
Ilia Polian
Marc Stöttinger (Eds.)

 123

LN
CS

 1
14

21

10th International Workshop, COSADE 2019
Darmstadt, Germany, April 3–5, 2019
Proceedings

Constructive
Side-Channel Analysis
and Secure Design

Lecture Notes in Computer Science 11421

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Ilia Polian • Marc Stöttinger (Eds.)

Constructive
Side-Channel Analysis
and Secure Design
10th International Workshop, COSADE 2019
Darmstadt, Germany, April 3–5, 2019
Proceedings

123

Editors
Ilia Polian
Universität Stuttgart
Stuttgart, Germany

Marc Stöttinger
Continental AG
Frankfurt, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-16349-5 ISBN 978-3-030-16350-1 (eBook)
https://doi.org/10.1007/978-3-030-16350-1

Library of Congress Control Number: 2019935139

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-6563-2725
https://doi.org/10.1007/978-3-030-16350-1

Preface

COSADE 2019, the 10th International Workshop on Constructive Side-Channel
Analysis and Secure Design, was held in Darmstadt, Germany, April 3–5, 2019. This
workshop is a well-established platform for researchers and practitioners from acade-
mia, industry, and government to exchange and discuss the state of the art in imple-
mentation attacks, e.g., side-channel attacks or fault-injection attacks, and secure
implementation of cryptographic algorithms and security controls. The workshop was
conducted in cooperation with the International Association for Cryptographic
Research. COSADE 2019 was organized by Technische Universität Darmstadt in
collaboration with the Collaborative Research Center (SFB) CROSSING.

This year 34 papers were submitted to the COSADE workshop. Each paper was
anonymously reviewed in a double-blind peer-review process by at least four Program
Committee members. In total, 130 reviews were written by the Program Committee
members with the help of 39 additional reviewers. The international Program Com-
mittee consisted of 35 members from 13 countries. The members were carefully
selected experts in the area of side-channel analysis, fault injection analysis, and secure
design to represent academia and industry. The decision process was very challenging
and resulted in the selection of 14 papers. These 14 papers were part of the contribution
to COSADE 2019 and are contained in these workshop proceedings. We are deeply
grateful to all reviewers for their dedication and hard work in reviewing, assessing, and
discussing.

Beside the 14 presentations of the selected papers, two keynotes and one invited talk
were given at the COSADE 2019. The first invited talk was about RowHammer like
exploits given by Onur Mutlu from Carnegie Mellon University and ETH Zürich. This
talk provided a comprehensive overview of the various versions of implementation
attacks and appropriate countermeasures. The second invited talk was given by Ramesh
Karri from New York University about secure high-level synthesis. His talk focused on
secure design process for hardware designs with increased resilience against malicious
circuits and backdoors. Sylvain Guilley gave an invited talk on detection and pre-
vention of cache-timing attacks. The talks of Mutlu and Guilley are also summarized in
a paper and contained in the proceedings of COSADE 2019. In addition, an anniver-
sary talk was given by Sorin A. Huss to mark the tenth edition of COSADE. He
presented the highlights and some historical facts of the last nine COSADE workshops
as well as the scientific motivation to proceed with research on novel countermeasure
strategies and techniques.

We would like to thank the general chair, Stefan Katzenbeisser, and the local
organizers, Daniela Fleckenstein and Ursula Paeckel, all of TU Darmstadt, for the local
organization, which made this workshop a memorable event. We would also like to
thank the two Web administrators, Helmut Haefner and Lothar Hellmeier of the
University of Stuttgart, for maintaining the COSADE website for 2019.

We are very grateful for the financial support received from our generous sponsors
ALPha NOV, Continental, eshard, FortiyfIQ, Rambus Cryptography Research, Ris-
cure, and Secure-IC.

April 2019 Ilia Polian
Marc Stöttinger

vi Preface

Organization

The 10th International Workshop on Constructive
Side-Channel Analysis and Secure Design

Darmstadt, Germany, April 3–5, 2019

Steering Committee

Jean-Luc Danger Télécom ParisTech, France
Werner Schindler Bundesamt für Sicherheit in der Informationstechnik

(BSI), Germany

General Chair

Stefan Katzenbeisser Technische Universität Darmstadt, Germany

Program Committee Chairs

Ilia Polian Universität Stuttgart, Germany
Marc Stöttinger Continental AG, Germany

Program Committee

Divya Arora Intel, USA
Navid Asadizanjani University of Florida, USA
Reza Azarderakhsh Florida Atlantic University, USA
Josep Balasch KU Leuven, Belgium
Goerg T. Becker EMST, Germany
Sonia Belaïd CryptoExperts, France
Shivam Bhasin Nanyang Technological University, Singapore
Anupam Chattopadhyay Nanyang Technological University, Singapore
Elke De Mulder Cryptography Research, USA
Fabrizio De Santis Siemens AG, Germany
Wieland Fischer Infineon Technologies, Germany
Jorge Guajardo Robert Bosch LLC, Research and Technology Center,

USA
Sylvain Guilley Secure-IC, France
Annelie Heuser CNRS, IRISA, France
Naofumi Homma Tohoku University, Japan
Michael Hutter Cryptography Research, USA
Jens-Peter Kaps George Mason University, USA

Michael Kasper Fraunhofer Singapore, Singapore
Elif Bilge Kavun The University of Sheffield, UK
Osnat Keren Bar-Ilan University, Israel
Roel Maes Intrinsic-ID, The Netherlands
Marcel Medwed NXP Semiconductors, Austria
Nele Mentens KU Leuven, Belgium
Amir Moradi Ruhr-Universität Bochum, Germany
Debdepp Mukhopadhyay IIT Kharagpur, India
Makoto Nagata Kobe University, Japan
Collin O’Flynn NewAE Technology, Canada
Axel Poschmann DarkMatter, United Arab Emirates
Francesco Regazzoni ALaRi-USI, Switzerland
Kazuo Sakiyama The University of Electro-Communications, Japan
Patrick Schaumont Virgina Tech, USA
Georg Sigl TU München and Fraunhofer AISEC, Germany
Francois-Xavier Standaert UCL Crypto Group, Belgium
Marc Witteman Riscure, The Netherlands

Additional Reviewers

Nikolaos Athanasios
Anagnostopoulos

Melissa Azouaoui
Alexander Bajic
Arthur Beckers
Sarani Bhattacharya
Begul Bilgin
Manuel Bluhm
Joppe Bos
Martin Butkus
Vincent Grosso
Michael Gruber
Amir Jalali
Dirmanto Jap

Kimmo Järvinen
Bernhard Jungk
Mehran Mozaffari

Kermani
Rami El Khatib
Philipp Koppermann
Bodhisatwa Mazumdar
Hatame Mosanaei
Guilherme Perin
Romain Poussier
Prasanna Ravi
Bastian Richter
Mélissa Rossi
Steffen Sanwald

Pascal Sasdrich
Thomas Schamberger
Hermann Seuschek
Hadi Soleimany
Lars Tebelmann
Michael Tunstall
Rei Ueno
Gilles Van Assche
Vincent Verneuil
Junwei Wang
Felix Wegener
Florian Wilde
Ville Yli-Mäyry

viii Organization

Contents

Keynotes and Invited Talks

RowHammer and Beyond . 3
Onur Mutlu

Cache-Timing Attack Detection and Prevention: Application to Crypto
Libs and PQC. 13

Sébastien Carré, Adrien Facon, Sylvain Guilley, Sofiane Takarabt,
Alexander Schaub, and Youssef Souissi

Side-Channel Attacks

Fast Side-Channel Security Evaluation of ECC Implementations:
Shortcut Formulas for Horizontal Side-Channel Attacks Against
ECSM with the Montgomery Ladder . 25

Melissa Azouaoui, Romain Poussier, and François-Xavier Standaert

Side-Channel Analysis of the TERO PUF . 43
Lars Tebelmann, Michael Pehl, and Vincent Immler

Fault-Injection Attacks

FIMA: Fault Intensity Map Analysis . 63
Keyvan Ramezanpour, Paul Ampadu, and William Diehl

Differential Fault Attacks on KLEIN . 80
Michael Gruber and Bodo Selmke

White-Box Attacks

Another Look on Bucketing Attack to Defeat White-Box Implementations . . . 99
Mohamed Zeyad, Houssem Maghrebi, Davide Alessio,
and Boris Batteux

Higher-Order DCA against Standard Side-Channel Countermeasures 118
Andrey Bogdanov, Matthieu Rivain, Philip S. Vejre, and Junwei Wang

Side-Channel Analysis Methodologies

Gradient Visualization for General Characterization in Profiling Attacks 145
Loïc Masure, Cécile Dumas, and Emmanuel Prouff

Fast Analytical Rank Estimation . 168
Liron David and Avishai Wool

Security Aspects of Post-Quantum Schemes

Fault Attacks on UOV and Rainbow . 193
Juliane Krämer and Mirjam Loiero

Towards Optimized and Constant-Time CSIDH on Embedded Devices 215
Amir Jalali, Reza Azarderakhsh, Mehran Mozaffari Kermani,
and David Jao

Number “Not Used” Once - Practical Fault Attack on pqm4
Implementations of NIST Candidates. 232

Prasanna Ravi, Debapriya Basu Roy, Shivam Bhasin,
Anupam Chattopadhyay, and Debdeep Mukhopadhyay

Countermeasures Against Implementation Attacks

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 253
Thomas Schamberger, Oliver Mischke, and Johanna Sepulveda

Shuffle and Mix: On the Diffusion of Randomness in Threshold
Implementations of KECCAK . 270

Felix Wegener, Christian Baiker, and Amir Moradi

Trade-offs in Protecting KECCAK Against Combined Side-Channel
and Fault Attacks . 285

Antoon Purnal, Victor Arribas, and Lauren De Meyer

Author Index . 303

x Contents

Keynotes and Invited Talks

RowHammer and Beyond

Onur Mutlu1,2(B)

1 ETH Zürich, Zürich, Switzerland
onur.mutlu@inf.ethz.ch

2 Carnegie Mellon University, Pittsburgh, USA

Abstract. We will discuss the RowHammer problem in DRAM, which
is a prime (and likely the first) example of how a circuit-level failure
mechanism in Dynamic Random Access Memory (DRAM) can cause
a practical and widespread system security vulnerability. RowHammer
is the phenomenon that repeatedly accessing a row in a modern DRAM
chip predictably causes errors in physically-adjacent rows. It is caused by
a hardware failure mechanism called read disturb errors. Building on our
initial fundamental work that appeared at ISCA 2014, Google Project
Zero demonstrated that this hardware phenomenon can be exploited by
user-level programs to gain kernel privileges. Many other recent works
demonstrated other attacks exploiting RowHammer, including remote
takeover of a server vulnerable to RowHammer. We will analyze the
root causes of the problem and examine solution directions. We will also
discuss what other problems may be lurking in DRAM and other types
of memories, e.g., NAND flash and Phase Change Memory, which can
potentially threaten the foundations of reliable and secure systems, as
the memory technologies scale to higher densities.

1 Summary

As memory scales down to smaller technology nodes, new failure mechanisms
emerge that threaten its correct operation [79,80]. If such failures are not antici-
pated and corrected, they can not only degrade system reliability and availability
but also, even more importantly, open up new security vulnerabilities: a mali-
cious attacker can exploit the exposed failure mechanism to take over an entire
system. As such, new failure mechanisms in memory can become practical and
significant threats to system security.

In this keynote talk, based on our ISCA 2014 paper [55], we introduce the
RowHammer problem in DRAM, which is a prime (and likely the first) example
of a real circuit-level failure mechanism that causes a practical and widespread
system security vulnerability. RowHammer, as it is now popularly referred to,
is the phenomenon that repeatedly accessing a row in a modern DRAM chip
causes bit flips in physically-adjacent rows at consistently predictable bit loca-
tions. It is caused by a hardware failure mechanism called DRAM disturbance
errors, which is a manifestation of circuit-level cell-to-cell interference in a scaled
memory technology. Specifically, when a DRAM row is opened (i.e., activated)
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 3–12, 2019.
https://doi.org/10.1007/978-3-030-16350-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_1

4 O. Mutlu

and closed (i.e., precharged) repeatedly (i.e., hammered), enough times within
a DRAM refresh interval, one or more bits in physically-adjacent DRAM rows
can be flipped to the wrong value. Using an FPGA-based DRAM testing infras-
tructure [42,70], we tested 129 DRAM modules manufactured by three major
manufacturers in seven recent years (2008–2014) and found that 110 of them
exhibited RowHammer errors, the earliest of which dates back to 2010. Our
ISCA 2014 paper [55] provides a detailed and rigorous analysis of various char-
acteristics of RowHammer, including its data pattern dependence, repeatability
of errors, relationship with leaky cells, and various circuit-level causes of the
phenomenon.

We demonstrate that a very simple user-level program [3,55] can reliably
and consistently induce RowHammer errors in commodity AMD and Intel sys-
tems using vulnerable DRAM modules. We released the source code of this
program [3], which Google Project Zero later enhanced [4]. Using our user-level
RowHammer program, we showed that both read and write accesses to memory
can induce bit flips, all of which occur in rows other than the one that is being
accessed. Since different DRAM rows are mapped to different software pages,
our user-level program could reliably corrupt specific bits in pages belonging to
other programs. As a result, RowHammer errors can be exploited by a malicious
program to breach memory protection and compromise the system. In fact, we
hypothesized, in our ISCA 2014 paper, that our user-level program, with some
engineering effort, could be developed into a disturbance attack that injects errors
into other programs, crashes the system, or hijacks control of the system.

RowHammer exposes a security threat since it leads to a serious breach of
memory isolation: an access to one memory row (e.g., an OS page) predictably
modifies the data stored in another row (e.g., another OS page). Malicious soft-
ware, which we call disturbance attacks [55], or RowHammer attacks, can be
written to take advantage of these disturbance errors to take over an entire sys-
tem. Inspired by our ISCA 2014 paper’s fundamental findings, researchers from
Google Project Zero demonstrated in 2015 that RowHammer can be effectively
exploited by user-level programs to gain kernel privileges on real systems [94,95].
Tens of other works since then demonstrated other attacks exploiting RowHam-
mer. These include remote takeover of a server vulnerable to RowHammer via
JavaScript code execution [40], takeover of a victim virtual machine by another
virtual machine running on the same system [92], takeover of a mobile device
by a malicious user-level application that requires no permissions [103], takeover
of a mobile system by triggering RowHammer using the WebGL interface on
a mobile GPU [35], takeover of a remote system by triggering RowHammer
through the Remote Direct Memory Access (RDMA) protocol [67,101], and
various other attacks (e.g., [8,13,14,39,45,85–87,102,108]). Thus, RowHammer
has widespread and profound real implications on system security, as it destroys
memory isolation on top of which modern system security principles are built.

We provide a wide variety of solutions, both immediate and longer-term, to
RowHammer, starting from our ISCA 2014 paper [55]. A popular immediate solu-
tion we describe and analyze, is to increase the refresh rate of memory such that

RowHammer and Beyond 5

the probability of inducing a RowHammer error before DRAM cells get refreshed
is reduced. Several major system manufacturers have adopted this solution and
released security patches that increased DRAM refresh rates (e.g., [11,34,43,66])
in memory controllers deployed in the field. While this solution is practical and
effective in reducing the vulnerability, assuming the refresh rate is increased
enough to avoid the vulnerability, it has the significant drawbacks of increasing
energy/power consumption, reducing system performance, and degrading quality
of service experienced by user programs. Our paper shows that the refresh rate
needs to be increased by 7X if we want to eliminate every single RowHammer-
induced error we saw in our tests of 129 DRAM modules. Since DRAM refresh
is already a significant burden [31,33,46,47,49,69,70,84,89] on energy, perfor-
mance, and QoS, increasing it by any significant amount would only exacerbate
the problem. Yet, increased refresh rate is likely the most practical immedi-
ate solution to RowHammer that can protect vulnerable chips that are already
deployed in the field.

After describing and analyzing six solutions to RowHammer, our ISCA 2014
paper shows that the long-term solution to RowHammer can actually be simple
and low cost. We introduce a new idea, called PARA (Probabilistic Adjacent Row
Activation): when the memory controller closes a row (after it was activated),
with a very low probability, it refreshes the adjacent rows. The probability value
is a parameter determined by the system designer or provided programmatically,
if needed, to trade off between performance overhead and vulnerability protec-
tion guarantees. We show that this solution is very effective: it eliminates the
RowHammer vulnerability, providing much higher reliability guarantees than
modern hard disks provide today, while requiring no storage cost and having
negligible performance and energy overheads [55]. Variants of this solution are
currently being adopted in DRAM chips and memory controllers [5,6].

The RowHammer problem leads to a new mindset that has enabled a renewed
interest in hardware security research: real memory chips are vulnerable, in a sim-
ple and widespread manner, and this causes real security problems. We believe
the RowHammer problem will worsen over time since DRAM cells are getting
closer to each other with technology scaling. Other similar vulnerabilities may
also be lurking in DRAM and other types of memories, e.g., NAND flash mem-
ory or Phase Change Memory, that can potentially threaten the foundations of
secure systems [80]. Our work advocates a principled system-memory co-design
approach to memory reliability and security research that can enable us to better
anticipate and prevent such vulnerabilities.

2 Significance, Impact and the Future

RowHammer has spurred significant amount of research and industry attention
since its publication in 2014. Our ISCA 2014 paper [55] is the first to demon-
strate the RowHammer vulnerability, its characteristics, and its prevalence in
real DRAM chips. RowHammer is a prime (and likely the first) example of a
hardware failure mechanism that causes a practical and widespread system secu-
rity vulnerability. Thus, the implications of RowHammer and our ISCA 2014

6 O. Mutlu

paper on systems security is tremendous, both in the short term and the long
term: it is the first work we know of that shows that a real reliability problem in
one of the ubiquitous general-purpose hardware components (DRAM memory)
can cause practical and widespread system security vulnerabilities.

Since its publication in 2014, RowHammer has already had significant real-
world impact on both industry and academia in at least four directions. These
directions will continue to exert long-term impact for RowHammer, as memory
cells continue to get closer to each other while the technology scaling of memory
continues.

First, our work has inspired many researchers to exploit RowHammer to
devise new attacks. As mentioned earlier, tens of papers were written in top
security venues that demonstrate various practical attacks exploiting RowHam-
mer (e.g., [8,13,14,35,39,40,45,85,87,92,103,108]). These attacks started with
Google Project Zero’s first work in 2015 [94,95] and they continue to this
date, with the latest ones that we know of being published in Summer
2018 [67,86,101,102]. We believe there is a lot more to come in this direction:
as systems security researchers understand more about RowHammer, and as the
RowHammer phenomenon continues to fundamentally affect memory chips due
to technology scaling problems [80], researchers and practitioners will develop
different types of attacks to exploit RowHammer in various contexts and in many
more creative ways. Some recent reports suggest that new-generation DDR4
DRAM chips are vulnerable to RowHammer [8,10,58,85], so the fundamental
security research on RowHammer is likely to continue into the future.

Second, due to its prevalence in real DRAM chips, as demonstrated in our
ISCA 2014 paper, RowHammer has become a popular phenomenon [1,2,9,37,
41,58,83,95,105], which, in turn, has made hardware security “mainstream” in
media and the broader security community. It enabled hardware security vulner-
abilities as mainstream conversation and a serious threat that has to be defended
against. A well-read article from the Wired magazine, all about RowHammer, is
entitled “Forget Software – Now Hackers are Exploiting Physics!” [38], indicat-
ing the shift of mindset towards hardware security vulnerabilities in the popular
mainstream security community. Many other popular articles in press have been
written about RowHammer, many of which pointing to the fundamental dis-
covery of RowHammer in our ISCA 2014 work [55]. Making hardware security
vulnerabilities mainstream and pulling them to the popular discussion space,
and thus changing the mainstream discourse, creates a very long term impact
for the RowHammer problem.

Third, our work inspired many solution and mitigation techniques for
RowHammer from both researchers and industry practitioners. Apple publicly
mentioned, in their critical security release for RowHammer, that they increased
the memory refresh rates due to the “original research by Yoongu Kim et al.
(2014)” [11]. Memtest86 program was updated, including a RowHammer test,
acknowledging our ISCA 2014 paper [83]. Many academic works developed solu-
tions to RowHammer, working from our original research (e.g., [12,15,36,39,
44,50,65,96,97,104]). Multiple industrial solutions (e.g., [5,6]) were inspired by

RowHammer and Beyond 7

our new solution to RowHammer, Probabilistic Adjacent Row Activation. We
believe such solutions will continue to be generated in both academia and indus-
try, extending RowHammer’s impact into the very long term.

Fourth, and perhaps most importantly, RowHammer enabled a shift of mind-
set among mainstream security researchers: general-purpose hardware is fallible
(in a very widespread manner) and its problems are actually exploitable. This
shift of mindset enabled many systems security researchers to examine hardware
in more depth and understand its inner workings and vulnerabilities better. We
believe it is no coincidence that two of the groups that concurrently discovered
the Meltdown [68] and Spectre [56] vulnerabilities (Google Project Zero and TU
Graz InfoSec) have heavily worked on RowHammer attacks before. We believe
this shift in mindset, enabled in good part by the existence and prevalence of
RowHammer, will continue to be very be important for discovering and solving
other potential vulnerabilities that may appear as a result of both technology
scaling and hardware design.

3 Other Potential Vulnerabilities

We believe that, as memory technologies scale to higher densities, other problems
may start appearing (or may already be going unnoticed) that can potentially
threaten the foundations of secure systems. There have been recent large-scale
field studies a well as small-scale controlled studies of real memory errors on
real devices and systems, showing that both DRAM and NAND flash memory
technologies are becoming less reliable [17,25,27,28,73,74,77–80,82,84,93,98–
100]. As detailed experimental analyses of real DRAM and NAND flash
chips show, both technologies are becoming much more vulnerable to cell-to-
cell interference effects [17,20–23,26–28,55,72,79–82], data retention is becom-
ing significantly more difficult in both technologies [17–19,21,25,27,28,31,46–
49,69–71,73–75,79,81,82,89], and error variation within and across chips is
increasingly prominent [17,21,29,30,51–53,63,64,70]. Emerging memory tech-
nologies [76,79], such as Phase-Change Memory [59–61,88,90,91,106,109–111],
STT-MRAM [32,57], and RRAM/ReRAM/ memristors [107] are likely to exhibit
similar and perhaps even more exacerbated reliability issues. We believe, if not
carefully accounted for and corrected, these reliability problems may surface as
security problems as well, as in the case of RowHammer, especially if the tech-
nology is employed as part of the main memory system that is directly exposed
to user-level programs. We believe future work examining these vulnerabilities,
among others, is promising for both fixing the vulnerabilities and enabling the
effective scaling of memory technology.

Acknowledgments. This short paper and the associated keynote talk are heavily
based on two previous papers we have written on RowHammer, one that first intro-
duced the phenomenon in ISCA 2014 [55] and the other that provides an analysis and
future outlook on RowHammer [80]. They are a result of the research done together
with many students and collaborators over the course of the past 7–8 years. In par-
ticular, three PhD theses have shaped the understanding that led to this work. These

8 O. Mutlu

are Yoongu Kim’s thesis entitled “Architectural Techniques to Enhance DRAM Scal-
ing” [54], Yu Cai’s thesis entitled “NAND Flash Memory: Characterization, Analysis,
Modeling and Mechanisms” [24] and his continued follow-on work after his thesis,
summarized in [27,28], and Donghyuk Lee’s thesis entitled “Reducing DRAM Latency
at Low Cost by Exploiting Heterogeneity” [62]. We also acknowledge various funding
agencies (NSF, SRC, ISTC, CyLab) and industrial partners (AliBaba, AMD, Google,
Facebook, HP Labs, Huawei, IBM, Intel, Microsoft, Nvidia, Oracle, Qualcomm, Ram-
bus, Samsung, Seagate, VMware) who have supported the presented and other related
work in my group generously over the years. The first version of this talk was delivered
at a CMU CyLab Partners Conference in September 2015. Another version of the talk
was delivered as part of an Invited Session at DAC 2016, with a collaborative accom-
panying paper entitled “Who Is the Major Threat to Tomorrow’s Security? You, the
Hardware Designer” [16]. The most recent version is the invited talk given at the Top
Picks in Hardware and Embedded Security workshop, co-located with ICCAD 2018 [7],
where RowHammer was selected as a Top Pick among hardware and embedded security
papers published between 2012–2017. I would like to also thank Christina Giannoula
for her help in preparing this manuscript.

References

1. RowHammer Discussion Group. https://groups.google.com/forum/#!forum/
rowhammer-discuss

2. RowHammer on Twitter. https://twitter.com/search?q=rowhammer
3. Rowhammer: Source Code for Testing the Row Hammer Error Mechanism in

DRAM Devices. https://github.com/CMU-SAFARI/rowhammer
4. Test DRAM for Bit Flips Caused by the RowHammer Problem. https://github.

com/google/rowhammer-test
5. ThinkPad X210 BIOS Debugging. https://github.com/tadfisher/x210-bios
6. Tweet about RowHammer Mitigation on x210. https://twitter.com/isislovecruft/

status/1021939922754723841
7. Top Picks in Hardware and Embedded Security - Workshop Collocated with

ICCAD 2018 (2017). https://wp.nyu.edu/toppicksinhardwaresecurity/
8. Aga, M.T., Aweke, Z.B., Austin, T.: When good protections go bad: exploiting

anti-DoS measures to accelerate rowhammer attacks. In: HOST (2017)
9. Aichinger, B.: The Known Failure Mechanism in DDR3 Memory referred to as

Row Hammer, September 2014. http://ddrdetective.com/files/6414/1036/5710/
The Known Failure Mechanism in DDR3 memory referred to as Row Hammer.
pdf

10. Aichinger, B.: DDR memory errors caused by row hammer. In: HPEC (2015)
11. Apple Inc., About the security content of Mac EFI Security Update 2015-001,

June 2015. https://support.apple.com/en-us/HT204934
12. Aweke, Z.B., et al.: Anvil: software-based protection against next-generation

rowhammer attacks. In: ASPLOS (2016)
13. Bhattacharya, S., Mukhopadhyay, D.: Curious case of RowHammer: flipping

secret exponent bits using timing analysis. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 602–624. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 29

14. Bosman, E., et al.: Dedup Est Machina: memory deduplication as an advanced
exploitation vector. In: S&P (2016)

https://groups.google.com/forum/#!forum/rowhammer-discuss
https://groups.google.com/forum/#!forum/rowhammer-discuss
https://twitter.com/search?q=rowhammer
https://github.com/CMU-SAFARI/rowhammer
https://github.com/google/rowhammer-test
https://github.com/google/rowhammer-test
https://github.com/tadfisher/x210-bios
https://twitter.com/isislovecruft/status/1021939922754723841
https://twitter.com/isislovecruft/status/1021939922754723841
https://wp.nyu.edu/toppicksinhardwaresecurity/
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
http://ddrdetective.com/files/6414/1036/5710/The_Known_Failure_Mechanism_in_DDR3_memory_referred_to_as_Row_Hammer.pdf
https://support.apple.com/en-us/HT204934
https://doi.org/10.1007/978-3-662-53140-2_29

RowHammer and Beyond 9

15. Brasser, F., Davi, L., Gens, D., Liebchen, C., Sadeghi, A.-R.: Can’t touch this:
practical and generic software-only defenses against RowHammer attacks. In:
USENIX Security (2017)

16. Burleson, W., et al.: Who is the major threat to tomorrow’s security? You, the
hardware designer. In: DAC (2016)

17. Cai, Y., et al.: Error patterns in MLC NAND flash memory: measurement, char-
acterization, and analysis. In: DATE (2012)

18. Cai, Y., et al.: Flash correct-and-refresh: retention-aware error management for
increased flash memory lifetime. In: ICCD (2012)

19. Cai, Y., et al.: Error analysis and retention-aware error management for NAND
flash memory. ITJ 17(1), 140–165 (2013)

20. Cai, Y., et al.: Program interference in MLC NAND flash memory: characteriza-
tion, modeling, and mitigation. In: ICCD (2013)

21. Cai, Y., et al.: Threshold voltage distribution in MLC NAND flash memory:
characterization, analysis and modeling. In: DATE (2013)

22. Cai, Y., et al.: Neighbor-cell assisted error correction for MLC NAND flash mem-
ories. In: SIGMETRICS (2014)

23. Cai, Y., et al.: Vulnerabilities in MLC NAND flash memory programming: exper-
imental analysis, exploits, and mitigation techniques. In: HPCA (2017)

24. Cai, Y.: NAND flash memory: characterization, analysis, modeling and mecha-
nisms. Ph.D. thesis, Carnegie Mellon University (2012)

25. Cai, Y., et al.: Data retention in MLC NAND flash memory: characterization,
optimization and recovery. In: HPCA (2015)

26. Cai, Y., et al.: Read disturb errors in MLC NAND flash memory: characterization,
mitigation, and recovery. In: DSN (2015)

27. Cai, Y., Ghose, S., Haratsch, E.F., Luo, Y., Mutlu, O.: Error characterization,
mitigation, and recovery in flash-memory-based solid-state drives. Proc. IEEE
105, 1666–1704 (2017)

28. Cai, Y., Ghose, S., Haratsch, E.F., Luo, Y., Mutlu, O.: Errors in Flash-Memory-
Based Solid-State Drives: Analysis, Mitigation, and Recovery (2017). arXiv
preprint: arXiv:1711.11427

29. Chandrasekar, K., et al.: Exploiting expendable process-margins in DRAMs for
run-time performance optimization. In: DATE (2014)

30. Chang, K., et al.: Understanding latency variation in modern DRAM chips: exper-
imental characterization, analysis, and optimization. In: SIGMETRICS (2016)

31. Chang, K., et al.: Improving DRAM performance by parallelizing refreshes with
accesses. In: HPCA (2014)

32. Chen, E., et al.: Advances and future prospects of spin-transfer torque random
access memory. IEEE Trans. Magn. 46, 1873–1878 (2010)

33. Das, A., et al.: VRL-DRAM: improving DRAM performance via variable refresh
latency. In: DAC (2018)

34. Fridley, T., Santos, O.: Mitigations Available for the DRAM Row Hammer
Vulnerability, March 2015. http://blogs.cisco.com/security/mitigations-available-
for-the-dram-row-hammer-vulnerability

35. Frigo, P., et al.: Grand Pwning unit: accelerating microarchitectural attacks with
the GPU. In: IEEE S&P (2018)

36. Gomez, H., Amaya, A., Roa, E.: DRAM Row-hammer attack reduction using
dummy cells. In: NORCAS (2016)

37. Goodin, D.: Once thought safe, DDR4 memory shown to be vulnerable to
Rowhammer (2016). https://arstechnica.com/information-technology/2016/03/
once-thought-safe-ddr4-memory-shown-to-be-vulnerable-to-rowhammer/

http://arxiv.org/abs/1711.11427
http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
http://blogs.cisco.com/security/mitigations-available-for-the-dram-row-hammer-vulnerability
https://arstechnica.com/information-technology/2016/03/once-thought-safe-ddr4-memory-shown-to-be-vulnerable-to-rowhammer/
https://arstechnica.com/information-technology/2016/03/once-thought-safe-ddr4-memory-shown-to-be-vulnerable-to-rowhammer/

10 O. Mutlu

38. Greenberg, A.: Forget Software – Now Hackers are Exploiting Physics (2016).
https://www.wired.com/2016/08/new-form-hacking-breaks-ideas-computers-
work/

39. Gruss, D., et al.: Another flip in the wall of rowhammer defenses. In: IEEE S&P
(2018)

40. Gruss, D., et al.: Rowhammer.js: a remote software-induced fault attack in
Javascript. CoRR, abs/1507.06955 (2015)

41. Harris, R.: Flipping DRAM bits - maliciously, December 2014. http://www.zdnet.
com/article/flipping-dram-bits-maliciously/

42. Hassan, H., et al.: SoftMC: a flexible and practical open-source infrastructure for
enabling experimental DRAM studies. In: HPCA (2017)

43. Hewlett-Packard Enterprise. HP Moonshot Component Pack Version 2015.05.0
(2015). http://h17007.www1.hp.com/us/en/enterprise/servers/products/
moonshot/component-pack/index.aspx

44. Irazoqui, G., Eisenbarth, T., Sunar, B.: MASCAT: stopping microarchitectural
attacks before execution. IACR Cryptology ePrint Archive (2016)

45. Jang, Y., Lee, J., Lee, S., Kim, T.: SGX-bomb: locking down the processor via
rowhammer attack. In: SysTEX (2017)

46. Kang, U., et al.: Co-architecting controllers and DRAM to enhance DRAM pro-
cess scaling. In: The Memory Forum (2014)

47. Khan, S., et al.: The efficacy of error mitigation techniques for DRAM retention
failures: a comparative experimental study. In: SIGMETRICS (2014)

48. Khan, S., et al.: A case for memory content-based detection and mitigation of
data-dependent failures in DRAM. CAL 16(2), 88–93 (2016)

49. Khan, S., et al.: PARBOR: an efficient system-level technique to detect data-
dependent failures in DRAM. In: DSN (2016)

50. Kim, D.-H., et al.: Architectural support for mitigating row hammering in DRAM
memories. IEEE CAL 14, 9–12 (2015)

51. Kim, J.S., Patel, M., Hassan, H., Mutlu, O.: Solar-DRAM: reducing DRAM access
latency by exploiting the variation in local bitlines. In: ICCD (2018)

52. Kim, J.S., Patel, M., Hassan, H., Mutlu, O.: The DRAM latency PUF: quickly
evaluating physical unclonable functions by exploiting the latency-reliability
tradeoff in modern commodity DRAM devices. In: HPCA (2018)

53. Kim, J.S., Patel, M., Hassan, H., Orosa, L., Mutlu, O.: D-RaNGe: using com-
modity DRAM devices to generate true random numbers with low latency and
high throughput. In: HPCA (2019)

54. Kim, Y.: Architectural techniques to enhance DRAM scaling. Ph.D. thesis,
Carnegie Mellon University (2015)

55. Kim, Y., et al.: Flipping bits in memory without accessing them: an experimental
study of DRAM disturbance errors. In: ISCA (2014)

56. Kocher, P., et al.: Spectre attacks: exploiting speculative execution In: S&P (2018)
57. Kultursay, E., et al.: Evaluating STT-RAM as an energy-efficient main memory

alternative. In: ISPASS (2013)
58. Lanteigne, M.: How Rowhammer could be used to exploit weaknesses in computer

hardware, March 2016. http://www.thirdio.com/rowhammer.pdf
59. Lee, B.C., et al.: Architecting phase change memory as a scalable DRAM alter-

native. In: ISCA (2009)
60. Lee, B.C., et al.: Phase change memory architecture and the quest for scalability.

CACM 53, 99–106 (2010)
61. Lee, B.C., et al.: Phase change technology and the future of main memory. IEEE

Micro 30, 143 (2010)

https://www.wired.com/2016/08/new-form-hacking-breaks-ideas-computers-work/
https://www.wired.com/2016/08/new-form-hacking-breaks-ideas-computers-work/
http://www.zdnet.com/article/flipping-dram-bits-maliciously/
http://www.zdnet.com/article/flipping-dram-bits-maliciously/
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://www.thirdio.com/rowhammer.pdf

RowHammer and Beyond 11

62. Lee, D.: Reducing DRAM latency by exploiting heterogeneity. ArXiV (2016)
63. Lee, D., et al.: Adaptive-latency DRAM: optimizing DRAM timing for the

common-case. In: HPCA (2015)
64. Lee, D., et al.: Design-induced latency variation in modern DRAM chips: charac-

terization, analysis, and latency reduction mechanisms. In: POMACS (2017)
65. Lee, E., Lee, S., Edward Suh, G., Ahn, J.H.: TWiCe: time window counter based

row refresh to prevent Row-hammering. CAL 17, 96–99 (2018)
66. Lenovo. Row Hammer Privilege Escalation, March 2015. https://support.lenovo.

com/us/en/product security/row hammer
67. Lipp, M., et al.: Nethammer: inducing rowhammer faults through network

requests (2018). arxiv.org
68. Lipp, M., et al.: Meltdown: reading kernel memory from user space. In: USENIX

Security (2018)
69. Liu, J., et al.: RAIDR: retention-aware intelligent DRAM refresh. In: ISCA (2012)
70. Liu, J., et al.: An experimental study of data retention behavior in modern DRAM

devices: implications for retention time profiling mechanisms. In: ISCA (2013)
71. Luo, Y., et al.: WARM: improving NAND flash memory lifetime with write-

hotness aware retention management. In: MSST (2015)
72. Luo, Y., et al.: Enabling accurate and practical online flash channel modeling for

modern MLC NAND flash memory. JSAC 34, 2294–2311 (2016)
73. Luo, Y., Ghose, S., Cai, Y., Haratsch, E.F., Mutlu, O.: HeatWatch: improving 3D

NAND flash memory device reliability by exploiting self-recovery and temperature
awareness. In: HPCA (2018)

74. Luo, Y., Ghose, S., Cai, Y., Haratsch, E.F., Mutlu, O.: Improving 3D NAND
flash memory lifetime by tolerating early retention loss and process variation. In:
POMACS (2018)

75. Mandelman, J., et al.: Challenges and future directions for the scaling of dynamic
random-access memory (DRAM). IBM J. Res. Dev. 46, 187–212 (2002)

76. Meza, J., et al.: A case for efficient hardware-software cooperative management
of storage and memory. In: WEED (2013)

77. Meza, J., et al.: A large-scale study of flash memory errors in the field. In: SIG-
METRICS (2015)

78. Meza, J., et al.: Revisiting memory errors in large-scale production data centers:
analysis and modeling of new trends from the field. In: DSN (2015)

79. Mutlu, O.: Memory scaling: a systems architecture perspective. In: IMW (2013)
80. Mutlu, O.: The RowHammer problem and other issues we may face as memory

becomes denser. In: DATE (2017)
81. Mutlu, O.: Error analysis and management for MLC NAND flash memory. In:

Flash Memory Summit (2014)
82. Mutlu, O., Subramanian, L.: Research problems and opportunities in memory

systems. In: SUPERFRI (2014)
83. PassMark Software. MemTest86: The Original Industry Standard Memory Diag-

nostic Utility (2015). http://www.memtest86.com/troubleshooting.htm
84. Patel, M., Kim, J.S., Mutlu, O.: The Reach Profiler (REAPER): enabling the

mitigation of DRAM retention failures via profiling at aggressive conditions. In:
ISCA (2017)

85. Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S.: DRAMA: exploiting
dram addressing for cross-CPU attacks. In: USENIX Security (2016)

86. Poddebniak, D., Somorovsky, J., Schinzel, S., Lochter, M., Rösler, P.: Attacking
deterministic signature schemes using fault attacks. In: EuroS&P (2018)

https://support.lenovo.com/us/en/product_security/row_hammer
https://support.lenovo.com/us/en/product_security/row_hammer
http://www.memtest86.com/troubleshooting.htm

12 O. Mutlu

87. Qiao, R., Seaborn, M.: A new approach for rowhammer attacks. In: HOST (2016)
88. Qureshi, M.K., et al.: Scalable high performance main memory system using

phase-change memory technology. In: ISCA (2009)
89. Qureshi, M.K., et al.: AVATAR: a Variable-Retention-Time (VRT) aware refresh

for DRAM systems. In: DSN (2015)
90. Qureshi, M.K., et al.: Enhancing lifetime and security of phase change memories

via start-gap wear leveling. In: MICRO (2009)
91. Raoux, S., et al.: Phase-change random access memory: a scalable technology.

IBM J. Res. Dev. 52, 465–479 (2008)
92. Razavi, K., et al.: Flip Feng Shui: hammering a needle in the software stack. In:

USENIX Security (2016)
93. Schroeder, B., et al.: Flash reliability in production: the expected and the unex-

pected. In: USENIX FAST (2016)
94. Seaborn, M., Dullien, T.: Exploiting the DRAM Rowhammer Bug to Gain Kernel

Privileges (2015). http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-
dram-rowhammer-bug-to-gain.html

95. Seaborn, M., Dullien, T.: Exploiting the DRAM rowhammer bug to gain kernel
privileges. In: BlackHat (2016)

96. Seyedzadeh, S.M., Jones, A.K., Melhem, R.: Counter-based tree structure for row
hammering mitigation in DRAM. CAL 16, 18–21 (2017)

97. Son, M., Park, H., Ahn, J., Yoo, S.: Making DRAM stronger against row ham-
mering. In: DAC (2017)

98. Sridharan, V., et al.: Memory errors in modern systems: the good, the bad, and
the ugly. In: ASPLOS (2015)

99. Sridharan, V., Liberty, D.: A study of DRAM failures in the field. In: SC (2012)
100. Sridharan, V., Stearley, J., DeBardeleben, N., Blanchard, S., Gurumurthi, S.: Feng

Shui of supercomputer memory: positional effects in DRAM and SRAM faults.
In: SC (2013)

101. Tatar, A., et al.: Throwhammer: rowhammer attacks over the network and
defenses. In: USENIX ATC (2018)

102. Tatar, A., Giuffrida, C., Bos, H., Razavi, K.: Defeating software mitigations
against rowhammer: a surgical precision hammer. In: Bailey, M., Holz, T., Stam-
atogiannakis, M., Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 47–66.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00470-5 3

103. van der Veen, V., et al.: Drammer: deterministic rowhammer attacks on mobile
platforms. In: CCS (2016)

104. van der Veen, V., et al.: GuardION: practical mitigation of DMA-based rowham-
mer attacks on ARM. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.) DIMVA 2018.
LNCS, vol. 10885, pp. 92–113. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-93411-2 5

105. Wikipedia. Row hammer. https://en.wikipedia.org/wiki/Row hammer
106. Wong, H.-S.P., et al.: Phase change memory. Proc. IEEE 98, 2201–2227 (2010)
107. Wong, H.-S.P., et al.: Metal-oxide RRAM. Proc. IEEE 100, 1951–1970 (2012)
108. Xiao, Y., et al.: One bit flips, one cloud flops: cross-VM row hammer attacks and

privilege escalation. In: USENIX Security (2016)
109. Yoon, H., et al.: Row buffer locality aware caching policies for hybrid memories.

In: ICCD (2012)
110. Yoon, H., et al.: Efficient data mapping and buffering techniques for multi-level

cell phase-change memories. In: TACO (2014)
111. Zhou, P., et al.: A durable and energy efficient main memory using phase change

memory technology. In ISCA (2009)

http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
http://googleprojectzero.blogspot.com.tr/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://doi.org/10.1007/978-3-030-00470-5_3
https://doi.org/10.1007/978-3-319-93411-2_5
https://doi.org/10.1007/978-3-319-93411-2_5
https://en.wikipedia.org/wiki/Row_hammer

Cache-Timing Attack Detection
and Prevention

Application to Crypto Libs and PQC

Sébastien Carré1,2, Adrien Facon1,3, Sylvain Guilley1,2,3(B),
Sofiane Takarabt1,2, Alexander Schaub2, and Youssef Souissi1

1 Secure-IC S.A.S., 15 Rue Claude Chappe, Bât. B, 35 510 Cesson-Sévigné, France
sylvain.guilley@secure-ic.com

2 LTCI, Télécom ParisTech, Institut Polytechnique de Paris, 75 013 Paris, France
3 École Normale Supérieure, département d’informatique, 75 005 Paris, France

Abstract. With the publication of Spectre & Meltdown attacks, cache-
timing exploitation techniques have received a wealth of attention
recently. On the one hand, it is now well understood which patterns
in the source code create observable unbalances in terms of timing. On
the other hand, some practical attacks have also been reported. But the
exact relation between vulnerabilities and exploitations is not enough
studied as of today. In this article, we put forward a methodology to
characterize the leakage induced by a “non-constant-time” construct in
the source code. This methodology allows us to recover known attacks
and to warn about possible new ones, possibly devastating.

Keywords: Cache-timing attacks · Leakage detection ·
Leakage attribution · Discovery of new attacks

1 Introduction

Writing secure cryptographic software is notoriously hard, since mistakes can
often be turned as a advantage by attackers to really extract the secrets. For
instance, corruption of computations is known to allow for catastrophic fail-
ures [15]. Consider for instance:

– the Bellcore [3] attack on RSA with Chinese Remainder Theorem (CRT-
RSA),

– the differential fault analysis (DFA [2]) on AES (ISO/IEC 18033-3),
– verification skips in signature schemes (recall the case of the double goto

inadvertent copy-and-paste [14]).

Any bug in the implementation (e.g., possibility to perform a buffer overflow)
which allows for replacing an intermediate value (as for Bellcore and DFA) does
lead to a successful cryptanalysis. In the case of the verification skip in the
signature schemes, the bug is already in the source code and allows the attacker
to bypass the cryptography.
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 13–21, 2019.
https://doi.org/10.1007/978-3-030-16350-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_2

14 S. Carré et al.

Therefore, it is essential to write correct (bug-free) cryptographic software.
But this is not sufficient, since other attacks can still be applied. Typically, side-
channel attacks are also known as particularly threatening. Indeed, they exploit
some non-functional albeit observable side-effects caused by computations to
profile the cryptographic code, and to come back to the secret non-invasively.
The reason for these attacks to be feared is that, in most of the time, they cannot
be detected.

One particular side-channel attack which received a great deal of attention are
the so-called cache-timing attacks. Indeed, the observation is carried out directly
by the machine which executes the victim code. Therefore, the resolution is high
and the noise is low. Furthermore, it is not necessary for the attacker to possess
the machine. The pre-condition for the attack is simply to be able to use a
cryptographic service, just as the victim would.

By monitoring the time shared resources react, the attacker learns whether
or not the victim has been soliciting such resources. Shared resources are typi-
cally the multiple pipelines allowing for HyperThreaded computations, the use of
cache memories for data, code, address translations (as in Memory Management
Units or MMUs), the optimized management at the Dynamic Random Access
Memory (DRAM) side, etc. Not all those resources are termed “caches”, but
still the exploitation of the fact they can be contended by the concurrent usage
request of a victim and an attacker have them leak observable information. This
information is often measured as a timing variation, except for those situations
where it is sufficient to directly measure the side-channel, e.g., in a hardware
performance counter. Sometimes, the attacks are refined in that some hardware
peculiarity (e.g., branch prediction, out-of-order execution, etc.) enable indirectly
the observable variability, correlated to some internal variable handled by the
attacker. The operational use of cache-timing attacks is illustrated for instance
to bypass kernel-level protections [12], to create covert-channels [19], to attack
code in enclaves (CacheQuote [5]), etc. A big picture for so-called cache-timing
vulnerabilities (at C code level) is depicted in Fig. 1.

In this figure, attacks are related to the contended resources which leak.
The survey paper [11] also details the relationship between micro-architecture
and exploits. But as of today, it is unclear how seriously a timing bias can be
effectively exploited. This is precisely the intent of this paper.

The rest of this article is structured as follows. Known exploitation methods
are presented in Sect. 2, and they are attributed to a purported hardware bias.
Then comes our contribution in Sect. 3: we show a methodology to assess the
severity of a cache-timing leakage. Finally, the conclusion is given in Sect. 4.
Some examples of codes are relegated to the Appendix A.

Cache-Timing Attack Detection and Prevention 15

Fig. 1. Illustration how conditional code in one secret can manifest as observable side-
channel leakage, and some renown exploitations

2 Cache-Timing Issues

Issues related to cache-timing dependency on sensitive variables can lead to a
variety of attacks, namely:

– On RSA:
• Simple power analysis [17] (horizontal leakage)
• Extra-reduction analysis [7]
• BigMac Attack on windowed exponentiation [22]

– On ECDSA:
• LLL cryptanalysis due to short nonces [4,10]

– On AES:
• Timing attack [16]
• Higher-order timing attacks [6]
• Template attacks [21]

3 Cache-Timing Analysis Methodology

3.1 State-of-the-Art

Cryptographic libraries are thoroughly analyzed for vulnerabilities, and despite a
lot of efforts devoted to this topic, libraries need more checking. Indeed, the appli-
cation of protection can really affect strongly the performances. For instance,
the use of sliding-window algorithm for exponentiation is known to leak but

16 S. Carré et al.

is believed hard to exploit. Still, using a perfectly regular exponentiation algo-
rithms would collapse the performances. Hence the question whether or not the
countermeasure is practically needed. This has pushed attackers to try harder,
and actually a not so abstract on a key extraction has been put forward [1].

The Post-quantum cryptographic (PQC) algorithms have been analyzed for
leakages. The affected parts contributing to leakages have already been classified
systematically in [9, §5]:

– noise sampling operations, amongst them Gaussian noise is really sensitive,
– insecure Galois Field operations, especially in fields of characteristic two,
– variable time error correction algorithms,
– use of insecure large number libraries, such as GMP (GNU Multi-Precision,

https://gmplib.org/).

Let us now explore a systematic leakage discovery methodology.

3.2 Methodology Presentation

The presented methodology combines on the one hand static and dynamic anal-
yses, and on the other hand source and assembly analyses.

Step 1 : Static Analysis. The first step is a static analysis on source code.
The code is represented as an abstract syntax tree (AST), and the sensitive
variables (secret keys, but also all parameters whose knowledge would allow
to recover the secret keys, such as random numbers/noise involved in crypto-
graphic protocols) are propagated in the tree. A vulnerability is the coincidence
of a sensitive variable s and of either a conditional control flow operation (recall
if(s){}, for(i=0;i<s;++i){}, while(s){}, and switch(s){} constructs illus-
trated in Fig. 1) or a conditional table lookup (recall y=T[s] and y=*(ptr+s),
or vice-versa, constructs illustrated in Fig. 1).

Let us illustrate in Fig. 2 the vulnerabilities found in RSA signature of
MbedTLS. The Listing 1.2 in Appendix A shows one practical leakage. As illus-
trated in Fig. 2, the list of vulnerabilities can be regrouped according to their
calling patterns. Indeed, for a versatile routine, there can be many functions
actually requesting it. This is of great interest, since the more often a vulnera-
bility is executed, the more likely it will leak exploitable information. Actually,
one has to keep in mind that cache-timing attacks face a practical challenge, as:

– when applied against asymmetrical cryptography, which is typically random-
ized, the attack must succeed in one single trace;

– when applied against symmetrical cryptography (refer for instance to [21]),
the key is unchanged for multiple operations, but the algorithms are very
fast (around thousand clock periods, where the attackers aims at extracting
hundreds of bits).

Step2 : Assembly Code Analysis. The second step consists in analyzing
the generated assembly code after compilation of the C source code. The purpose
if to check whether the vulnerability is still present. In some cases, the compiler

https://gmplib.org/

Cache-Timing Attack Detection and Prevention 17

Fig. 2. Vulnerabilities identified in MbedTLS source code for RSA signature (courtesy
of [20])

Table 1. Translation of cache-timing vulnerable C operations into assembly

manages to remove (unintentionally though) the problem upon assembly code
generation. Table 1 illustrates typical translation of C structures into assembly.

It can be seen in Table 1 that some conditional operations can be translated
in constant-time assembly instructions, such as cmov (conditional move, atomic)
or such as setcc (set conditional, atomic). Indeed, these translations benefit
the execution speed: as they do not break the control flow, they can be executed
without risking a cache or a speculation fault, thereby accelerating the execution.
Furthermore, those translations happen only (paradoxically enough) when the
code is compiled with optimization options.

The access to tables are almost certainly not fixed, since the techniques
to make unconditional table accesses (bitslicing, extrapolation of table using
Lagrange polynomial, lookup of all elements and subsequent addition of values
after Boolean mask by the address indicator, etc.) are way too evolved. Addition-
ally, the known tactics to protect table lookups feature extremely high timing

18 S. Carré et al.

overhead, hence shall be added manually. The vulnerability due to pointer deref-
erencing (except for tables with very small, e.g., two, number of entries) thus
remains from C to assembly. For further reference on vulnerabilities at assembly-
level, we redirect the reader to [18].

Step 3 : Statistical Analysis. Finally, the code is executed dynamically, and
breakpoints are set on the assembly lines previously identified as vulnerable.
The information to be extracted is as follows:

– Count the number of occurrences while running the code—as mentioned, the
more often the leak is executed, the more chance it is exploitable;

– Check for execution patterns. If they are too fast (e.g., as bursts), it might
be hard to measure them individually.

The temporal distribution of vulnerabilities identified in static analysis is
represented in Fig. 3 (obtained with Intel PIN), for the 800 first instructions
(out of 3,679,883 making up a complete RSA 2048-bit).

Fig. 3. Activation times (labelled in number of instructions) of vulnerabilities found
by static analysis, for RSA signature.

Step 4 : Real-World Exploitation. Ideally, this method is complemented
by a real world measurements (e.g., using FLUSH+FLUSH [13] methodology, as
that from the CatalyzrTM tool [8]), so as to assess in which respect the leakages
are exploitable. Actually, regarding lookup tables, some accesses are indistin-
guishable, since they occur in the same line of cache. The final check allows to
validate whether the risk is real.

3.3 Methodology Application

The latest version of MbedTLS library (version 2.14.0) at the time of writing
this paper is studied. It is written with security in mind. Indeed, as an example,
it features some functions allowing for conditional operations to be carried in a
way which cannot be exploited by cache-attacks. An illustration is provided by
function mbedtls mpi safe cond assign (where mpi stands for multiprecision
interger), located in library/bignum.c and given for reference as Listing 1.1
in Appendix A.

Cache-Timing Attack Detection and Prevention 19

4 Conclusion

This paper has introduced a practical methodology to analyse observable cache-
timing biases with respect to their possible exploitation. The methodology con-
sists in several steps, namely: vulnerability identification in source code, vulner-
ability tracking in assembly code, statistics on the dynamic occurrence of the
vulnerability, and eventually, real measurements using FLUSH+FLUSH method-
ology.

We have shown how known attacks are recovered in a software cryptographic
library, and we point towards numerous new (uncovered yet albeit possibly dev-
astating) ones.

Acknowledgments. This work has benefited from a funding via the French PIA
(Projet d’Investissment d’Avenir) RISQ (Regroupement de l’Industrie pour la Sécurité
post-Quantique). Besides, this work has been partly financed via TeamPlay (https://
teamplay-h2020.eu/), a project from European Union’s Horizon20202 research and
innovation programme, under grant agreement N◦ 779882.

A Some Excerpts From Secure and Vulnerable Functions
From mbedTLS

/*

* Conditionally assign X = Y, without leaking information

* about whether the assignment was made or not.

* (Leaking information about the respective sizes of X and Y is ok however .)

*/

int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X, const mbedtls_mpi *Y, unsigned char assign)

{

int ret = 0;

size_t i;

/* make sure assign is 0 or 1 in a time -constant manner */

assign = (assign | (unsigned char)-assign) >> 7;

MBEDTLS_MPI_CHK(mbedtls_mpi_grow (X, Y->n));

X->s = X->s * (1 - assign) + Y->s * assign;

for(i = 0; i < Y->n; i++)

X->p[i] = X->p[i] * (1 - assign) + Y->p[i] * assign;

for(; i < X->n; i++)

X->p[i] *= (1 - assign);

cleanup:

return(ret);

}

Listing 1.1. Conditional assignment function, which does not reveal whether the
assignment has been completed or not

/*

* Initialize one MPI

*/

void mbedtls_mpi_init (mbedtls_mpi *X)

{

if(X == NULL)

return;

X->s = 1;

X->n = 0;

X->p = NULL;

}

Listing 1.2. Example of vulnerable code, as identified statically (the leakage is in the
if statement)

https://teamplay-h2020.eu/
https://teamplay-h2020.eu/

20 S. Carré et al.

References

1. Bernstein, D.J., et al.: Sliding right into disaster: left-to-right sliding windows leak.
In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 555–576.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66787-4 27

2. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In:
Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0052259

3. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

4. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23822-2 20

5. Dall, F., et al.: CacheQuote: efficiently recovering long-term secrets of SGX EPID
via cache attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 171–191
(2018)

6. Danger, J.-L., Debande, N., Guilley, S., Souissi, Y.: High-order timing attacks. In:
Proceedings of the First Workshop on Cryptography and Security in Computing
Systems, CS2 2014, pp. 7–12. ACM, New York (2014)

7. Dugardin, M., Guilley, S., Danger, J.-L., Najm, Z., Rioul, O.: Correlated extra-
reductions defeat blinded regular exponentiation. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 3–22. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 1

8. Facon, A., Guilley, S., Lec’hvien, M., Marion, D., Perianin, T.: Binary data analysis
for source code leakage assessment. In: Lanet, J.-L., Toma, C. (eds.) SECITC 2018.
LNCS, vol. 11359, pp. 391–409. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-12942-2 30

9. Facon, A., Guilley, S., Lec’hvien, M., Schaub, A., Souissi, Y.: Detecting cache-
timing vulnerabilities in post-quantum cryptography algorithms. In: 3rd IEEE
International Verification and Security Workshop, IVSW 2018, Costa Brava, Spain,
2–4 July 2018, pp. 7–12. IEEE (2018)

10. Garćıa, C.P., Brumley, B.B., Yarom, Y.: Make sure DSA signing exponentiations
really are constant-time. In: Weippl, E.R., et al. [22], pp. 1639–1650

11. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing
attacks and countermeasures on contemporary hardware. J. Cryptographic Eng.
8(1), 1–27 (2018)

12. Gruss, D., Maurice, C., Fogh, A., Lipp, M., Mangard, S.: Prefetch side-channel
attacks: bypassing SMAP and kernel ASLR. In: Weippl, E.R., et al. [22], pp. 368–
379

13. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: a fast and stealthy
cache attack. In: Caballero, J., Zurutuza, U., Rodŕıguez, R.J. (eds.) DIMVA 2016.
LNCS, vol. 9721, pp. 279–299. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40667-1 14

14. iOS 7.0.6. CVE-ID CVE-2014-1266. Description: Secure Transport failed to val-
idate the authenticity of the connection. This issue was addressed by restoring
missing validation steps. Impact: An attacker with a privileged network position
may capture or modify data in sessions protected by SSL/TLS, February 2014.
https://nvd.nist.gov/vuln/detail/CVE-2014-1266

https://doi.org/10.1007/978-3-319-66787-4_27
https://doi.org/10.1007/BFb0052259
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/978-3-642-23822-2_20
https://doi.org/10.1007/978-3-662-53140-2_1
https://doi.org/10.1007/978-3-030-12942-2_30
https://doi.org/10.1007/978-3-030-12942-2_30
https://doi.org/10.1007/978-3-319-40667-1_14
https://doi.org/10.1007/978-3-319-40667-1_14
https://nvd.nist.gov/vuln/detail/CVE-2014-1266

Cache-Timing Attack Detection and Prevention 21

15. Joye, M., Tunstall, M. (eds.): Fault Analysis in Cryptography. Information Secu-
rity and Cryptography. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-29656-7. ISBN: 978-3-642-29655-0

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

18. Clémentine Maurice and Moritz Lipp. What could possibly go wrong with <insert
x86 instruction here>?, December 2016. 33rd Chaos Communication Congress
(33c3), Hamburg, Germany. https://lab.dsst.io/slides/33c3/slides/8044.pdf

19. Maurice, C., et al.: Hello from the other side: SSH over robust cache covert channels
in the cloud. In: 24th Annual Network and Distributed System Security Sympo-
sium, NDSS 2017, San Diego, California, USA, 26 February–1 March 2017. The
Internet Society (2017)

20. Takarabt, S., et al.: Cache-timing attacks still threaten IoT devices. In: Codes,
Cryptology and Information Security - Third International Conference, C2SI 2019,
Rabat, Morocco, 22–14 April 2019, Proceedings. Springer (2019, to appear)

21. Tromer, E., Osvik, D.A., Shamir, A.: Efficient cache attacks on AES, and counter-
measures. J. Cryptol. 23(1), 37–71 (2010)

22. Walter, C.D.: Sliding windows succumbs to big Mac attack. In: Koç, Ç.K., Nac-
cache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 286–299. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 24

23. Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S., (eds.): Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, 24–28 October 2016. ACM (2016)

https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/978-3-642-29656-7
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
https://lab.dsst.io/slides/33c3/slides/8044.pdf
https://doi.org/10.1007/3-540-44709-1_24

Side-Channel Attacks

Fast Side-Channel Security Evaluation
of ECC Implementations

Shortcut Formulas for Horizontal Side-Channel Attacks
Against ECSM with the Montgomery Ladder

Melissa Azouaoui1,2(B), Romain Poussier3, and François-Xavier Standaert1

1 Université Catholique de Louvain, Louvain-la-Neuve, Belgium
melissa.azouaoui@nxp.com

2 NXP Semiconductors, Hamburg, Germany
3 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore

Abstract. Horizontal attacks are a suitable tool to evaluate the (nearly)
worst-case side-channel security level of ECC implementations, due to
the fact that they allow extracting a large amount of information from
physical observations. Motivated by the difficulty of mounting such
attacks and inspired by evaluation strategies for the security of sym-
metric cryptography implementations, we derive shortcut formulas to
estimate the success rate of horizontal differential power analysis attacks
against ECSM implementations, for efficient side-channel security eval-
uations. We then discuss the additional leakage assumptions that we
exploit for this purpose, and provide experimental confirmation that the
proposed tools lead to good predictions of the attacks’ success.

Keywords: Elliptic Curve Cryptography (ECC) ·
Side-channel attacks · Side-channel security evaluations ·
Horizontal Differential Power Analysis (HDPA)

1 Introduction

Elliptic curve cryptography (ECC) relies on the intractability of the elliptic curve
discrete logarithm problem. Due to the efficiency of elliptic curve based cryp-
tosystems in comparison to other public-key cryptosystems such as RSA, they
have been widely deployed in modern information systems, and thus are targeted
by Side-Channel Attacks (SCAs). One of the most important ingredients of ECC
protocols is the Elliptic Curve Scalar Multiplication (ECSM). As a result, various
types of SCAs have been introduced against their implementations.

First, Simple Power Analysis (SPA) [16] exploits the fact that the sequence
of operations depends on the secret scalar. A regular execution can thwart these
attacks [14]. Next, Differential Power Analysis (DPA) [7,15] recovers the secret
scalar from multiple side-channel traces, and thus can be prevented by scalar
randomization [7]. Template Attacks (TA) [5] have also been used to break ECC

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-16350-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_3

26 M. Azouaoui et al.

implementations [20]. They rely on the knowledge of the input point and can
be thwarted by point randomization [7,13]. Attacks against ECSM algorithms
additionally include Horizontal Collision Attacks (HCA) [4] which take advan-
tage of the observation that for a certain scalar bit value, identical operands
are manipulated at different instants of the execution. These attacks can be
hindered by the shuffling countermeasure [17] or randomization techniques [13].
Finally, Horizontal DPA (HDPA) [6] exploits multiple time samples of one side-
channel trace, as opposed to the classical vertical DPA described above. Besides,
attacks against ECSM algorithms usually follow one out of two standard strate-
gies: divide-and-conquer or extend-and-prune. In a divide-and-conquer attack,
the bits of the scalar are recovered independently, while in an extend-and-prune
attack they are recovered recursively.

We are particularly interested in HDPA following an extend-and-prune strat-
egy. Attacks such as in [21] are powerful and suitable for (nearly) worst-case
side-channel security assessments, since their horizontal nature allows extract-
ing most of the information from a leakage trace. However, they are intricate to
mount, due to the fact that they rely on the knowledge of the implementation,
and the exploitation of many time samples from one single noisy side-channel
trace. As a result, and inspired by evaluation strategies considered for implemen-
tation security in symmetric cryptography (e.g., [10,12,23]), we propose shortcut
formulas and derive an efficient approximation of the Success Rate (SR) of an
HDPA as function of the number of leaking registers exploited and the noise
level of the implementation. For this purpose, we first describe our method and
its underlying assumptions, and then confirm its practical relevance based on an
experimental case study.

The rest of the paper is organized as follows. Section 2 introduces our nota-
tions and background on ECC and the extend-and-prune HDPA by Poussier
et al. [21]. Section 3 explains the rationale behind our approach and the goal of
our research. Section 4 details the efficient derivation of the success rate. Section 5
reports results from simulated experiments and Sect. 6 shows the relevance of the
proposed approach on a real target.

2 Background

2.1 Notations

We use capital letters for random variables and small caps for their realizations.
We use sans serif font for functions (e.g., F). We denote the conditional prob-
ability of a random variable A given B with Pr [A|B]. We use U(F) to denote
the uniform distribution over a field F and N (μ, σ2) to denote the Gaussian
distribution with mean μ and variance σ2. We use ∼ to denote that a random
variable follows a given distribution (e.g., A ∼ N (μ, σ2)). We also denote by Φ
the Cumulative Distribution Function (CDF) of the normal distribution.

Fast Side-Channel Security Evaluation of ECC Implementations 27

2.2 Elliptic Curve Scalar Multiplication

We denote by Fp a finite field of characteristic p > 3 and E(Fp) the set of
points (x, y) ∈ F

2
p that satisfy the elliptic curve with the Weierstrass equation:

y2 = x3+ax+b along with the point at infinity O. For a scalar k ∈ Fp we denote
by (k0, k1, ..., kn−1) its binary representation where k0 is the most significant
bit. For P,Q ∈ E(Fp), P + Q denotes the point addition, and kP the k-repeated
addition P +...+P , i.e., the ECSM. Elliptic curve cryptosystems (such as ECDH
and ECDSA [22]) require to perform a scalar multiplication kP where k is a
secret and P a public curve point. A popular method to implement ECSM
securely consists in using the Montgomery ladder [14], shown in Algorithm 1.
Its regular operation flow makes it naturally resistant against SPA [14].

Algorithm 1. Montgomery ladder
Input P , k = (k0, ..., kn−1)
Output kP

1: R0 ← O
2: R1 ← P
3: for i = 0 to n − 1 do
4: R1−ki ← R1−ki + Rki

5: Rki ← 2Rki

6: end for
7: return R0

2.3 Horizontal Differential Power Analysis

As shown by Algorithm 1, the Montgomery ladder ECSM processes the bits of
k iteratively, updating the internal state (R0 and R1) of the algorithm accord-
ingly. At bit position i of k, the internal state depends on bits {0, ..., i} of k. As
a result, attacks against Montgomery ladder ECSM implementations are natu-
rally performed by using an extend-and-prune strategy, and recovering the key
bits in a recursive manner: the recovery of the i-th bit relies on the correct
recovery of the previous bits {0, ..., i − 1} in order to make a hypothesis on the
state [3,6]. Following this strategy, the HDPA attack presented in [21] divides
a constant time ECSM execution into a sequence of predictable operations at
each abstraction level of the ECSM as shown in Fig. 1. The last layer consists of
n×N register multiplications, where N is the number of register multiplications
required to process one scalar bit1. We consider the same reference Montgomery
ladder ECSM as in [21] on a 32-bit device, using Jacobian coordinates and the
point addition and doubling routines given in Appendix A on the NIST P-256
curve [22]. This implementation requires 25 field multiplications per scalar bit
and they are performed with a Long Integer Multiplication (LIM) followed by a

1 While we only consider register multiplications, the framework can be applied to
any operation.

28 M. Azouaoui et al.

reduction. Knowing the i previous bits of k and the input point P , the attacker
succeeds if he can infer the correct sequence of register values (rj)0≤j<N out of
the two possibilities for ki. For efficiency reasons, the attack assumes the Inde-
pendence of the Operations’ Leakages (IOL) [12]. Besides, a leakage of the form
lj(rj) = δj(rj) + bj , where δj is the leakage function of rj . The term bj repre-
sents the noise and is distributed according to N (0, σ2) is usually assumed for
simplicity [19] (yet, any noise distribution could theoretcially be analyzed in a
maximum likelihood manner). The correct bit value is then recovered as the one
maximizing the product of the probabilities of the register leakages:

∏

j

Pr[lj | (rj |ki, P)] =
∏

j

N (lj | (rj |ki, P), σ2).

k0 k1

EJ addition EJ doubling EJ addition EJ doubling

Fp mult Fp mult Fp mult ... Fp mult Fp mult Fp mult ...

r00 r01 r02 r03 r04 ... r10 r10 r10 r10 r10 ...

l00 l01 l02 l03 l04 ... l10 l11 l12 l13 l14 ...

Fig. 1. Leveled view of a regular scalar multiplication. First level (top): scalar bit
handling. Second: elliptic curve arithmetic. Third: Field arithmetic. Fourth: register
operations. Fifth: leakages on register operations. (Taken from [21]).

3 Problem Statement and Challenges

One recurrent problem of side-channel security evaluations is the large amount
of different state-of-the-art attacks [25] which makes it prohibitive to try all of
them: ECC implementations are no exception to this issue. In this context, the
HDPA described above is an interesting one to investigate, since it belongs to the
most powerful type of attacks against ECC implementations. However, it comes
at the cost of a complicated instantiation. First, it requires a precise knowledge
of the implementation under attack. Second, it requires to profile every single
operation of the ECSM. This step is computationally intensive and requires
several manual optimizations in order to process the large ECSM traces in a
reasonable time. In the following, we describe how this generic framework can be
used for systematizing security evaluations and reducing their cost, by providing
shortcut formulas to estimate the success rate of HDPA without performing it.

Fast Side-Channel Security Evaluation of ECC Implementations 29

For this purpose, we draw our inspiration from the associated literature on
symmetric cryptography. Indeed, shortcut formulas for success rate estimation
in the case of block ciphers are already a deeply investigated topic. In the sim-
pler case of unprotected (more precisely, unmasked) implementations, efficient
approximations of the success rate can typically rely on easy-to-compute metrics
such as the Signal-to-Noise Ratio (SNR) [10,23]. By contrast, for masked imple-
mentations, additional assumptions and/or metrics (e.g., the mutual informa-
tion) are needed [8,9,18]. Since considering unprotected ECC implementations,
we will next be in the former case and additionally exploit some of the ideas
used in [12] for the analysis of multivariate/horizontal attacks. Precisely, we will
adapt the SNR metric to the context of ECSM implementations and exploit it
for the estimation of the success rate as a function of the number of targeted
register leakages and the noise level.

3.1 SNR Definitions

In general, the SNR of a device depends on the size of the bus (which defines
the maximum signal), the adversary’s guessing power (which defines the part of
the bus that generates exploitable signal and the part that generates algorithmic
noise) and the physical noise. It is defined as the variance of the (exploitable)
signal divided by the noise variance. In this paper, we consider a 32-bit device and
therefore assume that all the bits of the bus can be predicted (so no algorithmic
noise). In the context of a standard DPA attack where the full bus is targeted [19],
this would lead to an SNR32 defined for a register indexed j as:

SNR32j =
var

rj∈F232
δj(rj)

σ2
, (1)

where δj is the deterministic (noise-free) part of the leakage function for a register
rj , as introduced in Sect. 2.3, and σ2 is the noise variance. Further assuming an
Hamming-weight leakage function for illustration, this leads to SNR32 = 8

σ2

(with 8=32/4 the variance of a random 32-bit Hamming weight).
When considering a 32-bit implementation of the Montgomery ladder ECSM,

the situation slightly differs from this standard DPA context. Indeed, in this case
the register content typically depends on a single key bit (rather than 32 ones
in the standard DPA case). Therefore, each target register can only take two
values instead of every value of F232 . A vertical DPA against an ECSM therefore
boils down to distinguishing the leakage of two 32-bit values, whereas a HDPA
tries to exploit multiple registers. Concretely, this means that certain registers
lead to easier-to-distinguish leakages. Yet, in order to improve the efficiency
of the security evaluations, we will also use an average metric to estimate the
success rate (and track the distance between this estimate and the success rate
of concrete attacks). For this purpose, a first natural idea would be to consider

30 M. Azouaoui et al.

a modified SNR2j that captures the difference between the (noise-free) leakages
of a register rj for two scalar bit values:

SNR2j =
E

P∈E(Fp)
(δj(rj |ki = 0, P) − δj(rj |ki = 1, P))2

σ2
· (2)

3.2 Preliminary Observations and Caveats

HDPA aims at exploiting the leakages of a large number of leaking registers
for a single key bit. In the symmetric case, this can be viewed as targeting
several leakage samples for a single subkey (e.g., both the input and the output
of a S-box). As a result, in this case we have that δi = δj trivially implies
SNR32i = SNR32j . This basically means that under the assumption δi = δj ,
the estimation of the SNR32 is only required for a single register. Grosso and
Standaert use this same assumption (of similar leakage functions for all their
target intermediate computations) to speed up the computation of a multivariate
mutual information to an univariate one [12].

Following this approach, a tempting strategy for ECSM evaluation would
thus be to also assume that the leakage functions are similar for all the regis-
ters, leading to a constant SNR2. To evaluate the soundness of this approach,
Fig. 2 illustrates the SNR2j for each register rj corresponding to the high 32-
bit words of multiplication results. Our reference implementation introduced in
Sect. 2 requires N = 1600 register multiplications to process one key bit. The
SNR2 is evaluated for a Hamming weight leakage model, so exactly fulfilling
the assumption of identical leakage functions, and averaged over 10,000 ran-
domly sampled elliptic curve points. We observe that SNR2j is not constant
even when the leakage function is the same for all registers. These differences
can be explained by the algebraic relations between the values computed when
the scalar bit equals 0 and the values when this bit equals 1. For example, the
regions of high SNR2 on Fig. 2 observed in the register index intervals [512,576]
and [704,768] respectively correspond to the 9th and 12th field multiplication in
the point addition algorithm described in Appendix A. For a bit value, it per-
forms the operations E2 and H2 or the operations (−E)2 and (−H)2 when the
bit is flipped. This leads to bigger differences in the side-channel leakage, as the
bits of the opposite of a field element modulus the NIST P-256 prime [22] are
almost all flipped. The peaks of zero SNR2 in register index interval [896,960]
correspond to the 15th field multiplication in the point addition algorithm. It
performs the operation Z1Z2 or Z2Z1 when the bit is flipped. Since the same
elements are multiplied in both cases, 8 equal cross products appear during the
computation of the Long Integer Multiplication, thus leading to no information
(SNR2 = 0).

These observations imply that, as opposed to the symmetric case, a single
register cannot be used to evaluate the security of ECSM implementations with
respect to vertical DPA, even if the leakage function is the same for all the
registers. This variation of the SNR2 highlights the fact that when performing

Fast Side-Channel Security Evaluation of ECC Implementations 31

these attacks, some leakage points are more interesting than others. So strictly
speaking, such a simple evaluation is not possible for HDPA either.

Fig. 2. Average SNR2 for the 1600 targeted registers of field multiplications in the
Montgomery ladder.

3.3 The Single Trace Attack Scenario

Besides the previous caveat, another difficulty arises from the contradiction
between HDPA that are essentially designed to succeed in a single-trace attack
context (e.g., against a randomized key or an unknown scalar nonce) and the
SNR2 metric which corresponds to an average amount of information collected
over multiple points (and is therefore more in line with a vertical DPA).

In order to deal with this issue, we therefore start by defining the register-
specific amount of information that corresponds to the distance between a reg-
ister value when the scalar bit equals 0 and its value when the scalar bit equals
1, for a fixed EC point. For register rj and a point P , we denote this distance
by dj(P), whose definition is given by Eq. 3:

dj(P) = (δj(rj |ki = 0, P) − δj(rj |ki = 1, P))2. (3)

Perfectly characterizing the security of an ECSM against HDPA naturally
requires characterizing all the distances dj(P). Yet, and interestingly, we will
next show that the two challenges described in this section (i.e., the fact that
the SNR2 metric is register-dependent and that HDPA is primarily designed for
single-trace attacks) can be mitigated concurrently. For this purpose, the main
observation is that in view of the number of registers in ECSM implementations,
it seems reasonable that the success of an attack targeting all the registers at
once actually gets close to the average one. We next formalize this idea and
describe the additional assumptions it requires.

32 M. Azouaoui et al.

4 Efficient Success Rate Approximation

In this section, we show how to derive an approximation of the success rate with
respect to the HDPA framework for one scalar bit recovery. Since we consider
two equally likely Gaussian hypotheses, the SR when targeting a single register
rj for a given point P is computed as in [5] and given by Eq. 4:

SR = Φ

(√
(δj(rj |ki = 0, P) − δj(rj |ki = 1, P))2

2σ

)
· (4)

We recall that the HDPA described in the previous section assumes IOL for
computational efficiency. It was also noted by Poussier et al. [21] that fully
characterizing the traces’ covariance does not improve the attack results in case
of profiling with bounded number of measurements. So we next leverage this
assumption and recall that it is a conservative one (deviations can only reduce
the attack effectiveness). It allows us to easily extend the previous formula to
the case where an attacker would exploit N registers at once. Interestingly, it
also re-enforces the analogy between vertical and horizontal DPA. Indeed, the
IOL assumption divides the side-channel trace into N univariate samples, which
roughly corresponds to a vertical DPA using N traces. As a result, similarly to
the vertical DPA case [8], the SR of the horizontal DPA exploiting N samples,
denoted by SRN , is given by Eq. 6.

SRN = Φ

(√
N · E

j
(δj(rj |ki = 0, P) − δj(rj |ki = 1, P))2

2σ

)
, (5)

= Φ

(√
N · E

j
dj(P)

2σ

)
· (6)

As shown by Fig. 2, the vertical signal SNR2 is not constant across all registers as
opposed to the symmetric case. This is also true for the horizontal signal dj(P),
which will inevitably vary depending on the point and the targeted register.
As a result, a strict approximation of the SRN using Eq. 6 would require to
compute dj(P) for every single register. This requires a first step of leakage
characterization [5,24]. This step is quite intensive and the most time and data
consuming in HDPA. Using Eq. 6, the SR approximation is just as complex and
tedious as performing HDPA. This observation shows the need of additional
assumptions in order to simplify the security evaluation.

4.1 Additional Assumptions

Identical Leakage Functions Assumption (ILF): We first assume that the
leakage function is identical across all registers: δi = δj = δ, for i, j ∈ [0, N − 1].
Note that this is a common assumption that is also used in the security evaluation
of masked implementations of block ciphers [12].

Fast Side-Channel Security Evaluation of ECC Implementations 33

Asymptotic Uniformity Assumption (AU): We define the notion of ideal
distance did as the square difference between the noise-free leakages of two uni-
formly distributed values V1, V2 ∼ U(F2|r|). More formally, given a leakage func-
tion δ, the ideal distance is given by Eq. 7:

did = E
v1,v2

(δ(v1) − δ(v2))2. (7)

Naturally, did can be seen as the vertical information provided by a register
whose values are uniformly distributed when the input point varies. Our main
assumption, the AU, states that the mean of the distances dj(P) over a large
number of registers tends towards did, as given by Eq. 8. Informally, it means
that the average horizontal information dj(P) for a fixed point P of a big enough
number of registers is equal to the vertical information of a single uniformly
distributed register:

N−1

E
j=0

dj(P) −−−−−−−→
N→+∞

did. (8)

4.2 Efficient Success Rate Approximation

Using the two assumptions introduced in the previous subsection, we can effi-
ciently estimate the SR of HDPA against an ECSM implementation. For the AU
assumption, we further assume that the number N of exploited registers is big
enough so that E

j
dj(P) is close to did. As a result, the SRN approximation is

boiled down to the computation of did and the estimation of the noise level σ.
The success rate formula of Eq. 6 is then trivially adapted to did as:

SRN = Φ

(√
N · did
2σ

)
· (9)

Hamming Weight Leakage Example: We illustrate this formula with an
example based on a Hamming weight leakage function HW. The HW of a uniform
random variable on F2|r| is approximately distributed as N (|r|

2 , |r|
4). For U1, U2 ∼

U(F2|r|), we have HW(U1) − HW(U2) ∼ N (0, |r|
2) and (HW(U1) − HW(U2))2 ∼

Γ (12 , |r|), where Γ denotes the Gamma distribution, here with shape parameter
1
2 and scale parameter |r|. If the AU assumption holds, then the ideal distance
did is equal to |r|

2 . The corresponding success rate is given by Eq. 10:

SRN = Φ

(√
N · |r|

2
√

2σ

)
· (10)

4.3 Potential Invalidation of the Assumptions

The previous equations express the SR of a HDPA as a function of its main
parameters, which allows gaining intuition about how the complexity of such

34 M. Azouaoui et al.

attacks scales. Yet, the concrete correctness of this proposal depends on the ILF
and AU assumptions. In this subsection, we discuss how realistic these assump-
tions are, and identify issues that may contradict them in practice.

Algorithmic Issue. Even if the leakage model is the same for all targeted
registers, the SNR2 is not identical for all registers, as seen on Fig. 2. The SNR2
and the distances dj(P) depend on the distribution of the intermediate values,
the ECSM algorithm, the curve representation and the finite field arithmetic.

Physical Issue. While commonly used in SCAs, the ILF assumption is never
fully verified in practice [11]. We might observe δi �= δj when i �= j. This can
introduce additional discrepancies among the registers’ distances. It can impact
the convergence of the mean distance to the ideal distance and thus the accuracy
of the SR approximation using the AU assumption.

In the next sections, we show the validity of our approximations with respect
to both issues. First, in section 5, simulations are used to show that the AU
assumption provides a valid approximation of the behavior of ECSM intermedi-
ate values. Next, in section 6, we use real measurements to show that the physical
errors are not too problematic for the accuracy of the SR approximation.

5 Simulated Experiment: The Algorithmic Issue

In this section, we tackle the algorithmic issue due to the distribution of the
intermediate values of the ECSM and to what extent it deviates from a uni-
form distribution. For that purpose we use a perfect setting with a HW leakage
function using simulated traces, to fulfill the ILF assumption so that conclusions
are not affected by any physical aspect of a real device’s leakages. We consider
our reference implementation of the Montgomery ladder described in Sect. 2.
We consider an attacker targeting all the N = 1600 multiplication results. For
each execution with a random point P and a random scalar bit ki, we are pro-
vided with the register values (ri

j)0≤j<1600 along with their simulated leakages
lij = HW(ri

j) + bj where bj ∼ N (0, σ2). The noise level is chosen to replicate the
target device in Sect. 6: σ2 = 440.

Convergence Towards the Ideal Distance: On Fig. 3 we plot the evolution
of the average distances of 1000 elliptic curve points. The y axis corresponds
to the mean distance computed over the registers indexed by the x axis. Each
colored curve corresponds to one randomly chosen elliptic curve point. The hor-
izontal black line represents the ideal distance did = 16. We can observe that
even though we only consider 1600 registers over the large number of leaking reg-
isters of an ECSM execution, for different points P of the elliptic curve E(Fp),

the average distances 1
N

N−1

E
j=1

dj(P) = 1
N

N−1

E
j=1

(δ(rj |ki = 0, P) − δ(rj |ki = 1, P))2

tends towards the ideal distance did when N gets larger2. This result shows that
2 Note that attacking several scalar bits at the same time would also result in increasing

the number of registers, thus positively impacting the convergence.

Fast Side-Channel Security Evaluation of ECC Implementations 35

the AU assumption can roughly describe the behavior of the ECSM intermedi-
ate values’ leakages, and the approximation is more and more accurate as the
number of registers required for the success of the attack increases.

Fig. 3. Convergence of the average HW distances towards the ideal distance.

Success Rate Approximation: The perfect simulated setting allows us to
investigate the impact of the AU assumption on the SR approximation. Namely
the real success rate is only biased by the distances of register values. The results
of the simulated experiments are illustrated in Fig. 4. Each of the 20 colored
curves corresponds to the SR of HDPA evaluated for one elliptic curve point
(repeated 100 times), and the orange curve is the SR approximation using did.
Knowing the noise variance σ2, the later is computed using Eq. 10. The figure
suggests that the approximation predicts well enough the real SR, showing that
the algorithmic issue is not problematic for this particular implementation.

Impact of the Noise: We performed the attack multiple times for different
SNR32 values. First, the SNR32 of the target device in Sect. 6 (SNR32 = 0.0182),
and additionally for SNR32 ∈ {0.1, 0.5, 1}. The results are depicted in Fig. 5. The
solid curves represent the SR of HDPA as function of the number of registers,
and the dashed curves the corresponding approximations using the AU assump-
tion. We draw attention to the gap between the real SR (solid line) and the SR
approximation (dashed line) computed using Eq. 10, which gets tighter as the
SNR32 decreases. The bias introduced by the intermediate values of the ECSM
makes the average distance over the small number of registers required for the
success of HDPA for high SNR32 slightly deviate from the ideal distance. As
the SNR32 decreases, this bias becomes smaller compared to the variance of the
noise. Moreover, HDPA requires more registers to succeed, and thus requires to
sum the distances over multiple registers which would tend towards the ideal
distance as shown by Fig. 3. This is an interesting result as we are mainly

36 M. Azouaoui et al.

Fig. 4. Comparison of the SR and its approximation on simulated HW leakages. (Color
figure online)

Fig. 5. Impact of the noise on the SR approximation.

interested in the low SNR32 case, as it corresponds to high security devices
that require worst-case analysis.

6 Real Experiment: The Physical Issue

In this section, we investigate the impact of the ILF assumption on the accuracy
of the SR approximation using the AU assumption. We use real measurements,
where a different leakage function δj is expected for each leaking register rj .
Our experiments target our reference implementation similarly to the simulated
case. The target device is a 32-bit ARM Cortex-M4 micro-controller from the

Fast Side-Channel Security Evaluation of ECC Implementations 37

Atmel SAM4C-EK evaluation kit [1,2] running at 100 MHz. We monitored the
voltage variation using a 4.7 Ω resistor inserted in the power supply circuit of
the chip. We performed the trace acquisition using a Lecroy WaveRunner HRO
66 ZI oscilloscope running at 200 megasamples per second. We recorded the
execution of 10,000 scalar multiplications. For each of them, we triggered the
measurement at the beginning of the execution and recorded the processing of
one scalar bit. We performed HDPA such as described in Sect. 2 but assuming
two different leakage models. First, a linear regression taking as a basis the
Hamming Weight of the leaking registers, similarly to the simulated experiment
in the previous section. This yields for every register rj , a leakage function of the
form δj(rj) = aj + bj · HW(rj). Additionally, we performed HDPA for a linear
regression based leakage model using a 32-bit basis, such as described by the
original attack by Poussier et al [21].

Hamming Weight Linear Regression: We study the influence of the physical
issue on the convergence of the average distance across multiple registers towards
the ideal distance. We start by evaluating the distance dj(P) for each register:
dj(P) = b2j (HW(rj |ki = 0, P) − HW(rj |ki = 1, P))2. We aim to compare the
ideal distance to the mean distance for multiple different elliptic curve points.
We evaluated the leakage model for the ideal distance using 20 random register
leakages. Figure 6 depicts the convergence of the average distance over the leaking
registers for 1000 random elliptic curve points towards the ideal distance did. We
observe that the distances indeed converge towards the ideal distance similarly
to the simulated case in Fig. 3 despite different leakage models for each individual
register. Additionally, Fig. 7 shows the comparison between the real SR in blue of
HDPA on real traces acquired from the target device previously described and its
approximation in orange given by Eq. 9. We averaged the SR over multiple points,

Fig. 6. Convergence towards the ideal distance of the average distances with different
HW based real leakage models for each register.

38 M. Azouaoui et al.

Fig. 7. Comparison of the SR of HDPA and its approximation assuming a HW based
linear leakage model.

so that conclusions are not affected by the algorithmic issue. We note that the
approximation is still satisfactory but less accurate than in the simulated case.
This is expected as the attack is performed on real side-channel measurements
and the HW is not the most accurate leakage modeling strategy for this device,
while the SR approximation assumes that the leakage model has been perfectly
characterized.

32-bit Linear Regession: We plot the convergence towards the ideal distance
on Fig. 8 for 1000 random elliptic curve points. We evaluated again the leakage
model for the ideal distance using 20 random register leakages. We notice that

Fig. 8. Convergence towards the ideal distance of the average distances evaluated with
a different linear regression function for each register.

Fast Side-Channel Security Evaluation of ECC Implementations 39

Fig. 9. Comparison of the SR of HDPA and its approximation assuming a linear regres-
sion leakage model.

despite having different leakage coefficients for each individual bit of the 1600
registers, the average distances still tend towards the ideal distance. This addi-
tional result further highlights the soundness of the AU assumption. Figure 9
shows the comparison between the SR of the HDPA in blue and its approxima-
tion in orange evaluated using Eq. 9. First, we notice that the SR approximation
for a full basis linear regression attack is more accurate compared to the HW
model case. This is due to the fact that the leakage of the considered device is
best estimated by the second model.

7 Conclusion

Assessing the SCA security of an implementation is a tedious task. This is par-
ticularly true for complex cryptosystems for which numerous attack paths are
possible. In this paper, we described a first methodology for analyzing the secu-
rity of ECSM implementations against (close to) worst-case HDPA It allows us
to express the success rate of such attacks based on an easy-to-estimate (ideal
distance) metric, in function the number of leakage samples exploited by the
adversary (which depends on the register size, the field size and the number of
field operations) and the noise level. This shortcut formula trades a bit of accu-
racy in the success rate estimation for considerable efficiency gains. It could be
easily extended to windowed algorithms and to the SR approximation of a full
scalar recovery. Future works might investigate the application of this method-
ology to other implementations of public-key cryptosystems.

40 M. Azouaoui et al.

Acknowledgement. François-Xavier Standaert is a senior research associate of the
Belgian Fund for Scientific Research. This work has been funded in part by the Euro-
pean Commission through the H2020 project 731591 (acronym REASSURE) and by
the ERC Consolidator Grant 724725 (acronym SWORD). The authors would like to
thank Vincent Verneuil for the valuable comments and the fruitful discussions.

A Addition and Doubling Formulas

Algorithm 2. Point addition using Jacobian coordinates
Input P = (X1, Y1, Z1) , Q = (X2, Y2, Z2)
Output P + Q = (X3, Y3, Z3)

A ← Z2
1 , B ← Z2

2 , C ← X1B , D ← X2A , E ← C−D , F ← Y1BZ2 , G ← Y2AZ1 ,
H ← F − G , I ← E2 , J ← IE , K ← CI
X3 ← H2 + J − 2K
Y3 = H(K − X3) − FJ
Z3 = Z1Z2E
return (X3, Y3, Z3)

Algorithm 3. Point doubling using Jacobian coordinates
Input P = (X1, Y1, Z1)
Output P + P = (X2, Y2, Z2)

A ← X2
1 , B ← Y 2

1 , C ← Z2
1 , D ← 3A + aC2 , E ← B2 , F ← 4X1B

X2 ← D2 − 2F
Y2 ← D(F − X2) − 8E
Z2 = 2Y1Z1

return (X2, Y2, Z2)

In the point doubling algorithm described above, the multiplication by a = −3
is done using field subtraction, leading to one less field multiplication.

References

1. Atsam4c-ek user guide. http://ww1.microchip.com/downloads/en/DeviceDoc/
Atmel 11251 SmartEnergy ATSAM4C-EK-User Guide SAM4C8-SAM4C16
User-Guide.pdf

2. Cortex-m4 technical reference manual. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0439b/DDI0439B cortex m4 r0p0 trm.pdf

3. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal and vertical side-channel
attacks against secure RSA implementations. In: Dawson, E. (ed.) CT-RSA 2013.
LNCS, vol. 7779, pp. 1–17. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-36095-4 1

http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel_11251_SmartEnergy_ATSAM4C-EK-User_Guide_SAM4C8-SAM4C16_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel_11251_SmartEnergy_ATSAM4C-EK-User_Guide_SAM4C8-SAM4C16_User-Guide.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel_11251_SmartEnergy_ATSAM4C-EK-User_Guide_SAM4C8-SAM4C16_User-Guide.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439b/DDI0439B_cortex_m4_r0p0_trm.pdf
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-36095-4_1

Fast Side-Channel Security Evaluation of ECC Implementations 41

4. Bauer, A., Jaulmes, E., Prouff, E., Wild, J.: Horizontal collision correlation attack
on elliptic curves. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 553–570. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-43414-7 28

5. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

6. Clavier, C., Feix, B., Gagnerot, G., Roussellet, M., Verneuil, V.: Horizontal corre-
lation analysis on exponentiation. In: Soriano, M., Qing, S., López, J. (eds.) ICICS
2010. LNCS, vol. 6476, pp. 46–61. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17650-0 5

7. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

8. Ding, A.A., Zhang, L., Fei, Y., Luo, P.: A statistical model for higher order DPA
on masked devices. In: Batina, L., Robshaw, M. (eds.) CHES 2014. LNCS, vol.
8731, pp. 147–169. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44709-3 9

9. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete -
or how to evaluate the security of any leaking device. In: Oswald, E., Fischlin, M.
(eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46800-5 16

10. Fei, Y., Luo, Q., Ding, A.A.: A statistical model for DPA with novel algorithmic
confusion analysis. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 233–250. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 14

11. Gérard, B., Standaert, F.-X.: Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptogr. Eng.
3(1), 45–58 (2013)

12. Grosso, V., Standaert, F.-X.: Masking proofs are tight and how to exploit it in secu-
rity evaluations. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS,
vol. 10821, pp. 385–412. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-78375-8 13

13. Joye, M., Tymen, C.: Protections against differential analysis for elliptic curve
cryptography — an algebraic approach —. In: Koç, Ç.K., Naccache, D., Paar, C.
(eds.) CHES 2001. LNCS, vol. 2162, pp. 377–390. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44709-1 31

14. Joye, M., Yen, S.-M.: The montgomery powering ladder. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 291–302. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 22

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

16. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Le, D.-P., Tan, C.H., Tunstall, M.: Randomizing the montgomery powering ladder.
In: Akram, R.N., Jajodia, S. (eds.) WISTP 2015. LNCS, vol. 9311, pp. 169–184.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24018-3 11

https://doi.org/10.1007/978-3-662-43414-7_28
https://doi.org/10.1007/978-3-662-43414-7_28
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/978-3-642-17650-0_5
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-662-44709-3_9
https://doi.org/10.1007/978-3-662-44709-3_9
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-642-33027-8_14
https://doi.org/10.1007/978-3-319-78375-8_13
https://doi.org/10.1007/978-3-319-78375-8_13
https://doi.org/10.1007/3-540-44709-1_31
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-24018-3_11

42 M. Azouaoui et al.

18. Lomné, V., Prouff, E., Rivain, M., Roche, T., Thillard, A.: How to estimate the
success rate of higher-order side-channel attacks. In: Batina, L., Robshaw, M. (eds.)
CHES 2014. LNCS, vol. 8731, pp. 35–54. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44709-3 3

19. Mangard, S., Oswald, E., Standaert, F.-X.: One for all - all for one: unifying stan-
dard differential power analysis attacks. IET Inf. Secur. 5(2), 100–110 (2011)

20. Medwed, M., Oswald, E.: Template attacks on ECDSA. In: Chung, K.-I., Sohn,
K., Yung, M. (eds.) WISA 2008. LNCS, vol. 5379, pp. 14–27. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00306-6 2

21. Poussier, R., Zhou, Y., Standaert, F.-X.: A systematic approach to the side-channel
analysis of ECC implementations with worst-case horizontal attacks. In: Fischer,
W., Homma, N. (eds.) CHES 2017. LNCS, vol. 10529, pp. 534–554. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-66787-4 26

22. NIST FIPS PUB. 186–2: Digital signature standard (DSS). National Institute for
Standards and Technology (2000)

23. Rivain, M.: On the exact success rate of side channel analysis in the gaussian model.
In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 165–
183. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4 11

24. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel
cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp.
30–46. Springer, Heidelberg (2005). https://doi.org/10.1007/11545262 3

25. Wagner, M.: 700+ attacks published on smart cards: the need for a systematic
counter strategy. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol.
7275, pp. 33–38. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
29912-4 3

https://doi.org/10.1007/978-3-662-44709-3_3
https://doi.org/10.1007/978-3-662-44709-3_3
https://doi.org/10.1007/978-3-642-00306-6_2
https://doi.org/10.1007/978-3-319-66787-4_26
https://doi.org/10.1007/978-3-642-04159-4_11
https://doi.org/10.1007/11545262_3
https://doi.org/10.1007/978-3-642-29912-4_3
https://doi.org/10.1007/978-3-642-29912-4_3

Side-Channel Analysis of the TERO PUF

Lars Tebelmann1(B), Michael Pehl1, and Vincent Immler2

1 Technical University of Munich, Munich, Germany
{lars.tebelmann,m.pehl}@tum.de

2 Fraunhofer Institute AISEC, Garching bei München, Germany
vincent.immler@aisec.fraunhofer.de

Abstract. Physical Unclonable Functions (PUFs) have the potential
to provide a higher level of security for key storage than traditional
Non-Volatile Memory (NVM). However, the susceptibility of the PUF
primitives to non-invasive Side-Channel Analysis (SCA) is largely unex-
plored. While resistance to SCA was indicated for the Transient Effect
Ring Oscillator (TERO) PUF, it was not backed by an actual assess-
ment. To investigate the physical security of the TERO PUF, we first
discuss and study the conceptual behavior of the PUF primitive to iden-
tify possible weaknesses. We support our claims by conducting an EM-
analysis of a TERO design on an FPGA. When measuring TERO cells
with an oscilloscope in the time domain, a Short Time Fourier Transform
(STFT) based approach allows to extract the relevant information in the
frequency domain. By applying this method we significantly reduce the
entropy of the PUF. Our analysis shows the vulnerability of not only the
originally suggested TERO PUF implementation but also the impact on
TERO designs in general. We discuss enhancements of the design that
potentially prevent the TERO PUF from exposing the secret and point
out that regarding security the TERO PUF is similar to the more area-
efficient Ring Oscillator PUF.

Keywords: TERO PUF · Side-Channel Analysis · Non-invasive ·
EM side-channel · Physical Unclonable Function

1 Introduction

Physical side-channel attacks based on power or electromagnetic (EM) analy-
sis, such as Differential Power Analysis (DPA) [10,17], have been subject to
extensive research, especially w.r.t. cryptographic algorithms. Such attacks typi-
cally require only moderate resources, e.g., a decent oscilloscope. Therefore, they
create an imminent threat since an attacker is almost guaranteed to have the
necessary equipment at hand to perform the attack. Correspondingly, it is of
utmost importance to protect against physical side-channel attacks.

Equally important is the protection of stored secrets, such as cryptographic
key material. Storing secret data permanently puts it at risk of extraction
by optical analysis upon delayering the Integrated Circuit (IC) or related
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 43–60, 2019.
https://doi.org/10.1007/978-3-030-16350-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_4

44 L. Tebelmann et al.

attacks [19]. To overcome these limitations of non-volatile storage, PUFs have
been proposed [5] and are assumed to provide a higher level of security when
compared to NVMs. When requested, a PUF leverages the device-inherent man-
ufacturing variation and provides fingerprint-like data for subsequent use, e.g.,
for key derivation. Extracting the minuscule manufacturing dependent parame-
ters is considered infeasible while the system is powered-off and the PUF can be
protected against invasive attacks when the system is powered-on.

For key storage, the PUF utilizes the variations to provide the secret PUF
response which is processed to a key during enrollment. In this process, public
helper data are derived to support later reconstruction of the same key from
noisy PUF responses. Clearly, securing the processing of secret PUF responses
during reconstruction is essential to protect the key. To date, research primarily
focused on risks associated with storing helper data [4], algorithmic processing
of the PUF responses [20], and (semi-)invasive attacks on the PUF [7,11]. Very
few attempts have been made to attack the PUF primitives by means of an even
more powerful non-invasive side-channel attack.

In this work, we address the challenge of attacking the Transient Effect
Ring Oscillator (TERO) PUF, an FPGA PUF primitive that has been favored
independently by several authors [2,14,24] over other PUFs. With regard to
Side-Channel Analysis (SCA), its original authors consider the TERO PUF
an improvement compared to the Ring Oscillator (RO) PUF that was already
known to be vulnerable to SCA at the time. Breaking the TERO PUF by means
of SCA entails specific difficulties, e.g., extracting a multi-bit response per TERO
cell and measuring the otherwise hard to observe TERO oscillations.

Related Work. Similar to RO PUFs, TERO PUFs are based on observing
oscillations of an inverter ring. For RO PUFs, frequencies of two oscillators
are compared while for TERO PUFs the difference in settling times of bistable
rings is used to derive a secret. In contrast to TERO PUFs, RO PUFs have
been subject to substantial analyses regarding side-channels [15,16]. The main
observations are: (i) The emanated frequencies of the ROs allow for recovering
the secret if the same RO is used for multiple comparisons. (ii) Single ROs can
be distinguished by their EM emanations using on-chip surface measurements,
i.e., localized EM analysis of a depackaged chip. (iii) Multiplexers and counters
show the most significant EM leakage when the instances are spatially separated.
Interleaved placement of these components was proposed as a countermeasure.

The possibility to identify and locate ROs by their EM emanations has also
been studied in the context of its application in TRNGs [1] and for EM cartog-
raphy in general [18]. While RO and TERO PUFs share similarities, they also
show substantial differences. To the best of the author’s knowledge, no work
was published regarding the side-channel specifics of the TERO PUF or how its
primitive can be attacked by means of a non-invasive side-channel analysis.

Contribution. We are the first to successfully perform an EM-based side-
channel attack on the TERO PUF primitive without depackaging the chip. As
part of this work, we present a new Short-Time Fourier Transform based method
to evaluate the oscillations of the TERO primitive. We propose a semi-automatic

Side-Channel Analysis of the TERO PUF 45

attack which is able to significantly reduce the entropy of the TERO PUF: While
it can recover up to 25% of the response bits without any error, the overall error
probability of all estimated bits is less than 18%. The estimate of the failure
probability for each bit facilitates an optimal smart guessing strategy. Further-
more, assuming a PUF scenario, where up to 20% errors are corrected, the error
probability is sufficiently small to consider the examined TERO PUF design
with overlapping comparisons broken by the attack. We also demonstrate that
the number of oscillations in TEROs, forming the secret, can be predicted accu-
rately such that the derivation of multiple bits from a single comparison is prone
to side-channel analysis. Our method is independent from the specifics of the
implementation and is presumably applicable to other implementations of the
TERO PUF such as [24], too.

Outline. The remainder of this paper is organized as follows: In Sect. 2, the
TERO PUF is introduced. Sect. 3 outlines weaknesses of TERO PUFs by per-
forming a conceptual analysis and by practically discovering the TERO oscilla-
tions to tailor the attack. A description of the experimental setup in Sect. 4 is
followed by our proposed attack in Sect. 5. We conclude our work in Sect. 6.

2 Transient Effect Ring Oscillator (TERO) Preliminaries

In Sect. 2.1, we reiterate over the TERO PUF architecture. Afterwards, in
Sect. 2.2, we describe this work’s setting and provide some remarks on the TERO
PUF architecture.

2.1 TERO PUF Architecture

The TERO was introduced in 2010 as an entropy source for TRNGs [23]. Each
TERO cell comprises two identical branches, consisting of an AND gate and
an odd number of inverter gates, that form a metastable ring as depicted in
Fig. 1a. When setting the enable signal from low to high, two events start to
propagate. While in theory the TERO oscillates until the enable signal is reset,
manufacturing variations of the underlying CMOS structures result in different
delays of the two branches and a break down of the oscillation in finite time.

The manufacturing variation-dependent number of oscillations until the
TERO reaches its stable state is utilized in [2] to construct the TERO PUF.
The proposed architecture of the PUF in [3,13,14] is shown in Fig. 1b. It con-
sists of two blocks of TERO cells and two corresponding counters. One TERO
cell is selected from each block by a challenge. The two cells are activated and
connected to the counters by multiplexers. Thus, only the two TERO cells that
are compared oscillate at a time. The selection of pairs of cells is not restricted
in [3,13,14]: Each of the M cells from one block is compared to all M cells from
the other block resulting in M2 challenge-response pairs.

After a fixed acquisition time Tacq, the activated TERO cells are stopped.
Tacq allows for a trade-off between reliability, uniqueness, and run time. It is
chosen such that most of the TERO cells are expected to be settled. Therefore,

46 L. Tebelmann et al.

Fig. 1. TERO cell example and TERO PUF architecture as used in [3,13,14]

Tacq is in the range of several hundred nanoseconds depending on the number of
inverters in a branch of the TERO cells, e.g., 600 ns for seven inverters [13,14].

To derive the PUF response, the counter values after Tacq are subtracted.
The Least Significant Bits (LSBs) are unstable due to noise and are ignored. The
Most Significant Bits (MSBs), in particular the sign, are variation-dependent and
relatively stable over time. Hence, the sign bit and specific unique and steady bits
(e.g., Bit 4, Bit 5 or Bit 6 [13,14]) serve as PUF response bits. Gray coding can
be applied to the difference to ease further processing and to potentially increase
robustness w.r.t. noise [3]. However, the large-scale analysis in [24] suggests that
using any counter bits other than the sign drastically decreases reliability.

2.2 Remarks on the TERO PUF Architecture

In the original proposals [2,13] of the TERO PUF, the separation of the two cell
blocks is deemed necessary in order to avoid dependencies of the responses. This
may lead to bias in the responses though, as spatial gradients in silicon can cause
cells of one part of the die to settle faster (or slower) than on other parts. Com-
paring adjacent cells would largely counteract such spatial effects. In addition,
spatially separating the TERO blocks makes them prone to attacks by localized
EM measurements. While resolving adjacent cells may not be feasible by local-
ized EM measurements, identifying spatially separated cells is certainly within
scope based on attacks on similar structures [8,22]. Due to its architectural lim-
its, we consider the TERO PUF only suited for PUF-based key generation and
not challenge-response authentication.

Another important design decision is whether to compare TERO outputs
among all TERO cells or not. We point out that by comparing a certain cell
to multiple other cells enables a similar attack as proposed for RO-PUFs [16].
Also, inherent correlations between PUF bits occur and lower the entropy of the
remaining PUF response bits, i.e., the response does not have full entropy as from
the comparison of M cells at most log2(M !) bits of entropy can be extracted [12].
But restricting the number of derived bits to at the utmost log2(M !) changes
the evaluation of the efficiency of the TERO PUF significantly so that we take
the originally proposed designs as the base for our research.

Side-Channel Analysis of the TERO PUF 47

3 Exploration of the TERO PUF

As a next step, we explore the TERO PUF by identifying suitable attack vectors,
discovering the TERO oscillations, estimating their oscillation duration, and
briefly introducing the STFT. This corresponds to Sects. 3.1, 3.2, 3.3 and 3.4.

3.1 Attack Vectors

In [6], the temporary oscillations in the TERO structure were modeled. While
aimed at providing a stochastic model for the TERO TRNG, the results from
the physical model are also useful in the context of the TERO PUF. One key
observation of [6] is that equally built TEROs on a device oscillate with constant
and similar frequency. Therefore, TERO cells and their location are identifiable
by an attacker based on their characteristic frequency. Another result from [6]
is that the variation of the duty cycle changes monotonously over time until it
reaches 0 % or 100 % and the oscillation collapses. Consequently, in the spectrum
an attacker can observe a TERO cell at a constant and approximately known
frequency as long as it is oscillating. The number of oscillations per TERO cell
that are used to derive the secret can be estimated from the frequency as soon
as an attacker observes the beginning and the end of the oscillation. Depending
on the TERO implementation the observations lead to two attack vectors:

Multiple Usage of TERO Cells. A comparison of each cell from one TERO block
to all cells of the other TERO block and taking the sign of the counter differ-
ences was suggested to increase the number of secret bits. However, an attacker
that observes the approximate duration of each of the simultaneously oscillating
TERO cells from the two blocks knows which cell is reused. Consequently, the
assignment of the observed duration to blocks and, given the public challenge,
even to cells is possible. Then, similarly to [16], the attacker knows the sign bit
derived from the subtractor (i.e., the secret) from the observed oscillation times
and the knowledge which time belongs to which cell.

Derivation of Multiple Bits per TERO Cell Pair. Given that an attacker can
estimate the oscillation duration per cell, it is evident that approximation of the
counter difference is possible. Thus, when deriving multiple bits from a TERO
cell as outlined in Sect. 2.1, they are revealed as soon as the attacker observes
the oscillations with sufficient precision. An attacker does not have to resolve
the counter differences exactly, since only relatively stable bits of the difference
can be used. For the difference Δcnt,i of counter values cnt1 and cnt2, bit i is 1
iff

Δcnt,i = (cnt1 − cnt2) mod 2i+1 ≥ 2i. (1)

I.e. the value of distance bit i is revealed when counter values are distinguished
with a precision of 2i. When using Bit 4 and Bit 5 (cf. [13]), an accuracy of 16
is required to learn both bits. This corresponds to a resolution of approx. 85 ns
in the time domain for a TERO frequency of 187.5 MHz as found in Sect. 3.2.

Measuring a TERO cell together with exactly one other cell, thereby avoiding
the reuse in multiple pairs, improves the situation. It prevents an attacker from

48 L. Tebelmann et al.

resolving the oscillation time to a single cell. Nevertheless, it is still possible to
observe the oscillation duration’s absolute value. Hence, only the sign bit of the
difference remains unknown.

3.2 Discovering TERO Oscillations

An accurate estimate of the number of oscillations is required to enable the
discussed attacks. The major obstacle is the very short oscillation time until a
TERO cell settles. Figure 2 depicts a practical evaluation of the settling time.
The acquisition time in the experiment was varied from 1 to 99 clock cycles and
the respective counter values of each TERO cell were stored. Counter values
are averaged from 101 repetitions to compensate for noise at room temperature.
The break point of a certain curve indicates the end of the oscillation of the
corresponding TERO cell.

Fig. 2. Evaluation of settling time and counters for 2 · 96 = 192 TERO cells to esti-
mate the oscillation frequency fTERO, averaged over N = 101 measurements. Spikes
exceeding the slope are due to measurement artifacts.

The results show that most of the TERO cells settle within less than 600 ns
(60 clock cycles at a clock frequency of fclk = 100 MHz). This emphasizes the
need for a good time resolution in order to observe the duration of the oscillation.
It also motivates the acquisition time of 600 ns which we selected according
to [14]. Note that a longer acquisition and oscillation time is beneficial for the
attack but is deemed unrealistic for real-world implementations.

In addition to the settling time of the TERO cells, the slope in Fig. 2 confirms
that TERO cells indeed oscillate with similar and constant frequency until the
oscillation breaks down [6]. The expected frequency

fTERO =
Δcount

Δacq
=

Δcount

Δclock cycles
· fclk ≈ 187.5 MHz (2)

for our design is derived from the slope of the counter values, where Δcount is
the difference of the counter for a given difference Δacq of the acquisition time
respectively a given difference of clock cycles Δclock cycles.

Side-Channel Analysis of the TERO PUF 49

Note that the experiment is only carried out to validate the assumption of
a constant oscillation frequency. For an attack, it is not necessary to obtain
frequency counter values, as the frequency can be estimated by observing the
frequency domain.

3.3 Estimating TERO Oscillation Durations

The experiment in Sect. 3.2 shows a stable oscillation of the TERO cells until
the oscillation breaks down. The actual frequency of a certain TERO cell is
approximated by fTERO and typically lies in a small interval fTERO ± Δf . Note
that fTERO is device specific and obtained by measuring the frequency domain
and Δf is the relative deviation on the same device. Given fTERO, the time Tosc

until a TERO cell settles provides a good estimate of the number of oscillations
and thus the TERO counter value nTERO:

nTERO ≈ fTERO · Tosc. (3)

All TERO cells are activated for nacq clock cycles of the system clock with
frequency fclk = 1

Tclk
. Therefore, nTERO is upper bounded by

nTERO ≤ (fTERO + Δf) · Tclk · nacq =
fTERO + Δf

fclk
· nacq, (4)

where equality is reached iff the TERO oscillates until the acquisition time ends.
Note that for many practical cases Δf is negligible in Eq. (4). For a deviation

Δf from the known nominal oscillation frequency fTERO, the difference between
actual and estimated counter value for Tosc ≤ Tacq = Tclk · nacq is at most

|n′
TERO − nTERO| ≈ |(fTERO ± Δf) · Tosc − fTERO · Tosc| ≤ |Δf | · Tacq. (5)

E.g., for an accurately known Tosc = Tacq = 600 ns and |Δf | ≤ 1.67 MHz the
difference between actual and estimated counter value is 1 when Δf is neglected.
This is below the expected variations in the measurement due to noise.

Summing up, as long as the counter frequencies lie within a narrow range
around the nominal frequency fTERO, the approximation in Eq. (3) holds and
the counter values are indeed estimated by the oscillation time Tosc.

3.4 Short-Time Fourier Transform (STFT)

To estimate Tosc, the visibility of the TERO frequency fTERO in the spectrum
is analyzed. The challenge regarding the measurement is the short acquisition
time of Tacq = 600 ns and oscillation times as short as Tosc = 100 ns. In order
to resolve time and frequency simultaneously, a Short-Time Fourier Transform
(STFT) based approach is taken.

Each time domain signal xTERO(t) during the activation of a TERO cell is
processed via the STFT into the frequency domain. Instead of transforming the
entire signal, segments xTERO

(l) (t) of length L are taken from xTERO(t), where (l)

50 L. Tebelmann et al.

denotes the index of a segment. Each segment is multiplied by a Hanning window
(raised cosine) function w(t) to reduce FFT spectral leakage effects. Windowed
segments are transformed individually into the frequency domain:

XTERO
(l) (f) = FFT

(
xTERO
(l) (t) · w(t)

)
= FFT

(
x̂TERO
(l) (t)

)
. (6)

The segments overlap for a number of samples Loverlap. In other words, the
segments are shifted by ΔL = L − Loverlap samples along the time axis. The
stable frequencies of TERO cells allow averaging in the frequency domain for
each segment over N measurements per cell to enhance the Signal-to-Noise Ratio
(SNR). This is a valid approach and justified by our preliminary evaluation of
the TEROs in Sect. 3.2.

In order to eliminate unwanted signals such as the system clock and other
disturbances, a noise floor can be estimated to facilitate the evaluation. For the
noise floor estimate, measurements n(t) are taken while the TERO cells are deac-
tivated and the same processing as in Eq. (6) is applied. Averaging over Nnoise

measurements yields the noise frequency spectrum N̄(l)(f) for each segment (l).
From the averaged signal X̄TERO

(l) (f) and averaged noise floor N̄(l)(f)

X̄TERO
(l) (f) =

1
N

N∑
i=1

FFT
(
x̂TERO
i,(l) (t)

)
, N̄(l)(f) =

1
Nnoise

Nnoise∑
i=1

FFT
(
n̂i,(l)(t)

)

the frequency- and segment-dependent SNR of segment l is defined as

SNR(l)(f) = 10 log
(

X̄(l)(f)
N̄(l)(f)

)
= 10 log

(
X̄(l)(f)

) − 10 log
(
N̄(l)(f)

)
. (7)

Our attack evaluates the SNR around the expected TERO frequency fTERO.
During the period of activation, SNR(l)(fTERO) is expected to take higher values.
Estimating the time of the activation period then translates into measuring the
duration of the high SNR.

Note that estimating the noise floor is not a premise for the attack, i.e.,
instead of evaluating the relative changes defined by the SNR in Eq. (7), absolute
values of Eq. (6) could be used to carry out the attack.

Frequency Resolution. For a real valued signal x(t), the spectrum is symmetric
and can be reduced to NFFT/2 + 1 bins ranging from DC to fmax. Given the
sampling frequency fs, the resolution in the frequency domain is

ΔFFT =
fmax

NFFT/2
=

fs
NFFT

(8)

with fmax being the maximum frequency that can be reconstructed accord-
ing to the Shannon-Nyquist theorem. In general, a narrow frequency resolu-
tion ΔFFT is desired. However, the TERO frequency fTERO does not have to
be resolved in detail. Instead, an attacker is mostly interested in the duration
of the signal. Therefore, a trade-off towards the temporal resolution is accept-
able. For the experiments in Sect. 5, NFFT = 4096 resulting in a resolution of
ΔFFT ≈ 4.88 MHz for fs = 20 GHz is chosen.

Side-Channel Analysis of the TERO PUF 51

Temporal resolution. The temporal resolution also depends on NFFT and fs and
behaves contrary to the frequency resolution:

ΔT =
NFFT

fs
=

1
ΔFFT

, (9)

i.e., to get a good temporal resolution, high sampling rates are required. Given
NFFT = 4096 and fs = 20 GHz, a segment contains ΔT = 204.8 ns. Without
overlapping segments, the resolution would be too coarse to analyze the TERO
oscillations. As the segments overlap, a certain redundancy between segments
exists, i.e., since the same samples are transformed, the resulting amplitudes are
similar. Yet, as the oscillations stop after some time, all segments that contain
samples during the oscillation provide information, and smaller differences than
ΔT can be resolved as shown in Sect. 5. The offset between segments is chosen
as ΔL = 200 as a trade-off between computational cost and temporal resolution.

4 Experimental Setup

In the following, the experimental setup is described in terms of the measure-
ment setup, the design under attack, and a pre-evaluation by means of EM
cartography.

Measurement Setup. Measurements are recorded with an oscilloscope of 2.5 GHz
analog bandwidth and a sample rate of 20 GS/s. The near-field probes RF-B
0.3-3 and RF-B 3-2 from Langer EMV are used, having <1 mm and ≈ 1 mm
resolution respectively. Both probes capture emanations in vertical direction
relative to the FPGA package. Two 30 dB amplifiers amplify the signals. Sum-
marizing the results of Sect. 3.4, we set the number of FFT bins NFFT to 4096,
corresponding to 204.8 ns segment length and a frequency resolution of 4.88 MHz.
A segment offset of ΔL = 200 samples is selected, corresponding to a full clock
cycle length of the system clock with 10 ns. In all experiments in Sect. 5 the num-
ber of noise measurements to estimate the noise floor is set to Nnoise = 9600 and
the SNR is evaluated by its maximum in the range from 180 MHz to 190 MHz,
corresponding to fTERO ≈ 187.5 MHz from Sect. 3.2.

Design Under Attack. Our evaluation target is a Xilinx Spartan-6 LX16 FPGA in
a 324-pin BGA package mounted on a Nexys3 development board. The package
of the FPGA remains unaltered. The design under attack contains two blocks
of 96 TERO cells each. For the TERO cells a hard macro [21] for the Spartan-6
by Marchand et al. [13] is used with seven inverters per branch. The number of
cells per block is slightly reduced compared to the original TERO PUF proposal
in order to include serial communication and an FSM on the same chip.

Figure 3a depicts the floorplan, where the TERO blocks are denoted as
PUF AREA 1 and PUF AREA 2 respectively. The logic for selecting specific cells
in each block and assigning their output to the counters is contained in MAIN,
located in the lower right corner in Fig. 3a. The counters are placed separately
adjacent to the second block of TERO cells. The separation allows to verify

52 L. Tebelmann et al.

Fig. 3. (a) Floorplan of TERO PUF and corresponding SNR heatmap for frequency
range 180–200MHz. (b) Maximum SNR of cells during first 60 ns after the trigger.

whether EM emanations stem from the TERO cells or the counters. The coun-
ters are placed side by side to prevent spatial separation of their EM emanations.
This thwarts attacks targeting each counter separately.

Pre-evaluation with EM Cartography. Figure 3b depicts a heatmap generated
by using the RF-B 0.3-3 probe and an xyz-table. The SNR in the frequency
range from 180 MHz to 200 MHz is shown. Measurements were taken on a grid
of 0.25 mm × 0.25 mm over the part of the package where the die is located.
Each point was only measured N = 10 times while a cell from each block was
activated, same as for measuring the noise floor, i.e. Nnoise = 10. The SNR
according to Eq. (7) is evaluated during the first 60 ns after a trigger signal. In
this period, all cells oscillate and no settling effects take place. The maximum
SNR in Fig. 3b coincides with the location of the counters in the design. The area
spans almost 1mm2, i.e., a fine-grained search over the package is not needed
and we position the RF-R 3-2 probe manually for all following experiments.
Note, this is in line with previous work on EM analysis of ROs [15] showing
that observed EM emanations are most likely caused by multiplexers, counters
and wires in between. This is no limitation of our attack, since – similar to the
attack on ROs in [16] – we mainly exploit that TERO cells are used for multiple
comparisons.

5 Exploitation of the TERO Side-Channel

This section demonstrates that TERO PUFs are vulnerable to a non-invasive
side-channel attack. Section 5.1 shows the feasibility of detecting TERO oscilla-
tions by activating cells separately. Subsequently, Sect. 5.2 practically exploits
the reuse of a certain cell in the derivation of multiple response bits, i.e., two cells
under comparison are activated at once. The results illustrate that the oscilla-
tion duration is well estimated by our approach. A simple countermeasure is not
to reuse a certain TERO cell in multiple comparisons. The analysis in Sect. 5.3

Side-Channel Analysis of the TERO PUF 53

nevertheless shows that if multiple bits are extracted from a single comparison
still some counter values are leaked which renders the extraction of more than
one bit per TERO cell pair insecure.

5.1 Analysis of Separately Activated Cells

In this experiment only one cell is activated at once. Figure 4 depicts the practical
application of our approach outlined in Sect. 3.4. The maximum of the STFT
in the frequency range from 180 MHz to 190 MHz is plotted while shifting the
segment under transformation in the time domain. The range is chosen according
to fTERO from Sect. 3.2. The point where the first sample of the segment in the
time domain is aligned with the starting point of the oscillation corresponds to
0 ns. Note that also segments starting before 0 ns can include samples from where
the TERO cell oscillates. Thus the increase in SNR starts before this point in
time is reached. In addition cells with an oscillation time shorter than the FFT
window can cause a maximum before 0 ns.

Fig. 4. Examples of the SNR according to Eq. (7) for separately activated cells. The
estimated oscillation duration is depicted by double arrows.

The activation of the cells causes an increase of SNR in Figs. 4a and b. At
approximately −100 ns, i.e., when the oscillation starts in the middle of the
segment under transformation, the SNR reaches 0.75 dB. This value is chosen as
a threshold to estimate the oscillation duration Tosc, i.e., Tosc is approximated by
the time from exceeding the threshold to falling back below this value. Assuming
an oscillation frequency fTERO = 187.5 MHz, the counter values are computed
according to Eq. (3) as Nest = 48 and Nest = 112, respectively. This result fits
well to the actual number of oscillations that are Nosc = 47 and Nosc = 111.
From the experiments we conclude that both short and long oscillations of the
TERO are well estimated by our approach.

A comparison of estimated and actual counter values for all TERO cells
is depicted in Fig. 5a. The actual counter values, which slightly vary due to
noise, are derived from averaging among N = 100 measurements. Since the
acquisition window is set to Tacq = 600 ns, the maximum number of oscillations

54 L. Tebelmann et al.

is Nmax
osc = fTERO · Tacq ≈ 112. Thus, estimated values Nest > Nmax

osc can be
assumed to be Nmax

osc . Indeed, in Fig. 5a, almost all estimated values Nest > Nmax
osc

correspond to the maximum possible value, i.e., the minor overestimation of
oscillations does not affect the result. Since it is known that all TERO cells have
a minimum oscillation duration, certain values below Nmin are known to be false.

Entropy Reduction of the TERO PUF. Comparing each cell from one block to
all cells of the respective other block and taking the sign bit as a secret results in
96 · 96 = 9216 response bits. From the 2 · 96 = 192 estimations of the oscillation
durations, four results are deemed unreliable as Nest < Nmin = 10, i.e., for the
corresponding 4 · 96 = 384 Bits no estimation can be given. For the remaining
8808 bits, the probability of guessing the PUF bit erroneously depends on the
difference of the counter estimates Δest :=

∣∣NBlock 0
est − NBlock 1

est

∣∣ as depicted
in Fig. 5b. The graph shows the probability of an error p̄e if only difference
estimates Δest greater than the value on the x-axis are considered. Clearly, the
error probability decreases with an increase of the differences. This is in line
with Fig. 5a: The deviation in the average counter value (ordinate) of the scatter
plots is an indicator of the estimation accuracy. An inaccurate estimation has
more impact if the estimated counter values are close to each other compared to
when the estimated counter values are further apart.

Fig. 5. (a) Automatically estimated vs. actual counter values for separately activated
cells. (b) Probability of guessing a wrong bit using the estimates in (a).

According to Fig. 5b estimated counter differences with Δest ≥ 55 have an
error probability of p̄e = 0, i.e., the 2368 bits corresponding to these estimates
are revealed without any errors. Estimated counter differences with Δest ≥ 19
still have an error probability of only p̄e ≈ 1.5%, which applies to 5471 bits. The
whole set of 8808 bits has an error probability of p̄e,all ≈ 12.4%.

Summing up, automatic estimation of single TERO cell oscillations and using
only known error free bits, the entropy of the TERO PUF is reduced by a quarter
from 9192 to 6848 bits. In addition, an attacker can take advantage from error
probabilities for estimations. They define a confidence for each bit that allows to
develop a smart guessing strategy, i.e., the remaining guessing effort is far below

Side-Channel Analysis of the TERO PUF 55

an exhaustive search. Also, an attacker can try to adjust the counter values for
counters which contribute to unreliable differences, e.g., by visual inspection of
the SNR, which provides more precise results than our automatic estimation.

5.2 Analysis of Simultaneously Activated Cells

We now analyze the scenario that each TERO cell in Block 0 is compared to each
cell in Block 1 where the two cells under comparison are activated in parallel.
In this setting, each cell i is measured 96 times, always in combination with a
different cell j ∈ {1, . . . 96}. We assume that an attacker can figure out which
cell is activated at a certain point in time, e.g., by knowledge of the design. The
attacker averages over the SNR of all 96 measurements for cell i. Thus, contri-
butions from other cells are considered noise that results in a distinguishable
offset:

SNRi
(l)(f) ≈ SNRi

(l)(f) +
1
96

96∑
j=1

SNRj
(l)(f) (10)

Effectively, the scenario of activating two cells at once is transformed back to
the case of separately activated cells. Due to the activation of two cells and an
additionally observed noise floor of approx. 1 dB, we increase the threshold in
the automatic counter value estimation from 0.75 dB to 2.5 dB. Figure 6 depicts
the results for cells of both blocks. For every comparison, a single measurement
is taken and the noise floor is subtracted. The N = 96 measurements of compar-
isons containing the same cell are averaged, i.e., the number of traces per cell is
in the same range as in the previous experiment.

Fig. 6. (a) Automatically estimated vs. actual counter values for two simultaneously
activated cells. (b) Probability of guessing a wrong bit using the estimates in (a);
dashed line: result for manually discarding estimates marked in solid red in (a). (Color
figure online)

Figure 6a compares automatically estimated counter values against averaged
known counter values for this scenario. As expected, the results are slightly
degraded compared to Sect. 5.1, since not all effects caused by simultaneously

56 L. Tebelmann et al.

activated cells cancel out. Due to few but substantial deviations of automatically
estimated counter values from the actual ones, the resulting error probability
for guessing TERO PUF bits in Fig. 6b increases to p̄e,all ≈ 17% compared to
p̄e,all ≈ 12.4% in Fig. 5b. While still more than 7600 out of 9216 bits are guessed
correctly, this reduces the confidence of the guess for almost all bits.

To significantly improve the result, the underlying SNR is evaluated to elim-
inate cases showing a distorted SNR over time when compared, e.g., to Fig. 4.
The most obviously degraded cases in our results correspond to the two solid red
dots in Fig. 6a. Eliminating these yields the dashed line for the error probability
in Fig. 6b. Similar to Fig. 5b, bits that are guessed with an estimated counter
difference of Δest ≥ 62 are regarded error free. This applies to 831 bits while
smart guessing can be used to get remaining bits as suggested above.

In a typical PUF setting, an error correction is applied to the PUF response to
compensate variations due to e.g., environmental conditions. Hence, an bit error
probability (BER) in the estimated response of up to the correction capability
is tolerable for a successful attack. Please note, despite an empirical BER in the
range of 5–10% within academic settings [9,24], it is common practice to consider
a substantially larger amount of errors in a commercial setting to ensure a failure
free operation throughout the whole lifetime of a product, including industrial
temperature ranges from −40◦ to +85◦ C, leading to an anticipated BER of
15–20%. Therefore, the examined TERO PUF can be considered broken by our
attack even if not all bits are known, e.g., through smart guessing.

5.3 Attack on Multi-bit Responses

The attack in Sect. 5.2 is prevented by using every TERO cell in only one com-
parison. Then, an attacker cannot assign a counter value to a certain cell as
long as the measurements cannot be spatially resolved to cells, which is the case
for our setup. Consequently an attacker cannot reveal the secret, i.e., the sign
bit of counter differences. But if multiple bits are derived from a comparison of
the counters, the difference itself is of interest, since knowing its absolute value
reduces the entropy to one bit, as discussed in Sect. 3.1.

While no automatic detection was implemented, visual inspection of the
SNRs over time of the measurements reveals the difference of counter values
in many cases as depicted in Fig. 7a. Knowing from our previous investigations
that the SNR over time develops a plateau while a TERO cell is oscillating,
decreases afterwards, and has a knee when no more oscillations are seen in the
time segment under observation, the graph can be interpreted: The first peak
corresponds to the duration of the first oscillation, while the second oscillation
is present until the plateau decays and the SNR vanishes in the noise floor of
approx. 1 dB. In Fig. 7a the counter values, and thus the difference, is estimated
quite accurately and only the sign bit is still secret when neglecting unreliable
LSBs.

In contrast, Fig. 7b shows that revealing the counter differences from the
SNR over time is more difficult in other cases. Still, by modelling the behavior
of the TERO, the two apparently untypical peaks are explained: (i) The two

Side-Channel Analysis of the TERO PUF 57

Fig. 7. SNR over time for two simultaneously activated cells (N = 100). (a) visually
estimated oscillation duration. (b) additional model given as red dashed line. (Color
figure online)

TEROs have similar oscillation durations, (ii) we assume in our model that the
TERO with the shorter oscillation duration has a 1.5 MHz higher oscillation
frequency. Property (i) causes that the end points of the oscillation durations
can hardly be distinguished, while (ii) results in a cancellation of the oscillations
in the spectrum due to our relatively crude resolution in the frequency domain.
The result of our model is marked by the red dashed line in Fig. 7b. Therefore,
we suggest one of two approaches to develop automated side-channel analysis
of the multi-bit extraction from TERO PUFs: either the frequency resolution
is improved, e.g., using a spectrum analyzer, to minimize the probability of
cancellation or a model can be fitted to the SNR over time to estimate the
counter difference.

5.4 Interpretation and Countermeasures

The results of Sects. 5.2 and 5.3 prove that current methods to derive multiple
bits per pair of TERO cells are vulnerable to side-channel attacks. We empha-
size that this applies also to the derivation of multi-bit responses from other
oscillation-based PUF primitives.

However, TERO PUFs can be protected by similar mechanisms as RO PUFs:
(i) Increasing the number of counters decreases the attackers SNR as more
TEROs oscillate simultaneously. (ii) Interleaved placement of counters and mul-
tiplexers is mandatory to prevent an attacker from spatially resolving them.
(iii) The shuffling of compared TERO cells impedes averaging of measurements
with the same TERO cell as the attacker does not know to which cell pair a
measurement belongs. (iv) Restricting the TERO PUF to non-overlapping pair-
wise comparisons and using only the sign bit impedes the presented attacks
entirely. However, applying (iv) removes the claimed advantages of TERO over
RO PUFs: The number of derived bits for TERO PUFs is then equal to the RO
PUF, while the latter is more area-efficient due to the lower number of inverters.
Alternatively to (iv), if the counter values are stored, comparisons can be made

58 L. Tebelmann et al.

of the stored value. Hence, the oscillation of a single cell can only be observed
once revealing no additional side-channel leakage. Yet, this approach can also be
applied to RO PUFs, i.e., the comparison above is not altered.

6 Conclusions

In this work, we studied different TERO PUF designs and how they can be
attacked. Based on our conceptual analysis and modeling of the TERO PUF, we
were able to identify several weaknesses and confirm them by our experiments.
Our non-invasive EM measurements and tailored attack methodology exactly
recovers up to 25% of the PUF bits without errors while the overall error prob-
ability of all estimated bits is below 18%. We point out that our approach is
generic and applies to all known TERO designs. Even with our coarse measure-
ment setup, and assuming a typical PUF scenario, where up to 20% errors are
corrected, the remaining error probability is sufficiently small to consider the
TERO PUF design with overlapping comparisons broken by our attack. With
a slightly more advanced measurement setup, e.g., a spectrum analyzer, but
applying our proposed technique, we assume that the improvement in terms of
measurement enables a complete break of the TERO PUF even without the need
of a smart guessing strategy.

Acknowledgement. This work was partly funded by the German Ministry of Edu-
cation and Research in the project ALESSIO under grant number 16KIS0632.

References

1. Bayon, P., Bossuet, L., Aubert, A., Fischer, V.: Electromagnetic analysis on ring
oscillator-based true random number generators. In: 2013 IEEE International Sym-
posium on Circuits and Systems (ISCAS2013), pp. 1954–1957, May 2013

2. Bossuet, L., Ngo, X.T., Cherif, Z., Fischer, V.: A PUF based on a transient effect
ring oscillator and insensitive to locking phenomenon. IEEE Trans. Emerg. Top.
Comput. 2(1), 30–36 (2014)

3. Cherkaoui, A., Bossuet, L., Marchand, C.: Design, evaluation, and optimization
of physical unclonable functions based on transient effect ring oscillators. IEEE
Trans. Inf. Forensics Secur. 11(6), 1291–1305 (2016)

4. Delvaux, J., Gu, D., Schellekens, D., Verbauwhede, I.: Helper data algorithms for
PUF-based key generation: overview and analysis. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 34(6), 889–902 (2015)

5. Gassend, B., Clarke, D., Dijk, M.V., Devadas, S.: Silicon physical random functions.
In: ACM CCS (2002)

6. Haddad, P., Fischer, V., Bernard, F., Nicolai, J.: A physical approach for stochastic
modeling of TERO-based TRNG. In: Güneysu, T., Handschuh, H. (eds.) CHES
2015. LNCS, vol. 9293, pp. 357–372. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48324-4 18

7. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.: Cloning physically unclonable
functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 1–6, June 2013

https://doi.org/10.1007/978-3-662-48324-4_18
https://doi.org/10.1007/978-3-662-48324-4_18

Side-Channel Analysis of the TERO PUF 59

8. Immler, V., Specht, R., Unterstein, F.: Your rails cannot hide from localized EM:
how dual-rail logic fails on FPGAs. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 403–424. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 20

9. Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachs-
mann, C.: PUFs: myth, fact or busted? A security evaluation of physically unclon-
able functions (PUFs) cast in silicon. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33027-8 17

10. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

11. Lohrke, H., Tajik, S., Boit, C., Seifert, J.-P.: No place to hide: contactless probing
of secret data on FPGAs. In: Gierlichs, B., Poschmann, A.Y. (eds.) CHES 2016.
LNCS, vol. 9813, pp. 147–167. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-53140-2 8

12. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33027-8 18

13. Marchand, C., Bossuet, L., Cherkaoui, A.: Design and characterization of the
TERO-PUF on SRAM FPGAs. In: 2016 IEEE Computer Society Annual Sym-
posium on VLSI (ISVLSI), pp. 134–139, July 2016

14. Marchand, C., Bossuet, L., Mureddu, U., Bochard, N., Cherkaoui, A., Fischer, V.:
Implementation and characterization of a physical unclonable function for IoT: a
case study with the TERO-PUF. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 37(1), 97–109 (2018)

15. Merli, D., Heyszl, J., Heinz, B., Schuster, D., Stumpf, F., Sigl, G.: Localized elec-
tromagnetic analysis of RO PUFs. In: 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), pp. 19–24, June 2013

16. Merli, D., Schuster, D., Stumpf, F., Sigl, G.: Semi-invasive EM attack on FPGA
RO PUFs and countermeasures. In: 6th Workshop on Embedded Systems Security
(WESS 2011). ACM, Mar 2011

17. Quisquater, J.-J., Samyde, D.: Electro Magnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

18. Sauvage, L., Guilley, S., Mathieu, Y.: Electromagnetic radiations of FPGAs: high
spatial resolution cartography and attack on a cryptographic module. ACM Trans.
Reconfigurable Technol. Syst. 2(1), 4:1–4:24 (2009)

19. Sigl, G., Gross, M., Pehl, M.: Where technology meets security: key storage and
data separation for system-on-chips. In: ESSCIRC 2018 - IEEE 44th European
Solid State Circuits Conference (ESSCIRC), pp. 12–17, September 2018

20. Tebelmann, L., Pehl, M., Sigl, G.: EM side-channel analysis of BCH-based error
correction for PUF-based key generation. In: Proceedings of the 2017 Workshop
on Attacks and Solutions in Hardware Security, ASHES@CCS 2017, Dallas, TX,
USA, November 3, 2017, pp. 43–52 (2017)

21. The SALWARE Project: Source code of the TERO-PUF implementation on
SRAM FPGA (2016). https://perso.univ-st-etienne.fr/bl16388h/salware/tero puf.
htm. Accessed 11 Feb 2019

https://doi.org/10.1007/978-3-319-66787-4_20
https://doi.org/10.1007/978-3-319-66787-4_20
https://doi.org/10.1007/978-3-642-33027-8_17
https://doi.org/10.1007/978-3-642-33027-8_17
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1007/978-3-662-53140-2_8
https://doi.org/10.1007/978-3-642-33027-8_18
https://doi.org/10.1007/978-3-642-33027-8_18
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://perso.univ-st-etienne.fr/bl16388h/salware/tero_puf.htm
https://perso.univ-st-etienne.fr/bl16388h/salware/tero_puf.htm

60 L. Tebelmann et al.

22. Unterstein, F., Heyszl, J., De Santis, F., Specht, R.: Dissecting leakage resilient
PRFs with multivariate localized EM attacks. In: Guilley, S. (ed.) COSADE 2017.
LNCS, vol. 10348, pp. 34–49. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-64647-3 3

23. Varchola, M., Drutarovsky, M.: New high entropy element for FPGA based true
random number generators. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 351–365. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15031-9 24

24. Wild, A., Becker, G.T., Güneysu, T.: A fair and comprehensive large-scale analysis
of oscillation-based PUFs for FPGAs. In: 2017 27th International Conference on
Field Programmable Logic and Applications (FPL), pp. 1–7, September 2017

https://doi.org/10.1007/978-3-319-64647-3_3
https://doi.org/10.1007/978-3-319-64647-3_3
https://doi.org/10.1007/978-3-642-15031-9_24
https://doi.org/10.1007/978-3-642-15031-9_24

Fault-Injection Attacks

FIMA: Fault Intensity Map Analysis

Keyvan Ramezanpour(B), Paul Ampadu, and William Diehl(B)

Virginia Tech, Blacksburg, VA 24061, USA
{rkeyvan8,ampadu,wdiehl}@vt.edu

Abstract. We present a new statistical fault analysis technique called
fault intensity map analysis (FIMA) that evaluates the responses of
cryptographic implementations to biased-fault injections with varying
intensities. FIMA exploits information from fault bias, as well as the cor-
relation between fault distribution and intensity, to retrieve the secret
key with fewer fault injections than existing techniques. FIMA gener-
alizes several existing statistical fault analysis techniques, such as fault
sensitivity analysis (FSA), differential fault intensity analysis (DFIA),
ciphertext-only fault analysis (CFA), and statistical ineffective fault anal-
ysis (SIFA). FIMA has the flexibility of using different observables, e.g.,
faulty ciphertexts, correct ciphertexts under ineffective fault inductions,
and data-dependent intensity profiles, and is successful against a wide
range of countermeasures. In this paper, we use FIMA to retrieve the
entire 128-bit secret key of the Ascon authenticated cipher, a CAESAR
finalist for lightweight applications. On a software implementation of
Ascon, simulations show that FIMA recovers the secret key with fewer
than 50% of the fault injections required by previous techniques that
rely on fault bias alone; furthermore, in the presence of error-detection
and infective countermeasures, FIMA is 6× more efficient than previous
bias-based techniques.

Keywords: Authenticated encryption · Fault bias · Fault image ·
Fault intensity · FIMA · SIFA · Statistical fault analysis

1 Introduction

Increased device connectivity and ubiquitous data transfer in the era of the
Internet of Things (IoT) necessitate the improvement of cryptographic security
in a wide range of applications from high performance to lightweight computing
platforms. Although most standardized cryptographic algorithms are resistant
against cryptanalysis, implementation vulnerabilities such as side-channel anal-
ysis (SCA) pose serious threats to the security of the system. Passive SCA tech-
niques, such as differential power analysis (DPA), exploit the correlation between
a performance measure of the device, such as power consumption and/or electro-
magnetic radiation, and secret variables processed during execution of the cryp-
tographic algorithms. Fault analysis (FA) is a powerful active SCA technique
in which fault injections into the implementation executing the cryptographic
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 63–79, 2019.
https://doi.org/10.1007/978-3-030-16350-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_5

64 K. Ramezanpour et al.

algorithm leak information about the secret variables. In this work, we propose
a new fault analysis technique that analyzes the response of the system to fault
injections more effectively than existing FA techniques.

Differential fault analysis (DFA) techniques analyze the error induced in an
intermediate variable of a cipher, as the result of fault injection, using the correct
and faulty ciphertexts for the same plaintext. If the type of error induced by the
fault injection mechanism is deterministic and known, the attacker can reduce
the search space of the secret key to the set of values resulting in the known
error. Examples of DFA attacks on different ciphers include AES [1], LED [15],
PRINCE [23], Plantlet [17], Trivium [21], Grain [5], and MICKEY 2.0 [2].

While DFA techniques seek to retrieve the secret key with a minimum num-
ber of fault injections, they assume strong fault models (i.e., stronger assump-
tions on the manifestation of the fault) that often make the attack difficult to
implement with low-cost fault injection equipment. In contrast, statistical fault
analysis techniques seek to reduce the complexity of the fault model, at the
cost of requiring more fault injections to recover the secret key. This class of
FA techniques is enabled by a property of fault induction called fault bias [10].
The observable used for statistical analysis exhibits a non-uniform, or biased,
distribution under fault injection. In order to detect a meaningful bias in the
distribution, a larger amount of data is required compared with DFA methods.

In this paper, we present fault intensity map analysis (FIMA) as a new
statistical FA method. Compared with existing techniques, FIMA extracts more
information about a cryptographic implementation using fault injections, and
is thus able to recover the secret key with a fewer number of fault injections –
even when a wide range of countermeasures are used to protect implementations
against FA. The only requirement is that the attacker be able to inject a biased
fault with varying intensities. FIMA can be employed on all ciphers attacked by
existing statistical biased-fault techniques in previous works. In this work, we
demonstrate a FIMA attack using simulations on a software implementation of
the Ascon authenticated cipher, which is a finalist for the lightweight use case in
the ongoing Competition for Authenticated Encryption: Security, Applicability,
and Robustness (CAESAR) [3].

Our contributions in this paper are as follows: We present (1) a new statis-
tical fault analysis methodology which exploits the bias that faults introduce
in the distribution of faulty and/or fault-free values, as well as the correlation
between the distribution and fault intensity, in order to reduce the number of
fault injections required to recover a secret key, and (2) a methodology by which
the attacker can identify the sufficient amount of data to find the correct key
with a given probability of success.

This paper is organized as follows: In Sect. 2, we provide a brief background
on statistical fault analysis techniques, and the Ascon authenticated cipher. In
Sects. 3 and 4, we introduce fault intensity map analysis (FIMA), and describe
it in terms of fault model, fault distribution, fault image, and the corresponding
test statistics. In Sect. 5 we propose a method for determining the sufficient
amount of data to achieve a desired probability of success. We describe a FIMA

FIMA: Fault Intensity Map Analysis 65

attack on Ascon in Sect. 6, and summarize results in Sect. 7. We conclude the
paper in Sect. 8.

2 Background and Related Work

2.1 Statistical Fault Analysis

Statistical fault analysis techniques exploit the bias a fault injection induces
in an observable. Different classes of FA techniques with their corresponding
observables used for statistical analysis are shown in Fig. 1. The observables
include the intensity of fault induction causing errors, the error induced in an
intermediate variable, the faulty values of intermediate variables, as well as the
correct values of the intermediate variable under ineffective fault inductions.

Fig. 1. Taxonomy of statistical fault analysis techniques and their relevant observables.

One class of statistical fault analysis (SFA) techniques uses the biased dis-
tribution of intermediate values due to fault injection. Non-uniform error value
analysis (NUEVA) and non-uniform faulty value analysis (NUFVA) rely on the
data-dependent error and fault value distributions, respectively. A statistical
DFA attack on AES is introduced in [13], where it is shown that the distribution
of error in one byte of the state, resulting from a clock glitch, is non-uniform.
The non-uniform error distribution is exploited in this method to retrieve the
key. Although the fault model assumed in this method is simpler than tra-
ditional DFA attacks, it still requires differential encryptions to calculate the
error. Hence, the attacker requires the correct and faulty ciphertexts for the
same plaintext, which is a limitation when attacking nonce-based ciphers [6], or
in the presence of countermeasures randomizing the effect of faults.

66 K. Ramezanpour et al.

Ciphertext-only fault attacks (CFA) exploit the non-uniform distribution of
faulty values x′. In [8], the error induced by a fault injection is represented by
the random-AND model. Here, the effect of fault induction is represented by
the AND operation as x′ = x � e. In this model, it is assumed that the error e
is uniformly distributed. Due to the nonlinearity of the AND operation, given
uniform distribution of the values x, the distribution of faulty values x′ is biased.
The values of error e with low Hamming weights (HW) will force any x into a low
HW value. On the other hand, there is no value of e that will increase the HW
of x. Hence, the probability that the faulty variable x′ takes values with lower
HW is substantially higher in the random-AND model. CFA has been employed
in [6] and [14] to attack AES and the LED lightweight block cipher, respectively.

Fault sensitivity analysis (FSA) was the first biased-fault technique that
employed fault intensity for statistical analysis. FSA exploits the data-dependent
fault intensity at which an error appears in an intermediate variable in AES [16].
Differential fault intensity analysis (DFIA) employs both intensity and faulty
values as the observables for statistical analysis. In DFIA, which uses faulty
ciphertexts to calculate the change in error values, a slight change in the inten-
sity results in a small change in the error only under a correct key assumption.
DFIA has been employed in [11] and [9] to attack AES, LED, and PRESENT.
Both FSA and DFIA techniques require encryption on the same set of plaintexts
with different intensity values, which is a limitation for attacks on nonce-based
ciphers.

Most classical fault analysis techniques analyze collected data from fault
injections that induce errors in an intermediate value. Countermeasures that
detect an error in intermediate variables of the cipher, such as [12] and [19],
or infective countermeasures that randomize the effect of errors, as in [18] and
[20], are effective in protecting ciphers against such attacks. Statistical ineffec-
tive fault analysis (SIFA), introduced in [7], is based on the observation that the
distribution of correct intermediate values under ineffective faults is also biased.
Fault inductions that induce no error in intermediate variables are called ineffec-
tive faults. Since SIFA uses only fault-free data for statistical analysis, it is able
to attack even ciphers protected with a wide range of existing countermeasures.

Since the distributions of faulty values, and correct values of an intermediate
variable, are non-uniform, it is implied that the distribution of the variable under
fault injection, whether the fault is effective or not, should also be biased. This
observation, along with the response of the system to fault intensity variations,
are exploited in FIMA. In this work, FIMA is employed to attack the Ascon
authenticated cipher.

2.2 Ascon Authenticated Cipher

Authenticated ciphers provide security and authentication in one algorithm suit-
able for lightweight implementation of authenticated encryption with associated
data (AEAD). The Ascon authenticated cipher, selected as a CAESAR final-
ist for the lightweight use case, is based on a sponge construction shown in
Fig. 2. During encryption/decryption, associated data and plaintext/ciphertext

FIMA: Fault Intensity Map Analysis 67

Fig. 2. Authenticated encryption in the sponge-based structure of Ascon.

are divided into blocks of r bits. After initializing the state, the blocks of asso-
ciated data and plaintext/ciphertext are absorbed into the first r bits of the
state in the Associated Data and Plaintext stages, respectively. The remaining
c bits of the state are capacity bits determining the security and authentication
bounds of the cipher [22]. The blocks of ciphertext/plaintext are squeezed out of
the sponge in the Plaintext stage during encryption/decryption. After processing
data, the tag for authentication is generated at the Finalization stage.

After updating the state with every block of data, a certain number of rounds
of a permutation function are performed on the state. The state of Ascon is
organized into 5 words of 64 bits, denoted by xi, i = 0, 1, 2, 3, 4. The permutation
function consists of constant addition, a substitution layer (S-box) and a diffusion
layer. S-box is a 5-bit nonlinear function with inputs from bits of x0 to x4; one
bit from each word. After the S-boxes, the state is processed by the diffusion
layer. For every word xi, a particular linear function is defined that mixes the
bits within the word. Using the vector representation of the state words xi, the
operation of the diffusion layer can be formulated in matrix form as

Σi(xi) = (Lixi) mod 2, i = 0, 1, · · · , 4 (1)

In these equations, Li is a sparse matrix of dimension 64 × 64 defining the
diffusion function corresponding to word xi. The inverse diffusion functions are
simply the inverse matrices L−1

i represented by its rows as

L−1
i =

[
l
(i)T
0 , l

(i)T
1 , · · · , l

(i)T
63

]T
, i = 0, 1, · · · , 4 (2)

We use the matrix representation of inverse diffusion functions in (2) to calculate
the output bits at the S-box operation from output tag values for a key candidate.

3 Fault Intensity Map Analysis (FIMA)

3.1 Fault Model

We assume that the attacker is able to inject a biased fault into an interme-
diate variable of the cipher with varying intensities. The attack is considered

68 K. Ramezanpour et al.

successful if any one of the following assumptions holds: (1) The distribution
of the intermediate variable under fault injection is biased, or (2) There is a
correlation between the fault distribution and fault intensity. Although the first
condition, intuitively, implies the second, we specify them as distinct conditions
to emphasize that FIMA gains two types of information to detect the secret
key; namely, the fault bias, as well as the response of the system to intensity
variations.

If both of the above assumptions are true, then FIMA extracts more infor-
mation about the system than existing statistical techniques. However, even if
part of the information is suppressed by any means, FIMA is still successful.
For instance, if a particular implementation exhibits the same fault properties
under intensity variations, or if the attacker simply opts to use a single inten-
sity value, FIMA can still find the key using the bias information. In this case,
FIMA achieves performance equal to or better than techniques based on fault
bias, such as CFA and SIFA, as well as techniques such as DFIA.

The above fault model defines the generic assumptions of FIMA. Specific
ciphers might require additional assumptions for a successful attack. One specific
fault model assumption required to attack the Ascon cipher is that the attacker
must be able to inject a biased fault into the operation of any selected pair of
S-boxes at the last round of Finalization stage. The fault can be injected with
a simple voltage/clock glitch. The distribution of values at the output of the
attacked S-box pair is non-uniform.

3.2 Fault Distribution

Non-uniform distribution of data under fault induction, exploited in various
statistical techniques, can be explained by the random-AND fault model [7,8].
We use the following modified random-AND model to include the effect of fault
intensity variations:

x′ =

{
x, with probability 1 − p

x � e, with probability p
(3)

In this equation, e is a random error with uniform distribution. We use the
probability p as a measure of the fault intensity. Using this model, it can be
shown that the distribution of the intermediate variable, including both faulty
and correct values, is non-uniform. This observation is exploited in the proposed
FIMA attack to gain information about the secret key. The distribution of an
intermediate variable x′ under fault injection can be calculated as

pX′(x0) = (1 − p) · pX(x0) + p ·
∑

x

∑

e

Pr{x � e = x0}pX(x)pE(e) (4)

In this equation, pX(·) and pE(·) are probability mass functions of the interme-
diate variable x and the error e, respectively. The distribution of an intermediate
value x for different inputs to a cipher is uniform.

FIMA: Fault Intensity Map Analysis 69

3.3 Fault Image

We define the fault image as the map of probability distributions over all possible
values of the intermediate variable experiencing the fault, and fault intensity
values. The bias of fault distribution, and the correlation of the distribution
with fault intensity, are used in FIMA to extract information about the secret
key. This information is included in the fault image. Various features of the fault
image are analyzed to identify the correct key. The fault image is formed for all
candidates of a key subset, and the image with unique features is selected as the
one corresponding to the correct key guess.

The fault image for a key candidate is formed by calculating the values of
an intermediate variable x using the cipher outputs under fault injection with
different intensities, and a key guess. The fault image for a key candidate K,
denoted by pX(x, I;K), is the two-dimensional map of the probabilities that the
intermediate variable X takes values x at fault intensity I when the values x are
calculated from the cipher output using the key candidate K. The fault images
obtained with correct and incorrect key guesses in the Ascon cipher for a 2-bit
intermediate variable X are shown in Fig. 3.

Fig. 3. Fault image showing biased distribution of values with smooth variations under
intensity changes for correct key; color code represents the probability of occurrence.
(Color figure online)

The distinct features of the fault image corresponding to the correct key that
are extracted in FIMA to evaluate the key candidates are as follows; (1) The aver-
age probability distribution of the intermediate variable over all intensity values
is non-uniform. However, the fault image of an incorrect key exhibits more uni-
form distribution of data at different fault intensities. (2) The correlation of the
probability distribution with the fault intensity is data-dependent. There are val-
ues of the intermediate variable with probabilities that either increase, decrease
or exhibit no observable variations with increasing intensity. However, this fea-
ture is not observed in the fault image of incorrect keys. (3) The probability
distribution of the intermediate variable slightly changes with small variations
in the fault intensity. Under an incorrect key guess, the distribution varies ran-
domly for different fault intensities.

70 K. Ramezanpour et al.

4 Test Statistics for Fault Image

4.1 Statistics for Fault Bias

Fault bias is defined as a distance measure between the distribution of the inter-
mediate variable experiencing the fault and uniform distribution. We choose the
proper distance metric based on its capability in distinguishing small variations
in fault bias.

The difference between two probability distribution functions P = {pi|i =
1, 2, · · · , n} and Q = {qi|i = 1, 2, · · · , n} can be measured with the Lk-norm of
the difference between the distribution vectors as Lk =

∑
i |pi − qi|k. When Q

is the uniform distribution function and k = 2, the above distance is called the
Square Euclidean Imbalance (SEI) of the distribution P . The distance between
distributions P and Q can also be measured with Kullback-Leibler (K-L) diver-
gence [24], or relative entropy, as

DKL(P ||Q) =
∑

i

pi · log(
pi

qi
) (5)

We evaluate the sensitivity of the above metrics to fault bias in order to com-
pare their effectiveness in detecting the bias in data distribution. The sensitivity
of a bias measure is important in identifying the correct key, especially at low
fault bias. An incorrect key guess results in a distribution of the intermediate
values that is close to uniform. If the fault bias is small, the distribution of data
calculated with the correct key also exhibits small bias. To identify the bias with
the correct key in the presence of noise, the metric should have high sensitivity
to bias variations. It can be shown that norm-based distance metrics with higher
orders exhibit higher sensitivity to fault bias. The sensitivity of K-L divergence
is similar to SEI (L2-norm). To achieve high sensitivity at low fault bias, we
choose the L4-norm as the statistic to measure the bias of fault image; i.e.

Db(pX ;K) = log
(∑

i

(pi − qi)4
)

(6)

In this equation, pX = {pi} is the average distribution of the intermediate vari-
able over all fault intensities, and K is the key candidate by which the interme-
diate values are calculated. Also, Q = {qi} is the uniform distribution.

4.2 Statistics for Intensity Correlation

The fault distribution in biased fault techniques has a correlation with fault
intensity. Assume that fault injection is started at an infinitesimally low intensity.
The distribution of an intermediate variable under such a condition is close to
uniform – similar to the case without fault injection. By increasing the fault
intensity, stronger bias appears in the distribution. The probability of some
intermediate values increases while some other values take lower probability.
Hence, the probability distribution is correlated with the fault intensity.

FIMA: Fault Intensity Map Analysis 71

The above discussion implies that the correlation of fault distribution and
fault intensity is data-dependent. Values showing positive correlation with the
intensity take higher probabilities. This is the generalized concept of the FSA
attack. In FSA, the data-dependent fault intensity at which an error occurs,
which is called the fault sensitivity, is exploited to gain information about the
secret key. This information is captured in the fault bias; at a given intensity,
some values are more likely to experience the fault, hence, take lower probability
of occurrence. Therefore, the intensity at which all values have the same proba-
bility of error is data-dependent. The correlation between fault distribution and
intensity also implies smooth variation of the distributions with small changes
of intensity under the correct key assumption. This is the generalized concept of
DFIA.

In order to measure the variations of fault distribution with intensity changes,
we define the intensity dispersion as the average of differences between data
distribution with incremental intensity variations. For intensity values {Ii|i =
1, 2, · · · , R}, the intensity dispersion is defined as

DI(pX ;K) = −log

(
1

R − 1

R−1∑

i=1

D4

(
pX(x, Ii+1;K)||pX(x, Ii;K)

)
)

(7)

In this equation D4(P ||Q) is the L4-norm distance between distributions P and
Q. Since the dispersion is minimum for the correct key, the negative sign is used
in (7) to result in the maximum value for the correct key.

4.3 Score Function

By defining proper metrics to measure the desirable features of the fault image,
we can now define a score function that takes maximum value only for the fault
image of the correct key. We define the score function as a weighted sum of
the metrics for fault bias and intensity dispersion. For a fault image pX(x, I;K)
corresponding to the key candidate K, the score function is

R(K, γ) = (1 − γ) · Db(pX ;K) + γ · DI(pX ;K) (8)

The parameter 0 < γ < 1 in the score function determines the significance of
the fault bias or the intensity correlation in making a decision about the correct
key. The attacker can choose the proper γ value based on prior information on
which property of the fault injection is more pronounced. When there is no prior
knowledge of which of the fault bias or the correlation of fault distribution with
intensity contains more information in a given implementation, we treat γ as a
learning parameter. In this case, the optimal γ is calculated as

γopt = arg max
γ

∣
∣
∣
∣ max

K
R(K, γ) − max

k

{
R(k, γ)

∣
∣k �= arg max

K
R(K, γ)

}∣
∣
∣
∣ (9)

72 K. Ramezanpour et al.

The optimal γ is found as the value that maximizes the difference between
the maximum and the second maximum values of the score function over the
key space. The correct key guess is then found as

Kc = arg max
K

R(K, γopt) (10)

5 Sufficient Amount of Data

In statistical fault analysis techniques, the correct key can be identified if a
sufficient amount of data is collected under fault injection. For biased-fault tech-
niques, it is shown in [7] that the sufficient amount of data is inversely propor-
tional to the fault bias. Since the fault bias is not known a priori, we propose
updating the fault images with each newly collected data sample. If successive
fault images with the highest score belong to the same key value, then that key
is correct with a high probability.

When the fault distribution as well as the distribution of data without fault
injection are known, it can be shown that the optimal statistics to detect the
correct key among all key candidates is the log-likelihood ratio (LLR), which is
closely related to the Kullback-Leibler divergence [7]. The required number of
data samples to achieve a given probability of success with the LLR statistics is
derived in [4]. Assume Nt data samples are collected up to time instant t and
the fault image is constructed with these samples. Using the approximations in
[7], the probability of success in detecting the correct key can be calculated as

Pt = Φ0,1

(√
Nt · DKL(P ||Q) − Φ−1

0,1(1 − 2−a)
)

(11)

In this equation, DKL(P ||Q) is the Kullback-Leibler divergence of the data dis-
tribution under fault injection, P , and the distribution without fault, Q. The
function Φ0,1(·) is the cumulative distribution function (CDF) of the normal
distribution. Furthermore, the parameter a is the advantage of the attack, and
is defined as follows: If the search space of key candidates has size 2n, and the
success of the attack is the event that the correct key is among the top � candi-
dates ranked by a given statistic, the advantage of the attack over an exhaustive
search is defined as a = n − log2(�).

We represent the score difference of the correct key and incorrect key guesses
with Nt samples by the random variable Δt. Detection of the correct key is
successful if Δt > 0. The random variable Δt can be modeled by a traditional
Markov process with transition probabilities Pt and 1 − Pt. The attacker gradu-
ally collects samples at successive time instances and keeps track of the correct
key guess. At each time instance, the Kullback-Leibler divergence of data dis-
tribution with uniform distribution is calculated. The probability of success at
every time t with Nt data samples is also calculated using (11). If the correct
key guess does not change over L successive time instances, the probability that
the key guess is wrong can be calculated as P{fail} =

∏t
i=t−L+1(1 − Pi). If

P{fail} < ε, it means that the obtained key guess is correct with a probability
larger than 1 − ε. The FIMA attack with the proposed approach for detecting
the sufficient amount of data is summarized in Algorithm 1.

FIMA: Fault Intensity Map Analysis 73

Algorithm 1. FIMA Attack with Sufficient Data Detection

Inputs: A set of messages {M1, M2, M3 · · · }, Intensity values {I1, I2, I3 · · · IN}.
Outputs: Correct key guess

Initialization:
t = 0, Pfail = 1, γopt = 0.5, β = 0.1, Kc,0 = −1,

while Pfail > ε do
for I in {I1, I2, I3 · · · IN} do

1. t := t + 1,
2. Encrypt the next message Mt while injecting fault at the intermediate
variable X of the cipher with intensity I. The cipher output is Ct.
for K in {0, 1, · · · , 2n − 1} do

a. Calculate x (intermediate variable) using Ct and K (key candidate).
b. Update the occurrence probability of x in the fault image pX(x, I; K).

end for
3. Find the optimum weight from (9) and denote it by γo.
4. Update optimal score weight: γopt := β · γo + (1 − β) · γopt.
5. Find the correct key guess from (10) and denote it by Kc,t.
6. Find K-L divergence of P (data) and Q (uniform) distributions as in (5).
7. Find the success probability Pt from (11).
8. Update failure probability: Pfail := Pfail · (1 − Pt).
if Kc,t �= Kc,t−1, then Pfail = 1.

end for
end while
Return Kc,t as the correct key guess.

6 FIMA Attack on Ascon

In order to attack Ascon, faults are injected into the operation of selected pairs of
S-boxes at the last round of the Finalization stage (refer to Fig. 2). The interme-
diate variables used for statistical analysis are bits 3 and 4 at the output of the
attacked S-boxes. The output tag values are used for calculating the intermediate
values with a key candidate.

The operation of Ascon at the last round of the Finalization stage is demon-
strated, schematically, in Fig. 4. Using the inverse diffusion functions in (2),
bits i = 3, 4 at the output of j-th S-box can be calculated from the tag value
T = T0||T1 as

s
(j)
i =

63∑

r=0

[(
T(i−3),r ⊕ k64(i−3)+r

) � l
(i)
j,r

]
mod 2 (12)

in which, kr and Ts,r are the r-th bit of the key and tag values Ts, s = 0, 1,
respectively. Also, l

(i)
j,r is the r-th element in the j-th row of the inverse diffusion

matrix L−1
i . We can express the above equations in terms of a combination of

key bits as

s
(j)
i =

(63∑

r=0

T(i−3),r � l
(i)
j,r

)
⊕ K

(j)
i−3 (13)

74 K. Ramezanpour et al.

Fig. 4. Last round of the Finalization stage in Ascon with double-fault injection at the
targeted pair of S-boxes.

In this equation, K
(j)
0 and K

(j)
1 are a linear combination of key bits in the

first and second 64-bit halves of the key. The coefficients of the combinations
are the j-th row of the inverse diffusion matrices L−1

3 and L−1
4 , respectively. In

other words,

K(j)
s =

63∑

r=0

k64s+r � l
(s+3)
j,r mod 2, s = 0, 1 (14)

Bits 3 and 4 at the output of S-boxes j and j + 1, attacked by a biased
fault, are calculated from the tag values using (13) and a 4-bit key candidate
K(j) = (K(j)

0 ,K
(j)
1 ,K

(j+1)
0 ,K

(j+1)
1). The two bits calculated at time instant t

constitute the first and second bits of the 2-bit intermediate variables z
(j)
t and

z
(j+1)
t . The distribution of data {z

(j)
1 , z

(j)
2 , · · · , z

(j)
t , z

(j+1)
1 , z

(j+1)
2 , · · · , z

(j+1)
t } are

used for statistical analysis to find the correct key guess.
FIMA finds the correct guess for K(0) using fault injections at S-box pairs

(0, 1). The maximum of the score function is not unique; for every 4 possible
values of (K(0)

0 ,K
(0)
1), there is a particular value of (K(1)

0 ,K
(1)
1) that results

in the same bias and intensity correlation. Similarly, by attacking S-box pair
(1, 2), FIMA finds 4 guesses of K(1) in which for every value of (K(1)

0 ,K
(1)
1)

there is a corresponding value for (K(2)
0 ,K

(2)
1). Continuing the attack on

S-box pairs (2, 3) up to (62, 63), a unique sequence of {K
(0)
0 ,K

(1)
0 , · · · ,K

(63)
0 }

and {K
(0)
1 ,K

(1)
1 , · · · ,K

(63)
1 } are obtained for every value of (K(0)

0 ,K
(0)
1). These

sequences form two sets of 64 linear binary equations for the first and second
64-bit halves of the key, as in (14). By solving these equations, the individual key
bits are calculated. Thus, starting from each of the 4 guesses of (K(0)

0 ,K
(0)
1), one

guess for the entire key is obtained. The correct key can be found by comparing
the ciphertext computed for a single plaintext and the 4 key guesses with an
expected ciphertext from the actual implementation.

FIMA: Fault Intensity Map Analysis 75

7 Results

We demonstrate the proposed FIMA attack on a C implementation of the Ascon
cipher. Biased fault injections at selected pairs of S-boxes with different intensi-
ties are modeled by the modified random-AND fault model defined in (3). The
effect of countermeasures suppressing faulty outputs as well as infective coun-
termeasures that randomize error values at the output are investigated.

7.1 Signature of Score Function over Key Space

The FIMA score function value, defined in (8), over the search space of key
combinations K(0), for attacked S-boxes 0 and 1, is shown in Fig. 5(a). We note
that four values of the key exhibit the same score. For every pair of attacked
S-boxes, we obtain four key guesses that result in a total of four guesses for
the 128-bit Ascon key. The score values of Fig. 5(a) are obtained for a sufficient
number of collected data samples with 20 values of fault intensity where p ∈
[0, 0.2].

The optimal weight of the score function with every data sample is shown
in Fig. 5(b). We observe that when there are not enough data samples, more

Fig. 5. FIMA score function over key search space; (a) score function with correct key
corresponding to one of the four peaks; (b) optimal weight of score function.

Fig. 6. Differences between correct key score and maximum score of incorrect key
guesses, with fault intensities (a) p ∈ [0, 0.2], (b) p ∈ [0, 0.3].

76 K. Ramezanpour et al.

weight is assigned to the data bias as the variations over intensity values are
noisy and not reliable. By collecting enough data, FIMA uses information from
both bias and intensity dispersion to detect the key. The difference between the
FIMA score of the correct key, and the maximum score of incorrect key values
versus the number of data samples, is shown in Fig. 6(a). In this figure, 20 values
of fault intensity ranging in p ∈ [0, 0.2] are used for FIMA attack.

We note in Fig. 6(a) that using the data bias alone as the score function
requires at least 710 data samples to detect the correct key. However, FIMA
can detect the key using only 305 samples, which is more efficient by a factor of
2.3×. When the range of fault intensity increases, the required amount of data is
decreased. This is shown in Fig. 6(b) when 20 values of fault intensity ranging in
p ∈ [0, 0.3] are used in FIMA. Using only bias information, at least 620 samples
are required, while FIMA needs only 250 samples, i.e. ∼2.5× fewer samples.

7.2 FIMA with Error-Detection Countermeasures

A widely-used class of countermeasures against DFA attacks consists of error-
detection techniques that suppress any output when an error is detected in the
cipher operations. Hence, the attacker has no access to faulty values for differ-
ential or statistical analysis. However, the biased distribution of fault-free data,
used in SIFA, and the correlation of the distribution with intensity, still leak
information about the secret. The results of a FIMA attack in the presence of
such countermeasures are shown in Fig. 7.

Fig. 7. Score differences between correct key and incorrect key guesses with error-based
countermeasures, and fault intensities (a) p ∈ [0, 0.2], (b) p ∈ [0, 0.3].

When the faulty values are eliminated, the bias of data distribution decreases.
This can be verified by calculating the distribution of fault-free data in the
random-AND model of (3). Hence, the required size of data samples increases.
This is is observed in Fig. 7. When the fault intensity ranges in p ∈ [0, 0.2], FIMA
requires 1523 samples to successfully recover the key, while by using only the
data bias, more than 2710 samples are needed. By increasing the intensity range
to p ∈ [0, 0.3], these values decrease to 460 and 2035, respectively.

FIMA: Fault Intensity Map Analysis 77

7.3 FIMA with Infective Countermeasures

Rather than suppress faulty outputs, infective countermeasures randomize errors
so that no information is leaked into observables, which reduces the bias of faulty
values. FIMA score differences versus the size of data samples in the presence of
infective countermeasures is shown in Fig. 8(a). We simulate infective counter-
measures by injecting the fault at an incorrect random round of Ascon. FIMA
can detect the key using 453 data samples even with infective countermeasures.
The effect of intensity information is observed by noting that the size of data
needed to detect the key using only the bias information is about 2880, i.e. larger
by a factor of 6. A similar observation is made with noisy fault injection. In this
case, the attacker might not have precise control, e.g. on timing or location of
the fault injection. The result of FIMA with noisy fault injection at randomly
selected pairs of S-boxes with probability 0.7 is shown in Fig. 8(b). Similar to the
case of infective countermeasures, the required size of data in FIMA is 690, while
at least 2585 samples are needed when using data bias alone. A comparison of
FIMA performance with biased-based techniques is given in Table 1.

Fig. 8. Score differences between correct key and incorrect key guesses with fault inten-
sities p ∈ [0, 0.3] and (a) infective countermeasures, (b) noisy fault injection.

Table 1. Comparison of FIMA performance versus biased-based techniques.

Intensity range p ∈ [0, 0.2] p ∈ [0, 0.3] p ∈ [0, 0.3] p ∈ [0, 0.3]

Technique FIMA Bias FIMA Bias FIMA Bias (SIFA) FIMA Bias

Countermeasure N/A N/A Error-Detection Infective

Data size 305 710 250 620 460 2035 453 2880

FIMA improvement 2.3× 2.5× 4.4× 6.3×

78 K. Ramezanpour et al.

8 Conclusions

In this work, we introduced a new statistical fault analysis technique called fault
intensity map analysis (FIMA), which extracts more information from cryp-
tographic implementations than existing techniques, through analysis of fault
injections. We analyzed distributions of faulty ciphertexts and correct cipher-
texts under ineffective fault inductions, at different fault intensities. We showed
that the correlation of distributions with fault intensity represents extra infor-
mation that reduces the size of data samples required for key recovery, especially
in the presence of noise and various countermeasures. Additionally, we derived
conditions to determine the minimum amount of data required to achieve a given
probability of success; this can also be used with other statistical fault analysis
techniques. We employed a FIMA attack to retrieve the entire 128-bit secret key
of the Ascon authenticated cipher. In simulations on a software implementation
of Ascon, we showed that FIMA recovers the secret key with fewer than half
of the fault injections required by previous techniques that rely on fault bias
alone. Moreover, in the presence of error-detection and infective countermea-
sures, FIMA is 6× more efficient than previous bias-based techniques.

Acknowledgement. This work was supported by NIST award 70NANB18H219 for
Lightweight Cryptography in Hardware and Embedded Systems.

References

1. Ali, S.S., Mukhopadhyay, D., Tunstall, M.: Differential fault analysis of AES:
towards reaching its limits. J. Cryptogr. Eng. 3(2), 73–97 (2013)

2. Banik, S., Maitra, S., Sarkar, S.: Improved differential fault attack on MICKEY
2.0. J. Cryptogr. Eng. 5(1), 13–29 (2015)

3. Bernstein, D.: Cryptographic competitions (2016). https://competitions.cr.yp.to/
caesar.html

4. Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis using
LLR and χ2 statistics. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS,
vol. 7485, pp. 343–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32928-9 19

5. Chakraborty, A., Mazumdar, B., Mukhopadhyay, D.: A combined power and fault
analysis attack on protected grain family of stream ciphers. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 36(12), 1968–1977 (2017)

6. Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.: Statistical fault
attacks on nonce-based authenticated encryption schemes. In: Cheon, J.H., Takagi,
T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 369–395. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53887-6 14

7. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.:
SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR
Trans. Cryptogr. Hardw. Embedded Syst. 2018, 547–572 (2018)

8. Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on AES with faulty
ciphertexts only. In: 2013 Workshop on Fault Diagnosis and Tolerance in Cryptog-
raphy (FDTC), pp. 108–118. IEEE (2013)

https://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/caesar.html
https://doi.org/10.1007/978-3-642-32928-9_19
https://doi.org/10.1007/978-3-642-32928-9_19
https://doi.org/10.1007/978-3-662-53887-6_14

FIMA: Fault Intensity Map Analysis 79

9. Ghalaty, N.F., Yuce, B., Schaumont, P.: Differential fault intensity analysis on
PRESENT and LED block ciphers. In: Mangard, S., Poschmann, A.Y. (eds.)
COSADE 2014. LNCS, vol. 9064, pp. 174–188. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-21476-4 12

10. Ghalaty, N.F., Yuce, B., Schaumont, P.: Analyzing the efficiency of biased-fault
based attacks. Embedded Syst. Lett. 8(2), 33–36 (2016)

11. Ghalaty, N.F., Yuce, B., Taha, M., Schaumont, P.: Differential fault intensity analy-
sis. In: 2014 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC),
pp. 49–58. IEEE (2014)

12. Kermani, M.M., Jalali, A., Azarderakhsh, R., Xie, J., Choo, K.K.R.: Reliable inver-
sion in GF(2 8) with redundant arithmetic for secure error detection of cryp-
tographic architectures. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(3), 696–704 (2018)

13. Lashermes, R., Reymond, G., Dutertre, J.M., Fournier, J., Robisson, B., Tria, A.:
A DFA on AES based on the entropy of error distributions. In: 2012 Workshop on
Fault Diagnosis and Tolerance in Cryptography, pp. 34–43. IEEE (2012)

14. Li, W., et al.: Ciphertext-only fault analysis on the led lightweight cryptosystem
in the internet of things. IEEE Trans. Dependable Secure Comput. (2018)

15. Li, W., et al.: Impossible differential fault analysis on the LED lightweight cryp-
tosystem in the vehicular ad-hoc networks. EEE Trans. Dependable Secure Com-
put. 13(1), 84–92 (2016)

16. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault
sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS,
vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-15031-9 22

17. Maitra, S., Siddhanti, A., Sarkar, S.: A differential fault attack on plantlet. IEEE
Trans. Comput. 66(10), 1804–1808 (2017)

18. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault tolerant infective coun-
termeasure for AES. J. Hardw. Syst. Secur. 1(1), 3–17 (2017)

19. Patranabis, S., Chakraborty, A., Mukhopadhyay, D., Chakrabarti, P.P.: Fault space
transformation: a generic approach to counter differential fault analysis and differ-
ential fault intensity analysis on AES-like block ciphers. IEEE Trans. Inf. Forensics
Secur. 12(5), 1092–1102 (2017)

20. Patranabis, S., et al.: Lightweight design-for-security strategies for combined coun-
termeasures against side channel and fault analysis in IoT applications. J. Hardw.
Syst. Secur., 1–29 (2018)

21. Potestad-Ordóñez, F., Jiménez-Fernández, C., Valencia-Barrero, M.: Experimental
and timing analysis comparison of FPGA trivium implementations and their vul-
nerability to clock fault injection. In: 2016 Conference on Design of Circuits and
Integrated Systems (DCIS), pp. 1–6. IEEE (2016)

22. Saarinen, M.-J.O.: Beyond modes: building a secure record protocol from a crypto-
graphic sponge permutation. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366,
pp. 270–285. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04852-
9 14

23. Song, L., Hu, L.: Differential fault attack on the PRINCE block cipher. In: Avoine,
G., Kara, O. (eds.) LightSec 2013. LNCS, vol. 8162, pp. 43–54. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40392-7 4

24. Van Erven, T., Harremos, P.: Rényi divergence and kullback-leibler divergence.
IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

https://doi.org/10.1007/978-3-319-21476-4_12
https://doi.org/10.1007/978-3-319-21476-4_12
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-642-15031-9_22
https://doi.org/10.1007/978-3-319-04852-9_14
https://doi.org/10.1007/978-3-319-04852-9_14
https://doi.org/10.1007/978-3-642-40392-7_4

Differential Fault Attacks on KLEIN

Michael Gruber1(B) and Bodo Selmke2

1 Chair of Security in Information Technology,
Technical University of Munich, Munich, Germany

m.gruber@tum.de
2 Fraunhofer Institute for Applied and Integrated Security, Garching, Germany

bodo.selmke@aisec.fraunhofer.de

Abstract. This paper proposes two Differential Fault Attacks on the
lightweight block cipher KLEIN. Variant one targets the intermediate
state of the cipher. Using at least five faulty ciphertexts, the attacker is
able to determine the last round key. The second variant, which works
only on KLEIN-64, injects a byte-fault in the key schedule and requires
at least four faulty ciphertexts in order to determine the whole key.
Furthermore, we demonstrate the efficiency of both attack methods by
simulation.

Keywords: Differential fault analysis · Fault attack · Key schedule ·
Lightweight block cipher · KLEIN

1 Introduction

Exchange of information in computer networks often requires the use of cryp-
tography, to ensure the integrity of messages, the confidentiality of the message
or the authenticity of the communication partner. However, the computational
effort caused by cryptographic algorithms can be prohibitive for resource con-
strained devices. A typical example for this class of devices are IoT (Internet
of Things) devices. These are often low-power sensor nodes, which are deployed
over a large area and submit measurement data to some back-end system. Each
node is battery powered and is thus very limited in its energy consumption. For
these applications lightweight block ciphers were developed in recent years. The
idea is to offer a symmetric block cipher (since asymmetric ciphers are always
more costly in terms of performance), with a security level that does not have
many reserves, but at a much smaller computational overhead. The most promi-
nent example for lightweight block ciphers is PRESENT [2] but many other
proposals have been developed, e.g. KLEIN as proposed by Gong et al. [6].

In this paper we investigate Differential Fault Attacks on the lightweight
block cipher KLEIN. Fault Attacks are a subgroup of implementation attacks,
which attack the actual implementation of a cryptographic algorithm and not its
mathematical properties. Therefore, the attacker disturbs the device while it is
executing the cryptographic algorithm. However, the resulting faulty output of
the algorithm, can be exploited by an attacker, if the fault was carefully injected
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 80–95, 2019.
https://doi.org/10.1007/978-3-030-16350-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_6

Differential Fault Attacks on KLEIN 81

at a specific location. Since lightweight block ciphers are often used in devices,
where an attacker can easily gain physical access, implementation attacks have
to be taken into consideration.

Contribution. In this paper we introduce two different fault attacks on the
lightweight cipher KLEIN. Both attacks are based on the principle of differential
fault analysis. The first fault attack requires an attacker to inject faults into the
state of the encryption process. This attack method works on all variants of
KLEIN. Furthermore, we present a second attack on the key schedule, which
works only on the variant of KLEIN using a 64 bit key. This attack enables the
attacker to determine the key with 4 fault injections. For both attacks we prove
the according efficiency by means of simulations.

Organization. The paper is structured as follows: In Sect. 2 the basic working
principle of the KLEIN cipher is described. Subsequently, in Sect. 3, we provide
an overview about the existing fault attacks on KLEIN. Section 4 explains the
attack based on the fault injection into the encryption, whereas Sect. 5 explains
the attack on the key schedule of KLEIN-64. A discussion of the performance of
both attack strategies is given in Sect. 6. Section 7 concludes the paper.

2 KLEIN

KLEIN [6] is a SPN-based cipher similar to other state-of-the-art block ciphers
(e.g. AES or PRESENT) and features three different security levels with accord-
ing key sizes of 64, 80 and 96 bit. For all three variants a block size of 64 bit is
used, only the number of rounds performed and the key schedule differs. How-
ever, in contrast to AES, KLEIN is not operating on bytes, but on 4 bit wide
nibbles. In the following we will give a very brief description of the general struc-
ture and the individual round functions.

2.1 The Round Function

The cipher is composed from R ∈ {12, 16, 20} executions of the round function,
depending on the key size of 64, 80 or 96 bit. Each round i utilizes a round key ski,
which is derived from the previous round key through the KeySchedule function.
Basic building blocks of each round are the functions AddRoundKey, SubNibbles,
RotateNibbles and MixNibbles. Algorithm 1 shows the general structure of the
KLEIN cipher.

2.2 SubNibbles

The SubNibbles function is the nonlinear permutation step of KLEIN. A notable
property of the used 4 bit S-Box function S is the fact that it is involutive, i.e.
S(x) = S−1(x) ∀ x ∈ {0, . . . , 15}. This saves the costs for the implementation
of an inverse S-Box. The S-Box is given in Table 1.

82 M. Gruber and B. Selmke

Algorithm 1. The structure of the KLEIN cipher.
sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R do

AddRoundKey(STATE, ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)

ski+1 ← KeySchedule(ski, i)
end for
CIPHERTEXT ← AddRoundKey(STATE, skR+1)

Table 1. The 4 bit S-Box of KLEIN.

Input: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Output: 7 4 A 9 1 F B 0 C 3 2 6 8 E D 5

2.3 RotateNibbles

The RotateNibbles function rotates the full 16 Nibbles wide input [n0, n1, . . . , n15]
by two bytes (4 Nibbles) to the left:

[n0, n1, . . . , n15] → [n4, n5, . . . , n15, n0, n1, n2, n3, n4]

2.4 MixNibbles

The MixNibbles function is the linear diffusion step of the KLEIN cipher. It
subdivides the input state into two arrays1 of 4 bytes (8 nibbles [n0, . . . , n7] and
[n8, . . . , n15]) which are interpreted as polynomials in F

8
2. The multiplication with

the permutation matrix is calculated modulo the reduction polynomial x4 + 1.
MixNibbles uses thereby the exact same 4 × 4 bytes permutation matrix that is
used in the AES:

⎡
⎢⎢⎣
ni+1
0 ||ni+1

1 ni+1
8 ||ni+1

9

ni+1
2 ||ni+1

3 ni+1
10 ||ni+1

11

ni+1
4 ||ni+1

5 ni+1
12 ||ni+1

13

ni+1
6 ||ni+1

7 ni+1
14 ||ni+1

15

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎤
⎥⎥⎦ ×

⎡
⎢⎢⎣
ni
0||ni

1 ni
8||ni

9

ni
2||ni

3 ni
10||ni

11

ni
4||ni

5 ni
12||ni

13

ni
6||ni

7 ni
14||ni

15

⎤
⎥⎥⎦

2.5 Key Schedule

KLEIN’s key schedule reuses the SubNibbles functions from the round function.
The key schedule is composed from a cyclic left shift by two nibbles (one byte),
followed by a Feistel network. Subsequently, four nibbles (two bytes) are substi-
tuted by the SubNibbles function and the round constant i is added to the fifth
and sixth nibble (third byte). Figure 2 depicts the structure of the key schedule
for 3 iterations. In contrast to the round function the key schedule works in a
byte oriented way, as all operations are performed on a multiple of two nibbles.
1 || denotes a concatenation.

Differential Fault Attacks on KLEIN 83

2.6 Modified Representation

To simplify the explanation of our attack, it is necessary to slightly change
the representation of the last round function, since KLEIN does not omit the
MixNibbles operation in the last round [6]. The effects of omitting the last Mix-
Columns in the AES were extensively studied by Dunkelman et al. in [5]. The
final AddRoundKey step and the previous MixNibbles step are exchanged (cf.
Fig. 3) the modified representation of KLEIN is also shown in Algorithm 2.
Since MixNibbles is a linear function, it holds that MixNibbles(a + b) =
MixNibbles(a) + MixNibbles(b), the same reasoning can also be applied to the
AddroundKey function. Therefore, we can exchange the AddRoundKey and the
MixNibbles step, if we substitute the added round key ski with MixNibbles(ski).
As a result of the exchanged order of AddRoundKey and MixNibbles, it is also
necessary to apply the inverse MixNibbles function to the last round key RKR+1

prior to the addition to the state RBR. Furthermore, for the sake of simplicity
from now on we will represent KLEIN in a byte-oriented view, in contrast to the
originally proposed nibble-oriented view. In fact SubNibbles is the only function,
which actually operates on nibbles. However, the application of a 4 bit S-Box
on two nibbles can be replaced by a compound 8 bit S-Box without loss of gen-
erality, if no particular properties of the 4 bit S-Box are considered. Therefore,
in the following we represent the KLEIN’s state as an array of bytes, which is
transformed by the functions SubBytes, MixBytes and RotateBytes.

Algorithm 2. The structure of the modified KLEIN cipher.
sk1 ← KEY
STATE ← PLAINTEXT
for i = 1 to R − 1 do

AddRoundKey(STATE, ski)
SubNibbles(STATE)
RotateNibbles(STATE)
MixNibbles(STATE)

ski+1 ← KeySchedule(ski, i)
end for
AddRoundKey(STATE, skR)
SubNibbles(STATE)
RotateNibbles(STATE)

skR+1 ← KeySchedule(skR, R)

AddRoundKey(STATE, invMixNibbles(skR+1))
CIPHERTEXT ← MixNibbles(STATE)

2.7 Notation

Throughout the remaining sections we will use the following notation. An inter-
mediate state of KLEIN is named according to the abbreviation of the function
which was applied to the intermediate state last, i.e. ARKx is the state after
the application of AddRoundKey during round x. A subscript refers to a specific
byte of the state. The states of the key schedule are abbreviated as RKx. A
multiplication of two bytes is done as defined in the AES [11]. Faulted values
are indicated by an overline (e.g. the faulty byte ARK

R−1

0).

84 M. Gruber and B. Selmke

3 Related Work

To the best of our knowledge, there are no publications about fault attacks on
KLEIN targeting either the state or the key schedule2. In contrast, Yoshikawa
et al. developed a generic attack based on the manipulation of the control flow
[14], where an attacker aims to increase the number of rounds artificially using
a fault injection. As shown by Yoshikawa et al. this attack requires one faulty
ciphertext and one correct ciphertext to recover the last round key of KLEIN-64.
To do so they calculate K = MixNibbles(RotateNibbles(C)) + C, where K is
the additional generated round key and C the correct ciphertext respectively C
the manipulated ciphertext (the key schedule is invertible).

4 Proposed Attack on the Encryption

The proposed attack strategy is quite similar to those formerly published on AES
by Piret et al. [10], Tunstall et al. [12] and Mukhopadhyay [9]. Unlike those, this
attack is split up into two separate parts, each revealing 32 bits of the according
round key. The attack on the encryption works on all three variants of KLEIN.
A random single-byte fault is injected into the state between ARKR−3 and
MBR−1. We opted for a random single-byte fault model, as KLEIN should be
a lightweight cipher [6] which are often implemented on 8-bit platforms. As a
result of using a 8-bit platform random, single-byte faults can be achieved easily
e.g. due to an instruction skip [7]. This fault will lead to a completely corrupted
ciphertext, affecting all 8 bytes. Figure 1 shows the propagation for two different
faults, injected either into the left half cf. Fig. 1a or the right half cf. Fig. 1b of
the state. The faulted byte is indicated by f . We will now outline the attack for a
fault injection which affects the left half of the state MBR−1. After the applica-
tion of MixBytes in round R− 1, the former single-byte fault has spread over all
four bytes of the left half. Since MixBytes is a linear function (cf. Sect. 2.6), the
resulting fault can be described as a bytewise multiple of f : Depending on which
byte position before MixBytes was faulted, the individual bytes after MixBytes
inherit an additive fault with the values f , 2f or 3f . These multiples of the
same value f can be exploited to formulate a set of equations. An attacker can-
not obtain f directly by reverse calculating from the ciphertext, as he is only
able to observe the transformed version of f i.e. Fi, i ∈ {0, 1, 2, 3} after passing
through the four S-Boxes. But the attacker can describe an implicit relationship,

2 There are two additional publications in chinese: A DFA by Wang et al. [13] and a
DFA by Cunyan et al. [4]. However, the latter obviously uses the generic approach
of injecting single-bit faults before the last S-Box operation to exploit the differen-
tial distribution table (cf. the appendix of the original KLEIN publication [6]) and
discard key hypotheses which lead to impossible differentials.

Differential Fault Attacks on KLEIN 85

of the S-Box’s input and output fault, the following equations demonstrate this
for the case depicted in Fig. 1a:

SubBytes(ARKR+1
6 + RKR+1

6) + SubBytes(ARK
R+1

6 + RKR+1
6)

= 2 ·
(
SubBytes(ARKR+1

7 + RKR+1
7) + SubBytes(ARK

R+1

7 + RKR+1
7)

)
(1)

SubBytes(ARKR+1
7 + RKR+1

7) + SubBytes(ARK
R+1

7 + RKR+1
7)

= SubBytes(ARKR+1
0 + RKR+1

0) + SubBytes(ARK
R+1

0 + RKR+1
0) (2)

SubBytes(ARKR+1
1 + RKR+1

1) + SubBytes(ARK
R+1

1 + RKR+1
1)

= 3 ·
(
SubBytes(ARKR+1

7 + RKR+1
7) + SubBytes(ARK

R+1

7 + RKR+1
7)

)
(3)

Each equation combines two different bytes and therefore uses a hypothesis
over two different key-bytes (RKR+1

i , RKR+1
j) ∀ (i, j) ∈ {(6, 7), (0, 7), (1, 7)}.

Thus, the attacker has a set of three equations depending on four different key-
bytes. Since this set is under-determined, there is no unique solution. However,
the attacker can use these equations to discard all those 4-byte key-hypotheses,
which do not solve the equation. Therefore, all possible keys are stored in a set
of hypotheses. Using the result of an additional fault injection with a different
fault f , the attacker can discard those keys in the set of hypotheses, which do
not fulfill the new equations. The computational complexity of this step can be
significantly reduced from 232 by testing only those 4-byte key hypotheses, where
the individual four key bytes were tested as valid. Since the attacker usually does
not know which of the four possible byte positions were faulted, all four options
have to be tested. However, the resulting increase in complexity of a factor of

0 1 2 3 4 5 6 7

MBR-2

f

0 1 2 3 4 5 6 7

ARKR-1

f

0 1 2 3 4 5 6 7

SBR-1

f

0 1 2 3 4 5 6 7

RBR-1

f

0 1 2 3 4 5 6 7

MBR-1

2 · f f f 3 · f

0 1 2 3 4 5 6 7

ARKR

2 · f f f 3 · f

0 1 2 3 4 5 6 7

SBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

RBR

F2 F3 F0 F1

0 1 2 3 4 5 6 7

ARKR+1

F2 F3 F0 F1

0 1 2 3 4 5 6 7

MBR

(a) Fault in Byte 2

0 1 2 3 4 5 6 7

MBR-2

f

0 1 2 3 4 5 6 7

ARKR-1

f

0 1 2 3 4 5 6 7

SBR-1

f

0 1 2 3 4 5 6 7

RBR-1

f

0 1 2 3 4 5 6 7

MBR-1

2 · f f f 3 · f

0 1 2 3 4 5 6 7

ARKR

2 · f f f 3 · f

0 1 2 3 4 5 6 7

SBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

RBR

F0 F1 F2 F3

0 1 2 3 4 5 6 7

ARKR+1

F0 F1 F2 F3

0 1 2 3 4 5 6 7

MBR

(b) Fault in Byte 6

Fig. 1. Fault propagation for a single-byte fault injected between MBR−2 and MBR−1.

86 M. Gruber and B. Selmke

4 does not present a problem. The question of which half of the state was faulted
(a single example for both cases is depicted in Fig. 1a and b), can be determined
by applying the inverse MixBytes function to the observable fault at the output
i.e. the addition of the correct and faulty ciphertext. In order to reveal the full
64-bit round key, the attacker can choose to inject another fault at a different
position to run the attack on both halves of the key, or to determine the missing
32 bit part with the brute-force approach.

5 Proposed Attack on the Key Schedule

In our proposed attack on the key schedule, the attacker is expected to induce
a random byte fault Δ into the key state RKR−2, which corrupts the byte
RKR−2

5 as shown in Fig. 2. The proposed fault model and location was chosen
to be within a path through the key schedule free of nonlinear functions, which
results in a partial cancellation of the fault during round R. The fault injection
into the key schedule empowers a fault propagation into both halves of the state
simultaneously, due to the Feistel-like structure of the key schedule where one
half of the key state is added to the other half. One has to keep in mind after
a fault injection into the key schedule the fault spreads throughout the key
schedule and after an AddRoundKey operation also in the state. The approach
of the attack can be divided as usual into three parts fault propagation, fault
exploitation and state recovery.

5.1 Fault Propagation

The propagation of the faulty byte is based on two parts, the propagation
through the key schedule and the propagation through the state of KLEIN.

Key Schedule: Under the assumption of a random byte fault model, the byte
RKR−2

5 is perturbed with a fault Δ, as shown in Fig. 2. After the fault injection,
both halves are rotated bytewise to the left by 1. During the Feistel step, the
faulted byte spreads to both halves of the key state RKR−1. As one can see the
path chosen avoids nonlinear functions, therefore the bytes RKR−1

0 , RKR−1
4 are

both under the influence of the same fault Δ. Due to the Feistel structure of the
key schedule the fault Δ of byte RKR

7 is canceled out as a result of the addition
of both halves (Δ + Δ = 0). During the last iteration of the key schedule from
round R to R + 1 the single-byte fault Δ passes through one S-Box, as a result
the byte RKR+1

6 is the only byte in the key schedule’s state with a fault different
from Δ. In total there are four distinct locations during the last three iterations
of the key schedule where the faults are fed into the state of KLEIN, the four
locations are indicated by a lighting symbol under each faulted byte, as shown
in Fig. 2.

State: During the round key addition in round R − 1 the state ARKR−1 is
perturbed at first, with the fault Δ at indices 0 and 4 as shown in Fig. 3. After
passing through the S-Boxes the fault Δ is transformed into the faults f1 and f2.

Differential Fault Attacks on KLEIN 87

Fig. 2. Fault propagation of a single-byte fault in round 10 of the KLEIN-64 key
schedule.

88 M. Gruber and B. Selmke

Applying a shift to the state does not change the faults. As a result of passing
one faulty byte on each half (i.e. RBR−1) through the MixBytes operation, each
byte of the state MBR−1 is now influenced by multiples of the fault either
{1, 2, 3} times the original fault f1, f2. After the addition with the round key
RKR, the byte ARKR

3 is now faulted with f1 + Δ. After the application of
SubBytes the faults are transformed into the faults Fi, i ∈ {0, 1, 2, 3M, 4, 5, 6, 7}.
As a result of the last AddRoundKey operation, the whole right half of the
state ARKR+1 is perturbed again with a fault coming from the key schedule.
After the application of AddRoundKey the faults are transformed into the faults
which are observable Fi, i ∈ {0M, 1M, 2, 3M, 4, 5, 6M, 7M}. The disturbance of
the whole right half of the state occurs due to the modified variant of KLEIN
where the AddRoundKey and MixBytes operation are swapped. Swapping both
functions requires an application of MixBytes to the round key RKR+1, prior to
the execution of AddRoundKey in round R + 1.

Fig. 3. Fault propagation through the state of KLEIN.

5.2 Fault Exploitation

In order to recover the last round key which is in the case of KLEIN-64 also
the master key as the key schedule is invertible, we have to recover the state
ARKR which is KLEIN’s state before the SubBytes function in round R. After
the recovery of ARKR we can calculate the last round key using the ciphertext
C as shown in Eq. (4).

RKR+1 = RBR + ARKR+1

RKR+1 = RBR + inverseMixBytes(C)
(4)

Since the S-Boxes are the only nonlinear elements of KLEIN this will provide
us a filtering mechanism for wrong state hypotheses. As an example of how to

Differential Fault Attacks on KLEIN 89

derive the required equations we will demonstrate this for the fault F0 in detail.
The fault F0 is defined as the result of adding the bytes SBR

0 and SB
R

0 . We can
express SBR

0 as an application of SubBytes to ARKR
0 , respectively ARKR

0 + f1
in the faulted case as shown in Eq. (5).

F0 = SBR
0 + SB

R

0

F0 = SubBytes(ARKR
0) + SubBytes(ARK

R

0)

F0 = SubBytes(ARKR
0) + SubBytes(ARKR

0 + f1)

F1 = SubBytes(ARKR
1) + SubBytes(ARKR

1 + 3 · f1)

(5)

Analogous to F0 we express F1 as shown in Eq. (5), both equations depend on the
fault f1, which is not observable. The equations for F2 and F3 are constructed
similarly, but this time the equation for F3 depends also on the injected fault Δ
as shown in Eq. (6).

F2 = SubBytes(ARKR
2) + SubBytes(ARKR

2 + 2 · f1)

F3 = SubBytes(ARKR
3) + SubBytes(ARKR

3 + f1 + Δ)
(6)

Equation (7) is a special case, because it is the only equation set where the faults
F4 and F5 are not overlaid with another fault coming from the key schedule (self
cancellation of Δ) therefore this equation set will be the starting point for the
state recovery.

F4 = SubBytes(ARKR
4) + SubBytes(ARKR

4 + f2)

F5 = SubBytes(ARKR
5) + SubBytes(ARKR

5 + 3 · f2)
(7)

Equation (8) is constructed similarly to Eq. (7), this time the equations are influ-
enced by the fault f2 and a multiple of f2. The faults F6 and F7 can not be
observed due to the addition of the faulty round key RKR+1, the same holds
also for the faults F0 and F1.

F6 = SubBytes(ARKR
6) + SubBytes(ARKR

6 + 2 · f2)

F7 = SubBytes(ARKR
7) + SubBytes(ARKR

7 + f2)
(8)

As a result of not being able to observe the output faults Fi where i ∈ {0, 1, 6, 7},
we introduce helper variables FiM , which are observable at the output as shown
in Eq. (9). These helper variables are composed from the unobservable faults Fi

and the addition of the MixBytes transformed fault which passed through the
S-Box. Also, we introduce another helper variable p which represents the actual
value of RKR+1

6 before the application of the S-Box as shown in Fig. 2.

F0M = F0 + E · (SubBytes(p) + SubBytes(p + Δ))
F1M = F1 + 9 · (SubBytes(p) + SubBytes(p + Δ))
F6M = F6 + D · (SubBytes(p) + SubBytes(p + Δ))
F7M = F7 + B · (SubBytes(p) + SubBytes(p + Δ))

(9)

90 M. Gruber and B. Selmke

Additionally, the relationships between the injected fault and the transformed
faults are shown in Eq. (10), which describes the relationships between f1, f2,
Δ and two state bytes from the round R − 1. These equations aim to eliminate
wrong hypotheses for the injected fault Δ, the actual values of ARKR−1

0 and
ARKR−1

4 are not of interest.

f1 = SubBytes(ARKR−1
4) + SubBytes(ARKR−1

4 + Δ)

f2 = SubBytes(ARKR−1
0) + SubBytes(ARKR−1

0 + Δ)
(10)

Having formulated an equation for every byte of the state ARKR as shown in
Eqs. (5), (6), (7), (8) and (9), and the relationships between the different faults
as shown in Eq. (10), we will now provide a description of how to recover the
state ARKR−1 in several steps.

5.3 State Recovery

To recover the state ARKR the attacker has to solve several sets of equations.
At first, the attacker calculates the fault state F which is composed from the
values Fi, i ∈ {0M, 1M, 2, 3M, 4, 5, 6M, 7M}. To do so an addition of the cor-
rect ciphertext C and the faulty ciphertext C is transformed with the inverse
MixBytes operation as shown in Eq. (11). The position of the faults Fi through-
out the state of KLEIN is also shown in Fig. 3.

F = invMB(C) + invMB(C) (11)

Throughout the attack’s description we use a short hand notation for the
addition of a correct S-Box with a faulty one, filter(x, f) = SubByte(x) +
SubByte(x + f). The SubByte function refers to the substitution of a single-
byte using KLEIN’s S-Box. As we are unable to recover the whole state at once
we apply a divide and conquer strategy. At the beginning we assume every state
byte of ARKR, and the byte p (actual value) as a set of all possible hypotheses
i.e. ARKR

i = {0, . . . , 255} ∀ i ∈ {0, . . . , 7} and P = {0, . . . , 255}. While one
faulty encryption is processed there will also be sets containing hypotheses for
the faults f1, f2 and Δ, in contrast to the sets of state bytes these sets are only
valid while processing one faulty encryption, as the next encryption is probably
under the influence of another fault. The following steps are repeated for all
faulty encryptions, in order to decrease the number of hypotheses in the sets.
The attacker starts with the recovery of ARKR

4 , ARKR
5 , using Eq. (7). As one

can see the equation set depends on five different variables, the known value of
the faults F4, F5, the unknown values ARKR

4 , ARKR
5 and the unknown fault f2.

The system of equations is then used to reduce the solution space for ARKR
4 ,

ARKR
5 and f2 using an exhaustive search with all unknown variables as search

space. The first step of the attack is shown in Eq. (12), hypotheses that satisfy
both conditions are kept as valid hypotheses.

Differential Fault Attacks on KLEIN 91

Tposs = {ARKR
4 × ARKR

5 × {1, . . . , 255}}
Tvalid = {(x, y, f) ∈ Tposs | F4 ≡ filter(x, f) ∧ F5 ≡ filter(y, 3 · f)}

ARKR
4 = { x | (x, y, f) ∈ Tvalid }

ARKR
5 = { y | (x, y, f) ∈ Tvalid } (12)
f2 = { f | (x, y, f) ∈ Tvalid }

Now that the attacker has gained knowledge of the fault f2, he can process the
second equation of Eq. (10). He iterates through all possible values of ARKR−1

0 ∈
{0, . . . , 255} and stores the valid hypotheses for Δ. The description of the second
part of the attack is shown in Eq. (13).

Tposs = {f2 × ARKR−1
0 × {1, . . . , 255}}

Tvalid = {(f, x, δ) ∈ Tposs | f ≡ filter(x, δ)}
Δ = { δ | (f, x, δ) ∈ Tvalid }

(13)

As a result of having knowledge of Δ the attacker aims now to recover the state
bytes ARKR

2 , ARKR
3 to do so the attacker has to solve Eq. (6) in the same

manner as in the first step, as a result the attacker gains additional knowledge
of the faults f1. The third part of the attack is shown in Eq. (14).

Tposs = {ARKR
2 × ARKR

3 × Δ × {1, . . . , 255}}
Tvalid = {(x, y, δ, f) ∈ Tposs | F2 ≡ filter(x, 2 · f) ∧ F3 ≡ filter(y, f + δ)}

ARKR
2 = { x | (x, y, δ, f) ∈ Tvalid }

ARKR
3 = { y | (x, y, δ, f) ∈ Tvalid } (14)
f1 = { f | (x, y, δ, f) ∈ Tvalid }

Now that the attacker has also knowledge of the fault f1 he can process the
first equation of Eq. (10) using another exhaustive search to shrink the number
of possible hypotheses for Δ, under the assumption of ARKR−1

4 ∈ {0, . . . , 255}.
The algorithmic description of the fourth part of the attack is shown in Eq. (15).

Tposs = {f1 × ARKR−1
4 × Δ}

Tvalid = {(f, x, δ) ∈ Tposs | f ≡ filter(x, δ)}
Δ = { δ | (f, x, δ) ∈ Tvalid }

(15)

During the recovery of ARKR
0 ,ARKR

1 , ARKR
6 and ARKR

7 the attacker faces
the problem that the faults Fi, i ∈ {0, . . . , 7} \ {2, 4, 5} do not take into account
that the observable faults from the output are composed from several faults
coming from the key schedule and the state. Also, the faulted byte p (the
MixBytes transformed fault) from the key schedule, influences the right half.
Therefore, the attacker needs to apply the correction from Eq. (9) and combine
the equations with Eqs. (5) and (8). The algorithmic description for the recovery
of ARKR

0 ,ARKR
1 is shown in Eq. (16).

92 M. Gruber and B. Selmke

Tposs = {ARKR
0 × ARKR

1 × P × Δ × f1}
Tvalid = {(x, y, p, δ, f) ∈ Tposs | F0M + E · filter(p, δ) ≡ filter(x, f)

∧ F1M + 9 · filter(p, δ) ≡ filter(y, f)}
ARKR

2 = { x | (x, y, p, δ, f) ∈ Tvalid }
ARKR

3 = { y | (x, y, p, δ, f) ∈ Tvalid } (16)
P = { p | (x, y, p, δ, f) ∈ Tvalid }

The recovery of ARKR
6 and ARKR

7 as shown in Eq. (17) is similar to the bytes
ARKR

0 and ARKR
1 .

Tposs = {ARKR
6 × ARKR

7 × P × Δ × f2}
Tvalid = {(x, y, p, δ, f) ∈ Tposs | F6M + D · filter(p, δ) ≡ filter(x, 2 · f)

∧ F7M + B · filter(p, δ) ≡ filter(y, f)}
ARKR

6 = { x | (x, y, p, δ, f) ∈ Tvalid }
ARKR

7 = { y | (x, y, p, δ, f) ∈ Tvalid } (17)
P = { p | (x, y, p, δ, f) ∈ Tvalid }

An attacker has to repeat all the steps mentioned above for each faulted encryp-
tion, in order to reduce the number of hypothesis (state bytes) until it becomes
feasible to brute force the remaining complexity (key space), which will be dis-
cussed in the next section.

6 Simulation and Discussion

In this section we will discuss the performance of the attacks. To do, so we will
determine the number of required ciphertexts to reduce the remaining complex-
ity (keyspace) to a certain threshold. We opted to implement the simulation of
the faulty ciphers in Python, and the attacks as C extension for Python. The
attacks were performed on an Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz
based desktop computer. The amount of RAM required during the attack is
negligible, on average the attack takes five minutes on the computer we used
depending on the injected fault.

6.1 Simulation

To evaluate the performance of each attack we performed several simulations,
using the following approach. For every iteration of the simulation we generated
100 faulty ciphertexts using one random plaintext, 100 was found to be a reliable
upper bound for the maximum number of required faulty ciphertexts. Afterwards
we launched the attacks and stored the complexity of the key space in bits for
every processed faulty ciphertext during the attack. The remaining brute force
complexity was defined as power of two of the product of the cardinality of the

Differential Fault Attacks on KLEIN 93

state byte sets3. We then repeated the previous step 500 times to get significant
data. Additionally, we have addressed the issue of faults, which do not comply
with the required fault model. This results in an empty set of remaining key
candidates for both attacks. To overcome this issue an attacker can partition
the set of faulty ciphertexts and test the subsets separately until he will find
a set containing only ciphertexts according to the fault model. The result of
the attack’s simulation is shown in Fig. 4, where one can see the number of
faulty ciphertexts on the x-axis, and the remaining brute force complexity on the
y-axis. The three different plots in each subfigure are either the maximum, mean
or minimum complexity. As a result of the simulation it was found out that
the attack on the state requires five faulted encryptions on average to reduce
the complexity of the last round key from 264 to 232 on average, as shown in
Fig. 4a (we opted to attack only on one half of the state therefore the maximum
complexity starts at 232). For the attack on the key schedule it was found out
that four faulted encryptions are required on average to reduce the complexity
of the last round key from 264 to 232 on average as shown in Fig. 4b.

Fig. 4. Remaining brute force complexity (64 bit key length).

6.2 Discussion

As the structure of KLEIN is similar to the AES [11] we will compare the attack
on the state with the attacks of [9,10,12], and the attack on the key schedule
with the attacks of [1,3,8]. Our attack on the state of KLEIN performs worse
in terms of required faulty encryptions than the attack on the state of AES
by [9,10,12]. This can be attributed to the structure of KLEIN’s round function

3 i.e. for the attack on the key schedule, complexity = 2
∏7

i=0 |ARKR
i |.

94 M. Gruber and B. Selmke

where a fault injected into one half of the state does not spread to the other half,
in contrast to the AES. But still only four faulted encryptions (on the same half)
are required to deduce the last round key of KLEIN as shown in Fig. 4a. Our
attack on the key schedule performs worse in terms of required faulty encryptions
if compared to the attacks of [1,3,8]. This can be attributed to the key schedule
of KLEIN which is based on a Feistel network where a fault does not create a
sufficient avalanche effect which results in an immediate corruption of a whole
half of the key schedule. After only one faulty encryption the complexity of the
key space was decreased on average to 256.9. If we assume a complexity of 232

to be the upper bound for a brute force attack as in [1], this results in four
faulty encryptions with a complexity of 229.0 on average as shown in Fig. 4b.
Additionally, one noteworthy detail of Fig. 4b is the maximum complexity which
remains 1 bit, even if we evaluate the simulation up to 100 faulted encryptions,
but an increased number of key hypothesis by a factor of two can be neglected.
To justify our upper bound of complexity of 232 for both attacks we will focus
on the scenario where KLEIN-64 is used to generate a Message Authentication
Code (MAC) [6]. The attacker aims to forge a message within a limited amount
of time and resources. Therefore, we evaluated how long it takes to perform 232

encryptions, using a C implementation of KLEIN as a result it was found out
this takes 4.6 h on average, which seems to be a reasonable tradeoff between
complexity and required faulty encryptions.

7 Conclusion

In this paper we proposed a differential fault attack on the round function of
KLEIN, and the first key schedule based differential fault attack on KLEIN-64.
Furthermore, we validated the performance of our attacks by simulation, and
evaluated the remaining brute force complexity, with respect to the number of
faulted encryptions. As a result it was found out, an attacker is able to reduce
the key space from 64 bit to 32 bit, with only five fault injections into the
round function, and with four faults injected into a specific byte in the key
schedule. Both attacks can be conducted without knowing the actual plaintext.
It is sufficient to know that the same plaintext was processed.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments and suggestions on the paper, as these helped us to improve it. This
work was partly funded by the German Federal Ministry of Education and Research
in the project HQS through grant number 16KIS0616.

Differential Fault Attacks on KLEIN 95

References

1. Ali, S.S., Mukhopadhyay, D.: Differential fault analysis of AES-128 key schedule
using a single multi-byte fault. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079,
pp. 50–64. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-27257-
8 4

2. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2 31

3. Chen, C.-N., Yen, S.-M.: Differential fault analysis on AES key schedule and some
countermeasures. In: Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol.
2727, pp. 118–129. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
45067-X 11

4. Cunyang, F., Yuechuan, W., Xiaozhong, P.: A differential fault analysis method
for KLEIN cipher. Comput. Appl. Softw. 32, 6 (2015)

5. Dunkelman, O., Keller, N.: The effects of the omission of last round’s mixcolumns
on AES. Cryptology ePrint Archive, Report 2010/041 (2010). https://eprint.iacr.
org/2010/041

6. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers.
In: Juels, A., Paar, C. (eds.) RFIDSec 2011. LNCS, vol. 7055, pp. 1–18. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-25286-0 1

7. Guillen, O.M., Gruber, M., De Santis, F.: Low-cost setup for localized semi-invasive
optical fault injection attacks. In: Guilley, S. (ed.) COSADE 2017. LNCS, vol.
10348, pp. 207–222. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
64647-3 13

8. Kim, C.H.: Improved differential fault analysis on AES key schedule. IEEE Trans.
Inf. Forensics Secur. 7(1), 41–50 (2012)

9. Mukhopadhyay, D.: An improved fault based attack of the advanced encryption
standard. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 421–
434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02384-2 26

10. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and Khazad. In: Walter, C.D., Koç, Ç.K., Paar,
C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45238-6 7

11. NIST FIPS Pub. 197: Advanced encryption standard (AES). Federal Information
Processing Standards Publication 197(441):0311 (2001)

12. Tunstall, M., Mukhopadhyay, D., Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault. In: Ardagna, C.A., Zhou, J. (eds.) WISTP
2011. LNCS, vol. 6633, pp. 224–233. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-21040-2 15

13. Wang, Y.-J., Ren, Q.-Y., Zhang, S.-Y.: Differential fault attack on lightweight block
cipher KLEIN. Tongxin Xuebao/J. Commun. 37, 111–115 (2016). 10

14. Yoshikawa, H., Kaminaga, M., Shikoda, A., Suzuki, T.: Round addition DFA on
lightweight block ciphers with on-the-fly key scheduling. Int. J. Math. Comput.
Sci. 9(9), 1 (2006)

https://doi.org/10.1007/978-3-642-27257-8_4
https://doi.org/10.1007/978-3-642-27257-8_4
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/3-540-45067-X_11
https://doi.org/10.1007/3-540-45067-X_11
https://eprint.iacr.org/2010/041
https://eprint.iacr.org/2010/041
https://doi.org/10.1007/978-3-642-25286-0_1
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-319-64647-3_13
https://doi.org/10.1007/978-3-642-02384-2_26
https://doi.org/10.1007/978-3-540-45238-6_7
https://doi.org/10.1007/978-3-642-21040-2_15
https://doi.org/10.1007/978-3-642-21040-2_15

White-Box Attacks

Another Look on Bucketing Attack
to Defeat White-Box Implementations

Mohamed Zeyad3, Houssem Maghrebi1(B), Davide Alessio1,
and Boris Batteux2

1 UL Identity Management & Security, La Ciotat, France
{houssem.maghrebi,davide.alessio}@ul.com

2 Eshard, Marseille, France
boris.batteux@eshard.com

3 Trusted Labs, Meudon, France
mohamed.zeyad@trusted-labs.com

Abstract. White-box cryptography was first introduced by Chow et al.
in 2002 as a software technique for implementing cryptographic algo-
rithms in a secure way that protects secret keys in a compromised envi-
ronment. Ever since, Chow et al.’s design has been subject to mainly
two categories of attacks published by the cryptographic community.
The first category encompasses the so-called differential and algebraic
cryptanalysis. Basically, these attacks counteract the obfuscation pro-
cess by inverting the applied encoding functions after which the used
secret key can easily be recovered. The second category comprises the
software counterpart of the well-known physical attacks often applied to
thwart hardware cryptographic implementations on embedded devices.
In this paper, we turn a cryptanalysis technique, called statistical buck-
eting attack, into a computational analysis one allowing an efficient key
recovery from software execution traces. Moreover, we extend this crypt-
analysis technique, originally designed to break DES white-box imple-
mentations, to target AES white-box implementations. To illustrate the
effectiveness of our proposal, we apply our attack on several publicly
available white-box implementations with different level of protections.
Based on the obtained results, we argue that our attack is not only an
alternative but also a more efficient technique compared to the existing
computational attacks, especially when some side-channel countermea-
sures are involved as a protection.

Keywords: White-box cryptography · Cryptanalysis ·
Statistical bucketing · Computational analysis · AES · DES · Masking

M. Zeyad and B. Batteux—This work has been done when the authors were working
at UL Identity Management & Security.

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 99–117, 2019.
https://doi.org/10.1007/978-3-030-16350-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_7

100 M. Zeyad et al.

1 Introduction

White-Box Cryptography. It is a software-based solution for protecting cryp-
tographic keys when the hardware-based secure storage comes at high cost. The
main goal of white-box cryptography is to securely implement cryptographic
primitives in the presence of a very powerful adversary. The latter has full
access to the cryptographic implementation and can modify all resources in
the execution environment (e.g. intercept system calls, analyze the binary code,
collect all the runtime information: addresses, values of accessed memory, . . .).
In such a compromised environment, white-box cryptography has been widely
adapted in pure software solutions for applications requiring considerable secu-
rity such as Host-Card Emulation (HCE) for mobile payments and Digital Rights
Management (DRM) systems.

White-Box Implementations. In 2003, Chow et al. [12,13] introduced the
first white-box implementations of AES and DES block ciphers. The main idea
behind was to embed the secret key in the implementation using a network
of precomputed Look-Up Tables (LUTs) composed with some linear and non-
linear random encodings to protect the intermediate states between the LUTs.
The knowledge of one or all of these LUTs shall not give any information about
the embedded secret key. To implement this design, two types of encodings shall
be considered:

– Internal encodings: are non-linear bijections applied to the input and/or the
output of each LUT to hide its entries and/or its outputs. This category
ecompasses the so-called mixing bijections which are linear transformation
applied to the input and output of each LUT to add more confusion to the
implementation and ensure the cryptographic diffusion property.

– External encodings: are bijective mappings applied to decode the plaintext
from the sending process and to encode the resulting ciphertext to the receiv-
ing process.

Another similar approach was published by Bringer et al. [11]. The idea con-
sists in representing the block cipher as systems of multivariate polynomials
over GF (2n) for some integer value n and adding some perturbations of its alge-
braic structure. These additional functions are then composed with the random
encodings to hide the secret key.

Several white-box designs based on the underlying approaches fell to practical
attacks [7,15]. Although some remedial designs have been proposed for improving
the security [19,24,30], several of them were broken later on as well [14,22,23,26].

Attacks on White-Box Implementations. Without loss of generality, the
published attacks on white-box implementations can be divided into two cat-
egories. The first category encompasses the so-called differential [17,29] and
algebraic cryptanalysis [7,23,25]. Specifically, these attacks invert the obfusca-
tion process by recovering the applied encoding functions after which the key

Another Look on Bucketing Attack to Defeat White-Box Implementations 101

can easily be deduced. In 2003, Chow et al. [12] proposed the first statistical
cryptanalytic attack successfully applied on the seminal DES white-box imple-
mentation. This technique is called Statistical Bucketing Attack (SBA) and is
somehow similar to the Differential Power Analysis (DPA) [20]. Indeed, the
adversary has to guess keys and use difference of specific intermediate values
to confirm or deny these guesses. The attack’s time complexity is about 213 [12].
A detailed description of this attack is provided in Sect. 2.2. This being said, the
most common algebraic cryptanalysis approach is the so-called BGE attack [7]
which enables key extraction from an AES white-box implementation with a 230

time complexity. Later on, Lepoint et al. [23] have proposed an improvement of
the BGE attack with a time complexity of 222 and also a new collision-based
attack with the same work factor. The second category comprises the software
counterpart of the well-known physical attacks (i.e. DPA and fault injection
attacks) often applied for attacking hardware cryptographic implementations
on embedded devices. These attacks, known as the Differential Computational
Analysis (DCA) and the software Differential Fault Analysis (DFA), were first
introduced by Bos et al. in CHES 2016 [10]. Specifically, the idea of the DCA
consists in monitoring the memory addresses (as well as the stack, the CPU
instructions, . . .) accessed during the encryption process and to record them in
the so-called computation traces (aka software execution traces). Then, a sta-
tistical analysis is performed to extract the secret key. Regarding the DFA, it
uses software means in order to inject faults at some specific moments within
the execution of the encryption process [5,27]. Later on, the faulty outputted
ciphertexts are analyzed to recover the secret key. Almost all the published
DES and AES white-box implementations were broken so far using DCA and
DFA [10]. As a natural consequence, white-box designers turn towards apply-
ing the most common method protecting against side-channel attacks: masking.
A few masked white-box AES implementations were recently published [21] to
resist against DCA. However, these designs are still vulnerable to a new trend of
computational attacks: Higher-Order DCA (HO-DCA) [9] and Linear Decoding
Analysis (LDA) [18] (aka algebraic DCA [8]).

Contribution. In this paper, we first propose a new computational analysis
method to recover the secret key from the software execution traces. Our app-
roach is inherently based on the statistical bucketing attack introduced by Chow
et al. [12]. Indeed, we demonstrate how to turn this cryptanalysis technique into
an automated computational attack allowing an efficient key extraction by cap-
turing a few number of computation traces. The execution flow of our attack
is quite similar to the DCA. In DCA a chunk of the key is guessed and then
the correlation coefficient is computed between the collected traces and the key-
dependent sensitive variables to confirm or reject the key guess. Similarly, our
proposed attack involves collecting traces and guessing keys, however the key
hypotheses are confirmed or rejected based on a new distinguisher: sorting the
computation traces based on key-dependent sensitive variables into some clus-
ters (aka buckets) and then checking whether this partitioning yield disjoint sets.

102 M. Zeyad et al.

As another contribution, we propose a trick to extend this statistical bucketing
attack, originally developed to only target DES white-box implementations, to
apply it on AES white-box designs. Throughout several practical experiments,
we argue that our proposal is an efficient alternative to DCA and LDA attacks.
More interestingly, when customized masking is involved to protect white-box
implementations, and therefore the HO-DCA and the LDA come at higher-cost
in terms of attack complexity, our bucketing computational analysis succeeds to
break the white-box design in a reasonable time and by requiring a few number
of traces. To ease the reproduction of our results by the white-box community,
the source code of our tool is publicly available [3].

Paper Outline. The remainder of this paper is organized as follows. In Sect. 2,
we provide an overview of the statistical bucketing attack and we describe how
to adapt this cryptanalysis technique to target AES white-box implementations.
Then, we introduce our proposed bucketing computational attack in Sect. 3.
The experimental results obtained when applying our proposal together with
the existing attacks, for comparison purpose, on numerous publicly available
white-box implementations are provided in Sect. 4. Finally, Sect. 5 concludes the
paper and opens some perspectives.

2 Statistical Bucketing Attack

2.1 Notations and Definitions

In the rest of the paper, the bold block capitals X denote matrices. The ith

column vector of a matrix X is denoted by X[i] while its jth row vector is
denoted by Xj . The intersection of two sets of values A and B is denoted by
A ∩ B and is defined as A ∩ B = {x | x ∈ A and x ∈ B}. Two sets are disjoint
if they have no elements in common, that is, A and B are disjoint if A∩B = ∅.
Finally, the ith sub-key defines the portion of the key-round that affects the ith

Sbox.

2.2 Overview of the Statistical Bucketing Attack on DES

The Statistical Bucketing Attack (SBA) is a cryptanalysis technique introduced
by Chow et al. [12] on the naked version of their implementation of white-box
DES (i.e. without external encodings). It is a chosen-plaintext attack requiring
access to some intermediate states (i.e. the input of the second round). The
attack recovers the first round key of a DES encryption (or the last round when
the decryption is processed1). That is, 48 bits of the 56-bit DES key could
be revealed and the remaining 8 bits can be determined by exhaustive search.

1 For ease of explanation, we will only consider attacking the first round of the encryp-
tion case in this work.

Another Look on Bucketing Attack to Defeat White-Box Implementations 103

The following steps describe how to apply the SBA to recover the ith sub-key of
the first DES round as suggested by Chow et al. [12] and detailed in [28]:

1. Select the ith Sbox of the first round S1
i . Since there are no external encodings,

it is straightforward to figure out which Tbox implements the targeted Sbox
S1
i . To do so, one can select plaintext differences that only affect S1

i and
observe which Tbox is affected.

2. Guess the 6 bits of the first round key that affect S1
i and compute 64 plain-

texts each corresponding to a different 6-bit input of S1
i . Please note that

this process will set 6 bits of each plaintext and the remaining ones has to
be computed such that: (1) the left side of the DES state after the initial
permutation must be zero (or any fixed constant) in order to nullify the effect
of the xor operation in the round function and (2) the remaining 26 bits of
the right side of the DES state after the initial permutation should be chosen
randomly for each plaintext.

3. Select one bit b of the output of S1
i (aka the bucketing bit) and group the

plaintexts into two sets I0 and I1 according to the resulting value b, i.e. P ∈ I0
if b = 0, while P ∈ I1 if b = 1.

4. Select the zth Tbox T 2
z from the second round that encodes the jth Sbox S2

j

which has the bucketing bit b as an input (potentially, the bit b can go to
2 different Sboxes in the second round), and group its inputs into two sets
V0 (resp. V1) corresponding to the encryption of plaintexts in I0 (resp. I1).
Figure 1 illustrates this step of the attack.

5. Check if V0 and V1 are disjoint sets (V0 ∩ V1 = ∅). If the key guess is correct,
then V0 and V1 must be disjoint sets, because they correspond to the inputs
of T 2

z that are different in at least the bit b.

For a wrong key guess, it might happen that V0 and V1 are disjoint sets.
However, the probability of this happening is lower than 2−6, when considering 26

possible key guesses as stated in [12] which prove the effectiveness of this attack
in distinguishing the unique good key value. For the sake of further evidence, we
estimated experimentally the probability that for a wrong key guess the sets V0

and V1 are disjoints2. The obtained results (illustrated in Fig. 3 in Appendix A)
demonstrated that this probability is negligible when I0 (resp. I1) contains at
least 27 plaintexts (i.e. 54 chosen plaintexts in total)3. Since 64 chosen plaintexts
are used (i.e. for each key guess I0 and I1 contain respectively 32 plaintexts),
the good key guess outputted by the distinguisher is unique.

To recover the whole 48 bits of the key, the previous steps should be repeated
by targeting the 8 DES Sboxes. Later on, Link and Neumann [24] have proposed
a new adaptation of the SBA on DES by considering the whole 4-bit box output
instead of a single bit which slightly improve the attack complexity in terms
of needed number of traces and execution time to break the implementation.
In this work, we mainly focus on the original version of SBA attack as we are
2 The Python script we developed is available on Github [3].
3 We stress the fact that are our results are inline with those obtained by Chow et al.

in their seminal work [12, Section 5.4].

104 M. Zeyad et al.

Fig. 1. Statistical bucketing attack on DES white-box implementation [28].

more interested in how to turn this algebraic attack on a computational one.
The adaptation of Link and Neumann work [24] is left as a future work.

2.3 Extending the Statistical Bucketing Attack to AES

In this section, we first explain why Chow et al.’s proposal cannot be applied
straightforwardly on AES algorithm. Then, we propose a trick to adapt the SBA
when targeting a naked AES white-box implementation.

Infeasibility of the SBA on AES. We assume that we target the first key
byte of an AES implementation. So, the input of the first AES Sbox is the
xor between the first byte of the plaintext P and the targeted key byte. Then,
one can build the set I = {P0, P1, ..., P255} corresponding to the different 8-bit
inputs of the first AES Sbox of the first round. Following the SBA procedure, the
plaintexts are grouped into two sets I0 and I1 depending on the bucketing bit b
(one bit of the first Sbox output). For the sake of simplicity, we shall represent
each AES plaintext by its first byte. Then, one can rewrite I0 and I1 as:

I0 = {X0,X1, ...,X127} and I1 = {Y0, Y1, ..., Y127},
with Xi and Yj are respectively the plaintexts yielding to b = 0 and b = 1 and
satisfying Xi �= Yj for 0 ≤ i, j ≤ 127. Consequently, for each key guess k, the
two sets V0 and V1 containing the encoded inputs of the zth Tbox T 2

z rewrite:

V0 = {E(L(S(X0 ⊕ k))), E(L(S(X1 ⊕ k))), ..., E(L(S(X127 ⊕ k)))} and
V1 = {E(L(S(Y0 ⊕ k))), E(L(S(Y1 ⊕ k))), ..., E(L(S(Y127 ⊕ k)))} ,

Another Look on Bucketing Attack to Defeat White-Box Implementations 105

where S is the AES Sbox and E and L denote respectively the encoding function
and the AES linear transformations (i.e. MixColumns and ShiftRows). Now,
since S, E and L are bijective, then we have:

Xi �= Yj ⇐⇒ S(Xi ⊕ k) �= S(Yj ⊕ k), for 0 ≤ i, j ≤ 127 ⇒ V0 ∩ V1 = ∅ .

So, due to the bijectivity of S, E and L, the sets V0 and V1 are disjoints for
all key guesses which demonstrates that the original SBA is not applicable for
AES white-box implementations.

Extended SBA for AES. Based on the results from the previous section, we
propose to transform the AES Sbox into a non-injective function. The required
non-injective transformation S′ of the AES Sbox can be any function from
GF (28) to F such that (1) F ⊂ GF (28) and (2) the size of F should be the size
of the applied encodings to protect the implementation. By doing so, we force
the sets V0 and V1 to have some common values which will enable applying the
SBA on AES implementations.

Amongst several possibilities, we choose a high non-injective S′ that keeps
the least significant 4-bit nibble of an AES Sbox output. The considered S′

function in our work is defined as follows:

S′ : GF (28) → GF (24)
x �→ AES-Sbox(x)&0xF .

Our choice of this transformation is motivated by (1) simplicity and (2)
the fact that the targeted implementations in our work (see Sect. 4.2) are nibble
encoded (which is the most common encoding size used for AES white-box imple-
mentations w.r.t. to the generated binary code size.). When the targeted imple-
mentation is not nibble encoded, then the attacker can perform some reverse
engineering on the source code to identify the size of the involved encoding and
adapt his choice of the transformation S′. For instance, if the implementation is
encoded at the bit level then one has to consider S′(x) = AES-Sbox(x)&1. We
keep the study of the most optimal and suitable non-injective transformations
as a future avenue of research.

The following steps describe how to recover the ith key byte of the first round
of an AES white-box implementation with our extended SBA:

1. Select the ith AES Sbox of the first round S1
i .

2. Compute 256 plaintexts P such that the ith byte of each P corresponds to a
different byte-input of S1

i while the remaining 15 bytes are generated at zero
(or a fixed value) for each plaintext.

3. Select two arbitrary distinct values d0 and d1 in F (i.e. GF (24) in our case)4.
4. Guess the sub-key K that affects the targeted Sbox S1

i .
4 We keep the study of the most optimal choice of the pair (d0, d1) as a future work.

For the sake of simplicity, we considered in this work two fixed values (d0 = 0 and
d1 = 15) when targeting the 16 Sboxes of an AES white-box implementation.

106 M. Zeyad et al.

5. Group the plaintexts into two sets I0 and I1 according to the output value
d = S

′1
i (P ⊕ K) (d is called the bucketing nibble in our setting), i.e. P ∈ I0

if d = d0, while P ∈ I1 if d = d1.
6. Select the zth Tbox T 2

z from the second round that encodes the jth trans-
formed Sbox S

′2
j which has the S1

i output bits yielding the value d as input,
and group its inputs into two sets V0 (resp. V1) corresponding to the encryp-
tion of plaintexts in I0 (resp. I1). Please note that since we are targeting only
two particular values of S

′1
i (i.e. d0 and d1), then for each key guess only 32

plaintexts are used over the 256 selected ones.
7. Check if V0 and V1 are disjoints (V0 ∩V1 = ∅). If the key guess is correct, then

V0 and V1 must be disjoint sets, because they correspond to the inputs of T 2
z

that are different in at least the bits yielding the value d.

To prove the effectiveness of our extension of the SBA for AES, we estimated
experimentally the probability that, for a wrong key guess, the sets V0 and
V1 are disjoints5. The obtained results (illustrated in Fig. 4 in Appendix B)
demonstrated that this probability is negligible when I0 (resp. I1) contains at
least 14 plaintexts. Since 256 chosen plaintexts are used (i.e. for each key guess
I0 and I1 contain respectively 16 plaintexts), the good key guess outputted by
our proposed distinguisher is unique.

We didn’t run this extended SBA cryptanalysis attack in real world scenario
since we are more interested on how to turn this technique into a computational
one which is described in the following. As a future work, it would be interesting
to compare the efficiency of this extended version of SBA to existing algebraic
attacks, e.g. the BGE attack [7].

3 Bucketing Computational Analysis

In this section, we present our Bucketing Computational Analysis (BCA) for
both AES and DES white-box implementations. It is basically inspired from
the cryptanalysis techniques described in Sect. 2. As mentioned earlier, the SBA
proposed by Chow et al. [12] requires a full access to the intermediate state
variables. For instance, when considering the SBA on DES, an attacker needs to
collect the inputs of a specific Tbox of the second round that has the selected bit
b as an input to sort the plaintexts into the buckets V0 and V1. However, most of
the modern white-box implementations are coupled with several strong software
protections (e.g. control flow obfuscation, anti-debug protection, etc.) making
this attack inefficient or difficult in practice. To counter this issue, our approach
consists in exploiting the ability of an adversary to recover the intermediate state
of the white-box implementation by analyzing the computation traces.

In fact, these collected traces contain, amongst other information, the
required inputs of the target Tbox. Indeed, unlike the hardware setting, the
software traces contain the perfect leakage (i.e. noise-free leakage). Thus, an
attacker can sort the traces (instead of the inputs of the Tbox as described in
5 The Python script we developed is available on Github [3].

Another Look on Bucketing Attack to Defeat White-Box Implementations 107

the seminal SBA) into two buckets V0 and V1 depending on the bucketing bit
b (for DES) or the bucketing nibble d (for AES). At this stage, both sets V0

and V1 consists of m computation traces of n samples each and can be repre-
sented as two (m,n)-matrices denoted V0 and V1 respectively. If the traces in
V0 and V1 are perfectly synchronized (i.e. no random delays is inserted during
the acquisition phase), then the adversary can apply recursively the bucketing
distinguisher on each column of V0 and V1 (i.e. checking V0[j]∩V1[j] for each j
in [0, n]). Since the attack will be executed passively on the whole trace samples
(due to the fact that the adversary does not have a precise information where the
targeted values are processed), some false positive may be obtained6. Although
from empirical perspectives, the likelihood of observing that some random buck-
eting will be counted as disjointed for a key guess is quite low, we adapt the
bucketing distinguisher to count the whole number of disjoint columns. Then,
the good guess of the key is the argument that maximizes the number of disjoint
columns. Another practical improvement would consist in considering a small
window of the computation trace to minimize this side effect.

We provide in Algorithm 1 the pseudo-code describing the different steps of
our proposed attack when applied on AES and DES white-box implementations.
Moreover, further details and some practical tricks are presented in the following
sections to efficiently apply our attack in real world scenario.

The process of this proposed bucketing computational analysis is somehow
similar to DPA. In DPA, a chunk of key is guessed and then we use the difference
of power and/or electromagnetic profiles to confirm or deny the key guess. The
proposed BCA is a chosen-plaintext attack involving as well guessing keys, but
the key assumptions are confirmed or denied by checking whether the columns
of the sorted observations into two sets are disjoints or not. Thus, from a concep-
tual perspective the BCA can be seen as the natural chosen-plaintext software
counterpart of DPA (and CPA/DCA more generally). From our point of view,
the BCA is more appropriate than the DCA in the context of white-box evalu-
ation since the computation traces are noise-free and the attacker has access to
the manipulated values.

The BCA approach can also be considered similar to the Zero Difference
Enumeration (ZDE) attack [6]. The ZDE records the computation traces for
many well-chosen pairs of plaintexts and performs then a statistical analysis
on the effective difference of the traces to extract the secret key. Indeed, the
pair of plaintexts are selected such that for the correct key guess many internal
state variables in the first rounds of the encryption are the same. Hence, the
correct key will corresponds to the key guess for which the number of similar
intermediate values in the analyzed traces is maximized. As previously explained,
the BCA process is quite similar: the plaintexts are chosen and sorted into two
sets such that, for each key guess, the resulting targeted encoded values do not
collide. Then, the correct key will corresponds to the key guess for which the

6 For instance, we can consider a time sample in the traces containing the AES input
data that takes every value from 0 to 256 which would count as disjointed for every
guess whatever the bucketing is.

108 M. Zeyad et al.

Algorithm 1. BCA on DES (blue) and AES (red) white-box implementations.
Inputs: a targeted DES/AES Sbox S of the first round and its corresponding S′

Output: good guess of the sub-key
∗ ∗ ∗ Pre-computation phase ∗ ∗ ∗

1: Compute a set I of 64/256 plaintexts each corresponding to a different input of S
2: Pick b an output bit of S/Pick two values d0 and d1 such that: 0 ≤ d0 < d1 ≤ 15
3: for each key guess k ∈ [0, 63/255] do
4: Group the plaintexts into two sets I0 and I1 according to the resulting value of

b/the output nibble d of S′

5: end for
∗ ∗ ∗ Acquisition phase ∗ ∗ ∗

6: Acquire a set of 64/256 traces T = (ti,j)0≤i≤63/255
0≤j≤n

each corresponding to an encryp-

tion using a plaintext in I and containing n samples
∗ ∗ ∗ Key-recovery phase ∗ ∗ ∗

7: Initialize a result vector R with 64/256 zeros
8: for each key guess K ∈ [0, 63/255] do
9: Group the traces into V0 and V1 w.r.t. to the sorted plaintexts in I0 and I1

10: for each sample j in the trace do
11: if V0[j] ∩ V1[j] = ∅ then
12: R[K] = R[K] + 1
13: end if
14: end for
15: end for
16: The good sub-key guess corresponds to K ∈ [0, 63/255] that maximizes R[K]

number of non-colluded intermediate values in the corresponding analyzed traces
is maximized. However, our BCA attack require much less traces than the ZDE
when targeting for instance an AES white-box implementation (256 traces vs
500 × 218 traces [6] to recover a byte of the AES key).

Furthermore, the BCA attack (and the SBA in general) can be seen as a
variant of the so-called collision-attack. Indeed, the principle of BCA is that if
two sensitive intermediate variables for two different plaintexts do not collude,
then their encodings (using a deterministic bijection) should not collude as well.

3.1 Pre-computation Phase

As described in Algorithm 1, the BCA starts with a pre-calculation phase during
which the adversary creates a set of chosen plaintexts I. Then, depending on the
bucketing strategy and for each key guess she generates two template sets I0 and
I1. This phase is independent from the targeted white-box implementation and
hence the outputted template sets can be hard-coded in the attack source-code
(Fig. 2).

Another Look on Bucketing Attack to Defeat White-Box Implementations 109

Fig. 2. Sorting the acquired AES traces.

3.2 Acquisition Phase

During this phase, the adversary shall record the most suitable information
accessed during the execution of the cryptographic algorithm depending on the
specificities of the targeted white-box implementation. Hence, the collected infor-
mation could be one or a concatenation of the following: the memory read, the
memory write, the accessed addresses, the CPU instructions, the stack, etc.
Indeed, one can use any dynamic binary instrumentation tool (such as PIN,
Valgrind, etc.) to collect these traces [10].

Tracing an AES Implementation. For AES algorithm, an adversary will
need exactly 256 traces for each byte of the key. Since there are 16 bytes, the
total number of traces needed to recover the entire key of an AES-128 is 4096
traces. Please note that the number of the required traces to recover the whole
AES key can be reduced to 1024 as the AES state bytes are grouped by 4
during the MixColumns operation. Hence, the BCA attack can be performed
on 4 key bytes in parallel, e.g. by computing 256 plaintexts yielding all possible
input values of a group of 4 Sboxes that are not mixed during the MixColumns
operation while the other Sboxes inputs are constant. Then, we repeat the same
process for the three remaining groups of Sboxes.

Moreover, each recovered value during the acquisition phase (e.g. an accessed
address) must be decomposed into several nibbles (4-bit values) and then stored
in the computation trace. This is required since the considered transformation
of AES Sbox (i.e. S′) in this work has a 4-bit output and the targeted imple-
mentations in this work are nibble encoded. As discussed in Sect. 2.3, depending
on the size of the involved encoding, one may consider a different transformation
of the AES Sbox and adapt the way of representing the acquired values in the
computation trace accordingly.

110 M. Zeyad et al.

Tracing a DES Implementation. Regarding the DES, we need 64 traces for
each sub-key of 6-bit. Hence, the total number of traces needed to recover the 48
bits of the DES key is 512 traces. As discussed previously, the remaining 8 bits
can be determined by exhaustive search. Unlike AES, no particular formatting of
the traces is needed for the DES. So, compared to other computational attacks
(e.g. LDA and DCA), the number of traces needed to perform the BCA is fixed
independently of the security level of the targeted white-box implementation.

Some Hints on How to Filter the Acquired Traces. When the adversary
is not able to accurately localize a small window of interest then she might
apply the BCA to the full computational trace. In such case, as highlighted in
Algorithm 1 (Lines 10 to 14), for each key guess, the attacker goes through the
columns of V0 and V1 one by one and count the number of disjoint columns.
Hence, if the size of the computation traces is too heavy (e.g. the size of targeted
traces in [18] is 280 Kbytes), then the BCA complexity might be too huge.
To counter this practical issue, the adversary should filter the traces just after
the acquisition phase (Line 6) in Algorithm 1. For instance, she has to remove
the columns of T containing constant values (i.e. useless for the computational
analysis).

3.3 Complexity Improvements

To further improve of the attack complexity when dealing with heavy traces,
we propose in Algorithm 2 an optimized key-recovery phase. Therefore, when it
applies, an adversary has to replace lines 10 to 14 in Algorithm 1 by the suggested
pseudo-code in Algorithm 2. Other hints on how to optimize the computation
of matrices intersections are presented in [16] and may be considered to further
improve the attack complexity when needed.

Algorithm 2. An optimized key-recovery phase.
Inputs: two (m,n)-matrices V0 and V1

Output: the score R[K] for a key guess K
1: V′

0 = V0

2: V′
1 = V1

3: for each j in [0,m − 1] do
4: H = V′

0
j ∩ V′

1
j

5: if H �= ∅ then
6: Remove the columns of V′

0 and V′
1 whose indices correspond to the ones of

the intersected values
7: end if
8: end for
9: R[K] equals to the number of columns in V′

0

Another Look on Bucketing Attack to Defeat White-Box Implementations 111

4 Practical Experiments

4.1 Experimental Setup

We have developed a tool to perform the BCA on AES and DES implementations
following the pseudo-codes provided in Algorithms 1 and 2. To ease the repro-
duction of our results by the white-box community, the source code of our tool
is available [3]. The acquisition of the software execution traces was performed
using an internal tool that monitors the memory access during the execution of
the target implementations. To evaluate the efficiency of our attack, we targeted
several publicly available white-box implementations:

– ph4r05 white-box : is an AES white-box implementation based on the design of
Chow et al. [12] and the approach of dual ciphers introduced by Karroumi [19].
The source-code is available on GitHub [1].

– The Wyseur 2007 Challenge: is the first public DES white-box implementa-
tion [4]. It is based on Chow et al.’s design.

– The CHES 2016 Challenge: is a white-box implementation of AES compiled
as an ELF for Linux/x86 64 [2].

– Lee et al.’s implementation: is a masked AES white-box implementation [21].
Depending on the security requirement level, three variants of the implemen-
tation were presented. In this work, we focus on the first variant (denoted
CASE 1 in [21]) which is publicly available on GitHub [2].

For the sake of comparison, we applied the DCA on the same targeted white-
box implementations. We decided to not perform the ZDE attack since several
traces are required, e.g. 500 × 217 traces are needed to recover 2 key bytes of
the CHES 2016 challenge [6]. Both attacks were running on a Linux machine
with an Intel Core i7 processor at 3.60 GHz and 16 GB of RAM. The targeted
operation was the output of the Sbox during the first round of the encryption.
The obtained results are summarized in Table 1. The execution times to recover
one key byte are reported in Table 1 and do not include the time required for
the acquisition phase.

4.2 Attack Results

From Table 1, one can conclude that when attacking straightforward white-box
implementations (i.e. Wyseur and ph4r05) both BCA and DCA perform well
and the complexity is quite low (i.e. few minutes to recover the whole key). In
such context, i.e. when no particular side-channel countermeasure is applied, the
DCA is privileged since it requires less traces.

When targeting more sophisticated white-box implementations the BCA out-
performs the DCA. In fact, one has to run two times the DCA attack (by con-
sidering two different sensitive operations) in order to extract the full AES key
from CHES 2016 challenge [2] while the BCA succeeds to recover it in one run.

112 M. Zeyad et al.

The DCA is even unsuccessful on Lee et al.’s masked white-box implementa-
tion7. In this context, our BCA attack is of a great interest since it succeeds to
break Lee et al.’s implementation in a reasonable time complexity. This result
can be explained by the fact that the second round input of Lee et al.’s imple-
mentation (CASE 1) is not masked8. The masking is removed just after the
Mixcolumns of the first round. So, to succeed the DCA attack on this imple-
mentation, the adversary would have to guess 232 sub-key candidates since each
input byte of the second round (i.e. output byte of the Mixcolumns of the first
round) is the result of a weighted XOR operation between 4 Sbox outputs from
the first round9. In this case, our BCA attack performs well since the plaintexts
are chosen such that one byte is varying and the remaining bytes are generated
at zero (or a fixed value). This yields that the targeted input byte of the second
round (i.e. the targeted output byte of the Mixcolumns of the first round) is
the result of a weighted XOR operation between the targeted Sbox output of
the first round and a constant value (i.e. the weighted XOR result of the three
non-targeted Sbox outputs). To fix the vulnerability of CASE 1 implementation,
Lee et al. have proposed in [21] a new version, denoted CASE 3. Basically, the
idea is to use byte encodings on the first round output instead of nibble encod-
ings. Unfortunately, we were not able to evaluate their proposal against our BCA
attack since the implementation is not publicly available.

Table 1. Attack results when targeting different white-box implementations.

DCA BCA

Exec.
time (s)

of
traces

Success
rate

Exec.
time (s)

of
traces

Success
rate

Wyseur 30 50 100% 20 512 100%

ph4r05 600 200 100% 280 1024 100%

CHES’16 1080 2000 100% 60 1024 100%

Lee WB 2940 2000 0% 5760 1024 100%

4.3 Discussion and Countermeasures

Regarding the LDA, this attack is efficient when applied against obscure white-
box implementations [18]. However, depending on the targeted implementation
several steps (e.g. the so-called single static assignment and data dependency
analysis) should be carefully followed in order to successfully apply it. Performing
these steps is relatively easy when the source code is available. However when
only the compiled binary is available, these steps are more complex and require a
7 Please note that our obtained results are in-line with those published in [2].
8 Only the first and the last rounds are protected against DCA [21].
9 This attack is computationally expensive but theoretically feasible. Another app-

roach would consist in performing a DCA in a chosen-plaintext context, i.e. varying
the plaintext byte corresponding to the targeted Sbox and fix the remaining ones.

Another Look on Bucketing Attack to Defeat White-Box Implementations 113

lot of preprocessing. Moreover, when the used encoding functions are of higher-
degree, a Higher-Degree Decoding Analysis (HDDA) can be applied but the
attack complexity exponentially grows with the considered encoding degree [18].

We performed the LDA on Lee et al.’s masked white-box implementation
when ignoring the pre-analysis steps since only the statically linked binary is
available [2] (i.e. we only performed the algebraic analysis). The LDA succeeds
to extract the last key round when using 200 traces and considering the second
degree (a narrow window was selected to run the attack). However, the attack on
the first round was unsuccessful even when considering the forth degree and up to
2000 traces. For the sake of comparison, we performed as well a second-order
DCA on Lee et al.’s proposal using 2000 traces. This attack was unsuccessful
on the first round and when targeting the last round, we only recovered 2 bytes
of the key. This result could be explained by the fact that the used masks are
encoded as explained in [21]. So, compared to the result obtained with the BCA,
one can conclude that in the presence of a customized masked implementation,
our BCA attack can be a good alternative to consider.

It is obvious that, a properly masked implementation should prevent our BCA
attack. However, as demonstrated in the previous section, a customized masking
implementation (e.g. Lee et al.’s proposal) can prevent DCA but may be broken
with our BCA attack. To counteract our proposal, another countermeasure would
consist in inserting some random delays to misalign the computation traces. This
can be done for instance by inserting some dummy operations as suggested in [6].
However, this countermeasure can be defeated during the reverse engineering
phase of the targeted implementation binary. Another countermeasure would
consist in adding some fake computations with fake keys to increase the score of
the corresponding disjoint sets (i.e. generating some false positives).

5 Conclusion

In this paper, we presented a new computational analysis method to break white-
box implementations. Unlike the DCA, which uses statistic correlations, our app-
roach relies on a cryptanalysis technique based on the statistical bucketing analy-
sis. We have adapted this cryptanalysis technique to AES cipher and we proposed
a new key distinguisher for an automated computational analysis which is appli-
cable to both AES and DES white-box implementations. Throughout several
practical experiments, we demonstrated that our proposal is an efficient alter-
native to DCA and LDA attacks. More interestingly, when some side-channel
countermeasures (e.g. customized masking) are involved to protect white-box
implementations, and hence the HO-DCA and the LDA come at higher-cost
in terms of attack complexity, our bucketing computational analysis succeeds
to break the white-box design in a reasonable time and by requiring very few
number of traces.

A future work would consist in extending our bucketing attack to higher-
order context and applying it to more complex white-box implementations (i.e.
that combine higher-order masking, dummy operations, shuffling techniques and

114 M. Zeyad et al.

rely on higher-order encoding functions). Another avenue of research would be to
study the most optimal and suitable non-injective transformations that should
be used when targeting an AES white-box implementation.

A Experimental Estimation of the Probability that for an
Incorrect Key Guess the Sets V0 and V1 are Disjoints -
DES CASE

(a) Complete view

(b) Zoomed view

Fig. 3. Evolution of the probability that for an incorrect key guess the sets V0 and
V1 are disjoints according to an increasing number of plaintexts in I0 and I1 when
considering the 8 DES Sboxes.

Another Look on Bucketing Attack to Defeat White-Box Implementations 115

B Experimental Estimation of the Probability that for an
Incorrect Key Guess the Sets V0 and V1 are Disjoints -
AES CASE

(a) Complete view

(b) Zoomed view

Fig. 4. Evolution of the probability that for an incorrect key guess the sets V0 and V1

are disjoints according to an increasing number of plaintexts in I0 and I1.

References

1. Ph4r05 White-Box. https://github.com/ph4r05/Whitebox-crypto-AES
2. SideChannelMarvels Deadpool. https://github.com/SideChannelMarvels/Dead-

pool
3. Source code of the Bucketing Computational Analysis for AES and DES. https://

github.com/Bucketing/BCA-attack

https://github.com/ph4r05/Whitebox-crypto-AES
https://github.com/SideChannelMarvels/Deadpool
https://github.com/SideChannelMarvels/Deadpool
https://github.com/Bucketing/BCA-attack
https://github.com/Bucketing/BCA-attack

116 M. Zeyad et al.

4. Wyseur Challenge (2007). http://www.whiteboxcrypto.com/challenges.php
5. Allibert, J., Feix, B., Gagnerot, G., Kane, I., Thiebeauld, H., Razafindralambo, T.:

Chicken or the egg - computational data attacks or physical attacks. Cryptology
ePrint Archive, Report 2015/1086 (2015). https://eprint.iacr.org/2015/1086

6. Banik, S., Bogdanov, A., Isobe, T., Jepsen, M.B.: Analysis of software countermea-
sures for whitebox encryption. IACR Cryptology ePrint Archive 2017:183 (2017)

7. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

8. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
Cryptology ePrint Archive, Report 2018/049 (2018). https://eprint.iacr.org/2018/
049

9. Bogdanov, A., Rivain, M., Vejre, P.S., Wang, J.: Higher-order DCA against stan-
dard side-channel countermeasures. Cryptology ePrint Archive, Report 2018/869
(2018). https://eprint.iacr.org/2018/869

10. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) Cryptographic Hardware and Embedded Systems - CHES 2016, vol. 1717,
pp. 215–236. Springer, Heidelberg (2016)

11. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
Cryptology ePrint Archive, Report 2006/468 (2006). https://eprint.iacr.org/2006/
468

12. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

13. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

14. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

15. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

16. Ding, B., König, A.C.: Fast set intersection in memory. Proc. VLDB Endow. 4(4),
255–266 (2011)

17. Goubin, L., Masereel, J.-M., Quisquater, M.: Cryptanalysis of white box DES
implementations. In: Adams, C., Miri, A., Wiener, M. (eds.) SAC 2007. LNCS,
vol. 4876, pp. 278–295. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-77360-3 18

18. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive, Report 2018/098
(2018). https://eprint.iacr.org/2018/098

19. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-
H., Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

http://www.whiteboxcrypto.com/challenges.php
https://eprint.iacr.org/2015/1086
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://eprint.iacr.org/2018/049
https://eprint.iacr.org/2018/049
https://eprint.iacr.org/2018/869
https://eprint.iacr.org/2006/468
https://eprint.iacr.org/2006/468
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-540-77360-3_18
https://doi.org/10.1007/978-3-540-77360-3_18
https://eprint.iacr.org/2018/098
https://doi.org/10.1007/978-3-642-24209-0_19

Another Look on Bucketing Attack to Defeat White-Box Implementations 117

20. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

21. Lee, S., Kim, T., Kang, Y.: A masked white-box cryptographic implementation for
protecting against differential computation analysis. IEEE Trans. Inf. Forensics
Secur. 13(10), 2602–2615 (2018)

22. Lepoint, T., Rivain, M.: Another nail in the coffin of white-box AES implemen-
tations. Cryptology ePrint Archive, Report 2013/455 (2013). https://eprint.iacr.
org/2013/455

23. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

24. Link, H.E., Neumann, W.D.: Clarifying obfuscation: improving the security of
white-box DES. In: International Conference on Information Technology: Coding
and Computing (ITCC 2005), vol. II, vol. 1, pp. 679–684, April 2005

25. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

26. Mulder, Y.D., Roelse, P., Preneel, B.: Revisiting the BGE attack on a white-box
AES implementation. Cryptology ePrint Archive, Report 2013/450 (2013). https://
eprint.iacr.org/2013/450

27. Sanfelix, E., Mune, C., de Haas, J.: Unboxing the white-box practical attacks
against obfuscated ciphers. Black Hat (2015)

28. Wyseur, B.: Software security: white-box cryptography. Ph.D. thesis, K.U.L.,
March 2009. https://www.esat.kuleuven.be/cosic/publications/thesis-152.pdf

29. Wyseur, B., Michiels, W., Gorissen, P., Preneel, B.: Cryptanalysis of white-box
DES implementations with arbitrary external encodings. In: Adams, C., Miri, A.,
Wiener, M. (eds.) SAC 2007. LNCS, vol. 4876, pp. 264–277. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-77360-3 17

30. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: 2009 2nd Inter-
national Conference on Computer Science and its Applications, pp. 1–6, December
2009

https://doi.org/10.1007/3-540-48405-1_25
https://eprint.iacr.org/2013/455
https://eprint.iacr.org/2013/455
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://eprint.iacr.org/2013/450
https://eprint.iacr.org/2013/450
https://www.esat.kuleuven.be/cosic/publications/thesis-152.pdf
https://doi.org/10.1007/978-3-540-77360-3_17

Higher-Order DCA against Standard
Side-Channel Countermeasures

Andrey Bogdanov1, Matthieu Rivain2, Philip S. Vejre1,
and Junwei Wang2,3,4(B)

1 Technical University of Denmark, Kongens Lyngby, Denmark
{anbog,psve}@dtu.dk

2 CryptoExperts, Paris, France
{matthieu.rivain,junwei.wang}@cryptoexperts.com

3 University of Luxembourg, Esch-sur-Alzette, Luxembourg
4 University Paris 8, Saint-Denis, France

Abstract. At CHES 2016, Bos et al. introduced differential computa-
tional analysis (DCA) as an attack on white-box software implemen-
tations of block ciphers. This attack builds on the same principles as
DPA in the classical side-channel context, but uses computational traces
consisting of plain values computed by the implementation during exe-
cution. It was shown to be able to recover the key of many existing AES
white-box implementations.

The DCA adversary is passive, and so does not exploit the full power
of the white-box setting, implying that many white-box schemes are
insecure even in a weaker setting than the one they were designed for.
It is therefore important to develop implementations which are resistant
to this attack. We investigate the approach of applying standard side-
channel countermeasures such as masking and shuffling. Under some nec-
essary conditions on the underlying randomness generation, we show that
these countermeasures provide resistance to standard (first-order) DCA.
Furthermore, we introduce higher-order DCA, along with an enhanced
multivariate version, and analyze the security of the countermeasures
against these attacks. We derive analytic expressions for the complex-
ity of the attacks – backed up through extensive attack experiments –
enabling a designer to quantify the security level of a masked and shuffled
implementation in the (higher-order) DCA setting.

Keywords: White-box cryptography · Higher-order DCA · Masking ·
Shuffling

1 Introduction

In the classical cryptanalytic setting, the adversary faces the challenge of break-
ing the security of e.g. an encryption algorithm while only being able to consider
the algorithm as a black box ; she can query the box with inputs and receive the

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 118–141, 2019.
https://doi.org/10.1007/978-3-030-16350-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_8

Higher-Order DCA against Standard Side-Channel Countermeasures 119

corresponding outputs. While the design of the algorithm is known, the adver-
sary cannot observe the internal state of the algorithm, or affect the execution
of the algorithm.

In practice, a cryptographic algorithm has to be implemented somewhere to
be useful, i.e. in hardware or software. Thus, the adversary has the option of
physically interacting with the encryption device. In this case, the adversary has
access to implementation specific side-channel information. If an implementa-
tion is not sufficiently protected, leaking information such as the execution time
or the power consumption can be used to extract secret information, e.g. encryp-
tion keys. The widespread use and success of side-channel attacks show that a
cryptographer has to be very careful when operating in this gray-box model.

1.1 Shades of Gray

For hardware implementations, the gray-box model is often the limit of what an
adversary can achieve. This is not the case for software implementations that are
executed in untrusted environments. If an adversary is given full access to the
execution environment of the cryptographic software, she can easily observe and
manipulate the execution of the primitive, instantiated with some secret key.
This setting, introduced by Chow et al. in [10], is called the white-box model.

In the white-box setting, the adversary can study the logic flow of the imple-
mentation, observe any tables the implementation uses, observe intermediate
values computed during execution, alter the implementation at run-time, etc.
Indeed, “when the attacker has internal information about a cryptographic imple-
mentation, choice of implementation is the sole remaining line of defense” [10].
Ideally, the aim of a white-box implementation would be to leave the white-box
adversary with at most the same advantage as a black-box adversary, but this
seems to be very difficult. Instead, the current white-box paradigm aims to pro-
vide practical security, in the sense that the implementation is difficult enough
to attack so that an adversary is forced to attempt other attack vectors.

Several different approaches have been proposed to make white-box secure
implementations for standard block ciphers, such as AES [5,6,9,10,17,29]. Sadly,
all these designs have been broken by structural attacks [2,19,21–23,27]. Addi-
tionally, no provably secure solutions have been reported in the literature. Still,
there exists an increasing industrial need for the protection of cryptographic
implementations executed in untrusted environments, such as the traditional
digital rights management use case and the mobile payment applications running
on smart devices. This has driven the industry to develop home-made solutions
relying on obscurity (i.e. secrecy of the underlying obfuscation techniques). In
this paradigm, white-box cryptography acts as a moving target based on regular
security updates and/or short-term key tokens and is considered a building block
of wider security solutions.

120 A. Bogdanov et al.

1.2 Differential Computational Analysis

The mentioned attacks against public white-box implementations exploit flaws
in the underlying white-box schemes. However, secret variants of known designs
that change a few parameters or combine different techniques would likely thwart
these attacks, if exact designs are kept secret. To attack such implementations,
the adversary would have to perform reverse engineering, which can take con-
siderable time and effort if various layers of obfuscation have been applied.

A more generic approach was given recently by Bos et al. [4] introduced
the white-box equivalent of DPA, namely differential computational analysis
(DCA), and demonstrated how this technique is able to recover the encryption
key of several existing white-box implementations of the AES. Notably, the DCA
adversary is extremely powerful as it is implementation agnostic and therefore
does not need to exert expensive reverse engineering efforts. Thus, DCA has
been devastating for industrial solutions that leverage design secrecy to develop
white-box implementations consisting of a mix of various techniques (common
white-box techniques, code obfuscation, home-made encodings, etc.).

Moreover, the DCA adversary does not take advantage of the full power of the
white-box model. The adversary only needs to be able to observe the addresses
and values of memory being accessed during the execution of the implementa-
tion. The adversary does not need to reason about the implementation details,
or modify the functionality of the code in any way, e.g. by disabling RNG func-
tionalities – tasks that could required considerable effort. Thus, the DCA attack
is a passive and non-invasive attack, existing in a setting which is closer to a
gray-box than a white-box. Additionally, the attacks presented in [4] have very
low complexities.

Following these observations, the current white-box AES implementations
are not even secure in a weaker attack context than the one they were designed
for, and as a consequence, designing secure white-box implementation seems out
of reach. Indeed, DCA seems to be the biggest hindrance to designing practically
secure white-box implementations. It is therefore of importance to first explore
the design of cryptographic implementations which are secure against DCA.

1.3 Our Contributions

A natural approach when attempting to mitigate the threat of DCA attacks is
to apply known countermeasures from the side-channel literature. However, it
is not clear how well these countermeasures carry over to the white-box context
and what level of security can be achieved by such countermeasures against a
DCA adversary. To address these issues, we achieve the following:

– Side-channel countermeasures in the white-box setting: In Sect. 3 we
discuss how to apply the well known side-channel countermeasures in the
white-box setting focusing on the (passive) DCA adversary. Specifically, we
focus on higher-order masking along with shuffling of operations to introduce
noise in the DCA traces. We show that if the source of randomness used in the

Higher-Order DCA against Standard Side-Channel Countermeasures 121

implementation satisfies some specific security properties, then this approach
is sufficient to achieve security against standard first-order DCA.

– Higher-order DCA: We develop higher-order DCA in Sect. 4 to analyze
the security of the proposed protection. We show that higher-order DCA is
able to break a masked implementation of any order using a couple of traces.
However, by introducing noise in the form of shuffling, the security of the
implementation can be dramatically increased. As a demonstration, a typical
AES implementation with 2nd order masking (and shuffling degree of 16)
requires 221 traces to break with 3rd order DCA.

– Multivariate higher-order DCA: We extend the above attack by intro-
ducing a multivariate version in Sect. 5, which reduces the computational com-
plexity by decreasing the number of required traces for a successful attack.
Using this multivariate variant, the number of traces required to successfully
attack the AES implementation mentioned above can be reduced to 210.

– Formal analysis and experimental verification: We derive analytic
expressions for the success probability and attack complexities of both the
higher-order DCA and its multivariate variant. Using these expressions, we
are able to give estimates for the security level of a masked and shuffled imple-
mentation in the DCA setting. As an example, an AES implementation with
7th order masking would have a security level of about 85 bits in this setting.
Then accuracy of our expressions for the success probability of the multivari-
ate higher-order DCA is verified in Sect. 5.2 through extensive experiments
for a wide range of implementation and attack parameters. 2 000 attacks of
up to order 4 were simulated, using as many as 30 000 traces per attack.

In summary, our result provides formal ground to the study of standard side-
channel defenses in the white-box setting. We have analyzed the widely used
masking and shuffling countermeasures with respect to the DCA adversary and
we have quantified their security against advanced DCA attacks. From our anal-
ysis, a designer can choose an appropriate set of implementation parameters to
achieve a given security level with respect to DCA, which is a first step towards
building security against a stronger white-box adversary.

1.4 Related Works

Two independent and related works have been published since the first version
of the present paper which both address masking in the white-box context. First,
Biryukov and Udovenko [3] broadly overview how a white-box adversary could
attack masked white-box implementations in several aspects, in particular, in
an active (fault injection) attack setting. Second, Goubin et al. [15] proposed
a method to attack an obscure white-box implementation (in the sense that
the adversary has no/limited knowledge on the design), which was successfully
applied to break the winning challenge in the recent WhibOx 2017 contest [1].
Particularly, their linear decoding analysis can break a noise-free masked imple-
mentation with complexity approximately cubic in the size of the computation
trace.

122 A. Bogdanov et al.

Compared to these works, the adversary we consider is passive, as such she
would not be impacted by fault detection/correction measures. Moreover, [15]
demonstrates that masking is a weak countermeasure unless it is composed with
some kind of noise. Therefore, this work focuses on white-box implementations
protected with both masking and shuffling.

2 Differential Computation Analysis

The DCA adversary is capable of querying a software implementation of a cryp-
tographic primitive with arbitrary input to obtain a computational trace of the
execution. The computational trace consists of: any value calculated, written, or
read by the implementation, and the address of any memory location read from
or written to during execution. Each data point in the computational trace is
further annotated with the time it occurred in the execution. When a number
of traces have been collected, the adversary calculates correlations between a
prediction of a key-dependent intermediate value and computed values.

2.1 DCA Setting

As for hardware side-channel attacks, DCA exploits that the (software) imple-
mentation leaks some information about intermediate variables involved in the
execution of the cryptographic algorithm. Some of these intermediate variables
depend on the plaintext and (part of) the secret key, and knowledge of such
variables can therefore reveal the key. We denote such a secret variable by
s = ϕ(x, k∗), where ϕ is a deterministic function, x is a public value, e.g. (part
of) the plaintext, and k∗ ∈ K is a (secret) subkey over some subkey space K. For
instance, k∗ could be a byte of the secret key and K would then be {0, 1}8.

The DCA attack itself consists of first obtaining a number of computational
traces from the execution of the cipher implementation with secret subkey k∗

for several (random) plaintexts. We denote a computational trace consisting of
t time points by the ordered t-tuple v = (v1, v2, . . . , vt), with vi ∈ V for some
set V. In principle, the traces can be any value exposed to a dynamic binary
analysis tool, as explained above. Usually, an attacker will obtain N computa-
tional traces, v1, . . . ,vN , representing N executions of the implementation with
different inputs, each corresponding to a value si = ϕ(xi, k

∗) of the target secret
variable. These traces could e.g. arise from the encryption of N different plain-
texts. The attacker then performs a classic DPA, in which a distinguisher is used
to indicate a correct guess of k∗. The distinguisher is a function D which maps
the set of computational traces (vi)i, and corresponding inputs (xi)i, to a score
vector :

(γk)k∈K = D
(
(v1, . . . ,vN); (x1, . . . , xN)

)
.

The adversary then selects the key guess k with the highest score γk as candidate
for the correct value of k∗. We define the success probability of the attack as

psucc = Pr(argmaxk∈Kγk = k∗),

Higher-Order DCA against Standard Side-Channel Countermeasures 123

where this probability is taken over any randomness supplied to the implemen-
tation (including the randomness of the inputs).

2.2 Standard First-Order DCA

The description above does not specify the distinguisher D. Here, we briefly
describe the distinguisher used in [4], which we will call the standard first-order
DCA. Let us denote by vi,j the value at the j’th time point of the i’th trace. The
standard first-order DCA attack consists of calculating a correlation coefficient
between a vector of predicted values of the secret variable, (sk

1 , . . . , s
k
N), where

sk
i = ϕ(xi, k), and the vector (v1,j , . . . , vN,j), for every time index 1 ≤ j ≤ t.

Then the score γk is defined as the maximum correlation obtained over the
different time indices, i.e.

γk = max
j

C
(
(v1,j , . . . , vN,j), (ψ(sk

1), . . . , ψ(sk
N))

)
,

for some correlation measure C and some pre-processing function ψ. For exam-
ple, C could be the Pearson correlation coefficient and ψ either the Hamming
weight function or the selection of one bit of the predicted variable. If there
exists a statistical correlation between the secret variable and the values of the
computational trace, we would expect a large absolute value of C for some index
j and the correct prediction of the secret variables, i.e. the vector (sk∗

1 , . . . , sk∗
N).

On the other hand, if k �= k∗, we expect a low correlation between all sk
i and any

point in the computational trace. It was shown in [4] that this approach is very
effective against a range of different AES and DES white-box implementations.

3 Side-Channel Countermeasures against DCA

The DCA adversary is highly reminiscent of the standard side-channel adver-
sary. It is therefore natural to apply traditional side-channel countermeasures to
a white-box implementation, and to evaluate their performance against a DCA
adversary. In the following, we specifically study the common software counter-
measures of higher-order masking and operation shuffling. We further discuss
the source of randomness necessary to feed these countermeasures and state
a few security properties that it should satisfy in this setting. We then show
that this approach achieves security against standard first-order DCA. The rest
of the paper is dedicated to the study of advanced DCA attacks against these
countermeasures.

3.1 DCA is a Passive and Non-invasive Gray-Box Attack

We start by noting that applying the mentioned countermeasures in a strict
white-box context might be hazardous – indeed classical countermeasures such as
masking and shuffling use fresh randomness throughout the execution of the pro-
tected implementation which is usually provided by an external random number

124 A. Bogdanov et al.

generator (RNG). Since a white-box adversary has full control over the execution
environment, such an RNG could be detected and disabled, shuffled operations
could be re-synchronized (e.g. using memory addresses, program counter, etc.),
and/or masks could be canceled (if masked variables and corresponding masks
are easily identified).

In order to make such disabling difficult, the used randomness should rely
on some internal PRNG (see Sect. 3.4) and one should further add some layers
of obfuscation countermeasures on top of it. The adversary then has to invest
some reverse engineering effort to bypass these countermeasures. Nevertheless,
we stress that this is exactly the type of analysis an adversary performing a DCA
attack is trying to avoid. While DCA attacks might not be optimal in terms of
time and/or data complexity, they are very powerful due to their genericness
and the fact that they can be applied in a black-box way, i.e. without requiring
reverse engineering effort. This is an essential property of these attacks in the
current white-box cryptography paradigm where designers aim at practical secu-
rity (as provable security seems out of reach) and use the secrecy of the design
as a leverage towards this goal. The main purpose of protecting against DCA
is therefore to force an adversary to employ more complicated and dedicated
attack techniques, which might take a long time to develop and apply, which is
beneficial when combined with a moving target strategy.

3.2 Masking

A widely used countermeasure to standard DPA of hardware implementations
is masking [7,16]. Since the DCA attack relies on the same ideas as DPA, the
prospect of applying masking to secure a software implementation against DCA
is promising. To mask a secret variable, it is split into several parts that are
then processed independently. Specifically, each secret variable s occurring in
the execution of the implementation is split into d shares s1, . . . , sd such that
s1 ⊕ . . . ⊕ sd = s. The masking must be done such that any subset of less
than d shares are statistically independent of s. A simple way to achieve this
is by picking s1, . . . , sd−1 uniformly at random (the masks), and setting sd =
s⊕s1 ⊕ . . .⊕sd−1 (the masked variable). The masking is then said to be of order
d − 1. One important aspect of a masked implementation is therefore that of
randomness: the implementation has to use a (P)RNG to generate these d − 1
masks.

Knowledge of all d shares is required to recover s, but combining the d shares
would reveal the secret variable to the DCA adversary. Thus, the implementa-
tion must be able to perform computations on the secret variable s without
combining the shares, i.e. for a function f , we want to compute shares ri such
that r1 ⊕ . . . ⊕ rd = f(s), from the original shares s1, . . . , sd. The computation
is then said to be secure at the order τ if no τ -tuple of intermediate variables is
statistically dependent on a key-dependent variable. Usually, d’th order mask-
ing aims to provide security at the order τ = d − 1. To compute any F2-linear
function on a masked variable s, we simply compute the function on each share
separately. Thus, calculation of the linear components of a typical SPN can be

Higher-Order DCA against Standard Side-Channel Countermeasures 125

easily implemented on the masked state. Computing the non-linear components
(i.e. typically the S-boxes) is more involved but several masking schemes exist
that achieve (d − 1)’th order security (see for instance [11,13,24]).

Masking
Memory

randomisation

· · ·

· · ·

Masked state Normal in order iteration

Randomised iteration

Fig. 1. An illustration of memory (top) and time (bottom) shuffling applied to a second-
order masked implementation. The location of each share in memory and the order of
iteration is randomised for each execution.

3.3 Shuffling

We will show in Sect. 4 that if masking is the only countermeasure, the DCA
adversary can easily recover the key. Indeed, the strength of a masked imple-
mentation is directly related to how noisy the adversary’s observation of the
shares is. Several approaches for introducing and increasing noise in masked
implementations have been proposed and analyzed, e.g. in [12,25,26,28]. One
such approach is shuffling: instead of processing the calculations of the cipher
in some fixed order, the order of execution is randomly chosen for each run of
the implementation based on the value of the input (e.g. the plaintext). The
situation is slightly more complicated in the DCA setting. Here, the adversary
can make observations in two dimensions, namely time and memory. Even if
the order of execution is shuffled in time, an adversary can choose to order the
traces by the memory addresses accessed. Thus, we need to shuffle in both the
time and memory dimension (as illustrated in Fig. 1).

Memory Shuffle. In a masked implementation, we will typically have some state
in which each element is shared as described in Sect. 3.2. The idea of the memory
shuffle is to randomly rearrange the shares of the state in memory. Consider a
state consisting of S elements. We assume that the shares si,j , 1 ≤ i < S,
1 ≤ j ≤ d, are stored in an array, initially in order. That is, the implementation
uses the array (s1,1, s2,1, . . . , sS−1,d, sS,d). Then, we randomly pick a permutation
P : [1, S] × [1, d] → [1, S] × [1, d], based on the value of the input. Note that this
can be done efficiently using the Fisher-Yates shuffle [14]. Now, instead of using
the in-order array, we rearrange the array such that the implementation uses

126 A. Bogdanov et al.

the array (sP (1,1), sP (2,1), . . . , sP (S−1,d), sP (S,d)). Whenever the implementation
needs to access share si,j , it simply looks up the element in position P−1(i, j) of
the array. A similar randomisation is performed for any key shares.

Time Shuffle. In a typical SPN, there will be several operations that operate
on each element of the state in each round. The order of these operations is
typically suggested by the cipher designers. As an example, consider the case
where we want to apply a linear operation A to each element of the state sepa-
rately. Since the operation is linear, we can apply it to each share of the masked
elements individually. This will normally be done in some “natural” order, e.g.
A(s1,1), A(s1,2), A(s1,3), . . . , A(sS,d). However, the exact order of execution does
not matter. Thus, we can shuffle in the time dimension by randomly ordering
these S · d operations. In general, if a set of λ independent operations exists, we
can freely shuffle the order in which we process the λ · d shares. Formally, we
randomly pick a permutation Q : [1, λ] × [1, d] → [1, λ] × [1, d]. Then, when we
normally would have processed share si,j , we instead process share sQ(i,j). Thus,
the probability that a specific share is processed in a given step is 1/(λ · d). We
will denote the size of the smallest maximal set of independent operations the
shuffling degree.

3.4 On the Source of Randomness

A potential issue while applying side-channel countermeasures to the white-box
context is randomness generation. Since a white-box adversary can easily get rid
of an external RNG, the randomness used by a white-box implementation must
be pseudo-randomly generated from the single available source of variation: the
input plaintext. In other words, the white-box implementation should embed
some kind of pseudo random number generator (PRNG) seeded by the input
plaintext. We now (informally) state a few security properties that should be
fulfilled by such a PRNG in the white-box setting:

1. Pseudorandomness: The output stream of the PRNG should be hard to dis-
tinguish from true randomness.

2. Obscurity: The design of the PRNG should be kept secret.
3. Obfuscation: The PRNG should be mixed with the white-box implementa-

tion so that its output stream is hard to distinguish from other intermediate
variables.

The pseudorandomness property is required to ensure that the PRNG does
not introduce a statistical flaw in the implemented countermeasures. It is well
known that a flawed RNG can be a disaster for the security of masking (see
for instance [20]). The pseudorandomness property further implies that the gen-
erated randomness is unpredictable provided that the obscurity property also
holds. The unpredictability of the generated randomness is necessary to get
DCA resistance, since without it all the intermediate variables can be expressed

Higher-Order DCA against Standard Side-Channel Countermeasures 127

as (known) deterministic functions of the plaintext and the secret key, which
enables the application of standard first-order DCA.1

Indeed, if the PRNG design was known to the adversary, then she could
predict all the generated randomness from the plaintext. Therefore in order to
provide unpredictability, some part of the design must be secret, even if the
obscurity concept clearly clashes with the adage of Kerckhoffs’s Principle [18].
Nevertheless, it seems almost impossible to provide any security if the full design
is known, and we stress that this does not imply that one should forego all good
cryptographic engineering practices. One could use a keyed PRNG (or PRNG
with secret initial state), but even then if the design was known to the adversary
she could mount a DCA attack to recover the PRNG key and we would then
face a chicken and egg problem. Alternatively, an implementation could use a
known strong PRNG with some sound changes to design parameters, in order
to have some confidence in its security. Another approach, which aligns with the
moving target strategy, would be to have a set of different PRNG designs that
are often changed.

Finally the obfuscation property is required to prevent easy detection of the
PRNG output which could facilitate a DCA attack. It is for instance described
in [15] how the generated randomness can be easily detected by switching the
values of intermediate variables and checking whether this affects the final result.
Such a detection is an active attack that tampers with the execution (in the same
way as fault attacks) and is hence out of scope of the DCA adversary. However
it should be made difficult (in the same way as fault attacks should be made
difficult) to achieve some level of resistance in practice.

In the following, we shall consider that the above security properties are
satisfied by the used PRNG so that the DCA adversary cannot easily remove or
predict the generated randomness. We will then analyze which level of security
is achievable by using masking and shuffling in this context.

3.5 Resistance to First-Order DCA

In Sect. 2 we described the capabilities of the DCA adversary and the standard
first-order DCA. For the masked implementation described above with d > 1,
the d’th order security of the underlying masking scheme implies that any d-
tuple of variables from the computation trace v = (v1, v2, . . . , vt) is statistically
independent of any key-dependent variable. Assuming that the PRNG embedded
in the target implementation outputs strong and unpredictable pseudorandom-
ness (as required in Sect. 3.4) the distribution of any d-tuple of variables from v
is indistinguishable from the same distribution with perfect randomness, which
makes it (computationally) independent of any key-dependent variable. There-
fore, standard first-order DCA as described in Sect. 2.2 is doomed to fail.

1 Following the DCA setting described in Sect. 2.1, the only impact of the counter-
measures in presence of a known PRNG is to change the deterministic function ϕ in
the expression of the secret variable s.

128 A. Bogdanov et al.

4 Introducing Higher-Order DCA

While masking has been proven to be an effective defense against standard DPA,
and we have argued for its effectiveness against standard first-order DCA, there
are ways to attack such masked implementations. For hardware implementations,
it is well known that a (d − 1)’th-order masked implementation, such as the one
described above, can be defeated by d’th-order DPA, if no other protection is
employed. We will therefore develop a higher-order version of DCA.

A d’th-order DCA consists of a pre-processing step followed by a first-order
DCA. The adversary first pre-processes each computational trace v to obtain a
d’th-order computational trace w by applying a so-called (d’th-order) combina-
tion function ψ. Specifically, the d’th-order computational trace w consists of
q =

(
t
d

)
points (w1, . . . , wq) given by

wj = ψ(vj1 , vj2 , . . . , vjd), {j1, . . . , jd} = φ(j),

where φ(j) is the j’th subset of {1, . . . , t} of size d (for some ordering). After
computing the set of d’th order traces w1, . . . ,wN , the adversary proceeds as
for first-order DCA, using the wi’s as input to the distinguisher D. Specifically,
the adversary computes the score vector (γk)k∈K = D

(
(wi)i; (xi)i

)
in order to

determine a candidate for k∗.
For side-channel analysis of hardware implementations, it has been shown

that a good combination function for higher-order DPA is the centered product
ψ : (v1, . . . , vd) �→ ∏

j(vj − μj), where μj is the average of the leakage point vj

over several encryptions. Nevertheless, since the measurements in this setting
are inherently noisy, a larger masking degree will require a larger number of
traces to obtain a good success probability. Note that this is not the case in
the DCA context, if no noise is introduced in the implementation, e.g. by using
shuffling as described in Sect. 3.3. In this case, the exact value of each variable
that appears in an execution of the implementation appears at the same position
of every computational trace vi. Then there exists a fixed j∗, such that for
φ(j∗) = (j∗

1 , . . . , j∗
d), the elements vj∗

1
, . . . , vj∗

d
of the trace are the shares of the

target secret variable s. In that case, an optimal choice for the combination
function is the XOR sum of the trace values, that is

ψ(vj1 , vj2 , . . . , vjd) = vj1 ⊕ vj2 ⊕ · · · ⊕ vjd .

For this combination function, we have that ψ(vj∗
1
, vj∗

2
, . . . , vj∗

d
) = s for all the

d’th-order traces. By counting the number of times this equality holds, we can
easily determine the correct key. That is, we set

γk = max
j

(
Ck(vφ(j), (xi)i)

)
withCk(vφ(j), (xi)i) =

∣
∣
∣
∣

{
i ;

⊕

l∈φ(j)

vi,l = ϕ(xi, k)
}∣

∣
∣
∣.

For the correct key k∗, we deterministically have that γk∗ = N . Thus, if no noise
is present, the higher-order DCA is successful when γk× < N for all k× �= k∗.
The probability of this happening is quite close to 1, even for small N . Thus, the
introduction of some noise in the traces is required to secure a masked white-box
implementation against DCA.

Higher-Order DCA against Standard Side-Channel Countermeasures 129

4.1 Higher-Order DCA against Masking and Shuffling

We now consider how well the masked and shuffled implementation resists the
higher-order DCA attack described above. Due to the shuffling, the adversary is
no longer guaranteed that her prediction for the correct key guess will correspond
to a single time point for all traces. Thus, she must compensate by increasing
the number of traces. The higher the degree of shuffling, the more traces needs
to be collected.

Attack Analysis. In the following, we assume that the adversary knows exactly
where in the computational trace to attack. That is, for a masking order d − 1
and a shuffling degree λ, she knows the range of the t = λ · d time points that
contain the shares of the target secret variable. In other words, the length of each
computational trace v is t. This, intuitively, represents the optimal situation for
the adversary.2 We seek an expression for the success probability of the attack,
i.e. the probability that the correct key has a higher score than all other key
candidates.

The adversary proceeds as above and computes the d’th-order computa-
tional trace. However, there will no longer be a single value j such that
Ck∗(vφ(j), (xi)i) = N deterministically for the correct key k∗. Thus, we need
to know the distribution of γk, both for a wrong and a right guess of the key.

Theorem 1. Consider a masked white-box implementation of order d − 1 with
shuffling degree λ. Let p =

(
t
d

)−1
where t = λ · d, and let F (x;n, q) be the CDF

(cumulative distribution function) of the binomial distribution with parameters
n and q. Let |K| be the number of possible key values and define

F×
max(x) = F (x;N, (1 − p) 1

|K|)
(t
d),

F ∗
max(x) = F (x;N, p + (1 − p) 1

|K|)
(t
d).

Then the probability of recovering a key using d’th-order DCA with N traces is

psucc =

(
N∑

i=0

(F ∗
max(i) − F ∗

max(i − 1)) · F×
max(i − 1)

)|K|−1

.

We prove Theorem 1 in Appendix A. We can use this formula to calculate
the required N to obtain a desired probability of success. The number of traces
required to obtain 90% success probability for a range of parameters is shown in
Table 1. Here, |K| = 256, and the parameters would be typical choices for e.g. a
protected AES implementation.

2 In practice, the adversary could exhaustively search the correct location of the (λ·d)-
length subtrace in the full computation trace of length tfull, which increases the
complexity at most tfull times.

130 A. Bogdanov et al.

Attack Complexity. We consider the time complexity of recovering the secret
key k∗ using the higher-order DCA attack. For a fixed probability of success
psucc, let Nd be the number of computational traces required to obtain this
probability for a d’th-order implementation. We again assume that t = λ ·d. The
cost of computing the higher-order trace is Nd · (

t
d

)
. Then, for each key guess k

and each time point in the higher-order trace, the adversary computes Ck. The
complexity of this is |K| ·Nd ·(t

d

)
. Thus, the time complexity is O (|K| · Nd · (

t
d

))
.

Table 1 shows the time complexity of the attack for a range of parameters.

Table 1. The number of traces N and the time needed to successfully attack an
implementation with (d − 1)-order masking and shuffling of degree λ with d’th-order
DCA. Here, |K| = 256, and we fix the success probability at 90%. The parameters
chosen would be typical for a protected AES implementation.

d λ log2 N log2 time d λ log2 N log2 time d λ log2 N log2 time

2 8 8.6 23.5 3 8 15.7 34.7 4 8 23.6 46.7

2 16 11.0 28.0 3 16 21.6 43.7 4 16 31.7 59.0

5 Multivariate Higher-Order DCA

In the higher-order DCA, presented in Sect. 4, the adversary tries to correlate
each sample of the higher-order trace with the predicted variable independently,
finally taking the maximum over the obtained correlation scores. Such an app-
roach is not optimal, as successive samples may carry joint information on the
secret. As in the side-channel context, one can take advantage of this joint infor-
mation by performing a multivariate attack, namely an attack in which the
distinguisher exploits the multivariate distribution of different samples in the
higher-order trace. Emblematic multivariate attacks in the classical side-channel
context are the so-called template attacks [8]. In the following section, we describe
a similar attack in the setting of the DCA adversary.

5.1 Multivariate Higher-Order DCA against Masking and Shuffling

Our proposed multivariate higher-order DCA attack is based on the principle
of maximum likelihood. Similar techniques have been adopted in side-channel
template attacks. Let K, (Xi)i, and (V i)i be random variables representing
the subkey k, the public inputs (xi)i, and the computational traces (vi)i. The
likelihood distinguisher is then defined as

L :
(
(vi)i, (xi)i

) �→ (�k)k∈K,

�k ∝ Pr
(
K = k | (V i)i = (vi)i ∧ (Xi)i = (xi)i

)
, (1)

where ∝ means equal up to some factor constant w.r.t. k. To evaluate this
likelihood function, we need a model for the distribution of the traces (also called

Higher-Order DCA against Standard Side-Channel Countermeasures 131

a template in the side-channel context). It is well known that if Eq. 1 is evaluated
from the true distributions of (Xi)i and (V i)i, then the above distinguisher is
optimal. This is sound, as in this case, the score is the exact probability that the
target subkey equals a key guess k, for all k ∈ K.

In the following, we will assume that V i is composed of t uniformly dis-
tributed random variables Vi,1, Vi,2, . . . , Vi,t, with the constraint that for a uni-
formly chosen j, we have

⊕
l∈φ(j) Vi,l = ϕ(Xi,K). This assumption matches the

setting of a masked and shuffled implementation. The public inputs Xi and the
subkey K are also assumed to be uniformly distributed and mutually indepen-
dent. Under this model, we have the following result (see proof in Appendix B):

Proposition 1. The likelihood distinguisher, Eq. 1, satisfies:

�k ∝
N∏

i=1

Ck(vi, xi),

where Ck(v, x) is the number of d-tuples in a trace v with bitwise sum equals to
ϕ(x, k), that is Ck(v, x) =

∣
∣{(vj1 , . . . , vjd) ; vj1 ⊕ · · · ⊕ vjd = ϕ(x, k)

}∣
∣ .

Remark 1. For practical reasons, it is more convenient to evaluate the log-
likelihood, that is log �k =

∑N
i=1 log Ck(vi, xi) . Note that this does not affect

the ranking of the key guesses (as the logarithm is a monotonically increasing
function) and therefore has no impact on the success probability of the attack.

5.2 Analysis of the Likelihood Distinguisher

In this section we analyze the success probability of the likelihood distinguisher.
For the sake of simplicity, we only consider two key guesses, namely the right
key guess k∗ and a wrong key guess k×. We then consider their likelihood scores
�k∗ and �k× random variables, since

�k =
N∏

i=1

Ck(V i,Xi),

for k ∈ {k∗, k×}, where (V i)i and (Xi)i are the random variables defined above
for the computational traces and the corresponding public inputs. We then con-
sider the probability psucc = Pr

(
�k∗ > �k×

)
in Theorem 2.

Theorem 2. For a multivariate d’th-order DCA attack using the likelihood dis-
tinguisher on N traces of length t, the probability that a correct key guess is
ranked higher than an incorrect key guess is approximately given by

psucc ≈ pU + (1 − pU)

(
1
2

+
1
2
erf

(√
N |V|
2
√

q

))

where q =
(

t
d

)
and pU = 1 − (

1 − (
1 − |V|−1

)q)N
.

132 A. Bogdanov et al.

The total success probability of the attack pfull-succ, i.e. the probability that
the correct key guess has the largest likelihood, is then heuristically pfull-succ ≈
p

|K|−1
succ . Moreover, it can be checked that pU ≈ N ·(1 − |V|−1

)q becomes negligible
as q grows. Theorem 2 then implies

psucc = Θ

(

erf

(√
N |V|
2
√

q

))

,

from which we deduce that the data complexity of the attack is N = Θ(q).
Namely, the number of required traces N to achieve certain psucc is linear in the
number of combinations q =

(
t
d

)
. We also have N = Θ(q/|V|) to make appear

the impact of the definition set V.
In order to prove Theorem 2, we introduce the concept of the zero-counter

event. Denoted by Uk, this is the event that Ck(vi, xi) = 0 for at least one
i ∈ [1, N] for a key guess k. Note that this event can never happen for k = k∗,
since for all i, there exists a j such that

⊕
l∈φ(j) vi,l = ϕ(xi, k

∗). Thus, Pr(�k∗ >

�k× | Uk×) = 1, since in this case the likelihood �k× equals zero (or equivalently,
the log-likelihood equals −∞). This is intuitively sound, as the right key guess
could not give rise to a zero counter for any of the N computational traces.
Then, by the law of total probability, we can write

psucc = Pr(Uk×) + Pr(¬ Uk×) · Pr(�k∗ > �k× | ¬ Uk×). (2)

We are therefore interested in the probabilities Pr(Uk×) and Pr(�k∗ > �k× |
¬ Uk×). These are given in the following lemmas.

Lemma 1. Given N traces of length t, the probability of the zero-counter event
for a wrong key guess k× in a d’th-order attack is approximately given by

Pr(Uk×) ≈ 1 −
(
1 − (

1 − |V|−1
)q

)N

,

where q =
(

t
d

)
.

Lemma 2. Given N traces of length t, let q =
(

t
d

)
, and assume that the zero-

counter event does not occur. The probability that a correct key guess has a higher
likelihood score than a wrong key guess in a d’th-order attack is approximately

Pr(�k∗ > �k× | ¬ Uk×) ≈ 1
2

+
1
2
erf

(√
N |V|
2
√

q

)

.

We prove Lemma 1 in Appendix C and Lemma 2 in Appendix D. Theorem
2 then follows directly from Eq. 2 and these two results.

Higher-Order DCA against Standard Side-Channel Countermeasures 133

6 Experimental Verification and Security Evaluation

The proof of Theorem 2 relies on a number of approximations. We therefore
verified the accuracy of the estimate by simulating the multivariate higher-order
DCA attack for various choices of the parameters d and t. We chose to simulate
traces of a masked and shuffled AES implementation, that is, the target secret
variable was taken to be ϕ(x, k∗) = SboxAES(x ⊕ k∗). The computational traces

0 10 20 30 40 50 60 70 80 90 100

0.6

0.7

0.8

0.9

d = 2

pr
ob

ab
ili
ty

t = 8 t = 16 t = 24 t = 32 t = 40 t = 48
t = 56 t = 64 t = 72 measured model

0 200 400 600 800 1,000 1,200 1,400

0.5

0.6

0.7

0.8

0.9

d = 3pr
ob

ab
ili
ty

0 0.2 0.4 0.6 0.8 1 1.2 1.4
·104

0.5

0.6

0.7

0.8

0.9

d = 4

#plaintexts

pr
ob

ab
ili
ty

Fig. 2. The measured probability of ranking a correct key higher than an incorrect key
in the multivariate higher-order DCA attack, compared to Theorem 2. The measure-
ment is based on 2 000 simulations of the attack. Here, d is the attack order and t is
the length of the obtained traces.

134 A. Bogdanov et al.

were generated according to the model described at the beginning of Sect. 5.1,
namely by sampling random values vj over V = F28 with the constraint that one
randomly chosen d-tuple of each trace has XOR-sum ϕ(x, k∗).

We generated traces for d ∈ {2, 3, 4} and t ∈ {8, 16, 24, 32, 40, 48, 56, 64, 72},
and calculated the log-likelihood scores for the correct key and a randomly chosen
wrong key. This was repeated 2 000 times, and the probability Pr(�k∗ > �k×)
was calculated for varying values of N . The results are shown in Fig. 2. The
figure shows that the estimate of Theorem 2 is quite accurate in most cases,
only deviating from the experimental measurements for very small values of
q =

(
t
d

)
(q < 300). Note that in practice, this would rarely be a problem. For

example, if all shares of the full AES state were shuffled in a first order masked
implementation, as described in Sect. 3.3, the smallest trace that would always
contain the correct shares would have q =

(
2·16
2

)
= 496.

The attack complexity of the multivariate higher-order DCA is the same
as that of the higher-order DCA, namely O (|K| · Nd · (

t
d

))
. Using this and

Theorem 2 we can provide an estimate of the security level obtained by a masked
and shuffled implementation against the DCA adversary. Table 2 shows the com-
plexities of attacking e.g. a protected AES implementation where the operations
are shuffled among all 16 state bytes (the shuffling degree is λ = 16 implying
t = 16 · d). When fixing pfull-succ at 90%, we see that an implementation which
uses 7th order masking will obtain an estimated security level of 85 bits.

Table 2. The number of traces N and the time needed to successfully attack an
implementation with (d − 1)-order masking and shuffling of degree λ = 16 (t = 16 · d)
using multivariate d’th-order DCA . Here, |K| = 256, and we fix the success probability
at 90%.

d log2 N log2 time d log2 N log2 time d log2 N log2 time

3 10.6 32.7 5 21.0 53.5 7 31.6 74.6

4 15.8 43.1 6 26.3 64.1 8 36.9 85.3

Acknowledgment. The fourth author was supported by European Union’s Horizon
2020 research and innovation program under the Marie Sk�lodowska-Curie grant agree-
ment No. 643161.

A Success Probability of Higher-Order DCA (Proof of
Theorem 1)

Consider a specific value wj of the higher-order trace w. Denote by A the event
that wj corresponds to the combination of the correct shares. The probability
of A occurring, i.e. of choosing the correct d shares out of the t elements of the
original computational trace v, is p =

(
t
d

)−1
.

Higher-Order DCA against Standard Side-Channel Countermeasures 135

Fix some plaintext and the corresponding trace. By the law of total probabil-
ity, the probability that a value wj of the d’th order trace is equal to a prediction
s = ϕ(x, k) for some key guess k is

Pr(wj = s) = Pr(wj = s|A) · Pr(A) + Pr(wj = s|¬A) · Pr(¬A).

For a wrong key guess, k× �= k∗, Pr(wj = s×|A) = 0, while for a right key guess
Pr(wj = s∗|A) = 1. In both cases, we have Pr(wj = s|¬A) = 1/|K|. In total:

p× = Pr(wj = s×) = (1 − p)/|K|,
p∗ = Pr(wj = s∗) = p + (1 − p)/|K|.

Thus, for N traces,

Ck×(vφ(j), (xi)i) ∼ Bin(N, p×)

for a wrong key guess, and

Ck∗(vφ(j), (xi)i) ∼ Bin(N, p∗)

for a right key guess. Note that |w| =
(

t
d

)
. Let X1, . . . , X|w | be distributed as

Bin(N, p×). Then γk× ∼ max Xi, and we denote the CDF by F×
max(x). If the Xi

were independent, we would have

F×
max(x) = F (x;N, p×)(

t
d).

While the Xi are pairwise independent, they are not mutually independent. How-
ever, we find that in practice, the dependence is so weak that γk× approximately
has CDF F×

max, even for small values of |w| and N . We define F ∗
max(x) similarly.

The attack is successful if γk∗ > γk× for all k×. As there are |K| − 1 wrong
keys, and all γk× are independent and identically distributed, we have psucc =
Pr(γk∗ > γk×)|K|−1, where

Pr(γk∗ > γk×) =
N∑

i=0

(F ∗
max(i) − F ∗

max(i − 1)) · F×
max(i − 1).

which concludes the proof.

B Proof of Proposition 1

Proof. By applying the Bayes’ rule, one gets (we skip random variables for the
sake of clarity):

Pr
(
k | (vi)i ∧ (xi)i

)
=

Pr
(
(vi)i | k ∧ (xi)i

) · Pr
(
k ∧ (xi)i

)

Pr
(
(vi)i ∧ (xi)i

) (3)

136 A. Bogdanov et al.

By mutual independence of the Xi’s and K, we have Pr
(
k ∧ (xi)i

)
= 1

|K|
(

1
|X |

)N

for every k ∈ K. Moreover, Pr
(
(vi)i ∧ (xi)i

)
is constant with respect to k. We

hence get
Pr

(
k | (vi)i ∧ (xi)i

) ∝ Pr
(
(vi)i | k ∧ (xi)i

)
. (4)

By mutual independence of the V i’s and the Xi’s we further deduce

Pr
(
(vi)i | k ∧ (xi)i

)
=

N∏

i=1

Pr(vi | k ∧ xi). (5)

For the sake of simplicity we skip the index i in the following. By the law of
total probability, we have

Pr(v | k ∧ x) =
∑

φ(j)

Pr(Sφ(j)) · Pr(v | k ∧ x ∧ Sφ(j)), (6)

where Sφ(j) denotes the event that the set φ(j) is selected for the sharing of
ϕ(X,K). By definition, we have

Pr(Sφ(j)) =
1

(
t
d

) (7)

and

Pr(v | k ∧ x ∧ Sφ(j)) =

{(
1

|V|
)t−1 if

⊕
l∈φ(j) vl = ϕ(x, k)

0 otherwise
(8)

which finally gives
Pr(v | k ∧ x) ∝ Ck(v, x) . (9)

C Probability of the Zero-Counter Event (Proof of
Lemma 1)

We first define Zk as the zero-counter event for key k for a single computational
trace V . Formally,

Zk = “ ∀j ⊆
{

1, . . . ,

(
t

d

)}
:

⊕

i∈φ(j)

Vi �= ϕ(X, k) ”.

The zero-counter event Zk occurs if and only if none of the q =
(

t
d

)
combinations⊕

i∈φ(j) Vi match the predicted value ϕ(X, k). As discussed, Zk∗ never occurs
for the correct key guess k∗. For the incorrect key guess k×, intuitively, the zero-
counter probability Pr(Zk×) should quickly become negligible as the number of
combinations q grows. While all q combinations are not strictly independent, we
can approximate the probability of Zk× by:

Pr(Zk×) ≈
(
1 − 1

|V|
)q

. (10)

Higher-Order DCA against Standard Side-Channel Countermeasures 137

Table 3. Approximation and estimation of the zero-counter probability.

(t, d) (16, 2) (16, 3) (16, 4) (24, 2) (24, 3) (32, 2) (32, 3)

Approximation (10) 0.625 0.112 8·10−4 0.340 4·10−4 0.144 4·10−9

Estimation (prec. ∼10−3) 0.628 0.135 <10−3 0.342 <10−3 0.145 <10−3

We verified this approximation by estimating the zero-counter probability
over some sampled computation traces. As illustrated it Table 3, the obtained
estimations match the approximation pretty well.

Then, by definition, the zero-counter event for N traces is the union

Uk = Z(1)
k ∨ Z(2)

k ∨ · · · ∨ Z(N)
k ,

where Z(i)
k denotes the zero-counter event for k on trace V i. Taking the negation

we obtain ¬ Uk× = (¬Z(1)
k) ∧ (¬Z(2)

k) ∧ · · · ∧ (¬Z(N)
k), and since the zero events

Z(i)
k× are mutually independent, we get

Pr(Uk×) = 1 −
N∏

i=1

Pr(¬Z(i)
k×) = 1 − (

1 − Pr(Zk×)
)N

.

This finishes the proof of Lemma 1.

D Success Probability with No Zero Counters (Proof of
Lemma 2)

If the zero counter event does not occur, we can think of each trace V i as a
random variable uniformly distributed over Vt. Since the public input Xi is also
random, the counters Ck(V ,X) follow some probability distribution. In order to
prove Lemma 2, we first prove the following result regarding these distributions.

Lemma 3. Let k∗ and k× be a right and wrong key guess. Let q =
(

t
d

)
and

κ = (q − 1) 1
|V| . Then for a trace of length t and a d’th-order attack,

Ck∗(V ,X) ∼ N (κ + 1, κ) and Ck×(V ,X) ∼ N (κ, κ),

where N (μ, σ2) denotes the normal distribution with mean μ and variance σ2.

Proof. Let δ : V2 → {0, 1} be the function defined as

δ(v1, v2) =

{
1 if v1 = v2,

0 otherwise.

The counter Ck(V ,X) can be rewritten as a sum Ck(V ,X) =
∑q

j=1

δ(Wj , ϕ(X, k)), where the variables (Wj)j are defined as the q =
(

t
d

)
combi-

nations
⊕

i∈φ(j) Vi. We recall that for one index j we have Wj = ϕ(X, k∗),

138 A. Bogdanov et al.

whereas for the other indices the Wj are randomly distributed independently of
X. The counter expectation then satisfies

E
(
Ck(V ,X)

)
=

q∑

j=1

E
(
δ(Wj , ϕ(X, k))

)
=

{
(q − 1) 1

|V| if k �= k∗,

(q − 1) 1
|V| + 1 if k = k∗.

On the other hand, the counter variance can be expressed as:

Var
(
Ck(V ,X)

)
=

q∑

j=1

Var
(
δ(Wj , ϕ(X, k))

)

+ 2
∑

1≤j<j′≤q

Cov
(
δ(Wj , ϕ(X, k)), δ(Wj′ , ϕ(X, k))

)
.

It can be checked that the covariances will be equal to 0 most of the time.
Indeed, the covariances are non-zero only when Wj ⊕ Wj′ = ϕ(X, k∗), which
never happens when d is odd and which happens for few pairs (j, j′) when d
is even. Therefore these covariance terms will only have a small impact on the
overall variance. Moreover, it can be checked that this impact is negative, i.e.
it reduces the variance.3 Therefore we will ignore the sum of covariances, which
yields a correct result when d is odd and a slight overestimation when d is even.
We then have

Var
(
δ(Wj , ϕ(X, k))

)
=

{
1

|V|
(
1 − 1

|V|
)

if j �= j∗,

0 if j = j∗,

where j∗ denotes the index of the right combination matching ϕ(X, k∗). Com-
bining the two above equations gives:

Var
(
Ck(V ,X)

)
= (q − 1)

1
|V|

(
1 − 1

|V|
)

≈ (q − 1)
1

|V| .

Since the counter is defined as a sum of somewhat independent random vari-
ables, we can soundly approximate its distribution by a Gaussian, and setting
κ = (q − 1) 1

|V| concludes the proof. ��

In the above proof, we use that the δ(Wj , ϕ(X, k)) are somewhat independent.
By somewhat independent we mean that these variables are pairwise independent
(for most or all of them, as discussed). Note that variants of the central limit
theorem exist that take some form of dependence between the summed variables
into account. We have experimentally verified that the Gaussian approximation
is sound for various parameters (t, d).

3 Most of the time we have ϕ(X, k∗) �= 0 so that the pairs (j, j′) with Wj ⊕ Wj′ =
ϕ(X, k∗) are such that Wj �= Wj′ with high probability. In that case δ(Wj , ϕ(X, k)) =
1 implies δ(Wj′ , ϕ(X, k)) = 0 and conversely which yields a negative covariance.

Higher-Order DCA against Standard Side-Channel Countermeasures 139

Using Lemma 3, we can now prove Lemma 2. Following Remark 1, we will
focus on the log-likelihood, i.e. we consider

Pr(�k∗ > �k× | ¬ Uk×) = Pr
(
log �k∗ − log �k× > 0 | ¬ Uk×

)
,

log �k∗ − log �k× =
N∑

i=1

log Ck∗(V i,Xi) − log Ck×(V i,Xi)︸ ︷︷ ︸
Yi

.

As introduced above, we denote by Yi the difference between the log-counters for
the trace V i. Since the Yi are mutually independent and identically distributed,
the central limit theorem implies that, for N sufficiently large,

1
N

(log �k∗ − log �k×) ∼ N (
μY , σ2

Y N−1
)

with

{
μY = E(Y),
σ2

Y = Var(Y),

for Y = log Ck∗(V ,X) − log Ck×(V ,X). Thus

Pr(�k∗ > �k× | ¬ Uk×) = 1 − ΦμY ,σ2
Y /N (0) =

1
2

+
1
2
erf

(√
N μY√
2 σY

)
, (11)

where Φμ,σ is the CDF of N (μ, σ2). By the heuristic assumption that Ck∗(V ,X)
and Ck×(V ,X) are mutually independent, and using the Taylor expansion of the
logarithm at E(C), as well as Lemma 3, we have

μY ≈ log(κ + 1) − κ

2(κ + 1)2
− log κ +

κ

2κ2
≈ 1

κ
, and σ2

Y ≈ 2
κ

κ2
=

2
κ

,

where the approximation of the mean is sound if κ is large enough (e.g. κ > 10).
Inserting these approximations into Eq. 11, remembering that κ = (q − 1) 1

|V| ≈
q

|V| , finishes the proof.

References

1. CHES 2017 Capture the Flag Challenge - The WhibOx Contest, An ECRYPT
White-Box Cryptography Competition. https://whibox.cr.yp.to/. Accessed Oct
2017

2. Billet, O., Gilbert, H., Ech-Chatbi, C.: Cryptanalysis of a white box AES imple-
mentation. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp.
227–240. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30564-
4 16

3. Biryukov, A., Udovenko, A.: Attacks and countermeasures for white-box designs.
In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 373–
402. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3 13

4. Bos, J.W., Hubain, C., Michiels, W., Teuwen, P.: Differential computation analysis:
hiding your white-box designs is not enough. In: Gierlichs, B., Poschmann, A.Y.
(eds.) CHES 2016. LNCS, vol. 9813, pp. 215–236. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 11

https://whibox.cr.yp.to/
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-540-30564-4_16
https://doi.org/10.1007/978-3-030-03329-3_13
https://doi.org/10.1007/978-3-662-53140-2_11

140 A. Bogdanov et al.

5. Bringer, J., Chabanne, H., Dottax, E.: Perturbing and protecting a traceable block
cipher. In: Leitold, H., Markatos, E.P. (eds.) CMS 2006. LNCS, vol. 4237, pp. 109–
119. Springer, Heidelberg (2006). https://doi.org/10.1007/11909033 10

6. Bringer, J., Chabanne, H., Dottax, E.: White box cryptography: another attempt.
IACR Cryptology ePrint Archive 2006, 468 (2006)

7. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

8. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

9. Chow, S., Eisen, P., Johnson, H., van Oorschot, P.C.: A white-box DES imple-
mentation for DRM applications. In: Feigenbaum, J. (ed.) DRM 2002. LNCS, vol.
2696, pp. 1–15. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-
44993-5 1

10. Chow, S., Eisen, P., Johnson, H., Van Oorschot, P.C.: White-box cryptography
and an AES implementation. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 250–270. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36492-7 17

11. Coron, J.-S.: Higher order masking of look-up tables. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 441–458. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 25

12. Coron, J.-S., Kizhvatov, I.: Analysis and improvement of the random delay coun-
termeasure of CHES 2009. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010.
LNCS, vol. 6225, pp. 95–109. Springer, Heidelberg (2010). https://doi.org/10.1007/
978-3-642-15031-9 7

13. Coron, J.-S., Prouff, E., Rivain, M., Roche, T.: Higher-order side channel security
and mask refreshing. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 410–424.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3 21

14. Fisher, R.A., Yates, F., et al.: Statistical tables for biological, agricultural and
medical research. Statistical tables for biological, agricultural and medical research
(1938)

15. Goubin, L., Paillier, P., Rivain, M., Wang, J.: How to reveal the secrets of an
obscure white-box implementation. Cryptology ePrint Archive, Report 2018/098
(2018). https://eprint.iacr.org/2018/098

16. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

17. Karroumi, M.: Protecting white-box AES with dual ciphers. In: Rhee, K.-H.,
Nyang, D.H. (eds.) ICISC 2010. LNCS, vol. 6829, pp. 278–291. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-24209-0 19

18. Kerckhoffs, A.: La cryptographic militaire. J. Sci. Mil. IX, 5–38 (1883). https://
www.petitcolas.net/kerckhoffs/crypto militaire 1.pdf

19. Lepoint, T., Rivain, M., De Mulder, Y., Roelse, P., Preneel, B.: Two attacks on a
white-box AES implementation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC
2013. LNCS, vol. 8282, pp. 265–285. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43414-7 14

20. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing Thes-
ecrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6

https://doi.org/10.1007/11909033_10
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/978-3-540-44993-5_1
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/3-540-36492-7_17
https://doi.org/10.1007/978-3-642-55220-5_25
https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/978-3-642-15031-9_7
https://doi.org/10.1007/978-3-662-43933-3_21
https://eprint.iacr.org/2018/098
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-642-24209-0_19
https://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf
https://www.petitcolas.net/kerckhoffs/crypto_militaire_1.pdf
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-3-662-43414-7_14
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6

Higher-Order DCA against Standard Side-Channel Countermeasures 141

21. Michiels, W., Gorissen, P., Hollmann, H.D.L.: Cryptanalysis of a generic class of
white-box implementations. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC
2008. LNCS, vol. 5381, pp. 414–428. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04159-4 27

22. De Mulder, Y., Roelse, P., Preneel, B.: Cryptanalysis of the Xiao – Lai white-box
AES implementation. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol.
7707, pp. 34–49. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
35999-6 3

23. De Mulder, Y., Wyseur, B., Preneel, B.: Cryptanalysis of a perturbated white-box
AES implementation. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS,
vol. 6498, pp. 292–310. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17401-8 21

24. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

25. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

26. Strobel, D., Paar, C.: An efficient method for eliminating random delays in power
traces of embedded software. In: Kim, H. (ed.) ICISC 2011. LNCS, vol. 7259, pp.
48–60. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31912-9 4

27. Tolhuizen, L.: Improved cryptanalysis of an AES implementation. In: Proceedings
of the 33rd WIC Symposium on Information Theory, 2012. WIC (Werkgemeen-
schap voor Inform.-en Communicatietheorie) (2012)

28. Veyrat-Charvillon, N., Medwed, M., Kerckhof, S., Standaert, F.-X.: Shuffling
against side-channel attacks: a comprehensive study with cautionary note. In:
Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 740–757.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 44

29. Xiao, Y., Lai, X.: A secure implementation of white-box AES. In: Computer Science
and its Applications, CSA 2009, pp. 1–6. IEEE (2009)

https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-04159-4_27
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-35999-6_3
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-17401-8_21
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-31912-9_4
https://doi.org/10.1007/978-3-642-34961-4_44

Side-Channel Analysis Methodologies

Gradient Visualization for General
Characterization in Profiling Attacks

Löıc Masure1,2(B), Cécile Dumas1, and Emmanuel Prouff2,3

1 Univ. Grenoble Alpes, CEA, LETI, DSYS, CESTI, 38000 Grenoble, France
{loic.masure,cecile.dumas}@cea.fr

2 Sorbonne Universités, UPMC Univ Paris 06, POLSYS,
UMR 7606, LIP6, 75005 Paris, France

3 ANSSI, Paris, France
emmanuel.prouff@ssi.gouv.fr

Abstract. In Side-Channel Analysis (SCA), several papers have shown
that neural networks could be trained to efficiently extract sensitive infor-
mation from implementations running on embedded devices. This paper
introduces a new tool called Gradient Visualization that aims to proceed
a post-mortem information leakage characterization after the successful
training of a neural network. It relies on the computation of the gradient
of the loss function used during the training. The gradient is no longer
computed with respect to the model parameters, but with respect to
the input trace components. Thus, it can accurately highlight temporal
moments where sensitive information leaks. We theoretically show that
this method, based on Sensitivity Analysis, may be used to efficiently
localize points of interest in the SCA context. The efficiency of the pro-
posed method does not depend on the particular countermeasures that
may be applied to the measured traces as long as the profiled neural
network can still learn in presence of such difficulties. In addition, the
characterization can be made for each trace individually. We verified the
soundness of our proposed method on simulated data and on experimen-
tal traces from a public side-channel database. Eventually we empirically
show that the Sensitivity Analysis is at least as good as state-of-the-art
characterization methods, in presence (or not) of countermeasures.

Keywords: Side Channel Analysis · Profiling attacks ·
Deep Learning · Points of Interest · Characterization

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploits weaknesses
of a physical implementation of a cryptographic primitive. During its execution,
the primitive processes values, called sensitive, that both depend on a piece
of public data (e.g. a plaintext) and on some chunk of a secret value (e.g. a
key). As the processing is invertible, knowing the value of this variable (or at
least having some information about it) and the plaintext enables an attacker
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 145–167, 2019.
https://doi.org/10.1007/978-3-030-16350-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_9

146 L. Masure et al.

to recover the piece of secret key. Secure cryptographic algorithms such as the
Advanced Encryption Standard (AES) can then be defeated by recovering each
byte of the secret key separately thanks to a divide-and-conquer strategy, thereby
breaking the high complexity usually required to defeat such an algorithm. This
information is usually gathered thanks to physical leakages such as the power
consumption or the electromagnetic emanations measured on the target device.
Actually, conducting an SCA is equivalent as studying the conditional probabil-
ity distribution of the sensitive variables given the physical measure. It can be
done for example through the computation of statistics such as a difference of
means [16] or a correlation coefficient [3].

For the specific type of SCA called profiling attacks, an attacker will try to
estimate the whole conditional distribution thanks to a profiling phase during
which she has access to an open sample for which she knows the value of the
target variable. Such an access allows her to estimate the conditional distribu-
tion. Historically, Gaussian Template Attacks (GTA) have first been proposed
in the early 2000’s [7]. Their complexity is however strongly impacted by the
number of time samples contained in the exploited traces. A first pre-processing
step is hence required to extract, from each trace, few points called Points of
Interest (PoIs). Tools like Signal-to-Noise Ratio (SNR) can efficiently extract
those PoIs [22] (see Sect. 4.3). Other characterization methods based on statisti-
cal tools such as the T-Test [24] or the χ2-Test [26] may also be used.1 However,
in presence of countermeasures such as masking or de-synchronization [33], both
estimation with GTA and PoIs extraction with SNR are no longer efficient (or at
least much less). Likewise, other dimensionality reduction techniques like dedi-
cated variants of Principal Component Analysis (PCA) [4,8,9,11,37] or Kernel
Discriminant Analysis (KDA) [6] can be used, without guarantee that relevant
components will be extracted.

Recently, the SCA community has benefited the resurgence of Convolutional
Neural Networks (CNNs) in the 2010’s [17] to apply them to profiling attacks, as
first proposed in [12,20,23]. They are seen as a black-box tool and their results
have been afterwards experimentally shown to be robust to the most common
countermeasures, namely masking [21] and de-synchronization [5]. Their main
advantage is that they do not require pre-processing, and are at least as efficient
as the other state-of-the-art profiling attacks. However, from the evaluator’s
point-of-view, this is not sufficient. On the one hand she wants to make sure
that a CNN attack succeeded for good reasons i.e. that the learned model can
generalize to new data. On the other hand the evaluator also wants to help the
developer to localize and understand where the vulnerability comes from in order
to remove or at least reduce it. This issue is part of a more general problematic in
Deep Learning based systems, namely their explainability and interpretability. To
address it, a theoretical framework has recently been proposed in [25], and several

1 In practice, the latter methods usually emphasize the same PoIs than SNR. This
claim has been empirically verified on the data considered in this study. For this
reason, we will only focus on the SNR when challenging the effectiveness of our
method in the remaining of this paper.

Gradient Visualization for General Characterization in Profiling Attacks 147

methods have been tested to tackle the issue. In particular, some computer vision
research groups have studied the so-called Sensitivity Analysis [35,36] which is
derived from the computation of the loss function gradient with respect to the
input data during the training phase.

In this paper, we propose to apply a particular Sensitivity Analysis method
called Gradient Visualization (GV) in order to better understand how a CNN
can learn to predict the sensitive variable based on the analysis of a single trace.
The main claim is that CNN based models succeed in discriminating PoIs from
non-informative points, and their localization can be deduced by simply look-
ing at the gradient of the loss function with respect to the input traces for a
trained model. We theoretically show that this method can be used to localize
PoIs in the case of a perfect model. The efficiency of the proposed method does
not decrease when countermeasures like masking or misalignment are applied.
In addition, the characterization can be made for each trace individually. We
verified the efficiency of our proposed method on simulated data and on exper-
imental traces from a public Side Channel database. We empirically show that
Gradient Visualization is at least as good as state-of-the-art characterization
methods, in presence or not of different countermeasures.

The paper is organized as follows. In Sect. 3 we start by considering the
optimal model an ideal attacker may get during profiling, and we deduce some
properties of its derivatives with respect to the input traces that can be related
to the PoIs. In Sect. 4 we use these properties on a model estimated with CNNs
and we explain how to practically implement the visualization method. A toy
example applied on simulated data is proposed for illustration. Sections 5 and
6 are eventually dedicated to an experimental validation of the effectiveness of
our proposal in realistic attacks scenarios.

2 Preliminaries

2.1 Notations

Throughout the paper we use calligraphic letters as X to denote sets, the corre-
sponding upper-case letter X to denote random variables (resp. random vectors
X) over X , and the corresponding lower-case letter x (resp. x for vectors) to
denote realizations of X (resp. X). The i-th entry of a vector x is denoted by
x[i]. We denote the probability space of a set X by P(X). If X is discrete, it
corresponds to the set of vectors [0, 1]|X | such that the coordinates sum to 1.
If a random variable X is drawn from a distribution D, then DN denotes the
joint distribution over the sequence of N i.i.d. random variables of same proba-
bility distribution than X. The symbol E denotes the expected value, and might
be subscripted by a random variable EX , or by a probability distribution E

X∼D
to specify under which probability distribution it is computed. Likewise, Var
denotes the variance of a random variable. If f : x, y �→ f(x, y) is a multivariate
function, ∂

∂x denotes the partial derivative with respect to the input variable x.
Likewise, if f is a function from R

n to R, then ∇f(x) denotes the gradient of

148 L. Masure et al.

f computed in x ∈ R
n, which corresponds to the vector of the partial deriva-

tives with respect to each coordinate of x respectively. If there is an ambiguity,
the gradient will be denoted ∇xf(x,y) to emphasize that the gradient is com-
puted with respect to x only. Eventually if f is a function from R

n to R
m, then

Jf (x) ∈ R
m,n denotes the (m,n) matrix whose rows are the transposed gradient

of each elementary function x �→ f(x)[i] ∈ R. The output of a cryptographic
primitive C is considered as the target sensitive variable Z = C(P,K), where
P denotes some public variable, e.g. a plaintext chunk, where K denotes the
part of secret key the attacker aims to retrieve, and where Z takes values in
Z = {s1, . . . , s|Z|}. Among all the possible values K may take, k� will denote
the right key hypothesis. A side-channel trace will be viewed as a realization of
a D-dimensional random column vector X ∈ X ⊂ R

D.

2.2 Profiling Attacks

We will consider attacking a device through a profiling attack, made of the
following steps:

– Profiling acquisition: a dataset of Np profiling traces is acquired on the pro-
totype device: Sp � {(x1, z1), . . . , (xNp

, zNp
)}.

– Model building : a model that returns a discrete probability distribution (pdf)
F (x) is built. If the model is accurate, the returned discrete pdf, viewed
as a vector, is assumed to be a good approximation of the conditional pdf
Pr[Z|X = x].

– Attack acquisition: a dataset of Na attack traces is acquired on the target
device: Sa � {(x1, z1), . . . , (xNa

, zNa
)}.

– Predictions: a prediction vector is computed on each attack trace, based on
the previously built model: yi = F (xi), i ∈ [|1, Na|]. It assigns a score to each
key hypothesis, for each trace.

– Guessing : the scores are combined over all the attack traces to output a
likelihood for each key hypothesis; the candidate with the highest likelihood
is predicted to be the right key.

Let us denote by gSa
(k�) the actual rank of the correct key hypothesis returned

by the attack. If gSa
(k�) = 1, then the attack is considered as successful.

More details about the score vector and the rank definitions can be found in
Appendix A. The difficulty of attacking the target device is often defined as the
number of traces required to get a successful attack. As many random factors
may be involved during the attack, it is preferred to study its expected value,
the so-called Guessing Entropy (GE) [38]:

GE(Na) � E
Sa

[gSa
(k�)] . (1)

The goal of an evaluator is therefore to find a model F that minimizes Na

such that GE(Na) < 2. We will assume that this is equivalent to the problem of
accurately estimating the conditional probability distribution x �→ Pr[Z|X = x].

Gradient Visualization for General Characterization in Profiling Attacks 149

As mentioned in the introduction, we distinguish the security evaluator as a
particular attacker who additionally wishes to interpret the attack results. One
step of this diagnosis is to temporally localize where the information leakage
appeared in x. This task is usually called characterization. It consists in empha-
sizing Points of Interest (PoIs) where the information leakage may come from.
Section 4.3 will present an usual characterization technique while a new method
will be introduced through this paper.

3 Study of an Optimal Model

In this section, we address the evaluator interpretation problem in the ideal
situation when the conditional distribution is known (i.e. when the model is
perfect). The latter will be denoted as F ∗. We will show how the study of the
derivatives of such a model with respect to each coordinate of an input trace can
highlight information about our PoIs. To this end, we need two assumptions.

Assumption 1 (Sparsity). There only exists a small set of coordinates IZ �
{t1, . . . , tC |C � D} such that Pr[Z|X] = Pr [Z|X [t1] , . . . ,X [tC]].

Assumption 2 (Regularity). The conditional probability distribution F ∗ is
differentiable over X and thereby continuous.

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace. Both assumptions are realistic in a SCA context (this
point is discussed in Appendix B).

Once Assumptions 1 and 2 are stated, we may want to observe their impact
on the properties verified by the optimal model derivatives. For such a purpose
we start by considering an example on a trace x. Figure 1 (left) illustrates such
a trace in blue, and the green line depicts a PoI, namely a peak of SNR (in other
words the set of PoIs IZ is reduced to a single time index). The prediction pdfs
F ∗(x) are given at the right of the same figure: they are here represented by a
histogram over the 256 possible values of a byte. We may fairly suppose that a
slight variation on one coordinate that does not belong to IZ (dotted in gray in
Fig. 1, left) should not radically change the output of the optimal model. The
pdf remains the same, as the gray bars and blue bars perfectly match in Fig. 1
(right). However, applying a slight variation on the coordinate from IZ (dotted
in red in Fig. 1, left) may radically change the output distribution (red bars in
Fig. 1, right).

This example illustrates the more general idea that small variations applied
to the trace at a coordinate t ∈ IZ should radically change the output prediction
whereas small variations at t /∈ IZ have no impact. As a consequence, if F ∗ is
differentiable with respect to the input trace (according to Assumption 2), there
should exist s ∈ Z such that:

∂

∂x[t]
F ∗(x)[s]

{
�= 0 iff t ∈ IZ

≈ 0 iff t /∈ IZ

. (2)

150 L. Masure et al.

0 20 40 60 80

Time (samples)

−60

−50

−40

−30

−20

−10

0

10

20

Trace slice

Insignificant Change

Crucial Change

Base Trace

Peak of SNR

0 50 100 150 200 250

Sensitive Value

10−5

10−4

10−3

10−2

10−1

100

S
co
re

Predictions

Insignificant Change

Crucial Change

Base Scores

Fig. 1. Illustration of the Sensitivity Analysis principle. Left: a piece of trace. t ∈ IZ

is depicted by the green line, and slight variations dotted in red and gray. Right:
predictions of the optimal model. (Color figure online)

The latter observation can be stated in terms of the Jacobian matrix of the
estimator, denoted as JF ∗(x). Its coefficients should be zero almost everywhere,
except in columns t ∈ IZ :

JF ∗(x) =
(
0 . . . 0 Yt 0 . . . 0

)
(3)

where Yt =
(

∂
∂x[t]F

∗(x)[s1], ∂
∂x[t]F

∗(x)[s2], . . . , ∂
∂x[t]F

∗(x)
[
s|Z|

])ᵀ
and 0

denotes the zero column vector.
The properties verified by the Jacobian matrix in (3) form the cornerstone of

this paper, as it implies that we can guess from this matrix whether a coordinate
from an input trace belongs to IZ or not, i.e. whether a coordinate has been rec-
ognized as a PoI when designing the optimal model F ∗. Such a technique is part
of Sensitivity Analysis.2 Moreover, except Assumption 1, no more assumption on
the nature of the leakage model is required.

4 Our Characterization Proposal

So far we have shown that the Jacobian of an optimal model may emphasize
PoIs. In practice however, the evaluator does not have access to the optimal
model, but a trained estimation of it. A natural idea is hence to look at the
Jacobian matrix of the model estimation, hoping that its coefficients will be close
to the optimal model derivatives. Here we follow this idea in contexts where the
approximation is modeled by training Convolutional Neural Networks, described
in Sect. 4.1 (discussions can be found in Appendix C about this approximation).
Section 4.2 illustrates our claim with a toy example. Finally, Sect. 4.3 is dedicated
to the comparison of our approach with state-of-the-art methods for leakage
characterization.
2 A general definition of Sensitivity Analysis is the study of how the uncertainty in

the output of a mathematical model or system (numerical or otherwise) can be
apportioned to different sources of uncertainty in its inputs [1].

Gradient Visualization for General Characterization in Profiling Attacks 151

4.1 Gradient Approximation with Neural Networks

Neural Networks (NN) [19] aim at constructing a function F : X → P(Z)
composed of several simple operations called layers. All the layers are entirely
parametrized by (a) a real vector called trainable weights and denoted by θ that
can be automatically set; (b) other parameters defining the general architecture
of the model which are gathered under the term hyper-parameter. The latter
ones are defined by the attacker/evaluator.

Convolutional Neural Networks (CNN) form a specific type of Neural Net-
work where particular constraints are applied on the trainable weights [18]. The
training phase consists in an automatic tuning of the trainable weights and it
is done via an iterative approach that locally applies the Stochastic Gradient
Descent algorithm to minimize a loss function that quantifies the classification
error of the function F over the training set. For further details, the interested
reader may refer to [13].

To accurately and efficiently compute the Jacobian matrix of a CNN, an algo-
rithm called backward propagation (or back-propagation) can exactly compute
the derivatives with the same time complexity as computing F (x, θ) [13]. As a
consequence, computing such a matrix can be done with a negligible overhead
during an iteration of a Stochastic Gradient Descent. Actually the modern Deep
Learning libraries [2,28] are optimized to compute the required derivatives for
Stochastic Gradient Descent in the back-propagation, so the Jacobian matrix
is never explicitly stored, and it is easier to get the loss function gradient with
respect to the input trace ∇x�(F (x, θ), z∗), where � : P(Z) × Z → R+ denotes
the loss function, and z∗ denotes the true sensitive value. Hopefully, studying
either the latter one or JF (x) is fairly equivalent, as one coordinate of the loss
function gradient is a function of elements from the corresponding column in the
Jacobian matrix:

∇x�(F (x, θ), z) = JF (x, θ)T ∇y�(F (x, θ), z). (4)

That is why we propose to visualize the latter gradient to characterize PoIs
in the context of a CNN attack, instead of the Jacobian matrix (unless explicit
mention). To be more precise, we visualize the absolute value of each coordinate
of the gradient in order to get the sensitivity magnitude. In the following, such
a method is named Gradient Visualization (GV for short).

4.2 Example on Simulated Data

To illustrate and explain the relevance of the GV method, and before going on
experimental data, we here propose to apply it on a toy example, aiming at
simulating simple D-dimensional leakages from an n-bit sensitive variable Z.
The traces are defined such that for every t ∈ �1,D�:

xi[t] =

{
Ui + Bi, if t /∈ {t1, . . . , tm}
zt,i + Bi otherwise

, (5)

152 L. Masure et al.

where (Ui)i, (Bi)i and all (zt,i)i are independent, Ui ∼ B(n, 0.5), Bi ∼ N (0, σ2)
and where (z1,i, . . . , zm,i) is a m-sharing of zi for the bitwise addition law. This
example corresponds to a situation where the leakages on the shares are hidden
among values that have no relation with the target.

Every possible combination of the m-sharing has been generated and repli-
cated 100 times before adding the noise, in order to have an exhaustive dataset.
Therefore, it contains 100 × 2mn simulated traces. We ran the experiment for
n = 4 bits, m ∈ {2, 3},D = 100, and a varying noise σ2 ∈ [0, 1]. Once the
data were generated, we trained a neural network with one hidden layer made of
D neurons. Figure 2 presents some examples obtained for 2 (left) and 3 shares
(right). We clearly see some peaks at the coordinates where the meaningful
information have been placed. Interestingly, this simulation shows that a second
order masking has been defeated, though it required 16 times more simulated
data and less noised data (σ2 ≥ 0.1) than for the same experiment against first
order masking. Further works might study how much the noise magnitude σ2

and the number of shares impact the efficiency of the training. It is however
beyond the scope of this paper.

Fig. 2. Gradient of the loss function respectively for two and three shares.

4.3 Comparison with SNR for Characterization

Now we have shown that Gradient Visualization is relevant for characterization
on simulated data, one may wonder to what extent this method would be useful
compared to other characterization techniques. In this section, we compare our
contribution to the SNR used for PoIs selection in SCA. For each time sample
t, it is estimated by the following statistics:

SNR[t] �
Var

Z

(
E [X[t]|Z = z]

)
E
Z

[
Var (X[t]|Z = z)

] , (6)

where the numerator denotes the signal magnitude and the denominator denotes
the noise magnitude estimate (see [22] for more details on its application in the
SCA context). One has to keep in mind that the SNR is a statistical tool, and

Gradient Visualization for General Characterization in Profiling Attacks 153

produces a single characterization from all the profiling traces; whereas our
method gives one map for each trace, though we might average them. This
observation has two consequences. First, if an SNR characterization is launched
in presence of masking, every trace coordinate X[t] is likely to be independent
from Z, which will lead the numerator to converge towards 0. Secondly, if an
SNR characterization is launched in presence of de-synchronization (which is
likely to introduce a lot of noise in the traces), then the denominator is expected
to explode as argued in [33, Section 3.2]. To sum-up, an SNR characterization
cannot directly highlight higher order leakages when the random material (used
to mask and/or desynchronise the data) is not assumed to be known. Some solu-
tions to deal with this issue have been proposed, e.g. by pre-processing the traces
with some functions combining tuple of points [31] or by applying realignment
techniques [10,27,39].

4.4 Related Works

The idea to use the derivatives of differentiable models to visualize information
is not new. Following the emergence of deep convolutional networks, [35] has
first proposed the idea of GV to generate a so-called Sensitivity Map for image
recognition. The approach was motivated by the fact that such a map can be
computed for free thanks to the back-propagation algorithm. A derived method,
called Guided Backpropagation has also been proposed in [36]. The latter one
slightly modifies the back-propagation rule in a ReLU layer in order to filter
the contributions from the upper layers. Actually [25] states that visualizing the
gradient only tracks an explanation to the variation of a final decision (F (x) in
our context), and not directly the decision itself. To this end, they propose a
visualization method called Layerwise Relevance Propagation (LRP). Another
method called Deconvolution has been proposed in [40] in order to give insight
about the regions of an input data that contribute to the activation of a given
feature in a model (either in an intermediate layer or in the output layer). In
the domain of Image Recognition, these methods have been shown to be more
relevant than GV.

However, the SCA and Image Recognition domains differ. In the latter one,
the decision is highly diluted among lots of pixels, and the decision surface
might be locally flat, though we are in a very determining area. Hopefully in
a SCA context, Assumption 1 states that it is reasonable to consider that the
information is very localized. That is why we are in a particular case where
looking at the output sensitivity may be more interesting than other visualization
methods.

5 Experiment Description

So far we have claimed that relevant information can be extracted from the
loss gradient of a differentiable model. Following this idea, it has been shown to
be efficient to localize PoIs on simulated data and validated that this method

154 L. Masure et al.

might overcome some weaknesses of state-of-the-art techniques. We now plan to
experimentally verify these claims. Before introducing the results in Sect. 6, we
first describe our investigations. In Sect. 5.1, we present the CNN architecture
that will be used for profiling. Finally, Sect. 5.2 gives an exhaustive description
of all the considered parameters for our experiments.

5.1 CNN Architecture

For these experiments, we will consider the same architecture as proposed in
[5,32], with the same notations since the training will be done on the same
dataset (see Sect. 5.2):

s ◦ [λ ◦ σ]n1 ◦ δG ◦ [δ ◦ σ ◦ μ ◦ γ]n3 , (7)

where γ denotes a convolutional layer, σ denotes an activation function i.e. a
non-linear function applied elementwise, μ denotes a batch-normalization layer,
δ denotes an average pooling layer, λ denotes a dense layer and s denotes the
softmax layer. Furthermore, n1 denotes the number of dense blocks, namely the
composition [λ ◦ σ]. Likewise, n3 denotes the number of convolutional blocks,
namely [δ ◦ σ ◦ μ ◦ γ].

As the ultimate goal is not to get the better possible architecture, but rather
having a simple and efficient one, a lighter baseline has been chosen compared
to the original architecture proposed in the cited papers:

– The number of filters in the first layers has been decreased (10 instead of 64),
though it is still doubled between each block; and the filter size has been set
to 5.

– The dense layers contain less neurons: 1,000 instead of 4,096.
– A global pooling layer δG, has been added at the top of the last block. Its

pooling size equals the width of the feature maps in the last convolutional
layer, so that each feature maps are reduced to one point. While it acts as a
regularizer (since it will drastically reduce the number of neurons in the first
dense layer), the global pooling layer also forces the convolutional filters to
better localize the discriminative features [41].

5.2 Settings

Our experiments have been done with the 50, 000 EM traces from the ASCAD
database [32]. Each trace is made of 700 time samples.3 Here-after, the three dif-
ferent configurations investigated in this paper are presented with the notations
taken from [32]. For each experiment we precise the label to be learned. This
label is known during the training/profiling phase but not during the test/attack
phase:

– Experiment 1 (no countermeasure): the traces are synchronized, the
label to be learned by the Neural Network is Z = Sbox(P ⊕ K) ⊕ rout

3 It corresponds to 26 clock cycles.

Gradient Visualization for General Characterization in Profiling Attacks 155

(in other terms, rout is assumed to be known, like P). The traces correspond
to the dataset ASCAD.h5, and the labels are recomputed from the metadata
field of the hdf5 structure.

– Experiment 2 (artificial shift): the labels are the same as in Exp. 1 but the
traces are artificially shifted to the left of a random number of points drawn
from a uniform distribution over �0, 100�. Concretely, the traces correspond
to the dataset ASCAD_desync100.h5.

– Experiment 3 (synchronized traces, with unknown masking): we tar-
get Z = Sbox(P ⊕ K), i.e. we have no knowledge of the masks rout (neither
during profiling or attack phase). Concretely, the traces correspond to the
dataset ASCAD.h5 and the labels are directly imported from the field labels
in the hdf5 structure.

It is noticeable that in every case, as the key is fixed, and both the plaintext and
rout are completely random and independent. Therefore, the labels are always
balanced.

The Neural Networks source code is implemented on Python thanks to the
Pytorch [28] library and is run on a workstation with a Nvidia Quadro M4000
GP-GPU with 8 GB memory and 1664 cores.

We will use the Cross-Entropy (also known as Negative Log Likelihood) as a
loss function. It particularly fits our context as it is equivalent as minimizing the
Kullback-Leibler divergence, which measures a divergence between two proba-
bility distributions, namely F ∗(x) and F (x, θ) in our case. Therefore, the model
F (., θ) will converge towards F ∗ during the training.

For each tested neural network architecture, a 5-fold cross-validation strategy
has been followed. Namely, the ASCAD database has been split into 5 sets
S1, . . . , S5 of 10, 000 traces each, and the i-th cross-validation, denoted by CVi,
corresponds to a training dataset Sp = ∪j �=iSj and a validation dataset Sv = Si.
The given performance metrics and the visualizations are averaged over these 5
folds. The optimization is actually done with a slight modification of Stochastic
Gradient Descent called Adam [15]. The learning rate is always set to 10−4.
Likewise, the batch size has been fixed to 64. For each training, we operate 100
epochs, i.e. each couple (xi, zi) is passed 100 times through an SGD iteration, and
we keep as the best model the one that has the lowest GE on the validation set.4

6 Experimental Results

This section presents experimentations of the GV in different contexts, namely
(Exp. 1) when the implementation embeds no countermeasure, (Exp. 2) when
traces are de-synchronized and (Exp. 3) when masking is applied. The methods
used to train the CNNs, to tune their hyper-parameters and to generate the GV
have been presented in Sect. 5.

4 Following the recent work in [29], the classical Machine Learning metrics (accuracy,
recall) are ignored, as they are not proved to fit well the context of SCA.

156 L. Masure et al.

6.1 Application Without Countermeasure

In application context (Exp. 1) (i.e. no countermeasure) several CNNs have
been trained with the architecture hyper-parameters in (7) specified as listed in
Table 1 (left). Since the masked data are here directly targeted (i.e. the masks
are supposed to be known), no recombination (thereby no dense layer) should
be required, according to [32], Sec.4.2.4. The parameter n1 should therefore be
null. However, to validate this intuition we let it vary in {0, 1, 2}. The validation
loss corresponding to these values is given in Table 1 (center), where N∗ denotes
the minimum number of traces required to have a GE lower than 1. Even if this
minimum is roughly the same for the 3 different configurations, we selected the
best one (i.e. n1 = 1) for our best CNN architecture. Figure 3 (left) presents the
corresponding GV, and the corresponding SNR (right).5 It may be observed that
the peaks obtained with GV and SNR are identical: the highest point in the SNR
is the second highest point in GV, whereas the highest point in GV is ranked 7-th
in the SNR peaks. More generally both methods target the same clock cycle (the
19-th). These observations validate the fact that our characterization method is
relevant for an unprotected target.

Table 1. Architecture hyper-parameters (left) and performance metrics without coun-
termeasure (center) and with de-synchronization (right).

0 100 200 300 400 500 600 700

Time (samples)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

G
ra
d
ie
n
t

Gradient averaged on a 5-fold cross validation
No masking, no desynchronization

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N
R

SNR for Z = SBox(p[3] [3]) rout
Synchronized traces

Fig. 3. Case where no countermeasure is considered. Left: GV for the trained model
with 1 dense layer. Right: SNR.

5 An alternative representation with the Jacobian matrix is given in Appendix D,
Fig. 8.

Gradient Visualization for General Characterization in Profiling Attacks 157

6.2 Application with an Artificial De-synchronization

We now add a new difficulty by considering the case of de-synchronization
as described in Sect. 5.2. The hyper-parameter grid is exactly the same as in
Sect. 6.1, and the corresponding loss is given in Table 1 (right). Faced to mis-
alignment, the considered architectures have still good performances, and the
attacks succeeded in roughly the same number of traces than before. Interest-
ingly, Fig. 4 shows that the GV succeeds to recover the leakage localization while
the SNR does not (see Fig. 9 in AppendixD). Actually, the gradient averaged
over the profiling traces Fig. 4 (left) shows that, instead of having a small number
of peaks, a band is obtained whose width approximately equals the maximum
quantity of shift applied in the traces, namely 100 points. Moreover, individual
gradients Fig. 4 (right) bring a single characterization for each trace, enabling to
guess approximately the shift applied to each trace.

0 100 200 300 400 500 600 700

Time (samples)

0.000

0.001

0.002

0.003

0.004

0.005

0.006

G
ra
d
ie
n
t

Loss function gradient (average)
No masking, random shift (100)

Fig. 4. Case where de-synchronization is considered. GV for each trace separately
(right) and averaged (left).

6.3 Application with a First Order Masking

The last experiment concerns the application of GV in presence of masking.
Several model configurations have been tested which correspond to the hyper-
parameters listed in Table 2 (left). We eventually selected the 8 models that
achieved the best GE convergence rate (right).

For the selected architectures, our first attempt to use GV did not give full
satisfaction. As an illustration, Fig. 5 (left) presents it for one of the tested
architectures (averaged over the 5 folds of the cross-validation). Indeed, it looks
difficult to distinguish PoIs (i.e. those identified by our SNR characterization, see
the right-hand side of Fig. 6) from ghost peaks (i.e. peaks a priori independent
of the sensitive target). To explain this phenomenon, we decided to study the
validation loss of the trained models. Figure 5 (right) presents it for one model
and for each of the 5 cross-validation folds CVi, i ∈ [0..4].

158 L. Masure et al.

Table 2. Masking case. Left: architecture hyper-parameters (bold values refer to the
best choices). Right: GE for the 8 best architectures.

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

G
ra
d
ie
n
t

Loss function gradient (average)
With masking, no shift

0 20 40 60 80 100

Epoch

7.70

7.75

7.80

7.85

7.90

7.95

8.00

8.05

L
os
s
(C

ro
ss
-E
n
tr
op
y)

Loss for the best architecture (Exp.3)
Training losses in dotted lines, Validation losses in plain lines

CV 0

CV 1

CV 2

CV 3

CV 4

Fig. 5. Left: GV in presence of masking (without early-stopping). Right: validation
loss for each fold.

It may be observed in Fig. 5 (right) that the training and validation loss
curves proceeded a fast big decrease after an initial plateau during the first 15
epochs. After that, the validation loss starts increasing while the training loss
still decreases. After roughly 50 epochs, the validation loss goes on a regime
with unstable results, but still higher than the training loss. These observations
are clues of overfitting. It means that the model exploits (non-informative) leak-
age not localized in the PoIs to memorize the training data and to improve the
training loss. Such a strategy should not generalize well on the validation traces.
As we are looking for models that implement a strategy that are generalizable
on unseen traces, we propose to use a regularization technique called early-
stopping [13]: the training is stopped after a number of epochs called patience
(in our case 10) if no remarkable decrease (i.e. up to a tolerance term, 0.25 bits
here) is observed in the validation loss. With this slight modification, the previ-
ous architectures are trained again from scratch, and a better GV is produced
(see the left-hand side of Fig. 6). As the main peaks are separated enough, an
evaluator may conclude that they represent different leakages.

Gradient Visualization for General Characterization in Profiling Attacks 159

0 100 200 300 400 500 600 700

Time (samples)

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

G
ra
d
ie
n
t

Loss function gradient (average)
With masking, no shift

0 100 200 300 400 500 600 700

Time (samples)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
N
R

Signal-to-Noise Ratios
ASCAD database

rout
rout

Fig. 6. Early-stopping is applied. Left: GV. Right: corresponding SNR.

6.4 Comparison in the Context of Template Attacks

A careful observation of Fig. 6 shows that the main peaks given by the GV are not
exactly aligned with those given by the SNR characterization (performed under
the hypothesis that the masks are known). For GV, the main peak appears at
the points corresponding to the 20-th clock cycle, which is one cycle after the one
previously targeted by both the GV and the SNR in the previous case where no
countermeasure was considered (Sect. 6.1). We validated that this phenomenon
occurred for every successful visualization produced by GV. Furthermore, con-
cerning the peaks related to the mask leakage, the GV only emphasizes one
clock cycle (the 6-th) whereas the SNR highlights two of them: the 6-th and
the 7-th. It implies that the GV should not be taken as an exact equivalent to
the SNR. We have not found any track of explanation to justify this slight shift
but it raises the question whether the PoIs highlighted by GV represent relevant
leakages and can be used in the context of Template Attacks.

To give an answer, we decided to use our characterization method as a pre-
processing for a Template Attack, and compare it to two pre-processing methods:
SNR (through PoIs selection) and PCA (through dimensionality reduction).

The input dimension of the traces are reduced to 2n, n ∈ {1, 2, 3, 4, 5} points,
based on the following methods:

– SNR strategy: the 2n−1 highest PoIs from the mask SNR and the 2n−1

highest PoIs from the masked data SNR are selected;
– PCA strategy: the 2n first components in a decreasing order of contribution

are selected;
– GV strategy: the 2n−1 highest PoIs from the GV are selected from the area

around the 6-th clock cycle. Likewise, the other half comes from the peaks in
the area around the 20-th clock cycle.

Remark 1. To make a fair comparison in the context of a first order masking,
we assume that we know the mask during the characterization phase for SNR,
so that we can localize PoIs for the mask and the masked data. Notice that we

160 L. Masure et al.

do not assume the mask knowledge neither during the profiling phase nor for
the other strategies. Obviously, this scenario is not realistic as if one has access
to the mask during characterization, then the latter one is very likely to be also
available during the profiling phase.

Once reduced, the traces are processed with a first order Template Attack [7],
and the GE is estimated. The results are given on Fig. 7. The plain curves denote
the GE for GV whereas the dotted curves denote either GE obtained with SNR
(left) or PCA (right).

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

G
u
es
si
n
g
E
n
tr
op
y

Guessing Entropy for Template Attack
with SNR and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

100 101 102 103 104

Number of traces

0

20

40

60

80

100

120

140

G
u
es
si
n
g
E
n
tr
op
y

Guessing Entropy for Template Attack
with PCA and Gradient characterization

16 PoIs

2 PoIs

32 PoIs

4 PoIs

8 PoIs

Fig. 7. Comparison of the guessing entropy for GV based attacks in plain lines and:
(left) SNR based attacks, or (right) PCA based attacks in dotted lines.

From Fig. 7 we can observe several things:

– Only a few PoIs from the GV strategy are needed to get a successful attack.
The optimal number of extracted PoIs is 4. Beyond that, the other PoIs bring
more difficulty in the Template Attack than they bring new information (due
to the increasing dimensionality).

– When the SNR strategy is followed, the optimal attack is done with 2 PoIs
and the more PoIs are used, the less efficient are the attacks. This observation
confirms that SNR selects relevant PoIs as expected. However, when compar-
ing the SNR and GV strategies with a same number of PoIs, the latter one
appears to be always better, except for 32 PoIs where both strategies seem
equal.

– The PCA strategy does not work well for the two or four first extracted com-
ponents. However, when considering eight components and above, it achieves
an efficiency as good as the GV strategy, and even sometimes better.

– In any case, the Template Attacks need much more traces to get a GE con-
verging towards zero than the optimal CNN attack presented in Table 2.

Based on the presented experiments, we may draw several conclusions on the
GV efficiency. First of all, it seems to be an accurate characterization method,
almost always much better than that based on an SNR. This first conclusion

Gradient Visualization for General Characterization in Profiling Attacks 161

enables to answer the question previously asked: the targeted PoIs in GV are
relevant leakages and can be used in the context of Template Attacks. A pos-
sible and informal explanation would be that choosing the couples of samples
that maximize the information about the sensitive variable is not equivalent as
selecting the single samples that independently maximize the information on
each share.

Secondly, GV can be used as a reliable dimensionality reduction pre-
processing in presence of counter-measures, even more reliable than PCA in
our cases where one makes a reduction to a very few dimensions (2 or 4).
However, this conclusion has a minor interest, as the GV seen as a pre-processing
method is done post-mortem, and the training of a CNN model did not suffer
from a high dimension input. And last, but not least, the GV method unfortu-
nately faces a drawback: if the trained CNN overfits, then the GV might suffer
from the presence of ghost peaks. That is why the overfitting must be carefully
monitored. In this sense, visualizing the gradient can hopefully help to assess
whether it is the case or not.

7 Conclusion

In this paper, we have theoretically shown that a method called Gradient Visu-
alization can be used to localize Points of Interest. This result relies on two
assumptions that can be considered as realistic in a Side Channel context.

Generally, the efficiency of the proposed method only depends on the ability
of the profiling model to succeed in the attack. In the case where countermeasures
like masking or misalignment are considered, CNNs are shown to still build
good pdf estimations, and thereby the Gradient Visualization provides a good
characterization tool. In addition, such a visualization can be made for each trace
individually, and the method does not require more work than needed to perform
a profiling with CNNs leading to a successful attack. Therefore, characterization
can be done after the profiling phase whereas profiling attacks with Templates
often requires to proceed a characterization phase before.

We verified the efficiency of our proposed method on simulated data. It has
been shown that as long as a Neural Network is able to have slightly better
performance than randomness, it can localize points that contain the informative
leakage.

On experimental traces, we have empirically shown that Gradient Visualiza-
tion is at least as good as state-of-the-art characterization methods, in different
cases corresponding to the presence or not of different countermeasures. Not only
it can still localize Points of Interest in presence of desynchronization or masking
but it has also been shown that different PoIs can be emphasized compared to
the first ones highlighted by SNR. These new PoIs have been shown to be at
least as relevant as the ones proposed by SNR.

Further work would study such a technique in presence of both desynchro-
nization and masking, or in presence of higher order masking scheme.

162 L. Masure et al.

A Profiling Attacks

As the model is aiming at approximating the conditional pdf, a Maximum Like-
lihood score can be used for the guessing:

dSa
[k] �

Na∑
i=1

log (yi[zi]) where zi = C(pi, k). (8)

Based on these scores, the key hypotheses are ranked in a decreasing order.
Finally, the attacker chooses the key that is ranked first (resp. the set of first o
ranked keys). More generally, the rank gSa

(k�) of the correct key hypothesis k�

is defined as:

gSa
(k�) �

∑
k∈K

1dSa [k]>dSa [k�]. (9)

Remark 2. In practice, to compute GE(Na), sampling many attack sets may be
very prohibitive in an evaluation context, especially if we need to reproduce the
estimations for many values of Na; one solution to circumvent this problem is,
given a validation set Sv of Nv traces, to sample some attack sets by permuting
the order of the traces into the validation set. dSa

can then be computed with a
cumulative sum to get a score for each Na ∈ [|1, Nv|], and so is gSa

(k�). While
this trick gives good estimations for Na � Nv, one has to keep in mind that
the estimates become biased when Na → Nv. This problem also happens in
Machine Learning when one lacks data to validate a model. A technique called
Cross-Validation [34] enables to circumvent this problem by splitting the dataset
into q parts called folds. The profiling is done on q − 1 folds and the model is
evaluated with the remaining fold. By repeating this step q times, the measured
results can be averaged so that they are less biased.

B Study of an Optimal Model

Informally, Assumption 1 tells that the leaking information is non-uniformly
distributed over the trace X, i.e. only a few coordinates contain clues about the
attacked sensitive variable. Assumption 1 has been made in many studies such
as [4]. Depending on the countermeasures implemented into the attacked device,
the nature of IZ may be precised. Without any countermeasure, and supposing
that the target sensitive variable only leaks once, Assumption 1 states that IZ

is only a set of contiguous and constant coordinates, regardless the input traces.
Adding masking will split IZ into several contiguous and fixed sets whose

number is equal to the number of shares in the masking scheme (or at least equal
to the number of shares if we relax the hypothesis of one leakage per share). For
example if M (resp. Z ⊕ M) denotes the mask (resp. masked data) variable
leaking at coordinate t1 (resp. t2), then M and X[t] with t �= t1 are independent

Gradient Visualization for General Characterization in Profiling Attacks 163

(resp. Z and X[t] with t �= t2 are independent). The conditional probability
Pr[Z = z|X = x] satisfies:

Pr[Z = z|X = x]

=
∑
m

Pr[Z ⊕ M = z ⊕ m|X[t1] = x[t1]]Pr[M = m|X[t2] = x[t2]] (10)

Adding de-synchronization should force IZ to be non-constant between each
trace.

Likewise, Assumption 2 is realistic because it is a direct corollary of a Gaus-
sian leakage model for the traces [7,9]. Such an hypothesis is common for Side
Channel Analysis [7]. It implies that x �→ Pr[X = x|Z = z] is differentiable and:

∇xPr[X = x|Z = z] = Σ−1
z (x − μz)Pr[X = x|Z = z] (11)

where μz and Σ−1
z respectively denote the mean vector and the covariance

matrix of the normal probability distribution related to the target sensitive value
hypothesis z. Then, from Bayes’ theorem, (11) and the basic rules for derivatives
computation, it gives an analytic expression of ∇xF ∗(x), thereby proving that
F ∗ is differentiable with respect to the input trace.

C Neural Networks

Neural Networks (NN) are nowadays the privileged tool to address the classifi-
cation problem in Machine Learning [19]. They aim at constructing a function
F : X → P(Z) that takes data x and outputs vectors y of scores. The classifica-
tion of x is done afterwards by choosing the label z∗ = argmaxz∈Z y[z], but the
output can be also directly used for soft decision contexts, which corresponds
more to Side Channel Analysis as the NN outputs on attack traces will be used
to compute the score vector in (8). In general F is obtained by combining several
simpler functions, called layers. An NN has an input layer (the identity over the
input datum x, an output layer (the last function, whose output is the scores
vector y and all other layers are called hidden layers. The nature (the number
and the dimension) of the layers is called the architecture of the NN. All the
parameters that define an architecture, together with some other parameters
that govern the training phase, have to be carefully set by the attacker, and
are called hyper-parameters. The so-called neurons, that give the name to the
NNs, are the computational units of the network and essentially process a scalar
product between the coordinate of its input and a vector of trainable weights (or
simply weights) that have to be trained. We denote θ the vector containing all
the trainable weights. Therefore, for a fixed architecture, an NN is completely
parameterized by θ. Convolutional Neural Networks (CNN) implement other
operations, but can be rewritten as regular NN with specific constraints on the
weights [18]. Each layer processes some neurons and the outputs of the neuron
evaluations will form new input vectors for the subsequent layer.

164 L. Masure et al.

The ability of a Neural Network to approximate well a target probabilis-
tic function F ∗ by minimizing a loss function on sampled training data with
Stochastic Gradient Descent is still an open question. This is what we call the
mystery of Deep Learning. It theoretically requires a huge quantity of training
data so that the solution obtained by loss minimization generalizes well, though
it empirically works with much less data. Likewise, finding the minimum with
Stochastic Gradient Descent is theoretically not proved, but has been empirically
shown to be a good heuristic. For more information, see [14]. Indeed, though it
raises several theoretical issues, it has been empirically shown to be efficient,
especially in SCA with CNN based attacks [5,30].

D Experimental Results

D.1 The Jacobian Matrix

In this appendix, we present the Jacobian matrix visualization, equivalent to
the GV. It shows, in addition, that some target values seem more sensitive,
especially those whose Hamming weight is shared by only few other values (so it
gives clues about how the traces leak sensitive information). Figure 8 (top) shows
such a matrix in application context (Exp. 1) as described in Sect. 6, while Fig. 8
(bottom) shows the Jacobian matrix corresponding to the application context
(Exp. 2). Fig. 9 shows the SNR computed on de-synchronized traces.

Fig. 8. Jacobian matrix for the best models in application contexts (Exp. 1) (top) and
(Exp. 2) (bottom).

Gradient Visualization for General Characterization in Profiling Attacks 165

Fig. 9. The SNR in the case where de-synchronization is considered.

References

1. Sensitivity analysis - Wikipedia. https://en.wikipedia.org/wiki/Sensitivity
analysis

2. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning.
arXiv:1605.08695 [cs], 27 May 2016

3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model.
In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28632-5 2

4. Cagli, E., Dumas, C., Prouff, E.: Enhancing dimensionality reduction methods for
side-channel attacks. In: Homma, N., Medwed, M. (eds.) CARDIS 2015. LNCS,
vol. 9514, pp. 15–33. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
31271-2 2

5. Cagli, E., Dumas, C., Prouff, E.: Convolutional neural networks with data aug-
mentation against jitter-based countermeasures. In: Fischer, W., Homma, N. (eds.)
CHES 2017. LNCS, vol. 10529, pp. 45–68. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-66787-4 3

6. Cagli, E., Dumas, C., Prouff, E.: Kernel discriminant analysis for information
extraction in the presence of masking. In: Lemke-Rust, K., Tunstall, M. (eds.)
CARDIS 2016. LNCS, vol. 10146, pp. 1–22. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-54669-8 1

7. Chari, S., Rao, J.R., Rohatgi, P.: Template attacks. In: Kaliski, B.S., Koç, K.,
Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 13–28. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36400-5 3

8. Choudary, M.O., Kuhn, M.G.: Efficient stochastic methods: profiled attacks beyond
8 bits. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 85–103.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3 6

9. Choudary, O., Kuhn, M.G.: Efficient template attacks. In: Francillon, A., Rohatgi,
P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 253–270. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-08302-5 17

10. Durvaux, F., Renauld, M., Standaert, F.-X., van Oldeneel tot Oldenzeel, L.,
Veyrat-Charvillon, N.: Efficient removal of random delays from embedded soft-
ware implementations using hidden Markov models. In: Mangard, S. (ed.) CARDIS
2012. LNCS, vol. 7771, pp. 123–140. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37288-9 9

https://en.wikipedia.org/wiki/Sensitivity_analysis
https://en.wikipedia.org/wiki/Sensitivity_analysis
http://arxiv.org/abs/1605.08695
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-319-31271-2_2
https://doi.org/10.1007/978-3-319-31271-2_2
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-66787-4_3
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/978-3-319-54669-8_1
https://doi.org/10.1007/3-540-36400-5_3
https://doi.org/10.1007/978-3-319-16763-3_6
https://doi.org/10.1007/978-3-319-08302-5_17
https://doi.org/10.1007/978-3-642-37288-9_9
https://doi.org/10.1007/978-3-642-37288-9_9

166 L. Masure et al.

11. Eisenbarth, T., Paar, C., Weghenkel, B.: Building a side channel based disassem-
bler. In: Gavrilova, M.L., Tan, C.J.K., Moreno, E.D. (eds.) Transactions on Com-
putational Science X. LNCS, vol. 6340, pp. 78–99. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-17499-5 4

12. Gilmore, R., Hanley, N., O’Neill, M.: Neural network based attack on a masked
implementation of AES. In: 2015 IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), pp. 106–111, May 2015. https://doi.org/10.
1109/HST.2015.7140247

13. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. Adaptive Computation
and Machine Learning Series. MIT Press, Cambridge (2017)

14. Hardt, M.: Off the convex path. http://offconvex.github.io/
15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980

[cs], 22 December 2014
16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)

CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

18. LeCun, Y., Bengio, Y.: Convolutional networks for images, speech, and time series.
In: The Handbook of Brain Theory and Neural Networks, pp. 255–258. MIT Press,
Cambridge (1998). http://dl.acm.org/citation.cfm?id=303568.303704

19. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444
(2015). https://doi.org/10.1038/nature14539. http://www.nature.com/articles/
nature14539

20. Lerman, L., Bontempi, G., Markowitch, O.: A machine learning approach against
amasked AES: reaching the limit of side-channel attacks with a learningmodel.
J. Cryptographic Eng. 5(2), 123–139 (2015). https://doi.org/10.1007/s13389-014-
0089-3

21. Maghrebi, H., Portigliatti, T., Prouff, E.: Breaking cryptographic implementations
using deep learning techniques. In: Carlet, C., Hasan, M.A., Saraswat, V. (eds.)
SPACE 2016. LNCS, vol. 10076, pp. 3–26. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49445-6 1

22. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the
Secrets of Smart Cards. Springer, Boston (2007). https://doi.org/10.1007/978-0-
387-38162-6. OCLC: ocm71541637

23. Martinasek, Z., Dzurenda, P., Malina, L.: Profiling power analysis attack based on
MLP in DPA contest v4.2. In: 2016 39th International Conference on Telecommu-
nications and Signal Processing (TSP), pp. 223–226, June 2016. https://doi.org/
10.1109/TSP.2016.7760865

24. Mather, L., Oswald, E., Bandenburg, J., Wójcik, M.: Does my device leak infor-
mation? An a priori statistical power analysis of leakage detection tests. In: Sako,
K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 486–505. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7 25

25. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and under-
standing deep neural networks. Digit. Sig. Process. 73, 1–15 (2018). https://
doi.org/10.1016/j.dsp.2017.10.011. http://linkinghub.elsevier.com/retrieve/pii/
S1051200417302385

26. Moradi, A., Richter, B., Schneider, T., Standaert, F.X.: Leakage detection with
the x2-test. IACR Trans. Cryptographic Hardware Embed. Syst. 2018(1), 209–
237 (2018)

https://doi.org/10.1007/978-3-642-17499-5_4
https://doi.org/10.1109/HST.2015.7140247
https://doi.org/10.1109/HST.2015.7140247
http://offconvex.github.io/
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/3-540-48405-1_25
http://dl.acm.org/citation.cfm?id=303568.303704
https://doi.org/10.1038/nature14539
http://www.nature.com/articles/nature14539
http://www.nature.com/articles/nature14539
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/s13389-014-0089-3
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-3-319-49445-6_1
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1007/978-0-387-38162-6
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1109/TSP.2016.7760865
https://doi.org/10.1007/978-3-642-42033-7_25
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1016/j.dsp.2017.10.011
http://linkinghub.elsevier.com/retrieve/pii/S1051200417302385
http://linkinghub.elsevier.com/retrieve/pii/S1051200417302385

Gradient Visualization for General Characterization in Profiling Attacks 167

27. Nagashima, S., Homma, N., Imai, Y., Aoki, T., Satoh, A.: DPA using phase-based
waveform matching against random-delay countermeasure. In: 2007 IEEE Inter-
national Symposium on Circuits and Systems, pp. 1807–1810, May 2007. https://
doi.org/10.1109/ISCAS.2007.378024

28. Paszke, A., et al.: Automatic differentiation in Pytorch. In: NIPS-W (2017)
29. Picek, S., Heuser, A., Jovic, A., Bhasin, S., Regazzoni, F.: The curse of class

imbalance and conflicting metrics with machine learning for side-channel eval-
uations. IACR Trans. Cryptographic Hardware Embed. Syst. 2019(1), 209–237
(2018). https://doi.org/10.13154/tches.v2019.i1.209-237. https://tches.iacr.org/
index.php/TCHES/article/view/7339

30. Picek, S., Samiotis, I.P., Heuser, A., Kim, J., Bhasin, S., Legay, A.: On the perfor-
mance of deep learning for side-channel analysis. IACR Cryptology ePrint Archive
2018, 4 (2018). http://eprint.iacr.org/2018/004

31. Prouff, E., Rivain, M., Bevan, R.: Statistical analysis of second order differential
power analysis. IEEE Trans. Comput. 58(6), 799–811 (2009). https://doi.org/10.
1109/TC.2009.15. http://ieeexplore.ieee.org/document/4752810/

32. Prouff, E., Strullu, R., Benadjila, R., Cagli, E., Dumas, C.: Study of deep learning
techniques for side-channel analysis and introduction to ASCAD database. IACR
Cryptology ePrint Archive 2018, 53 (2018). http://eprint.iacr.org/2018/053

33. Rivain, M., Prouff, E., Doget, J.: Higher-order masking and shuffling for software
implementations of block ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS,
vol. 5747, pp. 171–188. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04138-9 13

34. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From The-
oryto Algorithms. Cambridge University Press (2014). https://doi.org/10.1017/
CBO9781107298019. http://ebooks.cambridge.org/ref/id/CBO9781107298019

35. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks:
visualising image classification models and saliency maps. arXiv:1312.6034 [cs], 20
December 2013

36. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplic-
ity: the all convolutional net. arXiv:1412.6806 [cs], 21 December 2014

37. Standaert, F.-X., Archambeau, C.: Using subspace-based template attacks to com-
pare and combine power and electromagnetic information leakages. In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 411–425. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 26

38. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of
side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS,
vol. 5479, pp. 443–461. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01001-9 26

39. van Woudenberg, J.G.J., Witteman, M.F., Bakker, B.: Improving differential power
analysis by elastic alignment. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol.
6558, pp. 104–119. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19074-2 8. http://dl.acm.org/citation.cfm?id=1964621.1964632

40. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
arXiv:1311.2901 [cs], 12 November 2013

41. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features
for discriminative localization. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 2921–2929, June 2016. https://doi.org/10.1109/
CVPR.2016.319

https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.1109/ISCAS.2007.378024
https://doi.org/10.13154/tches.v2019.i1.209-237
https://tches.iacr.org/index.php/TCHES/article/view/7339
https://tches.iacr.org/index.php/TCHES/article/view/7339
http://eprint.iacr.org/2018/004
https://doi.org/10.1109/TC.2009.15
https://doi.org/10.1109/TC.2009.15
http://ieeexplore.ieee.org/document/4752810/
http://eprint.iacr.org/2018/053
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1007/978-3-642-04138-9_13
https://doi.org/10.1017/CBO9781107298019
https://doi.org/10.1017/CBO9781107298019
http://ebooks.cambridge.org/ref/id/CBO9781107298019
http://arxiv.org/abs/1312.6034
http://arxiv.org/abs/1412.6806
https://doi.org/10.1007/978-3-540-85053-3_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/978-3-642-19074-2_8
http://dl.acm.org/citation.cfm?id=1964621.1964632
http://arxiv.org/abs/1311.2901
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/CVPR.2016.319

Fast Analytical Rank Estimation

Liron David(B) and Avishai Wool(B)

School of Electrical Engineering, Tel Aviv University, 69978 Ramat Aviv, Israel
lirondavid@gmail.com, yash@eng.tau.ac.il

Abstract. Rank estimation is an important tool for a side-channel eval-
uations laboratories. It allows estimating the remaining security after an
attack has been performed, quantified as the time complexity and the
memory consumption required to brute force the key given the leakages
as probability distributions over d subkeys (usually key bytes). These
estimations are particularly useful when the key is not reachable with
exhaustive search. We propose a new framework for rank estimation that
is conceptually simple, and more time and memory efficient than previ-
ous proposals. Our main idea is to bound each subkey distribution by
an analytical function, and estimate the rank by a closed formula. To
demonstrate the power of the framework, we instantiate it with Pareto-
like functions to create the PRank algorithm. Pareto-like functions have
long-tails that model empirical SCA distributions, and they are easily
calculable. We evaluated the performance of PRank through extensive
simulations based on two real SCA data corpora, and compared it to the
currently-best histogram-based algorithm. We show that PRank gives a
good rank estimation with much improved time and memory efficiency,
especially for large ranks: For ranks between 280 − 2100 PRank estima-
tion is at most 10 bits above the histogram rank and for ranks beyond
2100 the PRank estimation is only 4 bits above the histogram rank—yet
it runs in milliseconds, and uses negligible memory. One could employ
our framework with other classes of functions and possibly achieve even
better results.

1 Introduction

1.1 Background

Side-channel attacks (SCA) represent a serious threat to the security of crypto-
graphic hardware products. As such, they reveal the secret key of a cryptosys-
tem based on leakage information gained from physical implementation of the
cryptosystem on different devices. Information provided by sources such as tim-
ing [16], power consumption [15], electromagnetic radiation [2,12,28] and other
sources, can be exploited by SCA to break cryptosystems.

A security evaluation of a cryptographic device should determine whether
an implementation is secure against such an attack. To do so, the evaluator
needs to determine how much time, what kind of computing power and how

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 168–190, 2019.
https://doi.org/10.1007/978-3-030-16350-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_10

Fast Analytical Rank Estimation 169

much storage a malicious attacker would need to recover the key given the side-
channel leakages. The leakage of cryptographic implementations is highly device-
specific, therefore the usual strategy for an evaluation laboratory is to launch a
set of popular attacks, and to determine whether the adversary can break the
implementation (i.e., recover the key).

Most of the attacks that have been published in the literature are based on a
“divide-and-conquer” strategy. In the first“divide” part, the cryptanalyst recov-
ers multi-dimensional information about different parts of the key, usually called
subkeys (e.g., each of the d = 16 AES key bytes can be a subkey). In the “con-
quer” part the cryptanalyst combines the information all together in an efficient
way via key enumeration [7,26,29]. In the attacks we consider in this paper, the
information that the SCA provides for each subkey is a probability distribution
over the N candidate values for that subkey, and the SCA probability of a full
key is the product of the SCA probabilities of its d subkeys.

A security evaluator knows the secret key and aims to estimate the number of
decryption attempts the attacker needs to do before he reaches to the correct key,
assuming the attacker uses the SCA’s probability distribution. Clearly enumerat-
ing the keys in the optimal SCA-predicted order is the best strategy the evaluator
can follow. However, this is limited to the computational power of the evaluator.
This is a worrying situation because it is hard to decide whether an implementa-
tion is “practically secure”. For example, one could enumerate the 250 first keys for
an AES implementation without finding the correct key, and then to decide that
the implementation is practically secured because the attacker needs to enumer-
ate beyond 250 number of keys. But, this does not provide any hint whether the
concrete security level is 251 or 2120. This makes a significant difference in prac-
tice, especially in view of the possibility of improved measurement setups, signal
processing, information extraction, etc., that should be taken into account for any
physical security evaluation, e.g., via larger security margins.

In this paper, we introduce a new method to estimate the rank of a given
secret key in the optimal SCA-predicted order. Our algorithm enjoys simplicity
and much improved time and memory efficiency.

The rank estimation problem: Given d independent subkey spaces each of
size N with their corresponding probability distributions P1, ..., Pd such that Pi

is sorted in non-increasing order of probabilities, and given a key k∗ indexed by
(k1, ..., kd), let p∗ = P1(k1) ·P2(k2) · ... ·Pd(kd) be the probability of k∗ to be the
correct key. The evaluator would like to estimate the number of full keys with
probability higher than p∗, when the probability of a full key is defined as the
product of its subkey’s probabilities.

In other words, the evaluator would like to estimate k∗’s rank: the position
of the key k∗ in the sorted list of Nd possible keys when the list is sorted
in non-increasing probability order, from the most likely key to the least. If the
dimensions, or k∗’s rank are small, one can easily compute the rank of the correct
key by a straightforward key enumeration. However, for a key with a high rank
r optimal-order key enumeration requires Ω(r) time which may be prohibitive,

170 L. David and A. Wool

and the best currently-known optimal-order key enumeration algorithms require
Ω(Nd/2) space, which again may be prohibitive. Hence developing fast and low-
memory algorithms to estimate the rank without enumeration is of great interest.

1.2 Related Work

The best key enumeration algorithm so far, in terms of optimal-order, was pre-
sented by Veyrat-Charvillon, Gérard, Renauld and Standaert in [29]. However,
its worst case space complexity is Ω(Nd/2) when d is the number of subkey
dimensions and N is the number of candidates per subkey - and its space com-
plexity is Ω(r) when enumerating up to a key at rank r ≤ Nd/2. Thus its space
complexity becomes a bottleneck on real computers with bounded RAM in real-
istic SCA attacks.

Since then several near-optimal key enumeration were proposed
[5,7,17–19,22–24,27,32]. However, none of these key enumeration algorithms
enumerate the whole key space within a realistic amount of time and with a
realistic amount of computational power: enumerating an exponential key space
will always come at an exponential cost. Hence the need for efficient and accurate
rank estimation for keys that have a high rank.

The first rank estimation algorithm was proposed by Veyrat-Charvillon
et al. [30]. They suggested to organize the keys by sorting their subkeys accord-
ing to the a-posteriori probabilities provided, and to represent them as a high-
dimensional dataspace. The full key space can then be partitioned in two vol-
umes: one defined by the key candidates with probability higher than the correct
key, one defined by the key candidates with probability lower than the correct
key. Using this geometrical representation, the rank estimation problem can be
stated as the one of finding bounds on these “higher” and “lower” volumes. It
essentially works by carving volumes representing key candidates on each side
of their boundary, progressively refining the lower and upper bounds on the key
rank. Refining the bounds becomes exponentially difficult at some point.

A number of works have investigated solutions to improve upon [30]. In par-
ticular, Glowacz et al. [13] presented a rank estimation algorithm that is based
on a convolution of histograms and allows obtaining tight bounds for the key
rank of (even large) keys. This Histogram algorithm is currently the best rank
estimation algorithm we are aware of. The space complexity of this algorithm is
O(dB) where d is the number of dimensions and B is a design parameter con-
trolling the number of the histogram bins. A comparable result was developed
independently by Bernstein et al. [3].

Martin et al. [24] used a score-based rank enumeration, rather than a prob-
ability based rank estimation. They mapped the rank estimation to a knapsack
problem, which can be simplified and expressed as path counting. In [22] the
algorithm was further simplified and made more efficient by slightly changing
the recurrence relation that iterates through the graph. Subsequently, in [21]
Martin et al. show that their (latter) algorithm is mathematically equivalent to
the Histogram algorithm [13] for a suitable choice of their respective discretiza-
tion parameter, thus they can both be equally accurate. Since the two algorithms

Fast Analytical Rank Estimation 171

are equivalent we compared our algorithm’s performance only to that of the His-
togram algorithm [13]. Besides, Martin et al. show in [20] a large class of functions
that enables the comparison of research utilizing scores with those which utilize
probabilities.

Ye et al. investigated an alternative solution based on a weak Maximum Like-
lihood (wML) approach [32], rather than a Maximum Likelihood (ML) one for the
previous examples. They additionally combined this wML approach with the pos-
sibility to approximate the security of an implementation based on “easier to sam-
ple” metrics, e.g., starting from the subkey Success Rates (SR) rather than their
likelihoods. Later Duc et al. [10] described a simple alternative to the algorithm
of Ye et al. and provided an “even easier to sample” bound on the subkey SR, by
exploiting their formal connection with a Mutual Information metric. Recently,
Wang et al. [31] presented a rank estimation for dependent score lists.

Choudary et al. [6] presented a method for estimating Massey’s guessing
entropy (GM) which is the statistical expectation of the position of the correct
key in the sorted distribution. Their method allows to estimate the GM within a
few bits. However, the actual guessing entropy (GE), i.e., the rank of the correct
key, is sometimes quite different from the expectation. In contrast, our algorithm
focuses on the real GE.

David et al. show in [8] a different rank estimation algorithm. Their main idea
is to use exponential sampling to drastically reduce the algorithm’s complexity.
They showed that their results are on-par with the histograms results [13].

Grosso presents in [14] a simple trick to reduce the cost of rank estimation
for a large number of subkeys based on the rank estimation of [13].

1.3 Contribution

We propose a new framework for rank estimation that is conceptually simple,
and more time and memory efficient than previous proposals. Our main idea is
to bound each subkey distribution by an analytical function, and then estimate
the rank by a closed formula.

To instantiate the framework, we selected Pareto-like functions to upper-
bound the subkey distributions. Pareto-like functions have long-tails that model
empirical SCA probability distributions, and they are easily calculable. We first
prove that one can always upper-bound a sorted probability distribution P by
a Pareto-like function f that is anchored at 2 indexes at which f(x) = P [x].
We then fully characterize such upper-bounding functions, prove that there can
only be O(N) of them, and develop an efficient algorithm to find them.

Since Pareto-like functions are amenable to analysis, the instantiated frame-
work provides an upper bound on the rank of a given key, as an explicit closed
formula. Combined with the algorithm to find the upper-bounding Pareto-like
functions, we obtain an O(dN2) rank upper-bound estimation algorithm we call
PRank.

We evaluated the performance of PRank through extensive simulations based
on two SCA data corpora of [25] and of [11], and compared it to the currently-
best histogram rank estimation algorithm of [13]. We show that PRank gives a

172 L. David and A. Wool

good rank estimation with much improved time and memory efficiency, especially
for large ranks: For ranks between 280 − 2100 the median PRank estimation is
at most 10 bits above the histogram rank and for ranks beyond 2100 the median
PRank estimation is only 4 bits above the histogram rank—yet it runs faster,
and uses negligible memory.

Our framework, instantiated as the PRank algorithm, provides a new way to
solve the rank estimation problem based on a reduction to analytical functions
and the calculation of one closed formula, using negligible time and space. It
is therefore a useful addition to the SCA evaluator’s toolbox. We believe one
could employ our framework with other classes of functions to upper-bound the
empirical SCA distributions, and possibly achieve even better results.

2 An Analytical Framework for Bounding the Rank

Throughout the paper we always assume that the probability distributions Pi

are sorted in non-increasing order: e.g., Pi[1] is the probability of the most
likely value for subkey i. For notational convenience when we discuss a key
k = (k1, .., kd) we mean that ki is the rank, in the sorted distribution Pi, of the
relevant subkey value.

Definition 1 (Rank(k∗)). Let d non-increasing subkey probability distributions
Pi for 1 ≤ i ≤ d and the correct key k∗ = (k1, ..., kd) be given. Let p∗ = P1[k1] ·
... · Pd[kd] be the probability of the correct key. Then, define Rank(k∗) to be the
number of keys (x1, ..., xd) s.t. P1[x1] · ... · Pd[xd] ≥ p∗.

2.1 The Box Bound

Given the correct key k∗, we start with an observation restricting the search
space in which key candidates with probabilities above p∗ may be found.

Theorem 1. Let d non-increasing subkey probability distributions Pi for 1 ≤ i ≤
d be given and let the correct key be k∗ = (k1, ..., kd). Let p∗ = P1[k1] · ... · Pd[kd]
be the probability of the correct key. Then, it holds that all the keys (x1, ..., xd)
s.t. P1[x1] · ... · Pd[xd] ≥ p∗ have subkeys in the range 1 ≤ xi ≤ n∗

i where
n∗

i = max1≤l≤N{l : Pi(l) · ∏
j �=i Pj(1) ≥ p∗}.

Proof: In Appendix A.

This bound n∗
i can be easily computed in O(log N) time using a binary

search. Theorem 1 gives us an upper bound on the rank of the correct key, that
is tighter than the trivial bound of [30]:

Corollary 1. (Box Upper Bound) Given d non-increasing subkey probability
distributions Pi for 1 ≤ i ≤ d then, the rank of the correct key k∗ = (k1, ..., kd)
whose probability p∗ is bounded as follows

Rank(k∗) ≤
d∏

i=1

n∗
i −

d∏

i=1

(n∗
i − ki).

Fast Analytical Rank Estimation 173

2.2 Upper Bound Functions

As we shall see in Sect. 4, our general idea is to upper bound each subkey’s
probability distribution Pi by an integrable function fi, such that Pi[j] ≤ fi(j)
for all 1 ≤ j ≤ N . Then, given the correct key k∗ = (k1, ..., kd) and using
analytical methods, we can estimate the rank of k∗ by a closed formula. To do
this, let us first define Rankf (k∗):

Definition 2. A function is an upper bound function f of a sorted probability
distribution P of size N if for all j = 1, ..., N , P [j] ≤ f(j).

Definition 3 (Rankf (k∗)). Given d non-increasing subkey probability distribu-
tions Pi and their corresponding d upper bound functions fi s.t. Pi[j] ≤ fi(j)
for all 1 ≤ i ≤ d and 1 ≤ j ≤ N , and let the correct key be k∗ = (k1, ..., kd).
Let p∗ = P1[k1] · ... · Pd[kd] be the probability of the correct key. Then, define
Rankf (k∗) to be the number of keys (x1, ..., xd) s.t. f1(x1) · ... · fd(xd) ≥ p∗.

Proposition 1. Given d subkey probability distributions Pi and their d upper-
bound functions fi and given the correct key k∗ = (k1, ..., kd) and its probability
p∗ = P1[k1] · ... · Pd[kd], it holds that Rank(k∗) ≤ Rankf (k∗)

Proof: Omitted. ��
Our idea is to calculate Rankf (k∗) of the correct key k∗ whose probability is

p∗, by integrating the volume under the manifold derived by the d upper bound
functions fi, subject to the isotropic curve defined by

∏d
i=1 fi(xi) ≥ p∗:

Rank(k∗) ≤ Rankf (k∗) ≤
∫

· · ·
∫

0≤x1,...,xd≤N,
∏d

i=1 fi(xi)≥p∗

1 dx1 . . . dxd. (1)

3 Instantiating the Framework with Pareto-Like
Functions

We decided to select the integrable upper-bound functions to be based on Pareto
distributions, since, like empirical SCA probability distributions, they have long-
tails, and they are easily calculable. However, for an upper bound function we
do not need to use an actual probability distribution. Therefore we focus on
Pareto-like functions, without the requirement that

∫
f(x)dx = 1 and without

the requirement that α > 1.

Definition 4. A function f(x) is Pareto-like if f(x) = a/xα for some a > 0
and α ≥ 0.

Given a probability distribution P we find it useful to consider anchored
Pareto-like functions, that are defined by two indexes l < r, as follows.

174 L. David and A. Wool

Definition 5. Let P be a distribution, and let indexes 1 ≤ l < r ≤ N be given.
Then a function f(x) is anchored at l, r if f(l) = P [l] and f(r) = P [r]. We call
the indexes l, r the anchors of f .

Lemma 1. Let P be a distribution, and let indexes 1 ≤ l < r ≤ N be given.
Let α = logr/l(P [l]/P [r]) and let a = P [r]rα, or equivalently, a = P [l]lα. Then
f(x) = a/xα is the unique Pareto-like function that is anchored at l, r.

3.1 The Existence of Pareto-Like Upper Bound Functions

Proposition 2. Given a sorted non-increasing probability distribution P , there
exists an index r > 1 such that the Pareto-like function f(x) that is anchored at
1, r is an upper bound function.

Proof: In Appendix B.

3.2 Efficient Search for Pareto-Like Upper Bound Functions

In this section we prove a complete characterization of all the different Pareto-
like upper bound functions that are anchored to indexes of the distribution P .
This characterization is described by the following theorem:

Theorem 2. Given a non-increasing sorted probability distribution P , there
exist m < N indexes t1, . . . , tm such that every unique Pareto-like upper bound
function for P that is anchored at some l < r obeys l = tj and r = tj+1 for some
1 ≤ j < m.

Proof: In Appendix C.

From Theorem 2 we get an efficient search method (Algorithm 1) to find all
the different Pareto-like upper-bound functions.

For a given l, the algorithm finds its leftmost matching r > l so the Pareto-
like function anchored at l, r is an upper bound function, and then for the next
candidate pair it sets l = r. Theorem 2 guarantees that no valid candidate pairs are
missed by this skip. To do this, the algorithm starts with l = 1 and r = 2. In order
to check whether this pair defines a Pareto-like upper bound the algorithm iterates
over all k ≥ r. If fl,r(k) ≥ P [k], then d > 0 (line 11) and the algorithm “jumps
forward”. It calculates the intersection point between thePareto function andP [k],
i.e., the algorithm calculates k′ such that a/k′α = P [k] (line 12) and“jumps” to this
k′. The reason this jump is valid is as follows: For each h ∈ [k, k′], P [k] ≥ P [h] ≥
P [k′] and for each t ∈ [k, k′], a/kα ≥ a/tα ≥ a/k′α. Since a/k′α = P [k] it holds
a/tα ≥ P [h], for each t ∈ [k, k′] and h ∈ [k, k′]. Therefore fl,k is guaranteed to
be an upper bound for each h ∈ [k, k′] and we only need to check whether it is an
upper bound beyond k′, therefore k is updated to be k′ (line 12). If d < 0 (line
15), the algorithm finds the first violation, i.e., P [k] > fl,r(k) therefore, it stops
on this k. Since k is the violation, all the pairs (l, t) such that t < k do not anchor
Pareto-like upper bounds: clearly any such (l, t) anchors aPareto-like functionwith
a violation at k. Therefore, the next candidate for the leftmost matching r > l is
k and we only need to check whether fl,k is also an upper bound for the indices

Fast Analytical Rank Estimation 175

Algorithm 1. The function ParetoUpperEstimation().
Input: Subkey distributions P .
Output: A set C of candidate pairs.

1 C = ∅; l = 1;
2 while (l < N) do
3 r = l + 1;
4 found = False;
5 while (r ≤ N and found == False) do
6 α = logr/l(P [l]/P [r]);

7 a = P [l] · lα;
8 k = r;
9 while k < N do

10 d = a/kα − P [k];
11 if d ≥ 0 then

12 k = min(N, �(a/P [k])1/α�) + 1 ; // f(k) ≥ P [k]: jump

forward

13 if d < 0 or k == N then
14 break;

15 if d < 0 then
16 r = k; // violation of upper bound: switch to (l, k)
17 else
18 found = True;
19 C = C ∪ {(l, r)};
20 l = r;

21 return C;

t > k. So the algorithm sets r to k (line 16) and repeats till it finds a Pareto-like
upper bound. Then, the algorithm sets the l of the next pair to be r, according to
Theorem 2, and continues in the same way.

Proposition 3. Let P be a non-increasing sorted probability distribution and let
m be the number of its anchors as in Theorem 2. The running time of Algorithm 1
is O(m · N).

Proof: In Appendix D.

Note that since typically m � N the algorithm is almost linear in N and very
quick in practice. Furthermore, while the “forward jumps” in the algorithm do
not affect the asymptotic running time, they have a dramatic impact in practice
since they often allow skipping hundreds of candidates per jump.

3.3 Choosing the Best Pareto-Like Upper Bound Function

In general, Algorithm 1 identifies multiple candidates for Pareto-like upper
bound functions for each distribution Pi. We need to select the ‘best’ function
per distribution in the sense that it will lead to a tight bound in the volume com-
puted in Eq. (1). To do so, we need to select the criteria for the ‘best’ Pareto-like
upper bound function.

176 L. David and A. Wool

Algorithm 2. PickBest: Choosing the best Pareto-like upper bounds.
Input: A set Ci of candidate pairs for each Subkey distribution {Pi}d

i=1, and
the correct key k∗ = {ki}d

i=1

Output: ({ai}d
i=1, {αi}d

i=1)
1 for i = 1 to d do
2 (li, ri) = arg min(l,r)∈C10

i
{|Pi[ki] − fl,r(ki)|};

3 αi = logri/li
(Pi[li]/Pi[ri]);

4 ai = Pi[li] · lαi ;

5 return {ai}d
i=1, {αi}d

i=1;

We tested many criteria for selecting the upper-bound functions. Overall we
found that there is no clear ‘best’ upper bound function for a given probability
distribution: rather, the best bound usually depends on the rank ki of the correct
subkey value, with larger ranks ki requiring upper-bound functions anchored at
larger indices. After much experimentation we arrived at the following choice:
Given the indices of the correct key k∗ = (k1, k2, ..., kd), for each Pi we choose
the pair (li, ri) which anchors a Pareto-like upper bound function fli,ri

such that
fli,ri

(ki) will be the closest to Pi[ki]. Since larger ki require larger indices (li, ri)
which provide larger ai which directly influences on the upper bound (as we shall
see in Sect. 4.1), we limit the chosen pair to be one of the first w pairs. Note
that the choice of w impacts the running time (a smaller w means fewer options
to minimize over in Algorithm 2 line 2) and potentially impacts the accuracy of
the resulting bounds. In our experiments we tested values w ∈ [5, 50] and found
that in fact the bounds were quite insensitive to the choice of w. Therefore we
selected w = 10 arbitrarily. We denote the set of the first 10 pairs of Ci by C10

i .
Algorithm 2 shows the pseudo code for the selection method.

Note that instead of first building the whole set Ci as in Algorithm 1, we can
build Ci incrementally until we find the ‘best’ pair.

4 PRank: The Pareto Rank Estimation Algorithm

Now that we know how to efficiently obtain Pareto-like upper bound functions
for all the subkey distributions, we describe the details of our rank estimation
algorithm (See Algorithm 3). First, we upper bound each one of the d probability
distributions by a Pareto-like upper bound function. Then, given the probability
of the correct key, we compute the upper bound rank by a closed formula.

4.1 Estimating the Volume

We solve the multiple integral Eq. (1) for the Pareto-like upper bound functions
fi, for the general case d ≥ 2. We assume a general configuration in which
αi �= αj for all i �= j. The analysis appears in Appendix E. The final solution is

Fast Analytical Rank Estimation 177

Algorithm 3. Pareto Rank Estimation.
Input: Subkey distributions {Pi}d

i=1, the correct key k∗ = {ki}d
i=1

Output: Upper bound rank of the correct key.
1 Let p∗ =

∏d
i=1 Pi[ki];

2 {ai}d
i=1, {αi}d

i=1 = ParetoUpperEstimation({Pi}d
i=1, k

∗);
3 return UpperBound({ai}d

i=1, {αi}d
i=1, {Pi}d

i=1, p
∗);

the following closed formula:
d∑

i=1

[(
1
p∗ ·

d∏

j=1

aj

) 1
αi ·

d∏

j=1,j �=i

(
αi

αi − αj
· N

αi−αj
αi

)]

. (2)

The same analysis can also be done assuming each dimension has a different
bound—and then we can use the n∗

i of the Box Bound (Theorem 1) to yield a
closed formula for the upper bound:

Rank(k∗) ≤
d∑

i=1

[(
1
p∗ ·

d∏

j=1

aj

) 1
αi ·

d∏

j=1,j �=i

(
αi

αi − αj
· n∗

j

αi−αj
αi

)]

. (3)

Notes: (i) The formulas of Eqs. (3) and (2) are analogous to the results of [4]
obtained via Laplace transforms. (ii) In our data we did not encounter cases in
which αi = αj so the “general configuration” assumption did not restrict us.

4.2 Theoretical Worst-Case Performance

Running Time: Equation (3) consists of d additions and in each sum we have d
multiplications and d calls to the real-value power function. Therefore, assuming
that calculating xy takes constant time, the running time of computing the
formula is O(d2). According to Proposition 3 the running time of finding a
Pareto-like upper bound function fi for each probability distribution Pi, takes
O(mi · N). Let m̂ = maxi{mi}, then the running time in total is O(m̂ · d · N),
assuming that computing formula (3) is negligible. Since typically m̂ � N the
algorithm is almost linear in d · N and very quick in practice.

Space Complexity: The algorithm needs to keep for each probability distribu-
tion its corresponding Pareto-like upper bound function. In other words, it only
needs to keep the corresponding ai, αi and n∗

i for every 1 ≤ i ≤ d. Therefore the
space complexity is O(d).

5 Performance Evaluation

We evaluated the performance of the PRank estimation algorithm through an
extensive simulation study. We compared the new PRank algorithm to the cur-
rently best rank estimation algorithm: the histogram algorithm of [13]. We imple-
mented both in Matlab, our PRank code is available in [9]. We ran both algorithms
on a 2.80 GHz i7 PC with 8 GB RAM running Microsoft windows 7, 64bit.

178 L. David and A. Wool

5.1 Data Corpus I

To evaluate PRank, we used the data of [11]. Within this data, there are 611 prob-
ability distribution sets gathered from a specific SCA. The SCA of [11] was against
AES [1] with 128-bits keys. The sets represent various setting of the SCA: num-
ber of traces used, whether the clock was jittered, and the values of tunable attack
parameters. The attack grouped the key bits into 16 8-bit subkeys, and hence its
output probability distributions are over these byte values. Each set in the cor-
pus consists of the correct secret key and 16 distributions, one per subkey. The
distributions are sorted in non-increasing order of probability, each of length 28.

Since we don’t know the real rank of the correct keys, we used the histogram
rank as the x axis in our resulting graphs (Figs. 1 and 2). We measured the
time and the upper bound for each trace using PRank and the histograms rank
estimation.

We checked PRank’s accuracy and running time for different configurations.
We started with d = 16 and n = 28. As we shall see, the computed upper bound is
noticeably higher than the histogram rank, however the running time is a fraction
of that of the histogram algorithm.

Next, in order to improve the accuracy, we applied a technique suggested in
[13]: merge the d = 16 probability lists of size n = 28 into d = 8 lists of size
n = 216. As we shall see we found that reducing the number of dimensions indeed
significantly improved the accuracy with a marginal increase in the PRank run-
ning time.

Bound Tightness. Figure 1 illustrates the PRank upper bound with d = 16,
the PRank upper bound with d = 8 and the histogram rank, all in number of bits
(log2). All these values are shown as function of the number of bits of histogram
rank, hence its curve is a straight line. The figure clearly shows that it is advan-
tageous to reduce the dimension d. As we can see in the Figure, the accuracy of
PRank’s estimation is quite good: for ranks between 280–2100 the median PRank
bound is less than 10 bits above the histogram rank, and for the very high ranks
(above 2100) median PRank bound is only 4 bits more. For small ranks, around 220,
PRank gave a bound which is roughly 20 bits greater than that of the histogram—
however we argue that such ranks are within reach of key enumeration so rank
estimation is not particularly interesting there.

Runtime Analysis. Figure 2 shows the running times (in seconds) of the his-
togram rank estimation (with B = 5K and B = 50K) and the PRank estimation
for d = 16 and d = 8. The running time of the PRank consists of the preprocessing
time of finding the Pareto-like upper bound function of each probability distribu-
tion, plus the running time of calculating the closed formula bound of Eq. (3) given
the secret key. The histogram running time consists of the preprocessing of con-
verting each probability distribution into a histogram plus the running time of
finding the sum of the corresponding bins given the secret key. The figure shows
that PRank, for both d = 8 and d = 16, typically takes only a few milliseconds to

Fast Analytical Rank Estimation 179

Fig. 1.Ranks (log2) as a function of histogram rank. The curves are, from top to bottom:
PRank upper bound for d = 16 (blue), PRank upper bound for d = 8 (orange) and
Histogram rank for B = 5K (gray). (Color figure online)

Table 1. Space complexity of PRank and Histograms in four configurations. The left
side of each column in the table is the PRank space and the right is the Histograms
space.

B = 5K B = 50K

d = 8 24 bytes 80 KB 24 bytes 800 KB

d = 16 48 bytes 160 KB 48 bytes 1.6 MB

complete, and runs faster than the Histograms in its 4 configurations. Looking at
the PRank itself we can see, as we expected, that d = 16 runs faster than d = 8
since the length N of each distribution is shorter. Looking at the Histograms run-
times, we can see that the number of buckets B is dominant: B = 5K is 10 times
faster than B = 50K and for B = 50K we can also see that d = 16 is faster than
d = 8. However, notice that both PRank and Histograms run in less than 1 s.

Space Utilization. Table 1 illustrates the space used by the 2 algorithms’ data
structures. As we can see, the memory consumption of PRank algorithm is dras-
tically lower than the histogram space consumption. PRank space consumption
is trivial 3 · d while the histogram space requirements are around 2 · B · d.

180 L. David and A. Wool

Fig. 2. The running times of the algorithms as a box plot: the top and bottom of the
boxes represent the 3rd and 1st quartiles, respectively, and the line inside the box repre-
sents the median. The left side represents the PRank running time in two configurations:
d = 16 (black) and d = 8 (orange). The right side represents the histograms running
time in four configurations: d = 16, B = 5K (gray), d = 8, B = 5K (yellow), d = 16,
B = 50K (blue) and d = 8, B = 50K (green), all in seconds (log scale). (Color figure
online)

5.2 Data Corpus 2

The second set of experiments uses the data of [25]. Within this data, there are
936 probability distribution sets gathered from another SCA. The SCA of [25] was
against AES [1] with 128-bits keys. The attack grouped the key bits into 4 32-bit
subkeys, and hence its output probability distributions are over these 32-bit val-
ues. Each set in the corpus consists of the correct secret key and 4 distributions,
one per sub-key. The distributions are sorted in non-increasing order of probabil-
ity. The SCA of [25] discards subkey candidates it finds to be unacceptable hence
the probability distributions all have much fewer than 232 values: the distribution
length N is at most 216. This means that the largest rank that the data could
predict is N4 ≈ 264.

We again used the histogram rank as the x axis in our resulting graphs. We
measured the time, the space consumption and the upper bound for each trace
using PRank and the histograms rank estimation.

Bound Tightness. Figure 3 illustrates the number of bits (log2) of the PRank
upper bound and the histogram rank. The ranks depicted in Fig. 3 for both algo-
rithms are significantly lower than those in Fig. 1 (nearly all the ranks are below
240). This is a feature of the SCA of [25], which produces sharp distributions and
assigns high probabilities to the correct subkey values. In Fig. 1 we saw that PRank

Fast Analytical Rank Estimation 181

Fig. 3. Ranks (log2) as a function of histogram rank. The curves are show the PRank
upper bound for d = 4 (blue) and Histogram rank (orange). (Color figure online)

Fig. 4. The left side represents the PRank running time for d = 4 (blue). The right side
represents the histograms running time in two configurations: d = 4, B = 5K (orange)
and d = 4, B = 50K (gray), all in seconds (log scale). (Color figure online)

accuracy was up to 20 bits above the Histogram rank for keys with low ranks:
Fig. 3 shows that when the distributions are sharper, PRank accuracy improves:
The figure shows that the accuracy of PRank’s estimation for most of the keys in
this data is around 4 bits above the histograms bound.

Runtime Analysis. Figure 4 shows the (log10) time (in seconds) of histogram
rank estimation [13] and PRank estimation.

182 L. David and A. Wool

The figure shows that on this data corpus too the PRank algorithm runs in a
few milliseconds, and is faster than the histogram algorithm—by about 1 order of
magnitude—but both algorithms are very efficient, taking under 1 s to complete.

6 Conclusions and FutureWork

In this paper we proposed a new framework for rank estimation, that is concep-
tually simple, and more time and memory efficient than previous proposals. Our
main idea is to bound each subkey distribution by an analytical function, and then
estimate the rank by a closed formula.

To instantiate the framework we use Pareto-like functions to upper-bound
the empirical distributions. Pareto-like functions are suitable, since like the SCA-
based probability distributions, they have long-tails, and they are easily calcula-
ble. We fully characterized such upper-bounding functions and developed an effi-
cient algorithm to find them. We then used Pareto-like functions to develop a new
explicit upper bound on the rank of a given key. Combined with the algorithm
to find the upper-bounding Pareto-like functions, we obtained an O(dN2) rank
upper-bound estimation algorithm we call PRank.

We evaluated the performance of PRank through extensive simulations based
on two real SCA data corpus, and compared it to the currently-best histogram-
based algorithm. We showed that PRank gives a good rank estimation with
much improved time and memory efficiency, especially for large ranks: For ranks
between 280 − 2100 the median PRank estimation is at most 10 bits above the
histogram rank and for ranks beyond 2100 the median PRank estimation is only
4 bits above the histogram rank—yet it runs in milliseconds, and uses negligible
memory. It is therefore a useful addition to the SCA evaluator’s toolbox.

As we demonstrated, our choice of Pareto-like functions is clearly very effec-
tive. However, one could employ our framework with other classes of functions
to upper-bound the non-increasing empirical distributions, and possibly achieve
even better results. The criteria for selecting a good class of functions include: (i)
the ability to derive a closed formula for the bounded volume; (ii) the tightness
of the resulting rank estimates; and (iii) the computational complexity of finding
the best bounding functions per distribution. We leave this direction for future
research.

Acknowledgments. Liron David was partially supported by The Yitzhak and Chaya
Weinstein Research Institute for Signal Processing.

A Proof for Theorem 1

For any dimension i, if we choose the most likely value in all dimensions j �= i, we
can find the minimum probability in dimension i that still fulfills the condition
P1[x1] · ... · Pd[xd] ≥ p∗. Therefore, any index l s.t. Pi(l) is smaller than this min-
imum probability will never be part of a key whose probability is higher than or
equal to p∗. Since Pj is non-increasing, the most likely value is at index 1, hence

Fast Analytical Rank Estimation 183

for all dimensions j �= i, the most likely value has probability Pj(1). We look for
the farthest index l in dimension i such that the product Pi(l) · ∏

j �=i Pj(1) is still
higher than or equal to p∗. Therefore, the number of subkey indexes for dimension
i that are needed in order to compute the rank of a key whose probability p∗ is

n∗
i = max1≤l≤N{l : Pi(l) ·

∏

j �=i

Pj(1) ≥ p∗}.

��

B Proof for Proposition 2

Let fα,a = a/xα be a Pareto-like function with parameters α and a. Since P is a
sorted non-increasing probability distribution, P [1] is greater than or equal to any
other P [j] for 1 ≤ j ≤ N . Therefore, a trivial Pareto-like upper bound function
for P is f0,P [1](x) = P [1]. If P [2] = P [1] then f0,P [1](x) fulfills the requirements
with anchors 1,2.

Else, we shall construct an upper-bound function fα,P [1], that is anchored
at 1, r for some r > 1. Given any index r > 1 and the value P [r], let αr =
logr (P [1]/P [r]). Then, the function fαr,P [1](x) = P [1]/xαr is the unique Pareto-
like function that is anchored at 1, r. Hence we need to find 1 < r ≤ N s.t.
fαr,P [1](x) is an upper-bound function: fαr,P [1](x) ≥ P [x] for all 1 ≤ x ≤ N . For
a fixed index r > 1, the function g(α) = fα,P [1](r) = P [1]/rα for α ≥ 0 is mono-
tone decreasing, with g(0) = P [1]. Clearly g(αr) = P [r], hence for all 0 ≤ α ≤ αr

we have fα,P [1](r) ≥ P [r]. Let α∗ = min
r

{αr} and let r∗ = arg min
r

{αr} be the

minimal index at which α∗ is achieved. Then, fα∗,P [1] is an upper bound function
for P which obeys fα∗,P 1 = P [1] and fα∗,P [1](r∗) = P [r∗] - at all other indices
r �= 1, r �= r∗ we have α∗ ≤ αr by definition, so fα∗,P [1](r) = g(α∗) ≥ g(αr) =
P [r]. ��

C Proof for Theorem 2

We prove this theorem using induction. The base case is Proposition 2, which
shows that t1 = 1, and whose proof describes how to find t2 = r.

For the induction step we assume that we have a Pareto-like upper bound func-
tion f that is anchored at indexes l, r. We prove that if there exists another Pareto-
like upper bound function f̂ �= f that is anchored at l̂, r̂ s.t. l̂ > l then there exists
some r < t ≤ l̂ s.t. the Pareto-like function anchored at r, t is an upper-bound
function for P .

We shall prove this in 3 steps: in Theorem 3 we prove that the anchors of f
and f̂ cannot be nested. In Theorem 4 we prove that if the anchors of f and f̂
are interleaved then the intermediate anchors coincide, i.e., t = r = l̂. Finally in
Theorem 5 we prove that if the anchors of f and f̂ obey r < l̂ then the required t
exists and obeys t ≤ l̂.

184 L. David and A. Wool

To prove these theorems, we first state two simple lemmas, and prove Proposi-
tions 4 and 5 showing that two different Pareto-like upper bound functions cannot
“share” only their left anchors l, or only their right anchor r.

Lemma 2. Let f1 = a/xα and f2 = b/xβ be Pareto-like functions s.t. α > β.
Then, f1(x) = f2(x) only at the crossover point xc = (a/b)

1
α−β .

Lemma 3. Let f1 = a/xα and f2 = b/xβ be Pareto-like functions s.t. α > β and
let xc be their crossover point. Then for x > xc f1 < f2 and for x < xc f2 < f1.

Proposition 4. Given a non-increasing sorted probability distribution P and a
Pareto-like upper bound function f of P anchored at l, r, then any Pareto-like func-
tion f̂ �= f that is anchored at l, r̂ s.t. r̂ > r will violate the upper bound condition
at index r, i.e., f̂(r) < P [r].

Proof: Let f(x) = a/xα and f̂(x) = â/xα̂ be defined as above, “sharing” the
anchor l. Since f is a Pareto-like upper bound function f(r̂) ≥ P [r̂]. By definition
P [r̂] = f̂(r̂), therefore f(r̂) ≥ f̂(r̂), which is equivalent to

a · r̂α̂ ≥ â · r̂α.

Substituting a = P [l] · lα and â = P [l] · lα̂ for the same l we get

r̂α̂−α ≥ lα̂−α.

Since r̂ ≥ l, we get α̂ > α. Since P [r] = f(r) by definition, in order to prove
P [r] > f̂(r), it suffices to prove f(r) > f̂(r), which is equivalent to

â · rα < a · rα̂.

By substituting a = P [l] · lα and â = P [l] · lα̂ we get the equivalent inequality

lα̂−α < rα̂−α,

which holds since l < r and α̂ > α. ��
Proposition 5. Given a non-increasing sorted probability distribution P and a
Pareto-like upper bound function f of P anchored at l, r, then any Pareto-like func-
tion f̂ �= f that is anchored at l̂, r for some l̂ < l will violate the upper bound
condition at index l, i.e., f̂(l) < P [l].

Proof: Analogous to that of Proposition 4.

Theorem 3. (No nested anchors). Let P be a non-increasing sorted probability
distribution and let two index pairs l < r and l̂ < r̂ s.t. l ≤ l̂ < r̂ ≤ r. There
cannot exist two Pareto-like upper bound functions f �= f̂ s.t. f is anchored at l, r
and f̂ is anchored at l̂, r̂.

Fast Analytical Rank Estimation 185

Proof: From Proposition 4, we see that there cannot exist two different Pareto-
like upper bound functions f, f̂ s.t. f(l) = P [l] = f̂(l) (i.e., the crossover point is at
l) but f(r) = P [r] and f̂(r̂) = P [r̂] for r < r̂. In the same way, from Proposition 5
we see that there cannot exist two different Pareto-like upper bound functions
f, f̂ s.t. f(r) = P [r] = f̂(r) (i.e., the crossover point is at r) but f(l) = P [l] and
f̂(l̂) = P [l̂] for l < l̂. Therefore the only option is that l < l̂ < r̂ < r. However,
this option also cannot exist since then we get

f̂(l) ≥ P [l] = f(l), f(l̂) ≥ P [l̂] = f̂(l̂),

f(r̂) ≥ P [r̂] = f̂(r̂), f̂(r) ≥ P [r] = f(r).

However, since f �= f̂ at least 3 of these 4 inequalities must be sharp, which means
we need to have at least two crossover points, contrary to Lemma 2. ��
Theorem 4. (Interleaved anchors). Let P be a non-increasing sorted probability
distribution and let two index pairs l < r and l̂ < r̂ be such that l ≤ l̂ ≤ r ≤ r̂ and
s.t. there exist two different Pareto-like upper bound functions, f anchored at l, r
and f̂ anchored at l̂, r̂. Then, l < l̂ = r < r̂.

Proof: From properties of f and f̂ , it holds that:

f̂(l) ≥ P [l] = f(l), f(l̂) ≥ P [l̂] = f̂(l̂),

f̂(r) ≥ P [r] = f(r), f(r̂) ≥ P [r̂] = f̂(r̂).
(4)

In other words, we get f(l) ≤ f̂(l), f(l̂) ≥ f̂(l̂), f(r) ≤ f̂(r) and f(r̂) ≥ f̂(r̂).
Notice that f and f̂ are different, therefore they have a single crossover point. To
obtain a contradiction, assume that l < l̂ < r < r̂. If two or more of the inequalities
in Eq. (4) are equalities then f ≡ f̂ , contrary to the premise. Therefore at least
3 of the inequalities in Eq. (4) are sharp. However since f �= f̂ there is a unique
crossover point xc between them, and regardless of where xc is located with respect
to l, l̂, r, r̂, there will be two indices u, v ∈ {l, l̂, r, r̂} either to its left or to its right,
such that f(u) > f̂(u) and f(v) < f̂(v), contradicting Lemma 2. Therefore at
least two indices need to be equal to each other. As we’ve seen in Proposition 4
there cannot exist two upper bound Pareto-like functions f and f̂ such that f(l) =
P [l] = f̂(l) (i.e., the crossover point is at l) but f(r) = P [r] and f̂(r̂) = P [r̂] for
r < r̂. Therefore l cannot be equal to l̂. In the same way, Proposition 5 shows
that there cannot exist two Pareto-like upper bound functions f and f̂ such that
f(r) = P [r] = f̂(r) (i.e., the crossover point is at r) but f(l) = P [l] and f̂(l̂) = P [l̂]
for l < l̂. Therefore, r cannot be equal to r̂. Therefore, the only option is l̂ = r. ��
Theorem 5. (Disjoint anchors). Let P be a non-increasing sorted probability dis-
tribution and let two index pairs l < r and l̂ < r̂ be such that l < r ≤ l̂ < r̂ and s.t.
there exist two different Pareto-like upper bound functions, f anchored at l, r and
f̂ anchored at l̂, r̂. Then there exists r < t ≤ l̂ such that the Pareto-like function f̄
anchored at r, t is an upper-bound function.

Proof: Omitted. ��
The combination of Theorems 3, 4 and 5 completes the proof of Theorem 2. ��

186 L. David and A. Wool

D Proof for Proposition 3

To find the first pair (t1 = 1, t2) that anchors a Pareto-like upper bound takes
N − 1 steps. Then, starting at t2, looking for its leftmost matching t3 > t2, the
algorithm tests for violations at indices between t2 and N , taking at most N − t2
steps and similarly till finding last pair takes N − tm steps. In total we get at most
(N − t1) + (N − t2) + ... + (N − tm) = m · N − ∑m

i=1 ti = O(m · N). ��

E Derivation of the Rank Upper-Bound Formula

We start by solving the multiple integral Eq. (1) for the Pareto-like upper bound
functions fi, for the first non-trivial case which is d = 3. Then, we will generalize
it for any d. Plugging the Pareto-like function fi = ai/xαi

i for each 1 ≤ i ≤ d into
Eq. (1) we get:

∫ N

0

∫ N

0

∫ N

0(
a1

x
α1
1

· a2
x

α2
2

· a3
x

α3
3

)
≥p∗

1 dx3dx2dx1. (5)

We assume the general case in which αi �= αj for all i �= j. The range of the
multiple integrals in Eq. (5) is equivalent to

(
a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3 ≥ x3.

Therefore, we can plug x3 into Eq. (5) to get
∫ N

0

∫ N

0

(
a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3

dx2dx1. (6)

The lower bound of each dimension xi is 0, but Pareto-like functions are not
defined at 0. However, in order to maintain x3 ≤ N we require:

x3 ≤
(

a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3 ≤ N,

which provides a bound on x2

x2 ≥ (
a1

xα1
1

· a2

Nα3
· a3

p∗)
1

α2 . (7)

We denote this lower bound on x2 by x′
2:

x′
2 � (

a1

xα1
1

· a2

Nα3
· a3

p∗)
1

α2 .

For all x2 < x′
2, we get x3 > N which is out of range, therefore for x2 < x′

2 we
take x3 = N . By splitting the inner-most integral in Eq. (6) into two ranges we
get:

∫ N

0

[∫ x′
2

0

N dx2 +
∫ N

x′
2

(
a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3

dx2

]

dx1. (8)

Fast Analytical Rank Estimation 187

We repeat the procedure and divide the next dimension x1. In order to maintain
x2 ≤ N , from Eq. (7)

(
a1

xα1
1

· a2

Nα3
· a3

p∗)
1

α2 ≤ x2 ≤ N,

so x1 should maintain
x1 ≥ (

a1

Nα2
· a2

Nα3
· a3

p∗)
1

α1 .

Denote this lower bound of x1 by x′
1

x′
1 � (

a1

Nα2
· a2

Nα3
· a3

p∗)
1

α1 .

For all x1 < x′
1, we get x2 > N which is out of range, therefore for x1 < x′

1 we
take x2 = N . Plugging this into Eq. (8)

∫ x′
1

0

∫ N

0

N dx1 +
∫ N

x′
1

[∫ x′
2

0

N dx2 +
∫ N

x′
2

(
a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3

dx2

]

dx1. (9)

To solve this integral we solve each term separately, starting with the inner-
right term of Eq. (9):

∫ N

x′
2

(
a1

xα1
1

· a2

xα2
2

· a3

p∗

) 1
α3

dx2,

which is straightforward:
(

a1 · a2 · a3

xα1
1 · p∗

) 1
α3

∫ N

x′
2

x
− α2

α3
2 dx2 =

(
a1 · a2 · a3

xα1
1 · p∗

) 1
α3 · α3

α3 − α2
· x

1− α2
α3

2

∣
∣
∣
∣

N

x′
2

.

After substituting the limits, since α2 �= α3, we get:
(

a1 · a2 · a3

xα1
1 · p∗

) 1
α3 · α3

α3 − α2
·
[

N
α3−α2

α3 −
(

a1 · a2 · a3

xα1
1 · p∗

) 1
α2

− 1
α3 · N

α2−α3
α2

]

which equals to
(

a1 · a2 · a3

xα1
1 · p∗

) 1
α3 · α3

α3 − α2
·N

α3−α2
α3 −

(
a1 · a2 · a3

xα1
1 · p∗

) 1
α2 · α3

α3 − α2
·N

α2−α3
α2 . (10)

Now, we calculate the inner-left term of Eq. (9):

∫ x′
2

0

N dx2 =
(

a1 · a2 · a3

xα1
1 · p∗

) 1
α2 · N

α2−α3
α2 . (11)

Plugging in Eqs. (10) and (11) into the right term of Eq. (9), we get:

∫ N

x′
1

(
a1 · a2 · a3

xα1
1 · p∗

) 1
α3 · α3

α3 − α2
·N

α3−α2
α3 +

(
a1 · a2 · a3

xα1
1 · p∗

) 1
α2 · α2

α2 − α3
·N

α2−α3
α2 dx1.

188 L. David and A. Wool

Calculating the integral we get:

(
a1 · a2 · a3

p∗

) 1
α3 · α3

α3 − α2
· N

α3−α2
α3 · α3

α3 − α1
· x

α3−α1
α3

1

∣
∣
∣
∣

N

x′
1

+

(
a1 · a2 · a3

p∗

) 1
α2 · α2

α2 − α3
· N

α2−α3
α2 · α2

α2 − α1
· x

α2−α1
α2

1

∣
∣
∣
∣

N

x′
1

.

Solving this and adding the solution of the left term of Eq. (9) we get the final
formula for d = 3:

(
a1 · a2 · a3

p∗

) 1
α1 · α1

α1 − α2
· α1

α1 − α3
· N

α1−α2
α1 · N

α1−α3
α1 +

(
a1 · a2 · a3

p∗

) 1
α2 · α2

α2 − α3
· α2

α2 − α1
· N

α2−α1
α1 · N

α2−α3
α2 +

(
a1 · a2 · a3

p∗

) 1
α3 · α3

α3 − α1
· α3

α3 − α2
· N

α3−α1
α3 · N

α3−α2
α3

(12)

For the general case d ≥ 2 the analysis is analogous so we omit the details. The
final solution for any d ≥ 2 is the following closed formula:

d∑

i=1

[(
1
p∗ ·

d∏

j=1

aj

) 1
αi ·

d∏

j=1,j �=i

(
αi

αi − αj
· N

αi−αj
αi

)]

.

References

1. FIPS PUB 197, advanced encryption standard (AES), U.S. Department of Com-
merce/National Institute of Standards and Technology (NIST) (2001)

2. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM Side—Channel(s).
In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 29–45.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5 4

3. Bernstein, D.J., Lange, T., van Vredendaal, C.: Tighter, faster, simpler side-channel
security evaluations beyond computing power. IACR Cryptology ePrint Archive,
2015:221 (2015)

4. Bibinger, M.: Notes on the sum and maximum of independent exponentially
distributed random variables with different scale parameters. arXiv preprint,
arXiv:1307.3945 (2013)

5. Bogdanov, A., Kizhvatov, I., Manzoor, K., Tischhauser, E., Witteman, M.: Fast and
memory-efficient key recovery in side-channel attacks. In: Dunkelman, O., Keliher,
L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 310–327. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-31301-6 19

6. Choudary, M.O., Popescu, P.G.: Back to massey: impressively fast, scalable and
tight security evaluation tools. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 367–386. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4 18

https://doi.org/10.1007/3-540-36400-5_4
http://arxiv.org/abs/1307.3945
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-319-31301-6_19
https://doi.org/10.1007/978-3-319-66787-4_18
https://doi.org/10.1007/978-3-319-66787-4_18

Fast Analytical Rank Estimation 189

7. David, L., Wool, A.: A bounded-space near-optimal key enumeration algorithm for
multi-subkey side-channel attacks. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS,
vol. 10159, pp. 311–327. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-52153-4 18

8. David, L., Wool, A.: Poly-logarithmic side channel rank estimation via exponential
sampling. In: RSA Conference Cryptographers’ Track, CT-RSA (2019, to appear)

9. David, L., Wool, A.: Prank: Fast analytical rank estimation matlab code (2019)
10. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In:

Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 401–429.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5 16

11. Fledel, D., Wool, A.: Sliding-window correlation attacks against encryption devices
with an unstable clock. In: Cid, C., Jacobson Jr., M. (eds.) SAC 2018. LNCS, vol.
11349, pp. 193–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
10970-7 9

12. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In:
Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

13. Glowacz, C., Grosso, V., Poussier, R., Schüth, J., Standaert, F.-X.: Simpler and
more efficient rank estimation for side-channel security assessment. In: Leander, G.
(ed.) FSE 2015. LNCS, vol. 9054, pp. 117–129. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48116-5 6

14. Grosso, V.: Scalable key rank estimation (and key enumeration) algorithm for large
keys. https://eprint.iacr.org/2018/175.pdf

15. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48405-1 25

16. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

17. Li, Y., Meng, X., Wang, S., Wang, J.: Weighted key enumeration for em-based side-
channel attacks. In: 2018 IEEE International Symposium on Electromagnetic Com-
patibility and 2018 IEEE Asia-Pacific Symposium on Electromagnetic Compatibil-
ity (EMC/APEMC), pp. 749–752. IEEE (2018)

18. Li, Y., Wang, S., Wang, Z., Wang, J.: A strict key enumeration algorithm for depen-
dent score lists of side-channel attacks. In: Eisenbarth, T., Teglia, Y. (eds.) CARDIS
2017. LNCS, vol. 10728, pp. 51–69. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-75208-2 4

19. Longo, J., et al.: How low can you go? Using side-channel data to enhance brute-
force key recovery. Cryptology ePrint Archive, Report 2016:609 (2016). https://
eprint.iacr.org/2016/609

20. Martin, D.P., Martinoli, Marco: A note on key rank. IACR Cryptology ePrint
Archive, 2018:614 (2018)

21. Martin, D.P., Mather, L., Oswald, E.: Two sides of the same coin: counting and
enumerating keys post side-channel attacks revisited. In: Smart, N.P. (ed.) CT-RSA
2018. LNCS, vol. 10808, pp. 394–412. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-76953-0 21

22. Martin, D.P., Mather, L., Oswald, E., Stam, M.: Characterisation and estimation
of the key rank distribution in the context of side channel evaluations. In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 548–572. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 20

https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-319-52153-4_18
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-030-10970-7_9
https://doi.org/10.1007/978-3-030-10970-7_9
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-662-48116-5_6
https://doi.org/10.1007/978-3-662-48116-5_6
https://eprint.iacr.org/2018/175.pdf
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-319-75208-2_4
https://doi.org/10.1007/978-3-319-75208-2_4
https://eprint.iacr.org/2016/609
https://eprint.iacr.org/2016/609
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-319-76953-0_21
https://doi.org/10.1007/978-3-662-53887-6_20

190 L. David and A. Wool

23. Martin, D.P., Montanaro, A., Oswald, E., Shepherd, D.: Quantum key search with
side channel advice. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol.
10719, pp. 407–422. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
72565-9 21

24. Martin, D.P., O’Connell, J.F., Oswald, E., Stam, M.: Counting keys in parallel after
a side channel attack. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9453, pp. 313–337. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48800-3 13

25. Oren, Y., Weisse, O., Wool, A.: A new framework for constraint-based probabilis-
tic template side channel attacks. In: Batina, L., Robshaw, M. (eds.) CHES 2014.
LNCS, vol. 8731, pp. 17–34. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44709-3 2

26. Pan, J.: Improving DPA by peak distribution analysis. In: Biryukov, A., Gong, G.,
Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 241–261. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19574-7 17

27. Poussier, R., Standaert, F.-X., Grosso, V.: Simple key enumeration (and rank esti-
mation) using histograms: an integrated approach. In: Gierlichs, B., Poschmann,
A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 61–81. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53140-2 4

28. Quisquater, J.-J., Samyde, D.: ElectroMagnetic Analysis (EMA): measures and
counter-measures for smart cards. In: Attali, I., Jensen, T. (eds.) E-smart 2001.
LNCS, vol. 2140, pp. 200–210. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45418-7 17

29. Veyrat-Charvillon, N., Gérard, B., Renauld, M., Standaert, F.-X.: An optimal key
enumeration algorithm and its application to side-channel attacks. In: Knudsen,
L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp. 390–406. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35999-6 25

30. Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Security evaluations beyond
computing power. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013.
LNCS, vol. 7881, pp. 126–141. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-38348-9 8

31. Wang, S., Li, Y., Wang, J.: A new key rank estimation method to investigate depen-
dent key lists of side channel attacks. In: 2017 Asian Hardware Oriented Security
and Trust Symposium, AsianHOST, pp. 19–24. IEEE (2017)

32. Ye, X., Eisenbarth, T., Martin, W.: Bounded, yet sufficient? How to determine
whether limited side channel information enables key recovery. In: Joye, M.,
Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 215–232. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16763-3 13

https://doi.org/10.1007/978-3-319-72565-9_21
https://doi.org/10.1007/978-3-319-72565-9_21
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-48800-3_13
https://doi.org/10.1007/978-3-662-44709-3_2
https://doi.org/10.1007/978-3-662-44709-3_2
https://doi.org/10.1007/978-3-642-19574-7_17
https://doi.org/10.1007/978-3-662-53140-2_4
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1007/978-3-642-35999-6_25
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-642-38348-9_8
https://doi.org/10.1007/978-3-319-16763-3_13

Security Aspects of Post-Quantum
Schemes

Fault Attacks on UOV and Rainbow

Juliane Krämer(B) and Mirjam Loiero

TU Darmstadt, Darmstadt, Germany
jkraemer@cdc.informatik.tu-darmstadt.de

Abstract. Multivariate cryptography is one of the main candidates for
creating post-quantum public key cryptosystems. Especially in the area
of digital signatures, there exist many practical and secure multivari-
ate schemes. The signature schemes UOV and Rainbow are two of the
most promising and best studied multivariate schemes which have proven
secure for more than a decade. However, so far the security of multivariate
signature schemes towards physical attacks has not been appropriately
assessed. Towards a better understanding of the physical security of mul-
tivariate signature schemes, this paper presents fault attacks against Sin-
gleField schemes, especially UOV and Rainbow. Our analysis shows that
although promising attack vectors exist, multivariate signature schemes
inherently offer a good protection against fault attacks.

Keywords: Multivariate cryptography · Rainbow · UOV ·
Fault attacks

1 Introduction

Cryptographic techniques are an essential tool to guarantee the security of com-
munication in modern society. Until recently, the security of nearly all crypto-
graphic schemes used in practice was based on number theoretic problems such
as factoring large integers and solving discrete logarithms, e.g., RSA and ECC.
However, schemes like these will become insecure once large enough quantum
computers are built. This is due to Shor’s algorithm [21], which solves the integer
factorization problem and discrete logarithms in polynomial time on a quantum
computer. Therefore, we need alternative public key schemes which are based
on hard mathematical problems that remain hard in the presence of quantum
computers: post-quantum cryptosystems.

Besides cryptography based on lattices, hash functions, codes, and isogenies,
multivariate cryptography is one of the main candidates for this. The security
of multivariate schemes is based on the hardness of the MQ-problem - solving a
randomly generated system of multivariate quadratic polynomial equations over
finite fields - which is NP-hard [13]. Depending on the size of the finite field,
a distinction is made between SingleField schemes and BigField schemes [20].
The public key of multivariate schemes is a set of multivariate polynomials and
the private key is mainly the trapdoor that allows to invert the public key.

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 193–214, 2019.
https://doi.org/10.1007/978-3-030-16350-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_11

194 J. Krämer and M. Loiero

Unfortunately, most of the proposed multivariate encryption schemes have been
broken. This is due to the fact that the construction in this case must be based
on an injective trapdoor function. As a consequence, the multivariate system
of the public key is not a hard instance of the MQ-problem. On the other
hand, constructions of multivariate signature schemes allow to add some ran-
domness to the secret trapdoor which leads to a harder public key. Multivariate
signature schemes are in general very fast and require only modest computa-
tional resources, which makes them attractive for the use on low cost devices
like smart cards and RFID chips [4,8]. Therefore, developing fast and light-
weight implementations of multivariate signature schemes became an active field
of research [9,23,25]. Among many practical alternatives, UOV [16] and Rain-
bow1 [11] are two of the oldest, most efficient, and most promising multivariate
signature schemes.

When it comes to implementing post-quantum cryptography and using it
in practical applications, however, relying only on the mathematical security of
the schemes is not sufficient, but the physical security of the schemes and their
implementations has to be ensured as well. Since post-quantum cryptography is
only rarely used in practice as of 2019, and especially not in widespread use on
smart cards and in embedded systems so far, research about side channel attacks
and fault attacks on these schemes is still in the early stages of development.
For multivariate schemes in particular, only few publications exist, most of which
target (passive) side channel attacks rather than (active) fault attacks: Already in
2001, it was theoretically shown how the signature schemes FLASH and SFLASH
can be attacked with differential power analysis (DPA) [22]. Steinwaldt et al.
reveal the secret 80-bit seed Δ for SHA-1 and subsequently the affine bijections
S and T by analyzing the power consumption of involved ⊕ operations. Okeya et
al. propose another side channel attack on SFLASH in 2004 [18]. They also learn
Δ through a DPA and then break SFLASH by reducing its security to the C∗

problem, which is broken. They verify their results experimentally. Many years
later, Yi and Li present a DPA against the enTTS signature scheme [24]. The
DPA attack is facilitated by a fault attack which fixes certain unknown values to
known ones. The DPA part of the attack is verified experimentally against a naive
ASIC implementation of enTTS. Only recently, Park et al. presented side channel
attacks on the Rainbow and UOV signature schemes [19]. They use correlation
power analysis together with algebraic key recovery attacks and demonstrate the
practical feasibility of their attack on an 8-bit AVR microcontroller. Regarding
fault attacks on multivariate cryptography, only a single work exists: Hashimoto
et al. describe general methods how to attack multivariate cryptography with
fault attacks [14]2. These methods provide the basis for our work.

1 Rainbow has been submitted to the call for post-quantum cryptography standard-
ization by the US American National Institute of Standards and Technology (NIST)
in November 2017 [10] and was selected Round 2 Candidate in January 2019 [1].

2 The same authors published their work additionally in [15].

Fault Attacks on UOV and Rainbow 195

Our Contribution. The authors of [14] focus on BigField schemes and STS-type
schemes, which form a specific subclass of SingleField schemes. We complement
their work by comprehensively analyzing how the attacks can be applied to
SingleField schemes in general. In particular, we apply the attacks to UOV and
Rainbow. We find that several special cases exist where the attacks do not work.
From these findings we deduce countermeasures to protect multivariate signature
schemes against fault attacks. With this, we pave the way for future fault attack
resistant (implementations of) multivariate signature schemes.

Our analysis shows that although promising attack vectors exist, the ran-
domness induced by the vinegar variables - and in case of Rainbow also by the
different layers - proves to be an inherent protection against fault attacks.

Organization. In Sect. 2, we introduce the mathematics of multivariate cryp-
tosystems and summarize the work [14]. In the subsequent Sects. 3 and 4, we
discuss the applicability of the attacks from [14] to SingleField schemes and in
particular to UOV and Rainbow. We provide success probabilities for the attacks
and detect cases where the attacks do not work. We present countermeasures to
protect multivariate signature schemes against such attacks in Sect. 5.

2 Background

First, we provide an introduction to multivariate cryptosystems in Sect. 2.1.
Then, in Sect. 2.2 we give an overview about the ideas of the attacks in [14].

2.1 Multivariate Cryptosystems

The basic objects of multivariate cryptography are systems of multivariate
quadratic polynomials, see Eq. 1.

p(1)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(1)
ij · xixj +

n∑

i=1

p
(1)
i · xi + p

(1)
0

...

p(m)(x1, . . . , xn) =
n∑

i=1

n∑

j=i

p
(m)
ij · xixj +

n∑

i=1

p
(m)
i · xi + p

(m)
0 (1)

The security of multivariate schemes is based on the MQ problem: Given m
quadratic polynomials p(1)(x), . . . , p(m)(x) in n variables x1, . . . , xn as shown in
Eq. 1, find a vector x̄ = (x̄1, . . . , x̄n) such that p(1)(x̄) = . . . = p(m)(x̄) = 0. The
MQ problem (for m ≈ n) is proven to be NP-hard [13].

To build a public key cryptosystem on the basis of the MQ problem, one
starts with an easily invertible quadratic map F : Fn → F

m, the central map,
where F is a finite field. To hide the structure of F in the public key, one composes
it with two invertible affine maps T : Fm → F

m and S : Fn → F
n. These affine

196 J. Krämer and M. Loiero

maps can be written as T (y) = Ty + t and S(x) = Sx + s, where T ∈ F
m×m

and S ∈ F
n×n are linear transformations and t ∈ F

m and s ∈ F
n are constant

vectors. The public key of the scheme is given by P = T ◦ F ◦ S : Fn → F
m. The

private key consists of T , F , and S and thereby allows to invert the public key3.

Signature Generation. To generate a signature for a message d, the signer uses a
hash function H : {0,1}� → F

m to compute the hash value w = H(d) ∈ F
m and

computes recursively x = T −1(w) ∈ F
m, y = F−1(x) ∈ F

n, and z = S−1(y).
The signature of the message d is z ∈ F

n. Here, F−1(x) means finding one (of
possibly many) preimages of x under the central map F .

Verification. To check if z ∈ F
n is indeed a valid signature for a message d, one

computes w = H(d) and w′ = P(z) ∈ F
m. If w′ = w holds, the signature is

accepted, otherwise it is rejected.
In Appendix A, we describe the signature schemes Rainbow and UOV.

2.2 General Fault Attacks on Multivariate Public Key
Cryptosystems

In [14] the authors propose two approaches for fault attacks on multivariate
signature schemes. In both attacks, the goal of the attackers is to reveal the affine
maps T and S , respectively, via a linear algebra attack [16]. By a preceding fault
attack, they decrease the complexity of the linear algebra attack considerably.

The goal of the first attack, which we analyze in Sect. 3, is to gain partial
information about the affine map T via fault injection on the central map F . It is
assumed that the fault changes a single coefficient during signature generation.
By changing an additional coefficient in each following signature generation and
using message-signature pairs for random messages, the attacker deduces infor-
mation about the affine map T .

The second attack aims at the random values which are used during signa-
ture generation. If an attacker manages to fix (some of) those values for several
signature generations, he can transform the affine map S by using several pairs
of random messages and corresponding signatures to facilitate the subsequent
linear algebra attack. We analyze this attack in Sect. 4.

3 Fault Attack on the Central Map

In this section we analyze the fault attack on the central map. We introduce
the attacker model in Sect. 3.1 and give a detailed description how the attack is
intended to work for SingleField schemes in Sect. 3.2. In Sect. 3.3, we show that
UOV schemes - contrary to what is claimed in [14] - are immune to this attack.
In Sect. 3.4 we explain how the attack can be applied to Rainbow schemes and
in Sect. 3.5 we analyze special cases of the attack.
3 Due to the above construction, the security of multivariate public key schemes is not

only based on the MQ-Problem, but also on the EIP-Problem (Extended Isomor-
phism of Polynomials) of finding the composition of P [20].

Fault Attacks on UOV and Rainbow 197

3.1 Attacker Model

We assume in this attack that the attacker targets the signature generation
process and randomly changes a coefficient in the central map F . He either
modifies F directly or he attacks the public key P to modify F . (For a discussion
about the distinguishability of the faulty place in the latter case, we refer to
[14, Section 3.2.3].) The fault that the attacker induces is permanent. He then
receives the signature of a random message, i.e., this signature is generated with
a faulty central map, and applies the correct public key to it. Afterwards, he
again induces a fault into the central map - hence, the central map used in
the next step to generate a signature on another random message includes two
faults, and so on. By comparing the random messages with the messages yielded
by signing the random messages with the faulty central map and then applying
the correct public key to them, the attacker gains information about the affine
map T .

In a successful attack, all faults would affect pairwise different equations of
the central map F . The attacker would need m − 1 faults, see Sect. 3.2. As of
2018, we have m = 28 in the Rainbow scheme for F = GF (256) [20, Table 6.13].

3.2 Detailed Description of the Attack for SingleField Schemes

In [14], the authors describe the attack for Stepwise Triangular System (STS)
schemes. Schemes of this type form a subset of the SingleField family. However,
our findings show that the applicability and the success of this attack highly
depend on the concrete scheme it is targeting. Therefore, we first generalize
the attack to SingleField schemes, and then approach the schemes UOV and
Rainbow in a more concrete way.

For each message that is to be signed, i.e., for each iteration of the attack, in
case of SingleField schemes four steps have to be performed4. They are displayed
in Algorithm 1. Since we do not know which kind of coefficient α

(k)
ij ,β

(k)
ij , γ

(k)
i or

η(k) - the coefficients of the quadratic and linear variables and the constant part
of the central map F , see Appendices A.2 and A.3 - is changed, we write ξ(k)

for any of those. We denote faulty values with an apostrophe, e.g., ξ′(k).
We denote with l ∈ N the iteration of the attack, i.e., in iteration l the lth

fault is induced and the lth message is signed. Thus, δ(l) is the difference between
the lth message and the message obtained from signing this message with the
faulty central map F ′ and then applying the correct public key P to it. Hence,
δ(l) contains information about the difference between the correct and the faulty
central map.

4 To clarify Step 2. of [14, p. 9]: It is essential to cause a new fault on the central
map for each message (i.e., for each iteration over Steps 1 - 4) and not use the same
faulty map for all messages. Using the same faulty map for more than one message
will not reveal new information about T , as for two messages h(l1) and h(l2) - signed
with the same faulty central map - δ(l1) and δ(l2) will be multiples component-wise,
since the attack would both times target the same column of T .

198 J. Krämer and M. Loiero

Algorithm 1. One iteration of the attack on the central map

1: Change a coefficient ξ(k) into ξ′(k) to get a faulty central map F ′ out of F . Then
ΔF = F ′ − F .

2: Sign a randomly chosen message h(l) = (h
(l)
1 , . . . ,h

(l)
m) via the faulty central map

F ′ by z′(l) := S−1(F ′−1(T −1(h(l)))), where z′(l) = (z′(l)
1 , . . . ,z′(l)

n).

3: Verify z′(l) by using the correct public key P as h′(l) := P(z′(l)).
4: Set δ(l) := h′(l) − h(l).

First, we show that during the whole attack it suffices to consider T , the
linear part of T , cf. Sect. 2.1. This is due to the fact that the constant part t
cancels out, see Eq. 2. For z′(l), the faulty signature in iteration l, correct public
key P = T ◦ F ◦ S , and faulty public key P ′ = T ◦ F ′ ◦ S , we have

δ(l) = h(l) − h′(l) = P ′(z′(l)) − P (z′(l)) = (T ◦ F ′ ◦ S)(z′(l)) − (T ◦ F ◦ S)(z′(l))

= (T ◦ F ′ ◦ S(z′(l))) − (T ◦ F ◦ S(z′(l)))

= [T (F ′((S(z′(l)) + s))) + t] − [T (F ((S(z′(l)) + s))) + t]

= T (F ′ − F)((S(z′(l))) + s)

= (T ◦ (F ′ − F) ◦ S)(z′(l)).
(2)

Note that in the last three rows of Eq. 2, we do not use T and S , but T and S.
Now we show how T is transformed: We assume that in the first iteration (l = 1),
a coefficient ξ(k1) in F is changed to ξ(k1)

′
. In the resulting difference between

the correct and the faulty central map, there will be only one nonzero entry,
exactly at position k1: (F ′ −F)(x) = (0, . . . ,0,(ξ(k1)

′ −ξ(k1))xixj ,0, . . . ,0)T 5. For
the faulty signature z′(1) of the first message h(1), with Eq. 2 we have:

δ(1) = (δ(1)1 , . . . , δ(1)m) = T ◦ (F ′ − F) ◦ S(z′(1)) = T (0, . . . ,0, c1,0, . . . ,0)T , (3)

where c1 at position k1 is an unknown constant resulting from S(z′(1)) plugged
into F ′ − F . All other entries are zero, since the central map consists of m
quadratic equations f (1), . . . ,f (m) and in the faulty central map only in the kth

1

equation one coefficient was changed by the fault. δ(1) has length m and as we can
see from Eq. 3, it coincides with a constant multiple of the kth

1 column vector of

the m × m matrix T . Hence, T can be written as T =

⎛

⎜⎜⎝

∗ . . . ∗ δ
(1)
1 /c1 ∗ . . . ∗

...
...

...
∗ . . . ∗ δ

(1)
m /c1 ∗ . . . ∗

⎞

⎟⎟⎠ ,

where (δ(1)1 /c1, . . . , δ
(1)
m /c1)T is its kth

1 column. The idea is now to stepwise trans-
form T into a triangular matrix. To do so, in each iteration l a matrix T (l) is

5 Note that this does not imply that one of the quadratic coefficients is changed. This
representation only serves as an illustration.

Fault Attacks on UOV and Rainbow 199

multiplied to T , which by construction annihilates all entries in the kth
i column

except for the lth. For the construction of this matrix, we define the vector

δ(l) := (−δ
(l)
l+1/δ

(l)
l , . . . ,−δ(l)m /δ

(l)
l)T , (4)

which has length m − l in each step. Each matrix T (l) consists of four blocks,
the sizes and structure of which change in each step depending on the value l of
the iteration. The upper left block is the l × l identity matrix, the upper right
block consists of zeroes of dimension l × (m − l), the lower right block contains
the (m− l)× (m− l) identity matrix and the lower left block, which has the size
(m− l)× l, includes the vector defined in Eq. 4 in column l and a number of l−1
zero vectors of length m − l in columns 1 to l − 1, i.e.,

T (l) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

[I]l×l [0]l×(m−l)

δ(l)1
[I](m−l)×(m−l)[0](m−l)×(l−1)

...
δ(l)m−l

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

Hence, for l = 1 the matrix is T (1) =

⎛

⎜⎜⎜⎝

1 0 · · · 0
−δ

(1)
2 /δ

(1)
1

... [Im−1]
−δ

(1)
m /δ

(1)
1

⎞

⎟⎟⎟⎠ and T (1)T =

⎛

⎜⎜⎜⎝

∗ · · · ∗ δ
(1)
1 /c1 ∗ · · · ∗

∗ · · · ∗ 0 ∗ · · · ∗
...

...
...

∗ · · · ∗ 0 ∗ · · · ∗

⎞

⎟⎟⎟⎠ , where (δ(1)1 /c1, 0, · · · , 0)T is the kth
1 column.

This calculation is performed at least m−1 times6, until in the last step we have

T (m−1) =

⎛

⎜⎜⎜⎜⎝

[Im−1]

0
...
0

1 0 · · · − δ(m−1)
m

δ
(m−1)
m−1

1

⎞

⎟⎟⎟⎟⎠
and T (m−1)T =

⎛
⎜⎜⎜⎜⎝

∗ · · · ∗ δ
(m−1)
1 /cm−1 ∗ · · · ∗

...
...

...
∗ · · · ∗ δ

(m−1)
m−1 /cm−1 ∗ · · · ∗

∗ · · · ∗ 0 ∗ · · · ∗

⎞
⎟⎟⎟⎟⎠

,

where (δ(m−1)
1 /cm−1, . . . , δ

(m−1)
m−1 /cm−1, 0)T is the km−1

th column. If we put
together T from the m − 1 transformed matrices T (1)T, . . . , T (m−1)T , we obtain
a permutation of a triangular matrix with at most m(m+1)

2 nonzero entries. All
other entries are expressed as quotients of some entry of δl and constants cl.

6 In Table 1 of [14] the authors state that the number of faults for STS type schemes -
they erroneously consider UOV and Rainbow to be STS schemes - is exactly n − 1.
This is incorrect in two different ways: (1) According to the dimension of T , the
number of faults does not depend on n, but on m. (2) The number of faults is not
exactly m−1, but at least m−1. In Sect. 3.5, we describe a special case where more
faults need to be injected.

200 J. Krämer and M. Loiero

By using the MinRank attack [16] we can now recover T by using the rank
of the central equations f (k). The MinRank attack uses the fact that the rank
of F (k) is invariant under S (the transformation of variables), but changed by T
(the transformation of equations). Since the entries of T have been reduced by
this attack, the complexity of the MinRank attack is reduced as well [14].

3.3 UOV Schemes Are Immune to This Attack

The authors of [14] state that the attack can be applied to UOV. However, in
UOV the second affine map T can be omitted since using it does not increase the
overall security of the scheme while increasing the key sizes and complexity [6].

This leaves us with a UOV public key of F ◦ S . Thus, applying the proposed
attack on a UOV scheme does not work, as the goal was to restore parts of the
affine map T . Interestingly, because of the different roles of the dimensions n
and m and since S is computed before the central map in the public key, the
attack can not be transferred to S .

3.4 Applying the Attack to Rainbow Schemes

In this section we adapt the attack on the central map to a Rainbow scheme
with parameters vi for the vinegar variables and oi for the oil variables with
i = 1, . . . , u, a central map F : Fn → F

m with m = n − v1, and two affine maps
T : Fm → F

m and S : Fn → F
n, see Appendix A.3.

First, we consider the case that the attacker does not know which map is
affected by the fault and is only able to randomize values. Therefore, we compute
the success probability for hitting a coefficient in the central map F .

Success Probability. The attack on the central map is only successful if actu-
ally an element in F is changed by the fault. However, we assume that the
attacker can only randomly alter elements of either S , F , or T without knowing
anything about the changed values. In order to estimate the success probability
for hitting an element of the central map F we need to determine the number
of all entries of the three matrices representing the maps S , F , and T . We revise
and detail the information hereof given in [14].

The affine map T : Fm → F
m consists of a quadratic m × m matrix and a

linear vector of length m. This gives a total of m · m + m = m(m + 1) elements.
Analogously, the affine map S : F

n → F
n has a total of n(n + 1) elements.

The central map F : Fn → F
n−v1 contains m equations each theoretically in n

variables. All variables that are not assigned in an equation, e.g., all terms of
the form oil-oil, have the coefficient 0. The number of assigned variables depends
on the layer. First, we provide the formula for the number of nonzero variables

summed up over all layers:
u∑

i=1

oi(vi+1)(vi+2)
2 − (n − vi). This formula describes

the actual combination of n variables quadratically, linearly, and constantly,
considering that there are no oil-oil variables and the number of vinegar-vinegar
variables depends on the layer.

Fault Attacks on UOV and Rainbow 201

In the general case, however, we assume that the attacker can change any of
the coefficients stored in a coefficient matrix as depicted in [9, Figure 3], e.g., he
could “create” an oil-oil variable that does not exist (i.e., is zero) by changing the
corresponding coefficient from 0 to another value. In the general case, for a single
equation we have n(n + 1)/2 quadratic terms, n linear terms, and one constant
term. For m equations this sums up to a total of at most mn(n+1)+2n+2

2 =
m (n+1)(n+2)

2 . Hence, we obtain the success probability7

p =
m(n + 1)(n + 2)

m(n + 1)(n + 2) + 2m(m + 1) + 2n(n + 1)
. (5)

Since the parameter q does not appear in this formula, the success probability
for this attack does not depend on the field F

8. It rather depends on the ratio
between the number of equations m and the number of variables n.

To learn the concrete success probability of the attack against the Rain-
bow scheme, we computed examples for different reasonable parameters. In [2],
lower bounds for n, depending on the value of m, are given for finite fields with
q ∈ {16, 31, 256}. For these fields, we selected four values for (m,n) from the
literature [11,20]9 and computed the success probability for the attack against
schemes instantiated with theses parameters. The results are given in Table 1.

Table 1. Success probability of hitting the central map in Rainbow schemes.

Rainbow parameters Success probability

F16, m = 42, n = 61 p ∼ 0.936

F31, m = 35, n = 52 p ∼ 0.926

F256, m = 28, n = 48 p ∼ 0.916

F256, m = 33, n = 27 p ∼ 0.895

We conclude with the result that for Rainbow schemes in common fields and
with up-to-date parameter choices, the success probability for hitting a coefficient
in the central map F is more than 90%.

Assuming a Stronger Attacker. On the one hand, a stronger attacker can
target F (instead of only P) or even specific coefficients in F directly. This allows
him to perform the attack in a more structured way and to avoid unwanted
scenarios. On the other hand, a stronger attacker can not only randomize values,
but zero them or even set them to a chosen value. In case an attacker is more
7 The same formula holds for UOV schemes.
8 Actually the parameters q and n are indirectly connected, since in fields with small

q the parameter n has to be chosen larger in order to ensure security.
9 The first three tuples of parameters are taken from [20] for the year 2018, the last

one is the original suggestion from [11].

202 J. Krämer and M. Loiero

powerful in both ways, he can directly find values of F : He chooses a random
message and successively assigns all values from the underlying field to a certain
entry of F before signing the message with that modified F . As soon as a δ(l)

consists of only zeroes, the right entry of F is found.

3.5 Special Cases

During anaylzing how the attack can be applied to a Rainbow scheme, we
detected some special cases that can occur and which are not covered by the
descriptions in [14].

Specific Vinegar Variable Assigned 0. In each signature generation process there
are a number of values randomly assigned to the vinegar variables over the field F.
Let us assume vi to be the number of vinegar variables. If the coefficient changed
by the fault attack belongs to a variable that contains a vinegar-monomial (i.e.,
vinegar-vinegar or vinegar-oil) and furthermore exactly this vinegar variable
takes the value 0 during the step in the inversion of the central map where
random values are assigned to the vinegar variables, then this term with the
faulty coefficient drops out during signature generation. As a consequence, there
is no difference in a signature generated with the correct central map and one
generated with the faulty central map, resulting in δ(k) = 0 in all entries. When
the attacker computes δ(k) = 0, he realizes that this case occurred10 but gains
no information in the sense of the attack.

We computed the probability for this special case to occur for an example
Rainbow scheme. In the original paper of Ding and Schmidt [11], a set of param-
eters for practical implementation is proposed. For these parameters, we derived
a probability of approximately 1.1%, as explained in Appendix B.

lth Entry of δ(l) Equals 0. The second special case concerns that in each iteration
l of the attack δ(l) = h′(l) − h(l) is computed, with δ(l) = (δ(l)1 , . . . , δ

(l)
m). These

entries are a constant multiple of the kth
l column of the matrix T . This implies

that if the kth
l entry of a column in T equals 0, then for the lth entry of δ(l) it

holds δ
(l)
l = 0. In this case it is not possible to construct the vector in Eq. 4 in

order to perform the transformation since all other entries of δ(l) would have to
be divided by δ

(l)
l = 0. An attacker would detect this occurrence by computing

δ(l), but could discard the values and start over.
The probability for this special case to occur depends on m, the number of

multivariate quadratic polynomials, and on the size of the finite field. For each
column separately, the probability is 1

|F| , since the values in T were assigned
randomly from F. Performing this step at least m − 1 times, the probability p2

10 The same situation would occur if an entire column of T was equal zero. However,
this cannot happen since the maps are expected to have full rank.

Fault Attacks on UOV and Rainbow 203

for this special case to occur can be computed via the complementary event:

p2 ≥ 1 −
(

|F|−1
|F|

)m−1

. For the example schemes from Table 1, this yields p2 ≥
0.928 (q = 16, m = 42), p2 ≥ 0.672 (q = 31,m = 35), and p2 ≥ 0.100 (q =
256,m = 28). With increasing field size, the probability decreases drastically.

Coefficients in Same Equation Targeted More Than Once. The third special
case concerns redundant faults: It can happen that an attacker injects faults
that affect an equation that had already been altered with a previous fault, i.e.,
the same column of T is affected several times. The attacker would detect this
situation if a newly computed δ(k) is linearly dependent to any of the already
computed ones. Since the goal is to transform T into a triangular matrix where
the kth

l column vector contains information about the kth
l column of T , it is

necessary to target each equation (at least) once. Hence, an attacker would
abort this step and try to target another equation which is yet untouched.

4 Fault Attack on the Random Values

In this section we show how the attack on the random values can be applied
to the SingleField schemes UOV and Rainbow. First, we introduce the attacker
model in Sect. 4.1. Then, we explain how the attack can be applied to Single-
Field signature schemes. The explanation of the attack method is similar to
the description in [14, Section 3.3.2] with a slightly different notation and more
details. In Sect. 4.3, we discuss a special case of the attack that has not been
covered in [14], and from this deduce the success probability of the attack.

4.1 Attacker Model

In each signature generation the vinegar variables are instantiated with ran-
dom values. In this attack, which targets the signature generation process, we
assume that the attacker fixes some (or all) of these random values with a single
permanent fault. He does not know how many variables he fixed, and he does
not know the value of these variables. Afterwards, he receives several message-
signature pairs where each signature has been computed with the fixed variables
and, in case he did not fix all of the variables, additional random ones. The more
variables he fixes, the less message-signature pairs he needs. By analyzing these
pairs, the attacker gains partial information of S .

4.2 Detailed Description of the Attack for SingleField Schemes

We denote the random values with r1, . . . ,ru1 ∈ F, u1 ∈ N and assume that the
attacker fixes the first u2 variables r1, . . . ,ru2 for u2 ≤ u1.

Consider a UOV scheme over a finite field F with v vinegar and o oil variables
satisfying v > o or a Rainbow scheme with vi vinegar and oi oil variables per layer
i = 1, . . . , u. Since the attack works analogously for both schemes, we simply

204 J. Krämer and M. Loiero

Algorithm 2. Attack on the random values
1: Cause a fault that fixes r1, . . . ,ru2 and suppose that r̄1, . . . ,r̄u2 ∈ F are exactly

these unknown fixed values.
2: Generate signatures z(1), . . . ,z(n−u2+1) for randomly chosen messages

h(1), . . . ,h(n−u2+1) with r = (r̄1, . . . ,r̄u2 ,ru2+1, . . . ,rn) .
3: Recover parts of S by using the pairs (z(k), h(k)).

write v. Let h(1), . . . , h(n−u2+1) ∈ F
m be the messages and z(1), . . . , z(n−u2+1) ∈

F
n the corresponding signatures with u2 ≤ v variables that have been fixed by

the attacker. Let x(k) = (x(k)
1 , . . . , x

(k)
v) ∈ F

v be the vinegar variables in step
k. W.l.o.g. we assume that the first u2 variables (x1, . . . , xu2) are fixed to the
values (x̄1 . . . , x̄u2), yielding the vector x(k) = (x̄1 . . . , x̄u2 ,x

(k)
u2+1, . . . , x

(k)
v)T for

each step k. We write x(k) = (x̄,r(k))T , where x̄ denotes the fixed part and
r(k) ∈ F

v−u2 denotes the random values that differ in each step.
Below we will show that a total of n − u2 + 1 message-signature pairs are

needed to perform the attack.

Reducing the Number of Nonzero Elements in a Specific Representation of S.
Signatures in UOV and Rainbow are computed by z = S−1(F −1(y)) and z =
S−1(F −1(T −1(y))), respectively. In both cases we can write

z = S−1

(
x
w

)

for some x ∈ F
v and w ∈ F

n−v. With the above notation we can rewrite

Sz(k) + s =

⎛

⎝
x̄

r(k)

w(k)

⎞

⎠ . (6)

We want to see how the fixed values x̄ can be used to express S, so we split up
S, z(k), and s into

S =
(

A B
C D

)
and z(k) =

(
z(k,1)

z(k,2)

)
and s =

(
s1
s2

)
,

where z(k,1), s1 ∈ F
u2 and z(k,2), s2 ∈ F

n−u2 and A ∈ F
u2×u2 , B ∈ F

u2×(n−u2),
C ∈ F

(n−u2)×u2 , and D ∈ F
(n−u2)×(n−u2). We now use Eq. 6 to write Sz(k) +s =

(
A B
C D

)
·
(

z(k,1)

z(k,2)

)
+

(
s1
s2

)
=

(
Az(k,1) + Bz(k,2) + s1
Cz(k,1) + Dz(k,2) + s2

)
=

⎛

⎝
x̄

r(k)

w(k)

⎞

⎠ .

From the dimensions of A,B,C, and D we deduce Az(k,1) +Bz(k,2) +s1 = x̄.
As s1 and x̄ are fixed from the beginning, we write Az(k,1) + Bz(k,2) = x̄ − s1
and with setting z̄(k,1) := z(k,1) − z(1,1) and z̄(k,2) := z(k,2) − z(1,2) for 2 ≤ k ≤
n − u + 1, we obtain Az̄(k,1) + Bz̄(k,2) = A(z(k,1) − z(1,1)) + B(z(k,2) − z(1,2)) =
Ax(k,1) − Bz(k,2) − (Az(1,1) + Bz(1,2)) = x̄ − s1 − (x̄ − s1) = 0. Based on this

Fault Attacks on UOV and Rainbow 205

we are able to express A−1B with the aid of the signatures z(k) by using z̄(k,1),
k ∈ {2, . . . , n − u2 + 1}, as column k − 1 of the u2 × (n − u2)-matrix Z1 and
accordingly z̄(k,2) as column k−1 of the (n−u2)× (n−u2)-matrix Z2. It follows

AZ1 + BZ2 = 0 ⇔ AZ1 = −BZ2 ⇔ Z1 = −A−1BZ2 ⇔ −Z1Z2
−1 = A−1B (7)

if A and Z2 are invertible. The facilitated representation of S is then given

by
(

A B
C D

)
·
(

Iu2 −A−1B
0 In−u2

)
=

(
A 0
C −CA−1B + D

)
. Hence, the attack on the

random values can be used to reduce the number of nonzero elements in the
facilitated representation of S. Subsequently, the MinRank attack [16] can be
used to compute S [12].

4.3 Special Case and Success Probability of the Attack

The attack does not work if A is a singular matrix, as can be seen in Eq. 7. To
discuss the probability of this special case, we determine the probability that
an (n × n)-matrix with random entries from F is invertible, i.e., not singular.
Following [7], we estimate this probability under the assumption that the entries
are uniformly distributed in F as

n−1∏

i=0

(qn − qi)
qn2 =

n∏

i=1

(1 − 1
qi

).

In the attack, matrix A has dimension u2 × u2, where u2 is the number
of random variables that the attacker fixed. For common parameters for UOV
and Rainbow schemes, we get high success probabilities that A is invertible, see
Table 2. With u2 increasing, the probability decreases only slightly.

Table 2. Success probability that the matrix A ∈ F
u2×u2 is invertible, depending on

different sizes of the finite field F, as suggested for UOV and Rainbow [20], and different
numbers u2 of fixed vinegar variables.

Finite field Number of fixed vinegar variables Success probability

F16 u2 ∈ {1, . . . , 16} p ≥ 0.933

F31 u2 ∈ {1, . . . , 31} p ≥ 0.966

F256 u2 ∈ {1, . . . , 256} p ≥ 0.996

On the other hand, the number of fixed values u2 affects how many messages
need to be signed, cf. Sect. 4.2. This is related to the complexity of the MinRank
attack (which is used to learn S completely) which initially is O(qv−o−1o4) =
O(qn−2o−1o4) [5] with n = v + o. For each fixed vinegar variable the complexity
is reduced by the factor q, i.e., in total by qu2 . Hence, if an attacker fixes a
number u2 of vinegar variables, the complexity decreases to O(q(v−u2)−o−1o4) =
O(qn−2o−u2−1o4).

Consequently, an attacker should fix as many vinegar variables as possible.

206 J. Krämer and M. Loiero

5 Countermeasures

Derived from the fault attacks explained in the previous sections, we present algo-
rithmic countermeasures to protect multivariate SingleField signature schemes
against these attacks.

5.1 Securing the Central Map

Check for a Faulty Central Map. An approach that has already been proposed
in [14] is to test the central map for modifications before starting signature
generation. The idea is to store a checksum cF of the coefficients in F and
compare it at the beginning of each signature generation with a checksum cF ′

of the coefficients of the central map used during that signature generation. In
case the checksums differ, the message is not signed. This countermeasure can
be applied to all SingleField schemes. However, the checking procedure has to
be carefully implemented, i.e., protected, so that it cannot be skipped by an
experienced attacker [3].

Increase the Chances for Vinegar Variables to be 0. As shown in Sect. 3.5, a
situation can occur where the faulty coefficient in the central map coincides with
the choice of a vinegar variable to be 0 during the signature generation process.
In this case the whole expression with the faulty coefficient and the vinegar
variable evaluates to 0. We learned that each time this happens, the attacker
has to start over again since this step does not yield new information. The idea
of this countermeasure is to increase the probability of the vinegar variables to
be assigned 0 in order to increase the overall probability for it to coincide with
the exact faulty coefficient. (This of course requires the faulty coefficient to be of
vinegar-type.) The vinegar variables are assigned with random values from the
underlying finite field F. Hence, signature schemes that use smaller finite fields
are better protected against the attack on the central map.

Increase the Number of 0-entries in T. As discussed in Sect. 3.5, it can happen
that in the lth iteration the lth entry of δ(l) equals 0. Then the attacker cannot
proceed with the attack, since in order to reduce the elements of T it is necessary
to divide all other entries of δ(l) by δ

(l)
l . To make the attack less likely to work,

we can thus increase the number of 0-entries in T , so that it gets more probable
to have such a 0-entry at the according position. However, there are several
problems involved: Too many 0-entries result in sparseness of the matrix and
while a sparse matrix might impede this attack, it simultaneously facilitates
rank attacks. Also, when the attacker learns which entries are 0 he might use
this knowledge to adjust the attack accordingly. We leave for future work to
analyze if indeed it is reasonable to increase the number of 0-entries in T .

Change the Ratio of m and n. In Sect. 3.4 we showed that the success probability
for changing an entry in F is around 90% for Rainbow schemes. This high prob-
ability comes from the fact that the size of F is relatively large in comparison to

Fault Attacks on UOV and Rainbow 207

T and S . This depends on the ratio of n and m. So it seems to be a reasonable
idea to make the attack less successful by changing the ratio of the variables m
and n and thus increase the probability that an attacker targets parameters of
T or S instead of F . This can be achieved by minimizing Eq. 5. However, if an
attacker is able to distinguish the faulty place (c.f. Scenario 2 in Sect. 3.4), he
realizes if the fault injection was successful and can repeat the attack in case it
was not. Again, we leave for future work to determine how this countermeasure
impairs the security of the scheme. This countermeasure is also applicable for
other schemes of SingleField type.

5.2 Securing the Random Values

Saving the Values. The first idea to prevent the attack on the random values has
already been roughed out in [14]. This countermeasure consists in saving the ran-
domly chosen values for each step and compare them with the variables of every
current signature. If a certain threshold of coincidences between old and new
values occurs, the signature generation has to be aborted. The countermeasure
can be applied to all SingleField schemes which use random values.

This threshold has to be chosen carefully, since, as we show in Appendix C,
also without fault injection coincidences are frequent. The choice of this threshold
depends, among others, on the underlying field: the smaller the field, the more
likely a coincidence in the random variables occurs. Considering the specifics of
the attack, it might moreover be reasonable to count coincidences column-wise
and abort further signature generations once the threshold is reached in one of
the columns.

Matrix A not Invertible. In Eq. 7 we showed that the matrix A is required to be
invertible, otherwise the transformation of S to reduce the number of nonzero
elements does not work. A is the upper left part of the matrix S with dimension
u2 × u2, with 0 ≤ u2 ≤ v, where u2 is the number of fixed variables. A powerful
attacker would try to fix as many variables as possible. Since we do not know
the value of u2, but u2 is bounded above by v, this countermeasure consists in
filling the upper v entries of the first column of S with zeroes and thereby force
A to be singular without necessarily making S singular (as v < n). Although
this countermeasure completely prevents the attack against the random values,
we leave for future work to analyze any security implications this might entail.

6 Conclusion

With this paper, we complement the research on the physical attack security
of multivariate signature schemes. We presented to fault attacks on SingleField
schemes with an emphasis on UOV and Rainbow. We showed that the success
probability of both attacks is rather high. Nevertheless, since both attacks do not
lead to complete key recovery, we conclude that multivariate signature schemes
inherently offer a good protection against fault attacks.

208 J. Krämer and M. Loiero

Acknowledgments. This work has been co-funded by the DFG as part of project P1
within the CRC 1119 CROSSING. We thank Mohamed Saied Emam Mohamed for his
contribution to a preliminary version of this work and Albrecht Petzold for his diligent
proofreading of this paper.

A The Signature Schemes UOV and Rainbow

A.1 Signature Generation and Verification of Multivariate Schemes

The standard signature generation and verification process of a multivariate
signature scheme works as shown in Fig. 1.

Signature Generation

w F
m

−1

x F
m

−1

y F
n S−1

z F
n

P

Signature Verification

Fig. 1. General workflow of multivariate signature schemes.

A.2 Unbalanced Oil and Vinegar Signature Scheme

The Unbalanced Oil and Vinegar signature scheme (UOV) is a modified version
of the Oil and Vinegar scheme. It was designed by Kipnis and Patarin and pre-
sented at EUROCRYPT’99 [16] after the original scheme was broken by Kipnis
and Shamir in 1998 [17] via linear algebra attacks.

Unlike in the Oil and Vinegar scheme, where the number of vinegar and
oil variables are equal, the advantage of UOV consists in choosing the number
of vinegar variables to be greater than the number of oil variables in order to
guarantee better security against known attacks. The formal notation, the choice
of variables, and the structure of the scheme is described in the following.

Notation. All computations are performed in a finite field F with q elements.
Let o := m ∈ N be the number of oil variables and v ∈ N the number of vinegar
variables, hence n = o + v. The corresponding index sets for the variables be
V = {1,...,v} and O = {v + 1,...,n}. xi(i ∈ V) are called vinegar variables and
xj(j ∈ O) oil variables. The message (or its hash) to be signed is denoted by
h = (h1,...,hm) ∈ F

m and the signature itself by z = (z1,...,zn) ∈ F
n.

Fault Attacks on UOV and Rainbow 209

Central Map and Affine Maps. The central map F : Fn → F
o of the UOV-

scheme consists of m quadratic polynomials f (1),...,f (m) ∈ F[x1,...,xn] of the
form

f (k)(x) =
∑

i,j∈V
i≤j

αij
(k)xixj +

∑

i∈V
j∈O

βij
(k)xixj +

∑

i∈V ∪O

γi
(k)xi + η(k)

where k ∈ {1,...,m} and the α
(k)
ij are the coefficients of the quadratic vinegar-

vinegar, the β
(k)
ij of the quadratic oil-vinegar, the γ

(k)
i of the linear oil and vinegar

variables and η(k) is the constant part. All coefficients are chosen randomly from
the underlying field F and stored in a matrix, see, e.g., [9, Figure 2].

In order to hide the structure of the central map F , it is composed with an
affine bijective map S : Fn → F

n, which can be written as S(x) = Sx + s, where
S ∈ F

n×n is a linear transformation and s ∈ F
n is a vector.

Note that unlike in other multivariate signature schemes of SingleField type
like Rainbow (cf. Sect. A.3), in UOV the second affine map T : Fm → F

m can
be omitted (or similarly treated like the identity map T = id) since applying it
to the polynomials would not change the structure of the central map F at all
and thus would not increase the overall security.

Public Key and Private Key. The public key of the UOV scheme is given
by P = F ◦ S with P : F

n S→ F
n F→ F

m, consisting of m public quadratic
polynomials in n variables. The private key is the tuple (F , S). As both F and
S can be inverted efficiently, knowledge of the private key allows for inversion of
the public key and therefore signature generation.

Inversion of the Central Map. In order to create a valid signature, inversion
of the central map is required (compare Eq. 8 below), which is done by performing
the following steps:

1. Assign random values to the vinegar variables x1,...,xv.
2. Substitute them into the polynomials f (1),...,f (m), resulting in a system of m

linear equations in the oil variables xv+1,...,xn.
3. Solve the system of linear equations, e.g., by using Gaussian elimination.
4. If the system does not have a solution, go back to Step 1 and try again with

different random values.

Signature Generation and Verification. To sign a document h = (h1, . . . ,
hm) ∈ F

m, solve the equation
F ◦ Sz = h

for z ∈ F
n. First, find a pre-image of h under the central map F with the method

described above to get
Sz = F −1h =: y (8)

210 J. Krämer and M. Loiero

with y ∈ F
n. Then invert S to obtain the signature

z = S−1y.

For signature verification it has to be checked whether P (z) = h holds. If this is
the case, the signature is accepted, if not, rejected.

A.3 Rainbow

In 2005, Ding and Schmidt published a new signature scheme named Rainbow,
which is a generalization of the Unbalanced Oil and Vinegar scheme [11]. The
basic idea is to combine several layers of Oil and Vinegar in one scheme in order
to improve the security and efficiency of the scheme. Compared to UOV, in
Rainbow key and signature sizes can be reduced.

Notation. Let F be a finite field with q elements. Let S be the set {1,...,n} and
v1,...,vu+1 integers with the property

0 < v1 < v2 < ... < vu+1 = n,

where u stands for the number of layers. Define the sets of integers Si = {1,...,vi}
for each i = 1,...,u. The number of elements in set Si is vi and by construction
we have

S1 ⊂ S2 ⊂ ... ⊂ Su+1 = S.

We set oi := vi+1 − vi and Oi := Si+1 − Si = {vi + 1,...,vi+1} for i = 1,...,u.
Then we have |Oi| = oi.

Central Map and Affine Maps. The central map F : Fn → F
n−v1 , which

is an easily invertible quadratic map, consists of m := n − v1 polynomials
(f (v1+1),...,f (n)), each of the form

f (k)(x1,...,xn) =
∑

i,j∈Sl
i≤j

αij
(k)xixj +

∑

i∈Ol
j∈Sl

βij
(k)xixj +

∑

i∈Ol∪Sl

γi
(k)xi + η(k)

with k = v1 + 1,...,n and where l denotes the layer. For i ∈ Ol we call xi an
lth-layer oil variable and for i ∈ Sl an lth-layer vinegar variable. The central map
of a Rainbow scheme consists of u different layers, the ith layer of which consists
of the polynomials f (j) for j ∈ Oi.

The name Rainbow refers to the fact that the number of variables increases
with each layer and can be arranged like the layers of a rainbow:

[x1,...,xv1]{xv1+1,...,xv2}
[x1,...,xv1 ,xv1+1,...,xv2]{xv2+1,...,xv3}

...
...

[x1,...,...,...,...,...,...,...,...,...,...,...,...,...,xvu−1]{xvu−1+1,...,xn}.

Fault Attacks on UOV and Rainbow 211

Each row represents a layer of the Rainbow scheme with the vinegar variables
in squared and the oil variables in curly brackets.

In order to hide the structure of the central map, two invertible affine maps
are composed to F from both sides:

S : Fn → F
n with S(x) = Sx + s for x ∈ F

n

T : Fm → F
m with T (y) = Ty + t for y ∈ F

m, (9)

where T ∈ F
m×m and S ∈ F

n×n are linear transformations and t ∈ F
m and

s ∈ F
n are constant vectors.

Public Key and Private Key. The public key is given by P = T ◦ F ◦ S
with P : Fn S→ F

n F→ F
m T→ F

m. The field F and its additive and multiplicative
structure are also publicly known. The private key consists of (T ,F , S).

Inversion of the Central Map. In order to generate a signature, one needs
to be able to invert F . This can be done by the following steps, similar to the
method for UOV, cf. Sect. A.2.

1. Assign values to the vinegar variables x1, . . . ,xv1 at random and substitute
them into the equations given by f (v1+1), . . . ,f (n).

2. Solve the system of o1 linear equations in the o1 unknowns xv1+1, . . . ,xv2 ,
e.g., via Gaussian elimination. This gives all the values xi with i ∈ S2.

3. Insert these values into the second layer of polynomials (i.e., f (k) with k > v2)
to obtain a system of o2 linear equations in the o2 unknowns xi, i ∈ O2.
Solving the systems yields the xi with i ∈ S3.

4. Repeat this process until a solution for all variables is found. If in any step
no solution for the systems of equations can be found, again random values
for the variables x1, . . . ,xv1 are chosen.

Signature Generation and Verification. To sign a document h = (h1, . . . ,
hm) ∈ F

m, the equation

T ◦ F ◦ S(z1, . . . ,zn) = h

needs to be solved for z = (z1, . . . ,zn). To do this, first the inverse T −1 is applied

F ◦ Sz = T −1h =: x.

Next invert the central map F via the method described above to get

Sz = F −1x =: y.

Finally apply the inverse S−1 to obtain a signature z

z = S−1y.

To verify a signature one simply checks whether P (z) = h holds. In this case the
signature is accepted, otherwise rejected.

212 J. Krämer and M. Loiero

B Probability for the Special Case of Sect. 3.5

We are interested in the following case: A fault is caused on a coefficient of the
multivariate system. Coincidentally, during the signature generation process, a
vinegar variable belonging to this coefficient is assigned 0.

The probability of a certain vinegar variable xi to be assigned 0 is 1
q , where

q = |F|. So the probability that at least one variable is chosen 0 is 1 − (1 − 1
q)vl ,

where l is a layer in the Rainbow scheme. In the system of equations we have
quadratic and linear terms with vinegar variables. The number of terms in the
central map including a certain vinegar variable is n + 1 for one equation or
m(n + 1) for the whole system of equations. The total number of terms in the
system consisting of S , T and F thereby is given by n(n + 1), m(m + 1) and
m(n+1)(n+2)

2 , respectively.
The probability p for all u layers is then computed by

p =

(
u∑

l=1

(1 − (1 − 1
q
)vl)

)
· m(n + 1)

m(m + 1) + n(n + 1) + m(n+1)(n+2)
2

To get an idea of the concrete probability, we apply the considerations above
to an example Rainbow scheme. Ding and Schmidt proposed in the original
paper [11] a set of parameters for practical implementation. The finite field has
q = 28 elements and n = 33, S = {1,2,...,33}. The number of layers is given
by u = 4, the number of vinegar variables by v1 = 6, v2 = 12, v3 = 17, v4 =
22, v5 = 33, and the number of oil variables by o1 = 6, o2 = 5, o3 = 5, o4 = 11,
m = n − v1 = 27. This yields:

p =

(
4∑

l=1

(1 − (1 − 1
256

)vl)

)
· 27 · 34
27 · 28 + 33 · 34 + 27·34·35

2

≈ 0.011.

Hence, with the parameter choice given above, this special case approximately
occurs in 1.1% of signature generations.

Table 3. Probability for coincidences in random variables for different fields for UOV
and Rainbow.

Parameters p1 ≈ i ≥ 2 → p2 ≥
UOV(F16, v = 128) 0.99 0.99

UOV(F31, v = 104) 0.97 0.99

UOV(F256, v = 90) 0.30 0.50

Rainbow(F16, v1 = 19) 0.71 0.92

Rainbow(F31, v1 = 17) 0.43 0.68

Rainbow(F256, v1 = 20) 0.075 0.14

Fault Attacks on UOV and Rainbow 213

C Probability for Equal Random Variables

For a field with q elements and a number of v1 vinegar variables, the event that
two randomly generated sets of v1 vinegar variables have at least one coincidence
is the complementary event of no coincidences at all. The probability for this
is p1 = 1 −

(
q−1

q

)v1

. If we compute this for a number of i ≤ k sets of random
values, then we get the probability that at least in one comparison at least one
coincidence occurs by p2 = 1− (1− p1)i. If we use common parameters for UOV
and Rainbow schemes, we see that such occurrences are quite frequent.

As we can see in Table 3, it is quite probable that one or more variables have
a value in common with older sets of variables. So one should not deny any
signature where a coincidence occurs, but define a threshold value.

References

1. Round 2 submissions - post-quantum cryptography—CSRC (2019). https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-submissions. Accessed 14
Feb 2019

2. Albrecht, Bulygin, S., Buchmann, J.A.: Selecting parameters for the rainbow sig-
nature scheme - extended version. IACR Cryptology ePrint Archive 2010, p. 437
(2010)

3. Blömer, J., da Silva, R.G., Günther, P., Krämer, J., Seifert, J.P.: A practical
second-order fault attack against a real-world pairing implementation. In: 2014
Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 123–136 (2014)

4. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85053-3 4

5. Braeken, A., Wolf, C., Preneel, B.: A study of the security of unbalanced oil and
vinegar signature schemes. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376,
pp. 29–43. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-
3 4

6. Bulygin, S., Petzoldt, A., Buchmann, J.: Towards provable security of the unbal-
anced oil and vinegar signature scheme under direct attacks. In: Gong, G., Gupta,
K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 17–32. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17401-8 3

7. Charlap, L.S., Rees, H.D., Robbins, D.P.: The asymptotic probability that a ran-
dom biased matrix is invertible. Discrete Math. 82(2), 153–163 (1990)

8. Chen, A.I.-T., et al.: SSE implementation of multivariate PKCs on modern x86
CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9 3

9. Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on con-
strained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol.
7428, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33027-8 22

10. Ding, J., Chen, M., Petzoldt, A., Schmidt, D., Yang, B.: Rainbow - algorithm
specification and documentation, November 2017. https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions

https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://doi.org/10.1007/978-3-540-85053-3_4
https://doi.org/10.1007/978-3-540-30574-3_4
https://doi.org/10.1007/978-3-540-30574-3_4
https://doi.org/10.1007/978-3-642-17401-8_3
https://doi.org/10.1007/978-3-642-04138-9_3
https://doi.org/10.1007/978-3-642-33027-8_22
https://doi.org/10.1007/978-3-642-33027-8_22
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions

214 J. Krämer and M. Loiero

11. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp.
164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137 12

12. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 16

13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1990)

14. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 1–
18. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 1

15. Hashimoto, Y., Takagi, T., Sakurai, K.: General fault attacks on multivariate public
key cryptosystems. IEICE Trans. 96-A(1), 196–205 (2013)

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 15

17. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055733

18. Okeya, K., Takagi, T., Vuillaume, C.: On the importance of protecting Δ in
SFLASH against side channel attacks. In: Proceedings of the International Confer-
ence on Information Technology: Coding and Computing, ITCC 2004, vol. 2, pp.
560–568 (2004)

19. Park, A., Shim, K.A., Koo, N., Han, D.G.: Side-channel attacks on post-quantum
signature schemes based on multivariate quadratic equations. IACR Trans. Crypt.
Hardware Embed. Syst. 2018(3), 500–523 (2018)

20. Petzoldt, A.: Selecting and reducing key sizes for multivariate cryptography. Ph.D.
thesis, Darmstadt University of Technology, Germany (2013)

21. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

22. Steinwandt, R., Geiselmann, W., Beth, T.: A theoretical DPA-based cryptanal-
ysis of the NESSIE candidates FLASH and SFLASH. In: Davida, G.I., Frankel,
Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 280–293. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45439-X 19

23. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementa-
tion of rainbow signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS,
vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-25405-5 15

24. Yi, H., Li, W.: On the importance of checking multivariate public KeyCryptogra-
phy for side-channel attacks: the case of enTTS scheme. Comput. J. 60(8), 1197–
1209 (2017)

25. Yi, H., Nie, Z.: High-speed hardware architecture for implementations of multivari-
ate signature generations on FPGAs. EURASIP J. Wirel. Commun. Networking
2018(1), 93 (2018)

https://doi.org/10.1007/11496137_12
https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1007/978-3-642-25405-5_1
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/BFb0055733
https://doi.org/10.1007/3-540-45439-X_19
https://doi.org/10.1007/978-3-642-25405-5_15
https://doi.org/10.1007/978-3-642-25405-5_15

Towards Optimized and Constant-Time
CSIDH on Embedded Devices

Amir Jalali1(B), Reza Azarderakhsh1, Mehran Mozaffari Kermani2,
and David Jao3

1 Department of Computer and Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, FL, USA

{ajalali2016,razarderakhsh}@fau.edu
2 Department of Computer Science and Engineering,

University of South Florida, Tampa, FL, USA
mehran2@usf.edu

3 Department of Combinatorics and Optimization,
University of Waterloo, Waterloo, ON, Canada

djao@uwaterloo.ca

Abstract. We present an optimized, constant-time software library
for commutative supersingular isogeny Diffie-Hellman key exchange
(CSIDH) proposed by Castryck et al. which targets 64-bit ARM pro-
cessors. The proposed library is implemented based on highly-optimized
field arithmetic operations and computes the entire key exchange in
constant-time. The proposed implementation is resistant to timing
attacks. We adopt optimization techniques to evaluate the highest perfor-
mance CSIDH on ARM-powered embedded devices such as cellphones,
analyzing the possibility of using such a scheme in the quantum era.
To the best of our knowledge, the proposed implementation is the first
constant-time implementation of CSIDH and the first evaluation of this
scheme on embedded devices. The benchmark result on a Google Pixel
2 smartphone equipped with 64-bit high-performance ARM Cortex-A72
core shows that it takes almost 12 s for each party to compute a com-
mutative action operation in constant-time over the 511-bit finite field
proposed by Castryck et al. However, using uniform but variable-time
Montgomery ladder with security considerations improves these results
significantly.

Keywords: Commutative supersingular isogeny · Constant-time ·
Embedded devices · Post-quantum cryptography

1 Introduction

The construction of public-key cryptography schemes based on the elliptic curves
isogeny problem was proposed by Couveignes in 1997 [11] which described a
non-interactive key exchange based on the isogeny classes of ordinary elliptic
curves defined over a finite field Fp. In 2004, Rostovtsev and Stolbunov [26]
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 215–231, 2019.
https://doi.org/10.1007/978-3-030-16350-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_12

216 A. Jalali et al.

Table 1. Comparison of SIDH and CSIDH over NIST’s level 1 quantum security [12]

Scheme Speed Key size
(Bytes)

Constant-time Quantum
attack

Active
attacks

Non-
interactive

SIDH ∼10 ms 378 B Yes p1/6 Yes No

CSIDH ∼100 ms 64 B Not yet Subexponential Not
known

Yes

independently came up with the same construction which later led to the design
of other primitives such as isogeny-based digital signature [29]. Although the
isogeny-based public-key cryptography construction by Couveignes-Rostovtsev-
Stolbunov is attractive in many aspects such as key size, in 2010, Childs, Jao and
Soukharev [7] showed that there exists a subexponential quantum algorithm that
can solve the ordinary curve isogeny underlying problem. The proposed attack
targeted the commutative ideal class group cl(O) for isogeny of ordinary curves;
thus made this primitive unsuitable for the post-quantum era.

In 2006, Charles-Lauter-Goren [6] proposed a set of secure cryptographic
hash functions from the supersingular curves isogeny graphs. Inspired by their
work, in 2011, Jao and De Feo [22] proposed a Diffie-Hellman key exchange
protocol from the isogeny of supersingular elliptic curves which was not vul-
nerable to Childs’s quantum attack because of the non-commutative ring of
endomorphisms in supersingular curves. Their interactive Supersingular Isogeny
Diffie-Hellman (SIDH) key exchange is the fundamental basis of CCA secure
Supersingular Isogeny Key Encapsulation (SIKE) mechanism [21] which was
submitted to NIST PQC standardization project.

Due to the Child’s quantum attack and impractical performance results of
Couveignes-Rostovtsev-Stolbunov scheme, this primitive has been disregarded
by community. Even the recent effort by De Feo-Kieffer-Smith [15] still takes
several minutes to perform a single commutative action, in spite of using opti-
mized state-of-the-art techniques.

Recently, Castryck et al. [5] proposed a new modification on the Couveignes-
Rostovtsev-Stolbunov original scheme by adopting it to supersingular elliptic
curves. However, instead of defining the supersingular curve over full ring of
endomorphisms, the proposed scheme is restricted to the prime field Fp which
preserves the commutative action of isogeny. They named the Diffie-Hellman
key exchange scheme constructed over the commutative action as CSIDH (Com-
mutative Supersingular Isogeny Diffie-Hellman). The main motivation behind
using supersingular curves is to accelerate the commutative action rather than
to address the security concerns on the Couveignes-Rostovtsev-Stolbunov raised
by Child’s quantum attack. In fact, CSIDH proposal can still be solved theoret-
ically in subexponential time using the quantum algorithm as it is discussed by
Biasse-Jao-Sankar [3] which targets the abelian hidden shift problem in the con-
text of isogeny of supersingular curves [5]. However, as it is stated in [5], since the
CSIDH public-key, in contrast to SIDH, contains only a single curve coefficient,

Towards Optimized and Constant-Time CSIDH on Embedded Devices 217

it is not vulnerable to torsion point images attacks presented by Petit [25]. Fur-
thermore, CSIDH simple key validation makes it inherently secure against CCA
attacks proposed by Galbraith et al. [17]. Table 1 provides an abstract compar-
ison between CSIDH and SIDH over NIST’s level 1 security. The performance
metrics provided in this table are based on optimized implementations on Intel
Skylake processors. The performance of SIDH scheme on embedded devices is
also investigated in detail in [18–20,23,27].

Recent detailed analysis in [4] shows that the CSIDH may have some secu-
rity concerns with respect to quantum attacks. However, it offers efficient and
fast key validation as well as extremely small key size. Moreover, other cryptog-
raphy applications can be derived from the commutative group action similar
to traditional Diffie-Hellman. For instance, De Feo and Galbraith [14] recently
proposed SeaSign, a set of compact signatures from supersingular isogeny group
action. Therefore, it is important to evaluate and analyze different aspects of
this scheme such as performance and security on the practical settings.

The initial performance report of the commutative group action in [1,5] is
based on a variable-time, mixed C and ASM implementation on Intel Skylake
processors. Recent performance improvement of CSIDH by Meyer et al. [24] was
also designed on top of the proof of concept implementation of CSIDH [5] and
thus is variable-time. Note that as it is stated clearly in [5], the proof of concept
implementation of CSIDH is unfit for production and it is totally vulnerable to
timing and power analysis attacks.

In this work, we present a constant-time software library for CSIDH which
targets 64-bit ARM-powered embedded devices. The main motivation behind
this work is to evaluate the performance and the feasibility of using CSIDH in the
real setting while the proposed software is secure against timing analysis attacks
due to the constant-time implementation. We provide a set of modifications
to the initial implementation of CSIDH in [5] over different layers from field
arithmetic to group operations.

Since the proposed commutative action operation is implemented in constant-
time, it can be simply adopted inside other applications of commutative super-
singular isogeny to evaluate their performance in real settings.

The paper is organized as follows. Section 2 provides preliminaries on the
isogeny of supersingular elliptic curves and explains the CSIDH scheme in a
nutshell. Section 3 describes our approach to implement the entire commutative
Diffie-Hellman key exchange efficiently and constant-time on embedded devices.
The CSIDH benchmark results on two popular cellphones are presented in Sect. 4
and a comparison of constant- and variable-time implementations is provided.
We conclude this work in Sect. 5.

2 Background

In this section, a brief description of supersingular curves isogeny and its appli-
cation to construct a Diffie-Hellman key exchange protocol is presented. We refer
the readers to [5,13,16,28] for more details.

218 A. Jalali et al.

2.1 Isogeny of Supersingular Curves

An �-degree isogeny φ� is a rational function that maps an elliptic curve E defined
over a field K to another curve E′. E′ is a unique curve up to isomorphism and
the map can be defined by a kernel which is a point P of order � on E.

φ� : E → E′/〈P 〉, P ∈ E[�].

The ring of endomorphisms of E is defined over the algebraic closure of K and
denoted as End(E). Considering an elliptic curve E defined over a finite field
Fp, in case of ordinary elliptic curves, the End(E) is defined only over the base
field Fp, while for supersingular curves, it is defined over some extension field.

In contrast to Couveignes-Rostovtsev-Stolbunov scheme, CSIDH is con-
structed on supersingular curves. Therefore, only the subring of End(E) which is
defined over Fp, i.e., EndFp

(E), is considered [5]. We have EndFp
(E) ∼= O where

O is an order in an imaginary quadratic field [14].

2.2 Class Group Action

For a supersingular elliptic curve E defined over Fp with EndFp
(E) ∼= O, the

cl(O) is the ideal class group of O. The action of an O-ideal a can be defined
by an isogeny φ : E → E′ and denoted as a ∗ E; its kernel ker(φ) is presented
by a torsion subgroup of points E[a] on the curve E. The j-invariant, j(E), of
a curve E divides the End(E) into isomorphism classes where the isomorphic
curves share the j-invariant value. Moreover, according to [11], the set of j(E)
constructs a hard homogeneous space which immediately implies the construc-
tion of a Diffie-Hellman like protocol.

2.3 Commutative Isogeny Diffie-Hellman Key Exchange

Considering the isogeny group action as described above on supersingular
curves, CSIDH is defined over a finite field Fp with the prime p of the form
p = 4.�1 · · · �n − 1. Here �i are small odd primes and in the proposed parameter
setting in [5] contain 74 primes which together construct a 511-bit prime value.
Since the curve is supersingular, all �i are Elkies primes.

Using supersingular curves in CSIDH in contrast to Couveignes-Rostovtsev-
Stolbunov original scheme makes it easy to find a curve with cardinality equal to
#E(Fp) = p+1 and �i|p+1. Thus #E(Fp) is congruent to 0 modulo all primes.

Similar to SIDH efficient implementation [10], in order to take advantage
of fast and compact Montgomery arithmetic, the starting curve is defined as
E0 : y2 = x3 +x which is an instance of Montgomery curve and therefore all the
corresponding isomorphic curves are also in Montgomery form.

Private Key. The private key is defined as an n-tuple (e1, · · · , en) of integers
chosen from [−m,m] where m is a small integer. Note that the value of m is
defined by the provided security level as it is discussed in details in [5, Section 7].
According to their security analysis, m = 5 is sufficient to provide 125-bit and

Towards Optimized and Constant-Time CSIDH on Embedded Devices 219

61-bit of classical and quantum security, respectively. De Feo and Galbraith also
provide the estimation of range for m regarding the NIST higher security levels
[14, Table 1].

Public Key. Each n-tuple private key represents the ideal class [a] = [le1
1 · · · len

n]
on the ideal class group cl(O) and generates a public key by applying the group
action on the base curve E0. The isomorphic curve generated by this group
action is a Montgomery curve [a]E : y2 = x3 + Ax2 + x which whose coefficient
A ∈ Fp is the corresponding public key.

Shared Secret. Since the group action is commutative, Alice and Bob compute
the shared secret in a non-interactive procedure. They generate their key pairs as
([a], EA) and ([b], EB). Alice applies the action using her secret [a] on the Bob’s
public key EB and computes [a]EB . Conversely, Bob computes [b]EA using his
action and Alice’s public key. The shared secret is the final curve coefficient
[a][b]E0 = [a]EB = [b]EA. Figure 1 demonstrates the key exchange procedure in
a nutshell.

boBecilA

SKA = (eA1, · · · , eAn) SKB = (eB1, · · · , eBn)
[a] = [leA1

1 · · · leAn
n] [b] = [leB1

1 · · · leBn
n]

PKA = [a]E0 = EA PKB = [b]E0 = EB

SharedA = [a]EB = [a][b]E0 SharedB = [b]EA = [b][a]E0

Fig. 1. CSIDH key exchange.

3 Constant-Time CSIDH Implementation

In this section, we outline our strategy for implementing an optimized and
constant-time CSIDH on 64-bit ARMv8 processors. We engineered the underly-
ing finite field arithmetic for the proposed field size and adopted different opti-
mizations to evaluate a high performance and constant-time implementation of
CSIDH on embedded devices.

All the field arithmetic operations described in this work are implemented
using hand-written ARMv8 assembly to reduce the compiler overhead and pro-
vide the most-optimized results.

3.1 Field Arithmetic Modulo p511

Starting from simple field arithmetic, modular addition and subtraction mod-
ulo p511 are implemented in constant-time. In contrast to the CSIDH proof of
concept implementation [5] in which the modulo operation is only performed

220 A. Jalali et al.

when the results are required to be corrected, our addition result is always sub-
tracted from p511 and tested for borrow overflow. Based on the last borrow value,
either p511 or 0 is added to the result for final correction. The same strategy is
adopted for modular subtraction in order to have constant-time modular addi-
tion/subtraction.

Montgomery Modular Multiplication. Following the optimized SIDH
implementation by Castello-Longa-Naehrig [10], Castryck et al. designed the
entire curve operations in x-only arithmetic to take advantage of the optimized
and compact Montgomery formulas. Accordingly, field multiplication and reduc-
tion are implemented using the Montgomery multiplication which is expected to
offer the optimal performance since the p511 does not have any special form to
enable further optimization techniques.

Since the prime is 511-bit, there is only one bit space left for any overflows
and it is impossible to use optimization techniques such as lazy reduction to post-
pone the reduction operation. Therefore, using the Montgomery multiplication
seems to be a better option rather than separate multiplication and Montgomery
reduction due to the optimal memory usage and compactness.

The p511 is not a Montgomery-friendly prime which means that p′ = −p−1

mod r is not equal to 1 for the target radix, i.e., r = 264. This adds extra
multiplication operations to the reduction part.

Because of the special shape of the CSIDH prime p = 4.�1 · · · �n−1, a straight-
forward strategy to find a Montgomery-friendly primes suggests the form

p = r.�1 · · · �n − 1,

where r is the implementation target radix. This adds a considerable length
(an extra word) to the field size without enhancing security level. Therefore,
searching for a Montgomery-friendly prime in the context of CSIDH does not
seem to add any performance improvement and the prime p511 is a proper choice
for the target security level.

Since the filed elements over Fp511 are stored in an array of 8×64-bit words, 32
available 64-bit general registers inside the ARMv8 cores are adequate for imple-
menting the modular multiplication efficiently using operand-scanning method.
Therefore, we implement a compact and constant-time operand-scanning Mont-
gomery multiplication using ARMv8 assembly, taking advantage of 64-bit wide
general registers. Similar to our constant-time addition, the final result of the
multiplication is always subtracted from p511 and according to the borrow over-
flow it adds to either p511 or 0 for the final correction.

Field Inversion. The constant-time field inversion is implemented using FLT
algorithm in which for a field element a, the inverse of the element is com-
puted as a−1 = ap−2 mod p. Surprisingly, the variable-time CSIDH proof of
concept implementation uses the same approach for computing the inverse of
an operand, while faster non-constant algorithm such as Extended Euclidean

Towards Optimized and Constant-Time CSIDH on Embedded Devices 221

Algorithm (EEA) could have been utilized. Moreover, they used binary square-
and-multiply method to compute such exponentiation which is not an efficient
approach in terms of performance, but it offers slightly less memory usage.

We implemented the exponentiation using fixed-window method with pre-
computed table. We set the window length to 6-bit which led to a table with
28 Fp elements. This consumes roughly 1.8 KB of memory which is negligible to
the obtained performance improvement. The proposed addition chain is highly-
optimized for the 6-bit window and it costs 29M + 2S operations1 for generating
the table, and 73M + 510S for computing addition chain. Therefore, a field inver-
sion costs 102M + 512S in our window method, while it costs 255M + 510S for
binary method which is used in the CSIDH proof of concept.

Square Root. The square root test over Fp511 for a field element a is imple-
mented in constant-time by computing a

p−1
2 mod p. Instead of using binary

method in the CSIDH proof of concept implementation, we adopted the win-
dow method. The proposed addition chain computes the square root test using
71M + 510S in addition to 27M + 2S for the precomputed table generation.
This leads to the total 98M + 512S computations, in contrast to 255M + 510S
cost of binary method.

Note that in contrast to projective implementation of SIDH which only
requires one inversion at the very end of each round, projective CSIDH requires
several field inversion and square root computations inside each group action.
Therefore, the above optimizations provide considerable enhancement in overall
performance and efficiency of the protocol.

3.2 Scalar Multiplication

The Montgomery curve and x-only arithmetic offer a set of fast and compact
formulas for computing curve arithmetic and isogeny computations. The CSIDH
proof of concept implementation [5] is implemented based on the Montgomery
group arithmetic. However, since the proposed implementation is non-constant
time, it is entirely vulnerable to DPA and SPA attacks. In particular, the Mont-
gomery ladder implementation for computing scalar multiplication is totally vul-
nerable to the power attacks and the exact value of scalar can be retrieved easily
by power trace analysis [8].

To mitigate this vulnerability, we adopted the constant-time Montgomery
ladder using the constant-time conditional cswap function. Since the point
scalars in the CSIDH scheme have variable length, the constant-time ladder
adds a significant extra operations to the scheme compared to non-constant ver-
sion, but since the scalar in the commutative action operation is directly related
to the private key, this modification is necessary.

The constant-time left-to-right Montgomery ladder is illustrated in
Algorithm 1. It computes the scalar multiplication using n − 1 number of oper-
ations for different bit-length scalars where n is the finite field bit-length.
1 M and S stand for field multiplication and field squaring, respectively.

222 A. Jalali et al.

Algorithm 1. Constant-time variable length scalar multiplication

Input : k =
∑n−1

i=0 ki2
i and x(P) for P ∈ E(Fp).

Output: (Xk, Zk) ∈ F
2
p s.t. (Xk : Zk) = x([k]P).

1: XR ← XP , ZR ← ZP

2: XQ ← 1, ZQ ← 0
3: for i = n − 2 downto 0 do
4: (Q, R) ← cswap(Q, R, (ki xor ki+1))
5: (Q, R) ← xDBLADD(Q, R, P)
6: end for
7: (Q, R) ← cswap(Q, R, k0)
8: return Q

As it is already implemented in [10] and pointed out in [24], the xDBLADD func-
tion inside Algorithm1 computes the simultaneous point addition and doubling
using precomputed (A + 2C : 4C) values to reduce the number of operations.
We state that the effect of this optimization on the overall performance of our
constant-time CSIDH is negligible.

Remark 1. The constant-time Montgomery ladder in Algorithm1 is computa-
tionally expensive. However, using this algorithm guarantees the DPA and SPA
resistance. Alternatively, to achieve significant better performance results, we can
adopt a uniform ladder with various number of iterations for different scalars
such that kn−1 = 1 as it is outlined in Algorithm2. Since the algorithm is uni-
form, it does not reveal any information about the scalar bit values. However,
the scalar bit-length can still be exposed by DPA. We included both implemen-
tations in our software to illustrate the difference in performance results of the
CSIDH scheme. Further details are provided in Sect. 4.

Remark 2. In order to be resistant against DPA, Coron [8] proposed different
countermeasures for scalar multiplication in the context of elliptic curve cryp-
tography. According to his analysis, the countermeasures do not significantly
impact efficiency. However, they also do not thwart all kinds of power attacks.
Moreover, adopting such techniques results in variable-time software which is
dependent to the inputs. Therefore, we choose to use fully constant-time Mont-
gomery ladder inside our software to be resistant against all kinds of timing and
power attacks.

The rest of Montgomery arithmetic such as xDBL, xADD, are constant-time
and therefore no modifications are needed. However, we note that depending on
the inputs, the number of group operations and subsequently field arithmetic
counts can vary in the CSIDH variable-time implementation. Accordingly, in
order to make the scheme entirely constant-time, we need to modify the key
exchange operations and make them independent of inputs. In the next section,
we describe these modifications.

Towards Optimized and Constant-Time CSIDH on Embedded Devices 223

Algorithm 2. Uniform and variable-time scalar multiplication

Input : k =
∑n−1

i=0 ki2
i with kn−1 = 1 and x(P) for P ∈ E(Fp).

Output: (Xk, Zk) ∈ F
2
p s.t. (Xk : Zk) = x([k]P).

1: XR ← XP , ZR ← ZP

2: Q ← xDBL(P)
3: for i = n − 2 downto 0 do
4: (Q, R) ← cswap(Q, R, (ki xor ki+1))
5: (Q, R) ← xDBLADD(Q, R, P)
6: end for
7: (Q, R) ← cswap(Q, R, k0)
8: return Q

3.3 Key Exchange Operations

As it is discussed in details in [5, Section 8], the most prominent operation inside
CSIDH is the commutative group action. This operation computes the resulting
curve coefficient given a starting curve and an n-tuple private key. The provided
proof of concept implementation of group action in [5] is fast and optimized.
However, as it is discussed before, its timing and performance directly depend
on the input which makes it impossible to utilize in the practical settings. In
this section, we provide a set of modifications to make key exchange operations
constant-time. These modifications result in notable performance degradation
to the scheme. However, they are necessary to be resistant against timing and
power attacks.

Constant-Time Commutative Action. In order to compute an �-degree
isogeny using Vélu’s formulas [30], we need to find a kernel point of order � from
torsion subgroup E[�] on the curve. On Montgomery curves, a set of projective
x-only formulas for arbitrary degree isogenies were proposed by Costello and
Hisil [9] which the CSIDH proof of concept implementation is constructed upon.

In the context of SIDH, since the exact degree of isogeny is defined prior to
the key exchange (2eA and 3eB for Alice and Bob, respectively), two pairs of base
points are chosen from each torsion subgroups PA, QA ∈ E[2eA] and PB, QB ∈
E[3eB] as public parameters. Using these bases, Alice and Bob simply compute
their secret isogeny kernel points RA = QA + [nA]PA and RB = QB + [nB]PB

which accelerate the computation. However, this is not the case in the CSIDH
scheme since the degree of isogeny action [le1

1 · · · len
n] is directly related to the

each party’s secret key (e1, · · · , en). Therefore, as it is noted in [5] the kernel of
each small degree isogeny �ei

i in each step of isogeny computation is retrieved by
sampling a random x-coordinate followed by a square root test (to check whether
it is defined over Fp or imaginary Fp2) and a multiplication by (p + 1)/�i which
because of the special shape of p outputs a point of order �i or the point at
infinity O with the probability of 1 − 1/�i and 1/�i, respectively. After finding
a kernel for each small degree isogeny φ�i , the isogeny map is computed on the

224 A. Jalali et al.

E0 E1

φ e1
1

φ e2
2

E2 Ek−1

[e1
1

e2
2 · · · en

n]

· · ·
P1

Pk

···

φ e1
1

(P2)

φ e1
1

(Pk)

· ·
· φ e2

2
(φ e1

1
(P3))

φ e2
2

(φ e1
1

(Pk))

· ·
·

En−1

φ en
n

En
· · ·

φ ek−1
k−1

· · · (φ e1
1

(Pk))

Fig. 2. Computing action using auxiliary base points on E0.

current curve. This procedure is consecutively performed for all the small degree
isogeny maps which together construct the action.

The random sampling procedure is expensive and it significantly affects the
performance of the action operation, especially when it fails to provide an �i

order point. It is possible to define a set of base points with predefined orders
{P1 ∈ E[�1], · · · , Pk ∈ E[�k]} such that {�1, · · · , �k} are a subgroup of primes
from {�1, · · · , �n} on the base curve E0 similar to SIDH. Furthermore, in each
step of isogeny computations, the image of these base points can be computed on
the next curve. Therefore, for the small degree isogenies (�1, · · · , �k) with higher
probability of failure in random sampling (1/�1, · · · , 1/�k), the kernel points are
ready at each step to use for the isogeny computations.

For the larger degrees, since the failure probability is relatively small, we can
stick to the random sampling to reduce the memory usage. Figure 2 illustrates
this procedure for some predefined value of k2. In each step of isogeny compu-
tation, one of the image points is dropped and its image is not needed for the
further isogeny computations.

Therefore, at the beginning of the procedure, the x-coordinate of k points is
stored while at the k-th step, only one point is required. As a result, the isogeny
evaluations of the auxiliary points are reduced as the algorithm steps forward.

However, this adds some security concerns to the scheme since the isogeny
kernels are the image of some public base points through small degree isogenies.
Moreover, a set of extra isogeny evaluations in each step is added to the scheme.
Therefore, more investigation on the security and performance of the proposed
method is needed. We leave the possibility of using such a technique for the
future work.

To be able to practically evaluate the variation of the main loop in variable-
time group action implementation, we performed a statistical analysis on the
number of required iterations for uniformly random inputs. We conducted 106

experiments of variable-time group action from random inputs and recorded the
number of iterations. Figure 3 presents the result of this experiment. We observed
that the number of iterations for different private keys can be as large as 60 (only
once in 106 experiments), while some inputs only require 9 iterations. This is

2 The optimal value for k is directly related to the prime and the trade-off between
memory usage and performance.

Towards Optimized and Constant-Time CSIDH on Embedded Devices 225

10 20 30 40 50 60

0

0.5

1

1.5
·105

Iterations count

F
re

q
u
en

cy

Fig. 3. The frequency of different iterations count over 106 experiments of group action.

the result of the variation in the n-tuple secret key and the failure probability
of computing the point of order �i for some �is.

To mitigate this variation, the variant number of iterations should be replaced
with an upper bound value. The straightforward value for the upper bound is
n (the number of eis). However, this is very conservative which significantly
degrades the performance of the software. In fact, the recent detailed analysis
of CSIDH in [2] shows that it is sufficient to iterate r = 59 iterations of the
main loop to obtain a negligible failure probability (<2−32) of the group action,
considering the range of e ∈ {−5, · · · , 5}.

To evaluate the performance of constant-time CSIDH on the target embedded
devices, we modified the CSIDH variable-time action operation algorithm by
removing all the conditional and while loop statements in an efficient way to
provide a constant-time implementation of this algorithm inside our software. We
outline the procedure in Algorithm3. We refer the readers to our implementation
for further details.

Using cswap in Algorithm 3 implies useless point multiplication and isogeny
computations. However, the frequency of these operations may directly reveal
the sign and the value of private key in a detailed power analysis trace. In fact,
the detailed analysis of variable-time implementation of CSIDH in the Fig. 3
indeed demonstrates that the main loop iteration can have notable variation
depending on the value of private key.

226 A. Jalali et al.

Algorithm 3. Constant-time commutative class group action

Input : A ∈ Fp and a list of integers (e1, · · · , en).
Output: B ∈ Fp s.t. [le11 · · · lenn]EA = EB .

1: // Decoding private key

2: for i = 0 to n − 1 do
3: Set s ← 1 if ei is negative, otherwise s ← 0.
4: Set v ← 0 if ei is 0, otherwise v ← 1.
5: ei(s) ← ei − (2 · s · ei).
6: ei(s̄) ← 0.
7: k(s̄) ← �i · k(s̄).
8: k(v̄) ← (�i − v · (�i − 1)) · k(v̄).
9: end for

10: // Action

11: for i = 0 to n − 1 do
12: A′ ← A.
13: Sample a random x = x(P) ∈ Fp.
14: Set u ← 0 if x3 + Ax2 + x is a square in Fp, otherwise u ← 1.
15: R ← [k(u)]P.
16: d(u) ← 1.
17: for j = 0 to n − 1 do
18: f ← 1, r ← ej(u).
19: for z = j + 1 to n − 1 do
20: f ← f × (�z − (ēz(u).(�z − 1))).
21: end for
22: Q ← [f]R.
23: Set t ← 1 if ZQ = 0, otherwise t ← 0.
24: Compute φ�j : A → B s.t. ker(φ�j) = Q.
25: cswap(B, A, (t̄ ∨ ej(u))).
26: ej(u) ← ej(u) − 1.
27: m ← (ej(u) ∨ t ∨ r̄).
28: ej(u) ← ej(u) + t.
29: k(u) ← k(u) × (�j − (m · (�j − 1))).
30: d(u) ← (d(u) ∧ ej(u)).
31: end for
32: q ← q ⊕ q.
33: cswap(A′, A, q).
34: q ← (d(0) ∧ d(1)).
35: end for
36: return A

We observe that the scalar multiplications in lines 15 and 22 of Algorithm3
directly generate the secret isogeny kernel. Therefore, from the security view-
point, the scalar multiplication indeed requires to be resistant against side-
channel attacks. However, as we see in this algorithm, the point P is randomly
generated in each iteration.

This makes it very hard for an attacker to retrieve the value of the kernel point
using power analysis. Therefore, using a uniform but variable-time Montgomery
ladder can be an option since it improves the performance results notably. We
leave the further investigations for future work.

Towards Optimized and Constant-Time CSIDH on Embedded Devices 227

Constant-Time Key Generation. The CSIDH key generation algorithm is
straightforward. First, private keys are randomly generated as an n-tuple integers
from [−m,m] interval, where in case of our implementation m = 5. Next, the
public key is computed by performing the group action using the generated
private key on the base curve E0.

The CSIDH proof of concept implementation generates both private and
public keys in variable-time. Since our proposed group action in Sect. 3.3 is
constant-time, the public key generation is indeed constant-time. We made some
trivial changes using constant-time conditional instructions on the private key
random generation procedure to make the entire key generation resistant to
timing attacks. We refer the reader to our implementation for further details.

Public Key Validation. The CSIDH scheme offers a fast and straightforward
public key validation by examining whether the given curve is supersingular or
not. Based on [5, Proposition 8], the supersingularity check justifies that the
represented curve (public key) has the right endomorphism ring and therefore is
a valid public key.

Since the public key validation procedure only uses public values, it does
not require to be resistant against power and timing attacks and therefore it
can be designed and implemented in variable-time as it is already implemented
efficiently in [5]. Accordingly, we adopted the same implementation of the public
key validation inside our software and used the fast variable-time Montgomery
ladder algorithm for point multiplication inside the cofactor multipliers algo-
rithm. We refer the readers to [5] for further details on the implementation of
public key validation.

4 Performance Results and Discussion

In this section, we present our implementation3 results on the two popular cell-
phones, Google Pixel 2 and Huawei Nexus 6P equipped with 64-bit ARM Cortex-
A72 and Cortex-A57, respectively. Our software is designed in a way that can be
simply compiled to either constant-time or variable-time executable using gcc
preprocessors.

We used aarch64-linux-gnu-gcc compiler for cross-compiling the exe-
cutable with -static -O3 flags and ran it using adb shell on the cellphones.
Table 2 presents the performance of our constant-time and variable-time software
on target platforms. Note that the variable-time implementation is also based on
our optimized hand-written assembly field arithmetic and provides an optimized
performance estimation of CSIDH proof of concept implementation on embed-
ded devices. Moreover, the total CSIDH results are obtained by running the
entire protocol, containing key generations and key validation on the target pro-
cessors. The difference between timing and the number of clock cycles for target

3 Our library is publicly available at: https://github.com/amirjalali65/ARMv8-
CSIDH.

https://github.com/amirjalali65/ARMv8-CSIDH
https://github.com/amirjalali65/ARMv8-CSIDH

228 A. Jalali et al.

Table 2. Performance results of constant-time (with constant-time Montgomery lad-
der) and variable-time CSIDH. (Benchmarks were obtained on 1.95 GHz Cortex-A57
and 2.4 GHz Cortex-A72 cores running Android 7.1.1 and 8.1.0, respectively)

Constant-time Variable-time [5]

Cortex-A57 Cortex-A72 Cortex-A57 Cortex-A72

Key validation Cycles ×106 - - 38 23

Seconds - - 0.02 0.01

Group action Cycles ×106 30,459 28,872 624 552

Seconds 15.6 12.03 0.32 0.23

Total CSIDH Cycles ×106 61,054 57,912 1,326 1,224

Seconds 31.3 24.1 0.68 0.51

Table 3. Performance results of constant-time (with uniform but variable-time Mont-
gomery ladder) CSIDH.

Operation Cortex-A57 Cortex-A72

Group action 11,286 · 106 cc
5.94 s

10,824 · 106 cc
4.51 s

Total CSIDH 22,819 · 106 cc
12.01 s

21,744 · 106 cc
9.06 s

platforms refers to the processor’s working frequency and its micro-architecture
technology. Cortex-A72 core is the new high-performance 64-bit ARM core with
optimized pipeline and micro-architecture which is used inside many embedded
devices recently.

We also benchmarked our constant-time software with uniform but variable-
time Montgomery ladder as it is discussed in Sect. 3.2. Table 3 presents the per-
formance results of this experiment on our target platforms. We observed more
than 2.5 times performance improvement just by using uniform variable-time lad-
der. This implies that the main challenge for designing a constant-time isogeny
group action is to find an optimized and secure way of computing scalar multi-
plication. Considering the countermeasure techniques for uniform variable-time
ladder, the performance results become more practical.

4.1 Discussion

Although the performance results of the constant-time CSIDH is not extremely
promising, but since it is constructed on a commutative action, it offers a set
of cryptographic applications such as digital signature which can be very useful
in the quantum era. Based on the estimations in [14], such signatures are not
very high-performance even by using fast and variable-time commutative action.

Towards Optimized and Constant-Time CSIDH on Embedded Devices 229

Therefore, in order to be able to practically adopt the isogeny commutative group
action, its performance should be enhanced. The main bottleneck lies in the
constant-time Montgomery ladder for computing point multiplication. Further-
more, useless computations inside the constant-time group action is undesirable.

One significant improvement to the algorithm can be achieved by using a
faster but insecure ladder as it is discussed in the previous section. We can also
reduce the number of useless operations and point sampling inside the group
action by defining a set of base points as CSIDH public parameters and compute
the image of these points in each step. While this may improve the performance
notably, it adds some concerns regarding the security of the scheme. We believe
that using the above suggestions and imposing security countermeasures can
make the CSIDH and isogeny group action a suitable candidate for different
applications, specifically because of its small key sizes and fast key validation.

5 Conclusion

In this work, we presented an efficient and constant-time implementation of
CSIDH scheme on embedded devices. We engineered a set of constant-time
and highly-optimized field and group arithmetic implementation using ARM
assembly and provided a CSIDH software which is secure against SPA and DPA
attacks. We benchmarked our software on two popular cellphones equipped with
64-bit high-performance ARM Cortex-A57 and Cortex-A72 cores. To the best
of our knowledge, this work is the first constant-time implementation of CSIDH
and the first evaluation of this scheme on embedded devices.

The implementation results imply that the fully constant-time implementa-
tion of the scheme may not be practical for many applications and it needs more
investigations on the performance improvement and security analysis. However,
because of many advantages of the isogeny commutative group action, the pro-
posed software can still be used inside the applications with static keys and
restricted band-width, taking advantage of fast key validation and small key
size of CSIDH. Since side-channel attacks resistance is one of the fundamental
requirements for any cryptographic scheme, we hope this work attracts engi-
neers and researchers to investigate the performance improvement and security
of the constant-time isogeny group action as it seems to be one of the promising
candidates for designing different cryptographic applications in the future.

Acknowledgment. This work is supported in parts by NSF CNS-1801341, NIST-
60NANB17D184, NIST-60NANB16D246, and ARO W911NF-17-1-0311, as well as
NSERC, CryptoWorks21, Public Works and Government Services Canada, Canada
First Research Excellence Fund, and the Royal Bank of Canada.

230 A. Jalali et al.

References

1. An Efficient Post-quantum Commutative Group Action. https://csidh.isogeny.org/
software.html

2. Bernstein, D.J., Lange, T., Martindale, C., Panny, L.: Quantum Circuits for the
CSIDH: Optimizing Quantum Evaluation of Isogenies. https://quantum.isogeny.
org/qisog-20181031.pdf

3. Biasse, J.-F., Jao, D., Sankar, A.: A quantum algorithm for computing isoge-
nies between supersingular elliptic curves. In: Meier, W., Mukhopadhyay, D.
(eds.) INDOCRYPT 2014. LNCS, vol. 8885, pp. 428–442. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 25

4. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH and ordi-
nary isogeny-based schemes. IACR Cryptology ePrint Archive (2018). https://
eprint.iacr.org/2018/537

5. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. IACR Cryptology ePrint Archive (2018).
https://eprint.iacr.org/2018/383

6. Charles, D.X., Lauter, K.E., Goren, E.Z.: Cryptographic hash functions from
expander graphs. J. Cryptol. 22(1), 93–113 (2009)

7. Childs, A.M., Jao, D., Soukharev, V.: Constructing elliptic curve isogenies in quan-
tum subexponential time. J. Math. Cryptol. 8(1), 1–29 (2014)

8. Coron, J.-S.: Resistance against differential power analysis for elliptic curve cryp-
tosystems. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 292–302.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 25

9. Costello, C., Hisil, H.: A simple and compact algorithm for SIDH with arbitrary
degree isogenies. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol.
10625, pp. 303–329. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70697-9 11

10. Costello, C., Longa, P., Naehrig, M.: Efficient algorithms for supersingular isogeny
Diffie-Hellman. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol.
9814, pp. 572–601. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-53018-4 21

11. Couveignes, J.M.: Hard Homogeneous Spaces. IACR Cryptology ePrint Archive
(2006). http://eprint.iacr.org/2006/291

12. Feo, L.D.: Isogeny Graphs in Cryptology. http://defeo.lu/docet/assets/slides/
2018-05-31-gdr-securite.pdf

13. Feo, L.D.: Mathematics of isogeny based cryptography. CoRR abs/1711.04062
(2017). http://arxiv.org/abs/1711.04062

14. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. IACR Cryptology ePrint Archive (2018). https://eprint.iacr.org/2018/824

15. Feo, L.D., Kieffer, J., Smith, B.: Towards practical key exchange from ordinary
isogeny graphs. CoRR (2018). http://arxiv.org/abs/1809.07543

16. Galbraith, S.D.: Mathematics of Public Key Cryptography. Cambridge University
Press, Cambridge (2012)

17. Galbraith, S.D., Petit, C., Shani, B., Ti, Y.B.: On the security of supersingu-
lar isogeny cryptosystems. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016.
LNCS, vol. 10031, pp. 63–91. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-53887-6 3

https://csidh.isogeny.org/software.html
https://csidh.isogeny.org/software.html
https://quantum.isogeny.org/qisog-20181031.pdf
https://quantum.isogeny.org/qisog-20181031.pdf
https://doi.org/10.1007/978-3-319-13039-2_25
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/537
https://eprint.iacr.org/2018/383
https://doi.org/10.1007/3-540-48059-5_25
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-319-70697-9_11
https://doi.org/10.1007/978-3-662-53018-4_21
https://doi.org/10.1007/978-3-662-53018-4_21
http://eprint.iacr.org/2006/291
http://defeo.lu/docet/assets/slides/2018-05-31-gdr-securite.pdf
http://defeo.lu/docet/assets/slides/2018-05-31-gdr-securite.pdf
http://arxiv.org/abs/1711.04062
https://eprint.iacr.org/2018/824
http://arxiv.org/abs/1809.07543
https://doi.org/10.1007/978-3-662-53887-6_3
https://doi.org/10.1007/978-3-662-53887-6_3

Towards Optimized and Constant-Time CSIDH on Embedded Devices 231

18. Jalali, A., Azarderakhsh, R., Mozaffari-Kermani, M.: Efficient post-quantum unde-
niable signature on 64-Bit ARM. In: Adams, C., Camenisch, J. (eds.) SAC 2017.
LNCS, vol. 10719, pp. 281–298. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-72565-9 14

19. Jalali, A., Azarderakhsh, R., Kermani, M.M.: NEON SIKE: supersingular isogeny
key encapsulation on ARMv7. In: Security, Privacy, and Applied Cryptography
Engineering - 8th International Conference, SPACE, pp. 37–51 (2018)

20. Jalali, A., Azarderakhsh, R., Kermani, M.M., Jao, D.: Supersingular isogeny Diffie-
Hellman key exchange on 64-bit ARM. IEEE Trans. Depend. Secure Comput.
(2017)

21. Jao, D., et al.: Supersingular isogeny key encapsulation. Submission to the NIST
Post-Quantum Standardization project (2017). https://csrc.nist.gov/Projects/
Post-Quantum-Cryptography/Round-1-Submissions

22. Jao, D., De Feo, L.: Towards quantum-resistant cryptosystems from supersingular
elliptic curve isogenies. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp.
19–34. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5 2

23. Koziel, B., Jalali, A., Azarderakhsh, R., Jao, D., Kermani, M.M.: NEON-SIDH:
efficient implementation of supersingular isogeny Diffie-Hellman key exchange pro-
tocol on ARM. In: Cryptology and Network Security - 15th International Confer-
ence, CANS, pp. 88–103 (2016)

24. Meyer, M., Reith, S.: A faster way to the CSIDH. IACR Cryptology ePrint Archive,
p. 782 (2018). https://eprint.iacr.org/2018/782

25. Petit, C.: Faster algorithms for isogeny problems using torsion point images. In:
Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 330–353.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 12

26. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. IACR
Cryptology ePrint Archive (2006). http://eprint.iacr.org/2006/145

27. Seo, H., Liu, Z., Longa, P., Hu, Z.: SIDH on ARM: faster modular multiplica-
tions for faster post-quantum supersingular isogeny key exchange. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 3, 1–20 (2018)

28. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

29. Stolbunov, A.: Constructing public-key cryptographic schemes based on class group
action on a set of isogenous elliptic curves. Adv. Math. Commun. 4(2), 215–235
(2010). https://doi.org/10.3934/amc.2010.4.215

30. Vélu, J.: Isogénies entre courbes elliptiques. CR Acad. Sci. Paris, Séries A 273,
305–347 (1971)

https://doi.org/10.1007/978-3-319-72565-9_14
https://doi.org/10.1007/978-3-319-72565-9_14
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1007/978-3-642-25405-5_2
https://eprint.iacr.org/2018/782
https://doi.org/10.1007/978-3-319-70697-9_12
http://eprint.iacr.org/2006/145
https://doi.org/10.1007/978-0-387-09494-6
https://doi.org/10.3934/amc.2010.4.215

Number “Not Used” Once - Practical
Fault Attack on pqm4 Implementations

of NIST Candidates

Prasanna Ravi1,2(B), Debapriya Basu Roy3, Shivam Bhasin1,
Anupam Chattopadhyay2, and Debdeep Mukhopadhyay3

1 Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
PRASANNA.RAVI@ntu.edu.sg, sbhasin@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore
anupam@ntu.edu.sg

3 Indian Institute of Technology, Kharagpur, India
dbroy24@gmail.com, debdeep.mukhopadhyay@gmail.com

Abstract. In this paper, we demonstrate practical fault attacks over a
number of lattice-based schemes, in particular NewHope, Kyber, Frodo,
Dilithium which are based on the hardness of the Learning with Errors
(LWE) problem. One of the common traits of all the considered LWE
schemes is the use of nonces as domain separators to sample the secret
components of the LWE instance. We show that simple faults targeting
the usage of nonce can result in a nonce-reuse scenario which allows key
recovery and message recovery attacks. To the best of our knowledge, we
propose the first practical fault attack on lattice-based Key encapsulation
schemes secure in the CCA model. We perform experimental validation
of our attack using Electromagnetic fault injection on reference imple-
mentations of the aforementioned schemes taken from the pqm4 library,
a benchmarking and testing framework for post quantum cryptographic
implementations for the ARM Cortex-M4. We use the instruction skip
fault model, which is very practical and popular in microcontroller based
implementations. Our attack requires to inject a very few number of
faults (numbering less than 10 for recommended parameter sets) and
can be repeated with a 100% accuracy with our Electromagnetic fault
injection setup.

1 Introduction

Ever since the discovery of the Shor’s algorithm [26], there has always been an
imminent danger of the possibility of large scale quantum computers threatening
our existing public key infrastructure. The cryptographic community has long
felt the need to replace the existing public key cryptosystems with quantum
resistant alternatives, which is also justifiable given that research in the quantum
computing field has grown by leaps and bounds [24].

c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 232–250, 2019.
https://doi.org/10.1007/978-3-030-16350-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_13

Number “Not Used” Once - Practical Fault Attack 233

NIST recently initiated the process for standardization of post quantum cryp-
tographic alternatives for public key encryption (PKE), Key Exchange (KEX)
and digital signatures (DS) [21]. Among the 64 submissions which still remain
in the competition, lattice-based cryptography fields the largest contingent in
terms of the number of submissions. This is due to the fact that they provide a
very good balance of a number of attributes like key sizes, ciphertext sizes, com-
putational performance which are on par with existing public key cryptographic
primitives based on RSA and ECC along with providing post-quantum security.

The assessment of each candidate is being done based on multiple aspects
such as classical security, post-quantum security, performance on a wide-range of
devices (from Desktop PCs to resource constrained 8-bit microcontrollers) among
other parameters. Another crucial aspect that is being looked at is the imple-
mentation security of post quantum cryptographic alternatives against active
and passive physical attacks. In this regard, there have been a number of works
that have reported physical attacks over lattice-based schemes through exploita-
tion of a number of side channels like power/EM side [15,23], cache timing [10]
and induced faults [11].

In this work, we try to analyze the fault vulnerabilities of multiple lattice-
based schemes which base their security on the Learning with Errors (LWE)
problem. One of the crucial components with respect to the implementation
of all the LWE based schemes is the error sampling procedure. We analyzed
the implementations of multiple lattice-based schemes such as NewHope [3],
Kyber [6], Frodo [9] Key Encapsulation (KEM) schemes & Dilithium digital sig-
nature (DS) scheme [19] and observed common traits with respect to the usage
of fixed nonces as simple domain separators in the error sampling procedure. The
simplistic use of nonce to generate the secret components in the scheme raises
questions concerning security against potential fault attacks. Though nonce-
reuse based attacks such as the ones reported on ECDSA are well known in
literature [12], surprisingly, none of the specification documents of any of the
schemes discuss possible issues due to misuse of the nonces. Thus, we extend the
applicability of nonce-reuse based fault attacks to cryptographic schemes based
on the LWE problem. In this work, we mainly focus on targeting the simplis-
tic use of nonces through fault injection to create weak faulty LWE instances,
resulting in key recovery and message recovery attacks in multiple lattice-based
schemes.

The contribution of this work are as follows:

• We extend the applicability of nonce-misuse based attacks to lattice-based
LWE schemes mainly targeting nonces used as domain separators during gen-
eration of LWE instances.

• We analyze four lattice-based LWE schemes such as NewHope, Kyber, Frodo
and Dilithium and demonstrate how nonce-misuse in these schemes could
result in key recovery (long term key) and message recovery (session key)
attacks. To the best of our knowledge, we perform the first fault analysis of
lattice-based KEM schemes while all prior works focussed on fault attacks on
lattice-based digital signatures [11,14].

234 P. Ravi et al.

• We propose a novel fault assisted Man-In-The-Middle (MITM) attack to
perform message recovery in the considered KEM schemes secure in the
Chosen Ciphertext Attacker (CCA) model. We fault the encapsulation proce-
dure to perform successful message recovery, which is counter-intuitive given
the fact that a re-encapsulation is done at the decapsulator’s side in a Chosen
Cipehertext secure KEM scheme which might detect tampering due to fault
injection.

• We validated the vulnerabilities using electromagnetic fault injection on the
ARM Cortex-M4 microcontroller. We performed practical fault attacks over
reference implementations of the aforementioned NIST candidates taken from
the pqm4 1 public library, a testing and benchmarking framework for post
quantum cryptographic schemes on the ARM Cortex-M4 microcontroller.

The rest of the paper is organized as follows. Section 2 provides a brief descrip-
tion of various lattice-based LWE cryptosystems. The identified fault vulnerabil-
ities and the associated key recovery and message recovery attacks are described
in Sect. 3 with practical experimental results using our EMFI setup covered in
Sect. 4. Possible countermeasures against the proposed fault attacks are discussed
in Sect. 5 with final conclusions drawn in Sect. 6.

2 Background on Lattice Based Cryptography

2.1 Lattice Preliminaries

This section provides a brief background on the Learning With Errors prob-
lem and the LPR encryption scheme, which is the first Ring-LWE based PKE
scheme [20] that has been the foundation of a number of efficient lattice-based
PKE and KEM schemes including the schemes considered in this work. This
section also further touches upon known insecure instantiations of the LWE
problem and prior work done with respect to fault analysis on lattice-based
cryptographic schemes.

We denote the polynomial ring Zq[X]/(Xn + 1) as Rq for q ∈ Z
+. Poly-

nomials in Rq are denoted using bold lower case letters while matrices (Zk×l
q)

and vectors(Zl
q) are denoted using bold upper case letters. Multiplication of two

polynomials a and b is denoted as c = a × b while point wise multiplication
of two entities is denoted as c = a ∗ b. We use the notation Bp to denote an
array of p bytes and Dσ to denote the zero-centered Gaussian distribution with
standard deviation σ.

2.2 The Learning with Errors Problem

The Learning With Errors (LWE) problem, introduced by Regev in 2006 [25]
is a versatile average case problem related to worst case hard lattice problems
like the Shortest Vector Problem (SVP) and the Bounded Distance Decoding

1 Available on https://github.com/mupq/pqm4.

https://github.com/mupq/pqm4

Number “Not Used” Once - Practical Fault Attack 235

Problem (BDD) on related lattices. The general LWE problem can be briefly
defined as follows: Given a small secret S ∈ Z

n
q , an LWE distribution consists of

ordered pairs (A, t) ∈ Z
n
q ×Zq where A ∈ Zn

q is public and t = (A×S+ e) ∈ Zq

where e ← Dσ. Given polynomially many pairs (A, t), the search LWE problem
requires one to find a solution for S and the decision LWE problem requires one
to distinguish structured ordered pairs (A, t) from random ones in Z

n
q × Zq. Its

more structured variants like the Ring-LWE problem [20] and the Module-LWE
problem [18] that compute over polynomial rings Rq possess greatly reduced
key-sizes and computational time. All the four schemes considered in this paper
except for FRODO, base their hardness on these structured variants of the LWE
problem. There is another variant of the LWE problem, called the Learning With
Rounding (LWR) problem wherein deterministic noise is generated by rounding
every coefficient of the product (A×S) to a lower modulus and their subsequent
expansion back to the higher modulus. It is also interesting to note that this
rounding/modulus switching technique has been used in all the considered LWE
schemes in the paper, as an effort to reduce the key or ciphertext sizes.

We classify the LWE instances in general into two types, based on the purpose
for which they are utilized in the considered schemes.

1. An LWE instance can serve as the public key of a KEM/DS scheme. Such an
LWE instance is denoted as LWEPK.

2. An LWE instance which is indistinguishable from random, can help hide
a suitably encoded message in a KEM scheme. Ciphertexts are formed by
adding an encoded message with an LWE instance, thus obscuring the mes-
sage. Such an LWE instance is denoted as LWEOBS.

We will henceforth utilize this terminology for LWE instances throughout this
paper.

2.3 LPR Encryption Scheme [20]

The three LWE based KEM schemes (i.e) NewHope, Frodo and Kyber contain in
their core, the LPR public key encryption scheme which is based on the hardness
of the Ring-LWE problem. The key generation procedure of all the three KEM
schemes (including Dilithium) and the encryption procedure of all the three
KEM schemes follow the same framework as that of the LPR encryption scheme.
It would be sufficient to describe the LPR encryption scheme, as it captures the
essence of our attack analysis in all the considered schemes. The LPR encryption
scheme can be briefly described as follows:

– KeyGen(a): Generate random polynomials a ← Rq and e, s ← Dn
σ . The public-

key polynomial is calculated as follows: p = e + a × s ∈ Rq with s being the
private key.

236 P. Ravi et al.

– Encrypt(a,p,m): Three polynomials ś, é, ´́e ∈ Rq are sampled from Dn
σ . The

message m (m0,m1,m2, . . . ,mn−1) to be encrypted is encoded coefficient-
wise into a polynomial as follows: The bit mi is encoded to coefficient q/2 if
it is 1, else it is encoded to 0. Ciphertext c1 is calculated as a × ś + é while
ciphertext c2 is formed by embedding the message into an LWE instance as
c2 = p × ś + ´́e + m.

– Decrypt(c1, c2, r2): m̂ ∈ Rq is computed as c2 − c1 × s. The decoder further
retrieves the message m one bit at a time as m = D(ḿ) such that mi = 1
if the corresponding coefficient is on [q/4, 3q/4] else mi = 0. This encoding
procedure can withstand a coefficient wise error in m̂ upto q/4.

Our attack works by targeting appropriate variants of the aforemen-
tioned KeyGen and Encrypt procedures instantiated within the considered KEM
(NewHope, Frodo and Kyber) and signature schemes (Dilithium).

2.4 Insecure Instantiations of the LWE Problem

The error component plays a major role in ensuring the hardness of the LWE
instance. An LWE instance without the error component is nothing but a sys-
tem of well defined modular linear equations, which can be solved by Gaussian
elimination. There are indeed certain other trivially solvable instantiations of
the LWE problem. If the error component only has values in a fixed interval

[z +
1
2
, z − 1

2
], then one can just “round away” the non-integral part and sub-

tract z to remove the error from every sample [22]. From a given set of n LWE
instances, if k of the n error components add up to zero, then one can simply add
the corresponding samples to cancel the error and obtain an error-free sample.
It is also possible to solve an LWE instance in roughly nd time and space using
nd samples if the error in the samples lies in a known set of size d [5]. For a very
small d, this yields a very practical attack. Our attack works by realizing such
an insecure instance of LWE through faults to mount key recovery and message
recovery attacks in the considered schemes.

2.5 Error Sampling Procedure

Almost all of the earlier lattice-based schemes like BLISS [13], LPR Encryption
scheme [20] resorted to using complex discrete Gaussian samplers for their error
sampling procedures [17]. But, Gaussian samplers turned out to be inefficient
and very difficult to be implemented in constant time. Adding to that, imple-
mentations of discrete Gaussian samplers came under heavy scrutiny owing to a
number of side channel attacks [10,15]. Moreover, Alkim et al. [4] reported that
high precision Gaussian sampling is overkill for encryption schemes and that it
was only required for schemes that require zero-knowledge proofs. Subsequently,
all the newer lattice-based proposals (including the schemes considered in this
paper) resorted to sampling from simpler and more secure noise distributions like
the centered Binomial distribution (CBD) [3,6]. All the schemes considered in

Number “Not Used” Once - Practical Fault Attack 237

this paper expand a given small seed using XOF’s such as SHAKE256, CSHAKE
(Extendable Output Functions) from the SHA3 family of cryptographic prim-
itives to random outputs of the desired length, which is further processed to
generate samples from simpler distributions like the CBD or uniform distribu-
tion. Alternatively, coefficient-wise modulus switching is also used to generate a
deterministic error in schemes based on the hardness of the LWR problem.

2.6 Prior Work on Fault Analysis of Lattice-Based Cryptographic
Schemes

Bindel et al. [8] proposed the first fault analysis of a number of lattice-based
signature schemes like the GLP [16], BLISS [13] and Ring-Tesla [2] schemes that
follow the Fiat-Shamir framework. They identified a number of fault vulner-
abilities in multiple operations across the various key generation, signing and
verification procedures of lattice-based digital signature schemes. Later, Espitau
et al. [14] reported a generic and a stronger fault attack based on loop abort
faults on both the Fiat-Shamir type and Hash-and-Sign type signature schemes.
It worked by converting the signature component into a solvable closest vec-
tor problem (CVP) instance when the error polynomial is limited to low degrees
using loop-abort faults. The first differential style fault attacks on Dilithium and
qTESLA signatures that are potential NIST standards, have been reported by
Bruinderink and Pessl [11] that mainly targets the deterministic nature of the
signing procedure by inducing random faults that can be injected during a large
section of the execution time. They utilize clock glitches to realize their faults
on an ARM Cortex-M4 based microcontroller. To the best of our knowledge,
while all related prior works have only reported fault attacks on lattice-based
signature schemes, our work is the first practical fault attack on lattice-based
KEM schemes.

3 Fault Attacks on LWE Schemes

3.1 General Attack Idea

The core idea of our attack is to create a nonce-reuse scenario using faults to
generate a trivially solvable LWE instance. One of the common traits of all the
considered schemes in this paper is the error sampling procedure. We explain
the intuition of our attack using the NewHope KEM scheme as an example.
The same vulnerability also applies to all the other considered schemes in this
paper. Refer to the key generation procedure of the NewHope KEM scheme in
Algorithm 2. We observe that both the secret (s) and error (e) components of
the LWE instance b̂ (in the NTT domain) are generated using the seeds which
differ only based on a single nonce value (Line 8,10). These seeds are further
input to the Sample function which generates the required polynomials through
use of XOF functions from the SHA3 family. The most important observation
being the use of almost similar seeds that differ only based on the nonce value,
to generate the secret and error components of the LWE instance.

238 P. Ravi et al.

For example, assume a Ring-LWE instance as created in the LPR encryption
scheme as follows:

t = a × s + e ∈ Rq

The above equation can be alternatively seen as a modular linear system of
equations with n equations and 2n unknowns. Assume that the attacker injects
faults to create a nonce-reuse scenario where both s and e are generated using
the same seed. The corresponding faulty LWE instance generated is

t = a × s + s ∈ Rq

The faulty LWE instance is a modular well defined linear system of equations
with n equations and n unknowns (∵ n coefficients for each polynomial) which
can be trivially solved using Gaussian elimination. This principle also applies to
all the versions of the LWE problem such as the general-LWE, Ring-LWE and
the Module-LWE problem. Thus, the modus operandi of our attack is to ensure
that the nonces used for generation of both the secret and error are the same
through injection of appropriate faults.

3.2 Key Recovery Attacks

In the following discussion, we will show how the identified vulnerabilities with
respect to nonce reuse can result in key recovery attacks in the considered
schemes. By key recovery attacks, we refer to the recovery of the long term
secret key.

3.2.1 Attacking NewHope and Frodo
Refer to Algorithm 2 for the key generation procedure of the NewHope KEM
scheme. The LWE instance b̂ formed as the public key in the key generation
procedure is of type LWEPK. Its corresponding secret and error components
are created using the same seed, but with different nonces 0 and 1 respectively
(Line 8 and 10 of KeyGen procedure of Algorithm 2). If faults can be injected to
realize a nonce-reuse scenario, the secret key s can be trivially recovered from
the public key, as per the analysis shown in Sect. 3.1. It is important to note that
attack on the key generation procedure is applicable to both the CPA (Chosen
Plaintext Attacker) and CCA (Chosen Ciphertext Attacker) secure model. The
same attack can be very similarly adapted to the key generation procedure of
the FRODO KEM scheme secure in both the CPA and CCA secure models.
For brevity, we have not included the key generation algorithm of the FRODO
scheme and hence please refer to [9] for the exact key generation procedure of
the FRODO KEM scheme.

3.2.2 Attacking Dilithium
We also examine the applicability of our key recovery attack on schemes operat-
ing over modules (matrices/vectors of polynomials in ring) such as Dilithium and

Number “Not Used” Once - Practical Fault Attack 239

Kyber. This section explains our key recovery attack on the Dilithium signature
scheme which targets the key generation procedure (Refer Algorithm 1).

We can identify the LWE instance t as type LWEPK (Line 14 in the KeyGen
procedure of Algorithm 1). The multiple polynomials in its corresponding secret
and error components are created using very similar seeds which only differ by a
deterministically incrementing nonce value (Line 5–12 in the KeyGen procedure
of Algorithm 1). If multiple faults can be injected to realize nonce-reuse during
generation of both the secret and error components, t reduces to a set of well
defined linear equations (k × n unknowns since k > l).

There is a subtle but considerable difference with respect to publicly revealed
LWE instances in the Dilithium scheme. The public key reveals only t1, the d
higher order bits of t, while t0 (the lower order component) is part of the secret
key. Even on ensuring nonce-reuse, we would not be able to trivially solve for
the secret s from the faulty public key. But, note that the security analysis
of DILITHIUM is done with the assumption that the whole of t is declared as
the public key. In addition to this, some information about t0 is leaked with
every published signature and thus the whole of t can be reconstructed by just
observing several signatures generated using the same secret key [1]. Thus it
is reasonable to assume that successful faults injected in the key generation
procedure results in a key recovery attack over the Dilithium signature scheme.

3.2.3 Attacking Kyber
Refer to Algorithm 3 for the key generation procedure of Kyber KEM scheme. We
identify the LWE instance t to be of type LWEPK (Line 19 of KeyGen procedure
of Algorithm 3). Its corresponding secret and error components are generated
in a similar fashion as that of the key generation procedure of the Dilithium
signature scheme (Line 10–17 of KeyGen procedure of Algorithm 3). But, similar
to the compression technique used in Dilithium, we can also see that the LWE
instance t is not directly published as the public key. A coefficient-wise modulus
switching procedure is performed over the LWE instance t, which is subsequently
revealed as the public key pk (Line 20 of KeyGen procedure of Algorithm 3).

This procedure adds a certain deterministic noise to the LWE instance sim-
ilar to the Module-Learning-with-Rounding (Module-LWR) problem. But, the
authors do not consider this as an added layer of security but simply as a tech-
nique to reduce the output size, due to the absence of a Ring/Module variant of
a hardness reduction for LWR. The authors also state that they “believe” the
compression technique adds some security, but this has not been quantified. Due
to this compression technique, successful faults injected does not trivially result
in key recovery, Our attack directly targets LWE hardness bringing down the
security to LWR hardness. The attack on the residual LWR instance is out of
scope of this work.

3.2.4 Applicability of Key Recovery Attacks
Among many aspects that are considered for evaluation in the standardization
process, NIST also expects KEM schemes in particular, to provide perfect forward

240 P. Ravi et al.

secrecy. This requires the KEM schemes to often perform key generation over
frequent intervals to generate fresh public-private key pairs. It is often claimed
that key generation is performed in certain secure locations thus removing the
threat from possible physical attacks, especially side-channel/fault attacks. But,
considering the use case of an IoT network housing a mesh of low power con-
strained devices, frequent communication of an end device with a server for
a fresh public-private key pair would have a heavy toll on power-consumption
of remote devices. Power is a very critical resource and thus communication of
keys using power hungry RF transceiver modules would be much more expensive
than performing key generation directly on the device. Thus, it is reasonable to
assume that the key generation procedure will be performed over end-devices,
thus leaving it prone to possible fault attacks.

3.3 Message Recovery Attacks

In this section, we will show how the identified vulnerabilities with respect to
nonce reuse can result in message recovery attacks in the considered schemes.
We specifically target the encryption procedures within the larger encapsulation
procedures and our attack applies to the KEM schemes secure in both the CPA
and CCA model. By message recovery, we refer to the recovery of the short
term session key that is exchanged at the end of the encapsulation-decapsulation
procedure.

Our message recovery attack directly applies to the considered CPA secure
KEM schemes, similar to the analysis described for our key recovery attacks
albeit involving some additional analysis to recover the message. But, intuition
tells us that faulting the encapsulation procedure cannot be done in CCA secure
version of KEM schemes. This is due to the employed Fujisaki-Okamoto (FO)
transformation which performs a re-encapsulation during the decapsulation pro-
cedure to check for the validity of ciphertexts. This technique effectively thwarts
use of chosen/faulted ciphertext attacks. But, we show that an MITM (Man-In-
The-Middle) attacker can still perform valid message recovery attacks over CCA
secure KEM schemes when faulting the encapsulation procedure.

Fig. 1. Fault assisted MITM attack on CCA Secure KEM scheme

Number “Not Used” Once - Practical Fault Attack 241

Refer to Fig. 1 for a pictorial description of our proposed fault assisted MITM
attack on a CCA secure KEM scheme employing the FO transformation. Alice
performs the encapsulation operation, Bob performs decapsulation with Eve
being the MITM attacker. We have abstracted away the internal details of both
the encapsulation and decapsulation procedures and have represented each of
these procedures as composition of the functions Encrypt,Decrypt and GenKey.
The Encrypt and Decrypt functions represent the encryption and decryption pro-
cedures underlying the considered KEM schemes. The GenKey function which is
used to calculate the shared session key is a publicly known fixed transforma-
tion, varies according to the KEM scheme. The faulted encryption procedure is
denoted as Encrypt′.

Lets assume that the attacker Eve performs a targeted fault into the Encrypt
function of the encapsulation procedure to evoke a faulty ciphertext C’ for
an internally generated message m. The shared key ssAlice is computed as
GenKey(C’,m). Lets assume that Eve receives the faulty ciphertext C’ from Alice
and recovers the message m using our analysis (Attack(C’,pk)), whose details will
be furnished later in this section. Further, Eve calculates Alice’s shared secret
key ssAlice similar to Alice, now that Eve has the knowledge of both the faulted
ciphertext C’ and the message m. Having recovered the message, Eve now per-
forms the correct encapsulation procedure with the recovered message m to
generate the correct ciphertext C and the corresponding shared secret key which
we denote as ssBob. The correct ciphertext is shared with Bob. Bob successfully
decapsulates the ciphertext to generate the shared key ssBob.

Though the keys shared by both Bob and Alice and different, Eve has the
knowledge of both the shared secret keys (session keys) ssAlice and ssBob through
which she can decrypt all communication transcripts between Alice and Bob
during that session. To the best of our knowledge, we propose the first fault
attack methodology to perform message recovery in CCA secure lattice-based
KEM schemes. In the following discussion, we will show how nonce-reuse can
be performed over encryption procedures to recover messages in the individual
KEM schemes.

3.3.1 Attacking NewHope and Frodo
Refer to Algorithm 2 for the encryption procedure of the NewHope KEM scheme.
We identify û as a compound LWE instance of type LWEOBS which is used to
hide the encoded message v (Line 11 of Encrypt procedure of Algorithm2).
Its corresponding secret ś (t̂ in the NTT form) is also used to create an LWE
instance û (Line 9). We can also see that the secret and error components of this
LWE instance û share the same input sampling seed while only differing by one
byte on the nonce value (Line 5 and 6). It is important to note that û is encoded
as part of the ciphertext, but is not tampered with (Not compressed). Thus, the
attacker can directly access the LWE instance û, as part of the ciphertext.

242 P. Ravi et al.

On ensuring the same nonce for both ś and é through faults, the resulting
faulty LWE instance û can be easily compromised, revealing t̂. Subsequently, we
can calculate and retrieve message μ as follows:

m = Decompress(h) − NTT−1(b̂ ∗ t̂) (∵ t̂ = NTT(ś))
μ = D(m)

where D denotes the corresponding message decoder used in the scheme.
Upon recovery of the message, an attacker can use our aforementioned attack

methodology in an MITM setting to mount a successful message recovery attack
on both the CCA and CPA secure versions of the NewHope KEM scheme. The
same attack can be very similarly adapted to perform successful message recovery
in both the CPA and CCA secure versions of the FRODO KEM scheme as well.

3.3.2 Attacking Kyber
Refer to Algorithm 3 for the encryption procedure of the Kyber KEM scheme.
We identify a compound LWE instance u of type LWEOBS is used to hide the
encoded version of the message m (Line 15 of Encrypt procedure of Algorithm 3).
Its corresponding secret r is also used to create another LWE instance u which is
exposed as part of the ciphertext (Line 14 of Encrypt procedure of Algorithm 3).
So, u can be appropriately faulted to enforce nonce-reuse. But, u is compressed
using the modulus-switching technique (LWR) before it is revealed as part of
the ciphertext. We thus reduce u to an LWR instance, whose security has not
been analysed for the given parameters.

4 Experimental Validation

In this section, we perform an experimental validation of all our proposed attacks
on a real device. We start by introducing our experimental setup, providing
details of our device under target, implementation details and our attack setup.
Since our attack requires to inject targeted faults, we further demonstrate our
analysis of the various implementations to identify our target operation and
ensure successful faults with very high repeatability.

4.1 Experimental Setup

For our experiments2,3, we target the reference implementations of the con-
sidered schemes taken from the pqm4 (see Footnote 1) library, a bench-
marking and testing framework for PQC schemes on the ARM Cortex-M4
family of microcontrollers. We ported the reference implementations to the

2 Our attack removes the hardness guarantees of the generated hard instance from the
Module-LWE problem, while the Module-LWR problem remains to be solved.

3 Attack works under the assumption that the attacker is able to reconstruct the whole
of the generated instance t (Refer Algorithm 1).

Number “Not Used” Once - Practical Fault Attack 243

STM32F4DISCOVERY board (DUT) housing the STM32F407, ARM Cortex-
M4 microcontroller. All our implementations (compiled with -O3 -mthumb
-mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16) were running at a
clock frequency of 24 MHz. We use the ST-LINK/v2.1 add-on board for USART
communication with our DUT. We used the OpenOCD framework for flash con-
figuration and on-chip hardware debugging with the aid of the GNU debugger
for ARM (arm-none-eabi-gdb). We use Electromagnetic Fault injection (EMFI)
to inject faults into our device.

PC

EM pulse
generator

DUT
(ARM Cortex-M4F)

Injection Probe

X-Y Table

Fig. 2. Experimental setup for the fault injection

Refer Fig. 2 for our EMFI setup. The EMFI setup injects electromagnetic
pulses with high voltage with low rise time (<4ns) in order to disturb the target
operation. A controller software running on the laptop control both the EM
pulse generator and the DUT and synchronizes their operation through serial
communication. The EM pulse generator is directly triggered by an external
trigger signal from the DUT. The EM pulse injector, which is a customized
hand-made EM probe designed as a simple loop antenna. Refer to Fig. 3 for the
EM probe used for our experiments.

4.2 Implementation of EMFI Attack

We first analyzed the operations within our target implementations that uti-
lized the nonce value. The nonce value in implementations of all the considered
schemes are used as inputs to Extendable Output Function (SHAKE256 for
Kyber, NewHope, Dilithium and CSHAKE for FRODO) wherein they are sim-
ply stored to a given location in an array (say A). The array A determines the
value of the sampled components. Different polynomials within the schemes are
generated simply by changing the nonce value at the same index (memory loca-
tion) while all the other elements of the array are fixed. The nonce updates in
the array A were realized as store instructions (STR instruction for ARM) to

244 P. Ravi et al.

(a) (b)

Fig. 3. (a) Hand-made probe used for our EMFI setup (b) Probe placed over the DUT

the memory. We attempt to skip all these store instructions and by doing so, we
ensure that a single random value is used as a nonce to generate both the secret
and error components, thus creating a nonce-reuse scenario.

Hence, we rely on the instruction skip fault model that has been widely
studied and practically demonstrated on a range of devices (AVR and ARM
microcontrollers) with high repeatability to satisfy our attack requirement [7,27].
It has been realized over different architectures through multiple fault injection
methodologies like laser shots [7,27], clock [11] glitches and EM injection in
addition to serving as a basis for multiple cryptanalytic efforts. We scanned

Fig. 4. Code snippet from reference implementations of the considered schemes. Our
target store operation is highlighted in red. (Color figure online)

Number “Not Used” Once - Practical Fault Attack 245

Table 1. Fault complexity (number of instruction skip faults) of our attack on the
various recommended parameter sets of the considered schemes

the entire top layer of the chip and could identify a precise location (close to
the center of the chip near the ARM logo), where we could achieve a 100%
repeatability in skipping the same store instruction, thus preventing update of
the nonce. Since we are only skipping the update of the nonce, it is important
to note that our attack works irrespective of the value of the nonce.

Refer to Fig. 4 for the assembly code snippets of the compiled reference imple-
mentations of the considered schemes. The faulted store operation in each imple-
mentation is highlighted in red. Refer Table 1 for the fault complexity of our
nonce misuse attack when applied to the recommended parameter sets of all
the schemes. Only a single fault is required in the case of NewHope and Frodo
since it is enough to skip the update of the nonce for only the error component
and not the secret component. But, in the case of Module-LWE schemes like
Kyber and Dilithium, it is required to skip the update of all the nonces used for
generation of polynomials. Thus, the number of faults amount to (k + l) when
the dimension of the public constant A in these schemes is assumed to Rk×l

q .

5 Countermeasures

We have shown that the use of nonces in the reference implementations of all
the aforementioned schemes can be easily targeted through fault attacks. The
main reason however is due to use of seeds for generation of secret and error
components which only vary by one or two bytes due to the nonce. The value
of the nonce used primarily decide the difference between the secret and error
components. Thus, it becomes important to perform a sanity check on the value
of the nonce, which can possibly mitigate the attack. There are a lot of known
vulnerable instances of the LWE problem (Refer Sect. 2.1 for some of them) and
we have realized one of these instances using faults (s = e). Thus, performing
simple checks on the secret and error components of the LWE instances for
known trivial weaknesses could also be a potential countermeasure against our
attack.

246 P. Ravi et al.

6 Conclusion

In this work, we present practical fault attacks on a number of potential NIST
candidates for post quantum cryptography, mainly targeting schemes based on
the LWE problem such as NewHope, Kyber, Dilithium, Frodo. We exploit the use
of nonces in the sampling procedure in each of these schemes to demonstrate key
recovery and message recovery attacks. While long term keys are directly recov-
ered by faulting the key generation procedure, message recovery (session keys)
is demonstrated through a novel fault assisted MITM attack on the encryption
procedure on the CCA secure KEM schemes. We perform a practical validation
of all our attacks on an ARM Cortex-M4F microcontroller running reference
implementations taken from the pqm4 library.

A Appendix

Algorithm 1. Dilithium Signature scheme
1 Procedure Dilithium.KeyGen()
2 ρ, ρ′ ← {0, 1}256

3 K ← {0, 1}256

4 N = 0
5 for i from 0 to � − 1 do
6 s1[i] = Sample(PRF(ρ′, N))
7 N := N + 1

8 end
9 for i from 0 to k − 1 do

10 s2[i] = Sample(PRF(ρ′, N))
11 N := N + 1

12 end

13 a ∼ Rk×�
q = ExpandA(ρ)

14 t = a × s1 + s2
15 t1 = Power2Roundq(t, d)
16 tr ∈ {0, 1}384 = CRH(ρ||t1)
17 return pk = (ρ, t1), sk = (ρ, K, tr, s1, s2, t0)

Number “Not Used” Once - Practical Fault Attack 247

Algorithm 2. NewHope KEM scheme
1 Procedure NewHope.KeyGen()
2 seed ← {0, . . . , 255}32

3 z ← SHAKE256(64, seed)
4 publicseed ← z[0 : 31]
5 noiseseed ← z[32 : 63]
6 â ← GenA(publicseed)
7 s ← PolyBitRev(Sample(noiseseed, 0))
8 ŝ = NTT(s)
9 e ← PolyBitRev(Sample(noiseseed, 1))

10 ê = NTT(e)

11 b̂ = â ∗ ŝ + ê

12 return (pk = EncodePK(b̂, publicseed), sk = EncodePolynomial(s))

1 Procedure NewHope.Encrypt(pk ∈ B7.n/4+32, μ ∈ B32, coin ∈ B32)

2 b̂, publicseed ← DecodePk(pk)
3 â ← GenA(publicseed)
4 ś ← PolyBitRev(Sample(coin, 0))
5 é ← PolyBitRev(Sample(coin, 1))

6 ´́e ← Sample(coin, 2)

7 t̂ = NTT(ś)

8 û = â ∗ t̂ + NTT(é)
9 v = Encode(μ)

10 v́ = NTT−1(b̂ ∗ t̂) + ´́e + v
11 h = Compress(v́)
12 return c = EncodeC(û,h)

248 P. Ravi et al.

Algorithm 3. Kyber KEM scheme
1 Procedure Kyber.KeyGen()
2 d ← {0, 1}256

3 (ρ, σ) := G(d)
4 N := 0
5 for i from 0 to k − 1 do
6 for j from 0 to k − 1 do
7 a[i][j] ← Parse(XOF(ρ||j||i))
8 end

9 end
10 for i from 0 to k − 1 do
11 s[i] ← CBDη(PRF(σ, N))
12 N := N + 1

13 end
14 for i from 0 to k − 1 do
15 e[i] ← CBDη(PRF(σ, N))
16 N := N + 1

17 end
18 ŝ ← NTT(s)
19 t = NTT−1(â ∗ ŝ) + e
20 pk := (Encodedt(Compressq(t, dt))||ρ)

21 sk := Encode13(ŝ mod+q)
22 return (pk, sk)

1 Procedure NewHope.Encrypt(pk ∈ Bdt·k·n/8+32, m ∈ B32, r ∈ B32)
...

2

3 N = 0
4 for i from 0 to k − 1 do
5 r[i] ← CBDη(PRF(r, N))
6 N := N + 1

7 end
8 for i from 0 to k − 1 do
9 e1[i] ← CBDη(PRF(r, N))

10 N := N + 1

11 end
12 e2 ← CBDη(PRF(r, N))
13 r̂ = NTT(r)

14 u = NTT−1(âT ∗ r̂) + e1

15 v = NTT−1(t̂T ∗ r̂) + e2 + Decode1(Decomposeq(m, 1))

16 c1 = Encodedu(Compressq(u, du))

17 c2 = Encodedv (Compressq(v, dv))

18 return c = (c1, c2)

Number “Not Used” Once - Practical Fault Attack 249

References

1. Suppressed for blind review
2. Akleylek, S., Bindel, N., Buchmann, J., Krämer, J., Marson, G.A.: An efficient

lattice-based signature scheme with provably secure instantiation. In: Pointcheval,
D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 44–60.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31517-1 3

3. Alkim, E., et al.: Algorithm specifcations and supporting documentation (2017)
4. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: Post-quantum key exchange-a

new hope. In: USENIX Security Symposium, pp. 327–343 (2016)
5. Arora, S., Ge, R.: New algorithms for learning in presence of errors. In: Aceto,

L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 403–415.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7 34

6. Avanzi, R., et al.: Crystals-kyber algorithm specifications and supporting docu-
mentation (2017)

7. Balasch, J., Gierlichs, B., Verbauwhede, I.: An in-depth and black-box characteri-
zation of the effects of clock glitches on 8-bit MCUs. In: 2011 Workshop on Fault
Diagnosis and Tolerance in Cryptography (FDTC), pp. 105–114. IEEE (2011)

8. Bindel, N., Buchmann, J., Krämer, J.: Lattice-based signature schemes and their
sensitivity to fault attacks. In: 2016 Workshop on Fault Diagnosis and Tolerance
in Cryptography (FDTC), pp. 63–77. IEEE (2016)

9. Bos, J., et al.: Frodo: take off the ring! practical, quantum-secure key exchange from
LWE. Technical report, National Institute of Standards and Technology (2017).
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

10. Bruinderink, L.G., Hülsing, A., Lange, T., Yarom, Y.: Flush, gauss, and reload
– a cache attack on the BLISS lattice-based signature scheme. In: Gierlichs, B.,
Poschmann, A.Y. (eds.) CHES 2016. LNCS, vol. 9813, pp. 323–345. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-53140-2 16

11. Bruinderink, L.G., Pessl, P.: Differential fault attacks on deterministic lattice sig-
natures. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3) (2018). https://
eprint.iacr.org/2018/355.pdf

12. Bushing, S., Sven, M.: Console hacking 2010: PS3 epic fail. In: Talk at 27th Chaos
Communication Congress (2010)

13. Ducas, L., Durmus, A., Lepoint, T., Lyubashevsky, V.: Lattice signatures and
bimodal gaussians. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol.
8042, pp. 40–56. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
40041-4 3

14. Espitau, T., Fouque, P.-A., Gérard, B., Tibouchi, M.: Loop-abort faults on lattice-
based fiat-shamir and hash-and-sign signatures. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 140–158. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-69453-5 8

15. Espitau, T., Fouque, P.A., Gérard, B., Tibouchi, M.: Side-channel attacks on bliss
lattice-based signatures: exploiting branch tracing against strongswan and elec-
tromagnetic emanations in microcontrollers. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1857–1874.
ACM (2017)

16. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 31

https://doi.org/10.1007/978-3-319-31517-1_3
https://doi.org/10.1007/978-3-642-22006-7_34
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-662-53140-2_16
https://eprint.iacr.org/2018/355.pdf
https://eprint.iacr.org/2018/355.pdf
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-642-40041-4_3
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/978-3-319-69453-5_8
https://doi.org/10.1007/978-3-642-33027-8_31

250 P. Ravi et al.

17. Howe, J., Khalid, A., Rafferty, C., Regazzoni, F., O’Neill, M.: On practical discrete
Gaussian samplers for lattice-based cryptography. IEEE Trans. Comput. 67, 322–
334 (2016)

18. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565–599 (2015)

19. Lyubashevsky, V.,et al.: CRYSTALS-Dilithium. Technical report, National Insti-
tute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography/round-1-submissions

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

21. NIST: Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2016). https://csrc.nist.gov/csrc/media/
projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-
2016.pdf

22. Peikert, C.: How (not) to instantiate ring-LWE. In: Zikas, V., De Prisco, R. (eds.)
SCN 2016. LNCS, vol. 9841, pp. 411–430. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-44618-9 22

23. Pessl, P.: Analyzing the shuffling side-channel countermeasure for lattice-based
signatures. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS,
vol. 10095, pp. 153–170. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-49890-4 9

24. Preskill, J.: Reliable quantum computers. Proc. R. Soc. Lond. A Math. Phys. Eng.
Sci. 454, 385–410 (1998). The Royal Society

25. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 34 (2009)

26. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a
quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS,
vol. 877, pp. 289–289. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58691-1 68

27. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected CRT-RSA. In:
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
75–86. IEEE (2010)

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/projects/post-quantum-cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-44618-9_22
https://doi.org/10.1007/978-3-319-49890-4_9
https://doi.org/10.1007/978-3-319-49890-4_9
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68

Countermeasures Against
Implementation Attacks

Practical Evaluation of Masking
for NTRUEncrypt on ARM Cortex-M4

Thomas Schamberger1(B), Oliver Mischke2, and Johanna Sepulveda1

1 Technical University of Munich, Munich, Germany
{t.schamberger,johanna.sepulveda}@tum.de
2 Infineon Technologies AG, Munich, Germany

oliver.mischke@infineon.com

Abstract. To protect against the future threat of large scale quan-
tum computing, cryptographic schemes that are considered appropriately
secure against known quantum algorithms have gained in popularity and
are currently in the process of standardization by NIST. One of the more
promising so-called post-quantum schemes is NTRUEncrypt, which with-
stood scrutiny from the scientific community for over 20 years.

Similar to classical algorithms like AES, implementations of NTRU-
Encrypt must be protected against physical attacks. While different
masking and hiding countermeasures have been proposed in the past,
practical power analysis evaluations of masking for NTRUEncrypt are
lacking. We therefore provide a practical evaluation of masking applied
to index-based multiplication and a modern parameter set using tri-
nary polynomials. With the use of SIMD instructions available in the
Cortex-M4 microcontroller, we are able to implement additive masking
without any significant performance overhead compared to an unmasked
implementation. Our implementation showed no observable first-order
leakage using a HW model and two million measurement traces. Suc-
cessful second-order attacks are demonstrated for our implementation
using SIMD instructions, which processes the mask and masked data
simultaneously, as well as for a sequential implementation built for com-
parison. Finally, we show that applying both our low cost masking coun-
termeasure together with a known and equally efficient shuffling scheme
can provide a good trade-off achieving a high level of security without a
large performance penalty.

Keywords: Post-quantum cryptography · Side-channel analysis ·
NTRUEncrypt · Countermeasures · Masking

1 Introduction

With the publication of the so called Shor’s algorithm [11] established public
key encryption algorithms are considered broken in the presence of a large-scale
quantum computer. To mitigate this threat a transfer to cryptographic algo-
rithms based on other quantum-safe mathematical problems has to be performed.
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 253–269, 2019.
https://doi.org/10.1007/978-3-030-16350-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_14

254 T. Schamberger et al.

The research field of possible schemes for this transition is called post-quantum
cryptography. Although the development of a large scale quantum computer is
still an ongoing research field, NIST recognized this threat as serious enough to
start a standardization process for post-quantum schemes.

A promising candidate for standardization is the public key encryption
scheme NTRUEncrypt [14]. This lattice-based algorithm withstood mathemat-
ical cryptanalysis, with some parameter changes, for now twenty years since
its original publication in [4]. Nevertheless, since the first publication of side-
channel attacks by Kocher et al. [9], implementations can no longer be analyzed
in a black box scenario. In order to provide secured implementations also the
resistance against physical side-channel attacks has the be evaluated in an addi-
tional step.

The main side-channel attack against NTRUEncrypt is the correlation power
analysis attack (CPA) published in [10]. This attack targets an implementation
of the polynomial multiplication within the algorithm that utilizes the sparse
structure of one multiplication operand in order to retrieve the corresponding
secret key. In their paper the authors also propose different countermeasures of
which the random initialization and shuffling countermeasures are shown to be
broken in [10,15]. To the best of our knowledge there has been no practical eval-
uation of the proposed masking countermeasure. In this work we perform this
evaluation for modern parameter sets. We show two different masked implemen-
tations of the polynomial multiplication together with successful second-order
attack results on an ARM Cortex-M4 microcontroller.

Our Contributions. We adapt the CPA of [10] for modern parameter sets that
make use of so called trinary polynomials and show successful attack results.
For this we change the multiplication algorithm in order to utilize the sparse
structure of trinary polynomials. In contrast to [10] we use the hamming weight
power model for our attack after experiments verified that it is well suited for
our attack target.

We show two different assembly implementations of the masking counter-
measure of [10] for an implementation with trinary polynomials. No first-order
leakage, that is exploitable through CPA, could be found on our setup for an
attack up to two million traces in the hamming weight power model.

The first implementation performs the multiplication of the masked cipher-
text and the update of masks in a sequential manner. This has the downside
of an increased execution time of approximately a factor of two, since the same
algorithm has to be executed twice. We show a successful bivariate second-order
attack through combination of the leakage of the masked value with the leak-
age of the mask itself. Our second implementation computes the changes of the
mask without performance penalty since it makes use of SIMD instructions of
our ARM Cortex-M4 target platform. In this implementation the multiplication
of the masked value as well as the update of the mask is performed in parallel.
We show successful attack results with a zero-offset second-order CPA.

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 255

In a final step we show that a combination of the Random key rotation shuf-
fling countermeasure [13] with our masked implementation provides a secured
implementation against second-order attacks using two million traces on our
setup.

Outline. In Sect. 2 we recall NTRUEncrypt together with its vulnerable mul-
tiplication operation. Then, in Sect. 3 we discuss previous work on power anal-
ysis attacks on NTRUEncrypt as well as proposed countermeasures. We adapt
the published CPA for recent parameter sets, that make use of trinary poly-
nomials, in Sect. 4. In Sect. 5 we describe our two masked implementations of
the polynomial multiplication. First- and second-order attack results for both
implementations are shown in Sect. 6. Finally, we conclude in Sect. 7.

2 NTRUEncrypt

The NTRU cryptosystem was first introduced by Hoffstein et al. in 1998 [4]. As
the original algorithm has evolved substantially over the years this chapter gives
an overview of the different aspects of the algorithm leading to its standardized
version in the IEEE 1363.1-2008 [8] as well as the submission for the first round
of the NIST Post-Quantum Cryptography competition [14].

2.1 Notation and Representation of Polynomials

The main elements of NTRUEncrypt are polynomials within one of the following
convolution polynomial rings formally described as

R =
Z[x]

(xN − 1)
, Rp =

(Z/pZ)[x]
(xN − 1)

, Rq =
(Z/qZ)[x]
(xN − 1)

. (1)

In essence this means every polynomial is at most of degree N − 1 and has
integer coefficients. For the rings Rp and Rq the coefficients of the polynomials
are reduced modulo p and respectively q. This results in polynomials of the
following form:

a(x) = a0 + a1x + a2x
2 + a3x

3 + · · · + aN−1x
N−1 ∈ R,Rq, Rp (2)

As the NTRUEncrypt algorithm has evolved over time, two different kinds of
parameter sets were proposed. Their main difference is the choice of the modulo
parameter p. This parameter defines the structure of the private key polyno-
mial and therefore it is crucial to formalize a name for the different types of
polynomials. In [1] the different types of a polynomial a(x) are defined as:

– Binary polynomial (p = 2):

B(d) :

{
a(x) has d coefficients equal to 1
a(x) has all other coefficients equal to 0

256 T. Schamberger et al.

– Trinary polynomial (p = 3):

T (d + 1, d) :

⎧⎪⎨
⎪⎩
a(x) has d + 1 coefficients equal to 1
a(x) has d coefficients equal to −1
a(x) with other coefficients equal to 0

It has to be noted that earlier parameter sets [7] propose the use of binary
polynomials while more recent publications [3,14] as well as the standardized
version [8] make use of trinary polynomials. Typical parameter sets given in the
standard use a value of N that lies in the range of 401 < N < 1499, while q is
fixed to 2048.

2.2 Algorithm Description

This chapter describes the public key encryption variant of NTRUEncrypt
according to the supporting document of the NIST submission in [14], where
it is referred to as “ntru-pke”. In order to provide CCA-2 security the authors
instantiate NTRU with the NAEP encryption scheme as described in [7]. Addi-
tional padding operations by this scheme are abbreviated as they do not influence
the side-channel discussion.

An instance of the algorithm is described by the parameter set {N, p, q},
which defines the used polynomial rings, as well as the parameter d, which
describes the amount of non-zero coefficients in the used binary or trinary poly-
nomials. Based on a specific parameter set the private key polynomial f and the
corresponding public key h can be constructed. The encryption function uses
the public key polynomial h to encrypt the message m.

We limit the description of the algorithm to the decryption function, as this
function is the only point during the algorithm where a known input, namely the
ciphertext e, is combined with the secret key polynomial f , which is a necessary
condition to mount side-channel attacks.

Decryption. The decryption of NTRUEncrypt is described in Algorithm1.
With the use of the private key f and the public key h a ciphertext e can be
decrypted. It is important for later discussions that the private key f is a sparse
polynomial in either T or B, while the ciphertext e is element of Rq. The secret
key is used in the form p · f +1 as this eliminates one multiplication step during
decryption [6].

2.3 Operations on Polynomials

As discussed in the previous chapters all variables of the algorithm are element
of a convolution polynomial ring. The main property of the used rings is that
elements can be at most of degree N − 1. Therefore arithmetic operations on
ring elements have to fulfill this property. An additional modulo operation has

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 257

Algorithm 1. NTRUEncrypt - Decryption
Input: Private key f , public key h and ciphertext e
1: m′ ← (p · f + 1) ∗ e mod p
2: t ← e − m′

3: mmask ← Sampler(t) � mmask ∈ T (d + 1, d) or B(d)
4: m = m′ + mmask mod p
5: r ← Sampler(m|h) � r ∈ T (d + 1, d) or B(d)
6: if p · r ∗ h = t then
7: result ← m
8: else
9: result ←⊥
Output: result

to be performed on each coefficient of the resulting polynomial, depending on
the respective ring.

Multiplication of two polynomials is performed with the circular convolution
product in the corresponding ring. In [5] this product of two polynomials a(x) ∗
b(x) is defined as:

a(x) ∗ b(x) =
N−1∑
k=0

⎛
⎝ ∑

i+j≡k (mod N)

aibj

⎞
⎠xk (3)

In other words, Eq. (3) can be seen as the multiplication of two polynomials
with an additional reduction of the result by (xN − 1) through polynomial long
division. The convolution product is denoted with the symbol (∗), while a simple
multiplication with a factor is marked as (·).

As the convolution product is the bottleneck operation of NTRUEncrypt,
there are several publications on optimized implementations of this multiplica-
tion. It has to be noted that neither the standardized version in IEEE-1363.1
[8] nor the NIST submission of NTRUEncrypt [14] defines a specific way of
implementing the multiplication.

A popular type of implementation for resource constrained devices utilizes
the sparse structure of binary or trinary polynomials. It is the case that all
convolution products of the algorithm have one sparse polynomial as operand.
This is also true for the first line of Algorithm1 as (p ·f +1)∗ e can be rewritten
to (p · f ∗ e + e). In [1] the authors propose Algorithm2 for the multiplication
of a polynomial in Rq and a binary polynomial B(d). With this algorithm the
authors substitute the multiplication of coefficients with additions based on the
index of ones in the binary polynomial. As a binary polynomial is build to be
sparse, the coefficients with the value zero can be skipped resulting in a lower
number of additions to execute and therefore a faster multiplication. It has to be
noted that the algorithm can be considered as constant time assuming a system
without cache, as conditional branches are only dependent on known parameters
of the algorithm.

258 T. Schamberger et al.

Algorithm 2. Index-based binary multiplication
Input: a(x) ∈ B(d) (stored as an array a[d] with indexes ai); b(x) ∈ Rq

1: Initialize a temporary array t of size 2N
2: for 0 ≤ j < 2N do � Initialize t(x) with zero
3: tj ← 0

4: for 0 ≤ j < d do
5: for 0 ≤ k < N do
6: tk+a[j] ← tk+a[j] + bk � Add polynomial b(x) at position a[j]

7: for 0 ≤ j < N do
8: cj ← (tj + tj+N) mod q � Reduction by (xN − 1) modulo q

Output: c(x) ∈ Rq = a(x) ∗ b(x)

Algorithm 3. Index-based trinary multiplication
Input: a(x) ∈ T (d + 1, d) (stored as arrays aones[d + 1] and amones[d]); b(x) ∈ Rq

1: Initialize a temporary array t(x) of size 2N
2: for 0 ≤ j < 2N do � Initialize t(x) to zero
3: tj ← 0

4: for 0 ≤ j < d + 1 do
5: for 0 ≤ k < N do
6: tk+aones[j] ← tk+aones[j] + bk � Add b(x) at position aones[j]

7: for 0 ≤ j < d do
8: for 0 ≤ k < N do
9: tk+amones[j] ← tk+amones[j] − bk � Subtract b(x) at position amones[j]

10: for 0 ≤ j < N do
11: cj ← (tj + tj+N) mod q � Reduction by (xN − 1) modulo q

Output: c(x) ∈ Rq = a(x) ∗ b(x)

As described in Sect. 2.1 recent parameter sets make use of trinary polyno-
mials. As these polynomials also have a sparse nature, and therefore contain
only ones and minus ones, the multiplication can again be abstracted by either
addition or subtraction based on the index of nonzero coefficients. Our adaption
of Algorithm 2 for trinary polynomials is given in Algorithm3.

3 Related Work

In this work we focus on software implementations of NTRUEncrypt with
the index based multiplication as described in Sect. 2.3. This chapter gives an
overview of the previous work on power analysis attacks on such implementations
with binary polynomials.

The main power analysis attack on NTRUEncrypt consists of a CPA pub-
lished in [10]. With this attack the authors target the multiplication of the
private key f with the ciphertext e, as this is the only operation on the private
key with an attacker controllable input. If this multiplication is performed with
the index-based method, as described in Algorithm 2, an attacker can exploit

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 259

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
= = = = = = = = = = = = = = = =

Initialization: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + + + +

j = 0 : e0 e1 e2 e3 e4 e5 e6 e7

+ + + + + + + +

j = 1 : e0 e1 e2 e3 e4 e5 e6 e7

+ + + + + + + +

j = 2 : e0 e1 e2 e3 e4 e5 e6 e7

+ + + + + + + +

j = 3 : e0 e1 e2 e3 e4 e5 e6 e7

Fig. 1. Convolution product with binary polynomials according to Algorithm 2 for the
parameters N = 8 and f ∈ B(4) = [1, 3, 4, 6]. All targeted additions with the coefficient
e0 are marked.

the fact that the addition of the first ciphertext coefficient e0 is determined by
the indexes of ones in the private key f . An example of this multiplication is
visualized in Fig. 1.

For all d rounds of additions the ciphertext coefficients ei are added with the
content of the corresponding temporary result array element ti in a sequential
manner, starting from e0 to eN−1. Based on the additions with e0 (marked in
Fig. 1) the difference between the key indexes of each round can be found. The
attack of [10] performs a separate CPA for all rounds j ≥ 1 with an attack on
the hamming distance of the addition of ti with e0 (HD(ti, ti + e0)). The corre-
sponding values of ti can be calculated based on a hypothesis for the difference in
the associated key indexes. After the individual CPAs successfully retrieved all
index differences wi, the location of the first key index can be found by exhaus-
tive search. We will denote the difference between the indexes f [i] and f [i + 1]
with wi for the rest of the paper. As an example, the difference between the first
index f [0] and second index f [1] will be called w0.

In addition to their attack the authors of [10] propose three different coun-
termeasures:

1. Random initialization of t: The temporary result array t is initialized with
different random values ri, which can help during the first register overwrite
in a HD scenario.

2. Masking of ciphertext e: With this countermeasure each individual coef-
ficient ei is masked with a random value through modular addition. We give
a detailed evaluation of this countermeasure in this work.

3. Shuffling: The sequence of all d addition rounds can be shuffled randomly,
as the order has no impact on the final result. In theory shuffling counter-
measures can be defeated with an increased amount of traces, therefore the
authors propose this countermeasure only in combination with masking.

260 T. Schamberger et al.

Successful attacks have been shown against the random initialization coun-
termeasure with a second-order CPA [10] and a first-order collision attack [15].
The second-order CPA still targets the HD(ti, ti + e0) which is changed by the
countermeasure to HD(ti+ri, ti+ri+e0). The authors show that the subtraction
of the power consumption of HD(ri, ti + ri) from HD(ti + ri, ti + ri + e0) can
be used as a preprocessing function to mount an attack on the unmasked values
with the hypothetical power consumption of HW (ti) − HW (e0).

In order to perform the first-order collision attack an attacker has to observe
the power consumption Ti during the initialization phase of t with the different
masks ri. The highest correlation of Ti with the power consumption during the
addition of the last ciphertext coefficient eN−1 allows the calculation of the
corresponding index of the private key. This can be done for all d rounds of
addition.

More recently a countermeasure named Random key rotation is proposed
in [13]. This countermeasure exploits the ring structure of the polynomials, which
allows a rotation of the private key f and the ciphertext e in a way that does not
change the multiplication result. As this rotation can be performed randomly
without changing Algorithm2, it can be seen as an efficient shuffling counter-
measure. This countermeasure can in theory be defeated by an increased amount
of traces and therefore we suggest to use it in addition with our masked imple-
mentations.

4 CPA on Trinary Polynomials

In this chapter we present the adaptation of the CPA attack from [10] for a convo-
lution product with trinary polynomials. Even though the authors mention that
their attack should also work against trinary polynomials they do not present
the adaption or attack results. We implement the index-based multiplication for
the trinary case with Algorithm3.

An example of the trinary multiplication is shown in Fig. 2. It can be seen
that the first part of the multiplication (light grey background) is performed
exactly as in the binary case. Therefore, the differences between the ones in
f ∈ T , called w1

i , can be found by using the CPA described in Sect. 3.
Our adaption works by first attacking the difference between the last index

of ones fones[d + 1] and the first index of minus ones fmones[0] during the first
round of subtractions (j = 0). This difference will be called w0. The correct w0 is
attacked by finding the index of ei that is subtracted from the ti corresponding
to the last addition with e0 (marked with a dotted line in Fig. 2). Based on the
different hypothesis for w0 the hamming weight of the corresponding intermedi-
ate values can be calculated and attacked through CPA. It has to be noted that
there is the unlikely possibility of no subtraction from ti corresponding to the
last addition of e0 for some constructions of the private key. This can also be
defeated by successively evaluating different points of subtraction, for example
the value of ti corresponding to the last addition of e1.

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 261

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15
= = = = = = = = = = = = = = = =

Initialization: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+ + + + + + + +

j = 0 : e0 e1 e2 e3 e4 e5 e6 e7

+ + + + + + + +

j = 1 : e0 e1 e2 e3 e4 e5 e6 e7

+ + + + + + + +

j = 2 : e0 e1 e2 e3 e4 e5 e6 e7

− − − − − − − −
j = 0 : e0 e1 e2 e3 e4 e5 e6 e7

− − − − − − − −
j = 1 : e0 e1 e2 e3 e4 e5 e6 e7

Fig. 2. Example of a convolution product with trinary polynomials for N = 8 and
f ∈ T (3, 2) = [1, 3, 4], [0, 6].

With the correct w0 the remaining differences between the indexes of minus
ones w−1

i can be found. Similar to the binary case different hypothetical interme-
diate results for the subtraction of e0 during the rounds j ≥ 1 can be constructed
(see the attacked subtraction result marked with a solid line in Fig. 2). The cor-
rect hypothesis can be found through CPA, which reveals the corresponding
w−1

i .
The final private key f can be found through exhaustive search for fones[0],

as all relative index differences are known at this stage. The complexity of this
search can be seen as negligible as an attacker has to try at most N − (2d + 1)
different combinations. This leads to at most 248 different combinations for the
parameter set NTRU-743, which corresponds to the highest security level for a
parameter set with trinary polynomials.

5 Masking the Ciphertext Polynomial

Since possible attacks for the random initialization countermeasure of [10] have
already been shown and other approaches can be seen as shuffling and therefore
hiding countermeasures, we focus on evaluating the masking of the ciphertext.
Only a masking countermeasure is able to reliably provide a first-order secured
implementation, as it makes the processed variables independent from the known
input, in this case the ciphertext.

In accordance to [10] we use arithmetic masking with different masks on all
coefficients of the ciphertext polynomial e. Arithmetic masking in our case can
be defined as a modular addition of e with a polynomial masks, containing the
different masks for each coefficient, as

em = e + masks mod 2n. (4)

For our implementations the modulus is set to 216 as the elements of the
temporary result array t are stored with 16-bit values. Arithmetic masking is

262 T. Schamberger et al.

m′ = f ∗ (e+masks) masks′ = f ∗ masks m = m′ − masks′

Combination m = m′ − masks′

Sequential:

Parallel:

Fig. 3. Comparison of our sequential and parallel masked implementations. It can be
seen that the parallel implementation combines the first two steps into one.

more suitable for the index-based multiplication as it only performs arithmetic
operations and therefore changes to the mask are linear. In this case changes of
a mask can be computed by performing the operations on the mask itself.

The masking countermeasure is implemented for the trinary index-based mul-
tiplication described in Algorithm3. We provide two different masked implemen-
tations with the use of ARM assembly code. The first implementation performs
the multiplication on the masked values and the mask itself sequentially. This
approach has the downside of an increased execution time as the multiplication
algorithm is executed twice in order to compute the mask changes. We eliminate
this disadvantage in our second implementation, as it computes the multiplica-
tion on the masked value and the mask in parallel. To achieve this we utilize
special SIMD instructions of the ARM Cortex-M4 architecture. The idea of the
different implementations is visualized in Fig. 3.

5.1 Sequential Implementation

The sequential implementation first performs a multiplication of the masked
ciphertext em with the private key f to get the masked result m′:

m′ = f ∗ em = f ∗ (e + masks) (5)

In a second step the changes to the masks are computed through a multipli-
cation of f with the values of the masks as:

masks′ = f ∗ masks (6)

In order to retrieve the unmasked multiplication result m all coefficients of
masks′ are subtracted from m′ with the result reduced modulo q.

5.2 Parallel Implementation

The parallel implementation of the masking countermeasure makes use of SIMD
instructions of the DSP extension of an ARM Cortex-M4 architecture. With
these instructions a 32-bit word is split into smaller parts (two 16-bit or four 8-
bit values) on which the corresponding arithmetic operation can be performed in
parallel. For example the SADD16 and SSUB16 operation performs an addition
respectively subtraction on the higher and lower 16-bit parts of the operand,
taking care of suppressing a potential carry overflow between the two parts. An
example of an addition with SADD16 is given in Fig. 4.

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 263

061 5131

a1 a2OP1

b1 b2OP2

(a1+b1) mod 216 (a2+b2) mod 216SADD16 (OP1, OP2)

Fig. 4. Visualization of the SADD16 instruction of an ARM Cortex-M4 microcon-
troller. Two 16-bit additions of (a1 + b1) and (a2 + b2) are performed in parallel. The
subtraction with SSUB16 works accordingly.

In order to benefit from these operations we construct the individual cipher-
text coefficients ei and corresponding mask maski as a 32-bit word as shown
in Fig. 5. By using this construction as an input for the ciphertext coefficients
ei in Algorithm 3, all additions and subtractions can be implemented with the
corresponding SIMD instruction. In this case the update of the mask is com-
puted in parallel, which is twice as fast as the sequential implementation. The
implicit reduction modulo 216 does not change the result of the multiplication as
all coefficients of the result are reduced modulo 211, with q = 2048 for modern
parameter sets.

061 5131

maski ei +maski

Fig. 5. Description of the input to Algorithm 3 as a combination of the masked cipher-
text and the mask itself. The individual coefficients of the ciphertext e are constructed
in this way.

6 Evaluation of Results

In this section we show the results of a CPA attack on a non-masked implemen-
tation using trinary polynomials as well as first and second-order attacks against
the two masked implementations described in the previous chapter. In addition
we show attack results for the masked implementations in combination with a
shuffling countermeasure.

All attacks are performed with power measurements of a STM32F303RCT7
ARM Cortex-M4 microcontroller mounted on the NewAE CW308 UFO board.
The target device is built with a 12 Ω shunt resistor placed in the VDD line
and the corresponding power consumption can be measured through a SMA
connector on the CW308 board. The measurements are performed with a Pico-
scope 6402D and a sampling frequency of 156.25 MHz. As the power is measured
between VDD and GND, a Minicircuits BLK-89+ DC Block is used in order to
utilize the whole input range of the oscilloscope. The clock for our DUT is fixed

264 T. Schamberger et al.

to 10 MHz provided by a Keysight 33500B waveform generator. In order to pro-
vide aligned traces the device clock and the sampling clock of the oscilloscope
are synchronized through the waveform generator.

6.1 CPA on Trinary Polynomials

This section describes attack results on our assembly implementation of
Algorithm 3 without any precaution against side-channel attacks. In contrast
to the attack in [10] we show a working attack on a trinary multiplication with
the hamming weight power model.

Some results for an attack on a multiplication with the private key f ∈ T =
[3, 7, 10], [1, 4] and a maximum degree of N = 20 are shown in Fig. 6. We exem-
plarily provide the correlation graphs that reveal w1

0, w
0, and w−1

0 . However, all
different CPA attacks on the corresponding key indexes are successful. The cor-
relation over time is shown for the whole execution of lines 4 to 9 in Algorithm3.
It can be seen that the attack is successful even without the restriction of the
measurements to the corresponding attacked operations. Nevertheless, a restric-
tion would remove additional correlation peaks.

6.2 Second-Order Attacks on Masking Countermeasure

This section discusses results of second-order attacks against the two masked
implementations. Attack results are only given for the second round (j = 1)
in Algorithm 3 corresponding to the addition of ones in the ciphertext. In
other words, results are shown for the difference between fones[0] and fones[1].
The presented attacks are also applicable for the remaining key index differ-
ences. Measurements for the respective implementation are performed with the
parameters N = 20 and q = 2048 together with a corresponding private key
f ∈ T (2, 1) = [3, 7], [5].

Sequential Implementation. In this implementation the masked value and
the mask itself are processed during different moments in time. Therefore, a
multivariate second-order attack is able to defeat the masking countermeasure
through the combination of the corresponding leakages. In [12] the normalized
product preprocessing function, which was initially proposed in [2], is stated to
be the optimal way of combination for a hamming weight leakage model. As we
are targeting hamming weight leakage, we make use of this combination function
by multiplication of the corresponding mean-free sample points.

The location of the leakage points is found by a separate CPA on the masked
intermediate value and the mask itself. Figure 7 shows the correlation of both
attacks indicating the points in time where the individual values are processed.
This is possible since we want to evaluate the attack under the best possible
conditions and therefore we store the masks during the trace measurement. If an
attacker does not know the corresponding mask he has to perform an educated
guess on the possible leakage areas and try all possible combinations of samples,
usually as a multiple of clock cycles.

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 265

0 5000 10000 15000 20000
number of samples

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

(a) Results for w1
0

0 4000 8000 12000 16000 20000
number of samples

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

(b) Results for w0

0 4000 8000 12000 16000 20000
number of samples

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

(c) Results for w−1
0

Fig. 6. CPA results for N = 20 and f ∈ T = [3, 7, 10], [1, 4] with a total amount of
10000 traces.

0 10000 20000 30000 40000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

(a) Masked value

0 10000 20000 30000 40000
−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

(b) Mask

Fig. 7. Leakage points of the masked value and the corresponding mask in time for the
sequential masked implementation. The points with the highest correlation are used
for the multivariate second-order attack.

266 T. Schamberger et al.

Results for the first- and second-order attack are shown in Fig. 8. There is no
significant correlation visible for the first-order attack using up to two million
trace measurements. In contrast the second-order attack is successful with two
hundred thousand traces.

0 100 200 300 400
−0.03

−0.02

−0.01

0.00

0.01

(a) First-order attack (2M traces)

0 50 100 150 200
−0.03

−0.02

−0.01

0.00

0.01

(b) Second-order attack (200k traces)

Fig. 8. Result of attacks on the sequential masking implementation. Here a subsection
of 200 samples centered around the leakage of the mask are shown. For the preprocess-
ing step the traces were shifted 1445 clock cycles.

Parallel Implementation. As the parallel implementation processes the mask
and the masked value at the same time, a zero-offset second-order attack can be
used to attack this implementation. In order to perform this attack the individual
samples of the traces are mean-free squared.

In Fig. 9 attack results for our masked implementation with the parallel con-
struction are shown. No first-order leakage could be found using an amount of
two million trace measurements. On the other hand it can be seen that the
proposed second-order attack is successful in retrieving the correct key index
difference w1

0 for an amount of two hundred thousand traces.

Comparison. In order to compare both implementations we provide correla-
tion plots of the corresponding main leakage points for an increasing number of
trace measurements in Fig. 10. The correlation is shown for up to two hundred
thousand measurements.

It can be seen that a second-order attack is less effective on the parallel imple-
mentation and therefore we recommend this implementation as it also shows an
reduced execution time in comparison with the sequential one.

6.3 Second-Order Attack on the Combination of Masking
and Shuffling

In this section we show attack results of our two masked implementations in
combination with the Random key rotation shuffling countermeasure presented
in [13]. In order to integrate the shuffling countermeasure we did not have to

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 267

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0.00

0.01

(a) First-order attack (2M traces)

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0.00

0.01

(b) Second-order attack (200k traces)

Fig. 9. Attack results for the parallel masking implementation. The shown samples
belong to the execution of the first two coefficient additions corresponding to fones[1].

0 50000 100000 150000

−0.04

−0.02

0.00

0.02

0.04

(a) Sequential implementation

0 50000 100000 150000

−0.04

−0.02

0.00

0.02

0.04

(b) Parallel implementation

Fig. 10. Development of the correlation for both implementations with an increasing
number of traces. The correlation of all hypotheses is shown for up to two hundred
thousand measurements.

alter our implementation of the multiplication as the shuffling is done through
changes to the input polynomials.

The shuffling method works by generating a random integer i in the range
0 ≤ i < N − 1 and circular shifting the coefficients of f to the right by i
positions. In a second step the ciphertext e is shifted in the same way by N − i
positions. This randomizes the intermediate addition results but does not change
the outcome of the multiplication.

For the shown attacks in Sect. 6.2 we used the parameter N = 20, which
implies a shuffling with twenty possible ways of multiplication. Corresponding
attack results for the parallel and sequential implementation are given in Fig. 11.
It can be seen that a combination of both countermeasures shows no significant
second-order leakage for up to two million trace measurements.

268 T. Schamberger et al.

0 50 100 150 200
−0.03

−0.02

−0.01

0.00

0.01

(a) Sequential implementation

0 200 400 600 800 1000
−0.03

−0.02

−0.01

0.00

0.01

(b) Parallel implementation

Fig. 11. Second-order attack results for both masked implementations in combination
with the random key rotation countermeasure using two million trace measurements.

7 Conclusion

Typically, implementations of NTRUEncrypt that utilize the index-based mul-
tiplication are vulnerable to CPA attacks. We showed that this remains true
for modern parameter sets that make use of trinary polynomials. We provided a
practical evaluation of masking using both a sequential and a parallel implemen-
tation of processing mask and masked data, the later having negligible perfor-
mance overhead compared to an unmasked implementation as it utilizes SIMD
instructions of the used ARM Cortex-M4 microcontroller. Our evaluation showed
that both implementations are secured against first-order attacks using our setup
with up to two million traces. The parallel implementation showed less second-
order leakage compared to the sequential one when no shuffling is applied. It is
therefore an ideal fit to the shuffling countermeasure of [13] and we recommend
applying both schemes in parallel.

Acknowledgment. This work was partly funded by the German Federal Ministry of
Education and Research in the project HQS through grant number 16KIS0616.

References

1. Bailey, D.V., Coffin, D., Elbirt, A., Silverman, J.H., Woodbury, A.D.: NTRU in
constrained devices. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001.
LNCS, vol. 2162, pp. 262–272. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44709-1 22

2. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

3. Hoffstein, J., Pipher, J., Schanck, J.M., Silverman, J.H., Whyte, W., Zhang, Z.:
Choosing parameters for NTRUEncrypt. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 3–18. Springer, Cham (2017). https://doi.org/10.1007/978-
3-319-52153-4 1

https://doi.org/10.1007/3-540-44709-1_22
https://doi.org/10.1007/3-540-44709-1_22
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/978-3-319-52153-4_1
https://doi.org/10.1007/978-3-319-52153-4_1

Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4 269

4. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosys-
tem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0054868

5. Hoffstein, J., Pipher, J., Silverman, J.H.: An Introduction to Mathematical Cryp-
tography. UTM. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-
1711-2

6. Hoffstein, J., Silverman, J.: Optimizations for NTRU. In: Public-Key Cryptography
and Computational Number Theory, Warsaw, pp. 77–88 (2001)

7. Howgrave-Graham, N., Silverman, J.H., Whyte, W.: Choosing parameter sets for
NTRUEncrypt with NAEP and SVES-3. In: Menezes, A. (ed.) CT-RSA 2005. LNCS,
vol. 3376, pp. 118–135. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-30574-3 10

8. IEEE: IEEE standard specification for public key cryptographic techniques based
on hard problems over lattices. IEEE Std 1363.1-2008, pp. C1–69, March 2009.
https://doi.org/10.1109/IEEESTD.2009.4800404

9. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

10. Lee, M.K., Song, J.E., Choi, D., Han, D.G.: Countermeasures against power anal-
ysis attacks for the NTRU public key cryptosystem. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. E93–A(1), 153–163 (2010). https://doi.org/10.1587/
transfun.e93.a.153

11. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997).
https://doi.org/10.1137/s0097539795293172

12. Standaert, F.-X., et al.: The world is not enough: another look on second-order
DPA. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 112–129. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8 7

13. Wang, A., Wang, C., Zheng, X., Tian, W., Xu, R., Zhang, G.: Random key rotation:
side-channel countermeasure of NTRU cryptosystem for resource-limited devices.
Comput. Electr. Eng. 63, 220–231 (2017). https://doi.org/10.1016/j.compeleceng.
2017.05.007

14. Zhang, Z., Chen, C., Hoffstein, J., Whyte, W.: NTRUEncrypt NIST
Sumission. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-
1-Submissions

15. Zheng, X., Wang, A., Wei, W.: First-order collision attack on protected NTRU
cryptosystem. Microprocess. Microsyst. 37(6–7), 601–609 (2013). https://doi.org/
10.1016/j.micpro.2013.04.008

https://doi.org/10.1007/BFb0054868
https://doi.org/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1007/978-3-540-30574-3_10
https://doi.org/10.1109/IEEESTD.2009.4800404
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1587/transfun.e93.a.153
https://doi.org/10.1587/transfun.e93.a.153
https://doi.org/10.1137/s0097539795293172
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1016/j.compeleceng.2017.05.007
https://doi.org/10.1016/j.compeleceng.2017.05.007
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions
https://doi.org/10.1016/j.micpro.2013.04.008
https://doi.org/10.1016/j.micpro.2013.04.008

Shuffle and Mix: On the Diffusion
of Randomness in Threshold
Implementations of Keccak

Felix Wegener(B), Christian Baiker, and Amir Moradi

Horst Görtz Institute for IT Security, Ruhr University Bochum, Bochum, Germany
{felix.wegener,christian.baiker,amir.moradi}@rub.de

Abstract. Threshold Implementations are well known as a provably
first-order secure Boolean masking scheme even in the presence of
glitches. A precondition for their security proof is a uniform input distri-
bution at each round function, which may require an injection of fresh
randomness or an increase in the number of shares. However, it is unclear
whether violating the uniformity assumption causes detectable leakage in
practice. Recently, Daemen undertook a theoretical study of lossy map-
pings to extend the understanding of uniformity violations. We comple-
ment his work by entropy simulations and practical measurements of
Keccak’s round function. Our findings shed light on the necessity of
mixing operations in addition to bit-permutations in a cipher’s linear
layer to propagate randomness between S-boxes and prevent exploitable
leakage. Finally, we argue that this result cannot be obtained by current
simulation methods, further stressing the continued need for practical
leakage measurements.

1 Introduction

Ensuring the integrity of a message is one of the central objectives in many
cryptographic applications. It can be achieved by using a hash algorithm in
conjunction with a secret key to compute a message authentication code (MAC).
As the integrity of a MAC depends on the secrecy of the key, the need to protect
against side-channel analysis (SCA), e.g. Differential Power Analysis (DPA) [14],
arises. To thwart DPA in hardware implementations of cryptographic algorithms
Nikova et al. [17] introduced Threshold Implementations (TI), a provable first-
order secure Boolean masking scheme1.

Later, Bertoni et al. [4] developed the Keccak-family2 of sponge-based
hash-functions and suggested a three-share Threshold Implementation for their
quadratic non-linear layer χ. Subsequently, Bilgin et al. [6] noted that the sug-
gested TI violates the uniformity property and introduced two methods to allevi-
ate this flaw. First, the injection of four bits of fresh randomness per invocation

1 Later extended to higher-order security.
2 Standardized for selected parameters as SHA-3 in 2015.
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 270–284, 2019.
https://doi.org/10.1007/978-3-030-16350-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_15

Shuffle and Mix: On the Diffusion of Randomness 271

of the non-linear building block χ. Second, the expansion to four shares, which
allows the authors to find a uniform TI. Orthogonally, Daemen [10] investigated
the implications of uniformity violation on the overall entropy in Keccak and
the local entropy of individual bits and suggested a cheap method to re-mask
the state bits with other state bits to prevent any exploitable leakage. Later,
Daemen [11] suggested a re-masking scheme called Changing of the Guards to
achieve uniformity of an arbitrary bijective S-box layer and noted the applica-
bility to Keccak.

Recently, De Meyer et al. [15] pointed out that uniformity is not a necessary
condition for first-order security. In fact, information leakage takes place when
any distribution observable by the attacker differs based on the unmasked secret
value. In the setting of infeasible exhaustive computations, they suggest to eval-
uate this effect based on the χ2-Test. Previously, Moradi et al. [16] demonstrated
the applicability of the χ2-test in leakage detection both for simulated traces of
noisy Hamming-weight leakages and in practical measurements.

Our Contribution. We investigate the practical relevance of the diffusion layer
to counteract the uniformity loss in masked Keccak-f . In fact, we find that dif-
fusion between S-boxes solely based on bit-permutations (ρ, π) does not prevent
first-order leakage originating from the non-uniformity, while the mixing part
(θ) of Keccak-f alone is sufficient to counteract observable leakage through
an FPGA evaluation. Further, we show that this effect cannot be revealed with
state-of-the-art simulations, thereby indicating the need for practical SCA eval-
uations. To our knowledge, this is the first practical analysis of uniformity loss
thereby complementing the theoretical foundation laid out by Daemen [10].

Organization of the Paper. In Sect. 2, we describe our notation, recall the
specification of Keccak, describe Threshold Implementations and total imbal-
ance. In Sect. 3 we give an overview of the recent TI designs of Keccak. In
Sect. 4, we analyze the probability distributions of S-box inputs with the meth-
ods of [10] and [15]. We describe the architecture of our hardware implementation
in Sect. 5, and our practical evaluations in Sect. 6.

2 Preliminaries

In this section we introduce relevant definitions and our notation for the rest of
the paper.

Introduction to Keccak. Keccak [4] is a sponge-based hash function that
operates on a state of b = 25 · 2l bits for l between 0 and 6. We use the same
terminology as the authors to refer to individual parts of the state (cf. Figure 1 of
[18]). Its core is the permutation Keccak-f [b] which iterates the round function
R a fixed number of times. The round function

R = ι ◦ χ ◦ π ◦ ρ ◦ θ

272 F. Wegener et al.

consists of five sub-functions which are defined in the following:

– Theta: XORs the parity of two columns to each bit of a different column to
improve diffusion between columns.

θ : a[x][y][z] = a[x][y][z] ⊕
4⊕

y′=0

a[x − 1][y′][z] ⊕
4⊕

y′=0

a[x + 1][y′][z − 1]

– Rho: performs a circular shift of all lanes, by a fixed constant per lane.

ρ : a[x][y][z] = a[x][y][z − const(x, y)]

– Pi : creates diffusion between rows in one slice.

π : a[x][y] = a[x′][y′], with x = y′, y = 2 · x′ + 3 · y′

– Chi : is the only non-linear function. It operates as a 5-bit quadratic bijection
on each row individually.

χ : a[x] = a[x] ⊕ (1 ⊕ a[x + 1]) · a[x + 2]

– Iota: XORs a round constant to the first lane.

ι : a[0][0] = a[0][0] ⊕ RC[r]

A visual illustration of all steps can be seen in Fig. 1. For the remainder of
this paper we focus on Keccak-f [200], which consists of 18 iterations of R.

(a) (b)

(c) (d)

Fig. 1. The Keccak subfunctions (a) θ, (b) ρ, (c) π, (d) χ, taken from [4]

Shuffle and Mix: On the Diffusion of Randomness 273

Threshold Implementations. For brevity, we limit ourselves to three shares
and first-order security in the following introduction to Threshold Implementa-
tions [17].

Let x ∈ F
n
2 , we call X = (a, b, c) ∈ F

3n
2 a sharing or masking of x if

x = a ⊕ b ⊕ c.

Each part a, b and c is called a share. We denote ∫(x) for the set of all such
sharings. A sharing is called uniform, if all elements from ∫(x) occur with equal
likelihood.

Consider a Boolean function f : Fn
2 → F

n
2 , we call F = (FA,FB ,FC) : F3n

2 →
F
3n
2 a Threshold Implementation if the following properties are present.

– Correctness: XORing all output shares reveals the output of the original
function.

∀x : ∀X ∈ ∫(x) : FA(X) ⊕ FB(X) ⊕ FC(X) = f(x)

– Non-completeness: Each output share is independent of at least one input
share:

FA(X) = FA(b, c)

FB(X) = FB(c, a)

FC(X) = FC(a, b)

Provable security is achieved through the central theorem of TI [17] which states:
Let f be a Boolean function and F a TI of f. Let X1, . . . , XT be a sequence of
sharings of the value x, each uniformly drawn from ∫(x). Then, the evaluations
of F(Xi) do not reveal first-order information about x.

To ensure a uniform input share distribution during each round of an iterated
cipher, it is beneficial to demand a third property of TI:

– Uniformity : F maps a uniform input distribution to a uniform output distri-
bution.

∃k : ∀x ∈ F
n
2 : ∀X ∈ ∫(x) : ∀Y ∈ ∫(f(x)) : Pr(F (X) = Y) = k

For Keccak’s non-linear function χ a uniform TI with four shares is known,
while a uniform TI with three shares is either not possible or has not been found
yet. Indeed, no statements about the existence of a uniform three share TI can
be made due to the high computational complexity of an exhaustive search over
all correction terms [5].

Entropy Study. We recall several definitions from Daemen’s [9] work: Let P
be a probability distribution over F

n
2 and v ∈ F

n
2 be a mask. The imbalance of

P is defined as the Walsh-transformation of P and the total imbalance as its
summation:

P̃ (v) :=
∑

x

P (x)(−1)v
�x, φP :=

∑

∀v �=0

P̃ (v)2.

274 F. Wegener et al.

The evaluation of P̃ in zero is omitted, as P̃ (0) = 1 regardless of the dis-
tribution of P . It can be shown that φP is zero if and only if P is a uniform
distribution.

The chance that two elements drawn according to the probability distribu-
tion P over F

n
2 are identical, is called the collision property Prcoll(P), which is

connected to φP via the relation

φP = 2nPrcoll(P) − 1.

It follows that φP ∈ [0, 2n − 1] can be used as a metric to estimate the
non-uniformity of a probability distribution P .

Pearson’s χ2-Test. Pearson’s χ2 test allows a comparison between categorical
observations of multiple random variables. Consider a table T in which each
column (j) corresponds to a category and each row (i) to a variable. The integer
value in cell Ti,j expresses the number of times the realization of variable i
has been observed to adopt category j. To decide whether all variables follow
the same distribution (which forms the null-hypothesis H0) we define the test
statistic

X =
r−1∑

i=0

c−1∑

j=0

(Ti,j − Ei,j)2

Ei,j

with the expected number of occurrences

Ei,j :=
(
∑c−1

k=0 Ti,k)(
∑r−1

k=0 Tk,j)∑c−1
k=0

∑r−1
l=0 Tk,l

.

The test statistic X follows a χ2-distribution

X ∼
df∑

i=1

N2
i , df = (c − 1)(r − 1)

where Ni are independent, standard normal random variables and df denotes the
degrees of freedom. To determine a confidence level, we compute the cumulative
distribution for X from the density function:

f(x, df) =

⎧
⎨

⎩

x
df
2 −1e− x

2

2
df
2 Γ (df

2)
if x > 0

0 otherwise
p =

∫ ∞

x

f(x, df)

Under the assumption that H0 holds, p describes the likelihood that the
observations in table T could have occurred. We reject the null-hypothesis to the
level p < 10−5, which constitutes the common threshold in leakage assessments.

3 TI of Keccak

In this section, we summarize different shared constructions of χ. They all share
the properties of correctness and non-completeness, hence they constitute valid
TIs. The constructions differ in whether and how they achieve uniformity. In the
following we indicate the i-th bit of x by xi.

Shuffle and Mix: On the Diffusion of Randomness 275

Original TI. As the non-linear χ was designed to enable efficient masking with
TI by limiting the algebraic degree to two, Bertoni et al. [4] also introduced a
three-share masking scheme, defined as χ′ : F15

2 → F
15
2 , (A,B,C) = χ′(a, b, c)

with

Ai = bi ⊕ (bi+1 ⊕ 1) · bi+2 ⊕ bi+1 · ci+2 ⊕ ci+1 · bi+2

Bi = ci ⊕ (ci+1 ⊕ 1) · ci+2 ⊕ ci+1 · ai+2 ⊕ ai+1 · ci+2

Ci = ai ⊕ (ai+1 ⊕ 1) · ai+2 ⊕ ai+1 · bi+2 ⊕ bi+1 · ai+2

Contra to the original belief of the authors, the given TI is not uniform.
Hence, an iterated application reduces entropy. In the following we recall several
methods repairing χ′ to achieve uniformity.

Re-masking. A naive approach is to re-mask the entire output of χ′ according
to the equations

Ai = χ′A
i (b, c) ⊕ rb

i ⊕ rc
i

Bi = χ′B
i (c, a) ⊕ rc

i

Ci = χ′C
i (a, b) ⊕ rb

i .

This scheme requires 10 bits of fresh randomness (rb and rc) for every invo-
cation of χ′, which can easily surpass the available randomness in an embedded
system, in case several instances of χ′ are implemented to operate in parallel
(e.g., a round-based implementation).

Better Re-masking. Bilgin et al. [6] observed that only some bits require re-
masking. More precisely any choice of two successive bits to be re-masked yields
a uniform sharing.

Ai = χ′A
i (b, c) ⊕ rb

i ⊕ rc
i i = 0, 1

Bi = χ′B
i (c, a) ⊕ rc

i i = 0, 1

Ci = χ′C
i (a, b) ⊕ rb

i i = 0, 1

Ai = χ′A
i (b, c) i = 2, 3, 4

Bi = χ′B
i (c, a) i = 2, 3, 4

Ci = χ′C
i (a, b) i = 2, 3, 4

Subsequently, the constructions by Daemen re-mask the same bits, but par-
tially [10] or fully [11] recycle randomness to achieve uniformity with reduced
fresh randomness. Further, Bilgin et al. [6] introduced a uniform four-share TI
of χ.

In the following, our focus is to study the original non-uniform three-share
TI χ′ interleaved with parts of the linear layer of Keccak-f to determine the
practical impact of uniformity violation.

276 F. Wegener et al.

4 Simulations

In this section we characterize χ′ as a lossy mapping by determining the number
of sharings and total imbalance after a given number of successive iterations.
Then, we sample the input distribution of χ′ from simulations of Keccak-200
with different linear layers.

Iterating χ′ Alone. We iterated the three-share TI χ′ : F15
2 → F

15
2 by feeding

its output back into the function as an input, until the number of observed differ-
ent sharings reached its minimum (5363) and the total imbalance its maximum
(56.66). The extremes are attained after 54 iterations (cf. Fig. 2). In comparison,
a uniform mapping would maintain a total imbalance of zero and a constant
number of 215 possible sharings.

0 20 40 60 80
No. of iterations

0

10

20

30

40

50

60

to
ta
l
im

ba
la
nc
e

0

5000

10000

15000

20000

25000

30000

35000

N
o.

of
sh
ar
in
gs

Fig. 2. Illustration of the rise of total imbalance over the number of iterations of χ′

(red) in comparison with the decrease in the number of sharings (blue). (Color figure
online)

The figure clearly shows that the violation of uniformity from one round to
the next has a compounding effect over many rounds. In Sect. 6 we show that
this reduction of entropy is sufficient to practically exhibit leakage. Fortunately,
Keccak-f consists of more functions than χ, namely a linear layer with three
subfunctions:

– ρ - a bit-permutation for inter-slice diffusion
– π - a bit-permutation for intra-slice diffusion
– θ - a parity function to accelerate diffusion across columns

Shuffle and Mix: On the Diffusion of Randomness 277

While ι is also a part of the linear layer, we disregard it for our analysis since
it consists only of an addition with a round constant to counteract slide attacks
and has limited relevance to SCA3.

Keccak-200. In our simulations we model the view of an attacker based
on the glitch- extended 1-probing model [12,20]. More specifically, the attacker
may observe one output wire of the shared function χ′ after a given number of
rounds, which corresponds to observing the noise free values on two input wires
to χ′ resembling 1024 different potential observations. We determine whether the
distribution seen on these wires is different between a fixed group consisting of
sharings of the 200-bit all-zero plaintext and a random group in which the shared
plaintext is chosen uniformly at random. Unfortunately, it is computationally
infeasible to conduct an exhaustive computation of the distribution over all 3-
sharing of 200 bits4. Hence, we follow the suggestion of [15] to conduct a χ2-
test on the histograms of the input values to determine whether a difference
in the distributions of both groups is statistically significant. The results for
18 and 1800 iterations of variations of Keccak-f and 200 million samples are
displayed in Table 1. We simulated Keccak-f with its original linear layer, only
the bit-permuting part (ρ, π), only the mixing-part (θ) and without any linear
layer. Note that in the first three cases a diffusion between all 40 instances
of non-linear χ is achieved, while only in the last case no diffusion is present.
Our simulations succeeded in finding the uniformity violation in the last (very
obvious) case without diffusion. In the other three cases the null hypothesis that
the input distribution is identical for both groups cannot be rejected given the
common threshold of p = 10−5 in a statistical test. Moreover, the null hypothesis
cannot even be rejected given a very weak threshold of p = 10−2. While the
results clearly indicate that a linear layer is necessary to counteract the effects
of uniformity violations, it remains unclear which parts of the linear layer are
crucial and which are dispensable from an SCA perspective.

Table 1. χ2-Test with degree of freedom df = 1023 for 200 million samples. Only the
uniformity violation of applying χ′ alone is detected.

Enabled p18 p1800

χ′, π, ρ, θ 0.021 0.022
χ′, π, ρ 0.018 0.016
χ′, θ 0.022 0.020
χ′ 0.000 0.000

3 The addition of round constants would further increase the total imbalance in the
χ′-only scenario, but it is of no interest for the investigation of full Keccak.

4 As it is already computationally infeasible for Keccak-25, we kept the consistency
between measurements and simulations by evaluating Keccak-200.

278 F. Wegener et al.

5 Implementation

Although a round-based implementation would be a natural choice to implement
Keccak and would lead to short SCA traces (hence accelerating the evaluation),
it would potentially increase the noise since the combinatorial circuit involving
all Keccak subfunctions would be active at all clock cycles. To achieve a com-
promise between a high signal-to-noise ratio (SNR) and a fast leakage evaluation,
we chose to implement all variants of Keccak in a slice-serial manner by having
five instances of χ′ in parallel.

Slice-Serial Implementation. In 2011 Jungk and Apfelbeck [13] introduced
an area/latency trade-off for Keccak by computing only eight slices in parallel
instead of all 64 slices in a full round. Later Bilgin et al. [6] introduced a fully
slice-serial architecture, which processes 25 state bits per clock cycle correspond-
ing to the simultaneous execution of five χ functions (cf. Fig. 3). It contains a
shift register for the state that operates on 25-bit chunks and an additional 5-bit
register to keep track of the parity of the previously processed slice to realize θ.
A specialty is the application of θ to the first slice, which happens as the last
step of each round in parallel to processing the last slice, as it requires the parity
of the last slice. We implemented Keccak with a state size of 200 bits, which
requires 144 clock cycles to process a given input for 18 rounds.

Fig. 3. Serial Keccak-200 architecture [6], one of eight slices is processed per clock
cycle. The computation completes after 18 rounds corresponding to 144 clock cycles.

Sharing the Implementation. We implemented several variants of three-
share designs according to the χ constructions described in Sect. 3. Following the
uncompressed design of [6], we maintained three shares throughout the entire
computations. As ρ, π and θ are linear functions, they can be applied to each
share of the state individually without modifications.

Shuffle and Mix: On the Diffusion of Randomness 279

6 Practical Analysis

Measurement Setup. We synthesized our VHDL design in ISE Design Suite
with the KEEP_HIERACHY attribute to ensure that non-completeness is main-
tained throughout the Place&Route process. For the practical evaluation, we
used the SAKURA-G Side-Channel Evaluation Board [1] which includes two
SPARTAN-6 FPGAs to separate controller and target functionality. We recorded
power traces at a sampling rate of 625MS/s by a Picoscope 6402 and an external
amplifier (ZFL-1000LN+ from Mini-Circuits) in addition to the amplifier embed-
ded on the SAKURA-G board. Following the methodology of [21] we performed
a non-specific t-test “fixed vs. random”5 over 100 million traces of the last round
of Keccak while operating the FPGA at a clock frequency of 1.5MHz.

Results. A measurement of 100 million traces of full Keccak-200 with non-
uniform χ′ and 18 rounds did not reveal first-order leakage as can be seen in
Fig. 4. Even a drastic increase of the number of rounds to 1800 did not lead to
first-order leakage (cf. Fig. 5). However, the removal of θ leads to detectable first-
order leakage after 80 million traces (cf. Fig. 6)6, while a removal of the ρ and
π does not indicate first-order leakage as illustrated in Fig. 7. All measurements
show leakage at orders two and three. Removing the entire linear layer causes
each χ output to be taken as an input in the following round. Hence, an additional
register is required to avoid transitional leakage, i.e., the leakage depending on
the input of χ′ being replaced by its output. This doubles the number of clock
cycles to 288. Figure 8 shows the evaluation of 18 rounds of the non-uniform
χ′ function with 100 million traces. We observed, that the first-order t-value
exceeds the threshold of 4.5 by far. We can also see an increase of the t-value
along the time axis.

Summary. Table 2 summarizes our practical leakage investigation. Based on the
results of our simulations in Sect. 4, we expected χ′ alone without re-masking
to show excessive first-order leakage which increases over time - this turned out
to be true in practice. We also expected 18-round Keccak-200 and 1800-round
Keccak-200 to show similar leakage behavior, which is also the case. Despite
similar simulation results (see Table 1), the omission of permutations ρ and π led
to no detectable first-order leakage, while leakage can be observed if θ is omitted.
This indicates that although such theoretical analysis can be considered as the
very first step, the results in practice might be slightly different.

Our results indicate that a diffusion between χ functions (S-boxes) should not
solely employ bit-permutations to cope with uniformity loss. Instead, a good dif-
fusion layer should apply additional linear mixing functions, that lead to partial
re-masking by means of uncorrelated state bits.

5 The groups fixed vs. random are formed over the entire 200-bit state.
6 The peak coincides with the positive edge during the evaluation of χ′.

280 F. Wegener et al.

0 1000 2000 3000 4000 5000 60005

0

5

t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000
25

0

25

t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000
time samples

50
25
0
25

t-
st
at
is
tic

20 40 60 80 1000 0

2 5

5 0

m
ax
.
t

Fig. 4. 18 round Keccak-f . top to bottom: t-test results first to third order over time
axis. Maximal t-values first order over trace axis. Entire last round.

0 1000 2000 3000 4000 5000 6000 7000 8000 90005

0

5

t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
25

0

25

t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
time samples

25

0

25

t-
st
at
is
tic

20 40 60 80 1000 0

2 5

5 0

m
ax
.
t

Fig. 5. 1800 round Keccak-f . top to bottom: t-test results first to third order over
time axis. Maximal t-values first order over trace axis. Entire last round.

Shuffle and Mix: On the Diffusion of Randomness 281

0 1000 2000 3000 4000 5000 60005

0

5
t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000
25
0
25

t-
st
at
is
tic

0 1000 2000 3000 4000 5000 6000
time samples

0

20

t-
st
at
is
tic

20 40 60 80 1000

5

m
ax
.
t

Fig. 6. 18 rounds of ρ, π and χ′ (i.e., KECCAK-f without θ). top to bottom: t-test
results first to third order over time axis. Maximal t-values first order over trace axis.
Entire last round.

0 500 1000 1500 2000 2500 3000 3500 4000 45005

0

5

t-
st
at
is
tic

0 500 1000 1500 2000 2500 3000 3500 4000 4500
25

0

25

t-
st
at
is
tic

0 500 1000 1500 2000 2500 3000 3500 4000 4500
time in

0

25

t-
st
at
is
tic

20 40 60 80 1000 0

2 5

5 0

m
ax
.
t

Fig. 7. 18 rounds of θ and χ′ (i.e., KECCAK-f without ρ and π). top to bottom: t-test
results first to third order over time axis. Maximal t-values first order over trace axis.
Entire last round.

282 F. Wegener et al.

0 5000 10000 15000 20000 25000 30000 35000500

0

500

t-
st
at
is
tic

0 5000 10000 15000 20000 25000 30000 35000

0

200

t-
st
at
is
tic

0 5000 10000 15000 20000 25000 30000 35000
time in

50
0
50

t-
st
at
is
tic

20 40 60 80 1000

500

m
ax
.
t

Fig. 8. 18 rounds of χ′ alone. top to bottom: t-test results first to third order over time
axis. Maximal t-values first to third order over trace axis. Entire last round.

Table 2. Summary of practical first-order evaluations.

Active layers Leakage?

χ′, ρ, π, θ No
χ′, θ No
χ′, ρ, π Yes
χ′ Yes

Discussion. The linear layer of Keccak has proven to mend a small violation
of uniformity in Threshold Implementations of χ. However, extending this result
to other security primitives with a non-linear of higher than quadratic degree is
challenging. Consider the case of PRESENT [8], the cubic S-box can be decom-
posed into two quadratic bijections f, g each possessing a non-uniform TI F,
G [19]. The non-uniformity caused by F cannot be alleviated by diffusion, before
causing leakage in the evaluation of G. Hence, a strictly uniform TI remains
important for decomposed non-linear layers.

While simulations of leakage behavior have already proven their utility in
finding non-completeness violations in state-of-the-art implementations [2] and
in known insecure constructions [3,7,15], finding a flaw based on uniformity vio-
lations can be computationally more intensive. On one hand, finding a uniformity
flaw between S-box stages is easily possible by exhaustive computation [22]. On
the other hand, any simulation of an entire round has to constrain itself to merely

Shuffle and Mix: On the Diffusion of Randomness 283

sampling the target distribution. It remains an open question how to obtain use-
ful results with few samples. Hence, practical measurements stay a crucial part
of leakage investigations.

7 Conclusion

We extended Daemen’s theoretical study of lossy mappings [10] with entropy
simulations and practical leakage evaluations of different variants of masked
Keccak-f . We conclude that our implementation of Keccak-f achieves prac-
tical first-order security even with the non-uniform three-share TI χ′ [4] since
the diffusion property of its linear layer is sufficient to counteract the loss of
entropy. We especially highlight the role of the mixing part (θ) in alleviating
the non-uniformity in practical evaluations, whereas shuffling alone (ρ, π) can-
not counteract the uniformity loss. Finally, a sampling-based simulation of input
distributions is a fast method to falsify security claims, but cannot (and does
not aim to) be a substitute for practical evaluation to intensify an indication of
leakage absence.

Acknowledgments. The work described in this paper has been supported in part by
the German Federal Ministry of Education and Research BMBF (grant nr. 16KIS0666
SysKit_HW).

References

1. Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

2. Arribas, V., Nikova, S., Rijmen, V.: VerMI: verification tool for masked implemen-
tations. IACR Cryptology ePrint Archive, 2017:1227 (2017)

3. Barthe, G., Belaïd, S., Fouque, P.-A., Grégoire, B.: maskVerif: a formal tool for ana-
lyzing software and hardware masked implementations. IACR Cryptology ePrint
Archive, 2018:562 (2018)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T.,
Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

5. Beyne, T., Bilgin, B.: Uniform first-order threshold implementations. In: Avanzi,
R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 79–98. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69453-5_5

6. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5_13

7. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal
verification of masked hardware implementations in the presence of glitches. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10821, pp. 321–
353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_11

8. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier,
P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
https://doi.org/10.1007/978-3-642-38348-9_19
https://doi.org/10.1007/978-3-319-69453-5_5
https://doi.org/10.1007/978-3-319-08302-5_13
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-540-74735-2_31

284 F. Wegener et al.

9. Daemen, J.: On non-uniformity in threshold sharings. In: Bilgin, B., Nikova, S.,
Rijmen, V. (eds.) Proceedings of the ACM Workshop on Theory of Implementation
Security, TIS@CCS 2016, p. 41. ACM, New York (2016)

10. Daemen, J.: Spectral characterization of iterating lossy mappings. In: Carlet, C.,
Hasan, M.A., Saraswat, V. (eds.) SPACE 2016. LNCS, vol. 10076, pp. 159–178.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49445-6_9

11. Daemen, J.: Changing of the guards: a simple and efficient method for achieving
uniformity in threshold sharing. In: Fischer, W., Homma, N. (eds.) CHES 2017.
LNCS, vol. 10529, pp. 137–153. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-66787-4_7

12. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

13. Jungk, B., Apfelbeck, J.: Area-efficient FPGA implementations of the SHA-3 final-
ists. In: Athanas, P.M., Becker, J., Cumplido, R. (eds.) 2011 International Con-
ference on Reconfigurable Computing and FPGAs, ReConFig 2011, pp. 235–241.
IEEE Computer Society, Washington, D.C. (2011)

14. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1_25

15. De Meyer, L., Bilgin, B., Reparaz, O.: Consolidating security notions in hardware
masking. IACR Cryptology ePrint Archive, 2018:597 (2018)

16. Moradi, A., Richter, B., Schneider, T., Standaert, F.-X.: Leakage detection with
the x2-test. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(1), 209–237 (2018)

17. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-
channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308_38

18. National Institute of Standards and Technology: Sha-3 standard: permutation-
based hash and extendable-output functions. FIPS Publikcation 2015:1–37 (2015)

19. Poschmann, A., Moradi, A., Khoo, K., Lim, C.-W., Wang, H., Ling, S.: Side-
channel resistant crypto for less than 2, 300 GE. J. Cryptology 24(2), 322–345
(2011)

20. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6_37

21. Schneider, T., Moradi, A.: Leakage assessment methodology. In: Güneysu, T.,
Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 495–513. Springer,
Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_25

22. Wegener, F., Moradi, A.: A first-order SCA resistant AES without fresh random-
ness. In: Fan, J., Gierlichs, B. (eds.) COSADE 2018. LNCS, vol. 10815, pp. 245–262.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89641-0_14

https://doi.org/10.1007/978-3-319-49445-6_9
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-319-66787-4_7
https://doi.org/10.1007/978-3-540-45146-4_27
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-48324-4_25
https://doi.org/10.1007/978-3-319-89641-0_14

Trade-offs in Protecting KECCAK

Against Combined Side-Channel
and Fault Attacks

Antoon Purnal(B), Victor Arribas, and Lauren De Meyer

KU Leuven, imec - COSIC, Leuven, Belgium
{antoon.purnal,victor.arribas,lauren.demeyer}@esat.kuleuven.be

Abstract. When deployed in a potentially hostile environment,
security-critical devices are susceptible to physical attacks. Consequently,
cryptographic implementations need to be protected against side-channel
analysis, fault attacks and attacks that combine both approaches. CAPA
(CRYPTO 2018) is an algorithm-level combined countermeasure, based
on MPC, with provable security in a strong attacker model. A key chal-
lenge for combined countermeasures, and CAPA in particular, is the
implementation cost. In this work, we use CAPA to obtain the first
hardware implementations of Keccak (SHA-3) with resistance against
combined side-channel and fault attacks. We systematically explore the
speed-area trade-off and show that CAPA, in spite of its algorithmic
overhead, can be very fast or reasonably small. In fact, for the standard-
ized Keccak-f [1600] instance, our low-latency version is nearly twice
as fast as the previous implementations that only consider side-channel
security, at the cost of area and randomness consumption. For all four
presented designs, the protection level for side-channel and fault attacks
can be scaled separately and to arbitrary order. To evaluate the physical
security, we assess the side-channel leakage of a representative second-
order secure implementation on FPGA. In addition, we experimentally
validate the claimed fault detection probability.

Keywords: Side-channel analysis · Fault attacks · Masking ·
Combined countermeasure · Keccak · SHA-3 · CAPA

1 Introduction

Computing devices implement cryptographic algorithms. Traditionally, these
devices are assumed to operate out of the attacker’s reach. In practice, however,
this condition is not upheld. Next to cryptanalytic attacks, the adversary can
target the implementation of the algorithm directly. On the one hand, an adver-
sary can employ side-channel analysis (SCA), which exploits the unintended
leakage of sensitive information through one or more side-channels. Measurable
physical channels include timing [28], power consumption [29] and electromag-
netic emanation [16]. On the other hand, an adversary can mount devastating
attacks by actively injecting faults in the cryptographic computations [12].
c© Springer Nature Switzerland AG 2019
I. Polian and M. Stöttinger (Eds.): COSADE 2019, LNCS 11421, pp. 285–302, 2019.
https://doi.org/10.1007/978-3-030-16350-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16350-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-16350-1_16

286 A. Purnal et al.

To thwart SCA attacks, masking [11,13,18,20,24,32,35,37] is a provably
secure and scalable countermeasure. By randomizing the intermediate values
processed by the cryptographic algorithm, masking decouples the side-channel
information from the actual sensitive values.

The lion’s share of countermeasures against fault attacks perform some
redundant computations that allow the detection of faults. Proposed solutions
include duplication of the computations in space or time [3], the use of error-
detecting codes [5,26,30] and recomputing with permuted operands [22,34].
While such approaches are intuitively sound, they suffer from two fundamental
problems. To begin with, if the redundancy is predictable, the attacker can evade
detection by introducing well-crafted faults. Moreover, the detection mechanism
itself constitutes an interesting point of attack [27,39]. Conceptually different
from detection, infection [17,40] avoids the vulnerable check-before-output pro-
cedure. Instead, injected faults perturb the computation in such a way that the
cryptographic output reveals no information about the implementation’s secrets.

An attacker capable of separate side-channel and fault attacks, can also
jointly exploit both attack vectors. Hence, cryptographic implementations also
need to be protected against combined attacks. The combined countermeasures
Private Circuits II [14,23] and ParTI [38] are constructed by combining a
masking scheme with fault-detecting redundancy. As a result, the fundamen-
tal problems of fault detection apply equally well to these schemes. The Capa
[36] and M&M [15] countermeasure methodologies avoid the latter problem by
employing information-theoretic (i.e. perfectly unpredictable) MAC tags. Capa
draws inspiration from advances in the field of secure multi-party computation
(MPC), resulting in provable security against combined physical attacks in a
strong adversarial model. M&M is much cheaper to implement than Capa, at
the expense of a weaker attacker model. It additionally addresses the fundamen-
tal problem of fault checking by using the aforementioned infection strategy.

A key challenge for combined countermeasures is the implementation cost.
We contribute to the evaluation of combined countermeasures by investigat-
ing the hardware trade-offs that govern the widely used Keccak permutations
[6] when protecting against combined physical attacks. We instantiate Capa
because it is the most resource-intensive methodology, but the implementation
strategies and conclusions carry over to other (combined) countermeasures for
which multiplications dominate the implementation cost. By extension, this work
also covers the authenticated encryption ciphers Ketje [8] and Keyak [9].

Our Contribution. In this work, we present the first implementations of Keccak
(SHA-3) with resistance to combined physical attacks, where previous works [1,7,
10,21] have considered only side-channel analysis. We systematically explore the
speed-area trade-off in hardware, yielding a suite of protected implementations.
We show that, in spite of the extremely strong adversarial model, Capa can be
very fast or reasonably compact. In particular, our low-latency implementation is
almost twice as fast as all existing protected Keccak-f [1600] implementations.

Trade-offs in Protecting Keccak 287

As a bonus, we discover a generic implementation optimization of the Capa
preprocessing stage. We illustrate and experimentally validate the overhead cost
of the countermeasure as a function of the Keccak permutation width and the
side-channel and fault security parameters.

2 Preliminaries

2.1 KECCAK

Best known for their standardization as Sha-3, Keccak [6] is a family of sponge
functions, based on the Keccak-f [b] permutations. These permutations manip-
ulate a state of b elements in GF (2) (bits) for b ∈ {25, 50, 100, 200, 400, 800, 1600}
and consist of the iterative application of a round function R. Specifically, each
of the seven instances of Keccak-f [b] has a fixed number of rounds nr = 12+2l,
where l = log2(

b
25). The round function R, in turn, is defined by the consecutive

application of five step mappings: R = ι ◦ χ ◦ π ◦ ρ ◦ θ.
The effect of the step mappings is best explained by considering the state

as a three-dimensional array S(x, y, z) of dimensions 5 × 5 × w, where w = b
25 .

This paper employs the established naming convention as introduced in [6]. In
particular, we adopt the nomenclature of planes, rows, lanes, slices and columns
to denote specific parts of the state.

The nonlinear part of the Keccak-f [b] permutation is confined to the χ step
mapping, which is an S-box operating on 5-bit rows. Its algebraic degree is two,
which is an attractive property in the context of masked implementations. The
other step mappings are linear. For each column of the state, the θ mapping
adds the parity of two neighbouring columns. The ι step mapping adds a round
constant to one of the lanes. Finally, π reorganizes the lanes in the state and ρ
shifts the bits within one lane.

2.2 CAPA: A Combined Countermeasure Against Physical Attacks

Capa [36] is an algorithm-level countermeasure that achieves resistance against
attacks that simultaneously exploit side-channel leakage and fault injection. As
such, it claims security in the tile-probe-and-fault adversarial model [36]. We
consider a computing architecture that has been partitioned in d tiles, resulting
in side-channel security up to order d − 1. Let Ti denote one such tile and T
the set of all tiles such that T =

⋃d−1
i=0 Ti. The secure evaluation of an arbitrary

arithmetic circuit occurs in two distinct stages. The evaluation stage comprises
the actual cryptographic computations. The security of this stage depends on
the presence of auxiliary random values, generated in the preprocessing stage.

The intermediate values of the cryptographic computation are referred
to as sensitive variables x, y, z. The preprocessing stage generates auxiliary
values a, b, c. Every sensitive or auxiliary value x ∈ Fq is shared as x =
(x0, x1, . . . , xd−1) where each tile Ti holds one share xi and

∑
xi = x. The

same sharing applies to every auxiliary value a ∈ Fq. To detect faults injected in

288 A. Purnal et al.

the evaluation stage, a MAC key α ∈ Fq, drawn uniformly at random, authen-
ticates every sensitive or auxiliary value x with a multiplicative tag τx = α · x,
shared between the tiles as τx = (τx

0 , τx
1 , . . . , τx

d−1). Note that α authenticates
the secret value itself, not the shares. To protect α from being observed by the
attacker, it is also shared between the tiles as (α0, α1, . . . , αd−1). As α is secret,
an attacker that alters a sensitive value is generally unable to forge a valid tag.
The MAC key α changes for every new execution of the cryptographic algorithm.

To obtain a scalable security level against fault attacks, Capa considers m
independent MAC keys α[j], such that each sensitive value x is accompanied by
m tags τx[j], for j = 0, 1, . . . ,m − 1. Because Keccak operates in Fq = GF (2),
the Capa fault detection probability in this work is 1 − 2−m.

Evaluation Stage. Next to establishing a shared representation 〈x〉 = (x, τx)
of every input value x of the arithmetic circuit, Capa defines a computing pro-
cedure that yields a shared representation of the output. Linear operations, such
as the parity additions in θ or the addition of the round constant in the ι step
mapping, are easily evaluated by isolated computations in every tile. Nonlinear
operations, like field multiplications, are more difficult to implement securely. In
the Capa methodology, multiplications require communication between the tiles
and the consumption of an auxiliary triple 〈a〉, 〈b〉, 〈c〉 that satisfies c = a · b.

To be secure in the presence of glitches, all communication between the tiles
has to be synchronized by registers. Referring to [36] for the details, this implies
that a multiplication operation has a two-cycle latency. However, multiplications
can be organised in a pipeline, reducing the impact on the throughput of the
implementation. To detect faults injected in the evaluation stage, every multi-
plication also features a check of the MAC tag. In an optimized implementation,
this MAC check completes one cycle later than its corresponding multiplication.

Preprocessing Stage. Every multiplication instance in the evaluation stage
incurs a corresponding preprocessing entity that produces the necessary aux-
iliary triple. In what follows, such an entity is denoted by a triple factory.
The generation of an auxiliary triple goes as follows. First, the factory draws
a = (a0, a1, ..., ad−1) and b = (b0, b1, ..., bd−1) uniformly at random from F

d
q .

To this end, every tile Ti randomly generates their share ai, bi. Next, the tiles
securely compute a shared representation c = (c0, c1, ..., cd−1) of c = a · b by
multiplying a and b with a passively secure shared multiplier [11,19,33,35]. The
choice of multiplier is free, as long as the partition in tiles can be superimposed.
In this work, we instantiate the DOM multiplier [19] because of its low random-
ness consumption. Shared multiplications of resp. a, b, c with the MAC key α
in turn yield the tags τa , τb and τc . Note that each new triple thus requires
(1+3m) shared multiplications. To detect faults in the preprocessing and hence
verify that the Beaver triples are genuine, the factory sacrifices another triple
satisfying the same relation. This procedure is explained in more detail in [36].

Trade-offs in Protecting Keccak 289

3 Protected Implementations of KECCAK

Due to the substantial area and randomness cost of nonlinear operations in the
Capa methodology, the selection of the number of S-boxes is a crucial design
decision. In this work, we explore the speed-area trade-off by presenting four
secure designs of Keccak-f [b]: Blaze, Fast, Fur and Kit.

Fig. 1. Simultaneous processing of χ for the different designs.
(a) Blaze. (b) Fast. (c) Fur. (d) Kit

The starting point for each design is the number of χ operations computed
in parallel. Figure 1 marks the bits of the state that are treated simultaneously
in the χ mapping. The design choices for the other step mappings follow from
the speed-area characteristics implied by the number of S-boxes.

3.1 Evaluation Stage

BLAZE. The Blaze design targets high throughput. Figure 2 (left) depicts a
high-level overview of this round-based architecture. The delay elements in χ,
unavoidable to be secure in the presence of glitches, are used as pipelining regis-
ters. Combinational logic implements the other step mappings. In the integrated
π ◦ ρ ◦ θ stage, π and ρ are simple wirings.

The first cycle initiates the χ pipeline and hence only computes π ◦ρ◦θ. The
subsequent cycles compute π ◦ ρ ◦ θ ◦ ι ◦ χ and the permutation finishes in the
final cycle with ι ◦ χ. Before the result can be shown at the output, the MAC
tag check pertaining to the final computation cycle needs to be performed.

FAST. The baseline of the Fast design is a χ mapping that treats half of the
state at a time. Figure 2 (right) presents the high-level architecture for Fast.
The ι ◦ χ stage partitions the state in two equal parts by treating the first w/2
slices in the first cycle and the remaining w/2 slices in the second cycle. The
ι mapping follows the pace dictated by χ and adds the round constant in two
parts. Since the inter-slice shifts in ρ do not match with the slice-based partition
for χ, the π ◦ ρ ◦ θ stage must consider the entire state at once.

290 A. Purnal et al.

Fig. 2. High-level architectures for Blaze (left) and Fast (right)

The computation of one round takes three cycles. In the first cycle, the first
part of the state is loaded in the ι ◦χ pipeline. During the second cycle, the now
completed first part is written in the state register while the remaining part of
the state enters the ι ◦ χ pipeline. In the third cycle, the now completed second
part of the state also ends up in the state register. As with the Blaze design,
one extra cycle is needed to verify the tags of the last ι ◦ χ.

FUR. As shown in Fig. 1, the baseline for the Fur design is a slice-based treat-
ment of χ. Slice-based designs naturally lead to smaller implementations owing
to the reuse of functional units. Moreover, a great deal of multiplexers are saved
because only one slice during χ is written at once, as opposed to the entire state.
The latter insight is key, given that storing the state dominates the implemen-
tation size as we move towards smaller designs. Although the architecture is not
exactly the same, we acknowledge that a slice-based paradigm for Keccak has
been reported previously [25].

Schematically represented in Fig. 3, the slice-based ι ◦ χ stage takes one slice
at a time, corresponding to one bit in every lane. At the same time, the slices
are shifted and the result is written in the newly vacant position resulting from
the shift. Because of the shift, the next slice is now in place to be processed.
After repeating this process for all the slices, the results end up in the correct
location. The π ◦ ρ ◦ θ mapping considers the whole state at once and its result
is written to the state register to allow χ to be performed in a slice-based way.
Due to its slice-based nature, χ takes w + 1 cycles, where the additional cycle
stems from starting up the pipeline. One cycle suffices for π ◦ ρ ◦ θ and the ι
mapping is computed concurrently with χ. In total, Fur takes w + 2 cycles per
round, where one cycle for the MAC check must be added after the final round.

Trade-offs in Protecting Keccak 291

Fig. 3. Slice-based processing for the ι ◦ χ stage in Fur

KIT. The Kit design performs every step mapping in an iterated fashion and
considers the minimal number of χ modules, i.e. one. In particular, Kit employs
the slice-based paradigm for π ◦ θ and ρ and even a row-based paradigm for χ.
Row-based processing can be seen as an even more area-efficient extension of
slice-based processing, resulting in the smallest design of this paper.

The Kit architecture comprises three distinct stages: π ◦ θ, ρ and ι ◦ χ. Note
that this interchanges the order of ρ and π. The π ◦ θ stage is slice-based and
implemented as in [10]. When processing one slice, its column parities are pre-
computed for the next slice. The first slice features a special treatment as it
requires the parities of the columns of the last slice. As a result, it is processed

Fig. 4. Row-based processing for the ι ◦ χ stage in Kit

292 A. Purnal et al.

together with the last slice. The inter-slice diffusion in the ρ stage is also imple-
mented iteratively. In particular, the lanes are shifted circularly until they reach
the configuration dictated by ρ. It should be mentioned that a slice-based ρ
mapping has been reported previously [21].

Figure 4 clarifies the row-based paradigm. The ι ◦ χ stage takes one row and
shifts the remaining rows in the plane to fill the newly vacant position. In turn,
this leaves a vacancy at the last row, which is filled by the first row of the next
plane. Continuation of this reasoning results in a vacancy in the last row of the
final plane, where the ι ◦ χ output is written. This process is repeated for every
row. Care should be taken that the round constant is only added to the relevant
lane. The row-based χ stage takes 5 · w + 1 cycles to treat the entire state. The
other stages are slice-based and hence require w cycles each. In total, each round
takes (7w + 1) cycles.

Table 1. Summary of the designs, generic in the permutation width b. Recall that
w = b/25 and that nr denotes the number of rounds.

Design # S-boxes (χ) # Factories Cycle count

Blaze b/5 b nr + 2

Fast b/10 b/2 3 · nr + 2

Fur 5 25 (w + 1) · nr + 1

Kit 1 5 (7w + 1) · nr + 1

Pushing the Area Limits. Instead of providing a factory for every shared
multiplication, five in the case of Kit, we can instantiate the design with only
one factory. This implies that the evaluation stage waits for the preprocessing
stage. Essentially, this is a bit-based paradigm, where only one bit of the state is
processed at a time. As a result, the preprocessing stage is five times smaller and
the design is five times slower. Given that the preprocessing stage is not dominant
in size for many instances of Kit, this design has not been implemented.

Summary of the Designs. Table 1 summarizes the amount of S-boxes and
factories of every implementation, and the number of cycles they take to execute.

3.2 Preprocessing Stage

In the computing procedure for the Beaver multiplication [36], the auxiliary value
〈c〉 is only needed one cycle later than its corresponding 〈a〉 and 〈b〉. However, a
naive implementation of the preprocessing stage provides 〈a〉, 〈b〉 and 〈c〉 at the
same time. By tolerating a one-cycle lag of the auxiliary values 〈c〉 with respect
to 〈a〉 and 〈b〉 values, as depicted in Fig. 5, we save several storage elements at
the boundary between evaluation and preprocessing stage. When the number of
factories is large, this algorithm-independent optimization incurs a considerable
resource saving.

Trade-offs in Protecting Keccak 293

Fig. 5. The one-cycle lag of 〈c〉 w.r.t 〈a〉 and 〈b〉

4 Implementation Results and Cost Scalability

Our synthesis results are obtained with Synopsys Design Compiler N-2017.09 in
conjunction with the freely available NANGATE 45 nm Open Cell technology
library [31]. The compilation is done with the exact map option enabled and
clock gating disabled to prevent cross-tile optimizations.

Table 2. Synthesis results for Keccak-f [200]

Keccak-f [200] in NANGATE 45 nm (m = 2)

Design Order AREA [kGE] Rand. fmax FoM

Evaluation Preprocessing Total [bpc] [MHz] [kbps/GE]

χ θ State Σ Gen. Ver. Σ

Blaze

1 73.6 4.8 12.5 94.3 114.8 103.0 217.8 312.1 4400 806 25.8

2 117.4 7.2 18.7 148.5 261.7 166.2 427.9 576.4 10800 806 14.0

3 166.0 9.6 25.0 207.4 469.5 237.6 707.1 914.5 20000 751 8.2

Fast

1 36.8 4.8 11.1 56.1 57.4 51.5 108.9 165.0 2200 1333 28.9

2 58.8 7.2 16.6 87.7 130.8 83.1 213.9 301.6 5400 1190 14.1

3 83.1 9.6 22.2 121.6 234.7 118.8 353.5 475.2 10000 1190 8.9

Fur

1 9.2 4.8 13.2 27.9 14.3 12.9 27.2 55.1 550 1219 27.1

2 14.7 7.2 19.9 42.7 32.7 20.8 53.5 96.2 1350 1098 14.0

3 20.8 9.6 26.5 58.1 58.7 29.7 88.4 146.5 2500 1098 9.2

Kit

1 1.9 1.9 11.0 15.6 2.9 2.6 5.4 21.1 110 1315 12.1

2 3.0 2.9 16.5 23.6 6.5 4.2 10.7 34.3 270 1162 6.6

3 4.2 3.9 22.0 31.7 11.7 5.9 17.7 49.4 500 1176 4.6

Although the designs generally cover all seven Keccak−f [b] instances, for
brevity, Table 2 reports the results for Keccak-f [200], for variable side-channel
protection orders. Recall that an implementation with d tiles achieves a side-
channel protection order of (d − 1). To conduct a consistent comparison of the
different designs, we fix m = 2 and warn the reader that this security parameter
does not correspond to a satisfactory practical protection against fault attacks.

The relevant metrics are the area of the implementation, the randomness
consumption, the maximum clock frequency fmax, the number of cycles nc (see
Table 1) and a figure of merit (FoM) [25]. The area is reported in a hierarchical
fashion so as to reveal how the total area is apportioned among the major parts
of the design. The FoM jointly captures the performance in terms of speed and

294 A. Purnal et al.

area and is given by (b ·fmax)/(A ·nc), where A is the total area. As a measure of
throughput per area (higher is better), the expression for the FoM directly follows
from the reasoning that the throughput of Keccak-f is proportional to the
maximum clock frequency and the permutation width, but inversely proportional
to the number of cycles.

Table 3. Comparison with side-channel only countermeasures. Note: the implementa-
tions of [21] are synthesized with UMC 90nm and clock gating

Keccak-f [1600] in NANGATE 45 nm (m = 0)

Order Design AREA [kGE] Rand. fmax Cycles

Evaluation Prep. Total [bpc] [MHz] [/]

χ θ State Σ

1

Blaze 145.1 12.8 33.7 199.7 231.0 430.7 16000 892 25

Parallel [21] 38.4 15.0 32.2 85.7 - 85.7 480 891 48

Parallel-3sh [10] 40.6 19.2 56.8 116.6 - 116.6 4 592 25

Kit 0.5 0.6 26.1 29.1 0.7 29.8 50 1538 10776

Serial-Area [21] 0.4 0.4 14.5 15.7 - 15.7 - 850 3160

Serial-3sh [10] 0.6 0.3 38.1 39.0 - 39.0 < 1 645 1625

2

Blaze 235.2 19.2 50.5 317.1 449.3 766.4 28800 884 25

Parallel [21] 114.0 22.5 51.1 188.1 - 188.1 4800 898 48

Kit 0.7 1.0 39.1 43.7 1.4 45.1 90 1351 10776

Serial-Area [21] 2.2 0.6 21.4 24.2 - 24.2 75 898 3160

Keccak-f [200] in NANGATE 45 nm (m = 0)

1

Blaze 18.1 1.6 4.2 25.2 28.9 54.0 2000 892 19

5-10-5 [1] 73.4 14.0 11.9 99.3 - 99.3 - 395.25 9

6-6-6 [1] 44.6 11.3 14.2 70.1 - 70.1 - 436.7 9

4.1 Comparison with the Literature

The literature already features protected implementations of Keccak, although
their protection scope is limited to side-channel analysis (SCA) in a weaker
attacker model [1,10,21]. Table 3 compares these implementations with the ones
introduced in this work, which are instantiated for m = 0, implying that the
final MAC checking phase can be avoided and all implementations are one cycle
faster. It should be stressed that this is not the intended setting for Capa,
but merely serves for comparison. When the fault protection capability is not
used, one should indeed opt for another countermeasure. Although there are
many trade-offs in the designs, the comparison features only the fastest and the
smallest design of every source to cover the limits of high speed and low area.
For this paper, the representative designs are Blaze and Kit, which adopt the
permutation width of the prior work they are compared to.

For the full permutation width b = 1600, Blaze is nearly twice as fast as
its competitors [10,21]. The price to pay is a larger area and a huge randomness
consumption. For the b = 200 instance, Blaze has a competitive speed and
significantly smaller area than the unrolled implementations of [1] at the expense
of a substantially larger randomness cost.

Trade-offs in Protecting Keccak 295

The first-order protected Kit design is clearly smaller than the Serial-3sh
implementation [10] because the latter employs three shares. It would appear
that the row-based efforts in the Kit design yield a (much) larger implementation
than the Serial-Area implementation [21]. However, the difference can largely be
attributed to (1) different technology libraries and (2) that the synthesis results
for Serial-Area are obtained with clock gating enabled. We verify this hypothe-
sis as follows for the first-order secure design. Without counting multiplexers,
accommodating the state using scan flip-flops (SFF) in NANGATE 45 nm [31]
already has an area cost of 8.0 GE

SFF · 1600 · 2 SFF = 25.6 kGE. This is already in
the same order of magnitude as the first-order Kit design as reported in Table 3.

4.2 Cost Scalability

Scaling with m. The implementation area is expected to scale linearly as a
function of the fault security parameter m. Incrementally increasing m incurs
an additional parallel computation in every arithmetic unit and an extra storage
unit for every shared value 〈x〉. The control overhead is not expected to scale
with m. To corroborate this intuition, we gather experimental evidence for Kit,
the design where the control logic has the largest relative size. Figure 6a shows
the results for Keccak-f [200] with different values of d. Because of the near-
perfect linear relationship, we take it as a given and fix m in the discussions that
follow.

The throughput is affected, albeit slighty, by the value of m. The number of
cycles is constant with respect to the fault security parameter m. Because the
tags corresponding to different keys never interact, no significant increase in the
critical path is to be expected either. However, Fig. 6b shows the contrary and
reveals a monotonous increase of the critical path with respect to m. It can be
attributed to the placement and routing of the cells.

Fig. 6. (a) Keccak-f [200] implementation size as function of m, for the Kit design.
(b) The critical path increases monotonously with m

296 A. Purnal et al.

Scaling with d. The area of the evaluation stage scales linearly with the
SCA protection parameter d. The preprocessing stage, on the other hand, scales
asymptotically with d2 due to the presence of the passively secure multipliers.
Figure 7 presents experimental evidence for these claims. The Fur and Kit
designs are particularly interesting for large SCA protection orders as the offline
part, i.e. the part of the implementation that scales with d2, is relatively small.
The impact on the throughput can be determined as follows. Similar to m, the
SCA security parameter d does not affect the number of cycles of the algorithm.
To assess its influence on the critical path, consider Fig. 6b but now keeping m
constant and varying d. There seems to be some dependency on d but there is
no monotonous increase. The variations are likely due to placement and routing.

Fig. 7. Area of the designs (Keccak-f [200]) w.r.t the SCA parameter d, for m = 2.
From left to right: total area, evaluation stage, preprocessing stage

Scaling with b. As the Keccak-f permutation width increases, a larger state
has to be processed every round. As a result, the designs either become substan-
tially larger (Blaze, Fast) or suffer a considerable throughput penalty (Fur,
Kit). Table 4 allows to interpret the influence of the permutation width on the
area of the implementation. The last column features the interpolated numbers.
In particular, the linear coefficient in b is of importance for this experiment.
As expected, the slice- and row-based designs scale much less dramatically than
the designs that consider the entire state or half of the state every round. The
critical path is unaffected by b. This makes sense as the fundamental operations
occur at the bit-level and remain unchanged. The throughput scaling can then
simply be deduced from the number of cycles in Table 1.

Trade-offs in Protecting Keccak 297

Table 4. Area scaling of the designs for Keccak-f [b] w.r.t. b

Area [kGE] of Keccak-f [b] for d = 2, m = 2

Design b = 200 b = 400 b = 800 b = 1600 Interpolation

Blaze 312.1 623.9 1247.5 2494.6 312.1 + 1.56(b − 200)

Fast 165.0 329.7 659.1 1317.8 165.0 + 0.82(b − 200)

Fur 55.1 72.6 107.5 177.2 55.1 + 0.087(b − 200)

Kit 21.1 30.9 50.5 89.8 21.1 + 0.049(b − 200)

Fig. 8. Results of the non-specific leakage detection (t-test) for the Kit design of
Keccak-f [200], where d = 3 and m = 2. Top row: average power trace (arbitrary
units). Second until last row: resp. 1st, 2nd and 3rd order t-test

5 Security Evaluation

5.1 Side-Channel Resistance

To evaluate the side-channel resistance of the presented designs, we employ the
Test Vector Leakage Assessment (TVLA) method [4]. Specifically, we consider
a non-specific leakage detection test and adopt a t-test threshold of |t| = 4.5.
The evaluation platform is a Sakura-G board, equipped with two 45 nm Xilinx
Spartan-6 FPGAs that respectively host the cryptographic implementation and
the control unit. By design, the board isolates the power supplies of the FPGAs,
mitigating the noisy influence of the control unit on the power consumption mea-
surements. The programming files for the cryptographic unit are obtained with

298 A. Purnal et al.

the keep hierarchy constraint to avoid that sources of out-of-model leakage are
added by the synthesis of the design. The implementation is clocked at 3 MHz
and the masks are produced by a Keccak-f [1600]-based PRNG.

The evaluation is performed on the Keccak-f [200] instance of the Kit
design. This design should exhibit the fastest evidence of leakage as it only fea-
tures a relatively small preprocessing phase, which contributes as a noise source
in the context of this experiment. Because the implementations are general in b,
the security claims carry over to the other Keccak-f [b] instances. The imple-
mentation is parametrized with d = 3 tiles (offering a second-order secure design)
and a fault security parameter m = 2. The specific value of m is unimportant,
but is non-zero to ensure that the synthesis and implementation tools do not
trim the preprocessing stage and MAC checks from the implementation.

To construct the power traces, an oscilloscope captures the voltage drop
over a 1 Ω shunt resistor at 1 GS/s for 10000 samples. The traces correspond
to the latter half of the ρ mapping and the first two slices of χ, obtaining a
representative part of the round function, with linear and nonlinear operations.
To ensure that the test setup is able to detect leakage, all masks are turned off
in the first iteration of the experiment. In the subsequent iteration, the masks
are turned on. The leakage reduction from the first experiment to the second on
can then be fully attributed to the Capa countermeasure.

The experiment where the masks are disabled, shown in Fig. 8a, shows serious
leakage. Already after the first batch of 15000 traces, |t| amply exceeds the
threshold of |t| = 4.5. This observation validates that the measurement setup
is reliable. When activating the masks, the t-test reveals no first-, second- or
third-order leakage when presented 80 million traces (Fig. 8b). Although we do
not claim that the implementation with three shares is secure against third-order
attacks, no leakage is apparent from the statistical evidence contained within the
supplied traces. This can be attributed to the measurement noise.

In Fig. 8b, the second-order t-test can be seen to approach the threshold value
of t = ±4.5. To provide reassurance that this artefact stems from statistical vari-
ations as opposed to genuine leakage, Fig. 9 shows the maximum |t|-values over
time. It can be seen to fluctuate around the threshold but no steady increase in
its value is recognizable. In conclusion, the experiment does not provide evidence
of second-order leakage.

Fig. 9. Maximum t-test value over time

Trade-offs in Protecting Keccak 299

5.2 Fault Resistance

Resistance against fault attacks is difficult to evaluate as currently no established
formal verification procedures exist. For a theoretical discussion on the fault
resistance of Capa, we refer to [36]. While not conclusive, we gain confidence in
the implementation by experimentally verifying the fault detection probability.

Modelling the Attacker. Recall that Capa considers the tile-probe-and-fault
model, allowing the adversary to fault arbitrary bits in the implementation,
given that at least one tile is not faulted nor probed. The adversarial goal is
to introduce a fault f in the computations. To this end, she guesses a valid
shared representation 〈f〉, denoted a fault vector, consisting of d(1 + m) bits.
This results in 2d(1+m) possible fault vectors. In GF (2), half of these correspond
to f = 0 and are hence excluded. The attacker can simultaneously fault at
several interesting locations in the implementation (preprocessing, the linear θ
mapping, the MAC check and the S-box) but will stick to one guess of the
MAC key; otherwise she will be detected with probability one. To cover the
DFA attacks on Keccak [2], we inject the faults in the penultimate round.
We modify the HDL implementation in the targeted modules to introduce the
fault vectors as additive differences as done in [15]. We simulate the design with
GHDL 0.36-dev.

Experimental Results. We experimentally validate the claimed fault detec-
tion probability for the first-order (d = 2) Keccak-f [200] Kit implementation
with m ∈ {2, 4, 6, 8}. The results can then be extrapolated to larger m as both
Capa and the Kit implementation itself are generically scalable in m. For these
relatively small values of m, we need not follow a probabilistic approach. The
fault coverage can be trivially parallelized and we can exhaustively cover all
valid fault vectors in a few hours. This deterministic experiment is successful if
the fraction of detected faults is exactly equal to 1 − 2−m. Table 5 covers the
experimental results and demonstrates that the implementation is sound.

Table 5. Experimental fault resistance results

m = 2 m = 4 m = 6 m = 8

valid 〈f 〉 32 512 8192 131072

detected 〈f 〉 24 480 8064 130560

6 Conclusion

Following the Capa countermeasure methodology, this paper reports the first
Keccak implementations with resistance against combined side-channel and
fault attacks. The fastest design competes with or even outperforms the state of

300 A. Purnal et al.

the art in side-channel protected designs. As a drawback, the area and random-
ness requirements are prohibitively large. The smaller designs of this work have
more attainable requirements, but incur a considerable throughput penalty. All
four approaches are general in the Keccak permutation width b, and scalable in
the number of tiles d and the fault security parameter m. We have presented and
validated the scaling laws as a function of these parameters. An advanced leakage
detection test on the most intricate implementation of this paper has validated
our confidence in its SCA resistance. The soundness of the implementation with
respect to fault attacks has been supported by simulation.

Acknowledgements. The authors would like to thank the COSADE reviewers for
their helpful comments. This work was supported in part by the Research Council KU
Leuven: C16/15/058 and by the NIST Research Grant 60NANB15D346. Lauren De
Meyer is funded by a PhD fellowship of the Fund for Scientific Research - Flanders
(FWO). Antoon Purnal would like to thank Vincent Rijmen and Ingrid Verbauwhede
for supervising the master’s thesis that led to this paper.

References

1. Arribas, V., Bilgin, B., Petrides, G., Nikova, S., Rijmen, V.: Rhythmic Keccak:
SCA security and low latency in HW. IACR Trans. Cryptogr. Hardw. Embed.
Syst. 2018(1), 269–290 (2018)

2. Bagheri, N., Ghaedi, N., Sanadhya, S.K.: Differential fault analysis of SHA-3. In:
Biryukov, A., Goyal, V. (eds.) INDOCRYPT 2015. LNCS, vol. 9462, pp. 253–269.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6 14

3. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s
apprentice guide to fault attacks. Proc. IEEE 94(2), 370–382 (2006)

4. Becker, G., et al.: Test vector leakage assessment (TVLA) methodology in practice.
In: International Cryptographic Module Conference, vol. 1001, p. 13 (2013)

5. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and
detection procedures for a hardware implementation of the advanced encryption
standard. IEEE Trans. Comput. 52(4), 492–505 (2003)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submiss. NIST (Round 2) 3(30) (2009)

7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Building power analysis
resistant implementations of Keccak. In: Second SHA-3 Candidate Conference,
vol. 3, p. 2. Citeseer (2010)

8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Ketje v2 (2015)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G., Van Keer, R.: CAESAR
submission: Keyak v2 (2015)

10. Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Van Assche, G.: Effi-
cient and first-order DPA resistant implementations of Keccak. In: Francillon, A.,
Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 187–199. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-08302-5 13

11. Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-order threshold
implementations. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol.
8874, pp. 326–343. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45608-8 18

https://doi.org/10.1007/978-3-319-26617-6_14
https://doi.org/10.1007/978-3-319-08302-5_13
https://doi.org/10.1007/978-3-662-45608-8_18
https://doi.org/10.1007/978-3-662-45608-8_18

Trade-offs in Protecting Keccak 301

12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryp-
tographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-
69053-0 4

13. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counter-
act power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666,
pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-
1 26

14. De Cnudde, T., Nikova, S.: More efficient private circuits II through threshold
implementations. In: 2016 Workshop on Fault Diagnosis and Tolerance in Cryp-
tography (FDTC), pp. 114–124. IEEE (2016)

15. De Meyer, L., Arribas, V., Nikova, S., Nikov, V., Rijmen, V.: M&M: Masks
and Macs against physical attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst.
2019(1), 25–50 (2019)

16. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results.
In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp.
251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 21

17. Gierlichs, B., Schmidt, J.-M., Tunstall, M.: Infective computation and dummy
rounds: fault protection for block ciphers without check-before-output. In: Hevia,
A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 305–321. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8 17

18. Goubin, L., Patarin, J.: DES and differential power analysis the “Duplication”
method. In: Koç, Ç.K., Paar, C. (eds.) CHES 1999. LNCS, vol. 1717, pp. 158–172.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48059-5 15

19. Groß, H., Mangard, S., Korak, T.: Domain-oriented masking: compact masked
hardware implementations with arbitrary protection order. In: Proceedings of the
ACM Workshop on Theory of Implementation Security, TIS@CCS 2016 Vienna,
Austria, October 2016, p. 3 (2016)

20. Groß, H., Mangard, S., Korak, T.: An efficient side-channel protected AES imple-
mentation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017.
LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-52153-4 6

21. Groß, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected
implementations of Keccak. In: Euromicro Conference on Digital System Design,
DSD 2017, Vienna, Austria, 30 August – 1 September 2017, pp. 205–212 (2017)

22. Guo, X., Karri, R.: Recomputing with permuted operands: a concurrent error
detection approach. IEEE Trans. CAD Integr. Circuits Syst. 32(10), 1595–1608
(2013)

23. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keep-
ing secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006.
LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.
1007/11761679 19

24. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 27

25. Jungk, B., Apfelbeck, J.: Area-efficient FPGA implementations of the SHA-3 final-
ists. In: 2011 International Conference on Reconfigurable Computing and FPGAs,
ReConFig 2011, Cancun, Mexico, 30 November – 2 December 2011, pp. 235–241
(2011)

https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-69053-0_4
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/978-3-642-33481-8_17
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/978-3-319-52153-4_6
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/11761679_19
https://doi.org/10.1007/978-3-540-45146-4_27

302 A. Purnal et al.

26. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standard.
In: 2004 International Conference on Dependable Systems and Networks (DSN
2004), 28 June – 1 July 2004, Florence, Italy, Proceedings, pp. 93–101 (2004)

27. Kim, C.H., Quisquater, J.-J.: Fault attacks for CRT based RSA: new attacks, new
results, and new countermeasures. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 215–228. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72354-7 18

28. Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and
other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113.
Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5 9

29. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.)
CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 25

30. Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: Robust codes and robust, fault-
tolerant architectures of the advanced encryption standard. J. Syst. Architect.
53(2–3), 139–149 (2007)

31. NANGATE: California. 45 nm open cell library (2008). http://www.nangate.com
32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-

channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006.
LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.
1007/11935308 38

33. Nikova, S., Rijmen, V., Schläffer, M.: Secure hardware implementation of non-
linear functions in the presence of glitches. In: Lee, P.J., Cheon, J.H. (eds.) ICISC
2008. LNCS, vol. 5461, pp. 218–234. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00730-9 14

34. Patel, J.H., Fung, L.Y.: Concurrent error detection in ALU’s by recomputing with
shifted operands. IEEE Trans. Comput. 31(7), 589–595 (1982)

35. Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
masking schemes. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS,
vol. 9215, pp. 764–783. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-47989-6 37

36. Reparaz, O., De Meyer, L., Bilgin, B., Arribas, V., Nikova, S., Nikov, V., Smart, N.:
CAPA: the spirit of beaver against physical attacks. In: Shacham, H., Boldyreva,
A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 121–151. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-96884-1 5

37. Rivain, M., Prouff, E.: Provably secure higher-order masking of AES. In: Mangard,
S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 413–427. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9 28

38. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware
countermeasures against side-channel and fault-injection attacks. In: Robshaw, M.,
Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53008-5 11

39. van Woudenberg, J.G.J., Witteman, M.F., Menarini, F.: Practical optical fault
injection on secure microcontrollers. In: 2011 Workshop on Fault Diagnosis and
Tolerance in Cryptography, FDTC 2011, Tokyo, Japan, 29 September 2011, pp.
91–99 (2011)

40. Yen, S., Joye, M.: Checking before output may not be enough against fault-based
cryptanalysis. IEEE Trans. Comput. 49(9), 967–970 (2000)

https://doi.org/10.1007/978-3-540-72354-7_18
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/3-540-48405-1_25
http://www.nangate.com
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/11935308_38
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-642-00730-9_14
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/978-3-319-96884-1_5
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-662-53008-5_11

Author Index

Alessio, Davide 99
Ampadu, Paul 63
Arribas, Victor 285
Azarderakhsh, Reza 215
Azouaoui, Melissa 25

Baiker, Christian 270
Batteux, Boris 99
Bhasin, Shivam 232
Bogdanov, Andrey 118

Carré, Sébastien 13
Chattopadhyay, Anupam 232

David, Liron 168
De Meyer, Lauren 285
Diehl, William 63
Dumas, Cécile 145

Facon, Adrien 13

Gruber, Michael 80
Guilley, Sylvain 13

Immler, Vincent 43

Jalali, Amir 215
Jao, David 215

Kermani, Mehran Mozaffari 215
Krämer, Juliane 193

Loiero, Mirjam 193

Maghrebi, Houssem 99
Masure, Loïc 145
Mischke, Oliver 253
Moradi, Amir 270
Mukhopadhyay, Debdeep 232
Mutlu, Onur 3

Pehl, Michael 43
Poussier, Romain 25
Prouff, Emmanuel 145
Purnal, Antoon 285

Ramezanpour, Keyvan 63
Ravi, Prasanna 232
Rivain, Matthieu 118
Roy, Debapriya Basu 232

Schamberger, Thomas 253
Schaub, Alexander 13
Selmke, Bodo 80
Sepulveda, Johanna 253
Souissi, Youssef 13
Standaert, François-Xavier 25

Takarabt, Sofiane 13
Tebelmann, Lars 43

Vejre, Philip S. 118

Wang, Junwei 118
Wegener, Felix 270
Wool, Avishai 168

Zeyad, Mohamed 99

	Preface
	Organization The 10th International Workshop on Constructive Side-Channel Analysis and Secure Design
	Contents
	Keynotes and Invited Talks
	RowHammer and Beyond
	1 Summary
	2 Significance, Impact and the Future
	3 Other Potential Vulnerabilities
	References

	Cache-Timing Attack Detection and Prevention
	1 Introduction
	2 Cache-Timing Issues
	3 Cache-Timing Analysis Methodology
	3.1 State-of-the-Art
	3.2 Methodology Presentation
	3.3 Methodology Application

	4 Conclusion
	A Some Excerpts From Secure and Vulnerable Functions From mbedTLS
	References

	Side-Channel Attacks
	Fast Side-Channel Security Evaluation of ECC Implementations
	1 Introduction
	2 Background
	2.1 Notations
	2.2 Elliptic Curve Scalar Multiplication
	2.3 Horizontal Differential Power Analysis

	3 Problem Statement and Challenges
	3.1 SNR Definitions
	3.2 Preliminary Observations and Caveats
	3.3 The Single Trace Attack Scenario

	4 Efficient Success Rate Approximation
	4.1 Additional Assumptions
	4.2 Efficient Success Rate Approximation
	4.3 Potential Invalidation of the Assumptions

	5 Simulated Experiment: The Algorithmic Issue
	6 Real Experiment: The Physical Issue
	7 Conclusion
	A Addition and Doubling Formulas
	References

	Side-Channel Analysis of the TERO PUF
	1 Introduction
	2 Transient Effect Ring Oscillator (TERO) Preliminaries
	2.1 TERO PUF Architecture
	2.2 Remarks on the TERO PUF Architecture

	3 Exploration of the TERO PUF
	3.1 Attack Vectors
	3.2 Discovering TERO Oscillations
	3.3 Estimating TERO Oscillation Durations
	3.4 Short-Time Fourier Transform (STFT)

	4 Experimental Setup
	5 Exploitation of the TERO Side-Channel
	5.1 Analysis of Separately Activated Cells
	5.2 Analysis of Simultaneously Activated Cells
	5.3 Attack on Multi-bit Responses
	5.4 Interpretation and Countermeasures

	6 Conclusions
	References

	Fault-Injection Attacks
	FIMA: Fault Intensity Map Analysis
	1 Introduction
	2 Background and Related Work
	2.1 Statistical Fault Analysis
	2.2 Ascon Authenticated Cipher

	3 Fault Intensity Map Analysis (FIMA)
	3.1 Fault Model
	3.2 Fault Distribution
	3.3 Fault Image

	4 Test Statistics for Fault Image
	4.1 Statistics for Fault Bias
	4.2 Statistics for Intensity Correlation
	4.3 Score Function

	5 Sufficient Amount of Data
	6 FIMA Attack on Ascon
	7 Results
	7.1 Signature of Score Function over Key Space
	7.2 FIMA with Error-Detection Countermeasures
	7.3 FIMA with Infective Countermeasures

	8 Conclusions
	References

	Differential Fault Attacks on KLEIN
	1 Introduction
	2 KLEIN
	2.1 The Round Function
	2.2 SubNibbles
	2.3 RotateNibbles
	2.4 MixNibbles
	2.5 Key Schedule
	2.6 Modified Representation
	2.7 Notation

	3 Related Work
	4 Proposed Attack on the Encryption
	5 Proposed Attack on the Key Schedule
	5.1 Fault Propagation
	5.2 Fault Exploitation
	5.3 State Recovery

	6 Simulation and Discussion
	6.1 Simulation
	6.2 Discussion

	7 Conclusion
	References

	White-Box Attacks
	Another Look on Bucketing Attack to Defeat White-Box Implementations
	1 Introduction
	2 Statistical Bucketing Attack
	2.1 Notations and Definitions
	2.2 Overview of the Statistical Bucketing Attack on DES
	2.3 Extending the Statistical Bucketing Attack to AES

	3 Bucketing Computational Analysis
	3.1 Pre-computation Phase
	3.2 Acquisition Phase
	3.3 Complexity Improvements

	4 Practical Experiments
	4.1 Experimental Setup
	4.2 Attack Results
	4.3 Discussion and Countermeasures

	5 Conclusion
	A Experimental Estimation of the Probability that for an Incorrect Key Guess the Sets V0 and V1 are Disjoints - DES CASE
	B Experimental Estimation of the Probability that for an Incorrect Key Guess the Sets V0 and V1 are Disjoints - AES CASE
	References

	Higher-Order DCA against Standard Side-Channel Countermeasures
	1 Introduction
	1.1 Shades of Gray
	1.2 Differential Computational Analysis
	1.3 Our Contributions
	1.4 Related Works

	2 Differential Computation Analysis
	2.1 DCA Setting
	2.2 Standard First-Order DCA

	3 Side-Channel Countermeasures against DCA
	3.1 DCA is a Passive and Non-invasive Gray-Box Attack
	3.2 Masking
	3.3 Shuffling
	3.4 On the Source of Randomness
	3.5 Resistance to First-Order DCA

	4 Introducing Higher-Order DCA
	4.1 Higher-Order DCA against Masking and Shuffling

	5 Multivariate Higher-Order DCA
	5.1 Multivariate Higher-Order DCA against Masking and Shuffling
	5.2 Analysis of the Likelihood Distinguisher

	6 Experimental Verification and Security Evaluation
	A Success Probability of Higher-Order DCA (Proof of Theorem 1)
	B Proof of Proposition 1
	C Probability of the Zero-Counter Event (Proof of Lemma 1)
	D Success Probability with No Zero Counters (Proof of Lemma 2)
	References

	Side-Channel Analysis Methodologies
	Gradient Visualization for General Characterization in Profiling Attacks
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Profiling Attacks

	3 Study of an Optimal Model
	4 Our Characterization Proposal
	4.1 Gradient Approximation with Neural Networks
	4.2 Example on Simulated Data
	4.3 Comparison with SNR for Characterization
	4.4 Related Works

	5 Experiment Description
	5.1 CNN Architecture
	5.2 Settings

	6 Experimental Results
	6.1 Application Without Countermeasure
	6.2 Application with an Artificial De-synchronization
	6.3 Application with a First Order Masking
	6.4 Comparison in the Context of Template Attacks

	7 Conclusion
	A Profiling Attacks
	B Study of an Optimal Model
	C Neural Networks
	D Experimental Results
	D.1 The Jacobian Matrix

	References

	Fast Analytical Rank Estimation
	1 Introduction
	1.1 Background
	1.2 Related Work
	1.3 Contribution

	2 An Analytical Framework for Bounding the Rank
	2.1 The Box Bound
	2.2 Upper Bound Functions

	3 Instantiating the Framework with Pareto-Like Functions
	3.1 The Existence of Pareto-Like Upper Bound Functions
	3.2 Efficient Search for Pareto-Like Upper Bound Functions
	3.3 Choosing the Best Pareto-Like Upper Bound Function

	4 PRank: The Pareto Rank Estimation Algorithm
	4.1 Estimating the Volume
	4.2 Theoretical Worst-Case Performance

	5 Performance Evaluation
	5.1 Data Corpus I
	5.2 Data Corpus 2

	6 Conclusions and Future Work
	A Proof for Theorem 1
	B Proof for Proposition 2
	C Proof for Theorem 2
	D Proof for Proposition 3
	E Derivation of the Rank Upper-Bound Formula
	References

	Security Aspects of Post-Quantum Schemes
	Fault Attacks on UOV and Rainbow
	1 Introduction
	2 Background
	2.1 Multivariate Cryptosystems
	2.2 General Fault Attacks on Multivariate Public Key Cryptosystems

	3 Fault Attack on the Central Map
	3.1 Attacker Model
	3.2 Detailed Description of the Attack for SingleField Schemes
	3.3 UOV Schemes Are Immune to This Attack
	3.4 Applying the Attack to Rainbow Schemes
	3.5 Special Cases

	4 Fault Attack on the Random Values
	4.1 Attacker Model
	4.2 Detailed Description of the Attack for SingleField Schemes
	4.3 Special Case and Success Probability of the Attack

	5 Countermeasures
	5.1 Securing the Central Map
	5.2 Securing the Random Values

	6 Conclusion
	A The Signature Schemes UOV and Rainbow
	A.1 Signature Generation and Verification of Multivariate Schemes
	A.2 Unbalanced Oil and Vinegar Signature Scheme
	A.3 Rainbow

	B Probability for the Special Case of Sect.3.5
	C Probability for Equal Random Variables
	References

	Towards Optimized and Constant-Time CSIDH on Embedded Devices
	1 Introduction
	2 Background
	2.1 Isogeny of Supersingular Curves
	2.2 Class Group Action
	2.3 Commutative Isogeny Diffie-Hellman Key Exchange

	3 Constant-Time CSIDH Implementation
	3.1 Field Arithmetic Modulo p511
	3.2 Scalar Multiplication
	3.3 Key Exchange Operations

	4 Performance Results and Discussion
	4.1 Discussion

	5 Conclusion
	References

	Number ``Not Used'' Once - Practical Fault Attack on pqm4 Implementations of NIST Candidates
	1 Introduction
	2 Background on Lattice Based Cryptography
	2.1 Lattice Preliminaries
	2.2 The Learning with Errors Problem
	2.3 LPR Encryption Scheme LPR13
	2.4 Insecure Instantiations of the LWE Problem
	2.5 Error Sampling Procedure
	2.6 Prior Work on Fault Analysis of Lattice-Based Cryptographic Schemes

	3 Fault Attacks on LWE Schemes
	3.1 General Attack Idea
	3.2 Key Recovery Attacks
	3.3 Message Recovery Attacks

	4 Experimental Validation
	4.1 Experimental Setup
	4.2 Implementation of EMFI Attack

	5 Countermeasures
	6 Conclusion
	A Appendix
	References

	Countermeasures Against Implementation Attacks
	Practical Evaluation of Masking for NTRUEncrypt on ARM Cortex-M4
	1 Introduction
	2 NTRUEncrypt
	2.1 Notation and Representation of Polynomials
	2.2 Algorithm Description
	2.3 Operations on Polynomials

	3 Related Work
	4 CPA on Trinary Polynomials
	5 Masking the Ciphertext Polynomial
	5.1 Sequential Implementation
	5.2 Parallel Implementation

	6 Evaluation of Results
	6.1 CPA on Trinary Polynomials
	6.2 Second-Order Attacks on Masking Countermeasure
	6.3 Second-Order Attack on the Combination of Masking and Shuffling

	7 Conclusion
	References

	Shuffle and Mix: On the Diffusion of Randomness in Threshold Implementations of Keccak
	1 Introduction
	2 Preliminaries
	3 TI of Keccak
	4 Simulations
	5 Implementation
	6 Practical Analysis
	7 Conclusion
	References

	Trade-offs in Protecting KECCAK Against Combined Side-Channel and Fault Attacks
	1 Introduction
	2 Preliminaries
	2.1 KECCAK
	2.2 CAPA: A Combined Countermeasure Against Physical Attacks

	3 Protected Implementations of KECCAK
	3.1 Evaluation Stage
	3.2 Preprocessing Stage

	4 Implementation Results and Cost Scalability
	4.1 Comparison with the Literature
	4.2 Cost Scalability

	5 Security Evaluation
	5.1 Side-Channel Resistance
	5.2 Fault Resistance

	6 Conclusion
	References

	Author Index

