells than polymyxin B2 and colistin B, respec-
tively. As there is only one carbon difference in 
the N-terminal fatty acyl group between the two 
major components of polymyxin B and colistin 
(Fig. 1.6), these results indicate that the hydro-
phobicity of the N-terminal fatty acyl group of 
polymyxins plays an important role in polymyxin- 
induced apoptosis. As shown in Fig. 1.6, the only 
difference between polymyxin B1 and colistin A 
(also polymyxin B2 and colistin B) is position 6 

(i.e. D-Phe versus D-Leu); therefore, the hydro-
phobicity at position 6 is also important to the 
toxicity on renal tubular cells [81]. The lack of 
differences in their in vivo nephrotoxicity may be 
due to the sensitivity of the mouse model or the 
slightly different PK of the two major compo-
nents of both polymyxins [17, 18].

Mitochondrial stress occurred during 
polymyxin- induced apoptosis in NRK-52E cells 
(Fig.  18.8) [82]. In healthy rat kidney tubular 
cells NRK-52E, mitochondria predominantly 
were filamentous, whereas in cells undergoing 
apoptotic cell death mitochondria became frag-
mented. Concentration- and time-dependent tran-
sitions of the mitochondrial morphology from the 
filamentous (regular) to fragment (stressed) were 
observed in NRK-52E cells following polymyxin 
B treatment (1.0 and 2.0 mM up to 24 h) [82]. A 
concentration-dependent perturbation of mito-
chondrial morphology was associated with the 
loss of mitochondrial membrane potential (Δψ). 
Furthermore, it was also evident that polymyxin 
B induced toxicity was associated with the gen-

Fig. 18.7 Double staining with annexin V and PI in 
NRK-52E cells [79]. (a) Control cells. (b) Cells treated 
with 1.25 mM polymyxin B for 24 h. (c) Cells treated with 
1.0 μM staurosporine. In each panel, the upper left quad-
rant represents cells stained by annexin V (early-apoptotic 
cells), the bottom right quadrant represents cells stained 
by PI (necrotic cells), the upper right quadrant represents 
cells stained by both annexin V and PI (late-apoptotic 

cells), and the bottom left quadrant represents cells not 
stained by annexin V or PI (viable cells). (d–f) Viability 
data for panels A to C. (d) Control cells. (e) Cells treated 
with 1.25 mM polymyxin B. (f) Cells treated with 1.0 μM 
staurosporine. The error bars represent SD. (Permission 
obtained from the American Society of Microbiology 
[ASM])
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eration of reactive oxygen species (ROS). Our 
recent metabolomic study discovered the pertur-
bation of taurine-hypotaurine pathway in 
polymyxin- treated kidney HK-2 and NRK-52E 
cells, indicating a loss of cellular capacity to 
scavenge ROS [41].

Collectively, a working model (Fig. 18.9) was 
proposed based on the recent literature to under-
stand the complex mechanism of polymyxin- 
induced apoptosis in renal tubular cells [78]. The 
precise mechanisms of polymyxin-induced neph-
rotoxicity remain unknown and require further 
studies.

18.3  Amelioration of Polymyxin- 
Induced Nephrotoxicity

Current efforts to minimise the incidence and 
impact of polymyxin-associated nephrotoxicity 
in patients rely on monitoring of renal function 
and electrolyte balance, avoidance of concurrent 

nephrotoxic agents (if feasible) and optimization 
of the polymyxin dose [24]. These have been dis-
cussed in Chap. 17 and in the literature [29]. 
Significant efforts have been made over the last 
decade to attenuate polymyxin-induced nephro-
toxicity using different approaches, including 
decreasing the uptake by renal tubular cells, 
attenuating polymyxin-induced oxidative stress, 
and modifying the polymyxin structure (Chap. 
20) [45, 48, 49, 61, 76, 77, 83, 84].

A number of animal studies investigated the 
potential role of co-administered agents to ame-
liorate polymyxin-induced nephrotoxicity; the 
majority of these studies involved antioxidants. 
Ozyilmaz et  al., demonstrated that 
N-acetylcysteine (NAC) ameliorated polymyxin- 
induced oxidative stress and nephrotoxicity in 
rats [76]. Yousef et al., reported decreased excre-
tion of urinary NAG and less histopathological 
damage in rat kidneys following co- administration 
of ascorbic acid (50 or 200 mg/kg) with colistin 
(cumulative dose, 36.5 mg/kg), compared to rats 

Fig. 18.8 (a) Loss of mitochondrial membrane potential 
measured by fluorescence microscopy using tetramethyl-
rhodamine ethyl ester in NRK-52E cells treated with 
polymyxin B (0.25, 0.5 and 1.0  mM for 24  h). (b–c) 

Polymyxin B treatments caused concentration- and time- 
dependent production of mitochondrial superoxide in 
NRK-52E cells [82]. (Permission obtained from the 
American Society of Microbiology [ASM])
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treated with colistin or ascorbic acid alone [48]. 
Similar results have been reported with the co- 
administration of melatonin, polyaspartic acid, 
grape seed extract, and methionine [77, 83–85]. 
Methionine (100 or 400 mg/kg co-administered) 
protected against  polymyxin-induced kidney 
damage in mice (polymyxin B 35 mg/kg, twice 
daily over 3.5 days) and significantly attenuated 
mitochondrial oxidative stress in NRK-52E cells 
[84]. Interestingly, the pharmacokinetics of poly-
myxin B in rats were not affected by co- 
administration of methionine [84]. Ozkan et al., 
also reported that colistin-induced oxidative 
stress and apoptosis in rat kidney tissues were 
attenuated by co-administration of grape seed 
proanthocyanidin extract, using kidney function 
estimates from blood urea nitrogen (BUN), cre-
atinine plasma levels and renal histopathological 
scores [83]. Similarly, protection against colistin- 
induced apoptosis by proanthocyanidin extract 
was observed by measuring apoptotic index, cas-

pase- 1, caspase-3, and calpain-1 in the kidney tis-
sues [83]. It should be noted that considering 
animal scaling, a relatively low dose of CMS 
(300,000  IU/kg/day by intraperitoneal adminis-
tration, equal to 9  mg colistin base activity/kg/
day) was used in the study [83]. Whereas the 
above co-administered agents probably rely on 
their antioxidant effects for nephroprotection, the 
ameliorating effect of co-administered succinyl-
ated bovine gelatin polypeptides (Gelofusine) 
appears to rely on the ability of these peptides to 
decrease accumulation of polymyxins in renal 
tissue [49].

Thus far, there is little information on the pro-
tection from polymyxin-associated nephrotoxic-
ity in patients. A preliminary randomized 
controlled study was conducted in 28 patients to 
investigate the potential nephroprotective effect 
of intravenous ascorbic acid (2  g every 12  h) 
against colistin-associated nephrotoxicity in 
patients requiring intravenous colistin [86]. The 
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RIFLE classification system was employed in 
this small clinical study and urinary neutrophil 
gelatinase-associated lipocalin (NGAL) and 
NAG were measured as markers of renal damage. 
The plasma colistin concentrations and clinical 
outcomes in both groups were not significantly 
different. The lack of nephroprotective effect by 
ascorbic acid in this clinical study might be due 
to the small patient number, insufficient dose, 
and/or the failure of animal models to mimic 
clinical disease [86]. On the contrary, Dalfino 
et al. showed the protective effect of intravenous 
ascorbic acid against nephrotoxicity of colistin 
(CMS) in critically-ill patients [87]. Acute kidney 
injury (AKI) was observed in 30% of patients 
treating with concurrent ascorbic acid, whereas 
the rate of AKI was about 67% in patients who 
did not receive ascorbic acid [87]. Furthermore, 
this observation was statistically significant 
(P < 0.05, adjusted odds ratio, 0.27 [95% confi-
dence interval, 0.13–0.57]). However, it is impor-
tant to consider the potential limitations of this 
study, particularly the small, non-randomized 
nature and the lack of characterization of patients 
between the groups. It is also critical to consider 
the possible effect of ascorbic acid on polymyxin 
pharmacokinetics/pharmacodynamics in patients 
[48]. Nevertheless, well-designed clinical studies 
are warranted to develop novel approaches to 
attenuate polymyxin-induced nephrotoxicity.

18.4  Conclusions

Significant progress has been made over the last 
two decades in understanding the mechanism of 
polymyxin-induced nephrotoxicity. It is clear 
that polymyxins are substantially accumulated in 
renal tubular cells, causes oxidative stress and 
apoptosis via the activation of the death receptor, 
mitochondria and endoplasmic reticulum medi-
ated pathways. However, the complex interplay 
of multiple pathways remains undefined in 
polymyxin- induced nephrotoxicity, and systems 
investigations on the mechanisms of polymyxin- 
induced nephrotoxicity are required. The mecha-
nistic findings will provide key pharmacological 
information for the development of novel inter-

ventions to minimise polymyxin-induced neph-
rotoxicity in patients, as well as important 
chemical biology knowledge for the discovery of 
new-generation polymyxins.
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